
HAL Id: tel-00960026
https://theses.hal.science/tel-00960026v1

Submitted on 17 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Service-Oriented Middleware for the Large-Scale Mobile
Internet of Things

Sara Hachem

To cite this version:
Sara Hachem. Service-Oriented Middleware for the Large-Scale Mobile Internet of Things. Mobile
Computing. Université de Versailles-Saint Quentin en Yvelines, 2014. English. �NNT : �. �tel-00960026�

https://theses.hal.science/tel-00960026v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

l’UNIVERSITÉ DE VERSAILLES SAINT-QUENTIN-EN-YVELINES

Spécialité

Informatique

École doctorale Sciences et Technologies de Versailles

Présentée par

Sara HACHEM

Pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ DE VERSAILLES

SAINT-QUENTIN-EN-YVELINES

Sujet de la thèse :

Service-Oriented Middleware for the Large-Scale

Mobile Internet of Things

Middleware pour l’Internet des Objets Intelligents

soutenance prévue le 10 Février 2014

devant le jury composé de :

Licia CAPRA (University College London, GB) Rapporteur
Daniele MIORANDI (CREATE-NET, IT) Rapporteur
Philippe PUCHERAL (Université de Versailles Saint-Quentin-En-Yvelines, FR) Examinateur
Marcelo DIAS DE AMORIM (CNRS, FR) Examinateur
Thiago TEIXEIRA (Google, USA) Examinateur
Valérie ISSARNY (Inria, FR) Directrice de thèse
Animesh PATHAK (Inria, FR) Co-directeur de thèse

Abstract

The Internet of Things (IoT) is characterized by a wide penetration in the regu-

lar user’s life through an increasing number of Things embedding sensing, actuating,

processing, and communication capacities. A considerable portion of those Things

will be mobile Things, which come with several advantages yet lead to unprecedented

challenges. The most critical challenges, that are directly inherited from, yet amplify,

today’s Internet issues, lie in handling the large scale of users and mobile Things, pro-

viding interoperability across the heterogeneous Things, and overcoming the unknown

dynamic nature of the environment, due to the mobility of an ultra-large number of

Things.

This thesis addresses the aforementioned challenges by revisiting the commonly

employed Service-Oriented Architecture (SOA) which allows the functionalities of

sensors/actuators embedded in Things to be provided as services, while ensuring

loose-coupling between those services and their hosts, thus abstracting their hetero-

geneous nature. In spite of its benefits, SOA has not been designed to address the

ultra-large scale of the mobile IoT. Consequently, our main contribution lies in con-

ceiving a Thing-based Service-Oriented Architecture, that revisits SOA interactions

and functionalities, service discovery and composition in particular. We concretize

the novel architecture within MobIoT, a middleware solution that is specifically de-

signed to manage and control the ultra-large number of mobile Things in partaking

in IoT-related tasks. To assess the validity of our proposed architecture, we provide

a prototype implementation of MobIoT and evaluate its performance through exten-

sive experiments that demonstrate the correctness, viability, and scalability of our

solution.

Keywords: Internet of Things, Scalability, Mobility, Middleware, Service-Oriented

Architecture.

Contents

Contents v

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Mobile IoT Challenges . 4

1.1.1 Scale . 4

1.1.2 Heterogeneity . 5

1.1.3 Dynamic Network Topology 6

1.2 Thesis Contribution: Towards a Thing-based Service-Oriented Mid-

dleware . 6

2 The Mobile Internet of Things: State of the Art 13

2.1 Taming the Heterogeneous Internet of Things 15

2.1.1 Representing Things . 15

2.1.2 Abstracting Things . 18

2.1.3 Interacting With Things . 21

2.2 Managing the Large Scale Internet of Things 22

2.3 From the Internet of Things to the Mobile Internet of Things 25

2.3.1 Social Sensing . 27

2.3.2 Urban Sensing . 28

2.4 Discussion . 31

2.5 Summary . 33

v

CONTENTS

3 MobIoT: Service-Oriented Middleware for the Mobile IoT 35

3.1 MobIoT Ontologies . 36

3.1.1 Device Ontology . 38

3.1.2 Physics Domain Ontology . 41

3.2 MobIoT Architecture . 44

3.2.1 Query Component . 46

3.2.2 Composition & Estimation Component 50

3.2.3 Discovery Component . 50

3.2.4 Access Component . 52

3.2.5 Registry . 52

3.3 Summary . 54

4 Probabilistic Thing-Based Service Discovery 55

4.1 Background . 57

4.2 Thing-Based Service Registration . 60

4.2.1 Deterministic Thing-based Registration 62

4.2.2 Probabilistic Thing-based Registration 69

4.2.3 Computation Simplifications 79

4.3 Thing-based Service Look-up . 82

4.3.1 Probabilistic Thing-based Lookup 82

4.3.2 Coverage-Based Probabilistic Lookup 92

4.4 Summary . 101

5 Thing-based Service Composition 103

5.1 Background . 104

5.2 Semantic Thing-based Service Composition 106

5.2.1 Expansion . 108

5.2.2 Mapping . 114

5.2.3 Execution . 116

5.3 Summary . 129

6 Implementation and Evaluation 131

6.1 MobIoT Prototype Implementation 131

6.1.1 MobIoT Mobile Middleware 133

6.1.2 MobIoT Web Service . 135

vi

CONTENTS

6.1.3 DynaRoute Application . 137

6.2 Experimental Evaluation . 140

6.2.1 Simulation Environment . 141

6.2.2 Assessment Metrics . 144

6.2.3 Registration Evaluation Results 145

6.2.4 Look-up Evaluation Results 154

6.2.5 MobIoT Evaluation Results 157

6.3 MobIoT In The Future Internet . 159

6.3.1 CHOReOS Middleware Architecture 161

6.4 Summary . 163

7 Conclusion 167

7.1 Summary of Contributions . 168

7.2 Future Work . 170

7.2.1 Short-term Perspective . 170

7.2.2 Long-term Perspective: Better World With Social Urban Mon-

itoring . 172

Bibliography 175

vii

List of Figures

1.1 The SOA interactions in the Mobile Internet of Things. 7

3.1 A sample of the Device Ontology. 39

3.2 Thermometer model example. 41

3.3 A sample of the Domain Ontology. 42

3.4 Windchill formula example. 43

3.5 The MobIoT middleware architecture. 46

3.6 The component diagram of MobIoT components. 47

3.7 The Sequence diagram representing the interactions upon executing a

user query. 48

3.8 The Query object class diagram. 49

4.1 An example of the coverage provided by a mobile Thing at the locations

li throughout its path. 67

4.2 An illustration of the maximum reachability area by Cli,d2max
and the

coverage areas around locations li. 73

4.3 A closer look at the substitution of Cli,r by σli,r and Cli,dimax
by Σli,dimax

. 80

4.4 The PDF of a normal distribution with σ = du
3

. The area under the

curve is divided into 12 equal areas. 87

4.5 The final grid from which |s| normally distributed mobile Things should

be selected. 90

4.6 An illustration of the SweepLine Algorithm. 95

5.1 An overview of the Thing-based service composition. 107

5.2 An example of a cyclic expansion. 111

5.3 An example of the expansion phase. 113

ix

LIST OF FIGURES

5.4 An example of the mapping phase. 117

5.5 An example of the execution phase. 127

6.1 The MobIoT middleware implementation. 132

6.2 The GUI of DynaRoute POI service. 139

6.3 Deployment used for performing large scale evaluations. 144

6.4 The ratio of the number of Things in the inner and outer squares to the

number of Things in the sensing circle after five steps. 146

6.5 A plot of the locations of the 10, 000 Things in Beijing. 147

6.6 The resulting coverage and registration percentages as the required cov-

erage threshold decreases from 1 to 0.6 a) for a radius of 10 m b) for a

radius of 10 km. 148

6.7 Coverage/registration percentage for TLW-based and RW-based regis-

tration. 150

6.8 Time needed by the Registry to allow registration. 152

6.9 Time needed by the Registry to prevent registration. 152

6.10 The number of Things allowed and prevented from registering their ser-

vices. 153

6.11 The time needed by an Android phone to compute the registration decision.154

6.12 Coverage and set size of probabilistically selected subset of registered

services. 154

6.13 The coverage and set size of the candidate set of services. 155

6.14 Subset selection by the uniform distribution-based look-up. 155

6.15 Time analysis of the Find operation for different input rates. 158

6.16 The time distribution of QRT for 1, 000 concurrent queries with a) full

registration, look-up b) probabilistic registration and look-up. 159

6.17 The CHOReOS middleware architecture. 160

x

List of Tables

2.1 Comparison of existing solutions to the heterogeneous IoT. 22

2.2 Comparison of existing solutions towards a scalable IoT. 26

2.3 Comparison of existing solutions towards a Mobile IoT. 32

4.1 Discovery Related Notations (a). 56

4.2 Discovery Related Notations (b). 57

6.1 Acronyms used in this chapter. 145

xi

Chapter 1

Introduction

The earliest recorded mention of the term “Internet of Things” (IoT) goes back to a

presentation by MIT’s Kevin Ashton in 1999. In it, he famously stated that adding

Radio Frequency Identification (RFID) tags to everyday objects would create an

Internet of Things.1 The initial vision was to use RFID tags on objects in supply

chains to point to Internet databases holding information about the tagged objects.

Although his predicted IoT is undoubtedly becoming a reality, it now goes far beyond

the original concept, to be characterized by the integration of large numbers of real-

world objects onto the Internet, with the aim of turning high-level interactions with

the physical world into a matter as simple as interacting with the virtual world today,

and eventually blending both worlds together. As such, two types of physical objects

that will play a key role in the IoT are sensors and actuators. In fact, such devices

are already seeing widespread adoption in the highly-localized systems within our

cars, mobile phones, laptops, home appliances, and wearable fabric.

However, due to the still growing hype surrounding the IoT vision, there is not a

unanimous definition that can be adopted. Based on our survey of the literature, the

most representative definitions, from our perspective, are:

• The definition provided by the CASAGRAS Project [CASAGRAS, EU, 2012]:

A global network infrastructure, linking physical and virtual objects

through the exploitation of data capture and communication capa-

1Kevin Ashton, RFID Journal, 22 June 2009: “I could be wrong, but I’m fairly sure the phrase
‘Internet of Things’ started life as the title of a presentation I made at Procter & Gamble (P&G)
in 1999”

1

Chapter 1. Introduction

bilities. This infrastructure includes existing and evolving Internet

and network developments. It will offer specific object-identification,

sensor and connection capability as the basis for the development of

independent cooperative services and applications. These will be char-

acterized by a high degree of autonomous data capture, event transfer,

network connectivity and interoperability.

• Future Internet Assembly/Real World Internet1 definition:

The IoT concept was initially based around enabling technologies such

as Radio Frequency Identification (RFID) or wireless sensor and ac-

tuator networks (WSAN), but nowadays spawns a wide variety of de-

vices with different computing and communication capabilities gener-

ically termed networked embedded devices (NED). [. . .] More recent

ideas have driven the IoT towards an all encompassing vision to in-

tegrate the real world into the Internet [. . .].

• SAP definition by Haller et al. [Haller et al., 2009]:

A world where physical objects are seamlessly integrated into the in-

formation network, and where the physical objects can become active

participants in business processes. Services are available to interact

with these ‘smart objects’ over the Internet, query and change their

state and any information associated with them, taking into account

security and privacy issues.

On the one hand, while CASAGRAS perceives the IoT as an actual infrastructure

of interconnected Things with sensing, communication and computation capacities,

FIA focuses more on the characteristics of those Things. SAP, on the other hand,

considers it more as a paradigm and a vision in an enterprise context, with security

and privacy being important requirements. Although they do not provide an actual

definition, Miorandi et al. [Miorandi et al., 2012] conclude, after thorough analysis of

the literature, that the IoT actually spans three layers: i) a network of smart Things

interconnected through technologies that extend today’s Internet; ii) a physical layer

1FIA:http://www.future-internet.eu/.

2

http://www.future-internet.eu/.

Chapter 1. Introduction

of supporting technologies (RFID, sensors/actuators, etc.); and iii) a variety of appli-

cations and services that leverage those technologies. Moreover, authors identify six

common attributes that smart Things should exhibit: i) have a physical embodiment;

ii) possess communication capacities; iii) have a human readable name and machine

readable address; iv) have a unique identifier; v) have computation capacities; and

vi) have sensing/actuating capacities.

Our conclusions from surveying the literature are in accordance with the catego-

rization of the attributes of Things, provided by Miorandi et al. Distilling the ideas

from the above, we conceive the following definitions:

Definition 1.0.1. A Thing is an addressable physical object with computation power

and communication interfaces with embedded or attached sensors and actuators that

allow it to interact with the physical world. A Thing must be aware of its own state

regarding its resources and possibly its location.

Definition 1.0.2. The Internet of Things, an extension of today’s Internet, is an

infrastructure of networked Things that connects the real world to the virtual world

by exploiting the Things’ data capture, actuating, communicating and processing ca-

pacities, which can be provided as services.

A major constituent of the IoT is mobile Things (e.g., robots, drones, smart

fabric, smartphones, tablets, laptops and so on), all designed to facilitate our daily

lives [Papadimitriou, 2009]. A mobile Thing has, in addition to the Thing’s attributes

presented above, the capacity to communicate wirelessly and change its location,

either autonomously or with human assistance. A mobile Thing can also be aware of

its location and its displacements, past and future ones.

Mobile Things are no longer a vision for the future. They are widely available and

within everyone’s reach. In fact, it is common knowledge that nowadays all mobile

phones host at least two sensors: a camera and a microphone. As of 2011, there are

5.3 billion phone users of whom more than 1 billion own a smartphone1 containing

other sensors such as gyroscopes and barometers, in addition to computation power

and open programming platforms (i.e., software systems with open APIs that allow

developers to integrate third party applications with the platform).

The success of mobile computing and the mobile sensing paradigm are highlighted

by the numerous research and industrial efforts towards making them a reality [Camp-

1US Strategy Analytics:http://www.strategyanalytics.com.

3

http://www.strategyanalytics.com.

Chapter 1. Introduction

bell et al., 2008]. Additionally, they are motivated by two benefits that mobility in-

troduces [Pereral et al., 2012]. Firstly, with the increasing number of mobile Things

hosting various sensors and actuators, there is no need to spend large amounts of

money on static sensor/actuator deployments. It now becomes possible to deploy

a few powerful sensors/actuators that are complemented by the numerous cheaper

ones embedded in mobile Things. It is also possible, in numerous cases, to require

no deployment at all, especially since mobile Things can cover more areas than their

static counterparts. Finally, unlike static sensors/actuators, which, in many cases, are

placed in remote areas, the ones embedded in mobile Things such as mobile phones

are regularly recharged.

In light of the above, we restrict our research focus in this thesis on the mobile

portion of the IoT, comprising in particular mobile Things with 3G/4G cellular and

WiFi communication capacity and endowed with self localization capabilities, hence-

forth referred to as mobile IoT. Additionally, we target a class of IoT applications that

require location-based services exploited in scenarios such as outdoors environmental

monitoring. However, the realization of the mobile IoT is not without its challenges,

which we illustrate in the following section.

1.1 Mobile IoT Challenges

At first glance, the challenges facing the realization of the mobile IoT vision are similar

to some already observed in today’s Internet, which are related to the large scale

of available information and highly demanding users, and the heterogenous nature

of its virtual and physical constituents. However, looking deeper, these challenges

are significantly different when taking into consideration the complexity of handling

knowledge about the physical environment, the never-before-seen scale and most

importantly, the continuous motion of mobile Things.

1.1.1 Scale

If we look at smartphones alone, there were 647 million smartphones in 2010 [Cisco,

2011] while there are more than 1 billion smartphones and phones equipped with Web

access in 2013. Those values grow exponentially when accounting for the different

types of sensors and actuators they host and the data they produce. Moreover, the

4

Chapter 1. Introduction

number of Internet users is foreseen to reach 7 billion by 2020 [Blackman et al., 2010].

Bearing this in mind, it is unrealistic and extremely inefficient to expect today’s net-

working infrastructure to handle the load of even a small percentage of those users

interacting with the mobile Things. There are in fact several constraints to take into

account, especially, communication costs, since, a single sensing task, say measuring

temperature in Rome, will require the direct involvement of millions of mobile Things,

and in addition, lead to time delays and wasted energy. In more detail, exploiting the

anticipated ultra large number of Things comes with numerous issues pertaining to

managing the large volumes of data, provided by sensors for instance, which will lead

to higher storage requirements. Another issue lies in identifying and accessing appro-

priate Things, among billions, to provide needed functionalities [Toma et al., 2009],

which comes with high communication and computation costs. Additionally, process-

ing data streams and the in-network processing of sensor data will also be another

challenge directly related to the anticipated IoT scale [Stuckmann and Zimmermann,

2009, Papadimitriou, 2009]. Finally, composing the functionalities provided by the

Things will be challenging with millions of heterogeneous alternatives expected to be

available [Vermesan and Friess, 2011].

1.1.2 Heterogeneity

For the IoT to successfully become a global infrastructure of Things, those Things

should be able to interoperate. However, for one, mobile Things, and the sensors/ac-

tuators they host, are manufactured by an assortment of vendors and will have differ-

ent attributes concerning their communication, addressability, sensing, and actuating

capacities [Mattern and Floerkemeier, 2010]. This multi-faceted heterogeneity has nu-

merous repercussions related to identifying appropriate Things and functionalities as

they can have various heterogeneous descriptions and description languages that hin-

der their discoverability. Similarly, the heterogeneous nature of the IoT hampers the

composition of the functionalities they provide and their capacity to communicate

and exchange data among each other or with the systems exploiting them [Vermesan

and Friess, 2011]. All of these parameters lead to a rather challenging heterogeneity

that makes the IoT extremely hard to work with. As their diversity increases, del-

egating tasks of refining and homogenizing those attributes to humans will simply

not be feasible. In such a dynamic environment, with so many unknowns, it is cru-

5

Chapter 1. Introduction

cial to conceive high-level knowledge representation that all Things and humans can

understand.

1.1.3 Dynamic Network Topology

One of the main characteristics of the mobile IoT is an infrastructure that is both

dynamic and unknown, therefore subject to intermittent availability. The reason

for this dynamicity is twofold. Firstly, it is possible that the Thing does not have

sufficient resources to partake in a sensing, actuating or processing task. Secondly, the

Thing may no longer be at the location of interest. As a consequence, applications

will often end up depending on services that are no longer available. As for the

“unknown” attribute, it stems from the fact that adding the scale to the mobility of

Things entails keeping track of the locations of, not a few, but all millions of Things at

all times. This is a tedious, near to impossible task, which requires high performance

capabilities within devices whose monetary cost is proportional to processing power.

Consequently, the most challenging requirement directly associated with the mobility

of an ultra large number of Things is managing the underlying network of such

Things [Zorzi et al., 2010] and enabling the systems requiring their functionalities to

localize and communicate with them, in a timely manner, without being obliged to

continuously track their mobility.

1.2 Thesis Contribution: Towards a Thing-based

Service-Oriented Middleware

Engineering a solution to the aforementioned issues depends on the answer to the

following question: How to architecture a scalable global solution that abstracts the

real world into a virtual world?

Firstly, with the heterogeneous nature of the mobile IoT constituents, it is paramo-

unt to decouple the hardware details of mobile Things and their embedded sensors/ac-

tuators, along with the implementation technologies of their software components,

from the functionalities they provide, i.e., their services. Consequently, Service Ori-

ented Computing (SOC), a software engineering paradigm that builds on services

as the core components of distributed heterogeneous software systems, is the most

appropriate choice. The Service-Oriented Architecture (SOA) [Papazoglou, 2003]

6

Chapter 1. Introduction

Registry

Service
consumer

Service
providers

2
1

3

1

2

3

Discovery

Composition

Access

temp wind
speed

wind-
chill

Figure 1.1. The SOA interactions in the Mobile Internet of Things.

provides a tangible architecture design for SOC, and it proved its worth for more

than a decade [Issarny et al., 2005, King et al., 2006, Gu et al., 2005, Kalasapur

et al., 2007, Guinard et al., 2010].

In this architecture, a service is a software entity that provides a public func-

tionality, acquired through an invokable and discoverable interface while its internal

operations and the attributes of its host are hidden. SOA involves three main ac-

tors that interact directly with one another (shown in Figure 1.1): a service provider

(the host providing a running instance of a service), a service consumer (application

that consumes the services), and a Registry holding descriptions of accessible service

instances (running services).

To allow the interaction between the consumers and the providers, SOA systems

are expected to provide three functionalities: discovery, composition of, and access

to service instances (Figure 1.1). Specifically, discovery is used to publish (register)

service instances in registries to later enable the search for and retrieval (look-up) of

the ones that can satisfy a need. Composition of services is used when discovered

services do not provide the needed functionality. In such case, other existing services

are combined to provide a new, more convenient functionality. Finally, access enables

the interaction with the discovered services.

The aforestated functionalities are essential, as they allow the system to handle

the dynamic nature of the mobile IoT. However, there is a gap between the scale

they are designed for and the scale they will have to encounter in the mobile IoT.

7

Chapter 1. Introduction

The scale SOA systems were expected to operate in are reflected by the nature of the

interactions among the SOA players, where:

• During registration, all willing service providers are able to register (publish)

the descriptions of their services.

• During look-up, all registered services that provide a needed functionality are

retrieved to be accessed.

• The aggregation/composition logic should be applied by the consumer(s).

• Access to selected services is performed directly by consumer(s).

In fact, in the usual application of SOA systems, all tasks revolve around a business

logic that can be satisfied by one or few services. Whereas in IoT, services are

meant to monitor and modify a feature in the real world and should be numerous.

Hence, expecting the service consumer to talk to all the service providers individually

to access their services and acquire their measurements, then know how to treat

each and every value (with different possible formats, types, units, etc.) requires

communication and computation capabilities that the consumer will most likely not

possess.

As an alternative, we revisit the SOA and its interaction patterns to support better

scalability and exempt consumers from directly interacting with providers. Specif-

ically, we provide in this thesis a solution that wraps discovery, composition, and

access in a novel Thing-based Service-Oriented middleware that, unlike traditional

SOA middleware, is aware of the physical properties of the real world and handles

all cumbersome tasks on the consumer’s behalf. The choice for a middleware-based

approach is motivated by our aim to support reusability among a vast set of appli-

cations while hiding the underlying heterogeneous nature of the physical world, thus

saving development efforts and time.

Thing-based Service-Oriented middleware is an intermediate-layer software sys-

tem between Operating Systems and IoT applications that abstracts the implementa-

tion details of lower level system components, including sensing and actuating services

and hardware specifications of Things. The Thing-based Service-Oriented middleware

should provide discovery, composition and access functionalities to be exploited by an

IoT application. An IoT application is a software system that builds on the Thing-

based Service-Oriented middleware to provide Thing-based services integrated with

8

Chapter 1. Introduction

application-specific logic to end-users. A Thing-based service is a logical entity that

abstracts sensors and actuators hosted on Things, with one peculiarity being that

services are directly related to the physical location of their hosts.

However, to be inline with the mobile IoT requirements for a scalable solution

that can manage the mobility of Things and abstract their heterogeneous nature, the

functionalities of traditional Service-Oriented middleware are also to be revisited.

Firstly, discovery should smartly manage the ultra-large number of Things willing

to provide their services, by controlling the registration process, rather than blindly

allowing all Thing-based services to participate. Discovery should also perform a

smart retrieval process to determine which of the registered services should actually

provide their functionalities. Secondly, composition should be executed transparently

and automatically by the middleware, on the consumer’s behalf. Moreover, compo-

sition should include a smart selection of services to compose, based on real world

attributes, including detailed knowledge of the physics behind sensing and actuating

tasks. Finally, access should take place transparently without burdening consumers

with this task.

Moreover, the common approach to sensing/actuating tasks is by decoupling the

sensing from the querying for information, which are asynchronous, and not triggered

by a user’s request. However, in many cases, the latter leads to more appropriate

results. Indeed, sensing the world independently of the measurement request time

and intended use of the data is not necessarily the best option; such approach may

lead to large out-dated streams of data that can be of low benefit while more useful

up-to-date measurements are missing. Consequently, we restrict our focus to on-

demand discrete queries only. The issue of data freshness versus response time arises

in this case. Therefore, in addition to the above requirements, it becomes crucial for

IoT applications to execute instantaneous access to Thing-based services in a timely

manner.

Our contribution in this thesis lies in conceiving MobIoT, a Thing-based Service-

Oriented middleware solution that ensures the aforementioned requirements are sat-

isfied through novel discovery and composition protocols, and wraps legacy access

protocols to execute seamlessly.

Our work revolves around the following thesis statement:

The mobile Internet of Things is characterized by a heterogeneous and

dynamic infrastructure comprised of an ultra large number of Things. By

9

Chapter 1. Introduction

employing novel algorithms and protocols to efficiently discover and com-

pose Thing-based services, a middleware-based approach can provide the

necessary abstractions and functionalities towards the realization of truly

scalable Mobile IoT applications.

In conformity with the contributions we specified above, we structure our thesis

document as follows:

• Chapter 2 surveys the literature for research efforts in the IoT and related

domains, Sensor Networks and Mobile Sensing in particular, to address the IoT

heterogeneity, scale, and mobility issues.

• Chapter 3 gives an overview of MobIoT, our Thing-based Service-Oriented mid-

dleware for the Mobile IoT.

• Chapter 4 introduces our Thing-based service discovery approach to manage the

Mobile IoT scale and dynamic aspects through novel probabilistic protocols and

algorithms for Thing-based service registration and look-up. The algorithms we

conceived are also presented in detail.

• Chapter 5 introduces our Thing-based service composition and the algorithms

we designed to allow it to execute automatically, with no involvement from

developers or end-users.

• Chapter 6 introduces our prototype implementation of MobIoT along with a

set of extensive evaluations that demonstrate, not only the feasibility of our ap-

proach, but also the resulting quality of the discovery approach, along with its

scalability, as compared to a regular SOA-based approach. This chapter intro-

duces the CHOReOS middleware for large-scale service choreographies in the

Future Internet that was conceived as part of the CHOReOS research project.

Our contribution in this thesis is provided as a component of the CHOReOS

middleware.

• Chapter 7 provides a comprehensive summary of our contributions along with

the remaining research issues to be further investigated.

A considerable portion of our work has been published in various conferences,

journal papers, and research reports as follows:

10

Chapter 1. Introduction

• Journal Papers

– In [Issarny et al., 2011], we surveyed the literature and performed a state

of the art analysis of SOA approaches in the Future Internet context.

– In [Hachem et al., 2013b], we presented our work on the Thing-based

Service-Oriented middleware, with special focus on the Registration con-

tribution.

• Peer Reviewed Conference Paper

– In [Hachem et al., 2013a], we presented our Registration contribution built

on probability models.

• Peer-Reviewed Symposium Paper

– In [Hachem et al., 2011], we presented in detail our contribution on knowl-

edge modeling of the real-world.

• Invited Paper

– in [Teixeira et al., 2011], we gave an overview of MobIoT architecture and

initial goals.

• Project Deliverables

– In [CHOReOS consortium, 2011a], we presented the CHOReOS perspec-

tive on the Future Internet and specified the initial CHOReOS conceptual

model.

– In [CHOReOS consortium, 2012a], we specified the initial architecture of

the CHOReOS middleware.

– In [CHOReOS consortium, 2011b], we provided the details of the CHOReOS

middleware initial specification.

– In [CHOReOS consortium, 2012b], we provided the details of the initial

CHOReOS middleware implementation.

– In [CHOReOS consortium, 2013], we provided the details of the final

CHOReOS middleware implementation.

11

Chapter 2

The Mobile Internet of Things: State

of the Art

Recalling from Chapter 1, in the mobile IoT vision, on-demand mobile sensing/ac-

tuation should be seamlessly enabled in software applications and be executed in a

timely manner. This vision falls at the junction of two trends that govern a consid-

erable portion of today’s research focus and technological evolutions: i) exploiting

ubiquitous mobile devices such as smartphones that are constantly connected to the

Internet and have solid communication capabilities, which enable them to easily ex-

change messages or publish information; ii) establishing the IoT vision to ubiquitously

integrate computation, sensing/actuation and communication capabilities in every-

day objects. However, for the mobile IoT vision to become a reality and reach its

true potential in rendering information on today’s physical world remotely accessi-

ble while a maintaining a connection with and access to the physical constituents

of the real world, several challenges must first be addressed. As elaborated in what

follows, there are three challenges to overcome in order to realize this vision: 1) the

heterogeneous nature of the IoT, 2) the IoT scale, and 3) the mobility of Things.

The heterogeneity issue can be perceived at three levels from a bottom-up per-

spective:

• Sensor/actuator hardware: An important aspect of the IoT is that new

sensing/actuating hardware embedded in Things, will often not replace older

generations of already deployed sensor/actuator networks. Rather, different

generations of devices will operate alongside one another. Deployed hardware

13

Chapter 2. The Mobile Internet of Things: State of the Art

is manufactured by distinct entities and displays heterogeneous attributes such

as operating characteristics, e.g., sampling rates and error distributions.

• Things: The degree of heterogeneity becomes more complex as we move up

from sensor/actuator components to the hosting Things, which are also pro-

duced by different manufacturers and possess distinct functional and non-functio-

nal characteristics.

• Data: The Things and their sensors/actuators produce heterogeneous data

with different types and formats because physical phenomena can be described

in various ways.

Evidently, to properly interact with Things, the above diversities should be managed.

The IoT scale issue can be perceived at three levels: 1) the ultra large number of

devices that can be considered as Things; 2) the numerous functionalities Things can

provide, especially with the continuously evolving ubiquitous sensor/actuator tech-

nologies; and 3) the large loads of data streams produced by Things. This scale leads

to: unprecedented communication costs when interacting with Things; computation

costs to process the generated streams of raw data; and storage costs to hold the

information about Things and the generated data.

The third challenge lies in handling the mobility of Things. Given that a consider-

able portion of IoT systems require outdoors environmental monitoring and location-

based services [Atzori et al., 2010], the functionalities of Things to exploit by this

class of IoT systems, are directly related to their physical locality. Consequently, it

is paramount to know their position in an efficient manner. The latter requirement

is essential in the case where a request for on-demand measurements/actions at a

specific location is received, and must be served, by mobile Things, with minimal de-

lay. Continuously tracking mobile Things is achievable, when there are few Things to

track, or if Things have low mobility. However, when the anticipated IoT scale comes

into play, the process grows harder to satisfy as the network becomes too complex to

track. Consequently any approach to answer queries for on-demand services in the

mobile IoT should be able to manage to large number of Things, take their mobility

into account, and rapidly provide the needed information.

Various software systems and underlying communication protocols have been pro-

posed to help overcome the aforementioned challenges. In particular, with reusability

14

Chapter 2. The Mobile Internet of Things: State of the Art

and portability as a motive, middleware solutions —that provide APIs to enable de-

velopers to exploit the functionalities provided by the Things— are amongst the

commonly adopted design choices. However, given that the concept of exploiting

large scale mobility for on-demand physical information retrieval or real-time actions

has only emerged recently, there are few solutions that have been proposed to tackle,

in conjunction, the scale and mobility challenges with timely on-demand services as

a requirement. In fact, the proposed approaches tackle the challenges individually.

As a result, we survey in this chapter the various approaches in IoT and mo-

bile IoT related research that tackle the heterogeneity, scale, and mobility issues

separately. We analyze the capability of scalable and mobility-tolerant systems to

fulfill requests for on-demand sensing/actuating tasks with minimal delay. Moreover,

with the majority of real-world information in the IoT being provided by sensors, we

include research efforts from the Sensor network domain in our survey.

2.1 Taming the Heterogeneous Internet of Things

The main motivation behind the IoT vision is to seamlessly merge the physical world

with the virtual world. In accordance with this vision, several approaches were con-

ceived to enable developers to integrate virtual abstractions of functionalities provided

by Things into applications.

From our survey of the literature, we identify three complementary perspectives

towards achieving this goal and harmonizing the heterogeneous nature of the IoT:

i) providing uniform representations of Things, their sensors and their capabilities, in

order to enable systems to reason over those capabilities; ii) wrapping the capabilities

of Things in uniform abstractions to enable systems to exploit them; and iii) wrapping

the communications with/among Things in uniform networking protocols. We review

each in turn.

2.1.1 Representing Things

When requesting measurements/actions from Things, it is crucial to understand the

specifications of Things, i.e., metadata, in order to identify which of them is ap-

propriate to take part in performing the sensing/actuating task. This requirement

is satisfied through descriptions —provided by developers— of Things, that in par-

15

Chapter 2. The Mobile Internet of Things: State of the Art

ticular characterize: the hosted sensors/actuators, the provided functionalities, and

the produced data, which are compared against the application request. However,

given the heterogeneous nature of the IoT, the process of characterizing Things is not

straightforward, due to the diversity of Things and thereby related descriptions.

One possible way to tackle this issue is through the approach proposed in [Guinard

et al., 2010] to extend a request for a functionality with synonyms found through,

for instance, a Yahoo! Web search. The result is then matched to as many different

descriptions as possible. However, this approach is rather limited as it does not enable

semantic reasoning over the descriptions. The latter is accounted for, by the majority

of relevant research efforts, through Semantic Web technologies.

Semantic Web technologies allow machines to understand the meaning behind

data, while keeping its representation simple enough for humans to understand it as

well. The core technologies for developing the Semantic Web are ontologies. An

ontology is defined as “a formal, explicit specification of a shared conceptualiza-

tion" [Guarino et al., 1994] and is used to represent knowledge within a domain

as a set of concepts related to each other.

Indeed, most existing efforts to provide uniform representations for the IoT enti-

ties adopt the semantic approach and exploit ontologies. A big portion of ontologies

for the IoT is inherited from efforts in WSN to model sensors and actuators (e.g.,

[Compton et al., 2012, 2009, Russomanno et al., 2005]). The most influencing contri-

bution to modeling sensor/actuator networks is the taxonomy provided by the Sensor

Web Enablement (SWE) initiative of the Open Geospatial Consortium (OGC)[Botts

et al., 2008], in particular:

• Sensor Model Language (SensorML). SensorML Describes the geometric

and observational characteristics of sensors and sensor systems. It provides a

vocabulary to model sensors at different granularities, starting from thermome-

ters to satellites.

• Transducer Model Language (TransducerML). TransducerML describes

transducers, their characteristics and the data they capture/produce. A trans-

ducer can be a sensor or an actuator. Unlike SensorML, TransducerML de-

scribes the internal components of a sensor and how they capture and produce

the output data.

• Observations & Measurements (O&M). O&M models observations and

16

Chapter 2. The Mobile Internet of Things: State of the Art

measurements along with constructs to accessing and exchanging them. It

models concepts related to a sampling task such as features of interest, the

observation result, the observation time, and phenomenon time.

The taxonomy is provided in XML, which is useful for data presentation. It allows

users to structure their data while adding tags and labels. Similar efforts were made

in senML1, a lightweight markup language for sensors to enable the representation of

their measurements and parameters, using JSON, XML or Efficient XML Interchange

(EXI). However, the above media types do not provide any possibility to reason over

the meaning beyond the syntactic level. Consequently, several efforts were made to

build on the SWE taxonomy while providing ontologies with an agreed upon vocab-

ulary that matches the SWE taxonomy. A commonly exploited ontology, to reason

about sensors, that builds on SensorML and O&M is SSN [Compton et al., 2012],

provided by the W3C Semantic Sensor Network Incubator Group. SSN models sens-

ing specific information from different perspectives: a) Sensor perspective to model

sensors, what they sense and how they sense; b) System perspective to model systems

of sensors and their deployment; c) Feature perspective to model what senses a spe-

cific property and how it is sensed; d) Observation perspective to model observation

values and their metadata. SSN is aligned with the DOLCE-Ultralite (DUL) foun-

dational ontology2, which captures the logic underlying natural language and human

common sense. It introduces categories as accepted by human perception and social

conventions.

For examples on other sensor ontologies, we refer the interested reader to the

survey by d’Aquin and Noy [d’Aquin and Noy, 2012]. Many of the ontologies surveyed

by d’Aquin and Noy provide solid basis for the representation of sensors, actuators,

and their data. However, those entities are only a portion of the IoT. More efforts have

been made recently to extend the ontologies with IoT-specific semantics, including

Things and the functionalities they provide. For instance, Sense2Web [De et al., 2012]

provides an ontology that models the following Thing-related concepts: the Entity

(equivalent to a feature on interest); the Device, which is the hardware component

(equivalent to a Thing); the Resource, which is a software component representing

the entity; and the Service through which a resource is accessed. A resource can be

a sensor, actuator, RFID tag, processor or a storage resource. To model sensors for

1senML:http://tools.ietf.org/html/draft-jennings-senml-08
2DUL:http://www.loa-cnr.it/ontologies/DUL.owl.

17

http://tools.ietf.org/html/draft-jennings-senml-08
http://www.loa-cnr.it/ontologies/DUL.owl.

Chapter 2. The Mobile Internet of Things: State of the Art

instance, a hasType property links a resource to an instance of a sensor that complies

with an available sensor ontology (e.g. SSN). A location for instance, that of a Device

or a Resource, can be described by exploiting ontologies such as GeoNames.1

With the large palette of available ontologies, we posit that the solutions to the

representations of Things have reached a mature stage. However, exploiting Semantic

Web technologies does not address the heterogeneity of the functionalities provided

by those Things, which can be abstracted using various technologies discussed next.

2.1.2 Abstracting Things

Several efforts have been undertaken to wrap the heterogeneous functionalities of

Things within higher level abstractions, mostly services, that can be exploited by

IoT applications. This is essential to decouple the heterogeneous hardware specifica-

tions from the functionalities of Things. The needed abstractions can, in particular,

be provided by Service-Oriented Computing (SOC), which builds on services as the

core components of software systems. Service-Oriented Architecture (SOA) provides

a tangible design for SOC. It is characterized by its ability to provide loose coupling

between services and their hosts, which in this case, correspond to sensing/actuat-

ing services and Things respectively. Given its benefits, SOA has been adopted by

the majority of IoT-related research as the goto approach for abstracting Things as

services, and managing the interactions specific to the technologies employed when

enacting the services, i.e., technologies employed when creating, discovering and ac-

cessing the services. We proceed in the following to present how SOA has been

exploited to abstract Things as services, which belong to one of the two following

paradigms:

• A Web Service is defined in [W3C] as “a software system designed to support

interoperable machine-to-machine interaction over a network. It has an in-

terface described in a machine-processable format (specifically WSDL). Other

systems interact with the Web service in a manner prescribed by its description

using (traditionally) SOAP messages, typically conveyed using HTTP with an

XML serialization in conjunction with other Web-related standards”. However,

WSDL, albeit being well-structured and beneficial to overcome heterogeneity

issues, is a heavyweight XML document that requires expensive parsing, which

1Geonames:http://www.geonames.org/.

18

http://www.geonames.org/.

Chapter 2. The Mobile Internet of Things: State of the Art

hinders the usability of Web Services on Things. Additionally Web Services

come with a set of standards that are hard to implement on constrained Things.

To overcome the latter issue, an alternative is to exploit the Device Profile for

Web Service (DPWS), which builds on a limited set of required standard im-

plementations that are more appropriate for resource constrained Things.

• A RESTful Service is defined by [Richardson and Ruby, 2008] as “a simple Web

service implemented using HTTP and the principles of REST. It is a collec-

tion of resources, with three defined aspects: the base URI for the Web service;

the Internet media type of the data supported by the Web service (this is often

JSON, XML or YAML but can be any other valid Internet media type); the set

of operations supported by the Web service using HTTP methods (e.g., POST,

GET, PUT or DELETE)”. Unlike Web Services, RESTful services abide by no

standard to define service interfaces, which can be specified in various ways:

informal text, formal text, structured XML, WSDL, etc. With the various

options to describe services, REST provides less support for interoperability,

especially as compared to Web Services. However, by relying solely on HTTP,

therefore requiring no additional messaging layer, and the possibility to exploit

lightweight message formats (JSON, plain text, etc.), RESTful services require

less computation efforts than Web Services and can be exploited within resource

constrained Things. Moreover, exploiting REST simplifies the development pro-

cess by no longer requiring developers to make architectural decisions pertaining

to the various layers of the Web Service standards to implement [Pautasso et al.,

2008].

The above paradigms enable the merging of the physical and the virtual worlds as

they abstract the functionalities of Things as services. There are two approaches to

employing them: i) Abstracting physical Things as services; ii) Abstracting virtual

Things as services. We proceed in the following to presenting each approach.

Abstracting physical Things as services. When abstracting physical Things as

services, consumers have direct access to the Things providing the sensing/actuating

functionalities, and in particular, to the raw data produced, with no processing or

aggregation over the data. The functionalities to provide the raw data or perform an

action can be consumed as Web Services (e.g. [Guinard et al., 2010]) for Things with

19

Chapter 2. The Mobile Internet of Things: State of the Art

sufficient resources, or REST for constrained Things that cannot host Web Services.

The latter is majorly adopted in the Web of Things (Wot) context (e.g. [Guinard

et al., 2011]). The difference between the WoT and the IoT is that services, in the

former, should be reachable through the World Wide Web, while in the latter, they

can also be accessed directly.

Abstracting virtual Things as services. Virtual Things provide consumers with

access to the data already produced by Things and decouple between physical Things

and data they generate. In virtual Things, data undergoes one or several process-

ing/aggregation steps and can be the result of data provided by one or several data

sources. The latter is not feasible in the case of physical Thing abstractions. The

benefit of virtual abstractions is that they enable consumers to manipulate the data

from several sources at once without interacting with the Things generating it. Simi-

lar to abstractions of physical Things, virtual Things can be accessed as Web Services

or Rest services. Virtual Things abstractions are adopted in GSN by [Aberer et al.,

2007], through the concept of virtual sensors. Virtual sensors abstract data streams

generated by one sensor, or several data streams from other virtual sensors, referred

to as complex virtual sensors. Virtual sensors are accessible through the Web or

accessible as Web Services. An example of a virtual sensor in GSN is presented in

Listing 2.1. The specification determines that readings provided by a remote tem-

perature sensor should be provided as an average.

Listing 2.1. A sample of a Virtual Sensor Specification.

<output−s t ruc ture >

<f i e l d name="TEMPERATURE" type=" i n t e g e r "/>

</output−s t ruc ture >

<input−stream name="dummy" ra t e="100" >

<stream−source a l i a s=" s r c1 " sampling−r a t e="1" storage−s i z e="1h">

<address wrapper="remote">

<pred i c a t e key=" type" va l=" temperature " />

<pred i c a t e key=" l o c a t i o n " va l="bc143" />

</address>

<query>s e l e c t avg (temperature) from WRAPPER </query>

</stream−source>

<query>s e l e c t ∗ from src1 </query>

</input−stream>

20

Chapter 2. The Mobile Internet of Things: State of the Art

2.1.3 Interacting With Things

Even with Things uniformly represented, and services uniformly created, the het-

erogeneity issue remains unresolved at the networking level when discovering and

accessing the services. There are several networking protocols that can be adopted

following two approaches: Direct interactions among Things in the same local net-

work or remote interactions over the Internet.

When interacting with the Things locally, to discover and access their services,

there are various networking protocols that can be adopted depending on the tech-

nologies the Thing possess (e.g., Bluetooth, uPnP, ZigBee). A commonly adopted ap-

proach to hide the heterogeneous protocols is through protocol-specific plugins within

Service-Oriented middleware solutions. The plugins extract descriptions from each

protocol and hides them behind —in most cases semantic— descriptions (e.g., [Song

et al., 2010b]).

To enable remote discovery and access to services, through the Internet, in ad-

dition to REST-based or SOAP-based (for Web Services) communication protocols,

efforts are being undertaken to provide uniform protocols that enable lightweight

communications with constrained devices, such as CoAP (Constrained Application

Protocol) [Bormann et al., 2012] proposed as a REST-based communication protocol,

which replaces HTTP/TCP with CoAP/UDP. Another example is 6LowPAN, which

builds on IPv6 to enable small constrained devices to be connected to the Internet.

As can be concluded, Things and produced data can be abstracted into more or

less uniform representations by exploiting Semantic Technologies. The functionalities

of Things can be abstracted, based on a Service-Oriented Architecture, into services

compliant either with REST or Web Services. Finally, the networking protocols

to discover and access the services can be hidden by Service-Oriented middleware

solutions. Consequently, we posit that solutions to heterogeneity issues in the Internet

of Things have reached a mature stage and can be exploited to provide interoperability

among Things. A summary of the approaches presented in this section and their

limitations is presented in Table 2.1.

21

Chapter 2. The Mobile Internet of Things: State of the Art

Req Approach Idea Evaluation

H
et

er
og

en
ei

ty

+ Well adopted vocabulary
SWE markup languages + Enable syntactically
as standard vocabulary uniform descriptions

- No semantic reasoning
Uniformly + Lightweight

SenML: Lightweight sensor + Enable syntactically
Representing markup language uniform descriptions

- No semantic reasoning
Things + Semantic reasoning

Ontologies with + Overcome and reason
semantic reasoning over heterogeneous

support descriptions
- Lack representation

of real world knowledge

Abstracting
SOA decoupling + Overcome heterogeneous
functionalities host specifications

Things from hosts - Not scalable

Table 2.1. Comparison of existing solutions to the heterogeneous IoT.

2.2 Managing the Large Scale Internet of Things

When it was initially conceived, the Internet of Things was aimed at connecting

objects with RFID tags into Internet databases to monitor products. Some efforts

were made to transition from passive RFID tags to active tags. Active tags incorpo-

rate sensing capabilities and can contain onboard batteries [Want, 2004, 2006]. To

enhance battery lifetime, active tags can leverage Bluetooth Low Energy (BLE) tech-

nologies for instance, where batteries such as C32 batteries can last up to 24 months

in real life deployments. Other efforts were also made to integrate passive RFID

tags into deployed sensor networks with some or all nodes acting as gateways to the

Internet. Product monitoring evolved, along with the evolution from simple RFID

tags to active tags and entire sensor networks, into monitoring: products, traffic,

the environment, personal smart spaces, etc. In line with this evolution, the scale of

the IoT is perceived, first and foremost, from a data scale perspective, where a large

number of Things provide bulks of data streams to manage, analyze and process.

Attempts to provide those requirements can be grouped into: in-network process-

22

Chapter 2. The Mobile Internet of Things: State of the Art

ing; data aggregation; distributed processing; or outsourcing data processing to the

Cloud. We present those approaches in the following and analyze their ability to

address the on-demand large-scale sensing/actuating issues. The issues are related

to the communication overhead resulting from large-scale access to sensors/actuators

to acquire their measurements, especially with minimal delay constraints.

In-network processing and aggregation. In-network processing is adopted to

decrease data dissemination by requiring Things to perform in situ computations

over their data prior to forwarding it. It exploits the capacity of involved Things to

identify redundancy in their measurements and forward them upon change only, as

done for instance in [Ehyaei et al., 2011, Mietz et al., 2013, Cho et al., 2011]. Another

approach is to require each Thing to aggregate or process its own data [Rana et al.,

2010]. It is also possible to delegate the task to intermediate, more powerful Things

to perform data aggregations [Ferreira et al., 2010, Schmidt et al., 2011]. In-network

processing can partially address the communication overhead that would result from

the interactions with a large number of Things, by forwarding only compressed values

from one Thing to the other and if possible, not forwarding any. The former is

more beneficial in the context of on-demand services where aggregating results from

several Things and passing them along the network decreases the size of messages

being forwarded to the system employing the sensing/actuating services. The latter

option performs better for asynchronous sensing systems as it is left to the producer

to determine when fresh data should be generated. Asynchronous sensing refers to

the case where Things produce data independently from consumers’ needs.

Distributed data analysis. The most commonly adopted approach to distribut-

ing data analysis is through the MapReduce programming model [Dean and Ghe-

mawat, 2008] and its various implementations (e.g., Hadoop by Apache1), which are

directed towards optimizing the processing of available large scale data with special fo-

cus on fault tolerance. Programmers use map() and reduce() functions to distribute

synchronized computations across large scale clusters of machines and schedule inter-

machine communication times for efficient use of the network. The map function

sends the task to a main node to divide it into sub-tasks and distribute them over

the clusters of machines. The reduce collects the answers from all machines and
1Hadoop:http://hadoop.apache.org/

23

http://hadoop.apache.org/

Chapter 2. The Mobile Internet of Things: State of the Art

returns a combined answer to the user. The model and its implementations exploit

the shared-nothing architecture [Barroso et al., 2003] (independent and self-sufficient

nodes) on clusters with low end commodity machines (several machines that provide

higher performance at less cost than a system comprised of fewer but more expensive

high end machines).

The above techniques are beneficial for processing large amounts of data with an

infrastructure comprising numerous machines that can take part in the computation

process, which is suitable in the context of continuous flows of raw data streams that

should be processed. However, it introduces low benefits when data is discrete and

requires more simple aggregations, which is the case of on-demand instantaneous sens-

ing/actuating services. In the latter case, in-network data processing among Things

themselves can prove more efficient and less costly. In any case, large scale access

to discrete data does not impose the same challenges as large scale access to data

streams where the issues lie in managing the large volumes of data being continu-

ously generated and the need for continuous processing and possibly storage of the

resulting data, which comes with requirements for an infrastructure that can provide

powerful computations and large storage capacities. To abstract this infrastructure

and provide uniform access to the distributed computational resources as a single

resource, the Cloud can prove to be the best solution.

Outsourcing to the Cloud. Empowered by underlying techniques like MapRe-

duce to provide powerful computing as a service, and technologies like Amazon S3 1

to provide elastic storage as a service, the Cloud is gaining momentum [SENSEI

consortium, 2011, Mitton et al., 2012]. For instance, in addition to managing large

volumes of data, the default approach to enabling systems to handle large numbers of

Things providing their functionalities, is through distributed registries holding their

metadata, which can be hosted on the Cloud. In fact, the latter can be exploited

to provide three types of services exposing a single entry point regardless of the un-

derlying technologies and the possibly distributed nature of computations [Mell and

Grance, 2011]: Software as a Service (SaaS), which enables consumers to use ap-

plications running on a cloud with no control of the underlying cloud infrastructure

(network, servers, operating systems, storage, etc); Platform as a Service (PaaS),

which enables consumers to deploy onto the cloud infrastructure their own appli-

1Amazon S3:http://aws.amazon.com/s3/.

24

http://aws.amazon.com/s3/.

Chapter 2. The Mobile Internet of Things: State of the Art

cations based on a pay-per-use or charge-per-use basis; Infrastructure as a Service

(IaaS), which allows consumers to provision computing resources such as process-

ing, storage, networks, etc., with no control over the underlying cloud infrastructure,

but only operating systems, storage, and deployed applications. However, the Cloud

comes with money costs either at fixed rates or following the pay as you go models

and high bandwidth requirements, which are not always an option. Moreover, it does

not manage the communication overhead that results from interacting with the ultra

large number of Things, in order to access them and acquire their functionalities.

If not accounting for the high communication and monetary costs, given the fixed

nature of the IoT, or in most cases the mobility of Things with predetermined itinerary

(e.g., enterprise products), even if a large number of Things can provide their services,

the situation remains manageable since the mobility is not random, consequently

Things might not have to update their location information as frequently as Things

with random mobility. Managing the IoT scale is especially feasible with the Cloud

service provisioning, to handle, store, and process the produced data and the meta-

data of Things. However, when random mobility is introduced, the network becomes

too complex to track especially with the anticipated Thing-scale. While it is feasible

on the Cloud, storage and computation-wise, to store and process the mobility infor-

mation of Things, the corresponding communication costs and generated traffic will

grow unmanageable. Consequently, introducing and managing mobility of Things

becomes truly an issue —especially in the context of location-based services where

answers to user queries should be provided in a timely manner— and solely relying

on the Cloud as the ultimate solution is not as a scalable option for the reasons stated

above. A summary of the approaches presented in this section and their limitations

is presented in Table 2.2.

2.3 From the Internet of Things to the Mobile In-

ternet of Things

As discussed above, the IoT today assumes either a fixed environment or controlled

predetermined mobility. Research efforts in this context do not provide yet the re-

quired setting for a truly mobile IoT. A more convenient setting is provided in Mobile

Sensing systems where mobility is the rule rather than the exception. In the Mobile

25

Chapter 2. The Mobile Internet of Things: State of the Art

Req Approach Idea Evaluation

S
ca

le

+ Decrease traffic
In-network Aggregate data and communication cost

before forwarding or - More suitable for data
processing forward on change only streams and asynchronous

tasks not discrete data
+ Higher computation

Distributed data power
Distributed data computations + Faster computation time

analysis over numerous - More suitable for large
machimes data volumes not

discrete data
+ Scalable Storage

Software/platform +Powerful computations
Cloud /infrastructure as a - High bandwidth requirement

service and communication cost
- Comes with monetary cost

Table 2.2. Comparison of existing solutions towards a scalable IoT.

Sensing field, Things are portable objects usually carried by humans and adhere to

their mobility patterns, which do not exhibit controlled mobility characteristics. Ad-

ditionally, with few exceptions, Things are expected to have WiFi or 3G cellular

networks, which entails that they can (always) be reachable.

Based on the literature, mobile sensing, also known as people-centric sensing can

be divided into two categories [Lane et al., 2008]: i) participatory sensing, and ii)

opportunistic sensing. In more detail, participatory sensing entails direct involvement

of humans controlling the mobile devices, while opportunistic sensing requires the

mobile device itself to determine whether or not to perform the sensing task. By

depending on the custodian’s willingness to partake in a sensing task, participatory

sensing is not appropriate for the context of real-time instantaneous sensing/actuation

requests which can be better satisfied by opportunistic sensing. Orthogonal to the

above categorization, mobile sensing can be [Khan et al., 2013]: i) personal sensing,

mostly to monitor a person’s context and wellbeing; ii) social sensing, where updates

are about individuals, especially their social and emotional statuses; or iii) urban

(public) sensing, where public data is generated by the public and for the public

to exploit. Personal sensing is aimed towards personal monitoring and poses no

26

Chapter 2. The Mobile Internet of Things: State of the Art

(Thing) scale issue as it involves one or just a few devices in direct relationship with

their custodian (e.g., [Lu et al., 2009]). For instance, SoundSense [Lu et al., 2009]

is a system that enables each person’s mobile device to learn the types of sounds

the owner faces through unsupervised learning on individual phones. Consequently,

personal sensing will not be further investigated in this chapter. We proceed in the

following to illustrate how social sensing and urban sensing contribute to enabling

systems to adapt to the mobility of a large number of Things with special focus on

their capabilities to manage large-scale on-demand service requests.

2.3.1 Social Sensing

In social sensing, the Thing or its owner decide what social information to share about

the owner or the owner’s environment, with individuals or groups of friends [Khan

et al., 2013].

Based on the state of the art, Social sensing is mostly participatory, in the sense

that it is the custodian of the Thing who determines when and where data should be

generated. Consequently, continuously tracking the mobility of Things is not a re-

quirement. The latter is accounted for at the time of the data generation by localizing

the Thing only then and tagging (if needed) the data with location information. The

scale issue can be perceived in terms of large volumes of produced data and concur-

rent interactions between users and the social network, managing their information,

to provide social data. As illustrated by powerful social networks today, those scale

issues can be well handled with powerful processors and elastic Cloud backend storage

systems.

In addition to the scale issues above, in opportunistic social sensing, localizing

Things continuously can prove more essential.

There are two categories of opportunistic social sensing systems: Systems that

require small scale one-to-one relation among two Things, which similar to above,

might lead to a scale issue regarding the data being produced (if shared with the

system managing the interactions) and concurrent access requests to the system if

need be (e.g. [Beach et al., 2008]); or large scale sensing, where requests from indi-

viduals are posed for some social information (e.g. restaurant recommendation) at

a remote location of interest, which should be satisfied by other individuals at that

location (e.g., [Gaonkar et al., 2008]). To acquire needed information from Things

27

Chapter 2. The Mobile Internet of Things: State of the Art

without involving the owners, the system managing the requests must be able to

localize them. The common approach to satisfying this requirement and tracking the

mobility of a large number of Things, is by requiring all involved Things to register

their information and update their location in a repository. Once more, by exploiting

the Cloud’ elastic backend support, the repositories can be scaled as needed. How-

ever, as stated earlier, scalable repositories do not account for the communication

and generated traffic overhead that will result from continuously, even periodically

tracking an ultra large number of Things.

2.3.2 Urban Sensing

In urban sensing, also known as public sensing, data can be generated by everyone (or

their Things) and exploited by everyone for public knowledge, including environment

monitoring, or traffic updates [Khan et al., 2013].

In participatory urban sensing, users participate in providing information about

the environment by exploiting the sensors/actuators embedded in their Things (which

can be smartphones, vehicles, tablets etc.). However data is only generated according

to the owner’s willingness to participate. Participatory urban sensing is especially

characterized by scale issues at the data level, where data is generated by numerous

individuals and should be processed and aggregated for knowledge to be inferred,

which is where data scaling approaches presented in the previous section are exploited.

Similar to social sensing, participatory urban sensing does not require the system to

actively manage the mobility of Things as localization needs to take place only when

generating the data. Additionally, by decoupling request times for information from

information generation, timeless is not an essential requirement. Ikarus [Von Kaenel

et al., 2011] is an example of participatory sensing, where data is collected by a large

number of paragliders throughout their flights. The focus is on aggregating the data

and rendering the results on a thermal map.

Opportunistic urban sensing comes with more benefits than its participatory coun-

terpart, since it bypasses the Thing owner. Sensors/actuators provide their data/ac-

tions independently, without being restricted to humans’ willingness to participate.

However, it also comes with more challenges as it becomes crucial to conceive au-

tomatic ways to identify available devices, their suitability to perform a sensing/ac-

tuating task, and their physical locality. The latter becomes hard to track when

28

Chapter 2. The Mobile Internet of Things: State of the Art

mobility is involved. In fact, in opportunistic urban sensing, location information is a

primary criteria in the tasking of devices to provide their measurements. The device

selection process is performed either by exploiting a fixed infrastructure support to

perform opportunistic discovery or by directly communicating with devices, in a full

mobile environment. The latter entails that all devices should frequently update their

location information upon displacement.

Fixed infrastructure support. Opportunistic discovery of mobile devices (e.g.,

mobile phones, bicycles, etc.) can be performed by access points in their commu-

nication range as adopted in the Metrosense Project [Eisenman et al., 2006] and

Cartel [Hull et al., 2006] where access points (static or mobile) can opportunistically

task mobile devices within the communication range for a sensing activity, or op-

portunistically retrieve the sensed data they carry. Rather than tasking devices, an

alternative is the pull-based approach where sensing/actuating tasks are stored in a

repository until a Thing that can complete the task arrives at the location of inter-

est and pulls the task from a nearby access point. Similar to above, the pull-based

approach does not require the system to continuously track mobility of devices as

it is up to the device to download the tasks. This approach is adopted in Anony-

Sense [Shin et al., 2011], where sensing services are registered by all phone carriers

willing for their phones to play part in the sensing system. To request measurements,

an application creates a task, which is submitted to a repository in charge, where it

remains until a phone pulls it. However, the task execution depends on Things will-

ing to download and execute it, which cannot be applied in the real-time on-demand

sensing context where timely responses are an essential requirement.

Although it enables systems to manage the mobility of Things without being

required to continuously track them, fixed infrastructure support can become too

expensive as it requires continuous maintenance, monetary deployment costs and, in

many cases, limits the participation of Things to their vicinity to the access points,

which is not a scalable option. An alternative would be to adopt an infrastructure-less

environment as presented below.

Mobile environment. To the best of our knowledge, there are two approaches, in

the literature, to acquiring measurements from mobile Things based on their location

in an infrastructure-less environment. The first option is by broadcasting the request

29

Chapter 2. The Mobile Internet of Things: State of the Art

at a location of interest; the second approach is by storing the request in some repos-

itory to then be pushed onto the devices when their location matches the requested

location.

In the broadcast-based approach, a mobile Thing keeps broadcasting a request in

the area of interest for a sensing/actuating task, until another mobile Thing hears the

broadcast and agrees to perform the task. In such case the system is not obliged to

track the displacements of Things. This approach is introduced in Bubble Sensing [Lu

et al., 2010], a system that enables the creation of sensing tasks at specific regions

with the task broadcasted by requesters or task anchors. Task anchors are other

mobile users/Things at the location of interest, which accept to manage the task.

Things entering the region, whose functionalities fit the requirements, sense the task

and return the information. However, this system entails a strong dependence on the

availability of a local anchor and sensing devices willing to participate, simultaneously,

at the specified region, which can strongly delay the process of completing the user

request and might not be appropriate for on-demand sensing requests where waiting,

for the desired information, beyond some minimal duration is not acceptable as the

information returned can be of no use or value.

In the push-based approach, a user’s requests, i.e., sensing/actuating tasks, are

stored in a repository until mobile Things, which can complete the task, come into

the location of interest. Afterwards the task is automatically pushed onto the de-

vices. To be able to automatically push tasks onto appropriate devices, the system

managing the tasks requires full knowledge of available devices and their mobility

information. As stated earlier, although localizing Things is essential when providing

location-based services with minimal delay, requiring all Things to update their loca-

tion information periodically incurs large communication overhead, especially when

the anticipated IoT scale is in play. An example of a push based approach is proposed

in PRISM [Das et al., 2010], where a server is expected to specify the type of sensors,

number and locations where mobile phones should be, in order to execute a task, and

the location is specified on two levels: a coarse-grained location, and a fine-grained

location. The task is firstly deployed on candidate phones, which belong to the big

specified area and is executed later on, if their location matches the fine-grained spec-

ification. To enable the system to keep track of their locations, mobile phones should

keep updating the server of their location and available resources, which will grow

costly with the repeatedly generated traffic among an ultra large number of mobile

30

Chapter 2. The Mobile Internet of Things: State of the Art

Things and the server. As stated earlier, this is not a scalable option.

There is a trade-off in the systems surveyed above between keeping track of the

mobility of Things, the capability of the systems to provide timely responses to on-

demand sensing requests, and the resulting communication overhead they induce.

Systems, which continuously track mobile Things ignore the communication over-

head as they rely on continuous location updates, while systems which require no

frequent mobility updates do not provide instantaneous on-demand sensing as infor-

mation is generated independently of request times. Moreover, the majority of the

frameworks are designed to handle participatory sensing requests, where tasks are

less time critical than on-demand real-time sensing queries. Moreover, participatory

systems are designed by nature to be delay-tolerant while waiting for the Thing own-

ers to participate. A summary of the approaches presented in this section and their

limitations is presented in Table 2.3.

2.4 Discussion

Earlier in this chapter, we presented three challenges hindering the realization of

the mobile IoT vision. The challenges lie in overcoming the heterogeneous nature

of mobile Things and conceiving a scalable solution that can efficiently handle the

mobility of an ultra large number Things as the rule rather than the exception (un-

like the case in the IoT vision today). However, as we can conclude from our survey,

available solutions do not provide the needed scalable approaches in a comprehensive

manner. In fact, much of the focus in the IoT is towards data scalability, by ex-

ploiting scalable processing and distributed data analysis techniques to manage the

raw streams being produced, mostly by sensors and RFID tags. To handle the large

number of Things, the default option is to exploit repositories that benefit from the

Cloud’s elastic backend storage holding the information about Things, which is not

sufficient when mobility is involved. What lacks in the current literature is a scalable

approach, in the mobile IoT context, that can enable any system employing it to lo-

calize mobile Things in a timely manner in order to answer a request for on- demand

sensing/actuation at any location of interest (assuming there are appropriate Things

at that location) without drastically increasing communication costs, traffic overhead

and response delays.

Consequently, the solution we devise throughout this thesis is especially directed

31

Chapter 2. The Mobile Internet of Things: State of the Art

Req Approach Idea Evaluation

M
ob

il
it
y

+ No need for
Participatory Provide social tracking mobility
social mobile data according - No solution for

sensing to user’s desire scalable mobility tracking
only - No Thing scalability issues

to address
+ Overcome dependence

Opportunistic Opportunistically on custodian
social mobile generate social data - Default localization by

sensing independent of custodian continuously tracking mobility
- High communication cost and traffic

+ No need for
Participatory Provide sensor data mobility tracking
urban sensing according to -No (Thing) scalability issue

user’s desire - No solution to
timely on demand sensing

Opportunistically + No need for
Opportunistic generate sensor mobility tracking
urban sensing: data independent + Overcome dependence

fixed infrastructure of custodian with on custodian
support no need for - Expensive deployment

mobility tracking by and maintenance
exploiting access points - Restricted to vicinity

to access points
+ No need for

Opportunistic Opportunistically mobility tracking
urban sensing: task appropriate + Overcome dependence

mobile environment sensors by broadcasting on custodian
broadcast based requests to neighborhood - Can incur delay for

broadcasted requests
to be accepted and executed

+ Overcome dependence
Opportunistic Opportunistically on custodian
urban sensing: push tasks - Default localization by

mobile environment onto phones when at continuously tracking mobility
push based location of interest - High communication cost and traffic

Table 2.3. Comparison of existing solutions towards a Mobile IoT.

32

Chapter 2. The Mobile Internet of Things: State of the Art

towards removing the obstacle presented above. Our solution is focused on the mo-

bile IoT context, and in particular, location-based services where requests for discrete

real-time information/actions must be completed in a timely manner. The solution

is threefold: i) to overcome the heterogeneous nature of the mobile IoT, we exploit

existing technologies, in particular semantic technologies and SOA decoupling capa-

bilities to abstract and uniformly represent Things and their functionalities. Given

the complex nature of the physical world and the various attributes of its constituents

we also exploit semantic technologies to model related information; ii) to enable the

system employing our solution to scale to the mobile IoT level, we revisit SOA to

actively manage and control the interactions with Things and their involvement in a

sensing/actuation task according to need, thus decreasing the communication, stor-

age and computation overhead; and iii) to account for the mobility of the ultra large

number of Things as an integral part of the solution, we design our approach, to

efficiently account for their location in a timely manner without the need to continu-

ously track each and every potential Thing in the network but only the ones allowed,

by our solution, to participate in the task at hand.

2.5 Summary

We presented in this chapter the approaches towards handling the IoT challenges, in

particular, the IoT heterogeneity, scale, and mobility. The heterogeneity issue is not

recent, and numerous efforts have been provided to tackle it by exploiting ontologies

to model Things, and/or by exploiting SOA to decouple heterogeneous Things from

their functionalities. However, the scale and mobility of Things remain to be further

investigated. When the Things become mobile, the philosophy of scaling systems at

the data level alone can no longer be applied, especially in the case of on-demand sens-

ing/actuating where knowledge of physical locations of Things becomes a first class

criteria to their selection. In such case, continuously updating their location infor-

mation can prove rather costly and impose unprecedented communication overhead.

Managing the mobility of an ultra large number of Things to provide on-demand

services has not been fully addressed yet. As illustrated throughout this chapter,

the IoT challenges combined remain largely unresolved. Consequently, a global solu-

tion has yet to devised to manage a fully mobile environment comprised of an ultra

large number of Things that can be interrogated for on-demand services and provide

33

Chapter 2. The Mobile Internet of Things: State of the Art

timely responses without incurring large communication overhead. We proceed in

the following chapter to present our approach towards reaching these requirements.

34

Chapter 3

MobIoT: Service-Oriented

Middleware for the Mobile IoT

Designing a middleware system based on a Service-Oriented Architecture entails pro-

viding three functionalities: service discovery, service composition, and service access.

When it was initially introduced, SOA was directed towards business services where

even if millions are registered, there is no need to select and access them all simul-

taneously. This is not the case for Thing-based services. Requesting information

on ambient features in the real world, hereafter referred to as physical concepts, re-

quires the involvement of a large diaspora of sensing/actuation services hosted on

mobile Things. Certainly, this will lead to a complex weave of interactions and high

communication costs. Firstly, discovery will return a large set of accessible service

instances, many of which provide redundant functionalities. Secondly, consumers

are expected to have sufficient resources to directly interact with, i.e., access, the

providers. Consumers are also expected to have a deep understanding of the sciences

behind sensing/actuation tasks, to be able to extract meaningful information from

the provided results. Consequently, and despite its numerous benefits, adopting SOA,

as is, to design a middleware for the mobile IoT will not scale and will impose a heavy

burden on consumers.

In light of the above, SOA interaction patterns should be revisited and executed

seamlessly to exempt consumers from directly interacting with providers. Conse-

quently, SOA functionalities, namely, discovery, composition, and access are also to

be revisited to better manage the ultra large number of heterogeneous mobile Things

35

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

and their services. This is achieved within MobIoT, a middleware system that builds

on Thing-Based SOA, a variation of SOA. In accordance with SOA, MobIoT com-

prises Composition & Estimation, Discovery, and Access components, in addition

to a Registry. However, the internal functionalities of those components are modi-

fied with respect to traditional SOA functionalities. Consequently, the Thing-based

SOA functionalities can be executed independent of or in combination with their

traditional SOA counterparts. MobIoT also comprises a Query component that han-

dles user queries forwarded from IoT applications. However, for the components to

operate and cooperate properly in the IoT context, knowledge of the physical envi-

ronment is essential and therefore should be modeled carefully by leveraging semantic

technologies, ontologies in particular.

3.1 MobIoT Ontologies

Abstracting the physical world into a virtual world requires above average under-

standing of the complex attributes behind the nature, dynamics, sciences of the real

world, and the heterogeneity of the constituents of both worlds (e.g., physical Things,

services, physical concepts). Delegating the knowledge creation and representation

tasks to developers is a tedious, and in many cases redundant, burden. Semantic

technologies, ontologies in particular, are a promising approach towards alleviating

that burden. They allow easily portable and widely reusable semantic modeling of

knowledge that is both machine interpretable and human understandable. There are

four main components that compose an ontology in the Semantic Web: classes, re-

lations, attributes and individuals. Classes are the main concepts to describe (any

describable object in the real world). Each class can have one or several children,

known as subclasses, used to define more specific concepts. Classes and subclasses

have attributes that represent their properties and characteristics. Individuals are

instances of classes or their properties. Finally, relations are the edges that connect

all the above presented components.

MobIoT leverages the benefits of Semantic Web technologies to emulate real world

sciences and integrate them with models of Things and embedded sensors/actuators

in order to conceive a comprehensive representation of the real world. Our work on

ontologies was published in [Hachem et al., 2011].

There are numerous ontologies that model sensors/actuators. Example ontologies

36

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

are OntoSensor [Russomanno et al., 2005], which models sensors and their properties,

SSN [Compton et al., 2012], which models sensors, systems of sensors, how a feature

is sensed, and sensor observations. 52North1 provides a model for sensors, events,

observation, interfaces to access sensor observations, etc.

The SSN Ontology is generic, it does not model any information related to the

actual sensed domain, and requires the domain-specific semantics, units of measure-

ment, etc. to be attached when instantiating the ontology. We partially build our

ontologies on SSN as it provides an adequate basis for our ontology design.

However, sensors represent only one IoT component. Recent efforts were made to

provide more comprehensive IoT ontologies that model Things, their components, and

the features (physical concepts) they measure (e.g., [Wang et al., 2012, Christophe

et al., 2011, Christophe, 2012, Villalonga et al., 2010, De et al., 2012]).

Yet, a common limitation to all ontologies above is that they still lack a very im-

portant requirement: modeling the physics and mathematics, which are at the core

of any sensing/actuation task, as first class entities. In more detail, it is important

to correlate various quantifiable and measurable features (physical concepts) through

mathematical formulas to define, in a user understandable and machine readable

manner the processes behind single or combined sensing/actuation tasks. This cor-

relation enables the system exploiting the ontologies to have a better understanding

of the sensing/actuating task at hand and consequently better analyze its outcomes

or substitute it more efficiently if need be.

There are several ontologies that attempted to provide a vocabulary for real world

sciences. For instance, Linked Data2 provides a large collection of datasets encoded in

RDF, spanning different areas that include science, nature, and geography. Another

example is Semantic Web for Earth and Environmental Terminology (SWEET)3 suit

of ontologies which constitutes a set of upper ontologies for earth sciences, used by

NASA. Information modeled in SWEET ontologies includes, among others, earth sci-

ences, environmental knowledge, measurement units, conversions, and mathematical

functions.

Since our interest is in scientific models, physics and mathematics in particular, we

deem the SWEET ontologies to be most appropriate. We exploit knowledge modeled

152north:https://wiki.52north.org/bin/view/Semantics/WebHome/.
2Linked Data:http://linkeddata.org/.
3SWEET:http://sweet.jpl.nasa.gov/.

37

https://wiki.52north.org/bin/view/Semantics/WebHome/.
http://linkeddata.org/.
http://sweet.jpl.nasa.gov/.

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

in the reprMath ontology, which provides a representation of mathematical entities

such as mathematical datatypes and mathematical operations; and reprSciUnits on-

tology, which models units of measurement. Details on the ontologies are available

at http://sweet.jpl.nasa.gov/. We also integrate several concepts from the SSN

ontology.

We extend the vocabulary provided by the aforementioned SWEET ontologies

and the vocabulary provided by the SSN ontology (restricted to sensors) within the

two following ontologies:

• Device Ontology. The Device Ontology describes attributes of hardware

devices, i.e., sensors, actuators, processors, and Things that host them. For

MobIoT, it can be regarded as a repository containing descriptions useful for

discovery purposes.

• Domain Ontology. The (Physics and Mathematics) Domain Ontology models

information about real world physical concepts and possible relationships they

share among each other. For MobIoT, it can be regarded as the a repository

holding information for service composition.

Our ontologies are specified using RDF (Resource Description Language). An

RDF graph is a set of interconnected RDF triples. An RDF triple is: (subject,

predicate, object) ∈ (U ∪ B)x U x(U ∪ B ∪ L), with U: URI reference, B: Bl-

ank node, and L: Literal. If literals are specified in a lexical form, they are known as

Plain Literals. They can also have a lexical form and a datatype, in which case they

are known as Typed Literals. RDF assumes an infinite set of URIs and an infinite set

of Blank Nodes. From a graphical perspective, an RDF triple consists of a subject

node, object node and a directed arc (predicate) as follows: s
p→ o. The predicate is

also known as property.

3.1.1 Device Ontology

IoT applications should be network and (science) domain agnostic, as opposed to

business-domain specific. In other terms, when developers create their IoT applica-

tion business logic they do not need to be burdened with the specific details of the

types and internal functionalities of sensors/actuators nor the physics behind those

functionalities. Therefore, it becomes the task of the middleware to identify what

38

http://sweet.jpl.nasa.gov/.

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

types of devices to seek in order to provide the needed Thing-based services. For

this purpose, the ontology should clearly describe and yet not over-specify device

metadata.

The device ontology holds knowledge that is independent of device deploy-

ments, i.e., information related to the device’s actual location. Instead, deployment

information is reported by Things, when they register their services. Our goal is

to avoid frequently updating the ontology upon displacement of Things, which is

an expensive process, especially that ontologies are not designed for highly varying

environments. To elaborate on the ontology, we consider that types of IoT devices,

represented in Figure 3.1 can be divided into four main classes:

• SensingDevice: A device that has the capability to measure a physical property

of the real world. The class is provided by the SSN ontology.

• ActuatingDevice: A device that has the capability to perform an operation on

or control a system/physical entity in the real world.

• ProcessingDevice: A device that has the capability to perform computation

operations on data.

• CompositeDevice: A device that consists of at least 2 of the devices above. We

represent mobile Things as instances of this class.

h
a
s_

su
b
cla

ss

has_subclass

has_subclass has_subclass

 Device_Model

 Thing

 Device

 Sensor_Model Thermometer_model

 SensingDevice

 ProcessingDevice

 ActuatingDevice

 CompositeDevice

 SR645

 TS245

 TMP100-101

has_
su

bcl
ass

h
a

s
_

m
o

d
e

l

has_subclass has_subclass

has_subclass

has_
in

div
id

ual

Figure 3.1. A sample of the Device Ontology.

39

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

As mentioned earlier, it is important to understand the logic behind sensing/actu-

ation tasks and know, not only what types of devices are needed to execute a task but

also how they operate internally to reach that goal. This requires knowledge about

the Sensor/Actuator component type representing the sensor/actuator internal hard-

ware components; the sensor/actuator Sampling method to know the way the sensor

samples its environment (e.g., periodic); the Data transfer method, modeling the way

the sensor/actuator transfers its readings or action results to the middleware (e.g.,

push); and most importantly, the Transition function modeling the process, usually

a mathematical operation, used to convert the input phenomenon, detected through

a set of electrical signals, into a digital value that bears meaning. It is also impor-

tant to know the Manufacturer of the sensor/actuator, which provides better insight

into the quality of the sensor/actuator hardware. This information can be coupled

with the device’s serial number, and other device information that can be extracted

from publicly available Transducer Data Sheets (TEDS) specific to a sensor/actuator

model, such as its sensing/actuation range. It is important to mention that although

the ontology models low level details related to sensors and actuators, we do not as-

sume the information to be provided by the ontology alone. It is possible to find such

details in OS-level APIs abstracting sensors on a smartphone for instance. However,

as stated earlier, our ontology is deployment independent, i.e., it is contacted prior

to discovering Things as we deem it more beneficial to acquire this information in

advance. In particular, such knowledge leads to a more informed discovery and access

choice by knowing a priori the characteristics of sensors and actuators to select rather

than having to contact Things first to acquire the details on the sensors they host

and then decide if they should take part in the sensing/actuation task.

Last but not least, the device ontology models Physical concepts, which are the real

world properties measured by the sensor (e.g., temperature, wind speed, etc.) or acted

on by an actuator. Physical concepts are the glue, binding the Device Ontology

and the Physics Domain Ontology. It is equivalent to ssn:FeatureOfInterest

class, which models concepts to measure in the SSN ontology.

An example of a thermometer model, an instance of the Senser_Model class,

along with its metadata is presented in Figure 3.2.

40

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

has_individual

 Thermometer_model

 TMP100-101

 Sint12

 Texas_Instruments

 push

 degreeC

 second

 periodic

 milli

 linear
 temperature_data_C

 temperature

 SE645

 TS245

has_unit

h
a

s
_

c
o

n
c
e

p
t

has_transition_function
sample_rate_unit_prefix

has_sampling_method

sa
m

p
lin

g
_
ra

te
_
u
n
it

outp
ut_

data
typ

e

m
e
a
s
u
re

s
_
P

a
ra

m
e
te

r

m
anufactured_by

data_transfer_unit

has_individual

Figure 3.2. Thermometer model example.

3.1.2 Physics Domain Ontology

The Physics Domain Ontology is created with two main goals. The first is to model

real world entities, i.e., physical concepts, to assist MobIoT, any other middleware, or

any IoT application to extract knowledge about physical concepts. The second is to

interconnect physical concepts among each other to emulate the relations they have in

the real world. The relations, if available, determine the interdependencies of physical

concepts, and allow MobIoT to understand and predict how the variations in one

influence the others. The relations among concepts are actually rules of physics, that

we model through mathematical formulas, an accurate and interoperable language to

present scientific information. In addition to physical concepts, the classes needed to

model the information above, illustrated in Figure 3.3, are:

• Formula: Mathematical expression that computes a numerical value represent-

ing an estimate of the measurement of a physical concept or an approximated

action over a physical concept.

• Mathematical datatype: Numerical types, usually followed by a measurement

41

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

 Physical_concept

 Thing

 unit

 Formula

 unit_constraints

 Parameter

 Mathematical_expression

 windchill_formula_original

has_subclass

h
a

s
_

s
u

b
c
la

s
s

has_subclass

com
putes

h
a

s
_

e
x
p

re
s
s
io

n

has_unit

has_input

has_output

has_unit_constraint

has_individual

has_concept

Figure 3.3. A sample of the Domain Ontology.

unit. We exploit numerical types defined in the SWEET reprMath ontology

(NumericalEntity, Vector, Matrix) and extend NumericalEntity to model

types such as Real, Integer, etc.

• Unit : The output unit of a measurement, essential to define the magnitude of

numerical quantities (of measurements) in a standard manner. The units are

provided by the SWEET reprSciUnits ontology. We also use concepts from the

SWEET reprMath ontology to model mathematical relations in complex units

and conversion formulas between different units.

A physical concept can have different measurement units. Temperature for in-

stance, can be measured in Celsius or in Kelvin. It can also be estimated by different

formulas with different input/output parameters and different measurement units

each. Given the importance of measurement units in understanding a numerical

value provided by sensors or provided to actuators, we introduce a novel class: unit

constraints. The goal is to determine if a formula can have only one output and one

input unit per concept, or can have a defined set of such units, or it stands correct

for any input/output units, linked to a physical concept. The unit constraints class

has three instances:

• unique. A unique constraint determines that the associated formula instance

can only have one possible mathematic expression with one specific input unit,

42

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

for each input concept, and one possible output unit.

• set. A set constraint means that the associated formula instance can have

several mathematical expressions based on the units of the input concepts, and

can have several output units.

• any. An any constraint means that the associated formula instance has the

same expression regardless of the units of the input concepts, and can have

several output units.

For instance, on the one hand, the formula speed = distance/time stands correct

for any distance unit over any time unit. On the other hand, a windchill formula with

temperature in Celsius and wind speed in km/h is different than a windchill formula

with temperature in Fahrenheit and wind speed in mph. We bind units and physical

concepts provided as input or produced as output by a formula within a Parameter

class. To determine whether the Parameter is an input to a formula or an output of

a formula we use has_input and has_output properties.

The relation between physical concepts and mathematical formulas is established

through a computes relation.

 KCalPm2Phr

 windchill_data_KCalPm2Phr

 windchill_formula_original

 windchill_factor

 windspeed_data_mPs temperature_data_C

has_unit

has_unit_constraint

has_input

c
o

m
p

u
te

s

has_output

has_concept

w
c=
(1
0
 √
w
−
w
+
1
0
.5
)∙(3

3
−
t)

has_expression

has_symbol

t

has_symbol

wc

has_symbol

w

Figure 3.4. Windchill formula example.

Figure 3.4 illustrates the relation between windchill, temperature, and windspeed

concepts, in addition to the mathematical formula that determines this relation and

43

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

the measurement unit of each; The ontologies we presented are exploited by MobIoT

for discovery and composition purposes as will be illustrated through the next section,

where we describe the architecture of the middleware.

3.2 MobIoT Architecture

The objective of MobIoT is fourfold: 1) assist developers in creating IoT applications

by closely interacting with the dedicated Query component; 2) assist developers in

advertising Thing-based services by closely interacting with the Discovery component;

3) manage the large scale of the mobile IoT through a suit of smart computations

provided by the Discovery component; and 4) ensure that best efforts are provided to

answer a user query forwarded by an IoT application, by exploiting the functionalities

of the Composition & Estimation and Access components.

MobIoT operates within a highly dynamic environment specified in the following.

The environment comprises an ultra-large number of mobile Things, represented by a

set R, with 3G/4G or WiFi communication capacities. The Things host several types

of sensors/actuators abstracted by Thing-based services whose metadata is stored in a

Registry. A sensor/actuator Sτ has a sensing/actuation range rτ and a 360◦ coverage.

Consequently, when at location li, a Thing hosting Sτ can sense/act on events in a

circle Cli,rτ with radius rτ and centered at location li. This is known as the boolean

disk model [Bai et al., 2006, Wang, 2010]. Note that the sensing/actuation range of

each sensor/actuator type and model can be specified in the ontology by a domain

expert or in many cases extracted from the sensor/actuator’s TEDS.

It is important to mention that, in our current model, we assume the sensing/ac-

tuation range to be deterministic, a first order approximation of rτ , which is not the

case in a real world setting. In more detail, a sensor/actuator can actually sense/act

on a point beyond this deterministic range and the sensing/actuation probability de-

pends on the distance between the point to sense/act on and the sensor/actuator.

Additonally, the sensing/actuation range attenuation is also affected by the environ-

ment the sensor/actuator is deployed in. By accounting for this randomness in the

sensing/actuation range, it is possible to enhance the sensing/actuation coverage, as

illustrated in [Miorandi, 2008] where authors prove that accounting for the random-

ness in the communication range can actually enhance network connectivity, which

can also be applied to sensing coverage. This is also shown in [Gallais et al., 2006]

44

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

where points beyond the deterministic sensing range of a sensor can still be sensed

with some probability.

Additionally, in the MobIoT environment, Things are expected to be capable

of identifying their location as (x, y) coordinates (e.g., through GPS receiver) [Ray-

chaudhuri and Gerla, 2011]. Moreover, as it is very common nowadays for individuals,

whether pedestrians or using vehicles, to follow paths specified by the navigation sys-

tems on their Things1, we also expect each Thing in the MobIoT environment to be

aware of the path it will follow in the future, and the final destination to reach during

a mobility period. Consequently, each mobile Thing κ moves to different locations

lκi , starting from lκ0 and ending at lκfinal.

Note that if navigation systems are not available, an alternative is to exploit

learning techniques to predict the most likely path an individual will follow based on

his habits and commonly followed routes. In fact, it is shown in [Song et al., 2010a],

that there is a 93% potential predictability in human mobility if historical daily

mobility records are analyzed. However, this alternative requires further investigation

given its need for high computational capabilities to learn and infer information from

individuals’ historical records. In the case where Things are unable to identify their

future paths or their locations, traditional SOA is applied to the totality of the system

(IoT application) that exploits MobIoT. In other terms, when Things are unable to

provide their location and path information, they will all be required to register their

services and all appropriate services will be retrieved for access, thus the system will

be unable to leverage the optimizations provided by the Thing-based SOA concretized

by MobIoT.

Finally, We expect users to trigger queries through IoT applications, forwarded

to the Query component, for remote Thing-based services with the aim of acquiring

discrete on-demand data/actions generated at the time of the request. In such case,

response should be timely.

The architecture of MobIoT is depicted in Figure 3.5 and the following sections

outline the functionalities of and interactions among the different MobIoT compo-

nents along with their use of the ontologies presented in the previous section. The

components are also presented in the component diagram in Figure 3.6 and a sample

of the interactions among the components is depicted in the sequence diagram in

1Services such as http://www.google.com/mobile/maps/ provide turn-by-turn driving and
walking navigation.

45

http://www.google.com/mobile/maps/

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

device ontology
estimation ontology
domain ontology

MobIoT Ontologies

Composition
& Estimation

MobIoT

service consumer

Registry

service provider

Access

query

Registration
Look-up

Register Access

Look-up
Request Access

Request

Expansion
Request

Store service
metadata

Search for
services

Probabilistic
Discovery

Figure 3.5. The MobIoT middleware architecture.

Figure 3.7. Our initial MobIoT architecture design is published in [Teixeira et al.,

2011].

3.2.1 Query Component

The Query component provides two functionalities. Firstly, it enables software devel-

opers to exploit available Thing-based services when creating their IoT applications.

The only requirement is that they specify the real world information/actions their

applications need by adhering to the structure of the MobIoT queries provided by

the component. They can then determine any business logic on top of the query

outcome. Secondly, it enables IoT applications to better satisfy users’ requests for

Thing-based services at run time by directly interacting with the Composition &

Estimation (C&E) component. In more detail, the queries should contain, similarly

to any sensing/actuation query, at least the physical concept to measure/act on and

the location of interest. We expect users to specify high-level queries of the form

“Is it windy in Rome?". The IoT application should translate those requests to the

MobIoT Query structure and forward them to MobIoT. The user can specify addi-

tional requirements such as measurement units or measurement accuracy. The Query

component extracts the concepts to measure/act on (e.g., windchill factor), the loca-

tion of interest (e.g., Rome), and the constraints if any are specified, to then forward

46

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

Figure 3.6. The component diagram of MobIoT components.

them to the C&E. The latter identifies the various functionalities needed to provide

an answer to the query (e.g., windchill factor, temperature, and windspeed mea-

surement services). A service functionality, also known as service type, refers in the

mobile IoT context, to measuring or acting on a specific physical concept. With the

cooperation of the Discovery and Access components, the C&E interrogates running

services (service instances) of interest, combines their functionalities, and returns the

final answer to the Query component.

Our queries are designed based on an object-oriented model, depicted in the class

diagram in Figure 3.8. As inspired by SQL1, a query has the six following components:

1SQL: http://www.sql.org.

47

http://www.sql.org.

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

Figure 3.7. The Sequence diagram representing the interactions upon executing a
user query.

the Selector, selects a (set of) concept(s) to measure/act, and optionally Things with

a requested Thing type; Constraint, specifies types of constraints and aggregation

functions to apply over measurements/action results. The constraint can be a Where,

an ORDER BY, or a GROUP BY constraint; Where, specifies conditions over the attributes

of concepts to measure/act on, their measurement unit in particular. It can also be

used to specify conditions over the attributes of sensors/actuators to select, their

accuracy in particular; ORDER BY, orders the result by the Concept or the Thing

to select; GROUP BY, groups the result by the Concept or the Thing to select; and

Location, specifies the location at which the task should take place. It could be a city,

a pair of (x, y) coordinates, or a rectangle specified by (xmin, ymin) and (xmax, ymax).

The model can be extended by plugging in additional components extracted from

existing query languages such as TinyDB [Madden et al., 2005] designed to process

streams of sensing data and built on SQL.

48

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

Figure 3.8. The Query object class diagram.

An example of an actual query that instantiates the objects in the model, is as

follows:

new Query(

new Selector(

new Concept(temperature), new Concept(windspeed)),

new Constraint(

new Where(

temperature.unit= Celsius,

windspeed.unit= meter/second,

temperature.accuracy = 0.8)),

new Location(Rome));

where Concept refers to the physical attribute to measure, Selector is used to spec-

ify the Concept(s) of interest, Constraint is used to set the concept’s unit and

additional constraints such as the accuracy of a measurement, and finally Location

allows the consumer to specify the location at which measurements/actions should

take place. Note that if the values of the concepts and the units do not have match-

ing instances in the domain ontology the query fails, otherwise the Query component

forwards the extracted information to the C&E component.

49

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

3.2.2 Composition & Estimation Component

The Composition & Estimation component (C&E) provides automatic, semantic com-

position of Thing-based services. As stated earlier, Thing-based SOA can be com-

bined with traditional SOA functionalities. Consequently, the C&E component can

include, in addition to the Thing-based service composition, Web service composi-

tion functionalities. However, we restrict our focus to the former where the com-

ponent exploits laws of physics, modeled in the domain ontology as mathematical

expressions, to estimate/modify the state of a physical concept. This capacity is of

interest in two cases: a) no service can perform a required measurement/action task

directly (based on its atomic functionalities); b) the quality of a desired measure-

ment/action can be enhanced by combining several available measurements/actions.

In both cases, the C&E exploits mathematical formulas as composition specifications

to estimate/approximate new measurements/actions or provide higher quality mea-

surements by combining lower quality ones. The component constructs a directed

graph of physical concepts, identified sequentially, from being the inputs to formulas

whose output matches the physical concept in the initial request, or from being the

inputs to formulas whose output matches any of the already identified concepts. The

concepts are known as expansion concepts. We refer to this step as the expansion

phase. Afterwards, by closely interacting with the Discovery component, the C&E

identifies the types of sensors/actuators to contact and the instances of services (ser-

vices running on mobile Things) abstracting those types. This represents the mapping

phase. Finally, by interacting with the Access component, C&E interrogates service

instances for their measurements or actions. Once access results are obtained, the

C&E computes the formulas and returns the answer to the Query component (exe-

cution phase). The C&E revisits service-oriented composition by relying on scientific

information to determine compositions, and to seamlessly identify and execute com-

position specifications without burdening consumers with this task. The composition

process is presented in more detail in Chapter 5.

3.2.3 Discovery Component

The Discovery component enables Thing-based service registration (to advertise ser-

vices) and look-up (to retrieve services). In order to handle the ultra large number

of mobile Things and their services in the IoT, the component revisits the Service-

50

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

Oriented discovery and introduces probabilistic discovery to provide, not all, but

only a sufficient subset of services that can best approximate the result that is being

sought after. The Probabilistic Discovery functionalities, which will be presented in

Chapter 4, are provided by a Probabilistic Registration component, and a Probabilistic

Look-up component.

Probabilistic Registration component. The Probabilistic Registration compo-

nent is primarily accessed by developers, or Things (if the registration process is

designed by the developer to execute automatically) when they request permission to

advertise Thing-based services. However, the component does not allow all services

to be registered. The decision is based on the physical attributes of the hosts, espe-

cially their location and sensing/actuation capacities. To compute the decision, the

Registration component is assisted by the Registry, presented in section 3.2.5, with

which it communicates upon receiving the registration request.

Probabilistic Look-up component. Even though the Probabilistic Registration

component controls which Things register their sensing/actuation services, the num-

ber of available services remains large. For this reason, it is essential to further limit

the number of service instances to interrogate for their sensing/actuation function-

alities. Upon receiving look-up requests from the C&E component, containing the

location of interest and sought after service types, the Probabilistic Look-up compo-

nent selects a subset of service instances hosted on Things that comply with a chosen

spatial distribution.

It is noteworthy to mention that we assume trust among Things to truly pro-

vide the services they advertise and, to the best of their capacity, provide accurate

path/location information. We make the same assumption among developers to pro-

vide proper descriptions of the services abstracting sensors/actuators. Nonetheless,

we acknowledge the importance of devising trust management and security systems

to address malicious intent. Indeed, the system can be subject to various breaches

and misleading information. An example of possible security issues takes place when

the information of all registered Things is exploited, by the Registry, for malicious

purposes. Another possibility is for Things to provide wrongful path and location in-

formation, misleading sensor/actuator descriptions, and erroneous measurements and

actions that can jeopardize the quality of the functionalities provided by MobIoT.

51

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

However, such issues fall beyond the scope of this thesis.

3.2.4 Access Component

The Access component has two benefits. Firstly, it provides an easy to use interface

for developers to sample sensors/actuators while abstracting sensor/actuator hard-

ware specifications. Secondly, it revisits Service-Oriented access approaches, where

it is usually left to the end-user to access the services and to the application de-

veloper to worry about access protocols, by wrapping access functionalities inter-

nally and executing access to services transparently. The Access component has two

sub-components: the Remote Access component and a Thing Access Middleware,

representing the local access component.

The latter is hosted locally on each Thing and executes local access to any type

of embedded sensor/actuator through one of the following options:

• Instantaneous access is a synchronous request that returns an immediate reply

after querying a sensor/actuator for its latest sensing value or action result.

• Periodic access is an asynchronous request that returns a reply at a constant

rate (until canceled).

• Event-based access is an asynchronous request that returns a reply only when

triggered by some event of interest (until canceled).

The Remote Access component receives the access requests from the C&E along

with the addresses of service instances (returned by the Discovery component). A

service address is a URL specifying how the service can be accessed, also known as the

service endpoint. The Remote Access component then interacts with the (local) Thing

Access Middleware component, on each Thing hosting a discovered service instance,

to acquire measurements or to request actions from sensors/actuators abstracted by

the services. Afterwards, it returns the results to the C&E.

3.2.5 Registry

The Registry component holds the metadata of sensing/actuation service instances

hosted on mobile Things, granted that Discovery component already allowed the

52

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

registration to take place. During the registration process, the Registry is contacted

by the Discovery component to provide the following information:

• Number of registered services. The probabilistic registration decision de-

pends on the number of already registered Thing-based service instances. Only

services that provide the same functionality as the registering service and hosted

on neighboring Things should be taken into account. Neighboring Things are

located in the same region specified in the registration request. The region is

a coarse-grained location, specified either as an area with (x, y) coordinates, or

by the name of a city or a landmark (e.g. Colosseum).

• Spatial distribution of Things hosting registered services. Knowing the

number of available service instances is insufficient as we also need to know the

approximate locations of their hosts, which is computed by the Registry. How-

ever, sending the location information of Things hosting all available services,

when there is a very large number of Things involved, will increase communi-

cation costs drastically. As an alternative, the Registry computes and returns

only the spatial distribution of the hosts. The details on the distribution com-

putation are presented in Chapter 4.

Upon registration, each Thing is required to provide at least its unique id, the

unique service address, the concept the service measures/acts on, the region it is

located in (e.g., Rome), the unit of the measurement the service provides, its location

(as a pair of coordinates), its estimated path (as a set of timestamped coordinates),

and the registration duration.

Since Things are not expected to register their services indefinitely, the Registry

performs the following clean up process. After the registration duration expires, if

the Registry does not receive a request to keep the service alive, it marks the service

as expired and removes it when the next look-up request is received.

Given the dynamic nature of the mobile IoT, the Registry assists the Discovery

component with look-up request. The Registry holds the information on the locations

of mobile Things when they register their services, therefore, it can estimate their

whereabouts at the time of the look-up request. This knowledge is highly impor-

tant given that observing/acting on the real world is tightly related to the location of

Things performing those actions. The Registry can thus know which of them best pro-

vides the required action. It supports two levels of location specifications: coordinate-

53

Chapter 3. MobIoT: Service-Oriented Middleware for the Mobile IoT

based, and area-based specifications. It can also be extended to identify regions within

a city, and automatically map them to coordinate-based areas. This information is al-

ready modeled in the geonames ontology available at www.geonames.org/ontology/,

which can be integrated with our MobIoT ontologies.

3.3 Summary

In this chapter, we presented a high-level overview and the architecture of MobIoT,

a semantic middleware built on a Thing-based SOA for the mobile IoT. MobIoT is

designed to address the large scale, heterogeneity and dynamicity issues of the mobile

IoT through the cooperation of the six following components that revisit discovery,

composition and access functionalities of SOA: a Query component, a Composition

& Estimation component, a Discovery component, an Access component, a Registry

and a set of MobIoT ontologies. The Query component handles user queries and

hides discovery, composition and access functionalities. The Composition component

identifies all types of services needed to better satisfy the user query, and orches-

trates discovery and access functionalities. The Discovery component handles the

scale and dynamicity issues of the mobile IoT, through a set of probabilistic compu-

tations to register/retrieve only a subset of available service instances. The Discovery

component is assisted by the Registry, which holds metadata of registered service in-

stances. The Access component wraps access functionalities internally and alleviates

that burden from users, initially in charge of this task. Finally, an orthogonal ele-

ment assisting all components is the set of ontologies, we presented, to model and

exploit not only semantic information about Things, sensors and actuators, but also

physics and mathematics, which are at the core of sensing/actuation tasks. It is the

key element towards an interoperable IoT. We proceed in the following chapters to

describe, in detail, the theoretical and technical aspects of the probabilistic Discovery

and Composition & Estimation functionalities.

54

www.geonames.org/ontology/

Chapter 4

Probabilistic Thing-Based Service

Discovery

There are two different approaches that govern sensing/actuating networks: a) few

but highly accurate, powerful, and expensive sensors/actuators; b) numerous, and

cheap but less accurate sensors/actuators. The latter applies to the mobile IoT envi-

ronment, which comprises a large number of mobile Things hosting cheap sensors/ac-

tuators. In such an environment, numerous Things will be within the same area and

provide similar functionalities simultaneously, leading to overlapping coverage of the

area. Moreover, in the mobile IoT, numerous scenarios require only partial sampling

of the area of interest to monitor/act on, as opposed to measuring/acting on every

single point within that area. Based on those two facts, it becomes sufficient to select

only a subset of the participating Things to provide the services they advertise and

hence, better handle the large number of Things. In this chapter, we use service and

service instance interchangeably to refer to services running on Things.

Advertising and selecting services are the building blocks of Service Discovery, a

key functionality in Service-Oriented Architecture. In the Mobile IoT, service discov-

ery revolves around services that abstract sensors/actuators hosted on mobile Things

carried by humans in their smartphones, gadgets and even their clothing, which makes

them subject to human mobility patterns.

Knowledge of the mobility patterns is crucial to identifying the appropriate sub-

set of services to select. Their mobility determines which portions of the area the

host Things can actually cover while in motion. It also makes it possible to estimate

55

Chapter 4. Probabilistic Thing-Based Service Discovery

Symbol Meaning

Mobility

D Diffusion constant

v Speed of mobile Things

Deployment/Area

A Total area of deployment

a Area of interest

Cl,rτ Circle of center l and radius rτ
σli,rτ Largest square inside circle Cli,rτ with edges parallel to the coordinate axes

Σli,dimax
Smallest square outside Cli,dimax

with edges parallel to the coordinate axes

Q Grid constructed over a

qi Square in the grid Q. qi ∈ Q

ri Distance of the edge of square qi from the event of interest

Device

T The set of all sensor/actuator types

R The set of all registered services

k A mobile Thing hosting a registered service ∈ R

τ A type of sensor/actuator, τ ∈ T

Rτ The subset of R with services abstracting sensors/actuator of type τ

Sτ Sensor/actuator of type τ abstracted by services ∈ Rτ

e
j
τ

Expansion set e
j
τ ⊆ T containing concept types that together can substitute

a concept measured/acted on by a sensor/actuator of type τ

Eτ Set of all expansion sets that can each replace a sensor of type τ

rτ
The identical coverage (sensing/actuating) range rτ of Things hosting sen-
sors/actuators of type τ

Table 4.1. Discovery Related Notations (a).

which of the Things will be at the same location and provide the same functionali-

ties. By exploiting the functional similarities in Thing-based services, the locations

and mobility patterns of their hosts, and the overlapping coverage they provide, we

conceived an approach towards a scalable discovery in the mobile IoT, for each of

the discovery phases, referred to as: Thing-based service registration and Thing-based

service look-up. The approach builds on two key ideas: subset selection and mobile

coverage. We proceed in the following with an overview of the background and re-

lated works that build on those ideas along with necessary definitions. All necessary

annotations in this chapter are presented in Tables 4.1 and 4.2.

56

Chapter 4. Probabilistic Thing-Based Service Discovery

Symbol Meaning

Registration

t0 Time at which the new Thing joins the network

N i
range

Number of services in R hosted on Things that can reach location li at time
li.t

li Location of the new Thing κ1 at time ti
lk0 Location of device k at time t0
lki Location of device k at time ti
δki Displacement of device k during t0 → ti

dimax Maximum distance from beyond which a device can not reach li at time ti
Event

e Event to measure/execute

le : xe, ye Location of the event to measure/execute

Lookup

tr Time of the look-up request

I Set of services with interpolated locations at time tr
DIST Spatial distribution of devices hosting services to select.

|s| Size of the subset of services to select

λ Number of services from each square qi
f Decay function of the event.

du
Maximum distance from beyond which the event can almost no longer be
detected

Table 4.2. Discovery Related Notations (b).

4.1 Background

In Service-Oriented discovery, service registration is accomplished without taking into

account the density of registered service instances, the redundancy of their function-

alities, or the overlapping coverage they provide ([Karnouskos et al., 2010, Guinard

et al., 2010, Tsiatsis et al., 2010]). In fact, as stated earlier, registering services hosted

on Things, in SOA, entails registering services hosted on all Things willing to par-

ticipate. Subset selections and mobile coverage requirement were better addressed in

the WSAN and mobile sensing domains, although insufficiently, as will be presented

in the following.

Subset selection. In WSAN, several attempts were made to decrease the number

of active sensors by adopting duty cycling or device selection techniques where only

some provide their services while others sleep. However, even though sensors do

57

Chapter 4. Probabilistic Thing-Based Service Discovery

not provide services at one time or the other, they are still known to the system in

charge (e.g., [Ahmed et al., 2011, Musolesi et al., 2010, Wang et al., 2009, Chatterjea

and Havinga, 2008]). An alternative is to select sensors based on user requirements

and a specified number of sensors that are assumed to be sufficient. In [Perera

et al., 2013], this logic is exploited within CASSARAM, a sensor search, selection

and ranking model. CASSARAM selects a subset of available sensors based on users

specifying their preferences, which include accuracy, reliability, response delay, and

precision. Afterwards, CASSARAM finds all sensors that can provide the needed

measurements, ranks them according to the preferences and returns a number of

sensors equal to the size specified by the user. The approach supports a large number

of QoS requirements and is highly scalable. However it is designed for static sensors

and requires high processing times, while we are interested in subset selections, with

minimal delay, of mobile sensors (hosted on mobile Things) based on the mobile

coverage they provide.

Mobile coverage. Given the nature of sensing/actuating tasks, a very important

criteria that should not be overlooked is area coverage, i.e., the portion of the area

that can be directly sensed/acted upon by Things. Most efforts in the literature focus

on the coverage of static sensor or sensors hosted on robotic entities with controlled

mobility [Wang et al., 2007, Li et al., 2007, Aziz et al., 2007, Loscri et al., 2013], while

our interest is in coverage provided by Things with “free” mobility, i.e., Things whose

displacement is not specifically directed towards enhancing coverage.

A common approach to account for coverage with free mobility is through prob-

abilistic mobility models that estimate the possible future displacement of Things

as done in [Keung et al., 2010, Ruan et al., 2011, Ahmed et al., 2011]. However,

those solutions adopt general mobility models, i.e., models not specifically designed

to report the statistical features that humans exhibit in their mobility, which we re-

quire in our approach. Consequently it was not possible to build on those solutions.

The need for mobility models that estimate human mobility patterns stems from the

fact that mobile Things we focus on in our solution are subject to human displace-

ments. Rather than requiring all individuals to continuously update their location

information, which can be rather costly, models that probabilistically estimate their

displacements are a better alternative. Additionally, for mathematical clarity, exten-

sibility and the ability to analyze it, it is important that the model be analytically

58

Chapter 4. Probabilistic Thing-Based Service Discovery

tractable.

Human mobility. To integrate human mobility with mobile coverage computa-

tions, the mobility model should report the following statistical features:

• Truncated power-law flights and pause-times. It is shown that humans

follow flights consisting of straight line trips, after which they stay at the des-

tination for a time duration (pause period). The length of the flights and the

duration of their pause periods, at each destination, have a truncated power-law

distribution [Gonzalez et al., 2008, Brockmann et al., 2006]. In other words,

human mobility consists of many short flights and few long ones.

• Truncated power-law inter contact times (ICTs). The time duration

between two consecutive contacts between the same persons has a power law

distribution followed by an exponentially decaying tail, after a certain period

of time [Chaintreau et al., 2007, Karagiannis et al., 2010].

The above features are satisfied with the Truncated Lévy Walk (TLW) model

introduced by in [Rhee et al., 2008]. TLW is a continuous Random Walk with trun-

cated Pareto distributions for displacement and pause periods with the following

characteristics:

• Motion speed: Motion speed is, on average, constant for the same motion

path.

• Time interval of each displacement: The time interval of each displacement

is directly related to the velocity and length of the displacement. In [Rhee et al.,

2011], it is presented as tfi = kξ1−p
i , 0 ≤ p ≤ 1 where k and p are constants and

ξi is the length of the displacement. When p is 0, displacement times are

proportional to displacement lengths which models the movement at constant

velocity.

• Direction of the displacement: Similarly to the Random Walk model, the

direction is uniformly distributed with a direction angle θi ∈ [0, 2π).

• Length of the displacement: In TLW, the length of the displacement is

assumed to have a Lévy distribution. the density function of a Lévy distribution

59

Chapter 4. Probabilistic Thing-Based Service Discovery

is:

fl(x) =
1

2π

∫ +∞

−∞

e−itx−|ct|αdt (4.1)

If α = 1, the distribution becomes a Cauchy distribution. For α = 2, it becomes

a Gaussian distribution with σ =
√
2c . For α ≤ 2, fl(x) can be approximated

by 1
|x|1+α . Since it is a Truncated Lévy Walk, the range of the displacement

length does not vary between (−∞,+∞) but between (0, τξ), with τξ being the

maximum allowed displacement length.

• Pause interval: TLW includes a pause time, which takes place after the end of

each displacement. The pause time Tp has a Lévy distribution, which, similarly

to the displacement length, can be approximated to 1

T
1+γ
p

with Tp ∈ (0, tp), with

tp being the maximum allowed pause interval.

• Complete displacement time: This time, ∆ts is the sum of the displacement

time and the pause time.

In addition to representing the statistical features of human mobility through

the truncated Lévy based flights and pause durations, TLW preserves its analytical

tractability and has a closed form mathematical expression that we can build on.

Given their probabilistic nature, using mobility models results in approximate

computations of coverage as they only build on estimations of the motion of Things.

It is also possible to base the coverage computations on more concrete information

about anticipated displacements, provided by Things themselves, and therefore obtain

more accurate results. Bearing this in mind, we conceived a deterministic registration

approach that computes coverage based on full knowledge of the anticipated displace-

ments of Things (hosting registered services), followed by a probabilistic optimization

that builds on the TLW model presented above. This work is published in [Hachem

et al., 2013b,a].

4.2 Thing-Based Service Registration

In order to handle the large number of Things in the Mobile IoT, the participation

of their sensing/actuating services should be controlled according to need. To that

end, Things are denied from registering their services as long as those with already

registered services provide sufficient coverage of the area of interest. The area of

60

Chapter 4. Probabilistic Thing-Based Service Discovery

interest is the area a Thing κ1 can cover along its future motion path, known as

full coverage. Coverage of the area of interest provided by the hosts of already

registered services, known as actual coverage, is considered sufficient, if it exceeds

a minimum required portion of the path of κ1, in which case, κ1 does not need to

register its sensing/actuating service. Otherwise, κ1 should register its service. The

minimum required coverage (threshold) is concept-specific and should be specified

in the MobIoT ontologies. Full coverage, minimum required coverage, and actual

coverage are defined as follows:

Definition 4.2.1. Full Coverage. Given a mobile Thing κ1 moving in a two-

dimensional region A, from location l0 at time t0 to location lfinal at time tfinal with

intermediary locations li stamped with times ti, the union of the circles centered at

each location li with radius rτ (the coverage range of κ1), is the full coverage area af
that will be provided by κ1 throughout its path, such that af = ∪lfinal

l0
Cli,rt .

Definition 4.2.2. Minimum Required Coverage: The minimum required cov-

erage is the minimum percentage of af that should be covered by κ1 or any other

mobile Thing.

Definition 4.2.3. Actual Coverage: The actual coverage is the percentage of af
that can be covered by Things, hosting already registered services, other than κ1.

Note that the full area coverage at all locations li is computed simultaneously

regardless of the timeline, i.e., time ti, as it does not affect the final outcome, given

that that it is an estimation of the coverage of all possible locations combined along

the whole path.

When computing actual coverage, we take two cases into account:

1. Direct coverage: Only the set of Things hosting a service of similar type to κ1’s

service is taken into account when computing coverage.

2. Expanded coverage: The types of sensor/actuator measurements or actions that

can together substitute (or approximate) a measurement (or action) by a sensor

(or an actuator) Sτ are determined through an expansion process, presented in

Chapters 3 and 5, by interacting closely with the domain ontology. Services ab-

stracting the corresponding sensors/actuators are known as expansion services

and concepts measured by those services are known as expansion concepts. Each

61

Chapter 4. Probabilistic Thing-Based Service Discovery

possible combination of expansion services is referred to as an expansion set ejτ
with Eτ = ∪j ejτ being the set of all expansion sets for a sensor/actuator type τ .

For example, a wind-chill concept (measured by a sensor of type τ) can be ex-

panded into (substituted by) a temperature concept (type τ1) and a windspeed

concept (type τ2). In such case, e1τ = {τ1, τ2}.

Additionally, unlike full coverage computation, the timeline in displacements, i.e.,

the times at which κ1 or a registered Thing κ cross a location li, plays an essential

role in the actual coverage computations. Consequently, knowledge of the future

displacements of all Things is a must. This information can be provided by the

Things themselves during their registration, which we refer to it as deterministic

Thing-based registration. This information is stored in the Registry along with the

service metadata.

4.2.1 Deterministic Thing-based Registration

The deterministic Thing-based registration builds on paths intersections as the basis

for actual coverage computations, to generate the registration decision. We formulate

the problem to solve in this context as follows:

Given a new device κ1 wishing to register a hosted service abstracting

a sensor/actuator of type τ , in an environment with a known topology,

consisting of a set R of location-aware mobile Things hosting different

types of sensors/actuators, determine if the path of κ1 will intersect with

the paths of other Things hosting similar registered services, and decide if

κ1 should register its service, based on a required coverage threshold.

The paths provided by Things upon registration are sets of timestamped coor-

dinates, which might not match the timestamps in κ1’s estimated path. For this

purpose, the Registry estimates the location of the Things (based on their paths)

at the exact time ti at which κ1 is supposed to cross li on its path. The estimation

is done through an interpolation function (Algorithm 3) that uses the locations of

a registered Thing κ at time tκj and tκj+1 such that tκj ≤ ti < tκ(j+1) to estimate its

location at time ti. The registration decision generation is presented in Algorithm 1,

which uses methods presented in Algorithms 2 - 4.

62

Chapter 4. Probabilistic Thing-Based Service Discovery

Algorithm 1 Deterministic Registration decision process
Require: L, rτ , τ, threshold,R,Eτ

Ensure: decision ∈ {true, false}
1: let C ← ∅ {C is the set of covered location}
2: if L is empty then
3: decision← false
4: else
5: for each li ∈ L do
6: intersect← false
7: for each s ∈ Rτ do
8: Ls ← s.path

{Check if s is at li at time ti.}
9: if intersects(li, ti, L

s, rτ) then
10: intersect← true
11: C ← C ∪ {li}
12: break {break if intersection found and check next location}
13: end if
14: end for
15: if intersect = false then

16: for each ejτ ∈ Eτ do
17: intersect← false

18: for each type ∈ ejτ do
19: for each ss ∈ Rtype do
20: Lss ← ss.path
21: if intersects(li, ti, L

ss, rtype) then
22: intersect← true
23: break
24: else
25: intersect← false
26: end if
27: end for
28: end for
29: if intersect = true then
30: C ← C ∪ {li}
31: break
32: end if
33: end for
34: end if
35: end for
36: c← getCoveragePercentage(L,C, rτ)
37: if c < threshold then
38: decision← true
39: else
40: decision← false
41: end if
42: end if
43: return decision

The algorithm firstly checks, for all locations li, if a Thing κ intersects with κ1

at li at time ti (Line 9) using the methods presented in Algorithm 2. If so, it adds

the location li to the set of covered locations C (Line 10-11), and moves to the next

location. If not, it checks the Thing hosting the next service in the list Rτ . If all

services have been checked, the algorithm determines if the location can be covered

by expansion (Line 15-31). For each expansion service, it checks if its hosting Thing

intersects with κ1 at li at time ti (Line 21). If so, it adds li to the set of covered

locations C (Line 30) and moves to the next location. The process repeats until all

63

Chapter 4. Probabilistic Thing-Based Service Discovery

locations on κ1’s path have been checked.

To decide whether or not the path of a Thing κ intersects with that of κ1 at li at

time ti, Algorithm 2 takes li, ti, the list Ls of timestamped locations representing the

path of κ, and a coverage radius as input and determines that the path of κ intersects

with li if its distance from li at time ti is less than rτ (Line 4-5). This requires an

interpolation to estimate the location of κ at time ti (Line 3). The interpolation

method is presented in Algorithm 3 which computes the following expressions:

xti = xtj +
ti − tj
tj+1 − tj

∗ (xtj+1
− xtj) (4.2)

yti = ytj +
ti − tj
tj+1 − tj

∗ (ytj+1
− ytj) (4.3)

Finally, Algorithm 1 computes the percentage of κ1’s path that is covered by

other Things (Line 36). The result is then compared to the required coverage thresh-

old. If it is below the threshold, the registration decision is positive (Line 37-38). If

it is above, the registration decision is negative (Line 39-40)

Note that if the path of the incoming Thing comprises one location only, i.e., the

Thing is static, the deterministic registration approach can still perform properly by

computing intersections between the paths of Things hosting registered services and

the unique location of the registering Thing. However, if no location information

is provided, the deterministic registration computation will not take place and the

decision is directly set to false.

To determine the coverage percentage, it suffices to divide the length of the covered

segments of κ1’s path by the total length of the path as presented in Algorithm 4.

The algorithm computes the length of the covered segments based on the coverage

radius rτ at each location li ∈ C and then divides the result by the total length of

the path. Since we adopt a boolean disk model, the length of each segment should

be 2 ∗ rτ . However, the covered locations can have overlapping areas (such as the

overlapping area between the circles around location l0 and location l1 in Figure 4.1).

The overlaps are accounted for by considering, at each location li ∈ C, the full range

rτ between li and li+1 and only the distinct portion of the covered segment between

li and li−1 (Line 17). The general expression to compute the segment length while

64

Chapter 4. Probabilistic Thing-Based Service Discovery

Algorithm 2 intersects method

Require: li, ti, L
s, rτ

Ensure: intersect : true, false
1: for lsi ∈ Ls do
2: if tsj ≤ ti < tsj+1 then
3: lsi ← interpolate(lsj , l

s
j+1, ti)

4: if (lsi .x− li.x)2 + (lsi .y − li.y)2 ≤ r2τ then
5: intersect← true
6: break
7: else
8: intersect← false
9: end if

10: end if
11: end for
12: return intersect

Algorithm 3 interpolate method

Require: locationBefore, locationAfter, t
Ensure: newLocation← 0
1: alpha = t−locationBefore.time

(locationAfter.time−locationBefore.time

2: newLocation.X = locationBefore.x + alpha ∗ (locationAfter.x −
locationBefore.x)

3: newLocation.Y = locationBefore.y + alpha ∗ (locationAfter.y −
locationBefore.y)

4: return newLocation

accounting for overlaps is:

d = d+ rτ + (
√

(li.x− li−1.x)2 + (li.y − li−1.y)2 − rτ) (4.4)

(
√

(li.x− li−1.x)2 + (li.y − li−1.y)2− rτ) presents the portion of the segment between

li and li−1 that is only covered by li. After simplification, the expression becomes:

d = d+
√

(li.x− li−1.x)2 + (li.y − li−1.y)2 (4.5)

There are two special cases: i) if the location is l0, there is no coverage to take into ac-

count before l0 ; and ii) if the location is lfinal, there is no coverage to into account after

lfinal, Consequently, the length of the covered segment at l0, assuming it was added to

65

Chapter 4. Probabilistic Thing-Based Service Discovery

Algorithm 4 getCoveragePercentage method

Require: L,C, rτ
Ensure: p
1: lold.x← l0.x, lold.y ← l0.y, xold ← 0, yold ← 0, td← 0, d← 0
2: for l ∈ L do
3: td← td+

√

(l.x− lold.x)2 + (l.y − lold.y)2
4: if l ∈ C then
5: if l = l0 then
6: d← d+ rτ
7: else if l = lfinal then

8: if
√

(l.x− xold)2 + (l.y − yold)2 ≥ 2rτ then
9: d← d+ rτ

10: else
11: d← d+

√

(l.x− xold)2 + (l.y − yold)2 − rτ
12: end if
13: else
14: if

√

(l.x− xold)2 + (l.y − yold)2 ≥ 2rτ then
15: d← d+ 2rτ
16: else
17: d← d+

√

(l.x− xold)2 + (l.y − yold)2
18: end if
19: end if
20: xold ← l.x
21: yold ← l.y
22: end if
23: lold.x← l.x
24: lold.y ← l.x
25: end for
26: p← d

td

27: return p

C, is always equal to rτ (Line 6) regardless of possible overlaps. The overlaps will be

accounted for when computing the length of the covered segment at location l1 (as-

suming l1 is covered). The length of the covered segment at lfinal, if there is an overlap

with the previous covered location, is d = d+
√

(l.x− xold)2 + (l.y − yold)2−rτ , since

unlike the computation in Equation 4.5, there is no coverage after lfinal to account

for.

66

Chapter 4. Probabilistic Thing-Based Service Discovery

l1

l2

l3

l4

l5

lfinall0

r

Figure 4.1. An example of the coverage provided by a mobile Thing at the locations
li throughout its path.

Algorithm 4 takes a list of timestamped locations representing κ1’s path, the set

of covered locations on the path, and the coverage range as inputs. It produces the

coverage percentage as output. Algorithm 4 starts by computing, for each location

li on κ1’s path, the total distance between li and li−1 (Line 3). Afterwards, it checks

if li is covered, i.e. if li ∈ C (Line 4). It then checks if any of the special cases

presented above applies. If li is actually l0, then the coverage distance is d = d +

rτ (Line 6). If li is lfinal and there is no overlap with the last covered location

before lfinal in C, the covered distance is d = d + rτ (Line 8-9) otherwise, it is

d = d+
√

(l.x− xold)2 + (l.y − yold)2− rτ (Line 11). If li is an intermediary location,

the algorithm checks if there is no overlap with the last covered location before li
(Line 17), leading the covered distance to be d = d + 2 ∗ rτ , (Line 16) otherwise it

is d = d +
√

(l.x− xold)2 + (l.y − yold)2 (Line 17). To keep track of the last checked

location on κ1’s path when computing the total distance, and the last checked location

in C to compute coverage distance, the currently checked location coordinate values

are assigned to temporary variables (Line 20-24) before moving to the next location.

Once all locations are checked, the ratio of the covered distance to the total distance

is computed and returned as the coverage percentage (Line 26).

67

Chapter 4. Probabilistic Thing-Based Service Discovery

Complexity analysis. Algorithm 1 terminates when a decision is reached after

the end of the outermost loop (Line 5 - 31). All the elements in the loops (both inner

and outer) are finite and therefore the loops are sure to terminate. Algorithm 2

iterates over the locations in Ls, which is a finite set, and therefore it is sure to ter-

minate. Algorithm 3 performs simple computations with no iteration, consequently,

it is sure to terminate. Finally, Algorithm 4 iterates over the locations in L, which

is a finite set, and is therefore sure to terminate.

Algorithm 1 depends on the number of services in Rτ , the number of locations

in L, the number of expansion sets in Eτ , the number of expansion types in each

expansion set eτ , and the number of services in Rtype. Algorithm 1 also includes

multiple invocations of Algorithms 2 to 4.

Algorithm 2 depends on the number of locations in Ls, it has a time complexity

O(Ls). Algorithm 3 has a constant time complexity θ(1).

Finally, Algorithm 4 depends on the number of locations (on the path of κ1) in

L, it has therefore a time complexity O(|L|).
Consequently, Algorithm 1 has a time complexity O(|L|(|Rτ |+ |Rtype||Eτ ||ejτ |)).
Algorithm 1 uses three sets, C,L and R and requires no preprocessing, or com-

plex data structures. Therefore, Algorithm 1 has a space complexity O(|C|+ |L|+ |R|).
In the worst case, all the locations of the path of κ1 will be covered, leading to

|C| = |L|. The resulting space complexity is O(|L|+ |R|).
Algorithm 2 uses one simple set, Ls, and has a space complexity O(|L|). Algori-

thm 3 uses no sets or complex structures and has a constant space complexity θ(1).

Finally, Algorithm 4 uses two sets: L, containing the locations on the path of

κ1 and C, containing the covered locations on the path. Algorithm 4 has a space

complexity O(|L|+ |C|).

Discussion. Our deterministic registration approach can be regarded as a search

problem since we are looking for intersections between the paths of registered Things

and the path of the new Thing κ1. In traditional search solutions, a preprocessing

step is preformed to optimize the search process (e.g., sorting data prior to executing

the search requests). In our algorithm, the data to sort is the locations of registered

Things at the time at which a new Thing joins the network, which in the traditional

case, would have a time complexity O(log(|R|)). However, Things are mobile and

we do not know, a priori, the time at which a new Thing will join the network.

68

Chapter 4. Probabilistic Thing-Based Service Discovery

Therefore we cannot perform the sorting before it actually joins, especially since time

is a continuous variable and we cannot sort the locations of all registered Things for

all possible time values. As such, we can not reuse preprocessed results from one

Thing for the other in the general case.

The approach can also be regarded as a continuous range query problem on Mobile

Object Databases common in the Geographical Information Systems (GIS) [Star and

Estes, 1990] domain or the mobile navigation domain. There are two categories of

range computations: based on Euclidean distance, or based on road network distance.

We are interested in the former. Mobile Object Databases (MOD), introduced in the

late nineties by several parallel research efforts ([Prasad Sistla et al., 1997, Erwig

et al., 1999]) can support information of the form: (location, time), corresponding to

past movements or future movements provided by a path planning tool [Lema et al.,

2003, Ding et al., 2008, Grumbach et al., 2001]. They can also handle spatial infor-

mation [Pelekis et al., 2004]. Although those characteristics match our requirements

and can be integrated in the Registry, the MOD performance, with timeliness being

an important requirement, is proportional to the load they are subjected to. The

load, in our current context, is defined in terms of the number of concurrent queries

to compute the geometric overlaps of an ultra large number of mobile Things. More-

over, even though MODs are designated to perform well in a similar context to ours,

the computation time will certainly grow with the dataset size.

In conclusion, the deterministic registration approach checks the locations of all

similar or expansion services to determine if the service provided by κ1 is needed.

As can be deduced from the complexity analysis it can grow linearly with the size

of R, which in our context, can be very large, in the order of billions. This problem

can be addressed by adopting a probabilistic mobility model to separate the coverage

computations from the actual mobility details and the size of the set of registered

services, i.e., separate the registration computation process from the Registry and its

backend database. The mobile model-based approach is presented in the following

section.

4.2.2 Probabilistic Thing-based Registration

As presented above, the deterministic registration approach provides a relatively pre-

cise decision but its time complexity increases linearly with the number of registered

69

Chapter 4. Probabilistic Thing-Based Service Discovery

Things. Given that we anticipate, in the mobile IoT, the availability of a large num-

ber of Things (millions or more), the approach can be very costly. We propose a

probabilistic optimization that builds on the TLW mobility model to estimate the

movements of mobile Things. The resulting knowledge can be exploited by the in-

coming Thing κ1 to make an approximated decision whether or not to register its

services. The decision is based on the probability that, for each location li, at least

one registered service with similar capabilities is hosted on a mobile Thing that will

cross paths with κ1 at li at time ti.

4.2.2.1 Probabilistic Registration Approach Based on Direct Coverage

The detailed itinerary information provided by each Thing is now substituted by

estimations of the possible displacements of Things hosting registered services. The

estimations are provided by exploiting TLW. They are computed locally and inde-

pendently on each new Thing. As such, each Thing can determine, locally, whether or

not to register its services. Performing computations locally on each Thing decreases

the computation load on the Registry. We formulate the problem to solve as follows:

Given a new Thing κ1 wishing to register a hosted service abstracting a

sensor/actuator of type τ , in an environment with an unknown dynamic

topology, consisting of a set R of services hosted on location-aware mobile

Things and abstracting different types of sensors/actuators, compute the

probability Pcovered that the locations on the path to be followed by κ1 (with

a given itinerary) can be covered by Things hosting registered services in R

and determine if κ1 should register its service, based on a required coverage

threshold.

To be able to compute the registration decision without any knowledge of the

actual locations of mobile Things hosting registered services, the Registry is required

to provide the number of already registered similar and expansion services along

with the distribution of their hosts in space. It is possible to estimate the latter along

with its parameters using ALLFITDIST method provided by MATLAB.1 ALLFISTDIST

method takes a sample of points as input and returns a list of fitting distributions with

their corresponding parameters, sorted by Negative of the Log Likelihood (NLogL),

1MATLAB: http://www.matlab.com

70

http://www.matlab.com

Chapter 4. Probabilistic Thing-Based Service Discovery

Bayesian Information Criterion (BIC), or Akaike Information Criterion (AIC), which

are common metrics used to compare goodness of fit. Goodness of fit describes how

well a statistical model fits a set of data values. In this case, the sample points are a

set of X-coordinates and a set of Y-coordinates representing the locations of Things

hosting the registered services. The output of the method is their distribution in

space. The process can be performed periodically or whenever a new Thing registers

a service.

As mentioned earlier, we need to compute the probability that the path of the new

Thing κ1 is covered. For this purpose, the approach should compute the probability

that at least one Thing will be at each of the locations of interest at the same time

as κ1. Locations of interest should be at most 2 ∗ rτ away from each other so as not

to have uncovered holes in the path. Let P (≥ 1 Thing is at(li, ti)) be the probability

we are looking for at each location.

P (≥ 1 Thing is at (li, ti)) = 1− P (no Thing at (li, ti)) (4.6)

Note that we assume that the probabilities of distinct Things being at a location

are independent. Consequently, P (no Thing at (li, ti)) is as follows:

P (no Thing at (li, ti)) =
∏

κ∈R

(1− P (κ is at (li, ti))) (4.7)

The probability that κ will be at location li at time ti is the probability of κmoving

from its initial location to li. This refers to the total displacement δκi of Thing κ from

its initial location lκ0 at time t0 until time ti. The probability to compute becomes:

P (≥ 1 Thing is at (li, ti)) = 1−
∏

κ∈R

(1− (P (δκi = li − lκ0))) (4.8)

We build on the work by [Sadiq and Kumar, 2011] where the probability function

of a Thing being at a specific distance from the origin, i.e., the probability of a Thing

having a specific displacement, is provided. The Things are assumed to follow a

TLW. In this work, authors show that the Central Limit Theorem (CLT) applies to

the displacements in TLW. CLT is a theorem that states that the distribution of a

sample can be approximated to a normal distribution if some conditions apply as

follows:

71

Chapter 4. Probabilistic Thing-Based Service Discovery

• Each mobile Thing selects a step length from the same distribution repeat-

edly, which leads to its position being the sum of the identically independently

distributed steps, which is the first condition to satisfy.

• Mean and variance points are finite, which is the second condition to satisfy.

They are finite because the TLW has truncation points for the flight and pause

time distributions.

Consequently, and given that the displacement is in two dimensional cartesian

coordinates, authors approximate the displacement probability function to a bivariate

normal distribution of the form:

φ(X, Y, t) =
1√
2πDt

∗ e−X2

2Dt ∗ 1√
2πDt

∗ e−Y 2

2Dt (4.9)

D is the diffusion factor in the TLW and it is equal to
σ2
ξ

µt
[Rhee et al., 2008], where

σ2
ξ is the variance of the displacement length and µt is the mean of the complete

displacement time distribution. Note that σ2
ξ and µt are parameters that depend on

the real life scenario and the mobility category.

Equation 4.9 is applicable if the displacement starts from the origin (0, 0). How-

ever, in our case it starts from location l0κ = (X0
κ,Y

0
κ). Further, if we try to compute

P (δκi = li − l0k), i.e. compute the probability of Thing κ being at an exact location,

the outcome will be 0. Therefore, we define an area over which the probability should

be estimated. We consider that the location should be approximated to the area of

the circle Cli,rτ , with radius equal to the coverage range rτ of the Thing and centered

at li.

Consequently, the probability that κ is in Cli,rτ at time ti starting from a known

location l0 = (Xκ
0 , Y

κ
0) becomes:

P (κ is in Cli,rτ at time ti) =
1

2πDti

∮

lκ∈Cli,rτ

e
−

(Xκ−Xκ
0)2+(Y κ−Y κ

0)2

2Dti dlκ (4.10)

where lκ = (Xκ, Y κ).

Since the locations of already registered Things are not assumed to be known, the

initial location lκ0 for Thing κ at time t0 can be anywhere in the deployment area A.

Going a step further, we can say that with respect to location li, we only care for

72

Chapter 4. Probabilistic Thing-Based Service Discovery

l1

l2

l3

l4

l5

lfinal

d2max

l0

r

Figure 4.2. An illustration of the maximum reachability area by Cli,d2max
and the

coverage areas around locations li.

Things located within the circle Cli,dimax
, with center li and radius dimax (as shown in

Figure 4.2); dimax is the distance from li beyond which no Thing κ can reach location

li at time ti. Taking into account all locations within circle Cli,dimax
, the probability

of a Thing κ being in Cli,dimax
is:

P (κ ∈ Cli,dimax
) = (

∑

all x,y in Cli,d
i
max

P (κ starts at (x,y)) (4.11)

P (κ ∈ Cli,dimax
) =

∮

C
li,d

i
max

PDF (X0
κ, Y

0
κ)dX

0
κdY

0
κ (4.12)

with PDF (X0
κ, Y

0
κ) being the spatial distribution of the locations of Things speci-

fied by the Registry. We assume that the location of the Thing on the X-axis is

independent from its location on the Y-axis, therefore:

P (κ ∈ Cli,dimax
) =

∮

C
li,d

i
max

PDF (X0
κ) ∗ PDF (Y 0

κ)dX
0
κdY

0
κ (4.13)

73

Chapter 4. Probabilistic Thing-Based Service Discovery

Consequently, the probability of Thing κ moving to Cli,rτ can be computed as

follows:

g(li, ti, r) =

∮

lκ0∈Cli,d
i
max

PDFXκ
0
(Xκ)∗PDFY κ

0
(Y κ)dlκ0∗

1

2πDti

∮

lκ∈Cli,rτ

(e
−

(Xκ−Xκ
0)2+(Y κ−Y κ

0)2

2Dti dlκ)

(4.14)

If we go back to the probability in Equation 4.8, building on the assumption that

Things move independently from one another, we obtain by substitution:

P (≥ 1 Thing at (li, ti)) = 1−
∏

κ∈ni

(1− g(li, rτ , ti)) (4.15)

where ni is the set containing all Things in Cli,dimax
. The assumption that Things

move independently stems from the fact that we consider the displacements of in-

dividuals separately without accounting for group mobility or the correlation of dis-

placements between various individuals, which is left for our future work. The prob-

ability of displacement from lκ0 into Cli,rτ is identical for all Things in ni, therefore

P (≥ 1 device at (li, ti)) becomes:

P (≥ 1 Thing at (li, ti)) = 1− ((1− g(li, rτ , ti))|ni|) (4.16)

Now that we have determined the probability of coverage at one location, we can

repeat the process to obtain the probability of coverage at all locations.

Pcov =
∏

li∈L

(1− (1− g(li, rτ , ti))|ni|) (4.17)

4.2.2.2 Probabilistic Registration Based On Expansion

If any location of interest on the path of the mobile Thing κ1 is not covered by Things

hosting sensors/actuators of type τ , κ1 can check if the type of the service it hosts can

be substituted by other types of services. It is important to ensure that expansion

services are hosted on Things present at the same location at the same time. For

instance, to estimate the wind-chill value, we need to compute the probability that all

locations li on the path of κ1 will be covered by both sensor types τ1 (thermometer)

and τ2 (anemometer), i.e., sensor types that measure concepts ∈ ejτ . In the following

74

Chapter 4. Probabilistic Thing-Based Service Discovery

we show how we can compute the coverage probability that takes expansion into

account.

Let P Sτ
cov be the probability of coverage by a mobile Thing hosting a sensor/actu-

ator of type τ , and P e
j
τ

cov be the probability of coverage by Things hosting sensors/ac-

tuators corresponding to concepts in one of the expansion sets ejτ :

P e
j
τ

cov = Pcov(by Sτ1 and Sτ2)

= P
Sτ1
cov ∗ P Sτ2

cov

In the general case:

P e
j
τ

cov =
∏

S∈ejτ

P S
cov (4.18)

P S
cov is computed using the same equation as Pcov (Equation 4.17), with a change

in the type of the sensor/actuator. The complete probability of coverage, i.e., the

probability including both direct coverage and coverage with expansion cases, is:

Pcovered = Pcov(by Sτ or ejτ) (4.19)

Pcovered is also equal to 1− (the probability of having no coverage by Things hosting

sensors/actuators of type τ and the probability of having no coverage by Things

hosting sensors/actuators that monitor/act on concepts in ejτ), i.e.,:

Pcovered = 1− ((1− P Sτ

cov) ∗ (1− P e
j
τ

cov)) (4.20)

In a more general form, assuming there is a set Eτ of possible expansion sets, ejτ ,

the complete probability of coverage is as below:

Pcovered = 1− ((1− P Sτ

cov) ∗
∏

e
j
τ∈Eτ

(1− P e
j
τ

cov)) (4.21)

Algorithm 5 summarizes our approach to generate the final registration decision

based on the computed Pcovered. The algorithm first computes the direct coverage

using Equation 4.17 (Line 1). If the coverage is less than the threshold (Line 2),

it computes the probability of coverage by expansion for each type in set eτ using

75

Chapter 4. Probabilistic Thing-Based Service Discovery

Algorithm 5 Probabilistic Registration decision process

Require: L, rτ , Eτ , threshold
Ensure: decision ∈ {true, false}
1: compute Pcovered using Equation 4.17
2: if (Pcovered) ≤ threshold then
3: for each ejτ ∈ Eτ do
4: for each type ∈ ejτ do
5: compute Pcov using Equation 4.17
6: end for
7: compute P e

j
τ

cov using Equation 4.18
8: end for
9: p← compute Pcovered using Equation 4.21

10: end if
{NT is the new threshold generated after computing the coverage

probability}

11: NT ← 1− (1−threshold)
(1−p)

12: if uniformRand(0, 1) < NT then
13: decision← true
14: else
15: decision← false
16: end if
17: return decision

Equation 4.17 (Line 3-5), and then for the whole set eτ using Equation 4.18 (Line 7).

Finally the complete probability of coverage is computed using Equation 4.21 (Line 9).

The result is then used to generate a new threshold through a utility function pre-

sented below. The new threshold is then compared to random uniform number. If the

number is below the new threshold, the Thing registers, and vice versa (Line 12-15).

The randomized approach and the new threshold generation are chosen to introduce

a margin for flexibility in the registration decision because the coverage computations

build on estimations of potential coverage and not exact information. The end goal is

to minimize the probability that the Thing registers, while still achieving an adequate

amount of coverage. The new threshold, which determines the final probability of

registration, is generated as presented below, provided that:

• C = event that path is covered

• prob(C) = probability that path is covered, i.e., prob(C) = threshold th

76

Chapter 4. Probabilistic Thing-Based Service Discovery

• CT = event that path is covered by other Things

• prob(CT) = probability that path is covered by other Things = p

• Accepted Loss = 1− th

• Register = event that κ1 registers

• prob(Register) = probability that κ1 registers, i.e., prob(Register) = new

threshold NT

The new threshold generation starts with the fact that the accepted loss is equiv-

alent to the path not being covered and the new Thing not registering. Therefore:

Accepted Loss = prob(Register ∩ P) (4.22)

1− th = (1− prob(Register)) ∗ (1− p) (4.23)

By simplifying the equation we obtain:

1− prob(Register) = 1− th
1− p (4.24)

Finally, the new threshold, equivalent to prob(Register), is:

NT = 1− 1− th
1− p (4.25)

Although we assumed independence between the Register and P events, our

evaluations in Chapter 6 show that our assumption does not lead to low quality

results. Relaxing the assumptions and investigating the correlations between both

events is part of our future work.

It is important to clarify that in our current approach, we assume that the time

needed to perform a sensing/actuating task is equal to the time needed for a mobile

Thing to cross a location li. Relaxing this assumption and varying the required

availability duration according to the physical concept itself makes part of our future

work.

77

Chapter 4. Probabilistic Thing-Based Service Discovery

Complexity analysis. Algorithm 5 terminates either if direct coverage is suffi-

cient or when the end of the outermost loop is reached (Line 3 - 9). The loop depends

on the size |Eτ |, which is a finite number. There is one inner loop that depends on

the size |ejτ |, which is the number of expansion types in each expansion set, also a

finite number. Unlike the deterministic registration algorithm, which has to check

the actual paths of Things hosting registered services, the current algorithm is not

dependent on those values.

Algorithm 5 depends on the number of locations |L| on κ1’s path, the num-

ber of expansion types in eτ , the number of expansion sets in Eτ , the size of the

area AC
li,d

i
max

computed for Cli,dimax
(to determine |ni|, the number of Things that

can reach li in time ti), and the size of the area ACli,rτ
computed for Cli,rτ (to

determine the coverage at location li). The time complexity of the algorithm is

thereforeO
(

|Eτ ||ejτ ||L||AC
li,d

i
max
||ACli,rτ

|
)

. Note that steps 1, 5, and 6 perform oper-

ations, namely integrations, over the areas ACli,rτ
, and AC

li,d
i
max

. This incurs addi-

tional time and space costs. However, the operations depend on the parameters of

the numerical methods employed and are independent of the problem size.

Algorithm 5 stores values in two sets: Eτ and ejτ . The sets are used when

computing Equation 4.17 (for coverage with expansion). Thus, the algorithm has a

space complexity O(|Eτ |+ |ejτ |).
Finally, given the distributed nature of the algorithm where computations are

performed locally on each Thing, additional traffic is generated as the new Thing,

performing computations, communicates with the Registry to acquire the spatial dis-

tribution and the number |n| of Things hosting services similar to the one provided

by the incoming Thing. The message exchange takes place once at the beginning

of the registration decision computation. We remind readers that by employing the

probabilistic mobility model to estimate the displacement of Things, the Registry is

not required to send path information of all registered Things but only their distri-

bution in space. Consequently, the complexity of the communication depends only

on the number of bits representing the size of the set n, and the number of bits

representing the distribution of the host Things, which are log(|n|) and log(d) re-

spectively, with d representing the spatial distribution and its parameters. As such,

the additional communication complexity incurred by distributing computations is

O(log(|n|) + log(d)).

Clearly, with the computation and communication complexities presented above,

78

Chapter 4. Probabilistic Thing-Based Service Discovery

the probabilistic Thing-based registration outperforms its deterministic counterpart,

as it requires computations that are independent of the number of registered ser-

vices. Consequently, the probabilistic approach is more certain to scale. This is also

demonstrated in Chapter 6 where we evaluate both deterministic and probabilistic

approaches and show their benefits. Additionally, both approaches are designed with

mobility as the rule rather than the exception and therefore can handle the dynamic

nature of the mobile IoT.

4.2.3 Computation Simplifications

For each location of interest on the path of a mobile Thing κ1, it suffices to consider

|ni| Things, with ni being the set of Things that can actually reach li at time ti. To

compute the size of ni, we apply the following steps:

1. For each location li, compute dimax = v ∗ (ti − t0).

2. For each location li, compute the following values: xmin = xi−dimax and xmax =

xi+d
i
max for Xκ and ymin = yi−dimax and ymax = yi+d

i
max for Yκ. Those values

will provide us with boundaries (for squares) that can be used to determine the

area around each location li beyond which li is not accessible in time ti.

3. The Registry computes the spatial distributions and returns PDF (x) and

PDF (y) used by Equation 4.14. The locations of Things hosting registered

services are sent as sets of X-coordinates and Y-coordinates to MATLAB’s

ALLFITDIST method that returns a list of distributions with errors. The Reg-

istry then selects the distribution with the smallest error.

It is shown in [Rhee et al., 2011], that human mobility is scale free. Consequently,

looking at the mobility of humans from any scale leads to similar observations and

patterns with invariant characteristics. Based on this fact, we consider that the

distribution provided by the Registry for a larger region stands correct for the small

area within [xmin, xmax] and [ymin, ymax].

Using the new computed area and the spatial distribution of Things, we com-

pute the probability that li = (Xi, Yi) is within the new area limits, i.e. P (Xi ∈
[xmin, xmax]) and P (Yi ∈ [ymin, ymax]). Afterwards, we use the resulting probability

value to compute the number of Things expected to be within the defined boundaries

79

Chapter 4. Probabilistic Thing-Based Service Discovery

based on the following product:

|ni| = P (Xi ∈ [xmin, xmax]) ∗ P (Yi ∈ [ymin, ymax]) ∗ |n|

li

σ

 Σ

(xmin,ymin)

(xmax,ymax)

Figure 4.3. A closer look at the substitution of Cli,r by σli,r and Cli,dimax
by Σli,dimax

.

To simplify the complex integration computations, we replace the circle Cli,rτ by

the largest square σli,rτ within Cli,rτ (in order to be pessimistic about our compu-

tations). This allows us to split the area integrals into double integrals that have a

closed form expression. Similarly, we let Σli,dimax
be the smallest square outside the

circle Cli,dimax
(Figure 4.3) to limit the integral bounds. The above simplifications

80

Chapter 4. Probabilistic Thing-Based Service Discovery

reduce Pcov equation to:

Pcov ≃
∏

li∈L

(1−
∏

κ∈ni

(1−
∮

l0κ∈σli,rτ

PDF (X0
κ)

∗PDF (Y 0
κ)dX

0
κdY

0
κ ∗

1

2πDti
∮

lκ∈Σli,d
i
max

e
−

(Xκ−X0
κ)2+(Yκ−Y 0

κ)2

2Dti dXκdYκ))

We can separate the X-axis integrals from the Y-axis integrals, and the equation

becomes:

Pcov ≃
∏

li∈L

(1−
∏

κ∈ni

(1− 1

2πDti
∗ Φ(Xi, Xκ, X

0
κ) ∗ Φ(Yi, Yκ, Y 0

κ))) (4.26)

where

Φ(a, b, c) =

∫ a+dimax

a−dimax

∫ a+
√
2∗rτ
2

a−
√

2∗rτ
2

PDF (c) ∗ e−
(b−c)2

2Dti dbdc

The same simplification logic applies to coverage by expansion, since it also builds

on Equation 4.17.

Support for mobility models. We presented above a mathematical solution that

is specific to TLW. However, mobility models may evolve and new models can become

available. Therefore, it is important to allow the new models to be exploited. To

that end, our design permits models to be plugged in easily, as long as they provide

a formula to estimate the probability of a mobile Thing being at location li at time

ti. Precisely, the model to plug in should provide an equation that computes the

same information as Equation 4.10. The new equation will be used to reconstruct

Equation 4.26 following the same computation steps we presented throughout this

section.

81

Chapter 4. Probabilistic Thing-Based Service Discovery

4.3 Thing-based Service Look-up

If the traditional Service-Oriented look-up is to be adopted, all registered services

that match a request (i.e., provide the required functionality and satisfy additional

constraints, if any are specified) are retrieved. Such an approach leads to the selection

of a large number of services located closely to each other and providing redundant

functionalities. Even though the Thing-based registration limits the participation

of Things, they remain numerous. We address this issue at the look-up phase by

selecting, probabilistically, a subset of registered services based on an estimation of

the location of their hosts and the coverage they provide. Unlike the Thing-based

registration where coverage is computed per Thing, along its own path, coverage in

the look-up phase is computed for the whole area of interest specified in the user

query.

4.3.1 Probabilistic Thing-based Lookup

As sensing/actuating tasks are tightly bound to a real world geographical setting,

location information should be accounted for when selecting the subset of Things.

However, selecting Things based on specific coordinate points in the area of interest

is a good approach if Things are static and deployed to cover those locations, as they

will most likely be available at those locations. Introducing mobility complicates the

matter as chances of their unavailability are high. However, unlike registration, using

mobility models in this case is not beneficial because concrete location information

is more crucial when answering location-based queries. Yet, asking Things for their

precise locations, whenever a request to find services is received, incurs high commu-

nication costs, due to the recurring message exchanges with a very large number of

Things. A solution is to select the subset of Things based on a distribution in space

rather than exact coordinates.

We formulate the problem to solve as follows:

Given a set Rτ of services abstracting sensors/actuators of type τ , select

a subset s ⊆ Rτ of those services hosted on mobile Things from an area

a based on a distribution in space DIST of the mobile Things, and a

required subset size |s|.

82

Chapter 4. Probabilistic Thing-Based Service Discovery

We start by giving an overview of the approach and proceed with an elaborate

explanation of the corresponding algorithm. To be able to select the correct subset, it

is important to locate the registered Things at the time of the request tr. Whenever

a Thing registers its services it sends an estimation of the path it will follow as a

set of (x,y) coordinates and timestamps. It is possible that none of the timestamps

matches tr, therefore, an estimation of the locations of Things hosting services in

Rτ at time tr is required. Afterwards, in accordance with the commonly adopted

approach in the literature [Xu et al., 2001, Ye et al., 2002], the area a is divided into

a grid Q consisting of |Q| squares. In order to not bias the selection, the same number

of Things is selected from each square of the grid. When services are selected, their

access addresses are returned as the result. The address is a URL that determines

how the service can be contacted to provide its functionality. The details of the

solution are presented in Algorithm 6.

Algorithm 6 first calls the interpolation() method to estimate the location

of appropriate mobile Things at time tr (Line 7). The interpolation() method

is presented in Algorithm 7. Afterwards, the algorithm constructs the grid Q over

area a using the constructGrid() method (Line 8). The details of the grid construc-

tion depend on the spatial distribution and are presented in the next section. The

algorithm then determines which of the Things are in each square q of Q using the

identifySquares() method (Line 9). The method determines which Things belong

to which of the squares in the grid by comparing the estimated coordinates of the

Things to the border coordinates of each square. Afterwards, the algorithm selects

an equal number |s|
|Q|

of Things from each square (Line 10-15) and returns the subset

of selected services.

Algorithms 7 takes the set of registered services in Rτ and the request time

as input. It returns the same set of services with interpolated locations at time

tr as output. The algorithm exploits a binary search approach to determine the

timestamps tj and tj+1 that are directly before and after the request time tr such

that tj < tr < tj+1. It then finds the locations (xtj , ytj) and (xtj+1
, ytj+1

) of the

mobile Things at times tj and tj+1 respectively, and estimates (xt, yt) for each Thing.

In more detail, for each service, it performs the binary search to find the index of the

largest timestamp tj in the path of the Thing hosting the service, that is smaller than

tj (Line 4). It then finds the host’s location at the returned index (i.e., at time tj)

(Line 5). If the path of the current service does not have a timestamp that matches

83

Chapter 4. Probabilistic Thing-Based Service Discovery

Algorithm 6 Probabilistic Lookup

Require: Rτ , a, tr, |s|
Ensure: s

{I is the set of services with their interpolated locations at the

time of request tr}
1: let I ← ∅

{Q is the grid constructed over the area of interest. It consists

of several equal squares}
2: let Q← ∅

{servicesInGrid contains services and the square they belong to.}
3: let servicesInGrid← ∅
4: let tempArray ← ∅
5: let tempServices← ∅
6: counter ← 0
7: I ← interpolation(Rτ)
8: Q← getGrid(a) {construct the grid of squares}

{determine services belong to which squares of the grid by

comparing their coordinates to the border coordinates of each

square}
9: servicesInGrid← identifySquares(I,Q)

10: for each square qi ∈ Q do
11: tempServices← qi.getServices {return all services in s at time tr}

12: while counter < |s|
|Q|

do
13: index← math.random ∗ tempServices.size

{select uniform random locations of mobile Things}
14: if s.contains(tempServices.get(index)) = false then
15: s.add(tempServices.get(index))
16: counter ++
17: end if
18: if counter = tempServices.size then
19: break
20: end if
21: end while
22: end for
23: return s

the requirement, i.e., the estimated path of the current service’s host starts after

tr, the algorithm skips the service and moves to the next (Line 6-7). Otherwise, it

checks if tj = tr, in which case the location lj is returned as the answer (Line 9-10).

84

Chapter 4. Probabilistic Thing-Based Service Discovery

Algorithm 7 interpolation method

Require: Rτ , tr
{return the set of services that satisfy the request with their

estimated locations}
Ensure: interpolatedResult
1: let interpolatedResult← ∅
2: index← 0
3: for each service s ∈ Rτ do
4: index = lowerBinarySearch(s.locations, 0, locations.size()− 1, t)
5: selectedLocation = s.locations.get(index)
6: if index < 0 then
7: continue
8: else
9: if selectedLocation.time = t then

10: locationNow = selectedLocation
11: end if
12: else
13: if index = locations.size() - 1 then
14: continue {move to the next service.}
15: end if
16: else
17: locationNow = interpolate(selectedLocation, locations.get(index+ 1), tr)
18: end if
19: s.location→ locationNow
20: interpolatedResult.add(s)
21: end for
22: return interpolatedResult

The algorithm also checks if the returned index corresponds to the last location on

the host’s path, in which case the service is ignored (Line 13-14). If none of the

issues above is true, the algorithm finds the host’s location at the index+ 1 (at time

tj+1) and passes it along with the location lj and time tr to the interpolate method

presented in Algorithm 3 to estimate the host’s location at time tr (Line 16-17).

Once all service have been checked, a list of services with interpolated locations at

time tr is returned (Line 22).

We present in the following, the grid construction approach based on two distri-

butions: uniform distribution and normal distribution.

85

Chapter 4. Probabilistic Thing-Based Service Discovery

4.3.1.1 Distribution-based Grid Construction

The first step towards the construction of the Grid Q over the area of interest a, is

to identify the spatial distribution of Things, hosting services to interrogate, along

with its parameters. The spatial distribution type depends solely on the type of the

event to measure/modify.

After surveying the literature, we concluded that events to monitor/modify can

belong to one of the following categories:

• Boolean events : A boolean event does not spread. If it is not directly within

the coverage range of a sensor/actuator it can neither be detected, nor acted

on (e.g., pressure sensor).

• Uniformly spreading events: A uniformly spreading event in an area a is an

event that has the same state across the whole area.

• Decaying events: A decaying event is an event that spreads over some distance

with its amplitude decaying based on a decay function f .

Uniformly spreading events within an area a can be measured/acted on from

any location within a. It is very likely that they will have the same value given

their uniform nature. In this case, we select the Things to measure/act on based

on a uniform spatial distribution, where every Thing has a probability 1
|Rτ |

of being

selected. The uniform distribution is commonly adopted for sensor selection, based

on a required area coverage (e.g., [Wang, 2011, Choi and Das, 2009]).

Decaying events have an inversely proportional amplitude to the distance from the

location le of the event. Consequently, to estimate the state of the event at location

le, where it takes place, it is more beneficial to select more Things around le and fewer

as the distance increases. This setting corresponds, among others, to the outcome of

a normal distribution based sampling. The normal distribution, characterized by the

Gaussian bell curve shown in Figure 4.4, has the following characteristics:

• 68.2% of the values are within one variance from the mean.

• 27.2% of the values are between the first and second variance from the mean.

• 4.2% of the values are between the second and third variance from the mean.

86

Chapter 4. Probabilistic Thing-Based Service Discovery

μ = xe,ye

 σ = d/3

r1 r2 r3 r4 r5 r6

N(μ,σ2)

Figure 4.4. The PDF of a normal distribution with σ = du
3

. The area under the
curve is divided into 12 equal areas.

An important characteristic of normal distribution, is that there is almost no point

beyond 3 variances. Specifically, 99% of values are within 3σ from the mean µ, with

σ2 being the variance of the distribution. This matches a peculiarity of decaying

events, where their amplitude can no longer be detected beyond a distance du. Con-

sequently, the parameters of the normal distribution are specified by mapping the

normal distribution density function to the real world setting where 3σ = du, with

the mean being the location of the event of interest le, such that le : (xe, ye) = µ.

The parameters of the normal distribution are therefor µ = (xe, ye) and σ2 = (du
3
)2.

Contrary to uniformly spreading events, selecting Things in a from beyond du is

guaranteed to incur additional costs with no additional benefit. Therefore it becomes

crucial to compute the value of du depending of the nature of the event itself. Decaying

events abide to well defined laws of physics and have well specified formulas that

model their decay and their decay distance. Concept-specific decay functions and

decay-distance functions are defined in the domain ontology. Using the decay-distance

functions, du can be computed and the area from which Things should be selected

can be determined as follows:

1. xmax = xe + du

2. ymax = ye + du

87

Chapter 4. Probabilistic Thing-Based Service Discovery

3. xmin = xe − du

4. ymin = ye − du

For instance, the acoustic attenuation function is:

Ad = A0 ∗ e(−α∗d) (4.27)

where Ad is the acoustic value at distance d from the origin, A0 is the acoustic

value at the origin and α is the attenuation factor. An acoustic domain expert can

extract d from Equation 4.27 by setting, for instance, Ad = 0.001% of A0, and obtain

d = − 1
α
ln(0.1%), which is the decay-distance function.

To properly select Things based on the spatial distributions above, the grid should

be constructed in a manner that inclines the subset selection process towards results

that match the expected distributions’ outcome. We note that, the normal distribu-

tion is not the only solution to be adopted for decaying events. It is possible that

some decay formulas match different distributions, such as for instance, an expo-

nential distribution. Our current solution, where normal distributed was chosen as

an illustration for its analytical tractability, can be extended to include any other

distribution by properly revising the grid construction process presented below.

Uniform distribution. If the distribution of the subset to select should be uni-

form, the grid computation is straightforward. It consists of dividing a into |Q| equal

squares qi [Xu et al., 2001, Ye et al., 2002]. Afterwards, a size λ = |s|
|Q|

of Things is

uniformly selected from Rqi , the set of registered mobile Things that will be within

square qi at time tr.

It is possible that a square qi has less than the required λ at the time of the request

tr. An alternative is to retrieve the remaining mobile Things from the nearest square

to qi. The second alternative is to not replace the missing Things as they would have

been missing even if we opt for a full Thing selection. We chose the latter in order

to not increase the computation complexity.

Normal distribution. The process is more complex for the normal distribution.

The grid to construct should reflect the fact that there are more points around the

mean, i.e. the event of interest, and fewer as we move farther. Towards that goal,

88

Chapter 4. Probabilistic Thing-Based Service Discovery

instead of dividing the area into equal squares, it is divided into differently sized

concentric squares. To compute the size of the squares, a is approximated to the area

under the probability density function (PDF) of the normal distribution. The PDF

area is divided into smaller equal areas. To have equal areas under a decreasing curve,

the width of each area should increase while the heights decrease. Thus, the range

ri of each area will increase as illustrated in Figure 4.4 (the desired area is 1/12th of

the total area). To compute the different range values ri, we use the inverse of the

Cumulative Distribution Function (CDF) also known as quantile function. A quantile

function returns, for a given probability, the value at which a random variable will

be. The probability corresponds to the area between the mean and the value of the

random variable on the X-axis. In the real world setting, this value also corresponds to

the width of ith square qi. The quantile function is defined in terms of the cumulative

distribution function as:

x = F−1(p|µ, σ) = [x : F (x|µ, σ) = p] (4.28)

where

p = F (x|µ, σ) = 1

σ
√
2π

∫ x

−∞

e−
(t−µ)2

2σ2 dt (4.29)

As mentioned earlier, the grid is constructed as several concentric squares around

the event of interest. Each square has a width equal to one of the different range values

ri computed by the quantile function. A example of a resulting grid is illustrated in

Figure 4.5. The squares closer to the event of interest are smaller and have a higher

density of Things since we select the same number λ = |s|
|Q|

of Things, uniformly, from

the set Rqi \Rqi−1
, for each square qi. Things are selected from this set as we should

only consider the region that is not covered by the inner square qi−1. The resulting

regions to select from are illustrated by the differently shaded regions in Figure 4.5.

In the approaches presented above, it is assumed that the area a is either specified

by the user and provided as input or computed dynamically by MobIoT. However,

this imposes some limitations in the case where neither the user nor MobIoT can

properly compute that area, which should rather be computed at the application

level. Evidently, this fact does not affect MobIoT’s performance as it will still receive

the area value as input from the application. Nonetheless, it would be highly bene-

ficial if the middleware can assist developers in specifying their application logic to

dynamically compute the area, which makes part of our future work.

89

Chapter 4. Probabilistic Thing-Based Service Discovery

a

q1q4 q3q5q6 q2

r1 r2 r3 r4 r5 r6

Figure 4.5. The final grid from which |s| normally distributed mobile Things should
be selected.

Complexity analysis. Algorithm 6 terminates either if, for each square qi in the

grid, the density requirement λ is satisfied, or if all services are selected (in the case

where the square has less services than the required density). The algorithm depends

on Algorithm 7, which is sure to terminate as it iterates over a finite number of

services in Rτ . It also depends on the getGrid() method. The method depends on

the area of interest, which has a predefined width and height, therefore the method

is sure to terminate. The identifySquares() method depends on the number of

squares in the constructed grid and the number of services, both of which are finite.

Therefore, this method is also sure to terminate. Consequently, Algorithm 6 is sure

to terminate.

The interpolation method in Algorithm 7, iterates over services in Rτ once,

to estimate their locations, and therefore has a time complexity of order O(|Rτ |). In

the worst case, Algorithm 7 will interpolate the locations of all registered services

in R leading to |Rτ | = |R|. Therefore it has a worst case complexity O(|R|).
The getGrid() method has a time complexity θ(|a|

ratio
). The identifySquares()

method goes through every service in I once and has a time complexity of order

O(|I| ∗ |Q|), as it also iterates over the squares in Q in order to determine which

service in I belongs to which square qi. In the worst case, the method will go through

90

Chapter 4. Probabilistic Thing-Based Service Discovery

all services in R, leading to |I| = |R|. Consequently, the worst case complexity of the

identifySquares() method is O(|R|+ |R|+ |R| ∗ |Q|). therefore, the complexity

becomes O(|R| ∗ |Q|).
Algorithm 6 invokes Algorithm 7 and the internal methods presented above.

Additionally, Algorithm 6 depends on a while loop (Lines 12 - 19) over λ where

λ = |s|
|Q|

. To ensure that the loop does not iterate indefinitely, we check at every

iteration if all services have been selected at the current square, and break the loop

if this condition applies. Algorithm 6 also depends on the number of squares in Q

as it iterates over each square to randomly select services (Lines 10 - 19). As such,

Algorithm 6 has a time complexity of order O(I ∗ |Q| ∗ |R| ∗ λ). In the worst case,

I and swill contain all registered service in R, leading to |I| = |s| = |R|, therefore

the worst case complexity of Algorithm 6 is O
(

|Q| ∗ |R|
|Q|

)

.

The space complexity of Algorithm 7, which uses two sets: i) Rτ , and ii) the in-

terpolated set interpolatedResult is O(|Rτ |+ |interpolatedResult|). The algorithm

estimates a location for each service in Rτ and adds the result to |interpolatedResult|,
therefore |interpolatedResult| = |Rτ |. The space complexity reduces to O(|Rτ |). In

the worst case, Rτ will contain all services in R leading to: |Rτ | = |interpolatedRe-
sult| = |R|. Therefore, Algorithm 7 has a worst case complexity O(|R|).

The getGrid() has a space complexity θ(|a|
ratio

). Given that the area should be

specified before the algorithm initiates the selection process, the area size is finite.

The identifySquares() method uses two sets: i) Q, containing the grid squares,

and ii) I, containing the interpolated services. It determines if each service in I

belongs to one of the squares qi ∈ Q. The space complexity of this method is

O(|I|+ |Q|) since it does not use any complex data structures or perform any pre-

processing. In the worst case, the method has a space complexity O(|R|+ |Q|), if all

registered services are in the interpolated set, leading to |I| = |R|.
Algorithm 6 uses six sets: i) Rτ , containing registered services abstracting sen-

sors/actuators of type τ ; ii) I, containing services with interpolated locations; iii) Q,

the grid constructed over a; iv) servicesInGrid, containing services inQ; v) tempSer-

vices, containing randomly selected services in qi; and vi) finalSubset, containing the

addresses of all randomly selected services. Consequently, the space complexity of the

algorithm is O(|Rτ |+ |I|+ |Q|+ |servicesInGrid|+ |tempServices|+ |finalSubset|).
It should be noted that |I| = |Rτ | since I contains the same number of services as Rτ ,

with the difference being the new interpolated locations. Therefore, the complexity

91

Chapter 4. Probabilistic Thing-Based Service Discovery

becomes O(|Rτ | + |I| + |Q| + |servicesInGrid| + |tempServices| + |finalSubset|).
In the worst case scenario, all services in R will be in Rτ , and all services in R will

be in Q at time tr, leading to |servicesInGrid| = |Rτ | = |R|, all services can be

in one square qi leading to |tempServices| = |R| and all services will be selected

to be accessed, leading to |finalSubSet| = |R|. The worst case space complexity is

O(|Q| ∗ |R|).
It is likely in some cases to not know a priori the best subset size that can provide

enough information/actions in an area a. Similar to registration, the actual coverage

provided by Things can play an important role in the performance of sensing/actu-

ating tasks. We exploit this information and build a new subset selection approach.

The approach determines the size of the subset to select dynamically, based on the

coverage the Things hosting the selected services provide over the whole area a. In

the case of uniform distribution, [Choi and Das, 2009] provide an expression to com-

pute the size of the subset to select, based on a required coverage probability ψ. The

expression is:

ψ = 1− (
a− Crτ ,lκ

a
)λ (4.30)

with Crτ ,lκ being the coverage circle around a Thing κ to select and λ being the size

of the subset to select. Based on Equation 4.30, it is possible to compute λ as follows:

λ =
log(1− ψ)
log(

a−Crτ ,lt

a
)

(4.31)

The same computations do not apply in the case of normal distribution. To

address that issue we provide a lookup approach that determines λ dynamically,

based on whether or not the selected subset provides enough coverage.

4.3.2 Coverage-Based Probabilistic Lookup

The coverage-based probabilistic lookup allows MobIoT to select a subset of ser-

vices with no a priori knowledge of the exact number of services to interrogate. We

formulate the problem to solve as follows:

Given a set Rτ of services abstracting sensors/actuators of type τ , a

coverage requirement c, which is a percentage ∈ [0, 100] of area a, select

a subset s ⊆ Rτ of those services, hosted on mobile Things in area a that

provide the coverage c, based on a distribution in space DIST .

92

Chapter 4. Probabilistic Thing-Based Service Discovery

As stated earlier, unlike the registration approach where coverage is computed per

Thing along its path alone, the coverage in the look-up case is for the whole subset

and over the whole area of interest a. As such, it is important to compute the

coverage provided by all Things hosting services in Rτ first, to check whether or

not they are all needed to provide their sensing/actuating services. We refer to the

computed coverage as Maximum Possible Coverage (MPC). MPC is then compared

to the minimum coverage threshold. If the MPC is above c, the subset selection

process is initiated.

The process builds on the idea governing many existing solutions, where sensors

are selected based on the benefit they introduce [Dhillon and Chakrabarty, 2003,

Bijarbooneh et al., 2012, Chamam and Pierre, 2009]. In this case, the benefit is the

coverage they provide. However, unlike existing solutions where sensors are static and

the selection process is performed offline in a preprocessing step, our sensors/actuators

are hosted on mobile Things. Further, the selection process is done online and should

not incur important delays, as it is meant to answer on-demand queries. Therefore,

instead of adding Things individually to check the additional coverage they provide,

we opted for a randomized approach that relies on a binary search to specify the size

of the subset to select as follows:

1. Compute MPC.

2. If MPC < c, select the whole set.

3. If MPC > c, compute the coverage of a randomly selected subset s of size

|s| = 1.

4. If the coverage is higher than c, return the selected subset. Otherwise, select a

larger subset of size |s| = |s|+ Rτ−|s|
2

and compute the new coverage.

5. Repeat step 4 if needed.

Coverage is computed by approximating the covered area to a set of rectangles Ri,

with each rectangle being a bounding box around ζrτ ,l (the area covered by one Thing

at location l). We leverage the SweepLine algorithm (Algorithm 8), illustrated in

Figure 4.6, that takes the set of rectangles as input and generates an area value as

output. In this algorithm, a line L(x) is imagined to sweep a region and compute the

area of the union of all rectangles within the region as follows :

93

Chapter 4. Probabilistic Thing-Based Service Discovery

Algorithm 8 SweepLine algorithm

Require: Recs
Ensure: area

{A is the set of areas of rectangles of each consecutive

x-coordinates}
1: let A← ∅
2: let intersectingRectangles← ∅
3: area← 0
4: intersectionFound← false
5: Ev ← sort(Recs, x) {sort the x-coordinates of the rectangles}
6: for each ǫi+1 ∈ Ev do
7: intersectingRectangles← ∅
8: intersectionFound← false
9: for each ǫi ≤ ǫi+1 do

10: r ← ǫi.Rectangle
11: if r intersects with ǫi.Rectangle then
12: intersectingRectangles← r
13: intersectionFound← true
14: end if
15: end for
16: if intersectionFound = true then
17: length← computeLength(intersectingRectangles)
18: else
19: length← ǫi+1.getRectangle.yMax− ǫi+1.getRectangle.yMin
20: end if
21: Ai ← length ∗ (ǫi+1 − ǫi)
22: A.add(Ai)
23: end for
24: for each Ai ∈ A do
25: area← area+ Ai

26: end for
27: return area

1. Sort all X-coordinates of the rectangles in an event queue Ev, with each event

ǫj, representing a new X-coordinate in Ev (Line 5).

2. Check if there is an intersection between ǫj and ǫj+1 by checking if the coordinate

of the upper border point of one of the rectangles is between the upper and lower

border points of the other (Line 11).

94

Chapter 4. Probabilistic Thing-Based Service Discovery

Sensing Circles
and bounding rectangle

Line L(x)

Figure 4.6. An illustration of the SweepLine Algorithm.

3. Compute the length of the intersection between the line L(x) and the region

between two events ǫj and ǫj+1. The length is computed based on the smallest

and highest Y-coordinates at the current ǫj. The length remains constant until

ǫj+1 (Line 17). The method to compute the intersection length is presented in

Algorithm 9.

4. The area Aǫj ,ǫj+1
between each two consecutive events is L(ǫj) ∗ (xǫj+1

− xǫj),
since we only consider rectangles (Line 21).

5. Sum all the areas to obtain the final coverage area (Line 24-27).

Algorithm 9 computes the length of the intersection between a virtual line and a

set of rectangles, some of which might have overlaps. It takes the set of rectangles as

input and computes the intersection length as output, by summing up the intersec-

tion lengths (with the imaginary line) of different groups of intersecting rectangles.

Each length is computed based on the difference between the lowest and highest Y-

coordinates of the current group. The algorithm first sorts all rectangles by their

Y-coordinates (Line 1). Afterwards, for each Y-coordinate, it checks whether it is

the bottom border coordinate, or the upper border coordinate of a rectangle. If it is

a bottom coordinate (Line 7), a counter of bottom points is incremented (Line 8). If

the counter is 1, i.e., the coordinate is the first bottom coordinate to be encountered,

it is set to be the lowest Y-coordinate (Line 9-10). If the coordinate is an upper

95

Chapter 4. Probabilistic Thing-Based Service Discovery

Algorithm 9 computeLength method

Require: intersectingRectangles
Ensure: length
1: sortedCoordinates← sort(R, y)
2: counterOfBottomPoints← 0
3: counterOfUpperPoints← 0
4: maxY ← 0
5: minY ← 0
6: for each c ∈ sortedCoordinates do
7: if c.Y is bottom y coordinate then
8: counterOfBottomPoints++
9: if counterOfBottomPoints = 1 then

10: minY ← c.Y
11: end if
12: else
13: if c.Y is upper y coordinate then
14: counterOfUpperPoints++
15: maxY ← c.Y
16: end if
17: end if
18: if counterOfUpperPoints− counterOfBottomPoints = 0 then
19: length← length+maxY −minY
20: counterOfBottomPoints← 0
21: counterOfUpperPoints← 0
22: end if
23: end for
24: return length

border coordinate, the counter of upper points is incremented and the coordinate

is set to be the highest Y-coordinate. Every new upper border coordinate is surely

the highest coordinate encountered so far (Line 12-15). If the upper and lower point

counters are equal (Line 18), the length of the intersection is computed (Line 19)

and the counters are reset (Line 20-21). The equality in the counters reflects that

remaining rectangles do not intersect with the so far evaluated ones. The final length

is returned when all coordinates have been checked (Line 24).

The details of the approach are presented in Algorithm 10, which similarly to

Algorithm 6, first interpolates the location of Things hosting needed services. It

then constructs the grid (depending on the distribution) and identifies which Things

96

Chapter 4. Probabilistic Thing-Based Service Discovery

Algorithm 10 Coverage-Based Probabilistic Lookup

Require: Rτ , a, l, tr, rτ , c
Ensure: s
1: let I ← ∅
2: let Q← ∅
3: let servicesInGrid← ∅
4: let recs← ∅
5: let tempArray ← ∅
6: let tempServices← ∅
7: counter = 0
8: I ← interpolate(Rτ)
9: Q← getGrid(l, a)

10: servicesInGrid← identifySquares(I,Q)
11: recs← generateCoverageRectangles(I, rτ)
12: MPC ← SweepLine(recs)
13: covPercentage = MPC

a
∗ 100

14: if MPC < c then
15: n← servicesInGrid
16: else
17: subsetSize = 1
18: while covPercentage < c do
19: for each square qi ∈ Q do
20: if |s| < subsetSize then
21: tempServices← qi.getServices

{remove all services that are in the inner square}
22: tempServices.removeAll(tempArray)
23: tempArray = tempServices

24: while counter <
|s|
|Q| do

25: index← math.random ∗ tempServices.size
26: if s.contains(tempServices.get(index)) = false then
27: s.add(tempServices.get(index))
28: end if
29: if counter = tempServices.size then
30: break
31: end if
32: end while
33: else
34: recs← generateCoverageRectangles(s, rτ)
35: coverage = SweepLine(recs)
36: covPercentage = coverage

a
∗ 100

37: break
38: end if
39: end for
40: subsetSize = subsetSize+ servicesInGrid.size−|s|

2

41: end while
42: end if
43: return s

belong to which square in the grid (Line 8 to Line 10). Afterwards, the algorithm calls

the generateCoverageRectangles() method (Line 11), to model the area covered by

97

Chapter 4. Probabilistic Thing-Based Service Discovery

Algorithm 11 generateCoverageRectangles method

Require: s, rτ
Ensure: s
1: covRecs← ∅
2: for each service ∈ s do
3: loc← service.location
4: curRec ← newRectangle(loc.XCoordinate − rτ , loc.Y Coordinate −

rτ , loc.XCoordinate+ rτ , loc.Y Coordinate+ rτ , service)
5: covRecs.add(curRec)
6: end for
7: return covRecs

each Thing as a rectangle. The generateCoverageRectangles() method, presented

in Algorithm 11, creates a (2rτ ∗2rτ) square based on the coordinates of each Thing.

The generated rectangles are then passed to the SweepLine() method to compute

the MPC (Line 12). If the MPC is less than the threshold, all services in Rτ , hosted

on Things estimated to be in a, are returned (Line 14-15). Otherwise, the algorithm

sets the subset size to 1 (Line 17) and selects one random service hosted on a Thing

located in square q1 (Line 25) and computes its coverage (Line 34-36). If it is less

than the threshold, the algorithm increases the subset size following a binary approach

(Line 40) as follows :

subsetSize = subsetSize+
|RQ| − |s|

2
(4.32)

withRQ being the set of services hosted on Things, estimated to be in the grid Q at the

time of the request tr. The algorithm then iterates over the random selection process

(Line 18-40) and selects, uniformly, for each qi ∈ Q, λ = subsetSize
|Q|

services. Whenever

a service is selected, the algorithm checks if it has already been selected to avoid

duplicates (Line 26-27). Once the desired number of services has been selected, or if

all possible candidate services in the current square have been selected (Line 29-30),

the algorithm moves to the next square. When starting the selection for the following

square, the algorithm ensures all services selected in the inner squares, are removed

from the list of candidate services, since the squares are concentric. (Line 21-23).

Afterwards, the coverage by the Things hosting the selected services is computed

through the SweepLine() method (Line 34-36) and the selection process for the

current subset size is stopped (Line 37). If the coverage is less than the threshold, the

subset selection is repeated again, and so on, until the required coverage is reached.

98

Chapter 4. Probabilistic Thing-Based Service Discovery

Complexity analysis. Algorithm 10 terminates if the coverage requirement is

satisfied. We ensure that the full coverage, which can be provided by all registered

services in Rτ , is above the minimum required coverage before going into the outer

most while loop (Line 18 - 37), making sure not to go into an infinite loop. We also

make sure that selecting |s|
|Q|

services from a square qi does not lead to an infinite

loop by breaking the loop (Line 24 - 30) if all services in qi are already selected.

Algorithm 10 invokes Algorithm 3, which iterates over the list of services in Rτ

once and is sure to terminate. Algorithm 10 also invokes Algorithm 11, which is

sure to terminate as it consists of one for loop that iterates over a finite set of services.

Additionally, Algorithm 10 invokes Algorithm 8, which iterates over two finite sets

containing the coverage rectangles and is sure to terminate. Finally, Algorithm 10

also depends on Algorithm 9 which contains one for loop (Line 6 - 21) that iterates

over a finite set of rectangles. Therefore Algorithm 10 is sure to terminate. Similar

to the analysis in Algorithm 6, the interpolation() method in Algorithm 7 has a

time complexity of order O(|Rτ |). In the worst case, the time complexity is O(|R|).
Similar to the analysis in Algorithm 6, the interpolation() method in Algor-

ithm 7 has a time complexity of order O(|Rτ |). In the worst case, the time complexity

is O(|R|).
Similar to Algorithm 6, the getGrid() method has a constant time complexity

θ(2∗du
ratio

).

As shown in the previous section, the identifySquares() method has a time

complexity of order O(|I| ∗ |Q|), in the worst case, the complexity is O(|R|).
The generateCoverageRectangles() method presented in Algorithm 11 goes

through each service in I once (to generate one rectangle per service) and has a time

complexity of order O(|I|). In the worst case, the set of interpolated service I will

contain all registered services in R, leading to |I| = |R|. The worst case complexity

becomes O(|R|).
The SweepLine algorithm (Algorithms 8 - 9) is known to have a time complex-

ity of order O(|Ev|log(|Ev|)).
Algorithm 10 invokes the methods and algorithms above (Algorithms 7, 11 -

9). Moreover, in Algorithm 10, the size of the subset of services to evaluate (for cov-

erage) is selected based on a binary search, therefore, the outer most loop (Lines 18 -

40) will have at most a time complexity of order O(log(|I|)). Algorithm 10 also

iterates over Q which is a finite set (the outermost for loop (Lines 19 - 37)). The

99

Chapter 4. Probabilistic Thing-Based Service Discovery

inner most while loop of Algorithm 10 ((Lines 24 - 30)) depends on |s|
|Q|

. As such,

Algorithm 10 has a time complexity O(|Rτ | + log(|I|) + 2∗du
ratio

+ |I| ∗ |Q| + |Ev| ∗
log(|Ev|) ∗ |Q| ∗ |s|

|Q|
). In the worst case scenario, all registered services in R will be

evaluated and selected to be accessed, and all registered services will be in one square

qi, leading to |s| = |I| = |Ev| = |R|. Consequently, in the worst case, the time com-

plexity of Algorithm 10 becomes O
(

|R|+ |Q| ∗ |R|
|Q|

+ 2∗du
ratio

+ |R| ∗ |Q|+ log(|R|)
)

.

Although the time complexity of the algorithm increases with |R|, we show in

Chapter 6 that the overhead it incurs is compensated by the faster access times due

to the strongly decreased resulting set of services to access.

It was shown in the previous section that the space complexity of Algorithm 7

is O(|Rτ |) and in the worst case, it becomes O(|R|). Similar to Algorithm 6, the

getGrid() method has a constant space complexity θ(2∗du
ratio

), and the identifySqua-

res() method has a space complexity O(|I|+ |Q|). In the worst case, the method

has a space complexity O(|R| ∗ |Q|).
Algorithm 11 uses two sets: s, the set of services to generate rectangles for,

and covRecs the set of generated rectangles, covRecs contains one rectangle of each

service in s, leading to |s| = |covRecs|. The algorithm has a space complexity O(|s|).
In the worst case, s and covRecs will contain all registered services in R, therefore

|s| = |R|. The resulting space complexity is O(|R|).
The SweepLine Algorithm (Algorithms 8 - 9) is known to have a space com-

plexity O(Ev) with Ev being the variable, representing the set containing rectangles

generated for services selected from Rτ .

Algorithm 10 uses eight sets: i) Rτ , containing registered services, abstract-

ing sensors/actuators of type τ ; ii) I, containing the services with interpolated

locations; iii) Q, the grid constructed over a; iv) servicesInGrid, containing ser-

vices in Q; v) recs, containing the coverage rectangles generated for services in Q;

vi) tempArray, holding services in the inner square qi1 to be referred to when identify-

ing services in qi; vii) tempServices, containing randomly selected services in qi; and

viii) finalSubset, containing the addresses of all randomly selected services. The al-

gorithm does not perform any preprocessing and contains no complex data structure.

It has a space complexity O(|Rτ |+|I|+|Q|+|servicesInGrid|+|recs|+|tempArray|+
|tempServices|+ |finalSubset|). |I| = |Rτ | and |servicesInGrid| = |recs| (since the

set recs contains one rectangle per service). Therefore the complexity reduces to

O(|Rτ | + |servicesInGrid| + |tempArray| + |tempServices| + |finalSubset| + |Q|).

100

Chapter 4. Probabilistic Thing-Based Service Discovery

In the worst case, all services in R will be in Rτ leading to |Rτ | = |R|, and all service

in R will be in Q at time tr, leading to |servicesInGrid| = |R| and |recs| = |R|.
Additionally, all services can be in one square qi leading to |tempServices| = |R| and

|tempArray| = |R| and all services will be selected, to be accessed later on, leading

to |finalSubSet| = |R|. Therefore, the worst case space complexity is O(|R|+ |Q|).

4.4 Summary

In this chapter, we presented our Thing-based service discovery approach, provided by

MobIoT, that revisits the traditional Service-Oriented discovery. The novel approach

controls, during registration and look-up phases, the participation of Things hosting

sensing/actuating services. Firstly, we presented a Thing-based service registration

solution that relies on the fact that mobile Things in dense networks are bound to

cross paths and as such can substitute one another based on the services they host.

This approach requires knowledge of the mobility of registered Things and requires

computations proportional to the number of registered services. To separate the cov-

erage computation from the set of registered services, and ensure better scalability,

we replace the need to know the mobility of registered Things by a probabilistic mo-

bility model to estimate the displacement of those Things, locally on each registering

Thing. Secondly, we presented a probabilistic Thing-based look-up approach that

continues on the work of the probabilistic registration phase and further decreases

the number of services to select based on the location of their hosts and the coverage

they provide.

Consequently, our probabilistic approaches, which are especially conceived to

manage the mobility of Things while handling their ultra large number, ensures

that any IoT application, exploiting those approaches, will scale and adapt to the

dynamicity of the mobile IoT. We proceed to present, in the next Chapter, the smart

composition approach that also revisits composition in SOA, to better handle the

specificities of the mobile IoT.

101

Chapter 5

Thing-based Service Composition

Service Composition, a core component of Service-Oriented middleware solutions,

creates a new functionality by combining the functionalities of different types of ser-

vices. It can be exploited to substitute missing services or to increase the overall

quality of the functionality provided by services. In MobIoT, services can be com-

posed by finding a graph that, given a description of the inputs and a desired output,

connects the available services in order to produce the desired output. In our context,

the inputs can —in addition to being regular services if traditional SOA composition

is to be applied— be the physical concepts and any constraints specified in the user

query, which is the focus on this chapter. The importance of service composition

in the mobile IoT is twofold: i) as services are hosted on mobile Things with lim-

ited power and resources, they can disappear abruptly. Consequently, the needed

functionality, originally provided by the now missing service instance will no longer

be available, while available services of other types can be combined together and

provide the desired functionality; ii) no service exists to directly provide the required

functionalities, while available services of other types can be combined and provide

the desired functionality.

For instance, it is possible that at the time of the interaction with an IoT appli-

cation, either no Thing in the network hosts an instance of the required service type

(e.g., no wind-chill sensor exists or the Thing hosting the sensor left the network) or

the available service instances do not satisfy the required constraints (e.g., none of

the available thermometers provides temperature in Kelvin or none of the available

thermometers is in Rome). In the above cases, it becomes necessary to find other

103

Chapter 5. Thing-based Service Composition

alternatives.

There are two primary requirements for composition of Thing-based services.

Firstly, service instances are tightly bound to their hosts’ physical aspects, espe-

cially their location and sensing/actuating capacities, which should be taken into

account. Secondly, the IoT is a virtual representation of the real world governed

by laws of physics and mathematics. This too should be taken into account when

specifying and executing possible compositions. Thing-based service composition re-

visits Service-Oriented composition with this tight connection to physical hosts and

the extended knowledge of real world sciences. More important, Thing-based service

compositions should be executed seamlessly with no involvement from developers or

end-users. To realize the aforementioned requirement, we ensure that all composi-

tion specifications be: i) hidden in ontologies; ii) specified independently by domain

experts as mathematical formulas; and iii) extracted and executed transparently.

In this chapter, we present the details of our Thing-based service composition ap-

proach, that executes in three phases: i) expansion, where composition specifications

are extracted; ii) mapping, where actual service instances are selected based on their

functionalities and the physical attributes of their hosts; and iii) execution, where the

services are accessed and the composition specifications are executed.

The key elements of our composition contribution are exploiting semantically mod-

eled mathematics and physics to automatically expand a user query. We proceed in

the following to give an overview of related works and necessary definitions associated

with our contributions.

5.1 Background

Exploiting law of physics to compose new sensors to estimate the state of an ob-

servable feature in the real world, rather than directly measure it, is not a novel

idea [Compton et al., 2009]. The estimation is done based on observations over other

features, provided by different types of sensors and aggregated by a specific mathe-

matical expression. However, to the best of our knowledge, focusing on the physics

and mathematics behind those relations to seamlessly expand user queries and use

the results as the basis of automatic composition of Thing-based services has never

been proposed yet. Note that query expansion is not a novel idea and has been

exploited for several purposes as presented below.

104

Chapter 5. Thing-based Service Composition

Query expansion. Expansion is usually used to augment a query with additional

terms that convey the same meaning. The idea is not recent and has been a topic of

interest since the 1960s [Carpineto and Romano, 2012]. The main use of expansion

techniques has been directed towards vocabulary-related contexts with the outcome

being synonyms to the main query terms [Carpineto and Romano, 2012]. This was

recently exploited in SOA, for discovery purposes, as done in SOCRADES [Guinard

et al., 2010] where synonyms are found to extend query terms and identify different

service types that can answer a user query. Authors build their expansion on Web-

based results (e.g., Yahoo! Web search). It is then up to the developer to select

the service types he prefers. Bakilla et al. [Bakillah and Liang, 2012] also present a

query expansion approach to enhance service discovery through expanded SQWRL

queries. SQWRL is a query language for OWL ontologies based on SWRL rules. The

main goal of the expansion is to return equivalent queries, based on the semantics

and semantic distances between terms.

Unlike existing solutions, the query expansion we present in the following sec-

tion, goes beyond terminology equivalence to exploit scientific equivalence, built on

physics and mathematics, as the main expansion criteria. Expansions are specified

semantically and extracted using SPARQL SELECT queries.

SPARQL. SPARQL is the W3C query language for RDF. It builds on a graph-

matching approach where a SPARQL query, consisting of a set of triples, is matched

against an RDF graph to find the subgraph that matches the query triple patterns.

SPARQL triple patterns are similar to RDF triple patterns, except that one or more

of the elements in the SPARQL triples are unknown. An unknown element is the

variable to search for. A SPARQL SELECT query is a tuple Q = (SELECT,E,G),

with E being the expression to evaluate against the RDF graph G. E is built from a

set of triples:

t_s = (RDF-T ∪ V)x(I ∪ V)x(RDF-T ∪ V)

with RDF-T = (I ∪ B ∪ L), I the set of IRIs, L the set of RDF literals, B the set of

blank nodes and V the set of query variables.

We use SELECT queries that have the following form :

SELECT <v1, v2, . . . , vi> WHERE { <t_s1, t_s2, . . . , t_sj>}

with i being the total number of variables, and j the total number of constraint triples

constituting the expression E to be matched against G.

105

Chapter 5. Thing-based Service Composition

The following example illustrates a SPARQL query to select all formulas that

compute the value of a wind-chill concept. In this example, the variable is the un-

known formula(s) to identify and the constraint is the fact that wind-chill is provided

by the formula(s).

SELECT

?formula

WHERE {

<http://www.semanticweb.org/ontologies/2011/7/domain.owl#>:wind-chill

<http://www.semanticweb.org/ontologies/2011/7/domain.owl#>:

provided_by ?formula.}

5.2 Semantic Thing-based Service Composition

The Thing-based Service Composition wraps all MobIoT functionalities, namely Dis-

covery and Access and determines the types of services to select and access by extend-

ing user queries. The general problem to solve by the Thing-based service composition

is:

Given a network with an unknown dynamic topology, consisting of a set R

of registered services hosted on location-aware mobile Things, determine

and access the set S that contains services abstracting various types of

sensors/actuators needed to answer a user query.

Sensing and actuation queries received from IoT applications are expanded into

several sub-queries through semantic composition graphs specified in the domain on-

tology. This takes place during the expansion phase. Types of services (abstracting

sensor/actuator nodes in the graph) that can satisfy each sub-query are identified

and mapped to the network topology to find corresponding instances during the

mapping phase, Finally, the instances are accessed to provide a set of measuremen-

t/action results that should be aggregated or combined during the execution phase.

The general approach is presented in Figure 5.1. The first question that rises is “how

to compute the wind-chill factor? ”. The expansion phase provides an answer that

wind-chill can be computed based on wind-chill measurements or temperature and

106

Chapter 5. Thing-based Service Composition

Access

Expansion
Composition

Mapping

Real Worldthing

thing

thing
thing

thing

thing

thing

Execution

Registry
Manager

Discovery

Figure 5.1. An overview of the Thing-based service composition.

wind-speed measurements. The next logical question is: “how to combine tempera-

ture and wind-speed measurements to compute the wind-chill factor? ”. The answer

is provided within a mathematical expression returned, also, during the expansion

phase. The third question that follows is: “how to measure wind-chill, temperature

and wind-speed? ”. The mapping phase provides an answer that wind-chill sensors,

thermometers and anemometers provide the respective measurements, leading to the

final question: “how to combine wind-chill, temperature and wind-speed measurement

values? ”. This question is addressed during the execution phase and the final answer

is returned to Charlie. Details on the steps taken by each phase to reach the answers

above are also presented in the following sections.

The different phases are detailed in the following sections. We also show how

each phase takes the system employing the composition functionality a step further

towards answering a user query. We illustrate the process through a sequence of

logical questions that rise when the query is received. The user is Charlie, he wishes

107

Chapter 5. Thing-based Service Composition

to visit the Colosseum and he is wondering whether or not he should wear a jacket.

An IoT application takes his request and translates it into a query for wind-chill

factor information.

5.2.1 Expansion

Given a physical concept ci initially specified in a query, the expansion phase creates

an expression defined in terms of different expansion concepts. A physical concept is

referred to as an expansion concept when it is used to estimate the state of another

physical concept.

The expression is of the form:

ci = f1(c
1
e1
, c1e2 , ..., c

1
em1

)

+f2(c
2
e1
, c2e2 , ..., c

2
em1

)

+...

+fi(c
i
e1
, cie2 , ..., c

i
emi

)

with ciemi
being an expansion concept defined in the domain ontology and fi() a

mathematical expression that determines the logic combining several expansion con-

cepts to estimate the state of ci. fi() is referred to as an expansion formula. Each

expansion concept ciemi
can have its own expansions, each of which can have different

properties (unit of measurements for instance). The expansion is recursive, it does

not only search for expansions over the initial concepts in the user query, but over

the expansion concepts as well, until no expansion can be found.

All found expansion concepts are provided in a set Ce = c ∪ (∪(cie1 , ..., ciemi
)).

Ce is the union of all expansion concepts that should be measured or estimated to

compute the expansion formulas. A sub-query is created for each expansion formula

with the following parameters: i) ci; ii) the location of interest, because each sub-

query is treated independently; iii) the output parameter that links c to a unit of

measurement; iv) the parameters to provide as input to the expansion formula. The

parameters link each expansion concept to a measurement unit; and v) the mathe-

matical expression of the expansion formula. The steps of the expansion are presented

in Algorithms 12 - 14. Henceforth, we refer to a physical concept bound to a specific

measurement unit as a Parameter. For instance, temperature is a physical concept,

108

Chapter 5. Thing-based Service Composition

while temperature_data_Kelvin is a Parameter.

Algorithm 12 takes the user query, the set C of initial concepts ci to measure/act

on, and the location of interest as input. It generates a set of sub-queries as output.

Before expanding a concept, the algorithm checks if it has already been expanded

(Line 6). If so, it skips it and moves to the next concept. Otherwise, all expansion

formulas that estimate the state of ci ∈ C are extracted from the domain ontology

through a SPARQL query of the form (Line 7):

SELECT

?formula

WHERE {

<http://www.semanticweb.org/ontologies/2011/7/domain.owl#>:ci

<http://www.semanticweb.org/ontologies/2011/7/domain.owl#>:

provided_by ?formula.}

Algorithm 12 Expand Concept Algorithm

Require: mainQuery, C, location
Ensure: subQueries

{set of mathematical expressions from the domain ontology}
1: formulaSet← ∅
2: conceptSubQueries← ∅ { set of subqueries for one concept}
3: subQueries← ∅ {the set of all subqueries}
4: subQueryParameters← null { set of expansion concepts and units}
5: for ci ∈ C do
6: if ci /∈ subQueries.concepts then
7: formulaSet← getFormulas(ci)
8: for f ∈ formulaSet do
9: sq ← subQuery(location, ci, f)

10: conceptSubQueries.add(sq)
11: expandSubQuery(sq, location, ci, f)
12: end for
13: subQueries.add(ci, conceptSubQueries)
14: end if
15: end for
16: return subQueries

Note that ci should be substituted with the actual physical concept before the

SPARQL query can be executed.

109

Chapter 5. Thing-based Service Composition

Afterwards, a sub-query is created for each formula by calling the SubQuery

constructor presented in Algorithm 13. For each formula, the input and output

Parameters are extracted through SPARQL queries of the form (Lines 3,4):

SELECT

?inputParameter

WHERE {

<http://www.semanticweb.org/ontologies/2011/7/domain.owl#>:fi()

<http://www.semanticweb.org/ontologies/2011/7/domain.owl#>:

has_input ?inputParameter.}

SELECT

?outputParameter

WHERE {

<http://www.semanticweb.org/ontologies/2011/7/domain.owl#>:fi()

<http://www.semanticweb.org/ontologies/2011/7/domain.owl#>:

has_output ?outputParameter.}

Algorithm 13 SubQuery Constructor

Require: location, c, formula
1: locationToMeasure← location
2: subQueryFormula← formula
3: inputParams← formula.InputParameters()
4: outputParam← formula.OutputParamters()
5: mainConcept← c

Afterwards, Algorithm 12 triggers a recursive process to expand the expan-

sion concepts (Line 9-11). The recursive process expandSubQuery() is presented

in Algorithm 14 and follows almost the same steps as Algorithm 12. It first ex-

tracts the concept from each input Parameter (Line 1) in the SubQuery object sq,

and checks if it has already been expanded (Line 6). If so, it skips it to the next

concept. Otherwise, it acquires the expansion formulas from the ontology, and for

each formula it creates a sub-query and calls the expansion process again (Line 7-11).

The process repeats until no expansion can be found. In such case, the set of formulas

will be empty and the expandSubQuery() method will not be called.

110

Chapter 5. Thing-based Service Composition

Algorithm 14 expandSubQuery method

Require: sq, location, c, formula
1: concepts← sq.inputParams.Concepts {get concepts from Parameters}
2: subQueries← ∅
3: subQueryList← ∅
4: subQueryFormulaHolder ← ∅
5: for c ∈ concepts do
6: if c /∈ subQueries.concepts then
7: subQueryFormulaHolder ← getFormulaList(c)
8: for f ∈ subQueryFormulaHolder do
9: subQueryHolderObject← SubQuery(location, c, f)

10: subQueryList.add(subQueryHolderObject)
11: expandSubQuery(subQueryParams, location, c, f)
12: end for
13: subQueries.put(c, subQueryList)
14: end if
15: end for

a

dcb

f(b,c,d)
f(a)

gfe

f(e,f,g)

Figure 5.2. An example of a cyclic expansion.

Complexity analysis. Algorithm 12 terminates when all expansions in Algori-

thm 14 have been found. To ensure that there is no infinite loop, Algorithms 12

and 14 check for cyclic expansions. Cyclic expansions mean that a concept is ex-

panded into a graph with a child node that can be expanded into, among others, an

ancestor node (Figure 5.2). The first step in the algorithm is to check whether or not

the concept (being checked for expansions) has already been checked. The algorithm

only continues if the answer is negative. Algorithm 12 also depends on two for loops

which iterate over the set of concepts C (Line 5 - 13) and the set formulaSet (Line 8 -

11) which are finite. Finally, Algorithm 12 invokes Algorithm 13 which requires no

complex computation or iteration and therefore is sure to terminate. Consequently,

111

Chapter 5. Thing-based Service Composition

Algorithm 12 is sure to terminate.

Algorithm 13 has a time complexity that depends on the SPARQL queries ex-

ploited to retrieve the Parameters from the domain ontology, which is independent

of the problem size (|R|). Therefore, Algorithm 13 has a constant time complexity

θ(1).

Algorithm 14 depends on the number of concepts to expand (in this case, the

input Parameters to the expansion formulas) and their own expansions. The time

complexity is O(|C| ∗ |subQueryFormulaHolder|). In the worst case, the algorithm

will go through all concepts and extract all formulas from the ontology. Since it

only checks a concept once, assuming there are |P | concepts and |F | formulas in the

domain ontology, the worst case time complexity will be O(|P | ∗ |F |)
The time complexity of Algorithm 12 depends on the number of concepts in the

initial query, i.e., the set C, and the number of expansion formulas in formulaSet.

The algorithm also invokes Algorithms 13 and 14. Algorithm 12 has a time com-

plexity O(∗|P | ∗ |F | ∗ |C| ∗ |formulaSet|). In the worst case, the query will contain

all concepts in the ontology, leading to |C| = |P | (assuming there are |P | concepts in

the ontology), the algorithm will also extract all expansion formulas from the ontol-

ogy leading to |formulaSet| = |F | (assuming there are |F | formulas in the ontology).

Since a concept is only expanded one, the resulting time complexity is O(|P | ∗ |F |).
Algorithm 13 uses one set: inputParams, which depends on the number of

Parameters to provide as input to the formula in the SubQuery object. Therefore,

Algorithm 13 has a space complexity O(|inputParams|). In the worst case, all

Parameters in the ontology will be provided as input to the formula, leading to

|inputParams| = |M | (assuming there are |M | Parameters in the ontology). The

space complexity of Algorithm 13 becomes O(|M |).
The space complexity of Algorithm 14 depends on: i) subQueryFormulaHolder,

containing the expansion formulas; ii) subQueryList, containing the sub queries that

expand each input Parameter in f ; and iii) subQueries, containing all generated sub-

queries. The space complexity is O(|subQueries| + |subQueryFormulaHolder| +
|subQueryList|). In the worst case, all sets will contain one sub-query for each

formula in the ontology leading to |subQueries| = |subQueryFormulaHolder| = |F |,
and |subQueryList| will contain all formulas in the ontology, leading to |subQuery-
List| = |F |. The resulting complexity is O(|F |).

The space complexity of Algorithm 12 depends on: i) the size of the set of

112

Chapter 5. Thing-based Service Composition

wind chill

temperature

wind speed

f (t,w)
is defined as

Figure 5.3. An example of the expansion phase.

concepts to expand C; ii) the size of the subQueries set, iii) the size of the formulaSet

set; and iv) the size of the conceptSubQueries set which contains one sub-query for

each formula, therefore it is equal to the formulaSet size. The space complexity of

Algorithm 12 is O(|C|+ |subQueries|+ |formulaSet|+ |conceptSubQueries|). In

the worst case, the query will contain all concepts in the ontology, leading to |C| =
|P |, the subQueries set will contain a sub-query for each formula in the ontology,

leading to |subQueries| = |F | and |formulaSet| = |F |. The resulting complexity is

O(|P |+ |F |).
To answer the first question that rises from Charlie’s query: “how to compute the

wind-chill factor? ”, all possible physical concepts, i.e., types of measurements that

can allow MobIoT to compute/measure the wind-chill factor information, are found.

This is accomplished by expanding the initial query and replacing each term with (an)

equivalent expression(s), found by traversing the domain ontology. In the wind-chill

factor case, there are two possibilities:

1. Wind-chill factor measurements, assumed by default as a potential solution.

2. Temperature and wind-speed measurements, extracted from the domain ontol-

ogy (Figure 5.3).

Another important question to answer is “How to combine temperature and wind-

speed measurements to compute the wind-chill factor? ”. This information is also

provided by the domain ontology where it is specified that:

wc = (10
√
w − w + 10.5) · (33− t) (5.1)

where wc denotes the wind-chill concept, w denotes the wind-speed concept, and t

denotes the temperature concept. In this case, temperature and wind-speed are the

expansion concepts. For the formula to provide correct results, temperature should

113

Chapter 5. Thing-based Service Composition

be in celsius and wind-speed should be in meter/second. The resulting wind-chill

factor unit is kcal/m2/hr.

5.2.2 Mapping

The mapping phase allows the identification of the types of sensors/actuators needed

to provide services that can measure/act on the expansion concepts in Ce. In this

phase, the needed types of sensors/actuators are extracted into a set T : {τ1, . . . , τj},
with j being the total number of extracted sensor/actuator types. The mapping

between concepts and corresponding sensor/actuator types is specified in the device

ontology. Afterwards, the registered instances of services abstracting the types in T

are discovered by interacting closely with the Discovery, resulting in a set of addresses,

to access service instances, S : {s1τ1 , . . . , snτj} with n being the total number of available

service instances that abstract a sensor/actuator τj. The details of the mapping phase

are presented in Algorithm 15.

The algorithm takes the set of sub-queries generated by the expansion phase as

input and returns the set of addresses of service instances to interrogate as output.

For each sub-query, it acquires the main concept ci and the location of interest (Line 5-

6). Afterwards the following SPARQL query is sent to the device ontology to extract

the types of needed sensors/actuators to measure/act on ci (Line 7):

SELECT

?type

WHERE {

?type

<http://www.semanticweb.org/ontologies/2011/7/domain.owl#>:measures

<http://www.semanticweb.org/ontologies/2011/7/domain.owl#>:ci.}

Once the types are acquired, the algorithm finds, for each type, the addresses

of appropriate service instances to access, at the location of interest, through the

discovery functionality, precisely, the look-up functionality called in Algorithm 16

(Line 11). Once all types have been checked, the algorithm returns the set of found

addresses (Line 14).

If the location is an area, Algorithm 16 calls the area-based look-up (Line 2). If

the location is a point, Algorithm 16 calls the point-based look-up (Line 5). Both

114

Chapter 5. Thing-based Service Composition

look-up approaches were presented in Chapter 4. The composition process also ex-

ploits the grid, constructed during discovery, to be used upon execution when per-

forming data aggregation (Line 6).

Algorithm 15 Mapping Algorithm

Require: subQueries
Ensure: S {the set of registered service instances to access}
1: T ← ∅
2: S ← ∅
3: a← ∅
4: for sq ∈ subQueries do
5: c← sq.concept
6: l ← sq.location
7: τ ← getType(c) {queries device ontology for sensor/actuator types}

8: T.add(τ)
9: end for

10: for τ ∈ T do
11: a← findServiceAddresses(τ, l)
12: S.add(a)
13: end for
14: return S

Algorithm 16 findServiceAddresses method

Require: τ, l
Ensure: a {the set of addresses of service instances}
1: if L.type = area then
2: a← findSubSetOfServicesInArea(τ, l)
3: else
4: if L.type = point then
5: a← findSubSetOfServicesAroundPoint(τ, l)
6: Grid← getGrid() {retrieve grid constructed during discovery}
7: end if
8: end if
9: return a

Complexity analysis. The mapping algorithm, Algorithm 15, iterates over two

for loops that depend on the subQueries set and the sensor types set T , which are fi-

115

Chapter 5. Thing-based Service Composition

nite given that, during expansion, the algorithm ensures to avoid cyclic expansions by

checking each concept only once guaranteeing to have no infinite loop and no infinite

number of sub-queries. Therefore the algorithm is sure to terminate. Algorithm 16

requires no complex computation or iteration and is sure to terminate.

The time complexity of Algorithm 15 depends on the number of sub-queries

in SubQueries and the number of types in T , in addition to the complexity of

the discovery functionality in findServiceAddresses() method in Algorithm 16.

Algorithm 15 has a time complexity O(|subQueries|+ |T |). In the worst case, the

subQueries set will contain sub-queries for each formula in the domain ontology,

leading to |subQueries| = |F |, with |F | being the total number of formulas, and the

types set T will contain all sensor/actuator types defined in the device ontology. For

the complexity analysis of the look-up methods, we refer the reader to Chapter 4.

The space complexity of Algorithm 15 depends on four sets: i) the subQueries

set; ii) the types set T ; iii) the set a of addresses of service instances, that should

be accessed, for each type in T ; and iv) the set S containing addresses of service

instances, to access, for all types. The mapping phase has a space complexity

O(|subQueries|+ |T |+ |S|+ |a|). In the worst case, the subQueries set will con-

tain a sub-query for each formula in the ontology, T will contain all sensor/actuator

types that can measure the concepts of interest, and |S| and |a| will contain all regis-

tered services in R. Therefore, the mapping phase has a worst case space complexity

O(|F |+ |T |+ |R|).
Continuing with Charlie’s request, the next question to answer is: “How to mea-

sure wind-chill, temperature and wind-speed? ”. The answer is provided by interacting

with the device ontology, where the types of sensors needed to measure wind-chill,

temperature, and wind-speed are specified. The needed types are: wind-chill sensor,

thermometer and anemometer. Once those types are identified, registered service

instances that abstract wind-chill sensors, thermometers and anemometers are dis-

covered, as illustrated in Figure 5.4.

5.2.3 Execution

The execution phase takes the set S of service addresses from the mapping phase, and

by leveraging the access functionalities, acquires measurements or requests actions

from the corresponding service instances. Once all services are accessed, resulting

116

Chapter 5. Thing-based Service Composition

temperature
is measured with

Mapping

DiscoveryRegistry
Manager

Expansion
Composition

wind-chill
is measured withis measured with

temperature
is measured with

temperature
is measured with

temperature
is measured with

temperature
is measured with

temperature
is measured with

wind-speed
is measured with

thermometer

anemometer

Execution

wind-chill sensor

Real Worldthing

thing

thing
thing

thing

thing

thing

Figure 5.4. An example of the mapping phase.

values are returned in a set VCe
: ∪Ce

(∪vcei (v
1
cei
, . . . , v

|a|
cei
)), with |a| being the size of

the set of addresses of services that measure/act on concept cei . During this phase, all

compositions, i.e., expansion formulas, are computed before returning the answer to

the IoT application. The answer should be a set of measurement values corresponding

to the initial concepts in the user query only.

The final outcome of this phase is a set of values VC = ∪C(∪vci (v1ci , . . . , vjci)), with

j being the possible number of individual values (measured or computed) for concept

ci ∈ C. An important requirement is that measurements of each expansion formula

be co-located. Collocated measurements are provided by measurements hosted on

Things that are within the same cell. The cells are constructed by dividing each

square qi in the grid G into smaller squares. The value of the ratio depends on the

real life scenario and the sought after area division scale. Assuming Lg is the set

containing the locations lg corresponding to the centers of the constructed cells, with

lg ∈ Lg, the execution problem can be stated as follows:

117

Chapter 5. Thing-based Service Composition

Given an expansion formula f()i, an area a, and the set of locations lg ∈
Lg, estimate the state of ci in a, based on measurement values vcei of

different expansion concepts cei ∈ Cf()i
e provided at the different locations

lg ∈ Lg.

To consider that an instance of f()i can be properly computed within cell g,

measurement values for all concepts in formula f()i should be hosted on Things that

are at distance d from lg with d = (cell width wc

2
).

Another important requirement is that the units of the measurement values match

the requested units of the input Parameters for each expansion formula. We remind

readers that a Parameter wraps a physical concepts and a specific measurement unit.

If the units do not match, conversions are a must. To that end, whenever there is a

unit mismatch, the following SPARQL query is sent to the SWEET units ontology

that we integrated with our domain ontology:

sweet : <http://sweet.jpl.nasa.gov/2.2/reprSciUnits.owl#>

SELECT ?shift ?scale ?p ?type ?powerOfUnit

WHERE { ?p reprSciUnits:hasBaseUnit ?q.}

FILTER {(

?p = sweet:firstUnit.name) || ?p = sweet:secondUnit.name) &&

?q = sweet:firstUnit.name) || ?q = sweet:secondUnit.name))

OPTIONAL {?p sweet:hasShiftingNumber ?shift .}

OPTIONAL {?p sweet:hasScalingNumber ?scale .}

OPTIONAL {?p sweet:toThePower ?powerOfUnit }

The are three types of unit conversions: shifting units, when a number should

be added or subtracted; scaling units, when the measurement should be multiplied

by a value; and powerOf conversion, when the measurement should be raised to the

power of a number to match a new unit. Those operations are not exclusive and can

be combined together to convert a unit to another unit. Since it is not known which

of the operations apply a priori, they are specified in the OPTIONAL clause. The

mapping between two units is unidirectional, therefore it is important to take this

into account when extracting the conversion formula. This is accomplished by the

FILTER expression which checks whether the initial unit is the input or the output

of the conversion formula.

118

Chapter 5. Thing-based Service Composition

The details of the final answer computations are presented in Algorithms 17

to 20.

Algorithm 17 takes the set of addresses as input and calls the access functionality

to acquire service measurements or ask services to perform some actions. For each

provided measurement, the algorithm creates a Parameter (Line 5) and links it to

the measurement value (Line 6). Afterwards, the Parameters, their measurement

values, the sub-queries and the initial concepts are sent to a computation function

(Algorithm 18) that returns the final values for each initial concept (Line 8).

Algorithm 17 Execution Algorithm

Require: C, subQueries, S, locs
Ensure: V {the set of requested values either measured directly or

computed}
1: V ← ∅
2: Ve ← ∅
3: Ve ← access(S)
4: for v ∈ Ve do
5: param = Parameter(v.type, v.unit)

{location information of each measurement is provided in the

value object}
6: ParamsV alues.add(param, v)
7: end for

{expansion functions are computed and units are checked and

converted}
8: V ← computeF inalV alues(C, ParamsV alues, subQueries, locs)
9: return V

Algorithm 18 presents our work on data computation. The algorithm takes the

estimated locations of hosts providing the measurements, the values of the measure-

ments, the sub-queries, the initial concepts C, and the location of interest as input.

It generates an estimate of the value of the initial concepts as output. The algorithm

first acquires all the Parameters to evaluate (Line 3). Afterwards, for each concept

ci ∈ C, it checks if measurements or actions on ci have been directly provided by

sensing/actuating services and acquires the measurements (Line 5). It follows that

the algorithm retrieves all sub-queries, which estimate the state of ci (Line 6), to then

initiate a recursive computation process through the compute() method presented in

Algorithm 19 (Line 7). The result of the compute() method is a set of measurement

119

Chapter 5. Thing-based Service Composition

values that correspond to the initial concept ci. The algorithm then checks the next

concept and so on until all values for all initial concepts have been computed.

Algorithm 18 ComputeFinalValues method

Require: C, parameterV alues, subQueries, rs, locs
Ensure: finalResult
1: tempSubQueries← ∅
2: finalResult← ∅
3: params← parameterV alues.params
4: for ci ∈ C do
5: m← parameterV alues.getMeasurements(ci) {find measurements for ci}
6: tempSubQueries← subQueries.get(ci)
7: eMeasurement = compute(subQueries, tempSubQueries, parameter-

V alues, rs, locs)
8: measurements.add(eMeasurement)
9: finalResult.add(ci,measurements)

10: end for
11: return finalResult

Algorithm 19 starts by iterating over the list of sub-queries for a concept ci
(Line 6) and retrieves the expansion formula f associated to each sub-query (Line 7)

and the input Parameters to f (Line 8). For each input Parameter, it acquires

the corresponding measurement values (Line 9-11) and the expansions for the con-

cept it wraps (Line 12). The recursive computation is called again (Line 13) until

all Parameters have been checked and their expansions have been extracted. The

algorithm calls the pairWiseComputation() method presented in Algorithm 20 to

ensure that sets of co-located measurements are computed together. Algorithm 19

is designed to construct a graph of Parameters and their corresponding measurement

values. The graph resembles the expansion graph created in the expansion phase. The

end goal is to be able to compute the expansion formulas in a bottom-up approach

starting from leaf nodes. Leaf nodes represent measurements of Parameters provided

as input to the bottom level expansions. Bottom level expansions are found in the

last round of the expansion phase. The algorithm computes the lowest expansion

formulas, then goes one level higher and so on, until the parent nodes representing

the Parameters wrapping the initial concepts are reached.

As stated earlier, different types of measurements are co-located if they are pro-

vided by Things that have a distance d < wc

2
from the center of a cell g. This

120

Chapter 5. Thing-based Service Composition

Algorithm 19 Compute method

Require: subQueries, conceptSubQueries, params, locs
Ensure: V
1: paramMeasurement← ∅
2: computedV alues← ∅
3: msrments← ∅
4: pMeasurements← ∅
5: result← ∅
6: for csq ∈ conceptSubQueries do
7: f ← csq.Formula
8: parameters← csq.InputParameters
9: for p ∈ parameters do

10: if p /∈ pMeasurement & p.concept ∈ subQueries.concepts then
11: msrments← params.get(p.concept)
12: sq ← subQueries.get(p.concept)
13: eMeasurement = compute(subQueries, sq, params, locs)
14: measurement.add(eMeasurement)
15: pMeasurement.add(param,measurements)
16: end if
17: end for
18: rsl ← pairWiseComputation(pMeasurement, f, locs)
19: pMeasurement← ∅
20: V.add(result)
21: end for
22: return V

requirement is accounted for in Algorithm 20. The algorithm takes, as input, an ex-

pansion formula f . f is specified in terms of Parameters, which should be substituted

with actual measurement values for the formula to be executable. The Parameters

are provided as input to the algorithm, along with their expansions, and all the

corresponding measurement values. The algorithm generates the final result of the

expansion formula as output. The algorithm iterates over each location lg and checks

if the unknown variables of the expansion formula have already been replaced with

actual measurement values (Line 6). If so, it computes the formula (Line 7). If not,

it iterates over the measurements, and searches for measurements at distance d < wc

2

from lg (Line 13). If a measurement is found, the algorithm compares its unit to that

of the corresponding Parameter for correctness. If they do not match, a SPARQL

query is sent to the domain ontology to extract and execute the conversion (Line 14).

121

Chapter 5. Thing-based Service Composition

Algorithm 20 pairWiseComputation method

Require: measurements, f, locs
Ensure: result
1: result← ∅
2: flag ← 0
3: counter ← 0
4: canCompute← false
5: for loc ∈ locs do
6: if canCompute = true then
7: v ← calculate(f)
8: result.add(v)
9: else

10: for m ∈ measurements do
11: flag ← 0
12: if measurement.checked = false then
13: if InRange(measurement, loc) then
14: m.V alue← convertUnit(f.Unit,m.Unit,m.V alue)
15: f.setParam(p,measurement.Value)
16: measurement.checked = true

{check the formula to determine if all parameter

variables have been replaced with values}
17: canCompute← f.checkParam
18: end if
19: if canCompute = true then
20: v = calculate(f)
21: result.add(v)
22: break
23: end if
24: end if
25: end for
26: end if
27: end for
28: return result

Afterwards, the algorithm replaces, in f , the Parameter corresponding to the current

measurement type, with the measurement value (Line 15). The algorithm then checks

if all variables have been replaced (Line 17). If so, the boolean canCompute is set to

true. If canCompute is true, an instance of f is computed and the algorithm moves

to the next location in Lg (Line 19-22), otherwise it checks the next measurement. If

122

Chapter 5. Thing-based Service Composition

any of the measurements at a location lg is missing, the whole set of measurements

at lg is ignored. An alternative is to estimate the value of the missing measurements

from similar measurements at other locations, which is left for our future work.

Complexity analysis. Algorithm 17 depends on one for loop (Line 4 - 6), which

iterates over the set of measurement values provided by accessed services. It also

invokes Algorithms 18 - 20. Algorithm 18 depends on one for loop over the set C

of initial concepts (Line 4 - 9). The set C is finite. Algorithm 19 iterates over two

sets: the ConceptSubQueries and the Parameters sets, both of which are finite and

sure to terminate. Given that we ensured to have no infinite cycle between expan-

sions in the expansion phase, and Parameters are only checked once, the recursive

aspect of the algorithm will not lead to an infinite loop. Algorithm 19 also invokes

Agorithm 20, which iterates over two finite sets: locs, the set of locations where

measurements should be provided, and measurements, containing measurement val-

ues for the different Parameters of an expansion formula. There is no recursive call

and this algorithm is sure to terminate. Consequently, all algorithms are sure to

terminate.

The time complexity of Algorithm 20 depends the number of locations in the

locs set and the number of measurements in the measurements set. The algorithm

has a time complexity O(|locs| ∗ |measurements|). In the worst case, there will be

|R| measurements provided by all registered services and the complexity becomes

O(|R| ∗ |locs|).
The time complexity of Algorithm 19 depends on the number of sub-queries

in ConceptSubQueries and the number of Parameters for each sub-query in the

parameters set, in addition to the depth of the recursive calls of the function. Con-

sequently, the time complexity of Algorithm 19 is O(depth ∗ |conceptSubQueries| ∗
|parameters|). In the worst case, the algorithm will go through all Parameters in

the ontology leading to |parameters| = |M | (assuming there are |M | Parameters in

the ontology). Given that expansions are only extracted once for each concept and

Parameters are checked only once in the compute function, depth will be equal to |M |
at most. Additionally, conceptsSubQueries will contain all formulas in the ontology,

leading to |conceptSubQueries| = |F |. Therefore, the worst case time complexity is

O(|M | ∗ |F |).
The time complexity of Algorithm 18 depends on the size of the set C. The time

123

Chapter 5. Thing-based Service Composition

complexity of Algorithm 18 is O(|C|). |C| depends on the number of concepts in

the domain ontology. In the worst case |C| = |P |, leading to O(|P |).
The time complexity of Algorithm 17 depends on the number of measurement

values, which is equal to the number of service instances to access, and the complexity

of the function employed to compute the final result, which includes invocations of

Algorithms 18 - 20. The complexity of Algorithm 17 isO(|S|+|R|∗|P |∗|M |∗|F |).
In the worst case, all registered services in R should be accessed to provide measure-

ment values leading to |S| = |R|. The complexity becomes O(|R| ∗ |P | ∗ |M |).
the space complexity of Algorithm 20 depends on three sets: i) locs, containing

the locations where the formula instances should be computed; ii) measurements,

containing the measurement values provided by the selected services; and iii) result,

containing the computed values for each location. The set result depends on the num-

ber of locations as, ideally, it should contain a computed value, for the expansion for-

mula, at each location. Therefore, the space complexity is O(|locs|+ |measurements|).
In the worst case, there will be |R| measurements (one measurement for each regis-

tered service in R), leading to |measurement| = |R|. The resulting space complexity

is O(|R|+ |locs|).
The space complexity of Algorithm 19 depends on the following sets: i) subQue-

ries, containing expansions for all concepts; ii) conceptSubQueries, containing expan-

sions for the concept currently being computed; iii) params, containing all Parameters

and their measurement values; iv) parameters, containing input Parameters for

each expansion formula; v) msrments, containing measurement values, for each

Parameter, provided directly by service instances; vi) pMeasurements, containing

measurement values that can be used to estimate the state of each Parameter and

provided by expansions services; and vii) V , containing the final results to return.

The space complexity of Algorithm 19 is O(|subQueries|+ |conceptSubQueries|+
|params|+ |parameters|+ |pMeasurement|+ |msrments|+ |V |). In the worst case,

there will be a sub-query for each formula in the ontology, leading to |Subqueries| =
|F |. It is also possible that all expansion formulas in the ontology be defined for

the concept currently being evaluated, assuming there are |F | formulas in the on-

tology, we obtain |conceptSubQueries| = |F |. Additionally, pMeasurements and

msrments will contain measurements from all registered services in R, leading to

|pMeasurements| = |measurements| = |msrments| = |R|. Finally, V will contain

a computed value for each concept in the ontology, i.e., |V | = |P | and params will

124

Chapter 5. Thing-based Service Composition

contain a measurement from each registered service in R (for every Paramater in

the ontology), leading to |params| = |M | ∗ |R|. The resulting space complexity is

O(|M | ∗ |R|).
Algorithm 18 depends on six sets: i) C, containing the initial concepts; ii) sub-

Queries, containing the expansion sub-queries; iii) parameterV alues, containing all

Parameters of the expansion formulas and their measurement values; iv) params,

containing Parameters to evaluate (similar to the Parameters in parameterV alues);

v) tempSubQueries, containing sub-queries for each concept; and vi) finalResult,

containing initial concepts and their measurement values. The space complexity of

Algorithm 18 is O(|C|+ |subQueries|+ |parameterV alues|+ |params|+ |tempSub-
Queries| + |finalResult|). In the worst case, the parameterV alues set will contain

values from all registered services in R, the initial query will contain all concepts in

the ontology, leading to |C| = |P |, subQueries and tempSubQueries will contain

all formulas in the ontology, leading to |subQueries| = |tempSubQueries| = |F |.
Additionally, finalResult, which contains only one value for each concept in the

query, will in the worst case, contain one value corresponding to each concept in the

ontology, leading to |finalResult| = |P |. Finally, params will contain a measurement

from each registered service in R for every Paramater in the ontology, leading to

|params| = |M | ∗ |R|. In the worst case, the space complexity becomes O(|P |+ |F |+
|R|+ |M | ∗ |R|).

Algorithm 17 uses five data sets: i) C the set of concepts; ii) subQueries, the set

of expansion sub-queries; iii) S, the set of service instances to access; iv) Ve, the set of

measurement objects; and v) V the set of final results with one result for each concept

ci ∈ C. The space complexity of Algorithm 17 is O(|C|+ |subQueries|+ |S|+ |Ve|+
|V |). In the worst case, all registered services will be asked for measurements and

consequently |S| = |R| and |Ve| = |R| (each service provides one measurement).

Moreover, the initial query will contain all concepts in the ontology, leading to |C| =
|P |, |V | will contain a final result for each concept in the ontology, leading to |V | =
|P |, and the set subQueries will contain all formulas in the ontology, leading to

|subQueries| = |F |. The worst case complexity becomes O(|P |+ |F |+ |R|).
The execution phase answers the last question “how to combine wind-chill, tem-

perature and wind-speed measurement values? ”, after which the wind-chill factor is

computed and returned to the IoT application. Firstly, the service instances discov-

ered during the mapping phase are accessed and the individual results are returned.

125

Chapter 5. Thing-based Service Composition

However, Charlie does not care for individual results. Moreover, the application de-

veloper is not aware of the internal expansions that took place, i.e., the fact that,

in addition to wind-chill measurements, temperature and wind-speed measurements

were acquired. The developer will therefore not know how to treat those measure-

ments or comprehend the physics behind our expansions. To alleviate that burden,

the execution phase returns only wind-chill values:

• The values directly sensed by a wind-chill sensor.

• The values computed by the different instances of the expansion formula f(t, w),

as illustrated in Figure 5.5.

Rules of mathematics and physics are once again of utmost importance in this phase.

For instance, in this example, there are two rules that should be taken into account:

1. average(f(t, w)) 6= f(average(t, w)). This is assumed by default.

2. Temperature measurements should be provided in celsius. Otherwise, they

should be converted. Similarly, wind-speed measurements should be provided

in meter/second. Otherwise, they should be converted.

To satisfy the first condition, the temperature and wind-speed measurements should

be aggregated based on their location. For the wind-chill expansion formula f(t, w)

to be computed correctly, the values of temperature and wind-speed to provide as

input should be co-located. To consider that a temperature measurement value vt
and a wind-speed measurement value vw are co-located, they should be provided by

sensors hosted on Things within distance d < wc

2
from one of the locations lg ∈ Lg.

To satisfy the second condition, the unit of each measurement is compared to the

required unit (provided with the Parameters, e.g., temperature_data_C, denoting

temperature in celisius, to provide as input to the wind-chill expansion formula). If

it does not match, it is converted by exploiting the conversion formulas.

Discussion The approach we presented for automatic composition alleviates the

burden of specifying complex compositions on developers and end-users as the pro-

cess is performed separately by a domain expert. Additionally by exploiting the

mathematical expansions, the composition approach ensures better efforts are pro-

vided to exploit available services of different types to answer a user query. However,

126

Chapter 5. Thing-based Service Composition

temperature
is measured with

Execution

Access

Expansion
Composition

wind-chill sensing services

Mapping

Real Worldthing

thing

thing
thing

thing

thing

thing

temperaturetemperature sensing services

temperaturewind-speed sensing services
location-based
fusion

temperaturecomputed wind-chill
 values

temperaturemeasured wind-chill
 values

Figure 5.5. An example of the execution phase.

the approach for the final answer computations needs to be further investigated.

Firstly, we plan on relaxing the assumptions pertaining to collocation, and impose a

requirement for co-located Things to be within a distance d < 2rτ away from each

other. Evidently, our problem reduces to a geometric intersection problem. It can

also be modeled as a nearest neighbor search problem to find the nearest Things with

registered services to a Thing q:

Given a set P of points in a normed space ldp, preprocess P so as to ef-

ficiently return a point p ∈ P for any given query point q, such that the

distance d(q, p) ≤ (1 + ǫ)d(q, P) where d(q,P) is the distance of q to its

closest point in P.

In our case, d(q,P) should be 2rτ . One particular technique of interest, to specify-

ing Things to partake in the expansion formula computations, is the Locality Sensitive

127

Chapter 5. Thing-based Service Composition

Hashing technique introduced by Indyk and Motwani [Indyk and Motwani, 1998]. The

approach is designed to group points in a search space based on a distance metric,

possibly Euclidian distance, and their probability of satisfying the required distance.

Although designed to address the issue of highly dimensional data through hashing,

it is aimed at handling large volumes of data and increasing search performances,

which matches our requirements.

Moreover, the data computation process can be optimized. There is a large

plethora of scalable techniques that we can build on to enhance the performance

of our solution.

The common approach to scale data processing is to perform in-network data

aggregation [Akyildiz et al., 2002] by Things in the network, mostly heads of clus-

ters (of Things) elected either at deployment time or at run time in ad hoc manner.

Clustering is commonly used in sensor networks for network scalability [Zhao and

Raychaudhuri, 2009], load balancing [Cheng et al., 2009, Heinzelman et al., 2002],

data aggregation [Wu et al., 2010] or energy efficiency [Heinzelman et al., 2002]. To

the best of our knowledge, to our day, clustering solutions require some stability in

the network either by having quasi-static cluster heads, or expecting the cluster for-

mations to be steady for some periods of time [Younis and Fahmy, 2004, Chatterjee

et al., 2002, Awwad et al., 2011, Yoo and Park, 2011]. This assumption does not

comply with the dynamicity of the IoT environment, which complicates the problem

to solve. Consequently, although the existing solutions provide a solid starting point

they still have limitations and need to be revisited. We consider the following al-

ternative. Clusters are formed during the look-up phase while creating the selection

grid over the area of interest. During this phase, Things in each cell constitute a

cluster, and the Thing with the most resources becomes the cluster head and han-

dles, locally, the aggregation of data provided by the cluster Things by injecting the

composition graph into the cluster head. Power consumption and communication

costs can be handled by adopting, for instance, Bluetooth-based communication for

neighboring devices as done in [Yoo and Park, 2011] where authors present a coop-

erative clustering protocol that exploits nodes with WLAN and Bluetooth interfaces

where in-cluster nodes communicate through Bluetooth and the cluster head acts as

a gateway with the WLAN.

128

Chapter 5. Thing-based Service Composition

5.3 Summary

In this chapter, we presented our Thing-based service composition approach, provided

by MobIoT. Thing-based service composition revisits the traditional Service-Oriented

composition by requiring no involvement from application developers, but only do-

main experts that specify, independently, compositions and all related knowledge in

the domain ontology. It also builds on knowledge of real world sciences as the core

of the compositions. The Thing-based service composition is executed automatically

and seamlessly through three phases. The first phase performs the expansion, where

initial concepts to measure/act on are extracted from the user query. Afterwards,

mathematical functions that allow the estimation of the state of the initial concepts

are extracted. This is crucial in case services that can directly measure the initial

concepts are missing. It also allows to enhance the measurements/actions quality by

providing additional options. The functions build on laws of physics modeling how the

state of different concepts, expansion concepts, can allow the estimation/modification

of the state of the initial concept. Afterwards, the corresponding types of sensors/ac-

tuators are identified from the device ontology. Instances of services abstracting the

identified sensors/actuators are then discovered through the discovery functionality.

This is the mapping phase. Finally, in the execution phase, measurements/actions

are requested from the discovered service instances and final values that answer the

user query are returned to the IoT application. We proceed to present, in the next

chapter, the implementation details of MobIoT along with extensive experiments to

evaluate its performance.

129

Chapter 6

Implementation and Evaluation

In previous chapters, we described the theoretical aspects of our approach towards

a scalable, interoperable, and mobile IoT. In this chapter, we present the imple-

mentation of MobIoT components, namely Registration, Lookup, Composition &

Estimation, and Access. Those components were conceived and implemented as

part of CHOReOS, a European project for service choreographies in the Future In-

ternet. In addition to concretizing our contributions, the implementation enables us

to assess the functionalities of our middleware, especially its semantic support for IoT

application development, its usability in real world settings, and its support for au-

tomatic transparent composition. Most importantly, it allows us to demonstrate the

scalability of our approaches through extensive evaluations, which we detail through-

out the chapter.

6.1 MobIoT Prototype Implementation

MobIoT is implemented using Java 1.6 to create two complementary parts, that

comprise all components presented in Chapter 3: the MobIoT Mobile middleware

and the MobIoT Web Service illustrated in Figure 6.1. The MobIoT Mobile middle-

ware is deployed on mobile Things (smartphones, tablets and laptops). It wraps

the Query component, the Registration component, and the domain ontology.

The MobIoT Web Service wraps the Registry component, the probabilistic Lookup

component, the Composition & Estimation component, and both domain and de-

131

Chapter 6. Implementation and Evaluation

Registry

Discovery:
Look-up

Storage

RESTful MobIoT
Service

Knowledge
Base

Composition
& Estimation

Service
Providers

1

Sensing
Application

Mobile
Device

Sensor

Knowledge
Base

Discovery:
Registration

Access

Mobile
MobIoT

2

3

4

1

5

1

Sensing
Application

Mobile
Device

Sensor

Knowledge
Base

Discovery:
Registration

Access

Mobile
MobIoT

6

Figure 6.1. The MobIoT middleware implementation.

vice ontologies. Ontologies are accessed using Jena1, an open source Semantic Web

framework for Java, that provides a uniform interface to read/write data from/into

RDF graphs and AndroJena2 to enable access to RDF graphs on smartphones run-

ning Android . It is noteworthy to mention that we chose Java as a program-

ming language given its robustness, portability, large suit of available libraries and

the widespread community of Java developers. Nonetheless, we acknowledge the

fact that Java and related frameworks employed while implementing our middle-

ware solution are mostly suitable for Things with processing and computation ca-

pabilities such as smartphones. However, the solution can be ported to other Ob-

ject Oriented languages (e.g., Python, C++) that are more suitable for constrained

Things, which is especially feasible given the fact that the Registry provides a REST-

ful API that only requires Things to be able to communicate over HTTP. Our

code is released as open source and links to the different components can be found

at http://choreos.eu/bin/Documentation/IoTS_Middleware.

1Jena:http://jena.apache.org/.
2Androjenacode.google.com/p/androjena/?.

132

http://choreos.eu/bin/Documentation/IoTS_Middleware
:http://jena.apache.org/.
code.google.com/p/androjena/?.

Chapter 6. Implementation and Evaluation

6.1.1 MobIoT Mobile Middleware

The MobIoT Mobile middleware consists of three components: i) the Query compo-

nent (presented in Chapter 3), which handles queries for sensing/actuating services;

ii) the Registration component (presented in Chapters 3 and 4), which determines

whether or not Things can register their sensing/actuating services, and iii) the Thing

Access Middleware (presented in Chapter 3), provided by our partners in CHOReOS

to enable access to locally embedded sensors/actuators.

The Query component provides a uniform interface to enable developers to in-

tegrate sensing/actuating services in their mobile application logic. The developer

needs only be concerned with specifying the physical concepts his application should

measure/modify, the units of measurements his application requires, the data format

his application supports, and the location of interest (either specified directly by the

developer or by the end-user at run time). Consequently, when end-users require

the services of an IoT application, their requests should be refined to filter out the

application-specific logic. Afterwards, the resulting requests, matching the MobIoT

queries, are forwarded to the Query component (Step 2 in Figure 6.1). The latter

builds on an object oriented design where Concepts, Locations of interest and Units

are designed as Java objects and extracted from the user query to be forwarded to the

Composition & Estimation component. The class diagram with all Query objects

is presented in Chapter 3.

The Registration component generates the decision to allow or prevent Things

from registering their sensing/actuating services through the cooperation of three

modules:

• A RegistrationManager, which implements the Probabilistic Registration De-

cision algorithm presented in Chapter 4. It receives registration requests from

Things and informs them of the registration decision. To compute the registra-

tion decision, it requires the assistance of an ExpansionGenerator to identify

the types of expansion services and a ProbabilityEstimator to compute the

coverage probability. The component then uses the generated probability to

produce the final registration decision (step 1 in Figure 6.1).

• The ExpansionSetGenerator identifies all possible expansion services based

on information, provided by the RegistrationManager, on the initial concept

133

Chapter 6. Implementation and Evaluation

measured/modified by the registering service. Expansion information is ex-

tracted from a local copy of the domain ontology using SPARQL queries.

• The ProbabilityEstimator computes the coverage probability based on a mo-

bility model, the estimated path of the Thing provided by the Registration-

Manager, and information on the availability of similar and expansion service

instances provided by the Registry. The computed probability is returned to

the RegistrationManager to generate its final decision.

The Thing Access Middleware enables access to embedded sensors and actua-

tors through the cooperation of two modules: Thing Mediator and the Sensor_Act-

uator Driver. A Thing-based service using local sensors/actuators can utilize the

Thing Mediator for abstracting access to different sensors/actuators attached to

the Thing. Individual vendors can contribute Sensor_Actuator Drivers to their

sensors/actuators, which transparently bind with this mediator and provide access

to data through Thing-based services. The Sensor_Actuator Driver and Thing

Mediator are described in more detail bellow:

• Sensor_Actuator Driver. The Sensor_Actuator Driver defines the API

that should be implemented by the sensor/actuator driver developer. It consists

of four main modules: i) the Sensor, an Interface for sensor drivers, which are

the objects that hold the actual logic behind each sensor’s operation; ii) the

SensorInfo, which contains metadata about a sensor; iii) the Actuator, an

Interface for actuator drivers, which are the objects that hold the actual logic

behind each actuator’s operation; and iv) the ActuatorInfo, which contains

metadata about an actuator.

• Thing Mediator. The Thing Mediator is meant to be accessed by the appli-

cation developers and it consists of two modules: i) the Mediator, and ii) the

MediatorListener.

The Mediator provides functionality to discover all the sensors/actuators avail-

able on the Thing; discover the instance of a specific sensor/actuator, specified

by its interface; and trigger an immediate sensing/action by all sensors/actua-

tors.

Through the Mediator, the application can perform basic discovery and sens-

ing/actions with a single method call, abstracting away all the logical details

134

Chapter 6. Implementation and Evaluation

such as creating separate processes in the OS, synchronization, etc. All of these

lower-level issues are handled by the Mediator in an OS-independent manner.

In addition, all sensors/actuators are treated homogeneously under common

APIs.

The MediatorListener is the abstract class that contains the functionalities

to be implemented by the application developer to be able to retrieve the data

from the sensors, or request actions from actuators on the Thing.

6.1.2 MobIoT Web Service

The MobIoT Web service consists of two components: i) the Registry, where sens-

ing/actuating services are registered. The Registry integrates the probabilistic

Look-up component (presented in Chapters 3 and 4), which retrieves the services

to access; and ii) the Composition & Estimation component (presented in Chap-

ters 3 and 5), which receives the query details from the Query component, identifies

possible compositions, and generates the final answers to the user query.

The Registry component is a RESTful Web Service hosted on Apache Tomcat

servers with Apache DERBY JDBC database as a backend store. In this setup,

incoming requests are received by an Apache HTTP Web server. The Registry can

be geographically distributed, per city for instance. To identify the proper Registry to

contact upon registration and look-up, we intend to further explore geo-fencing, which

sets virtual borders over geographical areas and enables the middleware to identify

the right Registry based on the coordinates of the registering Thing or the location

of interest in the user query and the boundaries of the area covered by each Registry.

It is also possible to implement a look-up service that provides the registering Thing

or IoT application with the address of the appropriate Registry to contact based on

location information. The Registry address can also be specified by the developer

himself, if known a priori, which is the case in our current prototype implementation.

The Registry comprises three modules:

• A Storage module, which provides read/write functionalities on the data store.

Functionalities include saving, deleting, updating, and reading the metadata of

registered services.

• A Look-up module, which implements the probabilistic look-up algorithms pre-

135

Chapter 6. Implementation and Evaluation

sented in Chapter 4. It queries the backing store in the Storage module to

acquire the addresses of services providing the required measurements/actions

along with the locations of their hosts. It then determines the ones to select for

access (step 4).

• A RegistrationAssistant module, which helps the Registration compo-

nent acquire necessary information to generate the registration decision, pre-

cisely, the number of registered similar and expansion services at the location

of interest, in addition to the spatial distribution of their hosts, through the

ALLFITDIST method provided by MATLAB.1 The method has the following

signature ALLFITDIST(DATA, PDF, SORTBY). DATA is the set of X and Y

coordinates whose distribution is to be returned. The SORTBY parameter is

optional. It is used to specify the preferred metric for the goodness of fit.

To execute the method and call MATLAB from Java we used matlabcontrol

which provides a uniform Java interface to evaluate MATLAB methods. Ad-

ditionally, since Things do not register their services indefinitely, each Thing

sends a registration duration as part of the service metadata. If the duration

expires, the Thing can inform the RegistrationAssistant to keep its service

alive. Otherwise the RegistrationAssistant removes the service through the

delete functionality of the Storage component.

Finally, the Composition & Estimation component answers users’ queries through

the cooperation of four modules:

• A CompositionManager module that implements the Expansion, Mapping, and

Execution algorithms in Chapter 5. It generates expansion concepts and ex-

ecutes expansion formulas. Additionally, it interacts closely with the Lookup

component to find the addresses of service instances to access.

• The SPARQLManager module handles the SPARQL-related tasks. It queries

the MobIoT ontologies to extract the expansion formulas and unit conversion

formulas (step 3). When formulas are extracted from the ontologies, they are

extracted as strings; to convert them to actual mathematical formulas we use

Expr4j2, an expression calculation engine for Java.

1MATLAB:http://www.matlab.com.
2Expr4j:http://expr4j.sourceforge.net/.

136

http://www.matlab.com.
http://expr4j.sourceforge.net/.

Chapter 6. Implementation and Evaluation

• The AccessGenerator module handles the remote access to sensing/actuating

services hosted on mobile Things (step 5). Services are implemented, by service

developers, as REST services with a unique address each. The remote access

component interacts directly with the Thing Access Middleware to interro-

gate sensors/actuators abstracted by the services (in mobile MobIoT).

• The DataFusionGenerator module handles all fusion/aggregation tasks to com-

bine measurements provided by different services. It assists the CompositionMan-

ager module in generating the final answers to user queries. It implements the

PairWiseComputation algorithm presented in Chapter 5. We extended it to

implement an average and count fusion functions. It can be extended to inte-

grate any fusion function.

The service developer and the IoT application developer are only required to im-

plement one method each, provided by the RegistrationManager and QueryManager,

respectively. All computations pertaining to probabilistic discovery, composition and

access are handled internally by MobIoT. The methods to implement are: execute-

RegistrationQuery() (Listing 6.1) and getData() (Listing 6.2). We illustrate

MobIoT usability and the method implementations through a proof-of-concept ap-

plication in the following section.

Listing 6.1. The executeRegistrationQuery() method signature.

public boolean executeReg i s t rat ionQuery (St r ing dev ice Id ,

S t r ing serviceName , S t r ing serviceType , double accuracy ,

S t r ing type , S t r ing physicalConcept , double range ,

S t r ing address , S t r ing dataType ,

double locat ionCoordinateX , double locat ionCoordinateY ,

ArrayList<Location> pathLocations , S t r ing un i t) ;

Listing 6.2. The getData() method signature.

public SensorData getData (Query myQuery , S t r ing requestedDataType ,

S t r ing fus ionFunct ion) ;

6.1.3 DynaRoute Application

We assess the usability of MobIoT through DynaRoute, an application developed by

our industrial partners within CHOReOS [CHOReOS consortium, 2011c], that uti-

137

Chapter 6. Implementation and Evaluation

lizes smartphone-carried sensors to provide Thing-based services along with business

services. DynaRoute is designed to support dynamic personal organizer features.

The main storyline is about a travelling citizen, called Collista, who follows a prede-

fined itinerary. The application imports external events on-the-fly, provides utilities

(like Point Of Internet liveliness, traffic service, taxi appointment, friend proximity

notification), and utilizes them to organize Collista’s schedule. We focus on Thing-

based services that can be exploited by the application. While visiting Rome, Collista

wishes to take the Colosseum tourist tour, with a preference to attend a low-crowded

program. DynaRoute can adapt her schedule, based on information being provided

by a “Point-Of-Interest (POI) liveliness” service and dynamically modify the ini-

tial itinerary. The POI service exploits noise measurement information provided by

Things in the landmark to visit.

In more detail, the application, illustrated in Figure 6.2, can be used to:

• Register the sensing services hosted on a mobile Thing; and

• Acquire noise level information before visiting a landmark.

The application, deployed on mobile Things, has the following components:

• A GUI allowing users to choose between registering (activating) their sensing

services at their current location, or requesting noise estimations at a remote

location of interest (e.g., the Colosseum in Rome) (Figure 6.2); and

• The MobIoT middleware, through which the composition, probabilistic discov-

ery and access to services take place.

Figure 6.2 shows a map where the user specifies the location of interest by tapping

on the screen, the noise level will be checked at this location. The user can choose to

register the noise measurement service by checking the contribute box. If the decision

is positive, the upload arrow is enabled.

138

Chapter 6. Implementation and Evaluation

Figure 6.2. The GUI of DynaRoute POI service.

Listing 6.3. The Android executeRegistrationQuery() method signature.

// c a l l e d from AsyncTask launched by OnCheckedChangeListener

protected boolean t ryToReg i s ter (double accuracyVal , double rangeVal ,

long in i t iLocat ionLongVal , long i n i tLocat i onLatVa l) {

ThingsRegistrat ionManagerImpl cm = new ThingsRegistrat ionManagerImpl () ;

boolean d e c i s i o n = cm. executeReg i s t rat ionQuery (

myDeviceId , ‘ ‘ g e t n o i s e l e v e l ’ ’ , ‘ ‘ n o i s e l e v e l_ s e r v i c e ’ ’ , accuracyVal ,

‘ ‘ n o i s e l e v e l_s en s o r ’ ’ , ‘ ‘ n o i s e l e v e l ’ ’ , rangeVal ,

‘ ‘ http : //Things . v t r i p . net :8080/ proxy /123456/ g e t n o i s e l e v e l ’ ’ ,

Constants .DOUBLENOISE, in i tLocat ionLongVal , intLocat ionLatVal ,

myPath , ‘ ‘dB ’ ’) ;

return d e c i s i o n ; }

139

Chapter 6. Implementation and Evaluation

While writing the code for the noise estimation application, the application developer

is required to call the executeRegistrationQuery() method. The method enables

the developer to request a registration decision for the noise measurement service at

his location as shown in Listing 6.3. The developer is also required to invoke the

getData() method shown in Listing 6.4.

Listing 6.4. The Android getData() method signature.

// c a l l e d from AsyncTask launched by OnMapViewLongClickListener

protected SensorData getNoiseValue (S t r ing locName , long l a t i t ude ,

long l ong i tude , S t r ing fus ionFunct ion) {

ThingsQueryManagerImpl qm = new ThingsQueryManagerImpl () ;

Query myQuery = new Query (

new S e l e c t o r (

new Concept (‘ ‘ n o i s e l e v e l ’ ’)) ,

new Constra int (

new Where (‘ ‘ n o i s e l e v e l . un i t . equa l s= dB ’ ’)) ,

new Locat ion (locName , l a t i t ude , l ong i tude)) ;

return qm. getData (myQuery , Constants .DOUBLENOISE ’) ; }

Beyond those two methods, all computations, interactions and method calls are per-

formed internally by MobIoT using the knowledge specified in our ontologies, which

in this scenario, was sufficient and needed no extension. However, given that we

work with extensible RDF graphs, any additional information that needs to be mod-

eled can easily be integrated. By exploiting the knowledge in the ontologies, and

although not explicitly specified by the developer, nor requested by the user, any

necessary compositions that can be exploited, as presented in Chapter 5, to compute

the noise information, are automatically identified, and executed transparently. We

proceed in the following to present the experimentation setup and evaluations we

performed to assess the benefits of our contributions.

6.2 Experimental Evaluation

We aim with our experiments to demonstrate the validity of our probabilistic regis-

tration and look-up approaches and to assess the scalability of MobIoT. The validity

of the approaches is evaluated based on the coverage provided by Things hosting

registered services or Things hosting retrieved services (to access). The scalability

is evaluated based on the times needed for MobIoT functionalities to complete and

140

Chapter 6. Implementation and Evaluation

the benefits they introduce as compared to full registration and look-up approaches.

In full registration mode, all Things are allowed to register their services. In full

look-up mode, all registered services that match a query are selected for access. In

other terms, the full approach corresponds to traditional SOA-based registration and

look-up. The evaluations of the Composition approach are part of our future work.

For evaluation purposes, we implemented a version of MobIoT, that executes full

registration and full look-up. We also implemented a set of simulation components

presented below.

6.2.1 Simulation Environment

Our simulation environment comprises five components: the TrafficGenerator in

charge of simulating mobility of Things; Mobility Traces comprising timestamped

displacements of Things; ThingLauncher, which generates virtual Things; Thing,

which emulates a Thing; and the QueryLauncher, in charge of simulating user queries

for Thing-based services.

• TrafficGenerator. The TrafficGenerator generates traffic based on data

from a mobility trace, and simulates the mobility of each Thing, represented

by a path (list of timestamped coordinates) to follow over time. It generates a

launch trace, to be used by the ThingLauncher, specifying the times at which

virtual Things appear and request registration, as well as a query trace to be

used by the QueryLauncher presenting the times at which virtual user queries

are forwarded to MobIoT. The TrafficGenerator parses the mobility trace

into a time map with timestamps as the keys and Thing IDs with their co-

ordinates at that timestamp as values. Based on information from the map,

and a movement rate (λ) provided as input, the TrafficGenerator scans the

trace to find timestamps that satisfy λ. The TrafficGenerator then generates

a Poisson arrival process (for Things to show up and request registration of

their services). At each Poisson arrival time, represented by a timestamp, the

TrafficGenerator scans the time map for Things with a matching timestamp.

If no result is found, the TrafficGenerator executes the interpolation method

presented in Chapter 4 to estimate the position of the Thing at the desired

timestamp. It then generates, for each Thing, a sequence of timestamps based

on λ, and corresponding coordinates based on the interpolation method. This

141

Chapter 6. Implementation and Evaluation

list represents the path the Thing will follow. Finally the arrival and path in-

formation are forwarded to the ThingLauncher, to create virtual Things, with

the following format:

Timestamp,Device ID,Longitude,Latitude,Path

The TrafficGenerator, uses the lowest and highest timestamps of the gen-

erated mobility trace and creates a query trace that serves as an input for

the QueryLauncher. It specifies the query arrival times (between the lowest

and highest stamps above), which similar to the Thing arrival times, follow a

Poisson process. Each query tuple in the trace has the following format:

Timestamp,Concept,Location

• Mobility Traces. To assess the validity of our solution, it is crucial to rely on

real mobility information. Towards that purpose, we use a dataset that provides

real mobility traces —in the form of (taxi id, date, time, longitude,

latitude)— for 10, 000 GPS-equipped taxis in Beijing [Yuan et al., 2011]. We

set the length of the area A to 1136.2 km and breadth to 3002.4 km based on

the area covered by the mobility traces. We computed the average velocity of

taxis (8 km/hr) and set the sensing range of virtual microphones they carry to

be 10 m. The value of the sensing range was scaled from the average sensing

range of microphones in mobile phones (5 m, a value that we estimated em-

pirically) carried by pedestrians who walk at an average speed of 4.5 km/h to

better suit the average velocity (8 km/hr) in the Beijing trace.

To assess MobIoT’s ability to handle registration and look-up requests over

a large number of Things, we measure the respective response times for both

full and probabilistic registration and look-up, using the Beijing mobility trace,

with no concurrent request. We then simulate concurrent requests (up to 1, 000

requests per second) and use a larger synthetic mobility trace generated with

SUMO [Behrisch et al., 2011]. The latter generates individual mobility traces

based on real mobility data in the city of Cologne [Uppoor et al., 2013]. Our

choice to assess our work with the Beijing trace then the SUMO trace is due to

the fact that our first priority is to evaluate the approach’s validity with a real

142

Chapter 6. Implementation and Evaluation

mobility dataset. However, the Beijing dataset provides us with 10000 traces

while our second priority is to evaluate the scalability of our middleware, which

requires larger datasets. Consequently, as we were unable to find larger real

mobility traces, we switch to the SUMO dataset, which provides synthetic but

larger traces (15000). It should be noted that it is also possible to integrate

any other mobility trace, with larger traces, as long at they comply with the

required format presented above.

• ThingLauncher and Things. The ThingLauncher creates, launches, and stops

virtual Things based on the arrival times in the launch trace generated by the

TrafficGenerator. Once the network traffic is generated, virtual Things are

created to emulate real-world mobile Things running the Registration com-

ponent and hosting services to select and access. Each virtual Thing initiates

a service registration request and measures its own response time. Each Thing

is an independent single Java thread. If a Thing is permitted to register its

service, the registration remains valid until the end of the evaluation.

• QueryLauncher. The QueryLauncher generates look-up and access queries

based on the query trace generated by the TrafficGenerator. It is able to

launch queries concurrently or sequentially and measure their response time.

The QueryLauncher produces sensing queries to measure a particular physical

concept (e.g., temperature) at a specific geographical location (either an area

or a point). It is possible for the queries to require atomic services or composite

services, depending on the physical concept. At each query arrival time, the

QueryLauncher creates a thread. In each thread, a query is generated with

the concept and location information from the trace, to be forwarded to the

QueryManager component.

We deployed the simulation system in a computer cluster, consisting of 40 ma-

chines with Scientific Linux 5.5, Intel Xeon X5650 dual processors and 48 GB RAM

each. The system’s elements were distributed inside the cluster to maximize resource

utilization. The deployed architecture is depicted in Figure 6.3. When a virtual

Thing is allowed to register its service, it launches a RESTlet1, allowing REST ac-

cess to its service with “access” results being random double values. To evaluate the

1RESTlet:http://restlet.org/.

143

http://restlet.org/.

Chapter 6. Implementation and Evaluation

Figure 6.3. Deployment used for performing large scale evaluations.

time needed to compute a registration decision by a mobile Thing, we used Android

Samsung Galaxy S3 smartphones with 1GB RAM. Given the large scale we target,

a real testbed with thousands of mobile phones was not an option.

6.2.2 Assessment Metrics

We conducted several experiments to evaluate the validity and scalability of MobIoT

in general, and the probabilistic registration and probabilistic look-up approaches in

particular. Specifically, we are interested in three metrics:

1. The coverage quality measures the percentage of the area that is covered.

This criterion is essential to assess the validity of our probabilistic approaches

and can be presented by one of the following parameters:

• Maximum Possible Coverage (MPC): Percentage of the area of in-

terest A that is covered by the complete set of Things currently present

within A. This value gives us the upper bound of possible coverage.

• Actual Area Coverage (AAC): Percentage of the MPC of A covered

by a subset of Things. During registration, the subset contains the Things

that register their services. During look-up the subset contains the Things

that are selected to provide their services.

144

Chapter 6. Implementation and Evaluation

Acronym Meaning

MPC Maximum Possible Coverage

AAC Actual Area Coverage

TLW Truncated Lévy Walk

RW Random Walk

Table 6.1. Acronyms used in this chapter.

• Required Path Coverage: The desired percentage of the area to cover

by each registering Thing throughout its path.

2. The size of the selected subset illustrates the benefits of the probabilistic

approaches as they decrease the number of participating Things.

3. The response times measure the time needed to execute concurrent regis-

tration requests or to answer concurrent user queries. They are essential to

evaluate the scalability of MobIoT.

Additionally, the probabilistic registration approach imposes that we evaluate the

ability of our middleware to handle different mobility models and the gains introduced

by choosing TLW over the deterministic registration approach. Acronyms used in this

chapter are presented in Table 6.1.

6.2.3 Registration Evaluation Results

As mentioned in Chapter 4, the probability computations underwent a set of sim-

plifications, notably when substituting the coverage circles with squares. We first

present the effects of those modifications, followed by an illustration of the validity

and viability of our registration approach, based on the Beijing traces, in terms of

three criteria presented below:

1. How coverage varies as we shift from full registration to probabilistic registra-

tion. Full registration refers to the case where all Things can register their

services, i.e., equivalent to SOA registration.

2. The appropriateness of TLW, to which our computations are directly related.

Consequently it is paramount to compare it to other well established mobility

models.

145

Chapter 6. Implementation and Evaluation

3. the benefits of the probabilistic computations with respect to the deterministic

version presented in Chapter 4, in terms of the final coverage and final number

of registered services.

In this set of experiments, the registration simulation executes sequentially, in the

sense that when a Thing shows up in the network it directly requests registration

and no two Things show up at the same time, therefore no concurrent requests take

place.

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

R
a
#
o

Number of trials

Ra#o of Nodes
Inner square

Outer square

Figure 6.4. The ratio of the number of Things in the inner and outer squares to
the number of Things in the sensing circle after five steps.

Simplification effect. To evaluate the effect of replacing the circle ζli,r by the

largest square within ζli,r, as discussed in Chapter 4, we computed the ratio of the

number of Things within the largest inner and smallest outer squares to ζli,r after

the Things take 5 and 10 steps. We generated Lévy Walks (with a scale factor of 10

and 1 for the step-size and pause-duration respectively [Sadiq and Kumar, 2011],

maximum allowed pause time τp = 1 hr, and maximum allowed displacement length

τξ = 5 km) for 100 Things and repeated this process 50 times. We find that the

number stabilizes around a value of 0.8 for the inner square and 1.2 for the outer

square (Figure 6.4). We use this inner square to circle ratio, (0.8), as a scaling factor

for ni as it is better to be conservative and assume fewer Things are covering the

Thing’s path, thus leading to fewer false positives.

Coverage quality. To evaluate how coverage varies as we shift from full to prob-

abilistic registration, we computed the MPC while the 10, 000 Things show up se-

quentially. The MPC when all 10, 000 Things register their services is 0.003% of the

total area, which is very low, but we were unable to find larger real datasets. This is

146

Chapter 6. Implementation and Evaluation

Figure 6.5. A plot of the locations of the 10, 000 Things in Beijing.

depicted in Figure 6.5 where the black dots represent the MPC of 10, 000 Things in

Beijing.

Figure 6.6(a), shows the AAC for 0.8 and 0.6 required thresholds, along with

the registration curves for each of the thresholds as Things show up. Note that the

AAC values in Figure 6.6(a) are misleading. In spite of being high, they are only a

percentage of the MPC, which is very low. Moreover, although, presented at a very

small visual scale, Figure 6.5 reflects the sparsity of the Things and the large portion

of the area left uncovered. Consequently, due to this low density of Things and

their sparse distribution, they will rarely cross paths. This explains their continuing

registration, depicted by the linearly increasing registration curves for 0.6 and 0.8

thresholds in Figure 6.6(a).

We remind readers that AAC is a percentage of the MPC and not A. This is also

the reason why, at the beginning of the evaluation, AAC curves start high and then

decrease until they stabilize. More precisely, when the first Thing shows up, it will

register, regardless of the threshold value, leading to: AAC =MPC for a subset size

of 1. Similar results will occur for the second Thing and so on until the thresholds

start to affect the registration decisions (when the sensing areas of Things start to

overlap).

To better show the benefits of our approach, which are most relevant in highly

dense networks, it is important to reach a MPC of 100% of the area before all 10, 000

Things register. However, instead of adding phantom traces to increase the MPC

147

Chapter 6. Implementation and Evaluation

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
e
rc
e
n
ta
g
e
 o
f
re
g
is
te
re
d
 t
h
in
g
s

C
o
v
e
ra
g
e
 p
e
rc
e
n
ta
g
e

Total no. of things

a) Coverage & Registra9on Percentages

AAC for threshold 0.8

AAC for threshold 0.6

Full registra9on

Registra9on for threshold 0.8

Registra9on for threshold 0.6

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
e
rc
e
n
ta
g
e
 o
f
re
g
is
te
re
d
 t
h
in
g
s

C
o
v
e
ra
g
e
 p
e
rc
e
n
ta
g
e

Total no. of things

b) Coverage & Registra:on Percentages

MPC for all things

AAC for threshold 0.8

AAC for threshold 0.6

Full registra:on

Registra:on for threshold 0.8

Registra:on for threshold 0.6

Figure 6.6. The resulting coverage and registration percentages as the required
coverage threshold decreases from 1 to 0.6 a) for a radius of 10 m b) for a radius of
10 km.

of the set of Things, we decided to increase the sensing range. Since our goal was

only to find a suitable scenario with the above properties, we decided to graphically

and rapidly render the possible options, and chose the first to match our constraints

by visual confirmation. Results showed that a sensing range of 10 kilometers best

addresses the sparsity issue between Things in this dataset, spread over a very large

area. We are aware that this modification is not an accurate reflection of the real

world, but in the absence of better publicly available large scale real mobility traces,

148

Chapter 6. Implementation and Evaluation

it was necessary to evaluate if our probabilistic registration approach decreases the

number of registered services while still maintaining the requested coverage thresh-

old. In fact, larger ranges may indeed be applicable for sensing, say, air quality. The

resulting MPC is shown in Figure 6.6(b), which illustrates how our approach suc-

cessfully prevents Things from registering. The registration curves for thresholds of

0.8 and 0.6 show that the resulting subset sizes of Things that register are less than

2000, while still meeting the coverage requirements, giving us, at least, 80% gain.

What can be concluded from the set of experiments presented above is that our

probabilistic registration approach functions correctly in both sparse and dense in-

frastructures. In the former, although our approach decreases the registration rate,

it enables Things to register their services throughout the whole experiments as they

remain needed. However, the approach is most beneficial in dense networks where it

strongly decreases the registration rate, which stabilizes around 20% of the complete

set size while still satisfying area coverage requirements.

Mobility Model evaluation. We evaluate in this section the ability of our reg-

istration approach to support various mobility models, and illustrate the correlation

between the quality of the results and the chosen model. To that end, we compared

the TLW-based results to Random-Walk (RW) based results, by substituting our

probability computations with RW-based computations [Bai and Helmy, 2004, Roy,

2011]. Note that RW is also a commonly adopted model for estimating displacements

of mobile entities due to its simplicity. The Random Walk model has the following

characteristics:

• Things change their speed and direction after each time interval, and there is

no pause time between changes.

• Each Thing can select a speed within [vmin, vmax] following a uniform distribu-

tion or gaussian distribution at every new time interval. We consider an average

constant speed v that is similar for all mobile Things.

• Each Thing selects a new direction θ(t) uniformly between [0, 2π).

• The model is memoryless and does not keep knowledge of past directions and

all velocity values are independent.

149

Chapter 6. Implementation and Evaluation

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900

A
ct
u
a
l
A
re
a
 C
o
v
e
ra
g
e
 (
A
A
C
)

No. Of Registered Services

Coverage of TLW vs RW

LW‐0.8

LW‐0.6

RW‐0.8

RW‐0.6

Figure 6.7. Coverage/registration percentage for TLW-based and RW-based regis-
tration.

In addition to the elements presented above, and given the characteristics of a Ran-

dom Walk, we assume that the displacement angles and lengths are independent.

Each displacement Di is represented as Di = ξi ∗ eiθi [Stadje, 1987]. Things are ini-

tially deployed based on a 2D Poisson process with characteristics presented below

and the deployment maintains a 2-D Poisson distribution after fixed movement time

intervals with the same rate λ [Serfozo, 1999, Wimalajeewa and Jayaweera, 2010].

• n (the total number of Things) is a Poisson variable.

• The distance between the nodes is an exponential variable.

• λ = n/A is the density of the Poisson distribution (A is the total area).

Therefore, Pcov in Chapter 4, Equation 4.17, is substituted with:

Pcov = (1− e(−λπr2))|L| (6.1)

with L being the total number of locations.

We repeated the same set of evaluations presented in the previous section to com-

pare RW- and TLW- based computations. Results show that both models decrease

the registration of Things while satisfying coverage requirements. However TLW out-

performs RW as it leads to fewer Things participating (Figure 6.7). The figure shows

the AAC of TLW- and RW-based registrations and the number of registered services.

150

Chapter 6. Implementation and Evaluation

As can be seen from the curves, the former leads to 760 Things registering their

services while the latter leads to 840 for a required threshold of 0.8 and 499 Things

versus 639 for a threshold of 0.6. Therefore, TLW leads to at least 10% fewer Things

registering their services. Given the large scale we anticipate, this is an important

gain. It can also be seen that TLW-based registration reaches the required coverage

threshold faster.

Consequently, our evaluations prove that the probabilistic registration approach

is not restricted to one model alone. Any appropriate model can be easily plugged

in, as illustrated by the straightforward substitution of the TWL model with the RW

model. Moreover, the results of our evaluations —where TLW outperforms RW—

illustrate the correlation between the quality of the registration decision and the

mobility model exploited by the middleware demonstrating that the latter does not

perform blindly regardless of the employed model.

Probabilistic versus deterministic registration. We also compared our prob-

abilistic registration approach to the deterministic registration approach presented

in Chapter 4 (with a similar setup as above). Our goal is to verify, based on real

mobility traces, if indeed the probabilistic approach requires less computation efforts

while satisfying the coverage threshold. Unlike the probabilistic registration where

the threshold varies based on a utility function (Chapter 4), the deterministic regis-

tration decision is pessimistic. The coverage threshold remains unchanged regardless

of how many neighboring Things are around the new Thing. Moreover, as long as

Things with registered services will not, for certain, cross path with the new mobile

Thing and provide sufficient coverage, the latter is requested to register its service.

We use the term certain loosely as it is still based on path predictions. Although the

deterministic version of the solution leads to fewer Things registering in general, it

registers almost 30% more Things than the probabilistic version.

In the deterministic approach, it takes up to 1, 000 ms (Figure 6.8) and up to

800 ms (Figure 6.9) for a decision to register and not register, respectively, to be

taken while the 10, 000 Things request registration sequentially. Figure 6.8 shows the

time needed to generate a positive registration decision and the number of already

registered services. Figure 6.9 shows the time needed to generate a negative regis-

tration decision and the number of services already prevented from registering. The

computation time for the deterministic approach increases with more Things having

151

Chapter 6. Implementation and Evaluation

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500

T
im

e
 i
n
 m

s

No. of registered services

Time to Generate Registra5on Decision: True

Figure 6.8. Time needed by the Registry to allow registration.

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000 6000 7000

T
im

e
 i
n
 m

s

No. of not registered services

Time to Generate Registra5on Decision: False

Figure 6.9. Time needed by the Registry to prevent registration.

registered their services because the Registry has to iterate over a larger number of

services before it finds enough coverage of the current Thing’s path. If so, it stops

and determines that coverage is sufficient. It is also possible for the Registry to go

through the whole list of services and determine that coverage is insufficient, in which

case the registration decision is positive. This is especially highlighted in Figure 6.9

where the time of the decision to not register increases strongly when more services

start to register. The time increase can be noticed after 4500 Things have been pre-

vented from registering their services. Figure 6.10, presenting the number of Things

allowed and prevented from registering their services as they show up, and the times

needed for the decision to be generated, proves our claim. It shows that the number

of registering services starts to increase strongly after 5000 Things have showed up

(among which only 500 Things have registered their services). The increasing regis-

152

Chapter 6. Implementation and Evaluation

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1000 2000 3000 4000 5000 6000 7000 8000

T
im

e
 i
n
 m

s

Number of Services

Number of Registered & Not Registered Services

Registered Not Registered

Figure 6.10. The number of Things allowed and prevented from registering their
services.

tration trend, can also be seen in Figure 6.8 after almost 500 Things have registered

their services. Contrary to the expectations for the registration rate to decrease, the

new Things are appearing in less crowded areas and even though many Things have

already registered, they do not sufficiently cover the new comers and therefore the

Registry allows them to register.

In the probabilistic approach, the time needed to compute the decision probabilis-

tically on an Android phone is constant and on average equal to 151.5 ms (Figure 6.11)

regardless of the number of Things that registered their services already.

Unlike the deterministic registration approach which requires computation times

that are proportional to the number of registered services, its probabilistic counterpart

requires more or less constant computation times that are independent of the size of

the registered set, which is a sign of better scalability. Thus, it can be concluded that

our probabilistic registration approach is indeed an appropriate solution to handle

the anticipated IoT scale. Moreover, the fact that computations on an Android phone

require on average 150 ms for the registration decision to be computed illustrates that

the probabilistic registration approach is not too complex to be computed locally on

smart Things.

153

Chapter 6. Implementation and Evaluation

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
 i
n
 m

s

No. of registered services

Decision Computa7on Time

Figure 6.11. The time needed by an Android phone to compute the registration
decision.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
u
m
b
e
r
o
f
S
e
le
ct
e
d
 S
e
rv
ic
e
s

C
o
v
e
ra
g
e

No. of registered serivces

Coverage & Subset Size
Subset coverage Subset size

Figure 6.12. Coverage and set size of probabilistically selected subset of registered
services.

6.2.4 Look-up Evaluation Results

Similar to probabilistic registration evaluations, the validity of the probabilistic look-

up approach should be evaluated with respect to coverage and resulting subset size.

For this set, we chose to evaluate look-up with full registration to keep the available

set of services as large as possible. We also set the area of interest to be A. In this

set of experiments, the look-up simulation executes sequentially, i.e., when a Thing

shows up in the network it directly requests registration, followed by a user query

being forwarded to MobIoT. No two Things show up at the same time and no two

queries are created at the same time, therefore no concurrent request takes place.

154

Chapter 6. Implementation and Evaluation

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
u
m
b
e
r
o
f
ca
n
d
id
a
te
 S
e
rv
ic
e
s

C
o
v
e
ra
g
e

No.of registered services

Coverage & Candidate Set Size
Candidate set coverage Set size

Figure 6.13. The coverage and set size of the candidate set of services.

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
e
rc
e
n
ta
g
e
 o
f
se
le
ct
e
d
 s
e
rv
ic
e
s

No. of registered services

Probabilis4c Lookup

Figure 6.14. Subset selection by the uniform distribution-based look-up.

Coverage quality. The experiments were conducted for subset selections are based

on an 80% required coverage and a uniform spatial distribution. The outcome of our

experiments is presented in Figures 6.12 - 6.14. Candidate services are services that

match the user query, estimated (through interpolation) to be at the location of in-

terest depicted the complete set of appropriate services. It should be noted that we

evaluated look-up for atomic services only (with no composition). The coverage pro-

vided by the probabilistically selected subset of services along with the corresponding

subset size are shown in Figure 6.12 and the coverage provided by the set of candidate

155

Chapter 6. Implementation and Evaluation

services along with the corresponding set size are shown in Figure 6.13. In fact, even

if the full look-up was to be adopted, not all registered services would have been se-

lected, but only the ones estimated to be at the location of interest, i.e, the ones in the

candidate set. When coverage is not satisfied, the complete set of candidate services

should be selected, which explains why, in many locations in the graph of Figure 6.14

—which shows the percentage of services selected probabilistically from the set of

candidate services— the selected services curve is 100% of the candidate services set.

When coverage becomes sufficient, the subset selection process is initiated and the

selected subset size decreases strongly to less than 20% of the candidate services set

size. This information is depicted in Figure 6.14, where the lower pattern of the curve

in the graph is around 20% of the complete candidate set. Consequently, 80% fewer

services are selected while not hindering the coverage quality. This information, is

also illustrated in Figure 6.12 by comparing the lower pattern of the selected number

of services curve, when coverage is satisfied, to the upper pattern of the same curve

when coverage is less than required, leading the size to increase fourfold. Moreover,

Figures 6.12 and 6.13 show that the area coverage of the candidate set and the cov-

erage of the probabilistically selected subset are almost identical although the size of

the latter is much smaller than the size of the former.

The experiments in this section validate our claim that, in dense networks, it is

sufficient to select some of the available services, rather than all of them. Further-

more, they illustrate the benefits introduced by employing probabilistic look-up as

the selection rate decreases fourfold when coverage requirements are satisfied. The

decreased selection rate illustrates in turn the scalability of our approach, which, in

spite of the large number of available Things, can successfully employ the needed

ones only without burdening the system, exploiting our middleware, with redundant

communications and access to services that provide no or little additional information.

In addition to evaluating each approach separately, it is crucial to evaluate the

global performance of MobIoT based on the Query Response times (QRT)s of the

probabilistic approaches. We assess the results by comparing them to QRTs of full

registration, look-up and access, presented in the following.

156

Chapter 6. Implementation and Evaluation

6.2.5 MobIoT Evaluation Results

In order to assess the scalability of MobIoT, we conducted a set of experiments

that can be divided into two categories: i) the first set evaluates the performance of

MobIoT’s probabilistic registration, and ii) the second set compares MobIoT’s prob-

abilistic look-up and access to full look-up and access approaches. The performances

are evaluated with respect to one metric: the Query Response Time (QRT). The QRT

for registration is the time taken for MobIoT to compute the registration decision and

if allowed, register the Thing’s service. The QRT for look-up and access is the time

needed for MobIoT to execute a user query, including finding and accessing services

(with no composition). This set of experiments requires concurrent requests. For

both the registration and user-query execution experiments, we varied the input rate

to MobIoT from 100 requests per second up to 1, 000 requests per second. The results

show averages from 20 runs. As input, we used our TrafficGenerator to generate

traffic from the most populated sections of the original Cologne trace [Uppoor et al.,

2013].

Registration scalability. In the first set of experiments, we measured the response

times for probabilistic registration with a coverage threshold of 80%. When the reg-

istration goes through the full approach, response times are expectedly lower than its

probabilistic counterpart since no calculations are involved and the Thing is always

allowed to register its service. Nonetheless, the overhead for the probabilistic regis-

tration is acceptable as the response times are still reasonably fast and this is a fair

price to pay for the faster look-up and access times shown in the next evaluations.

By looking deeper at the probabilistic registration, especially the Find operation,

depicted in Figure 6.15, we conclude that it is the bottleneck of the probabilistic ap-

proach. The operation presents the phase where the registry determines the number

of similar and expansion services at the location of interest. Note that the response

time of the other registration operations, namely probability computation and actual

registration operations, is somewhat stable with respect to the input rate (around

200 ms). The probability computation represents the computation of the coverage

probability to generate the registration decision. The registration operation repre-

sents the attempts to register a Thing in the Registry assuming a positive decision

was generated. The response time of the Find operation grows as the input rate

157

Chapter 6. Implementation and Evaluation

100 300 500 700 900

0
100

0
200

0
300

0
400

0
500

0

Find
Calculation
Registration

Input (req/s)

Re
spo

nse
Tim

e(m
s)

Figure 6.15. Time analysis of the Find operation for different input rates.

grows and as the number of registered services grows. This behavior is mainly due

to two different reasons. First, as the input rate grows, the number of Things con-

currently accessing the Registry grows as well, which increases the response times.

Note that this is not a simple INSERT operation but a READ operation that requires

the Registry to perform several computations before returning the result to each re-

quest. Second, as the number of already registered services grows, the time needed

for retrieving the information from the Registry backend store also grows. However,

this delay is dependent solely on the search algorithms implemented by the chosen

database technology.

To measure networking overhead in a realistic mobile environment, we evaluated

the time needed to register a service if requested by an Android smartphone after a

positive registration decision is taken, i.e., the time needed to establish a connection

to the registry and save the service metadata in the backend store, for an individual

request. The former takes, on average, 120 ms, while the latter takes 20 ms regardless

of the number of already registered services. The results are averaged over 100 runs

using Wi-Fi connection.

Look-up and access scalability. We also measured the response times for con-

current queries with both full registration, look-up and access and probabilistic reg-

istration, look-up and access with a coverage threshold of 80%. The benefits of our

probabilistic look-up are clearly illustrated in Figure 6.16 depicting the distribution of

response times for both approaches with 1, 000 concurrent user queries. Figure 6.16(a)

shows that most occurrences of QRT for the full approach are between 0 and 10 sec-

158

Chapter 6. Implementation and Evaluation

0 20 40 60 80 100

0
20

40
60

80
10

0

Response Time (s)

N
um

be
r

of
 O

cc
ur

re
nc

es

0 20 40 60 80 100 120

0
50

10
0

20
0

30
0

Response Time (s)

N
um

be
r

of
 O

cc
ur

re
nc

es

Figure 6.16. The time distribution of QRT for 1, 000 concurrent queries with a) full
registration, look-up b) probabilistic registration and look-up.

onds while Figure 6.16(b) shows that most occurrences of QRTs for the probabilistic

approach are between 0 and 3 seconds. On the one hand, when using the full ap-

proach, MobIoT retrieves the full set of registered services at each query request and

attempts to access them all in order to provide a result. On the other hand, for

the probabilistic approach, response times are lower since the system retrieves only

a small subset of registered services to access.

In conclusion, the experiments performed in this section illustrate the true benefits

of employing our probabilistic discovery. Firstly, response times, needed to answer a

user query for real time measurements/actions, are strongly decreased with respect

to the traditional SOA (full discovery) counterpart. Secondly, the results highlight

the scalability of MobIoT with the relatively low response times in spite of the large

number of available Things and its ability to transparently manage their mobility,

which is integrated in the solution by design, by successfully satisfying the coverage

requirements in the whole area of interest.

6.3 MobIoT In The Future Internet

We presented in this thesis our work for the large scale mobile IoT. In addition

to this perspective, our contribution took part within CHOReOS1, with a vision

towards the Future Internet, which encompasses the IoT along with an Internet of

Services and an Internet of Content. CHOReOS is an FP7-ICT research project

1CHOReOS:http://www.choreos.eu/.

159

http://www.choreos.eu/.

Chapter 6. Implementation and Evaluation

for large scale choreographies of adaptable, QoS-aware and heterogeneous services in

the Future Internet. The latter is a direct evolution of today’s Internet comprised

of an ultra large number of Things and services. The CHOReOS Project addresses

the anticipated scalability, interoperability, mobility, and adaptability issues of the

Future Internet through novel approaches within a middleware solution that builds

on the Service-Oriented Architecture. We proceed in the following to give an overview

of the CHOReOS middleware architecture, depicted in Figure 6.17, while positioning

our contribution with respect to the overall middleware solution.

Figure 6.17. The CHOReOS middleware architecture.

160

Chapter 6. Implementation and Evaluation

6.3.1 CHOReOS Middleware Architecture

The CHOReOS middleware, is composed of four components that cooperate to enable

large scale choreography deployments and executions. The components are: i) the

eXtensible Service Discovery (XSD), which retrieves services that can take part in

the choreography execution. Services can be either Business services or Thing-based

services. XSD also indexes and stores the services in a service registry; ii) the eX-

ecutable Service Composition (XSC), which takes as input and executes a service

choreography; iii) the eXtensible Service Access (XSA) component, which enables

runtime access to the services in the choreography; and iv) the Cloud&Grid com-

ponent, which assists CHOReOS with handling the ultra large scale of services and

data in the Future Internet. Each component is presented in the following sections.

6.3.1.1 eXtensible Service Discovery

The XSD component enables the discovery, i.e., registration and retrieval of hetero-

geneous business services and Thing-based services through the cooperation of three

components; Discovery Plugin Framework, Abstraction-oriented Service Base Man-

agement (AoSBM), and our Thing-based service Discovery component presented in

Chapters 3 and 4. It also requires the functionalities of the Registry component we

presented in Chapter 3.

For scalable and interoperable discovery of business services, the Discovery Plu-

gin Framework enables multi-protocol service discovery where, firstly, services ad-

vertise themselves by using a legacy protocol to be discovered by the appropriate

plugins, which translate their descriptions to a common representation [CHOReOS

consortium, 2012a]. Afterwards, the resulting service descriptions are passed to the

AoSBM [CHOReOS consortium, 2011d]. The AoSBM exploits clustering mechanisms

to group services based on their functional/non-functional properties and create cor-

responding functional/non-functional abstractions.

To enable scalable interoperable and dynamic discovery of Thing-based services,

the XSD fully relies on our Thing-based service discovery approach, presented in

Chapter 4, by employing our probabilistic registration and look-up functionalities

implemented within MobIoT, along with the Registry we conceived to hold the service

metadata and perform look-up computations. By utilizing our discovery approach,

CHOReOS can better control the participation of an ultra large number of Things

161

Chapter 6. Implementation and Evaluation

while not jeopardizing the quality of the results.

6.3.1.2 eXecutable Service Composition

The eXecutable Service Composition (XSC) is the key component for composing busi-

ness services and Thing-based services through the cooperation of three main compo-

nents: Component coordination delegates (Component-cd), Choreography Adapta-

tion component, and the Composition & Estimation component presented in Chap-

ters 3 and 5.

To compose business services, the Component-cds coordinate the global interac-

tion behavior of services taking part in a choreography, in order fulfill the specified

choreography goals. In addition, to support the dynamic nature of the Future Inter-

net, choreographies must be adaptable , i.e., adapt to available service instances at

runtime. To that end, the Choreography Adaption Component enables transparent

substitution of discovered services without interrupting the choreography by hiding

the discovered services behind functional abstractions that are invoked instead of the

actual services.

To compose Thing-based services, the XSC fully relies on the Composition & Es-

timation (C&E) component (Chapter 3) that concretizes the semantic and automatic

composition approach, presented in Chapter 5. By relying on C&E, the CHOReOS

middleware can take advantage of various sensing/actuating services and overcome

the dynamic nature of the mobile environment. To deal with the scale issue of the

IoT, the XSC also employs the services of the Thing-based service discovery.

6.3.1.3 eXtensible Service Access

The XSA consists of four cooperating components that enable uniform access to

heterogeneous business and Thing-based services i) eXtensible Service Bus (XSB)

with extensible binding components; ii) Easy Enterprise Service Bus (EasyESB);

iii) the Remote Access component presented in Chapter 3; and iv) a Light Service

Bus (LSB) wrapping the Thing Access Middleware presented in Chapter 3.

To enable access to business services, The XSB is based on a three-layered abstrac-

tion. Firstly, heterogeneous middleware platforms (e.g., DPWS, JMS, Java Spaces)

are abstracted to connector types, representing the middleware-specific interaction

paradigms (CS, PS and TS). Connector types are then abstracted into a uniform

162

Chapter 6. Implementation and Evaluation

connector type, known as Generic Application (GA). The XSB also provides a three-

layered “concretization” to transform GA connector types to CS, PS, or TS connec-

tor types to then reach concrete middleware platforms. To guarantee scalability,

the XSB is deployed over EasyESB, an evolution of the Bus paradigm designed for

cross-paradigm interoperability.

To enable access to Thing-based services, CHOReOS firstly requires the function-

alities of the Remote Access component presented in Chapter 3, in order to seamlessly

request access to sensor/actuator services hosted on remote mobile Things, on the end

user’s behalf. the Remote Access component then interacts with the Light Service

Bus (LSB) that handles the dynamics and resource constraints of Things hosting the

services. The LSB employs the Thing-Access Middleware to interact with heteroge-

neous sensors and actuators embedded in Things, in particular, through a component

of the Thing Access Middleware known as the Thing Mediator [CHOReOS consor-

tium, 2011b], concretized by the implementation presented in Section 6.1.1. The

Thing Mediator abstracts interactions with sensors/actuators and assumes vendors

provide drivers that can bind with the Mediator seamlessly. The Thing Mediator then

provides access to actual sensor/actuator data/actions through Thing-based services.

6.3.1.4 Cloud & Grid Support

The Cloud & Grid component is exploited for large scale infrastructure support by

CHOReOS and by MobIoT as it provides various resources according to need. Re-

sources include CHOReOS nodes, which are virtual machines hosting CHOReOS

components; Storage nodes enabling elastic storage capacities; and Grid support for

complex computations. The Cloud & Grid are exploited by MobIoT to provision

the resources needed by the Registry to hold and store the metadata of registering

services and perform computations associated with the look-up functionalities.

6.4 Summary

We presented in this chapter the implementation details of MobIoT followed by a

set of experiments to assess the validity of our probabilistic registration and look-up

approaches, leaving composition for our future work. To assess the validity of our

approaches, we computed the difference in the coverage provided by the full set and

163

Chapter 6. Implementation and Evaluation

the subset of registered/retrieved services and the difference in the resulting set sizes.

We also assessed the scalability of MobIoT by computing the Query Response Times

(QRTs) of up to 1, 000 concurrent queries to register or find and access services in

the probabilistic registration/look-up approach. The QRTs are then compared to

the QRTs of the full registration/look-up approaches. We conclude from the set

of experiments we conducted that our approaches successfully enhance user query

response times and decrease the number of Things needed to participate while still

providing good coverage quality.

Nonetheless, there is one operation in particular that still requires our attention:

the Find operation. The operation is executed by the Registry and depends on the

adopted storage technology where the search implementation, specific to the used

technology, can slow down the search process. Furthermore, the operation should be

optimized to overcome the need to repeatedly search for, possibly, the same infor-

mation whenever a query over the number of available services is received. This can

be accomplished by caching information and sharing it with new incoming Things

for some duration before performing the search again. Another possible solution is

to index the locations of services based on various known geographical regions they

belong to, which decreases the search space. The count of available services in each

location can be continuously updated through a background process. A key start is

by investigating spatio-temporal databases. Caching and indexing this information

introduces new concerns among which we identified the need to determine the ac-

ceptable duration for which cached information remains valid; the additional cost the

continuous indexing process will introduce; and the potential gain of adopting those

optimizations.

It is noteworthy to mention that our evaluation environment presents a limitation,

which comes from the maximum number of TCP ports available at an IP address.

Even if the host machine had unlimited memory resources, and the Operating System

was configured to support unlimited processes for a user, each Thing needs to bind

to a TCP port to provide access to its service. Therefore, the maximum number

of available TCP ports imposes a limit on the number of Things that can be run

concurrently on a single machine, thus limiting the scale at which we could perform

our evaluations.

In conclusion, our evaluations demonstrate that our Thing-based Service-Oriented

Architecture, concretized by MobIoT, can better handle the anticipated IoT scale and

164

Chapter 6. Implementation and Evaluation

its mobility by controlling the participation of Things without strongly compromising

the quality of the outcome. Additionally, our approaches can successfully decrease

communication overload by requiring the involvement of and access to fewer services.

Finally, by exploiting the Cloud, our Registry can handle any number of services and

perform all needed complex computations.

165

Chapter 7

Conclusion

A few years ago, the Internet of Things was merely a vision, where the physical

environment becomes connected to the Internet and becomes smarter by exploiting

context-aware objects with computation capabilities, referred to as Things. Today,

the vision is already a reality, with context-awareness accomplished by sensors and

actuators seamlessly embedded within phones, vehicles, home appliances, and even

fabric.

Moreover, a considerable portion of those Things have the ability to move, ei-

ther autonomously or assisted by other Things/humans, which introduces several

advantages, yet comes with unprecedented challenges. The anticipated challenges

stem from the fact that mobility is becoming the norm rather than the exception.

Although the Internet of Things is not expected to be solely mobile, humans are

increasingly becoming dependent on their mobile gadgets, i.e., mobile Things, which

are increasing in types, numbers, and sensing/actuation capabilities, i.e., sensing/ac-

tuation services. In particular, the most critical challenges are handling the heavily

increasing number of Things, which is only aggravated by their different types, and

most importantly, by their mobility. In other terms, a scalable, interoperable and

dynamic system is crucial to successfully abstracting the physical world into a mobile

Internet of Things.

To that end, we presented in this thesis a middleware solution that revisits the

commonly adopted Service-Oriented Architecture in order to enable any application,

in such a setting, referred to as IoT application, to perform properly in spite of

the above challenges. We proceed in the following with a summary of our specific

167

Chapter 7. Conclusion

contributions followed by an overview of our short term research goals to optimize

our solution and long-term research goals to build on the work done in the thesis and

the expertise we acquired.

7.1 Summary of Contributions

Our main contribution lies in conceiving MobIoT, a Thing-based Service-Oriented

middleware that offers novel probabilistic service discovery and composition ap-

proaches, and wraps legacy access protocols to be seamlessly executed by the middle-

ware. The middleware exposes two levels of abstractions: abstracting a Thing as a

service (on the service provider side); and abstracting Things measurements/actions

as a service (on the service consumer side). Our contributions can be summarized in

the following.

Semantic Support for Application Development: Although our goal is not to pro-

vide a middleware for IoT application development, we posit that leaving the required

expertise to the application developer is not a feasible option, especially with the

complexity of sensing/actuation tasks. This is partly due to their highly specialized

domains (signal processing, estimation theory, robotics, etc.), which demand applica-

tion programmers to assume the role of domain experts. To that end, we encapsulate

all needed knowledge in a set of ontologies that assist developers in creating high-level

applications while leaving the sensing/actuation specific logic to be executed by our

middleware. In particular, we provide two ontologies: a Device ontology that models

Things, sensor, actuators, and their internal functionalities; and a (physics) Domain

ontology, that models the real world features to measure/act on, i.e., physical con-

cepts, and comprises physical/mathematical models pertaining to sensing/actuation

tasks.

Scalable Probabilistic Thing-based Service Registration: The load on the network,

especially at the communication and storage levels, resulting from the ultra large

number of Things willing to provide their services, is addressed upon registration

(publishing) of those services, which is now probabilistic. The proposed registration

approach controls the participation of Things and enables only a portion of those

Things to register their services, depending on the benefit they introduce. Precisely,

the decision is based on whether or not other registered services with similar sens-

ing/actuation capacities are sufficient, in particular, in terms of the coverage they

168

Chapter 7. Conclusion

provide.

Scalable Probabilistic Thing-based Service Look-up: With the anticipated scale,

even if only a portion of willing Things are allowed to register their services, the

resulting number remains high and so does the load on the communication network.

As a solution, we provide a probabilistic service retrieval (look-up) approach that

is executed seamlessly by the middleware, without requiring any involvement from

the end user or the developer. The probabilistic look-up returns only a subset of

services based on the type of the event to measure/act on. Our solution relies on

the fact that in many case, a point by point coverage of an area is not always a

critical requirement and it is deemed sufficient to sample Things that follow a certain

distribution in space, which depends on the nature of the event.

Semantic Thing-based Service Composition: Thing-based service composition no

longer needs to be specified by the end user or by the developer. All compositions

are specified independently of the IoT application, by a domain expert, within the

domain ontology. Moreover, the specifications are modeled as mathematical expres-

sions that represent the physics behind sensing/actuation tasks, which ensures that

the composition process takes the specificities of those tasks into account. Conse-

quently, compositions are executed automatically and transparently, by exploiting

the knowledge in the ontology, without requiring any involvement from consumers

and developers who most likely do not possess the needed expertise.

Transparent Thing-based Service Access: Although we adopt legacy access proto-

cols, we ensure that access to service providers is executed transparently in a timely

manner by exploiting the probabilistic discovery approach we introduced, which guar-

antees faster response times, a key requirement to satisfactory user experience.

In addition to the novel middleware architecture, we also provide a prototype

implementation released as open source. Both theoretical and implementation efforts

were conceived as part of CHOReOS, a research project with efforts directed towards

the realization of the Future Internet vision. We then exploited the prototype imple-

mentation to validate our approaches as well as evaluate the scalability of the overall

middleware solution. Our results demonstrate that MobIoT can successfully control

the participation of Things while not compromising the quality of the results (per-

taining to sensing/actuation requests). Additionally, our experiments demonstrated

that MobIoT can drastically enhance query response time, i.e., the time needed for

an IoT application to satisfy a user request for Thing-based services.

169

Chapter 7. Conclusion

In addition to the scientific contributions above, our first high-level contribution

in this thesis, where we provide a coherent approach that enables systems to manage

the anticipated ultra large number of mobile Things at low costs, is to take the large-

scale mobile IoT vision one step forward towards its realization by devising a realistic

solution, designed for real-life applications and scenarios. Our second contribution

is to provide a product that is in a mature stage and provides a solid foundation to

be transformed into an end-user product that can be exploited to efficiently assist

developers of IoT applications in their development endeavors. Finally, we consider

that our work in this thesis and contributions above can pave the way towards further

research efforts to extend our solution in order to support more comprehensive IoT

applications that cover a larger diaspora of real life scenarios and more importantly

incorporate more constrained Things as first class actors.

7.2 Future Work

In addition to the contributions we provided in this thesis, we identified several

technical optimizations that can be exploited within each approach, to enhance the

quality of our solution. We also identified general optimizations to be exploited

regarding the high-level logic of each approach. In addition to those short-term

goals, we present our future work from a long term perspective that builds on the

expertise we acquired and research interests we gained during this thesis.

7.2.1 Short-term Perspective

Throughout the evolution of the work in this thesis, we made several assumptions

about the nature of the physical environment, in which MobIoT operates. Our future

short-term research goals are to address those assumptions, related in particular, to

the mobility of the Things and their physical locality.

Mobility estimations. In particular, when performing our probabilistic computa-

tion that exploits mobility models, we assumed independence between the displace-

ment of mobile Things on the X-axis and the Y-axis, therefore leaving the correlation

of the displacements, on those two axis, unaccounted for. We plan on relaxing this

assumption by exploiting polar-based representations of displacements as suggested

170

Chapter 7. Conclusion

by Sadiq et al. in [Sadiq and Kumar, 2011]. Additionally, given that human-carried

Things are major players in our architecture, we consider an important improvement

to the mobility estimations, to be by accounting for the correlations between the dis-

placements of individuals, especially that in most cases, individuals travel in groups

and follow repetitive patterns.

Composition computations. While conceiving our approach to Thing-based ser-

vice composition, we assumed Things in each other’s vicinity (within the same cell

of some grid) to be collocated. Collocation of sensor/actuator measurements/actions

is an important requirement when composing different types of measurements/ac-

tions to estimate/modify the state of a feature of interest at a location of interest.

Consequently, we plan on relaxing this assumption and further investigating fusion

techniques for spatially-correlated sensor data. The revisited approach should be

further evaluated to assess its quality and performance. In particular, our aim is to

compare the quality of results provided through composition to the quality of results

provided directly by atomic services, in the same setting.

In addition to the relaxed assumptions above, we are interested in a more compre-

hensive solution that requires several optimizations, to be applied, on a higher level,

in both Thing-based service discovery and composition approaches.

Utility-based probabilistic discovery. In its current state, the probabilistic dis-

covery approach is solely dependent on area-coverage requirements, which can be

restrictive. Our future work consists of conceiving a multi-criteria model that ac-

counts for energy consumption, and service quality. Given the context, service quality

is mapped to sensor/actuator accuracy, sensor/actuator confidence in the measure-

ments/actions they provide, and finally service response time. Sensor confidence

reflects how certain a sensor is of the correctness of the measurements it provides.

Data estimation. By exploiting probabilistic confidence models provided by sen-

sors themselves, and the fact that the value of a concept can be estimated instead

of it being measured, we plan on integrating estimation techniques to enable the

middleware to estimate the most likely true value of the data at a desired spatial

point.

171

Chapter 7. Conclusion

Approximately-optimal composition. Given that scalability is a central focus

in our thesis, and although scalability requirements are successfully ensured by our

contribution on probabilistic discovery, we are interested in providing an indepen-

dently scalable Thing-based service composition. In more detail, rather than adopt-

ing a brute-force philosophy to retrieve all possible compositions, we deem it more

scalable to adopt an approximately-optimal composition which revisits the expan-

sion and mapping phases. The former should return only candidates (concepts to

measure/act on) with the highest likelihood of having corresponding service types.

The latter should no longer attempt to find all possible mappings (to identity needed

sensor/actuator types), but instead, pick a small subset of feasible mappings based

on the number of available running services that abstract the sensors/actuators.

7.2.2 Long-term Perspective: Better World With Social Ur-

ban Monitoring

During my Master work, my research revolved around mobile social networking, with

a focus on privacy and access control. My interest in the social aspect of mobile

computing has not faded away. With the empowerment of users, who are now data

producers rather than consumers, and the proliferation of sensors, both embedded

in Things and deployed statically within large sensor networks, social and physical

data about the environment is becoming widely available. Bearing this in mind, I am

confident that the coming era is that of publicly accessible information that will be

exploited to better understand and manage our world. As such, my research inter-

ests have evolved throughout my thesis towards mobile sensing that is in particular

directed towards empowering people, with not only social data generation, but also

the generation of scientific data about their environments, noise information being

an example, that can be exploited to enhance their daily lives.

Consequently, with MobIoT’s extensible design and operational prototype, the

middleware along with my acquired expertise can be leveraged in a long term future

plan to enable large-scale environmental monitoring with the end goal to assist users

in better understanding the ambient conditions that strongly affect their lives and

enable them, individually and collectively, to enhance their quality of life and well-

being by better caring for and eventually protecting their surrounding environment

(for instance with respect to noise, pollution, etc.). This goal can be achieved by ex-

172

Chapter 7. Conclusion

ploiting information users acquire through applications —that can employ MobIoT’s

functionalities— hosted on their mobile Things (e.g., tablets or smartphones). Yet,

for the acquired information to be truly useful, especially when provided by/targeted

towards the common population, with no scientific expertise, a learning/inference

mechanism must be put in place to extract higher level knowledge from the raw data

provided by sensors. Additionally, for the latter to be feasible, instantaneous access

to discrete data, as done in this thesis, becomes insufficient and new protocols are to

be devised to manage large volumes of real-time and historical data streams.

Another requirement relates to the social sensing aspect, where information should

be provided by end users themselves based on their own perspectives regarding their

environment, which in many cases can be more meaningful than a physical sensor’s

numerical readings. Additionally, new protocols should be devised to seamlessly

integrate the social feedback with the sensor provided measurements.

Last but not least, when talking about mobile sensing in general, and social sensing

in particular, privacy concerns should always be addressed with high priority, which

is another topic of interest for which I acquired expertise during my previous research.

As such, as part of my future research, I intend to partially focus on this topic and

possibly integrate access control and privacy protection mechanisms within MobIoT

to be exploited when users/Things providing their data deem it more suitable to limit

access to their information.

173

Bibliography

Karl Aberer, Manfred Hauswirth, and Ali Salehi. Infrastructure for data processing in

large-scale interconnected sensor networks. In International Conference on Mobile

Data Management, pages 198–205, 2007. 20

Asaad Ahmed, Keiichi Yasumoto, Yukiko Yamauchi, and Minoru Ito. Distance and

time based node selection for probabilistic coverage in people-centric sensing. In

Proceedings of the 8th Annual IEEE International Conference on Sensor, Mesh

and Ad Hoc Communications and Networks, (SECON), pages 134–142, 2011. 58

Ian F Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. Wireless

sensor networks: a survey. Computer networks, 38(4):393–422, 2002. 128

Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A survey.

Computer Networks, 54(15):2787–2805, 2010. 14

Samer AB Awwad, Chee Kyun Ng, Nor K Noordin, and Mohd Fadlee A Rasid.

Cluster based routing protocol for mobile nodes in wireless sensor network. Wireless

Personal Communications, 61(2):251–281, 2011. 128

Naba Aziz, Ammar W Mohemmed, and Daya Sagar. Particle swarm optimization

and voronoi diagram for wireless sensor networks coverage optimization. In Inter-

national Conference on Intelligent and Advanced Systems, (ICIAS), pages 961–965.

IEEE, 2007. 58

Fan Bai and Ahmed Helmy. A survey of mobility models. Wireless Ad hoc Networks.

University of Southern California, USA, 206, 2004. 149

Xiaole Bai, Santosh Kumar, Dong Xuan, Ziqiu Yun, and Ten H. Lai. Deploying

wireless sensors to achieve both coverage and connectivity. In Proceedings of the

175

BIBLIOGRAPHY

7th ACM International Symposium on Mobile Ad Hoc Networking and Computing,

pages 131–142. ACM, 2006. 44

Mohamed Bakillah and Steve HL Liang. Discovering sensor services with social net-

work analysis and expanded SQWRL querying. In Web and Wireless Geographical

Information Systems, pages 221–238. Springer, 2012. 105

Luiz André Barroso, Jeffrey Dean, and Urs Holzle. Web search for a planet: The

Google cluster architecture. Micro, IEEE, 23(2):22–28, 2003. 24

Aaron Beach, Mike Gartrell, Sirisha Akkala, Jack Elston, John Kelley, Keisuke Nishi-

moto, Baishakhi Ray, Sergei Razgulin, Karthik Sundaresan, Bonnie Surendar, et al.

Whozthat? evolving an ecosystem for context-aware mobile social networks. Net-

work, IEEE, 22(4):50–55, 2008. 27

Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz. SUMO -

Simulation of Urban Mobility: An Overview. In The Third International Confer-

ence on Advances in System Simulation, (SIMUL), Barcelona, Spain, 2011. 142

Farshid Hassani Bijarbooneh, Pierre Flener, Edith C-H Ngai, and Justin Pearson.

An optimisation-based approach for wireless sensor deployment in mobile sensing

environments. In Wireless Communications and Networking Conference (WCNC),

2012 IEEE, pages 2108–2112. IEEE, 2012. 93

Colin Blackman, Ian Brown, Jonathan Cave, Simon Forge, Karmen Guevara, Lara

Srivastava, Motohiro Tsuchiya, and Rafael Popper. Towards a Future Internet

interrelation between technological, social and economic trends. Technical re-

port, 2010. http://www.internetfutures.eu/wp-content/uploads/2010/11/

TAFIFinal-Report.pdf. 5

Carsten Bormann, Angelo P Castellani, and Zach Shelby. CoAP: An Application

Protocol for billions of tiny Internet nodes. Internet Computing, IEEE, 16(2):

62–67, 2012. 21

Mike Botts, George Percivall, Carl Reed, and John Davidson. OGC® Sensor Web

Enablement: Overview and high level architecture. In GeoSensor networks, pages

175–190. Springer, 2008. 16

176

http://www.internetfutures.eu/wp-content/uploads/2010/11/TAFIFinal-Report.pdf.
http://www.internetfutures.eu/wp-content/uploads/2010/11/TAFIFinal-Report.pdf.

BIBLIOGRAPHY

Dirk Brockmann, Lars Hufnagel, and Theo Geisel. The scaling laws of human travel.

Nature, 439(7075):462–465, 2006. 59

Andrew T Campbell, Shane B Eisenman, Nicholas D Lane, Emiliano Miluzzo,

Ronald A Peterson, Hong Lu, Xiao Zheng, Mirco Musolesi, Kristóf Fodor, and

Gahng-Seop Ahn. The rise of people-centric sensing. Internet Computing, IEEE,

12(4):12–21, 2008. 3

Claudio Carpineto and Giovanni Romano. A survey of automatic query expansion in

information retrieval. ACM Computing Surveys (CSUR), 44(1):1, 2012. 105

CASAGRAS, EU. FP7 Project, RFID and the inclusive model for the Internet of

Things. Technical report, 2012. www.grifs-project.eu. 1

Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot, Richard Gass, and

James Scott. Impact of human mobility on opportunistic forwarding algorithms.

IEEE Transactions on Mobile Computing, 6(6):606–620, 2007. 59

Ali Chamam and Samuel Pierre. On the planning of wireless sensor networks: energy-

efficient clustering under the joint routing and coverage constraint. IEEE Trans-

actions on Mobile Computing, 8(8):1077–1086, 2009. 93

Supriyo Chatterjea and Paul Havinga. An adaptive and autonomous sensor sampling

frequency control scheme for energy-efficient data acquisition in wireless sensor

networks. In Distributed Computing in Sensor Systems, pages 60–78. Springer,

2008. 58

Mainak Chatterjee, Sajal K Das, and Damla Turgut. WCA: A weighted clustering

algorithm for mobile ad hoc networks. Cluster Computing, 5(2):193–204, 2002. 128

Maggie Cheng, Xuan Gong, and Lin Cai. Joint routing and link rate allocation under

bandwidth and energy constraints in sensor networks. Wireless Communications,

IEEE Transactions on, 8(7):3770–3779, 2009. 128

Kyungmin Cho, Younghyun Ju, Sungjae Jo, Yunseok Rhee, and Junehwa Song. SATI:

A scalable and traffic-efficient data delivery infrastructure for real-time sensing

applications. Computer Networks, 55(1):241–263, 2011. 23

177

www.grifs-project.eu

BIBLIOGRAPHY

Wook Choi and Sajal K Das. CROSS: A probabilistic constrained random sensor

selection scheme in wireless sensor networks. Performance Evaluation, 66(12):754–

772, 2009. 86, 92

CHOReOS consortium. CHOReOS Perspective on the Future Internet and Initial

Conceptual Model (D1.2). Technical report, 2011a. URL http://www.choreos.

eu/. 11

CHOReOS consortium. CHOReOS Middleware Specification (D3.1). Technical re-

port, 2011b. URL http://www.choreos.eu/. 11, 163

CHOReOS consortium. DynaRoute Architectural Design (D8.2). Technical report,

2011c. URL http://www.choreos.eu/. 137

CHOReOS consortium. CHOReOS Dynamic Development Model Definition (D2.1).

Technical report, 2011d. URL http://www.choreos.eu/. 161

CHOReOS consortium. Initial Architectural Style for CHOReOS Choreographies

(D1.3). Technical report, 2012a. URL http://www.choreos.eu/. 11, 161

CHOReOS consortium. CHOReOS Middleware First Implementation (D3.2.2). Tech-

nical report, 2012b. URL http://www.choreos.eu/. 11

CHOReOS consortium. Integrated CHOReOS Middleware - Enabling large-scale,

QoS-Aware Adaptive Choreographies (D3.3). Technical report, 2013. URL http:

//www.choreos.eu/. 11

Benoit Christophe. Managing massive data of the Internet of Things through co-

operative semantic nodes. In IEEE Sixth International Conference on Semantic

Computing, (ICSC), pages 93–100. IEEE, 2012. 37

Benoit Christophe, Vincent Verdot, and Vincent Toubiana. Searching the ‘Web of

Things’. In Fifth IEEE International Conference on Semantic Computing, (ICSC),

pages 308–315. IEEE, 2011. 37

Cisco Visual Networking Index Cisco. Global mobile data traffic forecast update,

2010-2015. Cisco white paper, 2011. 4

178

http://www.choreos.eu/
http://www.choreos.eu/
http://www.choreos.eu/.
http://www.choreos.eu/.
http://www.choreos.eu/
http://www.choreos.eu/
http://www.choreos.eu/
http://www.choreos.eu/
http://www.choreos.eu/

BIBLIOGRAPHY

Michael Compton, Holger Neuhaus, Kerry Taylor, and Khoi-Nguyen Tran. Reasoning

about sensors and compositions. In SSN, pages 33–48, 2009. 16, 104

Michael Compton, Payam Barnaghi, Luis Bermudez, Raul García-Castro, Oscar Cor-

cho, Simon Cox, John Graybeal, Manfred Hauswirth, Cory Henson, Arthur Herzog,

et al. The SSN ontology of the W3C semantic sensor network incubator group.

Web Semantics: Science, Services and Agents on the World Wide Web, 17:25–32,

2012. 16, 17, 37

Mathieu d’Aquin and Natalya F Noy. Where to publish and find ontologies? a survey

of ontology libraries. Web Semantics: Science, Services and Agents on the World

Wide Web, 11:96–111, 2012. 17

Tathagata Das, Prashanth Mohan, Venkata N Padmanabhan, Ramachandran Ram-

jee, and Asankhaya Sharma. PRISM: platform for remote sensing using smart-

phones. In Proceedings of the 8th International Conference on Mobile Systems,

Applications, and Services, pages 63–76. ACM, 2010. 30

Suparna De, Tarek Elsaleh, Payam Barnaghi, and Stefan Meissner. An Internet of

Things platform for real-world and digital objects. Scalable Computing: Practice

and Experience, 13(1), 2012. 17, 37

Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51(1):107–113, 2008. 23

Santpal Singh Dhillon and Krishnendu Chakrabarty. Sensor placement for effective

coverage and surveillance in distributed sensor networks. In Proceedings of IEEE

Wireless Communications and Networking Conference, 2003. 93

Hui Ding, Goce Trajcevski, and Peter Scheuermann. Efficient maintenance of con-

tinuous queries for trajectories. Geoinformatica, 12(3):255–288, 2008. 69

Aida Ehyaei, Eduardo Tovar, Nuno Pereira, and Björn Andersson. Scalable data

acquisition for densely instrumented cyber-physical systems. In IEEE/ACM Inter-

national Conference on Cyber-Physical Systems, (ICCPS), pages 174–183. IEEE,

2011. 23

179

BIBLIOGRAPHY

Shane Eisenman, Nicholas Lane, Emiliano Miluzzo, Ronald Peterson, Gahng-Seop

Ahn, and Andrew Campbell. MetroSense project: People-centric sensing at scale.

In Workshop on World-Sensor-Web (WSW), Boulder. Citeseer, 2006. 29

Martin Erwig, Ralf Hartmut Gu, Markus Schneider, Michalis Vazirgiannis, et al.

Spatio-temporal data types: An approach to modeling and querying moving objects

in databases. GeoInformatica, 3(3):269–296, 1999. 69

Heitor Ferreira, Sérgio Duarte, and Nuno Preguiça. 4Sensing–decentralized processing

for participatory sensing data. In IEEE 16th International Conference on Parallel

and Distributed Systems, (ICPADS), pages 306–313. IEEE, 2010. 23

Antoine Gallais, Jean Carle, David Simplot-Ryl, and Ivan Stojmenovic. Ensuring

area k-coverage in wireless sensor networks with realistic physical layers. In 5th

IEEE Conference on Sensors, pages 880–883. IEEE, 2006. 44

Shravan Gaonkar, Jack Li, Romit Roy Choudhury, Landon Cox, and Al Schmidt.

Micro-blog: sharing and querying content through mobile phones and social par-

ticipation. In Proceedings of the 6th international conference on Mobile systems,

applications, and services, pages 174–186. ACM, 2008. 27

Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo Barabasi. Understanding

individual human mobility patterns. Nature, 453(7196):779–782, 2008. 59

Stéphane Grumbach, Philippe Rigaux, and Luc Segoufin. Spatio-temporal data han-

dling with constraints. GeoInformatica, 5(1):95–115, 2001. 69

Tao Gu, Hung Keng Pung, and Da Qing Zhang. A Service-Oriented middleware for

building context-aware services. Journal of Network and Computer Applications,

28(1):1–18, 2005. 7

N. Guarino, M. Carrara, and P. Giaretta. An ontology of meta-level categories. In 4th

International Conference Principles of Knowledge Representation and Reasoning,

pages 270–280. Citeseer, 1994. 16

D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio. Interacting with

the SOA-Based Internet of Things: Discovery, query, selection, and on-demand

provisioning of Web Services. IEEE Transactions on Services Computing, 3(3):

223–235, 2010. 7, 16, 19, 57, 105

180

BIBLIOGRAPHY

Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde. From the

Internet of Things to the Web of Things: Resource-oriented architecture and best

practices. In Architecting the Internet of Things, pages 97–129. Springer, 2011. 20

Sara Hachem, Thiago Teixeira, and Valérie Issarny. Ontologies for the Internet of

Things. In Proceedings of the 8th Middleware Doctoral Symposium, page 3. ACM,

2011. 11, 36

Sara Hachem, Animesh Pathak, and Valérie Issarny. Probabilistic registration for

large-scale mobile participatory sensing. In Proceedings of the 11th IEEE Interna-

tional Conference on Pervasive Computing and Communications, (Percom), mar.

2013a. 11, 60

Sara Hachem, Animesh Pathak, and Valerie Issarny. Service-Oriented middleware for

large-scale mobile participatory sensing. Pervasive and Mobile Computing, 2013b.

11, 60

Stephan Haller, Stamatis Karnouskos, and Christoph Schroth. The Internet of Things

in an enterprise context. In Future Internet–FIS 2008, pages 14–28. Springer, 2009.

2

Wendi B Heinzelman, Anantha P Chandrakasan, and Hari Balakrishnan. An

application-specific protocol architecture for wireless microsensor networks. IEEE

Transactions on Wireless Communications, 1(4):660–670, 2002. 128

Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen, Michel Goraczko, Allen

Miu, Eugene Shih, Hari Balakrishnan, and Samuel Madden. Cartel: a distributed

mobile sensor computing system. In Proceedings of the 4th International Conference

on Embedded Networked Sensor Systems, pages 125–138. ACM, 2006. 29

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing

the curse of dimensionality. In Proceedings of the 13th Annual ACM Symposium

on Theory of Computing, pages 604–613. ACM, 1998. 128

Valérie Issarny, Daniele Sacchetti, Ferda Tartanoglu, Françoise Sailhan, Rafik Chi-

bout, Nicole Levy, and Angel Talamona. Developing ambient intelligence systems:

A solution based on Web Services. Automated Software Engineering, 12(1):101–137,

2005. 7

181

BIBLIOGRAPHY

Valerie Issarny, Nikolaos Georgantas, Sara Hachem, Apostolos Zarras, Pano Vassil-

iadist, Maraco Autili, Marco A. Gerosa, and Amira Ben Hamida. Service-Oriented

middleware for the Future Internet: state of the art and research directions. Journal

of Internet Services and Applications, 2(1):23–45, 2011. 11

Swaroop Kalasapur, Mohan Kumar, and Behrooz A Shirazi. Dynamic service com-

position in pervasive computing. IEEE Transactions on Parallel and Distributed

Systems, 18(7):907–918, 2007. 7

Thomas Karagiannis, J-Y Le Boudec, and Milan Vojnovic. Power law and exponential

decay of intercontact times between mobile devices. IEEE Transactions on Mobile

Computing, 9(10):1377–1390, 2010. 59

Stamatis Karnouskos, Domnic Savio, Patrik Spiess, Dominique Guinard, Vlad. Trifa,

and Oliver Baecker. Real-world service interaction with enterprise systems in

dynamic manufacturing environments. Artificial Intelligence Techniques for Net-

worked Manufacturing Enterprises Management, pages 423–457, 2010. 57

Gabriel Y Keung, Qian Zhang, and Bo Li. The delay-constrained information cover-

age problem in mobile sensor networks: single hop case. Wireless Networks, 16(7):

1961–1973, 2010. 58

Wazir Z. Khan, Yang Xiang, Mohammed Y. Aalsalem, and Quratulain Arshad. Mo-

bile phone sensing systems: A survey. IEEE Communications Surveys Tutorials,

15(1):402–427, 2013. 26, 27, 28

Jeffrey King, Raja Bose, Hen-I Yang, Steven Pickles, and Abdelsalam Helal. At-

las: A Service-Oriented sensor platform: Hardware and middleware to enable pro-

grammable pervasive spaces. In Proceedings of 31st IEEE Conference on Local

Computer Networks, pages 630–638. IEEE, 2006. 7

Nicholas D Lane, Shane B Eisenman, Mirco Musolesi, Emiliano Miluzzo, and An-

drew T Campbell. Urban sensing systems: opportunistic or participatory? In

Proceedings of the 9th Workshop on Mobile Computing Systems and Applications,

pages 11–16. ACM, 2008. 26

182

BIBLIOGRAPHY

José Antonio Cotelo Lema, Luca Forlizzi, Ralf Hartmut Güting, Enrico Nardelli,

and Markus Schneider. Algorithms for moving objects databases. The Computer

Journal, 46(6):680–712, 2003. 69

Jize Li, Kejie Li, and Wei Zhu. Improving sensing coverage of wireless sensor networks

by employing mobile robots. In IEEE International Conference on Robotics and

Biomimetics, (ROBIO), pages 899–903. IEEE, 2007. 58

Valerie Loscri, Enrico Natalizio, Tahiry Razafindralambo, and Nathalie Mitton. Dis-

tributed algorithm to improve coverage for mobile swarms of sensors. In IEEE

International Conference on Distributed Computing in Sensor Systems, (DCOSS),

pages 292–294, 2013. 58

Hong Lu, Wei Pan, Nicholas D. Lane, Tanzeem Choudhury, and Andrew T. Camp-

bell. SoundSense: scalable sound sensing for people-centric applications on mobile

phones. In Proceedings of the 7th International Conference on Mobile Systems,

Applications, and Services, pages 165–178. New York, NY, USA, 2009. 27

Hong Lu, Nicholas D Lane, Shane B Eisenman, and Andrew T Campbell. Bubble-

sensing: Binding sensing tasks to the physical world. Pervasive and Mobile Com-

puting, 6(1):58–71, 2010. 30

Samuel R. Madden, Micheal J. Franklin, Joseph M. Hellerstein, and Wei Hong.

TinyDB: An acquisitional query processing system for sensor networks. ACM

Transactions on Database Systems, TODS, 30(1):122–173, 2005. 48

Friedemann Mattern and Christian Floerkemeier. From the Internet of Computers

to the Internet of Things. In From active data management to event-based systems

and more, pages 242–259. Springer, 2010. 5

Peter Mell and Timothy Grance. The NIST definition of Cloud computing. NIST

special publication, 800(145):7, 2011. 24

Richard Mietz, Sven Groppe, Kay Römer, and Dennis Pfisterer. Semantic models for

scalable search in the Internet of Things. Journal of Sensor and Actuator Networks,

2(2):172–195, 2013. 23

183

BIBLIOGRAPHY

Daniele Miorandi. The impact of channel randomness on coverage and connectivity

of ad hoc and sensor networks. IEEE Transactions on Wireless Communications,

7(3):1062–1072, 2008. 44

Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac.

Internet of Things: Vision, applications and research challenges. Ad Hoc Networks,

10(7):1497–1516, 2012. 2

Nathalie Mitton, Symeon Papavassiliou, Antonio Puliafito, and Kishor S Trivedi.

Combining Cloud and sensors in a smart city environment. EURASIP Journal on

Wireless Communications and Networking, 2012(1):1–10, 2012. 24

Mirco Musolesi, Mattia Piraccini, Kristof Fodor, Antonio Corradi, and Andrew T

Campbell. Supporting energy-efficient uploading strategies for continuous sensing

applications on mobile phones. In Pervasive Computing, pages 355–372. Springer,

2010. 58

D. Papadimitriou. Future Internet–The Cross-ETP Vision Document. European

Technology Platform, Alcatel Lucent, 8, 2009. 3, 5

M.P. Papazoglou. Service-Oriented Computing: concepts, characteristics and di-

rections. In Proceedings of the 4th International Conference on Web Information

Systems Engineering., pages 3 – 12, dec. 2003. 6

Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful Web services vs.

big’Web services: making the right architectural decision. In Proceedings of the

17th International Conference on World Wide Web, pages 805–814. ACM, 2008.

19

Nikos Pelekis, Babis Theodoulidis, Ioannis Kopanakis, and Yannis Theodoridis. Lit-

erature review of spatio-temporal database models. The Knowledge Engineering

Review, 19(03):235–274, 2004. 69

Charith Perera, Arkady Zaslavsky, C Liu, Michael Compton, Peter Christen, and

Dimitrios Georgakopoulos. Sensor search techniques for sensing as a service archi-

tecture for the Internet of Things. 2013. 58

184

BIBLIOGRAPHY

Charith Pereral, Arkady Zaslavsky, Peter Christen, Ali Salehi, and Dimitrios Geor-

gakopoulos. Capturing sensor data from mobile phones using Global Sensor Net-

work middleware. In IEEE 23rd International Symposium on Personal Indoor and

Mobile Radio Communications, (PIMRC), pages 24–29. IEEE, 2012. 4

A Prasad Sistla, Ouri Wolfson, Sam Chamberlain, and Son Dao. Modeling and

querying moving objects. In Proceedings of 13th International Conference on Data

Engineering, pages 422–432. IEEE, 1997. 69

Rajib Kumar Rana, Chun Tung Chou, Salil S Kanhere, Nirupama Bulusu, and Wen

Hu. Ear-phone: an end-to-end participatory urban noise mapping system. In

Proceedings of the 9th ACM/IEEE International Conference on Information Pro-

cessing in Sensor Networks, pages 105–116. ACM, 2010. 23

D. Raychaudhuri and M. Gerla. Emerging Wireless Technologies and the Future

Mobile Internet. Cambridge University Press, 2011. 45

Injong Rhee, Minsu Shin, Seongik Hong, Kyunghan Lee, and Song Chong. On the

Levy-Walk nature of human mobility. In Proceedings of the 27th IEEE Conference

on Computer Communications, (INFOCOM), pages 924 –932, april 2008. 59, 72

Injong Rhee, Minsu Shin, Seongik Hong, Kyunghan Lee, Seong Joon Kim, and Song

Chong. On the Levy-Walk nature of human mobility. IEEE/ACM Transactions

on Networking, (TON), 19(3):630–643, 2011. 59, 79

Leonard Richardson and Sam Ruby. RESTful Web services. O’Reilly, 2008. 19

Radhika Ranjan Roy. Random Walk Mobility. In Handbook of Mobile Ad Hoc Net-

works for Mobility Models, pages 35–63. Springer, 2011. 149

Zheng Ruan, Edith C-H Ngai, and Jiangchuan Liu. Wireless sensor deployment for

collaborative sensing with mobile phones. Computer Networks, 55(15):3224–3245,

2011. 58

David J Russomanno, Cartik R Kothari, and Omoju A Thomas. Building a sensor

ontology: A practical approach leveraging ISO and OGC models. In IC-AI, pages

637–643, 2005. 16, 37

185

BIBLIOGRAPHY

U. Sadiq and M. Kumar. Proximol: Proximity and mobility estimation for efficient

forwarding in opportunistic networks. In Proceedings of the 8th IEEE International

Conference on Mobile Ad-Hoc and Sensor Systems, pages 312–321. IEEE, 2011. 71,

146, 171

Loïc Schmidt, Nathalie Mitton, David Simplot-Ryl, Roudy Dagher, and Roberto

Quilez. DHT-based distributed ALE engine in RFID Middleware. In IEEE Inter-

national Conference on RFID-Technologies and Applications, (RFID-TA), pages

319–326. IEEE, 2011. 23

SENSEI consortium. Highly Scalable Architecture Framework (D3.6). Techni-

cal report, 2011. URL http://www.ict-sensei.org/index.php?option=com_

content&task=view&id=14&Itemid=31. 24

Richard Serfozo. Introduction to stochastic networks, volume 44. Springer Verlag,

1999. 150

Minho Shin, Cory Cornelius, Dan Peebles, Apu Kapadia, David Kotz, and Nikos

Triandopoulos. AnonySense: A system for anonymous opportunistic sensing. Per-

vasive and Mobile Computing, 7(1):16–30, 2011. 29

Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. Limits of

predictability in human mobility. Science, 327(5968):1018–1021, 2010a. 45

Zhexuan Song, Alvaro A Cárdenas, and Ryusuke Masuoka. Semantic middleware for

the Internet of Things. In Internet of Things (IOT), 2010, pages 1–8. IEEE, 2010b.

21

W. Stadje. The exact probability distribution of a two-dimensional Random Walk.

Journal of Statistical Physics, 46(1):207–216, 1987. 150

Jeffrey Star and John Estes. Geographic Information Systems. Prentice-Hall, 1990.

69

Peter Stuckmann and Rainer Zimmermann. European research on Future Internet

design. IEEE Wireless Communications, 16(5):14–22, 2009. 5

186

http://www.ict-sensei.org/index.php?option=com_content&task=view&id=14&Itemid=31
http://www.ict-sensei.org/index.php?option=com_content&task=view&id=14&Itemid=31

BIBLIOGRAPHY

Thiago Teixeira, Sara Hachem, Valerie Issarny, and Nikolaos Georgantas. Service

Oriented Middleware for the Internet of Things: A Perspective. Servicewave, 2011.

11, 46

I. Toma, E. Simperl, A. Filipowska, G. Hench, and J. Domingue. Semantics-driven

interoperability on the Future Internet. In IEEE International Conference on

Semantic Computing (ICSC), 2009. 5

Vlasios Tsiatsis, Alexander Gluhak, Tim Bauge, Frederic Montagut, Jesus Bernat,

Martin Bauer, Claudia Villalonga, Payam Barnaghi, and Srdjan Krco. The SENSEI

real world Internet architecture. Towards the Future Internet-Emerging Trends

from European Research, pages 247–256, 2010. 57

Sandesh Uppoor, Oscar Trullols-Cruces, Marco Fiore, and Jose M. Barcelo-Ordinas.

Generation and analysis of a large-scale urban vehicular mobility dataset. IEEE

Transactions on Mobile Computing, 99(PrePrints):1, 2013. ISSN 1536-1233. 142,

157

Ovidiu Vermesan and Peter Friess. Internet of Things-Global Technological and Soci-

etal Trends From Smart Environments and Spaces to Green ICT. River Publishers,

2011. 5

Claudia Villalonga, Martin Bauer, Vincent Huang, Jesús Bernat, and Payam Bar-

naghi. Modeling of sensor data and context for the real world Internet. In 8th IEEE

International Conference on Pervasive Computing and Communications Work-

shops, (PERCOM Workshops), pages 1–6. IEEE, 2010. 37

M. Von Kaenel, P. Sommer, and R. Wattenhofer. Ikarus: large-scale participatory

sensing at high altitudes. In Proceedings of the 12th Workshop on Mobile Computing

Systems and Applications, pages 63–68. ACM, 2011. 28

W3C. Web Services Architecture. Technical report. URL http://www.w3c.org/TR/

ws-arch. 18

Bang Wang. Sensor coverage model. In Coverage Control in Sensor Networks, pages

19–34. Springer, 2010. 44

187

http://www.w3c.org/TR/ws-arch
http://www.w3c.org/TR/ws-arch

BIBLIOGRAPHY

Jianping Wang. Exploiting mobility prediction for dependable service composition

in wireless mobile ad hoc networks. IEEE Transactions on Services Computing, 4

(1):44–55, 2011. 86

Wei Wang, Suparna De, Ralf Toenjes, Eike Reetz, and Klaus Moessner. A compre-

hensive ontology for knowledge representation in the Internet of Things. In IEEE

11th International Conference on Trust, Security and Privacy in Computing and

Communications, (TrustCom), pages 1793–1798. IEEE, 2012. 37

Xue Wang, Sheng Wang, and Jun-Jie Ma. An improved co-evolutionary particle

swarm optimization for wireless sensor networks with dynamic deployment. Sen-

sors, 7(3):354–370, 2007. 58

Yi Wang, Jialiu Lin, Murali Annavaram, Quinn A Jacobson, Jason Hong, Bhaskar

Krishnamachari, and Norman Sadeh. A framework of energy efficient mobile sens-

ing for automatic user state recognition. In Proceedings of the 7th International

Conference on Mobile Systems, Applications, and Services, pages 179–192. ACM,

2009. 58

Roy Want. Enabling ubiquitous sensing with RFID. Computer, 37(4):84–86, 2004.

22

Roy Want. An introduction to RFID technology. Pervasive Computing, IEEE, 5(1):

25–33, 2006. 22

Thakshila Wimalajeewa and Sudharman K. Jayaweera. Impact of mobile node density

on detection performance measures in a hybrid sensor network. IEEE Transactions

on Wireless Communications, 9(5):1760–1769, 2010. 150

Yanwei Wu, Xiang-Yang Li, YunHao Liu, and Wei Lou. Energy-efficient wake-up

scheduling for data collection and aggregation. IEEE Transactions on Parallel and

Distributed Systems, 21(2):275–287, 2010. 128

Ya Xu, John Heidemann, and Deborah Estrin. Geography-informed energy conserva-

tion for ad hoc routing. In Proceedings of the 7th Annual International Conference

on Mobile Computing and Networking, pages 70–84. ACM, 2001. 83, 88

188

BIBLIOGRAPHY

Fan Ye, Haiyun Luo, Jerry Cheng, Songwu Lu, and Lixia Zhang. A two-tier data

dissemination model for large-scale wireless sensor networks. In Proceedings of the

8th Annual International Conference on Mobile Computing and Networking, pages

148–159. ACM, 2002. 83, 88

Jong-Woon Yoo and Kyu Ho Park. A cooperative clustering protocol for energy

saving of mobile devices with WLAN and Bluetooth interfaces. IEEE Transactions

on Mobile Computing, 10(4):491–504, 2011. 128

Ossama Younis and Sonia Fahmy. Heed: a hybrid, energy-efficient, distributed clus-

tering approach for ad hoc sensor networks. Mobile Computing, IEEE Transactions

on, 3(4):366–379, 2004. ISSN 1536-1233. 128

Jing Yuan, Yu Zhen, Xing Xie, and Guang Sun. Driving with knowledge from

the physical world. In In The 17th ACM SIGKDD International cConference on

Knowledge Discovery and Data Mining, (KDD), 2011. 142

Suli Zhao and Dipankar Raychaudhuri. Scalability and performance evaluation of

hierarchical hybrid wireless networks. IEEE/ACM Transactions on Networking,

17(5):1536–1549, 2009. 128

Michele Zorzi, Alexander Gluhak, Sebastian Lange, and Alessandro Bassi. From

today’s Intranet of Things to a Future Internet of Things: a wireless-and mobility-

related view. IEEE Wireless Communications, 17(6):44–51, 2010. 6

189

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Mobile IoT Challenges
	1.1.1 Scale
	1.1.2 Heterogeneity
	1.1.3 Dynamic Network Topology

	1.2 Thesis Contribution: Towards a Thing-based Service-Oriented Middleware

	2 The Mobile Internet of Things: State of the Art
	2.1 Taming the Heterogeneous Internet of Things
	2.1.1 Representing Things
	2.1.2 Abstracting Things
	2.1.3 Interacting With Things

	2.2 Managing the Large Scale Internet of Things
	2.3 From the Internet of Things to the Mobile Internet of Things
	2.3.1 Social Sensing
	2.3.2 Urban Sensing

	2.4 Discussion
	2.5 Summary

	3 MobIoT: Service-Oriented Middleware for the Mobile IoT
	3.1 MobIoT Ontologies
	3.1.1 Device Ontology
	3.1.2 Physics Domain Ontology

	3.2 MobIoT Architecture
	3.2.1 Query Component
	3.2.2 Composition & Estimation Component
	3.2.3 Discovery Component
	3.2.4 Access Component
	3.2.5 Registry

	3.3 Summary

	4 Probabilistic Thing-Based Service Discovery
	4.1 Background
	4.2 Thing-Based Service Registration
	4.2.1 Deterministic Thing-based Registration
	4.2.2 Probabilistic Thing-based Registration
	4.2.3 Computation Simplifications

	4.3 Thing-based Service Look-up
	4.3.1 Probabilistic Thing-based Lookup
	4.3.2 Coverage-Based Probabilistic Lookup

	4.4 Summary

	5 Thing-based Service Composition
	5.1 Background
	5.2 Semantic Thing-based Service Composition
	5.2.1 Expansion
	5.2.2 Mapping
	5.2.3 Execution

	5.3 Summary

	6 Implementation and Evaluation
	6.1 MobIoT Prototype Implementation
	6.1.1 MobIoT Mobile Middleware
	6.1.2 MobIoT Web Service
	6.1.3 DynaRoute Application

	6.2 Experimental Evaluation
	6.2.1 Simulation Environment
	6.2.2 Assessment Metrics
	6.2.3 Registration Evaluation Results
	6.2.4 Look-up Evaluation Results
	6.2.5 MobIoT Evaluation Results

	6.3 MobIoT In The Future Internet
	6.3.1 CHOReOS Middleware Architecture

	6.4 Summary

	7 Conclusion
	7.1 Summary of Contributions
	7.2 Future Work
	7.2.1 Short-term Perspective
	7.2.2 Long-term Perspective: Better World With Social Urban Monitoring

	Bibliography

