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Abstract 

 

AlGaN/GaN HEMTs are very promising candidates for high frequency applications with 

high power and low noise. While switching applications strongly demand normally-off 

operation, conventional HEMTs attain a channel populated with electrons at zero gate voltage 

making them normally-on. For the sake of achieving normally-off HEMTs, several structures 

have been proposed such as recessed gate structures, Fluorine ion treatment, P-GaN gate 

structures, thin AlGaN barrier and Gate Injection transistor. 

The effectiveness of the agent used to obtain normally-off, whether it is recessing the gate, 

introducing a cap layer or implanting Fluorine, increases as the agent comes closer to the 

AlGaN/GaN interface. Unfortunately, when introducing a cap layer or recessing the gate, 

coming closer to the interface means decreasing the barrier thickness, which strongly affects 

the density of the 2DEG. In the case of Fluorine implantation, getting closer will increase the 

probability of Fluorine ions getting into the channel and hence degrade the mobility of the 

2DEG. 

In this work we propose two new concepts to achieve normally-off operation. We suggest the 

introduction of negative Fluorine ions on one hand or a p-GaN region on the other hand, 

below the channel, under the AlGaN/GaN interface and away from high current density 

regions. After calibrating the simulator using experimental results from a normally-on HEMT 

device, we will show that our proposed structures are more effective: the concentration 

required to achieve normally-off operation is lower than in the other existing solutions, and 

the confinement of the two dimensional electron gas below the gate is better. 

The proposed ideas were also applied to Metal Insulator Semiconductor HEMT (MIS-

HEMT) and Gate Injection Transistor (GIT), giving rise to a normally-off HEMT with high 

controllable threshold voltage. 
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Electronic devices have truly blended in with our lives and expand our capabilities and 

potential. Development and innovation in this field will shape the future of mankind. In the 

electronic devices we use today, solid-state devices are utilized to control or convert electric 

power into different forms. This domain is known as power electronics. In our smart phones, 

tablets, PDAs and almost every mobile device, a DC/DC converter is used to maintain a fixed 

output voltage regardless of the battery voltage level. Most of the electronic devices 

connected to the mains (laptops, TVs, etc) utilize an AC/DC converter, which are also known 

as rectifiers. DC/AC converters, also known as inverters, are used in hybrid vehicles, 

renewable energy systems, UPS and emergency lighting systems. After storing AC voltage in 

DC batteries, the batteries can later be used to generate AC voltage with the help of an 

inverter. AC/AC converters are found in international power adapters, light dimmer, fan with 

controllable speeds and many other applications that require a change in the frequency or 

voltage level of an AC signal.  

Improving the efficiency of power electronic devices is crucial to reduce switching losses and 

hence lower the CO2 emission. Today, the vast majority of power devices are made from 

silicon. Unfortunately, the intrinsic physical properties of silicon set a theoretical limit on the 

capabilities of silicon power devices hindering them, in some domains, from being the 

candidates for future power electronics. With silicon power devices reaching their theoretical 

limits, design engineers are facing the challenge of increasing the ratings of converters in 

terms of operating voltage, operating temperature and efficiency. The quest for a solution to 

silicon limitations leads researchers to the doorstep of wide bandgap materials such as Silicon 

Carbide (SiC) and Gallium nitride (GaN). Compared to silicon, the main benefits of these 

materials are a good operation over a wide temperature range, high critical electric field and 
high saturation velocity.   

SiC power components have been a subject of extensive research in the past fifteen years. 

However, despite the remarkable results obtained by several teams, SiC must be grown on 

native substrates which are expensive and relatively small in size (100 mm in diameter). On 

the other hand, GaN can be grown on silicon substrates which are of low cost and large size 

(150 to 200 mm in diameter). Moreover, GaN is better than SiC for creating heterostructures 

due to their built-in polarization field. Therefore, for devices such as HEMT, GaN is the 

material of choice.   

The polarization doped High Electron Mobility Transistor (HEMT) is a field effect transistor 

in which two layers of different bandgap and polarization field are grown upon each other. As 
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a consequence of the discontinuity in the polarization field, surface charges at the 

heterointerface are created. If the induced charge is positive, electrons will tend to 

compensate the induced charge resulting in the formation of the channel. Since in the HEMT 

the channel electrons are confined in a quantum well in a very narrow spatial region at the 

heterointerface, the channel electrons are referred to as a Two Dimensional Electron Gas 

(2DEG). This confinement grants the electrons high mobilities surpassing the bulk mobility 

of the material in which the electrons are flowing. Thanks to the GaN properties and the 

HEMT’s topology, AlGaN/GaN HEMTs are now promising devices for high frequency 

applications with high power and low noise, such as microwave and millimeter wave 

communications, imaging and radars. 

While power switching applications strongly demand normally-off operation with a threshold 

voltage above 3V, conventional HEMTs attain a channel populated with electrons at zero 

gate voltage making them normally-on. Several normally-off structures have been proposed 

such as recessed gate structures, fluorine ion treatment, P-GaN gate structures, thin AlGaN 

barrier and the Gate Injection Transistor. The effectiveness of the agent used to obtain 

normally-off, whether it is recessing the gate, introducing a cap layer or implanting fluorine, 

increases as the agent comes closer to the AlGaN/GaN interface. Unfortunately, in 

introducing a cap layer or recessing the gate, coming closer to the interface means decreasing 

the barrier thickness, which strongly affects the density of the 2DEG. In the case of fluorine 

implantation, getting closer to the interface increases the probability of fluorine ions getting 

into the channel and hence the degradation of the mobility of the 2DEG. 

In this work, two new normally-off concepts are proposed. To examine their electric 

characteristics, a commercial TCAD simulation tool from Silvaco is used. Technology 

Computer Aided Design (TCAD) tools are simulation tools used to model the processing and 

behavior of electronic devices. The simulator can predict the electrical behavior of 

semiconductor devices at specified bias conditions. 

After introducing the structure, composition and features of the conventional HEMT in 

chapter 1, the device simulator is explained in chapter 2 showing the input to the simulator, 

the fitting strategy and the models used. In chapters 3 and 4, the two new normally-off 

designs are shown along with the results of the sensitivity analysis for the HEMT with 

Fluorine implanted below the channel and HEMT with buried p-region respectively.  
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1.1.  Introduction 

The reduction of CO2 emission has always been a subject of extensive research. In the 

domain of power electronics, the reduction of CO2 emission can be achieved by increasing 

the efficiency of power converters by reducing the switching losses in power devices [1]. 

Today, the vast majority of power devices are made from silicon. Unfortunately, silicon is 

reaching its theoretical limit in terms of device performance. The quest for a solution to 

silicon limitations leads researchers to the doorstep of wide bandgap materials, such as 

Silicon Carbide (SiC) and Gallium nitride. When compared to SiC, GaN is a better candidate 

to fabricate heterostrucutres and, unlike SiC, can be grown on silicon substrates. This chapter 

shows the fundaments of the HEMT device fabricated using GaN based materials. 

Afterwards, the state of the art normally-off HEMT structures are explained and shown.  

1.2. Power devices 

For ultimate efficiency in power conversion, an ideal switch is required. An ideal switch has 

zero voltage drop and no limit on the current level carried during the on-state. During the off-

state, it attains infinite resistance (zero leakage current) and can sustain unlimited voltages. 

The time to switch between the on and off-state is zero [2]. 

The quest for the ideal switch results in the development of various power components, each 

resembles in a way a characteristic of the ideal switch. In practical switches, there is a trade-

off between voltage, current and frequency ratings.  

1.2.1. Silicon power devices 

Figure 2 shows the split of the main power devices depending on their current, voltage and 

frequency rating. The power MOSFETs are found in applications demanding small inverters 

(Watt to kW range) such as VTRs, mobile phones, communication devices, audio equipments 

and many others. 

The IGBT performance is regularly improving as technology evolves and has already 

replaced the bipolar transistor in power applications. Moreover, IGBT power modules, 

parallelly combining several IGBT devices, are attractive for power levels up to several 

Megawatts. The operating frequency of the IGBT is relatively low mainly because of a 

problem during turn-off known as current-tail. IGBTs and IGBT modules are utilized in 

applications using inverters with a switching power ranging from kW to MW such as air 

conditioners, refrigerators, railways, paper making, etc.  
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Thyristor-based devices are the only choice at very high power. The problem with thyristors 

is that once it starts conducting, the gate loses its control over the device. To solve this 

problem, the gate turn-off thyristor (GTO) was later introduced which is a fully controllable 

switch that can be turned on and off. However, while thyristors are used in medium to high 

voltage applications, GTO are used at medium voltages only. Thyristors and thyristor-based 

devices are used in AC drives, HVDC and Grid T&D [3].  

It is worth mentioning that recent improvements of Si devices (superjunction, high speed 

IGBT) and the introduction of new materials (SiC, GaN) will mix the performance and open 

new device choices. For instance, GaN on Silicon devices are expected to be faster than 

IGBTs and more powerful than MOSFETs. GaN-based power solutions are expected to 

increase efficiency, reduce system size, and simplify overall product design and can eliminate 

up to 90% of all electric conversion losses from heating, ventilation, and air-conditioning 

systems (HVAC). Therefore GaN power devices are expected to replace silicon MOSFETS 

and IGBT modules in applications like VTRs, communication devices, audio equipments, AC 

adapters and electric/hybrid vehicles [3]. 

	  

Figure 1.1 Classification of the main power devices according to their switching frequency, 
voltage and current ratings  

	  

 

Frequency 

Frequency New	  expected	  capabilities	  
offered	  by	  GaN-‐on-‐Si	  devices
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1.3. Theoretical limits for power devices  

When increasing the applied voltage across a power device, the electric field within the 

device begins to increase. Once the electric field approaches a critical level Ec, the power 

device tends to undergo avalanche breakdown. To allow simple comparison between similar 

systems with different material compositions, an abrupt one-dimensional P+/N diode is 

studied [4]. In this study, it is assumed that the voltage is supported across only one side of 

the structure. This assumption holds true for an abrupt P+N junction since the doping 

concentration on one side is very high compared to the other. Moreover, since the P+ region 

is taken very thin and highly doped compared to the n-region, the depletion region extends 

primarily in the N-doped region [4]. 

 

When this diode is reverse biased, a depletion region is formed in the N-region (the depletion 

in the P+ region can be neglected). The electric field in the depletion region can be extracted 

from the Poisson's equation:  

∇!𝑉 = −
𝜌
𝜀!
                                                                                                                                (1.1) 

𝐸 = −∇.𝑉                                                                                                                                  (1.2) 

where V is the electrostatic potential, 𝜌 is the charge density, 𝜀! is the dielectric constant of 

the semiconductor and E is the electric field.   

	  

Figure 1.2. Schematic cross-section of an abrupt P+N junction showing the electric field 
distribution inside the depletion region when the junction is reversed biased   

	  

	  

	  

P+ Depletion	  region N

P+ N
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E

x
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In our case (one dimensional case): 

𝑑!𝑉
𝑑𝑥! = −

𝑑𝐸
𝑑𝑥 = −

𝜌
𝜀!
= −

𝑞𝑁!
𝜀!

                                                                                                (1.3) 

The charge within the depletion region due to the presence of ionized donors can be 

expressed as 𝑞𝑁!, q is the proton charge and ND is the donor concentration in the uniformly 

doped N-region. The solution of equation 1.3, with the use of the boundary conditions 

𝐸 𝑊! = 0 and  𝑉 0 = 0, yields the following expressions for the electric field and the 

electrostatic potential: 

𝐸 𝑥 = −
𝑞𝑁!
𝜀!

𝑊! − 𝑥                                                                                                           (1.4) 

𝑉 𝑥 =
𝑞𝑁!
𝜀!

𝑊!𝑥 −
𝑥!

2                                                                                                     (1.5) 

𝑊! can be related to the applied voltage by using the condition 𝑉 𝑊! = 𝑉! , where 𝑉! is the 

applied reverse voltage. 

𝑊! =
2𝜀!𝑉!
𝑞𝑁!

                                                                                                                          (1.6) 

At breakdown 𝑉! = 𝑉!" and 𝐸! = 𝐸(0) =   𝐸! 

𝑊! =
2𝜀!𝑉!"
𝑞𝑁!

                                                                                                                      (1.7) 

𝐸! = −
𝑞𝑁!
𝜀!

𝑊! ⇒𝑊! =
−𝜀!  𝐸!
𝑞𝑁!

                                                                                  (1.8) 

Combining equations 1.7 and 1.8, we get: 

𝑁! =
𝜀!  𝐸!!

2𝑞𝑉!"
                                                                                                                  (1.9) 

𝑊! =
2𝑉!"
  𝐸!

                                                                                                                    (1.10) 

The specific on resistance per unit area of the ideal uniformly doped drift region is: 

𝑅!",!" =
𝑊!

𝑞𝜇!𝑁!
                                                                                                                    (1.11) 

Combining equations 1.9 and 1.10, we obtain: 
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𝑅!",!" =
4  𝑉!"
𝜀!𝜇!𝐸!!

                                                                                                                  (1.12) 

The denominator of this equation (𝜀!𝜇!𝐸!!) is commonly referred to as Baliga’s figure of 

merit for power devices [5]. It is an indicator of the impact of the semiconductor material 

properties on the resistance of the drift region. An accurate modeling of the specific on 

resistance requires taking into account the dependence of the critical electric field and 

mobility on the doping concentration. 

 

Practical specific ON-resistance estimation is calculated using the following  

approximation [6]: 

𝐸! ∝ 𝑁!
! 

𝜇! ∝ 𝑁!!! 

𝑅!"(Ω. 𝑐𝑚!) ∝ 𝑉!"
!  

𝜂 =
2− 𝑥 − 𝑦
1− 2𝑦  

For Si [4]:𝑅!" Ω. 𝑐𝑚! = 5.93  ×10!!  𝑉!"!.!                                                                                                                                                (1.13) 

For 4H-SiC [4]: 𝑅!"(Ω. 𝑐𝑚!) = 2.97  ×10!!"  𝑉!"!.!                                                                                                                      (1.14) 

	  

Figure 1.3. Theoretical on-resistance versus breakdown voltage for different materials showing 
an advantage for wide bandgap semiconductors [5] 
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For 6H-SiC [7]: 𝑅!"(Ω. 𝑐𝑚!) = 1.45  ×10!!!  𝑉!"!.!                                                                                                                      (1.15) 

For GaN [7]: 𝑅!" Ω. 𝑐𝑚! = 2.4  ×10!!"  𝑉!"!.!                                                                                                                                      (1.16) 

 

Figure 1.3 shows the plot of equations 1.13, 1.14, 1.15 and 1.16 [5]. It is clear that the 

theoretical limit of wide bandgap materials is much higher than that of silicon. This means 

that, for the same breakdown voltage, devices based on wide bandgap materials offer a 

significantly lower ON-resistance. 

1.4.  Wide bandgap power devices 

With silicon power devices reaching their theoretical limits in terms of temperature and 

power operation, design engineers are facing the challenge of increasing the ratings of 

converters in terms of operating voltage, operating temperature and efficiency. The quest for 

a solution to silicon limitations leads researchers to the doorstep of wide bandgap materials 

such as Silicon Carbide (SiC) and Gallium Nitride (GaN). 

 

Wide bandgap materials show superior advantages over silicon such as large bandgap, high 

critical breakdown field strength and high thermal conductivity in some cases (SiC). The 

values are illustrated in table 1. The translation of these superior physical properties to the 

devices is shown in figure 1.4.  The high critical electric field and the wide energy gap enable 

operation at high voltages and elevated temperatures. The high switching frequency is 

attributed to the high saturation electron velocity and high mobilities. From figure 1.4, it can 

be concluded that SiC will stay the preferred choice for high temperature applications. GaN 

has an extra advantage compared with SiC as a result of the enhanced mobility of electrons in 

the two dimensional electron gas (2DEG). This translates into a GaN device with a smaller 

size for a given on-resistance and breakdown voltage. 

Item Unit Si 4H-SiC GaN 

Band gap eV 1.1 3.26 3.4 

Electron mobility cm2/V.s 1300 900 900 - 2000 

Breakdown field strength V/cm 0.3 ×106 3 × 106 3.5 × 106 

Saturated electron speed cm/s 1 × 107 2 × 107 2.5 × 107 

Thermal conductivity W/cm.K 1.5 3.7 1.3 

Table 1 Physical properties of Silicon (Si), Silicon Carbide (4H-SiC) and Gallium Nitride (GaN) 
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The applications for various power devices along with the material capabilities are shown in 

figure 1.5 [3]. It is clear that high power and high frequency applications are demanding more 

than silicon can offer. SiC is expected to cover the high power low frequency applications 

while GaN covers the high frequency relatively low power applications. The competition 

between SiC and GaN will be at intermediate frequencies and moderate power.  

 

	  

Figure 1.4 Comparison between Silicon, Gallium Nitride and Silicon Carbide based on their 
physical properties   

	  

	  

Figure 1.5 Applications for various power devices along with the material capabilities [3] 
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1.5. Gallium Nitride (GaN) 

1.5.1. Gallium Nitride physical properties 

Gallium Nitride (GaN) is a semiconductor material belonging to the III-V semiconductor 

family. Its crystal structure may differ between Wurtzite and Zinc blend. The two structures 

are shown in figure 1.6 [8].  Since AlGaN/GaN HEMTs are grown on the Wurtzite phase, 

only this crystal structure will be further explained. The unit cell of the III-N Wurtzite 

structure is the hexagonal cell consisting of two intercepting Hexagonal Closed Packed 

(HCP) sub-lattices, each formed by one type of atoms. The structure is fully defined by three 

lattice constants: the side's length of the hexagonal base "a", the height of the cell "c" and the 

 shift, along the c-axis, between the 2 sub-lattices "u". In an ideal Wurtzite structure, when 

atoms are considered to be touching hard spheres, the ratio of these parameters is  

𝑐! 𝑎! = 8 3 = 1.633 and  𝑢! 𝑐! = 3 8 = 0.375. GaN can be doped with silicon (Si) or 

with oxygen to n-type [9] and with magnesium (Mg) to p-type [10]. 

 

Beside the advantage of Wurtzite structure being favored at room temperature due to its 

stability, it possesses a built-in polarization field named the spontaneous polarization Psp. 

This field springs up due to the ionic nature of the gallium-nitrogen bond and the lack of 

inversion symmetry within some planes within the crystal. The values of the spontaneous 

polarization of some binary and trinary III-N alloys is shown in figure 1.7 [11]. 

 

 

	  
	  (a)	  	   	   	   	   	   (b)	  

 

Figure 1.6 Crystal structure of GaN (a) Zinc blend and (b) Wurtzite structure [8] 

	  

a

c

u
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Planes lacking inversion symmetry will attain a polarization field along their normal vector. 

In Wurtzite GaN (w-GaN), the (0001) plane, named the c-plane, attains spontaneous 

polarization, while the (1100) and (1120) planes, named m- and a-planes respectively, do 

not. Some of the polar and non-polar planes are shown in figure 1.8.   

 

In order to take advantage of the spontaneous polarization, GaN is grown perpendicularly to 

the c-plane. The resulting surface is either the (0001) also known as Ga-faced or (0001) 

	  

Figure 1.7. Spontaneous polarization of III-N binary and ternary alloys. The thin lines show linear 
interpolation while the thick ones show second order approximation [11] 
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Figure 1.8 To the left the polar plane known as c-plane (0001) and to the right a non-polar plane 
(𝟏𝟏𝟎𝟎) known as the m-plane 
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known as N-faced. The orientation of the polarized field in N-faced plane is opposite to that 

in the G-faced. Distinction between these two orientations can be done by variety of 

techniques including wet chemical etching, characterization of physical morphology, and 

convergent beam electron diffraction [12]. The atomic arrangement in GaN-face and N-face 

GaN is shown in figure 1.9 [13] 

 

1.5.2.  Elastic and piezoelectric properties 

In addition to the spontaneous polarization, GaN as well as GaN alloys possess piezoelectric 

properties. When an external electric field is applied to piezoelectric materials, they 

mechanically deform. Conversely, these materials generate an electric field in response to an 

applied mechanical stress/strain. When growing two materials with different lattice constant 

upon one another, at certain conditions discussed in 1.4.3.3, the above layer will stretch or 

shrink so that its lattice constant matches the layer upon which it is grown. This stretch/strain 

will generate a polarization field named piezoelectric polarization    𝑃!". 

The piezoelectric polarization is simply expressed as: 

𝑃!" = 𝑒!!𝜀! + 𝑒!". 𝜀! + 𝜀!                                                                                                 (1.17) 

where:        𝜀! = 𝜀! =
𝑎 − 𝑎!
𝑎!

     ,   𝜀! =
𝑐 − 𝑐!
𝑐!

                                                                                          (1.18) 

and:        𝜀! = −2  
𝐶!"
𝐶!!

  𝜀!                                                                                                                      (1.19) 

	  

Figure 1.9 Atomic arrangement in Ga-face and N-face GaN [14] 
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𝑎! and 𝑐! are the equilibrium value of the lattice constant (base material), 𝑎 and 𝑐 are the 

lattice constants of the material that is to be deposited (stretched or strained material),  𝑒!! 

and 𝑒!" are piezoelectric coefficients, 𝐶!! and 𝐶!" are elastic constants, 𝜀! is the strain along 

the c axis, 𝜀! and 𝜀! are the in-plane strains that are assumed to be isotropic. Hence 𝑃!" can 

be written as: 

𝑃!" = 2  
𝑎 − 𝑎!
𝑎!

𝑒!" − 𝑒!!
𝐶!"
𝐶!!

                                                                                          (1.20) 

1.6. Bound charge 

When two layers with different polarization fields are grown upon one another, a bound 

charge at their interface will be created. Depending on the divergence of the polarization 

field, this charge can be positive or negative. The bound charge can be calculated using the 

following equation: 

𝜌! = −∇.𝐏                                                                                                                                  (1.21) 

where 𝜌! is the bound charge density and P is the polarization field. 

Figure 1.10 shows the bound charge created at the interface of AlGaN/GaN in two different 

cases. The GaN layer is assumed to be relaxed and hence attains only spontaneous 

polarization. On the other hand, the AlGaN layer is strained and therefore attains both 

spontaneous and piezoelectric polarizations.  

 

The sign of the bound charge is derived from equation 1.21. Figure 1.11 shows a detailed 

derivation of the bound charge.  

	  

Figure 1.10 Bound charge at the AlGaN/GaN interface for (left) Ga-face and (right) N-Face 
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We have from equation 1.21: 

∇.𝑷 =   −𝜌! 

Integrating on both sides, we get: 

∇.𝑷𝑑𝑣 =   − 𝜌!  𝑑𝑣                                                                                                 (1.22) 

𝜌!  𝑑𝑣 = 𝑄!                                                                                                                        (1.23) 

where 𝑄! is the bound charge at the interface. 

Using divergence theorem and equation 1.23 we get: 

𝑷.𝑑𝑺 = (  𝑷.𝒏  )  𝑑𝑆 = −𝑄!                                                                                            (1.24) 

A cylindrical closed surface is chosen as shown in figure 1.11. 

𝒏 is the vector perpendicular to the surface of the cylindrical closed surfaces. 

In the case of growing in the [0001] direction figure 1.11 (a), the resulting bound charge is 

positive. 

(  𝑷.𝒏  )  𝑑𝑆 = −𝑄!   ⟹   −  𝑃!"#$%𝑆 +   𝑃!"#𝑆 = −𝑄!   ⟹   𝑃!"#$% − 𝑃!"# =
𝑄!
𝑆 = 𝜎!   

  𝑃!"#$% > 𝑃!"#   ⟹ 𝜎! > 0 

 

 

    (a)                      (b)  

Figure 1.11 A cylindrical closed surface is used to solve equation 1.23 to calculate the bound 
charge the interface in (a) Ga-face AlGaN on top of Ga-face GaN and in (b) N-face AlGaN on 

top of N-face GaN   
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In the case of growing in the [0001] direction (figure 1.11 (b)), the resulting bound charge is 

negative. 

  𝑷.𝒏   𝑑𝑆 = −𝑄!   ⟹   𝑃!"#$%𝑆 −   𝑃!"#𝑆 = −𝑄!   

⟹   𝑃!!" − 𝑃!"#$% =
𝑄!
𝑆 = 𝜎!   

  𝑃!"#$% > 𝑃!"#   ⟹ 𝜎! < 0 

A third configuration can be used to increase the divergence in the polarization field and 

hence increase the density of bound charge at the interface. If a Ga-face AlGaN layer is 

grown on top an N-face GaN layer (figure 1.12) the resulting bound charge would be:   

  𝑷.𝒏   𝑑𝑆 = −𝑄!   ⟹   −  𝑃!"#$%𝑆 −   𝑃!"#𝑆 = −𝑄!   

⟹   𝑃!"#$% + 𝑃!"# =
𝑄!
𝑆 = 𝜎!   > 0 

 

To numerically compare 𝜎!  to    𝜎! , the x-mole fraction in the AlGaN is taken 0.25.  

For the case of Ga-face AlGaN / Ga-Face GaN: 

𝜎! = 5.1  ×10!! − 2.9×10!! = 2.2×10!!
𝐶
𝑐𝑚! 

For the case of Ga-face AlGaN / N-Face GaN: 

𝜎! =   5.1  ×10!! + 2.9×10!! = 8×10!!
𝐶
𝑐𝑚! 

σ!
σ!
= 3.63 

	  

Figure 1.12 A cylindrical closed surface is used to solve equation 1.23 to calculate the bound 
charge at Ga-face AlGaN / N-face GaN interface 
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Although this approach may theoretically results in a much higher bound charge, it will 

introduce a large number of defects at the AlGaN/GaN interface making it useless.   

1.7. AlGaN/GaN High electron mobility transistor 

1.7.1. Basic structure 

 

The high electron mobility transistor (HEMT) is a field effect transistor in which two layers 

of different bandgaps and polarization fields are grown upon one another. As a consequence 

of the discontinuity in the polarization field, surface charges at the heterointerface are 

created. If the induced charge is positive, electrons will tend to compensate the induced 

charge resulting in the formation of a two dimensional electron gas (2DEG). The 2DEG 

represents the channel of the HEMT and the current flow between the drain and the source is 

controlled by the gate of the device. The schematic cross-section of the conventional HEMT 

is shown in figure 1.13 

The substrate is used as the base for the growing process. HEMTs are currently grown on 

Silicon [14][15][16][17], sapphire [18][19][20], Silicon Carbide [21][22][23] and GaN 

substrates [24]. Figure 1.14 [3] compares the four substrates according to the available size, 

cost, thermal conductivity, difference in heat expansion and lattice constant when compared 

to Gallium Nitride [3]. Silicon Carbide and sapphire substrates were the first to be studied, 

benefiting from the existing experience and tool sets in the LED industry. However, the 

successful growth of GaN on Silicon attracts the industry because of the availability of large 

silicon wafers at low cost. Currently the best results, which are obtained on SiC substrates, 

are likely reproduced by using Silicon substrates. 

	  

Figure 1.13 Schematic cross-section of the conventional high electron mobility transisitor 
(HEMT) 
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As for the GaN substrates, although there is no lattice mismatch problem, these substrates 

remain undesirable because of their small size and extreme high cost. 

Nucleation buffer layers: When GaN is grown on foreign substrates (except for saphire), due 

to the lattice mismatch, a tensile strain arises favoring the creation of cracks. To prevent this 

cracking, intermediate layers are introduced between the substrate and the channel layer to 

compensate for the significant lattice mismatch between GaN and the substrate.  

Channel layer: On the buffer layer a GaN layer is grown mostly along the [0001] direction to 

benefit from the spontaneous polarization of the c-plane within the GaN Wurtzite crystal. 

Within this layer the channel will be formed, hence, it is sometimes referred to as the channel 

layer. 

Barrier layer: On top of the channel layer, a layer with higher bandgap and lesser electron 

affinity is grown. Due to the conduction band offset and the difference in the polarization 

between the barrier and the channel layer, a potential quantum well will be created 

underneath the hetero-interface, trapping the electrons inside, and consequently creating the 

channel. The depth of the well is associated with the difference of electron affinity. In GaN 

HEMTs, AlGaN is usually used as a barrier layer. The barrier layer can be either doped or 

intrinsic. In GaAs HEMTs, since the barrier layer is doped, a thin intrinsic layer known as 

spacer layer, with the same material as the barrier, is introduced between the channel and the 

barrier to prevent ionized impurity scattering between the electrons in the channel and the 

dopant atoms [25]. In GaN HEMTs, an interlayer of AlN [26] is sometimes used to enhance 

the confinement of the channel electrons and increase their density.  

	  

Figure 1.14 Comparison between different substrates on which GaN can be grown [3] 
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Passivation layer: it is usually SiN, which reduces the response of the surface traps which in 

return suppress the effect of current collapse [27].  

Electrodes, named the source and the drain, are placed on highly doped semiconductor to 

achieve ohmic contacts. However, the third electrode, named the gate, is placed on  

non-heavily doped semiconductor to generate the Schottky barrier. The Schottky gate 

controls the carrier concentration in the channel layer below the interface. As the gate voltage 

decreases, the carrier concentration below the gate electrode decreases. The gate bias required 

to pinch-off the channel is called the threshold voltage (Vth). Below Vth, channel becomes 

depleted from carriers, and thus, no current can flow between the drain and source. When the 

threshold voltage is negative, the HEMT is called a depletion-mode (D-mode) HEMT or 

normally-on and, when it is positive the device is then called an enhancement-mode (E-

mode) HEMT or normally-off. Conventional AlGaN/GaN HEMTs are D-mode transistors. 

1.7.2. Band diagram of conventional HEMTs 

To understand the behavior of the HEMT, one must understand the variation of the energy 

band diagram with the applied voltage. If an AlGaN layer is grown on a GaN layer, assuming 

no positive bound charge at their interface due to the discontinuity of the polarization field, 

the band diagram looks like the illustration in figure 1.15.  

 

To draw this figure no built-in potential is assumed and hence the Vacuum level is drawn 

first. Afterwards, knowing that the difference between the conduction band and the Fermi 

	  

Figure 1.15 Band diagram of an AlGaN/GaN hetero-structure without the consideration of the 
positive bound charge at the AlGaN/GaN interface 
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level is equal to the electron affinity χ of the material, the conduction band is drawn. Then 

from the conduction band, by knowing the bandgap of the material, the valence band can be 

located. The Fermi level, at equilibrium, must be constant throughout the layers. In figure 

1.15, we have assumed, to reduce complexity, that the Fermi level is pre-aligned before 

enforcing equilibrium conditions. However, in real cases, a constant Fermi level must be 

drawn first, then the conduction and valence bands, and finally the Vacuum level. The 

position of the conduction band with respect to the constant Fermi level is separately drawn 

in each region according to the doping concentration. In n-doped semiconductors, the Fermi 

level is higher than that of the intrinsic semiconductor and lies closer to the conduction band. 

On the other hand, in p-doped semiconductors, the Fermi level is lower than that of the 

intrinsic semiconductor and lies closer to the valence band. The severity of the shift of the 

Fermi level from the intrinsic level depends on the doping concentration. As the doping 

concentration increases, the shift from the intrinsic level increases.  

The conduction band offset, known as ΔEc, can be extracted from the difference of the 

electron affinity of the two layers. 

∆𝐸! = 𝜒!"# − 𝜒!"#$%                                                                                                      (1.25) 

The conduction band offsets changes from 74% to 72% of ∆𝐸!  with increasing Al content in 

an AlGaN/GaN system [28]. 

In fact, conventional AlGaN/GaN HEMTs have a Schottky gate contact and a positive bound 

charge at the AlGaN/GaN interface. These two factors strongly affect the band diagram. The 

domain of interest in HEMT transistors is at the hetero-interface (AlGaN/GaN interface), 

Hence, the study will be focused on that region. The schematic cross-section of a normally-on 

HEMT and an illustration of its band diagram are shown in figure 1.16. The first important 

point is that the conduction band at the Gate/AlGaN interface is pinned to the Schottky 

barrier Φ!which can be calculated as: 

Φ! =𝑊! − 𝜒!"#$%                                                                                                                  (1.26) 

where 𝑊!  is the workfunction of the metal and 𝜒!"#$% is the electron affinity of AlGaN.  

The second important point is the impact of the bound charge on the band diagram. In figure 

1.15, the conduction band is above the Fermi level throughout the two layers. However, when 

positive bound charge is added at the AlGaN/GaN interface, the conduction band at the 

interface bends. As the charge concentration increases, the bending increases. This bending, 
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if high enough, will cause part of the conduction band in the vicinity of the interface to go 

below the Fermi level.  

 

In that region (Fermi level above the conduction band) electrons will populate on the energy 

levels of the triangular quantum well formed at the AlGaN/GaN interface. These electrons 

form the HEMT's channel and are known as the Two Dimensional Electron Gas (2DEG).  

 

	  

Figure 1.16 Schematic band diagram of a conventional normally-on HEMT. At the gate/AlGaN 
interface, the conduction band energy is equal to the Schottky barrier. The positive bound charge 

at the AlGaN/GaN interface bends the conduction band causing the creation of the triangular 
well. Electrons occupying the energy levels of the triangular well form the HEMT's channel	  
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Figure 1.17 Variations of the electron mobility versus temperature for 2DEG in Al0.1GaN/GaN and 
for bulk n-GaN with ND = 1017 cm-3 [30] 
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The confinement of the channel electrons in the quantum well grants them two-dimensional 

features, which strongly enhance their mobility. Figure 1.17 [29] shows the variation of the 

electron mobility versus temperature for 2DEG in Al0.1GaN/GaN and for bulk n-GaN with  

an n-doping concentration 1017 cm-3. It is clear that the mobility of the 2DEG is higher at all 

temperatures.  

To manipulate the density of electrons in the channel, and hence switch the HEMT ON and 

OFF, the voltage at the gate is varied. Here, it is worth defining the threshold voltage Vth as 

the voltage required to populate electrons at the interface and hence giving the channel 

conduction privilege. Figure 1.18 shows the triangular quantum well at three different biasing 

conditions. 

 

Channel electrons occupy energy levels that are positioned below the Fermi level. When the 

gate voltage is much higher than the threshold voltage (Vgs >> Vth), the Fermi level in the 

triangular well is above several energy levels. This enables high population of channel 

	  

Figure 1.18 Position of the Fermi level with respect to the conduction band at various biasing 
conditions. The zoomed parts illustrate the status of the triangular well at the AlGaN/GaN 

interface to show the depletion of channel electrons (2DEG) as the gate voltage goes below the 
threshold voltage 
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electrons and hence high current density. When the gate voltage decreases, the Fermi level 

goes downwards with respect to the triangular well. Therefore fewer energy levels are 

populated and hence the concentration of channel electrons, below the gate, decreases. Once 

the gate voltage goes below the threshold voltage, all energy levels are above the Fermi level. 

This causes channel depletion and the HEMT turns OFF.  

1.7.3. Source of the 2DEG 

Surface traps are energy states in the band-gap of a semiconductor. They originate from 

factors such as crystal defects, dislocations, or the presence of impurities. Classification of 

these traps depends on the relative position of their energy level inside the band gap. Traps 

with energy above the Fermi level are acceptor-like, attaining negative charge when 

occupied. However, traps with energy below the Fermi level are donor-like, positively 

charged when empty and neutral when occupied. 

Donor-like surface traps at the upper surface of the AlGaN barrier layer are one of the most 

important sources of the 2DEG in the channel. However, this only applies for specific barrier 

thickness. Consider a thin barrier layer with relatively small thickness; the surface trap is 

below the Fermi energy. Nonetheless, as the barrier thickness increases, the energy of the 

surface trap approaches the Fermi energy until, at a critical thickness, it coincides with it as 

shown in figure 1.19. At this point, electrons filling this state are pulled to the channel by the 

strong polarization-induced electric field found in the barrier to form the 2DEG.  

 

If the surface traps are completely depleted, further increase in the barrier thickness will not 

increase the 2DEG density (figure 1.20). Actually, if the channel layer fails to stretch the 

	  

Figure 1.19 Schematic band diagram of an AlGaN/GaN hetero-structure showing the distance at 
which electrons in the donor interface traps are pulled to the HEMT's channel    
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barrier layer, the later will relax. Upon relaxation, defects are created at the AlGaN/GaN 

interface and the piezoelectric polarization will vanish causing deterioration in the density of 

the 2DEG. 

 

The thickness of the barrier is not the only factor that affects the 2DEG density. The x-mole 

fraction also plays a crucial role. The piezoelectric polarization in the stretched barrier layer 

(case of AlGaN) strongly depends on the x-mole fraction. With increasing the x-mole 

fraction, the lattice contact shrinks (see figure 1.7). This leads to a higher stretch in the 

AlGaN layer, which increases the piezoelectric polarization. The increase in the divergence 

of the polarization field between the barrier and the channel layer causes higher bound charge 

density. This is shown in figure 1.21 where the bound charge density increases with 

increasing the x-mole fraction.  

However, like the thickness of AlGaN, further increase in the x-mole fraction causes a 

relaxation in the AlGaN layer and hence a deterioration in the density of 2DEG. This is 

shown in figure 1.21 [11]. As the x-mole fraction increases, the total polarization (Ptotal), 

which is the sum of the spontaneous (Psp) and piezoelectric polarizations (Ppz), increases. 

However, while the spontaneous polarization continues to increase for x-mole fractions above 

0.4, the piezoelectric polarization undergoes a sudden decrease signaling the relaxation of the 

AlGaN layer [30]. It is worth noting that, when smaller x-mole fractions are used, higher 

strained AlGaN thicknesses can be grown.   

 

	  

Figure 1.20 Variations of the two dimensional electron gas density with the thickness of the 
barrier layer at various x-mole fractions 
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1.7.4. Normally-off HEMT 

Although conventional HEMTs seem to be very promising candidates for power switching 

applications, they are depletion mode transistors (normally-on; Vth < 0). It means that a 

negative voltage must be applied on the gate in order to block the current. But in order to 

reduce the circuit complexity and eliminate standby power consumption, normally-off 

HEMTs (Vth > 0) are strongly required. Several normally-off structures have been proposed. 

The main structures are: 

1.7.4.1.  Gate recess structure 

In this structure, the barrier structure is etched and the gate is brought closer to the 

AlGaN/GaN interface. As the gate electrode approaches the AlGaN/GaN interface, the 

threshold voltage increases. Once the depletion region created by the Schottky contact 

reaches the AlGaN/GaN interface and depletes the channel at zero gate voltage, normally-off 

operation is achieved. Figure 1.22 shows a schematic cross-section of the gate recess 

structure [31]–[33]. 

 

 
Figure 1.21  Variations of the bound charge density with the x-mole fraction in the barrier layer. 

A sudden drop in the piezoelectric polarization signals the relaxation of the barrier layer [11]	  

	  

	  

Figure 1.22 Schematic cross-section of the normally-off HEMT using the gate recess technique  
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1.7.4.2. Thin barrier layer  

This structure also achieves normally-off operation by approaching the gate electrode 

towards the AlGaN/GaN interface. But this time, instead of etching the relatively thick 

barrier layer to approach the AlGaN/GaN interface, a very thin AlGaN barrier is used. The  

x-mole fraction in this thin barrier is sometimes increased to unity to compensate the low 

2DEG density resulting from a thin barrier (figure 1.23) [34]–[36]. 

 

1.7.4.3.  Gate Injection Transistor 

In this structure, a p-AlGaN region is introduced below the gate as shown in figure 1.24. It is 

well known that, in p-type semiconductors, the Fermi level shifts towards the valence band. 

However, since at equilibrium the Fermi level is constant, this shift will manifest itself 

through uplifting the conduction band. The uplift of the conduction band in the p-doped 

region will elevate the triangular well at the AlGaN/GaN interface.  

 

If the doping concentration is strong enough to raise the triangular well above the Fermi 

level, normally-off operation will be achieved. It is worth noting that the p-AlGaN cap layer 

	  

Figure 1.23 Schematic cross-section of the normally-off HEMT using a thin AlGaN barrier layer 
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Figure 1.24 Schematic cross-section of the normally-off Gate Injection Transistor using a  
p-AlGaN cap layer 
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not only shifts the threshold voltage to positive values but also increases the forward gate 

voltage of the HEMT [37], [38]. 

1.7.4.4. P-GaN Gate HEMT  

The schematic cross-section of the normally-off p-GaN gate HEMT is shown in figure 1.25. 

In this structure, the lift in the conduction band is not due to p-doping of the cap layer (which 

is the case in the p-AlGaN cap) but rather to the discontinuity in the polarization between the 

barrier and the cap layers. This discontinuity creates a negative bound charge at the  

p-GaN/AlGaN interface, which lifts up the triangular well at the AlGaN/GaN interface and 

causes normally-off operation. The p-doping though still helps in increasing the forward gate 

voltage [39]–[44]. 

 

1.7.4.5. Fluorine implantation  

This approach relies on implanting negative Fluorine ions 19F+ in the barrier layer as shown 

in figure 1.26. The conduction band is uplifted in the region where Fluorine is implanted, 

causing an elevation in the triangular well at the AlGaN/GaN interface band above the Fermi 

level. Unfortunately, during implantation, a small amount of Fluorine ions penetrates into the 

channel and present themselves as impurities that could lead to mobility degradation [45]–

[49]. 

 

	  

Figure 1.25 Schematic cross-section of the normally-off p-GaN gate HEMT using a p-GaN cap 
layer 
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1.8. MIS-HEMTs 

The problem with the previously mentioned normally-off HEMTs is that their threshold is 

around 1 V. A threshold voltage above 3 V is required in order to prevent the misoperation 

caused by noise [50]. Moreover, since most of these structures use a Schottky gate, the gate 

leakage limits the increase in the threshold voltage and in the current density of the device. 

Therefore, to achieve higher threshold voltages and to eliminate gate leakage, an insulating 

layer below the gate has to be introduced. This will give rise to the so called MIS-HEMT, 

Metal Insulator Semiconductor High Electron Mobility Transistor. The insulating material, 

also known as the gate dielectric, varies from SiO2 [51], SiNx [52], [53], HfO2 [54] to Al2O3 

[55], [56]. Most of the normally-off MIS-HEMTs use one [57]–[59], or a combination [60] of 

the above mentioned techniques. Figure 1.27 shows a schematic cross-section of a 

conventional normally-on MIS-HEMT.   

Although a high threshold voltage (greater than 3 V) is obtained in the case of MIS-HEMT 

with recessed gate or with Fluorine implantation, several drawbacks exist in these structures. 

In the MIS-HEMT with a recessed gate, the barrier layer is etched. This introduces many 

defects in the barrier layer and damage the density and mobility of the 2DEG resulting in a 

very poor current density. In the case of Fluorine implantation, as mentioned in section 

1.7.4.5, small amount of negative Fluorine ions penetrate into the channel during 

implantation and cause mobility degradation.  

 

	  

Figure 1.26 Schematic cross-section of the normally-off HEMT using Fluorine implantation in 
the barrier layer 
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In MIS-HEMTs, the insulating layer results in the creation of an additional charge at the 

insulator/barrier interface. This charge can be positive or negative. For instance, a recent 

study reported negative charge when using Al2O3 and positive charge in the case of HfO2 

[61]. Moreover, the charge can be distributed inside the insulating layer. The location of 

charge created can be concluded from the variation of the threshold voltage with the 

thickness of the insulator. For instance, in Al2O3, a quadratic dependence of Vth of the 

thickness of the insulator signals the distribution of charge inside the insulator, while a linear 

dependence indicates that the charge is located at the insulator/AlGaN interface [62].  

1.9. Conclusion 

Today, the vast majority of power devices are made from silicon. Improving their efficiency 

is crucial to reduce switching losses and hence lower the CO2 emission. Unfortunately, power 

devices based on silicon, are reaching their theoretical limits. Design engineers are now 

facing the challenge of increasing the ratings of converters in terms of operating voltage, 

operating temperature and efficiency. The quest for a solution to silicon limitations leads 

researchers to the doorstep of wide bandgap materials such as Silicon Carbide (SiC) and 

Gallium nitride (GaN). Compared to silicon, the main benefits of these materials are a good 

operation over a wide temperature range, high critical electric field and high saturation 

velocity.   

Despite the remarkable results obtained by several teams working on Silicon Carbide, SiC 

must be grown on native substrates which are expensive and relatively small in size. On the 

other hand, GaN can be grown on silicon substrates which are large and of low cost. 

Moreover, GaN is better than SiC for creating heterostructures due to their built-in 

polarization field. Therefore, for devices such as HEMT, GaN is the material of choice.   

	  

Figure 1.27 Schematic cross-section of a conventional Metal Insulator Semiconductor High 
electron mobility transistor (MIS-HEMT) 
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The High Electron Mobility Transistor (HEMT) is a field effect transistor in which two layers 

of different bandgap and polarization field are grown upon each other. As a consequence of 

the discontinuity in the polarization field, surface charges at the heterointerface are created. If 

the induced charge is positive, electrons will tend to compensate the induced charge resulting 

in the formation of the channel. Since in the HEMT the channel electrons are confined in a 

quantum well in a very narrow spatial region at the heterointerface, the channel electrons are 

referred to as a Two Dimensional Electron Gas (2DEG). This confinement grants the 

electrons high mobilities surpassing the bulk mobility of the material in which the electrons 

are flowing.  

Conventional HEMTs attain a channel populated with electrons at zero gate voltage making 

them normally-on. For power switching applications normally-off operation is required. 

Several normally-off structures have been proposed such as recessed gate structures, fluorine 

ion treatment, P-GaN Gate, thin AlGaN barrier, and the Gate Injection Transistor. The 

problem with the previously mentioned normally-off HEMTs is that their threshold is around 

1 V. A threshold voltage above 3 V is required in order to prevent the misoperation caused by 

noise. Moreover, since most of these structures use a Schottky gate, the gate leakage limits 

the increase in the threshold voltage and in the current density of the device. Therefore, to 

achieve higher threshold voltages and to eliminate gate leakage, an insulating layer below the 

gate has to be introduced. This will give rise to the so called MIS-HEMT, Metal Insulator 

Semiconductor HEMT.  Although, the threshold voltage of the normally-off MIS-HEMT can 

be reach values above 3 V, the techniques used degrades the channel mobility resulting in 

low current densities.  
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2.1. Introduction 

Technology Computer Aided Design (TCAD) tools are simulation tools used to model the 

processing and behavior of electronic devices. The simulator can predict the structure 

resulting from several processing steps (process simulation) or foretell the electrical behavior 

of semiconductor devices at specified bias conditions (device simulation). The inputs of the 

device simulator are the material properties from which the device is made along with the 

dimensions and doping profiles of all the regions in the device. Moreover, physical models, 

describing the behavior of carrier are added. Afterwards a structure is discretized by creating 

a mesh and associating all the physical properties of the regions with nodes (mesh points). 

The simulator will then solve a set of physical equations along with the defined models to 

predict the electric behavior of the device. In this work, the electric characteristics of the new 

normally-off structures were examined using a commercial TCAD simulation tool from 

Silvaco, Inc [63]. In this chapter the simulator is explained along with the calibration 

strategy. 

2.2. Silvaco framework overview 

To simulate a structure via Silvaco, different tools are employed. In this work, we will focus 

on ATLAS that is a physically-based two and three dimensional device simulator that 

predicts the electrical behavior of semiconductor devices at specified bias conditions. The 

	  

Figure 2.1 Simulation flow in Silvaco showing the inputs and outputs of ATLAS 
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device structure containing the doping profiles and the mesh are inputted to ATLAS. One 

way to create the file is to start by the tool ATHENA to simulate the processing steps 

required to obtain the desired structure and then mesh it with a tool called DEVEDIT. 

Another way to create the structure file is by writing a script a DECKBUILD defining the 

mesh and the physical composition of the structure along with the doping profile.  

The models, biasing conditions and numerical methods used to attain the electric 

characteristics are defined in ATLAS. 

ATLAS will then generate three types of files: the runtime output which shows the progress 

of the simulation, the log files storing the current and voltage values at each electrode and 

finally the structure files containing information about various physical quantities inside the 

structure at certain biasing conditions. To visualize the output results, a tool called 

TONYPLOT is used to display the log and structures files. In this work, for better 

visualization, the results were extracted from TONYPLOT and plotted in Microsoft Excel.  

2.3. Simulation of AlGaN/GaN HEMT 

2.3.1. Meshing  

In every conventional device simulator, to solve the physical equations governing the 

behavior of carrier transport, the device that is to be simulated is discretized into a grid and 

the equations are solved at each grip point. The grid and grip points are sometimes referred to 

as the mesh and nodes respectively. In our simulated structures, the mesh was generated in 

DECKBUILD. The most sensitive region in the HEMT transistor is the AlGaN/GaN 

interface. Therefore, as shown in figure 2.2, a very fine mesh was created in that region 

where the node-to-node distance in the y-direction was reduced down to 0.5 nanometers.  

 



39	  
	  

 
Moreover, it is crucial to refine the mesh at hetero-interfaces where an abrupt change in the 

physical properties occurs. Furthermore, during breakdown simulation, high electric field 

intensities are obtained at the electrode edges. Therefore, it is recommended to further refine 

the mesh in these regions. Although finer meshes may yield more accurate solutions, the 

numerical efficiency is greater when fewer grid points are used. Indeed, the simulation time 

increases with increasing the number of grid points in the simulated structure. In ATLAS, for 

two-dimensional simulations, the maximum number of nodes is limited to 20,000. In this 

work, during the parametrical study, a dynamic mesh was carefully created to always ensure 

a number of grid points lower than 20,000 nodes throughout the simulated physical 

dimensions, while enough refinement in the sensitive areas. The mesh used to simulate the 

HEMT devices is shown in figure 2.2. 

2.3.2. Physical Models  

After defining the mesh, a set of fundamental semiconductor equations is solved at each 

node. These equations include, but not limited to, Poisson’s equation, continuity equations 

and transport equations. The above mentioned equations are all derived from the Maxwell's 

laws [63]. 

 

 

	  

Figure 2.2 The mesh with the cross-section of the HEMT viewed from the visualization tool 
Tonyplot showing a refined mesh at the AlGaN/GaN interface 
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Poisson's Equation 

The Poisson’s Equation relates the electrostatic potential and the electric field to the space 

charge density. It can be expressed as: 

∇!φ = −𝛁.𝑬 = 𝜌
𝜀                                                                                                                   (2.1) 

where 𝜑 is the electrostatic potential, 𝜀 is the local permittivity, and 𝜌 is the local space 

charge density.  

𝜌 can be expressed as the sum of all mobile and fixed charges, including free electrons (n) 

and holes (h) concentrations, ionized donor (𝑁!!) and acceptor (𝑁!!) impurity concentrations, 

and charge due to the presence of traps and defects (QT). Therefore, equation 2.1 can be 

written as: 

𝜌 = 𝑞     𝑛 − 𝑝 + 𝑁!!−𝑁!! + 𝑄!                                                                                           (2.2) 

where q is the proton charge. 

Continuity equation 

The continuity equations for electrons and holes are defined by equations 2.3 and 2.4:  

𝜕𝑛
𝜕𝑡 =

1
𝑞 ∇. 𝐽! − 𝑟! + 𝑔!                                                                                                            (2.3) 

𝜕𝑝
𝜕𝑡 =

−1
𝑞 ∇. 𝐽! − 𝑟! + 𝑔!                                                                                                          (2.4) 

where n and p are the electron and hole concentrations, 𝐽! and 𝐽! are the electron and hole 

current densities, 𝑟! and 𝑟! are the recombination rates for electrons and holes, 𝑔! and 𝑔!  are 

the generation rates for electrons and holes. 

The Poisson's and continuity equations provides the general framework. However, further 

models are required for the current densities, generation and recombination rates of electrons 

and holes. 

Transport equations 

Charge transport models are usually obtained by applying approximations and simplifications 

to the Boltzmann Transport Equation.  The simplest model of charge transport that was 

recently adequate for nearly all devices that were technologically feasible is the Drift-

Diffusion Model. 
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In this model, the current densities of electrons and holes can be expressed as: 

𝐽! = 𝑞𝑛𝜇!𝐸 + 𝑞𝐷!∇𝑛                                                                                                               2.5  

𝐽! = 𝑞𝑛𝜇!𝐸 − 𝑞𝐷!∇𝑝                                                                                                               2.6  

where 𝜇!  and 𝜇!  are the electron and hole mobilities, 𝐷!  and 𝐷!  are electron and hole 

diffusivities. The first term in the equation (𝑞𝑛𝜇𝐸) represents the drift current, while the 

second term (𝑞𝐷∇𝑛) represents the diffusion current. 

Carrier Mobility 

The carrier mobility describes the speed of the carriers in response to an external electric 

field. In this work two different low field mobility models where used. The first is the 

constant low field mobility, which is the default mobility model. It uses constant low-field 

mobilities within each region of a device. This default model is independent of doping 

concentration, carrier densities and electric field. It does account for lattice scattering due to 

temperature according to: 

𝜇!! = 𝑀𝑈𝑁  
𝑇!
300

!!"#$

                                                                                                    (2.7) 

𝜇!! = 𝑀𝑈𝑃  
𝑇!
300

!!"#$

                                                                                                    (2.8) 

where T is the lattice temperature. The low-field mobility parameters: MUN, MUP, TMUN 

and TMUP can be specified in the MOBILITY statement.  

The other low field mobility used is the Albrecht Model which was developed by Albrecht 

et al [64]. This model is dependent on the doping concentration and the lattice temperature. 

 

1
𝜇 𝑁,𝑇!

=
𝐴𝑁.𝐴𝐿𝐵𝑅𝐶𝑇
𝑁0𝑁.𝐴𝐿𝐵𝑅𝐶𝑇

𝑇!
𝑇0𝑁.𝐴𝐿𝐵𝑅𝐶𝑇

!!
!
𝑙𝑛 1 + 3

𝑇!
𝑇0𝑁.𝐴𝐿𝐵𝑅𝐶𝑇

! 𝑁
𝑁0𝑁.𝐴𝐿𝐵𝑅𝐶𝑇

!!
!

+ 𝐵𝑁.𝐴𝐿𝐵𝑅𝐶𝑇×
𝑇!

𝑇0𝑁.𝐴𝐿𝐵𝑅𝐶𝑇

!
!
+

𝐶𝑁.𝐴𝐿𝐵𝑅𝐶𝑇
exp 𝑇1𝑁.𝐴𝐿𝐵𝑅𝐶𝑇 𝑇! − 1

                               2.9  
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where µ(N,T) is the mobility as a function of doping and lattice temperature, N is the total 

doping concentration, and TL is the lattice temperature. AN.ALBRCT, BN.ALBRCT, 

CN.ALBRCT, N0N.ALBRCT, T0N.ALBRCT and T1N.ALBRCT are user-specifiable 

parameters on the MOBILITY statement. Similar expression is used for holes with the user-

defined parameters AP.ALBRCT, BP.ALBRCT, CP.ALBRCT, N0P.ALBRCT, 

T0P.ALBRCT and T1P.ALBRCT.  

To take the saturation effect into account, the Parallel Electric Field-Dependent Mobility is 

used which models the saturation velocity [65]. 

𝜇! 𝐸 = 𝜇!!
1

1+ 𝜇!!  𝐸
𝑉𝑆𝐴𝑇𝑁

!"#$%

!
!"#$%

                                                                  (2.10) 

 

𝜇! 𝐸 = 𝜇!!
1

1+
𝜇!!  𝐸
𝑉𝑆𝐴𝑇𝑃

!!"#$

!
!"#$%

                                                                    (2.11) 

Here, E is the parallel electric field and 𝜇!! and 𝜇!!  are the low-field electron and hole 

mobilities respectively. 

Impact ionization model 

In high electric field regions, free carriers accelerate and collide with the crystal atoms. If the 

energy acquired by the electrons reaches the ionization energy, more free carriers will be 

generated. If the generation rate of these free carriers is sufficiently high, this process will 

eventually lead to avalanche breakdown. Equation 2.12 describes the general impact 

ionization process. 

𝑮 = 𝜶𝒏 𝑱 𝒏 + 𝜶𝒑 𝑱 𝒑                                                                                                  (2.12) 

Here, G is the local generation rate of electron-hole pairs, 𝜶𝒏 and 𝜶𝒑 are the ionization 

coefficients for electrons and holes and 𝑱𝒏 and 𝑱𝒑 are their current densities. The ionization 

coefficient represents the number of electron-hole pairs generated by a carrier per unit 

distance travelled.  In this work, the model relating the impact ionization coefficients to the 

electric field in the direction of the current is used. This is the most physically sound and is 
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the default model for the field dependence of the impact ionization coefficients. Equation 

2.12 can be written as: 

𝑮 = 𝜶𝑵
𝑬. 𝑱𝒏
𝑱𝒏

𝑱𝒏 + 𝜶𝒑
𝑬. 𝑱𝒑
𝑱𝒑

𝑱𝒑                                                                  (2.13) 

If the dot product of E and J is negative, then the field component is taken as 0. 

Consequently, impact ionization may only occur when a current is dominated by the drift 

term. 

Selberherr’s Impact Ionization Model 

The ionization rate model proposed by Selberherr [66] is a variation of the classical 

Chynoweth model [67]. The Selberherr model is based upon the following expressions [68]: 

𝜶𝒏 = AN  𝑒
!!"
!

   !"#$%

                                                                                                          (2.14) 

𝜶𝒑 = AP  𝑒
!!"
!

   !"#$%

                                                                                                          (2.15) 

where E is the electric field in the direction of current flow at a particular position in the 

structure and the parameters AN, AP, BN, BP, BETAN, and BETAP are specified by the 

user. 

The bound charge at the AlGaN/GaN interface:  

The introduction of the positive bound charge at the AlGaN/GaN interface is one of the most 

important steps for the simulation of the HEMT. In all the simulated HEMTs, the GaN and 

AlGaN layers are grown in the [0001] direction i.e. Ga-face. Moreover, the GaN layer is 

assumed to be relaxed while the AlGaN layer is stretched so that its lattice constant matches 

that of GaN. This will result in the formation of a positive bound charge as explained in 

section 1.6. 

𝜎   = 𝑃!"#$% − 𝑃!"#                                                                                                      (2.16) 

where 𝑃!"#$%   and 𝑃!"#  are the magnitudes of the polarization fields in the AlGaN and GaN 

layers respectively. Since the GaN layer is assumed to be relaxed and the AlGaN layer 

stretched, we get: 

𝑃!"# = 𝑃!"#
!"                                                                                                                             (2.17) 
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𝑃!"#$% = 𝑃!"#$%
!" + 𝑃!"#$%

!"                                                                                                   (2.18) 

where 𝑃!" and 𝑃!" are the spontaneous and piezoelectric polarization fields. 

The spontaneous polarization of the AlGaN layer is calculated as: 

𝑃!"!!"#
!" = 𝑥.𝑃!"#

!" + 1− 𝑥 𝑃!"#
!"                                                                                 (2.19) 

The piezoelectric polarization in the AlGaN layer is expressed in equation 1.20 as: 

𝑃!" = 2  
𝑎 − 𝑎!
𝑎!

𝑒!" − 𝑒!!
𝐶!"
𝐶!!

 

Figure 2.3 shows the band diagram of the HEMT before and after introducing the positive 

bound charge.  

 

The addition of the positive polarization charge bends the conduction band at the 

AlGaN/GaN interface. This will result in the formation of a triangular well. At equilibrium, 

the electrons populating in the region where the Fermi level is above the triangular well, have 

an enhanced mobility that was manually introduced to the simulator (2DEG mobility).   

The values of the spontaneous polarization (Psp), lattice (a0), elastic and strain constants (e31, 

e33, C13, C33) are shown in table 2.1 [69][70][71]. 

	  

Figure 2.3 Band diagram with and without the positive bound charge at the AlGaN/GaN interface 
showing the creation of the triangular well after the bending of the conduction band due to the 

introduced positive charge  
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To calculate the above mentioned parameters for AlGaN a linear interpolation was used as 

shown in equation 2.20 

𝑍!"!!"#
   = 𝑥.𝑍!"#   + 1− 𝑥 𝑍!"#                                                                                       (2.20) 

2.3.3. Simulator calibration 

To calibrate the simulation, experimental results from a normally-on HEMT device were 

used. The schematic cross-section of the normally-on HEMT used for calibration is shown in 

figure 2.4. The thicknesses of the AlGaN and GaN layers are 30 nm and 1.1 µm respectively.  

 

 Unit GaN AlN Al0.25GaN 

𝑷  𝒔𝒑 C/m2 -0.081 -0.029 -0.068 

𝒆𝟑𝟏 C/m2 -0.49 -0.60 -0.5175 

𝒆𝟑𝟑 C/m2 0.73 1.46 0.9125 

𝑪𝟏𝟑 GPa 103 108	   104.25 

𝑪𝟑𝟑 GPa 405 373 397 

𝒂𝒐 nm 0.3189 0.3112 0.316975 

𝜺𝒓 / 9.5 9 9.375 

Table 2.1 The values of the spontaneous polarization, lattice, elastic and strain constants for 
GaN and AlN [69][70][71] 

	  

	  

Figure 2.4 Geometrical and technological parameters used for the normally-on HEMT structure 
and the calibration of the TCAD simulations 
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In ATLAS, the transition layers were substituted by a GaN layer with a doping concentration 

of 1012 cm-3 as shown in figure 2.5. Electrically, this layer has the same effect as the 

transition layers. They are both semi-insulating.  

 

The thickness of the GaN layer substituting the transition layers was increased to 0.5 µm so 

that the simulated breakdown voltage reaches 280 V, which is the experimental breakdown 

voltage of the studied HEMT. The default impact ionization parameters used for the 

simulations are shown in table 2.2 [72]. 

 

To calibrate the simulator, the density and energy of acceptor traps (in GaN and AlGaN 

layers) as well as the density of the two dimensional electron gas were tuned. As shown in 

figure 2.6, the threshold voltage, transconductance and off-state current of the simulated 

structure match the ones experimentally measured. 

	  

Figure 2.5 Schematic cross-section of the simulated structure  
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Silicon

UID-GaN – Doping: 1016 cm-3
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AirAir
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GaN – Doping: 1012 cm-3 0.5 µm

 AN AP BN BP BETAN BETAP 

Unit cm-1 V/cm - 

 2.52×108 5.37×106 3.41×107 1.96×107 1 1 

Table 2.2 Default impact ionization parameters used during the simulation of the breakdown voltage  
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To change the density of the 2DEG, the bound charge at the AlGaN/GaN interface was 

multiplied by a fitting parameter K as shown in equation 2.21: 

𝜎 = 𝐾 ∗
𝑃𝑠!"#+  𝑃𝑝𝑧!"# − 𝑃𝑠!"#$% − 𝑃𝑝𝑧!"#$%

𝑞                                                         (2.21) 

K: Fitting parameter (used to fit the threshold voltage) 

A list of parameters used during the simulation are shown in table 2.3[73][74]. 

 

Other parameters are derived from the constants shown in table 2.2 such as: 

Bandgap of AlGaN [75]: 

𝐸!!"#$% = 𝑥.𝐸!!"# + 1− 𝑥 .𝐸!!"# − 1.3. 𝑥. 1− 𝑥                                               (2.22) 

	  

Figure 2.6 Comparison of experimental and simulated Id(Vgs) transfer characteristics showing a 
clear match for the threshold voltage and transconductance 
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Gate to Source voltage Vgs (V) 

Simulation 
Experiment 

Vds = 10 V 

Electron affinity of GaN 4.1 eV 

Gate workfunction 5.1 eV 

Density of acceptor traps 1017 cm-3 

Energy of acceptor traps as measured from the conduction band 0.368 eV 

Conduction band offset 𝚫𝑬𝒄 0.7 

Table 2.3 List of parameters used during the simulation 
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Affinity of AlGaN: 

𝜒!"#$% = 𝜒!"# − Δ𝐸!                                                                                                       (2.23) 

2.3.4. Normally-off structures simulated 

After calibrating the simulator, two new concepts for normally-off HEMT structures are 

proposed.  Until now, all the proposed normally-off structures introduced external agents 

inside or at the top of the barrier layer. The idea behind the two concepts is to introduce an 

external agent below the gate, under the AlGaN/GaN interface to control the density of 

channel electrons below the gate. In this work, the external agents are either negative 

Fluorine ions or a p-doped region. 

2.3.4.1. Fluorine implantation below the channel 

In this structure, we propose the implantation of negative Fluorine ions below the 

AlGaN/GaN interface. To simulate the effect of the implanted Fluorine ions, negative charge 

was added inside the GaN layer. To do that using ATLAS, the layer in which negative ions 

are to be implanted was split into two layers with the same material. This will generate a 

homo-interface inside the layer. At this interface, a fixed negative charge is added as shown 

in figure 2.7. The position of the charge can be varied by changing the thickness of the split 

layer.  

 

The profile of the concentration of Fluorine ions, resulting from this approach, differs from 

the experimental profile. However, its effect on the transfer characteristics can be imitated by 

varying the concentration of negative charge at the interface. The use of a Fluorine equivalent 

interface charge was used by [76] to derive a comprehensive analytical model for the 

threshold voltage of fluorinated MOS-HEMTs. 

	  

Figure 2.7 Strategy used to simulate the effect of Fluorine ions using ATLAS 
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To confirm the use of a Fluorine equivalent interface charge, the structures proposed in 

[49]((conventional normally-on HEMT and new normally-off HEMT with Fluorine in the 

AlGaN layer) were studied using the simulator with the previously tuned parameters. In 

figure 2.8, the experimental results and the simulated ones are compared and show a clear 

match.  

 

It is worth noting that the mobility of the 2DEG in the normally-off HEMT structure (after 

Fluorine implantation in the AlGaN layer) was used as a fitting parameter and was reduced 

from 1500 cm2/V.sec to 500 cm2/V.sec. This mobility degradation is due to the scattering 

between the electrons and the Fluorine ions present in the channel. 

When studying the normally-off structure with Fluorine implantation, the constant low field 

mobility was used. The parameters used are shown in table 2.4 

 

	  

Figure 2.8 Comparison between the experimental transfer characteristics Id(Vgs) obtained in [46] 
and the simulated ones using the calibrated simulator, for normally-on HEMT and HEMT with 

Fluorine implanted in the barrier layer 
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 MUN MUP 

GaN bulk  900 10 

AlN bulk 300 10 

2DEG 1500 10 

Table 2.4 Parameters for the constant low field mobility used during the simulation of the 
normally-off HEMT with Fluorine implantation 
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2.3.4.2. Buried p-region 

In this structure, we propose the introduction of a p-region below the gate under the 

AlGaN/GaN interface i.e. below the channel of the HEMT. A schematic cross-section of this 

structure is shown in figure 2.9. 

When studying the structures with buried p-regions or the Gate Injection Transistors (figure 

1.24), the ALBRCT low field mobility was used to take into account the variation of the 

mobility with the doping concentration. The parameters used during the simulation for the 

ALBRCT model are shown in table 2.5.  

Since in the HEMT the current flows in a very narrow region at the AlGaN/GaN interface, 

the output current of the device is not very sensitive to the mobility in the bulk of AlGaN and 

GaN layers.  

In the following chapters, the new proposed normally-off structures are shown. The structure 

with Fluorine implanted below the channel is discussed in Chapter 3. In Chapter 4, the 

normally-off HEMT with a buried P-region will be examined. 

 

	  

Figure 2.9. Schematic cross-section of the HEMT with a buried p-region 

GaN

AlGaN

Transition layers

Substrate 

Source Gate Drain

P-GaN

 AN.ALBRCT BN.ALBRCT AN.ALBRCT BN.ALBRCT 

GaN bulk 5×104 5×104 0.07 0.07 

2DEG 1.5×104 1.5×104 0.07 0.07 

P-GaN 1.5 1.5 0.07 0.07 

Table 2.5 Parameters for the ALBRCT low field mobility used during the simulation of the 
normally-off HEMT with buried p-region and the GIT 
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2.4. Conclusion 

To examine the electric characteristics of our proposed normally-off HEMT design, the 

commercial TCAD simulation tool from Silvaco was used. The simulator was calibrated 

using experimental data from a normally-on HEMT device.  The energy and density of the 

accepter traps as well as the density of the two dimensional electron gas were tuned so that 

the simulated transconductance, threshold voltage and off state current match the ones 

experimentally measured. Moreover, the transition layers were substituted by an intrinsic 

GaN layer. The thickness of this layer was increased to fit the vertical breakdown voltage of 

the device. In the proposed normally-off designs, Fluorine ions or p-regions are introduced 

below the channel. To simulate the effect of Fluorine implantation, fixed negative sheet 

charge was introduced.  
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A normally-off HEMT with Fluorine 

implantation below the channel 
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3.1. Introduction 

The implantation of negative Fluorine ions is a well-known method used to achieve 

normally-off operation in HEMTs [45][46][47][48][49]. For now, all the normally-off 

HEMTs based on this technique implant the Fluorine ions above the channel. Although this 

method is capable of achieving normally-off operation, small amount of negative Fluorine 

ions penetrate into the channel during implantation and cause mobility degradation [48]. 

In this chapter, we propose the implantation of negative Fluorine ions below the channel 

rather than above it. To introduce the negative Fluorine ions, the strategy explained in section 

2.3.4.1 is used. The dimensions and physical properties of the studied structure are the same 

as the normally-on HEMT used for calibration.  

3.2. HEMT with Fluorine implanted below the channel 

3.2.1. Fluorine implantation below the channel 

A schematic cross-section of the simulated structure is shown in figure 3.1. The distance "d" 

between the Fluorine ions and the AlGaN/GaN interface is 15 nm. The width of the region 

where negative charge is introduced is equal to 1 µm.  

 

The concentration of the Fluorine ions, called Fimp, is varied. It can be seen from figure 3.2 

that the threshold voltage increases with increasing Fluorine concentration. When the 

Fluorine concentration reaches 8×1012 cm-2, the HEMT becomes normally-off with a 

threshold voltage of 0.5 V. 

	  

Figure 3.1 Schematic cross-section of the HEMT with Fluorine implanted in GaN below the 
channel 
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To explain the increase in the threshold voltage with the Fluorine concentration, the band 

diagram through CUT in figure 3.1, is shown in figure 3.3.  

 

The energy gap between the conduction band and the Fermi level increases as the Fluorine 

concentration increases. This is manifested through the uplifting in the conduction band in the 

region where Fluorine is implanted. This raise causes the elevation of the conduction band at 

the AlGaN/GaN interface. If the Fluorine concentration is strong enough to raise the 

conduction band at the interface above the Fermi level, normally-off HEMT can be achieved 

as shown in figure 3.3, with a concentration of 8 × 1012 cm-2. 

	  

Figure 3.2 Simulated Ids(Vgs) transfer characteristics showing the increase in the threshold voltage 
with the Fluorine concentration 
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Figure 3.3 Conduction band along CUT - see figure 3.1 - at various Fluorine concentrations 
showing the uplifting of the triangular well at high Fluorine concentration 
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3.2.2. Comparison between implantation in the barrier layer and implantation below 
the channel 

In order to compare the implantation in the barrier layer (i.e. in the UID-GaN layer) to that 

below the channel (i.e. in the AlGaN layer), the transfer characteristics of the conventional 

normally-on HEMT (“Null”) and HEMT with Fluorine implanted in AlGaN layer, at various 

concentrations, are simulated and shown in figure 3.5. For a fair comparison, the Fluorine 

ions are located 15 nm above the AlGaN/GaN interface as shown in figure 3.4. 

 

 

Although the threshold voltage also increases with increasing the Fluorine concentration, the 

concentration required to achieve normally-off operation with a threshold voltage of 0.5 V is 

	  

Figure 3.4 Schematic cross-section of the HEMT with Fluorine implanted in the AlGaN layer 
(barrier layer) 
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Figure 3.5 Id (Vgs) transfer characteristics of the conventional normally-on HEMT and HEMTs 
with Fluorine implanted in AlGaN at various concentrations 
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equal to 14 × 1012 cm-2. In the case of implantation below the channel, a concentration of 

only 8 × 1012 cm-2 was required to achieve the same threshold voltage. This makes our 

proposed technique more efficient.  

To explain the better efficiency, the band diagrams for the two structures are shown in figure 

3.6. In both cases, the threshold voltage is 0.5 V. Since HEMTs attain a Schottky gate, the 

conduction band at the top of the AlGaN layer is pinned at a fixed energy equal to the 

Schottky barrier. If it was not for that pinning, the conduction band in AlGaN would have 

risen higher when Fluorine is implanted, causing a higher shift in the threshold voltage.  

Moreover, it can be noted from the band diagram that the confinement of the 2DEG under the 

gate is superior in the case of Fluorine implanted in GaN (see zoom in Figure 3.6). 

3.2.3. Variations of the threshold voltage with the distance "d" 

Figure 3.7 shows the variations of the threshold voltage with respect to the distance "d" 

between the AlGaN/GaN interface and the Fluorine ions (figure 3.1), for three different 

Fluorine concentrations.  

It can be seen that, as the distance increases, the threshold voltage decreases. However, the 

rate of decrease is more significant after exceeding a certain critical distance dcritical. In 

addition, the results show that dcritical decreases with the increase in the Fluorine 

concentration: for example, the critical distances at Fluorine concentration of 6×1012, 7×1012 

and 8×1012 cm-2 are 48, 33 and 25 nm respectively. The rate of decrease seems to be 

independent on the Fluorine concentration when d < dcritical. 

	  
Figure 3.6 Band diagrams of HEMT with Fluorine implanted in AlGaN at concentration  

14×1012 cm-2 and HEMT with Fluorine in GaN at concentration 8×1012cm-2; both HEMTs attain a 
threshold voltage of 0.5 V 
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Moreover, it can be noted that the distance d must be below the critical distance for the 

threshold voltage to increase with increasing the Fluorine concentration (as mentioned in 

figure 3.2). For example, for a Fluorine concentration of 6×1012 cm-2 and d = 35 nm,  

Vth = - 0.91 V. Since at this concentration d < dcritical (35 < 48), an increase in the Fluorine 

concentration from 6×1012 to 7×1012 cm-2 will increase Vth from - 0.91 V to - 0.48 V. 

However, at a Fluorine concentration of 7×1012 cm-2, d > dcritical (35 > 33): therefore, the 

increase in the Fluorine concentration from 7×1012 to 8×1012 cm-2 does not increase the 

threshold voltage and Vth remains equal to - 0.48 V. 

dcritical can be extracted and explained from the band diagram. However, it is worth pointing 

out three important aspects of the band diagram.  

The first is the band bending due to the introduction of charge. Positive charge, like the 

bound charge at the AlGaN/GaN interface, decreases the gap between the Fermi level and the 

conduction band. On the other hand, negative charge, like the implanted Fluorine ions, 

increases the gap between the conduction band and the Fermi level. However, since at 

equilibrium the Fermi level is constant, the variation in the gap manifests itself through 

pushing the conduction band downwards in the case of positive charge and upwards in the 

case of negative charge.  

The second aspect is the width of the gap at different Fluorine concentrations. A Fluorine 

concentration of 6×1012 cm-2 can increase the gap up to 3.404 eV. A higher concentration of 

	  

Figure 3.7 Variations of the threshold voltage with the distance "d" between the Fluorine ions and 
the AlGaN/GaN interface at various Fluorine concentrations 
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8×1012 cm-2 can achieve higher gap width up to 3.412 eV. The difference between the 

maximum gap values, at different Fluorine concentrations, is very low (0.008 eV) and it is 

not the reason behind the higher increase in the threshold voltage. Actually, it is the reason 

why the threshold voltage does not increase when d > dcritical (will be discussed in more 

details below).  

The third aspect is that the width of the gap, in the region where Fluorine is implanted, is 

strongly affected by the neighboring positive bound charge at the AlGaN/GaN interface. 

While the positive bound charge pulls the conduction band downwards, the negative Fluorine 

ions push it upwards. Therefore, the negative Fluorine ions will not be able to increase the 

gap to its maximum value unless parting a certain distance from the positive bound charge.  

Figure 3.8 shows the band diagram, along CUT in figure 3.1, with Fluorine implanted at 

various distances d from the AlGaN/GaN interface. The Fluorine concentration is taken equal 

to 7×1012 cm-2. The distance at which the gap, in the region where Fluorine is implanted, 

reaches its maximum value, is dcritical.  The gap remains constant for d > dcritical. From figure 

3.8, we can see that dcritical is equal to 33 nm.  

 

But it is worth noting that, at a given distance below dcritical, as the Fluorine concentration 

increases, the upward push in the conduction band increases (see figure 3.3), hence the 

	  

Figure 3.8 Band diagrams, along CUT in figure 3.1, with Fluorine implanted at various distances 
from the AlGaN/GaN interface. The Fluorine concentration is equal to 7×1012 cm-2 
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maximum gap value can be reached at relatively short distances. That is why dcritical decreases 

with increasing the Fluorine concentration. 

The threshold voltage will not increase with the Fluorine concentration at d > dcritical  since at 

that distance, the gap reaches its maximum value, and further increase in the Fluorine 

concentration will slightly increase the gap (recall second aspect: the increase in the Fluorine 

concentration from  6×1012 cm-2 to  8×1012 cm-2 increases the gap by 0.008 eV). 

3.2.4. Breakdown voltage and off-state current 

To examine the off-state current and the breakdown voltage, the structure shown in figures 

3.1 and 3.4 were studied. However, due to convergence problems at high voltages in the 

normally-off HEMT with high Fluorine concentrations, a smaller x-mole fraction of 0.15 was 

used instead. In this case, a smaller Fluorine concentration of 4.2 ×1012 cm-2 is needed to 

achieve normally-off operation with a threshold voltage of 0.5 V. The same HEMT (x-mole 

fraction of 0.15) with no Fluorine implantation attains a threshold voltage of -2 V.   

 

Figure 3.9 shows the variation of the drain current with the applied drain to source voltage 

Id(Vds). In order to study the two HEMTs in the off-state, i.e. below their threshold voltage, 

the applied gate to source voltage is: Vgs = Vth - 1 V. It is clear that neither the vertical 

	  

Figure 3.9 Simulated Id(Vds) characteristics in the off-state, showing the off-state current and the 
breakdown voltage of the normally-on HEMT and the normally-off HEMT with Fluorine 

implantation below the channel 
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breakdown voltage, nor the off-state current are affected by the implanted Fluorine ions. A 

breakdown voltage of 280 V was obtained in both cases. 

3.2.5. Forward gate voltage 

Although this approach helps increasing the threshold voltage, its disadvantage is that the 

forward gate voltage (the gate voltage at which the gate leaking occurs) decreases with 

increasing the Fluorine concentration. Figure 3.10 shows the variations of the forward gate 

voltage and the threshold voltage with the Fluorine concentration.  It can be seen that this 

decrease in the forward gate voltage limits the increase in the threshold voltage.  

 

To eliminate the gate leakage, and hence push further the limitations of the device, the 

Schottky gate has to be replaced by a MIS gate. This is done by introducing an insulating 

layer below the gate electrode. 

3.3. MIS-HEMT with Fluorine below the channel 

The low forward gate voltage in the above proposed normally-off HEMT limits the increase 

in the threshold voltage. Therefore, to eliminate the gate leakage, an insulating layer is 

introduced below the gate.  

In this work, three different insulators are used: Silicon Oxide (SiO2), Silicon Nitride (Si3N4) 

and Hafnium Oxide (HfO2). An ideal case is studied in which no fixed charge is present 

inside the insulator or at the insulator/barrier interface. The aim of using different types of 

insulators is to see the effect of the permittivity of the insulator on the transfer characteristics 

	  

Figure 3.10 Variations of the threshold voltage and forward gate voltage with the Fluorine 
concentration at Vds=10 V 
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of the device. The relative permittivity (𝜀!) of SiO2, Si3N4 and HfO2 are 3.9, 7.5, and 25 

respectively.  

Now, after introducing the insulating layer, the increase in the threshold voltage with the 

Fluorine concentration will not be limited by the forward gate voltage. Therefore, the effect 

of increasing the Fluorine concentration is studied again to address the limitations of this 

technique.  

3.3.1. Effect of Fluorine concentration 

The simulated structure is shown in figure 3.11. The insulator used is Si3N4 with a thickness 

of 10 nm. The distance between the AlGaN/GaN interface and the implanted Fluorine ions is 

equal to 10 nm. The concentration of the implanted Fluorine ions "Fimp" will be varied.  

 

Although the aim of Fluorine implantation is to achieve normally-off operation, it also can be 

used to reduce the off-state current of a normally-on MIS-HEMT. Figure 3.12 shows the 

transfer characteristics Id(Vgs) for a MIS-HEMT with Fluorine implanted below the channel 

at various concentrations. Implanting Fluorine ions helps to reduce the off-state current. It is 

worth noting that further increase in the Fluorine concentration (Fimp > 4 ×1012 cm-2) will not 

cause further reduction in the off-state current. The lowest off-state current reached is equal 

to that of the normally-on HEMT (the one used for calibration). 

As for the threshold voltage, as expected, it increases with increasing the Fluorine 

concentration. However, a point is reached where further increase in the Fluorine 

concentration does not affect the threshold voltage.  

	  

Figure 3.11 Schematic cross-section of the simulated MIS-HEMT with Fluorine implanted in 
GaN below the channel 
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In figure 3.13, the variations of the threshold voltage with Fimp, at dins = 10, 20 and 40 nm, are 

illustrated. It is clear that the threshold voltage increases with increasing the Fluorine 

concentration. However, a point is reached (Fimp = Foptimum = 12 × 1012 cm-2), where a further 

increase in the concentration no longer affects the threshold voltage. To explain this 

limitation, the band diagram along the CUT of figure 3.11, is shown in figure 3.14. As 

mentioned before, introducing Fluorine ions in a semiconductor will shift the Fermi level 

towards the valence band, thus increasing the gap between the conduction band and the Fermi 

level. However, since at equilibrium the Fermi level is constant, the increase in the gap will 

manifest itself through uplifting the conduction band. Nonetheless, the gap between the Fermi 

level and the conduction band cannot surpass the bandgap of the material in which Fluorine is 

implanted, which is GaN in our case.  

	  

Figure 3.12 Ids(Vgs) transfer characteristics of the MIS-HEMT at various Fluorine concentrations 

for dins = 10 nm 
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Therefore, the threshold voltage will keep on increasing as long as the gap between the 

conduction band and the Fermi level is less than the bandgap. Once the gaps are equal, 

	  

Figure 3.13 Variations of the threshold voltage with the Fluorine concentration at various 

thicknesses of the insulator 
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Figure 3.14 Band diagrams of MIS-HEMT at various Fluorine concentrations 

	  

	  

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26

Co
nd
uc
tio
n 
ba
nd
 (e
V
)

Depth (µm)

Fluorine concentration 
Fimp (cm-2)

Null

2 10¹²

4 10¹²

6 10¹²

8 10¹²

8.83 10¹²

10 10¹²

12 10¹²

20 10¹²

G
at
e

Si
3N
4

AlGaN G
aN

G
aNFimp



66	  
	  

Fluorine ions will be incapable of increasing the gap and hence lifting further the triangular 

well, which causes the increase in the threshold voltage. 

It should be noted from figure 3.13, that all the curves corresponding to various dins, intersect 

at a common point. The Fluorine concentration associated with this point is named Fcritical and 

will be further discussed in the coming sections. 

3.3.2. Variation of the threshold voltage with thickness of the insulator 

 To further explore the effect of the thickness of the insulator on the threshold voltage, dins is 

varied from 10 nm to 160 nm. The variations of the threshold voltage with the thickness of 

the insulator at various Fluorine concentrations are shown in figure 3.15.  

It is clear that the variation of Vth with dins strongly depends on Fimp. The concentration of 

Fluorine Fcritical, at which the threshold voltage is not affected by the thickness of the 

insulator, is equal to 8.83 × 10-12 cm-2. This concentration corresponds to the intersection 

point in figure 3.13. 

For Fimp < Fcritical, the threshold voltage decreases with increasing dins. On the other hand, 

when Fimp > Fcritical, the threshold voltage increases with increasing dins. The different 

variations in the threshold voltage with respect to the thickness of the insulator is directly 

related to the direction of the y-component of the electric field "Ey" in the AlGaN layer, 

above the region where Fluorine ions are implanted. When Ey = 0, the threshold voltage will 

	  

Figure 3.15 Variations of the threshold voltage with the thickness of the insulator at various 

Fluorine concentrations 
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be unaffected by the thickness of the insulator. If Ey is pointing towards the gate electrode, 

the threshold voltage will decrease with increasing the thickness of the insulator, and vice 

versa: if Ey points towards the substrate, the threshold voltage increases with increasing the 

thickness of the insulator.  

The direction of Ey can be extracted from the profile of the conduction band shown in figure 

3.14 (Ey ∝ dEc/dy; y = depth). In our simulation, the positive y-direction points towards the 

substrate. When Fimp = Fcritical = 8.83 × 1012 cm-2, the conduction band is constant and hence 

Ey = 0.  At Fimp = 8 × 1012 cm-2 < Fcritical the conduction band is decreasing and  then Ey > 0. 

At Fimp = 1 × 1013 cm-2 > Fcritical, the conduction band is increasing and  then Ey < 0. 

3.3.3. Variations with the permittivity of the insulator 

In this section, the effect of the permittivity of the insulator on the transfer characteristics is 

examined. Three different insulators are studied: SiO2, Si3N4 and HfO2 with a relative 

permittivity of 3.9, 7.5 and 25 respectively. Figure 3.16 shows the variations of the threshold 

voltage with the permittivity of the insulator at various Fluorine concentrations.  

 

It can be noted that the variations with respect to the permittivity of the insulator mimics the 

variations with respect to the thickness of the insulator.  When Fimp = Fcritical, no variation in 

the threshold voltage is observed with increasing  𝜀!.  For Fimp < Fcritical, the threshold voltage 

	  

Figure 3.16 Variations of the threshold voltage with the permittivity of the insulator at various 
Fluorine concentrations 
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increases with increasing  𝜀!. On the other hand, when Fimp > Fcritical, the threshold voltage 

decreases with increasing  𝜀!.   

However, the rate of change in the threshold voltage with the thickness of the insulator 

depends on the permittivity of the material. Figure 3.17 shows the variations of the threshold 

voltage with the thickness of the insulator at Fimp < Fcritical for three different insulators. It can 

be seen that although the threshold voltage decreases with increasing the thickness of the 

insulator, the rate of decrease is more severe when the permittivity of the insulator is 

decreased. 

	  

The same applies for the rate of increase on the threshold voltage with the thickness of the 

insulator when Fimp > Fcritical. As shown in figure 3.18, the threshold voltage increases with 

increasing the thickness of the insulator. However, the lower the permittivity of the insulator, 

the faster the increase in the threshold voltage. 

	  

Figure 3.17 Variations of the threshold voltage with the thickness of the insulator at Fimp < Fcritical 
for three different insulators  

 

-6

-5

-4

-3

-2

-1

0

1

0 50 100 150 200

Th
re
sh
ol
d V
ol
ta
ge
 V
th
(V
)

Thickness of the insulator dins (nm)

Fimp = 8 1012 cm-2

HfO2
SiO2
Si3N4



69	  
	  

	  

3.4. Effect on the transconductance  

For now, the threshold voltage can be increased by either increasing the Fluorine 

concentration or by increasing the thickness of the insulator with Fimp > Fcritical. However, 

each approach has its own effect on the transconductance. Figure 3.19 shows the 

transconductance at various thicknesses of Si3N4 with Fimp = 1×1013 cm-2 > Fcritical.  

 

	  

Figure 3.18 Variations of the threshold voltage with the thickness of the insulator at Fimp > Fcritical 
for three different insulators  
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Figure 3.19 Variations of the transconductance with the thickness of the insulator at Fimp > Fcritical 
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It can be seen that, although the threshold voltage increases with this technique, the 

transconductance peak decreases with increasing the thickness of the insulator. On the other 

hand, when the threshold voltage increases with increasing the Fluorine concentration, the 

transconductance remains the same up to a point (Fimp = 6×1012 cm-2) where it undergoes a 

sudden drop (Fimp = 8×1012 cm-2) as shown in figure 3.20. 

 

To explain this drop, the conduction current density is shown in figure 3.21 at Vgs = 6 V and 

Vds = 10 V.  

 

	  

Figure 3.20 gm(Vgs) of the MIS-HEMT at various Fluorine concentrations Fimp at dins = 10 nm 
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Figure 3.21 Conduction current density in the normally-off MIS-HEMT without an AlN interlayer 
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It can be seen that above the implanted Fluorine ions, the current no longer flows near the 

AlGaN/GaN interface but rather near the insulator/AlGaN interface. Since the mobility in the 

AlGaN layer is much lower than that at the AlGaN/GaN interface, a drop in the 

transconductance is obtained once the electrons migrate from the AlGaN/GaN interface to the 

insulator/Gate interface.  

3.5. AlN interlayer for better transconductance 

To resolve this problem, an AlN interlayer is added. Previous studies have used an AlN 

interlayer to increase the 2DEG density and prevent alloy scattering of channel electrons. 

However, in our case, the AlN layer is solely used to imprison the current at the AlGaN/GaN 

interface. 

 

Figure 3.22 shows the transfer characteristics of the normally-off HEMT with and without an 

AlN interlayer. The thickness of the AlN interlayer is 2 nm. Moreover, since the AlN 

interlayer increases the 2DEG density, higher Fluorine concentration is required to achieve a 

desired threshold voltage: Fimp = 8×1012 cm-2 in the MIS-HEMT without AlN and 9.4 ×1012 

cm-2 in the MIS-HEMT with AlN. It can be seen that the added AlN interlayer improves the 

transconductance since it imprisons the current at the AlGaN/GaN interface, as shown in 

figure 3.23 which shows the conduction current density at Vgs = 6 V and Vds = 10 V. 

 

Figure 3.22 Id(Vgs) and gm(Vgs) of the MIS-HEMT with and without an AlN interlayer 
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3.6. Conclusion 

Fluorine implantation in the barrier layer is a well known technique used to achieve 

normally-off operation in HEMTs. However, when this technique is used, a small amount of 

Fluorine ions penetrate into the channel, presenting themselves as impurities leading to 

mobility degradation. In this chapter, the idea of implanting Fluorine below the channel, 

rather than above it, was explored. Simulation results have shown that the threshold voltage 

increases with increasing the Fluorine concentration. However, for this increase to happen, 

the distance between the Fluorine ions and the AlGaN/GaN interface "d" must be below a 

critical value dcritical. dcritical decreases with increasing the Fluorine concentration. Moreover, 

when compared to implanting above this channel, implanting below the channel is more 

efficient when it comes to the Fluorine concentration required to achieve a certain threshold 

voltage, offers better confinement for the 2DEG below the gate and eliminates the scattering 

of channel electrons with Fluorine ions. Fortunately, the proposed technique neither affects 

the vertical breakdown voltage nor the off-state current. However, the forward gate voltage 

that decreases with increasing the Fluorine concentration, limits further increase in the 

threshold voltage. Therefore, to address the limitations of this technique, a sensitivity analysis 

was carried out for normally-off MIS-HEMTs with Fluorine implanted below the channel 

showing the effect of Fluorine concentration, permittivity and thickness of the insulator on the 

	  

Figure 3.23 Conduction current density in the normally-off MIS-HEMT with an AlN interlayer 
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performance of the device. Simulation results have confirmed the ability of Fluorine ions to 

increase the threshold voltage when implanted below the channel. However, a point is reached 

where further increase in the Fluorine concentration will not affect the threshold voltage. This 

is due to the fact that the gap between the Fermi level and the conduction band reaches the 

bandgap of the material in which Fluorine is implanted. Moreover, the effect of the thickness 

of the insulator on the threshold voltage strongly depends on the Fluorine concentration 

implanted. An increase in the thickness of the insulator will increase the threshold voltage if 

the concentration implanted is above Fcritical (in our simulation, Fcritical = 8.83 × 1012 cm-2), 

decrease it if the concentration implanted is below Fcritical and the threshold voltage is 

unaffected if the concentration implanted is equal to Fcritical. The same behavior was obtained 

for the variation of threshold voltage with the permittivity of the insulator where three 

different behaviors were obtained depending on the implanted concentration. Although the 

idea of implanting Fluorine ions below the channel is capable of achieving normally-off 

operation, upon the application of high gate voltage in the case of MIS-HEMT, channel 

electrons above the Fluorine ions migrate from the AlGaN/GaN interface to the 

insulator/AlGaN interface causing a drop in the transconductance. To resolve this problem, an 

AlN interlayer can be added to imprison the electrons at the AlGaN/GaN interface.  
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Chapter 4 
A normally-off HEMT with a buried  

p-GaN region 
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4.1. Introduction 

For now, all the normally-off structures introduce agent inside or above the barrier layer. 

These agents lift the conduction band in the region where they are introduced causing an 

elevation in the triangular well at the AlGaN/GaN interface and hence increase the threshold 

voltage.  

In this chapter, a new idea is explored: it is the introduction of a p-region under the gate and 

below the AlGaN/GaN interface. The conduction band will be uplifted in the p-region and 

will cause the triangular well at the AlGaN/GaN interface to elevate. Normally-off operation 

is achieved if the uplifting of the conduction band in the p-region is strong enough to elevate 

the triangular well above the Fermi level. Figure 4.1 shows the band diagram of a 

conventional normally-on HEMT and a normally-off HEMT using the proposed concept.    

 

The position of p-region below the channel in the UID-GaN layer gives rise to the name 

"buried p-region". A sensitivity analysis is performed, showing the effect of the doping 

concentration, position and dimensions of the p-region on the threshold voltage of the device. 

Moreover, the study includes the effect of a buried p-region in the case of the Gate Injection 

Transistor (GIT).  

4.2. HEMT with buried p-region 

The schematic cross-section of the simulated structure is shown in figure 4.2. The dimensions 

and physical parameters are taken the same as the normally-on HEMT used for calibration 

(figure 2.5). A p-GaN region is introduced below the AlGaN/GaN interface. The distance 

	  

Figure 4.1 Band diagram of a conventional normally-on HEMT and the HEMT with a buried  
p-region showing normally-off operation in the later 
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between the top of the p-region and the AlGaN/GaN interface is "d". The thickness and width 

of the p-GaN region are named "Pth" and "Pw" respectively. 

 

Before starting the sensitivity analysis, it is worth noting that all the variations in the 

threshold voltage will be explained from the shape of the band diagram through CUT 1 and 

CUT 2 in figure 4.2.  

It is well known that in p-doped semiconductors the Fermi level shifts towards the valence 

band and, as the p-doping concentration increases, the shift increases. This shift can be seen 

as an increase in the gap between the conduction band and the Fermi level.  In semiconductor 

devices, since at equilibrium the Fermi level is constant, the increase in the gap between the 

conduction band and the Fermi level will result in the uplifting of the conduction band in the 

region where p-dopants are introduced.  

Consider a pure p-doped semiconductor without any surrounding influencing its band 

diagram. The Fermi level will be shifted towards the valence band and the energy gap 

between the conduction band and the Fermi level will be equal to ECF0.  

However, in semiconductor devices, the gap between the conduction band and the Fermi 

level and hence the uplifting of the former strongly depends on the environment surrounding 

the p-region. In this case, the gap between the conduction band and the Fermi level will vary 

inside the p-region and is denoted by ECF. For ECF to reach ECF0, the p-region must achieve 

certain dimensions that will be discussed in the following chapter. 

 

	  

Figure 4.2 Schematic cross-section of the simulated HEMT with buried p-region  
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4.2.1. Effect of the width of the p-region Pw 

Figure 4.3 shows an example of the variation of the threshold voltage with the width of the  

p-region "Pw". 

 

In this simulation, the doping concentration of the p-region NA is considered constant 

throughout the p-region (uniform distribution) and equal to 1017 cm-3. Pth and d are 400 nm 

and 30 nm respectively. The threshold voltage increases with increasing Pw until a point is 

reached where further increase in Pw barely affects the threshold voltage. Let Pw,sat denotes 

the width above which no significant increase in the threshold voltage is observed. To explain 

these variations, the band diagrams along CUT 2 in figure 4.2, for different values of Pw, are 

shown in figure 4.4.  

	  

	  
Figure 4.3 Variation of the threshold voltage with the width of the p-region 
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Figure 4.4 Band diagrams along CUT2 in figure 4.2 showing the uplifting of the conduction band 

in the p-region 
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For the p-region to properly establish itself inside a device, a certain width is required. The 

full potential of the p-region in shifting the threshold voltage is obtained once ECF inside the  

p-region reaches its maximum value ECF,MAX. It worth noting that the highest value ECF,MAX 

can reach is ECF0. In figure 4.4, Ecf inside the p-region increases with increasing Pw. This 

corresponds to the increase in the threshold voltage with Pw. The width at which ECF reaches 

ECF,MAX is Pw,sat. In figure 4.4, due to the positive bound charge at the AlGaN/GaN interface, 

ECF,MAX fails to reach ECF0 (ECF0 = 3.351 eV for a p-doping of 1018 cm-3). 

One of the most important aspects in the buried p-region is that its width "Pw" should not 

exceed the width of the gate. As mentioned before, the buried p-region will elevate the 

triangular well above the Fermi level. This will cause channel depletion above the p-region at 

zero gate voltage. However, the channel electrons below the gate can be restored by applying 

a positive gate voltage. Assume that the width of the p-region exceeds that of the gate, the 

channel electrons located above the p-region will be depleted, and, since the gate can only 

restore electrons located below it, some regions, even after the application of a positive gate 

voltage, will remain depleted as shown in figure 4.5. In that case, the HEMT will never turn 

on. 

 

4.2.2. Effect of the thickness of the p-region Pth 

Figure 4.6 shows an example of variations of the threshold voltage with the thickness of the 

p-region "Pth" at various doping concentrations. 

	  

Figure 4.5 Schematic cross -section showing the distribution of the 2DEG before and applying a 
gate voltage for a HEMT with a buried p-region having a wider width than that of the gate. The 

device will never turn on regardless of the applied gate voltage   
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It is clear that the variations of the threshold voltage mimic the variation with Pw. The 

threshold voltage increases with increasing Pth until a point is reached (Pth = Pth,sat) where 

further increase in Pth does not affect the threshold voltage. Using a width of 1 µm ensures 

that p-region establishes itself in the horizontal direction. To see the variations of the band 

diagrams in the vertical direction, the conduction band along CUT1 in figure 4.2 is shown in 

figure 4.7 for various Pth.	  	  

 

	  

Figure 4.6 Variations of the threshold voltage with the thickness of p-region "Pth" at various 
doping concentrations  

 

-4

-3.5

-3

-2.5

-2

-1.5

0 100 200 300 400

Th
re
sh
ol
d 
vo
lta
ge
 (V
)

Thickness of the p-region Pth (nm)

10¹8
5 10¹7
10¹7

P-doping 
concentration (cm-3)

Pw = 1 µm
d = 30 nm

	  

Figure 4.7 Band diagrams along CUT 2 in figure 4.2 showing the profile of the conduction band 
for different values of Pth 
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Although p-doping increases the gap between the Fermi level and the conduction band, when 

a p-doped region is inserted between 2 other layers, the gap is affected by its surrounding. For 

the gap of the sandwiched p-region (ECF) to be equal to the gap of a p-region with no 

surrounding (ECF0), a certain thickness, dependent on the doping concentration, must be 

obtained. In other words, inside a sandwiched p-doped region, ECF will increase with 

increasing the thickness, and if the thickness is big enough, ECF can reach a constant value 

(ECF,MAX) equals to ECF0. Once the thickness of the p-region allows ECF,MAX to reach ECF0, no 

further increase in the threshold voltage will be obtained when further increasing Pth. 

It can be seen from Figure 4.7, at the doping concentration of 1018 cm-3, when the thickness is 

below 50 nm, the gap (ECF,MAX) increases with increasing the thickness; however, it fails to 

reach 3.351 eV (ECF0 for a p-doping of 1018 cm-3). On the other hand, when the thickness is 

50 nm and above, the increase in the gap in the p-doped region reaches its limit which is  

3.37 eV (ECF,MAX = ECF0). 

To explain the decrease in Pth,sat with increasing the doping concentration, the band diagrams 

along CUT 1 in figure 4.2 are shown in figure 4.8 for two doping concentrations.  

 

It can be seen that at, a thickness of 50 nm (Pth,sat for a doping concentration of 1018 cm-3; 

𝑃!!,!"#!"!" ), ECF,MAX reaches ECF0 for a doping concentration of 1018 cm-3 but fails to do the same 

at the doping of 5×1017 cm-3. With higher doping concentrations, shorter thicknesses are 

required for ECF,MAX to reach ECF0. 

	  

Figure 4.8 Band diagrams along CUT 2 in figure 4.2 showing the profile of the conduction band 
for two different doping concentrations at Pth=50 nm. With higher doping concentrations, shorter 

thicknesses are required for ECF,MAX to reach ECF0 
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Although the threshold voltage increases with increasing the thickness of the p-region, the 

threshold voltage remains negative and hence the HEMT remains normally-on. This is 

because, in the above studied structure, the p-region was not "strong" enough to lift the 

triangular well above the Fermi level. The positive bound charge at the AlGaN/GaN interface 

is pushing the triangular well downwards. So, in order to lift the triangular well above the 

Fermi level and hence achieve normally-off operation, either the downward push of the 

triangular well must be decreased or the effectiveness of the p-region must be increased.  

4.2.3. Effect of x-mole fraction: decreasing the download push of the triangular well 

As mentioned before, the positive bound charge at the AlGaN/GaN interface is pushing the 

triangular well downwards. This push increases with increasing the density of positive bound 

charge. The aim of inserting the p-region below the channel was to overcome the downward 

push of the triangular well by uplifting the conduction band in the vicinity of the AlGaN/GaN 

interface. But since the uplift of the conduction band in the p-region was insufficient to 

elevate the triangular well above the Fermi level, we suggest the decrease in the downward 

push of the triangular well. That can be done by decreasing the bound charge density at the 

interface by decreasing the x-mole fraction in the AlGaN layer. Indeed, a decrease in the  

x-mole fraction will reduce the strain in the AlGaN layer resulting in the reduction of the 

piezoelectric polarization field and hence lower bound charge. Note that, the bound charge 

can be reduced also by decreasing the thickness of the AlGaN layer as mentioned in section 

1.7.3. 

Figure 4.9 shows as example of variations of the threshold voltage with the thickness of the 

p-region at various x-mole fractions. It can be seen that, while a doping concentration of 

5×1017 cm-3 fails to shift the threshold voltage to positive values at an x-mole fraction of 

0.25, normally-off operation was achieved when the x-mole fraction was reduced to 0.15. In 

figure 4.10, the band diagrams show the uplifting of the conduction band above the Fermi 

level when the x-mole fraction is decreased.  
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The other way to achieve normally-off operation is to increase the effectiveness of the  

p-region. This can be done by either decreasing the distance between the p-region and the 

AlGaN/GaN interface or increasing the p-doping concentration NA.  

4.2.4. Effect of p-doping concentration 

Figure 4.11 shows an example of variations of the threshold voltage with the doping 

concentration in the p-region at various distances "d" from the AlGaN/GaN interface. It can 

be seen that the threshold voltage increases with increasing the doping concentration. 

	  

Figure 4.9 Variation of the threshold voltage with the thickness of p-region "Pth" at various x-
mole fractions  
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Figure 4.10 Band diagrams along CUT 2 in figure 4.2 showing the profile of the conduction band 
at two different doping x-mole fractions for Pth=200 nm. The elevation of the triangular well 

above the Fermi level is obtained at an x-mole fraction of 0.15 (see zoom)  
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However, there exists a doping concentration above which further increase in the doping 

concentration barely affects the threshold voltage. This can be seen at d = 30 nm, at doping 

concentrations beyond 1019 cm-3. This phenomenon was not observed in the case of 10 and 20 

nm since the doping concentration, at which the threshold voltage saturates shifts the 

threshold voltage to values beyond the forward gate voltage. The band diagram along CUT1 

in figure 4.2, at d = 10 nm, is shown in figure 4.12 for various doping concentrations. 

	  

	  

 

	  
Figure 4.11 Variations of the threshold voltage with the doping concentration in the p-region at 

various distances 
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Figure 4.12 Band diagrams along CUT1 in figure 4.2 showing the profile of the conduction band 

at different p-doping concentrations; d = 10 nm 
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Normally-off operation is achieved at a doping concentration of 2 × 1018 cm-3. This is shown 

in the zoomed part of figure 4.12 where the conduction band is uplifted above the Fermi 

level.  

 

It is worth noting that the thickness and width of the p-region are always taken large enough 

to insure maximum efficiency in terms of shifting the threshold voltage. In our simulation:  

Pw = 1 µm and Pth = 400 nm. The band diagrams along CUT2 in figure 4.2, at d = 10 nm, are 

shown in figure 4.13 at various doping concentrations. It can be seen that the increase in the 

threshold voltage does not only come from the increase in ECF0 with doping concentration, 

but majorly from the rate of increase in ECF inside the p-region (figure 4.12). In other words, 

when increasing the doping concentration, the increase in ECF,MAX is much higher than the 

increase in ECF0 (ΔECF0 < ΔECF,MAX; figure 4.13). 

4.2.5. Effect of the distance "d" between p-region and the AlGaN/GaN interface 

The distance "d" between the top of the p-region and the AlGaN/GaN interface is one of the 

most sensitive parameters in this structure. An example of variations of the threshold voltage 

with the distance d is shown in figure 4.13 for different doping concentrations. Two 

important things can be noted out. First, the effectiveness of the p-region increases when the 

p-region approaches the AlGaN/GaN interface since the threshold voltage increases with 

decreasing d. However, the rate of increase strongly depends on the doping concentration. 

Secondly, the increase in the threshold voltage with the doping concentration depends on the 

	  
Figure 4.13 Band diagrams along CUT2 in figure 4.2 showing the profile of the conduction band 

at different doping concentrations; d = 10 nm 
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distance d. As the p-region starts approaching the AlGaN/GaN interface, the sensitivity of 

threshold voltage to the doping concentration starts to increase. For example, at d=10 nm the 

threshold voltage increases from -1.8 V to 0.18 V when the doping concentration is increased 

from 5×1017 cm-3 to 2×1018 cm-3. On the other hand, when d = 60 nm, such increase in the 

doping concentration barely affects the threshold voltage.     

 

4.3. MIS-HEMT with a buried p-region 

Although the buried p-region grants the HEMT normally-off operation, the gate leakage 

limits the increase in the threshold voltage. Therefore, an insulating layer is introduced below 

the gate to eliminate the gate leakage. 

In this work, three different insulators are used: Silicon Oxide (SiO2), Silicon Nitride (Si3N4) 

and Hafnium Oxide (HfO2). An ideal case is studied in which no fixed charge is present 

inside the insulator or at the insulator/barrier interface. The aim of using different types of 

insulators is to see the effect of the permittivity of the insulator on the transfer characteristics 

of the device. The relative permittivity (𝜀!) of SiO2, Si3N4 and HfO2 is 3.9, 7.5, and 25 

respectively. The structure for all the coming MIS-HEMT simulations is shown in figure 

4.15. Pth, Pw and d are equal to 400 nm, 1 µm and 10 nm respectively; The value of these 

parameters were chosen according to our previous studies. 

 

 

	  
Figure 4.14 Variations of the threshold voltage with d at various doping concentrations 

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 10 20 30 40 50 60 70

Th
re
sh
ol
d 
vo
lta
ge
 (V
)

d (nm)

2 10¹8
10¹8
5 10¹7

P-doping 
concentration (cm-3)Pth = 400 nm 

Pw = 1 µm



88	  
	  

 

4.3.1. Variation with doping concentration 

In figure 4.16, the variations of the threshold voltage with NA, at dins = 10, 20 and 40 nm, are 

illustrated. The insulator used is Si3N4. As in section 4.2.4, the threshold voltage increases 

with increasing NA up to a point (NA = NA,Optimum) where further increase in the doping 

concentration barely affects the threshold voltage. 

	    

Moreover, all the curves corresponding to various dins, intersect at a common point. The 

doping concentration associated with this point is named NA,critical and will be further 

discussed in the coming sections. 

	  
Figure 4.15 Schematic cross-section of the simulated MIS-HEMT with a buried p-region 
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Figure 4.16 Variations of the threshold voltage with the p-doping concentration "NA" at various 

thicknesses of the insulator 
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4.3.2. Variations of the threshold voltage with thickness of the insulator 

 To further explore the effect of the thickness of the insulator on the threshold voltage, dins is 

varied from 10 nm to 160 nm. The variations of the threshold voltage with the thickness of 

the insulator at various p-doping concentrations are shown in figure 4.17.  

 

It is clear that the variation of Vth with dins strongly depends on NA. The doping concentration 

NA,critical at which the threshold voltage is not affected by the thickness of the insulator, is 

equal to 9.5× 1017 cm-3. This concentration corresponds to the intersection point in figure 

4.16. 

For NA < NA,critical, the threshold voltage decreases with increasing dins. On the other hand, 

when NA > NA,critical, the threshold voltage increases with increasing dins. 

4.3.3. Variations with the permittivity of the insulator 

In this section, the effect of the permittivity of the insulator on the transfer characteristics is 

examined. Three different insulators are used: SiO2, Si3N4 and HfO2 with a relative 

permittivity of 3.9, 7.5 and 25 respectively. Figure 4.18 shows the variations of the threshold 

voltage with the permittivity of the insulator at various p-doping concentrations.  

	  
Figure 4.17 Variations of the threshold voltage with the thickness of the insulator at various 

 p-doping concentrations 
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It can be noted that the variations with respect to the permittivity of the insulator mimics the 

variations with respect to the thickness of the insulator.  When NA = NA,critical, no variation in 

the threshold voltage is observed with increasing  𝜀!.  For NA < NA,critical, the threshold voltage 

decreases with increasing  𝜀!. On the other hand, when NA > NA,critical, the threshold voltage 

increases with increasing  𝜀!.   

However, the rate of change in the threshold voltage with the thickness of the insulator 

depends on the permittivity of the material. Figure 4.19 shows the variations of the threshold 

voltage with the thickness of the insulator at NA = 5 × 1017 < NA,critical for three different 

insulators. It can be seen that, although the threshold voltage decreases with increasing the 

thickness of the insulator, the rate of decrease is more severe when the permittivity of the 

insulator is decreased.	  	  

	  
Figure 4.18 Variations of the threshold voltage with the permittivity of the insulator at various  

p-doping concentrations 
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The same applies for the rate of increase on the threshold voltage with the thickness of the 

insulator when NA = 5 × 1017 > NA,critical. As shown in figure 4.20, the threshold voltage 

increases with increasing the thickness of the insulator. However, as the permittivity of the 

insulator increases, the rate of increase of the threshold voltage increases. 

	  

Figure 4.19 Variations of the threshold voltage with the thickness of the insulator at  
NA < NA,critical for three different insulators  
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Figure 4.20 Variations of the threshold voltage with the thickness of the insulator at NA > NA,critical 

for three different insulators  
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4.4. Comparison between the HEMT with a buried p-region and the Gate Injection 
Transistor (GIT) 

To address the advantages and drawbacks of the proposed structure, a comparison with a 

previously proposed normally-off Gate Injection Transistor (GIT) is performed.  

4.4.1. Gate Injection Transistor   

The Gate Injection Transistor is a normally-off HEMT that uses a p-region above the AlGaN 

layer (barrier layer) only below the gate [37]. Its schematic cross-section is shown in figure 

4.21. The conduction band is lifted in the p-region causing the triangular well at the 

AlGaN/GaN interface to elevate. Normally-off operation is achieved when the uplift of the 

conduction band in the p-region is strong enough to elevate the triangular well above the 

Fermi level. The band diagram of the GIT along CUT3 in figure 4.21 is shown in figure 4.22, 

pointing out the mechanism used in this structure to achieve normally-off operation.  

 
Similar to the HEMT with buried p-region, the threshold voltage of GIT is affected by the 

doping concentration and dimensions of the p-AlGaN region as well as the distance between 

the p-region and the AlGaN/GaN interface. In all the coming simulations of the GIT, the 

dimensions of the p-AlGaN region are optimized in way to obtain a maximum shift in the 

threshold voltage.  

	  
Figure 4.21 Schematic cross-section of the simulated Gate Injection Transistor (GIT). This 

structure is compared to our proposed structure (HEMT with buried p-region)  
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4.4.2. HEMT with a buried p-region versus GIT 

In this section, a comparison with the GIT is performed aiming to point out the advantages 

and drawbacks of our proposed structure. In the proposed GIT, the optimized thickness and 

x-mole fraction of the AlGaN layer are 25 nm and 0.15 respectively. The x-mole fraction of 

the p-AlGaN cap layer is 0.15 [38]. 

For a fair comparison between the proposed structure and the GIT, the same physical 

parameters are used for both structures (thickness and doping of GaN and AlGaN). In both 

cases, the thickness and width of the p-GaN region are 100 nm and 1 µm respectively. 

Moreover, the distance between the p-region and the AlGaN/GaN interface is 25 nm in both 

cases (thickness of AlGaN layer = "d" = 25 nm). The p-doping concentration will be 

increased until normally-off operation in both structures is achieved. The chosen “normally-

off” criterion is a threshold voltage of 0.5 V. 

The schematic cross-section of the simulated normally-off GIT is shown in figure 4.21. As 

for our proposed structure, the schematic cross-section is the same as the one shown in figure 

4.2, expect for the thickness and x-mole fraction that are reduced to 25 nm and 0.15 

respectively.   

An example of variations of the threshold voltage and the forward gate voltage are shown for 

the GIT in figure 4.23 and for the HEMT with buried p-region in figure 4.24. These values 

are extracted at Vds=1 V.  

	  
Figure 4.22 Band diagram of the Gate Injection Transistor showing the uplifting of the 

conduction band in the p-AlGaN region which elevates the triangular well above the Fermi level 
at the AlGaN/GaN interface 
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To achieve a threshold voltage of 0.5 V, a doping concentration of 3×1018 cm-3 is required in 

the case of GIT while 5×1017 cm-3 is sufficient in our proposed structure. Therefore, the 

proposed structure is more efficient when it comes to the doping concentration required to 

achieve normally-off operation. On the other hand, the forward gate voltage is much higher in 

the case of the Gate Injection Transistor. This is attributed to the use of p-AlGaN gate in the 

GIT rather than a Schottky gate. The low forward gate voltage in our proposed structure 

limits the increase in the threshold voltage to higher values. 

 

 

 

	  

Figure 4.23 Variations of threshold voltage and forward gate voltage of the GIT with the doping 
concentration. A threshold voltage of 0.5 V was achieved at a doping concentration of 3×1018 cm-3; at 

this doping concentration, the forward gate voltage was 3.7 V. Values are extracted at Vds =1 V 
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Figure 4.24 Variations of threshold voltage and forward gate voltage of our proposed with the doping 
concentration. A threshold voltage of 0.5 V was achieved at doping concentration of 5×1017 cm-3; at 

this doping concentration, the forward gate voltage was 0.8 V. Values are extracted at Vds =1 V 
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To address the quality of the triangular well in which the channel electrons are confined, the 

band diagrams for both structures, along CUT1 in figure 4.2 and CUT3 in figure 4.23, are 

shown in figure 4.25. It is clear that the confinement of the 2DEG is superior in our case. 

This better confinement will lead to higher mobility. However, in our simulation the mobility 

of the 2DEG, in all cases, was fixed to 1500 cm2/v.sec. This hinders the comparison of the 

on-state resistance and transconductance for the two structures.  

 

4.4.3. Hybrid normally-off GIT with a buried p-region 

One of the main potentials of the buried p-region is that it is not only an alternative solution 

to achieve normally-off operation but also a complementary one. Indeed, the buried p-region 

can combined with all the proposed normally-off HEMTs. For example: recessed gate and 

buried p-region, Fluorine implantation in the barrier and a buried p-region or GIT with a 

buried p-region.  

In the GIT, the p-AlGaN region increases the forward gate voltage allowing the structure to 

attain high current densities and push the limits that hinders further increase in the threshold 

voltage, while, in the proposed structure, as we attempt to increase the threshold voltage, the 

forward gate voltage decreases. 

On the other hand, in the structure with buried p-region, there is the advantage of 

approaching the AlGaN/GaN interface without the necessity to decrease the thickness of the 

	  

Figure 4.25 Band diagrams of the Gate Injection Transistor and the HEMT with a buried p-GaN 
region corresponding to a threshold voltage of 0.5 V with a  p-doping concentration of 3 × 1018 cm-3 

and of 5×1017 cm-3 respectively. The zoomed part shows a better triangular well in the case of HEMT 
with a buried p-GaN region 
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AlGaN layer, which plays an important role in increasing the 2DEG density at the interface 

(figure 1.20). This is a very important point since, as mentioned before, the effectiveness in 

shifting the threshold voltage increases as the agent approaches the AlGaN/GaN interface.  

To merge the advantages of the two structures, a GIT with a buried p-region is studied. The 

schematic cross-section of the hybrid structure is shown in figure 4.26.  

The width and thickness of both p-regions are 1 µm and 100 nm respectively. The distance 

between the buried p-region and the AlGaN/ GaN interface is 25 nm. The AlGaN thickness is 

25 nm and the x-mole fraction of the AlGaN layers is 0.15. 

An example of variations of the threshold voltage and the forward gate voltage with doping 

concentration in both regions are shown in figure 4.27. 

 

	  
Figure 4.26 Schematic cross-section of the hybrid Gate Injection Transistor (GIT) with a buried  

p-GaN region 
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Figure 4.27 Variations of threshold voltage and forward gate voltage of the GIT with buried p-region 
with the doping concentration. A threshold voltage of 0.5 V was achieved at doping concentration of  
3.2×1017 cm-3; at this doping concentration, the forward gate voltage was 3.7 V. Values are extracted 

at Vds =1 V 

	  

	  

	  

-4
-3
-2
-1
0
1
2
3
4
5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

V
ol
ta
ge
 (V
)

Doping concentration ( 1018  cm-3)

Threshold voltage 
Forward Gate voltage

Pth = 100 nm 
Pw = 1 µm
d = 25 nm



97	  
	  

It can be seen that the threshold voltage increases with increasing the doping concentration. 

Moreover, the high forward gate voltage is inherited from the GIT. 

It is important to point out that a relatively low doping concentration is required to achieve a 

threshold voltage of 0.5 V when compared to the GIT and to the HEMT with a buried  

p-region. This is because the triangular well at the AlGaN/GaN interface is uplifted from both 

sides as shown in figure 4.28.  

 

To obtain the maximum shift in the threshold voltage, the hybrid structure is studied with "d" 

decreased to 10 nm and the thickness of the buried p-region increased to 400 nm. 

An example of variations of the threshold voltage and the forward gate voltage with doping 

concentration in both regions are shown in figure 4.29. It can be seen that high threshold 

voltages can be achieved at reasonable p-doping concentration.  

 

	  
Figure 4.28 Band diagram of the Gate Injection Transistor with a buried p-GaN region 

corresponding to a threshold voltage of 0.5 V with a p-doping concentration of 3.2 × 1017 cm-3 in both 
p-regions 
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Figure 4.29 Threshold voltage and forward gate voltage of the GIT with buried p-region at various 
doping concentrations. With optimized parameters high threshold voltages can be reached at 

reasonable doping concentrations. Values are extracted at Vds =1 V 
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4.5. New structures easing the fabrication of normally-off HEMTs with a buried  
p-region 

Although the idea of burying a p-region to achieve normally-off operation seems to be 

promising, the challenges to fabricate such structure remain a big challenge. 

The first option is the ion implantation. After growing a GaN layer Mg ions can be implanted 

in the region that is to be under the gate. Afterwards, a thin GaN layer will be introduced (10-

30 nm) and then comes the barrier layer. Although this technique was used before by [77][78] 

to create Current Blocking Layer (CBL) in Current Aperture Vertical Electron Transistor 

(CAVET), the resulting doping concentration is relatively low. The second option is the 

localized epitaxial growth of the p-GaN and its neighboring UID-GaN regions. However, 

such growth is very challenging and relatively expensive.  

These challenges provoke us to think of a way to facilitate the experimental production of a 

buried p-region. The outcome was the proposal of two new normally-off structures that uses 

the concept of burying a p-region while remedying the challenges of achieving it.  

4.5.1. Structure #1 

4.5.1.1. Device design and fabrication process 

The schematic cross-section of the first proposed structure is shown in figure 4.30.  

 

 
To achieve this structure experimentally, the following can be done: after the growth of the 

GaN layer on a substrate, an epitaxial p-layer is grown all over the GaN layer. Afterwards, 

using ion implantation, n-wells are created in Region 1. Then comes a thin GaN layer (10-50 

nm) and finally the barrier layer (AlGaN layer), electrodes and passivation. Fabrication steps 

	  

Figure 4.30 Schematic cross-section of structure #1 
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are shown in figure 4.31. It is worth recalling the importance of such technique in serving as 

both independent and complementary solution for the normally-off HEMTs. 

 

 
As shown in figure 4.30, the regions where the n-wells are introduced are named Region 1. 

The remaining region is called region 2. The thickness of the p-layer in region 2 is named Pth 

since it plays the role of the buried p-region (as in section 4.2). The thicknesses of the n-wells 

are named Nth. The remaining thickness of the p-layer in region 1 is named Pth,r since it 

represents the remainings of the p-layer after introducing the n-wells: Pth,r = Pth - Nth. The 

distance between the p-region and the AlGaN/GaN interface "d" is the thickness of the thin 

GaN layer (figure 4.31 (d)). 

4.5.1.2. Conditions for operation 

We have previously shown that, in order to achieve normally-off operation, a buried p-region 

with optimized thickness and doping concentration must be brought close enough to the 

AlGaN/GaN interface to cause channel depletion. Moreover, in section 4.2.1, it was 

mentioned that the width of the buried p-region should not exceed the gate width; otherwise 

the device will remain off regardless of the applied gate voltage.  

	  

Figure 4.31 Major steps in the fabrication of structure #1 
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In the structure shown in figure 4.30, the p-region spans across the whole device. For this 

device to operate as a normally-off transistor, three conditions must be satisfied: 

1 - Region 1 should expand laterally so that the width of region 2 is less than the gate width.    

2 - The channel must be depleted in region 2 at Vgs = 0 V.  

3 - The channel in region 1 should not be depleted at Vgs= 0 V. 

The second condition was studied in details in chapter 4 where we address the effect of the 

position, dimensions and doping concentration of the p-region on the threshold voltage. 

Positive threshold voltage indicates channel depletion at Vgs = 0 while negative threshold 

voltage signals the survival of channel electrons; and the smaller the threshold voltage, the 

higher the population of channel electrons after the introduction of the p-region. The depleted 

channel electrons in region 2 can be restored upon the application of a positive gate voltage. 

As for the third condition, assuming no N-dopants are introduced (Nth = 0), Pth,r became equal 

to Pth. This will cause channel depletion in region 1 and the device will remain off regardless 

of the applied gate voltage. However, after the introduction of the N-dopants, channel 

electrons in region 1 are retrieved for three reasons:  

1- The thickness of the p-layer (Pth,r) is decreased. 

As the depth of the n-wells increases, Pth,r decreases (Pth,r = Pth - Nth). In section 4.2.2 we have 

shown that for Pth ≤ Pth,sat, the threshold voltage decreases with decreasing Pth. This means 

that, as the thickness of the p-region decreases, the 2DEG density in the channel above it 

increases.  

2- The distance between the remaining p-layer and the AlGaN/GaN interface is increased. 

In region 2, the distance between the p-region and the AlGaN/GaN interface equals: Nth + d. 

Therefore, as Nth increases, the p-region goes further from the AlGaN/GaN interface. This, 

according to section 4.2.5, will decrease the threshold voltage which means increasing the 

2DEG density above the p-region. 

3- The n-GaN well standing between the p-region and the AlGaN/GaN interface has an effect 

on the 2DEG concentration. 

In n-type semiconductors, the Fermi level shifts towards the valance band while, in p-type 

semiconductors, it shifts towards the conduction band. At equilibrium, the shift in the Fermi 

level is manifested by an upward push in the conduction band in p-type semiconductors and 
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by a downward push in n-type semiconductors. In region 1, the n-wells are sandwiched 

between the p-layer and the AlGaN/GaN interface. If the downward push in the n-region is 

strong enough to compensate the upward push in the p-region, the channel will remain 

populated with electrons.   

4.5.1.3. Band diagram 

In this section, the band diagram is studied in regions 1 and 2 along CUT 5 and CUT 6 of 

figure 4.30. The doping concentration and thickness of the p-layer are 1018 cm-3 and 100 nm 

respectively. For simplicity, the doping concentration in the n-wells "Nwell" is taken uniform. 

The thickness and doping concentration of the n-wells are 40 nm and 2×1018 cm-3 

respectively. The thickness of the thin GaN layer between the AlGaN/GaN interface and the 

p-layer is d = 10 nm.  

The band diagram along CUT5 is shown in figure 4.32. It can be seen that the uplift in the  

p-region elevates the triangular above the Fermi level causing channel depletion at zero gate 

voltage. This is the reason behind the normally-off operation, as discussed in section 4.2.  

 

 
The band diagram along CUT 6 is shown in figure 4.33. It can be seen that, although the 

conduction band is uplifted in the p-region, the n-wells prevent the elevation of the triangular 

well above the Fermi level and hence the channel electrons remain populating at the 

AlGaN/GaN interface in region 1. 

	  

Figure 4.32  Band diagram along CUT 5 in figure 4.30 showing the elevation of the triangular well 
above the Fermi level, due to uplift of the conduction band in the p-region 
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Since the parameters in region 2 control the 2DEG density below the gate, the threshold 

voltage can be controlled by varying "Pth","NA" and "d". On the other hand, the parameters in 

region 1, Nth, Nwell and d, control the 2DEG density elsewhere and are responsible for 

controlling the current density of the device. 

 

4.5.1.4. Sensitivity analysis 

In this section, a sensitivity analysis is carried out showing the effect of the thickness (Nth) 

and the doping concentration (Nwell) of the n-well on the transfer characteristics of the device. 

In all the presented simulations, the thickness and x-mole fraction of the AlGaN layer are 30 

nm and 0.15 respectively. A 10 nm Si3N4 layer is used as a gate insulator. All the other 

parameters are taken the same as the normally-on HEMT used for calibration is section 2.3.3. 

The schematic cross-section of the device under simulation is shown in figure 4.34.  

 

	  

Figure 4.33 Band diagram along CUT 6 in figure 4.30 showing the shielding effect of the n-wells 
layer 
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The variation of the drain current with Nth is shown is shown in figure 4.35. The doping 

concentration NA and thickness Pth of the p-layer are 1018 cm-3 and 100 nm respectively. The 

doping concentration in the n-well is Nwell = 1018 cm-3. As expected, the threshold voltage is 

not affected by Nth. However, as Nth increases, the 2DEG density increases, resulting in a 

higher current density. 

 
If Nth increases to reach Pth, the simulated structure will look like the one simulated in section 

4.2 (figure 4.15). Therefore the same results are expected as shown in figure 4.36. It is worth 

noting that the resulting doping concentration in the n-wells (superposed regions) is  

Ns = Nwell - NA. Figure 4.37 shows the variation of the Drain current with Nth for various Ns at 

	  

Figure 4.34 Schematic cross-section of the simulated structure 
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Figure 4.35 Ids(Vgs) transfer characteristics of structure #1 for different Nth 
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Vgs = 5 V. The current level of the conventional normally-off HEMT with buried p-region 

(figure 4.15) is shown in a dark black dotted line. The point of intersection between this 

dotted line and the simulated curves corresponds to the thickness of n-well (Nth) required to 

completely shield the channel electrons from the effect of the p-layer in region 1. When Ns 

increases, thinner thicknesses (Nth) are required to achieve the conventional level. Moreover, 

for high Ns, the current level surpasses the conventional level since the electrons in the  

n-wells start participating in the conduction current.   

 

 

	  

Figure 4.36 Ids(Vgs) transfer characteristics of structure #1 at Nth = Pth and the structure shown in 
figure 4.15 (conventional HEMT with a buried p-region). A clear match is obtained since the two 

structures became identical when Nth = Pth 
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Figure 4.37 Variations of the Drain current with Nth for various Ns at Vgs = 5 V. 
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4.5.2. Structure #2 

4.5.2.1. Device design and fabrication process 

In section 4.5.1.2, we have stated the three reasons causing the survival of channel electrons 

in region 1 which are the decrease in Pth,r, the increase in the distance d and the downward 

push of the conduction band in the n-wells. However, the third reason alone is sufficient to 

restore the channel electrons in region 1. With that being said, a new structure is proposed 

using solely the downward push in the n-well to retrieve the channel. The schematic cross-

section of structure #2 is shown in figure 4.38.  

 

To achieve this structure experimentally, the following can be done: after the growth of the 

GaN layer on a substrate, an epitaxial p-layer is grown all over the GaN layer. Then a GaN 

layer with a thickness equals to Nth is grown. Afterwards, using ion implantation, n-wells are 

created in Region 1 in the GaN layer. Then comes another thin GaN layer (10-50 nm) and 

finally the barrier layer (AlGaN layer), electrodes and passivation. The fabrication steps are 

shown in figure 4.39.  

The growth of the other thin GaN layer (step 4.39 (e)) can be skipped. However, this will 

cause mobility degradation due to impurity scattering since the channel electrons in region 1 

are inside the n-wells. Moreover, the existence of highly doped n-wells at the AlGaN/GaN 

interface reduces the confinement of channel electrons causing deterioration in their mobility. 

When compared to the previous structure #1 (figure 4.30) the disadvantage of structure #2 is 

that the distance between the p-region and the AlGaN/GaN interface, in region 2, is increased 

from "d" to "d + Nth". On the other hand, smaller doping concentration is needed in the  

	  

Figure 4.38 Schematic cross-section structure #2 
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n-wells to retrieve the channel electrons since in the first structure, the ion implantation is 

performed in a p-layer. In other words, the resulting doping in the n-wells in structure #1 is 

Ns= Nwell - NA while, in this case, the resulting doping in the n-wells is Ns = Nwell + NGaN 

(NGaN is the doping concentration of the GaN layer placed after the growth of the p-layer 

(figure 4.39 (c))).  

 

4.5.2.2. Sensitivity analysis 

The variation of the drain current with Ns is shown in figure 4.40. The doping concentration 

NA and thickness Pth of the p-layer are 1018 cm-3 and 100 nm respectively. The thickness of 

the n-well is Nth = 10 nm. Nth is taken small to keep the p-layer in region 2 close to the 

AlGaN/GaN interface. As shown in figure 4.40, the threshold voltage is not affected by Ns. 

However, as Ns increases, the 2DEG density increases, resulting in a higher current density. 

	  

Figure 4.39 Major steps in the fabrication of structure #2 
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When compared to the transfer characteristics of structure #1 (figure 4.36), for the same Pth 

and NA, a lower threshold voltage is obtained (0 V <  2 V). This is because the distance 

between the p-region and the AlGaN/GaN interface in structure #1 is smaller than that in 

structure #2 (d < d + Nth; 10 < 20 nm). 

4.6. Conclusion 

A new design with normally-off operation is achieved by burying a p-region below the 

channel of the HEMT. The conduction band in the p-region is uplifted, causing the triangular 

well at the AlGaN/GaN to elevate above the Fermi level. A sensitivity analysis was carried 

out to show the effect of the position, dimensions and doping concentration of the p-region on 

the threshold voltage. Simulation results have shown that the effectiveness of the p-region in 

shifting the threshold voltage increases as the p-region approaches the AlGaN/GaN interface. 

As for the dimensions of the p-region, the threshold voltage will increase with increasing the 

dimensions until a point is reached where further increase does not affect the threshold 

voltage. Moreover, the increase in the threshold voltage with the doping concentration 

strongly depends on the distance "d" between the p-region and the AlGaN/GaN interface. The 

sensitivity of the threshold voltage to the p-doping concentration decreases with increasing 

"d". If the p-region is able to increase the threshold voltage but fails to achieve normally-off 

operation, the x-mole fraction in the AlGaN layer can be decreased to further shift the 

threshold voltage to positive values. 

	  

Figure 4.40 Id(Vgs) transfer characteristics of  structure #2 for different Ns 
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However, the low forward gate voltage of the HEMT limits further increase in the threshold 

voltage. Therefore, the MIS-HEMT with a buried p-region is studied, showing the effect of 

doping concentration, permittivity and thickness of the insulator on the performance of the 

device. Simulation results have shown that the effect of the thickness of the insulator on the 

threshold voltage strongly depends on the p-doping concentration NA. An increase in the 

thickness of the insulator will increase the threshold voltage if NA > NA,critical (in our 

simulation, NA,critical = 9.5 × 1017 cm-3), decrease it if NA < NA,critical and the threshold voltage is 

unaffected if NA = NA,critical. The same behavior was obtained for the variations of threshold 

voltage with the permittivity of the insulator where three different behaviors were obtained 

depending on NA. 

The proposed design is compared to the well-known Gate Injection Transistor (GIT). 

Although the GIT attains a higher forward gate voltage, our proposed structure is more 

efficient when it comes to the doping concentration required to achieve normally-off 

operation and offers better confinement for the 2DEG below the gate. 

To merge the advantages of the two structures, the GIT with a buried p-region was studied. 

The resulting structure is able to achieve normally-off operation at relatively low doping 

concentrations and inherited the high forward gate voltage from the GIT.  

Although the use of a buried p-region to achieve normally-off operation seems to be very 

promising, the fabrication of a localized highly doped buried p-region remains a big 

challenge. To overcome the fabrication challenges, two new normally-off structures were 

proposed. Although these structures still use the idea of burying a p-region to achieve 

normally-off operation, the way the p-region is created tackles the experimental challenges. 

The main idea in the two structures is to grow, below the channel, a p-layer that spans over 

the whole device. Afterwards, n-wells are created, everywhere except under the gate, inside 

the p-layer or between the p-layer and the AlGaN/GaN interface.  The aim of these wells is to 

compensate the upward push in the conduction band created by the p-layer. Although the  

n-wells do not affect the threshold voltage, the drain current intensity increases as the doping 

concentration and the thickness of the n-wells increase.  
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Chapter 5 
General conclusion and future work 
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5.1. General conclusion  

AlGaN/GaN HEMTs are very promising candidates for high frequency applications with 

high power and low noise, such as microwave and millimeter wave communications, imaging 

and radars. With the high field strength offered by GaN and the high mobility of the two 

dimensional-electron-gas (2DEG) present in the HEMT, this device can attain high 

breakdown voltage with low on state resistance surpassing the limitation of conventional 

silicon devices. While power switching applications strongly demand normally-off operation, 

conventional HEMTs attain a channel populated with electrons at zero gate voltage making 

them normally-on. Several normally-off structures have been proposed such as recessed gate 

structures, Fluorine ion treatment, p-GaN gate structures, thin AlGaN barrier, and Gate 

Injection Transistor. However the threshold voltage of these structures is less than 3 V which 

is the threshold voltage required to prevent the misoperation caused by noise. With the gate 

leakage preventing further increase in the threshold voltage, an insulating layer is introduced 

under the gate giving rise to the MIS-HEMT. 

In this work, two normally-off concepts were proposed. To examine their electric 

characteristics, a commercial TCAD simulation tool from Silvaco is used. The simulator was 

calibrated using experimental data from a normally-on HEMT device.  The energy and 

density of the acceptor traps as well as the density of the two dimensional electron gas were 

tuned so that the simulated transconductance, threshold voltage and off state current matches 

the ones experimentally measured. Moreover, the transition layers were substituted by an 

intrinsic GaN layer. The thickness of this layer is increased to fit the vertical breakdown 

voltage of the device.  

In the previously proposed normally-off HEMTs, there is an introduction of an external 

agent, such as negative Fluorine ions or p-doped layer, inside the barrier layer or at the top of 

it. In this work, we suggest the introduction of the same agents used before but this time 

under the channel rather than above it. This led to the proposition of two normally-off HEMT 

designs.  The first is a HEMT with Fluorine implanted below its channel and the second is a 

HEMT with a buried p-GaN region. 

In both structures, the agents should be buried only below the gate electrode. Otherwise the 

device will remain off regardless of the applied gate voltage. Simulation results have shown 

that the threshold voltage increases with increasing the concentration of the agent. Moreover, 

the effectiveness of the agent increases as it approaches the AlGaN/GaN interface.   
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When compared to structures with agents introduced above the channel, our approach is more 

effective when it comes to the concentration required to achieve normally-off operation and 

offers better confinement for the 2DEG density below the gate. On the other hand, burying a 

p-region or Fluorine ions below the channel reduces the forward gate voltage, which limits 

further increase in the threshold voltage. 

To further increase the threshold voltage, an insulating layer is introduced below the gate, 

giving rise to the MIS-HEMT. Simulation results have confirmed the ability of buried agents 

to increase the threshold voltage. However, a point is reached where further increase in the 

concentration will not affect the threshold voltage. This is due to the fact that the gap between 

the Fermi level and the conduction band reaches the bandgap of the material in which the 

agents are introduced. Moreover, the effect of the thickness of the insulator on the threshold 

voltage strongly depends on the concentration of the agent. There exists a critical 

concentration (Fcritical or NA,critical) at which no increase in threshold voltage is obtained when 

increasing the thickness of the insulator. The threshold voltage increases with the thickness of 

the insulator if the concentration is higher than the critical level and decreases if it is below it. 

The same behavior is obtained for the variation of threshold voltage with the permittivity of 

the insulator where three different behaviors were obtained depending on the concentration of 

the agent. The threshold voltage of the proposed structures can reach values higher than 3 V 

without affecting the 2DEG mobility.   

The importance of the proposed structures is their ability to serve as an independent and 

complementary solution to achieve normally-off operation. For example, the HEMT with a 

buried p-GaN region can be combined with the Gate Injection Transistor. The resulting 

HEMT can achieve normally-off operation at relatively low p-doping concentration and 

inherits the high forward gate voltage from the GIT.  

Although, the use of a buried p-region to achieve or help develop a normally-off HEMT 

seems to be very promising, the fabrication of a localized highly doped buried p-region 

remains a big challenge. In the final chapter, two new normally-off structures are presented. 

Although these structures still use the idea of burying a p-region to achieve normally-off 

operation, the way the p-region is created tackles the experimental challenges. The proposed 

structures are the only normally-off HEMT concepts that do not require etching. The main 

idea in the two structures is to grow, below the channel, a p-layer that spans over the whole 

device. Afterwards, n-wells are created, everywhere except under the gate, inside the p-layer 

or between the p-layer and the AlGaN/GaN interface. The aim of these wells is to 
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compensate the upward push in the conduction band created by the p-layer. Although the  

n-wells do not affect the threshold voltage, the drain current intensity increases as the doping 

concentration and the thickness of the n-wells increase.  

5.2. Future work 

It is axiomatic that the next step would be confirming the simulation results by fabricating the 

proposed structures. Since the fluorine equivalent interface charge density and position are 

not yet linked to experimental parameters, we plan on fabricating the normally-off HEMT 

with a buried p-region. Furthermore, several amends can be made in the simulation for more 

informative and accurate results. 

5.2.1. Structure for fabrication 

The schematic cross-section of the normally-off structure we plan to fabricate is shown in 

figure 5.1. The structure is the same as the one simulated in section 4.34, except for the added 

AlN interlayer between the thin UID-GaN layer and the AlGaN barrier layer. 

 

 
Figure 5.1 Schematic cross-section of the structure we plan to fabricate 

5.2.2. Develop and implement a new mobility model 

In sections 3.2.2 and 4.4.2 we have shown that, in the proposed structures, the confinement of 

the 2DEG below the gate increases. This will increase the mobility of the 2DEG. However, in 

our simulations, the mobility of the 2DEG was fixed to 1500 cm2/v.sec. In section 2.3.4.1, to 

fit the experimental results from a normally-off HEMT with Fluorine implanted in the barrier 

layer, the mobility of the 2DEG was used as a fitting parameter and reduced from 1500 

cm2/v.sec to 500 cm2/v.sec to account for the scattering between the channel electrons and 

Fluorine ions. 
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Therefore, it would be better to develop a new mobility that takes into account the 

confinement of the 2DEG and the scattering between the channel electrons and the Fluorine 

ions and implement it in the simulation software. 

5.2.3. Linking the equivalent interfacial charge to the Gaussian profile 

Since ATLAS lacks the ability of introducing fixed charge in a Gaussian profile, when 

simulating the effect of the implanted Fluorine ions, an equivalent interfacial charge with a 

profile similar to the delta function was used. For more informative results, the link between 

the experimental profile and the equivalent interfacial charge should be done. Another 

solution would be the use of different simulation softwares, such as Synopsys, where the 

introduction of fixed negative charge in a Gaussian profile is possible.   

5.2.4. AC and transient analysis 

Although several structures were proposed, only the DC performance was examined. This 

work can be extended by performing AC and transient analysis to the proposed structures.  
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