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CHAPTER

1
Introduction

Exploiting domain knowledge in an automatic way is currently a challenge that draws

a lot of attention from both industry and academy. The interest of formal ontologies,

which allow to represent this knowledge as logical theories, thus enabling to do reason-

ing on it, is now widely recognized. In the context of the Semantic Web, systems and

applications based on formal ontologies are in particular made possible by the definition

of standards of the W3C, such as OWL (Web Ontology Language) and OWL2.

Existing languages for representing formal ontologies such as OWL/OWL2 are heav-

ily based upon Description Logics (DLs). Description Logics are a family of languages

introduced in the 80’s, that can be seen as decidable fragments of first-order logic. In

DLs, domain knowledge is represented by concepts, which are unary predicates in the

vocabulary of first-order logic, and roles, which correspond to binary predicates. Sev-

eral constructors, depending on the considered DL, are available to build complex con-

cepts and roles from atomic ones. Relationships between concepts and roles are stated by

means of concept (or role) inclusion axioms. Last, individual elements can be defined,

and properties (e.g., of which concept they are an instance) of these individuals may be

stated. Historically, most of the studies carried out in DLs have focused on ontologies in

themselves, like checking their consistency or classifying a concept with respect to a set

of predicates. A guiding principle of the design of DLs has been the search of a good

trade-off between the expressivity of the considered DL, and the theoretical complexity

of the associated reasoning problems.

The recent years have been marked by a great increase of the volume and the com-

plexity of available data. The need for an ontological layer on top of data and for efficient

querying mechanisms able to exploit this knowledge has thus become more and more

acute. A new reasoning issue, known as ontology-based data access (OBDA), has been

brought up: how to query data while taking ontological knowledge into account? Let us

give a small example of what we mean by this expression. Assume that a supermarket

3



4 CHAPTER 1. INTRODUCTION

opens an online shop. It may sell for instance tofu, lemonade and wasabi-flavored choco-

late. The supermarket wants to help customers to find what they are looking for – and

enables a semantic search on its catalog. For instance, a vegetarian customer may be es-

pecially interested in products that are good protein sources. A direct search on “protein

source” and “vegetarian” will not yield any answer, since these terms do not appear in the

product descriptions. Using domain knowledge, one can infer that tofu is suitable for a

vegetarian, and moreover contains a high share of proteins. This is the kind of inferences

that we want to perform when querying data while taking ontologies into account.

Let us stress the three important components that appear in this example. First, we are

given an ontology (tofu is a source of proteins,etc), which describes some domain knowl-

edge. In this dissertation, we made the choice to represent the ontology by means of ex-

istential rules. Existential rules are positive rules, i.e., they are of the form B→H, where

B and H are conjunctions of positive atoms. No functional symbols appear in existential

rules – except for constants – but the head of a rule may contain variables that do not

appear in the body, and such variables are existentially quantified. The ability to describe

individuals that may not be already present in the knowledge base has been recognized as

crucial for modeling ontologies and enable incomplete description of data. Such an ability

is not granted within, for instance, Datalog, the language of deductive databases [Abite-

boul et al., 1994] but it is in DLs. Existential rules have the same logical form as con-

ceptual graph rules [Sowa, 1984; Chein and Mugnier, 2008], as well as tuple-generating

dependencies (TGDs) [Abiteboul et al., 1994], which can be seen as Datalog rules ex-

tended with existentially quantified variables in the rule head and are one of the building

blocks of the recently introduced Datalog± framework [Calì et al., 2012]. Let us also

mention that existential rules generalize lightweight DLs, which are the most studied DLs

in the context of OBDA. Data (the supermarket sells tofu,etc) can be represented using

different representational models, such as relational databases, graph databases,etc. We

will abstract ourselves from such representations and view data as a formula in first-order

logic – more precisely, an existentially closed conjunction of atoms. Last, the queries we

consider are conjunctive queries: find a product that is suitable for a vegetarian and is

a source of proteins. These queries are considered as basic in the database community:

they are both efficiently processed by relational database management systems and often

used. Note that all our results can be extended to unions of conjunctive queries (which

can be seen in a logical way as a disjunction of conjunctive queries), since to answer a

union of conjunctive queries one can simply evaluate each conjunctive query separately.

This problem is a particular instance of the ontology-based data access problem, that we

will denote by the name ontology-based query answering (OBQA).

In this dissertation, we address the OBQA problem from a theoretical point of view.

The presence of existentially quantified variables in the head of rules make this problem

undecidable. Classical questions are then the following: what are the most expressive

decidable classes of rules that we can design, while keeping decidability of the OBQA

problem? Beyond decidability, we are also interested in the worst-case complexity of

the problem. Last, we also want to design efficient algorithms for classes of rules that

are decidable. The usual approaches to deal with these problems is to use one of the



5

two following approaches, which we describe here intuitively. A first approach is to

“saturate” data, that is, to enrich data in order to add all the information that is entailed by

the original knowledge base. A conjunctive query is then evaluated against the saturated

data without considering the ontology anymore. This kind of techniques will be called

materialization-based in this dissertation. Another popular approach is to reformulate

the query into a first-order query using the ontology, and to evaluate this rewritten query

directly against the original data. This latter approach is particularly well-suited when

the data is so large that materializing all the consequences that can be obtained from the

ontology is not reasonable. Moreover, in some cases, the saturated data may be infinite,

which prevents from materializing it. However, a similar problem may occur with this

materialization-avoiding approach, where no (finite) first-order formula would be a sound

and complete rewriting of the original query with respect to the ontology. A more formal

description of both approaches, and a landscape of the literature on OBQA are presented

in Chapter 2.

The contributions of this dissertation may be split in two parts, according to the two

previous kinds of techniques. First, let us give a simple example where the saturated data

is not of finite size. We consider a single fact, “Bob is a human”, and a simple ontology,

stating that every human has a parent that is a human. We do not discuss the empirical

soundness of this rule, but let us focus on the facts that are entailed by our knowledge

base. Being a human, Bob has a parent that is a human. Let us call this parent x1. Since

x1 is a human, it also holds that x1 has a parent that is a human, and we can thus state the

existence of an individual x2, that is both a human and a parent of x1. This process can

be repeated as often as we want, creating infinitely many new individuals. The simplicity

of the given ontology advocates that this behavior does not only happen in pathological

cases. Since we cannot materialize data of infinite size, are we doomed not to be able to

answer queries when such ontologies are considered? The answer is already known, and

is no: it is in some cases possible to design algorithms to answer conjunctive queries with

respect to data and a set of rules even if the saturated data associated to them is not of

finite size. One of these cases is when the structure of the saturated data is close to being

a tree. However, for some classes of ontologies that ensure tree-likeness of the saturated

data, dedicated algorithms are not known yet. We propose a new criterion, which is a

structural condition on the saturated data, that ensures decidability of the conjunctive

query answering problem. This class of rules covers a wide range of known decidable

classes. The intuition behind this condition is that each rule application adds information

on individuals that are “close” one to another. We also provide an algorithm that is worst-

case optimal for that class of rules, as well as for most of its known subclasses, up to some

small adaptations. To achieve this, we present a way to finitely represent the saturated

data. This is done by means of patterns. Intuitively, patterns are associated with a set of

individuals, and two sets of individuals have equivalent patterns if they are the “root” of

similar tree-like structures. This will be developed in Chapter 3.

We also consider materialization-avoiding approaches. A major weakness of most

of the rewriting algorithms of the literature is the weak expressivity of the ontologies

they support. Indeed, most of them work only for very restricted ontologies. Standing
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out is the piece-based rewriting algorithm of [König et al., 2012], that is guaranteed to

compute sound and complete rewritings as soon as they exist. However, this algorithm,

as well as the majority of others, outputs unions of conjunctive queries. While this is not

a restriction in terms of expressivity, we advocate that this is generally not an adequate

query language, because of the huge size of the optimal rewritings when large concept and

relation hierarchies are present, which is very likely to occur in real-world ontologies. We

thus propose to use a more general form of existential positive queries than unions of

conjunctive queries, by allowing to use disjunctions in a slightly less restricted way. We

also adapt the algorithm of [König et al., 2012] in such a way that it can compute such

rewritings, and provide first experiments showing that this approach is more efficient than

the classical approach using unions of conjunctive queries. These results are presented in

Chapter 4.

We conclude with some possible extensions of this work in Chapter 5.



CHAPTER

2
The landscape of OBQA

Preamble

In this chapter, we present the ontology-based query answering (OBQA) problem,

and a landscape of results about it. We first introduce basic vocabulary about facts,

queries and ontologies. We explore links between lightweight description logics and

existential rules, which are the two mainly used formalisms to express ontologies

when studying OBQA. We last present current approaches for answering queries

when taking an ontology into account.

As explained in the previous chapter, the problem we consider in this dissertation is

called ontology-based query answering (OBQA). We first need a formalization of its three

components: facts, queries and ontologies. After explaining how to represent them, and

noticing that the OBQA problem is undecidable in the setting we consider, we present

the main known decidability criteria and key concepts used to design classes of rules that

fulfill these criteria. We then outline the contributions of this dissertation.

2.1 Representing data and queries

A lot of different technologies allow to store data, among which relational databases,

graph databases and triple stores. While relational databases are by far the most used

until now, other technologies are also relevant and more appropriate in some application

domains – depending on the basic operations that need to be performed on the data. In

this dissertation, we abstract from a specific language by considering the formalism of

first-order logic. We use its standard semantics, and assume the reader to be familiar

with first-order logic, however we recall below some basic notations that will be used

throughout this dissertation.

7
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A logical language L= (P,C) is composed of two disjoint sets: a set P of predicates

and a set C of constants. Please note that we do not consider functional symbols, except

for constants. We are also given an infinite set of variables V. Each predicate p is as-

sociated with a positive integer, which is called the arity of p. A term on L is either a

constant (i.e., an element of C) or a variable. As a convention, we will denote constants

by a,b,c, . . . and variables by x,y,z, . . .. An atom on L is of form p(t1, . . . ,tk), where p

is a predicate of P of arity k, and ti is a term on L for any i. The terms of an atom a are

denoted by terms(a), and its variables are denoted by vars(a). A ground atom contains

only constants. The interpretation of a logical language is defined as follows.

Definition 2.1 (Interpretation of a language) An interpretation of a logical language

L= (P,C) is a pair I= (∆,.I) where ∆ is a (possibly infinite) non-empty set called the

interpretation domain and .I is an interpretation function such that:

1. for each constant c 2C,cI 2∆;

2. for each predicate p 2P of arity k, pI 2∆k;

A third condition is sometimes added: two different constants should be interpreted

by two different elements of the interpretation domain. This condition is often called

the unique name assumption. For the conjunctive query answering problem, it does not

change what can be entailed, as long as no equality rules are considered.

We now introduce the notion of fact , which generalizes the usual definition of fact

(which is a ground atom), and happens to be convenient in this dissertation.

Definition 2.2 (Fact) Let L be a language. A fact on L is an existentially closed con-

junction of atoms on L.

We extend the notions of terms and variables to facts. In the following, we will usu-

ally omit the existential quantifiers in the representation of a fact. However, formulas that

represent facts should always be considered as existentially closed. Moreover, we will

often consider facts as sets of atoms, hence using inclusion and other set theoretic notions

directly on facts. Before introducing other concepts, let us provide some examples illus-

trating the notion of fact, and clarifying the links between different representations of the

same data. This is the purpose of Example 1.

Example 1 Let F be the following first-order formula:

9x9y9z r(x,y)∧p(x,z,a)∧r(y,z)

where a is a constant. F is a fact, since it is an existentially closed conjunctions of

atoms.

The queries that we consider are conjunctive queries. Such queries are often written a

la Datalog:



2.1. REPRESENTING DATA AND QUERIES 9
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Figure 2.1: Drawing of p(a)∧t(a,x)∧t(x,y)∧r(a,z)∧s(z,y)

q= ans(x1, . . . ,xk)←B,

where B, called the body of q, is a fact, variables x1, . . . ,xk occur in B, and ans is

a special predicate, which does not appear in any rule, and whose arguments are used to

build answers. When k= 0, the query is a Boolean query, and it is then only described by

its body. In this chapter and in the following, the term query will always denote a Boolean

conjunctive query. Restricting ourselves to Boolean queries is not a loss of generality,

since conjunctive query answering is classically reducible to Boolean conjunctive query

answering.

Facts (and Boolean queries) can be graphically represented, by means of hypergraphs.

Terms of F and atoms of F are respectively in bijection with nodes and hyperarcs of the

corresponding hypergraph. A node is labeled by the name of its corresponding term,

and hyperarcs are labeled by the predicate name of the corresponding atom. When facts

are only unary or binary, we will represent them as pictured in Figure 2.1. In particular,

(hyper)arcs associated with binary atoms are drawn as arcs from the first to the second

argument of the atom.

We now introduce the notion of primal (or Gaifman ) graph of a fact, which will be

used to lift graph-theoretical notions (such as the treewidth of a graph) to facts. This

notion naturally comes from the corresponding notion on hypergraphs: we associate with

a fact the primal graph of its hypergraph.

Definition 2.3 (Primal graph) Let F be a fact. The primal graph GF = (VF,EF) of F,

where VF is the set of vertices of GF and EF is its set of edges, is defined as follows:

– each term of F is bijectively associated with an element of VF,

– there is an edge between two vertices of VF if and only if the associated terms

appear in the same atom of F.

Example 2 (Primal graph) The primal graph of the fact F of Example 1 is given Figure

2.1. It has x,y,z and a as vertices. The only edge which does not exist is the edge between

y and a, because no atom of F has both y and a as arguments.

A basic problem is the entailment problem, which can be expressed on facts as fol-

lows: given two facts F1 and F2, is it true that F1 logically entails F2, i.e., that every model

of F1 is a model of F2? Logical entailment is denoted by |=. It is well known that F1 |= F2
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Figure 2.2: The primal graph of 9x9y9z r(x,y)∧p(x,z,a)∧r(y,z)

if and only if there exists a homomorphism from F2 to F1. A homomorphism from a fact

F to a fact G is a mapping of vars(F) into terms(G) such that atoms are preserved.

Definition 2.4 (Substitution, homomorphism, isomorphism) Let X be a set of vari-

ables and T be a set of terms. A substitution σ of X by T is a mapping from X to T .

Given an atom a, σ(a) denotes the atom obtained by substituting each occurrence of

x 2 vars(a)\X by σ(x). A homomorphism from a set of atoms S to a set of atoms S 0 is

a substitution of vars(S) by terms(S 0) such that σ(S) µ S 0. 1 In that case, we say that

S maps to S 0 (by σ). An isomorphism from S to S 0 is a bijective substitution such that

σ(S)= S 0.

A well-known fundamental result is the relation between entailment and homomor-

phism, which is stated in Theorem 1.

Theorem 1 Let F and F 0 be two facts. F 0 |= F if and only if there exists a homomorphism

from F to F 0.

In particular, two facts F and F 0 are logically equivalent if they are homomorphically

equivalent (i.e., there is a homomorphism from one to the other and reciprocally), and this

is denoted by F¥ F 0. We will sometime refer to the notion of a core of a fact.

Definition 2.5 (Core) A core of a fact F, denoted by core(F), is a minimal (with respect

to inclusion) subset of F equivalent to F.

It is well-known that all cores of a fact are isomorphic, and we will thus speak about

the core of a fact, which is unique up to isomorphism.

Example 3 Let F = r(x,y)∧ r(x,z)∧p(x), where quantifiers have been omitted. The

core of F is equal (up to isomorphism) to r(x,y)∧p(x).

Another graph-inspired notion that we heavily rely upon is the notion of treewidth.

This notion, introduced in [Robertson and Seymour, 1986], can be seen as a measurement

of how far a graph is from being a tree. Its definition may be introduced by using the

notion of tree decomposition.

1. Recall here that we consider facts as sets of atoms.
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Figure 2.3: A graph

Definition 2.6 (Tree decomposition) A tree decomposition of a graph G = (V,E) is a

pair ({Xi | i 2 I},T = (I,F)) with {Xi | i 2 I} a collection of subsets of V , called bags, and

T =(I,F) a tree such that:

1. for all v 2V , there exists i 2 I with v 2Xi,

2. for all {v,w} 2E, there exists i 2 I such that v,w 2Xi,

3. for all v 2V , the set Iv= {i 2 I | v 2Xi} forms a connected subtree of T .

The third condition is also known as the running intersection property. The width of a

tree decomposition ({Xi | i 2 I},T) is equal to maxi2I | Xi |−1. The treewidth of a graph

G is the minimum width of a tree decomposition of G.

The width is defined by maxi2I | Xi |−1 and not maxi2I | Xi | in order to ensure that

trees have width 1.

Example 4 (Tree decomposition) Figures 2.3 and 2.4 present a graph and one of its tree

decompositions. One can check that any vertex and any edge belong to a bag. The third

condition is also fulfilled. For example, C belongs to all bags except the (upper)right

most, and these bags form a connected graph. The width of the tree decomposition shown

in Figure 2.4 is 2.

In order to illustrate the notion of tree decomposition, we recall a simple property that

will be useful in Chapter 3. This property is also a simple way of providing (non-optimal)

lower bounds on the treewidth of a graph.

Property 1 Let G=(V,E) be a graph. Let X be a clique of G, i.e., a subset of V such that

for any two distinct vertices x and y of X, {x,y} belongs to E. In any tree decomposition

of G, there exists a bag B such that XµB.

Proof: Let T be a tree decomposition of G. Let TX be a minimal subtree of T such that for

any pair (u,v) 2X£X, there is a bag of TX that contains both u and v. Let us assume that
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Figure 2.4: A tree decomposition of the graph of Figure 2.3

TX is not restricted to a bag. Let B be an arbitrary leaf of TX. By assumption on TX, there

is x in X such that x is not in B. For any u in B\X, there exists a bag Bu such that both u

and x are in Bu. By the running intersection property, u belongs also to the parent of B.

Thus, B could be removed from TX while keeping a subtree fulfilling the same condition

as TX, which is a contradiction. Thus TX is restricted to a bag, and the claim is proved. ‰

We finally define the treewidth of a fact.

Definition 2.7 (Treewidth of a fact) Let F be a fact. The treewidth of F, denoted by

tw(F), is the treewidth of its primal graph.

2.2 Ontology formalisms

In this section, we present two formalisms for representing ontologies. First, Descrip-

tion Logics [Baader et al., 2007], the mainstream formalism since the 80’s, are introduced.

The focus is put on lightweight DLs, which are the most studied DLs in the framework

of OBQA. Second, we present existential rules, which are the basic objects considered

in this dissertation. Last, we show how lightweight DLs can be expressed by means of

existential rules.

2.2.1 Description Logics

While it is out of the scope of this thesis to propose a comprehensive state of the art of

the research done on DLs, it is worth to know that, historically, most studies have focused

on the analysis of the ontology itself and not on using it for querying data. In this short

presentation of DLs, we present EL and the DL-Lite family, which are called lightweight

DLs.

DLs usually encompass two parts: the terminological part, which is called the TBox,

and the data, which is called the ABox. The basic objects of a TBox are concepts and

roles, which are, in the vocabulary of first-order logic, unary and binary predicates. Prop-

erties can be stated about these concepts and roles (such as a role being functional), as
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well as relations between roles and concepts. Concepts and roles are inductively defined,

starting from atomic concepts and atomic roles. A set of operators allows one to build

more elaborated concepts and roles. The expressivity of a DL depends on the set of oper-

ators that can be used.

A DL that played a major role in DL research is ALC. Its concepts are built according

to the following syntax:

C,D→A |> |? | ¬C |CuD |8R.C | 9R.>,

where A is an atomic concept. The formal semantics of AL-concepts is defined by

means of interpretations I. The logical language of a DL ontology consists in unary

and binary predicates (concepts and roles) and constants (in ALC, they appear only in

the ABox). An interpretation of such a language is defined as in Definition 2.1, i.e. is

a non-empty set ∆I, called the interpretation domain, and an interpretation function .I.

That interpretation function assigns to each atomic concept A a subset AI of ∆I, and to

each atomic role R a subset RI of ∆I£∆I. The interpretation function is then extended to

arbitrary concepts in the following way:

>
I=∆I

?
I=;

(¬C)I=∆I \CI (negation of arbitrary concepts)

(CuD)I=CI
\DI (intersection)

(8R.C)I= {a 2∆I |8b (a,b) 2RI
⇒b 2CI} (universal restriction)

(9R.>)I= {a 2∆I | 9b (a,b) 2RI} (existential quantification)

More expressive languages could be considered by allowing some other constructors.

Those languages are named by adding the corresponding letters to ALC. For instance,

one can add:

– union (U):

(CtD)I=CI
[DI.

– full existential quantification (E):

(9R.C)I= {a 2∆I | 9b.(a,b) 2RI∧b 2CI}

– number restrictions (N):

(∏nR)I= {a 2∆I | | {b | (a,b) 2RI} |∏n},

and

(∑nR)I= {a 2∆I | | {b | (a,b) 2RI} |∑n}.
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One can also enrich the vocabulary to describe roles. In particular, inverse roles are

used, which are denoted by a “-” as superscript, such as in R−. The influence on semantics

is to exchange the first and the second argument of the role, i.e., the interpretation of R−

is R−I
= {(a,b) | (b,a) 2RI}.

Axioms are then defined by concept and role inclusions, functionality axioms, transi-

tivity axioms, etc. A concept inclusion is of the following form:

BvC,

and the associated semantics is:

BI
µCI

Similarly, a role inclusion is denoted by Rv S, and the associated semantics is RI µ SI.

Questions that have been tackled by the DL community focused on this ontological

part: is a concept satisfiable, i.e., is it possible for the interpretation of that concept to be

non-empty? Is a concept A a subconcept of a concept B, i.e., is it the interpretation of A

a subset of the interpretation of B? Are two concepts disjoint?

Some reasoning problems may also be defined when taking the ABox into account,

which is a set of assertions on individuals, i.e., a set of statements of the following form:

A(a) or R(a,b). Queries concerning the ABox are traditionally restricted to very simple

queries that consist of a single ground atom. These queries are called instance queries.

Since the problem we consider in this dissertation has been mainly studied for less

expressive DLs, we now introduce lightweight description logics. A more detailed and

motivated introduction to lightweight description logics can be found in [Baader et al.,

2010].

The Description Logic EL

For historical reasons, the first description logics that have been studied all include the

possibility to state universal restrictions. However, even with moderately expressive DLs,

a basic reasoning problem such as concept inclusion is already PSPACE complete. On the

other hand, universal restriction appeared to be far less used than existential restriction

in real-world applications.This motivated the study of a novel DL, namely EL [Baader,

2003]. All roles in EL are atomic roles. A concept in EL can be either the top concept

(every individual is an instance of the top concept), an atomic concept, the intersection of

two concepts, or a concept 9r.C, where r is a role and C an arbitrary concept. A TBox is

a finite set of concept inclusions.

An EL TBox is in normal form if every concept inclusion is of the following form:
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BuCvD,

BvC,

Bv9R.C,

9R.BvC,

where B,C and D are atomic concepts. Any EL TBox can be transformed into a TBox

in normal form. This transformation introduces some auxiliary concepts, but entailments

on the original vocabulary are preserved [Baader et al., 2005]. This equivalence (up to a

given vocabulary) is formalized in Definition 2.29.

EL has nice computational properties: in particular, the subsumption problem (check-

ing if a concept A is a subconcept of a concept B) is polynomial. On the other hand, it is

still expressive enough to cover important practical cases, as can be witnessed by its use

to model medical ontologies, such as SNOMED-CT. 2

The DL-Lite Family

The DL-Lite family has been designed in order to allow efficient conjunctive query

answering with large data. The underlying idea is to allow a reformulation of the query:

TBox axioms are used to reformulate a conjunctive query into a first-order formula that is

directly evaluated against a relational database.

We present three members of the family, namely DL-Litecore, DL-LiteF and DL-LiteR.

A basic role Q is either an atomic role P or its inverse P−. A (general) role R is either

a basic role Q or the negation of a basic role ¬Q. We present the original DL-Lite

[Calvanese et al., 2005]. DL-Lite concepts are defined as follows:

B=A | 9R | 9R−,

C=B | ¬B |C1uC2,

where A denotes an atomic concept and R denotes an atomic role; B denotes a basic

concept and C denotes a general concept. A DL-Litecore TBox contains assertions of the

following form:

BvC.

A DL-LiteF TBox may also contain functionality axioms, while a DL-LiteA TBox

may contain (basic) role inclusion axioms.

2. http:www.ihtsdo.org/snomed-ct/
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2.2.2 Existential Rules

While DLs have been the mainstream formalism to represent and study ontologies

from a formal point of view during the last thirty years, other formalisms can be used

to represent ontologies. In particular, this is the case of existential rules, which are the

main focus of this dissertation. Existential rules – or equivalent objects – have been

known under different names: tuple-generating dependencies [Abiteboul et al., 1994],

conceptual graph rules [Salvat and Mugnier, 1996], existential rules [Baget et al., 2011a],

Datalog9 rules [Calì et al., 2008],. . . They form the Datalog± framework [Calì et al.,

2009] together with equality rules and negative constraints. The term “Datalog±” makes

clear the syntactic similarity between existential rules and Datalog rules: the “+” means

that Datalog rules are extended with existentially quantified variables in the head, while

the “-” means that rule bodies are syntactically restricted in order to achieve decidability

(or low complexity in some cases).

Definition 2.8 (Existential rule) An existential rule (or simply rule) R=(B,H) on a lan-

guage L is a closed formula of form 8x1 . . .8xp(B → 9z1 . . .9zq H) where B and H

are two (finite) conjunctions of atoms on L; {x1, . . . ,xp} = vars(B); and {z1, . . . ,zq} =

vars(H)\ vars(B). Quantifiers are usually omitted, since there is no ambiguity. B and H

are respectively called the body and the head of R, also denoted by body(R) and head(R).

Rules are used to infer new knowledge, starting from an initial fact.

Definition 2.9 (Rule application) Let F be a fact and R = (B,H) be a rule. R is said

applicable to F if there is a homomorphism π from B to F. In that case, the application

of R to F according to π produces a fact α(F,R,π) = F[πsafe(H), where πsafe(x) = x if

π(x) is defined, and is a “fresh” 3 variable otherwise. This rule application is said to be

redundant if α(F,R,π)¥ F.

Example 5 presents an example of rule application.

Example 5 (Rule application) Let F= r(a,b)∧p(a)∧s(a,c) and R=p(x)→ s(x,y)∧

q(y). R is applicable to F, and its application creates the following fact:

r(a,b)∧p(a)∧s(a,c)∧s(a,y1)∧q(y1),

where y1 is a fresh existentially quantified variable.

The notion of frontier of a rule is central in numerous definitions that will be given

hereafter. It is the set of variables that are shared by the body and the head of a rule – that

is, terms whose image is the set of individuals that are known before the application of

the rule and on which (potentially) new knowledge is inferred.

3. A fresh variable is a variable that does not appear yet in any fact or rule.
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Definition 2.10 (Frontier of a rule) Let R= (B,H) be a rule. The frontier of R, denoted

by fr(R), is the set of variables occurring in both B and H: fr(R)= vars(B)\ vars(H).

Example 6 (Frontier of a rule) The frontier of R=p(x)∧s(x,y)→ s(y,z) is {y}.

We mainly consider “pure” existential rules in this dissertation. However, other kinds

of rules are of interest, and appear in the Datalog± framework: equality rules (also called

equality-generating dependencies, EGDs) and negative constraints. We briefly present

them here.

Definition 2.11 (Equality rules) An equality rule R=(H,x= t) is a formula of the form

8x1 . . .8xp(H → x = t), where x and t are distinct terms, with x 2 vars(H) and t 2

vars(H) or is a constant. An application of R on a fact F is a homomorphism π of its

body to F.

We noticed earlier that the unique name assumption does not change the entailments

as long as no equality rules are considered. We see here why equality rules may change

this: an equality rule may map x and t to two different constants, or t may be a constant

and x may be mapped to a different constant. Such an application triggers a failure, and

the knowledge base is logically inconsistent when a failure is triggered.

A special case of equality rules are functional dependencies, which are widely used in

data modeling. Such dependencies may express that for a binary atom, if the value of the

first argument is set, then the second is also fixed.

Last, negative constraints express that some fact should not be entailed by the knowl-

edge base. In particular, they allow to express concept disjointness. If a and b are two

concepts (unary predicates), one can state that no element can belong to both classes by

the following negative constraint:

a(x)∧b(x)→?.

Is it worth to study existential rules, since DLs are so well established when dealing with

ontologies? A good reason to do so it that this shift of formalism allows one to remove

some limitations that are inherent to DLs, but whose incidence on the complexity of the

problem that we consider should not be taken for granted. This is in particular the case

for predicate arity: DLs consider only predicates that are unary or binary, while there is

a priori no theoretical reason to do so. This is also, and perhaps more importantly, the

case when one wants to represent non-tree shaped structures (as would naturally occur in

chemistry for example). This yields sufficient reasons to study the OBQA problem not

only from a DL point of view, but also from an existential rule point of view.

2.2.3 Translation of lightweight DLs into existential rules

An interesting feature of existential rules is that they allow to translate lightweight

description logics, while preserving their semantics. We present here the translation from
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DL-Axiom Translated rule

BuCvD B(x)∧C(x)→D(x)

BvC B(x)→C(x)

Bv9R.C B(x)→R(x,y)∧C(y)

9R.BvC r(x,y)∧B(y)→C(x)

Table 2.1: Translation of (normal) EL-axioms

DL-Axiom Translated rule

AvB A(x)→B(x)

Av9R A(x)→R(x,y)

9Rv9S− R(x,y)→ S(z,x)

Bv9R.C B(x)→R(x,y)∧C(y)

Rv S R(x,y)→ S(x,y)

funct(R) R(x,y)∧R(x,z)→y= z

Bv¬C B(x)∧C(x)→?

Table 2.2: Translation of DL-Lite axioms

these lightweight description logics to existential rules, as can be found in [Calì et al.,

2009].

We associate each atomic concept A (resp. basic role R) with a unary (resp. binary)

predicate A (resp. R). Translations of axioms from a normal EL TBox are presented

in Table 2.1, while translations of (some) axioms from a DL-Lite Tbox are presented

in Table 2.2. The top concept can also be translated by adding rules for each concept

(and each role), stating that every instance of that concept is also an instance of the top

concept. Please note that only “pure” existential rules are used in the translation of EL

axioms, while equality rules and negative constraints are used to translate functionality

and disjointness axioms.

2.3 Tackling an undecidable problem

The core decision problem we consider is the following: given a fact F, a (Boolean)

conjunctive query q, and a set of rules R, does it hold that:

F,R |=q?

This problem is undecidable [Beeri and Vardi, 1984], even under strong restrictions

on sets of rules R [Baget et al., 2011a]. Indeed, it remains undecidable even with a

single rule, or with unary and binary predicates. However, several restrictions in the set of

rules are known to ensure decidability. Most of there restrictions can be classified in three
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categories. The purpose of this section is to present these categories, as well as brute-force

algorithms naturally associated with these categories when possible. We first focus on

materialization-based approaches, and then explore materialization-avoiding approaches.

2.3.1 Materialization-based approaches

Definition 2.9 explained how to apply a rule to a fact. This section explains how to

use this notion of rule application to solve the OBQA problem. We first give an intuitive

idea of approaches that can be developed starting from this notion, and formalize these

approaches in a second time. The presented procedure is also known as “chase” in the

database community.

Rule applications being defined, a natural way to determine if a query q is entailed by

a KB (F,R) is to infer all possible consequences from F and R, by applying rules of R as

long as possible to infer new information. It is then checked whether q can be mapped to

the set of atoms thus created. The saturation process is illustrated by Example 7.

Example 7 (Halting forward chaining example) Let us consider the following two

rules:

– T : r(xt,yt)∧r(yt,zt)→ r(xt,zt), which states the transitivity of predicate r;

– R : r(xr,yr)∧q(xr)∧p(yr)→ s(xr,yr,zr).

Let F be the following fact:

F=q(a)∧r(a,b)∧r(b,c)∧r(c,t)∧p(t)

Applying all possible rules on F at once results in:

F 0 = r(a,c)∧r(b,t)∧F.

Indeed, T can be applied by π1 and π2, where:

– π1(xt)=a,π1(yt)=b,π1(zt)= c,

– π2(xt)=b,π2(yt)= c,π2(zt)= t,

creating respectively r(a,c) and r(b,t). On F, no more rules are applicable, but we

can iterate the same process on F 0, creating F 00:

F 00 = r(a,t)∧F 0.

Finally, only one rule application (of R) can bring new information, which yields:

F§ = s(a,t,z)∧F 00.

In the case of Example 7, a finite number of rule applications is sufficient to infer all

consequences of the knowledge base. However, this is not always the case, as can be seen

with Example 8, where a single rule is responsible for derivations (Definition 2.12) of

unbounded length.
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Figure 2.5: An infinite chain

Example 8 Let R 0 : q(x)→ s(x,y)∧q(y). Let F = q(a); R 0 is applicable on F, intro-

ducing a new atom p(y), on which R 0 is again applicable. This yields an infinite chain of

atoms, as illustrated in Figure 2.5.

As we will see later, the non-termination of the saturation process is not a sufficient

condition for undecidability of the query answering problem. Specific properties of the

so-called canonical model may be used in order to ensure decidability even when this

canonical model is not finite. In particular, we will be interested in the treewidth of the

canonical model. We now formalize the notions that we have presented so far: the notion

of derivation, of saturation, as well as so-called canonical model.

Definition 2.12 (Derivation) Let F be a fact and R be a set of rules. A fact F 0 is called

an R-derivation of F if there is a finite sequence (called the derivation sequence) F =

F0,F1, . . . ,Fk = F 0 such that for all i such that 1 ∑ i ∑ k, there are a rule R= (B,H) 2R

and a homomorphism π from H to Fi−1 with Fi=α(Fi−1,R,π).

When we saturate a fact with respect to a set of rules, it is convenient to apply rules

in a breadth-first manner. Indeed, applying rules in an arbitrary order (in a depth-first

manner for example) may lead in a loss of completeness of the proposed approach.

Definition 2.13 (k-saturation) Let F be a fact and R be a set or rules. Π(R,F) denotes

the set of homomorphisms from the body of a rule in R to F:

Π(R,F)= {(R,π) |R=(B,H) 2R and π is a homomorphism from B to F}.

The direct saturation of F with R is defined as:

α(F,R)= F[
[

(R=(B,H),π)2Π(R,F)

πsafe(H)

The k-saturation of F with R is denoted by αk(F,R) and is inductively defined by

α0(F,R)= F and αi(F,R)=α(αi−1(F,R),R) for i> 0.
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Saturating a fact until no new rule application is possible allows us to define the canon-

ical model of F and R, also known in the database community as the universal model. The

particularity of that model is that it maps to any other model of F and R. In particular, to

check whether a query q is entailed by F and R, it is sufficient to check if the canonical

model of F and R is a model of q.

Definition 2.14 (Canonical model) Let F be a fact and R be a set of rules. The canonical

model of F and R, denoted by α∞(F,R) is defined as:

α∞(F,R)=
[

k2N

αk(F,R).

Example 9 By considering Example 7, α0(F,R) = F,α1(F,R) = F 0, α2(F,R) = F 00,

α3(F,R)= F§ =α∞(F,R).

The following theorem is a fundamental tool for solving OBQA.

Theorem 2 ([Baget et al., 2011a]) Let F be a fact, q a query, and R be a set of rules. The

following properties are equivalent:

– F,R |=Q;

– there exists a homomorphism from q to α∞(F,R);

– there is k such that there exists a homomorphism from q to αk(F,R).

We now define two abstract properties of sets of rules, related to the structure of

canonical models a set of rules generates. Let R be a set of rules. A first interesting case

is when, for any fact F, the canonical model of F and R is equivalent to a finite fact. In

that case, R is called a finite expansion set.

Definition 2.15 (Finite expansion set) A set of rules R is called a finite expansion set

(fes) if and only if, for every fact F, there exists an integer k= f(F,R) such that αk(F,R)¥

α∞(F,R).

The problem of determining if a set of rules is a finite expansion set is undecidable

[Baget et al., 2011a] – it is said that finite expansion sets are not recognizable. Several

known subclasses of fes will be presented in the next section. Another abstract class

(which is also not recognizable), is the class of bounded treewidth sets. In particular, the

canonical model can be of infinite size, as long as it has a tree-like shape.

Definition 2.16 (Bounded treewidth set) A set of rules R is called a bounded-treewidth

set (bts) if for any fact F, there exists an integer b= f(F,R) such that for any R-derivation

F 0 of F, the treewidth of core(F 0) is less or equal to b.

Notice that the bound b depends on F, which implies that any finite expansion set is

also a bounded treewidth set – it is enough to set b equal to the number of terms of the

canonical model of F and R. It has been shown [Calì et al., 2008; Baget et al., 2009],
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where the main argument is a result from Courcelle [Courcelle, 1990], that the OBQA

problem is decidable when R is bts.

Let us finish this section by presenting a set of rules that is not bts.

Example 10 Let us consider R containing the following two rules:

– R1 :p(x)→ r(x,y)∧p(y),

– R2 : r(x,y)∧r(y,z)→ r(x,z).

Let F be the following fact: {p(a)}. R1 is applicable to F, creating in particular a new

atom of predicate p. R1 can thus be applied infinitely many times. Let us assume that we

applied it n times. By applying R2 until a fix point is reached, the primal graph of the

obtained fact is a clique of size n+1. Since the canonical model of F and R contains a

clique of size n for any n, its treewidth cannot be bounded.

2.3.2 Materialization avoiding approaches

Another common approach to OBQA relies on a different kind of technique, where

no materialization is performed. The main idea is the following: instead of using rules in

order to enrich the initial fact, rules are used to rewrite the query. The generated query is

then evaluated against the initial fact.

Two kinds of rewritability

One can classify the rewriting techniques existing in the literature in two kinds: rewrit-

ing into first-order queries or rewriting into Datalog programs. We successively present

both kinds of rewritings.

If Φ is a class of first-order formula, we define the notion of Φ-rewriting, that will be

used both in this presentation as well as in Chapter 4.

Definition 2.17 (Φ-rewriting soundness/completeness) Let Φ be a class of first-order

formulas, R be a set of rules, and q be a conjunctive query. ϕ 2Φ is a sound rewriting

of q with respect to R if for any fact F, it holds that F |= ϕ implies that F,R |= q. ϕ is

a complete rewriting of q with respect to R if for any fact F, the converse holds, that is:

F,R |=q implies that F |=ϕ.

The definition of first-order rewritability corresponds to the existence of such a rewrit-

ing for any query – without restricting further the form of the rewriting.

Definition 2.18 (First-order rewritable set of rules) Let R be a set of rules. R is said

to be a first-order rewritable set (F.O.R set) if for any query q, there exists a first-order

sound and complete rewriting of q with respect to R.

Another, seemingly more restrictive definition, enforces the rewriting to be a disjunc-

tion of conjunctions of atoms, i.e., a union of conjunctive queries (UCQ). We will call

such a set of rules a finite unification set. Note that this definition is not the original
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definition of finite unification sets, which relies on the finiteness of a given rewriting op-

eration. However, we will see in Chapter 4 that the standard definition is equivalent to

this one.

Definition 2.19 (Finite unification set) Let R be a set of rules. R is said to be a finite

unification set if for any conjunctive query q, there exists a sound and complete UCQ-

rewriting (that is, a finite set of conjunctive queries) Q, such that for any fact F, it holds

that F,R |= q if and only if there exists q 0 2 Q such that F |= q 0. Such a set Q is called a

sound and complete rewriting of q with respect to R.

Another strongly related notion has been introduced, called bounded derivation-depth

property [Calì et al., 2009]. This notion is presented in the context of a forward-chaining

approach, but is highly correlated with finite unification sets.

Definition 2.20 (Bounded derivation-depth property) Let R be a set of rules. R has

the bounded derivation-depth property, if for any query q, there exists an integer γ =

f(q,R) such that for any fact F, if F,R |= q, then αγ(F,R) |= q. In particular, γ depends

only on q and R.

This notion may seem quite close to the definition of a finite expansion set (Definition

2.15). However, the bound γ here does not depend on the initial fact F, whereas it could

depend on it in the case of fes.

As already noted in [Rudolph and Krötzsch, 2013] (for first-order rewritable sets and

finite unification sets) these three notions coincide.

Property 2 (Equivalent properties or rule sets) Let R be a set of rules. The following

three conditions are equivalent:

1. R is a first-order rewritable set,

2. R is a finite unification set,

3. R enjoys the bounded derivation-depth property.

Not surprisingly, it is undecidable to check if a set of rules is a finite unification set

[Baget et al., 2011a].

The other approach uses Datalog programs instead of first-order queries. The litera-

ture on Datalog-rewritability has focused on sets of rules that are polynomially rewritable,

i.e., that can be rewritten into a program that is of polynomial size in both the query

and the set of rules. EL has been shown to be polynomially Datalog-rewritable [Rosati

and Almatelli, 2010; Stefanoni et al., 2012], even though EL-ontologies are not first-

order rewritable in general. This is also the case for linear and sticky rules [Gottlob and

Schwentick, 2012] (see the next section).
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Figure 2.6: The query of the running example

A generic algorithm for first-order rewritable sets

In the remainder of this section, we present a generic algorithm that takes as input any

finite unification set R and any query q, and outputs a sound and complete rewriting of q

with respect to R. To illustrate the introduced notions, we will rely on Example 11.

Example 11 Let Re= {R1,R2,R3,R4,R5}, defined as follows:

– R1 :p(x)∧h(x)→ s(x,y)

– R2 : f(x)→ s(x,y)

– R3 : f1(x)→ s1(x,y)

– R4 : t(x,y)→ t(y,x)

– R5 : s1(x,y)→ s(x,y)

Let qe be the following Boolean query:

qe= t(x1,x2)∧s(x1,x3)∧s(x2,x3),

whose graphical representation is given Figure 2.6.

Example 11 is designed to be both simple to understand and complex enough to illus-

trate the notions we want to introduce.

The algorithm we present now is based on the notion of unification between a query

and a rule head. We first recall here the classical definition, as performed by query rewrit-

ing approaches (also known as top-down) for (non-existential) Datalog.

Definition 2.21 (Datalog unification) Let q be a conjunctive query, and R be a Datalog

rule. A unifier of q with R is a pair µ=(a,u), where a is an atom of q and u is a substi-

tution of vars(a)[ vars( head(R)) by terms( head(R))[C s.t. u(a)=u( head(R)).

When a query and a rule unify, it is possible to rewrite the query with respect to that

unification, as explained in Definition 2.22.

Definition 2.22 (Datalog rewriting) Let q be a conjunctive query, R be a rule and µ=

(a,u) be a unifier of q with R, the rewriting of q according to µ, denoted by β(q,R,µ) is

u( body(R)[ q̄ 0), where q̄ 0 =q\q 0.
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Please note that these classical notions have been formulated in order to stress simi-

larities with the notions we introduce hereafter.

Example 12 (Datalog unification and rewriting) Let us consider qe = t(x1,x2) ∧

s(x1,x3)∧ s(x2,x3) and R5 = s1(x,y) → s(x,y). A Datalog unifier of qe with R5 is

µd = (s(x1,x3), {u(x1) = x,u(x3) = y}). The rewriting of qe according to µ is the

following query:

t(x,x2)∧s1(x,y)∧s(x2,y).

Let us stress that this query is equivalent to the following query:

t(x1,x2)∧s1(x1,x3)∧s(x2,x3),

where x has been renamed by x1 and y by x3. In the following, we will allow ourselves

to use such a variable renaming without prior notice.

Applying the same steps without paying attention to the existential variables in rule heads

would lead to erroneous rewritings, as shown by Example 13.

Example 13 (False unification) Let us consider qe= t(x1,x2)∧s(x1,x3)∧s(x2,x3) and

R2= f(x)→ s(x,y). A Datalog unification of qe with R2 is µ error = (s(x1,x3),u(x1) =

x,u(x3)=y). According to Definition 2.22, the rewriting of qe with R2 would be qr:

qr= t(x,x2)∧f(x)∧s(x2,y).

However, qr is not a sound rewriting of qe, which can be checked by performing a

forward chaining mechanism starting from qr considered as a fact. Indeed, R2 can be

applied on qr, creating a new fact q 0
r:

q 0
r= t(x,x2)∧f(x)∧s(x2,y)∧s(x,y 0),

and R4 can also be applied, creating q 00
r :

q 00
r = t(x2,x)∧t(x,x2)∧f(x)∧s(x2,y)∧s(x,x 0).

No further rule is applicable, and qe is not entailed by q 00
r , which shows that qr is not

a sound rewriting of qe.

For that reason, the notion of piece unifier has been introduced, originally in the con-

text of conceptual graph rules [Salvat and Mugnier, 1996], then recast in the framework

of existential rules [Baget et al., 2011a]. Instead of unifying only one atom at once, one

may have to unify a whole “piece”, that is, a set of atoms that should have been created by

the same rule application. The following definitions and the algorithm are mainly taken

from [König et al., 2012].
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Figure 2.7: x3 being unified with an existential variable (Example 14), dashed atoms must

be part of the unification.

Definition 2.23 (Piece unifier) Let q be a conjunctive query and R be a rule. A piece

unifier of q with R is a pair µ = (q 0,u) with q 0 µ q,q 0 6= ;, and u is a substitution of

fr(R)[ vars(q 0) by terms( head(R))[C such that:

1. for all x 2 fr(R), u(x) 2 fr(R)[C (for technical convenience, we allow u(x)= x);

2. for all x 2 sepq(q
0),u(x) 2 fr(R)[C;

3. u(q 0)µu( head(R));

where sepq(q
0) denotes the set of variables that belongs both to q 0 and to q\q 0.

Let us consider the unification attempted in Example 13 from this point of view.

Example 14 (Piece unifier) Let us consider qe = t(x1,x2)∧ s(x1,x2)∧ s(x2,x3) and

R2= f(x)→ s(x,y). µ 0
error = (q 0 = {s(x1,x3)},u(x1) = x,u(x3) =y), defined in Exam-

ple 13, is not a piece unifier. Indeed, x3 belongs to sepqe(q
0), and appears in s(x2,x3),

which does not belong to q 0, violating the second condition of piece unifiers.

A correct choice of piece is illustrated Figure 2.7. Let µ=(({s(x1,x3),s(x2,x3)},u(x1)=

x,u(x3) = y,u(x2) = x). µ is a piece unifier of qe with R2, which can be checked by

verifying that conditions 1 to 3 are fulfilled.

Given that definition of unifiers, the definition of rewritings remains syntactically the

same as in the Datalog case.

Definition 2.24 (Rewriting) Given a conjunctive query q, a rule R and a piece uni-

fier µ = (q 0,u) of q with R, the rewriting of q according to µ, denoted by β(q,R,µ)

is u( body(R)[ q̄ 0), where q̄ 0 =q\q 0.

Example 15 (Rewriting) Let µ be the unifier of qe with R2 defined in Example 14. The

rewriting of qe with respect to µ is:

β(qe,R2,µ)= t(x,x)∧f(x).

The notion of R-rewriting allows us to denote queries that are obtained thanks to

successive rewriting operations.
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Definition 2.25 (R-rewriting of q) Let q be a conjunctive query and R be a set of

rules. An R-rewriting of q is a conjunctive query qk obtained by a finite sequence

q0 = q,q1, . . . ,qk such that for all i such that 0 ∑ i < k, there is Ri 2 R and a piece

unifier µi of qi with Ri such that qi+1=β(qi,R,µi).

We now present the fundamental theorem justifying the notion of R-rewriting. This

theorem was originally written in the framework of conceptual graph rules. However, the

logical translation of conceptual graph rules is exactly existential rules.

Theorem 3 (Soundness and completeness) ([Salvat and Mugnier, 1996]) Let F be a

fact, R be a set of existential rules, and q be a Boolean CQ. Then F,R |= q iff there is

an R-rewriting q 0 of q that F |=q 0.

Before presenting an algorithm for computing a sound and complete rewriting of a

query q with respect to a fus R, let us introduce the notion of original and generated

variables in a rewriting.

Definition 2.26 (Original and generated variables) Let q be a query, R be a set

of rules, and q 0 be an R-rewriting of q, obtained by a rewriting sequence q =

q0,q1, . . . ,qn=q 0. Original variables of q 0 (with respect to q) are inductively defined as

follows:

– all variables of q are original;

– if qi has original variables X, and qi+1 is the rewriting of qi with respect to µ=

(q 0

i
,u), the original variables of qi+1 are the images of the elements of X by u.

A variable that is not original is generated.

We recall that q2 |= q1 if and only if there is a homomorphism from q1 to q2, which

we denote by q1 ∏ q2. Let q be a CQ, and Q be a sound and complete UCQ-rewriting

of q. If there exist q1 and q2 in Q such that q1 ∏ q2, then Q\ {q2} is also a sound and

complete rewriting of q. This observation motivates the definition of cover of a set of

first-order queries.

Definition 2.27 (Cover) Let Q be a set of conjunctive queries. A cover of Q is a set

Qc µQ such that:

1. for any q 2Q, there is q 0 2Qc such that q 0 ∏q,

2. elements of Qc are pairwise incomparable with respect to ∏.

Example 16 Let Q= {q1= r(x,y)∧t(y,z),q2= r(x,y)∧t(y,y),q3= r(x,y)∧t(y,z)∧

t(u,z)}. A cover of Q is {q1}. Indeed, q1 ∏q2 and q1 ∏q3, because for i 2 {2,3}, π1→i is

a homomorphism from q1 to qi where:

– π1→2(x)= x,π1→2(y)=π1→2(z)=y, and

– π1→3(x)= x,π1→3(y)=y,π1→3(z)= z.
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Algorithm 1 is a generic breadth-first rewriting algorithm, that generates for any query

q and any finite unification set R a sound and complete UCQ-rewriting of q with respect

to R. Generated queries are queries that belong to Qt at some point; explored queries are

queries that belong to QE at some point, and thus, for which all one-step rewritings are

generated. At each step, a cover of explored and generated queries is computed. This

means that only most general queries are kept, both in the set of explored queries and in

the set of queries remaining to be explored. If two queries q1 and q2 are homomorphically

equivalent, and only q1 has already been explored, then q1 is kept and q2 is discarded.

This is done in order not to explore two queries that are comparable by the most general

relation – which ensures the termination of Algorithm 1.

Algorithm 1: A BREADTH-FIRST REWRITING ALGORITHM

Data: A fus R, a conjunctive query q

Result: A cover of the set of R-rewritings of q

QF := {q}; // resulting set

QE := {q}; // queries to be explored

while QE 6=; do
Qt :=;; // queries generated at this rewriting step

for qi 2QE do

for R 2R do

for µ piece-unifier of qi with R do
Qt :=Qt[β(qi,R,µ);

Qc := cover(QF[Qt);

QE :=Qc\QF; // select unexplored queries from the cover

QF :=Qc;

return QF

Let us execute step by step Algorithm 1 on the running example.

Example 17 Initially, QF =QE = {qe = t(x1,x2)∧s(x1,x3)∧s(x2,x3)}. Since QE is not

empty, we initialize Qt to the empty set, and consider every element of QE. The only

element of QE is qe, so we add to Qt all possible rewritings of qe. These are:

– q1= t(x,x)∧p(x)∧h(x), (by unifying) with respect to µ1=({s(x1,x3),s(x2,x3)},u1(x1)=

u1(x2)= x,u1(x3)=y), unifier of qe with R1;

– q2 = t(x,x)∧ f(x), with respect to µ2 = ({s(x1,x3),s(x2,x3)},u2(x1) = u2(x2) =

x,u2(x3)=y) , unifier of qe with R2;

– q3 = t(x2,x1)∧ s(x1,x3)∧ s(x2,x3) with respect to µ3 = ({t(x1,x2),u3(x1) =

y,u3(x2)= x), unifier of qe with R4;

– q4 = t(x1,x2)∧ s1(x1,x3)∧ s(x2,x3) with respect to µ4 = ({s(x1,x3)},u4(x1) =

x,u4(x3)=y), unifier of qe with R5;

– q5 = t(x1,x2)∧ s(x1,x3)∧ s1(x2,x3) with respect to µ5 = ({s(x2,x3)},u5(x2) =

x,u5(x3)=y), unifier of qe with R5;
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– q6 = t(x,x)∧ s1(x,x3), with respect to µ6 = ({s(x1,x3),s(x2,x3)},u6(x1) =

u6(x2)= x,u6(x3)=y), unifier of qe with R5;

Thus Qt = {q1,q2,q3,q4,q5,q6}. Q
c is set to {qe,q1,q2,q3,q4,q5,q6}, since none of

the generated queries are comparable. QE is set to {q1,q2,q3,q4,q5,q6} and QF to Qc.

Algorithm 1 performs once more the while loop. Qt is reinitialized to the empty set,

and all rewritings of QE are rewritten. We thus explore every qi for i∑ 5. q1 and q2 are

not unifiable with any rule. We then explore rewritings of q3. The following queries can

be obtained by a one step rewriting of q3:

q3
1= t(x,x)∧p(x)∧h(x),

q3
2= t(x,x)∧f(x),

q3
3= t(x1,x2)∧s(x1,x3)∧s(x2,x3),

q3
4= t(x,x)∧s1(x,x3),

q3
5= t(x2,x1)∧s1(x1,x3)∧s(x2,x3),

q3
6= t(x2,x1)∧s(x1,x3)∧s1(x2,x3).

As for q4, the following rewritings are generable:

q4
1= t(x2,x1)∧s1(x1,x3)∧s(x2,x3),

q4
2= t(x1,x2)∧s1(x1,x3)∧s1(x2,x3).

From q5:

q5
1= t(x2,x1)∧s(x1,x3)∧s1(x2,x3),

q5
2= t(x1,x2)∧s1(x1,x3)∧s1(x2,x3).

And from q6:

q6
1= t(x,x)∧f1(x).

As illustrated by Figure 2.8, which explicits subsumption relations among queries, a

cover of the queries is {qe,q1,q2,q3,q4,q5,q
3
5
,q3

6
,q4

2
,q6

1
}, which is the new value of Qc.

Note that q6 does not belong to Qc, because the newly generated query q4
2

is strictly more

general than q6. QE is set to {q3
5
,q3

6
,q4

2
,q6

1
}, QF to Qc, and QE is explored, entering a

new iteration of the while loop. Two queries are generated:

q 0 = t(x2,x1)∧s1(x1,x3)∧s1(x2,x3),
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Figure 2.8: There is an arrow from q to q 0 if and only if q 0 is more general than q.

and

q 00 = t(x,x)∧f1(x).

At the end of this while loop, we have QE= {q 0} and QF= {qe,q1,q2,q3,q4,q5,q
3
5
,q3

6
,q4

2
,q6

1
,q 0}.

Since all queries generable from q 0 are covered by QF, the algorithm halts and out-

puts:

{qe,q1,q2,q3,q4,q5,q
3
5,q

3
6,q

4
2,q

6
1,q

0}.

The following lemma is crucial for the completeness of Algorithm 1. It ensures that

for any queries q and q 0 such that q 0 ∏ q, any rewriting that can be obtained in one step

from q is less general than a rewriting that can be obtained in one step from q 0. A detailed

discussion of what can happen when considering rewriting procedures where this lemma

does not hold can be found in [König et al., 2013].

Lemma 1 ([König et al., 2012]) Let q1 and q2 be two conjunctive queries such that q1 ∏

q2. For any rewriting q 0

2
of q2 such that q1 6∏ q 0

2
, there exists a rewriting q 0

1
of q1 such

that q 0

1
∏q 0

2
.

Theorem 4 The output of Algorithm 1 is a sound and complete R-rewriting of q.

Proof: We prove by induction on k that for any i∑ k, for any qi that is an i-rewriting of q,

there is q§

i
2QFi , that is, QF after the ith loop such that q§

i
∏qi. The only 0-rewriting of q

is q, which initially belongs to QF, which proves the claim for k= 0. Let assume that the

claim is true for k, and let us show it for k+1. Let qi+1 be a i+1-rewriting of q. If i< k,

qi+1 is covered by an element of QFi+1
by induction assumption. Otherwise, let qi be a

k-rewriting such that qi+1 is a 1-rewriting of qi. There exists q§

i
2QFi such that q§

i
∏qi.

Lemma 1 ensures that there exists q§

i+1
a 1-rewriting of q§

i
such that q§

i+1
∏ qi+1, which

ends the proof. ‰
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2.3.3 Impact of negative constraints and equality rules

We have already mentioned the possibility to add negative constraints and equality

rules to the existential rule framework, in order to gain expressivity. What is the effect of

such extensions on the decidability of the problem?

As for negative constraints, to add them is inoffensive. If R is a set of rules for which

the OBQA problem is decidable, and Cn is a set of negative constraints, then the OBQA

problem remains decidable when taking both R and Cn into account. Indeed, one can

check for each constraint, if the body of that constraint is entailed by F and R. If not, then

one can safely remove the constraint while keeping logical equivalence. Otherwise, ? is

entailed, and everything is entailed from F,R and Cn.

The situation is different for equality rules. It has been shown that adding a single

equality rule to a fes, bts or fus may lead to undecidability [Baget et al., 2011a]. To main-

tain decidability, separability [Calì et al., 2009], whose definition is given Definition 2.28,

is to the best of our knowledge the only criterion that has been proposed. The intuition is

that equality rules are said separable when they can be considered as constraints that can

be checked on the initial database, and then forgotten for the query answering purpose.

Definition 2.28 (Separability [Calì et al., 2009]) Let R be a set of existential rules, and

E be a set of equality rules. E is separable from R iff for any fact F, the following condi-

tions are both satisfied:

(i) if a failure is triggered during some (R[E)-derivation of F, then there is an equal-

ity rule applicable to F that triggers a failure;

(ii) if no failure is triggered during any (R[E)-derivation of F, then for any BCQ Q,

F,R[E, |=Q if and only if F,R |=Q.

In the remainder of this dissertation, we will not speak further about negative con-

straints or equality rules. However, negative constraints could freely be added, as well as

separable equality rules.

2.3.4 Rule with atomic head: a simplifying assumption

Existential rules may have arbitrarily complex conjunction of atoms as heads. How-

ever, it is sometimes useful to assume that they have a very particular form: a single atom.

This assumption can be done without loss of generality, as we recall it in this section.

More precisely, we show that for any rule set, there exists an “equivalent” rule set for

which any rule has an atomic head. We first formalize what equivalent means, since we

introduce some auxiliary predicates during the transformation.

Definition 2.29 Let P1 be a set of predicates, R1 and R2 be two sets of rules. R1 and

R2 are said P1-equivalent (equivalent when not ambiguous) if for any fact F and query q

built on P1, it holds that F,R1 |=q if and only if F,R2 |=q.

We now present a transformation [Calì et al., 2008] that takes as input any set R of

rules, built on a set of predicates P, and outputs a set Re of rules that are P equivalent to
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R and have atomic head. Let R= (B,H) be a rule of R. We associate R with n+1 rules,

i.e., Rb and {Ri
h
}i, where n is the number of atoms in the head of R, as follows:

– Rb=B→pR(x), where pR is a fresh predicate (i.e., a predicate that does not belong

to P) and x is the set of variables that appear in the head of R;

– Ri
h
=pR(x)→ai(x), where ai(x) is the ith atom of the head of R.

Property 3 ([Calì et al., 2008]) R and Re defined as above are P-equivalent.

2.4 Zoology of concrete decidable classes

We now present “concrete” classes of decidable sets of rules. By “concrete”, we mean

classes whose recognition problem is decidable. Most of the time, this decision problem

is not too complex (in PTIME, or even in NP or co-NP). These classes are based on a

restricted number of key concepts, namely: guardedness, backward-shyness and several

kinds of acyclicity. Each of these concepts is strongly related with an abstract property we

presented in the previous section. Guarded rules (and generalizations of guarded rules)

are bts, backward-shy rules are fus, and different notion of acyclicity lead to sets of rules

that are fes. Moreover, these concepts have been combined in numerous different ways,

yielding a zoology of concrete classes.

Guardedness

Let us start with guarded rules. The guarded fragment of first-order logic has been

introduced in [Andréka et al., 1998]. It inspired the definition of a guarded rule, which is

a rule that possesses a guard.

Definition 2.30 (Guard [Calì et al., 2008]) Let R be a rule. A guard of R is an atom of

the body of R that contains all variables of the body. A rule R having a guard is said to

be guarded.

Example 18 (Guard) Let R= p(x,y,z)∧ r(x,y)∧q(z)→ r(y,t). R is guarded, since

p(x,y,z) is a guard.

A transitivity rule, such as r(x,y)∧r(y,z)→ r(x,z), is not guarded, since no body atom

has x,y and z as arguments.

Most known bts classes of rules are based on this notion. The most natural one is the

class of guarded rules.

Definition 2.31 (Guarded set [Calì et al., 2008]) A set of rules R is guarded if every rule

of R is guarded.

Guardedness ensures decidability of conjunctive query answering – indeed, a set of

guarded rules is bts. The original algorithm upper bounds, in function of the set of rules
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and the query, the rank of a saturation to which the query is ensured to map if it is en-

tailed by the knowledge base. We will present in the next chapter another algorithm that

processes not only guarded sets of rules, but generalizations of them.

A first generalization of guarded rules that one may want to consider is the set of

frontier-guarded rules, where a guard only needs to contain the frontier of a rule as argu-

ments. These sets are also bts. The idea behind this generalization is that only the map-

pings of terms that belong both to the body and the head of a rule matter, since changing

the mapping of other terms would not change the fact obtained after the rule application.

These terms correspond exactly to the frontier of the rule.

Definition 2.32 (Frontier-guarded rule [Baget et al., 2010]) A rule is frontier-guarded

if there exists an atom of its body that contains every element of the frontier as argument.

A specific case of frontier-guarded rules is when the size of the frontier is reduced to

one element (fr1). Such rules generalize in particular Horn DLs that do not contain role

inclusion axioms.

Backward shyness

Another key concept is “backward shyness”. 4 Backward shyness of a set of rules R

ensures that any query q admits a finite set of R-rewritings. This is a semantic condition

that has not been introduced in the literature, but that underlies most of the known fus

classes of rules.

Definition 2.33 (Backward shyness) Let R be a set of rules. R is to be said backward

shy if for any query q, for any R-rewriting q 0 of q, no generated variable of q 0 appears

in two atoms.

Property 4 provides an upper bound on the number of most general rewritings of a

query q with respect to a backward shy set of rules.

Property 4 (Backward shy rules are fus) Let R be a set of backward shy rules, and q

a query. There are at most 2p(| terms(q)|+w)w R-rewritings of q that are not equivalent

up to isomorphism, where w is the maximum arity of a predicate and p is the number of

predicates appearing in the rules.

Proof: The number of distinct atoms with arguments the terms of q and at most w other

terms is upper bounded by p(| terms(q)|+w)w. Since a term that is not a term of q cannot

appear in two different atoms, we obtain the claimed upper bound. ‰

Linear rules [Calì et al., 2008; Baget et al., 2009] are rules whose body contains only

one atom. Let us observe that linear rules are backward shy.

4. The name backward shy is from us, and inspired from shy rules [Leone et al., 2012], but there is no

inclusion between shy and backward shy rules.
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Property 5 Any set of linear rules is backward shy.

Proof: The claim follows from the following two remarks:

– when a generated variable is introduced by a rewriting step, it appears in exactly

one atom;

– if x appears in k atoms of a query q before a rewriting with respect to µ= (q 0,u),

then u(x) appears in at most k atoms in the rewriting of q with respect to µ.

‰

We now present sticky rules, which have been introduced as a decidability criterion

that may deal with non-guarded rules.

Definition 2.34 (Sticky rules [Calì et al., 2010b]) Let R be a set of rules. We iteratively

mark the variables of the rule bodies of R according to the following marking procedure.

First, for each rule R 2R, and each variable v 2 body(R), we mark v if there is an atom a

of head(R) such that v is not an argument of a. We then apply until a fixpoint is reached

the following step: for each rule R, if a marked variable appears in body(R) at position

(p,i), then we mark for each rule R 0 each occurrence of the variables of body(R 0) that

appear in head(R 0) at position (p,i). R is said to be sticky if there is no rule R such that

a marked variable appears more than once in body(R).

Example 19 provides an example of sticky and non-sticky rules.

Example 19 Let R1 be a set of rules containing the following rule:

– r(x,y)∧t(y,z)→ s(x,z)

R1 is not sticky, since y is marked by the marking procedure, and appears twice in a rule

body. On the other hand, the set containing the following two rules is sticky:

– r(x1,y1)∧t(y1,z1)→ s(y1,u1)

– s(x2,y2)→ r(y2,x2)

Indeed, x1 and z1 are marked at the initialization step. The propagation step marks y2,

because y2 appears at the first position of r in the head of the second rule, as x1 which

is already marked. Finally, x1,z1 and y2 are marked, and are the only marked variable.

Since none of these variables appears twice in a rule body, this set of rules is sticky.

Property 6 Any set of sticky rules is backward shy.

Proof: We show Property 6 by induction on the length of the derivation. If q 0 is a one-

step rewriting of q, then a generated variable is a variable that has been created at this

rewriting step. By the initialization step of the sticky marking, such a variable appears at

exactly one position, which is marked. Let assume that the induction assumption holds

for any k-rewriting of q, and let q 0 be a k+1-rewriting of q. Let qk be the k-rewriting

of q from which q 0 has been rewritten. A generated variable of q 0 may appear for two

different reasons: either it has been generated at the last rewriting step, and the same

reasoning as before can be applied. Or it is a generated variable with respect to qk. By



2.4. ZOOLOGY OF CONCRETE DECIDABLE CLASSES 35

induction assumption, it appears at a marked position. The stickiness property implies

that it appears also only once in q 0, and at a marked position. ‰

Domain-restricted rules [Baget et al., 2011a] are not backward-shy, although they are

fus. Let us first recall the definition of domain-restricted rules.

Definition 2.35 (Domain-restricted) A rule R is domain-restricted if every atom of the

head contains either every variable of the body, or no variable of the body.

Let us now consider Example 20: it exhibits a set of rules that is domain restricted and

not backward shy.

Example 20 Let R : p(x)∧q(x)→ r(x,y)∧ f(y). R is a domain restricted rule, since

r(x,y) contains x which is the only variable of the body, and f(y) does not contain any

variable of the body. However, it is not backward shy: by rewriting the query f(y), one

gets p(x)∧q(x), where x is a generated variable that appears in strictly more than one

atom.

However, it can be understood similarly. Either a rewriting step erases an atom that

contains all variables of the body, and no new variable is created, which is a particular

case of being backward shy. Or no such atom is erased, and a new connected component,

of bounded size, is added. This dichotomy is at the basis of the proof to which we refer

the reader [Baget et al., 2011a].

Acyclicity

The last important tool is acyclicity. Several notions based on acyclicity have been de-

fined in the literature: weak-acyclicity, super-weak acyclicity, joint-acyclicity, acyclicity

of the graph of rule dependencies, model-summarizing acyclicity, model-faithful acyclic-

ity, weak-recursivity,etc.

Definition 2.36 explicits the construction of the graph of position dependencies.

Definition 2.36 (Graph of position dependencies [Fagin et al., 2005]) Let R be a set of

rules. The (oriented) graph of position dependencies (V,A[A§) of R is defined as fol-

lows:

– V is the set of all positions for all predicates appearing in R;

– there is an arc from (p,i) to (q,j) in A if there exist a rule R 2R, and a variable

x 2 fr(R) such that x appears in position (p,i) in the body of R and in position

(q,j) in the head of R;

– there is an arc from (p,i) to (q,j) in A§ if there exist a rule R 2R and a variable

x 2 fr(R) such that x appears in position (p,i) in the body of R and an existentially

quantified variable appears in position (q,j) in the head of R. The arcs of A§ are

called special arcs.

The rank of a position is the maximum number (possibly infinite) of special arcs on a path

leading to that position.
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Figure 2.9: The graph of position dependencies associated with R (Example 21)

Example 21 illustrates the construction of the graph of position dependencies.

Example 21 Let R be a set containing the following rules:

– r(x,y)→ s(y,z)

– s(x,y)→ r(y,x)

– r(x,y)∧r(y,z)→ r(x,z)

The graph of position dependencies of R is shown Figure 2.9. Special arcs are labelled

by a star.

This graph is used to define weakly-acyclic sets of rules.

Definition 2.37 (Weak-acyclicity [Fagin et al., 2005]) Let R be a set of rules. R is said

to be weakly-acyclic if there exists no cycle in the graph of position dependencies of R

that contains a special arc.

Let us point out that a set of rules containing no existentially quantified variables in

rule heads is trivially weakly acyclic (because there is no special arc). Such a set of rules

(which are Datalog programs) are sometimes called range-restricted.

Property 7 A weakly-acyclic set of rules is a finite expansion set.

The proof is done by upper-bounding for any fact F and any weakly-acyclic set of

rules R the number of fresh existential variables in the core of the canonical model of F

and R (by a double exponential with respect to R; the upper-bound is polynomial if R is

fixed).

Example 22 In the graph of Figure 2.9 (Example 21), no cycle goes through a special

edge, thus R is weakly acyclic. As such, R is a finite expansion set. Note that R does

not fulfill any of the criteria viewed so far: the third rule prevents it from being guarded,

linear or sticky.

This condition is sufficient to ensure the finiteness of forward chaining, but not neces-

sary, as witnessed by the following example.
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Example 23 Let R be the following rule:

r(x,y)∧s(x,y)→ r(x,v)∧r(w,y)∧s(x,w)∧s(v,y).

The graph of position dependencies is a clique of special edges, but an application of

R may not trigger a novel application of R – thus, {R} is a finite expansion set.

Some generalizations have been proposed in the literature, in particular, super-weak-

acyclicity [Marnette, 2009] and join-acyclicity [Krötzsch and Rudolph, 2011]. Both no-

tions are based on the same idea: ensuring that a variable can be propagated from a posi-

tion occurring in R1 to a position occurring in R2 does not ensure that an application of R1

will trigger an application of R2. Join-acyclicity refines weak-acyclicity by considering

the set of positions in which an existentially quantified variable can be propagated.

Definition 2.38 (Join-acyclicity) Let R be a set of rules which do not share any variable.

For a variable x, let ΠB
x (resp. ΠH

x ) be the set of all positions where x occurs in the body

(resp. head) of a – necessarily unique – rule. For any existentially quantified variable, let

Ωx be the smallest set of positions such that:

1. ΠH
x µΩx

2. ΠH
y µΩx for every universally quantified variable y such that ΠB

y µΩx

The existential dependency graph of R has the existentially quantified variables of R

as its nodes. There is an arc from x to y if the rule where y occurs contains a universally

quantified variable z with ΠB
z µΩx.

R is jointly acyclic if its existential dependency graph is acyclic.

The following example, also from [Krötzsch and Rudolph, 2011], illustrates the dif-

ference between weak- and join-acyclicity.

Example 24 Let R be the rule of Example 23:

r(x,y)∧s(x,y)→ r(x,v)∧r(w,y)∧s(x,w)∧s(v,y).

{R} is a join-acyclic set of rules, but is not weakly-acyclic. Indeed, the position depen-

dency graph of {R} is a clique of special edges, and the existential dependency graph of

{R} does not contain any edge.

The notion of super-weak-acyclicity [Marnette, 2009] is very close in substance to

join-acyclicity and generalizes it – though both notions coincide on simple 5 rules [Grau

et al., 2012]. We omit the technical definition of super-weak-acyclicity.

Another acyclicity notion, orthogonal to weak-acyclicity, has been proposed based

on the notion of rule dependency [Baget et al., 2009] and formerly in [Baget, 2004] for

conceptual graph rules. The main idea here is to characterize which rule can effectively

lead to trigger another rule. Preventing such cycles of dependencies naturally ensures the

finiteness of forward chaining.

5. Simple rules are rules where no variable appear twice, and no constant appear.
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R2R1

Figure 2.10: The graph of rule dependencies of Example 25

Definition 2.39 (Dependency) Let R1 and R2 be two existential rules. R2 depends on R1

if there exist a fact F, a homomorphism π1 from body(R1) to F and a homomorphism π2

from body(R2) to α(F,R1,π1) such that π2 is not a homomorphism from body(R2) to F.

This definition means that an application of R1 can trigger a new application of R2. All

rule dependencies are summarized in the graph of rule dependencies, whose definition is

given below. It is possible to decide if a rule depends on another, by using the notion of a

piece-unifier, already introduced.

Definition 2.40 (Graph of rule dependencies) Let R be a set of rules. The graph of rule

dependencies of R, denoted by GRD(R) is defined as follows:

– its vertices are the rules of R,

– there is an arc from R1 to R2 if and only if R2 depends on R1.

A set of rules R is said to have an acyclic graph rule of dependencies (aGRD) if

GRD(R) is acyclic. In that case, it is a fes as well as a fus. This is in particular the case

for Example 25. It is worth to note that none of the above mentioned criteria would allow

to conclude that this set of rules is a finite expansion set.

Example 25 Let consider the following two rules:

– R1=p(x)→ r(x,y)∧r(y,z)∧r(z,x),

– R2= r(x,y)∧r(y,x)→p(x).

Their graph of rule dependencies is given Figure 2.10.

An (unsuccessful) attempt to generalize both aGRD and weak-acyclicity resulted in

some generalizations of aGRD, called aGRDk. This family of dependencies does not gen-

eralize weak-acyclicity, but extends aGRD in an interesting way. In particular, it provides

a criterion to determine that the set of rules of Example 26 is a finite expansion set. The

interested reader can consult [Baget et al., 2011c].

Example 26 Let R = p(x)∧ r(x,y) → r(y,z). {R} is a finite expansion set, but is not

jointly-acyclic, since the existential dependency graph contains a single node and a loop.

Indeed, Ωz = {(r,2)}, and the only input position of y is (r,2), which, according to Defi-

nition 2.38 implies the existence of a loop.
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The problem of generalizing both weak-acyclicity and aGRD has recently been

solved, by defining model-faithful acyclicity and model-summarizing acyclicity [Grau

et al., 2012]. These semantic notions use a forward-chaining process in order to deter-

mine if a set of rules is acyclic or not. The main idea is the following: special predicates

mark which rule and which variable have created fresh existentially quantified variables,

and sequences of such variable creation are also encoded.

Definition 2.41 (Model-faithful acyclicity [Grau et al., 2012]) For each rule R 2 R

where R=B[x,y]→H[y,z], and for each variable zi 2 z, let Fir be a fresh unary predi-

cate unique for r and zi; furthermore, let S be a fresh binary predicate, and C be a fresh

nullary predicate. Then MFA(R) is the following rule:

B[x,y]→H[y,z]∧
^

zi2z
[Fir(zi)∧

^

yj2 fr(R)

S(yj,zi)].

If R s a set of rules, MFA(R) is the smallest set that contains MFA(R) for each rule

R 2R, as well as the following rule:

S(x1,x2)∧S(x2,x3)→ S(x1,x3),

and for every predicate Fir:

Fir(x1)∧S(x1,x2)∧Fir(x2)→C.

R is model-faithful acyclic (MFA) with respect to a fact F if F[ MFA(R) 6|= C; R is

universally MFA if R is MFA with respect to the all-true fact.

Checking if a set of rules R is MFA is a 2EXPTIME-complete problem. Thus, a simpler

criterion relying on the same idea has also been defined. The only changes relies in the

replacement of existentially quantified variables by fresh constants. This notion is called

model-summarizing acyclicity (MSA).

MFA generalizes all the notions of acyclicity presented above. A natural question is

whether these acyclicity notions capture real-world finite expansion sets. Experiments

have been led on a benchmark of 150 ontologies. It happened that 82% of them were

MSA; moreover, MSA and MFA were experimentally indistinguishable. The other on-

tologies of the benchmark are strongly suspected not to be finite expansion sets [Krötzsch,

2012].

Combining tools

Each of the above criteria may be destroyed by adding a single rule (which is not

surprising since a single rule can simulate a universal Turing machine). Moreover, if R1

fulfills a given criterion, and R2 fulfills another criterion, usually nothing can be said about

R1[R2. Table 2.3 sums these incompatibility results up, where “ND” means “not decid-

able”, and “open” that the status of the associated conjunctive query answering problem

is not known (to the best of our knowledge).
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rr rr

linear ND linear

guarded ND guarded guarded

fr1 ND fg fg fr1

fg ND fg fg fg fg

dr ND ND ND open ND dr

sticky ND ND ND open ND ND ND

wa ND ND ND ND ND ND ND ND

weakly-recursive ND ND ND ND ND ND ND ND ND

rr linear guarded fr1 fg dr sticky wa weakly-recursive

Table 2.3: (In-)compatibility results for combinations of decidable classes

However, criteria may be combined in more subtle ways. As an example, the notion

of affected position, as well as the notion of glut variable [Krötzsch and Rudolph, 2011],

may be used to restrict the set of variables that need to be guarded.

Definition 2.42 (Affected position) Let R be a set of rules. An affected position in R is

defined inductively as follows:

– if an existentially quantified variable appears at position (p,i), then (p,i) is af-

fected;

– if x appears in (p,i) in the head of a rule R, and only in affected positions in the

body of R, then (p,i) is affected.

Glut variables are a refinement of variables that appear at only affected positions, with

the intuition that a variable occurring in a rule has to be glut to be mapped to infinitely

many existentially quantified variables during a forward chaining procedure. Weakly-

guarded (wg) rules are then rules that guard all the variables that appear only at affected

positions in the body of the rule. One can consider only such variables that belong to

the frontier of the rule, which define weakly-frontier-guarded rules (wfg). Similar gen-

eralization can be defined by using join-acyclicity and glut variables (yielding jfg and

glut-fg). Another specific example of combination are the weakly-sticky rules, which are

the purpose of Definition 2.43.

Definition 2.43 (Weakly-sticky rules [Calì et al., 2010b]) Let R be a set of rules. R is

weakly-sticky if and only if for each rule R 2R and for each variable x that appears more

than once in body(R), the following condition holds: x is a non-marked variable, and at

least one occurrence of x in body(R) appears at a position of finite rank.

Please note that weakly-sticky rules do not fulfill any of the the usual criteria that

ensure decidability, that is, fes, fus and bts. Finally, let us mention the recently introduced

weakly-recursive rules [Civili and Rosati, 2012a], which are inspired by acyclicity and
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backward-shyness notions. It is a fus class, which in its current version is incomparable

with any other fus class.

Both weakly-guarded and weakly-sticky are example of “integrated” combinations:

the definitions of the classes themselves are used to create a new class that is also de-

cidable. The graph of rule dependencies (Definition 2.40) allows for more generic com-

bination, assuming that the interactions between different sets of rules are restricted in

a proper way. The notion of directed cut is the main tool that is used to define “proper

interactions”.

Definition 2.44 (Directed cut [Baget et al., 2011a]) A directed cut of a set of rules R is

a partition {R1,R2} of R such that no rule of R1 depends on a rule of R2. It is denoted by

R1BR2 (R1 “precedes” R2).

Property 8 Let R be a set of rules such that there exists R1 and R2 such that R1 B R2

with R1 fes and R2 bts. Then R is bts.

Indeed, one could saturate any fact F by using rules from R1. This generates a finite

fact F 0. Rules from R2 can then be applied, which by assumption generates a fact of

bounded treewidth. Since no rule of R1 depends on a rule of R2, this ensures that the

canonical model of F and R1[R2 is of bounded treewidth. The following property are

proven by using the same proof schema.

Property 9 Let R be a set of rules such that there exists R1 and R2 such that R1 B R2

with R1 and R2 fes. Then R is fes.

Property 10 Let R be a set of rules such that there exist R1 and R2 such that R1 BR2

with R1 and R2 fus. Then R is fus.

Property 11 Let R be a set of rules such that there exist R1 and R2 such that R1 BR2

with R1 a bts and R2 a fus. Then entailment under R is decidable.

These properties, combined with the recognition of some of the concrete classes pre-

sented above are at the basis of a tool for analyzing rule sets, called Kiabora. 6 For further

details, please consult [Leclère et al., 2013].

Figure 2.11 summarizes known decidable concrete classes. More expressive classes

are put higher in the graph. An edge between two classes indicates a (syntactic) subsump-

tion of classes – and the absence of edges indicates that there exists no such subsumption.

6. Available (May 2013) at: http://www2.lirmm.fr/∼mugnier/graphik/kiabora/
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Figure 2.11: A summary of decidable classes.The bold italic classes belong to gbts (see

Chapter 3). An edge between a lower and an upper class means that the lower class is a

syntactic restriction of the upper class.

Outside of this classification

Some classes that are known to be decidable fall out of the classification we proposed.

This in particular the case for shy rules (which is the inspiration for the denomination

“backward shy”), where existentially quantified variables that are created during a forward

chaining process may not be used as joins. The interested reader may consult [Leone

et al., 2012].

Another kind of rules is usually problematic: transitivity rules, such as:

r(x,y)∧r(y,z)→ r(x,z).

Such a rule usually prevents a set of rules containing it to be first-order rewritable. It

also hinders the bounded treewidth property, if, for instance, an infinite chain of predicate

r may be built. More generally, complex role inclusions are useful for modeling purposes,

but do not fit well in our framework. The problem is actually not only a framework prob-

lem: even with lightweight DLs, such as EL, adding arbitrary complex role inclusions

makes the conjunctive query answering problem undecidable. However, transitivity (and
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more generally regular complex role inclusions) can be added to EL [Krötzsch et al.,

2007], by using automata techniques.

We conclude this presentation by presenting a map of decidable classes, as well as

a table presenting complexity results for these classes. Combined complexity considers

in the input size data, rules and the query. Data complexity considers as fixed both rules

and the query. Data complexity is considered in databases to be a better indicator of the

complexity of the problem than combined complexity. In particular, a problem whose data

complexity is polynomial is often said tractable. However, some authors argue that even

a data complexity in AC0 (which is a subclass of LOGSPACE) does not imply practical

feasibility for OBQA [Kikot et al., 2011]. Last, we do not present query complexity in

the table. Indeed, a lower bound of NP-hardness is easily derivable from a reduction from

the three coloration problem, without using a single rule. On the other hand, to the best

of our knowledge, no case is yet known where this complexity increase.

Class Combined Data Abstract

complexity Complexity Class

glut-fg 3EXPTIME-c [Krötzsch and Rudolph, 2011] EXPTIME-h [Krötzsch and Rudolph, 2011] bts

j-fg 2EXPTIME-c [Krötzsch and Rudolph, 2011] EXPTIME-c [Krötzsch and Rudolph, 2011] bts

wfg 2EXPTIME-c [Baget et al., 2011b] EXPTIME-c [Baget et al., 2011b] bts

fg 2EXPTIME-c [Baget et al., 2011b] PTIME-c [Baget et al., 2011b] bts

fr1 2EXPTIME-c [Baget et al., 2011b] PTIME-c [Baget et al., 2011b] bts

wg 2EXPTIME-c [Calì et al., 2008] EXPTIME-c [Calì et al., 2008] bts

guarded 2EXPTIME-c [Calì et al., 2008] PTIME-c [Calì et al., 2008] bts

Datalog (rr) EXPTIME-c, e.g. [Chandra et al., 1981] PTIME-c [Dantsin et al., 2001] fes,bts

wa 2EXPTIME-c [Calì et al., 2010a](LB) PTIME-c [Dantsin et al., 2001] (LB) fes,bts

[Fagin et al., 2005] (UB) [Fagin et al., 2005] (UB)

ja 2EXPTIME-c [Krötzsch and Rudolph, 2011] PTIME-c [Krötzsch and Rudolph, 2011] fes,bts

MFA 2EXPTIME-c [Grau et al., 2012] fes,bts

linear PSPACE-c [Calì et al., 2010] in AC0 [Calì et al., 2009] fus,bts

sticky EXPTIME-c [Calì et al., 2010a] in AC0 [Calì et al., 2010a] fus

weakly-sticky 2EXPTIME-c [Calì et al., 2010a] PTIME-c [Calì et al., 2010a]

shy EXPTIME-c [Leone et al., 2012] PTIME-c [Leone et al., 2012]

Table 2.4: Combined and Data Complexities

2.5 Roadmap of contributions

We finish this chapter by giving a high-level roadmap of the contributions of this

thesis, as well as some link to other work that have been partly carried out during the

Ph.D training.

Chapter 3 presents work done in collaboration with J.-F. Baget, M.-L. Mugnier and S.

Rudolph. As already mentioned, some concrete classes that are known to be bts do not

come with a dedicated algorithm. Our first contribution aims at fixing this lack of algo-

rithm. We introduce a new class of rules, named greedy bounded treewidth sets. Where
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bts ensures the existence of a tree decomposition of finite width of the canonical model,

gbts ensures the possibility to actually build one, in a greedy manner. This decomposition

could however be of infinite size (i.e., the tree decomposition would contain an infinite

number of bags of bounded size). In order to finitely represent this tree, we define an

equivalence relation on the bags of the tree decomposition and a copy operation, which

takes two equivalent bags of the tree decomposition and copy any child of the first bag

under the second bag. Thanks to these tools, we are able to build a finite representation of

the canonical model. However, the usual querying operation - homomorphism between

graphs - is not complete anymore. We thus introduce an alternative querying operation,

that allows us to recover completeness. We show that our algorithm is worst-case optimal

for gbts, as well as for most of the known subclasses – whose upper-bound on complexity

is shown thanks to this algorithm. Related publications are [Baget et al., 2011b; Thomazo

et al., 2012; Thomazo, 2012].

Chapter 4 presents work partially done with M. König, M. Leclère and M.-L. Mugnier.

It focuses on pure query rewriting approaches, where no materialization is performed. The

aim is to design an efficient algorithm for query rewriting under any set of fus, and not

only specific subclasses. We first consider query rewriting using union of conjunctive

queries, and give a characterization of the minimal sound and complete rewriting of a

conjunctive query using union of conjunctive queries. After advocating that union of

conjunctive queries are not a good tool to express such rewritings when large class or

role hierarchies are in the ontology, we present semi-conjunctive queries, which are a

slightly more general form of positive existential queries. We then propose an algorithm

for computing sound and complete rewriting using semi-conjunctive queries, and provide

first experiments to evaluate it. Related publications are [König et al., 2012; Thomazo,

2013].

Chapter 5 concludes this thesis, and in particular presents some promising open

questions.

Some other questions have been tackled during the last three three years, even though

they are not developed in this dissertation. We briefly mention them here. The interested

reader is invited to consult related publications. In [Baget et al., 2011c], we consider

some weaknesses of the rule dependency notion introduced in [Baget, 2004]. This notion

does not behave well with respect to the classical atomic-head decomposition. Indeed, a

set of rules may have an acyclic graph of rule dependencies, while the transformed set of

rules (where each rule has an atomic head) may have a graph of rule dependencies that is

cyclic. This behavior is not desirable, since it weakens the conclusion that can be drawn

from the study of the graph of rule dependencies. We thus present a generalization of

rule dependency, named k-dependency, and show that it keeps some of the decomposition

properties of rule dependency, while allowing to overcome that shortcoming. In [Mugnier

et al., 2012], we consider conjunctive query answering in the presence of atomic negation,

i.e., where both facts and queries may contain negative literals. Even without ontologies,

this problem is complete for the second level of the polynomial hierarchy. We introduce
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a parameter, the number of so-called exchangeable literals, and show that the complexity

of the problem drops when this parameter is bounded.





CHAPTER

3
Materialization-based approach

Preamble

In this chapter, we introduce the class of greedy bounded treewidth sets (gbts) of

rules. After motivating the definition of that class and explaining links with other

known classes, we propose an optimal algorithm for that class, which can be spe-

cialized in order to be optimal on the main known subclasses as well.

The class of bounded treewidth sets (bts) is a very expressive class of decidable rules.

It covers a wide range of interesting classes, including lightweight description logics and

more generally guarded rules. However, as discussed in the previous section, this class

of rules have at least two major drawbacks: it is not recognizable, and while numerous

concrete classes have been proven to belong to bts, and thus have been proven to be

decidable, no dedicated algorithm was known prior to the present work. Moreover, the

worst-case complexity of these classes of rules was not known. This was the case for

frontier-guarded rules as well as for weakly-frontier-guarded rules. Since most of the

known bts classes were based on the guardedness notion, the goal we set was to extract

what seemed to be essential in the guarded property from a graph-theoretic point of view

and to design an algorithm solely based on this characteristic. This led to the definition

of greedy bounded treewidth sets (gbts), which is a semantic condition based on the con-

struction of the canonical model by a classical forward-chaining procedure. Greediness

enables us to build a finite representation of the canonical model. We create that finite rep-

resentation by using two tools: a greedy tree decomposition and an equivalence relation

on the bags of this tree decomposition. Last, we use a customized querying operation, in

order to evaluate queries directly against the finite representation while remaining sound

and complete.

47
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A greedy tree decomposition. If a set of rules R belongs to the bts class, then it is

ensured that for any fact F, there exists an integer b, such that for any fact F 0 derived from

F and R, there exists a tree decomposition of F 0 of width at most b. However, this does

not provide such a decomposition. Let us consider a set of guarded rules Rg and try to

build such a tree decomposition. We start from a trivial tree decomposition of the primal

graph of F, that contains a single bag having as elements every term of F as well as every

constant appearing in Rg. If (R1,π1) is the first rule application performed, π1 necessarily

maps the frontier terms of R1 to terms appearing in the initial bag. We can thus add a child

to the current tree decomposition (which contains only a root so far): that bag contains

every term appearing in the atoms added by the rule application (R1,π1), and the resulting

structure is a tree decomposition of α(F,R1,π1). Since Rg is a guarded set of rules, this

process can be repeated as long as we want: the existence of a guard ensures that there

exists a bag of the current tree decomposition that contains all terms to which the frontier

terms of an applied rule are mapped.

More generally,i.e., for more expressive gbts classes, the basic idea is the following:

while rules are applied in a breadth-first fashion, a tree decomposition of the current fact

is simultaneously maintained. The key point is that this tree decomposition is built in

a greedy fashion: new bags of the tree decomposition are created whenever necessary,

and choices are never changed. If at some point, it is not possible to extend the tree

decomposition in order to take newly created atoms into account, we say that it is not

possible to build a greedy tree decomposition of the considered derivation. For gbts rules,

it is possible to build such a greedy tree decomposition for any derivation.

An equivalence relation. However, building a tree decomposition of the canonical

model is not enough to finitely represent this canonical model: indeed, this tree decompo-

sition would also be infinite. However, this additional structure yields natural candidates

on which to build an equivalence relation: the bags of the tree decomposition. An impor-

tant contribution of this dissertation is the design of a correct equivalence relation. We

present a first equivalence relation, which is simple and intuitive, that we call structural

equivalence. However, it happens that structural equivalence does not yield the desired

property: two equivalent bags must be the root of “equivalent” subtrees. We thus refine

this equivalence notion, using a notion of pattern of a bag. With the refined equivalence

relation, we can block all but one of the bags in an equivalence class. The blocked tree

that we obtain is then finite. Moreover, the (possibly infinite) tree decomposition of the

canonical model can be built from this blocked tree and the equivalence relation: the

blocked tree is said to be full.

Creation and evolution rules. The equivalence relation that we propose is however not

directly computable: the “natural” way to compute it requires to have already computed

the greedy tree decomposition of the canonical model. In order to compute a full blocked

tree, we make use of creation rules and evolution rules. These rules are meant to describe

the patterns that may appear in the tree decomposition of the canonical model, and the

relationships between patterns. For instance, creation rules intuitively state that any bag
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of pattern P that appears in the tree decomposition of the canonical model has a child

of pattern P 0. We propose such rules, and show how to infer new rules in order to get a

complete – but finite – description of the tree decomposition of the canonical model.

A customized querying operation. As presented in the previous chapter, the standard

querying operation is homomorphism. However, looking for a homomorphism from a

query to atoms of the full blocked tree yields a sound but incomplete algorithm. After

exhibiting such a case where completeness is not ensured, we design a new querying op-

eration, by which we can directly evaluate queries on the blocked tree. Intuitively, we

guess which structure (this is called an atom-term partition tree) is induced by a homo-

morphism from the query to the canonical model, and check that it actually corresponds

to a homomorphism.

Running example. In order to illustrate the numerous definitions of this section, we will

rely on a running example. This example has been designed with the following require-

ments in mind. First, it should be easy enough to understand. Second, it should illustrate

every aspect of our approach, and explain why simpler approaches we could think of are

not sufficient. Last, it should not be directly expressible by means of description logics.

Let us introduce the rules of the running example. We first introduce the following

three rules:

– R1 :q1(x1,y1,z1)→ s(y1,t1)∧r(z1,t1)∧q2(t1,u1,v1);

– R2 :q2(x2,y2,z2)→ s(y2,t2)∧r(z2,t2)∧q3(t2,u2,v2);

– R3 :q3(t3,u3,v3)→h(t3).

These rules are a finite expansion set (since, for example, their graph of rule depen-

dency is acyclic). Applying these rules will create some existentially quantified variables.

A first interesting phenomenon is that these existential variables can allow to infer some

new information about the initial terms, when combined with the following rules:

– R4 :q2(x4,y4,z4)∧s(y4,t4)∧r(z4,t4)∧h(t4)→h(x4)∧p1(y4)∧p2(z4);

– R5 :q1(x5,y5,z5)∧s(y5,t5)∧r(z5,t5)∧h(t5)→p1(y5)∧p2(z5).

While it can be argued that these rules are slightly complicated, it will allow to il-

lustrate why we cannot block nodes without being careful. Last, we introduce a set of

two rules that will generate infinitely many fresh existential variables, and allow us to

illustrate both the blocking procedure and the querying operation.

– Rp1 :p1(xp)∧ i(xp)→ r(xp,yp)∧p2(yp)∧ i(yp);

– Rp2 :p2(xq)∧ i(xq)→ s(xq,yq)∧p1(yq)∧ i(yq).

In the remaining of this chapter, Rr (“r” stands for running) denotes the set containing

Ri for i∑ 5 as well as Rp1 and Rp2 . We will consider derivations of the following fact:

Fr=q1(a,b,c)∧q1(d,c,e)∧q1(f,g,g)∧ i(c)∧ i(g).

Let us take a look at k-saturations of Fr with respect to Rr. On Fr,

only R1 is applicable by three different homomorphisms, creating three sets of

three new atoms: {s(b,t1
1
),r(c,t1

1
),q2(t

1
1
,u1

1
,v1

1
)}, {s(c,t2

1
),r(e,t2

1
),q2(t

2
1
,u2

1
,v2

1
)} and



50 CHAPTER 3. MATERIALIZATION-BASED APPROACH

{s(g,t3
1
),r(g,t3

1
),q2(t

3
1
,u3

1
,v3

1
)}. α1(F,Rr) is equal to the union of Fr and these three

sets of atoms. On α1(F,Rr), three new rule applications are possible, each one mapping

the body of R2 to one of the atoms of predicate q2. Again, three new sets of atoms are in-

troduced, which are {s(u1
1
,t1

2
),r(v1

1
,t1

2
),q3(t
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and {s(u3
1
,t3
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),r(v3

1
,t3
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),q3(t
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,u3
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,v3

2
)}. This yields α2(F,Rr). On this fact, three

new rule applications of R3 are possible, which introduce h(t1
2
),h(t2

2
),h(t3

2
).

The introduction of these atoms triggers new applications of R4, creating

h(t1
1
),h(t2

1
),h(t3

1
),p1(u

1
1
),p1(u

2
1
),p1(u

3
1
),p2(v
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1
),p2(v

2
1
),p2(v

3
1
). R5 is now triggered,

creating p1(b),p2(c),p1(c),p2(e),p1(f),p2(f). The union of all atoms considered so far

is equal to α5(F,Rr), that we will also denote by F 0
r. Rp1 and Rp2 are now applicable,

both mapping their frontier to c and g. They will create infinite branches.

3.1 Greedy-bounded treewidth sets

We introduce here the class of rules that will be the focus of this chapter. This class,

called greedy bounded treewidth sets (gbts), contains sets of rules for which all derivations

fulfill a given criterion: for every fact F and every R-derivation on F, one should be able

to build a tree decomposition by following a fixed algorithm, that we describe hereafter.

We introduce with Definition 3.1 the notion of greedy derivation, that is at the core

of the definition of gbts rules. Each rule application creates a set of atoms. Intuitively, a

derivation is greedy if at each step, the frontier of the applied rule is mapped to terms that

are “close” one to another. Terms from the initial fact (and constants appearing in a rule

head) are close to any other term. Terms appearing in atoms coming from a single rule

head are close one to another.

Definition 3.1 (Greedy Derivation) An R-derivation (F0 = F), . . . ,Fk is said to be

greedy if, for all i with 0 < i < k, there is j ∑ i such that πi( fr(Ri)) µ vars(Aj)[

vars(F0)[C, 1 where Aj=π
safe

j
( head(Rj)).

We present in Example 27 a non-greedy derivation. Figure 3.1 illustrates this example.

Example 27 (Non-greedy derivation) Let R= {R0,R1} where:

R0= r1(x,y)→ r2(y,z) and

R1= r1(x,y),r2(x,z),r2(y,t)→ r2(z,t).

Let F0= {r1(a,b)∧r1(b,c)} and S= F0, . . . ,F3 with:

F1=α(F0,R0, {(y,b)}),A0= {r2(b,x1)},

F2=α(F1,R0, {(y,c)}), A1= {r2(c,x2)},

F3=α(F2,R1,π2), with π2= {(z,x1),(t,x2)};

fr(R1) = {z,t} is mapped to existential variables by π2, however there is no Aj s.t.

{π2(z),π2(t)}µ vars(Aj), thus S is not greedy.

1. We recall that C denotes the set of constants.
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r1(a,b)∧r1(b,c)

r2(b,x1) r2(c,x2)
B1 B2

B0

Figure 3.1: Attempt of building a greedy tree decomposition

To any greedy derivation is assigned a so-called derivation tree, formally defined be-

low. Intuitively, the root of the tree corresponds to the initial fact, and each other node

corresponds to a rule application of the derivation. Each node is labelled by a set of terms

and a set of atoms; note however that the set of atoms is only given to ease understanding,

only the set of terms is used in the following.

Definition 3.2 (Derivation Tree - Prefix) Let S = (F0 = F), . . . ,Fk be a greedy deriva-

tion. The derivation tree assigned to S, notation DT(S), is a tree T = (X =

{X0, . . . ,Xk, . . .},U) such that:

1. Let T0 = vars(F) [ C. The root of the tree is X0 with terms(X0) = T0 and

atoms(X0)= atoms(F).

2. For 0 < i ∑ k, let Ri−1 be the rule applied according to homomorphism πi−1 to

produce Fi; then terms(Xi) = vars(Ai−1)[ T0 and atoms(Xi) = atoms(Ai−1).

There is an edge between Xi and the node Xj such that j is the smallest integer for

which πi−1(fr(Ri−1))µ terms(Xj).

The nodes of DT(S) are also called bags. A prefix (subtree) of a derivation tree is a tree

is obtained by removing all the descendants of a set of bags.

Note that, in the second point of the definition, there is at least one j with

πi−1(fr(Ri−1))µ terms(Xj) because S is greedy. Moreover, we choose the smallest one,

which means that we link the new bag “as high as possible”.

Example 28 Let us consider the following sequence of rule applications:

– R1 is applied to Fr by π1 such that: π1(x1) = a,π1(y1) = b,π1(z1) = c, creating

{s(b,t1
1
),r(c,t1

1
),q2(t

1
1
,u1

1
,v1

1
)}.

– R2 is applied to α(Fr,R1,π1) by π2 such that π2(x2)= t1
1
,π2(y2)=u1

1
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1
,

creating {s(u1
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)}
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q1(a,b,c),q1(d,c,e)
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Figure 3.2: The derivation tree associated with Example 28

– R3 is applied on the resulting fact by π3 such that π3(x3) = t2
1
,π3(y3) =

u2
1
,π3(z3)= v2

1
, create a single new atom, h(t1

2
).

This derivation is greedy, and its derivation tree is represented in Figure 3.2.

The following property is easily checked, noticing that T0 occurs in each bag, which

ensures that the running intersection property is satisfied.

Property 12 Let S= F0 . . . ,Fk be a greedy derivation. Then DT(S) is a tree decomposi-

tion of Fk of width bounded by |vars(F)|+ |C|+max(|vars(head(R))|R2R).

Definition 3.3 (Greedy bounded-treewidth set of rules (gbts)) R is said to be a greedy

bounded-treewidth set (gbts) if (for any fact F) any R-derivation (of F) is greedy.

The tree that is greedily associated to a derivation does not depend on the order in

which rules are applied. If we assume that no rule application is executed twice, we can

thus associate with any fact F and any gbts set R a unique (possibly infinite) derivation

tree, that is a tree decomposition of the canonical model of F and R, and that we call the

ultimate derivation tree.
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Property 13 (Ultimate derivation tree) Let F be a fact, and R be a gbts set of rules.

There exists a unique (up to variable renaming) greedy derivation tree associated with

α∞(F,R). This derivation tree is called the ultimate derivation tree of F and R.

The class gbts is a strict subclass of bts and does not contain fes (e.g., in Example 27:

R is fes but not gbts). It is nevertheless an expressive subclass of bts since it contains

weakly-frontier-guarded rules (wfg):

Property 14 Weakly-frontier-guarded rules are gbts.

Proof: Let R be a wfg rule set. Given any R-derivation, consider the application of a rule

Ri, with weak frontier-guard g. We want to show that there exists a bag containing the

image of any element of the frontier. A variable of the frontier that is not an argument of

g is not affected, and thus maps to an initial term, which implies that its image belong to

any bag. Let x be an element of the frontier that is also an argument of g. Let a=πi(g).

Either a 2 F or a 2Aj for some j ∑ i. In the first case, πi(x) is an initial term, and thus

belong to any bag. In the second case, πi(x) is a term if Aj. Thus, the whole frontier

maps to the terms of a single bag. We conclude that R is gbts. ‰

Example 29 Rr from the running example is gbts: indeed, every rule is frontier-guarded

(but R4 and R5 are not guarded).

The following example shows that gbts strictly contains wfg.

Example 30 R= r1(x,y),r2(y,z)→ r(x,x 0),r(y,y 0),r(z,z 0),r1(x
0,y 0),r2(y

0,z 0);

{R} is gbts, but not wfg (nor fes). First, let us notice that all positions of r1 and

r2 are affected, and that x,y and z belong to the frontier of R. Thus, {R} is not

wfg. Moreover, let us consider F = r1(a,b)∧ r1(b,c). R is applicable to F, creating

r(a,x1),r(b,y1),r(c,z1),r1(x1,y1),r2(y1,z1), as shown in Figure 3.1. R is thus newly

applicable, mapping its frontier to x1 and z1. This can be repeated infinitely many times,

thus showing that {R} is not fes. Last, the only way to map the body of R to terms that

do not belong to an arbitrary initial fact is to map the frontier to terms that have been

created in the same bag, thus ensuring that {R} is gbts.

However, gbts and wfg rules are very close: conjunctive query entailment under gbts

rules can be polynomially reduced to the same problem under wfg rules. We define a

mapping τ that translates any knowledge base K= (F,R) into a knowledge base τ(K) =

(τ(F),τ(R)) such that τ(R) is wfg.

Let F be a fact and R be an arbitrary set of rules. τ associates F and R with τ(F)

and τ(R) defined as follows. We consider two new predicates: a unary predicate f and

a q-ary predicate same (with q=max | terms( head(R)) |R2R. Intuitively, f will mark

terms from the initial fact F, as well as constants added by rule applications, and same

will gather terms that are “in the same bag”. We define then:

– τ(F) = F[ {f(t) | t 2 terms(F)} item τ(R) =R 0

1
[R 0

2
, where R 0

1
and R 0

2
are defined

as follows:
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r1 r2

r1 r2

r r r

a b c

x1 y1 z1

Figure 3.3: Illustration of Example 30

– R 0

1
contains rules processing the same predicate:

1. R 0

1
1= f(x)→ same(x,. . . ,x)

2. R 0

1
2= same(x1,x2, . . . ,xq)∧f(x)→ same(x,x2 . . . ,xq)

3. One rule of the following type for each 1∑ i∑q:

R 0

1
3i= same(x1, . . . ,xi, . . . ,xq)→ same(xi, . . . ,x1, . . .xq)

4. R 0

1
4= same(x1, . . . ,xq−1,xq)→ same(x1, . . . ,xq−1,x1)

– R 0

2
contains rules translating rules from R: let R = B[x,y] → H[y,z], and let

c1, . . . ,ck be the constants in (H\B):

τ(R)=B[x,y]∧ same(y,v)→H[y,z]∧ same(y,z,w)∧i:1...,k f(ci),

where v and w are sets of fresh variables.

Intuitively, Rules R 0

1
1

and R 0

1
2

express that the initial terms (as well as constants added

by rule applications) are in all bags; Rules R 0

1
3i

and Rule R 0

1
4

respectively allow any

permutation and any duplication of arguments in an atom with predicate same . In the

translation of the rules from R, the sets of variables v and w are used to fill the atoms

with predicate same to obtain arity q.

R 0

1
\ {R 0

1
2} is guarded. R 0

2
is fg. No rule affects the position in the unary predicate

f, thus all affected variables in R 0

1
2 are guarded by the atom with predicate same, hence

τ(R) is wfg.

Property 15 For each fact q built on the initial language, if τ(K) |= q then K |= q.

Moreover, if R is gbts, then the reciprocal holds, i.e., τ(K) and K are equivalent (w.r.t.

the initial language).

Proof: ⇒: Any τ(R)-derivation S 0 from τ(F) can be turned into an R-derivation S from

F by simply ignoring the applications of rules from R 0

1
and replacing each application of

a rule τ(Ri) by an application of the rule Ri with ignoring the atoms with predicate same.
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Moreover, the facts respectively obtained by both derivations are equal on the initial lan-

guage (i.e., when considering only the atoms with predicate in the initial language, and

up to a variable renaming).

⇐: We assume that R is gbts. We show that any R-derivation S = (F0 = F),F1, . . . ,Fk
can be turned into a τ(R)-derivation S 0 =(F 0

0
= τ(F)), . . . ,F 0

1
, . . .F 0

k
that satisfies: (a) 80∑

i∑ k, Fi and F 0

i
are equal on the initial language; and, (b) 80∑ i< k, F 0

i+1
is obtained by

applying τ(Ri) with a homomorphism π 0

i
that extends πi. The proof is by induction on the

length l of S. The property is true for l= 0. Assume it is true for l=n. Consider the appli-

cation of Rn with homomorphism πn from body(Rn) to Fn. We note fr(Rn)= {y1 . . .yp}

such that body(τ(Rn)) contains the atom same(y1, . . . ,yp, . . .). Since R is gbts, there is

Aj, such that some variables from fr(Rn), say yi1 . . .yim are mapped to vars(Aj), and the

remaining variables from fr(Rn), say yim+1
. . .yip are mapped to varsF[C. The appli-

cation of τ(Rj) in S 0 has produced a same atom s1 that contains πn(yi1) . . .πn(yim) [by

induction hypothesis (b)]. By applying Rules R 0

1
3i

and Rule R 0

1
4
, we permute, and dupli-

cate if needed (i.e., if some yi1 . . .yim have the same image by π), the arguments in s1 to

obtain the atom s2= same(πn(yi1), . . . ,πn(yim), . . .). Then, with Rule R 0

1
2
, we add each

πn(yij) for m < j ∑ p (note that F 0
n necessarily contains f(πn(yij))) and build the atom

s3 = same(πn(yim+1
), . . . ,πn(yip),πn(yi1) . . .πn(yim), . . .). Finally, with Rules R 0

1
3i

,

we permute the p first arguments in s3 to obtain s4 = same(πn(y1), . . . ,πn(yp), . . .).

Since Fn and F 0
n are equal on the initial language by induction hypothesis (a), the fact

obtained from F 0
n after application of the previous rules from R 0

2
is still equal to Fn on the

initial language. We build π 0
n by extending πn such that the atom with predicate same in

body(τ(Rn)) is mapped to s4. Parts (a) and (b) of the induction property are thus satisfied

for l=n+1. ‰

We have just presented a polynomial reduction from the query entailment problem

under gbts rules to query entailment under wfg rules. Since wfg is a special instance of

gbts, it proves that the complexity of the problem for gbts is the same as for wfg. However,

there is no known algorithm for wfg, and it thus does not provide an algorithm for gbts.

3.2 An optimal algorithm for gbts

In this section, we present an algorithm to solve the entailment problem under a gbts

set of rules. The key idea is to exhibit some kind of regularity in the ultimate derivation

tree. To that purpose, we use the notion of bag pattern. We first provide a procedure that

allows us to maintain sound and complete bag patterns by performing a traversal of the

derivation tree. Then, we perform rule applications on the pattern level. We define an

equivalence relation on patterns, which ensures the following intuitive property: two bags

with equivalent patterns are roots of “equivalent” trees. This motivates us to study the

interaction between patterns: if a bag B of the ultimate derivation tree has pattern P, has

it a child of pattern P 0?
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3.2.1 Patterned Forward chaining

This section focuses on bag patterns. We first show that forward chaining can be

performed by considering solely the derivation tree endowed with bag patterns. Then we

define joins on patterns in order to update them incrementally after each rule application.

We last explain why patterns are interesting: they allow to formalize some kind of “regu-

larity” in a derivation tree – that will be exploited in the next section to finitely represent

potentially infinite derivation trees.

Definition 3.4 (Pattern) A pattern of a bag B is a set of pairs (G,π), where G is subset of

a rule body and π is a partial mapping from terms(G) to terms(B). G and π are possibly

empty.

For any derivation S, we obtain a patterned derivation tree, noted PDT(S), by enrich-

ing the derivation tree DT(S) assigning a pattern P(B) to each bag B of DT(S).

Definition 3.5 (Pattern soundness and completeness) Let Fk be a fact obtained via a

derivation S and let B be a bag in PDT(S). P(B) is said to be sound w.r.t. Fk if for all

(G,π) 2 P(B), π is extendable to a homomorphism from G to Fk. P(B) is said to be

complete w.r.t. Fk (and R), if for any R 2R, any sbR µ body(R) and any homomorphism

π from sbR to Fk, P(B) contains (sbR,π
0), where π 0 is the restriction of π to the inverse

image of terms(B). PDT(S) is said to be sound and complete w.r.t. Fk if for all its bags

B, P(B) is sound and complete w.r.t. Fk.

Provided that PDT(S) is sound and complete w.r.t. Fk, a rule R is applicable to Fk
iff there is a bag in PDT(S) whose pattern contains a pair ( body(R),−); then, the bag

created by a rule application (R,π) on Fk has parent Bj in DT(S) iff Bj is the bag in

PDT(S) at the smallest depth s.t. P(Bj) contains ( body(R),π 0), with the restrictions of

π 0 and π to fr(R) being equal. Patterns are managed as follows: (1) The pattern of B0 is

the minimal sound and complete pattern with respect to F; (2) after each addition of a bag

Bi, the patterns of all bags are updated to ensure the soundness and completeness with

respect to Fi. It follows that we can define a patterned derivation, where rule applicability

is checked on patterns, and the associated sound and complete patterned derivation tree,

which is isomorphic to the derivation tree associated with the (regular) derivation.

Remember that our final goal is to avoid building the current derived fact. We will

now incrementally maintain sound and complete patterns by a propagation mechanism on

patterns. This is where we need to consider patterns with subsets of rule bodies and not

just full rule bodies. We recall that the rules have pairwise disjoint sets of variables.

Definition 3.6 (Elementary Join) Let B1 and B2 be two bags, e1 = (sb1
R
,π1) 2 P(B1)

and e2 = (sb2
R
,π2) 2 P(B2) where sb1

R
and sb2

R
are subsets of body(R) for some rule

R. Let V = vars(sb1
R
)\ vars(sb2

R
). The (elementary) join of e1 with e2, noted J(e1,e2),

is defined iff for all x 2 V , π1(x) and π2(x) are both defined and π1(x) = π2(x). Then

J(e1,e2) = (sbR,π), where sbR = sb1
R
[sb2

R
and π= π1[π 0

2
, where π 0

2
is the restriction
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of π2 to the inverse image of terms(B1) (i.e., the domain of π 0

2
is the set of terms with

image in terms(B1)).

Note that V may be empty. The elementary join is not a symmetrical operation since

the range of the obtained mapping is included in terms(B1).

Example 31 Let us consider the bags X1 and X2 in Figure 3.2. Let e1 =

({q2(x4,y4,z4)},π) be in the pattern of X1, and e2 = ({s(y4,t4),r(z4,t4),h(t4)},π
0) be

in the pattern of X2, where:

– π(x4)= t1
1
,π(y4)=u1

1
,π(z4)= v1

1

– π 0(y4)=u1
1
,π 0(z4)= v1

1
,π 0(t4)= t1

2
The elementary join of e1 with e2 is ({q2(x4,y4,z4),s(y4,t4),r(z4,t4),h(t4)},π).

Definition 3.7 (Join) Let B1 and B2 be two bags with respective patterns P1 and P2. The

join of P1 with P2, denoted J(P1,P2), is the set of pairs J(e1,e2), where e1 = (sb1
R
,π1) 2

P1, e2=(sb2
R
,π2) 2P2, sb1

R
and sb2

R
are subsets of body(R) for some rule R.

Note that P1 µ J(P1,P2) since each pair from P1 can be obtained by an elementary join

with (;,;). Similarly, J(P1,P2) contains all pairs (G,π) obtained from (G,π2) 2 P2 by

restricting π2 to the inverse image of terms(B1).

If a pattern is sound w.r.t. Fi−1 then it is sound w.r.t. Fi. The following property

follows from the definitions:

Property 16 If P1 and P2 are sound w.r.t. Fi then J(P1,P2) is sound w.r.t. Fi.

Proof: Follows from the definitions: for all (G,π) 2 J(P1,P2), either (G,π) 2 P1, or is

obtained by restricting an element of P2, or is equal to J(e1,e2) for some e1=(sb1
R
,π1) 2

P1 and e2=(sb2
R
,π2) 2P2. In the latter case, let us consider two homomorphisms, h1 and

h2 with co-domain Fi, which respectively extend π1 and π2. The union of h1 and h2 is a

mapping from terms(G) to Fi (remember that h1 and h2 are equal on the intersection of

their domains). Moreover, it is a homomorphism, because every atom in G is mapped to

an atom in Fi by h1 or by h2. ‰

We consider now the step from Fi−1 to Fi in a (patterned) derivation sequence: let Bc

be the created bag and Bp be its parent in PDT(S).

Definition 3.8 (Initial pattern) The initial pattern of a bag Bc is the set of pairs (G,π)

s.t. G is a subset of a rule body and π is a homomorphism from G to atoms(Bc).

Example 32 (Initial pattern) Let us consider the initial pattern of X2 in Figure 3.2. The

atoms of X2 are:

{s(u1
1,t

1
2),r(v

1
1,t

1
2),q3(t

1
2,u

1
2,v

1
2)}.
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For rules R1,R2,Rp1 and Rp2 , no subpart of a rule body maps to the atoms of X2.

Thus, they do not contribute to the initial pattern of X2. There is one homomorphism from

the body of R3 to atoms of X2, and thus its initial pattern contains:

({q3(t3,u3,v3),πa),

where πa is defined by πa(t3)= t1
2
,πa(u3)=u1

2
,πa(v3)= v1

2
.

As for subparts of the body of R4, there are three elements added to the initial pattern

of X2:

– ({s(y4,t4)},πb),

– ({r(z4,t4)},πc),

– ({s(y4,t4),r(z4,t4)},πd),

where πb(y4) = πd(y4) =u1
1
, πb(t4) = πc(t4) = πd(t4) = t1

2
and πc(z4) = πd(z4) =

v1
1
.

Similar elements can be added by taking subparts of the body of R5.

Property 17 (Soundness of initial pattern of Bc w.r.t. Fi) The initial pattern of Bc is

sound with respect to Fi.

Proof: For any (G,π) in the initial pattern of Bc, π is a homomorphism from G to

atoms(Bc)µ Fi. ‰

Property 18 (Completeness of J(P(Bc),P(Bp)) w.r.t. Fi) Let P(Bc) be the initial pat-

tern of Bc and Bp be the parent of Bc. Assume that P(Bp) is complete w.r.t. Fi−1 and

R. Then J(P(Bc),P(Bp)) is complete w.r.t. Fi.

Proof: Let π be a homomorphism from sbR µ body(R) to Fi, for some rule R. We show

that J(P(Bc),P(Bp)) contains (sbR,π
0), where π 0 is the restriction of π to the inverse

image of termsBc. Let us partition sbR into bi−1, the subset of atoms mapped by π to

Fi−1, and bi the other atoms from sbR, which are necessarily mapped by π to Fi \Fi−1,

i.e., atoms(Bc). If bi is not empty, by definition of the initial pattern, P(Bc) contains

(bi,πc), where πc is the restriction of π to terms(bi). If bi−1 is not empty, by hypothesis

(completeness of P(Bp) w.r.t. Fi−1), Pp contains (bi−1,πp), where πp is the restriction

of π|bi−1
to the inverse image of termsBp. If bi−1 or bi is empty, (sbR,π

0) belongs to

J(P(Bc),P(Bp)) (Points 1 and 2 in Def. 3.7). Otherwise, consider J((bi,πc),(bi−1,πp)):

it is equal to (sbR,π
0) (Point 3 in Def. 3.7). ‰

Property 19 (Completeness of join-based propagation) Assume that PDT(S) is com-

plete w.r.t. Fi−1, and P(Bc) is computed by J(Pi(Bc),P(Bp)), where Pi(Bc) is the initial

pattern of Bc. Let d(B) denote the distance of a bag B to Bc in PDT(S). Updating a bag

B consists in performing J(P(B),P(B 0)), where B 0 is the neighbor of B s.t. d(B 0)<d(B).

Let T 0 be obtained from PDT(S) by updating all bags by increasing value of d. Then T 0

is complete w.r.t. Fi.
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Proof: From Prop. 18, we know that P(Bc) is complete w.r.t. Fi. It remains to prove

the following property: let P(B) be updated by J(P(B),P(B 0); if P(B 0) is complete w.r.t.

Fi, then J(P(B),P(B 0)) is complete w.r.t. Fi. We partition sbR in the same way as in the

proof of Property 18. If one of the subsets is empty, we are done. Otherwise, the partition

allows us to select an element e1 from P(B) and an element e2 from P(B 0), and J(e1,e2)

is the element we want to find. The crucial point is that if π maps an atom a of sbR to an

atom b of Fi \Fi−1, and b shares a term e with B, then e 2 terms(Bc), hence, thanks to

the running intersection property of a decomposition tree, e 2 terms(B 0), thus (e,π(e))

will be propagated to P(B). ‰

It follows that the following steps performed at each bag creation (where Bc is intro-

duced as a child of Bp) allow to maintain the soundness and completeness of the patterned

DT:

1. initialize P(Bc) with its initial pattern;

2. update P(Bc) with J(P(Bc),P(Bp));

3. propagate: first, propagate from P(Bc) to P(Bp), i.e., update P(Bp) by

J(P(Bp),P(Bc)); then, for each bag B updated from a bag B 0, update its children Bi

(for Bi 6=B 0) by J(P(Bi),P(B)) and its parent Bj by J(P(Bj),P(B)).

3.2.2 Bag equivalence and abstract bags

We now show how bag patterns allow us to exhibit some regularity in a derivation

tree. We first need some technical, but nonetheless natural definitions. We start with the

notion of fusion of the frontier induced by a rule application: given a rule application, it

summarizes which frontier terms are mapped to the same term, and if they are mapped to

a term of T0 (that is, an initial term or a constant).

Definition 3.9 (Fusion of the frontier induced by π) Let R be a rule and V be a set of

variables with V\T0=;. Let π be a substitution of fr(R) by T0[V . The fusion of fr(R)

induced by π, denoted by σπ, is the substitution of fr(R) by fr(R)[T0 such that for all

variable x 2 fr(R), if π(x) 2V then σπ(x) is the smallest 2 variable y of fr(R) such that

π(x)=π(y); otherwise σπ(x)=π(x) 2 T0.

Example 33 Let us consider R2 : q2(x2,y2,z2) → s(y2,t2)∧ r(z2,t2)∧q3(t2,u2,v2).

Let π1 defined by π1(y2) =y0=π1(z2). The substitution of the frontier of R2 induced by

π2 is defined by σπ1(y2) = y2 = σπ1(z2). Let b be a constant, and π2 be a substitution

of the frontier of R1 defined by π2(y2) = b= π2(z2). The fusion of the frontier induced

by π2 is defined by σπ2(y2) = σπ2(z2) = b. Last, if π3 maps y2 and z2 to two different

existential variables, then σπ3 is the identity on the frontier of R2.

This notion of fusion is the main tool to define structural equivalence, which is an

equivalent relation on the bags of a derivation tree.

2. We assume variables to be totally ordered.
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Definition 3.10 (Structural Equivalence) Let B and B 0 be two bags in the same (prefix

subtree) of a DT, or in two DTs, respectively created by applications (R,πi) and (R,πj)

of the same rule R. B and B 0 are structurally equivalent if the fusions of fr(R) induced by

the restrictions of πi and πj to fr(R) are equal.

We will see a bit later that structural equivalence is not the tool we need to formalize

regularity in a derivation tree. However, there is already a strong similarity between

structurally equivalent bags: the purpose of Definition 3.11 is to formalize it.

Definition 3.11 (Natural bijection) Let B and B 0 be two structurally equivalent bags

in an abstract (prefix) DT or in two abstract (prefix) DTs. The natural bijection from

terms(B) to terms(B 0) (in short from B to B 0), denoted ψB→B 0 , is defined as follows:

– if x 2 T0,ψB→B 0(x)= x

– otherwise, let orig(x) = {u 2 vars( head(R))|πsafe

i
(u) = x}. Since B and B 0

are structurally equivalent, 8u,u 0 2 orig(x),πsafe

j
(u) = πsafe

j
(u 0). We define

ψB→B 0(x)=πsafe

j
(u).

This natural bijection between structurally equivalent bags gives us a way to partially

order patterns, by ensuring that the ranges of partial applications are on the same set of

terms.

Definition 3.12 (Pattern inclusion / equivalence) Let B and B 0 be two bags in a (prefix

subtree of a) DT or in two (prefix subtrees of) DTs, with respective patterns P(B) and

P(B 0). We say that P(B) includes P(B 0), denoted P(B 0)vP(B), if :

– B and B 0 are structurally equivalent,

– P(B) contains all elements from P(B 0), up to a variable renaming given by the

natural bijection: (G,π 0) 2P(B 0)⇒ (G,ψB 0
→B ±π

0) 2P(B).

We say that P(B) and P(B 0) are equivalent, denoted P(B) ∼ P(B 0), if P(B 0)v P(B) and

P(B) v P(B 0). By extension, two bags are said to be equivalent if their patterns are

equivalent.

Property 20 explains why Definition 3.12 provides us with a good notion of pattern

equivalence. Indeed, it allows us to detect similar parts in the derivation tree: if two bags

are equivalent, then the “same” subtrees can be developed from them.

Property 20 Let F be a fact and R be a gbts. Let T be the ultimate derivation tree of F

and R. Let B and B 0 be two bags of T such that P(B) ∼P(B 0). Then for any child Bc of B

by (R,π), there exists a child B 0
c of B 0 by (R,ψB→B 0 ±π) such that P(Bc) ∼P(B

0
c).

Proof: First, let us note that for every child Bc of B created by (R,π), there exists a child

B 0
c of B 0 created by (R,ψB→B 0±π), since P(B) ∼P(B 0). Let us assume that P(Bc) 6=P(B 0

c).

Without loss of generality, there is some (G,π) that belongs to P(B) but not to P(B 0
c).

Since B and B 0 have same patterns, it means that a rule has been applied below Bc that has
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not been applied below B 0
c. However, this is not possible, since the first such application

should be applicable identically below both bags. ‰

An important consequence of Property 20 is that the pattern of a bag B in the ultimate

derivation tree T of F and R fully determines the subtree of T rooted in B (up to variable

renaming). In particular, let us assume that Tb is a prefix subtree of the ultimate derivation

tree which has been obtained from the ultimate derivation tree in the following way:

– each bag of Tb is either blocked or unblocked;

– for each equivalence class appearing in T, there is exactly one unblocked node of

Tb of that class;

– if a bag is blocked in Tb, the whole subtree rooted in B is deleted;

– if a bag is unblocked in Tb, all children of B in T are kept in Tb.

Intuitively, we can recompute the ultimate derivation tree from the blocked tree de-

scribed above by using a set of copy operations. If B and B 0 are equivalent, and B has

a child that does not have any equivalent below B 0, one can copy this child below B 0

while keeping a prefix of the ultimate derivation tree. In the remaining of this section, we

formalize the notion of full blocked tree.

Definition 3.13 (Blocked Tree) A blocked tree is a structure (Tb,∼), where Tb is a prefix

of a patterned derivation tree and ∼ is the equivalence relation on the bags of Tb s.t. for

each ∼-class, all but one bag are said to be blocked; this bag is called the representative

of its class and is the only one that may have children.

With a blocked tree Tb is associated a possibly infinite set of decomposition trees

obtained by copying its bags. More precisely, this set is composed of pairs (T,f), where

T is a decomposition tree obtained from Tb and f is a mapping from the bags of T to the

bags of Tb such that for any B 2T, B and f(B) are structurally equivalent. We first define

the bag copy operation:

Definition 3.14 (Bag Copy) Let B1 and B2 be structurally equivalent bags with natural

bijection ψB1→B2
. Let B 0

1
be a child of B1. Copying B 0

1
under B2 (according to ψB1→B2

)

consists in adding a child B 0

2
to B2, s.t. terms(B 0

2
) is obtained by the following bijection

b, and atoms(B 0

2
) = b( atoms(B 0

1
)): for all x 2 terms(B 0

1
), if x 2 terms(B1) then b(x) =

ψB1→B2
(x), otherwise b(x) is a fresh variable.

Assume that, in the previous definition, the bag B 0

1
has been created by (R,π). Then

B 0

2
can be seen as obtained by the fusion of fr(R) induced by the potential application of

R to B2 with the homomorphism ψB1→B2
±π. Since the fusions of fr(R) induced by π and

ψB1→B2
±π are equal, B 0

1
and B 0

2
are structurally equivalent. Furthermore, ψB 0

1
→B 0

2
= b,

where b is the bijection used in the previous definition to create B 0

2
by copy of B 0

1
.

Starting from a block tree Tb and using iteratively the copy operation when applicable,

one can build a possibly infinite set of trees, that we denote by G(Tb). It contains pairs,

whose first element is a tree structure, and the second is a mapping from the bags of this

tree structure to the bags of Tb, and which intuitively encodes which bags of Tb have been

copied to create which bag of the generated tree structure.
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Definition 3.15 (Set of Trees generated by a Blocked Tree) With a blocked tree Tb is

associated a set G(Tb) inductively defined as follows:

– The pair (Tb[root], identity), where Tb[root] is the restriction of Tb to its root,

belongs to G(Tb).

– Given a pair (T,f) 2 G(Tb), let B be a bag in T, and B 0 = f(B); let B 0
r be the

representative of B 0 ∼-class (B 0
r 6= B 0 if B 0 is blocked) and B 0

c be a child of B 0
r.

If B has no child structurally equivalent to B 0
c, let Tnew be obtained from T by

copying B 0
c under B (according to ψB 0

r→B), which yields a new bag Bc. Then

(Tnew,f[ (B 0
c,Bc)) belongs to G(Tb).

For each pair (T,f) 2G(Tb), T is said to be generated by Tb via f. T is said generated by

Tb if there exists f such that T is generated by Tb via f.

Note that a generated decomposition tree is not necessarily a derivation tree, but it is

a prefix of a derivation tree. Among blocked trees, full blocked trees are of particular in-

terest. Intuitively, a blocked tree is full if it generates only relevant trees and can generate

all of them. This structure is central to our algorithm: its first version basically computes

a full blocked tree, and directly reads answers on it.

Definition 3.16 A full blocked tree T§ (of F and R) is a blocked tree satisfying the two

following properties:

– (Soundness) If T 0 is generated by T§, then there is T 00 generated by T§ and an R-

derivation S from F such that atoms(T 00) = atoms(DT(S)) (up to fresh variable

renaming) and T 0 is a prefix subtree of T 00.

– (Completeness) For all R-derivations from F, DT(S) is generated by T§.

3.2.3 Abstract patterns and computation of a full blocked tree

We now aim at computing a full blocked tree. To that purpose, we fix a representative

for each structural equivalence class, as well as for each (pattern-based) equivalence class.

This is the purpose of abstract bags and abstract patterns. We also need to describe

how bags of a derivation tree are related to each other: links are introduced to that aim.

Having defined these basic components, we will focus on getting structural knowledge

on the ultimate derivation tree associated with a fact and a set of rules: creation rules and

evolution rules will be defined. In a last step, we use these rules to compute a full blocked

tree.

We start by defining abstract bags. Each abstract bag can be seen as a canonical

representative of a class of the structural equivalence relation.

Definition 3.17 (Abstract bag - Frontier terms - Generated variables) Let R be a rule

and σ a fusion of fr(R). The abstract bag associated with (R,σ) (notation: ab(R,σ))

is such that terms( ab(R,σ)) = σ( terms(head(R))) [ T0 and atoms( ab(R,σ)) =

σ(head(R)). The frontier terms of ab(R,σ) are the terms that are image of a frontier
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variable of R by σ. Variables of terms( ab(R,σ)) that are not frontier terms are called

generated variables.

Please note that we extend the natural bijection between structurally equivalent bags

to abstract bags (and there is exactly one abstract bag per structural equivalence class).

Example 34 (Abstract bag) Let us consider R2 : q2(x2,y2,z2)→ s(y2,t2)∧ r(z2,t2)∧

q3(t2,u2,v2), and three fusions σπ1 , σπ2 and σπ3 of its frontier defined by: σπ1(y2) =

σπ1(z2)=y2, σπ2(y2)=σπ2(z2)=b and σπ3 is the identity. The abstract bag associated

with (R,σπ1) has as terms {y2,t2,u2,v2} and as atoms {s(y2,t2),r(y2,t2),q3(t2,u2,v2)}.

The abstract bag associated with (R,σπ2) has as terms {b,t2,u2,v2} and as atoms

{s(b,t2),r(b,t2),q3(t2,u2,v2)}. The abstract bag associated with σπ3 has as terms

{y2,t2,u2,v2,z2} and as atoms {s(y2,t2),r(z2,t2),q3(t2,u2,v2)}.

Since abstract bags provide us with a canonical representative for each structural

equivalence class, we can now define a canonical representative for each class of equiva-

lent patterns: abstract patterns.

Definition 3.18 (Abstract pattern) Let R be a set of rules, R be a rule and σ be a fusion

of fr(R). An abstract pattern with support B= ab(R,σ) is a set of pairs (G,π) where G

is a subset of a rule body (of a rule of R) and π is a partial mapping from terms(G) to

terms(B). G and π are possibly empty.

Example 35 (Abstract pattern) Let us consider the initial pattern described in Example

32. That pattern contains the following elements:

– ({q3(t3,u3,v3)},πa),

– ({s(y4,t4)},πb),

– ({r(z4,t4)},πc),

– ({s(y4,t4),r(z4,t4)},πd),

– ({s(y5,t5)},πe),

– ({r(z5,t5)},πf),

– ({s(y5,t5),r(z5,t5)},πg),

with: πa(t3) =πb(t4) =πc(t4) =πd(t4) =πe(t5) =πf(t5) =πg(t5) = t1
2
, πa(u3) =

u1
2
, πa(v3) = v1

2
, πb(y4) = πd(y4) = πe(y5) = πg(y5) = u1

1
and πc(z4) = πd(z4) =

πf(z5)=πg(z5)= v1
1
.

The bag it is associated with has for corresponding abstract bag ab(R2, id). Thus,

the abstract pattern associated with this initial pattern contains the same elements, where

mappings are modified by substituting t1
2

by t2, u1
2

by u2, v1
2

by v2, u1
1

by y2 and v1
1

by z2.

Definition 3.19 (Initial abstract pattern) Let R be a rule and σ be a fusion of the fron-

tier of R. The initial abstract pattern of ab(R,σ) is the set of pairs (G,π) such that G is

a subset of a rule body and π is a homomorphism from G to atoms( ab(R,σ)).
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Let B1 and B2 be two bags of a derivation tree such that B2 is a child of B1. B1 and

B2 share some terms, i.e., some terms belong to both terms(B1) and terms(B2). Let us

assume that B1 is structurally equivalent to an abstract bag B and that B2 is structurally

equivalent to an abstract bag B 0. If we only state that a bag equivalent to B 0 is a child of a

bag equivalent to B, we miss some information about the above mentioned shared terms.

Capturing this information is the purpose of the notion of link.

Definition 3.20 (Link) Let B and B 0 be two abstract bags. A link of B with B 0 is an

injective mapping λ from the frontier terms of B to the terms of B 0 such that the range of

λ has a non-empty intersection with the generated terms of B 0.

Please note that we constraint the mapping of the frontier terms in this way because

in a derivation tree, bags are linked “as high as possible”.

Example 36 (Link) Let us consider R1 : q1(x1,y1,z1) → s(y1,t1) ∧ r(z1,t1) ∧

q2(t1,u1,v1) and R2 : q2(x2,y2,z2)→ s(y2,t2)∧ r(z2,t2)∧q3(t2,u2,v2), and the two

abstract bags ab(R1, id) and ab(R2, id). λ defined by λ(y2) = u1 and λ(z2) = v1 is a

link of ab(R2, id) with ab(R1, id).

We are also interested in the link that describes a particular situation in a derivation

tree, hence the notion of induced link.

Definition 3.21 (Induced link) Let B1 and B2 be two bags of a derivation tree such that

B2 is a child of B1. Let B and B 0 be two abstract bags such that B is structurally equivalent

to B1 and B 0 is structurally equivalent to B2. The link induced by B1 and B2 is the

mapping λ of the frontier terms of B 0 to terms(B) such that for all y in the frontier terms

of B2:

λ±ψB2→B 0(y)=ψB1→B(y).

We also say that B2 is linked to B1 by λ.

Property 20 states that the pattern of a bag in the ultimate derivation tree fully de-

termines the subtree rooted at this bag. We will thus gather information relative to the

structure of the ultimate derivation tree by means of “rules” whose intuition is explained

by the following example. Note that these rules have nothing to do with existential rules.

Example 37 Let us consider R1 : r(x1,y1)→ s(x1,y1) and R2 : s(x2,y2)→ p(x2). Let P

be the following pattern: {(r(x,y), {x→a,y→b}}. Any bag B of the ultimate derivation

tree such that PvP(B) is also such that P 0 vP(B), where P 0 = {(r(x1,y1), {x1→a,y1→

b}),(s(x2,y2), {x2 → a,y2 → b})}. Indeed, since P v P(B), R1 is applicable by mapping

x1 to a and y1 to b, and thus s(a,b) can be derived. Thus P 0 v P(B). Let us point out

that this pattern inclusion is valid in the ultimate derivation tree, but not in the derivation

tree of an arbitrary derivation sequence.
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Example 37 motivates us to define creation and evolution rules, that will be our main

focus in the remaining of this section. In Example 37, we exhibited a case where we can

infer that if a bag of the ultimate derivation tree has a pattern larger than P, it has also a

pattern larger than P 0. Such information will be gathered by evolution rules, and will be

denoted by P→P 0. Creation rules describe the children that a bag of a given pattern may

have. In other terms, we want to know for every (relevant) pattern P, what the possible

patterns of its children are, and what the induced link for each of these patterns is. Such

information will be denoted by P → Parent(P,λ,P 0), and intuitively means that in the

ultimate derivation tree, every bag B of pattern P has a child B 0 of pattern P 0 such that

the link induced by B and B 0 is λ. We can hope to derive such information because of

Property 20.

In the following, we show how to derive a set of sound creation and evolution rules

by means of Properties 21 to 26. The constructed creation and evolution rules are sound

because they describe inclusion of patterns and existence of children that are actually ful-

filled in the ultimate derivation tree. Since we do not want to compute all the creation

rules (for instance) for all patterns P on the left hand side of the rule, we will use these

properties in order to design a procedure that works in a “lazy” manner. We will start by

considering as interesting the initial pattern of the initial fact. At each step, we compute

creation rules having an interesting pattern on the left hand side, and create all the evolu-

tion rules that can be inferred by Properties 21 to 26. Patterns appearing in the right hand

side of a rule are then considered interesting, and we repeat the procedure until a fixpoint

is reached.

Definition 3.22 (Creation rule - Soundness) Let P,P 0 be two abstract patterns, and λ

be a link between the support of P 0 and the support of P. A creation rule is a rule of the

following form:

γc :P→ Parent(P,λ,P 0).

γc is sound if it holds that for any bag B of the ultimate derivation tree of pattern

P(B) such that PvP(B), there exists a child B 0 of B such that B 0 is linked by λ to B, and

P 0 vP(B 0).

Knowing such creation rules would be enough to build a full blocked tree granted that

we know the pattern of the root in the ultimate derivation tree. This is however not the

case, and to compute it, we will rely on evolution rules. Such rules intuitively state the

following: if the pattern of a bag in the ultimate derivation tree is greater than P, it is also

greater than P 0.

Definition 3.23 (Evolution rule - soundness) Let P,P 0 be two abstract patterns. An evo-

lution rule is a rule of the following form:

γe :P→P 0.

γe is sound if PvP 0 and for any bag B of the ultimate derivation tree such that PvP(B),

it holds that P 0 vP(B).
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We now exhibit properties allowing to define sound rules.

Property 21 Let P be a pattern, R be a rule, π be a mapping of fr(R) to terms(B) such

that its range has a non empty intersection with the terms generated in P. Let us assume

that ( body(R),π) is an element of P. Let σ be the fusion of fr(R) induced by π. Then

P→ Parent(P,λ,Pi
R
) is a sound creation rule, where:

– Pi
R

is the initial abstract pattern of ab(R,σ);

– λ is equal to π restricted to the frontier terms of Pi
R
.

Proof: Since the range of π has a non-empty intersection with the set of generated terms

of ab(R,σ), λ is a link of the support of Pi
R

with that of P. Moreover, let B be a bag of an

ultimate derivation tree such that Pv P(B). Then ( body(R),ψ support(P)→B ±π) 2 P(B).

Thus, R is applicable, by mapping its frontier in terms(B) (and at least one term generated

in B is image of an element of the frontier). Thus B has a child of link λ and of pattern

that is bigger than Pi
R
. ‰

We now define rules that aim at expressing that if two abstract patterns are linked in

a given way, they can be enhanced by an operation similar to the join previously defined.

However, the relationships between terms of different abstract patterns cannot be checked

by equality as it was done when defining the join operation. We thus define abstract el-

ementary joins, where these relationships are specified by the link between two abstract

patterns. A link between two patterns is not symmetric: we thus define two join oper-

ations, to update either the abstract pattern that is the domain of the link or the abstract

pattern that is the range of the link.

Definition 3.24 (Elementary abstract upper join) Let P1 and P2 be two abstract pat-

terns, and λ a link of P2 with P1. Let e1 = (sb1
R
,π1) 2 P1 and e2 = (sb2

R
,π2) 2 P2. Let

V = vars(sb1
R
)\ vars(sb2

R
). The elementary upper join of e1 with e2 is defined if for all

x in V, π1(x) and λ(π2(x)) are defined and equal, and is then defined by (sbR,π) where:

– sbR= sb1
R
[sb2

R
,

– π=π1[λ±π 0

2
, where π 0

2
is the restriction of π2 to π−1

2
( domain(λ)).

The elementary abstract lower join is similar, except for the definition of π: its range

should be included in the terms of P2.

Definition 3.25 (Elementary abstract lower join) Let P1 and P2 be two abstract pat-

terns, and λ a link of P2 with P1. Let e1 = (sb1
R
,π1) 2 P1 and e2 = (sb2

R
,π2) 2 P2. Let

V = vars(sb1
R
)\ vars(sb2

R
). The elementary abstract lower join of e1 with e2 is defined

if for all x in V, π1(x) and λ(π2(x)) are defined and equal, and is then defined by (sbR,π)

where:

– sbR= sb1
R
[sb2

R
,

– π=π2[λ−1 ±π 0

1
where π 0

1
is the restriction of π1 to π−1

1
( range(λ)).

Abstract upper and lower joins are then defined similarly to Definition 3.7 (upper and

lower join).
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Definition 3.26 (Abstract upper/lower join) Let P1 and P2 be two abstract patterns,

λ a link of P2 with P1. The abstract upper (resp. lower) join of P1 (resp. P2) w.r.t.

(λ,P2) (resp. (λ,P1)), is the set of elementary abstract upper (resp. lower) joins of

e1 = (sb1
R
,π1) 2 P1 with e2 = (sb2

R
,π2), where sb1

R
and sb2

R
are subsets of body(R) for

some rule R. It is denoted by Joinu(P1,λ,P2) (resp. Joinl(P1,λ,P2)).

We now exploit this notion of join in order to define new sound creation and evolution

rules.

Property 22 If P → Parent(P,λ,P 0) is a sound creation rule, then P →

Parent(P,λ, Joinl(P,λ,P
0)) is also a sound rule.

Proof: Let B and B 0 be two bags of the ultimate derivation tree such that P v P(B),

P 0 v P(B 0), and B 0 is a child of B by link λ. By soundness of join propagation,

Join(P(B 0),P(B)) v P(B 0). By monotonicity of the join operation, it yields that P →

Parent(P,λ, Joinl(P,λ,P
0)) is a sound rule. ‰

Property 23 If P→ Parent(P,λ,P 0) is a sound creation rule, then P→ Joinu(P,λ,P
0) is

a sound evolution rule.

Proof: Similar to the proof of Prop 22. ‰

Property 24 If P → P 0 and P 0
→ P 00 are sound evolution rules, then P → P 00 is also a

sound evolution rule.

Proof: Let B a bag of the ultimate derivation tree such that P v P(B). Since P → P 0 is

sound, then P 0 v P(B). Since P 0
→ P 00 is sound, then P 00 v P(B). Thus P→ P 00 is sound.

‰

Property 25 If P→P 0 and P→ Parent(P,λ,P 00) are sound evolution/creation rules, then

P 0
→ Parent(P 0,λ,P 00) is a sound creation rule.

Proof: It holds by monotonicity of the join operation, and by the condition that P→P 0 is

sound implies that PvP 0. ‰

Property 26 If P → Parent(P,λ,P 0) and P 0
→ P 00 are sound creation/evolution rules,

then P→ Parent(P,λ,P 00) is a sound creation rule.

We call pattern saturation the already outlined procedure that builds all creation and

evolution rules, and that we recall here. We define as interesting the initial pattern of the

initial fact. Then, we start a loop that proceeds as follows. For each interesting pattern P,

we use Properties 21 and 22 to build creation rules having P as left hand side. By using

Properties 23, 24, 25 and 26, we saturate the set of creation and evolution rules. We then

update the set of interesting patterns by inserting any pattern that appears in a right hand

side of a rule. Let us prove that this process terminates.
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Property 27 (Termination) For any fact F and any gbts set of rules R, pattern saturation

terminates.

Proof: There is a finite number of abstract patterns, and thus a finite number of evolution

and creation rules. At each step, the number of created rules can only increase, which

shows the termination of pattern saturation. ‰

In this fixpoint, some rules are redundant. For instance, if there exist two rules P→

Parent(P,λ,P 0) and P→ Parent(P,λ,P 00), with P 0 v P 00, then the first rule is implied by

the second one. We define the set of most informative creation rules as follows: a rule

P → Parent(P,λ,P 0) is most informative if there is no rule P → Parent(P,λ,P 00) with

P 0 6=P 00 and P 0 vP 00. We define similarly the most informative evolution rules.

High-level view of the algorithm

Let us recall the main steps of the proposed algorithm:

1. (pattern saturation) starting from the initial pattern of the initial fact, we compute

a set of evolution and creation rules that gives information on the structure of the

canonical model;

2. (full blocked tree creation) from this set of evolution and creation rules, we build

a full blocked tree – we detail this operation hereafter;

3. (querying step) we query the full blocked tree. If the query q is considered as a

rule of the form body(q)→ match, where match is a new 0-ary predicate, this

step can be performed by simply checking if an element (q,π) with an arbitrary π

belongs to one of the patterns. If we remove the query from the patterns, we have

to modify this querying operation, which will be explained in the next section.

Details on the full blocked tree computation

We now specify how to perform the second step of the algorithm. We start from the

initial abstract pattern PF associated with F. We associate it with a bag having as terms the

terms of F (as well as constants appearing in rule heads). We find the most informative

evolution rule having PF as left-hand side,PF → P§

F
, and apply it. That is, we modify

the pattern of the root, from PF to P§

F
. Then, we apply every most informative creation

rule having P§

F
as left member, and create corresponding bags. To apply a creation rule

P → Parent(P,λ,P 0), we add a child of pattern P 0 to the considered bag of pattern P,

such that the induced link of that child with its parent is λ. We repeat this step with

the newly created pattern, adding children to at most one bag of a given pattern. This

procedure halts, since there is a finite number of patterns, and the arity of the built tree

is also bounded. It creates a sound blocked tree, since every creation and evolution rules

are sound. It also creates a full blocked tree. Indeed, we show by induction on the length

of a derivation that any patterned derivation tree obtained by a derivation of length n can

be generated thanks to rules that belong to the set of rules built by the pattern saturation

procedure. This is trivially true for a derivation of length 0. For a derivation of length
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s(b,t1),r(c,t1),q2(t1,u1,v1)

q2(x2,y2,z2)

q2(x4,y4,z4)

s(y4,t4)

s(y5,t5)

r(z4,t4)
r(z5,t5)

r(z4,t4),s(y4,t4)

Atoms of the abstract bag:

r(z5,t5),s(y5,t5)

t1b

c u1 v1

Figure 3.4: A graphic representation of Pb,c
1

n, let B the bag to which a child is linked at the last step. The derivation tree obtained

before can be obtained by means of creation and evolution rules, by induction assumption.

Property 21 ensures that a creation rule can create a child to B, and the saturation of the

rule set by other properties ensures that the created bag has the good pattern.

We illustrate pattern saturation by expanding the running example. Writing down

absolutely every element of each pattern would impede the ease of reading. We will thus

allow ourselves to skip some elements, and focus on the most important ones.

Example 38 In this example, we do not consider any query (or we may as-

sume the query to be empty). The initial pattern P0 of F contains the following

elements:(q1(x1,y1,z1),π1(x1) = a,π1(y1) = b,π1(z1) = c), (q1(x1,y1,z1),π2(x1) =

d,π2(y1) = c,π2(z1) = e) and (q1(x1,y1,z1),π1(x1) = f,π1(y1) = π1(z1) = g). By ap-

plication of Property 21, three novel rules are created: P0 → Parent(P0,;,P
b,c
1

),P0 →

Parent(P0,;,P
c,e
1

) and P0 → Parent(P0,;,P
g,g
1

), where Pb,c
1

,Pc,e
1

and P
g,g
1

. are de-

scribed below.

The abstract bag associated with Pb,c
1

has as atoms s(b,t1),r(c,t1),q2(t1,u1,v1) and

an empty link (since the whole frontier of R1 is mapped to constants). The abstract bag

associated with Pc,e
1

has as atoms s(c,t1),r(e,t1),q2(t1,u1,v1), and P
g,g
1

has as atoms

s(g,t1),r(g,t1),q2(t1,u1,v1).

Pb,c
1

contains the following pairs:

– ({q2(x2,y2,z2)},(π
b,c
1

(x2)= t1,π
b,c
1

(y2)=u1,π
b,c
1

(z2)= v1));

– ({q2(x4,y4,z4)},(π
b,c
2

(x4)= t1,π
b,c
2

(y4)=u1,π
b,c
2

(z4)= v1));

– ({s(y4,t4)},(π
b,c
3

(y4)=b,πb,c
3

(t4)= t1));

– ({r(z4,t4)},(π
b,c
4

(z4)= c,πb,c
4

(t4)= t1));

– ({s(y4,t4),r(z4,t4)},(π
b,c
5

(y4)=b,πb,c
5

(z4)= c,πb,c
5

(t4)= t1));

– ({s(y5,t5)},(π
b,c
6

(y5)=b,πb,c
6

(t5)= t1));

– ({r(z5,t5)},(π
b,c
7

(z5)= c,πb,c
7

(t5)= t1));

– ({s(y5,t5),r(z5,t5)},(π
b,c
8

(y5)=b,πb,c
8

(z5)= c,πb,c
8

(t5)= t1)).
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Pc,e
1

(resp. P
g,g
1

) contains the same pairs, except that every occurrence of b is replaced

by a c (resp. a g) and every occurrence of c is replaced by a e (resp. a g). Pb,c
1

is

graphically represented in Figure 38.

These three patterns contain ({q2(x2,y2,z2)},(π
b,c
1

(x2) = t1,π
b,c
1

(y2) =

u1,π
b,c
1

(z2)= v1)), and we thus create the three following rules:

– Pb,c
1

→ Parent(Pb,c
1

,λ1,P2),

– Pc,e
1

→ Parent(Pc,e
1

,λ2,P2),

– P
g,g
1

→ Parent(P
g,g
1

,λ3,P2),

where λ1,λ2,λ3 are defined by λi(y2) = u1,λi(z2) = v1 and P2 is defined below. .

Note that we have to define three different λi since the supports of Pb,c
1

,Pc,e
1

and P
g,g
1

are

three different abstract bags.

P2 has as atoms {s(y2,t2),r(z2,t2),q3(t2,u2,v2)}. It contains the following elements:

– ({q3(t3,u3,v3)},(π
2
1
(t3)= t2,π

2
1
(u3)=u2,π

2
1
(v3)= v2));

– ({s(y4,t4)},(π
2
2
(y4)=y2,π

2
2
(t4)= t2));

– ({r(z4,t4)},(π
2
3
(z4)= z2,π

2
3
(t4)= t2));

– ({s(y4,t4),r(z4,t4)},(π
2
4
(z4)= z2,π

2
4
(y4)=y2,π

2
4
(t4)= t2));

– ({s(y5,t5)},(π
2
5
(y5)=y2,π

2
5
(t5)= t2));

– ({r(z5,t5)},(π
2
6
(z5)= z2,π

2
6
(t5)= t2));

– ({s(y5,t5),r(z5,t5)},(π
2
7
(y5)=y2,π

2
7
(z5)= z2,π

2
7
(t5)= t2)).

The element ({q3(t3,u3,v3)},(π
2
1
(t3) = t2,π

2
1
(u3) =u2,π

2
1
(v3) = v2)) belongs to P2,

and thus, we create a rule P2 → Parent(P2,λ4,P3), where λ3(t3) = t2 and P3 contains

the following elements:

– ({h(t4)},(π
3
1
(t4)= t2)),

– ({h(t5)},(π
3
2
(t5)= t2)).

At this point, we cannot create any new rule thanks to Property 21. However, Property

23 may be used to derive an evolution of P2. Indeed, since P2 → Parent(P2,λ4,P3) has

been derived, we can derive that P2→ P 0

2
= Joinu(P2,λ4,P3); P

0

2
is a superset of P2 that

also contains the following elements:

– ({s(y4,t4),h(t4)},(π
4
1
(y4)=y2,π

4
1
(t4)= t2));

– ({r(z4,t4),h(t4)},(π
4
2
(z4)= z2,π

4
2
(t4)= t2));

– ({s(y4,t4),r(z4,t4),h(t4)},(π
4
3
(z4)= z2,π

4
3
(y4)=y2,π

4
3
(t4)= t2));

– ({s(y5,t5),h(t5)},(π
4
4
(y5)=y2,π

4
4
(t5)= t2));

– ({r(z5,t5),h(t5)},(π
4
5
(z5)= z2,π

4
5
(t5)= t2));

– ({s(y5,t5),r(z5,t5),h(t5)},(π
4
6
(y5)=y2,π

4
6
(z5)= z2,π

4
6
(t5)= t2));

– ({h(t4)},(π
4
7
(t4)= t2));

– ({h(t5)},(π
4
8
(t5)= t2)).

By Property 26, the following rules are sound:

– Pb,c
1

→ Parent(Pb,c
1

,λ1,P
0

2
);

– Pc,e
1

→ Parent(Pc,e
1

,λ2,P
0

2
);

– P
g,g
1

→ Parent(P
g,g
1

,λ3,P
0

2
).

Applying once more Property 23, we get new sound rules such as:
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s(b,t1),r(c,t1),q2(t1,u1,v1)

q2(x2,y2,z2)

q2(x4,y4,z4)

s(y4,t4)

s(y5,t5)

r(z4,t4)
r(z5,t5)

r(z4,t4),s(y4,t4)

Atoms of the abstract bag:

r(z5,t5),s(y5,t5)

q2(x2,y2,z2)

q2(x4,y4,z4)

s(y4,t4)

s(y5,t5)

r(z4,t4)
r(z5,t5)

r(z4,t4),s(y4,t4)

r(z5,t5),s(y5,t5)

s(b,t1),r(c,t1),q2(t1,u1,v1)
Atoms of the abstract bag:

c

b t1

u1 v1c

b

u1

t1

v1

q2(x4,y4,z4),r(z4,t4),s(y4,t4),h(t4)

Pb,c
1

→Pb,c 0

1

Figure 3.5: Graphical representation of the rule Pb,c
1

→Pb,c 0

1
. The new element of Pb,c 0

1
is

in bold.

Pb,c
1 →Pb,c 0

1 ,

where Pb,c 0

1
is a superset of Pb,c

1
that also contains, among others, the following ele-

ment:

({q2(x4,y4,z4),r(z4,t4),s(y4,t4),h(t4)},(π
b,c 0

1 (x4)= t1,π
b,c 0

1 (y4)=u1,π
b,c 0

1 (z4)= v1)).

Please note that in this case, πb,c 0

1
does not map every variable appearing in the

corresponding subset of a rule body. Indeed, t4 is not mapped, since its image by the

homomorphism extending πb,c 0

1
does not belong to the terms relevant to the supporting

bag.

We skip part of the development of this example. It can be checked that at some point,

a rule P0→P 0

0
is created, where P 0

0
contains the following elements:

({p1(xp), i(xp)},π
1
p(xp)= g) ({p2(xq), i(xq)},π

1
q(xq)= g)

The following two creation rules are thus sound and relevant:

P 0

0→ Parent(P 0

0,;,P
i
p) P 0

0→ Parent(P 0

0,;,P
i
q)

where Pi
p contains in particular ({p2(xq), i(xq)},π

1
q(xq) = yp) and Pi

q contains

({p1(xp), i(xp)},π
1
p(xp) = yq). Since the body of Rp2 (resp. Rp1) belongs to Pi

p

(resp. Pi
q), a new creation rule is added Pi

p → Parent(Pi
p,λq,Pq) (resp. Pi

q →
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Parent(Pi
q,λp,Pp)), where λp(xq) = yp and λq(xp) = yq. Last, two recursive rules are

added:

Pp→ Parent(Pp,λ
0
q,Pq), Pq→ Parent(Pq,λ

0
p,Pp),

where λ 0
q(xp)=yq and λ 0

p(xq)=yp.

Before turning on to the more involved querying operation, let us stress out that this

first algorithm already provides a tight upper-bound for the combined complexity of query

answering under gbts rules. Indeed, the problem is already known to be 2EXPTIME-hard,

since guarded rules are a particular case of gbts rules.

Theorem 5 CQ entailment for gbts is in 2EXPTIME for combined complexity and in

EXPTIME for data complexity.

Proof: The computation of the full blocked tree is polynomial in the size of the computed

creation/evolution rule set. The number of such rules is polynomial in the number of

patterns and in the maximum arity of a derivation tree. The number of patterns is double

exponential in the data in the worst-case, while the arity is at most exponential. When

the rule set (including the query) is fixed, the data complexity falls to EXPTIME. Lower

bounds come from already known complexity of weakly-guarded rules, for instance. See

the first part of the complexity analysis at the end of Section 3.3.3 for more details. ‰

The algorithm we proposed is thus worst-case optimal both for combined and data

complexities.

3.3 Offline and online separation

We considered in previous sections the query to be a rule. This trick allowed us to

have a conceptually easy querying operation, where is was sufficient to check if some bag

of the full blocked tree was labeled by the query and an arbitrary mapping. However, this

comes with two drawbacks. The first one is that the query is needed at the time of the

construction of the full blocked tree. In scenarios where different queries are evaluated

against the same data, one would like to process data and rules independently from the

query, and then to evaluate the query on the pre-processed structure. This is not possible if

we consider the query to be a rule. The second drawback of taking the query into account

while building the full blocked tree it that it prevents us to adapt this construction when

assumptions are made on the set of rules: can we devise a better algorithm if we have

additional knowledge on the rule set? For instance, if it is guarded, and not only gbts?

This section is devoted to these issues. In the construction of the full blocked tree, we

do not consider the query anymore. We still obtain a finite representation of the canonical

model of F and R, but we cannot just check if a bag is labeled by the query – since

the query does not appear in any label anymore. A simple homomorphism check is not
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sufficient either, as can be seen with Example 39 below. To overcome this problem, we

introduce a structure called atom-term partition tree (APT). Such a structure is meant

to encode the structure of the query induced by a homomorphism from that query to a

derivation tree. A possible algorithm to check the existence of a homomorphism from

a query q to a derivation tree would be to check if one of the APTs of q is the structure

induced by some homomorphism π, i.e. to validate this APT. APTs and their validation in

a derivation tree will be formalized in section 3.3.1. We are well aware that this definition

is more involved than the simple definition of homomorphism. However, our goal will

be to validate APTs, not in the potentially ever-growing derivation trees, but in the finite

full blocked tree. In that case, APTs will still be used, but we will have to update their

validation process (section 3.3.2).

Let us first stress why the usual homomorphism check is not a complete querying

operation. To ease the presentation, we will restrict the running example in the following

way: we only consider rules Rp1 :p1(xp)∧ i(xp)→ r(xp,yp)∧p2(yp)∧ i(yp) and Rp2 :

p2(xq)∧ i(xq) → s(xq,yq)∧p1(yq)∧ i(yq) (this set will be denoted by R 0
r), and the

initial fact is restricted to i(c)∧p1(c)∧p2(c) (denoted by F 0
r).

Example 39 Let us consider the following query qi:

qi :pi(x)∧s(x,y)∧r(y,z)∧s(z,t)∧r(t,u)∧r(x,v).

If we only look for a homomorphism with atoms belonging to the full blocked tree

associated with R 0
r and F 0

r and pictured in Figure 3.6, we do not find any answer to

this query. However, X2 is equivalent to X6, and by considering a derivation tree where

X3 would have a corresponding bag below X6 (as X7 in Figure 3.7), one would find a

(correct) mapping of qi.

3.3.1 Validation of an APT in a derivation tree

Let π be a homomorphism from q to the atoms of some derivation tree T =DT(S).

From π, let us build an arbitrary mapping πa
T

(out of the many possible ones), defined

as follows: for every atom a= p(t1, . . . ,tk) of q, let us choose a bag B of T with a 0 =

p(π(t1), . . . ,π(tk)) 2 B, and define πa
T
(a) = (B,a 0). Then an atom bag of q (according

to T and πa
T
) is a subset of atoms of q such that a and b are in the same atom bag if and

only if there exists a bag B of T with πa
T
(a)= (B,a 0) and πa

T
(b)= (B,b 0).

Now, it is important (or it will be important in the next section) to also keep track, for

a term t of q, of the bag of T in which the term π(t) appeared. We note πt
T
(t)= (B,π(t))

when the term π(t) appears in the bag B of T . We can now define a term bag of q in the

same way as for atom bags. A term bag of q (according to T and π) is a subset of terms

of q such that two terms u and v are in the same term-bag if and only if there exists a bag

B with πt
T
(u)= (B,u 0) and πt

T
(v)= (B,v 0).

Then πT
a defines, for each bag B (term or atom) of q a unique bag πT (B) of T : the bag

where all the elements of B are mapped. More formally, if B is an atom bag of q, we have,

for every atom a 2B, πa
T
(a) = (πT (B),a

0). In the same way, for every term bag B of q,
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p1(c),p2(c), i(c)

r(c,y1),p2(y1), i(y1) s(c,z1),p1(z1), i(z1)

s(y1,y2),p1(y2), i(y2) r(z1,z2),p2(z2), i(z2)

r(y2,y3),p2(y3), i(y3) s(z2,z3),p1(z3), i(z3)

X0

X1

X2

X3

X4

X5

X6

Figure 3.6: The full blocked tree associated with F 0
r and R 0

r. X2 and X6 are equivalent, as

well as X3 and X5.

we have, for every term u 2 B, πt
T
(u) = (πT (B),u

0). We can now define the atom-term

bags of q (induced by πa
T
). If an atom bag Ba and a term bag Bt have the same image by

πT , we obtain an atom-term bag B=Ba[Bt. If an atom bag (resp. a term bag) B have a

different image than the image of any other term bag (resp. atom bag) of q, then B is an

atom-term bag.

Finally, we provide these atom-term bags with a tree structure induced by the tree

structure of T . Let B and B 0 be two atom-term bags of q. Then B 0 is a child of B iff

(i) πT (B
0) is a descendant of of πT (B) and (ii) there is no atom-term bag B 00 of q such

that πT (B
00) is a descendant of of πT (B) and πT (B

0) is a descendant of of πT (B
00). Note

that since we only consider connected queries, the structure so created is indeed a tree (it

could be a forest with disconnected queries). In what follows, we define an atom-term

tree decomposition of a query by such a tree of atom-term bags, independently from T

and πa
T
.

Definition 3.27 [APT of a query] Let q be a query. An atom-term partition of q is a
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p1(c),p2(c), i(c)

r(c,y1),p2(y1), i(y1) s(c,z1),p1(z1), i(z1)

s(y1,y2),p1(y2), i(y2) r(z1,z2),p2(z2), i(z2)

r(y2,y3),p2(y3), i(y3) s(z2,z3),p1(z3), i(z3)

X0

X1

X2

X3

X4

X5

X6

r(z3,z4),p2(z4), i(z4) X7

Figure 3.7: A tree generated by the full blocked tree of Figure 3.6. X7 is a copy of X3

under X6.
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x pi(x)

y s(x,y)

z r(y,z)

t s(z,t)

u r(t,u)

v r(x,v)

B0

B1

B2

B3

B4

B5

Figure 3.8: An atom-term partition of qi :p(x)∧s(x,y)∧r(y,z)∧s(z,t)∧r(t,u)∧r(x,v)

partition of atoms and terms of q (these sets are called atom-term bags). An atom-term

partition tree (APT) of q is a tree whose nodes form an atom-term partition of q.

Figure 3.8 represents an APT of the example query qi.

Definition 3.28 [(Valid) APT-Mapping] Let qt be an APT of q. Let T be a derivation tree.

An APT-mapping of qt to T is a tuple (Π,π1, . . . ,πk) where Π is an injective mapping from

the atom-term bags of qt to the bags of T and, for each atom-term bag Bi of qt, πi is a

substitution from the terms of Bi
3 to the terms that were created in the atoms of Π(Bi).

Remark that if u is a term of q, then u appears in only one atom-term bag Bi of qt.

We can thus note π(u)=πi(u).

Finally, we say that (Π,π1, . . . ,πk) is valid when π is a homomorphism from q to the

atoms of DT(S).

Example 40 (APT-Mapping) We now present a valid APT-Mapping of the APT pictured

Figure 3.8 to the derivation tree represented in Figure 3.7. We define Π as follows:

3. We consider here the terms of Bi, not the terms appearing in the atoms of Bi.
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Π(B0)=X0,

Π(B1)=X4,

Π(B2)=X5,

Π(B3)=X6,

Π(B4)=X7,

Π(B5)=X1.

The corresponding mappings are:

π0(x)= c,

π1(y)= z1,

π1(z)= z2,

π3(t)= z3,

π4(u)= z4,

π5(v)=y1.

(Π,π1,π2,π3,π4,π5) is a valid APT-mapping of the APT from Figure 3.8 to the deriva-

tion tree from Figure 3.7.

Property 28 (Soundness and completeness) Let F be a fact, R be a set of gbts rules,

and q be a query. Then F,R |=q if and only if there exists a derivation sequence S from F

to Fk, an APT t of q, and an APT-mapping M of qt to DT(S) such that M is valid.

Proof: We successively prove both directions of the equivalence.

(⇐) Let us suppose that there exists a valid APT-mapping from qt to DT(S). From

Definition 3.28, it follows that there is a homomorphism π from q to the atoms of

DT(S), i.e. a homomorphism π from q to Fk.

(⇒) If F,R |= q, then there is a homomorphism π from q to some Fk obtained by

means of a derivation S from F. As in the construction given before Definition 3.27,

we can choose some mapping πa
T

of the atoms of q, and build from this mapping

an APT qt of q. We can then build an APT-mapping (Π,π1, . . . ,πk) as follows:

Π = πT , and for each Bi of qt, πi is the restriction of π to the terms of Bi. This

APT-mapping is valid.

‰

This rather long and unnecessarily complicated way to prove the existence of a ho-

momorphism will now be put to good use when querying the full blocked tree, without

resorting to its potentially infinite development.
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3.3.2 Validation of an APT in a blocked tree

Let us assume that we have an APT of a query q that corresponds to a mapping

in a derivation tree (T,f). Thus, each bag Bq of the APT is mapped to a bag B of T.

Intuitively, we represent this mapping on the full blocked tree by mapping Bq to Br such

that Br = f(B) (i.e., B has been generated by copying Br). We can enumerate all such

mappings: the question is then to validate such a mapping, that is to check that it actually

corresponds to a valid APT-mapping in a tree generated by the full blocked tree.

Definition 3.29 [Valid ADT mapping to a blocked tree] Let qt be an APT of a query q

and Γ = (Π,π1, . . . ,πk) be an APT-mapping from qt to a blocked tree Tb (where Π maps

this time atom-term bags of qt to bags of the blocked tree). Then Γ is said valid if there

exists a tree generated from Tb (T,f) 2G(Tb) and a mapping Ξ from the atom-term bags

of qt to the bags of (T,f) (we say that ((T,f),Ξ is a proof that Γ is valid) such that:

– if B is the root of qt, then Ξ(B)=Π(B);

– if B 0 is a child of B in qt, then f(Ξ(B 0)) = Π(B 0) and Ξ(B 0) is a descendant of

Ξ(B);

– for every bag Bi 2 (T,f), let us note Ψi the bijective mapping of the terms of f(Bi)

to Bi (obtained by construction of (T,f)). Then for every atom-term bag Bj in qt

with Ξ(Bj) = Bi, we define π 0

j
=Ψi ±πj. Finally, the ADT mapping (Ξ,π 0

1
, . . . ,π 0

k
)

is valid in (T,f).

Example 41 (APT-Mapping to a blocked tree) We now present a valid APT-Mapping

of the APT represented Figure 3.8 to the derivation tree represented in Figure 3.7. We

define Π as follows:

Π(B0)=X0,

Π(B1)=X4,

Π(B2)=X5,

Π(B3)=X6,

Π(B4)=X3,

Π(B5)=X1.

Here, the only difference with the previous APT-mapping is the image of B4, which is

not X7 (which does not exist in the blocked tree), but X3. This is reflected in the definition

of the πi’s:
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π0(x)= c,

π1(y)= z1,

π1(z)= z2,

π3(t)= z3,

π4(u)=y2,

π5(v)=y1.

(Π,π1,π2,π3,π4,π5) is a valid APT-mapping of the APT from Figure 3.8 to the blocked

tree from Figure 3.6, as witnessed by the derivation tree of Figure 3.7, where the bag X7

has been generated by X3.

Property 29 [Soundness and completeness] Let F be a fact, R be a set of gbts rules,

and q be a query. Then F,R |= q if and only if there exists an APT t of q, and a valid

APT-mapping from qt to the full blocked tree of F and R.

Proof: We successively prove both directions of the equivalence.

(⇐) Let us suppose that there exists a valid APT-mapping from qt to the full blocked

tree Tb of F and R. From Definition 3.29, there exists a valid APT mapping from

qt to a (T,f) generated from Tb, i.e., by Definition 3.16 a valid APT-mapping from

qt to some derivation tree T having (T,f) as a prefix. We can conclude thanks to

Property 28.

(⇒) If F,R |= q, then there is a homomorphism π from q to some Fk obtained by

means of a derivation S from F. As in the construction given before definition 3.27,

we can chose some mapping πa
T

of the atoms of q, and build from this mapping

an APT qt of q. Now, in this particular π, the root of qt can be mapped to any

bag B of the derivation tree DT(S). Since B has an equivalent bag B 0 in the full

blocked tree Tb, then there exists another homomorphism π 0 from q to some F 0

k
obtained by means of a derivation S 0. Let us recompute an APT q 0

t (the same one

can be obtained). Then (see proof of Property 28), there is a valid APT mapping

Γ = (Π,π1, . . . ,πk) from q 0
t to DT(S 0). Since DT(S) is a prefix tree of some (T,f)

generated from Tb. Γ is thus a valid APT mapping from qt to (T,f).

Now let us define the mapping Ξ as follows: if B is the root of qt, then Ξ(B)=Π(B),

otherwise Ξ(B) = f(Π(B)). For each term t in the atom term bag Bi of qt such

that Ξ(Bi) = Bj, we define π 0

i
(t) = ψ−1

j
±πi. Let us consider the APT mapping

Γ 0 =(Ξ,π 0

1
, . . . ,π 0

k
) from qt to Tb. It is immediate to check that Γ 0 is valid.

‰

3.3.3 A bounded validation for APT-mappings

Though Property 29 brings us closer to our goal to obtain an algorithm for gbts de-

duction, there is still the need to guess the generated tree (T,f) used to validate an APT-

mapping (Definition 3.29). We will now show that such a generated tree can be built in a
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backtrack-free manner by an exploration of the APT of the query, then establish an upper

bound for each validation step ( i.e., if we have validated a prefix tree q 0
t of the APT qt of

q, and B 0 is a child of some bag B in q 0
t, how do we validate 0

t[ {B 0}?).

Property 30 Let qt be an APT of q, and Γ be a valid APT-mapping from qt to a blocked

tree Tb. Let q 0
t be a prefix tree of qt, and Γ 0 be the restriction of Γ to q 0

t. Then Γ 0 is a valid

APT-mapping from q 0
t to Tb.

Consider now any proof ((T 0,f 0),Ξ 0) that Γ 0 is valid (see Definition 3.29). Note that

this proof ((T 0,f 0),Ξ 0) is not necessarily a subproof of the existing proof ((T,f),Ξ) that Γ

is valid (i.e., (T 0,f 0) is not necessarily a prefix tree of (T,f) and Ξ 0 is not necessarily the

restriction of Ξ). However, there exists a proof ((T 00,f 00),Ξ 00) of Γ such that ((T 0,f 0),Ξ 0)

is a subproof of ((T 00,f 00),Ξ 00).

Proof: Let us consider a proof ((T 0,f 0),Ξ 0) of Γ 0. As shown in the proof of Property 29,

this proof corresponds to a homomorphism π 0 of q 0 to (T 0,f 0). Now consider any leaf bag

B 0 of q 0
t, that is the root of a tree in qt. Γ and Γ 0 can map B 0 to different bags in (T 0,f 0) and

(T,f). However, these bags are equivalent (according to Definition 3.12) to the same bag

in Tb. So anything that can be mapped under one of these bags can be mapped in the same

way under the other. In particular, the subtree rooted in B 0 can be mapped in the same

way under the bag of (T 0,f 0). This construction leads to a homomorphism π 00 from q to

some (T 00,f 00) that extends π 0. Using again the proof of Property 29, this homomorphism

can be used to build a proof ((T 00,f 00),Ξ 00) of Γ , that is a superproof of ((T 0,f 0),Ξ 0). ‰

This latter property provides us with a backtrack-free algorithm checking the validity

of an APT-mapping. Basically, Algorithm 2 performs a traversal of the APT qt, while

verifying whether Γ “correctly joins” each bag of qt with its already “correctly joined”

parent.

Algorithm 2: VALIDATEAPT

Data: A blocked tree Tb, an APT qt, and an APT-mapping Γ from qt to Tb.

Result: YES if Γ is valid, NO otherwise.

Explored :=;;

for i= 1 to |qt| do

B := some bag B of qt s.t. either parent(B,any) 2 Explored, or B root of qt;

if joins(Γ,B) then

Explored := Explored [{(B, joins(Γ,B))};

else

return NO;

return YES;

It remains now to explain the procedure joins that checks whether a valid APT-

mapping of a subtree q 0
t of qt can be extended to a child B of some bag of q 0

t. Let us

consider a proof ((T 0,f 0),Ξ 0) that Γ is a valid APT-mapping of q 0
t. According to Def. 3.29

and Prop. 29, it is sufficient to:
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– exhibit a bag Bn that can be obtained by a bag copy sequence B1, . . . ,Bn where B1=

Ξ 0(parent(B)), Bn is a bag equivalent to Γ(B), and for 1< i∑n, Bi is obtained by

a bag copy (see Definition 3.14) under Bi−1. Having built this bag copy sequence,

we have also built the bijection Ψ from the terms of Γ(B) to the terms of Bn.

– it remains now to check that for every term t appearing in an atom of B, t is a term

that belongs to a bag Bt in the branch from the root of qt to B, and Ξ 0(t)=Ψ(π(t))

(where π is the mapping defined in the APT-mapping from the terms of B to those

of Γ(B)). In that case, the call to joins returns Ψ ±π, ensuring that we are able to

evaluate the joins of the next bags.

Our last property (whose proof is immediate) allows us to bound the length of such

a bag copy sequence. Intuitively, it asserts that we do not need to generate copy bag

sequences containing two bags equivalent to the same bag of Tb and that have the same

frontier.

Property 31 Let us consider a bag copy sequence B1, . . . ,Bk, . . . ,Bq, . . . ,Bn that vali-

dates the join of some bag B. Let us suppose that f(Bk) = f(Bq) = B 0 (they have been

copied from the same node), and that the restriction of Ψ−1
k

±Ψq to the frontier terms of Bk

is the identity. Then B1, . . . ,Bk,Bq+1, . . . ,Bn is also a bag copy sequence that validates

the join of B.

Complexity of the algorithm

The overall algorithm deciding whether F,R |=q can now be sketched as follows:

– build the full blocked tree Tb of (F,R) (note that this is done independently of the

query)

– for every APT qt of q, for every APT-mapping Γ of qt to Tb, if VALIDATEAPT

returns YES, return YES (and return NO at the end otherwise).

Let us fix the notations used for the complexity analysis:

– b is an upper-bound of the treewidth of the canonical derivation tree. In the general

case, we can fix it to the number of initial terms, plus the number of constants

appearing in any rule head, plus the maximal size of a rule head

– q is the number of terms plus the number of atoms in the query

– f is the maximum size of a frontier of a rule

– aB is the maximum number of atoms in a rule body; ,tB (resp. tH) is the maximum

number of terms in a rule body (resp. rule head).

– |R| is the cardinality of the rule set

The first step is done linearly in the number of evolution and creation rules. If we

denote by p the number of abstract patterns, there are at most p2 evolution rules, and

p2 £bf creation rules. We thus need to upper-bound the number of abstract patterns.

There are at most |R|£2aB subsets of rule bodies, and btB mappings from terms of a rule

body to terms of a bag. An abstract pattern being a subset of the cartesian product of these

two sets, the number of abstract patterns is upper-bounded by:

2|R|£2
aB£btB .
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The first step is thus done in double exponential time, which drops to a single exponential

when the set of rules is fixed. Note that only this first step is needed in the first version

of the algorithm, where the query was considered as a rule, which yields the proof of

Theorem 5.

The second step can be done in Nq£NΓ £NV where:

– Nq is the number of APTs of a query q of size |q|, and Nq =O(2|q|) (the number

of partitions on the atoms and terms of q, times the number of trees that can be built

on each of these partitions);

– NΓ is the number of APT mappings from one APT (of size |q|) to the full blocked

tree. The size of the full blocked tree if O(bfp) and thus NΓ =O(p|q|bf|qL);

– NV is the cost of Algorithm. 2 that evaluates the validity of the APT. It performs at

most q joins, and each one generates at most O(bfp£ff) bags that are not frontier-

equivalent (see Property 31).

The second step of our algorithm thus operates in O(p|q|bf|q|+bfpff).

The querying part is thus polynomial in p (the number of patterns), and simply expo-

nential in q and in f. Since p is in the worst-case double exponential w.r.t. F and R, the

algorithm runs in 2EXPTIME. Last, given a (nondeterministically guessed) proof of Γ , we

can check in polynomial time (if R and F are fixed) that it is indeed a valid one, yielding:

Theorem 6 CQ entailment for gbts is NP-complete for query complexity.

Thereby, the lower bound comes from the well-known NP-complete query complexity

of plain (i.e., rule-free) CQ entailment.

3.3.4 Adaptation to relevant subclasses

We now show how to adapt the algorithm to the subclasses of gbts that have smaller

worst-case complexity. This is done by slightly modifying the construction of the full

blocked tree, allowing its size to be simply exponential or even polynomial with respect

to the relevant parameters. We consider two cases:

– (weakly) guarded rules, whose combined complexity in the bounded arity case

drops to EXPTIME,

– guarded, frontier-guarded and frontier-1 rules, whose data complexity drops down

to PTIME.

For weakly guarded rules, we change the definition of pattern. Indeed, with this kind

of rules, a rule application necessarily maps all the terms of a rule body to terms occurring

in a single bag. This holds since every initial term belongs to every bag, and every variable

of the rule body that could map to an existentially quantified variable is argument of

the guard of the body of the rule. Thus, by storing all the possible mappings of a rule

body atom (instead of all partial homomorphisms of a subset of a rule body), we are able

to construct any homomorphism from a rule body to the current fact. The equivalence

between patterns and the blocking procedure remains unchanged. Since there are at most

bw such homomorphisms for an atom, the number of abstract patterns is bounded by 2b
w

,
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which is a simple exponential since w is bounded. The algorithm thus runs in exponential

time for weakly guarded rules with bounded arity.

For frontier-guarded rules (and its subclasses), we slightly modify the construction of

the decomposition tree. Indeed, in the original construction, every term of the initial fact

is put in every bag of the decomposition tree. However, by putting only the constants

appearing in a rule head as well as every instantiation of terms of the head of the rule

creating the bag (that is, we do not put all initial terms in every bags), a correct tree

decomposition would also be built, and the size of the bags (except for the root) would

not be dependent of the initial fact any more. The number of patterns is then upper-

bounded by 1+ 2|R|£2
aB£t

tB
H . When R is fixed, this number is polynomial in the data.

Given that q is fixed, we get the PTIME upper-bound.

3.4 Summary, related and further work

In this chapter, we focused on sets of rules fulfilling the bounded treewidth property.

More specifically, we designed a class of rules, namely the greedy bounded treewidth

sets, that generalizes guarded-based rules – and as such lightweight description logics.

We proposed a worst-case optimal algorithm for that class, and adapted it for known sub-

classes. The presented algorithm is based on the construction of a finite representation

of the derivation tree of the (potentially infinite) canonical model. The blocking tech-

nique that we used is based on the notion of a pattern, which summarizes the relevant

information about mappings of (parts of) body rules.

Some results combine well with those presented here. First, it has been shown that

conjunctive query entailment under frontier-1 rules is 2EXPTIME-hard, which shows that

the presented algorithm is also worst-case optimal for that class of rules as well. Second,

we have not presented the complexity of the recognizability problem. It happens to be

exactly as hard as the query answering problem. Both membership [Baget, 2012] and

hardness [Rudolph, 2012] are shown by a reduction to (or from) query answering with

gbts rules.

A lot of questions are still open for further work. First, a detailed comparison with

two other algorithms would certainly be beneficial. The original algorithm for guarded

rules [Calì et al., 2009] is based on a notion of type, which has some similarities with the

notion of pattern – without being exactly the same object. Another source of comparison

is the family of combined approach algorithms [Lutz et al., 2009; Kontchakov et al.,

2010, 2011]. In these algorithms, a finite representation of the canonical model is also

built. However, this finite representation is an over-approximation of the canonical model,

and queries need to be rewritten (either ontology-independently or not) in order to regain

soundness of homomorphism as a querying mechanism. Studying more precisely the

similarities between both algorithms may lead to an algorithm which could deal with

more expressive classes than lightweight description logics while taking advantage of a

query rewriting approach.
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This is in particular relevant since the querying operation that we propose, though the-

oretically of adequate worst-case complexity, does not seem to be readily and efficiently

implementable. While we believe that the representation that we used could be of prac-

tical interest in some settings, a significant amount of work is needed to design a good

querying operation. A rewriting based approach is a natural candidate. To evaluate it, one

could be interested in fragments of the gbts class for which one could use a simpler equiv-

alence relation than the one introduced in this dissertation. As an example, one could wish

to use structural equivalence. Defining a class of rules for which structural equivalence

behaves well with respect to the construction of the full blocked tree is an interesting open

question.



CHAPTER

4
Materialization-avoiding approach

Preamble

In this chapter, we focus on query rewriting approaches to Ontology-Based Query

Answering (OBQA). We study rewritings into unions of conjunctive queries, and

stress one of their limits: the large size of rewritings when large class or relation

hierarchies are involved. To address that limit, we propose to use another kind

of queries to perform query rewriting, that we call semi-conjunctive queries, and

present an algorithm that computes such rewritings. Last, we experimentally evalu-

ate their quality, by comparing the evaluation time of such a query to the evaluation

time of an equivalent union of conjunctive queries.

Contents
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While materialization-based approaches have been proven efficient in some useful

cases, such techniques suffer from several drawbacks. Indeed, the very idea of materi-

alizing data has some undesirable consequences. First, one should have the right to add

new data in a database, which might not always be the case, depending on the context.

But even if such rights are granted, two major problems remain: the size of the data may

blow-up, and data updates are not easy to deal with.

Indeed, the size of the materialized data could be exponential with respect to the size

of the original fact. But even if it were of linear size, it still may be not acceptable

85
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when dealing with facts that have billions – or more – of atoms. The other concern

is about data updates. Let us assume that all the consequences derivable from a fact F

and a set of existential rules R have been materialized – a potentially costly operation.

However, for some unknown (but realistic) reason, one of the atoms of the database has

to be removed. How to recompute the materialization? To the best of our knowledge,

no algorithm has been proposed yet to update the materialization without recomputing it

from scratch. In scenarios where updates could occur on a regular basis, such an approach

is not acceptable.

Thus, a consequent research effort has been made towards querying techniques that do

not require materialization, aiming at overcoming the presented drawbacks. Most of the

results focus on rewriting a conjunctive query into a union of conjunctive queries (UCQ).

Starting from a query q and a set of rules R, one computes a union of conjunctive queries

Q, such that for any fact F, it holds that F,R |= q if and only if F |= Q. More generally,

we will consider rewritings that are not necessarily unions of conjunctive queries, but

formulas of a given class Φ. We recall the definition of a Φ-rewriting (Definition 2.17).

Definition 4.1 (Φ-rewriting soundness/completeness) Let Φ be a class of first-order

formulas, R be a set of rules, and q be a conjunctive query. ϕ 2Φ is a sound rewrit-

ing of q with respect to R if for any fact F, it holds that F |=ϕ implies that F,R |=q. ϕ is

a complete rewriting of q with respect to R if for any fact F, the converse holds, that is:

F,R |=q implies that F |=ϕ.

A recurrent aim of the literature about UCQ-rewritings has been to produce sound and

complete rewritings that are as small as possible.

In the remaining of this chapter, we first characterize optimal UCQ-rewritings, that is,

UCQ-rewritings of minimal size among sound and complete UCQ-rewritings, where the

size of a UCQ is the number of conjunctive queries in it. We point out that the piece-based

rewriting algorithm (Algorithm 1, Chapter 2) generates such an optimal UCQ-rewriting.

After advocating that UCQs are not well suited to represent sound and complete rewrit-

ings, especially when large class or role hierarchies are present, we introduce (unions of)

semi-conjunctive queries ((U)SCQ), which are a more general form of positive existential

formulas. We propose an algorithm for computing sound and complete USCQ-rewritings.

We then provide some experiments which aim at showing that USCQ-rewritings are both

more efficiently generable and more efficiently evaluable than equivalent UCQ-rewritings.

We recall here, to ease the reading of this dissertation, the running example that has

been used in Chapter 2 in order to illustrate the backward chaining algorithm introduced

there.

Example 42 Let Re= {R1,R2,R3,R4,R5}, defined as follows:

– R1 :p(x)∧h(x)→ s(x,y)

– R2 : f(x)→ s(x,y)

– R3 : f1(x)→ s1(x,y)

– R4 : t(x,y)→ t(y,x)

– R5 : s1(x,y)→ s(x,y)
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Let qe be the following Boolean query:

qe= t(x1,x2)∧s(x1,x3)∧s(x2,x3),

We also recall some basic notations. A conjunctive query, as well as an existentially

closed disjunction of atoms, will be considered as a set of atoms. A union of conjunctive

queries will be considered as a set of conjunctive queries. In spite of the potential ambigu-

ity – should a set be interpreted as a conjunction or as a disjunction of its elements? – this

is a convenient notation. The context will make clear whether a set is a disjunction or a

conjunction. Given a set of atoms q and q 0 µq, we call the separator of q 0 (with respect to

q) the set of variables that occur both in q 0 and q\q 0: sepq(q
0)= vars(q 0)\ vars(q\q 0).

More generally, given a set of sets of atoms s= {d1, . . . ,dn}, and s 0 µ s, the separator of

s 0 with respect to s, denoted by seps(s
0), is the set of variables that appear in both s 0 and

s\s 0.

4.1 UCQ-rewritings

The most common approach to query rewriting is to rewrite a conjunctive query into

a union of conjunctive queries. This approach has been initiated in the paper defining the

DL-Lite family [Calvanese et al., 2007], whose design rationale is to allow such rewrit-

ings. Since then, a number of prototypes have been implemented, most of them focusing

on lightweight description logics. More details are given in Section 4.4. Over a few years,

there has been a dramatic reduction of the size of the computed UCQ-rewritings: in some

cases, for the same query and ontology, the size of the computed UCQ-rewriting dropped

from a hundred of thousands conjunctive queries to a few hundreds. This raises an inter-

esting and very natural question: given a query q and a set of rules R, can we characterize

the smallest union of conjunctive queries that is a sound and complete rewriting of q with

respect to R?

4.1.1 Minimality of a sound and complete UCQ-rewriting

Let ϕ1 and ϕ2 be two first-order formulas. If ϕ1 is logically entailed by ϕ2, we note

ϕ2 |= ϕ1 or ϕ1 ∏ ϕ2. In the case of conjunctive queries, this relation can be verified

thanks to a homomorphism check. As already noted in Chapter 2 for UCQ-rewritings, if

q is a conjunctive query and Q is a Φ-rewriting of q that contains ϕ1 and ϕ2 such that

ϕ1 ∏ ϕ2, then Q\ {ϕ2} is also a sound and complete rewriting of q. This observation

motivated the definition of cover of a set of first-order queries, that we recall here.

Definition 4.2 (Cover) Let F be a set of first-order queries. A cover of F is a set Fc µF

such that:

1. for any f 2F, there is f 0 2Fc such that f 0 ∏ f,

2. elements of Fc are pairwise incomparable with respect to ∏.
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Example 43 Let Q= {q1= r(x,y)∧t(y,z),q2= r(x,y)∧t(y,y),q3= r(x,y)∧t(y,z)∧

t(u,z)}. A cover of Q is {q1}. Indeed, q1 ∏q2 and q1 ∏q3, because for i 2 {2,3}, π1→i is

a homomorphism from q1 to qi where:

– π1→2(x)= x,π1→2(y)=π1→2(z)=y, and

– π1→3(x)= x,π1→3(y)=y,π1→3(z)= z.

The following property is immediate:

Property 32 Let Q be a sound and complete rewriting of q. A cover of Q is a sound

and complete rewriting of q. Moreover, its cardinality is smaller than or equal to the

cardinality of Q.

More interestingly, in the special case of conjunctive queries, any cover of any

sound and complete UCQ-rewriting is of minimal size among sound and complete UCQ-

rewritings. This is the topic of Theorem 7.

Theorem 7 Let R be a set of existential rules, q a conjunctive query that admits a finite

sound and complete UCQ-rewriting Q. Any cover of Q is of minimal cardinality among

sound and complete rewriting sets of q with respect to R.

Proof: Let Q1 and Q2 be two arbitrary finite sound and complete rewriting sets of q with

respect to R. Let Qc
1

(resp. Qc
2
) be a cover of Q1 (resp. of Q2). Qc

1
and Qc

2
are also

sound and complete, and are of smaller cardinality. We show that they have the same

cardinality. Let q1 2 Qc
1
. There exists q2 2 Qc

2
such that q1 ∑ q2. If not, q would be

entailed by (F= q1, R), since Qc
1

is a sound rewriting of q (and q1 maps to itself), but

not element of Qc
2

would map to F. This would show that Qc
2

is not complete, which is

absurd. Similarly, there exists q 0

1
2 Qc

1
such that q2 ∑ q 0

1
. Thus, q1 ∑ q 0

1
, which implies

that q 0

1
= q1, since no two distinct elements of Qc

1
are comparable for ∏. Thus, for all

q1 2Q
c
1
, there exists q2 2Q

c
2

such that q1 ∑q2 and q2 ∑q1. Such a q2 is unique: indeed,

two such elements would be comparable for ∑. The function associating q1 with q2 is

thus a bijection from Qc
1

to Qc
2
, which shows that these two sets have the same cardinality.

‰

If we additionally restrict the queries to be isomorphic to their core, the proof of

Theorem 7 yields that there exists a unique optimal sound and complete UCQ-rewriting

for any query and any finite unification set.

4.1.2 Limitation of UCQ-rewritings

Since Algorithm 1 of Chapter 2 outputs a sound and complete rewriting that is its

own cover, we can compute an optimal (i.e., with the smallest number of conjunctive

queries) sound and complete UCQ-rewriting for any query q and any finite unification set.

However, this does not state anything about the practical feasibility of computing a UCQ-

rewriting. Indeed, the following example shows that given a realistic ontology (composed

of a simple binary relation hierarchy) and a moderately small query (two atoms), the size

of the optimal UCQ-rewriting is huge.
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Example 44 Let R= {Ri}1∑i∑n, where Ri : ri(x,y)→ ri−1(x,y). Let q be the following

query:

r0(x1,x2)∧r0(x2,x3).

q has (n+1)2 rewritings, which are {ri(x1,x2)∧rj(x2,x3)}0∑i,j∑n.

Please note that, as in Chapter 2, we freely renamed variables of the rewritings, which

is not a problem since all these variables are mute variables. We will allow ourselves such

renaming throughout this chapter.

Example 44 can be generalized by taking a query of k atoms and classes/roles having

n subclasses/subroles. This would yield an optimal UCQ-rewriting of (n+1)k conjunc-

tive queries. While RDMS are efficient at dealing with small UCQs, this raises the ques-

tion whether UCQs are a good choice as a target language for rewritings of conjunctive

queries, when ontologies contain large role and class hierarchies.

4.2 USCQ-rewritings: definition and computation

Theorem 7 ensures that obtaining large UCQ-rewritings is not a matter of a wrong

algorithm, but a consequence of using UCQs to represent rewritings. At least three ap-

proaches can be considered:

– computing UCQs that are no longer complete, that is, that may not give all the

correct answers when evaluated on some databases. Depending on the application,

completeness might not be an absolute requirement;

– exploiting additional properties of the data, as made in [Rodriguez-Muro and Cal-

vanese, 2012]. It is advocated that queries are not evaluated against arbitrary

databases, but against databases that respect a given schema. These databases are

thus already complete with respect to some predicates, and all rewritings may not

be needed;

– using a different kind of queries to represent sound and complete rewritings. This is

the approach that we adopt in the remaining of this chapter. Such an approach has

already been undertaken, in particular by using Datalog queries instead of union

of conjunctive queries. However, our contribution extends the applicability of such

techniques.

Example 45 shows what a (restricted) use of disjunction can bring with respect to a

union of conjunctive queries.

Example 45 A formula equivalent to the UCQ-rewriting of Example 44 would be:

(∨n
i=0ri(x1,x2))∧ (∨n

j=0rj(x2,x3)),

Although we make use of disjunction, this use is strongly limited. We call semi-

conjunctive queries the formulas that follow these limitations.
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Definition 4.3 (Semi-conjunctive query) A semi-conjunctive query (SCQ) is a closed

logical formula of the following form:

9x D1 ∧D2 ∧ . . .∧Dn

where Di is a disjunction of atoms (for any i), and x is the set of variables that appear in

the formula. We also note {D1, . . . ,Dn}.

In Examples 44 and 45, the difference in representation’s compactness is striking, in

particular when generalizing them with k atoms. The research questions that we will

tackle in the remaining of this chapter are the following:

1. given a conjunctive query q and a set of existential rules R, can we efficiently

compute a sound and complete USCQ-rewriting of q with respect to R?

2. given a USCQ, can we efficiently evaluate this query against a database?

Please note that the second question is about the evaluation efficiency, and not the size

of a query. Indeed, to the best of our knowledge, no size function on first-order formulas

is known to be related with the practical evaluation efficiency of these formulas against a

database. Finding such a measurement would be very interesting, but is out of the scope

of this thesis.

Of course, any SCQ is equivalent to a UCQ – in particular, this is the case for the

union of its selections.

Definition 4.4 (Selection) Let s be an SCQ. A selection of s is a CQ q = ∧d2s i(d),

where i is a function that maps each d 2 s to some i(d) 2 d (where d is considered as a

set of atoms).

We explicit in Example 46 the selections of the SCQs involved in Example 45.

Example 46 (Selection) Let s = (r0(x,y)∨ r1(x,y))∧ (r0(y,z)∨ r1(y,z)). s has four

selections, which are:

– r0(x,y)∧r0(y,z),

– r0(x,y)∧r1(y,z),

– r1(x,y)∧r0(y,z),

– r1(x,y)∧r1(y,z).

Property 33 Any SCQ s is equivalent to the disjunction of its selections.

We introduce some convenient definitions about semi-conjunctive queries. Definition

4.5 defines shared variables for a SCQ.

Definition 4.5 (Shared variable) Let s be an SCQ. A shared variable of s is a variable

that is argument of two atoms a and b such that a and b belongs to two different disjunc-

tions of s.
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Example 47 Let s= (r0(x,y)∨ r1(x,y))∧ (r0(y,z)∨ r1(y,z)) be the SCQ of Example

46. y is a shared variable of s, while x and z are not.

We also need a technical restriction on SCQs: Definition 4.6 introduces well-formed

SCQs.

Definition 4.6 (Well-formed SCQ) An SCQ s is well-formed if for any shared variable

x of s and any disjunction d of s, either x does not appear in d, or x is an argument of

any atom of d.

Example 48 presents two SCQs: one is well-formed, and the other is not.

Example 48 (r0(x,y)∨ r1(x,y))∧ (r0(y,z)∨ r1(y,z)) is well-formed. Indeed, y is the

only shared variable and appears in every atom. On the other hand, (p(x)∨ r1(x,y))∧

(r0(y,z)∨ r1(y,z)) is not well-formed: y is shared, appears in the disjunction (p(x)∨

r1(x,y)), but not in the atom p(x).

In the remaining of this section, we will only consider well-formed SCQs, even though

we will never refer again to that condition, since the algorithm we propose generates at

each step only well-formed SCQs.

4.2.1 Piece-unifiers for semi-conjunctive queries

In Chapter 2, we presented a unification operation between a conjunctive query and

an existential rule. We now focus on generalizing this notion to a unification between a

semi-conjunctive query and a rule. We overload the term piece-unifier, since it should not

cause any confusion. Moreover, we will simply call them unifier in the following.

Definition 4.7 (Piece-unifier) Let s be an SCQ and R be a rule. A piece-unifier of s with

R is a triple µ=(s 0,q 0,u) with s 0 µ s, s 0 6=;, q 0 a selection of s 0, and u a substitution of

fr(R)[ vars(s 0) by terms( head(R))[C such that:

1. for all x 2 fr(R), u(x) 2 fr(R)[C (for technical convenience, we allow u(x)= x);

2. for all x 2 seps(s
0), u(x) 2 fr(R)[C;

3. u(q 0)µu( head(R)).

We recall that seps(s
0)= vars(s 0)\ vars(s\s 0).

We illustrate this definition with Example 49.

Example 49 Let s = t(x1,x2)∧ (s1(x1,x3)∨ s(x1,x3))∧ (s1(x2,x3)∨ s(x2,x3)). µ =

(s 0,q 0,u) is a unifier of s with R3= f1(x)→ s1(x,y) where:

– s 0 =(s1(x1,x3)∨s(x1,x3))∧ (s1(x2,x3)∨s(x2,x3))

– q 0 = s1(x1,x3)∧s1(x2,x3)

– u(x1)=u(x2)=u(x)= x,u(x3)=u(y)=y.
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Local and non-local unifiers

The major novelty of our approach is the distinction between local and non-local

unifiers. Local unifiers unify a query with an atomic-body rule; furthermore, they unify

only one disjunction at a time (hence, only one atom of the query) and do not merge any

pair of terms of the query or specialize any variable into a constant.

Definition 4.8 (Local unifier) Let s be an SCQ, R be an atomic-body rule and µ =

(s 0,q 0,u) be a unifier of s with R. µ is local if q 0 is restricted to a single atom and if

the restriction of u to terms(q 0) is injective and does not map a variable to a constant.

Example 50 illustrates the notion of a local unifier.

Example 50 (Local unifier) The unifier in Example 49 is not local, since two disjunc-

tions are unified at once.

Let µL be the unifier of qe = t(x1,x2)∧ s(x1,x3)∧ s(x2,x3) with R4 = t(x,y) →

t(y,x) defined by: µL = (t(x1,x2),t(x1,x2),(u(x1) = y,u(x2) = x)). µL is a local uni-

fier.

The importance of local unifiers relies on the associated rewriting operation. We per-

form two different kinds of rewritings: if a unifier is not local, the rewriting operation is a

natural recast in the framework of SCQs of the usual operation of piece-based rewriting.

However, when a unifier is local, the associated rewriting operation introduces disjunc-

tion. We now present local rewritings, but we first need the notion of X-entailment.

Definition 4.9 (X-entailment) Let D be a set of atoms, and X a set of variables. Let a

be an atom. a is X-entailed by D if there is a homomorphism π from a to D such that if

x 2 var(a)\X, then π(x)= x.

X-entailment is illustrated by Example 51.

Example 51 Let D= {r(x,y),p(x,u)}. p(x,v) is {x} entailed by D, but r(y,x) is not.

We can now focus on the fundamental definition of a local rewriting.

Definition 4.10 (Local rewriting) Let s=
Vn
i=1

di be an SCQ, R be an atomic-body rule

and µ = (s 0 = {d1},q
0,u) be a local piece-unifier of R with s. The local rewriting of s

with respect to R and µ (denoted by γL(s,R,µ)) is d 0

1
∧

Vn
i=2

u(di), where d 0

1
=u(d1)∨

u( body(R)), if u( body(R)) is not sepd 0

1
∧

Vn
i=2

u(di)
({u(d1)})-entailed by u(d1), and s

otherwise. We define the natural bijection b between disjunctions of s and disjunctions of

s 0 by b(d1)=d 0

1
and b(d)=u(d) otherwise.

In Definition 4.10, the condition about sepd 0

1
∧

Vn
i=2

u(di)
({u(d1)})-entailment is here

to ensure that “equivalent” atoms are not added, which would prevent the rewriting pro-

cess to terminate.

We illustrate the notion of local rewriting in Example 52. The key point is the appear-

ance of disjunction.
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Example 52 (Local rewriting) Let µL be the unifier of qe with R4 as defined in Example

50. The rewriting of qe with respect to µL is q 0
e defined by:

(t(x1,x2)∨t(x2,x1))∧s(x1,x3)∧s(x2,x3)

We now present a technical property that will be useful in subsequent proofs: the set

of shared variables remains unchanged after applying a local unifier.

Property 34 Let s be an SCQ, R be an existential rule, and µ = (s 0,q 0,u) be a local

unifier of s with R. For any d 2 s, it holds that:

u( seps(d)) = seps 0(b(d)).

Proof: Let x 2 seps(d). It implies that x 2 vars(d) and thus there exists d 0 6=d such that

x 2 vars(d 0). u(x) belongs to both b(d) and b(d 0), and thus belongs to seps 0(d). For the

converse inclusion, let us first notice that since rules and queries do not share any variable,

any variable of s 0 that is not the image by u of a variable of s appears in the newly added

atom, and thus cannot be shared. Let y= u(x) 2 seps 0(b(d)). There exists d 0 2 s such

that y appears also in b(d 0). But then x appears both in d and d 0, and belongs to seps(d).

‰

We finally present the definition of non-local rewriting. As for local unifiers, a subset

s 0 of the disjunction is chosen, as well as a selection q 0 of s 0. However, in the case of non-

local rewritings, these disjunctions are removed and a set of new disjunctions are added:

for each atom of the body of the rule R, a disjunction restricted to a single atom is added.

Definition 4.11 (Non-local rewriting) Let s=
Vn
i=1

di be an SCQ, R be a rule, and µ=

(s 0 = {d1, . . . ,dk},q
0,u) be a non-local unifier of R with s. The non-local rewriting of s

with respect to R and µ (denoted by γNL(s,R,µ)) is u( body(R))∧
Vn
i=k+1

u(di).

Example 53 is an example of non-local rewriting.

Example 53 (Non-local rewriting) Let µNL be the unifier of qNL = t(x1,x2) ∧

(s(x1,x3)∨ s(x1,x3))∧ (s(x2,x3)∨ s1(x2,x3)) with R2 = f(x) → s(x,y) defined by:

µNL=((s(x1,x3)∨s1(x1,x3))∧(s(x2,x3)∨s1(x2,x3)),s(x1,x3)∧s(x2,x3),uNL(x1)=

uNL(x2) = x,uNL(x3) =y). µNL is not a local unifier, since it unifies two disjunctions at

once. The rewriting of qNL with respect to µNL is:

f(x)∧t(x,x).

4.2.2 Gathering tools: COMPACT

Both local and non-local rewriting steps can be performed by using any kind of exis-

tential rules. However, to compute a first-order rewriting, this rewriting has to exist. We

thus restrict the input of the algorithm we present in this section to arbitrary conjunctive
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queries and fus rule sets 1. COMPACT is thus an algorithm that takes as input a conjunctive

query q and a fus R and outputs a sound and complete USCQ-rewriting of q with respect

to R. We first present a sub-procedure of COMPACT, which, given an SCQ s and a fus R,

saturates s with respect to local rewritings using rules of R. We then present COMPACT,

and apply it on the running example.

LU-SATURATION

LU-SATURATION is a sub-procedure of COMPACT that takes a set of rules and an

SCQ as input, and outputs an SCQ on which no new local rewriting can be performed.

Dealing with local rewritings in a special manner is not necessary for the soundness and

completeness of Algorithm 4, but it is conceptually easier and is the first step towards an

important optimization presented in the next section. Algorithm 3 presents this procedure:

it only applies local rewritings as long as it is possible.

Algorithm 3: LU-SATURATION

Data: An SCQ s, a set of existential rules R

Result: s saturated with respect to local unifications

so :=null;

sn := s;

while so 6= sn do
so := sn;

for every rule R 2R do

for every local unifier µ of R with sn do
sn :=γL(sn,R,µ);

return sn

Algorithm 3 terminates because of the sep(d1)-entailment condition in Definition

4.10. Indeed, one can add at most pww atoms to a disjunction d1 before any further atom

to be sep(d1)-entailed by d1, where p is the number of predicates and w the maximum

arity of a predicate. For the sake of clarity, we apply step by step Algorithm 3 on the

running example.

Example 54 (Step by step application) We apply Algorithm 3 on qe = t(x1,x2)∧

s(x1,x3)∧ s(x2,x3) and Re. R1 = p(x)∧h(x) → s(x,y) has two atoms in its body,

and thus no local unification is possible. Any unification of qe with R2 = f(x)→ s(x,y)

maps x3 to an existentially quantified variable, thus should unify two atoms at once, and

thus no local unification of qe with R2 exists. R3 = f1(x)→ s1(x,y) does not generate

atoms of relevant predicate. There is a local unifier of R4 = t(x,y)→ t(y,x) with qe,

which unifies t(x1,x2). Applying this unification modifies sn to:

(t(x1,x2)∨t(x2,x1))∧s(x1,x3)∧s(x2,x3).

1. Actually, COMPACT outputs a sound and complete rewriting as soon as it exists, even if R is not fus.
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Two further local unifications of sn with R5= s1(x,y)→ s(x,y) exist (note that x and

y are both frontier variables): one that unifies s(x1,x3) and one that unifies s(x2,x3).

Applying the first unification results in setting sn to:

(t(x1,x2)∨t(x2,x1))∧ (s(x1,x3)∨s1(x1,x3))∧s(x2,x3),

and applying the second one updates sn to:

(t(x1,x2)∨t(x2,x1))∧ (s(x1,x3)∨s1(x1,x3))∧ (s(x2,x3)∨s1(x2,x3)).

sn having evolved, Algorithm 3 checks if any new unification is possible, which is not

the case, for similar reasons as those explained above. The output of Algorithm 3 on qe

and Re is thus:

(t(x1,x2)∨t(x2,x1))∧ (s(x1,x3)∨s1(x1,x3))∧ (s(x2,x3)∨s1(x2,x3)).

COMPACT

We now present Algorithm 4. Starting from an initial conjunctive query s, it performs

a breadth-first exploration of the SCQ-rewritings of s. For each of these rewritings, it first

performs an LU-saturation, and then generates new queries by rewriting using non-local

unifiers. We could consider only non-local prime unifiers, as defined and explained in the

next subsection. A cover of the set of SCQ-rewritings is computed. The priority is given

to already explored queries: during the computation of the cover, if two queries s1 and s2
are equivalent, and s1 has been explored (necessarily s2 has not been explored yet), we

keep s1 in the cover. Remaining non-explored queries are explored.

We illustrate COMPACT by presenting a step by step application of this algorithm on

the running example.

Example 55 (Step by step application of Algorithm 4) We first LU-saturate qe, modi-

fying qe to:

qe=(t(x1,x2)∨t(x2,x1))∧ (s(x1,x3)∨s1(x1,x3))∧ (s(x2,x3)∨s1(x2,x3)),

as explained in Example 54. We now create new SCQs, resulting from non-local

unifications of qe with some rule of Re. qe is unifiable with R1 =h(x)∧q(x)→ s(x,y),

by considering the selection s(x1,x3)∧s(x2,x3). The resulting SCQ is q1
e=h(x)∧q(x)∧

t(x,x). By considering the same selection, qe is unifiable with R2 = p(x) → s(x,y),

which results in q2
e = p(x)∧ t(x,x). qe is unifiable with R3 = p1(x) → s1(x,y) (with

corresponding selection s1(x1,x3)∧s1(x2,x3)), resulting in q3
e=p1(x)∧t(x,x). Last, qe

is unifiable with R5 with selection s(x1,x3)∧s(x2,x3), resulting in q4
e= s1(x,y)∧t(x,x).

Algorithm 4 does not generate any further query at this step. q4
e ∑qe, and is thus dis-

carded. All other SCQs are pairwise incomparable, and no further unification is possible:

Algorithm 4 stops and outputs {qe,q
1
e,q

2
e,q

3
e}.
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Algorithm 4: COMPACT

Data: A CQ s (thus a SCQ), a fus R

Result: A sound and complete USCQ-rewriting of s w.r.t. R

SF := {s};\\ the set of final queries

SE := {s};\\ the set of queries to be explored

while SE 6=; do
St :=;;\\ the set of queries generated during the current step

for every s 0 2 SE do
s 0 := LU-SATURATION(s 0);

for every rule R 2R do

for every non-local (prime) unifier µ of R with s 0 do
St := St[ {γNL(s

0,R,µ)}

St := cover(SF[St);

SE := St \SF;

SF := St;

return SF

Theorem 8 Algorithm 4 computes a sound and complete rewriting for any query q and

any fus.

The proof of Theorem 8 uses following Lemmas 2 and 3. We first give these lemmas

and corresponding proofs, then present the proof of Theorem 8. Lemma 2 is a tool to

prove that the output of COMPACT is sound. It states that any selection of a rewriting of

an SCQ s is (less general than) a rewriting (with the usual piece-based rewriting operator)

of a selection of s. It will thus allow to use the soundness of usual piece-based rewriting.

Lemma 2 Let s be an SCQ, R be an existential rule, and µ be a unifier of s with R. Then

for any selection q 0 of a rewriting γL(s,R,µ) (or γNL(s,R,µ) if µ is not local), there

exists a selection q of s such that q 0is a rewriting of q.

Proof: Let µ = (sµ,qµ,u) be a unifier of s with R, and q 0 be a selection of β(s,R,µ).

q 0 =q 0

1
∧q 0

2
, where q 0

1
is a selection of u(s\sµ), and q 0

2
comes from novel disjunctions

(or disjunctions to which an atom has been added if µ is local). Let q be defined as the

conjunction of the inverse image of q 0

1
by u, denoted by q1 and qµ. q is a selection of s

(q1 can be selected in s\sµ, and qµ in sµ). Moreover, µcq=(qµ,u) is a unifier of q with

R, since qµ is non-empty, the piece conditions are fulfilled by assumption on µ being a

unifier, as well as the unifying assumption (same atoms, same substitution). The rewriting

of q with respect to µcq is equal (up to variable renaming) to q 0. ‰

Lemma 3 is a tool to prove that the output of COMPACT is complete.

Lemma 3 Let s be an SCQ, q be a selection of s, and R be a rule. For any rewriting q 0

of q with R, there exists a rewriting s 0 of s with R and a selection q 00 of s 0 such that q 0 is

equivalent to q 00.
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Proof: q 0 is a rewriting of q, thus there exists a rule R and unifier µ= (qu,u) of q with

R such that q 0 = β(q,R,µ). Let k be the number of atoms of qu. q is a selection of

s, and without loss of generality, we can set s =
Vn
i=1

di, with qu being a selection of

s 0 =
Vk
i=1

di. Let µSCQ=(s 0,qu,u). µSCQ is a unifier of s with R. Indeed:

– s 0 is a non-empty subset of s

– qu is a selection of s 0 (by construction of s 0)

– u being unchanged, Conditions 1 and 3 of Definition 4.7 are fulfilled

– the separator of s 0 w.r.t s is equal to the separator of qu with respect to q, thus

Condition 2 is also fulfilled.

If µSCQ is local, it implies that q is equal to q 0 except for one atom. This atom is the

image of the body of the rule, and thus q 0 is a selection of γL(s,R,µSCQ) by selecting the

newly added atom (the instantiated body of the rule) and in other disjunctions, the same

atoms as q. If µSCQ is not local, essentially the same selection applies: we select every

newly created atom, and the image of the atoms of q in the disjunction for which no atom

have been unified. The obtained query is homomorphically equivalent to q 0. ‰

We can now prove the correctness of Algorithm 4.

Proof of Theorem 8: the soundness of Algorithm 4 relies on the fact that every SCQ that

is generated by Algorithm 4 is a sound rewriting of the input s. To show this, we notice

that an SCQ s 0 is a sound rewriting of a conjunctive query q if and only if every selection

of s 0 is a sound rewriting of q. q is a sound rewriting of q, and Lemma 2 shows that a

piece-based rewriting of a sound rewriting of q is a sound rewriting of q.

As for the completeness of Algorithm 4, we prove that after going i times through

the while loop, any R-rewriting obtained after less than i rewriting step (of depth less

than i) is less general than an element of SF[SE, i.e., covered by SF[SE. Initially, one

should check that the only R-rewriting of depth 0 of s, which is s, is covered by {s}. Let

us assume that after going i times through the while loop, all R-rewritings of depth i are

covered by SF[SE. Let qi+1 be an R-rewriting of s of depth i+1. There exists qi of

depth i, Ri and µi a unifier of qi with Ri such that qi+1 = β(qi,Ri,µi). By induction

assumption, qi is covered by Si
F
[Si

E
, and thus there are si 2 Si

F
[Si

E
and q§

i
a selection

of si such that q§

i
∏ qi. If q§

i
∏ qi+1, we define q§

i+1
= q§

i
. Otherwise, there exists a

rewriting q§

i+1
of q§

i
such that q§

i+1
∏ qi+1. By Lemma 3, there exists a rewriting of si,

that we denote by si+1, such that si+1 contains a selection that is more general than q§

i+1
.

Since any rewriting of Si
F
[Si

E
is covered by Si+1

F
[Si+1

E
, the output of Algorithm 4 is

complete. ‰

We already discussed that the number of SCQs in a USCQ may not be a good parame-

ter for evaluating the quality of a USCQ-rewriting. It is still worth noticing that COMPACT

outputs USCQs which are not necessarily optimal with respect to this size notion, as can

be seen with the running example.

Example 56 Let S be a set of SCQs containing exactly the following queries:

– (t(x1,x2)∨t(x2,x1))∧ (s(x1,x3)∨s1(x1,x3))∧ (s(x2,x3)∨s1(x2,x3)),

– t(x,x)∧h(x)∧q(x),
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– t(x,x)∧ (p(x)∨p1(x)).

Let us recall that the output of COMPACT in Example 55 contains the following

queries:

– qe=(t(x1,x2)∨t(x2,x1))∧ (s(x1,x3)∨s1(x1,x3))∧ (s(x2,x3)∨s1(x2,x3))

– q1
e= t(x,x)∧h(x)∧q(x)

– q2
e= t(x,x)∧p(x)

– q3
e= t(x,x)∧p1(x)

S is of strictly smaller cardinality than the output of COMPACT, but is an equivalent

formula. Indeed, the first two queries of S belongs to the output of COMPACT, and the

third one is equivalent to the disjunction of q2
e and q3

e. This proves that COMPACT is not

optimal in terms of the number of SCQs in the output USCQ.

Can we design an optimal algorithm for computing USCQ-rewritings? This is a natu-

ral question, but we leave if for further work, due to the following observations:

– one of the strengths of COMPACT is its simplicity - the only lead found so far to

aim at optimality makes it significantly more complex;

– meanwhile, the number of SCQs output by COMPACT on benchmarks is small - see

the evaluation section;

– small size is not a guarantee of efficient evaluation;

– characterizing the optimal sound and complete USCQ-rewriting is not as easy as in

the UCQ case.

Indeed, we showed in Theorem 7 that to check whether a sound and complete UCQ-

rewriting is minimal, it is sufficient to check if two elements are comparable for ∏. This

property is not true anymore with USCQ-rewritings: Example 56 presents two sound and

complete USCQ-rewritings that both fulfill the condition of not having two comparable

elements, while not being of the same cardinality.

An optimization: prime unifiers

The breadth-first backward chaining presented in the previous section is sound and

complete, but part of the performed rewritings are useless. This, of course, is undesirable,

and we suggest a simple optimization that removes some of these useless computations.

This optimization is based on the following observation.

Example 57 (A useless rewriting) In Example 55, q4
e = t(x,x)∧ s1(x,y) is obtained

from qe = t(x1,x2)∧s(x1,x3)∧s(x2,x3) by a rewriting with respect to R5 = s1(x,y)→

s(x,y) and µNL = (s(x1,x3)∧ s(x2,x3),s(x1,x3)∧ s(x2,x3),uNL(x1) = uNL(x2) =

x,uNL(x3) = y). Let us now “split” µNL into two local unifiers µ1
L

and µ2
L

defined as

follows:

– µ1
L
=(s(x1,x3),s(x1,x3),u

1
L
(x1)= x,u1

L
(x3)=y)

– µ2
L
=(s(x2,x3),s(x2,x3),u

2
L
(x2)= x,u2

L
(x3)=y)

The rewriting with respect to µNL is less general than the rewriting t(x1,x2)∧

(s(x1,x3)∨s1(x1,x3))∧ (s(x2,x3)∨s1(x2,x3)) obtained after rewriting with respect to

µ1
L

then µ2
L
.
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This observation motivates the definition of prime unifier, which is intuitively a unifier

for which no part could be locally done.

Definition 4.12 (Prime unifier) Let s be an SCQ, R be a rule and µ = (s 0,q 0,u) be a

non-local unifier of s with R. µ is prime if for any d 2 s 0, and for any uL, substitution of

fr(R)[ vars(d) by terms( head(R))[C, µ = ({d},qd,uL), where qd is the atom of q 0

that has been selected from d, is not a local unifier of s with R.

Example 58 µNL in Example 57 is an example of non-prime unifier. A prime unifier

that unifies more than one disjunction is the following unifier µp of qe = t(x1,x2)∧

s(x1,x3)∧ s(x2,x3) with R2 = f(x) → s(x,y): µp = (s(x1,x3)∧ s(x2,x3),s(x1,x3)∧

s(x2,x3),(u(x1) = u(x2) = x,u(x3) = y)). Indeed, none of both unified atoms could

be locally unified, since x3 should be unified with y, which is an existentially quantified

variable - and thus both atoms should be unified together.

Following Property 35 ensures that we can consider only prime unifiers – since any

query obtained by using a non-prime unifier is less general than a query obtained using

local rewritings and a single prime rewriting.

Property 35 Let µ = (s 0 [ {d},q 0 [ {a},u) be a unifier of s with R such that µL =

(d,a, mgu(a, head(R))) is a local unifier of s with R. Let u 0 be the restriction of u

to terms(q 0)[ fr(R). Then µ 0 =(s 0,q 0,u 0) is a unifier of sL=β(s,R,µL) with R and:

β(sL,R,µ
0)∏β(s,R,µ).

Proof: Let us first prove that µ 0 is a unifier of sL with R. We check the three conditions

expressed in the definition of piece-unifier. Since u(s 0[ {d})µu( head(R)), it also holds

for u(s 0). An element x of sep(s 0) in sL was either a separator of s 0 [ {d} in s, or it

is a variable shared by s 0 and d. In the first case, since µ is a unifier, it implies that

u(x) 2 fr(R)[C. In the second case, since µL is a unifier, it means that x is unified with

an element of fr(R)[C. In both cases, the second condition is also fulfilled. u 0 is equal

to u on fr(R), which shows that the first condition is fulfilled.

We have shown that µ 0 is a unifier of sL with R. We now prove the second part

of the claim: β(sL,R,µ
0) ∏ β(s,R,µ). We first express both rewritings. We have

β(sL,R,µ
0) = u 0( head(R))∧ u 0(d∨ (h 0))∧ u 0(s \ (s 0 [ {d})). On the other hand,

β(s,R,µ) = u( head(R))∧u(s \ (s 0 [ {d}). We first notice that for any selection of

β(sL,R,µ
0), there is a selection of u 0(d∨{h 0})∧u 0(s \ (s 0[ {d})) which is more gen-

eral – indeed, the atom u 0( head(R) can be mapped on h 0 by using a homomorphism

equal to the identity on shared terms, we extend this substitution by the identity on any

other term. Last, u 0 being more general than u, u( head(R))∧u(s \ (s 0 [ {d}) is less

general than u( head(R))∧u(s\ (s 0[ {d}), which concludes the proof.

‰

Property 36 Algorithm 4 outputs a sound and complete rewriting of q with R even if only

rewritings with respect to prime unifiers are computed.
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Proof: Property 35 ensures that for any SCQ s and any one step-rewriting s 0 of s that is

obtained thanks to a non-prime unifier, there exists s 00 with s 00 ∏ s 0 that is obtained by

a step of LU-saturation of s and a single rewriting with a prime-unifier. The proof of

Theorem 8 can thus be directly adapted to the case where only prime-unifiers are used.

‰

Let us last present a property showing that COMPACT behaves well with respect to

large relation hierarchies: when the ontology is restricted to such axioms, COMPACT is

guaranteed to generate a USCQ restricted to a single SCQ, thanks to local unifications.

Property 37 Let R be a set of rules of the following shape:

p(x1, . . . ,xk)→q(y1, . . . ,yn),

such that xi are distinct variables, yi are distinct variables, {yi} µ {xi}. Let q be a

conjunctive query. The sound and complete USCQ-rewriting of q w.r.t. R is a single

SCQ.

Proof: Let s be an SCQ. We show that for any R 2 R, there is no prime unifier of R

with s. This is sufficient to show the claim, since only prime unifiers can generate new

SCQs. First, let µ = (s 0,q 0,u) such that s 0 is of cardinality 1, i.e., contains only one

disjunction. u is a most general unifier of head(R) with q 0, which is unique up to vari-

able renaming. Since no variable of head(R) appears twice, u is injective on the vari-

ables of q 0. If µ is such that s 0 contains at least two disjunctions, then for any di 2 s 0,

µi = ({di},q(di),u| vars(q(di))) is a unifier of R with S, since R is range-restricted 2. We

conclude as above that µ is not prime. ‰

4.2.3 A close-up on the subsumption test

A difficulty is hidden in Algorithm 4: an efficient computation of a cover of a set of

SCQs requires an efficient computation of the subsumption test. However, such a compu-

tation is more complex than it is for conjunctive queries, where a single homomorphism

check is sufficient to compare two queries.

Property 38 (Subsumption for SCQs) Let s1 and s2 be two SCQs. s1 ∏ s2 if for any

selection q2 of s2, there exists a selection q1 of s1 such that q1 ∏q2.

Thus, the brute-force way to check whether s1 ∏ s2 would be to compute all selections

of s2, and to check for each of them whether there exists a selection of s1 which is more

general. This is not acceptable, since our aim is precisely to avoid considering every

possible selection, keeping a compact representation of unions of conjunctive queries.

2. We recall that range-restricted rules do not contain any existential variable in the head.
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We first take a closer look at the structure of the SCQs that are generated by COM-

PACT. The key notion is the following: in any SCQ generated during the rewriting pro-

cess, the disjunctions are very specific, since for any of them, there exists an atom that

can “generate” all other atoms by being rewritten using local unifiers. If moreover it can

generated using only range-restricted rules, we call such an atom an R-root, and it will be

used to prune the exploration space during the subsumption test. Let us present the formal

definition of a root.

Definition 4.13 (R-root) Let R be a set of rules, s =
V
idi be an SCQ. Let Xi be the

separator of di in s. Let a be an atom of di, and sa =
V
j 6=idj∧a. Let s 0a =

V
jd

0

j
be the

LU-SATURATION of sa by range-restricted rules. di admits atom a as a root, if for any

atom b of di, b is Xi-entailed by d 0

i
. s is fully rooted if every disjunction of s is rooted.

Example 59 illustrates the notion of R-root on the running example.

Example 59 (R-root) Let qs
e be the local saturation of qe:

qs
e=(t(x1,x2)∨t(x2,x1))∧ (s(x1,x3)∨s1(x1,x3))∧ (s(x2,x3)∨s1(x2,x3)).

{t(x1,x2),t(x2,x1)} admits two Re-roots, which are t(x1,x2) and t(x2,x1). Indeed,

t(x1,x2) can be obtained by locally rewriting t(x2,x1) thanks to the rule t(x,y) →

t(y,x), and conversely. {s(x1,x3),s1(x1,x3)} admits a single Re-root, which is s(x1,x3),

since s1(x1,x2) can be obtained by a local rewriting using the rule s1(x,y)→ s(x,y).

The converse is not possible. The situation is similar for the third disjunction.

The goal is to consider only R-roots when checking subsumption. This, however,

is not directly possible. Indeed, let us consider the rule R : p(x)→ r(x,x), and the two

SCQs s1 = p(x)∨ r(x,x) and s2 = r(x,y). The only disjunction of s1 admits an R-root,

which is r(x,x), and s2 also admits an R-root, which is r(x,y). The R-root of s2 is more

general than the R-root of s1, but the LU-Saturation of s2 (which is equal to s2) is not

more general than s1. This is due to the fact that the considered homomorphism is not

injective, and unification that were not local on s2 may become local on s1. An on-the-

fly processing of such a case is possible – however, we propose here only a very simple

solution, which happened to be sufficient on the benchmarks.

Indeed, we only consider simple roots, that are roots for which the behavior we exhib-

ited above cannot appear, because there are neither duplicated terms nor constants from

the rule set.

Definition 4.14 (Simple root) A root is R-simple if it does not have any constant appear-

ing in a rule of R as argument, and if no term appears twice among its arguments.

Given an SCQ, we are interested in its R-simplification: for each disjunction that

admits a simple root, we replace the whole disjunction by its simple root.
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Definition 4.15 (R-simplification of an SCQ) Let R be a set of rules, s =
V
idi be an

SCQ. An R-simplification of s is an SCQ s 0 =
V
id

0

i
such that for any i, d 0

i
= {a}, where a

is one of the simple roots of di if such a root exists, and d 0

i
=di otherwise.

Note that the R-simplification of an SCQ is less general than the SCQ itself. Example

60 presents an R-simplification in the framework of our running example.

Example 60 (R-simplification) qs
e in Example 59 admits two R-simplifications, which

are:

t(x1,x2)∧s(x1,x3)∧s(x2,x3),

and

t(x2,x1)∧s(x1,x3)∧s(x2,x3).

Property 39 Let s1 be an LU-saturated SCQ and s2 be an SCQ. s1 ∏ s2 iff there exists an

R-simplification s 0
2

of s2 such that s1 ∏ s 0
2
.

Proof: Let s2 =
V
idi be an SCQ, such that there are a and b in d1 such that b can

be obtained by local unification from a, and a has no argument appearing twice and no

constant appearing in R as argument. We show that s1 ∏ s 0
2

if and only if s1 ∏ s2, where

s 0
1
= d 0

1
∧

V
di, where d 0

1
= d1 \ {b}, which will imply the property by induction on the

number of atoms that are removed to obtain the R-simplification of s2.

Since s2 ∏ s 0
2
, s1 ∏ s2 implies s1 ∏ s 0

2
. We thus focus on the converse, and assume that

s1 ∏ s 0
2
. Let q2 be a selection of s2. Either q is also a selection of s 0

2
, and thus there exists

a selection q1 of s1 such that q1 ∏q2. Or, there exists c such that:

q2=b∧
^

i>1

c(di).

Let q 0

2
be the following conjunctive query:

q 0

2=a∧
^

i>1

c(di).

q 0

2
is a selection of s 0

2
, and as such, there exists a selection q 0

1
of s1 such that q 0

1
∏q 0

2
,

which implies that there is a homomorphism π1 from q 0

1
to q 0

2
. If π1(q

0

1
) µ

V
i>1c(di),

then π1 is also a homomorphism from q 0

1
to q2. Otherwise, there exists an atom a 0 such

that π1(a
0) = a. Since a has no constant of R as argument and no variable appearing

twice, so is it for a 0. Moreover, b is obtained from a thanks to a range-restricted rules,

so b 0 more general than b can be obtained from a 0 with a local unification. Thus, q1 =

b∧
V
i>1c(di) is a selection of s1 such that q1 ∏q2, which shows the claim. ‰

This simple optimization has been implemented in COMPACT. During the computa-

tion of the cover, an R-simplification is computed for each query. We then use Property

39 to check the subsumption relations, by exploding R-simplifications and comparing

obtained conjunctive queries to other SCQs.
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4.3 Experimental evaluation of COMPACT

We now provide first experiments to evaluate COMPACT. As already pointed out, it is

important to evaluate both the rewriting step and the querying step. Indeed, the considered

approach would be much less interesting if, by making the rewriting phase quicker, one

would significantly make the querying phase longer. However, making this evaluation

represents a challenge, for the following reasons.

Idiosyncrasies of COMPACT. COMPACT stands out in the landscape of rewriting tools,

for two main reasons. First, this algorithm and the piece-based rewriting algorithm of

[König et al., 2012] are the only two algorithms that can generate sound and complete

rewritings for any fus, and not only for specific subclasses. Indeed, most rewriting tools

are able to create rewritings only for specific subclasses, typically linear or sticky rules.

Second, it is the only tool that generates a union of semi-conjunctive queries, and not a

union of conjunctive queries or a Datalog program. Summing up, we have two problems:

– the comparison with state-of-the-art tools would not take into account the greater

generality of COMPACT,

– a structural comparison of the outputs of COMPACT and of other algorithms is not

straightforward.

Missing benchmarks. A second major problem is the lack of appropiate benchmarks.

The benchmark classically used since [Pérez-Urbina et al., 2009] to evaluate query

rewriting algorithms is composed of five ontologies, with five queries each. The

most used ontology is LUBM 3, and several adaptations to it have been proposed

[Rodriguez-Muro and Calvanese, 2012; Lutz et al., 2012]. The small number of queries

in the benchmark is already a serious weakness. This has already been noticed, and a

very recent paper proposed an automatic generation of relevant queries in order to test

soundness and completeness of algorithms [Imprialou et al., 2012]. However, even the

ontologies in themselves are questionable. Most of the rules simply translate class or

role hierarchies, and only a few rules contain existentially quantified variables. Last, they

are all atomic-body rules, which makes these ontologies belong to a small part of those

covered by COMPACT.

We believe that establishing a proper and meaningful benchmark would be a very

interesting contribution to the field. However, this is a not an easy task: randomly gen-

erated ontologies would not qualify as meaningful, and finding parameters to guide the

randomness is non-trivial. Getting to applications to build real-world ontologies is def-

initely outside of the scope of this thesis. Even aware of these weaknesses, we did not

have other choices than to stick to the evaluation protocol of query rewriting algorithms

currently accepted by the community.

3. http://swat.cse.lehigh.edu/projects/lubm/
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In the remaining of that section, we first evaluate the rewriting step of COMPACT,

by comparing the output of COMPACT with the output of Iqaros [Venetis et al., 2012].

Then, since COMPACT outputs a USCQ-rewriting and not a UCQ-rewriting, we compare

the evaluation of both outputs. The data consists of LUBM-generated data, with 20 uni-

versities (for a total of 556k unary atoms and 2,2M binary atoms). All tests have been

performed on a 2.4GHz processor, with 4GB of RAM. The RDMS used is Sqlite.

4.3.1 Rewriting step evaluation

We considered the LUBM ontology to evaluate the rewriting step of COMPACT. How-

ever, this ontology being rather flat, we created a family of variants, LUBMn, obtained as

follows. We added, for each class (resp. each role) of the LUBM ontology n subclasses

(resp. n subroles). As for queries, in order to have a wider evaluation basis than the five

queries of the original protocol [Pérez-Urbina et al., 2009], we also used Sygenia, 4 the

query generator described in [Imprialou et al., 2012], to generate new queries.

On the benchmark that we consider, Iqaros is the most performant existing tool. We

thus compare COMPACT with Iqaros. Since the outputs of COMPACT and Iqaros are of

different kinds, we are mainly interested in the time required to compute a sound and

complete U(S)CQ-rewriting. The comparison of the quality of the outputs, usually done

by counting the number of conjunctive queries in a UCQ-rewriting, will be done in the

next section, by assessing how efficiently each rewriting can be evaluated.

4.3.2 Querying step evaluation

We now focus on the evaluation of the querying step. To that purpose, we evaluate

both the USCQ generated by COMPACT and the equivalent UCQ.

Assumptions and experimental settings

Given that most of the data are available in relational databases, we stored the data

in a relational database. We assumed that for each predicate of arity k, there is a corre-

sponding table of arity k whose columns are named c1,. . . ,ck. While this is a simplifying

assumption, it does not change the fundamental problem of query rewriting, which is the

one we focus on. The ontologies and queries we consider in this section are the same as

in the previous section, and the presentation of results is once again split between hand-

crafted queries and automatically generated queries - which are of small size. The data

we use is the data generated by the LUBM data generator 5 – this is a weakness of our

evaluation, since the concepts introduced in LUBMn have no associated data.

4. Available at http://code.google.com/p/sygenia/

5. Also available at http://swat.cse.lehigh.edu/projects/lubm/.
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CREATE VIEW disj1 AS

SELECT c1,c2 AS c1,c2 FROM t

UNION

SELECT c2,c1 AS c1,c2 FROM t

Figure 4.1: The view associated with the SCQ: (t(x1,x2)∨t(x2,x1))

SQL translations

We present here how we translate semi-conjunctive queries into SQL queries. It sig-

nificantly differs from the standard translation for conjunctive queries by the use of views

to compute unions of tables. Indeed, semi-conjunctive queries are translated by a two-step

process. We first replace each disjunction by a view. The view is basically equal to the

disjunction of every relation that appear in the disjunction – care should be taken about

the orders of the arguments. Then, the SCQ can be seen as a conjunctive query on the

names of the tables, and the previous translation is applied. We illustrate this two-step

process on the LU-saturation of qe:

(t(x1,x2)∨t(x2,x1))∧ (s(x1,x3)∨s1(x1,x3))∧ (s(x2,x3)∨s1(x2,x3)).

We create three views, named disj1, disj2 and disj3 representing each disjunction.

Figure 4.1 presents the SQL query that is associated with (t(x1,x2)∨ t(x2,x1)). We

then evaluate the query disj1(x1,x2)∧disj2(x1,x3)∧disj3(x2,x3), which is classically

translated into a SQL query. Union of conjunctive queries are evaluated in a naive way:

each conjunctive query of the union is evaluated separately.

4.3.3 Experimental results

Results. Experimental results are presented in Tables 4.1 and 4.2 as well as in Figures

4.2 and 4.3. Results are aggregated by ontologies – a single line (or column in Figure

4.2 and 4.3) represent all queries relative to an ontology. Tables 4.1 and 4.2 present the

time needed by COMPACT and Iqaros to rewrite respectively Sygenia-generated queries

and queries that come from the original benchmark. The ontologies are LUBMn, for n

from 0 to 8. The number of selections is also mentioned. It is worth to note that, on

this benchmark, the number of selections of the USCQ output by COMPACT is equal to

the number of conjunctive queries output by Iqaros. There is no theoretical guarantee

of this correspondence in the general case, and this may be due to the simplicity of the

benchmark. However, generating the output as a USCQ is much more faster than gen-

erating a UCQ – up to a factor 500 on the benchmark. Figures 4.2 and 4.3 present the

time, in seconds, needed to evaluate the optimal UCQ-rewriting (black bars), and the

USCQ-rewriting (white bars), for Sygenia-generated queries and for handcrafted queries,

respectively. Missing bars represent a timeout, that has been fixed to 30 minutes. This

suggests that the performed reformulation has also been beneficial for the querying step.
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Table 4.1: Rewriting time and output for Sygenia queries

COMPACT Iqaros

# SCQs # Selections Time # CQ Time

(ms) (ms)

0 102 486 44 486 152

1 102 1203 56 1203 171

2 102 1910 75 1910 182

3 102 2691 68 2691 205

4 102 3546 86 3546 257

5 102 4475 108 4475 342

6 102 5478 144 5478 440

7 102 6555 173 6555 556

8 102 7706 217 7706 692

Table 4.2: Rewriting time and output for handcrafted queries

COMPACT Iqaros

# SCQs # Selections Time # CQ Time

(ms) (ms)

0 5 19 68 19 200

1 5 102 73 102 247

2 5 360 143 360 460

3 5 972 213 972 1454

4 5 2190 303 2190 5242

5 5 4338 406 4338 17382

6 5 7812 530 7812 56095

7 5 13080 667 13080 155566

8 5 20682 823 20682 403229

Limitations. Beyond the already discussed questionable representativity of the used

benchmark, these results should be taken with care. Indeed views using disjunction are

usually considered to behave poorly from an efficiency point of view. The obtained results

are thus quite surprising. It should come from the fact that introduced tables have not been

populated. Moreover, other experiments using a another RDMS (Sqlite is currently used)

should be performed. Despite these limitations, we believe that USCQs are a good starting

point for the evaluation of sound and complete rewritings.

4.4 Related and further work

We finish this chapter by presenting other tools that perform query rewriting. Since

the seminal work on query rewriting with DL-Lite [Calvanese et al., 2007], a number of

rewriting tools have been implemented.
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Figure 4.2: Querying time for Sygenia generated queries (in seconds)
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Figure 4.3: Querying time for handcrafted queries (in seconds)

The most common approach, on which we based our work, is to generate UCQ-

rewritings. Among implemented tools, we can cite QuOnto [Acciarri et al., 2005], Nyaya

[Gottlob et al., 2011], Rapid [Chortaras et al., 2011], Iqaros [Venetis et al., 2012], or the

piece-based rewriting algorithm presented in [König et al., 2012]. The rewriting operation

used by Nyaya (which can process sticky rules in addition to linear rules) is very close

from piece-based rewriting – however, this operation is split into two parts (applicability

and factorization). Rapid takes as input only a subclass of linear rules. It first generates

“structures” of rewritten queries, and then rewrites every atom of the query. These two

steps are close from non-local and local rewritings, with the notable exception that Rapid

generates all structures at once, which is possible thanks to the very special structure of

ontologies that are dealt with by Rapid. Last, Iqaros deals with linear rules and performs

an incremental rewriting, where atoms are added and rewritten one at at time.

The size of rewritings has also been studied in the literature, with a particular interest

for cases where UCQ-rewritings are ensured to be of polynomial size. In particular, [Kikot

et al., 2011] exhibits a class of rules ensuring this property.
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Another approach is to rewrite the query into Datalog programs. Most of the results

here are of theoretical nature: the existence of a polynomial rewriting is proved for EL

ontologies (for which no finite UCQ-rewriting is guaranteed to exist), and for sticky and

linear rules [Gottlob and Schwentick, 2012]. A tool is however available to perform query

rewriting into Datalog programs for DL-Lite ontologies: Presto [Rosati and Almatelli,

2010].

Last, let us mention that is has been shown recently [Imprialou et al., 2012] that none

of the available implementations were sound and complete (for rewriting into UCQs, in

2012). This intriguing result leads us to stress out two points:

– as already said, benchmarks are missing, and this hinders the development of sound

and complete tools;

– the tests done in [Imprialou et al., 2012] do not mean that algorithms were not

sound and complete, but that their implementation was bugged. This strongly

supports the idea of the need for simple algorithms, that do not require complex

optimizations to run in a reasonable amount of time.

There is still a lot of work to be done. First, the performance of the implementation of

COMPACT could be significantly enhanced, by performing parts of the computation offline

and storing these results. Beyond such easy improvements, it would be very interesting

to test the behavior of COMPACT on other ontologies and queries, as well as with more

realistic data. Even for ontologies that do not belong to known first-order rewritable

classes, COMPACT will output sound and complete rewritings as long as they exists. Does

it happen often? Does COMPACT computes them efficiently as well? We conjecture that

the biggest obstruction would be the computation of the cover operation: the optimization

proposed in this dissertation allowed us to compute it reasonably efficiently (by reducing

this to a “simple” homomorphism check). Further optimizations may be needed in a more

general case. Moreover, a more in depth comparison with other systems, such as Iqaros,

Rapid, Nyaya and Presto may bring some new ideas of optimizations.

Other questions naturally arise. What happens if we allow ourselves to use a more

powerful querying language, such as query path language? Transitivity rules would not

be an obstacle to rewritability anymore. A first step in that direction has already been

undertaken in [Rudolph and Krötzsch, 2013], but no system has been implemented yet.
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5
Conclusion

We focused on the ontology-based query answering (OBQA) problem, which is a

fundamental reasoning problem that currently draws attention from both knowledge rep-

resentation and database communities. The decision version of this problem is the fol-

lowing: given data F, an ontology R, and a (Boolean conjunctive) query q, is that true that

q is entailed by F and R? We chose to represent ontologies by means of existential rules.

While the mainstream approach to represent ontologies is Description Logics (DLs), the

choice of existential rules is motivated by the new light it sheds on OBQA.

The contribution of this dissertation to the field can be divided in two parts. First, we

defined a novel class of decidable rules, namely greedy bounded treewidth sets of rules

(gbts) and provided a worst-case optimal algorithm for conjunctive query answering under

gbts rules. The gbts class covers in particular guarded rules, and thus significantly extends

lightweight Description Logics such as EL and DL-Lite, which are the most studied for

OBQA. The algorithm we propose is not only worst-case optimal for gbts, but also for

most of its known subclasses, up to slight adaptations. To achieve such results, we intro-

duced the notion of the greedy tree decomposition of a derivation, which is in substance a

uniquely defined tree decomposition of the fact associated with a derivation. This greedy

tree decomposition being potentially infinite (but of bounded width) in the case of gbts,

an important challenge was to represent it in a finite way. This has been achieved thanks

to the definition and the computation of an equivalence relation, making use of a notion of

pattern. The finite representation we presented is called a full blocked tree. A second chal-

lenge was to evaluate a query against the computed full blocked tree, in the setting where

the full blocked tree is built independently from the query – this allows us to compute this

structure offline, which is interesting if several queries are evaluated against the same data

and the same ontology. We thus defined a querying operation, called APT-mapping, that

is sound and complete with respect to the usual semantics. A similar approach has been

pursued in the so-called combined approach [Lutz et al., 2009; Kontchakov et al., 2010],

109
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but it has been developed until now only for lightweight description logics. Compared to

these languages, we had to face further technical challenges, due to the loss of a strict tree

structure and to stronger interactions between rules.

Second, we considered first-order rewritable sets of rules, that is, sets of rules for

which a first-order rewriting of any conjunctive query is guaranteed to exist. Most

rewriting tools are able to generate such rewritings only under strong restrictions on the

ontology. To the best of our knowledge, only one tool [König et al., 2012] is able to

generate first-order rewritings, and more precisely, unions of conjunctive queries, for

any first-order rewritable set of rules and any conjunctive query. We advocated that a

system outputting unions of conjunctive queries is doomed to produce huge rewritings as

soon as there are large class or role hierarchies. Unfortunately, this is likely to happen

in real-world ontologies, as hierarchies usually are the backbone of such ontologies. We

thus proposed an alternative approach, which consists in building rewritings that may use

a less restricted form of disjunction, based on the notion of semi-conjunctive queries.

We adapted the algorithm from [König et al., 2012], by generalizing the rewriting

operation that was defined on conjunctive queries to semi-conjunctive queries. We also

distinguished two kinds of rewritings, local and non-local rewritings. Local rewritings

introduce disjunctions – this is the main innovative point, and non-local rewritings are a

natural recast of the usual operation. We also implemented this adaptation, and provided

first experiments showing that using unions of semi-conjunctive queries is beneficial

during both the rewriting and the querying steps.

Some questions related to “direct” improvements of this work have already been

pointed out in Chapters 3 and 4. More generally, the work presented in this disserta-

tion can be extended in several ways. From a theoretical point of view, a lot remains to be

done in order to understand what makes the problem decidable. The distinction that we

made between materialization-based and materialization-avoiding approaches is a clas-

sical one (though under a variety of other names), but is there a deep theoretical reason

to do so? Is it possible to further unify decidability criteria? An argument supporting

this possibility is the “equivalence” between rule applications and piece-based rewriting,

stating that anything that can be deduced using k rule applications can also be deduced

using k-steps of piece-based rewritings [Salvat and Mugnier, 1996]. A possible first move

towards this better understanding of decidability properties of OBQA is to further gen-

eralize known decidable classes. Several leads can be considered. First, bts generalizes

fes. Can we design a similar generalization of fus? A first proposal has been made in

[Rudolph and Krötzsch, 2013], by rewriting into more expressive query languages – can

we go further? We may also look for sets of rules that are not very expressive, but with

good computational properties, and that support combination with transitivity rules or

equality rules. We believe that the full blocked tree is a good structure to start with when

considering such rule sets. Indeed, we already proposed an adaptation of the algorithm

building a full blocked tree to a generalization of EL that supports predicates of any arity

and cyclic dependencies on variables, while staying in the same complexity classes as

EL [Thomazo, 2012]. Complex role inclusion may also be added, provided that some
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regularity conditions are observed – the problem being undecidable otherwise [Krötzsch

et al., 2007].

Designing new algorithms for OBQA assumes the ability to check whether proposed

algorithms are efficient in practice. This requires good benchmarks – and the community

is definitely missing publicly available good benchmarks. These should contain a set

of test cases containing at least the three following components: an ontology, data

mapped with this ontology, and queries expressed within this ontology. Some real-world

ontologies are already available, but to the best of our knowledge, all those that belong

to gbts or are first-order rewritable are also expressible with EL or DL-Lite. While

this could be interpreted as a weak interest for expressive power beyond lightweight

description logics in OBQA, we believe that this is mainly due to the lack of tools

supporting the design of ontologies by means of existential rules. Furthermore, even

when real-world ontologies are available, associated data and queries are, to the best

of our knowledge, nonexistent. A first step has been realized towards this by creating

Sygenia, which can generate queries and data with an aim of debugging, but publicly

available real use cases are definitely missing for now. This problem aside, a much

deeper evaluation of COMPACT is needed, using adequate ontologies, queries, and data.

A probably difficult but nonetheless interesting question would be to efficiently evaluate

semi-conjunctive queries. Concerning the gbts algorithm, we do not believe it is readily

implementable, mostly because of the querying operation. A rewriting-based mechanism

to evaluate queries against a full blocked tree is currently under investigation. The offline

part would remain the same, but instead of looking for an APT-mapping of the query,

the query would be rewritten into a union of conjunctive queries (or of semi-conjunctive

queries). The rewriting would be computed by using the knowledge acquired during the

computation of patterns. Last, it would be evaluated on the full blocked tree.

In this dissertation, we focused on the core problem. For instance, we considered

only conjunctive queries, with positive atoms. Restricting or extending the query lan-

guage is also of interest. Even for queries restricted to a single ground atom, entailment

remains undecidable. However, query patterns, which allow to consider specific conjunc-

tive queries, have been recently defined [Civili and Rosati, 2012b]. This restriction on

queries is then used to rewrite the set of rules into an “equivalent” (to answer the consid-

ered queries) set that has better computational properties. More general query languages

than conjunctive queries have also been considered, such as Datalog and restrictions of

it, such as monadic Datalog [Gottlob and Koch, 2004], as well as regular path queries

[Calvanese et al., 2003]. New query languages, with greater expressivity than conjunc-

tive queries but with reasonable complexity of evaluation have been proposed [Rudolph

and Krötzsch, 2013]. The design rationale in this latter work was to enhance expressivity

while restricting worst-case complexity. A related question it whether the expressivity of

current query languages match practical needs. How do we evaluate these needs?

Another way to extend queries (and rules) is to allow for some kind of negation.

Non-monotonic negation is arguably useful in practice, e.g., [van Harmelen et al., 2007].

Stratified negation [Apt et al., 1988; Abiteboul et al., 1994] has already been considered
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in the framework of guarded rules [Calì et al., 2009]. Stable negation (i.e., based on

stable models), which generalizes stratified negation, has been intensively studied in the

framework of answer set programming (e.g., [Gelfond and Lifschitz, 1988; Baral, 2003]).

By skolemizing existential rules, we obtain a special case of this latter framework, and

thus this translation provides us with a potential semantics for existential rules with stable

negation. However, defining a direct semantics for answer set programs with existential

variables in rule heads without using skolemization does not seem to be trivial. Naturally,

classical (monotonic) negation, even restricted to negation on atoms, also raises a lot of

problems. Even without any ontology, having negated atoms in data and queries makes the

conjunctive query answering problem significantly harder: it jumps from NP-complete to

Π
p
2
-complete in combined complexity ([Farré et al., 2007], for the problem of inclusion

of conjunctive queries with negation). This is due to a combinatorial explosion – each

atom which is not explicitly stated as true or false, gives rise to a choice. Moreover, when

rules are added, the notion of “applying a rule” is not obvious anymore. In [Mugnier

et al., 2012], we considered the core problem, i.e., without ontologies (or very restricted

ontologies, that is, concept or relation hierarchies), and defined parameters that make the

complexity of the problem drop when their value is fixed.

In this dissertation, we also assume the ontology to be consistent. This may be a

reasonable assumption, since ontologies are usually developed by domain experts that

reached a consensus. Moreover, (semi-)automatic debugging tools are available, which

help to discover and fix problems at the ontological level. Last, an inconsistency in an

ontology plausibly originates from a formalization problem, and it seems reasonable

to fix this problem before using the ontology. As for data, doing such a consistency

assumption does not seem reasonable at all, since data could come from multiple sources,

and their authors may not be experts. There could thus be inconsistencies between

the data and the ontology. The semantics of first-order logic states that everything is

entailed by an inconsistent knowledge base. This behavior is not satisfying for the query

answering task. The notion of repair (intuitively, a consistent subset of the database as

close as possible to the original one) has been introduced in the database community

(see [Chomicki, 2007] for a survey). Recently, semantics that allow to make reasonable

inferences even with inconsistent knowledge bases have been proposed [Lembo et al.,

2010; Rosati, 2011; Bienvenu, 2012; Lembo et al., 2012; Lukasiewicz et al., 2012]. Since

consistent query answering of DL-Lite ontologies is already complex, the challenge is

even greater for (decidable) classes of existential rules.

How can our methods, and in particular the full blocked tree, be used when introducing

these extensions? This question remains open.
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Abstract

Ontology-based data access (OBDA) aims at enriching query answering by taking

general background knowledge into account when evaluating queries. This background

knowledge is represented by means of an ontology, that is expressed in this thesis by a very

expressive class of first-order formulas, called existential rules (sometimes also tuple-

generating dependencies and Datalog+/-). The high expressivity of the used formalism

results in the undecidability of query answering, and numerous decidable classes (that

is, restrictions on the sets of existential rules) have been proposed in the literature. The

contribution of this thesis is two-fold: first, we propose a unified view of a large part

of these classes, together with a complexity analysis and a worst-case optimal algorithm

for the introduced generic class. Second, we consider the popular approach of query

rewriting, and propose a generic algorithm that overcomes trivial causes of combinatorial

explosion that make classical approaches inapplicable.

Keywords: Artificial Intelligence, Knowledge representation and reasoning, Datalog +/-,

Existential rules, Conjunctive queries

Résumé

L’objectif du problème appelé "Ontology-based data access" (OBDA) est d’améliorer

la réponse à des requêtes en prenant en compte des connaissances d’ordre général durant

l’évaluation des requêtes. Ces connaissances générales sont représentées à l’aide d’une

ontologie, qui est exprimée dans cette thèse grâce à des formules logiques du premier

ordre, appelées règles existentielles, et aussi connues sous le nom de "tuple-generating

dependencies" et Datalog+/-. L’expressivité des formules utilisées est telle que l’évalua-

tion de requêtes devient un problème indécidable, et cela a conduit la communauté à dé-

finir de nombreux cas décidables, c’est-à-dire des restrictions sur les ensembles de règles

existentielles considérés. La contribution de cette thèse est double : tout d’abord, nous

proposons une vue unifiée sur une grande fraction des cas décidables connus, et four-

nissons par là même une analyse de complexité et un algorithme optimal dans le pire

des cas. Nous considérons également l’approche couramment utilisée de réécriture de re-

quêtes, et proposons un algorithme générique qui permet de surmonter certaines causes

évidentes d’explosion combinatoire qui rendent les approches classiques pratiquement

inapplicables.

Mots clefs : Intelligence Artificielle, Représentation des connaissances et raisonnement,

Datalog+/-, Règles existentielles, Requêtes conjonctives
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