N

N

ai iB+ M HvbBb #v #bi +i AMi2 T 2i iBQM |
S Q+2/m 2b
CmHB2M >2M v

hQ +Bi2 i?Bb p2 " bBQM,

CmHB2M >2M vX ai iB+ M HvbBb #v #bi +i AMi2 T 2i iBQM M/ .2+Bt
M22'BM; (+bXal)X IMBp2 bBiG /2 :"2MQ#H2- kyR9X 1M;HBb?X LLh, X

> G A/, iI2ZH@YRRYk9R3
?2iiTbh,ffi?2b2bX? HXb+B2M+2fi2ZH@YRRYkKk9R 3
am#KBii2/ QM Rk C M kyR8

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

https://theses.hal.science/tel-01102418
https://hal.archives-ouvertes.fr

THESE

Pour obtenir le grade de

DOCTEUR DE LUNIVERSITE DE GRENOBLE

Spécialité : Informatique

Présentée par

Julien Henry

Thése dirigée par Dr. David Monniaux
et coencadrée par Dr. Matthieu Moy

préparée au sein du laboratoire Verimag
et de I'école doctorale MSTII

Static Analysis
by Abstract Interpretation
and Decision Procedures

Thése soutenue publiguement le 13 octobre 2014 ,
devant le jury composé de :

Pr. Roland Groz

Professeur, Grenoble INP, Président

Dr. Antoine Miné

Chargé de Recherche CNRS, Rapporteur

Pr. Cesare Tinelli

Professor, University of lowa, Rapporteur

Dr. Hugues Cassé

Maitre de Conférences, Université de Toulouse, Examinateur
Pr. Andreas Podelski

Professor, University of Freiburg, Examinateur

Dr. David Monniaux

Directeur de Recherche CNRS, Directeur de thése

Dr. Matthieu Moy

Maitre de Conférences, Grenoble INP, Co-Encadrant de thése

Remerciements

Je tiens spécialement a remercier:
| would like to thank:

A

David Monniaux et Matthieu Moy, mes directeurs de thése, pour leur en-
cadrement pendant ces trois ans, pour tous les bons conseils qu'ils m'ont
donné, et pour m'avoir transmis leur intérét pour la Recherche depuis déja
cing ans.

David Monniaux and Matthieu Moy, my advisors, for having supervised
these three years of work, for all their good advices, and for having trans-
mitted me their strong interest in Research since my TER ve years ago.

Antoine Miné et Cesare Tinelli, pour avoir accepté de rapporter ce
manuscrit, et pour toutes leurs remarques pertinentes pour I'améliorer.
Antoine Miné and Cesare Tinelli, for having accepted to review this
manuscript, and for all their useful comments to improve it.

Roland Groz, Hugues Cassé et Andreas Podelski, pour avoir accepté de
participer au jury de ma thése.

Roland Groz, Hugues Cassé and Andreas Podelski, for having accepted to
take part in the jury.

Claire Maiza, ma tutrice d'enseignement, avec qui jai eu le plaisir de
travailler; merci pour tous les conseils pour préparer mes cours, et pour le
soutien constant dans les moments di ciles en période de rédaction.

Mes collégues stagiaires et doctorants que j'ai cotoyés chaque jour, Alexis,
Nicolas, Raphaél, Romain, et bien d'autres.

Mes autres collegues de Verimag avec qui j'ai passé trois années tres
agréables, et qui sont trop nombreux pour tous les citer.

Ma famille,

Les 21 virages de I'Alpe d'Huez, et toutes les magni ques routes alpines,
gui m'ont permis de décompresser chaque week end pendant 3 ans

Abstract

Static program analysis aims at automatically determining whether a program satis es some
particular properties. For this purpose, abstract interpretation is a framework that enables the
computation of invariants, i.e. properties on the variables that always hold for any program
execution. The precision of these invariants depends on many parameters, in particular the
abstract domain and the iteration strategy for computing these invariants. In this thesis,
we propose several improvements on the abstract interpretation framework that enhance the
overall precision of the analysis.

Usually, abstract interpretation consists in computing an ascending sequence with widening,
which converges towards a xpoint which is a program invariant; then computing a descending
sequence of correct solutions without widening. We describe and experiment with a method
to improve a xpoint after its computation, by starting again a new ascending/descending
sequence with a smarter starting value. Abstract interpretation can also be made more pre-
cise by distinguishing paths inside loops, at the expense of possibly exponential complexity.
Satis ability modulo theories (SMT), whose e ciency has been considerably improved in the
last decade, allows sparse representations of paths and sets of paths. We propose to combine
this SMT representation of paths with various state-of-the-art iteration strategies to further
improve the overall precision of the analysis.

We propose a second coupling between abstract interpretation and SMT in a program veri-
cation framework called Modular Path Focusing, that computes function and loop summaries
by abstract interpretation in a modular fashion, guided by error paths obtained with SMT.
Our framework can be used for various purposes: it can prove the unreachability of certain
error program states, but can also synthesize function/loop preconditions for which these error
states are unreachable.

We then describe an application of static analysis and SMT to the estimation of program
worst-case execution time (WCET). We rst present how to express WCET as anoptimization
modulo theory problem, and show that natural encodings into SMT yield formulas intractable
for all current production-grade solvers. We propose an e cient way to considerably reduce
the computation time of the SMT-solvers by conjoining to the formulas well chosen summaries
of program portions obtained by static analysis.

We nally describe the design and the implementation of Pagai , a new static analyzer
working over the LLVM compiler infrastructure, which computes numerical inductive invariants
using the various techniques described in this thesis. Because of the non-monotonicity of the
results of abstract interpretation with widening operators, it is di cult to conclude that some
abstraction is more precise than another based on theoretical local precision results. We thus
conducted extensive comparisons between our new techniques and previous ones, on a variety
of open-source packages and benchmarks used in the community.

Résumeé

L'analyse statique de programme a pour but de prouver automatiquement qu‘'un programme
Véri e certaines propriétés. L'interprétation abstraite est un cadre théorique permettant de
calculer des invariants de programme. Ces invariants sont des propriétés sur les variables du
programme vraies pour toute exécution. La précision des invariants calculés dépend de nom-
breux paramétres, en particulier dudomaine abstrait et de I'ordre d'itération utilisés pendant

le calcul d'invariants. Dans cette thése, nous proposons plusieurs extensions de cette méthode
qgui améliorent la précision de l'analyse.

Habituellement, l'interprétation abstraite consiste en un calcul de point xe d'un opérateur
obtenu aprés convergence d'uneéquence ascendanjautilisant un opérateur appelé élargisse-
ment. Le point xe obtenu est alors un invariant. |l est ensuite possible d'améliorer cet
invariant via une séquence descendantgans élargissement. Nous proposons une méthode pour
améliorer un point xe apres la séquence descendante, en recommencant une nouvelle séquence
depuis une valeur initiale choisie judiscieusement. L'interprétation abstraite peut également
étre rendue plus précise en distinguant tous les chemins d'exécution du programme, au prix
d'une explosion exponentielle de la complexité. Le probléme de satis abilité modulo théorie
(SMT), dont les techniques de résolution ont été grandement améliorée cette décennie, perme-
ttent de représenter ces ensembles de chemins implicitement. Nous proposons d'utiliser cette
représentation implicite a base de SMT et de les appliquer a des ordres d'itération de |'état de
I'art pour obtenir des analyses plus précises.

Nous proposons ensuite de coupler SMT et interprétation abstraite au sein de nouveaux
algorithmes appelésModular Path Focusing et Property-Guided Path Focusing qui calculent
desrésumésde boucles et de fonctions de fagcon modulaire, guidés par des traces d'erreur. Notre
technique a di érents usages: elle permet de montrer qu'un état d'erreur est inatteignable, mais
également d'inférer des préconditions aux boucles et aux fonctions.

Nous appliqguons nos méthodes d'analyse statique a I'estimation du temps d'exécution pire
cas (WCET). Dans un premier temps, nous présentons la fagcon d'exprimer ce probleme via
optimisation modulo théorie, et pourquoi un encodage naturel du probleme en SMT génére des
formules trop di ciles pour I'ensemble des solveurs actuels. Nous proposons un moyen simple
et e cace de réduire considérablement le temps de calcul des solveurs SMT en ajoutant aux
formules certaines propriétés impliquées obtenues par analyse statique.

Enn, nous présentons l'implémentation de Pagai , un nouvel analyseur statique pour
LLVM, qui calcule des invariants numériques grace aux di érentes méthodes décrites dans
cette thése. Nous avons comparé les di érentes techniques implémentées sur des programmes
open-source et des benchmarks utilisés par la communauté.

Contents

|2 Program Invariants Computation by Static Analysis

[2.1.4 Fixpoint Computafion].
[2.1.5 Kleene lterafion Strategies

I3 When Abstract Interpretation lacks Precision

[3.1 Sources of Imprecision
3.2 Fighting Bad E ects of Widening|.
[3.2.1 Improved Widening Operatoff
[Delayed widening
[ParmaWidening

[3.2.2 Policy lteration|. L.
3.2.3 Guided Static Analysis

17

[3.3 Fighting bad E ects of Least UpperBounds 43

[3.3.1 Trace Partitioning| 44
[3.3.2 PathFocusing 45
i __Contributions | a7
|4 How to get Precise Invariants by Abstract Interpretation 49
4.1 Improving the Descending Sequente o v it it 49
[4.1.1 Motivating Example| oL o 49
4.1.2 Improving a Post-Fixpoint|. 50
Principle] 50
|[Resetting an Ascending Sequen¢eo 51
4135 Choice of Seed POINIS i i e 52
Backto the Examplg 54
[Improvements of the Technique 55
4.1.4 A More lllustrative Example|, 55
[4.1.5 EXperiments e e e 56
4.2 Improving the Ascending Sequenge oo 58
|4.2.1 Program Encoding into SMIT Formula 58
[Loop-free Program 59
[Handling Overow|. 60
[Program with Loops) 60
|4.2.2 Path Focusing Algorithm| 62
4.2.3 Guided Path Analysis 62
Algorithm e 64
|Ascending lIterations by Path-Focusing 65
|Adding new Paths 66
Mermnation]. v v vt 68
Example 68
................................. 70
4.3 Using a More Expressive Abstract Domain. 71
M4 Conclusiom e e 74
5 Modular Static Analysis | 75
5.1 Block Decomposition e e 76
[.1.1 GraphoftBlocks, 78
|Abstraction of Several Paths L. 79
9.2 Introductory Example| 79
.3 Modular Path Focusing 81
.3.1 Algorithm|. e 82
632 Computing (Ag)|. - « v v v v e e e e e 84
[5.4 Generalizing Correct Contexts for Input/Output Relations| 84
[Intuttion, with Simple Transition | 86
|[Updating the Context when Discovering Unfeasible Paths 87
[From the Obtained Precondition Formulato GC(X")| 88
5.5 Property-guided Modular Analysis 90
.................................. 91

10

552 Rend e 92
[6.5.3 Update e 92
0.54 Some Heuristics for Renement 93
5.5.5 SMT EncodingofBlocks 93
0.6 Generation of Precondition$ 94
B.7 Conclusion e e e 95
(I Implementation and Application | 97
6 _Worst-Case Execution Time Estimation | 99
6.1 Motivation] 99
[6.2 Traditional Approach for Estimating Worst-Case Execution Time|. 100
6.3 Using Bounded Model Checking to Measure Worst-Case Execution Tinpje 102
6.4 Intractability: Diamond Formulas|00, 103
6.5 AddINg CULS| e e e e 105
6.5.1 Selecting Portions 108
[Control-Structure Criterion |.o 108
[Semantic Criterion| L 109
6.5.2 Obtaining Upper Bounds on the WCET of Portions 110
|[Syntactic Upper Bound| 110
[Semantic UpperBound, 110
6.5.3 Example 111
16.5.4 Relationship with Craig Interpolants| 112
6.6 Experimental Results o 112
[6.6.1 Results with Bitcode-Based Timing 114
[6.6.2 Results with Realistic Timing| 116
6./ Related Work 118
6.8 FHom our Modular Static Analysis to WCET Computation | 119
[Deriving Stronger Cuts| e 120
[Programs with Loopy 120
6.9 EXxtensions and Future Work 121
16.10 A Dierent and Mixed Approach for Estimating WCET | 122
[6.11 Conclusiol e 122
|7 The PAGAI Static Analyser | 125
[/.1 ExamplesofUsage e 126
[7.1.1 Command-Line Outputl 126
(712 L[IVMIR Instrumentation | 126
7.2 Infrastructure and Implementation|, 127
|Static Analysis Techniguesas LIVM Passegs 127
[7.2.1 Static Analysison SSAFormy 129
[Dimensions of the Abstract Values 130
IAbstract Values & Abstract Forward [ranstormers|. 131
|7.2.2 Analysis and Transtorm Passes 133
[/.2.3 LLVMtor Static Analysis| 135
[Types 135
[Unde ned Behaviors 135

(/.24 From [LVM Bitcode to SMT Formulaf. 138
[/.3 Experiments. 138
[/.3.1 Comparison of the Dierent Techniques 138
[7.3.2 Comparison between usual Numerical Abstract Domains 142
[7.3.3 Software-Veri cation Competition (SV-COMP) |. 145
[[.4 Conclusion e e e 148
8 __Conclusion | 151
[Main Confribufions] v o 151
[Future Work & Research Directionsl 152
[Concluding Remarks 153
|IA Experimental Results | 167
|A.1 Extra experiments forjsection 4.1 oo oo 167
|A.2 SV-Comp Experimenty e 167

12

Chapter 1
Introduction

1.1 Context

The last decades have seen the emergence and the impressive expansion of embedded computing
systems. They range from small portable devices such as smartphones, digital watches, MP3
players, etc., to very large and complex systems, like in avionics, automotive or medical devices.
These systems all share the property that failures can not be tolerated: for a smartphone
produced in millions of units, it may be dramatically expensive to x; on avionics or medical
devices, it may threaten human lives; on nuclear power plants it involves high environmental
risks. In addition, the speci cations for these systems are highly constrained, in terms of energy
consumption, maximal execution time, etc., which makes the validation even more challenging.

Nowadays, around six billion processor chips are produced every year, and 98% of them
end-up in embedded systems [JPC14]. At the same time, these systems become even more
complex: the size of the embedded software may contain several millions of lines of code, which
increases the risk of encountering bugs. History already gave examples of bugs with dramatic
impacts: one can classically cite the Ariane 5 crash in 1996 due to an integer over ow [Ari96],
or the death of 8 people in the National Cancer Institute of Panama in 2000 due to a bug in
the graphical user interface of the radiation therapy machine.

This motivates the need of a very reliable validation process for these safety-critical systems,
that provides trustworthy guarantees that the software ful lls its speci cation. In some cases,
this process is imposed by certi cation authorities, e.g. the DO-178C standard for airborne
systems. The approaches for validating softwares can be divided in two categories:

Testing, or dynamic Analysis, which consists in observing the behavior of the software
given some well-chosen sample inputs. This approach can detect bugs but is not exhaus-
tive, since all inputs cannot be tested in general. It thus does not prove the system has
no bugs.

Static Analysis is the class of validation techniques which in contrast are performed on
a static representation of the program. Some of these techniques mathematically prove
that the code does not have bugs without executing it, while others are able to detect
bugs. This thesis ts into the signi cant research e ort for constructing e cient and
precise static analysis algorithms and technigues.

1.2 Static Analysis

Static program analysis aims at automatically determining whether a program satis es some
particular properties. This is an important research topic, since it tackles a problem which is

13

Chapter 1 Introduction

known to be undecidable (Rice's theorem): in other words, it is impossible to design a static
analysis that proves any non-trivial property on any program both exactly and automatically.
An important property of software validation tools is soundness they have to take into
account every possible behavior of the software. In the case the tool is sound, it allows to
mathematically prove the absence of bug in the analyzed program. In this thesis, we do not
talk about unsound analysis techniques, even though they are also useful and used in practice
for nding bugs. Bug nders include the industrial tools Coverity E]and Polyspace Bug Finde[ﬂ
Sound and automatic software veri cation tools mostly rely on the following approaches:

Model Checking [CES86]: it consists in exploring the possible states of the program
during its execution. Since the number of states can be in nite or extremely large,
symbolic model checkingonsiders large numbers of states at the same time and represents
them compactly. Bounded model checkingonly considers the execution traces up to a
certain length, in order to keep the state space tractable. The analysis is then unsound
since some traces are ignored. State-of-the-art model checking techniques abstract the
program behavior into a simpler model, and iteratively re ne this abstraction until the
given property is proved correct in this model. SPIN [Hol97], BLAST [BHIMQ7|], CBMC
[CKLO4] or Java PathFinderE] are examples of model checkers.

Abstract Interpretation [CC77,/CC92] computes an over-approximation of the set of reach-
able program states. It aims at discovering invariants of a particular well-chosen shape
referred to asabstract domain that allow to prove the properties of interest. Industrial
tools like Astrée [BCC" 03] or Polyspace [[Pdl] can prove the absence of runtime errors
on large embedded softwares written in C. Nowadays, Abstract interpretation is used be-
yond the scope of embedded softwares: Microsoft Visual Studio IDE incorporates a static
analyzer [Logll] for automatically checking correctness speci cations for .NET bytecode.

Symbolic Execution [Kin76] consists in executing the program while keeping input vari-
ables symbolic rather than assigning them a value. In this way, one can derive path
invariants, i.e. properties on the variables that are always true for a given path. This
method would not scale if applied naively because of an exponential blowup in the num-
bers of paths, and requires more evolved techniques for merging [KKBC12] or heuristically
ignoring certain paths.

These approaches are tightly related: some model-checking based tools make use of abstract
interpretation. Symbolic execution can be seen as an instance of abstract interpretation. In
this thesis, we propose new abstract interpretation based techniques that integrate some kind
of bounded model checking for increasing the precision of the results.

1.3 Contributions

The major drawback of abstract interpretation is over-approximation: since the real set of
reachable program states cannot be computed exactly, one computes a bigger set that contains
the real one. This approximate set is commonly calledabstract value However, this approxima-
tion is frequently too rough and not su cient to prove the desired properties, mostly because
of two reasons:

 https://scan.coverity.com/
2http://www.mathworks.fr/products/polyspace-bug- nder/
Shttp://babel sh.arc.nasa.govi/trac/jpf

14

Section 1.3 Contributions

(1) the abstract value is restricted to a particular pattern, called abstract domain and preci-
sion is lost throughout the analysis because of the limited expressiveness of this domain.

(2) the set is obtained in nite time thanks to an extrapolation of the behavior of the pro-
gram (called widening). This widening induces non-recoverable and unpredictable loss of
precision throughout the analysis.

As a result, for a given program and a given property, an abstract interpretation based static
analyzer can only answer correct if the computed set is precise enough to prove it or |
don't know : maybe there is a bug in the real program, or maybe the approximation is simply
not precise enough to prove it. The latter case is usually calledalse alarm, or false positive
An analysis with too many false positives is not tolerable: human attention is needed for every
alarm to check whether it is real or a false positive.

In this thesis, we tackle both problems(1) and (2), and propose new solutions for limiting
these losses of precision. We also provide a large practical contribution with the implementation
of a new abstract interpretation based static analyzer calledPagai .

We propose contributions in four di erent areas of static analysis:

Recovering precision after computation with widening The approximate set is com-
puted iteratively by an ascending sequencthat performs widenings. Once an invariant is found,
it can usually be made more precise by alescending sequencdn this thesis, we describe and
experiment with a new way of performing this descending sequence, and thus improve the
precision lost due to point (2) .

Our experiments show that this approach improves the results of abstract interpretation in
practice, and have been published in[[HHI2]. This contribution is detailed i section 4]1.

Combination with bounded model checking Abstract Interpretation computes an in-
variant of a particular shape, called abstract domain, at each program location. Point(1)
can be addressed by applying abstractions using this abstract domain only at a subset of the
program locations. This can be achieved by using bounded model checking on some portions
of the analyzed program, so that precision is not lost on these portions. Bounded model check-
ing then provides the abstract interpretation engine with an iteration strategy for computing

a more precise invariant. We propose to apply this idea to several state-of-the-art abstract
interpretation techniques to increase precision. Our work has been published in [HMM12b],
and is detailed in[section 4.2.

Secondly, in[chapter , we extend this work to a modular and inter-procedural analysis that
takes advantage of both bounded model checking and abstract interpretation to automatically
derive useful function preconditions, while lazily analyzing each program fragment to improve
scalability.

Pagai static analyzer We propose a new static analyzer calledPagai , published in [HMM12a],
based on the LLVM compiler infrastructure, written in C++ with around 20.000 lines of code.

It implements the various techniques presented throughout this thesis, and allows running ex-
periments on real softwares written in C, C++, or Objective-C and compare both the precision
and the cost of the various methods. It is able to derive precise numerical program invariants
and prove the absence of integer over ows as well as array out of bounds accesses. It also
checks for the validity of assert statements. It has already been used by other research teams
for experimenting with their own techniques [AS13].

15

Chapter 1 Introduction

Application to Worst-Case Execution Time (WCET) We propose a way of applying
bounded model checking for deriving precise and semantic-sensitive Worst Case Execution
Time bounds for loop-free programs, taking bene ts of the great research advances in the eld
of Satis ability Modulo Theories (SMT) . We show both theoretically and experimentally that a
simple encoding of the WCET problem into SMT formula is too hard to solve for state-of-the-
art solvers. We then propose a method that transforms this formula into an equisatis able one,
which is solved in a reasonable amount of time. The work has been published in [HAMM14]

and is detailed in[chapter §.

1.4 Outline

This thesis is organized into three parts:

[Part T|gives an introduction to static analysis techniques based on abstract interpretation.
It rst recalls the standard framework of abstract interpretation, as well as several other ap-
proaches for program veri cation relevant for this thesis, in particular bounded model checking.
Then, it mentions the main state-of-the-art improvements over the initial abstract interpreta-
tion algorithm, used for improving its precision.

[Part 1TJis dedicated to our theoretical contributions: we start with a new method for im-
proving the precision after an invariant has been found. We propose a new algorithm called
Guided Path Analysis that takes the best of two state-of-the-art iteration strategies for improv-
ing the overall precision of the analysis with the help of decision procedures. We propose an
extension of this last technique for the computation of disjunctive invariants. Then, we propose
a framework for a modular static analysis based on the combination of SMT and abstract in-
terpretation. The framework generates function and loop summaries, and infers preconditions
for the function so that an error state is not reachable.

[Part TIT contains our practical contributions as well as an application of static analysis to
the estimation of Worst-Case Execution Time (WCET) of programs. We start with a new
approach for computing WCET based on bounded model checking by SMT-solving. The last
part is dedicated to the presentation of our new static analyzer,Pagai , as well as experimental
results.

16

Part |
State of the Art

17

Chapter 2

Program Invariants Computation by
Static Analysis

2.1 Basics of Abstract Interpretation

Abstract interpretation [CC77,/ CC92] is a general framework for computing sound approxima-
tions of program semantics. It has already been widely used for the design of static analyzers,
such as Astrée |[BCC 03] or Polyspace [[Pdl], whose objective is to prove that the program
under analysis satis es some important properties such as The program never dereferences
a null pointer, The program never divides by zero, or more generally These classes of
runtime errors cannot happen and the user-speci ed assertions are never violated. Most
of these properties are undecidable in general because of the too high complexity of formal
semantics of programming languages. However, one can work with a sound and decidable ab-
straction of this semantics, that can be used for computing an over-approximation of the set of
reachable program states. Abstract interpretation gives a theoretical framework for designing
sound-by-construction approximate semantics.

illustrates the main principle of the approach: the setR is the non-computable
set of reachable states. Abstract interpretation aims at over-approximating this set by a simpler
set A that contains R. This set A should be su ciently precise to prove the absence of bugs:
here, the intersection of A with a set of error states E, is empty, meaning that every state
in E» is proved unreachable. ConverselyA intersects with the set E; while R does not: the
over-approximation A is too rough to prove the unreachability of the errors in E;.

Figure 2.1: Abstract Interpretation computes over-approximations. The errors in E, are proved

unreachable, while the non-empty intersection ofA with E; raises afalse alarm

19

Chapter 2 Program Invariants Computation by Static Analysis

In this section, we describe abstract interpretation as proposed in [CC77, CC92]. First, we
start with usual required de nitions.

2.1.1 De nitions

First, we need to introduce standard de nitions needed for describing abstract interpretation.

De nition 1 (Partially ordered set). A Partially ordered set (P;v) is a setP together with
a partial order v, i.e. a binary relation verifying the properties:

~

8X 2 P;x Vv X (re exivity)
8(X;y) 2PZxVv yAyv x) X =y (antisymmetry)
8(x;y;z) 2P3;xv y~ryv z) xv z (transitivity)

~

De nition 2 (Upper and Lower Bounds). Let (P;v) be a partially ordered set, andS P .
An elementu 2 P is an upper boundof S if 8s 2 S;sv u. The elementu is the least upper
bound of S (denoted by t S) if u v ufor each upper boundu®of S. Similarly, the element
| 2 P is alower boundof S if 8s 2 S;uv s. The elementl is the greatest lower boundof S
(denoted by uS) if 1%v | for each lower bound!®of S.

De nition 3 (Lattice) . A lattice (L;v ;t ;u) is a partially ordered set (L;v) where each pair
(x;y) 2 L2 has a least upper bound, denoted by t y, and a greatest lower bound, denoted by
xuy.t:L L!L andu:L L!'L are respectively calledjoin and meet operators.

A complete lattice is a lattice for which every subset, possibly in nite, has a least upper
bound and an greatest lower bound. In this case, we not& %L (called bottom) and > ey
(called top). In particular, if P(X) is the set of all subsets of a seX, also called powerset

then (P(X); ;[;\) is a complete lattice.

De nition 4 (Ascending Chain Condition). A partially ordered set (P;Vv) is said to satisfy
the ascending chain conditionif for any increasing sequencgx;)i>n Of elements ofP, there
exist k 2 N such that (x;j)i-k is stationary, i.e. 8i > k;x | = X.

De nition 5 (Properties of Maps). Let F be amapP1 ! P » between two partially ordered
sets (P1;v 1) and (P2;v). F is said to be monotonic if 8(x;x% 2 PZ;x v1 x°) F(x) v»
F(x9. We call operator amapF : P ! P , i.e. a map from a partially ordered set to
itself. In this case, we noteFi(x) the i-th iterate of F on x, such that F1(x) = F(x) and
8i> L,Fi(x)= F(F' Y(x)).

De nition 6 (Fixpoint) . Let (L;v;t;u) be alattice andF : L!'L . Anelementx 2 L
is called a xpoint of F if F(x) = x. Similarly, it is called a pre- xpoint if x v F(x), and a
post- xpoint if F(x) v x. If they exist, the least xpoint of F is denoted by Ifp(F), and the
greatest xpoint is denoted by gfp(F).

Program Model

The behavior of a program can be formally described by &ransition System, that de nes a set
S of program states, a setl S of possible initial states, and a transition relationR S S.
If (p;9 2 R, we usually notep! g to represent the fact that there is a transition from p to q.
With this formalism, the control structure of the program is encoded in the transition relation.

In this thesis, we often represent programs in the form ofControl Flow Graphs, which has
the bene t of explicitly encoding the control structure of the program:

20

Section 2.1 Basics of Abstract Interpretation

De nition 7 (Control- ow Graph) . A control- ow graph is a directed graphG = (N;I;T;) ,
where:

N is a set of program locations, also called program points. The elements ™ are the
nodes of the graph.
“ I N is the set of initial program locations,
is a set, (usually, the set of program states, or later an abstraction thereof),
T is a set of transitions (i; ij;j) between two locationsi andj 2 N, denoted by i 1 j-
ij is an operator ! that we call forward transformer.

The transition relations are typically de ned from the semantics of the program instructions.

2.1.2 Reachable Program States as a Fixpoint

Let Statesbe the set of all possiblestates of a program. Informally, the state of a program is

the current value for each registers including data registers, but also program counter, etc.
and related memory, i.e. stack and heap. The powerset P (Stateg is the set of all subsets

of States In particular, the set of reachable states is inP (Stateg, but is not computable in

general. The semantics of a program can be de ned by @ransition relation that maps a

set of states to the next reachable states after one atomic step of execution. Starting from an

initial state xo 2 States we can reach the stated x; 2 States= x; 2 '(fxog)g. It follows that

if S is a set of states, the set of states reachable aftec atomic execution steps is K(S). If

| Statesis the set of possible initial states of the program, then the set of reachable states is

de ned by: [
def

(1) (1)
i2N
Let : P(Stateg ! P (Stateg de ned by:
S7V 1 (9)
It is immediate to see that ((1) =1 (()= 1] Si 1 '(1)y=(1). Indeed, a

reachable state is either an initial state, or a state reachable in one step from a reachable state.
The set of reachable state is thus a xpoint of

is monotonic because is monotonic, and| is a pre- xpoint of , so we can use Kleene's
theorem to say that the least xpoint of , denoted by lfp() , is equal tolimy +1 K(?). It
is easy to see that this limit is actually equal to (1), so we deduce the important result that

(1) =Ifp()
Example 1. Suppose we have the very simple program depicted in Figure 2.2.

Po

unsigned x = O0;
while (x < 100) { x 100

P3) «—P1
X+=2;

} x < 100 X incr(x)

P2

Figure 2.2: Very simple C program, and its corresponding control- ow graph.

21

Chapter 2 Program Invariants Computation by Static Analysis

In the control- ow graph, incr is the function de ned as:

incr: N ! N
X 7! X+2

For simplicity, we suppose here thatx is a mathematical natural number instead of being
bounded by UMAXthe greatest unsigned value in C. We can consider here that a program
state is actually an element ofStates= fpg;p1;p2;p3g N. The transition relation can be
easily derived from the graph:

(f(po;x)9) = F(pP1ix)g

] _ f(p2;x)gif x < 100
(FPX)0) = ¢ x)gifx 100
(f(p2;x)g) = f(pix+2)g

The set of initial states is| = f(pg; 0)g. The set of reachable states is the least xpoint of
as previously de ned. In this case,

(?) I = f(po;0)g

2(?) = f(po;0);(p1; 0)g

3(?) = f(po;0);(p2;0)g[f (p2;0)g
4?) = f(po;0); (p1;0); (P2; 0); (P1; 2)g

After some steps,(¥) becomes stationary (which is not the case in general) and is equal to:

L(?) = f(po;0)g |
f(p;x);0 x 100" x 0(2)g |
f(p2;x);0 x 997 x 0(2)g |
f (ps; 100)g
= Ifp() = (1)

From this result, we can deduce programinvariants, i.e. properties on the reached program
states that are true for every possible execution. Here, an interesting invariant is: After the
loop, variable x is equal to 100.

2.1.3 Concrete and Abstract Domains

For a given transition relation , the most precise property of interest would be the set of
reachable states is (I). However, Rice's theorem implies that this set is not computable in
general. The fundamental reasons are:

The elements ofP (Stateg, and in particular (1), may not be machine-representable,
The transition relation and the operator may not be computable,
The least xpoint of may not be reached after a nite number of Kleene iterations.

However, since the discovered invariant is typically used for proving some propert? about
the program: 8x 2 (1);P(x), it is su cient for proving this property to nd a computable
set R that includes (1) and for which 8x 2 R ;P(x). From this set, the obtained invariant
will be the set of reachable states is included inR and will be precise enough to prove the
property of interest. This set R should be a machine-representable element of a simpler domain

22

Section 2.1 Basics of Abstract Interpretation

called abstract domain and denoted by X!. The invariant that will be discovered is weaker
than (1): it may be the case that the computed setR does not verify the property P while

(1) does. Indeed,R over-approximates the real set of reachable states, and there may exist
an elementx 2 Rn (1) for which P(x) does not hold. In this case,P is not proved correct
and x is called false positive The objective is then to minimize the number of false positives
in the analysis by computing su ciently precise program invariants.

De nition 8 (Abstract Domain) . Let X be the set of elements to be abstractedX is called
concrete domain We assume that(X; v ;t ;u) is a lattice, where v is the partial order, and
t and u are respectively the join and meet operators. Anabstract domain over the concrete
domain X is a pair (X];), where is a function from X1 to X called concretization function,
and (X1;v1;tI;ul) is a lattice satisfying the following properties:

v ! is a sound approximation ofv :
axliyl 2 xIixd viyly odyv ()
In other words, we can also say that the concretization function is monotonic.
The abstract join operatort 1 : X! X1 1 X!isasoundabstractionoft : X X ! X:

sxiyl2xh xht (yYhv (dtlyh)

Similarly, the abstract meet operator ul : X1 X! 1 Xl abstractsu: X X ! X
so that:

exliyl 2 X1, 6dyu (v (dulyh

An element x] 2 X represents an element (x!) 2 X, and is a sound abstraction of anyx
such that x v (x!). Intuitively, we can say that x! is more precisethan y! if xI v1 yl, since it
represents a set which is smaller.

Example. In the previous example, we hadStates= fpg;p1;p2;p3g N. The set X is then
P(Stateg. A possible abstract domain would beX! = |, where (I ;v ;t ;u) is the complete
lattice of the intervals of N:

8x;y;x%y%2 N;[x;y]v [x%y9q, x xPandy y©
8x;y;x%y02 N; [x;y]t [x%yq = [min(x;x%; max(y; y9],
8x;y;x%y02 N; [x;y]u [x%yq = [max(x; x9; min(y; y9.

where [x;y] = ; whenx >y . The concretization function can be de ned as:

I I P (Stateg
x;y] 7! f (pi;xi) 2 Statesx; 2 [x;y]g

The best (control- ow insensitive) abstraction of the reachable program states in this ab-
stract domain is x] = [0;100} and the concretization of this element is (x!) = f(pi;x;) 2
Statesx; 2 [0;100p that includes (l). Since, for instance,(ps;0) is included in (x!) the
property After the loop, variable x is equal to 100 is no longer true, because of the too coarse
abstraction.

23

Chapter 2 Program Invariants Computation by Static Analysis

2.1.4 Fixpoint Computation

We have seen that the set of reachable states of a program can be expressed as the least
xpoint of an operator over the concrete domain. The idea is then to compute a xpoint of
an operator ! over the abstract domain that is a sound approximation of , i.e.:

8xl 2 x ! (x1) v I(x])
I can be derived from aforward abstract transformer 1:X11 X1 that satis es the property:
gxl 2 xl:gx;y 2 X;x v (xX)A (x)=vy) yv I(x])

The xed point transfer theorem [CC77] states that the least xpoint of 1 is a sound abstrac-
tion of the least xpoint of
(fp(1)) w ifp()

It follows that any xpoint of 1 is a safe abstraction of the least xpoint of . Thus, one
can just focus on computing a xpoint of !, which can be done by computing the limit of the
Kleene's sequence de ned inductively by:

(

x]0 = ?
xl= 1d i8>0
At each step, x% is a sound abstraction ofx; = (?). When X! satis es the ascending

chain condition, the sequence eventually stabilizes to some limigl = Ifp(1), which is a sound
abstraction of the set of reachable states. GeneralIyz(]0 is de ned to be equal to ? since? is
always a pre xpoint of 1, but x]0 could be actually set to any pre xpoint of .

However, most of the interesting abstract domains do not satisfy the ascending chain con-
dition, and thus the Kleene's iteration may never converge to a xpoint. In order to ensure
the termination of the computation, one must de ne and use awidening operator:

De nition 9 (Widening Operator). An operator r : X! X!1 X! is said to be awidening
operator if it satis es the following properties:

8xl;yl 2 X:xlvlxlr yl

For every chain (X%)i2N1 the increasing chain(yi])iZN de ned by :

(
Yo = Xg
yi]: y? 1’ x%;8i> 0

is stable after a nite time, i.e. 9k 2 N;y]k+1 = y|](

If we want to compute the limit of a sequence(x%)igN that does not stabilize after a nite
number of steps, we can use a widening operator to compute the limit of another sequence
(yi])izw that converges in nite time towards an overapproximation of the limit of (x?)iz,\,.

If the abstract domain does not satisfy the ascending chain condition, we thus can compute
a xpoint of 1 in nite time using widening:

(] =
Yo= ?
yi= vyl 1l i8>0

24

Section 2.1 Basics of Abstract Interpretation

We then obtain after some iterations a post- xpoint of 1. Indeed, if we notey the limit
of the sequence, we havgd = ylr 1(yl), and the properties on the widening operator imply
that !(¥!) vl yl. The widening operator is needed to ensure termination, at the expense of
precision: for instance, one could de ne the widening operator to beéx!;y! 2 X1;xlr yl = >,
which is correct but extremely imprecise. In the case where the abstract domain satis es the
ascending chain condition, a widening can still be used to trade precision for e ciency, since a
widening can lead to a post xpoint in a few steps while classical Kleene iterations may converge
after a long time.

However, once we have a post xpoint of !, assuming ! is monotonic, it is possible to
continue applying the 1 operator on it and still obtain a (post) xpoint which is either equal
or smaller than the previous one:

y!
A= 1@);8i>0

N
o
1

The sequence(zi])iZN is decreasing, and each elemerzl;-] is a post- xpoint of 1. Similarly
to the ascending sequence, the decreasing sequence may not stabilize to a xpoint of. In
practice, this decreasing sequence, also calledarrowing sequencereaches a xpoint in a very
few number of iterations, otherwise the sequence is stopped after a given number of steps.

Finally, the limit 2z of (Zi])iZN is a sound approximation of the set of reachable states:
lfp() v (¥). Figure illustrates the sequence$x})i, (yi])i and (zi])i previously de ned.

2.1.5 Kleene Iteration Strategies

In practice, instead of considering the set of reachable states for the entire program, it is
possible to decompose it as the union of the reachable states at each program location (also
called program point). Typically, there is a program location before and after each atomic
instruction of the program. If the program is seen as a control- ow graph, the set of program
locations is the set of nodes in the graph. The set of reachable states at a given program
point depends on the reachable states of its predecessors. The operatorsand ! can be
respectively decomposed into 1; »;:::; n and]1;]2;:::;]n where n is the number of
program locations, with each } being a sound abstraction of ;. In this case, Ifp(!) is the
least solution of this system of equations:

8
;xll = Jedinnx)
x, =

I

o= hodinnd)

(2.1)

Similarly to Subsection 2.1.4, Kleene iterations over this system of equations are not guar-
anteed to terminate, and a widening operator has to be used during the ascending sequence:

8

%xil;iﬂ = xil;ir }(xil;i;:::;xin;i)
Xgier = Xzl 2(XqiiiiiiXpg)

C Xme = Xm T hOKhxy)

In our notations, the components } have n parameters, but in practice their values only
depend on a small subset of them. Using a control- ow graph representation of the abstract

25

Chapter 2 Program Invariants Computation by Static Analysis

PreFix (1)

Figure 2.3: lllustration of the ascending and descending sequences in the abstract lattice.
Fix (1),PreFix (!) and PostFix (!) are respectively the sets of xpoints, pre xpoints and
post xpoints of the operator 1. (x?)i is the ascending sequence without widening, which is
often in nite. (yi])i is the ascending sequence with Widening(zi])i is the descending sequence.
Note that in practice, the decreasing sequence generally converges to an elemeht2 Fix ().

26

Section 2.1 Basics of Abstract Interpretation

semantics of the program, the valuex}(;i+1 related to the node k only depends on the values
of the xLo;Hl, for which there exist a transition (k®k) in the graph. Applying a widening
operator at each program location may degrade the precision of the analysis dramatically.
[CC92] suggests applying widenings only at a subsd®y of these control points, and just use
the least upper bound operator for the control points that are not in Py . Breaking all cycles
in the graph is su cient for the analysis to terminate:

Theorem 1. Let G = (N;I;T;X 1) be the control- ow graph representing the abstract se-
mantics of the program. Let Py, be a subset ofN, such that the new graph G° obtained after
removing from G the nodes inPy, has no cycle.

] _ XL.- r I((xl.i;:::;x]n.i if k2 Pw
Xii+1 = |] ’ :

(x L X otherwise
Example. In our example of Figure[2.2, we attach to each program statep;;i 2 f 0;1;2; 3g
an abstract value x? 2 1 . This will allow to compute for each program point an interval that
contains all possible values for the variablex. We will use the abstract transformer 1: 1411 4

de ned as follows:

1 1 0 1 1 0 _
XO O() [Ov O]
| % X § % o) E % Xyt incrl(x}) E
XK ©) K @xju(l ;99
x} L)) x) u[100+1)
with incrl:1 11 being a sound abstraction of incr:

Xyl 7' [x+2;y+2]

Since the abstract domain of intervalsl does not satisfy the ascending chain condition for

instance, the sequenc€[0;i])i> o is strictly increasing we have to de ne a widening operator
def

for I: 8[x;yl;[xey9 21 ;[x';y'] = [X8;y]t x%y9;

[X;y] if x=x! ry=yt
[x;+1) if x=xt ry<y!
(1 ;vy] if x<x!Ary=yt
(1 ;+1) ifx<xt!ry<yt

;ylr Cyq &

In the control- ow graph of the program, the control points p; and p, are forming a cycle
(in other words, x]1 and x]2 are mutually dependent in the iteration process). We can de ne
Pw = fp1g to be the set of widening points, which disconnects all cycles in the graph.

We compute iteratively the ascending sequence de ned as follows:

8] - 8] — .
E y?;o - E y?;i+l - y]O;i t [0]1 O] . |
Yio = 7 and8i 2 N Juivt T Ynif (Yo; t incrl (x3;))
E y]2;0 = 7 , y]z;i+1 = y]2;i t (y]l;i u (1 ;99])
y!“s;o = 7 y%;i+1 = y%;i t (y!L;i u [100' +1))
? [0; O] [0; 0] [0; O] [0; 0] [0; O]
2, 0?2 [0, [00], [+1) , [0+1)
2 2 2 7 00 [00] [0: 99]
? ? ? ? ? [100,+1)

27

Chapter 2 Program Invariants Computation by Static Analysis

Once the sequence has stabilized, one can compute a decreasing sequence:

8 8
% Z%);O = [0;0] % Z2);i+1 - [O;O]
Z%.;O = 0:+1) Ldsi2 N: 2 = z%xit incrl (z);))
g L0 = [0;99] E L1 T 235 U(l ;99])
" Zh, = [100;+1) " Zhi, =2} u[100+1))
[0;0] [0;0] [0;0]
[0+1) | [0;101] [0;101]
[0; 99] " [0,99] " [0,99]

[100+1) [100+1) [100 101]

We have reached a xpoint of 1 which is a overapproximation of the set of reachable states:
at po, x =0, at p1, x 2 [0;101] at pz, x 2 [0;99] and at p3, X 2 [100,101] Note that using
the abstract domain |, a better invariant at p; would have beenx 2 [0;100] Even though
the decreasing sequence improves the precision of the result a lot, it does not reach the least
xpoint of 1.

Chaotic Iterations

For a giveni, the (xLi)k do not depend on each other, but only on the values obtained at the
(i 1)-th iteration. However, for a faster convergence and better precision, one could reuse
the value of an already computedx}(;i at the place of xLi 1 each time it occurs, since the L

operators are monotonic andx}(.i w xL.i ;- In other words, one could start with a vector
def

(<hxh) € (xheiiiixlo), de ne an operator Update : X111 X1 as follows:
(] | 7208 I] .
Update (X]) dZEf Xkr k(Xl""vxn) if k2 PW
‘ xit] L(xhiiix)) otherwise

and successively applyUpdate on the xL's, assuming everyk is chosen in nitely often.

Algorithm []describes a classical algo