L. P. Bugeat, A. Girard, and P. Sergent, Etude de détermination de paramètres significatifs de transmission de vibrations -Rapports INTESPACE

A. Girard and J. F. , IMBERT Paramètres modaux effectifs et effets de troncature en dynamique des structures -Proceedings of a conference : "Spacecraft Structures, CNES Toulouse, pp.3-6, 1986.

R. R. Craig and M. C. , 0 BAMPTON 1976 Coupling of Substructures for Dynamic Analysis, AIAA Journal, vol.14, pp.1163-1165

M. Lapi and H. Grangier, Modal Effective Parameters : an Application to Shipboard Support Structures to Reduce Vibrations Transmission -17th MSC European User's conference -Royal Monceau hotel, MacNeal Schwender GmbH, 1990.

]. G. All, . T. Al2-]-r, Z. Haftka, M. P. Gurdal, and . Kamat, VANDERPLAATS 1984 Numerical Optimization Techniques for Engineering Design : with Applications. Mc Graw-Hill series in mechanical engineering, Elements of Structural Optimization. 2nd revised edition, Solid mechanics and its applications, Kiuwer academic publishers Dordrecht, 1990.

P. Trompette, P. Fleury, and C. Knopf-lenoir, Approche de l'Ingénieur), présenté au Séminaire de l'institut pour la promotion des sciences de l'ingénieur, Optimisation des Structures, p.9, 1987.

R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients, The Computer Journal, vol.7, issue.2, pp.2-149, 1964.
DOI : 10.1093/comjnl/7.2.149

M. [. Fletcher, POWELL 1963 A Rapidly Convergent Method for Minimization, Computer J, vol.6, pp.2-163

A. C. Broydon, The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations, IMA Journal of Applied Mathematics, vol.6, issue.1, pp.76-90, 1970.
DOI : 10.1093/imamat/6.1.76

R. Fletcher, A new approach to variable metric algorithms, The Computer Journal, vol.13, issue.3, pp.17-322, 1970.
DOI : 10.1093/comjnl/13.3.317

J. E. Kelley, The Cutting Plane Method for Solving Convex Programs, J, 1960.

R. Baldur, Structural Optimization by Inscribed Hyperspheres, J. Engin. Mech., ASCE, vol.98, pp.503-508, 1972.

J. B. Rosen, The Gradient Projection Method for Non-Linear Programming. Part I, linear constraints, SIAM J. Appi. Math, vol.8, pp.18-19, 1960.

P. L. Wolfe-r, P. Graves, . Wolfe, and . Mcgraw-hill, Recent Advances in Mathematical Programming, Methods of Non-Linear Programming, pp.76-77, 1963.

J. C. Boot, Studies in Mathematical and Managerial Economics, Quadratic Programming, 1964.

R. T. Haftka and J. H. Starnes, Applications of a quadratic extended interior penalty function for structural optimization, 16th Structural Dynamics, and Materials Conference, pp.18-724, 1976.
DOI : 10.2514/6.1975-764

B. A. Prasad, A class of generalized variable penalty methods for nonlinear programming, octobre1981. P.G. CIARLET 1988 Introduction à l'Analyse Numérique Matricielle et à l'Optimisation. Collection mathématiques appliquées pour la maîtrise sous la direction de P.G CIARLET et J.L. LIONS, éditions Masson, pp.159-182, 1981.
DOI : 10.1007/BF00934574

C. Fleury, V. H. Nguyen, and J. J. , STRODIOT 1987 A Mathematical Convergence Analysis of the convex Linearization Method for Engineering design Optimization, Engineering optimization, vol.11, pp.195-197

A. R. Razani, Behaviour of Fully Stressed Design and its Relationship to Minimum Weight Design, AIAA Journal, vol.3, pp.12-2262, 1965.

J. C. Talg and R. I. Kerr, Optimization of Aircraft Structures with Multiple Stiffness Requirements. AGARD second symposium on structural optimization, 1973.

B. G. Warburton, Optimum absorber parameters for minimizing vibration response, Earthquake Engineering & Structural Dynamics, vol.36, issue.3, pp.251-262, 1981.
DOI : 10.1002/eqe.4290090306

J. C. Snowdon, Dynamic Vibration Absorbers That Have Increased Effectiveness, Journal of Engineering for Industry, vol.96, issue.3, pp.940-945, 1974.
DOI : 10.1115/1.3438465

A. Henney and J. P. Rahey, The Optimization of Damping of Four Configurations of a Vibrating Uniform Beam, Journal of Engineering for Industry, vol.85, issue.3, pp.259-264, 1963.
DOI : 10.1115/1.3669855

J. C. Snowdon, Vibration of Cantilever Beams to which Dynamic Absorbers are Attached, The Journal of the Acoustical Society of America, vol.39, issue.5A, pp.878-886, 1966.
DOI : 10.1121/1.1909966

L. Kitis, B. P. Wang, and W. D. Pilkey, Vibration reduction over a frequency range, Journal of Sound and Vibration, vol.89, issue.4, pp.559-569, 1983.
DOI : 10.1016/0022-460X(83)90357-7

A. F. Vakakis and S. A. Paipetis, The effect of a viscously damped dynamic absorber on a linear multi-degree-of-freedom system, Journal of Sound and Vibration, vol.105, issue.1, pp.45-60, 1986.
DOI : 10.1016/0022-460X(86)90219-1

R. E. Roberson, Synthesis of a nonlinear dynamic vibration absorber, Journal of the Franklin Institute, vol.254, issue.3, pp.205-220, 1952.
DOI : 10.1016/0016-0032(52)90457-2

L. A. Pipes, Analysis of a non-linear dynamic vibration absorber, Transactions of the American Society of Mechanical Engineers Journal of Applied Mechanics, vol.20, pp.515-518, 1953.

A. Soom-et-m and . Lee, Optimal Design of Linear and Nonlinear Vibration Absorbers for Damped Systems, Journal of Vibration Acoustics Stress and Reliability in Design, vol.105, issue.1, pp.112-119, 1983.
DOI : 10.1115/1.3269054

D. J. Ewins, Modal Testing : Theory and Practice. Editions research studies press, 1984.

. Mesures-d-', Admittance d'un Système Linéaire. La recherche aérospatiale, n° 4, pp.209-215

J. A. Nelder and R. Mead, A Simplex Method for Function Minimization, The Computer Journal, vol.7, issue.4, pp.308-311, 1965.
DOI : 10.1093/comjnl/7.4.308

R. B. Nelson, Simplified Calculation of Eigenvector Derivatives, AIAA journal, vol.14, issue.9, 1976.

. Frequencies, Society of automotive engineers, 1986.

N. C. Perkins and C. D. Mote, Comments on curve veering in eigenvalue problems, Journal of Sound and Vibration, vol.106, issue.3, pp.451-463, 1986.
DOI : 10.1016/0022-460X(86)90191-4

C. Pierre, Mode localization and eigenvalue loci veering phenomena in disordered structures, Journal of Sound and Vibration, vol.126, issue.3, pp.485-502, 1988.
DOI : 10.1016/0022-460X(88)90226-X

T. Igusa, Critical Configurations Of Systems Subjected To Wide-Band Input, Journal of Sound and Vibration, vol.168, issue.3, 1993.
DOI : 10.1006/jsvi.1993.1389

]. L. Dl and . Schmit, FARSHI 1977 Optimum Design of Laminated Fibre Composite Plates. mt, J. Num. Meth. Engng, vol.11, pp.623-640

P. Pedersen, ON SENSITIVITY ANALYSIS AND OPTIMAL DESIGN OF SPECIALLY ORTHOTROPIC LAMINATES, Engineering Optimization, vol.100, issue.3-4, pp.305-308, 1987.
DOI : 10.1016/0263-8223(84)90005-9

C. W. Bert, Optimal design of a composite-material plate to maximize its fundamental frequency, Journal of Sound and Vibration, vol.50, issue.2, pp.229-237, 1977.
DOI : 10.1016/0022-460X(77)90357-1

S. S. Rao and K. Singh, Optimum design of laminates with natural frequency constraints, Journal of Sound and Vibration, vol.67, issue.1, pp.101-112, 1979.
DOI : 10.1016/0022-460X(79)90505-4

L. Mesquita and M. P. Kamat, OPTIMIZATION OF STIFFENED LAMINATED COMPOSITE PLATES WITH FREQUENCY CONSTRAINTS, Engineering Optimization, vol.11, issue.1, pp.77-88, 1987.
DOI : 10.1080/03052158708941038

D. A. Saravanos and C. C. Chamis, Unified Micromechanics of Damping for Unidirectional Fiber Composites, Journal of composites technology and research, vol.12, issue.1, 1990.

A. Th and . Ahs, ASC structures, structural dynamics and material conference, paper n° 89-1 l91-CP, Fiber Composite Laminates Including Hygro-Thermel Effects. Proceedings, pp.3-5, 1989.

R. G. Ni and R. D. Adams, The Damping and Dynamic Moduli of Symmetric Laminated Composite Beams--Theoretical and Experimental Results, Journal of Composite Materials, vol.18, issue.2, pp.104-121, 1984.
DOI : 10.1177/002199838401800202

A. Th and . Ahs, ASC structures, structural dynamics and material conference, pp.2-4, 1990.

J. Martinat, Reduction des Vibrations de Structures par Accroissement d'Amortissement. Société METRAVIB. Extrait de la revue générale de thermique

A. I. and P. De-la-methode-l, hypothèse de linéarité d'un système mécanique implique que son admittance peut s'écrire sous la forme d'une fraction rationnelle de pôlynomes P et Q de (jo)) Après avoir choisi m (degré du numérateur) et n (degré du dénominateur), le problème est de déterminer les coefficients réels des polynômes P et Q qui permettent à la fraction rationnelle A(jw) d', approcher au mieux les valeurs expérimentales: A(w) P0+ Pi(jo)) + ... + Pm(iO))m -Qo + Qio)) + ... + Q(jw)n

. Expérimentalement, nous avons pu déterminer p mesures de l'admittance (pour p pulsations différentes) Pour une pulsation o, nous obtenons A*(jo)

A. and E. De-l-', ERREUR La valeur de l'admittance identifiée pour une pulsation jo)k est A(jwk) = P(jk)