

Thèse présentée pour obtenir le grade de

Docteur de l'Université Paris-Est

Spécialité : Chimie

par

Kévin Mathivon

Ecole Doctorale: SCIENCES, INGENIERIE ET ENVIRONNEMENT

Étude théorique de l'interaction Molécule – Substrat

Thèse soutenue le 10 Décembre 2013 devant le jury composé de :

Gilberte Chambaud Lionel Poisson María Luisa Senent Diez Benoit Gervais Majdi Hochlaf Présidente du jury Rapporteur Rapporteur Examinateur Directeur de thèse

Remerciements:

Lors de ces trois années passées au sein de l'équipe de Chimie Théorique, j'ai eu l'honneur de rencontrer de nombreuses personnes auxquelles je me suis attaché. Je souhaite donc leur rendre hommage.

Dans un premier temps, je souhaite remercier sincèrement Majdi Hochlaf, pour m'avoir donné l'opportunité d'effectuer cette thèse et aussi pour son investissement intellectuel, temporel et humain pendant ces trois années. Je remercie également Gilberte Chambaud pour m'avoir accueilli au sein du laboratoire.

Un grand merci à Roberto Linguerri pour ses conseils avisés et son soutien lors de la préparation des articles.

Merci à Lionel Poisson et María Luisa Senent Diez d'avoir accepté d'être rapporteurs, et à Benoit Gervais pour avoir accepté de juger mon travail.

Je tiens à remercier l'équipe de Chimie Théorique pour leur disponibilité, leur grande sympathie et soutien. Ils ont fait de ce laboratoire un lieu de travail, mais aussi un lieu de vie agréable et animé, merci à Céline Léonard, Marius Lewerenz, Mirjana Mladenovic, Alexander "Sacha" Mitruschenkov, Marie Guitou, Frédéric Le Quéré et Isabelle Navizet.

J'ai aussi beaucoup de reconnaissance pour mes collègues doctorant et post – doc qui sont passés dans ce laboratoire : Hossain Khalil, Jiang Ji, Céline Houriez, Romain Grenier, Prakash Muthuramalingam, Ayad Bellili, Khaled Mahjoubi et Achref Guannouni.

J'ai une pensée pour les personnes que j'ai rencontré lors de mes déplacements à l'étranger, notamment David Benoit et Dominic Domin, que j'ai eu plaisir de retrouver parmis mes collègues de laboratoire pendant une année.

Mes remerciements vont aussi à ma famille et mes amis pour leurs encouragements et leur soutien. Un grand merci à Aurélie pour son soutien au quotidien, son aide précieuse et pour son amour.

Enfin, je remercie l'ensemble du personnel de l'université que j'ai côtoyé pour leur disponibilité et leur gentillesse, notamment Guillaume Sauvenay, Stéphanie Domise et Guillaume Launay.

SOMMAIRE

Introduction générale		
II)	Programmes de calcul utilisés	12
	a) Molpro	12
	b) Gaussian	12
	c) CP2K	13
III)	Les bases atomiques :	15
IV)	La méthode Hartree-Fock :	19
V)	Les méthodes post-Hartree-Fock :	23
	a) Les méthodes d'interaction de configuration :	23
	1)La méthode Multi-Configurational Self-Consistent Field (MCSCF):	25
	2) Internally Contracted Multi-Reference Configuration Interaction (MRCI) :	27
	b) Méthode perturbative : Møller-Plesset d'ordre 2 (MP2) :	29
	c) La méthode des clusters couplés (coupled clusters) :	31
	d) La méthode des clusters couplés explicitement corrélée (R)CCSD(T)-F12 :	34
VI)	Théorie de la fonctionnelle de la densité :	37
VII	() Conclusion	46
Bib	oliographie Chapitre 1	47

Chapitre 2	
Etude systématique du DABCO en interaction avec un atome de gaz rare	49
I) Introduction :	49
II) Détails des calculs :	
III) Etude systématique sur les potentiels d'interaction des complexes DABO (Rg = He, Ne, Ar et Kr) :	CO-Rg
IV) Structures optimisées de DABCO – Rg et de DABCO ⁺ – Rg	
(où Rg = He, Ne, Ar et Kr) :	65
V) Discussion:	
VI) Conclusion:	
Bibliographie Chapitre 2:	78
Chapitre 3	
Etude des états électroniques et des structures des complexes $DABCO - Ar_n$	80
I) Introduction:	80
II) Détails des calculs :	85
III) Structures du DABCO $^{0,+1}$ – Ar _n (pour n = 1 – 4):	88
IV) Etats électroniques excités du DABCO – Ar_n (pour $n = 1, 2$ et 3) :	97
V) Conclusion :	103
Bibliographie Chapitre 3:	104
Chapitre 4 Etude microscopique de l'interaction du CO2 avec une molécule d'imi complexes imidazole – or	
I) Introduction :	106
II) Détails des calculs :	108
III) Etude préliminaire sur la ZIF :	109
IV) Adsorption de l'imidazole sur une surface d'or :	114
V) Etude périodique de l'imidazole adsorbée sur une surface d'or :	122
VI) Conclusion:	126
Bibliographie Chapitre 4:	127
Conclusion et perspectives :	128
Annexes	134

Introduction générale

Au cours de la dernière décennie, les techniques expérimentales et théoriques ont fortement évolué permettant la caractérisation et la compréhension à l'échelle atomique des processus physico chimiques intervenant aux interfaces (e.g. solide – gaz), dans des phases diluées comme les jets atomiques et moléculaires et la dynamique ultrarapide sous l'effet des impulsions laser femto – seconde. Les travaux de thèse présentés dans ce manuscrit sont au cœur de cette évolution. Les applications sont par exemple dans le domaine de la catalyse, la solvatation, le stockage, la séparation sélective et la séquestration des gaz. Le point crucial dans ce type de problématique est la description correcte de l'interaction entre les deux entités : molécule/atome – molécule ; molécule – surface ; molécule – cavité, ... Ces systèmes sont faiblement liés, leurs interactions mutuelles sont de nature Van der Waals. De façon générale, la détermination précise de ces potentiels à longue portée représente encore un challenge en chimie quantique en particulier pour des systèmes moléculaires électroniquement excités. Néanmoins, les développements méthodologiques récents en chimie quantique et la forte montée en puissance des performances des ressources informatiques permettent d'y apporter des réponses satisfaisantes. Les études présentées dans cette thèse se concentrent donc sur l'application et la validation de ces nouvelles méthodologies pour le calcul des potentiels d'interaction entre une entité avec un agrégat ou une surface.

Le présent manuscrit comporte quatre parties :

Dans un premier temps, les méthodes utilisées sont détaillées. Le programme GAUSSIAN est utilisé pour optimiser les géométries des molécules étudiées et pour calculer leurs fréquences. Ces calculs sont effectués avec les méthodes, MP2 et la DFT avec les fonctionnelles PBE, B3LYP ou B97-D. Les bases utilisées sont en majorité les bases aug-cc-pVXZ (avec X = D ou T) car elles doivent être suffisamment diffuse pour décrire correctement les interactions de type Van der Waals étudiées. Ces méthodes allient une bonne précision et des temps de calcul raisonnables. Nous avons utilisé le programme MOLPRO pour calculer les états électroniques excités des entités moléculaires en interaction avec les méthodes post Hartree-Fock telles que les méthodes MCSCF et MRCI associées à une base diffuse. Enfin, nous avons effectué des calculs périodiques avec le programme CP2K.

Ce programme prend en compte les conditions périodiques aux limites, ce qui nous permet de modéliser des surfaces et les interfaces gaz – surfaces. La méthode utilisée pour ce type de calcul est la DFT, avec une base d'ondes planes associée à un pseudopotentiel représentant les électrons de cœur de chaque sorte d'atome, réduisant ainsi le temps de calcul.

Dans le second chapitre, nous étudierons l'interaction entre la molécule 1,4-diazabicyclo[2.2.2]octane (DABCO) et un atome de gaz rare (hélium, néon, argon et krypton), puis plus particulièrement le DABCO avec plusieurs atomes d'argon. Nous avons commencé par effectuer une analyse systématique des systèmes DABCO – gaz rare afin de déterminer la méthode la plus efficace pour traiter ce type de système. La méthode MP2 avec la base aug-cc-pVTZ est retenue pour les complexes du DABCO avec le néon, l'argon et le krypton, car elle associe une bonne description du système à des temps de calcul raisonnables. Par contre, le complexe DABCO – He doit être étudié par des méthodes plus précises, telle que la méthode CCSD(T) – F12. Pour cette méthode, nous avons montré qu'elle est suffisamment précise pour la description de ce genre de système, tout en réduisant les temps de calcul et l'espace disque utilisé par rapport à la méthode CCSD(T) classique.

Les surfaces d'énergie potentielle des états fondamentaux des complexes DABCO – Rg (Rg = He, Ne, Ar et Kr) ont été calculées, ce qui nous a permis de réattribuer les spectres expérimentaux de ces espèces. Nous avons utilisé ces résultats théoriques pour étudier plus précisément l'interaction du DABCO avec l'argon.

Dans le chapitre suivant, nous nous sommes concentrés plus particulièrement sur l'étude des complexes DABCO – Ar_n (avec n=2, 3 et 4) neutres et ioniques. Le but étant de caractériser avec les méthodes ab initio l'interaction du DABCO avec un cluster d'argon. Les précédentes études n'ont pas donné de résultats fiables vue que les bases atomiques utilisées n'étaient pas assez diffuses pour bien représenter l'interaction de type van der Waals. Nous avons ainsi montré que le DABCO interagi avec les atomes d'argon, et subit des déformations dues à l'effet de cette interaction faible sur les modes de vibration du DABCO. Nous avons caractérisé la première couche de solvatation du DABCO, ce qui pourra être utilisé dans une étude ultérieure sur l'interaction du DABCO dans un agrégat d'argon. Par la suite, nous avons étudié les plus bas états électroniques du DABCO – Ar_n (n=1, 2 et 3), et la forme de ces potentiels nous indique que les effets photophysiques et photochimiques de l'état Rydberg du solvant non polaire doivent être complexes. Nos résultats pourront être étendus à l'interprétation qualitative des études spectroscopiques et dynamiques des molécules de DABCO absorbés dans de grands agrégats d'argon.

Le dernier chapitre traite de l'étude de l'interaction entre l'imidazole et une couche d'or en présence de CO₂. Cette partie met en évidence les possibilités offertes par le complexe imidazole – or dans la capture et le stockage de CO₂. La molécule d'imidazole a d'abord été mise en contact avec de petits agrégats d'or afin de mieux comprendre le type d'interactions qui permettront de les lier. Nous avons montré que la molécule d'imidazole se fixe à l'agrégat d'or par une liaison covalente entre l'atome d'azote de la molécule et un atome d'or. Cette liaison sera stabilisée par des interactions faibles de type van der Waals entre les atomes d'hydrogène et la surface d'or. Ensuite, les calculs se sont concentrés sur l'interaction de l'imidazole avec une surface d'or. Les différents sites ont été testés, et nous avons déterminé que le site préférentiel pour l'interaction imidazole – or est le site top (l'imidazole se place perpendiculairement au – dessus d'un atome d'or). Cette interaction permettant un transfert de charge de l'imidazole vers la surface d'or, ce qui affecte la capture du CO₂. En effet, l'interaction Au(111)@Im - CO₂ voit son énergie diminuer d'environ 50% par rapport à l'interaction Im(seule) - CO₂. L'augmentation du nombre de molécules d'imidazole à la surface de la couche d'or ainsi que l'introduction des atomes de zinc pourrait permettre une liaison plus forte entre le CO₂ et l'imidazole.

Ce manuscrit se termine par une conclusion générale et des perspectives.

Chapitre 1

Approche théorique

Dans ce chapitre, nous allons décrire l'ensemble des méthodes théoriques ab initio utilisées dans le cadre de ce travail.

I) Equation de Schrödinger :

En chimie quantique, un système moléculaire est décrit par la fonction d'onde totale $\Psi(\mathbf{R},\mathbf{r})$ donnée par l'équation de Schrödinger [1] stationnaire :

$$H\Psi(\mathbf{R},\mathbf{r}) = E \Psi(\mathbf{R},\mathbf{r}) \tag{1.1}$$

Où **R** et **r** représentent respectivement l'ensemble des coordonnées des noyaux et des électrons, E est l'énergie totale du système et H l'hamiltonien total non-relativiste indépendant du temps du système.

Cet hamiltonien total non-relativiste se décompose de la façon suivante (en unités atomiques : $e=\hbar=m_e=4\pi\epsilon_0=1$) :

$$H(\mathbf{R},\mathbf{r}) = T_{N}(\mathbf{R}) + T_{e}(\mathbf{r}) + V_{NN}(\mathbf{R}) + V_{Ne}(\mathbf{R},\mathbf{r}) + V_{ee}(\mathbf{r})$$
(1.2)

avec:

$$T_N(\mathbf{R}) = -\sum_k \frac{1}{2M_k} \nabla_k^2$$
 Energie cinétique des noyaux $T_e(\mathbf{r}) = -\sum_i \frac{1}{2} \nabla_i^2$ Energie cinétique des électrons $V_{NN}(\mathbf{R}) = \sum_k \sum_{l>k} \frac{Z_k Z_l}{R_{kl}}$ Potentiel d'interaction noyau-noyau $V_{Ne}(\mathbf{R},\mathbf{r}) = -\sum_i \sum_k \frac{Z_k}{d_{ik}}$ Potentiel d'interaction noyau-électron $V_{ee}(\mathbf{r}) = \sum_j \sum_{i>j} \frac{1}{r_{ij}}$ Potentiel d'interaction électron-électron

La résolution analytique de l'équation de Schrödinger (1.1) est impossible pour la grande majorité des systèmes moléculaires. Il faut donc recourir à des approximations afin de s'approcher de la solution exacte de cette équation.

L'approximation de Born-Oppenheimer [2] a été avancée en 1927 par Max Born et Robert Oppenheimer. Elle consiste à séparer les mouvements des noyaux et ceux des électrons. Elle se base sur le fait que la masse du noyau est beaucoup plus grande que celle d'un électron ($m_p/m_e \approx 1836$), alors que les forces agissant sur ces particules sont du même ordre. Les électrons vont donc s'adapter instantanément à tout changement de positions des noyaux. Les mouvements de chaque particule pourront ainsi être étudiés séparément. L'hamiltonien total du système peut alors être décomposé comme la somme d'un hamiltonien électronique H_e et un opérateur énergie cinétique pour le noyau T_N :

$$H = H_e + T_N \tag{1.3}$$

avec:

$$H_e = T_e + V_{ee} + V_{Ne} + V_{NN}$$
 (1.4)

Le terme V_{NN} ne dépend que de la position des noyaux et joue donc le rôle de constante dans cette équation.

La fonction d'onde totale $\Psi(\mathbf{R},\mathbf{r})$ peut se décomposer sous la forme d'une combinaison linéaire de produits de fonctions d'onde électroniques et nucléaires orthonormées :

$$\Psi(\mathbf{R}, \mathbf{r}) = \sum_{j=1}^{N} \Psi_{ej}(\mathbf{R}, \mathbf{r}) \Psi_{Nj}(\mathbf{R})$$
(1.5)

avec j l'indice désignant l'état électronique $\Psi_{ej}(\mathbf{R},\mathbf{r})$. A cause de la dépendance du terme V_{Ne} en \mathbf{R} , l'hamiltonien électronique H_e dépend paramétriquement des coordonnées nucléaires. Par conséquent, les fonctions d'onde Ψ_{ej} permettant de décrire les électrons dépendent également paramétriquement des coordonnées nucléaires et sont solutions de l'équation (1.1):

$$H_e(\mathbf{R})\Psi_{ej}(\mathbf{R},\mathbf{r}) = E_{ej}(\mathbf{R})\Psi_{ej}(\mathbf{R},\mathbf{r})$$
(1.6)

Les valeurs propres E de l'équation de Schrödinger électronique sont déterminées en combinant les équations (1.3), (1.5) et (1.6) :

$$H\Psi(\mathbf{R}, \mathbf{r}) = (T_N + H_e(\mathbf{R}))\Psi(\mathbf{R}, \mathbf{r})$$
(1.7)

En développant, on obtient :

$$H\Psi(\mathbf{R}, \mathbf{r}) = \sum_{j=1}^{N} \Psi_{ej}(\mathbf{R}, \mathbf{r}) \left(-\sum_{k \neq j}^{N} \frac{1}{2M_k} \nabla_k^2 + E_{ej}(\mathbf{R}) \right) \Psi_{Nj}(\mathbf{R})$$

$$+ \sum_{j=1}^{N} \Psi_{Nj}(\mathbf{R}) \sum_{k \neq j}^{N} -\frac{1}{2M_k} \nabla_k^2 \Psi_{ej}(\mathbf{R}, \mathbf{r})$$

$$- \sum_{j=1}^{N} \sum_{k \neq j}^{N} \frac{1}{M_k} \left(\nabla_k \Psi_{Nj}(\mathbf{R}) \right) \left(\nabla_k \Psi_{ej}(\mathbf{R}, \mathbf{r}) \right)$$

$$(1.8)$$

En intégrant sur les coordonnées électroniques, on obtient un système d'équations couplées :

$$E\Psi_{Nj}(\mathbf{R}) = \left(-\sum_{k} \frac{1}{2M_{k}} \nabla_{k}^{2} + E_{ej}(\mathbf{R})\right) \Psi_{Nj}(\mathbf{R})$$

$$-\sum_{k} \frac{1}{2M_{k}} \sum_{l} <\Psi_{ej}(\mathbf{R}, \mathbf{r}) |\nabla_{k}^{2}| \Psi_{el}(\mathbf{R}, \mathbf{r}) > \Psi_{Nj}(\mathbf{R})$$

$$-\sum_{k} \frac{1}{M_{k}} \sum_{l} <\Psi_{ej}(\mathbf{R}, \mathbf{r}) |\nabla_{k}| \Psi_{el}(\mathbf{R}, \mathbf{r}) > \nabla_{k} \Psi_{Nj}(\mathbf{R})$$

$$(1.9)$$

Ce type d'équations ne peut être résolu directement de manière analytique. On doit donc introduire une autre approximation afin de résoudre numériquement le problème. L'approximation la plus utilisée consiste à découpler les mouvements des électrons de ceux des noyaux. Ces derniers se déplaçant lentement par rapport aux électrons, nous allons les considérer comme fixes pour mieux se concentrer sur les mouvements des électrons. Cette méthode est appelée approximation de Born-Oppenheimer.

Dans l'approximation de Born-Oppenheimer, on suppose donc que les dérivées premières et secondes par rapport aux coordonnées nucléaires peuvent être négligées. La fonction d'onde électronique est normalisée, l'intégrale $<\Psi_{ej}(R,r)|\nabla_k|\Psi_{el}(R,r)>$ est nulle et le terme de couplage $<\Psi_{ej}(R,r)|\nabla_k^2|\Psi_{el}(R,r)>$ étant généralement très faible (approximation adiabatique), il peut être négligé. L'équation (1.9) s'écrit alors :

$$[T_{N}(R) + E_{ij}(R)]\Psi_{Nj}(R) = E\Psi_{Nj}(R)$$
(1.10)

L'étude d'un système moléculaire se déroulera donc en deux étapes :

La première étape consiste à calculer les solutions $E_{ej}(\mathbf{R})$ de l'équation de Schrödinger électronique afin d'obtenir une surface d'énergie potentielle. Ensuite, le problème nucléaire est traité en injectant le potentiel électronique précédemment calculé dans l'équation de Schrödinger.

II) Programmes de calcul utilisés

a) Molpro

MOLPRO est un ensemble de programmes ab initio effectuant des calculs de structures électroniques moléculaires, conçus et mis en ligne par H.-J. Werner et P. J. Knowles [4]. L'accent est mis sur des calculs de grande précision : que ce soit pour des systèmes multi configurationels, ou pour le traitement de la corrélation électronique à l'aide de méthodes telles que les clusters couplés (ou CCSD). Récemment développées, les méthodes explicitement corrélées (CCSD – F12) rapportent des résultats de meilleure précision avec des ensembles de base de petite taille, réduisant ainsi l'effort informatique pour les calculs de cette qualité par deux ordres de grandeur.

Grâce à l'utilisation de méthodes de corrélation électroniques locales, qui réduisent significativement l'augmentation du coût informatique avec la taille moléculaire, des calculs ab initio peuvent être exécutés pour des molécules beaucoup plus grandes qu'avec la plupart des autres programmes. Ces méthodes ont récemment été augmentées par des termes explicitement corrélés, qui réduisent fortement d'une part les erreurs de troncature d'ensemble de base, et d'autre part, les erreurs des approximations locales.

b) Gaussian

GAUSSIAN [5] est un logiciel de chimie quantique, créé à l'origine par John Pople et sorti en 1970 (Gaussian 70). Il a été depuis plusieurs fois mis à jour. Le nom provient de l'utilisation par Pople d'orbitales gaussiennes pour accélérer le calcul par rapport aux logiciels utilisant des orbitales de Slater. Ceci a facilité le développement de la chimie quantique.

Gaussian 09 est la dernière version de la série. Il fournit des capacités de pointe pour la modélisation de structure électronique.

Ce programme peut effectuer des calculs selon plusieurs méthodes, comme Hartree-Fock, les méthodes post-Hartree-Fock (Møller-Plesset, coupled-clusters...), ou les fonctionnelles de la DFT (les fonctionnelles d'échange comme PBE, celles de corrélation comme LYP ou les fonctionnelles hybrides comme B3LYP).

Gaussian est devenu rapidement un programme de structure électronique très populaire et largement utilisé.

c) CP2K

CP2K [6] est un programme permettant d'exécuter des simulations atomistiques et moléculaires de systèmes solides, liquides, gazeux, biologiques et les interfaces. Il fournit un cadre général pour des méthodes différentes comme par exemple, la théorie de la fonctionnelle de densité (DFT) utilisant des gaussiennes mixtes et une approche en ondes planes (GPW) ou une partie classique avec des potentiels des pseudo-potentiels.

CP2K est librement disponible conformément à la licence GPL. Il est écrit en Fortran 95 et peut être exécuté efficacement en parallèle. Ce programme fournit des méthodes de pointe pour des simulations ab initio. Les sources sont librement disponibles et régulièrement mises à jour (http://sourceforge.net/p/cp2k/code/13023/tree/trunk/cp2k/src/). Il est donc facile de faire des modifications jugées nécessaire.

Aucune sortie officielle n'a encore été faite. Des changements substantiels, des améliorations et des corrections d'erreur sont donc faits à intervalle de temps irrégulier. Ce programme est basé sur un autre projet de développement pour le calcul ab initio nommé Quickstep.

Quickstep:

Quickstep est un code informatique librement disponible pour exécuter des calculs DFT précis et efficaces sur des systèmes grands, complexes comme par exemple des liquides, des cristaux, des protéines ou des interfaces.

Les calculs de propriétés statiques (comme des spectres calculés avec la méthode de la fonctionnelle de la densité dépendante du temps ou les propriétés dérivées de l'énergie totale) et des propriétés dynamiques (par exemple la diffusion, basée sur la dynamique moléculaire) sont possibles.

Quickstep est basé sur une approche mélangeant gaussiennes et ondes planes (GPW) ainsi que son extension augmentée (GAPW). Le premier est utilisé pour représenter les fonctions d'onde (par exemple la matrice Kohn-Sham), tandis que la version étendue est utilisée pour représenter la densité électronique. Les avantages sont :

- Pour une représentation compacte de la fonction d'onde, peu de fonctions de base par atome sont nécessaires en comparaison des représentations en ondes planes.
- Les représentations de la matrice Kohn-Sham et de la matrice de la densité deviennent clairsemées lorsque la taille du système croit, ce qui permet de réduire l'optimisation de la matrice de la densité par des calculs plus linéaires.
- Les calculs linéaires de l'énergie Kohn-Sham et de la matrice sont aisément réalisés en utilisant la Transformée de Fourier.

La méthode « orbital transformation » (OT) est un arrangement de minimisation directe qui tient compte de l'optimisation de fonction d'onde efficace. Elle est significativement plus rapide que la diagonalisation par les méthodes classiques, particulièrement pour de grands systèmes avec de grands ensembles de base. Bien que le temps de calcul augmente significativement avec la taille de système, on peut étudier un système moléculaire comportant approximativement 1000 atomes assez facilement.

Des simulations de dynamique moléculaires ab initio basées sur l'approche Born-Oppenheimer peuvent être exécutées et sont plus efficaces en utilisant un schéma d'extrapolation de la matrice de la densité.

III) Les bases atomiques :

Dans un système, l'orbitale moléculaire (permettant de décrire un électron) est représentée par une combinaison linéaire d'orbitales atomiques (approximation LCAO pour Linear Combination of Atomic Orbital). Le choix d'une base d'orbitales atomiques est très important pour les calculs électroniques.

Il doit prendre en compte à la fois la nature et l'étendue des fonctions analytiques utilisées pour représenter les orbitales atomiques. Il y a deux types de fonctions permettant d'exprimer les orbitales atomiques : les fonctions de base de Salter, STO (pour Slater Type Orbital) et les fonctions gaussiennes, GTO (pour Gaussian Type Orbital).

Une fonction de Slater est représentée par l'expression générale suivante :

$$\phi_{n,l,m,\zeta}(\mathbf{r},\theta,\varphi) = NY_l^m(\theta,\varphi)\mathbf{r}^{n-1}e^{-\zeta\mathbf{r}}$$
(1.11)

Avec n, 1 et m des nombres quantiques associés à l'orbitale atomique, N est un facteur de normalisation, Y est une harmonique sphérique et ζ est une constante liée à la charge effective du noyau.

Les fonctions de Slater ont un bon comportement que ce soit à très courte ou à longue distance. Mais elles sont très peu utilisées en raison de la complexité du calcul des intégrales multicentriques. La meilleure alternative est de représenter les orbitales atomiques par des fonctions gaussiennes. La forme générale de ce type de fonction est :

$$\phi_{n,l,m,\zeta}(\mathbf{r},\theta,\varphi) = NY_l^m(\theta,\varphi)\mathbf{r}^{2n-2-1}e^{-\zeta\mathbf{r}^2}$$
(1.12)

Le principal avantage des fonctions gaussiennes est que le produit de deux gaussiennes centrées sur deux atomes différents va donner une autre gaussienne, ce qui facilite les opérations et réduit le temps de calcul. Mais les fonctions gaussiennes n'ont pas un bon comportement très près du noyau (leur dérivées sont nulles au point $\mathbf{r}=0$) ni à longue distance (le terme $e^{-\zeta r^2}$ va les faire décroître trop vite).

C'est pourquoi, pour décrire correctement les liaisons entre les atomes, il faut utiliser plusieurs fonctions gaussiennes ensemble. Afin de pallier au nombre élevé de fonctions (qui est de plus en plus important avec l'augmentation de la taille du système), il faut compenser par des procédures de contraction. La contraction permet de réduire le nombre de fonctions en regroupant les gaussiennes (appelées fonctions primitives) en combinaisons linéaires avec des coefficients constants en une fonction de base contractée qui aura cette forme :

$$\phi_c = \sum_{a=1}^M C_a \phi_P \tag{1.13}$$

Avec φ_c fonction contractée, φ_p fonction primitive, C_a sont les coefficients de contraction et M le nombre de gaussiennes.

La contraction est particulièrement utile pour les orbitales décrivant les électrons de cœur car elles dépendent peu du milieu extérieur, donc une seule contraction suffit pour les représenter.

Par contre, le nombre de fonctions décrivant les orbitales de valence est supérieur au nombre d'orbitales atomiques, afin de rendre la base atomique plus flexible. Ainsi, chaque orbitale atomique est représentée par deux fonctions de base (« valence double zeta ») ou plus (« valence triple zeta »...).

Les bases polarisées (correlation consistant polarized basis set) sont largement employées. Optimisées par Dunning [3], ces bases sont notées cc-pVDZ (pour correlation consistent polarized Valence Double Zeta), cc-pVTZ, etc. Ces bases incluent successivement des couches de fonctions de polarisation de plus en plus grandes (d, f, g...) qui peuvent permettre la convergence de l'énergie électronique vers la limite de base complète. Elles sont très flexibles, ce qui permet de prendre en compte les déformations des orbitales atomiques de valence lors de la formation de la liaison chimique. Ces bases peuvent être augmentées par des fonctions diffuses servant à décrire les interactions à plus longue portée, il faut alors ajouter le préfixe aug- au nom de la base. Ces fonctions diffuses sont nécessaires dans notre étude.

Dans le programme CP2K [6], les bases utilisées sont une combinaison de fonctions gaussiennes (GTO) et de fonctions d'onde planes. Ces bases d'ondes planes sont utilisées pour pouvoir décrire des systèmes périodiques. Dans ce type de calcul, les intégrales sont plus faciles à résoudre avec les fonctions de base d'ondes planes plutôt qu'avec les bases localisées.

Pour réduire les temps de calcul, et pour traiter plus facilement les systèmes contenant des atomes lourds (métaux de transition...), ces fonctions de base sont liées à des pseudopotentiels de cœur, ce qui permet aux ondes planes de ne décrire que la densité de charge de valence.

En effet, la description des électrons de cœur est difficile pour une base d'onde plane à cause des gradients de densité abrupts près du noyau. Les fonctions de base d'ondes planes ont toutes leurs fonctions orthogonales, ce qui réduit les erreurs de superposition de base. Ces bases sont plus adaptées aux calculs en phase condensée, mais beaucoup moins pour les calculs en phase gazeuse à cause des espaces vides.

Les pseudo-potentiels décrivent les électrons de cœur qui sont concentrés très près du noyau atomique. Ils se présentent sous deux formes : une partie locale et une partie non-locale.

La partie locale est donnée par :

$$V_{loc}(\mathbf{R}) = \frac{-Z_{ion}}{\mathbf{R}} erf\left(\frac{\mathbf{R}}{\sqrt{2}\mathbf{R}_{loc}}\right) + exp\left[-\frac{1}{2}\left(\frac{\mathbf{R}}{\mathbf{R}_{loc}}\right)^{2}\right] \times \left[C_{1} + C_{2}\left(\frac{r}{r_{loc}}\right)^{2} + C_{3}\left(\frac{r}{r_{loc}}\right)^{4} + C_{4}\left(\frac{r}{r_{loc}}\right)^{6}\right]$$

$$(1.14)$$

avec erf définit la fonction d'erreur et Z correspond à la charge ionique atomique.

La partie non-locale est représentée par l'équation :

$$V_{l}(\mathbf{R}.\mathbf{r}) = \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{m=-l}^{+l} Y_{l,m}(\widehat{\mathbf{R}}) p_{i}^{l}(\mathbf{R}) h_{i,j}^{l} p_{j}^{l}(\mathbf{r}) Y_{l,m}^{*}(\widehat{\mathbf{r}})$$
(1.15)

Y représentent les harmoniques sphériques, l le moment angulaire. Les projections p sont des gaussiennes.

Les paramètres des pseudo-potentiels ont été déterminés pour tous les atomes de l'hydrogène au radon. Cette association entre base et pseudo-potentiel fonctionne de manière optimale avec une fonctionnelle GGA telle que la fonctionnelle PBE et sont implémentés dans le programme CP2K [6].

Les différents programmes de calcul (MOLPRO [4] et GAUSSIAN [5]) possèdent une bibliothèque de base qui a été optimisée pour décrire correctement un certain nombre de propriétés des atomes et molécules de référence. Cependant, le programme CP2K [6] utilise quand à lui des bases liées à des pseudo-potentiels [7] afin de traiter plus facilement les systèmes contenant des atomes lourds (métaux de transition...).

IV) La méthode Hartree-Fock :

La méthode Hartree-Fock [8,9] propose de résoudre l'équation de Schrödinger électronique en décrivant la fonction d'onde électronique sous la forme d'un seul déterminant de Slater [10] composé de spin-orbitales mono-électriques de type α ou β.

Pour un système à n électrons, ce déterminant est donné par :

$$\Psi_e = \frac{1}{\sqrt{n!}} \begin{bmatrix} \phi_1(1) & \cdots & \phi_n(1) \\ \vdots & \ddots & \vdots \\ \phi_1(n) & \cdots & \phi_n(n) \end{bmatrix}$$
(1.16)

La fonction d'onde décrite sous cette forme assure l'antisymétrie, conséquence directe du principe d'exclusion de Pauli.

L'énergie électronique E_e va s'écrire sous la forme :

$$E_e = \frac{\langle \Psi_e | H_e | \Psi_e \rangle}{\langle \Psi_e | \Psi_e \rangle}$$
(1.17)

L'hamiltonien électronique He est donné par :

$$H_e = \sum_{i=1}^{n} h(i) + \sum_{i=1}^{n} \sum_{j>i}^{n} \frac{1}{r_{ij}}$$
(1.18)

avec h(i) un opérateur mono-électronique défini par :

$$h(i) = \frac{1}{2} \nabla_i^2 - \sum_{k=1}^N \frac{Z_k}{d_{ik}}$$
(1.19)

Il faut maintenant introduire J_{ij} et K_{ij} les intégrales coulombiennes et d'échanges biélectronique, respectivement déterminées par l'action des opérateurs de Coulomb J_j et d'échange K_j sur une orbitale moléculaire :

$$J_{i}|\phi_{i}(2)\rangle = \langle \phi_{j}(1)|\frac{1}{r_{12}}|\phi_{j}(1)\rangle |\phi_{i}(2)\rangle$$

$$K_{j}|\phi_{i}(2)\rangle = \langle \phi_{j}(1)|\frac{1}{r_{12}}|\phi_{i}(1)\rangle |\phi_{i}(2)\rangle$$
(1.20)
$$(1.21)$$

Les intégrales de Coulomb et d'échange s'écrivent alors :

$$J_{ij} = \langle \phi_i(1)\phi_j(2) \left| \frac{1}{r_{12}} \right| \phi_i(1)\phi_j(2) \rangle$$

$$K_{ij} = \langle \phi_i(1)\phi_j(2) \left| \frac{1}{r_{12}} \right| \phi_i(2)\phi_j(1) \rangle$$
(1.22)

Les intégrales coulombiennes J_{ij} représentent la répulsion entre deux électrons de deux orbitales différentes et les intégrales d'échanges sont présentes pour rendre la fonction d'onde anti-symétrique.

L'énergie Hartree-Fock totale du système va donc s'écrire :

$$E_e = \sum_{i=1}^n h(i) + \sum_{i=1}^n \sum_{j>i}^n (J_{ij} - K_{ij})$$
(1.24)

L'énergie calculée est toujours supérieure à l'énergie exacte selon le principe variationnel. Ce qui signifie que le signe de l'erreur est toujours connu, donc pour obtenir l'énergie Hartree-Fock il faut minimiser l'énergie calculée en modifiant les spin-orbitales et en leur imposant une contrainte d'orthonormalisation :

$$\delta E_e - \sum_{i,j}^n \varepsilon_{ij} \delta < \phi_i | \phi_j > 0$$
(1.25)

avec ε_{ij} qui sont des multiplicateurs de Lagrange.

On peut introduire l'opérateur de Fock :

$$F(i) = h(i) + \sum_{j}^{n} (J_{j} - K_{j})$$
(1.26)

Ce qui permet d'exprimer δE_e en fonction de l'opérateur de Fock :

$$\delta E_e = \sum_{i}^{n} (\langle \delta \phi_i | F(i) | \phi_i \rangle + \langle \phi_i | F(i) | \delta \phi_i \rangle)$$
(1.27)

Les coefficients de Lagrange étant hermétiques, on peut modifier l'équation (1.25) :

$$\sum_{i}^{n} \langle \delta \phi_{i} | F(i) | \phi_{i} \rangle - \sum_{i,j}^{n} \varepsilon_{ij} \delta \langle \phi_{i} | \phi_{j} \rangle = 0$$
(1.28)

permettant d'obtenir les équations de Hartree-Fock suivantes :

$$F(i)\phi_i = \sum_{j}^{n} \varepsilon_{ij}\phi_j \tag{1.29}$$

Ces équations peuvent aussi s'exprimer dans le jeu des orbitales d'espace doublement occupées Φ_i appelées « orbitales canoniques » associées aux valeurs propres ϵ_i telles que :

$$F(i)\phi_i = \varepsilon_{ij}\phi_i \tag{1.30}$$

où l'oppérateur de Fock est exprimé à partir des solutions Φ à travers les opérateurs de Coulomb et d'échange :

$$F = h + \sum_{j}^{occ} (2J_{j} - K_{j})$$
(1.31)

Les équations Hartree-Fock forment un système d'équations couplées qui doivent être résolues simultanément. Pour ce faire, la méthode la plus utilisée est la méthode du champ auto-cohérent ou SCF (pour Self Consistent Field) [11]. C'est une méthode itérative dont la résolution suit ce processus :

$$\begin{split} F^{(0)}\Phi^{(1)} &= \epsilon^{(1)}\Phi^{(1)} \\ F^{(1)}\Phi^{(2)} &= \epsilon^{(2)}\Phi^{(2)} \\ &\cdots \\ F^{(n-1)}\Phi^{(n)} &= \epsilon^{(n)}\Phi^{(n)} \end{split} \tag{1.32}$$

Pour la première itération, l'opérateur de Fock $F^{(0)}$ est construit à partir d'un jeu d'orbitales d'essai. La résolution de l'équation Hartree-Fock fournit un nouveau jeu d'orbitales $\Phi^{(1)}$ qui sera ensuite utilisé pour construire un nouvel opérateur de Fock et ainsi de suite. Le calcul est arrêté lorsqu'une convergence satisfaisante sur l'énergie et la fonction d'onde est obtenue.

La convergence est estimée entre chaque itération par les relations $\Phi^{(n)} = \Phi^{(n+1)} + \delta(\Phi)$ et $\epsilon^{(n)} = \epsilon^{(n+1)} + \delta(\epsilon)$.

L'énergie Hartree-Fock est toujours supérieure à la valeur exacte de l'énergie électronique car la corrélation instantanée des mouvements des électrons est négligée. La différence entre l'énergie Hartree-Fock et l'énergie exacte est appelée énergie de corrélation électronique. Même si cette énergie ne représente que 1% de l'énergie exacte du système, il est important de la prendre en compte pour l'étude d'une réaction chimique.

En effet, la variation de l'énergie de corrélation peut être du même ordre de grandeur que l'énergie de la réaction ou de l'énergie de liaison du système. Afin d'améliorer ces résultats, des méthodes appelées « post-Hartree-Fock » ont été développées. Ces méthodes incluent dans l'étude du système le calcul de la corrélation électronique.

V) Les méthodes post-Hartree-Fock :

Dans ce travail, nous avons utilisé deux groupes de méthodes post-Hartree-Fock : les méthodes monoconfigurationnelles (MP2, CCSD...) et les méthodes multiconfigurationnelles (MCSCF, MRCI...).

a) Les méthodes d'interaction de configuration :

Les méthodes d'interaction de configuration sont des méthodes post-Hartree-Fock qui incluent la corrélation électronique. Il y a deux types de corrélation électronique : la corrélation statique qui provient de la possibilité pour une orbitale moléculaire d'être occupée avec un nombre fractionnaire et la corrélation dynamique qui est due à la considération des mouvements relatifs et instantanés des électrons.

Pour considérer ces deux types de corrélation, il faut utiliser plusieurs déterminants de Slater pour décrire le système. En effet, la fonction d'onde Ψ_{CI} est constituée d'une combinaison linéaire du déterminant optimisé par la méthode Hartree-Fock Φ_{HF} et des déterminants de Slater définis par rapport à lui. Ces déterminants sont construits en provoquant l'excitation d'un électron situé sur une orbitale moléculaire occupée vers une orbitale moléculaire virtuelle vide.

La fonction d'onde ainsi construite prendra la forme :

$$\Psi_{CI} = C_0 \Phi_{HF} + \sum_{S} C_S \Phi_S + \sum_{D} C_D \Phi_D + \sum_{T} C_T \Phi_T + \dots = \sum_{i=0} C_i \Phi_i$$
(1.33)

où C_0 est le coefficient du déterminant Hartree-Fock, les C_i représentent les coefficients des déterminants excités ou des configurations électroniques excitées et les Φ_i sont les déterminants obtenus par excitation simple, double, triple, etc., à partir du déterminant Hartree-Fock Φ_{HF} .

L'introduction des multiplicateurs de Lagrange, avec la condition de normalisation de la fonction Ψ_{CI} , va permettre de minimiser l'énergie en optimisant la fonction d'onde. Le système d'équation à résoudre devient :

$$C_i \lambda + \sum_j a_j < \Phi_i | H_e | \Phi_j > = 0$$
(1.34)

avec À qui est un multiplicateur de Lagrange. Ce système d'équations séculaire à résoudre peut s'écrire sous forme matricielle :

$$(H - \lambda I_d)c = 0 (1.35)$$

Sous cette forme, le système peut être diagonalisé pour un spin donné et donne des énergies propres parmi lesquelles la plus basse correspondra à l'énergie de l'état fondamental, la valeur suivante correspondra à l'énergie du premier état excité, etc.

Pour résoudre ce système, il suffit d'appliquer la même stratégie que pour résoudre la méthode Hartree-Fock. Cependant, le nombre de déterminant étant plus élevé, le nombre d'opérations nécessaires est important. Pour simplifier les calculs, certains éléments de la matrice peuvent s'annuler :

- Si le système présente des symétries spatiales, alors le groupe de symétrie auquel il appartient permet de réduire le nombre d'éléments de la matrice non-nuls. Etant donné que l'hamiltonien est complètement symétrique, les produits d'orbitales moléculaires qui proviennent de représentations irréductibles différentes sont nuls.
- Il est possible de construire des combinaisons linéaires de déterminants appelées fonctions d'état de configuration (ou CSFs pour Configuration State Functions). Ces combinaisons permettent d'obtenir une fonction propre de l'opérateur de spin S² (même si les déterminants ne sont pas tous fonctions propres de cet opérateur).
- Les orbitales moléculaires spatiales étant orthogonales, lorsqu'il y a plus de deux orbitales différentes entre deux déterminants, alors les éléments de matrice correspondant sont nuls.

• Enfin, l'hamiltonien électronique ne dépend pas du spin, donc les éléments de matrice calculés à partir du produit de spin-orbitales provenant de déterminants excités de spin total différents peuvent être annulés. Ce qui implique que seules les contributions de déterminants de spin total similaire à l'état qui est optimisé seront prises en compte.

Un calcul prenant en compte tous les déterminants possibles donnerait la totalité de l'énergie de corrélation pour une base donnée. Ce calcul, appelé « Full Configuration Interaction » (ou full CI), pourrait, avec une base infinie, résoudre de la manière la plus exacte possible l'équation de Schrödinger électronique dans l'approximation de Born-Oppenheimer.

Malheureusement, le nombre de déterminants pour ce calcul serait trop élevé, il est donc généralement impossible à réaliser. C'est pourquoi il faut utiliser une méthode d'interaction de configuration tronquée. Deux exemples de ce type de méthodes vont être présentés : la méthode MCSCF et la méthode MRCI.

1) La méthode Multi-Configurational Self-Consistent Field (MCSCF):

La méthode Multi-Configurational Self-Consistent Field (MCSCF) [12] est une méthode d'interaction de configuration dans laquelle les coefficients de la combinaison linéaire des déterminants et les orbitales moléculaires sont optimisés variationnellement. Cette méthode autorise la relaxation des orbitales moléculaires, ce qui améliore la description obtenue par la méthode Hartree-Fock. Il faut choisir correctement les configurations à inclure pour la relaxation. Pour cela, nous utilisons la méthode CASSCF (pour Complete Active Space Self-Consistent Field) [13] dans laquelle il faut définir un espace actif. L'espace actif regroupe généralement les orbitales moléculaires dans lesquelles des excitations électroniques peuvent avoir lieu : les orbitales occupées les plus hautes en énergie ainsi que les orbitales les plus basses inoccupées. Ces orbitales de l'espace actif peuvent recevoir 0, 1 ou 2 électrons.

A l'opposé, l'espace inactif est constitué d'une part des orbitales de cœur (qui restent doublement occupées) et d'autre part les orbitales virtuelles qui resteront vides. Ces orbitales de l'espace inactif resteront « gelées » (elles ne seront pas incluses dans le processus d'optimisation) ou « fermées » (elles seront quand même optimisées).

Les orbitales moléculaires constituant l'espace actif proviennent généralement des combinaisons linéaires des orbitales atomiques de valence des atomes du système considéré. Cette méthode permet de représenter la fonction d'onde avec un nombre limité de configurations CSFs.

La fonction d'onde se présente sous la forme :

$$\Psi_{MCSCF} = \sum_{I} C_{I} \Phi_{I} \tag{1.36}$$

où les coefficients \mathcal{C}_I correspondent aux vecteurs propres de la matrice avec $C_I = \langle \Psi_I | H | \Psi_J \rangle$. Les configurations Ψ_I sont elles aussi combinaisons linéaires des déterminants de Slater construites à partir d'un ensemble d'orbitales moléculaires ϕ_k qui sont approchées par des combinaisons linéaires des fonctions de base χ_I :

$$\phi_k = \sum_J C_{kJ} \chi_J \tag{1.37}$$

Les orbitales moléculaires utilisées pour construire les déterminants de Slater excités proviennent d'un calcul Hartree-Fock et sont également optimisées.

La méthode MCSCF permet de calculer plusieurs états électroniques de même symétrie ou de symétries différentes [14]. Pour cela, il faut minimiser l'énergie développée sur l'ensemble de ces états pondérés :

$$E = \sum_{n} W_n E_n$$

$$= \sum_{n} W_n \sum_{IJ} C_I^n C_J^n < \Psi_I |H| \Psi_J >$$
(1.38)

où les W_n correspondent aux facteurs de pondération relatifs aux états n et E_n représente l'énergie de l'état n.

L'application de cette méthode peut être assez longue si le nombre de déterminants est trop grand. Le choix des déterminants à prendre en compte est essentiel et repose sur une bonne connaissance de la structure électronique du système.

La méthode CASSCF permet une bonne description des liaisons chimiques, mais elle ne tient compte que d'environ 40% de l'énergie de corrélation électronique. Elle fournit néanmoins une forme correcte de la fonction d'onde et des orbitales moléculaires.

Pour accroître la précision, il faut utiliser la méthode MRCI qui tient en compte la quasitotalité de la corrélation électronique.

2) Internally Contracted Multi-Reference Configuration Interaction (MRCI):

La méthode MRCI [15] est une méthode d'interaction de configurations où la fonction de référence est elle-même multiconfigurationnelle. Ici, les énergies sont optimisées, mais pas les orbitales moléculaires. C'est pourquoi la fonction de référence est généralement issue d'un calcul MCSCF à partir de laquelle on va inclure toutes les configurations générées par les excitations simples et doubles. Cette méthode permet de décrire correctement la dissociation des liaisons moléculaires.

L'ensemble des orbitales permettant de construire les configurations de référence est appelé espace interne, et l'ensemble des orbitales occupées par les différentes excitations est nommé espace externe.

La fonction d'onde MRCI Ψ_{MRCI} est décrite par :

$$\Psi_{MRCI} = \sum_{I} C_{I} \Psi_{I} + \sum_{S} \sum_{a} C_{S}^{a} \Psi_{S}^{a} + \sum_{D} \sum_{ab} C_{D}^{ab} \Psi_{D}^{ab} + \cdots$$
(1.39)

où a et b constituent les orbitales de l'espace externe, S et D sont les excitations simples et doubles des configurations de référence, Ψ_I correspond aux configurations internes (incluant la fonction d'onde de référence et les configurations obtenues par excitation d'un ou deux électrons à partir des couches fermées dans les couches internes). Ψ_S^a et Ψ_D^{ab} sont associés respectivement aux configurations issues d'excitations simples et doubles des orbitales internes vers les orbitales externes.

Dans l'espace de référence, il y a trois types d'orbitales : les orbitales de cœur doublement occupées et non corrélées, les orbitales de valence qui sont occupées par 0, 1 ou 2 électrons et corrélées au niveau CI et les orbitales externes qui sont non occupées dans la fonction d'onde de référence.

Cette méthode de calcul engendre un très grand nombre de configurations à traiter et demande beaucoup de temps de calcul. Pour y remédier, une technique a été implémentée dans le code MOLPRO par Werner et Knowles [16], nommée « internally contracted ». Il s'agit de faire des combinaisons linéaires de configurations qui ont la même partie externe, mais des parties internes différentes. La contraction des configurations est obtenue par des combinaisons linéaires entre elles avec des coefficients fixes qui ne seront pas optimisés. Les configurations contractées avec des excitations doubles dans l'espace externe sont définies par :

$$\Psi_{ijp}^{ab} = \frac{1}{2} (E_{ai,bj} + pE_{aj,bi}) \phi_0$$
(1.40)

où p correspond au facteur de spin (il prend la valeur +1 pour un couplage singulet entre les orbitales externes a et b et la valeur -1 pour un couplage triplet). $E_{ai,bj}$ sont des opérateurs biélectroniques et ϕ_0 est la fonction d'onde de référence MCSCF:

$$\phi_0 = \sum_R C_R \phi_R \tag{1.41}$$

En remplaçant ϕ_0 par son expression, l'équation (1.40) devient :

$$\Psi_{ijp}^{ab} = \sum_{R} C_{R} (E_{ai,bj} + pE_{aj,bi}) \phi_{R} = \sum_{R} C_{R} \phi_{ijp,R}^{ab}$$
(1.42)

Après contraction, la fonction d'onde MRCI s'écrit donc :

$$\Psi_{MRCI} = \sum_{I} c_{I} \Psi_{I} + \sum_{S} \sum_{a} c_{S}^{a} \Psi_{S}^{a} + \sum_{i \ge j} \sum_{p} \sum_{ab} C_{ab}^{ijp} \Psi_{ijp}^{ab}$$
(1.43)

où les $\Psi^{\alpha b}_{ijp}$ sont les configurations contractées obtenues après orthonormalisation et C les coefficients obtenus par un calcul CI direct.

Ceci permet de réduire d'un facteur 30 les CSFs à considérer avec très peu d'effet sur la qualité des résultats.

Cependant, malgré ces contractions, le nombre de configurations à prendre en compte reste toujours trop élevé. Afin de réduire encore ce nombre, il ne faut considérer que les configurations dont les coefficients C dépassent un certain seuil de référence. Cette méthode CI tronquée n'est pas extensive en taille. L'énergie de corrélation est donc mal décrite lorsque le nombre de particules augmente.

On peut la corriger grâce à l'approximation de Davidson [17] où la contribution de l'énergie de corrélation des configurations quadri-excitées est estimée à partir des configurations doublement excitées. La correction de l'énergie se calcule de la manière suivante :

$$\Delta E_Q = \Delta E_{SD} (1 - \sum_R C_R^2) \tag{1.44}$$

où ΔE_{SD} représente la contribution à l'énergie de corrélation des excitations simples et doubles prisent en compte dans la fonction de référence MCSCF.

Grâce à cette correction, cette méthode est plus souvent privilégiée par rapport au calcul Full CI pour une même base.

b) Méthode perturbative : Møller-Plesset d'ordre 2 (MP2) :

La méthode de Møller-Plesset (MP) [18] est une méthode Post Hartree Fock. Elle tient compte des effets de corrélation électronique au moyen de la théorie de la perturbation de Rayleigh-Schrödinger [19, 20].

En partant de la fonction d'onde Hartree Fock qui est fonction propre de l'hamiltonien :

$$H_0 = \sum_{i} F_i \tag{1.45}$$

avec F_i sont les opérateurs de Fock. Cet hamiltonien H_0 diffère de l'hamiltonien électrique H_0 par l'équation :

$$H' = H_e - H_0 ag{1.46}$$

H' peut alors être utilisé afin de corriger les états propres de H_0 .

A l'ordre 0, l'énergie E_0 sera donc égale à :

$$E_0 = \langle \phi_0 | H_0 | \phi_0 \rangle = \sum_i \varepsilon_i \tag{1.47}$$

La solution MP d'ordre 0 est la somme des énergies orbitalaires. L'énergie au 1^{er} ordre sera donc égale à :

$$E_1 = \langle \phi_0 | H' | \phi_0 \rangle = -\sum_i \sum_{j>i} (J_{ij} - K_{ij})$$
(1.48)

Ce qui nous donne :

$$E_0 + E_1 = E_{HF} ag{1.49}$$

La somme des corrections d'ordre 0 et d'ordre 1 donne l'énergie Hartree Fock. Il faut donc commencer les calculs à partir de l'ordre 2 pour avoir une correction par rapport à la méthode Hartree Fock. Pour cette correction, et d'après le théorème de Brillouin, les seuls déterminants pouvant agir sur la fonction d'onde Hartree Fock sont les di-excitations. L'énergie d'ordre 2 sera calculée par :

$$E_{2} = \sum_{a}^{virt} \sum_{b>a}^{occ} \sum_{j>i}^{virt} \sum_{b>a}^{occ} \frac{\langle \phi_{0} | H' | \phi_{ab}^{ij} \rangle - \langle \phi_{ab}^{ij} | H' | \phi_{0} \rangle}{E_{0} - E_{ab}^{ij}}$$
(1.50)

avec i et j des spin-orbitales occupées, a et b des spin-orbitales virtuelles. Les éléments de matrice entre le déterminant Hartree Fock et un déterminant doublement excité sont des intégrales à deux électrons.

La différence d'énergie entre deux déterminants de Slater étant la différence d'énergie orbitalaire, la formule explicite de l'énergie MP2 sera :

$$E_{2} = \sum_{a}^{virt} \sum_{b>a}^{occ} \sum_{j>i}^{virt} \sum_{b>a}^{occ} \frac{\left[\langle \phi_{i}\phi_{j}|g|\phi_{a}\phi_{b} \rangle - \langle \phi_{ab}^{ij}|H'|\phi_{0} \rangle\right]^{2}}{\varepsilon_{i} + \varepsilon_{j} - \varepsilon_{a} - \varepsilon_{b}}$$

$$(1.51)$$

avec g un opérateur bi-électronique [11]. E_2 est donc l'énergie de corrélation à l'ordre 2.

L'énergie totale donnée sera donc la somme de l'énergie Hartree Fock et de l'énergie E_2 :

$$E_{MP2} = H_{HF} + E_2 (1.52)$$

Cette énergie de corrélation reste une énergie approchée. Cette méthode perturbative étant relativement peut coûteuse en temps de calcul, elle est souvent utilisée en complément d'un calcul Hartree Fock.

Cette méthode n'est pas limitée à l'ordre 2, mais les calculs d'ordre plus grand (MP3, MP4...) sont rarement utilisés en raison de leurs coûts computationnels.

c) La méthode des clusters couplés (coupled clusters) :

La méthode des clusters couplés est une méthode variationelle monoconfigurationnelle établie par Cižek. La fonction d'onde électronique totale Ψ_{CC} est exprimée à partir de la référence $\phi_{\mathbf{0}}$ obtenue en général à l'issue du calcul Hartree Fock de la façon suivante :

$$\Psi_{CC} = e^T \phi_0 \tag{1.53}$$

où T est l'opérateur cluster qui peut être écrit sous la forme : $T = T_1 + T_2 + T_3 + \cdots + T_n$ avec n le nombre d'électrons du système.

 e^T peut être développé sous la forme :

$$e^{T} = 1 + T + \frac{T^{2}}{2} + \dots = \sum_{k} \frac{1}{k!} T^{k}$$
 (1.54)

L'opérateur T_i permet de produire tous les déterminants de Slater excités i fois en agissant sur la fonction de référence Hartree Fock ϕ_0 :

$$T_1 \phi_0 = \sum_i \sum_a t_i^a \phi_i^a$$

$$T_2 \phi_0 = \sum_{i < j} \sum_{a < b} t_{ij}^{ab} \phi_{ij}^{ab}$$

$$(1.55)$$

 T_1 donne toutes les excitations simples et T_2 les excitations doubles. t_i^a et t_{ij}^{ab} sont les coefficients des développements associés respectivement aux déterminants de Slater ϕ_i^a et ϕ_{ij}^{ab} .

De la même manière, on peut aussi construire les opérateurs pour des excitations triples, quadruples etc.

L'équation de Schrödinger se met donc sous la forme :

$$H_e e^T \phi_0 = E_{CC} e^T \phi_0 \tag{1.56}$$

L'expression de l'énergie est ainsi donnée par :

$$E_{CC} = \frac{\langle \phi_0 | H_e e^T | \phi_0 \rangle}{\langle \phi_0 | e^T \phi_0 \rangle} = \frac{\langle \phi_0 | H_e e^T | \phi_0 \rangle}{\langle \phi_0 | (1 + T_1 + T_2 + T_3 + \dots) \phi_0 \rangle}$$
(1.57)

D'où:

$$E_{CC} = \langle \phi_0 | H_e e^T | \phi_0 \rangle$$
 (1.58)

En développant le terme e^T , et en ne tenant compte que des opérateurs mono et biélectroniques de H_e , il reste les termes suivants :

$$E_{CC} = \langle \phi_{0} | H_{e} | \left(1 + T_{1} + T_{2} + \frac{1}{2} T_{1}^{2} \right) \phi_{0} \rangle$$

$$= \langle \phi_{0} | H_{e} | \phi_{0} \rangle + \langle \phi_{0} | H_{e} | T_{1} \phi_{0} \rangle + \langle \phi_{0} | H_{e} | T_{2} \phi_{0} \rangle + \frac{1}{2} \langle \phi_{0} | H_{e} | T_{1}^{2} \phi_{0} \rangle$$

$$= E_{0} + \sum_{i} \sum_{a} t_{i}^{a} \langle \phi_{0} | H_{e} | \phi_{i}^{a} \rangle + \sum_{i < j} \sum_{a < b} \left(t_{ij}^{ab} + t_{i}^{a} t_{j}^{b} - t_{i}^{b} t_{j}^{a} \right) \langle \phi_{0} | H_{e} | \phi_{ij}^{ab} \rangle$$

$$(1.59)$$

D'après le théorème de Brillouin [22] les termes $\langle \phi_0 | H_e | \phi_i^a \rangle$ sont nuls. L'énergie E_{cc} s'obtient donc à l'aide des termes d'amplitude simple t_i^a et double t_{ij}^{ab} , ainsi que des intégrales biélectroniques.

Ces amplitudes peuvent être déterminées en projetant l'équation de Schrödinger sur les fonctions d'onde excitées simples et doubles :

$$E_{CC}t_{i}^{a} = \langle \phi_{i}^{a} | H_{e} | \left(1 + T_{1} + \left(T_{2} + \frac{1}{2}T_{1}^{2} \right) + \left(T_{3} + T_{1}T_{2} + \frac{1}{6}T_{1} \right) \right) \phi_{0} \rangle$$

$$E_{CC}\left(t_{ij}^{ab} + t_{i}^{a}t_{j}^{b} - t_{i}^{b}t_{j}^{a}\right) =$$

$$\langle \phi_{i}^{a} | H_{e} | \left(1 + T_{1} + \left(T_{2} + \frac{1}{2}T_{1}^{2} \right) + \left(T_{3} + T_{1}T_{2} + \frac{1}{6}T_{1} \right) + \left(T_{4} + T_{1}T_{3} + \frac{1}{2}T_{2} + \frac{1}{2}T_{1}^{2}T_{2} + \frac{1}{24}T_{1}^{4} \right) \right) \phi_{0} \rangle$$

$$(1.60)$$

Les équations clusters couplés sont résolues de manière itérative en utilisant $E_{CC} = E_0$ comme point de départ. On constate que la détermination exacte des amplitudes nécessite un développement infini de l'exponentielle e^T . Avec l'ensemble des opérateurs de clusters, on construit tous les déterminants excités possibles, ce qui rend la fonction d'onde résultante ϕ_{CC} équivalente à une fonction qui serait obtenue par une interaction de configuration totale. Il faudrait pouvoir stocker les amplitudes t qui sont beaucoup trop nombreuses pour pouvoir calculer ces fonctions d'onde à chaque itération. Au contraire, il est facile d'obtenir l'énergie électronique E_{CC} en incrémentant sa valeur à chaque itération.

Les limites de cette méthode sont rapidement atteintes quand la taille du système augmente. Pour y remédier, l'opérateur T est tronqué à un certain ordre. Ainsi, lorsque T est restreint à T_1 , cela conduit à l'approximation CCS; si $T = T_1 + T_2$, alors nous avons l'approximation CCSD, et ainsi de suite.

Les méthodes au-delà de CCSD sont trop coûteuses en temps de calcul, car il faut déterminer des termes d'excitation d'un ordre plus élevé afin de pouvoir résoudre les équations d'amplitude à l'ordre choisi. C'est pourquoi on se lance rarement dans des calculs en CCSDT. Il y a quand même une technique qui permet d'inclure la contribution T_{2} grâce à la théorie des perturbations. L'une des méthodes les plus courantes est la méthode CCSD(T) [11].

Les méthodes clusters couplés sont à la fois cohérentes en taille et donnent des résultats précis car elles prennent en compte une très grande part de la corrélation électronique.

Cependant, ces méthodes reposent sur l'utilisation à l'ordre 0 d'un seul déterminant comme fonction d'onde de référence (la fonction d'onde Hartree Fock). Il faut donc que le système soit monoconfigurationnel afin que cette fonction d'onde le décrive correctement. L'inclusion des corrections perturbatives pour les triples permet de corriger en partie les résultats CCSD.

d) La méthode des clusters couplés explicitement corrélée (R)CCSD(T)-F12 :

La convergence de l'énergie de corrélation des électrons est fortement ralentie par l'augmentation de la taille de la base utilisée. Cette convergence peut être accélérée en incluant des termes dépendants explicitement des distances inter-électroniques dans la fonction d'onde. Les premières études se sont concentrées sur la méthode MP2, mais ce principe a aussi été adapté pour la méthode (R)CCSD(T).

L'accélération de plusieurs ordres d'amplitude dans la convergence va donc être réalisée par l'utilisation d'une fonction d'onde explicitement corrélée, basée sur des méthodes ab initio. Ce qui permet d'obtenir des résultats tout aussi précis pour les quantités extrapolées (voire plus précis), avec un coût total de calcul bien plus faible.

La méthode qui nous intéresse ici est la méthode CCSD(T)-F12 basée sur les travaux de Kutzelnigg et Klopper [23]. Elle est implémentée dans le code de calcul MOLPRO [4, 24]. L'équation générale pour les fonctions d'onde du calcul CCSD-F12 avec excitations simples et doubles est donnée par :

$$\Psi_{CCSD} = e^{\hat{T}_1 + \hat{T}_2} \Psi_{HF} \tag{1.61}$$

pour laquelle les opérateurs d'excitation employés sont :

$$\hat{T}_1 = \sum_i \sum_a t_a^i \hat{E}_{ai} \tag{1.62}$$

$$\hat{T}_2 = \sum_{j>i} \sum_{b>a} T^{ij}_{ab} \hat{E}_{ai} \hat{E}_{bj} + T^{ij}_{\alpha\beta} \hat{E}_{\alpha i} \hat{E}_{\beta j}$$

$$\tag{1.63}$$

Les indices i et j correspondent aux orbitales occupées. a et b correspondent aux orbitales virtuelles et α et β à l'orbitale de la base complète. Comme pour la méthode des clusters couplés classique, t^i_{α} et $T^{ij}_{\alpha b}$ sont, respectivement, les amplitudes simples et doubles.

La différence dans la théorie F12 est que les amplitudes additionnelles $T^{ij}_{\alpha\beta}$ sont approximées par :

$$T_{\alpha\beta}^{ij} = <\alpha\beta |\hat{Q}_{12}\hat{F}_{12}|kl>T_{kl}^{ij}$$
(1.64)

où le projecteur

$$\hat{Q}_{12} = 1 - |rs| < rs| - |mx| < mx| - |xm| < xm|$$
(1.65)

Le facteur de corrélation \widehat{F}_{12} est pris comme une simple fonction de Slater :

$$F(r_{12}) = \exp(-\beta r_{12}) \tag{1.66}$$

Q₁₂ garanti une forte orthogonalité des termes de corrélation explicite de la fonction de référence Hartree-Fock ainsi que les traditionnelles doubles excitations. Les indices r et s désignent la base complète des orbitales moléculaires, et x la base auxiliaire complémentaire.

Il est à noter que $T^{ij}_{\alpha\beta} = 0$ si α et β appartiennent tous les deux à la base, ou si au moins l'un d'entre eux correspond à une orbitale occupée.

En pratique, nous approximons la fonction de Slater par une combinaison linéaire de gaussiennes.

L'approximation de la méthode CCSD(T)-F12a est basée sur la contribution des termes explicitement corrélés aux équations CC pour les amplitudes simples et doubles. Le plus simple est de les négliger entièrement et de calculer l'énergie de corrélation comme la somme de l'énergie de corrélation CCSD(T) et de la correction MP2-F12 (c'est-à-dire la différence des énergies MP2-F12 pure et MP2).

Une meilleure approximation peut être effectuée en incluant la plus importante des contributions explicitement corrélées dans les résidus CCSD. En ajoutant ce terme résiduel, l'énergie de contribution est modifiée par une énergie de correction additionnelle ΔE .

L'approximation incluant cette énergie de correction est nommée CCSD(T)-F12b. Cette contribution double à peu près l'effet du couplage des parties conventionnelles et explicites. Il n'est a priori pas évident que cela permette d'améliorer la précision, puisque de nombreux autres termes résiduels sont négligés, et l'énergie fonctionnelle résultante est une approximation par elle-même.

En fait, elle conduit à une dégradation de la convergence des énergies de corrélation avec la taille de la base. C'est pourquoi nous allons utiliser les deux approximations a et b dans notre étude.

VI) Théorie de la fonctionnelle de la densité :

L'idée directrice de la théorie de la fonctionnelle de la densité est que l'énergie d'un système peut être décrite à partir de sa seule densité. Ainsi, le premier théorème de Hohenberg et Kohn [25] montre très simplement que la densité $\rho(r)$ est la seule fonction nécessaire pour obtenir toutes les propriétés électroniques d'un système dans son état fondamental. La densité électronique fixe également le nombre d'électrons n du système via la condition :

$$n = \int \rho(\mathbf{r})d\mathbf{r} \tag{1.67}$$

où $\rho(r)$ est la densité électronique et $\bf r$ les coordonnées des électrons. Elle est définie par :

$$\rho(\mathbf{r}) = \int |\Psi(\mathbf{r})|^2 d\mathbf{r}$$
(1.68)

avec Ψ la fonction d'onde électronique solution de l'équation de Schrödinger électronique (en s'affranchissant du terme de répulsion entre les noyaux V_{NN}):

$$H\Psi = [T + V_{Ne} + V_{ee}]\Psi = E\Psi$$
 (1.69)

Dans la pratique, le terme d'attraction électron-noyau V_{Ne} est souvent remplacé par un potentiel extérieur V_{ext} regroupant, en plus de V_{Ne} , les différentes perturbations externes (champs électriques, etc...).

La densité électronique totale peut être donnée en fonction des densités de spin ρ_{α} et ρ_{β} :

$$\rho(\mathbf{r}) = \rho_{\alpha}(\mathbf{r}) + \rho_{\beta}(\mathbf{r}) \tag{1.70}$$

L'énergie électronique est donc une fonctionnelle de la densité et sera notée E[P] où $P = (P_{\alpha}, P_{\beta})$. Les calculs effectués seront donc similaires pour les systèmes à couches ouvertes et les systèmes à couches fermées.

Cette énergie, exprimée en terme de fonctionnelle de la densité, se décompose en trois parties :

$$E[\rho] = T[\rho] + E_{Ne}[\rho] + E_{ee}[\rho]$$
(1.71)

où:

- *T*[ρ] est l'énergie cinétique,
- $E_{Ne}[\rho]$ est l'énergie provenant de l'interaction électron-noyau,
- $E_{ee}[\rho]$ est celle provenant de l'interaction électron-électron. Elle peut aussi se décomposer en deux termes : un terme de coulomb $J[\rho]$ et un terme d'échange $K[\rho]$.

L'interaction noyau-électron $E_{Ne}[\rho]$ et le terme d'interaction de Coulomb $J[\rho]$ sont donnés par les expressions suivantes :

$$E_{Ne}[\rho] = \sum_{a} \int \frac{Z_a \rho(\mathbf{r})}{|\mathbf{R}_a - \mathbf{r}|} d^3 \mathbf{r}$$
(1.72)

et

$$J[\rho] = \frac{1}{2} \int \int \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 \mathbf{r} d^3 \mathbf{r}'$$
(1.73)

L'énergie $E_{Ne}[\rho]$ est obtenue à partir du potentiel $V_{Ne}(\mathbf{r})$:

$$E_{Ne}[\rho] = \int \rho(\mathbf{r}) V_{ne}(\mathbf{r}) d^3 \mathbf{r}$$
(1.74)

Il faut ensuite déterminer les autres termes de l'expression de $E[\rho]$. Pour ce faire, Kohn et Sham [26] ont avancé l'idée de considérer un gaz de n électrons sans interaction, définis par leurs orbitales $\phi_i(r)$. La densité électronique est donnée par la relation :

$$\rho(\mathbf{r}) = \sum_{i}^{N} |\phi_i(\mathbf{r})|^2$$
(1.75)

L'énergie cinétique de Kohn-Sham $T_S[\rho]$, dans le système d'électrons sans interactions, a pour expression :

$$T_{\mathcal{S}}[\rho] = \sum_{i}^{N} \langle \phi_{i} \left| \frac{\rho^{2}}{2} \right| \phi_{i} \rangle$$
(1.76)

Ce qui nous donne le système d'équations de Schrödinger pour les électrons sans interaction qui se présente sous la forme :

$$\left[\frac{\rho^2}{2} + V_{eff}(r)\right]\phi_i = \varepsilon_i \phi_i \tag{1.77}$$

où $V_{\text{eff}}(\mathbf{r})$ est le champ moyen créé par le gaz d'électrons et subi par un électron quelconque. L'énergie totale de ce système est donc :

$$E_S[\rho] = T_S[\rho] + E_{SNe}[\rho]$$
(1.78)

En réalité, les électrons vont interagir ensemble et l'énergie $E_s[\rho]$ n'est pas l'énergie totale. De façon similaire à la méthode Hartree-Fock, cette énergie correspond à 99% de l'énergie du gaz d'électrons indépendants, mais il faut inclure un terme d'interaction entre les électrons (de la même façon que la méthode Hartree-Fock n'inclue pas la corrélation électronique). Pour faire intervenir l'interaction des électrons dans l'équation de l'énergie, il faut la réécrire en fonction de $T_s[\rho]$ et $J[\rho]$:

$$E[\rho] = (T[\rho] - T_S[\rho]) + T_S[\rho] + E_{Ne}[\rho] + (E_{ee}[\rho] - J[\rho]) + J[\rho]$$
(1.79)

C'est-à-dire:

$$E[\rho] = T_S[\rho] + E_{Ne}[\rho] + J[\rho] + E_{xc}[\rho]$$
(1.80)

où $E_{xc}[\rho]$ est l'énergie contenant toute la corrélation des électrons en interaction :

$$E_{xc}[\rho] = (T[\rho] - T_S[\rho]) + (E_{ee}[\rho] - J[\rho])$$
(1.81)

La première parenthèse comporte l'énergie de corrélation cinétique (la différence entre l'énergie cinétique exacte des électrons corrélés avec l'énergie cinétique exacte d'un système d'électrons n'interagissant pas), et la seconde parenthèse comporte aussi bien un terme d'échange qu'une énergie de corrélation. Nous pouvons définir un potentiel d'échange-corrélation :

$$V_{xc}(\mathbf{r}) = \frac{dE_{xc}[\rho]}{d\rho(\mathbf{r})}$$
(1.82)

Ce qui implique que le système d'équation à résoudre peut s'écrire sous la forme :

$$\left[\frac{\rho^2}{2} + V_{Ne}(\mathbf{r}) + \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 \mathbf{r}' + V_{xc}(\mathbf{r})\right] \phi_i(\mathbf{r}) = \varepsilon_i \phi_i(\mathbf{r})$$
(1.83)

Enfin, nous pouvons définir l'hamiltonien de Kohn-Sham, h_{KS}:

$$h_{KS}\phi_i = \varepsilon_i\phi_i \tag{1.84}$$

Cette équation, combinée avec la relation de la densité électronique (1.75), nous donne le système d'équations Kohn-Sham.

Nous pouvons remarquer les similarités dans le traitement de Kohn-Sham et Hartree-Fock. Comme dans cette dernière, l'énergie de Kohn-Sham sera minimisée à l'aide du principe variationnel. La différence entre les deux méthodes provient du terme V_{xc} qui devrait permettre à la DFT d'avoir l'énergie exacte et donc toute la corrélation. Ce qui n'est pas le cas dans la méthode HF, l'interaction des configurations n'étant pas décrite.

En revanche, une difficulté de la méthode Kohn-Sham est l'évaluation des intégrales : elles ne peuvent être évaluées analytiquement : la densité intervenant dans les fonctionnelles étant à une puissance fractionnaire. Les intégrales sont alors généralement évaluées sur une grille de points dans l'espace tridimensionnel.

Le problème réside à exprimer $V_{xc}(r)$ sous une forme valable pour tous les systèmes. De nombreuses fonctionnelles ont vu le jour, décrivant plus ou moins bien le terme $V_{xc}(r)$. Elles appartiennent à trois catégories d'approximations :

- l'approximation de la densité locale (Local Density Approximation, LDA) [27] : dans cette approximation, la densité est traitée localement à partir d'un gaz d'électrons uniforme. La densité est alors une fonction qui varie peut spatialement. L'énergie d'échange est donnée par la formule de Dirac.
- l'approximation du gradient généralisé (Generalized Gradient Approximation, GGA)
 [28]: cette approximation est une amélioration possible du modèle précédent, dans laquelle on considère les électrons comme un gaz. Pour cela, les énergies d'échange-corrélation ne sont plus uniquement des fonctionnelles de la densité, mais elles dépendent également des dérivées de la densité.
- les fonctionnelles hybrides : un degré de précision supplémentaire est atteint en combinant l'échange et la corrélation obtenus par des méthodes GGA avec un certain pourcentage d'échange décrit par la théorie Hartree-Fock.

Les fonctionnelles d'échange et de corrélation peuvent adopter des formes mathématiques souvent complexes. De manière à simplifier les notations, la convention est de noter les fonctionnelles du nom de leurs auteurs suivi de la date de publication dans le cas ou un même groupe a publié plusieurs fonctionnelles différentes. Ainsi, la fonctionnelle d'échange développée par Axel Becke en 1988 [29] est notée B et la fonctionnelle de corrélation publiée par le même auteur en 1995 est notée B95 [30]. Dans le cas où plusieurs auteurs sont impliqués dans le développement, les initiales de ceux-ci sont utilisées pour symboliser la fonctionnelle. Par exemple, la fonctionnelle de corrélation LYP est nommée du nom de ses trois auteurs : Lee, Yang et Parr [31]. La description complète de l'échange et de la corrélation électronique est obtenue en combinant une fonctionnelle d'échange et une fonctionnelle de corrélation. La fonctionnelle est alors symbolisée en ajoutant simplement les symboles des fonctionnelles d'échange et de corrélation (toujours dans cet ordre). Dans les cas les plus complexes de fonctionnelles hybrides, le nombre de paramètres impliqués est également mentionné.

B3LYP [32] signifie Becke- 3 paramètres – Lee Yang Parr, et est décrite comme :

$$E_{xc}^{B3LYP} = E_{xc}^{LDA} + a_0(E_x^{HF} - E_x^{LDA}) + a_x(E_x^{GGA} - E_x^{LDA}) + a_c(E_c^{GGA} - E_c^{LDA})$$
(1.85)

avec:

$$a_0 = 0.20, a_x = 0.72, a_c = 0.81$$
 (1.86)

 a_0 , a_x et a_c sont des coefficients optimisés pour adhérer à des données expérimentales de systèmes standards servant de tests.

PBE0 (PBE1PBE) [33] a été proposée par Adamo et Baronne. Elle ne contient aucun paramètre ajustable et a été testée sur un jeu de molécules de référence ainsi que pour des molécules faisant intervenir des métaux. Elle est décrite par :

$$E_{xc}^{PBE} = E_{xc}^{GGA} + \frac{1}{4} (E_x^{HF} - E_x^{PBE})$$
(1.87)

 E_x^{PBE} est la partie échange de la fonctionnelle PBE développée par Perdrew, Burke et Ernzerhof [34] :

$$E_x^{PBE} = \frac{bx^2}{1 + ax^2} \tag{1.88}$$

et:

$$a = 0.00449, b = 0.00336$$

$$x = \frac{|\nabla \rho|}{\rho^{4/3}}$$
(1.89)

B3LYPet PBE0 sont actuellement les fonctionnelles les plus employées en théorie DFT. Il s'agit de fonctionnelles hybrides obtenues par combinaison linéaire entre des fonctionnelles d'échange et de corrélation GGA et d'échange Hartree-Fock.

Chaque type de liaison est donc représenté par une (ou plusieurs) fonctionnelle qui permet de prévoir la géométrie de la liaison, et surtout de calculer son énergie. Les interactions faibles de type Van der Waals sont aussi représentées par quelques fonctionnelles. La première a été développée par Stefan Grimme, et s'appelle B97-D [35].

Elle est basée sur une reconfiguration du gradient réduit :

$$s_{\sigma} = \frac{\nabla n_{\sigma}}{n_{\sigma}^{4/3}} \tag{1.90}$$

où n est la densité électronique et σ donne le spin α ou β .

La partie dépendante de la densité de la fonctionnelle échange-corrélation est donnée par :

$$E_{xc} = E_x + E_{C\alpha\beta} + \sum_{\alpha} E_{C\alpha\sigma}$$
(1.91)

avec x et C représentent respectivement les contributions d'échange et de corrélation. Ces contributions s'écrivent :

$$E_{x} = \sum_{\alpha} \int e(n_{\sigma}) g_{x\sigma}(s_{\sigma}^{2}) d\mathbf{r}$$
(1.92)

$$E_{C\alpha\beta} = \int e(n_{\alpha}, n_{\beta}) g_{C\alpha\beta} \left(\frac{1}{2} (s_{\alpha}^2 + s_{\beta}^2) \right) d\mathbf{r}$$
(1.93)

$$E_{C\sigma\sigma} = \int e(n_{\sigma})g_{C\sigma\sigma}(s_{\sigma}^{2})d\mathbf{r}$$
(1.94)

Les énergies notées e(n) correspondent à des énergies locales de densité pour un gaz électronique uniforme, et g est le facteur de correction du gradient.

La forme du facteur de correction est obtenue par le réarrangement de la variable u(s²) :

$$g(s^2) = \sum_{j=0}^{k} c_j u^j(s^2)$$
(1.95)

D'après les travaux de Becke et al. ainsi que de Grimme, la valeur k = 2 (trois termes) est un bon compromis entre la flexibilité et la robustesse de la fonctionnelle.

Pour les trois parties différentes de $E_{\chi c}$, les formes utilisées pour g sont :

$$u_{x\sigma}(s_{\sigma}^2) = \frac{\gamma_{x\sigma}s_{\sigma}^2}{1 + \gamma_{x\sigma}s_{\sigma}^2}$$
(1.96)

$$u_{C\alpha\beta}\left(\frac{1}{2}\left(s_{\alpha}^{2}+s_{\beta}^{2}\right)\right) = \frac{\gamma_{C\alpha\beta}\left(\frac{1}{2}\left(s_{\alpha}^{2}+s_{\beta}^{2}\right)\right)}{1+\gamma_{C\alpha\beta}\left(\frac{1}{2}\left(s_{\alpha}^{2}+s_{\beta}^{2}\right)\right)}$$
(1.97)

$$u_{C\sigma\sigma}(s_{\sigma}^{2}) = \frac{\gamma_{C\sigma\sigma}s_{\sigma}^{2}}{1 + \gamma_{C\sigma\sigma}s_{\sigma}^{2}}$$
(1.98)

Pour calculer la dispersion dans cette fonctionnelle, nous partons du calcul de l'énergie totale donnée par :

$$E_{DFT-D} = E_{KS-DFT} + E_{disp}$$
(1.99)

 E_{KS-DFT} est l'énergie Kohn-Sham usuelle obtenue par le calcul de la fonctionnelle et E_{disp} est la correction de la dispersion représentée par :

$$E_{disp} = -s_6 \sum_{i=1}^{N_{at}-1} \sum_{j=i+1}^{N_{at}} \frac{C_6^{ij}}{\mathbf{R}_{ij}^6} f_{dmp}(\mathbf{R}_{ij})$$
(1.100)

Ici, N_{at} est le nombre d'atomes présents dans le système, C_6^{ij} est le coefficient de dispersion pour les paires d'atomes ij, s_6 est le facteur global qui ne dépend que de la fonctionnelle choisie et R_{ij} est la distance interatomique.

Afin d'approcher les singularités pour les petites valeurs de R, une fonction atténuée f_{dmp} doit être utilisée. Elle se décline sous la forme :

$$f_{dmp}(\mathbf{R}_{ij}) = \frac{1}{1 + e^{-d(\mathbf{R}_{ij}/\mathbf{R}_r - 1)}}$$
(1.101)

où R_r est la somme des rayons atomiques de Van der Waals. Les différentes tables ainsi que les coefficients optimisés pour plusieurs systèmes ont été publiés par Stefan Grimme [35].

Il existe d'autres fonctionnelles plus récentes telles que vdW-DF développée par Langreth et al. [36] ou VV10 décrite par Oleg Vydrov et Troy Van Voorhis [37]. Cette dernière équipe a effectué des tests comparatifs [38] de ces fonctionnelles afin de déterminer les plus adaptées aux différents systèmes incluant des liaisons de type Van der Waals.

VII) Conclusion:

Ce chapitre a permis de présenter les méthodes de calculs électroniques utilisées ainsi que les approximations théoriques sur lesquelles elles reposent. Ces méthodes sont implémentées dans les codes de calcul utilisés, MOLPRO [4], GAUSSIAN [5] et CP2K [6]. Chaque système peut être étudié par plusieurs méthodes, il faut donc choisir laquelle est la plus adaptée au problème traité. Ce choix dépendra de la nature du système (monoconfigurationnel, périodique...), du type de calcul (optimisation de la géométrie, fréquences...) ou de la limitation des programmes (temps de calcul trop long, limitation des machines...).

Pour les calculs d'optimisation de la géométrie d'un système, les méthodes Hartree-Fock et post-Hartree-Fock (en particulier la méthode MP2) avec une base suffisamment diffuse ont été privilégiées, ces méthodes alliant une bonne précision avec un temps de calcul raisonnable. Le choix d'une base diffuse permet de mieux décrire les interactions de type van der Waals, qui sont au cœur de cette étude.

Les états excités des molécules ont été calculées avec les méthodes post-Hartree-Fock (CASSCF et MRCI) associées à une base diffuse. Ces méthodes étant multi-configurationnelles, elles permettent d'optimiser les orbitales moléculaires (pour la méthode CASSCF) puis d'optimiser les énergies des différents états excités sélectionnés (pour la méthode MRCI). Les états excités sont donc définis par une combinaison de ces deux méthodes.

Les calculs périodiques ont été réalisés par DFT avec des bases d'ondes planes alliées à des pseudo-potentiels car ces systèmes possèdent de nombreux atomes à décrire, dont une grande partie compose une surface métallique. Cette méthode est donc particulièrement adaptée car elle permet de décrire avec précision une phase condensée, les bases d'ondes planes détaillent les électrons de valence en prenant en compte les conditions périodiques aux limites et les pseudo-potentiels réduisent le temps de calcul en représentant les électrons de cœur de chaque type d'atome.

Bibliographie Chapitre 1:

- [1] E. Schrödinger, Ann. Phys. 79, 361 (1926)
- [2] M. Born et R. Oppenheimer, Ann. Phys. **84**, 489 (1927)
- [3] T. H. Dunning, J. Chem. Phys. **90**, 1007 (1989)
- [4] MOLPRO, version 2012.1, un ensemble de programmes ab initio, H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang, voir http://www.molpro.net
- [5] Gaussian 09, Revision **D.01**, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [6] CP2K version 2.4. CP2K is freely available from www.cp2k.org
- [7] C. Hartwigsen, S. Goedecker et J. Hutter, Phys. Rev. B **58**, 3641 (1998)
- [8] D. R. Hartree, Proc. Camb. Phil. Soc. 24, 328 (1928)
- [9] V. A. Fock, Z. Phys. **15**, 126 (1930)
- [10] J. C. Slater, Phys. Rev. **35**, 210 (1930)
- [11] F. Jensen, Introduction to Computationel Chemistry, Wiley, England (1999)
- [12] P. J. Knowles et H. J. Werner, J. Chem. Phys. **73**, 2342 (1980)
- [13] P. J. Knowles et H. J. Werner, Chem. Phys. Lett. 115, 259 (1985)
- [14] H. J. Werner et W. Meyer, J. Chem. Phys. **74**, 5794 (1981)

- [15] P. J. Knowles et H. J. Werner, Chem. Phys. Lett. **145**, 514 (1988)
- [16] H.-J. Werner et P. J. Knowles, J. Chem. Phys. 89, 5803 (1988)
- [17] E. R. Davidson et D. W. Silver, Chem. Phys. Lett. **52**, 403 (1977)
- [18] C. Moller et M. S. Plesset, Phys. Rev. **46**, 618 (1934)
- [19] J. W. S. Rayleigh, Theory of Sound, 2nd édition Vol. I, Macmillan, Londres (1894)
- [20] E. Schrödinger, Annalen der Physik, Vierte Folge, Band 80, 437 (1926)
- [21] J. Cižek, J. Chem. Phys. 45, 4256 (1966)
- [22] B. Levy et G. Berthier, Int. J. Quant. Chem. 2, 307 (1968)
- [23] W. Kutzelnigg and W. Klopper, J. Chem. Phys. **94**, 1985 (1991)
- [24] T.B. Adler, G. Knizia and H.J. Werner, J. Chem. Phys. **127**, 221106 (2007)
- [25] P. Hohenberg et W. Kohn, Phys. Rev. **136**, B864 (1964)
- [26] W. Kohn et L.J. Sham, Phys. Rev. **140**, A1133 (1965)
- [27] P. A. M. Dirac, Mathematical Proceedings of the Cambridge Philosophical Society, **26**, 376 (1930)
- [28] J.P. Perdrew et Y. Wang, Phys. Rev. B **33**, 8800 (1986)
- [29] A.D. Becke, Phys. Rev. A 38, 3098 (1988)
- [30] A.D. Becke, J. Chem. Phys. **104**, 1040 (1996)
- [31] C. Lee, W. Yang et R.G. Parr, Phys. Rev. B 37, 785 (1988)
- [32] P.J. Stephens, F.J. Devlin, C.F. Chabalowski et M.J. Frisch, J. Chem. Phys. **98**, 11623 (1994)
- [33] C. Adamo et V. Barone, J. Chem. Phys. **108**, 664 (1998)
- [34] J.P. Perdrew, K. Burke et M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
- [35] S. Grimme, J. Comput. Chem. **27**, 1787 (2006)
- [36] M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)
- [37] O. A. Vydrov, T. J. Van Voorhis, Chem. Phys. **133**, 244103 (2010)
- [38] O. A. Vydrov, T. J. Van Voorhis, J. Chem. Theory Comput. 8, 1929 (2012)

Chapitre 2

Etude systématique du DABCO en interaction avec un atome de gaz rare

I) Introduction:

Au cours des deux dernières décennies, la structure, la spectroscopie et la dynamique des hétéroclusters a reçu une grande attention à la fois de façon théorique mais aussi de manière expérimentale. Les objectifs de ces travaux sont multiples : de la sonde des potentiels d'interaction intermonomer, à la perturbation d'une molécule piégée dans une matrice froide, en passant par le possible effet de site dans la formation de complexes, les effets de solvatation et de la dynamique induite ou assistée par solvant spécifique.

Les applications sont variées, que ce soit dans les domaines de la catalyse, ou des procédés chimiques assistés par solvant.

Pour atteindre ces objectifs, différentes méthodologies expérimentales ont été appliquées telles que la spectroscopie IR, les spectroscopies d'absorption électronique (UV-Visible), les méthodes spectroscopiques d'ionisation à plusieurs photons (resonance enhanced multiphoton ionization ou REMPI) [1, 2, 3] et plus récemment la spectroscopie résolue en temps ultra rapide [4, 5].

Les informations sur la structure, la spectroscopie et les énergies des hétéroclusters ont été obtenues à partir des spectres des hétéroclusters et sont dérivées par rapport à celles de la molécule isolée [6]. Théoriquement, la plupart des techniques empiriques ont été utilisées pour étudier les hétéroclusters afin d'en tirer les potentiels d'interaction.

Ces potentiels empiriques décrivent les interactions à courte portée soluté-solvant et solvantsolvant par des fonctions potentielles classiques qui comprennent la dispersion, la répulsion, l'interaction coulombienne interatomique, le transfert de charge, et aussi les liaisons hydrogène [7]. Les paramètres de ces potentiels sont souvent obtenus (pour les systèmes à l'état fondamental) en associant les données cristallographiques et thermodynamiques. La comparaison de ces résultats spectroscopiques avec ceux basés sur le modèle du calcul des potentiels permet un test critique pour attester de la validité du potentiel lui-même [8].

Dans ce contexte, le choix de la molécule étudiée est crucial car il faut une entité formant efficacement des agrégats et une espèce moléculaire qui ne réagit pas avec le solvant. Comme système de référence, le complexe 1,4-diazabicyclo.2.2.2.octane - gaz rares (DABCO – Rg_n) représente le candidat idéal car ce complexe a été largement discuté dans la littérature [1].

En effet, le regroupement du DABCO avec ce type de solvants permet de sonder directement les effets de la perturbation externe sur la structure électronique du DABCO neutre ou ionique, et en raison de la forte symétrie de DABCO (groupe de symétrie D_{3h}), les déplacements des bandes de transition d'origine peuvent être reliés directement avec le site de liaison du solvant et la structure DABCO – Rg_n .

Par conséquent, les clusters DABCO – Rg_n (pour n petit) ont été largement étudiés. Citons par exemple, l'étude spectroscopique, utilisant la méthode « two color mass resolved excitation spectroscopy » (ou MRES), des complexes DABCO – Ar_n (où n=1, 2, 3, 4, 5) par Shang et al. [1, 2].

Ces auteurs ont également déterminé la structure d'énergie minimum en optimisant les géométries des clusters pour DABCO – Ar_n (n=1, 2, 3) calculé en utilisant le potentiel Lennard-Jones 6-12 pour modéliser l'interaction van der Waals (VdW) atome-molécule. Ils en ont aussi déduit empiriquement la forme de l'état fondamental (S0) et de l'état excité (S1) en calculant les potentiels d'interaction électronique du DABCO – Ar.

Plus récemment, Belcher et al. [9] ont utilisé une combinaison de deux méthodes : l'une basée sur l'ionisation des molécules, « 1+1' resonance enhanced multiphoton ionization » (ou REMPI) et l'autre « zero electron kinetic energy » (ou ZEKE) afin d'étudier les clusters DABCO – Ar_n (1, 2, 3).

Grâce à l'analyse des décalages des bandes spectrales, ainsi que l'analyse de la structure, ces auteurs ont suggéré que les atomes d'argon se lient de façon équivalente dans les complexes DABCO – Ar et DABCO – Ar $_2$ i.e. entre deux branches adjacentes (CH $_2$) $_2$ et que le complexe DABCO – Ar $_3$ ne retrouve pas la symétrie D $_3$ h, mais adopte une structure C $_2$ v dans laquelle les trois atomes d'argon se lient du même côté de la molécule de DABCO.

Ces conclusions sont appuyées par leurs calculs par la méthode RMP2/cc-pVDZ sur ces espèces. Dans ce contexte, le complexe DABCO – Kr_n ($n=1,\,2,\,3$) a également été considérablement étudié par la technique spectroscopique « resonant two-photon ionization » (ou R2PI) [10]. Les spectres mesurés sont composés de structures riches, indiquant l'existence de plusieurs isomères stables de DABCO – Kr_n ($n=1,\,2,\,3$), à la fois neutre et ionique.

Nous pouvons donc voir qu'il existe plusieurs études parues dans la littérature sur les états fondamentaux du complexe DABCO – Ar neutre et ionique, des complexes DABCO – Kr, ainsi que sur les états électroniques excités des espèces neutres.

Néanmoins, il n'existe pas d'études traitant le complexe DABCO – He, ou le cluster DABCO – Ne. Dans cette partie, nous procédons à une étude systématique des complexes DABCO – Rg (Rg = He, Ne, Ar et Kr) neutres et ioniques. Nous cherchons les structures des états stables (MIN) et de transition (TS) en analysant les surfaces de potentiel d'interaction.

La comparaison des complexes DABCO – Rg devrait permettre de révéler l'effet de polarisation du gaz rare sur les interactions Van der Waals liant l'atome de gaz rare avec le DABCO.

En outre, les structures des complexes DABCO – Rg ont été calculées en utilisant soit le formalisme empirique ou des traitements théoriques très précis, pour lesquels des anomalies ont été constatées entre ces structures et celles déduites expérimentalement. Cette étude se concentre sur les clusters DABCO – Rg_n au niveau (R) MP2/aug-cc-pVXZ (X = D, T).

La validité de cette approche pour décrire correctement les systèmes DABCO – Rg_n est prouvée par les calculs en utilisant différentes bases et méthodes post-Hartree-Fock et après comparaison avec la méthode des clusters couplés explicitement corrélés (CCSD (T)-F12).

II) Détails des calculs :

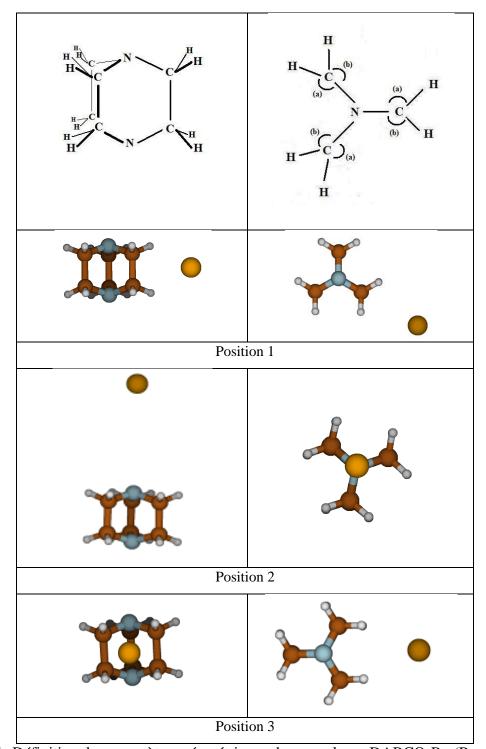
Tous les calculs électroniques ont été réalisés avec le programme MOLPRO (version 2012.1) [11] et GAUSSIAN09 [12], dans le groupe de symétrie C₁. Les optimisations de structures moléculaires, ainsi que le calcul des fréquences harmoniques ont été réalisées au niveau Möller Plesset (R)MP2 [13, 14] en utilisant les options standards implémentées dans le programme GAUSSIAN09.

La génération des surfaces de potentiel à une dimension des complexes DABCO – Rg a été effectuée en utilisant les techniques (R)MP2, l'approche cluster couplé avec un traitement perturbatif des excitations triples ((R)CCSD(T)) [15], et la nouvelle technique explicitement corrélée cluster couplé CCSD(T)-F12 (utilisant à la fois les approximations F12a et F12b) [16, 17].

Pour les calculs (R) MP2, les atomes H, C, N et les gaz rares ont été décrits par les bases suivantes: cc-pVXZ et aug-cc-pVXZ, avec X = D, T [18, 19]. Par contre, pour les calculs explicitement corrélés cc-pVXZ-F12 (X = D, T) [17], nous avons décrit les atomes H, C, N et les gaz rares en utilisant la base aug-cc-pVTZ de Dunning et al. [18, 19] et suivant la méthodologie établie dans les Reférences [20, 21, 22].

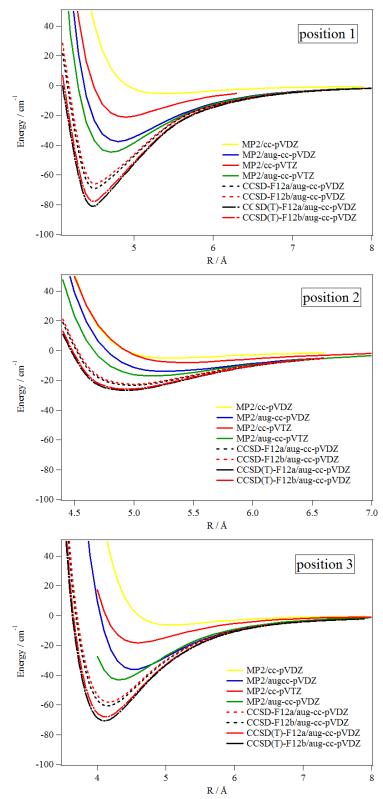
Dans ces articles, il a été démontré que les interactions longue portée de van der Waals calculées à l'aide de la méthode CCSD(T)-F12/aug-cc-pVDZ sont aussi précises que celles données par un calcul avec la méthode CCSD(T)/aug-cc-pVQZ, avec une grande réduction du coût de calcul, que ce soit en occupation de disque ou en temps de calcul. Dans les deux cas, nous avons utilisé les ensembles de base auxiliaires et les fonctions d'ajustement de la densité correspondantes [23, 24] implémentées dans le code MOLPRO [25]).

III) Etude systématique sur les potentiels d'interaction des complexes DABCO-Rg (Rg = He, Ne, Ar et Kr) :


Nous avons effectué une étude systématique du potentiel d'interaction V(R), de la molécule de DABCO avec Rg (Rg = He, Ne, Ar et Kr), à l'aide de la méthode MP2/cc-pVXZ (X = D, T), MP2/aug-cc-pVXZ (X = D, T), la principale différence étant la taille et la partie plus ou moins diffuse des bases.

Nous avons aussi utilisé les méthodes CCSD-F12x/aug-cc-pVDZ et CCSD(T)-F12x/aug-cc-pVDZ (x= approximations a ou b) pour compléter cette étude suivant la méthodologie récemment mise en place [20, 22]. Cette méthode est particulièrement adaptée pour le calcul des potentiels d'interaction Van der Waals avec précision.

En effet, les calculs CCSD (T) -F12x/aug-cc-pVDZ sont considérés comme étant aussi précis qu'un calcul CCSD (T) / aug-cc-pVQZ mais avec une réduction non négligeable des coûts et des temps de calcul CPU ainsi qu'une occupation du disque réduite [20, 22].


Ces calculs ont été effectués pour trois configurations des complexes DABCO – Rg (appelées Position 1, Position 2 et Position 3) qui dépendent de la position du gaz rare par rapport au DABCO. Les positions d'équilibre choisies pour le DABCO – Rg sont données dans la figure 1.

Ces positions ont été déterminées par différentes optimisations de la géométrie des complexes, en partant de plusieurs positions de l'atome de gaz rare autour de la molécule de DABCO (voir ci-dessous). Ces structures correspondent à des points stationnaires dans les surfaces d'énergie potentielle du DABCO – Rg.

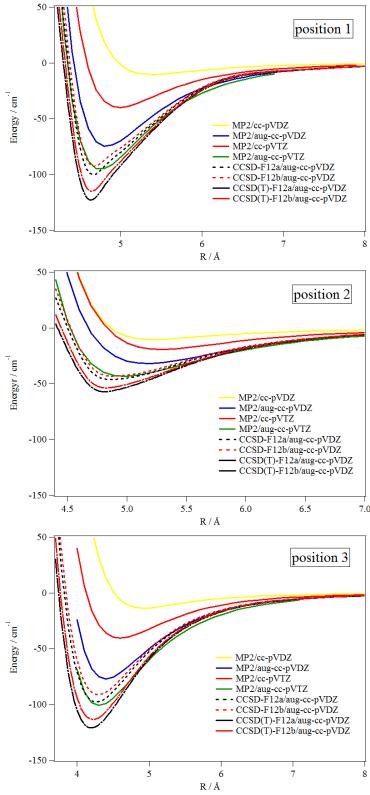
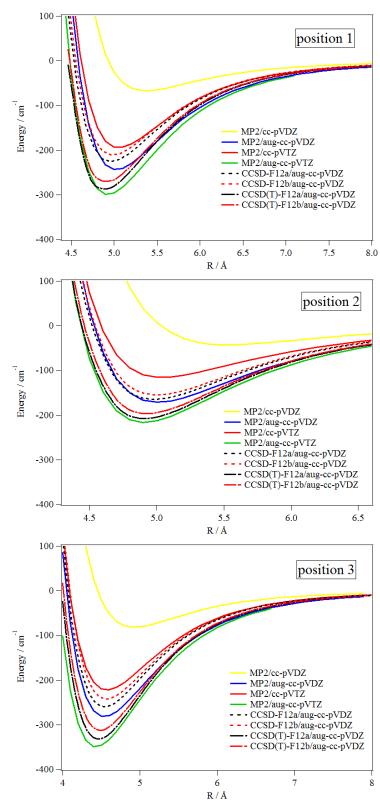


Figure 1: Définition des paramètres géométriques des complexes DABCO-Rg (Rg = He, Ne, Ar ou Kr) utilisés dans le tableau 2.


Les potentiels intermonomer des complexes DABCO-Rg neutres sont donnés dans les figures 2-5, où nous indiquons les évolutions de ces potentiels le long de la coordonnée R, qui correspond à la distance entre le centre de masse du DABCO et l'atome de gaz rare.

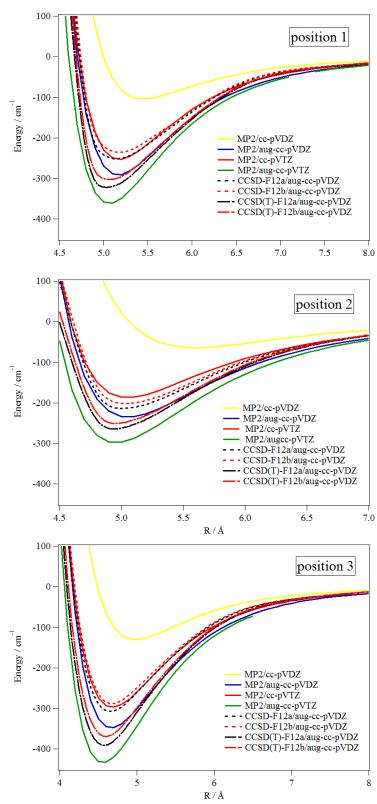

Figure 2: Potentiels d'interaction du complexe DABCO – He aux niveaux de théorie MP2/cc-pVDZ, MP2/aug-cc-pVDZ, MP2/cc-pVTZ, MP2/aug-cc-pVTZ, CCSD-F12a/aug-cc-pVDZ, CCSD-F12b/aug-cc-pVDZ, CCSD(T)-F12a/aug-cc-pVDZ, CCSD(T)-F12b/aug-cc-pVDZ. Ces courbes sont réalisées le long de la coordonnée R, qui correspond à la distance entre le centre de masse du DABCO et l'atome He. La courbe supérieure correspond à la position 1, celle du milieu à la position 2 et la courbe inférieure à la position 3.

Figure 3: Potentiels d'interaction du complexe DABCO – Ne aux niveaux de théorie MP2/cc-pVDZ, MP2/aug-cc-pVDZ, MP2/aug-cc-pVTZ, CCSD-F12a/aug-cc-pVDZ, CCSD-F12b/aug-cc-pVDZ, CCSD(T)-F12a/aug-cc-pVDZ, CCSD(T)-F12b/aug-cc-pVDZ. Ces courbes sont réalisées le long de la coordonnée R, qui correspond à la distance entre le centre de masse du DABCO et l'atome Ne. La courbe supérieure correspond à la position 1, celle du milieu à la position 2 et la courbe inférieure à la position 3.

Figure 4: Potentiels d'interaction du complexe DABCO – Ar aux niveaux de théorie MP2/cc-pVDZ, MP2/aug-cc-pVDZ, MP2/aug-cc-pVTZ, CCSD-F12a/aug-cc-pVDZ, CCSD-F12b/aug-cc-pVDZ, CCSD(T)-F12a/aug-cc-pVDZ, CCSD(T)-F12b/aug-cc-pVDZ. Ces courbes sont réalisées le long de la coordonnée R, qui correspond à la distance entre le centre de masse du DABCO et l'atome Ar. La courbe supérieure correspond à la position 1, celle du milieu à la position 2 et la courbe inférieure à la position 3.

Figure 5: Potentiels d'interaction du complexe DABCO – Kr aux niveaux de théorie MP2/cc-pVDZ, MP2/aug-cc-pVDZ, MP2/aug-cc-pVTZ, CCSD-F12a/aug-cc-pVDZ, CCSD-F12b/aug-cc-pVDZ, CCSD(T)-F12a/aug-cc-pVDZ, CCSD(T)-F12b/aug-cc-pVDZ. Ces courbes sont réalisées le long de la coordonnée R, qui correspond à la distance entre le centre de masse du DABCO et l'atome Kr. La courbe supérieure correspond à la position 1, celle du milieu à la position 2 et la courbe inférieure à la position 3.

Dans tous les calculs, afin de déterminer le potentiel d'interaction entre le DABCO et un atome de gaz rare, l'erreur due à la superposition des bases (basis set superposition error ou BSSE) a été corrigée pour toutes les géométries à l'aide de la correction de Boys et Bernardi [26]:

$$V(R)=E_{DABCO-Rg}(R)-E_{DABCO}(R)-E_{Rg}(R)$$

où les énergies des sous-systèmes du DABCO et du gaz rare sont calculées dans la base du complexe. Nous tenons à noter que les potentiels calculés en CCSD(T)-F12a ou CCSD(T)-F12b ont été uniformément décalés de la valeur asymptotique (R = 100 Bohr) pour que le potentiel soit ajusté. L'origine de cet effet réside sur la non cohérence en taille des approches CCSD (T)-F12 (que ce soit pour l'approximation a ou b). Cela est dû au traitement des excitations triples car le calcul CCSD-F12 est cohérent en taille [20, 27, 22].

Il y a trois catégories distinctes de résultats qui peuvent être tirées à partir des figures 2-5 :

• L'effet de base: La comparaison des potentiels issus des calculs MP2/cc-pVXZ et MP2/aug-cc-pVXZ (X = D, T) montrent clairement un effet de base. En effet, la profondeur du puit de potentiel est très variable quelque soit la position de l'atome de gaz rare. La plus petite base, c'est-à-dire cc-pVDZ, conduit à des puits de potentiel qui ne sont pas assez profonds pour décrire correctement l'interaction.

Ceci est en partie corrigé par la base cc-pVTZ. Nous pouvons voir que l'inclusion d'une partie diffuse dans la base aug-cc-pVXZ (X = D, T) améliore considérablement la description des potentiels d'interaction entre le DABCO et le gaz rare. Un tel comportement est attendu en raison de la nature de la liaison (de type Van der Waals) entre ces deux entités. Ceci invalide l'utilisation des bases non diffuses pour le traitement de ces systèmes moléculaires. Surtout, cela rend douteux les résultats de Belcher et al. [9] sur le complexe DABCO – Ar.

En effet, ces travaux théoriques ont limité leurs investigations à la base la plus petite qui n'est pas assez diffuse cc-pVDZ.

Par conséquent, les dimères DABCO – Rg et plus généralement les complexes DABCO – Ar_n doivent être traitées en utilisant au minimum la base aug-cc-pVDZ. Pour la Position 3 du DABCO – Ar, qui est la forme la plus stable, le Tableau 1 montre que l'énergie de liaison calculée avec la méthode CCSD(T)-F12b/aug-cc-pVDZ (de 312 cm⁻¹) coïncide avec la valeur expérimentale (de 314 cm⁻¹) après considération de l'erreur expérimentale [28].

Ce résultat valide à nouveau l'utilisation de la méthode CCSD(T)-F12b/aug-cc-pVDZ comme référence dans le traitement théorique du complexe DABCO – Rg. La comparaison de nos résultats avec ceux déduits du récent modèle empirique Lennard-Jones-Coulomb (6-12-1) [2] indique une bonne correspondance avec les valeurs explicitement corrélées (cf Tableau 1).

Au contraire, les énergies d'interaction calculées avec les anciens paramètres de l'argon diffèrent de plus de 100 cm⁻¹ (c'est-à-dire plus de 30%) [1]. Cette étude valide les paramètres de l'argon déduits des résultats spectroscopiques de Herman et al. [29].

Tableau 1: Profondeur des puits de potentiel en (cm⁻¹) pour le complexe DABCO-Rg déduits des figures 2-5:

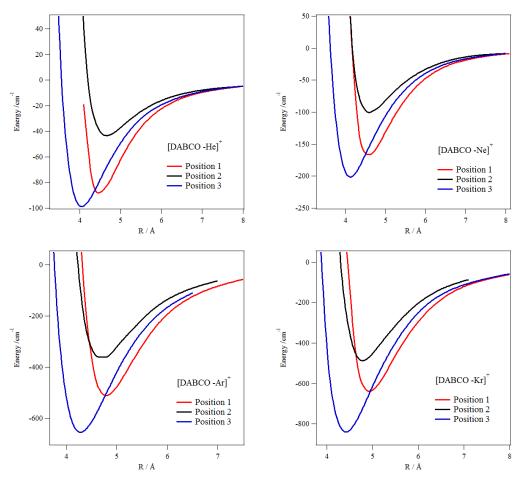
Máthada		M	D2		CCSD-	CCSD	CCSD(CCSD(T)	anciens
Méthode		M	P2		F12a	-F12b	T)-F12a	-F12b	travaux
Base	cc- pVDZ	Aug-cc- pVDZ	cc- pVTZ	aug-cc- pVTZ	aug-cc-pVDZ				
DABCO-He Position 1	5.4	37.5	21.0	44.7	69.2	66.1	81.1	77.8	
DABCO-He Position 2	5.1	14.0	8.0	16.9	23.3	22.6	26.7	25.9	
DABCO-He Position 3	6.3	36.0	18.4	43.1	60.6	58.3	70.6	68.0	
DABCO-Ne Position 1	10.2	74.4	39.8	94.7	99.9	96.6	122.7	114.7	
DABCO-Ne Position 2	10.3	31.8	19.2	43.1	46.3	43.1	57.2	53.7	
DABCO-Ne Position 3	13.5	76.9	40.4	100.7	97.5	90.9	120.8	113.3	
DABCO-Ar Position 1	67.1	243.6	193.4	299.5	226.0	210.5	286.9	269.9	167 ^{a)} 293 ^{b)}
DABCO-Ar Position 2	42.7	171.1	115.0	216.5	164.4	154.5	207.6	196.6	
DABCO-Ar Position 3	81.1	281.1	221.5	348.6	259.1	241.9	331.8	312.3	232 ^{a)} 341 ^{b)} 314 ^{c)}
DABCO-Kr Position 1	103.1	290.3	252.4	360.4	251.6	235.3	321.8	302.5	
DABCO-Kr Position 2	64.1	234.2	185.7	296.6	213.3	201.1	264.4	250.8	
DABCO-Kr Position 3	129.7	346.8	296.9	432.2	307.0	287.8	390.5	368.9	

- a. Modèle Theorique Empirique Lennard-Jones-Coulomb (6-12-1) [1].
- b. Modèle Theorique Empirique Lennard-Jones-Coulomb (6-12-1) utilisant de meilleurs parametres pour l'argon de Herman et al. [29] comme décrit dans la Référence [2].
- c. Données experimentales Ref. [28].

• Effet de la corrélation électronique: Cet effet est observé en comparant les courbes calculées en utilisant la méthode MP2/aug-cc-pVTZ ainsi que celles calculées selon la méthode de corrélation explicite avec et sans inclusion de la triple correction CCSD-F12 (a ou b) / aug-cc-pVDZ. De toute évidence, la corrélation électronique joue un rôle crucial pour la description de la liaison dans les complexes DABCO – Rg.

En effet, l'inclusion de celle-ci conduit à des potentiels plus profonds et un raccourcissement de la distance d'équilibre DABCO – Rg quelle que soit la nature du gaz rare ou sa position relative par rapport au DABCO. Les plus grands calculs CCSD (T)-F12 (a ou b) / aug-cc-pVDZ, qui sont utilisés comme référence ici, fournissent les puits de potentiel les plus profonds pour les complexes DABCO – He et DABCO – Ne.

Pour le DABCO – He, les écarts avec les puits de potentiel calculés par la méthode MP2/aug-cc-pVTZ sont importants (~ 40%). Ceci est cohérent avec le récent travail sur l'utilisation des méthodes explicitement corrélées pour la génération de surfaces d'énergie potentielle des interactions de type Van der Walls [22]. Pour le DABCO – Ne, ces écarts sont réduits à moins de 20%.


En revanche, nos calculs montrent que la méthode MP2/aug-cc-pVTZ décrit correctement les complexes DABCO – Ar et DABCO – Kr. Les courbes sont proches de celles de la méthode CCSD (T)-F12 (a ou b) / aug-cc-pVDZ. Par conséquent, le calcul MP2/aug-cc-pVTZ est suffisamment fiable pour déterminer les paramètres de structure des complexes DABCO – Rg (Rg = Ne, Ar et Kr), alors qu'il n'est pas assez précis pour la description du dimère DABCO – He et, a fortiori, des molécules de DABCO intégrés dans des clusters d'hélium.

• Effet des approximations explicitement corrélée a et b des calculs CCSD (T)-F12: Pour tous les complexes DABCO – Rg, nous avons trouvé que les potentiels d'interaction calculés à l'aide de l'approximation a diffèrent légèrement de ceux calculés à l'aide de l'approximation b.

Pour les complexes DABCO – Rg (Rg = Ne, Ar, Kr), l'approximation a conduit à des potentiels plus profonds. Pour le dimère DABCO – He, nous ne retrouvons aucun comportement systématique.

En effet, les résultats de ce complexe dépendent de la position relative de l'atome d'hélium par rapport à la molécule de DABCO. En règle générale, les différences entre les deux approximations restent faibles (moins de 7%), ce qui valide l'utilisation des deux approximations a et b pour de telles études.

La figure 6 montre l'évolution de la polarisation V(R) pour les complexes DABCO⁺ – Rg où le gaz rare est localisé sur les positions 1 à 3. Comme prévu, les potentiels van der Waals des complexes ioniques sont plus profonds que les potentiels des structures neutres correspondantes. L'interaction plus forte est principalement due au transfert de charge depuis le gaz rare vers le DABCO, en accord avec leurs potentiels d'ionisation respectifs (E_I (DABCO) $< E_I$ (gaz rare) [30]).

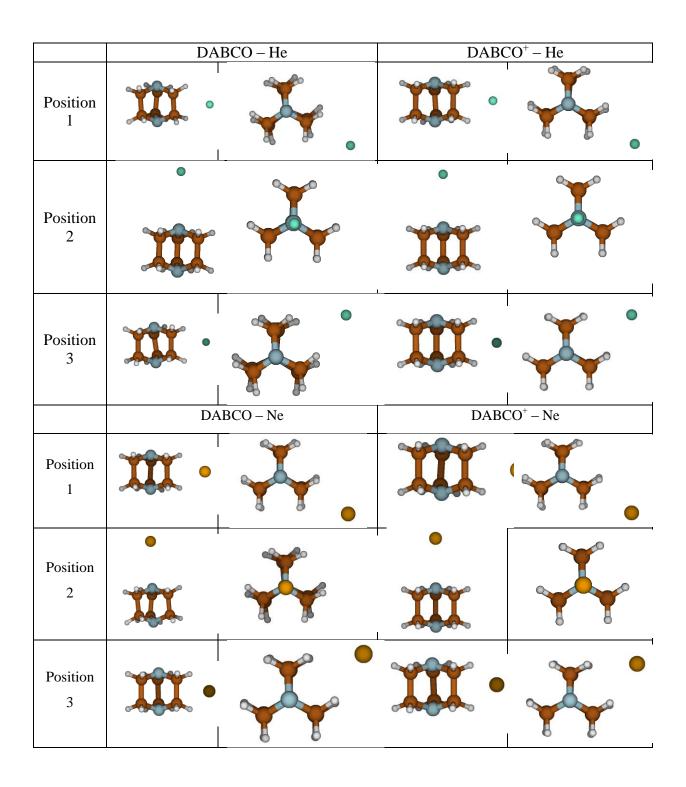
Figure 6: Potentiels d'interaction des complexes [DABCO – Rg]+ calculés avec la méthode RMP2/ aug-cc-pVTZ. Ces courbes sont réalisées à partir de l'élongation le long de la coordonnée R, qui correspond à la distance entre le gaz rare et le centre de masse du DABCO.

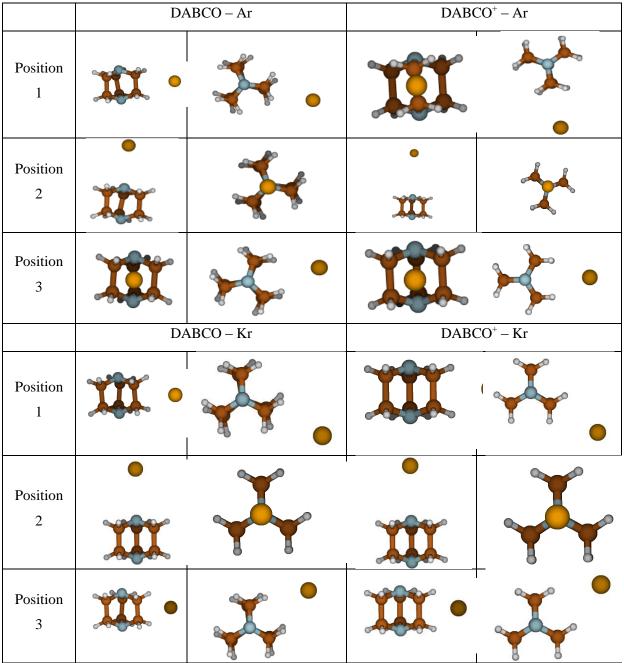
IV) Structures optimisées de DABCO – Rg et de DABCO⁺ – Rg (où Rg = He, Ne, Ar et Kr):

Le tableau 2 et les figures 1 et 7 représentent les structures optimisées des complexes DABCO / DABCO + Rg (Rg = He, Ne, Ar, Kr) au niveau de calcul (R)MP2/aug-cc-pVDZ et (R)MP2/aug-cc-pVTZ. Le tableau donne également la nature, c'est-à-dire soit minimum (MIN) soit état de transition (TS), de ces points stationnaires sur les potentiels d'interaction de ces complexes.

Tableau 2: Principaux paramètres géométriques (Å et degrés) des complexes $DABCO^{q+} - Rg$ (Rg = He, Ne, Ar ou Kr et q = 0 ou 1) neutres et cationiques, obtenus aux niveaux de théorie (R)MP2/aug-cc-pVDZ (première entrée) et (R)MP2/aug-cc-pVTZ (deuxième entrée).

R correspond à la distance entre le centre de masse du DABCO et le gaz rare.


Voir la Figure 1 pour la définition des autres paramètres géométriques utilisés ici. MIN désigne une structure minimale et TS est un état de transition.


E est l'énergie totale en Hartree. E_r (en cm⁻¹) est l'énergie relative par rapport à la forme neutre la plus stable.

	Form	N-C dista nce	N-N dista nce	C-C dista nce	H-C dista nce	C-N- C angle	N-C- C angle	N-C-H (a) angle	N-C-H (b) angle	R distance	Е	E _r
	DABCO – He									1		
nasition 1 MINI	MIN	1.478	2.602	1.562	1.103	108.2	110.3	107.5	108.2	4.459	-347.20320848601	0.0
position 1	IVIIIN	1.467	2.576	1.553	1.092	108.4	110.2	107.6	108.3	4.540	-347.52716719769	0.0
position 2	TS	1.477	2.599	1.564	1.103	108.4	110.5	107.7	\	4.948	-347.20275873070	98.7
position 2	13	1.467	2.576	1.554	1.091	108.5	110.4	107.8	\	4.939	-347.52690060662	58.5
position 3	MIN	1.478	2.602	1.562	1.103	108.1	110.3	107.4	108.3	4.201	-347.20318975896	4.1
position 3	IVIIIN	1.467	2.577	1.553	1.092	108.4	110.3	107.6	108.3	4.200	-347.52714694195	4.4
						DA	ABCO ⁺	– He				
mosition 1	MINI	1.442	2.479	1.636	1.098	111.8	106.9	110.0	110.4	4.331	-346.95229427316	3.1
position 1	MIN	1.431	2.459	1.628	1.087	111.9	106.9	110.3	\	4.570	-347.27200206835	12.8
position 2	TS	1.442	2.478	1.637	1.098	111.8	107.0	110.2	\	4.492	-346.95200072112	67.6
position 2	13	1.431	2.459	1.628	1.087	111.9	106.9	110.3	\	4.483	-347.27175898503	66.1
position 3	TS a)	1.442	2.478	1.636	1.098	111.8	107.0	110.1	110.2	3.930	-346.95230877379	0.0
position 3	15	1.431	2.458	1.628	1.087	111.9	106.9	110.3	\	3.923	-347.27206059031	0.0
						D.	ABCO -	- Ne				
	MINI	1.478	2.602	1.562	1.103	108.2	110.3	107.4	108.3	4.569	-473.02426613174	6.1
position 1	MIN	1.467	2.577	1.553	1.092	108.4	110.3	107.6	108.3	4.533	-473.43884304580	9.6
mosition 2	TC	1.478	2.602	1.562	1.103	108.1	110.3	107.4	108.3	4.862	-473.02389535204	87.5
position 2	TS	1.467	2.577	1.553	1.092	108.4	110.2	107.6	108.3	4.732	-473.43834221310	119.5
mosition 2	MINI	1.478	2.602	1.562	1.103	108.2	110.4	107.4	108.2	4.210	-473.02429420589	0.0
position 3	MIN	1.467	2.576	1.554	1.092	108.5	110.3	107.6	108.2	4.063	-473.43888699092	0.0

$DABCO^{+} - Ne$												
position 1	MIN	1.442	2.478	1.636	1.098	111.8	106.9	110.2	\	4.439	-472.77352466820	36.4
position 1	IVIIIN	1.431	2.459	1.628	1.087	111.9	106.9	110.3	\	4.412	-473.18386065899	47.6
TC	1.442	2.478	1.637	1.098	111.8	107.0	110.2	\	4.491	-472.77308572015	132.7	
position 2	TS	1.431	2.459	1.627	1.087	111.9	107.0	110.3	\	4.472	-473.18333523534	163.0
mosition 2	MIN	1.442	2.478	1.636	1.098	111.8	107.0	110.2	\	4.004	-472.77369068953	0.0
position 3	IVIIIN	1.431	2.459	1.628	1.087	111.9	106.9	110.3	\	3.905	-473.18407793033	0.0
		_					ABCO -					
position 1	MIN	1.478	2.601	1.562	1.103	108.2	110.3	107.4	108.2	4.758	-871.27769148997	77.3
position i	IVIIIN	1.467	2.576	1.553	1.092	108.4	110.3	107.6	108.3	4.769	-871.65843810062	84.1
position 2	TS	1.477	2.601	1.562	1.103	108.2	110.3	107.4	108.3	4.812	-871.27718434395	188.6
position 2	13	1.466	2.575	1.553	1.092	108.4	110.2	107.6	108.3	4.774	-871.65793142015	195.3
position 3	MIN	1.478	2.602	1.563	1.103	108.2	110.4	107.4	108.2	4.328	-871.27804385741	0.0
position 3	IVIIIN	1.466	2.576	1.554	1.092	108.6	110.4	107.8	\	4.280	-871.65882147007	0.0
							ABCO+	– Ar				
position 1	MIN	1.442	2.478	1.635	1.098	111.8	106.9	110.1	110.5	4.683	-871.02751945217	178.6
position i	IVIIIN	1.431	2.458	1.628	1.087	111.9	106.9	110.3	\	4.690	-871.40405590942	189.6
position 2	TS	1.444	2.474	1.628	1.098	111.6	107.8	109.8	\	5.595 -	-871.02550520167 -	620.6
2	MAINT	1.442	2.478	1.636	1.098	111.8	107.0	110.2	\	4.199	-871.02833327949	0.0
position 3	MIN	1.431	2.458	1.627	1.087	111.9	106.9	110.3	Ì	4.183	-871.40492008365	0.0
		•	•	•		D	ABCO -	- Kr				
	MINI	1.478	2.601	1.562	1.103	108.2	110.3	107.4	108.2	4.836	-3096.4460219501	160.9
position 1	MIN	1.467	2.576	1.553	1.092	108.5	110.3	107.6	108.2	4.798	-3096.9301022184	191.9
nosition ?	TS	1.477	2.596	1.564	1.103	108.5	110.5	107.7	\	4.797	-3096.4454476759	286.9
position 2	13	1.465	2.572	1.555	1.092	108.7	110.3	107.9	\	4.702	-3096.9294192153	341.8
position 3	MIN	1.478	2.602	1.563	1.103	108.2	110.4	107.5	108.1	4.372	-3096.4467552809	0.0
position 3	IVIIIN	1.467	2.576	1.554	1.092	108.5	110.4	107.8	\	4.272	-3096.9309769232	0.0
$DABCO^{+} - Kr$												
position 1 TS	TS	1.442	2.478	1.636	1.098	111.9	107.0	110.2	\	4.777	-3096.1961719830	315.1
position 1	13	1.431	2.458	1.628	1.087	112.0	106.9	110.4	\	4.758	-3096.6760886199	357.6
		1.442	2.476	1.637	1.099	111.9	107.0	110.2	\	4.664	-3096.1955722225	446.8
position 2	TS	1.430	2.476	1.628	1.088	111.8	107.0	110.2	'	4.552	-3096.6753207816	526.2
									\			
position 3	MIN	1.442	2.478	1.636	1.098	111.8	107.0	110.2	\	4.274	-3096.1976080930	0.0
position 5 MIIN	141114	1.431	2.459	1.627	1.087	111.9	106.9	110.3	\	4.204	-3096.6777183759	0.0

a) Cette position pourrait devenir un minimum au niveau plus élevé de calculs. b) Pas de convergence au niveau RMP2/aug-cc-pVTZ.

Figure 7: Structures optimisées des complexes DABCO / DABCO⁺ – Rg (Rg = He, Ne, Ar ou Kr) par la méthode MP2/aug-cc-pVTZ. Les positions 1, 2 et 3 sont celles utilisées dans le Tableau 2 et la Figure 1. Pour DABCO⁺-Ar position 2, nous donnons la structure MP2/aug-cc-pVDZ.

Selon l'analyse effectuée ci-dessus, nos données doivent être fiables pour DABCO / DABCO⁺ – Ne, DABCO / DABCO⁺ – Ar et DABCO / DABCO⁺ – Kr et même pour DABCO / DABCO⁺ – He vu que la nature de ces complexes devrait être moins sensible à la méthode ab initio utilisée que la forme du potentiel (profondeur et distance d'équilibre).

Le Tableau 2 montre que la molécule neutre est faiblement perturbée, ce qui est en accord avec l'interaction faible (de type van der Waals) entre le gaz rare et le DABCO.

Plusieurs configurations initiales ont été testées afin de permettre la cartographie de la surface d'énergie potentielle de l'état fondamental de ces complexes. Pour toutes les espèces, nous avons trouvé trois points d'équilibre. Ils correspondent à: la position 1 où le gaz rare appartient au plan σ_h et est situé en face d'une liaison C-C. La position 2 où le gaz rare est positionné le long de l'axe C_3 au-dessus d'un atome d'azote. Et la position 3 où le gaz rare est dans le plan σ_h de la molécule de DABCO et est situé entre les branches du C-C (figure 1).

Nous donnons dans l'annexe [31] la totalité des longueurs d'onde vibrationnelles des complexes DABCO / DABCO⁺ – Rg (Rg = He, Ne, Ar et Kr). Pour les modes de basse fréquence qui sont liées aux vibrations van der Waals, nous avons effectué une analyse des modes normaux. Les résultats sont illustrés dans le Tableau 3. Pour le DABCO-Ar, nos valeurs des basses fréquences de vibration sont cohérentes avec celles calculées par Belcher et al. [9].

Tableau 3 : Assignement (première entrée) et nombre d'onde harmonique (ω_i, en cm⁻¹, deuxième entrée) des modes de van der Waals intermonomer pour les formes stables des complexes DABCO – Rg neutres et cationiques.

Mode	ω_1	ω_2	ω_3
		O – He	-
Position 1	19.53	39.24	67.26
	19.55	39.24	07.20
Position 3		1000c	
	17.11	38.67	49.92
	DABCO	O ⁺ – He	
Position 1	0000	1229	
	29.86	43.41	69.24

	DABC	O – Ne	
Position 1	16.40	33.50	45.44
Position 3	11.10	36.34	36.42
	DABCO		30.42
Position 1	22.08	36.29	53.46
Position 3	31.17	35.12	37.55
	DABC	O – Ar	
Position 1	21.57	45.05	52.90
Position 3	21.71	46.70	51.55
	DABCO	$O^+ - Ar$	
Position 1	26.01	46.92	60.42
Position 3	32.20	43.65	49.70

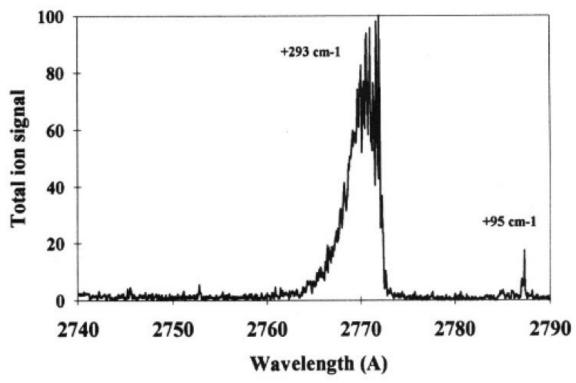
	DABCO – Kr								
Position 1	22.85	48.95	49.27						
Position 3	28.93	44.29	57.34						
	DABC	$O^+ - Kr$							
Position 3	37.18	47.27	54.67						

Pour toutes les espèces représentées dans ce tableau et figures, la position 2 correspond à un état de transition en raison de l'interaction entre le DABCO et le gaz rare le long de cet axe : interaction couche fermée (le doublet non liant de l'azote) – couche fermée (l'orbitale atomique de l'atome de gaz rare).

En revanche, nos calculs montrent que la nature en position 1 et en position 3 (minimum ou état de transition) des points stationnaires dépend du gaz rare et de la charge du complexe DABCO – Rg. En effet, la position 3 correspond à une structure minimale pour toutes les espèces sauf DABCO⁺ – He, où un état de transition a été déterminé à la place. De même, la position 1 se trouve être un minimum pour tous les complexes à l'exception de DABCO⁺ – Kr pour qui cet état est un TS.

Pour le complexe DABCO – Ar, les calculs ab initio réalisés au niveau RMP2 en utilisant la base moins diffuse cc-p-VDZ par Belcher et al. [9] a révélé que la position 3 du DABCO – Ar est l'isomère le plus stable de ce complexe, en bon accord avec nos résultats théoriques. Cependant, rien n'est dit dans cet article sur les autres isomères. Considérant que les simulations antérieures fondées sur un modèle de potentiel type Lennard-Jones par Shang et al. [1] avait déterminé trois structures minimales. Nos calculs ab initio, effectués avec des bases plus diffuses, confirment que la position 1 et la position 3 sont des structures d'équilibre, alors que la position 2 correspond plutôt à un état de transition.

V) Discussion:


Pour DABCO – Kr, Shang et al. [3] et Bahatt et al. [10] ont identifié deux géométries d'équilibre, désignés ici en tant que position 2 et position 3 (Figure 1). A nouveau, nous montrons que la position 2 est un état de transition et non une structure minimale d'énergie. Ceci invalide l'utilisation des anciens paramètres pour les gaz rares dans ces modèles empiriques pour la description précise des espèces DABCO – Rg_n.

Par conséquent, les résultats expérimentaux de Bahatt et al. [10] (donnés en Figure 8) doivent être réattribués. En effet, la technique utilisée permet de sonder à la fois les espèces neutres et ioniques. Leur spectre est constitué de deux bandes: la première apparaît comme une transition faible et une contre progression vibrationnelle (trois bandes). Elle est décalée vers le bleu par rapport à la transition 0-0 de la molécule seule de 95 cm⁻¹ (35 878 cm⁻¹). Le potentiel d'ionisation de cette bande est décalé vers le rouge de 156 cm⁻¹ par rapport à celle de la molécule seule.

La seconde bande est plus forte et plus large. Elle est décalée vers le bleu de 293 cm⁻¹ (36 076 cm⁻¹) et apparaît comme une longue progression vibrationnelle. Le potentiel d'ionisation de cette bande est décalé vers le bleu de 68 cm⁻¹ par rapport à la molécule seule. Bahatt et son équipe ont proposé cette interprétation : les surfaces de potentiel ont été décalées.

Chaque résultat expérimental est en accord avec nos résultats théoriques. De plus, nous avons déterminé deux isomères stables pour le complexe DABCO – Kr (les Positions 1 et 3) alors qu'une seule structure minimale a été trouvée pour l'ion DABCO⁺ – Kr (Position 3).

La forme cationique correspond à l'état final déterminée par Bahatt et al., alors que les deux structures neutres sont présentes dans le faisceau moléculaire avant ionisation. La Position 1 du DABCO – Kr est moins stable que la Position 3 d'environ 160 cm⁻¹ (comme montré dans le Tableau 2).

Figure 8 : Spectre ionique de la transition S_1 ($\nu' = 0$) $\leftarrow S_0$ ($\nu = 0$) du complexe DABCO – Kr₁ déterminé par Bahatt et ses collaborateurs [10]

L'ionisation depuis la Position 1 du DABCO – Kr mène à une transition non-Franck-Condon pour parvenir à la Position 3 du DABCO⁺ – Kr résultant dans une longue progression vibrationnelle. Par contre, la transition Position 3 du DABCO⁺ – Kr ← Position 3 du DABCO – Kr suit le principe Franck-Condon et doit donner une courte progression vibrationnelle, comme celle observée expérimentalement.

De plus, nous obtenons une différence d'énergie entre les transitions Position 3 du DABCO⁺ − Kr ← Position 3 du DABCO − Kr et Position 3 du DABCO − Kr d'environ 160 cm⁻¹, ce qui est en bon accord avec la valeur 198 cm⁻¹ mesurée expérimentalement. Une analyse similaire mène à une interprétation identique pour la structure et la bande large observée par Shang et son équipe après excitation du complexe DABCO − Ar [1].

Un examen attentif des structures optimisées des complexes DABCO – Rg et DABCO⁺ – Rg montrent que certains d'entre eux présentent une déformation au niveau de la molécule de DABCO alors que pour les autres, le DABCO retrouve la symétrie D_{3h} dans laquelle se trouve la molécule seule.

Les distorsions sont situées le long de la coordonnée τ du mode de torsion du DABCO visible sur la figure 9, qui montre le potentiel du complexe DABCO – Ar le long de cette coordonnée. Cette déformation est une torsion de quelques degrés par rapport à l'axe N-N (C_3).

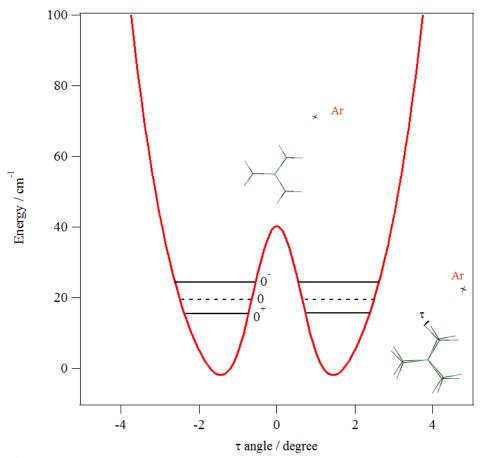


Figure 9 : Courbe de potentiel du DABCO – Ar selon la coordonnée de distorsion τ avec la méthode MP2/aug-cc-pVTZ. La ligne horizontale en pointillé correspond au niveau fondamental vibrationnel non perturbé et les lignes pleines sont obtenues par effet tunnel à travers la barrière de potentiel.

Cette figure montre que la configuration où le DABCO est totalement symétrique (groupe de points D_{3h}) correspond à un état de transition et que la stabilisation se situe après une légère torsion du DABCO. La barrière d'énergie est d'environ 40 cm⁻¹. Le mode d'interaction intermonomère de basse fréquence du DABCO – Ar est d'environ 20 cm⁻¹ (comme montré en référence [9] et dans le Tableau 3).

Par conséquent, ce puits de potentiel est suffisamment profond y pour trouver le niveau de vibration fondamental, qui est ensuite soumis à un effet tunnel à travers la barrière de potentiel. Une estimation rapide de cet effet utilisant le modèle décrit dans la référence [32] conduit à un éclatement d'environ 6 cm⁻¹. Par conséquent, les clusters de DABCO – Ar, avec le DABCO injecté dans un jet d'argon refroidi, doivent posséder des structures de DABCO tordus plutôt que de symétrie D_{3h} , et les deux plus bas niveaux de vibration sont susceptibles d'être peuplés.

Pour le complexe DABCO – Ar, une bande de vibration est mesurée à environ 9 cm⁻¹ par rapport à la bande 0_0^0 [33, 1, 9]. Cette bande a été attribuée à la population du mode de van der Waals le plus bas. En revanche, notre analyse vibratoire (Tableau 3) et celle de Cockett et ses collègues fournissent une fréquence harmonique d'environ 21,5 à 26,3 cm⁻¹ qui peuvent être réduites de 20% quand on tient compte de l'anharmonicité.

Ce qui implique que la fréquence anharmonique associée à ce mode ne correspondra jamais à la bande de 9 cm⁻¹. Ici, nous proposons que cette bande expérimentale corresponde à la population du niveau 0⁻ après avoir tenu compte de l'effet tunnel (Figure 9).

La bande suivante (à 18 cm⁻¹) correspond à l'excitation d'un quantum du mode de vibration le plus bas de cet heterocluster. Pour le complexe DABCO – Kr, Bahatt et ses collaborateurs [10, 3, 33] ont mesuré une petite progression vibrationnelle espacée d'environ 2 cm⁻¹. Cette progression a été attribuée à la population des modes van der Waals les plus bas. Le Tableau 3 montre que les modes de basse fréquence du DABCO – Kr sont au moins de 28 cm⁻¹. A nouveau, l'espacement de 2 cm⁻¹ doit correspondre à la séparation des niveaux le long de la coordonnée de distorsion, comme décrit pour le DABCO – Ar. La séparation est réduite de 2 cm⁻¹ à cause de la masse plus importante du krypton comparé à l'argon.

L'apparition de distorsions n'est pas systématique. Elle est liée au type de gaz rare, la charge ou la position de l'atome de gaz rare par rapport au DABCO. Toutefois, la distorsion est moindre lorsque le gaz rare est au-dessus de l'atome d'azote (position 2).

Ces distorsions "accidentelles" sont dues à un couplage entre les degrés de liberté des vibrations van der Waals et le potentiel électronique c'est-à-dire lorsque la profondeur du potentiel correspond à un multiple de la fréquence du mode de torsion du DABCO, une distorsion est observée. Un tel comportement est une signature de l'effondrement de l'approximation de Born-Oppenheimer pour les complexes faiblement liés.

Dans leur précédente expérience de fluorescence à deux photons induite par laser (two-photon laser-induced fluorescence ou TPLIF) du DABCO implémenté dans un faisceau supersonique He ou Ar avec des conditions de faible expansion, Parker et ses collègues [34] ont observé une dépendance inverse à la température pour la section de collision bimoléculaire :

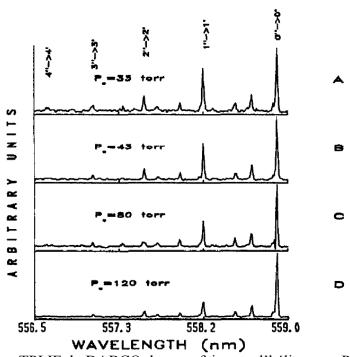


Figure 10 : Spectre TPLIF du DABCO dans un faisceau d'hélium par Parker et al. [34]

Ceci a été attribué à tort à un complexe DABCO – DABCO dont le mécanisme de relaxation est improbable: la pression relativement faible utilisé dans leurs expériences ne favorise pas la formation du dimère (DABCO)₂ mais plutôt du complexe DABCO – Ar / He. Nos résultats montrent qu'un tel comportement est dû à la relaxation vibratoire à travers le mode basse fréquence du DABCO – Ar / He, dans lesquelles les demi – niveaux sont probablement peuplés dans ces expériences.

VI) Conclusion:

Après plusieurs calculs comparatifs effectués sur différentes bases et plusieurs méthodes post Hartree – Fock, notamment l'approche explicitement corrélée des clusters couplés (CCSD(T)-F12), nous avons démontré que l'inclusion d'orbitales atomiques diffuses dans la description des complexes DABCO – Rg (Rg = He, Ne, Ar et Kr) est indispensable à cause de la nature van der Waals de l'interaction DABCO – Rg. Nos calculs ont révélé que le niveau de calcul (R)MP2/aug-cc-pVXZ (X = D, T) est suffisant pour décrire correctement l'interaction intermonomère du DABCO inséré dans un agrégat de néon, d'argon ou de krypton, ou bien piégé dans une matrice de gaz rare froide. Par contre, le complexe DABCO – He doit être étudié avec des méthodes théoriques plus précises.

Pour une meilleure précision, des calculs explicitement corrélés au niveau (R)CCSD(T)-F12/cc-pVTZ-F12 (approximations a et b) peuvent être effectués. Pour ces grands systèmes moléculaires, ces calculs ont permis de réduire jusqu'à deux ordres de grandeur le temps de calcul CPU et l'espace disque lors de l'utilisation de la méthode (R)CCSD(T)-F12 au lieu de la (R)CCSD(T) « classique », pour obtenir la même précision.

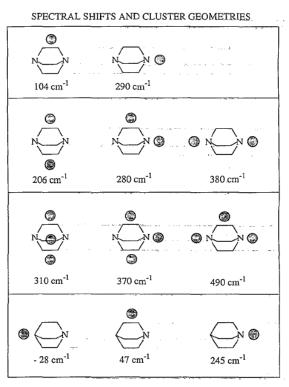
Nous avons déterminé les points stationnaires des surfaces d'énergie potentielle de l'état fondamental des complexes DABCO – Rg (Rg = He, Ne, Ar et Kr) neutres et ioniques. A partir de ces résultats théoriques, les spectres expérimentaux mesurés pour le DABCO – Ar et le DABCO – Kr ont pu être réattribuée. De plus, nous avons montré qu'une distorsion non négligeable du DABCO apparaît pour certains complexes DABCO – Rg. Les conséquences de ces résultats sur les spectres de ces espèces ont été discutées. Dans le chapitre suivant, nous allons appliquer les résultats théoriques trouvés dans cette partie au DABCO en interaction avec plusieurs atomes d'argon.

Bibliographie Chapitre 2:

- [1] Q. Y. Shang, P. O. Moreno, S. Li, et E. R. Bernstein, J. Chem. Phys. 98, 1876 (1993)
- [2] Q. Y. Shang, P. O. Moreno, C. Dion, et E. R. Bernstein, J. Chem. Phys. 98, 6769 (1993)
- [3] Q. Y. Shang, P. O. Moreno et E. R. Bernstein, J. Am. Chem. Chem. Soc. 116, 302 (1994)
- [4] Q. Y. Shang, P. O. Moreno et E. R. Bernstein, J. Am. Chem. Chem. Soc. 116, 311 (1994)
- [5] S. Awali, L. Poisson, B. Soep, M. A. Gaveau, M. Briant, C. Pothier, J. M. Mestdagh, M. Ben El Hadj Rhouma, M. Hochlaf, V. Mazet et S. Faisan, Phys. Chem. Chem. Phys. accepted (2013)
- [6] L. Poisson, R. Maksimenska, B. Soep, J. M. Mestdagh, D. H. Parker, M. Nsangou et M. Hochlaf, *J. Phys. Chem. A*, **114**, 3313 (2010)
- [7] M. J. Ondrechen, Z. Berkovitch-Yellin, et J. Jortner, J. Am. Chem. Soc. **103**, 6586 (1981)
- [8] C. A. Mornany, RF McGuire, AW Burgess, et HA Scheragea, J. Phys. Chern. **79**, 2361 (1975)
- [9] D. E. Belcher, M. J. Watkins, N. Tonge, et M. C. R. Cockett, J. Chem. Phys. **120**, 7894 (2004)
- [10] D. Bahatt, U. Even, et A. Gedanken, J. Phys. Chem. 97, 7189 (1993)
- [11] MOLPRO, version 2012.1, un ensemble de programmes ab initio, H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang, voir http://www.molpro.net
- [12] Gaussian 09, Revision **D.01**, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.

- Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [13] C. Møller et M. S. Plesset. Phys. Rev. 46, 0618 (1934)
- [14] L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov et J. A. Pople. J. Chem. Phys. **110**, 4703 (1999)
- [15] C. Hampel, K. A. Peterson et H.-J. Werner, Chem. Phys. Lett. **190**, 1 (1992)
- [16] T. B. Adler, G. Knizia et H.-J Werner, J. Chem. Phys. **127**, 221106 (2007)
- [17] K. A. Peterson, T. B. Adler et H.-J. Werner, J. Chem. Phys. **128**, 084102 (2008)
- [18] T. H. Dunning, J. Chem. Phys. **90**, 1007 (1989)
- [19] R. A. Kendall, T. H. Dunning et R. J. Harrison, J. Chem. Phys. **96**, 6796 (1992)
- [20] F. Lique, J. Kłos et M. Hochlaf, Phys. Chem. Chem. Phys. 12, 15672 (2010)
- [21] P. Halvick, T. Stoecklin, F. Lique et M. Hochlaf, J. Chem. Phys. 135, 044 312 (2011)
- [22] Y. Ajili, K. Hammami, N. E. Jaidane, M. Lanza, Y. N. Kalugina, F. Lique et M. Hochlaf, Phys. Chem. Phys. **15**, 10062 (2013)
- [23] W. Klopper, Mol. Phys. 99, 481 (2001)
- [24] F. Weigend, A. Köhn et C. Hättig, J. Chem. Phys. **116**, 3175 (2002)
- [25] K. E. Yousaf et K. A. Peterson, J. Chem. Phys. **129**, 184108 (2008)
- [26] S. F. Boys et F. Bernardi, Mol. Phys. **19**, 553 (1970)
- [27] G. Knizia, T. B. Adler et H. Werner, J. Chem. Phys. **130**, 054104 (2009)
- [28] Q. Y. Shang et E. R. Bernstein. Chem. Rev. **94**, 2015 (1994)
- [29] P. R. Herman, P. E. LaRocque et B. P. Stoicheff. J. Chem. Phys. 89, 4535 (1988)
- [30] http://webbook.nist.gov
- [31] Annexe 1
- [32] C. Cohen Tannoudji, B. Diu et F. Laloë, dans "Mécanique quantique" Ed. Hermann Paris, p. 458 (1977)
- [33] G. van den Hock, D. Consalvo, D. H. Parker et J. Reuss, Z. Phys. D. 27, 73 (1993)
- [34] Z. W. Wang, M. A. Quesada et D. H. Parker, Chem. Phys. Letters **141**, 25 (1987)

Chapitre 3


Etude des états électroniques et des structures des complexes DABCO – Ar_n

I) Introduction:

Nous allons traiter dans ce chapitre les complexes 1,4-diazabicyclo.2.2.2.octane (une molécule du type azabicyclooctane) — Ar_n (avec n petit) notés DABCO — Ar_n . A travers ces systèmes, nous allons étudier la microsolvatation des molécules dans leurs états électroniques fondamentaux ou excités dans des solvants non-polaires (c'est-à-dire dans un agrégat de gaz rare ou dans des matrices refroidies).

Dans la littérature, il existe principalement deux articles théoriques traitant des structures et de la spectroscopie de l'état fondamental du complexe DABCO – Ar_n (pour n petit). En 1993, Shang et al. [1] ont déterminé la structure d'énergie minimale dans l'état fondamental de ces complexes van der Waals (vdW) à l'aide d'un modèle de Lennard-Jones (6-12-1) pour modéliser l'interaction atome – molécule.

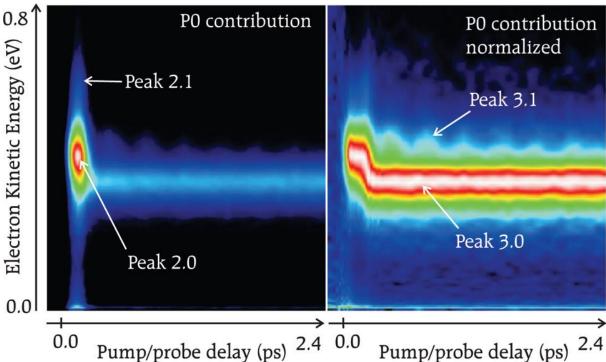
Ces auteurs ont identifié les principaux sites de liaison pour DABCO – Ar_n (n = 1, 2, 3) [1].

Figure 1 : Résultats des calculs de Shang et son équipe. Sites de liaison pour les complexes DABCO – Ar_n (n = 1, 2, 3) et ABCO – Ar ainsi que les énergies associées déterminées en fonction de l'état fondamental de la molécule de DABCO seule. [1]

Ces auteurs déduisent principalement des structures où l'atome d'argon se trouve en face d'une branche $(CH_2)_2$ et / ou au-dessus de l'atome d'azote. Cette dernière structure n'est physiquement pas fiable en raison de la nature anti-liante de la liaison entre l'orbitale de l'argon et le doublet non- liant de l'azote tel que discuté dans le chapitre précédent.

Plus surprenant, les énergies de liaison associées à la position de l'argon au-dessus de l'azote sont les plus grandes. L'origine de ces incohérences s'explique par l'utilisation de paramètres erronés décrivant l'argon et qui sont incorporés dans leur modèle. Ils sont corrigés ultérieurement par ces auteurs pour le DABCO – Ar, mais pas pour les complexes DABCO – Ar_n (pour n > 2) [1, 2].

Ceci invalide l'utilisation de leur modèle. De plus grands calculs pour les complexes DABCO $-Ar_n$ (pour n > 2) sont nécessaires afin de mieux décrire ces systèmes.


En 2004, Cockett et al. [3] ont effectué des calculs (R)MP2/cc-pVDZ sur ces hétéroclusters. Pour le complexe DABCO – Ar₂, l'isomère où les deux atomes d'argon se lient à des emplacements équivalents entre deux branches (CH₂)₂ voisines se trouve être l'isomère le plus stable invalidant donc les résultats de Shang et al.

Pour le complexe DABCO – Ar_3 , une structure de symétrie C_{2v} dans laquelle les trois atomes d'argon se lient sur un seul côté du DABCO est calculée comme étant l'isomère le plus stable à la place de la structure de symétrie D_{3h} pour laquelle les trois atomes d'argon sont en position équatoriale.

Le potentiel d'interaction Ar - Ar (de 99,2 cm⁻¹ [4, 5]) est du même ordre de grandeur que le potentiel Ar - DABCO (~ 300 cm⁻¹ calculé dans le chapitre précédent), de telle sorte qu'il y a compétition entre les interactions Ar - Ar (donnant la structure C_{2V}) et Ar - DABCO (débouchant sur la structure D_{3h}). Comme détaillé dans le chapitre précédent sur l'étude systématique des complexes DABCO - Rg (avec Rg = gaz rare), seul un traitement précis et utilisant des modèles théoriques récents pour le calcul de la structure électronique permettra de déterminer quelle position sera privilégiée.

Expérimentalement, Shang et al. [1, 2], Parker et son équipe [6] ainsi que Cockett et al. [3] ont étudié le complexe DABCO – Ar_n (pour n petit) en utilisant respectivement les techniques spectroscopiques d'excitation à deux protons (« two color (1+1) mass resolved excitation spectroscopy » ou MRES), l'ionisation par plusieurs photons (« (1+1') resonance enhanced multiphoton ionization » ou REMPI) et par une combinaison de la méthode REMPI et par la méthode « zero electron kinetic energy » (ou ZEKE).

Ces travaux ont donné un aperçu des plus bas états électroniques de ces hétéroclusters. Ils ont aussi montré que les états électroniques excités de ces espèces sont de nature Rydberg comme il a déjà été établi pour la molécule seule [7, 8, 9, 10, 11, 12, 13] ou l'état S1 à une promotion de l'électron de valence le plus éloigné du DABCO dans l'orbitale moléculaire (OM) 3s.

Figure 2 : Exemple de spectre d'une expérience pompe (excitation) / sonde (ionisation) réalisée sur le DABCO. Seul P0 (l'ordre 0 de la décomposition du polynôme de Legendre) est représenté [12]

Cette figure représente le spectre photoélectronique issu du temps de délai entre la pompe (266,3 nm) et la sonde (792 nm). Nous pouvons voir que le pic caractéristique du DABCO est clairement visible. Pour un délai plus long, nous remarquons que le pic est légèrement décalé vers une énergie plus basse et une oscillation est visible dans la partie la plus haute de l'énergie.

L'analyse des spectres des complexes DABCO – Ar, DABCO – Ar₂ et DABCO – Ar₃, ont révélé que les bandes correspondant aux états fondamentaux mesurées sont respectivement 105, 208 et 302 cm⁻¹, où l'état fondamental dans chaque cas est pris comme étant la bande la plus proche du rouge, indépendamment de l'intensité.

Ces décalages spectraux reflètent les énergies de liaison des espèces correspondantes. L'additivité de ces variations / énergies de liaison suggère que chaque atome d'argon se lie à un site énergétiquement équivalent par rapport au DABCO. Par conséquent, la structure de symétrie C_{2v} précédemment proposée pour le complexe DABCO-Ar $_3$ ne tient pas compte de ces observations étant donné que les trois atomes d'argon ne sont pas sur des positions équivalentes.

De plus, Shang et al. [2] ont empiriquement proposé la forme de l'état S1 des azabicyclooctanes, qui est observé comme étant moins profond que le potentiel de l'état fondamental à cause de la répulsion entre l'orbitale atomique de l'argon et l'orbitale moléculaire 3s du DABCO qui est diffuse.

En résumé, un grand nombre d'informations sont disponibles sur les états fondamentaux des complexes $DABCO - Ar_n$ (pour n petit) neutres et ioniques, et sur les états électroniques excités des espèces neutres. Les données expérimentales sont de haute qualité et les spectres résultant sont de haute résolution.

Néanmoins, la structure des DABCO – Ar_n a été calculée en utilisant soit un formalisme empirique ou des traitements théoriques, pour lesquels des anomalies ont été constatées. Des méthodes modernes de chimie théorique ont une meilleure définition de la nature diffuse de la fonction d'onde de ces complexes van der Waals et la corrélation électronique. Ce qui implique une description plus proche des modèles expérimentaux des liaisons de ces entités et des applications (solvatation...).

Dans le chapitre précédent, nous avons prouvé que les méthodes théoriques utilisées par les études antérieures ne sont pas adaptées pour décrire l'interaction intermonomer à longue distance du DABCO – Ar, de telle sorte que l'on peut s'attendre à des structures stables différentes pour les clusters DABCO- Ar_n si des calculs plus précis sont effectués.

Ici, nous utilisons la méthode (R)MP2/aug-cc-pVDZ dont nous avons montré, dans le chapitre précédent, qu'elle est suffisamment précise afin de fournir des paramètres de structure et spectroscopiques fiables pour les systèmes DABCO – Rg (Rg = gaz rare). Ces données étant fournies par des calculs d'analyse comparative sur un ensemble de bases et de méthodes ab initio post-Hartree-Fock ainsi qu'une comparaison avec des résultats expérimentaux valides. En outre, nous traitons les états électroniques excités de ces systèmes en utilisant des méthodes d'interaction de configuration.

Nos données sont utilisées pour la réaffectation des spectres expérimentaux et afin de discuter des effets de solvatation du DABCO intégré dans un agrégat d'argon.

II) Détails des calculs :

La base aug-cc-pVDZ a été utilisée pour la description des atomes H, C, N et Ar [14, 15]. Les points stationnaires des surfaces d'énergie potentielle de l'état fondamental des complexes de DABCO – Ar_n (n = 1 – 4) neutres et ioniques ont été caractérisés avec le programme GAUSSIAN09 [16]. Ces calculs ont été effectués aux niveaux Möller Plesset (R)MP2 [17, 18, 19], dans le groupe de symétrie C₁, en utilisant les options standards implémentées dans le programme GAUSSIAN09. Nous en avons ensuite déduit les paramètres géométriques optimisés et les fréquences harmoniques.

Pour déterminer les états électroniques du DABCO – Ar_n (n = 1 – 3), nous avons utilisé le programme MOLPRO [20] avec la méthode complete active space self-consistent field (ou CASSCF) [21, 22], suivie par la méthode d'interaction de configuration multi-reference configuration interaction (ou MRCI) [23, 24].

Ces calculs ont été effectués dans le groupe de symétrie C_{2v} . En CASSCF, les états électroniques ont été moyennés à l'aide de la procédure décrite dans MOLPRO. Avec les versions disponibles de MOLPRO, nous ne pouvons pas considérer toutes les orbitales moléculaires de valence de ce système dans l'espace actif. Par conséquent, nous avons fait plusieurs tests afin de réduire la taille de l'espace actif en évitant de perturber trop fortement le modèle de leurs plus bas états électroniques singulets (S0 à S4).

Par symétrie C_{2v} , le meilleur compromis (entre coût de calcul et précision) est un espace actif comprenant toutes les orbitales moléculaires (OM) de HOMO – 2 jusqu'à LUMO + 2 comme actives. Les OMs les plus basses sont gelées. Les espaces actifs qui en résultent sont construits en utilisant toutes les fonctions de configuration d'état (configuration state functions ou CSFs) obtenues après excitation de tous les électrons de valence dans ces orbitales.

Nous avons listé dans le Tableau 1, pour illustration, le nombre des CSFs pris en compte pour la symétrie A_1 du groupe C_{2v} .

	CASSCF	MRCI						
	Nombre de CSFs	Nombre de CSFs non –	Nombre de CSFs					
	Nombre de CSFS	contractées	contractées					
DABCO – Ar	107751	9499364	1967975					
$DABCO - Ar_2$	107751	8531188	1264245					
DABCO – Ar ₃	42746	6373570	2093067					
DABCO – Ar ⁺	107436	6801544	1035100					
$DABCO - Ar_2^+$	107436	6604508	971513					
$DABCO - Ar_3^+$	84992	19662992	1872284					

Tableau 1: Nombre de fonctions de configuration d'états (CSFs) avec la méthode CASSCF/aug-cc-pVDZ et nombre de CSFs contractées et non – contractées avec la méthode MRCI pour la symétrie A_1 du groupe C_{2v} pour les calculs des états électroniques des complexes DABCO – $Ar_n^{0,+1}$ (n = 1 – 3).

Nous avons utilisé les fonctions d'onde CASSCF afin de déduire le moment de transition pour la transition Sp ($p \ge 1$) \leftarrow S0. En MRCI, toutes les configurations de l'expansion CI avec des coefficients supérieurs à 0,05 des fonctions d'onde CASSCF ont été prises en compte comme référence. Le Tableau 1 donne le nombre de configurations contractées et non contractées lors du calcul des états du DABCO – Ar_n (pour la symétrie A_1).

Nous avons également calculé le potentiel de l'état fondamental D_0 de DABCO- Ar_n^+ (n = 1 – 3) en suivant la même méthodologie.

L'étude expérimentale a été réalisée dans le Laboratoire Francis Perrin par L. Poisson [12], sur le dispositif présenté en figure 3. La molécule de DABCO est ensemencée à température ambiante dans de l'hélium à température ambiante pour créer un jet moléculaire refroidit par une détente supersonique.

Le jet moléculaire croise un laser femtoseconde qui va exciter les molécules. Une sonde délayée en temps ionise les molécules excitées après un temps ajustable. Les électrons produits sont collectés par un imageur de vitesse, permettant par la suite, de reconstruire le spectre de photoélectron ainsi que de fournir des informations sur la polarisation des électrons émis.

L'étude a été réalisée avec un laser de pompe de 266,3 nm et une sonde de 399,2 nm. Les données obtenues peuvent ainsi être comparées aux résultats théoriques afin de valider les méthodes utilisées. La figure 3 représente le dispositif. L'expérience se déroule en projetant un flux de DABCO à travers une valve, la pression de vapeur étant suffisante à température ambiante, l'injection peut se faire directement dans la chambre principale sans chauffer le gaz.

Le flux arrive dans une chambre où un laser femto seconde (ou nano seconde suivant l'expérience) va exciter la molécule. Ensuite, les ions et les électrons émis par le DABCO excité sont détectés pour former le spectre photo électronique.

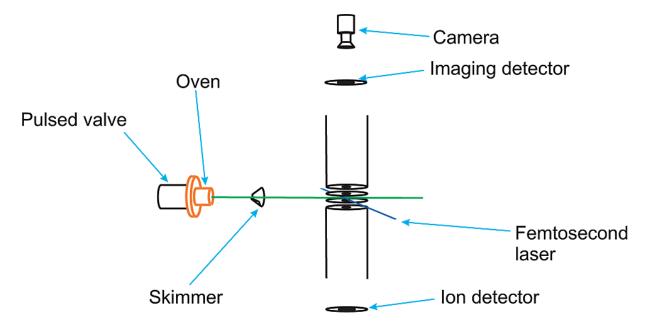
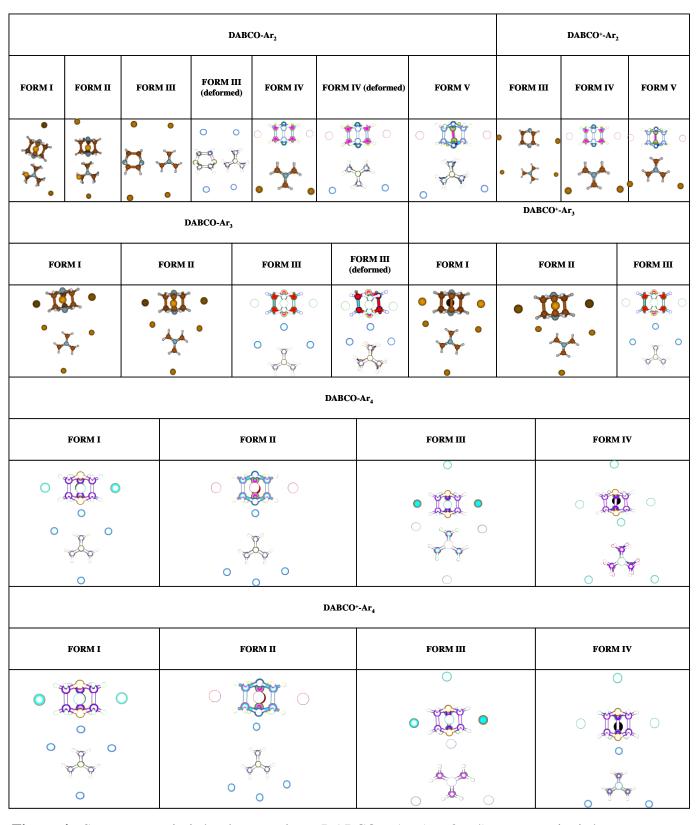


Figure 3 : Protocole expérimental

Les harmoniques ont été mesurées avec des lasers de 399,2 nm et 266,3 nm de longueur d'onde. Les ions et les électrons sont détectés perpendiculairement au flux moléculaire.

Les profils des énergies et des angles d'éjection des ions et des électrons détectés sont reconstitués à partir des données brutes grâce à un algorithme basé sur la transformé inverse d'Abel. Les données obtenues peuvent ainsi être comparées aux résultats théoriques afin de valider les méthodes utilisées.


III) Structures du DABCO^{0,+1} – Ar_n (pour n = 1 - 4):

Dans le chapitre précédent, les positions d'équilibre de l'état fondamental des complexes DABCO – Ar et DABCO⁺ – Ar ont été présentées. Nous avons montré que les complexes DABCO – Ar et DABCO⁺ – Ar possèdent deux structures minimales (notées Position 1 et Position 3) et un état de transition (TS, noté Position 2). Les minima correspondent aux structures où l'atome d'argon se lie dans le plan σ_h du DABCO alors que l'état de transition apparaît quand l'atome d'argon est situé le long de l'axe C_3 . Pour les complexes DABCO – Ar_n (avec n=2,3,4) neutres et cationiques, les optimisations de structures effectuées avec la méthode (R)MP2/aug-cc-pVDZ sont représentées dans le Tableau 2 et la Figure 4. Nos études systématiques du chapitre précédent sur les complexes DABCO – Rg ont montré que ce niveau de théorie est suffisant pour une description qualitative de ces espèces. Nous donnons la totalité des fréquences harmoniques en annexe [25].

	$DABCO-Ar_2$											
	Distances							An	gles	Е	E_{r}	
	N-C	N-N	C-C	Н-С	R_1	R_2	C-N-C	N-C-C	N-C-H (a)	N-C-H (b)		
FOR M I TS	1.478	2.600	1.562	1.103	4.775	4.562	108.2	110.3	107.5	108.2	-1398.2352554669	185.2
FOR M II TS	1.478	2.601	1.562	1.103	4.335	4.638	108.2	110.4	107.4	108.2	-1398.2357543197	75.7
FOR M III MIN	1.477	2.600	1.564	1.103	5.920	5.550	108.4	110.5	107.7	/	-1398.2324588825	798.9
FOR M III (défor mé) MIN	1.478	2.601	1.563	1.103	4.757	4.321	108.3	110.4	107.5	108.1	-1398.2356773558	92.6
FOR M IV TS	1.478	2.601	1.564	1.103	4.272	4.272	108.4	110.5	107.7	/	-1398.2360847768	3.2
FOR M IV (défor mé) MIN	1.478	2.601	1.563	1.103	4.296	4.296	108.3	110.5	107.5	108.0	-1398.2360993483	0.0
FOR M V MIN	1.478	2.600	1.563	1.103	4.761	4.761	108.2	110.3	107.5	108.2	-1398.2353191232	171.2
$DABCO^{\scriptscriptstyle +} - Ar_2$												
FOR M III MIN	1.442	2.478	1.636	1.098	4.683	4.197	111.8	107.0	110.2	/	-1397.9869528595	184.8

FOR																	
M IV MIN	1.442	2.478	3 1.6	36	1.098	4.197	4.197	11	1.8	107.0	110.2	/	-1	397.9877	949582	0.0	
FOR M V TS	1.441	2.477	1.63	37	1.098	4.685	4.685	11	1.9	107.0	110.3	/	-1	397.9861	342230	364.4	
15	DABCO – Ar ₃																
	Distances							C-N-	Angles -N- N-C- N-C-H N-C-H			TT	Е		E _r		
	N-C	N-N	C-C	H-0	R_1		R_2	\mathbb{R}_3	C-N	C	(a)	(b					
FOR M I MIN	1.478	2.602	1.564	1.10	3 4.28	9 4	1.289	4.289	108.4	4 110.6	107.7	. /	-1	925.1942	559507	57.1	
FOR M II TS	1.477	2.598	1.564	1.10	3 4.74	8 4	1.748	4.748	108.	5 110.5	107.7	. /	-1	925.1928	472731	366.2	
FOR M III TS	1.478	2.600	1.564	1.10	3 4.20	8 4	1.268	4.709	108.4	4 110.5	107.7	/	-1	925.1945	006287	3.4	
FOR M III (défor mé) MIN	1.478	2.601	1.563	1.10	3 4.30	3 4	1.303	4.710	108.4	4 110.5	107.5	108	.0 -1	925.1945	160709	0.0	
			-				D	ABCO ⁺	- Ar ₃								
FOR M I MIN	1.442	2.478	1.635	1.09	8 4.19	7 4	1.197	4.197	111.8	8 107.0	110.2	. /	-1	924.9472	628043	0.0	
FOR M II MIN	1.442	2.477	1.636	1.09	8 4.68	5 4	1.685	4.685	111.9	9 107.0	110.2	. /	-1	924.9447	610678	549.0	
FOR M III MIN	1.442	2.478	1.636	1.09	8 4.19	1 4	1.191	4.654	111.8	8 107.0	110.2	. /	-1	924.9471	471970	25.3	
			•	•			•	D	ABCO -	- Ar ₄					1		
	1		1		Distan						C-N-	An N-C-	gles N-C-	N-C-		Е	E _r
	N-C	N-N	C-C	Н-С	R_1		R_2	R	23	R_4	C	C	H (a)	H (b)			
FOR M I MIN	1.478	2.600	1.564	1.102	4.26	6	4.266	4.2	266	4.709	108.4	110.5	107.7	/	-2452.	1526873647	0.0
FOR M II TS	1.477	2.598	1.564	1.103	4.23	8	4.751	4.7	751	4.751	108.4	110.5	107.7	/	-2452.	1518196799	190.4
FOR M III TS	1.477	2.599	1.564	1.103	4.26	0	4.260	4.2	260	4.794	108.4	110.5	107.7	/	-2452.	1515185683	256.5
FOR M IV TS	1.477	2.597	1.563	1.103	4.74	9	4.749	4.7	49	4.794	108.3	110.3	108.1	107.5	-2452.	1502285382	539.6
					1			DA	ABCO ⁺	- Ar ₄			1		1		
FOR M I MIN	1.442	2.478	1.535	1.098	4.19)	4.190	4.	190	4.653	111.8	107.0	110.2	/	-2451.	9066050589	0.0
FOR M II MIN	1.442	2.477	1.536	1.098	4.16	i	4.684	4.	684	4.684	111.8	107.0	110.2	/	-2451.	9050029914	351.6
FOR M III TS	1.441	2.477	1.635	1.098	4.20	3	4.203	4.	203	4.608	111.8	107.1	110.1	/	-2451.	9053415714	277.3
FOR M IV TS	1.441	2.476	1.636	1.098	4.68		4.681	4.0	681	4.609	111.8	107.1	110.2	/	-2451.	9028663476	820.5

Tableau 2: Parametres géometriques principaux (distances en Å et angles en degrés), énergies totale (E, en hartree) et relative (E_r, en cm⁻¹) des complexes DABCO – Ar_n (n = 2 – 4) neutres et cationiques obtenus au niveau de calcul (R)MP2/aug-cc-pVDZ. R_i correspond à la distance entre le centre de masse du DABCO et le ième atome d'argon. La Figure 4 donne la définition des structures.

Figure 4 : Structures optimisées des complexes DABCO - Ar_n (n = 2 - 4) neutres et ionisés. Nous donnons les vues de côté et de dessus.

Pour les complexes DABCO – Ar_2 , nous avons trouvé trois états de transition et quatre formes stables. La forme la plus stable (FORM IV (deformed)) correspond à la position où les deux atomes d'argon se lient au DABCO dans le plan σ_h et où le DABCO est légèrement déformé.

Ce résultat est cohérent avec l'additivité des énergies de liaison lorsque le nombre d'atomes d'argon augmente comme suggéré précédemment. Pour l'état de transition nommé FORM IV (celui qui possède la plus grande énergie : 3,2 cm⁻¹), nous pouvons voir que le DABCO retrouve sa symétrie D_{3h}.

Dans les formes III, III (deformed) et V, qui sont aussi des structures d'équilibre, tous les atomes d'argon sont situés dans le plan σ_h et au moins un de ces atomes est positionné en face d'une branche (CH₂)₂ du DABCO. Dans les formes I et II (des états de transition), l'un des atomes d'argon se lie dans le plan équatorial de la molécule de DABCO, tandis que le second atome d'argon est lié à la verticale d'une des liaisons C - C des branches (CH₂)₂. Pour DABCO⁺ – Ar₂, seules les formes III et IV se trouvent être des minima, la dernière forme étant la plus stable. La forme V correspond ici à un état de transition. Pour toutes les structures ioniques, la molécule de DABCO garde sa symétrie D_{3h}.

L'existence de trois structures pour le DABCO – Ar_2 a déjà été suggérée par Shang et son équipe [1] après analyse de leur spectre. Les modélisations d'un potentiel Lennard – Jones – Coulomb (6 –12 – 1) réalisés par Shang et al. [1] ont conduit à trois isomères dont le plus stable est celui qui possède une liaison de type van der Waals Ar - N. Ce résultat n'est pas plausible car cette position de l'argon correspond à un état de transition quel que soit le nombre d'argon autour du DABCO (comme montré dans le chapitre précédent et le Tableau 2). D'après leur modèle, la forme III est la forme la moins stable.

En 2004, Belcher et al. [3] ont réalisé des calculs MP2/cc-pVDZ mettent en avant une forme plus stable du complexe, la forme IV. Nous avons déterminé que la forme IV est un état de transition qui conduit à la forme IV (deformed). Ces deux groupes [1, 3] ont utilisé leurs résultats théoriques pour l'attribution de leur spectres. Nous allons réinterpréter les spectres expérimentaux à la lumière de nos résultats théoriques.

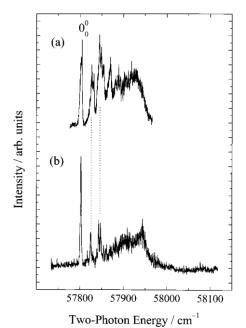


Figure 5 : Spectre ZEKE du complexe DABCO-Ar2 déterminé par Belcher et al. [3]

La Figure 5 montre une progression vibrationnelle étendue avec des niveaux d'énergies espacés divergents. La bande la plus intense apparaît à environ 6 cm⁻¹ vers le bleu par rapport à la bande d'origine. L'attribution proposée d'une liaison de van der Waals suggèrerait un changement significatif de la géométrie le long de cette coordonnée intermoléculaire, en accord avec le principe de Franck – Condon.

Cependant, le plus bas mode de vibration du complexe DABCO – Ar₂ FORM IV (deformed) est à 19 cm⁻¹ [25]. Comme discuté pour le DABCO – Ar dans le chapitre précédent, les effets anharmoniques ne devraient pas réduire cette fréquence harmonique de 50%. Nous pensons plutôt que cette première bande est due à la séparation du niveau vibrationnel fondamental entraînée par l'effet tunnel comme pour le complexe DABCO – Ar étudié dans le chapitre précédent. Les bandes suivantes correspondent à l'excitation des modes van der Waals, comme suggéré par les études précédentes [1, 3].

Pour le complexe DABCO – Ar_3 , deux minima et deux états de transition ont été trouvés. Pour toutes les formes, les trois atomes d'argon sont localisés dans le plan σ_h . L'isomère le plus stable a trois argons liés sur le même côté du DABCO qui subit une déformation. Il est suivi par un état de transition (la forme III). Pour une énergie supérieure à 57 cm⁻¹, nous avons trouvé la forme I (de symétrie D_{3h}) dans laquelle les trois atomes d'argon sont situés entre les branches $(CH_2)_2$ du DABCO.

Les deux minima sont connectés à un second état de transition (la forme II) qui possède ses trois atomes d'argon en face des branches $(CH_2)_2$ du DABCO. La forme I est la plus stable grâce à la stabilisation induite par la formation des liaisons Ar - Ar.

Cependant, la différence d'énergie entre les deux structures d'énergie minimale est relativement petite. Pour le complexe ionique DABCO - Ar_3^+ , les formes I, II et III correspondent à des minima dans la surface de potentiel fondamental. Nos résultats invalident les structures de Shang et al. [1] (sûrement à cause des paramètres erronés utilisés pour décrire l'interaction Ar - Ar et l'atome d'argon) et clos le débat sur la question ouverte par Cockett et son équipe [3].

Expérimentalement, les spectres MRES, ZEKE et REMPI du DABCO – Ar₃, sont constitués d'une longue progression vibrationnelle. La première bande excitée (à 10 cm⁻¹) a été attribuée de manière erronée à un mode van der Waals, qui a été calculé à environ 22 cm⁻¹ [25]. Cette bande correspond à nouveau à une séparation due à l'effet tunnel comme discuté pour les complexes DABCO – Ar et DABCO – Ar₂.

Pour le complexe DABCO – Ar_4 , une unique forme stable a été trouvée (la forme I), dans laquelle tous les atomes d'argon sont dans le plan σ_h : trois d'entre eux sont dans des positions équivalentes et le quatrième est un peu plus éloigné du centre de masse du DABCO (Tableau 2).

Nous pouvons donc voir ici les premières couches de solvatation du DABCO dans un agrégat d'argon, comme illustré dans la Figure 6 :

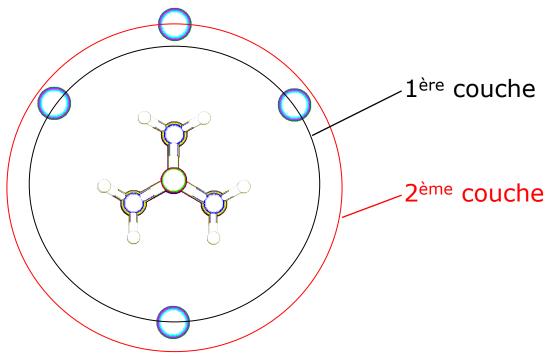


Figure 6 : Illustration de l'effet de solvatation du DABCO dans l'agrégat d'argon

Le premier groupe d'atomes d'argon est localisé dans la première couche de solvatation alors que le second groupe (le quatrième atome d'argon) est situé dans la deuxième couche. Nous avons également déterminé trois états de transition.

Pour ces états de transition, le quatrième atome d'argon ajouté au complexe DABCO – Ar_3 se positionne de la même façon que les structures des états de transition des complexes DABCO – Ar_n (pour n = 1, 2 et 3) c'est – à – dire soit au – dessus de l'atome d'azote du DABCO, ou en face d'une branche (CH_2)₂.

Pour le complexe ionique DABCO - Ar_4^+ , la forme I reste la forme la plus stable. Mais la forme II devient elle aussi un minimum. Les deux autres formes (forme III et forme IV) ont été calculées comme étant des états de transition.

Nous avons listé dans le Tableau 3 la correction des énergies de liaison (BE pour binding enregies), et des contributions de l'erreur de superposition des bases (BSSE) pour les complexes $DABCO^{0,+1} - Ar_n$ (n = 1, 2 et 3).

Tableau 3: Correction des énergies de liaison (BE) pour les complexes DABCO $^{0,+1}$ – Ar_n (n = 2 et 3). Nous donnons aussi les contributions de l'erreur de superposition des bases (BSSE). Toutes les valeurs sont en cm⁻¹.

	BSSE pour le DABCO	BSSE pour l'Ar _n	Total BSSE	BE
DABCO – Ar ₂ FORM I	177	432	608	393
DABCO – Ar ₂ FORM II	186	484	670	434
DABCO – Ar ₂ FORM III	53	137	191	252
DABCO – Ar ₂ FORM III (déformé)	192	471	663	443
DABCO – Ar ₂ FORM IV	213	525	738	498
DABCO – Ar ₂ FORM IV (déformé)	204	522	725	489
DABCO – Ar ₂ FORM V	186	426	612	407
DABCO ⁺ – Ar ₂ FORM III	211	525	736	909
DABCO ⁺ – Ar ₂ FORM IV	218	592	810	1017
DABCO – Ar ₂ ⁺ FORM V	203	463	666	799
DABCO – Ar ₃ FORM I	318	781	1099	763
DABCO – Ar ₃ FORM II	286	648	934	622
DABCO – Ar ₃ FORM III	315	793	1108	666
DABCO – Ar ₃ FORM III (déformé)	301	791	1092	651
DABCO ⁺ – Ar ₃ FORM I	328	894	1222	1517
DABCO ⁺ – Ar ₃ FORM II	302	700	1002	1193
DABCO ⁺ – Ar ₃ FORM III	324	876	1200	1369

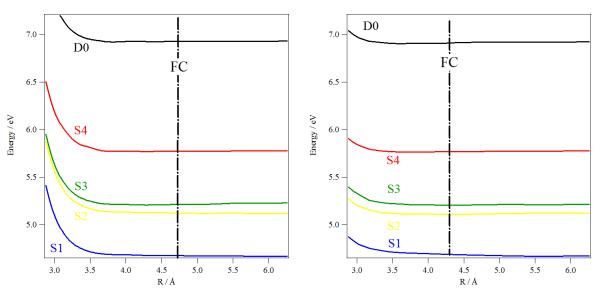
Pour le complexe DABCO – Ar, nous avons montré dans le chapitre précédent que la liaison entre un atome d'argon et le DABCO se stabilise vers l'énergie de 300 cm⁻¹. Pour les formes les plus stables, ce tableau montre qu'il y a une additivité des énergies de liaison lorsque le nombre d'atomes d'argon augmente.

En effet, pour la forme IV (deformed) du DABCO – Ar_2 , nous avons calculé une BE d'environ 490 cm⁻¹ (c'est – à – dire environ 250 cm⁻¹ par argon). Ce résultat est en accord avec l'additivité des énergies de liaison et des décalages dans les spectres observés expérimentalement.

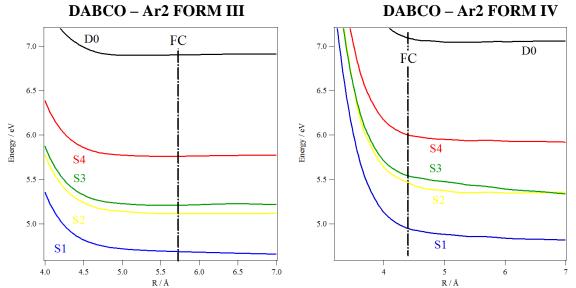
Finalement, l'analyse des résultats du Tableau 3 montre que la contribution de la BSSE (que ce soit pour le DABCO ou pour les argons) à la BE est assez grande, et ne peut pas être omise si l'on souhaite obtenir des potentiels précis pour ces espèces. Ce résultat n'est pas surprenant à cause de la nature van der Waals / transfert de charge de la liaison entre ces complexes.

De manière générale, notre étude systématique sur les complexes DABCO – Ar_n ($n \le 4$) a montré que le voisinage du DABCO subit des changements lorsqu'il se lie à un, deux et trois atomes d'argon.

Cependant, le quatrième atome de gaz rare se positionne sur la seconde couche de solvatation (cf Figure 6). Pour les complexes DABCO – Ar_n ($n \ge 5$), les atomes d'argon ajoutés ne vont que légèrement perturber la molécule. Les hétéroclusters DABCO – Ar_n ($n \le 2 - 3$) donnent un modèle qui représente bien le DABCO absorbé sur la surface d'une matrice d'argon, ou d'un large agrégat d'argon.


Les résultats déterminés pour les complexes DABCO – Ar_n (n = 2 et 3) peuvent être utilisés comme modèle pour le DABCO adsorbé dans un grand agrégat d'argon ou dans une matrice froide.

IV) Etats électroniques excités du DABCO – Ar_n (pour n = 1, 2 et 3):


Les Figures 7 à 9 affichent les courbes à une dimension des surfaces d'énergie potentielle (SIP) des états électroniques singlet (S1, S2, S3 et S4) de DABCO – Ar_n (pour n=1-3) calculés avec les méthodes CASSCF/MRCI/aug-cc-pVDZ.

DABCO – Ar POSITION 1

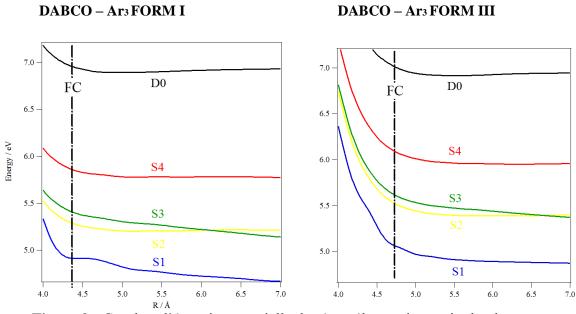
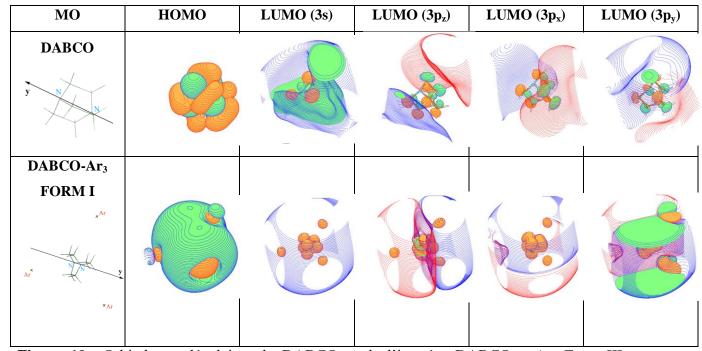

DABCO - Ar POSITION 3

Figure 7 : Courbes d'énergie potentielle des états électroniques singlet des structures DABCO – Ar le long de la coordonnée R calculés avec les méthodes CASSCF/MRCI/aug-cc-pVDZ. Nous donnons aussi le potentiel ionique D0. La référence d'énergie est le potentiel d'énergie minimale de l'état fondamental.

Figure 8 : Courbes d'énergie potentielle des états électroniques singlet des structures DABCO – Ar₂ le long de la coordonnée R calculés avec les méthodes CASSCF/MRCI/aug-cc-pVDZ. Nous donnons aussi le potentiel ionique D0. La référence d'énergie est le potentiel d'énergie minimum de l'état fondamental.


Figure 9 : Courbes d'énergie potentielle des états électroniques singlet des structures DABCO – Ar₃ le long de la coordonnée R calculés avec les méthodes CASSCF/MRCI/aug-cc-pVDZ. Nous donnons aussi le potentiel ionique D0. La référence d'énergie est le potentiel d'énergie minimum de l'état fondamental.

Ces courbes sont obtenues par l'élongation de la coordonnée R, qui correspond à la distance entre le centre de masse du DABCO et les atomes d'argon.

Nous donnons aussi les potentiels des formes ioniques correspondantes (D0). La position verticale de ces courbes est réduite de moins de 0,2 eV par rapport aux résultats expérimentaux.

Elles doivent être décalées en conséquence si on veut utiliser ces résultats afin d'attribuer des spectres expérimentaux de haute résolution. Les lignes verticales correspondent au centre de la région Franck – Condon donnée par les potentiels de l'état fondamental correspondants.

Les états excités S1, S2, S3 et S4 des fonctions d'onde du DABCO sont majoritairement décrits par l'excitation d'un électron depuis l'orbitale moléculaire HOMO jusqu'aux orbitales LUMO (3s), LUMO (3p_x), LUMO (3p_y) et LUMO (3p_z), comme montré dans la Figure 10.

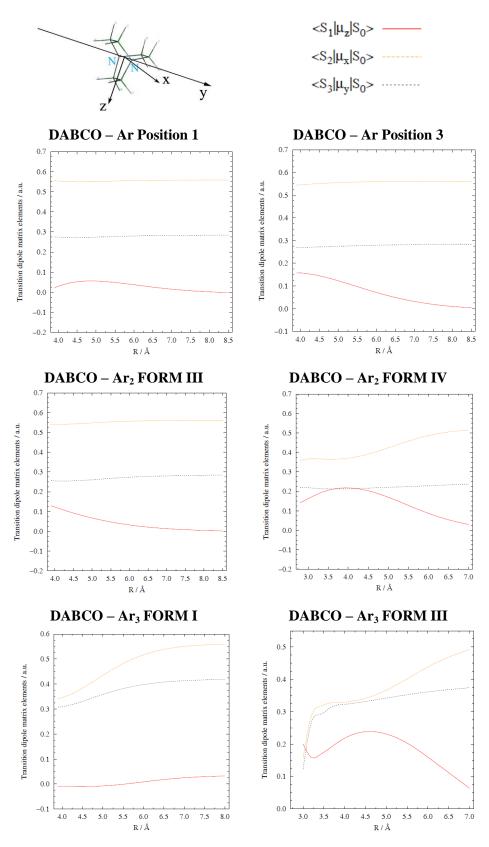


Figure 10 : Orbitales moléculaires du DABCO et de l'isomère DABCO – Ar_3 Form III obtenues au niveau HF/aug-cc-pVDZ. Nous donnons aussi les structures des espèces moléculaires considérées ici. L'axe y coïncide avec l'axe C3 (le long de l'axe N – N) et les atomes d'argon sont positionnés sur le plan xy.

Cette figure montre que l'interaction des orbitales moléculaires du DABCO 3s, 3p_y et 3p_z avec l'argon est principalement de nature anti-liante. Ceci résulte à priori des potentiels répulsifs le long de la distance intermonomère du complexe DABCO – Ar.

Cependant, l'interaction entre l'orbitale moléculaire $3p_x$ et l'orbitale 3s de l'argon tend vers une légère stabilisation et, de là, à un puit de potentiel le long de la coordonnée R. Cette simple image est en parfait accord avec les courbes à une dimension des plus bas états électroniques du DABCO – Ar_n (n = 1 - 3) données dans les Figures 7 à 9. Nos résultats sont conformes aux considérations précédentes [1, 2, 3].

La Figure 11 présente l'évolution le long de l'axe R de la transition des moments dipolaires entre les états fondamentaux des complexes DABCO – Ar_n (n = 1 – 3) et leurs plus bas états singulets correspondants, calculé par la méthode CASSCF/aug-cc-pVDZ.

Figure 11 : Evolution le long de l'axe R de la transition des moments dipolaires entre les états S0 et Sp (p = 1 - 3) des complexes DABCO - Ar $_n$ (n = 1 - 3), calculé par la méthode CASSCF/aug-cc-pVDZ.

Comme prévu, ils convergent vers les moments de transition de la molécule seule pour les grandes valeurs de R. Pour de petites valeurs de R, quelques éléments <S1 $|\mu z|$ S0>présentent une évolution non monotone, alors que les autres restent constants ou évoluent de façon monotone.

Comme suggéré par Cockett et son équipe [3], une faible force d'oscillation de la bande d'origine S1 est calculée ici pour le complexe DABCO – Ar. Ceci peut expliquer leur échec à enregistrer un signal ZEKE correct pour ce complexe.

Cependant, nous pouvons clairement voir qu'un croisement existe entre la petite bande de potentiel S2 et le potentiel répulsif S3 pour plusieurs complexes, et spécialement lorsque le nombre d'atomes d'argon entourant la molécule augmente. Ce croisement se produit non loin de la région Franck – Condon à laquelle les électrons peuvent accéder par une excitation depuis l'état S0.

Par conséquent, les dynamiques ondulatoires sur les surfaces d'énergie potentielle S1-S4 doivent être complexe. Cela dépend, à priori, de l'environnement du DABCO. Comme mentionné précédemment, ces résultats peuvent facilement être étendu aux agrégats DABCO@Ar_n (pour n grand) [26].

V) Conclusion:

Nous avons présenté une étude ab initio des structures d'équilibre et des états de transition des complexes DABCO – $Ar_n^{0,+1}$ (n = 1 – 4) neutres et ioniques. Ce travail a révélé que certaines de ces structures, déjà étudiées, n'ont pas donnés de résultats fiables à cause de la qualité trop faible des théories utilisées.

Nous avons montré que le DABCO subit de légères déformations lorsqu'il est entouré par un petit nombre d'atomes d'argon et que la première couche de solvatation est pleine lorsque trois atomes d'argon entourent la molécule de DABCO. De plus, nous avons étudié les plus bas états électroniques singulets du DABCO – Ar_n^0 (n = 1 – 3).

En conséquence, les effets photophysiques et photochimiques de l'état Rydberg (2p3s) du solvant non polaire induits de ce diazabicyclooctane doivent être complexes à cause de la forme spéciale de ces potentiels singulets. Plus généralement, nos résultats peuvent être étendus à l'interprétation qualitative des études spectroscopiques et dynamiques des molécules de DABCO absorbés dans de grands agrégats d'argon ou dans des matrices froides d'argon.

En utilisant une méthodologie similaire, R. Linguerri a récemment montré que les ions multi-chargés (MCIs) [27] réagissent avec les matrices d'argon, ce qui permet d'augmenter le nombre de liaisons covalentes lorsque la charge des MCIs augmente. Ici, nous avons prouvé que les agrégats et les matrices d'argon vont perturber les molécules de DABCO, donc elles ne peuvent être considérées comme intactes (à cause des déformations subies).

Bibliographie Chapitre 3:

- [1] Q. Y. Shang, P. O. Moreno, S. Li, et E. R. Bernstein, J. Chem. Phys. 98, 1876 (1993)
- [2] Q. Y. Shang, P. O. Moreno, C. Dion et E. R. Bernstein, J. Chem. Phys. 98, 6769 (1993)
- [3] D. E. Belcher, M. J. Watkins, N. Tonge, et M. C. R. Cockett, J. Chem. Phys. **120**, 7894 (2004)
- [4] F. M. Tao et Y. K. Pan, Mol Phys. **81**, 507 (1994)
- [5] K. Patkowski, G. Murdachaew, C. Fou et K. Szalewicz, Mol. Phys. 103, 2031 (2005)
- [6] G. van den Hock, D. Consalvo, D. H. Parker et J. Reuss, Z. Phys. D. 27, 73 (1993)
- [7] M. G. H. Boogaarts, I. Holleman, R. T. Jongma, D. H. Parker et G. Meijer, J. Chem. Phys. **104**, 4357 (1996)
- [8] D. H. Parker et P. Avouris, J. Chem. Phys. **71**, 1241 (1979)
- [9] M. Fujii, T. Ebata, N. Mikami et M. Ito, J. Phys. Chem. **88**, 4265 (1984)
- [10] D. Consalvo, M. Drabbels, G. Berden, W. Leo Meerts, D. H. Parker et J. Reuss, Chem. Phys. **174**, 267 (1993)
- [11] M. Fujii, T. Ebata, N. Mikami et M. Ito, Chem. Phys. Lett. **101**, 578 (1983)
- [12] L. Poisson, R. Maksimenska, B. Soep, J.-M. Mestdagh, D. H. Parker, M. Nsangou et M. Hochlaf, J. Phys. Chem. A **114**, 3313 (2010)
- [13] A. E. Boguslavskiy, M. S. Schuurman, D. Townsend et A. Stolow, Faraday Discuss. **150**, 419 (2011)
- [14] T. H. Dunning, J. Chem. Phys. **90**, 1007 (1989)
- [15] R. A. Kendall, T. H. Dunning et R. J. Harrison, J. Chem. Phys. 96, 6796 (1992)
- [16] Gaussian 09, Revision **D.01**, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.

- Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [17] C. Møller et M. S. Plesset. Phys. Rev. 46, 0618 (1934)
- [18] L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov et J. A. Pople. J. Chem. Phys. **110**, 4703 (1999)
- [19] P. J. Knowles, J. S. Andrews, R. D. Amos, N. C. Handy et J. A. Pople. Chem. Phys. Lett. **186**, 130 (1991)
- [20] MOLPRO, version 2012.1, un ensemble de programmes ab initio, H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh,
- A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson,
- A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel,
- A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata,
- A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri,
- D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni,
- T. Thorsteinsson, and M. Wang, voir http://www.molpro.net
- [21] P. J. Knowles et H.-J. Werner, Chem. Phys. Lett. **115**, 259 (1985)
- [22] H.-J. Werner et P. J. Knowles, J. Chem. Phys. **82**, 5053 (1985)
- [23] H.-J. Werner et P. J. Knowles, J. Chem. Phys. **89**, 5803 (1988)
- [24] P. J. Knowles et H.-J. Werner, Chem. Phys. Lett. **145**, 514 (1988)
- [25] Annexe 2
- [26] S. Awali, L. Poisson, B. Soep, M. A. Gaveau, M. Briant, C. Pothier, J. M. Mestdagh, M. Ben El Hadj Rhouma, M. Hochlaf, V. Mazet et S. Faisan, Phys. Chem. Chem. Phys. accepted (2013)
- [27] R. Linguerri, N. Komiha et M. Hochlaf, Phys. Chem. Chem. Phys. 14, 4236 (2012)

Chapitre 4

Etude microscopique de l'interaction du CO2 avec une molécule d'imidazole et les complexes imidazole – or

I) Introduction:

Cette étude a pour but de comprendre les mécanismes à l'échelle microscopique de la capture et du stockage de CO₂. En effet, la capture et le stockage de carbone sont des problématiques très importantes au niveau environnemental.

En effet, les émissions de CO₂ doivent être réduites et mieux contrôlées. La société actuelle doit donc se préoccuper de la préservation de l'atmosphère des trop grandes modifications que l'homme lui impose, en utilisant les technologies à sa disposition. C'est ce constat qui a servi de base pour débuter le travail présenté dans ce chapitre. Il existe différentes méthodes pour capturer et stocker le CO₂, notamment l'adsorption par des charbons actifs, la séquestration géologique ou aquifère.

Dans cette étude, nous nous intéresserons plus particulièrement à l'une de ces méthodes, l'adsorption du CO₂ par une molécule metallo – organique (metal – organic frameworks ou MOFs). Plusieurs études expérimentales [1] et théoriques ont démontrées la capacité des structures de type zéolites (zeolitic imidazolate frameworks ou ZIFs) à capturer le CO₂.

Les clusters d'or ont été sujettes à de nombreuses études dans des domaines variés tels que les capteurs, les biocapteurs, la libération de médicaments dans l'organisme, les dispositifs électroniques moléculaire ou les matériaux énergétiques.

Etant donné que l'imidazole (Im) est le principal liant organique dans les ZIFs, nous avons modélisé cette molécule adsorbée sur une surface d'or afin de comprendre le procédé de capture de CO₂. Dans cette étude, nous avons utilisé différentes méthodes pour caractériser la molécule d'imidazole seule, l'imidazole en interaction avec du CO₂ et les complexes orimidazole.

Les calculs sur les petites structures (sans les couches d'or) ont été réalisés avec les méthodes MP2, pour avoir une description précise de la géométrie et des sites d'interaction du CO₂ autour de la molécule d'imidazole, et avec les fonctionnelles B3LYP et PBE pour la méthode de la fonctionnelle de la densité (density functional theory ou DFT) afin de pouvoir comparer ces résultats avec l'étude plus importante sur les structures contenant de l'or. Les calculs sur les surfaces d'or avec les molécules d'imidazole adsorbées ont été réalisés avec la méthode de la DFT afin de modéliser les différentes interactions non – covalentes existant entre la surface d'or Au (111) et la molécule d'imidazole.

Nous avons aussi analysé les énergies, les transferts de charge ainsi que les propriétés électroniques des nanoclusters d'or $(Au_n \text{ avec } n = 2, 4, 6, 8 \text{ et } 10)$ et des surfaces d'or Au (111) avec l'imidazole et le CO_2 . Les liaisons entre ces différentes entités ont été étudiées, ce qui nous a permis d'identifier, au niveau microscopique, les sites de capture du CO_2 .

II) Détails des calculs :

Tous les calculs électroniques ont été réalisés avec les programmes GAUSSIAN09 [2] et CP2K [3]. Les optimisations de géométrie sur les petites structures (imidazole et imidazole avec le CO₂) ont été réalisées avec le programme GAUSSIAN09, la méthode MP2 [4] et la base aug-cc-pVDZ. Pour comparer les résultats, et assurer la continuité de l'étude, ces structures ont aussi été étudiées à l'aide de la DFT, en utilisant les fonctionnelles B3LYP [5], PBE [6] et B97-D [7] avec la base aug-cc-pVDZ.

Les agrégats d'or en interaction avec une molécule d'imidazole ont été modélisés par le programme GAUSSIAN09, avec les fonctionnelle B3LYP et M05-2X [8] de la DFT, en utilisant les bases 631+G**, 6311+G** et aug-cc-pVTZ. La fonctionnelle B3LYP a été utilisée afin de comparer les résultats obtenus avec une précédente étude sur les surfaces d'or en interaction avec la pyridine. M05-2X [8] est une fonctionnelle hybride qui incorpore la densité d'énergie cinétique aux fonctions d'échange et de corrélation, permettant de mieux modéliser les interactions non – covalentes. Les géométries des molécules ont été optimisées, puis nous avons aussi étudié la densité électronique de ces complexes afin de visualiser le transfert de charge. Les agrégats vont de deux à vingt atomes d'or, et ils sont utilisés pour modéliser l'interaction entre la molécule d'imidazole et la surface d'or.

Il faut donc un nombre suffisant d'atomes d'or dans l'agrégat afin d'obtenir un comportement suffisamment proche de la surface complète. Néanmoins, ce type de calcul serait beaucoup trop lourd pour l'appliquer directement sur toute une surface d'or avec plusieurs molécules d'imidazole adsorbées dessus. C'est pourquoi nous avons utilisé une approche différente pour modéliser la surface grâce à un calcul périodique.

Tous les calculs impliquant les surfaces d'or ont été réalisés avec le module Quickstep du programme CP2K, en utilisant la fonctionnelle PBE de la DFT avec les bases molopt associées aux pseudo – potentiels [9] développés pour le programme CP2K. Ce programme permet de calculer les interactions avec une surface de façon périodique. Nous pouvons ainsi optimiser la géométrie d'une surface d'or avec les molécules d'imidazole adsorbées, puis utiliser ce système pour étudier le comportement des molécules de CO₂ au contact de ce complexe.

III) Etude préliminaire sur la ZIF :

Les structures de type métal – organique (Metal – Organic Frameworks ou MOFs) sont composées de molécules organiques liées entre elles par des atomes métalliques. Ces structures sont principalement utilisées dans la séquestration de gaz. En effet, les MOFs sont généralement poreuses, ce qui permet de laisser entrer les molécules de gaz dans la structure. Ensuite, les molécules organiques constituant la MOF étant très réactives, elles interagissent avec les molécules de gaz pour les piéger.

L'une des sous – espèces des MOFs est la zéolithe – imidazole (Zeolitic – Imidazolate Framework ou ZIF). Les zéolithes sont des minéraux microporeux qui appartiennent au groupe des silicates. Le principal intérêt de cette molécule est sa structure microporeuse permettant le passage des molécules d'un gaz.

La structure de la ZIF est basée sur une zéolithe existante dans laquelle les atomes d'oxygène sont remplacés par des molécules d'imidazole et les atomes de silicium sont remplacés par des atomes de zinc, comme montré dans la Figure 1 [10]. Les molécules d'imidazole sont implantées afin de réagir avec le CO₂, et les atomes de zinc servent à lier et à maintenir la structure pour garder les caractéristiques de la zéolithe.

Ainsi, la ZIF possède un espace laissant le passage pour de petites molécules, qui peuvent se retrouver piégées dans ces « cages » grâce à des interactions avec la partie organique de la molécule.

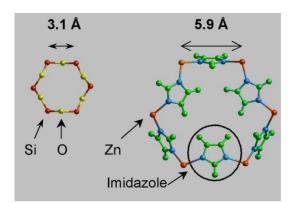


Figure 1 : La structure de la ZIF et de la zéolite ayant servi de modèle

On peut voir dans cette figure que la structure contenant les molécules d'imidazole sera plus grande que la zéolithe qui sert de modèle. Cette différence dans le nombre d'éléments composant ces molécules est déterminant dans l'approche que nous avons choisi pour étudier la ZIF.

En effet, la structure complète d'une cage de la ZIF est composée de trop d'atomes pour pouvoir être optimisée directement avec une bonne précision. Nous avons donc procédé par étapes, en commençant par optimiser la molécule d'imidazole seule.

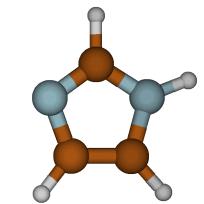


Figure 2 : Une molécule d'imidazole

Cette molécule est composée d'un cycle avec deux atomes d'azote, trois atomes de carbone et de quatre atomes d'hydrogène. Les doubles liaisons et les doublets électroniques libres des atomes d'azote font de cette molécule un choix idéal pour composer la structure de la ZIF et pour réagir avec le CO₂.

Ensuite, nous avons étudié la relation entre une molécule d'imidazole et une molécule de CO₂. Pour cela trois méthodes différentes ont été utilisées, les méthodes Hartree – Fock, MP2 et la DFT, avec trois fonctionnelles : PBE, B3LYP et B97-D.

La méthode Hartree – Fock a servi de base pour les calculs suivants. Pour la DFT, nous avons choisi trois fonctionnelles PBE, B3LYPet B97-D. PBE et B3LYP sont des fonctionnelles qui combinent une approche du gradient généralisé (GGA) avec une partie d'échange donnée par la méthode Hartree – Fock.

Ces deux fonctionnelles sont parmi les plus utilisées. La fonctionnelle B97-D, quand à elle, reprend les corrections de Grimme sur les interactions de type van der Waals qui sont ainsi mieux décrites.

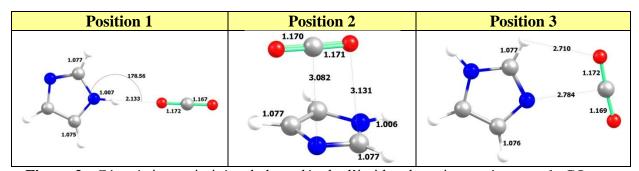

Méthode	Distance H O (Å)
Hartree Fock/aug-cc-pVDZ	2,368
B3LYP/aug-cc-pVDZ	2,255
PBE/aug-cc-pVDZ	2,226
B97-D/aug-cc-pVDZ	2,404

Tableau 1 : Distances d'interaction imidazole – CO₂ (H --- O en Å)

On peut voir ici que la distance d'équilibre varie suivant la méthode utilisée. Les fonctionnelles PBE et B3LYP donnent des résultats assez proches. Néanmoins, nous pouvons utiliser une base plus grande pour des calculs plus précis.

Nous avons réalisé les calculs suivants avec la méthode MP2 car, comme nous avons pu le voir dans les chapitres précédents, elle décrit bien les structures et les différents types d'interaction, même si cette méthode demande un temps de calcul plus important que les précédentes.

Nous avons obtenu trois géométries d'équilibre données dans la figure 3 :

Figure 3 : Géométries optimisées de la molécule d'imidazole en interaction avec le CO₂ par la méthode MP2/aVTZ, les distances sont en Å

La figure 3 montre que l'imidazole réagit avec la molécule de CO_2 par une ou deux interactions faibles. La première est une liaison hydrogène avec un atome d'oxygène du CO_2 , alors que pour les deux autres géométries, le CO_2 se lie avec l'atome d'azote « libre ».

Nous avons calculé les énergies d'interaction par l'équation suivante :

$$E_{int}(imidazole-CO_2) = |E_{totale}(imidazole-CO_2) - E_{totale}(imidazole) - E_{totale}(CO_2)|$$

Avec E_{totale} donnée par l'optimisation de la géométrie.

Ces énergies d'interaction sont résumées dans le tableau ci – dessous.

Position	$\begin{array}{c} E_{int} \\ (imidazole-CO_2) \\ (eV) \end{array}$	Distance H – O (Å)	Distance C – O (Å)	Distance N – C (Å)
Position 1	0,0954	2,133	/	4,302
Position 2	0,1518	/	3,131	3,082
Position 3	0,1906	2,710	/	2,784

Tableau 2 : Energies d'interaction imidazole – CO₂ (en eV) et distances d'interaction imidazole – CO₂ (en Å) calculées par la méthode MP2 avec la base aug-cc-pVTZ

Nous pouvons voir que les interactions mettant en scène l'atome d'azote de l'imidazole sont plus fortes, mais la molécule de CO₂ est plus proche de l'imidazole lors de la liaison hydrogène.

A partir des structures optimisées de la molécule d'imidazole seule, nous en avons lié plusieurs par des atomes de zinc afin de former une partie de la zéolithe. Le but était de construire la structure dans son ensemble en optimisant des parties de plus en plus importantes, utilisant les résultats précédents pour simplifier la résolution et réduire les temps de calcul.

Lors de cette optimisation, effectuée avec la fonctionnelle PBE et la base aug-cc-pVDZ, la structure s'est enroulée sur elle – même au lieu de rester rigide, comme montré dans la Figure 4 :

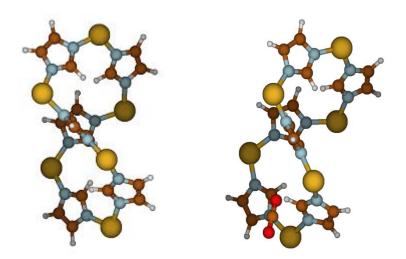


Figure 4 : Structures imidazole – zinc hélicoïdale sans et avec une molécule de CO₂

La simulation numérique a convergé sur ce résultat. Nous avons calculé les fréquences de ces structures [11] afin de vérifier si elles ne sont pas des états de transition obtenus lors de la formation de la structure de la zéolithe. Ces fréquences n'étant pas imaginaires, ces structures peuvent donc être considérées comme des minimums, et nous avons décidé de nous concentrer sur leur étude.

Ce type de structure présente des avantages pour piéger le CO₂, mais ne peut pas être utilisé tel quel, car il serait difficile de la produire et de la stabiliser sans un support.

Dans la seconde partie de cette étude, nous allons nous intéresser à l'interaction entre l'imidazole et l'or pour déterminer s'il est possible d'adsorber les structures imidazole – zinc sur une surface d'or.

IV) Adsorption de l'imidazole sur une surface d'or :

Les objectifs de cette partie du travail sont, dans un premier temps, de modéliser le potentiel de capture de CO₂ par une structure composée de molécules d'imidazole adsorbées sur une surface d'or.

Ensuite, nous allons étudier l'importance des différentes interactions non – covalentes entre la surface d'or et l'imidazole, ce qui nous permettra de déterminer les sites préférentiels d'adsorption. Enfin, nous déterminerons les transferts de charge dans ces interactions pour mieux comprendre le fonctionnement de ce complexe.

Nous avons commencé par étudier l'interaction entre la molécule d'imidazole et des agrégats d'or. La Figure 5 montre les géométries possibles pour l'imidazole associée à plusieurs atomes d'or (de 2 atomes à 10).

Les géométries optimisées sont données dans la figure 5 :

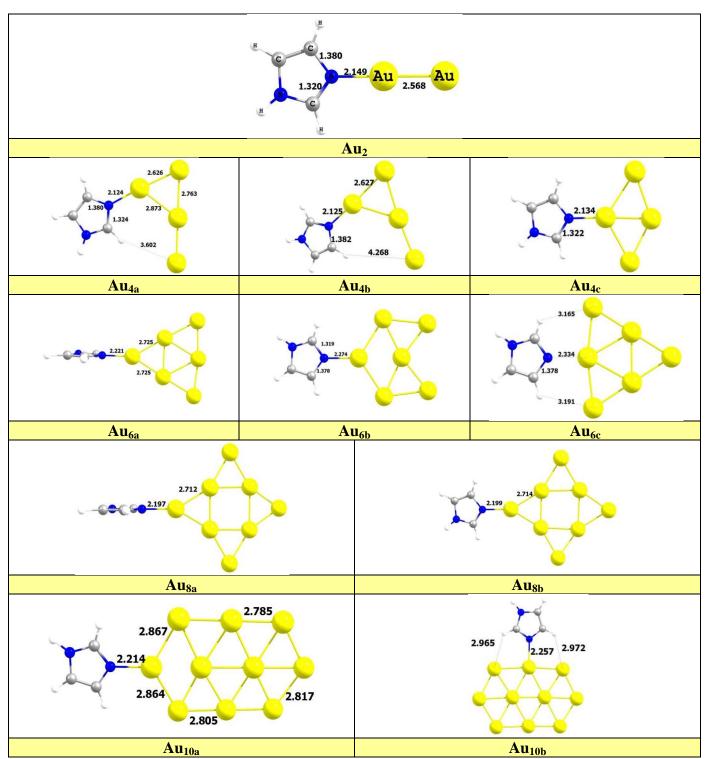


Figure 5 : Géométries optimisées des complexes Au_n – Imidazole (avec n=2, 4, 6, 8 et 10)

Cette figure montre que l'atome d'azote de l'imidazole se lie facilement avec un des atomes d'or de la surface pour former une liaison. Nous pouvons considérer que les complexes Au_2 —Im sont en conformation coplanaire.

Nous avons calculé les énergies d'interaction associées à ces différentes géométries avec trois bases : 631+G**, 6311++G** et aug-cc-pVTZ. Les énergies d'interactions ont été calculées en utilisant l'équation ci – dessous et en prenant en compte la correction de la BSSE :

$$E_{int}(imidazole - Au_n) = E_{totale}(imidazole - Au_n) - E_{totale}(imidazole) - E_{totale}(Au_n)$$

Le Tableau 3 donne les résultats de ces calculs :

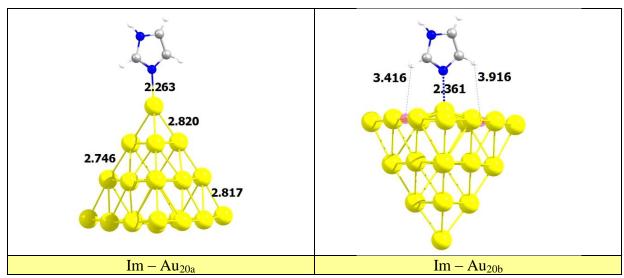
Au _n cluster	631+G**	6311++G**	aug-cc-pVTZ
Au ₂	-1,092	-1,091	-1,176
Au _{4a}	-1,433	-1,429	-1,510
Au _{4b}	-1,377	-1,374	-1,457
Au _{4c}	-1,267	-1,264	-1,340
Au _{6a}	-0,802	-0,802	-0,866
Au _{6b}	-0,512	-0,511	-0,561
Au _{6c}	-0,383	-0,380	-0,417
Au _{8a}	-0,911	-0,910	-0,982
Au _{8b}	-0,894	-0,893	-0,964
Au _{10a}	-0,764	-0,763	-0,826
Au _{10b}	-0,672	-0,670	-0,728

Tableau 3 : Energies de liaison (en eV) des complexes Au_n – Imidazole (avec n=2, 4, 6, 8 et 10) calculés avec la fonctionnelle B3LYP

Ce tableau donne les énergies de liaison d'une molécule d'imidazole avec des clusters d'or de plus en plus grand. Ces calculs ont été réalisés avec la fonctionnelle B3LYP de la DFT, associée à différentes bases : 631+G*, 6311++G** et aug-cc-pVTZ.

A partir de ces données, nous pouvons voir que l'interaction entre l'agrégat d'or et la molécule d'imidazole est donnée par la formation de la liaison Au – N.

Par contre, en étudiant les complexes avec 4, 6 et 10 atomes d'or, nous voulons montrer que la molécule d'imidazole réalise, en plus de l'interaction principale Au - N, des interactions entre les atomes d'hydrogène et les atomes d'or.


Zhang et al. [12] ont observé ce phénomène lors de leur étude sur les interactions entre la guanine et des nano – clusters d'or Au_n (n=2,4,6 et 8). Ils en ont déduit que l'interaction principale entre les deux entités est la liaison Au-N (/O) mais qu'elle est renforcée par la présence de liaisons hydrogènes non – conventionnelles N-H --- Au et C-H --- Au.

Les complexes avec 4, 6 et 10 atomes d'or mettent donc en évidence que la liaison principale de l'imidazole avec l'agrégat d'or peut être renforcée par des liaisons hydrogène qui vont stabiliser la structure.

Ces clusters ne permettent pas de modéliser les interactions entre la molécule d'imidazole et une surface d'or, car la présence d'un grand nombre d'atomes d'or dans la surface va jouer un rôle prépondérant dans le transfert de charge qui va s'établir entre ces deux entités.

Une étude sur les complexes comprenant 20 atomes d'or permet de se rapprocher du comportement de la surface d'or par rapport à l'interaction avec l'imidazole, comme montré dans les travaux de Li et al [13] ainsi que d'Aikens et al. [14] sur les complexes pyridine – Au_{20} .

Le groupe Au_{20} peut être considérée comme un fragment du réseau cfc d'une surface d'or. Deux des modes de liaison possibles à l'agrégat sont la liaison à un atome du sommet, qui peut représenter un site adatome, et la liaison à l'une des quatre faces qui a un comportement similaire à la surface en elle – même.

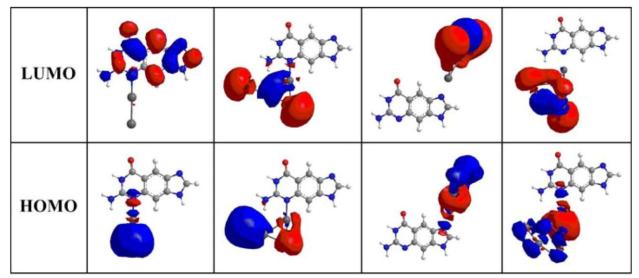
Figure 6 : Géométries d'une molécule imidazole en interaction avec un agrégat de 20 atomes d'or

La Figure 6 montre la géométrie des complexes $Im - Au_{20}$ dans deux configurations différentes. Lorsque la molécule d'imidazole est positionnée au – dessus de la pointe de la structure d'or, il n'y a pas de changement notoire par rapport aux précédentes géométries. L'énergie d'interaction de cette structure est de 0,750 eV.

Par contre, lorsque la molécule d'imidazole est positionnée au – dessus de la base de la structure d'or, celle – ci à un comportement et des caractéristiques qui sont proches de la surface d'or. L'énergie d'interaction de ce système est de 0,377 eV.

Nous pouvons voir que l'atome d'or qui est lié à l'atome d'azote de la molécule d'imidazole se soulève par rapport aux autres atomes de la structure d'or.

Les atomes d'hydrogène de l'imidazole permettent de stabiliser la molécule et de la garder dans un angle proche de 90° au – dessus de la surface d'or. Par contre, les atomes d'hydrogène n'interagissent pas directement avec les atomes d'or, mais sur les sites entre les atomes.


Nous avons testé la fonctionnelle M05-2X sur certaines structures afin de comparer ces résultats avec la fonctionnelle B3LYP. Les énergies de liaison ont été calculées avec la même méthode que les complexes Au_n -Imidazole (avec $n=2,\,4,\,6,\,8$ et 10). La comparaison entre les deux méthodes est donnée dans le tableau suivant :

Aun	B3LYP			M05-2X		
cluster	631+G**	6311++G**	aug-cc-pVTZ	631+G**	6311++G**	aug-cc-pVTZ
Au _{6c}	-0,383	-0,380	-0,417	-0,581	-0,578	-0,596
Au _{20b}	-0,347	-0,346	-0,377	-0,546	-0,540	-0,548

Tableau 4 : Energies de liaison (en eV) des complexes Au_n – Imidazole (avec n=6 et 20) calculés avec les fonctionnelles B3LYP et M05-2X

La fonctionnelle M05-2X permet d'obtenir des énergies d'interaction plus importantes pour la molécule d'imidazole face à un agrégat d'or.

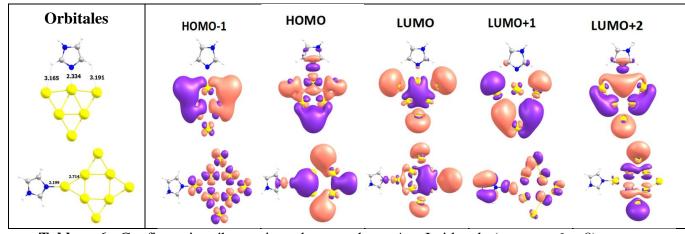

Nous avons voulu déterminer la nature de l'interaction entre l'imidazole et l'or. Nous avons donc étudié les configurations électroniques des états proches de la valence afin de visualiser les éventuels transfert de charges possibles pour ce complexe, comme réalisé par Zhang et al. [12]:

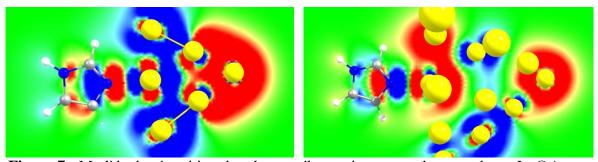
Tableau 5 : Densités électronique des orbitales HOMO et LUMO des complexes $Au_n - xG$, de gauche à droite : $Au_2 - xG$, $Au_4 - xG$, $Au_6 - xG$ et $Au_8 - xG$ réalisé par Zhang et al. [12]

Nous pouvons voir que dans leur étude, Zhang et al. ont montré qu'il y a bien un transfert de charge depuis la molécule de guanine vers le cluster d'or. Ce transfert est plus important lorsque le nombre d'atomes d'or composant l'agrégat augmente.

Dans notre étude, nous avons choisi de modéliser les densités électroniques des complexes Im - Au_{6b} et Im - Au_{8b} car ces structures possèdent suffisamment d'atome d'or pour que le transfert de charge dans l'agrégat soit possible et aussi pour avoir un aperçu des deux types de liaison entre l'imidazole et la surface d'or (avec et sans la stabilisation des liaisons hydrogène). Le tableau 6 présente les résultats :

Tableau 6 : Configuration électronique des complexes Au_n -Imidazole (avec n = 6 et 8)

Ce tableau montre que l'interaction entre la molécule d'imidazole et la surface d'or se fait par le doublet non – liant de l'atome d'azote et la charge présente sur l'atome d'or central. On peut voir que la plupart des charges se retrouvent sur la surface d'or.


Comme prévu, les électrons passent plus facilement dans la structure d'or que dans la molécule d'imidazole. Nous avons donc un transfert de charges dans ces complexes qui vont stabiliser l'interaction de l'imidazole avec l'agrégat d'or. En effet, plus le transfert de charge est important, plus la liaison sera forte.

Dans l'étude effectuée par Sun et Di Felice [15] sur l'interaction d'une molécule de guanine avec Au_n (n = 3 et 4), il a été montré d'après leurs analyses et la forme des orbitales moléculaires que la liaison liant la guanine à l'agrégat d'or est obtenu par transfert de charge de la paire d'électrons anti – liante de l'atome d'azote (ou de l'atome d'oxygène) aux orbitales anti – liantes de l'or. Les liaisons N (O) – Au sont donc covalentes.

Dans notre cas de figure, l'interaction entre l'agrégat d'or et la molécule d'imidazole est donnée par la formation de la liaison Au – N, qui est définie comme une liaison covalente dans laquelle le partage des électrons par l'orbitale non – liante de l'atome d'azote et celles 5s et 6s de l'atome d'or joue un rôle important.

Le transfert de charge se fait principalement de HOMO - 1 à LUMO + 1 (environ 69%) et de HOMO à LUMO + 2 (environ 13%).

Afin de mieux visualiser cette possibilité de transfert de charge, nous avons réalisé un modèle de la densité de charge pour les complexes $Im@Au_6$ et $Im@Au_{20}$ qui sont relativement proches dans leur structure :

Figure 7 : Modèle de répartition des charges électroniques pour les complexes Im@Au $_6$ et Im@Au $_20$ (de -0,02 à 0,02)

Nous pouvons observer que l'interaction principale entre l'imidazole et la surface d'or se situe au niveau du doublet de l'atome d'azote (la plus grande partie des charges de l'imidazole se concentre autour de l'azote) qui va être stabilisé par une charge opposée face à un atome d'or, indiquant la nature polaire de cette interaction.

Zhang et al. [12] ont visualisé ce phénomène lors de l'étude de l'interaction entre la molécule de guanine et un agrégat d'or. La guanine, liée à l'agrégat d'or par un atome d'azote, montrait aussi au niveau du doublet non – liant une charge opposée à celle de l'atome d'or intervenant dans l'interaction.

Pour le complexe Im@Au₆, la molécule d'imidazole ne reste pas plane. On peut voir qu'un des atomes d'hydrogène est décalé par rapport au reste de la molécule, ce qui confirme le fait que ces atomes ne se lient pas directement aux atomes de l'agrégat, mais au niveau de la liaison entre deux atomes d'or.

Par contre, on voit que, dans le complexe Im@Au₂₀, la molécule d'imidazole reste plane lorsque les atomes d'hydrogène ne sont pas placés face aux atomes d'or.

L'atome d'azote de l'imidazole permet donc l'interaction alors que les atomes d'hydrogène contribuent à le stabiliser formant des interactions faibles.

V) Etude périodique de l'imidazole adsorbée sur une surface d'or :

Le but de cette étude est de modéliser directement les structures d'imidazole adsorbées sur une surface d'or. Nous avons donc besoin d'ajouter des conditions périodiques aux limites de notre système afin de pouvoir modéliser la surface d'or dans son ensemble.

Pour ce type de calcul, nous allons utiliser le programme CP2K qui utilise une association entre des gaussiennes mixtes ainsi qu'une approche en ondes planes pour réaliser des calculs périodiques. La Figure 8 présente la surface d'or (111) sur laquelle vont se porter nos investigations.

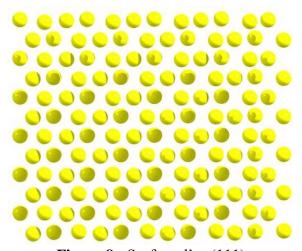


Figure 8: Surface d'or (111)

Après avoir défini la surface d'or qui servira de base, nous allons nous concentrer sur les molécules d'imidazole qui seront adsorbées dessus. D'après les différents travaux existant sur les surfaces d'or, notamment ceux de Chen et al. [16], il y a trois sites principaux s'adsorption :

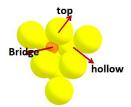
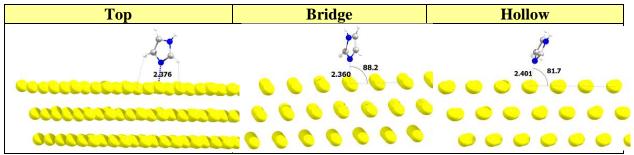



Figure 9 : Sites d'adsorption de la surface d'or

La Figure 9 représente les sites d'adsorption de la surface d'or. La position top se situe juste au – dessus d'un atome d'or. La position bridge correspond à l'espace entre deux atomes d'or. La position hollow, quand à elle, est située à l'interstice entre trois atomes d'or.

Des tests ont été effectués sur ces trois positions afin de déterminer quel sera le site préférentiel pour l'interaction imidazole – or et optimiser la position de la molécule d'imidazole par rapport à la surface métallique.

Figure 10 : Imidazole en position top, bridge et hollow par rapport à la surface d'or, avec les distances N – Au (Å) et les angles imidazole – surface (°)

Les structures optimisées sont données dans la Figure 10. On peut voir que la principale différence est l'inclinaison de la molécule d'imidazole par rapport à la surface d'or. En effet, pour la position top, la molécule est perpendiculaire à la surface alors que pour les positions bridge et hollow, les inclinaisons sont respectivement de 88° et 82° par rapport à la couche d'or.

Les énergies de liaison correspondantes ont été calculées en utilisant l'équation ci – dessous et en prenant en compte la correction de la BSSE :

 $E_{int}(imidazole - Surface) = E_{totale}(imidazole - Surface) - E_{totale}(imidazole) - E_{totale}(Surface)$

Ces énergies sont données dans le Tableau 7 :

Surface	PBE/pVDZ(VSZ pour Au)			PBE/pV	PBE*		
Im@ Au(111)	Energie de liaison en eV	Distance Au N (Å)	Angle Au-Au-N (°)	Energie de liaison en eV	Distance Au N (Å)	Angle Au-Au-N (°)	Energie de liaison en eV
Тор	-0,343	2,348	90,0	-0,437	2,376	90	-0,467
Bridge	-0,225	2,349	85,5	-0,243	2,360	88	
Hollow	-0,224	2,445	78,4	-0,214	2,401	82	

Tableau 7 : Distances Au – N et énergies de liaison (en eV) des complexes Au(111) – Im comparées aux énergies de liaison calculées dans les travaux de Iori et al. [17]

Nous pouvons voir que l'interaction sur le site top donne la structure la plus stable, avec une énergie de liaison presque deux fois supérieure aux autres sites. Ceci confirme les résultats de la partie précédente dans laquelle on a pu voir que l'imidazole se lie directement avec un atome d'or, et ne devrait donc pas se positionner sur un autre site que le top.

L'imidazole va donc se positionner à 90° par rapport à la surface d'or, et l'atome d'azote va interagir directement avec un atome d'or. Comme dans la partie précédente, on peut aussi voir que les atomes d'hydrogène ne vont pas se mettre en contact avec les atomes d'or, mais vont stabiliser la molécule d'imidazole en se plaçant en position bridge.

Nous avons ensuite ajouté une molécule de CO₂ afin de prédire le comportement de la molécule d'imidazole lorsqu'elle est adsorbée sur la surface d'or.

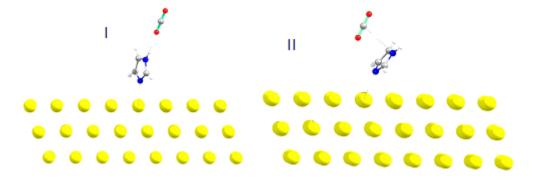


Figure 11 : Géométries des complexes Au – Im en interaction avec une molécule de CO₂

La Figure 11 représente deux positions différentes de l'imidazole calculées avec la fonctionnelle PBE et deux groupes de base : la base pVDZ pour les molécules associée à la base VSZ pour l'or et la base pVTZ pour les molécules associée à la base pVDZ pour l'or. Dans la figure 11-I, la molécule d'imidazole est en position top, à 90° par rapport à la surface d'or et le CO₂ va se positionner face au couple N – H.

Par contre, la figure 11-II montre que l'imidazole est en position hollow, avec une inclinaison plus importante par rapport à la surface. Dans ces conditions, le CO₂ se positionne en face de la molécule d'imidazole et reste plus éloigné.

Le tableau 8 donne les inclinaisons des molécules d'imidazole et l'énergie de liaison des complexes Im@Au avec le CO₂ calculée en utilisant l'équation ci – dessous et en prenant en compte la correction de la BSSE :

$$E_{int}(CO_2 - Im@Au) = E_{totale}(imidazole - Im@Au) - E_{totale}(imidazole) - E_{totale}(Im@Au)$$

Surface	PBE/pVDZ (VSZ pour Au)			PBE/pVTZ (pVDZ pour Au)		
Im@Au(111)	E _{int} (CO ₂ – Im@Au) en eV	Distance Au N (Å)	Angle Au-Au-N (°)	E _{int} (CO ₂ – Im@Au) en eV	Distance Au N (Å)	Angle Au-Au-N (°)
I	-0,115	2,338	90	-0,206	2,361	90
П	0,181	2,481	77,7	0,101	2,483	77

Tableau 8 : Distances Au – N et énergies de liaison (en eV) des complexes Im@Au(111) avec le CO₂

Le complexe I est le plus stable, et celui qui permet une meilleure interaction entre le CO_2 et la molécule d'imidazole. Néanmoins, on peut voir que l'énergie d'interaction est plus faible lorsque la molécule d'imidazole est liée à la surface d'or.

Les énergies de liaison pour le complexe II sont répulsives. Ceci peut s'expliquer par le fait que dans cette position, l'imidazole va subir un transfert de charge important vers la surface d'or qui va lui permettre de se stabiliser. N'ayant plus suffisamment d'électrons, la molécule ne pourra donc plus effectuer la liaison hydrogène qui lui permet de réagir avec le CO₂ pour le piéger.

VI) Conclusion:

Nous avons donc étudié l'interaction de la molécule d'imidazole avec le CO₂, mais aussi avec des agrégats puis une surface d'or. Cette étude souhaite mettre en évidence les possibilités offertes par les complexes Au@Im dans la capture et le stockage du CO₂.

La molécule d'imidazole positionnée au - dessus d'un atome d'or de la surface de façon perpendiculaire est la position la plus stable pour cette structure, par rapport aux positions dans lesquelles l'imidazole se trouve plus inclinée. En effet, notre étude montre clairement que le transfert de charge à travers des interactions non - covalentes telles que N-H --- Au, C-H --- Au et π --- Au favorise la stabilisation de la surface d'or et des complexes comprenant l'imidazole. Elle permet aussi d'avoir une interaction avec le CO_2 , ce qui n'est pas le cas des deux autres positions.

En effet, l'interaction entre le CO₂ et le complexe Au(111)@Im à travers la liaison N-H --- O-C est possible dans le modèle où l'imidazole est perpendiculaire à la surface d'or.

L'énergie d'interaction entre le CO₂ et l'imidazole est de -14,81 kJ/mol, alors que pour la même interaction s'effectuant au – dessus de la surface d'or voit son énergie diminuer d'environ 50% (c'est – à – dire à peu près -6,9 kJ/mol). Cette interaction est affaiblie par le transfert de charge ayant lieu entre l'imidazole et la surface d'or. L'augmentation du nombre de molécules d'imidazole à la surface de la couche d'or ainsi que l'introduction des atomes de zinc pourraient permettre une liaison plus forte entre le CO₂ et l'imidazole.

Même si la conformation sous forme d'empilement est plus favorable d'après les calculs de forte précision ab – initio, l'imidazole domine toujours par les modes d'interaction perpendiculaires (au-dessus) par rapport aux positions inclinés au – dessus de la surface d'or (Au --- N).

Bibliographie Chapitre 4:

- [1] Wang, B. Cote, A. P. Furukawa, H. O'Keeffe et M. Yaghi, O. M. Nature, 453, 207 (2008)
- [2] Gaussian 09, Revision **D.01**, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [3] CP2K version 2.4. CP2K is freely available from www.cp2k.org
- [4] C. Moller et M. S. Plesset, Phys. Rev. **46**, 618 (1934)
- [5] P.J. Stephens, F.J. Devlin, C.F. Chabalowski et M.J. Frisch, J. Chem. Phys. 98, 11623 (1994)
- [6] C. Adamo et V. Barone, J. Chem. Phys. **108**, 664 (1998)
- [7] S. Grimme, J. Comput. Chem. **27**, 1787 (2006)
- [8] Y. Zhao, N. E. Schultz, et D. G. Truhlar, J. Chem. Theory Comput. 2, 364 (2006)
- [9] C. Hartwigsen, S. Goedecker et J. Hutter, Phys. Rev. B **58**, 3641 (1998)
- [10] D. W. Lewis, A. R. Ruiz-Salvador, A. Gómez, L. M. Rodriguez-Albelo, F. X. Coudert, B. Slater, A. K. Cheetham et C. Mellot-Draznieks, CrystEngComm. 11, 2272 (2009)
- [11] Annexe 3
- [12] L. Zhang, T. Ren, X. Yang, L. Zhou et X. Li, International Journal of Quantum Chemistry, **113**, 2434 (2013)
- [13] J. Li, X. Li, H. J. Zhai et L. S. Wang. *Science*, **299**, 864 (2003)
- [14] C. M. Aikens et G. C. Schatz J. Phys. Chem. A 110, 13317 (2006)
- [15] W. Sun et R. Di Felice, J. Chem. Phys. C **116**, 24954 (2012)
- [16] T. Chen, P. X. Dai, J. Y. Wu, D. Wang et L. J. Wan, J. Phys. Chem. C 115, 16583 (2011)
- [17] F. Iori, S. Corni et R. Di Felice, J. Phys. Chem. C, **112**, 13540 (2008)

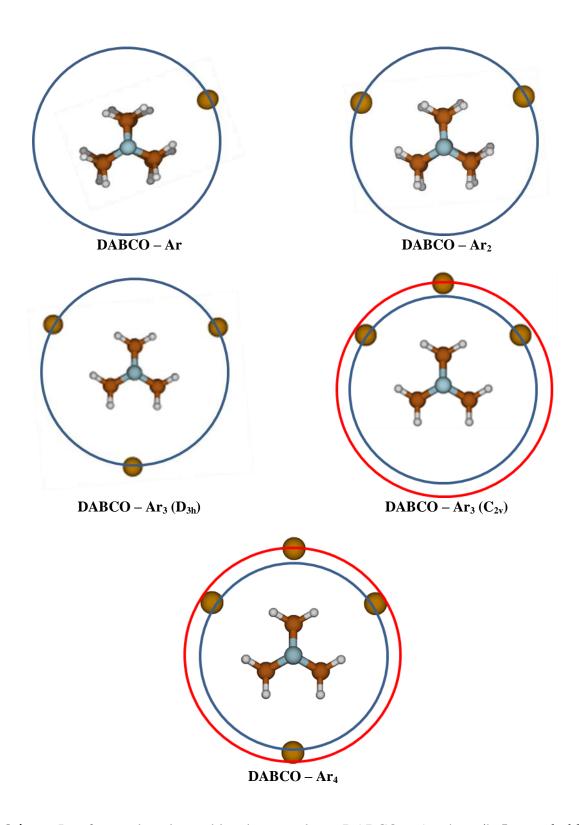
Conclusion et perspectives

Au cours de cette thèse, je me suis intéressé à l'étude de l'interaction entre une molécule avec une surface ou un agrégat en utilisant les méthodes de la chimie quantique moderne.

Par la nature van der Waals des interactions entre ces espèces, je me suis concentré sur la validation de ces méthodes théoriques pour le traitement des interactions faibles et de longue portée. Nous avons montré à travers l'étude systématique sur les complexes DABCO – Rg et DABCO⁺ – Rg (avec Rg = He, Ne, Ar et Kr) que l'inclusion d'orbitales atomiques diffuses est indispensable pour une bonne description de la liaison entre ces deux entités.

Nos travaux ont révélé que le niveau de calcul (R)MP2/aug-cc-pVXZ (avec X = D, T) est suffisant pour décrire correctement l'interaction intermonomère du DABCO inséré dans un agrégat de néon, d'argon ou de krypton, ou bien piégé dans une matrice froide de ces gaz.

Par contre, le complexe DABCO – He doit être étudié avec des méthodes théoriques plus précises et donc plus couteuses. D'ailleurs, nous avons montré que les calculs explicitement corrélés au niveau CCSD(T)-F12/aug-cc-pVDZ (approximations a et b) donnent des résultats satisfaisants dans le cas du complexe DABCO – He.


Cette approche théorique a été récemment implémentée dans le code MOLPRO. Ces calculs sont rendus possibles grâce à la réduction jusqu'à deux ordres de grandeur du temps de calcul (CPU) et de l'espace disque lors de l'utilisation de la méthode (R)CCSD(T)-F12 au lieu de la (R)CCSD(T) « classique », pour une même précision.

Cette étude nous a mené à approfondir l'interaction du DABCO avec un agrégat d'argon. Nous avons donc montré que certaines structures des complexes DABCO – Ar_n (n = 1, 2, 3, 4) ne sont pas réalistes à cause de la qualité médiocre des modèles utilisés pour la description du DABCO – Ar d'une part et de l'interaction Ar - Ar d'autre part.

De plus, nous avons montré que le DABCO subit de légères déformations lorsqu'il est entouré par un petit nombre d'atomes d'argon.

Ceci nous a amené à étudier la première couche de solvatation du DABCO dans l'argon (cf. schéma ci-dessous).

Nous avons montré que celle – ci est pleine lorsque trois atomes d'argon entourent la molécule. La molécule de DABCO se trouve ainsi stabilisée.

Schéma : Les formes les plus stables des complexes DABCO - Ar $_n$ ($n \le 4$). Le cercle bleu correspond à la première couche de solvatation et le cercle rouge à la seconde couche de solvatation.

A partir de ces résultats théoriques, les spectres expérimentaux mesurés pour le DABCO – Ar et le DABCO – Kr ont pu être réattribués. De plus, nous avons montré que la distorsion non négligeable du DABCO apparaît pour chaque complexe de DABCO – Rg étudié.

Les conséquences de ces résultats sur les spectres de ces espèces ont été discutées. Nous avons donc prouvé que les agrégats et les matrices d'argon vont perturber les molécules de DABCO, ce qui signifie qu'elles ne peuvent être considérées comme intactes (à cause des déformations subies).

Plus généralement, nos résultats peuvent être étendus à l'interprétation qualitative des études spectroscopiques et dynamiques des molécules de DABCO absorbés dans de grands agrégats d'argon, DABCO@Ar_n (pour n grand) ainsi que dans des matrices froides. En effet, les effets photophysiques et photochimiques induits par un solvant non polaire (ici l'agrégat d'argon) sur ce diazabicyclooctane ont été étudiés.

Nous avons montré qu'un croisement existe entre la courbe de potentiel de l'état S2 et le potentiel répulsif de l'état S3 pour plusieurs complexes DABCO - Ar_n (n = 1, 2, 3). Ce croisement se produit non loin de la région Franck - Condon accessible par une excitation depuis l'état S0.

Par conséquent, la dynamique d'un paquet d'onde sur les surfaces d'énergie potentielle S1 – S4 doit être complexe. Ceci est confirmé par la récente étude femtoseconde pompe-sonde de la molécule de DABCO déposée sur un agrégat d'argon effectuée dans le laboratoire Francis Perrin.

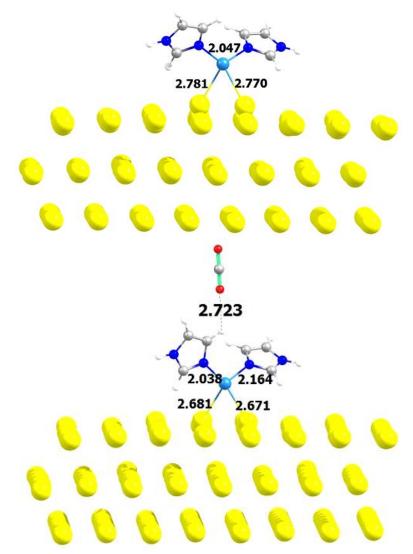


Figure 1 : Complexe Im₂ – Zn@Au avec ou sans une molécule de CO₂

Dans la dernière partie de ce travail, nous avons étudié les complexes or – imidazole, surface d'or – imidazole et surface or – imidazole en interaction avec CO₂. Nous avons montré que la molécule d'imidazole va se positionner au – dessus d'un atome de la surface d'or (position top), en formant une liaison par l'atome d'azote.

Cette liaison sera stabilisée par des interactions faibles entre les atomes d'hydrogène et la position bridge entre les atomes de la surface à travers lesquelles un transfert de charge est effectué vers la couche d'or.

Par contre, ce transfert diminue l'énergie d'interaction de l'imidazole avec le CO₂. L'augmentation du nombre de molécules d'imidazole adsorbées sur la surface d'or pourrait permettre de compenser cette diminution.

L'étude est l'interaction de l'imidazole avec un agrégat ou une surface d'or est l'amorce du projet européen CAPZEO coordonné par l'université Paris-Est Marne-la-Vallée. Elle va donc se poursuivre avec l'étude de l'interaction entre la structure imidazole – zinc et la surface d'or à travers ce projet et le travail effectué dans le cadre de la collaboration avec les collègues du PRES Paris-Est via le LABEX MMCD.

Parmi les questions que nous pensons étudier : si deux molécules d'imidazole sont liées par un atome de zinc, quel est l'impact sur l'interaction avec la couche d'or ? Les premiers résultats laissent penser que le zinc pourrait réagir plus facilement avec la couche d'or, permettant une meilleure adsorption du complexe sur la surface.

Ceci est illustré dans la figure 1 qui montre que le zinc se lie aux atomes d'or en les déstabilisant par rapport à la couche à laquelle ils appartiennent. Ce phénomène, que l'on avait déjà aperçu avec les clusters d'or et l'imidazole, se retrouve ici de façon amplifiée. Puis il faudra aussi analyser les capacités de cette structure à capturer et stocker du CO₂. Le but est de modéliser une structure complète avec plusieurs complexes imidazole – zinc adsorbées sur une surface d'or.

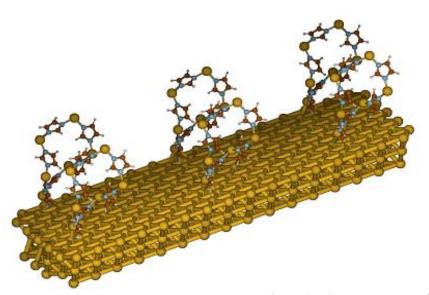


Figure 2 : Illustration des complexes imidazole – zinc adsorbés sur une surface d'or

Le but ultime de ce projet est est d'obtenir une structure stable avec une surface métallique (ici de l'or) sur laquelle seront positionnées les structures imidazole – zinc (cf. figure 2), lesquelles devront interagir avec le CO₂ pour le piéger. L'interaction avec un flux de gaz de CO₂ permettra ainsi de prédire la capacité de cette structure à capturer et stocker le CO₂.

Annexes

Annexe 1:

| DABCO |
|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| He 1 | He 2 | He 3 | Ne 1 | Ne 2 | Ne 3 | Ar 1 | Ar 2 | Ar 3 | Kr 1 | Kr 2 | Kr 3 |
| 19,5252 | i12,1848 | 17,1123 | 16,4018 | i11,5957 | 11,1015 | 21,5658 | i 20,6165 | 21,7059 | 22,8465 | i20,9134 | 28,9350 |
| 39,2422 | i 12,1839 | 38,6703 | 33,4980 | i 11,5729 | 36,3405 | 45,0469 | i 20,6108 | 46,6971 | 48,9526 | i 20,9108 | 44,2933 |
| 67,2636 | 35,037 | 49,9218 | 45,4432 | 26,9760 | 36,4175 | 52,9007 | 42,0434 | 51,5514 | 49,2655 | 42,5543 | 57,3357 |
| 99,1216 | 101,31 | 100,240 | 99,1979 | 100,816 | 96,3741 | 97,9824 | 101,651 | 93,2831 | 96,7848 | 101,478 | 90,1758 |
| 325,578 | 325,94 | 325,578 | 325,670 | 325,950 | 325,556 | 325,383 | 326,362 | 325,948 | 325,202 | 326,769 | 326,464 |
| 326,688 | 325,94 | 326,079 | 327,239 | 325,956 | 326,317 | 328,403 | 326,364 | 326,349 | 329,027 | 326,778 | 326,506 |
| 416,597 | 416,61 | 416,173 | 416,711 | 416,602 | 416,192 | 416,849 | 416,832 | 416,022 | 416,927 | 417,146 | 416,156 |
| 417,357 | 416,61 | 416,747 | 417,810 | 416,606 | 417,086 | 418,849 | 416,834 | 417,614 | 419,374 | 417,153 | 417,997 |
| 571,295 | 571,39 | 571,259 | 571,382 | 571,426 | 571,250 | 571,38 | 571,568 | 571,049 | 571,386 | 571,680 | 570,961 |
| 571,512
586,920 | 571,39
586,87 | 571,360
586,874 | 571,697
586,957 | 571,428
587,016 | 571,345
587,116 | 572,063
587,088 | 571,569
588,237 | 571,389
587,524 | 572,298
587,188 | 571,683
589,398 | 571,404
587,763 |
| 764,112 | 763,45 | 764,056 | 764,290 | 763,493 | 764,659 | 764,809 | 763,399 | 765,649 | 765,183 | 763,531 | 766,275 |
| 801,539 | 801,70 | 801,475 | 801,666 | 801,724 | 801,349 | 801,502 | 801,684 | 800,916 | 801,415 | 801,693 | 800,689 |
| 816,702 | 816,60 | 816,420 | 816,830 | 816,647 | 816,230 | 816,992 | 817,092 | 815,882 | 817,055 | 817,548 | 815,673 |
| 829,901 | 830,47 | 830,035 | 830,059 | 830,334 | 829,701 | 829,186 | 830,337 | 828,693 | 828,652 | 830,257 | 828,288 |
| 830,133 | 830,47 | 830,108 | 830,185 | 830,335 | 829,834 | 829,988 | 830,337 | 829,014 | 829,899 | 830,257 | 828,586 |
| 915,341 | 915,29 | 915,155 | 915,441 | 915,214 | 915,097 | 915,312 | 915,030 | 914,727 | 915,069 | 915,005 | 914,474 |
| 915,568 | 915,29 | 915,339 | 915,628 | 915,217 | 915,224 | 915,437 | 915,031 | 915,213 | 915,512 | 915,009 | 915,162 |
| 986,438 | 986,74 | 986,387 | 986,439 | 986,687 | 985,850 | 986,256 | 986,738 | 984,811 | 986,110 | 986,537 | 984,186 |
| 989,677 | 989,37 | 989,584 | 989,814 | 989,280 | 989,777 | 989,922 | 988,622 | 990,159 | 990,068 | 988,304 | 990,429 |
| 1015,37 | 1015,61 | 1015,01 | 1015,39 | 1015,57 | 1014,10 | 1015,32 | 1015,41 | 1012,55 | 1015,21 | 1015,15 | 1011,59 |
| 1047,60 | 1047,37 | 1047,36 | 1047,65 | 1047,37 | 1047,29 | 1047,76 | 1047,49 | 1047,11 | 1047,82 | 1047,68 | 1046,94 |
| 1047,75 | 1047,37 | 1047,40 | 1047,85 | 1047,38 | 1047,33 | 1048,22 | 1047,49 | 1047,15 | 1048,36 | 1047,69 | 1047,11 |
| 1094,79 | 1094,65 | 1094,60 | 1094,84 | 1094,70 | 1094,85 | 1094,80 | 1094,82 | 1094,95 | 1094,83 | 1095,17 | 1095,02 |
| 1094,93 | 1094,65 | 1095,01 | 1095,11 | 1094,70 | 1095,32 | 1095,15 | 1094,82 | 1095,83 | 1095,11 | 1095,17 | 1096,07 |
| 1181,87 | 1181,62 | 1181,74 | 1181,98 | 1181,61 | 1181,89 | 1181,96 | 1181,49 | 1182,28 | 1181,69 | 1181,63 | 1182,56 |
| 1194,69 | 1194,87 | 1194,70 | 1194,67 | 1194,89 | 1194,59 | 1194,27 | 1194,99 | 1194,27 | 1194,09 | 1195,09 | 1194,01 |
| 1194,75 | 1194,87 | 1194,80 | 1194,80
1252,92 | 1194,89 | 1194,69 | 1194,72 | 1194,99 | 1194,29 | 1194,71 | 1195,09 | 1194,08 |
| 1252,97
1292,49 | 1252,53
1291,99 | 1252,80
1292,64 | 1232,92 | 1252,49
1292,15 | 1252,84
1293,61 | 1253,09
1292,89 | 1252,45
1292,11 | 1253,01
1295,21 | 1253,02
1293,07 | 1252,68
1292,48 | 1252,91
1296,15 |
| 1292,49 | 1291,99 | 1292,64 | 1292,01 | 1292,13 | 1293,61 | 1292,89 | 1292,11 | 1295,21 | 1295,07 | 1292,48 | 1296,13 |
| 1311,36 | 1311,33 | 1311,08 | 1311,43 | 1311,31 | 1310,75 | 1310,54 | 1310,98 | 1309,97 | 1309,64 | 1310,78 | 1309,49 |
| 1311,47 | 1311,33 | 1311,34 | 1311,46 | 1311,31 | 1311,04 | 1311,18 | 1310,98 | 1310,53 | 1310,94 | 1310,79 | 1310,15 |
| 1334,65 | 1334,77 | 1334,55 | 1334,67 | 1334,70 | 1334,01 | 1334,22 | 1334,61 | 1332,85 | 1333,66 | 1334,55 | 1332,05 |
| 1334,84 | 1334,8 | 1334,60 | 1334,72 | 1334,70 | 1334,07 | 1334,24 | 1334,62 | 1333,02 | 1333,87 | 1334,55 | 1332,27 |
| 1340,11 | 1339,9 | 1340,13 | 1340,20 | 1340,01 | 1340,58 | 1340,35 | 1340,28 | 1340,39 | 1340,39 | 1340,58 | 1340,11 |
| 1340,42 | 1339,91 | 1340,21 | 1340,53 | 1340,01 | 1340,59 | 1340,60 | 1340,28 | 1341,26 | 1340,47 | 1340,87 | 1341,67 |
| 1341,37 | 1340,77 | 1341,03 | 1341,29 | 1340,77 | 1340,79 | 1341,21 | 1340,59 | 1341,40 | 1341,13 | 1340,87 | 1341,83 |
| 1357,49 | 1357,52 | 1357,38 | 1357,49 | 1357,53 | 1357,04 | 1356,81 | 1357,40 | 1356,35 | 1356,35 | 1357,38 | 1355,86 |
| 1468,96 | 1469,50 | 1469,14 | 1468,93 | 1469,43 | 1468,72 | 1467,42 | 1469,11 | 1467,97 | 1466,32 | 1468,77 | 1467,45 |
| 1469,08 | 1469,50 | 1469,41 | 1469,08 | 1469,43 | 1468,91 | 1468,78 | 1469,12 | 1468,18 | 1468,62 | 1468,78 | 1467,65 |
| 1480,48 | 1480,81 | 1480,51 | 1480,48 | 1480,77 | 1480,23 | 1479,34 | 1480,56 | 1479,67 | 1478,41 | 1480,33 | 1479,33 |
| 1480,80 | 1481,19 | 1480,99 | 1480,73 | 1481,15 | 1480,77 | 1479,72 | 1480,83 | 1480,43 | 1479,30 | 1480,55 | 1480,27 |
| 1480,89 | 1481,19 | 1481,32 | 1480,91 | 1481,15 | 1481,25 | 1480,70 | 1480,83 | 1481,17 | 1480,59 | 1480,55 | 1481,08 |
| 1494,57 | 1494,91 | 1494,93 | 1494,53 | 1494,81 | 1494,63 | 1493,70 | 1494,44 | 1494,03 | 1493,25 | 1494,13 | 1493,73 |
| 3053,14 | 3052,98 | 3053,18 | 3052,99 | 3052,80 | 3053,01 | 3052,83 | 3052,11 | 3052,69
3055.24 | 3052,76 | 3051,58 | 3052,51 |
| 3053,31
3054,38 | 3053,23
3053,23 | 3054,39
3054,54 | 3053,16
3054,17 | 3053,05
3053,05 | 3054,71
3054,86 | 3052,99
3054,48 | 3052,25
3052,25 | 3055,24
3055,42 | 3052,90
3054,79 | 3051,59
3051,59 | 3055,58
3055,81 |
| 3034,38 | 3055,25 | 3034,34 | 3034,17 | 3055,05 | 3054,86 | 3054,48 | 3052,23 | 3055,42 | 3054,79 | 3060,22 | 3055,81 |
| 3062,01 | 3061,26 | 3062,65 | 3061,27 | 3061,08 | 3063,50 | 3061,76 | 3060,51 | 3064,61 | 3061,10 | 3060,22 | 3065,21 |
| 3064,03 | 3063,48 | 3064,62 | 3063,78 | 3063,32 | 3065,31 | 3063,82 | 3062,79 | 3066,33 | 3063,93 | 3062,49 | 3066,92 |
| 3107,29 | 3106,93 | 3107,58 | 3107,11 | 3106,79 | 3107,58 | 3107,06 | 3106,14 | 3107,51 | 3107,03 | 3105,63 | 3107,42 |
| 3108,76 | 3108,68 | 3109,39 | 3108,61 | 3108,55 | 3109,81 | 3108,47 | 3107,91 | 3110,85 | 3108,41 | 3107,44 | 3111,74 |
| 3110,37 | 3108,68 | 3110,09 | 3109,92 | 3108,55 | 3110,73 | 3110,80 | 3107,91 | 3112,00 | 3111,56 | 3107,44 | 3112,95 |
| 3128,12 | 3127,64 | 3128,50 | 3127,96 | 3127,49 | 3128,98 | 3128,01 | 3126,92 | 3129,56 | 3128,07 | 3126,59 | 3129,89 |
| 3132,99 | 3132,83 | 3133,37 | 3132,86 | 3132,68 | 3133,76 | 3132,77 | 3132,069 | 3134,44 | 3132,74 | 3131,72 | 3135,06 |
| 3133,72 | 3132,83 | 3134,15 | 3133,51 | 3132,68 | 3135,01 | 3133,68 | 3132,070 | 3136,18 | 3133,89 | 3131,72 | 3137,02 |
| | Tahlaan | | | | | | | | | | |

Tableau 1 : Fréquences des complexes DABCO – Rg (Rg = He, Ne, Ar et Kr)

Annexe 2:

FORM I	FORM II	FORM III	FORM III (déformé)	FORM IV	FORM IV (déformé)	FORM V
i 16,9994	i 6,5542	14,2093	14,2115	i 42,3924	19,5264	10,8746
16,6135	18,5368	19,3676	19,3819	23,5322	29,7717	27,5559
21,4605	34,5017	41,2172	41,2337	36,233	37,6171	39,1186
41,4228	47,226	42,6858	42,7742	48,333	48,0637	49,1317
51,3807	49,9947	57,8192	57,8773	50,1086	54,2371	51,0346
56,0009	57,2681	58,3786	58,4117	54,6145	60,0558	56,7258
105,0816	99,9194	87,6381	87,7776	60,5069	73,2634	94,3242
326,6878	327,0439	325,3544	325,3697	322,8724	325,512	326,5401
328,9928	328,08	328,7985	328,8254	323,1304	325,7362	329,4428
417,5043	415,9859	416,3768	416,3582	417,0043	416,4996	418,2513
418,7713	418,0253	420,161	420,1793	418,8202	418,2452	420,2262
571,778	571,2998	571,0603	571,0485	570,3023	570,7543	571,8442
572,0918	571,8033	572,1301	572,1474	570,3152	570,8884	572,4893
588,5485	588,4864	587,9488	587,9537	588,8973	588,3782	587,5254
764,0762	765,498	767,0318	767,0229	768,963	767,8152	766,1988
801,4574	801,4853	800,9289	800,9159	800,5034	800,4141	801,4545
817,6765	816,4445	816,3138	816,3102	814,6171	815,0984	817,4327
829,1428	828,8998	827,8684	827,8559	826,5319	827,0715	828,3862
830,277	830,0891	828,3401	828,3266	826,9015	827,474	829,2257
915,2063	914,785	914,885	914,8729	914,1534	914,3318	915,4623
915,8319	916,2848	915,2786	915,2363	914,5957	914,7833	915,5894
986,8043	985,2263	984,258	984,2536	981,0803	982,6199	985,7808
989,0598	990,1288	990,6757	990,6345	992,4403	991,1046	990,4321
1015,9028	1013,1497	1011,962	1011,9569	1003,3288	1007,8096	1015,1013
1047,9006	1047,1596	1047,4527	1047,4545	1045,8119	1046,464	1048,3613
1048,2476	1047,4658	1047,8705	1047,8682	1045,8506	1046,528	1048,7949
1094,4548	1094,9684	1095,4966	1095,49	1096,1243	1095,5568	1095,203
1094,8682	1095,7844	1096,1192	1096,1009	1097,2193	1096,555	1095,5553
1181,5632	1182,3679	1182,7325	1182,7197	1183,3444	1183,0004	1182,3914
1194,3713	1194,2763	1193,7578	1193,7569	1192,4848	1193,3589	1194,0536
1195,0331	1194,9324	1194,2079	1194,2006	1192,6373	1193,477	1194,4861
1252,8056	1253,3488	1253,4632	1253,4572	1252,1551	1252,8429	1253,7266
1291,8554	1294,6294	1296,3732	1296,4016	1303,5238	1299,4579	1295,0859
1294,5473	1294,9735	1298,5809	1298,5546	1303,6883	1299,6435	1297,2927
1310,2694	1310,1806	1309,6142	1309,6099	1306,8393	1308,3462	1310,056
1310,9297	1310,4901	1309,7601	1309,7587	1307,125	1308,7014	1310,7189
1334,4586	1333,3248	1332,0501	1332,0353	1327,343	1330,0354	1333,6112
1334,7438	1333,6449	1332,407	1332,4202	1327,5005	1330,0551	1333,7246
1340,1581	1340,6617	1340,8306	1340,8187	1339,7902	1339,9268	1341,0751
1340,3696	1341,2114	1341,9876	1341,9848	1343,8665	1342,8706	1341,318
1341,0323	1341,4362	1342,1665	1342,1628	1343,8757	1342,9222	1341,6018
1356,6311	1356,5098	1355,5404	1355,5364	1354,0196	1354,7754	1356,0786
1467,4544	1468,0996	1465,724	1465,7293	1463,4268	1465,7527	1466,1344
1468,715	1468,3555	1467,4153	1467,4197	1463,5337	1465,9009	1467,39
1479,1982	1479,4139	1478,5486	1478,5468	1478,8512	1479,1752	1478,2329
1479,5461	1480,4832	1478,9095	1478,9075	1479,4097	1480,1855	1478,7518
1480,552	1481,1408	1480,6483	1480,6603	1479,6634	1480,2259	1479,5555
1493,6597	1494,0086	1492,7569	1492,7609	1491,8749	1492,8938	1492,3411
3051,6524	3051,6869	3053,7237	3053,7203	3055,4959	3055,1815	3052,4865
3051,9017	3055,187	3054,9439	3054,9529	3055,5634	3055,328	3053,9603
3054,3114	3055,3198	3055,1807	3055,1663	3060,2731	3059,9852	3054,1863
3060,0795	3060,7753	3062,3364	3062,3278	3063,4977	3063,8937	3061,1222

FORM I	FORM II	FORM III	FORM III (déformé)	FORM IV	FORM IV (déformé)	FORM V
3060,9898	3064,0383	3064,233	3064,2126	3064,6232	3064,8706	3062,003
3063,3092	3065,8575	3066,0795	3066,057	3068,1686	3067,877	3063,887
3106,0383	3106,6209	3109,2671	3109,2548	3110,0616	3110,2223	3107,1766
3107,4088	3110,6473	3111,0205	3111,0029	3111,6628	3111,6246	3109,9449
3110,7871	3111,8543	3111,7694	3111,7203	3114,9837	3115,2616	3110,8324
3127,0268	3128,7753	3130,1157	3130,0908	3131,1115	3131,3697	3128,2846
3131,5981	3133,7883	3134,658	3134,6354	3135,4441	3135,6364	3133,0479
3133,25	3135,6704	3135,9015	3135,8474	3137,2904	3137,441	3133,8278

Tableau 2 : Fréquences des complexes DABCO – Ar₂

FORM I	FORM II	FORM III	FORM III (déformé)
22,0978	i 76,2296	i 34,9364	11,5017
22,0983	12,2118	12,1701	14,0187
27,3303	12,212	21,2074	21,0669
29,552	26,1856	22,09	37,8219
44,8061	41,6457	46,657	40,5279
48,1786	46,5014	49,0021	48,4852
48,1993	50,444	53,8618	56,8511
55,9679	50,4529	57,3414	59,528
55,97	57,8845	60,9877	75,1981
68,9742	57,8867	74,9152	83,2201
324,7243	323,3302	321,09	323,8217
324,7299	323,3316	329,8011	332,3774
417,8177	422,1102	418,2668	417,7327
417,8225	422,1122	421,3703	420,4774
570,1648	571,6297	570,1929	570,8435
570,168	571,6305	571,5472	571,9897
588,6747	589,3416	589,0946	588,474
768,5463	770,8789	769,767	768,5345
799,7617	801,3996	800,7364	800,594
813,847	816,8972	815,4085	815,9791
825,9852	826,4281	825,948	826,5616
825,9832	826,4293	827,0368	827,4803
913,1983	915,3782	913,912	913,9601
913,1983	915,3799	915,1481	915,1389
980,8162	981,3165	981,2847	
			982,9894
990,8888	992,8398	992,2855	990,8821
1002,6843	1007,4841	1004,5847	1009,1154
1045,2061	1048,2336 1048,2341	1046,5017	1047,2399 1047,7576
1045,2176		1047,0055	·
1095,279	1098,02	1096,3188	1095,5754
1095,2992	1098,0213	1097,5646	1096,9711
1183,1221	1183,9937	1183,8952	1183,4734
1192,1271	1192,2915	1192,4693	1193,3953
1192,1305	1192,2924	1192,7012	1193,6298
1251,8717	1252,3584	1252,8681	1253,6102
1302,8313	1303,8957	1303,5579	1299,2294
1302,8347	1303,8973	1304,0995	1300,9432
1306,2918	1308,7946	1306,9464	1308,3372
1306,2986	1308,7958	1308,4357	1309,3634
1326,9004	1328,6098	1327,4991	1330,3573
1326,9049	1328,611	1328,7345	1331,1887
1339,136	1341,8316	1340,7	1340,8082
1343,4653	1344,743	1344,0344	1342,8907
1343,4661	1344,7443	1344,6552	1343,5818
1352,971	1353,5057	1353,6469	1354,4993
1463,4466	1460,5189	1462,6091	1465,2111
1463,4484	1460,5198	1463,0331	1465,5117
1478,9217	1475,6534	1478,0251	1478,3553
1479,6976	1476,0028	1478,6386	1479,3394
1479,6997	1476,0036	1479,0022	1479,8572
1492,2367	1487,4993	1491,0494	1492,1765
3059,4012	3052,5645	3053,913	3053,4245

FORM I	FORM II	FORM III	FORM III (déformé)
3059,6606	3052,569	3054,0097	3053,6005
3059,6621	3052,5696	3062,1096	3062,4797
3066,1707	3061,4309	3063,5427	3063,8454
3066,1728	3061,4314	3064,821	3065,2272
3068,7888	3063,9171	3071,5339	3071,7118
3112,7513	3107,0947	3108,4356	3108,3566
3114,7592	3109,5708	3109,8909	3109,6276
3114,7623	3109,5717	3120,1034	3120,6771
3132,4837	3128,7093	3130,217	3130,313
3137,2701	3133,6968	3134,0569	3134,0606
3137,2729	3133,6977	3140,0242	3140,3061

Tableau 3 : Fréquences des complexes DABCO – Ar₃

FORM I	FORM II	FORM III	FORM IV
12,1361	i 44,047	i 2,3214	i 12,5573
20,5563	12,6556	i 2,3199	I 12,5387
20,8053	14,6427	3,1588	10,6986
21,7898	20,31	3,3936	10,711
29,1607	24,9609	3,3946	22,3094
32,6768	27,5861	7,3423	38,8259
46,9682	47,1187	7,3503	45,4136
49,3546	48,4564	8,3411	45,7855
54,9096	50,0157	8,6052	48,5554
62,3747	50,1933	10,9136	48,6582
66,0173	65,9341	10,9158	57,2957
66,1777	66,1492	13,2871	57,4152
80,0325	68,6364	47,0953	91,0993
323,1931	324,6585	355,7347	329,5511
331,9851	327,2345	355,7354	329,5708
417,4205	421,1842	460,6178	420,9267
422,341	422,6334	460,6181	420,9416
570,1444	570,7772	635,6507	572,8917
571,6363	572,7163	635,651	572,8955
589,0339	589,348	651,2977	589,4906
769,7066	770,8902	847,3232	767,3431
800,1339	801,0732	865,1848	801,5
815,2857	816,7443	875,1417	818,5344
825,654	826,1339	894,7009	827,6707
826,265	826,3281	894,701	827,6733
913,7742	914,3615	970,7044	915,408
914,3823	915,562	970,7048	915,4291
981,2781	981,6047	1061,8997	985,5048
991,4379	992,1367	1070,0739	989,788
1004,0247	1007,0883	1105,898	1015,1685
1046,3345	1047,638	1132,5775	1049,2693
1046,9186	1048,6558	1132,5776	1049,2846
1096,1975	1096,8613	1191,0586	1095,9768
1096,5409	1098,1025	1191,0589	1095,9877
1183,9493	1184,4696	1278,026	1182,7362
1192,313	1192,4224	1317,1721	1194,2819
1192,6028	1192,4224	1317,1721	1194,2842
1252,8254	1253,2355	1360,1729	1254,1735
1303,1517	1303,1558	1422,6556	1297,9277
1303,1317	1303,1338	1422,6558	1297,9277
1305,4693	1304,3080	1422,0338	1309,5459
1308,1727	1309,0444	1435,972	1309,5573
1308,1727	1328,7586	1461,897	1309,3373
1328,6464	1329,0039	1461,8973	1333,1464
1340,4157	1341,3803	1470,1017	1333,1404
1340,4137	1344,2895	1470,1017	1341,0436
1344,676	1344,2893	1470,1019	1342,3105
1352,9242	1353,3439	1490,8644	1342,3103
1462,758	1461,3107	1601,0656	1465,1043
1463,312	1462,001	1601,0657	1465,1096
1478,2825	1476,6144	1614,831	1477,3445
1478,9601	1476,7191	1614,8311	1477,6397
1479,5366	1477,4925	1619,4423	1477,6403

FORM I	FORM II	FORM III	FORM IV
1491,7041	1489,0755	1634,8138	1490,379
3057,9723	3052,3935	3175,5329	3052,458
3058,2137	3056,486	3175,5331	3052,6587
3064,6239	3056,5693	3182,9992	3052,6752
3064,9118	3061,7363	3190,2449	3060,7694
3066,3401	3064,4983	3190,2451	3060,7797
3071,441	3066,5003	3203,4062	3063,053
3111,9889	3108,4087	3207,612	3107,8181
3113,4131	3113,4214	3214,783	3109,5988
3119,9382	3114,8549	3214,7832	3109,6095
3132,2578	3130,2311	3232,8054	3127,8036
3136,1234	3135,1032	3244,7702	3132,6788
3139,971	3136,8017	3244,7703	3132,6901

Tableau 4 : Fréquences des complexes DABCO – Ar₄

Annexe 3:

Im – Zn Hélice	Im – Zn Hélice CO ₂
7,2839	3,7177
8,2817	7,1738
10,0747	8,1592
12,9642	8,6531
14,1983	12,3757
17,4911	13,5952
22,6927	15,9941
24,3114	17,603
26,3153	23,7575
32,5612	24,3525
40,0191	27,5937
45,1144	30,8487
52,1419	34,9176
57,4255	39,2871
61,2593	41,5898
64,8206	48,5511
68,1081	55,6235
73,0073	58,5132
81,1456	63,2615
83,1208	66,2529
90,7704	68,022
100,4755	70,5435
110,5027	81,1302
123,8371	86,0648
143,2346	88,3785
145,6116	95,0762
150,5074	103,0867
153,3141	115,2212
157,3633	126,694
163,2478	143,996
164,7452	146,9616
168,629	149,9153
169,517	151,6799
171,7357	156,6378
182,7795	163,0495
186,3697	165,2133
189,6011	167,7389
192,5057	169,8377
192,3037	176,0756
194,3363	·
209,3452	182,0125 188,4450
· ·	188,4459
218,112	189,7691
220,8085	195,6654
243,1235	197,7051
255,2277	200,0677
274,4552	209,9093
282,1598	217,0574
290,5009	222,9413
655,6592	240,4355
656,5568	249,834
656,7435	283,1722

Im – Zn Hélice	Im – Zn Hélice CO ₂
657,073	286,33
657,3845	294,102
657,3945	651,7345
676,3441	654,9927
677,3483	656,2113
678,5004	656,5247
679,6635	656,8851
681,6048	657,0084
· ·	· · · · · · · · · · · · · · · · · · ·
682,3917	657,4625
781,4854	658,2312
782,6304	674,6569
784,0432	676,1278
784,6559	677,5858
785,9551	678,4851
786,4035	680,4401
834,5026	681,1684
842,9698	775,1326
844,5779	776,5312
852,7177	776,936
854,2156	778,2003
865,3278	779,786
866,2888	780,5877
866,8207	826,6039
866,8583	837,1731
869,0299	840,1092
869,1427	846,5376
870,2978	847,5723
947,9594	856,1044
948,4116	865,0656
951,4594	865,5243
952,2388	865,77
954,281	867,2504
954,6078	867,5456
967,2619	867,7737
968,6587	946,2605
	947,5209
970,5827	· · · · · · · · · · · · · · · · · · ·
972,4729	948,88
973,1668	950,0029 051,0103
977,6977	951,9103 052,0614
1104,0399	952,0614
1104,334	964,8799
1106,8395	966,651
1107,1686	968,0129
1109,7495	969,5457
1110,2449	970,5722
1120,887	977,3746
1121,7795	1098,0247
1122,8099	1099,9549
1123,3007	1101,8834
1124,442	1102,4224
1125,6408	1104,6197
1210,4701	1106,0265
1215,1023	1115,0514
1222,7383	1115,779
1222,1303	1113,777

Im – Zn Hélice	Im – Zn Hélice CO ₂
1224,5996	1116,4453
1226,2716	1116,665
1226,8541	1117,7453
1258,9285	1119,606
1261,4735	1215,3978
1263,9208	1220,3143
1264,9549	1226,574
1266,1443	1227,6301
1266,7175	1230,0698
1352,7052	1230,6715
1353,0829	1248,541
1353,7471	1250,7822
1355,7132	1253,2429
1358,6451	1253,6552
1360,5271	1255,1433
1376,1122	1255,713
1377,868	1354,5894
1380,7287	1356,0772
1381,504	1357,1247
1381,8814	1357,8865
1382,3652	1363,705
1504,9507	1365,1859
1506,4274	1379,3977
1509,7442	1382,9318
1510,4194	1385,0841
1519,1212	1385,9121
1531,2869	1386,8631
1545,6957	1388,2609
1548,0865	1389,0613
1549,0765	1509,7913
1549,5892	1511,0595
1550,618	1514,9365
1550,9777	1516,777
3257,7548	1525,574
3260,6157	1540,2003
3263,8793	1554,0014
3267,0735	1555,1269
3269,0933	1557,0874
3269,15	1557,63
3269,3787	1557,9716
3270,0395	1558,3951
3270,7144	2460,1986
3271,1722	3263,1599
3271,3716	3264,7486
3276,375	3265,7093
3283,891	3270,5291
3287,2598	3270,6608
3290,0324	3271,2573
3290,0324	3271,2373
3291,6513	3272,0421
3291,8035	3272,098
7251,0033	3212,070

Tableau 5 : Fréquences des complexes imidazole – zinc sans et avec CO₂

Résumé

Les travaux de cette thèse concernent la compréhension à l'échelle atomique des processus physico chimiques intervenant aux interfaces et dans des phases diluées.

Pour commencer, nous avons étudié l'interaction entre la molécule 1,4-diazabicyclo[2.2.2]octane (DABCO) et un atome de gaz rare (He, Ne, Ar, Kr). Nous avons effectué une analyse systématique de ces systèmes, et nous en avons conclu que la méthode MP2 associée à une base diffuse est suffisamment précise pour décrire le système DABCO – Ar. Les surfaces d'énergie potentielle des complexes DABCO – gaz rare ont été calculées, ce qui nous a permis de réattribuer les spectres expérimentaux de ces espèces.

Ensuite, nous nous sommes concentré sur les complexes DABCO – Ar_n (avec n=2,3,4) neutres et ioniques. Nous avons montré que le DABCO interagi avec les atomes d'argon, et subit des déformations dues à l'effet de cette interaction faible sur ses modes de vibration. Par la suite, nous avons étudié les plus bas états électroniques du DABCO – Ar_n (n=1,2,3). Nos résultats pourront être étendus à l'interprétation qualitative des études spectroscopiques et dynamiques des molécules de DABCO absorbés dans de grands agrégats d'argon.

Enfin, nous avons étudié l'interaction entre l'imidazole et une couche d'or en présence de CO₂. Nous avons montré que la molécule d'imidazole se fixe à l'agrégat d'or par une liaison covalente entre l'atome d'azote et un atome d'or, ainsi que des interactions faibles de type van der Waals entre les atomes d'hydrogène et la surface d'or. Nous avons déterminé que le site préférentiel pour l'interaction imidazole – or est le site top. Cette interaction permet un transfert de charge de l'imidazole vers la surface d'or, ce qui affecte la capture du CO₂ (environ 50% plus faible par rapport à l'interaction Im(seule) – CO₂). Mais l'augmentation du nombre de molécules d'imidazole à la surface de la couche d'or pourrait permettre une liaison plus forte entre le CO₂ et l'imidazole.

Abstract

This thesis concern the understanding at the atomic level of physicochemical processes occurring at interfaces and dilute phases.

First, we studied the interaction between the 1,4- diazabicyclo [2.2.2] octane (DABCO) molecule and a rare gas atom (He, Ne, Ar, Kr). We conducted a systematic analysis of these complexes, and we concluded that the MP2 method with a diffuse basis set is accurate to describe the system DABCO – Ar. The potential energy surfaces of DABCO – rare gas complexes were calculated, which allowed us to reatribuate the experimental spectra of these species.

Then, we focused on DABCO – Ar_n (n=2,3,4) neutral and ionic clusters. We have shown that the DABCO interacted with argon atoms and undergoes deformation due to the effect of the weak interaction on his vibrational modes. Subsequently, we studied the lowest electronic states of DABCO – Ar_n (n=1,2,3). Our results can be extended to the qualitative interpretation of spectroscopic and dynamic studies of absorbed DABCO in large argon clusters.

Finally , we studied the interaction between imidazole and a gold surface with CO_2 . We have shown that the imidazole molecule binds to the gold surface by a covalent bond between the nitrogen atom and a gold atom, and van der Waals interactions between hydrogen atoms and the gold surface. We determined that the preferred site for the imidazole – gold interaction is the top site. This interaction allows a charge transfer from the imidazole to the gold surface, which affects the capture of CO_2 (about 50% lower compared to the interaction $Im - CO_2$). But increase number of imidazole molecules on the gold surface could lead to a stronger bond between CO_2 and imidazole.