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Abstract

Snow on the ground is an essential medium at the surface of the Earth. For many years, scientists

have attempted to decipher its functioning, because it exerts a significant influence on the regional

and global climate, and governs environmental phenomena deemed critical for human societies (water

resources including hydropower potential, snow avalanches, ski tourism etc.). Numerical models with

various levels of complexity have been developed to integrate existing knowledge and predict the

emerging behavior of the snowpack under given meteorological conditions from the large number of

intertwined processes operating inside or at its boundary. Basic and advanced observation tools have

been imagined and built to probe the physical properties of snow and contribute to better document

the physical state of the snowpack and its time evolution.

This document summarizes my own contribution to the use and development of various tools

used to observe and model the time evolution of snow on the ground. Special emphasis is placed

on detailed snowpack modeling using the multilayer snowpack model Crocus, which serves as a

knowledge integrator and allows to project the role of physical processes within the snowpack into

various other scientific fields covering not only numerical weather prediction, climate or avalanche

sciences but also mountain ecology, snow hydrology and glaciology and even the socio-economics of

the ski tourism industry.

My impact on intrinsic developments in Crocus has mainly concerned the representation of snow

microstructure and its time evolution (termed snow metamorphism) through the reformulation of the

time evolution of the specific surface area of snow in a prognostic manner. Upstream research was

also carried out with a medium-range goal of improving the way physical properties of snow such as

effective thermal conductivity and intrinsic permeability can be parameterized in Crocus but this does

not constitute fundamental changes to the model structure. In many cases, the current version of the

model already provides relevant results and their applications to more or less original contexts can

lead to scientific advances. Examples of such developments include several studies on the impact of

the physical properties of snow on the thermal regime of the underlying ground, or recent advances in

the way snow management techniques can be represented in Crocus leading to novel ways to assess

the impact of snow management practices on snowpack properties in ski resorts, in relationship to

environmental, social and technical constraints.

Many perspectives are offered in this field, with increased computational capabilities and increas-

ing integration of the tools used to observe and simulate space and time variations of meteorological

conditions together with a physically-sound representation of snow on the ground.
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Résumé

Le manteau neigeux est un milieu d’importance capitale à la surface de la Terre. Depuis longtemps,

la communauté scientifique s’efforce de décrypter son fonctionnement et son rôle dans le système

climatique régional et mondial. En outre, le manteau neigeux joue un rôle clef pour de nombreux en-

jeux concernant les sociétés humaines (ressources en eau et en énergie, avalanches de neige, industrie

touristique etc.). Des modèles numériques de complexité variable ont été développés en intégrant les

connaissances existantes et permettent ainsi de prédire le comportement global du manteau neigeux

à partir des conditions météorologiques et de l’interaction croisée de multiples processus internes ou

ayant lieu à ses interfaces. En outre, des outils d’observations, des plus simples au plus avancés, ont

été imaginés pour sonder les propriétés physiques de la neige et contribuent ainsi à mieux appréhender

l’état physique du manteau neigeux et son évolution.

Le présent document synthétise ma propre contribution à l’utilisation et au développement de

plusieurs outils utilisés pour observer ou modéliser l’évolution de la neige au sol. En l’occurrence,

une attention spéciale est apportée à la modélisation détaillée du manteau neigeux à l’aide du modèle

multi-couches Crocus, qui sert d’“intégrateur de connaissance” et permet de projeter dans des do-

maines scientifiques plus ou moins connexes une représentation adéquate des processus physiques du

manteau neigeux. Ceci concerne non seulement la prévision numérique du temps, l’étude du système

climatique ou des avalanches, mais aussi l’écologie de montagne, l’hydrologie nivale, la glaciologie

et même les aspects socio-économiques de l’industrie des sports d’hiver.

Mon apport direct aux développements au sein de Crocus a porté essentiellement sur la façon de

représenter la microstructure de la neige et son évolution dans le temps en fonction des conditions

thermiques à l’échelle macroscopique (métamorphisme de la neige), au travers de la reformulation

des lois d’évolution de la surface spécifique de la neige de manière pronostique. En parallèle, des

recherches plus fondamentales ont été menées avec pour objectif de moyen terme d’améliorer les

paramétrisations employées pour représenter certaines propriétés physiques de la neige dans Crocus,

telles que la conductivité thermique effective ou la perméabilité intrinsèque. Cependant, ces actions ne

constituent pas des avancées fondamentales pour l’évolution de la structure du modèle. Néanmoins,

dans bien des cas, le comportement actuel du modèle est déjà satisfaisant et permet des applications

dans des domaines plus ou moins exotiques. Ceci concerne, par exemple, l’étude de l’impact des pro-

priétés thermiques du manteau neigeux sur le régime thermique du sol sous-jacent, ou, plus éloigné

des considérations purement géophysiques, des avancées récentes sur la compréhension et la modéli-

sation de la façon dont la neige est travaillée dans les stations de sports d’hiver en relation avec des
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contraintes environnementales, sociétales et techniques.

De nombreuses perspectives sont ouvertes dans les domaines liés à la physique de la neige, grâce

aux avancées offertes par l’augmentation des capacités de calcul, mais surtout grâce à l’amélioration

et à la meilleure intégration des techniques et outils d’observation et de simulation de l’évolution des

conditions météorologiques, associés à une prise en compte solide de la neige au sol et des processus

physiques associés.
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1 Introduction

1.1 Scientific knowledge : tools vs. results

The current state of global scientific knowledge is a perplexedly vast accumulation of atomic elements,

following millenia of technical, cultural and scientific developments undertaken by presumably mil-

lions of human beings motivated by a large diversity of challenges to address. Some of the elemental

bits of knowledge belong to the general scientific corpus taught at basic high-school or specialized

university levels, while a large number of them are at best reported in dedicated reports or technical

procedures (peer-reviewed articles, conference proceedings, technical documentation, websites ...) or

embedded in hardware or software elements. The ability to draw from existing knowledge the appro-

priate tools and identify knowledge gaps and missing elements are critical to address current scientific,

technical and societal challenges.

For a given general topic, scientific knowledge has been built upon a diversity of perspectives,

to each of which corresponds at least one community of institutions, researchers and practitioners

featuring several schools of thoughts and cultural backgrounds, with various degrees of communi-

cation between all the levels involved. In many cases, progress is not only achieved by incremental

advances within a given isolated group, but rather through the identification of homologous chal-

lenges addressed by another scientific community, potentially distant in time, space or scientific area.

Modern methods of scientific communication and in particular the skyrocketing number of research

articles published every day within a given scientific community may pose severe threats to the sci-

entific world through unidentified duplication of work (due to the difficulty to monitor the breadth

of contributions describing specific developments) thereby potentially reducing the efficiency of the

scientific process. Efforts are needed both at the individual and community levels to contribute and

communicate advances of the scientific knowledge without impairing the long-term sustainability of

the scientific process. In the meantime, the systematic use of publication metrics (e.g. number of peer-

reviewed articles and citation counts) by funding and evaluation agencies, although heavily criticized,

has become a norm from which individual researchers cannot easily escape. While scientific articles,

which are increasingly used to report incremental advances in highly specialized areas of research,

serve the purpose of both favoring scientific exchanges between research groups and communities

and providing long-term archives of the time evolution of scientific knowledge, focussing on scien-

tific tools offers an alternative option to foster sustainable scientific development at the community

level. The sense of the term tools used here is very large, and covers for example (not exhaustively)
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instrumentation, software, algorithms – along with their documentation. A large fraction of scientific

research, including fundamental research, is actually based on the development of such tools and their

applications, the latter providing motivation, hence resources, to carry out the research work. How-

ever, it is often the case that in the long term only the scientific results, i.e. the more or less general

statements reached through the use of the tools in a particular case, remain available to the scientific

community. This situation leads to frequent re-implementations or even re-inventions of the same

tools which is not only detrimental pragmatically (costs, resources, etc.) but also slows down the

pace of scientific development. Scientific developments specifically aimed at creating tools which are

used regularly (e.g., numerical weather prediction models) and not for the sole purpose of research

projects, suffer less from this issue, although in such cases the issue of the portability of the tools from

one technical environment to the other is often encountered.

1.2 A (very) short introduction to snow science

Snow science is no exception to all of the statements expressed above and has been built upon a va-

riety of scientific motivations spanning avalanche hazard forecasting, water resources and hydrology,

meteorology and climate, mountain ecosystems, mountain tourism etc. Abundant literature describes

the significant role exerted by snow on the ground on many aspects of the functioning of the Earth’s

surface and shall not be repeated here in detail (see Armstrong and Brun (2008) for a recent overview).

In short, the peculiar physical properties of snow on the ground, consisting of a thin layer of a porous

mixture of water ice, liquid water and air, often only intermittently covering land surfaces (and sea

ice), induce drastic changes of the energy and mass fluxes at the atmosphere/surface interface with

respect to a snow-free situation. Of particular relevance here are the optical (high albedo, i.e., the

fraction of solar radiation reflected by the surface), thermal (low effective thermal conductivity), ther-

modynamic (high latent heat of fusion for ice) properties of snow. A number of specific tools have

been designed over the past decades to address scientific challenges involving snow on the ground,

especially in terms of observation capabilities allowing in-situ and remotely sensed monitoring in the

field and in the laboratory, and in terms of numerical modeling of snow physical processes allowing

numerical simulations of the time and space evolution of the physical state of snow on the ground

for various applications. Because snow is one of the many facets that land surfaces can show, land

surface components of Earth surface models within climate or numerical weather prediction (NWP)

models generally include a snowpack model (also called a scheme). In what follows, a snowpack

model is thus considered one specific component of a more general land surface model. This defi-
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nition is consistent with the context of use of several existing snowpack models (e.g. Douville et al.,

1995; Lehning et al., 2006; Oleson et al., 2010; Best et al., 2011; Balsamo, 2012; Masson et al., 2013;

Endrizzi et al., 2013; Wang et al., 2013), and accounts for the need to include the interactions of the

snowpack with its surrounding environment (atmosphere, ground, vegetation).

1.3 Personal context of the research work

This document intends to summarize my own contribution to the use and development of snow-

relevant tools, with special emphasis on snow observing capabilities and numerical modeling of the

physical state of snow on the ground, since 2008 which corresponds (1) to the date when my PhD

work was defended (Morin, 2008) and (2) the date when my primary research field shifted from prob-

ing boundary layer atmospheric chemistry through isotopic investigation methods to snow physics

research, first at LGGE until September 2009 then at Météo-France - CNRS, CNRM-GAME/Snow

Research Center (CEN). Due to its natural ties to the operational activities carried out by Météo-

France, working at CEN induces thematic constrains in that the research must ultimately contribute

to address issues related to avalanche hazard forecasting, mountain hydrology and the climatological

features of snow on the ground (including contributing to projections of the impact of climate change

on snow conditions). Conversely, the current working environment at CEN, and in a broader sense at

CNRM-GAME, makes it possible to carry out developments with a medium- to long-term perspective,

which is only possible due to an adequate balance in the missions of the permanently hired scientific

staff members (researchers, engineers and technicians) between upstream research, applied research

and transfer of research results to operational services. Such developments are fostered by interactions

with the scientific community at the local (Grenoble geophysics laboratories mainly belonging to the

Grenoble laboratories geosciences federation – OSUG), national and international levels, especially

when tools are shared and developed through collaborative work.

In contrast to many research positions in academic institutions, which strongly depend on the

scientific background and personal research project of the person holding them following a competi-

tive recruitment procedure, Météo-France positions at CEN are primarily meant to be held to sustain

long-term research and development activities, with significant emphasis placed on tools rather than

on scientific results per se. My own position, left vacant for six years prior to my arrival, covers the

management of the research team “Snowpack” (Manteau neigeux) and the scientific management of

the Crocus model and other long-term scientific duties. These concern most the scientific manage-

ment of the Col de Porte experimental site and technology watch relevant for methods for observing
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the physical properties of snow, and potentially contribution to their development. In terms of Crocus

development, my main duty has been to foster and develop the links between the representation of

snow metamorphism in Crocus and advances in the characterization and modeling of processes oper-

ating at the microstructure scale. This document is thus deliberately organized around the perspective

of snowpack modeling.

However, prior to any further description and discussion of snowpack model development, it is

worth reminding that even with the best possible snowpack model, inaccurate meteorological data

used to drive (or force) the model will inevitably lead to bad model performance. Consequently, de-

velopments in snowpack modeling must always be balanced with an assessment of the availability

of appropriate meteorological forcing data - which otherwise makes advanced snowpack modeling

completely useless unless from a purely academic point of view. This explains that part of my time is

devoted to meteorological issues. Regarding meteorological observations, I am coordinating the par-

ticipation of France to the WMO-SPICE1 (Solid Precipitation InterComparison Experiment) initiative

through measurements carried out at Col de Porte, gathering CEN personnel (in particular Y. Lejeune

and J.-M. Panel) and local partners (LTHE, LGGE, EDF-DTG, SPC AN - regional flood forecasting

authority). In terms of meteorological modeling and forecast, I follow developments in this field to

try to foster exchanges between snow modeling and developments of meteorological tools (analysis,

forecast) to optimize snow modeling developments especially in French mountain regions. These

aspects of my work are, however, not described in detail in what follows, for the sake of consistency.

Also left aside from the current document is my contribution to the field of atmospheric chem-

istry, in particular through the use of isotopic methods, since the end of my PhD. Besides work that

had been carried out during my PhD but was published several years after, I have spent some time

at the beginning of my work at CEN to finalize some ongoing work, contribute to the PhD work of

J. Erbland, co-supervised with J. Savarino at LGGE, who was my former PhD advisor, and carry

out specific research activities, which I feared otherwise no one would take care of. This concerns

in particular a study on the numerical modeling of the diurnal variations of the isotopic composition

of short-lived atmospheric compounds (Morin et al., 2011), a report and analysis of isotopic mea-

surements carried out on daily samples of atmospheric nitrate collected at Barrow, Alaska during

the Ocean-Atmosphere-Sea Ice-Snowpack (OASIS) field campaign in the spring 2009 (Morin et al.,

2012a), and a contribution to the analysis of diurnal variations and daily averages of the isotopic

composition of atmospheric nitrate collected on a ship off the California Coast during the CalNEX
1http://www.wmo.int/pages/prog/www/IMOP/intercomparisons/SPICE/SPICE.html
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Figure 1: Overview of the main physical processes and boundary conditions which can currently be

represented in one-dimensional snowpack schemes within land surface models (from Vionnet et al.,

2012).

2010 campaign, for which I had contributed to establish initial contacts with North-American scien-

tific partners and provided guidance to PhD student W. C. Vicars (LGGE), supervised by J. Savarino,

for the interpretation of the results (Vicars et al., 2013). Of course, it is never possible to fully close

research activities on a given topic, but I feel that the time spent on the above-mentioned studies since

2008 has allowed me to provide a consistent contribution to this field.

1.4 General considerations for detailed snowpack modeling

The basic task of a numerical model is to compute the time and/or space evolution of prognostic

state variables characterizing the snow conditions and their interactions with the environment (atmo-

sphere, ground, vegetation etc.), based on the time integration of physical laws expressed in tractable

mathematic equations. The model needs to account for the following items:

• Physical processes operating within the snowpack : processes are represented by a set of equa-

tions responsible for the time evolution of the physical properties of snow under the influence

of boundary conditions and of the intrinsic snow properties.
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• Boundary conditions : this concerns mostly the energy and mass balance at the interface be-

tween the snowpack and the overlying atmosphere and underlying ground, which depends on

atmospheric and ground characteristics but also on processes taking place within the snowpack.

• Initial conditions: this general concept for geophysical modeling concerns the prognostic vari-

ables used to represent the physical properties of snow in the model, and the estimate of their

value at the beginning of each time step of integration, that the model evolves until the next

time step.

In the case of snowpack scheme within a land surface model, only time derivatives are considered

because the simulation points are considered fixed in space and only vertically resolved processes

are dealt with. Figure 1 summarizes the main physical processes and boundary conditions which

can currently be represented in one-dimensional snowpack schemes within land surface models. The

physical knowledge at the basis of snowpack modeling generally draws from well established first

principles (heat diffusion, phase change, basic mechanics, etc.) and macroscopically does not involve

advanced physics considerations (e.g. Domine et al., 2008).

1.4.1 Boundary conditions

Interactions with underlying ground The main source of interaction between the snowpack and

the underlying ground proceeds through heat diffusion at the snow/ground boundary. A proper rep-

resentation of this process requires that the heat diffusion equation is solved consistently through this

boundary. In addition, water mass can be exchanged between the snowpack downwards through liq-

uid water (either originating from snowmelt or rain on snow episodes) infiltration and runoff at the

snow/ground interface, and upwards through capillary liquid water motion (see example in Figure 2

reported by Mitterer and Schweizer, 2012). Because energy transfer follows mass transfer (through

the latent and sensible heat held by water in various physical states), a consistent handling of energy

and mass transfer through the snow/ground interface requires that the heat diffusion equation is solved

accounting for both phase change and water mass transport.

Surface energy and mass balance The main surface mass balance terms of the snowpack proceed

through liquid (rain) rain and solid (snow) precipitation. Additional surface mass balance terms arise

from processes related to phase change occurring at the surface of the snowpack, in particular mass

loss through ice sublimation from dry surface snow, liquid water evaporation (also termed vaporiza-

tion) from wet surface snow, and mass gain by transition from atmospheric water vapor into liquid

11



Figure 2: Photo taken at the base of an open glide crack in Switzerland. Basal snow layers show high

water saturation. Brownish color hints to soil solutes transported into the snowpack through upwards

water flow (from Mitterer and Schweizer, 2012).

water through condensation and to ice through deposition. Last, wind induced erosion and accu-

mulation contribute to the surface mass balance of the snowpack independent from the occurrence

of precipitation episodes. Each of these processes is accompanied by energy transfers between the

snowpack and the atmosphere. Those associated with phase change occurring at the surface of the

snowpack are termed latent heat turbulent fluxes, because they strongly depend on the vertical stability

of the atmosphere above the snowpack and are favored by unstable (turbulent) conditions (Andreas,

2002).

Purely energetic terms also contribute to the surface energy balance. The atmosphere emits down-

wards thermal radiation to the surface depending mostly on the vertical profile of temperature and

water vapor. The Earth surface emits upwards thermal radiation depending on the infra-red emissivity

of the surface and its skin temperature. Due to its highly dispersed microstructure, the snow surface

behaves like an almost perfect black body, i.e. its thermal radiation almost reaches the maximal phys-

ically possible amount for a given skin temperature (Warren, 1982; Hori et al., 2006). Conversely,

snow absorbs nearly all incoming thermal radiation at its surface. The surface energy balance in the

solar part of the incoming radiation is a complex blend of the properties of the incoming radiation

(illumination angle of the direct beam, partitioning between the direct and diffuse incoming radia-
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tion) and of the near surface snow properties (see e.g. Warren and Wiscombe, 1980; Aoki et al.,

2003). In the visible part of the solar spectrum, where ice scattering dominates over ice absorption,

the fraction of solar light reflected by the surface (also termed spectral reflectance or albedo) strongly

depends on the amount of light absorbing impurities and their vertical profile, and to a lesser extent

to the microstructure of snow. In the near-infrared part of the solar spectrum, where ice absorption

dominates over scattering, the spectral albedo depends only on microstructure-related variables (Gid-

dings and LaChapelle, 1961; Warren and Wiscombe, 1980). Solar light penetration depends on the

previously mentioned properties but also on the degree of anisotropy of the microstructure of snow

(Meirold-Mautner and Lehning, 2004; Libois et al., 2013). In this sense, it is not strictly speaking

a snow surface process, because it may contribute to the deposition of energy several cm below the

snow surface. Last, sensible turbulent heat flux also contributes to the surface energy balance of snow.

This process corresponds to the transfer of energy associated with the advection of heat along with

the motion of air masses at the snow/atmosphere boundary, and, similarly to the latent heat turbulent

flux, it depends on the vertical stability of the atmosphere.

Figure 3 shows an overview of the main macroscopic physical properties of the snowpack and

its interfaces (surface temperature, ground temperature). More similar plots can be found in the

supplementary online material of Morin et al. (2012b).

1.4.2 Internal physical processes

The snowpack hosts a diversity of processes which altogether contribute to making snow a unique

physical and chemical interface at the Earth surface. Although this is regularly challenged by field

observations, it is generally considered that the snowpack can be considered as a layered medium,

so that only vertically-resolved processes need to be accounted for in snowpack models embedded in

land surface models, all of which assume planar geometries for the stack of layers constituting the

vertical structure of the snowpack, which is sometimes encountered in nature (see Figure 4). Lateral

transport of heat and mass occur and related processes operate on the snowpack, including wind-

related processes (erosion, drift etc.) and processes associated with lateral heat diffusion and liquid

water flow within the snowpack. Such processes are deliberately ignored in this document, because

my work has so far focussed on point scale mostly vertically resolved processes operating in the

snowpack and I have not contributed much to addressing horizontal energy and mass fluxes, below,

within or above the snowpack.

Thermal diffusion in snow is a major physical process acting on key internal snow properties
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Figure 3: Summary of the physical properties of snow at Col de Porte for the snow season 2007

- 2008 (from Morin et al., 2012b). From top to bottom : snow surface temperature, snow albedo

(hourly “instantaneous” values and daily integrated values), automated daily snow height and internal

temperature, daily snow height along with weekly manual snow height measurements, automated

daily snow water equivalent along with weekly manual measurements, snowmelt flux and ground

temperature.
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Figure 4: Example of the layering of the physical properties of snow, including variations of impurity

content. Original picture taken at Swamp Angel Study Plot in Colorado on 22 April 2013 (retrieved

from http://www.codos.org/).

such as the vertical profile of temperature, vertical temperature gradient, and liquid water content,

but also governing the pace of heat transfer through snow with major implications for the thermal

budget of the underlying ground. Snow compaction, induced by the weight of overlying layers and

by microstructural transformations of snow, is a key process leading to snow densification hence a

modification of its physical behavior. More generally, microstructure transformations are grouped

under the term snow metamorphism, which underlines the link between snow science and in a more

general geophysical sense phase change and recrystallization processes (e.g. Winter, 2009). While

microscopic drivers of snow metamorphism are pore-level heterogeneities of water vapor fields in

turn influenced by microscopic temperature gradients and curvature patterns of the microstructure

(e.g. Colbeck, 1982, 1983; Flin et al., 2003; Flin and Brzoska, 2008; Kaempfer and Plapp, 2009),

snow metamorphism is macroscopically driven by temperature, temperature gradient and liquid water

content (Domine et al., 2008). Here again, because snow is found at the Earth surface under thermal

conditions very close to its melt point, phase change processes within the snowpack are of critical

importance. Under circumstances where liquid water can be found within the snowpack (either due to

rain-on-snow or surface or basal melt), water percolation takes place, driven by gravity and very often
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Figure 5: Illustration of the heterogeneous nature of downwards liquid water movement in snow (from

Williams et al., 2010).

preferential flow is found to occur (see Figure 5). Such a process is inherently three-dimensional and

is currently handled in 1D snowpack schemes in a very rough manner.

1.4.3 State variables for snow

The main difficulties of 1D snowpack modeling arise from the fact that physical processes observed

-and modeled- at the macroscopic scale stem from processes occurring at the microscopic scale, i.e.

they involve recrystallization, heat exchange and phase change operating at the microstructure level,

where snow is a complex tridimensional assemblage of ice, air, liquid water and impurities. The esti-

mation of macroscopically-relevant physical properties which can be dealt with in snowpack schemes

in land surface models requires a minimum level of understanding of how the microstructure of snow

influences its physical behavior. Major advances in this regard have occurred since the inception of

novel methods to probe the microstructure of snow with a resolution of a few micrometers. In partic-

ular, X-ray tomography of snow, developed in the late 1990s with a contribution from CEN (Brzoska

et al., 1999; Coléou et al., 2001) and later largely popularized and used in many laboratories world-

wide (e.g. Schneebeli and Sokratov, 2004; Freitag et al., 2004; Chen and Baker, 2010), has offered

new ways to tackle the links between microscopic properties of snow and emerging macroscopic
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properties, in addition to providing the basic ingredients to test hypotheses regarding snow metamor-

phism itself (see section 1.4.2). Similarly to other porous or granular materials, the very definition

of macroscopic emerging properties from the microstructure requires that a representative elementary

volume (REV) can be defined, within which the emerging property can be considered homogeneous.

In some cases, this step is already challenging, especially for properties involving "long"-range in-

teractions (against microstructural characteristic scales), such as mechanical properties for instance

(Schneebeli, 2004; Hagenmuller et al., 2014).

Depending on the task that numerical modeling is meant to achieve, the level of complexity of the

representation of snow microstructure and its evolution varies. Several state variables, from the most

simple to the most complicated, directly emerge from the microstructure of snow. Here we review

the key physical properties which are needed for detailed snowpack modeling, and their relationship

to variables emerging from the microstructure. By definition, a single value for each variable is

assigned to each numerical layer used within the snowpack model to discretize the vertical profile of

the physical properties of snow.

The basic state variables used to describe the physical state of a snow layer follow:

• Mass and thickness

A given snow layer needs to be assigned a total mass of condensed water (i.e. ice and liq-

uid water; the mass of air filling up the porosity is generally neglected) per unit horizontal

surface area, also referred to as the snow water equivalent, and thickness (∆z). The link be-

tween the two is the density (ρ, snow mass per unit snow volume), which corresponds to the

mass of condensed water per unit snow volume and is the primary variable emerging from the

microstructure (Torquato, 2002).

• Liquid water content

The amount of liquid water (ξ) in a given snow layer is referred to as the liquid water content.

It can be reported using various dimensionalities (mass ratio, volume ratio, etc.). Because the

water mass is kept unchanged through phase change (in contrast to water volume), I personally

prefer to express liquid water content in terms of liquid water mass per unit snow volume. In

this case, the liquid water content has the same unit as snow density, reducing risks of errors

arising from unit conversions, and making it easy to compute the “dry snow density” (i.e., ice

mass per unit snow volume) as ρ − ξ, and the mass ratio between liquid water mass and total

condensed water mass as ξ/ρ.
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• Temperature

The temperature of a given snow layer is a critical variable to characterize its physical state.

Along with snow density and layer thickness, thermal and thermodynamic properties are needed

to compute the dry snow internal thermal diffusion equation, provided that boundary conditions (top

and bottom energy fluxes) and potential source terms (e.g. solar radiation absorption in each layer)

are known:

• The effective thermal conductivity (keff) describes the heat diffusion efficiency through a given

snow layer. The terms “effective” stems from the fact that a value relevant at the macroscopic

level corresponding to an homogeneous medium can be estimated from the microstructure level

snow properties accounting for both air and ice thermal properties and including only purely

diffusive processes.

• The heat capacity (Cp) describes the amount of energy that is needed to raise the temperature

of a snow sample of unit mass. It is defined only for dry snow (heat capacity is not relevant

for wet snow, i.e. containing liquid water, because its temperature is then fixed to the ice melt

temperature). This variable is generally computed for each numerical snow layer by multiplying

the specific heat capacity of ice to snow mass in the layer.

For obvious reasons of computing cost especially in terms of memory use, the number of prog-

nostic variables, i.e. the variables that need to be stored for each layer between each iteration of the

numerical model, must be considered cautiously. Indeed, each prognostic variable must be defined for

every snow layer. In the case of a detailed snowpack model like Crocus featuring typically up to 50

layers, each of the 50 values of each prognostic variable needs to be internally stored at each time step,

which becomes quickly intractable if the number of prognostic variables becomes too large, especially

for simulations covering a large number of simulation points. Numerical tricks were developed to try

to keep the number of prognostic variables as low as possible:

• Thermal state : because snow temperature different from the melt point cannot coexist with a

nonzero liquid water content (and vice-versa), snow enthalpy was introduced in snow models

several decades ago (Lynch-Stieglitz, 1994; Boone and Etchevers, 2001) as a variable handling

both snow temperature and liquid water content in a energetically continuous way across the

melt-point physical discontinuity, and is used as such in SURFEX/ISBA-Crocus.

• Layer density/mass/thickness : these three variables are not independent, so that only two need
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to be defined (in the case of SURFEX/ISBA-Crocus and SURFEX/ISBA-ES, the mass and

density of snow layers are the prognostic variables used).

Additional state variables can be used to characterize snow layers, including variables representing

the microstructure of snow (various surrogates for “grain size”, indications of the degree of faceting,

bonds characteristics etc.) and properties needed to compute snow compaction (e.g. newtonian vis-

cosity) and other processes operating within the snowpack (Armstrong and Brun, 2008). However, a

specific analysis has to be carried out to identify the cost/benefit of adding an additional prognostic

variable into the model. In some cases, the relationship between the physical property needed and

density is deemed sufficiently robust that a prognostic equation of the considered variable is not used,

but rather the variable is computed from density at each time step of the model for each model. This

situation may also stem from the fact that prognostic equations (i.e., rate equations for the time evolu-

tion of a given variable as a function of the state variable) often do not exist. For example, there does

not currently exist a prognostic representation of the intrinsic time evolution of the effective thermal

conductivity of snow. Instead, this variable is computed from snow density using a parametric equa-

tion (that of Yen, 1981 in the case of Crocus). The number of prognostic variables thus results from a

compromise between the number of variables that can be afforded, and the added-value of explicitly

evolving a variable independently from other variables. Figure 6 shows an example of the simulated

time evolution of some of the physical properties of snow at the Col de Porte field site during a given

snow season using the detailed snowpack model SURFEX/ISBA-Crocus (Vionnet et al., 2012).

1.4.4 Degrees of model complexity

Land surface schemes for NWP and climate models were primarily designed to represent energy and

mass fluxes at the interface between the atmosphere and the surrounding surface, which implies that

emphasis was placed on a realistic representation of the albedo and surface temperature and their time

evolution, in particular the diurnal cycle of the latter, while correctly representing the internal pro-

cesses (heat diffusion, phase change and percolation) was only a secondary objective. Such targets

can reasonably be reached using well tuned single layer bulk snow schemes (Douville et al., 1995;

Balsamo, 2012). In the SURFEX/ISBA-D95 single layer snow scheme, snow is thus represented

with only three prognostic variables which are bulk density, snow water equivalent, and snow albedo

(Douville et al., 1995; Masson et al., 2013). Climate and hydrological applications require that not

only the fluxes but also the water reservoirs at the Earth surface (not only snow but also ground and

lake water masses) are correctly represented. Essery et al. (2013) have provided an in-depth analysis
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Figure 6: Example of visualization of the time series of snowpack profile properties simulated by the

snowpack scheme Crocus in SURFEX. The simulation used is the last year (2009-2010) of simula-

tion from the model run carried out at Col de Porte. The data represented here are a) snow density

(kg m−3), b) snow temperature (K), c) snow liquid water content (kg m−3). From Vionnet et al. (2012).
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of the key ingredients needed to appropriately represent snow processes in intermediate complexity

snow schemes, which are snow compaction, phase change and a water percolation scheme allowing

liquid water retention in snow, thermal conduction through snow, and a prognostic albedo evolution.

This requires that the snowpack is represented by several layers. SURFEX/ISBA-ES features a suffi-

ciently detailed degree of complexity in this respect (Boone and Etchevers, 2001), and includes three

prognostic variables per snow layer (snow water equivalent, enthalpy and density) plus an additional

prognostic albedo. For typical conditions of use of the model with 3 layers, 10 prognostic variables

must be saved and used for the next time iteration of the model (Masson et al., 2013).

There are at least three scientific areas where a higher degree of complexity is needed to represent

snow properties and processes in numerical models of the snowpack. Avalanche hazard forecasting

is the first one, due to the need to represent the detailed layering of mechanical properties of snow

in order to predict potential snowpack instability conditions, in particular for accidentally triggered

avalanches (e.g. Schweizer et al., 2003). This is the main reason why snow microstructure was ini-

tially represented in the detailed snowpack model Crocus (Brun et al., 1992). The second domain of

applications of higher level of complexity is related to remotely-sensed properties of snow. Indeed,

regardless the wavelength considered (microwave to visible and near-infrared) and the observation

mode (active or passive observations), the interactions between electromagnetic radiation and snow

strongly depends on the vertical profile of the physical properties of snow including snow microstruc-

ture variables (e.g. Grenfell and Warren, 1999, see below). While the level of complexity needed for

a given application (i.e., NWP or hydrology) does not intrinsically require a detailed representation

of snow microstructure, the possibility to assimilate remotely-sensed variables crucially depends on

the ability to represent the electromagnetic behavior of the snowpack and thus implies the use of a

snowpack model of higher complexity. Last, detailed studies of the physical and chemical processes

in the snowpack require a higher level of complexity of the representation of snow processes than

in intermediate complexity models. The choice of the state variables relevant to represent physical

processes in snow and variables describing the behavior of interest for the selected application is not

trivial and needs to account for pragmatic considerations, i.e. in the case of a prognostic variable,

whether prognostic evolution laws exist, either physically-based or parameterized.

The SURFEX/ISBA-Crocus scheme belongs to the category of the detailed snowpack models,

together with a few other ones (e.g. Jordan, 1991; Lehning et al., 2002; Niwano et al., 2012). The

model governs the evolution of 7 prognostic variables in each layer (density, snow water equivalent,

enthalpy, grain1, grain2, hist and age - see details below), with 35 prognostic variable in a 5 layers
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configuration and up to 350 prognostic variables in the full 50 layers configuration, which is generally

employed for offline Crocus applications. Of course, prognostic variables must also be considered

for other components of the land surface scheme (ground thermal and hydrological state, vegetation,

etc.). It is worth comparing this number with the number of prognostic variables in the atmospheric

component of a climate or NWP model. For example, the ARPEGE global NWP model used at

Météo-France features 70 atmospheric levels, with 9 prognostic variables, totaling 630 prognostic

variables. Cases may thus be encountered where more variables are used to describe the 2D surface

fields than the 3D motion and physical properties of the atmosphere.

The land surface scheme ISBA in SURFEX (Masson et al., 2013) features snowpack schemes of

these three levels of complexity (D95 - Douville et al., 1995 and EBA - Bazile et al., 2002, Explicit

Snow - Boone and Etchevers, 2001 and Crocus - Vionnet et al., 2012) making it a very efficient

tool to investigate the impact of model complexity on the performance of the representation of snow

processes in the land surface model (and its impact/feedback on other model components in offline and

coupled modes), and allowing progressive increase of model complexity and physical representation

of processes regarding snow for the various applications for which simpler approaches have been

employed so far (in particular, NWP and climate modeling).

1.5 Features and use of the stand-alone version of Crocus

In contrast to the situation encountered in the 1970s when numerical modeling of the time evolution

of the physical properties of snow, even the most basic ones (e.g. snow water equivalent, i.e. the total

snow mass per unit horizontal surface area), was in its infancy with promising ongoing developments,

physically-based numerical models for the time evolution of the physical properties of snow on the

ground were largely developed upon my inception in this field in 2008. In particular, extensive devel-

opments took place in the 1980s and early 1990s at CEN leading to the development of the detailed

snowpack model Crocus (Brun et al., 1989, 1992). Due to the fact that avalanche hazard forecast does

not only depend on the total snow mass or height but also on the internal structure of the snowpack,

it was needed to develop a modeling framework allowing the representation of the time evolution of

a vertically stratified snowpack within which snow layers could evolve independently, as a function

of external (meteorological conditions, ground thermal state) and internal (thermal diffusion, phase

change, compaction) driving forces. Over tools existing at the time of its creation, Crocus had the

peculiarity to track snow layers in a time-evolving finite element grid (lagrangian tracking of layers)

including dynamic re-meshing algorithms to secure sufficient vertical resolution near the surface of
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the snowpack while respecting a given maximum number of numerical snow layers. This allows to

represent the sharp contrast of physical properties of snow which can be encountered from layer to

layer in the natural snowpack as can be seen on Figure 4 ; indeed, a more eulerian framework featuring

a fixed vertical grid would lead to numerical diffusion of physical properties of snow from contiguous

layers smoothing out the vertical profile of snow properties. The other main originality of Crocus was

a quantitative representation of snow metamorphism, through the implementation of semi-empirical

prognostic equations for the time evolution of ad-hoc variables named snow dendricity, sphericity, size

and “hist”. Dendricity characterizes freshly fallen snow and varies from 0 to 1; it roughly represents

the remaining initial geometry of snow crystals in the layer, and systematically decreases over time

in a given layer. Sphericity varies between 0 and 1 and describes the ratio of rounded versus angular

shapes. Both variables can be deduced from 2D image analysis (Lesaffre et al., 1998; Bartlett et al.,

2008). Grain size attempts to represent the size of snow grains which can be measured through visual

means (Fierz et al., 2009). An additional variable referred to as “hist” indicates whether there once

was liquid water or faceted crystals in the layer. These four variables are generally termed the “grain”

variables, and are used to diagnose the snow type (Brun et al., 1992). Even if this framework bears its

own limits hampering further development (as will be seen below), it has to be recognized that efforts

were made to identify state variables relevant to characterize snow microstructure the evolution of

which could be inferred based on laboratory experiments. Some of them pre-existed the development

of Crocus itself (Marbouty, 1980) and some were specifically designed to fill gaps in the range of

conditions occurring in snow and that the model should be able to describe (Brunot, 1986). It must

also be mentioned here that the development of Crocus was made possible through high-resolution

monitoring of meteorological and snow conditions at the Col de Porte experimental site providing

high-quality driving and evaluation data (Brun et al., 1989, 1992), and that further use of Crocus

for French mountainous applications was fostered by the development of the meteorological analysis

tool SAFRAN (Durand et al., 1993, 1999), which provides hourly records of meteorological variables

needed to run Crocus within mountain ranges (massifs) assumed to be meteorologically homogeneous

with an altitudinal variation represented by 300m-spaced elevation bands. Operational applications

of Crocus for avalanche hazard warning were made possible through the parallel development of the

MEPRA model providing a mechanically-based assessment of snowpack stability on a given slope

with respect to natural and accidental avalanche release (Giraud, 1992; Durand et al., 1999).

It is not the purpose of the current document to describe in detail the breadth of scientific and

operational applications that were permitted by the initial developments of Crocus (see Brun, 2011
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and Brun, 2013 for such information). Briefly, the original version of Crocus was used for several

studies lead by CEN researchers for snow hydrology (Braun et al., 1994), impact of climate change

on snow conditions (Martin et al., 1997; Rousselot et al., 2012), glacier mass balance (Martin et al.,

1996; Gerbaux et al., 2005), snow-wind interactions (Durand et al., 2001) and reanalysis of snow

conditions in French mountain ranges (Durand et al., 2009a) using SAFRAN driven by the large-scale

meteorological reanalysis ERA-40 (Uppala et al., 2005; Durand et al., 2009b). The Crocus model was

shared with partner research institutions leading to applications in polar regions (Dang et al., 1997,

1998), coupling with microwave emission models (Wiesmann et al., 2000; Genthon et al., 2001;

Brucker et al., 2011), the development of alternative models partly drawing on modeling principles

specific to Crocus (Gallée et al., 2001; Bartelt and Lehning, 2002; Lehning et al., 2002), and use of

Crocus for avalanche hazard forecasting applications in foreign countries (e.g. Iceland, Haraldsdóttir

et al., 2001). An extensive list of known applications of Crocus is maintained and available on the

internet2.

1.6 From the stand-alone Crocus to SURFEX/ISBA-Crocus

Two facts need to be described that explain the current status of the Crocus snowpack model and its

evolution in the recent years. Firstly, in the Spring 2008, V. Vionnet undertook a master internship un-

der the supervision of E. Martin at CNRM-GAME/GMME (Toulouse) having as a mid-term goal the

perspective of carrying out model runs with the mesoscale non-hydrostatic model Meso-NH (Vionnet,

2012; Vionnet et al., 2013, 2014) to explicitly simulate the coupling between the snow surface and

atmospheric conditions in a mountainous environment accounting for snow-wind interactions. Such

applications require that the physical properties of near-surface snow are explicitly simulated, because

the susceptibility of snow to be eroded by the wind depends on its intrinsic physical properties (Guy-

omarc’h and Merindol, 1998). The land surface scheme used by Meso-NH is shared with other at-

mospheric models developed at CNRM-GAME through the SURFace EXternalisée (SURFEX) Earth

surface scheme, which was specifically developed since the early 2000s as a voluntary effort to mu-

tualize development related to surface processes for all Météo-France (and partners) atmospheric

models used for coupled NWP, climate, large eddy simulations (LES) modeling and offline applica-

tions such as hydrology and climate change impact studies. SURFEX has become a shared surface

processes modeling platform within CNRM-GAME with many fruitful interactions and perspectives

(Masson et al., 2013). At the time of V. Vionnet master internship, only single-layer (Douville et al.,
2http://www.cnrm-game.fr/spip.php?article268
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1995; Bazile et al., 2002) and intermediate complexity multi-layer (Explicit Snow; Boone, 2002)

snowpack schemes were available in the land surface model Interactions-Soil-Biosphere-Atmosphere

(ISBA Noilhan and Planton, 1989) integrated in SURFEX. V. Vionnet thus integrated key Crocus

elements in ES, in particular the snow metamorphism routines and the ability to include more than

the usual 3 to 5 snow layers in ES. Secondly, the first step of the integration of Crocus features in

ES was complemented in the Spring 2009 when E. Brun, returning to basic research activities after

about 10 years dedicated to more operational or management tasks, completed the integration of all

Crocus-specific features in ES within the SURFEX/ISBA environment.

Upon my arrival at CEN in the Fall 2009 with a mission to pursue scientific developments of the

Crocus model, it was straightforward to realize that carrying out scientific and technical developments

in Crocus independently from ongoing SURFEX/ISBA-Crocus developments in Toulouse was not a

viable option, for scientific and technical reasons. Scientifically, the integration of Crocus features

within the ES multi-layer snowpack scheme (soon clearly separated as two independent snow model-

ing options in SURFEX/ISBA to not hamper the simplicity and cost-effectiveness of the ES scheme)

induced several scientific advances to Crocus such as: the coupling with the multi-layer soil scheme

ISBA-DIF handling thermal diffusion, water movement and phase change (Decharme et al., 2011,

2013), an improved and more robust numerical scheme allowing internal time steps up to 1 hour

while running the stand-alone Crocus required using a time step of 15 min, and large potential for im-

provement through scientific developments not specific to Crocus but that Crocus could benefit from

(e.g. snow vegetation interactions, data assimilation). Technically, including all Crocus developments

within the SURFEX framework induced constraints linked to the need to share and phase technical

and scientific developments with multiple teams, initially mostly within CNRM-GAME, while pre-

serving the capabilities of the model across its various applications, ranging from operational NWP

to climate modeling through detailed snow physics modeling in mountain regions. However, in the

meantime and in the longer-term, this allows to benefit from shared technical and scientific expertise

of the staff involved in SURFEX development and maintenance for improved model robustness and

extended model testing. In this regard, I am indebted to J.-M. Willemet and M. Lafaysse (CEN) and P.

Le Moigne and S. Faroux (CNRM-GAME/GMME) for sustained dedication in contributing to stabi-

lize (from 2009 to roughly 2012) and develop (roughly from 2012 on) the Crocus implementation in

SURFEX/ISBA, which was still needed after the early (but major) steps of its integration carried out

by V. Vionnet and E. Brun in 2008 and 2009. The decision to use adequate version control software

(svn) for the whole SURFEX code since 2012, the user-friendly input/output file formats (netCDF
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based, Rew and Davis, 1990) and scientific and technical meetings organized by the SURFEX coordi-

nation team lead by E. Martin (GMME) have been strong assets for the sustainability of the code and

the further expansion of Crocus development. My somewhat limited responsibility regarding such de-

velopments was to readily make the decision to carry out technical developments and use of Crocus at

CEN within the SURFEX environment and actively contribute to scientific and technical discussions

related to the code development as well as promoting the capabilities offered by this new implementa-

tion in the local, national and international scientific communities. A few specific developments were

carried out under my direct action and supervision, and are described in section 2. In what follows,

unless otherwise noted, Crocus is used to refer to SURFEX/ISBA-Crocus, i.e. the implementation of

Crocus as a snow scheme of the land surface ISBA in the SURFEX environment.
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2 Implementations of prognostic equations for the optical diam-

eter of snow

2.1 A bit of terminology

Besides density, the basic geometrical characteristics of porous media can be represented by the ra-

tio between the surface area of the interface between phases and the volume of one phase (typically

the “most condensed one”), and higher order terms related to the curvature fields of the interfaces

(Torquato, 2002). The surface area/volume ratio of snow, also referred to as the specific surface area

(SSA), not only characterizes one of its key microstructural property but is also driving its radiative

behavior. Although this has actually seldom been used in practice beyond stating its potential (Dom-

iné and Shepson, 2002; Domine et al., 2007; Barret et al., 2011), it is relevant to quantify physical and

chemical processes occurring in snow at the ice surface. From snow SSA one can define the equiv-

alent spheres diameter, des, which corresponds to the diameter of disconnected ice spheres having

the same surface area/volume ratio in a given representative elementary volume (REV). Early work

on the optical properties of snow (Giddings and LaChapelle, 1961) had already set the idea that in

the near infrared (NIR - 0.75 to 1.4 µm) and short-wavelength infrared (SWIR - 1.4 to 3 µm) por-

tions of the solar spectrum, where ice is significantly absorptive, the partitioning between scattering

and absorption should depend on the surface area/volume ratio. Because radiative transfer schemes

were developed accounting for simple geometry for the individual structural elements, and because

in some cases individual elements of the snow microstructure can be geometrically viewed as ice

spheres, initial snow radiative transfer modeling was carried out representing snow as a collection of

disconnected ice spheres (Warren and Wiscombe, 1980; Sergent et al., 1987; Grenfell and Warren,

1999). It was found that using a given value of the diameter of these spheres in the calculations lead

to match observed hemispherical albedo data in the NIR and SWIR (using independently measured

spectrally resolved optical index of ice), and this value was termed the optical diameter of snow dopt.

Note that dopt is sometimes also referred to as the optical grain diameter, although there is no need to

invoke the concept of a grain to define this “diameter”, which has rather to be seen as an optically-

relevant snow length scale (Grenfell and Warren, 1999). A formal equivalency between des and dopt

is theoretically not expected but there are hints from field and laboratory measurements where des and

dopt were measured independently (Domine et al., 2006; Gallet et al., 2009) that the values of the two

variables can in many cases be considered equal. However, one has to keep in mind that these two

terms are not strictly equivalent which may explain cases of discrepancies between different methods
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seeking to measure des (hence SSA) through optical techniques using reflectance features of snow at

selected wavelengths in the NIR and SWIR (Domine et al., 2006; Matzl and Schneebeli, 2006; Painter

et al., 2006; Gallet et al., 2009; Arnaud et al., 2011). International collaborative work is needed and

ongoing to improve the situation in this regard.

2.2 Situation at the beginning of the work

Since the early stages of its development, Crocus has included a representation of the optical diameter

of snow, because its albedo scheme with one band in the visible, one the in the NIR and one in the

SWIR part of the solar spectrum, required an estimate of snow optical diameter to compute snow

albedo (Brun et al., 1992). However, in the standard Crocus version, the optical diameter is not a

prognostic variable but it is computed at each time step from the three variables used to describe snow

microstructure besides snow density, namely dendricity (d), sphericity (s) and size (gs). The time

evolution of these variables depends on temperature, temperature gradient and liquid water content

(Brun, 1989; Brun et al., 1992; Vionnet et al., 2012). Empirical formula were set up to compute the

optical diameter dopt from these three variables, most probably from laboratory observations lead by

C. Sergent in the 1980s:

dopt =





d+ (1− d) (4− s) dendritic case

gs × s+ (1− s)× max
�
4.10−4, gs2

�
non-dendritic case

(1)

At the time of Crocus development, the estimate of the optical diameter from dendricity, sphericity

and size was found sufficiently accurate to be implemented in the model and since then has been used

to compute the NIR and SWIR albedo of snow (and a contribution to the visible albedo as well) taking

into account the evolution of snow microstructure computed by the model. This intrinsic computation

of des was used in several studies linking Crocus output to remotely-sensed observations, through

various operation operators, in the solar visible and near infrared (Fily et al., 2000; Dumont et al.,

2012; Mary et al., 2013) and passive (Wiesmann et al., 2000; Genthon et al., 2001; Toure et al., 2011;

Brucker et al., 2011) and active (Longepe et al., 2009; Phan et al., 2014) microwave wavelengths

ranges. There was a need, however, to better quantify how well Crocus predicts des. This has been

made possible owing to technical development targeting the measurement of des (methane adsorption

techniques at 77K, stereology, X-ray microtomography, optical methods (e.g. Domine et al., 2008)).

A dedicated field campaign was organized in the winter 2009-2010 (shortly after my arrival at CEN)

to document for the first time the time evolution of the vertical profile of des in alpine snow through

a snow season at the experimental station Col de Porte (1325 m altitude, near Grenoble). Vertical
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profiles of des were measured using the DUFISSS instrument, consisting of a integrating sphere to

measure the hemispherical albedo of a given snow sample at 1310 nm, where it is most sensitive to

dopt - assumed to represent a measurement of des (Gallet et al., 2009). Following the measurement

campaign and the generation of a quality-controlled in-situ meteorological data driving file carried out

by Y. Lejeune, a Crocus run was performed. The output in terms of des, either calculated internally by

Crocus using equation (1), or estimated from snow type and density following Domine et al. (2007),

was compared to the field observations and demonstrated that the existing representation of des in

Crocus was performing rather well with room for improvements (Morin et al., 2013a). However, I

stated at the time that direct improvement of the model in this respect would be challening if not

impossible - or useless, because to improve the estimate of des in the model it would be needed to

improve the time evolution of the microstructural variables of Crocus and/or the empirical relationship

linking them to des. Instead, I had already in mind to renovate the snow metamorphism module of

Crocus to incorporate a prognostic representation of des thereby removing the empirical variables

dendricity and size, which was planned within the projet QUASPPER (“Quantitative Assessment and

modeling of Snow Physical PropERties”) that I submitted to CNRS INSU/LEFE in september 2009

and was funded from 2010 to 2012. This project associated CEN and LGGE scientists with the goal

of improving des measurement capabilities - lead by LGGE scientists G. Picard and L. Arnaud, and

improving Crocus des representation and evaluation against newly observed des data - lead by us. The

snow observation programme and modifications and evaluations of Crocus formed the body of the

PhD work of Carlo M. Carmagnola (Fall 2010 - Fall 2013, co-supervised with F. Dominé - LGGE,

Grenoble then UMI Takuvik, Université Laval, Québec, Canada since summer 2011).

2.3 Implementation, evaluation and perspectives

A detailed description of the modifications that were performed in Crocus and their evaluation is

reported in Carmagnola et al. (2014). Only the main facts and results are summarized here. As

indicated above, the main technical development was to replace dendricity and size by des in the model

code wherever these variables were invoked. Because dendricity and size were never simultaneously

defined in Crocus (dendritic vs. non-dendritic regimes), a quasi bijective relationship was obtained by

“inverting” equation (1). Once des had become a prognostic variable of the model, intrinsic prognostic

equations could be seeked. First of all, in an attempt to perform only a technical update to the model

structure, the dry and wet snow metamorphism laws were reformulated in terms of des, with almost

similar results (one of the laws, actually, had a recursive dependency on grain size which could not
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be translated in terms of des). The modification of the code also allowed to test alternative (dry) snow

metamorphism prognostic equations already expressed in terms of des. We tested two of them, one

derived from the Taillandier et al. (2007) empirical fits to observation data, although the functional

form of the equation used is not easy to convert into a prognostic equation, as already recognized by

Lehning (2009) and Morin et al. (2013a), and the other one from the SNICAR (Snow, Ice, and Aerosol

Radiation) parameterization produced and provided by Flanner and Zender (2006). Model runs were

evaluated against field observations at Col de Porte (2009-2010 and 2011-2012 season - the latter

using a newly developed des profiler built through the QUASPPER project) and Summit, Greenland,

where C. Carmagnola and F. Dominé had the opportunity to carry out measurements for a period

of 2 months in May-June 2011 (Carmagnola et al., 2013). The model runs revealed that the results

obtained using the three prognostic rate equations for snow generally differed less from each other

than from between any of them and the observations, with various specific behaviors: for example the

results obtained using the Flanner and Zender (2006) parameterization showed quicker des increase

in near surface snow. In contrast, in seasonal snow the results obtained using the parameterization

derived from Taillandier et al. (2007) lead to lower des values than the other des rate equations. This

latter option leads to unrealistic results in the Greenland case, because the mathematical formalism of

this equation is not adapted to handle long time periods (exceeding several months). This evolution of

the code did not bring significant intrinsic scientific improvements to the model, because the work did

not generate new knowledge with respect to the drivers of des variations in snow layers. It is however

a significant technical advance allowing further progress in the understanding of factors governing

initial des values in freshly fallen snow and their time evolution to be readily implemented and tested

in the model. Moreover, while the standard Crocus made the task of data assimilation of des extremely

cumbersome (Toure et al., 2011; Dumont et al., 2012; Phan et al., 2014), the fact that des is now a

prognostic variable greatly simplifies assimilation methods operating on this variable. Assimilation

schemes can now use des directly as a control variable, rather than developing assimilating schemes

requiring to invert the relationship between des and dendricity (d), sphericity (s) and size (gs).
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3 Other developments targeting model evaluation and improve-

ments in terms of physical properties

Long-term developments of a detailed snowpack model require a diagnostic of its capabilities in

a given state, which can only be performed through a comparison of key physical variables with

observations. Such studies are needed to assess the performance of the “base” (or initial) version of

the model from which future developments may occur. Motivated by the need to assess the critical

shortcomings of Crocus that needed to be addressed first when I started working on/with the model,

I performed or contributed to several studies using the base version of the model in various contexts.

Note here that by “base” version I refer here in general to the SURFEX version of Crocus which is

actually a quite “new” model in which many aspects need to be carefully checked prior to any decision

to carry out “improvements”. Indeed, cases could exist where planned model developments actually

lead to performance decrease because of insufficiently documented model performance at the initial

steps of the development.

3.1 Snow height and snow water equivalent

The most basic physical properties of snow are its height and water equivalent (SWE). The perfor-

mance of snow models of various levels of complexity is generally assessed mainly through basic

statistics (bias and root mean square deviation - rmsd) of simulation results vs. some local obser-

vations of snow height and SWE used as a reference. Although my own scientific contribution is

probably not most significant here, I have put energy into evaluating Crocus in terms of basic statis-

tics to ensure that using this version of Crocus did not induce a regression of performance with respect

to the standalone version of Crocus used operationally hitherto, fed by the same SAFRAN forcing.

This work was mainly lead by M. Lafaysse and I attempted to contribute as much as I could to com-

pare snow height and SWE observations in as many as possible stations spanning the longest possible

period of time. 83 observation stations were selected in the French Alps, covering the 1980-2012

period. Because the medium-term objective of this work was to perform model adjustment prior to

the operational implementation of SAFRAN - SURFEX/ISBA-Crocus - MEPRA (S2M), it has not

lead to a specific peer-reviewed publication, although I believe that it has occurred in only a few cases

that a snowpack model was evaluated with such an extensive observational dataset. Indeed, the pre-

vious version of Crocus was mainly tested at Col de Porte using driving and evaluation data for a few

seasons (Brun et al., 1989, 1992). The Snow Model Intercomparison Project (SnowMIP) (Etchevers
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et al., 2004) used data for two snow seasons at Col de Porte, one at Weissfluhjoch (Switzerland),

one at Sleepers River (USA) and 15 years from Goose Bay (Canada). In general, snowpack models

were primarily evaluated either at only one site or for a very limited number of field stations. The

situation improves with the increased availability of high-quality multi-year driving and evaluation

datasets from snow-dominated sites or catchments (e.g. Reba et al., 2011; Morin et al., 2012b; Landry

et al., 2014). Of course, in the case of the S2M observation sites, due to the fact that almost none

feature the full suite of meteorological measurements needed to run Crocus, it is actually really the

combination SAFRAN - Crocus that it tested. However, inconsistencies can occur between in-situ

meteorological and snow measurements even performed with great care, not only due to instrumental

malfunction but mostly because of processes inducing heterogeneity (preferential deposition of pre-

cipitation, wind drift, uneven, shadowing etc.) (e.g. Morin et al., 2012b; Wever et al., 2014). It is

thus very complicated to evaluate snowpack models only, because of the large amount of potential

uncertainty in the driving and evaluation data set.

Thanks to my involvement in the scientific management of the Col de Porte and my will to make

this unique data set as widely used as possible as a tribute to field observers and a service to the

community (Morin et al., 2012b), I have participated in several studies addressing model evaluation

from a multi-year perspective using data from this site. The first example is probably the evaluation

of SURFEX/ISBA-Crocus at Col de Porte, which is reported in Vionnet et al. (2012) and used 9

years of quality-controlled driving and evaluation data from Col de Porte (restricting the available 18

years dataset to years with most recent years with daily SWE measurements available). It was readily

shown that in terms of snow height and SWE, statistics exhibited a very large year-to-year variability

(see Figure 7). A previous intercomparison between Crocus and ES at Col de Porte indicated that

SWE and snow depth were significantly better simulated by ES than Crocus at this site for one season

(see e.g. Table 2 of Boone and Etchevers, 2001). Results shown on Figure 7 and in Vionnet et al.

(2012) indicate that such a significant discrepancy no longer exists with the SURFEX implementation

of Crocus and that both schemes perform satisfyingly and with comparable levels of performance.

ES tends to perform better in terms of SWE, while Crocus performs slightly better in terms of snow

height. This shows that in terms of bulk variables such as snow height and SWE, there is little to

gain between an intermediate complexity model (ES here) and a more sophisticated snowpack model

(Crocus here).

This analysis was further refined by Essery et al. (2013) showing that depending on the year cho-

sen for the evaluation of a snowpack model of intermediate complexity (using here 4 snow seasons
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Figure 7: Overview of nine years of simulation at Col de Porte, France. Simulated data for snow

depth (top) and SWE (bottom) are provided for two model runs with two snowpack schemes within

SURFEX (ES and Crocus), compared to daily in-situ data (from Vionnet et al., 2012).

at Col de Porte from 2005-2006 to 2008-2009), the choice of parameters and even of degree of com-

plexity yielding the best results in terms of scalar variables (snow height, SWE, albedo and surface

temperature) could be different, implying that efforts in further developments of model physics may

not lead to improvements of the performances in terms of such integrated variables, as long as the

degree of complexity is sufficient. Such developments, targeting improvements of the physical con-

sistency of the models, should be aimed at scientific applications requiring better in-depth understand-

ing of physical processes at play, including feedbacks involving snow metamorphism and deposition

of impurities, that intermediate complexity models with their mostly density-based parameterizations

cannot address. Potential for assimilation of remotely-sensed observation can also drive the need to

use detailed snowpack models (see section 1.4.4). This study has also clearly demonstrated the need

to carry out multi-year assessments of snowpack model performance, because individual years may
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exhibit a peculiar behavior due to specific meteorological conditions but also are more sensitive to

inconsistencies between driving and evaluation data, and to the errors they both hold.

In parallel to these developments and applications at alpine sites, I have been involved in large

scale experiments using Crocus, in particular through the efforts lead by E. Brun to evaluate the

combination ERA-Interim - Crocus against station data from the former USSR in Northern Eurasia,

spanning a wide range of snow conditions during several years (especially in the 1980s regarding the

overlap with ERA-Interim reanalysis data starting in 1979). It was found that ERA-Interim provides

3-hourly meteorological driving data which, combined with Crocus, lead to generally very robust

snow simulations against open field station data (Brun et al., 2013). This driving and evaluation

dataset, together with the Col de Porte one, was further used by Wang et al. (2013) to evaluate an

intermediate complexity snow model in the IPSL ORCHIDEE land surface model, thereby bridging

a gap between the level of complexity of ORCHIDEE in terms of soil processes, and the rather rough

snow component of the standard version of ORCHIDEE. As will be shown below, using a snowpack

model of at least intermediate complexity is not only critical for snow processes themselves (Essery

et al., 2013) but also for the surrounding model components such as the ground thermal regime and

the feedback to the atmosphere.

3.2 Effective thermal conductivity

At the time when I started working on snow physics with F. Dominé at LGGE Grenoble from the Fall

2008 to the Summer 2009, he proposed me to focus on the thermal properties of snow on which he had

started working a few years before. F. Dominé was then expanding the scope of his research on snow

from a reactive chemistry perspective to a broader ranging interest in the role of snow in the climate

system. In this context, studying the relationships between the effective thermal conductivity, snow

metamorphism and meteorological conditions is a pivotal research area due to the overwhelming role

played by the insulating properties of snow in terms of the thermal regime of the underlying ground

and associated feedback loops with the environment (permafrost, vegetation, atmospheric conditions,

hydrology etc.) (Zhang, 2005). While measuring snow density is relatively straightforward in most

snow types as long as a sufficiently large snow volume is sampled (Conger and McClung, 2009),

measuring the effective thermal conductivity of snow is more challenging.

The heated needle probe technique, also known as the transient heat probe, is a popular method

to measure the thermal conductivity of materials (Blackwell, 1954). It consists in measuring the

temperature rise of a straight heated metal wire inserted into the medium, following the intuitive
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Figure 8: Design of the field experiment carried out to measure the temporal evolution of the thermal

conductivity of snow near the Argentière glacier in the winter 2008-2009. 6 needles probes were

installed at fixed heights at 68, 88, 98, 118, 128 and 158 cm above ground on a 2 m high white

polyethylene pole. Pt100 temperature sensors were installed 5 cm above and below each needle probe

(from Morin et al., 2010).
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expectation that for a given heating rate, the lower the thermal conductivity the higher the resulting

temperature rise. In general, a uniform heating rate is applied to the heated section of the needle for

a constant period of time. The heat-diffusion equation can be analytically solved for this geometry

under the assumption that the wire has an infinite length, is in perfect thermal contact with the medium,

which is further assumed to be isotropic and homogeneous. The heated needle probe technique has

long been used in snow for measuring its effective thermal conductivity keff (see e.g. Sturm et al.,

1997, for a review). This requires a careful examination of the probe characteristics (size, heating

rate, heating time...) in relationship to the thermal properties of the snow. It has been reported that keff

exhibits a large scatter around the density regression curve according to the widely used compilation

of data provided by Sturm et al. (1997).

The most ambitious research project initiated during the rather short post-doctoral period together

with F. Dominé was to monitor as continuously as possible the time evolution of keff in snowpack.

This required to embed needle probes in the snowpack and let them operate at regular time intervals

throughout the snow season and thus carry out repeated measurements of the “same” snow layer.

Such an achievement was made possible thanks to the key contribution of L. Arnaud (LGGE) who

provided a method to multiplex needle-probes to a common datalogger, allowing to carry out mea-

surements with up to 10 probes in the same snowpack at various heights above ground (see Figure

8). Temperature probes were also included on the vertical mast hosting the needle probes. The main

experimental results of this campaign, carried out near Argentière glacier in the Mont-Blanc area

during the winter 2008-2009, were reported in Morin et al. (2010) and are summarized in Figure

9. Under most situations, keff was found to increase over time. Whenever the probe was in con-

tact with freshly fallen snow, the measured keff was on the order of 0.04 to 0.06 W m−1 K−1. The

values of keff then progressively increased over time. As shown on Figure 9d, the temporal rate of

change of keff was maximum shortly after snowfall for a given snow layer (rates typically above 0.005

W m−1 K−1day−1), then decreased over time within the 0.000 – 0.005 W m−1 K−1day−1 range. Such

variations led to keff values on the order of 0.15 to 0.25 W m−1 K−1 only a few weeks after snowfall,

highlighting that thermal properties of snow layers evolve quickly and significantly over time. Al-

though the general trend of increase appears quite similar, it is worth mentioning some differences

in the temporal rate of increase of keff as a function of snow type. For instance, the probe situated

at 88 cm above ground had a higher initial keff , on the order of 0.10 W m−1K −1. According to the

stratigraphic profile carried out a few meters from the vertical array of probes, this probe sampled

the temporal evolution of a dense layer with small rounded grains. In contrast, the probes situated
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above (> 98 cm above ground) were exposed to a combination of decomposing particles and rounded

grains. These layers exhibited lower initial keff values (on the order of 0.05 W m−1K −1), but then

keff increased more rapidly than in the denser layer described before, consistent with the laboratory

investigations of Satyawali et al. (2008). The two probes situated at 98, 118 cm above ground show

parallel keff time series, illustrating that they were undergoing similar rates of metamorphism under

very similar conditions. The probe situated 128 cm above ground show an even faster increase in keff

over time: initially situated in a layer exhibiting a lower density than snow layers below, it underwent

quicker metamorphism over time, which eventually led to higher keff values than other probes. The

rate of increase of keff is therefore highly dependent on the initial microstructure of the snow layers,

in addition to obvious other environmental variables such as the temperature gradient.

Although it was deemed too preliminary to be included in the peer-reviewed publication describ-

ing these measurements and the main results (Morin et al., 2010), a Crocus (stand-alone version)

model run was carried out at the experimental site using in-situ meteorological data and its output

was compared to field measurements of keff (Morin et al., 2009). It was found that Crocus model

output were consistent with density measurements and generally similar features in terms of keff were

observed but the analysis remained preliminary (see Figure 10).

The main caveat of the experimental system used at Argentière was to place needle-probes at a

fixed height without allowing them to move vertically, which lead to bending the inner end of the

needles and made it impossible to position them accurately during the data analysis (although, given

that the needles remained straight, it is believed that they continued to operate normally and provided

appropriate measurements). The following year, an alternative method was employed to maintain

needle-probes in a given snow layer through time. The experiment was carried out at Col de Porte,

where the data acquisition from Argentière was relocated, and needle-probes were then attached to

"snow gliders", i.e. white plastic horizontal plates (including holes to minimize thermal disturbances

in snow) allowed to move vertically and following snow settling. This system did not include a

vertical positioning system requiring frequent field visits to manually monitor the vertical position of

the sensors. In addition, temperature sensors were fixed 5 cm above and below each needle probe.

The results from this season-long experiment have to date not been fully analyzed besides a synthesis

of the keff values obtained vs. time since snowfall, reported by Morin (2010) in the journal of the

French snow and avalanche association (ANENA - Neige et Avalanches), summarized in Figure 11.

The main reason why a comprehensive data analysis has not been pursued hitherto stems from the

fact that doubts have been cast on needle-probe measurements, especially when they were compared
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Figure 9: Overview of the meteorological data and of snowpack thermal properties recorded during

the field campaign near Argentière glacier in the winter 2008-2009. (a) wind speed and air temper-

ature measured using the automated meteorological station, (b) snow height and the location of the

needle probes, (c), (d) and (e) measured keff values, the temporal rate of change of keff and the corre-

sponding snow temperature values, respectively, using the same symbols as in (b). The error on the

measurements is smaller than the symbols used. Vertical shaded areas represent periods of interrup-

tion of the automated measurement protocol due to too high snow temperatures (from Morin et al.,

2010).
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Figure 10: Results of a stand-alone Crocus model run using in-situ meteorological driving data mea-

sured close to the experimental site at Argentière in the winter 2008-2009, together with field mea-

surements of the effective thermal conductivity of snow (from Morin et al., 2009).

to estimates of keff from micro-tomographic images accounting only for purely diffusive processes

in ice and air. The feasibility for such computations was demonstrated by Kaempfer et al. (2005)

although they focused on heat transfer solely through the ice matrix. New computations from micro-

tomographic images were carried out during the Master 2 internship of N. Calonne in the spring 2011,

co-supervised with F. Flin (CEN) in collaboration with Ch. Geindreau (3S-R, Grenoble). The goal of

the internship was to compute keff for over 30 3D-images of snow already available in the database

produced over the years by the microstructure group within the snowpack team at CEN, using com-

putational tools available at the 3S-R laboratory (in particular the Geodict periodic homogenisation

software) which allow to account for heat transfer through ice and air. The main outcomes of this in-

ternship, summarized in Calonne et al. (2011), was that (i) keff estimates from micro-tomographic im-

ages exhibit a very strong relationship with snow density (keff = 2.5×10−6 ρ2−1.26×10−4 ρ+0.024),

very close to the Yen (1981) regression curve (keff = 2.22×(ρsnow/ρwater)
1.88), (ii) keff estimates from

micro-tomographic images were very different from needle-probe measurements in the same snow

sample and (iii) that keff displays significant anisotropy, related to snow type. Figure 12 summarizes

the results of this work. Riche and Schneebeli (2013) have since then confirmed these conclusions

using a larger set of samples.

As deliberately stated in Calonne et al. (2011), resolving the discrepancy between needle-probe

and microtomography estimates of keff requires in-depth studies of the physical processes occurring
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Figure 11: Overview of keff values obtained vs. time since snowfall in Argentière (2008-2009 ; grey

symbols) and at Col de Porte (2009-2010 ; colored symbols) (from Morin, 2010).

around a needle-probe during a measurement, which still needs to be carried out through an explicit

numerical simulation of the thermal field around a needle probe in a “true” microtomographic image

of the microstructure of a snow sample.

Even if the “final” word on needle probe measurements is probably not to be said within years,

it is already tempting to analyze variations between keff measurements carried out at various places

using the same experimental method and compare them with alternative snow measurements. In this

regard, I contributed to the data analysis of field measurements of keff , SSA and snow stratigraphy data

from the Arctic campaign OASIS (Ocean - Atmosphere - Sea-Ice - Snowpack interactions) at Barrow,

Alaska, in the spring 2009 which were reported by Domine et al. (2012) in the J. Geophys. Res.

OASIS special issue in support to more advanced reactive chemistry studies requiring description of

the physical properties of snow during the measurement campaign. However, there has not been yet a

specific snowpack modeling effort to attempt to evaluate whether existing snowpack models driven by

in-situ (or reanalysis) meteorological data are able to reproduce the observed features of tundra snow

conditions encountered there. The numerous field data acquired in collaboration with F. Dominé in

terms of keff but also density and shear resistance (measured using the CEN shear vane) was used to

study the links between these three variables, not surprisingly revealing that keff was better correlated
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Figure 12: Overview of the results of Calonne et al., 2011 showing the good correlation between

the effective thermal conductivity of snow and snow density calculated from microtomographic snow

images. The scatter is significantly lower than needle-probes observations by Sturm et al. (1997). See

text section 3.2 for details.

to a combination of density and shear resistance than density itself, due to the fact that mechanical

bonds in the snow microstructure probably favor both heat transfer and mechanical resistance for the

same given density (Domine et al., 2011). This study requires further refinement probably using mi-

crotomography images and micro-mechanical modeling, which is beyond my expertise and may only

take place through collaborations. Note also that the body of field measurements of keff measure-

ments compiled by F. Dominé and myself in relationship with environmental conditions (including

wind speed) was used in an original way by Lecomte et al. (2013) to study the impact of snow ther-

mal properties on sea-ice growth and thermodynamical behavior, demonstrating that not only snow

on the ground, but also snow on sea ice, would benefit from improved representations of heat transfer

processes.
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3.3 Intrinsic permeability

Accurate predictions of snow permeability values are needed prior to any explicit representations of

transport processes in snowpack models. The relationship provided by Shimizu (1970), which relates

permeability K (in m2) to the visually determined grain radius rvis and snow density ρ (in units of m

and kgm−3, respectively), has probably been the most widely used:

K = 0.308r2vise
(−0.0078ρ) (2)

even though it was obtained on a limited number of snow types so that its general validity has been

questioned (Jordan et al., 1999). Quite similarly to what has been undertaken for the effective thermal

conductivity of snow, snow permeability can be derived from micro-tomographic images (Freitag

et al., 2002; Courville et al., 2010; Zermatten et al., 2011, 2014). Using the same samples that were

used for the effective thermal conductivity of snow (plus a few additional ones) to compute snow

permeability, Calonne et al. (2012) proposed the following regression curve (see Figure 13):

K = (3.0± 0.3)r2es exp ((−0.0130± 0.0003)ρ) (3)

The QUASPPER project originally included the planned construction of an instrument to measure

snow permeability, based on the design introduced by Shimizu (1970) and later replicated by Jordan

et al. (1999) and Arakawa et al. (2009). However, limitations of the experimental device in the case of

highly layered snow due to the large size of samples which can be measured, and the good quality of

the regression curve obtained by Calonne et al. (2012) based on over 30 snow samples spanning most

seasonal snow types, has finally lead to the decision not to build a new field permeameter. Focus was

rather shifted on the potential applications of the regression curve reported by Calonne et al. (2012)

within snowpack models. Since Crocus was found to reasonably predict snow density and the equiv-

alent spheres radius, it was tempting to directly use equation (3) to compute the snow permeability

using Crocus output. An original dataset acquired by F. Dominé during a year-long stay in Fairbanks

AK (USA) was used to compare the model output with field measurements of density, des and perme-

ability. The additional originality of this data is that snow samples were collected both in snow on the

ground but also from a snowpack which was developed on top of tables, deliberately attempting to

suppress the macroscopic temperature gradient in snow which is generally found in Arctic and sub-

Arctic seasonal snow. Thus, the same meteorological conditions drove the time evolution of a natural

and modified snowpack, exhibiting caricatural temperature gradient and equi-temperature metamor-

phism patterns, respectively. Because of the fact that density and res play opposite roles in determining
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Figure 13: Dimensionless permeability (K/r2es) vs. snow density. “T” symbols indicate the com-

putation values. Tips and horizontal bars of the “T” shapes represent the vertical and horizontal

components of K/r2es, as computed in this study, respectively. Colors correspond to the International

Classification of Seasonal Snow on the Ground (Fierz et al., 2009). Analytical models, numerical

computations and several empirical fits are also plotted (from Calonne et al. (2012)).

snow permeability (see Eq. (3)), and that both are generally found to increase over time through snow

metamorphism, predicting the sign of the time variations of K is not trivial. It was experimentally

found that in the first case, intense temperature gradient metamorphism lead to an increase over time

of the permeability of snow, while in the second case, the permeability of snow tended to decrease over

time. Crocus simulations fed by meteorological driving data extracted from the ERA-Interim (Dee

et al., 2011) reanalysis (Brun et al., 2013) were found to reproduce the observed behavior, although a

quantitative agreement between K estimates was not reached better than a factor of two (especially in

the case of depth hoar layers developing at the base of snow on the ground). However, given that K

subtly depend on ρ and res, and that K measurements are not believed to be very accurate for various

experimental reasons (including REV issues for highly layered samples), this study gives credence

that snow permeability estimates from density and des could be used to explicitly implement transport

processes depending on snow permeability in a snowpack model in a more physically-based manner
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(Domine et al., 2013). This concerns in particular air movement in snow (wind-pumping etc.) and

liquid water movement (percolation). Note that in the latter case, Wever et al. (2014) have used this

approach to compute the permeability of snow layers in the detailed snowpack model SNOWPACK,

which is needed to implement the 1D Richards equation for liquid water movement in snow.

3.4 Towards explicit representations of radiative transfer in snow

Improving the representation of physical processes in a detailed snowpack model is one of the main

goal of snowpack modeling. Although better predictions are generally sought and form the motivation

for such developments, it may not lead to better predictions of the profile of the physical properties

of snow, but it should make physically more consistent predictions, allowing further improvements

through model adjustment and for which data assimilation frameworks should work better than for

less-physically based representations of processes. My work has so far not lead to major improve-

ments of physical processes in Crocus, because of the time invested in the above-mentioned studies

attempting to diagnose the performance of the model in a range of environments. The main devel-

opment that has taken recently place in Crocus in terms of snow processes is the development of a

two-stream, spectrally resolved, radiative transfer scheme explicitly accounting for the vertical profile

of the physical and chemical properties of snow layers and of the spectral and angular characteris-

tics of incoming solar light. The so-called TARTES (Two-stream Analytical Radiative TransfEr in

Snow) algorithm was developed by G. Picard, Q. Libois (LGGE) and M. Dumont (CEN) during the

ANR JCJC MONISNOW project (lead by G. Picard for the period from 2011 to 2015, in which I am

involved), and implemented in Crocus by M. Lafaysse. Scientific details regarding TARTES can be

found in Libois et al. (2013). Crocus runs using TARTES are currently tested, mainly by Q. Libois,

but are limited to areas where the impurity content of snow play a marginal role - which is the case on

the Antarctic plateau. Using TARTES in mid-latitude areas requires in the first place a realistic rep-

resentation of the impurity content of snow, which is currently only in a prospective stage as of now

(see below). Besides better representations of the impact of impurities and snow microstructure on

the energy and mass balance of the snowpack, using TARTES opens the way to direct assimilation of

spectrally-resolved visible and NIR remotely-sensed data, and is the main focus of work undertaken

by M. Dumont at CEN.
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4 Scientific applications independent of intrinsic model develop-

ments

4.1 Representation of topography

The traditional use of Crocus within the SAFRAN - Crocus - MEPRA model chain (Durand et al.,

1999) uses a conceptual representation of topography (massifs, altitude levels, slopes and aspect

classes) which features many advantages for large scale applications, including operational activi-

ties, and is consistent with both the spatial resolution of global or regional NWP or climate models

and the scarcity of ground observations. However, many local applications of the model in mountain-

ous environment require the capability to explicitly represent topography (including slope and aspect

of grid points) on 2D grids. In addition, the last generation of NWP and regional climate models

now feature horizontal resolution of the order of a few km which is not anymore consistent with the

massifs scale used by SAFRAN. The technical part of the development allowing to run Crocus in a

fully distributed manner has been almost entirely taken care of by M. Lafaysse, adapting routines de-

veloped by several people including Y. Lejeune, V. Masson and V. Vionnet, in a manner that makes it

numerically efficient, compatible with the parallel nature of the SURFEX and relatively easy to setup

and use allowing a wide range of applications for a variety of users. This development is virtually

finished, and will be used from the onset of a research project targeting hydrological forecasting in the

Mont-Blanc area, forming the body of the work of PhD student G. Lecourt starting in the Fall 2014

(co-supervised by I. Zin from LTHE, M. Lafaysse and myself).

4.2 Glaciological applications

4.2.1 Context and previous work

Crocus has long been applied to glacier environments, because the latter are frequently snow cov-

ered, making Crocus an appropriate tool to study the surface energy and mass balance of glaciers. In

addition, ice can be seen as very dense snow to some extent (at least thermodynamically, thermally

and optically), so that adapting the surface energy and mass balance of snow to that of firn or bare

ice is conceptually rather straightforward. The first known use of the SAFRAN - Crocus combina-

tion for glaciological applications in the French Alps was on the Sarennes glacier by Martin et al.

(1996). For such applications, the ice/firn/snowpack continuum is modeled as a thick snowpack with

very dense layers at the bottom. Gerbaux et al. (2005) have computed the long-term mass balance
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of the St Sorlin glacier in the French Alps using a distributed version of SAFRAN - Crocus (i.e.,

altitude-interpolated SAFRAN meteorological fields on a regular grid of points on which Crocus was

run, taking into account the solar masks of each grid point) and found satisfactory agreement with

glaciological measurements (pending appropriate scaling of SAFRAN precipitation fields). Lejeune

(2009) developed a similar tool to study the mass and energy balance of the Zongo glacier in Bolivia

using driving data from in-situ meteorological stations and evaluating the results against in-situ mea-

surements of the glacier mass balance and streamflow of the associated river. Note that for this work,

due to the fact that not only glaciated but also moraine parts of the catchment contributed to runoff,

it was needed to use a version of Crocus coupled to the ISBA land surface scheme (Lejeune et al.,

2007; Wagnon et al., 2009). Unfortunately, these development were not phased with the inclusion of

ISBA in SURFEX, and the fact that the Crocus component of SURFEX/ISBA is not a direct coupling

of the existing stand-alone Crocus with ISBA (which is what was done by Lejeune et al. (2007) based

on developments carried out by Bouilloud and Martin (2006), and previously and somewhat indepen-

dently by Etchevers et al. (2001)) but rather an expansion of ISBA-ES to include Crocus scientific

features while preserving ISBA-ES algorithmic and technical superiority. Although this is currently a

work in progress, I have initiated the consolidation of the possible use of SURFEX/ISBA-Crocus for

glaciological applications taking into account the benefits of the earlier developments of Gerbaux et al.

(2005), Lejeune (2009) and Dumont et al. (2012), while using the extended portability of SURFEX

and the more convenient handling of input/output of data.

4.2.2 Recent applications and perspectives for glaciological applications

Glaciological applications should directly benefit from the 2D mode described in section 4.1, allowing

to take into account specific developments aimed at representing the fact that bare ice has different

surface properties (albedo, roughness, etc.) than snow, which is important for year-long simulation

where snow in glacier ablation areas completely disappears during the melt period. In addition, many

scientific aspects remain to be addressed including mostly : (i) hydrology within the glacier, (ii) water

routing and redistribution of ground water in complex topography, and (iii) accounting for glacier flow.

The first item may strongly suffer from a flaw of the water percolation scheme of Crocus, because the

water retention capacity of snow layers with near-zero porosity (used to represent ice) is negligible,

leading to immediate water flow through ice layers which is irrealistic in several cases. Nevertheless,

I have contributed to at least two studies attempting to use Crocus to simulate the energy and mass

balance of small ice-sheets in Northern Canada (Dupont, 2013; Gascon et al., 2014), where this is-
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sue was particularly critical requiring specific model adaptations to circumvent this issue in a case of

superimposed ice formation and lateral flow of liquid water due to the (observed) quasi-impermeable

nature of the ice layer that Crocus could not handle due to its current design (Dupont, 2013). The sec-

ond item may be addressed using existing water redistribution schemes based on topography indices

(Audard-Vincendon, 2010) but remains to be tested in high mountain environments. The last one is

currently not addressed and will require collaboration with ice flow specialists. In the case of Alpine

glaciers, this issue becomes critical only for time scales extending over several decades (and would

thus be relevant for studies willing to use the scientific features of Crocus in terms of surface energy

and mass balance for long-term glaciological reconstructions or climate projections).

4.2.3 Debris covered glaciers

Beside the technical perspectives on glaciological applications of Crocus, it is worth to mention an

original development of Crocus in the field of debris-covered glacier, initiated by Y. Lejeune and

P. Wagnon that I supported scientifically and technically in particular during the internship of J.-

M. Bertrand in the spring 2011. Debris-covered glaciers constitute an important scientific challenge

especially in the Himalayas, although some debris-covered glaciers can be found in other regions as

well. Rock debris lying on top of glacier ice have opposed effects on the surface energy balance : their

lower albedo tend to increase solar absorption, but their effective thermal conductivity lower than that

of ice has an insulating effect counteracting the solar radiation impact. Depending on the thickness

of the debris layer, either the radiative or thermal effect dominate leading to the so-called Østrem

(1959) curve where, in comparison to a bare ice glacier, the melt rate initially tends to increase with

increasing debris thickness to a maximum value, and then decreases. The ability for an energy balance

model to represent this behavior requires that the heat diffusion equation is explicitly solved in the

debris and ice layers, and that the albedo of the surface depends on the cover type. Over alternative

existing models (e.g. Reid and Brock, 2010), the main interest of implementing debris layers in Crocus

as snow layers with peculiar physical properties is that the model could handle a transient snowpack

on top of the debris layer and that the temperature at the base of the debris need not be fixed at the

melt temperature (see Figure 14). Both features make it an appealing tool to perform year-round

simulations of the surface energy and mass balance of a partially debris-covered glacier (Lejeune

et al., 2013). The last step of this development is now to implement it in the SURFEX version of

Crocus, allowing its use together with the future consolidated 2D framework for running SURFEX in

glacier environments with a complex topography and heterogeneous surface cover (glacier, moraine,
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Figure 14: Example of simulation result using Crocus-DEB at Col de Porte during the spring 2011.

The plot shows the possibility for debris layers (initially at the surface) to feature a temperature above

the ice melting temperature.

rocky outcrops, vegetation etc.). This development will take place within the ANR PRESHINE project

which started in January 2014 and in which CEN is a partner.

4.3 Thermal state of the ground

4.3.1 Context and previous work

Developments in the 1990s led by E. Brun have taken place to better represent the thermal interactions

between the ground and the snowpack but they were aimed at a better representation of snow processes

(in particular the relaxation of the need to impose a fix temperature of 0◦ C at the base of the snowpack

for the stand-alone Crocus version) and they were not fully finalized so that they never entered in the

main Crocus branch and were not used after these initial developments. It must also be noted here that

a prior coupling of the stand-alone version of Crocus with ISBA in the context of road conditions in

snowy conditions (Bouilloud and Martin, 2006) had alluded to this issue but not in a way sufficiently

visible to make it appealing to researchers interested in “natural” ground thermal state (permafrost

and ecology communities in particular). In addition, the fact that the stand-alone version of Crocus

did not include a ground component also did not favor links with people interested in the thermal state
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of the ground, at least in Grenoble.

The coupling of Crocus with ISBA within SURFEX allows to address scientific issues related to

the impact of snow on the ground on the thermal regime of the underlying ground. This is further

favored by the multi-layer ground heat diffusion scheme ISBA-DIF (Decharme et al., 2011, 2013),

replacing the force-restore ground thermal scheme which was employed in ISBA and is still common

in NWP and climate land surface schemes (Masson et al., 2013). Together with the implicit coupling

of the numerical solvers for the heat diffusion equation in the snow and in the ground, the possibility

to describe the vertical profile of ground properties with an arbitrary (user-defined) number of ground

layers of prescribed thickness and the high level of detail of the representation of physical processes

acting on heat diffusion through snow makes the ISBA - Crocus combination a tool of choice to

investigate the relationships between meteorological conditions, snowpack processes and properties,

and their impact on the thermal regime of the underlying ground.

4.3.2 Ecological impact of snow conditions

I have specifically contributed to one project aimed at studying the impact of snow conditions on

soil surface temperature with a focus on the rate of biologically-induced degradation of vegetation

debris in the wintertime. It is well accepted in the ecology scientific community that snow conditions

induce significant changes in the thermal conditions of near-surface soil hence on the magnitude of

biological processes potentially occurring in the wintertime. However, the quantification of such

effects is often not addressed and a 30 cm snow height empirical threshold is used to separate snow

“insulation” vs. “no insulation” regimes. Due to the large range of snow density and effective thermal

conductivity values of snow layers making up the snowpack, such a fixed threshold is obviously

an oversimplification, and requires further investigation. This project has been initiated during my

post-doctoral time at LGGE at an experimental plot near the Lautaret pass (around 2000 m altitude)

during the winter 2008-2009 in collaboration with the Grenoble Ecology laboratory (LECA) where

the environmental setting (terrasses) allowed larger amounts to develop on one side of the plot than on

the other one allowing a direct comparison of ground processes under various amounts of snow and

the same meteorological conditions. In addition to field measurements of snow physical properties,

meteorological conditions, and biologically-relevant information at the soil surface (carbon, nitrogen

pools, etc.), an ISBA-Crocus model run was performed on each side of the experimental plot using

a combination of SAFRAN meteorological data with in-situ meteorological observations. This study

demonstrated experimentally that a snowpack with higher thermal resistance created an insulating
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layer favouring the decomposition process. Indeed, litter decomposition rates were stable during

winter and 3-fold higher under deeper and permanent snowpack with higher thermal resistance. These

results suggest that the temporal (permanence vs. intermittency) and physical (depth and thermal

resistance) characteristics of the snowpack should be considered when studying the response of winter

ecosystems functioning to climate change in mountain regions (Saccone et al., 2013). More generally,

this study has shown the significant potential borne by ISBA-Crocus for ground thermal state studies

in mountain regions with a wide ranging application spectrum ; the main limit to these developments

is the lack of time which can be devoted to such projects, which do not require extensive model

developments (i.e., many interesting results could be obtained using the current state of the model)

but that resources are allocated to such applications by interested parties. This may hopefully happen

more often in the future.

4.3.3 High latitudes thermal regime of the ground

The thermal regime of high latitude permafrost is a scientific topic of prime interest due to its rele-

vance to global climate change in relationship to the carbon pool which permafrost stores and could be

destabilized and emitted to the atmosphere upon permafrost warming (e.g. Gouttevin et al., 2012b).

Here again, the high level of detail of thermal processes occurring in snow which are included in

Crocus makes it appealing to use in this context. Brun et al. (2013) have shown in our study on ISBA-

Crocus simulations in Northern Eurasia, driven by ERA-Interim surface meteorological forcing fields,

that the performance of the model in terms of 20 cm ground temperature could be considered very sat-

isfactory (bias and rmse of -0.5 K and 2.8 K, respectively). In contrast, Wang et al. (2013) compared

the results of the ORCHIDEE LSM driven by the same forcing data and compared to the same obser-

vation dataset, and found bias ranging from -9.4 K to -6.3 K, and rmse ranging from 7.9 K to 10.5 K

depending on the snowpack scheme used. Note that these results were obtained without the newly

developed multilayer soil freezing scheme (Gouttevin et al., 2012a), so that further improvements

of model results using the ORCHIDEE LSM are anticipated. The representation of snow processes

makes a significant contribution to the model results, as can be seen on Figure 15 which compares

bulk snow density, snow height and 20 cm ground temperature using ISBA-Crocus with either 20 or

50 layers maximum, and ISBA-ES, respectively, every thing else being equal. The model run was per-

formed at one randomly chosen site in Northern Eurasia (among the sites used by Brun et al., 2013)

using ERA Interim driving data. Similarly to what can be found in general with snowpack schemes

with too few layers, ground temperature data exhibit a cold bias when the ES snowpack scheme is
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Figure 15: Impact of the choice of the snowpack scheme used within the same land surface model

(ISBA) in terms of bulk snow density (top), snow height (middle) and ground tempaerature (bottom).

Model runs were performed at the same Norther Siberian site using ERA-Interim driving data and the

ISBA-ES and ISBA-Crocus model combinations (the latter with either 20 or 50 maximum snowpack

layers).
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used (Wang et al., 2013). In contrast, using Crocus with either 20 or 50 snow layers maximum does

not make a huge difference in terms of bulk snow density, snow height or even ground temperature.

Simulated ground temperature values are higher than what is obtained using the ES snowpack scheme,

and while the agreement with observations is not perfect this model run clearly demonstrates the im-

pact of the way snowpack properties are simulated on ground thermal regime. It is tempting to use

the ISBA-Crocus model to explore the sensitivity of physical processes occurring in snow on ground

thermal regimes, in order to (i) better understand current observations and improve knowledge and

models in this respect and (ii) perform better projections of the impact of climate change on the ther-

mal state of the ground taking into account not only variations of the meteorological conditions and

bulk snow variables but also variations of snow properties due to varying meteorological conditions

(wind regimes, existence of rain-on-snow events etc.). Colleagues from CNRM-GAME in Toulouse

(B. Decharme, E. Brun and P. Le Moigne in particular) have recently developed a new intermedi-

ate complexity level between ES and Crocus for use in global climate simulations and potentially

NWP. This model uses more than the 3 layers originally implemented in ES, and features some of the

properties of Crocus, but without all of what makes Crocus special i.e. snow metamorphism and the

semi-lagrangian tracking of layers. Nevertheless, increasing the number of layers to between 10 and

20 significantly increases model performance in terms of ground thermal state and other processes

which are critical for global land surface modeling.

4.3.4 Interactions with vegetation

Vegetation exerts significant influence on snow conditions through a reduction of near surface wind

speed, incoming shortwave radiation, variations of incoming long-wave radiation, and interception/release

of precipitation (Rutter et al., 2009). The current state of the model allows to test the influence of some

of these processes on snow properties and ground thermal state. In particular, activating or not the

Crocus option allowing to represent the impact of wind on near-surface snow compaction (Brun et al.,

1997; Vionnet et al., 2012) is a simple way to test the impact of dense vegetation effectively annihi-

lating wind-induced snow compaction, which is typical for taiga snowpack type as opposed to tundra

snowpack type (Sturm et al., 1995). Figure 16 shows the impact of taking into account (or not) wind-

induced near-surface compaction in terms of SWE, snow height and 10 cm soil temperature driven by

the ERA-Interim grid point close to the Umjiuak field site in Northern Quebec while simulated SWE

is almost the same. Denser snow in the case where the snow drift scheme is activated leads to more

efficient thermal diffusion through the snow and thus much colder ground conditions. This clearly
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shows the very large impact of the physical properties of snow, also illustrated with more details on

Figure 17, on the thermal state of the underlying ground and confirms using the detailed snowpack

model Crocus what previous assessments using simpler snowpack schemes have found (e.g. Gout-

tevin et al., 2012b). Further refinements of these early sensitivity tests are to be carried out by M.

Barrère as part of his PhD study co-supervised by F. Dominé and myself since the Fall 2013. This

will include using in-situ meteorological driving data, refining the modifications of Crocus to rep-

resent snow/vegetation interactions in a phenomenological way, and using in-situ snow and ground

observations to evaluate the relevance of model modifications and assess their impact. These activi-

ties should additionally benefit from the development of the ISBA-Multiple Energy Balance (MEB)

module aimed at improving the representation of processes involving the vegetation in ISBA, and is

led by A. Boone at CNRM-GAME and P. Samuelsson at Swedish Meteorological Service.

4.4 Use of point-scale snow height observations : SWE estimates, data assimi-

lation, medium range predictions

4.4.1 Snow water equivalent estimates

Operational snow observation networks in France and other countries are most often limited to point-

scale snow height measurements, because the latter is easier to measure than SWE using automated

methods (ultrasound or laser ranging). In many cases however, SWE is the target variable that appli-

cations are interested in. SWE can be measured manually through weighting a snow core of a known

volume, and several dedicated tools have been developed although there are generally more costly

than snow height gauges and some of them are not necessarily reliable (or appropriate) in mountain

conditions. Conversely, the output of snowpack models of varying complexity is very often biased

in terms of both SWE and height due to errors in meteorological driving data and the fact that many

processes driving snow height and mass variations are generally not represented in snowpack models

(in particular wind-related effects). Several authors have shown that snowpack bulk density (ρ) val-

ues, i.e., total snow mass per unit surface area divided by snow height, are in general more consistent

throughout the landscape than snow height and SWE alone (Jonas et al., 2009). This had lead to the

inception of parameterizations of bulk density which could be used to convert snow height measure-

ments into SWE estimates. Jonas et al. (2009) provided a method to compute ρ estimates based on

snow height, date and altitude which was developed based on measurements carried out in the Swiss

Alps. Sturm et al. (2010) proposed an approach using a snow type classification and date to estimate ρ
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Figure 16: Impact of the representation of wind-induced near surface snow compaction in

SURFEX/ISBA-Crocus on snow properties (SWE and height) and ground thermal state (10 cm tem-

perature) at the location of the Umjiuak experimental site in the Canadian Arctic.

at the global scale. Bormann et al. (2013) and McCreight and Small (2014) proposed different flavors

of analogous methods to infer ρ from observation data. I proposed an extension of these approaches

to the use of model estimates of ρ which could be multiplied by local measurements of snow height

to infer SWE values. This does not constitute a major development but it appeared to me that this

method had not been tried (at least in the French mountains) and could be very powerful in terms

of SWE estimates, with a wide range of research and operational applications. Figure 18 shows an

example of the application of this method for the snow season 2004-2005 at the Notre Dame d’Août

monitoring station operated by EDF-DTG in the Vanoise mountain range in the French Alps, at an

altitude of 2500 m altitude. Note that none of the meteorological and snow measurements carried
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Figure 17: Internal physical properties of the snowpack of the model runs reported in Figure 16

out at this site are used by the SAFRAN meteorological analysis system. For this study, a SAFRAN

- SURFEX/ISBA-Crocus model run was performed at the altitude of 2500 m using linearly interpo-

lated meteorological fields from the 2400 m and 2700 m SAFRAN analysis levels. At the site, snow

height is measured using an ultrasonic ranger, and SWE is measured using the cosmic rays instrument

initially developed by Kodama et al. (1979) and implemented by EDF-DTG in the French mountain

ranges (Paquet and Laval, 2006; Gottardi et al., 2013). Figure 18a shows the measured SWE along

with model results (in blue referred to as open loop, see below), Figure 18b shows measured snow

height along with model results, and Figure 18c shows the computed bulk snow density in the case of

measurements and model results. Red dots on figure 18a correspond to the multiplication of measured

snow height (when available) with simulated density. The obtained results show that, while simulated

SWE seems rather underestimated, most probably due to underestimated precipitation amounts in

this case, the simulated bulk density is reasonably well simulated thus the estimated SWE matches

observations rather well. However, in this case, due to the SWE underestimation, total melt occurs too

early in model results leading to the impossibility to predict SWE with this method at the end of the

snow season. At the time of writing, quantification of the performance of the method is underway and

will be reported after finalization. However, simulations ran at several sites spanning various envi-

ronmental and meteorological contexts within the French Alps demonstrate the power of the method.
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I believe that such method could prove useful not only at the point scale but also for SWE mapping

algorithms (e.g. Bavera et al., 2014), benefiting from the advantage of using bulk density values rele-

vant to current ongoing snow season together with field estimates of snow height, which are easier to

measure systematically than SWE. At the catchment scale, this method could be used together with

snow height maps derived using terrestrial or airborne laser scanning, to provide accurate estimates of

total snow mass in a given geographical area. However, the further step of data assimilation of snow

height within SURFEX/ISBA-Crocus could prove even more powerful in this respect (see section

4.4.2).

4.4.2 Data assimilation of point snow height measurements

Context and previous work In its current state, the SAFRAN - Crocus model chain does not make

use of snow height measurements to update the simulated snow conditions in order to correct in-

evitable deviations between simulations and observations. All of the data assimilation that is carried

out in this model chain takes place within the meteorological analysis carried out by SAFRAN (Du-

rand et al., 1993), accounting for ground meteorological observations (including daily precipitation

observations and amount of fresh snow measured using a snow board), radiosondes altitude obser-

vations, and remotely sensed cloudiness maps. Deviations between measured and simulated snow

height values are currently not corrected, which is mainly due to the fact that the model chain is not

targeted to provide point scale estimates of snow conditions, but rather estimates which are regionally

relevant for a given altitude, aspect and slope topographical class. The large variability of snow height

around a given observation point, especially in mountain environments, requires that point scale snow

height data is used with great caution (e.g. Grünewald et al., 2013; Grünewald and Lehning, 2013).

This prevents direct spatial extrapolation of point scale snow height measurements in mountainous

areas.

In the field of numerical weather prediction and meteorological reanalysis, snow height observa-

tions are sometimes assimilated within the snow scheme of the land surface model used, which is

the case in the European Center for Medium range Weather Forecast land data assimilation system

(de Rosnay et al., 2012) and is also used in Norway by the HIRLAM consortium within the single

layer snow scheme of SURFEX/ISBA. There is currently no assimilation of snow height measure-

ments in the Météo-France NWP surface analysis system.

There are however applications where assimilation of snow height measurements could be useful,

including a refinement of the above mentioned technique to infer SWE using snow height measure-
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Figure 18: Comparison of observations (black dots) with several ways to simulate snow water equiv-

alent (top), snow height (middle) and bulk density (bottom) at the Notre Dames d’Août monitoring

station operated by EDF-DTG in the Vanoise mountain range in the French Alps, at an altitude of

2500 m altitude. Open loop results (i.e., standard SAFRAN - Crocus model run) are shown in blue.

Estimates of SWE using open loop snow height and measured bulk density are shown in red on the

top panel. Results of the snow height assimilation (assimilated data shown in small red dots on the

middle panel) are shown in green.
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ments and model estimates of bulk density, and the gap-filling of observation time series. Indeed,

climatological studies of snow conditions are mostly based on snow height observations. The French

mountain snow observation network, mostly relying on ski resort observers, lacks observations be-

fore and after the opening season i.e. before mid-December and after mid-April (with interannual

variability in the beginning and end of observation records). During the observation period, two types

of observations are reported, either twice daily routine observations including precipitation, snow

height and surface snow conditions generally close to the lower altitude of ski resorts (to ensure con-

tinuous access to the observation site through the winter), or weekly snowpit observations generally

carried out at higher locations in the ski resort. In order to use such data for monitoring current

snow conditions and use such data with a climatological aim, there is a need to build continuous, gap

free records. Note that the sites of daily observations include daily minimum/maximum temperature

record and daily precipitation, and qualitative measures of wind conditions. Such data do not suffice

to carry out simulations with Crocus. However, such observation data feed the SAFRAN analysis and

allow to carry out Crocus model runs under the conditions (altitude, slope, aspect) of the observation

point. Again, inevitable deviations between model results and observations occur, because of intrinsic

Crocus deficiencies and also the fact that in the SAFRAN framework, within a given mountain range,

two points located at the same altitude under similar aspect and slope characteristics are assumed to

encounter similar meteorological conditions, which is often challenged by field observations. Sev-

eral methods can be employed to carry out data assimilation of snow height into a detailed snowpack

model. The SNOWPACK model, when run at the location of automated weather stations stations

(Bartelt and Lehning, 2002; Lehning et al., 2002), uses measured snow height increments to infer

snow precipitation (automatic snow precipitation measurements would be far too challenging to be

used operationally) which allows to adjust measured and simulated snow height (but does not allow

to diagnose rain events in terms of occurrence and intensity).

Attempts to develop a simplified extended Kalman filter for snow assimilation During the visit

of Richard Essery at CEN in the Fall 2012, with the aim to develop data assimilation into Crocus

with the long term goal to assimilate microwave satellite data, a simplified extended Kalman filter

(SEKF) assimilation system was developed for Crocus and initial tests were performed to assimilate

point scale snow height and SWE data. The principle behind SEKF is to run a series of parallel model

runs with the same meteorological forcing, initialized with small variations of the initial values of the

targeted prognostic variables, in order to infer the dependency of model results to the variations of its

target prognostic variables and then propagate this sensitivity backwards to perform the analysis (i.e.,
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Figure 19: Illustration of the way the numbering of snow layers varies in time (each color corresponds

to a given snow layer number). In Crocus, snow layers are numbered starting from the top, so that

each precipitation event leads to renumbering of the full vertical profile. However, even without

precipitation, layer split/merge and basal melt can lead to modifications of the labeling of snow layers.

adjust the values of the prognostic variables to maximize the performance of the model run for the

next model run). SEKF is a popular method for land surface modeling, with applications in terms of

soil moisture and temperature (e.g. Parrens et al., 2014). In the case of a snowpack model like Crocus,

the challenge lies in the fact that the number and labeling of snow layers varies in time, so that tracing

back the change of model forecast to slight variations of the values of the prognostic variables in

a given layer becomes elusive as soon as a too large number of snow layers is allowed (difficulties

already occur with “only” 5 layers). Figure 19 shows how the numbering of snow layers varies in

time and illustrates how difficult it can be to keep track of the numbering from previous model time

steps, which is required for SEKF application. In addition, I am increasingly convinced that the initial

state of the snowpack plays a significantly lower role than the unfolding of meteorological conditions

during a given forecast period, especially in terms of precipitation amount, phase, and timing, so

that ensemble-based data assimilation schemes should place more emphasis on the spread of possible

meteorological conditions than on the variations of prognostic variables at the beginning of the model

run. This is key for studies where the vertical structure of the snowpack plays a major role, such as

assimilation of microwave or optical remotely sensed observations.

A simple method to “assimilate” point scale snow height values In the case of snow height and

SWE, the robustness of the bulk density predicted by a model with a level of complexity compared to
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Crocus opens the way to a very simple data assimilation scheme where snow height and SWE obser-

vations can be directly injected into the model at the time of analysis so that the simulated snow height

or SWE is adjusted to match corresponding observations. Such a crude analysis method will of course

not be able to counteract qualitative errors of the meteorological forcing (such as a wrongly assessed

snow/rain altitude limit) leading to errors in the vertical structure of the snowpack, but will be able

to correct quite satisfyingly bulk values such as snow height or SWE as long as the meteorological

driving data is not too far from “reality”. Obviously, refinements of this simple “snowpack stretch-

ing” must be considered to improve the quality of the analysis system, such as taking into account

model and observation errors avoiding overfitting of observation data, focussing the modifications of

the simulated snowpack on layers which have been created in the model after the former analysis step

(to avoid multiple corrections of the same snow layers), or placing more weight on modifications of

the snowpack structure towards the top of the snowpack. Still, the core of the method is to conserve

the bulk snow density. Figure 18 shows an example of a simple analysis system where the mass of

each layer is simply scaled to match the observed snow height at each analysis step (in this case, snow

height is assimilated on the 1, 11 and 21 of each month if the snow height data is available - indicated

by a red dot on Figure 18b). By construction, the simulated snow height record matches the observed

one even with data assimilation once every at least 10 days, but interestingly the system also increases

the agreement between observed and simulated SWE. In a way, this data assimilation scheme can be

viewed as a dynamic implementation of the SWE estimate method described in the above section.

Figure 18 shows the comparison between SWE estimates using open loop (i.e., no assimilation, in

blue) model runs without accounting for snow height observations, open loop accounting for snow

height measurements to estimate SWE (method described in section 4.4.1 ; red dots) and results from

the simplified data assimilation system (in green). This analysis demonstrates the high potential of

this method to estimate SWE at locations where only snow height is available, including the potential

to adjust model runs and create point scale SWE forecasts even when snow height measurements are

not available in real time. Over the previously described method based on measured snow height

and simulated bulk density, the method provides SWE estimates at dates where the open loop simu-

lations indicate no snow on the ground. Similarly to the previous methods, more work is needed to

finalize these developments but they already demonstrate the high added-value that can be anticipated

to combine numerical models such as SAFRAN and Crocus together with ground observations to

improve the real-time monitoring or climatological analysis of snow conditions in mountain regions,

even without a dense network of SWE observations. This developments will be used by G. Nicolet,
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who started a PhD in the Fall 2013 co-supervised by N. Eckert (Irstea/ETNA, Grenoble), J. Blanchet

(LTHE) and myself on extreme value statistics of snow precipitation and snow on the ground amounts

in the French Alps.

4.4.3 Climatologically-based prediction of snow conditions

Modern societies increasingly require anticipation capabilities in virtually all aspects of human life,

including snow conditions in mountain regions, due to their strong socio-economic impact. Winter

meteorological conditions vary significantly from one year to another, which is often worrisome for

mountain professionals because natural snow conditions heavily depend on meteorological conditions

and their variations through the snow season. Current forecasting tools are of little use for prediction

lead times exceeding one week: operational weather forecast cover only time periods on the order of 5

days, and seasonal forecasts are too coarse at the local scale. In order to provide a quantitative answer

to frequent requests from mountain professionals to provide bounds for potential future snow condi-

tions several weeks to months in advance, I have contributed to the development of a forecast system

using meteorological conditions from past snow seasons to generate an ensemble of the many possible

meteorological scenarios within a given snow season. Numerical snowpack modeling, initialized with

simulated conditions on a given date, allows to generate an ensemble of possible realizations of the

unfolding of the snow season. Figure 20 shows examples of the ensemble of “predictions” which can

be generated on 1/12, 1/2 and 1/4 of the snow season 1996-1997 in the Mont Blanc SAFRAN massif

at an altitude of 2400 m on flat terrain. The initial stage of this study, presented at the ISSW 2013 in

Grenoble (Morin et al., 2013b), relied only on the median of the prediction ensemble which showed

poor predictive capacity compared to the “real” unfolding of the snow season in terms of score in-

spired by the Nash and Sutcliffe (1970) score. An interesting development occurred since ISSW thank

to the collaboration with N. Eckert (Irstea/ETNA), who developed a statistical framework to analyze

the simulation results taking into account the whole ensemble of predictions. In addition, not only

Nash-like performance but also more probabilistic evaluations based on the odds to exceed a given

snow height threshold were investigated. This latter analysis, more relevant to potential users of such

predictions (i.e., ski resort managers willing to assess what is the range of physically possible snow

conditions several weeks ahead), is still under development but is anticipated to be powerful in assess-

ing physically sound bounds for the mid-term (weeks to months) evolution of snow conditions starting

from given snow conditions. Of course, this approach could be combined with the data assimilation

and SWE estimate methods presented above, to provide ensemble forecasts of SWE in mountain lo-
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Figure 20: Results for three climatologically-based ensemble predictions of snow height for the snow

season 1996-1997 in the Mont-Blanc massif at 2400 m altitude. Predictions were initialized on 1

December, 1 February and 1 April using analyzed meteorological conditions for the current snow

season (SAFRAN). Predictions were then built through replacing the unfolding of meteorological

conditions from the prediction data into the future by a meteorological time series starting on the

same calendar date from an other snow season. The prediction consists of an ensemble of possible

unfolding of snow conditions driven by the ensemble of past meteorological scenarios initialized from

the same starting point.
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cations accounting for current conditions (through the assimilation of snow height observations) to

minimize the impact of model errors at the time of forecast. Additional refinements include the pos-

sibility to account for snow management techniques (snowmaking, grooming) and could be widely

used to support operations of ski resort technical activities (see Conclusions and perspectives).

4.5 Assimilation of remote sensing observations

Another field where existing snowpack models could be used more intensively and benefit from is

assimilation of remotely sensed observations. Atmospheric radiative transfer models have long been

used to retrieve directly into the core of the numerical weather prediction model remotely sensed

observations in a given electromagnetic frequency range (visible, near-infrared, thermal infrared, mi-

crowave - active and passive etc.). The situation for land surface schemes is generally not as advanced,

in part due to the large heterogeneity of the Earth surface but also, in my view, due to the fact that re-

motely sensed information is often used towards generating environmentally relevant products (SWE,

soil moisture etc.) rather than as a way to improve an a priori estimate from a land surface model.

The lack of a priori knowledge about the surface state for the retrieval algorithm used to generate

such products, and the lack of direct connection with the physical principles conducive to the ob-

served electromagnetic behavior, are undoubtedly leading to under-use of the capabilities of such

observations. Together with colleagues from Grenoble (M. Dumont, G. Picard, F. Karbou), Toulouse

(E. Brun) and Edinburgh (R. Essery), I have militated for projects associating explicitly snowpack

modeling and forward modeling of the electromagnetic behavior of the simulated snowpack with the

ultimate goal to be able to assimilate observations directly into the snowpack model. I am happy to

have contributed to a few examples showing the feasibility of this approach, in particular for active

X- and C-band microwave behavior of the snowpack (Phan et al., 2014), for passive microwave (in-

teractions with G. Picard group at LGGE and visit of R. Essery to Grenoble in the Fall 2012), and

for optical remote sensing of snow (Mary et al., 2013). Figure 21 shows how snow surface SSA in-

ferred from the MODIS sensor can be compared to semi-distributed SAFRAN - Crocus simulation

results projected on the same observation grid as MODIS data (500 m horizontal resolution) which

demonstrates the technical feasibility of gridded data assimilation techniques in mountain regions.

However, it has to be recognized that remote sensing of snow requires much more knowledge and

expertise than I currently hold in this domain so that my direct contribution to this field is likely to

remain marginal. I am however convinced that energy has to be invested into this perspective to make

sure that detailed snowpack models, able to generate a vertical profile of density, liquid water content,
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Figure 21: SSA maps obtained from SAFRAN-Crocus (a), and from the processing of MODIS images

(b) for 21/03/2009. Elevation lines are 1000 m spaced. Grey pixels are shaded areas. White pixels are

not detected as snow. Delimitation of the massifs Belledonne, Grandes-Rousses and Oisans are also

drawn (from Mary et al., 2013).
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optical radius, temperature etc., are duly considered in further developments in this field. Dedicated

efforts are placed on mountain application of snow remote sensing with great potential for avalanche

warning, hydrological and snow mapping activities, and should be followed and encouraged3.
3http://www.wsl.ch/fe/warnung/projekte/ESA_AAF/index_EN
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5 Conclusions and perspectives

This document attempts to synthesize several years of technical and scientific developments in the

field of snow science, with a focus on the modeling and numerical simulation of the physical pro-

cesses and properties of the macroscopic snowpack to which I have participated. The large number

of issues, methods and applications that have been considered over these years is indicative of the

fact that snow is at the forefront of many scientific and societal challenges. Prior to the beginning

of my research work on this topic roughly around 2008 (my PhD work from 2005 to 2008 did not

ignore snow completely although the perspective was rather from a reactive chemistry perspective,

which is beyond the scope of my current research activities), I had the feeling -and the fear- that snow

research may be confined in a small and endogenic research community. I currently think exactly

the opposite: in many cases, environmental sciences require knowledge and tools to address snow re-

lated processes, be it for water supply in a large fraction for the World’s population, the Earth climate

and the strong sensitivity/impact of polar regions linked with physical snow properties and processes

(including issues related to permafrost), meteorological forecast which is influenced by snow con-

ditions and thus requires appropriate handling of snow in land surface models and data assimilation

schemes etc. Progress in snow science is thus favored by interactions with scientific communities for

which snow used to be a marginal concern but now moves forward as a critical element. In addi-

tion, the large interest generated by snow for many reasons including esthetic considerations and its

“fun” touch sparkles the interest of researchers originating from distinct communities (especially in

the field of material sciences and applied physics targeting new snow observation capabilities). The

past roughly 6 years have been devoted for me to the development and consolidation of new tools (in

particular SURFEX/ISBA-Crocus) and the exploration of various aspects where it could be improved

and applied without much censorship on the number and diversity of projects, which possibly explains

the flurry of potential perspectives that my work may open. Given that a growing part of my profes-

sional time is used for management and administrative activities, time has now come to restrict my

personal research to a narrower range of issues, attempting to finalize some ongoing research projects

and potentially transfer them to more directly involved scientific communities - the developed tools

were designed to be portable to other scientific and technical environments for this purpose.

I intend to specifically contribute to several improvements in the representation of snow processes

in Crocus and related application studies, such as:

• Impurities: The radiative impact of snow impurities is critical for regional (e.g., Painter et al.,

2010; Ménégoz et al., 2014) and global (e.g., Hansen and Nazarenko, 2004; Krinner et al.,
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Figure 22: Preliminary result showing how impurities could be implemented in Crocus. Currently,

snow albedo in the visible part of the solar spectrum depends only on snow layer age (computed since

snowfall date). Snow age using the regular version of Crocus is displayed on the left, for one year of

simulation at Col de Porte in 2005-2006. The plot on the right displays the time evolution of snow

layer age, whose evolution depends on the exposure time of snow layers in the near surface (values do

not anymore correspond to a true age), and attempts to represent more realistically the fact that snow

impurities concentrate in snow layers exposed for longer time periods near the surface.
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2006) issues and the current representation in Crocus, simply representing visible albedo as a

function of snow age, is not satisfying. While several snowpack schemes of land surface mod-

els increasingly attempt to account for the role of impurities in snow (e.g. Flanner et al., 2009;

Yasunari et al., 2011; Niwano et al., 2012), I intend to contribute to the improvement of the

representation of the deposition of snow impurities in Crocus, their impact and their fate after

deposition. This work will take place in collaboration with colleagues specializing in snow

impurity observations (chemical properties and behavior of snow impurities ; D. Voisin, LGGE

Grenoble) and radiative transfer in snow (TARTES and beyond, see above). The technical fea-

sibility of this work is obvious given that Crocus already features the relevant framework to

handle the time evolution of state properties of snow layers. I have carried out a first attempt to

represent the time evolution of a mass conservative tracer in snow layers. In this case, the initial

impurity level of fresh snow is fixed, and is evolved in time as a function of the vertical distance

of the snow surface (representing that dry deposition is stronger near the snow surface) and ac-

counting for densification of snow layers so that the total amount of impurities in a given snow

layer is unaffected by densification and water percolation. In case a snow layer disappears due

to complete melt, its impurity content is transferred to the next snow layer below. Developing

this work further requires to define in detail the number and nature of tracers which should be

handled (so that the technical infrastructure in SURFEX can be established and consolidated).

Taking explicitly into account the interactions between impurities and phase change (in partic-

ular, liquid water percolation) will require to better understand them and to better handle water

percolation in Crocus. Figure 22 shows an example of a model run where the impurities were

evolved according to the simple rules given above. The layering can be clearly observed, which

is due to the fact that layers exposed to the atmosphere for a longer time period incorporate

more impurities.

• Vertical transfer of water vapor and liquid water: Crocus currently does not account for vertical

water vapor transfer which is an issue in environmental contexts exhibiting large and/or sus-

tained temperature gradients conducive to water mass redistribution between snow layers (e.g.

Domine et al., 2013). The current percolation scheme (bucket approach) is also not satisfying in

that it does not treat unsaturated flow and capillary barriers and uptake, with potentially major

implications for internal snow processes likely affecting the assessment of slope stability. Both

issues need to be addressed, at least in part drawing from developments carried out in other

models (e.g. Wever et al., 2014). Potential for a fruitful local collaboration on the matter has
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Figure 23: Time evolution from the seasons 2000-2001 to 2011-2012 of the (a) relative and (b) ab-

solute with respect to 2000-2001 snow season skier days values as a function of ski resort size class

(S, M, L and XL), and viability index (based on natural snow conditions) (c) as a function of ski

resort class and (d) separating Southern and Northern French Alps domains. For each year, the label

corresponds to the first half of the winter season (i.e., 2000 corresponds to 2000-2001) (from François

et al. (2014)).

recently emerged (L. Oxarango, LTHE, Grenoble) and should be further explored.

• Snow in ski resorts : up to now, much emphasis has been placed on natural snow processes,

and climate projections of snow conditions in future years have focussed on observations and

numerical modeling of natural snow conditions (e.g Martin et al., 1997; Rousselot et al., 2012),

which is likely to be very different from snow on ski slopes due to the major influence of snow

management strategies (grooming, snowmaking etc.). My current work on this topic focuses

on two directions. The first one results from interactions with the Mountain Economy group of

Irstea (DTM) and in particular E. George-Marcelpoil and H. François. We have initiated work

aimed at crossing physical conditions of snow in ski resorts (obtained through numerical mod-

eling using SAFRAN and Crocus) with socio-economic data including the setting of ski lifts

(altitude range, theoretical skier flow etc.) and actual skier days values. As an example, Figure
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23 shows a time series of absolute and relative skier days values for the period from 2000 to

2012 for almost all ski resorts in the French Alps (split according to size classes), and a viability

index computed using a resort-level aggregation of the 100-days rule. This rule states that a ski

resort is viable at a given altitude if it features 30 cm of continuous snow cover for at least 100

days. It is questionable in many respects but it is widely used, and we decided to use it as it is

for our first study together with H. François and and E. George-Marcelpoil aimed at checking

the feasibility of crossing physical and socio-economic information, which is often challenging.

This preliminary study provides ways to assess quantitatively the links between meteorological

and socio-economic data relevant for ski resorts. As Figure 23 shows, this is particularly well

illustrated by the fact that the 2006-2007 season was both unfavorable in terms of natural snow

conditions and skier days, while the 2010-2011 season was unfavourable in terms of natural

snow conditions but did not show the same drop of skier days than 2006-2007, most prob-

ably because meteorological conditions and/or snowmaking strategies were more appropriate

for good snow conditions on ski slopes. Moving further from this study requires to include

snow management practices in Crocus. This second research direction is currently undertaken

through the work of PhD student P. Spandre since the Fall 2013, co-supervised by E. George-

Marcelpoil (Irstea/DTM ; specialist of socio-economic aspects of mountain regions). Figure

24 shows a preliminary result from the PhD work of P. Spandre, where a snowmaking module

was implemented in Crocus to artificially add snow precipitation depending on meteorological

conditions but also on the snowmaking strategy of a given ski resort. The main originality of

this work, with respect to existing snow models handling snowmaking, is that “fresh” layers of

machine-made snow are attributed specific physical properties (in particular density and specific

surface area) so that the physical behavior of machine-made snow layers is explicitly accounted

for. Results from Figure 24 do not account for grooming, although a simplified grooming mod-

ule has also been incorporated in Crocus. Merging the two approaches outlined before will be

initiated during the PhD work of P. Spandre and could be amplified though a dedicated research

project.

• Evaluation of modeling tools : the temptation is high to continuously move forward and increase

the time, space, physical resolution of models used in the context of snow science. However,

it is critical to better assess the quality of existing tools to be able to document the current

deficiencies of the modeling tools and document the added-value of specific developments,

including their impact on forecasting activities. This concerns the assessment of the quality of
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Figure 24: Time evolution for the season 2013-2014 of the vertical profile of the physical properties

of snow (density a) and c) and optical diameter b) and d)) at an altitude representative of a ski resort

(1800 m altitude near Grenoble) in case of a natural snowpack (a) and b)) and for a snowpack including

snowmaking (c) and d)). Grooming is not taken into account in this example (from Spandre et al.

(2014)).
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the numerical simulation of the vertical profile of the physical properties of snow against field

observations (e.g. Lehning et al., 2001), but a wider extent also the resulting assessment of snow

cover extent or avalanche hazard predicted by the chain of models. The degree of complexity

of the latter will also surely increase, with the planned transition from a deterministic use of

SAFRAN forecast to (i) the use of ensemble predictions with SAFRAN (Vernay et al., 2014)

leading to increased complexity of time variations of the simulated properties and (ii) the use

of higher space resolution NWP models in mountainous environments leading to increased

complexity of spatial and time variations of the simulated properties. Although this may not

seem a purely research-grade objective, the complexity and heterogeneity of snow on the ground

makes such a goal extremely challenging and will require collective work at the local, national

and international level to improve the situation.

Besides the list of perspectives given above which provide a workplan for the next 5 years at least,

emphasis should also be placed on the mechanical properties of snow beyond the approach developed

in MEPRA, which are critical for avalanche research and its applications for avalanche hazard warn-

ing activities to which almost none of the developments in terms of snowpack modeling described

above have made a significant direct contribution. Progress in the prediction of the snow conditions

potentially conducive to a given avalanche hazard level is certainly even more challenging than all

the issues addressed by my research up to now and tackling such issues will require collaboration

between various institutions and individuals, in which I will attempt to play the most proactive and

positive role that I possibly can.

All the past, present and future developments to which I have contributed and are listed above

share as a common characteristic the ambition to integrate new or existing knowledge into the snow-

pack model Crocus, or develop additional tools building upon or at least consistent with its scientific

and technical framework. Here again, I remain convinced that a significant fraction of the scientific

community needs to maintain emphasis on the development and consolidation of long-lasting tools

which can then be used as widely as possible to address scientific bottlenecks. The developments

listed above will contribute to improved tools which will be applied to tackle a potentially large num-

ber of scientific issues, either by the local community to which I belong or by other members of the

scientific community. Managing such tools is in my opinion at least as important as producing new

scientific results. Even if this appears less rewarding in the short term, the diversity of applications

and the interactions it offers with a wide range of contributors and users makes it genuinely gratifying

and shows large promise in the longer term.
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List of acronyms

3S-R Laboratoire Sols, Solides, Structures - Risques

ANENA Association Nationale pour l’Étude de la Neige et des Avalanches

ANR Agence Nationale de la Recherche

CalNEX California Research at the Nexus of Air Quality and Climate Change project

CEN CNRM-GAME Centre d’Études de la Neige unit

CNRM Centre National de Recherches Météorologiques

CNRS Centre National de la Recherche Scientifique

Crocus Crocus is not an acronym !

Crocus-DEB Crocus-DEBris covered glaciers module

DUFISSS DUal Frequency Integrating Sphere for SSA measurements in Snow

ECMWF European Center for Medium-range Weather Forecast

EDF-DTG Électricité de France - Division Technique Générale

ERA-40 European ReAnalysis 40

ERA-Interim European ReAnalysis Interim

GAME Groupe d’étude de l’Atmosphère MÉtéorologique

GMGEC CNRM-GAME Groupe de Météorologie de Grande Échelle et Climat unit

GMME CNRM-GAME Groupe de Météorologie de Moyenne Échelle unit

HIRLAM High Resolution Limited Area Model consortium

ICSSG International Classification for Seasonal Snow on the Ground

INSU Institut National des Sciences de l’Univers

Irstea Institut national de recherche en sciences et technologies pour l’environnement et l’agriculture

Irstea/DTM Irstea Développement des territoires montagnards unit

Irstea/ETNA Irstea Écoulement Torrentiels, Neige et Avalanches unit

ISBA Interactions Soil-Biosphere-Atmosphere

ISBA-DIF ISBA DIFfusion multilayer ground scheme

ISBA-ES ISBA Explicit-Snow snowpack scheme

ISBA-MEB ISBA Multiple Energy Balance scheme

ISSW International Snow Science Workshop

LECA Laboratoire d’Écologie Alpine

LEFE Les Enveloppes Fluides et l’Environnement
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LES Large Eddy Simulation

LGGE Laboratoire de Glaciologie et Géophysique de l’Environnement

LSM Land Surface Model

LTHE Laboratoire d’étude des Transferts en Hydrologie et Environnement

MEPRA Modèle Expert pour la Prévision du Risque d’Avalanches

MesoNH Mesoscale Non Hydrostatic model

MODIS MODerate resolution Imaging Spectroradiometer

MONISNOW MONItoring SNOW in a changing climate ANR project

NetCDF Network Common Data Form

NIR Near InfraRed

NWP Numerical Weather Prediction

OASIS Ocean Atmosphere Sea-Ice Snowpack project

ORCHIDEE Organizing Carbon and Hydrology in Dynamic Ecosystems land surface model

OSUG Observatoire des Sciences de l’Univers de Grenoble

PRESHINE Pressions sur les Ressources en Eau et en Sols de l’Himalaya Népalais ANR project

QUASPPER Quantitative Assessment and modeling of Snow Physical PropERties project

REV Representative Elementary Volume

S2M SAFRAN - SURFEX/ISBA-Crocus - MEPRA

SAFRAN Système d’Analyse Fournissant des Renseignements Atmosphériques pour la Nivologie

SEKF Simplified Extended Kalman Filter

SnowMIP Snowpack Model Intercomparison Project

SPC-AN Service de Prévision des Crues - Alpes du Nord

SPICE Solid Precipitation InterComparison Experiment

SSA Specific Surface Area

SURFEX SURFace EXternalisée

svn subversion (version control software)

SWE Snow water equivalent

SWIR Short-Wavelenhth InfraRed

TARTES Two-stream Analytical Radiative TransfEr in Snow

UMI Unité Mixte Internationale

WMO World Meteorological Organization
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