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M. Jean-Guillaume Dumas Professeur Univ. Jospeh Fourier, Grenoble
M. Jean-Charles Faugère Directeur de recherches Inria, Paris - Rocquencourt
M. Mark Giesbrecht Professeur Univ. of Waterloo, ON. Canada
Mme. Laura Grigori Directrice de recherches Inria, Paris - Rocquencourt
M. Erich L. Kaltofen Professeur North Carolina State Univ., USA
Mme. Brigitte Plateau Professeure Grenoble INP





Contents

Introduction 5

1 Linear Algebra 7
1.1 Design principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Matrix multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Design of fgemm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Memory efficient schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Gaussian elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 Block algorithm variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Modular reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Experiments in parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Rank profiles and echelon forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.1 Rank profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.2 Design of Rank profile revealing algorithms . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.3 Rank deficient LU decomposition algorithm bestiary and reductions . . . . . . . . . 21
1.4.4 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Characteristic Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.1 Characteristic polynomial of dense matrices over a field . . . . . . . . . . . . . . . . 25
1.5.2 Frobenius normal form and a transformation matrix . . . . . . . . . . . . . . . . . . 27

2 Coding Theory 29
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.2 Linear recurring sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.3 Approximation problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Dense polynomial evaluation codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.1 Reed-Solomon codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Parameter oblivious decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Rational function codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 The code and its minimum distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 A unique decoding algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.1 Collaborative decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.2 Application to fault tolerant exact linear system solver . . . . . . . . . . . . . . . . . 40

2.5 Over the integers and rationals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.1 CRT codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.2 Rational number codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Sparse polynomial evaluation codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6.1 Sparse polynomial evaluation codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6.2 Unique decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3



Contents 4

2.6.3 List decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.4 Towards better minimum distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Perspectives 53

Index 55

Publication list 57

References 59
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Introduction

Computer algebra is about computing exactly with mathematical objects, such as rational numbers, poly-
nomials, or finite field elements. It has developed, motivated by a wide range of applications, ranging
from symbolic manipulation, algebraic cryptanalysis, computational number theory, linear programming,
formal proof verification, . . .

In this process, it has benefited from algorithms and techniques of various other fields: Wiedemann
algorithm [Wie86], a breakthrough in solving sparse linear systems over a finite field is a great illustration,
as it combines an adaptation of the iterative Krylov methods from numerical linear algebra, and the
Berlekamp/Massey algorithm developed in coding theory to efficiently decode Reed-Solomon codes.

These interactions have happened, since then, in both ways: recent progresses in polynomial lattice re-
duction developed in computer algebra have proven useful for the list decoding of algebraic codes [Cho+14];
symbolic-numeric approaches and iterative refinement combine exact and approximate computations to
improve the accuracy of numerical computations [GSW12] or produce exact certificates of numerical global
optimization problems [Kal+12].

This monograph summarizes our contribution to the design of high performance computer algebra
which naturally crosses the border between those three areas: exact and numerical linear algebra overlap
in the big picture, but also can diverge in interesting ways; we will also investigate coding theory to design
fault tolerant parallelizations. The focus is on efficiency in practice: improvement at every level are studied,
including the asymptotic time and space complexities, their leading constants, but also implementation
techniques to better harness the various layers of parallelization in modern computer architectures: from
SIMD instructions to multi-core and multi-processor shared memory parallelism. At this early stage, we
still did not address the design for distributed computation in its specificites, even if it shares the care
of minimizing communications taken into account in the shared memory context. The implementations,
which we refer to, are made available in the mainstream distribution of the linear algebra libraries we
contribute to: fflas-ffpack [FFL14] and LinBox [Lin12]. These routines are being used in a variety of
contexts, and serve as linear algebra kernels for the general purpose open-source mathematical software
Sage [Ste+14].

Our work has been vastly supported by the collaboration framework of the HPAC project (High Perfor-
mance Algebraic Computing, ANR 11 BS02 013), funding the Ph.D. program of Ziad Sultan, co-supervised
by Jean-Guillaume Dumas and myself. Ziad Sultan’s research is on the design of efficient parallel dense
exact linear algebra kernels. He contributed to most algorithmic and implementation aspects of the parallel
gaussian elimination and the computation of rank profiles that will be presented here. Our collaboration
with Erich Kaltofen on rational function and sparse evaluation codes was supported by the QOLAPS Inria
associate team.

Notations

For a field K, K[X] denotes the ring of univariate polynomials over K and K[X]≤d, the sub-ring of such
polynomials with degree less or equal than d. The ring of m × n matrices over K is denoted by Km×n.
Finally, the notation Zm represents the set of integers between 0 and m− 1, viewed as the representatives
of the congruence classes of Z/mZ. The arithmetic over these sets is that of Z/mZ.
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Model of computation, complexity and computation speed
We will express the time and space complexities of algorithms informally without specifying rigorously the
computational model, but bearing in mind the RAM and PRAM models. Over a finite field, we usually
consider field operations as atomic and therefore express the time complexity in terms of number of field
operations. Over ring or fields of variable size, we use bit-complexity for Z and Q and for K[X] and K(X),
we count operations over K.

We denote by M(n) the number of field operations required to multiply two degree n polynomials over
a field and by MM(n) = O(nω) the number of field operations to multiply two n× n matrices over a field.
The exponent ω stands for any feasible exponent for which an algorithm exist. The currently best known
value is ω = 2.3728639 [LeG14]. It slightly differs from the definition in [BCS97] where the complexity
exponent for a problem is defined as an infinimum over all feasible exponents. Indeed, the latter definition
does not distinguish the presence of logarithmic factors in a big-O complexity, which we will care about.
We recall that the soft-O notation f = Õ (g) means f = O(g logα g) for some α ≥ 0, conveniently absorbing
logarithmic and poly-logarithmic factors arising e.g. from FFT based fast integer or polynomial arithmetic.

Lastly, we will often illustrate the efficiency of a linear algebra implementation by presenting com-
putation speed rather than time, as this allows to represent and compare efficiency on large ranges of
dimensions. We use the effective Gfops (Giga field operations per second) metric defined as Gfops =
# of field ops using classic matrix product

time . This is 2mnk
time for the product of an m × k by a k × n matrix, and

2n3

3time for the Gaussian elimination of a full rank n× n matrix. We note that the effective Gfops are only
true Gfops (consistant with the Gflops of numerical computations) when the classic matrix multiplication
algorithm is used. Still this metric allows us to compare all algorithms on a uniform measure: the inverse
of the time, normalized by an estimate of the problem size; the goal here is not to measure the bandwidth
of our usage of the processor’s arithmetic instructions.



Chapter 1
Linear Algebra

1.1 Design principles
Our contribution to the development of exact linear algebra algorithmic and implementations, reported in
this chapter, is based the following thesis:

Efficient implementations in exact linear algebra are obtained by making effective the theoretical
algorithmic reductions used in complexity analysis.

Reductions. Before the rise of asymptotically fast linear algebra algorithms, most computations over
a field shared the same time complexity O(n3) using often unrelated algorithms (matrix multiplication,
Gaussian elimination for solving linear systems, QR decomposition for eigenvalue problems, Danilevskĭi’s
elimination for the characteristic polynomial, etc). The breach opened with Strassen’s O(nlog2 7) algorithm
for matrix multiplication [Str69] led to design reductions of all other computations to matrix multiplication,
for them to enjoy the same complexity. Matrix multiplication became a building block.

The same also happened for matrices with coefficients of variable size (polynomials or integers). A
first reduction based on evaluation-interpolation techniques led to complexities equal to the algebraic
complexity times the size of the output. For the determinant of an integer matrix, this amounts to n times
the cost of multiplying two such matrices. Another breach was opened with Storjohann’s algorithm [Sto03;
Sto05], reducing the bit complexity of linear system solving to essentially that of matrix multiplication:
Õ (nω log ‖A‖∞). It made way to a series of reductions of most linear algebra problems over variable
size domains: the Smith normal form, the determinant [Sto03; Sto05], computing a small null space
basis [SV05], etc, reducing their complexities by up to a factor n. Here the building block became the
linear system solving.

In black-box linear algebra, where matrices are only considered as linear operators, the minimal poly-
nomial computed by Wiedemann’s algorithm [Wie86; KS91], also became the building block to which most
other problem reduce thanks to preconditioning techniques [Che+02].

If the above thesis sounds trivial at first — as complexity analysis is first meant to quantify the
efficiency of an algorithm, and efficient implementations should therefore adhere to the asymptotically
best algorithms and use the related reductions — it still goes against a common belief, that asymptotic
complexity estimates, are no longer connected with any practicable algorithm for several reasons:

– the constants hidden by the O() notation can get so large, that the asymptotically best algorithm
will only become competitive for instances of a size that would never fit in a computer’s memory;

– high performance numerical linear algebra has developed using cubic time algorithms only, avoiding
Strassen’s sub-cubic time matrix multiplication for its lesser numerical stability.

Building blocks. The key point of this thesis is that, even when the asymptotically best algorithms
for the building blocks are not practicable, these building block problems happen to be solved by other
algorithmic variants, delivering the best efficiency in practice, thus making the whole reduction structure
relevant also for efficient implementations.
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As an example, matrix multiplication over a fixed size coefficient domain reaches near peak efficiency of
nowadays general purpose processors for it fits best with their design: repeated multiply and accumulation
operations benefit from SIMD vectorization intructions, and instruction pipelining is not interrupted by
any branching. Also, the cubic amount of computations for a quadratic amount of data ensures that the
multiple cache memory layers can be efficiently used to overlap expensive memory accesses by numerous
computations. Based on these facts, the design of dense numerical linear algebra, formerly focused on
vector operations (BLAS levels 1 [Law+79] and 2 [Don+85]), changed with the creation of the level 3
BLAS [Don+87] built around the gemm routine (GEneral Matrix Matrix multiplication) and reductions to
it.

Which reduction in practice? Still reductions in numerical dense linear algebra use block itera-
tive algorithms, as e.g. for the Gaussian elimination or the QR decomposition in LAPACK [And+90] or
PLASMA [Agu+09], and not the recursive reduction used to obtain the O(nω) complexity. Indeed, the
choice of using a cubic time matrix multiplication, for numerical stability purposes, make the recursive
reduction perform equally to any block iterative algorithm: the arithmetic cost function is associative, and
any choice of block decomposition yield the same amount of operations (the product A

[
B1B2

]
takes essen-

tially the same time as the two products AB1 and AB2 done in sequence). The block iterative reduction is
preferred for its better control over the block sizes, used for cache aware algorithms and a simpler thread
management for its parallelization. In exact dense linear algebra, the use of not only sub-cubic algorithms
such as Strassen’s [Str69], but also of delayed modular reductions make the cost no longer associative: the
larger the matrix product, the more efficient the computation. The recursive reduction therefore naturally
stands as the reduction of choice.

We summarize in figure 1.1 some of the standard problems in exact linear algebra and show their
reductions to the corresponding building blocks. References to articles or paragraphs of this monograph
point to either the theoretical reductions, or some reductions used in practice.

Making theoretical reductions effective. The key steps in making these theoretical reductions effective
will be illustrated in this chapter with our contributions:

1. producing new reduction schemes: for the computation of the characteristic polynomial of a dense
matrix (section 1.5.1), or a blackbox [R-DPS09], for the computation of the Frobenius normal form
over a field and its transformation matrix (section 1.5.2), or for the rank deficient Gaussian Elimi-
nation (section 1.4)

2. improving existing reductions efficiency by tuning the constant factor of both time and space complex-
ities: for the characteristic polynomial ([R-DPW05; R-PS07a]), rank deficient Gaussian eliminations
and echelon forms (section 1.4) or for the Hermite normal form [J-PS10],

3. fine tuning the building blocks: our work focused on dense matrix multiplication (section 1.2).

Along these lines we took more specifically care of the following aspects on both building blocks and
reductions:

memory footprint: with memory efficient scheduling of matrix multiplication algorithms [R-Boy+09],
and in-place reductions of LU decompositions [J-JPS13; R-DPS13];

amount of modular reductions: in matrix multiplications [J-DGP08] and reductions of LU decompo-
sitions [J-JPS13; R-DPS13], (section 1.3.2);

data locality: reducing distant memory accesses, and avoiding permutations [R-DPS13; R-Dum+14].

Design for parallel computing. The development of parallel versions of these implementations chal-
lenges the above design based on reductions. Some building blocks, like matrix multiplication over a finite
field, are easily parallelized and scale nicely with the number of processors, but others, like the linear sys-
tem solving over the integers, will less likely remain as efficient in parallel. Moreover, even when building
blocks perform well in parallel, the reduction scheme of other computations to it often have a rather long
critical path and plugging parallel building blocks to them, yields a poor efficiency. On the other hand,
the best parallel algorithms in theory are still rarely of any relevance for practical implementations, as
they often involve an asymptotically large amount of processors.
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HNF(Z)

Det(Z)

LinSys(Z)

MM(Z)

SNF(Z)

Det(Zp)

LU(Zp) CharPoly(Zp)

MinPoly(Zp)

TRSM(Zp)

MM(Zp)

LinSys(Zp)

[T-PS07b],§ 1.5.2

[IMH82; J-JPS13],§ 1.3

[R-PS07a],§ 1.5.1

[J-PS10]

[ABM99; Sto05]

[Sto05]

[Sto05]

CharPoly(Zp)

Rank(Zp)

MinPoly(Zp)

MatVecProd(Zp)

Det(Zp) LinSys(Zp)

MinPoly(Z)

CharPoly(Z)

[R-DPS09]

[Che+02]

[Wie86; KS91]

[COS86][Wie86]

[Che+02]

[R-DPS09]

Figure 1.1: Reductions of some classical problems in dense linear algebra (left) and black-box linear algebra
(right) over a field (bottom part) and over the integers (upper part).

The solution that we use is to keep using the same reduction structure as in sequential computing,
but incorporate the parallelization at a higher level than the building blocks. As an illustration, in
dense numerical linear algebra, the shared memory parallelization of LAPACK’s routine used to rely on
efficient parallelization of the BLAS building block routines. However, recent developments (as in the
PLASMA library [Agu+09]) trying to address the heterogeneity of the tasks and reduce the number of
synchronizations have given up on this approach. Instead, their design introduce the parallelization at
a coarser grain, e.g. the Gaussian elimination block algorithm, and use sequential BLAS building block
routines.

Our approach is similar in the sense that we will keep using the similar reduction structure and in-
corporate the parallelization at higher levels than the building blocks. However, as we need to keep the
reductions recursive, this means that the parallelization will not happen at only one algorithmic level but
possibly all levels. This imposes stronger constraints on the parallel programming language, and on the
management of synchronizations, as we will see in section 1.4.4. We use for our implementations the
parallel task semantic offered by the OpenMP standard. From our experiments, using tasks was never
slower than parallel loop structures, and most often delivered higher efficiency. We will denote by libgomp

the GNU implementation of the OpenMP API for multi-platform shared-memory parallel programming
in C/C++ and Fortran. Alternatively, we will also use libkomp [BGD12], a competitive implementation
of the OpenMP norm, based on the XKaapi parallel runtime [Gau+12], that reduces the overhead of the
OpenMP directives and handles more efficiently threads creation, synchronization and management.

Arithmetic. Another general guideline in the design of efficient exact linear algebra is the interplay
of various arithmetics, and reductions between them and finally to fixed size machine word arithmetic,
delivering peak efficiency. More precisely, the most frequent type of arithmetic used are the following:
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integers: using multiprecision or arbitrary precision representations, and asymptotically fast arithmetic
algorithms as proposed in the libraries gmp [Gt14] or mpir [Ht14]. In order to avoid the growth of
intermediate computations, and also to benefit from algorithms with divisions, computations with
integers may be reduced to multiple computations over word-size prime fields, using the Chinese
Remainder Theorem.

large finite field: using dedicated arithmetic, especially when the bit size is only a small factor of a
machine word-size, or using multi-precision integer arithmetic and modular reductions. The latter
can be done via Chinese remaindering and word-size finite fields; the modular reductions can be
performed over the multi-modular representation without reconstructing the integers.

word-size finite field: an element is embedded into an integer, the unique residue in {−p−1
2 . . . p−1

2 }
for elements of a prime field Zp, or using Kronecker substitution for elements of a Galois field Fpk
represented as polynomials over Zp [R-DGP02; DFS11]. Integer arithmetic is then used as long as
possible, and modular reductions are delayed until the point where the result could overflow the
capacity of the machine word. The basic type can be 32 or 64 bit integers, or single or double
precision floating point numbers. Although the representation capacity of integers on floating point
types is limited to 24, (respectively 53) bits on a 32 (resp. 64) bit word, the arithmetic units in most
of nowadays CPUs and GPUs perform more efficiently on them than on integer types [Gio14].

very small finite field using boolean word arithmetic: bit-packing (fitting n/b elements of b bits in
a word of n bits) and bit-slicing (storing n elements of b bits in b words of n bits, each of which storing
one bit position) are used. The arithmetic is then performed using boolean word instructions. Over
Z2, libraries like m4ri [ABH10] combine boolean arithmetic, pre-computed tables and the technique
of the Four Russians [Arl+70]. A generalization for small Galois field in characteristic 2 is proposed
in [Alb12]. Over Z3,Z5,Z7, bit-slicing can be combined with the binary representations proposed
in [BB09], optimizing the number of boolean operations required to perform the basic arithmetic
operations.

very small finite field using integer arithmetic: Another variant of bit-packing for slightly larger
fields is to use Kronecker substitution to store a few elements in a word, leaving room for them to
grow after a few integer arithmetic operations [DFS11]. Although efficient, this approach requires
to compress either the row or the column dimension of a matrix depending whether it is on the left
or right hand side of a multiplication, which is constraining for a general purpose building block
routine.

A typical path of reductions is e.g. multi-precision integers that reduce via Chinese Remainder Theorem
to computations with word size prime fields, which in turn use delayed modular reductions and integer
operations performed by the floating point units of the CPU.

In the remaining of this chapter we will focus on our contributions illustrating some aspects of these gen-
eral guidelines for the development of high performance exact linear algebra software. These contributions
were made concrete in the development of the fflas-ffpack [FFL14] and LinBox [Lin12] libraries.

1.2 Matrix multiplication

1.2.1 Design of fgemm
The design of matrix multiplication routines over a word size finite field, the main building block for
computations in exact dense linear algebra, illustrates the following guidelines described earlier:

1. finite field arithemtic is reduced to integer arithmetic with delayed modular reductions,

2. integer arithmetic is performed by floating point units (taking advantage of SIMD instructions),

3. computations are structured in blocks so as to optimize cache usage,

4. asymptotically fast algorithms are used.

In our early work on the topic [R-DGP02; J-DGP08], we proposed to harness the efficiency of existing
numerical linear algebra routines. The BLAS interface provides a standardized way to link against any
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implementation of a well-defined set of basic routines, including the sgemm and dgemm routines for matrix
multiplication with single and double precision floating point numbers. As it lies at the core of high perfor-
mance numerical computing, finely tuned implementations for most architectures are therefore available,
and likely will be in the near future. In this process, items 2 and 3 of the list above are forwarded to a
BLAS library.

As for item 1, several options are available to perform the reduction of a floating point number x modulo
and integer p. The instruction fmod of the cmath.h library requires an expensive library call. Instead,
storing the floating point inverse i of p, and computing x− bx× icp allows to compute several reductions
in parallel using SIMD instructions on the SSE or AVX registers. This approach, recently implemented by
Brice Boyer, Pascal Giorgi and Bastien Vialla in fflas-ffpack, has produced significant improvements,
reducing the overhead between finite field and numerical computations especially for small dimensions. We
also refer to [HLQ14] for further details on the arithmetic of modular reductions and their vectorization
on SIMD architectures.

Lastly, sub-cubic time complexity is obtained using the O(nlog2 7) Winograd’s variant of Strassen’s
algorithm [GG13, Algorithm 12.1]. This recursive algorithm, is applied down to a threshold on the di-
mension, experimentally set (typically near n = 1000), where the classic algorithm, based on the BLAS is
then applied. This naturally impacts the frequency at which delayed modular reductions need to be done.
With a classic matrix multiplication and field elements of Zp represented as integers in {−p−1

2 . . . p−1
2 }

on a type with a mantissa of m bits, the condition is that the modular reduction in a scalar product of
dimension k can be delayed to the end as long as

k

(
p− 1

2

)2

< 2m.

When applying ` recursive levels of Strassen-Winograd’s algorithm, we showed [Per06; J-DGP08] that
some intermediate computations could grow above this bound, and the condition becomes

9`
⌊
k

2`

⌋(
p− 1

2

)2

< 2m. (1.1)

which imposes to perform a factor of about (9/2)` as many modular reductions.
However, this bound is pessimistic in the sense that it applies the worst case analysis of one branch

in the recursion tree, to all other branches, where intermediate computations do not grow as fast. We
therefore improved the implementation, making recursive calls to fgemm maintain bounds on the minimum
and maximum values of its input, so as to decide to perform modular reductions with tighter estimates.
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Figure 1.2: Computation speed of fgemm compared with the numerical BLAS routines dgemm and sgemm

of OpenBLAS-0.2.9 for the operation C ← C −AB with square matrices of order n.

Figure 1.2 compares the computation speed of our implementations in fflas-ffpack, called fgemm,
on two architectures and various field sizes. Both architectures have 256 bits AVX registers for SIMD
instructions, the right one offering the recent fma (fused multiply and accumulation) of the AVX2 set.
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Small fields use single precision floating points and the BLAS routine sgemm and large fields use double

and the BLAS routine dgemm. The numerical routines deliver a steady computing speed. The overhead
of computing over a finite field appears almost unnoticeable for small matrix dimensions. Then with
larger dimensions, the effective speed of fgemm keeps increasing with the matrix dimension, indicating
the speed-up of Strassen-Winograd’s algorithm over the naive O(n3) algorithm. The fields Z83 in single
precision, and Z1898131 in double precision require few modular reductions (only one for a classical product
of dimension up to about n = 10000). On the other hand the fields Z821 and Z18981307 require many more
reductions (one every 100 multiplication in a classical product). The smaller speed for these latter two
fields shows the overhead of the modular reductions but is contained to a small impact on the efficiency
and does not prevent a sub-cubic asymptotic behavior.

More recently, Brice Boyer and Jean-Guillaume Dumas also showed how Bini & Al. O(n2.7799) algo-
rithm [Bin+79] could be efficiently put into practice [BD14] and also offer interesting speed-up for prime
fields of size near 10 bits.

1.2.2 Memory efficient schedules
Strassen-Winograd’s algorithm requires external temporary memory allocations which can penalize the
efficiency of a computation, especially with large matrices, near the storage capacity of the main memory.

We proposed new schedules in [R-Boy+09], improving over the preceding state of the art: [Dou+94] for
the simple product C ← AB and [Hus+96] for the more general form C ← αAB + βC, especially useful
to compute Schur complements in many reductions. The techniques introduced consist in adding a few
extra additions and the possibility to overwrite intermediate computations or possibly the input matrices
(when given the permission to). For example we produced a schedule computing C ← AB with no extra
allocation, provided that A and B could be overwritten (the previously best extra memory requirement
was of 2/3n2 field elements [Dou+94]), or reduced the memory requirement for C ← αAB + βC from
n2 to 2/3n2. The overhead in the time complexity only affects non dominant terms. A combination of a
recursive classic algorithm and Strassen-Winograd’s yields a fully in-place algorithm for C ← AB without
overwriting the input matrices, at the expense of a slightly larger constant leading constant (7.42 instead of
6) in the time complexity. These results are summarized in table 1.1, with references to the corresponding
algorithms in [R-Boy+09]. The new schedules have been discovered by hand, but verified by a pebble game
program. Exhaustive search, when succesfully terminated, could also prove their optimality. We also refer
to Brice Boyer’s thesis [Boy12] for the latest development on the topic.

Algorithm Input matrices # temp. extra mem. # extra alloc. arithmetic complexity

A
×
B

[Dou+94] Constant 2 2
3
n2 2

3
(n2.808 − n2) 6n2.808 − 5n2

[R-Boy+09, Tab. 3] Both Overwr. 0 0 0 6n2.808 − 5n2

[R-Boy+09, Tab. 4, 5]A or B Overwr. 1 1
3
n2 1

4
n2 log2(n) 6n2.808 − 5n2

[R-Boy+09, Alg. 7.1] Constant 0 0 0 7.2n2.808 − 13n2

α
A

×
B

+
β
C

[Hus+96] Constant 3 n2 2
3
n2.808 + n2.322 − 5n2

3
6n2.808 − 4n2

[R-Boy+09, Tab. 6] Both Overwr. 2 2
3
n2 1

2
n2 log2(n) 6n2.808 − 4n2 + n2 log2(n)

2

[R-Boy+09, Tab. 7] B Overwr. 2 2
3
n2 2n2.322 − 2n2 6n2.808 − 4n2 + n2 log2(n)

2

[R-Boy+09, Tab. 9] Constant 2 2
3
n2 2

9
n2.808 + 2n2.322 − 22n2

9
6n2.808 − 4n2 + 4n2 log2(n)

3

[R-Boy+09, Alg. 7.2] Constant N/A 1
4
n2 1

4
n2 6.86n2.808 − 8n2

[R-Boy+09, Alg. 7.2] Constant N/A 1
9
n2 1

9
n2 7.42n2.808 − 12n2

Table 1.1: Complexities of the schedules presented for square matrix multiplication

1.2.3 Parallelization
Our proposed parallel algorithm is recursive and splits the largest of either the row dimension of A or
the column dimension of B, to form two independent tasks. The granularity of the split can be chosen in
two different ways: either as a fixed value, or by terminating the recursion whenever the number of tasks
created gets larger than the number of computing ressources (e.g. the total number of cores). By choosing
the second option, one maximizes the size of the blocks, and therefore the benefit of Strassen-Winorgad’s
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algorithm, while ensuring a large enough number of tasks for the computing resources. Our experiments
confirmed that this option performs better than the first one. When used as a subroutine in a parallel
matrix factorization, an estimate of the number of available threads will be passed to generate the most
appropriate split. Of course this number can only be guessed, and an upper estimation will guarantee to
keep processors active, while limiting the overhead of managing too many tasks.
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Figure 1.3: Comparison of FFLAS pfgemm over double and modulo 131071 with the numerical dgemm of
PLASMA and of Intel-MKL on a 32 core Xeon E5-4620 @ 2.2Ghz

Figure 1.3 shows the computation speed on 32 cores of various matrix multiplications: the numer-
ical dgemm implementation of Plasma-Quark and of Intel-MKL, and the implementation of fgemm of
fflas-ffpack using OpenMP tasks, linked against the libkomp library. This implementation is run over
the finite field Z/131071Z or over the field of double precision floating point real numbers. For small
matrices, pfgemm performs similarly as Plasma-Quark and is slower than the MKL library. With larger
dimensions, Strassen-Winograd’s algorithm improves the speed of FFLAS-FFPACK pfgemm which computes
faster than both numerical libraries. The overhead of computing modulo 131071 is not noticeable.

1.3 Gaussian elimination
We focus in this section on the algorithmic aspects of exact Gaussian elimination, ignoring the aspects
related to rank deficiencies. They will be presented together with recovery of echelon forms and rank
profiles in section 1.4. Consequently we will assume here that matrices are generic enough so that each
block for which a LU decomposition is computed has full rank.

1.3.1 Block algorithm variants
Several schemes are used to design block Gaussian elimination algorithms: the splitting can occur on one
dimension only, producing row or column slabs [KG95], or both dimensions, producing tiles [But+09].
Note that, here, we denote by tiles a partition of the matrix into sub-matrices in the mathematical sense
regardless what the underlying data storage is. Algorithms processing blocks can be either iterative or
recursive.

Figure 1.4 summarizes some of the various existing block splitting obtained by combining these two
aspects. Numerous numerical dense Gaussian elimination algorithms, like in [But+09], use tiled iterative
block algorithms. In [Don+14] a classic tiled iterative algorithm is combined with a slab recursive one for
the panel elimination.

More precisely, tiled iterative algorithms range in three categories: the right-looking, left-looking and
the Crout variant [Don+98, §5.4]. They correspond to three ways of scheduling the block operations: the
panel LU decomposition and the corresponding updates using triangular system solve, (trsm) possibly
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Slab iterative Slab recursive Tile iterative Tile recursive

Figure 1.4: Main types of block splitting

with unit diagonal (utrsm) and matrix products (gemm). We sketch in Table 1.2 these three algorithms,
indicating for each routine, the dimension of its arguments: utrsm (k,k,n) denotes the solving of an k × k
triangular system, with an n dimensional left or right hand side and gemm (m,k,n) denotes a multiplication
of an m× k by an k × n matrix).

Right looking Left looking Crout

for i = 1 . . . n/k do
LU (k, k)
utrsm (k, k, n− ik)
trsm (k, k, n− ik)
gemm (n− ik, k, n− ik)

end for

for i = 1 . . . n/k do
utrsm ((i− 1)k, (i− 1)k, k)
gemm (n−(i−1)k, (i−1)k, k)
LU (k, k)
trsm (k, k, n− ik)

end for

for i = 1 . . . n/k do
gemm (n−(i−1)k, (i−1)k, k)
gemm (k, (i− 1)k, n− ik)
LU (k, k)
utrsm (k, k, n− ik)
trsm (k, k, n− ik)

end for

Table 1.2: Right looking, Left looking and Crout variants of the tiled iterative block LU factorization, n
and k are respectively matrix and block dimensions (see [Don+98, § 5.4])

Over exact domains, recursive algorithms are preferred for the reasons developed in the introduction of
this chapter. The first reduction of LU decomposition to matrix multiplication [BH74] uses a slab recursive
algorithm, which was then generalized in [IMH82] to handle rank deficiencies with the LSP and LQUP
decompositions. We based our early work [R-DGP04; J-DGP08; J-JPS13] on this algorithm. A first tiled
recursive algorithm was used in [DR02], for computing the rank using a weaker triangular decomposition.
Another one is used in [Mal10] for computing an LEU decomposition which we adapted in [R-DPS13] to
define a tiled recursive PLUQ decomposition algorithm (that we will present in more details in section 1.4).

1.3.2 Modular reductions
The choice of a block algorithm impacts the overall number of modular reductions that will happen. We
compare the number of modular reductions of the above three variants of the tiled iterative algorithms,
with the slab and tiled recursive algorithms (see section 1.4 and references therein for further details on
the recursive algorithms).

For the sake of simplicity, we will assume that the block dimensions k in the parallel algorithms
always allow to fully delay the modular reduction in a matrix product of dimension k. For instance, with
this model, the number of reductions required by a classic multiplication of matrices of size m × k by
k × n is simply: Rgemm(m, k, n) = mn. This extends also for triangular solving with an m × n right/left
hand side: with unit diagonal, Rutrsm(m,m, n) = mn (actually the computation of the last row/column
of the solution requires no modulo reduction as it is just a division by 1, we will therefore rather use
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Rutrsm(m,m, n) = (m−1)n) and Rtrsm(m,m, n) = (2m−1)n. The number of modular reductions required
for the various LU factorization variants is given in Table 1.3. Refer to [R-Dum+14] for a proof.

k
=

1 Iter. Right 1
3n

3 − 1
3n

Iter. Left 3
2n

2 − 5
2n+ 1

Iter. Crout 3
2n

2 − 5
2n+ 1

k
≥

1 Tiled Iter. Right 1
3kn

3 +
(
1− 1

k

)
n2 +

(
1
6k −

3
2 + 1

k

)
n

Tiled Iter. Left
(
2− 1

2k

)
n2 − 5

2kn+ 2k2 − 2k + 1

Tiled Iter. Crout
(

5
2 −

1
k

)
n2 +

(
−2k − 3

2 + 1
k

)
n+ k2

Tiled Recursive 2n2 − n log2 n− 2n

Slab Recursive (1 + 1
4 log2 n)n2 − 1

2n log2 n− n

Table 1.3: Number of modular reductions in full rank block
LU factorization of an n× n matrix modulo p when n(p−
1)2 < 2mantissa, for a block size of k dividing n.

Iterative Recursive

n k Right Crout Left Tiled Slab

3000
212 3.02 2.10 2.05

2.16 2.26
n/3 2.97 2.15 2.10

5000
212 11.37 8.55 8.43

7.98 8.36
n/3 9.24 8.35 8.21

7000
212 29.06 22.19 21.82

20.81 21.66
n/3 22.56 22.02 21.73

Table 1.4: Timings (in seconds) of sequential
LU factorization variants on one core.

The left looking variant always performs fewer modular reductions. Then the tiled recursive performs
better than the Crout variant as soon as 2 ≤ k ≤ n

2+
√

2
and finally, the right looking variant is the most

expensive one.
This is confirmed by the running times of our implementation of these algorithms in practice shown on

Table 1.4 (except for larger dimensions where the speed-up of fast matrix multiplication comes into play).
Also, note that even when the number of modular reductions is an order of magnitude lower than that of
the integer operations their cost is nonetheless not negligible. However, this hierarchy no longer holds in
the parallel implementation of these algorithms, as we will now see.

1.3.3 Experiments in parallel
We compare the performance in practice of these variants on a 32 cores Xeon E5-4620 @ 2.2Ghz. Fig-
ures 1.5, 1.6 and 1.7 display computation speeds using libkomp implementation of OpenMP tasks.
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Figure 1.5: Full rank parallel LU factorization modulo 131071, comparing the computation speed of the
tiled recursive and left-looking, right-looking, Crout variants of the tiled iterative algorithm.

As shown in Figure 1.5, the tiled recursive algorithm performs better than all other tiled iterative
variants. This confirms that recursive algorithms deliver better speed for they group most of the arithmetic
operations in large matrix multiplications, they reduce the amount of modular reductions and the tiled
version also guarantees a good data locality. Then surprisingly, the left-looking variant performs poorly,
seemingly for it uses intensively an expensive sequential trsm task of large dimension. Although the Crout
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and the right-looking variants perform about the same number of matrix products, but those of the right-
looking variant are independent, contrarily to those of the Crout variant, which explains a better scalability
despite a larger number of modular reductions.

Figure 1.6 shows the performance without modular reductions of the tiled recursive PLUQ algorithm on
full rank matrices compared to state of the art numerical libraries: Plasma-Quark and Intel-MKL. The two
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possible data-storage for Plasma-Quark are considerd: tiles and row-major. In the big picture, our tiled
recursive parallel PLUQ elimination performs similarly as the best numerical routines. More precisely, it
performs better than Plasma-Quark on large enough instances: on small instances, the architecture-aware
block algorithms take better advantage of the memory hierarchy, but the higher data locality and the
use of Strassen-Winograd’s algorithm give the tiled recursive algorithm the advantage on large instances.
Surprisingly, Intel-MKL performs way better on small instances but suffers from a drop in efficiency around
n = 11000. Figure 1.7 first shows that the computation speed is maintained over a finite field. Then, the
tiled iterative algorithm is compared and proves to perform slower that the recursive algorithm. Lastly,
we remark that data-flow task dependencies do improve the computation speed of the iterative algorithm,
as it removes unnecessary synchronizations. However, this improvement does not happen in the recursive
algorithm, as data-flow dependencies of recursive tasks are badly supported by the existing languages and
runtimes and many strong synchronizations remain necessary.

1.4 Rank profiles and echelon forms
In exact linear algebra, the rank deficiency of a matrix is not only likely to happen, but is often one of the
main information that an elimination has to reveal. For example, the column echelon form of the Macaulay
matrix, used in Gröbner basis computations, reveals the ideal structure of the solutions to a polynomial
system of equations [Fau99].

This section, based on [J-JPS13; R-DPS13; R-Dum+14], reviews how an elimination algorithm can effi-
ciently deal with rank deficiencies, the conditions at which it reveals rank profiles and related informations,
and propose a state of the art algorithm and reductions of all previously existing variants to it.

1.4.1 Rank profiles
Definition 1.4.1

1. The row (resp. column) rank profile, denoted by RowRP (resp. ColRP) of an m×n matrix with
rank r is the lexicographically minimal sequence of r indices of linearly independent rows (resp.
columns) of this matrix.
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2. A matrix has generic row (resp. column) rank profile if it is the sequence (1, . . . r).

3. A matrix has generic rank profile if its first r leading principal minors are non zero.

Note that a matrix with generic rank profile has also generic row and column rank profiles but the

converse is false, as for example with the matrix

[
0 1
1 0

]
.

We also recall that a matrix is in row echelon form if its zero rows are in the last row positions and if
the leading coefficient of each non-zero row is to the right of the leading coefficient of the previous row. A
row echelon form is called reduced if the coefficients above each leading coefficient of a row, are all zeros.
These definition naturally extend to the column and reduced column echelon forms. Row and Column
echelon forms reveal respectively the column and row rank profiles by the position of the pivots on their
staircase shape: the column rank profile of a matrix in row echelon form is the column positions of the
leading coefficients of its rows.

Laslty recall that for any m× n matrix A,

– there is a non-singular m×m (resp. n× n) matrix T and an m× n matrix E in row (resp. column)
echelon form such that TA = E (resp. AT = E),

– there is a unique non-singular m×m (resp. n×n) matrix X and a unique m×n matrix R in reduced
row (resp. column) echelon form such that XA = R (resp. AX = R),

which gives a natural way to read the row or column rank profiles of a matrix from its associated unique
reduced column or row echelon form.

We define an r-sub-permutation matrix as an {0, 1}-matrix of rank r with only r non zero coefficient.

Any such matrix of dimensions m × n can be written in the form P

[
Ir

0(m−r)×(n−r)

]
Q, where P and

Q are permutation matrices. And we can now introduce the rank profile matrix.

Definition 1.4.2

For any m× n matrix A over a field K, there exists a unique m× n rank(A)-sub-permutation matrix
RA of which all leading sub-matrices have the same row and column rank profiles as the corresponding
leading sub-matrices of A. This sub-permutation matrix is called the rank profile matrix of A.

Example 1.4.1

The matrix A =


2 0 3 0
1 0 0 0
0 0 4 0
0 2 0 1

 over Q has the rank profile matrix RA =


1 0 0 0
0 0 1 0
0 0 0 0
0 1 0 0

.

Such a matrix appears in the LEU decomposition proposed by Malaschonok in [Mal10, Theorem 1] in order
to design a permutation free elimination algorithm. There, dimensions are restricted to m = n = 2k, and
no connection is made to rank profiles and echelon forms. We then generalized this matrix to arbitrary
dimensions in [R-DPS13, Corollary 1], showed how to compute it more efficiently with a new tiled recursive
algorithm (Algorihtm 1), and remarked that not only does the matrix E reveal both row and column rank
profiles of A (as RowRP(A) = RowSupp(E) and ColRP(A) = ColSupp(E)), but it also reveals the rank
profiles of all leading sub-matrices of A: RowRP(A1...i,1...j) = RowSupp(E1...i,1...j).

1.4.2 Design of Rank profile revealing algorithms
Gaussian elimination of matrices with arbitrary rank profile requires permutations of both rows and
columns, hence producing a PLUQ decomposition. However such PLUQ decompositions are not unique
and not all of them will necessarily reveal rank profiles and echelon forms. We will characterize the con-
ditions for a PLUQ decomposition algorithm to reveal the row or column rank profile or the rank profile
matrix.

There are four key types of operations composing a Gaussian elimination algorithm in the processing
of the k-th pivot:

Pivot search: finding an element that can be used as a pivot,
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Pivot permutation: moving the pivot in diagonal position (k, k) by column and/or row permutations,

Update: applying the elimination at position (i, j): ai,j ← ai,j − ai,kak,j

ak,k
,

Normalization: dividing the k-th row (resp. column) by the pivot.

Choosing how each of these operation is done, and when they are scheduled results in an algorithm.
Conversely, any Gaussian elimination algorithm computing a PLUQ decomposition can be viewed as a set
of specializations of each of these operations together with a scheduling.

The choice of doing the normalization on rows or columns only determines which of U or L will be unit
triangular. The scheduling of the updates vary depending on the type algorithm used: iterative, recursive,
slab or tiled, with right-looking, left-looking or Crout variants, as we saw in section 1.3. None of these two
parameters impacts the capacity to reveal rank profiles and we will now focus on the pivot search and the
permutations.

Choosing a search and a permutation strategies fixes the permutation matrices P and Q of the PLUQ
decoposition obtained. Once these matrices have been fixed, the L and the U factors are uniquely deter-
mined.

Pivot search. We introduce the pivoting matrix.

Definition 1.4.3

The pivoting matrix of a PLUQ decomposition A = PLUQ of rank r is the r-sub-permutation matrix

ΠP,Q = P

[
Ir

0(m−r)×(n−r)

]
Q.

The r non-zero elements of ΠP,Q are located at the initial position of the pivots in the matrix A and
this matrix therefore summarizes the choices made in the Search operation. This Search operation vastly
differs depending on the field of application. In numerical dense linear algebra [Gol96, §3.4], numerical
stability is the main criterion for the selection of the pivot. In sparse linear algebra, the pivot is chosen so
as reduce the fill-in produced by the Update operation.

In order to reveal some information on the rank profiles, a notion of precedence has to be used: a usual
way to compute the row rank profile is to search a given row for a pivot and only move to the next row
if it was found to be all zeros. This guarantees that each pivot will be on the first linearly independent
row, and therefore the row support of ΠP,Q will be the row rank profile. The precedence here is that the
pivot’s coordinates must minimize the order for the first coordinate (the row index). As a generalization,
we consider all other preorders of the set {1, . . .m} × {1, . . . n}, and express in algorithmic terms the fact
that a pivot must minimize these preorders for the Search operation:

Row order: (i1, j1) ≤ (i2, j2) iff i1 ≤ i2. The corresponding search strategy is to look for any invertible
element in the first non zero row.

Column order: (i1, j1) ≤ (i2, j2) iff j1 ≤ j2. The corresponding search strategy is to look for any
invertible element in the first non zero column.

Lexicographic order: (i1, j1) ≤ (i2, j2) iff i1 < i2 or i1 = i2 and j1 ≤ j2. The pivot with minimal
coordinate, is the leftmost non-zero coefficient of the first non zero row.

Reverse lexicographic order: (i1, j1) ≤ (i2, j2) iff j1 < j2 or j1 = j2 and i1 ≤ i2. The pivot with
minimal coordinate, is the topmost non-zero coefficient of the first non zero column.

Product order: (i1, j1) ≤ (i2, j2) iff i1 ≤ i2 and j1 ≤ j2. This is not a total order, hence several minimal
elements may exist. The search can be done by inspecting a leading sub-matrix gradually increasing
in size. While this sub-matrix is zero, one increases either its row or its column dimension by one.
One searches for the non-zero element of smallest row coordinate on the trailing column or smallest
column coordinate on the trailing row.

Pivot permutation. The pivot permutation moves a pivot from its initial position to the leading diagonal.
Besides this constraint all possible choices are left for the remaining values of the permutation. Most often,
it is done by row or column transpositions, as it clearly involves fewer data movement. However, these
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transpositions can break the precedence relation in the set of rows or columns, and therefore can make it
impossible to compute a rank profile. A pivot permutation that leaves the precedence relations unchanged
will be called k-monotonically increasing.

Definition 1.4.4

A permutation of σ ∈ Sn is called k-monotonically increasing if its last n−k values form a monotonically
increasing sequence.

In particular, the last n − k rows of the associated row-permutation matrix (acting on rows by left mul-
tiplication) are in row echelon form. For example, the cyclic shift between indices k and i, (1, . . . , k −
1, i, k, k + 1, . . . , i − 1, i + 1, . . . , n), that we will call a (k, i)-rotation is an elementary k-monotonically
increasing permutation. Monotonically increasing permutations can be composed as in Lemma 1.4.1.

Lemma 1.4.1

If σ1 ∈ Sn is a k1-monotonically increasing permutation and σ2 ∈ Sk1 ⊕ Sn−k1 a k2-monotonically
increasing permutation with k1 < k2 then the permutation σ2 ◦ σ1 is a k2-monotonically increasing
permutation.

Therefore, an iterative algorithm using rotations as elementary pivot permutation maintains the property
that the permutation matrices P and Q at any step k is k-monotonically increasing. The same holds with
recursive algorithms too.

We can now describe which conditions on the pivot search and permutation make the permutations
P and Q reveal information on the rank profiles of the matrix, or more precisely, when does the pivoting
matrix ΠP,Q equal the rank profile matrix RA, or when do they simply share the same row (resp. column)
support, which is the row (resp. column) rank profile. Table 1.5 summarizes these results, and points to
instances known in the litterature, implementing the corresponding type of elimination. Further details
and a technical proof are available in an article in preparation [T-DPS14].

Search Row Perm. Col. Perm. Reveals Instance

Row order Transposition Transposition RowRP [IMH82; J-JPS13]
Col. order Transposition Transposition ColRP [Kel85; J-JPS13]

Lexicographic Transposition Transposition RowRP [T-DPS14]
Lexicographic Transposition Rotation RowRP, ColRP, R [T-DPS14]

Rev. lexico. Transposition Transposition ColRP [Sto00]
Rev. lexico. Rotation Transposition RowRP, ColRP, R [T-DPS14]

Product Rotation Transposition RowRP [T-DPS14]
Product Transposition Rotation ColRP [T-DPS14]
Product Rotation Rotation RowRP, ColRP, R [R-DPS13]

Table 1.5: Pivoting Strategies and rank profiles

In particular, algorithms based on partial pivoting, including slab iterative and slab recursive vari-
ants [IMH82; J-JPS13] correspond to a pivot search minimizing the row or the column order. The slab
recursive Algorithms of [Sto00] also impose to pick the first non-zero coefficient of the current row or col-
umn, and therefore minimize the lexicographic or reverse-lexicographic order. Now algorithm 1 presents
the tiled recursive algorithm that we proposed in [R-DPS13], implementing a pivot search based on prod-
uct order, and a pivot permutation based on k-monotonically increasing permutations: remarking that
matrices S and T are (r1 + r2 + r3 + r4)-monotonically increasing. Hence this algorithm reveals the rank
profile matrix: ΠP,Q = RA.

Corollary 1.4.1

Algorithm 1 computes the row and column rank profiles of A, and of any leading sub-matrix A1...i,1...j

of A.

This result stated in [R-DPS13] is to our knowledge the first reduction to matrix multiplication of the
problem of computing the rank profiles of all leading sub-matrices of an input matrix. We will see in
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Algorithm 1 Tiled recursive PLUQ decomposition algorithm revealing the rank profile matrix RA
Require: A = (aij) a m× n matrix over a field
Ensure: P,Q: m×m and n× n permut. matrices
Ensure: r: the rank of A

1: if m=1 then
2: if A = [0 . . . 0] then
3: P ← [1] , Q← In, r ← 0
4: else
5: i← min{i : A1,i 6= 0}
6: P ← [1] ;Q← R1,i, r ← 1
7: A← AQT

8: end if
9: return (P,Q, r,A)

10: end if
11: if n=1 then
12: if A = [0 . . . 0]

T
then

13: P ← Im;Q← [1] , r ← 0
14: else
15: i← min{i : Ai,1 6= 0}
16: Q← [1] , P ← RT1,i, r ← 1

17: A← PTA
18: for j = i+ 1 : m do aj,1 ← aj,1a

−1
1,1

19: end for
20: end if
21: return (P,Q, r,A)
22: end if

23: Split A =
[
A1 A2
A3 A4

]
where A1 is bm2 c × b

n
2 c.

24: Factor A1 = P1

[
L1
M1

]
[U1 V1]Q1 . PLUQ(A1)

25:

[
B1
B2

]
← PT1 A2 . PermR(A2, P

T
1 )

26: [C1 C2]← A3Q
T
1 . PermC(A3, Q

T
1 )

27: Here A =

[
L1\U1 V1 B1
M1 0 B2
C1 C2 A4

]
.

28: D ← L−1
1 B1 . trsm(L1, B1)

29: E ← C1U
−1
1 . trsm(C1, U1)

30: F ← B2 −M1D . MM(B2,M1, D)
31: G← C2 − EV1 . MM(C2, E, V1)
32: H ← A4 − ED . MM(A4, E,D)

33: Here A =

[
L1\U1 V1 D
M1 0 F
E G H

]
.

34: Decompose F = P2

[
L2
M2

]
[U2 V2]Q2 . PLUQ(F )

35: Decompose G = P3

[
L3
M3

]
[U3 V3]Q3 . PLUQ(G)

36:

[
H1H2
H3H4

]
← PT3 HQ

T
2 .

PermR(H,PT3 );
PermC(H,QT2 )

37:

[
E1
E2

]
← PT3 E . PermR(E,PT3 )

38:

[
M11
M12

]
← PT2 M1 . PermR(M1, P

T
2 )

39: [D1D2]← DQT2 . PermR(D,QT2 )
40: [V11 V12]← V1Q

T
3 . PermR(V1, Q

T
3 )

41: Here A =


L1\U1 V11 V12 D1 D2

M11 0 0 L2\U2 V2
M12 0 0 M2 0
E1 L3\U3 V3 H1 H2
E2 M3 0 H3 H4

.

42: I ← H1U
−1
2 . trsm(H1, U2)

43: J ← L−1
3 I . trsm(L3, I)

44: K ← H3U
−1
2 . trsm(H3, U2)

45: N ← L−1
3 H2 . trsm(L3, H2)

46: O ← N − JV2 . MM(N, J, V2)

47: R← H4 −KV2 −M3O .
MM(H4,K, V2);
MM(H4,M3, O)

48: Decompose R = P4

[
L4
M4

]
[U4 V4]Q4 . PLUQ(R)

49:

[
E21M31 0K1
E22M32 0K2

]
← PT4 [E2M3 0K] . PermR

50:

D21D22
V21 V22
0 0
O1 O2

←
D2
V2
0
O

QT4 . PermC

51: Here A =


L1\U1 V11 V12 D1 D21 D22

M11 0 0 L2\U2 V21 V22
M12 0 0 M2 0 0
E1 L3\U3 V3 I O1 O2

E21 M31 0 K1 L4\U4 V4
E22 M32 0 K2 M4 0


52: S ←

Ir1+r2
Ik−r1−r2

Ir3+r4
Im−k−r3−r4



53: T =


Ir1

Ir2
Ir3

Ir4
Ik−r1−r3

In−k−r2−r4


54: P ← Diag(P1

[
Ir1

P2

]
, P3

[
Ir3

P4

]
)S

55: Q← TDiag(

[
Ir1

Q3

]
Q1,

[
Ir2

Q4

]
Q2)

56: A← STATT . PermR(A,ST ); PermC(A, TT )

57: Here A =


L1\U1 D1 V11 D21 V12D22

M11 L2\U2 0 V21 0 V22

E1 I L3\U3 O1 V3 O2

E21 K1 M31 L4\U4 0 V4
M12 M2 0 0 0 0
E22 K2 M32 M4 0 0


return (P,Q, r1 + r2 + r3 + r4, A)
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section 1.4.3 that this algorithm runs with no arithmetic overhead compared to the standard Gaussian
elimination.

Case of generic row or column rank profile. When the matrix A has generic row rank profile, it has
a LUP decomposition, or equivalently, it has a PLUQ decomposition with P = Im. For any elimination
algorithm that uses a pivot search minimizing the lexicographic order, and uses rotations for column pivot

permutations, we deduce from Table 1.5 that RA = ΠP,Q =

[
Ir

0

]
Q.

Corollary 1.4.2

If an m × n matrix A has generic column rank profile, then any PLU decomposition A = PLU
computed using reverse lexicographic order based search and rotation based row permutation is such

that RA = P

[
Ir

0

]
. In particular, P = RA if r = m.

If an m × n matrix A has generic row rank profile, then any LUP decomposition A = LUP
computed using lexicographic order based search and rotation based column permutation is such that

RA =

[
Ir

0

]
P . In particular, P = RA if r = n.

Lastly, remark that the only situation where the rank profile matrix RA can be read directly as a
sub-matrix of one the permutations P or Q is as in corollary 1.4.2, when the matrix A has generic row
or column rank profile. Consider a PLUQ decomposition A = PLUQ revealing the rank profile matrix

(RA = P

[
Ir

0

]
Q) such that RA is a sub-matrix of P . This means that P = RA+S where S has disjoint

row and column support with RA. We have RA = (RA + S)

[
Ir

0

]
Q = (RA + S)

[
Q1

0(n−r)×n

]
. Hence

RA(In−
[

Q1

0(n−r)×n

]
) = S

[
Q1

0(n−r)×n

]
but the row support of these matrices are disjoint andRA

[
0

In−r

]
= 0

which implies that A has generic column rank profile. Similarly, one shows that RA can be a sub-matrix
of Q only if A has a generic row rank profile.

1.4.3 Rank deficient LU decomposition algorithm bestiary and reductions

The generalization of the LU decomposition to rank deficient matrices led to numerous kinds of matrix de-
composition. We briefly recall the most important ones, which can be computed with an O(nω) algorithm.
Some complexities are O(mnrω−2) which we will call is rank sensitive.

In this process, we mention the ability for a decomposition to be stored in a compact storage, that is:
a lower triangular matrix L and an upper triangular matrix U can be stored one next to the other on the
memory storage of the input matrix. Will we then denote it by

[
L\U

]
. The computation will be called

in-place, if it does not involve more than O(1) extra-memory allocations, except possibly in the course of
the matrix-multiplication calls.

The LSP decomposition, introduced in [IMH82] replaces the U factor of an LUP decomposition by a
semi-upper triangular matrix S, that is upper triangular once its zero rows are removed. The positions
of the non-zero rows of S indicate the row rank profile of the input matrix. This decomposition can
not use a compact storage nor can be computed in place.

The LQUP decomposition, also introduced in [IMH82], replaces the matrix S by the product of a row
permutation matrix Q and an upper triangular matrix U . This decomposition can use a compact
storage, but its computation can not be made in place (see [J-DGP08]).

The CUP decomposition that we introduced in [J-JPS13] replaces L by C = LQ which is in column
echelon form. This decomposition allows compact storage and in-place rank-sensitive computation.

The PLE decomposition is the transposed of the CUP decomposition, with E, a row echelon form.

The StepForm elimination, introduced by Keller-Gehrig in [Kel85] and attributed to Schönage, (see
[BCS97, § 16.5] and [J-JPS13, App. B] for a further description) computes a row echelon form. Its
time complexity is not rank sensitive, and the computation is not in-place.
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The Gauss algorithm, proposed in [Sto00, Alg. 2.8], computes directly the transformation to echelon
form: XA = E. It allows compact storage and in-place rank-sensitive computation.

The GaussJordan algorithm, proposed in [Sto00, Alg. 2.9], computes directly the transformation to
reduced echelon form. The algorithm is free of triangular matrices, which is an advantage for com-
putation efficiency. Although a compact storage of the reduced echelon form and the transformation
matrix is possible (see [J-JPS13]), the computation can not be done in-place and is rank-sensitive.

The LEU decomposition, proposed in [Mal10] manages to gather all permutation and rank deficiency
informations in the single r-sub-permutation matrix E at the center of the factorization. However
Malaschonok’s tiled recursive algorithm does not permit neither compact storage, nor in-place com-
putation, and suffers from a large constant in the leading term of the time complexity which is not
rank sensitive.

The PLUQ decomposition of Algorithm 1, that we proposed in [R-DPS13] makes the connection be-
tween the LEU decomposition and the standard PLUQ decompositions. In the process, algorithm 1
gains a rank sensitive time complexity, a leading constant matching the best known constant, a
compact storage and an in-place computation.

Table 1.6 summarizes our comparison of these variants. Assuming that matrix multiplication can be
done in Cωn

ω + o(nω) for any admissible exponent ω > 2, we state the leading constant Kω for each
algorithm and give its value for ω = 3 and ω = log2 7. We also provide the same informations for classic
computations depending on which decomposition they rely as a building block: computing the determinant,
the rank, the rank profiles, a transformation to echelon form XA = E or reduced echelon form XA = R,
the matrix inverse and the test for singularity.

Algorithm Operation Constant Kω K3 Klog2 7 in-place

Matrix Mult. C ← AB Cω 2 6 ×
CUP [J-JPS13] (slab) A←

[
C\U

] (
1

2ω−1−2 −
1

2ω−2

)
Cω

2
3 2 + 4

5 ∨

PLUQ [R-DPS13],Alg. 1 (tiled) A←
[
L\U

] (
1

2ω−1−2 −
1

2ω−2

)
Cω

2
3 2 + 4

5 ∨

Gauss [Sto00] (slab) A←
[
C\U−1

] (
1

2ω−2−1 −
3

2ω−2

)
Cω 1 4 + 2

5 ∨
GaussJordan [Sto00] (slab) A←

[
R\T

]
1

2ω−2−1Cω 2 8 ×
StepForm [Kel85] (slab) A←

[
C\U−1

] (
5

2ω−1−1 + 1
(2ω−1−1)(2ω−2−1)

)
Cω 4 15 + 1

5 ×
LEU [Mal10] (tiled) A←

[
L\U

]
17

2ω−4Cω 8 + 1
2 34 ×

Solution Using Algorithm

Rank, RankProfile

IsSingular, Det, Solve

Gauss

GaussJordan

CUP

(
1

2ω−2−1 −
3

2ω−2

)
Cω

Cω

2ω−2−1(
1

2ω−1−2 −
1

2ω−2

)
Cω

1

2
2
3

4 + 2
5

8

2 + 4
5

∨
×
∨

EchTransf Gauss,CUP, PLUQ
(

1
2ω−2−1 −

3
2ω−2

)
Cω 1 4 + 2

5 ∨

Inverse, RedEchTransf
GaussJordan

Gauss, CUP, PLUQ

1
2ω−2−1Cω

(2ω−1+2)
(2ω−1−2)(2ω−1−1)Cω

2

2

8

8 + 4
5

×
∨

Table 1.6: Constants of the leading term Kωn
ω in the algebraic complexities for n×n invertible matrices.

In short, this shows that the slab CUP and PLE algorithms and the tiled PLUQ algorithm are the best
building blocks for Gaussian elimination, as

– their time complexity is rank sensitive: O(mnrω−2),

– they attain the best time complexity leading constant,

– they offer compact storage and allow in-place computation,

– the reductions of the main other problems to them yield almost always the best leading constant in
the time complexity, except for the reduced echelon form with an overhead of 1/10 for ω = log2 7.
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Finally, the tiled structure of the PLUQ algorithm 1, delivers better data locality in the memory accesses,
as shown by experiments in [R-DPS13]. Moreover, it even offers an additional level of parallelization (the
two off-diagonal recursive calls being independent), and therefore performs even better in parallel, as we
will see in the next section.

1.4.4 Parallelization
We recall the main variants that we have investigated in the design of a parallel Gaussian elimination
algorithm dealing efficiently with rank deficiencies.

The Slab iterative algorithm, shown in Figure 1.8, consists in cutting one dimension in slabs. Then
elimination of a slab (called panel factorization) is done by a sequential algorithm. As this task
is costly, it imposes a fine granularity, which, as we saw, on the other hand implies more modular
reductions and a lesser speed-up of Strassen-Winograd’s algorithm. Another difficulty is that the

Figure 1.8: Slab iterative factorization of a matrix with rank deficiencies, with final reconstruction of the
upper triangular factor

starting column position of each panel is determined by the rank of the blocks computed so far. It
can only be determined dynamically upon the execution. In particular, this is why such algorithms
are not suited for data-storage by static partitioning in tiles. The workload of each block operation
may strongly vary, depending on the rank of the corresponding slab. Such heterogeneous tasks lead
us to opt for parallel runtimes with dynamic scheduling and work-stealing instead of static thread
management.

The tiled iterative algorithm: ideally, it consists in cutting the two dimensions of the matrix in k parts,
but in the presence of rank deficiencies, this implies that potentially an elimination will happen in
each of the k2 tiles generating a quadratic number of matrix multiplication updates, summing up to
a quartic number of tasks that need to be created statically. Of course, many of them will be empty
but the overhead in task creation is prohibitive. Instead we will call tiled iterative, an adaptation of
the above slab iterative algorithm, where the panel factorization is performed in column tiles. Before
our better understanding of the sufficient conditions to reveal rank profiles [R-DPS13; T-DPS14],
summarized in Table 1.5, it seemed that, during the panel elimination, a pivot search on the whole
row of the matrix (equivalent to a partial pivoting) was necessary to recover the row rank profile. By
introducing rotations, we can now reduce the search space for a pivot to only a column slab of the
panel. This splitting of the panel elimination in column slabs shares similarities with the recursive
computation of the panel of [Don+14]. It has two main advantages: memory accesses are more local
and updates can be parallelized. Figure 1.9 illustrates how the panel factorization of the row-slab
iterative algorithm is done by a column-slab iterative panel factorization.

Figure 1.9: Tiled iterative algorithm with rank deficiencies: the panel decomposition step

Tiled recursive elimination, is that of Algorithm 1. The parallelization of this algorithm appears
in two manners: the calls to fgemm and trsm and permc and permr now refer to a task parallel
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implementation of these operations, and independent tasks in the algorithm are also forked into
concurrent tasks. In particular, the recursive eliminations of the anti-diagonal blocks F and G are
done in parallel.
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Figure 1.10: Performance of tiled recursive and tiled iterative factorizations using libgomp and libkomp.
Matrix dimension n = 16000 with rank 15500

Figure 1.10 shows performance obtained for the tiled recursive and the tiled iterative factorizations.
Both versions are tested using the standard GNU implementation of OpenMP, libgomp, and the faster
one based on XKaapi, libkomp. The input matrix is a 16000×16000 matrix with low rank deficiency (rank
is 15500). Linearly independent rows and columns of the generated matrix are uniformly distributed. It
first shows the superiority of the tiled recursive algorithm over the tiled iterative one. Then, the XKaapi

runtime proves its better efficiency in handling numerous tasks with the tiled recursive algorithm.

Towards dataflow task dependency based scheduling.

In parallel languages using simple task descriptions, such as those of the OpenMP-3.0 standard, the
structure of the parallel program directly impacts the position of the task synchronizations which may
unnecessarily prevent the concurrent execution of some tasks. For instance, in a tiled or slab iterative
algorithm, all matrix multiplication updates of an iteration need to be terminated before the next iteration
starts with a sequential panel elimination. If this arbitrary synchronization was removed, this panel
elimination could have been concurrent to most of the update tasks, thus reducing the critical path in the
execution. The same happens in the tiled or slab recursive algorithms with an additional complication
that the actual dependency between tasks may traverse several recursive levels.

The tasks produced in the course of the elimination of a rank deficient matrix have heterogeneous sizes,
that depend on the rank of each panel elimination, and can therefore not be predicted. This heterogeneity
makes the above arbitrary synchronizations even more harmfull.

Parallel runtimes, scheduling tasks from a dataflow dependency graph, permit to avoid those unnec-
essary synchronizations and an appropriate related language releases the programmer from having to
orchestrate taskx dependencies. This has been a core component in the development of parallel execution
runtimes such as XKaapi [Gau+12], Quark [YKD11], SMPss [PBL08], or DAGuE [Bos+12] for distributed
computing.

The multiplicity of these languages is an obstacle in the development of a portable library. Hopefully a
normalization has recently been adopted in the version 4 of the OpenMP norm, introducing a language for
the description of task dependencies. Consequently runtimes such as XKaapi now intend to only provide an
optimized implementation of the OpenMP norm. Still difficulties persist, in particular as far as recursive
dataflow dependencies are concerned, both in the language (postponed modes are not in the OpenMP-4.0
norm) and the algorithmic way to efficiently resolve such dependencies.

The effectiveness of task with dataflow dependencies was confirmed by our first experiments with tiled
iterative algorithms. However these aspects, and many more, e.g. the design of a domain specific language
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for parallel exact linear algebra, are still work in progress and will be presented in much more details in
the Ph.D. dissertation of our student Ziad Sultan, in preparation.

1.5 Characteristic Polynomial
The characteristic polynomial of a matrix A ∈ Kn×n will be denoted by χA = det(XIn − A), and the
minimal polynomial of A by µA.

1.5.1 Characteristic polynomial of dense matrices over a field
Most algorithms computing the characteristic polynomial of a dense matrix over a field are based on a
Krylov iteration technique. Given a vector v ∈ Kn and a square matrix A ∈ Kn×n, the Krylov matrix
of order d of v is the matrix KA(v, d) =

[
v Av · · · Ad−1v

]
∈ Kn×d. If the first linear dependency

between the iterates Aiv writes Ad =
∑d−1
i=0 αiA

iv, we define the minimal polynomial of A and v as

µA,v = Xd −
∑d−1
i=0 αiX

i which satisfies the following divisibility relations: µA,v | µA | χA. We recall
that the companion matrix of a monic polynomial f = Xd − ad−1X

d−1 · · · − a0 is the matrix Cf =
0 a0

1 a1

. . .
...

1 ad−1

 ∈ Kd×d. We also use the label B∗ to denote a block which has all entries zero except

for possibly entries in the last column. The dimension of a block labelled B∗ will be conformal with
adjacent blocks.

The relation between Krylov matrices and characteristic polynomials is based on the the identity

AK = KCµA,v
, (1.2)

where K = KA(v,degµA,v) is the non-singular Krylov matrix of maximal order for the vector v. If
degµA,v = n, then µA,v = χA and K is square and non-singular. Hence the last column of K−1AK = CχA

displays the coefficients of the characteristic polynomial of A. Computing the similarity transformation
K−1AK reduces to Gaussian elimination and matrix multiplication and can therefore be done in O(nω),
but computing the Krylov matrix, even for a single vector is the bottleneck. One can either compute
n matrix-vector products, for a cost of O(n3) or use the reduction to matrix multiplication by Keller-
Gehrig [Kel85]: the identity

(1 + Y + Y 2 + · · ·+ Y 2k−1) = (1 + Y )(1 + Y 2) . . . (1 + Y 2k−1

)

yields an algorithm to compute n Krylov iterates in log2 n repeated squaring of the matrix A and matrix
products, which amounts to a O(nω log n) time complexity.

In the general case, when the orbite of a single vector OrbA(v) = Span(v,Av,A2v . . . ) is a proper
sub-space of Kn, one needs to iterate several vectors. A first approach that we developed in [R-DPW05]
is to complete the matrix KA(v, d) into a basis K of Kn by adding well chosen canonical vectors. The
corresponding similarity transformation gives

K
−1
AK =

[
CµA,v

∗
0 D

]
,

which characteristic polynomial is µA,v · χD, and it suffices to recursively apply the same algorithm on D
to recover the characteristic polynomial of A. Although efficient in practice, the time complexity of this
algorithm is no better than O(n3) in the worst case.

Better algorithms are obtained by iterating several vectors simultaneously. For V ∈ Kn×j we denote
by OrbA(V ) the subspace of Kn spanned by all the column vectors in

[
V | AV | A2V | . . .

]
.

Lemma 1.5.1

For a non-singular matrix U ∈ Kn×n,

1 U =
[
KA(v1, d1) · · · KA(vm, dm)

]
for some vectors v1, . . . , vm ∈ Kn and positive integers
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d1, . . . , dm if and only if

U−1AU =


Cf1 B∗ · · · B∗
B∗ Cf2 · · · B∗
...

...
. . .

...
B∗ B∗ · · · Cfm

 (1.3)

with deg fi = di, 1 ≤ i ≤ m. We will call such a matrix a shifted-form.

2 For any j, 1 ≤ j ≤ m, the matrix (1.3) can be written as

Cf1 B∗ · · · B∗ B∗ B∗ · · · B∗
B∗ Cf2 · · · B∗ B∗ B∗ · · · B∗
...

...
. . .

...
...

...
. . .

...
B∗ B∗ · · · Cfj B∗ B∗ · · · B∗

Cfj+1
B∗ · · · B∗

B∗ Cfj+2
· · · B∗

...
...

. . .
...

B∗ B∗ · · · Cfm


if and only the dimension of OrbA([ v1 | · · · | vj ]) is equal to d1 + · · ·+ dj .

3 Consequently, the sequence (d1, d2 . . . dm) is lexicographically maximal such that the matrix U =[
KA(v1, d1) · · · KA(vm, dm)

]
is non-singular, if and only if

U−1AU =


Cf1 B∗ · · · B∗

Cf2 · · · B∗
. . .

...
Cfm

 . (1.4)

The block upper triangular matrix in equation (1.4) is called a Hessenberg polycyclic form and its charac-
teristic polynomial is the product of the polynomials fi of each of its diagonal companion blocks.

Keller-Gehrig’s branching algorithm [Kel85, § 5] applies the above-mentioned repeated squaring to the
n canonical vectors simultaneously, in combination with a column rank profiles computation, to remove
the linearly dependent iterates. This rank profile computation is done by the O(nω) Step-form elimination
algorithm mentionned in Table 1.6. The algorithm returns a transformation matrix U such that U−1AU
is in Hessenberg polycyclic form in O(nω log n).

This is the best known time complexity for a deterministic computation of the characteristic polynomial,
making this problem the last classical one in dense linear algebra that does not reduce to the cost of
matrix multiplication. Note that it is necessarily at least as hard as matrix multiplication, from Baur and
Strassen’s reduction of the determinant to matrix multiplication [BS83].

In order to remove this log n factor, one should avoid constructing explicitly the Krylov matrix and
prefer to incrementally transform the matrix A in shifted forms by successive similarity transformations as
in equation (1.3). Keller-Gehrig’s fast algorithm [Kel85, § 6] proceeds by iterating a geometrically decreas-
ing number of vectors of the canonical basis and applying the corresponding similarity transformation at
each step. Under a very strong genericity assumption (including that the minimal polynomial of the first
canonical vector is the characteristic polynomial) this algorithm runs in O(nω). Relaxing the elimination
process in this algorithm by introducing permutations yields a generalization that works with generic ma-
trices, as we showed in [Per06, §8.3.5]. Finally, we proposed with Arne Storjohann, the following result:

Theorem 1.5.1 ([R-PS07a])

There exists a randomized Las-Vegas algorithm computing the characteristic polynomial of any n× n
matrix over a field K, sufficiently large (|K| ≥ 2n2), in expected time O(nω).

The algorithm maintains, at each iteration k, a matrix A(k) in shifted form as in equation (1.3), with
column slices of equal dimension k, except for possibly the last one of dimension ≤ k. We call such a
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matrix a k-shifted form. A key feature is that the Krylov matrix of order k+ 1 for each of the m canonical
vectors vi = e(i−1)k+1, 1 ≤ i ≤ m has the form

KA(k)(vi, k + 1) =


0

A
(k)
∗,k(i+1)−1

.
Ik
0
0

 .
Hence, the matrix E =

[
KA(k)(v1, k + 1) · · · KA(k)(vm, k + 1)

]
is composed of all columns of the

identity matrix and the non-trivial columns of A(k) and can thus be formed with no arithmetic operation.
Under some genericity assumptions, ensured by a randomized precondionning, the n rank profile

columns of E form an invertible matrix that also has the shape U =
[
KA(k)(v1, d1) · · · KA(k)(vm, dm)

]
where (d1, . . . , dm) ∈ {0 . . . k + 1}m is monotonically non-increasing, and such that

U−1A(k)U =

[
A(k+1) ∗

0 H

]
where A(k+1) is in k + 1-shifted form and H is in Hessenberg polycyclic form. The algorithm can then
iteratively process A(k+1) and produces a Hessenberg polycyclic form. Thanks to row and column permuta-
tions, the non-trivial columns of the matrices A(k), U and U−1 are compressed into dense n×n/k matrices
so that the rank profile computation and the similarity transformation reduce to matrix multiplications of
dimension n/k. The complexity is then obtained as a constant multiple of

n∑
k=1

k
(n
k

)ω
≤ ζ(ω − 1)nω.

which is O(nω) for ω > 2.

Remark 1.5.1

Following the analogy developed in [Vil97], we remark that a matrix in shifted form as in equation (1.3)
can be viewed as an m×m diagonal dominant matrix with polynomial coefficients: its diagonal elements
are the polynomials given by the companion blocks, and the B∗ carry the coefficients of polynomials
of degree less than the diagonal element of the same block row. Any n × n matrix can be viewed as
a degree 1 polynomial matrix of order n: its characteristic matrix; the characteristic polynomial is
an order 1 polynomial matrix of degree n and more generally the Hessenberg polycyclic form is an
m×m upper triangular polynomial matrix which determinant is the characteristic polynomial of A. In
this setting, the above algorithm maintains a degree/dimension compromise: at each iteration k, A(k)

correspond to a degree k polynomial matrix of order n/k. The progress of one step is an elimination
done by unimodular transformations, increasing the degree of the first n/(k + 1) columns by one, and
reducing the degrees in the trailing columns. Such an analogy could be exploited in attempting to
derandomize this algorithm.

1.5.2 Frobenius normal form and a transformation matrix
The Frobenius normal form of a matrix A ∈ Kn×n is the unique representative of the set of all similar
matrices to A that is block diagonal of the form F = U−1AU = Diag(Cf1 , . . . , Cf`) where fi+1|fi. The
first reduction of the computation of the Frobenius normal form to matrix multiplication was done by
Mark Giesbrecht in [Gie93; Gie95] with a Las-Vegas randomized algorithm of expected time O(nω log n).
This algorithm is based on Keller-Gehrig’s branching algorithm run on a set of vectors sampled uniformly
from a large enough field (|K| > n2). It produces a Hessenberg polycyclic form H = V −1AV which,
with a bounded probability, will share the same diagonal companion blocks as the Frobenius normal form
of A. Such a matrix is called a quasi-Frobenius form. Lastly, Giesbrecht proposes a O(nω) update on
V to compute the transformation matrix U such that U−1AU = F is the Frobenius normal form of A.
Eberly proposed in [Ebe00] another randomized Las-Vegas algorithm in expected O(nω log n) time, with
no restriction on the size of the field. His algorithm does not use Keller-Gehrig’s algorithm but the log n

factor also arises from the computation of the powers of A: A2, A4 . . . , A2dlog ne
.
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We remark that the O(nω) algorithm for the characteristic polynomial described in section 1.5.1 com-
putes, when the randomization succeeds, a Hessenberg polycyclic form H = V −1AV in quasi-Frobenius
form. This directly gives a Las-Vegas algorithm with expected time O(nω) for the Frobenius normal form.

The computation of the transformation matrix U to the Frobenius form, is more involved. The update
techniques of [Gie93] allow to recover U from the transformation matrix V in O(nω). However, the
computation of V by Keller-Gehrig’s algorithm will again involve O(nω log n) operations.

Instead, we proposed in [T-PS07b] a faster way to compose the n successive elementary transformations
Ki, 2 ≤ i ≤ n happening in the O(nω) algorithm. Consider the product Kk,s = KkKk+1 . . .Ks.

Lemma 1.5.2

For 2 ≤ k < n, let s = min(dkω−1e, n). Then Kk,s can be computed with O(nω) field operations.

Indeed each factor in this product has less than n/k plain columns. Thus Kk,s and can be computed

in O(n
(
n
k

)ω−1
s). For s = O(dkω−1e), this is O(nω). Now the transformation matrix U = K2,n can be

computed as follows:

K ← In; k ← 2
while k ≤ n do

s← min(dkω−1e, n)
Compute Kk,s = KkKk+1 · · ·Ks as in Lemma 1.5.2
K ← KKk,s

k ← k + s+ 1
end while

The value of k increases at least as rapidly as the sequence 2ω−1, 2(ω−1)2 , 2(ω−1)3 , . . . and thus will
exceed n after O(log log n) iterations. Since each loop iteration has runtime O(nω), this shows that K may
be computed in time O(nω log log n). This completes the proof of Theorem 1.5.2.

Theorem 1.5.2

There exists a Las Vegas algorithm that for an n× n matrix A over a field K with |K| ≥ 2n2, returns
a U ∈ Kn×n such that U−1AU is in Frobenius form in expected time O(nω log log n) field operations.

What have we learned?

1. Floating point arithmetic remain de facto the most efficient choice for implementations of
linear algebra over a finite of bit-size between 5 and 24.

2. Strassen-Winograd’s algorithm memory requirements can be reduced by either overwriting
some inputs or by trading off the leading constant in the time complexity for lesser space
requirements.

3. A combination of recursive tasks and coarse grain data parallelism delivers the best effi-
ciency on shared memory parallel architectures.

4. The rank profile matrix summarizes the informations on the row and column rank profiles
of a matrix and that of all of its leading sub-matrices. It can be computed by any Gaussian
elimination algorithm provided some restrictions on the pivot search and permutations.

5. Tiled recursive LU decomposition is the best Gaussian elimination building block, from
which all other related eliminations can be recovered. We proposed such an algorithm
implementing the conditions to recover the rank profile matrix in O(nω) field operations.

6. The characteristic polynomial and the Frobenius normal form over a large enough field
can be computed by a randomized Las-Vegas algorithm in expected O(nω) field operations.
The transformation matrix to the Frobenius normal form can be computed with an extra
log log n factor.



Chapter 2
Coding Theory

Fault tolerance. In the recent developments of high performance computing, the reliability [Lap95]
of the computations has been given an increasing attention. Errors during a computation may occur
due to numerous reasons: software errors, hardware errors, including disk failure, bit-flip in main or
cache memory, due to cosmic radiations, etc. Despite many efforts to maintain the failure rate very low
(e.g. thanks to ECC RAM using basic error correction), the use of very large scale distributed systems
makes the probability of failure of one computing node no longer negligible. Indeed, recent peta-scale
supercomputers, such as Bluewaters [Di +14] or Tsubame 2 [Sat+12] encounter approximately two errors
per day. Many approaches to handle fail-stop failures rely on check-pointing and rollback [Eln+02] where
latency of recovery (approximately of about 30 minutes nowadays) is becoming a bottleneck as it is getting
near the predicted mean time between failures of the next generation of exa-scale computers [Cap+09].
Consequently alternative approaches are being developed to handle errors at earlier stages and broaden
the range of errors supported. Among them, Algorithm Based Fault Tolerance (ABFT) [HA84] exploits
specificities of the algorithm to introduce redundancy and make the algorithm resilient to errors, thanks
to error correcting codes.

The development of outsourced distributed computations, including volunteer, peer-to-peer and cloud
computing, also raises the question of the trust that one should have on the result of such computations.
The model of Byzantine errors [LSP82; Sch84] illustrates the case where the computation is not always
corrupted, and therefore, one might still want to use the results provided by a faulty computing node.
In the general setting, these errors can be managed, at least heuristically, using error detection and for
instance blacklisting of corrupted nodes, or checking post-conditions on the results. When algorithms allow
it, Algorithm Based Fault Tolerance can be used, offering a more efficient correction capacity.

We present in this section our contributions in the introduction of Algorithm Based Fault Tolerance in
high performance algebraic computing to support in a unified way Byzantine corruptions and soft-errors.

Error model and parallelization scheme. In the design of a fault tolerant algorithm, the error model
is directly related to the type of parallelization chosen for the algorithm. With n computing nodes, each
output of a node is a symbol and a valid output of the n nodes form a code word. We make the assumption
that errors only happen locally: one error corresponds to a single faulty node and thus produces a single
incorrect symbol in word. An error can be either a hard error (or failure), for which the output is never
produced. This corresponds to an erasure in the corresponding code-word. Or it can be a soft error (or
silent error), where the output of the node is produced but is incorrect (due to a physical alteration of the
memory, a bit-flip, or even an adversary attack).

Hence, the choice of a parallelization scheme induces a choice for the way the information is encoded
and the error model of the corresponding channel. For example, the ABFT developed in numerical linear
algebra [HA84; LP86; Bol+92; Bos+09; Du+12] rely on a parallelization based on the splitting in one or
both dimensions of the problem. As an example, a matrix multiplication C ← A× B can be parallelized
by splitting the column dimension of B and C and performing the product for each slice on a separate
computing node. Fault tolerance is achieved by adding extra columns to B and C acting as parity check
redundancy on the remaining columns. In this context a symbol is a matrix coefficient and a code-word a
row of the matrix C expanded with parity columns.
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Evaluation-interpolation based parallelization. A particularity of exact linear algebra is that the size
of the problem is not only a function of the matrix dimensions, but also of the size of their coefficients (i.e.
the bit size for integers and rationals or the degree for polynomials).

Computing directly over such domains with variable sized coefficients is often inefficient due to the
rapid growth in the size of the intermediate computations. Instead evaluation-interpolation transforms
a computation with polynomial coefficients into several independent computations over the coefficient
domain; the result is obtained by a polynomial interpolation. Similarly, computations over the integers are
reduced to several computations modulo coprime numbers and the result is reconstructed by the Chinese
remainder theorem.

The time complexity of these approaches is of the same order as the product of the algebraic complexity
of the problem (computing over the coefficient domain or over a fixed sized finite field) multiplied by the
size of the output. As an example, the determinant of a polynomial matrix of degree d and dimension
n is computed using O(nd) evaluations of the matrix, the determinant of each of which is computed
in O(nω), for a total cost of O(nω+1d). This complexity is at a factor n away from the complexity of
polynomial matrix multiplication which is a lower bound for this computation. Better algorithms [Sto03;
Sto05] are known, filling this gap and thus reaching the essentially optimal time complexity for this task.
However, evaluation-interpolation approaches are still competitive especially for that they naturally split
the computation into independent tasks, thus making the algorithm embarrassingly parallel.

Secure Multiparty computation. Evaluation-interpolation techniques are also at the core of the famous
Shamir secrete sharing protocol [Sha79], allowing to spread a secret between n shares, such that at least
k < n of them must agree in order to recover the secret. It has been applied to multiparty computa-
tions [BGW88; Gol97], where players taking part to the computation, should not be able to access to the
final result without agreeing with enough other players. This framework naturally provides resilience to
faults, thanks to the existence of evaluation-interpolation codes.

We will focus in this chapter on various techniques used to make the evaluation-interpolation based
parallelization schemes fault tolerant by exploring evaluation-interpolation based error correcting codes.

All the codes that we will present are formed using an evaluation function

Ev(x1,...,xn) : D −→ Kn

f 7−→ (f(x1), . . . , f(xn))

for some distinct points x1, . . . , xn ∈ K and where the domains D and K are specified for each code. We
are interested in recovering the unknown element f given a vector of its possibly erroneous evaluations.
We will study this curve fitting problem with outliers in the following specializations: over the ring of
polynomials (D = K[X]) in section 2.2, with sparse polynomials in section 2.6 and over the field of rational
functions (D = K(X)) in section 2.3. Lastly we will extend these results to the ring of integers and the
field of rationals (D = Z,Q) in section 2.5 and over the set of vectors of polynomials or rational functions
in 2.4.

In the process, we will apply a rather systematic approach for their study (except with sparse polynomial
evaluation codes in section 2.6): the decoding of the code will be expressed as a key equation which in turn
is viewed as a rational approximation problem. More precisely, the solution of the decoding problem is the
minimal solution to the rational reconstruction problem expressed in the key equation. Using the fact that
the Extended Euclidean algorithm (or some variants of it, like Berlekamp/Massey algorithm ) computes
these minimal solutions, it immediately produces a unique decoding algorithm. The case of interleaved
codes (section 2.4) yields a system of key equations, which solution is no longer unique but is described
by short vectors in a lattice. Lattice reduction algorithms (generalizing the extended Euclidean algorithm
to higher dimensions) are then used for their decoding.

The results on Reed-Solomon and CRT codes and their output sensitive decoding have been presented
in [R-Kho+10]. The generalization to the rational function and number evaluation codes are from a
collaboration with Erich Kaltofen, and will be detailed in an article in preparation. They have been
applied in multi-variate and symbolic-numeric setting [KY13; BK14; KY14] where not only errors but
also numerical noise is considered. The results on sparse polynomial evaluation codes have been presented
in [R-CKP12] and [R-KP14].



Chapter 2. Coding Theory 2.1. Preliminaries 31

2.1 Preliminaries
We briefly review the few basic concepts of coding theory that will later be used in this section.

2.1.1 Terminology
Error correcting codes are mainly designed to encode information by adding some redundancy allowing to
detect or correct one or more errors introduced by a communication channel.

A code is defined as a subset C of code-words living in a larger set E of all possible words. When E is
a vector space and C is a sub-vector space of E , C is called a linear code. In this case the code dimension
is its dimension as a vector space. Encoding is the transformation from an initial message m into a code-
word c, and decoding is the process of finding a code word c close to a received word r and recovering
the corresponding message m. The definition of close is left voluntarily unspecified for the moment, and
depend on a metric chosen over E and the type of decoding chosen. We will focus on bounded distance
decoding: finding the code-words at distance less than a given radius of a given a received word.

A commonly used metric is the Hamming distance dH and the Hamming weight wH defined by

wH((x1, . . . , xn)) = |{i ∈ {1 . . . n} : xi 6= 0}|
dH(x, y) = wH(x− y).

The minimum distance of a code is defined as the smallest distance between two code words and is the
minimal weight of a non-zero code-word in the case of linear codes:

δ = min
w1,w2∈C

dH(w1, w2) = min
w∈C\{0}

wH(w).

The correction capacity τ of a code is the maximum integer t such that balls of radius t centered
around the code-words do not intersect. The code is said to be τ -corrector. This indeed implies that for
any received word at distance t ≤ τ to a code-word, there is a unique code-word solution to the bounded
distance decoding problem with bound τ . This is called unique decoding. Imposing a larger decoding
radius τ > δ−1

2 implies the loss of uniqueness, and the decoder then need to return a list of code-words at

distance ≤ τ , this is called list decoding. Noting that balls of radius δ−1
2 centered in the code-words do

not intersect, we deduce that unique decoding is only possible up to decoding radius τ = δ−1
2 .

Lastly, the Singleton bound states that the minimal distance of a linear code of length n and dimension
k − 1 verifies

δ ≤ n− k. (2.1)

Such linear codes where equality δ = n − k holds are called maximal distance separable (MDS) and
maximize the unique decoding radius for a given dimension and length.

2.1.2 Linear recurring sequences
We recall that an infinite sequence a = (a0, a1, . . . , an, . . . ) of elements of a field K is linearly recurring if
there exist an integer t > 0 and t elements λ0, . . . , λt−1 ∈ K such that

at+j =

t−1∑
i=0

λiai+j ∀j ≥ 0.

The monic polynomial Λ(X) = Xt −
∑t−1
j=0 λjX

j is called a connecting or generating polynomial for the
sequence. The connecting polynomial of least degree is called the minimal generating polynomial of the
sequence and its degree is the linear complexity of the sequence.

These definitions can be extended to vectors, viewed as contiguous sub-sequences of an infinite sequence.
The minimal generating polynomial of an n-dimensional vector is the monic polynomial Λ(X) = Xt −∑t−1
i=0 λiX

i of least degree such that aj+t =
∑t−1
i=0 λiai+j ∀0 ≤ j ≤ n− t− 1. Note that consequently, any

vector is linearly recurring with linear complexity less than n.
An important connection between linear complexity and sparsity, is made in Theorem 2.1.1, referred

to as Blahut’s Theorem [Bla83; MS88]) though a similar form was already used in the 18th century by
Prony [Pro95].
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Theorem 2.1.1 (Blahut [Bla83; MS88])

Let K be a field containing an N -th primitive root of unity. The linear complexity of an N -periodic
sequence A = (a0, . . . , aN−1, a0, . . .) over K is equal to the Hamming weight of the discrete Fourier
transform of (a0, . . . , aN−1).

2.1.3 Approximation problems

Let n be a positive integer and K an arbitrary field with at least n elements.We recall a few classic results
on rational approximation problems.

Rational function reconstruction.

Problem 2.1.1 (RatFunRec)

Given two polynomials A,B over K with degB < degA = n and an integer 0 < k < n, find a pair of
polynomials (f, g), with g monic, deg f ≤ k, deg g ≤ n− k − 1 such that

f = gB mod A.

Lemma 2.1.1

Any two pairs (f1, g1) and (f2, g2) of solutions of a rational function reconstruction problem satisfy
f1g2 = f2g1.

Proof. f1g2 = g1Bg2 = g1f2 mod A. But max(deg f1g2,deg f2g1) < n, and therefore f1g2 = f2g1.

Lemma 2.1.1 implies that any solution of a rational function reconstruction problem is a multiple of a
solution of minimal degree. In other terms, they are the subset of elements in a free K[X]-module of rank
one, satisfying the degree constraints. Lemma 2.1.2, a variation of [GG13, Lemma 5.15] states that the
extended Euclidean algorithm solves the rational function reconstruction problem by finding the solution
of least degree.

Lemma 2.1.2

Consider the extended Euclidean algorithm run on f0 = A, f1 = B, and computing a sequence of
remainders f` defined by f`−2 = q`f`−1 + f` and 0 ≤ deg f` < deg f`−1, together with the multipliers
g`, h` defined by (g0, h0) = (0, 1); (g1, h1) = (1, 0) and g` = g`−2 − q`g`−1;h` = h`−2 − q`h`−1∀` > 1
such that f` = g`f1 + h`f0 holds for every `.

Then at iteration j such that deg fj ≤ k < deg fj−1,

1. the pair (fj , gj) is a solution to the rational reconstruction problem RatFunRec (A,B, k).

2. this solution is minimal: any other solution (f, g) satisfies f = qfj , g = qgj for some q ∈ K[X].

Proof. At iteration j, we have deg gj = n − deg fj−1 < n − k and fj = gjB mod A, thus (fj , gj) is a
solution to the rational reconstruction problem.

Suppose that (f, g) is another solution such that f = gB + hA. Then, from lemma 2.1.1, fjg = fgj .
Now as

0 = fjg − fgj = (gjB + hjA)g − (gB + hA)gj = (hjg − hgj)A.

we have hjg = hgj . Since gcd(hj , gj) = 1, we deduce that h = qhj for some q ∈ K[X]. Lastly, hjg = hjqgj
leads to g = qgj .
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Padé Approximation.

When A = Xn, the problem is called Padé approximation. A (df , dg)-Padé approximant of a function h
is a pair of polynomials f, g ∈ K[X] with deg f ≤ df deg g ≤ dg and g(0) = 1 such that

f = gh mod Xm+n+1. (2.2)

Hence solving the rational function reconstruction problem with A = Xdf+dg+1, B = h and k = df
computes the (df , dg)-Padé approximant of h. It can therefore be computed via the extended Euclidean
algorithm. An alternative is the Berlekamp/Massey algorithm , computing the minimal generating poly-
nomial of a linearly recurring sequence. Indeed the Padé approximant equation (2.2) writes:

g0hi + g1hi−1 + · · ·+ gdghi−dg = fi ∀i ∈ {0 . . . df + dg}

(considering h<0 = 0 for the commodity of notations) which implies

hi = −g1hi−1 − · · · − gdghi−dg∀i ∈ {df + 1 . . . df + dg},

showing that the terms of the sequence (hdf+1, . . . , hdf+dg ) are linearly generated by the polynomial

Xdg −
∑dg
i=1 giX

dg−i.
The equivalence between the Berlekamp-Massey and the extended Euclidean algorithm has been es-

tablished in [Dor87] but often independently rediscovered.

Cauchy interpolation.

Given n distinct elements x1, . . . , xn and n elements y1, . . . , yn, and setting A =
∏n
i=1(X − xi) and B the

polynomial interpolant such that B(xi) = yi ∀i ∈ {1 . . . n}, the problem becomes the interpolation of a
rational function, also called Cauchy interpolation.

Problem 2.1.2 (Cauchy interpolation)

Given (x1, . . . , xn) ∈ Kn and (y1, . . . , yn) ∈ Kn, find f, g ∈ K[X], co-prime, with deg f ≤ k, deg g ≤
n− k − 1 such that

f(xi) = yig(xi)∀i ∈ {1 . . . n}.

Cauchy interpolation problem is usually solved using polynomial interpolation followed by a rational func-
tion reconstruction (achieved by the extended Euclidean algorithm, as shown in Lemma 2.1.2).

Vector Rational function approximation.

The rational function reconstruction problem can be generalized to vectors with a common denominator.

Problem 2.1.3 (Vector Rational Function Reconstruction)

Given `+ 1 polynomials A,B(1), . . . , B(`) over a field K with degB(i) < degA = n and two positive
integers df and dg.

Find `+ 1 polynomials (g, f (1), . . . , f (`)), with g monic, deg f (i) ≤ df , deg g ≤ dg such that

f (i) = gB(i) mod A ∀i ∈ {1 . . . `}

The set of solutions to this problem is again a subset of a K[X]-free module, satisfying the degree
conditions, but this module now may no longer be uniquely generated: it has a rank s that can be
bounded in theorem 2.1.2.

Theorem 2.1.2 ([OS07])

s ≤ k for k ∈ Z>0 minimal such that n > df + dg/k.

Aside from this result, Olesh and Storjohann show how to reduce the computation of these s minimal
generators to polynomial lattice reduction, which can be performed in O(`kω−1Mn) using the fast minimal
basis computation of [GJV03].

Similarly as in the one dimensional case, when A = Xn the problem is a simultaneous Padé approxi-
mation problem.
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2.2 Dense polynomial evaluation codes

2.2.1 Reed-Solomon codes

A first and simple instance of evaluation code is that of polynomials over a finite field.

RS(n, k) = {Ev(x1,...,xn)(f) : f ∈ K[X]≤k} ⊆ Kn.

Such codes correspond to the well known Reed-Solomon codes [RS60]: although first introduced in the
setting of evaluation codes, they have later been cast as a special case of BCH codes, loosing this property.

These codes are MDS, as their minimum distance maximizes the Singleton bound.

δ = n− k. (2.3)

Indeed, if a code-word had less than n−k non zero coefficients, it would be an evaluation of a degree ≤ k
polynomial vanishing on at least k + 1 points, namely the zero polynomial, and the code-word would be
the zero vector.

Unique decoding. Consider a code-word c = (ci) = Ev(x1,...,xn)(f) for some f ∈ K[X]. Let r = (ri) =

c+ e be the received word and e the error vector, with wH(e) = t ≤ δ−1
2 . Let S = {i : ei 6= 0} be the error

support and define Λ =
∏
i∈S(X −xi), the error locator polynomial. Lastly, define Π =

∏n
i=1(X −xi) and

h ∈ K[X], the polynomial interpolant of the pairs (xi, ri)1≤i≤n, that is: h(xi) = ri ∀i ∈ {1 . . . n}.
One shows that the congruence

Λf = Λh mod Π (2.4)

holds by noting that either Λ(xi) = 0 for i ∈ S or f(xi) = h(xi). This congruence is often referred to as
the key equation, and is at the core of most decoding algorithm. Indeed, it is an instance of a rational
function reconstruction problem: given h and Π, find F = Λf and G = Λ of degree respectively k + t and
t, such that F = Λh mod Π. Note that it differs from a Cauchy interpolation problem by the fact that
the numerator Λf and the denominator Λ are not co-prime. More precisely, the pair (F = Λf,G = Λ)
is actually the one of least degree solving the rational function reconstruction problem: for any proper
divisor Γ of Λ, there is an xi such that Λ(xi) = 0 6= Γ(xi) and Γ(xi)f 6= Γ(xi)h. Therefore Lemma 2.1.2
ensures that the solution (F = Λf,G = Λ) will be computed by the extended Euclidean algorithm.

A wide range of algorithms have been proposed for the unique decoding of Reed-Solomon codes. The
Berlekamp/Welch [BW86] decoder solves the congruence (2.4) using linear algebra whereas many algo-
rithms [Shi88; Gao02] reduce to the extended Euclidean algorithm as in Lemma 2.1.2: applying the

extended Euclid algorithm on r0 = Π, r1 = h and halting when deg ri ≤ df+n−1
2 < deg ri−1.

Another family of algorithms, rely on a variation of the key equation, written as a Pade approximation
problem. From (2.4), there exist a polynomial Q ∈ K[X]≤t−1 such that Λf = Λh+QΠ.

For a polynomial P of degree ≤ k, we define the degree k reverse polynomial of P as revk(P )(X) =
XkP (1/X) 1. Evaluating the congruence (2.4) in X = 1/z and multiplying both sides by zn+t−1 yields

zn−df−1revt(Λ)revdf (f) = revt(Λ)revn−1(h) + revt−1(Q)revn(Π),

With the additional constraint that K = Fq, n = q − 1 and {x1, . . . , xn} = F∗q (which is the standard
setup for Reed-Solomon codes viewed as BCH codes), we have Π = Xn − 1, and revn(Π)(z) = 1− zn and
consequently

revt(Λ)revn−1(h) = −revt−1(Q) mod zn−df−1. (2.5)

This is now a Padé approximation problem for which Berlekamp/Massey algorithm computes a solution
provided that deg revt(Λ) + deg revt−1(Q) + 1 ≤ n− df − 1 which is t ≤ δ−1

2 .

1This is a slight generalization of the standard definition of the reciprocal polynomial: normally k = degP but we only
have here upper bounds on the degrees of some of the polynomials in the congruence.
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2.2.2 Parameter oblivious decoding
Evaluation-interpolation schemes are often used in a context where the size of the result to be reconstructed
is only known by an a priori upper bound. The discrepency between this bound and the actual value implies
an over-estimation in the number of evaluation points to be used. For example, consider the polynomial
matrix

A =

[
x5 + x2 + 1 x3 + x+ 1

x4 x2 + 1

]
.

While the Hadamard bound predicts a determinant of degree bounded by 8, indicating that 9 evaluations
of the matrix will be sufficient, the determinant is in fact 2x+ 1, hence only two evaluations would suffice.
As the interpolated result remains same for any additional evaluation, one can perform the interpolation
on the fly (e.g. using Newton’s formula) and declare the result correct as soon as a stabilization is de-
tected. This technique, called early termination [Fre+88; KT90; Emi98; KLL00], speeds-up computations
in practice and make the complexities output sensitive, at the expense of succeeding only with a guaran-
teed probability. This probability can be amplified exponentially by checking the stabilization on a few
additional evaluations.

Now, in the case where some evaluations can be erroneous, such a stabilization will not occur and one
has to compute all n ≥ df + 1 evaluations, where df bounds the result’s degree. Then, up to τ =

n−df−1
2

errors can be corrected by running the extended Euclidean algorithm with termination when the degree
of the current remainder becomes less or equal than

n+df−1
2 . Now remark that the discrepency between

deg f and df is a form a redundancy, that can be used for error correction: if deg f were known, one could

run the extended Euclidean algorithm until deg fi ≤ n+deg f−1
2 and hence correct up to τ = n−deg f−1

2 ≥ τ
errors.

Therefore we proposed in [R-Kho+10] a parameter oblivious decoding algorithm that simply consists
in letting the extended Euclidean algorithm run and checking at each iteration if it corresponds to a
feasible decoding. The output is now a list of possible solutions. The criterion to declare that an iteration
fi = gih+ hiΠ in the extended Euclidean algorithm corresponds to a valid decoding is that

gi divides Π and fi. (2.6)

Example 2.2.1

Over Z/17Z, consider the evaluation points (1, 2, 3, 4, 5, 6, 7) and the received word (16, 16, 16, 12, 16,
16, 10) which corresponds to the polynomial interpolant h = X6 + 7X5 + 5X4 + 15X2 + 8X + 14. The

run of the extended Euclidean algorithm applied to f0 = Π =
∏7
i=1(X − i) and f1 = h is summarized

in following table (with polynomials written in factorized form to reveal the possible common factors):

i fi gi qi
0 (X − 1)(X − 2) . . . (X − 6)(X − 7) 0
1 X6 + 7X5 + 5X4 − 2X2 + 8X − 3 1
2 (X − 1)(X4 +X3 + 6X2 + 5X − 6) −(X − 1) X − 1
3 16(X − 7)(X − 4) (X − 7)(X − 4) X + 7
4 9(X + 9) (X + 6)(X4 + 11X3 + 7X2 + 8X + 16) −X3 + 6X2 + 4X − 4
8 13 2(X3 − 2X2 − 5X + 4)(X3 −X2 + 8X + 8) 15X + 6
9 0 2X + 1

From the divisibility criterion, there are 3 possible decodings:

1. the code-word Ev(X6 + 7X5 + 5X4 − 2X2 + 8X − 3) ∈ RS(7, 7) with no error,

2. the code-word Ev(X4 +X3 +6X2 +5X−6) ∈ RS(7, 5) with one error at evaluation point x1 = 1,

3. the code-word Ev(16) ∈ RS(7, 3) with two errors at evaluation points x4 = 4 and x7 = 7,

Note that contrarily to the standard list decoding techniques [Sud97; GS99], that return the list of code-
words in a given code at a distance beyond the unique decoding radius, this list decoding returns the
list of the possible unique decodings in all Reed-Solomon codes of length n (and dimension k ranging in
{1, . . . , n}).

On this example, note that third possible decoding (Ev(16)) has some unused redundancy (5 evaluations
would have been sufficient to reconstruct a degree 0 polynomial with 2 errors), and that the quotient
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preceding this iteration has an abnormally large degree. This is a general fact formalized in lemma 2.2.1
that any oversampling will be detected by a surge in the degree of preceeding quotient.

Lemma 2.2.1

If n = df +2t+1+∆ for some ∆ ≥ 0, then at the final iteration j of the extended Euclidean algorithm

run on Π and h, such that deg fj ≤ n+df−1
2 < deg fj−1, we have deg qj ≥ ∆.

Proof. At iteration j, the pair (fj , gj) is the unique minimal solution to the rational reconstruction
problem (2.4). Hence fj = Λf and gj = Λ. Now

deg qj = deg fj−1 − deg fj = n− deg gj − deg f − t ≥ ∆.

This property can be used to reduce the number of iterations where the divisibility condition (2.6) is
checked, to only those with a quotient greater than an arbitrary threshold ∆. This is done at the expense
of loosing a decoding capacity of ∆/2, but experiments show [R-Kho+10] that a very small value of ∆
suffices to filter out most iterations.

Rational reconstruction with early termination based on the degree of the quotient was first proposed
in [KM06]. We then applied it in a coding theory framework in [R-Kho+10] for both Reed-Solomon codes
and CRT codes, introducing the approach of trying and decode all possible codes for a given length,
referred to as parameter oblivious decoding.

2.3 Rational function codes

2.3.1 The code and its minimum distance

In this section we generalize the Reed-Solomon codes to the evaluation of rational functions, and therefore
study the problem of Cauchy interpolation in the presence of errors in the evaluations. In the most general
setting, we allow evaluations at poles of the rational function. By convention, if x is a pole of a rational
function f , we set f(x) =∞. Let K = K ∪ {∞} and the function Ev(x1,...,xn) generalizes naturally to

Ev(x1,...,xn) : K(X) −→ K
n

f 7−→ (f(x1), . . . , f(xn))
.

Note that the problem of Cauchy interpolation in the presence of errors has been used as an inner tool
in the list decoding of Reed-Solomon codes by Wu’s algorithm [Wu08; Bee+13]. We present and study it
here in the setting of a code.

Definition 2.3.1

The rational function code over the alphabet K with parameters (n, df , dg) with n > df + dg is the set

RF(n, df , dg) = {Ev(x1,...,xn)

(
f

g

)
: f ∈ K[X]≤df , g ∈ K[X]≤dg} ⊆ K

n
.

Theorem 2.3.1

A rational function code of parameters (n, df , dg) has minimal distance equal to δ = n− df − dg.

Proof. Let (b
(1)
1 , . . . , b

(1)
n ) and (b

(2)
1 , . . . , b

(2)
n ) be two code-words and f1

g1
and f2

g2
their corresponding reduced

rational functions. Suppose dH(b(1), b(2)) < n−df −dg. Then |{i : b
(1)
i = b

(2)
i }| > df +dg. The polynomial

f1g2 − f2g1 has degree less or equal than df + dg and vanishes on at least dg + df + 1 values xi. Hence
f1g2 = f2g1 which implies that b(1) = b(2) and consequently δ ≥ n− df − dg.
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On the other hand, consider the polynomials f1 =
∏df
i=1(X−xi), f2 = αf1 and g =

∏dg
i=1(X−xi+df+1),

for some α ∈ K \ {0, 1}. The polynomials f1 and f2 of degree df are co-prime with g. Then the vectors

b(1) = Ev(x1,...,xn)

(
f1

g

)
= (0, . . . , 0︸ ︷︷ ︸

df times

,
f1

g
(xdf+1),∞, . . . ,∞︸ ︷︷ ︸

dg times

, ∗, . . . , ∗)

b(2) = Ev(x1,...,xn)

(
f2

g

)
= (0, . . . , 0︸ ︷︷ ︸

df times

, α
f1

g
(xdf+1),∞, . . . ,∞︸ ︷︷ ︸

dg times

, ∗, . . . , ∗)

are distinct code-words of an (n, df , dg) rational function code at Hamming distance at most n−df−dg.

Corollary 2.3.1

Let df , dg, n ∈ Z>0 such that δ = n−dg−df > 0 and K be a field. Then for any vector (r1, . . . , rn) ∈ K
n
,

there exists at most one pair of polynomials f ∈ K[X]≤df , g ∈ K[X]≤dg such that

|{i s.t. (ri 6=∞ and f(xi) 6= rig(xi)) or (ri =∞ and g(xi) 6= 0)}| ≤ δ − 1

2
.

Proof. If two such pairs of polynomials (f, g) would exist, this would contradict the fact that δ is the
minimal distance of the code.

2.3.2 A unique decoding algorithm
As for the Reed-Solomon codes, we will show that the decoding reduces to solving a rational function
reconstruction problem, which in turn is solved by e.g. the extended Euclidean algorithm as presented in
section 2.1.3.

Consider a rational function code RF(n, df , dg). Let f(X) ∈ K[X]≤df , g(X) ∈ K[X]≤df with g monic,

GCD(f, g) = 1 and consider the corresponding code-word (c1, . . . , cn) = Ev(x1,...,xn)

(
f
g

)
in RF . Given

n, df , dg and a received vector (r1, . . . , rn) such that ri 6= ci on t values of i, forming the error position set
S. We wish to recover the rational function f/g ∈ K(X).

Let Π =
∏n
i=1(X−xi) and P∞(X) =

∏
ri=∞(X−xi) with degP∞ = n∞. Let h̄(X) be the polynomial

interpolant for the n− n∞ argument/value pairs (xi, P∞(xi)ri)ri 6=∞. We have deg h̄ ≤ n− n∞ − 1. Note
that if xi is a pole, f(xi) 6= 0 because f/g is reduced; however for such poles we can erroneously have
ri 6=∞ (“false non-pole”). In addition, for an error index i ∈ S we allow ri =∞ even when ci 6=∞, that
is when g(xi) 6= 0 (“false pole”). Let Λ(X) =

∏
i∈S(X − xi) be the error locator, and let

Λ∞(X) =
∏

i∈S:ri=∞
(X − xi), g∞(X) =

∏
i 6∈S:ri=∞

(X − xi). (2.7)

Note that, at the roots xi of g∞, we have ri = ci = ∞, hence g∞ divides g. Because the roots of Λ∞
constitute the false poles, none are roots of g, so GCD(Λ∞, g) = 1. Moreover P∞ = Λ∞g∞. Let ḡ = g/g∞,
Π̄ = Π/P∞ and Λ̄ = Λ/Λ∞.

Lemma 2.3.1

If t ≤ δ−1
2 , the pair (F = fΛ, G = ḡΛ̄) is a minimal solution to the rational function reconstruction

problem RatFunRec (Π̄, h̄, df + δ−1
2 ).

Proof. The decoding relies on a generalization of the key equation (2.4):

Λf︸︷︷︸
F

≡ Λ̄ḡ︸︷︷︸
G

h̄ (mod Π̄) (2.8)

There are two kinds of xi in the congruence (2.8): either xi for i ∈ S and ri 6=∞: then Λ̄(xi) = 0 on both
sides; or xi with ri = ci 6= ∞: then (Λf)(xi) = Λ(xi)g(xi)ci = Λ̄(xi)ḡ(xi)P∞(xi)ri = Λ̄(xi)ḡ(xi)h̄(xi),
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which proves (2.8). Now since degF ≤ df + t ≤ df + δ−1
2 and degG ≤ dg − deg g∞ + t − deg Λ∞ =

dg−n∞+ t = n−df − δ+ t ≤ n−df − δ−1
2 −1, we deduce that the pair (F,G) is a solution to the problem

RatFunRec(Π̄, h̄, df + δ−1
2 ).

Let (F ′, G′) be another solution to this problem. From lemma 2.1.1, FG′ = F ′G, hence

fΛ∞G
′ = F ′ḡ = G′h̄ḡ.

Let i ∈ S with ri 6=∞, so that Λ∞(xi) 6= 0 and ri 6= ci, we have f(xi)Λ∞(xi)G
′(xi) = G′(xi)riΛ∞(xi)g(xi)

or equivalently G′(xi)(f(xi) − rig(xi)) = 0. If g(xi) = 0 then necessarily f(xi) 6= 0, and therefore
G′(xi) = 0. If g(xi) 6= 0, then G′(xi)(ci − ri) = 0, and again G′(xi) = 0 as ci 6= ri. Thus Λ̄ divides G′,
but also F ′, from equation (2.8), and therefore GCD(F,G) divides GCD(F ′, G′) showing the minimality
of (F,G).

Corollary 2.3.2 is a direct consequence of lemmas 2.1.2 and 2.3.1 and the decoding algorithm (Algo-
rithm 2) follows.

Corollary 2.3.2

The extended Euclidean algorithm run on (f0 =
∏
ri 6=∞(X − xi), f1 = h̄) and terminated at iteration

j when deg fj ≤ df + δ−1
2 < deg fj−1 returns

fj = fΛ, gj = ḡΛ̄.

Algorithm 2 Decoding Rational Function Code

Require: n, df , dg ∈ Z>0

Require: (x1, . . . , xn) ∈ Kn: n distinct elements of K
Require: (r1, . . . , rn) ∈ K

n

Ensure: f ∈ K[X]≤df , g ∈ K[X]≤dg if they exist (or returns FAIL) such that GCD(f, g) = 1 and |{i ∈
{1 . . . n} : (ri =∞ and g(xi) 6= 0) or f(xi) 6= rig(xi)}| ≤ n−deg f−deg g−1

2
Ensure: Λ̄ =

∏
ri 6=∞ and f(xi)6=rig(xi)

(X − xi)
Ensure: Λ∞ =

∏
ri=∞ and g(xi)6=0(X − xi)

Ensure: g∞ =
∏
ri=∞ and g(xi)=0(X − xi)

1: P∞ ←
∏
ri=∞(X − xi); n∞ = degP∞

2: h̄← Interpolant((riP∞(xi), xi)ri 6=∞)
3: f0 ←

∏
ri 6=∞(X − xi); f1 = h̄

4: fj , gj ← RatFunRec(f0, f1, df + δ−1
2 )

5: Λ̄← GCD(fj , gj)
6: Γ← fj/Λ̄
7: Λ∞ ←

∏
i:ri=∞ and Γ(xi)=0(X − xi)

8: g∞ ←
∏
i:ri=∞ and Γ(xi)6=0(X − xi)

9: f ← Γ/Λ∞
10: ḡ ← gj/Λ̄
11: g ← g∞ḡ
12: if deg g ≥ dg or deg f ≥ df or Λ̄ does not divide f0 then return FAIL
13: end if

2.4 Interleaving
Applications in signal processing, where error correcting codes were primarily used, revealed a need to
handle bursts of errors. In this context, interleaving became a powerfull tool to enable the correction of
such bursts that a classic code would have not been able to correct. A simple interleaving of depth `
of a block code consists in storing ` code-words c(1), . . . , c(`) in a matrix (or interleaving table) [ci,j ] ∈
K`×n such that c(i) = (ci,1, . . . , ci,n) and then send the symbols of the matrix in column-major order:
c1,1, c2,1, . . . , c`,1, c1,2, . . . .
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A burst of error in the channel (corrupting consecutive symbols) of length ≤ ` would then be spread over
distinct code words, and can therefore be more easily corrected. More precisely if one can correct t errors on
each code-word, an interleaving of depth ` allows to correct a burst of length up to `t. More sophisticated
interleaving techniques have been developed to further improve the resilience to bursts and isolated errors
simultaneously, the most famous one being the Cross Interleaved Reed-Solomon codes (CIRC) used in the
audio CD standard [Oda+83; Moo05].

2.4.1 Collaborative decoding

A further improvement is to remark that in a simple interleaving with error bursts, the decoding of each
row should not be done independently as the errors share the same column support. Instead, collaborative
decoding factors out this information so as to increase the correction capactity.

Let h(1), . . . , h(`) be the polynomial interpolants of the ` received words and f (1), . . . , f (`) be the polyno-
mial interpolants of the ` code-words c(1), . . . , c(`). Let S1, . . . , S` be the error support for each of received
word and S = S(1) ∪ · · · ∪ S(`). We have a system of key equations

Λf (1) = Λh(1) mod Π
...

Λf (`) = Λh(`) mod Π

(2.9)

with Λ =
∏
i∈S(X − xi). The linearization N (i) = Λf (i) ∀i ∈ {1 . . . `} transforms it into a vector rational

function reconstruction problem, as problem 2.1.3. As for the one-dimensional key equation, it can also
be transformed into a simultaneous Padé approximation problem.

Making the assumption that errors happen in bursts and have therefore the same support for every
interleaved words, we set t = |S| ≈ |S(1)| ≈ · · · ≈ |S(`)|. The corresponding linear system is formed by n`
equations for t+ `(df + 1 + t) unknowns. Hence a necessary condition for a unique decoding is

t ≤ `

`+ 1
(n− df − 1).

that generalizes the unique decoding radius of Reed-Solomon codes (obtained with ` = 1).

However, the system is not necessarily non-singular, and in the worst case, fewer errors can be decoded.
Collaborative decoding usually makes genericity assumptions [SSB06] or guaranties success with a bounded
probability with respect to a given distribution of vector rational reconstruction systems [BKY03; KY14].
Using the vector rational function reconstruction of [OS07] mentioned in section 2.1.3, the failure case is
when no element of the minimal basis generating the free module of solutions of (2.9) is a vector of the
form (Λ,Λf (1), . . . ,Λf (`)).

This approach, based on a system of key equations, was first proposed in [BKY03; BKY07], in the
context of simultaneous rational reconstruction, where the resolution of system 2.9 is done by linear algebra,
as in the Berlekamp/Welch decoding. Earlier work, by Feng and Tzeng proposed the so called fundamental
iterative algorithm [FT85; FT91] that generalizes the Berlekamp/Massey algorithm over multiple recurring
sequences and therefore solves the corresponding simultaneous Padé approximation problem. More recently
Schmidt, Sidorenko and Bossert improved Feng and Tzeng’s algorithm to support sequences of varying
length [SSB06].

This made way to an interesting construction for decoding Reed-Solomon codes beyond half their
minimum distance: power decoding [SSB10]. Consider a code-word c = Ev(x1,...,xn)(f), with f ∈ K[X]≤k
and define ` ≤ bnk c. Noting that the vector c(i) = (ci1, . . . , c

i
n) for i ∈ {1 . . . `} is a code-word of a

(n, ki)-Reed-Solomon code, one can build an interleaving table by simply raising the code-word symbols to
consecutives powers. Given a receveived word r, of interpolant h, define r(i) = (ri1, . . . , r

i
n) and h(i) = hi

mod Π, so that h(i)(xj) = rij ∀i ∈ {1 . . . `}, j ∈ {1 . . . n}. This construction ensures a structure of burst

to the errors: each r(i) differs from the corresponding c(i) on the exact same positions. The key equation
system becomes 

Λf1 = Λh(1) mod Π
...

Λf ` = Λh(`) mod Π

. (2.10)
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The necessary condition for uniqueness becomes (`+1)t+
∑`
i=1 ik ≤ `n. With the additional constraint

that a syndrome of size at least t should exist on the last row, we have t ≤ n − lk. The two equations
combined together yield k

n = 2
`(`+1) , and t ≤ n−

√
2kn, matching the correction radius of Sudan’s first list

decoding algorithm [Sud97].
Algorithmic aspects of efficient list decoding for Reed-Solomon codes have been intensively stud-

ied [Ale02; CS03; PV05; Wu08; CH10; Ber11; Qui12; Zeh12; Nie13; Cho+14] and the best complexities
are now obtained through either polynomial lattice reduction, or structured linear algebra. The reader
will find in [Cho+14] an survey on the topic with more complete references.

2.4.2 Application to fault tolerant exact linear system solver
Interleaving of the rational function codes of section 2.3 finds a natural application in fault tolerant linear
system solving over the field of rational functions K(X).

Consider a polynomial linear system Ay = b for a non-singular matrix A ∈ K[X]m×m≤d and a vector
b ∈ K[X]m≤d with a solution y living in K(X)m.

A distributed computation of the solution can be obtained by solving n evaluations of the system in
distinct points x1, . . . , xn ∈ K: y(i) = A(xi)

−1b(xi), using for example Gaussian elimination over K as in
section 1.3. A polynomial vector interpolant h = (h1, . . . , hm) ∈ K[X]m of these solutions is computed,
and the result is obtained by rational function reconstructions.

From Cramer’s rule and Hadamard bound, the numerators and the denominator of the solution y have
degree ≤ md. Hence n = 2md+1 evaluations suffice for the rational function reconstruction (problem 2.1.1)
of each component of y to succeed. But remarking that the m instances of these reconstructions share the
same denominator, the problem is more precisely a vector rational function reconstruction (problem 2.1.3),
and therefore only requires n = md + d + 1 evaluation points to find its unique solution. Indeed, from
theorem 2.1.2, we know that the minimal basis of solutions to the vector rational function reconstruction

contains s ≤ m vectors (g(i), f
(i)
1 , . . . , f

(i)
m ), i ∈ {1 . . . s} such that A(f

(i)
1 , . . . , f

(i)
m )T = g(i)b mod Π. As

max(degA+ deg f (i),deg b+ deg d(i)) ≤ md+ d < deg Π we have A(f
(i)
1 , . . . , f

(i)
m )T = d(i)b, and since the

solution is unique, s = 1. This is the approach proposed in [OS07], originating from [Cab71].
Now consider the case where at some evaluation points xi, the matrix Ai may be singular, or that the

result yi returned is erroneous. An interleaved version of the rational function codes of section 2.3 can be
applied to reconstruct the result.

The key equation system now becomes
Λf1 = Λ̄ḡh̄1 mod Π̄

...
Λfm = Λ̄ḡh̄m mod Π̄

, (2.11)

where y = (f1, . . . , f`)/g and using the notations of section 2.3.2.
Comparing the number of unknown and of equations, we deduce a necessary condition for unique

decoding:

n ≥ m+ 1

m
t+ (m+ 1)d+ n∞(1− 1

m
) + 1. (2.12)

Note that, as expected, the amount of oversampling required to support t errors is reduced to m+1
m t.

However the presence of poles is no longer transparent for the decoding, as it also impacts n as soon as
m > 1. An interpretation is that with m = 1, when the evaluation point xi hits a pole, the∞ symbol does
not contribute to the interpolation (it is considered as an erasure), but on the other hand, it contributes
to the knowledge of a degree one factor of the denominator which compensates the oversampling required
for the erasure. Now with m > 1, the vector y = (∞, . . . ,∞) still only contributes to a degree one factor
of denominator, but all other m− 1 repetitions of this symbol are useless, and treated as erasures, hence
the m−1

m additional term.

2.5 Over the integers and rationals
The evaluation-interpolation technique over K[X] transfers over the ring of integers under the form of
residue number systems: evaluations in the distinct points xi (or equivalently reductions modulo co-prime
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(X−xi)’s) are replaced by reductions modulo co-prime integers m1, . . . ,mn, and interpolation correspond
the Chinese Remainder algorithm. Hence most constructions that we used over K[X] can be transferred
to Z, but some complications occur, mostly due to the effect of carries: K[X]≤d is stable by addition
whereas Z≤n is not. For this reason, the rational number reconstruction problem, Problem 2.5.1, also
called the Thue problem does not necessarily admit a minimal solution generating the set of solutions as
in Lemma 2.1.1.

Problem 2.5.1 (RatNumRec (A,B, k))

Given two integers A > B ≥ 0 and a real number 0 ≤ k < A, find a pair of integers f, g such that

|f | ≤ k, 0 < g <
A

k
and f = gB mod A

To ensure this, we will use a slightly weaker version of this problem:

Problem 2.5.2 (WeakRatNumRec (A,B, k))

Given two integers A > B ≥ 0 and a real number 0 ≤ k < A, find a pair of integers f, g such that

|f | ≤ k

2
, 0 < g <

A

k
and f = gB mod A

so as to state lemma 2.5.1.

Lemma 2.5.1

Any two pairs (f1, g1) and (f2, g2) of solutions of WeakRatNumRec (A,B, k) problem satisfy f1g2 =
f2g1.

Proof. f1g2 = g1Bg2 = g1f2 mod A. But |f1g2 − f2g1| ≤ |f1g2| + |f2g1| < A, and therefore f1g2 =
f2g1.

The extended Euclidean algorithm solves the rational number reconstruction problem by finding the
minimal solution. This is stated in the following lemma, a variation of [KR89, Theorem 5.1] and [GG13,
Lemma 5.25].

Lemma 2.5.2

Consider the extended Euclidean algorithm run on f0 = A, f1 = B, and computing a sequence of
remainders f` defined by f`−2 = q`f`−1 + f` and 0 ≤ |f`| < |f`−1|, together with the multipliers g`, h`
defined by (g0, h0) = (0, 1); (g1, h1) = (1, 0) and g` = g`−2− q`g`−1;h` = h`−2− q`h`−1∀` > 1 such that
f` = g`f1 + h`f0 holds for every `.

Then at iteration j such that |fj | ≤ k/2 < |fj−1|, the pair (fj , gj) is a solution to the problem
RatNumRec (A,B, k). Furthermore if |fj | ≤ k/2 < k < |fj−1|, then

1. the pair (fj , gj) is also a solution to the problem WeakRatNumRec (A,B, k).

2. this solution is minimal: any other solution (f, g) satisfies f = Qfj , g = Qgj for some positive
integer Q.

2.5.1 CRT codes

The evaluation function

Ev(m1,...,mn) : Z −→ Zm1
× · · · × Zmn

f 7−→ (f mod m1, . . . , f mod mn)

defines the Chinese remainder codes (CRT codes) similarly as the Reed-Solomon codes over K[X]:

CRT (N ,K) = {Ev(m1,...,mn)(f) : f ∈ Z with log2 |f | ≤ K − 1}. (2.13)
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where N =
∑n
i=1 log2mi. Note that the parameters N and K are positive real numbers, corresponding

respectively to the amount of information, in bit-size that the residue system can carry, and the amount
of information that the code carries.

Over Zm1
× · · · × Zmn

, we define the distance

∆ : S × S → R+

(x, y) 7→
∑

1≤i≤n,xi 6=yi

log2mi

counting the bit-size of the moduli where two words differ and define the minimum distance of a code C
as δ = min(x,y)∈C2 ∆(x, y).

Remark 2.5.1

The main difficulty with CRT codes, compared to Reed-Solomon codes, is that each symbol of a word
carries a varying amount of information depending on the bit-size of the corresponding moduli mi.
The use of the Hamming distance, as it is usually done [WH66; Man76; GRS99], does not take it into
account, which imposes a limitation: the code is defined as the evaluation of the integers less than
the product of the first smallest k moduli (K =

∑k
i=1 log2mi for m1 < · · · < mn). This condition

is required in order to state a minimal distance of δ = n − k + 1 and guarantee that n−k
2 errors can

always be uniquely corrected. Algorithms for unique decoding naturally rely on the extended Euclidean
algorithm. However, decoding up to half the minimum distance is difficult: Mandelbaum [Man76] uses
a pertubation technique, making the complexity exponential in the worst case. Goldreich, Ron and

Sudan [GRS99] showed how to uniquely decode up to t ≤ (n−k) logm1

logm1+logmn
< n−k

2 errors using a rational

number reconstruction problem. Finally, Guruswami, Sahai and Sudan [GSS00] proposed the first
polynomial time algorithm, using weights, decoding up to half the minimum distance. The last two
papers, as well as [Bon00] also addressed the list decoding of CRT codes, thus completing the analogy
with the Reed-Solomon codes.

The distance ∆ and the parameter setting of Equation (2.13) correspond to an information theoretic
point of view on the codes, that we used in [R-Kho+10]. It generalizes the notion of amplitude for
a word of [GRS99].This way we can remove the requirement that the moduli must be sorted: in the
context of CRT based distributed computations, one may need to chose them randomly (in order to
use a probabilistic algorithm). This is also required if one needs to reconstruct and decode the result
on the fly, using early termination, and parameter oblivious decoding as in section 2.2.2, as the residues
will very likely not appear by increasing order of the corresponding modulo.

Lemma 2.5.3 states a form of MDS property for the CRT codes defined in (2.13).

Lemma 2.5.3

A CRT (N ,K) code has minimum distance δ ≥ N −K.

Proof. Let f and g be two integers, with |f |, |g| ≤ 2K−1, c(1), c(2) the corresponding code words and define
S̄ = {i : f = g mod mi}. Then ∆(b(1), b(2)) = log2

∏
i:f 6=g mod mi

mi = N − log2

∏
i∈S̄mi.

On one hand e = f − g is a non-zero multiple of
∏
i∈S̄mi and therefore log |e| ≥ N −∆(b(1), b(2)). On

the other hand |e| ≤ |f |+ |g| ≤ 2K. Therefore ∆(b(1), b(2)) ≥ N −K.

Similarly as for Reed-Solomon codes, the unique decoding rely on a key equation of the form

Λf = Λh mod Π (2.14)

where Π =
∏n
i=1mi, h is the CRT interpolant of the received word, f ∈ {−2K−1 . . . 2K−1 is the CRT

interpolant of the code-word, and Λ =
∏
i:r 6=f mod mi

mi.

This is an instance of a weak rational number reconstruction. More precisely, if the error locator Λ has

bit-size < (N − K)/2, then |Λf | < 2
N+K

2 −1 and the pair (F = Λf,G = Λ) is the minimal solution to the
problem: WeakRatNumRec(Π, h, (K+N )/2). Finally, Lemma 2.5.2 ensures that it will be computed by
the extended Euclidean algorithm.
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2.5.2 Rational number codes
The rational function codes can also be transferred to rational number codes. Let Zm = Zm ∪ {∞}. By
convention, for p and q co-prime, we set p

q =∞ mod m if GCD(m, q) > 1. The evaluation function over
Q becomes:

Ev(m1,...,mn) : Q −→ Zm1 × · · · × Zmn

r 7−→ (r mod m1, . . . , r mod mn)

Definition 2.5.1

Let m1, . . . ,mn be n prime numbers and let N = log2

∏n
i=1mi and 0 < Kf ,Kg < N be two real

numbers. The rational number code with parameters (N ,Kf ,Kg) is defined as

RN (N ,Kf ,Kg) = {Ev(m1,...,mn)

(
f

g

)
: f, g ∈ Z× Z>0 with log2 |f | ≤ Kf − 1, log2 g ≤ Kg}

We extend the distance ∆ over the set Zm1
×· · ·×Zmn

from which we can define the minimal distance
of a code C as δ = min(x,y)∈C2 ∆(x, y).

Theorem 2.5.1

A rational number code with parameters (N ,Kf ,Kg) has minimum distance δ ≥ N −Kf −Kg.

Proof. Let (b
(1)
1 , . . . , b

(1)
n ) and (b

(2)
1 , . . . , b

(2)
n ) be two distinct code-words and f1

g1
and f2

g2
their corresponding

reduced rational fractions (GCD(f, g) = 1). Consider the integer e = f1g2−f2g1 and the set S = {i : e = 0
mod mi}.

∆(b(1), b(2)) = N − log2

∏
i∈S

mi.

On one hand, e is a non-zero multiple of
∏
i∈Smi as e mod mi = 0 ∀i ∈ S. Hence log2 |e| ≥ N −

∆(b(1), b(2)). On the other hand |e| ≤ |f1g2|+ |f2g1| ≤ 2Kf+Kg . This implies that ∆(b(1), b(2)) ≥ N −Kf −
Kg.

Unlike we did in the previous section, we can not state that this lower bound is the actual value of the
minimal distance. However we can still construct a pair of code words in some rational number codes that

lie within a distance of N − Kf − Kg + 1: let f1 =
∏kf
i=1mi, f2 = −f1, g =

∏kf+kg
i=kf+1mi. The code-words

b(1) = Ev(m1,...,mn)

(
f1
g

)
and b(2) = Ev(m1,...,mn)

(
f2
g

)
are such that ∆(b(1), b(2)) = log2

∏n
i=kf+kg+1mi =

N − log2 f1− log2 g. Hence if the code parameters are Kf = log f1 + 1,Kg = log2 g, we have ∆(b(1), b(2)) =
N −Kf −Kg + 1 and the minimum distance δ is comprised between N −Kf −Kg and N −Kf −Kg + 1.
Note that this only holds for a specific choice of Kf ,Kg.
Corollary 2.5.1

LetKf ,Kg,N ∈ R>0 such that d = N−Kf−Kg > 0. Then for any vector (b1, . . . , bn) ∈ Zm1
×· · ·×Zmn

,
there exists at most one pair of integers f, g ∈ Z× Z>0, with log2 |f | ≤ Kf − 1, log2 g ≤ Kg such that∑
i∈S̄ log2mi <

d
2 where S̄ = {i : (bi 6=∞ and f 6= big mod mi) or (bi =∞ and g 6= 0 mod mi)}.

Unique decoding of rational number codes

Lemma 2.5.4

With d = N −Kf −Kg > 0, if log2 Λ =
∑
i:ri 6=ci log2mi <

d
2 , the pair (F = fΛ, G = ḡΛ̄) is a minimal

solution to the problem WeakRatNumRec (Π̄, h̄, 2Kf−1+ d
2 ).

The proof is the same as for lemma 2.3.1, and relies the key equation:

fΛ︸︷︷︸
F

≡ ḡΛ̄︸︷︷︸
G

h̄ (mod Π/P∞). (2.15)

As a direct consequence of lemmas 2.5.2 and 2.5.4, we obtain:
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Corollary 2.5.2

Let h̄ = CRT((riP∞ mod mi,mi)i:ri 6=∞). The extended Euclidean algorithm run on f0 = Π̄ =∏
i:bi 6=∞mi and f1 = h̄ and terminated at iteration j when log2 |fj | ≤ Kf − 1 + d

2 < log2 |fj−1| returns

fj = fΛ, gj = ḡΛ̄.

Consequently Algorithm 2 can be directly adapted to decode rational number codes.

Case of non-prime moduli

Note that for definition 2.5.1, we assumed that the moduli mi were prime numbers and not just pairwise
co-prime, a sufficient condition for the Chinese remainder theorem. This is due to the fact that a pole in
mi does no longer necessarily implies that mi divides g, but only that some factor of mi does. Hence the
congruence (2.15) no longer holds in general. Still, a slight change in the key equation makes the decoding
possible.

As previously, we define S = {i : ri 6= ci} and Λ∞ =
∏
i∈S:ri=∞mi, G∞ =

∏
i/∈S:ri=∞mi. First, as

G∞ does not necessarily divides g we set Γ∞ = GCD(g,G∞), Q∞ = G∞/Γ∞ and ḡ = g/Γ∞. Second, for
a non-pole error position i where ri − ci 6= 0 mod mi, the congruence might still be correct modulo some
factors of mi. Hence the minimal error locator can be a factor of mi: Λ̄ = mi/GCD(bi − ai,mi). Hence
we define the agreement A as

A = gcd(fP∞ − h̄g,Π/P∞)

and Λ̄ = Π/(P∞A). Lastly let Λ = Λ̄Λ∞. Then the congruence (2.15) becomes:

Q∞fΛ︸ ︷︷ ︸
F

≡ ḡΛ̄︸︷︷︸
G

h̄ (mod Π/P∞), (2.16)

since Q∞fΛ− ḡΛ̄h̄ = Λ̄P∞f−gh̄
Γ∞

= Π
P∞

P∞f−gh̄
AΓ∞

and both A and Γ∞ divide P∞f − gh̄ and are co-prime.
One shows that the pair (F,G) is the minimal solution to the weak rational reconstruction problem

WeakRatNumRec (Π/P∞, h̄, 2
Kf−1+ d

2 ) as long as the weight of the error impact is less than d′/2 where
d′ = d− 2N∞ = N −Kf −Kg − 2N∞.

2.6 Sparse polynomial evaluation codes
Model fitting of natural phenomena often uses an additional constraint, that the model has to be sparse.
This has motivated a wide range of research including compressive sensing [CT06], and sparse interpolation
of polynomials [Pro95; BT88; KLW90; GK93; GS09; GR10].

Most algorithms for the latter problem rely on the connection made in Blahut’s Theorem (Theo-
rem 2.1.1 [Bla83; MS88]) between linear complexity and sparsity. This connection is made effective by
Ben-Or/Tiwari’s algorithm [BT88], based on Berlekamp/Massey algorithm [Mas69].

The Ben-Or/Tiwari Algorithm

We recall the Ben-Or/Tiwari [BT88] algorithm in the setting of univariate sparse polynomial interpolation.
Let f be a univariate polynomial with t terms, mj and let cj the corresponding non-zero coefficients:

f(x) =

t∑
j=1

cjx
ej =

t∑
j=1

cjmj 6= 0, ej ∈ Z.

Theorem 2.6.1 (Ben-Or/Tiwari [BT88])

Let bj = αej , where α ∈ K has multiplicative order greater than deg f = maxj ej , let ai = f(αi) =∑t
j=1 cjb

i
j , and let Λ(X) =

∏t
j=1(X − bj) = Xt + λt−1X

t−1 + · · · + λ0. The sequence (a0, a1, . . .) is
linearly generated by the minimal polynomial Λ(z).

The Ben-Or/Tiwari algorithm then proceeds in the four following steps:
By Blahut’s Theorem 2.1.1, the sequence (ai)i≥0 has linear complexity t, hence only 2t coefficients

suffice for the Berlekamp/Massey algorithm to recover the minimal polynomial Λ. In the presence of
errors in some of the evaluations, this fails.
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Algorithm 3 Ben-Or & Tiwari’s algorithm

Require: (a0, a1, . . . ) a sequence of elements of K and α ∈ K
Ensure: f(X) =

∑t
j=1 cjX

ej such that ai = f(αi)
1: Find the minimal generating polynomial Λ for (a0, a1, . . .), using the Berlekamp/Massey algorithm.
2: Compute the roots bj of Λ, using univariate polynomial factorization.
3: Recover the exponents ej of f , by repeatedly dividing bj by α.
4: Recover the coefficients cj of f , by solving the transposed t× t Vandermonde system

1 1 . . . 1
b1 b2 . . . bt
...

...
. . .

...
bt−1
1 bt−1

2 . . . bt−1
t



c1
c2
...
ct

 =


a0

a1

...
at−1

 .

2.6.1 Sparse polynomial evaluation codes
We introduced in [R-CKP12] the problem of sparse polynomial interpolation with errors in the evaluations,
and further develop it from a coding theoretic point of view in [R-KP14]. This can be viewed as a sparse
version of the Reed-Solomon decoding problem or a fault tolerant instance of the sparse interpolation
problem.

Definition 2.6.1

Let K be a field, 0 < n ≤ m, two integers and let x0, . . . , xn−1 be n distinct elements of K. A sparse
polynomial evaluation code of parameters (n, T ) over K is defined as the set

C(n, T ) =
{

Ev(x1,...,xn)(f) : f ∈ K[X] is t-sparse with t ≤ T and deg f < m
}

In order to benefit from Ben-Or/Tiwari algorithm for error free interpolation, we will consider the
special case where the evaluation points are consecutive powers of a primitive m-th root of unity α ∈ K:
xi = αi. Unfortunately, in this context, the minimum distance of such codes is very low. Provided that
2T divides m, we can state the following theorem (see [R-KP14, Theorem 3] for a proof).

Theorem 2.6.2

If α ∈ K is a primitive m-th root of unity, xi = αi, i ∈ {0 . . . n − 1} and 2T divides m, then the
corresponding (n, T )-sparse polynomial evaluation code has minimum distance δ = b n2T c.

2.6.2 Unique decoding
There exists an algorithm that does unique decoding of such codes up to half the minimum distance:
the Majority Rule Berlekamp/Massey algorithm [R-CKP12]. It simply consists in running a Berlekamp/
Massey algorithm on each of the b n2T c contiguous sub-sequences

x(i) = (x2Ti, . . . , x2T (i+1)−1)

of the received word x. With E ≤ b δ−1
2 c ≤ b

n
2T c/2 errors in the received word, the generator occurring

with majority will be the correct one for step 1 of Algorithm 3. Still, this knowledge of Λ does not solve
the decoding problem completely: one also needs to isolate a contiguous error-free sub-sequence of length
2T in order to

1. recover the sparse polynomial f by running Ben-Or/Tiwari’s algorithm on it,

2. recover the clean sequence of evaluations (the unique code-word at distance ≤ b δ−1
2 c).

The difficulty is that not every segment of length 2T that contributed to the majority (with generator Λ)
is error-free. Errors may occur within a pattern that fits with the connecting polynomial, we will call them
deceptive segments.
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Given a sequence s of length ≥ t, assumed to be error-free, the second task can be done by applying the
generator iteratively, as a linear feedback shift register, to produce the next values in the sequence. The
values preceding s can also be produced by running the generator in reverse mode: ai = 1

λ0
(−λ1ai+1 −

· · · − λt−1ai+t−1 + ai+t) since λ0 6= 0 as it is a power of α. We call this algorithm the sequence clean-up.
Note that upon fixing the sequence with this algorithm, one can keep track of the number of corrections
made to the received sequence. Whenever this number of corrections gets above the maximal number of
errors that can be corrected (e.g. half the minimum distance for the unique decoding), one then concludes
that the sequence used as a seed is necessarily deceptive. More precisely, we have the following Lemma.

Lemma 2.6.1

If the received word of length n contains up to E errors, then deceptive segments will be exposed in
the sequence-cleanup as soon as n ≥ T (2E + 1).

See [R-CKP12, Theorem 4] for a proof and more details on the sequence-clean-up algorithm. Note that
the unique decoding condition E ≤ b δ−1

2 c implies n ≥ 2T (2E + 1), which proves that the above decoding
algorithm works, as every deceptive segment will be exposed by the sequence clean-up.

This decoding requires bn/(2T )c executions of Berlekamp/Massey algorithm.

Remark 2.6.1

In summary, we proposed to make sparse interpolation resilient to errors by simply replacing the first
step in Ben-Or/Tiwari’s sparse interpolation algorithm, the Berlekamp/Massey algorithm, by a fault
tolerant Berlekamp/Massey algorithm. The latter requires a surprisingly large amount of values to
recover a unique generator, however the fact that the worst case ambiguous sequence for this problem
actually corresponds to the evaluations of two sparse polynomials, implies that this approach is optimal:
in the worst case, some codes can not be uniquely decoded above the limit of the fault tolerant Ber-
lekamp/Massey algorithm. However, this worst case situation happens in the special case where the
evaluation points are in geometric progression, and where the order of x1 = α is divisible by 2T .
If the use of the Ben-Or/Tiwari’s algorithm imposes evaluation points in geometric progression, the
divisibility condition is in general not required, which leaves hope for a better minimum distance, and
possibly a better unique decoding algorithm in these cases.

2.6.3 List decoding

Following the same idea as for the majority rule Berlekamp/Massey algorithm, one remarks that if n ≥
2T (E+1), then necessarily one sub-sequence x(i) has to be clean of errors and the list of all b n2T c generators
contains the correct one. This makes a trivial list decoding algorithm, decoding up to the minimum
distance. Indeed, Lemma 2.6.1 still applies, and guaranties that clean segments can still be identified in
order to seed the sequence clean-up and run Ben-Or/Tiwari’s algorithm to recover the sparse polynomial
f .

In order to further reduce the bound n ≥ 2T (E + 1) (or equivalently increase the decoding radius
above n

2T ), we proposed in [R-KP14] to use more sub-sequences from the received word.

Remark 2.6.2

Instead of partitioning the received word into n/(2T ) disjoint sub-vectors, one would hope to find
more error-free sequences by considering all n − 2T + 1 sub-vectors of the form (xi, . . . , xi+2T−1) for
i ∈ {0 . . . n−2T}. This will very likely allow to decode more errors in many cases (as will be illustrated in
Figure 2.1), but the worst case configuration (see proof of [R-KP14, Theorem 3]) remains unchanged.
Note that the majority rule based unique decoding still works under the same conditions: at most
2TE sub-sequences will contain an error, hence a majority of subsequences will be correct as soon as
4TE < n−2T+1, which is n ≥ 2T (2E+1). In terms of complexity, the number of arithmetic operations
required for both unique and list decoding algorithms in [R-CKP12] is O(n2) field operations (n/(2T )
runs of Berlekamp/Massey algorithm on sequences of length 2T , and O(n/(2T )) calls to the sequence
clean-up, each of which costs O(nT )). Now the above variant requires to inspect n− 2T sub-sequences
instead of n/(2T ) and the complexity becomes O(n2T ) (as T = o(n)).



Chapter 2. Coding Theory 2.6. Sparse polynomial evaluation codes 47

Affine sub-sequences

Consider a received word (a0, . . . , an−1) of evaluations of a t-sparse polynomial f(X) =
∑t
j=1 cjX

ej , with
E errors. We proposed in [R-KP14] to consider all length k sub-sequences in arithmetic progression:

(ar, ar+s, ar+2s, . . . , ar+(k−1)s) where r + (k − 1)s < n,

which will be called affine index sub-sequences or more conveniently affine sub-sequences. In the remaining
of the text, k will denote the length of the sub-sequence. We will consider the general case where k can
be any positive integer, not necessarily even of the form 2T as required in Ben-Or/Tiwari’s algorithm.

Lemma 2.6.2

If gcd(s,m) = 1 and k ≥ 2t, then such a sub-sequence with no error is sufficient to recover f .

Proof. Let β = αs and g(X) = f(Xαr). Note that deg g = deg f and g is also t-sparse with the same
monomial support as f . If gcd(s,m) = 1 then order(β) ≥ m. Then the sub-sequence (ar, ar+s, ar+2s, . . . ,
ar+(k−1)s) = (f(αr), f(αr+s), f(αr+2s), . . . , f(αr+(k−1)s)) = (g(β0), g(β1), g(β2), . . . , g(βk−1)) is formed
by evaluations of g in k consecutive powers of an element β of order greater than m ≥ deg g. One can
therefore compute g =

∑t
j=1 djX

ej using Ben-Or/Tiwari’s algorithm on this sub-sequence. The coefficients

of f are directly deduced from that of g: cj = djα
−rej .

Example 2.6.1

Let t = 2, and consider a sequence of n = 9 evaluations (a0, a1, . . . , a8). Then E = 1 is the maximal
number of errors that the trivial list decoding presented above can decode as it requires that n ≥
2t(E+1). Indeed if two errors occurred e.g. on elements a3 and a7, there is no contiguous sub-sequence
of length 2t = 4 free of error, thus making the latter decoding fail. Now consider the sub-sequence
(a0, a2, a4, a6). It is free of error and is formed by evaluations of f(z) in the four consecutive powers of
β = α2. Blahut/Ben-Or/Tiwari algorithm applied on this sequence will return g(X) = f(X2).

This results in a new list decoding algorithm:

Algorithm 4 List decoding of sparse polynomial evaluation codes

1: for all s ∈ {1 . . . bnk c}, r ∈ {0 . . . n− (k − 1)s− 1} do
2: compute Λr,s generating (ar, ar+s, . . . , ar+s(k−1)) with the Berlekamp/Massey algorithm
3: (Optional heuristic reducing the list size) run the sequence clean-up and discard Λr,s if it can not

generate the sequence with less than E errors, for some bound E on the number of errors.
4: apply Ben-Or/Tiwari’s algorithm to recover the associated sparse polynomial fr,s
5: end for
6: Return the list of the fr,s.

Regarding the type of iteration chosen for the pair (r, s), a first approach is to explore all sub-sequences
for any value of s ∈ {1 . . . bn/kc} and r ∈ {0 . . . n− (k−1)s−1}. This amounts to O(n2/k) sub-sequences.
A second approach, applying Remark 2.6.2 considers all values for s ∈ {1 . . . bnk c} but then for each s
only considers the disjoint sub-sequences with s nks = n/k choices for r. This amounts to O(n2/k2) sub-
sequences. For each sub-sequence, corresponding to a pair (s, r), Ben-Or/Tiwari algorithm is run in O(k2)
(Berlekamp/Massey algorithm and solving the transpose Vandermonde system [Zip90]). The optional
sequence clean-up heuristic adds an O(nk) term. Overall, the complexity of the second approach amounts
to the same O(n2) estimate, as the trivial list decoding. The additional overhead of O(n3/k) when the
sequence clean-up heuristic is used also remains identical. In the first approach, ignoring Remark 2.6.2,
these complexity estimates are multiplied by a factor k.

We report in Figure 2.1 the average rate of decoding success for our implementation of Algorithm 4. For
each value of the pair (E, k), the success rate is averaged over 10 000 samples, where the error locations are
uniformly distributed. The two variants (disjoint subsequences or all possible sub-sequences) are compared.
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Figure 2.1: Success rate for unique, standard list decoding and affine sub-sequence list decoding. Disjoint
sub-sequences only (left) or all sub-sequences (right) being considered.

Worst case decoding radius

The worst case decoding radius for the affine sub-sequence based list-decoding is the maximal number
E(n, k) of errors that would always leave an affine sub-sequence of length k = 2t free of error, for any error
pattern. Equivalently, one can search for the minimal length n(k,E) such that any pattern with up to E
errors will always leave a length k = 2t affine sub-sequence free of errors.

Problem 2.6.1

Given k,E ∈ Z>0, find the minimal n ∈ Z>0, denoted by n(k,E) such that no sub-set of E elements
of {1 . . . n} intersects all of its length k affine sequences.

In some cases, as shown in Example 2.6.2, the affine sub-sequence technique does not help improving
the former bound n ≥ k(E + 1), not even by saving a single evaluation point.

Example 2.6.2

For k = 5 and E = 3, the worst case configuration (errors on a4, a9 and a14) requires n(5, 3) = 20 =
k(E + 1) values to find k consecutive clean values.

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 . . . a14 a15 a16 a17 a18 a19
a0 a2 a4 a6 a8 a10 a12 a14 a16 a18

a1 a3 a5 a7 a9 a11 a13 a15 a17 a19

a0 a3 a6 a9 a12 a15 a18

a1 a4 a7 a10 a13 a16 a19

a2 a5 a8 a11 a14 a17

a0 a4 a8 a12 a16

a1 a5 a9 a13 a17

a2 a6 a10 a14 a18

a3 a7 a11 a15 a19

a0 a5 a10 a15 a20

a1 a6 a11 a16

a2 a7 a12 a17

a3 a8 a13 a18

a4 a9 a14 a19

But for E = 4, one verifies that n = 21 suffices to ensure that a length 5 sub-sequence will always
be found. In particular, in the previous configuration, placing the fourth error on e19 leaves the sub-
sequence (a0, a5, a10, a15, a20) untouched.

We report in Figure 2.2 the value of n(k,E) for all typically small values of E and k computed by
exhaustive search.

Lemma 2.6.3 states more precisely when affine sub-sequence improves over the trivial list decoder.

Lemma 2.6.3

n(k,E) ≤ k(E + 1), with equality n(k,E)=k(E+1) if and only if E + 2 ≤ g, where g denotes the
smallest prime factor of k.
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k\E 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 3 6 7 8 10 12 15 16 17 18 19 21 22 23 25 27
4 4 7 11 12 14 16 18 20 22 24 26 29 31 32 35 36
5 5 10 15 20 21 22 23 26 30 32 35 40 45 46 47 48
6 6 11 16 21 27 28 30 31 34 38 42 43 47 52
7 7 14 21 28 35 42 43 44 45 47 49 54 58
8 8 15 22 29 36 43 51 52 53 55 57 60
9 9 18 25 32 39 46 53 58 59 62 66 72

10 10 19 29 34 41 48 55 62 65 69 74
11 11 22 33 44 55 66 77 88 99 110 111 112
12 12 23 34 45 56 67 78 89 100 111 123 124
13 13 26 39 52 65 78 91 104 117 130 143 156

Figure 2.2: Minimal length n(k,E) such that any pattern of up to E errors leaves a length k affine
sub-sequence free of error.

In particular, this implies that for even k = 2t, the affine sub-sequence list decoder performs always better
than the trivial list decoder. Refer to [R-KP14] for a proof.

Noting that n(k,E) is monotonically increasing, and applying Bertrand’s Postulate [Che52; Ram19]
yields a lower bound on n(k,E) for small number of errors.

Corollary 2.6.1

For k > 0, and E < k+1
2 , then n(k,E) > k+1

2 (E + 1) + 1.

In other terms, the improvement is not greater than roughly a factor of two whenever the number of errors
is less than half the length k of the sequence.

However, for larger values of E, Figure 2.2 suggests that n(k,E) increases at a much lower rate. We
will now focus on its asymptotic behavior by guessing a worst case error pattern that would give a lower
bound estimate on n(k,E).

A first approach is inspired by the worst case error pattern of the trivial list decoding (S = {k−1, 2k−
1, 3k − 1, . . . } as shown in Example 2.6.2). Looking at the fourth table in this example, one sees that
each of the 4 values a20, a21, a22, a23 will need to be erroneous in order to avoid having a length 5 affine
sub-sequence free of error with s = 5.

By recursively applying this approach one defines the error support

Sn = {i ∈ {0 . . . n− 1} which base k expansion contains no k − 1 digit},

and shows (see [R-KP14, Lemma 3]) that for k prime and ni = ki − ki−1 − ki−2 − · · · − 1 = (k−2)ki+1
k−1 the

set Sni
intersects all length k affine sub-sequences of {0 . . . ni − 1}. Consequently, as |Sni

| = ni − (k − 1)i

we have
n(k, ni − (k − 1)i) ≥ ni. (2.17)

Remark 2.6.3

Problem 2.6.1 is in fact closely related to th eproblem, proposed by Erdős and Turán [ET36], of finding
the largest sub-sequence of {1, . . . , n} not containing k terms in arithmetic progression. Let r(k, n)
denote the size of such a largest sub-sequence. If n ≥ r(k, n) + E + 1, a subset of E errors can not
suffice to intersect all arithmetic progressions of k terms. Hence n(k,E) = min{n : n−r(k, n) ≥ E+1}.
Noting that r(k, n) ≤ r(k, n+ 1) ≤ r(k, n) + 1, we deduce that for given k and E, there always exists
a n∗ such that n∗ − r(k, n∗) = E + 1 and consequently n(k,E) = n∗ = r(k, n∗) + E + 1. Erdős and
Turán [ET36] first conjectured that for all k ≥ 3, limn→∞ r(k, n)/n = 0 which was later proven by
Szemeredi [Sze75]. In particular the above construction of a bad error support Sni

for k prime is similar
to a construction by Szerekes (see [ET36; Wag72]). When k is prime, this construction yields to the
estimate

r

(
k,

(k − 2)ki + 1

k − 1

)
≥ (k − 1)i, (2.18)



Chapter 2. Coding Theory 2.6. Sparse polynomial evaluation codes 50

which is equivalent to equation (2.17). Szerekes conjectured that equality held in (2.18) which was
disproved by Salem and Spencer [SS50], and consequently, the proposed support Sn is not a worst case
one.

The error correction rate of the affine sub-sequence list decoding is therefore directly related to the
growth of the ratio r(k, n)/n which is a core problem in additive combinatorics.

E

n
= 1− r(k, n)

n
− 1

n
. (2.19)

Szemeredi’s theorem states that arithmetic progressions are dense, i.e. an asymptotically large number
of errors is necessary to intersect all of them and rule out any list decoding possibility. Now there is
unfortunately no known expression of r(k, n)/n as a function of the information rate k/n, to the best of
our knowledge. We therefore propose in Equation (2.20) the bounds on the maximal correction rate.

1− 1

(log log n)1/22k+9 −
1

n
≤ E

n
≤ n

k − 2
logk

n

k − 2
(2.20)

The upper bound is a direct consequence of Equations (2.17). (see [R-KP14]). This shows that, in the
worst case, the improvement of the affine sub-sequence technique to the correction capacity, compared to
the previous list decoding (nk − 1) is essentially no larger than a logarithmic factor.

Obtaining a sharp lower bound on E/n is much harder. In [Rot53], Roth proved r(3, n) ≤ c
log logn ,

leading to E
n ≥ 1 − c

log logn −
1
n . For an arbitrary k the best known bound, given in Equation (2.20), is

that of Gowers [Gow01].

2.6.4 Towards better minimum distances
Despite the pessimistic minimal distance obtained in section 2.6.1 and the difficult analysis of the list
decoding worst case correction capacity in section 2.6.3, the sparse evaluation codes seem to perform
much better in practice, as illustrated in Figure 2.1. We now provide further evidence that similar sparse
evaluation codes can be built with much better minimum distances, by considering the case where the
base field has characteristic zero.

Theorem 2.6.3

Consider n distinct positive real numbers x1, . . . , xn > 0. The sparse polynomial evaluation code

C(n, T ) =
{

Ev(x1,...,xn)(f) : f ∈ R[X] is t-sparse with t ≤ T
}

has minimum distance δ = n− 2T + 1.

Proof. Consider the code words (f(x1), . . . , f(xn)) and (g(x1), . . . , g(xn)) for a tf -sparse polynomial f
and a tg-sparse polynomial g, with tf , tg ≤ T , at Hamming distance ≤ n − 2T . Then the polynomial
f − g has sparsity ≤ 2T , and vanishes in least 2T distinct positive reals ξi. By Descartes’s rule of sign
f − g = 0.

Corollary 2.6.2

Suppose we have, for a tf ≤ T sparse real polynomial f , values f(xi) + εi for 2T + 2E distinct positive
real numbers ξi > 0, where e ≤ E of those values can be erroneous: εi 6= 0. If a tg ≤ T sparse real
polynomial g interpolates any 2T + E of the f(xi) + εi, then g = f .

So f can be uniquely recovered from 2T + 2E values with e ≤ E errors. This result correspond to the
situation with Reed-Solomon codes: the number of evaluations to ensure unique decoding is that for the
error-free case with an additive term equal to twice the number of errors.

Remark 2.6.4

We do not have an efficient (polynomial time) decoder up to half this minimum distance. However,
notice that when choosing the evaluation points ξi = αi for some α ∈ R>0\{1}, the list decoder
presented in Section 2.6.3 can be used. Interestingly, it turns out to be a unique decoder as long as
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an affine sub-sequence free of error exists. Indeed, the list of candidates can be sieved by removing
the polynomials which evaluations differ by more than δ/2 positions with the received word. Finally
the minimum distance of Theorem 2.6.3 ensures that only one code-word lies within less than δ/2
modifications of the received word, hence the decoding is unique.

Another result improving the minimum distance can also be obtained when sampling in primitive
elements of co-prime orders in the complex unit circle.

Theorem 2.6.4

Let T,D, and n ≥ k = 2T log(D)
log(2T ) be given. Consider n pi-th roots of unity ξi 6= 1, where 2T < p1 <

p2 < · · · < pn, pi prime. The sparse polynomial evaluation code

C(n, T ) =
{

Ev(ξ1,...,ξn)(f) : f ∈ Q[X]≤D is t-sparse with t ≤ T
}

has minimum distance

δ = n− k + 1 = n− 2T
log(D)

log(2T )
+ 1.

Proof. Consider the code-words (f(ξ1), . . . , f(ξn)) and (g(ξ1), . . . , g(ξn)) for a tf -sparse polynomial f and
a tg-sparse polynomial g, with tf , tg ≤ T , at Hamming distance ≤ n− k. Then (f − g)(ξj) vanishes for at
least k of the ξj , say for those sub-scripted j ∈ J .

Let 0 ≤ e1 < e2 < · · · < es be the term exponents in f − g, with s ≤ 2T . Suppose f − g 6= 0. Consider
M = (es − e1)(es − e2) · · · (es − es−1). Since M ≤ D2T and

∏
j∈J pj > (2T )k ≥ D2T , not all pj for j ∈ J

can divide M . Let ` ∈ J with M 6≡ 0 (mod p`). Then the term xet mod p` can not cancel out in a sum
with any other xei mod p` in h(X) = (f(X)− g(X) mod (Xp` − 1)), and therefore the polynomial h(X) is
not zero; h has at most 2T terms, and h(ξ`) = 0. This means that h(X) and Ψ`(X) = 1 + x+ · · ·+ xp`−1

have a common GCD. Because Ψ` is irreducible over Q, and since deg(h) ≤ p` − 1, that GCD is Ψ`. So h
is a scalar multiple of Ψ` and has p` > 2T non-zero terms, a contradiction.

Corollary 2.6.3

Let T,D,E be given and let the integer k ≥ 2T log(D)/ log(2T ). Suppose we have, for a tf -sparse
polynomial f ∈ Q[X], where tf ≤ T and deg(f) ≤ D, the values f(ξi) for k + 2E pi-th roots of unity
ξi 6= 1, where 2T < p1 < p2 < · · · < pN+2E , pi prime. Again e ≤ E of those values can be erroneous
f(ξi) + εi. If a tg-sparse polynomial g ∈ Q[X] with tg ≤ T and deg(g) ≤ D interpolates any k + E of
the f(ξi) + εi, then g = f .

In order to transfer this result over positive characteristic, we recall in Theorem 2.6.5 a result on the
facorization of cyclotomic polynomials over a finite field.

Theorem 2.6.5 ([LN97, Theorem 2.47])

Let K = Fq and n a positive integer co-prime with q. The n-th cyclotomic polynomial Qn ∈ K[X]
factors into Φ(n)/d distinct monic irreducible polynomials in K[X] of same degree d, where d is the
multiplicative order of q modulo n.

For a field K and a positive integer n, we will denote by K(n) the splitting field of Xn− 1 over K, called
the n-th cyclotomic field over K.

Corollary 2.6.4

Let K = Fq, T,D, and n ≥ k = 2T log(D)
log(2T ) be given. Let 2T < p1 < p2 < · · · < pn, be n prime numbers

such that q is a primitive root for pi for all i ∈ {1 . . . n}. For all i ∈ {1 . . . n} let ξi ∈ K(pi) \ {1} be a
pi-th roots of unity.

The sparse polynomial evaluation code

C(n, T ) =
{

Ev(ξ1,...,ξn)(f) : f ∈ Fq[X]≤D is t-sparse with t ≤ T
}
⊆ K(p1) × · · · × K(pn)

has minimum distance

δ = n− k + 1 = n− 2T
log(D)

log(2T )
+ 1.
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Proof. As a primitive root for pi, q has multiplicative order pi−1 = Φ(pi) modulo pi and by Theorem 2.6.5,
the pi-th cyclotomic polynomial Ψi = Qpi is irreducible. Consequently the proof of Theorem 2.6.4 still
holds over Fq.

The ability to find n primes p1, . . . , pn such that q generates (Z/piZ)∗ ∀i ∈ {1 . . . n} is strongly related
to Artin’s primitive root conjecture [Mur88]. This conjecture states that for any integer a other than 1,−1
or a perfect square, there exist infinitely many primes p for which a is a primitive root. More precisely, the
conjecture claims that, if a is not a perfect power and the square-free part of a is not congruent to 1 modulo
4, the density of such primes is independant of a, and equals Artin’s constant CArtin = 0.3739558136 . . . .
This conjecture has been proven under the generalized Riemann hypothesis [Hoo67], or unconditionally
for infinitely many cases [GM84]. Laslty, Heath-Brown proved that the conjecture was true except for at
most two prime numbers [Hea86] (not constructively).

Again this result is mostly of theoretical interest as first, these codes live in a sophisticated algebraic
structure, which implies a strong overhead for the arithmetic cost, and second as we do not know any
efficient decoding algorithm reaching this correction capacity.

What have we learned?

1. Parallelizations based on evaluation-interpolation schemes can be made fault tolerant
through the use of evaluation based error correcting codes. The Reed-Solomon codes,
solving the problem of polynomial interpolation with errors can be generalized to ratio-
nal functions.

2. Parameter oblivious decoding allow to adaptively increase the decoding capacity taking
advantage of the effective amount of redundancy.

3. Rational function codes have a minimal distance equal to the number of evaluations minus
the number of information symbols which smoothly generalizes that of Reed-Solomon codes,
even when evaluations at poles are considered.

4. Interleaved rational function codes naturally arise in the context of parallel linear system
solving with a polynomial matrix. Considering the collaborative decoding of such codes
increases the decoding capacity. However this capacity is no longer oblivious to the presence
of poles (evaluations at which the system is singular).

5. These results naturally generalize to rational numbers via CRT codes.

6. An (n, T )-sparse polynomial evaluation code has, in the worst case, a minimum distance of
b n2T c, when the evaluation points are in geometric progression, which is required to apply
Ben-Or/Tiwari’s interpolation algorithm.

7. List decoding of such codes improves the decoding capacity by a factor of at least 2, but no
greater than log(n/T ) in theory, but prove to be efficient in practice.

8. Better minimum distances of about n−2T + 1 can be reached with other sets of evaluation
points, but no practical decoding algorithm is known for these cases.
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The landscape of computational exact linear algebra, though very diverse, is becoming clearer.
Matrix arithmetic over a field has reached a good maturity : theoretical complexities are fairly well

understood, and the design of practical implementations now relies on strong general guidelines that have
proven successful over the years.

There, the question of computing the characteristic polynomial by an O(nω) algorithm has been par-
tially answered, but a deterministic algorithm with no restriction on the field size is still to be found.
We remark that this problem in fact better fits to the framework of polynomial matrix algorithmic, where
degree-dimension trade-offs prevail. This latter area, has recently seen much improvements [GJV03; Sto03;
Zho12], as far as exponents of complexities are concerned. The next step is now to refine these complexi-
ties, improving the logarithmic factors: some arise from the use of fast polynomial arithmetic but others
arising from the inner structure of the algorithm may be improved. Further work on leading constants and
memory complexity should also follow, to produce efficient software implementations. The recent work of
Giorgi and Lebreton [GL14] based on reductions to scalar matrix arithmetic, and relaxed degree-dimension
tradeoffs is a successful building block on which to elaborate a whole set of library routines.

Applications of efficient implementations of polynomial matrix arithmetic to algebraic coding theory
and more specifically list decoding through polynomial lattice reduction are currently under progress. Al-
ternatively, the recent advances on the structured linear algebra complexities [BJS08] have, to our known-
ledge, not been put into practice so far. Their application to the most efficient list decoding techniques,
shown in [Cho+14], is one out of many motivations to work on their efficient implementations.

Our experience with the parallelization of dense linear algebra over a finite field showed the relevance
of task based parallelism languages able to handle efficiently both recursion and a large number of tasks.
This is motivated by the fact that, costs being non associative, tasks need to be forked at the coarser
grain, and then possibly recurse to finer grains in order to keep the task pool non-empty. By nature,
exact linear algebra computations often produce tasks of heterogeneous and unpredictable size. Therefore
parallel runtimes offering dynamic scheduling capabilities, based on work-stealing are of utmost importance.
Dataflow task dependencies should be preferred to explicit synchronizations but further improvements of
existing runtimes are necessary for offering recursive dataflow dependency resolution.

Whether the parallelization strategy that we proposed will scale to large instances, and be applicable
to distributed computing need to be investigated. In particular, parallel algorithms with best depth but
non-optimal work, could very well become paramount. The use of evaluation-interpolation schemes is a
typical example, that produces embarrassingly parallel algorithms well suited for large scale distributed
computations. Their ability to offer a natural setting for fault tolerance as we demonstrated in the dense
and sparse setting is a major advantage.

Applying the fault tolerant interpolations techniques, over floating point real or complex numbers is
another great challenge. Interestingly, the convergence with the symbolic-numeric sparse interpolation
of [KLL00; KYZ07], revealed a nice stability for the computation of the error support, in the presence
of noise [R-CKP12]. Further work has been recently done for sparse rational fractions [KY13; KY14] or
interleaved dense rational fractions [BK14]. Still, many improvements should be done, as for example
concerning the complexity of decoding, or the correction capacities, by adapting numerical Padé approxi-
mation techniques. The approach has also to be generalized to other problems than interpolation.

The sparse evaluation codes that we introduced are difficult to apprehend: the configuration enabling
efficient decoding algorithms imposes bad worst case error correction capacities whereas much better
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minimum distances can be attained in settings where no practicable sparse interpolation algorithm is
known at the moment. The connections of this problem to learning problems (in particular ring learning
parity with noise [Hey+12]), and the potential applications to lattice based cryptography is also to be
investigated further.
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Résumé

Les contributions présentées dans ce mémoire concernent le calcul exact haute performance, à l’interface
entre calcul formel, théorie des codes et calcul parallèle.

L’algèbre linéaire exacte, sur des corps finis ou le corps des nombres rationnels est au coeur de
nombreuses applications recourant au calcul algébrique intensif: de la cryptanalyse basée sur les cribles
algébriques ou sur la résolution de systèmes polynomiaux au test de conjectures en théorie algorithmique
des nombres, ou encore au décodage en liste. . . Le développement aussi bien de l’algorithmique que des im-
plantations efficaces en algèbre linéaire exacte a atteint ces dernières années un grand niveau de maturité.
Nous évoquons les grandes lignes de ces avancées, illustrées par nos contributions, en dégageant quelques
principes généraux qui les sous-tendent, comme celui de rendre les réductions algorithmiques effectives. Le
produit de matrices, combinant conversions entres arithmétiques modulaires, entières et flottantes, usage
des BLAS numériques et d’algorithmes sous-cubiques à faible empreinte mémoire, sert de brique de base.
L’élimination de Gauss en tire parti par ses multiples réductions récursives. La déficience de rang et le cal-
cul des profils de rang est une spécificité du calcul algébrique que nous explorons en détails. Enfin, le calcul
du polynôme caractéristique et de la forme de Frobenius illustre le cas d’une amélioriation de complexité
asymptotique se révélant aussi avantageuse en pratique. Nous proposons une parallélisation des ces algo-
rithmes par tâches récursives permettant de préserver les performances asymptotiques. Des implantations
efficaces du vol travail de tâches récursives et basées sur des dépendances par flot de données, permettent
d’atteindre des performances similaires aux meilleures bibliothèques numériques, et passant à l’échelle.

Dans le contexte du calcul distribué à grande échelle, la fiabilité des ressources distantes est mise en
question. Pour remédier aux erreurs, d’origine soit physique soit malicieuse, nous proposons des schémas
de tolérance aux fautes algorithmiques (ABFT) reposant sur les techniques d’évaluation-interpolation
communes en calcul formel. Les codes correcteurs classiques (Reed-Solomon et codes CRT) basés sur
l’interpolation sont étudiés et généralisés au cas des fractions rationnelles et leur entrelacement. Nous
introduisons par ailleurs les codes d’interpolation creuse dont l’étude des capacité des correction peine à
révéler leur efficacité en pratique. Ces travaux ouvrent en outre des perspectives sur des techniques de
décodage symbolique-numérique, supportant conjointement les erreurs et le bruit numérique.

Abstract

This manuscript presents contributions on high performance algebraic computations, lying at the interface
between computer algebra, coding theory and parallel computing.

Exact linear algebra, over a finite field or the field of rationals is a core component of many applications
using intensive algebraic computations: from cryptanalysis based on algebraic sieves or polynomial system
solving, to testing conjectures in computational number theory or list decoding. . . Development of both
algorithmic and efficient implementations in exact linear algebra has now reached a great level of maturity.
We survey the milestones in these recent progresses, illustrated by our contributions, trying to exhibit a few
general guidelines, as for example the importance of making theoretical algorithmic reductions effective.
Matrix multiplication, combining conversions between modular, integral and floating point arithmetic, the
use of numerical BLAS, and of sub-cubic algorithms, with low memory footprint, is used as a building
block. Gaussian elimination, harnesses its efficiency through many recursive reductions. Rank deficiency
and rank profile computations is a specificity of exact computations that we explore in details. Lastly
the computation of the characteristic polynomial and of the Frobenius normal form illustrates how an
asymptotic improvement of the complexity can be made practical to achieve the best performance. We
propose a paralellization of these algorithms based on recursive tasks maintaining the best asymptotical
performances. Efficient implementations of work-stealing schedulers handling recursive tasks with dataflow
dependencies allow to reach performances similar to state of the art numerical libraries with good scaling
ability.

In the context of large scale distributed computing, the reliability of remote resources is in question. In
order to support errors, either due to physical alterations or malicious corruption, we propose an algorithm
based fault tolerance (ABFT) based on evaluation-interpolation schemes, naturally arising in computer
algebra. Some classic error correcting codes (Reed-Solomon and CRT codes) based on interpolation are
studied and generalized to the case of rational fractions and their interleaving. We also propose sparse
interpolation codes, for which the difficult correction capacity analysis hardly reflects their good behavior
in practice. These codes open many perspectives, in particular on symbolic-numeric decoding techniques
jointly supporting errors and numerical noise.


	Introduction
	Linear Algebra
	Design principles
	Matrix multiplication
	Design of fgemm
	Memory efficient schedules
	Parallelization

	Gaussian elimination
	Block algorithm variants
	Modular reductions
	Experiments in parallel

	Rank profiles and echelon forms
	Rank profiles
	Design of Rank profile revealing algorithms
	Rank deficient LU decomposition algorithm bestiary and reductions
	Parallelization

	Characteristic Polynomial
	Characteristic polynomial of dense matrices over a field
	Frobenius normal form and a transformation matrix


	Coding Theory
	Preliminaries
	Terminology
	Linear recurring sequences
	Approximation problems

	Dense polynomial evaluation codes
	Reed-Solomon codes
	Parameter oblivious decoding

	Rational function codes
	The code and its minimum distance
	A unique decoding algorithm

	Interleaving
	Collaborative decoding
	Application to fault tolerant exact linear system solver

	Over the integers and rationals
	CRT codes
	Rational number codes

	Sparse polynomial evaluation codes
	Sparse polynomial evaluation codes
	Unique decoding
	List decoding
	Towards better minimum distances


	Perspectives
	Index
	Publication list
	References
	Résumé

