Modélisation locale, à une et trois dimensions des processus photochimiques de l'atmosphère moyenne - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 1989

Local, one- and three-dimensional modeling of photochemical processes in the middle atmosphere.

Modélisation locale, à une et trois dimensions des processus photochimiques de l'atmosphère moyenne

Résumé

The objectives of this work focus on the development and formulation of an innovative numerical technique named SIS (semi-implicit symmetric) to solve ordinary differential equations with an application to atmospheric chemistry. Numerical analyses of the method are performed in detail showing a very good performance (stability, CPU time consuming, precision) when compared to the standard Gear's method (stiff option) The SIS method is used to generate a box photochemical model treating in detail diurnal variations of chemical species. The box model is respectively coupled to a one dimensional diffusive model and to a general circulation model with different chemicla mecanism . These 3 categories of models have been evaluated by comparing multiple sets of numerical results against existing measurements from stratospheric ballons, satellites and from the ground. Very good performance of all models is demonstrated, based on model-model and measurement-model comparison. The future application of the 3 dimensional model concern the comparison of measurements from UARS (satellite) with the model results.
Ce travail de thèse a pour ultime objet la contribution à des travaux scientifiques nécessaires à l'amélioration de la connaissance des processus photochimiques, radiatifs et de transport régissant l'évolution des espèces minoritaires et de l'ozone atmosphérique. Les travaux et les résultats de recherche reportés dans ce document sont focalisés sur le développement, la mise en oeuvre, la validation de trois catégories de modèles numériques de l'atmosphère. Ils sont constitués par un modèle photochimique ou de boîte ; un modèle unidimensionnel diffusif et photochimique ; et un modèle tridimensionnel dynamique et de transport des composés chimiques avec variations diurnes à l'échelle du globe. La stratégie consiste à coupler le modèle de boîte intégrant un mécanisme cinétique approprié avec chacun des modèles. Les résultats numériques sont par la suite confrontés: aux mesures existantes de concentration des espèces chimiques obtenues dans le cadre de campagnes de lancements de ballons stratosphériques ; aux observations effectuées à partir de la surface du globe ; et finalement aux données satellitaires. Ces travaux sont complétés par l'introduction de nouvelles valeurs des sections efficaces d'absorption de quelques espèces (pour la photolyse) et de nouvelles valeurs de constantes cinétiques (pour les réactions chimiques) mesurées en laboratoire. En particulier, uns des ultimes objectifs de ce travail consistent à mettre en oeuvre le modèle tridimensionnel (3D) à variations diurnes cité précédemment, et à confronter les résultats aux observations satellitaires chimiques existantes pour une période précise. A moyen terme, le modèle 3D sera appliqué pour l'interprétation des futures observations effectuées depuis l'espace dans le cadre de la nouvelle mission spatiale UARS de la NASA (" Upper Atmospheric Research Satellite "). Le lancement du satellite, prévu en 1991, aura pour mission, l'observation des variations spatio-temporelles de la concentration des composés chimiques et de certains paramètres physiques et radiatifs dans les trois couches atmosphériques : la stratosphère, la mésosphère et la thermosphère. La mission est dédiée à l'étude des espèces ayant un rôle majeur sur la destruction de la couche d'ozone polaire et à l'évolution du climat sous l'influence des gaz à effet de serre. L'évolution temporelle de la position du satellite autour de son orbite permettra d'en extraire les variations diurnes des composés aux mêmes heures TU et aux mêmes endroits, permettant l'application et la mise en oeuvre du modèle de boîte pour la compréhension des processus. Parmi les autres objectifs de cette thèse, les points suivants sont traités en détail: 1) Le développement d'une méthode numérique novatrice pour la résolution d'un ensemble d'équations de continuité non linéaires et couplées des espèces chimiques. Par la suite, La méthode est analysée et évaluée numériquement, comparée aux techniques standard existantes et intégrée dans chacun de ces 3 modèles. La formulation de la technique numérique doit être standard et facilement adaptable à n'importe quels systèmes d'équations d'évolution des espèces associées à de mécanismes cinétiques et pour n'importe quelle partie de l'atmosphère. La méthode doit résoudre, sans paramétrisation, les variations diurnes des composés dues aux effets de l'évolution très rapide spatiotemporelle de la photolyse aux zones de coucher et lever du soleil, et parfois aux conséquences de l'évolution temporelle des quantités d'émissions chimiques rejetées par les sources sur la concentration des espèces. 2) Le développement, la mise en oeuvre et la validation d'un modèle photochimique ou " de boîte ", utilisant la méthode développée en 1). De la même manière, le modèle de boîte est conçu pour être applicable à n'importe quelles régions de l'atmosphère à savoir: la couche limite atmosphérique, la troposphère libre, la stratosphère et la mésosphère. 3) La vérification de la performance du modèle de boîte développé en 2) par l'interprétation d'un ensemble d'observations satellitaires et des mesures in situ de la concentration de certains composés chimiques par l'usage des ballons stratosphériques dans la stratosphère et par confrontation de la concentration de l'ozone mesurée par la technique micro-ondes dans la mésosphère ; 4) Le développement d'un modèle photochimique et diffusif unidimensionnel (dans la direction verticale), en incluant les variations diurnes des composés, par couplage du modèle de boîte développé en 2) avec un modèle purement de transport diffusif (également développé dans ce travail). L'ensemble est mis en oeuvre pour l'interprétation des mesures de profils verticaux de quelques composés chimiques dans la stratosphère et la mésosphère, obtenues soit à distance par de satellites soit in situ par ballons; 5) Le couplage, à chaque pas de temps, et l'intégration directe du modèle de boîte avec le modèle de circulation générale de METEO France (Emeraude) qui calcule de manière pronostique le champ dynamique et thermodynamique, les paramètres radiatifs et physiques et utilise les techniques d'assimilation des données d'observations dans l'atmosphère globale (vents, température, vapeur d'eau, nuages, flux solaires, etc.). L'ensemble constitué par le modèle Arpège et le modèle de boîte incluant un mécanisme cinétique de l'ozone stratosphérique, est mis en oeuvre pour interpréter les variations spatio-temporelles à 3 dimensions des espèces azotées et de l'ozone dans la stratosphère. En particulier, l'accent est mis sur la modélisation du phénomène appelé " Noxon Cliff ") consistant à l'apparition de gradients horizontaux des espèces azotées (NO2) lors de l'apparition du réchauffement soudain de la stratosphère moyenne, accompagné par la division du vortex polaire Nord en quelques cellules, vers la fin de l'hiver boréale. Chapitre I. Ce chapitre rappelle certaines notions des lois physiques pour l'atmosphère : la dynamique, le transport des espèces et la photochimie dans l'atmosphère et effectue une revue des différentes catégories de modèles numériques existants: photochimiques, radiatifs et dynamiques développés et mis en oeuvre durant les dernières décennies par la communauté scientifique pour explorer et étudier l'aéronomie de l'atmosphère et l'évolution du climat. Chapitre II. Dans un premier temps, le chapitre traite en détail le développement et l'analyse numérique de la " méthode novatrice " à laquelle nous avons associé la dénomination : " Semi Implicite Symétrique (SIS) ". Cette analyse numérique théorique approfondie, au sens mathématique des équations différentielles ordinaires (EDO) dont font partie les équations de continuité des espèces chimiques, consiste à explorer et à décrire son origine, sa définition, sa précision et sa stabilité, numériques. La caractéristique: " conservation du nombre d'atomes (CNA) " des composés chimiques par la méthode, après la résolution numérique des systèmes d'équations, est démontrée et comparée à celle des autres techniques de même objectif. La notion de CNA ne peut être confondue à celle de " conservation de la masse " de matière, condition appliquée aux méthodes de résolution des équations de transport (advection ou autres). D'autres caractéristiques de la méthode sont aussi explorées ; par exemple la possibilité de l'apparition de concentration faiblement négatives. Pour pallier ce petit inconvénient, un traitement numérique spécial très efficient, basé sur l'analyse de la caractéristique des espèces participant aux réactions chimiques " incriminées " est proposé. Dans un deuxième temps, une mise en oeuvre du modèle de boîte appliqué à un cas photochimique, défini par un mécanisme cinétique de l'ozone sous des conditions stratosphériques, est réalisée afin d'évaluer en profondeur la performance numérique du modèle et sa capacité à interpréter les observations. Le chapitre II contient différents paragraphes traitant en détail les points essentiels suivants en utilisant ce même cas: a) les caractéristiques numériques et la performance des autres méthodes couramment utilisées par la communauté scientifique depuis plus d'une décennie pour la résolution des équations cinétiques non linéaires dans les modèles, sont comparées à celles de la méthode SIS. Les avantages et inconvénients de chacune des méthodes sont soulignés. En particulier SIS conserve strictement le nombre d'atomes, et est absolument stable (ou sans condition de stabilité) contrairement aux autres méthodes classiques. b) En 1971, le mathématicien Gear a publié deux méthodes numériques très bien adaptées aux systèmes d'équations non linéaires très raides et légèrement raides (ou " stiff " en anglais). Ces méthodes utilisant l'approche numérique prédicteur-correcteur et résolution par itérations successives, sont considérées comme des références. Un rappel de cette technique est traité dans ce travail. Par la suite, la précision, la stabilité numérique, le coût numérique ou le temps de calcul et la notion de conservation du nombre d'atomes sont inter comparées entre cette technique et SIS. c) Grâce à sa caractéristique implicite (seul le prédicteur est en explicite), la méthode de Gear conserve aussi le nombre d'atomes des composés après résolution des systèmes. La précision de SIS est égalable à celle de la méthode de GEAR avec quelques pourcents de différence au moment du coucher et du lever du soleil, associés à la raideur des systèmes photochimiques liée aux variations temporelles abruptes et très significatives de la concentration des espèces sous l'influence de la photolyse. La stabilité numérique de SIS est également démontrée. d) La résolution des équations cinétiques aboutit à l'inversion des matrices jacobiennes à chaque pas de temps successifs des modèles. Après quelques test et " benchmark ", nous avons pu identifier que cette inversion de matrices est la plus coûteuse en temps de calcul et de manière exponentielle selon le rang de la matrice (ou le nombre de composés chimiques). Après plusieurs applications et évaluations de quelques techniques d'inversion de matrices, la méthode de résolution directe de Gauss par élimination apparaît la plus adaptée et constitue un bon compromis pour la méthode SIS. En effet, ces tests d'inversion ont permis de montrer que les matrices jacobiennes issues de la cinétique, possèdent un taux de raideur très élevé (ou " stiffness ratio " en anglais. Ce taux est défini comme le rapport entre la valeur absolue des valeurs propres minimales et maximales. Plus ce rapport est élevé, moins les systèmes itératifs aboutissent à une convergence d'où l'utilisation des méthodes directes d'inversion. En conséquence en terme de coût de calcul, SIS fait apparaître un temps CPU global (" clock period unit ") largement inférieur à celui de GEAR, toute chose égale par ailleurs sauf pour le pas de temps du modèle montrant ainsi son intérêt majeur pour l'introduction de chimie plus élaborée pour de longues intégrations dans les modèles tridimensionnels. Chapitre III. L'évaluation de la performance de la méthode SIS et la validation des résultats du modèle de boîte photochimique sont effectuées par le biais de la comparaison des résultats avec des mesures de profils verticaux existants dans les bases de données d'observations de quelques composés chimiques dans la stratosphère dont : O3, OH, HO2, HNO3, N2O5 et ClO. Trois études de cas dans la stratosphère sont traitées dont deux ont fait l'objet de publication: * L'interprétation par le modèle de boîte, des mesures de profil vertical de NO3 au dessus de 30km d'altitude obtenus par lancements de ballons stratosphériques (5 missions différentes) à Aire-sur-l'Adour, France (43°42'N, 0°15'W) entre 1980 et 1985, en introduisant de nouvelles valeurs des sections efficaces d'absorption de NO3 mesurées en laboratoire. Ce travail aboutit à une publication. * L'interprétation par le modèle de boîte, des mesures des variations diurnes de NO et NO2 (une mesure la nuit, une autre le jour et une au coucher et lever du soleil) obtenues pendant la campagne MAP GLOBUS organisée à Aire-sur-l'Adour à trois niveaux d'altitude situés aux pressions atmosphériques: 18hPa, 10hPa et 7.5hPa. A chaque observation, le ballon est plafonné à l'altitude considérée pour permettre les mesures temporelles. Ce travail aboutit à une publication. * L'interprétation par le modèle de boîte des mesures de variations diurnes de l'ozone mésosphérique entre 50km et 75km d'altitude par pas de 5km, en utilisant à partir du sol un radiomètre micro-onde dans la fréquence 110.856 GHz correspondant à une raie d'émission de l'espèce ; le radiomètre étant couplé avec un spectromètre. Les résultats du modèle sont conformes aux mesures. Les analyses exploratoires soulignent l'importance de la contribution des réactions chimiques associées aux composés hydrogénés H, OH et HO2 sur la concentration de l'ozone. A ces niveaux d'altitude, la réaction chimique entre la vapeur d'eau et le métastable O1D issu de la photodissociation de l'ozone constitue la source principale de ces composés hydrogénés. Chapitre IV. Le couplage du modèle de boîte utilisant la méthode SIS avec un modèle à une dimension diffusif et stationnaire (selon la verticale du lieu) également créé dans ce travail, permet la comparaison des résultats numériques avec un ensemble de mesures satellitaires. Ces observations intègrent les profils verticaux de composés chimiques à plus longue durée de vie dont : CH4, N2O, H2O, CO, HNO3, H2, et HCl, et à plus courte durée de vie comme OH et ClO, mais aussi des espèces chimiques azotées (NO, NO2, NOy) et des espèces chlorées (ClO, Cly). Ce chapitre montre également l'applicabilité de la méthode SIS aux équations d'évolution photochimique des " Familles " azotée et chlorée : NOy, Cly. Les résultats numériques du modèle unidimensionnel sont comparables à ceux d'autres modèles de même nature développés par d'autres auteurs et sont parfaitement cohérents avec l'ensemble des observations. Chapitre V. L'objet de ce dernier chapitre consiste à développer une méthodologie novatrice de modélisation tridimensionnelle de la distribution spatio-temporelle des composés minoritaires dans l'atmosphère en introduisant pour la première fois les variations diurnes des espèces chimiques. Dans le passé, due à la complexité des mécanismes photochimiques atmosphériques et les coûts informatiques, les modèles tridimensionnels incluent seulement, soit une chimie très simplifiée, soit un système cinétique un peu plus développé mais dont les variations diurnes sont linéarisées. Grâce à ses performances inégalées par rapport aux techniques classiques et à la méthode de référence " de Gear " (précision, stabilité, conservation et coût), le modèle de boîte utilisant SIS couplé au modèle dynamique, peut alors inclure un grand nombre de composés chimiques. Cette approche innovante de modélisation tridimensionnelle avec variations diurnes chimiques, jamais abordée auparavant par la communauté scientifique, peut permettre une intégration sur du long terme, couvrant ainsi les saisons et les années. Cette intégration est indispensable à une meilleure connaissance de l'évolution spatio-temporelle de la couche d'ozone et de l'établissement de la distribution de ses précurseurs avec l'utilisation des données satellitaires issues de UARS. La faisabilité de ces longues intégrations est par ailleurs facilitée par l'apparition et de nouveaux super calculateurs puissants pour les calculs intensifs (exemple CRAY 1). * Dans un premier temps, la méthode de couplage dite " time-splitting ", à chaque pas de temps d'intégration, du modèle de boîte à variations diurnes avec le modèle de circulation générale Emeraude de Météo France, est décrite. Le modèle Emeraude inclut la dynamique, le transport des espèces, la physique de l'atmosphère, le couplage terre atmosphère, la formation des nuages et le transfert radiatif. Les espèces azotées et chlorées sont intégrées dans le mécanisme cinétique stratosphérique du modèle de boîte pour décrire la chimie de l'ozone pour l'étude de cas. * Dans un deuxième temps, l'ensemble couplé est mis en oeuvre pour calculer la distribution spatio-temporelle des espèces azotées et de l'ozone dans la stratosphère. En particulier, l'accent est mis sur la modélisation du comportement de certaines espèces chimiques lors du réchauffement stratosphérique soudain dans les régions polaires Nord vers la fin de l'hiver. Ce phénomène est régulièrement observé aux niveaux d'altitude stratosphérique de pression: 10hPa à 20hPa dans ces régions. Le vortex polaire stratosphérique Nord subit alors une division en deux ou plusieurs cellules dynamiques, accompagnée d'un réchauffement rapide du milieu. D'après les observations de Noxon en 1979, cette division du vortex stratosphérique a un effet sur la distribution horizontale du contenu intégré du dioxyde d'azote que l'auteur a dénommé le " Noxon Cliff " consistant à l'apparition de forts gradients horizontaux de concentration intégrée de NO2 autour de 50°N. Une courte simulation a été effectuée avec le modèle tridimensionnel pour le mois de février 1979, période d'observations du réchauffement soudain. Le modèle permet de vérifier les hypothèses de Noxon sur la distribution spatiale du composé NO2. * Le chapitre conclut sur la faisabilité de l'intégration des variations diurnes des espèces chimiques dans un modèle tridimensionnel sur du long terme. Le satellite UARS effectuera une série d'observations d'un ensemble de composés chimiques dans la stratosphère et la mésosphère sur une longue période étalée sur quelques années. Les variations diurnes des composés chimiques peuvent en être extraites avec leur distribution horizontale et verticale. Ce modèle 3D permettra la confrontation des mesures obtenues par UARS avec les résultats numériques et contribuera à une meilleure connaissance de la chimie de l'ozone et du phénomène de trou d'ozone observé dans l'Antarctique en incluant la chimie hétérogène réagissant sur la surface des nuages polaires stratosphériques.
Fichier principal
Vignette du fichier
Richard_RAMAROSON_PhD_1989_1.pdf (19.94 Mo) Télécharger le fichier
Richard_RAMAROSON_PhD_1989_2.pdf (16.36 Mo) Télécharger le fichier
Format : Autre

Dates et versions

tel-00935265 , version 1 (23-01-2014)

Identifiants

  • HAL Id : tel-00935265 , version 1

Citer

Richard Radiela Andrianaina Ramaroson. Modélisation locale, à une et trois dimensions des processus photochimiques de l'atmosphère moyenne. Géophysique [physics.geo-ph]. Université Pierre et Marie Curie - Paris VI, 1989. Français. ⟨NNT : ⟩. ⟨tel-00935265⟩
499 Consultations
187 Téléchargements

Partager

Gmail Facebook X LinkedIn More