
�>���G �A�/�, �i�2�H�@�y�R�y�d�N�N�k�k

�?�i�i�T�b�,�f�f�i�?�2�b�2�b�X�?���H�X�b�+�B�2�M�+�2�f�i�2�H�@�y�R�y�d�N�N�k�k�p�R

�a�m�#�K�B�i�i�2�/ �Q�M �9 �L�Q�p �k�y�R�9

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�P�M �i�?�2 �2�M�m�K�2�`���i�B�Q�M �Q�7 �T�b�2�m�/�Q�@�B�M�i�2�M�i�b �, �+�?�Q�Q�b�B�M�; �i�?�2
�Q�`�/�2�` ���M�/ �2�t�i�2�M�/�B�M�; �i�Q �T���`�i�B���H �B�K�T�H�B�+���i�B�Q�M�b

���H�2�t���M�/�`�2 �"���x�B�M

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

���H�2�t���M�/�`�2 �"���x�B�M�X �P�M �i�?�2 �2�M�m�K�2�`���i�B�Q�M �Q�7 �T�b�2�m�/�Q�@�B�M�i�2�M�i�b �, �+�?�Q�Q�b�B�M�; �i�?�2 �Q�`�/�2�` ���M�/ �2�t�i�2�M�/�B�M�; �i�Q �T���`�i�B���H
�B�K�T�H�B�+���i�B�Q�M�b�X �.���i�� �a�i�`�m�+�i�m�`�2�b ���M�/ ���H�;�Q�`�B�i�?�K�b �(�+�b�X�.�a�)�X �l�M�B�p�2�`�b�B�i�û �S�B�2�`�`�2 �2�i �J���`�B�2 �*�m�`�B�2 �@ �S���`�B�b �o�A�-
�k�y�R�9�X �1�M�;�H�B�b�?�X ���L�L�h �, �k�y�R�9�S���y�e�e�R�3�R���X ���i�2�H�@�y�R�y�d�N�N�k�k��

https://theses.hal.science/tel-01079922v1
https://hal.archives-ouvertes.fr

��������� �� ������ �� ����� �����

����� ��������� �����

�����
�
�

�� ��� ����������� �� �������������� �
�������� ��� ����� ��� �
������� ��

������� ������������

���
��
�	��� ����	

������ �� �������� ���	•��•���••�

����••�� �� ­��	€‚�ƒ���� ‚�	�����

��•���	�•�� �� ��•��	•� •ƒ��••�•�	� �� �� �� ��•ƒ�� „��…

��†�	� •	 ‡•�ˆ ��• ��•� �� ‰

Š���•� ‹����� ������� Š����� �� ��	••���	���� Œ	�†�����•� �� �� Ž�������� ����������
Š�	���•� ­��	€‚�ƒ���� ‚�	������ ���•����•�� Œ�Š�� ��������� �� ������
Š�	���•�
���	 ‚•�� �̂ Š����� �� ��	••���	���� Œ	�†�����•� �� ������	�� �����
�����
Š�	���•� ‘�	�ˆ �����	�� Š����� �� ��	••���	���� Œ	�†�����•� �����€’���� ����������
Š���•�
		��“ ”���ƒ�•��� ���•����•�� Œ�Š�� �����
������

Abstract

This thesis deals with the problem of the computation of implications, which are
regularities of the form "when there isA there is B", in datasets composed of
objects described by attributes. Computing all the implications can be viewed as
the enumeration of sets of attributes called pseudo-intents. It is known that pseudo-
intents cannot be enumerated with a polynomial delay in the lectic order but no
such result exists for other orders. While some current algorithms do not enumerate
in the lectic order, none of them have a polynomial delay. The lack of knowledge
on other orders leaves the possibility for a polynomial-delay algorithm to exist and
�nding it would be an important and useful step. Unfortunately, current algorithms
do not allow us to choose the order so studying its in
uence on the complexity
of the enumeration is harder than necessary. We thus take a �rst step towards a
better understanding of the role of the order in the enumeration of pseudo-intents by
providing an algorithm that can enumerate pseudo-intents in any order that respects
the inclusion relation.

In the �rst part, we explain and study the properties of our algorithm. As with
all enumeration algorithms, the �rst problem is to construct all the sets only once.
We propose to use a spanning tree, itself based on the lectic order, to avoid multiple
constructions of a same set. The use of this spanning tree instead of the classic
lectic order increases the space complexity but o�ers much more
exibility in the
enumeration order. We show that, compared to the well-knownNext Closure
algorithm, ours performs less logical closures on sparse contexts and more once the
average number of attributes per object exceeds 30%. The space complexity of
the algorithm is also empirically studied and we show that di�erent orders behave
di�erently with the lectic order being the most e�cient. We postulate that the
e�ciency of an order is function of its distance to the order used in the canonicity
test.

In the second part, we take an interest in the computation of implications in a
more complex setting : relational data. In these contexts, objects are represented
by both attributes and binary relations with other objects. The need to represent
relation information causes an exponential increase in the number of attributes so
naive algorithms become unusable extremely fast. We propose a modi�cation of
our algorithm that enumerates the pseudo-intents of contexts in which relational
information is represented by attributes. A quick study of the type of relational
information that can be considered is provided. We use the example of description
logics as a framework for expressing relational data.

In the third part, we extend our work to the more general domain of association
rules. Association rules are regularities of the form \when there isA there is B
with x% certainty" so implications are association rules with 100% certainty. Our
algorithm already computes a basis for implications so we propose a very simple
modi�cation and demonstrate that it can compute the Luxenburger basis of a con-
text along with the Duquenne-Guigues basis. This e�ectively allows our algorithm
to compute a basis for association rules that is of minimal cardinality.

R�esum�e

Cette th�ese traite du probl�eme du calcul des implications, c'est-�a-dire des r�egularit�es
de la forme "quand il y a A, il y a B", dans des ensembles de donn�ees com-
pos�es d'objets d�ecrits par des attributs. Calculer toutes les implications peut être
vu comme l'�enum�eration d'ensembles d'attributs appel�es pseudo-intensions. Nous
savons que ces pseudo-intensions ne peuvent pas être �enum�er�ees avec un d�elai poly-
nomial dans l'ordre lectique mais aucun r�esultat n'existe, �a l'heure actuelle, pour
d'autres ordres. Bien que certains algorithmes existants n'�enum�erent pas forc�ement
dans l'ordre lectique, aucun n'a un d�elai polynomial. Cette absence de connais-
sances sur les autres ordres autorise toujours l'existence d'un algorithme avec d�elai
polynomial et le trouver serait une avanc�ee utile et signi�cative. Malheureusement,
les algorithmes actuels ne nous autorisent pas �a choisir l'ordre d'�enum�eration, ce
qui complique consid�erablement et inutilement l'�etude de l'in
uence de l'ordre dans
la complexit�e. C'est donc pour aller vers une meilleure compr�ehension du rôle de
l'ordre dans l'�enum�eration des pseudo-intensions que nous proposons un algorithme
qui peut r�ealiser cette �enum�eration dans n'importe quel ordre qui respecte la relation
d'inclusion.

Dans la premi�ere partie, nous expliquons et �etudions les propri�et�es de notre al-
gorithme. Comme pour tout algorithme d'�enum�eration, le principal probl�eme est de
construire tous les ensembles une seule fois. Nous proposons pour cela d'utiliser un
arbre couvrant, lui-même bas�e sur l'ordre lectique, a�n d'�eviter de multiples con-
structions d'un même ensemble. L'utilisation de cet arbre couvrant au lieu de l'ordre
lectique classique augmente la complexit�e spatiale mais o�re plus de
exibilit�e dans
l'ordre d'�enum�eration. Nous montrons que, compar�e �a l'algorithme Next Closure
bien connu, le nôtre e�ectue moins de fermetures logiques sur des contextes peu
denses et plus de fermetures quand le nombre moyen d'attributs par objet d�epasse
30% du total. La complexit�e spatiale de l'algorithme est aussi �etudi�ee de fa�con em-
pirique et il est montr�e que des ordres di��erents se comportent di��eremment, l'ordre
lectique �etant le plus e�cace. Nous postulons que l'e�cacit�e d'un ordre est fonction
de sa distance �a l'ordre utilis�e dans le test de canonicit�e.

Dans la seconde partie, nous nous int�eressons au calcul des implications dans
un cadre plus complexe : les donn�ees relationnelles. Dans ces contextes, les ob-
jets sont repr�esent�es �a la fois par des attributs et par des relations avec d'autres
objets. Le besoin de repr�esenter les informations sur les relations produit une aug-
mente exponentielle du nombre d'attributs, ce qui rend les algorithmes classiques
rapidement inutilisables. Nous proposons une modi�cation de notre algorithme
qui �enum�ere les pseudo-intensions de contextes dans lesquels l'information relation-
nelle est repr�esent�ee par des attributs. Nous fournissons une �etude rapide du type
d'information relationnelle qui peut être prise en compte. Nous utilisons l'exemple
des logiques de description comme cadre pour l'expression des donn�ees relationnelles.

Dans la troisi�eme partie, nous �etendons notre travail au domaine plus g�en�eral
des r�egles d'association. Les r�egles d'association sont des r�egularit�es de la forme
\quand il y a A, il y a B avec une certitude dex%". Ainsi, les implications sont
des r�egles d'association certaines. Notre algorithme calcule d�ej�a une base pour les
implications et nous proposons une tr�es simple modi�cation et montrons qu'elle lui
permet de calculer la base de Luxenburger en plus de la base de Duquenne-Guigues.

Cela permet �a notre algorithme de calculer une base de cardinalit�e minimale pour
les r�egles d'association.

Remerciements

Je tiens �a remercier tous ceux qui, �a un titre ou �a un autre, m'ont apport�e aide et
soutien pour l'�elaboration et la r�edaction de ma th�ese.

J'exprime tout d'abord ma profonde reconnaissance �a Monsieur le Professeur
Jean-Gabriel Ganascia, mon directeur de th�ese, qui m'a chaleureusement accueilli
dans son �equipe et dont les conseils, dispens�es avec attention et rigueur, m'ont guid�e
dans mon travail.

J'assure de ma gratitude Madame Karell Bertet et Monsieur Henry Soldano,
qui ont accept�e de consacrer une part signi�cative de leur temps �a l'�etude de mon
manuscrit ainsi que Madame la Professeur Annick Valibouze et Monsieur Alain G�ely
qui m'honorent de leur participation au jury.

Mes remerciements vont aux membres permanents ou non, anciens ou actuels,
de l'�equipe ACASA au sein de laquelle j'ai travaill�e pendant quatre ans et tiss�e des
liens d'amiti�e.

Ils vont encore aux personnels technique et administratif du LIP6, dont la
comp�etence et la gentillesse m'ont permis de travailler dans les meilleures condi-
tions possibles.

Les membres de la communaut�e francophone des treillis m'ont amicalement
soutenu de leurs remarques et de leurs conseils. Je leur dois beaucoup. Qu'ils
sachent que je leur en sais profond�ement gr�e.

En�n, ma pens�ee va vers mes parents, qui m'ont soutenu de fa�con ind�efectible
tout au long de ces ann�ees, ainsi que vers ma famille et mes amis.

Contents

1 Introduction 1
1.1 Research Context . 2
1.2 Contributions . 2
1.3 Organization . 3

2 De�nitions, Results and Algorithms 4
2.1 Basic De�nitions . 5

2.1.1 Formal Concept Analysis . 5
2.1.2 Implications . 6
2.1.3 Logical Closures . 8

2.2 Bases of Implications . 9
2.2.1 Duquenne-Guigues Basis . 9
2.2.2 Canonical Direct Basis . 10

2.3 Computing the Set of Concepts . 10
2.3.1 Next Closure . 11

2.4 Computing the Set of Pseudo-Intents 12
2.4.1 Search Space . 12
2.4.2 Next Closure . 13
2.4.3 Non-Batch Methods . 16
2.4.4 Problems . 17
2.4.5 Results on Pseudo-Intents . 17

2.5 Algorithms for Computing the Logical Closure 18

3 Choosing the Enumeration Order 20
3.1 Motivation . 21
3.2 Construction of Attribute Sets . 21
3.3 Algorithm . 25

3.3.1 General Algorithm . 25
3.3.2 Enumeration in Order of Increasing Cardinality 26
3.3.3 Example . 28

3.4 Number of Logical Closures . 30
3.4.1 Numerical Results . 30
3.4.2 Curves . 31

3.5 Orders and Space Complexity . 35
3.5.1 Results for Each Order . 36
3.5.2 Comparisons between Orders 45
3.5.3 Optimization . 58

3.6 Logical Closure . 59

CONTENTS

4 Application to Relational Contexts 60
4.1 Motivation . 61
4.2 Relational Data . 61

4.2.1 Description Logics . 61
4.2.2 Related Works . 64

4.3 Relational Contexts . 65
4.4 Computing the Duquenne-Guigues Basis of Relational Contexts . . . 66

4.4.1 Algorithm . 66
4.4.2 Example . 68

4.5 Scope of the Application . 70

5 Computing a Basis for Association Rules 72
5.1 Motivation . 73
5.2 Association Rules . 73
5.3 (Also) Computing the Luxenburger basis 77

5.3.1 Successor Relation between Intents 78
5.3.2 Algorithm . 80
5.3.3 Example . 80

5.4 Discussion . 84

6 Future Work and Conclusion 86
6.1 Future Work . 87
6.2 Conclusion . 88

List of Figures

2.1 Context 1 . 5
2.2 Concept Lattice of Context 1 . 6
2.3 Lattice � of Context 1 . 13
2.4 Lectic order on � . 15

3.1 Spanning tree of the covering graph of � for Context 1 induced by
the successor relation . 22

3.2 nbAtt = 10 and avDesc= 1 . 32
3.3 nbAtt = 10 and avDesc= 2 . 32
3.4 nbAtt = 10 and avDesc= 3 . 33
3.5 nbAtt = 10 and avDesc= 4 . 33
3.6 nbAtt = 10 and avDesc= 5 . 33
3.7 nbAtt = 10 and avDesc= 6 . 34
3.8 nbAtt = 10 and avDesc= 7 . 34
3.9 nbAtt = 10 and avDesc= 8 . 34
3.11 Evolution of the number of attribute sets during the enumeration in

increasing cardinality order . 39
3.13 Evolution of the number of attribute sets during the enumeration in

lectic order . 42
3.15 Evolution of the number of attribute sets during the enumeration in

reverse lectic order . 44
3.16 Comparison of the average number of attribute sets (Green : Reverse

lectic, Red : Increasing cardinality, Blue : Lectic) 47
3.17 Comparison of the average maximal number of attribute sets (Green

: Reverse lectic, Red : Increasing cardinality, Blue : Lectic) 48
3.18 Comparison of the worst cases for the maximal number of attribute

sets (Green : Reverse lectic, Red : Increasing cardinality, Blue : Lectic) 49
3.20 Comparison of the behaviors of the three orders on the same contexts

(Green : Reverse lectic, Red : Increasing cardinality, Blue : Lectic) . 51

4.1 Example of relational data . 68

5.1 Context 1 . 73
5.2 Covering graph of the lattice of intents of Context 1 75
5.3 A spanning tree of the covering graph of the lattice of intents of

Context 1 . 76
5.4 A second spanning tree of the covering graph of the lattice of intents

of Context 1 . 77

LIST OF FIGURES

5.5 Spanning tree of � and of the intents lattice induced by I in Context
1 (di�erences with are in red) . 79

6.1 � fbc!bcd;cd! bcd;ae!abde g . 89

List of Tables

3.1 Average� for nbAtt between 5 and 15 andavDesc between 1 and
nbAtt � 2 . 30

3.2 Variance of� for nbAtt between 5 and 15 andavDescbetween 1 and
nbAtt � 2 . 31

3.3 Maximal values of� for nbAtt between 5 and 15 andavDescbetween
1 and nbAtt � 2 . 32

3.4 Average number of attribute sets simultaneously stored in memory
when enumerating by order of increasing cardinality 36

3.5 Average maximal and maximal number of attribute sets simultane-
ously stored in memory when enumerating by order of increasing car-
dinality . 37

3.6 Average number of attribute sets simultaneously stored when enu-
merating in lectic order . 37

3.7 Average maximal and maximal number of attribute sets simultane-
ously stored in memory when enumerating in lectic order 40

3.8 Average number of attribute sets simultaneously stored in memory
when enumerating in reverse lectic order 45

3.9 Average maximal and maximal number of attribute sets simultane-
ously stored in memory when enumerating in reverse lectic order . . . 45

Chapter 1

Introduction

Contents
1.1 Research Context . 2

1.2 Contributions . 2

1.3 Organization . 3

1

1.1. RESEARCH CONTEXT 2

1.1 Research Context

Data mining is the science of �nding interesting information in data. More often
than not, this information takes the form of regularities that either help predict
future results or understand the nature of the phenomenon that generated the data.
Depending on the kind of information one wants to extract, di�erent mathematical
frameworks are used. We mainly di�erentiate methods using probabilities and ap-
proximations from those manipulating sets, lattices or graphs. In this work, we are
interested in the latter.

Formal concept analysis is a mathematical framework introduced by Rudol Wille
[104] in the 1980s. Based on lattice theory and manipulating intuitive \concepts",
it naturally �nds its uses in knowledge discovery, data analysis and visualization.
Of particular interest is the notion of implication. Implications are regularities of
the form \if there is X , then there is alwaysY". Various �elds, such as associa-
tion rules mining and databases, are concerned with the problem of �nding those
implications in data composed of sets of objects associated with attributes. The
problem of computing a minimal set of implications that summarizes them all, the
Duquenne-Guigues basis, has been extensively studied in formal concept analysis.
While algorithms exist, their e�ciency is limited by multiple factors. First, the
number of implications to �nd can be exponential in the size of the input data.
Hence, algorithms are exponential and nothing can be done about it. Second, batch
algorithms usually compute the set of implications in the so-called lectic order and it
has been shown that this does not guarantee a polynomial delay between two impli-
cations. There is no such result for the enumeration of implications in other orders
so this leaves the possibility for a polynomial-delay algorithm to exist. However, the
e�ects of the enumeration order in the computation of the Duquenne-Guigues basis
is poorly understood. Since batch algorithms do not allow for other orders and since
other approaches prevent �ne-tunings, studying the role of the order is harder than
necessary.

1.2 Contributions

This work aims at providing a �rst step towards a better understanding of the
role of the enumeration order in the computation of the Duquenne-Guigues basis of
implications, both in traditional object-attributes and relational data. If this role
is to be studied, it is necessary to �rst be able to e�ciently enumerate in di�erent
orders. We thus provide an algorithm that allows for any order that extends the
inclusion order to be used in the enumeration of the elements of the basis.

Evidently, this freedom comes at a price in terms of time and space and, com-
pared to specialized algorithms that enumerate in a single order, we risk a loss of
e�ciency that would render the algorithm unusable in practice. In order to ensure
this is not the case, we empirically studied the time and space complexity of the
algorithm. For the time, we compared it with Next Closure, the most studied
algorithm for this problem, using the number of logical closures - the most expen-
sive operation and the main di�erence between the two algorithms. For the space,
we chose three orders we believe to be good representatives of how di�erent orders
produce di�erent behaviors and studied the memory consumption of our algorithm

2

3 CHAPTER 1. INTRODUCTION

when enumerating with them.

Once sure the algorithm works correctly and e�ciently on traditional data, i.e.
sets of objects described by sets of attributes, we showed it could be used on rela-
tional data { objects described by both attributes and relations with other objects {
through the same kind of method used by existing algorithms. We use the example
of description logics and provide a more general formalization of the representation
of relational knowledge by attributes.

Finally, we went back to the more general notion of association rules to which
implications belong. We showed that the properties of our algorithm make it easily
modi�able to compute a basis for association rules along with just the minimal basis
for implications.

1.3 Organization

This thesis is organized as follows :

Chapter 2 contains the notions needed to understand the principles behind our
proposed algorithm. It provides some basic de�nitions in order theory, lattice theory
and formal concept analysis. It also presents known algorithms - most notably
Next Closure - for the problem of computing the Duquenne-Guigues basis and
important results on the complexity of the enumeration and recognition of pseudo-
intents as well as a brief overview of the di�erent methods for computing the logical
closure of sets.

Chapter 3 introduces our proposed algorithm and its properties. It starts with an
explanation of the method we use for the construction of attribute sets and continues
with the algorithm itself. Then, it presents and analyzes the results of our empirical
comparison withNext Closure using, as a metric, the number of logical closures
performed in the average and worst cases. Finally, we provide an empirical study of
the space complexity of the enumeration in three di�erent orders with our algorithm.

Chapter 4 deals with with the use of our algorithm on relational data. It contains
a brief overview of description logics as an example of a formalism for expressing
relational knowledge along with related works on the subject. It also presents how
to use our algorithm on data in which attributes are used to represent relational
knowledge. It ends with an analysis of the type of relational knowledge it is able to
handle.

Chapter 5 addresses the modi�cation of our algorithm that allows for a basis of
association rules to be computed. After some basic de�nitions, notions and history
concerning association rules and their mining, the method that allows us to e�ciently
compute the Luxenburger basis along with the Duquenne-Guigues basis is explained.

Chapter 6 presents potentially good ideas that will be the subject of future works
and draws conclusions.

3

Chapter 2

De�nitions, Results and
Algorithms

Contents
2.1 Basic De�nitions . 5

2.1.1 Formal Concept Analysis 5

2.1.2 Implications . 6

2.1.3 Logical Closures . 8

2.2 Bases of Implications . 9

2.2.1 Duquenne-Guigues Basis 9

2.2.2 Canonical Direct Basis . 10

2.3 Computing the Set of Concepts 10

2.3.1 Next Closure . 11

2.4 Computing the Set of Pseudo-Intents 12

2.4.1 Search Space . 12

2.4.2 Next Closure . 13

2.4.3 Non-Batch Methods . 16

2.4.4 Problems . 17

2.4.5 Results on Pseudo-Intents 17

2.5 Algorithms for Computing the Logical Closure 18

4

• ������� �� ������������ ������� ��� ��
�������

�
	 ����� �����•�•��

�
	
	 �•••�• �•���•• ���• ���

–��•�� ��	�� � �	��ˆ��� �� � •����•������ •��•�—��“ •�� ��� ��������	 �• ��••��������
�	 ���� �	� �� ����	�����	 �• “	�—���•�˜

�����•�•� 	 � �����
 ��
���� �� � ����
� ™� � �� �š �
 	���� � �� � ��� �� ��������
� � ��� �� ���������� �
� � � � �� � ��
��� ��
����
 ���	��
 ������� �
� �����������

 •��•�� ��	��
� �� ����	�� “	�—���•�� �� ����� �	 � ��� �• �ƒ‡����˜ �•� •�� �	
�ƒ‡��� � �	� �	 �����ƒ•�� �� ��� ��� ™�� � š �� �	 � ���	 —� ��ˆ ���� � ���������
� ˜ �ˆ �
��	���	� �• ��� ��� �����ƒ•��� �	 � ��� � ������ƒ� �	 �ƒ‡��� � � ���	 —� —���
��ˆ ���� � ��������� � ˜
����ƒ•��� ��� ����	�����ˆ •	��ˆ ���������� �	� �ƒ‡���� ���
��	���	��˜

 •��•�� ��	��
� ��	 ƒ� �� ����	��� ƒˆ � ����� ��ƒ��� �� ���	 �	 –�••�� „˜�˜

–�••�� „˜�‰ ��	��
� �

��� •��•�� ��	��
� �� ����	��� �	 –�••�� „˜� —��� ƒ� •��� �� � �•		�	• �
�• ��
����••��•� ���� —��“˜ –�� ��� ��“� �• ��• ����� �̂ ���� �• �����ƒ•��� ��� �� � � —��� ƒ�
�ƒƒ��†����� ��� •��• 	�— �	˜

–��•�� ��	�� � �	��ˆ��� •�“�� •�� �• �—� � �������� ƒ��� 	���� ��� ���� ���
��›	�� �� •����—� ‰

�� ‰ „� �� „ �

� � œ�� � � � � � � �� ™�� � š � ��

�� ‰ „� �� „ �

� � œ�� � � � � � � �� ™�� � š � ��

��� �� � ������ •� � �	 �����ƒ•�� ��� � �� ��� ��� �• ��� ��� �ƒ‡���� ���� ���
������ƒ�� ƒˆ �˜
 ���� �	 �	 �ƒ‡��� ��� � � �� •� � �� �� ��� ��� �• ��� ��� �����ƒ•���
��� �ƒ‡���� �• � ��†� �	 ��••�	˜ ��� ��• ������	 �• ����� �—� � ������� •��•� �
‚����� ��		�����	 �	�� ��•�� ��� �—� ��• ������	� ��� ����•�� � ������� �	 � �	�

•

����
���� ����������� �

� ��� ����†��ˆ̃
 ��� � �•�� ���� � œ � �� �� ���� �� ƒ� �
���� �
��� ��� �� •���
��• �ˆ �
���� —��	 ����� �� 	� �•ƒ�••��ˆ �	 ��� � ������˜ ��• •��	• ��� ����•��
�• � ��� �� �	 � ™��� � ���š˜ �	 �•� �
�• ��� ��� ����•�� �• � �� �� �	� ��� ����•�� �•
��� �� ��� ˜

�����•�•� � �
 ��������� ��� � ���� �� �
���� �
��� ��� �� ��

�� �
 �
��
�� �

������ ��� � �
���� �
��� ��� �� ��

�� �
 ����
��

�����•�•� ­ � ���� ™�� � š �
 	���� � �� �
 ����
� �
� � �
 �
��
� ���� ����
� � œ� �
� � � œ� �� ��

�� � �����
 ��
�����

ž��	 �—� •��•�� ��	�� �� ™�� � š �	� ™�� � š ��� �•�� ���� � � � �	�Ÿ�� � � � �
—� —��� ��ˆ ���� ™�� � š �� ���� ��
���
 ���
 ™�� � š �	� 	��� ™�� � š � ™�� � š˜ �	 �
•�†�	 •��•�� ��	�� � � � ��� ��� �• ��� ��	�� �� ��•����� —��� � •��•� ��� ��
����

������ �� � ˜ ���� ������� �� � ��• ���� �������˜

–�••�� „˜„ �� ����	�� ��� ��	�� � ������� �• ��	��
� �˜

–�••�� „˜„‰ ��	�� � ������� �• ��	��
� �

��• •��	• ��� ��	�� � ������� �• � ��	��
�� �� �†�	 ‡•�� ��� ��� �• •��•�� ��	€
�� ��� �� �	 �• ����	� ��ƒ��• ���� ��� ƒ��	 �
��	��†��ˆ ��•����˜ ž� —��� ���“ �	��
�� �	 ������	 „˜�˜

�
	
� �•••���•�•��

��� ����� •�‡�� –�
 ��ƒ��• �� ��� ��• •�����	 �• �• �������	�˜

�����•�•� € �
 ���
������
 ���	��
 �	� ��������� ���� � �
� � �
���� � � � �
�� ���� �� ��
� �
 � ��
���� � �� �
� �

� �� � � � � ��

�

7 CHAPTER 2. DEFINITIONS, RESULTS AND ALGORITHMS

From this de�nition, it is clear that, for any two attribute sets A and B such
that A � B , the implication B ! A holds. Most notably, an implication A ! A
always holds. Finding the set of all the implications that hold is one of the great
problems in FCA. Of course, as it is often the case with this kind of problem, we
are more interested in an \interesting" subset than in the whole set. For example,
we say that implicationsA ! B with B � A are trivial. From there, the problem
is trying to �nd all non-trivial implications that hold in a given context.

De�nition 5 A set L of implications is a cover if and only if all the implications
in L hold and we can derive all the other implications fromL using Armstrong's
rules :

B � A
A ! B

;
A ! B

A [C ! B [C
;

A ! B; B ! C
A ! C

The number of implications that hold can be quite high and, as many of them
are redundant, it is necessary to focus on the interesting ones. For example, if an
implication A ! B holds, thenA ! C also holds for everyC � B . In order to take
that into account, we can use the following proposition.

Proposition 1 An implication A ! B holds if and only ifB � A00.

Proof Every object described byA is also described byA00. Hence,A ! A00holds
and the same can be said aboutA ! B for any B � A00.

Let C be an attribute set such that C 6� A00. From the de�nition of a closure
operator, we deduce that there is an attributei 2 C such that A0 n i 0 6=;. Since
there is an object described byA but not by i, the implication A ! C does not
hold. Thus, A ! B holds only if B � A00. �

This proposition states that L = fA ! A00j A � A and A 6=A00g is a cover for
all the implications of a formal context. In our running example, this cover is :

� a ! ab

� ac ! abcde

� ad ! abcde

� ae ! abcde

� bc! bcd

� be! bde

� cd ! bcd

� abc! abcde

� abd! abcde

� abe! abcde

7

2.1. BASIC DEFINITIONS 8

� acd! abcde

� ace! abcde

� ade! abcde

� bce! abcde

� cde! abcde

� abcd! abcde

� abce! abcde

� abde! abcde

� acde! abcde

� bcde! abcde

Evidently, some of these implications are still redundant. For example, if we
know that abc ! abcdeis valid, it is obvious that abcd! abcdeis valid too. As
such, this cover is not minimal.

De�nition 6 A basisL of implications is a minimal cover.

Given the potentially very high number of implications that hold in a context,
trying to �nd minimal sets of implications that summarize them all is therefore
natural as well as interesting. Many bases have been proposed in the literature,
each with di�erent strengths and weaknesses. We will see examples of bases in
Section 2.2.

2.1.3 Logical Closures

De�nition 7 If L is a set of implications then the logical closure of an attribute
set A under L, noted L(A) is de�ned as

A+ = A [fC j B ! C 2 L and B � Ag

L(A) = A++:::+ (up to saturation)

The logical closure is a closure operator. Sets closed underB are also closed
under :00so they form a lattice isomorphic to the concept lattice.

De�nition 8 If L is a set of implications then the logicalpseudo-closure of an
attribute set A under L, noted L(A) is de�ned as

A � = A [fC j B ! C 2 L and B � Ag

L � (A) = A �� :::� (up to saturation)

8

9 CHAPTER 2. DEFINITIONS, RESULTS AND ALGORITHMS

The logical pseudo-closure is also a closure operator. The di�erence between
the logical closure and pseudo-closure is that, in the latter, the conclusion of an
implication is added to a set only if the premise isstrictly contained in the set.

Let us suppose thatL = fb ! abe; de! cg. We haveL(b) = abe,L(bd) = abcde,
L � (b) = b and L � (bd) = abcde.

2.2 Bases of Implications

2.2.1 Duquenne-Guigues Basis

The most studied basis and the focus of our work is the Duquenne-Guigues basis.
It is based on the notion of pseudo-intent.

De�nition 9 An attribute set P is a pseudo-intent if and only ifP 6=P00 and
Q00� P for every pseudo-intentQ � P.

A pseudo-intent is a set of attributes that is not an intent and contains the closure
of every pseudo-intents that are its subsets. As such, the de�nition is recursive. The
closure of pseudo-intents are calledessential intents.

De�nition 10 The set of all the implications of the formP ! P00in which P is
a pseudo-intent is called the Duquenne-Guigues basis of the context.

The Duquenne-Guigues basis, also calledcanonical basis, has �rst been proposed
in [57] and is the smallest (cardinality-wise) of all the bases.

In our running example, the set of pseudo-intents isfa; bc; cd; be; abd; bcdeg and
the Duquenne-Guigues basis is therefore :

� a ! ab

� bc! bcd

� cd ! bcd

� be! bde

� ab! abcde

� bcde! abcde

It is clear here that computing the Duquenne-Guigues basis of a context is enu-
merating the pseudo-intents. This is not a trivial task, as presented in Section 2.4,
and it has gathered much attention since it was �rst proposed.

9

2.3. COMPUTING THE SET OF CONCEPTS 10

2.2.2 Canonical Direct Basis

While the Duquenne-Guigues basis is the basis with the least cardinality, thecanoni-
cal direct basis, noted hereBd is the smallest basis for which the logical closureBd(A)
is equal to A+ . In other words, the logical closure can be computed with a single
pass through the canonical direct basis (hence the \direct"). However, the size of
the canonical direct basis being much greater than the size of the Duquenne-Guigues
basis, this advantage is relative.

The canonical direct basis was initially known under �ve independent de�nitions,
shown to be equivalent in [21] by Bertet and Monjardet.

� The optimal constructive basis([22]) de�ned as the direct basis with the least
cardinality.

� The weak implication basis([91]) de�ned using minimal transversals of a fam-
ily.

� The canonical iteration-free basis([103]) de�ned using minimal generators of
sets.

� The left minimal basis ([99]) in which premises have minimal cardinality.

� The dependence relation's basis([81]) de�ned using the dependency relation
between irreducible elements of a lattice.

2.3 Computing the Set of Concepts

The computation of the set of all concepts in a given formal context presents two
facets common to enumeration problems in general :

� how to generate all concepts

� how to avoid generating the same concept multiple times

Several strategies can be used to generate concepts. There are two kinds of
algorithms : those beginning with the top concept (O; O0) and those beginning with
the bottom concept (A0; A). However, objects and attributes can be swapped so
the principles are the same. Ultimately, algorithms di�er mostly on the methods
employed to generate new intents. For example, some algorithms add an attribute
to already computed intents and compute the closure of the new set. The result
is a new intent. Others intersect already known intents. The intersection of closed
set being closed, the result is also an intent. The choice of a generation method is
closely tied to the space complexity and the data structures employed.

Checking whether a concept has already been generated can be done using spe-
ci�c data structures or properties of the set. Some algorithms maintain a tree of
concepts that allows for an e�cient search of every newly generated concept. Others
narrow the search space by dividing the set of all known concepts into smaller sets.
For example, a hash function in the form of the cardinality of intents can be used.

10

11 CHAPTER 2. DEFINITIONS, RESULTS AND ALGORITHMS

Algorithm 1 Next

1: for every attribute i in decreasing orderdo
2: B = A � fig
3: if min(B n A) = i then
4: Return B
5: end if
6: end for

Newly generated concepts are then searched only in the set of concepts with an in-
tent of the same cardinality, which makes sense. A third category of algorithms uses
some form of lexicographical order on the set of all concepts. A newly generated
concept is to be considered if it could not have been generated from another concept
greater (or lesser) in the chosen order. The main advantage of this technique is that
it usually only requires that we know of acurrent concept to be able to test whether
new ones should be considered and is, for this reason, more e�cient in terms of
space complexity.

2.3.1 Next Closure

The Next Closure ([49]) algorithm is of particular interest because of its use in
both the computation of the concept set and the Duquenne-Guigues basis. In fact, it
can be used to compute the closed sets for any closure operator. It uses a canonicity
test based on thelectic order.

Assuming the existence of a linear order on the set of attributes, a setA is lesser
than a setB in the lectic order, notedA � B , if and only if min((A [B) n(A \ B)) 2
B . As such, the lectic order is a linear order on the set of intents and, consequently,
the set of concepts.Next Closure computes the concepts in this order. In order
to achieve this, it uses the� operator, de�ned as follows for any attribute setA and
attribute i 62A :

A � fig = (fa 2 A j a < ig [fig) 00

Hence, the setA � fig is the closure of the set containingi and the attributes
of A lesser thani. If the set A is the current set, then the next set, the one that
immediately followsA in the lectic order, is equal toA � fig wherei is the greatest
attribute such that min((A � fig) nA) = i. Using this property, Algorithm 1, called
Next, computes the set immediately following its input set. It computesA �f ig for
every attribute in decreasing order and, for each one, checks whether the property
holds. It performs, at most,jAj computations of the� operator. Knowing that the
closure of a set can be computed inO(jAj � jOj), Next is in O(jAj 2 � jOj), i.e. it
is polynomial in the size of the context.

Next Closure computes all the concepts by starting with the closure of the
empty set of attributes and generating all the intents one by one usingNext. It
stops once it reachesA . The lectic order being a total order on the set of intents,
generating in this fashion ensures that every concept is found and that an intent
is constructed only from its predecessor in the order, which plays the role of the

11

2.4. COMPUTING THE SET OF PSEUDO-INTENTS 12

Algorithm 2 Next Closure

1: A = ; 00

2: Concepts= ;
3: while A 6=A do
4: Concepts= Concepts[f(A 0; A)g
5: A = Next(A)
6: end while
7: Return Concepts

canonicity test. Algorithm 2 is the version ofNext Closure that enumerates the
formal concepts.

Note that, in its classic form, Next Closure does not construct the concept
lattice because the relations between the concepts are lost.

2.4 Computing the Set of Pseudo-Intents

The problem of computing the set of all pseudo-intents is closely related to the
problem of computing intents. Indeed, both involve the enumeration of sets of
attributes that respect certain properties. Moreover, in the case of batch algorithms,
the search space for pseudo-intents contains the search space for intents.

2.4.1 Search Space

We have de�ned, in Section 2.2.1, a pseudo-intent as a set of attributes that is not
closed and contains the closure of all its subsets that are pseudo-intents. It is not
di�cult to see that an intent is a set of attributes that is closed and contains the
closure of all its subsets (or it would not be closed). If it contains the closure of
all its subsets, it obviously contains the closure of all its subsets that are pseudo-
intents. Under this de�nition, if a set contains the closure of all its subsets that
are pseudo-intents, knowing whether it is an intent or a pseudo-intent only requires
knowing whether it is closed or not.

An attribute set closed underB� contains the conclusion of every implication
which premise it strictly contains. Hence, in order to compute the set of pseudo-
intents, and with it the Duquenne-Guigues basis, we must search for them in the
set of attribute sets closed underB� (:) and, in doing so, enumerate intents. It
is currently unknown whether it is possible to enumerate pseudo-intents without
intents.

De�nition 11 The lattice � is the set of attribute sets closed underB� (:) ordered
by inclusion.

Figure 2.3 represents the lattice � corresponding to our running example.

Batch algorithms, most notably Next Closure, enumerate the entirety of �
to �nd the set of pseudo-intents.

12

�� ������� �� ������������ ������� ��� ��
�������

–�••�� „˜�‰ ������� ¡ �• ��	��
� �

�
€
� ��‚• �••�ƒ•�

��� � � � ������ ƒ��	• � ����•�� � ������� ��� ���� ������� ��•�����• ��	 ƒ�
•��� �� �	••����� ��� ��� ���•�	�� �• ��� ������� ¡˜
� �	 ���•�	� �• ¡ �� ������ �	
�	��	� �� � ��•��€�	��	�� ��• •��	• ��� ����•�� �• �†��ˆ �����ƒ•�� ��� �	••������ ��
�	�••� �� �ƒ���	 ��� ��� �• ��•��€�	��	��˜
� �•��� ��� ���� ������� ����	���
�	
�•�����• „ ��	 �����ˆ ƒ� •���›�� �� ���� �	••����� ��•��€�	��	�� �	����� �•
‡•�� �	��	��˜ ¢	�ˆ ��� ����•�� � ������ ��� �� ƒ� ���	•��˜ ��� � � ������ •��� �	
��� ���� ��•�����• •�� ��� �	••������	 �• ��•��€�	��	�� �� �� •����—� ‰

� � � �� œ� � ™�� � � � � � � � � � ��š

ž��	 �	••�����	• �	 ��� ������ ������ ��� �•������� � �• � ��� � �� �•�� ����
�†��ˆ �•ƒ��� �• � ��� ������ˆ ƒ��	 �	••������˜ ��	��••�	�� �̂ �†��ˆ ��•��€�	��	�
� � � �� “	�—	 �	�� �� ������� � ˜ �• —� •��
 � � �� ��	��� ��� �•ƒ��� �• ���
�•••�		�€‚•�••�� ƒ���� —���� ��•���� ��� ������ ���	 � �	 ��� ������ ������ ���	
•�� �	ˆ �•ƒ���
 �• � —� ��†�
 � ™
 š œ� � ™
 š˜ ���� •��	� ����� �� �	ˆ •�†�	
��� �• ��� ��•�����•� ��� ��� �• �• �������	� ������ˆ •�•	� �� �	�••� �� ����— ���
��• •�����	 �• ��� ��•���� ����•�� •	��� � � ˜

��� †�����	 �• ���� ������� •��� •�� ��� ��• •�����	 �• ��•��€�	��	�� ��
���•������� �	
�•�����• � ™£�¤¥š˜ �� ������ —��� � �	� �	••������ ��� ���•�	�� �•
¡ •��	• ���� ˜ –�� ���� �����ƒ•�� ���� �� ��• •��� ��� ����•��˜ �• �� �� 	�� �������
�� �� � ��•��€�	��	� �	� ��� ������ �	��	• �• �������	 �� ����� �� ��� ����˜ ���
��•�����• �	�� —��	 � �� �������˜

��� ��•�����• ��	 ƒ� � ��•���� ��•�—��� ƒˆ ��	������	• ��� •��� ����� �• �

��

2.4. COMPUTING THE SET OF PSEUDO-INTENTS 14

Algorithm 3 Next Closure for Pseudo-Intents

1: A = ;
2: Impl = ;
3: while A 6=A do
4: B = A00

5: if A 6=B then
6: Impl = Impl [fA ! Bg
7: end if
8: A = Next(A)
9: end while

10: Return Impl

Algorithm 4 Improved Next Closure for Pseudo-Intents

1: A = ;
2: Prev = ;
3: Impl = ;
4: while A 6=A do
5: B = A00

6: if A 6=B then
7: Impl = Impl [fA ! Bg
8: if min(B n A) > min(A n Prev) then
9: A = B

10: end if
11: end if
12: Prev = A
13: A = Next(A)
14: end while
15: Return Impl

is a pseudo-intent that immediately follows a setA (in the lectic order), the set
B 00 immediately follows B if min(B 00n B) > min(B n A). Let us suppose we are
in this case and we havei = min(Next(B) n B), meaning that i is the attribute
that generatesNext(B). If i < min(B 00n B), then B � fig is lectically greater
than B 00. We have a contradiction because it would skipB 00in the enumeration.. If
i > min(B 00n B), then B � i contains B but not B 00, which means it is not closed
under B� . Consequently, we havei = min(B 00n B) and, hence,Next(B) = B 00.

On the contrary, if min(B " nB) < min(B nA), then B � j with j > min(B nA)
cannot be the result ofNext(B) because it would contain min(B nA). We can thus
continue computing as ifA � min(B n A) had been rejected byNext. Algorithm 4
incorporates this optimization.

Next Closure enumerates every attribute set in � and, for each of them,
computes its closure and its successor. Computing the closure of a set can be done
in polynomial time and the Next algorithm requires at mostA applications of the
B� operator. A logical closure can be computed inO(jAj � jBj) so Next Closure
is in O(j�j � jAj 2 � jBj). One of the biggest advantages of Next Closure is its
space complexity. At any given time, we only need to know the current set, along

14

�• ������� �� ������������ ������� ��� ��
�������

—��� ��� ��	��
�� �� ƒ� �ƒ�� �� ��• •�� ƒ��� ��� ����•�� �	� ��� �•�������˜ ����
��	���	� � ��� ��• ��
��ˆ �� �� ������ˆ �• ����	� —��	 —� ��	����� ���� ��� ���� �•
¡ ��	 ƒ� € �	� •�•���ˆ �� € �
 �	�	���� �	 ��� ���� �• ��� ��	��
�˜

�	 �•� �•		�	• �
�• ��� ���� ������� �	••������ ��� ���•�	�� �• ¡ �	 ���
����� �� ����� �	 –�••�� „˜…˜

–�••�� „˜…‰ ������ ����� �	 ¡

��� ��•�����• �•	� �� •����—� ‰

��� �•���	� ��� �� �˜ �� �� �	 �	��	�˜
� � � œ� �� ��� 	�
� ���˜
��� �•���	� ��� �� � ˜ �� �� �	 �	��	�˜
� � � œ� �� ��� 	�
� ���˜
��� �•���	� ��� �� � ˜ �� �� �	 �	��	�˜
� � � œ�� �� ��� 	�
� ���˜
��� �•���	� ��� �� ��˜ �� �� �	 �	��	�˜
�� � � œ� �� ��� 	�
� ���˜
��� �•���	� ��� �� �˜ �� �� �	 �	��	�˜
� � � œ�� �� ��� 	�
� ���˜
��� �•���	� ��� �� �� ˜ �� �� �	 �	��	�˜
�� � � œ�� �� ��� 	�
� ���˜
��� �•���	� ��� �� �� ˜ �� �� � ��•��€�	��	� �� —� ��� �� � ��� �� ��� ��� �•
�• �������	�˜
�� � � œ� �� ��� 	�
� ���
��� �•���	� ��� �� �˜ �� �� �	 �	��	�˜
� � � œ�� �� ��� 	�
� ���˜

�•

2.4. COMPUTING THE SET OF PSEUDO-INTENTS 16

The current set is be. It is a pseudo-intent so we addbe ! bde to the set of
implications.
b� d = bd is the next set.
The current set isbd. It is an intent.
bd� e = bdeis the next set.
The current set isbde. It is an intent.
bde� c = bcis the next set.
The current set is bc. It is a pseudo-intent so we addbc ! bcd to the set of
implications. The new current set isbcd.
bcd� e = bcdeis the next set.
The current set isbcde. It is a pseudo-intent so we addbcde! abcdeto the set of
implications.
bcd� a = a is the next set.
The current set isa. It is a pseudo-intent so we adda ! abto the set of implications.
The new current set isab.
ab� e = abdeis not the next set (d < e).
ab� d = abdis the next set.
The current set isabd. It is a pseudo-intent so we addabd ! abcdeto the set of
implications.
ab� c = abcdeis the next set.
The current set isabcdeand the algorithm stops.

2.4.3 Non-Batch Methods

Even though we are interested mainly in batch algorithms in the present work, other
methods have been proposed to build the Duquenne-Guigues basis.

In [84], Obiedkov and Duquenne proposed an attribute-incremental algorithm
based around the idea that the closure of a set can change when a new attribute
(column) is added to the context. It uses a sequence of contextsCx = (O ; A x ; R x)
in which A x contains thex �rst attributes of A . The algorithm computes the set of
intents and pseudo-intents in the contextCx+1 from the intents and pseudo-intents
in the context Cx .

Sets A are said to bex � modif ied if the closure ofA n fxg in Cx contains x
and x � stable otherwise. In other words, x-stable sets are sets which closure is not
modi�ed when adding the attribute x to the context. By di�erentiating attribute sets
that are modi�ed when adding new attributes, it is possible to reduce the number of
sets to consider at each step. For each attributex, the algorithm computes the set
of intents and pseudo-intents in the contextCx using the intents and pseudo-intents
of Cx�1 and treating them di�erently if they are x-stable or x-modi�ed. Experiments
show that this algorithm seems to considerably outperformNext Closure on both
public and randomly generated contexts.

In [101], Valtchev and Duquenne proposed to use a divide-and-conquer approach
in which the set of attributes is split in two, which splits the context itself. The
algorithm computes the lattices of concepts and pseudo-intents corresponding to
these two contexts. It then computes the direct product of these two lattices and
use the result as a sort of search space for the Duquenne-Guigues basis of the whole
context. As with the attribute-incremental method, experiments suggest that this

16

17 CHAPTER 2. DEFINITIONS, RESULTS AND ALGORITHMS

approach outperformsNext Closure when the total runtime is the considered
metric.

2.4.4 Problems

The enumeration of all the pseudo-intents of a given context is di�cult because of
both inherent properties and lack of knowledge.

The �rst problem is the size of the basis itself. Even though the number of
pseudo-intents is often exponentially smaller than the total number of implica-
tions that hold in the context, the size of the Duquenne-Guigues basis of a context
(O; A ; R) can still be exponential in the size of the context,jOj � jAj , as demon-
strated by Kuznetsov in [68]. Of course, if there is an exponential number of entities
to be found, a polynomial algorithm is out of the question.

The second problem is the search space. Currently, we do not know whether it is
possible to enumerate all the pseudo-intents without also enumerating the intents of
the context. While it is obvious that the number of intents can be exponential in the
size of the context, there are also cases in which the number of intents is exponential
in the number of pseudo-intents. As such, algorithms such asNext Closure that
enumerate both intents and pseudo-intents are not even output-polynomial.

Even though the problem cannot be solved by an existing output-polynomial
algorithm, we could wonder whether there is an algorithm with a polynomial delay
- meaning that, given a pseudo-intent, another one could be found in polynomial
time. Representing an important step toward an answer, Distel and Sertkaya have
shown in [38] that pseudo-intents could not be enumeratedin lexicographic order
with a polynomial delay. This of course implies thatNext Closure does not have
a polynomial delay. In the same work, the authors have tried to show whether
the problem could be solved in polynomial time when removing the restrictions on
the order of enumeration. They managed to show that, among other results, the
problem of deciding whether an additional pseudo-intent has yet to be found resides
in NP , and linked it to well-known problems in graph theory. However, they did
not manage to �nd a lower bound to the problem.

While these results are all but encouraging, at the time of this work, nothing
proves that we cannot �nd an output-polynomial algorithm or an algorithm with a
polynomial delay, provided it does not enumerate pseudo-intents in a lexicographic
order.

2.4.5 Results on Pseudo-Intents

Pseudo-intents have been studied for many years, yet they are not that well un-
derstood. Some of their properties may help facilitate their enumeration. In [14],
Babin and Kuznetsov investigated the complexity of recognizing various types of
intents and pseudo-intents. They showed that the problem of deciding whether a
set P is a pseudo-intent in a given contextC is coNP-complete, recognizing the
lectically greatest pseudo-intent is coNP-hard and recognizing an essential intent is
NP-complete.

In [90], Rudolph proposed a non-recursive characterization of pseudo-intents us-
ing the notion of incrementor. Incrementors are sets that, once added to the context

17

2.5. ALGORITHMS FOR COMPUTING THE LOGICAL CLOSURE 18

Algorithm 5 Naive Logical Closure

1: stable = false
2: while stable == false do
3: stable = true
4: for every implication X ! Y in L do
5: if A � X then
6: A = A [Y
7: if A changedthen
8: stable = false
9: end if

10: end if
11: end for
12: end while
13: Return A

as the extent of a new object, only \slightly" modify the intents of the contexts in
that the old intents stay the same and only the new set becomes an intent. Pseudo-
intents are showed to be a subset of the incrementors. This non-recursive de�nition,
while not used in our present work, appears very promising as it could help relax
the inclusion constraint on the order in which pseudo-intents can be enumerated.

In [54], G�ely et al. attempted to explain the exponential number of pseudo-
intents. They supposed that so-calledP-clone attributes are the reason for the
combinatorial explosion. Attributes a and b are P-clone attributes if replacinga
by b (b by a) in every pseudo-intent that containsa (b) gives a pseudo-intent. The
goal is to reduce the size of the Duquenne-Guigue basis by identifying and removing
P-clone attributes. This is an approach that tries to reduce the size of the output
instead of �nding more e�cient algorithms that compute the whole set.

2.5 Algorithms for Computing the Logical Clo-
sure

Given a set of implicationsL, the logical closure of an attribute setA underL, L(A),
de�ned in Section 2.1.3 is a crucial operation that takes a signi�cant amount of time.
Three main algorithms can be used to computeL(A). The naive method, illustrated
in Algorithm 5, is simply going through every implication until one of them adds
an attribute to the set, at which point we begin again with the new set. It stops
when all the implications have been considered and the set has not been modi�ed,
which means a �xed point has been reached. For each implications, the algorithm
must test the inclusion ofA in the premise, which can be done inO(jAj) using an
adequate representation. It must go through the set of implications a maximum of
jL (A) n Aj + 1 times so the algorithm runs inO(jAj � jLj � jL (A) n Aj + 1).

LinClosure is a linear-time algorithm proposed in [18]. It associates to each
implication in L a counter - initially equal to the size of the premise - and to each
attribute a list of the implications in which premises it appears. Each attribute
of A is used to decrement the counter of the corresponding implications and when

18

19 CHAPTER 2. DEFINITIONS, RESULTS AND ALGORITHMS

Algorithm 6 LinClosure

1: Initialization of the lists and counters
2: for every attribute a in A do
3: for every implication X ! Y in list (a) do
4: Decrement the counter ofX ! Y
5: if the counter reaches 0then
6: A = A [Y
7: end if
8: end for
9: end for

10: Return A

Algorithm 7 Wild's Closure

1: Initialization of the lists and counters
2: stable = false
3: while stable == false do
4: stable = true
5: Imp =

S
a=2A list (a)

6: for every implication X ! Y in L n Imp do
7: A = A [Y
8: if A changedthen
9: stable = false

10: end if
11: end for
12: end while
13: Return A

one reaches zero, the conclusion is added toA. The algorithm stops when all the
attributes have been used. The manipulation of the counters is inO(jL(A)j � jLj)
but it is important to note that the initialization of the lists and counters can take
some time too. Algorithm 6 illustratesLinClosure.

The third algorithm, Wild's Closure , has been proposed in [103]. It also
uses lists of implications associated to each attribute but no counters. Instead, it
computes the union of the lists associated to attributes that are not inA. Obviously,
implications that are not in this union have premises that contain only attributes
of A so they are used to modifyA. This is then repeated until the �xed point is
reached. This algorithm has the same complexity asLinClosure.

A comparison of these three algorithms in the context of the enumeration of
pseudo-intents can be found in [17]. Results tend to show the naive algorithm as
more e�cient in general, probably because the other two are handicapped by the
initialization phase.

19

Chapter 3

Choosing the Enumeration Order

Contents
3.1 Motivation . 21

3.2 Construction of Attribute Sets 21

3.3 Algorithm . 25

3.3.1 General Algorithm . 25

3.3.2 Enumeration in Order of Increasing Cardinality 26

3.3.3 Example . 28

3.4 Number of Logical Closures 30

3.4.1 Numerical Results . 30

3.4.2 Curves . 31

3.5 Orders and Space Complexity 35

3.5.1 Results for Each Order . 36

3.5.2 Comparisons between Orders 45

3.5.3 Optimization . 58

3.6 Logical Closure . 59

20

21 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

3.1 Motivation

The bulk of our work is centered on the enumeration of pseudo-intents. We saw in
Section 2.4.4 that pseudo-intents cannot be enumerated in lectic (or reverse lectic)
order with a polynomial delay and that no such result exists for the enumeration in
other orders. Unfortunately, known batch algorithms (Next Closure) work only
with the lectic order and the others (attribute-incremental and divide-and-conquer
approaches) do not allow for much customization in the choice of the order. On
the applicative side of things, algorithms enumerate too many sets which becomes
problematic as soon as contexts get decently big. Solutions would be to reduce
the number of intents enumerated with pseudo-intents or, more easily, reduce the
number of operations needed to compute the sets.

We believe that the order of enumeration is the key and that it would be possible
to either �nd an order in which we can enumerate pseudo-intents with a polynomial
delay or, if it is impossible, to prove it. In the latter case, the order could help
optimize the runtime of the algorithms. Having an algorithm that allows for the
enumeration of pseudo-intents in a chosen order would be a good �rst step as it would
help us get a better understanding of the in
uence of the order on the enumeration.

In this chapter, we propose an algorithm that enumerates pseudo-intents in any
order that respects the inclusion order. First, we present an algorithm,Successor,
for the construction of attribute sets that uses a canonicity test similar to that
of Next but does not force us to enumerate in the lectic order. Then, we use
Successor to build an algorithm that enumerates the elements of � in any order
and we empirically compare it with Next Closure using the number of logical
closures as a metric. Lastly, we empirically study the e�ects of three di�erent orders
on the space complexity of the algorithm and use the results to infer the e�ects of
all possible orders.

3.2 Construction of Attribute Sets

Constructing the Duquenne-Guigues basis requires constructing attributes sets, be
they intents or pseudo-intents. TheNext algorithm is e�cient because of its canon-
icity test that allows for a very low space complexity and an easy generation of
attribute sets. However, theNext algorithm works speci�cally for an enumeration
in the lectic order. If we are to consider other orders, we need to �nd another con-
struction method that uses another canonicity test. We wish to keep the e�ciency
of the lectic order while not being forced to enumerate in the lectic order. In order
to do this, we propose asuccessor relationthat is de�ned using the lectic order.

De�nition 12 Successor relation For any two attribute setsA; B 2 �, B is a
successor ofA (noted A B) if and only if A is the lectically greatest strict subset
of B in �.

When A B , the set A is said to be the predecessor ofB and the set B a
successor ofA. An attribute set always has a single predecessor and can have any
number of successors, including none. The only notable exceptions are; which
doesn't have a predecessor andA which never has a successor.

21

	��� ������������ �� �����
��� ���� „„

�••••��•�•� � ��� �
� � � ¡� ����� �� � �
���� •
��� �����
�� � � � ���� � � �� �
�•
��
�� �� ¡ ���� ���� � � � � � ��� � � � � ��

�•••„ �†��ˆ 	�	€�• �ˆ ��� �	 ��� ������� ¡ ��†�	• � ������ �•ƒ��� �� � �������€
���� �•�� � ��••�	�� �
����˜ ��� 	••ƒ�� �• �����ƒ•��� �� ›	��� �� ��� ��••�	�� �����•
�� ›	���˜ ��� ���������� �• �	 �����ƒ•�� ��� �� •	�••� �� ��� ��••�	�� �� •	�••�˜ �

�•••••�• 	 •�� ��������� ��
����
 � ��•
�� � ���

�
� ���� �� ��� ��•���
� �����
�� ¡

–�••�� �˜� �� ��� � �		�	• ���� �• ��� ������� ¡ ������ �	��	• �� �•� �•		�	•
�
�• ��˜ ���� ��� �� � �� ��� ��� �• �•�������� �• �˜

–�••�� �˜�‰ � �		�	• ���� �• ��� ��†���	• •�� � �• ¡ •�� ��	��
� � �	�•��� ƒˆ ���
�•������� �������	

ž��	 �	••�����	• �	 ��� ������ ������ ��	���•���	• ��� 	�
� �����ƒ•�� ��� •��•
��� �•���	� �	� �	�•��� ���� ���� ��� �� ��	������� �	�ˆ �	�� ƒ���•�� ��� ����� ��
����� �	� ���� ��� �� ��	���•���� •��• � ��	•�� ����� ���˜ ��� ���������� � �• �	
���•�	� � � ¡ ƒ��	• •	�••� ™�	� ��—�ˆ� �
����	• •�� 	�	€�• �ˆ ����š� ��� ��•�
 �� ���ˆ �� •�•	� —��	 ��	���•���	• �����ƒ•�� ���� •��• ����� ����������˜ –��•
��� ������	 „� —� “	�— ���� �†��ˆ ��� �	 ¡ ��	 ƒ� •�•	� ƒˆ ������	• •��• � �	�
��	���•���	• ��� ������� ���	• ��� ��•�� �• ��� ����˜
� �•��� •��	• ��� ������ �����
�	�•��� �	 ¡ ƒˆ � �	����� �• ��� ������ ����� —�•�� ����— •�� ��� ��•� �¦���	�ˆ �	
��� ��	�	����ˆ ����˜

¢	 ���� •��•	�� �	 ����� �� �	••����� ��� ���•�	�� �• ¡ �	 •��	• �� —� ••��
ƒ� �ƒ�� �� �¦���	��ˆ ����•	��� —������ � ��� � �� � �•������� �• � •�†�	 ���˜

„„

23 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

Algorithm 8 Successors(A)

1: Successors= ;
2: for every attribute i greater than min(A) do
3: B = A � i
4: if A � B then
5: if i = min(B n A) and 8j 2 B n A, A � j = B then
6: Successors= Successors[fB g
7: end if
8: end if
9: end for

10: return Successors

Proposition 3 For any two setsA; B 2 � such that A � B , we haveA B if
and only if B = A � i for every i 2 B n A.

Proof (. We know that A � i is lectically greater thanA and is a subset ofB
if i 2 B . If 8i 2 B nA; A � i = B , then B has no strict subset in � lectically greater
than A. As such,A B (8 i 2 B n A; A � i = B .

). If A B and 9i 2 B n A such that A � i � B , then B has a subset in
� lectically greater than A, which contradicts the hypothesis. As such,A B)
8i 2 B n A; A � i = B . �

To recognize a successorB of A, it is necessary to knowA � i for every i 2 B nA.
By extension, knowing the set of successors ofA is knowing the value ofA � i for
every attribute i. Obviously, if an attribute i is lesser than the minimal attribute
of A, the set A � i is not a superset ofA and cannot be a successor. It is thus
unnecessary to compute the value ofA � i for any i < min(A).

Algorithm 8, Successors , computes the set of successors using Proposition 3.
In its most basic form, the algorithm has to computeA � i, i.e. perform a logical
closure, once for every attribute greater than min(A). As we saw in Section 2.3.1,
the Next algorithm performs a logical closure for every attribute greater than some
attribute j for which it �nds that j = min((A � j) n A). In practice, this attribute
j is greater than min(A) for nearly every attribute set. The only exceptions are the
setsA such that the cardinality of Next(A) is 1, i.e. once for every attribute in A .
This means that Next outperformsSuccessors in the majority of cases.

This is where using the structure of the lattice � is important as it helps us
reduce the number of required logical closures.

Proposition 4 Algorithm 8 stops and returns the set of successors of the input set
A.

Proof The number of attribute is �nite so the loop will eventually end and the
algorithm stop. The setA � i is equal to fig when i < min(A) so it cannot be a
successor. According to Proposition 3, every successor is equal toA � i for some
i > min(A) so the algorithm �nds them all. �

Proposition 5 If B is a successor ofA with i = min(B n A), then B � j = A � j
for every attribute j < i .

23

3.2. CONSTRUCTION OF ATTRIBUTE SETS 24

Proof If j < i, then B� (fb 2 B j b < j g [fj g) = B� (fa 2 A j a < j g [fj g)
becausei = min(B n A). Thus, we haveB � j = A � j . �

This proposition states that the value ofA � i can be passed on to the successors
of A that di�er only on attributes greater than i. If we have A B and want to
compute the successors ofB , then the successors ofA have already been computed
and we know the value ofA � i for all i. As such, we only have to computeB � i
for i greater than min(B n A) and this greatly reduces the number of operations.
Whether this property alone makesSuccessors outperform Next depends on the
context. Empirical results and their analysis can be found in Section 3.4.

In our running example of Context 1, the algorithm would run as follows for the
set bd :

� bd� e = bdeis computed, the attribute e is the minimal new attribute and
also the only one. Thus,bdeis a successor ofbd

� bd� d is not computed sinced is already in bd

� bd� c = bc is not computed becauseb bd and c < d so we already know
that bd� c = b� c

� bd� b is not computed sinceb is already in bd

� The other attributes are lesser thanb

Here, the algorithm performed a single logical closure to compute a single suc-
cessor. If we now want to compute the successors of the setce, the algorithm would
run as follows :

� ce� e is not computed sincee is already in ce

� ce� d = cd is not computed becausec ce and d < e so we already know
that ce� d = c � d

� ce� c is not computed sincec is already in ce

� The other attributes are lesser thanc

In this case, the setcehas no successor and the algorithm returns the empty set
without performing logical closures.

An important point is the case of the pseudo-intents. Indeed, if a setA is a
pseudo-intent, then any supersetB of A that does not contain A00 is not closed
under B� and, consequently, is not an element of �. As such,A00is the only upper
cover ofA. This means that, in �, although an attribute set can have any number
of successors, pseudo-intents have either one or no successor. Hence, for any pseudo-
intent A and setX 2 � such that X A, we have the following :

� A � i = A00for any attribute i 2 A00n A greater than min(A n X)

� A � i = X � i for any i lesser than min(A n X)

24

25 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

When computing the successors of a pseudo-intentA, the value ofA � i is already
known for every attribute i 2 A00n A and the value ofA � j for j 62A00is known
not to be relevant. Thus, no additional computation is required to obtain the set of
successors of a pseudo-intent.

Proposition 6 If A B , i =2
S

fo 0 j o 2 A0g and B� (A � i) 6=A , then B � i is
either A � i or A .

Proof If i =2
S

fo 0 j o 2 A0g, then (A � i) 00= A. Let us suppose thatB 6=A � i
is a successor ofA. If i < min(B n A) then B � i = A � i. If i > min(B n A), then
A � i � B � i. As such, knowing that the only superset ofA � i in � is A , we have
that B � i is either A � i or A . �

This proposition states that, once an attribute i that never appears together
with A in the context is found, it is unnecessary to computeB � i for the successors
B of A because the result is either an intent or a pseudo-intent that is equal to
A � i and is therefore already found. Obviously, this proposition plays a greater role
in reducing the number of logical closures in contexts in which many small sets of
attributes never appear together, i.e. very sparse contexts. Empirical results and
their analysis can be found in Section 3.4.

In our running example, we know thatbc bcd becausebc00 = bcd and the
attribute d is the least attribute in bcdn bc and is greater than c, the minimal
attribute in bcn b. Similarly, we know that we do not havecd bcd because
min(bcdn cd) = b is lesser than min(cdn c) and that c � b is not a superset ofc.

As discussed in Section 2.5, the algorithm for computing the logical closure of a
set with the best worst-case complexity isLinClosure in O(jAj � jBj). Succes-
sors performs, at most, jAj logical closures so the algorithm is inO(jAj 2 � jBj).
Thus, Next and Successors have the same worst-case complexity. Nevertheless,
we will see in Section 3.4 that they behave di�erently in practice.

3.3 Algorithm

Now that we can construct attribute sets from their subsets, we can enumerate the
elements of the lattice �. Our aim was to be able to enumerate in orders less binding
than the lectic order, and the successor relation can be used to achieve that. Since
we want it to be possible to enumerate in any order that respects the successor
relation, we can only provide a model on which algorithms for di�erent orders can
be built and optimized.

3.3.1 General Algorithm

The basic form of the algorithm (see Algorithm 9) is classic. We start with; and
for each element of � found, we compute its closure. If it is not closed, it is a
pseudo-intent and we add the new implication. Then, we compute its successors.
The algorithm ends when it reachesA . Even though it is quite similar to Next
Closure, two problems that are easily solved by the lectic order and the Next
algorithm reappear here, namely choosing a set to consider and checking whether it
is indeed closed underB� .

25

3.3. ALGORITHM 26

Algorithm 9 Enumeration of Pseudo-Intents - Basic Form

1: Sets = f;g
2: Impl = ;
3: while Sets is not empty do
4: Pick a setA in Sets
5: if A is indeed in � then
6: B = A00

7: if A 6=B then
8: Impl = Impl [fA ! Bg
9: end if

10: Compute A � i for every attribute i and add it to Sets
11: end if
12: end while
13: return Impl

The �rst problem, choosing a set, is e�ectively choosing an order of enumera-
tion. As we want to be able to enumerate in any order that respects the inclusion
relation, we need a way to make sure that we do not consider a set until after all
its subsets have been taken into account. The most obvious solution would be to
sort the set of sets to obtain the desired order, which can be changed during the
algorithm, even though some orders would require more computations than others.
The second problem, checking whether the chosen set is closed underB� , is linked
to the successors relation. When a setA is considered, we know the closure of every
subset ofA but not necessarily all the subsets ofA � i. The set A � i can be thought
to be a successor ofA, and thus an element of �, when �rst computed but a pseudo-
intent P such that A < P < A � i can exist, and thus the value ofA � i is not
necessarily correct. For this reason, we have to complete the logical closure before
checking whetherA � i is a successor ofA and taking it into consideration - which
would e�ectively amount to updating every set with new implications. Algorithm
10 illustrates this.

A brief study of the algorithm for computing logical closures in multiple steps
can be found in Section 3.6.

The enumeration algorithm has to consider every element of �, compute their
closure and, in the case of intents, compute their successors. Given thatSucces-
sors is in O(jAj 2 � jBj) and computing the closure of a set is inO(jAj � jBj),
enumerating pseudo-intents usingSuccessor is in O(j�j � jAj 2 � jBj). This result
holds for any such algorithm in which testing whether a set is in � can be done with
no computation other than the logical closure.

3.3.2 Enumeration in Order of Increasing Cardinality

For example, we can imagine an algorithm that enumerates in the following order :

� Start with ;

� Compute the closure of all the elements of � of cardinalityn

26

27 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

Algorithm 10 Enumeration of Pseudo-Intents - Basic Form

1: Sets = f;g
2: Impl = ;
3: while Sets is not empty do
4: Pick the �rst set A in Sets
5: Update the logical closure ofA
6: if A has not changedthen
7: if A is a successor of the set it has been generated fromthen
8: B = A00

9: if A 6=B then
10: Impl = Impl [fA ! Bg
11: end if
12: for every attribute i =2 A greater than min(A) do
13: Add Impl � (fa 2 Ajka < i g [fig) to Sets while preserving the order
14: end for
15: end if
16: else
17: Place the newA in Sets according to the chosen order
18: end if
19: end while
20: return Impl

� Generate the successors of all the sets of cardinalityn

� Increment the cardinality

With this order, testing whether an attribute set is an element of � is easy.
Indeed, if we are considering attribute sets of cardinalityn, then every pseudo-intent
of cardinality lesser thann has been found. As such, we only have to complete the
logical closures of sets and, if they do not change, they are elements of �. Algorithm
11 enumerates in this order. TheSuccessors algorithm is divided in two parts :
the �s are computed �rst and the canonicity (successor) test is performed once we
are sure the set is an element of �. As we will study more in depth in Section 3.5.1,
this requires that we keep the sets and the successor relations in memory for some
time.

Storing the sets before �nishing their logical closure takes space but no additional
time. See Section 3.6 for details about the computation of logical closures in multiple
steps.

Proposition 7 Algorithm 11 stops and returns the Duquenne-Guigue basis of the
input context.

Proof When considering a given cardinalityn, only successors of sets of cardi-
nality n are constructed. These successors have cardinalities strictly greater thann,
the number of attribute is �nite and A has no successor so the algorithm eventually
reachesA and stops.

Every set has a predecessor of lesser cardinality. Let us suppose that an element
of � of cardinality n has not been found by the algorithm. The set of successors of

27

3.3. ALGORITHM 28

Algorithm 11 Enumeration of Pseudo-Intents by order of increasing cardinality

1: Sets = f;g
2: Impl = ;
3: Card = 0
4: while Card < jAj do
5: for every A 2 Sets of cardinality Card do
6: if A = Impl (A) and A is a successor of its predecessorthen
7: B = A00

8: if A 6=B then
9: Impl = Impl [fA ! Bg

10: end if
11: for every attribute i do
12: Sets = Sets[Impl � (fa 2 Ajka < i g [fig)
13: end for
14: else
15: Sets = Sets[Impl (A)
16: end if
17: end for
18: end while
19: return Impl

its predecessor has not been computed or it would have been found. The algorithm
computes the successors of every set it considers, therefore the predecessor itself has
not been found. Following the same reasoning, we eventually �nd that; has not
been found and this contradicts the fact that the algorithm is initialized with it. We
then conclude that every element of � is enumerated by the algorithm. A pseudo-
intent is closed underB� therefore it is an element of �. Thus, every pseudo-intent
is enumerated by the algorithm.�

3.3.3 Example

Using Algorithm 11 on our running example would produce the following :

The algorithm starts with ;. It is closed so we generate its successors.

; � e = e
; � d = d
; � c = c
; � b= b
; � a = a

The set of sets is thenfa; b; c; d; eg. They are all still closed underImpl � (:).
Among them, only a is a pseudo-intent witha00= abso we adda ! ab to the basis.
We then generate the successors ofa, b, c, d and e. The seta being a pseudo-intent,
we construct onlyab from it. There are no attributes greater than min(e) = e so e
has no successors.

b� e = be c � e = ce d � e = de
b� d = bd c � d = cd
b� c = bc

28

29 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

The set of sets is thenfab; bc; bd; be; cd; ce; deg. They are all still closed under
Impl � (:). Among them, bc, be and cd are pseudo-intents so we addbc ! bcd,
be! bdeand cd ! bcdto Impl . We then generate the successors ofab, bc, bd, ce
and de. The setbc being a pseudo-intent, we only constructbcdfrom it. The set
de has no successors for the same reasons as the sete in the previous step and we
already know that c� d = cd soce� d is known andcehas no successors. Similarly,
bd� c is known to bebc, which has already been found.

ab� e = abde bd� e = bde
ab� d = abd
ab� c = abcd

The set of sets is thenfabd; bcd; bde; abde; abcdg. All the sets with 3 attributes
are still closed underImpl � (:). Among them, abd is a pseudo intent so we add
abd! abcdeto Impl . We then generate the successors ofabd,bcdand bde. The set
abd can only have one successor,abcde, but it is the set of all attributes so we do
not add it. We already know bd� c so we also knowbde� c. As such, computing
bde� c is not needed and no other attribute is available sobdehas no successors.

bcd� e = bcde

The set of sets is thenfabde; abcd; bcdeg. The logical closures of the setsabde
and abcdare updated toabcdeand they are removed. Onlybcdehas a cardinality
of 4 and is still closed underImpl � (:). It is a pseudo-intent so we addbcde! abcde
to Impl . There are no new intents so we continue with the elements ofSets of
cardinality 5. There are no more sets so we stop.

The algorithm stops having produced the following implications :

� a ! ab

� bc! bcd

� be! bde

� cd ! bcd

� abd! abcde

� bcde! abcde

It has performed 16 logical closures whereNext Closure would have performed
16 (see Section 2.4.2). It is thus just as e�cient in this particular context. However,
as will be presented in Section 3.4, there is a signi�cant number of cases in which
using Successors provides an advantage over usingNext in terms of number of
logical closures computed.

Examples of enumerations in other orders (lectic and reverse lectic) can be found
in Section 3.5.2.

29

3.4. NUMBER OF LOGICAL CLOSURES 30

3.4 Number of Logical Closures

As we have seen in Section 3.2, theSuccessors algorithm (Algorithm 8) behaves
di�erently than Next (Algorithm 1) and usually performs more logical closures.
This is counterbalanced by Proposition 5 and Proposition 6 which reduce the amount
of logical closures by re-using closures that are already computed when possible.
Proposition 5 applies consistently while Proposition 6 is most useful in sparse con-
texts. This leads us to speculate thatSuccessors should equal or outperform
Next on very sparse contexts. In order to test this theory, we implemented, in
Java, both a version of Algorithm 10 and the slightly optimized version ofNext
Closure seen, for example, in [84] and counted the number of logical closures
performed by both on randomly generated contexts. We ran the algorithm on ran-
domly generated contexts composed of 50 objects,nbAtt attributes and an average
of avDesc attributes per object. The contexts were constructed by randomly as-
sociating attributes to objects with a probability of avDesc

nbAtt . We ran the algorithms
5000 times for eachnbAtt and eachavDescbetween 1 andnbAtt � 2. In these tests,
we used the increasing cardinality order. However, as the number of logical closures
performed by Successor do not, in any way, depend on the enumeration order,
these results hold for any order. For each context, we computed the ratio

� =
number of logical closures for us

number of logical closures for Next Closure

3.4.1 Numerical Results

5 6 7 8 9 10 11 12 13 14 15
1 0.98 0.94 0.89 0.86 0.84 0.82 0.81 0.80 0.79 0.78 0.78
2 1.01 1.01 1.001 0.98 0.95 0.93 0.91 0.88 0.86 0.84 0.82
3 1.002 1.01 1.03 1.03 1.01 0.99 0.97 0.96 0.94 0.93 0.91
4 1.004 1.02 1.04 1.05 1.04 1.02 1.01 0.99 0.97 0.96
5 1.008 1.03 1.05 1.06 1.05 1.04 1.03 0.01 1.00
6 1.01 1.03 1.05 1.07 1.07 1.06 1.05 1.03
7 1.01 1.04 1.06 1.07 1.07 1.07 1.06
8 1.02 1.04 1.06 1.08 1.08 1.07
9 1.03 1.05 1.07 1.08 1.08
10 1.04 1.05 1.07 1.09
11 1.05 1.06 1.08
12 1.06 1.07
13 1.07

Table 3.1: Average� for nbAtt between 5 and 15 andavDescbetween 1 andnbAtt � 2

Table 3.1 shows the average� for di�erent values of nbAtt and avDesc. These
empirical results seem to back up our theory as� is below 1 for small values of
nbDesc that generate sparse contexts. We observe that our algorithms perform
signi�cantly less logical closures fornbDesc = 1, extremely sparse contexts, but

30

31 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

the ratio quickly increases andNext Closure starts outperforming us when the
average number of attribute per object is roughly a third of the total number of
attributes. An unpredicted phenomenon is the very slight reduction of the ratio
when approaching extremely dense contexts.

Now that we know the di�erences between our algorithm andNext Closure
on average, we can take a look at the variance. Table 3.2 presents these results.

5 6 7 8 9 10 11 12 13 14 15
1 0.0081 0.0088 0.0082 0.0070 0.0062 0.0060 0.0053 0.0054 0.0052 0.0052 0.0052
2 0.0014 0.0038 0.0047 0.0052 0.0051 0.0048 0.0047 0.0045 0.0042 0.0039 0.0036
3 0.0001 0.0011 0.0023 0.0029 0.0030 0.0029 0.0027 0.0027 0.0026 0.0028 0.0026
4 0.0002 0.0011 0.0018 0.0022 0.0020 0.0020 0.0019 0.0018 0.0018 0.0017
5 0.0005 0.0012 0.0018 0.0017 0.0016 0.0016 0.0015 0.0014 0.0013
6 0.0010 0.0015 0.0018 0.0017 0.0014 0.0013 0.0012 0.0011
7 0.0015 0.0020 0.0020 0.0016 0.0013 0.0011 0.0010
8 0.0024 0.0023 0.0022 0.0016 0.0013 0.0011
9 0.0032 0.0026 0.0022 0.0017 0.0013
10 0.0054 0.0033 0.0026 0.0018
11 0.0090 0.0040 0.0030
12 0.0131 0.0046
13 0.0211

Table 3.2: Variance of� for nbAtt between 5 and 15 andavDesc between 1 and
nbAtt � 2

The variance of� is low, which means that the average results in Table 3.1 should
hold for most contexts. We observe that, when we increase the average description
size, the variance initially decreases untilavDescreaches approximately half of the
total number of attributes, at which point it begins to increase again.

The results in the average case and the variance are interesting but extremes are
important in computer science. Thus, we noted the highest values of� encountered
for eachnbAtt and avDesc. Table 3.3 presents those results. Unsurprisingly, the
ratio � of the worst case encountered increases with both the number of attributes
and the average description size. Even though the variance indicates that most cases
are around the mean, this last table shows that there are speci�c cases in which our
algorithm performs signi�cantly (though linearly) more operations.

3.4.2 Curves

Knowing the average values of�, its variance and its worst-case should be enough
to decide whether our algorithm should be used on a given formal context (provided
we are only interested in the number of logical closures). But, in order to get
a better understanding of the variations of the performance on di�erent contexts
and the e�ects of Proposition 5 and Proposition 6, we provided some graphical
representations. For each couple (nbAtt, avDesc), we plotted the value of� obtained
on each of the 5000 randomly generated contexts. Figures 3.2 to 3.9 present these
results, both sorted and in the order in which they have been obtained fornbAtt = 10
and avDescbetween 1 and 8. The red line is at� = 1 so points under it mean our
algorithm outperformed Next Closure (in terms of number of logical closures)
on this particular context.

31

3.4. NUMBER OF LOGICAL CLOSURES 32

5 6 7 8 9 10 11 12 13 14 15
1 1.36 1.25 1.19 1.18 1.19 1.14 1.11 1.13 1.08 1.10 1.12
2 1.27 1.37 1.31 1.27 1.21 1.18 1.18 1.08 1.10 1.05 1.04
3 1.20 1.34 1.30 1.30 1.28 1.21 1.17 1.17 1.13 1.10 1.07
4 1.24 1.30 1.37 1.39 1.21 1.20 1.17 1.16 1.13 1.10
5 1.62 1.34 1.34 1.27 1.26 1.25 1.17 1.16 1.14
6 1.32 1.33 1.37 1.30 1.27 1.30 1.19 1.17
7 1.57 1.37 1.46 1.31 1.27 1.32 1.28
8 1.65 1.47 1.38 1.32 1.29 1.25
9 1.79 1.55 1.36 1.35 1.27
10 1.65 1.54 1.61 1.44
11 1.85 1.57 1.49
12 1.75 1.65
13 1.83

Table 3.3: Maximal values of� for nbAtt between 5 and 15 andavDesc between 1
and nbAtt � 2

Figure 3.2: nbAtt = 10 and avDesc= 1

Figure 3.3: nbAtt = 10 and avDesc= 2

32

33 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

Figure 3.4: nbAtt = 10 and avDesc= 3

Figure 3.5: nbAtt = 10 and avDesc= 4

Figure 3.6: nbAtt = 10 and avDesc= 5

33

3.4. NUMBER OF LOGICAL CLOSURES 34

Figure 3.7: nbAtt = 10 and avDesc= 6

Figure 3.8: nbAtt = 10 and avDesc= 7

Figure 3.9: nbAtt = 10 and avDesc= 8

We observe that, as the average description size increases,Next Closure out-
performs us on more contexts. This is what the average results showed so this is not
a surprise. More interesting is the distribution of the values of�. We clearly see that
most contexts are very close to the mean with only a handful signi�cantly under or
above. This unsurprinsingly corresponds to a normal distribution. However, when

34

35 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

the contexts become dense (avDesc >6), the number of cases under the mean is
drastically reduced with no examples below 1 atavDesc= 8. We believe this is due
to Proposition 6 playing virtually no role when the contexts are extremely dense.
This disappearance of the best cases is what causes the reduction of the variance
despite the worst cases becoming even worse. We consider that this con�rms our
hypothesis that Proposition 5 reduces the overall number of logical closures while
Proposition 6 only creates interesting cases when the contexts are sparse.

3.5 Orders and Space Complexity

As we have mentioned in Section 3.4, the number of logical closures performed by the
enumeration algorithm is the same for all the possible orders (assuming we still want
to use Proposition 5 and Proposition 6), and only the space complexity changes. As
such, some orders use more space, for seemingly the same result, but there are cases
in which using such orders may prove useful.

For example, we know that computing the closure of a setA can be done in a time
linear in the size of the context. While this theoretical result always holds, there
may be applications in which the context itself is not readily accessible. Scanning
the context to compute the closure of a set could cost time or money, and we may
want to minimize the number of times we have to access the description of each
object. The order presented in Section 3.3.2 considers the elements of � in groups
of cardinality. Algorithm 11 can thus compute the closure of every attribute set
of the same cardinality at the same time by calling the description of each object
once and using it for every attribute set. This would require a total number of
jAj scans of the context instead of potentially 2jAj . In return, many attribute sets
must be stored in memory at the same time. The biggest set of attribute sets of
the same cardinality is forn = bjAj

2 c with a total of jAj!
n!(jAj�n)! possible sets. When

computing their successors, we need to know the value ofA � i for every attribute i
and every setA of cardinality n so, even though the memory used varies throughout
the execution, we must be able to store a maximum of jAj!

n!(jAj�n)! jAj sets. This is not
surprising given that this algorithm corresponds to a breadth-�rst search and thus
requires more space.

To study the e�ect of the order on the number of attribute sets stored in memory
at the same time, we implemented Algorithm 10 that allows us to choose the order
of enumeration by sorting the set of attribute sets in any speci�ed order. We chose
to consider 3 possibilities :

� Increasing cardinality order

� Lectic order

� Reverse lectic order

The increasing cardinality order is the one used in Algorithm 11. Attribute
sets are treated one by one and not as groups of the same cardinality. While the
algorithm could be optimized for each order (most notably, the number of attribute
sets stored could have been reduced), this allowed us to empirically compare the
e�ects of the orders themselves on the space complexity. We ran the algorithm

35

3.5. ORDERS AND SPACE COMPLEXITY 36

on randomly generated contexts composed of 50 objects,nbAtt attributes and an
average ofavDescattributes per object. The contexts were constructed by randomly
associating attributes to objects with a probability of avDesc

nbAtt . With each order,
we ran the algorithm 5000 times for eachnbAtt and eachavDesc between 1 and
nbAtt � 2. We used the size of theSets set of attribute sets as a measure of the
space consumption. We studied the average number of sets, the average maximal
number of sets and the maximal maximal number of sets as well as the evolution of
the number of sets over a single run of the algorithm.

3.5.1 Results for Each Order

Increasing Cardinality

We started with the increasing cardinality order. Table 3.4 shows the average num-
ber of sets simultaneously stored during the course of the algorithm for di�erent
values ofnbAtt and avDesc.

5 6 7 8 9 10 11 12 13 14 15
1 6.7 10.5 14.5 19.1 24.2 29.7 35.4 41.7 48.3 55.0 62.0
2 7.1 13.7 22.1 31.4 40.1 48.3 56.0 64.0 72.3 80.9 89.8
3 7.0 14.3 26.8 43.3 61.3 80.3 98.2 115 129 140 152
4 14.0 27.8 52.2 84.1 118 151 183 216 245 271
5 27.2 53.6 100 160 225 283 336 386 437
6 52.1 102 189 301 418 522 611 689
7 99.5 195 354 554 760 944 1091
8 189 369 655 1003 1353 1654
9 360 698 1206 1796 2369
10 678 1302 2196 3189
11 1265 2399 3949
12 2335 4371
13 4240

Table 3.4: Average number of attribute sets simultaneously stored in memory when
enumerating by order of increasing cardinality

As expected, the average size of the set of attribute sets increases with the
number of possible attributes. For a given number of attributes, the size tends to
increase, at least initially, with the average size of the descriptions. However, it
appears important to note that the size starts decreasing once the context becomes
saturated enough. We believe that this is due to the fact that fewer implications
are valid in those extremely dense contexts, which increases the size of �. When
most attribute sets are closed underB� , the cardinality di�erence between new sets
and the one that generated them is smaller and, as a result, they are used more
quickly. Table 3.5 shows the average maximal number of sets in memory along with
the maximal number found during the 5000 runs of the algorithm.

The maximal number of attribute sets once again increases with the number of
attributes and the size of the descriptions. Figure 3.11 shows the evolution of the

36

37 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

avDescnnbAtt 5 6 7 8 9 10 11 12 13 14 15
1 12|14 18|25 25|39 33|54 41|61 50|77 60|83 70|102 81|115 92|127 103|141
2 12|14 22|26 35|46 50|75 64|104 76|120 88|151 99|169 110|203 122|200 134|244
3 12|14 22|24 38|49 62|93 88|152 116|186 142|249 168|334 189|352 207|388 223|380
4 22|25 39|49 73|92 121|171 171|262 219|351 263|511 308|592 349|678 385|770
5 39|55 76|93 142|186 235|315 337|509 430|686 514|900 590|1077 666|1262
6 76|96 145|180 264|345 439|600 637|938 820|1291 978|1646 1113|1972
7 146|191 270|350 496|657 826|1188 1185|1737 1522|2456 1800|2956
8 271|360 505|672 944|1225 1529|2322 2145|3304 2690|4198
9 498|701 982|1361 1791|2529 2809|3905 3847|5900
10 959|1362 1883|2580 3293|4716 4995|7680
11 1829|2616 3478|4975 5899|8891
12 3378|5208 6317|9680
13 6061|9927

Table 3.5: Average maximal and maximal number of attribute sets simultaneously
stored in memory when enumerating by order of increasing cardinality

number of attribute sets during the execution of the algorithm fornbAtt between 9
and 15 foravDesc= 4 and avDesc= 6.

The number of attributes steadily increases then stabilizes. We suppose that the
algorithm generates sets increasingly faster while the cardinality increases and, once
it reaches the cardinality for which the lattice is the widest, many sets of the second
half of the lattice have already been constructed and the destruction rate catches
up with the construction rate.

Lectic Order

We then looked at the lectic order. While enumerating in lectic order could be
done with Next Closure instead, this order has some interesting e�ects on the
space complexity. Table 3.6 shows the average number of sets simultaneously stored
during the course of the enumeration in lectic order for di�erent values ofnbAtt and
avDesc.

avDescnnbAtt 5 6 7 8 9 10 11 12 13 14 15
1 3.4 5.0 6.6 8.3 10.1 12.3 14.6 17.1 20.0 22.9 25.8
2 3.9 6.9 10.9 15.0 18.4 21.3 23.6 25.7 27.7 29.9 32.3
3 3.9 7.1 13.5 21.4 29.2 36.9 43.8 50.5 55.3 58.3 62.1
4 7.0 13.8 26.0 41.5 57.2 71.2 83.7 96.3 108 117
5 13.2 26.4 49.7 79.3 109.7 136.1 159 179 200
6 25.6 51.1 94.0 148.2 203.1 253 294 330
7 50.0 97.7 176.2 272.5 370 458 530
8 96.7 186.8 326.2 491 656 802
9 187.9 354.3 599 871 1145
10 358.8 667 1085 1536
11 691 1238 1947
12 1306 2265
13 2419

Table 3.6: Average number of attribute sets simultaneously stored when enumerat-
ing in lectic order

Expectedly, the evolution of the average number of attribute sets during the
enumeration in lectic order follows the same rules as in the increasing cardinality

37

3.5. ORDERS AND SPACE COMPLEXITY 38

(a) nbAtt = 9 and avDesc = 4 (b) nbAtt = 9 and avDesc = 6

(c) nbAtt = 10 and avDesc = 4 (d) nbAtt = 10 and avDesc = 6

(e) nbAtt = 11 and avDesc = 4 (f) nbAtt = 11 and avDesc = 6

(g) nbAtt = 12 and avDesc = 4 (h) nbAtt = 12 and avDesc = 6
38

39 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

(a) nbAtt = 13 and avDesc = 4 (b) nbAtt = 13 and avDesc = 6

(c) nbAtt = 14 and avDesc = 4 (d) nbAtt = 14 and avDesc = 6

(e) nbAtt = 15 and avDesc = 4 (f) nbAtt = 15 and avDesc = 6

Figure 3.11: Evolution of the number of attribute sets during the enumeration in
increasing cardinality order

39

3.5. ORDERS AND SPACE COMPLEXITY 40

order as it increases with both the number of attributes and the size of the descrip-
tions. Table 3.7 shows the average maximal number of sets in memory along with
the maximal number found during the 5000 runs of the enumeration in lectic order.

avDescnnbAtt 5 6 7 8 9 10 11 12 13 14 15
1 7|11 10|21 13|37 17|42 21|46 25|64 30|77 36|90 42|99 48|133 54|154
2 7|11 14|25 23|44 31|67 38|95 44|104 49|136 54|135 58|134 63|159 67|151
3 7|10 16|24 29|50 45|84 60|130 75|154 88|203 100|238 110|289 116|298 124|307
4 26|29 32|52 58|95 88|160 117|235 142|333 165|405 187|415 207|478 225|520
5 32|56 63|99 111|185 167|332 221|430 268|609 308|755 341|819 376|952
6 64|99 123|197 210|372 310|607 405|752 489|1127 557|1221 617|1292
7 126|213 237|405 392|688 563|1084 729|1474 872|1787 985|2004
8 248|436 451|779 720|1280 1007|2045 1275|2656 1508|2959
9 479|882 847|1622 1310|2541 1769|3560 2208|4314
10 910|1776 1572|3284 2343|5167 3088|6124
11 1723|3536 2881|5616 4158|9757
12 3197|6588 5173|11592
13 5818|12813

Table 3.7: Average maximal and maximal number of attribute sets simultaneously
stored in memory when enumerating in lectic order

Here, even though the evolution of the maximal number and average maximal
number of sets follows the same rules as the previous order, we observe that the
di�erence between the average and the all-time maximum is much greater. Figure
3.13 shows the evolution of the number of attribute sets during the enumeration in
lectic order for nbAtt between 10 and 15 foravDesc= 4 and avDesc= 6.

A clear pattern emerges here. The size ofSets rapidly increases, stabilizes then
decreases slightly multiple times during the computation. We assume that each
dip corresponds to an attribute. After a singleton containing the attributei, the
algorithm considers all the elements of � for whichi is the smallest attribute. Due
to the lectic order being used in the successor relation, the new sets are quickly
used and the size ofSets stabilizes before, ultimately, starting to decrease. As we
progress in the computation, the attributei becomes smaller and more sets begin
with i. Thus, this pattern gets bigger.

Reverse Lectic Order

Finally, we looked at the reverse lectic order. We chose it because of its extreme
incompatibility with the lectic order used for the generation of the sets, which,
we thought, would induce a high spatial complexity. Table 3.8 shows the average
number of sets simultaneously stored during the course of the enumeration in reverse
lectic order for di�erent values of nbAtt and avDesc.

Once again, the space required increases with the number of possible attributes
and the average size of a description. But it increases faster than for the two previous
orders. Table 3.9 shows the maximal and average maximal number of sets for the
reverse lectic order.

The increase in the average and all-time maximal number of attributes is also
much steeper than for the previous orders. Figure 3.15 shows the evolution of the
number of attribute sets during the enumeration in reverse lectic order fornbAtt
between 10 and 15 foravDesc= 4 and avDesc= 6.

40

41 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

(a) nbAtt = 9 and avDesc = 4 (b) nbAtt = 9 and avDesc = 6

(c) nbAtt = 10 and avDesc = 4 (d) nbAtt = 10 and avDesc = 6

(e) nbAtt = 11 and avDesc = 4 (f) nbAtt = 11 and avDesc = 6

(g) nbAtt = 12 and avDesc = 4 (h) nbAtt = 12 and avDesc = 6
41

3.5. ORDERS AND SPACE COMPLEXITY 42

(a) nbAtt = 13 and avDesc = 4 (b) nbAtt = 13 and avDesc = 6

(c) nbAtt = 14 and avDesc = 4 (d) nbAtt = 14 and avDesc = 6

(e) nbAtt = 15 and avDesc = 4 (f) nbAtt = 15 and avDesc = 6

Figure 3.13: Evolution of the number of attribute sets during the enumeration in
lectic order

42

43 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

(a) nbAtt = 9 and avDesc = 4 (b) nbAtt = 9 and avDesc = 6

(c) nbAtt = 10 and avDesc = 4 (d) nbAtt = 10 and avDesc = 6

(e) nbAtt = 11 and avDesc = 4 (f) nbAtt = 11 and avDesc = 6

(g) nbAtt = 12 and avDesc = 4 (h) nbAtt = 12 and avDesc = 6
43

3.5. ORDERS AND SPACE COMPLEXITY 44

(a) nbAtt = 13 and avDesc = 4 (b) nbAtt = 13 and avDesc = 6

(c) nbAtt = 14 and avDesc = 4 (d) nbAtt = 14 and avDesc = 6

(e) nbAtt = 15 and avDesc = 4 (f) nbAtt = 15 and avDesc = 6

Figure 3.15: Evolution of the number of attribute sets during the enumeration in
reverse lectic order

44

45 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

avDescnnbAtt 5 6 7 8 9 10 11 12 13 14 15
1 8.5 12.8 17.2 21.7 26.5 31.4 36.6 42.11 47.6 53.4 59.6
2 10.5 19.0 29.1 39.8 50.1 60.2 69.4 78.8 88.2 96.9 105
3 10.9 21.5 38.6 58.9 79.8 100 120 139 156 171 187
4 21.9 43.0 75.3 113 151 189 224 258 288 317
5 44.3 84.3 143 211 279 342 400 454 508
6 87.4 163 269 388 502 605 697 781
7 170 311 499 699 891 1059 1196
8 329 587 911 1244 1552 1802
9 625 1094 1644 2182 2659
10 1177 2011 2935 3795
11 2184 3648 5179
12 3987 6529
13 7137

Table 3.8: Average number of attribute sets simultaneously stored in memory when
enumerating in reverse lectic order

avDescnnbAtt 5 6 7 8 9 10 11 12 13 14 15
1 14|18 22|33 29|52 36|66 44|76 52|92 61|100 70|117 79|132 88|140 98|164
2 17|18 30|35 46|66 63|95 80|138 96|169 111|186 126|219 140|242 154|277 167|306
3 17|18 34|35 58|68 89|129 122|189 155|237 185|291 216|350 243|408 267|460 292|531
4 34|35 65|68 111|133 167|242 226|325 284|423 337|521 389|656 437|787 482|952
5 67|68 124|133 208|262 307|426 410|587 504|828 591|927 673|1121 756|1312
6 130|133 238|262 389|503 560|855 727|1065 880|1375 1018|1674 1144|1817
7 250|262 452|519 719|1032 1004|1457 1279|2042 1524|2394 1728|2738
8 482|519 853|1032 1312|1885 1782|2885 2218|3379 2578|4065
9 917|1032 1592|2057 2371|3724 3123|4904 3792|6074
10 1728|2057 2934|4106 4243|6696 5440|8812
11 3218|4106 5341|7829 7502|12142
12 5903|8203 9581|15628
13 10676|16396

Table 3.9: Average maximal and maximal number of attribute sets simultaneously
stored in memory when enumerating in reverse lectic order

The general appearance of the curve is once again very di�erent. In reverse lectic
order, the number of attribute sets in the memory skyrockets to its maximum before
diminishing slowly.

3.5.2 Comparisons between Orders

In this section, we present a comparison of the three orders based on the data
presented for each one. We compared the evolution of the average, average maximal
and all-time maximal size of the set of attribute sets when the average size of a
description varies. From now on, the increasing cardinality order will be in red, the
lectic order in blue and the reverse lectic order in green.

Average Number of Attribute Sets

We started by comparing the evolution of the average number of attribute sets for
the three orders. In Figure 3.16, each curve shows the average number of attribute
sets for a givennbAtt and an avDescbetween 1 andnbAtt � 1.

We observe that the lectic order clearly has the lowest space requirements in

45

3.5. ORDERS AND SPACE COMPLEXITY 46

average and the slowest increase of the three orders considered here. The reverse
lectic order has the highest space requirements and the fastest increase and the
increasing cardinality order is in-between. It is interesting to remark that the curve
of the increasing cardinality order starts decreasing slightly whenavDescapproaches
nbAtt while the curve of the lectic order stabilizes and that of the reverse lectic order
keeps increasing.

Average Maximal Number of Attribute Sets

We then made the same comparison for the average maximal number of sets -
arguably the most interesting data, as the amount of memory needed ultimately
depends on it. In Figure 3.17, each curve shows the average maximal number of
attribute sets for a givennbAtt and an avDescbetween 1 andnbAtt � 1.

Once again, the lectic order seems to be the most e�cient with the slowest
increase while the reverse lectic order is the least e�cient. The increasing cardinality
order once again behaves di�erently as its average maximal number of set starts
stabilizing early whenavDescincreases while the lectic order keeps increasing longer
before �nally stabilizing, and the reverse lectic order does not stabilize at all.

Maximal Number of Attribute Sets

Lastly, we considered the evolution of the maximal number of sets simultaneously
stored in memory over the 5000 runs of each algorithm. In Figure 3.18, each curve
shows the maximal number of attribute sets found simultaneously for a givennbAtt
and an avDescbetween 1 andnbAtt � 1.

These are, perhaps, the most interesting curves because we clearly see that the
lectic order, the order with the best results on average, has speci�c cases in which
it performs worse than the increasing cardinality order. When the contexts become
denser, the maximal number of sets found for the lectic order exceed that of the
increasing cardinality order. From this, we can deduce that the variance of the
maximal space requirements for the enumeration in lectic order increases with the
average number of attributes per object and becomes much higher than for the
enumeration in increasing cardinality order when the contexts become denser.

Comparison of the Behaviours of the Orders

To better understand why these orders behave di�erently, we must analyse the three
behaviours on the same contexts. Figure 3.20 shows the evolution of the number of
sets in the memory during the execution of the algorithm on a single context for the
three orders plotted on the same graph.

The most obvious di�erence between the orders is that the lectic order is the
only one for which the amount of sets decreases before increasing again in rapid
successions. In increasing cardinality order and reverse lectic order, the amount
of sets increases roughly once before plummeting. This e�ect is most clear in the
reverse lectic order in which a very high number of sets are generated in the beginning
with hardly any set removed. We believe that this is due to the fact that setsB
are generated from their lectically greatest subsetA. When B is constructed and
added, all its subsetsC 6� A are greater thanA in reverse lectic order and, thus,

46

47 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

(a) nbAtt = 8 (b) nbAtt = 9

(c) nbAtt = 10 (d) nbAtt = 11

(e) nbAtt = 12 (f) nbAtt = 13

(g) nbAtt = 14 (h) nbAtt = 15

Figure 3.16: Comparison of the average number of attribute sets (Green : Reverse
lectic, Red : Increasing cardinality, Blue : Lectic)

47

3.5. ORDERS AND SPACE COMPLEXITY 48

(a) nbAtt = 8 (b) nbAtt = 9

(c) nbAtt = 10 (d) nbAtt = 11

(e) nbAtt = 12 (f) nbAtt = 13

(g) nbAtt = 14 (h) nbAtt = 15

Figure 3.17: Comparison of the average maximal number of attribute sets (Green :
Reverse lectic, Red : Increasing cardinality, Blue : Lectic)

48

49 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

(a) nbAtt = 8 (b) nbAtt = 9

(c) nbAtt = 10 (d) nbAtt = 11

(e) nbAtt = 12 (f) nbAtt = 13

(g) nbAtt = 14 (h) nbAtt = 15

Figure 3.18: Comparison of the worst cases for the maximal number of attribute
sets (Green : Reverse lectic, Red : Increasing cardinality, Blue : Lectic)

49

3.5. ORDERS AND SPACE COMPLEXITY 50

(a) nbAtt = 9 and avDesc = 4 (b) nbAtt = 9 and avDesc = 6

(c) nbAtt = 10 and avDesc = 4 (d) nbAtt = 10 and avDesc = 6

(e) nbAtt = 11 and avDesc = 4 (f) nbAtt = 11 and avDesc = 6

(g) nbAtt = 12 and avDesc = 4 (h) nbAtt = 12 and avDesc = 6
50

51 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

(a) nbAtt = 13 and avDesc = 4 (b) nbAtt = 13 and avDesc = 6

(c) nbAtt = 14 and avDesc = 4 (d) nbAtt = 14 and avDesc = 6

(e) nbAtt = 15 and avDesc = 4 (f) nbAtt = 15 and avDesc = 6

Figure 3.20: Comparison of the behaviors of the three orders on the same contexts
(Green : Reverse lectic, Red : Increasing cardinality, Blue : Lectic)

51

3.5. ORDERS AND SPACE COMPLEXITY 52

not yet considered. As such, it is necessary to wait until we have considered every
C (and their successors) before we can removeB from the memory. Furthermore,
attribute sets with the highest number of successors are the smallest in reverse lectic
order. This most likely causes the number of sets to rise quickly until attribute sets
that have one or no successor are reached, at which point the amount of sets starts
decreasing steadily.

The same e�ect seems to play a role in the increasing cardinality order. How-
ever, this order being closer to the lectic order, sets are treated sooner after their
construction which slows the increase. Besides, each cardinality has some attribute
sets with a small number of successors. This averages the number of successors and
slows the overall increase in attribute sets in memory.

Example of Enumeration in the Lectic Order

To give an even better idea of the behaviours of the di�erent orders, here are the
three algorithms on our running example.

First, the lectic order :

; 00= ;.
From ; we constructa, b, c, d and e.

We havee, d, c, b, a. The sete is the smallest and is a successor.
e00= e.
From e we do not construct anything because no attribute is greater thane.

We haved, c, b, a. The setd is the smallest and is a successor.
d00= d.
From d we constructde.

We havede, c, b, a. The setde is the smallest and is a successor.
de00= de.
From de we do not construct anything.

We havec, b, a. The setc is the smallest and is a successor.
c00= c.
From c we constructcd and ce.

We havece, cd, b, a. The setce is the smallest and is a successor.
ce00= ce.
From ce we constructcd.

We havecd (from c), cd (from ce), b, a. The setcd (from c) is the smallest and is a
successor.
cd00= bcdso cd ! bcdis added to the basis.
From cd we do not construct anything becausecd� e = bcdeand b is lesser thanc.

We havecd(from ce),b,a. The setcd(from ce) is the smallest but is not a successor.
We haveb, a. The setb is the smallest and is a successor.

52

53 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

b00= b
From b we constructbc,bd and be.

We havebe,bd,bc,a. The setbeis the smallest and is a successor.
be00= bdeso be! bdeis added to the basis.
From bewe constructbde.

We havebd,bde,bc,a. The setbd (from b) is the smallest and is a successor.
bd00= bd.
From bd we constructbc,bde.

We havebde(from be), bde(from bd), bc(from b), bc(from bd), a. bde(from be) is
the smallest but is not a successor.
We havebde(from bd), bc (from b), bc (from bd), a. bde(from bd) is the smallest
and is a successor.
bde00= bde.
From bdewe constructbc.

We have bc (from b), bc (from bd), bc (from bde), a. The set bc (from b) is the
smallest and is a successor.
bc00= bcdso bc! bcdis added to the basis.
From bcwe constructbcd.

We havebc(from bd), bc(from bde),bcd,a. The setbc(from bd) is the smallest but
is not a successor.
We have bc (from bde), bcd,a. The set bc (from bde) is the smallest but is not a
successor.
We havebcd,a. The setbcdis the smallest and is a successor.
bcd00= bcd.
From bcdwe constructbcde.

We havebcde,a. The setbcdeis the smallest and is a successor.
bcde00= abcdeso bcde! abcdeis added to the basis.
From bcdewe do not construct anything.

We havea. The seta is the smallest and is a successor.
a00= ab so a ! ab is added to the basis.
From a we constructab.

We haveab. The setab is the smallest and is a successor.
ab00= ab.
From ab we constructabcd,abdand abde.

We haveabd,abde,abcd. The setabdis the smallest and is a successor.
abd00= abcdeso abd! abcdeis added to the basis.
From abdwe do not construct anything becauseabcdeis the �nal set.

We have abdeand abcd. The logical closure ofabde is updated to abcde. It is

53

3.5. ORDERS AND SPACE COMPLEXITY 54

removed from the list.
We haveabcd. The logical closure ofabcdis updated to abcde. It is removed from
the list.
We have no more sets. The algorithm ends.

The pattern previously described is clearly visible here. The amount of sets in
memory is low when we reach singletons and increases fast in-between.

Example of Enumeration in the Reverse Lectic Order

Now, let us enumerate in reverse lectic order on the same running example :

; 00= ;. From ; we constructa, b, c, d and e.
We havea, b, c, d and e. The seta is the smallest and is a successor.
a00= ab so a ! ab is added to the basis.
From a we constructab.

We haveb, ab, c, d and e. The setb is the smallest and is a successor.
b00= b.
From b we constructbc,bd,be.

We haveab, c, bc,d, bd,e and be. The setab is the smallest and is a successor.
ab00= ab.
From ab we constructabc,abdand abe.

We have c, bc, abc, d, bd, abd, e, be and abe. The setc is the smallest and is a
successor.
c00= c.
From c we constructcd and ce.

We havebc,abc,d, bd,abd,cd, e, be,abeand ce. The setbcis the smallest and is a
successor.
bc00= bcdso bc! bcdis added to the basis.
From bcwe constructbcd.

We have abc, d, bd, abd, cd, bcd, e, be, abeand ce. The logical closure ofabc is
updated to abcd.
We haved, bd,abd,cd, bcd,abcd,e, be,abeand ce. The setd is the smallest and is
a successor.
d00= d.
From d we constructde.

We havebd,abd,cd, bcd,abcd, e, be,abe,ce and de. The setbd is the smallest and
is a successor.bd00= bd.
From bd we constructbcand bde.

We havebc(from bd), abd,cd, bcd,abcd,e, be,abe,ce,de and bde. The setbcis the
smallest but is not a successor.
We haveabd, cd, bcd,abcd,e, be,abe,ce, de and bde. The setabd is the smallest
and is a successor.

54

55 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

abd00= abcdeso abd! abcdeis added to the basis.
From abdwe do not construct anything.

We havecd, bcd,abcd,e, be,abe,ce,de and bde. The setcd is the smallest and is a
successor.
cd00= bcdso cd ! bcdis added to the basis.
From cd we do not construct anything becausebcdhas an attribute lesser thanc.

We havebcd,abcd,e, be,abe,ce, de and bde. The setbcdis the smallest and is a
successor.
bcd00= bcd.
From bcdwe constructbcde.

We haveabcd,e, be,abe,ce,de,bdeand bcde. The logical closure ofabcdis updated
to abcde(and removed).
We havee, be,abe,ce,de, bdeand bcde. The sete is the smallest and is a successor.
e00= e.
From e we do not construct anything.

We havebe,abe,ce, de, bdeand bcde. The setbeis the smallest and is a successor.
be00= bdeso be! bdeis added to the basis.
From bewe constructbde.

We haveabe,ce, de, bde(from bd), bde(from be) andbcde. The logical closure of
abeis updated to abcde(and removed).
We havece, de, bde(from bd), bde(from be) andbcde. The setce is the smallest
and is a successor.
ce00= ce.
From ce we constructcd.

We havecd, de, bde(from bd), bde(from be) andbcde. The setcd is the smallest
but is not a successor.
We havede, bde(from bd), bde(from be) andbcde. The setde is the smallest and
is a successor.
de00= de
From de we do not construct anything.

We havebde(from bd), bde(from be) andbcde. The setcde(from bd) is the smallest
and is a successor.
bde00= bde.
From bdewe constructbc.

We havebc,bde(from be) andbcde. The setbcis the smallest but is not a successor.
We havebde(from be) andbcde. The setbde(from be) is the smallest but is not a
successor.
We havebcde. The setbcdeis the smallest and is a successor.
bcde00= abcdeso bcde! abcdeis added to the basis.
From bcdewe do not construct anything.

55

3.5. ORDERS AND SPACE COMPLEXITY 56

In reverse lectic order, we can observe the number of sets skyrocketting, staying
high and plummetting near the end.

Example of Enumeration in the Increasing Cardinality Order

And �nally, the enumeration in order of increasing cardinality :

; 00= ;.
From ; we constructa, b, c, d and e.

We havea, b, c, d and e. The seta is one of the smallest and is a successor.
a00= ab so a ! ab is added to the basis.
From a we constructab.

We haveb, c, d, e and ab. The setb is one of the smallest and is a successor.
b00= b.
From b we constructbc,bd,be.

We havec, d, e, ab,bc,bdand be. The setc is one of the smallest and is a successor.
c00= c.
From c we constructcd and ce.

We have d, e, ab, bc, bd, be, cd and ce. The setd is one of the smallest and is a
successor.
d00= d.
From d we constructde.

We havee, ab, bc, bd, be, cd, ce and de. The sete is one of the smallest and is a
successor.
e00= e.
From e we do not construct anything.

We have ab, bc, bd, be, cd, ce and de. The setab is one of the smallest and is a
successor.
ab00= ab.
From ab we constructabc,abdand abe.

We havebc, bd, be, cd, ce, de, abc,abd and abe. The setbc is one of the smallest
and is a successor.
bc00= bcdso bc! bcdis added to the basis.
From bcwe constructbcd.

We havebd, be,cd, ce, de, abc,abd,abeand bcd. The setbd is one of the smallest
and is a successor.
bd00= bd.
From bd we constructbcand bde.

56

57 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

We havebc(from bd), be,cd, ce,de, abc,abd,abe,bcdand bde. The setbc(from bd)
is one of the smallest but is not a successor.
We havebe,cd, ce, de, abc,abd,abe,bcdand bde. The setbeis one of the smallest
and is a successor.
be00= bdeso be! bdeis added to the basis.
From bewe constructbde.

We havecd, ce, de, abc,abd,abe,bcd, bde(from bd) andbde(from be). The setcd
is one of the smallest and is a successor.
cd00= bcdso cd ! bcdis added to the basis.
From cd we do not construct anything.

We havece, de, abc,abd, abe,bcd,bde(from bd) and bde(from be). The setce is
one of the smallest and is a successor.
ce00= ce.
From ce we constructcd.

We havecd (from ce), de, abc,abd,abe,bcd,bde(from bd) andbde(from be). The
set cd (from ce) is the smallest but is not a successor.
We havede, abc,abd,abe,bcd,bde(from bd) andbde(from be). The setde is one
of the smallest and is a successor.
de00= de.
From de we do not construct anything.

We haveabc,abd,abe,bcd, bde(from bd) andbde(from be). The logical closure of
abcis updated to abcd.
We haveabd,abe,bcd,bde(from bd), bde(from be) andabcd. The set abdis one of
the smallest and is a successor.
abd00= abcdeso abd! abcdeis added to the basis.
From abdwe do not construct anything.

We haveabe,bcd, bde(from bd), bde(from be) andabcd. The logical closure ofabe
is updated to abcde(and removed).
We havebcd, bde(from bd),bde(from be) andabcd. The setbcdis one of the smallest
and is a successor.
bcd00= bcd
From bcdwe constructbcde.

We havebde(from bd), bde(from be), abcdand bcde. The setbde(from bd) is the
smallest and is a successor.
bde00= bde.
From bdewe constructbc.

We have bc, bde(from be), abcdand bcde. The setbc is the smallest but is not a
successor.
We havebde(from be), abcdand bcde. The setbde(from be) is the smallest but is
not a successor.
We have abcdand bcde. The logical closure ofabcdis updated to abcde(and re-

57

3.5. ORDERS AND SPACE COMPLEXITY 58

moved).
We havebcde. The setbcdeis one of the smallest and is a successor.
bcde00= abcdeso bcde! abcdeis added to the basis.
From bcdewe do not construct anything.

Here, again, the number of attribute sets grows in the beginning before plum-
metting near the end. However, we can see that the increase is slower than in the
reverse lectic order.

Conclusion on the Comparison

All these results suggest that the lectic order is the most e�cient, in terms of space
consumption, of the three orders considered here. It performs the best in terms of
average and maximal number of sets simultaneously in memory in all cases except
for extremely dense contexts which rarely appear in practice. The reverse lectic
order obtains the worst results while the increasing cardinality order is in-between.
However, the algorithm we used for the enumeration in increasing cardinality order
has no speci�c order for the treatment of attribute sets of a given cardinality. Con-
sidering the results we have, we believe that treating the attribute sets of the same
cardinality in lectic order would improve the results whereas using the reverse lectic
order would worsen them slightly.

We believe that the e�ciency of the lectic order is due to the de�nition of the
successor relation being based on it. A successorB of a setA is closer toA in lectic
order than it is in reverse lectic order, so it is treated sooner and, consequently, is
kept in memory for a shorter time. This is consistent with our observations that
the reverse lectic order is the least e�cient order. We speculate that the space
complexity of an order depends on its similarity with the lectic order. Thus, orders
� o such that Y � o X and X � lec Y for a high number of setsX and Y would
perform signi�cantly less well because the sets would remain in memory longer.

3.5.3 Optimization

Our experiments were realized using a generic algorithm in order to compare the
behaviour of di�erent orders. However, the number of sets in memory could be
reduced for each order.

As a general rule, when computing the successors of a setA, the setsB that are
lesser thanA in the enumeration order need not be taken into account. Indeed, all
the pseudo-intents lesser thanA being known, the setB is directly equal to B� (B)
and, thus, will not change and become greater thanA. As such, there is no need to
add and conserve it.

The complexity of checking whether the newly constructed potential successors
of A are lesser thanA is obviously dependent on the considered order. In the cases
of the lectic and reverse lectic orders, comparing two sets can be done in the size
of A which, while relatively easy to do, would increase the runtime. In the case
of the increasing cardinality order, the test simply requires that we compare the
cardinalities of the two sets, which can be done in constant time.

58

59 CHAPTER 3. CHOOSING THE ENUMERATION ORDER

When the sets are enumerated in increasing cardinality order with the closure of
every set of cardinalityn known before the computation of their successors, such as
Algorithm 11, potential successors of cardinalityn � 1 have the closure of all their
subsets known so their logical closure will not be updated. Thus, it is possible to
check whether they are successors on the spot instead of waiting, further reducing
the space requirements.

Once again, we are faced with the possibility to trade runtime for space com-
plexity and vice versa.

3.6 Logical Closure

As we have seen in Section 2.5, the logical closure of a setA under a set of implica-
tions I can be computed inO(jAj 2 � jI j) with the naive algorithm or in O(jAj � jIj)
using LinClosure. However, in our algorithm, we need to compute the logical
closures ofA under B without the certainty that every implication in B is known.
For this reason, we have to be able to computeB� (A) in several, separate iterations
without sacri�cing complexity.

The naive algorithm (Algorithm 5) can easily be run in multiple steps. Let us
suppose we have an attribute setA and a set of implicationsI A � B . In order
to compute I �

A (A), we must scan the set of implications once forA and then once
for every attribute in I �

A (A) n A. This is a total of jI �
A (A) n Aj + 1 inclusion tests

in the worst case. Similarly, in order to computeB� (A) from I �
A (A), we need a

maximum of jB � (A) n I �
A (A)j + 1 inclusion tests. Thus, we must perform a total

of jI �
A (A) n Aj + jB � (A) n I �

A (A)j = jB � (A) n Aj inclusion tests, which is what the
naive algorithm would have required in the �rst place.

The same thought process can be applied toLinClosure but the initialization
phase of the algorithm can be problematic. If the counters and lists are kept after the
partial logical closure, it requires the same number of operations as the batch version.
However, the space requirements are too high. If the initializations are done again,
from scratch, everytime the logical closure is updated, then the computation time
is dramatically increased. As we saw in Section 2.5, the initialization phase already
consumes a signi�cant amount of time so the use ofLinClosure in this context
may depend on the number of logical closures we have to compute simultaneously.
That is, it may depend on the chosen order. Concerning the closure phase itself,
the initial partial closure requires jI �

A (A)j � jI A j operations. After that, assuming
we keep the lists and counters as they are, computingB� (A) from I �

A (A) requires
that we update the counters of the implications inB n I A a total of jAj times, then
those of all the implications inB a total of B� (A) n I �

A (A) times, which sums up to
jBj � B � (A) operations.

59

Chapter 4

Application to Relational Contexts

Contents
4.1 Motivation . 61

4.2 Relational Data . 61

4.2.1 Description Logics . 61

4.2.2 Related Works . 64

4.3 Relational Contexts . 65

4.4 Computing the Duquenne-Guigues Basis of Relational
Contexts . 66

4.4.1 Algorithm . 66

4.4.2 Example . 68

4.5 Scope of the Application 70

60

61 CHAPTER 4. APPLICATION TO RELATIONAL CONTEXTS

4.1 Motivation

Our initial goal was to learn ontologies from relational data expressed in description
logics. That is, we wanted to compute implications on a context in which objects
are described by both attributes and relations with other objects. The problem
with relational data is that, if we want to represent the relations using attributes
in a formal context, the number of attributes rapidly becomes too high for regular
algorithms. Even though we do not pretend to outperform methods that have been
proposed over the years ([7, 59, 89]), we wanted to see whether our algorithm would
work e�ciently on this type of data.

In this chapter, after a brief presentation of description logics as an example of
language for relational data, we propose a modi�cation of our algorithm that com-
putes the Duquenne-Guigues basis of formal contexts that contain a great number
of attributes expressing relations between objects. We show that the adaptation
to relational contexts is straighforward and that it can be used with any language
as long as the relations can be expressed as attributes that are functions of sets of
attributes.

4.2 Relational Data

4.2.1 Description Logics

The term concept used in this section refers to concepts in description logics.

Syntactically, description logics use a set ofconcept namesNC (unary predi-
cates), a set ofrole namesNR (binary predicates) and a set ofobject namesNO

(constants). Conceptsare constructed by combining concept and role names with
constructors such as

� u

� t

� :

� 9

� 8

� � n

� � n

The set of constructors that a description logic language uses de�nes both its
representational power and its complexity. Indeed, adding a new constructor al-
lows for more complex knowledge to be represented but increases the complexity of
operations such as testing the subsumption. For example, in the description logic
ALC and for any concept nameA, any conceptsC and D and any role namer , the
following constructions are concepts :

61

4.2. RELATIONAL DATA 62

� >

� ?

� A

� C u D

� C t D

� : C

� 9 r:C

� 8 r:C

Concepts constructed using role names, of the form9r:C and 8r:C , are said to
have a depth ofn if the concept C used in the construction has a depth ofn � 1.
Concept names have a depth of 0 and are said to beatomic concepts.

Semantically, a description logic associates concepts to sets of instances through
an interpretation I = (� I ; :I), where � I is the domain and :I the interpretation
function that maps subsets of �I to concept names and subsets of �I � � I to
role names. From this, the set of instances associated to constructed concepts is as
follows :

� > I = � I

� ? = ;

� (C u D)I = CI \ D I

� (C t D)I = CI [D I

� : C = � I n CI

� (9r:C)I = fx 2 � I j 9y; (x; y) 2 r I and y 2 CI g

� (8r:D)I = fx 2 � I j 8y; (x; y) 2 r I) y 2 CI g

In order to accurately describe knowledge in a particular domain, one must spec-
ify the relevant concepts and the relations that exist between them. In description
logics, relations are expressed by means of terminological axioms. For any two con-
ceptsA and B, the terminological axiom A v B means thatB subsumesA or that
the conceptB is more generalthan the conceptA. With the interpretation I , we
have that A v B if and only if A I � B I . When A v B and B v A, we noteA � B ,
meaning that A is equivalent toB (their interpretations are the same) or thatA is
de�ned by B.

Assertional axiomsassign object names to concepts and pairs of object names
to role names. As such, given two object nameso1 ando2, a conceptC and a role
namer , the axiom o1 : C means that o1 belongs to the conceptC and (o1; o2) : r
means thato2 ful�lls the role r for o1.

62

63 CHAPTER 4. APPLICATION TO RELATIONAL CONTEXTS

The knowledge is contained in aknowledge basecomposed of aTBox and an
ABox. The TBox contains all the terminological axioms and, thus, the concepts
and their relations while the ABox contains theassertional axioms.

The concepts names being unary predicates and the object names constants, it
is easy to see that a formal context can be derived from the domain with domain
objects as objects, concept names as attributes and the relevant assertional axioms
of the ABox or the interpretation function itself as the incidence relation. In order
to translate the information on roles into the context, we have to also consider as
attributes the various non-atomic concepts built from roles. Assertional axioms of
the form (o1; o2) : r in the ABox mean that o2 ful�lls the role r for o1. As such,
o1 belongs to the concepts9r:C where C is a concept to whicho2 belongs. Thus,
the attributes \9 r:C " should describe the object \o1". Of course, the amount of
attributes in such a derived context quickly explodes as the number of concepts of
depth n is exponential in the number of concepts of depthn � 1.

An implication A ! B that holds in a context induced by a domain means
that every object that belongs to all the concepts (attributes) inA also belongs
to all the concepts inB . As such, it means that every object that belongs to the
concept

d
a2A a also belongs to the concept

d
b2B b, which would correspond to the

terminological axiomA v B. Of course, the truth of a terminological axiom is based
on the interpretation and we do not always have access to the whole domain and
only know the ABox. In these cases, using the implications of the formal context
derived from the ABox can help \learn" an approximation of the set of terminological
axioms.

For example, let us consider the following knowledge base composed of a TBox :

� Ball u Red v Toy

� Boy v Person

and the following ABox :

� o1 :Boy

� o2 :Ball u Red

� o3 :Person

� o4 :Chair u Big

� (o1; o2) : playWith

� (o3; o4) : own

This TBox contains the knowledge that all red balls are toys and all boys are
persons. The ABox contains four objects : a boy (who is also a person), a red ball
(which is also a toy), a person and a big chair. Additionally, we know that the boy
plays with the red ball and that the person owns the big chair. This knowledge about
objects can be rewritten in the following way using the existential quanti�cation on
roles :

63

4.2. RELATIONAL DATA 64

� o1 :Boy u Personu 9playWith: (Ball u Redu Toy)

� o2 :Ball u Redu Toy

� o3 :Personu 9own:(Chair u Big)

� o4 :Chair u Big

As we know that 9r:(C u D) � 9 r:C u 9r:D , the ABox can again be rewritten
as :

� o1 : Boy u Person u 9playWith: (Ball u Red u Toy) u 9playWith: (Ball u
Red)u 9playWith: (Ball u Toy) u 9playWith: (Redu Toy) u 9playWith:Ball u
9playWith:Red u 9playWith:Toy

� o2 :Ball u Redu Toy

� o3 :Personu 9own:(Chair u Big) u 9own:Chair u 9own:Big

� o4 :Chair u Big

Each object being described by a conjunction of concepts, it is possible to con-
sider each of these concepts as an attribute and build a formal context with 4 objects
and 17 attributes.

4.2.2 Related Works

Most works on learning terminological axioms in description logics through the com-
putation of implications use the same principle to reduce the number of attributes.
In description logics, we have9r:A v 9 r:B when A � B . This translates, in the in-
duced context, asA ! B) 9r:A ! 9r:B . It is known that A ! A00and, trivially,
A00 ! A. As such, we have that9r:A ! 9 r:A 00and 9r:A 00 ! 9 r:A. This means
that 9r:A � 9 r:A 00for every attribute set A. It is thus su�cient to consider only
attributes 9r:X with X closed.

The work of Rudolph [89] is the closest to ours as it also computes (in the
lectic order) the Duquenne-Guigues basis of contexts induced by knowledge bases
expressed in the description logicEL (u, 9). It starts with a context containing
attributes corresponding to atomic concepts and computes its intents and pseudo-
intents with Attribute Exploration ([51]). For every computed intentA and
every roler , it constructs a new attribute 9r:A and adds it to the context. It then
usesAttribute Exploration again on the new context. It goes on until it reaches
some arbitrary role depth. The resulting set of pseudo-intents, computed on the last
context, is the Duquenne-Guigues basis of the induced context. The main problem
with this method is that the same pseudo-intents can be found multiple times.
Indeed, if the setA is a pseudo-intent and contains only attributes corresponding to
atomic concepts, it is obvious thatA is a pseudo-intent in every context for every
role depth. Even if implications that have already been found are used to avoid
�nding them again, the closure of these pseudo-intents must be updated each and
every time, which needlessly consumes time.

In [7], Baader and Distel use the same principles to compute a basis inELgfp .
It is interesting because it replaces the classic:00closure operator by the DL-centric

64

65 CHAPTER 4. APPLICATION TO RELATIONAL CONTEXTS

:ii , which corresponds to the notion ofmost speci�c concept. This closure operator
associates to a set of domain objects the most speci�c concept to which all these
objects belong. This evidently corresponds to the classic:00operator but it has the
advantage that it can be computed using subsumption algorithms in description
logics (see [9]) and thus do not require that we compute the induced context.

Other works on the problem of combining formal concept analysis and description
logics include two theses by Sertkaya ([92]) and Distel ([36]) as well as the work of
Borchmann ([28, 27]) concerning the handling of errors in data sets during the
computation of terminological axioms.

4.3 Relational Contexts

If we want to use our algorithms on data with objects represented by both unary
(attributes) and binary (relations) predicates, we have to transform the information
provided by the relations into attributes in order to obtain a formal context. In order
to do that, we use the notion ofrelational dependencyto generalize the constructs
we �nd in di�erent languages, such as roles quanti�cators in description logics.

De�nition 13 A relational dependency is a bijectionr k that maps an attribute set
A to a single attribute r k(A) 62A such that, for any two attribute setsX and Y,
X ! Y) r k(X) ! r k(Y).

These relational dependencies help us represent the dependencies between at-
tributes in a relational context. Let us consider the example of description log-
ics where every concept corresponds to an attribute in the derived context. The
four attributes a, b, 9r1:(a u b) and 8r1:(a u b) are, as we have seen, such that
fa; bg ! fcg) 9r 1:(a u b) ! 9 r1:c and 8r1:(a u b) ! 8 r1:c. As such, we can
use the relational dependenciesr 1

1 and r 2
1 to represent respectively the existential

quanti�cation 9 and the universal quanti�cation 8 on the role r1. We would then
have that r 1

1(fa; bg) = 9r1:(a u b) and r 2
1(fa; bg) = 8r1:(a u b).

An attribute i for which there is no attribute setA and relational dependency
r k such that i = r k(A) is said to be atomic or of depth 0. An attribute j is said
to be of depth n if there is an attribute set A of depth n � 1 for which there is a
relational dependencyr k such that r k(A) = j . We assume there are no cycles in the
dependencies.

The de�nition of relational dependencies allows us to obtain information on
valid implications between attributes of depthn from implications which premises
contain attributes of depth n� 1. Indeed, onceA ! B is known, we can directly add
r k(A) ! r k(B) to the set of valid implications and use it to compute the necessary
logical closures. In the case wherer k(A) ! r k(B) is in the Duquenne-Guigues basis,
that is one less implication to �nd.

Proposition 8 For any attribute set A and any relation dependencyr k , we have
r k(A) ! r k(A 00) and r k(A 00) ! r k(A).

Proof For any attribute set A, we know that A ! A00 is valid. From the
de�nition of a relational dependency, we deduce thatr k(A) ! r k(A 00) is valid for

65

4.4. COMPUTING THE DUQUENNE-GUIGUES BASIS OF RELATIONAL
CONTEXTS 66

any r k . Similarly, the implication A00 ! A is always valid becauseA � A00 so
r k(A 00) ! r k(A) is valid too. �

Proposition 8 states that every attribute r k(A) is equivalent to the attribute
r k(A 00). As such, every object of the context described byr k(A) is also described by
r k(A) and vice versa. Thus, every attributer k(A) with A not closed is redundant.

Proposition 9 If C is a relational context andC2 is the context obtained by remov-
ing from C the redundant attributes, then, for every pseudo-intentP of C2, the set
P [fr k(X) 2 A j r k(X 00) 2 Pg is a pseudo-intent ofC.

Proof If P is a pseudo-intent ofC2 then, by de�nition, P is not closed and
contains the closure of all its subsets. SinceP [fr k(X) 2 A j r k(X 00) 2 Pg0 is equal
to P0, the set P [fr k(X) 2 A j r k(X 00) 2 Pg is not closed. For the same reasons,
it contains the closure of all its subsets. As such,P [f r k(X) 2 A j r k(X 00) 2 Pg is
a pseudo-intent ofC. �

We can obtain the Duquenne-Guigues basis of a relational context by computing
the basis of the same context minus the redundant attributes. While the number of
attributes is still high, the reduced context contains signi�cantly less attributes.

4.4 Computing the Duquenne-Guigues Basis of
Relational Contexts

Computing the basis of a context containing relational attributes can thus be done
on the reduced context, using the method presented in Section 3.3 in which sets are
constructed using attributes that are either atomic or of the formr k(A) where A is
closed. Evidently, using non-atomic attributesr k(A 00) requires knowing the closure
of A. This means that sets containingr k(A) - including the singleton fr k(A)g -
must be considered afterA. Fortunately, our work is all about choosing the order
in which we want to enumerate the sets.

4.4.1 Algorithm

Using our algorithm on relational contexts would be straightforward if all the at-
tributes were known in the beginning. This is not the case. If we want to use only
attributes that are atomic or constructed from intents, we must wait to know said
intents before using the attributes. The problem is that if a setr k(A 00) is added to
the list of \interesting" attributes only after A00has been found, the logical closure
of B [fr k(A 00)g has not been considered for setsB that are lesser thanA in the
chosen order (for which the set of successors has already been computed without
knowing this attribute was relevant). The most obvious solution is to store all the
sets B 2 � and compute the logical closure ofB [fr k(A 00)g everytime a newA00

is computed. This would certainly require an important amount of space because
of the exponential number of attribute sets in �. Algorithm 12 shows how to com-
pute the Duquenne-Guigues basis of a relational context with a maximum depth of
maxDepth.

66

67 CHAPTER 4. APPLICATION TO RELATIONAL CONTEXTS

Algorithm 12 Enumeration of Pseudo-Intents in Relational Contexts

1: Sets = f;g
2: Impl = ;
3: Att = fatomic attributesg
4: while Sets is not empty do
5: Pick the �rst set A in Sets
6: Update the logical closure ofA
7: if A has not changedthen
8: if A is a successor of the set it has been generated fromthen
9: B = A00

10: if A 6=B then
11: Impl = Impl [fA ! Bg
12: else
13: if Depth(B) < maxDepth then
14: Att = Att [fr k(B) j r k is a relational dependencyg
15: for every computed intentX and relational dependencyr k do
16: Sets = Sets[Impl � (fx 2 X j x < r k(B)g [fr k(B)g)
17: end for
18: end if
19: end if
20: for every attribute i 2 Att n A greater than min(A) do
21: Sets = Sets[Impl � (fa 2 A j a < i g [fig)
22: end for
23: end if
24: else
25: Place the newA in Sets according to the chosen order
26: end if
27: end while
28: return Impl

Proposition 10 Algorithm 12 terminates and returns the Duquenne-Guigues basis
of the input context.

Proof From an intent A we construct new attributesr k(A) such that the depth
of r k(A) is greater than the depth of A. The depth being bounded andr k being
bijective, we can only add a �nite number of attributes. For each attribute setB ,
we consider the setsB � i for every attribute i known whenB is considered, and
the setsB � j for every attribute j for each new attribute constructed withB . As
such, each attribute set is used to construct a �nite number of other attribute sets.
Each new attribute set being of greater cardinality, the algorithm terminates.

Propositions 8 and 9 imply that the algorithm returns the Duquenne-Guigues ba-
sis of the context without redundant attributes, which is equivalent to the Duquenne-
Guigues basis of the input context.�

It is important to note that, even though the algorithm enumerates the intents
and pseudo-intents of the context without the redundant attributes, the closures
themselves must be done on the initial context as it is impossible to know a priori
whether an attribute is redundant.

67

���� ��������
 ��� ���������
��
���
���� �� ����������
�������� �§

� ��� 	••ƒ�� �• �����ƒ•��� —��� � �� �� �• � �� �••�� �� ��� 	••ƒ�� �• �	��	��
�• �� �� � � �� ��� �•�•	� �• �����ƒ•��� �	������� �
 �	�	�����ˆ —��� ���� ��†�� �•
�� ��˜ –•�����•���� ƒ��	• ��••���� �� “�� ��� —���� �	��	� ������� �	 •�•�� �̂ ���
��•�����• �� ���ˆ ƒ���•�� •	•��ƒ�� �� ���	 �� ����� ��� ��� •�	ˆ ���•�� �����ƒ•���
�� �������	�˜

€
€
� �‚�•••�

–�••�� …˜�‰ �
�• �� �• �������	�� ����

��� •� ��	����� •�•� �ƒ‡���� � �� � „� � � �	� � …� •�•� �����ƒ•��� �� �� � �	� � �	�
� �������	 ™�� ����š
 ˜ –�••�� …˜� ���•������� ��� ������ ���	 �• �ƒ‡���� �	� ����� ����€
���	�˜ ����� �� � ��	•�� �������	�� �� �	��	�ˆ ���� �� ����	�� ��� �
����	���� ••�	€
��›�����	˜ –��• ��� �ƒ‡����� —� �ƒ���	 ��� ��	��
� � � œ ™�� � � � „ � � � � � …�� � � �
 � š
�	 —���� � � ��	���	� �†��ˆ �����ƒ•�� �• �� �� �� � �� „˜ ��� ������ ���	� �• ���
�ƒ‡���� ��� �� •����—� ‰

 � � ‰��
 ™�š�
 ™�š

 � „ ‰�� �� �

 � � ‰�� � �
 ™�š�
 ™�š�
 ™
 ™�šš�
 ™
 ™�šš�
 ™�
 ™�šš�
 ™�
 ™�šš�
 ™
 ™�š
 ™�šš�
 ™�
 ™�š
 ™�šš

 � … ‰�

��� ��•�����• ������ —��� ��� ��� �• �����ƒ•��� �		 œ��� �� �� � �˜
��� ����•�� �• � �� �˜ �� �� �	 �	��	� ��
 ™�š �� ����� �� ��� ���� �• �����ƒ•��� �	�
�		 œ��� �� �� ��
 ™�š �˜

ž� ��†� �� �� �� � �	�
 ™�š˜ ž� ������ �˜
��� ����•�� �• � �� �˜ �� �� �	 �	��	� ��
 ™�š �� ����� �� ��� ���� �• �����ƒ•��� �	�
�		 œ��� �� �� ��
 ™�š �
 ™�š �˜

�§

69 CHAPTER 4. APPLICATION TO RELATIONAL CONTEXTS

We haveb, c, d, r (;), ab,ac, ad, ar(;), r (a), ar(a). We chooseb.
The closure ofb is b. It is an intent so r (b) is added to the list of attributes and
Att = fa; b; c; d; r(;); r (a); r (b)g.

We have c, d, r (;), ab, ac, ad, ar(;), r (a), ar(a), bc, bd, br(;), br(a), r (b), ar(b),
br(b). We choosec.
The closure ofc is cd so we addc ! cd to the list of implications.

We haved, r (;), ab,ac, ad, ar(;), r (a), ar(a), bc,bd,br(;), br(a), r (b), ar(b), br(b),
cd. We choosed.
The closure ofd is cd so we addd ! cd to the list of implications.

We haver (;), ab, ac, ad, ar(;), r (a), ar(a), bc, bd, br(;), br(a), r (b), ar(b), br(b),
cd. We chooser (;).
The closure ofr (;) is r (;). It is an intent so r (r (;)) is added to the list of attributes
and Att = fa; b; c; d; r(;); r (a); r (b); r(r (;))g.

We have ab, ac, ad, ar(;), r (a), ar(a), bc, bd, br(;), br(a), r (b), ar(b), br(b), cd,
r (;)r (a), r (;)r (b), r (r (;)), ar(r (;)), br(r (;)), r (;)r (r (;)). We choose ab.
The closure ofab is A so we addab! A to the list of implications.
And so on.

The algorithm ends withAtt = fa; b; c; d; r(;); r (a); r (b); r(r (;)); r (acd); r(ar (;)r (b)); r (cd)g
and the following basis of implications :

� c ! cd

� d ! cd

� ab! A

� ar(;) ! ar(;)r (b)

� bcd! A

� br(;) ! A

� r (;)r (a) ! fo3g 0

� r (;)r (b) ! ar(;)r (b)

� r (;)r (r (;)) ! fo3g 0

� cdr(;) ! fo3g 0

� r (;)r (cd) ! A

The implications can be transposed in the description logic syntax, replacing
r (A) by 9r:A :

� c v d

� d v c

69

4.5. SCOPE OF THE APPLICATION 70

� a u bv ?

� a u 9r:> v 9 r:b

� bu c u d v ?

� bu 9r:> v ?

� 9 r:> u 9 r:a v
d

fo3g0

� 9 r:> u 9 r:b v a

� 9 r:> u 9 r:(9r:>) v
d

fo3g0

� c u d u 9r:> v
d

fo3g0

� 9 r:> u 9 r:(cd) v ?

4.5 Scope of the Application

Our algorithm can be used on any formal contexts in which attributes can be rep-
resented by relational dependencies. Some information on relations between objects
can easily be represented by such attributes.

� The knowledge "it is in a relation r with an object that is described byX ",
noted 9r:X in description logics, can be represented by the set of attributes
fr 1(Y) j Y � X g. If every object that isA is alsoB (A ! B), then something
that is in a relation r with an object that is A is also in a relationr with
something that is B . Thus, it corresponds to the framework of relational
dependencies.

� The knowledge "every object it is in a relationr with is described by X ",
noted 8r:X in description logics, can be represented by the set of attributes
fr 2(x) j x 2 X g. Indeed, if knowing that every object which something is
in a relation r with is described by the attributes a and b means that it is
also described byfag [fbg. Consequently, we can consider only individual at-
tributes independently without loss of information, which reduces the number
of attributes. As before, ifa ! b, then being in a relationr with only objects
that are a implies being in a relationr with only objects that are b and our
algorithm can be applied directly.

� The knowledge "it is in a relation r with more than n objects that are de-
scribed byX " can be represented by the set of attributesfr 3(Y) j Y � X g.
Indeed, if more thann objects are described byX , then even more are de-
scribed by the subsets ofX . Once again, ifA ! B , then being in a relation
r with more than n objects described byA implies being in a relationr with
more than n objects described byB and our algorithm can be used.

� The knowledge "it is in a relation r with less than n objects that are de-
scribed byX " is harder to represent because there can be more thann objects
described by the subsets ofX . Moreover, if A ! B , we cannot say that

70

71 CHAPTER 4. APPLICATION TO RELATIONAL CONTEXTS

being in a relation r with less than n objects described byA implies being
in a relation r with less than n objects described byB. Consequently, this
particular knowledge cannot be represented with relational dependencies and
our algorithm cannot treat it. There is always the possibility to consider all
the possible attributes for this particular knowledge as atomic attributes and
use the algorithm anyway, but the size of the attribute set would explode.

� The knowledge "it is not in a relation r with any object described byX "
similarly cannot be treated by our algorithm because ifA ! B then not being
in a relation r with an object described byA does not necessarily imply not
being in a relationr with an object described byB.

In conclusion, it seems that only knowledge of the form "being in relationr with
more than n objects that are X " can be represented e�ciently using relational
dependencies.

71

Chapter 5

Computing a Basis for Association
Rules

Contents
5.1 Motivation . 73

5.2 Association Rules . 73

5.3 (Also) Computing the Luxenburger basis 77

5.3.1 Successor Relation between Intents 78

5.3.2 Algorithm . 80

5.3.3 Example . 80

5.4 Discussion . 84

72

¤� ������� �� ��������
 �
���� ��� ����������� �����

…
	 �••�†�•�•�

�• �������	�� �	� ��� —���� �• •��•�� ��	�� � �	��ˆ���� ��� ������ˆ ������� �� ����
•�	�	• �	� ����ƒ���� �����ˆ̃ �	 ����ƒ����� ��� 	����	� �• ••	����	�� �� �	��	�ˆ
�	� •�	�•�� “�ˆ� ��� ���� �� �• �������	�˜ �	 ���� •�	�	•� ��� ›��� �• ����������	
�•��� •�	�	• �� ��	���	�� —��� ›	��	• ���� �• �����	� �• —���� �• �������	� ���
�•ƒ����˜ �	 •���� •��•�� ��	�� � �	��ˆ��� ��� ��	• ƒ��	 •��� �� � •����•������
•��•�—��“ �� ��� ��†��� ��•�����•� �	 ���� •�	�	•˜ �� �� �����•��� 	��•��� ����
—� ���“ �	 �	������ �	 ����������	 �•���˜

�	 ���� ��� ���� �•��� � ƒ���• �†��†��— �• ����������	 �•���� —� ���— ���� �•�
��•�����• ��	 ƒ� •���›�� �� ��• •�� � ƒ���� •�� ��� ��� ����������	 �•��� �	 � •��•��
��	��
� —����•� �	 �	������ �	 ��� —����€���� ��• ��
��ˆ̃ Š��� � ���›���� �̂ �� ��	
�ƒ���	 � ƒ���� •�� ����������	 �•��� ƒˆ ��• •��	• � ƒ���� •�� •	������	 �• �������	��
��� �•
�	ƒ•�•�� ƒ����� �	 �������	 �� ��� �•••�		�€‚•�••�� ƒ����˜

…
� ���•���•�•� �ƒ•��

���������	 �•��� �
��� �	 ��� ��•� •��•�—��“ �� �• �������	�� �˜�˜ � ��	��
� —���
� ��� �• �ƒ‡���� ������ƒ�� ƒˆ �����ƒ•���˜ ��� ������� �• �	 �����ƒ•�� ��� � �� ���
	••ƒ�� �• �ƒ‡���� ������ƒ�� ƒˆ �˜ �	 ����� —����� ����™ �š œ � � ��˜
	 �����ƒ•��
��� �� ���� �� ƒ� ������
� �• ��� �• ��� �� �ƒ�†� � ������	 ���������˜
	 ����������	
�•�� �� �	 �
 ������	 � � ��� � �	 —���� � �� ��� �• ��� �• � �	� � �� ��� ��	›��	��
�• ��� �•��� ��›	�� �� ���� �� �� �

���� �� � ˜ ��� ��	›��	�� �• ��� �•�� �
 ������ ��� ��“�������
�� ��†� ��� �����ƒ•�� ��� � ������ƒ� �	 �ƒ‡��� ������ƒ�� ƒˆ �˜ ’��•���� �̂ ›	��	•
����������	 �•��� —��� � ��•� ��	›��	�� �	� �• ��� ��� ƒ��	 �	 �ƒ‡��� �• �	������
�	 ��� ���� •�	�	• ��•••	��ˆ •�� •�	ˆ ˆ����˜

–�••�� •˜�‰ ��	��
� �

�	����•��� ƒˆ
•��—�� ™��� £�¥š ���	• ��� 	����	 �• ����������	 �•��� ������� ��
��� ›��� ��•�����• �� ��• •�� •��••�	� ����������	 �•���˜
� ���•������� �	
�•�����•
��� �� •��� � ƒ����•€• � ����� �	 —���� �����ƒ•�� ���� ��� ��	���•���� •��• �����
�•ƒ���� ƒˆ ����	• � ��	•�� �����ƒ•��˜ Œ��	• ��� �� ���ˆ ���� ��� �• ��� �• �	
�����ƒ•�� ��� �� ������ ���	 ��� �• ��� �• ��� �•ƒ����� ��� ��•�����• ��	���•��� 	�—
���� �	�ˆ •��• •��••�	� �	��˜ �¨����†��ˆ �	••�����	• ��� ��� •��••�	� ���•�	�� ™�	�
��•� 	�	€•��••�	�š �• ��� �—����� �• �� ������� �� �	�¦���	� ƒ•� �����������ˆ
��•	�›��	�˜

¤�

5.2. ASSOCIATION RULES 74

Algorithm 13 APRIORI

1: F0 = f;g
2: k = 1
3: while Fk�1 6=; do
4: Fk = ;
5: for every setS in Fk�1 do
6: for every attribute i not in S do
7: if S [fig is frequent then
8: Fk = Fk [fS [figg
9: end if

10: end for
11: end for
12: k = k + 1
13: end while
14: Return

S
j =1::k Fj

As the support of the rules are the support of the premises, works on the com-
putation of association rules are mainly interested in �nding frequent attribute sets
�rst, then constructing the rules from them later. Early on, algorithms tended to
enumerate most, if not all, of the frequent sets. Later, it has been found that, since
any two attribute sets A and B such that A00= B 00have the same extent and thus
the same support, it is su�cient to know only closed sets. Therefore, computing the
frequent part of the concept lattice of a context is enough to be able to retrieve all
the frequent association rules.

We saw in Section 2.3 that several algorithms can be used to compute the con-
cepts set and most of them can be modi�ed to only compute its frequent part.
However, there is one algorithm,TITANIC (see [97]), that has been proposed
speci�cally for the problem of enumerating only frequent closed sets. It follows the
same principles asAPRIORI but, instead of considering every frequent set as a
candidate, it focuses on so-calledkey sets, i.e. minimal generators of sets under:00.
In addition to pruning sets that are not frequent, it prunes sets that are not keys.
Keys can easily be recognized as their support is di�erent from the support of all
their lower covers in the powerset ofA . Once all the key sets are found, closed sets
can be retrieved by intersecting all the keys with the same support.

Of course, the number of association rules can be very high and tuning the
thresholds for the support and con�dence helps the pruning but, as it is insu�cient,
bases for association rules have been found and studied.

Association rules with a con�dence of 1, sometimes calledglobal implications,
are the implications studied throughout our work. As we have seen, the Duquenne-
Guigues basis plays the role of smallest set of implication that allows for all the others
to be found. Association rules with a con�dencec < 1, calledpartial implications,
have their own basis called theLuxenburger basisand introduced in [77]. It can be
shown that A ! s;c B if and only if A ! s;c A [B and A00! s;c B 00. Hence, we can
restrict ourselves to associations rules in whichA and B are frequent intents and
A � B .

74

¤• ������� �� ��������
 �
���� ��� ����������� �����

�‡�••�• 	 •���� • ­€ ‚�� �� ��
 � � �� �
��
�� 	��� � � � � � � •��

� � ��� � �
� � � � � �� � � ���
��� � � ����� � � �

���� ���•�� �• ���� ���� ����������	 �•��� ��	 ƒ� ����†�� ƒˆ ���	����†��ˆ̃ ��	��€
••�	�� �̂ �	����� �• ��� ��� ����ƒ�� ����������	 �•��� ƒ��—��	 �	��	��� —� �	�ˆ ��†�
�� ��	����� �•��� �• ��� •��• � � ��� � �•�� ���� ����� �� 	� �	��	�
 �•�� ����
� �
 � � ˜ �	 ����� —����� �	�ˆ ��� ��†���	• •�� � �• ��� ������� �• �	��	�� ��
	�����˜ Š����†��� �•
�	ƒ•�•�� ���—�� ����� �� ��	• �� � �ˆ��� �
���� �	 ��� ™•	��€
������š •�� � �	 —���� ��� �	��	�� ��� †����
 �	� ������ �• �������	 ��•��� —� ��•��
��•�†� � �•�� �	� ����� ƒ� �ƒ�� �� ����†� ��� ��� ������ �• �������	�˜ ���� ����� •�
�� ��� •����—�	• ��›	����	 ‰

�����•�•� 	€ •�� ‚���
������ ����� �� � �����
 ��
���� � �� � ��� 	 � œ�� � ���

� � �� ������
 ���
������
� ���� ���� � �� �
 ����� ��•�� �� � �
 ��� �
��
��
������ ��
� � ��� ��� �™�� � š � � � ��� � � 	 � � �� ����� ����� � ���

�
� ���� �� ��� ��•���
�
����� �� ��� �
��
��
������ �� � �
� � ��
�
� ������
 ���
������
 ��� ��� 	��
� ��� ��
���������� �� ��� ��
�
����
�

–�••�� •˜„‰ ��†���	• •�� � �• ��� ������� �• �	��	�� �• ��	��
� �

Š•��� �� � �		�	• ����� �
��� •�� �	 �	��	�� ������� �� ��� �•
�	ƒ•�•�� ƒ���� �• �
��	��
� �� 	�� •	�••�˜ –�••��� •˜„� •˜� �	� •˜… ���•������ ��� ��†���	• •�� � �• ���
�	��	�� ������� �• �•� �•		�	• �
�• �� ™�� ���—	 �	�� �•��	 �	 –�••�� •˜�š �	� �—�
 ����ƒ�� � �		�	• ������ ��� ����†��ˆ̃ ��� �•
�	ƒ•�•�� ƒ���� ������ �	��	• �� ���
�•�• ���� �� ‰

 � � ����� �

 � � ����� �

 � � ����� �

 � � ����� �

¤•

���� ����������� ����� ¤�

–�••�� •˜�‰
 � �		�	• ���� �• ��� ��†���	• •�� � �• ��� ������� �• �	��	�� �• ��	��
�
�

 � � ������ ��

 � � ����� ���

 � � ����� ��

 � � ������ ��

 �� � ����� ���

 �� � ����� ���

 ��� � ��� �����

��� �•
�	ƒ•�•�� ƒ���� ������ �	��	• �� ��� ���•�ˆ ���� �� ‰

 � � ����� �

 � � ����� �

 � � ����� �

 � � ������ ��

 � � ������ ��

 � � ������ ��

 � � ������ ��

 � � ������ ��

 �� � ����� ���

¤�

¤¤ ������� �� ��������
 �
���� ��� ����������� �����

–�••�� •˜…‰
 ����	� � �		�	• ���� �• ��� ��†���	• •�� � �• ��� ������� �• �	��	�� �•
��	��
� �

 �� � ����� ���

 ��� � ��� �����

����†�	• ��� ��	›��	�� �• ����������	� �•��� �• ��� •��• � � � ™—���� ƒ��� �
�	� � ��� �	��	��š �� ���ˆ̃ �� �•¦��� �� ›	� � ��� �	 ��� � �		�	• ���� ���� �����
•��• � �� � ˜ �• ��� ��� �� �� � � ���� � � �� ���	 ��� ��	›��	�� �• ��� �•�� � � � ��� � �

�� © � ������ ��
���� �� � �

���� �� � �� � ˜ ���� �� �¨����†��ˆ ••��� �ˆ�	• ��� ��	›��	��� �• ��� �•��� �	
��� ��� —���� ��†����	• ����� �• ��� �•��� —� •� ��	����ˆ ��˜ –�� �
�• ��� ��� •�
�• ��� —� —�	� �� “	�— ��� ��	›��	�� �• � � ��� ��� �	 �•� ��	��
� �˜ ž��� ���
›��� �•
�	ƒ•�•�� ƒ����� ��� �•�� � � ����� ��� �
���� �� ��� ��	›��	�� �� “	�—	 ��
� �•˜ ž��� ��� ����	� �•
�	ƒ•�•�� ƒ����� ��� �������� ��� �� ��� �� �� ��� ��� �˜ ���
��	›��	�� �• ��� �•�� �� ��•� ™ �

� š � ™�
� š � ™�

� š � ™�
� š œ ��•˜ ��	�� �†��ˆ �	��	� �� �	 �

�•��� �	� ��	�� ��� ��	›��	�� �• � �•�� ƒ��—��	 �—� �	��	�� ��	 ƒ� ��• •��� �	�
�†��ˆ ����� �•�� ��	 ƒ� ����†�� •��• � �•�� ƒ��—��	 �	��	��� ��� �•
�	ƒ•�•�� ƒ����
�� �	�••� �� ����†� ��� ��� ����������	 �•��� —��� � ��	›��	�� �• ���� ���	 �˜

��� �•
�	ƒ•�•�� ƒ���� �	� ��� �•••�		�€‚•�••�� ƒ���� •��• ��•����� � ƒ���� •��
����������	 �•���˜ �• �	� �� �	�������� �	�ˆ �	 „•�‰ƒ��• ����������	 �•���� �� �� �•��	
��� ����� �� �•¦��� �� “�� �	�ˆ ��� •��••�	� �• �������	� �	� ������ �• �������	�
�� �ƒ���	 � ƒ���˜

…
­ Š�•�•‹ �•••ƒ•��Œ •‡� �ƒ‚��Žƒ•Œ�• Ž����

ž� 	�— —�	� �� ���— ���� ��� ��•�����•� —� �� ���� ��� �ƒ�� �� ��• •�� ���
�•
�	ƒ•�•�� ƒ���� ���	• —��� ��� �•••�		�€‚•�••�� ƒ���� —��� �	�ˆ � ���•�� •��€
�›�����	˜

¤¤

5.3. (ALSO) COMPUTING THE LUXENBURGER BASIS 78

5.3.1 Successor Relation between Intents

We saw in Section 3.2 that the successor relation, presented in that same section,
de�nes a spanning tree of the covering graph of the lattice � of attribute sets closed
under B� . In the successor relation, every element of � has a unique predecessor, its
lectically greatest subset in the lattice. We have also seen that the lattice � contains
every intent and pseudo-intent and that a pseudo-intent can have a maximum of one
successor. This means that every intent in � has an intent as predecessor, except
for some essential intents.

De�nition 15 (Successor relation between intents) For any two attribute
sets A; B 2 �, B is a successor ofA (noted A I B) if and only if A is the
lectically greatest strict subset ofB in � that is an intent.

The relation I is similar to . Every element of � has a unique predecessor,
except for ; and ; 00, and between 0 andjAj successors, except forA that never has
a successor. The di�erence is that the predecessor of a set is always an intent.

Proposition 11 For any A 2 �, there is a unique �nite sequence A1; :::; An of
elements of intents such that; 00 I A1 I ::: I An I A.

Proof Every non-empty set in the lattice � contains ; 00and has a strict subset that
is an intent as a predecessor so such a sequence exists. The number of attributes is
�nite so the sequence itself is �nite. The predecessor of an attribute set is unique
so the sequence is unique.�

Corollary 2 The successor relation I de�nes a spanning tree of the covering graph
of the intents lattice

Since I de�nes a spanning tree of the covering graph of the intents lattice and
A has a single predecessor, given De�nition 14, the set of allA ! s;c B such that
A I B, A and B are intents, s = jA 0j and c = jB 0j

jA 0j is the Luxenburger basis of
the context. Figure 5.5 shows both the spanning trees of � and the intents lattice
induced by I in our running example.

Proposition 12 For any intent A, if A B then A I B.

The di�erences between and I are for the essential intentsB such that
A B with A being a pseudo-intent. If we want to compute the Luxenburger basis
with our enumeration algorithms, we have to �nd the predecessor (for I) of those
essential intents.

Proposition 13 Given two intentsA and B and a pseudo-intentP such thatA
P B , the intent C such thatC I B is either A or a superset ofA.

Proof Let us suppose thatA P B and that there is an intent C � B that
is lectically maximal and not a superset ofA. From the supposed order, we deduce
that min(P �A) 2 P and min(C�A) 2 C. However, we know thatA _ C = B
because otherwiseC would not be lectically maximal. As such, we haveB nA � C.
More precisely, we have that min(P�A) = min(C�A) 2 P. By the de�nition of

78

¤ª ������� �� ��������
 �
���� ��� ����������� �����

–�••�� •˜•‰ � �		�	• ���� �• ¡ �	� �• ��� �	��	�� ������� �	�•��� ƒˆ � � �	 ��	��
�
� ™��¨���	��� —��� � ��� �	 ���š

��� �•������� �������	� —� “	�— ���� � � •�	™� « �š œ � ��
 �� � �• ����� �• � �
—���� ��	�������� �•� �ˆ �������˜ ��•�� ��� ���������ˆ •������� �•ƒ��� �• � ���� ��
�	 �	��	� �� � �• ����� �• �˜ �

–�� �	ˆ �—� �	��	�� � �	� � �•�� ���� � � � � � � ����������� ™
�•�����•
�…š ��• •��� ��� ���������� �• � •�� ��� �������	 � � ˜

�•Œ••�•‡• 	€ �����������™�š

�� ����� � �� � �•�� ���� � � � � �
��
 œ�
�� „•• �†��ˆ �����ƒ•�� � �	 � � � �	 �	������	• ����� ˆ•
�� �„ � ™
 � � ��š �œ� •‡��
��
 œ
 � � ��
�� ��ˆ �„
�� ��ˆ „••
�� •�•ƒ•�

�••••��•�•� 	€ �
������� ƒ„ �����
���� �
� �������� ���
������

� �������� �
��
�
���� �� � ������ �� � ��

�•••„ ����� �� � ›	��� 	••ƒ�� �• �����ƒ•��� �	� ��� ��� •��� ����••� ���• �	
��	��� ����� �� ��� ��•�����• ���•�	����˜ ��� �����ƒ•�� ��� �� ���•�	��
 � �� ������
� �� ������ •	��� � ™�š� �� �� �� �	 �	��	�˜ �� �� ��� ��•���� ����•�� �• � �•ƒ��� �• �
�	� �� �� 	�� �••�� �� � �� —� ��†�
 � � ˜ ��� •� �• ��� ���� ����� �� �	 �	��	�
� � � ���������ˆ •������ ���	
 —��� � œ •�	™
 « � š˜ ��� �����ƒ•�� � �� �•�� ����
� ™� � � ��š � � •�� �	ˆ � � � � � �� ��� ��•�����• —�•�� ��†� ����� �� ��
 ˜
‘�	��� —� ��†�
 œ� ˜

¤ª

5.3. (ALSO) COMPUTING THE LUXENBURGER BASIS 80

Thus, the algorithm returns C, the lectically greatest intent that is a subset of
B . �

Algorithm 14, Predecessor, has to compute a maximum of jAj logical closures
so the algorithm is inO(jAj 2 � jBj), which is the same complexity asSuccessors.

5.3.2 Algorithm

Now that we know how to obtain the predecessors of essential intents for I , we can
construct the spanning tree of the intent lattice. Proposition 12 says that we can
start from the spanning tree induced by and then compute the new predecessors
of the essential intents that are successors of pseudo-intents. In order to do that, we
can use Algorithm 10 and apply Algorithm 14 everytime an intent is the successor
of a pseudo-intent. Algorithm 15 is a simple modi�cation of Algorithm 10 that
computes the spanning tree of the intents lattice and, thus, the Luxenburger basis
along with the Duquenne-Guigues basis.

Proposition 15 Algorithm 15 terminates and returns the Duquenne-Guigues basis
and Luxenburger basis.

Proof The algorithm terminates and returns the Duquenne-Guigues basis for the
same reasons as Algorithm 10. If we haveA B with both A and B being intents,
Proposition 12 states thatA I B and, as such,A ! s;c B is in the Luxenburger
basis. If A B with A being a pseudo-intent, Proposition 14 states that the setC
resulting from the application of thePredecessor algorithm to the set B is such
that C I B and, as such,C ! s;c B is in the Luxenburger basis. Therefore, the
algorithm returns a subset of the Luxenburger basis. Every intentB is enumerated so
everyA ! s;c B is found. Hence, the algorithm returns a superset of the Luxenburger
basis and, as such, the Luxenburger basis itself.�

The algorithm enumerates every intent and pseudo-intent. While we need to
compute the successors of each set, we have seen in Section 3.2 that only the intents
required any additional computation. As such,Successors is applied once to every
intent. In order to compute the Luxenburger basis, we must compute the predecessor
under I of the essential intents that are successors of pseudo-intents. There cannot
be more essential intents than pseudo-intents so the number of sets we have to
apply either Successors or Predecessor to is less thanj�j. Predecessor and
Successors having the same worst-case complexity, Algorithm 15 is inO(j�j �
jAj 2 � jBj).

5.3.3 Example

In our running example, Algorithm 15 runs as follows :

; 00= ;.
From ; we constructa, b, c, d and e.

We havea, b, c, d and e. The seta is one of the smallest and is a successor.
a00= ab so a ! ab is added to theDuquenne-Guigues basis.
From a we constructab.

80

81 CHAPTER 5. COMPUTING A BASIS FOR ASSOCIATION RULES

Algorithm 15 Enumeration of Pseudo-Intents and Partial Implications

1: Sets = f;g
2: Impl = ;
3: Lux = ;
4: while Sets is not empty do
5: Pick the �rst set A in Sets
6: Update the logical closure ofA
7: if A has not changedthen
8: if A is a successor of the set it has been generated fromthen
9: B = A00

10: if A 6=B then
11: Impl = Impl [fA ! Bg
12: else
13: if A has been constructed from an intentC then
14: sup = jA 0j
15: cf = sup

jC 0j
16: Lux = Lux [C ! sup;cf A
17: else
18: D = Predecessor(A)
19: sup = jA 0j
20: cf = sup

jD 0j
21: Lux = Lux [D ! sup;cf A
22: end if
23: end if
24: for every attribute i =2 A greater than min(A) do
25: Sets = Sets[Impl � (fa 2 Ajka < ig [fig)
26: end for
27: end if
28: else
29: Place the newA in Sets according to the chosen order
30: end if
31: end while
32: return Impl , Lux

We haveb, c, d, e and ab. The setb is one of the smallest and is a successor.
b00= band bhas been constructed from; so; ! 5;0:6 b is added to theLuxenburger
basis.
From b we constructbc,bd,be.

We havec, d, e, ab,bc,bdand be. The setc is one of the smallest and is a successor.
c00= c and c has been constructed from; so; ! 5;0:4 c is added to theLuxenburger
basis.
From c we constructcd and ce.

We have d, e, ab, bc, bd, be, cd and ce. The setd is one of the smallest and is a
successor.
d00= d and d has been constructed from; so ; ! 5;0:6 d is added to theLuxen-

81

5.3. (ALSO) COMPUTING THE LUXENBURGER BASIS 82

burger basis.
From d we constructde.

We havee, ab, bc, bd, be, cd, ce and de. The sete is one of the smallest and is a
successor.
e00= e and e has been constructed from; so; ! 5;0:6 e is added to theLuxenburger
basis.
From e we do not construct anything.

We have ab, bc, bd, be, cd, ce and de. The setab is one of the smallest and is a
successor.
ab00= aband abis an essential intent that has been constructed froma. The Prede-
cessor algorithm �nds that b I ab so b ! 3;0:33 ab is added to theLuxenburger
basis.
From ab we constructabc,abdand abe.

We havebc, bd, be, cd, ce, de, abc,abd and abe. The setbc is one of the smallest
and is a successor.
bc00= bcdso bc! bcdis added to theDuquenne-Guigues basis.
From bcwe constructbcd.

We havebd, be,cd, ce, de, abc,abd,abeand bcd. The setbd is one of the smallest
and is a successor.
bd00= bdand bdhas been constructed fromb sob ! 3;0:66 bdis added to theLuxen-
burger basis.
From bd we constructbcand bde.

We havebc(from bd), be,cd, ce,de, abc,abd,abe,bcdand bde. The setbc(from bd)
is one of the smallest but is not a successor.
We havebe,cd, ce, de, abc,abd,abe,bcdand bde. The setbeis one of the smallest
and is a successor.
be00= bdeso be! bdeis added to theDuquenne-Guigues basis.
From bewe constructbde.

We havecd, ce, de, abc,abd,abe,bcd,bde(from bd) andbde(from be). The setcd
is one of the smallest and is a successor.
cd00= bcdso cd ! bcdis added to theDuquenne-Guigues basis.
From cd we do not construct anything.

We havece, de, abc,abd, abe,bcd,bde(from bd) and bde(from be). The setce is
one of the smallest and is a successor.
ce00= ce and ce has been constructed fromc so c ! 2;0:5 ce is added to theLuxen-
burger basis.
From ce we constructcd.

We havecd (from ce), de, abc,abd,abe,bcd,bde(from bd) andbde(from be). The
set cd (from ce) is the smallest but is not a successor.
We havede, abc,abd,abe,bcd,bde(from bd) andbde(from be). The setde is one

82

83 CHAPTER 5. COMPUTING A BASIS FOR ASSOCIATION RULES

of the smallest and is a successor.
de00= de and de has been constructed fromd so d ! 3;0:66 de is added to theLux-
enburger basis.
From de we do not construct anything.

We haveabc,abd,abe,bcd, bde(from bd) andbde(from be). The logical closure of
abcis updated to abcd.
We haveabd,abe,bcd, bde(from bd), bde(from be) andabcd(from ab). The setabd
is one of the smallest and is a successor.
abd00= abcdeso abd! abcdeis added to theDuquenne-Guigues basis.
From abdwe constructabcde.

We haveabe,bcd,bde(from bd), bde(from be),abcdand abcde. The logical closure
of abeis updated to abcde(and removed).
We havebcd,bde(from bd), bde(from be),abcdand abcde. The setbcdis one of the
smallest and is a successor.
bcd00= bcd and bcd is an essential intent that has been constructed froma. The
Predecessor algorithm �nds that bd I bcdsobd! 2;0:5 bcdis added to theLux-
enburger basis.
From bcdwe constructbcde.

We havebde(from bd), bde(from be), abcd,bcdeand abcde. The setbde(from bd)
is the smallest and is a successor.
bde00= bdeand bdehas been constructed frombd so bd ! 2;0:6 bdeis added to the
Luxenburger basis.
From bdewe constructbc.

We havebc, bde(from be), abcd,bcdeand abcde. The setbc is the smallest but is
not a successor.
We havebde(from be), abcd,bcdeand abcde. The setbde(from be) is the smallest
but is not a successor.
We haveabcd,bcdeand abcde. The logical closure ofabcdis updated to abcde(and
removed).
We have bcdeand abcde(from abd). The setbcdeis one of the smallest and is a
successor.
bcde00= abcdeso bcde! abcdeis added to theDuquenne-Guigues basis.
From bcdewe do not construct anything.

We haveabcde. The setabcdeis one of the smallest and is a successor.abcde= abcde
and abcdeis an essential intent that has been constructed fromabd. ThePrede-
cessor algorithm �nds that ab I abcdeso ab! 1;0 abcdeis added to theLuxen-
burger basis.

The algorithm ends, having computed the following Duquenne-Guigues basis

� a ! ab

� bc! bcd

83

5.4. DISCUSSION 84

� cd ! bcd

� be! bde

� abd! abcde

� bcde! abcde

along with the Luxenburger basis

� ; ! 5;0:6 b

� ; ! 5;0:4 c

� ; ! 5;0:6 d

� ; ! 5;0:6 e

� b ! 3;0:33 ab

� b ! 3;0:66 bd

� c ! 2;0:5 ce

� d ! 3;0:66 de

� bd! 2;0:5 bcd

� bd! 2;0:6 bde

� ab! 1;0 abcde

in the chosen order.

5.4 Discussion

The algorithm that we propose can compute both the Luxenburger and Duquenne-
Guigues bases in a single run. Computing these two bases in order to obtain a
minimal set of association rules using formal concept analysis is not a new idea as it
has been discussed as early as 2001 (see [96]). In order to compute the bases, three
steps are usually performed :

� The concept lattice is computed (or the iceberg concept lattice if the support
has to be considered)

� The Duquenne-Guigues basis is computed from the concept lattice

� The Luxenburger basis is computed from the concept lattice

84

85 CHAPTER 5. COMPUTING A BASIS FOR ASSOCIATION RULES

Our algorithm, however, computes everything in a single step. To the best of
our knowledge, this has not been proposed before. Of course, a similar result could
be obtained by modifyingNext Closure to make it compute the predecessor of
each intent. The most obvious method would be to applySuccessor to intents
that have not been generated by one of their subsets. But this would be slightly less
e�cient than our algorithm because Predecessor would be applied more often,
resulting in a signi�cant increase in the number of logical closures. More e�cient
methods to construct a spanning tree of the intents lattice during the execution of
Next Closure could surely be thought of.

The properties of algorithm presented in Section 3.3 still hold. Most importantly,
the order in which implications and partial implications are enumerated can still be
chosen. SinceSuccessor and Predecessor are polynomial and every element of
� results in an element of the basis of associal rules, the algorithm has a polynomial
delay.

85

Chapter 6

Future Work and Conclusion

Contents
6.1 Future Work . 87

6.2 Conclusion . 88

86

87 CHAPTER 6. FUTURE WORK AND CONCLUSION

6.1 Future Work

In our work, we supposed that the order in which the attribute sets are enumerated
extends the inclusion order. Given that pseudo-intents are recursively de�ned, it
seems natural to want to know all the subsets of a set before deciding whether it is a
pseudo-intent. However, being able to e�ciently recognize a pseudo-intent without
knowing all its subsets would allow for di�erent orders to be used and may help �nd
algorithms with a better delay. While we do not claim to have solved the problem,
we believe that we have started working on promising ideas.

As mentioned in Section 2.4.5, recognizing a pseudo-intent in the general case is
coNP-complete. However, this general case means being able to tell whether a given
set is a pseudo-intent with only a context and the set itself as inputs. It would be
interesting to know if it is easier to tell whether a set is a pseudo-intent when we have
additional information. Indeed, an enumeration being a process, some information
has already been found when we are confronted with the problem of recognizing a
pseudo-intent.

Here, we are interested in the problem of recognizing a pseudo-intent when we
already know a non-empty subsetI of the Duquenne-Guigues basis of the context.
This case is the most common as only the �rst pseudo-intent is found in the absence
of other information. Let us call � I the lattice of attribute sets closed underI (:).
When I = B, the lattice � I is the lattice of intents.

Proposition 16 Let A and B be two elements of� I . The set B is a lower cover
of A if and only if B = A nC with C minimal such that8G 2 GenI (A), G \ C 6=;.

Proof Let C � A be minimal such that8G 2 Gen(A), G\ C 6=;. For any attribute
i 2 A n C, the set (A n C) [f ig = A n (C n fig) contains a minimal generator ofA
because of the minimality ofC. Therefore, anyB between (An C) and A is such
that I (B) = A and cannot be in � I . Hence,A n C is a lower cover ofA.

Let B be a lower cover ofA in � I . By de�nition, I (B [fig) = A for any
attribute i 2 A n B so there is a subsetC of A such that i 2 C and (C n fig) � B
that is a minimal generator ofA. �

This proposition states that the lower covers ofA in � I can be obtained from
the minimal generators ofA, which can themselves be obtained fromA and I .

Proposition 17 An attribute set A 2 � I is a pseudo-intent if it is not closed and
all its lower covers are closed.

Proof Let us suppose thatA is not closed and that all its lower covers are closed.
Let X be any subset ofA and B a lower cover ofA. If B � X , then I (X) = A
and X 00= A00. If X � B and X 006� B , then B cannot be closed and we have a
contradiction. Therefore,X 00� B . Since the closure of every subset ofA is either
A00or contained in A, the set A is a pseudo-intent.�

This proposition states that some pseudo-intents can be recognized in �I only
by looking at their lower cover.

De�nition 16 The set of pseudo-intents recognizable fromI , noted Rec(I), is
composed of the elements of� I which lower covers are all closed.

87

6.2. CONCLUSION 88

Proposition 18 8I � B , Rec(I) 6=;

Proof Let P be minimal among pseudo-intents that are not premises of implications
in I . If there is a lower coverX of P in � I that is not closed, then there is a set
A such that A ! A00holds in the context. If A00� P, then P is not minimal. If
A006� P, then P is not a pseudo-intent. Both cases lead to contradictions so all the
lower covers ofP are closed andP is recognizable fromI . Given that I � B , the
set of pseudo-intents that are not a premise ofI is not empty, so it has minimal
elements. Hence, the set of pseudo-intents that are recognizable fromI is not empty
if I 6= B. �

At any step during the enumeration of pseudo-intents, there is a non-empty set
of pseudo-intents that are recognizable from the already acquired implications. Let
us suppose the following set of implications is the Duquenne-Guigues basis of some
context C = (O; fa; c; b; d; eg;R) :

� bc! bcd

� cd ! bcd

� ae ! abde

� be! bde

� bcde! abcde

Now, let us call I the set with the three �rst implications, fbc ! bcd; cd!
bcd; ae! abdeg. Figure 6.1 shows the �I lattice. Since we know the Duquenne-
Guigues basis, we can see that the following sets, in particular, are closed :b, e, bcd,
bde. This implies thatRec(I) = fbe; bcdeg. If we were to know an algorithm that
uses Proposition 17 to recognize a pseudo-intent, it would be possible to �ndbcde
beforebe, thus bypassing the inclusion order, becausebc! bcdand cd ! bcdgive
us enough information onbcdeand its lower covers. Similarly, it would be possible
to �nd bcdebeforebcif we knew of the pseudo-intentsbeand cd but bcdewould not
be recognizable from onlybcand be. This illustrates that the order of enumeration
would play a much greater role in this kind of algorithm.

While we think that �nding algorithms that can recognize pseudo-intents from
subsets of the Duquenne-Guigues basis is a promising idea, using Proposition 17
directly would not be e�cient as the number of lower covers of a set in �I can be
exponential in the size ofI . But we intend to investigate this lead more thoroughly
in the future.

6.2 Conclusion

Initially centered around the use of formal concept analysis to learn terminolog-
ical axioms in description logics, our work ventured into the construction of the
Duquenne-Guigues basis in the general case. We started by developing an algorithm
that enumerates the elements of the search space � breadth-�rst, which corresponds
to the increasing cardinality order presented in Section 3.3.2 once the constraint of

88

§ª ������� �� ������ ���� ��� ����������

–�••�� �˜�‰ ¡ ��� ������� ������� ������

��� ����	• ��� �	��•���	 �� �����˜ –��• ������ —� ��— ���� —� ��•�� •�	������� ���
��•�����• �� ����— �	 �	••������	 �	 �	ˆ ������ �� ��	• �� �� �
��	�� ��� �	��•���	
�����˜ ����•�� �• ���� •�	������ˆ �	� �•� ������ �� �������� ��� 	••ƒ�� �• � ���€
���	�� —� ����� �� ��†� �����ƒ•�� ���� ��	���•���� �	�ˆ •��• �	� �• ����� �•ƒ�����
—���� ��¨��� •��• ��•�����•� ��� ��“�� �• ���� ������� ˜ ž���� �� —�•�� ��†�
ƒ��	 ����ƒ�� �� ��	���•�� ���� •��• �	ˆ ����� ��� ƒˆ •��	• �	����� ��	�	����ˆ �����
—� •��� ���� ��� �	��•���	 �������	 ����—�� •� �� ���	�•�� ��� ���•�� �• ��• •��€
���	� ��	� �	 ���� �� ����� �•��������� �����ƒˆ ���•��	• ��� �•�•	� �• ���•	��	�
� ������	�˜

ž� �• �������ˆ ��• ���� �•� ��•�����•� —��� ���� ������� �	 ��	��•�ˆ •�	€
������ ��	��
�� •��	• ��� 	••ƒ�� �• ��•���� ����•��� ��•��•�� �� � •�����˜ ž� �����
���� •����� �	����� �• ��� �•	��•� ƒ���•�� ��� 	••ƒ�� �• � ������	� �� �	�� �	��	�
�• ��� ���•��•� ��	••�•�� ���� ���•��•��� �	� 	�	€� ��•�� ����	•˜ Ž��•��� ���—��
���� �•� ��•�����•� ��•��•�� ���•���ˆ ���� ��•���� ����•��� �	 � ���� ��	��
�� �	
—���� �ƒ‡���� —��� ������ƒ�� ƒˆ ���� ���	 ��¬ �• ��� �†����ƒ�� �����ƒ•��� �	 �†��€
�•�˜ ¢	 ��	��� ��	��
��� ���� ������� � ����� �� �•� ��•��• �•� ��•�����• �	
��� �����	 •�����˜ ž� ���	 �• �������ˆ ��•���� ��� �¨��� �• ��� ����� �• �	••������	
�	 ��� � ��� ��• ��
��ˆ �• �•� ��•�����•�˜ ž� �	••������ ��� ��•��€�	��	�� �•
��	��•�ˆ •�	������ ��	��
�� •��	• ��� ������ ������ ��� ��†���� ������ ����� �	� ���
�	������	• �����	����ˆ ����� �	� ��	������� ��� �†��•���	 �• ��� 	••ƒ�� �• �����ƒ•��
���� ��••���	��•��ˆ ������ �	 •�•��ˆ �•��	• ��� ��•��� �• ��� ��•�����•˜ Ž��•���
���—�� ����� ��¨���	��� �	 ��� •�•��ˆ ��	�•• ���	� �• ��� ����� ������� —��� ���
������ ����� � ����	• �� ƒ� ��� •��� �¦���	�˜ ž� ��	‡���•��� ���� ��� •�•��ˆ
��	�•• ���	 �• �	 ����� �� ••	����	 �• ��� �����	�� �� ��� ������ ����� ƒ���•�� �• ���
��	�	����ˆ ���� ƒ��	• ƒ���� �	 ��˜ ‘�—�†��� ��� ����� •��� ��� •�	���� †�����	 �• ���

§ª

6.2. CONCLUSION 90

algorithm and optimizations can be thought for each order, which could change the
results. Further research has thus to be done on the subject.

Using our general-case algorithm, we returned to our initial problem with re-
lational data in general and description logics in particular. We showed that the

exibility with the orders allowed us to apply our method to relational contexts
in the same fashion asNext Closure. Therefore, all our results on traditional
contexts also apply to relational contexts. We discussed the type of relational infor-
mation that could be represented using our method and found that all knowledge
of the form \being in relation with at least n objects that are..." could be treated.

Finally, we applied our algorithm to the domain of association rules mining.
Implications being certain association rules, this seemed natural. We showed that,
by only slightly modifying our algorithm, we were able to compute the Luxenburger
basis of a context alongside the Duquenne-Guigues basis. As such, we showed that
our algorithm can directly compute a basis of association rules.

Concerning the complexity of enumerating pseudo-intents, we feel that the lack of
results on non-lectic orders allows for the possibility of a polynomial-delay algorithm.
Next Closure only enumerates in the lectic order and attribute-incremental and
divide-and-conquer approaches do not allow for the order to be �nely tuned. Because
of this, we believe that our work is a step in the right direction as it provides an
algorithm that enumerates in any order that respects the inclusion relation. While
we do not claim to have a polynomial delay, we think that the further study of the
di�erent orders is promising.

90

Bibliography

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining asso-
ciation rules in large databases. In Bocca et al. [24], pages 487{499.

[2] S. Andrews. In-close, a fast algorithm for computing formal concepts. InIn-
ternational Conference on Conceptual Structures (ICCS), January 2009. Final
version of paper accepted (via peer review) for the International Conference
on Conceptual Structures (ICCS) 2009, Moscow.

[3] Franz Baader. Least common subsumers and most speci�c concepts in a de-
scription logic with existential restrictions and terminological cycles. In Got-
tlob and Walsh [55], pages 319{324.

[4] Franz Baader, Gerhard Brewka, and Thomas Eiter, editors.KI 2001: Ad-
vances in Arti�cial Intelligence, Joint German/Austrian Conference on AI,
Vienna, Austria, September 19-21, 2001, Proceedings, volume 2174 ofLecture
Notes in Computer Science. Springer, 2001.

[5] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors.The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[6] Franz Baader and Felix Distel. A �nite basis for the set ofEL-implications
holding in a �nite model. In Medina and Obiedkov [79], pages 46{61.

[7] Franz Baader and Felix Distel. Exploring �nite models in the description logic
ELgfp . In Ferr�e and Rudolph [45], pages 146{161.

[8] Franz Baader, Bernhard Ganter, Baris Sertkaya, and Ulrike Sattler. Complet-
ing description logic knowledge bases using formal concept analysis. In Veloso
[102], pages 230{235.

[9] Franz Baader, Ralf K•usters, and Ralf Molitor. Computing least common
subsumers in description logics with existential restrictions. In Dean [34],
pages 96{103.

[10] Franz Baader and Barbara Morawska. Uni�cation in the description logicEL.
In Treinen [100], pages 350{364.

[11] Franz Baader and Baris Sertkaya. Applying formal concept analysis to de-
scription logics. In Eklund [41], pages 261{286.

91

BIBLIOGRAPHY 92

[12] Franz Baader and Bar��s Sertkaya. Usability issues in description logic knowl-
edge base completion. InFormal Concept Analysis, pages 1{21. Springer,
2009.

[13] Mikhail A Babin and Sergei O Kuznetsov. On links between concept lattices
and related complexity problems. InFormal Concept Analysis, pages 138{144.
Springer, 2010.

[14] Mikhail A. Babin and Sergei O. Kuznetsov. Recognizing pseudo-intents is
conp-complete. In Kryszkiewicz and Obiedkov [65], pages 294{301.

[15] Michael Bain. Inductive construction of ontologies from formal concept anal-
ysis. In Gedeon and Fung [52], pages 88{99.

[16] Jaume Baixeries, Laszlo Szathmary, Petko Valtchev, and Robert Godin. Yet a
faster algorithm for building the hasse diagram of a concept lattice. InFormal
Concept Analysis, pages 162{177. Springer, 2009.

[17] Konstantin Bazhanov and Sergei A. Obiedkov. Comparing performance of
algorithms for generating the Duquenne-Guigues basis. In Napoli and Vychodil
[82], pages 43{57.

[18] Catriel Beeri and Philip A Bernstein. Computational problems related to the
design of normal form relational schemas.ACM Transactions on Database
Systems (TODS), 4(1):30{59, 1979.

[19] Sadok Ben Yahia and Engelbert Mephu Nguifo. Approches d'extraction de
r�egles d'association bas�ees sur la correspondance de Galois.Ing�enierie des
syst�emes d'information, 9(3-4):23{55, 2004.

[20] V. Richard Benjamins, Mathieu d'Aquin, and Andrew Gordon, editors.Pro-
ceedings of the 7th International Conference on Knowledge Capture, K-CAP
2013, Ban�, Canada, June 23-26, 2013. ACM, 2013.

[21] Karell Bertet and Bernard Monjardet. The multiple facets of the canonical
direct unit implicational basis. Theoretical Computer Science, 411(22):2155{
2166, 2010.

[22] Karell Bertet and Mirabelle Nebut. E�cient algorithms on the Moore family
associated to an implicational system.Discrete Mathematics & Theoretical
Computer Science, 6(2):315{338, 2004.

[23] Garrett Birkho�. Lattice theory, volume 25. American Mathematical Society
New York, 1948.

[24] Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors.VLDB'94, Pro-
ceedings of 20th International Conference on Very Large Data Bases, Septem-
ber 12-15, 1994, Santiago de Chile, Chile. Morgan Kaufmann, 1994.

[25] Daniel Borchmann. A general form of attribute exploration. CoRR,
abs/1202.4824, 2012.

92

93 BIBLIOGRAPHY

[26] Daniel Borchmann. A generalized next-closure algorithm - enumerating semi-
lattice elements from a generating set. In Szathmary and Priss [98], pages
9{20.

[27] Daniel Borchmann. AxiomatizingEL? -expressible terminological knowledge
from erroneous data. In Benjamins et al. [20], pages 1{8.

[28] Daniel Borchmann. Towards an error-tolerant construction ofn mathcal
fELg^n bot-ontologies from data using formal concept analysis. InFormal
Concept Analysis, pages 60{75. Springer, 2013.

[29] Daniel Borchmann and Felix Distel. Mining of el-gcis. In Spiliopoulou et al.
[94], pages 1083{1090.

[30] Lo•�c Cerf, J�er�emy Besson, C�eline Robardet, and Jean-Fran�cois Boulicaut.
Closed patterns meetn-ary relations. TKDD, 3(1), 2009.

[31] Vicky Choi. Faster algorithms for constructing a concept (galois) lattice.
CoRR, abs/cs/0602069, 2006.

[32] William W Cohen and Haym Hirsh. The learnability of description logics with
equality constraints. Machine Learning, 17(2-3):169{199, 1994.

[33] Luc De Raedt. The logic of learning. InFormal Concept Analysis, pages
57{57. Springer, 2009.

[34] Thomas Dean, editor.Proceedings of the Sixteenth International Joint Confer-
ence on Arti�cial Intelligence, IJCAI 99, Stockholm, Sweden, July 31 - August
6, 1999. 2 Volumes, 1450 pages. Morgan Kaufmann, 1999.

[35] Felix Distel. Model-based most speci�c concepts in some inexpressive descrip-
tion logics. In Grau et al. [56].

[36] Felix Distel. Learning description logic knowledge bases from data using meth-
ods from formal concept analysis. PhD thesis, 2011.

[37] Felix Distel. Some complexity results about essential closed sets. InFormal
Concept Analysis, pages 81{92. Springer, 2011.

[38] Felix Distel and Bar��s Sertkaya. On the complexity of enumerating pseudo-
intents. Discrete Applied Mathematics, 159(6):450{466, 2011.

[39] Ding-Zhu Du and Ming Li, editors. Computing and Combinatorics, First
Annual International Conference, COCOON '95, Xi'an, China, August 24-
26, 1995, Proceedings, volume 959 ofLecture Notes in Computer Science.
Springer, 1995.

[40] Vincent Duquenne. The core of �nite lattices. Discrete Mathematics,
88(2):133{147, 1991.

[41] Peter W. Eklund, editor. Concept Lattices, Second International Conference
on Formal Concept Analysis, ICFCA 2004, Sydney, Australia, February 23-
26, 2004, Proceedings, volume 2961 ofLecture Notes in Computer Science.
Springer, 2004.

93

BIBLIOGRAPHY 94

[42] Peter W. Eklund, Jean Diatta, and Michel Liquiere, editors.Proceedings of the
Fifth International Conference on Concept Lattices and Their Applications,
CLA 2007, Montpellier, France, October 24-26, 2007, volume 331 ofCEUR
Workshop Proceedings. CEUR-WS.org, 2008.

[43] Nicola Fanizzi, Claudia d'Amato, and Floriana Esposito. Dl-foil concept learn-
ing in description logics. In Zelezn�y and Lavrac [108], pages 107{121.

[44] S�ebastien Ferr�e and Olivier Ridoux. A logical generalization of formal concept
analysis. In Ganter and Mineau [48], pages 371{384.

[45] S�ebastien Ferr�e and Sebastian Rudolph, editors.Formal Concept Analysis,
7th International Conference, ICFCA 2009, Darmstadt, Germany, May 21-
24, 2009, Proceedings, volume 5548 ofLecture Notes in Computer Science.
Springer, 2009.

[46] Jean-Gabriel Ganascia. Charade: A rule system learning system. In McDer-
mott [78], pages 345{347.

[47] Bernhard Ganter. Two basic algorithms in concept analysis. In Kwuida and
Sertkaya [73], pages 312{340.

[48] Bernhard Ganter and Guy W. Mineau, editors.Conceptual Structures: Logical,
Linguistic, and Computational Issues, 8th International Conference on Con-
ceptual Structures, ICCS 2000, Darmstadt, Germany, August 14-18, 2000,
Proceedings, volume 1867 ofLecture Notes in Computer Science. Springer,
2000.

[49] Bernhard Ganter and Klaus Reuter. Finding all closed sets: A general ap-
proach. Order, 8(3):283{290, 1991.

[50] Bernhard Ganter, Gerd Stumme, and Rudolf Wille, editors.Formal Con-
cept Analysis, Foundations and Applications, volume 3626 ofLecture Notes in
Computer Science. Springer, 2005.

[51] Bernhard Ganter, Rudolf Wille, and Cornelia Franzke.Formal concept anal-
ysis: mathematical foundations. Springer-Verlag New York, Inc., 1997.

[52] Tam�as D. Gedeon and Lance Chun Che Fung, editors.AI 2003: Advances in
Arti�cial Intelligence, 16th Australian Conference on Arti�cial Intelligence,
Perth, Australia, December 3-5, 2003, Proceedings, volume 2903 ofLecture
Notes in Computer Science. Springer, 2003.

[53] Alain G�ely, Raoul Medina, and Lhouari Nourine. About the enumeration
algorithms of closed sets. InFormal Concept Analysis, pages 1{16. Springer,
2010.

[54] Alain G�ely, Raoul Medina, Lhouari Nourine, and Yoan Renaud. Uncovering
and reducing hidden combinatorics in Guigues-Duquenne bases. InFormal
Concept Analysis, pages 235{248. Springer, 2005.

94

95 BIBLIOGRAPHY

[55] Georg Gottlob and Toby Walsh, editors.IJCAI-03, Proceedings of the Eigh-
teenth International Joint Conference on Arti�cial Intelligence, Acapulco,
Mexico, August 9-15, 2003. Morgan Kaufmann, 2003.

[56] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, and Ulrike Sattler, edi-
tors. Proceedings of the 22nd International Workshop on Description Logics
(DL 2009), Oxford, UK, July 27-30, 2009, volume 477 ofCEUR Workshop
Proceedings. CEUR-WS.org, 2009.

[57] Jean-Louis Guigues and Vincent Duquenne. Familles minimales d'implications
informatives r�esultant d'un tableau de donn�ees binaires. Math�ematiques et
Sciences humaines, 95:5{18, 1986.

[58] Michel Habib, Raoul Medina, Lhouari Nourine, and George Steiner. E�cient
algorithms on distributive lattices. Discrete Applied Mathematics, 110(2):169{
187, 2001.

[59] Mohamed Rouane Hacene, Marianne Huchard, Amedeo Napoli, and Petko
Valtchev. A proposal for combining formal concept analysis and description
logics for mining relational data. In Kuznetsov and Schmidt [71], pages 51{65.

[60] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern mining:
current status and future directions. Data Mining and Knowledge Discovery,
15(1):55{86, 2007.

[61] Miki Hermann and Baris Sertkaya. On the complexity of computing generators
of closed sets. In Medina and Obiedkov [79], pages 158{168.

[62] Pascal Hitzler, Thomas Roth-Berghofer, and Sebastian Rudolph, editors.
Foundations of Arti�cial Intelligence FAInt 2007, Osnabr•uck, Germany,
September 10, 2007, volume 277 ofCEUR Workshop Proceedings. CEUR-
WS.org, 2007.

[63] Bernhard Hollunder, Werner Nutt, and Manfred Schmidt-Schau�. Subsump-
tion algorithms for concept description languages. InECAI, pages 348{353,
1990.

[64] Petr Krajca, Jan Outrata, and Vil�em Vychodil. Advances in algorithms based
on cbo. In Kryszkiewicz and Obiedkov [65], pages 325{337.

[65] Marzena Kryszkiewicz and Sergei A. Obiedkov, editors.Proceedings of the 7th
International Conference on Concept Lattices and Their Applications, Sevilla,
Spain, October 19-21, 2010, volume 672 ofCEUR Workshop Proceedings.
CEUR-WS.org, 2010.

[66] Sergei O Kuznetsov. Learning of simple conceptual graphs from positive and
negative examples. InPrinciples of Data Mining and Knowledge Discovery,
pages 384{391. Springer, 1999.

[67] Sergei O Kuznetsov. Machine learning and formal concept analysis. InConcept
Lattices, pages 287{312. Springer, 2004.

95

BIBLIOGRAPHY 96

[68] Sergei O Kuznetsov. On the intractability of computing the Duquenne-Guigues
basis. J. UCS, 10(8):927{933, 2004.

[69] Sergei O Kuznetsov and Sergei Obiedkov. Comparing performance of algo-
rithms for generating concept lattices.Journal of Experimental and Theoreti-
cal Arti�cial Intelligence , 14:189{216, 2002.

[70] Sergei O. Kuznetsov and Sergei A. Obiedkov. Counting pseudo-intents and
#p-completeness. In Missaoui and Schmid [80], pages 306{308.

[71] Sergei O. Kuznetsov and Stefan Schmidt, editors.Formal Concept Analy-
sis, 5th International Conference, ICFCA 2007, Clermont-Ferrand, France,
February 12-16, 2007, Proceedings, volume 4390 ofLecture Notes in Com-
puter Science. Springer, 2007.

[72] L�eonard Kwuida. When is a concept algebra boolean? InConcept Lattices,
pages 142{155. Springer, 2004.

[73] L�eonard Kwuida and Baris Sertkaya, editors.Formal Concept Analysis, 8th
International Conference, ICFCA 2010, Agadir, Morocco, March 15-18, 2010.
Proceedings, volume 5986 ofLecture Notes in Computer Science. Springer,
2010.

[74] Lot� Lakhal and Gerd Stumme. E�cient mining of association rules based on
formal concept analysis. In Ganter et al. [50], pages 180{195.

[75] Patrick Lambrix and Jalal Maleki. Learning composite concepts in descrip-
tion logics: A �rst step. In Foundations of Intelligent Systems, pages 68{77.
Springer, 1996.

[76] Man Li, Xiao-Yong Du, and Shan Wang. Learning ontology from relational
database. InMachine Learning and Cybernetics, 2005. Proceedings of 2005
International Conference on, volume 6, pages 3410{3415. IEEE, 2005.

[77] Michael Luxenburger. Implications partielles dans un contexte.
Math�ematiques, informatique et sciences humaines, (113):35{55, 1991.

[78] John P. McDermott, editor. Proceedings of the 10th International Joint Con-
ference on Arti�cial Intelligence. Milan, Italy, August 1987. Morgan Kauf-
mann, 1987.

[79] Raoul Medina and Sergei A. Obiedkov, editors.Formal Concept Analysis,
6th International Conference, ICFCA 2008, Montreal, Canada, February 25-
28, 2008, Proceedings, volume 4933 ofLecture Notes in Computer Science.
Springer, 2008.

[80] Rokia Missaoui and J•urg Schmid, editors.Formal Concept Analysis, 4th Inter-
national Conference, ICFCA 2006, Dresden, Germany, February 13-17, 2006,
Proceedings, volume 3874 ofLecture Notes in Computer Science. Springer,
2006.

[81] Bernard Monjardet. Arrowian characterizations of latticial federation consen-
sus functions.Mathematical Social Sciences, 20(1):51{71, 1990.

96

97 BIBLIOGRAPHY

[82] Amedeo Napoli and Vil�em Vychodil, editors. Proceedings of The Eighth In-
ternational Conference on Concept Lattices and Their Applications, Nancy,
France, October 17-20, 2011, volume 959 ofCEUR Workshop Proceedings.
CEUR-WS.org, 2011.

[83] Kamal Nehm�e, Petko Valtchev, Mohamed H Rouane, and Robert Godin. On
computing the minimal generator family for concept lattices and icebergs. In
Formal Concept Analysis, pages 192{207. Springer, 2005.

[84] Sergei Obiedkov and Vincent Duquenne. Attribute-incremental construction
of the canonical implication basis.Annals of Mathematics and Arti�cial In-
telligence, 49(1-4):77{99, 2007.

[85] Nicolas Pasquier. Mining association rules using frequent closed itemsets.
Encyclopedia of Data Warehousing and Mining, 2005.

[86] Nicolas Pasquier, Ra�k Taouil, Yves Bastide, Gerd Stumme, and Lot� Lakhal.
Generating a condensed representation for association rules.Journal of Intel-
ligent Information Systems, 24(1):29{60, 2005.

[87] Sebastian Rudolph. Exploring relational structures viaFLE . In Wol� et al.
[106], pages 196{212.

[88] Sebastian Rudolph.Relational exploration: combining description logics and
formal concept analysis for knowledge speci�cation. PhD thesis, 2006.

[89] Sebastian Rudolph. Relational exploration - reconciling Plato and Aristotle.
In Hitzler et al. [62].

[90] Sebastian Rudolph. Some notes on pseudo-closed sets. InFormal Concept
Analysis, pages 151{165. Springer, 2007.

[91] Anja Rusch and Rudolf Wille.Knowledge spaces and formal concept analysis.
Springer, 1996.

[92] Baris Sertkaya.Formal concept analysis methods for description logics. PhD
thesis, 2007.

[93] Nikolay V. Shilov and Sang-Yong Han. A proposal of description logic on
concept lattices. In Eklund et al. [42].

[94] Myra Spiliopoulou, Haixun Wang, Diane J. Cook, Jian Pei, Wei Wang, Os-
mar R. Za•�ane, and Xindong Wu, editors.Data Mining Workshops (ICDMW),
2011 IEEE 11th International Conference on, Vancouver, BC, Canada, De-
cember 11, 2011. IEEE, 2011.

[95] Gerd Stumme. Attribute exploration with background implications and ex-
ceptions. In H.-H. Bock and W. Polasek, editors,Data Analysis and Informa-
tion Systems. Statistical and Conceptual approaches. Proc. GfKl'95. Studies in
Classi�cation, Data Analysis, and Knowledge Organization 7, pages 457{469,
Heidelberg, 1996. Springer.

97

[96] Gerd Stumme, Ra�k Taouil, Yves Bastide, Nicolas Pasquier, and Lot� Lakhal.
Intelligent structuring and reducing of association rules with formal concept
analysis. In Baader et al. [4], pages 335{350.

[97] Gerd Stumme, Ra�k Taouil, Yves Bastide, Nicolas Pasquier, and Lot� Lakhal.
Computing iceberg concept lattices with TITANIC. Data & knowledge engi-
neering, 42(2):189{222, 2002.

[98] Laszlo Szathmary and Uta Priss, editors.Proceedings of The Ninth Inter-
national Conference on Concept Lattices and Their Applications, Fuengirola
(M�alaga), Spain, October 11-14, 2012, volume 972 ofCEUR Workshop Pro-
ceedings. CEUR-WS.org, 2012.

[99] Ra�k Taouil, Yves Bastide, et al. Computing proper implications. In9th
International Conference on Conceptual Structures: Broadening the Base-
ICCS'2001, 2001.

[100] Ralf Treinen, editor. Rewriting Techniques and Applications, 20th Interna-
tional Conference, RTA 2009, Bras��lia, Brazil, June 29 - July 1, 2009, Pro-
ceedings, volume 5595 ofLecture Notes in Computer Science. Springer, 2009.

[101] Petko Valtchev and Vincent Duquenne. On the merge of factor canonical
bases. In Medina and Obiedkov [79], pages 182{198.

[102] Manuela M. Veloso, editor.IJCAI 2007, Proceedings of the 20th International
Joint Conference on Arti�cial Intelligence, Hyderabad, India, January 6-12,
2007, 2007.

[103] Marcel Wild. Computations with �nite closure systems and implications. In
Du and Li [39], pages 111{120.

[104] Rudolf Wille. Restructuring lattice theory: An approach based on hierarchies
of concepts. InOrdered Sets, pages 445{470. Springer, 1982.

[105] Rudolf Wille. Mathematics presenting, re
ecting, judging. InFormal Concept
Analysis, pages 17{33. Springer, 2010.

[106] Karl Erich Wol�, Heather D. Pfei�er, and Harry S. Delugach, editors.Concep-
tual Structures at Work: 12th International Conference on Conceptual Struc-
tures, ICCS 2004, Huntsville, AL, USA, July 19-23, 2004. Proceedings, volume
3127 ofLecture Notes in Computer Science. Springer, 2004.

[107] Mohammed Javeed Zaki and Mitsunori Ogihara. Theoretical foundations of
association rules. In3rd ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, pages 71{78. Citeseer, 1998.

[108] Filip Zelezn�y and Nada Lavrac, editors. Inductive Logic Programming, 18th
International Conference, ILP 2008, Prague, Czech Republic, September 10-
12, 2008, Proceedings, volume 5194 ofLecture Notes in Computer Science.
Springer, 2008.

Index

� (Lattice), 12
APRIORI, 74
LinClosure, 18
Naive Closure , 18
Next Closure (Intents), 11
Next Closure (Pseudo-Intents), 13
Predecessor, 79
Successors , 23
TITANIC, 74
Wild's Closure, 19

ABox, 62
Assertional Axiom, 62
Association Rule, 73
Atomic Concept, 62

Basis of Implications, 8

Canonical Direct Basis, 10
Concept (Description Logics), 61
Concept Lattice, 6
Concept Name, 61
Con�dence, 73
Constructor (Description Logic), 61
Cover of Implications, 7

Duquenne-Guigues Basis, 9

Extent, 6

Formal Concept, 6
Formal Context, 5

Implication, 6
Increasing Cardinality Order, 26
Induced Context, 63
Intent, 6
Interpretation, 62

Knowledge Base, 62

Lectic Order, 11
Logical Closure, 8
Logical Pseudo-Closure, 8

Luxenburger Basis, 75

Object Name, 61
Operator � (Intents), 11
Operator � (Pseudo-Intents), 13

Partial Implication, 74
Proposition 5, 23
Proposition 6, 25
Pseudo-Intent, 9

Relational Dependency, 65
Role Depth, 62
Role Name, 61

Spanning Tree of �, 22
Successor Relation, 21
Successor Relation (Between Intents), 78
Support, 73

TBox, 62
Terminological Axiom, 62

99

