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CONTRIBUTIONS A L 'E TUDE DES ARBRES DE LEVY ET DES ARBRES
INHOMOGENES CONTINUS

SSSSSSSSSSSSSSSSSSSSS

Résumé

Nous considérons deux modéles d'arbres aléatoires continus, a savoir les arbres de Lévy
et les arbres inhomogeénes. Les arbres de Lévy sont limites d'échelle des arbres de Galton—
Watson. lls décrivent les structures généalogiques des processus de branchement continus en
temps et en espace. La classe des arbres de Lévy est introduite par Le Gall et Le Jan (1998)
comme extension de I'arbre brownien d'Aldous (1991). Nous donnons une description de la
loi d'un arbre de Lévy conditionné par son diamétre, ainsi qu'une décompaosition de l'arbre

le long de ce diamétre, qui est décrite a I'aide d'une mesure ponctuelle de Poisson. Dans
le cas particulier d'un mécanisme de branchement stable, nous caractérisons la loi jointe du
diametre et de la hauteur d'un arbre de Lévy conditionné par sa masse totale. Dans le cas
brownien nous obtenons une formule explicite de cette loi jointe, ce qui permet de retrouver
par un calcul direct sur I'excursion brownienne, un résultat de Szekeres (1983) et Aldous
(1991) concernant la loi du diamétre. Dans les cas stables, nous obtenons également des
développements asymptotiques pour les lois de la hauteur et du diamétre.

Les arbres inhomogénes sont introduits par Aldous et Pitman (2000), Camarri et Pitman
(2000). Ce sont des généralisations de I'arbre brownien d'Aldous (et des arbres de Lévy).
Pour un arbre inhomogéne, nous étudions une fragmentation de cet arbre qui généralise celle
introduite par Aldous et Pitman pour 'arbre brownien. Nous construisons un arbre généa-
logique de cette fragmentation. En utilisant des arguments de convergence, nous montrons
gu'il y a une dualité en loi entre l'arbre initial et I'arbre généalogique de fragmentation.
Pour I'arbre brownien, nous trouvons aussi une fagon de reconstruire I'arbre initial & partir
de l'arbre généalogique de fragmentation.

Mots-clefs: arbre brownien, excursion brownienne, continuum random tree, fonction theta de Jacobi, dé-
composition de Williams, arbres de Lévy, processus de Lévy, processus des hauteurs, diamétre, décom-
position, développement asymptotique, lois stables, arbres inhomogénes continus, cut trees, processus de
fragmentation.
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CONTRIBUTION TO THE STUDY OF LEVY TREES AND OF
INHOMOGENEOUS CONTINUUM RANDOM TREES

SSSSSSSSSSSSSSSSSSSSS

Abstract

We consider two models of random continuous trees: Lévy trees and inhomogeneous con-
tinuum random trees. Lévy trees are scaling limits of Galton—Watson trees. They describe
the genealogical structures of continuous-state branching processes. The class of Lévy trees
is introduced by Le Gall and Le Jan (1998) as an extension of Aldous' notion of Brownian
Continuum Random Tree (1991). For a Lévy tree, we give a description of its law condi-
tioned to have a xed diameter that is expressed in terms of a Poisson point measure. In the
special case of a stable branching mechanism, we characterize the joint law of the diameter
and the height of a Lévy tree conditioned on its total mass. From this, we deduce explicit
distributions for the diameter in the Brownian case, as well as tail estimates in the general
case.

Inhomogeneous continuum random trees are introduced by Aldous and Pitman (2000), Ca-
marri and Pitman (2000). They are also generalizations of Aldous' Brownian Continuum
Random Tree (and of Lévy trees). For an inhomogeneous continuum random tree, we con-
sider a fragmentation which generalizes the one introduced by Aldous and Pitman on the
Brownian tree. We construct a genealogical tree for this fragmentation. With weak limit
arguments, we show that there is a duality in distribution between the initial tree and the
genealogical tree. For the Brownian tree, we also present a way to reconstruct the initial tree
from the genealogical tree.

Keywords: Brownian tree, Brownian excursion, continuum random tree, Jacobi theta function, Williams'
decomposition, Lévy trees, Lévy process, height process, diameter, decomposition, asymptotic expan-
sion, stable law, inhomogeneous continuum random trees, cut tree, fragmentation process.
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Chapter 1

Introduction

In this PhD Thesis, we study Lévy trees introduced by Le Gall and Le8Bjygs well as inhomogeneous
continuum random trees (ICRT) de ned by Aldous and PitmiEd),[Camarri and Pitmard[l]. This thesis
contains four articles.

[100: HEIGHT AND DIAMETER OF BROWNIAN TREES submitted.

[54]: DECOMPOSITION OFLEVY TREES ALONG THEIR DIAMETER joint work with Thomas
Duqguesne (co-advisor). This paper is submitted.

[39): CUTTING DOWN p-TREES AND INHOMOGENEOUS CONTINUUM RANDOM TREESjoint
work with Nicolas Broutin (co-advisor). This paper is submitted.

[40: REVERSING THE CUT TREE OF THEBROWNIAN CRT, joint work with Nicolas Broutin
(co-advisor). This paper is submitted.

Chapter2 and ChapteB concern Lévy trees. Chapt2iis based on the workip(, where we study
the diameter of Aldous' Brownian tree. Chapters based on the joint work with Duquesn&]: in
this article, we study a decomposition of Lévy trees along their diameter and we obtain results on the
total height and on the diameter of stable trees conditioned on their total mass, which generalizes several
formulae obtained in Chapt@r Chapterd and Chapteb concern ICRTs. Chaptdris based on the joint
work with Broutin [39], where we consider general fragmentations on ICRTs. Ché&psebased on the
joint work with Broutin [40], where we solve a problem that arises naturally from Chapter

In this chapter, we rst introduce the main mathematical objects we consider; then, we present the
main results whose proofs are to be found in the remaining chapters. We adopt the following notation

R+ :=[0;1); N:=1f1,23 g and Ng:=f0;1,2, g:

Unless otherwise speci ed, all the random variables below are de ned on the same probability space
denoted by
( ;F;P):

1.1 Galton—Watson trees and Lévy trees

For details and proofs on Galton—Watson processes and Galton—Watson trees, we refer to Athreya and
Ney [20], to Lyons and Peres8p] and to Neveu $2]. On the coding of trees by functions, see Le Gall
and Le Jan§3] and the introduction of Duquesne and Le Gall].

1



1.1.1 Galton—Watson processes

Let (Y(”) i 2 N;n 2 Ng) be a sequence of independdy-valued variables Whoselgommon law is

=( (k);k 2 Np), which is said to be theffspring distribution We denote by (r) = ﬁ -0 rk (k)
the generating function of. A Galton—Watson proce$&n)n2n, Of offspring law starting froma 2 Ng
can be de ned in the following inductive way:

X
Zo = @ Znv1 = Ltz 1g Yi(”); for eachn 2 Np: (1.1)
10 Zn

The proces$Zn)n2n, IS @ Markov chain whose transition probabilities are characterized by
E[r%r+t jZ,]=f (r)%"; forallr 2 [0;1];n 2 No: (1.2)

The Markov chain(Z,)n2n, describes a population which evolves in the following way. At genera-
tion O, there are exactlg individuals, which are the ancestors of the population. At generatiBriNo,
each individual independently gives birth to a random number of children according to the l[ahe
generatiom + 1 consists of the children of the individuals of generation

Now let us consider two independent populations: oneahascestors; the other hasncestors. It
is clear that the union of the two populations has the same distribution as a population which has
ancestors. This is often called theanching propertyof the Galton—Watson process. More precisely,
denote byP, (a; ) the law ofZ,, with Zg = a as de ned in (.1). The branching property is equivalent
to say that

8n;a;b2 Ng Pn(a; ) Pn(b;)= Pn(a+ b;); (1.3)

where denotes the convolution product for laws Ng.

Letg=inffr 2 [0;1]:f (r) rgbe the smallest xed point of on[0;1]. Then itis not dif cult
to show that

P(9n2 Ng:Zn=0)= E[¢?°]: (1.4)
On the other hand, E’ ‘%PO k (k) 1,theng=1 and it follows from (.4) that the population becomes
extinct almost surely. If ﬁ oK k) > 1, the population has Bstrlctly positive probability of surviving.
}g/e say that is sub-critical if k o k (k) < 1, critical if k o k (k) = 1 andsuper-critical if
k ok (k)> 1

In this work, we are only interested in the critical and subcritical cases.

1.1.2 Plane trees and Galton—Watson trees

In this section, we describe the genealogy of Galton—Watson processes, using Ulam's formalism as dis-
cussed in Nevelwp]. Let
[
U= N ;
n=0

where we make the convention thidf = f?g. An element ofU is then a nite sequence =

(ug;uz;  ;um) of strictly positive integers. The length of this sequence is said to bgaheration
of u; we denote it byjuj. If u = (uy;uy; ;Up) andv = (vq;Vo; ;Vm) are two elements df,
we writeuv = (Ug; Uo; JUn; V1) V2, ; Vm) for the concatenation af andv. In particular, we have

2u=u? = u.
A plane treeT is a nite subset olJ that satis es the following conditions:

(@ ? 2T,;? iscalled theoot of T;



(b) if v2 T andv = uj for someu 2 U andj 2 N, thenu 2 T;
(c) foreachu 2 T there exists a numbéy, (T) 2 Np suchthauj 2 T ifandonly ifj  ky(T).

We denote byl the set of plane trees. For dll2 Ty, we write (T) := Card T, the total size ofl .
Letu 2 T; thesubtreeof T stemming fromu is denoted bySub,(T): namely,Sub,(T) = fv 2 U:
uv 2 Tg. Note thatSuly,(T) is also a plane tree.

We equipTp with the -algebraG generated by the set§ 2 T, : u 2 Tg;u 2 U. Let bea
(sub)-critical probability distribution oig. Neveu P2] has shown that there exists a unique probability
Q on(Ty; G) such that

(1) Q (k2(T)=j)= (i), forj 2 No;

(2) for everyj 2 Nwith (j) > O, the subtreeSuby(T); Subx(T); ;Suly(T) are independent
under the conditional probabilit®9 ( jk, (T) = j) and their conditional distribution i® .

The distributionQ is called thelaw of the Galton—Watson tree with offspring law If we denote by

Zn(T)=Cardfu 2 T :juj = ngthe size of generatiom, then(Z,(T);n 2 Np) underQ is a Galton—

Watson process with offspring lawstarting from1. Note that the (sub)-criticality of the offspring law
guarantees that isQ -a.s. nite.

1.1.3 Encoding Galton—Watson trees

LetT 2 Tp. We associate witfl two coding functions, namely thigeight functionand thecontour
function

Discrete height process. To de ne the height function, we observe that the lexicographic ordéf of
induces alinear order dn. Let us index the vertices df in this order:u(0) = ?;u(l); ;u( (T) 1).
Then the height functiofH,(T);0 n (T) 1)isde ned by

Hno(T):= ju(n)j; 8n2f0, ; (T) 1g:

Contour process. Suppose thal is embedded in the clockwise oriented upper half plane in such a way
that the root is at the origin and that each edge corresponds to a line segment oflldngdlgine that a
particle explore§ from the left to the right at unit speed, starting from the root and backtracking as less
as possible. LeCs(T) denote the distance between the root and the position of the particle at thote

that the particle returns to the root at tide (T) 1) (each edge is visited exactly twice by the particle).
The function(Cs(T);0 s 2( (T) 1)) is said to be the contour function ®f (see gurel.l). In
particular, if we denote byy the vertex visited by the particle at tinlkek 2 f0;1; ;2( (T) 1)g,

then the graph distanakof T satisesforany0 k; k 2( (T) 1),

d(Vi;; Vi,) = Cip(T) + Ci,(T) 2 min Cg(T): (2.5)
s2[kq:kz]
We shall discuss a generalization of this formula in the continuous context.

Height process and contour function of forests. We also need the notion of the height function (resp.
contour function) of a forest. Aorestis a sequencé€Ty)kan WhereTy 2 Ty The height function of the
forest(Tyx)kon IS Obtained by the concatenation of the height functions of daclior eachk 1, we

de ne

Hn=Hn o+ + 1 (T 0f (T))+  + (Tk 1) n< (Ty)+ + (Ty):
3
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It is not dif cult to see that the height functiofH,; n 2 Ng) characterizes the forest.

To de ne the contour function of the foreBIk) k2 n, ONe needs to extend the de nitions of the contour
functions(Cs(Tk);0 s 2 (Tx) 2) by settingCs(Tx) =0 foralls 2 (2 (Tx) 2;2 (Tk)]. The
contour function(Cs; s 2 R.) of the fores{Tk)x2n is then obtained as the concatenation of the extended
functions(Cs(Tk);0 s 2 (Tx)), thatis, for eacls 2 R,

Cs=Cs o+ +2 m )(Tk)y 2 (T)+  +2 (Tx 1) s<2(T)+ +2 (Ty):

This de nition allows us to identify the contour function of each tree of the whole forest. In fact, the
contour function can be expressed in terms of the height function. We refer to the Section 2.4 of Duqueshe
and Le Gall p1] for more details.

Connection with random walks. Let (Tx)kan be a sequence of independently and identically dis-
tributed (i.i.d.) Galton—Watson trees. It turns out that the height functidit9fco n is distributed as a
rather simple functional of a random walk.

Lemma 1 (Le Gall and Le Jang3]). Let(Xn;n 2 Np) be a random walk starting frod whose jump
distribution is given by (k) .= (k+1) fork 2f 1;0;1;:::9. For eachn 2 Ng, we set

Ho=Card k20,1 ;n 1g:Xy= inf X; : (1.6)
] n

Then the proceddn; n 2 Np) has the same distribution as the height function of a forest of i.i.d. Galton—
Watson trees with offspring law.

The relation {.6) is the starting point of the de nition of the height process in the continuous context
that is recalled in Sectioh.1.5

1.1.4 Continuous-state branching processes

The continuous-state branching processes (CSBP) are the continuous analogues (in time and in state-
space) of Galton—Watson processes. They are introducedibg [Ji3] and Lamperti {8, 79] and also

studied in Bingham3?Z]. For details and proofs, we refer to Bingha&?]; see also Kyprianou77] and

Le Gall [81]].



Here we only consider the (sub-)critical CSBPs: theyRurevalued Feller processes whose transi-
tion kernelg(P;(x; dy); x 2 R4+ ;t 2 R4 ) satisfy the following:

8t 2 R+ ;8 x°2 Ry Py(x; ) P(x%)= Py(x+ x%); (1.7)

and z
8t;x 2 Ry yPi(x;dy) < 1: (2.8)
R+

Property (.7) is called thecontinuous branching propertylt is the analogue ofl(3). The second
condition (L.8) is the sub-criticality assumption.

Let us denote byZ;;t 2 R.) such a CSBP. The transition kernelsdfare characterized by their
Laplace transform. More precisely, for asyt; 2 R., we have

Ee “st Zg =exp( Zsu( )); (1.9)

where the mapping 7! ui( ) is nonnegative, differentiable and where it satis es the equation

u( )= ,; and gyt( )+ (uw()=0; t2][0;1): (2.10)
Here the function : R. ! R, is called thebranching mechanisrof the process and it has the
following Lévy-Khintchine form:
Z
( )=+ 2+ (e " 1+ r) (dr); (1.11)
(0;1)
where ; 0, and where th&évy measure on(0;1 ) satises ; (r ~ r<) (dr) < 1 . Equation

(1.10 has a unique solution. This implies that the branching mechanisiaracterizes the law of the
CSBPZ. Therefore, we can talk of CSBPs with branching mechanism

Example. Here are three examples of branching mechanisms.
()= with 2 R . The associated CSBP is the deterministic proZgss Zoe ' .

( )= 2. Inthis case, we have( ) = - B’he associated CSBP is the Feller diffusion
process, which is the solution to the SDdZ; = = 2Z;dBy, where(By;t 0) is a standard
Brownian Motion.

(Non-Brownian stable caseq) ) = , with 2 (1;2). Then, = =0 and (dr) =

(g 1§r Ldr. In this casey( ) is also explicit :

8t; 2Ry; uw()= ( t+ D Y

Let us brie y discuss the asymptotic behavior of a sub-critical CSBPs. First, note that the function
t 7! u(t; ) is decreasing: an easy change of variables shows that

z

d
8t2R.:8 2(0;1): oo (1.12)
u(t; ) ( u)
This entails thatim; u(t; ) =0 and therefore
P tIl!mOZt =0 =1: (1.13)
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In contrast to Galton—Watson processes, there are two distinct scenazbsdget extinct. Indeed, we
can deduce froml(12 that

()

This is often referred to as th@rey condition When (L.14) is satis ed, we set

<1 P(Ot2R: :Z;=0)=1: (1.14)

8t2 Ry wv(t)= Iilrln ue( ) (1.15)
and (L.12 impliesthatv : (0;1 ) ! (0;1 ) is a continuous bijection such that
zZ, q
(" t and P(Z{=0jZo)=e 2V®; 8t2(0;1): (1.16)
v(t)

If the Grey condition {.14) is not satis ed, theP-a.s. forant2 R, , Z; > 0.

1.1.5 Genealogy of continuous branching processes: the height process

In this part, we recall the construction of the continuous height process due to Le Gall and B&]Jan [
See also Chapter 1 of Duguesne and Le Gdil).[

The height process. Let be the branching mechanism as de nedInl(l). LetX = (X¢;t 2 Ry)
be a spectrally positive Lévy process starting ffl@end whose Laplace exponent is given by namely,

8t: 2Ry Ele Xt]=exp(t( )): (1.17)

The procesX plays a similar role as the random wdlK,;n 2 Np) in Lemmal. If satis es the
Grey condition {.14), then Le Gall and Le Jar8p] have proved that there exists a continuous process
H = (H¢;t 2 Ry) such that for alt 2 R, , the following limit holds true irP -probability:
p4t
Ht = ||!m0* o d31f|§<x s<I 5+ g (1.18)
where we have séf =infs , (X, forall0 s t. This de nition is a continuous analogue df.6)
and the procedd is called the -height process
In the case wherd )= 2, the Lévy procesX is a multiple of the Brownian motion artd has
the same distribution as a re ected (non-standard) Brownian motion.

Ray-Knight theorem for the height process. Let us point out that, in gener#d, is not a Markov
process. It is however possible to de ne the local tinjed),12r, Of H. Namely,(a;t) 7! L2 is
measurable, for ah 2 R+, P-a.s.t 7! L{ is non-decreasing and
z t
P-as. L&= Iimo— . 1fa<H s<a+ gdS: (1.19)

We refer to Duquesne and Le G&lll], Proposition 1.3.3. for more details.
Forallx 2 R.,wedenotey =infft 0:X;= xgthe hitting time ofX atlevel x. Theorem
1.4.1 of p1] generalizes the Ray—Knight Theorem to a general branching mechanism

L%;a 0 isaCSBP of branching mechanismstarting fromx: (1.20)

Informally, (1.20) says that the population at leveforms a continuous branching process. This property
is expected from the continuous height process as its discrete counterpart enjoys a similar one.
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Limit theorems for the height process. The following convergence results also show tHatepresents

the genealogy of CSBPs. ForegzR N, let , = f p(k);k 2 Nog be a (sub)-critical probability distri-
bution onNg. LetZP = (Zlf; k 2 Np) be a Galton—Watson process with offspring laystarting from
pand letX P = (X ;k 2 No) be a random walk with jump distribution, = ( p(k);k 2f 1;0; @)
where p(k) = p(k+1). RecallthaX is a Lévy process of Laplace exponentind letZ be a CSBP of
branching mechanism starting from1. Let (up)p2n be a nondecreasing sequence of positive integers
converging tdl . Then a version of Grimvall's TheorerdJ] (see also Theorem 2.1.1 i&]) says that

17p . d _ _ o . d
P Zbuptc't 0 p!!l (Zi;t 0) iff p Xbpuptc't 0 p!!l

Xt 0); (1.21)
whereb cstands for the the integer part function and whéreneans convergence in distribution on the
spaceD(R: ; R) of cadlag functions equipped with Skorokhod topology.

Foreachp 2 N, letHP = (HY:n 2 Ng) andCP = (C{;s 2 R, ) be the respective height function
and contour function of a forest of i.i.d. Galton—Watson trees with offspring lawWe assume that
HP is related to the random wal P by (1.6). Moreover, we assume that the number of individuals at
generatiom of the rst p trees in this forest has the same distributioZ§sWe then also assume that

8 >0 Iiminf P(ZzP =0)>0:

bupc

Then Corollary 2.5.1 ofg1] proves the following convergence in distributiond{R- ; R®) :

d
P X hupte Up Hipuptei Up Chouptit 0 4 (XeHgHgt o) (1.22)
whereH is the height process associated with(see (.18). Furthermore, jointly with 1.22), the
following convergence in distribution holds D(R+ ; R):

1-p . |
p Zbupac’a 0 p'!1

L%;a O ; (1.23)
The excursion measure of the height process.The convergence inl(22 shows that the process
(H¢;t 0) is the scaling limit of the height functions (resp. contour functions) of a forest of i.i.d.
Galton—Watson trees. One natural question is whether we can interpret this convergence in terms of
trees: this will be the subject of the next section. A related question is how to “extract” a single tree from
the whole forest encoded Iby. For this, we need the excursion measurélahat is introduced here.
Observe that].14) entails that
z
either > 0 or r (dr)=1 ; (1.24)
(0;1)
which is equivalent for the Lévy procesé to have unbounded variation sample paths. Let
infs ¢ Xs be the in mum process oK. It is well-known thatX | is a Markov process and théat
is regular for itself with respect to this Markov process (see Ber@ithChapter VII). Moreover, | is a
local time ofX | atlevel0. We writeN for the associated excursion measure. Denofgily);i 21 ,
the excursion intervals of | above0, and bei = X@+)rd lg> i 21 ,the corresponding ex-
cursions. We remark that according X8, if t 2 (g;; d;), then the value oH; depends only oiX'.
Foreach 21 ,wesetH' = H g ynq . It follows from the above remark that' is a functional of the
excursion ofX | over(g;; d;). Let us denote bl the image oN by this functional. Then the point
measure X
( |gi ;Hi) (125)
i2l
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is distributed as a Poisson point measurdon C(R. ; R) with intensity measurdt N .
Note thatX andH share the same lifetime unddr, which we denote by. Then it is classical from
the uctuation theory that< 1 ,N-a.e. and that for> 0,

N 1 e = Yy (1.26)

where ! stands for the inverse function of.
Notation. We shall denote bid the canonical process @(R+ ; R).

1.1.6 Lévytrees

Real trees. Real trees have been studied for a long time for algebraic and geometric purposes (see for
example Dress, Moulton, and Terhall&/]). Since the work of Evans, Pitman, and Wintég], real

trees are widely adopted for the study of random branching structures. More details and proofs on real
trees and Gromov—Hausdorff distance can be found in the book of Evd@ns’he Gromov—Prokhorov
distance is introduced in Greven, Pfaffelhuber, and Wirti&}, see also the Chapt@% of Gromov [B4].

A metric spacdT; d) is called areal treeif the following two properties hold for eveny;v 2 T.

(i) There is a unique isometric mag, from[0; d(u; v)] into T such thaty,., (0)= u andqy., (d(u; v))
= v. In this case, we denote [3y; vKthe image of0; d(u; v)] by qu.v .

(i) If gis a continuous injective map froff; 1] into T, then we have
q([0; 1]) = Ja(0); a(1)K

Among connected metric spaces, real trees are characterized by the sdaxalledints inequality let
(T;d) be a connected metric space; t{@nd) is a real tree iff for any 1; »; 3; 42 T, we have

d( 1; 2)+d( 3 4) d( 15 3)+d( 25 4) _ d( 1; 4)+d( 25 3): (1.27)

See Evans{7] for more details.

A rootedreal tree is a real tre€T ; d) with a distinguished point called theroot. Let(T;d;r) be
a rooted real tree. Far 2 T, thedegreeof u in T, denoted bydeg(u; T), is the number of connected
components of nfug. Itis possible thatleg(u) = 1 . We also denote by

Lf(T)=fu2T:degu;T)=1g and Br(T)= fu2 T :degu;T) 3g (1.28)

the set of thdeavesand the set obranch pointsof T. The skeleton of is the complementary set of
Lf(T) in T, that is denoted bgk(T):

Sk(T) := TnLf(T):

Gromov—Hausdorff distance. Two rooted real tree6T: d;r) and(T% d® r9 are said to be isometric
if there exists anisometrdy : T | TOsatisfyingf (r) = r° We denote byl the set of pointed isometry
classes of rooted compact real trees. We edyiwith the pointed Gromov—Hausdorff metric, which is
de ned as follows: If(E; ) is a metric space, we writgy for the usual Hausdorff metric between the
compact subsets & . If (T;d;r);(T%d%r9 are two rooted compact real trees, the distance between
them is given by

eu(T;TY=inf (T (TY _ (" (9
where the in mum is over all the isometric embeddings T ! E and' : T%! E of T andT%into
some common metric spa¢g; ). One readily checks thag (T; T9 only depends on the equivalence

classes off andTC Indeed, gy de nes a metric onT.. Moreover, the metric spadd@¢; cH) iS
complete and separable. See Evans, Pitman, and Witleand Gromov p4]; see also Evan[/].
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Gromov-Prokhorov distance. We say a triplgT; d; ) is ameasured real treé (T; d) is a separable
and complete real tree and ifis a Borel probability measure df. Two measured real tre€s;d; )
and(T%d® 9 are said to beveakly isometridf there exists an isometry between the supports ofon
T and of %onTO%such that Cis the push-forward measure ofoy , which is denoted by ) . We
denote byT,, the set of weak isometry classes of measures real trees.

If (E; ) is a metric space, we denote by the Prokhorov distance on the set of Borel probability
measures ofE. Let (T;d; ), (T®d® 9 be two measured real trees; then the Gromov—Prokhorov
distance between them is de ned by

op(T;TY=inf p( ; 9,

where the in mum is taken over all spacEsand all isometries : supp( )! E and :supp( 9!
E. Note that the de nition of gp depends only on the weak isometry classe¥ @nd T Moreover,
cp induces a metric oify,. It has been shown by Greven, Pfaffelhuber, and Wirg&rthat(Tw; cp)

is separable and complete.

The coding of real trees by excursions. Recall thatH =( H;); o stands for the canonical process on
C(R+;R4+). Firstassume that has a compact support, thdp =0 and thatH is distinct from the null
function: we call such a function eoding functionand we then sety =supft> 0 : H{ > Og that is
called thdlifetime of the coding functiorH . Note that 4 2 (0; 1 ). Analogously to {.5), we set for any
s;t2[0; ],

dy(s;t):= Hs+ Hy 2 inf  Hy: (1.29)

s"t u s_t
It is not dif cult to see thatdy is a pseudo-metric g®; H]. We associate with it an equivalence relation
H, which is de ned by:s 4 t whenevedy (s;t) = 0. We de ne

(Thsdu)=(0; H]= Hidy):

Letpy : [0; 4] ' T 4 be the canonical projection. It is clearly a continuous mapping. Thysdy )
is a connected compact metric space. Moreover, it is easy to checHthsatis es the four points
inequality. Therefore(Ty ; dy ) is a compact real tree. We de ngy := py (0) as theroot of T .

There are two additional structures ©n that are useful to us. First, tlneass measumny of Ty is
de ned to be the pushforward measure of the Lebesgue measyée ¢l induced bypy ; namely, for
any Borel measurable functidn: Ty ! R.,

Z z
f()mu(d )= . f (pn (1)) dt: (1.30)

T

Note that
My (Th)= w:

The coding functiorH also induces #énear order p{ onTy thatis inherited from that di0; 4]
namely for any 1; 22Ty,

1 H 2 0 infft2[0; wl:pu(t)= 19 Infft2[0; w]:pu ()= 20: (1.31)

Roughly speaking, the functidt is completely characterized §¥y ;dn; 1;muy; H): see Duquesne
[50] for more detail about the coding of real trees by functions.
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Lévy trees. Observe thaH is N -a.e. a coding function as de ned above. Duquesne and Le &3Il [
then de ne the -Lévy treeas the real tree coded Ity underN .

Convention When there there is no risk of confusion, we simply write
(T;d;sms 5p) = (ThiGH; HiMHS HIPH)
whenH is considered unde\ .
Recall thatLf(T) stands for the set of leavesBf Then the mass measure has the following properties:
N -a.e.m is diffuse andn (T nLf(T))=0. (1.32)

The -Lévy tree(T;d; ; m) is therefore a continuum tree according to the de nition of Aldogjs [
Moreover, it is proved in Duquesne and Le GalP] that

N-ae. 8 2T; deg(; T)2f1,23,1g ; (1.33)

and there exist branch points of deg8iéand only if > 0in (1.11). Roughly speaking, in nite branch
points are due to the jumps of the underlying Lévy process. See Duquesne and L&X5alt more
details.

1.1.7 Stable trees

Here we consider a special class of Lévy trees, namely the class of stable trees. As we will recall below,
the scaling property of underlined Lévy process enables us to de ne a Lévy tree conditioned on their
total mass. It turns out that the Brownian Continuum Random Tree (Brownian CRT) is a special case of
these Lévy trees conditioned on the total mass. The Brownian CRT was rst introduced in A&Jpus [
as scaling limits of discrete trees. The coding of Brownian CRT by normalized Brownian excursion is
discussed by Le GalB[] and by Aldous [L0].

In this part, we x 2 (1;2]and

8 2R:; ( )=

Note that in this case the conditioh.{4) is always satis ed. The Lévy proceds underP enjoys the
1
following scaling property: foralt 2 (0;1 ), (r Xy )¢ o hasthe same law a&. This entails by {.18
1
that undeP, (r ~— Hy)t o has the same law &$ and the Poisson decompositiahZ5 implies the
following:

r Hmn, , under rlN = H under N : (1.34)
On the other hand, we derive frorh.26) that
N( 2dr)=p (r)dr; where p(r)=cr 12 with 1=c = ¢ B (1.35)

Here . stands for Euler's Gamma function. B%.84), there exists a family of laws 0€6(R+ ; R+)
denoted byN( j =r),r2(0;1 ), such that

the mapping 7! N( j =r) is weakly continous o€(R-+ ; R+ ),
N(j =r)as. =r,
we have Z,

N = N(j =r)N( 2dr): (1.36)
0
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Moreover, by (.34, r 71H it ounderN( j =r) hasthe same law &$ underN( j =1). We
callN( j =1) thenormalized law of the -stable height procesand to simplify notation we set

Np = N(j =1) : (1.37)

Thus, for all measurable functiofs:C(R+;R+)! R4,

Z, L h N i
NFH) =c drr ' "Np F or He o o (1.38)
0

The Brownian case. When = 2, the height procesbl underNy, is distributed asp 2E, where
E=(E;0 s 1)isthe normalized positive Ito excursion of standard Brownian Motion (see for
instance Revuz and Yo8Y], Chapter Xl for a de nition).

Let be an offspring distribution oNg that is assumed to be critical and to have nite varianée
We also assume thatis aperiodic. For all suf ciently larga 2 N, let T, be a random plane tree whose
law isQ (dTj (T) = n): namelyT, is a -Galton-Watson plane tree conditioned to haveertices.
Recall tha{Cs(T,);0 s 2n) stands for the contour function @f, as de ned in Sectio.1.3 Then,
Aldous [L0] shows thatas ! 1 , the following limit holds true in distribution o€(R+ ; R+ ):

d

P=Cans(Tn):0 s 1 1% (2E;0 s 1): (1.39)

Because of this, Aldous has de ned the Brownian CRT to be the real tree encoded B in the
sense of1.29 (equivalently, we can také )=2 2). Then (L.39 says thafl *" is the scaling limit of
conditioned Galton—Watson trees. The convergence.B9(has been extended by Duques#g to the
case where the offspring lawis critical and is in the domain of attraction of thestable law. See also
Kortchemski [/6] for scaling limits of Galton-Watson tree conditioned to havieaves.

Stable trees often appear in the study of self-similar fragmentations, see for example B&ijtoin [
Goldschmidt and Haa$]], Haas and Miermontd5], Miermont [89, 90]. An important example of these
self-similar fragmentations is the one studied in Aldous and Pitrha}p \vhich describes the evolution
of the mass partitions of the Brownian CRT where partitions are induced by a Poisson point process. The
proper de nition is left to the next section, where we introduce a more general fragmentation. A recent
work of Bertoin and MiermontJ0] shows that the genealogical tree of Aldous—Pitman’s fragmentation,
equipped with a suitable metric, is also distributed as the Brownian CRT. This identity in distribution is
the starting point of the problem considered in Chapter

1.2 Birthday trees and inhomogeneous continuum random trees

1.2.1 Birthday trees and the Aldous—Broder Algorithm

Trees are also important objects in the graph theory, where they are usually unordered but labelled. A
classical model of random (graph) trees is the Cayley tree, which is a uniformly random labelled tree of
given “size". The model of birthday trees that we are about to introduce is a generalization of the Cayley
tree.

Let us rst recall the notion of (graph) tree: a treés a connected graph without cycles.rdoted
treeis a tree with a distinguished vertex, called thet. Recall that an edge dfis a set of the form
fu; vgwhereu; v are vertices of. When the tree is rooted, we think of the edges as pointing to the root.
Then thein-degreeof a vertexv, denoted byk,(t), is the number of the edges that can be written as
f u; vg with some vertexi such that the direction of the edge is franto v.
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Letn 1 be some natural number. We denoteTgythe set of rooted trees with vertex gef :=

f1;2,  ;ng. A well-known fact is thafl,, has exactlyn" ! elements. We equip,, with the discrete

-algebra (the power set). ThenGayley treeof sizen is a random tree distributed according to the
uniform distribution onT,. Let us note that there is a correspondence between a Cayley tree and a
conditioned Galton—Watson tree with Poisson offspring distribution: if we assign labels to the nodes of
the Galton—Watson tree using a uniform permutation and forget the order, we obtain a Cayley tree.

The class of birthday trees has been introduced in Camarri and Piéifidor{the study of the general
birthday problems. In a Cayley tree, all nodes behave in the same way, and the birthday trees general-
ize this by introducing some inhomogeneity which, as we will see later, entails interesting asymptotic
behaviors when the sizes of the trees go to in nity.

Let us now be more speci c. Lgt be a probability measure dn] and let us writgy; = p(i) for
i 2 [n]. To exclude degenerate cases, we assumgthatO for eachi 2 [n]. The following so-called
Aldous—Broder Algorithnextracts a tree from the trace of a random walk on the complete graph.

Algorithm 2 (Aldous [18], Broder [37]). Let(Yx)x o be a sequence of independent random variables
whose common law 3. LetT be the (random) graph ojm] which is rooted atry and has the following
edge set

ff Yi; Ye+10: Yes1 62 10; Y1, Ykg k  1g

Here is a mental picture. Take a pencil and a piece of paper, andldesollows.

Start at vertexyy. At stepk 1, the pencil is at verteXy 1. If Yy has not appeared
previously, we add the new vert& and draw an edge betwedf ; andYy; otherwise
move the pencil tory, without drawing an edge.

Note that the random walRvy) o eventually visits each vertex with probability one becayse 0
foranyi 2 [n]. We observe that the ed@®&\; Yk+1 g is added only ifYy+; has not been seen at tirke
In consequence, this forbids the existence of a cyclk.itt follows easily thafl is a connected graph
without cycles, hence a tree m]. FurthermoreT has the following distribution (P):

Y
(P)(t) = P90 foreacht 2 Tp: (1.40)
i2[n]

To see why this holds, one can follow the argument of the Markov chain tree theorem (see for example
Anantharam and Tsouca$d) and deduce that far2 T, the probabilityP (T = t) is proportional to
(P)(t). Thanks to Cayley's multinomial formula (Cayle$q], see also Rényidg]), we have
0 lPiz[n]ki(t)

X Y X
(P)(t) = pik‘ W@ pA =1:

t2Th t2Tnh i2[n] i2[n]

Thus, (P) is indeed a probability measure dm. In the case wherg, = 1=n for eachi, we have
(P)(t) = n! " foranyt 2 T,. Then the above identity echoes our previous statemenCinatT,, =
n" 1 Inthis caseT is clearly the Cayley tree.

In what follows, we often refer to a random tree with distribution giverlid Q) as ap-tree However,
when the probability measugeis not speci ed, we prefer to use the alternative terminolbgyhday
tree

Let T be ap-tree. Its root has distributiop. This fact is clear from the construction &f by
Algorithm 2, sinceT is rooted atYy. Furthermore, the-tree T enjoys aninvariance by re-rooting
property, which plays an important role in the cutting problem considered in Chaptéore precisely,
if V is an independent vertex with distributipn let TV denote the tree obtained by re-rootifigat V.
Then it can be directly veri ed from1(.40 that TV is still ap-tree.
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1.2.2 Inhomogeneous continuum random trees and line-breaking construction

The inhomogeneous continuum random tree (ICRT) arose as weak limits of birthday trees in Camarri
and Pitman 41] and Aldous and Pitmanlp]. Later, a profound study of its height process has been
carried out by Aldous, Miermont, and Pitmatg]. The ICRTSs are closely related to other mathematical
objects. For example, Aldous and PitmdrgJJuse ICRTSs to construct the general additive coalescent.
ICRTSs also appear in the weak limits of randprmappings. See Aldous, Miermont, and Pitmaf]|]

The parameter space of ICRT is the set of real—vlglued sequences ( o, 1; 2; )Psatisfying
the following conditions: ; 2 3 0o O ;o i2= 1,andeithero> Oor ; ; i =
1. Foreach 2 ,we can de ne a real tree using the followitige-breaking constructiofil3, 41].
This construction can be seen as the scaling limit of Algorithnin outline, it consists of cutting the
half-line[0; 1 ) into nite-length segments, reassembling the segments as “branches” of a tree, and then
completing the metric space thereby obtained. The details are as follows.

If o> 0O, letPo= f(uj;vj);] 2 Ngbe a Poisson point process on the rst octhfi;y) : 0
y  xgof intensity measure3dxdy, enumerated in such away that< u, <uj <

Foreveryi 1suchthat; > O, letP; = f jj;j 2 Ngbe a homogeneous Poisson process on
[0;1 ) of intensity j, suchthat;1 < ;2< ;3<

All these Poisson processes are de ned on the probability spade; P) and are supposed to be mu-
tually independent. We consider the points of all these processes as mdtk4 gn among which we
distinguish two kinds: theutpointsand thejoinpoints The cutpoints splif0; 1 ) into segments, while
joinpoints mark the place where to re-attach these segments. Call each;paBitutpoint, and say that
vj is the corresponding joinpoint. Call each with ; > 0 and] 2 ani-cutpoint, and say that; 1

is the corresponding joinpoint. Note that for each 1, the mean number afcutpoints in the interval
[O;M]is M 1+e M 2M 2=2, for anyM > 0. This entails that the set of cutpoints is almost
surely nite on each compact set §J; 1 ), by the hypotheses on. In particular, we can arrange the
cutpoints inincreasingorder8< ;< < 3< . We write | for the joinpoint associated to the
k-th cutpoint .

o (U2 V2) (ug; va) 13 Uz
|
| i
! |
* (Ug; Vi) |
} ! » (Us;vs) |
: ! L : Po
| |
| | | |
| | | 1
™
L1 LoL2 ! 13 | v 1o
: | [ | : 2 ;
| ] " ]
| | | ; | : P2
! | | .
21 | | | ! | | 11
! : | : | ! Uz
: | (- I : 0 V3 Vi
I I
! I‘ 1 : 1 :
| : : ! : |
I l ] S I usz
0 1 2 3 4 5 6 Uy

Figure 1.2 — On the left, an example of cutpoints: eaghis eitheru; or j; withj 2. On the right,
an example oRg constructed from these cutpoints. The branches attachef@arg], (v1; uz], (v2; 1:2],
( 1;25u3], (var 23], (1515 U4l
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The real tree is built by starting with the brarf€h 1] and inductively folk 1, attaching the branch
( k; k+1]tothejoinpoint , corresponding to the cutpoint. Note that with probabilityl, |, < , thus
the above grafting operation is well-de ned. LR§ be the real tree obtained after attach{ng 1; «].
It is easy to see that ea®y is a real tree with the leaf séD; 1; 2; ; k0. See Figurel.2 for an
illustration of Rg. Furthermore(Ry;k 1) forms an increasing sequence of metric spaces(TLetl)
be the completion of ¢ 1Rk. Then(T ;d) is a real tree (see Evans{], Lemma 4.22]).

It is convenient to think off as a rooted tree. We set the rootTofat the point0. The following
properties oflT are straightforward from the construction.

(i) The skeleton ofl is[ k 1( k; k+1)-

(i) The Lebesgue measure 1 ) induces a - nite length measureon T , which assigns measure
0to T nSKk(T), such that (Jx;yK = d(x;y) for any pair of points;y 2 T .

(iii) The branch points of correspond to the joinpoints, that By(T) = fv; :j  1g[f 1: >
0;i  1g. Eachv; has degre@ asu; ;] 1 are distinct almost surely, and eagh has in nite
degree as there are in nitely mamcutpoints.

The ICRTT also carries another measure, namelyni@ss measurevhich is important to our study.
Its de nition relies on Aldous' general theory of continuum random tree (CRT).[Indeed, it follows
from properties of the Poisson point procesBgs 0, that the familyf d(0; );k  1g of root-to-leaf
distances is exchangeable. Moreoviesatis es theleaf-tight property, which amounts to say that

|i<nf1d(0; k) =0; almost surely.

Actually this is guaranteed by the hypothesis that eitlyer OorP i1 i=1. ThPen according tol0,
Theorem 3], for almost every realization &f, the empirical measurey = :‘:1 ; converges
weakly ask I 1 to some probability measure called themass measuref T, which is diffuse and
concentrated on the leaf set. Moreover(Mt; k 2 N) be a sequence of independent points sampled ac-
cordingto . Thenforeaclk 1, thek-leafed spanningtre®pan(T;Vi;Vo; V)= [1 i «kJO;ViK

has the same distribution B. This allows us to determine the distributions of the spanning trees, as the
distribution of Rk is not dif cult to deduce from the construction above. We refer the reader interested
in explicit formulas to Aldous and Pitmaif]. In a formal way, the equivalence class(df;d; ) can

be seen as a random variable taking value$ jn the space of measured metric spaces. We say the
distribution of this random variable is the distribution of[@RT of parameter .

In the case where = (1;0;0; ), the construction off coincides with Algorithm 3 of Aldous
[8], that i|§,T is the Brownian CRT. This is the only case where the degrees of the branch points are all
nite. If , ; i < 1 (thus o> 0), Tois shown to be almost surely compact by Aldous, Miermont,
and Pitman [5]. On the other hand, if ; ; ; = 1, the behavior off can be rather wild. In this
case, some heuristic arguments are proposed about a criterion for the compacihasd tf]. But a
mathematical justi cation is still missing.

ICRTs as scaling limits of birthday trees. Let 2 andletp, = (pn1;Pn2; :Pnn) be a probability
measure oifin] for eachn 2 N. We suppose further that1  pn2 Pon > 0. LetT" be the
orreipondlngpn-tree whose distribution is given b1 40. Let , > 0 be the number de ned by
2=" I, pZ. Suppose that

lim ,=0; and Ii{n — = ; foreveryi 1: (1.41)



Letdyn be the graph distance @', that is, the distance between two vertices is the number of edges on
the path connecting them i,. Denote by ,T" the rescaled metric spafm]; ndtn). Camarri and

Pitman B1] have shown that
nll

( nT";pn) J';GP (T; ); (1.42)

where! 4.gp denotes the convergence in distribution with respect to Gromov—Prokhorov topology.

Remark 1. Foreach 2 ,itis notdifcultto nd a sequencép,;n 1) satisfying conditior{1.41)

(see Aldous and Pitmarlp, Lemma 4]). On the other hand, it is also shown 1] that (1.4]) is
necessary to obtain a non-trivial scaling limit. Therefore, the interesting weak limits of birthday trees
coincide with ICRTS.

Remark 2. If we takep,, to be the uniform measure ¢n] (thatis, T" is the Cayley tree with vertices),
then the limit tree is the Brownian CRT afitl42 reduces to
1 nnma

—T" 1
19T1 d;GP

Tbr (1.43)

This is rst shown in Aldous{] and is a special case of the convergence of the conditioned Galton—
Watson in(1.39. Indeed, if we take a uniform labeling on the nodes of a Galton—Watson tree conditioned
to have exactly nodes whose offspring law is the Poisson distribution of miedimen we obtain in this

way a Cayley tree with vertices.

A conjecture of Aldous, Miermont and Pitman. It is conjectured in]5] that Lévy trees are mixures
of ICRTs. This conjecture is motivated by the following construction of the height process of an ICRT.
For 2 , consider the following “bridge" process with exchangeable increments:

zr= BO+ i(Lty, sg S 0 s 1
i=1

whereB"" is the Brownian bridge which returns fat time1, and(U;;i 1) is a sequence of inde-
pendent variables uniformly distributed (@ 1). Note that the jumps & °" have magnitude;;i 1.
Use the Vervaat transforn®$], which relocates the space-time origin to the location of the in mum, to
de ne an excursion-type proceZs= (Z5;0 s 1). If m denotes the Lebesgue measureRyriet

Y =(Ys;0 s 1) be acontinuous process de ned by

n o]
Ys=m inf - Zy,:r s ; 0 s L (1.44)
r u s
: . . P .
Then Aldous, Miermont, and Pitmai§] show that if is suchthat ; ; i < 1, then the height
process of the ICRT of parametesiis distributed as3 Y . Actually, (1.44) is an analog of a special case
0

of (1.18: when the branching mechanismhas a Brownian component, that is; 0in (1.11), then

(1.18 reduces to n o

Hszlm inf Xy:r s ; s O0; as.
r u s
Furthermore, Kallenberg/ff] has shown that a Lévy bridge process is a mixture of the extremal bridges
such aZ ", where the mixing measure is the distrf_lpution of the jumps in the Lévy bridge. However, the
above construction of only works for those with  ; ; j < 1 . And itis not clear that the Vervaat
transform of a general Lévy bridge would yield a “normalized Lévy excursion”, though Chaum@nt [
has proved that this is the case for a stable bridge process.
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1.3 Main contributions of the thesis

1.3.1 Height and diameter of Brownian trees

For any integem 1, we denote byT,, a uniformly distributed random rooted labelled tree with
vertices, as de ned in Sectiah2.1, and we denote bl , its diameter with respect to the graph distance.
By computations on generating functions, Szeke®&sproved that

n 2Dy !4 (1.45)

where is a random variable whose probability dendityis given by
P37

X
W= 3 Sjmh‘ﬁl;y 36@;y+75tﬁ;y 300y ) + )tg(zbﬁ;y Stﬁ;y) e v (1.46)
n 1

wherebn,y :=8( n=y )2, for ally 2 (0;1 ) and for all integer®1 1. This result is implicitly written in
Szekeresq8] p. 395 formula (12). See also Broutin and Flajol&s][for a similar result for binary trees.

On the other hand, recall from.43 thatT, , whose graph distance is rescaled by a fanto%r, converges

in distribution to the Continuum Random Tree (also called Brownian tree) that we den®t® bifrom

this, Aldous has deduced that has the same distribution as the diameteT 8f: see P], Section 3.4,
(though formula (41) there is not accurate). As proved by Aldadkdnd by Le Gall BQ], the Brownian

tree is coded by the normalized Brownian excursion of ledgtbee below for more details). Then, the
guestion was raised by AldouS][that whether we can establish.46) directly from computations on

the Brownian normalized excursion. In Cha2ewe present a solution to this question: we compute the
Laplace transform of law of the diameter of the Brownian tree directly from the normalized Brownian
excursion and we also provide a formula for the joint law of the total height and of the diameter of the
Brownian tree, which appears to be new.

Let us state more precisely our results. Recall from Sectidri/ the notion of stable trees condi-
tioned on the total mass. Here, we take

8 2Ry; ()= %

In other words, leX =( X{); o be the underlying Lévy process whose Laplace expone(tiy = 2;
then(#5X¢)¢ o is distributed as a linear standard Brownian motion suchRifXto=0)= 1. Recall the
normalized excursion measure

Nor = N(j =1) (1.47)

as de ned in (.37). Recall that the canonical process©(R: ; R+ ) is denote byH .

Remark 3. The positive Ito standard excursion measwléo, as de ned for instance in Revuz & Yor
[97] Chapter X1l Theorem 4.2, is derived frolh by the following scaling relations:

Ny, is the law ofp%H underpl—iN and thusN ( j =1) is the law Ofpl—iH underN.

Consequently, the lalM, is not the standard normalized Brownian excursion. However, we shall call
Nnr the normalized Brownian excursion.

Thetotal heightand thediameterof T are next given by

=max d(; =max H; and D = max d(; =max H{+ Hs 2infH : 1.48
2T ( ) t 0 t ;02T ( % sit 0 t s r2[s"t;s_rt] ( )
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Recall thaim stands for the mass measureTonit is the pushforward of the Lebesgue measurgon]
via the canonical projectiop: [0; ]! T . Recallthaim(T) =

We callBrownian treethe random rooted compact real t{@e d; ) coded byH under the Brownian
normalized excursion laMp,. Recall from (.28 thatLf(T) stands for the set of leavesBf By (1.38),
we easily derive fromX.32) and (.33 that

Npr-a.s. 8 2T; deg(; T)2f1;2,3g; misdiffuse and m TnLf(T) =0: (1.49)

The choice of the normalizing consta?nﬁ for the underlying Brownian motioX is explained by the
following: let T,, be uniformly distributed on the set of rootpthnar trees withn vertices: namely,, is
distributed as a Galton-Watson tree whose offspring distributimngeometric with meat conditioned
to haven vertices. Note that the variance ofis 2 := 2. Thus, the convergencé.@9 and Remarl3
imply that (n %sz(Tn )t210:1] converges in law towardd underNy,: see for instance Le GalBp]
Th. 1.17. Thus,

1 (law)
n 2D, ! D under Ny

whereD,, stands for the diameter df, and whereD is the diameter of the Brownian tree given by

(1.49.

Remark 4. In the rst paragraph of the introduction, we introduce the random ffgethat is uniformly
distributed on the set of rooted labeled trees withertices. The law of,, is therefore distinct from that
of T,, (that is uniformly distributed on the set of rooted ordered treeslwimartices). Aldous (] has
prolygd that the tree$,,, whose graph distance is rescaled by a fagtorz, converges to the tree coded
by  2H, underNp. Thus,

P
@ "55  under Ny : (1.50)

See Remark below.

We rst prove the following result that characterizes the joint law of the height process and of the
diameter of the Brownian tree.

Theorem 3(Theorem2.l). Recall from (.47) the de nition of the lawN,; of the normalized Brownian
excursion and recall fromi(48 the de nition of and ofD. We then set

Z,
8:y;z 2(0;1); L (y;2):= ?E]E e 'r 32Ny rzD>2y;rz >z dr: (1.51)
0
Note that . ) X
8:;y;z 2(0;1); Li(y;2)= 2L 2y, 2z (1.52)
Then,
sinh(20) 2q
L1(y; z) = coth 1 4 B A 1.53
1(y Z) (y_z) 2+fz 2yg sinh“(y) ( )
whereq=y” (2y z). In particular, this implies that
8:22(0;1); L (0;2)= picoth(zp ) p*: (1.54)
and
p— pP— pP— p—sinh(2p7) Y
8y 2(0;1); L (y:0)=  coth(y ) Y e . (wsp)

4sintt(y’ )
From this theorem we deduce the following explicit laws.

17



Corollary 4 (Corollary2.2). Forally;z2 (0;1 ), we set

=z_% and = 2(3;—2)_0’\1: (1.56)
Then we have
X
Ny D>y ; >z =2 2n22 1e™°+ (1.57)
n 1 .
1X 2 h 2. 92 1 24,2 2 2 1 24,2 3.3 1,2 2I
5 N 1) (n+ )% 2e sV (n )2y? 2e 7™ IV 4+ y(ndy® 6ny)e Y
n 2
and
5=2 X
Ny D y;, z = 4 - n2e " *=° (1.58)
n 1
32 32X 2 32 1 ,
3 nS|n(2 n ) F(Zaﬁ,y gan;y +6) T(an’y l) e any +
n 1
16 2 X 1 2
3 cos(2n ) W(Gaﬁ;y 15ap, + 3) 5y 2y e any 4
n 1
16 =2 X 1 1 _
— F(4aﬁ;y 2485, +27any 3)+ 5(2@1,%;y 3any) € W ;
n 1
where we seén.y = 4( n=y Y2 forally2 (0;1 ) and for alln 1 to simplify notation. In particular,
(1.57 implies X
Noy >y =2 2n%y? 1 e MV’ (1.59)
n 1
and X
2 14,4 2,,2 n2y2=4
Npr D>y = (n® 1) zn7y" 2n%y“+2 e : (1.60)
n 2

On the other hand(1.58 implies

4 52X -
Noe Yy = —5— n2%e "%, (1.61)
y n 1
and P—x
_ 8 2 3 16 , any -
Nnr D y - ? y73 24an;y 36an;y +8an;y + Van;y e DA (162)
n 1
Thus the law oD underNy, has the following density:
1 X )
fo) = 35 % n%30+y?)+20n%y@+y?) 6o’y e "V (1.63)
n 1
= 3 F(4an;y 36an,, +75an, 30any)+ P(Zan;y Sany) e o i (1.64)
n 1

Remark 5. We derivg(1.58 from (1.57) using the following identity on the theta function due to Jacobi
(1828), which is a consequence of Poisson summation formula:

1 X

X +n)2t 2i i 2 2(y+n)? 2
8t2 (0;1);8xy 2 C; e (X*m7t 2iny — g2ixy T e X (1.65)
n2z n2z

See for instance Weillp1], Chapter VII, Equation (12). Not surprisinglyl.65 can also be used to
derive (L.61) from (1.59), to derive (.62 from (1.60), or to derive (.64 from (1.63.
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Remark 6. We obtain 1.63 (resp. (L.64) by differentiating {.60 (resp. (.62). By (1.50, we have

8y2 (0;1); f (y)=pl—2fo GO

which immediately entailsL(46) from (1.64), sincean;yzp 5 =8( n=y )2 = bhyy -

1.3.2 Decomposition of Lévy trees along their diameter

In the article p4] (that is written with Duguesne and that corresponds to Ch&)teve compute the law

of the diameter for general Lévy trees (see TheokmMNe also prove that the diameter of Lévy trees

is realized by a unigue pair of points. The geodesic path joining these two extremal points is therefore
unique. In Theoren®, we describe the coding function (the height process) of the Lévy trees rerooted
at the midpoint of their diameter, which plays the role of an intrinsic root. The proof of The®tbat
provides a decomposition of Lévy trees according to their diameter speci cally relies on the invariance
of Lévy trees by uniform rerooting, as proved by Duquesne and Le &3lland on the decomposition

of Lévy trees according to their height, as proved by Abraham and Del&gsh[s decomposition
generalizes Williams' decomposition of the Brownian excursion). Roughly speaking, Théasserts

that a Lévy tree that is conditioned to have diametand that is rooted at its midpoint is obtained by
glueing at their root two size-biased independent Lévy trees conditioned to havetsdgintd then by
rerooting uniformly the resulting tree; Theorénalso explains the distribution of the trees grafted on the
diameter. As an application of this theorem, we characterize the joint law of the height and the diameter of
stable trees conditioned by their total mass (see PropoSsitiand by providing an asymptotic expansion

of the law of the height (Theore®) and of the law of the diameter (Theordrt). These two asymptotic
expansions generalize the identities of Szekeres in the Brownian case which involves theta functions (see

(1.59 and (.60).

Before stating precisely these results, we need to introduce de nitions and notations.

Re-rooting trees. Several statements involve a re-rooting procedure at the level of the coding functions
that is recalled here from Duquesne and Le Gall[Lemma 2.2 (see also Duquesne and Le Gz))]
Let H be a coding function as de ned in Sectidnl.6and recall thaty 2 (0;1 ). For anyt 2 R4,
denote byt the unique element ¢0; ) suchthat tis an integer multiple ofy . Then for alltg2 R+,
we set

8t2[0; HI; Ht[tO] =dy to;t+tg and 8t H Ht[t"] =0: (1.66)

Then observe thayy = 1ty and that
8192 [0; wl dyua(ttY=dy T+ to;t0+ to (1.67)

Lemma 2.2 $27] asserts that there exists a unique isometry Ty, 1 ! T y such that (py i (t)) =
py t+to forallt2[0; y]. This allows toidentify canonicallyT,, with the treeTy re-rooted at
PH (to):

Tttols Ay ttols Hitol Th;du ;P (to) - (1.68)
Note that up to this identi cationm , ) is the same as1y . Roughly speaking, the linear orde,
is obtained from p by a cyclic shift afteppy (to).

Spinal decomposition. The law of the Lévy tree conditioned by its diameter that is discussed below

is described as a Poisson decomposition of the trees grafted along the diameter. To explain that kind of
decomposition in terms of the coding function of the tree, we introduce the following de nitions and
notations.
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Leth2 C(R+ ; R+ ) have compact support. Note thg0) > 0 possibly. We rst de ne the excursions
of h above its in mum as follows. For ang2 [0; h(0)], we rst set

“a(h):=inf t2Rs :h(t)=h(0) a and rah):= p~inf t2(0;1):h(0) a>h(t) ;
with the convention thanf ; = 1 , so thatrp)(h)= . We then set
8s2R.; E(h;a):= h (Ca(h)+ s)*ra(h) h(0)+ a:

See Figurel.3. Note thatE(h; a) is a nonnegative continuous function with compact support such that
Eo(h;a)=0. Moreover, if 3(h)= ra(h), thenE(h; a)= 0, thenull function
LetH be a coding function as de ned above. t&R. . We next set

8s2R+; Hg = Hi g, and HS = Hps:
Note thatH, = Hg = H¢. To simplify notation we also set
!
8a2[O;H; H#:=EMH ;a) and H?®:= E(H";a)

and
Jot = a2[0;H¢]:either'a(H )<ra(H )or ag(H")<ra(H™)

that is countable. We then de ne the following point measur¢®hl;] C(R: ;R4 )%

X
M O;t(H) = (a;H a!;H a) ; (169)
a2J ot
with the convention tha¥l o+(H)=0 if Jot=;.
Forallt; tg O, we also set
X
M to;tl(H) =M Ot1 to H[IO] = (a;Ha!;H a) : (1-70)
a2l toity

This point measure of®; dy (to;t1)] C(R+; R+ )? is thespinal decomposition ¢ betweerty andt;.

Let us interpret this decomposition in terms of the tiee (see Figurel.3): set ¢ = py(tp) and

1= py (t1); to simplify, we assume thafy and 1 are leaves. Recall thdty; 1Kis the geodesic path
joining ¢ and 1; thenJd,, = fd(; 1); 2Br(Tw)\ Jo; 1K. For any positivea2 J 1,¢,, there
ei\xists 2Br(Ty)\ J o; 1Ksuch that the following holds true.

"Ta=f g 92Th: o<n %<y ]IandJ 0. K=J o ?K\ J o; 1K is the tree grafted at on
the right hand side aof o; 1Kand the tre€ T,;d; ) is coded byH 2.

Ta=f g[ 92Ty :either %<y gor 1<y %andd o; K=Jo; K Jo; 1K isthe tree grafted
at onthe left hand side of o; 1Kand the treé T,;d; ) is coded byH 2.

Diameter decomposition. Let be a branching mechanism of the forthX1) that satis es {.14).
Recall thatX stands for a spectrally positive Lévy process de ned(onF ; P) starting from0 and
whose Laplace exponent is: see (.17). Recall from (.18 the de nition of the -height processi
underP and under its excursion measiNe Recall that the tre& coded byH underN is the -Lévy
tree. One checks that the total heighNisa.s. realized at a unique time (see Duquesne and Le &4l [
and also Abraham and Delm&g). Namely,

N -a.e. there exists a unique [0; ]suchthaH = (2.71)
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0 ‘akh) r;(h) ! )

Figure 1.3 — The gure on the left hand side illustrates the de nitionih; a). The gure on the right hand side
represents the spinal decompositiortbfat timesty andt; in terms of the tre@ coded byH .

Moreover, the distribution of the total heightunderN is characterized as follows:
Z,
8t2(0;1);, v(t):= N( >t) satises — =t (1.72)
vy ()

Recall from (L.16) thatv:(0;1 )! (0;1 ) is a bijective decreasing! function and (.72 implies that
on(0;1),N( 2dt)=( v(t)) dt.

Forallx2 (0;1 ), we sefTy=inf ft2R; : X; = xgthatisP-a.s. nite sinceX underP does not
driftto 1 . We next introduce the following la®* onC(R+ ;R4 ):

P* is the law of(Hx1, )t o underP, (1.73)

The treeTy underP*(dH) is called the -Lévy forest starting from a population of sixe Then, the
mass measure dyy underP*(dH) satis es the following important properties:

P*(dH)-a.s.my is diffuse andny (Ty nLf(TH)) =0. (1.74)

The Poisson decompositioh.@9 implies thatsupi,o.1,; Ht=maxf ( H "N;i21 : 1, xgand since
underN has a density, therd(71) and (L.72) entail that

P*-a.s.thereis aunique2 [0; JsuchthaH = and PX( t)=e *® t2R,. (1.75)

In [3], Abraham and Delmas generalize Williams' decomposition of the Brownian excursion to the
excursion of the -height process: they rst make sense of the conditionedNefvj = r). Namely
they prove thaN ( j = r)-a.s. = r,thatr 7! N( j = r) is weakly continuous o€(R-+ ; R+ ) and
that Z,

N= N( 2dr)N(j=r): (1.76)
0

Moreover they provide a Poisson decompaosition along the total height of the process: see ghapter
Section3.2.2where a more precise statement is recalled. The rst two results of our article provide a
similar result for the diametdd of the -Lévy tree undeN. Recall thatp: [0; ]! T stands for the
canonical projection.

Theorem 5(Theorem3.1). Let be a branching mechanism of the forin1) that satis es (.14). Let
T bethe -Lévy tree thatis coded by the-height proces$i under the excursion measuxeas de ned
above. Then, the following holds trixe-a.e.
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(i) There exists a unique pairp; 12 [0; ]Jsuchthat o< ;andD = d( o; 1). Moreover, either
H,= orH = .Namely, eithero= or 1= ,where isthe unique time realizing the total
height as de ned by1(.71).

(i) Set g=p( o) and 1= p( 1). Then g and ; are leaves off . Let g be the mid-point of
J 0; 1K namely, mig is the unique point of ¢; 1Ksuch thatd( o; mig) = D=2. Then, there
are exactly two time® ;< g suchthap( .4)= P( mig)= mid, and miq is a simple
point of T : namely, it is neither a branching point nor a leaf Bf

(i) Forall r2(0;1 ), we get

Z, q
N D> 2r = v(r) v(r) 2 o (P : (1.77)
This impliesthalN (D 2dr)=" (r)dr on(0; 1 ) where the density :(0;1 )! (0;1 ) is given by
Z 1
8r2(0;1); (@)= ( v(r)) (v(r)p® Av(r) ()(d)zr (1.78)

The second main result of our paper is a Poisson decomposition of the subtiieggadfed on the
diameterd o; 1K This result is stated in terms of coding functions and we rst need to introduce the
following notation: letH; H °2 C(R+ ; R+ ) be two coding functions as de ned above; ttencatenation
of H andH %is the coding function denoted by  H %and given by

8t 2 Ry ; (H HY=H, ift2[0; 4] and (H HY =H? ift 4. (179

H

Moreover, to simplify notation we write the following:
8r2(0;1); N, =N(j=r): (1.80)

Theorem 6(Theoren3.2). Let be a branching mechanism of the forinX) that satis es (..14). For
allr 2 (0;1 ), we denote b®, the law onC(R+;R+) of H HC underN =o(dH)N r:z(dH(b, where
N _, is de ned by (..80. Namely, for all measurable functioks:C(R+;R+)! R,
zz
Q: F(H) = erz(ole)Nr:Z(dH% FH HO: (1.81)

R+ R+

ThenQ, satis es the following properties.
(i) Qr-a.s.D = r and there exists a unique pair of pointg 12 [0; ]suchthaD = d( o; 1).

(i) Forall r 2 (0;1), Q/[ ]1=2N,_,[ 12 (0;1). Moreover, the applicatiom 7! Q, is weakly
continuous and for all measurable functioRsC(R+ ;R+)! R: andf :R:! R,

Z1 N(2dr) o hZ

|
— = FHY dt ; 1.82
Qrl 1] 0 ‘o (1.82)

N f(D)F(H) =

whereH [l is de ned by (..66).

(iii) Recall the notation ., and r;id from Theorenb (ii ). Then, for allr 2 (0;1 ),
2z
[me]l D=p = _ + 0.
N F Hlmedl D=y = N, _o(dH)N _»(dHY poF H H?; (1.83)
N r:2[ ] C(R+ ;R+ )2

whereN( D = r) makes sense for all2 (0; 1 ) thanks to 1.82.
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(iv) Recall from (.73 the notationPY. To simplify notation, we write for ail; b2 (0; 1 )
Np=N \f by and PY=PY \f bg ; (1.84)

|
Then, undeQ,, M ,. ,(dadH dH), de ned by (.70, is a Poisson point measure ¢@;r]
C(R+;R+)? whose intensity is

! !
lpr(a)da  o(dH)N aﬁ(r a)(d;l)"' Nar(r a)(dH) o(dH)
zZ

|
+ lpr(@da  (dz) dx P} ) dH)PZ. X . dH); (1.85)
©1) o0

ar(r a ar(r a)

where and are denedin (.11).

Remark 7. As already mentioned, the previous theorem makes sense of D = r and for all
measurable functions :C(R+;R+)! R.,we have

hZ .
8r2(0;1); N F(H) D=r :=Q, F HU dt Q. ]; (1.86)
0

Namely, Theorerg (i) entails thatN( D = r)-a.s.D = r. Then (.81 combined with the already
mentioned continuity af 7! N( j = r=2) easily impliesthat 7! N( D = r) is weakly continuous
onC(R+; R+). Moreover, (.82 can be rewritten:
Z,
N = N(D2dr)N( jD=r) (1.87)
0

that is the exact analogous df.76). We mention that the proof of Theorérelies on the decomposition
(1.76) due to Abraham and Delmas]|

Remark 8. Itis easy to check from(66) that for all to; t, (H [1)lte] = Ht+tol Therefore, {.82 implies
thatH underN is invariant under rerooting. Namely, for all measurable functien<(R: ;R+)! R.,

8to2 Re; N 1 gF HI =N 1 (FH ; (1.88)

which is quite close to Proposition 2.1 in Duquesne and Le G&l],[that is used in the proof of Theorem
6.

Remark 9. As shown byX.86), N D = r isderived fromQ, by a uniform rerooting. This property
suggests that the law of the compact real {f€ed) coded byH underQ,, without its root, is the scaling
limit of natural models of labeled unrooted trees conditioned by their diameter.

Remark 10. Another reason for introducing the la@;, is the following: we deduce from. 86 that for
all measurable function :C(R+;R+)! R4,

N F(Hl) D=r =Q, F(HI) Q/ 1; (1.89)

where ¢ is as in Theorend. By Theoren® (iv), H underQ, enjoys a Poisson decomposition along its
diameter. Howeverl(89 implies that this not the case bf underN( jD =r).

23



The law of and of D of stable Lévy trees conditioned by their total mass. In application of
Theoremg, we compute the law of andD underN ( j =1) inthe cases where is a stable branching
mechanism. Namely, we x 2 (1;2] and

()= ; 2Ry ;
that is called the -stable branching mechanisrRecall from (.37) the de nition of
Nnr = N(j =1):

We next introducav: (0;1 )! (1;1 ) that is the uniqué€C! decreasing bijection that satis es the
following integral equation:
4
1 du

8y2 (0;1);
wyyu 1

-y (2.90)

We refer to ChapteB, Section3.3.1for a probabilistic interpretation of and further properties. The
following proposition characterizes the joint law ofandD underNy, by the mean of Laplace trans-
forms.

Proposition 7 (Proposition3.3). Fix 2(1;2Jand ( )= , 2R.:. Recall from (.37 the de nition

of the lawN, of the normalized excursion of thestable height process. We then set
Z,
8;v;z 2(0;1); L (y;z2)=c e "rt ;Nm r71D> Zy;ri1 >z dr; (2.91)
0

where we recall from{.35 thatl=c =  —* ,  standing for Euler's Gamma function. Note that

8iyiz2(0:1) Liyiz= L Ty oz (1.92)
Recall from (.90 the de nition ofw. Then,

12 w yr 2y 2)

Wy @y 2 1 ( Dy 2y 2)

(1.93)

Li(y;2)= W(y_2z) 1 Slcayq W(Y)

In particular, forally;z2 (0;1 ),
L1(0:2)= w(z) 1 and Ly(y;0)=w(y) 1 fw(y) 1 w(y) ( DLywly 1 :(1.94)

The previous proposition is known in the Brownian case, whgg = coth( y): see Sectiori.3.1
As already mentioned in Corolla#; in the Brownian case, standard computations derived frhev)
imply the following power expansions that hold true fory# (0; 1 ):

X 2.2 2,2
Ny >y =2 2n°yc 1e "V (1.95)
n 1
X 2 1 4.4 2,,2 2y2=4
N, D>y = (n© 1) zny* 2n%y°+2 e "V (1.96)
n 2

We next provide similar asymptotic expansions in the non-Brownian stable cases. To that end, we intro-
duces :(0;1)! (0;1) as the continuous version of the density of the spectrally posititestable
distribution; more precisely is characterized by the following:
Z, .
8 2(0;1); e *s (x)dx =exp( ) (1.97)
0
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The following asymptotic expansion sf atO is due to Zolotarev (see Theorem 2.512§): for all
integerN 1,

1 s o X
21 Y Iyl g ( Dx =1+ Sox"C D+ oy xNC D:oasx! 0. (1.98)
1 n<N

HereOpn: means that the expansion dependfNoand . Next note that, depends om and but we
skip the dependence into simplify notation.

Remark 11. In the Brownian case where=2, it is well-known that

Nlw

s(x)=  zx se ¥X; x2 R,

Then,Sp=1 andS, =0, foralln 1.

For generic 2 (1;2), this asymptotic expansion does not yield a converging power expansion (al-
though it is the case if =2). See ChapteB, Section3.4.1for more details ors . To state our result we
rst need to introduce an auxiliary function derived fran as follows.

Proposition 8 (Proposition3.4). Let 2 (1;2]. Recall from (.97 the de nition ofs . We introduce the
following function:

1, 1 1ZX L1

8x2(0;1); (X):=( Dx SsS(x) —x 7 dyy “s(y): (1.99)

0

Then, the following holds true.
(i) is well-de ned, continuous,

Z 1 Z 1 1

1 -
dxj (x)j<1 and dxe * (x)= e . 2(0;1): (1.100)

0 0

(i) Recall from (.98 the de nition of the sequend&n ), o, WithSp=1. Let(Vn)n o be a sequence
of real numbers recursively de ned b =1 and

8N2N; Va1 =Spa*+ N 3 —7Sn N 3 T Vi (1.101)
Then, for all integeN 1,
1 +: _ X
21 YHyeIxTe™ ' ( x =1+ Vox"C D+ 0op xNC Dy (1.102)
1 n<N

asx! 0.

We use to get the asymptotic expansion of the law of the total height of the normalizdble
tree as follows.

Theorem 9(Theorem3.5). Let 2 (1;2]. We introduce the following function:

+1

8r20;1); (r)=r T r 1T : (1.103)

where is de nedin (L.99. Then, there exists a real valued sequefige, 1 andx;2 (0;1) such that

X X
j nix] <1 and 8r2(0;1); j nj sup j (ns)j <1 ; (1.104)
n 1 n 1 s2[r1)
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and such that X

8r2(0;1); ¢Np >r = n o (nr); (1.105)
n 1
where we recall from{.35 thatl=c =  — , . standing for Euler's gamma function. Moreover,
forallintegersN 1,asr!1 ,
a1 X
—rlze Ny >r( 1) =1+ Vor ™ +0y. r N (1.106)
C1 1 n<N ’

1

whereCi:=(2 ) 3( 12" % o(—L1)exp(Co), where

21 du Zl@(u+1) 1 u

Co = = ,
0 . (U+¥l) 1 4, u (u+1) 1

(1.107)

and where the sequen€¥,),, 1 is recursively de ned by1(.101) in Proposition8.

Remark 12. The convergence il (109 is rapid. Indeed, byX.102, we see that(nr) is of order
() zexp( n (1) ir):
Then, the asymptotic expansidni09 is that of the rst term of {.105 thatisc 1 ;1 (r).

Remark 13. The de nition of the sequende n)n o is involved: see Lemma 24 and its proof for a
precise de nition. However, in the Brownian case, everything can be explicitly computed: for all

n=2, (nN=4) %(Zr2 le 2 c=04) %, and we recover1.95 from (1.109; moreover,
Co=log2,C1=4,Vp=1,V;= 3ZandV,=0,foralln 2

To state the result concerning the diameter, we need precise results on the derivative-dfsteble
density.

Proposition 10(Proposition3.6). Let 2 (1;2]. Recall from {.97) the de nition of the densitg . Then
s isClonR,,
Z, Z, 1
dx jsP(x)j < 1 and dxe *s%(x)= e ;o 2(0;1): (1.108)
0 0

Moreover,s® has the following asymptotic expansion: recall froin9@ the de nition of the sequence
(Sn)n 0, WithSg=1; let (Ty)n o be a sequence of real numbers recursively de neddyl and

8N2N; Ther=Sner+ N 2 o Sy (1.109)
Then, for all positive integers , we have
1y 332 d=x 100 X 1 N( 1
2 (1 ) 2xze™ P ( 1x =1+ Tox"C D 4+ 0y xNC D (1.110)

1 n<N
asx! 0.

The asymptotic expansion of the law of the diameter of the normalizetdble tree is then given in
the following theorem.
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Theorem 11(Theorem3.7). Let 2 (1;2]. Recall from {.103 the de nition of the function. We also
introduce the following function:

8r2©01) (r)i=r i —I (1.111)
wheres? is the derivative of the density de ned in (1.97). Then there exist two real valued sequences
( n)n 2and( n)n 2andx»2(0;1) such that

X X - . - - . .
(G ni*+in)x2<1 and 8r2(0;1); jnisupj (ns)j+jnjsupj(ns)i<1l;
n 2 n 2 s2[r; 1) s2[r;1)
(1.112)
and such that X
8 2(0:;1); ¢Np D>2r = n (nr)+ 5 (nr); (1.113)
n 2
where we recall from1.39 that1l=c = ¢ 1 e Standing for Euler's gamma function. Moreover,
forallintegersN 1,asr!1 ,
1 2 v -1 X n N
C—r 2e€ Np D> ( 1) =1+ Unr +O0O.N T ; (1.114)
2 1 n<N

whereCy := (8 ) %( 1)%+ t3 o(—2) exp(2Co), whereCy is de ned by (.107 and where the
sequencé€U,)n 1 is recursively de ned byo=1 and

8n 1; U,=T, %vnlz (1.115)

Here(Ty)n oisde ned by (.109 and(V,)n ois de ned by (.10J).

Remark 14. The convergence irl(113 is rapid. Indeed, byX.110 and (1.102 we see that (nr=2)
and (nr=2) are of respective order

3 1 1
() Zexp( n2 ( 1) ir) and (nr)*zexp( n2 ( 1) ir):
Then the asymptotic expansidn{14 isthatofc * , (r)+ c 1 5 (r).

Remark 15. The de nitions of the sequencés,)n oand( n)n o are involved: see the proof of Lemma
3.25for a precise de nition. However, in the Brownian case, everything can be computed explicitly:

r2

8n 2 n:%(n2 1): n= 20> 1) and (r)=  7r2 2 e ;

N w

which allows to recover(.96 from (1.113. Moreover,C,=8, Up=1,U;= 3, Uz= % andU, =0,
foralln 3.

1.3.3 Cutting and re-arranging trees

The study of random cutting on trees dates back to Meir and M86hdnd has several variations.

Here, we consider the following version which consists in cutting down a tree by iteratively removing
random vertices. Given a rooted (graph) tigechoose a uniform vertex and remove it. This splits

into several connected components. Retain the one containing the root and discard the other ones. Then
keep repeating the same procedure on the remaining part until the tree is empty. Each vertex that has
been picked and removed is referred to asiaDenote byl (T) the total number of cuts. If, denotes

the Cayley tree on vertices, then Panholze®?3] has shown that

pl—ﬁL(Tn)!d R; asn!l ; (1.116)
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whereR is a random variable with Rayleigh distribution (of density functien X*=2 gn [0;1)). Jan-
son [72] has extended this result to the case of conditioned Galton—Watson trees with a nite-variance
offspring distribution.
The convergence inl(116 and its extension by Janson motivated a number of recent works, which
address one or both of the following topics. The rst one is proposed by JaiigbmNs we have seen, if
is a critical offspring distribution with nite variance?, and , denotes the Galton—Watson tree with
offspring distribution conditioned to have total progemy then

_ nll 1

=l Tbr (1.117)

whereT " denotes the Brownian CRT, ahdg.cy denotes the convergence in distribution with respect
to the Gromov—Hausdorff topology. Comparing this with Janson's result, one might wonder whether it
is possible to de ne a continuous cutting procedure on the limit Tf®eand a random variable which

is an analog for the number of cuts such tHafL{§ would follow from the convergence of the cutting
procedures. This is studied in Addario-Berry, Broutin, and Holmgrgn4braham and Delmag!], as

well as Bertoin and Miermont3[J]. It turns out that the continuous cutting procedure is closely related
to the fragmentation process considered in Aldous and Pitiign And the continuous analog for the
number of cuts, which we denote hyT P¥), is a measurable function of the fragmentation process (see
(1.127) below). Then the authors if]and [30] show independently that

j@lkﬁL( BUENG LY (1.118)

jointly with the convergence inl(117. The special case for the Cayley trees is also showr]in [
Combining @.118 with (1.116 (recall that the Cayley tree corresponds to a conditioned Galton—Watson
tree with Poisson offspring distribution), we see th&T ') has Rayleigh distribution. In the case where
the offspring distribution is in the domain of attraction of somstable distribution for 2 (1;2),

the conditioned Galton—Watson tree converges weakly to thable tree (see Duquesn®]). Then a
result similar to £.118 has been proved by Dieuleveudtd], where the continuous cutting procedure is
induced by the self-similar fragmentation on the branch points de ned in Miern@ht [

Another natural question arising frorh.(L16 is about the limit distribution. Note that the distribution
of L(TP"), which is Rayleigh, is also the distribution of the distanc@& [ between two uniform nodes.

This coincidence of distributions is explained in Addario-Berry et@).4ysing a bijection for the cuttings

of the Cayley tree. Indeed, if we take the discarded subtrees from the cutting procedure of the Cayley
tree T, and connect their roots to make a path (see Figudk then the tree obtained is distributed as

Tn. Moreover, the extremities of this path are two independent uniform nodes. Thetefdrg,has the

same distribution as the number of nodes on a uniform paifh &nd the distribution of (T °") follows

easily from a weak convergence argument. Another explanation for the distributigi 8¥) is given in

Bertoin and Miermont30], where the argument is based on the duality of two self-similar fragmentations

on TP, This kind of identity in distribution, saying that(T ") is distributed as the distance between

two uniform nodes can be extended to a general Lévy tree under the excursion measure. This is done by
Abraham and Delmag].

It turns out that this kind of identity in distribution is also true for a general ICRT with a cutting
procedure that we de ne below. However, the argumen8ii} €annot apply, since an ICRT is not self-
similar in general; nor can the argument B},[which is based on the nice analytic properties of the
underlying Lévy process. On the other hand, the bijection on the Cayley trégdar be extended to
the birthday trees, as a consequence of the Aldous—Broder Algorithm (Alga2jthirhe results on the
cutting of ICRTSs then follow from weak convergence arguments.

In the sequel, we rst introduce the cutting procedures on the discrete and continuous models. Then
we announce the main results, whose proofs are found in Chépter
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A cutting procedure on the discrete trees

Let p be a probability measure dn], for a natural numben 1. LetT be ap-tree as de ned in
(1.40. We introduce a cutting procedure drwhich generalizes the previous one on the Cayley tree. It
is more convenient for us to retain the portion containing a random vertex rather than the root. For this,
we sample an independent vertéxof distributionp. Recall that the tre&@ "V obtained by re-rooting at
V is still ap-tree. Therefore, this modi cation does not affect the distributioh 6F). We perform the
cutting procedure ot by picking each time a vertex according to the restrictiop &b the remaining
part. Denote by (T) the total number of cuts, and I¥t;1 i L(T), be the sequence of the cuts.
During this cutting procedure, we reassemble the discarded parts, which are the subtree§;above
just before the cutting, by adding an edge betw¥emndXi+1,1 i L(T) 1. The resulting tree
(Figurel.4), denoted bycut(T; V), has the same vertex set as the initial tree and contains a path which
is composed 0K 1; X2; ;X (1) = V. Itfollows thatL (T) is the number of vertices on this path.

T cut(T;V)

Figure 1.4 — On the left, the cutting of . On the right, the treeut(T; V) obtained from the discarded
parts ofT.

Proposition 12 (Lemmad4.10and Propositiort.11). For ap-treeT, we have
(cut(T:V);V) 2(T:V): (1.119)
In particular, this entails

L(T) 4 Card f vertices on the path &f from the root toV g:

A cutting procedure on the continuous trees

LetT be an ICRT for some parameter= ( ;)i 0 2 , as introduced previously. L& be a random

point sampled according to the mass measuréT . We mean to de ne a cutting procedure drwhich

is the weak limit of the previous one on thetreeT . For this, we notice that the sequence of the cuts on

T can also be obtained from a Poisson point process of inteditsityp on[0; 1 ) T. It sufcesto lter

the points of this Poisson pointFprocess in such a way that only those which fall on the part containing
V are counted. Recall thaf = 1 p2. Then we take !p as the discrete measure with respect to
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which we cut the rescaled tre& . Under the hypothesisl(41), we show (Propositiod.23 that the
weak limit of ( ,'p,;n 1) is the following measure of :

X
L(dx) = 3 (dx)+ i (dx); (1.120)
i 1.i>0

where’ is the length measure supported on the skeletdn,@nd ; is thel -degree branch point which
corresponds to;:.1 in the Poisson procedd of rate ; > 0 used in the line-breaking construction. It
turns out that. is a - nite measure concentrated @k(T ) (Lemma4.22).

Conditional onT , letP be a Poisson point processfi1l ) T of intensity measurdt L (dx).
Foreacht 0,deneP;=fx 2T :9s tsuchthat(s;x) 2 Pg. LetT; = T; be the connected
component off n P; containingV . This is the portion of the tree remaining at timéNe setC:= ft >
0: (Tt ) > (Tyo: Then for each 2 C, there exists a (uniqgue)(t) 2 T such that(t;x(t)) 2 P.
Moreoverx(t) is contained ifl; , the portion left just before the cutting.

We set Z,

L(T):= (Ts)ds; (2.121)
0

which is almost surely nite (Theorem.4). This turns out to be the continuous analog for the number
of cuts. Note that such a de nition has already appeared,i(] for the Brownian CRT, and ing] for
the Lévy trees.

In a similar way to the discrete case, we construct a}gother (real) tree which partially encodes the
cutting procedure o . Fort 2 [0;1 ], we denelL; := (; (Ts)ds. In particular,L; = L(T).
Consider the intervdD; L1 ], which is almost surely nite. For eadh2 C, graftT; n T;, the portion
of the tree discarded at timteat the point_; 2 [0O; L, ]. This produces a real tree, seen as rooted at the
extremityO of [O; L1 ]. Denote bycut(T ; V) its completion. Moreover, the mass measu& T can be
pushed taut(T ; V), which yields a (possibly defective probability) meastrencut(T;V).

Let (p,;n 1) be the sequence of probability measures satisfylng1j, and writecut(T"; V")
for the tree associated to the cutting procedure fopthéreeT" and the nod&/ " of distributionp,,.

Theorem 13(Theorerm#.4). Under(1.41), we have
(ncut(TVM)ipai V)T (eut(Ti V)AL 1 );
jointly with the convergence if1L.42.

Comparing this with1.119, we obtain immediately that

Corollary 14 (Theorenmd.5, Corollary4.6). We have the identity in distribution:
Cut(T:V): N 2(T; ): (1.122)
Moreover,L (T) has the same distribution as the distancd ifirom the root toV, that is,

Y
PL(T)>r =e 28" 1+ ine i"; r>o0 (1.123)
i1

Genealogical trees of the discrete and continuous fragmentations

In the cutting procedure described above, we only keep track of the cuts affecting the size of the connected
component containing . Following Bertoin and Miermont30], we also consider a more general cutting
procedure which keeps splitting all the connected components. It turns out that this cutting process
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is connected to the Aldous—Pitman fragmentatitf] [for the Brownian CRT, and to a new natural
fragmentation for a general ICRT.

Let P be the Poisson point process of intensity meadtird. (dx) as de ned previously. For each
t 0, we obtain a “forest" fronT by removing all the points oP;. More preciselyP; induces an
equivalence relation; onT: forx;y 2 T we writex yif X)X;yK\P { = ?, wherelx; yKdenotes the
unique geodesic path betweemandy in T . We denote byl (t) the equivalence class containirg

Let #(t) be the sequence of nonzero values ofTy(t));x 2 T g re-arranged in decreasing order.
In the Brownian case (= (1;0;0; )), the proces§ *(t);t 0) is exactly the Aldous—Pitman
fragmentation. In the other cases, however, the process is not even Markovian because of the presence of
those branch points; associated with the positive.

A ‘
f1;2;3;4;59

'

f1;3;4;59

/N

f3;59 f1;4g

/NN

f3g f5g flg f4g

partitions are represented by the crosses, and the index next to them corresponds to the order in which
they appear. On the right, the genealogical t&eof the partitions.

As previously, we construct another tree to encode the cutting procedure, which can be interpreted
as the genealogical tree of the fragmentation associated to the cutting. In the Brownian case, Bertoin and
Miermont [30] have shown that this genealogical tree is distributed as a Brownian CRT. We extend this
result to the ICRTs using a completely different method.

First, let us introduce the genealogical tree for the ICRT. Recall that from Kingman's thegry [
there is a correspondence in distribution between mass partitions and exchangeable partitioascn
the distribution of the latter is characterized by its restrictiongkdrk 1. Now sample a sequence
of independent point§V;); 1 according to the mass measure Then  induces an (exchangeable)
partition onN by settingi ¢ j if Vi ¢ V. In particular, the mass(Ty, (t)) can be recovered as the
asymptotic frequency:

1 X
Ty (t) = II(i!rln P 1j iy almostsurely,
j=1
by the law of large numbers. We setfo? [0;1 Jandi 1
yA t
Li:= Ty, (s) ds:
0
As V; 4y and(Ty;(s))s o d (Ts)s o foreachi 1, it follows that we haveL] < 1 foralli 1,
almost surely. For each pdir,j ) such that 6 |, let (i;j) be the rst moment whedV;;V; Kcontains
an element oP (or more precisely, of the projection & ontoT). Then (i;j) = (j;i) records the
instant wherV; andV; are separated into different equivalence classes. It follows from the properties of
T andP that (i;] ) is almost surely nite.
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For eachk 1, we can construct &-leafed treeSy which represents the genealogical structure
of how the partitions ofk] induced by ;t 0 evolve into singleton§lg;, ;fkg. See gurel.5.
Moreover, we equi®, with a distancel, satisfying that

d(@fig)= Lt ; de(figifjg)= Ly +Lh 27y 1 i<j Kk (1.124)

where@denotes the root &by .

Figure 1.6 — The sameSs as in Figurel1.5 but equipped with a distance. The numbers here are the
distances of the nodes from the root.

We can construc{Sy)x 1 in such a way thaty Sk+1 as metric spaces. Letut(T) be the
completion off x 1Sk.

Similarly, for each birthday tre&" on [n], we can de ne a complete cutting procedure Bh by
rst generating a random permutatiqix n1; X n2; ; Xnn) on the vertex sefn] and then removing
Xni one by one. Here the permutati®dn1; Xn2;:::; Xnn) is constructed by sampling, for 1, Xy,
according to the restriction qf, to [n]nfXy;;j <i g. We de ne a new genealogy dn] by making
Xni anancestor oKy if i <j andXp; isin the connected component containkigg when it (X i) is
removed. If we denote bgut(T") the corresponding genealogical tree, then the number of the vertices
in the path ofcut(T") between the rooX ,1 and an arbitrary vertex is precisely equal to the number
of the cuts necessary to isolate this ventexee Figurel.7 for an example o€ut(T").

Theorem 15(Theoremgt.7and4.8). Suppose thafl.41) holds. Then, we have

n'l

ncut(T"); py, d!'_GP cut(T); ;

P
jointly with the convergence ifL.42. Here, is the weak limit of the empirical measurés ik:ol i

which exists almost surely conditional dn Moreover, we have

(cut(T); )= (T; ): (1.125)

Recovering the Brownian CRT from its genealogy of the cutting process

The identity in distribution 1.125 gives rise to the following question: given an ICRIT, thenH has
the same distribution a=ut(T ), and one might wonder whether it is possible to construct another (real)
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5 (ii) 3(iii )

4 (i) 5 3 1
1
(iv)

2(v)

Figure 1.7 — On the left, a cutting o " where the roman numbers represent the order in which the
vertices are removed. On the right, the corresponding T").

Fr(H;x; Ay)

Figure 1.8 — The surgical operation on the tré¢ for a single branch poink.

treeQ such that
(Q;H) 2 (T;cut(T)): (1.126)

In the case wherkl is a Brownian CRT, we have succeeded in construdfing shu ( H) by the
following subtree-shuf ing procedure. Letdenote the root ol andBr(H) the set of branch points of
H, which is a countable set with probability For eactx 2 H , the subtree at, denoted bySub(H ; x),
is the set of those poingssuch thatx 2 J;y K Forx 2 Br(H), sample independently a random point
Ay according to the restriction ofy , the mass measure Bif, to Sub(H; x), and sefr(H; x; Ay) to be
the set of thosg 2 Sub(H ; x) for which the closest common ancestoy@&ndA, isy™ Ax = x. Detach
Fr(H;x;Ax) and re-attach it afx. Do this for every branch point of H; the points of the skeleton
that are not branch points are not used (see Figjii8)e In Chapters we show that this de nition makes
sense and the tree obtained indeed satisle$ZH.

Let us explain the motivation underlying this construction. First, assume-thatcut( T;V) for
some Brownian CRTT along with the pointv of distribution . Then it is intuitively clear how to
“reverse” the construction aut(T;V): for eachx 2 Br(H)\ [O;L41 ], Fr(H;x;L1 ) is a subtree on
the interval[O; L ; ], and is the completion of; n T; for somet 2 C by our construction o€ut(T ; V).
We detach this subtree and then re-attach it at the gd{ntwhich records the location where the cut
at timet falls on T. See Figurel.9. We show that giverH, A2 has distribution  restricted to
Sub(H;x) nFr(H;x; L1 ). Furthermore, when the attach poi#t$ are sampled beforehand, the order
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200V Q,w

Figure 1.9 — The detaching-reattaching operations on three branch poinix2; x3. The order of the
operations is unimportant.

of the subtrees to be detached and reattached does not matter.

More generally, for eack 1, we can de ne &-cutting procedure ot which uses the elements
of P as cuts to isolat& independent leaveg;; ;Vk. Similarly, this cutting procedure is (partially)
encoded byut(T;V1; ;Vk), which is a real tree obtained by grafting discarded parts on a backbone
Sk, which is no longer a path but a tree wkHeaves. In an analogous way¢at(T ; V), by detaching
the subtrees grafted @k and then re-attaching them at random points we can “reverse” the construction
of cut(T; Va; ; Vk). It should not come as a surprise ticat(T ; Vi; Vi ! cut(T)ask!1l
and we prove that the sequence of “reverses" converges almost surely to a tree having all the properties
that we want for the reverse obit(T).

In fact, the “reverse" construction ott(T ; Vy; ; Vk) works not only for the Brownian CRT but
for any ICRT (see Theored 31and Propositiors.7). But the argument showing the limit exists whien
tends to in nity (Theorenb.8) relies heavily on the scaling property of the Brownian CRT. We conjecture
that the “complete shuf ing" described above is also the correct transformation for ICRTSs.
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Chapter 2

Height and Diameter of Brownian trees

The results of this chapter are from the articlE0[J], submitted for publication.
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By computations on generating functions, Szekeres proved in 1983 that the law of the diameter of
a uniformly distributed rooted labelled tree withvertices, rescaled by a factar %, converges to a
distribution whose density is explicit. Aldous observed in 1991 that this limiting distribution is the law
of the diameter of the Brownian tree. In our article, we provide a computation of this law which is
directly based on the normalized Brownian excursion. Moreover, we provide an explicit formula for the
joint law of the height and diameter of the Brownian tree, which is a new result.

2.1 Introduction

For any integem 1, let T, be a uniformly distributed random rooted labelled tree witkertices
and we denote b, its diameter with respect to the graph distance. By computations on generating

functions, Szekere®f] proved that
1 (law)

n 2D,! ; (2.1)
where is a random variable whose probability dendityis given by
P35 X 64 16
f o= 5 jal@thy, 363, +75k, 30+ S, SF) e ™ (22)

n 1

wherebn.,y :=8( n=y )2, for ally 2 (0;1 ) and for all integers1 1. This result is implicitly written in
Szekeresqg] p. 395 formula (12). See also Broutin and Flajol&s][for a similar result for binary trees.

On the other hand, Aldou8]10] has proved that,, whose graph distance is rescaled by a fanto%,
converges in distribution to the Brownian tree (also called Continuum Random Tree) that is a random
compact metric space. From this, Aldous has deduced thzds the same distribution as the diameter

of the Brownian tree: sed], Section 3.4, (though formula (41) there is not accurate). As proved by
Aldous [L0] and by Le Gall B(], the Brownian tree is coded by the normalized Brownian excursion

of length1 (see below for more details). Then, the question was raised by Al@ptisgt whether we

can establish.2) directly from computations on the normalized Brownian excursion. In this work, we
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present a solution to this question: we compute the Laplace transform for the law of the diameter of the
Brownian tree based on Williams' decomposition of Brownian excursions. We also provide a formula
for the joint law of the total height and diameter of the Brownian tree, which appears to be new. Before
stating precisely our results, let us rst recall the de nition of the Brownian tree coded by the normalized
Brownian excursion.

Normalized Brownian excursion. Let X =( Xy{); o be a continuous process de ned on a probabil-
ity space( ;F;P) such that(#;X4); o is distributed as a linear standard Brownian motion such that

P(Xo=0)=1 (the reason for the normalizing constgni is explained below). Thus,
BU2R t2R,: E Xt =g W?:

Forallt 2 [0;1 ), we setl; = inf 551041 Xs. Then, the re ected process | is a strong Markov
process, the stateis instantaneous ifD; 1 ) and recurrent, andl is a local time at leveD for X |
(see Bertoin 22], Chapter VI). We denote b the excursion measurassociated with the local time
I; N is a sigma nite measure on the space of continuous péfis; ;R.). More precisely, let
o (@)= t>0:X¢ 1¢>0 be the excursion intervals of the re ected prociss | above0; for
alli 21, we setg(s)= X +5r la,S2R+. Then,
X ( lae) is a Poisson point measure Bn  C(R+ ; R+ ) with intensitydt N (de). (2.3)
i21

We shall denote bg=(&); ¢ the canonical process @(R- ; R:). We de ne itslifetime by

=supft 0:e>0g; (2.4)
with the convention thasup? = 0. Then,N-a.e.ep =0, 2 (0;1) and for allt 2 (0; ), & > 0.
Moreover, one has

P— d
8 2R,; N1le = and N 2dr=?9ﬁ: (2.5)
See Blumenthald4] IV.1 for more detalil.
Let us brie y recall the scaling property efunderN . To that end, recall that satis es the following

scaling property: foralt 2 (0;1 ), (r 2X,); o has the same law a&§, which easily entails that

rozey . o under riN e under N : (2.6)
This scaling property implies that there exists a family of law<xgR. ; R+ ) denoted byN( | =),
r2(0;1),suchthatr 7! N( j = r) is weakly continous ol€(R+;R+), suchthatN( j =r)-
a.s. =r and such that Z,
N = N(j =r)N 2dr : (2.7)
0
Moreover, by 2.6), r %ert . oundeN( j =r)hasthe same law aunderN ( j =1). To simplify
notation we set
Npr = N( ] =1): (2.8)
Thus, for all measurable functiofs:C(R+;R+)! R4,
1 Z 1 3 h 1 i
N F(e) = p= drr 2Ny F r2e (2.9)
2 0 t 0
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Remark 16. The standard Ito measuié,;, of positive excursions, as de ned for instance in Revuz &

Yor [97] Chapter XIl Theorem 4.2, is derived frolh by the following scaling relations:
N +

o IS the law ofpl—ie underpl—iN and thusN g ( j =1) is the law ofpl—ée underNp,.

Consequently, the law,, is not the standard version for normalized Brownian excursion measure.
However, we shall refer to it as the normalized Brownian excursion measure.

Real trees. Let us recall the de nition ofeal treesthat are metric spaces generalizing graph-trees: let
(T; d) be a metric space; it is a real tree if the following statements hold true.

(@ Forall 1; 12 T, there is a unique isometty : [0;d( 1; 2)]! T such thatf (0) = ; and

f(d( 1; 2))= 2.Inthiscase, weset 1; 2K=f([0;d( 1; 2)]).

(b) For any continuous injective functiap: [0; 1]! T, q([0; 1])= Jq(0); (1)K

When a point 2 T is distinguished(T;d; ) is said to be aootedreal tree, being theroot of T.

Among connected metric spaces, real trees are characterized by the so-called four-point inequality: we
refer to Evans§7] or to Dress, Moulton & Terhalle47] for a detailed account on this property. Let us

brie y mention that the set of (pointed) isometry classes of compact rooted real trees can be equipped

with the (pointed) Gromov—Hausdorff distance which makes it into a Polish space: see Evans, Pitman &
Winter [59], Theorem 2, for more detail on this intrinsic point of view that we do not adopt here.

Coding of real trees. Real trees can be constructed through continuous functions. Recadldtzatds
for the canonical process &@(R- ; R: ). We assume here thathas a compact support, thet=0 and
thate is not identically null; recall fromZ.4) the de nition of its lifetime . Then, our assumptions @n
entail that 2 (0;1 ). Fors;t 2 [0; ], we set

b(s;t):= inf e and d(s;t):= e+ e 2b(s;t):
r2[s"t;s_t]
It is easy to see that is a pseudo-distance df; ]. We de ne the equivalence relation by setting
s tiff d(s;t) = 0; then we set
T:=[0; = : (2.10)

The functiond induces a distance on the quotient $ethat we keep denotingd for simplicity. We
denote byp : [0; ]J!'T the canonical projection. Clearfyis continuous, which implies thdt ; d) is
a compact metric space. Moreover, it is shown {fTatd) is a real tree (see Duquesne & Le G&lP],
Theorem 2.1, for a proof). We take= p(0) as theroot of T. Thetotal heightand thediameterof T
are thus given by

=max d(; )=maxe and D= max. d(; C):rgf;\xo e+ e 2b(s;t) : (2.11)

We also de ne onT a nite measurem called themass measurthat is the pushforward measure of
the Lebesgue measure @ ] by the canonical projectiop. Namely, for all continuous functions

f:T! Ry,
z z

f()m(d )= f(p(t)) dt: (2.12)
T 0

Note thatm(T) =
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Brownian tree.  The random rooted compact real tr€e; d; ) coded bye under the normalized
Brownian excursion measulg,, de ned in (2.8) is theBrownian tree Here, we recall some properties of
the Brownian tree. To thatend, foran® T , we denote by( ) the number of connected components of
the open set nf g. Note thain( ) is possibly in nite. We call this number thgegreeof . We say that

isabranch poinif n( ) 3andthat isaleafif n( )=1. Wedenote byf(T):= 2T :n( )=1
theset of leavesf T . Then the following holds true:

Nnr-as. 8 2T; n()2f1;2,3g; misdiffuse and m TnLf(T) =0 ; (2.13)

where we recall fromZ.12 thatm stands for the mass measure. The Brownian tree has therefore only
binary branch points. The fact that the mass measure is diffuse and supported by the set of leaves makes
the Brownian tree @&ontinuum random treaccording to Aldous' terminology (see Aldous(). For
more detail onZ.13), see for instance Duquesne & Le Gdl].

The choice of the normalizing constan® for the underlying Brownian motioX is motivated by
the following fact: letT,, be uniformly distributed on the set of rootpthnar trees withn vertices. We
view T, as a graph embedded in the clockwise oriented upper half-plane, whose edges are segments of
unit length and whose root is at the origin. Let us consider a particle that explpeesfollows: its starts
at the root and then it moves continuously on the tree at unit speed from the left to the right, backtracking
as less as possible. During this exploration the particle visits each edge exactly twice and its journey
lasts2(n 1) units of time. For alt2 [0;2(n 1)], we denote b)Ct”) the distance between the root and
the position of the particle at time The proces$Ct(”))t2[0;2(n 1y is called thecontour processf T,,.

Following an idea of Dwas$p]|, we can check that the contour procé@%n))tz[o;z(n 1y is distributed
as the (linear interpolation of the) simple random walk starting f@prronditioned to stay nonnegative
on[0; 2(n 1)] and conditioned to hit the valuel at time2n 1. Using a variant of Donsker's invariance
principle, the rescaled contour functi¢n %C% 1)t)t2[0:1] converges in law towardsunderN,,: see
for instance Le Gall§2]. Thus,

1 | (law)

n 2D, D under Np;

whereD , stands for the diameter @f, andD is the diameter of the Brownian tree given 2yX(1).

Remark 17. In the rst paragraph of Introduction, we introduce the random tigg which is uniformly
distributed on the set of rooted labelled trees withertices. The law of, is therefore distinct from that
of T,,, which is uniformly distributed on the set of rooted planar trees witrertices. Aldous0] has
prayed that the tred,, whose graph distance is rescaled by a fagtor: converges to the tree coded
by 2eunderNp. Thus,

(i) péD under Ny : (2.14)

See Remark9 below.

In this article, we prove the following result that characterizes the joint law of the height and diameter
of the Brownian tree.

Theorem 2.1. Recall from @.8) the de nition of N, and recall from 2.11) the de nitions of andD.
We set
1 Z 1 3 1 1
8;y;2z 2(0;1); L (y;2):= # . e "r 2Ny rzD>2y;rz2 >z dr: (2.15)

Note that

N
N[

L

<
N[
N

8;y;z 2(0;1); Li(y;2)=
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Then,

sinh(2g9) 29
L1(y; z) = coth z 1 I _— 2.17
1(y ) (y_ ) 2-+fz 2yg sinh4(y) ( )
whereq=y” (2y z). In particular, this implies that
P— pP— P-
8;z 2(0;1); L (0;2)= coth(z ) (2.18)
and
P— P—  P- p—sinh(2p7) pr
8iy 2(0;1); L (y;0)= cothly ) Y e (219
4sinh*(y )
Corollary 2.2. Forally;z2 (0;1 ), we set
2
=z_¥% and = 0;2)_0 nTc (2.20)
Then we have
. — A 2 2 n2 2
Npr D>y ; >z =2 2n le + (2.21)
n 1 .
1X > 2,2 Lin+ )2y2 2,2 Ln )2y? 3,3 Lnoy?!
g ™ 1) (n+ )7y" 2ex ¥ (n )y 2e s Y+ y(n°y® 6ény)e «"Y
n 2
and
5=2 X
N D y; z =2 prenti (2.22)
n 1
32 =2 X 2 32 1 ,
3 nS|n(2 n ) F(Zaﬁ’y 9an;y +6) T(an’y l) e any +
n 1
16 172 X 1 2
3 cos(2n ) F(6aﬁ;y 15an, +3) any € @+
n 1
16 172 X 1 1 _
3 F(‘laﬁ;y 24a§;y +27a5y 3)+ Z(Zarzw;y 3any) e v

n 1

where we seény = 4( n=y Y2forally2 (0;1 ) and for alln 1 to simplify notation. In particular,

(2.21) implies X .
Ny >y =2 2n%y? 1e "V (2.23)
n 1
and X
2 1 4.4 2,,2 2y2=4
Np D>y = nc 1) =n%y" 2n°y +2 e "V 2.24
6
n 2

On the other hand(2.22) implies

5=2 X
Nnr y = 4 3 n2e "’ 2=y2; (2.25)
y n 1
and
Npr D s 24,y 36a%, +8a3, + a2 e w : 2.26
nr y = 3 V3 ny ny T Sany Van;y e : (2.26)
n 1
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Thus the law oD underNy, has the following density:

fo(y) = ndy®  nby3(20 + y2) +20n%y(3+ y?) 6B0n%y e NV (2.27)

16 8
F(4a‘n‘;y 36ay, +75a5, 30any)+ F(zaﬁ;y San,) e & @ (2.28)

Remark 18. We derivg2.22) from (2.21) using the following identity on the theta function due to Jacobi
(1828), which is a consequence of Poisson summation formula:

X

NI

X 2 2i ;i 2(y+n)2 2
8t2 (0;1);8x;y 2 C; g (xxm7t 2iny — g2y : —r 2 inx (2.29)

n2z n2z

See for instance Weillp1], Chapter VII, Equation (12). Not surprisingly2.29 can also be used to
derive .25 from (2.23, to derive £.26) from (2.24), or to derive .28 from (2.27).

Remark 19. We obtain 2.27) (resp. @.28) by differentiating 2.24) (resp. €.26). By 2.14), we have
1
By2(0:1) f )= P50 5 ;

which immediately entail2(2) from (2.298), sincean;y:p 5 =8( n=y )2 = bhy -

Remark 20. Recall that = max ; €. Equations2.23 and .25 are consistent with previous results
on the distribution of the maximum of Brownian excursion: see for example ChH&hdt{ough we need

to keep in mind the difference betwep andN g, , as explained in Remad®.

2.2 Preliminaries

A geometric property on diameters of real trees. We begin with a simple observation on the total
height and diameter of a real tree.

Lemma 2.3. Let(T;d; ) be a compact rooted real tree. Then D 2 , where

=sup d(u; ) and D= sup d(u;v):
u2T uv2T

Moreover, there exists a pair of pointig; vo2 T with maximal distance. Namely,

d(uo; Vo) = sup d(u;v)=D: (2.30)
uv2T

Without loss of generality, we assume thétg; ) d(vp; ). Then the total height of is attained at
Ug. Namely

d(ug; )=supd(u; )= : (2.31)
u2T

Proof. Letu;v2T. Recall from the de nition of real trees (given in Introduction) tlaf vKstands for
the unique geodesic path betwaeandv. To simplify notation, we sefti(u):= d(u; ) foru2 T. The
branch pointu” v of u andv is the unique point of satisfying

J;u MvK= J;uK\ J;vK:
Then, we easily check
d(u;v) = d(u;u”™ v)+ d(u” v;v) = h(u) + h(v) 2h(u”™v):
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The triangle inequality easily implies thBx 2 while the inequality D is a consequence of the
de nitions of andD. Asd: T2 ! R; is continuous and is compact, there exists a pair of points
Uo; Vo2 T such that2.30) holds true. To prove2.31), we argue by contradiction: we assume that there
existsw 2 T such thath(w) > h (ug). Let us writeb:= up” vo. Here we enumerate the three possible
locations ofw. See Figur@.l1

oW

Figure 2.1 —Three possibilities fow

(a) Suppose that * ug 2 Jug; bK By hypothesis, we hav&(w) > h (ug). In other words,
h(w) = d(w;b) + h(b) >h (ug) = d(uo; b) + h(b):
Thus,d(w; b) > d(ug; b) and
d(w; vo) = d(w; b) + d(b;w) >d(uo; b) + d(b;w) = d(uo; vo);
which contradictsZ.30).
(b) Suppose that ™ vp 2 Jvg; K In this case, we have
h(w) = d(w;b) + h(b) >h(ug) h(vo) = d(vo; b) + h(b):
Thend(w; b) > d(vo; b) and
d(w; ug) = d(w; b) + d(b; w) > d(vo; b) + d(b; Up) = d(uo; Vo):
This again contradict2(30.
(c) Suppose that ™ ug 2 J;bK Then we deduce from
h(w) = d(w;w " up) + h(w " uo) >h (uo) = d(uo;w" up) + h(w " uo)
thatd(w; w " ug) > d (ug; w” Ug). Note that in this case * ug = w” vg. Therefore,

d(w; vo) = d(w;w ™ vg) + d(w” vg;vp) = d(w;w” ug) + d(w” ug; Vo)
>d(ug;w” ug) + d(w” ug; Vo)
>d (uo; b) + d(b; ) = d(uo; vo);

which contradictsZ.30.
In brief, there exists nw2 T such that(w) = d(w; ) > h (ug) = d(ug; ), which entails 2.31).
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Williams' decomposition of Brownian excursions. Let us recall the classical result of Williams' path
decomposition of Brownian excursions (see for instance Revuz & YdrChaper XIl Theorem 4.5).
De ne

=infft>0: etzngaé esg: (2.32)

UnderN (and also undeN,), is the unique time at whicareaches its maximum value. Recall from
(2.11) the de nition of the total height of the Brownian tree coded &y Then, we have= e .

We also recall the distribution of underN :

dr
N 2dr = r—z: (2.33)

See Revuz & Yor97] Chaper XIl Theorem 4.5 combined with Remdr&

Williams's decomposition entails that there is a regular version of the family of conditioned laws
N(j = r),r>0 NamelyN(j = r)as. = r,r 70 N(j = r) is weakly continuous on
C(R+;R+) and z,

N = N( 2dr)N( j = r): (2.34)
0
LetZ =(Zt); o be acontinuous process de ned on the probability sgacé ; P) such that-Z is

distributed as a Bessel process of dimengstarting from0. Let , =inf ft> 0 : Z;= rg be the hitting
time of Z at levelr 2 (0; 1 ). We recall that

p—
8 2R,; Ee =" p (2.35)
sinh(r )

See Borodin & SalminerBE]dDart I, Chapber 5, Section 2, Formula 2.0.1, p. 463, where we tehd
toOandtake = andz=r= 2,sinceZz= 2RO,
We next introduce the following notation:

e=e . e()=e.; t O

where( )+ stands for the positive part functiowilliams' decompositiof Brownian excursion asserts
the following.

Forallr2(0;1 ),underN( j = r), the two processes and e are distributed as two indepen-
dent copies ofZ( , 1), )t o-

As a combined consequence of this decomposition ar&by, we have
|

p— -2
8r2(01); Ne j=r=Ee 2= —' o . (2.36)
sinh(r' )
where we recall that stands for the lifetime of the excursion. Therefore,
%1 . 1 P P— P-
N e 1f sag = Ne j=rN(( 2d)= — == coth(a ) ;
a a sinh“(r )

by (2.33 and @.36. Combined with the factthé& (1 e )= P ~, this entails that
Pp— p—
N1 e 1t 5 = coth(a ): (2.37)

This equation is used in the proof of Theor@ri.
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Spinal decomposition Let us interpret Williams' decomposition in terms of a Poisson decompaosition
of the Brownian excursion. To that end, we need some notation.h 22C(R+ ; R+) have compact
support. We assume thia0) > 0. For alls2 R, , we seth(s)=inf g y sh(u). Let(li;r;),i21 (h) be

the excursion intervals d¢f h away fromO; namely, they are the connected components of the open set
fs 0:h(s) h(s)>0g. Foralli2l (h), we next set

hicsy)= h h (i+s)~ri; s O

which is the excursion di h corresponding to the intervél;; ri). Then we set

X
P(h) = (h(©) h(ii);hi):
i21 (h)

that is a point measure dd. C(R+;R.+). We de ne

X
Q:= P(e)+ P(e)= (5:9) ° (2.38)
j23

We also introduce for ali2 (0; 1 ) the following notation:
N{=N \f tg : (2.39)
The following lemma is the special case of a general result due to Abraham & Delinas [

Lemma 2.4(Proposition 1.1, Abraham & Delmas]). Letr 2 (0;1 ). Then,QunderN( j = r)isa
Poisson point measure d®.  C(R.; R+ ) with intensity measur2 1jq.j(t)dt N.

Interpretation in terms of the Brownian tree and consequences. Let us interpret in terms of the
Brownian treelT coded by the Brownian excursi@n Recall thap : [0; ]! T stands for the canonical
projection and recall that= p(0) is the root ofT . The pointp( ) is the (unique) point o that attains
the total heightd(;p( ))=

Denote byT,$, j°2J ¢ the connected components BhJ;p ( )K For allj®2J © there exists a
unique point jo2 J;p ( )Ksuch thaffjo:= Tj% [f jogisthe closure oﬂ'j% in T. Recall the notation
J from (2.39. Itis not dif cult to see that) °is in one-to-one correspondence with Moreover, after
a re-indexing, we can suppose thigp( ); j) = s; and that(T;;d; ;) is the real tree coded by the
excursiond , for eachj 2 J . Then we set

8j 2J; j:=n;a6<é(s)=m2aT>§d(j; ) ; (2.40)
that is the total height of the rooted real t(@¢; d; ;). We claim that

N-a.e. D=sup(sj+ j): (2.41)
j2J
Proof of 2.41). First observe that for atl 2 (0;1 ), N is an in nite measure becau$¢ is in nite and

becausdN ( >t)=1=tby (2.33. By Lemma2.4, N -a.e. the closure of the sks; ; j 2Jg is[0; ] .
This entails that

N-a.e. =sup sj sup(sj+ j): (2.42)
j23 j23
Next, for allj 2J , there exists 2T; such thad( j; j)= ;. Then observe that
d(p( )i j)=d(p( )i P+d(j; D=5+ j: (2.43)
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Note that Lemma&.3implies thatD =max 7t d(p( ); ). Comparing this withZ.43), we get
D sup(si+ j): (2.44)
j2J

On the other hand, there exists 2 T such thatD = max >t d(p( ); )= d(p( ); ) by Lemma
23 If  2J;p( )Kthen there exists 2J suchthat 2T; . In consequence, we hai =
dip( ); ) s + j ,andtherD=sup;,; (sj+ j)whencomparedwithiX44.If 2J;p( )K

then .42 impliesthat = andD = . In both cases.4]) holds true.
We next denote by; the lifetime ofél forallj 2J and prove the following statement.
X
N -a.e. j= (2.45)

j23

Proof of 2.45. Let 2 Jp( ); Kbe distinct fromp( ) and ;thenn( ) 2and isnota leaf ofT.
Recall from @.12 the de nition of the mass measune and recall from2.13 thatN,-a.s.m is diffuse
and supported on the set of leavedofBy (2.7), this property also holds trué -almost everywhere and
we thus get

N-ae. mJp( ); K=0:

Recall thafT;°,j 2J , are the connected componentsTai); p ( )K Thus,

X X
N-a.e. m(T)=m Jp( ); K+ m T = m T;° : (2.46)
j23 j23

Recall thafTj = T;°[f jgand thatm is N-a.e. diffuse, which entails(T;) = m( T,°), for allj 2J .
Moreover, sincgT;; d; ;) is coded by the excursiogh , we have j; = m(T;). For a similar reason, we
also have = m( T). This, combined withZ.46), entails @.45).

2.3 Proof of Theorem2.1

First we note that by2.9),
1 Z1 3 1 1
L (y;2)= ?% . dre "r 2Np r2D>2y;r2 >z =N e  lipsgy: 579 (2.47)

Observe that the scaling proper:.16) is a direct consequence of the scaling properti asee 2.6)).

We next compute the right hand side 8f47). To that end, recall from238 the spinal decomposi-
tion of the excursiore and recall from 2.40) the notation ; = maxs o€ (s), forallj 2J ; also recall
that  stands for the lifetime of . Letr;y 2 (0;1 ) besuchthay r 2y. We apply successively
(2.4)), (2.495, Lemma2.4and Campbell's formula for Poisson point measures to get

Y
N e 1lp g =1 =N € Jlig+ | 299 = T
j23

r
=exp 20dtNt1 e 1t oy tg (2.48)

Recall from .39 thatN{ = N \f tg and observe that
Z, z Z,

y
dtN{ 1 e 1 2y tg — dtN (1 e )1 tg T dtN 14 tg © 1 <2y tg - (2.49)
0

0 y
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By (2.37) and by @.33,

N@ e ) g=N1le 1 { N >t = P~ coth t° : (2.50)
and
P— P— 1
N1l g € Li<oyg=N1le 1 o g N(>t)= coth (2y t) T+ (25))
Then observe thatforalla2 (0;1 ) such that'<a,
Z, . P— . .P—
_ p_ "
coth(t ) tldt:Iogsmr:1 Iog%'
Thus, as'! 0, we get
Z, ., P
P— P—
8a2 R, coth(t. ) 2 dt=log sinha . (2.52)
0 a

An easy computation based dh %2 and combined withZ.49, (2.50, (2.51) and .48 entails

_ _ 2
rp sinh (2y r)p

N e 1 =r = =
o 29 sinh?(y’ )
Combining this with 2.36), we get
| _ _
P02 ” ~sinh 2y r)IO
8r;y2(0;1): r :Ne 1 =r = D— p—
y ( ) y 2y f D> 2yg sinh(r'u ) Sinh4(y|u )
(2.53)
Next, letr;y 2 (0;1 ) be such that> 2y. By Lemma2.3, D 2 . Therefore,
p_ o2
8rny2(0;1):r>2y; N e lipsog =T =N e = = —r% . (2.54)
sinh(r )

Finally, letr<y . ThenN (e  1¢ps oyg) = r)=0,since D 2 . Combining this with 2.53 and
(2.59), we easily obtain that

Zl
N e lipsaz;>2g = N e lipsgg = r N( 2dr)

4
2 oynz Z,

= N e lipsog = N( 2dr)+ N e =r N( 2dr)
z_y D 2y D
- P— “sinh(2q ) 2q

= coth (z_y) 1 17 2y P ;

4sint(y’ )
where we recall the notatiap= y” (2y 2z). By (2.47), this concludes the proof of TheoreriL
2.4 Proof of Corollary 2.2
We introduce the following notation for the Laplace transformiRan for all Lebesgue integrable func-
tionsf : Ry ! R, we set
Z,
8 2R:; L (f):= dxe *f(x);
0
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which is well-de ned. Note that if; g are two continuous and integrable functions such thdf ) =

L (g) forall 2 [0;1), then we havd = g, by the injectiveness of Laplace transform and standard
arguments.

p
Foralla;x2 (0;1 ), we setf5(x) = #=x e a*=4x |t is well-known thatL (f,) = e @ for
all 2 R; (see for instance Borodin & Salmine®&] Appendix 3, Particular formulae 2, p. 650). Then

we set

a2 a2
Oga(X) = @fa(x) = g}kx ‘e w(a® 6ax) and ha(x)= @fa(x)= ELX se w(a® 2x):

Consequently, for all 2 R,

P p_ p-
L (ga)= e 2 and L (hp)= e 2 (2.55)

(See also Boradin & Salmine®3f] Appendix 3, Particular formulee 3 and 4, p. 650.) Moreover, we have
the following easy bounds: for all2 R,

y
. 1 1 a2 P— P— P- P

L (i) = dxe *x ze &(a®+6ax)= e ° +3Z e * +Ze® ;  (256)
- 1 1 a? p_ pP— p_

L (hai) p= dxe Xx te (a?+2x)= e ° +Ze? (2.57)

Lety;z2(0;1 ). Recall from 2.20 the notation and . Next set
8n2 N; up= %(n+3)(n+2)(n+1);
P
sothat(l x) 4= | oUnx", for all x 2 [0; 1). Then @.17) implies that

i 2 e ¥V eV 2y
Li(ty:z) = coth 1 sinh(y) vy _ 2e +2e (e e )+ 4ye

N 4)?inh4(y=2) "1 e? (1 eVv) (1 eV
— 2e 2n 4 2u, € (n+2+ )y e (n+2 )y+2 ye (n+2)y
%* % °
= 222+ 2u, e (™MW (M Wioye W
n 1 n 2
Thus, by 2.16), we obtain that
Z
1 1 p— p— p—
= e 1INy riD>yirz >z dr=L (Byi)= Ly iz )
0
X ~ X _ _
S Pty 2upn zp?e oo P +2ye W
1 X n 2
n 1 n 2
Observe that for all 2 R, ,
X . - X - - - . - .
2supjhy, j+ 2un 2 supjh+ yyi+supjhp Gy +2 Yy supjgnyj <1 : (2.59)
n 1 0] n 2 [oir] [0;r] [0;r]

Then, for anyr 2 R, , we set

b b3
yz(r) =2 hon (r)e " + 2up 2 hne (e " hy (e "+2 ygpy(r)e '
n=1 n=2
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which is well-de ned and continuous thanks t2.%9. The boundsZ.56) and @.57) imply that .,
is Lebesgue integrable. Moreovel, %8 asserts thalt +1(%y;z)= L ( y;z). By the injectiveness of
Laplace transform for continuous integrable functions (as mentioned above), we get

N[

8r2 Ry;  yz(r)= ?Le "t 3 Npy r%D>y rz >z
which entails 2.21) by takingr =1.
Since D 2 ,ifz=y,thenN(D>y; >y)= Np( >y) and @.21) immediately implies
(2.23 because in this case= y and =0. If z= 3y, thenNy(D>y; > 3y)= Np(D>y), =43y,
=1 and @.2]) implies
X X h
Nnr(D>y)=  n%? 2e "+ % n(n2 1) ((n+1)y)? 2e (mH*
n 1 n 2 .
1 2 1,2 2I
(n y)> 2e 7™ 74y eny)e "V ;

which entails 2.24) by re-indexing the sums accordingeo”2V2:4: we leave the details to the reader. We
next derive .27) by differentiating 2.24). As mentioned in Remark8, we use Jacobi identity(29 to
derive .22 from (2.21). The computations are long but straightforward: we leave them to the reader.
Finally, for the same reason as befo22Q) entails .25 by taking =y and =0. It also entails2.26

by taking = 3y and =1. Differentiating .26 gives €.28. This completes the proof of Corollary
2.2
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Chapter 3

Decomposition of Lévy trees along their
diameter

The results of this chapter are from the joint woBd] with Thomas Duquesne, submitted for publication.
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We study the diameter of Lévy trees that are random compact metric spaces obtained as the scaling
limits of Galton-Watson trees. Lévy trees have been introduced by Le Gall and Le Jan (1998) and they
generalise Aldous' Continuum Random Tree (1991) that corresponds to the Brownian case. We rst
characterize the law of the diameter of Lévy trees and we prove that it is realized by a unique pair of
points. We prove that the law of Lévy trees conditioned to have a xed diamed®; 1 ) is obtained
by glueing at their respective roots two independent size-biased Lévy trees conditioned to have height
r=2 and then by uniformly re-rooting the resulting tree; we also describe by a Poisson point measure the
law of the subtrees that are grafted on the diameter. As an application of this decomposition of Lévy trees
according to their diameter, we characterize the joint law of the height and the diameter of stable Lévy
trees conditioned by their total mass; we also provide asymptotic expansions of the law of the height and
of the diameter of such normalized stable trees, which generalizes the identity due to Szekeres (1983) in
the Brownian case.

3.1 Introduction and main results

Lévy tree are random compact metric spaces that are the scaling limits of Galton-Watson trees. The
Brownian tree, also called the continuum random tree, is a particular instance of Lévy trees; it is the limit
of the rescaled uniformly distributed rooted labelled tree withertices. The Brownian tree has been

49



introduced by Aldous ind] and further studied in Aldous9[ 10]. Lévy trees have been introduced by
Le Gall & Le Jan B3] via a coding function called the height process that is a local time functional of
a spectrally positive Lévy process. Lévy trees (and especially stable trees) have been studied in D. &
Le Gall [51, 52] (geometric and fractal properties, connection with superprocesses), see D. & Winkel
[55] and Marchal 87] for alternative constructions, see also Miermd##},[90], Haas & Miermont 5],
Goldschmidt & Haas 1] for applications to stable fragmentations, and Abraham & Delmag]|
Abraham, Delmas & Voising] for general fragmentations and pruning processes on Lévy trees.

In this article, we study the diameter of Lévy trees. As observed by Aldous ¢eBdction 3.4),
in the Browian case the law of the diameter has been found by Szeké&ldsy[taking the limit of the
generating function of the diameter of uniformly distributed rooted labelled treenwitirtices. Then,
the question was raised by Aldous that whether we can derive the law of the diameter directly from the
normalised Brownian excursion that codes the Brownian tree (see also Piibjagqercise 9.4.1). This
question is now answered in WL{(.

In this article we compute the law of the diameter for general Lévy trees (see Th8atenVe
also prove that the diameter of Lévy trees is realized by a unique pair of points. The geodesic path
joining these two extremal points is therefore unique. In Thed@etrwe describe the coding function
(the height process) of the Lévy trees rerooted at the midpoint of their diameter, which plays the role
of an intrinsic root. The proof of Theoref2 that provides a decomposition of Lévy trees according
to their diameter speci cally relies on the invariance of Lévy trees by uniform rerooting, as proved by
D. & Le Gall in [53], and on the decomposition of Lévy trees according to their height, as proved
by Abraham & DelmasJ] (this decomposition generalizes Williams' decomposition of the Brownian
excursion). Roughly speaking, Theor@& asserts that a Lévy tree that is conditioned to have diameter
r and that is rooted at its midpoint is obtained by glueing at their root two size-biased independent Lévy
trees conditioned to have height2 and then by rerooting uniformly the resulting tree; Theor&
also explains the distribution of the trees grafted on the diameter. As an application of this theorem, we
characterize the joint law of the height and the diameter of stable trees conditioned by their total mass
(see PropositioB.3) and by providing an asymptotic expansion of the law of the height (The8tBm
and of the law of the diameter (Theoréy). These two asymptotic expansions generalize the identities
of Szekeres in the Brownian case which involves theta functions (these identities are recaléd)in (
and 3.51)). Before stating precisely our main results we need to recall de nitions and to set notations.

Real trees. We rst de ne real-trees that are metric spaces generalizing graph-treeéT jldj be a
metric space; it is aeal treeiff the following holds true.

(@) Forany 1; 12T, there is a unique isometfy : [0;d( 1; 2)]! T such thatf (0)= ; and
f(d( 1; 2))= 2. Then, we shall use the following notatioh:1; -K=f ([0;d( 1; 2)]).

(b) For any continuous injective functian: [0; 1]! T, q([0; 1])= Jq(0); q(1)K

When a point 2 T is distinguished(T;d; ) is said to be aootedreal tree, being theroot of T.

Among connected metric spaces, real trees are characterized by the sdezallgoints inequalitythat

is expressed as follows: I€T;d) be a connected metric space; th@n d) is a real tree iff for any
1, 2, 3, 42 T,we have

d( 15 2)+d( 3 4) d( 1; 3)+d( 2; 4) _ d( 1; 4)+ d( 2; 3): (3.1)

We refer to Evansg7] or to Dress, Moulton and Terhallé ] for a detailed account on this property. Let

us brie y mention that the set of (pointed) isometry classes of compact rooted real trees can be equipped
with the (pointed) Gromov-Hausdorff distance that makes it a Polish space: see Evans, Pitman & Winter
[59], Theorem 2, for more details on this intrinsic point of view on trees that we shall not use here.
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The coding of real tree. Let us briey recall how real trees can be obtained thanks to continuous

functions. To that end we denote BfR: ; R+ ) the space oR. -valued continuous function equipped

with the topology of the uniform convergence on every compact subsd®s ofWe shall denote by

H = (H¢): o the canonical process &R+ ;R.). First assume thdl has a compact support, that
Ho = 0 and thatH is distinct from the null function: we call such a functiorcading functionand

we then sety =supft> 0 : H; > Og that is called thdifetime of the coding functiorH . Note that
H2(0;1 ). Then, for evens;t2 [0; 4], we set

by(s;t)= inf H, and dy(s;t)= Hs+ Hy 2by(s;t): (3.2)
r2[s"t;s_t]

It is easy to check thady satis es the four points inequality: namely, for &l|; sp;S3;S4 2 [0; 1],
dn(s1;82) + dy(s3;S4) du(s1;s3) + dy(S2;S4) _ dy(S1;Sa) + dy(S2;s3) . By takingsz = sy,
we see thatly is a pseudometric ofD; y]. We then introduce the equivalence relaton y t iff
dy (s;1)=0 and we set

Th =[0; HI= w : (3.3)

Standard arguments show tldy induces a true metric on the quotient 3gt that we keep denoting
dy. We denote by : [0; 5] ! T 4 thecanonical projection SinceH is continuous, so iy and
(Th;dn) is therefore a compact connected metric space that satis es the four points inequality: it is a
compact real tree. We next sef = py (0) = pu ( 1) that is chosen as threot of Ty .

We next de ne theotal heightand thediameterof Ty that are expressed in termsdyf as follows:

Ho=supdu( w; )=sup Hy and Dy:=sup dy(; 9=sup Hs+H¢ 2inf H, : (3.4)
2TH t2[0; 1] ;o 2Ty 0 s<t y r2[s;t]

Forany 2Ty, we denote byi( ) the number of connected components of the opeflisaf g. Note
thatn( ) is possibly in nite. We call this number theéegreeof . We say that is abranching pointf

n( ) 3;wesaythat isaleafif n( )=1 and we say that is simpleif n( )=2. We shall use the
following notation for the set of branching points and the set of leavds of

Br(Ty) := 2Ty :n( ) 3 and Lf(Ty):= 2Ty :n( )=1 : (3.5)

In addition to the metricly and to the root y , the coding function yields two additional useful features:
rst, the mass measumm y that is the pushforward measure of the Lebesgue meas\i@e ¢ induced
by py onTy; namely, for any Borel measurable functibn Ty ! R,
z zZ
fFCYmu(d )= f(pu(t)dt: (3.6)
Th 0

This measure plays an important role in the study of Lévy trees (that are de ned below): in a certain
sense, the mass measure is the most spread out measitife drhe codingH also induced dinear
order y onTy thatis inherited from that dD; ]: namely forany 1; 22Th,

1 H 2 0 infft2[0; wl:pu(t)= 19 Infft2]0; w]:pu(t)= 20: (3.7)

Roughly speaking, the coding functidh is completely characterized iy ;dy; n;my; H): see
D. [50] for more detail about the coding of real trees by functions.

Re-rooting trees. Several statements of our article involve a re-rooting procedure at the level of the
coding functions that is recalled here from D. & Le G&lP], Lemma 2.2 (see als®f]). LetH be a
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coding function as de ned above and recall that2 (0;1 ). For anyt 2 R, denote byt the unique
element of0; y) such that tis an integer multiple ofy . Then for alltg 2 R+, we set

8t2[0; w]; HI=dy T+t and 8t 4; HM=o0: (3.8)
Then observe thaly = o and that
8;t°2 [0; u]; dyua(ttY=dy T+ 1010+ to : (3.9)

Lemma 2.2 $2] asserts that there exists a unique isometry T, o) ! T w such that (pywe(t)) =
pn t+1to forallt2[0; y]. This allows toidentify canonicallyT,, with the treeTy re-rooted at
PH (to):

Thtos dyrols Hitol Th;dH s PH (to) - (3.10)
Note that up to this identi cationm ) iS the same as1y . Roughly speaking, the linear orde, i,
is obtained from y by a cyclic shift afteipy (to).

Spinal decomposition. The law of the Lévy tree conditioned by its diameter that is discussed below
is described as a Poisson decomposition of the trees grafted along the diameter. To explain that kind of
decomposition in terms of the coding function of the tree, we introduce the following de nitions and
notations.

Leth2 C(R+; R+) have compact support. Note thgD) > 0 possibly. We rst de ne the excursions
of h above its in mum as follows. For ang2 [0; h(0)], we rst set

“a(h):=inf t2Rs :h(t)=h(0) a and rah):= L~inf t2(0;1):h(0) a>h(t) ;
with the convention thanf ; = 1 , so thatrpgy(h)= n. We then set
8s2R.; E(h;a):= h (Ca(h)+ s)*ra(h) h(0)+ a:

See Figure8.1 Note thatE(h; a) is a nonnegative continuous function with compact support such that
Eo(h;a)=0. Moreover, if 3(h)= ra(h), thenE(h; a)= 0, thenull function
LetH be a coding function as de ned above. t&R. . We next set

8s2R+; Hg = Hi g, and HJ = Hps:
Note thatH, = Hg = H;. To simplify notation we also set
|
8a2 [O;H; H®:=FEH ;a and H®:=EH";a)

and
Jot = a2[0;H¢]:either'a(H )<ra(H )or a(H")<ra(H")

that is countable. We then de ne the following point measur¢dhl;] C(R+; R+ )?:
X
M oi(H) =

a2J ot

@HAHa) | (3.11)

with the convention thaM o+(H) =0 if Jot = ;. In Lemma3.9, we see that iimy is diffuse and
supported by the set of leavesTf, then there is a measurable way to reca¥gd ) fromM o(H).
Forallt; tg O, we also set

X

M to;tl(H) =M Oit1 to H [to] = (a;Ha!;Ha) . (312)

a2l toity
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0 ‘akh) r;(h) ! )

Figure 3.1 — The gure on the left hand side illustrates the de nitionih; a). The gure on the right hand side
represents the spinal decompositiortbfat timesty andt; in terms of the tre@ coded byH .

This point measure of; dy (to;t1)] C(R+; R+ )? is thespinal decomposition df betweerty andt;.

Let us interpret this decomposition in terms of the tfge (see Figure3.1). Set o= py (tp) and
1= py (t1); to simplify, we assume thafy and 1 are leaves. Recall thdty; 1Kis the geodesic path
joining o and 1; thenJd,, = fd(; 1); 2Br(Tw)\ Jo; 1K. For any positivea2 J 1,¢,, there
ei\xists 2Br(Ty)\ J o; 1Ksuch that the following holds true.

"Ta=f g 92Th: o<y %<y ]IandJ 0. K=Jo; ﬂ(\ J o; 1K is the tree grafted at on
the right hand side af o; ;Kand the tre€ T,;d; ) is coded byH @.

Ta=f g[ 92Ty :either %<y gor 1<y %andd o; K=Jo; K Jo; 1K isthe tree grafted
at onthe left hand side of o; 1Kand the treé T,;d; ) is coded byH 2.

Height process and Lévy trees. The Brownian tree (also called Continuum Random Tree) has been
introduced by Aldousg-10]; this model has been extended by Le Gall & Le Jan38ig],[they de ne the
height procesgfurther studied by D. & Le Gall1]) that is the coding function of Lévy trees. Lévy trees
appear as scaling limits of Galton-Watson trees and they are the genealogical structure of continuous state
branching processes. Let us brie y recall here the de nition of the height process and that of Lévy trees.

The law of the height process is characterized by a functioiR, ! R. calledbranching mech-
anism we shall restrict our attention to the critical and subcritical cases, namely when the branching
mechanism is of the following Lévy-Khintchine form:

Z

8 2R:; ()= + 2%+ e’ 1+r (dr); (3.13)
(0;1)

where ; 2 Ry and where is the Lévy measure ofD; 1 ) that satis esR(o;1 )(r’\ r?) (dr)<1.
The height process is derived from a spectrally positive Lévy process whose Laplace exponelit is
shall be convenient to work with the canonical prockss ( Xt); o on the space of cadlag functions
D (R+ ; R) equipped with the Skorohod topology. Let us denot®tihe law of a spectrally Lévy process
starting from0 and whose Laplace exponent is Namely,

8, 2R.; El[exp( X )]=exp t( )

Note that the form .13 ensures thaK underP does not drift tol : see for instance Bertoir2p],
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Chapter VII for more details. Under the following assumption:
Z
Fd . (3.14)
1 () ’ '
Le Gall & Le Jan B3] (see also D. & Le Gall$1]) have proved that there exists a continuous process
H =(Ht): o such that for alt 2 R, , the following limit holds inP -probability:
1 Z
Hi = Ii!mO* o ds:I-flts<x s<I 5+ g (3.15)

wherel § := inf s«;«t X;. The processi is called the -height processin the Brownian case, namely

when ()= 2, easy arguments show thit is distributed as a re ected Brownian motion. Le Gall

& Le Jan B3] have proved a Ray-Knight theorem fHIr, which shows that the height procedscodes

the genealogy of continuous state branching processes (see also D. & LeGalljeorem 1.4.1).

Moreover, the -height proces$l appears as the scaling limit of the discrete height process and the

contour function of Galton-Watson discrete trees: see D. & Le Gd]| Chaper 2, for more details.
Forallx2 (0;1 ), we sefTx =inf ft2R; : X; = xgthatisP-a.s. nite sinceX underP does not

driftto 1 . We next introduce the following la®* onC(R+ ; R+ ):

P*isthe law of(H~T, )t o underP, (3.16)

The treeTy underP*(dH) is called the -Lévy forest starting from a population of sixe Then, the
mass measure di; underP*(dH) satis es the following important properties:

P*(dH)-a.s.my is diffuse andny (T nLf (Ty)) =0, (3.17)

where we recall from3.5) thatLf (Ty) stands for the set of leaves of the tfB¢. The -Lévy forest
(Th;du ; % ; my) is therefore aontinuum treeccording to the de nition of AldousI[Q].

Each excursion abov@ of H underP* corresponds to a tree of the Lévy forest. Let us make this
point precise by introducing a Poisson decompositioH dhto excursions abov@. To that end, denote
by | the in mum process oKX :

8t2R:; Ily= inf X;:
0r t

Observe that3.14) entails that either
Z
>0 or ro(dr)=1 ; (3.18)
(0;1)

which is equivalent for the Lévy proce¥s to have unbounded variation sample paths; basic results of
uctuation theory (see Bertoir??], Sections VI.1) entail thaX | is a strong Markov process ;1 )
and thatO is regular for(0; 1 ) and recurrent with respect to this Markov process. Moreovkris a
local time atOfor X | (see Bertoin22], Theorem VII.1). We denote byl the corresponding excursion
measure oK | above0.

It is not dif cult to derive from 3.15 thatH; only depends on the excursionXf | above0 which
straddled. Moreover, we gett2 R, : H;>0g= ft2 R, : X(>I (g and if we denote bya;;b),i21 ,
the connected components of this set and if we-Het H (a+s)~b » S2 R+, then the point measure

X
( |ai§Hi) (319)
i2l

is a Poisson point measure & C(R.+ ; R:) with intensitydx N (dH), where, with a slight abuse
of notation,N (dH) stands for the "distribution” dfl (X ) underN (dX). In the Brownian case, up to
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scaling,N is It6 positive excursion of Brownian motion and the decompositiohd) corresponds to the
Poisson decomposition of a re ected Brownian motion ab@ve
In what follows, we shall mostly work with the -height proces$l under its excursioN thatis a
sigma- nite measure o€(R+ ; R+ ). We simply denote by the lifetime of H underN and we easily
check that
N-a.e. <1 ; Hpe=H =0 and H{>0 t2(0; ): (3.20)

Also note thatX andH underN have the same lifetime and basic results of uctuation theory (see
Bertoin [22], Chapter VII) also entail the following:

8 2(0;1) N1 e = 1) (3.21)

where ! stands for the inverse function of.
Note that 8.20 shows thatH underN is a coding function as de ned above. D. & Le Gdll] then
de ne the -Lévy treeas the real tree coded Iby underN .

ConventionWhen there there is no risk of confusion, we simply write
(T;d; s m; 5p; ;D) :=(Tusdus wimMus HiPH; HiDw)
whenH is considered undéd , P* or under other measures @fR+ ; R+ ).

Recall from 8.5 thatLf (T ) stands for the set of leaves Bf Then the mass measure has the following
properties:
N -a.e.m is diffuse andn (T nLf(T))=0. (3.22)

Then the -Lévy tree(T ;d; ; m) is therefore a continuum tree according to the de nition of Aldous

9.

Diameter decomposition. Recall from @.4) the de nition of the total height and that of the diameter
D. Let rst brie y recall results on the total height. One checks that the total height-&.s. realized at
a unigue time (see D. & Le Galbp] and also Abraham & Delmasl]). Namely,

N -a.e. there exists a unique [0; ]JsuchthaH = (3.23)
Moreover, the distribution of the total heightunderN is characterized as follows:
Z,
8t2(0;1); wv(t):=N( >t) satises — =t (3.24)

viy ()

Note thatv:(0;1 )! (0;1 ) is a bijective decreasinG® function and 8.24) implies that on(0;1 ),
N( 2dt)=( v(t)) dt.
Recall from 8.16) thatP* is the law of(H~T, )t o underP, whereTy =inf ft2 Ry : X{= Xg.
The Poisson decompositio.(9 implies thatsup,o.1,; Hi =maxf ( H DRV la, Xgand since
underN has a density, ther8(23 and @.24) entail that

PX-a.s. thereisaunique2 [0; JsuchthaH = and PX( t)=e *® t2R,. (3.25)

In [3], Abraham & Delmas generalize Williams' decomposition of the Brownian excursion to the
excursion of the -height process: they rst make sense of the conditionedNefvj = r). Namely
they prove thaN( j = r)-a.s. = r,thatr 7! N( j = r) is weakly continuous o€(R+;R+) and
that Z,

N = N( 2dr)N( j =r): (3.26)
0
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Moreover they provide a Poisson decomposition along the total height of the process: see&2@&ion
where a more precise statement is recalled. The rst two results of our article provide a similar result for
the diameteb ofthe -Lévytree undeN. Recallthap:[0; ]!T stands for the canonical projection.

Theorem 3.1. Let be a branching mechanism of the foré13 that satis es 8.14). LetT be the
-Lévy tree that is coded by the-height proces$l under the excursion measuke as de ned above.
Then, the following holds trud -a.e.

(i) There exists a unique pairp; 12 [0; Jsuchthatg< 1 andD = d( o; 1). Moreover, either
H,= orH = .Namely, eithero= or 1= ,where isthe unique time realizing the total
height as de ned by3.23.

(i) Set o=p( o) and 1=p( 1). Then g and 1 are leaves off . Let njg be the mid-point of
J o0; 1K namely, mig is the unique point of ¢; ;Ksuch thatd( ¢; mig) = D=2. Then, there
are exactly twotime® ;< +.  suchthap( .,4)=P( rig)= mid, and mig is a simple

point of T : namely, it is neither a branching point nor a leaf bt

(iif) Forall r2(0;1 ), we get
Z,

N D>2r =v(r)  v(r) 2 v(r)d)z: (3.27)
This implies thalN (D 2dr)=" (r)dr on(0; 1 ) where the density :(0;1 )! (0;1 ) is given by
z 1
d
8r2(0;1); " (2)=( v(r)) (v(r)? qv(r) o ()2 : (3.28)

The second main result of our paper is a Poisson decomposition of the subtiieggaited on the
diameterd o; 1K This result is stated in terms of coding functions and we rst need to introduce the
following notation: letH; H °2 C(R+ ; R+ ) be two coding functions as de ned above; thencatenation
of H andH %is the coding function denoted by  H %and given by

8t2 Ry ; (H HY%=H; ift2[0; 4] and (H HY%=H? ift 4. (3.29)
Moreover, to simplify notation we write the following:
8r2(0;1); N, =N(j=r): (3.30)

Theorem 3.2.Let be a branching mechanism of the forgn1(3 that satis es 8.14). Forallr2 (0;1 ),
we denote b®, the law onC(R+;R+) of H H%underN _,(dH)N _,(dH9, whereN _, is de ned
by (3.30. Namely, for all measurable functiofs:C(R+;R+)! R:,

zz

Qr F(H) = N,_,(dH)N _,(dHYF H H° : (3.31)
R+ R+ )2
ThenQ, satis es the following properties.
() Qr-a.s.D = r and there exists a unique pair of pointg 12[0; ]suchthatD = d( o; 1).

(i) Forall r 2 (0;1), Q/[ ]1=2N,_,[ 12 (0;1). Moreover, the applicatiom 7! Q, is weakly
continuous and for all measurable functioRsC(R+ ;R+)! R: andf :R:! R;,

21 N(2dr) o hz

|
N\ 4 [t] )
ol OF HY dt ; (3.32)

N f(D)F(H) =

whereH [l is de ned by 8.9).
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(iii) Recall the notation ., and ., from TheorenB.1(ii). Then, for allr 2 (0;1 ),
2z
[mel D=r = _ + 0.
N F Hlmel D=r = —— - N __,(dH)N _,(dH9 LoF H H?; (3.33)
Nr:2[ ] C(R+;R+)2

whereN( D = r) makes sense for all2 (0; 1 ) thanks to 8.32.
(iv) Recall from 8.16) the notationPY. To simplify notation, we write for ail; b2 (0; 1 )
Np= N \f bg and P}; =PY \f by ; (3.34)

I
Then, undeQ,, M . ,(dadH dH ), de ned by B.12), is a Poisson point measure ¢@;r]
C(R+ ;R+)? whose intensity is

! !
1[0;r](a)da O(dH)Naé(r a)(d|z_|)+ Na"(r a)(dH) O(dH)
z

|
+ lpg(@)da  (dz) dxPh., 5 dH)PZ.S , dH); (3.35)
01) o0

ar(r a)

where and are de nedin @.13.

Comment 1. As already mentioned, the previous theorem makes sende of D = r and for all
measurable functions :C(R+;R+)! R4, we have

hZ .
8r2(0;1); N F(H) D=r :=Q, F HlU dt Q, 1; (3.36)
0
Namely, Theorer3.2 (i) entails thatN( D = r)-a.s.D = r. Then 8.31) combined with the already
mentioned continuity af 7! N( j = r=2) easily impliesthat 7! N( D = r) is weakly continuous
onC(R+; R+). Moreover, 8.32 can be rewritten:
Z,
N = N(D2dr)N( jD=r) (3.37)
0

that is the exact analogous &.26. We mention that the proof of Theor@&x relies on the decomposi-
tion (3.26 due to Abraham & Delmas3].

Comment 2. Itis easy to check fron8(8) that for allto; t, (H [t)[tol = H [t+to]l Therefore, 8.32) implies

thatH underN is invariant under rerooting. Namely, for all measurable functien<(R: ;R+)! R.,
8to2 Re; N 1 gF HIM =N 1 (FH ; (3.38)

which is quite close to Proposition 2.1 in D. & Le Gaij], that is used in the proof of TheoreBa2

Comment 3. As shown by3.36,N D= r isderived fromQ, by a uniform rerooting. This property
suggests that the law of the compact real {f€ed) coded byH underQ,, without its root, is the scaling
limit of natural models of labeled unrooted trees conditioned by their diameter.

Comment 4. Another reason for introducing the la@, is the following: we deduce fron3.36 that
for all measurable functions :C(R+;R+)! R4,

N F(HI) D=r =Q F(HI) Qi I; (3-39)
where g is as in Theoren3.1 As shown by Theore®2 (iv), H underQ; enjoys a Poisson decompo-

sition along its diameter. Howeve8.39 also implies that this not the case ldf underN( jD =r).
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The law of and of D of stable Lévy trees conditioned by their total mass. In application of
Theorem3.2, we compute the law of andD underN( j = 1) in the cases where is a stable
branching mechanism. Namely, we x2 (1;2]and

()= ; 2Ry ;

that is called the -stable branching mechanisriVe rst recall the de nition of the lawN ( j =1) for
such a branching mechanism.

When is -stable, the Lévy procesé underP satis es the following scaling property: for all2
0;1),(r lX )t o has the same law a§, which easily entails by3.15 that undeiP, (r 71H i)t 0
has the same law &$ and the Poisson decompositidh19 implies the following:

r 71Hrt o under N @y under N : (3.40)
We then easily derive fronB(21) that
N( 2dr)=p (r)dr; where p(r)=cr 1 with 1=c = ¢ 1 (3.41)

Here . stands for Euler's Gamma function. B$.40), there exists a family of laws 0€(R+;R+)
denotedbyN( j =r),r2(0;1 ),suchthat 7! N( j =r) is weakly continous o€(R+ ; R+ ), such
thatN( j =r)-a.s. =r and such that

Z,

N= N(j =r)N( 2dr): (3.42)
0

Moreover, by 8.40), r 71H it ounderN( j =r) hasthe same law &$ underN( j =1). We
callN( j =1) thenormalized law of the -stable height procesand to simplify notation we set

N = N( | =1) (3.43)

Thus, for all measurable functiofs: C(R+;R+)! R4,

Z, ) h . [
NFH) =c drr ' "Np F or He o o (3.44)
0

When =2, Ny, is, up to scaling, the normalized Brownian excursion that is, as shown by Ald6s [
the scaling limit of the contour process of the uniform (ordered rooted) treenwwrtices a1 ! 1
Aldous [10] also extends this limit theorem to Galton-Watson trees conditioned torn&eetices and
whose offspring distribution has a second moment. This result has been extended4s} 10.Jalton-
Watson trees conditioned to haverertices and whose offspring distribution is in the domain of attraction
of a -stable law, the limiting process being in this case the normalized excursion ofdtadble height
process. See also Kortchemské] for scaling limits of Galton-Watson tree conditioned to haveaves.

We next introducav: (0;1 )! (1;1 ) that is the uniqu€C! decreasing bijection that satis es the
following integral equation:

Z,

8y 2 (0;1); 1 =y (3.45)

w(y) Y

We refer to Sectior8.3.1for a probabilistic interpretation ok and further properties. The following
proposition characterizes the joint law ofandD underNy, by the mean of Laplace transforms.
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Proposition 3.3. Fix 2 (1;2]and ( )= , 2R.:. Recall from 8.43 the de nition of the lawNp,
of the normalized excursion of thestable height process. We then set
Z,
8;v;2 2(0;1); L (y;2):=¢c e "rt lNnr r71D> 2y;r71 >z dr; (3.46)
0

where we recall from3.4]) thatl=c = ¢ 1 e Standing for Euler's Gamma function. Note that

1 1

8iyiz2(0i1) Liyiz= L Ty, oz (3.47)
Recall from 8.45 the de nition ofw. Then,

> Wyr2y 2)
wyr2y z) 1

( Dy*@y 2
(3.48)

Li(y;2)= Ww(y_2) 1 Elcaq W(Y)

In particular, forally;z2 (0;1 ),

L1(0;2)= w(z) 1 and Li(y;0)=w(y) 1 1W(y) 1 wly) ( Lyw(ly 1 :(3.49)

The previous proposition is known in the Brownian case, wiagrg =coth( y): see W. L0(. In the
Brownian case, standard computations derived frdm9j imply the following power expansions that
hold true for ally2 (0; 1 ):

X 2y2
Ny >y =2 2n%y? 1e "V (3.50)
n 1
X 1 2y2—
Noe D>y = (n® 1) znfy* 2n%y?+2 e "V (3.51)
n 2

See W. L0( for more details.
We next provide similar asymptotic expansions in the non-Brownian stable cases. To that end, we
introduces :(0;1)! (0;1) as the continuous version of the density of the spectrally posifei\}e
stable distribution; more precisely, is characterized by the following:
Z, .
8 2Rs; e s (x)dx =exp( ) (3.52)
0

The following asymptotic expansion af at 0 is due to Zolotarev (see Theorem 2.51D§): for all
integerN 1,

1 a1 L X
21 YHeIxse™ s ( 1x =1+ Spx"C D+ oy xNC Dvoasx! 0. (3.53)
1 n<N

HereOyn: means that the expansion depend®oand . Next, note tha§,, depends om and but we
skip the dependence into simplify notation.

Remark 21. In the Brownian case where=2, it is well-known that

NN

s(x)=  2x se X, x2R,

Then,Sp=1 andS,=0, foralln 1.

For generic 2 (1;2), this asymptotic expansion does not yield a converging power expansion (al-
though it is the case if =2). See Sectio3.4.1for more details ors . To state our result we rst need
to introduce an auxiliary function derived frosn as follows.
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Proposition 3.4. Let 2 (1;2]. Recall from 8.52 the de nition ofs . We introduce the following

function: Z

8x2R.; (X)=( DxS(x) —ix1t* ):jyyl s (y): (3.54)
0

Then, the following holds true.

() is well-de ned, continuous,
Z 1 YA 1 1 1
dxj (x)j<1 and dxe * (x)= e . 2R:: (3.55)
0 0
(i) Recall from @.53 the de nition of the sequend&, ), o, withSp=1. Let(Vn)n o be a sequence
of real numbers recursively de ned b =1 and

8n2N; Vh#1 = Sp+1 + N % il Sh n % 1 Vh : (3.56)
Then, for all integeN 1,
1 . . X
2 (1 YHexzTe™ ' ( x =1+ Vex"C D 4oy xNC D (357)
1 n<N

asx! 0.

We use to get the asymptotic expansion of the law of the total height of the normalizgdble
tree as follows.
Theorem 3.5.Let 2 (1;2]. We introduce the following function:

+1

8r2Ry; (r)=r T r 1 (3.58)

where is de nedin @.54). Then, there exists a real valued sequefgdn 1 andxj 2 (0;1) such that
X X

j nix] <1 and 8r2(0;1); i nj sup j (ns)j <1 ; (3.59)
n 1 n 1 s2[rn1l)
and such that X
8r2(;1); ¢cNp >r = n (nr); (3.60)
n 1
where we recall from3.41) thatl=c = ¢ 1 e Standing for Euler's gamma function. Moreover,
forallintegersN 1,asr!1 ,
1, 1 X n N
C—r ze Npr >r( 1) =1+ Vnr +On: T ; (3.61)
1 1 n<N

1

whereCi:=(2 ) 3( 12" % o(—L1)exp(Co), where

Z1 du Zl@(u+1) 1 u

1 (u+1) 1 o U (u+1) 1

Co = (3.62)

and where the sequen¥,),, 1 is recursively de ned by3.56) in Proposition3.4.

Remark 22. The convergence ir8(60) is rapid. Indeed, by3.57), we see that(nr) is of order

1

(n)*zexp( n ( 1) Ir):
Then, the asymptotic expansidh@]) is that of the rst term of 8.60 thatisc * 1 (r).
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Remark 23. The de nition of the sequende n)n o is involved: see Lemma.24 and its proof for a
precise de nition. However, in the Brownian case, everything can be explicitly computed: for all

n=2, (r)=04) %(Zr2 le 2 =04 ) %, and we recover3.50 from (3.60; moreover,
Co=log2,C1=4,Vp=1,Vi= 1andV,=0,foralln 2

To state the result concerning the diameter, we need precise results on the derivative &t steble
density.

Proposition 3.6. Let 2 (1;2]. Recall from 8.52) the de nition of the densitg . Thens isC!onR.,

Z4 Z, a
dx js°(x)j < 1 and dxe *s%(x)= e . 2R:: (3.63)
0 0

Moreover,s® has the following asymptotic expansion: recall fro8i5Q the de nition of the sequence
(Sn)n 0, WithSg=1; let (Ty)n o be a sequence of real numbers recursively de neddgyl and

8N2N;  Thet = Sner+ N 2 1o Sy (3.64)
Then, for all positive integer , we have
1 + _ X
21 Yy eixTet™ ' ( x =1+  Tax™ D40y xNC D (3.65)

1 n<N
asx! 0.

The asymptotic expansion of the law of the diameter of the normalizetdble tree is then given in
the following theorem.

Theorem 3.7.Let 2 (1;2]. Recall from 8.58 the de nition of the function. We also introduce the
following function:
_ +1
8r2Ry; (r)y:=r 1% ~ 1T ; (3.66)
wheres? is the derivative of the density de ned in (3.52). Then there exist two real valued sequences
( n)n 2and( n)n 2andx»2(0;1) such that

X X
(ini*+in)x2<1 and 8r2(0;1); jnisupj (ns)j+jnjsupj(ns)j<1l ;
n 2 n 2 s2[r 1) s2[r;1)
(3.67)
and such that X
8r2(0;1); ¢cNp D>2r = n (nr)+  (nr); (3.68)
n 2
where we recall from3.41) thatl=c = ¢ 1 e Standing for Euler's gamma function. Moreover,
forallintegersN  1,asr!1
1 3 —1 X n N
C—Zr 2e Npr D>r (1) =1+ Unr +O0O.N T ; (3.69)
1 n<N

whereC, := (8 ) %( 1)%'l 3 o(—1) exp(2Co), whereCy is de ned by 8.62 and where the
sequencéU,), 1 is recursively de ned byy=1 and

8n 1; U,=T, %vn 1 (3.70)

Here(Tn)n ois de ned by 8.64) and(Vn)n o is de ned by 38.56).
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Remark 24. The convergence ir8(69 is rapid. Indeed, by3.65 and (3.57) we see that(nr=2) and
(nr=2) are of respective order

1

M) Zexp( n2 ( 1) ir) and (M) zexp( n2 ( 1) Ir):
Then the asymptotic expansidg9 is thatofc * , (r)+ ¢ 1 5 (r).

Remark 25. The de nitions of the sequencés,)n oand( n)n o are involved: see the proof of Lemma
3.25for a precise de nition. However, in the Brownian case, everything can be computed explicitly:

8n 2 n=35(n® 1); o= 2% 1) and ()= r2r2 3e';

which allows to recover3.51) from (3.68. Moreover,C,=8,Ug=1,U;= 3, U,= % andU, =0,
foralln 3.

The paper is organized as follows. Sectiiis devoted to the proof of TheoreBnl and of Theorem
3.2 in Section3.2.1, we discuss an important geometric property of the diameter of real trees (Lemma
3.8) and we explain the spinal decomposition according to the total height, the result of Abraham &
Delmas B] being recalled in SectioB.2.2where the proofs of Theorefhland Theoren3.2are actually
given. Propositior8.3, that characterizes the joint law of the total height and the diameter of normalized
stable trees, is proved in SectiBrB. Theorem3.5and Theoren3.7 are proved in Sectiof.4.

3.2 Proof of the diameter decomposition.

3.2.1 Geometric properties of the diameter of real trees; height decomposition.

In this section we gather deterministic results on real trees and their coding functions: we rst prove a
key lemma on the diameter of real trees; we next discuss how to reconstruct the coding finfrioom

a spinal decompositioM .+(H ), under a speci c assumption on the mass measugeon Ty ; then we
discuss a decomposition related to the total height.

Total height and diameter of compact rooted real trees. The following result connects the total
height and the diameter of a compact rooted real tree.

Lemma 3.8. Let(T;d; ) be a compact rooted real tree. We denote gndD resp. its total height and
its diameter: :=sup ,1d(; )andD=sup. o7 d(; 9. Then, the following holds true.

(i) There exist; o; 12T, suchthat= d(; )andD=d( o; 1). This entails

D 2 : (3.71)
(i) Let o; 12 T be suchthaD = d( ¢; 1). Then eithed(; )= ord(; 1)= . More
precisely,
di; o) d(; 1) =) d(; o)= and d(; 1) d(; o) =) d(; 1=
(3.72)

Proof. Firstnotethat 2T 7! d(; )and(; 92T27!d(; 9 arerealvalued continuous functions
de ned on compact spaces; basic topological arguments entail the existenceppf12 T as in(i).
Theinequality D is an immediate consequence of the de nitions aindD . The triangle inequality
nextentailsthaD d( o; )+ d(; 1) 2 ,which completes the proof 08(71) and of ().
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Let ; o; 12T beasin(i). By the four points inequality3;1) and basic inequalities, we get
+ D=d(; )+ d( o 1) max d(; o)+ d(; 1);d(; 1)+ d(; o)
max d(; o);d(; 1) +max d(; 1);d(; o)

If max d(; o);d(; 1) < ,then the previous inequality implies tHat< max d(; 1);d(; o) ,
which is absurd. Thusnax d(; o);d(; 1) = ,which easily entails the desired result.

Coding functions and their spinal decompositions. Recall thatO stands for the null function of
C(R+;R+). We denote bC.(R-+ ; R+) the functions ofC(R. ; R+ ) with compact support.

De nition. We introduce the set of coding functions:
Exc= H2C.(R+;R+): Hp=0, H6 0, my isdiffuse andmy (TynLf(Ty))=0 ; (3.73)

where we recall from3.5) thatLf (Ty ) stands for the set of leaves Bf, and where we recall fronB(6)
thatmy stands for the mass measurelgf. Then, we set

H = B\ Exc; B Borel subset o€(R:;R+) : (3.74)

that is the trace sigma eld oBxc of the Borel sigma eld ofC(R+ ; R+).
Remark 26. LetH 2 Excand letsg; s;2 (0; H) be such thasg<si anddy (Sg; s1)=0. then, we easily
check thaH [i°(]sl o2 Exc
Remark 27. Recall from 8.17) and from @3.22 thatP* andN are supported b¥xc.
De nition. We introduce the following subset 8 C(R+ ;R )%

E =Ry Exc (Exc[f 0g)[ (Exc[f 0g) Exc (3.75)
and we denote b  (E) the set of point measures

I X
M (dadH dH)=
a2l

(a;H a1 ay ON E

that satisfy the following conditions:

9r 2 R: such that the closure ¢f is[0;r] and 8"; 2(0;1);
I
# a2J : (HH_(H%H> o 1 ,.>" <1: (376)
We then equigM ¢ (E) with the sigma eldG generated by the applicatiods 2 M (E) 7! M (A),
whereA ranges among the Borel subsetsaf C(R4;R:+)2.

The following lemma, whose proof is postponed in Appendix, assertdthzdn be recovered in a
measurable way from the spinal decomposifibry:(H ), as de ned in 8.11).

Lemma 3.9. Recall from above the de nition of the measurable spdée, H) and(M p (E); G). The
the following holds true.

() Forallt2(0;1 ),wesef >t g.=fH2Exc: y>tg. Thenf >t g2H and
H2f >tg7!'M ot(H) 2 My (E) ismeasurable.

(i) There exists a measurable functianM ¢ (E)! R+ Excsuch that

8H 2 Exc 82 (0; v); (Moi(H)=(tH):

Proof. See Appendix.5.
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Decomposition according to the total height. Let us x H 2 Exc. We introduce the rst time that
realizes the total height:
H)=infft2Ry :H{= ( H)g: (3.77)

For allx2 (0; ( H)) we also introduce the following times:
«(H):=sup t< (H):H{< (H) x and J(H):=inf t> (H):H{< (H) x : (3.78)
Recall from B.8) the de nition of H []. We then set

8t2R,; H *=H*] and H, * = Ht[f(] (3.79)

th(x  x) (x x)

where we denote, := , (H), J:= S (H)and := p to simplify notation. See Figurg.2

Let us interpreH * andH * in terms of Ty . To that end, we recall thay : [0; ]! T 4 stands
for the canonical projection and we set= py ( (H)). We rst note thatdy ( , ; 5 )=0. Then we
set (X):= pu( x) = pu( x) that is the unique point a¥; Ksuch thatx = d(; (x)) and thus,
d(; (x))=( H) x.We denote by ° the connected component®f nf (x)gthat contains the root

and we set
T *=TynT® and T *=f (x)g[T °:

Thus(T % d; (x))iscoded byH * and(T**d; (x))iscodedbyH *. See Figures.2

Figure 3.2 — The left hand side gure illustrate the decompositiortbfntoH * andH *. The right hand side
gure represent this decomposition in terms of the tree codeHd by

Recall from @3.8) the spinal decomposition at timg¢H ). We shall use the following notation:
X
M 0; (H)(H): (a;Ha!;Ha)
a2J o; (H)
that is a measure d0; ( H)] Exc. Letus rst make the following remark.

Remark 28. Letx 2 (0; ( H)) and recall the notation (x)= py ( « (H))= pu( 5 (H)). Observe that
ifx2Jg (u),thenH> (H) x,forallt2(, (H); 5\ (H)) andthus,, (H), 5 (H) are the only
timet 2 [0; ] such thatpy (t)= (X), which implies that (x) is not a branching point of : since it
is not a leaf, it has to be a simple pointGf .
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For allx2 (0; ( H)), we next introduce the following restriction & o, (4)(H):
X

X
X — + X —_ .
M (H)(H) = (@H&H ) and M (H)(H) = (@H&Ha) (3.80)
a2Jd o. )\ [0:X] a2 o; 1)\ (x; (H)]
so thatM o, (4)(H)=M . (H)(H)+ M’ 0 (H)(H). Observe that
(H)= y(H)+ (HX) and Mg @ o(H *)=M O;X(H)(H): (3.81)

For allH %2 Exc, we denote by( H9:=( H(OH o 1. )t othe functionH Othat is reversed at its lifetime.
We easily check that Exc! Excis measurable and we also set:

((H) a; (Ha); (Ha) °
a2l o; (v)\ (6 (H)I

It is easy to check rstthat M 0: (H)(H) is a measurable function ™ (H) and next that

0; (H)
Mo, ranH )= Mg H) (3.82)
This combined with$.81) and Lemma3.9immediately implies the following lemma.

Lemma 3.10. There exists two measurable functions °: M pt(E)! R+ Excsuch that

8H2Exc; 8x2(0; (H)); M X4 (H) = (H) L (H);H *
and OMg"(H)(H) = 3 S(H);H*;

where (H)isde nedby .77, , (H)and [ (H)by@.78,H *andH * by 3.79 andM O;X(H)(H)

andM gX(H)(H) by (3.80.

3.2.2 Proofs of TheorenB3.1and of Theorem3.2

As already mentioned, Abraham & Delmas #)ijnake sense of the conditioned I8 j = r): namely
they prove thaN ( j = r)-a.s. = r,thatr 7! N( j = r) is weakly continuous o€(R+ ; R+ ) and
that 3.26) holds true. Recall from3;30 and @.34) the short-hand notations

8r,b;y2(0;1); N,=N(j=17r1); Np=N \f bg and PﬁzPy \f by ;

(3.83)
where we recall from3.16) the notationPY. Also recall from 8.23 thatN, -a.s. there exists a unique
2 [0; JsuchthatH = . Recall from 8.11) thatM o, (H) gives the excursions coding the trees

grafted onJ; p ( )Klisted according to their distance of their grafting point frptn) (herep:[0; ]!

T stands for the canonical projection). In the following lemma, we recall from Abraham & Delmas
[3] the following Poisson decomposition &f underN, at its maximum, which extends William's
decomposition that corresponds to the Brownian case.

Lemma 3.11(Abraham & Delmas3]). Let be a branching mechanism of the for&X3 that satis es
(3.14). We keep the previous notation. ket (0;1 ). T;en, undeN ,,

|
M o (dadH dH) =

(a;Ha!;Ha) (3.84)
1230,
is Poisson point process d6;r] C(R+ ; R+ )? whose intensity is
I
n (dadd dH) = 1j,(a)da o(dH)Na(dH)+ N a(dH) o(dH)
Z z
[o;r](a)da (dz) dx PX dH)PZ X dH) (3.85)

©0;1
where and are de nedin @3.13 and whered stands for the null function.
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We rst discuss several consequences of Leniiid. To that end, we set
Z Z

z |

| | |
ra(@HAH) = o(dH)Na(dH)+ Na(dH) o(dH)+  (dz) dx PX dH)PZ * dH);
0:1) 0

so thatn, (dadH élH) = lpy(@)da ra(dH élH ). Denote byh i the total mass of .. We claim
thath ai=1 .

Indeed rst recall that N is an in nite measure. Sincdl( >a) < 1 (by (3.29), N4 is also
an in nitﬁ measure. Thus, if> 0, h r;ﬁ' = 1 . Suppose now that = 0. Then by 8.25, we get
hrai= 4, (d2)ze 2v(@) = 1 | since ©1)Z (d2)=1,by(@3.18.

Therefore, standard results on Poisson point measures ental thais. the closure afo. is[0; r].
Recall from .73 the de nition of Exc and recall from 8.17) and from 8.22 thatP* andN are
supported byexc. Thus for alla2 (0;r), P} andN , are also supported Hyxc. This entails thalN , -
a.s. satis es§.76, namelyN , -a.s.M o. 2 M (E), where the set of point measumds,; (E) is de ned
in De nition 3.2.1 Then by Lemm&.9, N, -a.s. ( M o. )=( ;H ), where is a measurable function
fromM (E) toR+ Exc. Thus,N, -a.s.

N,-a.s. H 2 Exc: (3.86)

Recall that : Exc! Exc, its the functional that reverses excursions at their lifetime: namely for all
H 2 Exc, we denote by( H) = (H(,, 1), )t o. We recall from Corollary 3.1.651] thatH and ( H)
have the same distribution unddr. This also implies thad and ( H) have the same law undér*.

We next claim that for alf 2 (0;1 ),

H and ( H) have the same law undhl, . (3.87)
Indeed recall the notation3.84) for M o. and observe that
X
Mo, ((Hy(( H))= (@ (Hay ( Hay)'

a2l ;

SinceN andP* are -invariant, so areN ; andP} and we easily see from Lemn®al1l that under

Ny, Mo (ny(( H)) andM o, have the same law. This implies by Lemr&® that underN

(Mo (( 1y (CHD=( ; (H))and ( M . )=( ;H ) have the same law wich implie8.87).
Recall from 8.77) the de nition of (H), from (3.78 that of , (H) and ; (H), from (3.79 that of

H *andH *, and from 8.80 that ofM O;X(H)(H) andM S;X(H)(H ). To simplify notation we simply

write , ., 1, M O;X andM 5;". We then prove the following lemma.

Lemma 3.12. We keep the same assumptions as in Le@uhhand the notation therein. Lat2 (0;r).
Then, the following holds true.

(i) UnderN, , M O;X andM S;X are independent Poisson point measures.
(i) N,-asx2Jy; .
(i) M, underN, has the same law &g o, underN,. Thusthe law oH * underN, isN,.

Proof. Point(i) is a consequence of LemrBal1and of pasic results on Poisson point measures. More-
over, M O;X underN, has intensityljo.xj(@)da ra(dH dH) which is equal tany. This implies that
M o underN . has the same law &8 o, underN,. By Lemma3.9and LemmeB.1Q it implies that

law

( «H )= MO;X under N, = (;H)= M o under N, ;

!
which entails(iii ). Since the intensity measurg (dadH dH) is diffuse in the variable, standard
results on Poisson point measures erfig)l.
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Proof of Theorem 3.1(i). We keep the previous notation and we set
| |
8b2 (0;1); 8H; H 2 Exc; bty = P+ (CH)_(H): (3.88)

Recall from 8.24) and @.25 that the distributions of underN and undeP* are diffuse. Thus, for all
a2 (0;1 ), the distributions of underN ; and undeiP} are also diffuse. Recall the notatioB.84)
for M o. . Then, Lemma3.11 combined with Lemm&B.8 implies thatN , -a.s. there exists a unique
Y 2(0;r)\J o such that

D=Y+(HY)_(!HY)= > sup

a2Jo; nfYg

Y;H Y!;HY a;Ha!;Ha : (3.89)

| |
Then either( HIY)< (HY)or (HY)> (HY). Let us us consider these two cases. |
If (HY)< (HY) then by 8.23 and 3.25 there exists a unique poitt such thatd,"= (' HY).
This proves Theorer8.1 (i) in this case undeX , and we haveg= and
X

1= +1 + !Ha:
a2Jo: \ [0}Y)

|
If (HY)> (HY) then by 8.23 and 3.25 there exists a unique poitt such thatd,"= ( HY).
This proves Theorer8.1 (i) in this case undeX, and we have;= and
X

o=t + Ha:
a2J o. \ (Y;r]

Theorem3.1(i) is then proved undeX , , for allr 2 (0;1 ), which implies Theoren3.1 (i) (underN)
by (3.26).

Proof Theorem3.1(ii). Recall from 8.80 the notationM O;X andM g;X. We shall use the following
lemma.

Lemma 3.13. We keep the same assumptions as in Lei®rhaand the notation therein. Recall from
De nition 3.2.1the notationM ¢ (E). Then, for allr 2 (0; 1 ) and for all measurable functiorG,; Go:
Mpt(E)! R+,

h iD + 1D i h +1D i
N 1 = g8 Mg GaMg™ = N; It - (N [Gi(M g )]G Mg

with a similar statements wherg is replaced by 1. Moreover, by 8.26) a similar statement holds true
underN .

Before proving this lemma, we rst complete the proof of Theorgd Recall from the notation
(3.84 and from @.80 that

X 1p X

[— 2 f— .
Mo = (a;Ha!;H a) and M o - (a;Ha!;Ha) '

i2Jo; j230; \ [O%D]

By Lemma3.13 we then get
h i
1 _ 1 —
N ED 2J 0; —_— N N%D §D2J 0; —0

because for anp2 (0;1 ), Lemmag3.11asserts that undéd,, M o. is a Poisson point measure with

intensitynp, which implies thalN ,,-a.s.b2J o, . We next use Remark8 with x = 3D that asserts that
= and .= 7 (3.90)

mid D mid "~ %D

N

are the only times 2 [0; ], such thad(p( 1);p(t)) = $D, which completes the proof of Theoredrl
(ii).
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Proof Theorem 3.1 (iii ). Letr;y 2 (0;1 ) be such thaty <r<y . We rst work underN, . Recall
from (3.84) the notation fortM o. and recall notation3.88. Then @.89 combined with Lemm&.11
that asserts that undhir, , M o. is a Poisson point measure with intensity, we get

Z |
;a2do y =exp ny(dadH dH )1; |

wndpga>yg
(3.91)
wheren, is given by 8.85. Recall from 8.24) thatN( >t)= v(t) and from @3.25 thatP*(  t)=
e O Thus,
z | Z,
ny(dadH dH )1; a-Ha'-Ha>Y9:2 daN(y a< a)
z,z "“z,z ° z

|
X Z X . .
* o da (dg) d PRaH) PLUOH) L L)y aglituy y e

Nr D y =Nr SUp a;Ha!;Ha

Recall from B.24) thatN ( >t )= v(t). Thus, ifa< 3y, thenN(y a< a)=0 and ifa> 3}y, then
N(y ac< a)= v(y a) v(a). Nextrecall from 8.25 thatP*(  t)= e *®, which implies
that the total mass d?} is P*( a)=exp( xv(a)). Also observe thaP}( y a) = PX(
ar(y a)=exp( xv(a™(y a)).Thus

Z Z

|
PXdH) PZXdH) 1 1 1

— zv(a) zv(a™(y a)).
f(H) y agif(H) y ag ¢ € ’

which is null ifa< 3y. Note that this expression does not depena ofhus,

z ' Z, Z,.2
ny(dadH dH)1; . syg= da2 v(y a) v(@) + da (dz)ze 2@ e 2 3
e 3y 3y (1)
2 2
z r %y z r
= da q(y a) @) = dbo () db Yv(b):
3y y r 3y
R
by (3.13. Recall thatv satis es Vl(b) d= ( )= b By the change of variable= v(b), we then get
Z Z Z 1
I v(y ) ) v(3Y) Q)
ny(dadH dH)1 | = d —— d —=
ol . andnayo v(3y) () v(r) ()
(VY 1) g (VO

9 TGy) vy

By (3.9)), we get

( v(3y))?

8r2(0;1); 8y2(r;2r); N, D y = V) vy 1) : (3.92)
Now observethaN, D y =1,ify 2randthatN, D y =0,ify r. Thusby 8.26,
N (D )—ZlN( 2dr)N, (D y)= N( )+Z)(ljr(v(r)) 1 ( v(Ey)®
P S Ty VOV 1)
= (L 1n2 r - (i royz o4
v(zy)  (Vv(zy) W (W 1) v(zy)  (Vv(zy) win ()2

where we use the change of variable v(y r) in the last equality. This prove8.27) that easily entails
(3.28), which completes the proof of Theore3ri (iii ).
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Proof of Lemma 3.13 To completes the proof of TheoreBnl, it remains to prove Lemma.13that
is also the key argument to prove Theor8r We rst work underN , . Recall the notation3.84) for
M o. andJo. and recall from 8.80 the following de nitions (withx= $D),
X ip X +1p X
Mo, = (@HaHa) Mo = (@HHa) and Mg = (@HHa)"
i 23 o: j23 o; \ [0;3D] j2J o; \ (3Dir]

|
Recall from .89 the de nition of the random variabl¥: since ( HY) _(HY)<Y ,we getY > D

! 1
and(Y;HY;HY) is an atom oM S; 2® This argument, combined witlB 89 and the Palm formula for
Poisson point measures, implies

h | ip ip I
N, L = ooF Y;H G HY G Moo Go Mo =
Z 1 )

ne (dy dH°dH %J1¢ ( pogs (HogF (y;HOHS (3.93)

|
1 1

T yH %00 +2 yH H 00

N, Gt My~ 77 G, M2 ™™+ Loy 1 :
r L1 Mg 2 0; (y;HOH 9 g Q100> supf 4 aia2d0; g

|
where we recall thatg = iff (HY)> ( HY). Then observe that, N,-a.e.foralla2Jo \
0% yHyol, wehave 1, .<2a yH#Hoo Thus,n, N, -a.e.
1 =1
yiH H 00> supf a;H al;H a:82)o; 9 yiH H 00> supf a;H a‘;H aia2lo; \ (% y:H OH oarlg
1
that only depends og; H°H °%4nd ofM 3;7 v ¥ By (3.939 with F 1 and by Lemma3.12(i) and
(iii ) with x= % y.j o409 We get

h 1D +%Di

ny (dy dHO%dH Y1 ( ogs HogNy g 00 C1(Mo; )
N h o |
N, G2 My, * oHonoy 1 yH Qoo supf L d a2l o g
h i o

+4D
= Nr 1f - ogN%D[Gl(M 0: )]Gz M 0 ;

which completes the proof of Lemn®&al3when = o underN,. When = 1, the proof is quite
similar. Then, 8.26) immediately entails the same result untier

Proof of Theorem 3.2 (iii ). Lemma3.13underN and Lemma3.10imply that for all measurable
functionsF1; F2:C(R+;R+)! Rs+,f iRy ! Ry,
h i h [

N L = of DFLH 2 Fo H 2 =N 1 = (f (DN [Fi(H)IF2 H 2 ;  (3.94)
2

-0
with a similar statement with= 1. To simplify notation, we next set
H =H ® and H =H 2

By adding 8.94) with the analogous equality with=1, we get
h i h i
Nf(D)FtH FaH =N f(D)Ny[Fi(H)]F2 H (3.95)
2
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Recall from @.90 that ;= ,, and [y = 1_;rewriting 3.79 with x = 3D yields
2 2
H = Hlmal . H o= Himd andthus Hlmel=H H ;  (3.96)
" ( mid mid) " ( ( mid mid ))

where we recall from3.29 thatH? H %stands for the concatenation of the functieéh®andH %°
Let us briey interpretH andH in terms of the tred . To that end, rst recall that = p( ),

o=p(o)and 1=p( 1), wherep:[0; ]! T stands for the canonical projection. Recall thgly is
the mid point of the diametel ¢; 1K namelyd( o; mid)= d( 1; mid) = $D. Recall from Theorem
3.1(ii) that 4 and ., are the only time$2 [0; ]suchthap(t)= mid; thus, mig is a simple point
of T; namely, T nf 5,49 has only two connected components. Denotd Bythe connected component
containing : it does not contain the root; if we s&t =f nigg[T °andT* =TnT° thenH codes
(T ;d; mig) andH codey(T™;d; mid)-

We next use Proposition 2.1 from D. & Le Gallj] that is recalled as follows.

Lemma 3.14( D. & Le Gall [53]). For all measurable function§ : Ry C(R:+;R:)! Ry and
g: R: ! R: y h 7 i h Z i
N g() dtF tHI =N g() dtF(tH)
0 0

This result asserts that is invariant under uniform re-rooting. By applying this property we rst
get
hZ i hZ i
N Fi(H )Fo(H ) =N  dtFy(H )Fo(H ) =N  dtF; (HU) )F((HY) ) : (3.97)
0 0

Next observe the following: it 2 ( 4 mig), then(HH) =H and(HM) =H , andift 2
©; i) (rigs ) then(HU) =H and(HM) =H . Thus,
Z
deFy (H') )Fa((H™) )
0

mid  mig F1(H JF2(H )+ mid T mig Fi(H )F2(H )

no Fi(H )F2(H )+ Fa(H )F2(H ):

This equality, 8.97) and @.95 withf 1 imply the following:

N Fi(H )F2(H )

NhH Fi(H )Fa(H ) +iN HhFl(H JF2(H )

N N%D Fo(H) Fi(H ) +N N%D[Fl(H)] H F2 H (3.98)

Next observe thaty + p = . Thus, by 8.95 we also get

N Fi(H )Fa(H )

NhH Fi(H )F2(H ) +iN HhFl(H )F2(H ) i
N N%D Fl(H) Fz(H ) + N N%D[Fl(H)] H F2 H (399)

Then by 8.98 and @.99, we getN N, Fi(H) F2(H ) =N Ny, F2(H) Fi(H ) . Since
2 2

the total height oH andH is $D, for all measurable functiors;; F2:C(R+;R+)! R+, f iRy !
R, , we get
h i h i
N f(D)N%D Fi(H) Fo(H ) =N f(D)N%D Fo(H) Fi(H ) : (3.100)
By taking in 3.100 F1 1 and by substituting (D) with f (D)=N lD[ ], we get
2
h i
N f(D)Fo(H ) =N f(D)Nyy Fa(H) Nyl 1:
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and by @.99, it entails
h i
N f(D)Fi(H )F2(H ) =N f(D)N%D Fi(H) N%D Fao(H) N%D[ ] : (3.101)

Recall from 8.96) thatH [ mal = H H . Then, 3.101) implies for all measurable functiori :
C(R+:R:)! Ri,f :R:! R.,that

N f(D)FZ Hlmal = (3.102)

1
ND2dr) N (dH)N,(dHO woF H HO ;
0 N._o[ ] cr k)2

which implies Theoren3.2 (iii ) as soon as one makes sens@l@f jD =r).

Proof of Theorem 3.2(ii). Recallthat: Exc! Excis the functional that reverses excursions at their
lifetime: namely forallH 2 Exc, ( H) = (H(, 1, )t o. Recall from 8.87) that for allr 2 (0;1 ), H
and ( H) have the same law undBr, , which entails the following by3.101):

(H);(H ) and(H ;H ) havethe same distribution undgr. (3.103)
Next, observe thdd (( H))= D, (( H))= , o(( H))= 1and 1(( H))= 0. Moreover,
((H) =(H )and(( H)) = ( H ). Thiscombined with%.103 and 3.107) implies that
%N f(D)Fi(H )F2(H ) = N 1t - 4f(D)Fi(H )F2(H ) (3.104)
= N 1 = G (D)F1(H )F2(H ) :
We then de ne
= hgif = o and = g if = 1
By (3.96), we get
HlI=H H onf = g and Hl I=H H onf = jg
This, combined with3.104 and 3.10J) entails
N f(D)E HI T = 3.105
(D)E ¢ o Z (3.105)
N(D2dr)———=— N,_,(dH)N,_,(dHY (4 + woF H HO?:
0 2Nr:2[ ] C(R+;R+)2

Recall from @3.31) the de nition of the lawQ,. Sincer 7! N, is weakly continuous, it is easy to check
thatr 7! Q, is also weakly continuous. Then observe tQa{ ] = 2N _,[ ]. Therefore 8.109 can
be rewritten as
Z,
N f(D)F HI 1T = N(D2dr)f(r)Q, F(H) Q[ ]: (3.106)
0

Next observe that for ati2 [0; ], (H! )l = H[ *Uand thatD (H)= D. Thus, 8.106 implies
Z, hZ i h Z i
N(D2dr)f(r)Q, dtF HI Q[ ] N f(D) dtF H[ *U
h2 i
N dtf D HU F R

0
N f(D)F(H) ;

where we have use Lemn3al4in the last line. This proves3(32 in Theorem3.2(ii ).
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Proof of Theorem 3.2 (i) and (iv). The rest of the proof is now easy: we k2 (0;1 ) and we
denote by (dH®H ) the the product lamN ,_,(dHYN _,(dHY; we then seHd = H® H% Thus,
by de nition, H under , has lawQ,. Observe thatit 6 (H9 (resp.t 6 (H%}) thenHl<r=2
(resp.H< r=2). Note that ifs 2 [0; yo] andt 2 [ yo; pod, theninfigyH = 0 anddy (s;t) =
H+ HX Lo This easily entails that-a.s.D(H) = r and that (H9 and o+ (H®Y are the two
only timess<t such thatly (s;t)= D(H), which completes the proof &2(i).

The fact thaiQ,-a.s.D = r, combined with 8.32 and with the fact that 7! Q, is weakly contin-
uous, allows to make senself( jD = r) that is a regular version of the conditional distributiorN\of
knowing thatD = r. Moreover, 8.32 entails 3.36 forallr 2 (0;1 ). Furthermore3.102 entails 3.33
that was the last point to clear in the Theor8rR(iii ), as already mentioned.

It remains to prove Theoref2(iv). We keep the previous notations and we introduce the following:

X X
M 0; (HO)(H% = (a;Ha!;H a) and M 0; (HO()(H 09: (a;Ha!;H a) ;

a2l . o a2Jd 4. oo

that are under ; independent Poisson point measures with the same intensityby Lemma3.11 We
thenseto(H):= (H9and 1(H):= po+ (HO%, thatare the only pair of times realizing the diameter
D(H) under ,, as already shown. Observe that under
X
M ogr); 1ry(H) = ¢ alHay(Hay T Mo roy(H:

a2l 4. o

where we recall here that reverses excursions at their lifetime and thais invariant undeiN 5 and
P%. Thus, basic results on Poisson point measures and an easy calculation shdvs gt , () (H)

is a Poisson point measure whose intensity is giver8i34g in Theorem3.2(iv), which completes the
proof of3.2(iv) becauseéd under | haslawQ; and thusM ). ,1)(H) under | has the same law
asM ., underQ,. This completes the proof of Theoredr2

3.3 Total height and diameter of normalized stable trees.

3.3.1 Preliminary results.

In this section, we gather general results that are used to prove Prop&sgiddnless the contrary is
explicitly mentioned, is a general branching mechanism of the for®nl@ that satis es 8.14). We
rst introduce the following function

8a, 2(0;1); w(@:=N1 1 4e : (3.107)

For all xed 2 (0;1 ), note thata 7! w (@) is hon-increasing, thdimg ow ()= 1 and by @.2])
limagr w(@=N[1 e ]= 1( ). As proved by Le Gall§1], Section I1.3 (in the more general
context of superprocesses) (a) is the only solution of the following integral equation,
Z1 du
8a; 2(0;1); ————=a (3.108)
w (@ ()
that makes sense thanks 814).
Let us next considei underP and recall from @16) thatP* stands for the law oH ~ 1, where
Tx =infft2 R+ : X¢= xg. Recall from 8.19 that ;5 ( laHT) stands for the decomposition of
H into excursions above; thus, the excursions ¢ ~ 1, above0 are theH' wherei 21 is such that
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I 5 2 [0; x]. Elementary results on Poisson point processes then imply the following:

EX e = EXe 1
a h fX ag i
= E exp . Hil[O;X]( Iai) 1 (H) aji2l: la; X
|
= exp xw (@) : (3.109)

We rst prove the following lemma.

Lemma 3.15. Let be a branching mechanism of the for 13 that satis es 8.14). Recall from
(3.107 the de nition ofw (a). First observe that foralh; 2 (0;1 ),

Z,
3 du _ @w (a)

Qw (a) = (w(a) and o @(CW 2= Tw @) (3.110)

Recall from 8.24) the de nition of the functiorv. Then, for alla; 2(0;1 ),
Iling+ w(@=v(@ and v(a) w((@=v(@+ Nzl e v(a) + YOE (3.111)

where we recall from3.34) the notationN 5. Then, for allr; ro> 0, we get

Z r Z r

da qw (a)) =log (w (ro)) and da qv(a)) =log (vlro) . (3.112)

o (w(r1) o (v(ry)

Proof. Note that 8.110 and @.111) are easy consequences of re§108 and the de nition 8.107.
Let us rst prove the rst equality of 8.112: to that end we use the change of variable w (a),
being xed. Then, by8.110, du=(( u) )= da, and we get

VA r Z w (ro) 0(u)
roda w (a)) = . (rl)du ) = W (')

(w(ro) .

which implies the second equality iB.(12 as ! Oby (3.111.

Proposition 3.16.Let  be a branching mechanism of the forgni3 that satis es 8.14). Letr 2 (0; 1 ).
Recall from 8.30 the de nition of N, and recall from 8.107 the de nition ofw (a). Then for all

2(0;1 ), we rstget
Z r

_ _(w() .
N, e =exp Oda w (@) dv(@) = O (3.113)
Setq (y;r):=N, € lipsayg - Thenforally2 (3r;r), we have
- (w(n) (w(y)
WO "0 Y wey ) (w o) G119

Ify 3r,thenq (y;r)=N, e and ify>r , thenqg (y;r)=0.

Proof. Recall from @.84) the notationM . and recall from 8.88 the notation
ry; 2(0;1),wegetN,-a.s.

|
by - 1hen, forall

X

€ 1tp 2yg = €XP +!

1
Ha Ha 8a2Jo. @ _ .4 2y
a2d o aHaHa
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Lemma3.11asserts that undét, , M o. is a Poisson point measure with intensity given by @3.85).
Thus, elementary results on Poisson Eoint measures imply that

!
N, € Llip 2y =€XP ni(dadHdH) 1 1 aulw >0& "

| {z }
K
Recall that the total mass 8f% ise (@ and recall 8.109. Thus,
Z, ;
K= da2 Nal 15 5 a¢€ + da (d2)ze 2v(@) g 2w (a(2y a) .
0 0 (0;1)

Now observe that
Nal 1 oy ag€ =N 1 1t ary ag® N[1f sag =W a*(2y a) Vv(a):
Consequently, .
r
N, e 1ip oy =€Xp Oda w (ar 2y a) Yv(a) : (3.115)

Then observe that ¥ >r , theN, e 1lip 59 = N, € becausd 2 . This combined with
(3.115 entailséhe rst equality of8.113. Then, used.112 in Lemma3.15to get for any' 2 (0; r),

' _ (v(r)) Cv(") .

da qw (a) v(a) =log W () log O
This show that 7! ( v("))=(( w (")) ) isincreasing and tends to a nite const&ht2 (0;1 ) as
"1 0. Thus,C 1( V(r))N, e =( w (r)) ,whichisequalto @w (r) by (3.110 in Lemma
3.15 Then recall from3.24) thatN( 2 dr)= ( v(r)) dr; thus by 8.26 and the fact thatv (r) tends
to I()asr!l ,we getzfor alb2 (0;1 ),

w (b) ) = bldrC LOv(N, e =C N e 1 spq

= CI N1 1 pe N1e =C tw (b Yy

This implies thalC =1, which completes the proof 08(113.
We next assume thg2 (3r;r). Observe thaa™ (2y a)= aif a2 (0;y) andtha" (2y a)=2y a
if a2 (y;r). By (3.115 and 3.113, we then get

Rr 0, 0
a(y;n=N, e Nee Lz = o) V(V\EEZ))) 1 ey WwEa AwE
which easily implies§.114 by (3.112 in Lemma3.15since
C e w2y )= T G @)etog (M@ D) e g (W O)
ya w (2y a))= 2yar w (a))=log W ) an ya W(a))—ogW

The other statements of the lemma follow immediately.

Proposition 3.17. Let be a branching mechanism of the for@ 13 that satis es 8.14). For all
y;z; 2(0;1 ), we have

L (y;z2):=Ne Lips2y; sz2g 7
5 1 du

=w (y_2z) ) L, o9 (W (Y)
w (y* @y z) (u)

2

(3.116)
2 @w y*(2y 2)
w (YN (2y 2))

=w (y_z) ) iz ayg (W ()
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Proof. Recall notatiorg (y;r) from Proposition3.16 which asserts that (y;r)=0 if r<y and that
(v(r)qg (y;r)= @w (r),ifr 2y. Then, by 8.26), we get

Z 1 z 2y YA 1
L (y;2)= dr (v(r))a (y;r)= 1¢; 2yg dr ( v(r))g (y;r)+ dzr (v(r)a (y;r): (3.117)
z z_y z_zy
Sinceforallr>z 2y, ( v(r))q (y;r)= @w (r) andsincdim,1 w (r)=  1( ), we get
Z,
2Olr (v(r)a (y;r)=w (z_2y) Y): (3.118)
z_2y
We next assume that2 (y; 2y). By (3.119 and since( w (r)) = @w (r), we get
Z 5 Yy 2oy dr
A (vain = d@w ) (W) e
_ ¥z dr
= w(2) w(2y) (w(y) 0 W
1
z _du

w(z) w(2y) (w(y)

5
w2y 2 ()

with the change of variable= w (r) in the last line. This combined witt8(118 easily entails the rst
equality in 8.119. The second one follows fron3(110 in Lemma3.15
3.3.2 Proof of Proposition3.3.
In this section, we x 2 (1;2] and we take
( )= ; 2R::
Recall from 3.107) the de nition ofw (a). We then set
8y2(0;1); w(y):= wa(y): (3.119)
Note thatw satis es 3.45 that is 3.109 with =1. By an easy change of variable. 108 implies that
ga, 2(0:1) w(a= ‘wa — : (3.120)

Recall from Propositior8.17 the de nition of L (y;z). Then observe that the scaling properdy4d)
entails 8.46. Moreover 8.47) follows from a simple change of variable. Next note fradnl@0 that

1

aw (@=* " wa — :

+ —ltawla —
This, combined with the fact thatwqy)= @wa(y)=w(y) 1,implies

@wi(y) _ 1 w(y) Y
wiy) 1 w(y) 1 ’

which implies 8.48 thanks to the second equality iB.116 in Proposition3.17. This completes the
proof of Propositior8.3.

3.4 Proof of Theorems3.5and 3.7.

3.4.1 Preliminary results.

In this section we prove several estimates that are used in the proof of Thedbrearsd 3.7. We x
2(1;2]andwetake( )= , 2R;.
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Laplace transform. We nextintroduce the following notation for Laplace transform&erof Lebesgue
integrable functions: for all measurable functidn®k. ! R such that there existg2 R+ with
Z, Z,
dxe Xjf(x)j<1; wethensetL (f):= dxe *f(x); 2[ 0;1);
0 0
which is well-de ned. The function 2[ ;1 ) 7' L (f) is theLaplace transform of . We shall need
the following lemma.

Lemma 3.18. Letf;gn;hn : R+ ! R4, n 2 N, be continuous and nonnegative functions. We set
fn:=agn hn.Let(gh)n o be areal valued sequence. We make the following assumptions.
zZ, X zZ,
9 02 R:: dxe %*f(x)<1 and jonj dxe X ghn(xX)+ hp(x) <1 : (a)
0 n o 0

P
This makes sense of the sum, onL (fn) forall 2[ ¢;1 ) and we assume that

X
8 2[ o;1); L (f)= hL (fn): (o)
n 0
We furthermore assume
X
8x 2 R+ joh] supgn(y) + sup hn(y) <1 : (©)
n o y2[0;x] y2[0;x]
Then, X
8x2R:y; f(x)= Ghfn(X);
n O

where the sum in the right member makes sense thank} to (

Proof. We denote by )* and() resp. the positive and negative part functions. Assumptiper(sures
that the following functions are well-de ned for atl2 R, , continuous orR, and nonnegative:

X X
G=f+ () dw+(n)"hy and H:=  (G)" g +(cn) hn:
n 0 n 0

Since the functions are nonnegative, for all[ ;1 ), we get

X X
L(G)=1L (f)* () L (g)+()"L (hn) and L (H)=  (a)"L (g)*(ch) L (hn):

n 0 n 0
By Assumption &), L (G) andL (H)are nite quantities for all 0. Assumption ) then entails
thatL (G)= L (H), for all for all o: this implies that the Laplace transform of the nite Borel

measuree °*G(x)dx ande ©°*H(x)dx are equal. Consequently, these measures are equal. Thus
G= H Lebesgue-almost everywhere. Sifig@andH are continuousG= H everywhere, which implies
the desired result.

Estimates for stable distributions. Let( ;F;P) be anauxiliary space. L&: ! R; beaspectrally
positive —*-stable random variable such that
Z, .
8 2R+; Ee S = dxs (x)exp( x)=exp T (3.121)
0

where we recall from3.52 thats : R. ! R is the continuous version of the density of thet-stable
distribution. We recall here from Ibragimov & Chernig9 (see also Chambers, Mallows & Stuck3d
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formula (2.1) p. 341 or Zolotarevip3J) the following representation of such-a-1-stable law: to that
end, we rst set |

: o1
sin —v sin iv

gv2( 5 ) mW)= sinv sinv

(3.122)

LetV; W be two independent random variables de ned onF ; P) such thaV is uniformly distributed
on[0; ]and such thatVv is exponentially distributed with medn Then,

1
ta) M (V) — 1
S - W H
which easily implies that
z

8x2 (0;1); s (x)= 1 dvm Mexp x ( Im (v) : (3.123)
0

We havem ( v)=m (v) andm (0)=( 1) 1. Moreover, the functiom is increasing of0; )
andm (v)=m (0)=1+ —*v2+ O (V).

As proved in Theorem 2.5.2 in Zolotare¥(3, by an extension of Laplace's method (proved in
Zolotarev [L03, Lemma 2.5.1, p. 97)3.12]) yields the asymptotic expansiod.$3 that can be rewritten
as follows: recall from3.53 the de nition of the sequencgs,)n 1; then set

and S,= 2 1 1

N[

8x2(0:1) b(x)= ( 1% " Ds: on o 0; (3.124)

where recall thaBy=1. Then, for all positive integed , asx ! 0, we have

X + +
s (x) = S, x" D Fe Mg xNO D G M0 (3.125)

0 n<N

For alla2 R, we next set Z .
8X 2 Ry Ja(x):=  dyyle PV (3.126)
0

An integration by parts entails
8a2 Rnf ¢, 8Xx2Ry; Ja(x)=( 1) x® e ™) (1) (a+ )a 1(X); (3.127)
which proves tha,(x) = O (x®* e X)) asx | 0. This also entails the following lemma.

Lemma3.19.Let 2(1;2]. Leta2 R. We assume that(a+1)=( 1) is not a positive integer. Recall
from (3.129 the de nition of the functiorb and from 3.129 the de nition of the functiod,. Then, we
set

Y
892 NnfOg; cq(a; ):=( 21)% 1) @D atl+ k( 1) ; (3.128)
1k q
with the convention thaig(a; )=( 1) . Then, for all positive integers,
X
Ja() = cqla; ) x* T Ve M (1) @ ) Jary p(X): (3.129)
0 a<p

This implies that for all positive integeps asx ! 0,
X
x & g (x) = cq(a; ) x93 D+ 0p, xPC Y (3.130)
0 a<p
whereOy.,; depends op;aand .
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Proof: (3.129 follows from (3.127, by induction. Sincela.p 1y(x) = O x3*PC D+ g BX)
(3.130 is an immediate consequence 8f129.

We next prove the following lemma.

Lemma 3.20. Let 2 (1;2]. Recall from 8.52 (or from (3.121) the de nition of the densitg . Recall
from (3.122 the de nition ofm . We set for alk 2 R,

Z
)= % 2 dym (v)2e X C UM ) (3.131)
0 z
and )= x s )= “Bx 1dum)ex Tmm.

0

Then, the following holds true.

() * and are well-de ned onR., the functions is differentiable orR: ands® = *

Moreover, *, * are continuous, nonnegative, Lebesgue integrable and foraR. ,
1 YA 1 1 z 1 1

L(")= e + de and L ( )= de : (3.132)

which implies
Z 1 1
dxjs(x)j < 1 and L (%)= e © 2Rs: (3.133)
0

(i) There existA;xp2 (0;1 ) such that
8x 2 [0; Xo]: *(x) and (x) Ax “7-e b0 (3.134)

where we recall from3.129 thatb(x) = ( 1)=x o

(iii) We de ne the real valued sequen¢g, ), o by

To:=( 1) S, and 81 1 T,:=( 1)S,+ n( 1) 1S ,: (3139
Then, for all positive integel , asx ! 0, we have
0 X 3 41 3 41
sO(x) = T, x"0 D e B4 oy xNO D Tze MO (3.136)
0 n<N
Proof. We easily deduce fron3(123, thats is differentiable orR: and thats® = * . Using
Fubini-Tonnelli and the change of varialyle x ( Ym (v), for xed v, we get
Z, Z, Z 1
dx *(x)= dx (X)= —e— dvm(v) T<1;
0 0 0

sincerﬂ (v) m (0)>0o0n[0; )andlimyy m (v)=1;here, ¢ stands for Euler's gamma function.
Thus, 01 dxjs®(x)j<1 and 2R: 7'L (s?) is well-de ned. Moreover, by Fubini,
Z, zZ, Z, Z,
L (%)= dxs®(x) dye Y = dye ¥ dxs°(x)= L (s);
0 X 0 0
which completes the proof 08(133. Next, by Fubini-Tonnelli, we get
Z, Z, Z, Z, 1
dxe *x s (x)= dxs(x) de *= de ; (3.137)
0 0
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R 1
which implies thatL () = lde , since  (x) = x s (x). This, combined with
(3.133 entails @.132, which completes the proof ¢f).

Laplace's method easily implies that there existsc 2 (0;1 ) such that

*(x)  cx ze and  (x) cx e,
x! 0 x! 0

which easily entails3.134 and which completes the proof €f).
More generally, the asymptotic expansidS3 of s is derived from 8.123 by an extension of
Laplace's method proved in Zolotarei(]3, Lemma 2.5.1, p. 97. When this method is angIiEd toand
,one shows that* and  have an asymptotic expansion whose general texfiis 1) "2 e XX,
Thus, there exists a sequer(dg ), o such that8.139 holds true. It remains to prov&.(39. To that

end, foranyn2 N, we sefa,:=n( 1) 3 ;1 . By Lemma3.19we then get
X

s (x) = Thda, (X) + On: Jay (X)
0)£1<N X
— Tan(an; )Xan+ +q( l)e b(x) 4+ ON; Xt g b(x)
0 n)zN 0 g<N n
ToGo nan; )XPC D Ze X041 o xNC D g bX)
0 n p<N

which implies thatS, = TaCp n(an; ), forallp2 N. Then by 8.128, observe that
X
" Co(ap; )T, + TaCp n(an; )

Onopl

Onop

S

X
=( 1T (1 p 1 ToCp 1 n(an; )
Onopl1

which implies 8.139. This completes the proof of the lemma.

Proof of Proposition 3.6. Lemma3.20easily entails Propositio®.6: indeed 8.133 entails 3.63. We
then set
8n2N; Tp:=( "0 DT =T;

and we easily check thas (139 entails 8.64) and that 8.136 implies 3.65.

We next introduce another function used in the asymptotic expansion of the height and the diameter
of normalized stable tree.

Lemma 3.21. Let 2 (1;2]. Recall from 8.52) (or from (3.121) the de nition ofs . We then introduce
the following functions: for alkk2 R, ,
Z

Foo=( Dx S(): h o= 2x 1 dyy' S (y) and (x)=h () h (x): (3.138)
0
Then, the following holds true.

() h*;h and are well-de ned and continuou$y" andh are nonnegative and Lebesgue inte-
grable, and for all 2 R, , we have

Z, 1 _1
L (h)=( 1) de and L (h)=1L (h") e ; (3.139)
which implies
zZ, L
dxj (x)j<1 and L ()= e ; 2R;: (3.140)
0
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(ii) There existA;xo2 (0;1 ) such that

8x 2 [0;xol; h(x) and h (x) Ax = e B9 (3.141)

where we recall from3.124 thatb(x) = ( 1)=x o

(i) Let (V,)n obeasequence of real numbers recursively de nettpy( 1)S, andforalln2 N,

1 1 1 1
() Vour=( DSuu*t( Dn 53 — S, n 3 =V, (3142

Then for all positive integersl , asx ! 0, we get

X + +
(x) = Vo xNC D Sre b0 4 oy xNC D e b0 (3.143)

0 n<N

Proof. The fact thath®™ andh are well-de ned is an easy consequence of the asymptotic expansion
(3.129 of s and observe thdt* , h_ can be continuously extended by the valletx =0. Let 2 Ry ;

by 3.139) wegetL (h*)=( 1) 1 d exp( 71). Thus when =0, we get
YA 1 z 1 1
dxh™(x)=Lo(h")=( 1) de = 1 ;
0 0

by an easy change of variable; hergstands for Euler's Gamma function. By Fubini-Tonnelli and
several linear changes of variable, we get

lzl 1 Zl 1 1121 1 Zl 1
L(h) = — dyy 1g (y) dxx ' e x = 1~ dyy g (y) d 1 %e
OZl 21 (21 Zly
_ 1 1 1 1 L _ 1 % 1 L 1
= — dyy “s (y) d e y=—< d dyy “s (y)e Y
0
! Z1 a 21 B
= 17 d ' de =( 1) de D
Z, 1 L1 . 1
= ( 1) de ( 1 d e
24 o,
= ( 1) de e

Here we use3.13% in the third line. When =0, this proves that
Z,

dxh ()= T e
0

R
Thus, 01 dxj (x)j< 1 . Combined with 8.13%, it also implies 8.140, which completes the proof of
(1.
We then provei() and (i ). To that end, we rst observe tha8 (125 implies thatx s (x)
SoX > M) asx! 0, which immediately entails3(141) for h* .

We next nd the asymptotic expansionbf thanks to that o§ and thanks to Lemma& 19 We rst
set ,= 1 %3 + n( 1). From @8.129 and Lemm&B.19 for all positive integelN, asx ! 0, we

80



get

X 1 11 1 L

h (x) = —2S,x P TI  ()+ 0y x P (%)
0 n<N
X X

1

1
= 7lsncq( ns )X nt 12 1)e b(x)+ ON; X Nt e b(x)
0)2<N 0. g<N n
= —18.cq( o )x(MHEDC D Fe M) 4 gy x(NHC D S b0
0 n<N 0 g<N n
X

UpxP( D 27g B0 4 o x(N¥DC 1) 55 b0

Op N

where the sequeng®p), o is given by

X
Up=0; and Up= —15n0p1n( n, ), b L
Onpl1l

Observe that it implies3(141) for h , which completes the proof dfi ). We next provdiii ): to that
end observe that by(128, ¢, n( n; )= ( 1) 1 %1+ pP( 1) ¢ 1 n( n; ). Thus we get

X 1 1 X 1
Ups1 = —SpC n( n; ) = —Spc( p; ) + —3SnC n( n; )
0Onop 0 n pxl
= 3 pCY%, (1 1 F+p 1) —ShC 1 n( ni )
Onpl1
= 3 nUYs () F Fepl 1Y

= ( 1 (D lsp p % 1 Up : (3.144)

We thenseV, =( 1)S, Upforallp2N, so thatfor all positive integed , asx ! 0, (3.143 holds
true. Moreover, by3.144, easily entails thatV, )p o satis es 3.142, which completes the proof of
the lemma.

Proof of Proposition 3.4. Lemma3.21easily entails Propositiod.4. Indeed, 8.140 implies 3.55. We
set

8n2N; Vp=( "0 Dy =y :
Then, B.142 entails .56 and @3.143 implies 3.57), which completes the proof of PropositiGm.

Lemma 3.22. There exist g; A2 (0; 1 ) such that

Z4 a .,
8 2[ o;1); de A e
Proof. Integration by part implies
z 1 1 ! _ 1 1Z 1 1 1 1 1 1 712 1 71.
( 1) de = e +=d e e + = de ;

which immediately entails the lemma.
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Asymptotic expansion ofw 1. Recall from @.45 the de nition of w. We next introduce

Z,
du
8y2(0;1); =w 1; thatsatis es —— =Yy, 3.145
y2(0:1);  (y) = w(y) yury 17 (3.145)
by (3.45. We easily see thdimy;;  (y) =0 andlimy, o (y)= 1 and that isaC?! decreasing
function. The following lemma asserts thatlecreases exponentially fastyalsl

Lemma 3.23.Let 2(1;2]. Let( )= , 2R..Recallfrom8.145 the de nition of . We set
Z, z
du Ydu(u+1) 1 wu
= —_ 2[ 1;1); G(y):= — : 3.146
Yoif w1 @M &2l L1y 6= iy 1 (3.146)
Then, X X
8y2[ L1 expG(y)=1+  Apy" and 1+ jAjj<e
n 1 n 1

Moreover, fory 2 [yo; 1 ),

X
e¥ G (y)=exp G( (y) =1+ A, (0" (3.147)
n 1

whereCy is given by 8.62.

Proof. We rst introduce the inverse function of. Namely, for ally 2 (0;1 ), we set

21 du
8y2(0;1); F(y):= , m;
Observe that
F(y):21du+121du lzldj(U+1) 1 u+32y%(u+1) 1 u;
¢ (u+l) 1 y U o U (u+l) 1 o U (u+1) 1

which makes sense singe- L4 1 —Lasu! 0+. We then set

Z1 du Zl@(u+1) 1 u

L (u+l) 1 o U (u+1) 1

Co =

and we get

Zy@(u+1) 1 u.
u (u+l) 1

8y2(0;1); F(y)=Cp logy+ G(y); where G(y):=

SinceF ( (y))=vy, this implies

8y2(0;1); log (y)=Co Yy +G((y): (3.148)

Let us show tha6G(y) (and thereforexp(G(y))) is analytic in a neighborhood & We set

n (n+1)!, n(n+1l)
We observe thgnj < rmzpy- Then forallu2[ 1;1], we set
X 1+ 1 X
ni n 1
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since( 1)" 'a, = janj. The power serie$ andS are absolutely convergent ffuj 1. Moreover,
iS(wj T(u) T@)= S( 1)= —l<1 Thus,forallu2[ 1;1],

(I+u) 1 u _ Su _X

X
1 - n 1 n
1+ u) 1 1+ S(u) - ( 1P *S(u)P = ( D" "nBhu

p 1 n 1

is analytic forjuj 1, where

X (ot i+ o)l
p1!::ipn!

nB, = jajPr iz rjanjP 0:

p1;pn O
p1+2p2+ i+ npp=n
P

Notethat | ;nBh=T(1)=(1 T(@))= 1< 1. Therefore,

X

8y2[ L1 Gy)= (1" 'Bny";

n 1
. : . P
is absolutely convergent an@(y)j G( 1)< , 1nBp= 1< 1. Thus

X

8y2[ L;1]; exp(G(y)=1+ Any"
no1
where
Ap = % ( By)Pr:i:( Bp)P
n - TR
p1iipn O p1!:iipn!
p1+2p2+ +nNpp=n
" % X X P1...QPn
L M=exp( G( 1) <exp( 1):

A o Piliiipn!

......

n
p1+2p2+ +npn=n

Observe that (yp)=1. Then @.147) follows from (3.148 for all y 2 [yo; 1 ).

n 1 n

We then derive from the previous lemma the following expansion. of

Lemma3.24.Let 2(1;2]. Let( )= , 2R.:.Recall from 8.145 the de nition of ; recall from
(3.149 the de nition of G and recall from 8.62 the de nition ofCy. Then, we set
1 dn 1 N
8y2[ 1,1, H(y):=exp Co+ G(y) and 81 1, ,:= nldyn T H y=o - (3.149)
Then, there existg; 2 [yo; 1 ) such that
X X
j nje Wr<1 and 8y2][y;;1); (y) = ne Vo (3.150)
n 1 n 1

Here 1= €% and ,= —te.

Proof. Lemma3.23shows thaH has a power expansion whose radius of convergence is larget.than
By Lagrange's inversion tr?:gaorem (see for instance Whittaker & Wats0§,[7.32, pp. 132-133), there
existsxg2 (0;1 ) suchthat ,, ;j njxg<1 and
X
8x2 [ Xo;xol; f(x):= nx"  satises f(x)= xH (f (x)) :
n 1
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For allx;y 2 R+ in a neighborhood o®, we next seQ(x;y)= H(y)=(1 xH qy)). Observe that is a
solution of the differential equationdx) = Q(x;f (x)) in a neighborhood 0. Then note that

@Q(0;0) = H(OHY0) = - e&*® and @Q(0;0) = HY0) = — e

Thus, there exists, 2 (0; Xo) such thaQ is Lipschitz on[ x,; xo]?. By the Cauchy-Lipschitz theorem,
f is the unique solution of®; x,] of the equatiorydx) = Q(x;y(x)) such thay(0)=0.

We next recall from Lemma&.23that (y) = e YH( (y)), forally 2 [yo;1 ). For allx 2
(0;e Yo], wesetg(x):= ( Llogx) andg(0)=0. Note thatg is differentiable or(0;e Y°] and that
g(x) = xH (g(x)) forallx 2 [0;e Y°]. Thusgqx)= Q(x;g(x)), for all (0;e Y°]. This implies that
limo o+ X 1g(x) =lim o o0+ g{x) = H(0), which proves thag is aC* function satisfying the same
differential equation aé on a neighborhood dd, with the same initial valu@ atx =0. Consequently,
there existsx; 2 (0;xy * e Y°] such thatg(x) = f (x) for all x 2 [0; x41] which implies 3.150 with
y1:= 1logxi. The values of ; and » are easily derived fron3(149.

We next derive from the previous lemma a similar asymptotic expansion for the fuct{gn0)
that is connected to the diameter ebtable normalized trees.

Lemma 3.25.Let 2(1;2]. Let ( )= , 2 R:. Recall from 8.49 the de nition ofL(y;0) and
recall from 3.62 the de nition of Cyp. Then, there exisg, 2 (0;1 ), and two real valued sequences
( n)n 2,( n)n 2suchthat

X

2=5 (1% o= I( +1)€% and njnj+jnje W2<1 (3.151)
n 2
and X
8y2[yz1);, Luy;0)= (nnay+ ne ™: (3.152)
n 2

Proof. Recall from @.145 that (y)= w(y) 1, wherew is de ned by @.45. Then, 8.49 implies the
following:

() 2@+ (y) 1@+ )+ —y @+ (y) 1°

Ly @+ @) 17 L@a+r )t 1+ ()
( Ly MK Y) 2 +1) $M( V) (3.153)

where forallu2[ 1;1 ) we have set

L1(y;0)

(u+rl) 1°2

(u)?

Recall from (3.149 the de nition of H and recall from 8.147 that for ally 2 [yo;1 ), (y) =
e YH( (y)). This, combined with3.153, entails that

Liy;0) = ( De 2YH( MK () 3( +1)e 2YH( )M ( () : (3.154)

(u+1) 1 ( +1)u,
s (+puz

K(u)= and M (u) =

P
Recall from @.149 the de nition of the resl valued sequen€e,)n 1 thatis suchthat | ;j njxi<
1 ,wherex;=e Y1. Wethenset(x)= , ; nx",forallx2[ xi;x1]. Next, recall from Lemma
3.23thate®) has a power expansion §n1; 1]; thus, so doebl . Note thatk andM have also a power

expansion orf 1;1). Consequently there exists 2 (0;1 ) such for allx 2 [0; X>],
X X
( DHEE)K () = X" and  ( +1)H(f (x)2M(f (x)) = ax"; (3.155)
n 0 n 0
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with X

0= ( 1% §= 3( +1)& and joi+ifixg<1; (3.156)
n 0

sinceK (0) = M (0) =1 and sinceH (0)2 = e?Co. Next by ¢.150 in Lemma3.24 we have (y) =

f(e Y),forally2[y;;1 ). Then we set

0

y2:=yi» tlogx, and 8n 2 ,:=nt0., =0

2

and @.156 implies 3.157); (3.155 and (3.159 imply (3.152, which completes the proof of the lemma.

3.4.2 Proof of Theorem3.5.

We rst set . .
8x2(0;1); f (x):==cx Y ONge o>x T (3.157)
Then, Propositior3.3, (3.46), (3.47 and .49 imply forall 2(0;1 ),
21 1 _a 1 1 1
L (f )= dxe *f (x)=L (0;1)= "L; 0 = w 1= ; (3.158)
0

1

where recall from&.145 that (y)= w(y) 1. We next use Lemma.24 let ; be such that 17 =yi;
then the sequende ), o satis es
X 1 _1 X 1 —1
8 2[ 1;1); jnj e" <1 and L (f )= no e " ; (3.159)
n 0 n 0
Recall from LemmaB.21the de nition of the functions;h * andh . Then for all integen 1, and all
X2 R+, we set
+1 +1 1

n(X)=n T n “Ix; hi(x)=n " th* n “ix and h,(X)=n "~ Th n " Ix:

Lemma3.21limplies thath , h,, are Lebesgue integrable, nonnegative and continuous. Moreqver,
hi h,. Consequently,q is also nonnegative continuous and Lebesgue integrable, 35 éntails

thatL ()= e "  .Thus, byB8.159

X
8 2[ ;1); L (f)= nL (n): (3.160)
n 0

We next prove that the assumptiom3, ((b), (c) of Lemma3.18hold true with
fi=f; fy:=h; f,:=h,; and o= n:

To that end, we rst observe that by an easy change of variable ang.b§9 in Lemma3.21, we get
z 1 1
8 2(0:1):81 1 L(h) ad L (h,) ( DLn 1 de

n I

Thus, by Lemm&.22 forall 2 (0;1 ) and for all suf ciently largen, L (h};) andL (h, ) are bounded
1

by A lexp( n ), whereA is a positive constant. Thus,
X X 1 1
8 2[ 1;1); jaiL (hp)+L(hy) 2A ja e” <1; (3.161)
n 0 n 1
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the last inequality being a consequence3169.
Next, deduce from3.14]) in Lemma3.21that for all xed x 2 (0;1 ) and for all suf ciently large
n,
sup h  and sup h, Bni% 2 exp ( 1) nx ( D
y2[0;x] y2[0;x]

whereq = % ;11 and whereB is a positive constant only depending onSince > 1,n  n;

this combined with 3.159 entails that for alk 2 R,

X
jnj supht+ sup h, <1 : (3.162)
n 1 y2[0:x] y2[0;x]

By (3.160, (3.16) and @.169, Lemma3.18applies and we get

8x 2 Ry ; f(x)=cx1lNnr >X — = n n(x):
n 1
This proves X
8r2(;1); cNp >r)= n (nr) ! (nr) T (3.163)
n 1

which implies 8.60. Note that 8.162 and @.150 with x; = e Y1 in Lemma3.24imply (3.59 in
Theorem3.5. "
It remains to prove the asymptotic expansi8rb(). To that end, recall that(r)=r ~— T r — T ,
forallr 2 R+ . Then @3.57) in Proposition3.4 easily entails that for any integbt  1,asr !'1
1 1 54 -1 _ X n N .
C—r 2 ¢ r( 1) =1+ Vo r +On: I ; (3.164)
1 1 n<N

whereC; = (2 ) %( 1)%+ b3 and where the sequenfé,),, 1 is recursively de ned by 3.56) in
Proposition3.4. This rstimplies that there exist8;r1 2 (0;1 ) that only depend on such that

1 1

8r2(r;1);8n 2 nr( 1) Arltze N2 (3.165)

P
Recall from Propositior8.4 that there exist1 2 (0; 1) such that | ;j njx} < 1 . Without loss of
generality, we can choose such thaexp( 2 lrl) x1. Then 8.163 and @.165 imply that

Noe >r( 1)~ =cty r( 1) +0 r*ze?" ; asr!l |,

and @.164 implies @.61) sinceCy = ¢ ! 1C,, where we recall from3 4] thatc 1= —1 and

where we recall from Lemma.24that ;=exp(Cp). This completes the proof of Theore3rb.

3.4.3 Proof of Theorem3.7.

We rst set .
1
8x2(0;1); fp(x):=cx ' Ny D>2x (3.166)
Then, Propositio.3, (3.46 and 3.47) imply forall 2(0;1 ),
Z 1 1 1
L (fp)= dxe *fp(x)=L (3;0)= "Ly ~ ;0 : (3.167)
0
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1
We next use Lemma.25 let ; be suchthat, =Yy,;thenthe sequencés,)n oand( n)n o satisfy

X 1 1 _1
8 2[ 21); Njnj  +jn e" <1
n 0
d
an X _1 X 1 _ 1
L (fp)= nnpe " + n e " (3.168)
n 0 n 0

Recall from 8.54) in Propositior3.4the de nition of and recall Propositiof.6that provides properties
of the derivatives® of the densitys given by 8.52. Foralln 2, and allx2 (0;1 ), we set

+1

°n “ix and ,(X)=n "I n " ix:

- 2

n(X)=n " 1s
Then, Propositior3.6 and Propositior.4imply that , and , are continuous and Lebesgue integrable,
and that

1 1

8 2R+; L (n)=1e " and L ()= e "

Thus, X
8 2Ry; L (fp)= L Nhn+ nn:
n 2

We argue as in the proof of Theoredrb using LemméeB.18to deduce that

8x2R:; fp(X)=rcx ! anr D> 2x — = Nnn(X)+ nn(X);

n 1

the sum of functions being normally convergent on every compact subRet.ofhis easily entails that

X + +
8r2(;1); cNy D>2r)= n (Nr) 71130 (nr) T + 4(nr) ! (nr) —1; (3.169)
n 1

which is 3.68. Note that 8.67) is an easy consequence of the estim8té5) in Proposition3.6, of
(3.57 in Propositior3.4and of Lemma.25with xo,= e ¥ 2. Recall from 8.66) and (3.58 the following

notation,
+1 +1 o

8r2R,; (=r 1r T and (r)=r T r I
Note that 8.68 implies

CNp D>r)= L, (r)+ 2 (n+ * n (Nr=2)+ , (nr=2): (3.170)
n 3

Then, recall from8.164 the asymptotic expansion ofand deduce from3(65) in Proposition3.6that

1 1 3 r- —1 — X n N .
C—r ze r¢ 1) =1+ Tar +On; I ; (3.171)
1 1 n<N
whereC; = (2 ) %( 1)%+ b3 and where the sequen€&,), 1 is recursively de ned by 3.64) in
Proposition3.6. We easily deduce from the asymptotic expansi@$64 and @.171) that there exists
B;r,2(0;1 ) suchthatforall2(ro;1 ) and foralln 3,

Colpr( 1) — and Inr( 1) — Brityem 2 1 . (3.172)
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This combined with3.170 implies that

1
Ny D>r( 1) = =cly, r( 1) +cl, r( 1) +0 ritrenGar

asr !l . Then@.169, by (3.171 imply

1
Ny D>r (1) — :c; Corttre T

+ C 1C1( 2Tn + 2Vn 1)r n +1+ %e r + ()N’ r N +1+ 37e r
1 n<N
(3.173)

Recall from 8.15]) in Lemma3.25that ,= 4% ( 1)e’“©and ,= %( +1)e*C0. Thisimplies 8.69

with
+1

C,=c!C; , and 8n 1 Up=Tn+ 2Vh 1= Ty 3

Vn 1

This completes the proof of Theoredy.

3.5 Appendix: proof of Lemma 3.9.
We rst recall the following notation from Introduction: 1¢t2 C(R+ ; R+ ). For anya2 [0; h(0)], set
“a(h)=inf t2R: :h(t)=h(0) a and ra(h)=inf t2(0;1):h(0) a>h(t) ; (3.174)

with the convention thainf ; = 1 . Standard results on stopping times assert thdt) andr,(h) are
[0; 1 ]-valued Borel measurable functionstofsee for instance Revuz & Yo®F], Chapter |, Proposition
4.5 and Proposition 4.6, p. 43. Moreover, it is easy to check that for a kxed 7! “4(h) is left
continuous and that 7! r4(h) is right continuous. By standard argumerges,h) 7! ("a(h);ra(h)) is
Borel measurable on the sét=f(a;h)2 Ry C(R+;R+):a h(0)g. We next recall the following
notation: for all(a; h) 2 A, we set

8s2R:; Es(h;a):= h (Ca(h)+ s)*ra(h) h(0)+ a;
with the convention thdE(h; a) is the null function0 is “3(h)= 1 . The previous arguments entail that
(a;h)2 A 7' E(h;a) 2 C(R+;R+) is Borel measurable. (3.175)

Recall from @.73 the de nition of Exc. Recall thatpy : [0; ]! T y stands for the canonical
projection and recall from3(6) that the mass measumey is the pushforward measure of the Lebesgue
measure off0; 4] by py. Suppose that there exists 2 (0; ) such thatr <s and such thaH is
constant or(r;s). Thuspy ((r;s)) = fpy(r)gandmy (fpy(r)g) s r> 0, which contradicts the
fact thatmy is diffuse. Recall from 3.5) the de nition of the set of leavekf (Ty) of Ty. Suppose
there existr;s 2 (0; ) such thatr <s and such thaH is strictly monotone orfr; s). It easily im-
plies thatpy ((r;S)) T ynLf(Ty), butmy(py((r;s))) s r> 0, which contradicts the fact that
my TynLf(Ty) =0. Thus, we have proved the following.

() LetH 2 Exc. Letr;s2(0; ) be suchthat<s. Then on(r;s), H is neither non-increasing nor
non-decreasing.

Lett2 (0;1 ) andH 2 Exc be such thaty >t . Recall the following notation
I
8s2R+; Hg = H¢ g,; HS = Hus; H2%:=EH ;a) and H?*:= E(H";a);
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for alla 2 [0; H;]. Note thatH, = Hg = H¢. We also recall the following notation

X

Mot(H) = (3.176)

(aHTHa)
a2l 0:t
whered o := a2[0;H¢]: either'a(H )<ra(H )or a(H")<ra(H*) , which is countable. Then,
the de nitions 3.174 and () entail that

8t2(0;1 ); 8H 2 Excsuch that y >t;  the closure ofl o is [0; Hi]. (3.177)

We next introduce the compact €8t .= fs2 [0; y t] : Hivs =inf 545 Hr g, Whose Lebesgue
measure is denoted BEZ:j. We easily check thaty (C;) f ;pn(t)g[ TynLf(Ty) . Sincemy is
diffuse and supported by the set of leavesTgf, we get0 = my (py (Ct)) j Cij, which implies that
jC¢j=0. Then note that for ath2 [0; H],

[
[0; " a(H ™ )InC 82[0;‘a(H+)]:Ht+s>r inf H, BHT)irp(HT) [0 a(HM):

28T 00 o)
SincejCtj=0, this entalils,
. N + X + N + X .
8a2 [O;H{]; “a(H™)= ligay(b) ro(H™) "p(H") = 1oy (B! o
b2J o:t b2J ot
Similar arguments imply that
. . X . X
8a2 [O;Ht; "a(H™)= 110:0) (D) Hb a(H )= 110:0)(b) Hb (3.178)
B2J o b2J ox
.\ X X
ra(H") = 1[0;a](b)! Hb ra(H )= 1[O;a](b) Hb
B2J oq b2J oy

Moreover, sincéd is continuous with compact support, we immediately get

|
8% 2(0;1); # a2d : (HYH_(HH> or ., '1,.> <1: (3.179)

We next easily see thatH . can be identi ed with a subtree iy ; therefore, up to this identi cation,
the set of leaves oTH . is contained in the set of leaves ©f andm Ha is the restri?tion ofmy to
T, .. Thisimplies tham , , is diffuse and supported by the set of leave3 of . Namely,H 22 Exc. A

similar argument show thdd 22 Exc. This fact combined with3.177 and @.179 imply the following:

8t2(0;1); 8H 2Excsuchthaty >t; M gt(H) 2 M (E) ; (3.180)

I
whereM . (E) is as in De nition 3.2.1 Moreover 8.175 easily implies thata;t;H) 7! (H# H?) is
Borel-measurable, which immediately implies Lem&a@yi).

Let us prove Lemma.9 (ii ). Recall from De nition 3.2.1the de nition of the sigma eldG on
Mut(E). We next xt2 (0;1) andH 2 Excsuch that 4 >t. First note that3.17§ imply that
“a(H") andra(H™) areB (R+) G -measurable functions ¢&; M o.t(H)), whereB (R.) stands for
the Borel sigma eld orR.. We then xs2 R, and we sef(s) = inf fa2 Ry :ra(H*)>sg, with
the convention thainf ; = 1 . The previous argument and the fact ta&t r,(H *) is right continuous
entail thata(s) can be viewed as@measurable function & o(H ). Then note thatif(s)< 1 , then

|
Hi+s = H; = H; a(s)+ H3® g ‘a(s)(HJr) : (3.181)
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Then for alla2 R, , we setNg = P b2d ox L(as y (D) 14, 6> 0g- We have actually have proved previously
that the closure of the séb2 J ot : "p(H") <rp(H*)gis [0;H]. ThusH; =inffa2 R, :I Na >

0g, which proves that; is a G-measurable function dfl o(H). Moreover(a;M o¢(H)) 7' H? is

B (R+) G -measurable. Thus3(18]) implies thatHJ is aG-measurable function d¥l o.1(H). Since
the Borel sigma eld onC(R+ ; R+ ) is generated by coordinate applications, this implies khatis a
G-measurable function & o(H ). A similar argument shows thét is also aG-measurable function
of M ot(H), which easily completes the proof of Lemr&a (ii ).
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Chapter 4

Cutting down p-trees and inhomogeneous
continuum random trees

The results of this chapter are from the joint woB&] with Nicolas Broutin, submitted for publication.
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We study a fragmentation of birthday trees, and give exact correspondences between the birthday
trees and the trees which encode the fragmentation. We then use these results to study the fragmentation
of the ICRTSs (scaling limits op-trees) and give distributional correspondences between the ICRT and
the tree encoding the fragmentation. The results for the ICRT extend the results of Bertoin and Miermont
[30] about the cut tree of the Brownian continuum random tree.
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4.1 Introduction

The study of random cutting of trees has been initiated by Meir and M&@nirj the following form:

Given a (graph theoretic) tree, one can proceed to chop the tree into pieces by iterating the following
process: choose a uniformly random edge; removing it disconnects the tree into two pieces; discard the
part which does not contain the root and keep chopping the portion containing the root until it is reduced
to a single node. In the present document, we consider the related version where the vertices are chosen
at random and removed (until one is left with an empty tree); each such pick is referred totas\&

will see that this version is actually much more adapted than the edge cutting procedure to the problems
we consider here.

The main focus in§8] and in most of the subsequential papers has been put on the study of some
parameters of this cutting down process, and in particular on how many cuts are necessary for the process
to nish. This has been studied for a number of different models of deterministic and random trees such
as complete binary trees of a given height, random trees arising from the divide-and-conquer paradigm
[48, 67, 68, 70] and the family trees of nite-variance critical Galton—Watson processes conditioned on
the total progenyq0, 72, 93]. The latter model of random trees turns out to be far more interesting, and
it provides ana posteriorimotivation for the cutting down process. As we will see shortly, the cutting
down process provides an interesting way to investigate some of the structural properties of random trees
by partial destruction and re-combination, or equivalently as partially resampling the tree.

Let us now be more speci c: iL, denotes the number of cuts required to completely cut down
a uniformly labelled rooted tree (random Cayley tree, or equivalently condition Galton—Watson tree
with Poisson offspring distribution) on nodes, them 2L, converges in distribution to a Rayleigh
distribution which has densitye x*=2 on R, . Janson T12] proved that a similar result holds for any
Galton—Watson tree with a nite-variance offspring distribution conditioned on the total progenynto be
This is the parameter point of view. Addario-Berry, Broutin, and Holmgi@i@ve shown that for the
random Cayley treeg,, actually has the same distribution as the number of nodes on the path between
two uniformly random nodes. Their method relies on an “objective” argument based on a coupling that
associates with the cutting procedure a partial resampling of the Cayley tree of the kind mentioned earlier:
if one considers the (ordered) sequence of subtrees which are discarded as the cutting process goes on,
and adds a path linking their roots, then the resulting tree is a uniformly random Cayley tree, and the two
extremities of the path are independent uniform random nodes. So the properties of the pdrameter
follow from a stronger correspondence between the combinatorial objects themselves.

This strong connection between the discrete objects can be carried to the level of their scaling limit,
namely Aldous' Brownian continuum random tree (CRIYJ. Without being too precise for now, the
natural cutting procedure on the Brownian CRT involves a Poisson rain of cuts sampled according to
the length measure. However, not all the cuts contribute to the isolation of the root. As in the partial
resampling of the discrete setting, we glue the sequence of discarded subtrees along an interval, thereby
obtaining a new CRT. If the length of the interval is well-chosen (as a function of the cutting process),
the tree obtained is distributed like the Brownian CRT and the two ends of the interval are independently
random leaves. This identi es the distribution of the discarded subtrees from the cutting procedure as the
distribution of the forest one obtains from a spinal decomposition of the Brownian CRT. The distribution
of the latter is intimately related to Bismut'83] decomposition of a Brownian excursion. See alsg [
for the generalization to the Lévy case. Note that a similar identity has been proved by Abraham and
Delmas p] for general Lévy trees without using a discrete approximation. A related example is that of
the subtree prune and re-graft dynamics of Evans eté].[Bee alsa57], which is even closer to the
cutting procedure and truly resamples the object rather than giving a “recursive” decomposition.

The aim of this work is two-fold. First we prove exact identities and give reversible transformations
of p-trees similar to the ones for Cayley trees T [The model ofp-trees introduced by Camarri and
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Pitman 1] generalizes Cayley trees in allowing “weights” on the vertices. In particular, this additional
structure of weights introduces some inhomogeneity. We then lift these results to the scaling limits, the
inhomogeneous continuum random trees (ICRT) of Aldous and Pitfi&ywfhich are closely related to

the general additive coalescefB[ 23, 24]. Unlike the Brownian CRT or the stable trees (special cases of
Lévy trees), a general ICRT is not self-similar. Nor does it enjoy a “branching property" as the Lévy trees
do [83]. This lack of “recursivity” ruins the natural approaches such as the one usédjdr the ones

which would argue by comparing two fragmentations with the same dislocation measure but different
indices of self-similarity 25]. This is one of the reasons why we believe these path transformations
at the level of the ICRT are interesting. Furthermore, a conjecture of Aldous, Miermont, and Pitman
[15, p. 185] suggests that the path transformations for ICRTs actually explain the result of Abraham and
Delmas p] for Lévy trees by providing a result “conditional on the degree distribution”.

Second, rather than only focusing on the isolation of the root we also consider the genealogy of
the entire fragmentation as in the recent work of Bertoin and Mierniéfjtdnd Dieuleveut46] (who
examine the case of Galton—Watson trees). In some sense, this consists in obtaining transformations
corresponding to tracking the effect of the cutting down procedure on the isolation of all the points si-
multaneously. Tracking nitely many points is a simple generalization of the one-point results, but the
“complete” result requires additional insight. The results of the present document are used in Chapter
5 to prove that the “complete” cutting procedure in which one tries to isolate every point yields a con-
struction of the genealogy of the fragmentation on ICRTs which is reversible in the case of the Brownian
CRT. More precisely, the genealogy of Aldous—Pitman’s fragmentation of a Brownian CRT is another
Brownian CRT, says, and there exists a random transformatiorGanto a real tre€l’ such that in the
pair (T ; G) the treeG is indeed distributed as the genealogy of the fragmentatioh ,oconditional on
T . The proof there relies crucially on the “bijective” approach that we develop here.

Plan of the chapter.In the next section, we introduce the necessary notation and relevant background.
We then present more formally the discrete and continuous models we are considering, and in which
sense the inhomogeneous continuum random trees are the scaling lppritess. In Sectio.3 we
introduce the cutting down procedures and state our main results. The study of cutting down procedure
for p-trees is the topic of Sectioh4. The results are lifted to the level of the scaling limits in Sectidn

4.2 Notation, models and preliminaries

Although we would like to introduce our results earlier, a fair bit of notation and background is in order
before we can do so properly. This section may safely be skipped by the impatient reader and referred to
later on.

4.2.1 Aldous—Broder Algorithm and p-trees

Let A be a nite set anch = (py;u 2 A) be a probability measure ok such thatming,a py > 0O;
this ensures thah is indeed the support ¢f. Let Ta denote the set of rooted trees labelled with (all
the) elements oA (connected acyclic graphs @, with a distinguished vertex). Far2 Ta, we let
r = r(t) denote its root vertex. Far,v 2 A, we writef u; vg to mean thati andv are adjacent in. We
sometimes writdu; vi to mean thaf u; vg is an edge of, and thau is on the path betweanandv (we
think of the edges as pointing towards the root). For atr2el 5 (rooted atr, say) and a node 2 A,
we lett¥ denote the tree re-rooted\at

We usually abuse notation, but we believe it does not affect the clarity or precision of our statements.
For instance, we refer to a noden the vertex set(t) of a treet usingu 2 t. Depending on the context,
we sometimes writen fug to denote the forest induced byn the vertex set(t) nfug. The (in-)degree
Cy(t) of avertexu 2 A is the number of edges of the form; vi with v 2 A. For a rooted treg, and
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a nodeu of t, we write Sub(t; u) for the subtree of rooted atu (aboveu). Fort 2 Tp andV A,
we write Span(; V) for the subtree of spanningvy and the root of (t). SoSpan(;V) is the subtree
induced byt on the set
Jr(t); uKk
u2v
where Ju; vK denotes collection of nodes on the (unique) path betweemdv in t. WhenV =

Span (t;V) := Span(t; V) nfr(t)g:

As noticed by Aldous 18] and Broder B7], one can generate random treesfohy extracting a tree
from the trace of a random walk @ where the sequence of steps is given by a sequence of i.i.d. vertices
distributed according tp.

Algorithm (Weighted version of Aldous—Broder AlgorithmetY = (j;]j 0) be a sequence of
independent variables with common distributipnfurther on, we say that; are i.i.d.p-nodes. Let
T (Y ) be the graph rooted &% with the set of edges

fhY; 1YY 2fYe, ;Y 1g) 19 (4.1)

The sequenc& de nes a random walk o\, which eventually visits every element &f with
probability one, sincé\ is the support op. So the tracéhY; 1;Yji :j  1g of the random walk on
A is a connected graph @k, rooted atYy. Algorithm 4.2.1extracts the tre@ (Y ) from the trace of the
random walk. To see that(Y ) is a tree, observe that the ed®é¢ 1;Y;ji is added only ifY; has never
appeared before in the sequence. It follows easilyThHat) is a connected graph without cycles, hence
atree oM. Let denote the distribution of (Y ).

Lemma 4.1([18, 37,58]). Fort 2 Ta, we have

Y
)= ®Pry= pSO: (4.2)
u2A

Note that is indeed a probability distribution ohp, since by Cayley's multinomial formula4p,
96]), we have .
X X Y x At

(t) = py ) = Pu =1 (4.3)
t2Ta t2Ta U2A u2A
A random tree o\ distributed according to as speci ed by 4.2) is called gp-tree It is also called the
birthday tree in the literature, for its connection with the general birthday problem4$pe Qbserve
that wherp is the uniform distribution ofn] := f1;2;:::; ng, ap-tree is a uniformly random rooted tree
on[n] (a Cayley tree). So the results we are about to present generalize the exact distributional results in
[7]. However, we believe that the point of view we adopt here is a little cleaner, since it permits to make
the transformatiomxactlyreversible without any extra anchoring nodes (which prevent any kind duality
at the discrete level).

From now on, we consider 1and letfn] denote the sdtl; 2; ;ng. We writeT,, as a shorthand
for Tp,;, the set of the rooted trees @m|. Letalsop = (pj;1 i n) be a probability measure ¢n]
satisfyingminj,, pi > 0. Forasubsef  [n] such thap(A) > 0, we letpja( ) = p( \ A)=p(A)
denote the restriction gf on A, and write ja := (Pi2), The following lemma says that the distribution
of p-trees is invariant by re-rooting at an independemode and “recursive” in a certain sense. These
two properties are one of the keys to our results on the discrete objects. (For a probability distribution
we write X to mean that is the distribution of the random variable.)
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Lemma 4.2. LetT be ap-tree on[n].
i) If V is an independerg-node. ThenTV
i) Let N be set of neighbors of the root . Then, foru 2 N, conditional onv(Sub(T;u)) = V,
Sub(T;u) jv independent of Sub(T;w) : w2 N;w 6 ug.

The rst claim can be veri ed from 4.2), the second is clear from the product form of

4.2.2 Measured metric spaces and the Gromov—Prokhorov topology

If (X;d) is a metric space endowed with the Borehlgebra, we denote byl (X ) the set of nite
measures oX and byM ;(X) the subset of probability measuresX¥nif m 2 M ¢ (X), we denote by
supp(m) the support ofn on X, that is the smallest closed s®tsuch thaim(A®) =0. Iff : X I Y
is a measurable map between two metric spaces, amd2fM ¢ (X ), then the push-forward ah is
an element oM ; (Y), denoted byf m 2 M ;(Y), and is de ned by(f m)(A) = m(f 1(A)) for
each BorelseA of Y. If m 2 M ¢(X) andA X, we denote byn A the restriction ofm to A:
m A (B) = m(A\ B) for any Borel setB. This should not be confused with the restriction of a
probability measure, which remains a probability measure and is denotaghby

We say a tripld X; d; ) is ameasured metric spa¢er sometimes anetric measure spard (X;d)
is a Polish space (separable and complete) aBdM 1(X ). Two measured metric spacgs; d; ) and
(X%d% 9 are said to beveakly isometridf there exists an isometry between the supports ofon X
and of %onX%suchtha( ) = © This de nes an equivalence relation between the measured metric
spaces, and we denote b the set of equivalence classes. Note thgiifd; ) and(X°%d® 9 are
weakly isometric, the metric spacg$; d) and(X ¢ d% may not be isometric.

We can de ne a metric oM by adapting Prokhorov's distance. Consider a metric sgxcel)
and for > 0, letA = fx 2 X : d(x;A) < g. Then, given two (Borel) probability measures
;2 M 1(X), the Prokhorov distance> between and is de ned by

p(; ):=inff > 0: (A) (A)+ and (A) (A )+ ; forall Borel setsAg: (4.4)

Note that the de nition of the Prokhorov distanck4) can be easily extended to a pair of nite (Borel)
measures oX . Then, for two measured metric spa¢¥sd; ) and(X 0 qe () the Gromov—Prokhorov
(GP) distance between them is de ned to be

ep((:d; )i(XSdS 9 =inf o ;

where the in mum is taken over all metric spac2sand isometric embeddings: supp( ) ! Z and
ssupp( 9! Z. ltis clear that gp depends only on the equivalence classes conta{dngd; ) and
(X%d% 9. Moreover, the Gromov—Prokhorov distance tukhén a Polish space.
There is another more convenient characterization of the GP topology (the topology induced by
cp) that relies on convergence of distance matrices between random points. £€tX;d; ) be a

measured metric space and (et; i 1) be a sequence of i.i.d. points of common distributionin
the following, we will often refer to such a sequence(gsi 1) as an i.i.d. -sequence. We write
X = (d(i; j);1 i;j < 1) for the distance matrix associated with this sequence. One easily

veri es that the distribution of * does not depend on the particular element of an equivalent cl&ss of
Moreover, by Gromov's reconstruction theoreﬁn,[s%], the distribution of X characterize¥X as an
element ofM.

Proposition 4.3 (Corollary 8 of B4]). If X is some random element taking valuesMnand for each
n 1, X, is arandom element taking valueshh, thenX,, converges t& in distributionasn ! 1 if
and only if X converges to* in the sense of nite-dimensional distributions.

95



Pointed Gromov—Prokhorov topology.The above characterization by matrix of distances turns out to
be quite handy when we want to keep track of marked points.kL2tN. If (X;d; ) is a measured
metric space and = (X1;X»; 1 Xk) 2 XK is ak-tuple, then we sayX;d; ; x) is ak-pointed
measured metric spager simply a pointed measured metric space. Two pointed metric measure spaces
(X;d; ; x)and(X%d® ©x9 are said to beveakly isometridf there exists an isometric bijection

rsupp( ) [f x1ix2;  ixg! supp( O [f x§ix9;  ixRg

suchtha{ ) = fand (xj)= x%1 i k,wherex = (x1;x2; ;xk)andx®=(x%x9; ;x?).
We denote by, the space of weak isometry-equivalence classéspfinted measured metric spaces.
Again, we emphasize the fact that the underlying metric spéxeg) and(X ¢ d% do not have to be
isometric. The spackl, equipped with the following pointed Gromov—Prokhorov topology is a Polish
space.

A sequencéXp;dn; n;Xn)n 1 Of k-pointed measured metric spaces is said to converge to some
pointed measured metric spafe;d; ; X) in the k-pointed Gromov—Prokhorov topology if for any

m 1,
n'l

n( s ng il B) 0 m !d dCi; ;:1 G m;
where foreaclm  1andl i Kk, ;= Xpi if Xnp = (Xn;25Xn2; ;Xnk) @nd( 50 k+1)is
a sequence of i.i.d.n-points inX . Similarly, ; = x; forl i kand(;;i k+1) isasequence

ofi.i.d. -points inX . This induces th&-pointed Gromov—Prokhorov topology &, .

4.2.3 Compact metric spaces and the Gromov—Hausdorff metric

Gromov—Hausdorff metric. Two compact subsets andB of a given metric spaceX; d) are compared
using the Hausdorff distance.

H(A;B):=inff > 0:A B andB A g:

To compare two compact metric spadesd) and(X ¢ d9, we rst embed them into a single metric
spacgZ; ) viaisometries : X | Z and :X°! Z, andthencompare the imageg<) and (X9
using the Hausdorff distance @ One then de nes the Gromov—-Hausdoff (GH) distangg by

cH((X;d); (X%d%) = inf w( (X); xX9;

where the in mum ranges over all choices of metric spatesd isometric embeddings: X | Z and
: X91 Z. Note that, as opposed to the case of the GP topology, two compact metric spaces that are
at GH distance zero are isometric.

Gromov—Hausdorff—Prokhorov metric. Now if (X;d) and (X ¢ d% are two compact metric spaces
andif 2M ¢(X)and %92 M ¢ (X9, one way to compare simultaneously the metric spaces and the

measures is to de ne
n

(0]
arp (G (XS 9 =it w005 (X9 k(5 9

where the in mum ranges over all choices of metric spagesnd isometric embeddings: X ! Z
and : X0 Z.If we denote byM the set of equivalence classes of compact measured metric spaces
under measure-preserving isometries, theyis Polish when endowed withsyp .

Pointed Gromov—Hausdorff metric. We x somek 2 N. Given two compact metric spacéx; dyx )
and(Y;dy), letx = (x1;X2;  :xk) 2 XKandy = (y1;y2;  :Yk) 2 YK. Then the pointed Gromov—

Hausdorff metric betwee(X;dx ; x) and(Y;dy;y) is de ned to be
n o

por (Xiduix)i(Yidyiy) o= inf oy (X); (Y) _ maxdz  (xi); (vi)
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where the in mum ranges over all choices of metric spagesnd isometric embeddings: X ! Z
and : X9 Z.LetM¥K denote the isometry-equivalence classes of those compact metric spaces with
k marked points. Itis a Polish space when endowed wig -

424 Realtrees

A real treeis a geodesic metric space without loops. More precisely, a metric $ader ) is called a
(rooted) real tree if 2 X and

for any two pointsx;y 2 X, there exists a continuous injective mag : [0;d(x;y)] ! X such
that 4, (0) = x and xy(d(x;y)) = y. The image of y is denoted bylx; yK

if q:[0;1]! X is a continuous injective map such tlgd) = x andq(l) = vy, thenq([0; 1]) =
X yK

As for discrete trees, when it is clear from context which metric we are talking about, we refering to
metric spaces by the sets. For insta(ited) is often referred to as .

A measured (rooted) real treis a real tredX; d;r) equipped with a nite (Borel) measure 2
M (X). We always assume that the metric sp@€ed) is complete and separable. We denotd ythe
set of the weak isometry equivalence classes of measured rooted real trees, equipped with the pointed
Gromov—-Prokhorov topology. Also, 18t be the set of the measure-preserving isometry equivalence
classes of those measured rooted real tt¥ed;r; ) such tha(X;d) is compact. We endowWy, with
the pointed Gromov—Hausdorff—Prokhorov distance. Then BgtlandT§, are Polish spaces. However
in our proofs, we do not always distinguish an equivalence class and the elements in it.

Let (T;d;r) be a rooted real tree. For2 T, the degree ol in T, denoted bydeg(u; T), is the
number of connected componentsloh fug. We also denote by

Lf(T)=fu2T:degu;T)=1g and Br(T)=fu22T:degu;T) 3g

the set of thdeavesand the set dbranch pointof T, respectively. The skeleton &fis the complemen-
tary setofLf(T) in T, denoted bysk(T). For two pointas; v 2 T, we denote by” v the closest common
ancestor ol andyv, that is, the unique poiw of Jr; uK\ Jr; vKsuch thad(u; v) = d(u; w) + d(w; V).
For arooted real tre€T ;r), if x 2 T then the subtree &f abovex, denoted bysub(T; x), is de ned
to be
Sub(T;x):=fu2T:x2 Juk:

Spanning subtreeLet(T; d;r) be arooted real tree and bet= (X1;  ; Xk) bek points of T for some
k 1. We denote byspan(T; x) the smallest connected setbfwhich contains the roat andx, that
is, Span(T;x) = [ 1 i «Jr;XiK We consideiSpan(T;x) as a real tree rooted atand refer to it as a
spanning subtreer areduced treef T.

If (T;d;r) is areal tree and there exists some (X1;X2;  ;Xk) 2 TX forsomek 1 such that
T = Span(T;x), then the metric aspect af is rather simple to visualize. More precisely, if we write
Xo=randlet * =(d(xi;xj);0 i;j k), then * determinegT;d;r) under an isometry.

Gluing. If (T;; di);i = 1;2 are two real trees with some distinguished poit& T;,i = 1; 2, the result
of thegluing of T; andT, at(x1; X») is the metric spac€l, [ T»; ), where the distanceis de ned by

di(u; v); if (u;v)2T2i=1;2;

V)= G (U xa) + da(vixa); i U2 Tyv 2 To:

Itis easy to verify thatT1 [ To; ) is areal tree with, andx; identi ed as one point, which we denote
by T1~x,=x, T2 in the following. Moreover, ifT; is rooted at some point, we make the convention
thatT1 ~x,=x, T2 IS also rooted at.
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4.2.5 Inhomogeneous continuum random trees

The inhomogeneous continuum random tree (abbreviated as ICRT in the following) has been introduced
in[41] and [13]. See also]2, 15, 17] for studies of ICRT and related problems.

Let (thepara@eterspac)d)ethe setofsequerlgesz( 0, 1, 2. ) 2RI suchthat, 2
3 0,0 0 ,,?2=1,andeithero>0or , ; i=1.

Poisson point process constructiork-or each 2 , we can de ne a real tre€ in the following way.

If o> 0,letPo= f(uj;vj);] 1gbe a Poisson point process on the rst octhfx;y) : 0
y  xgof intensity measure3dxdy, ordered in such away thaf <u, < ugs <

Foreveryi 1suchthat; > 0,letP; =f j;;j 1gbe ahomogeneous Poisson procesRon
of intensity ; underP, such thatj1 < 2< 3<

All these Poisson processes are supposed to be mutually independent and de ned on some common
probability spacé ;F;P). We consider the points of all these processes as marks on the hd#.line
among which we distinguish two kinds: thatpointsand thegoinpoints A cutpoint is eitheu; for some

i lor jj forsomei 1andj 2. For each cutpoinx, we associate a joinpoint as follows:

X =vjifx=u; forsomg landx = jiifx= jj forsomei 1landj 2. One easilyveries

that the hypotheses onimply that the set of cutpoints is a.s. nite on each compact s&.afwhile the
joinpoints are dense a.s. everywhere. (See for exarmf]édr a proof.) In particular, we can arrange the
cutpoints in increasing order 8s< 1< < 3< . This splitsR. into countaly intervals that we

now reassemble into a tree. We writg for the joinpoint associated to theth cutpoint . We de ne

R1 to be the metric spad®; ] rooted ald. Fork 1, we let

Risr = R ~ [k knl
Kk~ k

In words, we graft the intervalsy; k+1] by gluing the left end at the joinpoint . Note that we have

« < kas., thus, 2 Ry and the above grafting operation is well de ned almost surely. It follows
from this Poisson construction th@y)x 1 is a consistent family of “discrete” trees which also veri es
the “leaf-tight" condition in Aldous1(]. Therefore by L0, Theorem 3], the complete metric spdce=
[ k 1Rk is a real tree and almost surely there exists a probability measwaled themass measure
which is concentrated on the leaf setTof Moreover, if conditional orT, (Vk;k 1) is a sequence
of i.i.d. points sampled according tq then for eactk 1, the spanning treBpan(T; V1; V2; Vi)
has the same unconditional distribution/Rs The distribution of the weak isometry equivalence class
of (T; ) is said to be the distribution of al€RT of parameter , which is a probability distribution
onTy. The push-forward of the Lebesgue measurdrende nes a - nite measure” on T, which is
concentrated o8k(T) and called théength measuref T . Furthermore, it is not dif cult to deduce the
distribution of (R1) from the above construction af:

PC(R)>r)=P(1>r)=¢e sy 1+ ir)e ;> 0 (4.5)
i1
In the important special case when= (1;0;0; ), the above construction coincides with the line-

breaking construction of the Brownian CRT i8, [Algorithm 3], that is,T is the Brownian CRT. This
case will be referred as the Brownian case in the sequel. We notice that whenever there is an iddex
such that ; > 0, the point, denoted by;, which corresponds to the joinpoint; is a branch point of
in nite degree. According to]5, Theorem 2]), i is a measurable function ¢T; ;), and we refer to it
as the local time of j in what follows.

ICRTSs as scaling limits ofp-trees.Letp, = (Pn1;Pn2;  ;Pnn) be ggprobability measure gn] such
thatpns  pn2 Pn > O,n 1. Dene , Oby 2=, p% anddenote by" the
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corresponding,,-tree, which we view as a metric space [of with graph distancelr,. Suppose that

the sequencép,;n 1) veri es the following hypothesis: there exists some parameter( ;i 0)
such that On
: -n- o Pri : .
n|1|1m n=0; and n|!|1m - i; foreveryi 1L (H)

Then, writing ,T" for the rescaled metric spa¢p]; ndrn), Camarri and Pitmar4fl] have shown
that
nll

( nTTpp) !

d:p (T; ); (4.6)

where! 4.gp denotes the convergence in distribution with respect to the Gromov—Prokhorov topology.

4.3 Main results

4.3.1 Cutting down procedures forp-trees and ICRT

Consider gp-treeT. We perform a cutting procedure dnby picking each time a vertex according to
the restriction ofp to the remaining part; however, it is more convenient for us to retain the portion of
the tree that contains a random nadesampled according tp rather than the root. We denote byT)

the number of cuts necessary unilis nally picked, and letX;, 1 i  L(T), be the sequence of
nodes chosen. The following identity in distribution has been already showhimthe special case of

the uniform Cayley tree:

L(T) 4 Card f vertices on the path from the rootYbg: 4.7)

In fact, @.7) is an immediate consequence of the following result. In the above cutting procedure, we
connect the rejected parts, which are subtrees abgvpist before the cutting, by drawing an edge
betweenX; andXi+1,i =1;2; ;L(T) 1 (see Figuretl.lin Section4.4). We obtain another tree

on the same vertex set, which contains a path from the rsiXcuto the random nod¥ that we were
trying to isolate. We denote lgut(T; V) this tree which (partially) encodes the isolating procesg of

We prove in Sectiod.4that we have

(cut(T:V);V) 2(T:V): (4.8)

This identity between the pairs of trees contains a lot of information about the distributional structure of
the p-trees, and our aim is to obtain results similar4dg| for ICRTs. The method we use relies on the
discrete approximation of ICRT by-trees, and a rst step consists in de ning the appropriate cutting
procedure for ICRT.

In the case op-trees, one may pick the nodesDfin the order in which they appear in a Poisson
random measure. We do not develop it here but one should keep in mind that the cutting procedure may
be obtained using a Poisson point proces®en T with intensity measurdt p. In particular, this
measure has a natural counterpart in the case of ICRTs, and it is according to this measure that the points
should be sampled in the continuous case.

So consider now an ICRT . Recall that for 6 (1;0;:::),foreach ;i > Owithi 1, there exists
a unique point, denoted by, which has in nite degree. Ldt be the measure oh de ned by

X
L(dx):= 2°(dx)+ i (dx); (4.9)
i1
which is almost surely - nite (Lemma4.22). Proving thatL is indeed the relevant cutting measure (in a
sense made precise in Proposittb83) is the topic of Sectiod.7. Conditional onT , letP be a Poisson
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point process oiRy T of intensity measurdt L (dx) and letV be a -point onT. We consider
the elements o as the successive cuts dnwhich try to isolate the random poikt. For eachit 0,
de ne

Pi=fx2T :9s tsuchthat(s;x) 2 Pg;

and letT; be the part off still connected to/ at timet, that is the collection of points 2 T for which
the unique path i from V to u does not contain any element®f. Clearly, To T ¢ if t© t. We set
C:=ft>0: (Ty )> (Ty)g: Those are the cuts which contribute to the isolatiol of

4.3.2 Tracking one node and the one-node cut tree

We construct a tree which encodes this cutting process in a similar way that thé trexit( T; V) en-
codes the cutting procedure for discrete trees. First we construct the “backbone”, which is the equivalent
of the path we add in the discrete case. for0, we de ne
Z t
L¢ = (Ts)ds;
0

andL; thelimitast ! 1  (which might be in nite). Now consider the interv@iD; L1 ], together
with its Euclidean metric, that we think of as rooted0atThen, for eacht 2 C we graftT; n T;, the
portion of the tree discarded at timheat the point; 2 [0; L1 ] (in the sense of the gluing introduced in
Section4.2.5. This creates a rooted real tree and we denoteutyT ; V) its completion. Moreover, we
can endoweut(T ; V) with a (possibly defective probability) measurdy taking the push-forward of
under the canonical injectionfrom|[ (oc(Ty nT;) tocut(T; V). We denote by the endpoint.; of
the intervallO; L, ]. We show in Sectiod.5that

Theorem 4.4.We havdL; < 1 almost surely. Moreover, undéi) we have
( ncut(T”;V”);pn;V”)rg!_;P (cut(T;V);2U);

jointly with the convergence i.6).
Combining this with 4.8), we show in Sectiod.5that

Theorem 4.5.Conditional onT , U has distribution’®, and the unconditional distribution ¢€ut(T ; V); *)
is the same as that ¢T; ).

Theoremgt.4and4.5immediately entail that

Corollary 4.6. Suppose thatH) holds. Then

n!l

nL(TT !'d

Li;
jointly with the convergence if#.6). Moreover, the unconditional distribution bf; is the same as that
of the distance iT between the root and a random powitchosen according to, given in(4.5).

4.3.3 The complete cutting procedure

In the procedure of the previous section, the fragmentation only takes place on the portions of the tree
which contain the random poiM. Following Bertoin and MiermontJ0], we consider a more general
cutting procedure which keeps splitting all the connected components. The aim here is to describe the
genealogy of the fragmentation that this cutting procedure produces. Fot eadd P; induces an
equivalence relation; onT: forx;y 2 T we writex Vyif I;yK\P { = ;. We denote by, (t) the

100



equivalence class containinxg In particular, we hav@y (t) = T;. Let(V,);i 1 be a sequence of i.i.d.
-points inT. Foreacht 0,dene i(t)= (Ty(t)). We write #(t) for the sequence i(t);i 1)
rearranged in decreasing order. In the case wiieisethe Brownian CRT, the proceés*(t)); o is the
fragmentation dual to the standard additive coalescEijt In the other cases, however, it is not even
Markov because of the presence of those branch pointsth xed local times ;.
As in [3(], we can de ne a genealogical tree for this fragmentation process. Forieach and
t 0let Z,

L} = i(s)ds;
0

and letL} 2 [0;1 ] be the limitast ! 1 . For each paifi;j) 2 N2 let (i;j) = (j;i) be the
rst moment whendV;; V; Kcontains an element & (or more precisely, its projection onfo), which is
almost surely nite by the properties d@f andP. It is not dif cult to construct a sequence of increasing
realtreesS; S such thatSy has the form of a discrete tree rooted at a point denoteslith
exactlyk leavesf Up; Uy;  ; Ukg satisfying

d( sU)=Lh; dUipy) =Ly + L 20 1 i<) K (4.10)
whered denotes the distance 8f, for eachk 1. Then we de ne
cut(T) = [k 1Sk;

the completion of the metric spacg Sk; d), which is still a real tree. In the case whereis the
Brownian CRT, the above de nition afut(T) coincides with the tree de ned by Bertoin and Miermont
[30.

Similarly, for eactp,-treeT", we can de ne a complete cutting procedureTohby rst generating
a random permutatiofX n1; X n2; ; Xnn) on the vertex sefn] and then removing ,; one by one.
Here the permutatio®X n1; X n2;:::; Xnn) is constructed by sampling, for 1, X,; according to the
restriction ofp,, to[n] nfXy; ;j <i g. We de ne a new genealogy dn] by makingX ,; an ancestor of
Xnj ifi<j andXp; andXpi are in the same connected component wKkgnis removed. If we denote
by cut(T") the corresponding genealogical tree, then the number of vertices in the petit( 6f')
between the rooK n1 and an arbitrary vertex is precisely equal to the number of cuts necessary to
isolate this vertex. We have

Theorem 4.7. Suppose thafH) holds. Then, we have

ncut(T"); p, Tilep cut(T); ;

k 1

P
jointly with the convergence i(#.6). Here, is the weak limit of the empirical measurés =0 Ui
which exists almost surely conditional @n

From this, we show that

Theorem 4.8. Conditionally onT, (U;; i 0) has the distribution as a sequence of i.i.d. points of
common law . Furthermore, the unconditioned distribution of the p&iut(T); ) is the same as

(T; ).

In general, the convergence of tpg-trees to the ICRT in4.6) cannot be improved to Gromov—
Hausdorff (GH) topology, see for instancB4] Example 28]. However, when the sequeKipg), 1 IS
suitably well-behaved, one does have this stronger convergence. (This is the case for exammle with
the uniform distribution oifin], which gives rise to the Brownian CRT, see al$b, [Section 4.2].) In such
cases, we can reinforce accordingly the above convergences of the cut trees in the Gromov—Hausdorff
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topology. Note however that a "reasonable" conditiop@msuring the Gromov—Hausdorff convergence
seems hard to nd. Let us mention a related open questioiin $ection 7], which is to determine
a practical criterion for the compactness of a general ICRT. Writingsnp for the convergence in
distribution with respect to the Gromov—Hausdorfi—Prokhorov topology (see SecHpnve have

Theorem 4.9. Suppose that is almost surely compact and suppose alsnad

11
ZT P, O’I‘_!GHP T: (4.11)

Then, jointly with the convergence (#.11), we have

11

cut(T™; v"): ¥ cut(T:V): A -
n cut( )i Pn dSHP (T:V)

11
ncut(T™): p, ;!GHP cut(T);

4.3.4 Reversing the cutting procedure

We also consider the transformation that “reverses” the construction of thetitéés V) de ned above.
Here, by reversing we mean to obtain a tree distributed as the primdl freenditioned on the cut tree
being the one we need to transform. So for an IGRTdy ; *) and a random poinl sampled according
to its mass measurg we should construct a trestwu ( H; U) such that

(T;cut(T:V)) 2 (shu ( H;U):H): (4.12)

This reverse transformation is the one describedjifdr the Brownian CRT. FoH rooted atr (H), the
path betweedr (H); UKthat joinsr (H) to U in H decomposes the tree into countably many subtrees of
positive mass

Fx=fy2H :U”"y=xg;

whereU " y denotes the closest common ancestotJoandy, that is the unique poird such that
Jr(H); UK\ Jr(H);yK= J(H);aK Informally, the treeshu ( H;U) is the metric space one obtains
from H by attaching eaclkx of positive mass at a random poifs, which is sampled proportionally
to ~ in the union of theFy for which dy (U;y) < dy(U;Xx). We postpone the precise de nition of
shu ( H; U) until Section4.6.1

The question of reversing the complete cut wal T ) is more delicate and is the subject of Chapter
5. There we restrict ourselves to the case of a Brownian CRTE fandG Brownian CRT we construct
atreeshu ( G) such that

(T:cut(T)) 2 (shu ( G): G):

We believe that the construction there is also valid for more general ICRTSs, but the arguments we use
there strongly rely on the self-similarity of the Brownian CRT.

Remarks. i. Theoremd.5generalizes Theorem 1.5 ii][ which is about the Brownian CRT. The special
case of Theorem.4 concerning the convergence of uniform Cayley trees to the Brownian CRT is also
found there.

i. WhenT is the Brownian CRT, Theorem.8 has been proven by Bertoin and MiermoBG0].
Their proof relies on the self-similar property of the Aldous—Pitman's fragmentation. They also proved
a convergence similar to the one in Theordii for the conditioned Galton—Watson trees with nite-
variance offspring distributions. Let us point out that their de nition of the discrete cut trees is distinct
from ours, and there is no “duality” at the discrete level for their de nitions. Very recently, a result
related to Theoremd.7 has been proved for the case of stable tree$ (with a different notion of
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discrete cut tree). Note also that the convergence of the cut trees provad amfl [46] is with respect
to the Gromov—Prokhorov topology, so is weaker than the convergence of the corresponding conditioned
Galton—Watson trees, which holds in the Gromov—Hausdorff—Prokhorov sense. In our case, the identities
imply that the convergence of the cut trees is as strong as that pf, tirees (Theorerd.9).

iii. Abraham and Delma$] have shown an analog of Theorehb for the Lévy tree, introduced in
[83]. In passing Aldous et al.1f] have conjured that a Lévy tree is a mixture of the ICRTs where the
parameters are chosen according to the distribution of the jumps in the bridge process of the associated
Lévy process. Then the similarity between Theoremand the result of Abraham and Delmas may be
seen as a piece of evidence supporting this conjecture.

4.4 Cutting down and rearranging ap-tree

As we have mentioned in the introduction, our approach to the theorems about continuum random trees
involves taking limits in the discrete world. In this section, we prove the discrete results about the
decomposition and the rearrangemenpdfees that will enable us to obtain similar decomposition and
rearrangement procedures for inhomogeneous continuum random trees.

4.4.1 Isolating one vertex

As a warm up, and in order to present many of the important ideas, we start by isolating a single node.
LetT be ap-tree and le¥ be an independemt-node. We isolate the vertdx by removing each time a
random vertex ol and preserving only the component containihgintil the time wherV is picked.

THE 1-CUTTING PROCEDURE AND THEL-CUT TREE. Initially, we haveTy = T, and an independent
vertexV. Then, fori 1, we choose a nod¢; according to the restriction @fto the vertex set(T; 1)
of T; 1. We de neT,; to be the connected component of the forest induced by onv(T; 1) nfXig
which containsv. If T; = ?, or equivalentlyX; = V, the process stops and we &et= L(T) = i.
Since at least one vertex is removed at every step, the process stopslin time

As we destruct the tre@ to isolateV by iteratively pruning random nodes, we construct a tree
which records the history of the destruction, that we callltoait tree. Thisl-cut tree will, in particular,
give some information about the number of cuts which were needed to isblatmwever, we remind
the reader that this number of cuts is not our main objective, and that we are after a more detailed
correspondence between the initial tree and-itsit tree. We will prove that these two trees dralin
a sense that we will make precise shortly.

By construction(T;;0 i< L ) is a decreasing sequence of nonempty trees which all covtain
and(Xi;1 i L)isasequence of distinct verticesof= Tp. Forl i L,wesetr =T 1nT;,
that is,F; is the graph on the vertex se{T; 1) nv(T;) whose edge set is a subset of the edge set of
T; 1. Itis not dif cult to see thatF; is a tree containin;, which we see as the root Bf. Besides, for
eachl i<L,X; 6 V andthereis aneighbdd of X; on the path betweeX; andV inT; 1. Then
Ui 2 Ti and we sed; as rooted ab;.

When the procedure stops, we have ave@fgrl i L) of subtrees off which together span
all of [n]. We may re-arrange them into a new tree, theut tree corresponding to the isolation\éfin

1 i< .Thenby construction, forla2 T,, conditional orH = h andV = v, we havd. equal to the
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X4
X3
X2
X1

Xs

Figure 4.1 —The re-organization of the tree in the one-cutting procedure: on the left the initialltree

we writep(A) == 54 Pi-
Lemma 4.10. Let T be ap-tree on[n], andV be an independem-node. Leth 2 T,,, andv 2 [n] for

andw 2 [n]. Then we have

Y pui
p(Sub(h; Xj+1))

PH=hV=vrT)=wU-=u;l i< )= (h) Pv Pw:

1 i<
In particular, (H; V) p.

As a direct consequence of our constructioklgL is the number of nodes of the subt®ganH; V),
which we write# Span(H;V ). So Lemmai.10entails immediately that

Proposition 4.11. LetT be ap-tree andV be an independemt-node. Then
L 2#Span( T;V):
Proof of Lemmat.1Q By construction, we have
fH=hV=vg f X1=x1; ;X 1=x ;X-=v;L="g;

andthe sequend€&i;1 i ) ispreciselythe sequence of subtreg®fhrootedak;,1 i °,that
are obtained when one removes the edggsx;+19,1 i< (the edges of the subgrafpan(;v)).
Furthermore, given thdt = * and the sequence of cut verticés = x;, 1 i< ,in order to recover
the initial treeT it suf ces to identify the verticedJj, 1 i < °, for which there used to be an edge
f Xi; Uig (which yields the correct adjacencies) and the rodt ofote thatJ; isanode ofl;, 1 i< .
However, by construction, given thet = h andV = v, the set of nodes df; is precisely the set of
nodes ofSub(h; Xj+1 ), the subtree ol rooted atx;1 .

Foru = (u;; ;u 1) 2 U(h;v), dene (h;v;u) as the tree obtained frotm by removing the
edges oSpan(h; v), and reconnecting the pieces by adding the efiges; g, for all the edgesx;; Xj+1 i
in Span(;v). (In particular, the number of edges is unchanged.) We regdrd/; u) as a tree rooted
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atr = x1, the root ofh. The the tred may be recovered by characterizihg, the tre€eT rerooted at,
and the initial root (T). We have:

fH=hV=vir(T)=w;U=uj;1 i<’ g

=fT' = (hyv;u);r(M=w;X;=xi;1 i g
It follows that, for any nodeg1; uy;:::;u- 1 as above, we have
PH=hV=vr(T)=w;Ui=u;1 i<’)
=P(T= (hv;u);V=v;Xi=x;;1 i )
Y Px;
= ( (hsv;u)") py :

., - p(Sub(hixi)

Now, by de nition, the only nodes that get their (in-)degree modi ed in the transformation fram

(h;v;u) areuj, xj+1,1 i<’ : everysuchkj:; gets one less in-edge whilg gets one more. The
re-rooting atw then only modi es the in-degrees of the extremities of the path that is reversed, namely
X1 = r andw. It follows that

Y
Wy — pUi pW.
h;v; = (h _— —
(vim= (- o

Sincep(Sub(h; x;1)) =1, we have

Y pUi

PH=mhV=vr(M=wU=u;l i< )= (h) L i P(Sub(h;Xis1))

P Pw;

which proves the rst claim. Summing over all the choicestior (us;uz;:::;u- 1) 2 U(h;v), and
w 2 [n], we obtain

X X Y By

(h) -
w2[nJuzU(hv) Xl i< p(Sub(h; Xi+1))

Pu, Pu-
(h) pv p(Sub(h; x2))  p(Sub(h;x-))

P(H=hV=yv Py Pw

u=(uz; ;U g):
Ui 2Sub(h;xi+1 );1 i<

(h) pv;

which completes the proof. O

THE REVERSE1-CUTTING PROCEDURE We have transformed the tr8einto the treeH, by some-
what “knitting” a path between the rst picked randgmnodeX ; and the distinguished nodé. This
transform is reversible. Indeed, it is possible to “unknit” the path betwéemd the root oH, and
reshuf e the subtrees thereby created in order to obtain a newltrekstributed asl and in whichV

is an independerg-node. Knowing theJ;, one could do this exactly, and recover the adjacencids of
(recoveringT also requires the information about the ro6t) which has been lost). De ning a reverse
transformation reduces to nding the joint distribution(af;) andr (T), which is precisely the statement
of Lemma4.1Q so that the following reverse construction is now straightforward.

Leth 2 Ty, rooted ar and letv be a node ifjn]. We think ofh as the tree that was obtained by the
1-cutting procedureut(T; V), for some initial tre€l . Suppose thaBpan(; v) consists of the vertices
r = Xi1;X2;:::;Xx = v. Removing the edges @pan(;v) from h disconnects it into connected
components which we see as rootekgtl | *. Forw 2 Span (h;v) = Span(h;v) nfrg,
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sample a nod&),, according to the restriction gf to Sub(h; w). LetU = (Uy;w 2 Span (h;v)) be
the obtained vector. Thdd 2 U(h;v). We then de neshu ( h;v) to be the rooted tree which has the
adjacencies of (h;v; U), but that is re-rooted at an independprntode.

It should now be clear that tHecutting procedure and the reshuf ing operation we have just de ned
are dual in the following sense.

Proposition 4.12(1-cutting duality) LetT bep-tree on[n] andV be an independemt-node. Then,
(shu (T;V);T;V) d (T;cut(T;V);V):
In particular, (shu ( T;V); V) p.

Note that for the joint distribution in Propositi@nl2, it is necessary to re-root at another independent
p-node in order to have the claimed equality. Indéednd (T;V; U) have the same root almost surely,
while T andcut(T; V) do not (they only have the same root with probability ; pi2 < 1.

Proof of Propositiod.12 Let H = cut( T;V) be the tree resulting from the cutting procedure. Let
L =#Span(H;V). Forl i< L, we dened nodedJ;, which used to be the neighbors Xf in

T. Forw 2 Span (H;V), we letU,, = U; if w = Xj4+1, and letU be the corresponding vector. Then
writing f = r(T), with probability one, we have

T= (HV;U)"

By Lemma4.10 U 2 U(H;V ) and conditional o1 andV, Uy, w 2 Span (H;V) andft = r(T) are
independent and distributed according to the restrictiop tf Sub(H; w) andp, respectively. So this
coupling indeed gives that = (H;V ;U)" is distributed ashu ( H;V ), conditional onH . Since in
this coupling(shu ( H;V); T; V) is almost surely equal t0T' ; H; V), the proof is complete. O

Remark. Note that the shuf e procedure would permit to obtain the original Tresxactly if we were to

use some information that might be gathered as the cutting procedure goes on. In this discrete case, this
is rather clear that one could do this, since the shuf e construction only consists in replacing some edges
with others but the vertex set remains the same. This observation will be used in Seétioprove a

similar statement for the ICRT. There it is much less clear and the result is slightly weaker: it is possible
to couple the shuf e in such a way that the tree obtained is measure-isometric to the original one.

4.4.2 lIsolating multiple vertices

We de ne a cutting procedure analogous to the one described in Sdctidnbut which continues until
multiple nodes have been isolated. Again, welldte ap-tree and, for somk 1, let V1; Vo; Vi
bek independent vertices chosen according {80 not necessarily distinct).

THE k-CUTTING PROCEDURE AND THEK-CUT TREE We start with ¢ = T. Later on, j is meant to

be the forest induced by on the nodes that are left. For each time 1, we pick a random verteX;
according top restricted tov( ; 1), the set of the remaining vertices, and remove it. Then among the
connected components 8fnfX1;  ; X;g, we only keep those containing at least on&/gf ;.

For1 ° k and fori 0, we denote byTi\ the connected component ®fn fX ;X 5; ; Xig
containingV- at timei, or Ti‘ = 2?2 if WV 2 fXq;:::;Xi9. Then ; is the graph consisting of the
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Figure 4.2 —The decomposition of the tree when removing the péjnfrom the connected component
of i which contains/y; V, andVs.

Fix some™ 2 f 1;2;:::;kg, and suppose that at tinle 1, we haveX; 2 Ti‘ 1. If X =V, then
Ti\ = ? and we de neF; = Ti‘ 1, re-rooted a; = V.. OtherwiseX; 6 V- and there is a rst node
U, on the path betweeX; andV: in T, ;. ThenU, 2 T, and we sed; as rooted at); . Note that it
is possible tha1l'ij .= T, ,,forj 8 ", and that removini; may separat¥" fromV;. Removing from

i 1the edgesEXi;Ui\g, forl ~ ksuch thafl'i‘ 3 X, isolatesX; from the node%/;;:::; Vk, and
we de neF; as the subtree df induced on the nodes iy 1 n i; so thatF; is the portion of the forest

i 1 which gets discarded at timewhich we see as rooted 4.

Consider the set of effective cuts which affect the siz&;of
EK = fx 2 [n]: there exist§ 1; suchthatX; = x 2 T; ,g;

and note thaEX [EX[ [E K= fX;:1 i LXg LetSy, thek-cutting skeletonbe a tree
onEf [ [E [ thatis rooted aiXy, and such that the vertices on the path frém to V- in Sy

are precisely the nodes &, in the order given by the indices of the cuts. So if we viBas a
genealogical tree, then in particular, for j;° k, the common ancestors bf andV- are exactly
the ones irE]-k \ E K. The treeSy constitutes thdackboneof a tree onn] which we now de ne. For
everyx 2 S, thereis a uniqué = i(x) 1such thatx = X;. For that integef we have de ned
a subtred~; which containsX; = x. We append~; to Sk atx. Formally, we consider the tree ¢n]

whose edge set consists of the edgeS,ofogether with the edges of @i, 1 i L. Furthermore,
the tree is considered as rootedXat. Then this tree is completely determined By Vy;:::; Vk, and
the sequenc¥ := (X;:i = 1;:::;LK), and we denote this tree by{T: Vq::::; Vik; X) when we want

Itis convenient to de ne @anonical (total) order on the vertices o8y. It will be needed later on in
order to de ne the reverse procedure. For two nadiesin Sy, we say thati v if eitheru 2 JX1; VK
or if there exists 2 f 1;:::;kgsuch thau 2 Span(Sg; Vi;:::; V) butv 62Span(Sg; V1;:::; V).

and provide a natural but crucial coupling for which the sequéBgkis increasing irk. LetY;,i 1, be

a sequence of i.i.p-nodes. Fok 1, we de ne an increasing sequencgas follows. Let (1) = 1.

Suppose that we have already de nédi;:::; XK ;. Let Kk | be the collection of connected components

k(@) =inffj> (i 1):Y2 Kig

and de neXX = Y «(i)- Then, for everk, XK, i 1,is asequence of nodes sampled according to the
restriction ofp to K |, sothatXxk := (XX;i 1) can be usedto de neut(T;Vy;:::; V), k  1,ina
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consistent way by setting

EX=fx:9i Lx=X[f2T g=fy:9 1Ly=Y2T .0

so thatEX does not depend da ThenSy is the tree orfEX [ [E [ such that the nodes on the path
Span(Sy; V) are precisely the nodes &F, in the order given by the cut sequenXé. It follows that
Sk Sk+1 and more precisely th& = Span(Sk+1; V1,0 V). O

Write (Xi;i 1) for the sequence in which we have exchanged the positionsotly. Then the trees
TX, i maxfm : Xy = x oryg are unaffected if we repladX;;i 1) by (Xi;i 1) in the cutting
procedure. In particular, if we are only interested in the nal trig we can always suppose that there
existnumber = mg<mi;<mj,< <my nsuchthat,fol ~ k,andifV- 62#¥%;:::;Vjg,
we have [
E<n E‘=fXi:m 1<i mg

1 j<
However, we prefer the coupling over the reordering of the sequence since it does not involve any modi-
cation of the distribution of the cutting sequences.

Lemma 4.14.LetT be ap-tree and letvy, k 1, be a sequence of i.i.g-nodes. Then, foreadh 1.

i. LetV [n]withV 6 ?,then conditional orv- 2 v(Ty) = V, the pair(Tk; V) is distributed as
jv  pjv,andisindependent¢Hy 1nV;Vi; Wk 1).
i. The joint distribution of(Hy:Vi;  :Vk)isgivenby p K.
Proof. We proceed by induction ok 1. Let Ry denote the tree induced ¥y on the vertex set
[n] nv(Tx). For the base cade= 1, the rst claim is trivial sinceT; = T, and the second is exactly the
statement of Lemma4.10Q
Given the two subtreeB; andRy, it suf ces to identify where the tre&y is grafted onRy in order
to recover the treél, 1. By construction, the edge connectifigandRy in Hx 1 binds the root offy
to a node ofSpan(Ry; V1;:::;Vk 1). Lett 2 Ty,r 2 Tinpv,Vk 2V andv; 2 [n]nV forl i<k.

X) be the tree obtained fromandr by adding an edge betweeanand the root ot. By the induction
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hypothesis(Hy 1;Vi;  ;Vk 1) is distributed like g-tree together wittk 1 independenp-nodes.
FurthermoreVy is independent ofH 1; V1; i Vk 1). It follows that

P(Tk):(t;Rk:r;Vi:Vi;l i k)
= PHk 1= jx(rnt);Vi=vi;1 i k)
2S ;
X pa)r%(r Vk 1) Y o o v o v
= P P Px Py
x2Span(r;vg 1)i2V j2[nInVv 10 k
Ci (1) c () . Yo
= P Pui P, p(Span(r;vk 1)) Py :
i2v j2[n]nV 1 i<k

By summing overt andr and applying Cayley's multinomial formula, we deduce that conditional on
V(Tk) = V 6 ?,(Tk; W) isindependent ofRk; V1;:::; Vk 1) and distributed according tgy  pjv,
which establishes the rst claim fd«.

Now, conditional on the everfitvy 2 Sy 10, the vertexXV is distributed according to the restriction
of pto Sk 1. Inthis caseHy = Hy 1 so that by the induction hypothesis

onfVy 2 S 10; (Hi; Va5 W) p* 1 pis, . (4.13)

On the other hand, ¥ 62Sy 1, thenv(Tx) 6 ? and conditional orv(Tyx) = V, we have(Ty; k)

jv Pjv. Inthat caseH is obtained fromHy 1 by replacingTi by cut(Tyk; Vk). We have already
proved that, in this cas€Tx; Vk) is independent oRy, and Lemmad.10ensures that the replacement
does not alter the distribution. In other words,

onfVy 625 1g; (Hi; Va5 V) P 1 Pipgns, o (4.14)

SinceVk  p is independent of everything else, conditional®n 1, the eventf V¢ 2 Sy 19 occurs
precisely with probabilityp(Sk 1), so that putting4.13 and @.14) together completes the proof of the
induction step. O

Corollary 4.15. Suppose thal is ap-tree and thatvq;:::;Vx arek 1 independenp-nodes, also
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