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CONTRIBUTIONS À L 'É TUDE DES ARBRES DE L ÉVY ET DES ARBRES

I NHOMOGÈNES CONTINUS
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Résumé

Nous considérons deux modèles d'arbres aléatoires continus, à savoir les arbres de Lévy
et les arbres inhomogènes. Les arbres de Lévy sont limites d'échelle des arbres de Galton–
Watson. Ils décrivent les structures généalogiques des processus de branchement continus en
temps et en espace. La classe des arbres de Lévy est introduite par Le Gall et Le Jan (1998)
comme extension de l'arbre brownien d'Aldous (1991). Nous donnons une description de la
loi d'un arbre de Lévy conditionné par son diamètre, ainsi qu'une décomposition de l'arbre
le long de ce diamètre, qui est décrite à l'aide d'une mesure ponctuelle de Poisson. Dans
le cas particulier d'un mécanisme de branchement stable, nous caractérisons la loi jointe du
diamètre et de la hauteur d'un arbre de Lévy conditionné par sa masse totale. Dans le cas
brownien nous obtenons une formule explicite de cette loi jointe, ce qui permet de retrouver
par un calcul direct sur l'excursion brownienne, un résultat de Szekeres (1983) et Aldous
(1991) concernant la loi du diamètre. Dans les cas stables, nous obtenons également des
développements asymptotiques pour les lois de la hauteur et du diamètre.

Les arbres inhomogènes sont introduits par Aldous et Pitman (2000), Camarri et Pitman
(2000). Ce sont des généralisations de l'arbre brownien d'Aldous (et des arbres de Lévy).
Pour un arbre inhomogène, nous étudions une fragmentation de cet arbre qui généralise celle
introduite par Aldous et Pitman pour l'arbre brownien. Nous construisons un arbre généa-
logique de cette fragmentation. En utilisant des arguments de convergence, nous montrons
qu'il y a une dualité en loi entre l'arbre initial et l'arbre généalogique de fragmentation.
Pour l'arbre brownien, nous trouvons aussi une façon de reconstruire l'arbre initial à partir
de l'arbre généalogique de fragmentation.

Mots-clefs: arbre brownien, excursion brownienne, continuum random tree, fonction theta de Jacobi, dé-
composition de Williams, arbres de Lévy, processus de Lévy, processus des hauteurs, diamètre, décom-
position, développement asymptotique, lois stables, arbres inhomogènes continus, cut trees, processus de
fragmentation.
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CONTRIBUTION TO THE STUDY OF L ÉVY TREES AND OF

I NHOMOGENEOUS CONTINUUM RANDOM TREES
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Abstract

We consider two models of random continuous trees: Lévy trees and inhomogeneous con-
tinuum random trees. Lévy trees are scaling limits of Galton–Watson trees. They describe
the genealogical structures of continuous-state branching processes. The class of Lévy trees
is introduced by Le Gall and Le Jan (1998) as an extension of Aldous' notion of Brownian
Continuum Random Tree (1991). For a Lévy tree, we give a description of its law condi-
tioned to have a �xed diameter that is expressed in terms of a Poisson point measure. In the
special case of a stable branching mechanism, we characterize the joint law of the diameter
and the height of a Lévy tree conditioned on its total mass. From this, we deduce explicit
distributions for the diameter in the Brownian case, as well as tail estimates in the general
case.

Inhomogeneous continuum random trees are introduced by Aldous and Pitman (2000), Ca-
marri and Pitman (2000). They are also generalizations of Aldous' Brownian Continuum
Random Tree (and of Lévy trees). For an inhomogeneous continuum random tree, we con-
sider a fragmentation which generalizes the one introduced by Aldous and Pitman on the
Brownian tree. We construct a genealogical tree for this fragmentation. With weak limit
arguments, we show that there is a duality in distribution between the initial tree and the
genealogical tree. For the Brownian tree, we also present a way to reconstruct the initial tree
from the genealogical tree.

Keywords: Brownian tree, Brownian excursion, continuum random tree, Jacobi theta function, Williams'
decomposition, Lévy trees, Lévy process, height process, diameter, decomposition, asymptotic expan-
sion, stable law, inhomogeneous continuum random trees, cut tree, fragmentation process.
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Chapter 1

Introduction

In this PhD Thesis, we study Lévy trees introduced by Le Gall and Le Jan [83], as well as inhomogeneous
continuum random trees (ICRT) de�ned by Aldous and Pitman [13], Camarri and Pitman [41]. This thesis
contains four articles.

� [100]: HEIGHT AND DIAMETER OF BROWNIAN TREES, submitted.

� [54]: DECOMPOSITION OFLÉVY TREES ALONG THEIR DIAMETER, joint work with Thomas
Duquesne (co-advisor). This paper is submitted.

� [39]: CUTTING DOWN p-TREES AND INHOMOGENEOUS CONTINUUM RANDOM TREES, joint
work with Nicolas Broutin (co-advisor). This paper is submitted.

� [40]: REVERSING THE CUT TREE OF THEBROWNIAN CRT, joint work with Nicolas Broutin
(co-advisor). This paper is submitted.

Chapter2 and Chapter3 concern Lévy trees. Chapter2 is based on the work [100], where we study
the diameter of Aldous' Brownian tree. Chapter3 is based on the joint work with Duquesne [54]: in
this article, we study a decomposition of Lévy trees along their diameter and we obtain results on the
total height and on the diameter of stable trees conditioned on their total mass, which generalizes several
formulæ obtained in Chapter2. Chapter4 and Chapter5 concern ICRTs. Chapter4 is based on the joint
work with Broutin [39], where we consider general fragmentations on ICRTs. Chapter5 is based on the
joint work with Broutin [40], where we solve a problem that arises naturally from Chapter4.

In this chapter, we �rst introduce the main mathematical objects we consider; then, we present the
main results whose proofs are to be found in the remaining chapters. We adopt the following notation

R+ := [0 ; 1 ); N := f 1; 2; 3; � � � g and N0 := f 0; 1; 2; � � � g :

Unless otherwise speci�ed, all the random variables below are de�ned on the same probability space
denoted by

(
 ; F ; P):

1.1 Galton–Watson trees and Lévy trees

For details and proofs on Galton–Watson processes and Galton–Watson trees, we refer to Athreya and
Ney [20], to Lyons and Peres [86] and to Neveu [92]. On the coding of trees by functions, see Le Gall
and Le Jan [83] and the introduction of Duquesne and Le Gall [51].
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1.1.1 Galton–Watson processes

Let (Y (n)
i ; i 2 N; n 2 N0) be a sequence of independentN0-valued variables whose common law is

� = ( � (k); k 2 N0), which is said to be theoffspring distribution. We denote byf � (r ) =
P 1

k=0 r k � (k)
the generating function of� . A Galton–Watson process(Zn )n2 N0 of offspring law� starting froma 2 N0

can be de�ned in the following inductive way:

Z0 = a; Zn+1 = 1f Zn � 1g

X

1� i � Zn

Y (n)
i ; for eachn 2 N0: (1.1)

The process(Zn )n2 N0 is a Markov chain whose transition probabilities are characterized by

E[r Zn +1 j Zn ] = f � (r )Zn ; for all r 2 [0; 1]; n 2 N0: (1.2)

The Markov chain(Zn )n2 N0 describes a population which evolves in the following way. At genera-
tion 0, there are exactlya individuals, which are the ancestors of the population. At generationn 2 N0,
each individual independently gives birth to a random number of children according to the law� . The
generationn + 1 consists of the children of the individuals of generationn.

Now let us consider two independent populations: one hasa ancestors; the other hasb ancestors. It
is clear that the union of the two populations has the same distribution as a population which hasa + b
ancestors. This is often called thebranching propertyof the Galton–Watson process. More precisely,
denote byPn (a; �) the law ofZn with Z0 = a as de�ned in (1.1). The branching property is equivalent
to say that

8n; a; b 2 N0 Pn (a; �) � Pn (b;�) = Pn (a + b;�); (1.3)

where� denotes the convolution product for laws onN0.
Let q = inf f r 2 [0; 1] : f � (r ) � r g be the smallest �xed point off � on [0; 1]. Then it is not dif�cult

to show that
P (9 n 2 N0 : Zn = 0) = E[qZ0 ]: (1.4)

On the other hand, if
P 1

k=0 k� (k) � 1, thenq = 1 and it follows from (1.4) that the population becomes
extinct almost surely. If

P 1
k=0 k� (k) > 1, the population has a strictly positive probability of surviving.

We say that� is sub-critical if
P 1

k=0 k� (k) < 1, critical if
P 1

k=0 k� (k) = 1 and super-critical ifP 1
k=0 k� (k) > 1.

In this work, we are only interested in the critical and subcritical cases.

1.1.2 Plane trees and Galton–Watson trees

In this section, we describe the genealogy of Galton–Watson processes, using Ulam's formalism as dis-
cussed in Neveu [92]. Let

U =
1[

n=0

Nn ;

where we make the convention thatN0 = f ? g. An element ofU is then a �nite sequenceu =
(u1; u2; � � � ; um ) of strictly positive integers. The length of this sequence is said to be thegeneration
of u; we denote it byjuj. If u = ( u1; u2; � � � ; un ) andv = ( v1; v2; � � � ; vm ) are two elements ofU,
we writeuv = ( u1; u2; � � � ; un ; v1; v2; � � � ; vm ) for the concatenation ofu andv. In particular, we have
? u = u? = u.

A plane treeT is a �nite subset ofU that satis�es the following conditions:

(a) ? 2 T; ? is called theroot of T;
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(b) if v 2 T andv = uj for someu 2 U andj 2 N, thenu 2 T;

(c) for eachu 2 T there exists a numberku(T) 2 N0 such thatuj 2 T if and only if j � ku(T).

We denote byTpl the set of plane trees. For allT 2 Tpl , we write� (T) := Card T, the total size ofT.
Let u 2 T; thesubtreeof T stemming fromu is denoted bySubu(T): namely,Subu(T) = f v 2 U :
uv 2 Tg. Note thatSubu(T) is also a plane tree.

We equipTpl with the � -algebraG generated by the setsf T 2 Tpl : u 2 Tg; u 2 U. Let � be a
(sub)-critical probability distribution onN0. Neveu [92] has shown that there exists a unique probability
Q� on (Tpl ; G) such that

(1) Q� (k? (T) = j ) = � (j ), for j 2 N0;

(2) for everyj 2 N with � (j ) > 0, the subtreesSub1(T); Sub2(T); � � � ; Subj (T) are independent
under the conditional probabilityQ� (�jk? (T) = j ) and their conditional distribution isQ� .

The distributionQ� is called thelaw of the Galton–Watson tree with offspring law� . If we denote by
Zn (T) = Card f u 2 T : juj = ng the size of generationn, then(Zn (T); n 2 N0) underQ� is a Galton–
Watson process with offspring law� starting from1. Note that the (sub)-criticality of the offspring law
� guarantees thatT is Q� -a.s. �nite.

1.1.3 Encoding Galton–Watson trees

Let T 2 Tpl . We associate withT two coding functions, namely theheight functionand thecontour
function.

Discrete height process. To de�ne the height function, we observe that the lexicographic order ofU
induces a linear order onT. Let us index the vertices ofT in this order:u(0) = ? ; u(1); � � � ; u(� (T)� 1).
Then the height function(Hn (T); 0 � n � � (T) � 1) is de�ned by

Hn (T) := ju(n)j; 8n 2 f 0; � � � ; � (T) � 1g:

Contour process. Suppose thatT is embedded in the clockwise oriented upper half plane in such a way
that the root is at the origin and that each edge corresponds to a line segment of length1. Imagine that a
particle exploresT from the left to the right at unit speed, starting from the root and backtracking as less
as possible. LetCs(T) denote the distance between the root and the position of the particle at times. Note
that the particle returns to the root at time2(� (T) � 1) (each edge is visited exactly twice by the particle).
The function(Cs(T); 0 � s � 2(� (T) � 1)) is said to be the contour function ofT (see �gure1.1). In
particular, if we denote byvk the vertex visited by the particle at timek, k 2 f 0; 1; � � � ; 2(� (T) � 1)g,
then the graph distanced of T satis�es for any0 � k1 � k2 � 2(� (T) � 1),

d (vk1 ; vk2 ) = Ck1 (T) + Ck2 (T) � 2 min
s2 [k1 ;k2 ]

Cs(T): (1.5)

We shall discuss a generalization of this formula in the continuous context.

Height process and contour function of forests. We also need the notion of the height function (resp.
contour function) of a forest. Aforestis a sequence(Tk )k2 N whereTk 2 Tpl . The height function of the
forest(Tk )k2 N is obtained by the concatenation of the height functions of eachTk : for eachk � 1, we
de�ne

Hn = Hn� (� (T1 )+ ��� + � (Tk � 1 )) (Tk ); if � (T1) + � � � + � (Tk� 1) � n < � (T1) + � � � + � (Tk ):

3



;

1 2

11 12

121 122

1 2 3 1 22(� (T) � 1) � (T) � 1

tree T contour function height function

Figure 1.1

It is not dif�cult to see that the height function(Hn ; n 2 N0) characterizes the forest.
To de�ne the contour function of the forest(Tk )k2 N, one needs to extend the de�nitions of the contour

functions(Cs(Tk ); 0 � s � 2� (Tk ) � 2) by settingCs(Tk ) = 0 for all s 2 (2� (Tk ) � 2; 2� (Tk )]. The
contour function(Cs; s 2 R+ ) of the forest(Tk )k2 N is then obtained as the concatenation of the extended
functions(Cs(Tk ); 0 � s � 2� (Tk )) , that is, for eachs 2 R+ ,

Cs = Cs� (2� (T1 )+ ��� +2 � (Tk � 1 )) (Tk ); if 2� (T1) + � � � + 2 � (Tk� 1) � s < 2� (T1) + � � � + 2 � (Tk ):

This de�nition allows us to identify the contour function of each tree of the whole forest. In fact, the
contour function can be expressed in terms of the height function. We refer to the Section 2.4 of Duquesne
and Le Gall [51] for more details.

Connection with random walks. Let (Tk )k2 N be a sequence of independently and identically dis-
tributed (i.i.d.) Galton–Watson trees. It turns out that the height function of(Tk )k2 N is distributed as a
rather simple functional of a random walk.

Lemma 1 (Le Gall and Le Jan [83]). Let (X n ; n 2 N0) be a random walk starting from0 whose jump
distribution is given by� (k) := � (k + 1) for k 2 f� 1; 0; 1; : : :g. For eachn 2 N0, we set

Hn := Card
�

k 2 f 0; 1; � � � ; n� 1g : X k = inf
k� j � n

X j

�
: (1.6)

Then the process(Hn ; n 2 N0) has the same distribution as the height function of a forest of i.i.d. Galton–
Watson trees with offspring law� .

The relation (1.6) is the starting point of the de�nition of the height process in the continuous context
that is recalled in Section1.1.5.

1.1.4 Continuous-state branching processes

The continuous-state branching processes (CSBP) are the continuous analogues (in time and in state-
space) of Galton–Watson processes. They are introduced by Ji�rina [73] and Lamperti [78, 79] and also
studied in Bingham [32]. For details and proofs, we refer to Bingham [32]; see also Kyprianou [77] and
Le Gall [81].
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Here we only consider the (sub-)critical CSBPs: they areR+ -valued Feller processes whose transi-
tion kernels(Pt (x; dy); x 2 R+ ; t 2 R+ ) satisfy the following:

8t 2 R+ ; 8x; x 0 2 R+ Pt (x; �) � Pt (x0; �) = Pt (x + x0; �); (1.7)

and

8t; x 2 R+

Z

R+

yPt (x; dy) < 1 : (1.8)

Property (1.7) is called thecontinuous branching property. It is the analogue of (1.3). The second
condition (1.8) is the sub-criticality assumption.

Let us denote by(Z t ; t 2 R+ ) such a CSBP. The transition kernels ofZ are characterized by their
Laplace transform. More precisely, for anys; t; � 2 R+ , we have

E
�
e� �Z s+ t

�
�Zs

�
= exp ( � Zsut (� )) ; (1.9)

where the mappingt 7! ut (� ) is nonnegative, differentiable and where it satis�es the equation

u0(� ) = �; and
@
@t

ut (� ) + 	 ( ut (� )) = 0 ; t 2 [0; 1 ): (1.10)

Here the function	 : R+ ! R+ is called thebranching mechanismof the process and it has the
following Lévy-Khintchine form:

	( � ) = �� + �� 2 +
Z

(0;1 )
(e� �r � 1 + �r )� (dr ); (1.11)

where�; � � 0, and where theLévy measure� on (0; 1 ) satis�es
R1

0 (r ^ r 2)� (dr ) < 1 . Equation
(1.10) has a unique solution. This implies that the branching mechanism	 characterizes the law of the
CSBPZ . Therefore, we can talk of CSBPs with branching mechanism	 .

Example. Here are three examples of branching mechanisms.

� 	( � ) = �� with � 2 R+ . The associated CSBP is the deterministic processZ t = Z0e� �t .

� 	( � ) = � 2. In this case, we haveut (� ) = �
1+ t� . The associated CSBP is the Feller diffusion

process, which is the solution to the SDE:dZt =
p

2Z t dBt , where(B t ; t � 0) is a standard
Brownian Motion.

� (Non-Brownian stable cases)	( � ) = � 
 , with 
 2 (1; 2). Then, � = � = 0 and � (dr ) =

 (
 � 1)
�(2 � 
 ) r � 
 � 1dr . In this case,ut (� ) is also explicit :

8t; � 2 R+ ; ut (� ) =
�

(
 � 1)t + � � (
 � 1)
� � 1


 � 1 :

Let us brie�y discuss the asymptotic behavior of a sub-critical CSBPs. First, note that the function
t 7! u(t; � ) is decreasing: an easy change of variables shows that

8t 2 R+ ; 8� 2 (0; 1 );
Z �

u(t;� )

du
	( u)

= t: (1.12)

This entails thatlim t !1 u(t; � ) = 0 and therefore

P
�

lim
t ! 0

Z t = 0
�

= 1 : (1.13)
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In contrast to Galton–Watson processes, there are two distinct scenarios forZ to get extinct. Indeed, we
can deduce from (1.12) that

Z 1 d�
	( � )

< 1 () P(9 t 2 R+ : Z t = 0) = 1 : (1.14)

This is often referred to as theGrey condition. When (1.14) is satis�ed, we set

8t 2 R+ v(t) = lim
� !1

ut (� ) (1.15)

and (1.12) implies thatv : (0; 1 ) ! (0; 1 ) is a continuous bijection such that
Z 1

v(t )

d�
	( � )

= t and P(Z t = 0 jZ0) = e� Z0v(t ) ; 8t 2 (0; 1 ) : (1.16)

If the Grey condition (1.14) is not satis�ed, thenP-a.s. for anyt 2 R+ , Z t > 0.

1.1.5 Genealogy of continuous branching processes: the height process

In this part, we recall the construction of the continuous height process due to Le Gall and Le Jan [83].
See also Chapter 1 of Duquesne and Le Gall [51].

The height process. Let 	 be the branching mechanism as de�ned in (1.11). Let X = ( X t ; t 2 R+ )
be a spectrally positive Lévy process starting from0 and whose Laplace exponent is given by	 : namely,

8t; � 2 R+ ; E[e� �X t ] = exp( t	( � )) : (1.17)

The processX plays a similar role as the random walk(X n ; n 2 N0) in Lemma1. If 	 satis�es the
Grey condition (1.14), then Le Gall and Le Jan [83] have proved that there exists a continuous process
H = ( H t ; t 2 R+ ) such that for allt 2 R+ , the following limit holds true inP-probability:

H t = lim
� ! 0

1
�

Z t

0
ds1f I s

t <X s <I s
t + � g; (1.18)

where we have setI s
t = inf s� r � t X r for all 0 � s � t. This de�nition is a continuous analogue of (1.6)

and the processH is called the	 -height process.
In the case where	( � ) = � 2, the Lévy processX is a multiple of the Brownian motion andH has

the same distribution as a re�ected (non-standard) Brownian motion.

Ray-Knight theorem for the height process. Let us point out that, in generalH , is not a Markov
process. It is however possible to de�ne the local times(L a

t )a;t2 R+ of H . Namely, (a; t) 7! L a
t is

measurable, for alla 2 R+ , P-a.s.t 7! L a
t is non-decreasing and

P-a.s. L a
t = lim

� ! 0

1
�

Z t

0
1f a<H s <a + � gds: (1.19)

We refer to Duquesne and Le Gall [51], Proposition 1.3.3. for more details.
For all x 2 R+ , we denote� x = inf f t � 0 : X t = � xg the hitting time ofX at level� x. Theorem

1.4.1 of [51] generalizes the Ray–Knight Theorem to a general branching mechanism	 :
�
L a

� x
; a � 0

�
is a CSBP of branching mechanism	 starting fromx: (1.20)

Informally, (1.20) says that the population at levela forms a continuous branching process. This property
is expected from the continuous height process as its discrete counterpart enjoys a similar one.
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Limit theorems for the height process. The following convergence results also show thatH represents
the genealogy of CSBPs. For eachp 2 N, let � p = f � p(k); k 2 N0g be a (sub)-critical probability distri-
bution onN0. Let Z p = ( Z p

k ; k 2 N0) be a Galton–Watson process with offspring law� p starting from
p and letX p = ( X p

k ; k 2 N0) be a random walk with jump distribution� p = ( � p(k); k 2 f� 1; 0; � � � g)
where� p(k) = � p(k+1) . Recall thatX is a Lévy process of Laplace exponent	 and letZ be a CSBP of
branching mechanism	 starting from1. Let (up)p2 N be a nondecreasing sequence of positive integers
converging to1 . Then a version of Grimvall's Theorem [63] (see also Theorem 2.1.1 in [51]) says that

�
p� 1Z p

bup tc; t � 0
�

d�!
p!1

(Z t ; t � 0) iff
�

p� 1X p
bpup tc; t � 0

�
d�!

p!1
(X t ; t � 0); (1.21)

whereb�cstands for the the integer part function and whered! means convergence in distribution on the
spaceD(R+ ; R) of càdlàg functions equipped with Skorokhod topology.

For eachp 2 N, let H p = ( H p
n ; n 2 N0) andCp = ( Cp

s ; s 2 R+ ) be the respective height function
and contour function of a forest of i.i.d. Galton–Watson trees with offspring law� p. We assume that
H p is related to the random walkX p by (1.6). Moreover, we assume that the number of individuals at
generationn of the �rst p trees in this forest has the same distribution asZ p

n . We then also assume that

8� > 0 lim inf
p!1

P(Z p
b�u p c = 0) > 0 :

Then Corollary 2.5.1 of [51] proves the following convergence in distribution inD(R+ ; R3) :
�

p� 1X p
bpup tc; u� 1

p H p
bpup tc; u� 1

p Cp
2pup t ; t � 0

�
d�!

p!1
(X t ; H t ; H t ; t � 0); (1.22)

whereH is the height process associated withX (see (1.18)). Furthermore, jointly with (1.22), the
following convergence in distribution holds inD(R+ ; R):

�
p� 1Z p

bup ac; a � 0
�

d�!
p!1

�
L a

� 1
; a � 0

�
; (1.23)

The excursion measure of the height process.The convergence in (1.22) shows that the process
(H t ; t � 0) is the scaling limit of the height functions (resp. contour functions) of a forest of i.i.d.
Galton–Watson trees. One natural question is whether we can interpret this convergence in terms of
trees: this will be the subject of the next section. A related question is how to “extract" a single tree from
the whole forest encoded byH . For this, we need the excursion measure ofH that is introduced here.

Observe that (1.14) entails that

either � > 0 or
Z

(0;1)
r � (dr )= 1 ; (1.24)

which is equivalent for the Lévy processX to have unbounded variation sample paths. LetI t =
inf s� t X s be the in�mum process ofX . It is well-known thatX � I is a Markov process and that0
is regular for itself with respect to this Markov process (see Bertoin [22] Chapter VII). Moreover,� I is a
local time ofX � I at level0. We writeN for the associated excursion measure. Denote by(gi ; di ); i 2 I ,
the excursion intervals ofX � I above0, and byX i

� = X (gi + �)^ di � I gi , i 2 I , the corresponding ex-
cursions. We remark that according to (1.18), if t 2 (gi ; di ), then the value ofH t depends only onX i .
For eachi 2 I , we setH i

� = H (gi + �)^ di . It follows from the above remark thatH i is a functional of the
excursion ofX � I over(gi ; di ). Let us denote byN the image ofN by this functional. Then the point
measure X

i 2I

� (� I gi ;H i ) (1.25)
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is distributed as a Poisson point measure onR+ � C(R+ ; R) with intensity measuredt N .
Note thatX andH share the same lifetime underN , which we denote by� . Then it is classical from

the �uctuation theory that� < 1 , N -a.e. and that for� > 0,

N
�

1 � e� ��
�

= 	 � 1(� ); (1.26)

where	 � 1 stands for the inverse function of	 .

Notation. We shall denote byH the canonical process onC(R+ ; R).

1.1.6 Lévy trees

Real trees. Real trees have been studied for a long time for algebraic and geometric purposes (see for
example Dress, Moulton, and Terhalle [47]). Since the work of Evans, Pitman, and Winter [59], real
trees are widely adopted for the study of random branching structures. More details and proofs on real
trees and Gromov–Hausdorff distance can be found in the book of Evans [57]. The Gromov–Prokhorov
distance is introduced in Greven, Pfaffelhuber, and Winter [62], see also the Chapter31

2 of Gromov [64].

A metric space(T; d) is called areal treeif the following two properties hold for everyu; v 2 T.

(i) There is a unique isometric mapqu;v from [0; d(u; v)] into T such thatqu;v (0)= u andqu;v (d(u; v))
= v. In this case, we denote byJu; vKthe image of[0; d(u; v)] by qu;v .

(ii) If q is a continuous injective map from[0; 1] into T, then we have

q([0; 1]) = Jq(0); q(1)K:

Among connected metric spaces, real trees are characterized by the so-calledfour points inequality: let
(T; d) be a connected metric space; then(T; d) is a real tree iff for any� 1; � 2; � 3; � 4 2 T, we have

d(� 1; � 2) + d(� 3; � 4) �
�
d(� 1; � 3) + d(� 2; � 4)

�
_

�
d(� 1; � 4) + d(� 2; � 3)

�
: (1.27)

See Evans [57] for more details.
A rootedreal tree is a real tree(T; d) with a distinguished pointr called theroot. Let (T; d; r) be

a rooted real tree. Foru 2 T, thedegreeof u in T, denoted bydeg(u; T ), is the number of connected
components ofT n f ug. It is possible thatdeg(u) = 1 . We also denote by

Lf( T) = f u 2 T : deg(u; T ) = 1 g and Br( T) = f u 2 T : deg(u; T ) � 3g (1.28)

the set of theleavesand the set ofbranch pointsof T. The skeleton ofT is the complementary set of
Lf( T) in T, that is denoted bySk(T):

Sk(T) := TnLf( T) :

Gromov–Hausdorff distance. Two rooted real trees(T; d; r) and(T0; d0; r 0) are said to be isometric
if there exists an isometryf : T ! T0satisfyingf (r ) = r 0. We denote byTc the set of pointed isometry
classes of rooted compact real trees. We equipTc with the pointed Gromov–Hausdorff metric, which is
de�ned as follows: If(E; � ) is a metric space, we write� H for the usual Hausdorff metric between the
compact subsets ofE . If (T; d; r); (T0; d0; r 0) are two rooted compact real trees, the distance between
them is given by

� GH (T; T0) = inf
�

� H
�
� (T); ' (T0)

�
_ �

�
� (r ); ' (r 0)

� �

where the in�mum is over all the isometric embeddings� : T ! E and' : T0 ! E of T andT0 into
some common metric space(E; � ). One readily checks that� GH (T; T0) only depends on the equivalence
classes ofT and T0. Indeed,� GH de�nes a metric onTc. Moreover, the metric space(Tc; � GH ) is
complete and separable. See Evans, Pitman, and Winter [59] and Gromov [64]; see also Evans [57].
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Gromov–Prokhorov distance. We say a triple(T; d; � ) is ameasured real treeif (T; d) is a separable
and complete real tree and if� is a Borel probability measure ofT. Two measured real trees(T; d; � )
and(T0; d0; � 0) are said to beweakly isometricif there exists an isometry� between the supports of� on
T and of� 0 on T0 such that� 0 is the push-forward measure of� by � , which is denoted by(� ) � � . We
denote byTw the set of weak isometry classes of measures real trees.

If (E; � ) is a metric space, we denote by� P the Prokhorov distance on the set of Borel probability
measures onE. Let (T; d; � ), (T0; d0; � 0) be two measured real trees; then the Gromov–Prokhorov
distance between them is de�ned by

� GP (T; T0) = inf � P(� � �;  � � 0);

where the in�mum is taken over all spacesE and all isometries� : supp(� ) ! E and : supp(� 0) !
E . Note that the de�nition of� GP depends only on the weak isometry classes ofT andT0. Moreover,
� GP induces a metric onTw . It has been shown by Greven, Pfaffelhuber, and Winter [62] that (Tw ; � GP )
is separable and complete.

The coding of real trees by excursions. Recall thatH = ( H t )t � 0 stands for the canonical process on
C(R+ ; R+ ). First assume thatH has a compact support, thatH0 =0 and thatH is distinct from the null
function: we call such a function acoding functionand we then set� H = supf t > 0 : H t > 0g that is
called thelifetimeof the coding functionH . Note that� H 2 (0; 1 ). Analogously to (1.5), we set for any
s; t 2 [0; � ],

dH (s; t) := Hs + H t � 2 inf
s^ t � u� s_ t

Hu : (1.29)

It is not dif�cult to see thatdH is a pseudo-metric on[0; � H ]. We associate with it an equivalence relation
� H , which is de�ned by:s � H t wheneverdH (s; t) = 0 . We de�ne

(TH ; dH ) = ([0 ; � H ]=� H ; dH ):

Let pH : [0; � H ] ! T H be the canonical projection. It is clearly a continuous mapping. Thus(TH ; dH )
is a connected compact metric space. Moreover, it is easy to check thatdH satis�es the four points
inequality. Therefore,(TH ; dH ) is a compact real tree. We de�ne� H := pH (0) as theroot of TH .

There are two additional structures onTH that are useful to us. First, themass measurem H of TH is
de�ned to be the pushforward measure of the Lebesgue measure on[0; � H ] induced bypH ; namely, for
any Borel measurable functionf : TH ! R+ ,

Z

TH

f (� ) m H (d� ) =
Z � H

0
f (pH (t)) dt : (1.30)

Note that

m H (TH ) = � H :

The coding functionH also induces alinear order � H on TH that is inherited from that of[0; � H ]:
namely for any� 1; � 2 2TH ,

� 1 � H � 2 () inf f t 2 [0; � H ] : pH (t)= � 1g � inf f t 2 [0; � H ] : pH (t)= � 2g : (1.31)

Roughly speaking, the functionH is completely characterized by(TH ; dH ; � H ; m H ; � H ): see Duquesne
[50] for more detail about the coding of real trees by functions.
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Lévy trees. Observe thatH is N -a.e. a coding function as de�ned above. Duquesne and Le Gall [52]
then de�ne the	 -Lévy treeas the real tree coded byH underN .

Convention.When there there is no risk of confusion, we simply write

(T ; d; �; m; � ; p) := ( TH ; dH ; � H ; m H ; � H ; pH )

whenH is considered underN . �

Recall thatLf( T ) stands for the set of leaves ofT . Then the mass measure has the following properties:

N -a.e.m is diffuse andm(T nLf( T )) = 0 . (1.32)

The 	 -Lévy tree(T ; d; �; m) is therefore a continuum tree according to the de�nition of Aldous [8].
Moreover, it is proved in Duquesne and Le Gall [52] that

N -a.e. 8� 2 T ; deg(�; T ) 2 f 1; 2; 3; 1g ; (1.33)

and there exist branch points of degree3 if and only if � > 0 in (1.11). Roughly speaking, in�nite branch
points are due to the jumps of the underlying Lévy process. See Duquesne and Le Gall [52] for more
details.

1.1.7 Stable trees

Here we consider a special class of Lévy trees, namely the class of stable trees. As we will recall below,
the scaling property of underlined Lévy process enables us to de�ne a Lévy tree conditioned on their
total mass. It turns out that the Brownian Continuum Random Tree (Brownian CRT) is a special case of
these Lévy trees conditioned on the total mass. The Brownian CRT was �rst introduced in Aldous [8],
as scaling limits of discrete trees. The coding of Brownian CRT by normalized Brownian excursion is
discussed by Le Gall [80] and by Aldous [10].

In this part, we �x 
 2 (1; 2] and

8� 2 R+ ; 	( � ) = � 
 :

Note that in this case the condition (1.14) is always satis�ed. The Lévy processX underP enjoys the

following scaling property: for allr 2 (0; 1 ), (r � 1

 X rt )t � 0 has the same law asX . This entails by (1.18)

that underP, (r � 
 � 1

 H rt )t � 0 has the same law asH and the Poisson decomposition (1.25) implies the

following:
�
r � 
 � 1


 H rt
�

t � 0 under r
1

 N d= H under N : (1.34)

On the other hand, we derive from (1.26) that

N (� 2 dr)= p
 (r ) dr ; where p
 (r ) = c
 r � 1� 1

 with 1=c
 = 
 � e

� 
 � 1



�
: (1.35)

Here � e stands for Euler's Gamma function. By (1.34), there exists a family of laws onC(R+ ; R+ )
denoted byN ( � j � = r ), r 2 (0; 1 ), such that

� the mappingr 7! N ( � j � = r ) is weakly continous onC(R+ ; R+ ),

� N ( � j � = r )-a.s.� = r ,

� we have

N =
Z 1

0
N ( � j � = r ) N (� 2 dr) : (1.36)
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Moreover, by (1.34),
�
r � 
 � 1


 H rt
�

t � 0 underN ( � j � = r ) has the same law asH underN ( � j � = 1) . We
call N ( � j � =1) thenormalized law of the
 -stable height processand to simplify notation we set

Nnr := N ( � j � =1) : (1.37)

Thus, for all measurable functionsF :C(R+ ; R+ ) ! R+ ,

N
�
F (H )

�
= c


Z 1

0
dr r � 1� 1


 N nr

h
F

� �
r


 � 1

 H t=r

�
t � 0

�i
: (1.38)

The Brownian case. When 
 = 2 , the height processH underNnr is distributed as
p

2E, where
E = ( Es; 0 � s � 1) is the normalized positive Ito excursion of standard Brownian Motion (see for
instance Revuz and Yor [97], Chapter XII for a de�nition).

Let � be an offspring distribution onN0 that is assumed to be critical and to have �nite variance� 2.
We also assume that� is aperiodic. For all suf�ciently largen 2 N, let Tn be a random plane tree whose
law is Q� (dT j � (T) = n): namelyTn is a � -Galton-Watson plane tree conditioned to haven vertices.
Recall that(Cs(Tn ); 0 � s � 2n) stands for the contour function ofTn as de�ned in Section1.1.3. Then,
Aldous [10] shows that asn ! 1 , the following limit holds true in distribution onC(R+ ; R+ ):

�
�

p
n

C2ns (Tn ); 0 � s � 1
�

d�! (2Es ; 0 � s � 1) : (1.39)

Because of this, Aldous has de�ned the Brownian CRTT br to be the real tree encoded by2E in the
sense of (1.29) (equivalently, we can take	( � ) = 2 � 2). Then (1.39) says thatT br is the scaling limit of
conditioned Galton–Watson trees. The convergence in (1.39) has been extended by Duquesne [49] to the
case where the offspring law� is critical and is in the domain of attraction of the
 -stable law. See also
Kortchemski [76] for scaling limits of Galton-Watson tree conditioned to haven leaves.

Stable trees often appear in the study of self-similar fragmentations, see for example Bertoin [25],
Goldschmidt and Haas [61], Haas and Miermont [65], Miermont [89, 90]. An important example of these
self-similar fragmentations is the one studied in Aldous and Pitman [11], which describes the evolution
of the mass partitions of the Brownian CRT where partitions are induced by a Poisson point process. The
proper de�nition is left to the next section, where we introduce a more general fragmentation. A recent
work of Bertoin and Miermont [30] shows that the genealogical tree of Aldous–Pitman's fragmentation,
equipped with a suitable metric, is also distributed as the Brownian CRT. This identity in distribution is
the starting point of the problem considered in Chapter5.

1.2 Birthday trees and inhomogeneous continuum random trees

1.2.1 Birthday trees and the Aldous–Broder Algorithm

Trees are also important objects in the graph theory, where they are usually unordered but labelled. A
classical model of random (graph) trees is the Cayley tree, which is a uniformly random labelled tree of
given “size". The model of birthday trees that we are about to introduce is a generalization of the Cayley
tree.

Let us �rst recall the notion of (graph) tree: a treet is a connected graph without cycles. Arooted
tree is a tree with a distinguished vertex, called theroot. Recall that an edge oft is a set of the form
f u; vg whereu; v are vertices oft. When the tree is rooted, we think of the edges as pointing to the root.
Then thein-degreeof a vertexv, denoted bykv(t), is the number of the edges that can be written as
f u; vg with some vertexu such that the direction of the edge is fromu to v.
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Let n � 1 be some natural number. We denote byTn the set of rooted trees with vertex set[n] :=
f 1; 2; � � � ; ng. A well-known fact is thatTn has exactlynn� 1 elements. We equipTn with the discrete
� -algebra (the power set). Then aCayley treeof sizen is a random tree distributed according to the
uniform distribution onTn . Let us note that there is a correspondence between a Cayley tree and a
conditioned Galton–Watson tree with Poisson offspring distribution: if we assign labels to the nodes of
the Galton–Watson tree using a uniform permutation and forget the order, we obtain a Cayley tree.

The class of birthday trees has been introduced in Camarri and Pitman [41] for the study of the general
birthday problems. In a Cayley tree, all nodes behave in the same way, and the birthday trees general-
ize this by introducing some inhomogeneity which, as we will see later, entails interesting asymptotic
behaviors when the sizes of the trees go to in�nity.

Let us now be more speci�c. Letp be a probability measure on[n] and let us writepi = p(i ) for
i 2 [n]. To exclude degenerate cases, we assume thatpi > 0 for eachi 2 [n]. The following so-called
Aldous–Broder Algorithmextracts a tree from the trace of a random walk on the complete graph.

Algorithm 2 (Aldous [18], Broder [37]). Let (Yk )k� 0 be a sequence of independent random variables
whose common law isp. LetT be the (random) graph on[n] which is rooted atY0 and has the following
edge set

ff Yk ; Yk+1 g : Yk+1 62 fY0; Y1; � � � ; Ykg; k � 1g:

Here is a mental picture. Take a pencil and a piece of paper, and drawT as follows.

Start at vertexY0. At stepk � 1, the pencil is at vertexYk� 1. If Yk has not appeared
previously, we add the new vertexYk and draw an edge betweenYk� 1 andYk ; otherwise
move the pencil toYk without drawing an edge.

Note that the random walk(Yk )k� 0 eventually visits each vertex with probability one becausepi > 0
for anyi 2 [n] . We observe that the edgef Yk ; Yk+1 g is added only ifYk+1 has not been seen at timek.
In consequence, this forbids the existence of a cycle inT. It follows easily thatT is a connected graph
without cycles, hence a tree on[n]. Furthermore,T has the following distribution� (p) :

� (p) (t) :=
Y

i 2 [n]

pk i (t )
i ; for eacht 2 Tn : (1.40)

To see why this holds, one can follow the argument of the Markov chain tree theorem (see for example
Anantharam and Tsoucas [19]) and deduce that fort 2 Tn , the probabilityP(T = t) is proportional to
� (p) (t). Thanks to Cayley's multinomial formula (Cayley [42], see also Rényi [96]), we have

X

t2 Tn

� (p) (t) =
X

t2 Tn

Y

i 2 [n]

pk i (t )
i =

0

@
X

i 2 [n]

pi

1

A

P
i 2 [n ] k i (t )

= 1 :

Thus, � (p) is indeed a probability measure onTn . In the case wherepi = 1=n for eachi , we have
� (p) (t) = n1� n for anyt 2 Tn . Then the above identity echoes our previous statement thatCard Tn =
nn� 1. In this caseT is clearly the Cayley tree.

In what follows, we often refer to a random tree with distribution given in (1.40) as ap-tree. However,
when the probability measurep is not speci�ed, we prefer to use the alternative terminologybirthday
tree.

Let T be ap-tree. Its root has distributionp. This fact is clear from the construction ofT by
Algorithm 2, sinceT is rooted atY0. Furthermore, thep-tree T enjoys aninvariance by re-rooting
property, which plays an important role in the cutting problem considered in Chapter4. More precisely,
if V is an independent vertex with distributionp, let TV denote the tree obtained by re-rootingT at V .
Then it can be directly veri�ed from (1.40) thatTV is still a p-tree.
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1.2.2 Inhomogeneous continuum random trees and line-breaking construction

The inhomogeneous continuum random tree (ICRT) arose as weak limits of birthday trees in Camarri
and Pitman [41] and Aldous and Pitman [13]. Later, a profound study of its height process has been
carried out by Aldous, Miermont, and Pitman [15]. The ICRTs are closely related to other mathematical
objects. For example, Aldous and Pitman [13] use ICRTs to construct the general additive coalescent.
ICRTs also appear in the weak limits of randomp-mappings. See Aldous, Miermont, and Pitman [16].

Theparameter space� of ICRT is the set of real-valued sequences� = ( � 0; � 1; � 2; � � � ) satisfying
the following conditions:� 1 � � 2 � � 3 � � � � 0, � 0 � 0,

P
i � 0 � 2

i = 1 , and either� 0 > 0 or
P

i � 1 � i =
1 . For each� 2 � , we can de�ne a real tree using the followingline-breaking construction[13, 41].
This construction can be seen as the scaling limit of Algorithm2. In outline, it consists of cutting the
half-line [0; 1 ) into �nite-length segments, reassembling the segments as “branches" of a tree, and then
completing the metric space thereby obtained. The details are as follows.

� If � 0 > 0, let P0 = f (uj ; vj ); j 2 Ng be a Poisson point process on the �rst octantf (x; y) : 0 �
y � xg of intensity measure� 2

0dxdy, enumerated in such a way thatu1 < u 2 < u 3 < � � � .

� For everyi � 1 such that� i > 0, let Pi = f � i;j ; j 2 Ng be a homogeneous Poisson process on
[0; 1 ) of intensity� i , such that� i; 1 < � i; 2 < � i; 3 < � � � .

All these Poisson processes are de�ned on the probability space(
 ; F ; P) and are supposed to be mu-
tually independent. We consider the points of all these processes as marks on[0; 1 ), among which we
distinguish two kinds: thecutpointsand thejoinpoints. The cutpoints split[0; 1 ) into segments, while
joinpoints mark the place where to re-attach these segments. Call each pointuj a0-cutpoint, and say that
vj is the corresponding joinpoint. Call each� i;j with � i > 0 andj � 2 an i -cutpoint, and say that� i; 1

is the corresponding joinpoint. Note that for eachi � 1, the mean number ofi -cutpoints in the interval
[0; M ] is � i M � 1 + e� � i M � � 2

i M 2=2, for anyM > 0. This entails that the set of cutpoints is almost
surely �nite on each compact set of[0; 1 ), by the hypotheses on� . In particular, we can arrange the
cutpoints in increasing order as0 < � 1 < � 2 < � 3 < � � � . We write� �

k for the joinpoint associated to the
k-th cutpoint� k .

(u1; v1)

(u2; v2)

(u3; v3)

� 1;1 � 1;2 � 1;3

� 2;1

� 1 � 2 � 3 � 4 � 50

(u4; v4)

0 v3 v1

� 1;1

v2

u1

u2

� 1;2

u3

� 6

� 1;3

u4

P0

P1

P2

Figure 1.2 – On the left, an example of cutpoints: each� k is eitheruj or � i;j with j � 2. On the right,
an example ofR6 constructed from these cutpoints. The branches attached are[0; u1], (v1; u2], (v2; � 1;2],
(� 1;1; u3], (v3; � 1;3], (� 1;1; u4].
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The real tree is built by starting with the branch[0; � 1] and inductively fork � 1, attaching the branch
(� k ; � k+1 ] to the joinpoint� �

k corresponding to the cutpoint� k . Note that with probability1, � �
k < � k , thus

the above grafting operation is well-de�ned. LetRk be the real tree obtained after attaching(� k� 1; � k ].
It is easy to see that eachRk is a real tree with the leaf setf 0; � 1; � 2; � � � ; � kg. See Figure1.2 for an
illustration ofR6. Furthermore,(Rk ; k � 1) forms an increasing sequence of metric spaces. Let(T ; d)
be the completion of[ k� 1Rk . Then(T ; d) is a real tree (see Evans [57, Lemma 4.22]).

It is convenient to think ofT as a rooted tree. We set the root ofT at the point0. The following
properties ofT are straightforward from the construction.

(i) The skeleton ofT is [ k� 1(� k ; � k+1 ).

(ii) The Lebesgue measure on[0; 1 ) induces a� -�nite length measurèonT , which assigns measure
0 to T nSk(T ), such that̀ (Jx; yK) = d(x; y) for any pair of pointsx; y 2 T .

(iii) The branch points ofT correspond to the joinpoints, that is,Br( T ) = f vj : j � 1g [ f � i; 1 : � i >
0; i � 1g. Eachvj has degree3 asuj ; j � 1 are distinct almost surely, and each� i; 1 has in�nite
degree as there are in�nitely manyi -cutpoints.

The ICRTT also carries another measure, namely themass measure, which is important to our study.
Its de�nition relies on Aldous' general theory of continuum random tree (CRT) [10]. Indeed, it follows
from properties of the Poisson point processesPi ; i � 0, that the familyf d(0; � k ); k � 1g of root-to-leaf
distances is exchangeable. Moreover,T satis�es theleaf-tightproperty, which amounts to say that

inf
k� 1

d(0; � k ) = 0 ; almost surely.

Actually this is guaranteed by the hypothesis that either� 0 > 0 or
P

i � 1 � i = 1 . Then according to [10,

Theorem 3], for almost every realization ofT , the empirical measure� k := 1
k

P k
i =1 � � i converges

weakly ask ! 1 to some probability measure� , called themass measureof T , which is diffuse and
concentrated on the leaf set. Moreover, let(Vk ; k 2 N) be a sequence of independent points sampled ac-
cording to� . Then for eachk � 1, thek-leafed spanning treeSpan(T ; V1; V2; � � � ; Vk ) := [ 1� i � kJ0; Vi K
has the same distribution asRk . This allows us to determine the distributions of the spanning trees, as the
distribution ofRk is not dif�cult to deduce from the construction above. We refer the reader interested
in explicit formulas to Aldous and Pitman [12]. In a formal way, the equivalence class of(T ; d; � ) can
be seen as a random variable taking values inTw , the space of measured metric spaces. We say the
distribution of this random variable is the distribution of anICRT of parameter� .

In the case where� = (1 ; 0; 0; � � � ), the construction ofT coincides with Algorithm 3 of Aldous
[8], that is,T is the Brownian CRT. This is the only case where the degrees of the branch points are all
�nite. If

P
i � 1 � i < 1 (thus� 0 > 0), T is shown to be almost surely compact by Aldous, Miermont,

and Pitman [15]. On the other hand, if
P

i � 1 � i = 1 , the behavior ofT can be rather wild. In this
case, some heuristic arguments are proposed about a criterion for the compactness ofT in [15]. But a
mathematical justi�cation is still missing.

ICRTs as scaling limits of birthday trees. Let � 2 � and letpn = ( pn1; pn2; � � � ; pnn ) be a probability
measure on[n] for eachn 2 N. We suppose further thatpn1 � pn2 � � � � � pnn > 0. Let Tn be the
correspondingpn -tree whose distribution is given by (1.40). Let � n > 0 be the number de�ned by
� 2

n =
P n

i =1 p2
ni . Suppose that

lim
n!1

� n = 0 ; and lim
n!1

pni

� n
= � i ; for everyi � 1: (1.41)
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Let dT n be the graph distance onTn , that is, the distance between two vertices is the number of edges on
the path connecting them inTn . Denote by� nTn the rescaled metric space([n]; � ndT n ). Camarri and
Pitman [41] have shown that

(� nTn ; pn ) n!1�!
d;GP

(T ; � ); (1.42)

where! d;GP denotes the convergence in distribution with respect to Gromov–Prokhorov topology.

Remark 1. For each� 2 � , it is not dif�cult to �nd a sequence(pn ; n � 1) satisfying condition(1.41)
(see Aldous and Pitman [13, Lemma 4]). On the other hand, it is also shown in [41] that (1.41) is
necessary to obtain a non-trivial scaling limit. Therefore, the interesting weak limits of birthday trees
coincide with ICRTs.

Remark 2. If we takepn to be the uniform measure on[n] (that is,Tn is the Cayley tree withn vertices),
then the limit tree is the Brownian CRT and(1.42) reduces to

1
p

n
Tn n!1�!

d;GP
T br : (1.43)

This is �rst shown in Aldous [8] and is a special case of the convergence of the conditioned Galton–
Watson in(1.39). Indeed, if we take a uniform labeling on the nodes of a Galton–Watson tree conditioned
to have exactlyn nodes whose offspring law is the Poisson distribution of mean1, then we obtain in this
way a Cayley tree withn vertices.

A conjecture of Aldous, Miermont and Pitman. It is conjectured in [15] that Lévy trees are mixures
of ICRTs. This conjecture is motivated by the following construction of the height process of an ICRT.
For � 2 � , consider the following “bridge" process with exchangeable increments:

Z br
s = � 0B br

s +
1X

i =1

� i (1f Ui � sg � s); 0 � s � 1;

whereB br is the Brownian bridge which returns to0 at time1, and(Ui ; i � 1) is a sequence of inde-
pendent variables uniformly distributed on(0; 1). Note that the jumps ofZ br have magnitude� i ; i � 1.
Use the Vervaat transform [99], which relocates the space-time origin to the location of the in�mum, to
de�ne an excursion-type processZ = ( Zs; 0 � s � 1). If m denotes the Lebesgue measure onR, let
Y = ( Ys; 0 � s � 1) be a continuous process de�ned by

Ys = m
�n

inf
r � u� s

Zu : r � s
o�

; 0 � s � 1: (1.44)

Then Aldous, Miermont, and Pitman [15] show that if � is such that
P

i � 1 � i < 1 , then the height
process of the ICRT of parameter� is distributed as2

� 2
0
Y. Actually, (1.44) is an analog of a special case

of (1.18): when the branching mechanism	 has a Brownian component, that is,� > 0 in (1.11), then
(1.18) reduces to

Hs =
1
�

m
�n

inf
r � u� s

X u : r � s
o�

; s � 0; a.s.

Furthermore, Kallenberg [74] has shown that a Lévy bridge process is a mixture of the extremal bridges
such asZ br , where the mixing measure is the distribution of the jumps in the Lévy bridge. However, the
above construction ofY only works for those� with

P
i � 1 � i < 1 . And it is not clear that the Vervaat

transform of a general Lévy bridge would yield a “normalized Lévy excursion”, though Chaumont [44]
has proved that this is the case for a stable bridge process.
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1.3 Main contributions of the thesis

1.3.1 Height and diameter of Brownian trees

For any integern � 1, we denote byTn a uniformly distributed random rooted labelled tree withn
vertices, as de�ned in Section1.2.1, and we denote byDn its diameter with respect to the graph distance.
By computations on generating functions, Szekeres [98] proved that

n� 1
2 Dn

d�! � ; (1.45)

where� is a random variable whose probability densityf � is given by

f � (y) =

p
2�
3

X

n� 1

�
64
y4 (4b4

n;y � 36b3
n;y + 75b2

n;y � 30bn;y ) +
16
y2 (2b3

n;y � 5b2
n;y )

�
e� bn;y ; (1.46)

wherebn;y := 8( �n=y )2, for all y 2 (0; 1 ) and for all integersn � 1. This result is implicitly written in
Szekeres [98] p. 395 formula (12). See also Broutin and Flajolet [38] for a similar result for binary trees.
On the other hand, recall from (1.43) thatTn , whose graph distance is rescaled by a factorn� 1

2 , converges
in distribution to the Continuum Random Tree (also called Brownian tree) that we denote byT br . From
this, Aldous has deduced that� has the same distribution as the diameter ofT br : see [9], Section 3.4,
(though formula (41) there is not accurate). As proved by Aldous [10] and by Le Gall [80], the Brownian
tree is coded by the normalized Brownian excursion of length1 (see below for more details). Then, the
question was raised by Aldous [9] that whether we can establish (1.46) directly from computations on
the Brownian normalized excursion. In Chapter2, we present a solution to this question: we compute the
Laplace transform of law of the diameter of the Brownian tree directly from the normalized Brownian
excursion and we also provide a formula for the joint law of the total height and of the diameter of the
Brownian tree, which appears to be new.

Let us state more precisely our results. Recall from Section1.1.7the notion of stable trees condi-
tioned on the total mass. Here, we take

8� 2 R+ ; 	( � ) = � 2:

In other words, letX =( X t )t � 0 be the underlying Lévy process whose Laplace exponent is	( � ) = � 2;
then( 1p

2
X t )t � 0 is distributed as a linear standard Brownian motion such thatP(X 0 =0)= 1 . Recall the

normalized excursion measure
Nnr = N ( � j � =1) (1.47)

as de�ned in (1.37). Recall that the canonical process onC(R+ ; R+ ) is denote byH .

Remark 3. The positive Ito standard excursion measureN +
Ito , as de�ned for instance in Revuz & Yor

[97] Chapter XII Theorem 4.2, is derived fromN by the following scaling relations:

N +
Ito is the law of 1

p
2
H under 1

p
2
N and thus,N +

Ito ( � j � =1) is the law of 1
p

2
H underNnr .

Consequently, the lawNnr is not the standard normalized Brownian excursion. However, we shall call
Nnr the normalized Brownian excursion. �

Thetotal heightand thediameterof T are next given by

� = max
� 2T

d(�; � ) = max
t � 0

H t and D = max
�;� 02T

d(�; � 0) = max
s;t � 0

�
H t + Hs � 2 inf

r 2 [s^ t;s_ t ]
H r

�
: (1.48)
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Recall thatm stands for the mass measure onT : it is the pushforward of the Lebesgue measure on[0; � ]
via the canonical projectionp : [0; � ] ! T . Recall thatm(T ) = � .

We callBrownian treethe random rooted compact real tree(T ; d; � ) coded byH under the Brownian
normalized excursion lawNnr . Recall from (1.28) thatLf( T ) stands for the set of leaves ofT . By (1.38),
we easily derive from (1.32) and (1.33) that

Nnr -a.s. 8� 2 T ; deg(�; T ) 2 f 1; 2; 3g; m is diffuse and m
�
T nLf( T )

�
= 0 : (1.49)

The choice of the normalizing constant
p

2 for the underlying Brownian motionX is explained by the
following: let T �

n be uniformly distributed on the set of rootedplanar trees withn vertices: namelyT �
n is

distributed as a Galton-Watson tree whose offspring distribution� is geometric with mean1 conditioned
to haven vertices. Note that the variance of� is � 2 := 2 . Thus, the convergence (1.39) and Remark3
imply that (n� 1

2 C2nt (T �
n )) t2 [0;1] converges in law towardsH underNnr : see for instance Le Gall [82]

Th. 1.17. Thus,

n� 1
2 D �

n

(law)
���! D under Nnr;

whereD �
n stands for the diameter ofT �

n and whereD is the diameter of the Brownian tree given by
(1.48).

Remark 4. In the �rst paragraph of the introduction, we introduce the random treeTn that is uniformly
distributed on the set of rooted labeled trees withn vertices. The law ofTn is therefore distinct from that
of T �

n (that is uniformly distributed on the set of rooted ordered trees withn vertices). Aldous [10] has
proved that the treesTn , whose graph distance is rescaled by a factorn� 1

2 , converges to the tree coded
by

p
2H , underNnr. Thus,

�
(law)
=

p
2D under Nnr : (1.50)

See Remark6 below. �

We �rst prove the following result that characterizes the joint law of the height process and of the
diameter of the Brownian tree.

Theorem 3(Theorem2.1). Recall from (1.47) the de�nition of the lawNnr of the normalized Brownian
excursion and recall from (1.48) the de�nition of� and ofD . We then set

8�; y; z 2 (0; 1 ); L � (y; z) :=
1

2
p

�

Z 1

0
e� �r r � 3=2 Nnr

�
r

1
2 D > 2y ; r

1
2 � >z

�
dr : (1.51)

Note that
8�; y; z 2 (0; 1 ); L1(y; z) = � � 1

2 L �
�
� � 1

2 y ; � � 1
2 z

�
: (1.52)

Then,

L1(y; z) = coth( y_ z) � 1 � 1
4 1f z� 2yg

sinh(2q) � 2q
sinh4(y)

; (1.53)

whereq= y^ (2y� z). In particular, this implies that

8�; z 2 (0; 1 ); L � (0; z) =
p

� coth(z
p

� ) �
p

� : (1.54)

and

8�; y 2 (0; 1 ); L � (y; 0) =
p

� coth(y
p

� ) �
p

� �
p

�
sinh(2y

p
� ) � 2y

p
�

4 sinh4(y
p

� )
; (1.55)

From this theorem we deduce the following explicit laws.
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Corollary 4 (Corollary2.2). For all y; z2 (0; 1 ), we set

� = z _ y
2 and � =

� 2(y� z)
y _ 0

�
^ 1 : (1.56)

Then we have

Nnr
�
D >y ; � >z

�
= 2

X

n� 1

�
2n2� 2 � 1

�
e� n2 � 2

+ (1.57)

1
6

X

n� 2

n(n2 � 1)
h�

(n+ � )2y2 � 2
�
e� 1

4 (n+ � )2y2
�

�
(n� � )2y2 � 2

�
e� 1

4 (n� � )2y2
+ �y (n3y3 � 6ny)e� 1

4 n2y2
i

and

Nnr
�
D � y ; � � z

�
=

4� 5=2

� 3

X

n� 1

n2e� n2 � 2=� 2
� (1.58)

32� 3=2

3

X

n� 1

n sin(2�n� )
� 2

y5 (2a2
n;y � 9an;y + 6) �

3� 2 � 1
y3 (an;y � 1)

�
e� an;y +

16� 1=2

3

X

n� 1

� cos(2�n� )
� 1

y3 (6a2
n;y � 15an;y + 3) �

� 2 � 1
2y

an;y

�
e� an;y +

16� 1=2

3

X

n� 1

�
� 1

y3 (4a3
n;y � 24a2

n;y + 27an;y � 3) +
1
2y

(2a2
n;y � 3an;y )

�
e� an;y ;

where we setan;y = 4( �n=y )2 for all y 2 (0; 1 ) and for all n � 1 to simplify notation. In particular,
(1.57) implies

Nnr
�
� >y

�
= 2

X

n� 1

�
2n2y2 � 1

�
e� n2y2

; (1.59)

and
Nnr

�
D >y

�
=

X

n� 2

(n2 � 1)
� 1

6 n4y4 � 2n2y2 + 2
�
e� n2y2=4: (1.60)

On the other hand,(1.58) implies

Nnr
�
� � y

�
=

4� 5=2

y3

X

n� 1

n2e� n2 � 2=y2
; (1.61)

and

Nnr
�
D � y

�
=

p
�

3

X

n� 1

� 8
y3

�
24an;y � 36a2

n;y + 8a3
n;y

�
+

16
y

a2
n;y

�
e� an;y : (1.62)

Thus the law ofD underNnr has the following density:

f D (y) =
1
12

X

n� 1

�
n8y5 � n6y3(20 + y2) + 20n4y(3 + y2) � 60n2y

�
e� n2y2=4 (1.63)

=
2
p

�
3

X

n� 1

� 16
y4 (4a4

n;y � 36a3
n;y + 75a2

n;y � 30an;y ) +
8
y2 (2a3

n;y � 5a2
n;y )

�
e� an;y : (1.64)

Remark 5. We derive(1.58) from (1.57) using the following identity on the theta function due to Jacobi
(1828), which is a consequence of Poisson summation formula:

8t 2 (0; 1 ); 8x; y 2 C;
X

n2 Z

e� (x+ n)2 t � 2�iny = e2�ixy
� �

t

� 1
2

X

n2 Z

e� � 2 ( y + n ) 2

t +2 �inx : (1.65)

See for instance Weil [101], Chapter VII, Equation (12). Not surprisingly,(1.65) can also be used to
derive (1.61) from (1.59), to derive (1.62) from (1.60), or to derive (1.64) from (1.63). �
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Remark 6. We obtain (1.63) (resp. (1.64)) by differentiating (1.60) (resp. (1.62)). By (1.50), we have

8y 2 (0; 1 ); f � (y) =
1

p
2

f D

� y
p

2

�
;

which immediately entails (1.46) from (1.64), sincean;y=
p

2 = 8( �n=y )2 = bn;y . �

1.3.2 Decomposition of Lévy trees along their diameter

In the article [54] (that is written with Duquesne and that corresponds to Chapter3), we compute the law
of the diameter for general Lévy trees (see Theorem5). We also prove that the diameter of Lévy trees
is realized by a unique pair of points. The geodesic path joining these two extremal points is therefore
unique. In Theorem6, we describe the coding function (the height process) of the Lévy trees rerooted
at the midpoint of their diameter, which plays the role of an intrinsic root. The proof of Theorem6 that
provides a decomposition of Lévy trees according to their diameter speci�cally relies on the invariance
of Lévy trees by uniform rerooting, as proved by Duquesne and Le Gall [53], and on the decomposition
of Lévy trees according to their height, as proved by Abraham and Delmas [3] (this decomposition
generalizes Williams' decomposition of the Brownian excursion). Roughly speaking, Theorem6 asserts
that a Lévy tree that is conditioned to have diameterr and that is rooted at its midpoint is obtained by
glueing at their root two size-biased independent Lévy trees conditioned to have heightr=2 and then by
rerooting uniformly the resulting tree; Theorem6 also explains the distribution of the trees grafted on the
diameter. As an application of this theorem, we characterize the joint law of the height and the diameter of
stable trees conditioned by their total mass (see Proposition7) and by providing an asymptotic expansion
of the law of the height (Theorem9) and of the law of the diameter (Theorem11). These two asymptotic
expansions generalize the identities of Szekeres in the Brownian case which involves theta functions (see
(1.59) and (1.60)).

Before stating precisely these results, we need to introduce de�nitions and notations.

Re-rooting trees. Several statements involve a re-rooting procedure at the level of the coding functions
that is recalled here from Duquesne and Le Gall [52], Lemma 2.2 (see also Duquesne and Le Gall [53]).
Let H be a coding function as de�ned in Section1.1.6and recall that� H 2 (0; 1 ). For anyt 2 R+ ,
denote byt the unique element of[0; � H ) such thatt� t is an integer multiple of� H . Then for allt0 2 R+ ,
we set

8t 2 [0; � H ]; H [t0 ]
t = dH

�
t0; t + t0

�
and 8t � � H ; H [t0 ]

t = 0 : (1.66)

Then observe that� H = � H [t 0 ] and that

8t; t 0 2 [0; � H ]; dH [t 0 ] (t; t 0) = dH
�

t + t0; t0+ t0
�

: (1.67)

Lemma 2.2 [52] asserts that there exists a unique isometry� : TH [t 0 ] ! T H such that� (pH [t 0 ] (t)) =
pH

�
t + t0

�
for all t 2 [0; � H ]. This allows toidentify canonicallyTH [t 0 ] with the treeTH re-rooted at

pH (t0): �
TH [t 0 ] ; dH [t 0 ] ; � H [t 0 ]

�
�

�
TH ; dH ; pH (t0)

�
: (1.68)

Note that up to this identi�cation,m H [t 0 ] is the same asm H . Roughly speaking, the linear order� H [t 0 ]

is obtained from� H by a cyclic shift afterpH (t0).

Spinal decomposition. The law of the Lévy tree conditioned by its diameter that is discussed below
is described as a Poisson decomposition of the trees grafted along the diameter. To explain that kind of
decomposition in terms of the coding function of the tree, we introduce the following de�nitions and
notations.
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Let h2 C(R+ ; R+ ) have compact support. Note thath(0) > 0 possibly. We �rst de�ne the excursions
of h above its in�mum as follows. For anya2 [0; h(0)], we �rst set

`a(h) := inf
�

t 2 R+ : h(t)= h(0) � a
	

and ra(h) := � h ^ inf
�

t 2 (0; 1 ) : h(0) � a > h (t)
	

;

with the convention thatinf ; = 1 , so thatrh(0) (h)= � h . We then set

8s2 R+ ; Es(h; a) := h
�
(`a(h) + s)^ ra(h)

�
� h(0) + a :

See Figure1.3. Note thatE(h; a) is a nonnegative continuous function with compact support such that
E0(h; a)=0 . Moreover, if`a(h)= ra(h), thenE(h; a)= 0, thenull function.

Let H be a coding function as de�ned above. Lett 2 R+ . We next set

8s2 R+ ; H �
s = H (t � s)+ and H +

s = H t+ s :

Note thatH �
0 = H +

0 = H t . To simplify notation we also set

8a 2 [0; H t ];
 �
H a := E(H � ; a) and

�!
H a := E(H +; a)

and
J 0;t :=

�
a2 [0; H t ] : either`a(H � ) <r a(H � ) or `a(H + ) <r a(H + )

	

that is countable. We then de�ne the following point measure on[0; H t ]� C(R+ ; R+ )2:

M 0;t (H ) =
X

a2J 0;t

�
(a;

 �
H a ;

�!
H a )

; (1.69)

with the convention thatM 0;t (H )=0 if J 0;t = ; .
For all t1 � t0 � 0, we also set

M t0 ;t 1 (H ) := M 0;t 1 � t0

�
H [t0 ]� =:

X

a2J t 0 ;t 1

�
(a;

 �
H a ;

�!
H a )

: (1.70)

This point measure on[0; dH (t0; t1)] � C(R+ ; R+ )2 is thespinal decomposition ofH betweent0 andt1.

Let us interpret this decomposition in terms of the treeTH (see Figure1.3): set 
 0 = pH (t0) and

 1 = pH (t1); to simplify, we assume that
 0 and
 1 are leaves. Recall thatJ
 0; 
 1Kis the geodesic path
joining 
 0 and
 1; thenJ t0 ;t 1 = f d(�; 
 1); � 2 Br(TH ) \ J
 0; 
 1Kg. For any positivea 2 J t0 ;t 1 , there
exists� 2 Br(TH ) \ J
 0; 
 1Ksuch that the following holds true.

�
�!
Ta := f � g [

�
� 02 TH : 
 0 < H � 0< H 
 1 andJ
 0; � K= J
 0; � 0K\ J
 0; 
 1K

	
is the tree grafted at� on

the right hand side ofJ
 0; 
 1Kand the tree(
�!
Ta; d; � ) is coded by

�!
H a.

�
 �
Ta := f � g[

�
� 02TH : either� 0< H 
 0 or 
 1 < H � 0andJ
 0; � K= J
 0; � 0K\ J
 0; 
 1K

	
is the tree grafted

at � on the left hand side ofJ
 0; 
 1Kand the tree(
 �
Ta; d; � ) is coded by

 �
H a.

Diameter decomposition. Let 	 be a branching mechanism of the form (1.11) that satis�es (1.14).
Recall thatX stands for a spectrally positive Lévy process de�ned on(
 ; F ; P) starting from0 and
whose Laplace exponent is	 : see (1.17). Recall from (1.18) the de�nition of the	 -height processH
underP and under its excursion measureN . Recall that the treeT coded byH underN is the	 -Lévy
tree. One checks that the total height isN -a.s. realized at a unique time (see Duquesne and Le Gall [52]
and also Abraham and Delmas [3]). Namely,

N -a.e. there exists a unique� 2 [0; � ] such thatH � = � : (1.71)
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0 `a (h) r a (h)

h

a

� h

E(h; a)
�!
T a

 �
T a

 �
T a0


 1


 0

�

� = root

a0

Figure 1.3 – The �gure on the left hand side illustrates the de�nition ofE(h; a). The �gure on the right hand side
represents the spinal decomposition ofH at timest0 andt1 in terms of the treeT coded byH .

Moreover, the distribution of the total height� underN is characterized as follows:

8t 2 (0; 1 ); v(t) := N (� > t ) satis�es
Z 1

v(t )

d�
	( � )

= t : (1.72)

Recall from (1.16) thatv : (0; 1 ) ! (0; 1 ) is a bijective decreasingC1 function and (1.72) implies that
on (0; 1 ), N (� 2 dt)= 	( v(t)) dt.

For all x 2 (0; 1 ), we setTx =inf f t 2 R+ : X t = � xg that isP-a.s. �nite sinceX underP does not
drift to 1 . We next introduce the following lawP x onC(R+ ; R+ ):

P x is the law of(H t^ Tx )t � 0 underP, (1.73)

The treeTH underP x (dH ) is called the	 -Lévy forest starting from a population of sizex. Then, the
mass measure ofTH underP x (dH ) satis�es the following important properties:

P x (dH )-a.s.m H is diffuse andm H (TH nLf (TH )) = 0 . (1.74)

The Poisson decomposition (1.25) implies thatsupt2 [0;Tx ] H t =max f �( H i ); i 2 I : � I ai � xg and since
� underN has a density, then (1.71) and (1.72) entail that

P x -a.s. there is a unique� 2 [0; � ] such thatH � = � and P x (� � t)= e� xv (t ) , t 2 R+ . (1.75)

In [3], Abraham and Delmas generalize Williams' decomposition of the Brownian excursion to the
excursion of the	 -height process: they �rst make sense of the conditioned lawN ( � j � = r ). Namely
they prove thatN ( � j � = r )-a.s.� = r , thatr 7! N ( � j � = r ) is weakly continuous onC(R+ ; R+ ) and
that

N =
Z 1

0
N (� 2 dr) N ( � j �= r ) : (1.76)

Moreover they provide a Poisson decomposition along the total height of the process: see Chapter3,
Section3.2.2where a more precise statement is recalled. The �rst two results of our article provide a
similar result for the diameterD of the 	 -Lévy tree underN . Recall thatp : [0; � ] ! T stands for the
canonical projection.

Theorem 5(Theorem3.1). Let 	 be a branching mechanism of the form (1.11) that satis�es (1.14). Let
T be the	 -Lévy tree that is coded by the	 -height processH under the excursion measureN as de�ned
above. Then, the following holds trueN -a.e.
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(i) There exists a unique pair� 0; � 1 2 [0; � ] such that� 0 < � 1 and D = d(� 0; � 1). Moreover, either
H � 0 =� or H � 1 =� . Namely, either� 0 = � or � 1 = � , where� is the unique time realizing the total
height as de�ned by (1.71).

(ii) Set 
 0 = p(� 0) and 
 1 = p(� 1). Then
 0 and 
 1 are leaves ofT . Let 
 mid be the mid-point of
J
 0; 
 1K: namely,
 mid is the unique point ofJ
 0; 
 1Ksuch thatd(
 0; 
 mid ) = D=2. Then, there
are exactly two times0� � �

mid <� +
mid � � such thatp(� �

mid )= p(� +
mid )= 
 mid , and
 mid is a simple

point ofT : namely, it is neither a branching point nor a leaf ofT .

(iii) For all r 2 (0; 1 ), we get

N
�
D > 2r

�
= v(r ) � 	

�
v(r )

� 2
Z 1

v(r )

d�
	( � )2 : (1.77)

This implies thatN (D 2 dr)= ' (r )dr on(0; 1 ) where the density' : (0; 1 ) ! (0; 1 ) is given by

8r 2 (0; 1 ); ' (2r ) = 	( v(r )) � 	( v(r ))2 	 0(v(r ))
Z 1

v(r )

d�
	( � )2 : (1.78)

The second main result of our paper is a Poisson decomposition of the subtrees ofT grafted on the
diameterJ
 0; 
 1K. This result is stated in terms of coding functions and we �rst need to introduce the
following notation: letH; H 02 C(R+ ; R+ ) be two coding functions as de�ned above; theconcatenation
of H andH 0 is the coding function denoted byH � H 0and given by

8t 2 R+ ; (H � H 0)t = H t if t 2 [0; � H ] and (H � H 0)t = H 0
t � � H

if t � � H . (1.79)

Moreover, to simplify notation we write the following:

8r 2 (0; 1 ); N �
r = N ( � j �= r ) : (1.80)

Theorem 6(Theorem3.2). Let 	 be a branching mechanism of the form (1.11) that satis�es (1.14). For
all r 2 (0; 1 ), we denote byQ r the law onC(R+ ; R+ ) of H � H 0 underN �

r=2(dH )N �
r=2(dH 0), where

N �
r=2 is de�ned by (1.80). Namely, for all measurable functionsF :C(R+ ; R+ ) ! R+ ,

Q r
�
F (H )

�
=

ZZ

C(R+ ;R+ )2
N �

r=2(dH )N �
r=2(dH 0) F

�
H � H 0� : (1.81)

ThenQ r satis�es the following properties.

(i) Q r -a.s.D = r and there exists a unique pair of points� 0; � 1 2 [0; � ] such thatD = d(� 0; � 1).

(ii) For all r 2 (0; 1 ), Q r [ � ] = 2N �
r=2[ � ] 2 (0; 1 ). Moreover, the applicationr 7! Q r is weakly

continuous and for all measurable functionsF :C(R+ ; R+ ) ! R+ andf :R+ ! R+ ,

N
�
f (D )F (H )

�
=

Z 1

0

N (D 2 dr)
Q r [ � ]

f (r ) Q r

hZ �

0
F

�
H [t ]� dt

i
; (1.82)

whereH [t ] is de�ned by (1.66).

(iii) Recall the notation� �
mid and� +

mid from Theorem5 (ii ). Then, for allr 2 (0; 1 ),

N
�
F

�
H [� �

mid ]� �
� D = r

�
=

1
N �

r=2[ � ]

ZZ

C(R+ ;R+ )2
N �

r=2(dH )N �
r=2(dH 0) � H 0F

�
H � H 0� ; (1.83)

whereN ( �
�
� D = r ) makes sense for allr 2 (0; 1 ) thanks to (1.82).
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(iv) Recall from (1.73) the notationP y . To simplify notation, we write for ally; b2 (0; 1 )

N b = N
�

� \ f � � bg
�

and P y
b = P y �

� \ f � � bg
�
; (1.84)

Then, underQ r , M � 0 ;� 1 (da d
 �
H d

�!
H ), de�ned by (1.70), is a Poisson point measure on[0; r ] �

C(R+ ; R+ )2 whose intensity is

� 1[0;r ](a)da
�

� 0(d
 �
H )N a^ (r� a) (d

�!
H ) + N a^ (r� a) (d

 �
H )� 0(d

�!
H )

�

+ 1[0;r ](a)da
Z

(0;1 )
� (dz)

Z z

0
dx P x

a^ (r� a)

�
d
 �
H ) P z� x

a^ (r� a)

�
d
�!
H ); (1.85)

where� and� are de�ned in (1.11).

Remark 7. As already mentioned, the previous theorem makes sense ofN
�

�
�
�D = r

�
and for all

measurable functionsF :C(R+ ; R+ ) ! R+ , we have

8r 2 (0; 1 ); N
�

F (H )
�
� D = r

�
:= Q r

hZ �

0
F

�
H [t ]� dt

i.
Q r [ � ] ; (1.86)

Namely, Theorem6 (i ) entails thatN ( �
�
� D = r )-a.s.D = r . Then (1.81) combined with the already

mentioned continuity ofr 7! N ( � j � = r=2) easily implies thatr 7! N ( �
�
� D = r ) is weakly continuous

onC(R+ ; R+ ). Moreover, (1.82) can be rewritten:

N =
Z 1

0
N (D 2 dr) N ( � j D = r ) (1.87)

that is the exact analogous of (1.76). We mention that the proof of Theorem6 relies on the decomposition
(1.76) due to Abraham and Delmas [3]. �

Remark 8. It is easy to check from (1.66) that for all t0; t, (H [t ])[t0 ] = H [t+ t0 ]. Therefore, (1.82) implies
thatH underN is invariant under rerooting. Namely, for all measurable functionsF :C(R+ ; R+ ) ! R+ ,

8t0 2 R+ ; N
�
1f � � t0gF

�
H [t0 ]�� = N

�
1f � � t0gF

�
H

��
; (1.88)

which is quite close to Proposition 2.1 in Duquesne and Le Gall [53], that is used in the proof of Theorem
6. �

Remark 9. As shown by (1.86), N
�

�
�
�D = r

�
is derived fromQ r by a uniform rerooting. This property

suggests that the law of the compact real tree(T ; d) coded byH underQ r , without its root, is the scaling
limit of natural models of labeled unrooted trees conditioned by their diameter. �

Remark 10. Another reason for introducing the lawQ r is the following: we deduce from (1.86) that for
all measurable functionsF :C(R+ ; R+ ) ! R+ ,

N
�
F (H [� 0 ])

�
� D = r

�
= Q r

�
�F (H [� 0 ])

��
Q r [ � ] ; (1.89)

where� 0 is as in Theorem5. By Theorem6 (iv ), H underQ r enjoys a Poisson decomposition along its
diameter. However (1.89) implies that this not the case ofH underN ( � j D = r ). �
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The law of � and of D of stable Lévy trees conditioned by their total mass. In application of
Theorem6, we compute the law of� andD underN ( � j � =1) in the cases where	 is a stable branching
mechanism. Namely, we �x
 2 (1; 2] and

	( � ) = � 
 ; � 2 R+ ;

that is called the
 -stable branching mechanism. Recall from (1.37) the de�nition of

Nnr := N ( � j � =1) :

We next introducew : (0; 1 ) ! (1; 1 ) that is the uniqueC1 decreasing bijection that satis�es the
following integral equation:

8y 2 (0; 1 );
Z 1

w(y)

du
u
 � 1

= y : (1.90)

We refer to Chapter3, Section3.3.1for a probabilistic interpretation ofw and further properties. The
following proposition characterizes the joint law of� andD underNnr by the mean of Laplace trans-
forms.

Proposition 7 (Proposition3.3). Fix 
 2 (1; 2] and	( � )= � 
 , � 2 R+ . Recall from (1.37) the de�nition
of the lawNnr of the normalized excursion of the
 -stable height process. We then set

8�; y; z 2 (0; 1 ); L � (y; z) := c


Z 1

0
e� �r r � 1� 1


 Nnr
�

r

 � 1


 D > 2y ; r

 � 1


 � >z
�

dr ; (1.91)

where we recall from (1.35) that1=c
 = 
 � e
� 
 � 1




�
, � e standing for Euler's Gamma function. Note that

8�; y; z 2 (0; 1 ); L1(y; z) = � � 1

 L �

�
� � 
 � 1


 y ; � � 
 � 1

 z

�
: (1.92)

Recall from (1.90) the de�nition ofw. Then,

L1(y; z) = w(y _ z) � 1 � 1

 1f z< 2yg

�
w(y) 
 � 1

� 2

 
w

�
y^ (2y� z)

�

w
�
y^ (2y� z)

� 
 � 1
� (
 � 1)

�
y^ (2y� z)

�
!

:

(1.93)
In particular, for all y; z2 (0; 1 ),

L1(0; z) = w(z) � 1 and L1(y; 0) = w(y) � 1� 1



�
w(y) 
 � 1

� �
w(y)� (
 � 1)y

�
w(y) 
 � 1

� �
: (1.94)

The previous proposition is known in the Brownian case, wherew(y) = coth( y): see Section1.3.1.
As already mentioned in Corollary4, in the Brownian case, standard computations derived from (1.94)
imply the following power expansions that hold true for ally2 (0; 1 ):

Nnr
�
� >y

�
= 2

X

n� 1

�
2n2y2 � 1

�
e� n2y2

; (1.95)

Nnr
�
D >y

�
=

X

n� 2

(n2 � 1)
� 1

6 n4y4 � 2n2y2 + 2
�
e� n2y2=4 : (1.96)

We next provide similar asymptotic expansions in the non-Brownian stable cases. To that end, we intro-
duces
 : (0; 1 ) ! (0; 1 ) as the continuous version of the density of the spectrally positive
 � 1


 -stable
distribution; more precisely,s
 is characterized by the following:

8� 2 (0; 1 );
Z 1

0
e� �x s
 (x) dx = exp( � 
�


 � 1

 ) : (1.97)
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The following asymptotic expansion ofs
 at 0 is due to Zolotarev (see Theorem 2.5.2 [103]): for all
integerN � 1,

�
2� (1� 1


 )
� 1

2 x

 +1

2 e1=x
 � 1
s


�
(
 � 1)x

�
= 1 +

X

1� n<N

Sn xn(
 � 1) + ON;

�
xN (
 � 1) � ; asx ! 0. (1.98)

HereON;
 means that the expansion depends onN and
 . Next note thatSn depends onn and
 but we
skip the dependence in
 to simplify notation.

Remark 11. In the Brownian case where
 =2 , it is well-known that

s2(x) = � � 1
2 x � 3

2 e� 1=x; x 2 R+

Then,S0 =1 andSn =0 , for all n � 1. �

For generic
 2 (1; 2), this asymptotic expansion does not yield a converging power expansion (al-
though it is the case if
 =2 ). See Chapter3, Section3.4.1for more details ons
 . To state our result we
�rst need to introduce an auxiliary function derived froms
 as follows.

Proposition 8 (Proposition3.4). Let 
 2 (1; 2]. Recall from (1.97) the de�nition ofs
 . We introduce the
following function:

8x 2 (0; 1 ); � (x) :=( 
 � 1) x � 1s
 (x) � 
 � 1

 x � 1� 1




Z x

0
dy y

1

 � 1s
 (y) : (1.99)

Then, the following holds true.

(i) � is well-de�ned, continuous,
Z 1

0
dx j� (x)j < 1 and

Z 1

0
dx e� �x � (x) = �

1

 e� 
�


 � 1



; � 2 (0; 1 ): (1.100)

(ii) Recall from (1.98) the de�nition of the sequence(Sn )n� 0, with S0 =1 . Let(Vn )n� 0 be a sequence
of real numbers recursively de�ned byV0 =1 and

8n 2 N; Vn+1 = Sn+1 +
�
n� 1

2 � 1

 � 1

�
Sn �

�
n � 1

2 � 1



�
Vn : (1.101)

Then, for all integerN � 1,

�
2� (1� 1


 )
� 1

2 x

 +3

2 e1=x
 � 1
�
�
(
 � 1)x

�
= 1 +

X

1� n<N

Vn xn(
 � 1) + ON;

�
xN (
 � 1) � ; (1.102)

asx ! 0.

We use� to get the asymptotic expansion of the law of the total height of the normalized
 -stable
tree as follows.

Theorem 9(Theorem3.5). Let 
 2 (1; 2]. We introduce the following function:

8r 2 (0; 1 ); � (r ) := r � 
 +1

 � 1 �

�
r � 



 � 1
�

: (1.103)

where� is de�ned in (1.99). Then, there exists a real valued sequence(� n )n� 1 andx1 2 (0; 1) such that

X

n� 1

j� n jxn
1 < 1 and 8r 2 (0; 1 );

X

n� 1

j� n j sup
s2 [r; 1 )

j� (ns)j < 1 ; (1.104)
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and such that

8r 2 (0; 1 ); c
 Nnr
�
� >r

�
=

X

n� 1

� n � (nr ) ; (1.105)

where we recall from (1.35) that 1=c
 = 
 � e
� 
 � 1




�
, � e standing for Euler's gamma function. Moreover,

for all integersN � 1, asr ! 1 ,

1
C1

r � 1� 

2 er 


Nnr

�
� >r (
 � 1)� 
 � 1




�
= 1 +

X

1� n<N

Vn r � n
 + ON;

�
r � N
 �

; (1.106)

whereC1 := (2 � ) � 1
2 (
 � 1)

1
2 + 1


 

3
2 � e( 
 � 1


 ) exp(C0), where

C0 := 

Z 1

1

du
(u + 1) 
 � 1

�
Z 1

0

du
u

(u + 1) 
 � 1 � 
u
(u + 1) 
 � 1

; (1.107)

and where the sequence(Vn )n� 1 is recursively de�ned by (1.101) in Proposition8.

Remark 12. The convergence in (1.105) is rapid. Indeed, by (1.102), we see that� (nr ) is of order

(nr )1+ 

2 exp(� n
 (
 � 1)

1

 � 1 r 
 ) :

Then, the asymptotic expansion (1.106) is that of the �rst term of (1.105) that isc� 1

 � 1 � (r ). �

Remark 13. The de�nition of the sequence(� n )n� 0 is involved: see Lemma3.24and its proof for a
precise de�nition. However, in the Brownian case, everything can be explicitly computed: for alln � 1,
� n = 2 , � (r ) = (4 � ) � 1

2 (2r 2 � 1)e� r 2
, c2 = (4 � ) � 1

2 , and we recover (1.95) from (1.105); moreover,
C0 =log 2, C1 =4 , V0 =1 , V1 = � 1

2 andVn =0 , for all n � 2. �

To state the result concerning the diameter, we need precise results on the derivative of the
 � 1

 -stable

density.

Proposition 10(Proposition3.6). Let 
 2 (1; 2]. Recall from (1.97) the de�nition of the densitys
 . Then
s
 is C1 onR+ ,

Z 1

0
dx js0


 (x)j < 1 and
Z 1

0
dx e� �x s0


 (x) = �e � 
�

 � 1



; � 2 (0; 1 ): (1.108)

Moreover,s0

 has the following asymptotic expansion: recall from (1.98) the de�nition of the sequence

(Sn )n� 0, with S0 =1 ; let (Tn )n� 0 be a sequence of real numbers recursively de�ned byT0 =1 and

8n 2 N; Tn+1 := Sn+1 +
�
n � 1

2 � 1

 � 1

�
Sn : (1.109)

Then, for all positive integersN , we have

�
2� (1� 1


 )
� 1

2 x
3
 +1

2 e1=x
 � 1
s0




�
(
 � 1)x

�
= 1 +

X

1� n<N

Tn xn(
 � 1) + ON;

�
xN (
 � 1) � ; (1.110)

asx ! 0.

The asymptotic expansion of the law of the diameter of the normalized
 -stable tree is then given in
the following theorem.
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Theorem 11(Theorem3.7). Let 
 2 (1; 2]. Recall from (1.103) the de�nition of the function� . We also
introduce the following function:

8r 2 (0; 1 ); � (r ) := r � 
 +1

 � 1 s0




�
r � 



 � 1
�

; (1.111)

wheres0

 is the derivative of the densitys
 de�ned in (1.97). Then there exist two real valued sequences

(
 n )n� 2 and(� n )n� 2 andx2 2 (0; 1) such that
X

n� 2

(j
 n j + j� n j)xn
2 < 1 and 8r 2 (0; 1 );

X

n� 2

j
 n j sup
s2 [r; 1 )

j� (ns)j + j� n j sup
s2 [r; 1 )

j� (ns)j < 1 ;

(1.112)
and such that

8r 2 (0; 1 ); c
 Nnr
�
D > 2r

�
=

X

n� 2


 n � (nr ) + � n � (nr ) ; (1.113)

where we recall from (1.35) that 1=c
 = 
 � e
� 
 � 1




�
, � e standing for Euler's gamma function. Moreover,

for all integersN � 1, asr ! 1 ,

1
C2

r � 1� 3

2 er 


Nnr

�
D >r (
 � 1)� 
 � 1




�
= 1 +

X

1� n<N

Un r � n
 + O
;N
�
r � N
 �

; (1.114)

whereC2 := (8 � ) � 1
2 (
 � 1)

3
2 + 1


 

5
2 � e( 
 � 1


 ) exp(2C0), whereC0 is de�ned by (1.107) and where the
sequence(Un )n� 1 is recursively de�ned byU0 =1 and

8n � 1; Un = Tn � 
 +1

 (
 � 1)

Vn� 1 : (1.115)

Here(Tn )n� 0 is de�ned by (1.109) and(Vn )n� 0 is de�ned by (1.101).

Remark 14. The convergence in (1.113) is rapid. Indeed, by (1.110) and (1.102) we see that� (nr=2)
and� (nr=2) are of respective order

(nr )1+ 3

2 exp(� n
 2� 
 (
 � 1)

1

 � 1 r 
 ) and (nr )1+ 


2 exp(� n
 2� 
 (
 � 1)
1


 � 1 r 
 ) :

Then the asymptotic expansion (1.114) is that ofc� 1

 
 2 � (r ) + c� 1


 � 2 � (r ). �

Remark 15. The de�nitions of the sequences(
 n )n� 0 and(� n )n� 0 are involved: see the proof of Lemma
3.25for a precise de�nition. However, in the Brownian case, everything can be computed explicitly:

8n � 2; 
 n = 4
3 (n2 � 1); � n = � 2(n2 � 1) and � (r ) = � � 1

2 r 2�
r 2 � 3

2

�
e� r 2

;

which allows to recover (1.96) from (1.113). Moreover,C2 = 8 , U0 = 1 , U1 = � 3, U2 = � 3
4 andUn = 0 ,

for all n � 3. �

1.3.3 Cutting and re-arranging trees

The study of random cutting on trees dates back to Meir and Moon [88] and has several variations.
Here, we consider the following version which consists in cutting down a tree by iteratively removing
random vertices. Given a rooted (graph) treeT, choose a uniform vertex and remove it. This splitsT
into several connected components. Retain the one containing the root and discard the other ones. Then
keep repeating the same procedure on the remaining part until the tree is empty. Each vertex that has
been picked and removed is referred to as acut. Denote byL(T) the total number of cuts. IfTn denotes
the Cayley tree onn vertices, then Panholzer [93] has shown that

1
p

n
L(Tn ) d�! R; asn ! 1 ; (1.116)
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whereR is a random variable with Rayleigh distribution (of density functionxe� x2=2 on [0; 1 )). Jan-
son [72] has extended this result to the case of conditioned Galton–Watson trees with a �nite-variance
offspring distribution.

The convergence in (1.116) and its extension by Janson motivated a number of recent works, which
address one or both of the following topics. The �rst one is proposed by Janson [72]. As we have seen, if
� is a critical offspring distribution with �nite variance� 2, and� n denotes the Galton–Watson tree with
offspring distribution� conditioned to have total progenyn, then

�
p

n
� n

n!1�!
d;GH

T br ; (1.117)

whereT br denotes the Brownian CRT, and! d;GH denotes the convergence in distribution with respect
to the Gromov–Hausdorff topology. Comparing this with Janson's result, one might wonder whether it
is possible to de�ne a continuous cutting procedure on the limit treeT br and a random variable which
is an analog for the number of cuts such that (1.116) would follow from the convergence of the cutting
procedures. This is studied in Addario-Berry, Broutin, and Holmgren [7], Abraham and Delmas [4], as
well as Bertoin and Miermont [30]. It turns out that the continuous cutting procedure is closely related
to the fragmentation process considered in Aldous and Pitman [11]. And the continuous analog for the
number of cuts, which we denote byL(T br), is a measurable function of the fragmentation process (see
(1.121) below). Then the authors in [7] and [30] show independently that

1
�

p
n

L(� n ) d�! L (T br) (1.118)

jointly with the convergence in (1.117). The special case for the Cayley trees is also shown in [4].
Combining (1.118) with (1.116) (recall that the Cayley tree corresponds to a conditioned Galton–Watson
tree with Poisson offspring distribution), we see thatL (T br) has Rayleigh distribution. In the case where
the offspring distribution is in the domain of attraction of some� -stable distribution for� 2 (1; 2),
the conditioned Galton–Watson tree converges weakly to the� -stable tree (see Duquesne [49]). Then a
result similar to (1.118) has been proved by Dieuleveut [46], where the continuous cutting procedure is
induced by the self-similar fragmentation on the branch points de�ned in Miermont [90].

Another natural question arising from (1.116) is about the limit distribution. Note that the distribution
of L (T br), which is Rayleigh, is also the distribution of the distance inT br between two uniform nodes.
This coincidence of distributions is explained in Addario-Berry et al. [7], using a bijection for the cuttings
of the Cayley tree. Indeed, if we take the discarded subtrees from the cutting procedure of the Cayley
treeTn and connect their roots to make a path (see Figure1.4), then the tree obtained is distributed as
Tn . Moreover, the extremities of this path are two independent uniform nodes. Therefore,L (Tn ) has the
same distribution as the number of nodes on a uniform path inTn and the distribution ofL (T br) follows
easily from a weak convergence argument. Another explanation for the distribution ofL (T br) is given in
Bertoin and Miermont [30], where the argument is based on the duality of two self-similar fragmentations
on T br . This kind of identity in distribution, saying thatL (T br) is distributed as the distance between
two uniform nodes can be extended to a general Lévy tree under the excursion measure. This is done by
Abraham and Delmas [5].

It turns out that this kind of identity in distribution is also true for a general ICRT with a cutting
procedure that we de�ne below. However, the argument in [30] cannot apply, since an ICRT is not self-
similar in general; nor can the argument in [5], which is based on the nice analytic properties of the
underlying Lévy process. On the other hand, the bijection on the Cayley tree in [7] can be extended to
the birthday trees, as a consequence of the Aldous–Broder Algorithm (Algorithm2). The results on the
cutting of ICRTs then follow from weak convergence arguments.

In the sequel, we �rst introduce the cutting procedures on the discrete and continuous models. Then
we announce the main results, whose proofs are found in Chapter4.
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A cutting procedure on the discrete trees

Let p be a probability measure on[n], for a natural numbern � 1. Let T be ap-tree as de�ned in
(1.40). We introduce a cutting procedure onT which generalizes the previous one on the Cayley tree. It
is more convenient for us to retain the portion containing a random vertex rather than the root. For this,
we sample an independent vertexV of distributionp. Recall that the treeTV obtained by re-rooting at
V is still a p-tree. Therefore, this modi�cation does not affect the distribution ofL (T). We perform the
cutting procedure onT by picking each time a vertex according to the restriction ofp to the remaining
part. Denote byL(T) the total number of cuts, and letX i ; 1 � i � L (T), be the sequence of the cuts.

During this cutting procedure, we reassemble the discarded parts, which are the subtrees aboveX i

just before the cutting, by adding an edge betweenX i andX i +1 , 1 � i � L (T) � 1. The resulting tree
(Figure1.4), denoted bycut(T; V), has the same vertex set as the initial tree and contains a path which
is composed ofX 1; X 2; � � � ; X L (T ) = V . It follows thatL (T) is the number of vertices on this path.

X 5

X 3

X 1
X 2

X 4

X 1

X 2

X 3

X 4

X 5

X 1

T

= V

cut(T; V)

Figure 1.4 – On the left, the cutting ofT. On the right, the treecut(T; V) obtained from the discarded
parts ofT.

Proposition 12(Lemma4.10and Proposition4.11). For a p-treeT, we have

(cut( T; V); V ) d= ( T; V): (1.119)

In particular, this entails

L (T) d= Card f vertices on the path ofT from the root toVg:

A cutting procedure on the continuous trees

Let T be an ICRT for some parameter� = ( � i ) i � 0 2 � , as introduced previously. LetV be a random
point sampled according to the mass measure� of T . We mean to de�ne a cutting procedure onT which
is the weak limit of the previous one on thep-treeT. For this, we notice that the sequence of the cuts on
T can also be obtained from a Poisson point process of intensitydt 
 p on[0; 1 ) � T . It suf�ces to �lter
the points of this Poisson point process in such a way that only those which fall on the part containing
V are counted. Recall that� 2 =

P
i � 1 p2

i . Then we take� � 1p as the discrete measure with respect to
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which we cut the rescaled tree�T . Under the hypothesis (1.41), we show (Proposition4.23) that the
weak limit of (� � 1

n pn ; n � 1) is the following measure onT :

L (dx) = � 2
0`(dx) +

X

i � 1:� i > 0

� i � � i (dx); (1.120)

where` is the length measure supported on the skeleton ofT , and� i is the1 -degree branch point which
corresponds to� i; 1 in the Poisson processPi of rate� i > 0 used in the line-breaking construction. It
turns out thatL is a� -�nite measure concentrated onSk(T ) (Lemma4.22).

Conditional onT , let P be a Poisson point process on[0; 1 ) � T of intensity measuredt 
 L (dx).
For eacht � 0, de�ne Pt = f x 2 T : 9 s � t such that(s; x) 2 Pg. Let Tt = Tt be the connected
component ofT n Pt containingV . This is the portion of the tree remaining at timet. We setC := f t >
0 : � (Tt � ) > � (Tt )g: Then for eacht 2 C, there exists a (unique)x(t) 2 T such that(t; x (t)) 2 P .
Moreover,x(t) is contained inTt � , the portion left just before the cutting.

We set

L (T ) :=
Z 1

0
� (Ts)ds; (1.121)

which is almost surely �nite (Theorem4.4). This turns out to be the continuous analog for the number
of cuts. Note that such a de�nition has already appeared in [7, 30] for the Brownian CRT, and in [5] for
the Lévy trees.

In a similar way to the discrete case, we construct another (real) tree which partially encodes the
cutting procedure onT . For t 2 [0; 1 ], we de�ne L t :=

Rt
0 � (Ts)ds. In particular,L 1 = L(T ).

Consider the interval[0; L 1 ], which is almost surely �nite. For eacht 2 C, graft Tt � n Tt , the portion
of the tree discarded at timet, at the pointL t 2 [0; L 1 ]. This produces a real tree, seen as rooted at the
extremity0 of [0; L 1 ]. Denote bycut(T ; V ) its completion. Moreover, the mass measure� of T can be
pushed tocut(T ; V ), which yields a (possibly defective probability) measure�̂ oncut(T ; V ).

Let (pn ; n � 1) be the sequence of probability measures satisfying (1.41), and writecut(Tn ; V n )
for the tree associated to the cutting procedure for thepn -treeTn and the nodeV n of distributionpn .

Theorem 13(Theorem4.4). Under(1.41), we have

(� n cut(Tn ; V n ); pn ; V n ) n!1�!
d;GP

(cut( T ; V ); �̂; L 1 );

jointly with the convergence in(1.42).

Comparing this with (1.119), we obtain immediately that

Corollary 14 (Theorem4.5, Corollary4.6). We have the identity in distribution:

(cut( T ; V ); �̂ ) d= ( T ; � ): (1.122)

Moreover,L (T ) has the same distribution as the distance inT from the root toV , that is,

P
�
L (T ) > r

�
= e� 1

2 � 2
0 r 2 Y

i � 1

(1 + � i r )e� � i r ; r > 0: (1.123)

Genealogical trees of the discrete and continuous fragmentations

In the cutting procedure described above, we only keep track of the cuts affecting the size of the connected
component containingV . Following Bertoin and Miermont [30], we also consider a more general cutting
procedure which keeps splitting all the connected components. It turns out that this cutting process
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is connected to the Aldous–Pitman fragmentation [11] for the Brownian CRT, and to a new natural
fragmentation for a general ICRT.

Let P be the Poisson point process of intensity measuredt 
 L (dx) as de�ned previously. For each
t � 0, we obtain a “forest" fromT by removing all the points ofPt . More precisely,Pt induces an
equivalence relation� t onT : for x; y 2 T we writex � t y if Jx; yK\ P t = ? , whereJx; yKdenotes the
unique geodesic path betweenx andy in T . We denote byTx (t) the equivalence class containingx.

Let � #(t) be the sequence of nonzero values off � (Tx (t)) ; x 2 T g re-arranged in decreasing order.
In the Brownian case (� = (1 ; 0; 0; � � � )), the process(� #(t); t � 0) is exactly the Aldous–Pitman
fragmentation. In the other cases, however, the process is not even Markovian because of the presence of
those branch points� i associated with the positive� i .

V1

V2

V3

V5

V4

f 1; 2; 3; 4; 5g

f 2g f 1; 3; 4; 5g

f 3; 5g f 1; 4g

f 1gf 3g f 5g f 4g

1
2

3

4

Figure 1.5 – On the left, the subtree ofT spanning the leavesV1; V2; : : : ; V5. The cuts which re�ne the
partitions are represented by the crosses, and the index next to them corresponds to the order in which
they appear. On the right, the genealogical treeS5 of the partitions.

As previously, we construct another tree to encode the cutting procedure, which can be interpreted
as the genealogical tree of the fragmentation associated to the cutting. In the Brownian case, Bertoin and
Miermont [30] have shown that this genealogical tree is distributed as a Brownian CRT. We extend this
result to the ICRTs using a completely different method.

First, let us introduce the genealogical tree for the ICRT. Recall that from Kingman's theory [75]
there is a correspondence in distribution between mass partitions and exchangeable partitions onN, and
the distribution of the latter is characterized by its restrictions on[k]; k � 1. Now sample a sequence
of independent points(Vi ) i � 1 according to the mass measure� . Then� t induces an (exchangeable)
partition onN by settingi � t j if Vi � t Vj . In particular, the mass� (TVi (t)) can be recovered as the
asymptotic frequency:

�
�
TVi (t)

�
= lim

k!1

1
k

kX

j =1

1f j � t i g; almost surely,

by the law of large numbers. We set fort 2 [0; 1 ] andi � 1

L i
t :=

Z t

0
�

�
TVi (s)

�
ds:

As Vi
d= V and(TVi (s)) s� 0

d= ( Ts)s� 0 for eachi � 1, it follows that we haveL i
1 < 1 for all i � 1,

almost surely. For each pair(i; j ) such thati 6= j , let � (i; j ) be the �rst moment whenJVi ; Vj Kcontains
an element ofP (or more precisely, of the projection ofP ontoT ). Then� (i; j ) = � (j; i ) records the
instant whenVi andVj are separated into different equivalence classes. It follows from the properties of
T andP that� (i; j ) is almost surely �nite.
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For eachk � 1, we can construct ak-leafed treeSk which represents the genealogical structure
of how the partitions of[k] induced by� t ; t � 0 evolve into singletonsf 1g; � � � ; f kg. See �gure1.5.
Moreover, we equipSk with a distancedk satisfying that

dk (@;f ig) = L i
1 ; dk (f ig; f j g) = L i

1 + L j
1 � 2L i

� ( i;j ) ; 1 � i < j � k; (1.124)

where@denotes the root ofSk .

@

L 1
� (1 ;2) = L 2

� (2 ;1) = L 2
� (2 ;3)

L 2
1

L 1
� (1 ;3) = L 4

� (4 ;5)

L 3
� (3 ;5)

L 3
1 L 5

1 L 1
1 L 4

1

L 1
� (1 ;4)

Figure 1.6 – The sameS5 as in Figure1.5 but equipped with a distance. The numbers here are the
distances of the nodes from the root.

We can construct(Sk )k� 1 in such a way thatSk � Sk+1 as metric spaces. Letcut(T ) be the
completion of[ k� 1Sk .

Similarly, for each birthday treeTn on [n], we can de�ne a complete cutting procedure onTn by
�rst generating a random permutation(X n1; X n2; � � � ; X nn ) on the vertex set[n] and then removing
X ni one by one. Here the permutation(X n1; X n2; : : : ; X nn ) is constructed by sampling, fori � 1, X ni

according to the restriction ofpn to [n] n f X nj ; j < i g. We de�ne a new genealogy on[n] by making
X ni an ancestor ofX nj if i < j andX ni is in the connected component containingX nj when it (X ni ) is
removed. If we denote bycut(Tn ) the corresponding genealogical tree, then the number of the vertices
in the path ofcut(Tn ) between the rootX n1 and an arbitrary vertexv is precisely equal to the number
of the cuts necessary to isolate this vertexv. See Figure1.7for an example ofcut(Tn ).

Theorem 15(Theorems4.7and4.8). Suppose that(1.41) holds. Then, we have
�
� n cut(Tn ); pn

� n!1�!
d;GP

�
cut(T ); �

�
;

jointly with the convergence in(1.42). Here, � is the weak limit of the empirical measures1
k

P k� 1
i =0 � i ,

which exists almost surely conditional onT . Moreover, we have

(cut( T ); � ) d= ( T ; � ): (1.125)

Recovering the Brownian CRT from its genealogy of the cutting process

The identity in distribution (1.125) gives rise to the following question: given an ICRTH, thenH has
the same distribution ascut(T ), and one might wonder whether it is possible to construct another (real)
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Figure 1.7 – On the left, a cutting ofTn where the roman numbers represent the order in which the
vertices are removed. On the right, the correspondingcut(Tn ).

Ax

x

�

Fr(H ; x; A x)

Figure 1.8 – The surgical operation on the treeH for a single branch pointx.

treeQ such that

(Q; H) d= ( T ; cut(T )) : (1.126)

In the case whereH is a Brownian CRT, we have succeeded in constructingQ = shu�( H ) by the
following subtree-shuf�ing procedure. Let� denote the root ofH andBr( H) the set of branch points of
H , which is a countable set with probability1. For eachx 2 H , the subtree atx, denoted bySub(H ; x),
is the set of those pointsy such thatx 2 J�; y K. For x 2 Br( H), sample independently a random point
Ax according to the restriction of� H , the mass measure ofH , to Sub(H ; x), and setFr( H ; x; A x ) to be
the set of thosey 2 Sub(H ; x) for which the closest common ancestor ofy andAx is y^ Ax = x. Detach
Fr( H ; x; A x ) and re-attach it atAx . Do this for every branch pointx of H ; the points of the skeleton
that are not branch points are not used (see Figure1.8). In Chapter5 we show that this de�nition makes
sense and the tree obtained indeed satis�es (1.126).

Let us explain the motivation underlying this construction. First, assume thatH = cut( T ; V ) for
some Brownian CRTT along with the pointV of distribution � . Then it is intuitively clear how to
“reverse" the construction ofcut(T ; V ): for eachx 2 Br( H) \ [0; L 1 ], Fr( H ; x; L 1 ) is a subtree on
the interval[0; L 1 ], and is the completion ofTt � n Tt for somet 2 C by our construction ofcut(T ; V ).
We detach this subtree and then re-attach it at the pointA0

x , which records the location where the cut
at time t falls on T . See Figure1.9. We show that givenH, A0

x has distribution� H restricted to
Sub(H ; x) n Fr( H ; x; L 1 ). Furthermore, when the attach pointsA0

x are sampled beforehand, the order
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x1 x2

A0
x 1

x3 x4

A0
x 3

A0
x 2

0 L 1

Figure 1.9 – The detaching-reattaching operations on three branch pointsx1; x2; x3. The order of the
operations is unimportant.

of the subtrees to be detached and reattached does not matter.
More generally, for eachk � 1, we can de�ne ak-cutting procedure onT which uses the elements

of P as cuts to isolatek independent leavesV1; � � � ; Vk . Similarly, this cutting procedure is (partially)
encoded bycut(T ; V1; � � � ; Vk ), which is a real tree obtained by grafting discarded parts on a backbone
Sk , which is no longer a path but a tree withk leaves. In an analogous way tocut(T ; V ), by detaching
the subtrees grafted onSk and then re-attaching them at random points we can “reverse" the construction
of cut(T ; V1; � � � ; Vk ). It should not come as a surprise thatcut(T ; V1; � � � ; Vk ) ! cut(T ) ask ! 1 ,
and we prove that the sequence of “reverses" converges almost surely to a tree having all the properties
that we want for the reverse ofcut(T ).

In fact, the “reverse" construction ofcut(T ; V1; � � � ; Vk ) works not only for the Brownian CRT but
for any ICRT (see Theorem4.31and Proposition5.7). But the argument showing the limit exists whenk
tends to in�nity (Theorem5.8) relies heavily on the scaling property of the Brownian CRT. We conjecture
that the “complete shuf�ing" described above is also the correct transformation for ICRTs.
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Chapter 2

Height and Diameter of Brownian trees

The results of this chapter are from the article [100], submitted for publication.
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By computations on generating functions, Szekeres proved in 1983 that the law of the diameter of
a uniformly distributed rooted labelled tree withn vertices, rescaled by a factorn� 1

2 , converges to a
distribution whose density is explicit. Aldous observed in 1991 that this limiting distribution is the law
of the diameter of the Brownian tree. In our article, we provide a computation of this law which is
directly based on the normalized Brownian excursion. Moreover, we provide an explicit formula for the
joint law of the height and diameter of the Brownian tree, which is a new result.

2.1 Introduction

For any integern � 1, let Tn be a uniformly distributed random rooted labelled tree withn vertices
and we denote byDn its diameter with respect to the graph distance. By computations on generating
functions, Szekeres [98] proved that

n� 1
2 Dn

(law)
���! � ; (2.1)

where� is a random variable whose probability densityf � is given by

f � (y) =

p
2�
3

X

n� 1

�
64
y4 (4b4

n;y � 36b3
n;y + 75b2

n;y � 30bn;y ) +
16
y2 (2b3

n;y � 5b2
n;y )

�
e� bn;y ; (2.2)

wherebn;y := 8( �n=y )2, for all y 2 (0; 1 ) and for all integersn � 1. This result is implicitly written in
Szekeres [98] p. 395 formula (12). See also Broutin and Flajolet [38] for a similar result for binary trees.
On the other hand, Aldous [8, 10] has proved thatTn , whose graph distance is rescaled by a factorn� 1

2 ,
converges in distribution to the Brownian tree (also called Continuum Random Tree) that is a random
compact metric space. From this, Aldous has deduced that� has the same distribution as the diameter
of the Brownian tree: see [9], Section 3.4, (though formula (41) there is not accurate). As proved by
Aldous [10] and by Le Gall [80], the Brownian tree is coded by the normalized Brownian excursion
of length1 (see below for more details). Then, the question was raised by Aldous [9] that whether we
can establish (2.2) directly from computations on the normalized Brownian excursion. In this work, we
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present a solution to this question: we compute the Laplace transform for the law of the diameter of the
Brownian tree based on Williams' decomposition of Brownian excursions. We also provide a formula
for the joint law of the total height and diameter of the Brownian tree, which appears to be new. Before
stating precisely our results, let us �rst recall the de�nition of the Brownian tree coded by the normalized
Brownian excursion.

Normalized Brownian excursion. Let X = ( X t )t � 0 be a continuous process de�ned on a probabil-
ity space(
 ; F ; P) such that( 1p

2
X t )t � 0 is distributed as a linear standard Brownian motion such that

P(X 0 =0)= 1 (the reason for the normalizing constant
p

2 is explained below). Thus,

8u 2 R; t 2 R+ ; E
�
eiuX t

�
= e� tu 2

:

For all t 2 [0; 1 ), we setI t = inf s2 [0;t ] X s. Then, the re�ected processX � I is a strong Markov
process, the state0 is instantaneous in(0; 1 ) and recurrent, and� I is a local time at level0 for X � I
(see Bertoin [22], Chapter VI). We denote byN the excursion measureassociated with the local time
� I ; N is a sigma �nite measure on the space of continuous pathsC(R+ ; R+ ). More precisely, letS

i 2I (ai ; bi )=
�

t> 0 : X t � I t > 0
	

be the excursion intervals of the re�ected processX � I above0; for
all i 2 I , we setei (s)= X (ai + s)^ bi � I ai , s2 R+ . Then,

X

i 2I

� (� I a i ;ei ) is a Poisson point measure onR+ � C(R+ ; R+ ) with intensitydt N (de). (2.3)

We shall denote bye=( et )t � 0 the canonical process onC(R+ ; R+ ). We de�ne itslifetimeby

� =supf t � 0 : et > 0g ; (2.4)

with the convention thatsup? = 0 . Then,N -a.e.e0 = 0 , � 2 (0; 1 ) and for all t 2 (0; � ), et > 0.
Moreover, one has

8� 2 R+ ; N
�
1� e� �� �

=
p

� and N
�
� 2 dr

�
=

dr
2
p

� r 3=2
: (2.5)

See Blumenthal [34] IV.1 for more detail.
Let us brie�y recall the scaling property ofeunderN . To that end, recall thatX satis�es the following

scaling property: for allr 2 (0; 1 ), (r � 1
2X rt )t � 0 has the same law asX , which easily entails that

�
r � 1

2 ert
�

t � 0 under r
1
2 N

(law)
= e under N : (2.6)

This scaling property implies that there exists a family of laws onC(R+ ; R+ ) denoted byN ( � j � = r ),
r 2 (0; 1 ), such thatr 7! N ( � j � = r ) is weakly continous onC(R+ ; R+ ), such thatN ( � j � = r )-
a.s.� = r and such that

N =
Z 1

0
N ( � j � = r ) N

�
� 2 dr

�
: (2.7)

Moreover, by (2.6),
�
r � 1

2 ert
�

t � 0 underN ( � j � = r ) has the same law aseunderN ( � j � =1) . To simplify
notation we set

Nnr := N ( � j � =1) : (2.8)

Thus, for all measurable functionsF :C(R+ ; R+ ) ! R+ ,

N
�
F (e)

�
=

1
2
p

�

Z 1

0
dr r � 3

2 Nnr

h
F

� �
r

1
2 et=r

�
t � 0

�i
: (2.9)
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Remark 16. The standard Ito measureN +
Ito of positive excursions, as de�ned for instance in Revuz &

Yor [97] Chapter XII Theorem 4.2, is derived fromN by the following scaling relations:

N +
Ito is the law of 1

p
2
e under 1

p
2
N and thus,N +

Ito ( � j � =1) is the law of 1
p

2
e underNnr .

Consequently, the lawNnr is not the standard version for normalized Brownian excursion measure.
However, we shall refer to it as the normalized Brownian excursion measure. �

Real trees. Let us recall the de�nition ofreal treesthat are metric spaces generalizing graph-trees: let
(T; d) be a metric space; it is a real tree if the following statements hold true.

(a) For all � 1; � 1 2 T, there is a unique isometryf : [0; d(� 1; � 2)] ! T such thatf (0) = � 1 and
f (d(� 1; � 2))= � 2. In this case, we setJ� 1; � 2K:= f ([0; d(� 1; � 2)]) .

(b) For any continuous injective functionq : [0; 1]! T , q([0; 1])= Jq(0); q(1)K.

When a point� 2 T is distinguished,(T; d; � ) is said to be arooted real tree,� being theroot of T.
Among connected metric spaces, real trees are characterized by the so-called four-point inequality: we
refer to Evans [57] or to Dress, Moulton & Terhalle [47] for a detailed account on this property. Let us
brie�y mention that the set of (pointed) isometry classes of compact rooted real trees can be equipped
with the (pointed) Gromov–Hausdorff distance which makes it into a Polish space: see Evans, Pitman &
Winter [59], Theorem 2, for more detail on this intrinsic point of view that we do not adopt here.

Coding of real trees. Real trees can be constructed through continuous functions. Recall thate stands
for the canonical process onC(R+ ; R+ ). We assume here thate has a compact support, thate0 = 0 and
thate is not identically null; recall from (2.4) the de�nition of its lifetime� . Then, our assumptions one
entail that� 2 (0; 1 ). Fors; t 2 [0; � ], we set

b(s; t) := inf
r 2 [s^ t;s_ t ]

er and d(s; t) := et + es � 2b(s; t) :

It is easy to see thatd is a pseudo-distance on[0; � ]. We de�ne the equivalence relation� by setting
s � t iff d(s; t) = 0 ; then we set

T := [0 ; � ]= � : (2.10)

The functiond induces a distance on the quotient setT that we keep denotingd for simplicity. We
denote byp : [0; � ] ! T the canonical projection. Clearlyp is continuous, which implies that(T ; d) is
a compact metric space. Moreover, it is shown that(T ; d) is a real tree (see Duquesne & Le Gall [52],
Theorem 2.1, for a proof). We take� = p(0) as theroot of T . Thetotal heightand thediameterof T
are thus given by

� = max
� 2T

d(�; � ) = max
t � 0

et and D = max
�;� 02T

d(�; � 0) = max
s;t � 0

�
et + es � 2b(s; t)

�
: (2.11)

We also de�ne onT a �nite measurem called themass measurethat is the pushforward measure of
the Lebesgue measure on[0; � ] by the canonical projectionp. Namely, for all continuous functions
f : T ! R+ ,

Z

T
f (� ) m(d� ) =

Z �

0
f (p(t)) dt : (2.12)

Note thatm(T ) = � .
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Brownian tree. The random rooted compact real tree(T ; d; � ) coded bye under the normalized
Brownian excursion measureNnr de�ned in (2.8) is theBrownian tree. Here, we recall some properties of
the Brownian tree. To that end, for any� 2T , we denote byn(� ) the number of connected components of
the open setT nf � g. Note thatn(� ) is possibly in�nite. We call this number thedegreeof � . We say that
� is abranch pointif n(� ) � 3 and that� is aleaf if n(� )=1 . We denote byLf (T ) :=

�
� 2T : n(� )=1

	

theset of leavesof T . Then the following holds true:

Nnr -a.s. 8� 2 T ; n(� ) 2 f 1; 2; 3g; m is diffuse and m
�
T nLf (T )

�
= 0 ; (2.13)

where we recall from (2.12) thatm stands for the mass measure. The Brownian tree has therefore only
binary branch points. The fact that the mass measure is diffuse and supported by the set of leaves makes
the Brownian tree acontinuum random treeaccording to Aldous' terminology (see Aldous [10]). For
more detail on (2.13), see for instance Duquesne & Le Gall [52].

The choice of the normalizing constant
p

2 for the underlying Brownian motionX is motivated by
the following fact: letT �

n be uniformly distributed on the set of rootedplanar trees withn vertices. We
view T �

n as a graph embedded in the clockwise oriented upper half-plane, whose edges are segments of
unit length and whose root is at the origin. Let us consider a particle that exploresT �

n as follows: its starts
at the root and then it moves continuously on the tree at unit speed from the left to the right, backtracking
as less as possible. During this exploration the particle visits each edge exactly twice and its journey
lasts2(n� 1) units of time. For allt 2 [0; 2(n� 1)], we denote byC(n)

t the distance between the root and
the position of the particle at timet. The process(C(n)

t )t2 [0;2(n� 1)] is called thecontour processof T �
n .

Following an idea of Dwass [56], we can check that the contour process(C(n)
t )t2 [0;2(n� 1)] is distributed

as the (linear interpolation of the) simple random walk starting from0, conditioned to stay nonnegative
on[0; 2(n� 1)] and conditioned to hit the value� 1 at time2n� 1. Using a variant of Donsker's invariance
principle, the rescaled contour function(n� 1

2 C(n)
2(n� 1)t )t2 [0;1] converges in law towardse underNnr : see

for instance Le Gall [82]. Thus,

n� 1
2 D �

n

(law)
���! D under Nnr;

whereD �
n stands for the diameter ofT �

n andD is the diameter of the Brownian tree given by (2.11).

Remark 17. In the �rst paragraph of Introduction, we introduce the random treeTn , which is uniformly
distributed on the set of rooted labelled trees withn vertices. The law ofTn is therefore distinct from that
of T �

n , which is uniformly distributed on the set of rooted planar trees withn vertices. Aldous [10] has
proved that the treeTn , whose graph distance is rescaled by a factorn� 1

2 , converges to the tree coded
by

p
2e underNnr. Thus,

�
(law)
=

p
2D under Nnr : (2.14)

See Remark19below. �

In this article, we prove the following result that characterizes the joint law of the height and diameter
of the Brownian tree.

Theorem 2.1. Recall from (2.8) the de�nition ofNnr and recall from (2.11) the de�nitions of� andD.
We set

8�; y; z 2 (0; 1 ); L � (y; z) :=
1

2
p

�

Z 1

0
e� �r r � 3

2 Nnr
�

r
1
2 D > 2y ; r

1
2 � >z

�
dr : (2.15)

Note that
8�; y; z 2 (0; 1 ); L1(y; z) = � � 1

2 L �
�
� � 1

2 y ; � � 1
2 z

�
: (2.16)
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Then,

L1(y; z) = coth( y_ z) � 1 � 1
4 1f z� 2yg

sinh(2q) � 2q
sinh4(y)

; (2.17)

whereq= y^ (2y� z). In particular, this implies that

8�; z 2 (0; 1 ); L � (0; z) =
p

� coth(z
p

� ) �
p

� (2.18)

and

8�; y 2 (0; 1 ); L � (y; 0) =
p

� coth(y
p

� ) �
p

� �
p

�
sinh(2y

p
� ) � 2y

p
�

4 sinh4(y
p

� )
: (2.19)

Corollary 2.2. For all y; z2 (0; 1 ), we set

� = z _ y
2 and � =

� 2(y� z)
y _ 0

�
^ 1 : (2.20)

Then we have

Nnr
�
D >y ; � >z

�
= 2

X

n� 1

�
2n2� 2 � 1

�
e� n2 � 2

+ (2.21)

1
6

X

n� 2

n(n2 � 1)
h�

(n+ � )2y2 � 2
�
e� 1

4 (n+ � )2y2
�

�
(n� � )2y2 � 2

�
e� 1

4 (n� � )2y2
+ �y (n3y3 � 6ny)e� 1

4 n2y2
i

and

Nnr
�
D � y ; � � z

�
=

4� 5=2

� 3

X

n� 1

n2e� n2 � 2=� 2
� (2.22)

32� 3=2

3

X

n� 1

n sin(2�n� )
� 2

y5 (2a2
n;y � 9an;y + 6) �

3� 2 � 1
y3 (an;y � 1)

�
e� an;y +

16� 1=2

3

X

n� 1

� cos(2�n� )
� 1

y3 (6a2
n;y � 15an;y + 3) �

� 2 � 1
2y

an;y

�
e� an;y +

16� 1=2

3

X

n� 1

�
� 1

y3 (4a3
n;y � 24a2

n;y + 27an;y � 3) +
1
2y

(2a2
n;y � 3an;y )

�
e� an;y ;

where we setan;y = 4( �n=y )2 for all y 2 (0; 1 ) and for all n � 1 to simplify notation. In particular,
(2.21) implies

Nnr
�
� >y

�
= 2

X

n� 1

�
2n2y2 � 1

�
e� n2y2

; (2.23)

and
Nnr

�
D >y

�
=

X

n� 2

(n2 � 1)
� 1

6 n4y4 � 2n2y2 + 2
�
e� n2y2=4: (2.24)

On the other hand,(2.22) implies

Nnr
�
� � y

�
=

4� 5=2

y3

X

n� 1

n2e� n2 � 2=y2
; (2.25)

and

Nnr
�
D � y

�
=

p
�

3

X

n� 1

� 8
y3

�
24an;y � 36a2

n;y + 8a3
n;y

�
+

16
y

a2
n;y

�
e� an;y : (2.26)
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Thus the law ofD underNnr has the following density:

f D (y) =
1
12

X

n� 1

�
n8y5 � n6y3(20 + y2) + 20n4y(3 + y2) � 60n2y

�
e� n2y2=4 (2.27)

=
2
p

�
3

X

n� 1

� 16
y4 (4a4

n;y � 36a3
n;y + 75a2

n;y � 30an;y ) +
8
y2 (2a3

n;y � 5a2
n;y )

�
e� an;y : (2.28)

Remark 18. We derive(2.22) from(2.21) using the following identity on the theta function due to Jacobi
(1828), which is a consequence of Poisson summation formula:

8t 2 (0; 1 ); 8x; y 2 C;
X

n2 Z

e� (x+ n)2 t � 2�iny = e2�ixy
� �

t

� 1
2

X

n2 Z

e� � 2 ( y + n ) 2

t +2 �inx : (2.29)

See for instance Weil [101], Chapter VII, Equation (12). Not surprisingly,(2.29) can also be used to
derive (2.25) from (2.23), to derive (2.26) from (2.24), or to derive (2.28) from (2.27). �

Remark 19. We obtain (2.27) (resp. (2.28)) by differentiating (2.24) (resp. (2.26)). By (2.14), we have

8y 2 (0; 1 ); f � (y) =
1

p
2

f D

� y
p

2

�
;

which immediately entails (2.2) from (2.28), sincean;y=
p

2 = 8( �n=y )2 = bn;y . �

Remark 20. Recall that� = max t � 0 et . Equations (2.23) and (2.25) are consistent with previous results
on the distribution of the maximum of Brownian excursion: see for example Chung [45], though we need
to keep in mind the difference betweenNnr andN +

Ito , as explained in Remark16. �

2.2 Preliminaries

A geometric property on diameters of real trees. We begin with a simple observation on the total
height and diameter of a real tree.

Lemma 2.3. Let (T ; d; � ) be a compact rooted real tree. Then� � D � 2� , where

�=sup
u2 T

d(u; � ) and D = sup
u;v2 T

d(u; v) :

Moreover, there exists a pair of pointsu0; v0 2 T with maximal distance. Namely,

d(u0; v0) = sup
u;v2 T

d(u; v) = D : (2.30)

Without loss of generality, we assume thatd(u0; � ) � d(v0; � ). Then the total height ofT is attained at
u0. Namely

d(u0; � ) = sup
u2 T

d(u; � ) = � : (2.31)

Proof. Let u; v 2 T. Recall from the de�nition of real trees (given in Introduction) thatJu; vKstands for
the unique geodesic path betweenu andv. To simplify notation, we seth(u) := d(u; � ) for u 2 T. The
branch pointu^ v of u andv is the unique point ofT satisfying

J�; u ^ vK= J�; u K\ J�; v K:

Then, we easily check

d(u; v) = d(u; u ^ v) + d(u ^ v; v) = h(u) + h(v) � 2h(u ^ v) :
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The triangle inequality easily implies thatD � 2� while the inequality� � D is a consequence of the
de�nitions of � andD. As d : T2 ! R+ is continuous andT is compact, there exists a pair of points
u0; v0 2 T such that (2.30) holds true. To prove (2.31), we argue by contradiction: we assume that there
existsw 2 T such thath(w) > h (u0). Let us writeb:= u0 ^ v0. Here we enumerate the three possible
locations ofw. See Figure2.1.

v0

u0

b

�

w

w

w

(a)

(b)

(c)

Figure 2.1 –Three possibilities forw

(a) Suppose thatw ^ u0 2 Ju0; bK. By hypothesis, we haveh(w) > h (u0). In other words,

h(w) = d(w; b) + h(b) > h (u0) = d(u0; b) + h(b):

Thus,d(w; b) > d (u0; b) and

d(w; v0) = d(w; b) + d(b; v0) > d (u0; b) + d(b; v0) = d(u0; v0);

which contradicts (2.30).

(b) Suppose thatw ^ v0 2 Jv0; bK. In this case, we have

h(w) = d(w; b) + h(b) > h (u0) � h(v0) = d(v0; b) + h(b):

Thend(w; b) > d (v0; b) and

d(w; u0) = d(w; b) + d(b; u0) > d (v0; b) + d(b; u0) = d(u0; v0):

This again contradicts (2.30).

(c) Suppose thatw ^ u0 2 J�; bK. Then we deduce from

h(w) = d(w; w ^ u0) + h(w ^ u0) > h (u0) = d(u0; w ^ u0) + h(w ^ u0)

thatd(w; w ^ u0) > d (u0; w ^ u0). Note that in this casew ^ u0 = w ^ v0. Therefore,

d(w; v0) = d(w; w ^ v0) + d(w ^ v0; v0) = d(w; w ^ u0) + d(w ^ u0; v0)

> d (u0; w ^ u0) + d(w ^ u0; v0)

> d (u0; b) + d(b; v0) = d(u0; v0);

which contradicts (2.30).

In brief, there exists now2 T such thath(w) = d(w; � ) > h (u0) = d(u0; � ), which entails (2.31). �
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Williams' decomposition of Brownian excursions. Let us recall the classical result of Williams' path
decomposition of Brownian excursions (see for instance Revuz & Yor [97] Chaper XII Theorem 4.5).
De�ne

� � := inf f t> 0 : et =max
s� 0

esg : (2.32)

UnderN (and also underNnr ), � � is the unique time at whiche reaches its maximum value. Recall from
(2.11) the de�nition of the total height� of the Brownian tree coded bye. Then, we have�= e� � .

We also recall the distribution of� underN :

N
�
� 2 dr

�
=

dr
r 2 : (2.33)

See Revuz & Yor [97] Chaper XII Theorem 4.5 combined with Remark16.
Williams's decomposition entails that there is a regular version of the family of conditioned laws

N ( � j � = r ), r > 0. Namely,N ( � j � = r )-a.s.� = r , r 7! N ( � j � = r ) is weakly continuous on
C(R+ ; R+ ) and

N =
Z 1

0
N (� 2 dr) N ( � j �= r ) : (2.34)

Let Z =( Z t )t � 0 be a continuous process de�ned on the probability space(
 ; F ; P) such that 1p
2
Z is

distributed as a Bessel process of dimension3 starting from0. Let � r = inf f t> 0 : Z t = r g be the hitting
time ofZ at levelr 2 (0; 1 ). We recall that

8� 2 R+ ; E
�
e� �� r

�
=

r
p

�

sinh(r
p

� )
: (2.35)

See Borodin & Salminen [35] Part II, Chapter 5, Section 2, Formula 2.0.1, p. 463, where we letx tend
to 0 and take� = � andz= r=

p
2, sinceZ =

p
2R(3) .

We next introduce the following notation:

 � e (t) = e(� � � t )+ ; �! e (t) = e� � + t ; t � 0:

where(�)+ stands for the positive part function.Williams' decompositionof Brownian excursion asserts
the following.

For all r 2 (0; 1 ), underN ( � j �= r ), the two processes � e and�! e are distributed as two indepen-
dent copies of(Z(� r � t )+ )t � 0.

As a combined consequence of this decomposition and (2.35), we have

8r 2 (0; 1 ); N
�
e� �� j � = r

�
= E

�
e� �� r

� 2 =

 
r
p

�

sinh(r
p

� )

! 2

; (2.36)

where we recall that� stands for the lifetime of the excursion. Therefore,

N
�

e� �� 1f � >a g

�
=

Z 1

a
N

�
e� �� j � = r

�
N (� 2 dr) =

Z 1

a

�dr

sinh2(r
p

� )
=

p
� coth(a

p
� ) �

p
� ;

by (2.33) and (2.36). Combined with the fact thatN (1 � e� �� ) =
p

� , this entails that

N
�

1 � e� �� 1f � � ag

�
=

p
� coth(a

p
� ): (2.37)

This equation is used in the proof of Theorem2.1.
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Spinal decomposition Let us interpret Williams' decomposition in terms of a Poisson decomposition
of the Brownian excursion. To that end, we need some notation. Leth 2 C(R+ ; R+ ) have compact
support. We assume thath(0) > 0. For all s2 R+ , we seth(s) = inf 0� u� s h(u). Let (l i ; r i ), i 2 I (h) be
the excursion intervals ofh� h away from0; namely, they are the connected components of the open set
f s � 0 : h(s) � h(s) > 0g. For all i 2 I (h), we next set

hi (s) =
�
h � h

��
(l i + s) ^ r i

�
; s � 0;

which is the excursion ofh� h corresponding to the interval(l i ; r i ). Then we set

P(h) =
X

i 2I (h)

� (h(0) � h(l i ); h i ) ;

that is a point measure onR+ � C(R+ ; R+ ). We de�ne

Q := P(�! e ) + P( � e ) =:
X

j 2J

� (sj ; ej ) : (2.38)

We also introduce for allt 2 (0; 1 ) the following notation:

N t = N
�

� \ f � � tg
�

: (2.39)

The following lemma is the special case of a general result due to Abraham & Delmas [3].

Lemma 2.4(Proposition 1.1, Abraham & Delmas [3]). Let r 2 (0; 1 ). Then,Q underN ( � j � = r ) is a
Poisson point measure onR+ � C(R+ ; R+ ) with intensity measure2�1[0;r ](t)dt N t .

Interpretation in terms of the Brownian tree and consequences. Let us interpretQ in terms of the
Brownian treeT coded by the Brownian excursione. Recall thatp : [0; � ] ! T stands for the canonical
projection and recall that� = p(0) is the root ofT . The pointp(� � ) is the (unique) point ofT that attains
the total height:d(�; p (� � ))= � .

Denote byT o
j 0, j 02 J 0, the connected components ofT nJ�; p (� � )K. For all j 02 J 0, there exists a

unique point� j 0 2 J�; p (� � )Ksuch thatTj 0 := T o
j 0 [ f � j 0g is the closure ofT o

j 0 in T . Recall the notation
J from (2.38). It is not dif�cult to see thatJ 0 is in one-to-one correspondence withJ . Moreover, after
a re-indexing, we can suppose thatd(p(� � ); � j ) = sj and that(Tj ; d; � j ) is the real tree coded by the
excursionej , for eachj 2 J . Then we set

8j 2 J ; � j := max
s� 0

ej (s) = max

 2T j

d(� j ; 
 ) ; (2.40)

that is the total height of the rooted real tree(Tj ; d; � j ). We claim that

N -a.e. D = sup
j 2J

(sj + � j ) : (2.41)

Proof of (2.41). First observe that for allt 2 (0; 1 ), N t is an in�nite measure becauseN is in�nite and
becauseN (� > t ) = 1 =t by (2.33). By Lemma2.4, N -a.e. the closure of the setf sj ; j 2 J g is [0; �] .
This entails that

N -a.e. � = sup
j 2J

sj � sup
j 2J

(sj + � j ) : (2.42)

Next, for all j 2J , there exists
 j 2Tj such thatd(� j ; 
 j )= � j . Then observe that

d(p(� � ); 
 j ) = d(p(� � ); � j ) + d(� j ; 
 j ) = sj + � j : (2.43)
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Note that Lemma2.3 implies thatD =max 
 2T d(p(� � ); 
 ). Comparing this with (2.43), we get

D � sup
j 2J

(sj + � j ) : (2.44)

On the other hand, there exists
 � 2 T such thatD = max 
 2T d(p(� � ); 
 ) = d(p(� � ); 
 � ) by Lemma
2.3. If 
 � =2 J�; p (� � )K, then there existsj � 2 J such that
 � 2 Tj � . In consequence, we haveD =
d(p(� � ); 
 � ) � sj � + � j � , and thenD =sup j 2J (sj + � j ) when compared with (2.44). If 
 � 2 J�; p (� � )K,
then (2.42) implies that
 � = � andD =� . In both cases (2.41) holds true. �

We next denote by� j the lifetime ofej for all j 2 J and prove the following statement.

N -a.e.
X

j 2J

� j = � : (2.45)

Proof of (2.45). Let � 2 Jp(� � ); � Kbe distinct fromp(� � ) and� ; thenn(� ) � 2 and� is not a leaf ofT .
Recall from (2.12) the de�nition of the mass measurem and recall from (2.13) thatNnr -a.s.m is diffuse
and supported on the set of leaves ofT . By (2.7), this property also holds trueN -almost everywhere and
we thus get

N -a.e. m
�
Jp(� � ); � K

�
= 0 :

Recall thatT o
j , j 2J , are the connected components ofT nJ�; p (� � )K. Thus,

N -a.e. m(T ) = m
�
Jp(� � ); � K

�
+

X

j 2J

m
�
T o

j

�
=

X

j 2J

m
�
T o

j

�
: (2.46)

Recall thatTj = T o
j [ f � j g and thatm is N -a.e. diffuse, which entailsm(Tj ) = m( T o

j ), for all j 2 J .
Moreover, since(Tj ; d; � j ) is coded by the excursionej , we have� j = m( Tj ). For a similar reason, we
also have� = m( T ). This, combined with (2.46), entails (2.45). �

2.3 Proof of Theorem2.1

First we note that by (2.9),

L � (y; z) =
1

2
p

�

Z 1

0
dre� �r r � 3

2 Nnr
�
r

1
2 D > 2y ; r

1
2 � >z

�
= N

�
e� �� 1f D> 2y;� >z g

�
: (2.47)

Observe that the scaling property (2.16) is a direct consequence of the scaling property ofN (see (2.6)).
We next compute the right hand side of (2.47). To that end, recall from (2.38) the spinal decomposi-

tion of the excursione and recall from (2.40) the notation� j = max s� 0 ej (s), for all j 2 J ; also recall
that � j stands for the lifetime ofej . Let r; y 2 (0; 1 ) be such thaty � r � 2y. We apply successively
(2.41), (2.45), Lemma2.4and Campbell's formula for Poisson point measures to get

N
�

e� �� 1f D � 2yg

�
�
� � = r

�
= N

� Y

j 2J

e� �� j 1f sj +� j � 2yg

�
�
� � = r

�

= exp
�

� 2
Z r

0
dt N t

�
1� e� �� 1f � � 2y� tg

�
�

: (2.48)

Recall from (2.39) thatN t = N
�

� \ f � � tg
�

and observe that

Z r

0
dt N t

�
1� e� �� 1f � � 2y� tg

�
=

Z y

0
dt N

�
(1� e� �� )1f � � tg

�
+

Z r

y
dt N

�
1f � � tg� e� �� 1f � < 2y� tg

�
: (2.49)
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By (2.37) and by (2.33),

N
�
(1� e� �� )1f � � tg

�
= N

�
1� e� �� 1f � � tg

�
� N

�
� > t

�
=

p
� coth

�
t
p

�
�

� 1
t (2.50)

and

N
�
1f � � tg� e� �� 1f � < 2y� tg

�
= N

�
1� e� �� 1f � � 2y� tg

�
� N (� > t )=

p
� coth

�
(2y� t)

p
�

�
� 1

t : (2.51)

Then observe that for all"; a 2 (0; 1 ) such that"<a ,

Z a

"

� p
� coth(t

p
� ) � 1

t

�
dt = log

sinha
p

�
a

� log
sinh"

p
�

"
:

Thus, as" ! 0, we get

8a 2 R+

Z a

0

� p
� coth(t

p
� ) � 1

t

�
dt = log

sinha
p

�

a
p

�
: (2.52)

An easy computation based on (2.52) and combined with (2.49), (2.50), (2.51) and (2.48) entails

N
�

e� �� 1f D � 2yg

�
�
� � = r

�
=

�
r
p

� sinh
�
(2y � r )

p
�

� � 2

sinh4(y
p

� )
:

Combining this with (2.36), we get

8r; y 2 (0; 1 ) : y � r � 2y; N
�
e� �� 1f D> 2yg

�
� �= r

�
=

 
r
p

�

sinh(r
p

� )

! 2

�

�
r
p

� sinh
�
(2y� r )

p
�

� � 2

sinh4(y
p

� )
:

(2.53)
Next, letr; y 2 (0; 1 ) be such thatr > 2y. By Lemma2.3, � � D � 2� . Therefore,

8r; y 2 (0; 1 ) : r > 2y; N
�

e� �� 1f D> 2yg

�
�
� � = r

�
= N

�
e� ��

�
�
� � = r

�
=

 
r
p

�

sinh(r
p

� )

! 2

: (2.54)

Finally, let r < y . ThenN (e� �� 1f D> 2ygj� = r ) = 0 , since� � D � 2� . Combining this with (2.53) and
(2.54), we easily obtain that

N
�

e� �� 1f D> 2y;� >z g

�
=

Z 1

z
N

�
e� �� 1f D> 2yg

�
�
� �= r

�
N (� 2 dr)

=
Z 2y^ z

z_ y
N

�
e� �� 1f D> 2yg

�
�
� �= r

�
N (� 2 dr) +

Z 1

2y
N

�
e� ��

�
�
� �= r

�
N (� 2 dr)

=
p

�
�

coth
�
(z_ y)

p
�

�
� 1

�
� 1f z� 2yg

p
� sinh(2q

p
� ) � 2�q

4 sinh4(y
p

� )
;

where we recall the notationq = y^ (2y� z). By (2.47), this concludes the proof of Theorem2.1.

2.4 Proof of Corollary 2.2

We introduce the following notation for the Laplace transform onR+ : for all Lebesgue integrable func-
tionsf : R+ ! R, we set

8� 2 R+ ; L � (f ) :=
Z 1

0
dx e� �x f (x);
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which is well-de�ned. Note that iff; g are two continuous and integrable functions such thatL � (f ) =
L � (g) for all � 2 [0; 1 ), then we havef = g, by the injectiveness of Laplace transform and standard
arguments.

For all a; x 2 (0; 1 ), we setf a(x) = a
2
p

� x � 3=2e� a2=4x . It is well-known thatL � (f a) = e� a
p

� for
all � 2 R+ (see for instance Borodin & Salminen [35] Appendix 3, Particular formulæ 2, p. 650). Then
we set

ga(x) = @x f a(x) =
1

8
p

�
x � 7

2 e� a2

4x (a3 � 6ax) and ha(x) = � @af a(x) =
1

4
p

�
x � 5

2 e� a2

4x (a2 � 2x) :

Consequently, for all� 2 R+ ,

L � (ga) = �e � a
p

� and L � (ha) =
p

�e � a
p

� : (2.55)

(See also Borodin & Salminen [35] Appendix 3, Particular formulæ 3 and 4, p. 650.) Moreover, we have
the following easy bounds: for all� 2 R+ ,

L � (jgaj) �
1

8
p

�

Z 1

0
dx e� �x x � 7

2 e� a2

4x (a3+6ax) = �e � a
p

� + 6
a

p
�e � a

p
� + 6

a2 e� a
p

� ; (2.56)

L � (jhaj) �
1

4
p

�

Z 1

0
dx e� �x x � 5

2 e� a2

4x (a2+2x) =
p

�e � a
p

� + 2
a e� a

p
� : (2.57)

Let y; z2 (0; 1 ). Recall from (2.20) the notation� and� . Next set

8n 2 N; un = 1
6 (n + 3)( n + 2)( n + 1) ;

so that(1� x) � 4 =
P

n� 0 unxn , for all x 2 [0; 1). Then (2.17) implies that

L1( 1
2 y; z) = coth � � 1�

sinh(�y ) � �y
4 sinh4(y=2)

=
2e� 2�

1� e� 2� +
2e� 2y(e� �y � e�y )

(1� e� y)4 +
4�ye � 2y

(1� e� y)4

=
X

n� 1

2e� 2n� +
X

n� 0

2un
�
e� (n+2+ � )y � e� (n+2 � � )y + 2 �ye � (n+2) y �

=
X

n� 1

2e� 2n� +
X

n� 2

2un� 2
�
e� (n+ � )y � e� (n� � )y + 2 �ye � ny �

:

Thus, by (2.16), we obtain that

1
2
p

�

Z 1

0
e� �r r � 3

2 Nnr
�

r
1
2 D >y ; r

1
2 � >z

�
dr = L � ( 1

2 y; z) =
p

� L1( 1
2 y

p
�; z

p
� )

=
X

n� 1

2
p

�e � 2n�
p

� +
X

n� 2

2un� 2
� p

�e � (n+ � )y
p

� �
p

�e � (n� � )y
p

� + 2 �y�e � ny
p

� �

=
X

n� 1

2L � (h2n� ) +
X

n� 2

2un� 2L �
�
h(n+ � )y � h(n� � )y + 2 �ygny

�
: (2.58)

Observe that for allr 2 R+ ,
X

n� 1

2 sup
[0;r ]

jh2n� j +
X

n� 2

2un� 2
�

sup
[0;r ]

jh(n+ � )y j + sup
[0;r ]

jh(n� � )y j + 2 �y sup
[0;r ]

jgny j
�

< 1 : (2.59)

Then, for anyr 2 R+ , we set

� y;z (r ) := 2
1X

n=1

h2n� (r )e� r +
1X

n=2

2un� 2
�
h(n+ � )y(r )e� r � h(n� � )y(r )e� r + 2 �ygny (r )e� r �

;
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which is well-de�ned and continuous thanks to (2.59). The bounds (2.56) and (2.57) imply that � y;z

is Lebesgue integrable. Moreover, (2.58) asserts thatL � +1 ( 1
2y; z) = L � (� y;z ). By the injectiveness of

Laplace transform for continuous integrable functions (as mentioned above), we get

8r 2 R+ ; � y;z (r ) =
1

2
p

�
e� r r � 3

2 Nnr
�

r
1
2 D >y ; r

1
2 � >z

�
;

which entails (2.21) by takingr =1 .
Since� � D � 2� , if z = y, thenNnr (D > y ; � > y ) = Nnr (� > y ) and (2.21) immediately implies

(2.23) because in this case� = y and� = 0 . If z = 1
2 y, thenNnr (D > y ; � > 1

2 y) = Nnr (D > y ), � = 1
2 y,

� =1 and (2.21) implies

Nnr (D >y ) =
X

n� 1

�
n2y2 � 2

�
e� 1

4 n2y2
+

1
6

X

n� 2

n(n2 � 1)
h�

((n + 1) y)2 � 2
�
e� 1

4 (( n+1) y)2
�

�
((n� 1)y)2 � 2

�
e� 1

4 (( n� 1)y)2
+ y(n3y3 � 6ny)e� 1

4 n2y2
i
;

which entails (2.24) by re-indexing the sums according toe� n2y2=4: we leave the details to the reader. We
next derive (2.27) by differentiating (2.24). As mentioned in Remark18, we use Jacobi identity (2.29) to
derive (2.22) from (2.21). The computations are long but straightforward: we leave them to the reader.
Finally, for the same reason as before, (2.22) entails (2.25) by taking� = y and� =0 . It also entails (2.26)
by taking� = 1

2 y and� = 1 . Differentiating (2.26) gives (2.28). This completes the proof of Corollary
2.2.
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Chapter 3

Decomposition of Lévy trees along their
diameter

The results of this chapter are from the joint work [54] with Thomas Duquesne, submitted for publication.
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We study the diameter of Lévy trees that are random compact metric spaces obtained as the scaling
limits of Galton-Watson trees. Lévy trees have been introduced by Le Gall and Le Jan (1998) and they
generalise Aldous' Continuum Random Tree (1991) that corresponds to the Brownian case. We �rst
characterize the law of the diameter of Lévy trees and we prove that it is realized by a unique pair of
points. We prove that the law of Lévy trees conditioned to have a �xed diameterr 2 (0; 1 ) is obtained
by glueing at their respective roots two independent size-biased Lévy trees conditioned to have height
r=2 and then by uniformly re-rooting the resulting tree; we also describe by a Poisson point measure the
law of the subtrees that are grafted on the diameter. As an application of this decomposition of Lévy trees
according to their diameter, we characterize the joint law of the height and the diameter of stable Lévy
trees conditioned by their total mass; we also provide asymptotic expansions of the law of the height and
of the diameter of such normalized stable trees, which generalizes the identity due to Szekeres (1983) in
the Brownian case.

3.1 Introduction and main results

Lévy tree are random compact metric spaces that are the scaling limits of Galton-Watson trees. The
Brownian tree, also called the continuum random tree, is a particular instance of Lévy trees; it is the limit
of the rescaled uniformly distributed rooted labelled tree withn vertices. The Brownian tree has been
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introduced by Aldous in [8] and further studied in Aldous [9, 10]. Lévy trees have been introduced by
Le Gall & Le Jan [83] via a coding function called the height process that is a local time functional of
a spectrally positive Lévy process. Lévy trees (and especially stable trees) have been studied in D. &
Le Gall [51, 52] (geometric and fractal properties, connection with superprocesses), see D. & Winkel
[55] and Marchal [87] for alternative constructions, see also Miermont [89, 90], Haas & Miermont [65],
Goldschmidt & Haas [61] for applications to stable fragmentations, and Abraham & Delmas [1, 2],
Abraham, Delmas & Voisin [6] for general fragmentations and pruning processes on Lévy trees.

In this article, we study the diameter of Lévy trees. As observed by Aldous (see [9], Section 3.4),
in the Browian case the law of the diameter has been found by Szekeres [98] by taking the limit of the
generating function of the diameter of uniformly distributed rooted labelled tree withn vertices. Then,
the question was raised by Aldous that whether we can derive the law of the diameter directly from the
normalised Brownian excursion that codes the Brownian tree (see also Pitman [95], Exercise 9.4.1). This
question is now answered in W. [100].

In this article we compute the law of the diameter for general Lévy trees (see Theorem3.1). We
also prove that the diameter of Lévy trees is realized by a unique pair of points. The geodesic path
joining these two extremal points is therefore unique. In Theorem3.2, we describe the coding function
(the height process) of the Lévy trees rerooted at the midpoint of their diameter, which plays the role
of an intrinsic root. The proof of Theorem3.2 that provides a decomposition of Lévy trees according
to their diameter speci�cally relies on the invariance of Lévy trees by uniform rerooting, as proved by
D. & Le Gall in [53], and on the decomposition of Lévy trees according to their height, as proved
by Abraham & Delmas [3] (this decomposition generalizes Williams' decomposition of the Brownian
excursion). Roughly speaking, Theorem3.2asserts that a Lévy tree that is conditioned to have diameter
r and that is rooted at its midpoint is obtained by glueing at their root two size-biased independent Lévy
trees conditioned to have heightr=2 and then by rerooting uniformly the resulting tree; Theorem3.2
also explains the distribution of the trees grafted on the diameter. As an application of this theorem, we
characterize the joint law of the height and the diameter of stable trees conditioned by their total mass
(see Proposition3.3) and by providing an asymptotic expansion of the law of the height (Theorem3.5)
and of the law of the diameter (Theorem3.7). These two asymptotic expansions generalize the identities
of Szekeres in the Brownian case which involves theta functions (these identities are recalled in (3.50)
and (3.51)). Before stating precisely our main results we need to recall de�nitions and to set notations.

Real trees. We �rst de�ne real-trees that are metric spaces generalizing graph-trees: let(T; d) be a
metric space; it is areal treeiff the following holds true.

(a) For any� 1; � 1 2 T, there is a unique isometryf : [0; d(� 1; � 2)] ! T such thatf (0) = � 1 and
f (d(� 1; � 2))= � 2. Then, we shall use the following notation:J� 1; � 2K:= f ([0; d(� 1; � 2)]) .

(b) For any continuous injective functionq : [0; 1]! T , q([0; 1])= Jq(0); q(1)K.

When a point� 2 T is distinguished,(T; d; � ) is said to be arooted real tree,� being theroot of T.
Among connected metric spaces, real trees are characterized by the so-calledfour points inequalitythat
is expressed as follows: let(T; d) be a connected metric space; then(T; d) is a real tree iff for any
� 1; � 2; � 3; � 4 2 T, we have

d(� 1; � 2) + d(� 3; � 4) �
�
d(� 1; � 3) + d(� 2; � 4)

�
_

�
d(� 1; � 4) + d(� 2; � 3)

�
: (3.1)

We refer to Evans [57] or to Dress, Moulton and Terhalle [47] for a detailed account on this property. Let
us brie�y mention that the set of (pointed) isometry classes of compact rooted real trees can be equipped
with the (pointed) Gromov-Hausdorff distance that makes it a Polish space: see Evans, Pitman & Winter
[59], Theorem 2, for more details on this intrinsic point of view on trees that we shall not use here.

50



The coding of real tree. Let us brie�y recall how real trees can be obtained thanks to continuous
functions. To that end we denote byC(R+ ; R+ ) the space ofR+ -valued continuous function equipped
with the topology of the uniform convergence on every compact subsets ofR+ . We shall denote by
H = ( H t )t � 0 the canonical process onC(R+ ; R+ ). First assume thatH has a compact support, that
H0 = 0 and thatH is distinct from the null function: we call such a function acoding functionand
we then set� H = supf t > 0 : H t > 0g that is called thelifetime of the coding functionH . Note that
� H 2 (0; 1 ). Then, for everys; t 2 [0; � H ], we set

bH (s; t) = inf
r 2 [s^ t;s_ t ]

H r and dH (s; t) = Hs + H t � 2bH (s; t): (3.2)

It is easy to check thatdH satis�es the four points inequality: namely, for alls1; s2; s3; s4 2 [0; � H ],
dH (s1; s2) + dH (s3; s4) �

�
dH (s1; s3) + dH (s2; s4)

�
_

�
dH (s1; s4) + dH (s2; s3)

�
. By takings3 = s4,

we see thatdH is a pseudometric on[0; � H ]. We then introduce the equivalence relations � H t iff
dH (s; t)=0 and we set

TH = [0 ; � H ]=� H : (3.3)

Standard arguments show thatdH induces a true metric on the quotient setTH that we keep denoting
dH . We denote bypH : [0; � H ] ! T H the canonical projection. SinceH is continuous, so ispH and
(TH ; dH ) is therefore a compact connected metric space that satis�es the four points inequality: it is a
compact real tree. We next set� H = pH (0) = pH (� H ) that is chosen as theroot of TH .

We next de�ne thetotal heightand thediameterof TH that are expressed in terms ofdH as follows:

� H := sup
� 2T H

dH (� H ; � ) = sup
t2 [0;� H ]

H t and DH := sup
�;� 02T H

dH (�; � 0) = sup
0� s<t � � H

�
Hs + H t � 2 inf

r 2 [s;t ]
H r

�
: (3.4)

For any� 2TH , we denote byn(� ) the number of connected components of the open setTH nf � g. Note
thatn(� ) is possibly in�nite. We call this number thedegreeof � . We say that� is abranching pointif
n(� ) � 3; we say that� is a leaf if n(� ) = 1 and we say that� is simpleif n(� ) = 2 . We shall use the
following notation for the set of branching points and the set of leaves ofTH :

Br(TH ) :=
�

� 2TH : n(� ) � 3
	

and Lf (TH ) :=
�

� 2TH : n(� )=1
	

: (3.5)

In addition to the metricdH and to the root� H , the coding function yields two additional useful features:
�rst, the mass measurem H that is the pushforward measure of the Lebesgue measure on[0; � H ] induced
by pH onTH ; namely, for any Borel measurable functionf : TH ! R+ ,

Z

TH

f (� ) m H (d� ) =
Z � H

0
f (pH (t)) dt : (3.6)

This measure plays an important role in the study of Lévy trees (that are de�ned below): in a certain
sense, the mass measure is the most spread out measure onTH . The codingH also induced alinear
order � H onTH that is inherited from that of[0; � H ]: namely for any� 1; � 2 2TH ,

� 1 � H � 2 () inf f t 2 [0; � H ] : pH (t)= � 1g � inf f t 2 [0; � H ] : pH (t)= � 2g : (3.7)

Roughly speaking, the coding functionH is completely characterized by(TH ; dH ; � H ; m H ; � H ): see
D. [50] for more detail about the coding of real trees by functions.

Re-rooting trees. Several statements of our article involve a re-rooting procedure at the level of the
coding functions that is recalled here from D. & Le Gall [52], Lemma 2.2 (see also [53]). Let H be a
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coding function as de�ned above and recall that� H 2 (0; 1 ). For anyt 2 R+ , denote byt the unique
element of[0; � H ) such thatt � t is an integer multiple of� H . Then for allt0 2 R+ , we set

8t 2 [0; � H ]; H [t0 ]
t = dH

�
t0; t + t0

�
and 8t � � H ; H [t0 ]

t = 0 : (3.8)

Then observe that� H = � H [t 0 ] and that

8t; t 0 2 [0; � H ]; dH [t 0 ] (t; t 0) = dH
�

t + t0; t0+ t0
�

: (3.9)

Lemma 2.2 [52] asserts that there exists a unique isometry� : TH [t 0 ] ! T H such that� (pH [t 0 ] (t)) =
pH

�
t + t0

�
for all t 2 [0; � H ]. This allows toidentify canonicallyTH [t 0 ] with the treeTH re-rooted at

pH (t0): �
TH [t 0 ] ; dH [t 0 ] ; � H [t 0 ]

�
�

�
TH ; dH ; pH (t0)

�
: (3.10)

Note that up to this identi�cation,m H [t 0 ] is the same asm H . Roughly speaking, the linear order� H [t 0 ]

is obtained from� H by a cyclic shift afterpH (t0).

Spinal decomposition. The law of the Lévy tree conditioned by its diameter that is discussed below
is described as a Poisson decomposition of the trees grafted along the diameter. To explain that kind of
decomposition in terms of the coding function of the tree, we introduce the following de�nitions and
notations.

Let h2 C(R+ ; R+ ) have compact support. Note thath(0) > 0 possibly. We �rst de�ne the excursions
of h above its in�mum as follows. For anya2 [0; h(0)], we �rst set

`a(h) := inf
�

t 2 R+ : h(t)= h(0) � a
	

and ra(h) := � h ^ inf
�

t 2 (0; 1 ) : h(0) � a > h (t)
	

;

with the convention thatinf ; = 1 , so thatrh(0) (h)= � h . We then set

8s2 R+ ; Es(h; a) := h
�
(`a(h) + s)^ ra(h)

�
� h(0) + a :

See Figure3.1. Note thatE(h; a) is a nonnegative continuous function with compact support such that
E0(h; a)=0 . Moreover, if`a(h)= ra(h), thenE(h; a)= 0, thenull function.

Let H be a coding function as de�ned above. Lett 2 R+ . We next set

8s2 R+ ; H �
s = H (t � s)+ and H +

s = H t+ s :

Note thatH �
0 = H +

0 = H t . To simplify notation we also set

8a 2 [0; H t ];
 �
H a := E(H � ; a) and

�!
H a := E(H +; a)

and
J 0;t :=

�
a2 [0; H t ] : either`a(H � ) <r a(H � ) or `a(H + ) <r a(H + )

	

that is countable. We then de�ne the following point measure on[0; H t ]� C(R+ ; R+ )2:

M 0;t (H ) =
X

a2J 0;t

�
(a;

 �
H a ;

�!
H a )

; (3.11)

with the convention thatM 0;t (H ) = 0 if J 0;t = ; . In Lemma3.9, we see that ifm H is diffuse and
supported by the set of leaves ofTH , then there is a measurable way to recover(t; H ) from M 0;t (H ).

For all t1 � t0 � 0, we also set

M t0 ;t 1 (H ) := M 0;t 1 � t0

�
H [t0 ]� =:

X

a2J t 0 ;t 1

�
(a;

 �
H a ;

�!
H a )

: (3.12)
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0 `a (h) r a (h)

h

a

� h

E(h; a)
�!
T a

 �
T a

 �
T a0


 1


 0

�

� = root

a0

Figure 3.1 – The �gure on the left hand side illustrates the de�nition ofE(h; a). The �gure on the right hand side
represents the spinal decomposition ofH at timest0 andt1 in terms of the treeT coded byH .

This point measure on[0; dH (t0; t1)] � C(R+ ; R+ )2 is thespinal decomposition ofH betweent0 andt1.

Let us interpret this decomposition in terms of the treeTH (see Figure3.1). Set
 0 = pH (t0) and

 1 = pH (t1); to simplify, we assume that
 0 and
 1 are leaves. Recall thatJ
 0; 
 1Kis the geodesic path
joining 
 0 and
 1; thenJ t0 ;t 1 = f d(�; 
 1); � 2 Br(TH ) \ J
 0; 
 1Kg. For any positivea 2 J t0 ;t 1 , there
exists� 2 Br(TH ) \ J
 0; 
 1Ksuch that the following holds true.

�
�!
Ta := f � g [

�
� 02 TH : 
 0 < H � 0< H 
 1 andJ
 0; � K= J
 0; � 0K\ J
 0; 
 1K

	
is the tree grafted at� on

the right hand side ofJ
 0; 
 1Kand the tree(
�!
Ta; d; � ) is coded by

�!
H a.

�
 �
Ta := f � g[

�
� 02TH : either� 0< H 
 0 or 
 1 < H � 0andJ
 0; � K= J
 0; � 0K\ J
 0; 
 1K

	
is the tree grafted

at � on the left hand side ofJ
 0; 
 1Kand the tree(
 �
Ta; d; � ) is coded by

 �
H a.

Height process and Lévy trees. The Brownian tree (also called Continuum Random Tree) has been
introduced by Aldous [8–10]; this model has been extended by Le Gall & Le Jan: in [83], they de�ne the
height process(further studied by D. & Le Gall [51]) that is the coding function of Lévy trees. Lévy trees
appear as scaling limits of Galton-Watson trees and they are the genealogical structure of continuous state
branching processes. Let us brie�y recall here the de�nition of the height process and that of Lévy trees.

The law of the height process is characterized by a function	 : R+ ! R+ calledbranching mech-
anism; we shall restrict our attention to the critical and subcritical cases, namely when the branching
mechanism	 is of the following Lévy-Khintchine form:

8� 2 R+ ; 	( � ) = �� + �� 2 +
Z

(0;1 )

�
e� �r � 1 + �r

�
� (dr ) ; (3.13)

where�; � 2 R+ and where� is the Lévy measure on(0; 1 ) that satis�es
R

(0;1 ) (r ^ r 2) � (dr ) < 1 .
The height process is derived from a spectrally positive Lévy process whose Laplace exponent is	 . It
shall be convenient to work with the canonical processX = ( X t )t � 0 on the space of càdlàg functions
D (R+ ; R) equipped with the Skorohod topology. Let us denote byP the law of a spectrally Lévy process
starting from0 and whose Laplace exponent is	 . Namely,

8t; � 2 R+ ; E [exp (� �X t )] = exp
�
t	( � )

�
:

Note that the form (3.13) ensures thatX underP does not drift to1 : see for instance Bertoin [22],
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Chapter VII for more details. Under the following assumption:
Z 1

1

d�
	( � )

< 1 ; (3.14)

Le Gall & Le Jan [83] (see also D. & Le Gall [51]) have proved that there exists a continuous process
H =( H t )t � 0 such that for allt 2 R+ , the following limit holds inP-probability:

H t = lim
� ! 0

1
�

Z t

0
ds1f I s

t <X s <I s
t + � g; (3.15)

whereI s
t := inf s<r<t X r . The processH is called the	 -height process. In the Brownian case, namely

when	( � ) = � 2, easy arguments show thatH is distributed as a re�ected Brownian motion. Le Gall
& Le Jan [83] have proved a Ray-Knight theorem forH , which shows that the height processH codes
the genealogy of continuous state branching processes (see also D. & Le Gall [51], Theorem 1.4.1).
Moreover, the	 -height processH appears as the scaling limit of the discrete height process and the
contour function of Galton-Watson discrete trees: see D. & Le Gall [51], Chaper 2, for more details.

For all x 2 (0; 1 ), we setTx =inf f t 2 R+ : X t = � xg that isP-a.s. �nite sinceX underP does not
drift to 1 . We next introduce the following lawP x onC(R+ ; R+ ):

P x is the law of(H t^ Tx )t � 0 underP, (3.16)

The treeTH underP x (dH ) is called the	 -Lévy forest starting from a population of sizex. Then, the
mass measure ofTH underP x (dH ) satis�es the following important properties:

P x (dH )-a.s.m H is diffuse andm H (TH nLf (TH )) = 0 , (3.17)

where we recall from (3.5) thatLf (TH ) stands for the set of leaves of the treeTH . The	 -Lévy forest
(TH ; dH ; %H ; m H ) is therefore acontinuum treeaccording to the de�nition of Aldous [10].

Each excursion above0 of H underP x corresponds to a tree of the Lévy forest. Let us make this
point precise by introducing a Poisson decomposition ofH into excursions above0. To that end, denote
by I the in�mum process ofX :

8t 2 R+ ; I t = inf
0� r � t

X r :

Observe that (3.14) entails that either

� > 0 or
Z

(0;1)
r � (dr )= 1 ; (3.18)

which is equivalent for the Lévy processX to have unbounded variation sample paths; basic results of
�uctuation theory (see Bertoin [22], Sections VI.1) entail thatX � I is a strong Markov process in[0; 1 )
and that0 is regular for(0; 1 ) and recurrent with respect to this Markov process. Moreover,� I is a
local time at0 for X � I (see Bertoin [22], Theorem VII.1). We denote byN the corresponding excursion
measure ofX � I above0.

It is not dif�cult to derive from (3.15) thatH t only depends on the excursion ofX � I above0 which
straddlest. Moreover, we getf t 2 R+ : H t > 0g = f t 2 R+ : X t >I t g and if we denote by(ai ; bi ), i 2 I ,
the connected components of this set and if we setH i

s = H (ai + s)^ bi , s2 R+ , then the point measure

X

i 2I

� (� I a i ; H i ) (3.19)

is a Poisson point measure onR+ � C(R+ ; R+ ) with intensitydx N (dH ), where, with a slight abuse
of notation,N (dH ) stands for the "distribution" ofH (X ) underN (dX ). In the Brownian case, up to
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scaling,N is Itô positive excursion of Brownian motion and the decomposition (3.19) corresponds to the
Poisson decomposition of a re�ected Brownian motion above0.

In what follows, we shall mostly work with the	 -height processH under its excursionN that is a
sigma-�nite measure onC(R+ ; R+ ). We simply denote by� the lifetimeof H underN and we easily
check that

N -a.e. � < 1 ; H0 = H � =0 and H t > 0 () t 2 (0; � ) : (3.20)

Also note thatX andH underN have the same lifetime� and basic results of �uctuation theory (see
Bertoin [22], Chapter VII) also entail the following:

8� 2 (0; 1 ) N
�
1� e� �� �

= 	 � 1(� ); (3.21)

where	 � 1 stands for the inverse function of	 .
Note that (3.20) shows thatH underN is a coding function as de�ned above. D. & Le Gall [52] then

de�ne the	 -Lévy treeas the real tree coded byH underN .

Convention.When there there is no risk of confusion, we simply write

(T ; d; �; m; � ; p; � ; D ) := ( TH ; dH ; � H ; m H ; � H ; pH ; � H ; DH )

whenH is considered underN , P x or under other measures onC(R+ ; R+ ). �

Recall from (3.5) thatLf (T ) stands for the set of leaves ofT . Then the mass measure has the following
properties:

N -a.e.m is diffuse andm(T nLf (T )) = 0 . (3.22)

Then the	 -Lévy tree(T ; d; �; m) is therefore a continuum tree according to the de�nition of Aldous
[8].

Diameter decomposition. Recall from (3.4) the de�nition of the total height� and that of the diameter
D . Let �rst brie�y recall results on the total height. One checks that the total height isN -a.s. realized at
a unique time (see D. & Le Gall [52] and also Abraham & Delmas [3]). Namely,

N -a.e. there exists a unique� 2 [0; � ] such thatH � = � : (3.23)

Moreover, the distribution of the total height� underN is characterized as follows:

8t 2 (0; 1 ); v(t) := N (� > t ) satis�es
Z 1

v(t )

d�
	( � )

= t : (3.24)

Note thatv : (0; 1 ) ! (0; 1 ) is a bijective decreasingC1 function and (3.24) implies that on(0; 1 ),
N (� 2 dt)= 	( v(t)) dt.

Recall from (3.16) thatP x is the law of(H t^ Tx )t � 0 underP, whereTx = inf f t 2 R+ : X t = � xg.
The Poisson decomposition (3.19) implies thatsupt2 [0;Tx ] H t =max f �( H i ); i 2 I : � I ai � xg and since
� underN has a density, then (3.23) and (3.24) entail that

P x -a.s. there is a unique� 2 [0; � ] such thatH � = � and P x (� � t)= e� xv (t ) , t 2 R+ . (3.25)

In [3], Abraham & Delmas generalize Williams' decomposition of the Brownian excursion to the
excursion of the	 -height process: they �rst make sense of the conditioned lawN ( � j � = r ). Namely
they prove thatN ( � j � = r )-a.s.� = r , thatr 7! N ( � j � = r ) is weakly continuous onC(R+ ; R+ ) and
that

N =
Z 1

0
N (� 2 dr) N ( � j �= r ) : (3.26)
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Moreover they provide a Poisson decomposition along the total height of the process: see Section3.2.2
where a more precise statement is recalled. The �rst two results of our article provide a similar result for
the diameterD of the	 -Lévy tree underN . Recall thatp : [0; � ] !T stands for the canonical projection.

Theorem 3.1. Let 	 be a branching mechanism of the form (3.13) that satis�es (3.14). Let T be the
	 -Lévy tree that is coded by the	 -height processH under the excursion measureN as de�ned above.
Then, the following holds trueN -a.e.

(i) There exists a unique pair� 0; � 1 2 [0; � ] such that� 0 < � 1 and D = d(� 0; � 1). Moreover, either
H � 0 =� or H � 1 =� . Namely, either� 0 = � or � 1 = � , where� is the unique time realizing the total
height as de�ned by (3.23).

(ii) Set 
 0 = p(� 0) and 
 1 = p(� 1). Then
 0 and 
 1 are leaves ofT . Let 
 mid be the mid-point of
J
 0; 
 1K: namely,
 mid is the unique point ofJ
 0; 
 1Ksuch thatd(
 0; 
 mid ) = D=2. Then, there
are exactly two times0� � �

mid <� +
mid � � such thatp(� �

mid )= p(� +
mid )= 
 mid , and
 mid is a simple

point ofT : namely, it is neither a branching point nor a leaf ofT .

(iii) For all r 2 (0; 1 ), we get

N
�
D > 2r

�
= v(r ) � 	

�
v(r )

� 2
Z 1

v(r )

d�
	( � )2 : (3.27)

This implies thatN (D 2 dr)= ' (r )dr on(0; 1 ) where the density' : (0; 1 ) ! (0; 1 ) is given by

8r 2 (0; 1 ); ' (2r ) = 	( v(r )) � 	( v(r ))2 	 0(v(r ))
Z 1

v(r )

d�
	( � )2 : (3.28)

The second main result of our paper is a Poisson decomposition of the subtrees ofT grafted on the
diameterJ
 0; 
 1K. This result is stated in terms of coding functions and we �rst need to introduce the
following notation: letH; H 02 C(R+ ; R+ ) be two coding functions as de�ned above; theconcatenation
of H andH 0 is the coding function denoted byH � H 0and given by

8t 2 R+ ; (H � H 0)t = H t if t 2 [0; � H ] and (H � H 0)t = H 0
t � � H

if t � � H . (3.29)

Moreover, to simplify notation we write the following:

8r 2 (0; 1 ); N �
r = N ( � j �= r ) : (3.30)

Theorem 3.2.Let	 be a branching mechanism of the form (3.13) that satis�es (3.14). For all r 2 (0; 1 ),
we denote byQ r the law onC(R+ ; R+ ) of H � H 0underN �

r=2(dH )N �
r=2(dH 0), whereN �

r=2 is de�ned
by (3.30). Namely, for all measurable functionsF :C(R+ ; R+ ) ! R+ ,

Q r
�
F (H )

�
=

ZZ

C(R+ ;R+ )2
N �

r=2(dH )N �
r=2(dH 0) F

�
H � H 0� : (3.31)

ThenQ r satis�es the following properties.

(i) Q r -a.s.D = r and there exists a unique pair of points� 0; � 1 2 [0; � ] such thatD = d(� 0; � 1).

(ii) For all r 2 (0; 1 ), Q r [ � ] = 2N �
r=2[ � ] 2 (0; 1 ). Moreover, the applicationr 7! Q r is weakly

continuous and for all measurable functionsF :C(R+ ; R+ ) ! R+ andf :R+ ! R+ ,

N
�
f (D )F (H )

�
=

Z 1

0

N (D 2 dr)
Q r [ � ]

f (r ) Q r

hZ �

0
F

�
H [t ]� dt

i
; (3.32)

whereH [t ] is de�ned by (3.8).
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(iii) Recall the notation� �
mid and� +

mid from Theorem3.1(ii ). Then, for allr 2 (0; 1 ),

N
�
F

�
H [� �

mid ]� �
� D = r

�
=

1
N �

r=2[ � ]

ZZ

C(R+ ;R+ )2
N �

r=2(dH )N �
r=2(dH 0) � H 0F

�
H � H 0� ; (3.33)

whereN ( �
�
� D = r ) makes sense for allr 2 (0; 1 ) thanks to (3.32).

(iv) Recall from (3.16) the notationP y . To simplify notation, we write for ally; b2 (0; 1 )

N b = N
�

� \ f � � bg
�

and P y
b = P y �

� \ f � � bg
�
; (3.34)

Then, underQ r , M � 0 ;� 1 (da d
 �
H d

�!
H ), de�ned by (3.12), is a Poisson point measure on[0; r ] �

C(R+ ; R+ )2 whose intensity is

� 1[0;r ](a)da
�

� 0(d
 �
H )N a^ (r� a) (d

�!
H ) + N a^ (r� a) (d

 �
H )� 0(d

�!
H )

�

+ 1[0;r ](a)da
Z

(0;1 )
� (dz)

Z z

0
dx P x

a^ (r� a)

�
d
 �
H ) P z� x

a^ (r� a)

�
d
�!
H ); (3.35)

where� and� are de�ned in (3.13).

Comment 1. As already mentioned, the previous theorem makes sense ofN
�

�
�
�D = r

�
and for all

measurable functionsF :C(R+ ; R+ ) ! R+ , we have

8r 2 (0; 1 ); N
�

F (H )
�
� D = r

�
:= Q r

hZ �

0
F

�
H [t ]� dt

i.
Q r [ � ] ; (3.36)

Namely, Theorem3.2 (i ) entails thatN ( �
�
� D = r )-a.s.D = r . Then (3.31) combined with the already

mentioned continuity ofr 7! N ( � j � = r=2) easily implies thatr 7! N ( �
�
� D = r ) is weakly continuous

onC(R+ ; R+ ). Moreover, (3.32) can be rewritten:

N =
Z 1

0
N (D 2 dr) N ( � j D = r ) (3.37)

that is the exact analogous of (3.26). We mention that the proof of Theorem3.2relies on the decomposi-
tion (3.26) due to Abraham & Delmas [3]. �

Comment 2. It is easy to check from (3.8) that for all t0; t, (H [t ])[t0 ] = H [t+ t0 ]. Therefore, (3.32) implies
thatH underN is invariant under rerooting. Namely, for all measurable functionsF :C(R+ ; R+ ) ! R+ ,

8t0 2 R+ ; N
�
1f � � t0gF

�
H [t0 ]�� = N

�
1f � � t0gF

�
H

��
; (3.38)

which is quite close to Proposition 2.1 in D. & Le Gall [53], that is used in the proof of Theorem3.2. �

Comment 3. As shown by (3.36), N
�

�
�
�D = r

�
is derived fromQ r by a uniform rerooting. This property

suggests that the law of the compact real tree(T ; d) coded byH underQ r , without its root, is the scaling
limit of natural models of labeled unrooted trees conditioned by their diameter. �

Comment 4. Another reason for introducing the lawQ r is the following: we deduce from (3.36) that
for all measurable functionsF :C(R+ ; R+ ) ! R+ ,

N
�
F (H [� 0 ])

�
� D = r

�
= Q r

�
�F (H [� 0 ])

��
Q r [ � ] ; (3.39)

where� 0 is as in Theorem3.1. As shown by Theorem3.2 (iv ), H underQ r enjoys a Poisson decompo-
sition along its diameter. However (3.39) also implies that this not the case ofH underN ( � j D = r ).
�
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The law of � and of D of stable Lévy trees conditioned by their total mass. In application of
Theorem3.2, we compute the law of� and D underN ( � j � = 1) in the cases where	 is a stable
branching mechanism. Namely, we �x
 2 (1; 2] and

	( � ) = � 
 ; � 2 R+ ;

that is called the
 -stable branching mechanism. We �rst recall the de�nition of the lawN ( � j � =1) for
such a branching mechanism.

When	 is 
 -stable, the Lévy processX underP satis�es the following scaling property: for allr 2

(0; 1 ), (r � 1

 X rt )t � 0 has the same law asX , which easily entails by (3.15) that underP, (r � 
 � 1


 H rt )t � 0

has the same law asH and the Poisson decomposition (3.19) implies the following:

�
r � 
 � 1


 H rt
�

t � 0 under r
1

 N

(law)
= H under N : (3.40)

We then easily derive from (3.21) that

N (� 2 dr)= p
 (r ) dr ; where p
 (r ) = c
 r � 1� 1

 with 1=c
 = 
 � e

� 
 � 1



�
: (3.41)

Here � e stands for Euler's Gamma function. By (3.40), there exists a family of laws onC(R+ ; R+ )
denoted byN ( � j � = r ), r 2 (0; 1 ), such thatr 7! N ( � j � = r ) is weakly continous onC(R+ ; R+ ), such
thatN ( � j � = r )-a.s.� = r and such that

N =
Z 1

0
N ( � j � = r ) N (� 2 dr) : (3.42)

Moreover, by (3.40),
�
r � 
 � 1


 H rt
�

t � 0 underN ( � j � = r ) has the same law asH underN ( � j � = 1) . We
call N ( � j � =1) thenormalized law of the
 -stable height processand to simplify notation we set

Nnr := N ( � j � =1) (3.43)

Thus, for all measurable functionsF :C(R+ ; R+ ) ! R+ ,

N
�
F (H )

�
= c


Z 1

0
dr r � 1� 1


 N nr

h
F

� �
r


 � 1

 H t=r

�
t � 0

�i
: (3.44)

When
 =2 , Nnr is, up to scaling, the normalized Brownian excursion that is, as shown by Aldous [10],
the scaling limit of the contour process of the uniform (ordered rooted) tree withn vertices asn ! 1 ;
Aldous [10] also extends this limit theorem to Galton-Watson trees conditioned to haven vertices and
whose offspring distribution has a second moment. This result has been extended by D. [49] to Galton-
Watson trees conditioned to haven vertices and whose offspring distribution is in the domain of attraction
of a 
 -stable law, the limiting process being in this case the normalized excursion of the
 -stable height
process. See also Kortchemski [76] for scaling limits of Galton-Watson tree conditioned to haven leaves.

We next introducew : (0; 1 ) ! (1; 1 ) that is the uniqueC1 decreasing bijection that satis�es the
following integral equation:

8y 2 (0; 1 );
Z 1

w(y)

du
u
 � 1

= y : (3.45)

We refer to Section3.3.1for a probabilistic interpretation ofw and further properties. The following
proposition characterizes the joint law of� andD underNnr by the mean of Laplace transforms.
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Proposition 3.3. Fix 
 2 (1; 2] and	( � ) = � 
 , � 2 R+ . Recall from (3.43) the de�nition of the lawNnr

of the normalized excursion of the
 -stable height process. We then set

8�; y; z 2 (0; 1 ); L � (y; z) := c


Z 1

0
e� �r r � 1� 1


 Nnr
�

r

 � 1


 D > 2y ; r

 � 1


 � >z
�

dr ; (3.46)

where we recall from (3.41) that1=c
 = 
 � e
� 
 � 1




�
, � e standing for Euler's Gamma function. Note that

8�; y; z 2 (0; 1 ); L1(y; z) = � � 1

 L �

�
� � 
 � 1


 y ; � � 
 � 1

 z

�
: (3.47)

Recall from (3.45) the de�nition ofw. Then,

L1(y; z) = w(y _ z) � 1 � 1

 1f z< 2yg

�
w(y) 
 � 1

� 2

 
w

�
y^ (2y� z)

�

w
�
y^ (2y� z)

� 
 � 1
� (
 � 1)

�
y^ (2y� z)

�
!

:

(3.48)
In particular, for all y; z2 (0; 1 ),

L1(0; z) = w(z) � 1 and L1(y; 0) = w(y) � 1� 1



�
w(y) 
 � 1

� �
w(y)� (
 � 1)y

�
w(y) 
 � 1

� �
: (3.49)

The previous proposition is known in the Brownian case, wherew(y)=coth( y): see W. [100]. In the
Brownian case, standard computations derived from (3.49) imply the following power expansions that
hold true for ally2 (0; 1 ):

Nnr
�
� >y

�
= 2

X

n� 1

�
2n2y2 � 1

�
e� n2y2

; (3.50)

Nnr
�
D >y

�
=

X

n� 2

(n2 � 1)
� 1

6 n4y4 � 2n2y2 + 2
�
e� n2y2=4 : (3.51)

See W. [100] for more details.
We next provide similar asymptotic expansions in the non-Brownian stable cases. To that end, we

introduces
 : (0; 1 ) ! (0; 1 ) as the continuous version of the density of the spectrally positive
 � 1

 -

stable distribution; more precisely,s
 is characterized by the following:

8� 2 R+ ;
Z 1

0
e� �x s
 (x) dx = exp( � 
�


 � 1

 ) : (3.52)

The following asymptotic expansion ofs
 at 0 is due to Zolotarev (see Theorem 2.5.2 [103]): for all
integerN � 1,

�
2� (1� 1


 )
� 1

2 x

 +1

2 e1=x
 � 1
s


�
(
 � 1)x

�
= 1 +

X

1� n<N

Sn xn(
 � 1) + ON;

�
xN (
 � 1) � ; asx ! 0. (3.53)

HereON;
 means that the expansion depends onN and
 . Next, note thatSn depends onn and
 but we
skip the dependence in
 to simplify notation.

Remark 21. In the Brownian case where
 =2 , it is well-known that

s2(x) = � � 1
2 x � 3

2 e� 1=x; x 2 R+

Then,S0 =1 andSn =0 , for all n � 1. �

For generic
 2 (1; 2), this asymptotic expansion does not yield a converging power expansion (al-
though it is the case if
 = 2 ). See Section3.4.1for more details ons
 . To state our result we �rst need
to introduce an auxiliary function derived froms
 as follows.
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Proposition 3.4. Let 
 2 (1; 2]. Recall from (3.52) the de�nition of s
 . We introduce the following
function:

8x 2 R+ ; � (x) :=( 
 � 1) x � 1s
 (x) � 
 � 1

 x � 1� 1




Z x

0
dy y

1

 � 1s
 (y) : (3.54)

Then, the following holds true.

(i) � is well-de�ned, continuous,
Z 1

0
dx j� (x)j < 1 and

Z 1

0
dx e� �x � (x) = �

1

 e� 
�


 � 1



; � 2 R+ : (3.55)

(ii) Recall from (3.53) the de�nition of the sequence(Sn )n� 0, with S0 =1 . Let(Vn )n� 0 be a sequence
of real numbers recursively de�ned byV0 =1 and

8n 2 N; Vn+1 = Sn+1 +
�
n� 1

2 � 1

 � 1

�
Sn �

�
n � 1

2 � 1



�
Vn : (3.56)

Then, for all integerN � 1,

�
2� (1� 1


 )
� 1

2 x

 +3

2 e1=x
 � 1
�
�
(
 � 1)x

�
= 1 +

X

1� n<N

Vn xn(
 � 1) + ON;

�
xN (
 � 1) � ; (3.57)

asx ! 0.

We use� to get the asymptotic expansion of the law of the total height of the normalized
 -stable
tree as follows.

Theorem 3.5. Let 
 2 (1; 2]. We introduce the following function:

8r 2 R+ ; � (r ) := r � 
 +1

 � 1 �

�
r � 



 � 1
�

: (3.58)

where� is de�ned in (3.54). Then, there exists a real valued sequence(� n )n� 1 andx1 2 (0; 1) such that
X

n� 1

j� n jxn
1 < 1 and 8r 2 (0; 1 );

X

n� 1

j� n j sup
s2 [r; 1 )

j� (ns)j < 1 ; (3.59)

and such that
8r 2 (0; 1 ); c
 Nnr

�
� >r

�
=

X

n� 1

� n � (nr ) ; (3.60)

where we recall from (3.41) that 1=c
 = 
 � e
� 
 � 1




�
, � e standing for Euler's gamma function. Moreover,

for all integersN � 1, asr ! 1 ,

1
C1

r � 1� 

2 er 


Nnr

�
� >r (
 � 1)� 
 � 1




�
= 1 +

X

1� n<N

Vn r � n
 + ON;

�
r � N
 �

; (3.61)

whereC1 := (2 � ) � 1
2 (
 � 1)

1
2 + 1


 

3
2 � e( 
 � 1


 ) exp(C0), where

C0 := 

Z 1

1

du
(u + 1) 
 � 1

�
Z 1

0

du
u

(u + 1) 
 � 1 � 
u
(u + 1) 
 � 1

; (3.62)

and where the sequence(Vn )n� 1 is recursively de�ned by (3.56) in Proposition3.4.

Remark 22. The convergence in (3.60) is rapid. Indeed, by (3.57), we see that� (nr ) is of order

(nr )1+ 

2 exp(� n
 (
 � 1)

1

 � 1 r 
 ) :

Then, the asymptotic expansion (3.61) is that of the �rst term of (3.60) that isc� 1

 � 1 � (r ). �
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Remark 23. The de�nition of the sequence(� n )n� 0 is involved: see Lemma3.24and its proof for a
precise de�nition. However, in the Brownian case, everything can be explicitly computed: for alln � 1,
� n = 2 , � (r ) = (4 � ) � 1

2 (2r 2 � 1)e� r 2
, c2 = (4 � ) � 1

2 , and we recover (3.50) from (3.60); moreover,
C0 =log 2, C1 =4 , V0 =1 , V1 = � 1

2 andVn =0 , for all n � 2. �

To state the result concerning the diameter, we need precise results on the derivative of the
 � 1

 -stable

density.

Proposition 3.6. Let 
 2 (1; 2]. Recall from (3.52) the de�nition of the densitys
 . Thens
 is C1 onR+ ,
Z 1

0
dx js0


 (x)j < 1 and
Z 1

0
dx e� �x s0


 (x) = �e � 
�

 � 1



; � 2 R+ : (3.63)

Moreover,s0

 has the following asymptotic expansion: recall from (3.53) the de�nition of the sequence

(Sn )n� 0, with S0 =1 ; let (Tn )n� 0 be a sequence of real numbers recursively de�ned byT0 =1 and

8n 2 N; Tn+1 := Sn+1 +
�
n � 1

2 � 1

 � 1

�
Sn : (3.64)

Then, for all positive integersN , we have

�
2� (1� 1


 )
� 1

2 x
3
 +1

2 e1=x
 � 1
s0




�
(
 � 1)x

�
= 1 +

X

1� n<N

Tn xn(
 � 1) + ON;

�
xN (
 � 1) � ; (3.65)

asx ! 0.

The asymptotic expansion of the law of the diameter of the normalized
 -stable tree is then given in
the following theorem.

Theorem 3.7. Let 
 2 (1; 2]. Recall from (3.58) the de�nition of the function� . We also introduce the
following function:

8r 2 R+ ; � (r ) := r � 
 +1

 � 1 s0




�
r � 



 � 1
�

; (3.66)

wheres0

 is the derivative of the densitys
 de�ned in (3.52). Then there exist two real valued sequences

(
 n )n� 2 and(� n )n� 2 andx2 2 (0; 1) such that
X

n� 2

(j
 n j + j� n j)xn
2 < 1 and 8r 2 (0; 1 );

X

n� 2

j
 n j sup
s2 [r; 1 )

j� (ns)j + j� n j sup
s2 [r; 1 )

j� (ns)j < 1 ;

(3.67)
and such that

8r 2 (0; 1 ); c
 Nnr
�
D > 2r

�
=

X

n� 2


 n � (nr ) + � n � (nr ) ; (3.68)

where we recall from (3.41) that 1=c
 = 
 � e
� 
 � 1




�
, � e standing for Euler's gamma function. Moreover,

for all integersN � 1, asr ! 1 ,

1
C2

r � 1� 3

2 er 


Nnr

�
D >r (
 � 1)� 
 � 1




�
= 1 +

X

1� n<N

Un r � n
 + O
;N
�
r � N
 �

; (3.69)

whereC2 := (8 � ) � 1
2 (
 � 1)

3
2 + 1


 

5
2 � e( 
 � 1


 ) exp(2C0), whereC0 is de�ned by (3.62) and where the
sequence(Un )n� 1 is recursively de�ned byU0 =1 and

8n � 1; Un = Tn � 
 +1

 (
 � 1)

Vn� 1 : (3.70)

Here(Tn )n� 0 is de�ned by (3.64) and(Vn )n� 0 is de�ned by (3.56).
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Remark 24. The convergence in (3.68) is rapid. Indeed, by (3.65) and (3.57) we see that� (nr=2) and
� (nr=2) are of respective order

(nr )1+ 3

2 exp(� n
 2� 
 (
 � 1)

1

 � 1 r 
 ) and (nr )1+ 


2 exp(� n
 2� 
 (
 � 1)
1


 � 1 r 
 ) :

Then the asymptotic expansion (3.69) is that ofc� 1

 
 2 � (r ) + c� 1


 � 2 � (r ). �

Remark 25. The de�nitions of the sequences(
 n )n� 0 and(� n )n� 0 are involved: see the proof of Lemma
3.25for a precise de�nition. However, in the Brownian case, everything can be computed explicitly:

8n � 2; 
 n = 4
3 (n2 � 1); � n = � 2(n2 � 1) and � (r ) = � � 1

2 r 2�
r 2 � 3

2

�
e� r 2

;

which allows to recover (3.51) from (3.68). Moreover,C2 = 8 , U0 = 1 , U1 = � 3, U2 = � 3
4 andUn = 0 ,

for all n � 3. �

The paper is organized as follows. Section3.2is devoted to the proof of Theorem3.1and of Theorem
3.2: in Section3.2.1, we discuss an important geometric property of the diameter of real trees (Lemma
3.8) and we explain the spinal decomposition according to the total height, the result of Abraham &
Delmas [3] being recalled in Section3.2.2where the proofs of Theorem3.1and Theorem3.2are actually
given. Proposition3.3, that characterizes the joint law of the total height and the diameter of normalized
stable trees, is proved in Section3.3. Theorem3.5and Theorem3.7are proved in Section3.4.

3.2 Proof of the diameter decomposition.

3.2.1 Geometric properties of the diameter of real trees; height decomposition.

In this section we gather deterministic results on real trees and their coding functions: we �rst prove a
key lemma on the diameter of real trees; we next discuss how to reconstruct the coding functionH from
a spinal decompositionM 0;t (H ), under a speci�c assumption on the mass measurem H onTH ; then we
discuss a decomposition related to the total height.

Total height and diameter of compact rooted real trees. The following result connects the total
height and the diameter of a compact rooted real tree.

Lemma 3.8. Let (T; d; � ) be a compact rooted real tree. We denote by� andD resp. its total height and
its diameter:� :=sup � 2 T d(�; � ) andD =sup �;� 02 T d(�; � 0). Then, the following holds true.

(i) There exist�; � 0; � 1 2 T, such that�= d(�; � ) andD = d(� 0; � 1). This entails

� � D � 2� : (3.71)

(ii) Let � 0; � 1 2 T be such thatD = d(� 0; � 1). Then eitherd(�; � 0) = � or d(�; � 1) = � . More
precisely,

d(�; � 0) � d(�; � 1) =) d(�; � 0)= � and d(�; � 1) � d(�; � 0) =) d(�; � 1)= � :
(3.72)

Proof. First note that
 2 T 7! d(�; 
 ) and(
; 
 0) 2 T2 7! d(
; 
 0) are real valued continuous functions
de�ned on compact spaces; basic topological arguments entail the existence of�; � 0; � 1 2 T as in(i ).
The inequality� � D is an immediate consequence of the de�nitions of� andD. The triangle inequality
next entails thatD � d(� 0; � ) + d(�; � 1) � 2� , which completes the proof of (3.71) and of (i ).
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Let �; � 0; � 1 2 T be as in(i ). By the four points inequality (3.1) and basic inequalities, we get

� + D = d(�; � ) + d(� 0; � 1) � max
�
d(�; � 0) + d(�; � 1) ; d(�; � 1) + d(�; � 0)

�

� max
�
d(�; � 0); d(�; � 1)

�
+ max

�
d(�; � 1); d(�; � 0)

�
:

If max
�
d(�; � 0); d(�; � 1)

�
< � , then the previous inequality implies thatD < max

�
d(�; � 1); d(�; � 0)

�
,

which is absurd. Thus,max
�
d(�; � 0); d(�; � 1)

�
= � , which easily entails the desired result. �

Coding functions and their spinal decompositions. Recall that0 stands for the null function of
C(R+ ; R+ ). We denote byCc(R+ ; R+ ) the functions ofC(R+ ; R+ ) with compact support.

De�nition. We introduce the set of coding functions:

Exc =
�

H 2 Cc(R+ ; R+ ) : H0 =0 , H 6= 0, m H is diffuse andm H (TH nLf (TH )) = 0
	

; (3.73)

where we recall from (3.5) thatLf (TH ) stands for the set of leaves ofTH and where we recall from (3.6)
thatm H stands for the mass measure ofTH . Then, we set

H =
�

B \ Exc; B Borel subset ofC(R+ ; R+ )
	

: (3.74)

that is the trace sigma �eld onExc of the Borel sigma �eld ofC(R+ ; R+ ). �

Remark 26. LetH 2 Excand lets0; s1 2 (0; � H ) be such thats0 <s 1 anddH (s0; s1)=0 . then, we easily
check thatH [s0 ]

� ^ (s1 � s0 )2 Exc. �

Remark 27. Recall from (3.17) and from (3.22) thatP x andN are supported byExc. �

De�nition. We introduce the following subset ofR+ � C(R+ ; R+ )2:

E := R+ �
�
Exc� (Exc[f 0g) [ (Exc[f 0g) � Exc

�
(3.75)

and we denote byM pt (E ) the set of point measures

M (da d
 �
H d

�!
H )=

X

a2J

�
(a;

 �
H a ;

�!
H a )

onE

that satisfy the following conditions:

9 r 2 R+ such that the closure ofJ is [0; r ] and 8"; � 2 (0; 1 );

#
�

a2J : �(
 �
H a)_ �(

�!
H a) > � or �  �

H a _ � �!
H a >"

	
< 1 : (3.76)

We then equipM pt (E ) with the sigma �eldG generated by the applicationsM 2 M pt (E ) 7! M (A),
whereA ranges among the Borel subsets ofR+ � C(R+ ; R+ )2. �

The following lemma, whose proof is postponed in Appendix, asserts thatH can be recovered in a
measurable way from the spinal decompositionM 0;t (H ), as de�ned in (3.11).

Lemma 3.9. Recall from above the de�nition of the measurable spaces(Exc; H) and(M pt (E ); G). The
the following holds true.

(i) For all t 2 (0; 1 ), we setf � > t g:= f H 2 Exc : � H >t g. Then,f � > t g2H and

H 2 f � > t g 7�! M 0;t (H ) 2 M pt (E ) is measurable.

(ii) There exists a measurable function� : M pt (E ) ! R+ � Exc such that

8H 2 Exc; 8t 2 (0; � H ); �( M 0;t (H )) = ( t; H ) :

Proof. See Appendix3.5. �
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Decomposition according to the total height. Let us �x H 2 Exc. We introduce the �rst time that
realizes the total height:

� (H ) = inf f t 2 R+ : H t = �( H )g : (3.77)

For all x 2 (0; �( H )) we also introduce the following times:

� �
x (H ) := sup

�
t< � (H ) : H t < �( H )� x

	
and � +

x (H ) := inf
�

t> � (H ) : H t < �( H )� x
	

: (3.78)

Recall from (3.8) the de�nition of H [s]. We then set

8 t 2 R+ ; H 	 x
t = H [� �

x ]
t ^ (� +

x � � �
x )

and H � x
t = H [� +

x ]
t ^ (� � (� +

x � � �
x ))

(3.79)

where we denote� �
x := � �

x (H ), � +
x := � +

x (H ) and� := � H to simplify notation. See Figure3.2.

Let us interpretH 	 x andH � x in terms ofTH . To that end, we recall thatpH : [0; � ] ! T H stands
for the canonical projection and we set
 := pH (� (H )) . We �rst note thatdH (� �

x ; � +
x ) = 0 . Then we

set 
 (x) := pH (� �
x ) = pH (� +

x ) that is the unique point ofJ�; 
 Ksuch thatx = d(
; 
 (x)) and thus,
d(�; 
 (x))= �( H ) � x. We denote byT o the connected component ofTH nf 
 (x)g that contains the root
� and we set

T � x = TH nT o and T + x = f 
 (x)g [ T o :

Thus(T � x; d; 
 (x)) is coded byH 	 x and(T + x; d; 
 (x)) is coded byH � x . See Figure3.2.





 x

�
� �

x � � +
x �

x

T + x

T � x

Figure 3.2 – The left hand side �gure illustrate the decomposition ofH into H 	 x andH � x . The right hand side
�gure represent this decomposition in terms of the tree coded byH .

Recall from (3.8) the spinal decomposition at time� (H ). We shall use the following notation:

M 0;� (H ) (H ) =
X

a2J 0;� ( H )

�
(a;

 �
H a ;

�!
H a )

that is a measure on[0; �( H )] � Exc. Let us �rst make the following remark.

Remark 28. Let x 2 (0; �( H )) and recall the notation
 (x)= pH (� �
x (H ))= pH (� +

x (H )) . Observe that
if x =2 J 0;� (H ) , thenH t > �( H ) � x, for all t 2 (� �

x (H ); � +
x (H )) and thus,� �

x (H ), � +
x (H ) are the only

timet 2 [0; � H ] such thatpH (t) = 
 (x), which implies that
 (x) is not a branching point ofTH : since it
is not a leaf, it has to be a simple point ofTH . �
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For all x 2 (0; �( H )) , we next introduce the following restriction ofM 0;� (H ) (H ):

M � x
0;� (H ) (H ) =

X

a2J 0;� ( H ) \ [0;x ]

�
(a;

 �
H a ;

�!
H a )

and M + x
0;� (H ) (H ) =

X

a2J 0;� ( H ) \ (x; �( H )]

�
(a;

 �
H a ;

�!
H a )

; (3.80)

so thatM 0;� (H ) (H )= M � x
0;� (H ) (H ) + M + x

0;� (H ) (H ). Observe that

� (H ) = � �
x (H ) + � (H 	 x ) and M 0;� (H 	 x ) (H

	 x ) = M � x
0;� (H ) (H ) : (3.81)

For all H 02 Exc, we denote by�( H 0) := ( H 0
(� H 0� t )+

)t � 0 the functionH 0 that is reversed at its lifetime.
We easily check that� : Exc! Exc is measurable and we also set:

�
�
M + x

0;� (H ) (H )
�

=
X

a2J 0;� ( H ) \ (x; �( H )]

�
(�( H )� a ; �(

�!
H a ) ; �(

 �
H a ))

:

It is easy to check �rst that�
�
M + x

0;� (H ) (H )
�

is a measurable function ofM + x
0;� (H ) (H ) and next that

M 0;� H � � +
x (H ) (H

� x ) = �
�
M + x

0;� (H ) (H )
�

: (3.82)

This combined with (3.81) and Lemma3.9 immediately implies the following lemma.

Lemma 3.10. There exists two measurable functions� ; � 0 : M pt (E ) ! R+ � Exc such that

8H 2 Exc; 8x 2 (0; �( H )) ; �
�
M � x

0;� (H ) (H )
�

=
�
� (H ) � � �

x (H ) ; H 	 x �

and � 0� M + x
0;� (H ) (H )

�
=

�
� H � � +

x (H ) ; H � x �
;

where� (H ) is de�ned by (3.77), � �
x (H ) and� +

x (H ) by (3.78), H 	 x andH � x by (3.79) andM � x
0;� (H ) (H )

andM + x
0;� (H ) (H ) by (3.80).

3.2.2 Proofs of Theorem3.1and of Theorem3.2.

As already mentioned, Abraham & Delmas in [3] make sense of the conditioned lawN ( � j �= r ): namely
they prove thatN ( � j � = r )-a.s.� = r , thatr 7! N ( � j � = r ) is weakly continuous onC(R+ ; R+ ) and
that (3.26) holds true. Recall from (3.30) and (3.34) the short-hand notations

8r; b; y2 (0; 1 ); N �
r = N ( � j �= r ); N b= N

�
� \ f � � bg

�
and P y

b = P y �
� \ f � � bg

�
;

(3.83)
where we recall from (3.16) the notationP y . Also recall from (3.23) thatN �

r -a.s. there exists a unique
� 2 [0; � ] such thatH � = � . Recall from (3.11) that M 0;� (H ) gives the excursions coding the trees
grafted onJ�; p (� )Klisted according to their distance of their grafting point fromp(� ) (herep: [0; � ] !
T stands for the canonical projection). In the following lemma, we recall from Abraham & Delmas
[3] the following Poisson decomposition ofH underN �

r at its maximum, which extends William's
decomposition that corresponds to the Brownian case.

Lemma 3.11(Abraham & Delmas [3]). Let 	 be a branching mechanism of the form (3.13) that satis�es
(3.14). We keep the previous notation. Letr 2 (0; 1 ). Then, underN �

r ,

M 0;� (da d
 �
H d

�!
H ) =

X

j 2J 0;�

�
(a;

 �
H a ;

�!
H a )

(3.84)

is Poisson point process on[0; r ]� C(R+ ; R+ )2 whose intensity is

n r (da d
 �
H d

�!
H ) := � 1[0;r ](a)da

�
� 0(d

 �
H )N a(d

�!
H ) + N a(d

 �
H )� 0(d

�!
H )

�

+ 1[0;r ](a)da
Z

(0;1 )
� (dz)

Z z

0
dx P x

a

�
d
 �
H ) P z� x

a

�
d
�!
H ); (3.85)

where� and� are de�ned in (3.13) and where0 stands for the null function.
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We �rst discuss several consequences of Lemma3.11. To that end, we set

� r;a (d
 �
H d

�!
H ) = �� 0(d

 �
H )N a(d

�!
H ) + � N a(d

 �
H )� 0(d

�!
H ) +

Z

(0;1 )
� (dz)

Z z

0
dx P x

a

�
d
 �
H ) P z� x

a

�
d
�!
H );

so thatn r (da d
 �
H d

�!
H ) = 1[0;r ](a)da� r;a (d

 �
H d

�!
H ). Denote byh� r;a i the total mass of� r;a . We claim

thath� r;a i = 1 .
Indeed, �rst recall that N is an in�nite measure. SinceN (� > a ) < 1 (by (3.24)), N a is also

an in�nite measure. Thus, if� > 0, h� r;a i = 1 . Suppose now that� = 0 . Then by (3.25), we get
h� r;a i =

R
(0;1 ) � (dz)ze� zv(a) = 1 , since

R
(0;1 ) z � (dz)= 1 , by (3.18).

Therefore, standard results on Poisson point measures entail thatN �
r -a.s. the closure ofJ 0;� is [0; r ].

Recall from (3.73) the de�nition of Exc and recall from (3.17) and from (3.22) that P x and N are
supported byExc. Thus for alla 2 (0; r ), P x

a andN a are also supported byExc. This entails thatN �
r -

a.s. satis�es (3.76), namelyN �
r -a.s.M 0;� 2 M pt (E ), where the set of point measuresM pt (E ) is de�ned

in De�nition 3.2.1. Then by Lemma3.9, N �
r -a.s.�( M 0;� ) = ( �; H ), where� is a measurable function

from M pt (E ) to R+ � Exc. Thus,N �
r -a.s.

N �
r -a.s. H 2 Exc : (3.86)

Recall that� : Exc ! Exc, its the functional that reverses excursions at their lifetime: namely for all
H 2 Exc, we denote by�( H ) = ( H (� H � t )+ )t � 0. We recall from Corollary 3.1.6 [51] that H and�( H )
have the same distribution underN . This also implies thatH and�( H ) have the same law underP x .
We next claim that for allr 2 (0; 1 ),

H and�( H ) have the same law underN �
r . (3.87)

Indeed, recall the notation (3.84) for M 0;� and observe that

M 0;� (�( H )) (�( H )) =
X

a2J ;�

�
(a;�(

�!
H a );�(

 �
H a )

):

SinceN andP x are � -invariant, so areN a andP x
a and we easily see from Lemma3.11 that under

N �
r , M 0;� (�( H )) (�( H )) and M 0;� have the same law. This implies by Lemma3.9 that underN �

r ,
�( M 0;� (�( H )) (�( H )))=( � � �; �( H )) and�( M 0;� )=( �; H ) have the same law wich implies (3.87).

Recall from (3.77) the de�nition of � (H ), from (3.78) that of� �
x (H ) and� +

x (H ), from (3.79) that of
H 	 x andH � x , and from (3.80) that ofM � x

0;� (H ) (H ) andM + x
0;� (H ) (H ). To simplify notation we simply

write � , � �
x , � +

x , M � x
0;� andM + x

0;� . We then prove the following lemma.

Lemma 3.12. We keep the same assumptions as in Lemma3.11and the notation therein. Letx 2 (0; r ).
Then, the following holds true.

(i) UnderN �
r , M � x

0;� andM + x
0;� are independent Poisson point measures.

(ii) N �
r -a.s.x =2 J 0;� .

(iii) M � x
0;� underN �

r has the same law asM 0;� underN �
x . Thus the law ofH 	 x underN �

r is N �
x .

Proof. Point(i ) is a consequence of Lemma3.11and of basic results on Poisson point measures. More-
over, M � x

0;� underN �
r has intensity1[0;x ](a)da� r;a (d

 �
H d

�!
H ) which is equal tonx . This implies that

M � x
0;� underN �

r has the same law asM 0;� underN �
x . By Lemma3.9and Lemma3.10, it implies that

(� � � �
x ; H 	 ) = �

�
M � x

0;�

�
under N �

r
law= ( �; H ) = �

�
M 0;�

�
under N �

x ;

which entails(iii ). Since the intensity measuren r (da d
 �
H d

�!
H ) is diffuse in the variablea, standard

results on Poisson point measures entail(ii ). �
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Proof of Theorem3.1(i ). We keep the previous notation and we set

8b 2 (0; 1 ); 8
 �
H ;

�!
H 2 Exc; �

b;
 �
H ;

�!
H

= b+ �(
 �
H )_ �(

�!
H ) : (3.88)

Recall from (3.24) and (3.25) that the distributions of� underN and underP x are diffuse. Thus, for all
a 2 (0; 1 ), the distributions of� underN a and underP x

a are also diffuse. Recall the notation (3.84)
for M 0;� . Then, Lemma3.11 combined with Lemma3.8 implies thatN �

r -a.s. there exists a unique
Y 2 (0; r ) \ J 0;� such that

D = Y + �(
 �
H Y )_ �(

�!
H Y ) = �

Y;
 �
H Y ;

�!
H Y > sup

a2J 0;� nf Y g
�

a;
 �
H a ;

�!
H a : (3.89)

Then either�(
 �
H Y ) < �(

�!
H Y ) or �(

 �
H Y ) > �(

�!
H Y ). Let us us consider these two cases.

� If �(
 �
H Y ) < �(

�!
H Y ) then by (3.23) and (3.25) there exists a unique pointt � such that

�!
H Y

t �
= �(

�!
H Y ).

This proves Theorem3.1(i ) in this case underN �
r and we have� 0 = � and

� 1 = � + t � +
X

a2J 0;� \ [0;Y )

� �!
H a :

� If �(
 �
H Y ) > �(

�!
H Y ) then by (3.23) and (3.25) there exists a unique pointt � such that

 �
H Y

t �
= �(

 �
H Y ).

This proves Theorem3.1(i ) in this case underN �
r and we have� 1 = � and

� 0 = t � +
X

a2J 0;� \ (Y;r ]

�  �
H a :

Theorem3.1 (i ) is then proved underN �
r , for all r 2 (0; 1 ), which implies Theorem3.1 (i ) (underN )

by (3.26). �

Proof Theorem 3.1 (ii ). Recall from (3.80) the notationM � x
0;� andM + x

0;� . We shall use the following
lemma.

Lemma 3.13. We keep the same assumptions as in Lemma3.11and the notation therein. Recall from
De�nition 3.2.1the notationM pt (E ). Then, for allr 2 (0; 1 ) and for all measurable functionsG1; G2 :
M pt (E ) ! R+ ,

N �
r

h
1f � = � 0gG1

�
M

� 1
2D

0;�

�
G2

�
M

+ 1
2D

0;�

� i
= N �

r

h
1f � = � 0gN �

1
2D [G1(M 0;� )]G2

�
M

+ 1
2D

0;�

� i
;

with a similar statements where� 0 is replaced by� 1. Moreover, by (3.26) a similar statement holds true
underN .

Before proving this lemma, we �rst complete the proof of Theorem3.1. Recall from the notation
(3.84) and from (3.80) that

M 0;� =
X

j 2J 0;�

�
(a;

 �
H a ;

�!
H a )

and M
� 1

2D
0;� =

X

j 2J 0;� \ [0; 1
2D ]

�
(a;

 �
H a ;

�!
H a )

:

By Lemma3.13, we then get

N
�

1
2 D 2J 0;�

�
== N

h
N �

1
2D

�
1
2 D 2J 0;�

�i
= 0

because for anyb2 (0; 1 ), Lemma3.11asserts that underN �
b , M 0;� is a Poisson point measure with

intensitynb, which implies thatN �
b -a.s.b =2J 0;� . We next use Remark28with x = 1

2 D that asserts that

� �
mid := � �

1
2 D

and � +
mid := � +

1
2 D

(3.90)

are the only timest 2 [0; � ], such thatd(p(� 1); p(t)) = 1
2 D, which completes the proof of Theorem3.1

(ii ). �

67



Proof Theorem 3.1 (iii ). Let r; y 2 (0; 1 ) be such that12 y < r < y . We �rst work underN �
r . Recall

from (3.84) the notation forM 0;� and recall notation (3.88). Then (3.89) combined with Lemma3.11
that asserts that underN �

r , M 0;� is a Poisson point measure with intensityn r , we get

N �
r

�
D � y

�
= N �

r

�
sup

�
�

a;
 �
H a ;

�!
H a ; a 2 J 0;�

	
� y

�
=exp

�
�

Z
n r (da d

 �
H d

�!
H )1f �

a;
 �
H a ;

�!
H a >y g

�
;

(3.91)
wheren r is given by (3.85). Recall from (3.24) thatN (� > t ) = v(t) and from (3.25) thatP x (� � t) =
e� xv (t ) . Thus,

Z
n r (da d

 �
H d

�!
H )1f �

a;
 �
H a ;

�!
H a >y g = 2 �

Z r

0
daN (y� a< � � a)

+
Z r

0
da

Z

(0;1 )
� (dz)

Z z

0
dx

Z
P x

a

�
d
 �
H )

Z
P z� x

a

�
d
�!
H )

�
1 � 1

f �(
 �
H )� y� ag

1
f �(

�!
H )� y� ag

�
:

Recall from (3.24) thatN (� > t ) = v(t). Thus, ifa < 1
2 y, thenN (y� a < � � a) = 0 and if a > 1

2 y, then
N (y � a < � � a) = v(y � a) � v(a). Next recall from (3.25) that P x (� � t) = e� xv (t ) , which implies
that the total mass ofP x

a is P x (� � a) = exp( � xv(a)) . Also observe thatP x
a(� � y � a) = P x (� �

a^ (y� a)) = exp( � xv(a^ (y� a)) . Thus
Z

P x
a

�
d
 �
H )

Z
P z� x

a

�
d
�!
H )

�
1 � 1

f �(
 �
H )� y� ag

1
f �(

�!
H )� y� ag

�
= e� zv(a) � e� zv(a^ (y� a)) ;

which is null if a< 1
2 y. Note that this expression does not depend onx. Thus,

Z
n r (da d

 �
H d

�!
H )1f �

a;
 �
H a ;

�!
H a >y g=

Z r

1
2 y
da2�

�
v(y� a) � v(a)

�
+

Z r

1
2 y
da

Z

(0;1 )
� (dz) z

�
e� zv(a) � e� zv(y� a) �

=
Z r

1
2 y
da

�
	 0(v(y� a)) � 	 0(v(a))

�
=

Z 1
2 y

y� r
db	 0(v(b)) �

Z r

1
2 y
db	 0(v(b)) :

by (3.13). Recall thatv satis�es
R1

v(b) d�= 	( � )= b. By the change of variable� = v(b), we then get

Z
n r (da d

 �
H d

�!
H )1f �

a;
 �
H a ;

�!
H a >y g =

Z v(y� r )

v( 1
2 y)

d�
	 0(� )
	( � )

�
Z v( 1

2 y)

v(r )
d�

	 0(� )
	( � )

= log
	( v(y� r ))
	( v( 1

2 y))
� log

	( v( 1
2 y))

	( v(r ))
:

By (3.91), we get

8 r 2 (0; 1 ); 8 y2 (r; 2r ); N �
r

�
D � y

�
=

	( v( 1
2 y))2

	( v(r ))	( v(y� r ))
: (3.92)

Now observe thatN �
r

�
D � y

�
=1 , if y � 2r and thatN �

r

�
D � y

�
=0 , if y � r . Thus by (3.26),

N (D � y) =
Z 1

0
N (� 2 dr) N �

r (D � y) = N (� � y) +
Z y

1
2 y
dr 	( v(r ))

�
1 �

	( v( 1
2 y))2

	( v(r ))	( v(y� r ))

�

= v( 1
2 y) � 	( v( 1

2 y))2
Z y

1
2 y

dr
	( v(y� r ))

= v( 1
2 y) � 	( v( 1

2 y))2
Z 1

v( 1
2 y)

d�
	( � )2 ;

where we use the change of variable� = v(y� r ) in the last equality. This proves (3.27) that easily entails
(3.28), which completes the proof of Theorem3.1(iii ). �

68



Proof of Lemma 3.13. To completes the proof of Theorem3.1, it remains to prove Lemma3.13that
is also the key argument to prove Theorem3.2. We �rst work underN �

r . Recall the notation (3.84) for
M 0;� andJ 0;� and recall from (3.80) the following de�nitions (withx = 1

2 D),

M 0;� =
X

j 2J 0;�

�
(a;

 �
H a ;

�!
H a )

; M
� 1

2D
0;� =

X

j 2J 0;� \ [0; 1
2D ]

�
(a;

 �
H a ;

�!
H a )

and M
+ 1

2D
0;� =

X

j 2J 0;� \ ( 1
2D;r ]

�
(a;

 �
H a ;

�!
H a )

:

Recall from (3.89) the de�nition of the random variableY : since�(
 �
H Y )_ �(

�!
H Y ) <Y , we getY > 1

2 D

and(Y;
 �
H Y ;

�!
H Y ) is an atom ofM

+ 1
2D

0;� . This argument, combined with (3.89) and the Palm formula for
Poisson point measures, implies

N �
r

h
1f � = � 0gF

�
Y;

 �
H Y ;

�!
H Y �

G1
�
M

� 1
2D

0;�

�
G2

�
M

+ 1
2D

0;�

� i
=

Z
n r (dy dH0dH 00)1f �( H 00)> �( H 0)gF (y; H 0; H 00) (3.93)

� N �
r

h
G1

�
M

� 1
2 � y;H 0;H 00

0;�

�
G2

�
M

+ 1
2 � y;H 0;H 00

0;� + � (y;H 0;H 00)

�
1�

� y;H 0;H 00> supf �
a;

 �
H a ;

�!
H a ; a2J 0;� g

	
i
:

where we recall that� 0 = � iff �(
�!
H Y ) > �(

 �
H Y ). Then observe thatn r 
 N �

r -a.e. for alla 2 J 0;� \
[0; 1

2 � y;H 0;H 00], we have�
a;

 �
H a ;

�!
H a < 2a � � y;H 0;H 00. Thus,n r 
 N �

r -a.e.

1�
� y;H 0;H 00> supf �

a;
 �
H a ;

�!
H a ; a2J 0;� g

	 = 1�
� y;H 0;H 00> supf �

a;
 �
H a ;

�!
H a ; a2J 0;� \ ( 1

2 � y;H 0;H 00;r ]g
	

that only depends ony; H 0; H 00and ofM
+ 1

2 � y;H 0;H 00

0;� . By (3.93) with F � 1 and by Lemma3.12(i ) and
(iii ) with x = 1

2� y;H 0;H 00, we get

N �
r

h
1f � = � 0gG1

�
M

� 1
2D

0;�

�
G2

�
M

+ 1
2D

0;�

� i
=

Z
n r (dy dH0dH 00)1f �( H 00)> �( H 0)g N �

1
2 � y;H 0;H 00

�
G1(M 0;� )

�

� N �
r

h
G2

�
M

+ 1
2 � y;H 0;H 00

0;� + � (y;H 0;H 00)

�
1�

� y;H 0;H 00> supf �
a;

 �
H a ;

�!
H a ; a2J 0;� g

	
i
:

= N �
r

h
1f � = � 0gN �

1
2D [G1(M 0;� )]G2

�
M

+ 1
2D

0;�

� i
;

which completes the proof of Lemma3.13 when� = � 0 underN �
r . When� = � 1, the proof is quite

similar. Then, (3.26) immediately entails the same result underN . �

Proof of Theorem 3.2 (iii ). Lemma3.13 underN and Lemma3.10 imply that for all measurable
functionsF1; F2 :C(R+ ; R+ ) ! R+ , f : R+ ! R+ ,

N
h
1f � = � 0gf (D )F1

�
H 	 1

2D �
F2

�
H � 1

2D � i
= N

h
1f � = � 0gf (D )N �

1
2D [F1(H )]F2

�
H � 1

2D � i
; (3.94)

with a similar statement with� = � 1. To simplify notation, we next set

H 	 := H 	 1
2D and H � := H � 1

2D :

By adding (3.94) with the analogous equality with� = � 1, we get

N
h
f (D )F1

�
H 	 �

F2
�
H � � i

= N
h
f (D ) N �

1
2D [F1(H )] F2

�
H � � i

: (3.95)
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Recall from (3.90) that� �
mid = � �

1
2 D

and� +
mid = � +

1
2 D

; rewriting (3.79) with x = 1
2D yields

H 	 = H
[� �

mid ]

� ^ (� +
mid � � �

mid )
; H � = H

[� +
mid ]

� ^ (� � (� +
mid � � �

mid ))
and thus H [� �

mid ] = H 	 � H � ; (3.96)

where we recall from (3.29) thatH 0� H 00stands for the concatenation of the functionsH 0andH 00.
Let us brie�y interpretH 	 andH � in terms of the treeT . To that end, �rst recall that
 = p(� ),


 0 = p(� 0) and
 1 = p(� 1), wherep : [0; � ] ! T stands for the canonical projection. Recall that
 mid is
the mid point of the diameterJ
 0; 
 1K: namelyd(
 0; 
 mid ) = d(
 1; 
 mid ) = 1

2 D. Recall from Theorem
3.1(ii ) that � �

mid and� +
mid are the only timest 2 [0; � ] such thatp(t) = 
 mid ; thus,
 mid is a simple point

of T ; namely,T nf 
 mid g has only two connected components. Denote byT o the connected component
containing
 : it does not contain the root; if we setT � = f 
 mid g [ T o andT + = T nTo, thenH 	 codes
(T � ; d; 
 mid ) andH � codes(T + ; d; 
 mid ).

We next use Proposition 2.1 from D. & Le Gall [53] that is recalled as follows.

Lemma 3.14 ( D. & Le Gall [53]). For all measurable functionsF : R+ � C(R+ ; R+ ) ! R+ and
g : R+ ! R+ ,

N
h
g(� )

Z �

0
dt F

�
t; H [t ]�

i
= N

h
g(� )

Z �

0
dt F (t; H )

i
:

This result asserts thatH is invariant under uniform re-rooting. By applying this property we �rst
get

N
�
�F 1(H 	 )F2(H � )

�
= N

hZ �

0
dt F1(H 	 )F2(H � )

i
= N

hZ �

0
dt F1

�
(H [t ]) 	 )F2((H [t ]) � )

i
: (3.97)

Next observe the following: ift 2 (� �
mid ; � +

mid ), then(H [t ]) 	 = H � and (H [t ]) � = H 	 , and if t 2
(0; � �

mid ) [ (� +
mid ; � ), then(H [t ]) 	 = H 	 and(H [t ]) � = H � . Thus,

Z �

0
dt F1

�
(H [t ]) 	 )F2((H [t ]) � ) =

�
� +

mid� � �
mid

�
F1(H � )F2(H 	 ) +

�
� � � +

mid + � �
mid

�
F1(H 	 )F2(H � )

= � H 	 F1(H � )F2(H 	 ) + � H � F1(H 	 )F2(H � ):

This equality, (3.97) and (3.95) with f � 1 imply the following:

N
�
�F 1(H 	 )F2(H � )

�
= N

�
� H 	 F1(H � )F2(H 	 )

�
+ N

�
� H � F1(H 	 )F2(H � )

�

= N
h

N �
1
2D

�
�F 2(H )

�
F1(H � )

i
+ N

h
N �

1
2D [F1(H )] � H � F2

�
H � � i

:(3.98)

Next observe that� H 	 + � H � = � . Thus, by (3.95) we also get

N
�
�F 1(H 	 )F2(H � )

�
= N

�
� H 	 F1(H 	 )F2(H � )

�
+ N

�
� H � F1(H 	 )F2(H � )

�

= N
h

N �
1
2D

�
�F 1(H )

�
F2(H � )

i
+ N

h
N �

1
2D [F1(H )] � H � F2

�
H � � i

:(3.99)

Then by (3.98) and (3.99), we getN
�

N �
1
2D

�
�F 1(H )

�
F2(H � )

�
= N

�
N �

1
2D

�
�F 2(H )

�
F1(H � )

�
. Since

the total height ofH 	 andH � is 1
2 D, for all measurable functionsF1; F2 :C(R+ ; R+ ) ! R+ , f : R+ !

R+ , we get

N
h
f (D ) N �

1
2D

�
�F 1(H )

�
F2(H � )

i
= N

h
f (D ) N �

1
2D

�
�F 2(H )

�
F1(H � )

i
: (3.100)

By taking in (3.100) F1 � 1 and by substitutingf (D ) with f (D )=N �
1
2D

[ � ], we get

N
�
f (D ) F2(H � )

�
= N

h
f (D ) N �

1
2D

�
�F 2(H )

��
N �

1
2D [ � ]

i
;
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and by (3.95), it entails

N
�
f (D ) F1(H 	 )F2(H � )

�
= N

h
f (D ) N �

1
2D

�
F1(H )

�
N �

1
2D

�
�F 2(H )

��
N �

1
2D [ � ]

i
: (3.101)

Recall from (3.96) that H [� �
mid ] = H 	 � H � . Then, (3.101) implies for all measurable functionsF :

C(R+ ; R+ ) ! R+ , f : R+ ! R+ , that

N
�
f (D )F

�
H [� �

mid ]�� = (3.102)
Z 1

0
N (D 2 dr)

f (r )
N �

r=2[ � ]

ZZ

C(R+ ;R+ )2
N �

r=2(dH )N �
r=2(dH 0) � H 0F

�
H � H 0� ;

which implies Theorem3.2(iii ) as soon as one makes sense ofN ( � j D = r ). �

Proof of Theorem3.2(ii ). Recall that� : Exc! Exc is the functional that reverses excursions at their
lifetime: namely for allH 2 Exc, �( H ) = ( H (� H � t )+ )t � 0. Recall from (3.87) that for all r 2 (0; 1 ), H
and�( H ) have the same law underN �

r , which entails the following by (3.101):
�
�( H 	 ); �( H � )

�
and(H 	 ; H � ) have the same distribution underN . (3.103)

Next, observe thatD(�( H ))= D , � (�( H ))= � � � , � 0(�( H ))= � � � 1 and� 1(�( H ))= � � � 0. Moreover,
(�( H )) 	 = �( H 	 ) and(�( H )) � = �( H � ). This combined with (3.103) and (3.101) implies that

1
2 N

�
f (D )F1(H 	 )F2(H � )

�
= N

�
1f � = � 0gf (D )F1(H 	 )F2(H � )

�
(3.104)

= N
�
1f � = � 1gf (D )F1(H 	 )F2(H � )

�
:

We then de�ne
� � := � �

mid if � = � 0 and � � := � +
mid if � = � 1.

By (3.96), we get

H [� � ] = H 	 � H � on f � = � 0g and H [� � ] = H � � H 	 on f � = � 1g.

This, combined with (3.104) and (3.101) entails

N
�
f (D )F

�
H [� � ]�� = (3.105)

Z 1

0
N (D 2 dr)

f (r )
2N �

r=2[ � ]

ZZ

C(R+ ;R+ )2
N �

r=2(dH ) N �
r=2(dH 0) ( � H + � H 0)F

�
H � H 0� :

Recall from (3.31) the de�nition of the lawQ r . Sincer 7! N �
r is weakly continuous, it is easy to check

that r 7! Q r is also weakly continuous. Then observe thatQ r [ � ] = 2N �
r=2[ � ]. Therefore (3.105) can

be rewritten as

N
�
f (D )F

�
H [� � ]�� =

Z 1

0
N (D 2 dr) f (r ) Q r

�
�F (H )

��
Q r [ � ] : (3.106)

Next observe that for allt 2 [0; � ], (H [� � ])[t ] = H [� � + t] and thatD(H [t ])= D . Thus, (3.106) implies
Z 1

0
N (D 2 dr) f (r )Q r

h
�
Z �

0
dt F

�
H [t ]�

i �
Q r [ � ] = N

h
f (D )

Z �

0
dt F

�
H [� � + t]�

i

= N
hZ �

0
dt f

�
D

�
H [t ]�� F

�
H [t ]�

i

= N
�
�f (D )F (H )

�
;

where we have use Lemma3.14in the last line. This proves (3.32) in Theorem3.2(ii ).
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Proof of Theorem 3.2 (i ) and (iv ). The rest of the proof is now easy: we �xr 2 (0; 1 ) and we
denote by� r (dH 0dH 00) the the product lawN �

r=2(dH 0)N �
r=2(dH 00); we then setH = H 0� H 00. Thus,

by de�nition, H under� r has lawQ r . Observe that ift 6= � (H 0) (resp.t 6= � (H 00)) thenH 0
t < r= 2

(resp.H 00
t < r= 2). Note that if s 2 [0; � H 0] and t 2 [� H 0; � H 00], then inf [s;t ] H = 0 and dH (s; t) =

H 0
s + H 00

t � � H 0
. This easily entails that� r -a.s.D (H ) = r and that� (H 0) and� H 0 + � (H 00) are the two

only timess<t such thatdH (s; t)= D(H ), which completes the proof of3.2(i ).
The fact thatQ r -a.s.D = r , combined with (3.32) and with the fact thatr 7! Q r is weakly contin-

uous, allows to make sense ofN ( � j D = r ) that is a regular version of the conditional distribution ofN
knowing thatD = r . Moreover, (3.32) entails (3.36) for all r 2 (0; 1 ). Furthermore (3.102) entails (3.33)
that was the last point to clear in the Theorem3.2(iii ), as already mentioned.

It remains to prove Theorem3.2(iv ). We keep the previous notations and we introduce the following:

M 0;� (H 0) (H
0) =

X

a2J 0;� 0

�
(a;

 �
H a ;

�!
H a )

and M 0;� (H 00) (H
00) =

X

a2J 0;� 00

�
(a;

 �
H a ;

�!
H a )

;

that are under� r independent Poisson point measures with the same intensityn r=2, by Lemma3.11. We
then set� 0(H ) := � (H 0) and� 1(H ) := � H 0 + � (H 00), that are the only pair of times realizing the diameter
D(H ) under� r , as already shown. Observe that under� r ,

M � 0 (H );� 1 (H ) (H ) =
X

a2J 0;� 0

�
(r � a;�(

�!
H a );�(

 �
H a ))

+ M 0;� (H 00) (H
00) :

where we recall here that� reverses excursions at their lifetime and that� is invariant underN a and
P x

a. Thus, basic results on Poisson point measures and an easy calculation shows thatM � 0 (H );� 1 (H ) (H )
is a Poisson point measure whose intensity is given by (3.35) in Theorem3.2 (iv ), which completes the
proof of3.2(iv ) becauseH under� r has lawQ r and thusM � 0 (H );� 1 (H ) (H ) under� r has the same law
asM � 0 ;� 1 underQ r . This completes the proof of Theorem3.2. �

3.3 Total height and diameter of normalized stable trees.

3.3.1 Preliminary results.

In this section, we gather general results that are used to prove Proposition3.3. Unless the contrary is
explicitly mentioned,	 is a general branching mechanism of the form (3.13) that satis�es (3.14). We
�rst introduce the following function

8 a; � 2 (0; 1 ); w� (a) := N
�
1 � 1f � � age� �� �

: (3.107)

For all �xed � 2 (0; 1 ), note thata 7! w� (a) is non-increasing, thatlima! 0 w� (a) = 1 and by (3.21)
lima!1 w� (a) = N [1� e� �� ] = 	 � 1(� ). As proved by Le Gall [81], Section II.3 (in the more general
context of superprocesses)w� (a) is the only solution of the following integral equation,

8 a; � 2 (0; 1 );
Z 1

w� (a)

du
	( u) � �

= a (3.108)

that makes sense thanks to (3.14).
Let us next considerH underP and recall from (3.16) that P x stands for the law ofH �^ Tx where

Tx = inf f t 2 R+ : X t = � xg. Recall from (3.19) that
P

i 2I � (� I a i ;H i ) stands for the decomposition of
H into excursions above0; thus, the excursions ofH �^ Tx above0 are theH i wherei 2 I is such that
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� I ai 2 [0; x]. Elementary results on Poisson point processes then imply the following:

Ex
a

�
e� �� �

= Ex �
e� �� 1f � � ag

�

= E
h

exp
�

�
X

i 2I

�� H i 1[0;x ](� I ai )
�

1�
�( H i )� a ; i 2I :� I a i � x

	
i

= exp
�
� xw � (a)

�
: (3.109)

We �rst prove the following lemma.

Lemma 3.15. Let 	 be a branching mechanism of the form (3.13) that satis�es (3.14). Recall from
(3.107) the de�nition ofw� (a). First observe that for alla; � 2 (0; 1 ),

@aw� (a) = � � 	( w� (a)) and
Z 1

w� (a)

du
(	( u) � � )2 =

@� w� (a)
	( w� (a)) � �

: (3.110)

Recall from (3.24) the de�nition of the functionv. Then, for alla; � 2 (0; 1 ),

lim
� ! 0+

w� (a) = v(a) and v(a) � w� (a) = v(a) + N a
�
1� e� �� �

� v(a) + 	 � 1(� ) ; (3.111)

where we recall from (3.34) the notationN a. Then, for allr1 � r0 > 0, we get
Z r 1

r 0

da	 0(w� (a)) = log
	( w� (r0)) � �
	( w� (r1)) � �

and
Z r 1

r 0

da	 0(v(a)) = log
	( v(r0))
	( v(r1))

: (3.112)

Proof. Note that (3.110) and (3.111) are easy consequences of resp. (3.108) and the de�nition (3.107).
Let us �rst prove the �rst equality of (3.112): to that end we use the change of variableu = w� (a), �
being �xed. Then, by (3.110), � du=(	( u) � � ) = da, and we get

Z r 1

r 0

da	 0(w� (a)) =
Z w� (r 0 )

w� (r 1 )
du

	 0(u)
	( u) � �

= log
	( w� (r0)) � �
	( w� (r1)) � �

;

which implies the second equality in (3.112) as� ! 0 by (3.111). �

Proposition 3.16.Let	 be a branching mechanism of the form (3.13) that satis�es (3.14). Letr 2 (0; 1 ).
Recall from (3.30) the de�nition of N �

r and recall from (3.107) the de�nition of w� (a). Then for all
� 2 (0; 1 ), we �rst get

N �
r

�
e� �� �

= exp
�
�

Z r

0
da

�
	 0(w� (a)) � 	 0(v(a))

� �
=

	( w� (r )) � �
	( v(r ))

: (3.113)

Setq� (y; r ) := N �
r

�
e� �� 1f D> 2yg

�
. Then for ally2 ( 1

2 r; r ), we have

q� (y; r ) =
	( w� (r )) � �

	( v(r ))

�
1 �

�
	( w� (y)) � �

� 2

�
	( w� (2y� r )) � �

��
	( w� (r )) � �

�
�

: (3.114)

If y � 1
2 r , thenq� (y; r )= N �

r

�
e� ��

�
and if y >r , thenq� (y; r )=0 .

Proof. Recall from (3.84) the notationM 0;� and recall from (3.88) the notation�
b;

 �
H ;

�!
H

. Then, for all

r; y; � 2 (0; 1 ), we getN �
r -a.s.

e� �� 1f D � 2yg = exp
�
� �

X

a2J 0;�

�
�  �

H a + � �!
H a

� �
1�

8a2J 0;� : �
a;

 �
H a ;

�!
H a � 2y

	 :
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Lemma3.11asserts that underN �
r , M 0;� is a Poisson point measure with intensityn r given by (3.85).

Thus, elementary results on Poisson point measures imply that

N �
r

�
e� �� 1f D � 2yg

�
= exp

�
�

Z
n r (dad

 �
Hd

�!
H )

�
1 � 1f �

a;
 �
H ;

�!
H

� 2yge� ��  �
H

� �� �!
H

| {z }

�

K

�
:

Recall that the total mass ofP x
a is e� xv (a) and recall (3.109). Thus,

K =
Z r

0
da2� N a

�
1� 1f � � 2y� age� �� �

+
Z r

0
da

Z

(0;1 )
� (dz) z

�
e� zv(a) � e� zw� (a^ (2y� a)) �

:

Now observe that

N a
�
1� 1f � � 2y� age� �� �

= N
�
1� 1f � � a^ (2y� a)ge� �� �

� N [1f � >a g
�

= w�
�
a^ (2y� a)

�
� v(a) :

Consequently,

N �
r

�
e� �� 1f D � 2yg

�
= exp

�
�

Z r

0
da

�
	 0(w� (a^ (2y� a))) � 	 0(v(a))

� �
: (3.115)

Then observe that ify > r , theN �
r

�
e� �� 1f D � 2yg

�
= N �

r

�
e� ��

�
becauseD � 2� . This combined with

(3.115) entails the �rst equality of (3.113). Then, use (3.112) in Lemma3.15to get for any" 2 (0; r ),
Z r

"
da

�
	 0(w� (a)) � 	 0(v(a))

�
= log

	( v(r ))
	( w� (r )) � �

� log
	( v(" ))

	( w� (" )) � �
:

This show that" 7! 	( v(" ))=(	( w� (" )) � � ) is increasing and tends to a �nite constantC� 2 (0; 1 ) as
" ! 0. Thus,C � 1

� 	( v(r ))N �
r

�
e� ��

�
= 	( w� (r )) � � , which is equal to� @r w� (r ) by (3.110) in Lemma

3.15. Then recall from (3.24) thatN (� 2 dr) = 	( v(r )) dr ; thus by (3.26) and the fact thatw� (r ) tends
to 	 � 1(� ) asr !1 , we get for allb2 (0; 1 ),

w� (b) � 	 � 1(� ) =
Z 1

b
dr C � 1

� 	( v(r ))N �
r

�
e� �� �

= C � 1
� N

�
e� �� 1f � >b g

�

= C � 1
�

�
N

�
1� 1f � � bge� �� �

� N
�
1� e� �� ��

= C � 1
�

�
w� (b) � 	 � 1(� )

�
:

This implies thatC� =1 , which completes the proof of (3.113).
We next assume thaty2 ( 1

2 r; r ). Observe thata^ (2y� a)= a if a2 (0; y) and thata^ (2y� a)=2 y� a
if a2 (y; r ). By (3.115) and (3.113), we then get

q� (y; r ) = N �
r

�
e� �� �

� N �
r

�
e� �� 1f D � 2yg

�
=

	( w� (r )) � �
	( v(r ))

�
1 � e�

Rr
y da

�
	 0(w� (2y� a))� 	 0(w� (a)

� �
;

which easily implies (3.114) by (3.112) in Lemma3.15since
Z r

y
da	 0(w� (2y� a))=

Z y

2y� r
da	 0(w� (a))= log

	( w� (2y� r )) � �
	( w� (y)) � �

and
Z r

y
da	 0(w� (a))= log

	( w� (y)) � �
	( w� (r )) � �

:

The other statements of the lemma follow immediately. �

Proposition 3.17. Let 	 be a branching mechanism of the form (3.13) that satis�es (3.14). For all
y; z; � 2 (0; 1 ), we have

L � (y; z) := N
�
e� �� 1f D> 2y ; � >z g

�

= w� (y_ z) � 	 � 1(� ) � 1f z� 2yg
�
	( w� (y)) � �

� 2
Z 1

w� (y^ (2y� z))

du
�
	( u) � �

� 2

(3.116)

= w� (y_ z) � 	 � 1(� ) � 1f z� 2yg
�
	( w� (y)) � �

� 2 @� w�
�
y^ (2y� z)

�

	
�
w� (y^ (2y� z))

�
� �

:
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Proof. Recall notationq� (y; r ) from Proposition3.16, which asserts thatq� (y; r ) = 0 if r < y and that
	( v(r ))q� (y; r )= � @r w� (r ), if r � 2y. Then, by (3.26), we get

L � (y; z) =
Z 1

z
dr 	( v(r ))q� (y; r )= 1f z� 2yg

Z 2y

z_ y
dr 	( v(r ))q� (y; r )+

Z 1

z_ 2y
dr 	( v(r ))q� (y; r ): (3.117)

Since for allr >z _ 2y, 	( v(r ))q� (y; r )= � @r w� (r ) and sincelim r !1 w� (r )= 	 � 1(� ), we get
Z 1

z_ 2y
dr 	( v(r ))q� (y; r ) = w� (z _ 2y) � 	 � 1(� ) : (3.118)

We next assume thatz2 (y; 2y). By (3.114) and since	( w� (r )) � � = � @r w� (r ), we get
Z 2y

z
dr 	( v(r ))q� (y; r ) = �

Z 2y

z
dr @r w� (r ) �

�
	( w� (y)) � �

� 2
Z 2y

z

dr
	( w� (2y� r )) � �

= w� (z) � w� (2y) �
�
	( w� (y)) � �

� 2
Z 2y� z

0

dr
	( w� (r )) � �

= w� (z) � w� (2y) �
�
	( w� (y)) � �

� 2
Z 1

w� (2y� z)

du
�
	( u) � �

� 2 ;

with the change of variableu = w� (r ) in the last line. This combined with (3.118) easily entails the �rst
equality in (3.116). The second one follows from (3.110) in Lemma3.15. �

3.3.2 Proof of Proposition3.3.

In this section, we �x
 2 (1; 2] and we take

	( � )= � 
 ; � 2 R+ :

Recall from (3.107) the de�nition of w� (a). We then set

8y2 (0; 1 ); w(y) := w1(y) : (3.119)

Note thatw satis�es (3.45) that is (3.108) with � =1 . By an easy change of variable (3.108) implies that

8a; � 2 (0; 1 ); w� (a) = �
1

 w

�
a�


 � 1



�
: (3.120)

Recall from Proposition3.17 the de�nition of L � (y; z). Then observe that the scaling property (3.44)
entails (3.46). Moreover (3.47) follows from a simple change of variable. Next note from (3.120) that

@� w� (a) = 1

 �

1

 � 1w

�
a�


 � 1



�
+ 
 � 1


 aw0� a�

 � 1



�
:

This, combined with the fact that� w0(y)= � @yw1(y)= w(y) 
 � 1, implies

@� w1(y)
w(y) 
 � 1

= 1



w(y)
w(y) 
 � 1

� 
 � 1

 y ;

which implies (3.48) thanks to the second equality in (3.116) in Proposition3.17. This completes the
proof of Proposition3.3.

3.4 Proof of Theorems3.5and 3.7.

3.4.1 Preliminary results.

In this section we prove several estimates that are used in the proof of Theorems3.5 and3.7. We �x

 2 (1; 2] and we take	( � )= � 
 , � 2 R+ .
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Laplace transform. We next introduce the following notation for Laplace transforms onR+ of Lebesgue
integrable functions: for all measurable functionsf :R+ ! R such that there exists� 0 2 R+ with

Z 1

0
dx e� � 0x jf (x)j < 1 ; we then set L � (f ) :=

Z 1

0
dx e� �x f (x); � 2 [� 0; 1 ) ;

which is well-de�ned. The function� 2 [� 0; 1 ) 7! L � (f ) is theLaplace transform off . We shall need
the following lemma.

Lemma 3.18. Let f; g n ; hn : R+ ! R+ , n 2 N, be continuous and nonnegative functions. We set
f n := gn � hn . Let (qn )n� 0 be a real valued sequence. We make the following assumptions.

9� 0 2 R+ :
Z 1

0
dx e� � 0x f (x) < 1 and

X

n� 0

jqn j
Z 1

0
dx e� � 0x �

gn (x) + hn (x)
�

< 1 : (a)

This makes sense of the sum
P

n� 0 qnL � (f n ) for all � 2 [� 0; 1 ) and we assume that

8� 2 [� 0; 1 ); L � (f ) =
X

n� 0

qnL � (f n ) : (b)

We furthermore assume

8x 2 R+ ;
X

n� 0

jqn j
�

sup
y2 [0;x ]

gn (y) + sup
y2 [0;x ]

hn (y)
�

< 1 : (c)

Then,
8x 2 R+ ; f (x) =

X

n� 0

qn f n (x) ;

where the sum in the right member makes sense thanks to (c).

Proof. We denote by(�)+ and(�) � resp. the positive and negative part functions. Assumption (c) ensures
that the following functions are well-de�ned for allx 2 R+ , continuous onR+ and nonnegative:

G:= f +
X

n� 0

(qn ) � gn + ( qn )+ hn and H :=
X

n� 0

(qn )+ gn + ( qn ) � hn :

Since the functions are nonnegative, for all� 2 [� 0; 1 ), we get

L � (G) = L � (f )+
X

n� 0

(qn ) � L � (gn )+( qn )+ L � (hn ) and L � (H ) =
X

n� 0

(qn )+ L � (gn )+( qn ) � L � (hn ):

By Assumption (a), L � (G) andL � (H ) are �nite quantities for all� � � 0. Assumption (b) then entails
that L � (G) = L � (H ), for all for all � � � 0: this implies that the Laplace transform of the �nite Borel
measurese� � 0xG(x)dx ande� � 0xH (x)dx are equal. Consequently, these measures are equal. Thus
G= H Lebesgue-almost everywhere. SinceG andH are continuous,G= H everywhere, which implies
the desired result. �

Estimates for stable distributions. Let (
 ; F ; P) be an auxiliary space. LetS: 
 ! R+ be a spectrally
positive 
 � 1


 -stable random variable such that

8� 2 R+ ; E
�
e� �S �

=
Z 1

0
dx s
 (x) exp(� �x ) = exp

�
� 
�


 � 1



�
; (3.121)

where we recall from (3.52) thats
 : R+ ! R+ is the continuous version of the density of the
 � 1

 -stable

distribution. We recall here from Ibragimov & Chernin [69] (see also Chambers, Mallows & Stuck [43]
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formula (2.1) p. 341 or Zolotarev [103]) the following representation of such a
 � 1

 -stable law: to that

end, we �rst set

8v2 (� �; � ); m
 (v) =

 

 sin

�

 � 1


 v
�

sinv

! 
 � 1

 sin

�
1

 v

�

sinv
: (3.122)

Let V; W be two independent random variables de�ned on(
 ; F ; P) such thatV is uniformly distributed
on [0; � ] and such thatW is exponentially distributed with mean1. Then,

S
(law)
=

�
m
 (V )

W

� 1

 � 1

;

which easily implies that

8x 2 (0; 1 ); s
 (x) =

 � 1

�
x � 


Z �

0
dv m
 (v) exp

�
� x � (
 � 1)m
 (v)

�
: (3.123)

We havem
 (� v) = m
 (v) andm
 (0) = ( 
 � 1)
 � 1. Moreover, the functionm
 is increasing on[0; � )
andm
 (v)=m
 (0) = 1 + 
 � 1

2
 v2 + O
 (v4).
As proved in Theorem 2.5.2 in Zolotarev [103], by an extension of Laplace's method (proved in

Zolotarev [103], Lemma 2.5.1, p. 97) (3.121) yields the asymptotic expansion (3.53) that can be rewritten
as follows: recall from (3.53) the de�nition of the sequence(Sn )n� 1; then set

8x 2 (0; 1 ) b(x)=
� 
 � 1

x

� 
 � 1
and S�

n :=
�
2�

�
1� 1




�� � 1
2(
 � 1)


 +1
2 � n(
 � 1)Sn ; n � 0 ; (3.124)

where recall thatS0 =1 . Then, for all positive integersN , asx ! 0, we have

s
 (x) =
X

0� n<N

S�
n xn(
 � 1)� 
 +1

2 e� b(x) + ON;

�
xN (
 � 1)� 
 +1

2 e� b(x) � : (3.125)

For all a2 R, we next set

8x 2 R+ Ja(x) :=
Z x

0
dy yae� b(y) (3.126)

An integration by parts entails

8a 2 Rnf� 
 g; 8x 2 R+ ; Ja(x) = ( 
 � 1)� 
 xa+ 
 e� b(x) � (
 � 1)� 
 (a + 
 )Ja+ 
 � 1(x) ; (3.127)

which proves thatJa(x) = O
 (xa+ 
 e� b(x) ) asx ! 0. This also entails the following lemma.

Lemma 3.19. Let 
 2 (1; 2]. Leta 2 R. We assume that� (a+1) =(
 � 1) is not a positive integer. Recall
from (3.124) the de�nition of the functionb and from (3.126) the de�nition of the functionJa. Then, we
set

8q 2 Nnf 0g; cq(a; 
 ) := ( � 1)q(
 � 1)� (q+1) 

Y

1� k� q

�
a+1+ k(
 � 1)

�
; (3.128)

with the convention thatc0(a; 
 )=( 
 � 1)� 
 . Then, for all positive integersp,

Ja(x) =
X

0� q<p

cq(a; 
 ) xa+ 
 + q(
 � 1) e� b(x) + ( 
 � 1)
 cp(a; 
 ) Ja+ p(
 � 1)(x) : (3.129)

This implies that for all positive integersp, asx ! 0,

x � a� 
 eb(x)Ja(x) =
X

0� q<p

cq(a; 
 ) xq(
 � 1) + Op;a;

�
xp(
 � 1) � ; (3.130)

whereOp;a;
 depends onp; a and
 .
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Proof: (3.129) follows from (3.127), by induction. SinceJa+ p(
 � 1)(x) = O

�
xa+ p(
 � 1)+ 
 e� b(x)

�
,

(3.130) is an immediate consequence of (3.129). �

We next prove the following lemma.

Lemma 3.20. Let 
 2 (1; 2]. Recall from (3.52) (or from (3.121)) the de�nition of the densitys
 . Recall
from (3.122) the de�nition ofm
 . We set for allx 2 R+ ,

� + (x) := (
 � 1)2

� x � 2

Z �

0
dv m
 (v)2e� x � ( 
 � 1) m 
 (v) (3.131)

and � � (x) := 
x � 1s
 (x) = 
 (
 � 1)
� x � 
 � 1

Z �

0
dv m
 (v)e� x � ( 
 � 1) m 
 (v) :

Then, the following holds true.

(i) � + and � � are well-de�ned onR+ , the functions
 is differentiable onR+ ands0

 = � + � � � .

Moreover,� + , � + are continuous, nonnegative, Lebesgue integrable and for all� 2 R+ ,

L � (� + ) = �e � 
�

 � 1



+ 


Z 1

�
d� e � 
�


 � 1



and L � (� � ) = 

Z 1

�
d� e � 
�


 � 1



; (3.132)

which implies
Z 1

0
dx js0


 (x)j < 1 and L � (s0

 ) = �e � 
�


 � 1



; � 2 R+ : (3.133)

(ii) There existA; x 0 2 (0; 1 ) such that

8x 2 [0; x0]; � + (x) and � � (x) � Ax � 3
 +1
2 e� b(x) ; (3.134)

where we recall from (3.124) thatb(x) =
�
(
 � 1)=x

� 
 � 1.

(iii) We de�ne the real valued sequence(T �
n )n� 0 by

T �
0 := ( 
 � 1)
 S�

0 and 8n � 1; T �
n := ( 
 � 1)
 S�

n +
�
n(
 � 1) � 3
 � 1

2

�
S�

n� 1 : (3.135)

Then, for all positive integerN , asx ! 0, we have

s0

 (x) =

X

0� n<N

T �
n xn(
 � 1)� 3
 +1

2 e� b(x) + ON;

�
xN (
 � 1)� 3
 +1

2 e� b(x) � : (3.136)

Proof. We easily deduce from (3.123), thats
 is differentiable onR+ and thats0

 = � + � � � . Using

Fubini-Tonnelli and the change of variabley= x � (
 � 1)m
 (v), for �xed v, we get
Z 1

0
dx � + (x) =

Z 1

0
dx � � (x) = 


� � e
� 



 � 1

�Z �

0
dv m
 (v) � 1


 � 1 < 1 ;

sincem
 (v) � m
 (0) > 0 on [0; � ) andlim v! � m
 (v)= 1 ; here,� e stands for Euler's gamma function.
Thus,

R1
0 dx js0


 (x)j < 1 and� 2 R+ 7! L � (s0

 ) is well-de�ned. Moreover, by Fubini,

L � (s0

 ) =

Z 1

0
dx s0


 (x)
Z 1

x
dy �e � �y = �

Z 1

0
dy e� �y

Z y

0
dx s0


 (x) = � L � (s
 ) ;

which completes the proof of (3.133). Next, by Fubini-Tonnelli, we get
Z 1

0
dx e� �x x � 1s
 (x) =

Z 1

0
dx s
 (x)

Z 1

�
d� e � �x =

Z 1

�
d� e � 
�


 � 1



: (3.137)
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which implies thatL � (� � ) = 

R1

� d� e � 
�

 � 1


 , since� � (x) = 
x � 1s
 (x). This, combined with
(3.133) entails (3.132), which completes the proof of(i ).

Laplace's method easily implies that there existsc+ ; c� 2 (0; 1 ) such that

� + (x) �
x! 0

c+ x � 3
 +1
2 e� b(x) and � � (x) �

x! 0
c� x � 
 +3

2 e� b(x) ;

which easily entails (3.134) and which completes the proof of(ii ).
More generally, the asymptotic expansion (3.53) of s
 is derived from (3.123) by an extension of

Laplace's method proved in Zolotarev [103], Lemma 2.5.1, p. 97. When this method is applied to� + and
� � , one shows that� + and� � have an asymptotic expansion whose general term isxn(
 � 1)� 3
 +1

2 e� b(x) .
Thus, there exists a sequence(T �

n )n� 0 such that (3.136) holds true. It remains to prove (3.135). To that
end, for anyn 2 N, we setan := n(
 � 1) � 3
 +1

2 . By Lemma3.19we then get

s
 (x) =
X

0� n<N

T �
n Jan (x) + ON;


�
JaN (x)

�

=
X

0� n<N

X

0� q<N � n

T �
n cq(an ; 
 )xan + 
 + q(
 � 1)e� b(x) + ON;


�
xaN + 
 e� b(x) �

=
X

0� n� p<N

T �
n cp� n (an ; 
 )xp(
 � 1)� 
 +1

2 e� b(x) + ON;

�
xN (
 � 1)� 
 +1

2 e� b(x) � ;

which implies thatS�
p =

P
0� n� p T �

n cp� n (an ; 
 ), for all p2 N. Then by (3.128), observe that

S�
p = c0(ap; 
 )T �

p +
X

0� n� p� 1

T �
n cp� n (an ; 
 )

= ( 
 � 1)� 
 T �
p � (
 � 1)� 
 �

p(
 � 1) � 3
 � 1
2

� X

0� n� p� 1

T �
n cp� 1� n (an ; 
 ) ;

which implies (3.135). This completes the proof of the lemma. �

Proof of Proposition 3.6. Lemma3.20easily entails Proposition3.6: indeed (3.133) entails (3.63). We
then set

8n 2 N; Tn := ( 
 � 1)n(
 � 1)T �
n =T�

0 ;

and we easily check that (3.135) entails (3.64) and that (3.136) implies (3.65). �

We next introduce another function used in the asymptotic expansion of the height and the diameter
of normalized stable tree.

Lemma 3.21. Let 
 2 (1; 2]. Recall from (3.52) (or from (3.121)) the de�nition ofs
 . We then introduce
the following functions: for allx 2 R+ ,

h+ (x)=( 
 � 1) x � 1s
 (x); h� (x)= 
 � 1

 x � 1� 1




Z x

0
dy y

1

 � 1s
 (y) and � (x)= h+ (x)� h� (x): (3.138)

Then, the following holds true.

(i) h+ ; h� and � are well-de�ned and continuous,h+ and h� are nonnegative and Lebesgue inte-
grable, and for all� 2 R+ , we have

L � (h+ ) = ( 
 � 1)
Z 1

�
d� e � 
�


 � 1



and L � (h� ) = L � (h+ ) � �
1

 e� 
�


 � 1



; (3.139)

which implies
Z 1

0
dx j� (x)j < 1 and L � (� ) = �

1

 e� 
�


 � 1



; � 2 R+ : (3.140)
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(ii) There existA; x 0 2 (0; 1 ) such that

8x 2 [0; x0]; h+ (x) and h� (x) � Ax � 
 +3
2 e� b(x) ; (3.141)

where we recall from (3.124) thatb(x) =
�
(
 � 1)=x

� 
 � 1.

(iii) Let (V �
n )n� 0 be a sequence of real numbers recursively de�ned byV �

0 =( 
 � 1)S�
0 and for alln 2 N,

(
 � 1)
 � 1V �
n+1 = ( 
 � 1)
 S�

n+1 + ( 
 � 1)
�
n� 1

2 � 1

 � 1

�
S�

n �
�
n � 1

2 � 1



�
V �

n : (3.142)

Then for all positive integersN , asx ! 0, we get

� (x) =
X

0� n<N

V �
n xn(
 � 1)� 
 +3

2 e� b(x) + ON;

�
xN (
 � 1)� 
 +3

2 e� b(x) � : (3.143)

Proof. The fact thath+ andh� are well-de�ned is an easy consequence of the asymptotic expansion
(3.125) of s
 and observe thath+ , h� can be continuously extended by the value0 atx =0 . Let � 2 R+ ;

by (3.137) we getL � (h+ )=( 
 � 1)
R1

� d� exp(� 
�

 � 1


 ). Thus when� =0 , we get

Z 1

0
dx h+ (x) = L 0(h+ ) = ( 
 � 1)

Z 1

0
d� e � 
�


 � 1



= 
 � 1

 � 1 � e

� 


 � 1

�
;

by an easy change of variable; here� e stands for Euler's Gamma function. By Fubini-Tonnelli and
several linear changes of variable, we get

L � (h� ) = 
 � 1



Z 1

0
dy y

1

 � 1s
 (y)

Z 1

y
dx x � 1� 1


 e� �x = 
 � 1

 �

1



Z 1

0
dy y

1

 � 1s
 (y)

Z 1

�y
d� � � 1� 1


 e� �

= 
 � 1

 �

1



Z 1

0
dy y� 1s
 (y)

Z 1

�
d� � � 1� 1


 e� �y = 
 � 1

 �

1



Z 1

�
d� � � 1� 1




Z 1

0
dy y� 1s
 (y)e� �y

= 
 � 1

 �

1



Z 1

�
d� � � 1� 1




Z 1

�
d� e � 
�


 � 1



= ( 
 � 1)�
1



Z 1

�
d� e � 
�


 � 1

 �

� � 1

 � � � 1



�

= ( 
 � 1)
Z 1

�
d� e � 
�


 � 1



� (
 � 1)�
1



Z 1

�
d� � � 1


 e� 
�

 � 1




= ( 
 � 1)
Z 1

�
d� e � 
�


 � 1



� �
1

 e� 
�


 � 1



:

Here we use (3.137) in the third line. When� =0 , this proves that

Z 1

0
dx h � (x)= 
 � 1


 � 1 � e
� 



 � 1

�
:

Thus,
R1

0 dx j� (x)j < 1 . Combined with (3.137), it also implies (3.140), which completes the proof of
(i ).

We then prove (ii ) and (iii ). To that end, we �rst observe that (3.125) implies thatx � 1s
 (x) �

S�
0x � 
 +3

2 e� b(x) asx ! 0, which immediately entails (3.141) for h+ .
We next �nd the asymptotic expansion ofh� thanks to that ofs
 and thanks to Lemma3.19. We �rst

set� n = 1

 � 
 +3

2 + n(
 � 1). From (3.125) and Lemma3.19, for all positive integerN , asx ! 0, we
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get

h� (x) =
X

0� n<N


 � 1

 S�

n x � 1� 1

 J� n (x) + ON;


�
x � 1� 1


 J� N (x)
�

=
X

0� n<N

X

0� q<N � n


 � 1

 S�

ncq(� n ; 
 )x � n + 
 � 1� 1

 + q(
 � 1)e� b(x) + ON;


�
x � N + 
 � 1� 1


 e� b(x) �

=
X

0� n<N

X

0� q<N � n


 � 1

 S�

ncq(� n ; 
 )x(n+ q+1)( 
 � 1)� 
 +3
2 e� b(x) + ON;


�
x(N +1)( 
 � 1)� 
 +3

2 e� b(x) �

=
X

0� p� N

Up xp(
 � 1)� 
 +3
2 e� b(x) + ON;


�
x(N +1)( 
 � 1)� 
 +3

2 e� b(x) � :

where the sequence(Up)p� 0 is given by

U0 = 0 ; and Up =
X

0� n� p� 1


 � 1

 S�

ncp� 1� n (� n ; 
 ); p � 1:

Observe that it implies (3.141) for h� , which completes the proof of(ii ). We next prove(iii ): to that
end observe that by (3.128), cp� n (� n ; 
 )= � (
 � 1)� 


� 1

 � 
 +1

2 + p(
 � 1)
�
cp� 1� n (� n ; 
 ). Thus we get

Up+1 =
X

0� n� p


 � 1

 S�

ncp� n (� n ; 
 ) = 
 � 1

 S�

pc0(� p; 
 ) +
X

0� n� p� 1


 � 1

 S�

ncp� n (� n ; 
 )

= 1

 (
 � 1)� (
 � 1)S�

p � (
 � 1)� 
 � 1

 � 
 +1

2 + p(
 � 1)
� X

0� n� p� 1


 � 1

 S�

ncp� 1� n (� n ; 
 )

= 1

 (
 � 1)� (
 � 1)S�

p � (
 � 1)� 
 � 1

 � 
 +1

2 + p(
 � 1)
�
Up

= ( 
 � 1)� (
 � 1)
�

1

 S�

p �
�
p� 1

2 � 1



�
Up

�
: (3.144)

We then setV �
p = ( 
 � 1)S�

p � Up for all p2 N, so that for all positive integerN , asx ! 0, (3.143) holds
true. Moreover, by (3.144), easily entails that(V �

p )p� 0 satis�es (3.142), which completes the proof of
the lemma. �

Proof of Proposition 3.4. Lemma3.21easily entails Proposition3.4. Indeed, (3.140) implies (3.55). We
set

8n 2 N; Vn = ( 
 � 1)n(
 � 1)V �
n =V�

0 :

Then, (3.142) entails (3.56) and (3.143) implies (3.57), which completes the proof of Proposition3.4. �

Lemma 3.22. There exist� 0; A 2 (0; 1 ) such that

8� 2 [� 0; 1 );
Z 1

�
d� e � 
�


 � 1



� A�
1

 e� 
�


 � 1



:

Proof. Integration by part implies

(
 � 1)
Z 1

�
d� e � 
�


 � 1



= �
1

 e� 
�


 � 1



+ 1



Z 1

�
d� � � 
 � 1


 e� 
�

 � 1



� �

1

 e� 
�


 � 1



+ 1

 � � 
 � 1




Z 1

�
d� e � 
�


 � 1



;

which immediately entails the lemma. �
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Asymptotic expansion ofw� 1. Recall from (3.45) the de�nition of w. We next introduce

8y2 (0; 1 ); � (y) := w(y) � 1; that satis�es
Z 1

� (y)

du
(u + 1) 
 � 1

= y ; (3.145)

by (3.45). We easily see thatlim y!1 � (y) = 0 andlim y! 0 � (y) = 1 and that� is a C1 decreasing
function. The following lemma asserts that� decreases exponentially fast asy !1 .

Lemma 3.23. Let 
 2 (1; 2]. Let 	( � )= � 
 , � 2 R+ . Recall from (3.145) the de�nition of� . We set

y0 :=
Z 1

1

du
(u + 1) 
 � 1

and 8y2 [� 1; 1 ); G(y) :=
Z y

0

du
u

(u + 1) 
 � 1� 
u
(u + 1) 
 � 1

: (3.146)

Then,
8y2 [� 1; 1]; exp(G(y)) = 1 +

X

n� 1

Anyn and 1 +
X

n� 1

jAn j < e 
 � 1:

Moreover, fory2 [y0; 1 ),

e
y � C0 � (y) = exp
�
G(� (y))

�
= 1 +

X

n� 1

An � (y)n ; (3.147)

whereC0 is given by (3.62).

Proof. We �rst introduce the inverse function of� . Namely, for ally2 (0; 1 ), we set

8y2 (0; 1 ); F (y) :=
Z 1

y

du
(u + 1) 
 � 1

:

Observe that

F (y)=
Z 1

1

du
(u + 1) 
 � 1

+ 1



Z 1

y

du
u

� 1



Z 1

0

du
u

(u + 1) 
 � 1� 
u
(u + 1) 
 � 1

+ 1



Z y

0

du
u

(u + 1) 
 � 1� 
u
(u + 1) 
 � 1

;

which makes sense since1
u

(u+1) 
 � 1� 
u
(u+1) 
 � 1 ! 
 � 1

2 asu ! 0+ . We then set

C0 := 

Z 1

1

du
(u + 1) 
 � 1

�
Z 1

0

du
u

(u + 1) 
 � 1� 
u
(u + 1) 
 � 1

and we get

8y 2 (0; 1 ); 
F (y) = C0 � logy + G(y); where G(y) :=
Z y

0

du
u

(u + 1) 
 � 1� 
u
(u + 1) 
 � 1

:

SinceF (� (y))= y, this implies

8y 2 (0; 1 ); log � (y) = C0 � 
y + G(� (y)) : (3.148)

Let us show thatG(y) (and thereforeexp(G(y)) ) is analytic in a neighborhood of0. We set

an =
1



�



n+1

�
=

(� 1)n� 1

(n + 1)!

nY

k=1

jk � 
 j =
(
 � 1)(� 1)n� 1

n(n + 1)

n� 1Y

k=1

�
1 �


 � 1
k

�
; n � 1:

We observe thatjan j < 
 � 1
n(n+1) . Then for allu2 [� 1; 1], we set

T(u) :=
X

n� 1

jan jun and S(u) :=
(1 + u) 
 � 1� 
u


u
=

X

n� 1

anun = � T(� u)
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since(� 1)n� 1an = jan j. The power seriesT andS are absolutely convergent forjuj � 1. Moreover,
jS(u)j � T(juj) � T(1)= � S(� 1) = 
 � 1


 < 1. Thus, for allu 2 [� 1; 1],

(1 + u) 
 � 1 � 
u
(1 + u) 
 � 1

=
S(u)

1 + S(u)
=

X

p� 1

(� 1)p� 1S(u)p =
X

n� 1

(� 1)n� 1nB nun

is analytic forjuj � 1, where

nB n =
X

p1 ;:::;pn � 0
p1+2 p2+ :::+ npn = n

(p1 + : : : + pn )!
p1! : : : pn !

ja1jp1 : : : jan jpn � 0 :

Note that
P

n� 1 nB n = T(1)=(1 � T(1))= 
 � 1< 1. Therefore,

8y 2 [� 1; 1]; G(y) =
X

n� 1

(� 1)n� 1Bnyn ;

is absolutely convergent andjG(y)j � � G(� 1)<
P

n� 1 nB n = 
 � 1< 1. Thus

8y2 [� 1; 1]; exp(G(y)) = 1 +
X

n� 1

Anyn

where

An =
X

p1 ;:::;pn � 0
p1+2 p2+ ��� + npn = n

(� B1)p1 : : : (� Bn )pn

p1! : : : pn !

and

1 +
X

n� 1

jAn j � 1 +
X

n� 1

X

p1 ;:::;pn � 0
p1+2 p2+ ��� + npn = n

B p1
1 : : : B pn

n

p1! : : : pn !
= exp( � G(� 1)) < exp(
 � 1) :

Observe that� (y0)=1 . Then (3.147) follows from (3.148) for all y2 [y0; 1 ). �

We then derive from the previous lemma the following expansion of� .

Lemma 3.24. Let 
 2 (1; 2]. Let 	( � )= � 
 , � 2 R+ . Recall from (3.145) the de�nition of� ; recall from
(3.146) the de�nition ofG and recall from (3.62) the de�nition ofC0. Then, we set

8y 2 [� 1; 1]; H (y) := exp
�
C0 + G(y)

�
and 8n � 1; � n :=

1
n!

dn� 1

dyn� 1

�
H n � �

�y=0
: (3.149)

Then, there existsy1 2 [y0; 1 ) such that
X

n� 1

j� n je� 
ny 1 < 1 and 8y 2 [y1; 1 ); � (y) =
X

n� 1

� ne� 
ny : (3.150)

Here� 1 = eC0 and� 2 = 
 � 1
4 eC0 .

Proof. Lemma3.23shows thatH has a power expansion whose radius of convergence is larger than1.
By Lagrange's inversion theorem (see for instance Whittaker & Watson [102], 7.32, pp. 132–133), there
existsx0 2 (0; 1 ) such that

P
n� 1 j� n jxn

0 < 1 and

8x 2 [� x0; x0]; f (x) :=
X

n� 1

� nxn satis�es f (x) = xH (f (x)) :
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For all x; y 2 R+ in a neighborhood of0, we next setQ(x; y)= H (y)=(1� xH 0(y)) . Observe thatf is a
solution of the differential equationf 0(x) = Q(x; f (x)) in a neighborhood of0. Then note that

@xQ(0; 0) = H (0)H 0(0) = 
 � 1
2 e2C0 and @yQ(0; 0) = H 0(0) = 
 � 1

2 eC0 :

Thus, there existsx �
0 2 (0; x0) such thatQ is Lipschitz on[� x �

0; x �
0]2. By the Cauchy-Lipschitz theorem,

f is the unique solution on[0; x �
0] of the equationy0(x) = Q(x; y(x)) such thaty(0)=0 .

We next recall from Lemma3.23 that � (y) = e� 
y H (� (y)) , for all y 2 [y0; 1 ). For all x 2
(0; e� 
y 0 ], we setg(x) := � (� 1


 logx) andg(0) = 0 . Note thatg is differentiable on(0; e� 
y 0 ] and that
g(x) = xH (g(x)) for all x 2 [0; e� 
y 0 ]. Thusg0(x) = Q(x; g(x)) , for all (0; e� 
y 0 ]. This implies that
lim0! 0+ x � 1g(x) = lim 0! 0+ g0(x) = H (0), which proves thatg is a C1 function satisfying the same
differential equation asf on a neighborhood of0, with the same initial value0 at x = 0 . Consequently,
there existsx1 2 (0; x �

0 ^ e� 
y 0 ] such thatg(x) = f (x) for all x 2 [0; x1] which implies (3.150) with
y1 := � 1


 logx1. The values of� 1 and� 2 are easily derived from (3.149). �

We next derive from the previous lemma a similar asymptotic expansion for the functionL1(y; 0)
that is connected to the diameter of
 -stable normalized trees.

Lemma 3.25. Let 
 2 (1; 2]. Let 	( � ) = � 
 , � 2 R+ . Recall from (3.49) the de�nition ofL1(y; 0) and
recall from (3.62) the de�nition of C0. Then, there existy2 2 (0; 1 ), and two real valued sequences
(
 n )n� 2, (� n )n� 2 such that


 2 = 1
2 
 (
 � 1)e2C0 ; � 2 = � 1

2 (
 + 1) e2C0 and
X

n� 2

�
nj
 n j + j� n j

�
e� 
ny 2 < 1 (3.151)

and
8y 2 [y2; 1 ); L1(y; 0) =

X

n� 2

(n
 ny + � n )e� 
ny : (3.152)

Proof. Recall from (3.145) that� (y)= w(y) � 1, wherew is de�ned by (3.45). Then, (3.49) implies the
following:

L 1(y; 0) = � (y) � 1



�
(1+ � (y)) 
 � 1

�
(1+ � (y)) + 
 � 1


 y
�
(1+ � (y)) 
 � 1

� 2

= 
 � 1

 y

�
(1+ � (y)) 
 � 1

� 2 � 1



�
(1+ � (y)) 
 +1 � 1� (
 + 1) � (y)

�

= 
 (
 � 1)y� (y)2K (� (y)) � 1
2 (
 + 1) � (y)2M (� (y)) (3.153)

where for allu2 [� 1; 1 ) we have set

K (u) =

�
(u + 1) 
 � 1

� 2

(
u )2 and M (u) =
(u + 1) 
 +1 � 1� (
 + 1) u

1
2 
 (
 + 1) u2 :

Recall from (3.149) the de�nition of H and recall from (3.147) that for all y 2 [y0; 1 ), � (y) =
e� 
y H (� (y)) . This, combined with (3.153), entails that

L1(y; 0) = 
 (
 � 1)e� 2
y H (� (y))2K (� (y)) � 1
2 (
 + 1) e� 2
y H (� (y))2M (� (y)) : (3.154)

Recall from (3.149) the de�nition of the real valued sequence(� n )n� 1 that is such that
P

n� 1 j� n jxn
1 <

1 , wherex1 = e� 
y 1 . We then setf (x) =
P

n� 1 � nxn , for all x 2 [� x1; x1]. Next, recall from Lemma
3.23thateG(y) has a power expansion on[� 1; 1]; thus, so doesH . Note thatK andM have also a power
expansion on(� 1; 1). Consequently there existsx2 2 (0; 1 ) such for allx 2 [0; x2],


 (
 � 1)H (f (x))2K (f (x)) =
X

n� 0


 0
nxn and � 1

2 (
 + 1) H (f (x))2M (f (x)) =
X

n� 0

� 0
nxn ; (3.155)
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with

 0

0 = 
 (
 � 1)e2C0 ; � 0
0 = � 1

2 (
 + 1) e2C0 and
X

n� 0

�
j
 0

n j + j� 0
n j

�
xn

2 < 1 ; (3.156)

sinceK (0) = M (0) = 1 and sinceH (0)2 = e2C0 . Next by (3.150) in Lemma3.24, we have� (y) =
f (e� 
y ), for all y2 [y1; 1 ). Then we set

y2 := y1^
�
� 1


 logx2
�

and 8n � 2; 
 n := n� 1
 0
n� 2; � n := � 0

n� 2 ;

and (3.156) implies (3.151); (3.155) and (3.154) imply (3.152), which completes the proof of the lemma.
�

3.4.2 Proof of Theorem3.5.

We �rst set
8x 2 (0; 1 ); f � (x) := c
 x � 1� 1


 Nnr
�
� >x � 
 � 1



�

: (3.157)

Then, Proposition3.3, (3.46), (3.47) and (3.49) imply for all � 2 (0; 1 ),

L � (f � )=
Z 1

0
dx e� �x f � (x)=L � (0; 1)= �

1

 L1

�
0; �


 � 1



�
= �

1


�
w

�
�


 � 1



�
� 1

�
= �

1

 �

�
�


 � 1



�
; (3.158)

where recall from (3.145) that� (y)= w(y)� 1. We next use Lemma3.24: let � 1 be such that�

 � 1



1 = y1;

then the sequence(� n )n� 0 satis�es

8� 2 [� 1; 1 );
X

n� 0

j� n j�
1

 e� 
n�


 � 1



< 1 and L � (f � ) =
X

n� 0

� n �
1

 e� 
n�


 � 1



: (3.159)

Recall from Lemma3.21the de�nition of the functions�; h + andh� . Then for all integern � 1, and all
x 2 R+ , we set

� n (x)= n� 
 +1

 � 1 �

�
n� 



 � 1 x
�
; h+

n (x)= n� 
 +1

 � 1 h+ �

n� 


 � 1 x

�
and h�

n (x)= n� 
 +1

 � 1 h� �

n� 


 � 1 x

�
:

Lemma3.21implies thath+
n , h�

n are Lebesgue integrable, nonnegative and continuous. Moreover,� n =
h+

n � h�
n . Consequently,� n is also nonnegative continuous and Lebesgue integrable, and (3.55) entails

thatL � (� n ) = �
1

 e� 
n�


 � 1

 . Thus, by (3.159)

8� 2 [� 1; 1 ); L � (f � ) =
X

n� 0

� nL � (� n ): (3.160)

We next prove that the assumptions (a), (b), (c) of Lemma3.18hold true with

f := f � ; f +
n := h+

n ; f �
n := h�

n ; and qn := � n :

To that end, we �rst observe that by an easy change of variable and by (3.139) in Lemma3.21, we get

8� 2 (0; 1 ); 8n � 1; L � (h+
n ) and L � (h�

n ) � (
 � 1) n� 1

 � 1

Z 1

n




 � 1 �
d� e � 
� � 
 � 1



:

Thus, by Lemma3.22, for all � 2 (0; 1 ) and for all suf�ciently largen, L � (h+
n ) andL � (h�

n ) are bounded

by A�
1

 exp(� 
n�


 � 1

 ), whereA is a positive constant. Thus,

8� 2 [� 1; 1 );
X

n� 0

j� n j
�
L � (h+

n ) + L � (h�
n )

�
� 2A

X

n� 1

j� n j�
1

 e� 
n�


 � 1



< 1 ; (3.161)
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the last inequality being a consequence of (3.159).
Next, deduce from (3.141) in Lemma3.21that for all �xed x 2 (0; 1 ) and for all suf�ciently large

n,
sup

y2 [0;x ]
h+

n and sup
y2 [0;x ]

h�
n � Bn qx � 
 +3

2 exp
�
� (
 � 1)
 � 1n
 x � (
 � 1) � ;

whereq = 
 (
 +3)
2(
 � 1) � 
 +1


 � 1 and whereB is a positive constant only depending on
 . Since
 > 1, n
 � n;
this combined with (3.159) entails that for allx 2 R+ ,

X

n� 1

j� n j
�

sup
y2 [0;x ]

h+
n + sup

y2 [0;x ]
h�

n

�
< 1 : (3.162)

By (3.160), (3.161) and (3.162), Lemma3.18applies and we get

8x 2 R+ ; f � (x) = c
 x � 1� 1

 Nnr

�
� >x � 
 � 1



�

=
X

n� 1

� n � n (x) :

This proves

8r 2 (0; 1 ); c
 Nnr
�
� >r ) =

X

n� 1

� n (nr ) � 
 +1

 � 1 �

�
(nr ) � 



 � 1
�
; (3.163)

which implies (3.60). Note that (3.162) and (3.150) with x1 = e� 
y 1 in Lemma3.24 imply (3.59) in
Theorem3.5.

It remains to prove the asymptotic expansion (3.61). To that end, recall that� (r )= r � 
 +1

 � 1 �

�
r � 



 � 1
�
,

for all r 2 R+ . Then (3.57) in Proposition3.4easily entails that for any integerN � 1, asr ! 1 ,

1
C �

1
r � 1� 


2 er 

�
�
r (
 � 1)� 
 � 1



�

= 1 +
X

1� n<N

Vn r � n
 + ON;

�
r � N
 �

; (3.164)

whereC �
1 := (2 � ) � 1

2 (
 � 1)
1
2 + 1


 

1
2 and where the sequence(Vn )n� 1 is recursively de�ned by (3.56) in

Proposition3.4. This �rst implies that there existsA; r 1 2 (0; 1 ) that only depend on
 such that

8r 2 (r1; 1 ); 8n � 2;
�
� �

�
nr (
 � 1)� 
 � 1



� �
� � Ar 1+ 


2 e� n2
 � 1 r 

: (3.165)

Recall from Proposition3.4 that there existsx1 2 (0; 1) such that
P

n� 1 j� n jxn
1 < 1 . Without loss of

generality, we can chooser1 such thatexp(� 2
 � 1r 

1 ) � x1. Then (3.163) and (3.165) imply that

Nnr

�
� >r (
 � 1)� 
 � 1




�
= c� 1


 � 1 �
�
r (
 � 1)� 
 � 1



�

+ O

�
r 1+ 


2 e� 2
 r 
 �
; asr ! 1 ,

and (3.164) implies (3.61) sinceC1 = c� 1

 � 1C �

1 , where we recall from (3.41) thatc� 1

 = 
 � e

� 
 � 1



�
and

where we recall from Lemma3.24that� 1 =exp( C0). This completes the proof of Theorem3.5.

3.4.3 Proof of Theorem3.7.

We �rst set
8x 2 (0; 1 ); f D (x) := c
 x � 1� 1


 Nnr
�
D > 2x � 
 � 1



�

: (3.166)

Then, Proposition3.3, (3.46) and (3.47) imply for all � 2 (0; 1 ),

L � (f D ) =
Z 1

0
dx e� �x f D (x) = L � (1; 0) = �

1

 L1

�
�


 � 1

 ; 0

�
: (3.167)
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We next use Lemma3.25: let � 2 be such that�

 � 1



2 = y2; then the sequences(
 n )n� 0 and(� n )n� 0 satisfy

8� 2 [� 2; 1 );
X

n� 0

�
nj
 n j�


 � 1

 + j� n j

�
�

1

 e� 
n�


 � 1



< 1

and

L � (f D ) =
X

n� 0

n
 n �e � 
n�

 � 1



+

X

n� 0

� n �
1

 e� 
n�


 � 1



(3.168)

Recall from (3.54) in Proposition3.4the de�nition of � and recall Proposition3.6that provides properties
of the derivatives0


 of the densitys
 given by (3.52). For alln � 2, and allx 2 (0; 1 ), we set

� n (x) = n� 2


 � 1 s0




�
n� 



 � 1 x
�

and � n (x) = n� 
 +1

 � 1 �

�
n� 



 � 1 x
�
:

Then, Proposition3.6and Proposition3.4 imply that� n and� n are continuous and Lebesgue integrable,
and that

8� 2 R+ ; L � (� n ) = �e � 
n�

 � 1



and L � (� n ) = �

1

 e� 
n�


 � 1



:

Thus,
8� 2 R+ ; L � (f D ) =

X

n� 2

L �
�
n
 n � n + � n � n

�
:

We argue as in the proof of Theorem3.5using Lemma3.18to deduce that

8x 2 R+ ; f D (x) = c
 x � 1� 1

 Nnr

�
D > 2x � 
 � 1



�

=
X

n� 1

n
 n � n (x) + � n � n (x) ;

the sum of functions being normally convergent on every compact subset ofR+ . This easily entails that

8r 2 (0; 1 ); c
 Nnr
�
D > 2r ) =

X

n� 1


 n (nr )�

 +1

 � 1 s0




�
(nr )�




 � 1

�
+ � n (nr )�


 +1

 � 1 �

�
(nr )�




 � 1

�
; (3.169)

which is (3.68). Note that (3.67) is an easy consequence of the estimate (3.65) in Proposition3.6, of
(3.57) in Proposition3.4and of Lemma3.25with x2 = e� 
y 2 . Recall from (3.66) and (3.58) the following
notation,

8r 2 R+ ; � (r ) = r � 
 +1

 � 1 s0




�
r � 



 � 1
�

and � (r ) = r � 
 +1

 � 1 �

�
r � 



 � 1
�

:

Note that (3.68) implies

c
 Nnr
�
D >r ) = 
 2� (r ) + � 2� (r ) +

X

n� 3


 n � (nr=2) + � n � (nr=2) : (3.170)

Then, recall from (3.164) the asymptotic expansion of� and deduce from (3.65) in Proposition3.6that

1
C �

1
r � 1� 3


2 er 

�
�
r (
 � 1)� 
 � 1



�

= 1 +
X

1� n<N

Tn r � n
 + ON;

�
r � N
 �

; (3.171)

whereC �
1 := (2 � ) � 1

2 (
 � 1)
1
2 + 1


 

1
2 and where the sequence(Tn )n� 1 is recursively de�ned by (3.64) in

Proposition3.6. We easily deduce from the asymptotic expansions (3.164) and (3.171) that there exists
B; r 2 2 (0; 1 ) such that for allr 2 (r2; 1 ) and for alln � 3,

�
� �

�
1
2 nr (
 � 1)� 
 � 1



� �
� and

�
��

�
1
2 nr (
 � 1)� 
 � 1



� �
� � Br 1+ 3


2 e� n3
 � 12� 
 r 

: (3.172)
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This combined with (3.170) implies that

Nnr
�
D >r (
 � 1)� 
 � 1



�

= c� 1

 
 2�

�
r (
 � 1)� 
 � 1



�

+ c� 1

 � 2�

�
r (
 � 1)� 
 � 1



�

+ O

�
r 1+ 3


2 e� n(3=2)
 r 
 �
;

asr ! 1 . Then (3.164), by (3.171) imply

Nnr
�
D >r (
 � 1)� 
 � 1



�

= c� 1

 
 2C �

1r 1+ 3

2 e� r 


+
X

1� n<N

c� 1

 C �

1(
 2Tn + � 2Vn� 1)r � n
 +1+ 3

2 e� r 


+ ON;

�
r � N
 +1+ 3


2 e� r 
 �

(3.173)

Recall from (3.151) in Lemma3.25that
 2 = 1
2 
 (
 � 1)e2C0 and� 2 = � 1

2 (
 +1) e2C0 . This implies (3.69)
with

C2 = c� 1

 C �

1 
 2 and 8n � 1; Un = Tn + � 2


 2
Vn� 1 = Tn � 
 +1


 (
 � 1)
Vn� 1 :

This completes the proof of Theorem3.7.

3.5 Appendix: proof of Lemma 3.9.

We �rst recall the following notation from Introduction: leth2 C(R+ ; R+ ). For anya2 [0; h(0)], set

`a(h) = inf
�

t 2 R+ : h(t)= h(0) � a
	

and ra(h) = inf
�

t 2 (0; 1 ) : h(0) � a > h (t)
	

; (3.174)

with the convention thatinf ; = 1 . Standard results on stopping times assert that`a(h) andra(h) are
[0; 1 ]-valued Borel measurable functions ofh: see for instance Revuz & Yor [97], Chapter I, Proposition
4.5 and Proposition 4.6, p. 43. Moreover, it is easy to check that for a �xedh, a 7! `a(h) is left
continuous and thata 7! ra(h) is right continuous. By standard arguments,(a; h) 7! (`a(h); ra(h)) is
Borel measurable on the setA := f (a; h) 2 R+ � C(R+ ; R+ ) : a � h(0)g. We next recall the following
notation: for all(a; h) 2 A, we set

8s2 R+ ; Es(h; a) := h
�
(`a(h) + s)^ ra(h)

�
� h(0) + a ;

with the convention thatE(h; a) is the null function0 is `a(h)= 1 . The previous arguments entail that

(a; h) 2 A 7! E(h; a) 2 C(R+ ; R+ ) is Borel measurable. (3.175)

Recall from (3.73) the de�nition of Exc. Recall thatpH : [0; � H ] ! T H stands for the canonical
projection and recall from (3.6) that the mass measurem H is the pushforward measure of the Lebesgue
measure on[0; � H ] by pH . Suppose that there existr; s 2 (0; � H ) such thatr < s and such thatH is
constant on(r; s). ThuspH (( r; s)) = f pH (r )g andmH (f pH (r )g) � s� r > 0, which contradicts the
fact thatm H is diffuse. Recall from (3.5) the de�nition of the set of leavesLf (TH ) of TH . Suppose
there existr; s 2 (0; � H ) such thatr < s and such thatH is strictly monotone on(r; s). It easily im-
plies thatpH (( r; s)) � T H nLf (TH ), but m H (pH (( r; s))) � s � r > 0, which contradicts the fact that
m H

�
TH nLf (TH )

�
=0 . Thus, we have proved the following.

(� ) Let H 2 Exc. Let r; s 2 (0; � H ) be such thatr <s . Then on(r; s), H is neither non-increasing nor
non-decreasing.

Let t 2 (0; 1 ) andH 2 Exc be such that� H >t . Recall the following notation

8s2 R+ ; H �
s = H (t � s)+ ; H +

s = H t+ s;
 �
H a := E(H � ; a) and

�!
H a := E(H +; a);
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for all a 2 [0; H t ]. Note thatH �
0 = H +

0 = H t . We also recall the following notation

M 0;t (H ) =
X

a2J 0;t

�
(a;

 �
H a ;

�!
H a )

; (3.176)

whereJ 0;t :=
�

a2 [0; H t ] : either`a(H � ) <r a(H � ) or `a(H + ) <r a(H + )
	

, which is countable. Then,
the de�nitions (3.174) and (� ) entail that

8t 2 (0; 1 ); 8H 2 Exc such that� H >t; the closure ofJ 0;t is [0; H t ]. (3.177)

We next introduce the compact setCt := f s 2 [0; � H � t ] : H t+ s = inf r 2 [t;t + s] H r g, whose Lebesgue
measure is denoted byjCt j. We easily check thatpH (Ct ) � f �; p H (t)g[

�
TH nLf (TH )

�
. Sincem H is

diffuse and supported by the set of leaves ofTH , we get0 = m H (pH (Ct )) � j Ct j, which implies that
jCt j =0 . Then note that for alla2 [0; H t ],

[0; `a(H + )]nCt �
�

s2 [0; `a(H + )] : H t+ s > inf
r 2 [t;t + s]

H r
	

�
[

b2J 0;t \ [0;a)

�
`b(H + ); rb(H + )

�
� [0; `a(H + )]:

SincejCt j =0 , this entails,

8a 2 [0; H t ]; `a(H + ) =
X

b2J 0;t

1[0;a) (b)
�
rb(H + ) � `b(H + )

�
=

X

b2J 0;t

1[0;a) (b)� �!
H b :

Similar arguments imply that

8a 2 [0; H t ]; `a(H + ) =
X

b2J 0;t

1[0;a) (b)� �!
H b ; `a(H � ) =

X

b2J 0;t

1[0;a) (b)�  �
H b ; (3.178)

ra(H + ) =
X

b2J 0;t

1[0;a](b)� �!
H b ; ra(H � ) =

X

b2J 0;t

1[0;a](b)�  �
H b :

Moreover, sinceH is continuous with compact support, we immediately get

8"; � 2 (0; 1 ); #
�

a2J : �(
 �
H a)_ �(

�!
H a) > � or �  �

H a _ � �!
H a >"

	
< 1 : (3.179)

We next easily see thatT�!
H a can be identi�ed with a subtree ofTH ; therefore, up to this identi�cation,

the set of leaves ofT�!
H a is contained in the set of leaves ofTH andm �!

H a is the restriction ofm H to

T�!
H a . This implies thatm �!

H a is diffuse and supported by the set of leaves ofT�!
H a . Namely,

�!
H a 2 Exc. A

similar argument show that
 �
H a 2 Exc. This fact combined with (3.177) and (3.179) imply the following:

8t 2 (0; 1 ); 8H 2 Exc such that� H >t; M 0;t (H ) 2 M pt (E ) ; (3.180)

whereM pt (E ) is as in De�nition 3.2.1. Moreover (3.175) easily implies that(a; t; H ) 7! (
 �
H a;

�!
H a) is

Borel-measurable, which immediately implies Lemma3.9(i ).

Let us prove Lemma3.9 (ii ). Recall from De�nition 3.2.1 the de�nition of the sigma �eldG on
M pt (E ). We next �x t 2 (0; 1 ) andH 2 Exc such that� H > t . First note that (3.178) imply that
`a(H + ) andra(H + ) areB (R+ ) 
G -measurable functions of(a;M 0;t (H )) , whereB (R+ ) stands for
the Borel sigma �eld onR+ . We then �x s 2 R+ and we seta(s) = inf f a 2 R+ : ra(H + ) > s g, with
the convention thatinf ; = 1 . The previous argument and the fact thata7! ra(H + ) is right continuous
entail thata(s) can be viewed as aG-measurable function ofM 0;t (H ). Then note that ifa(s) < 1 , then

H t+ s = H +
s = H t � a(s) +

�!
H a(s) � s� `a(s) (H

+ )
�

: (3.181)
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Then for alla2 R+ , we setNa =
P

b2J 0;t
1(a;1 ) (b)1f � �!

H b> 0g. We have actually have proved previously
that the closure of the setf b 2 J 0;t : `b(H + ) < r b(H + )g is [0; H t ]. ThusH t = inf f a 2 R+ : Na >
0g, which proves thatH t is a G-measurable function ofM 0;t (H ). Moreover(a;M 0;t (H )) 7!

�!
H a is

B (R+ ) 
G -measurable. Thus, (3.181) implies thatH +
s is aG-measurable function ofM 0;t (H ). Since

the Borel sigma �eld onC(R+ ; R+ ) is generated by coordinate applications, this implies thatH + is a
G-measurable function ofM 0;t (H ). A similar argument shows thatH � is also aG-measurable function
of M 0;t (H ), which easily completes the proof of Lemma3.9(ii ). �
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Chapter 4

Cutting down p-trees and inhomogeneous
continuum random trees

The results of this chapter are from the joint work [39] with Nicolas Broutin, submitted for publication.
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We study a fragmentation of birthday trees, and give exact correspondences between the birthday
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the tree encoding the fragmentation. The results for the ICRT extend the results of Bertoin and Miermont
[30] about the cut tree of the Brownian continuum random tree.
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4.1 Introduction

The study of random cutting of trees has been initiated by Meir and Moon [88] in the following form:
Given a (graph theoretic) tree, one can proceed to chop the tree into pieces by iterating the following
process: choose a uniformly random edge; removing it disconnects the tree into two pieces; discard the
part which does not contain the root and keep chopping the portion containing the root until it is reduced
to a single node. In the present document, we consider the related version where the vertices are chosen
at random and removed (until one is left with an empty tree); each such pick is referred to as acut. We
will see that this version is actually much more adapted than the edge cutting procedure to the problems
we consider here.

The main focus in [88] and in most of the subsequential papers has been put on the study of some
parameters of this cutting down process, and in particular on how many cuts are necessary for the process
to �nish. This has been studied for a number of different models of deterministic and random trees such
as complete binary trees of a given height, random trees arising from the divide-and-conquer paradigm
[48, 67, 68, 70] and the family trees of �nite-variance critical Galton–Watson processes conditioned on
the total progeny [60, 72, 93]. The latter model of random trees turns out to be far more interesting, and
it provides ana posteriorimotivation for the cutting down process. As we will see shortly, the cutting
down process provides an interesting way to investigate some of the structural properties of random trees
by partial destruction and re-combination, or equivalently as partially resampling the tree.

Let us now be more speci�c: ifL n denotes the number of cuts required to completely cut down
a uniformly labelled rooted tree (random Cayley tree, or equivalently condition Galton–Watson tree
with Poisson offspring distribution) onn nodes, thenn� 1=2L n converges in distribution to a Rayleigh
distribution which has densityxe� x2=2 on R+ . Janson [72] proved that a similar result holds for any
Galton–Watson tree with a �nite-variance offspring distribution conditioned on the total progeny to ben.
This is the parameter point of view. Addario-Berry, Broutin, and Holmgren [7] have shown that for the
random Cayley trees,L n actually has the same distribution as the number of nodes on the path between
two uniformly random nodes. Their method relies on an “objective” argument based on a coupling that
associates with the cutting procedure a partial resampling of the Cayley tree of the kind mentioned earlier:
if one considers the (ordered) sequence of subtrees which are discarded as the cutting process goes on,
and adds a path linking their roots, then the resulting tree is a uniformly random Cayley tree, and the two
extremities of the path are independent uniform random nodes. So the properties of the parameterL n

follow from a stronger correspondence between the combinatorial objects themselves.
This strong connection between the discrete objects can be carried to the level of their scaling limit,

namely Aldous' Brownian continuum random tree (CRT) [10]. Without being too precise for now, the
natural cutting procedure on the Brownian CRT involves a Poisson rain of cuts sampled according to
the length measure. However, not all the cuts contribute to the isolation of the root. As in the partial
resampling of the discrete setting, we glue the sequence of discarded subtrees along an interval, thereby
obtaining a new CRT. If the length of the interval is well-chosen (as a function of the cutting process),
the tree obtained is distributed like the Brownian CRT and the two ends of the interval are independently
random leaves. This identi�es the distribution of the discarded subtrees from the cutting procedure as the
distribution of the forest one obtains from a spinal decomposition of the Brownian CRT. The distribution
of the latter is intimately related to Bismut's [33] decomposition of a Brownian excursion. See also [52]
for the generalization to the Lévy case. Note that a similar identity has been proved by Abraham and
Delmas [5] for general Lévy trees without using a discrete approximation. A related example is that of
the subtree prune and re-graft dynamics of Evans et al. [59] [See also57], which is even closer to the
cutting procedure and truly resamples the object rather than giving a “recursive” decomposition.

The aim of this work is two-fold. First we prove exact identities and give reversible transformations
of p-trees similar to the ones for Cayley trees in [7]. The model ofp-trees introduced by Camarri and
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Pitman [41] generalizes Cayley trees in allowing “weights” on the vertices. In particular, this additional
structure of weights introduces some inhomogeneity. We then lift these results to the scaling limits, the
inhomogeneous continuum random trees (ICRT) of Aldous and Pitman [13], which are closely related to
the general additive coalescent [13, 23, 24]. Unlike the Brownian CRT or the stable trees (special cases of
Lévy trees), a general ICRT is not self-similar. Nor does it enjoy a “branching property" as the Lévy trees
do [83]. This lack of “recursivity” ruins the natural approaches such as the one used in [4, 5] or the ones
which would argue by comparing two fragmentations with the same dislocation measure but different
indices of self-similarity [25]. This is one of the reasons why we believe these path transformations
at the level of the ICRT are interesting. Furthermore, a conjecture of Aldous, Miermont, and Pitman
[15, p. 185] suggests that the path transformations for ICRTs actually explain the result of Abraham and
Delmas [5] for Lévy trees by providing a result “conditional on the degree distribution”.

Second, rather than only focusing on the isolation of the root we also consider the genealogy of
the entire fragmentation as in the recent work of Bertoin and Miermont [30] and Dieuleveut [46] (who
examine the case of Galton–Watson trees). In some sense, this consists in obtaining transformations
corresponding to tracking the effect of the cutting down procedure on the isolation of all the points si-
multaneously. Tracking �nitely many points is a simple generalization of the one-point results, but the
“complete” result requires additional insight. The results of the present document are used in Chapter
5 to prove that the “complete” cutting procedure in which one tries to isolate every point yields a con-
struction of the genealogy of the fragmentation on ICRTs which is reversible in the case of the Brownian
CRT. More precisely, the genealogy of Aldous–Pitman's fragmentation of a Brownian CRT is another
Brownian CRT, sayG, and there exists a random transformation ofG into a real treeT such that in the
pair (T ; G) the treeG is indeed distributed as the genealogy of the fragmentation onT , conditional on
T . The proof there relies crucially on the “bijective” approach that we develop here.

Plan of the chapter.In the next section, we introduce the necessary notation and relevant background.
We then present more formally the discrete and continuous models we are considering, and in which
sense the inhomogeneous continuum random trees are the scaling limit ofp-trees. In Section4.3 we
introduce the cutting down procedures and state our main results. The study of cutting down procedure
for p-trees is the topic of Section4.4. The results are lifted to the level of the scaling limits in Section4.5.

4.2 Notation, models and preliminaries

Although we would like to introduce our results earlier, a fair bit of notation and background is in order
before we can do so properly. This section may safely be skipped by the impatient reader and referred to
later on.

4.2.1 Aldous–Broder Algorithm andp-trees

Let A be a �nite set andp = ( pu ; u 2 A) be a probability measure onA such thatminu2 A pu > 0;
this ensures thatA is indeed the support ofp. Let TA denote the set of rooted trees labelled with (all
the) elements ofA (connected acyclic graphs onA, with a distinguished vertex). Fort 2 TA , we let
r = r (t) denote its root vertex. Foru; v 2 A, we writef u; vg to mean thatu andv are adjacent int. We
sometimes writehu; vi to mean thatf u; vg is an edge oft, and thatu is on the path betweenr andv (we
think of the edges as pointing towards the root). For a treet 2 TA (rooted atr , say) and a nodev 2 A,
we lettv denote the tree re-rooted atv.

We usually abuse notation, but we believe it does not affect the clarity or precision of our statements.
For instance, we refer to a nodeu in the vertex setv(t) of a treet usingu 2 t. Depending on the context,
we sometimes writet n f ug to denote the forest induced byt on the vertex setv(t) n f ug. The (in-)degree
Cu(t) of a vertexu 2 A is the number of edges of the formhu; vi with v 2 A. For a rooted treet, and
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a nodeu of t, we writeSub(t; u) for the subtree oft rooted atu (aboveu). For t 2 TA andV � A,
we writeSpan(t; V ) for the subtree oft spanningV and the root ofr (t). SoSpan(t; V ) is the subtree
induced byt on the set [

u2 V

Jr (t); uK;

whereJu; vK denotes collection of nodes on the (unique) path betweenu and v in t. When V =
f v1; v2; : : : ; vkg, we usually writeSpan(t; v1; : : : ; vk ) instead ofSpan(t; f v1; : : : ; vkg). We also write

Span� (t; V ) := Span( t; V ) n f r (t)g:

As noticed by Aldous [18] and Broder [37], one can generate random trees onA by extracting a tree
from the trace of a random walk onA, where the sequence of steps is given by a sequence of i.i.d. vertices
distributed according top.

Algorithm (Weighted version of Aldous–Broder Algorithm). Let Y = ( Yj ; j � 0) be a sequence of
independent variables with common distributionp; further on, we say thatYj are i.i.d.p-nodes. Let
T (Y ) be the graph rooted atY0 with the set of edges

fhYj � 1; Yj i : Yj =2 f Y0; � � � ; Yj � 1g; j � 1g: (4.1)

The sequenceY de�nes a random walk onA, which eventually visits every element ofA with
probability one, sinceA is the support ofp. So the tracefhYj � 1; Yj i : j � 1g of the random walk on
A is a connected graph onA, rooted atY0. Algorithm 4.2.1extracts the treeT (Y ) from the trace of the
random walk. To see thatT (Y ) is a tree, observe that the edgehYj � 1; Yj i is added only ifYj has never
appeared before in the sequence. It follows easily thatT (Y ) is a connected graph without cycles, hence
a tree onA. Let � denote the distribution ofT (Y ).

Lemma 4.1([18, 37, 58]). For t 2 TA , we have

� (t) := � (p) (t) =
Y

u2 A

pCu (t )
u : (4.2)

Note that� is indeed a probability distribution onTA , since by Cayley's multinomial formula ([42,
96]), we have

X

t2 TA

� (t) =
X

t2 TA

Y

u2 A

pCu (t )
u =

 
X

u2 A

pu

! jA j� 1

= 1 : (4.3)

A random tree onA distributed according to� as speci�ed by (4.2) is called ap-tree. It is also called the
birthday tree in the literature, for its connection with the general birthday problem (see [41]). Observe
that whenp is the uniform distribution on[n] := f 1; 2; : : : ; ng, ap-tree is a uniformly random rooted tree
on [n] (a Cayley tree). So the results we are about to present generalize the exact distributional results in
[7]. However, we believe that the point of view we adopt here is a little cleaner, since it permits to make
the transformationexactlyreversible without any extra anchoring nodes (which prevent any kind duality
at the discrete level).

From now on, we considern � 1 and let[n] denote the setf 1; 2; � � � ; ng. We writeTn as a shorthand
for T[n], the set of the rooted trees on[n]. Let alsop = ( pi ; 1 � i � n) be a probability measure on[n]
satisfyingmin i 2 [n] pi > 0. For a subsetA � [n] such thatp(A) > 0, we letpjA ( � ) = p( � \ A)=p(A)
denote the restriction ofp onA, and write� jA := � (pjA ) . The following lemma says that the distribution
of p-trees is invariant by re-rooting at an independentp-node and “recursive” in a certain sense. These
two properties are one of the keys to our results on the discrete objects. (For a probability distribution� ,
we writeX � � to mean that� is the distribution of the random variableX .)
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Lemma 4.2. LetT be ap-tree on[n].
i) If V is an independentp-node. Then,TV � � .

ii) Let N be set of neighbors of the root inT. Then, foru 2 N , conditional onv(Sub(T; u)) = V ,
Sub(T; u) � � jV independent off Sub(T; w) : w 2 N; w 6= ug.

The �rst claim can be veri�ed from (4.2), the second is clear from the product form of� .

4.2.2 Measured metric spaces and the Gromov–Prokhorov topology

If (X; d ) is a metric space endowed with the Borel� -algebra, we denote byM f (X ) the set of �nite
measures onX and byM 1(X ) the subset of probability measures onX . If m 2 M f (X ), we denote by
supp(m) the support ofm on X , that is the smallest closed setA such thatm(Ac) = 0 . If f : X ! Y
is a measurable map between two metric spaces, and ifm 2 M f (X ), then the push-forward ofm is
an element ofM f (Y ), denoted byf � m 2 M f (Y ), and is de�ned by(f � m)(A) = m(f � 1(A)) for
each Borel setA of Y . If m 2 M f (X ) andA � X , we denote bym � A the restriction ofm to A:
m � A (B ) = m(A \ B ) for any Borel setB . This should not be confused with the restriction of a
probability measure, which remains a probability measure and is denoted bymjA .

We say a triple(X; d; � ) is ameasured metric space(or sometimes ametric measure space) if (X; d )
is a Polish space (separable and complete) and� 2 M 1(X ). Two measured metric spaces(X; d; � ) and
(X 0; d0; � 0) are said to beweakly isometricif there exists an isometry� between the supports of� on X
and of� 0onX 0such that(� ) � � = � 0. This de�nes an equivalence relation between the measured metric
spaces, and we denote byM the set of equivalence classes. Note that if(X; d; � ) and(X 0; d0; � 0) are
weakly isometric, the metric spaces(X; d ) and(X 0; d0) may not be isometric.

We can de�ne a metric onM by adapting Prokhorov's distance. Consider a metric space(X; d )
and for � > 0, let A � := f x 2 X : d(x; A ) < � g. Then, given two (Borel) probability measures
�; � 2 M 1(X ), the Prokhorov distance� P between� and� is de�ned by

� P(�; � ) := inf f � > 0 : � (A) � � (A � ) + � and� (A) � � (A � ) + �; for all Borel setsAg: (4.4)

Note that the de�nition of the Prokhorov distance (4.4) can be easily extended to a pair of �nite (Borel)
measures onX . Then, for two measured metric spaces(X; d; � ) and(X 0; d0; � 0) the Gromov–Prokhorov
(GP) distance between them is de�ned to be

� GP ((X; d; � ); (X 0; d0; � 0)) = inf
Z;�; 

� P(� � �;  � � 0);

where the in�mum is taken over all metric spacesZ and isometric embeddings� : supp(� ) ! Z and
 : supp(� 0) ! Z . It is clear that� GP depends only on the equivalence classes containing(X; d; � ) and
(X 0; d0; � 0). Moreover, the Gromov–Prokhorov distance turnsM in a Polish space.

There is another more convenient characterization of the GP topology (the topology induced by
� GP ) that relies on convergence of distance matrices between random points. LetX = ( X; d; � ) be a
measured metric space and let(� i ; i � 1) be a sequence of i.i.d. points of common distribution� . In
the following, we will often refer to such a sequence as(� i ; i � 1) as an i.i.d.� -sequence. We write
� X = ( d(� i ; � j ); 1 � i; j < 1 ) for the distance matrix associated with this sequence. One easily
veri�es that the distribution of� X does not depend on the particular element of an equivalent class ofM.
Moreover, by Gromov's reconstruction theorem [64, 31

2 ], the distribution of� X characterizesX as an
element ofM.

Proposition 4.3 (Corollary 8 of [84]). If X is some random element taking values inM and for each
n � 1, Xn is a random element taking values inM, thenXn converges toX in distribution asn ! 1 if
and only if� Xn converges to� X in the sense of �nite-dimensional distributions.
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Pointed Gromov–Prokhorov topology.The above characterization by matrix of distances turns out to
be quite handy when we want to keep track of marked points. Letk 2 N. If (X; d; � ) is a measured
metric space andx = ( x1; x2; � � � ; xk ) 2 X k is a k-tuple, then we say(X; d; �; x) is a k-pointed
measured metric space, or simply a pointed measured metric space. Two pointed metric measure spaces
(X; d; �; x) and(X 0; d0; � 0; x0) are said to beweakly isometricif there exists an isometric bijection

� : supp(� ) [ f x1; x2; � � � ; xkg ! supp(� 0) [ f x0
1; x0

2; � � � ; x0
kg

such that(� ) � � = � 0and� (x i ) = x0
i , 1 � i � k, wherex = ( x1; x2; � � � ; xk ) andx0 = ( x0

1; x0
2; � � � ; x0

k ).
We denote byM �

k the space of weak isometry-equivalence classes ofk-pointed measured metric spaces.
Again, we emphasize the fact that the underlying metric spaces(X; d ) and(X 0; d0) do not have to be
isometric. The spaceM �

k equipped with the following pointed Gromov–Prokhorov topology is a Polish
space.

A sequence(X n ; dn ; � n ; xn )n� 1 of k-pointed measured metric spaces is said to converge to some
pointed measured metric space(X; d; �; x) in the k-pointed Gromov–Prokhorov topology if for any
m � 1, �

dn (� �
n;i ; � �

n;j ); 1 � i; j � m
� n!1�!

d

�
d(� �

i ; � �
j ); 1 � i; j � m

�
;

where for eachn � 1 and1 � i � k, � �
n;i = xn;i if xn = ( xn;1; xn;2; � � � ; xn;k ) and(� �

n;i ; i � k + 1) is
a sequence of i.i.d.� n -points inX n . Similarly, � �

i = x i for 1 � i � k and(� �
i ; i � k + 1) is a sequence

of i.i.d. � -points inX . This induces thek-pointed Gromov–Prokhorov topology onM �
k .

4.2.3 Compact metric spaces and the Gromov–Hausdorff metric

Gromov–Hausdorff metric. Two compact subsetsA andB of a given metric space(X; d ) are compared
using the Hausdorff distance� H .

� H(A; B ) := inf f � > 0 : A � B � andB � A � g:

To compare two compact metric spaces(X; d ) and(X 0; d0), we �rst embed them into a single metric
space(Z; � ) via isometries� : X ! Z and : X 0 ! Z , and then compare the images� (X ) and (X 0)
using the Hausdorff distance onZ . One then de�nes the Gromov–Hausdoff (GH) distance� GH by

� GH ((X; d ); (X 0; d0)) := inf
Z;�; 

� H(� (X );  (X 0)) ;

where the in�mum ranges over all choices of metric spacesZ and isometric embeddings� : X ! Z and
 : X 0 ! Z . Note that, as opposed to the case of the GP topology, two compact metric spaces that are
at GH distance zero are isometric.

Gromov–Hausdorff–Prokhorov metric. Now if (X; d ) and (X 0; d0) are two compact metric spaces
and if � 2 M f (X ) and� 0 2 M f (X 0), one way to compare simultaneously the metric spaces and the
measures is to de�ne

� GHP
�
(X; d; � ); (X 0; d0; � 0)

�
:= inf

Z;�; 

n
� H

�
� (X );  (X 0)

�
_ � P(� � �;  � � 0)

o
;

where the in�mum ranges over all choices of metric spacesZ and isometric embeddings� : X ! Z
and : X 0 ! Z . If we denote byM c the set of equivalence classes of compact measured metric spaces
under measure-preserving isometries, thenM c is Polish when endowed with� GHP .

Pointed Gromov–Hausdorff metric. We �x some k 2 N. Given two compact metric spaces(X; d X )
and(Y; dY ), let x = ( x1; x2; � � � ; xk ) 2 X k andy = ( y1; y2; � � � ; yk ) 2 Y k . Then the pointed Gromov–
Hausdorff metric between(X; d X ; x) and(Y; dY ; y ) is de�ned to be

� pGH
�
(X; d X ; x); (Y; dY ; y )

�
:= inf

Z;�; 

n
� H

�
� (X );  (Y )

�
_ max

1� i � k
dZ

�
� (x i );  (yi )

� o
;
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where the in�mum ranges over all choices of metric spacesZ and isometric embeddings� : X ! Z
and : X 0 ! Z . Let M k

c denote the isometry-equivalence classes of those compact metric spaces with
k marked points. It is a Polish space when endowed with� pGH .

4.2.4 Real trees

A real treeis a geodesic metric space without loops. More precisely, a metric space(X; d; r ) is called a
(rooted) real tree ifr 2 X and

� for any two pointsx; y 2 X , there exists a continuous injective map� xy : [0; d(x; y)] ! X such
that� xy (0) = x and� xy (d(x; y)) = y. The image of� xy is denoted byJx; yK;

� if q : [0; 1] ! X is a continuous injective map such thatq(0) = x andq(1) = y, thenq([0; 1]) =
Jx; yK.

As for discrete trees, when it is clear from context which metric we are talking about, we refering to
metric spaces by the sets. For instance(T ; d) is often referred to asT .

A measured (rooted) real treeis a real tree(X; d; r ) equipped with a �nite (Borel) measure� 2
M (X ). We always assume that the metric space(X; d ) is complete and separable. We denote byTw the
set of the weak isometry equivalence classes of measured rooted real trees, equipped with the pointed
Gromov–Prokhorov topology. Also, letTc

w be the set of the measure-preserving isometry equivalence
classes of those measured rooted real trees(X; d; r; � ) such that(X; d ) is compact. We endowTc

w with
the pointed Gromov–Hausdorff–Prokhorov distance. Then bothTw andTc

w are Polish spaces. However
in our proofs, we do not always distinguish an equivalence class and the elements in it.

Let (T; d; r) be a rooted real tree. Foru 2 T, the degree ofu in T, denoted bydeg(u; T ), is the
number of connected components ofT n f ug. We also denote by

Lf( T) = f u 2 T : deg(u; T ) = 1 g and Br( T) = f u 2 T : deg(u; T ) � 3g

the set of theleavesand the set ofbranch pointsof T, respectively. The skeleton ofT is the complemen-
tary set ofLf( T) in T, denoted bySk(T). For two pointsu; v 2 T, we denote byu^ v the closest common
ancestor ofu andv, that is, the unique pointw of Jr; uK\ Jr; vKsuch thatd(u; v) = d(u; w) + d(w; v).

For a rooted real tree(T; r ), if x 2 T then the subtree ofT abovex, denoted bySub(T; x), is de�ned
to be

Sub(T; x) := f u 2 T : x 2 Jr; uKg:

Spanning subtree.Let (T; d; r) be a rooted real tree and letx = ( x1; � � � ; xk ) bek points ofT for some
k � 1. We denote bySpan(T; x) the smallest connected set ofT which contains the rootr andx, that
is, Span(T; x) = [ 1� i � kJr; x i K. We considerSpan(T; x) as a real tree rooted atr and refer to it as a
spanning subtreeor areduced treeof T.

If (T; d; r) is a real tree and there exists somex = ( x1; x2; � � � ; xk ) 2 T k for somek � 1 such that
T = Span(T; x), then the metric aspect ofT is rather simple to visualize. More precisely, if we write
x0 = r and let� x = ( d(x i ; x j ); 0 � i; j � k), then� x determines(T; d; r) under an isometry.

Gluing. If (Ti ; di ); i = 1 ; 2 are two real trees with some distinguished pointsx i 2 Ti , i = 1 ; 2, the result
of thegluingof T1 andT2 at (x1; x2) is the metric space(T1 [ T2; � ), where the distance� is de�ned by

� (u; v) =
�

di (u; v); if (u; v) 2 T2
i ; i = 1 ; 2;

d1(u; x1) + d2(v; x2); if u 2 T1; v 2 T2:

It is easy to verify that(T1 [ T2; � ) is a real tree withx1 andx2 identi�ed as one point, which we denote
by T1 ~ x1= x2 T2 in the following. Moreover, ifT1 is rooted at some pointr , we make the convention
thatT1 ~ x1= x2 T2 is also rooted atr .
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4.2.5 Inhomogeneous continuum random trees

The inhomogeneous continuum random tree (abbreviated as ICRT in the following) has been introduced
in [41] and [13]. See also [12, 15, 17] for studies of ICRT and related problems.

Let � (theparameter space) be the set of sequences� = ( � 0; � 1; � 2; � � � ) 2 R1
+ such that� 1 � � 2 �

� 3 � � � � 0, � 0 � 0,
P

i � 0 � 2
i = 1 , and either� 0 > 0 or

P
i � 1 � i = 1 .

Poisson point process construction.For each� 2 � , we can de�ne a real treeT in the following way.

� If � 0 > 0, let P0 = f (uj ; vj ); j � 1g be a Poisson point process on the �rst octantf (x; y) : 0 �
y � xg of intensity measure� 2

0dxdy, ordered in such a way thatu1 < u 2 < u 3 < � � � .

� For everyi � 1 such that� i > 0, let Pi = f � i;j ; j � 1g be a homogeneous Poisson process onR+

of intensity� i underP, such that� i; 1 < � i; 2 < � i; 3 < � � � .

All these Poisson processes are supposed to be mutually independent and de�ned on some common
probability space(
 ; F ; P). We consider the points of all these processes as marks on the half lineR+ ,
among which we distinguish two kinds: thecutpointsand thejoinpoints. A cutpoint is eitheruj for some
j � 1 or � i;j for somei � 1 andj � 2. For each cutpointx, we associate a joinpointx � as follows:
x � = vj if x = uj for somej � 1 andx � = � i; 1 if x = � i;j for somei � 1 andj � 2. One easily veri�es
that the hypotheses on� imply that the set of cutpoints is a.s. �nite on each compact set ofR+ , while the
joinpoints are dense a.s. everywhere. (See for example [13] for a proof.) In particular, we can arrange the
cutpoints in increasing order as0 < � 1 < � 2 < � 3 < � � � . This splitsR+ into countaly intervals that we
now reassemble into a tree. We write� �

k for the joinpoint associated to thek-th cutpoint� k . We de�ne
R1 to be the metric space[0; � 1] rooted at0. Fork � 1, we let

Rk+1 := Rk ~
� �

k = � k

[� k ; � k+1 ]:

In words, we graft the intervals[� k ; � k+1 ] by gluing the left end at the joinpoint� �
k . Note that we have

� �
k < � k a.s., thus� �

k 2 Rk and the above grafting operation is well de�ned almost surely. It follows
from this Poisson construction that(Rk )k� 1 is a consistent family of “discrete” trees which also veri�es
the “leaf-tight" condition in Aldous [10]. Therefore by [10, Theorem 3], the complete metric spaceT :=
[ k� 1Rk is a real tree and almost surely there exists a probability measure� , called themass measure,
which is concentrated on the leaf set ofT . Moreover, if conditional onT , (Vk ; k � 1) is a sequence
of i.i.d. points sampled according to� , then for eachk � 1, the spanning treeSpan(T; V1; V2; � � � ; Vk )
has the same unconditional distribution asRk . The distribution of the weak isometry equivalence class
of (T ; � ) is said to be the distribution of anICRT of parameter� , which is a probability distribution
on Tw . The push-forward of the Lebesgue measure onR+ de�nes a� -�nite measure` on T , which is
concentrated onSk(T) and called thelength measureof T . Furthermore, it is not dif�cult to deduce the
distribution of`(R1) from the above construction ofT :

P (`(R1) > r ) = P (� 1 > r ) = e� 1
2 � 2

0 r 2 Y

i � 1

(1 + � i r )e� � i r ; r > 0: (4.5)

In the important special case when� = (1 ; 0; 0; � � � ), the above construction coincides with the line-
breaking construction of the Brownian CRT in [8, Algorithm 3], that is,T is the Brownian CRT. This
case will be referred as the Brownian case in the sequel. We notice that whenever there is an indexi � 1
such that� i > 0, the point, denoted by� i , which corresponds to the joinpoint� i; 1 is a branch point of
in�nite degree. According to [15, Theorem 2]),� i is a measurable function of(T ; � i ), and we refer to it
as the local time of� i in what follows.

ICRTs as scaling limits ofp-trees.Let pn = ( pn1; pn2; � � � ; pnn ) be a probability measure on[n] such
that pn1 � pn2 � � � � � pnn > 0, n � 1. De�ne � n � 0 by � 2

n =
P n

i =1 p2
ni and denote byTn the
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correspondingpn -tree, which we view as a metric space on[n] with graph distancedTn . Suppose that
the sequence(pn ; n � 1) veri�es the following hypothesis: there exists some parameter� = ( � i ; i � 0)
such that

lim
n!1

� n = 0 ; and lim
n!1

pni

� n
= � i ; for everyi � 1: (H)

Then, writing� nTn for the rescaled metric space([n]; � ndT n ), Camarri and Pitman [41] have shown
that

(� nTn ; pn ) n!1�!
d;GP

(T ; � ); (4.6)

where! d;GP denotes the convergence in distribution with respect to the Gromov–Prokhorov topology.

4.3 Main results

4.3.1 Cutting down procedures forp-trees and ICRT

Consider ap-treeT. We perform a cutting procedure onT by picking each time a vertex according to
the restriction ofp to the remaining part; however, it is more convenient for us to retain the portion of
the tree that contains a random nodeV sampled according top rather than the root. We denote byL(T)
the number of cuts necessary untilV is �nally picked, and letX i , 1 � i � L (T), be the sequence of
nodes chosen. The following identity in distribution has been already shown in [7] in the special case of
the uniform Cayley tree:

L (T) d= Card f vertices on the path from the root toVg: (4.7)

In fact, (4.7) is an immediate consequence of the following result. In the above cutting procedure, we
connect the rejected parts, which are subtrees aboveX i just before the cutting, by drawing an edge
betweenX i andX i +1 , i = 1 ; 2; � � � ; L (T) � 1 (see Figure4.1 in Section4.4). We obtain another tree
on the same vertex set, which contains a path from the �rst cutX 1 to the random nodeV that we were
trying to isolate. We denote bycut(T; V) this tree which (partially) encodes the isolating process ofV .
We prove in Section4.4that we have

(cut( T; V); V ) d= ( T; V): (4.8)

This identity between the pairs of trees contains a lot of information about the distributional structure of
thep-trees, and our aim is to obtain results similar to (4.8) for ICRTs. The method we use relies on the
discrete approximation of ICRT byp-trees, and a �rst step consists in de�ning the appropriate cutting
procedure for ICRT.

In the case ofp-trees, one may pick the nodes ofT in the order in which they appear in a Poisson
random measure. We do not develop it here but one should keep in mind that the cutting procedure may
be obtained using a Poisson point process onR+ � T with intensity measuredt 
 p. In particular, this
measure has a natural counterpart in the case of ICRTs, and it is according to this measure that the points
should be sampled in the continuous case.

So consider now an ICRTT . Recall that for� 6= (1 ; 0; : : : ), for each� i > 0 with i � 1, there exists
a unique point, denoted by� i , which has in�nite degree. LetL be the measure onT de�ned by

L (dx) := � 2
0`(dx) +

X

i � 1

� i � � i (dx); (4.9)

which is almost surely� -�nite (Lemma 4.22). Proving thatL is indeed the relevant cutting measure (in a
sense made precise in Proposition4.23) is the topic of Section4.7. Conditional onT , let P be a Poisson
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point process onR+ � T of intensity measuredt 
 L (dx) and letV be a� -point onT . We consider
the elements ofP as the successive cuts onT which try to isolate the random pointV . For eacht � 0,
de�ne

Pt = f x 2 T : 9 s � t such that(s; x) 2 Pg;

and letTt be the part ofT still connected toV at timet, that is the collection of pointsu 2 T for which
the unique path inT from V to u does not contain any element ofPt . Clearly,Tt0 � T t if t0 � t . We set
C := f t > 0 : � (Tt � ) > � (Tt )g: Those are the cuts which contribute to the isolation ofV .

4.3.2 Tracking one node and the one-node cut tree

We construct a tree which encodes this cutting process in a similar way that the treeH = cut( T; V) en-
codes the cutting procedure for discrete trees. First we construct the “backbone”, which is the equivalent
of the path we add in the discrete case. Fort � 0, we de�ne

L t :=
Z t

0
� (Ts)ds;

and L 1 the limit ast ! 1 (which might be in�nite). Now consider the interval[0; L 1 ], together
with its Euclidean metric, that we think of as rooted at0. Then, for eacht 2 C we graftTt � n Tt , the
portion of the tree discarded at timet, at the pointL t 2 [0; L 1 ] (in the sense of the gluing introduced in
Section4.2.5). This creates a rooted real tree and we denote bycut(T ; V ) its completion. Moreover, we
can endowcut(T ; V ) with a (possibly defective probability) measure�̂ by taking the push-forward of�
under the canonical injection� from [ t2C(Tt � n Tt ) to cut(T ; V ). We denote byU the endpointL 1 of
the interval[0; L 1 ]. We show in Section4.5that

Theorem 4.4. We haveL 1 < 1 almost surely. Moreover, under(H) we have

(� n cut(Tn ; V n ); pn ; V n ) n!1�!
d;GP

(cut( T ; V ); �̂; U );

jointly with the convergence in(4.6).

Combining this with (4.8), we show in Section4.5that

Theorem 4.5.Conditional onT , U has distribution̂� , and the unconditional distribution of(cut( T ; V ); �̂ )
is the same as that of(T ; � ).

Theorems4.4and4.5 immediately entail that

Corollary 4.6. Suppose that(H) holds. Then

� nL(Tn ) n!1�!
d

L 1 ;

jointly with the convergence in(4.6). Moreover, the unconditional distribution ofL 1 is the same as that
of the distance inT between the root and a random pointV chosen according to� , given in(4.5).

4.3.3 The complete cutting procedure

In the procedure of the previous section, the fragmentation only takes place on the portions of the tree
which contain the random pointV . Following Bertoin and Miermont [30], we consider a more general
cutting procedure which keeps splitting all the connected components. The aim here is to describe the
genealogy of the fragmentation that this cutting procedure produces. For eacht � 0, Pt induces an
equivalence relation� t on T : for x; y 2 T we writex � t y if Jx; yK\ P t = ; . We denote byTx (t) the
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equivalence class containingx. In particular, we haveTV (t) = Tt . Let (Vi ) i � 1 be a sequence of i.i.d.
� -points inT . For eacht � 0, de�ne � i (t) = � (TVi (t)) . We write� #(t) for the sequence(� i (t); i � 1)
rearranged in decreasing order. In the case whereT is the Brownian CRT, the process(� #(t)) t � 0 is the
fragmentation dual to the standard additive coalescent [13]. In the other cases, however, it is not even
Markov because of the presence of those branch points� i with �xed local times� i .

As in [30], we can de�ne a genealogical tree for this fragmentation process. For eachi � 1 and
t � 0, let

L i
t :=

Z t

0
� i (s)ds;

and letL i
1 2 [0; 1 ] be the limit ast ! 1 . For each pair(i; j ) 2 N2, let � (i; j ) = � (j; i ) be the

�rst moment whenJVi ; Vj Kcontains an element ofP (or more precisely, its projection ontoT ), which is
almost surely �nite by the properties ofT andP. It is not dif�cult to construct a sequence of increasing
real treesS1 � S2 � � � � such thatSk has the form of a discrete tree rooted at a point denoted� � with
exactlyk leavesf U1; U2; � � � ; Ukg satisfying

d(� � ; Ui ) = L i
1 ; d(Ui ; Uj ) = L i

1 + L j
1 � 2L i

� ( i;j ) ; 1 � i < j � k; (4.10)

whered denotes the distance ofSk , for eachk � 1. Then we de�ne

cut(T ) := [ k� 1Sk ;

the completion of the metric space([ kSk ; d), which is still a real tree. In the case whereT is the
Brownian CRT, the above de�nition ofcut(T ) coincides with the tree de�ned by Bertoin and Miermont
[30].

Similarly, for eachpn -treeTn , we can de�ne a complete cutting procedure onTn by �rst generating
a random permutation(X n1; X n2; � � � ; X nn ) on the vertex set[n] and then removingX ni one by one.
Here the permutation(X n1; X n2; : : : ; X nn ) is constructed by sampling, fori � 1, X ni according to the
restriction ofpn to [n] n f X nj ; j < i g. We de�ne a new genealogy on[n] by makingX ni an ancestor of
X nj if i < j andX nj andX ni are in the same connected component whenX ni is removed. If we denote
by cut(Tn ) the corresponding genealogical tree, then the number of vertices in the path ofcut(Tn )
between the rootX n1 and an arbitrary vertexv is precisely equal to the number of cuts necessary to
isolate this vertexv. We have

Theorem 4.7. Suppose that(H) holds. Then, we have
�
� n cut(Tn ); pn

� n!1�!
d;GP

�
cut(T ); �

�
;

jointly with the convergence in(4.6). Here,� is the weak limit of the empirical measures1
k

P k� 1
i =0 � Ui ,

which exists almost surely conditional onT .

From this, we show that

Theorem 4.8. Conditionally onT , (Ui ; i � 0) has the distribution as a sequence of i.i.d. points of
common law� . Furthermore, the unconditioned distribution of the pair(cut( T ); � ) is the same as
(T ; � ).

In general, the convergence of thepn -trees to the ICRT in (4.6) cannot be improved to Gromov–
Hausdorff (GH) topology, see for instance [14, Example 28]. However, when the sequence(pn )n� 1 is
suitably well-behaved, one does have this stronger convergence. (This is the case for example withpn

the uniform distribution on[n], which gives rise to the Brownian CRT, see also [15, Section 4.2].) In such
cases, we can reinforce accordingly the above convergences of the cut trees in the Gromov–Hausdorff
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topology. Note however that a "reasonable" condition onp ensuring the Gromov–Hausdorff convergence
seems hard to �nd. Let us mention a related open question in [15, Section 7], which is to determine
a practical criterion for the compactness of a general ICRT. Writing! d;GHP for the convergence in
distribution with respect to the Gromov–Hausdorff–Prokhorov topology (see Section4.2), we have

Theorem 4.9. Suppose thatT is almost surely compact and suppose also asn ! 1 ,

�
� nTn ; pn

� n!1�!
d;GHP

�
T ; �

�
: (4.11)

Then, jointly with the convergence in(4.11), we have

�
� n cut(Tn ; V n ); pn

� n!1�!
d;GHP

�
cut(T ; V ); �̂

�
;

�
� n cut(Tn ); pn

� n!1�!
d;GHP

�
cut(T ); �

�
:

4.3.4 Reversing the cutting procedure

We also consider the transformation that “reverses” the construction of the treescut(T ; V ) de�ned above.
Here, by reversing we mean to obtain a tree distributed as the primal treeT , conditioned on the cut tree
being the one we need to transform. So for an ICRT(H ; dH ; �̂ ) and a random pointU sampled according
to its mass measurê� , we should construct a treeshu�( H ; U) such that

(T ; cut(T ; V )) d= (shu�( H ; U); H ): (4.12)

This reverse transformation is the one described in [7] for the Brownian CRT. ForH rooted atr (H ), the
path betweenJr (H); UKthat joinsr (H ) to U in H decomposes the tree into countably many subtrees of
positive mass

Fx = f y 2 H : U ^ y = xg;

whereU ^ y denotes the closest common ancestor ofU and y, that is the unique pointa such that
Jr (H ); UK\ Jr (H ); yK = Jr (H); aK. Informally, the treeshu�( H ; U) is the metric space one obtains
from H by attaching eachFx of positive mass at a random pointAx , which is sampled proportionally
to �̂ in the union of theFy for which dH (U; y) < d H (U; x). We postpone the precise de�nition of
shu�( H ; U) until Section4.6.1.

The question of reversing the complete cut treecut(T ) is more delicate and is the subject of Chapter
5. There we restrict ourselves to the case of a Brownian CRT: forT andG Brownian CRT we construct
a treeshu�( G) such that

(T ; cut(T )) d= (shu�( G); G):

We believe that the construction there is also valid for more general ICRTs, but the arguments we use
there strongly rely on the self-similarity of the Brownian CRT.

Remarks. i.Theorem4.5generalizes Theorem 1.5 in [7], which is about the Brownian CRT. The special
case of Theorem4.4 concerning the convergence of uniform Cayley trees to the Brownian CRT is also
found there.

ii. When T is the Brownian CRT, Theorem4.8 has been proven by Bertoin and Miermont [30].
Their proof relies on the self-similar property of the Aldous–Pitman's fragmentation. They also proved
a convergence similar to the one in Theorem4.7 for the conditioned Galton–Watson trees with �nite-
variance offspring distributions. Let us point out that their de�nition of the discrete cut trees is distinct
from ours, and there is no “duality” at the discrete level for their de�nitions. Very recently, a result
related to Theorem4.7 has been proved for the case of stable trees [46] (with a different notion of
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discrete cut tree). Note also that the convergence of the cut trees proved in [30] and [46] is with respect
to the Gromov–Prokhorov topology, so is weaker than the convergence of the corresponding conditioned
Galton–Watson trees, which holds in the Gromov–Hausdorff–Prokhorov sense. In our case, the identities
imply that the convergence of the cut trees is as strong as that of thepn -trees (Theorem4.9).

iii. Abraham and Delmas [5] have shown an analog of Theorem4.5 for the Lévy tree, introduced in
[83]. In passing Aldous et al. [15] have conjured that a Lévy tree is a mixture of the ICRTs where the
parameters� are chosen according to the distribution of the jumps in the bridge process of the associated
Lévy process. Then the similarity between Theorem4.5and the result of Abraham and Delmas may be
seen as a piece of evidence supporting this conjecture.

4.4 Cutting down and rearranging ap-tree

As we have mentioned in the introduction, our approach to the theorems about continuum random trees
involves taking limits in the discrete world. In this section, we prove the discrete results about the
decomposition and the rearrangement ofp-trees that will enable us to obtain similar decomposition and
rearrangement procedures for inhomogeneous continuum random trees.

4.4.1 Isolating one vertex

As a warm up, and in order to present many of the important ideas, we start by isolating a single node.
Let T be ap-tree and letV be an independentp-node. We isolate the vertexV by removing each time a
random vertex ofT and preserving only the component containingV until the time whenV is picked.

THE 1-CUTTING PROCEDURE AND THE1-CUT TREE. Initially, we haveT0 = T, and an independent
vertexV . Then, fori � 1, we choose a nodeX i according to the restriction ofp to the vertex setv(Ti � 1)
of Ti � 1. We de�neTi to be the connected component of the forest induced byTi � 1 on v(Ti � 1) n f X i g
which containsV . If Ti = ? , or equivalentlyX i = V , the process stops and we setL = L(T) = i .
Since at least one vertex is removed at every step, the process stops in timeL � n.

As we destruct the treeT to isolateV by iteratively pruning random nodes, we construct a tree
which records the history of the destruction, that we call the1-cut tree. This1-cut tree will, in particular,
give some information about the number of cuts which were needed to isolateV . However, we remind
the reader that this number of cuts is not our main objective, and that we are after a more detailed
correspondence between the initial tree and its1-cut tree. We will prove that these two trees aredual in
a sense that we will make precise shortly.

By construction,(Ti ; 0 � i < L ) is a decreasing sequence of nonempty trees which all containV ,
and(X i ; 1 � i � L ) is a sequence of distinct vertices ofT = T0. For1 � i � L , we setFi = Ti � 1 n Ti ,
that is,Fi is the graph on the vertex setv(Ti � 1) n v(Ti ) whose edge set is a subset of the edge set of
Ti � 1. It is not dif�cult to see thatFi is a tree containingX i , which we see as the root ofFi . Besides, for
each1 � i < L , X i 6= V and there is a neighborUi of X i on the path betweenX i andV in Ti � 1. Then
Ui 2 Ti and we seeTi as rooted atUi .

When the procedure stops, we have a vector(Fi ; 1 � i � L ) of subtrees ofT which together span
all of [n]. We may re-arrange them into a new tree, the1-cut tree corresponding to the isolation ofV in
T. We do this by connecting their rootsX 1; X 2; : : : ; X L into a path (in this order). The resulting tree,
denoted byH is seen as rooted atX 1, and carries a distinguished path or backboneJX 1; VK, which we
denote byS, and distinguished pointsU1; : : : ; UL � 1.

Note that fori = 1 ; : : : ; L � 1, we haveUi 2 Ti . Equivalently,Ui lies in the subtree ofH rooted
at X i +1 . In general, for a treet 2 Tn andv 2 [n], let x1; : : : ; x` = v be the nodes ofSpan(t; v). We
de�ne U(t; v) as the collection of vectors(u1; : : : ; u` � 1) of nodes of[n] such thatui 2 Sub(t; x i +1 ), for
1 � i < ` . Then by construction, for ah 2 Tn , conditional onH = h andV = v, we haveL equal to the
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Figure 4.1 –The re-organization of the tree in the one-cutting procedure: on the left the initial treeT,
on the rightH and the marked nodesU1; : : : ; U4 where to reattachX 1; : : : ; X 4 in order to recoverT.

number of the nodes inSpan(h; v) and(U1; : : : ; UL � 1) 2 U(h; v) with probability one. ForA � [n],
we writep(A) :=

P
i 2 A pi .

Lemma 4.10. Let T be ap-tree on[n], andV be an independentp-node. Leth 2 Tn , andv 2 [n] for
whichSpan(h; v) is the path made of the nodesx1; x2; : : : ; x` � 1; x` = v. Let (u1; : : : ; u` � 1) 2 U(h; v)
andw 2 [n]. Then we have

P (H = h; V = v; r (T) = w; Ui = ui ; 1 � i < ` ) = � (h) �
Y

1� i<`

pu i

p(Sub(h; x i +1 ))
� pv � pw :

In particular, (H; V ) � � 
 p.

As a direct consequence of our construction ofH , L is the number of nodes of the subtreeSpan(H; V ),
which we write# Span( H; V ). So Lemma4.10entails immediately that

Proposition 4.11. LetT be ap-tree andV be an independentp-node. Then

L d= # Span( T; V):

Proof of Lemma4.10. By construction, we have

f H = h; V = vg � f X 1 = x1; � � � ; X ` � 1 = x` � 1; X ` = v; L = `g;

and the sequence(Fi ; 1 � i � `) is precisely the sequence of subtreesf i , of h rooted atx i , 1 � i � `, that
are obtained when one removes the edgesf x i ; x i +1 g, 1 � i < ` (the edges of the subgraphSpan(h; v)).
Furthermore, given thatL = ` and the sequence of cut verticesX i = x i , 1 � i < ` , in order to recover
the initial treeT it suf�ces to identify the verticesUi , 1 � i < ` , for which there used to be an edge
f X i ; Ui g (which yields the correct adjacencies) and the root ofT. Note thatUi is a node ofTi , 1 � i < ` .
However, by construction, given thatH = h andV = v, the set of nodes ofTi is precisely the set of
nodes ofSub(h; x i +1 ), the subtree ofh rooted atx i +1 .

For u = ( u1; � � � ; u` � 1) 2 U(h; v), de�ne � (h; v; u) as the tree obtained fromh by removing the
edges ofSpan(h; v), and reconnecting the pieces by adding the edgesf x i ; ui g, for all the edgeshx i ; x i +1 i
in Span(h; v). (In particular, the number of edges is unchanged.) We regard� (h; v; u) as a tree rooted
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at r = x1, the root ofh. The the treeT may be recovered by characterizingT r , the treeT rerooted atr ,
and the initial rootr (T). We have:

f H = h; V = v; r (T) = w; Ui = ui ; 1 � i < ` g

= f T r = � (h; v; u); r (T) = w; X i = x i ; 1 � i � `g:

It follows that, for any nodesu1; u2; : : : ; u` � 1 as above, we have

P (H = h; V = v; r (T) = w; Ui = ui ; 1 � i < ` )

= P (T = � (h; v; u)w ; V = v; X i = x i ; 1 � i � `)

= � (� (h; v; u)w) � pv �
Y

1� i � `

px i

p(Sub(h; x i ))
:

Now, by de�nition, the only nodes that get their (in-)degree modi�ed in the transformation fromh to
� (h; v; u) areui , x i +1 , 1 � i < ` : every suchx i +1 gets one less in-edge whileui gets one more. The
re-rooting atw then only modi�es the in-degrees of the extremities of the path that is reversed, namely
x1 = r andw. It follows that

� (� (h; v; u)w) = � (h) �
Y

1� i<`

pu i

px i +1

�
pw

px1

:

Sincep(Sub(h; x1)) = 1 , we have

P (H = h; V = v; r (T) = w; Ui = ui ; 1 � i < ` ) = � (h) �
Y

1� i<`

pu i

p(Sub(h; x i +1 ))
� pv � pw ;

which proves the �rst claim. Summing over all the choices foru = ( u1; u2; : : : ; u` � 1) 2 U(h; v), and
w 2 [n], we obtain

P (H = h; V = v) =
X

w2 [n]

X

u2 U(h;v )

� (h) �
Y

1� i<`

pu i

p(Sub(h; x i +1 ))
� pv � pw

= � (h) � pv �
X

u=( u1 ;��� ;u ` � 1 ):
u i 2 Sub(h;x i +1 );1� i<`

pu1

p(Sub(h; x2))
� � �

pu` � 1

p(Sub(h; x ` ))

= � (h) � pv ;

which completes the proof.

THE REVERSE1-CUTTING PROCEDURE. We have transformed the treeT into the treeH , by some-
what “knitting” a path between the �rst picked randomp-nodeX 1 and the distinguished nodeV . This
transform is reversible. Indeed, it is possible to “unknit” the path betweenV and the root ofH , and
reshuf�e the subtrees thereby created in order to obtain a new tree~T, distributed asT and in whichV
is an independentp-node. Knowing theUi , one could do this exactly, and recover the adjacencies ofT
(recoveringT also requires the information about the rootr (T) which has been lost). De�ning a reverse
transformation reduces to �nding the joint distribution of(Ui ) andr (T), which is precisely the statement
of Lemma4.10, so that the following reverse construction is now straightforward.

Let h 2 Tn , rooted atr and letv be a node in[n]. We think ofh as the tree that was obtained by the
1-cutting procedurecut(T; v), for some initial treeT. Suppose thatSpan(h; v) consists of the vertices
r = x1; x2; : : : ; x` = v. Removing the edges ofSpan(h; v) from h disconnects it intò connected
components which we see as rooted atx i , 1 � i � `. For w 2 Span� (h; v) = Span(h; v) n f r g,

105



sample a nodeUw according to the restriction ofp to Sub(h; w). Let U = ( Uw ; w 2 Span� (h; v)) be
the obtained vector. ThenU 2 U(h; v). We then de�neshu�( h; v) to be the rooted tree which has the
adjacencies of� (h; v; U ), but that is re-rooted at an independentp-node.

It should now be clear that the1-cutting procedure and the reshuf�ing operation we have just de�ned
are dual in the following sense.

Proposition 4.12(1-cutting duality). LetT bep-tree on[n] andV be an independentp-node. Then,

(shu�( T; V); T; V) d= ( T; cut(T; V); V ):

In particular, (shu�( T; V); V ) � � 
 p.

Note that for the joint distribution in Proposition4.12, it is necessary to re-root at another independent
p-node in order to have the claimed equality. Indeed,T and� (T; V; U ) have the same root almost surely,
while T andcut(T; V) do not (they only have the same root with probability

P
i � 1 p2

i < 1).

Proof of Proposition4.12. Let H = cut( T; V) be the tree resulting from the cutting procedure. Let
L = # Span( H ; V ). For 1 � i < L , we de�ned nodesUi , which used to be the neighbors ofX i in
T. Forw 2 Span� (H ; V ), we letUw = Ui if w = X i +1 , and letU be the corresponding vector. Then
writing r̂ = r (T), with probability one, we have

T = � (H; V ; U ) r̂ :

By Lemma4.10, U 2 U(H; V ) and conditional onH andV , Uw , w 2 Span� (H; V ) andr̂ = r (T) are
independent and distributed according to the restriction ofp to Sub(H; w) andp, respectively. So this
coupling indeed gives thatT = � (H; V ; U ) r̂ is distributed asshu�( H; V ), conditional onH . Since in
this coupling(shu�( H; V ); T; V) is almost surely equal to(T; H; V ), the proof is complete.

Remark. Note that the shuf�e procedure would permit to obtain the original treeT exactly if we were to
use some information that might be gathered as the cutting procedure goes on. In this discrete case, this
is rather clear that one could do this, since the shuf�e construction only consists in replacing some edges
with others but the vertex set remains the same. This observation will be used in Section4.6 to prove a
similar statement for the ICRT. There it is much less clear and the result is slightly weaker: it is possible
to couple the shuf�e in such a way that the tree obtained is measure-isometric to the original one.

4.4.2 Isolating multiple vertices

We de�ne a cutting procedure analogous to the one described in Section4.4.1, but which continues until
multiple nodes have been isolated. Again, we letT be ap-tree and, for somek � 1, let V1; V2; � � � ; Vk

bek independent vertices chosen according top (so not necessarily distinct).

THE k-CUTTING PROCEDURE AND THEk-CUT TREE. We start with� 0 = T. Later on,� i is meant to
be the forest induced byT on the nodes that are left. For each timei � 1, we pick a random vertexX i

according top restricted tov(� i � 1), the set of the remaining vertices, and remove it. Then among the
connected components ofT n f X 1; � � � ; X i g, we only keep those containing at least one ofV1; � � � ; Vk .
We stop at the �rst time when allk verticesV1; : : : ; Vk have been chosen, that is at time

L k := inf f i � 1 : f V1; : : : ; Vkg � f X 1; : : : ; X i gg:

For 1 � ` � k and for i � 0, we denote byT `
i the connected component ofT n f X 1; X 2; � � � ; X i g

containingV` at time i , or T `
i = ? if V` 2 f X 1; : : : ; X i g. Then � i is the graph consisting of the

connected componentsT `
i , ` = 1 ; : : : ; k.
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Figure 4.2 –The decomposition of the tree when removing the pointX i from the connected component
of � i which containsV1; V2 andV3.

Fix some` 2 f 1; 2; : : : ; kg, and suppose that at timei � 1, we haveX i 2 T `
i � 1. If X i = V` , then

T `
i = ? and we de�neFi = T `

i � 1, re-rooted atX i = V` . Otherwise,X i 6= V` and there is a �rst node
U`

i on the path betweenX i andV` in T `
i � 1. ThenU`

i 2 T `
i , and we seeT `

i as rooted atU`
i . Note that it

is possible thatT j
i � 1 = T `

i � 1, for j 6= `, and that removingX i may separateV` from Vj . Removing from
� i � 1 the edgesf X i ; U`

i g, for 1 � ` � k such thatT `
i 3 X i , isolatesX i from the nodesV1; : : : ; Vk , and

we de�neFi as the subtree ofT induced on the nodes in� i � 1 n � i ; so thatFi is the portion of the forest
� i � 1 which gets discarded at timei , which we see as rooted atX i .

Consider the set of effective cuts which affect the size ofT `
i :

Ek
` = f x 2 [n] : there existsi � 1; such thatX i = x 2 T `

i � 1g;

and note thatEk
1 [ E k

2 [ � � � [ E k
k = f X i : 1 � i � L kg. Let Sk , the k-cutting skeleton, be a tree

on Ek
1 [ � � � [ E k

k that is rooted atX 1, and such that the vertices on the path fromX 1 to V` in Sk

are precisely the nodes ofEk
` , in the order given by the indices of the cuts. So if we viewSk as a

genealogical tree, then in particular, for1 � j; ` � k, the common ancestors ofVj andV` are exactly
the ones inEk

j \ E k
` . The treeSk constitutes thebackboneof a tree on[n] which we now de�ne. For

everyx 2 Sk , there is a uniquei = i (x) � 1 such thatx = X i . For that integeri we have de�ned
a subtreeFi which containsX i = x. We appendFi to Sk at x. Formally, we consider the tree on[n]
whose edge set consists of the edges ofSk together with the edges of allFi , 1 � i � L k . Furthermore,
the tree is considered as rooted atX 1. Then this tree is completely determined byT, V1; : : : ; Vk , and
the sequenceX := ( X i ; i = 1 ; : : : ; L k ), and we denote this tree by� (T; V1; : : : ; Vk ; X ) when we want
to emphasize the dependence inX , or more simplycut(T; V1; : : : ; Vk ) (in which it is implicit that the
cutting sequence used in the transformation is such that for everyi � 1, X i is ap-node in� i � 1). Clearly,
if Hk = cut( T; V1; : : : ; Vk ) thenSk = Span(Hk ; V1; : : : ; Vk ).

It is convenient to de�ne acanonical (total) order� on the vertices ofSk . It will be needed later on in
order to de�ne the reverse procedure. For two nodesu; v in Sk , we say thatu � v if either u 2 JX 1; vK,
or if there exists̀ 2 f 1; : : : ; kg such thatu 2 Span(Sk ; V1; : : : ; V` ) but v 62Span(Sk ; V1; : : : ; V` ).

A USEFUL COUPLING. It is useful to see all the treescut(T; V1; : : : ; Vk ) on the same probability space,
and provide a natural but crucial coupling for which the sequence(Sk ) is increasing ink. LetYi , i � 1, be
a sequence of i.i.d.p-nodes. Fork � 1, we de�ne an increasing sequence� k as follows. Let� k (1) = 1 .
Suppose that we have already de�nedX k

1 ; : : : ; X k
i � 1. Let � k

i � 1 be the collection of connected components
of T n f X k

1 ; : : : ; X k
i � 1g which contain at least one ofV1; : : : ; Vk . Let

� k (i ) = inf f j > � k (i � 1) : Yj 2 � k
i � 1g;

and de�neX k
i = Y� k (i ) . Then, for everyk, X k

i , i � 1, is a sequence of nodes sampled according to the
restriction ofp to � k

i � 1, so thatX k := ( X k
i ; i � 1) can be used to de�necut(T; V1; : : : ; Vk ), k � 1, in a
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consistent way by setting

cut(T; V1; : : : ; Vk ) = � (T; V1; : : : ; Vk ; X k ):

Suppose that the treesHk := cut( T; V1; : : : ; Vk ), k � 1, are constructed using the coupling we have just
described. By convention letH0 = T andSpan(T; ? ) = ? .

Lemma 4.13. LetSk = Span(Hk ; V1; : : : ; Vk ). Then,Sk � Sk+1 and

Sk = Span(Sk+1 ; V1; : : : ; Vk ):

Proof. Let T `
i be the connected component of� k

i which containsV` . Let T̂ `
j be the connected component

of T n f Y1; Y2; : : : ; Yj g which containsV` . Then, for` � k, we have

Ek
` = f x : 9i � 1; x = X k

i 2 T `
i � 1g = f y : 9j � 1; y = Yj 2 T̂ `

j � 1g;

so thatEk
` does not depend onk. ThenSk is the tree onEk

1 [ � � � [ E k
k such that the nodes on the path

Span(Sk ; V` ) are precisely the nodes ofEk
` , in the order given by the cut sequenceX k . It follows that

Sk � Sk+1 and more precisely thatSk = Span(Sk+1 ; V1; : : : ; Vk ).

Remark. The coupling we have just de�ned justi�es anordered cutting procedurewhich is very similar
to the one de�ned in [7]. Suppose that, for somej; ` 2 f 1; : : : ; kg we havex 2 Ek

j n Ek
` andy 2 Ek

` n Ek
j .

Write ( ~X i ; i � 1) for the sequence in which we have exchanged the positions ofx andy. Then the trees
T k

i , i � maxf m : X m = x or yg are unaffected if we replace(X i ; i � 1) by ( ~X i ; i � 1) in the cutting
procedure. In particular, if we are only interested in the �nal treeHk , we can always suppose that there
exist numbers0 = m0 < m 1 < m 2 < � � � < m k � n such that, for1 � ` � k, and ifV` 62 fV1; : : : ; Vj g,
we have

Ek
` n

[

1� j<`

Ek
j = f X i : m` � 1 < i � m`g:

However, we prefer the coupling over the reordering of the sequence since it does not involve any modi-
�cation of the distribution of the cutting sequences.

Let ~Tk be the subtree ofHk� 1 n Span(Hk� 1; V1; : : : ; Vk� 1) = Hk� 1 n Sk� 1 which containsVk ; we
agree that~Tk = ? if Vk 2 Span(Hk� 1; V1; : : : ; Vk� 1).

Lemma 4.14.LetT be ap-tree and letVk , k � 1, be a sequence of i.i.d.p-nodes. Then, for eachk � 1:

i. Let V � [n] with V 6= ? , then conditional onV` 2 v( ~Tk ) = V , the pair( ~Tk ; V` ) is distributed as
� jV 
 pjV , and is independent of(Hk� 1 n V ; V1; � � � ; Vk� 1).

ii. The joint distribution of(Hk ; V1; � � � ; Vk ) is given by� 
 p
 k .

Proof. We proceed by induction onk � 1. Let ~Rk denote the tree induced byHk on the vertex set
[n] n v( ~Tk ). For the base casek = 1 , the �rst claim is trivial since~T1 = T, and the second is exactly the
statement of Lemma4.10.

Given the two subtrees~Tk and ~Rk , it suf�ces to identify where the tree~Tk is grafted on~Rk in order
to recover the treeHk� 1. By construction, the edge connecting~Tk and ~Rk in Hk� 1 binds the root of~Tk

to a node ofSpan(~Rk ; V1; : : : ; Vk� 1). Let t 2 TV , r 2 T[n]nV , vk 2 V andvi 2 [n] n V for 1 � i < k .
Write vk� 1 = f v1; : : : ; vk� 1g. For a given nodex 2 Span(r ; vk� 1), let j x (r; t ) (the joint of r andt at
x) be the tree obtained fromt andr by adding an edge betweenx and the root oft. By the induction
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Figure 4.3 – In order to obtaincut(T; V1; : : : ; Vk ) from cut(T; V1; : : : ; Vk� 1), it suf�ces to transform
the subtree~Tk of cut(T; V1; : : : ; Vk� 1) n Sk� 1 which containsVk .

hypothesis,(Hk� 1; V1; � � � ; Vk� 1) is distributed like ap-tree together withk � 1 independentp-nodes.
FurthermoreVk is independent of(Hk� 1; V1; � � � ; Vk� 1). It follows that

P( ~Tk = t; ~Rk = r ; Vi = vi ; 1 � i � k)

=
X

x2 Span(r ;v k � 1 )

P(Hk� 1 = j x (r; t ); Vi = vi ; 1 � i � k)

=
X

x2 Span(r ;v k � 1 )

Y

i 2 V

pCi (t )
i �

Y

j 2 [n]nV

pCj (r )
j � px �

Y

1� i � k

pvi

=
Y

i 2 V

pCi (t )
i � pvk �

Y

j 2 [n]nV

pCj (r )
j � p(Span(r ; vk� 1)) �

Y

1� i<k

pvi :

By summing overt andr and applying Cayley's multinomial formula, we deduce that conditional on
v( ~Tk ) = V 6= ? , ( ~Tk ; Vk ) is independent of( ~Rk ; V1; : : : ; Vk� 1) and distributed according to� jV 
 pjV ,
which establishes the �rst claim fork.

Now, conditional on the eventf Vk 2 Sk� 1g, the vertexVk is distributed according to the restriction
of p to Sk� 1. In this case,Hk = Hk� 1 so that by the induction hypothesis

on f Vk 2 Sk� 1g; (Hk ; V1; : : : ; Vk ) � � 
 pk� 1 
 pjSk � 1 : (4.13)

On the other hand, ifVk 62Sk� 1, thenv( ~Tk ) 6= ? and conditional onv( ~Tk ) = V , we have( ~Tk ; Vk ) �
� jV 
 pjV . In that case,Hk is obtained fromHk� 1 by replacing~Tk by cut( ~Tk ; Vk ). We have already
proved that, in this case,( ~Tk ; Vk ) is independent of~Rk , and Lemma4.10ensures that the replacement
does not alter the distribution. In other words,

on f Vk 62Sk� 1g; (Hk ; V1; : : : ; Vk ) � � 
 pk� 1 
 pj[n]nSk � 1
: (4.14)

SinceVk � p is independent of everything else, conditional onSk� 1, the eventf Vk 2 Sk� 1g occurs
precisely with probabilityp(Sk� 1), so that putting (4.13) and (4.14) together completes the proof of the
induction step.

Corollary 4.15. Suppose thatT is a p-tree and thatV1; : : : ; Vk are k � 1 independentp-nodes, also
independent ofT. Then,

Sk
d= Span(T; V1; : : : ; Vk ):

In particular, the total number of cuts needed to isolateV1; : : : ; Vk in T is distributed as the number of
vertices ofSpan(T; V1; : : : ; Vk ).
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