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Summary

In this thesis, we demonstrate the creation and characterization of multiparticle entan-
gled states of neutral atoms with the help of a high finesse cavity.

Our experimental setup consists of a fibre-based high finesse cavity above the surface of
an atom chip. It allows us to prepare an ensemble of 87Rb atoms with well-defined atom
number. The atoms are trapped in a single antinode of an intracavity standing wave
dipole trap and are therefore all equally coupled to the cavity mode. We present a scheme
based on a collective, quantum non-destructive (QND) measurement and conditional
evolution to create symmetric entangled states and to analyze them at the single-particle
level by directly measuring their Husimi Q function. We use this method to create and
characterize W states of up to 41 atoms. From the tomography curve of the Q function,
we reconstruct the symmetric part of the density matrix via different reconstruction
techniques and obtain a fidelity of 0.42.

Furthermore, we have devised an entanglement criterion which only relies on compar-
ing two populations of the density matrix. We use it to infer the degree of multiparticle
entanglement in our experimentally created states and find that the state with highest
fidelity contains at least 13 entangled particles.

In addition, we show preliminary results on experiments to count the atom number
inside a cavity in the QND regime and to create entangled states via quantum Zeno
dynamics.





Résumé

Dans cette thèse, nous démontrons la création et la caractérisation d’états intriqués
dans un ensemble atomique à l’aide d’un résonateur optique de haute finesse. Notre dis-
positif expérimental consiste en une cavité fibrée placée en dessous d’une puce à atomes.
Les atomes sont tous piégés dans un seul ventre du piège dipolaire créé dans la cavité.
Ainsi, ils sont également couplés au mode lumineux de la cavité. Nous présentons une
méthode basée sur une mesure collective et non-destructive et une évolution condition-
nelle qui sert à créer des états intriqués et symétriques puis à les analyser, avec la résolu-
tion d’une particule unique, en mesurant d’une manière directe leur fonction Husimi Q.
En utilisant cette méthode, nous créons et caractérisons des états W contenant jusqu’à
41 atomes. Nous reconstituons la partie symétrique de la matrice densité à partir des
données expérimentales de la fonction Husimi Q en utilisant différentes méthodes de
reconstruction quantique et nous obtenons une fidélité de 0.42. Par ailleurs, nous avons
établi un critère d’intrication qui consiste à comparer seulement deux populations de la
matrice densité. Nous l’utilisons pour déterminer le degré d’intrication présent dans les
états expérimentalement créés et nous trouvons que l’état de fidélité maximale contient
au moins 13 particules intriquées. Pour finir, nous présentons des résultats prélimi-
naires concernant des expériences de dénombrement d’atomes dans la cavité en régime
de mesures non-destructives ainsi que des expériences de création d’états intriqués en
se servant de la dynamique Zénon quantique.
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Introduction

In the early days of quantum mechanics, supporters and critics illustrated the often
counterintuitive consequences of the new theory by thought experiments, where single
particles would interact with single photons, completely isolated from the environment.
Prominent examples include Einstein’s box, Heisenberg’s microscope and Schrödinger’s
cat, the latter of which has attracted widespread interest even beyond the field of physics.
These thought experiments proved very useful for the development of consistent concepts
and the general understanding of the new theory, but they were considered to be purely
theoretical. As late as 1952, Schrödinger wrote [1]:

“We never experiment with just one electron or atom or (small) molecule.
In thought experiments we sometimes assume that we do; this invariably
entails ridiculous consequences.”

Since then, there has been remarkable progress in the experimental investigation and
control of quantum systems. Particularly in the field of atomic physics, where ad-
vancements have often been stimulated by the field of optics and vice versa: Until the
1940s, light was just used to investigate the properties of matter in spectroscopy ex-
periments, but soon thereafter, the invention of the laser allowed to manipulate the
atoms’ external and internal degrees of freedom. The concepts of optical pumping [2],
laser cooling [3, 4], magneto-optical traps [5] and optical traps [6, 7] were developed to
control atoms with light. The high level of precision that has been obtained by now
is impressively illustrated by the preparation of Bose-Einstein condensates (BEC) with
both atoms [8, 9] and photons [10]. This development was honored by the attribution
of the Nobel prize 1997 “for development of methods to cool and trap atoms with laser
light” (to Claude Cohen-Tannouji, Stephen Chu and William Phillips) and the Nobel
prize 2001 “for the achievement of Bose-Einstein condensation in dilute gases of alkali
atoms” (to Eric Cornell, Carl Wieman and Wolfgang Ketterle). Thanks to these efforts
and achievements during the last century, we are now in the fortunate situation to be
able to experimentally realize some of the thought experiments that 60 years ago were
thought to be impossible.

The research field of cavity quantum electrodynamics (CQED) can be seen as the
fusion between the progress in experimental control of quantum systems and the desire
to study the interaction between single photons and atoms in the spirit of thought
experiments. In 1946, Purcell predicted that it is possible to change the decay properties
of an atom when it is placed inside a cavity [11]. The cavity mirrors modify the density
of electromagnetic modes in which the atom can emit. If the cavity is not resonant
to the atomic transition, the emission rate is therefore reduced and the atom can be
held in the excited state for a longer time. If the cavity is resonant, the emission rate is
enhanced and the photon usually leaves the system via the cavity. However, if the cavity
mirrors are sufficiently good, the photon stays in the cavity and can be reabsorbed by
the atom. In the regime where the interaction between the cavity mode and the atom

9



Introduction

surpasses the losses of the experimental system, the energy is thus coherently exchanged
between the atom and the light field. This situation has first been described by Jaynes
and Cummings [12]. Since then, CQED has been a vivid field of experimental research,
demonstrating fascinating results such as the time-resolved observation of decoherence
[13], the demonstration of a light switch realized by a single atom [14] or the stabilization
of a quantum state in a feedback scheme [15]. The physical situation of CQED has
been experimentally realized in a variety of different systems, such as Rydberg atoms
in a microwave cavity [16, 17], neutral atoms in an optical cavity [18], superconducting
qubits coupled to microwave stripline resonators [19] or quantum dots in a semiconductor
microcavity [20]. Again, the impact and success of this area of research can be illustrated
by the fact that a Nobel prize has recently been awarded to a researcher in this field
“for ground-breaking experimental methods that enable measuring and manipulation of
individual quantum systems” (2012, Serge Haroche together with David Wineland).

This thesis experimentally studies the regime where not only one, but an ensemble
of atoms is placed inside a cavity. The physical concepts behind such an experimental
system have already been theoretically studied as early as 1954, when Dicke found that
N atoms cannot be considered independent when they equally couple to a mode of
the electromagnetic field [21]. Instead, they collectively absorb radiation, which creates
correlations between the atoms. The behavior of the system is thus fundamentally linked
to the concept of multiparticle entanglement, which is one of the most intriguing and
puzzling manifestations of quantum mechanics. The properties of two or more particles
can be interwoven so that the result of a measurement on one particle is correlated to the
results of measurements on the other particles [22]. The collective interaction between
the atoms and the cavity mode makes CQED a convenient field to create and study
multiparticle entanglement, leading to the observation of interesting new phenomena
such as an atom number dependent mode splitting [23], superradiance [24] and the Dicke
quantum phase transition [25]. Multiparticle entangled states are not only interesting
from a fundamental point of view but also have practical applications. The attempt to
harness the properties of entangled states has motivated the creation of new fields of
research, which can be subsumed under the term of quantum information. Examples
are:

● Quantum computation, which aims at using the properties of entangled states to
increase computational power beyond classically possible performance [26]. The
classical bit as the smallest storage unit is replaced by a “quantum bit” or qubit,
which can take the values of a classical bit and any superposition between them.
The computations are performed in quantum gate operations, which entangle dif-
ferent qubits. In order for the quantum computer to be superior to its classical
counterpart, the entanglement has to be maintained during the whole computa-
tional operation.

● Quantum cryptography, where quantum states are used as information carriers to
enable secure communication [27]. In the most common schemes, single photons
serve as “flying qubits” to transport information between remote locations. How-
ever, communication over long distances is impeded because of unavoidable losses in
the transmission channel. Simple amplification of the quantum signal is impossible
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Introduction

due to the no-cloning theorem. That is why the concept of “quantum repeaters”
[28] was devised, at the heart of which lies an ensemble of entangled particles. The
quantum state of a photon can be mapped onto this ensemble and stored for long
periods of time. Concatenating several quantum repeaters can enhance the distance
over which entanglement can be distributed.

● Quantum metrology, which improves the precision of interferometric measurements
by exploiting quantum correlations in an entangled ensemble [29]. The direction
of the total pseudospin of uncorrelated particles necessarily carries a minimum
uncertainty, which prohibits phase measurements below a certain limit. Specifically
tailored entangled states can redistribute the spin uncertainty to be more sensitive
in the spin direction that is measured [30].

Attempts to create and characterize entangled states are pursued in diverse physical
systems. The different approaches can be divided into two classes:

The “bottom up” approach, where entanglement is produced in quantum gate op-
erations and where single qubit addressing is possible. Such systems are e.g. ions in
linear Paul traps [31, 32, 33] or superconducting qubits [34, 35, 36]. The state charac-
terization is realized by state readout of the individual particles, which quickly becomes
cumbersome and time consuming when the number of particles is scaled up. In the case
of ions, several technical challenges also impede an increase in the number of particles
[37]. Therefore the number of entangled particles in these systems to date is limited to
less than 20 qubits [38].

The other approach is to create entanglement in big ensembles, using some form of
collective interaction. It is realized in spin squeezing experiments [39, 40, 41, 42] or
in experiments where a single excitation is stored in an atomic cloud (e.g. in a DLCZ
scheme [43, 44] or via the Rydberg blockade [45]). In all these examples, the analysis
is not performed with single-particle resolution, which means that the states cannot be
controlled at the quantum limit ((as required, for example, to reach the Heisenberg limit
of quantum metrology [29]).

In this thesis, we present a new approach to create and analyze multiparticle entan-
gled states based on CQED. Our experimental setup combines an atom chip with a
fibre-based Fabry Pérot cavity of high finesse and enables us to load a cloud of ultracold
87Rb atoms into one single antinode of the intracavity standing-wave dipole trap, which
leads to identical coupling between the atoms and the cavity mode. We create entangle-
ment in the atomic ensemble via collective evolution and a non-destructive cavity-based
measurement of the atomic state. The creation of entanglement via collective measure-
ment is advantageous because it is in principle independent of atom number. Here, it
is realized for the first time with precision at the single particle level.

We have also devised a new method to characterize the state using the cavity mea-
surement. We directly measure the Husimi Q function of the state, which enables us
to infer the symmetric part of its density matrix. We use this method to create and
characterize W states of different atom number and obtain a fidelity of 0.42 for a state
containing 41 atoms. An analysis of the reconstructed density matrix shows that the
state contains at least 13 entangled particles. The presented method constitutes the first
direct measurement of a quasiprobability distribution for material particles and enables
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the analysis of large entangled states at the single particle level.
Our experiments thus take a special position in the research field of entanglement

creation and analysis: They combine the atom number scalability of schemes relying
on collective interaction with single particle resolution known from experiments with
ions or superconducting qubits. The states presented in this thesis constitute to our
knowledge the highest number of entangled particles that have been analyzed at the
single particle level.

Outline of the thesis

The first chapter introduces the theory of a cavity-based collective measurement. We
first consider the case of a single atom strongly coupled to the cavity mode and discuss
deviations because of real-life atoms and cavities. We then extend the theory to N

atoms in the cavity and also analyze the errors and limits of a quantum non-destructive
(QND) measurement in this situation.

The second chapter gives a short summary on the experimental setup and describes
the steps to cool atoms from a vapor at room temperature and to load them into the
intracavity dipole trap.

The third chapter is devoted to techniques for preparing and counting atom numbers.
We present a method to prepare a well-defined atom number in the cavity and demon-
strate its experimental realization. Furthermore, we compare the signal-to-noise ratio of
different counting methods and propose a scheme to count atom numbers in the QND
regime.

In the fourth chapter, we present the preparation and characterization of multipar-
ticle entangled states. We introduce the principle and experimental parameters of our
entanglement method and explain how the Husimi Q function can be measured with our
cavity. We show tomography on experimentally created coherent states and W states
with three different atom numbers and also analyze their temporal evolution.

In chapter five, the density matrices are reconstructed from their Q function with three
different techniques and a criterion is derived to infer the depth of entanglement in the
reconstructed state. We also investigate the limits to the fidelity of our preparation
method.

Chapter six presents a proposition to create entanglement via QZD. We use a simu-
lation to infer the optimal experimental parameters and to give an upper limit for the
attainable fidelity. We also show preliminary experimental results.

Finally, a conclusion summarizes the main results and gives an outlook on future
experiments.

12



1. Collective QND measurements in an atomic ensemble

In this chapter, we theoretically describe the principle which is at the heart of all
the experiments presented in this thesis: A collective state measurement of an atomic
ensemble in the quantum non-destructive (QND) regime. Such a measurement is realized
with the help of a high-finesse cavity. We therefore briefly review the Jaynes-Cummings
model, which constitutes the simplest case of a two-level system interacting with one
single mode of the electromagnetic field. We then extend our considerations to open
systems and show that our setup is a convenient tool to infer the internal state of a single
atom. We also investigate the influence of deviations from the simple theoretical model
such as the multilevel structure of the atom. We then discuss the main consequences
when not only one, but many atoms interact with the light field and show that the
cavity is a convenient tool to infer if all the atoms are in the same internal state. We
finally discuss fundamental limits of the collective, QND nature of this measurement
and investigate how its errors scale with atom number.

1.1. The Jaynes-Cummings Hamiltonian

We consider a two-level atom with levels �g� and �e�, coupled to a single mode of the
electromagnetic field via electric dipole interactions. The system is described by the
Jaynes-Cummings Hamiltonian H [12]:

H =Ha +Hc +HJC (1.1)

with

Ha = �hÊa‡+‡−

Hc = �hÊca
†a

HJC = �hg(a†‡− + a‡+)
(1.2)

Here, we have used the rotating wave approximation and defined the vacuum as the
zero energy of the field. ‡+ ≡ �e� �g� (‡− ≡ �g� �e�) denotes the atomic rising (lowering)
operator and a† (a) denotes the creation (annihilation) operator of the electromagnetic
mode. ωa�2π and ωc�2π are the resonance frequencies of the atom and the light field,
respectively. The last term HJC in (1.1) describes the interaction between the atom
and the light field. It features the processes of the atom performing a transition from �e�
to �g� while emitting a photon to the light mode (a†‡−) and the absorption of a photon
which changes the atomic state from �g� to �e� (a‡+). Experimentally, such a system
can be realized by placing the atom in a cavity, which filters out one single mode of the
electromagnetic field and enhances the electric field of a single photon. The strength of
this interaction, given by the coupling constant g, is then dependent on the cavity mode

13



1.2. Characterization of the open system

volume V and the atomic matrix element µge:

g =� Êc

2�h‘0V
µge (1.3)

The Hamiltonian H from (1.1) can be diagonalized and the eigenstates are

�+, n� = cos(θn�2) �e, n� + sin(θn�2) �g, n + 1��−, n� = − sin(θn�2) �e, n� + cos(θn�2) �g, n + 1� (1.4)

with

tan ◊n = g
√

n

∆ac�2 +�g2n + (∆ac�2)2 ∆ac = Êa − Êc (1.5)

These states are called “dressed states”, since they combine the atomic and photonic
parts of the system. The corresponding eigenvalues are

E±n = n�hÊc + �h
2
(∆ac ±�∆2

ac + 4g2n) (1.6)

For ∆ac = 0, the two eigenenergies with n excitations are split by the frequency 2g
√

n.
In the case of n = 1, this effect is known as “vacuum Rabi splitting”.

1.2. Characterization of the open system

The Hamiltonian approach is not sufficient to describe the phenomena we encounter in
real-life experiments, since it does not include losses or pumping of the system. In reality,
the system is coupled to the environment by the incoherent processes of atomic decay
(i.e. spontaneous emission) “ and cavity decay Ÿ. In addition, we can coherently excite
the system by pumping the cavity at a rate ÷. Figure 1.1 schematically summarizes the
relevant processes of the open atom-cavity system.

Figure 1.1.: Schematic of the open atom-cavity system. The cavity is pumped coherently at a
rate ÷. Decay can either occur via cavity leakage (at a rate Ÿ) or via spontaneous emission of
the atom (at a rate “). The coupling strength between the atom and the cavity mode is g.

The master equation
To include these processes, we use a master equation approach [46]: We assume that

14



the system is coupled to a reservoir of modes and calculate the joint evolution of the
system and its environment by solving the master equation

fl̇ = Lfl

Lfl = − i�h[H, fl] + ŸDafl + “Dσ−fl
(1.7)

The loss processes due to atomic decay and cavity decay are included as superoperatorsD. Here, Dc associated with the operator c, is defined as

Dcfl ≡ 2cflc† − {fl, c†c}, (1.8)

with {⋅, ⋅} being the the anti-commutator. The pump term is added to the Hamiltonian
as [47]:

HP = −i÷(aeiωpt
− a†e−iωpt) (1.9)

H then reads (in the frame rotating at the pump frequency Êp):

H =∆ap‡+‡− +∆cpa†a + g(a†‡− + a‡+) − i÷(a − a†) (1.10)

with ∆ap = Êa − Êp and ∆cp = Êc − Êp.

Solution to the master equation
Under the assumption of weak probing (i.e. only considering the three states �g, 0�, �g, 1�
and �e, 0�), the master equation (1.7) can be solved analytically [48] and we directly give
the steady state solution here. The expectation values pex for the atomic excitation and
ncav for the intracavity photon number are

pex = �‡+‡−� = ÷2g2

�g2
− ∆̃ap∆̃cp�2 (1.11)

ncav = �a†a� = ÷2 �∆̃ap�2
�g2
− ∆̃ap∆̃cp�2 (1.12)

with ∆̃ap =∆ap − i“ and ∆̃cp =∆cp − iŸ.
η2�κ is the incoming photon rate. Since we assume lossless cavity mirrors, it is pro-

portional to the intracavity photon number for an empty cavity on resonance:

÷2

Ÿ
= Ÿ ncav(g = 0, ∆cp = 0) (1.13)

We can obtain information from the system by analyzing the cavity transmission T . It
is related to ncav via

T = Ÿ ncav. (1.14)

In figure 1.2, we compare T for g = 2fi ⋅ 240 MHz (blue curve) and g = 0 (green curve) in
dependence of the atom probe detuning ∆ap. For g = 0, we simply obtain the Lorentzian
curve of an empty cavity transmission. In contrast, for g = 2fi ⋅ 240 MHz, the transmis-
sion features two peaks which are shifted from the initial resonance. These maxima
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1.2. Characterization of the open system

correspond to the non-degenerate eigenenergies E±0 of the coupled system (see (1.6)).
We can thus use the cavity to detect single atoms: If we tune the probe light and the
cavity resonant to the atomic transition (∆ap = 0, ∆cp = 0), the transmission is reduced
by a factor

Tatom

T0
= 1

1 + g2

κγ

≡ 1(1 + 2C)2 � 1

4C2
(1.15)

with respect to the empty cavity transmission T0. Here, we introduced the cooperativity
C:

C = g2

2Ÿ“
(1.16)

If the coupling g is stronger than the losses Ÿ, “, then C > 1 and the system is governed
by coherent evolution. The behavior of the coupled system is then conceptually different
from the behavior of an empty cavity as can be seen in the cavity transmission. This
experimental regime is known as “strong coupling regime”.

Figure 1.2.: Cavity transmission as a function of the probe laser detuning with the cavity
resonance being fixed at the atomic frequency (∆ap = ∆cp). The blue curve shows the signal of
an empty cavity. This signal is strongly modified if a single resonant two-level atom is placed
inside the cavity (green curve). The curves are plotted for the parameters of our experimental
setup (g = 2fi ⋅ 240 MHz, “ = 2fi ⋅ 3 MHz, Ÿ = 2fi ⋅ 53 MHz).

The reduced intracavity photon number also leads to a reduced scattering rate Γeff of
the atom:

Γeff = 2“pex = 2“÷2g2

�g2
− Ÿ“�2 � 2“÷2

g2
= 1

C

÷2

Ÿ
(1.17)

with pex being the population in the excited state �e�. We see that the scattering rate
per incoming photon is reduced by the cooperativity C.

cavityprobe

Figure 1.3.: Schematic of our experimental configuration to detect the atomic state. A three-
level atom is placed inside a cavity. The cavity and the probe light is resonant with the atomic
transition �1� → �e�. In contrast, the other atomic transitions (�0� → �e�, �0� → �1�) are far from
resonance.
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Internal state detection
We use this manifestation of the vacuum Rabi splitting to infer the internal state of
an atom. Consider a three-level atom in a high-finesse cavity (see figure 1.3). To infer
if the atom is in state �0� or �1�, we tune the cavity and probe light resonant to the
transition �1� → �e�. We coherently probe the cavity and observe photon counts in
transmission with Poisson distribution and a different mean value T according to the
internal state of the atom: If the atom is in �1�, the mean cavity transmission T�1� is low
(as shown in the green curve of figure 1.2) due to the vacuum Rabi splitting. On the
other hand, if the atom is in �0�, the Lorentzian curve of the cavity resonance is basically
undisturbed and the mean cavity transmission T�0� is high. We choose a threshold value
in between T�0� and T�1� and assign the outcome to �1� if the counted photon number is
below the threshold, and to �0� if it is above. Figure 1.4 shows a schematic of the count
distributions of the two possible outcomes and the threshold.

threshold

Figure 1.4.: Schematic of the count distribution in transmission for the two different measure-
ment outcomes. We choose a threshold (red) and assign the counted photon number to the state�1� (�0�) if it is below (above) the threshold. This results in a detection error ‘10 (‘01), which
corresponds to the light blue (light red) area.

The detection error ‘ of such a measurement can be defined as the mean value of the
two state dependent errors ‘01 and ‘10:

‘ = ‘01 + ‘10

2
(1.18)

where ‘01 (‘10) is the probability to wrongly conclude that the atom is in the state�1� (�0�) while in reality it is in �0� (�1�). ‘01 (‘10) can be calculated as the integral
of the Poisson distribution with mean T�0� (T�1�) below (above) the threshold. The
measurement error ‘ can be reduced if a higher number of photons is sent onto the
cavity. The overlap of the distributions then becomes smaller, which makes the internal
atomic states more easily distinguishable.

In the case of our experimental setup, the transmission signal is modified so strongly,
that a low number of probing photons is sufficient to infer the state. This allows us to
measure the internal state without the occurrence of a spontaneous emission event: If
the atom is in �1�, the scattering rate is strongly reduced by the factor 1�C (see (1.17)).
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1.3. Real-life atoms and cavities

On the other hand, if the atom is in �0�, the intracavity light field is not resonant to the
atomic transition. Typical detection errors as well as scattering probabilities are given
in the next section.

1.3. Real-life atoms and cavities

Our experimental system consists of 87Rb atoms, optically trapped in a fibre-based
Fabry Pérot (FFP) cavity. The optical trap, imperfect cavity mirrors and the multilevel
structure of the atom cause the system to behave differently from the simple model
presented in the previous section. With the right experimental configuration, we can
nevertheless realize it to good approximation.

dipole trap 830nm probe 780nm
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Figure 1.5.: The relevant part of the 87Rb level scheme with the experimental configuration
chosen for the experiments presented in this thesis. The dipole trap light is fi-polarized and
its light shift is mF -dependent for the excited states. We send ‡+�‡−-polarized light into the
cavity at a frequency resonant to the �F = 2, mF = 2� → �F ′ = 3, mF ′ = 3� transition. A magnetic
field of 12.5 G, oriented along the polarization of the dipole light, lifts the degeneracy of the
hyperfine ground states. The transitions between the levels in F = 1 and F = 2 can therefore
be addressed individually with a microwave. For our experiments, we choose the states �0� ≡�F = 1, mF = 1�, �1� ≡ �F = 2, mF = 2� and �e� ≡ �F ′ = 3, mF ′ = 3�, which realize a three-level system
to good approximation.

Figure 1.5 shows the relevant level scheme of 87Rb. We choose the D2-line as the op-
tical transition because of its comparatively high transition dipole matrix element. Due
to birefringence in the mirror coatings, the cavity has two non-degenerate linear polar-
ized eigenfrequencies 1. The intracavity light is therefore necessarily linearly polarized.
The light shift of a linearly polarized dipole trap is mF -dependent for the excited states
[49, 50] and orders the Zeeman levels of the F ′ = 3 manifold in a triangular structure
as shown in figure 1.5. The linearly polarized probe light cannot exclusively probe the
closed optical transition �F = 2, mF = 2� → �F ′ = 3, mF ′ = 3�. We choose its polarization
orthogonal to the dipole light, which results in ‡+�‡− polarized light in the atomic frame.

1. The cavity is presented in detail in section 2.2.
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A closed transition is therefore realized to good approximation, since the ‡−-polarized
light is tuned far from resonance due to the light shift of the optical dipole trap.

In addition, we apply a homogeneous magnetic bias field in the direction of the dipole
trap polarization to lift the degeneracy in the hyperfine ground state manifolds F = 1
and F = 2. We can thus individually address the transitions between Zeeman levels
in the hyperfine ground state (using a microwave) and encode our qubit states �0� and�1� in the states �F = 1, mF = 1� and �F = 2, mF = 2�, respectively. With the excited
state �e� = �F ′ = 3, mF ′ = 3�, this configuration realizes a three-level system like the one
mentioned in the previous section to good approximation.

To quantitatively estimate the influence of the real-world atom and cavity, a master
equation of the experimental system has been set up and solved numerically [51]. This
master equation includes coupling between the F = 2 hyperfine ground state and all
hyperfine states of the 52P3�2 multiplet, the two cavity modes with orthogonal polariza-
tion, a light shift due to a linearly polarized dipole trap and a homogeneous magnetic
field. The steady state solution shows that the experimental configuration presented in
figure 1.5 is indeed the optimal choice for QND measurements [51]. We therefore use it
in all experiments presented in this thesis. Figure 1.6a) and b) show the transmission
T and the population pex in the F ′ = 3 manifold.

Figure 1.6.: Cavity transmission and population in the F ′ = 3 manifold according to the solution
of the full master equation. The curves are calculated for the parameters of our experimental
setup (g0 = 2fi ⋅240 MHz, “ = 2fi ⋅3 MHz, Ÿ = 2fi ⋅53 MHz), the light configuration shown in figure
1.5, a pump rate ÷ = 2fi ⋅ 1.9 MHz and a magnetic field B = 12.5 G parallel to the dipole trap
polarization. With respect to figure 1.2, the transmission features a more complex spectrum,
because the multilevel structure of the atom is taken into account. The asymmetry with respect
to the detuning between the probe laser frequency and the atomic transition ∆ap is due to the
mF -dependent light shift of the dipole trap and the magnetic field.

The lowest transmission Tmin = 8.5 ⋅ 10−5 T0 is obtained when cavity and probe are
resonant to the �1�→ �e� transition. This value allows us to assign an error to the state
detection measurement. Furthermore, the population pex,min = 1.2 ⋅ 10−4 in the F ′ = 3
manifold relates the number of incoming photons to the number of scattered photons
via (1.17). Figure 1.7 summarizes this information. It shows the mean detection error of
the state detection measurement in dependence of the mean number scattered photons.
Here, we have also taken into account the increase in detection error due to optical losses
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1.4. Cavity QED with an atomic ensemble

of the cavity, the fibres and the single photon detection setup. The value Tmin is not as
low as theoretically expected for a perfect two-level system with the same experimental
parameters (T theor

min = T0�4C2 = 8 ⋅ 10−6 for C = 181), but is still sufficiently low to measure
the atomic hyperfine state with high fidelity and without spontaneous emission: We
obtain from the graph that we can infer the atomic state with an error below 10% at a
scattering probability of 0.2.

Figure 1.7.: The detection error of the hyperfine state measurement in dependence of the mean
number of scattered photons and incident photons as expected from the solution of the master
equation. For a higher number of probing photons, the detection error decreases while the mean
number of scattered photons increases.

1.4. Cavity QED with an atomic ensemble

1.4.1. The Tavis-Cummings Hamiltonian

In the previous sections, we only considered a single atom coupled to a cavity mode.
We now study the consequences on the state detection scheme if not only one, but
N atoms are placed inside the cavity. For N two-level atoms equally coupled to the
cavity mode, the Jaynes-Cummings Hamiltonian (1.1) has to be expanded to the Tavis-
Cummings Hamiltonian HN [52], which takes into account the energies and interactions
of all N atoms:

HN = �hÊca
†a + �hÊa

N

�
i=1

‡+i ‡−i + �hg
N

�
i=1
(a†‡−i + a‡+i ) (1.19)

The ground state of the system is �0c� ≡ �g1, g2, . . . , gN , 0ph� with 0ph being the ground
state of the cavity field. If the system contains one single excitation, it can either be
stored in the light field �1c, cavity� ≡ �g1, g2, . . . , gN , 1ph� (1.20)

or in the atomic ensemble. Due to the symmetry of the system, the excitation must
then be equally shared by all the atoms:

�1c, atoms� = 1�√N � N

�
i=1
�g1, . . . , ei, . . . , gN , 0ph�� (1.21)
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This coherent, symmetric superposition of N -particle states is known as Dicke state.
It has been introduced in [21] to describe the collective light emission from a cloud of
atoms.

As in the single atom case, the eigenstates of the Hamiltonian (1.19) are dressed
states, containing weighted contributions of the atomic and photonic excitation states.
On resonance (Êc = Êa), the eigenstates with one excitation read 2

�±, 1N � ≡ 1√
2
(�1c, cavity� ± �1c, atoms�) (1.22)

The spacing between the corresponding eigenenergies is proportional to
√

N :

E±,N = �hÊc ± �h√Ng (1.23)

The system thus behaves as if one “superatom” was coupled to the cavity field with a
coupling constant g̃ = √Ng.

When we consider the open system, we have to use a master equation approach similar
to the one for the single-atom system [53] (cf 1.7):

fl̇ = Lfl

Lfl = − i�h[HN , fl] − i�h[HP , fl] + ŸDafl + “
N

�
i=1
Dσ−

i
fl

(1.24)

The results are analogue to the single-atom case when we define a collective cooperativity
CN :

CN = g̃2

2Ÿ“
= NC (1.25)

The transmission TN at resonance is reduced by a factor

TN

T0
= 1

4C2
N

= 1

N2

1

4C2
(1.26)

The total scattering rate, however, is the same as in the single atom case (cf. (1.17)):

Γeff,N = N

CN

÷2

Ÿ
= Γeff (1.27)

1.4.2. State measurement in an ensemble

We now consider this result regarding our experimental system, namely a total number
of N 87Rb atoms in the cavity with a configuration as presented in figure 1.5. Equation
(1.26) makes it seem possible to infer the number of atoms in the state F = 2 by probing
the cavity on resonance and analyzing the transmission. However, we will find in the
following that we can only distinguish if all atoms are in F = 1, or if at least one atom
is in the hyperfine state F = 2. This is due to the fact that the cavity transmission is

2. There exist N-1 additional eigenstates. They are dark states and cannot be excited by driving the
cavity mode. Therefore, they are not considered in the following.
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1.4. Cavity QED with an atomic ensemble

already strongly reduced by a single atom in F = 2. Additional atoms in F = 2 do not
measurably lower the transmission further.

We can quantitatively illustrate this by comparing the measurement signals for one
or two atoms in F = 2. To infer the state inside the cavity, we have to assign the
measurement result - a counted photon number n - to one of the possible Poisson
distributions with the mean transmission T1 for one atom in F = 2, and T2 for two atoms
in F = 2. We first consider the case of a measurement without spontaneous emission:
Figure 1.7 shows that we must keep the number of incoming photons below 20, if we
want to keep the single atom scattering probability below 0.2. The transmittance and
losses of our cavity mirrors 3 lead to the fact that only 13% of the incoming photons are
transmitted, if the cavity is on resonance and no atoms are in F = 2:

T0 = 0.13 ⋅ 20 = 2.6 (1.28)

If one atom is in F = 2, the cavity transmission is reduced by 1�4C2:

T1 = 1

4C2
T0 = 2.6 ⋅ 10−4 (1.29)

A second atom in F = 2 reduces the transmission further:

T2 = 1

4

1

4C2
= 8 ⋅ 10−5 (1.30)

We calculate the detection error according to figure 1.4 and get:

‘ = 0.5 − 1 ⋅ 10−4 (1.31)

It is very close to the highest possible error ‘max = 0.5, which occurs when the result
of the measurement is guessed. This means that the two different atom numbers are
(practically) indistinguishable.

For a lossless cavity, the detection error would still be ‘ = 0.5 − 9 ⋅ 10−4, which means
that not only the experimenter, but also the environment cannot infer the atom number
in F=2.

We conclude that while it is not possible to infer how many atoms are in F = 2, our
experimental setup is well suited to distinguish if at least one atom is in the state F = 2
or if all the atoms are in the F = 1 manifold without a spontaneous emission event. This
allows us to perform a state detection measurement with an atomic ensemble in the
quantum non-destructive (QND) regime. By that, we mean that no energy exchange
occurs between the atoms and the probing light field [54]. The measurement is thus a
projective measurement with two eigenvalues. It projects the atomic state either onto
the state where all atoms are in F = 1 or onto the orthogonal subspace, containing all
states with at least one atom in F = 2, since these are the only states the cavity can
distinguish.

To illustrate the difference between a QND measurement and a measurement involving
scattering, we consider an ensemble of N atoms inside the cavity. We assume the atoms

3. Details on the cavity can be found in section 2.2.
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are in a symmetric state, with a single excitation in F = 2 being shared by all the
atoms. In a non-QND measurement, an atom in F = 2 might scatter a photon. The
atom’s external state (i.e. its position in the trap) is therefore entangled with the
emitted photon and revealed to the environment when the photon is detected by the
surroundings. The atom in F = 2 thus becomes distinguishable and the symmetric
state is destroyed. On the other hand, a measurement in the QND regime detects if
an atom is in F = 2 without spontaneous emission of a photon, hereby preserving the
symmetric state. We use this possibility of non-destructive detection of symmetric states
to generate entanglement in an atomic ensemble (see chapter 4).

We now release the constraint of a QND measurement. In this case, we are limited
by the hyperfine state dynamics of the atoms: Under the influence of the probe light,
the atoms can scatter off-resonantly and fall into the respective other hyperfine state.
Precisely, an atom in F = 2 can off-resonantly be excited to F ′ = 1, 2 from where it can
relax into F = 1. On the other hand, an atom in F = 1 can be excited to F ′ = 0, 1, 2 with
a possible decay to F = 2. Both processes change the number of atoms in F = 2, which
we actually want to measure. Experimentally, a change from F = 2 to F = 1 (F = 1 to
F = 2) can be observed as a sudden change in the cavity signal from low to high (high
to low) transmission. We have experimentally inferred that the state of a single atom
is changed from F = 2 to F = 1 (F = 1 to F = 2) after a mean number of nsc,21 = 1 ⋅ 104

(nsc,12 = 5 ⋅103) incoming photons [51]. We must therefore stay below this number in our
state detection measurement. Sending 5 ⋅ 103 photons into the cavity leads to the mean
transmissions T1 = 0.065 and T2 = 0.016. The corresponding detection error ‘ = 0.48 still
does not allow a precise atom number measurement.

1.4.3. Deviation from the ideal measurement and atom number scalability

We now discuss some deviations from the basic Tavis-Cummings model and analyze
how they affect the state detection scheme. In particular, we study up to which atom
number N we can use the cavity to infer the internal state of the atomic ensemble.

1.4.3.a. Current limitations

● Atoms couple unequally to the light mode:
In (1.19), we have assumed that all atoms couple to the cavity mode with the
same coupling strength g. This condition is perfectly realized if a BEC is placed in
the cavity. In this case, all atoms are prepared in the same external macroscopic
quantum state and thus all have the same spatial overlap with the cavity mode. A
technical limit is therefore only reached when the dimensions of the BEC are on
the same order as the cavity length.
However, due to the way the atom number is prepared (see section 3.1 for details),
the experiments presented in this thesis are performed with a thermal ensemble
in the cavity. In this case, the atoms do not couple equally to the light field.
The atomic cloud is trapped in one single antinode of the standing wave dipole
trap mediated by the cavity. Due to the temperature distribution, atoms occupy
different mean positions in the trap and therefore experience a different probe light
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1.4. Cavity QED with an atomic ensemble

intensity. This leads to a different coupling constant gi for each atom. By itself,
this does not prevent the performance of a collective, QND measurement. However,
it partially reveals the external state of the atomic ensemble, which defeats the
purpose of a QND measurement: To infer only if an atom is in F=2, but not which

one it is.
In the following, we estimate a maximum temperature of the atomic cloud that
still allows for a state detection measurement in a symmetric way. We impose that
two different atoms a and b in F = 2 should be indistinguishable by a cavity mea-
surement to a degree of 90%. This means that the error ‘g of their discrimination
measurement should be higher than 0.45. This error for two different mean trans-
missions Ta and Tb is given by the integral of their Poisson distributions Pois(Ta, k)
and Pois(Tb, k) above or below the threshold (in this case, we use a threshold of 0
photons, cf. figure 1.4):

‘g = ‘ab + ‘ba

2

=
∞

∑
k=1

Pois(Ta, k) +Pois(Tb, 0)
2

= 0.45

(1.32)

For a measurement with scattering probability psc = 0.2, we obtain Ta from the
numerical simulation (cf. figures 1.6 and 1.7):

Ta = 17 ⋅ 10−4 (1.33)

For ‘g to be above 0.45, T2 must not be higher than

Tb = 0.1 ≈ 60 Ta (1.34)

Such a high mean transmission is observed for a value of the coupling constant gb

as low as

gb = 1
4
√

60
ga �

1

3
ga (1.35)

The atoms are held in a harmonic trap with a trap frequency Ê = 2fi ⋅0.9 ⋅ 106 MHz 4.
A coupling constant gb is then reached for atoms with a potential energy which
corresponds to a trap temperature Θmax = 5 mK. The atomic ensembles prepared
in our experiments are always much colder than this. We will find in section 4.4
that the cloud temperature is approximately 0.5 mK.

● Hyperfine state dynamics:
As we have already pointed out, off-resonant scattering events can change the hy-
perfine state of the atom and thus the quantity that we want to measure. We now
investigate how the probability for such a scattering event scales with the atom
number N .
From (1.27), we obtain that the scattering rate for atoms in F = 2 is independent
of the atom number N . It is thus the scattering events F = 1 → F = 2 that put a

4. This is the trap frequency of the dipole trap along the cavity axis for the light intensity chosen in
the experiments.
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constraint to the maximum atom number Nmax. We can give an estimate of Nmax,
if we assume that the off-resonant scattering events of the individual atoms are
not correlated. We have experimentally inferred that a single atom in the cavity
performs a quantum jump F = 1 → F = 2 after a mean number of nsc,12 = 5 ⋅ 103

incident photons. For N atoms, the mean photon number nN
sc,12 necessary for the

occurrence of a quantum jump is thus inversely proportional to the number of
atoms:

nN
sc,12 = nsc,12

N
(1.36)

The state detection fails if nN
sc,12 is on the same order as the number of probing

photons nprobe. For a QND measurement with a detection error of approximately
10%, the number of probing photons is nprobe = 25 (see figure 1.7). The state
detection should therefore be possible for atom numbers up to

N = nsc,12

nprobe
= 200 (1.37)

For the experiments in this thesis, we limit ourselves to atom numbers N < 100.

1.4.3.b. Improvement of the limit

In future experimental setups, we can improve the maximal atom number N by
customizing the properties of the cavity. We are ultimately limited by the atomic
structure of the 87Rb atom.

To maximize N , we have to keep the number of scattering events F = 1 → F = 2 as
low as possible. When an atom relaxes from the 52P3�2 manifold, it falls into F = 2 with
a probability p � 0.5. The rate Γsc,12 for the event F = 1 → F = 2 is therefore related to
the scattering rate of an atom in F = 1 as

Γsc,12 = 1

2
Γsc (1.38)

For atoms in F = 1, we have ∆ap � g, Ÿ, “. The rate Γ
N
sc,12 for N atoms therefore is (cf.

(1.11)):

Γ
N
sc,12 = 1

2
ΓscN = 1

2

g2

∆2
ap

÷2

Ÿ2
“N

= ÷2

Ÿ
“2CN = 1

∆2
ap

n“2CN (1.39)

This favors a cavity with low cooperativity C. On the other hand, a high cooperativity
is needed to perform the measurement in the QND regime. We need a minimal number
of n = 5 incident photons on average in order to infer the state of the ensemble with
a detection error below 0.01. Furthermore, we impose a maximal mean number of
scattering events of atoms in F = 2, Nsc,F=2 = 0.1. This fixes the cooperativity to be (cf.
(1.17))

C = n

Nsc,F=2
= 50 (1.40)
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1.5. Conclusion

Putting this result in (1.39), we see that we can perform the state detection measurement
with a maximal number of approximately 2000 atoms. The limitations stems from the
finite detuning ∆HF between the hyperfine ground states.

1.5. Conclusion

In this chapter, we have shown that our cavity is a convenient tool to infer the internal
atomic state with low detection error. Since the atom-cavity system is deeply in the
strong coupling regime, the measurement can also be performed with low probability
for the occurrence of a scattering event.

If we consider an ensemble of N atoms in the cavity, this means that we can realize a
collective state measurement in the QND regime. More precisely, we are able to detect
whether all the atoms are in F = 1 or at least one atom is in F = 2. The detection error
of the measurement is below 10% at a scattering probability of 20%. Due to off-resonant
scattering, the maximum atom number is limited to N < 200.
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2. The experimental setup

The following chapter is dedicated to the experimental setup, which combines an
atom chip experiment with a miniaturized Fabry-Pérot cavity. This setup has been
extensively described in [55, 56, 51] and we therefore only give a summary over the
most important components.

In section 2.1, we describe the setup needed to produce a trapped cold atomic cloud
on the atom chip. This comprises the vacuum apparatus, the optical setup and the
atom chip.

In section 2.2, we introduce the fibre-based Fabry-Pérot cavity (FFP), describe how
it is produced and mounted in the experimental setup and give its characteristics.

We conclude this chapter with a description of a typical experimental sequence, start-
ing from a vapor at room temperature and ending with a BEC in the optical dipole trap
of the cavity.

2.1. The setup for the production of cold atoms

2.1.1. The vacuum assembly and periphery

The use of an atom chip allows for a rather simple vacuum setup: The steep gradients
of atom chip traps create higher atomic densities and therefore permit evaporative cool-
ing on much faster timescales [57] than conventional setups with macroscopic magnetic
coils. Experiments therefore can be performed under moderate vacuum conditions. Fur-
thermore, the atom chip itself forms the top cover of the vacuum cell [58] and can hence
be electrically connected from the outside. This disposes us from using accident-prone
electrical feedthroughs.

For these reasons, the vacuum chamber only consists of a single glass cell which is
provided on the outside with an anti-reflective dielectric coating 1, attached to an appa-
ratus that maintains an ultra-high vacuum (UHV). The atom chip forms the top cover
of the cell and the bottom is connected to a glass-metal transition 2. A Rb dispenser 3

is placed in the duct of the glass-metal transition. It releases atomic Rb when heated
via resistive heating and is electrically connected to a current source via an electric
feedthrough.

The rest of the vaccum assembly consists of commercial components to create and
maintain a UHV: The glass-metal transition is connected to a six-way cross. Also
connected are a valve with an ion getter pump 4 and a Ti sublimation pump. A gauge
allows to monitor the cell pressure and a window at the bottom gives optical access to
the chip and the cavity region. Figure 2.1 shows the parts of vacuum assembly.

1. Hellma 704.001-OG
2. using the epoxy glue Epo-Tek 301
3. SAES RB-NF-3.4-12FT10+10
4. Meca2000 25L/s
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2.1. The setup for the production of cold atoms

Figure 2.1.: Schematic of the vacuum assembly. a) side view b) top view. The vacuum assembly
consists of the glass cell with the chip, attached to commercial UHV components. A six-way
cross connects the glass cell to a Ti sublimation pump, an ion pump, an electrical feedthrough
and a pressure gauge. An window gives optical access to the chip region. Adapted from [55]

The base pressure of the vacuum system is 3 ⋅ 10−10 mbar. When the Rb dispenser is
turned on, the pressure rises to approximately 1 ⋅ 10−9 mbar.
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A metal cage is placed around the glass cell. It holds three coil pairs in Helmholtz-
configuration which provide magnetic bias fields in the three spatial directions and
one pair in anti-Helmholtz-configuration which provides a field gradient for magnetic
transport.

A microwave antenna is positioned at a distance of approx. 50 cm from the glass
cell. It is connected to a homebuilt microwave generator and a series of amplifiers with
a global gain of 51dB, providing a total output power of approx. 15W. The system
allows to drive Rabi oscillations between the two ground state levels F = 1 and F = 2 of
87Rb, which are separated by approx 6.8 GHz.

2.1.2. The optical setup

The optical setup has five objectives. It generates the light necessary for the

– Cooling of the atoms in a magneto-optical trap (MOT) [5]
– Pumping of the atoms into a magnetically trappable Zeeman state
– Probing of the atoms (in an absorption imaging technique and in the cavity)
– Generation of a locking signal of the FFP cavity
– Generation of an optical dipole trap

In figure 2.2, the frequencies that are needed for these purposes are shown together
with the level scheme of the D2-line of 87Rb.

Figure 2.2.: Level scheme of the D2-line of 87Rb with the laser frequencies that are needed to
cool and probe the atoms.

The light sources in our setup are laser diodes provided with an external cavity in
form of a diffraction grating mounted in Littrow configuration [59]. They are frequency
stabilized by feeding back an error signal to a piezo controlling the length of the external
cavity. The error signal is created via frequency modulation Doppler free saturation
spectroscopy [60, 61].

The optical setup is divided into four parts: The “main experimental” table, the
“locking” table, the “detection” table and the optical setup surrounding the vacuum
cell. In the following, they are described in detail:
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2.1. The setup for the production of cold atoms

The main experimental table contains a standard laser setup to produce a MOT
and an optical molasses and to pump the atoms into a trappable Zeeman state. Fur-
thermore, it generates the light used to probe the atoms via absorption imaging as well
as in the cavity. Figure 2.3 shows a schematic of the beam paths. The table features
four laser diodes:

● A “cooling” laser at 780 nm, locked to the F = 2→ F ′ = 2/F = 2→ F ′ = 3 crossover.
A part of the light is branched off at a beam splitter and shifted by −264 MHz to
the F = 2→ F ′ = 3 transition using an acousto-optic modulator (AOM) mounted in
a double pass configuration [62]. It is coupled into a polarization maintaining single
mode (PMSM) fibre and sent to the vacuum chamber, where it serves to pump the
atoms into the magnetically trappable �F = 2, mF = 2� state. Another small part
of the light is branched off and used to generate a beat lock signal with the probe
laser.

● A “slave” laser at 780 nm, which provides the optical power necessary for the MOT
stage. It is fed from the cooling laser, which is sent through a double pass AOM
and shifted by 138 MHz before it is injected into the slave laser diode. The emitted
light is thus at the same frequency as the injected light. Most of it is shifted again
by −80 MHz in a single pass AOM and coupled into four PMSM fibres for the
generation of the MOT. A small fraction is shifted by −106 MHz and coupled into
two PMSM fibres for the detection via absorption imaging in x and y direction 5.

● A “repump” laser at 780 nm, locked to the F = 1→ F ′ = 1/F = 1→ F ′ = 2 crossover
via Doppler free saturation spectroscopy. Its frequency is shifted by −83 MHz to
the F = 1→ F ′ = 2 transition by an AOM before the light is coupled into a PMSM
fibre and sent to the vacuum chamber. There, it is used during the MOT phase to
pump atoms that have fallen out of the cooling cycle back into the F = 2 state.

● A “probe” laser at 780 nm, which generates the light used to probe the cavity. To
allow for a variety of different experimental configurations, we want this light either
to be resonant to the F = 1 → F ′ = 2 or the F = 2 → F ′ = 3 transition. This is
realized by a beat lock scheme, which either beats the probe light with light from
the repump beam or from the cooling beam. The probe light can then still be
shifted on the range of several hundred MHz in a double pass AOM. It is sent to
the “locking” table through a PMSM fibre, where it is strongly attenuated by a
single pass AOM before being sent to the detection table.

Except for the probe beam and a fraction of the cooling beam used for locking, all light
from this table is fibre coupled and sent to the optical setup around the experimental
chamber.

5. After having performed the experiments presented in this thesis, we have slightly modified the
setup: Instead of using a master-slave configuration, we now deploy a tapered amplifier. This leads to
an increase in the optical power for the MOT by a factor of 3 with respect to the configuration presented
here. We therefore can reduce the MOT loading time from initially 6 s to 2 s.
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Figure 2.3.: Beam paths of the main table. The light mainly serves to generate a MOT and to
pump the atoms into a magnetically trappable state. It is coupled into SMPM fibres and sent
to the optical setup around the vacuum chamber (see figure 2.7). The light from the FFP probe
laser is used to probe the atoms in the cavity and is sent to the “detection” table (see figure
2.5). The numbers next to the AOMs denote their frequency shift in MHz.
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2.1. The setup for the production of cold atoms

The locking table generates the light necessary to lock the FFP cavity and to gen-
erate an optical dipole trap inside it. It comprises a transfer cavity to ensure that the
length of the FFP cavity is stabilized with respect to an atomic transition and that it
can be frequency shifted independently from the probe light.
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Figure 2.4.: Beam paths of the locking table. A legend of the symbols can be found in figure
2.3. The light from this table is coupled into SMPM fibres and sent to the detection table (see
figure 2.5). The numbers next to the AOMs denote their frequency shift in MHz.

Figure 2.4 shows the optical paths on this table. It features two laser diodes.
– The “auxiliary” laser emits light at 780 nm and is locked in a beat lock scheme,

obtained by superimposing it with a fraction of the cooling laser from the main
table and detecting the beat signal with a photodiode (PD). The light is then
sent through an electro-optic modulator (EOM) 6 and coupled into a macroscopic
“transfer” cavity. The reflected light is sent onto a PD. A Pound-Drever-Hall (PDH)
error signal [63] is generated from the signal of the PD and is fed to a piezo attached

6. Qubig High-Q EOM, modulated at 17.9 MHz
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to a mirror of the transfer cavity. Hereby, the length of the transfer cavity is locked
to the frequency of the auxiliary laser.

– The “FFP lock” laser emits light at 830nm. A part of it is superimposed with
the auxiliary beam and also sent through the EOM and the transfer cavity. The
reflected light is separated from the auxiliary beam by a reflective frequency filter 7

and sent on a PD. A PDH error signal is generated and fed back to the FFP lock
laser. That way, the FFP lock frequency is stabilized with respect to an atomic
transition, mediated by the auxiliary laser and the transfer cavity.
The main part of the light is used to stabilize the length of the FFP cavity. It
is frequency shifted in a double pass AOM by approx. 2⋅125 MHz and sent to the
“detection” table through a fibre-coupled EOM 8. The EOM modulates the light at
a frequency of 1.8 GHz which is used to lock the FFP cavity in a PDH scheme.
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Figure 2.5.: Beam paths of the “detection table”. A legend of the symbols can be found in
figure 2.3.

The “detection” table (see figure 2.5) combines the probe light and the FFP lock
light. Part of the latter is branched off and sent onto a PD. The voltage signal is
compared to a set point and an error signal is generated, which regulates the amplitude
of the AOM on the locking table and serves to stablize the intensity of the FFP lock light.
A combination of λ�2- and λ�4-plates in the FFP lock beam path and the combined beam
path ensure that the polarization of the two light fields can be adjusted independently.
Afterwards the light is coupled into the input fibre of the FFP cavity.

The light reflected from the cavity is separated from the incoming light by a 90�10

7. Semrock BL 786
8. Photline NIR-MPX800-LN-10
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2.1. The setup for the production of cold atoms

beam splitter and is split into its two frequency components. The FFP lock light is sent
on a fast PD to generate the PDH error signal for the FFP cavity, while the probe signal
is sent to a single photon counting module (SPCM). We also have the possibility to add
a removable mirror in the beam path to monitor the reflected probe signal on a PD. In
the same manner, the light transmitted by the FFP cavity is split into probe and FFP
lock part. The latter is monitored on a PD, while the probe light is sent to a SPCM.

During the experimental sequence, we cannot always send light into the FFP cavity:
When the magnetically trapped atoms are moved in between the two cavity fibres, The
dipole trap light in the cavity has to be switched off in order not to degrade the cavity
loading efficiency. The light is therefore blocked during 2 ms, which also removes the lock
signal. To ensure that the cavity length meanwhile does not drift too far, an “artificial”
error signal is applied during this time. This signal is generated from the second FFP
cavity on the chip (FFP II): A part of the FFP lock light is branched off and sent
to the FFP II cavity. The fibres of this cavity are aligned so that both the TEM00
and the TEM01 mode are excited. The reflected light intensity therefore contains the
distinctive feature shown in figure 2.6. The light is collected on a PD and converted
to a proportional voltage which directly serves as a error signal. This error signal is
not only used to stabilize the length of the FFP II cavity but is also added to the error
signal of the FFP cavity. During the 2 ms in which the FFP light is blocked, the change
in cavity length is mainly due to thermal drifts which act on both cavities in the same
way. The error signal of FFP II can therefore also compensate the length drifts of the
FFP cavity.

Figure 2.6.: The reflection signal of the FFP II cavity. Since the TEM00 and the TEM01 mode
are both excited, the reflection features a zero crossing at resonance, which can be used as a
lock signal.

The optical setup surrounding the vacuum cell disposes the light generated on
the main table and coupled into PMSM fibres.

The MOT light is expanded to a beam diameter of 2.54 cm and sent onto the exper-
imental chamber in a “mirror MOT” configuration [64, 65, 66]. This means that the
three pairs of counter propagating beams necessary for a MOT are generated with the
help of the surface of the atom chip, which is provided with a dielectric coating and acts
as a mirror. Thereby, two beams can be omitted and the MOT conditions are satisfied
in a spatial region below the chip by sending only four light beams into the glass cell.

Two detection beams are also sent onto the vacuum cell. The first one - referred to as
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“y detection” beam - is superimposed with the horizontal MOT beam by a polarizing
beam cube and illuminates the chip area where the MOT is generated. The second one
- referred to as “x detection” beam - illuminates the cavity region. Two cameras 9 are
positioned in the beam path behind the experimental chamber and allow for absorption
imaging of the cold atoms during different stages in the sequence.

Furthermore, the light dedicated to the excitation of intracavity atoms from the side
enters the experimental chamber from the bottom glass port and is focused on the cavity
region.

Figure 2.7 shows a schematic of the optics surrounding the glass chamber.

glass cell

Figure 2.7.: Schematic of the optical setup surrounding the glass cell (top view). Two of the
four MOT beams are shown. The other two beams hit the chip under an angle of 45° and are
reflected by the chip surface to create a mirror-MOT. The two detection beams allow to make
absorption images of the atomic cloud in the MOT region (y-detection) and in the cavity region
(x-detection). Adapted from [55].

2.1.3. The atom chip

Atoms have to be confined so that they can be studied and manipulated. The inter-
action energy of a neutral atom in a magnetic field is

E(B) = gF mF µB �B� (2.1)

9. JAI CV-M50-IR
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2.1. The setup for the production of cold atoms

where mF is the magnetic quantum number, gF the Landé g-factor and µB the Bohr
magneton. A position dependent B-field thus creates a position dependent potential
for the atom. Dependent on the sign of gF mF , the atom is either attracted towards
minima (gF mF > 0, “low-field seeking states”) or maxima (gF mF < 0, “high-field seeking
states”) of the magnetic field.

Since the Maxwell-equations forbid field maxima in free space, only low-field seeking
states can be magnetically trapped. Conventional magnetic traps provide a minimum of
the magnetic field by using macroscopic current-carrying coils, typically placed several
centimeters away from the atoms. The steepness of the trap is proportional to δB�δr and
therefore scales with 1�r2, which makes it desirable to reduce the distance between the
trap and the conductor.

The atom chip, first proposed in 1995 [67] reduces this distance by orders of mag-
nitude: Currents run through planar wire structures on a surface and create magnetic
fields with strong gradients. Atoms can be trapped at a close distance (typically tens
of µm) from the surface.

The higher field gradients compared to conventional, macroscopic traps create a
tighter confinement which leads to a higher density of the atoms. This strongly improves
the efficiency of evaporative cooling techniques: While the time for BEC condensation
in conventional traps typically is on the order of tens of seconds, it is only around 1s for
magnetic traps created by an atom chip [57].

The conducting structures are printed on the substrate using photolithography. This
method allows the fabrication of two-dimensional structures with very complex shape,
which enables the generation of a variety of different trapping potentials.

Furthermore, the fact that an atomic sample can be trapped in direct vicinity of a
surface makes the atom chip a versatile tool to study interactions between cold atoms
and surfaces [68, 69, 70] or to combine cold atoms with solid states systems such as
mechanical resonators [71] or in our case - a miniature Fabry-Pérot cavity.

2.1.3.a. The principle

In the following, we illustrate the working principle of atom chip traps and introduce
the trap configurations that are used on the chip in our experiment.

wire !eld homogeneous !eld total !eld

Figure 2.8.: The magnetic field of an infinitely thin wire (left), combined with a homogeneous
field (middle) creates a field with a minimum parallel to the wire which can serve to confine
atoms in two dimensions (right). Adapted from [72].
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The wire guide The B-field of an infinitely thin wire, oriented along êx and carrying
a current I0, is expressed by the law of Biot-Savart:

B(z) = µ0

2fi

I0

z
(2.2)

It is sufficient to add a homogeneous magnetic field Bb,y perpendicular to the wire in
order to create a two-dimensional confinement (see figure 2.8). The magnetic field then
is zero along a line parallel to the wire at a distance z0, given by

z0 = µ0

2fi

I0

Bb,y

(2.3)

Around this field minimum, the total field can be approximated by a two-dimensional
quadrupole with gradient

ˆB

ˆz
(z0) = −2fi

µ0

Bb,y

I0
(2.4)

This configuration is known as “wire guide” configuration [72].

The dimple trap The wire guide can be extended to provide three dimensional
confinement by adding a second, perpendicular wire. If the current I1 through this
additional wire is sufficiently small, the field minimum is still given by Eq. 2.3. The
configuration can then be seen as the overlap of two two-dimensional traps. A quadratic
field minimum forms at the crossing of the two wires (see figure 2.9). This configuration
is referred to as a “dimple trap”.

a

b

Figure 2.9.: The dimple trap. The wire guide formed by I0 and a homogeneous field Bb,y is
combined with the field from the current through a second wire I1, which provides axial con-
finement. Above the wire intersection, a quadratic field minimum forms in all three dimensions.
a) Wires and magnetic field in the y,z plane; b) absolute value of the magnetic field along x.
Adapted from [72].
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2.1. The setup for the production of cold atoms

The “H” and “Z” trap An alternative three-dimensional trap with larger trapping
volume can be generated using three wires. We consider the wire configuration shown
in figure 2.10a). The direction of the currents in the wires perpendicular to the wire
guide is reversed with respect to the dimple trap. Above the wire crossing, at a distance
z = z0, the B-field in direction êx therefore has a field maximum while the confinement
in êy remains. Two such crossings hence form an elongated three-dimensional trap. In
the case of I1 = I2, this wire configuration can be further simplified: The z-shaped wire
shown in figure 2.10c) essentially generates the same trapping field.

a c

db

Figure 2.10.: The H and Z trap. a) The H trap is formed by a wire guide and two perpendicular
wires. The currents I1, I2 have opposite sign with respect to I1 in the dimple trap. b) absolute
value of the magnetic field along x. c) In the case I1 = I2, the Z trap is equivalent to the H trap.
d) The Z trap has the same absolute value of the magnetic field along x. Adapted from [73].
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2.1.3.b. The atom chip of the FFP experiment

Figure 2.11.: A photo of the atom chip used in the experiment. It consists of two chips made
of Aluminium Nitride that are glued together. The wires on the chip substrates are made of gold
and are grown on the substrate by galvanic deposition. The two chips are electrically connected
by bond wires. In this image, the fibre cavity is not yet glued to the chip. Its later position is
indicated by the dotted line.

Figure 2.11 shows a picture of the atom chip used in our experiment. It is specially
designed to generate a cold sample of atoms and to move it precisely in between the two
fibres of the miniature cavity. A support holding the cavity fibres will be glued onto the
chip surface at the position is indicated by the dotted line.

Design and vacuum assembly The chip actually consists of two atom chips glued
together with thermally conductive, electrically isolating glue 10. Both chips are made of
AlN. The conducting structures are made of Au and are lithographically patterned on the
chips 11. The bigger “base” chip on the bottom has the dimensions 35 mm × 45 mm × 0.8 mm
and contains wire structures with a width of about 0.2 to 1 mm and a thickness of 7 µm.
The smaller chip or “Science chip” has the dimensions 28 mm × 26 mm × 0.63 mm and
contains wire structures as small as 50 µm in width and 7 µm in height. The top of
the science chip is covered with a dielectric “transfer” coating [55] which is highly re-
flective at 780nm 12. This enables cooling and trapping of the atoms in a mirror-MOT
configuration. The design of the science chip is shown in figure 2.16.

The atom chip is glued on the top of the open glass cell. While the science chip is
completely immersed in the cell, the base chip protrudes the top area of the cell, hereby
forming the upper lid of the vacuum chamber. This makes the base chip easily accessible
from the outside. For electrical connection of the chip wires, we use a commercial “Mini

10. Epo-Tek H77
11. For a detailed description of the fabrication process, see [74, 75]. For a possible future setup, we

fabricated an atom chip with the same design as used in the experiment. Its fabrication protocol can
be found in appendix A.

12. from OIB Jena, glued with Epo-Tek 353ND

39



2.2. The Fibre Fabry-Pérot cavity

PCI” connector which is clamped to the two protruding parts of the base chip (see figure
2.12). The wires on base and science chip are electrically connected through bonding
wires (14 Au bonding wires with a diameter of � = 25 µm per connection). The cavity
fibres and the electric connections of the piezo actuators for the cavity (see section 2.2)
are fed into the chamber through small kerfs in the glass cell, which are sealed with
epoxy glue 13.

The upper surface of the atom chip is directly accessible from the outside. We use this
access to attach a macroscopic “U”-shaped copper piece to the chip. In the first part
of the experimental sequence, we send 57.2 A through this piece to create the magnetic
quadupole field for the MOT. To dissipate the resistive heat of the copper “U” as well
as of the chip wires, the copper “U” and a thermistor are immersed in a copper block
which is glued to a Peltier element. The hot side of this element is attached to a water
cooled copper block. This system enables us to actively stabilize the chip temperature.

Figure 2.12.: A schematic of the chip as the top of the glass cell. It is electrically connected by
two commercial PCI connectors. A U-shaped copper piece is glued on the outside of the chip to
create the magnetic quadrupole field for the MOT stage. On top of it, there is a Peltier element
and a water cooled copper block, which enable active stabilization of the chip temperature. Also
indicated are the positions of the inital MOT and the cavity fibre mount. Adapted from [55].

2.2. The Fibre Fabry-Pérot cavity

The heart of the experimental setup consists of a fibre-based Fabry-Pérot (FFP)
cavity. It is a miniaturized cavity, which consists of the highly reflective end facets of
two optical fibres. Such a cavity has some advantages compared to cavities consisting
of macroscopic mirrors (as e.g. used in [76, 14, 77, 78]):

– The mirror surfaces have a very small diameter. Therefore they can be brought
very closely together even if they have a big radius of curvature. This leads to a
very small cavity mode volume.

– Because of its small dimensions, the cavity can be brought very close to the chip

13. Epo-Tek 301

40



surface where the high magnetic gradients can strongly confine the trapped atomic
cloud and can spatially control it with high precision. We can therefore load all the
atoms of a magnetically trapped cloud into one single antinode of the intra-cavity
standing wave dipole trap [23].

In the following, the fabrication and implementation of an FFP cavity in our setup
are described. We then summarize its physical properties.

2.2.1. Fabrication and experimental implementation

Fabrication FFP cavities can be produced from any sort of glass fibre, indepen-
dent of its waist, light guiding properties (wavelength, polarization maintaining, single
mode/multimode) or cladding material.

In a first step, the cleaved fibre end facets are provided with a concave structure. This
is done by shooting onto them with a focused CO2 laser beam. Hereby, some part of
the glass in the fibre is evaporated and some part is melted, which leads to a concave
structure with a very low surface roughness (‡sr = 0.2(1)nm). Depending on the used
light power, the pulse length and the beam waist of the CO2 laser, radii of curvature
down to 50 µm can be produced [79]. Figure 2.13 shows the end facet of a fibre after
such a CO2 laser fabrication process.

Figure 2.13.: An electron microscope image of an optical fibre after CO2 processing. The tip
features a well-centered concave structure. The fibre has a diameter of 125 µm.

The fibre tip is then provided with a highly reflective coating through an ion beam
sputtering process 14. The absorptive and reflective properties of the coating can be
designed to meet the experimental requirements.

Experimental implementation Due to its small size, the alignment and fixation of
the fibres is a very delicate process. The fibres are mounted in such a way that - except
for the cavity length - the cavity alignment is fixed.

The support of the cavity consists of a Macor ceramic bridge. To be able to shift
the cavity length (by approx. 1 µm in total), piezo shear actuators are glued on the
bridge. The stripped fibres (� = 125 µm) are glued into silicon V-groove substrates,
which are glued onto the shear piezos with slow-curing epoxy glue 15. During the curing

14. performed e.g. at the Laserzentrum Hannover
15. Epo-Tek 301
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2.2. The Fibre Fabry-Pérot cavity

process, which takes several days, the cavity transmission is monitored and the fibres
are constantly realigned.

Figure 2.14.: A schematic of the bridge assembly. The stripped glass fibres are glued into com-
mercial V-groove substrates (dark blue), which are fixed on shear piezo acutators (yellow/dark
grey). The ensemble is held by a Macor bridge (light grey), which is glued onto the chip surface.
(Image by Konstantin Ott)

Figure 2.14 shows the supporting bridge with the glued cavity. We actually have two
cavities glued in the V-grooves, of which only one is used for the experiments (FFP
cavity) while the second one serves for locking purposes (FFP II, see section 2.1.2). To
simplify the alignment procedure, the cavities consist of one single mode fibre and one
multimode fibre. A hole in the middle of the Macor bridge allows optical access to the
cavity region.

The whole bridge assembly is then positioned above the specified chip location and
fixed on the chip with UV glue. The thickness of the bridge is designed so that the
distance between the fibres and the chip surface is 90 µm. The optical mode of the
cavity is therefore positioned approx. 150 µm above the chip surface. Figure 2.15 shows
the bridge with the cavities glued to the atom chip.

Figure 2.15.: A picture of the Macor bridge glued on the atom chip. It is fixed with UV-glue
so that the cavity fibres are placed above a wire crossing. For positioning, the bridge was glued
to a translational stage. Transparent residuals of the glue are visible on top of the bridge.
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2.2.2. Characteristics

The cavity used in our setup consists of a single mode fibre with a radius of curvature
r1 = 450 µm and a multi mode fibre with radius of curvature r2 = 150 µm. They are
brought closely together to form a cavity of length l = 38.6 µm. At 780 nm, the cavity
mode waist therefore amounts to

w0 = ��⁄

fi
� l(r1 − l)(r2 − l)(r1 + r2 − l)(r1 + r2 − 2l)2 �

1

2��
1

2 = 3.9 µm (2.5)

and the cavity mode volume is

Vm = fiw2
0l

4
= 461 µm3 (2.6)

The maximum coupling g
theory
m can be obtained from (1.3) by choosing the maximal

dipole matrix element d22→33 = 2.53 ⋅ 10−29 Cm from the �F = 2, mF = 2�→ �F ′ = 3, mF ′ =
3� transition:

gtheory
m = 2fi ⋅ 214 MHz (2.7)

In addition, the coupling has also been determined experimentally [51] to be

gm = 2fi ⋅ (240 ± 10)MHz (2.8)

We will use this value in the calculations of this thesis, since the radii of curvature,
which are on the basis of g

theory
m , are not known with sufficient precision.

The coating company specifies the losses and transmission of the dielectric coating to
be L =56 ppm and T =31 ppm. The measured value of the finesse F = 36600 corresponds
well to these values.

The cavity mirrors feature birefringence: photons of orthogonal linear polarization
accumulate a phase difference when reflected on the mirror. This leads to two different
cavity resonance frequencies for two orthogonal linear polarizations which in our case
are spaced by ∆Ê = 2fi ⋅ 504 MHz ≈ 10 ⋅ Ÿ. This restricts the way in which we can probe
atoms in the cavity: We can only send linearly polarized light into one of the cavity
resonances which corresponds to either fi-polarized light or ‡+/‡−-polarized light in the
atomic frame.

However, there are still many different possible configurations for polarization and
detuning of the probe and dipole light. Our choice and its influence on the photon
number in the cavity and the population in the excited atomic states are presented in
section 1.3.

The dipole trap The cavity not only has to be resonant to the probe light at 780nm,
but also to the FFP lock light at 830nm. This light serves both to create a standing
wave dipole trap and to lock the cavity length. To maximize the coupling g between the
atoms and the cavity mode, the cavity length is chosen so that both frequencies have
an odd number of antinodes in the cavity and the atoms are trapped exclusively in the
middle antinode of the dipole trap.
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2.3. A typical experimental sequence

2.3. A typical experimental sequence

The experiment is controlled by three PCI-boards 16 with analog and digital outputs.
A computer program controls these outputs and runs a predefined static protocol. We
usually use such a protocol to create a cold atomic cloud and to load it into the optical
dipole trap.

In order to react in real time on experimental results, we have a second control system:
a real-time controller 17 with analog and digital in- and outputs can be activated at times
during the sequence when feedback on experimental events is required. We usually use
the real-time controller system at an experimental stage where a cold cloud of atoms
is inside the cavity. The real-time controller then changes the further course of the
sequence according to the outcome of transmission and reflection measurements of the
SPCMs.

In the following, we quickly summarize the first, static part of the experimental se-
quence until the atoms are placed in the optical dipole trap. This then is the starting
point of the sequence part that is controlled by the real-time controller. All experiments
in this thesis (see chapters 3, 4 and 6) are described from that point onwards. Figure
2.16 shows the science chip and gives the names of important wires referred to in the
text. A detailed description of the experimental sequence is given in [51].

Figure 2.16.: The wire configuration of the science chip. Important wires for the sequence are
marked in color and named. The inset shows a zoom on the cavity region. Adapted from [51].

First, we trap a cloud of approximately 1.2 ⋅ 107 atoms in a MOT. The magnetic
quadrupole field for this MOT is generated by the copper U wire above the atom chip
and an external bias field.

The atoms are then loaded into a MOT whose magnetic quadrupole field is generated
by a U wire on the base chip.

The MOT is then compressed and brought closer to the chip surface. After a short
phase of optical molasses (3 ms), where the atoms are cooled down to a temperature of
approximately 70 µK, they are pumped into the �F = 2, mF = 2� state and trapped in a
magnetic trap created by the P-trap wire and an external bias field.

16. National Instruments PCI-3360 and PCI-4820
17. Jaeger Electronics ADWin light
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By changing the orientation of the magnetic bias field, the spatial orientation of the
trapped cloud is changed [80] until its longitudinal axis coincides with the orientation
of the waveguide wire.

The cloud is then transported from the P-trap along the waveguide towards the cavity
region (see the inset of figure 2.16) by moving the zero point of the external quadrupole
field. At this stage, the atomic cloud is too hot and too large to fit between the cavity
fibres. The cloud is therefore kept from colliding with the fibres by the potential of
a stop wire. The atoms are trapped in a Z-type trap formed by Ioffe- and stop wire.
By increasing the the magnetic bias fields, the cloud is compressed. At the same time,
current is sent through the dimple wire, which creates a dimple trap (cf. figure 2.9) at
the position between the cavity fibres.

The barrier created by the stop wire is then ramped down and a radio frequency
ramp is applied during 500 ms to evaporatively cool the atoms and trap them inside the
dimple trap.

In a next, optional step, the magnetic bias fields can be changed so that the position
of the dimple trap is shifted close to one of the cavity fibres, where the hottest atoms
stick to the fibre surface. This step of surface evaporation can be used to condense
the atoms into a BEC or to just reduce the atom number, in case we want to perform
experiments with a small atomic ensemble.

Finally, the magnetic trap is moved to the exact center of the cavity mode. The
magnetic fields are slowly ramped down while the dipole trap light is slowly ramped up
and the atomic cloud is adiabatically transferred from a magnetic trap to the optical
dipole trap.

The experimental cycle time is approximately 8 s, including 6 s of MOT loading
time 18.

18. The experiments described in this thesis have been conducted before the tapered amplifier was
installed on the optical table. With the tapered amplifier, the total cycle time is reduced to 3 s, with a
MOT loading time of 2 s.
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2.3. A typical experimental sequence
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3. Atom number preparation and counting in the
dispersive regime

In this chapter, we present a method to prepare mesoscopic ensembles of well-defined
atom number in the cavity. A fixed atom number is a prerequisite for many experimental
tasks including quantum tomography, where many identical samples of a quantum state
must be produced. The standard approach consists in preparing a certain atom number
by evaporative cooling. In our case, this technique is far from single atom resolution,
because of the statistical nature of the temperature distribution and fluctuations of the
trap bottom due to fluctuations of the magnetic field. We therefore choose a different
approach, which makes use of the cavity: A measurement of the transmitted or reflected
light intensity can infer the number of atoms, since non-resonant atoms shift the cavity
resonance. We first calculate the expected signal-to-noise ratio (SNR) of such an atom
number counting measurement before we use this method to not only count, but prepare
a fixed atom number in the cavity. The method presented here will also be used in
chapter 4 to prepare the initial state for the generation of multiparticle entanglement.

The second part of this chapter is dedicated to an attempt to count the atom number
in the QND regime, i.e. without any energy exchange between the probing light field
and the atomic ensemble. We investigate a method of atom number counting based on
a measurement of the phase of the cavity light field and compare its performance to
the atom number counting scheme via intensity measurement. We will find that both
methods yield the same measurement precision in terms of scattered photons. Finally,
we perform an experimental realization of a phase measurement at low light powers
using a single photon counting module (SPCM) and present preliminary results.

3.1. Preparation of a fixed atom number in the cavity

3.1.1. Counting atoms in an intensity measurement

In the following, we calculate how accurately we can infer the atom number in a
measurement of the cavity transmission or reflection. We also analyze the result in
terms of scattered photons.

If we place atoms in our cavity resonant to an atomic transition, the intracavity
intensity II and the transmitted intensity IT are reduced by 1�4C2. As we have shown in
chapter 1, the transmission drop caused by one resonant atom is sufficient to completely
block the cavity transmission. All the incoming light is then reflected and we cannot
determine the atom number in the cavity. If the atomic transition is however far detuned

from the cavity transition (∆ap �
g2

κ
), an atom only acts as a refractive index on

the photons entering the cavity, effectively shifting the cavity resonance by an amount
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3.1. Preparation of a fixed atom number in the cavity

∆
at
cp = g2

∆ap
. This effect is proportional to the number of atoms N :

∆
N atoms
cp = N

g2

∆ap

. (3.1)

This changes the cavity transmission and reflection intensity, hereby allowing to deter-
mine the atom number in the cavity within a detuning range of ±2Ÿ.

In the following, we apply the experimental parameters of our atom cavity system
and consider the case of atoms in the hyperfine state F = 1 and the cavity as well as
the probe light resonant to the F = 2 → F ′ = 3 transition (see figure 3.1). The light
is detuned by ∆ap = 2fi ⋅ 6.8 GHz, which is much larger than the hyperfine structure
in the excited state. This means that in order to compute the frequency shift induced
by the atoms, all the possible transitions F = 1 → F ′ = 0, 1, 2 have to be taken into

account. The coupling constants add up to g1 = �2
3gσ+

22→33 = 2fi⋅195 MHz [56]. With

Ÿ = 2fi⋅53 MHz, the detuning caused by one atom is ∆
at
cp = 2fi⋅5.6 MHz.

F=1

F=2

F’=0

F’=1

F’=2

F’=3

6.835 GHz

72 MHz

157 MHz

267 MHz

5 2S1/2

5 2P3/2

ωc=ωp

Figure 3.1.: The level scheme of 87Rb and the experimental configuration considered for the
measurement of the atom number in the dispersive regime. The atoms are placed in F = 1, while
the probe light and the cavity are resonant to the F = 2→ F ′ = 3 transition.

This configuration has two experimental advantages: Firstly, the shift of one atom is
convenient to measure atom numbers of approximately 10 atoms in the cavity, which
suits well our ambitions to create entangled states consisting of mesoscopic atom num-
bers. Secondly, putting the cavity resonant to the F = 2 → F ′ = 3 transition allows us
to observe quantum jumps between the hyperfine ground states: If an atom jumps to
F = 2, the transmission signal drops to zero. We can therefore assume that if we observe
a signal, all atoms are in F = 1 and every atom shifts the cavity by the same amount.
Figure 3.2 shows the expected shift in transmission due to different atom numbers for
our cavity parameters.
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Figure 3.2.: The cavity transmission as a function of the effective cavity probe detuning ∆cp =
Êc − Êp, caused by 0, 10 and 20 atoms in the cavity (blue, green and red, respectively.). The
atoms are far detuned from the cavity resonance (∆ap = 2fi⋅6.8 GHz) and maximally coupled to
the cavity mode (g1 = 2fi⋅195 MHz).

For ∆ap �
g2

κ
, the cavity transmission in terms of photons T is given by (cf. (1.12)):

T = –2N0

∆2
cp + Ÿ2

(3.2)

with N0 being the number of incoming photons and – = T
T +L being the transmission

factor of the cavity 1.

The relevant signal for distinguishing different atom numbers is the change in the
number of transmitted photons induced by one atom:

ˆT

ˆ∆ca

∆
at
cp (3.3)

In this measurement, the accuracy is fundamentally limited by the shot noise of the
transmitted photons

√
NT . The SNR of this method therefore amounts to

SNR = 2–Ÿ∆cp(∆2
cp + Ÿ2) 3

2

�
N0 ∆

at
cp (3.4)

The SNR in reflection can be calculated accordingly. Figure 3.3 shows the SNR of a
transmission and reflection measurement for an ideal (i.e lossless, – = 1) cavity. We see
that only for ∆cp = Ÿ, the information is equally distributed between the transmitted
and reflected signal.

In reflection, the highest information can be obtained at resonance: Since the intensity
is zero, the shot noise is minimal and the SNR maximal at this detuning. It is 3

2

√
3

times higher than the maximal SNR in transmission.

1. Our FFP cavity has a transmittance of T = 31 ppm and losses of L = 56 ppm and a corresponding
transmission factor of α = 0.36.
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3.1. Preparation of a fixed atom number in the cavity

Figure 3.3.: The SNR for an intensity measurement in transmission (blue) and reflection (green)
in dependence of the cavity detuning ∆cp, induced by atoms in the cavity. The cavity linewidth
is Ÿ = 2fi⋅53 MHz.

We also depict the case of a lossy cavity, namely when the losses L are higher than the
transmittance T , since this is the case for our experimental system. Figure 3.4 shows
the SNR for transmission and reflection. In contrast to the lossless case, the optimal
measurement point in reflection is now at a detuning ∆cp ≠ 0.

Figure 3.4.: The SNR in transmission (blue) and reflection (green) for a cavity with transmit-
tance T =30 ppm and losses of L =53 ppm (corresponding to – = T

T +L
= 0.36).

SNR in terms of scattered photons
We can also state the SNR in dependence of the number of scattered photons, which is
useful if we want to infer the atom number in the QND regime or if we want to compare
the counting method to a different one. According to (1.17), the number of scattered
photons is related to the number of incident photons via the formula

Nsc = 2g2
1“

Ÿ∆2
ap

N0 (3.5)
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The maximal SNR for the intensity measurement in transmission is obtained at ∆cp =
k�√2. In terms of scattered photons, it is

�2

3
� 3

2 –∆ap√
“Ÿg1

�
Nsc ∆

at
cp (3.6)

The SNR for reflection at the same detuning can be derived in an analogue way, yielding:

4

3
√

3

–2 − 2–√
2–2 − 4– + 3

∆ap√
“Ÿg1

�
Nsc ∆

at
cp (3.7)

3.1.2. Principle of the atom number preparation

To prepare a well-defined atom number in the cavity, we combine the atom number
counting method presented above with a controllable loss mechanism of atoms from the
trap.

A schematic of the preparation principle is shown in figure 3.5. We load an ensemble
with ill-defined atom number (typically 150-200 atoms) into the central node of the
standing wave dipole trap. The atoms are initially in the state F = 1. The cavity and
the probe laser are resonant to the F = 2→ F ′ = 3 transition. We then shine probe light
onto the cavity and monitor the cavity transmission. Initially, it is low since the atoms
detune the cavity from resonance. However, the atoms can now undergo light assisted
collisions [81]: An atom may get excited to F ′ = 3 by the resonant probe light. If it is
close enough to an atom in the ground state, the two atoms form a loosely bound pair
and interact through an attractive dipole-dipole potential. The pair can thus acquire
kinetic energy before it decays back to the ground state. If this energy is bigger than
the trap depth, both atoms leave the trap during such a process. While the probe light
is on, atoms thus continuously leave the trap and cavity transmission increases. When
it reaches a predefined threshold corresponding to the desired atom number, we switch
off the probe light. This stops the loss process and we end up with a well-defined atom
number in the cavity. In order to prepare different atom numbers, the empty cavity
resonance can be shifted before the atom number preparation.
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3.1. Preparation of a fixed atom number in the cavity

light assisted
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Figure 3.5.: Principle of the atom number preparation. Off-resonant atoms in the cavity
induce a shift ∆cp, which is proportional to the atom number. The cavity transmission (blue) is
monitored while the atoms leave the cavity due to light assisted collisions. the light is switched
off when the transmission reaches a certain threshold, corresponding to a well defined atom
number in the cavity.

3.1.3. Experimental parameters and results

Figure 3.6a) shows a typical transmission trace of the atom number preparation. We
monitor the counts in cavity transmission Tprep in bins of 200 µs with a SPCM and stop
the probe light if Tprep > 60, which corresponds to one fifth of the mean empty cavity
transmission (the empty cavity transmission count rate is set to 1.5 MHz). We then
apply a short light pulse on the F = 2→ F ′ = 3 transition, which pushes atoms in F = 2
out of the trap and ensures that all remaining atoms are in F = 1. At this point, the
initial state is prepared with a well defined atom number Ntot in F = 1 and a small
probability (� 10%) to have an atom in F = 2.

60 cnts

150 cnts

a b

Figure 3.6.: a) Typical transmission signal during the atom number preparation. When the
count rate exceeds 60 counts in 200 µs, the light is switched off and we end up with a well defined
atom number in the cavity. b) Transmission trace for a threshold Tprep = Tmax�2. The lifetime for
atoms in F = 2 is increased when the cavity is close to resonance (in this trace for times higher
than 40 ms).This leads to longer periods of low transmission and increases the uncertainty of the
prepared atom number.
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We have prepared three different atom numbers Ntot = 73, 51, 34 by shifting the empty
cavity resonance prior to the atom number preparation. We shifted by an amount
of −2fi ⋅ 240 MHz,−2fi ⋅ 105 MHz, 0 MHz by detuning the frequency of the cavity lock
laser. The actually prepared atom number was deduced in a separate measurement by
measuring the frequency shift necessary to tune the cavity back to resonance with the
atoms inside.

The standard deviation of the atom number preparation can be estimated using (3.4),
considering only the last detection bin. This corresponds to a detuning ∆cp = 2Ÿ and
a photon number N0 = 1.5 MHz ⋅ 200 µs = 300. We obtain that the SNR is bigger than
1 for a signal variation of ±2 atoms. However, if we consider additional information
stored in the transmission trace (e.g. the second last detection bin must have less than
60 counts etc.), we see that the method prepares the atom number more precisely. To
estimate the precision, we perform a likelihood analysis on the last two detection bins:
We evaluate a high number of preparation traces (>1000). For each preparation trace,
we calculate the likelihood for a given atom number to produce the obtained count rates,
where we assume that a certain atom number generates a Poisson distributed photon
count rate. Figure 3.7 shows the mean likelihood in dependence of the atom number
for a measurement where a mean atom number Ntot = 34 was prepared. It fits well to a
Gaussian distribution with a standard deviation of ‡Ntot

= 1.2 atoms.

Figure 3.7.: Analysis of the atom number preparation method, shown for a mean atom number
Ntot=34. We plot the mean likelihood to produce the obtained count rates in the last two
detection bins for different possible atom numbers (blue bars). The result is fitted to a Gaussian
distribution (green curve) and we obtain ‡Ntot

= 1.2.

We perform this analysis for all prepared atom numbers and conclude that this method
can prepare a fixed atom number with a precision ‡Ntot

< 2 atoms. Note that this
method gives an absolute error ‡Ntot

which is in principle independent of the prepared
atom number.

We would like to comment on two details of this preparation method.

● The loss mechanism of this method is light assisted collisions, so the atoms must
necessarily scatter many photons. The atom number preparation sequence takes
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3.1. Preparation of a fixed atom number in the cavity

on average 50 ms and the mean transmission count rate is approximately 150 kHz.
Every atom in F = 1 therefore scatters on average 5 photons until the correct
atom number is prepared. The atoms are initially in the well-defined state �0� ≡�F = 1, mF = 1�, but due to the many scattering events, they get distributed over
the F = 1 manifold in the course of the atom number preparation. This means
that while we can prepare a well-defined atom number in F = 1, we have no control
over the populations in the Zeeman sublevels. We discuss the consequences for the
generation of entangled states in section 4.3.4.a.

● The threshold value Tprep = Tmax�5 was chosen even though the SNR of the trans-
mission measurement is maximal for ∆cp = κ�√2. Indeed, we had initially used a
higher threshold but we have found that the lifetime of atoms in F = 2 is strongly
increased. This leads to larger periods of low transmission in the trace (see figure
3.6b), which makes us less sensitive to atom number changes and therefore increases
the uncertainty of the preparation method.
We attribute the increased lifetime in F = 2 to the influence of the second cavity
mode: In our experimental configuration, we tune the polarization of the probe
light so that only the red cavity eigenmode is pumped. This eigenmode is set
(near) resonant to the atomic transition (see figure 3.8a). Atoms in F = 1 shift the
cavity resonance to the red which brings the second mode closer to the transition
F = 2 → F ′ = 3 (see figure 3.8b). This enables the atoms in F ′ = 3 to decay
via a second channel, leading to a Purcell-enhanced spontaneous emission. This
reduces the lifetime in F = 2 and allows us to prepare the atom number with higher
precision.

cavityprobe

a b

cavityprobe

Figure 3.8.: Level scheme and cavity configuration during the atom number preparation. a)
The empty cavity is set (near) resonant to the F = 2→ F ′ = 3 transition. The polarization of the
probe beam is set so that only the red eigenmode of the cavity is pumped (solid blue line). The
blue cavity resonance is therefore blue detuned with respect to the atomic transition (dotted
blue line). b) Atoms in F = 1 shift the cavity towards lower frequencies. The unpumped cavity
resonance is therefore coming nearer to the atomic resonance and the spontaneous emission of
atoms in F ′ = 3 is increased. This is the configuration we use in the experiment.
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3.1.4. Preparation of different atom numbers in one experimental run

The atom number preparation described in this section constitutes the first step in
our scheme to generate multiparticle entangled states (see chapter 4). The tomograhy
of these states requires the repeated performance of many different measurements. To
reduce the total measurement time, we thus want to perform several measurements with
a single cold atomic sample. We have therefore devised a method to prepare different
atom numbers in one experimental run.

At the beginning of each run, we prepare a well-defined atom number as described
above. We then perform the scheme to generate an analyze entangled state, which
in general distributes the atoms randomly in the states �0� = �F = 1, mF = 1� and �1� =�F = 2, mF = 2�. We then apply a light pulse on the F = 2 → F ′ = 3 transition to push
all the atoms in �1� out of the trap. At this point, we have a state with reduced,
ill-defined atom number in the cavity, where all the atoms are in �0�. This is the
same situation as in the beginning of the experiment and we can therefore prepare
another entangled state with reduced atom number. We shift the cavity resonance
so that the detuning corresponds to a smaller atom number and start a new atom
number preparation procedure. Figure 3.9 shows a typical transmission trace of a full
experimental run. In this case, four different atom numbers are produced.

We have to take into account the possibility that there are not enough atoms left after
the previous state tomography. Such preparation traces can be easily identified and
discarded, because the transmission threshold Tprep = Tmax�5 is then instantly surpassed.
However, this means that the success rate of the first atom number preparation within
an experimental run is in general higher than the success rates of the following ones.

Figure 3.9.: A typical transmission trace of a full experimental cycle. The atom number
preparation phases are marked in green. After each atom number preparation, an entanglement
generation experiment is performed. This part is not visible in the trace, as it does not take
more than 650 µs and is executed at small light intensities. At the end of every experiment
phase, a light pulse is applied to push the atoms in F = 2 out of the trap (marked in red). In this
particular trace, the result of the second atom number preparation is discarded in postselection:
The transmission threshold is reached after a very short time which indicates that there are not
enough atoms in the trap.
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3.2. Counting atoms in a phase measurement: The Pound-Drever-Hall method

3.2. Counting atoms in a phase measurement: The
Pound-Drever-Hall method

In this section, we compare the counting method via cavity intensity to a counting
method via phase measurement. Photon detectors cannot measure the phase of light
directly, which is why homodyne measurement techniques have been devised. One of
the most common ones is the Pound-Drever-Hall (PDH) technique. We introduce it in
the following and analyze the expected SNR. We then give preliminary experimental
results on an atom number measurement based on the PDH method, using a SPCM.

3.2.1. The expected SNR

Measurement principle
The Pound-Drever-Hall method (PDH) was first introduced in [63] as a method to
stabilize the frequency of a laser with the help of an external cavity. Here, we invert
this scheme to probe fluctuations in cavity length (introduced by a certain number of
atoms in the cavity) using a laser with stable frequency. We use the setup schematically
presented in figure 3.10. The light of a laser is modulated by a phase modulator (most
commonly an electro-optical phase modulator (EOM)) and sent onto a Fabry-Pérot
cavity. At the modulation frequency, the reflected light now contains the information
of the intensity response to frequency changes of the laser. To obtain this information,
the reflected light is separated from the incident beam and sent onto a fast photodiode
(PD). The part oscillating at the modulation frequency is isolated by mixing the signal
with the local oscillator. Hereby, a DC signal is generated, which can be isolated by a
low-pass filter. Within a region of ∆cp = ±Ÿ, it is proportional to the frequency shift of
the cavity ∆cp.

Laser

EOM PBS Cavity

PD

Local
Oscillator

Mixer
Lowpass
!lter

Phase
shifter

Signal

Figure 3.10.: A typical PDH setup.

Quantitative description
We consider a laser being phase modulated at Ω, which is the equivalent of adding two
sidebands at ±Ω, with the amplitudes of the different frequency components given by
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the Bessel-functions J0 and J1 and the modulation depth —. The full derivation of the
PDH signal is e.g. given in [82]. Here, we directly state the result in terms of incident
photons N0. Within a cavity detuning of ∆cp = ±Ÿ, the PDH signal can be approximated
by a linear slope D ⋅∆cp with gradient

D = −2α�κ�2J2
0 (—)J2

1 (—)N0 (3.8)

A typical PDH signal for the parameters of our cavity and Ω = 2fi ⋅ 230 MHz is shown in
figure 3.11.

Figure 3.11.: The signal of a PDH measurement using a cavity with Ÿ = 2fi⋅53 MHz (green
bars) and a modulation frequency of Ω = 2fi⋅230 MHz = 4.3 Ÿ (red bars). The error signal is
approximately linear from −Ÿ <∆cp < Ÿ.

As for the intensity measurement, the fundamental limit for the PDH method is
photon shot noise. The mean light power incident on the photodiode oscillates at the
modulation frequency and thus the associated shot noise is nonstationary. However, we
can assume a resulting noise as a white distribution with a power spectrum equal to the
average energy of the noise 2.
With this assumption, the shot noise is proportional to the square root of number of
reflected photons R:

√
R ≈
��F (∆cp)�2J2

0 (—) + 2J2
1 (—)�N0 (3.9)

Here, we have introduced the reflection coefficient of the cavity F (∆cp):
F (∆cp) = 1 − – − i∆cp�Ÿ

1 − i∆cp�Ÿ (3.10)

We have also assumed that the photons in the sidebands are totally reflected by the
cavity. The SNR at a detuning of ∆cp = 0 - the detuning with maximal SNR - therefore

2. This assumption is justified as the correction factor is only a few percent (cf. [83]). A more subtle
analysis is given in [83, 84].
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3.2. Counting atoms in a phase measurement: The Pound-Drever-Hall method

amounts to:

SNR = 2–

Ÿ

J0(—)J1(—)�(1 − –)2 J2
0 (—) + 2J2

1 (—)
�

N0 ∆
at
cp (3.11)

Figure 3.12 shows the SNR for a PDH measurement. For Ω = 4.4Ÿ, it is approximately
six times smaller than the SNR of an intensity measurement in reflection (cf. figure 3.4).

Figure 3.12.: The SNR in a PDH measurement in dependence of the detuning of the cavity ∆cp

for an ideal cavity (blue) and a lossy cavity with – = 0.36 (green). The experimental parameters
are Ÿ = 2fi ⋅ 53 MHz, — = 1.2 and Ω = 2fi⋅ 230 MHz.

SNR in terms of scattered photons
One might think that the PDH measurement is better suited for photon counting in the
QND regime, since the photons at the modulation frequency do not enter the cavity
and cannot cause spontaneous emission. However, a comparison of the SNR in terms of
scattered photons shows that this is not true.

As in for the intensity measurement, we depict N0 in the number of scattered photons
Nsc. Here, however, we also have to take into account the photons in the sidebands
and their detuning with respect to the cavity ∆cp = ±Ω and with respect to the atom
∆ap = ∆HF ± Ω. This is a cumbersome expression and we only state the result in the
limit of high modulation frequencies, where Nsc is minimal and the SNR is maximal:

Nsc = N0 �J2
0 (—)2g2

1“

Ÿ∆2
HF

+ 4J2
1 (—)g2

1Ÿ“

Ω4
� (3.12)

We insert (3.12) in (3.11) and obtain in the limit of large modulation depth:

SNR =√2
–∆1∆ap√

“Ÿg1

�
Nsc. (3.13)

It is the same SNR as for an intensity measurement in reflection.
We conclude that the SNR in terms of scattered photons is always lower in a PDH

measurement and that it gives the same results as an intensity measurement for high
modulation frequencies and high modulation depths. The PDH technique is thus not
superior to a simple intensity measurement if only shot noise is considered 3.

3. In contrast to shot noise, most technical noise has a spectrum that falls off at higher frequencies.
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3.2.2. Preliminary measurements using a SPCM

Measurement principle
We perform test measurements with our experimental setup to verify the theoretical
predictions and identify the contribution of technical noise in addition to the shot noise.
In later experiments, the counting scheme should be the starting point for experiments
where we need to be able to count single photons. We therefore use a SPCM instead
of a normal photodiode to detect the photons reflected from the cavity. The voltage
signal of the SPCM is sent to a time-to-digital converter (TDC), which can translate the
arrival time of a voltage pulse into a digital signal. This makes it impossible to simply
demodulate our signal using a mixer, since the voltage signal generated by the TDC is
only non-zero at the arrival time of a photon. We therefore extract the signal at the
modulation frequency by calculating the Fourier transform of the TDC time trace.

Preliminary experimental results
In these first measurements, we do not load atoms in the cavity, but simulate their
presence by detuning the cavity resonance by a controlled amount ∆cp = Natom ⋅ 2fi ⋅

5.6 MHz. The probe intensity is adjusted so that the scattering probability per atom is
approximately 1%. The modulation frequency is set to Ω = 2fi ⋅ 230 MHz 4.

We measure the PDH signal for a detuning of up to ∆cp = 2fi ⋅ 50.4 MHz in steps
of 2fi ⋅ 5.6 MHz, which corresponds to a maximal shift caused by 9 atoms in the cavity.
Figure 3.13 shows the SNR obtained in this experiment, compared to the SNR we expect
from theory.

Figure 3.13.: The signal obtained in a PDH measurement using a SPCM, in dependence of
the cavity detuning ∆cp. The experimental data (in green) can be compared to the theoretical
expectation (in blue).

The result of the experiment (see figure 3.13) shows a SNR > 1 for atom numbers from

Since the PDH method only relies on the signal at the modulation frequency, it reduces such noise
contribution to the signal. It is thus the method of choice in experimental systems where the SNR is
not limited by shot noise.

4. We have seen in the last section that a higher Ω leads to an increase of the SNR. However, we
cannot increase Ω further, since the voltage signal of the SPMC has a time jitter of 400 ps.
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3.3. Conclusion

1 to 7. The best SNR of 2.7 is obtained at a detuning corresponding to 3 atoms. The
result is in agreement with the theoretical expectation with a noise that is approximately
twice as much as expected from shot noise. This means that our detection method is
still dominated by technical noise. The main contributions are

– the probe laser frequency,
– the probe laser intensity,
– the TDC resolution,
– the cavity lock.

Noise analysis shows that by far the main contribution stems from the cavity lock system.
Obviously, the next experimental step is to repeat the measurement with real atoms in

the cavity. We do not expect the performance of the measurement to decrease substan-
tially in this case: Since the experiment is performed in the QND regime, the coupling
g̃ = √Ng1 of the ensemble to the cavity mode should not change during the measurement
(e.g. due to recoil heating or light assisted collisions).

While the results of the measurement indicate that we can in principle perform atom
counting measurements in the QND regime, the PDH measurement is not the most
suitable method. The experiment could therefore be repeated using an intensity mea-
surement and the results could be compared.

3.3. Conclusion

In this chapter, we have presented a method to prepare a well-defined atom number
in the cavity. It is based on the measurement of transmission while a loss process due to
light assisted collisions slowly reduces the number of atoms. We have used it to prepare
different atom numbers up to Ntot = 73 atoms with a standard devation ‡Ntot

< 2.
Furthermore, we have investigated an atom number counting method based on the

PDH technique, using a SPCM. We have analyzed the SNR and have performed pre-
liminary experimental results with an empty cavity that confirmed the theoretical ex-
pectation.

60



4. Generation and tomography of W states

The generation of entanglement between material particles is a challenging task and
a vivid field of current research. Different approaches have been conducted to increase
the number of entangled particles and to analyze the produced state.

In this chapter, we present an entanglement method in which the collective nature
of the cavity measurement enables the generation of comparably large entangled states.
We use this method, based on a weak collective excitation, followed by a collective
QND measurement to create W states. In section 4.2, we explain the principle of the
entanglement scheme and give the experimental parameters.

Furthermore, we show that we can use the internal state detection with the cavity
to characterize the created state. More precisely, we perform quantum tomography by
directly measuring the state’s Husimi Q function. In section 4.3, we introduce the Q

function and explain how it can be measured with our experimental system. We then
give experimental results on the generation and tomography of W states of up to 41
atoms.

After its creation, the W state is subject to decoherence. In an additional measure-
ment, we use the Q function to measure the temporal evolution of this decoherence. We
compare it to a model assuming a hot atomic cloud in a dipole trap and infer the cloud
temperature.

4.1. Dicke states and Coherent spin states

We want to create entanglement in an ensemble of N particles. In our case, the
particles can be approximated as two-level systems with the states �0� and �1� encoded
in the hyperfine ground level structure of 87Rb (see figure 1.5). To describe the state of
the ensemble and the tomography technique, we first introduce two classes of N particle
states: Dicke states and Coherent spin states.

Dicke states
We consider a system composed of N two-level atoms with levels �0� and �1�. It can

be described by a total spin vector J = N

∑
j=1

J(j) that is the sum over the spins Ji of the

spin-1�2 atoms. The eigenstates {�J, Jz�} of the operators

J2 = J2
x + J2

y + J2
z and

Jz = N

�
j=1

J(j)z

(4.1)

form a convenient basis of the system. We describe a part of the Hilbert space in more
detail: The subspace Hs, formed by the states which are symmetric under particle
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4.1. Dicke states and Coherent spin states

exchange. A system which is initially prepared in this subspace (e.g. by putting all
atoms in the state �0�) stays there as long as only operations are performed that act on
all atoms in the same way.

All states in Hs have a maximal total spin J = N�2. The so-called “Dicke states” [21]

��nN � ≡ �J = N

2
, Jz = −N

2
+ n�� n = 0, 1, . . . , N (4.2)

form a basis of Hs. Figure 4.1 shows the level scheme for a system of N two-level atoms
with the Dicke states in the top row.

J= N/2

J= N/2 -1

J= N/2 -2

n = 0  1 2 4 3

W state

Figure 4.1.: The level scheme of a system of N two-level atoms. The subspace Hs of symmetric
states is spanned by the Dicke states. The W state is the Dicke state of first order �1N �.

The spin in z direction of the Dicke state �nN � is Jz = −N
2 + n, which means that n

atoms are in the state �0�, while N − n atoms are in the state �1�. The Dicke state �nN �
can therefore be regarded as the atomic counterpart of the optical Fock state �n�, which
describes n excitations of a given mode of the electromagnetic field. Mathematically, the
Dicke states translate into the Fock states in the limit N →∞ via the Holstein-Primakoff
transformation [85, 86].

In the experiment presented in this chapter, we want to create the Dicke state of first
order �1N �, which is also known as “W state” [87]. It consists of one excitation, which
is symmetrically shared by N atoms. The nature of the state becomes clear when we
write it in the qubit basis 1:

�1N � = 1√
N
[�10 . . . 0� + �010 . . . 0� + ⋅ ⋅ ⋅ + �00 . . . 1�] (4.3)

This state contains N -particle entanglement 2 and has therefore risen interest in diverse
fields of quantum mechanics such as quantum information [88] or quantum metrology
[30, 89]. It has already been realized in different physical systems such as ions [33],
neutral atoms [90], superconducting qubits [91] or photons [92].

1. We have already briefly mentioned Dicke states in chapter 1, where a single optical excitation was
shared by the atoms. In contrast, here the excitation consists of an atom in �1�, corresponding to the
long-living hyperfine ground state F = 2.

2. We comment on the entanglement properties of the W state in more detail in section 5.3.3.
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Coherent spin states
Another important class of states in the symmetric subspace are the “coherent spin
states” �◊, φ� (CSS). They are the superposition of all atoms in the same spin state:

�θ, φ� = [cos(θ�2)�0� + sin(θ�2)eiφ�1�]⊗N (4.4)

These states are classical, in the sense that there are no quantum correlations between
the individual atoms. They can be regarded as the atomic counterpart of optical coher-
ent states. Just as optical coherent states can be created by applying the displacement
operator on the vacuum state, the CSS can be created by applying the rotation operator
Rθ,φ on the state �0N � [93, 86]: �θ, φ� = Rθ,φ�0N � (4.5)

In further analogy to optical coherent states, the CSS form an overcomplete set in the
symmetric subspace Hs:

N + 1

4π
� �θ, φ��θ, φ�dΩ = 1 dΩ = sin θdθdφ (4.6)

and they are not orthogonal:

�θ = 0, φ = 0�θ, φ� = cos(θ�2)N (4.7)

Naturally, the CSS can be expressed in the Dicke state basis [94]:

�θ, φ� = N�
n=0

cos(θ�2)N−n sin(θ�2)neiφ � N !(N − n)! (n)!�
1�2 �nN � (4.8)

4.2. Generation of the W state

4.2.1. Principle of the state generation

Our technique for generation of entanglement does not rely on the interaction between
the particles, but on the collective coupling of all particles to a single mode of the
electromagnetic field.

The scheme makes use of two unique features of our experimental setup:
● We are able to couple many atoms equally to the cavity mode:

The high gradient, strongly confining magnetic potentials of the atom chip allow
us to evaporatively cool an ensemble of approx. 100 atoms down below or near
quantum degeneracy and to load it into a single antinode of the standing wave
dipole trap mediated by the cavity. This means that the only variation in the
coupling strength g arises from the finite size of the atomic cloud. As we have
already discussed in section 1.4.3, a symmetric measurement can be realized as
long as the cloud temperature is below Θmax = 5 mK. We will find in section 4.4
that the cloud temperature in our experiments is approximately 0.5 mK.
● We are able to perform a QND measurement:

In section 1.4, we have shown that in the regime of weak probing, we can infer if
all the atoms in an ensemble are in the state F = 1 without spontaneous emission
of a photon.
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4.2. Generation of the W state

These two features allow us to generate multiparticle entangled states. Our method
consists of two consecutive steps: Weak excitation and a projective measurement.

|1>

|0>

|e>

1 2 3a 3b

T, R

or

|1>

|0>

|e>

|1>

|0>

|e>

|1>

|0>

|e>

ideal projective measurement

MW

Figure 4.2.: Our experimental principle to create multiparticle entangled states. The individual
steps are described in the text.

The principle of the method is shown in figure 4.2. The cavity and the probe light are
resonant to the transition �1� → �e�. We load a well-defined number of atoms into the
cavity and prepare them in the state �0N � (1). We then excite the ensemble with a MW
pulse which couples the states �0� and �1�. If the probability p to excite an atom is small,
this prepares the state �Ψ� = √1 − p�0N � + √p�1N � (2). We then measure �Ψ� in a QND
state detection measurement. Hereby, the state is either projected onto �0N � in which
case we repeat the MW excitation pulse (3a) or it is projected onto the desired state �1N �
(3b). We detect the outcome of the measurement by monitoring the cavity transmission
T and reflection R. If we see high T and low R, we assume that the ensemble is in state�0N � and repeat the MW pulse until we finally detect low T and high R, indicating that
the target state �1N � is prepared.

4.2.2. Experimental realization

We prepare a well-defined atom number in the state �0� with the method presented
in section 3.1. We then adjust the cavity to be resonant with the �1� → �e� transition,
taking into account the presence of the other atoms in the F = 1 manifold. The probe
power is set so that the mean count rate in reflection (transmission) is on average
180 kHz (95 kHz) if all atoms are in in �0� and 350 kHz (1 kHz) if at least one atom is
in �1�. We probe the cavity transmission during 25 µs in order to make sure that all
the atoms are in �0� with a probability of at least 98%. We then apply the preparation
sequence, which consists in a MW pulse followed by a QND cavity measurement. The
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probability that the MW pulse transfers one atom to �1� is set to p = 0.27, 0.23, 0.33 3

(depending on the prepared atom number). The cavity measurement consists in sending
on average 20 photons onto the cavity over 20 µs and monitoring the counts in reflection
R and transmission T . The scattering probability for an atom in �1� can be inferred
from the solution of the master equation to be approximately 20% (see figure 1.7). We
consider that the MW pulse transferred at least one atom if T = 0 and R ≥ 4, otherwise
the sequence is repeated. The two detection errors corresponding to this choice, ‘

prep
01

(‘prep
10 ), are respectively defined as the probability to measure all atoms in F = 1 (at least

one atom in F = 2) if at least one atom is in F = 2 (all the atoms are in F = 1). They
can be calculated from the mean number of counts during 20 µs, Tmean and Rmean:

‘
prep
01 = �1 − exp[−T F2

mean]� + exp[−T F2
mean] ⋅ 3�

k=0
Pois(RF2

mean, k) = 0.01

‘
prep
10 = exp[−T F1

mean] ⋅ ∞�
k=4

Pois(RF1
mean, k) = 0.07

(4.9)

The asymmetric choice of the detection error makes sure that we do not exclude runs
where a W state is prepared. In addition, after the measurement, we can discard runs
where T = 0 and R ≥ 4 but where R is below an additional threshold Rprep. The influence
of the parameter Rprep on the state fidelity is shown in section 5.2. The preparation
sequence is repeated at most 20 times. If no W state is prepared after 20 repetitions,
the experimental run is discarded. Figure 4.3 shows a histogram of the reflection counts
of the successful preparations. In this case, the transmission counts are always 0.

Figure 4.3.: Histogram of the reflection counts during the preparation measurement in the case
of a successful preparation. There are no counts for R < 4 because in this case, the preparation
sequence is repeated.

After a QND measurement with successful outcome, the W state is prepared and can
be analyzed via quantum state tomography.

3. The Rabi frequency of the �0� → �1� transition is set to 104 kHz and we apply a pulse of length
∆t = 0.3 µs, 0.35 µs, 0.675 µs.
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4.3. Tomography of the W state

4.3. Tomography of the W state

A way to characterize a multiparticle quantum state is to determine the quantum state
of each participating particle individually. This is done e.g. in ion experiments [32, 33,
38]. The method, however, is not applicable if the particles cannot be individually
addressed.

Another possibility is to measure a quasi-probability distribution. An example of
such a distribution is the Wigner function [95], which has e.g. been obtained from Stern-
Gerlach type experiments [42, 96, 97]. Another example is the Husimi Q function, which
we introduce in the following. As we will see, our experimental setup is well-suited to
measure it directly, giving us access to the symmetric part of the state’s density matrix.

4.3.1. The Husimi Q function

The Husimi Q function [98, 99] is a quasiprobability function which measures the
overlap of the state (represented by its density matrix fl) with the coherent state �◊, φ�:

Q(θ, φ) = N + 1
4π
�θ, φ�ρ�θ, φ� = N + 1

4π
�0N �Rθ,φρR

†
θ,φ
�0N � (4.10)

We directly see from (4.10) that the Q function is always positive 4, bounded and nor-
malized:

0 ≤Q(θ, φ) ≤ N + 1
4π

(4.11)

� Q(θ, φ) dΩ = 1 dΩ = sin θdθdφ (4.12)

As the CSS form an overcomplete basis, the Q function is equivalent to the density
matrix ρ, i.e. the Q function holds the full information of a state in the symmetric
subspace.

ρ = � Q(θ, φ)�θ, φ��θ, φ� dΩ dΩ = sin θdθdφ (4.13)

a b c d

Figure 4.4.: Representation of the Q function on the multiparticle Bloch sphere for different
states. a) CSS �θ = 0.8, φ = 0� containing 20 atoms. b) Dicke state �n = 2N=20�. c) Dicke state�n = 5N=20�. d) Coordinate system used in a), b) and c). This representation is also used in all
the following drawings of a multiparticle Bloch sphere.

4. This is an important difference with respect to the Wigner function, which takes negative values
or entangled states.
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The Q function can be graphically expressed on the surface of a sphere, the “multi-
particle Bloch sphere”. In close analogy to the single-particle Bloch sphere, this sphere
has a radius J = N�2 and its south pole (◊ = 0) corresponds to the state �0N �, while its
north pole (◊ = fi) corresponds to the state �1N �. Figure 4.4a) shows the Q function of
the coherent state �◊ = 0.8, φ = 0� containing 20 atoms. Since the coherent states are
not orthogonal, the Q function is not point like, but has a finite radius around its mean
spin direction. Figure 4.4b) depicts the Q function of the Dicke state �n = 2N=20�. It
forms a ring on the Bloch sphere, which illustrates that while the z component of the
spin is well defined, the spin components in the other directions - being the conjugate
variables - are completely undefined. Comparison of the images b) and c) show that
the Q function of two orthogonal states (such as the two represented Dicke states) can
have an overlap. The Q function thus violates the third probability axiom [100], which
is the reason why it is considered a quasiprobability function [101].

4.3.2. Measuring the Husimi Q function using a cavity

As seen in the previous section, the Q function at the angle (θ, φ) is the measurement
of the overlap between a state ρ and the coherent state �θ, φ�. Such a measurement can
be realized with the help of our cavity.

We consider a well defined number of N atoms in the cavity. As already pointed
out in section 1.4, the cavity can distinguish either if all the atoms are in the state(�0�)⊗N ≡ �0N � (high transmission / low reflection) or if at least one atom is in the state�1� (low transmission / high reflection).

The probability p(�0N �) of the measurement outcome �0N � gives directly the value of
the Q function at the angle θ = 0:

Q(θ = 0) = N + 1
4π
�θ = 0�ρ�θ = 0� = N + 1

4π
p(�0N �) (4.14)

We can measure the Q function at other angles by rotating the state ρ prior to the
measurement:

Q(θ, φ) = N + 1
4π
�θ = 0�Rθ,φρR

†
θ,φ
�θ = 0� (4.15)

Since our states �0� and �1� correspond to the hyperfine ground states �F = 1, mF = 1�
and �F = 2, mF = 2� of 87Rb, the rotation Rθ,φ can be realized using a resonant MW
pulse.

Figure 4.5 shows the consecutive steps of a Q function measurement with the help of
the cavity.
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4.3. Tomography of the W state
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Figure 4.5.: The steps to realize a measurement of the Q function at the angle (◊, φ) with
our cavity. The first row indicates the consecutive time steps. The second row shows the state
in the cavity, and the third row shows a representation of the state on the multiparticle Bloch
sphere. As an example, the tomography measurement is performed on the state �0N � (1). We
use a MW pulse of well-defined length and phase to rotate the state by the angle (θ, φ) (2) and
perform a state detection measurement (3). In the last step, either event (3a) or (3b) is realized.
The probability for the outcome (3a) is p(�0N �) = �0N �Rθ,φρR

†
θ,φ
�0N � = 4π

N+1
Q(θ, φ). Therefore,

the average of several measurements at the same tomography angle allows to infer the value of
Q(θ, φ).

One single measurement realization can only yield the result 1 or 0. We therefore only
obtain one bit of information per measurement and have to repeat the measurement
at one angle (θ, φ) several times to obtain the expectation value �θ, φ�ρ�θ, φ�, which
corresponds to Q(θ, φ).

What happens if the state ρ in the cavity is not (entirely) in the symmetric subspace?
We can decompose ρ in the part ρsym which lies in the symmetric subspace Hs and the
remaining part ρn.sym:

We define P as the projector on the subspace Hs and P̄ as P̄ = − P . We can thus
write ρ as:

ρ = PρP + P̄ ρP̄ + P̄ ρP + PρP̄ (4.16)

with ρsym = PρP . The coherent state �θ, φ� lies entirely in the symmetric subspace and
thus P̄ �θ, φ� = 0. When we insert (4.16) in (4.10), we therefore obtain:

Q(θ, φ) = N + 1
4π

�θ, φ�PρP �θ, φ� = N + 1
4π

�θ, φ�ρsym �θ, φ� (4.17)

This proves that the cavity measurement is a direct measurement of the Q function of
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the symmetric part of the density matrix. Figure 4.6 shows the possible values of the
Q function for a level scheme of N two-level systems.

J= N/2

J= N/2 -1

J= N/2 -2

n = 0  1 2 4 3

Figure 4.6.: Level scheme of a system of N two-level systems. The symmetric states (J = N�2)
are the only states that can contribute to the Q function and are marked in green. The states
in the nonsymmetric subspace (J < N�2) do not contribute to the Q function and are marked in
red.

To illustrate the result of (4.17), we determine the value of the Q function of the state�Âsc�, which describes one well defined atom in �1� while all the other atoms are in �0�.
In the single spin basis, the state reads (cf. (4.3)):

�Âsc� = �10 . . . 0� (4.18)

This state is particularly interesting in our case, since it occurs if the external state
of the atom in �1� is revealed to the environment, due to e.g. a scattering event. In
the basis {�J, Jz�}, it is composed of the state �1N � and of states that do not lie in the
symmetric subspace 5:

�Âsc� = 1√
N
�1N � + 1√

N

N−1�
i=1
�J = N�2 − 1, m = −N�2 + 1�i (4.19)

From (4.17), we see that only the first term of �Âsc� can contribute to a non-zero Q

function. The state �Âsc� therefore gives the same Q function as �1N � with an amplitude
reduced by the factor 1�N. This example shows that a non-normalized Q function allows
to infer a states’ population in the symmetric subspace.

4.3.3. Experimental realization

After the state preparation, we apply a MW pulse with adjustable duration and
phase that performs the rotation Rθ,φ required for the tomography. We then measure
the cavity transmission and reflection for 120 µs in order to determine the Q function
Q(◊, φ) as described in section 4.3.2.

In order to minimize the error of the tomography state detection, we do not simply
compare the number of counted photons to a threshold. Instead, we analyze the full,
time-resolved transmission and reflection traces and use a maximum likelihood algorithm
to calculate the probability for a trace to be caused by either a state �0N � or by a state

5. The state �J = N�2 − 1, m = −N�2 + 1�i is (N − 1)-fold degenerate. We denote the different states
with the index i.
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4.3. Tomography of the W state

with at least one atom in �1�. In this calculation, we also account for the possible
occurrence of jumps in the cavity signal from high transmission to low transmission or
vice versa. The state detection therefore not only depends on the count rates during
120 µs, but also on the lifetimes ·0, ·1 of the states �0N � and “at least one atom in �1�”,
respectively. These lifetimes are proportional to the number of atoms in �0� and �1� and
therefore depend on the atom number N of the state and the tomography angle ◊ of the
state detection. We have obtained the lifetimes in an independent measurement for each
atom number and each tomography angle (see figure 4.7a). For high tomography angles,
the atoms are predominantly in F = 2. Therefore, there are very few traces that start
in the state �0N �, which means that we cannot assign a lifetime ·0. Furthermore, the
lifetime ·1 gets bigger than our measurement time and we cannot assign a value either.
This is why for ◊ > 0.7, we assign the lifetime of the highest tomography angle for which
we still obtain a result. Moreover, we assume that the lifetimes are independent of the
sign of the tomography angle ◊, ·(◊) = ·(−◊) 6.

From the maximum likelihood calculation, we can infer the detection error ‘tom
10 (‘tom

01 )
to assess the measurement to the state �0N � (“at least one atom in �1�”) even though the
system is in the state “at least one atom in �1� (�0N �). As for the lifetimes, we obtain
a different error for each each tomography angle. The errors are always below 5% (see
figure 4.7b).

Figure 4.7.: Lifetimes and detection errors for a state containing N = 41 atoms. a) Measurement
of the lifetimes ·0 (blue dots, left y axis) and ·1 (red dots, right y axis) in dependence of the
tomography angle ◊. For ◊ > 0.7 we cannot obtain any lifetimes from the measurement traces
and therefore assign the lifetime of the highest ◊ for which we still obtain a result. b) Detection
error ‘tom

10 (blue dots) and ‘tom
01 (red dots). We assume that the lifetimes and detection errors

are symmetric around ◊ = 0.

6. We show in section 5.1.3 that we expect a symmetric Q function Q(θ, φ) = Q(−θ, φ). We therefore
also expect symmetric lifetimes.
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4.3.4. Experimental results

With the method described in the last section, we have created entangled states of
three different atom numbers and measured their Q function on 45 points along a cut
through the pole of the Bloch sphere (see figure 4.8). The results of these measurements
are presented in the following.

Figure 4.8.: Measurement points of the Q function on the Bloch sphere. We measure the Q

function at 45 different angles (◊, φ = 0) along one polar cut. The distance ∆θ between the
measurement points is varied according to the atom number of the state. The state in this
image contains N = 12 atoms, for which ∆θ = 0.13.

4.3.4.a. Q function of the Coherent spin state

Every fifth experimental cycle, the W state preparation is omitted and the tomography
is performed directly after the 25 µs light pulse that verifies if all the atoms are in �0�.
This way, we perform a tomography on a coherent state, which we can use to infer the
number of atoms in the corresponding W state.

Figure 4.9.: Measured Q function of the prepared coherent states (blue points) and a fit from
which we infer the atom number (green curve). We find that a)b)c) correspond to a mean atom
number N = 41, 23, 12.
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4.3. Tomography of the W state

Figure 4.9 shows the tomography of the three prepared coherent states. Each data
point corresponds to approximately 75 measurements. The curves fit well to the ex-
pected cos(θ�2)2N function, which gives us the mean atom number N = 41, 23, 12 (green
curve). While it is easy to infer the mean atom number, the curves contain very little
information on the spread of the atom number. However, we can deduce it from the
way the atom number is prepared: In a worst case assumption, we assume that due to
the many scattering events during the atom number preparation, the total atom num-
ber Ntot is spread over all three Zeeman levels in the F = 1 manifold. In this process,
the population ratio of the Zeeman levels depends on the polarization of the probe and
dipole beam and the magnetic field in the cavity. It is therefore difficult to calculate,
but we can obtain it directly for the state �0� as p = N�Ntot. This means that we can
assume that the atom number of the state Nk follows a Binomial distribution

B(Nk; Ntot, p) = �Ntot

Nk

�pNk(1 − p)Ntot−Nk (4.20)

The standard deviation of B(Nk; Ntot, p) is ‡ =�Ntot p (1 − p) and we therefore obtain
‡ = 4.2, 3.6, 2.8 for the mean atom numbers N = 41, 23, 12.

4.3.4.b. Q function of the W state

Figure 4.10.: Measured Q function of the prepared W state for N = 41. The blue points show
all successful experimental runs, while the green points only show runs for which R ≥ 11.

Figure 4.10 shows the tomography of the W state for N = 41. The blue points are
obtained using every successful run (i.e. every run where T = 0, R ≥ 4) while the green
points only show experimental runs where the counts in reflection lie above a higher
threshold Rprep = 11. In these curves, the characteristic dip at Q(◊ = 0) for the W state
becomes visible.
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Figure 4.11.: Measured Q function of the prepared W states (blue points) and the Q function
from the reconstructed density matrices (green curve, see section 5.1.3). The additional curves
are the calculated Q functions of the state �1N � (red curve) and of the state �Âsc� (orange curve).
The curves in a)b)c) correspond to a mean atom number N = 41, 23, 12.

Figure 4.11 shows the tomography curves for the W states with N = 41, 23, 12 and
a threshold Rprep = 11, 10, 12 which maximizes the fidelity 7. For comparison, we also
plot the Q function of the perfect W state �1N � (red curve) and of the state �Âsc�
(orange curve, cf. (4.18)) with the same atom number. We see that the contrast
of the experimental data is reduced with respect to the red curve. This is due to
imperfect preparation of the ensemble, scattering events during the state preparation
and decoherence 8. Furthermore, the dip of the Q function does not go down to zero. We
can directly read out the contribution of the initial coherent state �0N � to the prepared
state as the amplitude of the Q function at ◊ = 0. Nonetheless, the experimental data
can be clearly distinguished from the Q function of a state where the atom in �1� is
well-defined.

We also want to compare the results of the tomography measurement to the Q function
we expect due to our state preparation method, which is not exactly the Q function of
the state �1N �. We therefore revisit the W state preparation scheme and depict the Q

function of the atomic state during the different experimental stages (see figure 4.12):

7. The influence of Rprep on the fidelity as well as the selection criterion for a specific value of Rprep

are presented in section 5.2
8. The fidelity limiting factors are discussed in detail in section 5.2.
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4.3. Tomography of the W state
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Figure 4.12.: The Q function of the atomic state during the consecutive steps of the W state
preparation in the case of N = 12 atoms. The details are described in the main text.

The atoms are initially in �0N �, which corresponds to a Q function centered around
the south pole (1). A microwave pulse R(◊prep) weakly excites the ensemble, which
rotates the coherent state on the Bloch sphere by the angle ◊prep. The following QND
measurement (2) either projects the state back to �0N �, in which case we repeat the
preparation sequence (3a) or onto the state �›�:

�›� ≡ c( − �0N � �0N �) �◊prep� (4.21)

where c is a normalization factor and �◊prep� ≡ R(◊prep) �0N � the state after the MW
rotation. This results in a ring-shaped structure which has a big overlap with the W
state. However, the created state is highly asymmetric due to coherent contributions of
higher order Dicke states, which have also been populated by the MW pulse 9 (3b).

In contrary to the expected Q function, the experimental curves are all rotationally
symmetric: Q(◊, φ) = Q(−θ, φ). We attribute this to homogeneous dephasing of the
atomic spins with respect to the MW due to an unstable magnetic field. The field drifts
by more than 20 mG during the acquisition time of the experiment (several weeks). As
we encode our qubit states �0� and �1� in the magnetically sensitive states �F = 1, mF = 1�
and �F = 2, mF = 2�, this leads to a drift of the transition frequency by

∆ωHF > 2π ⋅ 2.1MHz�G ⋅ 20 mG = 42 kHz (4.22)

During the time ∆t between the state creation and its tomography, the state evolves
freely. In the Bloch sphere picture, it precesses around the z axis with the angular
frequency ∆ωHF. In our case, ∆t = 27 µs, and the state can therefore undergo a complete
circle, which averages out the information on the angle φ in the measurement of the Q

function. As a result, we only measure Q functions which are symmetric around θ = 0
(see figure 4.12 step 4).

We have confirmed this expectation by measuring the Q function Q(θ, φ = π�2) along
the orthogonal axis, which gives similar results (see figure 4.13). However, due to unsta-
ble experimental conditions and bad calibration, the contrast in these curves is reduced
with respect to the first measurement shown in figure 4.11. This can for example be seen
in the higher amplitude Q(θ = 0, φ = π�2). Because of the dephasing, the measurement

9. A quantitative analysis of these contributions is given in section 5.2.
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along the orthogonal axis Q(◊, φ = π�2) does not contain any additional information and
we do not consider it in the fidelity estimation.

Figure 4.13.: Q function measurement on the orthogonal axis (θ, φ = π�2). The image on the
left shows the measurement points on the Bloch sphere. The curves a) b) c) on the right show
the measured Q function for the mean atom numbers N = 41, 23, 12. This measurement, as well
as the measurement on the orthogonal axis (θ, φ = 0) shows a high degree of symmetry around
θ = 0.

4.4. Decoherence

After the target state has been prepared, it is subject to decoherence and the popu-
lation in the state �1N � decreases. We investigate the temporal evolution of this deco-
herence in an independent measurement and compare it to the predictions of a model
which takes into account the differential light shift of the two qubit states in the optical
dipole trap.

We measure the evolution of the Q function at the angles (±θmax, φ = 0) as a function
of τ , the time elapsed after the state is prepared. Precisely, we define τ as the time
interval between the start of the preparation light pulse to the start of the tomography
light pulse. τ is varied from τmin = 27 µs 10 to τ = 177 µs. The measurement angles are
θmax = 0.29, 0.39, 0.65 for N = 41, 23, 12, which corresponds to the maxima of the Q

function shown in figure 4.11. As for the measurements in section 4.3.4, we assume the
Q function to be rotationally symmetric and we depict the average of the Q function
at positive and negative angle Q(θmax) = 1�2[Q(−θmax) + Q(θmax)]. At τmin, we also
measure Q(θ = 0), from which we can infer the state’s population in the coherent state�0N �. Figure 4.14 shows the result of this measurement for different atom numbers. We
see that the contrast of the Q function is halved at approximately τ = 80 µs.

10. This is the minimum time interval possible with our setup. It is comprised of the cavity measure-
ment for the state preparation with a duration of 20 µs and the real-time controller calculation time of
7 µs.
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4.4. Decoherence

Figure 4.14.: Decoherence measurement of the W state. a)b)c) show the reduction of the Q

function for N = 41, 23, 12, respectively. The green curve is a fit to the data, based on a model
taking into account the finite temperature in the trap.

This effect can be explained as a consequence of the finite temperature of the atomic
ensemble in the optical dipole trap. Our calculations follow [102]:

The potential of the dipole trap is the light shift experienced by the atoms in the
ground state 5 2S1�2 and proportional to the detuning between the light and the atomic
transition ∆ and the light intensity I:

U0(∆, I) = �hΓ
2

8I0

I

∆
(4.23)

where Γ = 2fi ⋅ 6 MHz is the natural linewidth of the D2 line and I0 = 3.6 mW/cm2 is
the corresponding saturation intensity. The atoms in �0� and �1� are detuned by the
hyperfine splitting ∆HF = 6.8 GHz and therefore experience a slightly different light
shift. When we consider an effective detuning ∆eff with ∆

−1
eff = (∆−1

1 + 2∆
−1
2 )�3 with ∆1

(∆2) being the detuning from the D1 (D2) line, we can approximate the differential light
shift between the atoms in �0� and �1� as

�h” = U0(∆eff) −U0(∆eff +∆HF). (4.24)

Since ∆HF � ∆eff , we can assume that the differential light shift is proportional to the
total light shift: �h” = ÷U0 ÷ = ∆HF

∆eff
(4.25)

On average, an atom with higher energy E experiences a lower dipole light intensity and
thus a lower differential light shift. Two atoms with different energies therefore have a
different detuning with respect to the MW and accumulate a phase difference when they
precess on the Bloch sphere. We approximate the dipole trap by an harmonic potential,
for which the virial theorem states that the potential energy U0 is on average half the
total energy E. The phase difference then becomes

∆φ = η
∆U0�h t = η

∆E

2�h t (4.26)
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What is the influence of this phase spread on the population of the W state?
A perfect W state is characterized by the fact that there is a fixed phase relation

between all the terms of the superposition (cf. (4.3)). After time · , the atoms in �1�
have accumulated a phase φτ(E) dependent on their energy in the trap:

�1N(τ)� = 1√
N
(e−iφτ (E1) �10 . . . 0� + e−iφτ (E2) �010 . . . 0� + . . . + e−iφτ (EN ) �00 . . . 1�) (4.27)

The overlap with the initial state therefore evolves as:

� �1N �1N(τ)��2 = � 1
N

N�
j=1

e−iφτ (Ej)�2 (4.28)

The average evolution of the overlap then is:

�� �1N �1N(τ)��2� = �� 1
N

N�
l=1

e−iφτ (El)�2�
= 1

N
+ 1

N2 �
k,l

�ei(φτ (Ek)−φτ (El))�
= 1

N
+ N(N − 1)

N2
�ei(φτ (E1)−φτ (E2))�

= 1
N
+ N(N − 1)

N2
��ei(φτ (E1))��2 ≡ 1

N
+ c(τ) (4.29)

The phase spread of an ensemble of atoms reflects the energy distribution of the atoms in
the trap. In our case, this is a three-dimensional Boltzmann distribution with probability
density [102]

p(E) = β3E2

2
exp[−βE] β = 1

kBT
. (4.30)

The average phase is thus calculated by iterating over the trap energy, weighted by the
energy population:

��eiφτ (E1)��2 = � ∞�
0

e−i
ηE

2�h
τ β3

2
E2eβEdE�2

= �����������
β3

(β + iτη
2�h )3

�����������
2

= 64β6�h6

(4β2�h2 + η2τ2)3 (4.31)

We see that for long times, the overlap drops to 1�N, which reflects the fact that the
initial W state decoheres into the statistical mixture {�100 . . .�, �010 . . .�, . . .} with one
localized excitation.

We can infer the trap temperature from the decoherence measurement by fitting the
result of (4.29) to our data. We model the decoherence using a state ρfit which only
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4.4. Decoherence

has populations in the coherent state fl00, the W state fl11 and the non-symmetric sub-
space 11. The population fl00 does not decay and the population fl11 decoheres according
to (4.29):

fl11(·) = ( 1N + c(·)) fl11(0) (4.32)

We compute the expected value of the Q function at angle ◊max

Q(◊max)�τ = N + 1
4fi

�◊max�flfit(·) �◊max� (4.33)

and fit it to the data with the following fit parameters:
⋅ fl11(0), the initial population in the �1N � state
⋅ —, the temperature
⋅ 1
N , the remaining population in �1N � for · →∞

The green curves in figure 4.14 show the fit and figure 4.15 shows the offset 1�N
obtained from the fit, compared to the expected 1�N dependence. We see that the model
reproduces well the trend of the data. From the fit, we obtain a trap temperature
kBT = U�6, which is the expected order of magnitude for an atomic ensemble heated up
in a finite depth trap.

Figure 4.15.: Remnant fidelity 1
N

at · →∞ for the W states with three different atom numbers.
The values are obtained from the fit to the decoherence measurement shown in figure 4.14. The
green curve shows the expected 1�N dependence.

The fit also allows us to infer the upper limit of the population fl11 due to decoherence.
We find that for ·min = 27 µs, we are limited to fl11 = 0.78, 0.85, 0.91 for N = 41, 23, 12.
There are several ways to increase this limit: A straight-forward approach consists in
reducing ·min. This can be done by using a faster real-time controller system or by
increasing the probe light intensity to allow for a shorter detection time tprep. However,
a technical limit is reached at tprep = 2 µs when the counter efficiencies of the SPCMs
start to decrease because of too high count rates. Another approach is to increase the
decoherence time. This can be done by decreasing the differential light shift (e.g. by
choosing a longer trapping wavelength) or by decreasing the trap temperature (e.g. by
using a more shallow dipole trap).

11. We do not assume any populations in the higher-order Dicke states �nN � , n ≥ 2. We will see in
chapter 5 that this assumption is justified.
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4.5. Conclusion

In this chapter, we have presented a novel method for the generation of W states, based
on weak collective excitation and a QND measurement. We have also introduced the
direct measurement of the Husimi Q function as a technique for the full characterization
of a multiparticle state with the help of a cavity. We have shown that this tomography
measurement gives access to the symmetric part of the states’ density matrix.

With these two methods, we have generated W states with atom numbers N =
41, 23, 12 and have measured out their Husimi Q function along two orthogonal po-
lar cuts of the Bloch sphere. The atom number has been inferred in a tomography
measurement of the corresponding coherent spin states.

Furthermore, we have analyzed the state decoherence. The temporal evolution of the
prepared state can be well explained by a model assuming an atomic cloud of finite
temperature in a dipole trap.
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5. State reconstruction and verification of entanglement

In the last chapter, we have measured the Q function of experimentally created states.
In principle, this is sufficient to completely characterize them. However, there are in-
teresting properties that we cannot directly obtain from the Q function, such as the
fidelity F , being defined as the overlap of the created state with the target state �1N �:

F = �1N �fl �1N � (5.1)

We therefore present methods to retrieve a state’s density matrix from the measured Q

function. This allows us to obtain F and to quantitatively study the fidelity limiting
factors of our entanglement scheme. Finally, we introduce an entanglement criterion
based on the state’s populations in �0N � and �1N � and show that our experimentally
created state with the highest fidelity contains at least 13 entangled atoms.

5.1. Quantum state reconstruction

The laws of quantum mechanics pose some difficulties on the reconstruction of the
state of a quantum system (described by its density matrix fl). A measurement per-
formed on the state in general modifies the state itself [103] and the no-cloning theorem
forbids to generate copies of a quantum state [104].

To reconstruct the density matrix despite these constraints, an experimenter would
prepare N samples of the system in the same state fl and would perform M measure-
ments �yi��yi�, i = 1, ..., M on them. The state fl can be found in �yi� with probability
pj :

pj = �yi�fl�yi� (5.2)

If the M measurements were complete

� �yi��yi� = (5.3)

and if the number of measurements was high enough to infer the probabilities pj with
sufficient precision, fl could be calculated by inverting the linear relation (5.2) for all
i. In our experimental situation, this would correspond to measuring Q(◊, φ) at every
angle (θ, φ) on the Bloch sphere and to perform an infinite number of measurements at
each angle to obtain the expectation value �θ, φ�ρ�θ, φ�. This, of course, is practically
impossible. In reality, we have to infer the density matrix from insufficient data via
some form of reconstruction algorithm [105, 106]. In the following, we introduce two
of the most common techniques, the “Maximum Likelihood” reconstruction (ML) [107]
and the “Maximum Entropy” reconstruction (ME) [108]. We also describe an addi-
tional reconstruction technique, which takes into account some characteristics of our
experimental situation. As an example, we use the different methods to reconstruct the
experimental dataset with N = 41 and a threshold of the reflection counts in the state
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5.1. Quantum state reconstruction

preparation measurement Rprep ≥ 11. We will find that this is the dataset with the
highest population in the target state �1N �.
5.1.1. Maximum Likelihood reconstruction

Principle
The maximum likelihood reconstruction (ML) aims at answering the question “What
quantum state seems to be most likely, given the outcome of the measurements?”. Any
density matrix fl assigns probabilities for a given measurement on the basis of (5.2).
It is therefore possible to assign an overall probability for a given density matrix to
reproduce the ensemble of measurement outcomes {nj}:

L′(fl) = N !∏
i

ni!
�
j

�yj �fl�yj�nj (5.4)

with nj being the number of detections of a particular outcome �yj�. In the case of our
Q function measurement, for each tomography angle there are only two possible exper-
imental outcomes: 1, corresponding to high transmission, or 0, corresponding to low
transmission. The different observables �yj� �yj � therefore correspond to measurements�◊j , φj� �θj , φj � (1 − �θj , φj� �θj , φj �) of the Q function at different angles (θj , φj) and we
obtain n1

j (n0
j ) times the outcome 1 (0). The forefactor in (5.4) can be omitted, since

it does not alter the result. The ML therefore amounts to maximizing the likelihood
functional L(ρ):

L(ρ) =�
j

�θj , φj �ρ�θj , φj�f1
j ⋅ (1 − �θj , φj �ρ�θj , φj�)f0

j (5.5)

with fk
j = nk

j�N.
The density matrix ρm for which (5.5) is maximal can be found in an iterative algo-

rithm:
We introduce the operator M(ρ) [106]:

M(ρ) =�
j

f1
j

p1
j

�θj , φj��θj , φj � + f0
j

p0
j

(1 − �θj , φj��θj , φj �). (5.6)

For the density matrix ρm, which is most likely to reproduce the given results, we know
that fk

j ∝ pk
j and therefore

M(ρm)ρmM(ρm)∝ ρm (5.7)

We can thus start with a density matrix ρ = �Tr[ ] and calculate consecutive matrices
via the iterative step

ρ(k+1) = N[M(ρ(k))ρ(k)M(ρ(k))] (5.8)

where N[] denotes the normalization to a unitary trace. In each iteration step, the
likelihood monotonically increases and the density matrix asymptotically approaches
ρm.
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Reconstruction of the experimental data
The result of the reconstruction shows that the population in the higher order Dicke
states �nN � with N ≥ 3 is negligible and we therefore omit them in the following (this is
also true for the other reconstruction techniques). This means that the symmetric part
of the quantum state is fully described by the matrix

fl = ���
fl00 fl01 fl02

fl10 fl11 fl12

fl20 fl21 fl22

��� (5.9)

containing the Dicke states �0N �, �1N �, �2N �, and coherences between them. The matrix
flML with the highest likelihood is:

flML = ���
0.03 −0.02i −0.01i

0.02i 0.43 0.11 + 0.02i

0.01i 0.11 − 0.02i 0.03

��� (5.10)

We see that the trace Tr[flML] = 0.49 is smaller than 1. This means that the rest of
the population is in the non-symmetric subspace. Figure 5.1 shows the Q function of
flML depicted on the Bloch sphere as well as along one polar cut, together with the
experimental data.

Figure 5.1.: Result of the state reconstruction with the ML method. The matrix flML is
depicted on the Bloch sphere (left) and along a the polar cut Q(◊, φ = 0) (green curve), together
with the experimental data (blue dots).

5.1.2. Maximum Entropy reconstruction

Principle
We consider the case where we have measured the Q function along k different angles(θj , φj), j = 1, . . . k, which means that we have obtained the expectation values �j� of a
set of observables ĵ ≡ �θj , φj� �θj , φj �. We know that the actual density matrix ρ0 which
was responsible for the measurement outcomes, fulfills the equations

Tr[ρ0] =�j� = Tr[ρ0ĵ] (5.11)
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5.1. Quantum state reconstruction

However, there might be a lot of density matrices {fl} which fulfil (5.11). We therefore
have to choose one matrix from the ensemble {fl} in an unbiased manner. One pos-
sibility would be to choose the matrix which reflects our level of observation (i.e. our
degree of knowledge on the system) without supposing any additional knowledge. This
corresponds to choosing the density matrix flm with the highest entropy S(flm) out of{fl} [108]. The entropy is defined as

S(fl) = −Tr[fl ln(fl)] (5.12)

In order to find the matrix flm, for which (5.12) is maximized, we can use the method
of Lagrange multipliers [109]:

We define the functional

L(fl, ⁄i) = −Tr[fl ln(fl)] +�
j

⁄j(Tr[flĵ] − �j�) + ⁄0(Tr[fl] − 1) (5.13)

and find its extremum by finding the zero crossings of the partial derivatives

ˆL
ˆfl
= 0 (5.14)

ˆL
ˆ⁄i

= 0 (5.15)

The solution of (5.14) simply is

flm = 1
Z

exp[−�
j

⁄j ĵ] Z = Tr[e−∑j λj ĵ] (5.16)

Putting (5.16) in (5.13) and solving (5.15) gives:

Tr[flmĵ] − �j� = 0 ∀j (5.17)

In our case, the number of measurements per tomography angle (◊j , φj) is not sufficient
to precisely infer the expectation values �j�. (5.17) is therefore altered to minimize the
difference χ between the measurement outcomes pj and the expectation values �j�:

χ2 =�
j

�Tr[ρmĵ] − �j��2 (5.18)

The fact that we maximize the entropy of the density matrix means that we do not
assume any knowledge about observables that have not been measured. The ME method
is therefore a good choice for experiments where measurements have been performed
only on an incomplete set of observables. This is certainly the case in our Q function
measurement, where we infer the density matrix from a single polar cut on the Bloch
sphere. We therefore expect the ME method to reconstruct the density matrix of our
state more faithfully than the ML method.
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Reconstruction of the experimental data
From the reconstruction with the ME method, we obtain:

flME = ���
0.03 −0.01i 0.00
0.01i 0.46 0.12 − 0.01i

0.00 0.12 + 0.01i 0.03

��� (5.19)

The ME method gives a slightly higher fidelity of the W state with respect to the ML
method. When we plot the Q function of flME on the Bloch sphere (see figure 5.2), we see
that both reconstruction methods agree remarkably well. This increases our confidence
in the reconstruction result, since it means that the most likely density matrix is close
to the one with the highest entropy.

Figure 5.2.: Result of the experimental state reconstruction with the ME method. The matrix
flME is depicted on the Bloch sphere (left) and along a the polar cut Q(◊, φ = 0) (green curve),
together with the experimental data (blue dots).

5.1.3. Reconstruction of a diagonal density matrix

The states reconstructed with the ME and ML method show a rotational asymme-
try. However, as we have already mentioned in section 4.3.4.b, we expect a rotationally
symmetric Q function: During the time ∆t between the state creation and its tomogra-
phy, the atoms are exposed to a fluctuating magnetic field, which shifts the transition
frequency between the states �0� and �1�. Thus, after having been created, the multi-
particle state precesses on the multiparticle Bloch sphere with the detuning frequency
∆ωHF between the atomic levels and the microwave. In our case, ∆ωHF > 2π�∆t and we
therefore measure a rotationally symmetric Q function, averaged over the azimuth angle
φ.

This rotation has a consequence on the density matrix of the state. When we write
the Q function in terms of the entries of ρ and express ρ in the basis of Dicke states
[99], we see that a rotationally symmetric Q function is equivalent to a density matrix
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5.1. Quantum state reconstruction

fl without off-diagonal elements:

Q(◊) ≡ � Q(◊, φ)dφ

= � �
k

�
l

ρkl cos(θ�2)N−k−l sin(θ�2)N+k+le−i(k−l)φ�N
k
�1�2�N

l
�1�2

dφ

=�
k

ρkk cos(θ�2)N−2k sin(θ�2)N+2k�N
k
�

(5.20)

This means that the B-field fluctuations cause the coherences between the basis states
to disappear.

Principle
Based on this experimental fact, we use a third reconstruction method that only in-
fers diagonal density matrices. The reconstruction thus simplifies considerably and is
reduced to a “linear and positive” (LP) problem, which we can solve in a Maximum
Likelihood approach [110, 105]:

In the experiment, we perform measurements at k different angles (θj , φj), j = 1 . . . k

and obtain n0
j (n1

j ) times the measurement outcome 0 (1). For a given population in the
Dicke state �iN � = ρii and a given angle (θj , φj), we calculate the probability p1

i = M̃ i
jρii

to obtain the outcome 1 and maximize the (log-) likelihood function

L(ρ) = k�
j=1

n1
j log M̃ i

jρii + n0
j log(1 − M̃ i

jρii) (5.21)

in the iterative algorithm [111]

ρ
(n)
ii = ρ

(n−1)
ii

k�
j=1

M̃ i
jn1

j

p1
j

+ 1 − M̃ i
jn1

j

1 − p1
j

(5.22)

As a result, we obtain a “density vector” ρ, consisting only of the diagonal elements of
the density matrix ρ. This reconstruction technique reflects the physical situation in our
experiment and comprises aspects of both the ME and ML method: On the one hand,
the resulting diagonal density matrix is obtained in maximizing a likelihood function
and on the other hand, it has maximum entropy compared to density matrices with the
same state population.

Another advantage of this technique is the reduced number of elements, which have
to be obtained from the dataset. The reconstruction technique is therefore very robust.

Reconstruction of the experimental data
The matrix with the highest likelihood to reproduce the given dataset is

ρLP = ���
0.03 0 0

0 0.42 0
0 0 0

��� (5.23)
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This means that the symmetric part of the quantum state is fully described by the vector
ρ = [fl00, fl11, fl11] = [0.03, 0.42, 0.00] containing the population in the Dicke states [�041�,�141�, �241�]. The rest of the population is in the non-symmetric subspace, Tr[fln.sym.] =
1 − 0.03 − 0.42 = 0.55. Figure 5.3 shows the expected Q function from the reconstructed
density matrix flLP. Since the LP technique assumes no coherence between the Dicke
states, the reconstructed state is rotationally symmetric on the Bloch sphere.

Figure 5.3.: Result of the experimental state reconstruction with the LP method. The matrix
flLP is depicted on the Bloch sphere (left) and along a the polar cut Q(◊, φ = 0) (green curve),
together with the experimental data (blue dots).

5.1.4. Error estimation of the state reconstruction

We would like to estimate the errors of our state reconstruction. We can identify
different error sources that all the three different reconstruction techniques have in
common: Errors due to the finite number of measurements per tomography angle, due
to the detection error of the tomography measurement and due to the fact that we
only consider a single, well-defined atom number in the reconstruction. For the LP
technique, we have to take into account an additional error which stems from the fact
that we neglect off-diagonal matrix elements.

Finite number of measurements and detection error
We estimate this error using a bootstrapping method [112]: We compute “artificial”
datasets of Q function measurements with the probability distribution given by the
measured values of the Q function and the same number of measurements as in the
experimental dataset. We then reconstruct these datasets and obtain a distribution for
each entry of the density matrix with a certain mean and spread.
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5.1. Quantum state reconstruction

Figure 5.4.: Distribution of the fidelity fl11 from a reconstruction with the LP method of 1000
artificial datasets with a probability distribution given by the measured values of the Q function.
We obtain such distributions also for the populations fl00 and fl22 and can assign a systematic
error and a standard deviation for flLP.

As an example, figure 5.4 shows the population in the �141� state for 1000 artificial
datasets, reconstructed with the LP method. The systematic error is calculated as
the difference between the mean of this distribution and the population fl11, inferred
from the experimental dataset. The (asymmetric) statistical error is calculated as the
standard deviation of the spread of the distribution.

Reconstruction with a single atom number
The experimentally created state has a certain atom number distribution ‡(N), which
has been calculated in a worst case assumption in section 4.3.4.a. However, our state
reconstruction assumes only a single atom number. To obtain the resulting systematic
error, we calculate the Q function of a density matrix flm, given by a statistical mixture
of density matrices flk, all with the same state populations but with different atom
number. We assume a binomially distributed atom number Nk with mean N and
standard deviation ‡(N). Figure 5.5 shows such a Q function for N = 41 and ‡(N) = 4.2
(green “+” markers). We can compare it with the tomography curve calculated from
the same state populations, but composed of only one atom number N = 41 (blue “x”
markers). The two Q functions only differ slightly. When we reconstruct the green
dataset with our reconstruction methods (supposing only one atom number), we find
that the result is almost identical. For example, the population fl11 is underestimated
by less than 1%.
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Figure 5.5.: Q function of a state with density matrix flLP (see (5.23)) and a fixed atom
number N=41 (blue “x” markers), compared to the Q function of a state with the same density
matrix, but with a binomial distributed atom number with mean N = 41 and ‡ = 4.2 (green “+”
markers). The two curves almost perfectly overlap. The red dots on the second y-axis show the
difference between the two signals. It is always below 2 ⋅ 10−3, which is well below the error of
the tomography measurement.

Omission of off-diagonal matrix elements
The statistical error through the omission of off-diagonal elements only applies to ma-
trices reconstructed with the LP method. We estimate it by creating random (3 × 3)
density matrices {flrand} with off-diagonal elements, representing the population in the
states �0N �, �1N � and �2N � and coherences between them. For each flrand, the likelihood
to reproduce the experimental dataset is calculated. The mean populations and their
spread is analyzed for the ensemble of density matrices with a likelihood that is higher
than the one from flLP. We obtain that we underestimate the population fl11 by 4%.
The deviation of the population fl00 from the actual value is too small to assign an error.

Summary
Using the methods presented above, we assign systematic and statistical errors to the
matrices flLP, flML and flME, reconstructed with the three different reconstruction tech-
niques. Here, we give the results for the dataset with the highest atom number and
highest fidelity (N = 41, Rprep ≥ 11): The dominating error contribution is statistical

Method fl00 fl11 fl22

LP 0.03 − 0.01+0.02
−0.02 0.42 + 0.01+0.06

−0.06 0.00 + 0.00+0.06
−0.00

ML 0.03 − 0.01+0.02
−0.02 0.43 + 0.01+0.05

−0.04 0.03 − 0.01+0.02
−0.01

ME 0.03 + 0.00+0.02
−0.02 0.46 + 0.03+0.07

−0.06 0.03 − 0.03+0.07
−0.03

Table 5.1.: Dicke state populations and errors of the created state with N = 41, Rprep ≥ 11 for
different reconstruction methods.

error due to a finite number of measurement points per tomography angle. The standard
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5.1. Quantum state reconstruction

deviation is 6% for the population in the target state �1N �.
We would like to stress the fact that the statistical error of any reconstruction method

always leads to an underestimation of the population fl11 and an overestimation of fl00.
This ensures that we do not overestimate the degree of entanglement present in the
system (see section 5.3.3).

In general, the results of the three different reconstruction methods agree very well.
The LP technique gives the most conservative estimate of the population in the �1N �
state. We therefore only use this reconstruction method to analyze the experimentally
created states with different atom numbers.

5.1.5. Results for different atom numbers

We analyze the data for the other atom numbers using the LP technique and also
vary the reflection threshold Rprep of the preparation sequence. Figure 4.11 shows the Q

function of the datasets for an Rprep which maximizes the population in the �1N � state.
We obtain Rprep = 11, 10, 12 for N = 41, 23, 12. It is dependent on the atom number,
since the count rates T and R vary slightly with N . The populations in the Dicke states
and the errors are given in table 5.2.

atom number fl00 fl11 fl22

41 0.03 − 0.01+0.02
−0.02 0.42 + 0.01+0.06

−0.06 0.00 + 0.00+0.06
−0.00

23 0.08 − 0.02+0.02
−0.02 0.37 + 0.03+0.04

−0.04 0.00 + 0.00+0.04
−0.00

12 0.00 + 0.00+0.02
−0.00 0.31 + 0.02+0.09

−0.08 0.14 − 0.01+0.07
−0.07

Table 5.2.: Dicke state populations and errors of the created states for different atom numbers.

The high populations in fl22 for the state with 12 atoms indicate that - in contrary
to the states with higher atom numbers - higher order Dicke states �nN �, n > 2 have to
be taken into account in the reconstruction. We attribute this behavior to the fact that
the Q functions of different Dicke states have higher overlap for a state containing less
atoms.

Table 5.3 shows the result of the state reconstruction of the state with 12 atoms using
different numbers of Dicke states. Indeed, we see that the populations are differently
distributed when higher order Dicke states can contribute to the state. The state fidelity
is the comparable to the fidelity obtained for higher order Dicke states. This shows that
our entanglement scheme based on collective measurement is independent of N 1.

1. There is a fidelity limiting factor which scales linearly with the number of atoms (see section 5.2),
but it is small compared to other effects.
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No. of Dicke states fl00 fl11 fl22 fl33 fl44 fl55

3 0.00 0.31 0.14

4 0.00 0.36 0.00 0.08

5 0.00 0.38 0.00 0.00 0.06

6 0.00 0.38 0.00 0.03 0.00 0.04

Table 5.3.: Dicke state populations of the state with 12 atoms for a different number of Dicke
states contributing to the state reconstruction.

5.2. Preparation errors and limits to the fidelity

In the following, we list the known effects that degrade the fidelity of the target state�1N � and give a quantitative analysis for the state consisting of 41 atoms.
● The initial state is not in �0N �:

When we start the W state preparation sequence with an initial state that is not in
the symmetric subspace, we cannot obtain the final state �1N �. To make sure that
the system is initially in the state �0N �, we probe the cavity during 25 µs and only
continue if the measurement indicates that the system is in �0N � with a probability
p > 0.98. However, this measurement naturally has a detection error and we can
infer the actual p(�0N �) from the subsequent tomography of the coherent state.
The amplitude of the Q function at the angle ◊ = 0 gives directly p(�0N �) = 0.94 (cf.
figure 4.9).

● Scattering of an atom in �1� during the state preparation:
After the MW pulse R(◊prep), we probe the cavity during 20 µs to decide whether
an atom was prepared in �1� or not. In order to obtain a symmetric state, this
measurement must be of quantum non-destructive nature. However, there is a
small probability that the atom in �1� scatters a photon, whereby its external state
is revealed to the environment. The ensemble carrying a shared excitation �1N �
therefore is transformed into a classical state �10 . . .� with one distinct excitation.
The probability for such a scattering event psc has been calculated in section 1.3
and we find psc = 0.2 at the pump rate used in the experiment. Note that this
probability is only dependent on the number of atoms in �1� and thus independent
of the total atom number of the prepared state.

● Scattering of an atom in �0� during the state preparation:
Analog to the case above, it is also possible for an atom in �0� to off-resonantly
scatter a photon and to fall back into the F = 2 manifold. This means that not the
MW (which collectively act on all atoms) but the detection light itself creates the
excitation in the system. As above, this produces the classical state �10 . . .� with
one distinct excitation. The probability for such an event can be deduced from
the lifetime measurement of the state �0N �. For 41 atoms, we obtain a lifetime
·�0N � = 560 µs, which gives a scattering probability psc = 0.04 for a 20 µs detection
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5.2. Preparation errors and limits to the fidelity

pulse. The lifetime ·�0N � scales inversely proportional to the atom number and we
see that we can still increase the atom number by a factor of 2 until this effect
becomes comparable to the other error sources.

● Preparation of higher order Dicke states:
The MW pulse has a probability pprep(�1N �) = 0.27 to excite exactly one atom.
Naturally, there is a finite probability pprep(�nN �) to excite n ≥ 2 atoms, which
leads to (undesired) contributions of higher order Dicke states. This probability in
our case is

pprep(�nN �) = 1 − p(�0N �) − p(�1N �)= 1 − cos(θprep�2)2N −N cos(θprep�2)2N−2 sin(θprep�2)2 = 0.06
(5.24)

We only stop the preparation sequence if we measure low transmission, which elim-
inates the contribution of the coherent state �0N �. The contribution of higher order
Dicke states to the prepared state therefore is:

pprep(�nN �)
pprep(�1N �) = 0.23. (5.25)

This means that a W state cannot be prepared with a fidelity higher than 1−0.23 =
0.77. Of course, this error can be made arbitrarily small by choosing a smaller
◊prep and repeating the preparation sequence if the measurement result shows high
transmission. However, this increases the number of repetitions of the preparation
sequence, leading to an increase in the other limiting effects (see above). Our choice
of ◊prep = 0.27 is a tradeoff to minimize the total preparation error.
The high portion in (5.25) of higher order Dicke states rises the question why we
do not obtain such a high population in the result of our state reconstruction. Let
us consider for example the state �2N �. Its contribution to the prepared state is
expected to be

pprep(�2N �)
pprep(�1N �) = 0.20. (5.26)

However, the state �2N � is subject to the same fidelity degrading effects as the state�1N �. Particularly the effects that are proportional to the atom number in �1�, such
as decoherence and the scattering of an atom in �1� (see above) lead to a quadratic
decrease of the population in the state �2N �. We therefore expect a contribution of�2N � to the final state of

pprep(�2N �)
pprep(�1N �) ⋅ cinit ⋅ c

2
sc,�1� ⋅ csc,�0� ⋅ c

2
dec

N=41= 0.2 ⋅ 0.96 ⋅ 0.852
⋅ 0.94 ⋅ 0.72 = 0.06 (5.27)

where the c denote the fidelity degrading factors from the effects mentioned above
and the decoherence. The expected value lies within 1‡ of the obtained one (see
table 5.2). The remaining discrepancy between the expected and the obtained
population fl22 is subject to further investigation and might be attributed to an
additional loss channel such as light-induced collisions with two atoms in �1�.
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● Detection error during the preparation sequence:
In the state preparation sequence, we perform a QND measurement and deduce its
outcome on the basis of the counts in transmission T and reflection R. A major
source of error is the wrongly assumption that the MW pulse has transferred an
atom to �1� while in fact all atoms are still in �0�. It is quantitatively given by ‘

prep
10

(see (4.9)) and increases the prepared state’s population in �0N �. However, we can
drastically reduce ‘

prep
10 in postselection by choosing only experimental runs with

R ≥ Rprep. We hereby remove runs where the result of the preparation sequence
is ambiguous but we also reduce the number of measurements, which increases the
statistical error of the state reconstruction. Figure 5.6a) shows the fidelity of the
state with N = 41 when the threshold Rprep is varied from Rprep = 4 (the default
value of the sequence) to Rprep = 11, which is the value used to obtain the datasets
presented in section 5.1. Figure 5.6b) shows the number of measurements corre-
sponding to each threshold. When choosing an Rprep which maximizes the fidelity,
we limit ourselves to datasets with at least 1500 runs to keep the reconstruction
error below 10%. For Rprep = 11, the fraction of successful runs is 9%.

Figure 5.6.: Influence of the threshold Rprep on the fidelity and the number of measurements.
a) Population in fl11 for increasing threshold. The fidelity rises, as well as the statistical error
of the reconstruction method. b) Number of successful runs for an increasing threshold.

● Decoherence:
The reason for decoherence in our system as well as the effect on the fidelity were
presented in section 4.4. We obtained that the fidelity is reduced to 0.78 for a state
containing 41 atoms.

Table 5.4 summarizes all limitations listed above and gives an estimate of the expected
fidelity. We see that it agrees well with the obtained result.

Except for the decoherence, all the limitations can be reduced by the use of a cavity
of higher finesse. The consequences would be two-fold: On the one hand, the hyperfine
state detection error would be reduced, improving the initial coherent state preparation
and the tomography. On the other hand, less photons would be needed to infer the
atomic state, putting the experimental system further in the regime of a QND measure-
ment. This would allow to reduce the angle ◊prep and the portion of higher order Dicke
states to the prepared states. Simulations show that a cavity with a finesse of 120000
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5.3. Verification of multiparticle entanglement

Effect Decrease in fidelity

Initial state preparation 0.94

Scattering of an atom in �1� 0.8

Scattering of an atom in �0� 0.96

Preparation of higher order Dicke states 0.77

‘
prep
10 (Rprep = 11) ≈ 1

Decoherence 0.78

Expected fidelity 0.43

Obtained fidelity 0.42

Table 5.4.: Fidelity limiting factors and expected fidelity for a state with N=41.

(as already available [79]) could produce states with a fidelity exceeding 0.9.

5.3. Verification of multiparticle entanglement

Our target state �1N � constitutes a famous example of an entangled state. In this
section, we briefly introduce its properties and devise a criterion to quantify the degree
of multiparticle entanglement that is present in our experimentally created state.

5.3.1. Introduction

The concept of entanglement is a purely quantum mechanical feature. In general, it
is not possible to describe a quantum system composed of N particles by describing the
state of each of the individual particles alone [113, 22]. The famous quote of the Greek
philosopher Aristotle “The whole is greater than the sum of its parts” [114] becomes
literally true in the world of quantum physics.

In the following, we consider only pure states for simplification. In the spirit of the
quote above, we define for a system composed of N particles [115]:

Any N -partite pure state �ÏA,...,N � ∈ HA,...,N = HA ⊗ . . .⊗HN is called fully
separable (entangled), if it can (cannot) be written in the form

�ÏA,...,N � = �ÏA�⊗ . . .⊗ �ÏN � �ÏA� ∈HA, . . . , �ÏN � ∈HN (5.28)

This straight-forward definition conceals the fact that the concept of entanglement is
very rich and complex. Let us consider e.g. the three-particle case in the Hilbert-spaceHA,B,C = HA ⊗HB ⊗HC . According to the definition (5.28), both the following states

94



are entangled:

�GHZ� = 1√
2
[�000� + �111�] (5.29)

�Ïpar� = 1√
2
[�10� + �01�]⊗ �0� (5.30)

We intuitively see that the state �Ïpar� must be “less” entangled than the state �GHZ�
[116], since unlike �GHZ�, it can be seen as a product state of an entangled state “living”
in HA,B and a pure state in HC .

This leads to the definition of “partial entanglement” [115]:

Any N -particle pure state �ÏA,...,N � ∈ HA,...,N = HA ⊗ . . . ⊗HN is called n-
particle entangled ((n − 1)-separable) if it cannot (can) be written in the
form �ÏA,...,N � = �Ï1�⊗ ⋅ ⋅ ⋅ ⊗ �Ïk� (5.31)

where the indices 1, . . . , k denote the partitions {I1, . . . , Ik} that each contain
less than n particles.

A fully (N-particle) entangled state is therefore a state that cannot even be written as
the product of two states �ÏA,...,N � = �ÏA�⊗ �ÏB�, where A and B denote disjoint subsets
of {A, . . . , N}. If we describe the state �ÏA,...,N � via a density matrix fl, this statement
is equivalent to saying that all bipartite partitions of fl produce mixed reduced density
matrices. For N = 3, a famous example of such a fully entangled state is the state �GHZ�
from (5.29).

Another example is the W state �1N=3� [87]:

�1N=3� = 1√
3
[�100� + �010� + �001�] (5.32)

The definitions above indicate that the states �GHZ� and �1N=3� both are fully entangled.
Yet their properties are very different: Tracing out one particle leads to a fully separable
two-particle state for �GHZ�, but preserves the maximal possible entanglement for �1N=3�
[87, 115].

The interesting properties of the 3-particle case persist for the W state �1N � containing
N particles: The state is fully entangled and the entanglement is robust under particle
loss.

5.3.2. A convenient entanglement criterion in the vicinity of the W state

We want to quantify the presence of multiparticle entanglement in our experimentally
created state. We have obtained the density matrix from the state reconstruction, which
in principle contains all the information about the state. However, it is not trivial to
extract the degree of entanglement from the populations of the density matrix. For
example, fully separable states (FSSs) can also have a non-zero population in entangled
states. This can be illustrated by describing a coherent (and therefore fully separable)

95



5.3. Verification of multiparticle entanglement

state �◊, φ� in the basis of Dicke states (see (4.8)). Depending on θ, �θ, φ� can have a
non-zero population in the first Dicke state:

F = ��1N �θ, φ��2 = N cos(θ�2)2N−2 sin(θ�2)2 (5.33)

which corresponds to the probability to excite exactly one atom in a rotation Rθ. In the
case N → ∞, the maximal population is 0.37. This shows that we need a more subtle
way to quantify entanglement than just the fidelity F .

We have therefore devised a criterion to detect entanglement as well as n-particle
entanglement from a states’ population in the states �0N � and �1N �.

In the following, we present the proof of this criterion. We first distinguish a FSS from
an entangled state, before we extend the criterion to states with at least n entangled
atoms.

Criterion for entanglement
The principle of the criterion is as follows: For a FSS, we find an upper bound for the
population ρ11 in the state �1N �, as a function of the population ρ00 in the state �0N �.
This means, we demonstrate that for a FSS, the population in �1N � can only attain
a certain value ρ11,max. If a state has a higher population than ρ11,max, it must be
entangled.

A pure FSS of N two-level systems can be written as:

�ϕA,...,N � = �ϕ1�⊗ ...⊗ �ϕN � (5.34)

with �ϕi� = –i�0� + —i�1�, �–i�2 + �—i�2 = 1. The populations fl00 (fl11) in the �0N � (�1N �)
state are:

fl00 = ��0N �ÏA,...,N ��2 = N�
i=1
�–i�2 (5.35)

fl11 = ��1N �ÏA,...,N ��2
= � 1√

N

N�
i=1
(�0�Ï1�...�1�Ïi�...�0�ÏN �)�2

= 1
N

�����������
N�
i=1

��—i

N�
j=0,j≠i

–j

��
�����������
2

(5.36)

We want to maximize fl11. The value of fl11 only depends on the absolute value of –i,
—i. We can therefore assume –i, —i ∈ [0, 1].
We first consider the case fl00 = 0:
In this case, at least one –i is zero. We set –1 = 0. fl11 therefore is:

fl11 = 1
N

�����������
N�

j=2
–j

�����������
2

(5.37)

Expression (5.37) is maximal for all –j = 1 and therefore:

Max
ρ00=0
[fl11] = 1

N
(5.38)
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We now consider the case fl00 ≠ 0:
In this case, all –i are non-zero and (5.36) becomes:

fl11 = 1
N

�������
��

N�
j=1

–j

���
N�
i=1

—i

–i

��������
2 = fl00

N

�������
N�
i=1

�
1 − –2

i

–i

�������
2

(5.39)

Expression (5.39) results in a maximization problem of the function FN(–1, ..., –N) =
N

∑
i=1

�
1−α2

i

αi
under the constraint

N∏
i=1

–2
i = fl00. Such a problem can be solved using Lagrange

multipliers. The calculation can be found in appendix B. Here, we only state the result
in a graphical representation (see figure 5.7). For large atom numbers, Max[fl11] is
reached for –1 = ... = –N = fl

1�(2N)
00 . This physically corresponds to a coherent spin state.

Figure 5.7.: The entanglement criterion for pure states and different atom numbers.

However, the above result applies only to pure states. The statement can be extended
to mixed states by making the function Max[fl11] concave. This is done by linearly

interpolating between the values fl11(fl00 = 0) = 1
N

and fl11 �fl00 > N
N

1−N � = Nfl00(fl− 1

N

00 −1).
We obtain the function C(fl00):

C(fl00) =
�������������

Nfl00(fl− 1

N

00 − 1), if fl00 ≥ N
N

1−N .

1
N
+ fl00

�����
Nρ00(ρ

−
1
N

00
−1)− 1

N

N
N

1−N

����� , if fl00 < N
N

1−N .
(5.40)

A state �ÏA,...,N � with fl11,ϕ = ��1N �ÏA,...,N ��2 and fl00,ϕ = ��0N �ÏA,...,N ��2 is therefore
entangled if:

fl11,ϕ > C(fl00,ϕ) (5.41)

The function C(fl00,ϕ) is graphically depicted in figure 5.8.
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5.3. Verification of multiparticle entanglement

Figure 5.8.: The entanglement criterion from figure 5.7 extended to mixed states. The popula-
tions fl00 and fl11 of a separable state with a certain atom number - mixed or pure - can only lie
in the area below the corresponding threshold. If a state has populations above the threshold,
it must be entangled.

Criterion for n entangled atoms
In analogy to the case above, we now derive a criterion to distinguish an (n−1)-separable
state form a state containing at least n entangled atoms. We first consider only pure
states �ÏA,...,N � with:

�ÏA,...,N � = �Ï1,...,n
1 �⊗ �Ïn+1,...,2n

2 �⊗ ...⊗ �Ï(k−1)n+1,...,N

k
� (5.42)

In (5.42), each of the k blocks �Ïi� corresponds to at most n entangled atoms (n′ =
N −n(k−1) entangled atoms for �Ïk� ) and can be expanded in the basis of Dicke states�J, m�:

�Ïn
i � ≡ �Ï(i−1)n,...,in

i �
= ai �J = n

2
,−n

2
� + bi �J = n

2
,−n

2
+ 1� + ...

= ai�0n� + bi�1n� + ... (5.43)

Then, we can write in analogy to the pure FSS state (see expressions (5.35) and (5.36)):

fl̃00 = ��0N �ÏA,...,N ��2 = N�
i=1
�ai�2 (5.44)

fl̃11 = ��1N �ÏA,...,N ��2
= 1

N
� N�
i=1
�0, ..., i ∶ 1, ..., 0�Ïn

1 ⊗Ïn
2 ⊗ ...⊗Ïn′

k ��
2

= 1
N

������������
k�

i=1

��
in (or N)�

j=(i−1)n+1

�0, ..., j ∶ 1, ..., 0�Ïn
1 ⊗ ...⊗Ïn′

k ���
������������
2

= 1
N

�����������
k�

i=1

��√nibi

k�
j=1,j≠i

ai

��
�����������
2

(5.45)
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where n1,...,k−1 = n and nk = n′.
For a given set of bi, fl̃11 is maximal when the �ai� are maximal 2. We can therefore
assume as above �ai�2 + �bi�2 = 1 and ai, bi ∈ [0, 1].
In the case fl̃00 = 0, expression (5.45) becomes:

Max
P̃0=0
[fl̃11] = 1

N

�����������
√

n
N�

j=2
aj

�����������
2 = n

N
(5.46)

In the case fl̃00 ≠ 0, we can rewrite expression (5.45) as

fl̃11 = fl̃00

N
�√nFk−1(a1, ..., ak−1) +√n′F1(ak)�2

(5.47)

Maximizing (5.47) is a problem similar to maximizing expression (5.39).
To also account for mixed states, the function Max[fl̃11] (in analogy to Max[fl11]) has
to be made concave. We note that for a block size of n = 1, we recover the bipartite
entanglement criterion of expression (5.40). Figure 5.9 shows Max[fl̃11] (including mixed
states) for different numbers of entangled particles.

Figure 5.9.: The thresholds indicating n-particle entanglement in a state with a total atom
number N=41. The number of entangled particles n is indicated in the legend.

5.3.3. Entanglement in the experimentally created state

We use the entanglement criterion to infer the degree of multiparticle entanglement
present in our state. We obtain fl00 and fl11 from the state reconstruction and compare
it to the bound C(fl00) for FSS (see (5.40)) and its analogon for (n−1)-separable states.

2. This has been verified numerically.
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Figure 5.10.: Multiparticle entanglement for the created W state with N = 41. Fully separable
states lie within the blue shaded area. From bottom to top, the green curves show the bound for a(n−1)-separable state with n = 9, 13, 17. The green shaded areas limit the bounds when varying
the atom number from 37 to 45, which corresponds to 1‡ of the atom number distribution. The
red points are the same data shown in figure 5.6.

Figure 5.10 shows the populations fl00 and fl11 for the state with N = 41 for different
values of Rprep (these are the same datasets as in figure 5.6). In the same plot, we depict
the bound C(fl00) (thick blue line). Any state outside the blue shaded area contains
at least 2-particle entanglement. The green lines from bottom to top show the bound
for (n − 1)-separable states with n = 9, 13, 17. Any state above the bound contains at
least n entangled particles. We see that for increasing Rprep, the number of entangled
particles in the state increases. For Rprep = 11, we are more than 1‡ above the bound
for a 12-separable state, showing that the state contains at least 13 entangled particles.

5.4. Conclusion

In this chapter, we have analyzed the data obtained in the W state generation experi-
ment. We have reconstructed the density matrix in the symmetric subspace using three
different reconstruction techniques and have given error estimates on the populations in
the different Dicke states. The best result yields a fidelity of 0.42 for a state containing
41 atoms.

Furthermore, we have investigated the other fidelity-limiting factors of our state gen-
eration method and have compared them to the fidelity obtained in the experiment.

Finally, we have studied the entanglement properties of the created state. We have
devised a criterion to quantify multiparticle entanglement and have found that the
experimentally created state with the highest fidelity contains at least 13 entangled
particles.
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6. Creation of entangled states via quantum Zeno
dynamics

Zeno of Elea was a Greek philosopher who puzzled his contemporaries with a number
of paradoxa which mainly dealt with the concepts of infinity and infinite divisibility.

One of his most famous paradoxa was phrased by Aristotle in his “Physics” [117] as
follows:

“If everything when it occupies an equal space is at rest, and if that which
is in locomotion is always occupying such a space at any moment, the flying
arrow is therefore motionless.”

To solve, or better circumvent this paradox, mathematicians in the 19th century devel-
oped the concept of continuous functions, which made it possible to deal with infinite
processes. The paradox seemed solved, but Zeno experienced a revival in the field of
physics in the 1970s, when Misra and Sudarshan introduced the idea that constantly
observing a quantum system would slow or even freeze its evolution if the measure-
ment projects onto one eigenstate of the measured observable [118]. Of course, this
is not a paradox, but a mathematical consequence of the solution of the Schrödinger
equation at short times [119]. The phenomenon was therefore named “Quantum Zeno
Effect” (QZE). It has already been experimentally realized in different physical systems
[120, 121, 122, 123, 124].

A different situation is obtained if the quantum Zeno measurement yields the same
outcome for multiple eigenstates. In this case, it only projects the system onto a subspace
of the total Hilbert space. The evolution of the system is not frozen, but restricted to the
projected subspace. This phenomenon is known as “Quantum Zeno Dynamics” (QZD)
[125, 126, 127]. It has not yet been experimentally demonstrated until very recently
[128]. We introduce its principle in section 6.1 and demonstrate how it can be used to
create entangled multiparticle states.

In section 6.2, we propose a scheme to create a W state in our experimental system
with the help of the QZD. We focus on some experimental challenges, estimate an upper
bound for the expected fidelity and give preliminary results.

6.1. The Quantum Zeno Dynamics

We shortly introduce the principle of the QZD. Our reasoning follows [129]. We
consider a system with density matrix fl0 in the m-dimensional Hilbert space H, subject
to a Hamiltonian H. It is probed by a measurement P , for which several states yield
the same measurement outcome. P then only projects the system into a subspace. We
assume that P probes if the system is in the s-dimensional subspace PH = Hp, with
s <m.

101



6.1. The Quantum Zeno Dynamics

Let the system initially be in the subspace Hp:

fl0 = Pfl0P (6.1)

After a short time · , the state evolves into

fl(·) = U(·)fl0U †(·) (6.2)

with U(·) = e−iHτ = 1 − iH· +O(·2).
If we measure P after time · , the result is positive with a probability

p(·) = Tr �U(·)fl0U †(·)P � (6.3)

= Tr �PU(·)Pfl0PU †(·)P � (6.4)

= Tr �V (·)fl0V †(·)� (6.5)

with V (·) = PU(·)P .
The state then becomes

fl0 → Pfl(·)P = PU(·)fl0U †(·)P = PU(·)Pfl0PU †(·)P = V (·)fl0V †(·) (6.6)

In analogy to the QZE, we now consider N measurements during the time t and study
the case N →∞:

fl(N)(t) = [PU(t�N)P ]N fl0 �PU †(t�N)P �N (6.7)

≡ VN(t)fl0V
†

N(t) VN = [PU(t�N)P ]N (6.8)

For N →∞, VN(t) becomes

lim
N→∞

VN(t) = lim
N→∞

�P e−iHt�NP �N
= lim

N→∞
[P (1 − iH t�N)P ]N

= lim
N→∞

P (1 − iPHP t�N)
= P e−iP HP t ≡ Uz(t)

(6.9)

The probability to find the system in Hp after time t is

lim
N→∞

pN(t) = Tr [Uz(t)fl0Uz(t)] = 1 (6.10)

(6.9) shows that the evolution of the system is unitary in the subspace Hp, defined by
the projection of H on P :

Hz = PHP (6.11)
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6.2. Proposition for the generation of W states via Quantum Zeno
Dynamics

The situation described in section 6.1 can be realized with our cavity setup. We
consider the same experimental configuration as in chapter 4, i.e. N atoms equally
coupled to the cavity, with the cavity and the probe light resonant to the F = 2→ F ′ = 3
transition. The Quantum Zeno Dynamics (QZD) is induced by the fact that by probing
the cavity, we can distinguish if all the atoms are in �0� or if at least one atom is in
the state �1� in the QND regime. The operator P corresponding to this measurement
therefore projects the collective state of the atomic ensemble onto the subspace HP

spanned by the Dicke states {�nN �}, n ≥ 1 if the measurement outcome is 1, and onto
the state �0N � if the outcome is 0.

A microwave field drives Rabi-oscillations between �0� and �1� with a frequency Ω. The
corresponding Hamilton operator is HR = ΩJx and reads in the basis of Dicke states:

HR = 1
2

Ω

����������

0
√−n2 +Nn + n 0 ��−n2 + n(N − 1) +N 0 �

0 � �

⋮

����������
(6.12)

Under the influence of continuous observation, realized by the operator P , the system
evolves under the modified Hamiltonian HZ :

HZ = PHRP = 1
2

Ω

��������������

0 0 �

0 0
√−n2 +Nn + n 0 �

⋮ �−n2 + n(N − 1) +N 0 �

0 � �

⋮

��������������

(6.13)

with

P =
�������

0 0 �

0 1

⋮ �

�������
(6.14)
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6.2. Proposition for the generation of W states via Quantum Zeno Dynamics

Figure 6.1.: Rabi oscillations for a state with 10 atoms. The blue curve shows the unperturbed
oscillation, and the red curve shows the oscillation restricted to the subspace HP . The Rabi
frequency is increased, and there is always at least one atom in �1�.

Figure 6.1 compares the evolution under the Hamiltonian HR and HZ . We see that
the QZD blocks the evolution into the state �0N �, which results in a coherent oscillation
with an increased Rabi frequency ΩZ .

time

time

Figure 6.2.: The evolution of the state from figure 6.1 (red curve) on the Bloch sphere. The
south pole is never populated, because the constant measurement prevents the occupation of the
state �0N �. When the (initially coherent) state approaches the south pole, it splits and encircles
it. At t = π�Ω

Z
(first image, second row), the overlap with the W state is maximal.

Figure 6.2 shows the evolution of the state on the multiparticle Bloch sphere. After
the time tπ = π�ΩZ, the system has a high overlap with the Dicke state containing one
excitation �1N �.

This means that by letting the state evolve in a QZD environment for a fixed time
tπ, the system will evolve into an entangled state. The difference with respect to the
experiments of chapter 4 is that this scheme is deterministic, in the sense that the
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entangled state is created regardless of the outcome of any (macroscopic) measurement.

6.2.1. Experimental parameters

We would like to know in which parameter range we should perform the experiment to
obtain a maximal fidelity. The pumped cavity is an open quantum system, which renders
it difficult to answer this question analytically. We therefore use a simulation which
consists in solving the master equation of a Hamiltonian introduced in the following:

We consider N three-level atoms (with levels �0�, �1� and �e�), coupled to a single mode
of a cavity with linewidth Ÿ = 2fi ⋅53 MHz, which is pumped at a rate ÷. The cavity and
the pump light are both resonant to the �1�→ �e� transition. The atoms in �1� (�0�) couple
to the light mode with g1 = 1�√2 gmax = 2fi ⋅ 170 MHz (g0 = �2�3 gmax = 2fi ⋅ 196 MHz).
Furthermore, the levels �0� and �1� have a frequency difference of ∆HF = 2fi ⋅ 6.8 GHz
and are coupled by a resonant MW with Rabi frequency Ω. Since we are in the weak
probing limit (η2�g2 � 1), we can limit the photonic part of the Hilbert space to 0, 1 and
2 photons. Furthermore, we limit the atomic subspace to fully symmetric states and we
only consider either zero or one atom in the excited state �e�. This means that for N

atoms, the atomic subspace is comprised of the states

{�N − n, n, 0� , �N − n − 1, n, 1� , �0, N, 0�} n = 0, . . . , N − 1 (6.15)

where �n0, n1, ne� denotes a symmetric state with n0 atoms in �0�, n1 atoms in �1� and
ne atoms in �e�.

The Hamiltonian H,
H =HJC +HR +HLS +HP (6.16)

is comprised of a Jaynes-Cummings part (where we only allow for atoms in �1� to opti-
cally couple to �e�)

HJC = −ig(a‡+ + a†‡−) (6.17)

‡+ = �N − n − 1, n + 1, 0� �N − n − 1, n, 1�
‡− = �N − n − 1, n, 1� �N − n − 1, n + 1, 0� ,

a Rabi part coupling the states �0� and �1�
HR = ΩJx, (6.18)

a part taking into account the light shift

HLS = − g2

∆HF
N0, (6.19)

and a pump term
HP = −i÷(a − a†). (6.20)

We numerically solve the master equation

ˆfl

ˆt
= Lfl

Lfl = − i�h[H, fl] + Ÿ(2afla† − {fl, a†a}), (6.21)
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6.2. Proposition for the generation of W states via Quantum Zeno Dynamics

which takes into account the photon loss from the cavity. We do not include spontaneous
emission events in the simulation, because they cause the state of the atomic ensemble
to leave the symmetric subspace, which greatly enhances the dimensions of the density
matrix. Instead, we compute the number Nsc of spontaneous emission events from the
population pe in the state �e� as

Nsc = 2“pe (6.22)

with the spontaneous emission rate “ = 2fi ⋅ 3 MHz. Due to computational limitations,
we can solve the simulation for a maximal number of N = 10 atoms, which corresponds
to a (63 × 63) density matrix.

We note that this is a simplified model, which does not take into account important
properties of our experimental setup such as the multilevel structure of the atoms and
the second mode of the cavity. We therefore do not use it to predict the exact temporal
evolution of the system, but to find the optimal range of parameters and to give an
upper bound on the attainable fidelity.

Figure 6.3 shows the temporal evolution of the atomic ensemble as the result of the
simulation. We initiate the system in the state �0, N, 0� and drive a Rabi oscillation at
the frequency ΩR. While the blue curve for a pump rate ÷ = 0 matches the prediction
of the analytic model (blue line in figure 6.1), the red curve for a finite pump rate is
substantially different (cf. red line in figure 6.1): The amplitude of the Zeno-enhanced
Rabi oscillation decreases. This is due to the pump light field, which entangles the
number of atoms in �1� with the cavity transmission, leading to a loss of coherence and
a damping of the Rabi oscillation.

Figure 6.3.: Temporal evolution of a collective state of 10 atoms as the result of the simulation.
For a pump rate ÷ = 0, the system undergoes unperturbed Rabi oscillations. If the pump light
is turned on (÷ = √30ŸΩ, red curve), the evolution is restricted to the subspace HP with at
least one atom in �1�. The amplitude of the Zeno-enhanced Rabi oscillation decreases because
of decoherence induced by the probe light.

We use the simulation to infer the optimal ratio R = η2�κΩ between the incoming
photon rate on the cavity η2�κ and the Rabi frequency Ω. If R is too small, the system
can evolute into the state �0N �, if R is too big, the number of scattering events is too
high. We obtain the fidelity fl11 and the scattering probability psc as a function of R
from the simulation and choose the optimum ratio Ropt as the one which maximizes
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the product fl11 ⋅ (1− psc). Figure 6.4 shows that the optimal ratio is Ropt = 12.1 for our
experimental setup and an atom number of 10. At this point, we can obtain the state�1N � with a maximal fidelity of 0.71 .

Figure 6.4.: The Fidelity fl11 (blue curve) and the probability for no scattering events (1−psc)
during the W state preparation (green curve) in dependence of R for N=10 atoms. The red
curve shows the product fl11 ⋅ (1 − psc). It is maximal for R = 12.1.

Figure 6.5 shows how Ropt and the maximal fidelity scale with the atom number N .
We are not able to provide results for N > 10, since the computational effort increases
exponentially, but the results for N ≤ 10 allow to extrapolate the accessible fidelity for
higher atom numbers.

Figure 6.5.: The maximal fidelity (blue curve) and the corresponding optimal ratio Ropt (red
curve, second y axis) for different atom numbers.

Another source of error stems from the fact that we do not prepare the same atom
number in every experimental run. As mentioned in section 4.3.4.a, our atom number
preparation scheme generates an atom number with binomial distribution. Naturally,
we choose a pulse length topt for the MW pulse which maximizes the fidelity for the mean
atom number Nmean. If a different atom number is prepared, the fidelity is reduced. We
have estimated the corresponding error by averaging the fidelities at topt for different
atom numbers, weighted by a binomial distribution B with Nmean = 10 and standard
deviation ‡ = 2.8 (the same ‡ as in the atom number preparation for N = 12, see section
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6.2. Proposition for the generation of W states via Quantum Zeno Dynamics

4.3.4.a) and found that it is below 1%.

6.2.2. Preliminary results

In this section, we present preliminary data indicating the preparation of an entangled
state through the QZD. The principle of the experiment is described in figure 6.6. We
prepare an ensemble with well-defined in the state �0N � using the same technique as
described in section 3.1 (1). The system is transferred to the state �NN � by a fi-pulse
from a resonant MW (2). Then the probe light is turned on and a MW pulse of length
t = π�2ΩZ transfers the system into the state �1N � (3). The state is then ready for
tomography.

|1>

|0>

|e>

1 2

|1>

|0>

|e>

|1>

|0>

|e>

MW MW

3

Rotate

Measure

Figure 6.6.: The principle of the W state generation via the QZD. The consecutive steps are
explained in the main text.

Figure 6.7 shows tomography curves of such a state for different probe intensities ÷.
At low ÷, the system is not measured and can freely evolve into the state �0N �. The
tomography therefore just shows a coherent state (blue curve). For intermediate ÷,
the evolution to �0N � is prohibited and the system evolves into the state �1N �. In the
tomography, the characteristic dip of the W state becomes visible (green curve). If ÷ is
further increased, spontaneous emission becomes the dominant source of error and the
contrast of the tomography signal is reduced (red curve).
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Figure 6.7.: Tomography of a W state, generated via QZD. The different curves show the
created state for increasing pump rate ÷ from blue to green and red.

The data presented here are preliminary. In particular the state detection for the
tomography measurement is not yet well-calibrated, which can be seen in the distorted
shape of the Q function of the coherent state. Nonetheless, the hitherto existing data
are promising. Figure 6.8 shows the Q function of a state with N = 33 atoms, prepared
at the optimum probe power (green curve in figure 6.7), together with the Q function
obtained from quantum state reconstruction (using the ML technique, see section 5.1.1).
The populations flnn in the first three Dicke states �nN �, n = 0, 1, 2 read

[fl00, fl11, fl22] = [0.05, 0.54, 0.03] (6.23)

This corresponds to 17 entangled particles. We would like to stress the fact that this
result was obtained in an unconditional measurement without any postselection. The
state is indeed prepared in every experimental run.

Figure 6.8.: Tomography of a W state, generated via QZD (blue points) and the expected Q

function from the quantum state reconstruciton (green curve).
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6.3. Conclusion

6.3. Conclusion

In this chapter, we have shown that our experimental setup can be used to generate
multiparticle entanglement via QZD. Under constant realization of cavity measurements,
the intracavity state can freely evolve in the subspace with at least one atom in F = 2.
Based on this effect, we have presented a proposition to create W states. Furthermore,
we have performed simulations to give optimal experimental parameters and an upper
bound for the attainable fidelity.

Finally, we have shown preliminary measurements which yield promising results.
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7. Conclusion

In this thesis, we have presented a comprehensive toolbox for the creation and charac-
terization of multiparticle entangled states: We have demonstrated a method to prepare
a well-defined number of atoms up to N = 73 inside an optical resonator. We have cre-
ated multiparticle entanglement in an entanglement scheme based on weak excitation
and a collective, quantum non-destructive measurement. Finally, the states have been
analyzed using a new tomography method, which consists in a direct measurement of
the Husimi Q function.

These three building blocks enabled us to create W states in an ensemble of up to
41 atoms and to infer the states’ density matrix in the symmetric subspace. Further
analysis of the tomography has shown that the state with highest atom number N = 41
and highest fidelity 0.42 contains at least 13 entangled particles despite all experimental
imperfections.

Our tomography method realizes the first direct measurement of a quasiprobability
distribution for material particles. It is conceptually simple and only relies on collective
rotation of the state and a measurement of its overlap with a coherent state. It can
therefore be transposed to other physical systems, notably to experiments featuring a
cavity, such as recent ion experiments [130] or experiments combining superconducting
qubits with stripline MW cavities [91]. Our tomography technique is a convenient tool
to characterize systems where the Hilbert space is too big to allow for a full tomography
but where characterization at the single particle level is nonetheless required.

Possible applications for both the entanglement and characterization method can
be found in quantum metrology, where testing of different entanglement schemes with
regard to their metrological gain requires the possibility of analysis at the single particle
level. Such a precision is difficult to obtain for large entangled states due to the scaling
of the phase sensitivity with atom number. Instead, an entanglement scheme could
be tested by producing a state of mesoscopic atom number which then could be fully
characterized using our tomography technique.

Some suggestions for future experiments with our experimental setup have already been
given in the course of this thesis: We proposed a method to count the atom number in
the QND regime, which could open up the possibility to create other entangled states
such as higher-order Dicke states.

We have presented preliminary results on an experiment investigating the creation of
multiparticle entanglement via QZD. Our tomography method could be used to retrace
the temporal evolution of the atomic ensemble in a subspace defined by the cavity mea-
surement.
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6.3. Conclusion

Changes in the setup can further increase the performance and versatility of our exper-
imental system and enable the study of different physical phenomena. By using fibre
cavities with state of the art mirror coatings, the finesse could be increased by a factor
of 4, which reduces the scattering probability and the error of the internal state de-
tection. This could e.g. enable us to extend the QZD to other subspaces by choosing
different cavity measurement parameters. The reduction of the scattering probability
could make it possible to create entangled states in QZD schemes that only arise af-
ter longer evolution times. Alternatively, successive steps of state rotation and QND
detection could be combined to create a large range of entangled states. Furthermore,
we are currently investigating the possibility to fabricate cavities with high finesse for
two different wavelengths, namely for light at ⁄p = 780 nm and the double wavelength
⁄d = 1560 nm. Figure 7.1 depicts the envisaged experimental system.

Figure 7.1.: Schematic of a cavity with high finesse at ⁄p and ⁄d. The standing-wave pattern of
the probe light perfectly overlaps with the one of the dipole light (yellow). The atom number in
each trapping site can be forced to be either 1 or 0 by inducing a loss process due to light-assisted
collisions. All atoms are maximally coupled to the cavity mode. (Image by Claire Lebouteiller)

The light at ⁄d = 1560 nm serves as a dipole trap. The antinodes of the standing-wave
patterns for the different wavelengths perfectly overlap, ensuring maximum coupling to
the cavity mode at every trapping site. The sites can be loaded directly from a MOT
and a loss process due to light assisted collisions assures that either one or no atom is
trapped in one site. The distance between the trapping sites is big enough to address
individual atoms with a focused light beam perpendicular to the cavity axis.

Such an experimental system allows for the state readout and manipulation of single
particles and at the same time enables the techniques based on collective measurement
presented in this thesis. The possibility to excite the atoms with light beams perpen-
dicular to the cavity axis gives the possibility to drive Raman transitions and makes the
system a well-suited tool to study the creation of entanglement via reservoir engineering
[131, 132] or the occurrence of entanglement in the vicinity of the Dicke quantum phase
transition [25].
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Appendix A.

Chip fabrication

A.1. Electroplating

The chip fabrication closely follows the fabrication recipe described in the appendix
C.2 of [74] and we therefore only report the changes that were made with respect to this
fabrication recipe. The numbering also follows [74].

Substrate preparation

Since we use 2” x 2” AlN-wavers instead of Si-wavers, we do not need to cleave or oxidize
the substrate.

After [4. Clean substrate], the substrate is heated on a hot plate for >2h and is put
into the plasma cleaner without delay.

Lower gold layer

1. Deposit gold seed layer
We use a thermal evaporation chamber instead of an e-beam evaporation chamber.

Therefore, the deposition speed of Ti cannot be well controlled. It is nonetheless im-
portant to keep the Ti-layer as thin as possible (preferably at 2 nm) so that it can be
easily removed afterwards.

The immediate deposition of gold after the start of the evaporation process can lead
to droplike bumps of a thickness of ≈3 µm and width of ≈10 µm. To avoid this, evaporate
≈20 nm of gold before opening the shutter.

2. Spin on photo resist
For the FFP-chips, we need wire structures of a height of 7 µm and therefore cannot

use the spinning values proposed in [74]. We calibrated the thickness of the photoresist
with respect to the spinning velocity in an independent measurement.

We were spinning 6 s at 800 rpm and 41 s at v rpm.

v [rpm] thickness photoresist ma-P 1240 [µm]

900 7.3
1100 6.6
1300 6.4
1500 6.3
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A.2. Glueing

For our chip production, the configuration “6s @ 800rpm, 41s @ 900rpm” is used.

3. Resist exposure and development

The exposure time depends on the intensity of the lamp and of the structure size
compared to the substrate size (Due to surface tension effects, the photoresist is thicker
at the edges of the substrate. That is why for a given substrate size, longer exposure
times have to be used for bigger structures). We expose for 83 s for the base chip and
for 78 s for the science chip.

The developer ma-D 336 used in [74] is not sold anymore. We therefore use undiluted
ma-D 331 and develop for approx. 47 s.

4. Electroplating

Due to the bigger surface of the wire structures compared to [74], we use a higher
voltage of U = 16 V (for a corresponding current of I = 16 mA). The time to electroplate
the gold layer to a thickness of 7µm is ≈70 min for the base chip and ≈55 min for the
science chip.

5. Remove photoresist and etch seed layer

The bath of aqua regia does not fully remove the Ti-layer. We therefore add a phase
of dry etching (≈ 30 s in plasma SF6) after the bath of aqua regia.

A.2. Glueing

All glues are degassed for 30 minutes in the plasma cleaner at ≈ 1 ⋅ 10−2 mbar.

EpoTek 353ND is used to glue the dielectric coating to the science chip. We put four
drops on the chip with the help of a thin wire (� = 0.5 mm). Then the transfer coating is
put on top and pressed down by a 100 g weight. The glue is not brought in a trapezoid
form before putting on the coating, since this introduces air bubbles. The ensemble
chip/coating is then degassed in the plasma cleaner and heated on a hot plate for 11�2
hours at 90○C plus 20 minutes at 120○C.
After transfer, the dielectric coating shows small stains. They are not air bubbles but
probably residues from the transfer coating and do not explode in vacuum or otherwise
affect the mirror properties.
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Figure A.1.: Stains on the transfer coating, visible as dark spots. They can easily be distin-
guished from air bubbles which have a brighter color (an air bubble can for example be found
on the lower left of Minerva’s head).

The thickness of the glue and coating layer is determined with a stylus profilometer
to be around 15±5 µm, depending on the amount of glue. The thickness of the coating
layer is 2.5 µm.

EpoTek H77 is used to glue the base chip to the science chip. 12 drops are placed on
the science chip using a toothpick and the glue is brought into a trapezoid form. Then
the base chip is placed on top and pressed down by a 100 g weight. The ensemble is
not degassed after assembly, as this introduces small air bubbles for viscous glues. The
assembly is heated on a hot plate for 1hour at 100○C plus 2hours at 125○C. During the
curing of the glue, the position of the science chip on the base substrate is monitored
with a USB microscope (Veho VMS-001), which enables alignment with a precision of
50 µm.

Two microscope slides were glued together to measure the thickness of the glue layer.
The thickness was determined with an optical microscope to be 70±5 µm.

Probably due to the mismatch of the different thermal expansion coefficients, small
cracks are visible in the dielectric coating after the heating process (see figure A.2). This
feature has been observed in all previous experiments and does not significantly affect
the performance of the mirror [133].

Figure A.2.: After heating of the glue, cracks are visible in the coating.
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A.4. Beveling of the chip edges

A.3. Bonding

The dielectric coating is removed in a small region on the border of the science chip
(≈1 mm) with a scalpel. The science chip is then connected to the base chip with 14
bond wires (Au, � = 25 µm) per connection.

Figure A.3.: Electric connection between the base chip (left) and the science chip (right) with
14 bonding wires per chip wire.

A.4. Beveling of the chip edges

We found that the AlN base chip could not be easily plugged into the PCI-connectors
which we use for the electrical connection of the chip in the experiment. We therefore
beveled the chip edges with abrasive paper (grain size p80). To reduce dust generation,
we soaked the paper in isopropanol prior to abrading. Afterwards, the thin film of dust
around the beveled edge was removed with isopropanol.

This method was used on the fully glued and bonded chip assembly. The chips were
then inspected with a microscope to ensure that no dust was deposited on the chip and
that the bonding wires were not damaged.

For future chip productions, we recommend to bevel the edges of the substrate before
processing the chip.

Figure A.4.: The edge of the base chip after beveling. The chip can now be easily plugged into
a PCI-connector.
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A.5. Tests

Testing the optical properties Collimated light at 780nm was sent onto chip surface
at an angle of 45○ and the reflection was inspected in the near field with an IR viewer.
The pattern of the wires is always visible in the reflected image of the chip (we also took
a picture with a "uEye" camera, but the pattern of the wires is not well visible with this
imaging technique, see figure A.5).

Figure A.5.: Camera image of laser light reflected by the chip mirror. The wire structure is
better visible with an IR viewer.
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Figure A.6.: The numbering of the chip connections.

Testing the electrical properties The chip was electronically connected to a test
board with a a PCI-connector and dip-switches. The resistance of selected wires was
then measured with a Multimeter 1 in a two-point measurement (this means that the
resistance of the ensemble chip-wire + connector + cable was measured). The insulation
between the wires on the science chip was verified by measuring the resistance between
the p-Mot wire and adjacent wires.

Bad adhesion of the gold layer to the chip surface could degrade the thermal con-
ductance, leading to heating and even burn-out of the gold wires. We therefore also
measured the time resolved resistance for high currents: We sent up to 3 A through the

1. Keithley 2701
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A.6. Remarks and propositions for future chip productions

wires and measured the voltage drop during 10 s, which largely exceeds the requirements
on the wires in a normal experimental run. The increase in relative resistance was at
most 12% for the wire with the highest resistance (MIWG, connections 14-39).

Figure A.7.: Relative resistance of the MIWG wire in dependence of the current after 10 s.

A.6. Remarks and propositions for future chip productions

● After the deposition of the gold seed layer, there are sometimes bumps of gold with
a thickness of ≈3 µm and expansion of ≈10 µm on the substrates. There are two
possible reasons for this:
– Due to an increased temperature in the evaporation chamber, water is outgassing

from the AlN substrate.
– The gold is heated to be evaporated and deposited on the substrate. In the

beginning, it is boiling and releases huge droplets of gold.
To fight this problem, we outgassed the chips for >2h on a hot plate before evap-
oration and deposited an initial layer of gold onto the closed shutter. After these
actions, we could observe much less bumps on the substrates. However, since we
only had a limited number of substrates, we could not determine which of the pos-
sible mechanisms is the reason for the bumps. This could be further investigated.
● There is dirt somewhere in the optical path of the mask aligner, creating a stain

on the exposed structure. Even after opening the instrument and cleaning the
accessible mirrors, it could not be removed. The mask pattern therefore has to be
exposed on a test sample first and the mask has to be aligned so that the shadow
of the stain falls onto the chrome.
● Since the bath of aqua regia could not totally remove the Ti-layer, we used dry

etching with a SF6 plasma to remove the Ti traces. This plasma etches 0,5nm/s
and contrary to the aqua regia, it reduces the surface roughness. It could therefore
be investigated if the wet etching can be replaced by dry etching.
● As in previous fabrication processes, we used the photo resist ma-P 1240 by Mi-

croResist. According to the datasheet, the resist ma-P 1275 is much better suited
for wire structures of a thickness of ≈7 µm.
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Appendix B.

Details on the derivation of the entanglement criterion

We want to maximize the function

FN(–1, . . . , –N) = N�
i=1

�
1 − –2

i

–i

(B.1)

with –i ∈ ]0, 1] under the constraint
N∏
i=1

–2
i = fl00. We introduce N ≥ n > 0, such that

–n+1 = ⋅ ⋅ ⋅ = –N = 1 and replace the constraint by

n�
i=1

–i = ln C (B.2)

with C = √fl00. We then introduce the Lagrange multiplier ⁄ and study the Lagrange
function

Λ(–1, . . . , –n, ⁄) = n�
i=1

�
1 − –2

i

–i

− ⁄[ n�
i=1

ln –i − ln C] (B.3)

= n�
i=1

f(–i) − ⁄[ n�
i=1

ln –i − ln C] (B.4)

with f(–i) =
�

1−α2
i

αi
.

To find the stationary point of Λ, we solve ∂
∂αi

Λ(–1, . . . , –n, ⁄) = 0, which leads to the
set of n equations

f ′(–i) = ⁄

–i

. (B.5)

From –if
′(–i) = 1�

α2
i
−α4

i

, we obtain the equation

− 1√
–2 − –4

= ⁄ , (B.6)

which contains two possible solutions –1 and –2, with –2 =�1 − –2
1.

An extremum of Λ is therefore reached when n1 of the –i are equal to –1 and n2 of
the –i are equal to –2.

The –i still have to fulfill the constraint (B.2):

C =–n1

1 –n2

2 (B.7)

=–n1

1 ��1 − –2
1�n2

, n1 + n2 = n (B.8)
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A.6. Remarks and propositions for future chip productions

To find the maximum of FN(–1, . . . , –N) for a given C, we can now distinguish between
two different cases:

1. n1 = 0 or n2 = 0:
Then all –i with i = 1, . . . , n are equal and it follows

Max[FN(–1, . . . , –N)] = n f(C1�n) (B.9)

2. n1 > 1 and n2 > 1:
From (B.8), we obtain that the maximum attainable C is

Cmax = n
n1�2
1 n

n2�2
2(n1 + n2)(n1 + n2)�2 , (B.10)

reached for –1 = �n1�(n1 + n2). For C = Cmax, the maximum of FN(–1, . . . , –N)
therefore is:

Max[FN(–1, . . . , –N)] = n1 f(� n1

n1 + n2
) + n2 f(� n2

n1 + n2
) (B.11)

For a given C < Cmax, there exist two solutions to (B.8): –− and –+, where

–+ >
�

n1

n1 + n2
> –− (B.12)

In this case, the maximum of FN(–1, . . . , –N) is

Max[FN(–1, . . . , –N)] =Max[n1 f(–+) + n2 f(�1 − –2+),
n1 f(–−) + n2 f(�1 − –2−)] (B.13)

This leads to the following algorithm to find Max[FN(–1, . . . , –N)] for a given C:

● Loop over n1 from 1 to N

● Calculate rn1,0 = n f(C1�n1)
● Loop over n2 from 1 to N − n1

● If C = Cmax:

Calculate rn1,n2
= n1 f(� n1

n1+n2
) + n2 f(� n2

n1+n2
)

● If C < Cmax:

Calculate –− and –+ from (B.8)

Calculate rn1,n2
=Max[n1 f(–+) + n2 f(�1 − –2+),

n1 f(–−) + n2 f(�1 − –2−)]
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The maximum of FN(–1, . . . , –N) is then obtained as

Max[FN(–1, . . . , –N)] =Max [{rn1,0, rn1,n2
}] (B.14)

This means that for a pure FSS, the population fl11 in the state �1N � fulfills the inequation
(cf. (5.39)):

fl11 ≤ fl00

N
(Max[FN(–1, . . . , –N)])2 (B.15)
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