
HAL Id: tel-01140261
https://theses.hal.science/tel-01140261

Submitted on 8 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of EB-3 specifications with model checking
techniques

Dimitrios Vekris

To cite this version:
Dimitrios Vekris. Verification of EB-3 specifications with model checking techniques. Computer
science. Université Paris-Est, 2014. English. �NNT : 2014PEST1117�. �tel-01140261�

https://theses.hal.science/tel-01140261
https://hal.archives-ouvertes.fr

UNIVERSITE PARIS-EST

École doctorale MSTIC

Thèse de doctorat

Pour obtenir le titre de

Docteur de l’Université Paris-Est

Spécialité : Informatique

Vérification de Spécifications eb3

à l’aide de Model Checking

Dimitris Vekris

Directeur de thèse : Catalin Dima

préparée au LACL

Soutenue le 10 décembre 2014 devant le jury composé de :

Directeur: Catalin Dima Université Paris-Est - LACL
Raporteurs: Marc Frappier Université de Sherbrooke

Gwen Salaün INRIA Grenoble Rhône Alpes
Examinateurs: Régine Laleau Université Paris-Est - LACL

Pascal Poizat Université Paris-Ouest Nanterre la Défense - LIP6

1

Sommaire

Un système d’information est un système qui contrôle l’interaction entre plusiers composantes
interdépendantes dont le rôle est de produire des informations. La méthode eb3 [FSt03] est
un langage de spécification développé pour la spécification des systèmes d’information. eb3

a été utilisé à des projets de recherche inspirés par les domaines bancaire et médical, comme
selkis [MIL+11] et eb3sec [JFG+10], mais il est aussi adapté pour un usage industriel. Le
noyau du language eb3 comprend des spécifications d’algèbre de processus afin de décrire
le comportement des entités du système et des fonctions d’attributs qui sont des fonctions
récursives dont l’évaluation se fait sur la trace d’exécution du système décrivant les attributs
des entités. C’est à noter que l’algèbre de processus de eb3 est inspirée de CSP [Hoa78] et de
LOTOS [Lot01].

En eb3, le comportement du système est défini au moyen d’expressions de processus.
Celles-ci sont composées d’operateurs permettant d’ordonnancer les actions du système
comme l’operateur de la séquence, du choix, de l’entrelacement et de la fermeture de Kleene.
Parmi les expressions de processus de eb3 figurent notamment les expressions gardées de la
sorte “ge⇒ E”, où ge est une formule logique quantifiée du premier ordre contenant des ap-
pels à des fonctions d’attributs. Étant donné que l’ évaluation des fonctions d’attributs dépend
de la trace d’exécution actuelle, eb3 permet la définition de contraintes assez complexes entre
les différentes entités du système. De ce fait, la spécification des systèmes d’information en
eb3 facilite la compréhension du système et l’entretien du code.

Le sujet de cette thèse s’inscrit dans le cadre de la vérification des spécifications eb3. Les
propriétés nous concernant sont divisées principalement entre les propriétés de sûreté, c’est
à dire celles satisfaites dans tous les états du système et les propriétés de vivacité exprimant
l’éventualité que certaines actions puissent s’exécuter dans le système. À présent, la plupart
des travaux effectués concernant la vérification des spécifications eb3 se porte sur B [Abr05],
une méthode spécialement conçue pour la vérification des propriétés de sûreté. Or, B n’est
pas particulièrement adaptée à la verification des propriétés de vivacité. Ici, on se focalise sur
les propriétés de vivacité concernant des systèmes d’information dont la vérification se fait à
l’aide de model checking désignant une famille de techniques de vérification automatique des
systèmes.

Une première approche vers la vérification de spécifications eb3 à l’aide de model checking
a été entreprise dans [FFC+10], où le système de gestion d’une bibliothèque a été vérifié à l’aide
des six outils de model checking notamment SPIN [Hol04], NuSMV [CCG+02], FDR2 [Ros98],
CADP [GLM+11], ALLOY [Jac06] et ProB [LB03]. Les résultats concernant ALLOY ont été
particulièrement encourageants. Cependant, [FFC+10] ne prévoyait aucune possibilité de
vérification générique pour les spécifications eb3, dans le sens où la méthode se limitait à la
vérification du système de gestion de la bibliothèque.

Dans cette thèse, on développe une traduction de specifications eb3 vers LNT, un lan-
gage de spécifications de systèmes parallèles communicants trouvant application dans la
modélisation et vérification formelle de protocoles de transfert de données. LNT est doté
d’un ensemble des types abstraits algèbriques pour la définition des données et d’ une
algèbre de processus pour éxprimer le contrôle du système. De plus, il est un des langages
d’entrée de CADP. De ce fait, le but de ce projet est de concevoir une méthode qui perme-
ttrait la vérification automatique des specifications eb3 sans que la moindre intervention de
l’utilisateur ne soit requise fournissant aux utilisateurs de eb3 tous les outils de vérification
fonctionnelle disponible dans CADP.

2

Malgré certains points communs de eb3 et de LNT en matière d’ opérations d’algèbre
de processus, la représentation des spécifications eb3 sous forme de système de transition
d’états donne lieu à de potentielles explosions d’espace d’états. Cela s’expliquerait par le
fait que, selon la sémantique classique de eb3 [FSt03], l’évaluation des fonctions d’attributs
pourrait entrâıner des traversées complètes de la trace d’exécution du système à moins que
des techniques du model checking borné visant à de réductions efficaces de l’espace d’état ne
soient appliquées [BCC+99].

Afin de pallier à cet inconvénient, on presente une sémantique opèrationnelle de eb3,
selon laquelle les fonctions d’attributs sont évaluées pendant l’exécution du programme puis
stockées. Cette sémantique nous permet de définir la traduction automatique de eb3 vers
LNT. Notre traduction assure la correspondance un à un entre les états et les transitions
des systèmes de transition étiquetés correspondant respectivement à des spécifications eb3

et LNT. On automatise la traduction grace à l’outil eb32lnt. Par la suite, on s’en sert du
Model Checking Language (MCL) [MT08] pour éxprimer et vérifier les propriétés temporelles
sur les spécifications extraites de eb32lnt. La vérification se fait à la volée, c’est à dire
l’exploration des états devant satisfaire la propriété en question se fait en même temps que
le système de transition représentant la spécification LNT se construit, au moyen du model
checker EVALUATOR 4.0 qui fait partie de CADP. C’est important de préciser à ce stade
que c’est à l’utilisateur d’éxprimer les propriétés en MCL à vérifier ce qui fait que l’utilisateur
doit avoir un certain niveau de connaissance de la syntaxe et de la sémantique de MCL pour
s’en servir de notre méthode.

Comme CADP n’utilise que de méthodes explicites pour représenter l’espace d’états
du système, la vèrification à l’aide de eb32lnt devient fastidieuse pour des systèmes
d’information gérant de nombreux composants. Dans le but d’améliorer les résultats de
notre approche concernant le model checking, on explore des techniques d’abstraction dédiées
aux systèmes d’information spécifiées en eb3. En particulier, on se focalise sur une famille
spécifique de systèmes appelés paramétriques dont le comportement varie en fonction de
la valeur prédéfinie d’un paramètre du système. Dans un premier temps, en portant sur
de méthodes standards du model checking parametrique [CGB86, EN95], on construit une
répresentation d’une variante du système de gestion de la bibliothèque sous forme de système
de transition d’états que l’on nomme TSn, où n est le nombre de membres du système.
Ensuite, on prouve que TSn+1 est équivalent à TSn modulo une relation appelée stuttering
bisimulation qui préserve la logique parctl désignant un sur-ensemble de ctl∗ mis à part
l’operateur next-time x. parctl nous permet d’éxprimer toute la gamme des propriétés
auxquelles nous nous intéressons. Enfin, on applique cette méthode dans le contexte de eb3

et on définit les conditions que les spécifications eb3 doivent satisfaire afin que leurs systèmes
de transition correspondents soit paramétriques.

Contents

1 Introduction 5

1.1 Context . 5

1.2 Issues . 5

1.3 Contribution . 7

1.3.1 Part I . 7

1.3.2 Part II . 8

1.4 Thesis Structure . 9

2 EB3 Syntax and Semantics 10

2.1 Introduction . 10

2.2 EB3 Syntax . 10

2.2.1 Preliminary Definitions . 10

2.2.2 EB3 Specifications . 11

2.3 EB3 Semantics . 22

2.3.1 Trace Semantics SemT . 23

2.3.2 Trace/Memory Semantics SemT/M . 32

2.3.3 Memory Semantics SemM . 46

2.4 Bisimulation Equivalence of SemT, SemT/M and SemM 46

2.4.1 Useful definitions . 46

2.4.2 LTS Construction . 48

2.4.3 Proof of Bisimulation Equivalence of SemT, SemT/M and SemM 56

2.5 Conclusion . 67

3 Experimentation with Petri Nets 68

3.1 Introduction . 68

3.2 Petri Nets Basics . 68

3.3 Process Algebraic Operators and Petri Nets 70

3.4 Nu-SMV Specific Difficulties . 71

3.5 Conclusion . 72

4 Translation of EB3 to LOTOS-NT (LNT) 76

4.1 CADP Tool . 76

4.2 The Language LNT . 77

4.2.1 Syntax and Dynamic Semantics of LNT 77

4.3 Translation from EB3 to LNT . 85

4.4 The Simplified File Transfer System . 98

3

4 CONTENTS

4.5 LNT Code for the Simplified File Transfer System 100
4.6 Proof of equivalence of EB3 and LNT Specifications 104

4.6.1 Preliminary Definitions . 104
4.6.2 Reasoning about the memory . 105
4.6.3 LTS Construction for EB3 and LNT Specifications 113
4.6.4 Bisimulation Equivalence of EB3 and LNT Specifications 117

4.7 Conclusion . 132

5 Verification of Temporal Properties 134
5.1 Model Checking Language . 134
5.2 Library Management System Revisited . 136

5.2.1 MCL Formulas for Requirements R1 to R15 137
5.2.2 Verification of the Library Management System 138

5.3 File Transfer System Revisited . 138
5.3.1 MCL Formulas for Requirements P1 to P6 138
5.3.2 Verification of the Simplified File Transfer System 142

5.4 Conclusion . 142

6 Parametric Model Checking (PMC) 143
6.1 Introduction . 143
6.2 Background . 143
6.3 State-based PMC . 144

6.3.1 Theoretical Framework . 144
6.3.2 System Specification . 151
6.3.3 Formalization . 152
6.3.4 Temporal Properties over TSp . 153
6.3.5 Stuttering Bisimulation Equivalence of TSp and TSp+1 154
6.3.6 Modified System Specifications . 159

6.4 Parametric ISs and PARCTL . 161
6.5 Evaluation and Related Work . 161
6.6 Conclusion . 162

7 Conclusion 163

8 Appendix 165
8.1 LNT Code for the Simplified Library Management System 165
8.2 EB3 Code for the Extended Library Management System 167
8.3 LNT Code for the Extended Library Management System 170
8.4 MCL Formulas for Requirements R1 to R15 176

Chapter 1

Introduction

Subject: This thesis deals with formal verification of information systems (ISs) that are
specified in the eb3 method [FSt03]. The focus is on model checking techniques, since we aim
at verifying dynamic properties.

1.1 Context

ISs are systems that describe the interaction of interrelated components, whose role is to
produce information. The eb3 method is a special action-based specification language tai-
lored for ISs that has been used extensively in the research projects selkis [MIL+11] and
eb3sec [JFG+10], which deal with case studies inspired by the medical and banking domain.
The formal specification of ISs enriched with security properties is the main objective for both
projects.

A typical eb3 specification defines entities, associations, and their respective attributes.
It is worth noting that the process algebraic nature of eb3 enables the explicit definition of
intra-entity constraints, making them easy for the IS designer to review and understand. Yet,
its particular feature compared to classical process algebras, such as CSP [Hoa78], lies in
the use of attribute functions, a special kind of recursive functions evaluated on the system
execution trace. Combined with guards, attribute functions facilitate the definition of complex
inter-entity constraints involving the history of actions. Note that in classical state-based IS
specifications, ordering constraints between actions are expressed via conditions on variables
that denote the system state, the so-called state variables. As the history of actions in the
IS is not reflected directly in the state variables, it is very difficult for the user to inspect
and validate properties that are based on the history of actions. In that sense, the use of
attribute functions and, consequently, of the system trace is intended to facilitate system
understanding, enhance code modularity, and support maintenance.

1.2 Issues

Since ISs are complex systems involving data management and concurrency, a rigorous design
process based on formal specification using eb3 must be completed with effective formal veri-
fication features. Our attention is drawn to the liveness and safety properties of ISs. Liveness
properties express the possibility that a certain action take place and safety properties express
the certitude that a certain action should always or should never take place.

5

6 CHAPTER 1. INTRODUCTION

Existing attempts for verifying properties of eb3 specifications are based on translations
from eb3 to other formal methods equipped with verification capabilities. A first line of
work [GFL05, GFL06] focusses on devising translations from eb3 attribute functions and
processes to the B method [Abr05], which opens the way for proving safety properties of eb3

specifications in the form of invariants using tools like Atelier B [Cl].
Let the following functional requirements describing the behaviour of a simplified library

management system:

R1. A book can be acquired by the library. It can be discarded, but only if it has not been
lent.

R2. An individual must join the library in order to borrow a book.

R3. A member can relinquish library membership only when all his loans have been returned.

R4. A member cannot borrow more than the loan limit defined at the system level for all
users.

Requirements R1 and R3 are liveness properties, whereas requirements R2 and R4 are safety
properties. Following the technique of [GFL05, GFL06], one may devise an equivalent B
model from the eb3 specification describing the behaviour of the previous library management
system. Unfortunately, the B method is mainly used to verify safety properties over system
specifications. Hence, this approach suffices to verify requirements R2 and R4, since safety
properties can be formalized in the B method, but the verification of requirements R1 and
R3 cannot be addressed under this technique and a full-scale verification of B specifications
is impossible.

Another approach involves the translation of eb3 specification to CSP‖B [ST02] as pro-
posed in [ETL+04]. Liveness properties expressed as temporal properties can be cast to
FDR2 [Ros98] as explained in [LMC00]. As a result, both liveness and safety properties of
the library specification can be verified with the aid of refinement checking and the FDR model
checker. Although the method of [ETL+04] is systematic, the translation of eb3 specifications
to equivalent CSP‖B models necessitates user intervention.

In [FM11], the verification of CTL formulas of the form “AG(ψ ⇒ EFφ)” with the aid
of B method is undertaken. CTL formulas “AG(ψ ⇒ EFφ)” also known as reachability
formulas denote liveness properties that are satisfied if for all states that are reachable from
the initial states of the system, where formula ψ is valid, there is a sequence of transitions that
lead to states of the system, where formula φ is valid. The goal of this study is to construct a
program p that refines a reachability property q in the sense that the set of execution paths
related to program p is strictly a subset of the execution paths related to the satisfaction
of reachability formula q. The construction of p follows the algorithmic refinement laws of
Morgan [Mor98] that are intended to decompose q into a sequence of properties, which can
be trivially refined by simple system transitions (actions).

On the other hand, it is known that temporal logic can deal both with safety and live-
ness properties. Hence, another approach concerned with the verification of temporal logic
properties of eb3 specifications by means of model checking techniques is taken. For this pur-
pose, the formal description and verification of the library management system specification
[Ger06] using six model checkers are undertaken in [FFC+10, Cho10] namely SPIN [Hol04],
NuSMV [CCG+02], FDR2, CADP [GLM+11], ALLOY [Jac06] and ProB [LB03]. SPIN,
CADP and FDR2 are called explicit model checkers. In CADP and FDR2, the transition

1.3. CONTRIBUTION 7

system describing the system specification is constructed explicitly prior to the property ver-
ification, whereas in the case of SPIN, the property is verified while the transition system
is constructed in parallel (on-the-fly verification). Nu-SMV belongs to a group of model-
checkers called symbolic model checkers. In symbolic model checking language specifications,
the transition system is given in the form of Boolean formula. ALLOY is a contraint satis-
faction model checker. In the case of contraint satisfaction model checkers, the verification is
carried out by means of logic programming. It is worth mentioning that ALLOY’s language
used to model the system is the same as the language used to specify the property we need
to verify. The same applies to PROB, whereas Spin, CADP, NuSMV use either action-based
or state-based temporal logics.

ALLOY turned out to be the most efficient model checker of all six model checkers used
in the paper, as model checking in Alloy makes use of efficient abstractions of the state space.
Also, this study revealed the necessity of branching-time logics for accurately characterizing
properties of ISs, and the fact that process algebraic languages are suitable for describing the
behaviour and synchronization of IS entities. However, no attempt of providing a systematic
translation from eb3 to a target language accepted as input by a model checker was made so
far.

1.3 Contribution

1.3.1 Part I

LOTOS-NT (LNT) [CCG+11] is a new generation process algebraic specification language in-
spired from E-LOTOS [Lot01]. In this thesis, knowing that LNT is one of the input languages
accepted by the CADP verification toolbox featuring full-blown temporal property validation
capabilities, we address the problem of automatic translation of eb3 models to equivalent
LNT models.

At first sight, given that eb3 has structured operational semantics based on a labelled
transition system (LTS) model, its translation to a process algebra may seem straightforward.
However, this exercise is rather complex, the main difficulty being to translate a history-
based language (the control-flow depends on the entire system trace) to a process algebra
with standard LTS semantics. On the other hand, the original trace-based semantics defined
for finite-state systems in [FSt03] denoted SemT gives rise to unbounded memory models as
the current trace is part of the current system state and, therefore, in the absence of good
abstractions capable of reducing them to finite-state models, only bounded model-checking
can be applied [BCC+99]. This restriction is present in the original approach [FSt03] and
the subsequent model-checking attempt [FFC+10] even if all entities considered in the IS are
finite.

To overcome this difficulty, we propose a formal semantics for eb3 that treats attribute
functions as state variables, the so-called attribute variables. Intuitively, coding attribute
functions as part of the system state is beneficial from a model-checking point of view as the
new formalisation dispenses with the system trace. The derived memory semantics denoted
SemM serves as the basis for applying a simulation strategy of attribute variables in LNT.
We demonstrate that SemM is equivalent to SemT. This part of the work appears in [VD13].

Also, based on the efficient memory SemM, we propose a rigorous translation algorithm
from eb3 to LNT [CCG+11]. As far as we know, this is the first attempt to provide a general
translation from eb3 to a classical value-passing process algebra. As noted previously, CSP

8 CHAPTER 1. INTRODUCTION

and LNT have been already considered in [FFC+10] for describing ISs, and identified as
candidate target languages for translating eb3. Since our primary objective is to provide
temporal property verification features for eb3, we focus our attention on LNT, and, hence,
is equipped with on-the-fly model checking for action-based, branching-time logics involving
data.

Another important ingredient of the translation is the multiway value-passing rendezvous
of LNT, which allows to obtain a one-to-one correspondence between the transitions of the
two LTSs underlying the eb3 and LNT descriptions, and, hence, to preserve strong bisim-
ulation. The presence of array types and of usual programming language constructs (e.g.,
loops and conditionals) in LNT is also helpful for specifying the memory, the Kleene star-
closure operators, and the eb3 guarded expressions containing attribute function calls. At
last, the constructed data types and pattern-matching mechanisms of LNT enable a natural
description of eb3 data types and attribute functions.

Note that translating process algebra specifications to LNT is not a new idea. In [MS10],
an automatic translation of π-calculus [MPW+92] to LNT is undertaken. In [LSH+09],
FSP [MK+06] specifications are translated to LOTOS. The aim for both projects is to make
the verification features of CADP available to π-calculus and FSP users. Another interesting
project is found in [GSS+09], in which CHP (Communicating Hardware Processes), a pro-
cess algebra devoted to the description of asynchronous hardware processes, is translated to
LOTOS.

We implement our translation in the eb32lnt tool, thus, making possible the analysis of
eb3 specifications using all the state-of-the-art features of the CADP toolbox, in particular
the verification of data-based temporal properties expressed in MCL [MT08] using the on-
the-fly model checker EVALUATOR 4.0. This part of the thesis appears in [VLD+13]. We
also provide a formal correctness proof of bisimulation equivalence of eb3 and LNT specifi-
cations (those generated by eb32lnt). The work in [VLD+13] accompanied with the proof
of bisimulation equivalence for eb3 and corresponding LNT specifications will appear in the
new issue of the Journal of Formal Aspects of Computing.

1.3.2 Part II

In practice, ISs are deemed to be complex systems for reasons involving heavy data man-
agement and concurrency between multiple components. This downside of ISs is confirmed
in [FFC+10], since the model-checking problem of the library management system turns out
to be intractable for more than four books and four members when model-checkers SPIN,
NuSMV, FDR2, CADP, and ProB are employed. Only the use of ALLOY seems to produce
efficient model-checking results. Similarly inadequate are the results of the approach we take
in [VLD+13], mainly because the EVALUATOR 4.0 model checker of CADP applies strictly
explicit techniques for state space generation.

The limitations of automatically verifying eb3 specifications, as encountered in [FFC+10,
VLD+13], motivate the development of efficient abstraction techniques. The inherent symme-
try of eb3 models may serve as the basis for cutting down on the number of components par-
ticipating in the IS model. For example, the standard eb3 pattern “Nn

.
= |||x :X :proc (x)”,

denoting the parallel interleaving of |X | processes proc (x), where X ={x1 , . . . , xn} is a set in
the IS and |X |= n stands for X ’s cardinality, can be reduced to “Nc

.
= |||x : Y : proc (x)”,

where Y = {x1 , . . . , xc} and c (c < n) is called the cut-off. Then, the temporal property

1.4. THESIS STRUCTURE 9

∨n
i=1 ∃Φi will hold on the initial system only if

∨c
i=1 ∃Φi holds on the reduced system1. Thus,

the state space is reduced considerably and better model-checking results are obtained. The
branch of model-checking concerned with discovering cut-offs for systems is called parametric
model checking (PMC).

The rest of the work presented in this thesis intends to enrich existing model-checking
techniques for verification of eb3 specifications against temporal properties. Using standard
techniques of PMC [CGB86, EN95] as a reference, we address the PMC problem in the context
of ISs specified in eb3. First, we show how the standard theory on PMC can be applied to
the library management system on a merely state-based level, i.e. on the labelled transition
system (LTS) representing the IS. The goal of this task is to give the interested reader the
necessary insight into how to apply similar reasoning on a purely abstract process algebraic
level, i.e. directly on the eb3 specifications. We also qualify the ISs specified in eb3 that
are amenable to PMC, which we call parametric ISs (PISs). More specifically, we set precise
criteria that parametric ISs should satisfy.

1.4 Thesis Structure

The rest of the manuscript is organized as follows:

• In Chapter 2, we present the syntax and trace-based semantics SemT of the eb3 method.
Also, we define the alternative memory semantics SemM and we demonstrate the cor-
rectness proof of bisimulation equivalence for SemM and SemT.

• In Chapter 3, we explain why Petri Nets [Pet75] and Nu-SMV are not suitable for formal
verification of eb3 specifications.

• In Chapter 4, we present the syntax and semantics of LNT. Then, we define the trans-
lation from eb3 to LNT specifications, implemented by the eb32lnt translator and we
present the application of this tool on two case studies. Furthermore, we establish the
correctness proof of bisimulation equivalence of eb3 specifications and LNT specifica-
tions generated by eb32lnt.

• In Chapter 5, we show the verification results, in conjunction with CADP, regarding
the correctness requirements of the two case studies.

• In Chapter 6, we study the PMC problem in the context of ISs specified in eb3.

• Finally, in Chapter 7, we summarize the results of this thesis and we draw up lines for
future work.

1among elements of X , Φi contains only xi and ∃ denotes ctl∗’s exists path operator

Chapter 2

EB3 Syntax and Semantics

2.1 Introduction

First, we give the standard trace-based operational semantics of eb3. Then, we propose
a formal semantics for eb3 that treats attribute functions as state variables (we call these
variables attribute variables). This semantics will serve as the basis for applying a simulation
strategy of state variables in LNT [CCG+11]. Intuitively, coding attribute functions as part
of the system state is beneficial from a model-checking point of view as the new formalisation
dispenses with the system trace.

Our main contribution is an operational semantics in which attribute functions are com-
puted during program evolution and stored into program memory. We show that this opera-
tional semantics is bisimilar with the original, trace-based operational semantics.

Definition 2.1.1. A standard eb3 specification comprises the following elements:

(1) a class diagram representing entity types and associations for the IS being specified,

(2) a process algebra specification, denoted by main, describing the IS, i.e., the valid traces
of execution describing its behaviour,

(3) a set of attribute function definitions, which are recursive functions on the system execu-
tion trace, and

(4) input/output rules to specify outputs for input traces, or SQL expressions used to specify
queries on the class diagram.

We limit the presentation to bullets (2) and (3). In the following, the term “eb3 specification”
refers strictly to the process algebraic specification in question and the related set of attribute
function definitions.

2.2 EB3 Syntax

2.2.1 Preliminary Definitions

Data types in EB3. Let C be a set of constant symbols of various types Typ and let V
be a set of function identifiers (variable symbols) of various types over V. In particular, V
serves as a generator of functional identifiers, from which the classic if -then-else function

10

2.2. EB3 SYNTAX 11

identifier has been excluded. This particularity intends to accentuate the role of conditionals
in the formalization of eb3 specifications and to highlight the distinction between conditional
and other functional terms at a purely conceptual level. More details can be found on the
section discussing type (1) value expressions. Let also X be a set of variable symbols that are
distinct from function identifiers in V, i.e. X ∩ V = ∅.

Let type assignment function σ : C → Typ that assigns types from Typ to elements of C
and let type assignment function π : V → Typ that assigns types from Typ to elements of V.

Definition 2.2.1. The set of data types Typ comprise data types S and complex data types
T that are defined inductively as follows:

S ::= S0

::= (S, . . . , S)→ S0

T ::= S

::= T → T

Elementary data types S0 ∈ Typ may refer to abstract or enumerated sets, useful basic
types like naturals N, integers Z, Booleans, Cartesian product of data types and finite power-
set of data types. A more rigorous formalization of data type constructions by way of primitive
data types, e.g. the inductive construction of data type “list of integers” by way of primitive
data type “integer”, is beyond the scope of this thesis and is, therefore, not addressed at all.

Notice that the types of function identifiers g ∈ V should belong to Typ. Intuitively, func-
tion identifiers g ∈ V taking l formal parameters, where the value of l varies with the function
identifier g, are assigned type (T1, . . . , Tl)→ T by type assignment function π provided that
T1, . . . , Tl are the types assigned to g’s respective formal parameters and T is the return-type
of g. As an example, consider the operator “+” denoting addition between integers, for which
it follows that “π(+) = (Z,Z)→ Z”.

For the sake of simplicity, eb3 specifications allow for null-ary constants c ∈ C only, and,
therefore, type assignment function σ assigns to constants c ∈ C data types that belong to
S0 ∈ Typ.

2.2.2 EB3 Specifications

In practice, an eb3 specification comprises:

(1) a set of action prototype definitions D1; . . . ;Dq,

(2) a set of attribute function definitions A1; . . . ;An, and

(3) a set of process definitions S1; . . . ;Sm of the form “P (x1 : T1, . . . , xr : Tr) = E”, where
P is a process name and E is a process expression.

The complete eb3 syntax is depicted in Figure 2.1.

Action prototype definitions.

For index j ∈ {1, . . . , q}, action prototype definitions Dj of Figure 2.1 state that action
labels αj receive exactly p distinct typed formal parameters xk for index k ∈ {1, . . . , p}.
Vector x = (x1, . . . , xp) is called formal vector of action label αj . Note that the use of

12 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

EB3 specification EB3 ::= {D1; . . . ;Dq; A1; . . . ;An; S1; . . . ;Sm}
Action prototype definitions Dj ::= αj (x1 : T1, . . . , xp : Tp)

Attribute function definitions Ai ::= fi (T : T , y1 : T1, . . . , ys : Ts) : T =

match last (T) with

⊥T : v0

| c expr1 | . . . | c exprq

[| : vq+1]

end match

Case expressions c exprj ::= αj (z1, . . . , zp) : vj

Pattern matching expressions z ::= v |
Type (1) value expressions vj ::= c | x | g (v1, . . . , vl)

| fh (T, v1, . . . , vs)

| fh (front (T), v1, . . . , vs)

| if g (v1, . . . , vl) then vl+1

else vl+2 end if

Process expression definitions S ::= P (x1 : T1, . . . , xr : Tr) = E

Process expressions E ::= λ | αj (u1, . . . , up) | E1.E2

| E1 |E2 | E0
∗

| E1 |[∆]|E2 | |x :V :E0

| |[∆]|x :V :E0 | ge ⇒ E

| P (u1, . . . , ur)

Type (2) value expressions u ::= c | g (u1, . . . , ul)

Guards ge ::= c | g (ge1, . . . , gel)

| fi (T, u1, . . . , us)

Figure 2.1: eb3 syntax

duplicate variable identifiers among x1, . . . , xp is strictly forbidden. In the following, we will
use notation x to denote the common formal vector of action labels αj for j ∈ {1, . . . , q}.
Parameter p is called the size of vector x.

Notation “xk : Tk” denotes that formal parameter xk has type Tk. Type Tk can only be
one of the valid data types specified in Definition 2.2.1 (see Definition 2.2.2 for well-formedness
of action prototype definitions). In practice, the formal vector of αj varies depending on the
index j ∈ {1, . . . , q}, which, though, not reflected in the eb3 syntax of Figure 2.1 for the sake
of brevity, can be expressed more formally in the following manner:

Let x be the formal vector of action label αj , j ∈ {1, . . . , q} and let p ∈ N be the size of
vector x. Let also x′ be the formal vector of action label αk, k ∈ {1, . . . , q} and let p′ ∈ N be
the size of vector x′. In general, for formal parameter xk, k ∈ {1, . . . , p} of αj , i.e. xk ∈ x,
such that “xk : Tk” and formal parameter x′k, k ∈ {1, . . . , p′} of αj , i.e. x′k ∈ x′, such that
“x′k : T ′k”, it follows that xk 6= x′k and Tk 6= T ′k. Furthermore, it may be p 6= p′.

2.2. EB3 SYNTAX 13

We, also, say that action labels αj and αk such that j 6= k receive different formal vectors
modulo renaming. The return-type of action label αj has been omitted in the syntax of
Figure 2.1, as return-types of action labels are mainly part of specific input/output rules
stipulating interaction with users [FSt03]. However, this sort of information is not pertinent
to the process algebraic specification at this level. Hence, for the sake of simplicity, action
calls of the form αj(x1, . . . , xp) are considered untyped. Notice that every call to action
label αj employed throughout the eb3 specification should be consistent with the typing
of αj in the corresponding action prototype definition Dj (see the corresponding part on
well-formedness of process expressions for more details) and that, obviously, multiple action
prototype definitions for given label αj are forbidden.

The syntactic conditions to which action label definitions are subject are summarized in
the following definition of well-formedness (the constraints over uniqueness of formal param-
eter identifiers and action names are omitted for brevity):

Definition 2.2.2. Action prototype definitions D1, . . . , Dq are said to be well-formed denoted
by “D1; . . . ;Dq ↼” if and only if:

∀j ∈ {1, . . . , q}, ∃Dj ::= αj(. . . , xk : Tk, . . .) ∧ ∀ k ∈ {1, . . . , s}, Tk ∈ Typ
D1; . . . ;Dq ↼

Attribute function definitions.

For i ∈ {1, . . . , n}, attribute function names fi with unique prototype (as it appears in attribute
function definition Ai of Figure 2.1):

fi (T : T , y1 : T1, . . . , ys : Ts) : T

receive the same vector of typed formal parameters y = (y1, . . . , ys), which we call at-
tribute vector modulo renaming, and, therefore, have the same arity s, which is by no
means restrictive in terms of language expressiveness. Especially, for formal parameters
yk ∈ y, k ∈ {1, . . . , s}, we use the alternative term attribute parameter . Based on the
prototype of fi, notation “yk : Tk” denotes that attribute parameter yk has type Tk ∈ Typ
and the return-type of fi is T . In real eb3 specifications, as is the case for the formal vectors
of action labels, attribute vectors are distinct and have different arities given explicitly in the
attribute function definitions A1; . . . An. Attribute functions fi are defined recursively on the
current trace “T : T ” representing the history of actions executed in the system (T denotes
the special type of system traces), with the aid of functions last (T), which denotes the last
action of the system trace until present, and front (T), which denotes the trace without its
last action. Symbol ⊥T represents the bottom (undefined) value with regards to the lattice of
traces “(T, 〈)”, where T is the infinite domain of traces and notation “T1〈T2” stands for the
fact that trace T1 is a prefix of trace T2. In particular, both last (T) and front (T) match ⊥T

when the trace is empty. Case expressions c exprj take one of the following syntactic forms:

• ⊥T : v0,

• αj (z1, . . . , zp) : vj , and

• : vq+1,

14 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

where vj represents type (1) value expressions for j ∈ {0, . . . , q + 1}. The wild-card symbol
() matches all actions not matched by any of the preceding action patterns αj (z1, . . . , zp) for
j ∈ {0, . . . , q}. We, also, write zj = (z1, . . . , zp) for brevity. For index k ∈ {1, . . . , p}, pattern
matching expressions zk are reduced to:

• type (1) value expressions v or

• the wild-card symbol () that matches any constant cj ∈ C appearing in the current
action αj (c1, . . . , cp) of the system trace.

On the other hand, type (1) value expressions v comprise:

• constants c ∈ C,

• variables x ∈ X ,

• functional terms g (v1, . . . , vl), in which g ∈ V and v1, . . . , vl are inductively defined type
(1) value expressions,

• special functional terms on the trace variable T taking one of the following forms:

– fh (T, v1, . . . , vs),

– fh (front (T), v1, . . . , vs)

for h ∈ {1, . . . , n}, for which v1, . . . , vs are inductively defined type (1) value expressions,
and

• conditional terms of the form “if g (v1, . . . , vl) then vl+1 else vl+2”, for which g ∈ V
and g (v1, . . . , vl), v1, . . . , vl+2 are inductively defined type (1) value expressions.

Let “Lab = {α1, . . . , αq}” be the set of action labels appearing uniquely in action prototype
definitions D1; . . . ;Dq of Figure 2.1, and let also “Attr = {f1, . . . , fn}” be the set of attribute
function names appearing uniquely in attribute function definitions A1; . . . ;An. By abuse of
notation, “y1 : T1, . . . , yn : Tn” in Ai can be replaced by the syntactically simpler notation
y : T , where T = (T1, . . . , Tl).

Definition 2.2.3. For i ∈ {1, . . . , n}, attribute function fi is uniquely defined by the set of
eb3 type (1) value expressions w0

i , . . . , w
q
i , and wq+1

i as follows:

fi (T : T , y : T) = match last (T) with

⊥T : w0
i

| α1 (z1) : w1
i | . . . | αq (zq) : wqi

[| : wq+1
i]

end match

where z1, . . . , zq are distinct formal vectors characterizing action labels α1, . . . , αq that have
common arity p as was stipulated previously.

2.2. EB3 SYNTAX 15

Let notation var(wji) denote the set of variable identifiers x appearing in value expression

(1) wji for indexes i ∈ {1, . . . , n}, j ∈ {0, . . . , q+1}. Let also notation var(zj) denote the set of
variable identifiers x among the pattern matching expressions z ∈ zj for index z ∈ {1, . . . , q};
that is to say the wild-card symbols () among the z ∈ {1, . . . , q} are eliminated. Notation
var(y) has a similar meaning to var(zj).

As a means to help eb3 programmers avoid writing meaningless or erroneous code, type
(1) value expressions wji are subject to some syntactic constraints. In particular, the type-

checking rules for type (1) value expressions wji are given as natural deduction rules with

sequents of the form wji ↼1 T . Notation wji ↼1 T asserts, on the one hand, that wji is a
well-formed expression of type T and, on the other hand, that the variables that are used in
wji have the types assigned to them by π and that the constants that are used in wji have the
types assigned to them by σ or more formally:

Definition 2.2.4. By way of structural induction over eb3 type (1) value expressions wji (see

Figure 2.1), the set of well-formed wji for i ∈ {1, . . . , n} and j ∈ {0, . . . , q + 1} is recursively
defined as follows:

σ(c) = T

c ↼1 T
(2.1)

∃zk ∈ zj , c exprj = αj(. . . , zk, . . .) : wji ∧
∃Dj ::= αj(. . . , xk : Tk, . . .) ∧ x = zk ∧ Tk = T

x ↼1 T
(2.2)

∃yk ∈ y, Ai ::= fi (T : T , . . . , yk : Tk, . . .) : . . . ∧ yk = x ∧ Tk = T

x ↼1 T
(2.3)

π(g) = (T1, . . . , Tl)→ T ∧ v1 ↼1 T1, . . . , vl ↼1 Tl
g (v1, . . . , vl) ↼1 T

(2.4)

∃Ah ::= fh (T : T , y1 : T1, . . . , ys : Ts) : . . . ∧ v1 ↼1 T1, . . . , vs ↼1 Ts
fh (T, v1, . . . , vs) ↼1 T

(2.5)

∃Ah ::= fh (T : T , y1 : T1, . . . , ys : Ts) : . . . ∧ v1 ↼1 T1, . . . , vs ↼1 Ts
fh (front (T), v1, . . . , vs) ↼1 T

(2.6)

g (v1, . . . , vl) ↼1 bool ∧ vl+1 ↼1 T, vl+2 ↼1 T

if g (v1, . . . , vl) then vl+1 else vl+2 end if ↼1 T
(2.7)

• Rule (2.1) states that constant c ∈ C has type T if T is exactly the type assigned to c
by the type assignment function σ.

• Rules (2.2) states that variable x is of type T if a) there exists parameter zk of action
label αj in the pattern matching expression “c exprj = αj(z1, . . . , zp) : wji ” such that
zk = x for some index k ∈ {1, . . . , p}, and b) the type of variable x is equal to the
type of the k-th formal parameter xk appearing in the corresponding action prototype
definition Dj , i.e. Tk = T (see Figure 2.1) for all j ∈ {1, . . . , q}.

• Rules (2.3) states that variable x is of type T if for some k ∈ {1, . . . , s}, the (k + 1)-th
parameter of attribute function prototype definition Ai namely yk : Tk (see Figure 2.1)
is such that x = yk, and the the type of formal parameter yk referring to attribute
function fi is equal to T , i.e. Tk = T .

16 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

• Rule (2.4) states that a function call of the form g (v1, . . . , vl) is of type T if and only if
the type assigned to variable identifier g ∈ V is π(g) = (T1, . . . , Tl) → T and for every
value expression (1) vk, for which k ∈ {1, . . . , l}, it can be established that vk ↼1 Tk.

• Rule (2.5) states that for index h ∈ {1, . . . , n}, attribute function call “fh (T, v1, . . . , vs)”
has type T if and only if its corresponding (unique) attribute function definition “Ah =
fh (T : T , y1 : T1, . . . , ys : Ts) : . . .” in the eb3 specification (see Figure 2.1) is such that
for every value expression (1) vk, for which k ∈ {1, . . . , s}, it can be established that
vk ↼1 Tk. Similar is the meaning of rule (2.6).

• In rule (2.7), the sequent “g (v1, . . . , vl) ↼1 bool” denotes that g (v1, . . . , vl) is of type
Boolean. Notice that vl+1 and vl+2 should be of the same type T to ensure the well-
formedness of the if -then-else construct.

Attribute function ordering. Attribute function definitions are subject to further syn-
tactic restrictions. In particular, we assume that the attribute functions are ordered, so that
for all h, i ∈ {1, . . . , n} and for all j ∈ {1, . . . , q}, every function call of the form fh (T, . . .)
occurring in wji satisfies h < i and calls of the form fh (front (T), . . .) may occur in wji for
every h ∈ {1, . . . , n}. For example, an attribute function definition fi cannot contain recursive
calls of the form fi (T, . . .), as circular dependencies among attribute function calls of that
sort would lead to infinite attribute function evaluation.

In the following, we refer to the aforementioned hypotheses over attribute function defini-
tions as the attribute function ordering . Furthermore, the attribute function ordering allows
for a straightforward and considerably simple translation of eb3 specifications to equivalent
LNT specifications, whose objective is the efficient verification of eb3 specifications over tem-
poral properties. How this assumption facilitates the translation will be clarified later on in
the corresponding section. Notice that this does not limit the expressiveness of eb3 attribute
functions, because every recursive computation on data expressions only (which keeps the
trace unchanged) can be described using standard functions and not attribute functions.

Definition 2.2.5. As a means to obtain well-formed attribute function definitions Ai for
all i ∈ {1, . . . , n} (the exact syntax of Ai can be found in Definition 2.2.3) denoted by
“A1; . . . ;An ↼”, we stipulate the following:

• var(wji) ⊆ var(y) ∪ var(zj),

• wji ↼1 T , where T is the return-type of attribute function name fi.

• attribute function definitions Ai satisfy the attribute function ordering

for i ∈ {1, . . . , n} and j ∈ {0, . . . , q + 1}.

Process name definitions.

In keeping with process prototype definition S ∈ {S1, . . . , Sm} of Figure 2.1, process expres-
sion name P receives r distinct typed formal parameters. Vector “x = (x1, . . . , xr)” is called
formal vector of process expression name P . Like action labels, process expression names have
no return-type. The set of process expression defined uniquely in process expression defini-
tions “Sk = Pk(x1 : T1, . . . , xr : Tr)” for k ∈ {1, . . . ,m} is denoted by “Func = {P1, . . . , Pm}”.

2.2. EB3 SYNTAX 17

Among these function names a special name main is used, which takes no formal vector and,
whose meaning is similar to that of function main in programming language C. In real eb3

specifications, the size r of formal vector x varies with process name Pk.
Process expressions are principally made of actions. Let Act be a set of actions written

ρ, ρ1, ρ2, . . . appearing in eb3 specifications. Action ρ is either the internal action written λ
that does not appear in any of the action prototype definitions D1; . . . ;Dq, or a visible action
of the form αj (u), where αj ∈ Lab for some j ∈ {1, . . . , q} and u = (u1, . . . , up) is a vector of
type (2) value expressions.

Type (2) value expressions v comprise:

• constants c ∈ C,

• functional terms g (v1, . . . , vl), in which g ∈ V and v1, . . . , vl are type (2) value expres-
sions defined inductively.

eb3 processes can be combined with classical process algebra operators such as the se-
quential composition “E1.E2”, the non-deterministic choice “E1 |E2”, the Kleene closure
“E0

∗”, and the parallel composition “E1 |[∆]|E2” of E1, E2 with synchronization on action
labels ∆ ⊆ Lab. Notation “E1 |||E2”stands for process expression “E1 |[∅]|E2” and nota-
tion “E1 ||E2” stands for process expression “E1 |[Lab]|E2”. Besides, eb3 syntax features
calls to process expressions of the form Pj (u), where u = (u1, . . . , ur).

Furthermore, eb3 is endowed with a special type of process expression called the guarded
expression process “ge⇒ E0”. The guard ge is a Boolean condition which may contain:

• constants c ∈ C,

• attribute function calls of the form “fi (T, ge1, . . . , ges)”.

Last but not least, quantification is permitted for choice and parallel composition used in
eb3 specifications. For a set of constants “V = {c1, . . . , cn}” such that V ⊆ C , we define the
quantified choice operator “|x :V ” as follows:

|x :V :E0 = E0[x := c1] | . . . |E0[x := cn]

Moreover, for a set of action labels ∆ such that “∆ ⊆ Lab”, we define the quantified parallel
opearator “|[∆]|x :V ” as follows:

|[∆]|x :V :E0 = E0[x := c1] |[∆]| . . . |[∆]|E0[x := cn],

where notation “E[x := c]” denotes the replacement of all occurrences of x by c in E. For
instance, “||x :{1, 2, 3} :a (x)” stands for “a (1) || a (2) || a (3)”.

The precedence of process algebra operators (from highest to lowest) is given below:

1 ∗

2 .
3 |

4 |[∆]|, ||| as binary operator
5 |[∆]|, ||| as quantified operator
6 ⇒

We proceed with the definition of well-formedness for eb3 process expressions.

18 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

Definition 2.2.6. Let “S ::= P (x1 : T1, . . . , xr : Tr) = E” be a process expression definition
such that Tk ∈ Typ for all k ∈ {1, . . . , r}. Let u denote type (2) value expressions appearing
in process expression E (the syntax of u can be found Figure 2.1). The well-formedness of
type (2) value expressions u denoted as “u ↼2 T” for some T ∈ Typ is defined recursively by
way of structural induction over u as follows:

σ(c) = T

c ↼2 T
(2.8)

π(g) = (T1, . . . , Tl)→ T ∧ u1 ↼2 T1, . . . , ul ↼2 Tl
g (u1, . . . , ul) ↼2 T

(2.9)

Definition 2.2.7. Let “S ::= P (x1 : T1, . . . , xr : Tr) = E” be a process expression definition
such that Tk ∈ Typ for all k ∈ {1, . . . , r}. Let ge denote guards appearing in process expression
E (the syntax of ge can be found Figure 2.1). The well-formedness of guards ge denoted as
ge ↼3 bool is defined recursively as follows:

σ(c) = T

c ↼3 T
(2.10)

π(g) = (T1, . . . , Tl)→ T ∧ ge1 ↼3 T1, . . . , gel ↼3 Tn
g (ge1, . . . , gel) ↼3 T

(2.11)

∃Ai ::= fi (T : T , y1 : T1, . . . , ys : Ts) : T ∧ u1 ↼3 T1, . . . , us ↼3 Tn
fi (T, u1, . . . , us) ↼3 T

(2.12)

Definition 2.2.8. Let “S ::= P (x1 : T1, . . . , xr : Tr) = E” be a process expression definition
such that Tk ∈ Typ for all k ∈ {1, . . . , r}. The well-formedness of process expressions E
denoted by “E ↼4” is defined by way of structural induction over E as follows:

λ ↼4
(2.13)

∀uk ∈ u, ∃Dj ::= αj(. . . , xk : Tk, . . .) ∧ (uk ↼2 Tk)

αj(u1, . . . , up) ↼4
(2.14)

(E1 ↼4) ∧ (E2 ↼4)

E1.E2 ↼4
(2.15)

(E1 ↼4) ∧ (E2 ↼4)

E1 | E2 ↼4
(2.16)

E0 ↼4

E0
∗ ↼4

(2.17)

(E1 ↼4) ∧ (E2 ↼4) ∧ (∆ ⊆ Lab)
E1|[∆]|E2 ↼4

(2.18)

(E0 ↼4) ∧ (V ⊆ C) ∧ (∆ ⊆ Lab)
| x :V :E0 ↼4

(2.19)

(E0 ↼4) ∧ (V ⊆ C) ∧ (∆ ⊆ Lab)
|[∆]| x :V :E0 ↼4

(2.20)

(ge ↼3) ∧ (E ↼4)

ge⇒ E ↼4
(2.21)

2.2. EB3 SYNTAX 19

∀uk ∈ u, ∃So ::= Po(. . . , xk : Tk, . . .) = . . . ∧ (uk ↼2 Tk)

Po (u1, . . . , ur) ↼4
(2.22)

• Typing rule (2.14) states that the well-formedness of action calls αj(u1, . . . , up) for
j ∈ {1, . . . , q} suggests the well-formedness of type (2) value expressions u1, . . . , up
denoted as uk ↼2 Tk for all k ∈ {1, . . . , p} (see Definition 2.2.6), where Tk represents the
type of the k-th formal parameter of action name αj as is specified in the corresponding
action prototype definition Dj for j ∈ {1, . . . , q}.

• Typing rule (2.21) states that the well-formedness of guarded expression process “ge⇒
E” suggests the well-formedness of guard ge denoted as ge ↼3 (see Definition 2.2.7)
and to the well-formedness of expression E.

• Typing rule (2.22) states that the well-formedness of process expression Po (u1, . . . , ur)
is guaranteed if there exists a process expression definition “So ::= Po(. . . , xk : Tk, . . .) =
Eo” with So ∈ {S1, . . . , Sm} such that for all value expression (2) uk with k ∈ {1, . . . , r},
it can be established that uk ↼3 Tk.

• The remaining typing rules are straightforward, as they rely trivially on the inductive
nature of eb3 process expressions.

eb3 process expressions must satisfy a number of additional restrictions that are not
reflected in the previous definitions of well-formedness. We say that a variable x ∈ V is
bound in an expression E if all its occurrences are within the scope of a quantifier, and a
formula is called closed if all variables occurring in the formula are bound. The following
restrictions apply to eb3 expressions:

1) Binary operators |[∆]| can only be applied to eb3 process expressions in which, for each
action name a ∈ ∆, if a(x) occurs in one of the operands then all the variables in x must
be bound in that operand. This restriction forbids expressions of the type a(x1)[a]a(x2),
which may be interpreted as either a single process being executed, when both variables
have the same value, or two different processes being executed in an arbitrary order, when
the two variables are instantiated with different values.

2) A similar constraint must be satisfied by expressions of the form |[∆]|x :V :E0, namely
for each action name α ∈ Lab for which α (u) occurs in E0 for some vector u of type (2)
value expressions, the variables “x ∈ V \ V ” in E0 that do not occur in u must be bound
in the body of E0.

Definition 2.2.9. Let “S ::= P (x1 : T1, . . . , xr : Tr) = E” be a process expression definition.
We say that S is well-formed denoted by S ↼ if and only if:

• Tk ∈ Typ for all k ∈ {1, . . . , r},

• E ↼4

• the syntax of process expression E is consistent with bullets 1) and 2).

Definition 2.2.10. Let “S1; . . . ;Sm” be a set of process expression definitions. We say that
“S1; . . . ;Sm” is well-formed denoted by “S1; . . . ;Sm ↼” if Sk ↼ for all k ∈ {1, . . . ,m}.

20 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

Definition 2.2.11. Let “EB3 ::= D1; . . . ;Dq; A1; . . . ;An; S1; . . . ;Sm” denote eb3 specifi-
cation (the syntax of EB3 can be found in Figure 2.1). We say that “EB3” is well-formed
denoted by “EB3 ↼” if and only if:

• D1; . . . ;Dq ↼,

• A1; . . . ;An ↼,

• S1; . . . ;Sm ↼.

In the following, only well-formed eb3 specifications are considered.

Example. As a simple example on the use of eb3 process algebra, we consider a simplified
version of the library management system, whose specification in eb3 can be found in its
entirety in Annex C of [Ger06]. Throughout this presentation, we explore the effect of attribute
functions on the expressiveness of eb3 specifications. First, we provide a succinct description
in natural language of the system, which is summarized in the following specifications:

1. A book can always be acquired by the library when it is not currently acquired.

2. A book cannot be acquired by the library if it is already acquired.

3. An acquired book can be discarded only if it is not borrowed.

4. A person must be a member of the library in order to borrow a book.

5. A member can relinquish library membership only when all his loans have been returned.

6. Ultimately, there is always a procedure that enables a member to leave the library.

7. A member cannot borrow more than the loan limit defined at the system level for all
users.

The eb3 specification describing the library management system is given in Figure 2.2.

In Figure 2.2, the actual set of books is denoted by “BID = {b1, . . . , bm}” and the set of
persons eventually obtaining membership in the library is denoted by “MID = {m1, . . . ,mp}”.

By abuse of notation, MID⊥ (the set of member IDs plus value ⊥) is also used to denote
the return-type of attribute function borrower and Nat⊥ (the set of natural number plus value
⊥) is also used to denote the return-type of attribute function nbLoans. Moreover, notice the
use of symbol ⊥ in Figure 2.2 meaning undefined in the bodies of attribute function borrower
and attribute function nbLoans. A more rigorous specification would involve the use of symbol
⊥NAT in the body of nbLoans referring exclusively to the undefined value that belongs to
set NAT⊥ and the use of symbol ⊥MID in the body of attribute function borrower referring
exclusively to the undefined value that belongs to MID⊥.

Process main is the parallel interleaving between m instances of process book and p
instances of processes describing operations on members. To avoid confusion, action names
begin with upper-case letters, while process and attribute function names begin with lower-
case letters.

Member mId registers to become member to the library via action “Register (mId)”. By
way of action “Unregister (mId)”, member mId relinquishes membership from the library.

2.2. EB3 SYNTAX 21

Acquire (bId : BID);
Discard (bId : BID);
Register (mId : MID);
Unregister (mId : MID);
Lend (bId : BID , mId : MID);
Return (bId : BID);

book (bId : BID) =
Acquire (bId). (borrower (T, bId) = ⊥)⇒ Discard (bId);

loan (mId : MID , bId : BID) =
(borrower (T, bId) = ⊥) ∧ (nbLoans (T,mId) < NbLoans)⇒

Lend (bId , mId). Return (bId);

member (mId : MID) =
Register (mId). (|||bId : BID : loan (mId , bId)∗). Unregister (mId);

main =
(|||bId : BID : book (bId)∗) ||| (|||mId : MID : member (mId)∗);

nbLoans (T : T ,mId : MID) : Nat⊥ = borrower (T : T , bId : BID) : MID⊥ =
match last (T) with match last (T) with
⊥T : ⊥ ⊥T : ⊥

| Lend (bId ,mId) : | Lend (bId ,mId) : mId
nbLoans (front (T),mId) + 1 | Return (bId) : ⊥

| Register (mId) : 0 | : borrower (front (T), bId)
| Unregister (mId) : ⊥ end match
| Return (bId) :

if mId = borrower (T, bId) then
nbLoans (front (T),mId)− 1

else nbLoans (front (T),mId) end if
| : nbLoans (front (T),mId)
end match;

Figure 2.2: eb3 specification of a library management system

Action “Acquire (bId)” denotes acquisition of book bId , which automatically makes bId avail-
able for borrowing. The inverse operation is carried out by action “Discard (bId)”. Member
mId borrows book bId via action “Lend (bId ,mId)” and returns it to the library after use via
action “Return (bId)”.

Process “book (bId)” denotes the life-cycle of book entity bId from the moment of its
acquisition by the library until its eventual discard. Process member (mId) denotes the life-
cycle of member entity mId from the moment of their registration until their membership
removal. In the body of “member (mId)”, process expression:

(|||bId : BID : loan (mId , bId)∗)

denotes the interleaving of m instances of process expression:

loan (mId , bId)∗

22 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

that denotes the execution of “loan (mId , bId)” for “bId = {b1, . . . , bm}”, an arbitrary, but
bounded number of times (see semantics of Kleene closure operator in Section 2.3 for more
details).

Attribute function “borrower (T, bId)”, where T is the current trace, returns the cur-
rent borrower of book bId or ⊥ if the book is not lent, by looking for actions of the form
“Lend (bId ,mId)” or “Return (bId)” in the trace. In the body of process “book (bId)”, action
“Discard (bId)” is, thus, guarded by the following condition:

borrower (T, bId) = ⊥

to guarantee that book bId cannot be discarded if it is currently lent.

The use of attribute functions is not adherent to standard process algebra practices as
it may naively trigger the complete traversal and inspection of the system trace. Alterna-
tively, one may come up with simpler specifications based solely on process algebra operations
(without attribute functions) provided that the functional requirements imply loose interde-
pendence between entities and associations. For instance, if all books are acquired by the
library before any other action occurs and are eventually discarded (given that there are no
more demands), the code of process main can be modified in the following manner:

main = (|||bId : BID : Acquire (bId)) . (|||mId : MID : member (mId)∗) .
(|||bId : BID : Discard (bId))

Notice that the functional requirements are not contradicted, though the system’s behaviour
changes dramatically.

Programming naturally in a purely process-algebraic style without attribute functions
in eb3 may not always be obvious. In some cases, ordering constraints involving several
entities are quite difficult to express without guards and lead to less readable specifications
than equivalent guard-oriented solutions in eb3 style. For instance in the body of process
“loan (mId : MID , bId : BID)”, writing the specification without the use of the following
guard:

(borrower (T, bId) = ⊥) ∧ (nbLoans (T,mId) < NbLoans)

that illustrates the conditions under which a “Lend (bId ,mId)” operation can take place
(notably when the book is available and attribute function call “nbLoans (T,mId)” evaluates
to an integer that is inferior to the fixed bound NbLoans), is not trivial.

2.3 EB3 Semantics

We present three operational semantics for eb3. The first, named Trace Semantics (SemT),
is a rigorous redefinition of the standard eb3 semantics, which can be found in [FSt03].
The second, named Trace/Memory Semantics (SemT/M), is the alternative semantics, where
attribute functions are computed during program evolution and their values are stored into
program memory. By removing the trace from each state in SemT/M, we obtain the third
semantics for eb3 specifications, which we name Memory Semantics (SemM). The relevance
of the SemT/M semantics stems from the fact that it is pivotal in proving the bisimulation
between SemT and SemM.

2.3. EB3 SEMANTICS 23

2.3.1 Trace Semantics SemT

Before defining the formal semantics of eb3 process expressions, we need to define the inter-
pretation of type (1) value expressions v with respect to SemT that appear in the pattern
matching constructs of attribute function definitions, the interpretation of type (2) value ex-
pressions u with respect to SemT that may appear either among the actual vectors of action
labels αj for j ∈ {1, . . . , q} or among the actual vectors of process names Pk for k ∈ {1, . . . ,m}
(see Figure 2.1 for details). We also need to define the interpretation of guards ge with respect
to SemT.

We recall the existence of set C generating all constants c and the existence of set V
generating all function name identifiers g. We also recall the corresponding type assignment
function σ : C → Typ assigning types to constants c ∈ C and function π : V → Typ assigning
types to function name identifiers x, g ∈ V.

Following the standard approach of denotational semantics [Ten91] for programming lan-
guages, we define the interpretation of value expressions of eb3 with respect to a given finite
domain of values D.

Definition 2.3.1. The semantics (denotation) of type T ∈ Typ denoted by b·cD with respect
to finite domain D, where the subscript D is often omitted when it is obvious from the context,
is defined by way of structural induction over type T as follows:

bS0cD = D

b(S1, . . . , Sl)→ S0cD = [(bS1cD, . . . , bSlcD)→ D]

bT1 → T2cD = [bT1cD → bT2cD],

where [A→ B] denotes the set of all functions from domain A to domain B.

The semantics of constant symbols c and non-user defined functions is specified by a given
interpretation function F with respect to D. In particular, function F assigns:

� to function identifiers g ∈ V corresponding to standard non-user defined Boolean and
arithmetic predicates, e.g. the addition operator “+” on integers, the inclusion operator
“⊆” on sets and the “less than” operator “<” on real numbers, their standard denotations,
and

� to usual constants, e.g. the Boolean “true” and the integer “1”, their standard denotation.

Let UT be the set of:

• all type (1) value expressions v such that v ↼1 T ,

• all type (2) value expressions u such that u ↼2 T , and

• all guards ge such that ge ↼3 T .

Let
∏

denote the following generalization of set products, i.e.:∏
i∈I

Ai = {f : I → Ai}

for any set of indexes I generating finite domains Ai, i ∈ I. In the following, we use the
standard notion of environment as the data base associating variable identifiers to special
values named denotations. More formally,

24 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

Definition 2.3.2. An environment τ : X → D is a partial function from variable identifiers
in X to denotations (values) in domain D.

Definition 2.3.3. Let τ be an environment such that for all variable identifiers x ∈ X that
appear in type (1) value expressions v such that x ↼1 π(x), it follows that τ (x) ∈ bπ(x)cD.
We denote the set of environments in the context of eb3 specifications satisfying the previous
condition that we call the set of π-compatible environments as Envπ. It follows directly that:

Envπ =
∏
x∈X
bπ (x)cD.

In Definition 2.3.3, we have assumed that all variable (non-function) identifiers x appearing
in eb3 specifications are generated by X , i.e. x ∈ X , and that the type assigned to x by
type assignment function π is exactly the type deduced when applying the rules of well-
formedness (see the corresponding definitions in Section 2.1) after statically analysing the
eb3 specification.

Then, let A,B, S be domains such that S ⊆ A. In the following, notation f ⊕ g refers to
the perturbation of function f : A→ B with respect to function g : S → B or more formally:

(f ⊕ g)(x) =

{
g(x), if x ∈ S
f(x), otherwise

In the following, if T′ denotes the current system trace, and action αj(c1, . . . , cp) is executed
for some index j ∈ {1, . . . , q}, and some constants c1, . . . , cp ∈ C, then “T′.αj(c1, . . . , cp)”
shall denote the system trace just after action αj(c1, . . . , cp) has been executed.

Definition 2.3.4. A trace environment τ? : T → D is a partial function from system traces
to values in domain D that is defined as follows:

τ?(T) =

{
[], if T = []

[z1 ← F(c1), . . . , zp ← F(cp)], if T = T′.αj(c1, . . . , cp)

where T′ ∈ T is a valid trace, j ∈ {1, . . . , q}, and c1, . . . , cp ∈ C are constants.

Function τ? assigns to every formal parameter zk of action label aj (corresponding to
the current action occurring in the system) that appears in the pattern matching expression
“c exprj ::= αj(z1, . . . , zp) : wjh” value F(ck) for all k ∈ {1, . . . , p}.

We proceed with the semantics of eb3 type (1) value expressions, which is defined using

valuation functions [[·]]T,T1,D : UT → [τTπ → bT cD], where the subscripts and superscripts D, T
and π are omitted when they can be extracted from the context.

Definition 2.3.5. Let EB3 be a well-formed eb3 specification and let τ ∈ Envπ be a π-
compatible environment. For the different values of trace variable T given as follows:

T =

{
[]

T′. αj(c1, . . . , cp) for j ∈ {1, . . . , q}, c1, . . . , cp ∈ C

where T′ ∈ T is a valid trace, the semantics [[·]]T1 : Envπ × T → bT cD for some type T ∈ Typ
of eb3 type (1) value expressions wji ↼ T appearing in EB3 for some i ∈ {1, . . . , n} and some

2.3. EB3 SEMANTICS 25

j ∈ {1, . . . , q} with respect to SemT under environment τ and trace T is defined by way of
structural induction over wji as follows:

[[c]]T1 (τ, T) = F(c) (2.23)

[[x]]T1 (τ, T) = τ(x) (2.24)

[[g (v1, . . . , vl)]]
T
1 (τ, T) = F(g)([[v1]]T1 (τ, T), . . . , [[vl]]

T
1 (τ, T)) (2.25)

[[fh (T, v1, . . . , vs)]]
T
1 (τ, T) = [[wjh]]T1 (τ?(T) ∪ τ ′, T) (2.26)

where τ ′ = [y1 ← [[v1]]T1 (τ, T), . . . , ys ← [[vs]]
T
1 (τ, T)]

[[fh
(
front(T), v1, . . . , vs)]]

T
1 (τ, []) = ⊥F (2.27)

[[fh
(
front(T), v1, . . . , vs)]]

T
1 (τ, T) = [[fh (T, v1, . . . , vs

)
]]T1 (τ, T′) (2.28)

where T = T′.αj(c1, . . . , cp)

[[if g (v1, . . . , vl) then vl+1 (2.29)

else vl+2 end if]]T1 (τ, T) = ([[vl+1]]T1 ⊕ [[vl+2]]T1)(τ, T)

where [[vl+2]]T1 : Envπ × T ′ → D

T ′ = {T ∈ T | [[g (v1, . . . , vl)]]
T
1 (τ, T) = false}

It should be noted that operator [[·]]T1 is actually overloaded. A more accurate definition

would involve the use of [[·]]T,T1,D defined in respect to given domain D and given data type T .
For the sake of simplicity, we have dropped subscript D and superscript T .

We recall that attribute function calls appearing in type (1) value expressions may take
one of the following forms (see Figure 2.1):

• fh (front(T), v1, . . . , vs) for h > 0,

• fh (T, v1, . . . , vs) for h < i,

(see attribute function ordering for details).

Upon assigning to trace variable T the list of actions occurring in the system until present,
trace variable T takes one of the following forms:

1. the empty trace [],

2. T′.αj(c1, . . . , cp) for j ∈ {1, . . . , q}, c1, . . . , cp ∈ C.

Similarly, trace variable front(T) takes one of the following forms:

1. the bottom (undefined) value ⊥T if and only if “T = []”,

2. T′ if and only if “T = T′.αj(c1, . . . , cp)”.

The denotation of constant c under environment τ and trace T is provided by function F ,
whereas the denotation of variable x under environment τ and trace T is provided by envi-
ronment τ .

As a means to calculate the denotation of functional terms “g (v1, . . . , vl)” under environ-
ment τ and trace T, we need to apply the standard denotation of function identifier g (as

26 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

provided by function F) to the vector carrying the denotations of type (1) value expressions
v1, . . . , vl computed inductively under environment τ and trace T.

As for the denotation of attribute function call “fh (T, v1, . . . , vs)” for h < i under envi-
ronment τ and trace T, eb3 type (1) value expression wjh is selected among eb3 type (1) value
expressions w1

h, . . . , w
q
h appearing in attribute function definition Ah (see Definition 2.2.3 for

details). Then, the calculation reduces to the denotation of type (1) value expression wjh
under environment τ?(T) ∪ τ ′ that assigns:

• value F(ck) to formal parameter zk of action label aj for all k ∈ {1, . . . , p} (see Defini-
tion 2.3.4 for details on trace environment τ?), and

• value [[vk]]
T
1 (τ, T) (computed inductively beforehand) to attribute parameter yk of fh

for all k ∈ {1, . . . , s} (see definition of environment τ ′).

and trace T.
Notation ⊥F is syntactic sugar for F(⊥) and stands for the denotation of bottom (unde-

fined) value ⊥ under function F . A more accurate definition would involve the introduction
of symbol ⊥FT , where T stands for the return-type of attribute function name fh (see Defini-
tion 2.2.3 above).

Let the trace variable T be equal to []. Then, the denotation of attribute function call
“fh (front(T), v1, . . . , vs)” for h > 0 under given environment τ and the empty trace []
is equal to ⊥F . Moreover, if “T = T′. αj(c1, . . . , cp)” for some j ∈ {1, . . . , q} and some
constants c1, . . . , cp ∈ C, the computation reduces to the denotation of “fh (T, v1, . . . , vs)”
under environment τ and trace T.

We recall that, as a means to mark the distinction between conditional value expressions
and non-conditional value expressions, we assume that function identifier if -then-else is not
generated by set V. For this reason, the denotation of if -then-else value expressions and
the denotation of function terms g (v1, . . . , vl) are provided separately in Definition 2.3.5.
As a means to define the denotation of “if g (v1, . . . , vl) then vl+1 else vl+2 end if” under
environment τ and system trace T, the classic interpretation of Boolean expressions is applied.
Note that false refers to the standard denotation of Boolean constant false. Furthermore, the
restriction of function “[[vl+2]]T1 : Envπ × T → D” to “[[vl+2]]T1 : Envπ × T ′ → D” is assumed,
where T ′ is the subset of system traces, under which condition g(v1, . . . , vl) is evaluated to
false. Hence, for those traces T ∈ T ′, the computation is reduced to the denotation of vl+2

under trace T and environment τ . Otherwise, it is reduced to the denotation of vl+1 under
trace T and environment τ .

In order to keep the presentation simple, case “| : wq+1
i ” has not been treated in Def-

inition 2.3.5. However, the power of this construct is not lost, as the user can embed the
functionality of wq+1

i in one of the preceding type (1) value expressions w0
i , . . . , w

q
i (see Defi-

nition 2.2.3).
Another convention has also been made to simplify the definition. In particular, pattern

matching constructs zj are treated plainly as variables x ∈ V, despite the fact that they may
be reduced to value expressions v (see Figure 2.1). Again, the loss in expressiveness is minor,
as the effect of v can be transferred to the corresponding wji .

The standard approach of denotational semantics can be applied to eb3 type (2) value
expressions and guarded expressions too. In the following, we use notation [[·]]T2 to refer to
the denotation of eb3 type (2) value expressions with respect to SemT as eb3 type (2) value
expressions constitute a subset of eb3 type (1) value expressions.

2.3. EB3 SEMANTICS 27

Definition 2.3.6. Let EB3 be a well-formed eb3 specification. The semantics (denotation)
[[·]]T2 : bT cD for some type T ∈ Typ of eb3 type (2) value expressions u ↼2 T appearing in
EB3 for some i ∈ {1, . . . , n} and some j ∈ {0, . . . , q} with respect to SemT is defined by way
of structural induction over u as follows:

[[c]]T2 = F(c)

[[g (u1, . . . , ul)]]
T
2 = F(g)([[u1]]T2 , . . . , [[ul]]

T
2)

Function [[·]]T2 does not depend on any given environment or any given trace, since eb3

type (2) value expressions consist of constants c ∈ C and simple operations on constants.
Note also that the set of eb3 type (2) value expressions is a subset of eb3 type (1) value
expressions. This fact implies an alternative definition for [[·]]T2 with the use of [[·]]T1 .

Definition 2.3.7. Let EB3 be a well-formed eb3 specification and let T denote the current
trace. The semantics (denotation) [[·]]T3 : T → bT cD for some type T ∈ Typ of guards
appearing in guarded expressions ge of EB3 with respect to SemT under trace T is defined by
way of structural induction over ge as follows:

[[c]]T3 (T) = F(c)

[[g (ge1, . . . , gel)]]
T
3 (T) = F(g)([[ge1]]T3 (T), . . . , [[gel]]

T
3 (T))

[[fi (T, u1, . . . , us)]]
T
3 (T) = [[fi (T, u1, . . . , us)]]

T
1 ([], T)

The definition of function [[·]]T3 makes use of function [[·]]T1 under the empty environment and
the current trace T, since type (2) value expressions u1, . . . , up are evaluated later on by [[·]]T1
(see Definition 2.3.5 for details). For the same reason, function [[·]]T2 is not applied at this point
for u1, . . . , up. Note also that attribute function calls of the form “fi (front(T), v1, . . . , vs)”
cannot appear syntactically in guards ge for any i > 0 (see Figure 2.1 for details).

The operational semantics of eb3 process expressions with respect to SemT is presented
in Figure 2.3; it borrows heavily from the classic operational semantics of [FSt03]. The
difference, here, lies in the addition of attribute functions and their effect on the reduction
rules. Notice that the trace T is given explicitly in the system state.

• The system state with respect to SemT is represented by tuple (E,T), where E is the
process expression describing the remaining system behaviour and T is the current trace.

• The initial system state is represented by process expression main and empty trace [],
i.e. the tuple (main, []).

• The evolution of system state modelled by a labelled transition system (LTS) must
adhere to the reduction rules of Figure 2.3.

More details on the LTS construction of eb3 specifications with respect to SemT can be
found in Section 2.4.1, where the bisimulation equivalence of SemT, SemT/M, and SemM is
established.

Regarding Figure 2.3, the symbol
√

, which is not part of the user syntax, denotes success-
ful execution. The trace T of an eb3 specification at a given moment consists of the sequence
of visible actions executed since the start of the system. As a result, idle action λ does not
appear in the trace. At system start, the trace is empty. We also remark that if T denotes the
current trace and action ρ ∈ {αj(c1, . . . , cp) | j ∈ 1..q} ∪ λ, where c1, . . . , cp ∈ C are constants
and j ∈ {1, . . . , q}, can be executed, then T.ρ denotes the trace just after executing ρ.

28 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

ρ ∈ {αj(c1, . . . , cp) | j ∈ 1..q} ∪ λ

(T1)
(ρ,T)

ρ−→T (
√
,T. ρ)

ρ 6= λ (T′1)
(ρ,T)

λ−→T (
√
,T)

(T2)
(E1,T)

ρ−→T (E′1,T. ρ)

(E1.E2,T)
ρ−→T (E′1.E2,T. ρ)

(T3)
(E2,T)

ρ−→T (E′2,T. ρ)

(
√
.E2,T)

ρ−→T (E′2,T. ρ)

(T4)
(E1,T)

ρ−→T (E′1,T. ρ)

(E1 |E2,T)
ρ−→T (E′1,T. ρ)

(T5)
(E0

∗,T)
λ−→T (

√
,T)

(T6)
(E0,T)

ρ−→T (E′0,T. ρ)

(E0
∗,T)

ρ−→T (E′0.E0
∗,T. ρ)

(T7)
(E1,T)

ρ−→T (E′1,T. ρ) (E2,T)
ρ−→T (E′2,T. ρ)

(E1 |[∆]|E2,T)
ρ−→T (E′1 |[∆]|E′2,T. ρ)

in (ρ,∆)

(T8)
(E1,T)

ρ−→T (E′1,T. ρ)

(E1 |[∆]|E2,T)
ρ−→T (E′1 |[∆]|E2,T. ρ)

¬in (ρ,∆)

(T9)
(
√
|[∆]|

√
,T)

λ−→T (
√
,T)

(T10)
(E0,T)

ρ−→T (E′0,T. ρ)

(ge⇒ E0,T)
ρ−→T (E′0,T. ρ)

[[ge]]T3 ([], T) = true

(T11)
(E[x := u],T)

ρ−→T (E′,T. ρ)

(P (u),T)
ρ−→T (E′,T. ρ)

P (x) = E

Figure 2.3: eb3 Trace Semantics (SemT)

• Rules (T1), (T′1) refer to the execution of actions. Note that in the case of the idle action
λ, λ is not inserted to the trace.

• Rules (T2), (T3) refer to the execution of sequential composition “E1.E2” of process
expressions E1 and E2. The execution of process expression E1 precedes the execution
of process expression E2. Once process expression E1 has been consumed, and, therefore,
reduced to expression

√
, the system carries on with the execution of E2.

• Rule (T4) treats the non-deterministic choice. If process expression E1 reduces to
process expression E′1, then process expression “E1 |E2” reduces to process expression
E′1. The symmetric case has been omitted for brevity.

• Rules (T5), (T6) refer to the Kleene closure “E0
∗” of process expression E0. Rule (T5)

refers to the idle choice. The system chooses not to execute process expression E0 (idle

2.3. EB3 SEMANTICS 29

move). Moreover, the idle process λ is not added to the system trace. In rule (T6), if
process expression E0 reduces to process expression E′0, then process expression “E0

∗”
is reduced to process expression “E′0.E0

∗”. The system will carry on with the execution
of E′0 in subsequent steps.

• Rules (T7), (T8) and (T9) refer to the parallel composition “E1 |[∆]|E2” of process
expressions E1, E2 with synchronization on action labels ∆ ⊆ Lab. Rule (T7) treats the
synchronisation on action ρ for process expressions E1, E2. The condition “in (ρ,∆)” is
true if and only if the label of ρ belongs to ∆. Rule (T8) treats the reduction of process
expressions E1 via the execution of action ρ that does not belong to ∆. The symmetric
rule for process expressions E2 has been omitted for brevity. Rule (T9) corresponds to
another idle reduction denoting that if both operands of the parallel composition have
been consumed, process expression

√|[∆]|√ is replaced by the termination process
√

.

• Rule (T10) corresponds to the reduction of process expressions that are prefixed by
guards. In particular, the reduction takes place on condition that the guarded expres-
sions is evaluated to true.

The attribute functions that participate syntactically in guard ge are evaluated using the
inductive definition over attribute functions in Definition 2.3.7 under the current trace
T. Notice that the evaluation of guard ge and the execution of the first action ρ in E0

are simultaneous, i.e., no action is allowed in concurrent processes in the meantime. We
call this property the guard-action atomicity. This property is essential for consistency
as, by side effects, the occurrence of actions in concurrent processes could implicitly
change the value of guard ge before the guarded action has been executed.

Execution. As an example, we consider a four-step simulation scenario for the library
management system, whose eb3 specification is given in Figure 2.2. We assume that the
library may contain at most two books and at most two members, i.e. “BID = {b1, b2}”, and
“MID = {m1,m2}”. We also set NbLoans = 2. The different values of trace variable T are
depicted in Figure 2.4.

T

A []

B Acquire (b2).Acquire (b1)

C Acquire (b2).Acquire (b1).Register (m2).Register (m1)

D Acquire (b2).Acquire (b1).Register (m2).Register (m1).Lend (b1,m1)

Figure 2.4: Trace for the sample execution

In particular, the system is initially at state (A), where obviously TA = []. The library
acquires books b2, b1 (in this order) and transits to state (B). Then, members m2, m1 (in this
order) are registered to the library and the system transits to state (C). Lastly, member m1

lends book b1 and the system transits to state (D). Transition (C)→(D) entails the evaluation
of the following guard:

(borrower (T, b1) = ⊥) ∧ (nbLoans (T,m1) < 2) (2.30)

30 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

where T corresponds to the system trace at state (C), i.e. T = TC . Condition (2.30) illustrates
the conditions under which member m1 can lend book b1 (notably if the book is available and
the number of loans carried out by m1 is inferior to two). Following the attribute function
definitions of Figure 2.2, evaluating “borrower (TC , b1)” triggers the complete traversal of the
whole trace, which is not the case for attribute function call “nbLoans (TC ,m1)”. Applying
successively the rules of Definition 2.3.5, the result is calculated as follows:

[[borrower (T, b1)]]T1 ([], TC) = [[borrower (front(T), bId)]]T1 (τ1, TC)

= [[borrower (T, bId)]]T1 (τ1, TB.Register (m2))

= [[borrower (front(T), bId)]]T1 (τ2, TB.Register (m2))

= [[borrower (T, bId)]]T1 (τ2, TB)

= [[borrower (front(T), bId)]]T1 (τ3, Acquire (b2))

= [[borrower (T, bId)]]T1 (τ3, [])

= [[⊥]]T1 ([], [])

= ⊥F(
where τ1 = τ2 = [mId← m1, bId← b1], τ3 = [bId← b1]

)
[[nbLoans (T, m1)]]T1 ([], TC) = [[0]]T1 ([mId← m1], TC)

= 0

In the previous calculations, the interpretation of constant ⊥, i.e. F(⊥), has been replaced by
⊥F . Similarly, F(0) has been replaced by 0. This notation style is adopted for all constants
c ∈ C used throughout this manuscript. The same convention applies to any eb3 variable
x ∈ V referred to as x in the corresponding environment.

As for the evaluation of attribute function call “borrower (T, b1)”, one must refer to the
corresponding definition of borrower in Figure 2.2 first. Owing to matching case expression:

| : borrower
(
front (T), bId

)
,

type (1) value expression wq+1
h (see Definition 2.2.3) matches with borrower

(
front (T), bId

)
,

expression “last (T)” matches with action “Register (m1)” and expression “front(T)” matches
with trace “TB. Register (m2)” or equivalently “Acquire (b2). Acquire (b1). Register (m2)”.
Then, applying Definition 2.3.5, the denotation “borrower (T, b1)” under environment [] and
trace TC reduces to the denotation “borrower (front (T), bId)” under environment:

τ1 = τ?(TC) ∪ [bId← b1] = [mId← m1, bId← b1],

and trace TC , since formal parameter mId of action prototype definition “Register (mId :
MID)” (see Figure 2.2) is assigned value m1 by environment function τ? (see Definition 2.3.4
for details) and formal parameter bId of attribute function name is assigned value “bId ←
[[b1]]T1 ([], TC) = b1”.

Applying Definition 2.3.5 once more, the denotation of “borrower (front (T), bId)” un-
der environment τ1 and trace TC reduces to the denotation of “borrower (T, bId)” under
environment τ1 and trace “TB. Register (m2)”.

Then, owing to matching case expression:

| : borrower
(
front (T), bId

)
,

2.3. EB3 SEMANTICS 31

type (1) value expression wq+1
h matches with “borrower

(
front (T), bId

)
”, expression

“last (T)” matches with action “Register (m2)” and expression “front(T)” matches with trace
TB. Hence, applying Definition 2.3.5, the denotation of “borrower (T, b1)” under environment
τ1 and trace “TB. Register (m2)” reduces to the denotation of “borrower (front (T), bId)”
under environment:

τ2 = τ?(TC) ∪ [bId← b1] = [mId← m1, bId← b1],

and trace “TB. Register (m2)”, since formal parameter mId of action prototype definition
“Register (mId : MID)” (see Figure 2.2) is assigned value m2 by environment function
τ? (see Definition 2.3.4) and formal parameter bId of attribute function name borrower is
assigned value:

bId← [[bId]]T1 ([], TC) = τ1(bId) = b1.

Applying Definition 2.3.5 once more, the denotation of “borrower (front (T), bId)”
under environment τ2 and trace “TB. Register (m2)” reduces to the denotation of
“borrower (T, bId)” under environment τ2 and trace “TB”.

Then, owing to matching case expression:

| : borrower
(
front (T), bId

)
,

type (1) value expression wq+1
h matches with “borrower

(
front (T), bId

)
”, expression

“last (T)” matches with action “Acquire (b1)” and special expression “front(T)” matches with
trace “Acquire (b2)”. Hence, applying Definition 2.3.5, the denotation of “borrower (T, b1)”
under environment τ2 and trace “TB” reduces to the denotation of “borrower (front (T), bId)”
under environment:

τ3 = τ?(TC) ∪ [bId← b1] = [bId← b1],

and trace “Acquire (b2)”, since parameter bId of action prototype definition “Acquire (bId :
MID)” (see Figure 2.2) is assigned value b1 by environment function τ? (see Definition 2.3.4)
and formal parameter bId of attribute function name borrower is assigned value “bId ←
[[bId]]T1 ([], TC) = τ2(bId) = b1”.

Notice that variable identifier bId belonging to action “Acquire”’s formal parameters co-
incides with formal parameter bId of attribute function name “borrower” producing duplicate
assignments for bId, which can be removed from the environment without complication. In
general, the process of duplicate variable renaming is applied to resolve such issues.

Applying Definition 2.3.5 once more, the denotation of “borrower (front (T), bId)” under
environment τ3 and trace “Acquire(b2)” reduces to the denotation of “borrower (T, bId)”
under environment τ3 and empty trace [].

Finally, owing to matching case expression:

| ⊥T : ⊥

value expression w0
h matches with ⊥. Hence, applying Definition 2.3.5, the denotation of

“borrower (front (T), bId)” under environment τ3 and trace [] reduces to the denotation of
⊥ under environment τ?([])⊕ [] = [] and empty trace [], which results in ⊥F .

For the evaluation of attribute function call “nbLoans (TC ,m1)”, one may refer to the
corresponding definition of nbLoans in Figure 2.2. Owing to the matching case expression:

| Register (m1) : 0, (2.31)

32 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

expression “last(T)” matches with action “Register (m1)”, type (1) value expression w2
h

matches with 0. Case expression (2.31) is the 3rd case expression of attribute function name
nbLoans in Figure 2.2, which justifies the superscript of w2

h. Hence, applying Definition 2.3.5,
the denotation of “nbLoans (TC ,m1)” under environment [] and trace TC reduces to the
denotation of 0 under environment:

τ?(TC) ∪ [mId← [[m1]]1T ([], TC)] = [mId← m1]

and trace TC , since value “[[m1]]1T ([], TC) = m1” is assigned to formal parameter mId of
nbLoans that coincides with formal parameter mId of action name Register . Remark that
duplicate entries have been removed as previously.

Finally, by Definition 2.3.7, guard (2.30) is evaluated as follows:

[[(borrower (T, b1) = ⊥) ∧ (nbLoans (T,m1) < 2)]]T3 (TC) =

[[(borrower (T, b1) = ⊥)]]T3 (TC) ∧ [[(nbLoans (T,m1) < 2)]]T3 (TC) =

[[(borrower (T, b1) = ⊥)]]T1 ([], TC) ∧ [[(nbLoans (T,m1) < 2)]]T1 ([], TC) =

(⊥F =F ⊥F) ∧ (0 <F 2) =

true.

Notation =F denotes the classical interpretation of equation as provided by function F
in environment τ . Similar is the meaning of notation <F .

Figure 2.5 depicts the evolution of process expression main describing the library man-
agement system in states (A), (B), (C), and (D).

2.3.2 Trace/Memory Semantics SemT/M

Let EB3 be a well-formed eb3 specification, whose syntax conforms to the syntactic patterns
of Figure 2.1. As a means to define Trace/Memory Semantics (SemT/M), attribute function
names fi appearing in EB3 are turned into state variables fi for i ∈ {1, . . . , n}, which we call
attribute variables, carrying the effect of the system trace on their corresponding values. This
avoids keeping the (ever-growing) trace, thus, leading to a finite state model.

Hence, if “fi (T, x1 : T1, . . . , xs : Ts) : T” is the prototype of attribute function fi (see
Figure 2.1 for details) and |Ck| stands for the cardinality of set:

Ck = {c ∈ C | σ(c) = Tk} (2.32)

for index k ∈ {1, . . . , s}, we construct in total:

|C1| × . . .× |Cs|

state variables “fi : (T1, . . . , Ts)→ T” for i ∈ {1, . . . , n}.
The different sets of attribute variables and their associated values are treated as special

environments that we call attribute variable environments. In the following, attribute variable
environments are given separately from ordinary environments, i.e. environments of attribute
parameters and formal parameters of action labels. In particular, an attribute variable envi-
ronment M shall contain attribute variables fi and their corresponding values denoted as M(fi),
as well as primed attribute variables f ′i and their corresponding values denoted as M(f ′i). The
infinite domain of attribute variable environments is denoted as M. In the following, we use
the term eb3 memory to refer to attribute variable environments.

2.3. EB3 SEMANTICS 33

main (A)

Acquire (b2). Acquire (b1)−−−−−−−−−−−−−−−−−−−→

borrower (TB, b1) = ⊥ → Discard (b1). book (b1)∗ |||

borrower (TB, b2) = ⊥ → Discard (b2). book (b2)∗ |||

(||| mId : MID : member (mId)∗) (B)

Register (m2). Register (m1)−−−−−−−−−−−−−−−−−−−−−−→

borrower (TC , b1) = ⊥ → Discard (b1). book (b1)∗ |||

borrower (TC , b2) = ⊥ → Discard (b2). book (b2)∗ |||

(||| bId : BID : loan (m1, bId)∗). Unregister (m1). member (m1)∗ |||

(||| bId : BID : loan (m2, bId)∗). Unregister (m1). member (m2)∗ (C)

Lend (b1, m1)−−−−−−−−−−−→

borrower (TD, b1) = ⊥ → Discard (b1). book (b1)∗ |||

borrower (TD, b2) = ⊥ → Discard (b2). book (b2)∗ |||

(Return(b1). loan(m1, b1)∗ ||| loan(m1, b2)∗). Unregister (m1). member (m1)∗ |||

(||| bId : BID : loan (m2, bId)∗). Unregister (m1). member (m2)∗ (D)

Figure 2.5: Sample execution

As usual, we consider actions of the form αj (c), where c = (c1, . . . , cp) and constants
c1, . . . , cp ∈ C. M′ shall denote the eb3 memory after action αj (c) has been executed. By
definition, the inert action λ has no effect on M, i.e. M′ = M. We denote by M0 the attribute
variables at system start, i.e. the attribute variables corresponding to the empty trace, i.e.
T = [].

Definition 2.3.8. Let EB3 be a well-formed eb3 specification, let τ ∈ Envπ be a π-compatible
environment, and let M be an eb3 memory for EB3, then the semantics [[·]]M1 : Envπ ×M→
bT cD for some type T ∈ Typ of eb3 type (1) value expressions wji ↼ T for i ∈ {1, . . . , n} and
j ∈ {0, . . . , q} with respect to SemT/M under environment τ , and eb3 memory M is defined

34 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

by way of structural induction over wji as follows:

[[c]]M1 (τ,M) = F(c) (2.33)

[[x]]M1 (τ,M) = τ(x) (2.34)

[[g (v1, . . . , vl)]]
M
1 (τ,M) = F(g)([[v1]]M1 (τ,M), . . . , [[vl]]

M
1 (τ,M)) (2.35)

[[fh (front (T), v1, . . . , vs)]]
M
1 (τ,M) = M(fh)([[v1]]M1 (τ,M), . . . , [[vs]]

M
1 (τ,M)) (2.36)

[[fh (T, v1, . . . , vs)]]
M
1 (τ,M) = M(fh

′)([[v1]]M1 (τ,M), . . . , [[vs]]
M
1 (τ,M)) (2.37)

[[if g(v1, . . . , vl) then vl+1 (2.38)

else vl+2 end if]]M1 (τ,M) = ([[vl+1]]M1 ⊕ [[vl+2]]M1)(τ, M)

where [[vl+2]]M1 : Envπ ×M′ → bT c

and M′ = { M ∈M | [[g(v1, . . . , vl)]]
M
1 (τ,M) = false}.

Only the interesting parts of Definition 2.3.8 are commented below. The denotation of
attribute function call “fh (front (T), v1, . . . , vs)” for h > 0 (see attribute function ordering
in Section 2.1) under environment τ and eb3 memory M reduces to:

M(fh)([[v1]]M1 (τ, M), . . . , [[vs]]
M
1 (τ, M)) for h > 0,

denoting the value of attribute variable fh in M, whose parameter vector is the vector carrying
the assigned denotations to v1, . . . , vs computed inductively beforehand under environment τ
and eb3 memory M.

Furthermore, the denotation of attribute function call “fh (T, v1, . . . , vs)” for h < i (see
attribute function ordering in Section 2.1) under environment τ and eb3 memory M reduces
to:

M(f ′h)([[v1]]M1 (τ, M), . . . , [[vs]]
M
1 (τ, M)) for h < i,

denoting the value of primed attribute variable fh
′ that has been previously stocked in M,

whose parameter vector is the vector carrying the assigned denotations to v1, . . . , vs computed
inductively beforehand under environment τ and eb3 memory M. For more details on the
order in which attribute variables are modified, see Definition 2.3.10, which stipulates that
attribute variables of lower order, i.e. for h < i, are modified first.

As a means to define the denotation of “if g (v1, . . . , vl) then vl+1 else vl+2 end if” under
environment τ and attribute variables M, the restriction of function “[[vl+2]]M1 : Envπ ×M→
bT c” to “[[vl+2]]M1 : Envπ × M′ → bT c” is assumed, where M′ is the subset of attribute
variables M, under which condition g (v1, . . . , vl) is evaluated to false. Hence, for attribute
variables M ∈ M′, the calculation is reduced to the denotation of vl+2 under environment τ
and eb3 memory M. For eb3 memory M 6∈ M′, it is reduced to the denotation of vl+1 under
environment τ and attribute variables M.

The calculations involving the initialisation and modification of attribute variables are
thoroughly discussed in Definitions 2.3.9 and 2.3.10. Remark also that as a means not to
overcharge the formulas of Definition 2.3.8, notation fh has been used to denote both the
attribute variable and the corresponding interpretation. Similar conventions have been made
for the primed attribute variables f ′h.

2.3. EB3 SEMANTICS 35

Definition 2.3.9. Let EB3 be a well-formed eb3 specification and let τ ∈ Envπ be a π-
compatible environment. The computation of eb3 memory M0 ∈ M at system start, i.e.
T = [], is carried out as follows:

function upd0 :M
M0 = [fi [c1, . . . , cs]← ⊥F | ∀c1 ∈ C1, . . . ,∀cs ∈ Cs];

for i := 1 to n do

for (c1, . . . , cs) ∈ (C1 × . . .× Cs) do

τ ′ = [y1 ← c1, . . . , ys ← cs];

w0
i = [[w0

i]]
M
1 (τ ′, M0);

M0 = M0 ⊕
[
f ′i [c1, . . . , cs

]
← w0

i]

end for

end for ;

return M0;

end function

In particular, eb3 memory M0 is created associating the bottom value⊥F to every attribute
variable fi [c1, . . . , cs], where constant ck ∈ Ck for k ∈ {1, . . . , s}. We recall that Ck is defined
in (2.32). Index i is initially set to 1.

A tuple (c1, . . . , cs) belonging to (C1 × . . . × Cs) is chosen. Environment τ ′ is created
associating ck to attribute parameter yk of attribute function name fi (see Definition 2.2.3 for
details). Type (1) value expression w0

i referring to the empty trace is selected among value
expressions w0

i , . . . , w
q
i appearing in attribute function definition Ai. Then, the denotation of

w0
i under environment τ ′ (see Definition 2.3.8) and eb3 memory M0 is computed. The result

is associated to attribute variable f ′i [c1, . . . , cs] and eb3 memory M0 is updated accordingly.
The procedure is repeated iteratively for the next tuple (c1, . . . , cs) in (C1× . . .×Cs) until all
tuples (c1, . . . , cs) have been explored. Then, index i is incremented by one and the previous
procedure is repeated iteratively until the point where i has reached value n.

In the previous calculations, we assume that the current values of attribute variables fi co-
exist in the corresponding instances of eb3 memory M0 with the primed versions of attribute
variables f ′i . As soon as the computations are completed, primed values f ′i are turned into fi
and primed attribute variables f ′i of M0 are made redundant. Finally, function upd0 returns
M0, which is the result in question.

Definition 2.3.10. Let EB3 be a well-formed eb3 specification and let τ ∈ Envπ denote a
π-compatible environment. Let also “T = T′.ρ” denote a trace, where T′ stands for a valid
trace. Let M denote the eb3 memory of EB3 related to trace T′ and let M′ denote the eb3

memory after action ρ has been executed.

36 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

The computation of eb3 memory M′ is carried out as follows:

function upd (ρ : Act , M :M) :M
M′ = M;

match ρ with

| αj (d1, . . . , dp)⇒
τ = [z1 ← d1, . . . , zp ← dp];

for i := 1 to n do

for (c1, . . . , cs) ∈ (C1 × . . .× Cs) do

τ ′ = [y1 ← c1, . . . , ys ← cs];

wj
i = [[wji]]

M
1 (τ ∪ τ ′, M′);

M′ = M′ ⊕ [f ′i [c1, . . . , cs]← wj
i]

end for

end for

end match ;

return M′;

end function

In particular, action ρ and eb3 memory M are passed to function upd as parameters. M′ is
initially set to M. Then, action ρ is matched (by pattern-matching) to action αj(d1, . . . , dp) for
some j ∈ {1, . . . , q} and some constants d1, . . . , dp ∈ C. Environment τ is created associating
dk to formal parameter zk belonging to action label αj for k ∈ {1, . . . , p}. Index i is initially
set to 1 and environment τ ′ is created associating ck to attribute parameter yk referring to
attribute function name fi.

A tuple (c1, . . . , cs) belonging to (C1× . . .×Cs) is chosen. Then, type (1) value expression
wji is selected among type (1) value expressions w0

i , . . . , w
q
i appearing in attribute function

definition Ai (see Definition 2.2.3 for details). The denotation of wji under environment τ ∪ τ ′
and eb3 memory M′ is calculated (see Definition 2.3.8 for details). The result is associated
to primed attribute variable f ′i [c1, . . . , cs] and eb3 memory M′ is updated accordingly. The
procedure is repeated iteratively for the next tuple (c1, . . . , cs) in (C1 × . . . × Cs) until all
tuples (c1, . . . , cs) have been explored. Then, index i is incremented by one and the previous
procedure is repeated iteratively until the point where i has reached value n.

Last but not least, we assume that all primed values f ′i in M′ are turned into fi and that
all primed attribute variables f ′i in M′ are made redundant. Finally, function upd returns M′,
which is the result in question.

Notice that the previous calculations in Definition 2.3.10 entail no complex reasoning on
the system trace. In particular, only the head of the current trace, i.e. action α(c1, . . . , cp),
is involved. Other objects taking part in the corresponding calculations include the current
attribute variables fi included in eb3 memory M and the primed attribute variables f ′i included
in M.

In the following, we use the symbol [[·]]M1 to refer to the denotation of eb3 type (2) value

2.3. EB3 SEMANTICS 37

expressions as eb3 type (2) value expressions constitute a subset of eb3 type (1) value ex-
pressions.

Definition 2.3.11. Let EB3 be a well-formed eb3 specification. The semantics [[·]]M1 : bT cD
of eb3 type (2) value expressions u appearing in EB3 such that u ↼2 T for some type T ∈ Typ
with respect to SemT/M is defined with structural induction on u as follows:

[[c]]M2 = F(c)

[[g (u1, . . . , ul)]]
M
2 = F(g)([[u1]]M2 , . . . , [[ul]]

M
2)

Notice that the denotation of u depends neither on the current system trace nor on any
eb3 memory.

Definition 2.3.12. Let EB3 be a well-formed eb3 specification and let T denote the current
system trace. Let also M denote the eb3 memory of EB3 that is related to T. The semantics
[[·]]M3 : M → bT cD of eb3 guards ge ↼3 T for some T ∈ Typ appearing in eb3 guarded
expressions with respect to SemT/M under M is recursively defined as follows:

[[c]]M3 (M) = F(c)

[[g (ge1, . . . , gel)]]
M
3 (M) = F(g)([[ge1]]M3 (M), . . . , [[gel]]

M
3 (M))

[[fh (T, u1, . . . , us)]]
M
3 (M) = M(fh)([[u1]]M1 , . . . , [[us]]

M
1) for h > 0

Notice that the denotation of [[fh (T, u1, . . . , us)]]
M
3 reduces to attribute variable fh in eb3

memory M applied to the vector consisting of the denotations for eb3 type (2) value expres-
sions u1, . . . , us. The trace plays no role in the previous computations whatsoever.

The operational semantics of eb3 process expressions with respect to SemT/M is defined
in Figure 2.6.

• The system state with respect to SemT/M is represented by tuple (E,T,M), where E
is the process expression describing the remaining system behaviour, T stands for the
current trace and M is the current eb3 memory.

• The initial system state is represented by tuple (main, [],M0
.
= upd0) (see Defini-

tion 2.3.9 for details on upd0).

• The evolution of system state is modelled by a labelled transition system (LTS), which
adheres to the reduction rules of Figure 2.6.

Regarding Figure 2.3, we recall that if T denotes the current trace and action ρ ∈
{αj(c1, . . . , cp) | j ∈ 1..q} ∪ λ, where c1, . . . , cp ∈ C are constants and j ∈ {1, . . . , q} is
executed, then T.ρ shall denote the trace after ρ has been executed.

• Rules (M1), (M′1) refer to the execution of actions. In rule (M1), function upd returns
modified M based on action ρ and M (see Definition 2.3.10). Notice that the idle action
λ, λ has no effect on eb3 memory M.

• In rule (M10), guard ge is evaluated according to Definition 2.3.12 under eb3 memory
M.

More details on the LTS construction of eb3 specifications with respect to SemT/M can be
found in Section 2.4.1, where the bisimulation equivalence of SemT, SemT/M, and SemM is
established.

38 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

ρ ∈ {αj(c1, . . . , cp) | j ∈ 1..q} ∪ λ, where c1, . . . , cp ∈ C

(M1)
(ρ,T,M)

ρ6=λ−−→T/M

(√
,T. ρ, upd(ρ,M)

) (M′1)
(ρ,T,M)

λ−→T/M (
√
,T,M)

(M2)
(E1,T,M)

ρ−→T/M (E′1,T.ρ,M
′)

(E1.E2,T,M)
ρ−→T/M (E′1.E2,T.ρ,M′)

(M3)
(E2,T,M)

ρ−→T/M (E′2,T. ρ,M
′)

(
√
.E2,T,M)

ρ−→T/M (E′2,T. ρ,M
′)

(M4)
(E1,T,M)

ρ−→T/M (E′1,T. ρ,M
′)

(E1 |E2,T,M)
ρ−→T/M (E′1,T. ρ,M

′)

(M5)
(E0

∗,T,M)
λ−→T/M (

√
,T,M)

(M6)
(E0,T,M)

ρ−→T/M (E′0,T. ρ,M
′)

(E0
∗,T,M)

ρ−→T/M (E′0.E0
∗,T. ρ,M′)

(M7)
(E1,T,M)

ρ−→T/M (E′1,T. ρ,M
′) (E2,T,M)

ρ−→T/M (E′2,T. ρ,M
′)

(E1 |[∆]|E2,T,M)
ρ−→T/M (E′1 |[∆]|E′2,T.ρ,M

′)
in (ρ,∆)

(M8)
(E1,T,M)

ρ−→T/M (E′1,T. ρ,M
′)

(E1 |[∆]|E2,T,M)
ρ−→T/M (E′1 |[∆]|E2,T. ρ,M′)

¬in (ρ,∆)

(M9)
(
√
|[∆]|

√
,T,M)

λ−→T/M (
√
,T,M)

(M10)
(E0,T,M)

ρ−→T/M (E′0,T. ρ,M
′)

(ge⇒ E0,T,M)
ρ−→T/M (E′0,T. ρ,M

′)
[[ge]]M3 (M) = true

(M11)
(E[x := u],T,M)

ρ−→T/M (E′,T. ρ,M′)

(P (u),T,M′)
ρ−→T/M (E′,T. ρ,M′)

P (x) = E

Figure 2.6: eb3 Trace/Memory Semantics (SemT/M)

Execution. We illustrate how the eb3 specification of Figure 2.2 describing the library
management system is executed with respect to SemM. As in Section 2.3.1, we set m = p =
NbLoans = 2, i.e. we consider two books b1 and b2, and two members m1 and m2.

In this context, an attribute variable memory consists of four cells namely borrower[b1],
borrower[b2], nbLoans[m1] and nbLoans[m2]. The first two cells keep the two values relating to
attribute function borrower (T, •) for a given trace T, and the last two keep the values relating
to nbLoans (T, •).

We turn our attention to the execution scenario of Figure 2.5 and we consider all interme-
diate steps leading from state (A) to (B). The purpose is to depict the step-by-step evolution
of attribute variables. Hence, Figure 2.4 is expanded to Figure 2.7.

• The eb3 memory at state (A) corresponding to eb3 memory M0 at system start can be
calculated by way of function upd0 of Definition 2.3.9. In particular, upon substituting

2.3. EB3 SEMANTICS 39

T

A []

A’ Acquire (b2)

B Acquire (b2). Acquire (b1)

B’ Acquire (b2). Acquire (b1). Register (m2)

C Acquire (b2). Acquire (b1). Register (m2). Register (m1)

D Acquire (b2). Acquire (b1). Register (m2). Register (m1). Lend (b1,m1)

Figure 2.7: Trace for the sample execution

f1 with borrower and f2 with nbLoans in Definition 2.3.9, eb3 memory M0 is (initially)
set to:

M0 = [borrower[b1]← ⊥F , borrower[b2]← ⊥F , nbLoans[m1]← ⊥F , nbLoans[m2]← ⊥F].

By setting i = 1, we may carry on with attribute variable borrower. Comparing the
standard syntax of attribute function definitions (see Definition 2.2.3 for details) with
the syntax of borrower in Figure 2.2, w0

i of Definition 2.3.9 can be matched with⊥. Then,
applying Definition 2.3.9 and function [[·]]M1 of Definition 2.3.8, the primed attribute
variable borrower′ [b1] referring to borrower [b1] at state (A) can be calculated as follows:

borrower′[b1] = [[⊥]]M1 (τ ′, M0) = ⊥F ,

where “τ ′
.
= [bId← b1]” modifying eb3 memory M0 as follows:

M0 = M0 ⊕ [borrower′[b1]← ⊥F]

The computation continues with attribute variable borrower [b2] at state (A):

borrower′[b2] = [[⊥]]M1 (τ ′, M0) = ⊥F ,

where “τ ′
.
= [bId← b2]” modifying eb3 memory M0 as follows:

M0 = M0 ⊕ [borrower′[b2]← ⊥F].

Hence, the present value of eb3 memory M0 is the following:

M0 = [borrower[b1]← ⊥F , borrower[b2]← ⊥F , nbLoans[m1]← ⊥F ,
nbLoans[m2]← ⊥F , borrower′[b1]← ⊥F , borrower′[b2]← ⊥F

]
.

By setting i = 2, we pass to attribute variable nbLoans. The primed attribute variable
nbLoans′[m1] at state (A) is the following:

nbLoans′[m1] = [[⊥]]M1 (τ ′, M0) = ⊥F ,

where “τ ′
.
= [mId← m1]” modifying eb3 memory M0 as follows:

M0 = M0 ⊕ [nbLoans′[m1]← ⊥F].

40 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

The computation continues with attribute variable nbLoans′[m2] at state (A):

nbLoans[m2] = [[⊥]]M1 (τ ′, M0) = ⊥F ,

where “τ ′
.
= [mId← m2]” modifying eb3 memory M0 as follows:

M0 = M0 ⊕ [nbLoans[m2]← ⊥F].

Combining the previous results, the present value of M0 is the following:

M0 = [borrower[b1]← ⊥F , borrower[b2]← ⊥F , nbLoans[m1]← ⊥F , nbLoans[m2]← ⊥F ,
borrower′[b1]← ⊥F , borrower′[b2]← ⊥F , nbLoans′[m1]← ⊥F , nbLoans′[m2]← ⊥F],

then replacing each attribute variable in M0 by the corresponding primed variable, and
removing all primed attribute variables from M0, M0 is transformed as follows:

MA = [borrower [b1]← ⊥F , borrower [b2]← ⊥F , nbLoans [m1]← ⊥F , nbLoans [m2]← ⊥F

denoting the eb3 memory at state (A).

• Transition (A)→(A’) describes the execution of action “Acquire (b2)”. Before proceeding
further with the calculations, we need to resolve the duplicate name issue regarding
formal parameter bId of action prototype definition:

D1 ::= Acquire (bId : BID)

and formal parameter bId of attribute function definition:

A1 ::= borrower (T : T , bId : BID) : MID⊥

(see Figure 2.2 for details). To this end, D1 is modified as follows:

D1 ::= Acquire (bId′ : BID).

In the following, whenever similar issues arise, we turn formal parameter identifiers of
action prototype definitions into their corresponding primed versions.

The eb3 memory at state (A’) can be calculated by way of function
“upd(Acquire (b2),MA)” of Definition 2.3.10. Following Definition 2.3.10, M′ correspond-
ing to the eb3 memory at state (A’) is set to MA. Then, environment τ is found equal
to “τ

.
= [bId′ ← b2]”.

By setting i = 1, we may carry on with attribute variable borrower. Comparing
the standard syntax of attribute function definitions (see Definition 2.2.3 for details)
with the syntax of borrower in Figure 2.2, wji of Definition 2.3.9 can match with
“borrower (front (T), bId)”. Then, applying Definition 2.3.10 and function [[·]]M1 of Defi-
nition 2.3.8, the primed attribute variable borrower′[b1] referring to borrower[b1] at state
(A’) can be calculated as follows:

borrower′[b1] = [[borrower (front (T), bId)]]M1 (τ ∪ τ ′, M′) = M′(borrower)(b1) = ⊥F ,

where “τ ′
.
= [bId← b1]” modifying eb3 memory M′ as follows:

M′ = M′ ⊕ [borrower′[b1]← ⊥F].

2.3. EB3 SEMANTICS 41

The computation continues with attribute variable borrower[b2] at state (A’):

borrower′[b2] = [[borrower (front (T), bId)]]M1 (τ ∪ τ ′, M′) = M′(borrower)(b2) = ⊥F ,

where “τ ′
.
= [bId← b2]” modifying eb3 memory M′ as follows:

M′ = M′ ⊕
[
borrower′ [b2]← ⊥F].

Hence, the present value of eb3 memory M′ is the following:

M′ = [borrower[b1]← ⊥F , borrower[b2]← ⊥F , nbLoans[m1]← ⊥F ,
nbLoans[m2]← ⊥F , borrower′[b1]← ⊥F , borrower′[b2]← ⊥F

]
.

By setting i = 2, we pass to attribute variable nbLoans. Hence, the primed attribute
variable nbLoans′[m1] at state (A’) is the following:

nbLoans′[m1] = [[nbLoans (front (T),mId)]]M1 (τ ∪ τ ′, M′) = M′(nbLoans)(m1) = ⊥F ,

where “τ ′
.
= [mId← m1]” modifying eb3 memory M′ as follows:

M′ = M′ ⊕ [nbLoans′[m1]← ⊥F].

The computation continues with attribute variable nbLoans′[m2] at state (A’):

nbLoans′[m2] = [[nbLoans (front (T),mId)]]M1 (τ ∪ τ ′, M0) = M0(nbLoans)(m2) = ⊥F ,

where “τ ′
.
= [mId← m2]” modifying eb3 memory M′ as follows:

M′ = M′ ⊕ [nbLoans′[m2]← ⊥F].

Combining the previous results, the present value of M′ is the following:

M′ = [borrower[b1]← ⊥F , borrower[b2]← ⊥F , nbLoans[m1]← ⊥F , nbLoans[m2]← ⊥F ,
borrower′[b1]← ⊥F , borrower′[b2]← ⊥F , nbLoans′[m1]← ⊥F , nbLoans′[m2]← ⊥F],

then replacing each attribute variable in M′ by the corresponding primed variable, and
removing all primed attribute variables from M′, M′ is transformed as follows:

MA′ = [borrower[b1]← ⊥F , borrower[b2]← ⊥F , nbLoans [m1]← ⊥F , nbLoans [m2]← ⊥F]

denoting the eb3 memory at state (A’).

• Transition (A’)→(B) describes the execution of action “Acquire (b1)”. Applying similar
reasoning, we show directly how attribute variables are modified.

The eb3 memory at state (B) can be calculated by way of function
“upd(Acquire (b1),M′A)” of Definition 2.3.10. Following Definition 2.3.10, M′ correspond-
ing to the eb3 memory at state (B) is set to MA′ . Then, environment τ is found equal
to “τ

.
= [bId′ ← b1]”.

The primed attribute variable borrower′[b1] referring to borrower [b1] at state (B) can be
calculated as follows:

borrower′[b1] = [[borrower (front (T), bId)]]M1 (τ ∪ τ ′, M′) = M′(borrower)(b1) = ⊥F ,

42 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

where “τ ′
.
= [bId← b1]” modifying eb3 memory M′ as follows:

M′ = M′ ⊕ [borrower′[b1]← ⊥F].

The computation continues with attribute variable borrower[b2] at state (B):

borrower′[b2] = [[borrower (front (T), bId)]]M1 (τ ∪ τ ′, M′) = M′(borrower)(b2) = ⊥F ,

where “τ ′
.
= [bId← b2]” modifying eb3 memory M′ as follows:

M′ = M′ ⊕ [borrower′[b2]← ⊥F].

The primed attribute variable nbLoans′[m1] at state (B) is the following:

nbLoans′ [m1] = [[nbLoans (front (T),mId)]]M1 (τ ∪ τ ′, M′) = M′(nbLoans)(m1) = ⊥F ,

where “τ ′
.
= [mId← m1]” modifying eb3 memory M′ as follows:

M′ = M′ ⊕ [nbLoans′[m1]← ⊥F].

The computation continues with attribute variable nbLoans′[m2] at state (B):

nbLoans′[m2] = [[nbLoans (front (T),mId)]]M1 (τ ∪ τ ′, M′) = M′(nbLoans)(m2) = ⊥F ,

where “τ ′
.
= [mId← m2]” modifying eb3 memory M′ as follows:

M′ = M′ ⊕ [nbLoans′[m2]← ⊥F].

Combining the previous results, replacing each attribute variable in M′ by the corre-
sponding primed variable, and removing all primed attribute variables from M′, eb3

memory M′ is finally transformed as follows:

MB = [borrower[b1]← ⊥, borrower[b2]← ⊥F , nbLoans[m1]← ⊥, nbLoans[m2]← ⊥F]

denoting the eb3 memory at state (B).

• Transition (B)→(B’) describes the execution of action “Register (m2)”. Hence, the eb3

memory at state (B’) can be calculated by way of function “upd
(
Register (m2),MB

)
”

of Definition 2.3.10. Following Definition 2.3.10, M′ corresponding to the eb3 memory
at state (B’) is set to MB.

Then, environment τ is found equal to “τ
.
= [mId′ ← m2]”, as the duplicate renaming

issue regarding formal parameter mId of action label Register and attribute parameter
mId of nbLoans has been resolved by changing mId into mId′.

The primed attribute variable borrower′[b1] referring to borrower[b1] at state (B) can be
calculated as follows:

borrower′[b1] = [[borrower (front (T), bId)]]M1 (τ ∪ τ ′, M′) = M′(borrower) (b1) = ⊥F ,

where “τ ′
.
= [bId← b1]” modifying eb3 memory M′ as follows:

M′ = M′ ⊕ [borrower′[b1]← ⊥F].

2.3. EB3 SEMANTICS 43

The computation continues with attribute variable borrower[b2] at state (B’):

borrower′[b2] = [[borrower (front (T), bId)]]M1 (τ ∪ τ ′, M′) = M′(borrower)(b2) = ⊥F ,

where “τ ′
.
= [bId← b2]” modifying eb3 memory M′ as follows:

M′ = M′ ⊕ [borrower′[b2]← ⊥F].

The primed attribute variable nbLoans′[m1] at state (B) is the following:

nbLoans′[m1] = [[nbLoans (front (T),mId)]]M1 (τ ∪ τ ′, M′) = M′(nbLoans)(m1) = ⊥F ,

where “τ ′
.
= [mId← m1]” modifying eb3 memory M′ as follows:

M′ = M′ ⊕ [nbLoans′(m1)← ⊥F].

The computation continues with attribute variable nbLoans′[m2] at state (B’):

nbLoans′[m2] = [[0]]M1 (τ ∪ τ ′, M′) = 0,

where “τ ′
.
= [mId ← m2]” and, owing to case expression “| Register (mId) : 0” (see

Figure 2.2), “Register (mId)” matches with action “Register (m2)”, hence, modifying
eb3 memory M′ as follows:

M′ = M′ ⊕
[
nbLoans′ [m2]← 0

]
.

Combining the previous results, replacing each attribute variable in M′ by the corre-
sponding primed variable, and removing all primed attribute variables from M′, eb3

memory M′ is transformed as follows:

MB′ = [borrower[b1]← ⊥F , borrower [b2]← ⊥F , nbLoans [m1]← ⊥F , nbLoans [m2]← 0]

denoting the eb3 memory at state (B’).

• Transition (B’)→(C) describes the execution of action “Register (m1)”. As pre-
viously, the eb3 memory at state (C) can be calculated by way of function
“upd

(
Register (m1),MB′

)
” of Definition 2.3.10. Following Definition 2.3.10, M′ refer-

ring to the eb3 memory at state (C) is set to MB′ .

Then, environment τ is found equal to “τ
.
= [mId′ ← m1]”, as the duplicate renaming

issue regarding formal parameter mId of action label Register and attribute parameter
mId of nbLoans has been resolved by turning mId into mId′.

The primed attribute variable borrower′[b1] referring to borrower[b1] at state (C) can be
calculated as follows:

borrower′[b1] = [[borrower (front (T), bId)]]M1 (τ ∪ τ ′, M′) = M′(borrower)(b1) = ⊥F ,

where “τ ′
.
= [bId← b1]” modifying eb3 memory M′ as follows:

M′ = M′ ⊕ [borrower′[b1]← ⊥F].

44 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

The computation continues with attribute variable borrower[b2] at state (C):

borrower′[b2] = [[borrower (front (T), bId)]]M1 (τ ∪ τ ′, M′) = M′(borrower)(b2) = ⊥,

where “τ ′
.
= [bId← b2]” modifying eb3 memory M′ as follows:

M′ = M′ ⊕ [borrower′[b2]← ⊥F].

The primed attribute variable nbLoans′[m1] at state (C) is the following:

nbLoans′[m1] = [[0]]M1 (τ ∪ τ ′, M′) = 0,

where “τ ′
.
= [mId ← m1]” and, owing to case expression “| Register (mId) : 0” (see

Figure 2.2), “Register (mId)” matches with action “Register (m1)”, hence, modifying
eb3 memory M′ as follows:

M′ = M′ ⊕ [nbLoans′[m1]← ⊥F].

The computation continues with attribute variable nbLoans′[m2] at state (C):

nbLoans′[m2] = [[nbLoans (front (T),mId)]]M1 (τ ∪ τ ′, M′) = M′(nbLoans)(m2) = 0,

where “τ ′
.
= [mId← m2]” modifying eb3 memory M′ as follows:

M′ = M′ ⊕
[
nbLoans′[m2]← 0].

Combining the previous results, replacing each attribute variable in M′ by the corre-
sponding primed variable, and removing all primed attribute variables from M′, eb3

memory M′ is transformed as follows:

MC = [borrower[b1]← ⊥F , borrower[b2]← ⊥F , nbLoans [m1]← 0, nbLoans [m2]← 0]

denoting the eb3 memory at state (C).

• Transition (C)→(D) describes the execution of action “Lend (b1,m1)”. As pre-
viously, the eb3 memory at state (C) can be calculated by way of function
“upd

(
Lend (b1,m1),MC

)
” of Definition 2.3.10. Following Definition 2.3.10, M′ relat-

ing to the eb3 memory at state (D) is set to MC.

Then, environment τ is found equal to “τ
.
= [bId′ ← b1, mId′ ← m1]”, where the

duplicate renaming issues regarding bId and mId have been dealt with as previously.

The primed attribute variable borrower′[b1] referring to borrower[b1] at state (D) can be
calculated as follows:

borrower′[b1] = [[mId]]M1 (τ ∪ τ ′, M′) = m1,

where “τ ′
.
= [bId ← b1]” and, owing to case expression “| Lend (bId,mId) : mId”

(see Figure 2.2), “Lend (bId,mId)” is matched with action “Lend (b1,m1)”, hence,
modifying eb3 memory M′ as follows:

M′ = M′ ⊕ [borrower′[b1]← m1].

2.3. EB3 SEMANTICS 45

The computation continues with attribute variable borrower[b2] at state (D):

borrower′[b2] = [[borrower (front (T), bId)]]M1 (τ ∪ τ ′, M′) = M′(borrower)(b2) = ⊥F ,

where “τ ′
.
= [bId← b2]” modifying eb3 memory M′ as follows:

M′ = M′ ⊕ [borrower′[b2]← ⊥F].

The primed attribute variable nbLoans′[m1] at state (D) is the following:

nbLoans′[m1] = [[nbLoans (front (T),mId) + 1]]M1 (τ ∪ τ ′, M′) = M′(nbLoans)(m1)+1 = 1,

where “τ ′
.
= [mId← m1]” and, owing to case expression:

| Lend (bId,mId) : nbLoans (front (T),mId) + 1

(see Figure 2.2), “Lend (bId,mId)” is matched with action “Lend (b1,m1)”, thus, mod-
ifying eb3 memory M′ as follows:

M′ = M′ ⊕ [nbLoans′[m1]← 1].

The computation continues with attribute variable nbLoans′ [m2] at state (D):

nbLoans′[m2] = [[nbLoans (front (T),mId)]]M1 (τ ∪ τ ′, M′) = M′(nbLoans)(m2) = 0,

where “τ ′
.
= [mId← m2]” modifying eb3 memory M′ as follows:

M′ = M′ ⊕ [nbLoans′[m2]← 0].

Combining the previous results, replacing each attribute variable in M′ by the corre-
sponding primed variable and removing all primed attribute variables from M′, eb3

memory M′ is transformed as follows:

MD = [borrower[b1]← m1, borrower[b2]← ⊥F , nbLoans[m1]← 1, nbLoans[m2]← 0]

denoting the eb3 memory at state (D).

The principal difference between SemT and SemT/M lies in the way guards are evaluated.
Revisiting transition (C)→(D), the evaluation of guard (2.30) with respect to SemT/M de-
pends solely on the eb3 memory at state (C), i.e. MC . In particular, by Definition 2.3.12,
guard (2.30) is evaluated as follows:

[[(borrower (T, b1) = ⊥) ∧ (nbLoans (T,m1) < 2)]]T3 (MC) =

[[(borrower (T, b1) = ⊥)]]T3 (MC) ∧ [[(nbLoans (T,m1) < 2)]]T3 (MC) =

MC (borrower) ([[b1]]M2) =F ⊥ ∧ MC (nbLoans) ([[m1]]M2) <F 2) =

(⊥ =F ⊥) ∧ (0 <F 2F) = true,

where [[b1]]M2 evaluates to b1 and [[m1]]M2 evaluates to m1 according to Definition 2.3.11.

The evolution of attribute variables is depicted in Figure 2.8:

46 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

Memory

State borrower[b1] borrower[b2] nbLoans[m1] nbLoans[m2]

A ⊥ ⊥ ⊥ ⊥
A’ ⊥ ⊥ ⊥ ⊥
B ⊥ ⊥ ⊥ ⊥
B’ ⊥ ⊥ ⊥ 0

C ⊥ ⊥ 0 0

D m1 ⊥ 1 0

Figure 2.8: Evolution of Atrribute variables

2.3.3 Memory Semantics SemM

SemM is given in Figure 2.9 as a set of rules named (S1) to (S11). SemM derives from SemT/M

by simple elimination of the trace variable T from each tuple (E ,T,M) in rules (S1) upto
(S11). It gives a finite state system. Intuitively, this means that the information on the
history of executions is kept in the eb3 memory M, thus rendering the presence of trace
variable redundant. In particular,

• The system state with respect to SemT is represented by tuple (E,M), where E is the
process expression describing the remaining system behaviour and M is the current eb3

memory.

• The initial system state is represented by process expression main and the initial eb3

memory M0, i.e. the tuple (main,M0
.
= upd0).

• The evolution of system state modelled by a labelled transition system (LTS) must
adhere to the reduction rules of Figure 2.9.

2.4 Bisimulation Equivalence of SemT, SemT/M and SemM

We recall that the three semantics SemT, SemT/M and SemM of eb3 are based on the notion
of labelled transition systems (LTSs). Besides, the equivalence of SemT, SemT/M and SemM

relies on the notion of (action-based) equivalence between systems and, in particular, LTSs.

(Action-based) bisimulation [Par81, Mil80] is a fundamental notion in the framework of
concurrent processes and transition systems. A system is bisimilar to another system if the
former can mimic the behaviour of the latter and vice-versa. In this sense, the associated sys-
tems are considered indistinguishable. In this section, we present the bisimulation equivalence
proof for SemT, SemT/M and SemM.

2.4.1 Useful definitions

The three semantics SemT, SemT/M and SemM of eb3 presented in Section 2.3 are structured
operational semantics based on labelled transition system (LTS) models as interpretation
models for eb3 process algebra. LTSs are particularly suitable for action-based description
formalisms such as eb3.

2.4. BISIMULATION EQUIVALENCE OF SEM T, SEM T/M AND SEM M 47

ρ ∈ {αj(c1, . . . , cp) | j ∈ 1..q} ∪ λ, where c1, . . . , cp ∈ C

(S1)
(ρ,M)

ρ6=λ−−→M

(√
, upd(ρ,M)

) (S′1)
(ρ,M)

λ−→M (
√
,M)

(S2)
(E1,M)

ρ−→M (E′1,M
′)

(E1.E2,M)
ρ−→M (E′1.E2,M′)

(S3)
(E2,M)

ρ−→M (E′2,M
′)

(
√
.E2,M)

ρ−→M (E′2,M
′)

(S4)
(E1,M)

ρ−→M (E′1,M
′)

(E1 |E2,M)
ρ−→M (E′1,M

′)

(S5)
(E0

∗,M)
λ−→M (

√
,M)

(S6)
(E0,M)

ρ−→M (E′0,M
′)

(E0
∗,M)

ρ−→M (E′0.E0
∗,M′)

(S7)
(E1,M)

ρ−→M (E′1,M
′) (E2,M)

ρ−→M (E′2,M
′)

(E1 |[∆]|E2,M)
ρ−→M (E′1 |[∆]|E′2,M

′)
in (ρ,∆)

(S8)
(E1,M)

ρ−→M (E′1,M
′)

(E1 |[∆]|E2,M)
ρ−→M (E′1 |[∆]|E2,M′)

¬in (ρ,∆)

(S9)
(
√
|[∆]|

√
,M)

λ−→M (
√
,M)

(S10)
(E0,M)

ρ−→M (E′0,M
′)

(ge⇒ E0,M)
ρ−→M (E′0,M

′)
[[ge]]M3 (M) = true

(S11)
(E[x := u],M)

ρ−→M (E′,M′)

(P (u),M′)
ρ−→M (E′,M′)

P (x) = E

Figure 2.9: eb3 Memory Semantics (SemM)

Definition 2.4.1. A labelled transition system (LTS) is a triple

(S, δ
.
= { a−→}a∈Act, s0),

where:

1. S is a set of states,

2. Act is a set of actions,

3.
a−→⊆ S × S, for all a ∈ Act,

4. s0 ∈ S is the initial state.

The proof of equivalence for SemT, SemT/M and SemM relies on the standard notion of
bisimulation.

48 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

Definition 2.4.2. Bisimulation .
Let TSi = (Si,→i, s

0
i), i = 1, 2 be two TSs and let R ⊆ S1 × S2 be a relation. We say that R

is a bisimulation relation for TS1 and TS2 if and only if:

• (s0
1, s

0
2) ∈ R,

• for all (s1, s2) ∈ R, then:

– if s1
a−→1 s

′
1, then there exists s′2 ∈ S2 such that s2

a−→2 s
′
2 and (s′1, s

′
2) ∈ R,

– if s2
a−→2 s

′
2, then there exists s′1 ∈ S1 such that s1

a−→1 s
′
1 and (s′1, s

′
2) ∈ R.

We say that TS1 and TS2 are equivalent with respect to bisimulation denoted as TS1 ∼ TS2

if and only if there is a bisimulation relation R for TS1 and TS2.

2.4.2 LTS Construction

Let well-formed eb3 specification EB3 with main = E, where E stands for well-formed eb3

process expression. We will construct three LTSs with respect to SemT, SemT/M and SemM

respectively. These correspond to the LTSs generated inductively by the rules depicted in
Figure 2.3, Figure 2.6 and Figure 2.9. The whole process mimics the construction of a
transition system associated with a transition system specification, as in [MR05].

We recall that the eb3 memory at system start is denoted by M0 ∈M, whereM stands for
the set of eb3 memorys in the IS defined upon the fixed body of attribute function definitions
in EB3. The construction is carried out by structural induction over eb3 process expression
E. We assume that each sub-expression of E is part of an eb3 specification endowed with the
fixed body of attribute function definitions in EB3.

We demonstrate how to construct a) the LTS related to process expression E with respect
to SemM denoted as TSM

E , b) the LTS related to process expression E with respect to SemT

denoted as TST
E , and c) the LTS related to process expression E with respect to SemT/M

denoted as TS
T/M
E .

• Let E = ρ 6= λ.

1. TSM
ρ is constructed as follows:

TSM
ρ = (SM

ρ , δρ, s
0
ρ),

where Sρ =
{

(ρ,M0)
} ⋃ {(√

, upd(ρ,M0)
)}

δρ =
{

(ρ,M0)
ρ−→M

(√
, upd(ρ,M0)

)}
s0
ρ = (ρ,M0)

Note that statespace Sρ consists of the initial state (ρ,M0) and the terminal state
(
√
, upd(ρ,M0)). We recall that M0

.
= upd0 (see Definition 2.3.9 for details on

upd0) and that upd(ρ,M0) stands for the updated eb3 memory upon execution of
action ρ (see Definition 2.3.10 for details on upd).

2. TST
ρ is constructed as follows:

TST
ρ = (Sρ, δρ, s

0
ρ),

where Sρ =
{

(ρ, [])
} ⋃ {

(
√
, [ρ])

}
δρ =

{
(ρ, [])

ρ−→T (
√
, [ρ])

}
s0
ρ = (ρ, []),

2.4. BISIMULATION EQUIVALENCE OF SEM T, SEM T/M AND SEM M 49

We recall that [] stands for the empty trace and [ρ] is the trace that contains
action ρ.

3. Combining the previous results, TS
T/M
ρ is constructed as follows:

TS
T/M
ρ = (Sρ, δρ, s

0
ρ),

where Sρ =
{

(ρ, [],M0)
} ⋃ {

(
√
, [ρ], upd

(
ρ,M0)

)}
δρ =

{
(ρ, [],M0)

ρ−→T

(√
, [ρ], upd(ρ,M0)

)}
s0
ρ = (ρ, [],M0),

• Let E = λ.

1. TSM
λ is constructed as follows:

TSλ = (Sλ, δλ, s
0
λ),

where Sλ =
{

(λ,M0)
}

δρ =
{

(λ,M0)
λ−→M (

√
,M0)

}
s0
λ = (λ,M0)

Note that statespace Sρ consists of the initial state (ρ,M0) and the terminal state
(
√
,M0) and that the inert action λ has no effect on eb3 memory M0.

2. TST
λ is constructed as follows:

TST
λ = (Sλ, δλ, s

0
λ),

where Sλ =
{

(λ, [])
}

δρ =
{

(λ, [])
λ−→M (

√
, [])

}
s0
λ = (λ, [])

Note that the inert action λ is not inserted to the trace.

3. Combining the previous results, TS
T/M
λ is constructed as follows:

TS
T/M
λ = (Sλ, δλ, s

0
λ),

where Sλ =
{

(λ, [],M0)
}

δρ =
{

(λ, [],M0)
λ−→M (

√
, [],M0)

}
s0
λ = (λ, [],M0)

• Let E = E1|E2.

We aim at a generic formula TS (X,Y) denoting the LTS that describes E1|E2 with
respect to SemM, SemT and SemT/M for suitable values of variableX ∈ {M0, [], ([],M0)}
and Y ∈ {M,T,T/M}.
To this end, we apply compositional reasoning relying on TSYE1

and TSYE2
. In particular,

we consider LTS TS (X,Y) defined as follows:

TS(X,Y) =
(
S(X,Y), δ(X,Y), s0(X,Y)

)
,

where S(X,Y) = SYE1
\
{

(E1, X)
} ⋃

SYE2
\
{

(E2, X)
} ⋃ {

(E1|E2, X)
}

δ(X,Y) = δYE1

[
E1 ← E1|E2

] ⋃
δYE2

[
E2 ← E1|E2

]
s0(X,Y) = (E1|E2, X)

50 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

Notice that statespace S (X,Y) comprises the union of state space SYE1
and state space

SYE2
from which all references to initial state (E1, X) ∈ SYE1

and initial state (E2, X) ∈
SYE2

have been substituted by initial state (E1|E2, X) ∈ S(X,Y).

Similarly, transition relation δE1|E2 comprises the union of transition relation δE1 and
transition relation δE2 for which a) all references to process expression E1 in tuples of
δE1|E2 have been substituted by E1|E2 denoted as [E1 ← E1|E2], and b) all references
to process expression E2 in elements of δE1|E2 have been substituted by E1|E2 denoted
as [E1 ← E1|E2]. It follows easily that:

1. TSM
E1|E2

.
= TS (M0,M) is the LNT describing E1|E2 w.r.t. SemM.

2. TST
E1|E2

.
= TS ([],T) is the LNT describing E1|E2 w.r.t. SemT.

3. TS
T/M
E1|E2

.
= TS

(
([],M0),T/M

)
is the LNT describing E1|E2 w.r.t. SemT/M.

• Let E = E1.E2.

As a means to construct TSYE1.E2
for Y ∈ {M,T,T/M}, we adopt a compositional

approach relying on TSYE1
and TSYE2

.

First, we remark that if state (E′1, X) belongs to SYE1
for an arbitrary derivation E′1

of E1 and X ∈ {M′,T′, (T′,M′)}, where T′ is a trace and M′ is an eb3 memory, then
state (E′1.E2, X) shall denote a valid state of SYE1.E2

. Then, we recall that as soon as
the execution of process expression E1 is completed, the system may carry on with
the execution of process expression E2. Hence, SYE1.E2

shall contain the union of state

spaces SYE2,Z
for Z ∈ {M′′,T′′, (T′′,M′′)}, a T′′ is a trace and M′′ is an eb3 memory,

such that (
√
, Z) ∈ SYE1

and SYE2,Z
refers to the statespace of eb3 specification EB3’, for

which “main = E2” and the set of attribute function definitions is specified as described
below:

For i ∈ {1, . . . , n} and j ∈ {1, . . . , q}, attribute function definition fi of EB3 (see
Definition 2.2.3 for details) is uniquely defined in the following manner:

fi (T : T , y : T) : T = match last (T) with

⊥T : w0
i

|α1 (z1) : w1
i | . . . |αq (zq) : wqi

[| : wq+1
i]

end match,

then attribute function definition f ′i of EB3’ shall be specified as follows:

f ′i (T : T , y : T) : T = match last (T) with

⊥T : if y = c1 then fi
c1 else

. . .

else if y = co then fi
co

end if

|α1 (z1) : w1
i | . . . |αq (zq) : wqi

[| : wq+1
i]

end match,

2.4. BISIMULATION EQUIVALENCE OF SEM T, SEM T/M AND SEM M 51

where

fcki =


M′′(fi)[ck], if Y = M, Z = M′′ or Y = T/M, Z = (T′′,M′′)}
fi (T′′, ck), if Y = T, Z = T′′

undefined, otherwise

for k ∈ {1, . . . , o} and notation “y : T” is an abbreviation for “y1 : T1, . . . , ys : Ts”,
o ∈ N is equal to the cartesian product “|T1| × . . .× |Ts|”, and notation “y = ci” is an
abbreviation for syntactic expression “y1 = ci,1 ∧ . . . ys = ci,s”, where ci,1, . . . , ci,s ∈ C
are constants and cFi,k ∈ bTkc for i ∈ {1, . . . , o} and k ∈ {1, . . . , s}. Transition relation

δYE1.E2
is obtained with similar reasoning.

We consider LTS TS(W,Y) for W ∈ {M0, [], ([],M0)} and Y ∈ {M,T,T/M} defined as
follows:

TS(W,Y) =
(
S(W,Y), δ(W,Y), s0(W,Y)

)
,

where S(W,Y) =
{

(E′1.E2, X) | (E′1, X) ∈ SYE1

} ⋃ (⋃
Z∈A

SYE2,Z

)
A

.
=

{
Z | (

√
, Z) ∈ SYE1

}
and X ∈ {M′,T′, (T′,M′)}

δ(W,Y) =
{

(E′1.E2, X)
ρ−→Y (E′′1 .E2, X

′) | (E′1, X)
ρ−→Y (E′′1 , X

′) ∈ δYE1

}⋃ (⋃
Z∈B

δYE2,Z

)
B

.
=

{
Z | (

√
, Z) ∈ SYE1

}
and X ′ ∈ {M′′,T′′, (T′′,M′′)}

s0(W,Y) = (E1.E2,W)

Remark that T′′ is a valid trace and M′′ is a valid eb3 memory.

It follows easily that:

1. TSM
E1.E2

.
= TS(M0,M) is the LNT describing E1.E2 w.r.t. SemM.

2. TST
E1.E2

.
= TS([],T) is the LNT describing E1.E2 w.r.t. SemT.

3. TS
T/M
E1.E2

.
= TS

(
([],M0),T/M

)
is the LNT describing E1.E2 w.r.t. SemT/M.

• Let E = E1|[∆]|E2.

We aim at a generic formula:

TS(X,Y) =
(
S(X,Y), δ(X,Y), s0(X,Y)

)
denoting the LTS that describes E1|[∆]|E2 with respect to SemM, SemT and SemT/M

for suitable values of variable X ∈ {M0, [], ([],M0)} and Y ∈ {M,T,T/M}.

52 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

The construction of S(X,Y) is carried out as depicted below:

S′(X,Y) = {(E1|[∆]|E2, X)};
do {

S(X,Y) = S′(X,Y);

S′(X,Y) = S(X,Y)⋃ {
(E′′1 |[∆]|E′2, X ′′) | ∃E′1,∃ρ,∃X ′ : (E′1|[∆]|E′2, X ′) ∈ S(X,Y)

∧ ¬in(ρ,∆)

∧ (E′1, X
′)

ρ−→Y (E′1, X
′′) ∈ δE1

}⋃ {
(E′1|[∆]|E′′2 , X ′′) | ∃E′2,∃ρ,∃X ′ : (E′1|[∆]|E′2, X ′) ∈ S(X,Y)

∧ ¬in(ρ,∆)

∧ (E′2, X
′)

ρ−→Y (E′′2 , X
′′) ∈ δE2

}⋃ {
(E′′1 |[∆]|E′′2 , X ′′) | ∃E′1,∃E′2, ∃ρ, ∃X ′, (E′1|[∆]|E′2, X ′) ∈ S(X,Y)

∧ in(ρ,∆)

∧ (E′1, X
′)

ρ−→Y (E′′1 , X
′′) ∈ δE1

∧ (E′2, X
′)

ρ−→Y (E′′2 , X
′′) ∈ δE2

}⋃ {
(
√
, X ′) | (

√|[∆]|√, X ′) ∈ S(X,Y)
}

;}
while

(
S′(X,Y) 6= S(X,Y)

)
Auxiliary variable S′(X,Y) is initially set to singleton set {(E1|[∆]|E2, X)}.
S(X,Y) is set to S′(X,Y). Statespace S(X,Y) is iteratively updated to S′(X,Y) that
constitutes the union of S(X,Y) and

1. the states (E′′1 |[∆]|E′2, X ′′), for which there exist eb3 process expression E′1 ∈ SYE1
,

variable X ′, and action ρ such that (E′1|[∆]|E′2, X ′) ∈ S(X,Y) and (E′1, X
′)

ρ−→Y

(E′′1 , X
′′) ∈ δYE1

on condition that the label of action ρ does not belong to synchro-
nization set ∆, i.e. ¬in(ρ,∆),

2. the states described by the symmetric case of 1, and

3. the states (E′′1 |[∆]|E′′2 , X ′′), for which there exist eb3 process expressions E′1 ∈ SYE1
,

E′2 ∈ SYE2
, variable X ′, and action ρ such that a) (E′1|[∆]|E′2, X ′) ∈ S (X,Y) and

(E′1, X
′)

ρ−→Y (E′′1 , X
′′) ∈ δYE1

, (E′2, X
′)

ρ−→Y (E′′2 , X
′′) ∈ δYE2

on condition that the
label of action ρ belongs to synchronization set ∆, i.e. in(ρ,∆);

4. state {(√, X ′) is inserted into SE1|[∆]|E2
provided that (

√|[∆]|√, X ′) ∈ SE1|[∆]|E2
.

The procedure described in the previous paragraph is repeated as long as “S′(X,Y) 6=
S(X,Y)”. In other words, the iterative procedure terminates as soon as the correspond-
ing computation reaches a fixed-point.

Notice also that the previous procedure creates a state space, whose upper bound is
inferior to the product of state spaces SE1 and SE2 . Furthermore, state spaces SE1 and
SE2 are finite, from which we deduce that termination is guaranteed.

2.4. BISIMULATION EQUIVALENCE OF SEM T, SEM T/M AND SEM M 53

The construction of δE1|[∆]|E2
follows similar lines:

δ(X,Y) = ∅
do {

δ(X,Y) = δ′(X,Y);

δ′(X,Y) = δ (X,Y)⋃ {
(E′1|[∆]|E′2, X ′)

ρ−→Y (E′′1 |[∆]|E′2, X ′′) | (E′1|[∆]|E′2, X ′) ∈ S(X,Y)

∧ ¬in(ρ,∆)

∧ (E′1, X
′)

ρ−→Y (E′′1 , X
′′) ∈ δYE1

}⋃ {
(E′1|[∆]|E′2, X ′)

ρ−→Y (E′1|[∆]|E′′2 , X ′′) | (E′1|[∆]|E′2, X ′) ∈ S(X,Y)

∧ ¬in(ρ,∆)

∧ (E′2, X
′)

ρ−→Y (E′′2 , X
′′) ∈ δYE2

}⋃ {
(E′1|[∆]|E′2, X ′)

ρ−→Y (E′′1 |[∆]|E′′2 , X ′′) | (E′1|[∆]|E′2, X ′) ∈ S(X,Y)

∧ in(ρ,∆)

∧ (E′1, X
′)

ρ−→Y (E′′1 , X
′′) ∈ δYE1

∧ (E′2, X
′)

ρ−→Y (E′′2 , X
′′) ∈ δYE2

}⋃ {
(
√|[∆]|√, X ′) ρ−→Y (

√
, X ′) | (

√|[∆]|√, X ′) ∈ S(X,Y)
}

}
while

(
δ′(X,Y) 6= δ(X,Y)

)
The initial state s0(X,Y) of TS(X,Y) is (E1|[∆]|E2, X).

It follows easily that:

1. TSM
E1|[∆]|E2

.
= TS(M0,M) is the LNT describing E1|[∆]|E2 w.r.t. SemM.

2. TST
E1|[∆]|E2

.
= TS([],T) is the LNT describing E1|[∆]|E2 w.r.t. SemT.

3. TS
T/M
E1|[∆]|E2

.
= TS

(
([],M0),T/M

)
is the LNT describing E1|[∆]|E2 w.r.t. SemT/M.

• Let E = E∗0 .

Let TSY denote the possibly infinite set of LTSs that simulate EB3 specifications with
respect to SemM, SemT and SemT/M depending on the value of Y ∈ {M,T,T/M} and

let also TSYEx denote the LTS of eb3 process expression Ex with respect to Y .

We define F : TSY → TSY function that receives TSYEx as parameter and returns the

union of TSYE0·Ex and TSYλ . Based on the meaning of identity formula “E∗ = λ |E.E∗”,

F (TSYEx) shall express the possibility of executing E0 followed by the eventual re-

execution of TSYEx or skipping process expression E completely.

Hence, in order to obtain TSE∗0 , we need to compute the least fix-point [Tar55] of

function F : TSY → TSY with respect to the lattice T S = (TSY ,⊆).

54 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

We consider LTS TS(X,Y) defined as follows:

TS(X,Y) =
(
S(X,Y), δ(X,Y), s0(X,Y)

)
,

where TS(X,Y) = lfpF

F (TSYEx) = TSYE0·Ex

⋃
TSYλ

s (X,Y) = (E∗0 , X)

It follows easily that:

1. TSM
E∗0

.
= TS(M0,M) is the LNT describing E∗0 w.r.t. SemM.

2. TST
E∗0

.
= TS([],T) is the LNT describing E∗0 w.r.t. SemT.

3. TS
T/M
E∗0

.
= TS

(
([],M0),T/M

)
is the LNT describing E∗0 w.r.t. SemT/M.

• Let “E = ge⇒ E0”.

As usual, we aim at a generic formula:

TS (X,Y) =
(
S(X,Y), δ(X,Y), s0(X,Y)

)
denoting the LTS that describes ge ⇒ E0 with respect to SemM, SemT and SemT/M

for suitable values of variable X ∈ {M0, [], ([],M0)} and Y ∈ {M,T,T/M}.
The construction TS(X,Y) relies on the possible values of expression [[ge]]Y3 (X). Hence,

1. if [[ge]]Y3 (X) evaluates to true, we apply similar reasoning as in the case of process
expression E1|E2.

2. if [[ge]]Y3 (X) evaluates to false, TS(X) reduces to the trivial LTS that contains state
(ge⇒ E0, X) and has no transitions.

More precisely, TS (X,Y) is constructed as follows:

TS(X,Y) =
(
S(X,Y), δ(X,Y), s0(X,Y)

)
,

where S(X,Y) =

{{
(ge⇒ E0, X)

} ⋃
SYE0
\
{

(E0, X)
}
, if [[ge]]Y3 (X) = true{

(ge⇒ E0, X)
}
, otherwise

δ(X,Y) =

{
δYE0

[
(E0, X)← (ge⇒ E0, X)

]
, if [[ge]]Y3 (X) = true

∅, otherwise

s0(X,Y) = (ge⇒ E0, X)

It follows easily that:

1. TSM
ge⇒E0

.
= TS(M0,M) is the LNT describing ge⇒ E0 w.r.t. SemM.

2. TST
ge⇒E0

.
= TS([],T) is the LNT describing ge⇒ E0 w.r.t. SemT.

3. TS
T/M
ge⇒E0

.
= TS

(
([],M0),T/M

)
is the LNT describing ge⇒ E0 w.r.t. SemT/M.

2.4. BISIMULATION EQUIVALENCE OF SEM T, SEM T/M AND SEM M 55

• Let E = P (t).

Assuming the existence of attribute function definition:

S ::= P (x : T) = E0,

(see Figure 2.1 for details), then, by simple substitution, the construction of TSY
P (t)

for

Y ∈ {M,T,T/M} is reduced to:

TSYP (t) = TSYE0 [x:=t].

• Let “E = |x : V : E0”.

We extend the construction for TS(E1|E2) considering all possible instantiations for
eb3 process expression E0, i.e. E0[x := c], for all c ∈ V ⊆ C.
The generic formula denoting the LTS that describes |x : V : E0 with respect to SemM,
SemT and SemT/M for variable X ∈ {M0, [], ([],M0)}, Y ∈ {M,T,T/M} and set V is
the following:

TS(X,Y, V) =
(
S(X,Y, V), δ(X,Y, V), s0(X,Y, V)

)
where S(X,Y, V) =

⋃
c∈V

SYE0[x:=c] \ {(E0[x := c], X)}
⋃ {

(|x : V : E0, X)
}

δ(X,Y, V) =
⋃
c∈V

δYE0[x:=c]

[
E0[x := c]← |x : V : E0

]
s0(X,Y, V) = (|x : V : E0, X)

if V 6= ∅. Moreover, S(X,Y, ∅) = {(√, X)}, δ(X,Y, ∅) = ∅, and s0(X,Y, ∅) = (
√
, X).

It follows easily that:

1. TSM
|x:V :E0

.
= TS(M0,M, V) is the LNT describing |x : V : E0 w.r.t. SemM.

2. TST
|x:V :E0

.
= TS([],T, V) is the LNT describing |x : V : E0 w.r.t. SemT.

3. TS
T/M
|x:V :E0

.
= TS

(
([],M0, V),T/M

)
is the LNT describing |x : V : E0 w.r.t.

SemT/M.

• Let “E = |[∆]|x : V : E0”.

TSY|[∆]|x:V :E0
= (SY|[∆]|x:V :E0

, δY|[∆]|x:V :E0
, s0,Y

|[∆]|x:V :E0
) for Y ∈ {M,T,T/M}

Based on the values of V ’s cardinality, i.e. |V | and the following formula:

|[∆]|x :V :E =


E[x := t] |[∆]| (|[∆]|x : V \ {t} : E0)), if |V | > 1

E[x := t], if |V | = 1

√
, otherwise

transition system TSY|[∆]|x:V :E0
is constructed compositionally following the construc-

tion of TSYE1|[∆]|E2
.

56 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

2.4.3 Proof of Bisimulation Equivalence of SemT, SemT/M and SemM

First, we define the notion of eb3 memory M compatible to given trace T. This definition is
pivotal in establishing the equivalence between the three semantics.

Definition 2.4.3. Let EB3 be a well-formed eb3 specification, let T be the trace variable and
let M be an eb3 memory. We say that memory M is compatible with trace T in EB3 if and
only if:

M = compatible memory(T,M0),

where function compatible memory is defined as follows:

function compatible memory(T : T , M :M)

begin

match T with

[]⇒ return M

| T′.ρ⇒ return compatible memory(T′, upd(ρ,M))

end match

end

Let EB3 be well-formed eb3 specification. In the following, we refer to the LTS describing
EB3 with respect to SemT as TST. Moreover, notation ST refers to the corresponding state
space of TST, δT refers to the corresponding transition relation, and s0

T refers to the initial
state of the system.

Similarly, we refer to the LTS describing EB3 with respect to SemT/M (SemM) as TST/M
(TSM). ST/M (SM) refers to the corresponding state space of TST/M (TSM), δT/M (δM) refers
to the corresponding transition relation, and s0

T/M (s0
M) refers to the initial state of the system.

Corollary 2.4.1. Let EB3 be a well-formed eb3 specification. For every state (E,T,M) ∈
ST/M, eb3 memory M is compatible to trace T.

Proof. • Base Case: By way of (E0, [],M0) ∈ ST/M and Definition 2.4.3, eb3 memory
M0 is found to be compatible with trace [].

• Inductive Hypothesis: Assuming that for state (E,T,M) ∈ ST/M, eb3 memory M is

compatible with trace T, then for any transition (E,T,M)
ρ−→T/M (E,T.ρ,M′) ∈ δT/M, it

is “M′ = upd(ρ,M)” (see Figure 2.6 for details), from which follows that M′ is compatible
with T.ρ. With similar reasoning, we visit all states in ST/M, which completes the proof.

Theorem 2.4.1. Let EB3 be a well-formed eb3 specification, τ ∈ Envπ be an environment,
T be the trace variable, and M be a eb3 memory compatible to T. Let also v1, . . . , vs denote
a sequence of eb3 type (1) value expressions.

The denotation of eb3 type (1) value expression wji corresponding to attribute function fi
appearing in EB3 for i ∈ {1, . . . , n} and j ∈ {0, . . . , q} with respect to SemT under environ-
ment τ and trace T is equal to the denotation of wji with respect to SemT/M under environment
τ and eb3 memory M, i.e.

[[wji]]
T
1 (τ, T) = [[wji]]

M
1 (τ,M) (2.39)

2.4. BISIMULATION EQUIVALENCE OF SEM T, SEM T/M AND SEM M 57

Proof. Base case: We set “T = []” and “M = M0” in (2.39). Hence, it suffices to prove that:

[[w0
i]]

T
1 (τ, []) = [[w0

i]]
M
1 (τ,M0) (2.40)

We proceed with structural induction on type (1) value expressions w0
i .

• w0
i reduces to constant c ∈ C:

[[w0
i]]

T
1 (τ, []) = [[c]]T1 (τ, [])

= F(c) (Definition 2.3.5)

= [[c]]M1 (τ,M0) (Definition 2.3.8)

= [[w0
i]]

M
1 (τ,M0)

By (2.23) of Definition 2.3.5, [[fi (T, v1, . . . , vs)]]
T
1 (τ, []) reduces to F(c). Then, by (2.33)

of Definition 2.3.8), F(c) reduces to [[c]]M1 (τ,M0), which completes the proof.

• w0
i reduces to variable x ∈ V:

[[w0
i]]

T
1 (τ, []) = [[x]]T1 (τ, [])

= τ(x) (Definition 2.3.5)

= [[x]]M1 (τ,M0) (Definition 2.3.8)

= [[w0
i]]

M
1 (τ,M0)

This case is similar to the previous case.

• w0
i reduces to non-conditional functional term g(v1, . . . , vl) for some eb3 type (1) value

expressions v1, . . . , vl:

[[w0
i]]

T
1 (τ, []) = [[g(v1, . . . , vl)]]

T
1 (τ, [])

= F(g)([[v1]]T1 (τ, []), . . . , [[vl]]
T
1 (τ, [])) (Definition 2.3.5)

= F(g)([[v1]]M1 (τ,M0), . . . , [[vl]]
M
1 (τ,M0)) (Induction Hypothesis)

= [[g(v1, . . . , vl)]]
M
1 (τ,M0) (Definition 2.3.8)

= [[w0
i]]

M
1 (τ,M0)

Remark that the inductive principle regarding the base case and (2.40) is applied on
type (1) value expressions v1, . . . , vl that are “structurally smaller” than w0

i . The rest
of the proof is straightforward.

• w0
i reduces to attribute function call fh (front(T), u1, . . . , us) for some h ∈ {1, . . . , n}

and some eb3 type (1) value expressions u1, . . . , us:

[[w0
i]]

T
1 (τ, []) = [[fh (front(T), u1, . . . , us)]]

T
1 (τ, [])

= ⊥F (Definition 2.3.5)

= M0(fh)(e1, . . . , es) (Definition 2.3.9)

= [[fh (front(T), v1, . . . , vs)]]
M
1 (τ,M0) (Definition 2.3.8)

= [[w0
i]]

T
1 (τ,M0)

58 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

where “e1 = [[u1]]M1 (τ,M0)”, . . ., and “es = [[us]]
M
1 (τ,M0)” for some constants e1, . . . , es ∈

C. Note that M0(fh)(e1, . . . , es) refers to the initial value assigned to attribute vari-
able fh[e1, . . . , es] by M0 (see Definition 2.3.9 for details on upd0). Then, by force of
(2.36), M0(fh)(e1, . . . , es) reduces to [[fh (front(T), v1, . . . , vs)]]

M
1 (τ,M0), which completes

the proof.

• w0
i reduces to attribute function call fh (T, u1, . . . , us) for h < i and some eb3 type (1)

value expressions u1, . . . , us:

[[w0
i]]

T
1 (τ, []) = [[fh (T, u1, . . . , us)]]

T
1 (τ, []) = [[fh (T, u1, . . . , us)]]

M
1 (τ,M0) = [[w0

i]]
T
1 (τ,M0),

which is justified as follows:

[[fh (T, v1, . . . , vs)]]
T
1 (τ, []) = [[w0

h]]T1 (τ?([]) ∪ τ ′, []) (Definition 2.3.5)

= [[w0
h]]M1 (τ ′,M0)

= M0(f
′
h)(e1, . . . , es) (Definition 2.3.9)

= [[fh (T, v1, . . . , vs)]]
M
1 (τ,M0) (Definition 2.3.8),

where, according to Definition 2.3.5, it is “τ ′ = [y1 ← [[v1]]T1 (τ, [])”, . . ., “ys ←
[[vs]]

T
1 (τ, [])]” and “e1 = [[u1]]M1 (τ, M0)”, . . ., “es = [[us]]

M
1 (τ,M0)” for some constants

e1, . . ., es ∈ C. The following proposition:

[[w0
h]]T1 (τ ′, []) = [[w0

h]]M1 (τ ′,M0) (2.41)

is obtained by replacing each occurrence of index i in (2.40) with h, for which h < i.
Based on the observation that h is an integer, repeating the previous calculations and
applying inductive reasoning, the correctness of (2.41) boils down to the correctness of
the following proposition:

[[w0
1]]T1 (τ ′, []) = [[w0

1]]M1 (τ ′,M0). (2.42)

However, according to attribute function ordering, w0
1 cannot reduce further to any

attribute function call fk(T, . . .) for k > 0, which means that the proof steps taken so
far to establish (2.40) suffice to establish (2.41).

• w0
i reduces to conditional term “if g(v1, . . . , vl) then vl+1 else vl+2”.

1. Let “[[g (v1, . . . , vl)]]
T
1 (τ, []) = true”. The inductive principle applies to the “syn-

tactically smaller” value expression g (v1, . . . , vl), which allows us to write:

[[g (v1, . . . , vl)]]
M
1 (τ, []) = [[g(v1, . . . , vl)]]

T
1 (τ,M0).

or, equivalently, “[[g(v1, . . . , vl)]]
M
1 (τ,M0) = true”.

[[w0
i]]

T
1 (τ, []) = [[if g(v1, . . . , vl) then vl+1 else vl+2]]T1 (τ, [])

= [[vl+1]]T1 (τ, []) (Definition 2.3.5)

= [[vl+1]]M1 (τ,M0) (Induction Hypothesis)

= [[if g(v1, . . . , vl) then vl+1 else vl+2]]M1 (τ,M0) (Definition 2.3.8)

= [[w0
i]]

M
1 (τ,M0)

2.4. BISIMULATION EQUIVALENCE OF SEM T, SEM T/M AND SEM M 59

Notice also how the inductive hypothesis applies previously on vl+1:

[[vl+1]]T1 (τ, []) = [[vl+1]]M1 (τ,M0)

2. Let “[[g (v1, . . . , vl)]]
M
1 (τ, []) = false”. Then, the proof is similar.

Induction Hypothesis: Let trace T1 such that T1 is a (strict) prefix of trace T denoted
as T1 ≺ T, and M1 is an eb3 memory compatible to T1. We assume the following induction
hypothesis:

[[wji]]
T
1 (τ,T1) = [[wji]]

M
1 (τ,M1) (2.43)

Now, let trace T be equal to “T1.αj(c1, . . . , cp)” for some j ∈ {1, . . . , q} and some constants
c1, . . . , cs ∈ C. Let also M1 be the compatible eb3 memory to T1. We proceed with structural
induction on type (1) value expressions wji (see Definition 2.2.3 for details). It is fairly easy to
see that the proofs regarding c, x, g(v1, . . . , vn), and “if g(v1, . . . , vl) then vl+1 else vl+2” are
similar to the corresponding proofs for the base case. In the following, we treat the remaining
cases namely fh (T, u1, . . . , us) and fh (front (T), v1, . . . , vs).

• wji reduces to attribute function call “fh (T, u1, . . . , us)” for h < i.

[[wji]]
T
1 (τ,T) = [[fh (T, u1, . . . , us)]]

T
1 (τ,T) = [[fh (T, u1, . . . , us)]]

M
1 (τ,M) = [[wji]]

T
1 (τ,M)

which is justified as follows:

[[fh (T, v1, . . . , vs)]]
T
1 (τ,T) = [[wjh]]T1 (τ?(T) ∪ τ ′,T) (Definition 2.3.5)

= [[wjh]]M1 (τ?(T) ∪ τ ′,M)

= M(f ′h)(e1, . . . , es) (Definition 2.3.10)

= [[fh (T, v1, . . . , vs)]]
M
1 (τ,M) (Definition 2.3.8)

where, according to Definition 2.3.5, it is “τ ′ = [y1 ← [[v1]]T1 (τ,T), . . ., “ys ←
[[vs]]

T
1 (τ,T)]” and “e1 = [[u1]]M1 (τ,M)”, . . ., “es = [[us]]

M
1 (τ,M)” for some constants

e1, . . . , es ∈ C. The following proposition:

[[wjh]]T1 (τ ′,T) = [[wjh]]M1 (τ ′,M) (2.44)

is obtained by replacing each occurrence of index i in (2.40) with h, for which h < i.
Based on the observation that h is an integer, repeating the previous calculations and
applying inductive reasoning, the correctness of (2.41) boils down to the correctness of
the following proposition:

[[wj1]]T1 (τ ′,T) = [[wj1]]M1 (τ ′,M) (2.45)

However, according to attribute function ordering, w0
1 cannot reduce further to any

attribute function call fk(T, . . .) for k > 0, which means that the proof steps taken so
far to establish (2.40) suffice to establish (2.41).

60 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

• wji reduces to attribute function call fh (front (T), u1, . . . , us) for some h < i and some
eb3 type (1) value expressions u1, . . . , us:

[[wji]]
T
1 (τ,T) = [[fh (front (T), u1, . . . , us)]]

T
1 (τ,T) (Definition 2.3.5)

= [[fh (T, u1, . . . , us)]]
T
1 (τ,T1) (Definition 2.3.5)

= [[fh (T, v1, . . . , vs)]]
M
1 (τ,M1) (Inductive Hypothesis)

= M1(f
′
h)(e1, . . . , es) (Definition 2.3.8)

= M(fh)(e1, . . . , es)

= [[fh (front (T), v1, . . . , vs)]]
M
1 (τ,M) (Definition 2.3.8)

= [[wji]]
M
1 (τ,M)

where, for some constants e1, . . . , es ∈ C, it is “e1 = [[u1]]M1 (τ,M1)”, . . ., and “es =
[[us]]

M
1 (τ,M1)”. Note that the denotation of fh (front (T), u1, . . . , us) under environment

τ and trace T reduces to the denotation of fh (T, u1, . . . , us) under environment τ and
trace T1, which is a strict prefix of T. This is justified by (2.27) of Definition 2.3.8.
The inductive principle (2.43) is then applied. Note also the replacement of M1(f

′
h) by

M(fh) in the previous calculations, since “M = upd(αj(c1, . . . , cp),M1)”, which means
that the attribute variables fi of M are equal to the primed attribute variables f ′i of M1

(see Definition 2.3.10 for details)1.

Corollary 2.4.2. Let EB3 be a well-formed eb3 specification, τ ∈ Envπ be an environment,
T be the trace variable, and M be a eb3 memory compatible to T. For eb3 type (1) value
expressions v1, . . . , vs appearing in EB3, it follows that:

[[fi (T, u1, . . . , us)]]
T
1 (τ,T) = M(f ′i)(e1, . . . , es) (2.46)

where, for some constants e1, . . . , es ∈ C, it is “e1 = [[u1]]M1 (τ,M)”, . . ., and “es =
[[us]]

M
1 (τ,M)”.

Proof. We set “wji = fi (T, u1, . . . , us)”. From Theorem 2.4.1, it follows directly that:

[[fi (T, u1, . . . , us)]]
T
1 (τ,T) = [[fi (T, u1, . . . , us)]]

M
1 (τ,M) (2.47)

By means of (2.37) of Definition 2.3.8, (2.47) and transitivity, we establish (2.46).

Theorem 2.4.2. Let EB3 be a well-formed eb3 specification, T be the trace variable, and M
be a eb3 memory compatible to T. For eb3 guard ge appearing in EB3, it follows that:

[[ge]]T3 (T) = [[ge]]M3 (M).

Proof. We proceed with structural induction on guard ge:

1the use of attribute variables fi and primed attribute variables f′i in the previous formulas is justified by the
fact that the denotation “[[·]]M1 (τ,M)” of eb3 type (1) value expressions under τ and M is implicated mainly in
the evaluation of attribute variables, where fi and f′i necessarily co-exist in M (see corresponding Definition 2.3.9
and Definition 2.3.10 for details).

2.4. BISIMULATION EQUIVALENCE OF SEM T, SEM T/M AND SEM M 61

• ge reduces to constant c ∈ C. By way of Definitions 2.3.12, 2.3.7, we complete the proof:

[[ge]]T3 (T) = [[c]]T3 (T) = F(c) = [[c]]M3 (M) = [[ge]]M3 (M)

• ge reduces to functional term of the form g(ge1, . . . , gen).

[[g (ge1, . . . , gel)]]
T
3 (T) = F(g)([[ge1]]T3 (T), . . . , [[gel]]

T
3 (T)) (Definition 2.3.7)

= F(g)([[ge1]]M3 (M), . . . , [[gel]]
M
3 (M)) (Induction Hypothesis)

= [[g (ge1, . . . , gel)]]
M
3 (M) (Definition 2.3.12)

• ge reduces to an attribute function call of the form “fi (T, v1, . . . , vs)”. The result
follows from Corollary 2.4.2.

Theorem 2.4.3. Let EB3 be a well-formed eb3 specification. Let TST denote the LTS
describing EB3 with respect to SemT and TST/M denote the LTS describing EB3 with respect
to SemT/M, then TST and TST/M are equivalent with respect to bisimulation.

Proof. We define the candidate bisimulation relation as follows:

R =
{〈

(E,T,M), (E,T)
〉
| E is a process expression, T is a trace, (2.48)

M is an eb3 memory and M is compatible to T
}
.

Note that the definition of relation R is not restricted to tuples (E,T,M) ∈ ST/M and (E,T) ∈
ST. We recall that s0

T/M = (E, [],M0) and s0
T = (E, []). As eb3 memory M0 is compatible

with trace [], it follows that
〈
(E, [],M0), (E, [])

〉
∈ R.

Let (E,T,M) ∈ ST/M and (E,T) ∈ ST such that 〈(E,T,M), (E,T)〉 ∈ R, where E is an eb3

process expression describing the remaining behaviour of system EB3, T is the trace related
to E and M is the eb3 memory related to E. Let also (E,T,M)

ρ−→T/M (E′,T.ρ,M′) ∈ δT/M
for action ρ ∈ {αj(c1, . . . , cp) | j ∈ 1..q} ∪ λ with c1, . . . , cp ∈ C, where E′ is an eb3 process
expression and M′ is the eb3 memory related to E′. We need to prove that there is transition
(E,T)

ρ−→T (E′,T.ρ) ∈ δT with 〈(E′,T.ρ,M′), (E′,T.ρ)〉 ∈ R and the converse.
The construction of ST/M and ST is carried out as described in Section 2.4.2. We proceed

with structural induction on process expression E:

• Let E = ρ ∈ {αj(c1, . . . , cp) | j ∈ 1..q} for constants c1, . . . , cp ∈ C. We consider
state (ρ,T,M) ∈ ST/M and state (ρ,T) ∈ ST. Note that M is compatible with T (see
Corollary 2.4.1 for details), from which follows that 〈(ρ,T,M), (ρ,T)〉 ∈ R.

1. (⇒) Let transition (ρ,T,M)
ρ−→T/M (

√
,T.ρ,M′) ∈ δT/M. By Rule (M1) (see Fig-

ure 2.6), it follows that “M′ = upd(ρ,M)”. By Rule (T1) (see Figure 2.3), there

should be transition (ρ,T)
ρ−→T (

√
,T.ρ) ∈ δT. Moreover, M is compatible with T,

from which follows that M′ is compatible with T.ρ (see Definition 2.4.3). Hence,
〈(√,T.ρ,M′), (√,T.ρ)〉 ∈ R.

2. (⇐) Conversely, let transition (ρ,T)
ρ−→T (

√
,T.ρ) ∈ δT. By Rule (M1) (see Fig-

ure 2.6) there should be transition (ρ,T,M)
ρ−→T/M (

√
,T.ρ, upd(ρ,M)) ∈ δT. More-

over, M is compatible with T, from which follows that upd(ρ,M) is compatible with
T.ρ (see Definition 2.4.3). Hence, 〈(√, T.ρ, upd(ρ,M)), (

√
,T.ρ)〉 ∈ R.

62 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

• Let E = λ. We consider state (λ,T,M) ∈ ST/M and state (λ,T) ∈ ST. Again,
M is compatible with T (see Corollary 2.4.1 for details), from which follows that
〈(λ,T,M), (λ,T)〉 ∈ R.

1. (⇒) Let transition (λ,T,M)
λ−→T/M (

√
,T,M) ∈ δT/M. By Rule (T′1) (see Fig-

ure 2.3), there should be transition (ρ,T)
λ−→T (

√
,T) ∈ δT. Moreover, M is com-

patible with T, from which follows that 〈(√,T,M), (
√
,T)〉 ∈ R.

2. (⇐) Conversely, let transition (λ,T)
ρ−→T (

√
,T.ρ) ∈ δT. By Rule (M′1) (see Fig-

ure 2.6), there should be transition (ρ,T,M)
λ−→T/M (

√
,T,M) ∈ δT/M. Moreover,

M is compatible with T, from which follows that 〈(√,T,M), (
√
,T)〉 ∈ R.

• Let E = E1.E2. We consider state (E1.E2,T,M) ∈ ST/M and state (E1.E2,T) ∈ ST,
from which follows that 〈(E1.E2,T,M), (E1.E2,T)〉 ∈ R.

1. (⇒) Let transition (E1.E2,T,M)
ρ−→T/M (E′1.E2,T.ρ,M

′) ∈ δT/M. Rule (M2) of

Figure 2.6 implies premise (E1,T,M)
ρ−→T/M (E′1,T.ρ,M

′)2. Recall at this point
that M is compatible with T, from which follows that 〈(E1, T,M), (E1,T)〉 ∈ R
and that M′ is compatible with T.ρ (see Definition 2.4.3 for details).

Applying the induction hypothesis, there should be transition (E1,T)
ρ−→T (E′1,T.ρ)

with 〈(E′1,T.ρ,M′), (E′1,T.ρ)〉 ∈ R. By Rule (T2) of Figure 2.3, it follows that there

should be transition (E1.E2, T)
ρ−→T (E′1.E2,T.ρ) ∈ δT and, therefore, it should be

〈(E′1.E2,T.ρ,M
′), (E′1.E2,T.ρ)〉 ∈ R, which completes the proof.

2. (⇐) � Conversely, let transition (E1.E2,T)
ρ−→T (E′1.E2,T.ρ) ∈ δT. Rule (T2) of

Figure 2.3 implies premise (E1,T)
ρ−→T (E′1,T.ρ). Recall at this point that M is

compatible with T, from which follows that 〈(E1,T,M), (E1,T)〉 ∈ R and that M′

is compatible with T.ρ (see Definition 2.4.3 for details).

Applying the induction hypothesis, there should be transition (E1,T,M)
ρ−→T/M

(E′1,T.ρ,M
′) with 〈(E′1,T.ρ,M′), (E′1,T.ρ)〉 ∈ R. By Rule (M2) of Figure 2.6, it

follows that there should be transition (E1.E2,T,M)
ρ−→T/M (E′1.E2,T.ρ,M

′) ∈ δT/M
and, therefore, it should be 〈(E′1.E2,T.ρ,M

′), (E′1.E2,T.ρ)〉 ∈ R, which completes
the proof.

Now, we consider state (
√
.E2,T,M) ∈ ST/M and state (

√
.E2,T) ∈ ST, from which

follows that 〈(√.E2,T,M), (
√
.E2, T)〉 ∈ R.

1. (⇒) Let transition (
√
.E2,T,M)

ρ−→T/M (E′2,T.ρ,M
′) ∈ δT/M. Rule (M3) of Fig-

ure 2.6 implies premise (E2,T,M)
ρ−→T/M (E′2,T.ρ,M

′). Recall at this point that M
is compatible with T, from which follows that 〈(E2,T,M), (E2,T)〉 ∈ R and that
M′ is compatible with T.ρ (see Definition 2.4.3 for details).

Applying the induction hypothesis, there should be transition (E2,T)
ρ−→T (E′2,T.ρ)

with 〈(E′2,T.ρ,M′), (E′1,T.ρ)〉 ∈ R. By Rule (T3) of Figure 2.3, it follows that

there should be transition (
√
.E2,T)

ρ−→T (E′2,T.ρ) ∈ δT and, therefore, it should
be 〈(√.E2,T.ρ,M

′), (E′2,T.ρ)〉 ∈ R, which completes the proof.

2note that (E1,T,M)
ρ−→T/M (E′1,T.ρ,M

′) 6∈ δT/M

2.4. BISIMULATION EQUIVALENCE OF SEM T, SEM T/M AND SEM M 63

2. (⇐) Conversely, let transition (
√
.E2,T)

ρ−→T (E′2,T.ρ) ∈ δT. Rule (T3) of Fig-

ure 2.3 implies premise (E2,T)
ρ−→T (E′2,T.ρ). Recall at this point that M is

compatible with T, from which follows that 〈(E2,T,M), (E2,T)〉 ∈ R and that M′

is compatible with T.ρ (see Definition 2.4.3 for details).

Applying the induction hypothesis, there should be transition (E2,T,M)
ρ−→T/M

(E′2,T.ρ,M
′) with 〈(E′2,T.ρ,M′), (E′2,T.ρ)〉 ∈ R. By Rule (M3) of Figure 2.6, it

follows that there should be transition (
√
.E2,T,M)

ρ−→T/M (E′2,T.ρ,M
′) ∈ δT/M

and, therefore, it should be 〈(E′2,T.ρ,M′), (E′2,T.ρ)〉 ∈ R, which completes the
proof.

• Let E = E1|E2. We consider state (E1|E2,T,M) ∈ ST/M and state (E1|E2,T) ∈ ST,
from which follows that 〈(E1|E2,T,M), (E1|E2,T)〉 ∈ R.

1. (⇒) Let transition (E1|E2,T,M)
ρ−→T/M (E′1,T.ρ,M

′) ∈ δT/M. Rule (M4) of Fig-

ure 2.6 implies premise (E1,T,M)
ρ−→T/M (E′1,T.ρ,M

′). Recall at this point that M
is compatible with T, from which follows that 〈(E1,T,M), (E1,T)〉 ∈ R and that
M′ is compatible with T.ρ (see Definition 2.4.3 for details).

Applying the induction hypothesis, there should be transition (E1,T)
ρ−→T (E′1,T.ρ)

with 〈(E′1,T.ρ,M′), (E′1, T.ρ)〉 ∈ R. By Rule (T4) of Figure 2.3, it follows that

there should be transition (E1|E2, T)
ρ−→T (E′1,T.ρ) ∈ δT and, therefore, it should

be 〈(E′1,T.ρ,M′), (E′1,T.ρ)〉 ∈ R, which completes the proof.

2. (⇐) Conversely, let transition (E1|E2,T)
ρ−→T (E′1,T.ρ) ∈ δT. Rule (T2) of Fig-

ure 2.3 implies premise (E1,T)
ρ−→T (E′1, T.ρ). Recall at this point that M is

compatible with T, from which follows that 〈(E1,T,M), (E1,T)〉 ∈ R and that M′

is compatible with T.ρ (see Definition 2.4.3 for details).

Applying the induction hypothesis, there should be transition (E1,T,M)
ρ−→T/M

(E′1,T.ρ,M
′) with 〈(E′1,T.ρ,M′), (E′1,T.ρ)〉 ∈ R. By Rule (M4) of Figure 2.6, it

follows that there should be transition (E1|E2,T,M)
ρ−→T/M (E′1,T.ρ,M

′) ∈ δT/M
and, therefore, it should be 〈(E′1,T.ρ,M′), (E′1,T.ρ)〉 ∈ R, which completes the
proof.

The symmetric case is omitted for brevity.

• Let E = E∗0 . We consider state (E∗0 ,T,M) ∈ ST/M and state (E∗0 ,T) ∈ ST, from which
follows that 〈(E∗0 ,T,M), (E∗0 ,T)〉 ∈ R.

1. (⇒) Let transition (E∗0 ,T,M)
λ−→T/M (

√
,T,M) ∈ δT/M. Recall at this point that

M is compatible with T, from which follows that 〈(√,T,M), (
√
,T)〉 ∈ R.

By way of rule (T5) of Figure 2.3, there should be transition (E∗0 ,T)
λ−→T (

√
,T)

with 〈(√,T,M), (
√
,T)〉 ∈ R, which completes the proof.

2. (⇐) Conversely, let transition (E∗0 ,T)
λ−→T (

√
, T.ρ) ∈ δT. Recall at this point that

M is compatible with T, from which follows that 〈(√,T,M), (
√
,T)〉 ∈ R.

By way of rule (M5) of Figure 2.6, there should be transition (E0,T,M)
λ−→T/M

(
√
,T,M) with 〈(√, T.ρ,M), (

√
,T)〉 ∈ R, which completes the proof.

64 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

1. (⇒) Let transition (E∗0 ,T,M)
ρ−→T/M (E′0.E

∗
0 ,T.ρ,M

′) ∈ δT/M. Rule (M6) of Fig-

ure 2.6 implies premise (E0,T,M)
ρ−→T/M (E′0,T.ρ,M

′). Recall at this point that M
is compatible with T, from which follows that 〈(E0,T,M), (E0,T)〉 ∈ R and that
M′ is compatible with T.ρ (see Definition 2.4.3 for details).

Applying the induction hypothesis, there should be transition (E0,T)
ρ−→T (E′0,T.ρ)

with 〈(E′0,T.ρ,M′), (E′0,T.ρ)〉 ∈ R. By Rule (T6) of Figure 2.3, it follows that

there should be transition (E∗0 ,T)
ρ−→T (E′0.E

∗
0 ,T.ρ) ∈ δT and, therefore, it should

be 〈(E′0.E∗0 ,T.ρ,M′), (E′0.E∗0 ,T.ρ)〉 ∈ R, which completes the proof.

2. (⇐) Conversely, let transition (E∗0 ,T)
ρ−→T (E′0.E

∗
0 ,T.ρ) ∈ δT. Rule (T6) of Fig-

ure 2.3 implies premise (E0,T)
ρ−→T (E′0,T.ρ). Recall at this point that M is

compatible with T, from which follows that 〈(E0,T,M), (E0,T)〉 ∈ R and that M′

is compatible with T.ρ (see Definition 2.4.3 for details).

Applying the induction hypothesis, there should be transition (E0,T,M)
ρ−→T/M

(E′0,T.ρ,M
′) with 〈(E′0,T.ρ,M′), (E′0,T.ρ)〉 ∈ R. By Rule (M6) of Figure 2.6, it

follows that there should be transition (E∗0 ,T,M)
ρ−→T/M (E′0.E

∗
0 ,T.ρ,M

′) ∈ δT/M
and, therefore, it should be 〈(E′0.E∗0 ,T.ρ,M′), (E′0.E∗0 ,T.ρ)〉 ∈ R, which completes
the proof.

• Let E = E1|[∆]|E2. We consider states (E1|[∆]|E2,T,M) ∈ ST/M and (E1|[∆]|E2,T) ∈
ST, from which follows that 〈(E1|[∆]|E2,T,M), (E1|[∆]|E2,T)〉 ∈ R.

1. (⇒) Let transition (E1|[∆]|E2,T,M)
ρ−→T/M (E′1|[∆]|E′2,T.ρ,M′) ∈ δT/M. Rule

(M7) of Figure 2.6 implies in(ρ,∆) and premises (E1,T,M)
ρ−→T/M (E′1,T.ρ,M

′),

(E2,T,M)
ρ−→T/M (E′2,T.ρ,M

′). Recall at this point that M is compatible with T,
from which follows that 〈(E1,T,M), (E1,T)〉 ∈ R, that 〈(E2,T,M), (E2,T)〉 ∈ R
and that M′ is compatible with T.ρ (see Definition 2.4.3 for details).

Applying the induction hypothesis twice, there should be transition (E1,T)
ρ−→T

(E′1,T.ρ) with 〈(E′1,T.ρ,M′), (E′1,T.ρ)〉 ∈ R and transition (E2,T)
ρ−→T (E′2,T.ρ)

with 〈(E′2,T.ρ,M′), (E′2,T.ρ)〉 ∈ R. By Rule (T7) of Figure 2.3 and in(ρ,∆), it

follows that there should be transition (E1|[∆]|E2,T)
ρ−→T (E′1|[∆]|E′2,T.ρ) ∈ δT

and, therefore, it should be 〈(E′1|[∆]|E′2,T.ρ,M′), (E′1|[∆]|E′2, T.ρ)〉 ∈ R, which
completes the proof.

2. (⇐) Conversely, let transition (E1|[∆]|E2,T)
ρ−→T (E′1|[∆]|E′2,T.ρ) ∈ δT. Rule

(T7) of Figure 2.3 implies in(ρ,∆) and premises (E1,T)
ρ−→T (E′1,T.ρ), (E2,T)

ρ−→T

(E′2,T.ρ). Recall at this point that M is compatible with T, from which follows that
〈(E1,T,M), (E1,T)〉 ∈ R, that 〈(E2,T,M), (E2,T)〉 ∈ R and that M′ is compatible
with T.ρ (see Definition 2.4.3 for details).

Applying the induction hypothesis, there should be transition (E1,T,M)
ρ−→T/M

(E′1,T.ρ,M
′) with 〈(E′1,T.ρ,M′), (E′1,T.ρ)〉 ∈ R and (E2,T,M)

ρ−→T/M (E′2,T.ρ,M
′)

with 〈(E′2,T.ρ,M′), (E′2,T.ρ)〉 ∈ R. By Rule (M7) of Figure 2.6 and in(ρ,∆), it

follows that there should be transition (E1|[∆]|E2,T,M)
ρ−→T/M (E′1,T.ρ,M

′) ∈
δT/M and, therefore, 〈(E′1|[∆]|E′2,T.ρ,M′), (E′1|[∆]|E′2,T.ρ)〉 ∈ R, which completes
the proof.

2.4. BISIMULATION EQUIVALENCE OF SEM T, SEM T/M AND SEM M 65

1. (⇒) Let transition (E1|[∆]|E2,T,M)
ρ−→T/M (E′1|[∆]|E2,T.ρ,M

′) ∈ δT/M. Rule

(M8) of Figure 2.6 implies ¬in(ρ,∆) and premise (E1,T,M)
ρ−→T/M (E′1,T.ρ,M

′).
M is compatible with T, from which follows that 〈(E1,T,M), (E1, T)〉 ∈ R and
that M′ is compatible with T.ρ (see Definition 2.4.3 for details).

Applying the induction hypothesis, there should be transition (E1,T)
ρ−→T (E′1,T.ρ)

with 〈(E′1,T.ρ,M′), (E′1,T.ρ)〉 ∈ R. By Rule (T8) of Figure 2.3 and ¬in(ρ,∆), it

follows that there should be transition (E1|[∆]|E2,T)
ρ−→T (E′1|[∆]|E2,T.ρ) ∈ δT

and, therefore, it should be 〈(E′1|[∆]|E2,T.ρ,M
′), (E′1|[∆]|E2,T.ρ)〉 ∈ R, which

completes the proof.

2. (⇐) Conversely, let transition (E1|[∆]|E2,T)
ρ−→T (E′1|[∆]|E2,T.ρ) ∈ δT. Rule (T8)

of Figure 2.3 implies in(ρ,∆) and premise (E1,T)
ρ−→T (E′1,T.ρ). M is compatible

with T, from which follows that 〈(E1,T,M), (E1,T)〉 ∈ R and that M′ is compatible
with T.ρ (see Definition 2.4.3 for details).

Applying the induction hypothesis, there should be transition (E1,T,M)
ρ−→T/M

(E′1,T.ρ,M
′) with 〈(E′1,T.ρ,M′), (E′1,T.ρ)〉 ∈ R. By Rule (M8) of Figure 2.6

and ¬in(ρ,∆), it follows that there should be transition (E1|[∆]|E2,T,M)
ρ−→T/M

(E′1,T.ρ,M
′) ∈ δT/M and, therefore, 〈(E′1|[∆]|E2,T.ρ,M

′), (E′1|[∆]|E2,T.ρ)〉 ∈ R,
which completes the proof.

The symmetric case is omitted for brevity.

Now, we consider state (
√|[∆]|√,T,M) ∈ ST/M and state (

√|[∆]|√,T) ∈ ST, from
which follows that 〈(√|[∆]|√,T,M), (

√|[∆]|√,T)〉 ∈ R.

1. (⇒) Let transition (
√|[∆]|√,T,M)

λ−→T/M (
√
,T,M) ∈ δT/M. Recall at this point

that M is compatible with T, from which follows that 〈(√,T,M), (
√
,T)〉 ∈ R.

By way of Rule (T9) of Figure 2.3, there should be transition (
√|[∆]|√,T)

λ−→T

(
√
,T) with 〈(√,T,M), (

√
,T)〉 ∈ R, which completes the proof.

2. (⇐) Conversely, let transition (
√|[∆]|√,T)

λ−→T (
√
,T.ρ) ∈ δT. Recall at this point

that M is compatible with T, from which follows that 〈(√,T,M), (
√
, T)〉 ∈ R.

By way of rule (S9) of Figure 2.6, there should be transition (
√|[∆]|√,T,M)

λ−→T/M

(
√
,T,M) with 〈(√, T.ρ,M), (

√
,T)〉 ∈ R, which completes the proof.

• Let “E = ge ⇒ E0”. We consider state (ge ⇒ E0,T,M) ∈ ST/M and state (ge ⇒
E0,T) ∈ ST, from which follows that 〈(ge⇒ E0,T,M), (ge⇒ E0,T)〉 ∈ R.

1. (⇒) Let transition (ge ⇒ E0,T,M)
ρ−→T/M (E′0,T.ρ,M

′) ∈ δT/M. Rule (M10) of

Figure 2.6 implies “[[ge]]M3 (M) = true” and premise (E0,T,M)
ρ−→T/M (E′0,T.ρ,M

′).
M is compatible with T, from which follows that 〈(E0,T,M), (E0,T)〉 ∈ R and that
M′ is compatible with T.ρ (see Definition 2.4.3 for details).

Applying the induction hypothesis, there should be transition (E0,T)
ρ−→T (E′0,T.ρ)

with 〈(E′0,T.ρ,M′), (E′0,T.ρ)〉 ∈ R. From Theorem 2.4.2 and “[[ge]]M3 (M) = true”,
we derive that “[[ge]]T3 (T) = true”. Then, by Rule (T10) of Figure 2.3 and

“[[ge]]T3 (M) = true”, it follows that there should be transition (ge ⇒ E0,T)
ρ−→T

66 CHAPTER 2. EB3 SYNTAX AND SEMANTICS

(E′0,T.ρ) ∈ δT and, therefore, it should be 〈(E′0,T.ρ,M′), (E′0,T.ρ)〉 ∈ R, which
completes the proof.

2. (⇐) Let transition (ge ⇒ E0,T)
ρ−→T (E′0,T.ρ) ∈ δT. Rule (T10) of Figure 2.3

implies “[[ge]]T3 (T) = true” and premise (E0,T)
ρ−→T (E′0,T.ρ). M is compatible with

T, from which follows that 〈(E0,T,M), (E0,T)〉 ∈ R and that M′ is compatible with
T.ρ (see Definition 2.4.3 for details).

Applying the induction hypothesis, there should be transition (E0,T,M)
ρ−→T/M

(E′0,T.ρ,M) with 〈(E′0,T.ρ,M′), (E′0,T.ρ)〉 ∈ R. From Theorem 2.4.2 and
“[[ge]]T3 (T) = true”, we derive that “[[ge]]M3 (M) = true”. Then, by Rule (M10)
of Figure 2.6 and “[[ge]]M3 (M) = true”, it follows that there should be transi-

tion (ge ⇒ E0,T,M)
ρ−→T/M (E′0,T.ρ,M) ∈ δT/M and, therefore, it should be

〈(E′0,T.ρ,M′), (E′0,T.ρ)〉 ∈ R, which completes the proof.

• Let E = P (u). We consider state (P (u),T,M) ∈ ST/M and state (P (u),T) ∈ ST, from
which follows that 〈(P (u),T,M), (P (u),T)〉 ∈ R.

1. (⇒) Let transition (P (u),T,M)
ρ−→T/M (E′,T.ρ,M′) ∈ δT/M. Rule (M11) of Fig-

ure 2.6 implies the existence of process name definition “P (x) = E” (see Figure 2.1

for details) and premise (E[x := u],T,M)
ρ−→T/M (E′,T.ρ,M′). M is compatible

with T, from which follows that 〈(E[x := u],T,M), (E[x := u],T)〉 ∈ R and that
M′ is compatible with T.ρ (see Definition 2.4.3 for details).

Applying the induction hypothesis, there is transition (E[x := u],T)
ρ−→T (E′,T.ρ)

with 〈(E′,T.ρ,M′), (E′,T.ρ)〉 ∈ R. Then, by Rule (T11) of Figure 2.3 and pro-

cess definition P (x) = E, it follows that there should be transition (P (u),T)
ρ−→T

(E′,T.ρ) ∈ δT and, therefore, it should be 〈(E′,T.ρ,M′), (E′,T.ρ)〉 ∈ R, which
completes the proof.

2. (⇒) Let transition (P (u),T)
ρ−→T (E′,T.ρ) ∈ δT. Rule (T11) of Figure 2.3

implies the existence of process name definition “P (x) = E” and premise

(E[x := u],T)
ρ−→T (E′,T.ρ). M is compatible with T, from which follows that

〈(E[x := u],T,M), (E[x := u], T)〉 ∈ R and that M′ is compatible with T.ρ (see
Definition 2.4.3 for details).

Applying the induction hypothesis, there is transition (E[x := u],T,M)
ρ−→T/M

(E′,T.ρ,M) with 〈(E′,T.ρ,M′), (E′,T.ρ)〉 ∈ R. Then, by Rule (M11) of Fig-
ure 2.6 and process definition “P (x) = E”, it follows that there should be tran-

sition (P (u),T,M)
ρ−→T/M (E′,T.ρ,M) ∈ δT/M and, therefore, it also should be

〈(E′,T.ρ,M′), (E′,T.ρ)〉 ∈ R, which completes the proof.

Theorem 2.4.4. TST/M and TSM are equivalent with respect to bisimulation.

Proof. The proof is straightforward, because the effect of the trace on the attribute functions
and the program execution is coded in theeb3 memory M. Hence, intuitively the trace is
redundant.

Corollary 2.4.3. TST and TSM are equivalent with respect to bisimulation.

Proof. Combining the two Theorems and the transitivity of bisimulation.

2.5. CONCLUSION 67

2.5 Conclusion

We presented an alternative, traceless semantics SemM that we proved equivalent to the
standard semantics SemT. In Chapter 4, we show how SemM facilitates the translation of
eb3 specifications to LNT for verification of temporal properties with CADP, by means of a
translation in which the memory used to model attribute functions is implemented using an
extra process that computes at each step the effect of each action on the memory.

Chapter 3

Experimentation with Petri Nets

3.1 Introduction

We recall that the goal of this thesis is to develop efficient techniques for the model-checking of
temporal properties over eb3 specifications. To this end, eb3 specifications could be translated
to LTSs that mimic the system behaviour (see Section 2.4.2 for details on the construction
of bisimilar LTSs for eb3 process expressions). Then, an appropriate model-checker could be
used to verify the properties on the LTS level. Following another approach, the abstract syntax
tree of eb3 specification could be generated combining the eb3 specification and SemM’s
rewriting rules. Then, the model-checking would be done on the systax tree.

In practice, most of the times process algebra specifications are cast to intermediate repre-
sentations such as Petri Nets (P/Ns) [Pet75], since direct translations of process expressions
to LTSs or abstract syntax trees give usually complex and inefficient in terms of memory
representations. Thanks to their operational semantics, P/Ns can be used to model systems
composed of multiple parallel processes leading to efficient process representations eventually
enhancing the verification process. P/Ns come in very handy if one needs to simulate process
algebra features such as the non-deterministic closure of eb3 expressions, i.e. E∗, and the
guarded expressions containing attribute function calls. For these reasons, we prone for the
translation of eb3 process expressions to equivalent P/Ns.

However, the absence of efficient model-checking tools for the verification of P/Ns makes
necessary the translation of derived P/N specifications to equivalent model-checking specifi-
cations. We turn our attention to the Nu-SMV model checker [CCG+02] and consider the
translation of intermediate P/N specifications to equivalent Nu-SMV specifications.

In this Chapter, we discuss the difficulties we encountered when translating eb3 specifi-
cations to the corresponding P/N definitions and explain why the project of casting eb3 to
Nu-SMV was abandoned.

3.2 Petri Nets Basics

We adapt the theory on P/Ns to the eb3 context.

Definition 3.2.1. N=(S, T, I, L) is an eb3 Petri Net (denoted as eb3 P/N) if and only if

1. S is a set of places denoting the state

2. T ⊆2S+×GE×Act×2S+ is a set of transitions

68

3.2. PETRI NETS BASICS 69

3. I∈S is the set of initial places,

where 2S denotes the power set over S and 2S+ denotes the power set over S from which ∅ is
excluded. Note that GE is the set of eb3 guarded expressions and Act is the set of actions
occurring in the system.

Let place s∈S. The pre-set •s and post-set s• of s are defined as follows:

•s
.
={t∈T | tFs} and s•

.
={t∈T | sF t}.

Let transition t∈T . The pre-set •t and the post-set t• of t are defined as follows:

•t
.
={s∈S | sF t} and t•

.
={s∈S | tFs}.

For t∈T , let “•t
.
= pr1(t)” be the pre-set of t, let “ge(t)

.
= pr2(t)” be an eb3 guard (trivially

true in the absence of guard) and let “l(t)
.
=pr3(t)” be the label of the current action and let

“t•
.
=pr4(t)” be the post-set of t. We define the flow relation F for given P/N N as follows:

(x, y)∈F .
=x∈S, y∈T and •y(x)=1 orx∈T , y∈S and x•(y)=1

In general, P/Ns are represented graphically with circles for P , boxes for T and arcs for
F . Initial places I are indicated by placing a token on the corresponding circle to s∈ I. We
restrict our attention to one-safe P/Ns, i.e. places will never carry more than one token.

We consider markings M ∈ 2S that represent the places in the P/N that contain tokens.
Let N be an eb3 P/N. We denote by ◦N

.
={s∈S | •s=∅} and by N◦

.
={s∈S | s•=∅} the set

of places without ingoing arcs and the set of places without outgoing arcs respectively. S1eS2

denotes the difference between sets S1 and S2.

Definition 3.2.2. Let N =(S, T, I), G :T→{0, 1} and M ,M ′∈NS+. G is called a step from
M to M ′ (M [G〉M ′) iff

1. ∀s∈S, M(s)=
∑

t∈T
•t(s).G(t) (M enables G)

2. ∀s∈S, M ′(s)=M(s)−∑t∈T
•t(s).G(t)+

∑
t∈T t

•(s).G(t)

We stipulate that G is a singleton set, i.e. “G={{t}}” for some t∈T . The P/N semantics
above, which considers only occurences of single transitions, is called interleaving semantics.
This remark allows us to write:

for all ρ∈Act, M [ρ〉M ′ if and only if
∃t∈T , G :T→{0, 1} such that G(t)=1 and [[ge(t)]]M3 (M) = true,

where [[.]]M3 refers to the standard interpretation of eb3 guards with respect to SemM and
M∈M is the current eb3 memory that has been considered implicit in the previous definitions
for brevity. In practice, the eb3 P/N must keep track of the current eb3 memory M for the
evaluation of ge(t). In particular, the Nu-SMV specification that simulates N must cater for
stocking M somewhere, as well as for updating M every time transition t (see Definition 2.3.10
for details). Hence, the interleaving semantics of N is given by the LTS:

A(N)
.
=(NS+,→, I), where for M,M ′ ∈ NS+, it is M

ρ−→M ′
.
= M [ρ〉M ′

70 CHAPTER 3. EXPERIMENTATION WITH PETRI NETS

3.3 Process Algebraic Operators and Petri Nets

The casting of process algebra operators into P/Ns appers to be a classic process algebraic
problem. [GM84] provides P/N constructions for CCS with guarded choice, a subset of CCS
expressions such that their corresponding P/N constructions preserve the operational se-
mantics of CCS. The same issue is treated in [Gla87] within the Algebra of Communicating
Processes (ACP) [BK84] setting.

We adapt these constructions to the EB3 context. In the following, let N1, N2 be eb3

P/Ns. Let also op be a binary process algebraic operator between eb3 P/Ns. Then, “N1opN2”
will denote the corresponding P/N operation.√

is represented by a single place s.

Definition 3.3.1. N√
.
=({s}, true, ∅, {s}).

ρ∈Act is represented as a box ρ connected to circles s1 and s2.

Definition 3.3.2. Let ρ∈Act. Nρ
.
=({s1, s2}, {({s1}, true, ρ, {s2})}, {s1}).

The sequence of eb3 P/Ns N1, N2 is obtained by taking the disjoint union of transitions in
N1 that do not belong to the pre-set of N◦1 , i.e. •N◦1 and transitions in N2 that do not belong
to I•2 , while combining places N◦1 and I2 in the cartesian product N◦1×I2. More concretely:

Definition 3.3.3. Let Ni=(Si, Ti, Ii), i = 1, 2 and S1∩S2 = ∅.
N1.N2

.
=(S1eN◦1 ∪ N◦1×I2 ∪ S2eI2, T

′
1∪T ′2∪T, I1∪I2), where

T = {•t, ge(t), l(t), {t}×I2) | t∈•N◦1 } ∪ T2eI•2 ∪
{N◦1×{t}, ge(t), l(t),•t) | t∈•N◦1 } ∪ T1e•N◦1 .

The choice N1|N2 behaves either as N1 or N2. We merge I1 and I2 by use of the cartesian
product I1×I2. We then disable all initial transitions in N2, whenever any transition in N1

takes place and vice versa.

Definition 3.3.4. Let Ni=(Si, Ti, Ii), i = 1, 2 and S1∩S2 = ∅.
N1|N2

.
=(S1eI1 ∪ S2eI2 ∪ I1×I2, T

′
1∪T ′2, I1×I2), where

T ′1 ={((•t∩I1 × I2) ∪ •teI1, ge(t), l(t), t
•) | t∈T1}

T ′2 ={((I1 × •t∩I2) ∪ •teI2, ge(t), l(t), t
•) | t∈T2}.

The parallel composition of the eb3 P/Ns N1, N2 with synchronisation on ∆ is modelled as the
disjoint union of transitions, whose labels do not belong to ∆ enlarged by transitions t with
l(t)∈∆ representing all possible synchronisations on t1∈T1, t2∈T2 with l(t)= l(t1)= l(t2)∈∆.
ge(t) will be equal, as expected, to the conjunction of ge(t1) and ge(t2), i.e. ge(t1) ∧ ge(t2).

Definition 3.3.5. Let Ni=(Si, Ti, Ii), i = 1, 2 and S1∩S2 = ∅.
N1|[∆]|N2

.
=(S1∪S2, T

′
1∪T ′2∪T, I1∪I2), where

T ′i =Tie{t | t∈Ti, l(t)∈∆}, i=1, 2
T ={(•t1∪•t2, ge(t1)∧ge(t2), l(t1), t•1∪t•2) | t1∈T1, t2∈T2, l(t1)= l(t2)∈∆}.
The Kleene Closure of the P/N N is obtained from N by removing all places N◦ and replacing
each ingoing arc to N◦ by arcs to the initial places of the net. By virtue of the expansion law
“E∗=µx(E.x|λ)” (µ is the standard fix-point operator), a new box λ, with pre-set the initial
places I and post-set the singleton set {s} where “s•=∅”, must be added to transitions T .

3.4. NU-SMV SPECIFIC DIFFICULTIES 71

Definition 3.3.6. Let N=(S, T, I).
N∗

.
=(SeN◦⊎{s}, T e•N◦ ∪ T ′ ∪ {(I, true, λ, {s})}, I), where

T ′={(•t, ge(t), l(t), I) | t∈•N◦}.

The guarded expression P/N ge⇒N is obtained from N by replacing for each t∈ I•, pr2(t)
with ge∧ge(t).

Definition 3.3.7. Let N=(S, T, I).
ge⇒N

.
=(S, T eI• ∪ T ′, I), where T ′={(•t, ge∧ge(t), l(t), I) | t∈I•}.

Let “P (x) = E” be an eb3 process definition. The eb3 P/N N corresponding to E, the
construction of the eb3 P/N N’ corresponding to E[x := t] is obtained by relabelling transition
labels according to the function f :Act→ Act, where “f(ρ)

.
=ρ[xi ← ti | xi∈x, ti∈ t]”.

Definition 3.3.8. Let N=(S, T, I).
N ′=(S, T ′, I), where T ′={(•t, ge(t), f(l(t)), t•) | t∈T}.

Examples of the eb3 P/N constructions above can be found in Figure 3.1 and Figure 3.2.
For cases i) to iv), we consider that “ge(t) = true” for all transitions in the P/Ns involved.
Whenever ge(t) is not equal to true, it is indicated explicitly.

However, these constructions do not always produce correct P/Ns. Some cases that lead
to erroneous eb3 P/N constructions are depicted in Figure 3.3. For instance in Figure 3.3.vi),
the step M [a〉M ′ implies that eb3 guard ge evaluates to true. Then executing action b involves
re-evaluating ge, since the P/N construction algorithm propagates ge to all transitions t∈I•,
i.e. transition t1 of “a ‖ b” with “l(t1) = a” and transition t2 with “l(t2) = b”. This is the
so-called eb3 guard-action atomicity problem, which is elaborated and solved satisfactorily
in Chapter 4. In Figure 3.3.vii), the eb3 P/N corresponding to “(a ‖ b)∗|c” takes the step
M [b〉M ′ that fires action b and enables action c. The problem lies in the initial parallelism of
the recursive component (a‖b)∗ with c, which creates ingoing arcs to initially marked places,
i.e. s1 and s2. This problem is detected in [Win84].

Unfolding the eb3 P/N, as is demonstrated in Figure 3.4.viii), is a possible solution to
the problem of Figure 3.3.vii). The authors of [Gla87] use the term cyclic roots to designate
initial places with ingoing arcs and propose an efficient root unwinding operation that relates
to every P/N an equivalent P/N with acyclic roots.

Another problem results from Figure 3.3.vi) and Figure 3.3.vii). In the later case, M [b〉M ′
gives “M ′(s) = 1” and “M ′(s′) = 2”, which violates the one-safe assumption of the previous
section. A solution would be to restrict the domain of eb3 expressions to a subset that gives
eb3 P/Ns with acyclic roots, i.e. I = ◦N and treats the problem of Figure 3.3.vi) correctly,
but this would restrict eb3’s expressiveness considerably.

3.4 Nu-SMV Specific Difficulties

Apart from the difficulties discussed above, model-checking eb3 specifications by means of
the Nu-SMV model checker is hampered by a series of obstacles:

• First of all, Nu-SMV verifies models against branching time properties in (state-based)
CTL [CEF+86]. Hence, The need to verify an action-based process algebra by nature
such as eb3 against action-based properties, entails some syntactic acrobatics, because

72 CHAPTER 3. EXPERIMENTATION WITH PETRI NETS

classical action-based properties (for example, the requirements of the library manage-
ment system) need to be translated to their equivalent state-based versions. However,
the problem can be addressed and solved as in [DV90].

• Furthermore, Nu-SMV’s close resemblance to low-level programming languages makes
the automatic translation a strenuous and time-consuming task. The lack of recursive
type definitions within the Nu-SMV specification language forces us to consider binary
encodings for complex data structures in eb3 such as lists and sets.

• Finally, the translation algorithm gives us complex Nu-SMV specifications for simple
eb3 specifications and poor verification performance.

3.5 Conclusion

We demonstrated that, the casting of eb3 specifications into Nu-SMV involves a considerable
amount of P/N unfoldings even for the most common process algebra operators like ∗. This
observation is deemed to have a negative effect on the model-checking problem. We also
argumented that the nature of the Nu-SMV model checker does not facilitate the translation
of eb3 specifications to the Nu-SMV specification language. For all the above reasons, the
project of model-checking eb3 specifications with the use of Nu-SMV was abandoned.

3.5. CONCLUSION 73

i) a‖b . c‖d

ii) (a|b) | c

iii) (a.b)∗

Figure 3.1: Examples of P/Ns (A)

74 CHAPTER 3. EXPERIMENTATION WITH PETRI NETS

iv) a.b|[{b}]|b.c

v) ge⇒(b|b)

Figure 3.2: Examples of P/Ns (B)

3.5. CONCLUSION 75

vi) ge⇒(a ‖ b)

vii) (a‖b)∗|c

Figure 3.3: Erroneous P/N Constructions

viii) a∗

Figure 3.4: Unfoldings

Chapter 4

Translation of EB3 to LOTOS-NT
(LNT)

Based on the efficient memory SemM given in [VD13], we propose a rigorous translation
algorithm from eb3 to LNT [CCG+11]. As far as we know, this is the first attempt to
provide a general translation from eb3 to a classical value-passing process algebra. It is
worth noticing that CSP and LNT were already considered in [FFC+10] for describing ISs,
and identified as candidate target languages for translating eb3. Another formal technique
called CSP‖B [ST02] was used to describe ad hoc eb3 specifications in [ETL+04]. Since our
primary objective was to provide temporal property verification features for eb3, we focused
our attention on LNT, which is one of the input languages accepted by the CADP verification
toolbox [GLM+11], and hence is equipped with on-the-fly model checking for action-based,
branching-time logics involving data.

Another important ingredient of the translation was the multiway value-passing ren-
dezvous of LNT, which enabled to obtain a one-to-one correspondence between the tran-
sitions of the two LTSs underlying the eb3 and LNT descriptions, and hence to preserve
strong bisimulation. The presence of array types and of usual programming language con-
structs (e.g., loops and conditionals) in LNT was also helpful for specifying the memory, the
Kleene star-closure operators, and the eb3 guarded expressions containing attribute function
calls. At last, the constructed data types and pattern-matching mechanisms of LNT enabled
a natural description of eb3 data types and attribute functions.

We implemented our translation in the eb32lnt tool, thus making possible the analysis of
eb3 specifications using all the state-of-the-art features of the CADP toolbox, in particular the
verification of data-based temporal properties expressed in MCL [MT08] using the on-the-fly
model checker EVALUATOR 4.0.

4.1 CADP Tool

CADP (Construction and Analysis of Distributed Processes) is a toolbox used to verify asyn-
chronous concurrent systems. Initially, CADP featured a compiler and explicit state space
generator for the LOTOS language called Caesar and an bisimulation equivalence checker
called Aldebaran.

Nowadays, CADP allows users to specify complex asynchronous systems, offers interactive
simulation, rapid prototyping, verification (via model checking, equivalence checking), testing,

76

4.2. THE LANGUAGE LNT 77

and performance evaluation. Verification is carried out by way of reachability analysis, on-
the-fly verification, compositional verification, distributed verification and static analysis.
Last but not least, CADP provides scripting languages for describing elaborated verification
scenarios.

4.2 The Language LNT

LNT is an input language accepted by CADP. LNT aims at providing features of imperative
and functional programming languages and value-passing process algebras. It has a user
friendly syntax and formal operational semantics defined in terms of labeled transition systems
(LTSs). LNT is supported by the LNT.OPEN tool of CADP, which allows the on-the-fly
exploration of the LTS corresponding to a LNT specification.

We present the fragment of LNT that serves as the target of our translation. LNT terms
denoted by B are built from actions, choice (select), conditional (if), sequential composition
(;), breakable loop (loop and break) and parallel composition (par). Communication is
carried out by rendezvous on gates, written G, G1, . . . , Gn, and may be guarded using
Boolean conditions on the received values (where clause). LNT allows multiway rendezvous
with bidirectional (send/receive) value exchange on the same gate occurrence, each offer O
being either a send value offer (!) or a receive value offer (?), independently of the other
offers. Expressions E are built from variables, type constructors, function applications and
constants. Labels L identify loops, which can be escaped using “break L” from inside the loop
body. Processes are parameterized by gates and data variables. LNT syntax and semantics
are formally defined in SOS style in [CCG+11].

4.2.1 Syntax and Dynamic Semantics of LNT

We present the syntax and the dynamic semantics (see [CCG+11]) of LNT programs using
the formal Structural Operational Semantics (SOS) rules of LNT.

• Let V be a set of variable identifiers, let C be a set of type constructor identifiers and let
F be a set of function identifiers. The syntax of LNT expressions is defined as follows:

v ::= x
∣∣ C(v1, . . . , vl)

∣∣ F (v1, . . . , vl),

where x ∈ V, C ∈ V is a user-defined or predefined constructor and F ∈ V is a
user-defined or predefined function. The difference between constructor and function
identifiers lies in that only the latter are evaluated. A typical constructor identifier
is cons that takes an typed element and a list of typed elemets to create a list. As
in the case of eb3, we define the memory (LNT memory) as a partial function from
variables to values. Let MLNT be the domain of LNT memories. The denotation of
LNT expressions v under LNT memory M is defined as follows:

[[x]]LNT(M) = M(x)

[[F (v1, . . . , vl)]]LNT(M) = F
(
[[v1]]LNT (M), . . . , [[vl]]LNT (M)

)
[[C(v1, . . . , vl)]]LNT(M) = C

(
[[v1]]LNT (M), . . . , [[vl]]LNT (M)

)
,

where F denotes the denotation of function identifier F . In particular, F is interpreted
as a mathematical function applied to [[v1]]LNT (M), . . . and [[v1]]LNT (M).

78 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

The dynamic semantics of an LNT expression v is defined alternatively as relation →e:

{v} M→e [[v]]LNT(M), (4.1)

whose meaning is that v evaluates under LNT memory M to [[v]]LNT(M). Remark that
this notation is used widely in the following definitions.

The grammar of LNT statements is defined as follows:

I ::= null
∣∣ I1; I2

∣∣ break L
∣∣ loop L in I0 end loop

∣∣ x := v,

where x ∈ V or x is an access to some user-defined array. The statements are used in
the LNT behaviours defined later on. The dynamic semantics of an LNT statement I
is defined as a relation of the form:

{I} M α−→s M
′, (4.2)

where α is a label, and M, M′ are LNT memories related to statement I. The meaning
is that statement I is executed under LNT memory M and LNT memory M is updated
to memory M′ after the execution. Label α can take one of the following forms:

– exit, which denotes normal execution of statement I. System execution carries on
with the following instruction.

– brk(L), which denotes forced termination of statement I via a “break L” state-
ment appearing in statement I. System execution carries on with the instruction
succeeding the loop that is marked with label L. The set of labels used to mark
loops is denoted by L and the set {brk(L) | L ∈ L} is denoted by BL.

– ret(v), where v is an LNT expression, which denotes termination on return state-
ments. The execution must carry on with the next instruction in the caller. The
set {ret(v) | v is an LNT expression} ∪ {ret} is denoted by RV .

Hence, upon substitution of statement I in relation (4.2), the dynamic semantics of
LNT statements unfolds to the following rules:

– The null statement executes normally without changing the initial memory.

{null} M exit−−→s M

– Statement “I1; I2” starts by executing statement I1. As soon as I1 is executed, the
system carries on with the execution of statement I2.

{I1} M exit−−→s M
′ {I2} M′ α−→s M

′′ α ∈ {exit} ∪ BL ∪RV
{I1; I2} M α−→s M′′

If, by any chance, statement I1 is terminated abruptly, i.e. via instruction break,
then statement “I1; I2” terminates abruptly too.

{I1} M
brk(L)−−−−→s M

′

{I1; I2} M
brk(L)−−−−→s M′

4.2. THE LANGUAGE LNT 79

– The assignment “x := v” terminates normally after updating the memory by as-
signing the denotation of value expression v to the left-hand variable.

{v} M→e v

{x := v} M exit−−→s M⊕ [x← v]
,

where ⊕ is the standard update operator defined in Chapter 2.

– Statement “break L” terminates and passes label L to the context. The memory
does not change.

{break L} M brk(L)−−−−→s M

– The breakable loop “loop L in I0 end loop” starts by executing statement I0. If
I0 terminates normally, then the breakable loop is executed once again.

{I0} M exit−−→s M
′ {loop L in I0 end loop} M′ α−→s M

′′ α ∈ {exit} ∪ BL ∪RV
{loop L in I0 end loop} M α−→s M′′

If I0 terminates abruptly via statement “break”, then the breakable loop termi-
nates normally.

{I0} M
brk(L)−−−−→s M

′

{loop L in I0 end loop} M exit−−→s M′

• The syntax of LNT patterns is defined as follows:

P ::= x
∣∣ any

∣∣ C(P1, . . . , Pl)
∣∣ F (v1, . . . , vl)

∣∣ P0 where v,

where x ∈ V. The dynamic semantics of patterns is defined either as relation:

{P] v} M→p M
′

denoting that pattern P matches value v under memory M updating M to M′ or relation:

{P] v} M→p fail

denoting that pattern P fails to match value v under memory M.

By way of structural induction on pattern P , we obtain the following reduction rules:

– The LNT wildcard any matches any value v under LNT memory M without af-
fecting it:

{any] v} M→p M

– Variable x matches any value expression v under LNT memory M and M is updated
to M⊕ [x← v]:

{x] v} M→p M⊕ [x← v]
.

80 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

– Pattern C(P1, . . . , Pl) matches value C(v1, . . . , vl) under LNT memory M1 and M1

is updated to Ml+1 if pattern Pk matches value vk under LNT memory Mk and Mk

is updated to Mk+1 for all k ∈ {1, . . . , l}.

∀k ∈ {1, . . . , l} : {Pk] vk} Mk →p Mk+1

{C(P1, . . . , Pl)] C(v1, . . . , vl)} M1 →p Ml+1

Note that patterns P1, . . . , Pl are evaluated from left to right.

Pattern C(P1, . . . , Pl) fails to match value C(v1, . . . , vl) under LNT memory M1 if
for some j ∈ {1, . . . , l − 1} pattern Pk matches value vk under LNT memory Mk

and Mk is updated to Mk+1 for all k ∈ {1, . . . , j} and pattern Pj+1 fails to match
value vj+1 under LNT memory Mj+1.

j < l ∀k ∈ {1, . . . , j} : {Pk] vk} Mk →p Mk+1 {Pj+1] vj+1} Mj+1 →p false

{C(P1, . . . , Pl)] C(v1, . . . , vl)} M1 →p false

Moreover, C(P1, . . . , Pl) for C ∈ C fails to match C ′(v1, . . . , vm) for C ∈ C and any
values v1, . . ., v1 such that C 6= C ′ or the arity of C is not equal to the arity of C ′,
i.e. l 6= m:

C 6= C ′ ∨ l 6= m

{C(P1, . . . , Pl)] C(v1, . . . , vm)} M→p fail

– Pattern F (P1, . . . , Pl) matches value F(v1, . . . , vl) under LNT memory M1 and M1

is updated to Ml+1 if pattern Pk matches value vk under LNT memory Mk and
Mk is updated to Mk+1 for all k ∈ {1, . . . , l}. Notation F stands for the standard
interpretation of F as a mathematical function.

∀k ∈ {1, . . . , l} : {Pk] vk} Mk →p Mk+1

{F (P1, . . . , Fl)] F(v1, . . . , vl)} M1 →p Ml+1

– Pattern “P0 where V ” matches value v under LNT memory M and M is updated
to M′ if pattern P0 matches v under M, M is updated to M′ and V evaluates to
true under M′:

{P0] v} M→p M
′ {V } M′ →e true

{P0 where V] v} M→p M′

{P0] v} M→p M
′ {V } M′ →e false

{P0 where V] v} M→p false

{P0] v} M→p false

{P0 where V] v} M→p false

• LNT caters for the bidirectional exchange of values between LNT process expressions
via the mechanism of offers. The abstract syntax of offers is the following:

O ::= !v
∣∣ ?P

The dynamic semantics of an offer O is defined as a relation of the form:

{O} M→o M
′,

where M is the initial LNT memory related to offer O, and M′ is the updated LNT
memory.

4.2. THE LANGUAGE LNT 81

– A send offer “!v” matches a value v under LNT memory M if condition v evaluates
to v under M:

{v} M→e v

{!v] v} M→o M

– A receive offer “?P” matches a value v under LNT memory M if and only if pattern
P matches v under M:

{P] v} M→p M
′

{?P] v} M→o M′

• The abstract syntax of LNT behaviours is defined as follows:

B ::= stop
∣∣ null

∣∣ G (O1, . . . , On) where v
∣∣ B1;B2∣∣ if v then B1 else B2 end if

∣∣ select B1 [] . . . [] Bn end select∣∣ loop L in B end loop
∣∣ break L

∣∣ var x :T in B end var
∣∣ I∣∣ par G1, . . . , Gn in B1 || . . . ||Bn end par

∣∣ P[G1, . . . , Gn] (E1, . . . , En)

The dynamic semantics of an LNT behaviour B is defined as a relation of the form:

{B} M α−→b B
′ {M′} (4.3)

where α is a label that can take one of the following forms:

– exit, whose meaning is similar to the meaning of label exit for LNT statements. In
relation (4.3), label exit denotes normal execution of behaviour B, and behaviour
B′ is equal to stop denoting the deadlock state.

– brk(L), whose meaning is similar to the meaning of label break for LNT state-
ments, denotes forced termination of statement I via a “break L” statement ap-
pearing in statement I. Transitions labelled with brk(L) occur within the range
of breakable loops. As in the case of LNT statements, the set of labels used to
mark loops is denoted by L and the set {brk(L) | L ∈ L} is denoted by BL.

– i or G(c1, . . . , cn) that is called communication label , where G is a gate and
c1, . . . , cn ∈ C are constants. We denote by Cv the set of communication labels.
In the following, gate(α) returns the gate of label α:

gate (i) = i and gate (G(c1, . . . , cn)) = G.

M is the LNT memory related to behaviour B, and M′ is the LNT memory related to
behaviour B′. The meaning is that behaviour B is reduced to behaviour B′ under LNT
memory M and memory M is updated to memory M′ after label α has been executed.

By way of structural induction on behaviour B, we obtain the following reduction rules:

– No reduction rule is related to behaviour stop, which denotes inaction.

– Behaviour null that is equivalent to λ action terminates normally and the memory
remains unchanged:

{null} M exit−−→b {stop} M

82 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

– As in the case of statement “I1; I2”, behaviour “B1;B2” starts by executing be-
haviour B1. As soon as B1 is executed, the system carries on with the execution
of behaviour B2.

{B1} M exit−−→b {stop} M′ {B2} M′ α−→b {B′2} M′′ α ∈ {exit} ∪ BL ∪ Cv
{B1;B2} M α−→b {B′2} M′′

If, by any chance, statement B1 is terminated abruptly, i.e. via label break, then
statement “B1;B2” terminates via label break too.

{B1} M
brk(L)−−−−→b {stop} M′

{B1;B2} M
brk(L)−−−−→b {stop} M′

If behaviour B1 offers a communication label, then behaviour B1 must continue
execution until it terminates:

{B1} M α−→b {B′1} M′ α ∈ Cv
{B1;B2} M α−→b {B′1;B2} M′

– Behaviour “break L” terminates and passes label L to the context. As in the
case of statement “break L”, the initial memory remains unchanged after the
execution:

{break L} M brk(L)−−−−→s {stop} M

– Let values c1, . . . , cn and let ck denote the standard denotation of ck with respect
to function F for k ∈ {1, . . . , n}. Behaviour “G (O1, . . . , On) where V ” executes
communication label G (c1, . . . , cn) and terminates updating initial LNT memory
M1 to Mn+1 if and only if offer Ok matches value ck for all k ∈ {1, . . . , n} updating
initial LNT memory Mk to Mk+1 and condition V evaluates to true under Mn+1:

{O1] c1} M1 →o M2 . . . {On] cn} Mn →o Mn+1 {V } Mn+1 →e true

{G (O1, . . . , On) where V } M G (c1,...,cn)−−−−−−−→b {null} Mn+1

Note that the offers are evaluated from the left to the right updating the memory
after every evaluation.

– Behaviour “select B1 [] . . . [] Bn end select” behaves as one of the LNT
behaviours B1, . . ., and Bn:

i ∈ {1, . . . , n} {Bi} M α−→b {B′i} M′
{select B1 [] . . . [] Bn end select} M α−→b {B′i} M′

– Behaviour I behaves exactly as statement I:

α ∈ {exit} ∪ BL ∪ Cv {I} M α−→s {I ′} M′
{I} M α−→b {I ′} M′

4.2. THE LANGUAGE LNT 83

– The formal semantics of behaviour “if V then B1 else B2 end if” is the following:

{V } →e true {B1} M α−→b {B′1} M′
{if V then B1 else B2 end if} M α−→b {B′1} M′

{V } →e false {B2} M α−→b {B′2} M′
{if V then B1 else B2 end if} M α−→b {B′2} M′

– The formal semantics of behaviour “var x :T in B end var” is defined as follows:

c ∈ DT M′ = M⊕ [x← c] {B} M′ α−→b {B′} M′′
{var x :T in B end var} M α−→b {B′} M′′

Notice that variable x is assigned the standard denotation c (constant) of element
c that resides in domain D and its type is T . Hence, the initial LNT memory M
is updated to M′. On condition that LNT behaviour B reduces to B′ updating
LNT memory M′ to M′′, LNT behaviour “var x :T in B end var” reduces to B′

updating LNT memory M to M′′.

– The dynamic semantics of behaviour LNT “loop L in B0 end loop” is more com-
plicated than the standard semantics of the corresponding LNT loop statement.
The reason lies in the eventual occurrence of an unknown number of communi-
cations in the body of the loop construct before termination. In particular, it is
defined by way of the intermediate construct:

trap L in B1 else B2 end trap.

in the following manner:

{trap L in B0 else loop L in B0 end loop end trap} M α−→b {B′0} M′
{loop L in B0 end loop} M α−→b {B′0} M′

We proceed with the definition of “trap L in B1 else B2 end trap”. If B1 offers
a communication label α, α is offered by the trap construct:

α ∈ Cv {B1} M α−→b {B′1} M′
{trap L in B1 else B2 end trap} M α−→b {trap L in B′1 else B2 end trap} M′

If behaviour B1 terminates on a “break L” statement, then the trap structure
terminates normally and the memory remains unchanged:

{B1} M
brk(L)−−−−→b {stop} M

{trap L in B1 else B2 end trap} M exit−−→b {stop} M

If behaviour B1 terminates on a “break L′” statement such that L′ 6= L, then the
trap construct terminates on “break L′” and the memory remains unchanged:

L′ ∈ L L′ 6= L {B1} M
brk(L′)−−−−−→b {stop} M

{trap L in B1 else B2 end trap} M brk(L′)−−−−−→b {stop} M

84 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

If behaviour B1 terminates normally (without “break L” statement), then the
execution of the trap construct follows the execution of behaviour B2 as below:

α 6∈ BL {B1} M exit−−→b {B′1} M′ {B2} M′ α−→b {B′2} M′′
{trap L in B1 else B2 end trap} M α−→b {B′2} M

– We consider a simplified (and more suitable to the eb32lnt translator) version of
the LNT parallel composition construct:

B
.
= par G1, . . . , Gm in B1 || . . . ||Bn end par

with synchronization on gates G1, . . . , Gm and its corresponding formal semantics.
We denote by “M1 	M2” the difference between LNT memories M1 and M2 that
is defined as follows:

(M1	M2) (X) =

{
M1(X), if M1(X) is defined and M2(X) is undefined or M2(X) 6= M1(X)

undefined, otherwise

Hence, if behaviours B1, . . . , Bn offer communication label α such that gate(α)
coincides with one of the gates G1, . . . , Gm, then B offers communication label α,
then the following rule is applied:

α ∈ Cv gate(α) ∈ {G1, . . . , Gm} ∀i ∈ {1, . . . , n} : {Bi} M α−→b {B′i} Mi

{B} M α−→b {B′} M ⊕ (M1 	M) ⊕ . . . ⊕ (Mn 	M)
,

where “B′
.
= par G1, . . . , Gm in B′1 || . . . ||B

′
n end par”. If there exists exactly

one (denoted as !∃ below) of the LNT behaviours B1, . . . , Bn offering a communi-
cation label α indexed by i ∈ {1, . . . ,m} such that gate(α) does not belong to the
set of gates {G1, . . . , Gm}, then we may write:

α ∈ Cv gate(α) 6∈ {G1, . . . , Gm} !∃i ∈ {1, . . . ,m} : {Bi} M α−→b {B′i} Mi

{B} M α−→b {B′} M ⊕ (Mi 	M)
,

where “B′
.
= par G1, . . . , Gm in B′1 || . . . ||B

′
n end par”, and “B′j

.
= Bj” for all

j 6= i. Last but not least, if parallel behaviours B1, . . . , and Bn terminate normally,
then the parallel composition terminates normally:

∀i ∈ {1, . . . ,m} : {Bi} M exit−−→b {B′i} Mi

{B} M exit−−→b {B′} M ⊕ (M1 	M) ⊕ . . . ⊕ (Mn 	M)
,

where “B′
.
= par G1, . . . , Gm in B′1 || . . . ||B

′
n end par”. In the previous rules,

the updated LNT memory that is related to the updated LNT behaviour is equal
to the initial LNT memory updated accordingly to encompass the local updates
in the parallel branches. Furthermore, all variables defined in the LNT memories
of the corresponding parallel branches should be disjoint in order to ensure the
correctness of the previous transformations. The full version of the aforementioned
semantics can be found in [CCG+11].

4.3. TRANSLATION FROM EB3 TO LNT 85

– Before defining the formal semantics of behaviour P[G′1, . . . , G
′
n] (v1, . . . , vm), we

first need to define the notion of gate substitution. Let LNT behaviour B. Notation
B
[
G′1/G1, . . . , G

′
n/Gn

]
denotes the syntactic substitution of gate G1 by G′1, the

syntactic substitution of gate G2 by G′2 etc. within the body of LNT behaviour
B. LNT allows the definition of processes.

We restrict our attention to processes, whose parameters can only be passed by-
value in the sense that if these parameters are modified within the body of the
process callee, the effect is not passed to the process caller after the callee has
been executed. Such formal parameters are marked with the keyword “in” in the
process prototype definition. Note that this subset of LNT user-defined process
definitions is sufficient for eb32lnt.

An LNT process definition can take the following form:

process P[G1, . . . , Gn] (in X1, . . . , in Xm) in B end process,

where B is an LNT behaviour and X1, . . . , Xm are P ’s formal parameters. We pro-
ceed with the formal semantics of process calls P[G′1, . . . , G

′
n] (v1, . . . , vm). First,

gate substitution “σ = [G′1/G1, . . . , G
′
n/Gn]” takes place within the body of LNT

behaviour B. Then, value vi (the interpretation of vi) is assigned to the corre-
sponding formal parameter Xi of process P for i ∈ {1, . . . ,m}. In the following,
notation B(σ, Mc) is an auxiliary structure denoting LNT behaviour B accom-
panied by gate substitution σ and the LNT memory Mc the moment that the
process call occurs. If B(σ, Mc) offers a communication label α, so does process
call P[G′1, . . . , G

′
n] (v1, . . . , vm):

∀i ∈ {1, . . . ,m} : {vi} M α−→e vi {B(σ, Mc)} M′ α−→b {B′′} M′′
{P[G′1, . . . , G′n] (v1, . . . , vm)} Mc

α−→b {B′′} M′′

where “α ∈ {exit} ∪ CV ∪ BL”, “M′ = [X1 ← v1, . . . , Xm ← vm]” and Mc is the
caller’s memory the moment that process P is called. If the body of behaviour
B offers a communication label α, then the communication label is renamed in
keeping with the passing parameters (denoted as ασ below) and the execution of
B [G′1/G1, . . . , G

′
n/Gn] terminates normally:

{B} M α−→b {B′} M′ α ∈ {exit} ∪ CV ∪ BL
{B(σ, Mc)} M ασ−−→b {B′(σ, Mc)} M′

If behaviour B terminates normally, then the process call terminates normally and
memory Mc is restored:

{B} M exit−−→b {stop} M′

{B (σ, Mc)} M exit−−→b {stop} Mc

4.3 Translation from EB3 to LNT

Principles.

Our translation of eb3 relies on the memory semantics SemM. Thus, we explicitly model in
LNT a memory, which stores the state variables corresponding to attribute functions (we call
these variables attribute variables) and is modified each time an action is executed.

86 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

Assuming n attribute functions f1, . . . , fn, we model the memory as a process M placed
in parallel with the rest of the system (a common approach for modeling global variables in
process algebras), which manages for each attribute function fi an attribute variable (also
named fi) that encodes the function. To read the values of these attribute variables (i.e., to
evaluate the attribute functions), processes need to communicate with the memory M , and
every action must have an immediate effect on the memory (so as to reflect the immediate
effect on the execution trace). To achieve this, the memory process synchronizes with the
rest of the system on every possible action of the system (including λ, to which we associate
a LNT gate also written λ in abstract syntax for convenience), and updates its attribute vari-
ables accordingly. The list of attribute variables f = (f1, . . . , fn) is added as a supplementary
offer on each eb3 action α (v), so that attribute variables can be directly accessed to evaluate
the guard associated to the action, wherever needed, while guaranteeing the guard-action
atomicity. Therefore, every action α (v) will be encoded in LNT as α (!v, ?f)1, and synchro-
nized with an action of the form α (?x, !f) in the memory process M , thus taking benefit of
bidirectional value exchange during the rendezvous.

Translation of attribute functions.

Ordering attribute functions as described in Section 2.2.3 allows the memory to be updated
consistently, from f1 to fn in turn. At every instant, already-updated values correspond to
calls of the form fh (T, . . .) (the value of fh on the current trace), whereas calls of the form
fh (front (T), . . .) are replaced by accesses to a copy g of the memory f , which was made
before starting the update. This encoding thus enables the trace parameter to be discharged
from function calls, ensuring that while updating fi, accesses to fh with h < i necessarily
correspond to calls with parameter T.

The process M is defined in Figure 4.1. It runs an infinite loop, which “listens” to all
possible actions αj of the system. At this point, we recall the existence of unique attribute
function definition fi (T : T , y1 : T1, . . . , ys : Ts) : T (see Figure 2.1 for details). Each
attribute variable fi is an array with s dimensions, where s is the common arity for attribute
functions fi minus 1, because the trace parameter is now discharged. Each dimension of array
fi, thus, corresponds to one formal parameter in yi, so that:

fi[ord (v1)] . . . [ord (vs)]

encodes the current value of:
fi (T, v1, . . . , vs),

where ord (vk) is a predefined LNT function that denotes the ordinate of the value that
corresponds to variable vk, i.e., a unique number between 1 and the cardinal number |Dk| of
domain Dk that stocks elements of type Tk.

Expression upd ji for i ∈ {1, . . . , q} and j ∈ {1, . . . , q} of Figure 4.1 is used to implement
the effect of action αj(x) on attribute variables fi. Its definition is given in Figure 4.2. In

particular, upd ji is defined by way of auxiliary function enum. For vector z = (z1, . . . , zo),
yk :: z is equivalent notation for (yk, z1, . . . , zo) and [] stands for the empty vector. For each
type Tk, we assume the existence of functions firstk that returns the first element of type T ,
lastk that returns the last element of type Tk, and nextk (x) that returns the successor of x
on condition that the type of variable x is Tk (following the total order induced by ord). For

1if v = (v1, . . . , vs), then α (!v, ?f) is an abbreviation for α (!v1, . . . , !vs, ?f1, . . . , ?fn)

4.3. TRANSLATION FROM EB3 TO LNT 87

process M [α1, . . . , αq, λ : any] is

var f, g : T , y : T at, x : T ac in

upd0
1; . . . ; upd0

n;

loop

g := f

select

α1 (?x, !f); upd1
1; . . . ; upd1

n

[] . . . []

αq (?x, !f); updq1; . . . ; updqn

[] λ (!f)

end select

end loop

end var

end process

Figure 4.1: LNT code for the memory process implementing the attribute functions

example, let Tk = {m1,m2,m3}. Then, it is firstk = m1, nextk(m1) = m2, nextk(m2) = m3

and lastk = m3. According to the definition of “enum (yx :: z,B)” of Figure 4.2, the loop
structure is employed to assign to yk the current element of domain Dk (the first element
of Dk is assigned at first) and a recursive call to enum (z,B) is taken. If yk has not been
assigned the last value of Dk, which is expressed by condition yk 6= lastk, the next value of
Dk is assigned to yk via yk := nextk (yk) and enum (z,B) is called once again. Otherwise, the
program breaks from the loop structure. This approach guarantees that, when computing
the effect of actions on attribute variables via assignment B, all attribute variables are taken
into consideration.

Note also that enum depends on function mod (E) which transforms an expression E
by syntactically replacing function calls by array accesses as described previously. Namely
according to the definition of mod (wji) of Figure 4.2, expressions of the form “fh (T, y)”
are replaced by fh[ord (y)] and expressions of the form “fh (front (T), y)” are replaced by
gh[ord (y)] for all h < n. Recall at this point that the initial values of attribute variables g are
by convection equal to ⊥, which entails the replacement of attribute function calls of the form
“fh (front (T), y)” in eb3 type (1) value expressions w0

i by ⊥ for all h ∈ {1, . . . , n}. Notation
y : T at is an abbreviation for “y1 : T1, . . . , ys : Ts” and T denotes the vector (T, . . . , T) of size
n that is equal to the number of attribute function names in the system.

Expression nextk (x) is implemented as LNT expression “val (ord (x) + 1)”. Note that
in LNT assignment “x := val (i)” identifier val stands for the predefined LNT function that
returns the i-th element of given ordered set denoting the domain of x’s type. Such functions
are available in LNT for all finite types.

Similarly, assuming common parameter vector x
.
= (x1, . . . , xp) for all action labels αj for

all j ∈ {1, . . . , q} or, equivalently, action name definitions of the form αj(x1 : T1, . . . , xp : Tp)
for all j ∈ {1, . . . , q}, we define “x : T ac” that is syntactic sugar for “x1 : T1, . . . , xp : Tp”,

88 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

upd ji
.
= enum (y, fi[ord (y)] := mod (wji))

enum ([], B)
.
= B

enum (yk :: z,B)
.
= yk := firstk;

loop Lk in

enum (z,B)

if yk 6= lastk then yk := nextk (yk) else break Lk end if

end loop

mod (w0
i)

.
= w0

i

[
fh (T, y) := fh[ord (y)]

∣∣ ∀h < n
][

fh (front (T), y) := ⊥
∣∣ ∀h ∈ {1, . . . , n}]

mod (wji) = wji
[
fh (T, y) := fh[ord (y)]

∣∣ ∀h < n
][

fh (front (T), y) := gh[ord (y)]
∣∣ ∀h ∈ {1, . . . , n}], if j 6= 0

Figure 4.2: LNT code for expression upd ji of Figure 4.1

where types T1, . . . , Tp are not to be confused with the types corresponding to the attribute
parameters yk ∈ y for k ∈ {1, . . . , s} as seen earlier. Then, upon synchronization on action
αj (?x, !f) with the LNT process corresponding to eb3’s main process (see translation of
processes below), the values of all attribute variables fi for i ∈ {1, . . . , n} are updated using
function upd ji .

As an example, we demonstrate how the definition of Figure 4.1 regarding the memory
process, applies to the eb3 specification of the library management system for one book and
two members. Member and book IDs are defined in the LNT program as follows:

type MID is m1,m2,m⊥ with ”eq”, ”ne”, ”ord”, ”val” end type

type BID is b1, b⊥ with ”eq”, ”ne”, ”ord”, ”val” end type

Identifier eq (ne) denotes the equality (inequality) operator among member IDs or book IDs.
The bottom value for member IDs is denoted as m⊥ and the bottom value for book IDs
is denoted as b⊥. In the following, the type referring to the number of books possessed by
each member of the library is denoted as an array NB and the type referring to the current
borrower of each book is denoted as an array BOR. Hence, NB and BOR are defined in LNT
as follows:

type NB is array[0..2] of NAT end type

type BOR is array[0..1] of MID end type

Now, we need to explain how the execution of communication label LEND modifies attribute
variable vectors “borrower : BOR” and “nbLoans : NB”. First, we remark that, accord-
ing to the eb3 specification of the library management system, the execution of eb3 action
“Lend (bId,mId)” modifies attribute variables borrower[bId] and nbLoans[mId]. Hence, fol-
lowing the definition of Figure 4.1, we need an auxilliary variable bId′ to go through all
possible values of book IDs, i.e. the elements that inhabit BID ’s domain, in order to simulate
the modification of borrower[bId] in case that book bId is lent to member mId . In each
iteration of the loop construct, it is checked if bId is equal to the current value of bId ′, in
which case borrower[bId] is set to the current borrower, i.e. mId . Then, it is checked if bId ′

4.3. TRANSLATION FROM EB3 TO LNT 89

is equal to the last element of BID ’s domain, i.e. b1, in which case the program control breaks
from the loop construct. Otherwise, bId ′ is assigned the next element in the ordered set of
BID ’s domain, i.e. “bId ′ := val (ord (bId ′) + 1)”, and the execution of the loop construct is
repeated.

Similarly, we need an auxiliary variable mId ′ to go through all possible values of member
IDs, i.e. the elements that inhabit MID ’s domain, in order to simulate the modification
of nbLoans[bId] in case that book bId is lent to member mId . In each iteration of the
loop construct, it is checked if mId ′ coincides with the current value of mId ′, in which
case nbLoans[mId] is increased by one. Then, it is checked if mId ′ is equal to the last
element of MID ’s domain, i.e. m2, in which case the program control breaks from the loop
construct. Otherwise, mId ′ is assigned the next element in the ordered set of MID ’s domain,
i.e. “mId ′ := val (ord (mId ′) + 1)”, and the execution of the loop construct is repeated.

90 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

The code for the memory M is then given as follows:

process M [Acquire,Discard ,Register ,Unregister ,Lend ,Return : any] is

var mId : MID , bId : BID , bId ′ : BID ,

mId ′ : MID , borrower : BOR, nbLoans : NB in

borrower := BOR(m⊥); nbLoans := NB(0);

loop

select

Acquire (?bId)

[] Discard (?bId , ?borrower)

[] Register (?mId)

[] Unregister (?mId)

[] Lend (?bId, ?mId , !nbLoans, !borrower);

bId ′ := b1;

loop L1 in

if (bId ′ eq bId) then

borrower [ord (bId ′)] := mId

end if ;

if (bId ′ eq b1) then

break L1

else

bId ′ := val (ord (bId ′) + 1)

end if ;

end loop

mId ′ := m1;

loop L2 in

if (mId ′ eq mId) then

nbLoans [ord (mId ′)] := nbLoans [ord (mId ′)] + 1

end if ;

if (mId ′ eq m2) then

break L2

else

mId ′ := val (ord (mId ′) + 1)

end if

end loop

4.3. TRANSLATION FROM EB3 TO LNT 91

[] RET (?bId);

mId ′ := m1;

loop L1 in

if (mId ′ eq borrower [ord (bId)]) then

nbLoans [ord (mId ′)] := nbLoans [ord (mId ′)]− 1

end if ;

if (mId ′ eq m2) then

break L1

else

mId ′ := val (ord (mId ′) + 1)

end if

end loop

bId ′ := b1;

loop L1 in

if (bId ′ eq bId) then

borrower [ord (bId)] := m⊥

end if ;

if (bId ′ eq b1) then

break L1

else

bId ′ := val (ord (bId ′) + 1)

end if

end loop;

end select

end loop

end var

end process

Note that LNT statement “borrower := BOR(m⊥)” is syntactic sugar for LNT state-
ment “borrower[ord (b1)] := m⊥”. Similarly, “nbLoans := NB(0)” is syntactic sugar for
“nbLoans[ord (m1)] := 0; nbLoans[ord (m2)] := 0”. Note that the initial number of loans
is set to 0, whereas according to Figure 2.2 it should be set to ⊥. The reason is that it is
impossible to define Nat⊥ of Figure 2.2 without recourse to complex LNT data structures.
Hence, the symbol ⊥ of Figure 2.2 is basically matched to the symbol 0 in the above LNT
program, the symbol 0 of Figure 2.2 is matched to 1 in the above LNT program etc.

Optimizations. Notice that the inert action λ has been removed from the previous LNT
specification, since λ is does not appear in the program script and, as a result, it is supposed
not to affect the control flow.

Similarly, attribute variable vector f = (nbLoans, borrower) is removed from the pa-
rameter vector of communication labels that synchronize with expressions of the form
“α (v, ?f) where mod (C)” present in other LNT processes (see Figure 4.3), for which the

92 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

corresponding guard mod (C) makes no use of attribute variable vector f . In particular, this
optimization applies to communication labels Acquire, Register , Unregister and Return. The
static analysis of LNT specifications cater for an efficient discovery of all guards, as well as
their related communication labels.

The only coordinates of attribute variable vector f = (nbLoans, borrower) passed as pa-
rameters to the communication labels “α (v, ?f) where mod (C)” are exactly those appearing
in mod (C). Notice, for example, that vector nbLoans is not a subset of the parameter vector
passed to communication label Discard , since the static analysis of the LNT specification
reveals that no corresponding guard to Discard makes use of nbLoans.

The code referring to attribute variables that remain unchanged during a communication is
omitted. This is the case for communication labels Acquire, Discard , Register and Unregister
in the previous LNT code.

It turns out that the code simulating the effect of eb3 action “Lend (bId ,mId)” on at-
tribute variables borrower[bId] and nbLoans[mId] can be optimized based on the simple
observation that attribute variables borrower[bId ′] for bId ′ 6= bId and nbLoans[mId ′] for
mId ′ 6= mId remain unaffected. Hence, the corresponding part of process M regarding eb3

action “Lend (bId ,mId)” can be modified as follows:

[] Lend (?bId , ?mId , !nbLoans, !borrower);

borrower [ord (bId)] := mId ;

nbLoans [ord (mId)] := nbLoans [ord (mId)] + 1

A similar approach applies to communication label Ret . The optimized LNT specification
of the library management system is given in the appendix. Note that this optimization
technique is applicable whenever the in offers of the communication label in question, i.e. the
parameters marked with ?, suffice to determine which attribute variables are modified. Based
on our experience with eb3 specifications, this optimization technique is often applicable on
the corresponding LNT specifications. It is also incorporated on our tool eb32lnt.

Translation of processes.

We define a translation function t from an eb3 process expression to an LNT process. Most
eb3 constructs are process algebra constructs with a direct correspondence in LNT. The main
difficulty arises in the translation of guarded process expressions of the form “C ⇒ E0” in a
way that guarantees the guard-action atomicity . This led us to consider a second parameter
for the translation function t, namely the condition C, whose evaluation is delayed until the
first action occurring in the process expression E0. The definition of t (E,C) is given in
Figure 4.3. An eb3 specification E0 will then be translated into:

par α1, . . . , αq, λ in t (E0, true) || M [α1, . . . , αq, λ] end par

and every process definition of the form “P (x) = E” will be translated into the process:

process P [α1, . . . , αq, λ : any] (x : type (x)) is t (E, true) end process,

where {α1, . . . , αq} = Lab. The Rules of Figure 4.3 can be commented as follows:

• Rule (1) translates the λ action. Note that λ cannot be translated to the empty LNT
statement null, because execution of λ may depend on a guard C, whose evaluation

4.3. TRANSLATION FROM EB3 TO LNT 93

t (λ,C) = λ (?f) where mod (C) (1)

t (α (v), C) = α (v, ?f) where mod (C) (2)

t (E1.E2, C) = t (E1, C); t (E2, true) (3)

t (C ′ ⇒ E0, C) = t (E0, C andthen C ′) (4)

t (E1 |E2, C) = select t (E1, C) [] t (E2, C) end select (5)

t (|x : V :E0, C) = var x := any V ; t (E0, C) end var (6)

t (E0
∗, true) = loop LE0 in

select

λ (?f); break LE0 [] t (E0, true)

end select

end loop (7)

t (E1 |[∆]|E2, true) = par ∆ in t (E1, true) || t (E2, true) end par (8)

t (|[∆]|x :V :E0, true) = par ∆ in E0[x := v1] || . . . ||E0[x := vn] end par

where V = {v1, . . . , vn} (9)

t (P (v), true) = P [α1, . . . , αq, λ] (v) (10)

In all other cases:

t (E0, C) =



if mod (C) then t (E0, true) else stop end if

if C does not use attribute functions

par α1, . . . , αq, λ in

t (E0, true)
|| prC [α1, . . . , αq, λ] (vars (C))

end par otherwise

(11)

Figure 4.3: Translation from eb3 process to LNT process

requires the memory to be read, so as to get attribute variable values. This is done by
the LNT communication action λ (?f). The guard C is evaluated after replacing calls
to attribute functions (all of which have the form fi (T, vi)) by the appropriate attribute
variables, using function mod defined in Figure 4.1. Rule (2) is similar but handles
visible actions.

• Rule (3) translates eb3 sequential composition into LNT sequential composition, passing
the evaluation of C to the first process expression.

• Rule (4) makes a conjunction between the guard of the current process expression with
the guard already accumulated from the context.

• Rules (5) and (6) translate the choice and quantified choice operators of eb3 into their
direct LNT counterpart.

94 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

• Rule (7) translates the Kleene closure into a combination of LNT loop and select,
following the identity E0

∗ = λ |E0.E0
∗.

• Rule (8) translates eb3 parallel composition into LNT parallel composition.

• Rule (9) translates eb3 quantified parallel composition into LNT parallel composition
by expanding the type V of the quantification variable, since LNT does not have a
quantified parallel composition operator.

• Rule (10) translates an eb3 process call into the corresponding LNT process call, which
requires gates to be passed as parameters.

• Rules (7) to (10) only apply when the guard C is trivially true. In the other cases, we
must apply Rule (11), which generates code implementing the guard. If C does not
use attribute functions, i.e., does not depend on the trace, then it can be evaluated
immediately without communicating with the memory process (first case). Otherwise,
the guard evaluation must be delayed until the first action of the process expression E0.
When E0 is either a Kleene closure, a parallel composition, or a process call, identifying
its first action syntactically is not obvious. One solution would consist in expanding E0

into a choice in which every branch has a fixed initial action2, to which the guard would
be added. We preferred an alternative solution that avoids the potential combinatorial
explosion of code due to static expansion. A process prC (defined in Figure 4.4) is
placed in parallel to t (E0, true) and both processes synchronize on all actions. Process
prC imposes on t (E0, true) the constraint that the first executed action must satisfy
the condition C (then branch). For subsequent actions, the condition is relaxed (else
branch).

2Such a form, commonly called head normal form [BPS01], is used principally in the context of the process
algebra ACP [BK85] to analyse the behaviour of recursive processes.

4.3. TRANSLATION FROM EB3 TO LNT 95

process prC [α1, . . . , αq, λ : any] (vars (C) : type (vars (C))) is

var start : bool, x : T ac, f : T in

start := true;

loop L in select

if start then

start := false;

select

α1 (?x, ?f) where mod (C)

[] . . . []

αq (?x, ?f) where mod (C)

[]

λ (?f) where mod (C)
end select

else

select

α1 (?x, ?f)

[] . . . []

αq (?x, ?f)

[]

λ (?f)

end select

end if

[] break L end select end loop

end var

end process

Figure 4.4: Process prC

96 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

Example Revisited. The main process of the LNT specification describing the library
management system is defined as follows:

process Main [Acquire,Discard ,Register ,Unregister ,Lend ,Return : any] is

par Acquire,Discard ,Register ,Unregister ,Lend ,Return in

par

loop L in

select break L [] book [Acquire,Discard] (b1)

end select

end loop

||

par

loop L in

select break L [] member [Register ,Unregister ,Lend ,Return] (m1)

end select

end loop

||

loop L in

select break L [] member [Register ,Unregister ,Lend ,Return] (m2)

end select

end loop

end par

end par

||

M [Acquire,Discard ,Register ,Unregister ,Lend ,Return]

end par

end process

Note that the equivant LNT process of eb3 process main is placed in parallel to memory
process M . Moreover, the simulation of eb3 quantified parallel synchronization operator (that
has no equivalent operator in LNT) is applied to eb3 expressions “|||bId : BID : book (bId)∗”
and “|||mId : MID : member (mId)∗” and the eb3 Kleene Closure operator is simulated as
described in Figure 4.3.

The body of LNT processes book and member is defined as below:

process book [Acquire,Discard : any] (bid : BOOKID) is

var borrower : BOR in

Acquire(bid); Discard (bid, ?borrower) where (borrower [ord (bid)] eq m⊥)

end var

end process

4.3. TRANSLATION FROM EB3 TO LNT 97

process member [Register ,Unregister ,Lend ,Return : any] (mid : MEMBERID) is

Register (mid);

loop L in

select break L [] loan [Lend ,Return] (mid, b1)

end select

end loop;

Unregister (mid)

end process

The definition of LNT process member depends on LNT process loan, whose definition is
given below:

process loan [Lend ,Return : any] (mid : MEMBERID , bid : BOOKID) is

var borrower : BOR, nbLoans : NB in (* NbLoans is set to 1 *) in

Lend (bId, mId, ?nbLoans, ?borrower)

where
(
(borrower [ord (bId)] eq m⊥) and (nbLoans [ord (mId)] eq 1)

)
;

Return (bId)

end var

end process

The following example illustrates and justifies the use of process prC as a means to solve the
guard-action atomicity problem. Consider the eb3 system:

C ⇒ Lend (b1, m1) ||| Return (b2),

where C denotes the Boolean condition:

borrower (T, b1) = ⊥ ∧ nbLoans (T, m1) < NbLoans

and Lab = {Lend ,Return}. The LNT code corresponding to this system is the following:

par Lend ,Return, λ in
par Lend ,Return, λ in

par Lend (b1, m1, ?f) || Return (b2, ?f) end par
|| prC [Lend ,Return, λ] (b1, m1)
end par

|| M [Lend ,Return, λ]
end par

The first action executed by this system may be either Lend or Return. We consider the case
where Lend is executed first. According to the LNT semantics, it results from the multiway
synchronization of the following three actions:

• “Lend (b1, m1, ?f)” in the above expression,

• “Lend (?b, ?m, ?f) where borrower [ord(b1)] = ⊥ ∧ nbLoans[ord(m1)] < NbLoans” in
process prC (at this moment, start is true, see Fig. 4.4), and

98 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

• “Lend (?b, ?m, !f)” in process M (see Fig. 4.1).

Thus, in prC at synchronization time, f is an up-to-date copy of the memory stored
in M , b = b1, and m = m1. The only condition for the synchronization to occur is the
guard mod (C), whose value is computed using the up-to-date copy f of the memory. In case
mod (C) evaluates to true, no other action (susceptible to modifying f) can occur between
the evaluation of mod (C) and the occurrence of Lend as both happen synchronously, thus
achieving the guard-action atomicity. Once Lend has occurred, Return can occur without
any condition, as the value of start has now become false.

We developed an automatic translator tool from eb3 specifications to LNT, named
eb32lnt, implemented using the Ocaml Lex/Yacc compiler construction technology. It con-
sists of about 900 lines of OCaml code. We applied eb32lnt on a benchmark of eb3 specifica-
tions, which includes variations of the library management system (examined in its simplest
version in Chapter 2) and a file transfer system.

We noticed that, for each eb3 specification, the code size of the equivalent LNT specifica-
tion is twice as big. Part of this expansion is caused by the fact that LNT is more structured
than eb3: LNT requires more keywords and gates have to be declared and passed as parame-
ters to each process call. By looking at the Rules of Figure 4.3, we can see that the other causes
of expansion are Rule (5), which duplicates the condition C, and Rule (9), which duplicates
the body E0 of the quantified parallel composition operator “|[∆]|x :V :E0” as many times as
there are elements in the set V . Both expansions are linear in the size of the source eb3 code.
However, in the case of a nested parallel composition “|[∆1]|x1 :V1 : . . . |[∆n]|xn :Vn :E0”,
the expansion factor is as high as the product of the number of elements in the respective sets
V1, . . . , Vn, which may be large. If E0 is a big process expression, the expansion can be limited
by encapsulating E0 in a parameterized process “PE0 (x1, . . . , xn)” and replacing duplicated
occurrences of E0 by appropriate instances of PE0 .

4.4 The Simplified File Transfer System

eb3 is mainly used for the specification of ISs. However, it is possible to use eb3 in order
to specify file transfer protocols. Let’s consider a simplified file transfer system protocol
describing the interplay between n clients requesting files that are stocked in m servers. A
process interface running in parallel to clients and servers serves an intermediary between
them. The exact specification describing the protocol in natural language is given below:

P1. A client C sends a file transfer request "Rqt !F !C" to the server interface regarding file
F . Ultimately, if file F is stocked in server S, there is always a procedure that forwards
the previous request to server S "Fwd !F !C".

P2. The message should only be sent to one client at a time. In particular, if request message
"Fwd !F !C !S" from client C regarding file F reaches server S via the server interface,
then file F eventually is sent from server S and reaches client C. Moreover, no pieces of
file F can be sent from any other server S1 6= S to any other client C1 6= C.

P3. The server interface can set the owner of file F to server S2 via communication label
"Chown !F !S2" provided that F is not being transferred to any client.

P4. The maximum number of file requests is limited to 2.

4.4. THE SIMPLIFIED FILE TRANSFER SYSTEM 99

P5. If file F is being transferred to client C, no other client can ask for F , unless the acknowl-
edgement packet "Ack !F !S !C" has been sent to client C (denoting correct termination
of the file transmission).

P6. While a file is being transferred to client C, C can ask for a second file. As a means not
to exceed the upper limit on the total numbers of requests, we must make sure that no
other requests are made in the meantime.

The eb3 specification of the simplified file transfer system is given in Figures 4.5 and 4.6:

SID = {s1, . . . , sm},FID = {f1, . . . , fp},CID = {c1, . . . , cq}
Rqt (f : FID , c : CID);
Fwd (f : FID , c : CID , s : SID);
Chown (f : FID , s : SID);
Trans (f : FID , s : SID , c : CID);
Ack (f : FID , s : SID , c : CID);

client (c : CID) =
|(f, s) : (FID ,SID) : (numb trans (T, f) = 0) ∧ (files down (T, c) < 2)⇒ Rqt (f, c) |

Trans (f, s, c) | Ack (f, s, c)

clientPR (c : CID) = client (c)∗

interface () =
|(f, c, s) : (FID ,SID ,CID) : Rqt (f, c). Fwd (f, c, s) |
|(f, s) : (FID ,CID) : Chown (f, s)

interfacePR () = interface ()∗

server (s : SID) =
|(f, c) : (FID ,CID) :

(owner (T, f) = s)⇒ Fwd (f, c) |
(owner (T, f) = s) ∧ (numb trans (T, f) ≤ sizef (T, f) ∧ (dest (T, f) = s)⇒

Trans (f, s, c)
(owner (T, f) = s) ∧ (numb trans (T, f) ≥ sizef (T, f) ∧ (dest (T, f) = s)⇒

Ack (f, s, c)
serverPR () = server ()∗

main =(
|||c : CID : clientPR (c)

)
|[Rqt]| interfacePR ()

|[Fwd ,Trans,Ack]|
(|||s : SID : serverPR (s)

)
Figure 4.5: eb3 specification of the simplified file transfer system (A)

Using eb32lnt, we translated the eb3 specification of the library management system to
LNT.

100 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

num trans (T : T , f : FID) : Nat⊥ = dest (T : T , f : FID) : CID⊥ =
match last (T) with match last (T) with
⊥T : ⊥ ⊥T : ⊥

| Rqt (f, c) : 0 | Fwd (f, c, s) : c
| Trans (f, s, c) : | Ack (f, s, c) : ⊥

num trans (front (T), c) + 1 | : dest (front (T), f)
| Ack (f, s, c) : ⊥ end match;
| : num trans (front (T), f)
end match;

files down (T : T , c : CID) : Nat⊥ = owner (T : T , f : FID) : SID⊥ =
match last (T) with match last (T) with
⊥T : 0 ⊥T : (∗ code ∗)

| Rqt (f, c) : | Chown (f, s) : s
files down (front (T), c) + 1 | : owner (front (T), f)

| : files down (front (T), c) end match
end match;

Figure 4.6: Attribute function definitions describing the simplified file transfer system (B)

4.5 LNT Code for the Simplified File Transfer System

We give the optimized LNT code for the simplified Library File Transfer System for 2 files, 2
clients, and 2 servers:

module fts is

type SERVER is s1, s2 with ”eq”, ”ne”, ”ord” end type

type CLIENT is c1, c2, c⊥ with ”eq”, ”ne”, ”ord” end type

type FILE is s1, s2 with ”eq”, ”ne”, ”ord” end type

type OWN is array[0..1] of SERVER end type

type SIZEFILE is array[0..1] of NAT end type

process client [Rqt ,Trans,Ack : any] (c : CLIENT) is

var owner : OWN , num trans : NUMBTRANS , sizeof : SIZEFILE ,

files down : FILESDOWN , dest : DESTIN , f : FILE , s : SERVER in

f := any FILE ;

select

Rqt (!f, !c, ?numb trans, ?files down)

where
(
(numb trans [ord (f)] = 0) and (files down [ord (c)] < 2)

)
[] Trans (!f, ?s, !c, ?owner, ?numb trans, ?sizeof, ?dest)

[] Ack (!f, ?s, !c, ?owner, ?numb trans, ?sizeof, ?dest)

end select

end var

end process

4.5. LNT CODE FOR THE SIMPLIFIED FILE TRANSFER SYSTEM 101

process clientPR [Rqt ,Trans,Ack : any] (c : CLIENT) is

loop L in

select break L [] client [Rqt ,Trans,Ack] (c)

end select

end loop;

end process

process interface [Rqt ,Fwd ,Chown : any] () is

var owner : OWN , num trans : NUMBTRANS , files down : FILESDOWN ,

dest : DESTIN , c : CLIENT , f : FILE , s : SERVER in

select

Rqt (?f, ?c, ?numb trans, ?files down);

Fwd (!f, !c, ?s, ?owner)

[] var f : FILE , s : SERVER in

f := any FILE ; s := any SERVER;

Chown (!f, !s, ?numb trans)

where (numb trans [ord (f)] = 0)

end var

end select

end var

end process

process interfacePR [Rqt ,Fwd ,Chown : any] () is

loop L in

select break L [] interface [Rqt ,Fwd ,Chown] ()

end select

end loop;

end process

102 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

process server [Fwd ,Trans,Ack : any] (s : SERVER) is

var owner : OWN , num trans : NUMBTRANS , sizeof : SIZEFILE ,

files down : FILESDOWN , dest : DESTIN , c : CLIENT , f : FILE in

select

Fwd (?f, ?c, !s, !owner)

where (owner [ord (f)] = s)

[] Trans (?f, !s, ?c, ?owner, ?numb trans, ?sizeof, ?dest)

where
(
(owner [ord (f)] = s)

and (numb trans [ord (f)] ≤ sizef [ord (f)])

and (dest [ord (f)] = c)
)

[] Ack (?f, !s, ?c, ?owner, ?numb trans, ?sizeof, ?dest)

where
(
(owner [ord (f)] = s)

and (numb trans [ord (f)] > sizef [ord (f)])

and (dest [ord (f)] = c)
)

end select

end var

end process

process serverPR [Rqt ,Trans,Ack : any] (s : SERVER) is

loop L in

select break L [] server [Fwd ,Trans,Ack] (s)

end select

end loop;

end process

4.5. LNT CODE FOR THE SIMPLIFIED FILE TRANSFER SYSTEM 103

process M [Rqt ,Fwd ,Chown,Trans,Ack : any] is

var f : FILE , s : SERVER, c : CLIENT ,

numb trans : NUMBTRANS , sizef : SIZEFILE , owner : OWN ,

files down : FILESDOWN , dest : DESTIN in

numb trans := NUMBTRANS (0); files down := FILESDOWN (0);

dest := DESTIN (c⊥); owner := OWN (s1);

sizef := SIZEFILE (0); owner [ord (f1)] := s1; owner [ord (f2)] := s2;

sizef [ord (f1)] := 2; sizef [ord (f2)] := 3;

loop

select

Rqt (?f, ?c, !numb trans, !files down);

numb trans [ord (f)] := 1;

files down [ord (c)] := files down [ord (c)] + 1

[] Fwd (?f, ?c, ?s, !owner);

dest [ord (f)] := c

[] Chown (?f, ?s, !numb trans);

owner [ord (f)] := s

[] Trans (?f, ?s, ?c, !owner, !numb trans, !sizeof, !dest);

numb trans [ord (f)] := numb trans [ord (f)] + 1

[] Ack (?f, ?s, ?c, !owner, !numb trans, !sizeof, !dest);

numb trans [ord (f)] := 0;

dest [ord (f)] := c⊥

end select

end loop

end var

end process

104 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

process Main [Rqt ,Fwd ,Chown,Trans,Ack : any]() is

par Rqt ,Fwd ,Chown,Trans,Ack in

par Fwd ,Trans,Ack in

par Rqt in

par

clientPR [Rqt ,Trans,Ack](c1)

||

clientPR [Rqt ,Trans,Ack](c2)

end par

||

interfacePR [Rqt ,Fwd ,Chown]()

end par

||

par

serverPR [Fwd ,Trans,Ack](s1)

||

serverPR [Fwd ,Trans,Ack](s2)

end par

end par

||

M [Rqt ,Fwd ,Chown,Trans,Ack]

end par

end process

4.6 Proof of equivalence of EB3 and LNT Specifications

In this section, we attempt a rigorous correctness proof for the equivalence of EB3 and LNT
specifications. The proof is carried out by induction on eb3 process expressions.

4.6.1 Preliminary Definitions

Let Dk = {d1
k, . . . , d

|Dk|
k } for k ∈ {1, . . . , s} denote the finite domain that characterizes the k-

th attribute parameter yk ∈ y of attribute function fi (T, y) for i ∈ {1, . . . , n} whose type is Tk
(see 2.1 for details). Note that |Dk| denotes the cardinality of Dk. The LNT memory model
we will be using in this section for LNT specifications (LNT memories in shorthand) is an
extension of the memory model introduced in the context of EB3 specifications in Section 2.1.

More specifically, LNT memories may contain:

• any assigned values to attribute variables denoted by f [y] that correspond to the attribute
variables f [y] appearing in LNT specifications,

• any assigned values to the attribute variables denoted by g [y] that correspond to the
copy of attribute variables g [y] appearing in the body of process M (Figure 4.1),

4.6. PROOF OF EQUIVALENCE OF EB3 AND LNT SPECIFICATIONS 105

• any assigned values to variables denoted by y referring to the attribute parameters y ∈ y,

• any assigned values to vector x corresponding to the parameter vector x of actions αj(x)
for j ∈ {1, . . . , q}. Remark that only one vector can be stocked in memory at a time.

Also, note that a variable appearing in the LNT program as x is represented as x in the
corresponding LNT memory. This convention is used widely in the following definitions and
proofs.

Definition 4.6.1. Equivalence between EB3 and LNT Memories
Let M1 be an eb3 memory and M2 be an LNT memory. We stipulate that M1 is equivalent
to M2 denoted as M1 ≈ M2, if and only if every attribute variable is assigned the same value
both by M1 and M2, or defined formally:

• for any attribute vector c of constants and for any i ∈ {1, . . . , n} such that fi (T, y) is a
well-formed type (1) value expression, exactly one of the following statements is valid:

– M1(fi)(c) and M2(fi)(c) are not defined, or

– M1(fi)(c) = M2(fi)(c)

Definition 4.6.2. Subvectors
Let y = (y1, . . . , yl) denote an attribute vector. Then, vector yk→m = (yk, . . . , ym) for k,m ∈
{1, . . . , s} such that k ≤ m will be called subvector of y. The obvious extension of subvectors
to memories is defined as follows:

M (yk→m) = (M (yk), . . . ,M (ym)).

4.6.2 Reasoning about the memory

Upon unfolding LNT statement upd ji that appears in the body of process M (see Figure 4.1

for details), upd ji is transformed as depicted in Figure 2.3.10. Let Ik denote the code block
that relates to Ik+1 in the following manner:

Ik
.
= yk := firstk; loop Lk in Ik+1; Jk end loop, (4.4)

where 0 < k ≤ s and LNT statement Jk is defined as follows:

Jk
.
= if yk 6= lastk then yk := next (yk) else break Lk end if

for 0 < k ≤ s. Setting variable k to s, (4.4) is transformed as follows:

Is
.
= ys := firsts; loop Ls in fi [ord (y)] := mod (w j

i); Js end loop.

Notice that code block I1 coincides with statement upd ji . Let also Rk be the LNT memory

referring to block Ik the moment that Ik is about to be executed, and let R]k be the LNT

memory the moment that block Ik has just been executed. Hence, Rk and R]k are related with
the following formula:

{Ik} Rk
exit−−→s R

]
k. (4.5)

106 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

upd ji
.
=

y1 := first1;

loop L1 in

. . .

Ik



yk := firstk;

loop Lk in

. . .

ys := firsts;

loop Ls in

fi [ord (y)] := mod (w j
i);

if ys 6= lasts then ys := nexts (ys) else break Ls end if

end loop

. . .

Jk

{
if yk 6= lastk then yk := nextk (yk) else break Lk end if

end loop

. . .

if y1 6= last1 then y1 := next1 (y1) else break L1 end if

end loop

Figure 4.7: Unfolding function updji

It follows, by simple observation, of Figure 4.7 that LNT statement Is coincides with the
innermost code block of updji . We proceed with the LNT reduction rules induced by transition

“{Is} Rs
exit−−→s R

]
s” and, then, we demonstrate how LNT memory R]s can be calculated. By

way of compositional reasoning, executing transition (4.5) triggers the following rule:

{ys := firsts} Rs
exit−−→s Rs

′ (4.7)

{ys := firsts; loop Ls in fi [ord (y)] := mod (w j
i); Js end loop} Rs

exit−−→s R
]
s

(4.6)

Rule (4.6) assigns to attribute parameter ys the first element of domain Ds, i.e. d1
s, updates

LNT memory Rs to intermediate LNT memory “Rs
′ = Rs ⊕ [ys ← d1s]”, and, finally, triggers

Rule (4.7):

(4.8) . . . (4.12)

{loop Ls in fi [ord (y)] := mod (w j
i); Js end loop} Rs

′ exit−−→s Rs
]

(4.7)

As for Rule (4.7), the values of attribute parameters yk for k < s carried along by memory Rs

remain unchanged throughout the execution. On the other hand, every time an iteration of

4.6. PROOF OF EQUIVALENCE OF EB3 AND LNT SPECIFICATIONS 107

the breakable loop construct takes place, a specific attribute variable fi [y1, . . . , ys] is modified
via the following assignment:

fi [ord (y1)] . . . [ord (ys)] := mod (w j
i)

and, subsequently, attribute parameter ys is assigned a new element from domain Ds. As
a result, |Ds| attribute variables fi [y1, . . . , ys] are modified in total, where |Ds| denotes the

cardinality of domain Ds as usual, and LNT memory Rs
′ is updated to LNT memory R]s.

With the exception of Rule (4.12) that denotes “breaking” from the loop construct, each
reduction rule showing up in the premises of reduction rule (4.7) refers to a specific element
of Ds or, equivalently, to a specific attribute variable fi [y1, . . . , ys] that is updated. The
implied reduction rules denoted by “. . .” in the premises of Rule (4.7) are similar in effect to
Rule (4.8) and the total number of triggered rules depends linearly on |Ds|. In particular,
Rule (4.8), which is specified as follows:

(4.9) (4.10)

{fi [ord (y)] := mod (w j
i); Js} Rs

′ exit−−→s Rs
′′,

(4.8)

triggers Rule (4.9) and Rule (4.10) that pass the effect of LNT assignments “fi [ord (y)] :=
mod (w j

i)” and “ys := nexts” to Rs
′, thus, updating LNT memory Rs

′ to the intermediate
LNT memory Rs

′′. More concretely, Rule (4.9) is specified as follows:

{mod (w j
i)} Rs

′ →e w
j
i

{fi [ord (y)] := mod (w j
i)} Rs

′ exit−−→s Rs
′ ⊕
[
fi [d]← wj

i

] , (4.9)

where fi [d]← wj
i

.
= fi

[
Rs
′(y1), . . . , Rs

′(ys)
]
← [[mod (w j

i)]]LNT (Rs
′),

since for k ∈ {1, . . . , s} attribute parameter yk ∈ y is replaced by the corresponding value
assigned to y by LNT memory Rs

′ = Rs ⊕ [ys ← d1s].
Moreover, Rule (4.10) as given below:

(4.11) {ys := nexts (ys)} Rs
′ ⊕
[
fi [d]← wj

i

] exit−−→s Rs
′′

{Js} Rs
′ ⊕
[
fi [d]← wj

i

] exit−−→s Rs
′′

(4.10)

reflects the standard semantics of the “if cond then I1 else I2 else if” construct, where
cond is a Boolean condition that evaluates to true and I1, I2 stand for valid LNT statements.
In particular, it verifies that the current value of ys is not the last in the ordered set Ds as
reflected in the following reduction rule:

{ys 6= lasts} Rs
′ ⊕
[
fi [d]← wj

i

]
→e true (4.11)

and assigns the next value of ordered set Ds to ys, i.e. d2
s. LNT memory Ns

′′ is, then,
calculated as follows:

Rs
′′ = Rs

′ ⊕
[
fi [d]← wj

i

]
⊕
[
ys ← d2s

]
= Rs ⊕

[
fi [d]← wj

i, ys ← d2s
]

where fi [d]← wj
i

.
= fi

[
Rs(y1), . . . , Rs(ys−1

)
, d1s

]
← [[mod (w j

i)]]LNT
(
Rs ⊕ [ys ← d1s]

)

108 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

since attribute parameter yk ∈ y for k ∈ {1, . . . , s− 1} is replaced by the corresponding value
assigned to yk by LNT memory Rs, i.e. Rs

′(y1) = Rs(y1), . . . , Rs
′(ys−1) = Rs(ys−1), and ys is

replaced by d1s , i.e. Rs
′(ys) = d1s . Notice that the only attribute variable fi [y] that is updated

is the one, for which the value of attribute parameter ys is equal to d1s .

Moreover, Rule (4.12):

{ys 6= lasts} Rs
] →e false {break Ls} Rs

] brk(Ls)−−−−−→s Rs
]

{Js} Rs
] brk(Ls)−−−−−→s Rs

]
(4.12)

reflects the standard semantics of the “if cond then I1 else I2 else if” construct when cond
evaluates to false. In particular, Rule (4.12) expresses forced termination (through the break
construct) after |Ds| consecutive executions of statement “fi [ord (y)] := mod (w j

i); Js” in

Rule (4.7) no sooner than ys is found to be equal to the last element of Ds, i.e. d
|Ds|
s . Notice

that the break construct has no effect on the memory, from which follows directly that:

Rs
] = Rs ⊕

[
fi [d]← wj

i

∣∣ ds ∈ Ds

]
⊕
[
ys ← d

|Ds|
s

]
,

where f [d]← wj
i

.
= (Rs(y1), . . . , Rs(ys−1), ds)← [[mod (w j

i)]]LNT (Rs ⊕ [ys ← ds])

since for k ∈ {1, . . . , s− 1} attribute parameter yk ∈ y is replaced by the corresponding value
assigned to yk by LNT memory Rs and ds is replaced by any possible element in domain Ds.
Setting k = s− 1, (4.4) is transformed as follows:

Is−1
.
= ys−1 := firsts−1; loop Ls−1 in Is; Js−1 end loop (4.13)

Following similar reasoning, it is fairly easy to determine the reduction rules triggered by
transition:

{Is−1} Rs−1
exit−−→s Rs−1

], (4.14)

where Rs−1 is the memory referring to the moment prior to Is−1’s execution. Upon execution
of statement “ys−1 := firsts−1”, LNT memory Rs is set to “Rs−1 ⊕ [ys−1 ← d1s−1]”. The
reduction rules induced by transition (4.14) are similar to the rules induced by transition

“{Is} Rs
exit−−→s R

]
s” that were seen previously. As a consequence, we come up easily with the

following result:

Rs−1
] = Rs−1 ⊕

[
fi [d]← wj

i

∣∣ ds−1 ∈ Ds−1, ds ∈ Ds

]
⊕
[
ys−1 ← d

|Ds−1|
s−1 , ys ← d

|Ds|
s

]
where f [d]← wj

i
.
= f

[
Rs(y1), . . . , Rs(ys−2), ds−1, ds

]
←

[[mod (w j
i)]]LNT

(
Rs ⊕ [ys−1 ← ds−1, ys ← ds]

)
and ds is replaced by all possible elements in Ds and ds−1 is replaced by all possible elements
in Ds−1. Repeating the previous calculations successively for k = s − 2, . . . , 1, the relation
between LNT memories R1

] and R1 regarding transition:

{I1} R1
exit−−→s R1

]

4.6. PROOF OF EQUIVALENCE OF EB3 AND LNT SPECIFICATIONS 109

is calculated as follows:

R1
] = R1 ⊕

[
fi [d]← wj

i

∣∣ d1 ∈ D1, . . . , ds ∈ Ds

]
(4.15)

⊕
[
y1 ← d

|D1|
1 , . . . , ys ← d

|Ds|
s

]
where fi [d]← wj

i
.
= fi [d1, . . . , ds]← [[mod (w j

i)]]LNT
(
R1 ⊕ [y1 ← d1, . . . , ys ← ds]

)
and dk is replaced by all possible elements in Dk for k ∈ {1, . . . , s}.

We, then, refer to the body of process M in Figure 4.1. We denote by Nj
i the memory the

moment succeeding the execution of upd ji . Notice that R1 coincides with Nj
i−1 in the upper

calculations. We denote the initial memory by Nj
0. Applying compositional reasoning, the

execution of LNT statement “upd j1; . . . ; upd jn” results in the following rule:

{upd0
1} Nj

0
exit−−→s N

j
1, . . . , {upd jn} Nj

n−1
exit−−→s N

j
n

{upd j1; . . . ; upd jn} Nj
0

exit−−→s N
j
n

(4.16)

and, by (4.15), the relation between memories Nj
i and Nj−1

i is calculated as follows:

Nj
i = Nj

i−1 ⊕
[
fi [d]← wj

i

∣∣ d1 ∈ D1, . . . , ds ∈ Ds

]
(4.17)

where fi [d]← wj
i

.
= fi [d1, . . . , ds]← [[mod (w j

i)]]LNT
(
Nj
i−1 ⊕ [y1 ← d1, . . . , ys ← ds]

)
for i ∈ {1, . . . , n} and j ∈ {1, . . . , q}. Notice that the modified values of attribute parameters
yk ∈ y (compare with (4.15)) have been discharged from Nj

i for brevity, as it is of no particular
use for the ensuing calculations. From now on, the assigned values to yk will be indicated
explicitly wherever needed. Hence, by way of (4.17), LNT memory Nj

n can be calculated as
shown below:

Nj
n = Nj

0 ⊕
[
fi [d]← wj

i

∣∣ d1 ∈ D1, . . . , ds ∈ Ds

]
(4.18)

where fi [d]← wj
i

.
= fi [d1, . . . , ds]← [[mod (w j

i)]]LNT
(
Nj
i−1 ⊕ [y1 ← d1, . . . , ys ← ds]

)
for j ∈ {1, . . . , q}. In order to calculate the LNT memory at system start, i.e. N0

n, we need to
set j = 0 in (4.18). Notice that LNT memory N0

0 relating to process M prior to the execution
of behaviour upd0

1 is
[]

. Hence, LNT memory N0
n can be calculated as follows:

N0
n =

[
fi [d]← wj

i

∣∣ d1 ∈ D1, . . . , ds ∈ Ds

]
(4.19)

where fi [d]← w0
i

.
= fi [d1, . . . , ds]← [[mod (w0

i)]]LNT
(
N0
i−1 ⊕ [y1 ← d1, . . . , ys ← ds]

)
As a means to simplify the presentation, we use the following definitions regarding process

M of Figure 4.1:

D
.
= select α1 (?x, !f); upd1

1; . . . ; upd1
n [] . . . [] (4.20)

αq (?x, !f); updq1; . . . ; updqn [] λ (!f)

end select

lp
.
= loop g := f ; D end loop (4.21)

110 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

Now, let C ⇒ E be a well-formed eb3 process expression. We denote that:

B (E,C)
.
= par α1, . . . , αq, λ in t (E,C) || (4.22)

loop g := f ; D end loop

end par

Notice that the execution of LNT statement “upd0
1; . . . ; upd0

n” in the body of process M
is orthogonal to the execution of behaviour t (E, true) in the sense that the execution of
“upd0

1; . . . ; upd0
n” precedes all synchronisations on actions among LNT behaviours t (E, true)

and M. This observation can be justified by the only possible LNT rule reduction scenario
(see the semantics of LNT parallel composition):

(4.24)

{par α1, . . . , αq, λ in t (E, true) ||M [α1, . . . , αq, λ] end par} []
exit−−→b {B (E, true)} N0

n

(4.23)

that is applicable to LNT behaviour:

par α1, . . . , αq, λ in t (E, true) ||M [α1, . . . , αq, λ] end par

corresponding to eb3 expression E. Rule (4.23) denotes partial execution of LNT behaviour
“M [α1, . . . , αq, λ]”, which constitutes the right construct of t (E, true) and triggers the fol-
lowing reduction rule:

(4.16)

{M [α1, . . . , αq, λ]} []
exit−−→b {loop g := f ; D end loop} N0

n

, (4.24)

that passes the effect of LNT statement “upd0
1; . . . ; upd0

n” on the initial LNT memory N0
0 = []

by assigning to the attribute variables their initial values. By observation of Rule (4.16), it
follows (for j = 0) that the updated memory of Rule (4.24) is equal to N0

n.

Theorem 4.6.1. Equivalence of N0
n and M0

Let EB3 be well-formed eb3 specification given as process definition “main = E”. eb3 mem-
ory M0 characterizing EB3 at system start is equivalent to LNT memory N0

n characterizing
process M in the corresponding LNT specification the exact moment succeeding the execution
of LNT behaviour “upd0

1; . . . ; upd0
n”, i.e. N0

n ≈ M0.

Proof. Let vector of constants d = (d1, . . . , ds) such that d1 ∈ D1, . . . , d2 ∈ Ds. Let the trace
variable T be equal to empty trace, i.e. “T = []”. We need to prove that:

N0
n(fi)(d1, . . . , ds) = M0(fi)(d1, . . . , ds) (4.25)

for all i ∈ {1, . . . , n}. Combining (4.19) and Figure 4.1, it follows that:

N0
n(fi)[d1, . . . , ds] = [[mod (w0

i)]]LNT(N0
i−1 ⊕ [y1 ← d1, . . . , ys ← ds])

where mod (w0
i) = w0

i [fh (T, y) := fh[ord (y)], fh (front (T), y) := ⊥]

Furthermore, by way of Definition 2.3.9, it is:

M0(fi)(d1, . . . , ds) = [[w0
i]]

M
1 ([y1 ← d1, . . . , ys ← ds],M0).

4.6. PROOF OF EQUIVALENCE OF EB3 AND LNT SPECIFICATIONS 111

Hence, in order to prove that N0
n ≈ M0, it suffices to prove that:

[[mod (w0
i)]]LNT(N0

i−1 ⊕ τ) = [[w0
i]]

M
1 (τ,M0), (4.26)

where “τ = [y1 ← d1, . . . , ys ← d1]”. We proceed with structural induction on eb3 type
(1) value expressions w0

i . Then, applying the dynamic semantics of type (1) LNT value
expressions in Section 4.2.1, we obtain the following results:

• w0
i reduces to constant c ∈ C. Then, it is “[[mod (w0

i)]]LNT(N0
i−1 ⊕ τ) =

[[mod (c)]]LNT(N0
i−1 ⊕ τ) = c”. By application of Definition 2.3.8, we find that

“[[w0
i]]

M
1 (τ,M0) = [[c]]M1 (τ,M0) = c”. Hence, it is derived that “[[mod (w0

i)]]LNT(N0
i−1⊕τ) =

[[w0
i]]

M
1 (τ,M0)” that completes the proof.

• w0
i reduces to variable x ∈ V. Then, it is “[[mod (w0

i)]]LNT(N0
i−1 ⊕ τ) =

[[mod (x)]]LNT(N0
i−1 ⊕ τ) = τ(x)”, since variable x can only be a formal parameter of

action label αj for some j ∈ {1, . . . , q}. By application of Definition 2.3.8, we find
that “[[x]]M1 (τ,M0) = τ(x)”. Hence, it is derived that “[[mod (w0

i)]]LNT(N0
i−1 ⊕ τ) =

[[w0
i]]

M
1 (τ,M0)” that completes the proof.

• w0
i reduces to g(v1, . . . , vl). We recall that function identifier g is interpreted by function
F as is the case for all function identifiers. This allows us to write the following equation:

[[mod (w0
i)]]LNT(N0

i−1 ⊕ τ) = [[mod (g(v1, . . . , vl))]]LNT(N0
i−1 ⊕ τ)

= g([[mod(v1)]]LNT(N0
i−1 ⊕ τ), . . . , [[mod(vl)]]LNT(N0

i−1 ⊕ τ)
)
.

From the induction hypothesis, it is derived that:

[[mod(v1)]]LNT(N0
i−1 ⊕ τ) = [[v1]]M1 (τ,M0), . . . , [[mod(vl)]]LNT (N0

i−1 ⊕ τ) = [[vl]]
M
1 (τ,M0).

Then, by application of Definition 2.3.8, we find that:

[[g(v1, . . . , vl)]]
M
1 (τ,M0) = g([[v1]]M1 (τ,M0), . . . , [[vl]]

M
1 (τ,M0))

and, combining the previous results, it can be easily derived that:

[[g(v1, . . . , vl)]]LNT(N0
i−1 ⊕ τ) = [[g(v1, . . . , vl)]]

M
1 (τ,M0)

or, simply, “[[mod (w0
i)]]LNT(N0

i−1 ⊕ τ) = [[w0
i]]

M
1 (τ,M0)” that completes the proof.

• w0
i reduces to attribute function call fh (front (T), u) for h ∈ {1, . . . , n}. Then, we may

write that:

[[mod (w0
i)]]LNT(N0

i−1⊕τ) = [[mod (fh (front (T), u))]]LNT(N0
i−1⊕τ) = [[⊥]]LNT(N0

i−1⊕τ) = ⊥.

By application of Definition 2.3.8, it is deduced that:

[[w0
i]]

M
1 (τ,M0) = [[fh (front (T), u)]]M1 (τ,M0) = [[⊥]]M1 (τ, M0) = ⊥,

which completes the proof.

112 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

• w0
i reduces to attribute function call fh (T, u) for h < i, where u

.
= (u1, . . . , us) is a

vector of valid eb3 expressions. Applying the dynamic semantics of Section 4.2.1, it is
deduced that:

[[mod (w0
i)]]LNT (N0

i−1 ⊕ τ) = [[mod (fh (T, u)
)
]]LNT(N0

i−1 ⊕ τ)

= [[fh[u]]]LNT(N0
i−1 ⊕ τ) (Definition of mod)

= [[mod (wjh)]]LNT(N0
h−1 ⊕ τ ⊕ τ ′) (4.19)

= [[wjh]]M1 (τ ⊕ τ ′,M0)

= [[fh(T, u1, . . . , us)]]
M
1 (τ, M0) (Definition 2.3.8),

where “τ ′
.
= [y1 ← [[u1]]LNT (N0

h−1⊕ τ), . . . , ys ← [[us]]LNT (N0
h−1⊕ τ)]”. Remark that the

following proposition:

[[mod (wjh)]]LNT(N0
h−1 ⊕ τ ⊕ τ ′) = [[wjh]]M1 (τ ⊕ τ ′,M0) (4.27)

is obtained by substituting index i with h for h < i and substituting environment τ with
τ ⊕ τ ′ in (4.26). The rest of the proof follows the lines of the corresponding proof for
Theorem 2.4.1. Repeating the previous calculations and applying inductive reasoning,
the correctness of (4.27) boils down to the correctness of the following proposition:

[[mod (wj1)]]LNT(N0
0 ⊕ τ ⊕ τ ′) = [[wj1]]M1 (τ ⊕ τ ′,M0) (4.28)

However, by way of the attribute function ordering, wj1 cannot reduce further to any
attribute function call fk (T, . . .) for k > 0, which means that the proof steps taken so
far to prove (4.27) suffice to complete the proof for (4.28). Hence, it follows that:

[[mod (w0
i)]]LNT(N0

i−1 ⊕ τ) = [[w0
i]]

M
1 (τ,M0).

• wji reduces to “if g(v1, . . . , vl) then vl+1 else vl+2 end if”.

1. Let “[[mod(g(v1, . . . , vl)
)
]]LNT (N0

i−1⊕τ) = true”. The inductive principle applies to
the “syntactically smaller” value expression g(v1, . . . , vl), which allows us to write:

[[mod(g(v1, . . . , vl)
)
]]LNT(N0

i−1 ⊕ τ) = [[g(v1, . . . , vl)]]
M
1 (τ,M0),

By applying the dynamic semantics of Section 4.2.1, it is found that:

[[mod (g(v1, . . . , vl))]]LNT(N0
i−1 ⊕ τ) =

g([[mod(v1)]]LNT(N0
i−1 ⊕ τ), . . . , [[mod(vl)]]LNT(N0

i−1 ⊕ τ)).

From the induction hypothesis (and with compositional reasoning), it follows that:

g([[mod(v1)]]LNT(N0
i−1 ⊕ τ), . . . , [[mod(vl)]]LNT(N0

i−1 ⊕ τ)) =

g([[v1]]M1 (τ,M0), . . . , [[vl]]
M
1 (τ,M0))

Then, by applying Definition 2.3.8, we find that:

[[g(v1, . . . , vl)]]
M
1 (τ,M0) = g([[mod(v1)]]M1 (τ,M0), . . . , [[mod(vl)]]M(τ,M0))

4.6. PROOF OF EQUIVALENCE OF EB3 AND LNT SPECIFICATIONS 113

and, combining the previous results, it is easily derived that
“[[g(v1, . . . , vl)]]M(τ,M0) = true”. Then, [[w0

i]]LNT(N0
i−1 ⊕ τ) can be transformed as

follows:

[[mod(w0
i)]]LNT(N0

i−1 ⊕ τ) = [[mod(if g(v1, . . . , vl) then vl+1 else vl+2)]]LNT(N0
i−1 ⊕ τ)

= [[mod(vl+1)]]LNT(N0
i−1 ⊕ τ) (Definition 2.3.5)

= [[vl+1]]M1 (τ,M0) (Induction Hypothesis)

= [[if g(v1, . . . , vl) then vl+1 else vl+2]]M1 (τ,M0)

(Definition 2.3.8)

= [[w0
i]]

M
1 (τ,M0)

Notice also how the inductive hypothesis applies previously on vl+1:

[[mod(vl+1)]]LNT(N0
i−1 ⊕ τ) = [[vl+1]]M1 (τ,M0)

and, combining the previous results, it is easily found that:

[[mod (if g(v1, . . . , vl) then vl+1 else vl+2 end if)]]LNT(N0
i−1 ⊕ τ) =

[[if g(v1, . . . , vl) then vl+1 else vl+2 end if]]M1 (τ,M0)

or, equivalently, “[[mod (w0
i)]]LNT(N0

i−1 ⊕ τ) = [[w0
i]]

M
1 (τ,M0)”.

2. The symmetric case is similar.

The framework introduced so far allows us to proceed with the bisimulation equivalence
theorem regarding eb3 specifications and their corresponding LNT specifications.

4.6.3 LTS Construction for EB3 and LNT Specifications

• Let EB3 be a well-formed eb3 specification including process prototype definition
“main = E0”. Let also:

TSeb3 = (S1, 1
.
= { ρ1−→1}ρ1∈Act1 , s0

1)

be the LTS that corresponds to EB3, where Act1
.
= {αj (c) | j ∈ 1..q} ∪ {λ} is a set of

actions, ρ1 ∈ Act1 and c is a vector of constants. By virtue of SemM , statespace S1 is
represented by tuples of the form:

(E,M),

where E is a derivation of E0 and M is the current eb3 memory namely the assigned
values to attribute variables. Transitions of the form:

(E,M) 1 (E′,M′),

follow the structured eb3 SOS Rules of Figure 2.9, and M′ is specified as in Defini-
tion 2.3.10. The initial state s0

1 is denoted by:

(E0,M0).

More details on the construction of TSeb3 can be found in Section 2.4.2.

114 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

• Let the LTS that corresponds to the LNT specification produced by eb32lnt with input
the initial eb3 specification EB3:

TSLNT = (S2, 2
.
=

1−→◦ 2−→◦ 3−→, s0
2),

where statespace S2 is represented by tuples of the form:

(B (E),N),

and B (E) is the LNT expression corresponding to the eb3 process expression E, and
Nj
n is the current LNT memory. As opposed to eb3, where executions of actions and

memory updates are carried out synchronously, in LNT they can only be carried out
sequentially. This remark is reflected in relation 2 that constitutes a composition of

three relations
1−→,

2−→ and
3−→.

Let transition (B (E),N) 2 (B (E′),N′). Relation
1−→ corresponds to executions of

LNT statement “g := f”:

{B (E)} N exit−−→b {B1} N1,

where “N1
.
= N⊕

[
g← fN

]
” and B ′ stands for an intermediate LNT behaviour and fN

denotes the value assigned to attribute vector f by LNT memory N, i.e. N(f) = fN. Given
the set of communication labels “Act2

.
= {αj (c, fN) | j = 1..q} ∪ {λ

(
fN
)
}”, relation

2−→ corresponds to executions of the form (
α−→b)

0..1 ◦ ρ2−→b ◦ (
α−→b)

0..1, where (
α−→b)

0..1

denotes zero or one execution of transition
α−→b∈ BL ∪ { exit−−→b} that is restricted to the

left counterpart t(E,C) of B(E,C) (more details on the exact nature of transitions
α−→b

can be found in the proof section of Theorem 4.6.4) and communication label ρ2 ∈ Act2
such that:

{B1} N2
ρ2−→b {B2} N3, (4.29)

where N2 is an LNT memory for which N2(g) = fN, N3 is an LNT memory for which
N3(x) = c, and N3(g) = fN and x denotes the formal parameter vector of label αj that is
assigned vector c (obviously, the previously assigned value to vector x is overwritten), B ′′

stands for an intermediate LNT behaviour, and relation
3−→ corresponds to evaluations

of LNT statement “upd j1; . . . ; upd jn” for j ∈ 1..q:

{B2} N3
exit−−→b {B (E′)} N′,

where LNT memory N′ is calculated by replacing N with N3 as shown in (4.18). The
initial state s0

2 of TSEB3 is denoted by:

(B (E0),N0
n).

The LNT reduction rules stipulate which communication labels can be executed. We
recall that LNT and eb3 share common process algebra operators. Hence, the construc-
tion of TSLNT can be based on the compositional techniques over LTS constructions
that have already been developed in Chapter 2. The interested reader may refer to the
corresponding sections.

4.6. PROOF OF EQUIVALENCE OF EB3 AND LNT SPECIFICATIONS 115

Theorem 4.6.2. Equivalence of EB3 and LNT memories Let EB3 be a well-formed
eb3 specification including process prototype definition “main = E0”, Act1 be a set of actions
{αj (c) | j ∈ 1..q, c is vector of constants}∪{λ} and TSeb3 = (S1, 1

.
= { ρ1−→1}ρ1∈Act1 , s0

1) be
the LTS that describes the evolution of EB3.

Let TSLNT = (S2, 2
.
=

1−→ ◦ 2−→ ◦ 3−→, s0
2) be the LTS that describes the evolution of LNT

behaviour B (E0) with communication labels:

ρ2 ∈ {αj (c, f) | j = 1..q, c is vector of constants, f is an attribute variable vector} ∪ {λ}.

Let also (E,M) 1 (E′,M′) be transition in TSeb3 and (B (E),N) 2 (B (E′),N′) be a
transition in TSLNT such that:

• M and N are equivalent, i.e. M ≈ N,

• 1. ρ1 = αj(c), and ρ2 = αj
(
c, fN)

)
for j ∈ {1, . . . , q} and c a vector of constants or

2. ρ1 = λ, and ρ2 = λ (fN),

Then, M′ and N′ are equivalent, i.e. M′ ≈ N′.

Proof. Let vector of constants d = (d1, . . . , ds) such that d1 ∈ D1, . . . , d2 ∈ Ds. Let the trace
variable T be equal to empty trace, i.e. “T = []”. We need to prove that:

N′(fi)(d1, . . . , ds) = M′(fi)(d1, . . . , ds) (4.30)

for i ∈ {1, . . . , n}. Let “τ
.
= [y1 ← d1, . . . , ys ← ds]”. Combining 4.18 and Figure 4.1, it is

derived that:

N′(fi)(d1, . . . , ds) = [[mod (w0
i)]]LNT(Ni−1

′ ⊕ τ)

where mod (wji) = wji [fh (front (T), y) := gh[ord (y)]
∣∣ ∀h ∈ {1, . . . , n}]

[fh (T, y) := fh[ord (y)]
∣∣ ∀h < i]

N0
′ = N⊕ [x← c, g← fN]

for i ∈ {1, . . . , n}, where Ni denotes the LNT memory succeding the execution of LNT state-
ment upd ji and, as a result, Nn = N. Similar conventions have been adopted for LNT memories
Ni
′ for i ∈ {1, . . . , n}. Furthermore, applying Definition 2.3.8, it is found that:

M′(fi)(d1, . . . , ds) = [[wji]]
M
1 (τ ∪ τ ′,M), (4.31)

where “τ ′ = [x1 ← c1, . . . , xp ← cp]”. Hence, in order to prove that N′ ≈ M′, it suffices to
prove that:

[[mod (w j
i)]]LNT(Ni−1

′ ⊕ τ) = [[wji]]
M
1 (τ,M′). (4.32)

We proceed with structural induction on eb3 type (1) value expressions wji . The proof
resembles closely to the corresponding proof of Theorem 4.30. In the following, we consider
two cases only and leave the rest of the proof for the interested reader.

116 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

• wji reduces to fh (front (T), u) for h ∈ {1, . . . , n}, where “u = (u1, . . . , us)” is a vector
of valid LNT expressions (see attribute function ordering for details). Applying the
dynamic semantics of Section 4.2.1, it is established that:

[[mod (w j
i)]]LNT(Ni−1

′ ⊕ τ)

= [[mod(fh (front(T), u))]]LNT(Ni−1
′ ⊕ τ)

= (Ni−1
′ ⊕ τ)(gh)([[mod(u1)]]LNT(Ni−1

′ ⊕ τ), . . . , [[mod(us)]]LNT(Ni−1
′ ⊕ τ))

= (Nh−1 ⊕ τ)(fh)([[mod(u1)]]LNT(Ni−1
′ ⊕ τ), . . . , [[mod(us)]]LNT(Ni−1

′ ⊕ τ))

= M(fh)([[mod(u1)]]LNT(Ni−1
′ ⊕ τ), . . . , [[mod(us)]]LNT(Ni−1

′ ⊕ τ))

= M(fh
′)([[u1]]M1 (τ,M′), . . . , [[us]]

M
1 (τ,M′)

)
= M′(fh)([[u1]]M1 (τ,M′), . . . , [[us]]

M
1 (τ,M′))

= [[fh (front (T), u)]]M1 (τ,M′)

= [[wji]]
M
1 (τ,M′)

where the fact that “(Ni−1
′ ⊕ τ)(gh) = (Nh−1 ⊕ τ)(fh)” is justified as follows:

1. “(Ni−1
′)(gh) = (Nh−1

′)(gh)”, since for h < i attribute variable vector g is not
modified by LNT statements upd jh, . . ., and upd ji .

2. the assigned value to gh by LNT memory Nh−1 is equal to the assigned value to fh
by LNT memory Nh−1

′, i.e. “(Nh−1
′)(gh) = (Nh−1)(fh)”,

3. from bullets 1, 2 and, by way of compositional reasoning, it is easily derived that
“(Ni−1

′)(gh) = (Nh−1)(fh)”, from which follows that “(Ni−1 ⊕ τ)(gh) = (Nh−1 ⊕
τ)(fh)”.

We recall that N ≈ M, from which we derive that “(Nh−1 ⊕ τ)(fh) = M(fh
′)”. Then,

from the induction hypothesis, it follows directly that:

[[mod(u1)]]LNT(Ni−1
′ ⊕ τ) = [[u1]]M(τ,M′), . . . , [[mod(us)]]LNT(Ni−1

′ ⊕ τ) = [[us]]M(τ,M′).

Furthermore, following the construction of TSeb3 with respect to SemM, the assigned
value to gh by eb3 memory M′ is equal to the assigned value to f by M, i.e. “M(fh

′) =
M′(fh)”. Then, by applying the semantics of 2.3.8, we complete the proof.

• wji reduces to fh (T, u) for h < i, where “u = (u1, . . . , us)” is a vector of valid LNT ex-
pressions (see attribute function ordering for details). Applying the dynamic semantics
of Section 4.2.1, it is found that:

[[mod (w j
i)]]LNT(Ni−1

′ ⊕ τ)

= [[mod(fh (T, u))]]LNT(Ni−1
′ ⊕ τ)

= [[mod(fh (T, u))]]LNT(Ni−1
′ ⊕ τ)

= [[mod(wjh [y := u])]]LNT(Ni−1
′ ⊕ τ)

Notice that h < i. We need to repeat the previous calculations and apply inductive
reasoning. The rest of the proof follows the lines of the proof related to the corresponding
case of Theorem 4.6.1 and it is, therefore, omitted.

4.6. PROOF OF EQUIVALENCE OF EB3 AND LNT SPECIFICATIONS 117

The rest of the cases are similar to the corresponding cases of Theorem 4.6.1.

Theorem 4.6.3. Let EB3 be a well-formed eb3 specification, let M be an eb3 memory, and
let N be an LNT memory such that N ≈ M. For eb3 guard ge appearing in EB3, it follows
that:

[[mod(ge)]]LNT (N) = [[ge]]M3 (M).

Proof. We proceed with structural induction on guard ge:

• ge reduces to constant c ∈ C. Then, applying Definition 2.3.12 and 2.3.7, the result is
established as follows:

[[mod(ge)]]LNT (N) = [[mod(c)]]LNT (N) = F(c) = [[c]]M3 (M) = [[ge]]M3 (M).

• ge reduces to functional term of the form g(ge1, . . . , gen).

[[mod(ge)]]LNT (N) = [[mod (g(ge1, . . . , gel))]]LNT (N)

= F(g)([[mod (ge1)]]LNT (N), . . . , [[mod(gel)]]LNT (N))

= F(g)([[ge1]]M3 (M), . . . , [[gel]]
M
3 (M)) (Induction Hypothesis)

= [[g(ge1, . . . , gel)]]
M
3 (M) (Definition 2.3.7)

= [[ge]]M3 (M)

since, applying the induction principle, it is found that “[[mod(gek)]]LNT (N) =
[[gek]]

M
3 (M)” for all k ∈ {1, . . . , l}.

• ge reduces to an attribute function call of the form “fi (T, v1, . . . , vs)”. Then, [[ge]]M3 (M)
can be transformed as follows:

[[mod(ge)]]LNT (N) = [[mod
(
fi (T, v1, . . . , vs)]]LNT (N)

= N(fi)([[mod(v1)]]LNT (N), . . . , [[mod(vs)]]LNT (N))

= M(fi)([[v1]]M3 (M) . . . , [[vs]]
M
3 (M))

= [[fi (T, v1, . . . , vs)]]
M
3 (M) (Definition 2.3.7)

= [[ge]]M3 (M)

since, by the induction principle, it is “[[mod(vk)]]LNT (N) = [[vk]]
M
3 (M)” for k ∈ {1, . . . , s}

and, by way of M ≈ N, it is “M(fi) = N(fi)”.

4.6.4 Bisimulation Equivalence of EB3 and LNT Specifications

Theorem 4.6.4. Bisimulation Equivalence of EB3 and LNT

Let EB3 be eb3 specification including process prototype definition “main = E0”. Let also
TSeb3 be the LTS that corresponds to EB3, and let TSLNT be the LTS that corresponds to
LNT behaviour B(E) (see Section 4.6.3 for details on the construction of TSeb3 and TSLNT).
Then, TSeb3 is bisimilar to TSLNT , i.e. TSEB3 ∼ TSLNT .

118 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

Proof. We consider the following relation:

R =
{ 〈

(ge⇒ E,M), (B(E, ge),N)
〉 ∣∣ E is an eb3 process expression ∧

B(E, ge) is the LNT equivalent of ge⇒ E ∧
M is an eb3 memory ∧
N is an LNT memory ∧ M ≈ N

}
Note that the definition of relation R is not restricted to tuples of the form (E,M) ∈ SM
and (B(E, ge),N) ∈ ST for any eb3 expression E. We recall that “s0

T/M = (E0,M0)” and

“s0
LNT = (B(E0, true),N0

n)”. By force of Theorem 4.6.1, eb3 memory M0 is compatible with
LNT memory N0

n, from which follows that
〈
(E,M0), (B(E0, true),N0

n)
〉
∈ R.

Let ge ⇒ E be an eb3 process expression and let M be an eb3 memory associated to
ge⇒ E such that (ge⇒ E,M) ∈ TSeb3 . Let also B(E, ge) be the equivalent LNT expression
of ge ⇒ E and let N be the associated LNT memory to B(E, ge) such that (B(E, ge),N) ∈
TSLNT and M ≈ N, from which follows that

〈
(ge ⇒ E,M), (B(E, ge),N)

〉
∈ R and (ge ⇒

E,M) 1 (E′,M′) ∈ δeb3 , where ρ1 ∈ {αj (c) | j ∈ 1..q, c is a vector of constants} ∪ {λ} and
M′ is an eb3 memory.

Then, for every transition of the form (B (E, ge),N) 2 (B(E′, true),N′) ∈ δLNT , for
which ρ2 ∈ {αj (c, fN) | j ∈ 1..q, c is a vector of constants} ∪ {λ (fN)}, where fN is the
value assigned to attribute variable vector f by LNT memory N, i.e. fN

.
= N(f), we need to

prove that
〈
(E′,M′), (B (E′, true),N′)

〉
∈ R. The converse proposition should be established

as well.

Let ge ⇒ E denote the eb3 process expression that remains to be executed, i.e. main =
ge⇒ E. We proceed with structural induction on E:

• Let E = αj (v) for j ∈ {1, . . . , q}, where v is a vector of eb3 type (1) value expressions.
Note that the only possible eb3 transition scenario is the following:

[[ge]]M3 = true (αj (v),M)
αj (c)−−−→1

(√
, upd

(
αj (c),M

))
(ge⇒ αj (v),M)

αj (c)−−−→1

(√
, upd

(
αj (c),M

)) ,

where the body of upd is specified as in Chapter 2 and c is a vector of constants. Notice
that “[[ge]]M3 (M) = true” follows from SemM. Then, by replacing eb3 process expression
E with action αj (v) in Definition 4.22, we obtain the following LNT behaviour:

B
(
αj (v), ge

)
= par α1, . . . , αq, λ in

αj (v, ?f) where mod(ge) || loop g := f ; D end loop

end par

Similarly, by replacing eb3 process expression E with the inert action
√

in Defini-
tion 4.22 and by replacing guard C with true, we obtain the following LNT behaviour:

B (
√
, true) = par α1, . . . , αq, λ in

null where true || loop g := f ; D end loop

end par

4.6. PROOF OF EQUIVALENCE OF EB3 AND LNT SPECIFICATIONS 119

We prove that the execution of B (αj (v), ge) triggers the following LNT reduction rule:

(4.34) (4.36)

{B (αj (v), ge)} N 2 {B (
√
, true)} N′ , (4.33)

where N′ is an LNT memory for which upd
(
αj (c), M

)
≈ N′.

Rule (4.33) reflects the unique reduction scenario for the parallel composition construct
B (αj (v), true) to B (

√
, true). As a first step, the attribute vector f is stored to g

namely via the execution of LNT statement “g := f”. Then, a series of offers related
to communication label αj (v, fN) occurs, which is followed by the execution of LNT

statement “upd j1; . . . ; upd jn” that modifies the attribute variables.

In particular, Rule (4.33) triggers Rule (4.34) that corresponds to the left counterpart
of LNT behaviour B (αj (v), true) and Rule (4.36) that corresponds to the right coun-
terpart of LNT behaviour B (αj (v), true).

On the other hand, the following reduction rule:

{mod (ge)} N→e true (4.35)

{αj (v, ?f) where mod (ge)} N αj (v,fN)−−−−−−→b {null} N
(4.34)

updates the LNT memory N, corresponding to LNT behaviour “αj (v, ?f) where true”,
to LNT memory “N ⊕ [f ← fN] = N” (since both counterparts of the parallel compo-
sition have initially the same LNT memory N, assignment f ← fN is already present
in LNT memory N) that contains the bound value fN to attribute variable vector
f as a result of LNT behaviour “αj (v, ?f) where true” synchronizing with LNT
behaviour “αj (?xj , !f)” of the right counterpart on communication label αj (v, fN)

such that “→2=
αj (v,fN)−−−−−−→b”. For this to happen, mod (ge) is evaluated to true, i.e.

“{mod (ge)} →e true”, which is a direct consequence of [[ge]]M3 = true and Theorem 4.6.3.
Rule (4.35) is specified as follows:

{v} N→e v

{v # v} N→p N

{!v # v} N→o N

{f} N→e N

{?f # fN} N→o N

{αj (!v, ?f)} N αj (v,fN)−−−−−−→b {null} N
(4.35)

The standard semantics of offers guarantees that any variable bindings in the system
should take place starting from the leftmost offer to the rightmost offer of communication
label αj (v, fN). In particular, send offer !v matches value v, which is the value to
which v is evaluated without affecting the current memory. Then, receive offer ?f
matches value fN that is communicated by the right counterpart of B (αj (v)) during
the aforementioned synchronization.

It can be easily verified that the previous operation takes place after the execution of

“g := f” in Rule (4.36). Hence, it is “
1−→=

exit−−→b”. More specifically, Rule (4.36) takes
the following form:

(4.37)

{trap g := f ; D else lp end trap} N exit−−→b {lp} N′

{loop g := f ; D end loop} N exit−−→b {loop g := f ; D end loop} N′
(4.36)

120 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

modifies the right counterpart of LNT behaviour B (αj (v)), which is a typical loop con-
struct. Note that the LNT memory referring to this counterpart is N too. We recall that
the dynamic semantics of breakable loop is defined with the aid of intermediate con-
struct trap. In keeping with the standard LNT semantics, LNT statement “g := f ; D”
terminates normally (without a break) causing the trap construct to reduce to lp. The
syntax of lp is given in (4.21). In the following, we denote “upd

.
= upd j1; . . . ; upd jn” for

brevity. Hence, the induced Rule (4.37) is specified as follows:

{f}N→e fN

{g := f} N exit−−→b {stop} N1

(4.38) {upd} N2
exit−−→b {null}N′

{αj (?xj , !f); upd}N1
exit−−→b {null} N′

{D} N1
exit−−→b {null} N′

{g := f ; D} N exit−−→b {null} N′
(4.37)

where “N1 = N ⊕
[
g ← fN

]
”. Applying compositional reasoning, Rule (4.37) triggers

two rule scenarios. The left side scenario treats LNT statement “g := f” and the con-
sequent update of LNT memory N to N1. The syntax of D is given in Equation 4.20.
The right side scenario coincides with the standard reduction rule for the select con-
struct. In particular, LNT behaviour “αj (?x, !f); upd” is picked by communication
label αj (v, fN) among all possible LNT behaviours constituting LNT behaviour D.
Then, applying compositional reasoning, Rule (4.37) triggers Rule (4.38):

{x # v} N1 →p N2

{?x # v} N1 →o N2

{f} N2 →e fN
{!f # fN} N2 →o N2

{αj (?x, !f)} N1
αj (v,fN)−−−−−−→b N2

(4.38)

that treats the execution of communication label αj (v, fN) such that “
2−→ .

=
αj (v,fN)−−−−−−→b”

and the execution of LNT statement “upd j1; . . . ; upd jn” such that “
3−→ .

=
exit−−→b”, which

justifies the use of 2 notation in Rule (4.33). First, receive offer ?x matches value v
that is communicated by the left counterpart of B (αj (v)) during the aforementioned
synchronization, thus, updating LNT memory N2 to:

N2 = N1 ⊕
[
x← v

]
= N⊕

[
x← v, g← fN

]
. (4.39)

Then, send offer !f matches value fN , which is the value assigned to the attribute
variables by LNT memory N (as seen previously) without affecting the current memory.
In the absence of guarded expression, the transfer of fN from the right counterpart of
B(αj(v)) to the left counterpart of B(αj(v)) via communication offer does not affect
the program flow directly. Then, applying the theory of Section 4.6.3, LNT memory N ′

can be calculated as follows:

N′ =
[
x← c, g← fN

]
∪[

fi [d]← [[mod (w j
i)]]LNT

(
N′i−1 ⊕ τ

) ∣∣ d1 ∈ D1, . . . , ds ∈ Ds, 1 ≤ i ≤ n
]

where Ni
′ corresponds to the LNT memory the moment succeeding the execution of

upd ji (see Section 4.6.3 for details) and “τ = [x1 ← c1, . . . , xp ← cp]”. By appeal
to Theorem 4.6.2, we deduce that M′ ≈ N′, which establishes the truth of Rule (4.33).
The converse direction of the proof follows directly, which completes the proof for case
E = αj(v).

4.6. PROOF OF EQUIVALENCE OF EB3 AND LNT SPECIFICATIONS 121

• Let E = λ. Then, the only possible eb3 transition is the following:

[[ge]]M3 (M) = true (λ,M)
λ−→1 (
√
,M)

(ge⇒ λ,M)
λ−→1 (
√
,M)

.

As previously, it follows from SemM that “[[ge]]M3 (M) = true”. By replacing eb3 process
expression E with the inert action λ in formula (4.22), we obtain the following LNT
behaviour:

B (λ, ge) = par α1, . . . , αq, λ in

λ (?f) where mod (ge) || loop g := f ; D end loop

end par

We need to prove that the execution of B (λ, ge) triggers the following LNT reduction
rule:

(4.41) (4.43)

{B (λ, ge)} N 2 {B (
√
, true)} N′ , (4.40)

where N′ is an LNT memory for which M ≈ N′. The proof follows the lines of the
previous proof. In particular, Rule (4.41):

{mod (ge)} (N)→e true (4.42)

{λ (?f) where true} N λ (fN)−−−−→b {null} N
(4.41)

Note also that “{mod (ge)} →e true” is, by force of Theorem 4.6.3, equivalent to
“[[mod(ge)]]LNT (N) = true”. Rule (4.42) is specified as follows:

{f} N→e N

{?f # fN} N→o N

{λ (?f)} N λ (fN)−−−−→b {null} N
(4.42)

where “N = N⊕ [f ← fN]”’ as stated previously. Rule (4.43) takes the following form:

(4.44)

{trap g := f ; D else lp end trap} N 2 {lp} N′
{loop g := f ; D end loop} N 2 {loop g := f ; D end loop} N′

(4.43)

The induced Rule (4.44) is specified as follows:

{f} N→e fN

{g := f} N exit−−→b {stop} N1

(4.45) {upd} N2
exit−−→b {null} N′

{λ (!f); upd} N1
exit−−→b {null} N′

{D} N1
exit−−→b {null} N′

{g := f ; D} N 2 {null} N′
(4.44)

where “N1 = N⊕ [g← fN]” and N2 = N1 as receives no parameters other than attribute
variables. Then, Rule (4.44) triggers the following reduction rule:

{f} N′ →e fN

{!f # fN} N′ →o N′

{λ (!f)} N′ λ (fN)−−−−→b N′
(4.45)

122 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

Then, applying the theory of Section 4.6.3, LNT memory N ′ can be calculated as
follows:

N ′ =
[
g← fN

]
∪[

fi [d]← [[mod (w j
i)]]LNT

(
Nj
i−1
) ∣∣ d1 ∈ D1, . . . , ds ∈ Ds, 1 ≤ i ≤ n

]
where Ni

′ corresponds to the LNT memory the moment succeeding the execution of
upd ji . By appeal to Theorem 4.6.2, we deduce that M ≈ N′, which establishes the truth
of Rule (4.33). The converse direction of the proof follows easily, which completes the
proof for case E = λ.

• Let E = E1.E2.

We consider tuple
〈
(ge ⇒ E1.E2,M), (B (E1.E2, ge), N)

〉
∈ R and transition (ge ⇒

E1.E2,M)
ρ1−→1 (E′1.E2,M

′), where ρ1 ∈ {αj (c), j ∈ 1..q | c is a vector of constants } ∪
{λ(fN)}.
Hence, we need to prove that if

(
B (E1.E2, ge), N

)
 2

(
B (E′1.E2, true), N′

)
, where

ρ2 ∈ {αj (c, fN), j ∈ 1..q} ∪ {λ(fN)} and fN is the value assigned to f by N as usual,
then it follows that

〈
(E′1.E2,M

′), (B (E′1.E2, true),N′)
〉
∈ R.

Then, the only applicable eb3 transition is the following:

[[ge]]M3 (M) = true (E1,M)
ρ1−→1 (E′1,M

′)

(ge⇒ E1.E2,M)
ρ1−→1 (E′1.E2,M′)

.

First, we replace eb3 process expression E with E1.E2 in relation (4.22). Then,
by virtue of identity relation “t (E1.E2, ge) = t (E1, ge). t (E2, true)”, LNT behaviour
B (E1. E2, ge) can be calculated as follows:

B (E1.E2, ge) = par α1, . . . , αq, λ in

t (E1, ge). t (E2, true) || loop g := f ; D end loop

end par

We suppose that
〈
(ge ⇒ E1,M), (B (E1, ge),N)

〉
∈ R and consider transition (ge ⇒

E1, M)
ρ1−→1 (E′1, M′), where ρ1 ∈ {αj (c), j ∈ 1..q | c is a vector of constants } ∪ {λ}.

By appeal to the induction principle, there should be transition
(
B (E1, ge),N

)
 2(

B (E′1, true),N′
)

that does not belong to δLNTE0
, where ρ2 ∈ {αj (c, fN), j ∈ 1..q} ∪ {λ}

such that
〈
(E′1, M

′), (B (E′1, true), N′)
〉
∈ R.

By way of the inductive principle, transition (B (E1, ge), N) 2 (B (E′1, true), N′)
induces the following set of reduction rules:

{loop g := f ; D end loop} N 1−→ ◦ 3−→ {loop g := f ; D end loop} N1 (4.46)

{t (E1, ge)} N 2−→ {t (E′1, true)} N2 (4.46)

(B (E1, ge), N) 2 (B (E′1, true), N′)
(4.47)

where N1 and N2 are intermediate LNT memories and M′ ≈ N′ by the inductive hy-
pothesis. Note that Rule (4.46) relates to the right construct of B (E1, true), i.e. to

4.6. PROOF OF EQUIVALENCE OF EB3 AND LNT SPECIFICATIONS 123

memory process M . By way of compositionality, it follows directly that:

{loop g := f ; D end loop} N 1−→ ◦ 3−→ {loop g := f ; D end loop} N1 (4.48)

{t (E1, ge). t (E2, true)} N 2−→ {t (E′1, true). t (E2, true)} N′′ (4.48)

(B (E1.E2, ge), N) 2 (B (E′1.E2, true), N′)
(4.49)

and, as a result,
〈
(E′1.E2,M

′), (B (E′1.E2, true),N′)
〉
∈ R.

• Let E =
√
.E2. We recall that

√
denotes complete execution. As a result, guard ge has

to be trivially true.

We consider tuple
〈
(
√
.E2,M), (B (

√
.E2, true), N)

〉
∈ R and transition (

√
.E2,M)

ρ1−→1

(E′2, M
′), where ρ1 ∈ {αj (c), j ∈ 1..q | c is a vector of constants } ∪ {λ}.

Hence, we need to prove that if
(
B (
√
.E2, true), N

)
 2

(
B (E′2, true), N′

)
, where label

ρ2 ∈ {αj (c, fN), j ∈ 1..q} ∪ {λ(fN)} and fN is the value assigned to f by N as usual,
it follows that

〈
(E′2,M

′), (B (E′2, true),N′)
〉
∈ R.

Hence, the only applicable eb3 transition is the following:

[[ge]]M3 (M) = true (E2,M)
ρ1−→1 (E′2,M

′)

(ge⇒ √.E2,M)
ρ1−→1 (E′2,M

′)
.

We suppose that
〈
(E2,M), (B (E2, true),N)

〉
∈ R and consider transition (E2, M)

ρ1−→1

(E′2, M′), where ρ1 ∈ {αj (c), j ∈ 1..q | c is a vector of constants } ∪ {λ}. By
appeal to the induction principle, there should be transition

(
B (E2, true),N

)
 2(

B (E′2, true),N′
)

that does not belong to δLNTE0
, where ρ2 ∈ {αj (c, fN), j ∈ 1..q} ∪ {λ}

such that
〈
(E′2, M

′), (B (E′2, true), N′)
〉
∈ R.

By appeal to the definition of Figure 4.3, t (
√
. E2, ge) can be transformed as follows:

t (
√
. E2, true) = t (

√
, true). t (E2, true) = null. t (E2, true) = t (E2, true).

Note that null has been removed for brevity. Hence, transition (B (E2, true), N) 2

(B (E′2, true), N′) induces the following set of reduction rules:

{loop g := f ; D end loop} N 1−→ ◦ 3−→ {loop g := f ; D end loop} N1 (4.50)

{t (E2, true)} N 2−→ {t (E′2, true)} N2 (4.50)

(B (E2, true), N) 2 (B (E′2, true), N′)
(4.51)

where N1 and N2 are intermediate LNT memories and M′ ≈ N′ by the inductive hypoth-
esis. Note that rule (4.50) relates to the right construct of B (E2, true), i.e. to memory
process M . Then, it follows easily that:

{loop g := f ; D end loop} N 1−→ ◦ 3−→ {loop g := f ; D end loop} N1 (4.52)

{t (E2, true)} N 2−→ {t (E′2, true)} N2 (4.52)

(B (
√
.E2, true), N) 2 (B (E′2, true), N′)

(4.53)

From Rule (4.53) and M′ ≈ N′, it follows that:〈
(E′2,M

′), (B (E′2, true),N′)
〉
∈ R.

124 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

• Let E = ge′ ⇒ E1.

We assume tuple
〈
(ge⇒ ge′ ⇒ E1,M), (B (ge′ ⇒ E1, ge),N)

〉
∈ R and transition (ge⇒

ge′ ⇒ E1,M)
ρ1−→1 (E′1, M

′), where ρ1 ∈ {αj (c), j ∈ 1..q | c is a vector of constants } ∪
{λ}.
Hence, we need to prove that if

(
B (ge′ ⇒ E1, ge), N

)
 2

(
B (E′1, true), N′

)
, where

ρ2 ∈ {αj (c, fN), j ∈ 1..q} ∪ {λ(fN)} and fN is the value assigned to f by N as usual,
it follows that

〈
(E′1,M

′), (B (E′1, true),N′)
〉
∈ R.

First, we make use of the following identity:

ge⇒ (ge′ ⇒ E1)
.
= (ge⇒ ge′)⇒ E1

By appeal to the definition of Figure 4.3, it follows that:

t(ge′ ⇒ E1, ge) = t(E1, ge andthen ge′)

Then, LNT behaviour B (ge′ ⇒ E1, ge) can be calculated as follows:

B (ge′ ⇒ E1, ge) = par α1, . . . , αq, λ in

t (E1, ge andthen ge′) || loop g := f ; D end loop

end par

= B (E1, ge andthen ge′)

The induction principle can, therefore, be applied to B (E1, ge andthen ge′) as E1 is
strictly smaller than ge′ ⇒ E1. The rest of the proof is obvious.

• Let E = E1|E2.

We consider tuple
〈
(ge ⇒ E1|E2,M), (B (E1|E2, ge), N)

〉
∈ R and transition (ge ⇒

E1|E2,M)
ρ1−→1 (E′1, M

′), where ρ1 ∈ {αj (c), j ∈ 1..q | c is a vector of constants }∪{λ}.
Hence, we need to prove that if

(
B (E1|E2, ge), N

)
 2

(
B (E′1, true), N′

)
, where ρ2 ∈

{αj (c, fN), j ∈ 1..q} ∪ {λ(fN)} and fN is the value assigned to f by N as usual, it
follows that:

〈(E′1,M′), (B (E′1, true),N′)
〉
∈ R.

Following one of the corresponding reduction rules of SemM, we may deduce that:

(E1,M)
ρ1−→1 (E′1, M

′) [[ge]]M3 (M) = true

(ge⇒ E1|E2,M)
ρ1−→1 (E′1, M

′)

Note also that “{mod (ge)} N →e true” is, by force of Theorem 4.6.3, equivalent to
“[[ge]]M3 (M) = true”.

By appeal to the definition of Figure 4.3, it follows that:

t(E1|E2, ge) = select t(E1, ge) [] t(E2, ge) end select

4.6. PROOF OF EQUIVALENCE OF EB3 AND LNT SPECIFICATIONS 125

Then, LNT behaviour B (E1|E2, ge) can be calculated as follows:

B (E1|E2, ge) = par α1, . . . , αq, λ in

t (E1|E2, ge) || loop g := f ; D end loop

end par

Hence, transition (B (E1, ge), N) 2 (B (E′1, true), N′) induces the following set of
reduction rules:

{loop g := f ; D end loop} N 1−→ ◦ 3−→ {loop g := f ; D end loop} N1 (4.54)

{t (E1, ge)} N 2−→ {t (E′1, true)} N2 (4.54)

(B (E1, ge), N) 2 (B (E′1, true), N′)
(4.55)

where N1 and N2 are intermediate LNT memories and M′ ≈ N′ by the inductive hypoth-
esis. Note that rule (4.54) relates to the right construct of B (E2, true), i.e. to memory
process M . Then, it follows easily that:

{t (E1, ge)} N 2−→ {t (E′1, true)} N2

{t (E1|E2, ge)} N 2−→ {t (E′1, true)} N2

(4.56)

{loop g := f ; D end loop} N 1−→ ◦ 3−→ {loop g := f ; D end loop} N1 (4.57)

(4.56) (4.57)

(B (E1|E2, true), N) 2 (B (E′1, true), N′)
(4.58)

From Rule (4.58) and M′ ≈ N′, it follows that:

〈(E′1,M′), (B (E′1, true),N′)
〉
∈ R.

• Let E = E∗0 and ge = true.

Hence, we consider tuple
〈
(E∗0 ,M), (B (E∗0 , true), N)

〉
∈ R and transition (E∗0 ,M)

ρ1−→1

(E′0.E
∗
0 , M

′), where ρ1 ∈ {αj (c), j ∈ 1..q | c is a vector of constants } ∪ {λ}.
Then, we need to prove that if

(
B (E∗0 , true), N

)
 2

(
B (E′0.E

∗
0 , true), N′

)
, where

ρ2 ∈ {αj (c, fN), j ∈ 1..q} ∪ {λ(fN)} and fN is the value assigned to f by N as usual,
it follows that

〈
(E′0.E

∗
0 ,M

′), (B (E′0.E
∗
0 , true),N′)

〉
∈ R.

The following eb3 reduction rule can be applied to eb3 expression E0:

(E0,M)
ρ1−→1 (E′0, M

′)

(E∗0 ,M)
ρ1−→1 (E′0.E

∗
0 , M

′)

By way of the induction principle, transition (B (E0, true), N) 2 (B (E′0, true), N′)
induces the following set of reduction rules:

{loop g := f ; D end loop} N 1−→ ◦ 3−→ {loop g := f ; D end loop} N1 (4.59)

{t (E0, true)} N 2−→ {t (E′0, true)} N2 (4.59)

(B (E0, true), N) 2 (B (E′0, true), N′)
(4.60)

126 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

where N1 and N2 are intermediate LNT memories and M′ ≈ N′ by the inductive hypoth-
esis. Note that rule (4.59) relates to the right construct of B (E0, true), i.e. to memory
process M .

By appeal to the definition of Figure 4.3, we may write that:

t (E0
∗, true) = loop LE0 in B1 end loop

where “B1 = select λ (?f); break LE0 [] t (E0, true) end select”.

The reduction rules induced by LNT transition (B (E∗0 , true), N) 2

(B (E′0.E
∗
0 , true), N2) are the following:

{loop g := f ; D end loop} N 1−→ ◦ 3−→ {loop g := f ; D end loop} N1 (4.61)

{t (E∗0 , true)} N 2−→ {t (E′0.E
∗
0 , true)} N2 (4.67)

(B (E∗0 , true), N) 2 (B (E′0.E
∗
0 , true), N2)

(4.62)

By appeal to the definition of Figure 4.3, it follows directly that:

t (E′0.E
∗
0 , true) = t (E′0, true). t (E∗0 , true)

LNT behaviour t (E′0) does not contain any command of the form “break LE0”. Hence,
t (E′0.E

∗
0 , true) can be transformed as follows:

t (E′0.E
∗
0 , true) = trap L in t (E′0, true) else t (E∗0 , true) end trap

{t(E0, true)} N 2−→ {t(E′0.E∗0 , true)} N2

{B1} N 2−→ {t(E′0.E∗0 , true)} N2

(4.63)

Note that, according to the standard definition of the trap construct, LNT behaviour
t (E′0, true) is executed first. In the following, we stipulate that:

B′0 = trap L in t (E′0, true) else t (E∗0 , true) end trap.

Hence, we may write that:

(4.63)

{trap L in B1 else t (E∗0 , true) end trap} N 2−→ {B′0} N2

(4.64)

(4.64)

{t (E∗0 , true)} N 2−→ {B′0} N2

(4.65)

Replacing B′0 with t(E′0, true) in (4.65), we obtain the reduction rules induced by LNT

transition {t (E0, true)} N ρ2−→b {t (E′0.E
∗
0 , true)}:

(4.64)

{t (E∗0 , true)} N 2−→ {t(E′0.E∗0 , true)} N2

(4.66)

4.6. PROOF OF EQUIVALENCE OF EB3 AND LNT SPECIFICATIONS 127

From Rule (4.66) and M′ ≈ N′, it follows directly that:

〈(E′0.E∗0 ,M′), (B (E′0.E
∗
0 , true),N′)

〉
∈ R.

Now, we consider tuple
〈
(E∗0 ,M), (B (E∗0 , true), N)

〉
∈ R and transition (E∗0 ,M)

λ−→1

(
√
, M). Then, we need to prove that if

(
B (E∗0 , true), N

)
 2

(
B (
√
, true), N′

)
,

where ρ2 = λ(fN) and fN is the value assigned to f by N as usual, it follows that〈
(
√
,M′), (B (

√
, true),N′)

〉
∈ R.

The following eb3 reduction rule can be applied to eb3 expression E∗0 :

(E∗0 ,M)
λ−→1 (
√
, M)

Transition (B (E0, true), N) 2 (B (
√
, true), N) induces the following set of reduction

rules:

{loop g := f ; D end loop} N 2−→ {loop g := f ; D end loop} N1 (4.67)

{t (E∗0 , true)} N λ(fN)−−−−→ ◦ brk(LE0
)−−−−−−→b {t (

√
, true)} N2 (4.67)

(B (E∗0 , true), N) 2 (B (
√
, true), N′)

(4.68)

where N1 and N2 are intermediate LNT memories, “
2−→ .

=
λ(fN)−−−−→ ◦ brk(LE0

)−−−−−−→b” and M′ ≈
N′ by the inductive hypothesis. Note that rule (4.67) relates to the right construct of
B (E0, true), i.e. to memory process M .

By appeal to the definition of Figure 4.3, we may write that:

t (E0
∗, true) = loop LE0 in B1 end loop

where “B1 = select λ (?f); break LE0 [] t (E0, true) end select”.

(4.69) (4.70)

{t (E∗0 , true)} N λ(fN)−−−−→ ◦ brk(LE0
)−−−−−−→b {t (

√
, true)

.
= stop}

We stipulate that “B′1 = trap L in break LE0 else t (E∗0 , true) end trap”. Then,
Rule (4.69) takes the following form:

{trap L in B1 else t (E∗0 , true) end trap} N λ(fN)−−−−→b {B′1} N

{t (E∗0 , true)} N λ(fN)−−−−→b {B′1} N
(4.69)

and Rule (4.70) denoting breaking from the loop and termination is defined as follows:

{break LE0} N
brk(LE0

)−−−−−−→b {stop} N
{B′1} N

exit−−→b {B (
√
, true)

.
= stop} N

(4.70)

From Rule (4.70) and M ≈ N, it follows that:

〈(√,M (B (
√
, true),N)

〉
∈ R.

128 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

• Let E = E1 |[∆]|E2 and ge = true.

Hence, we consider tuple
〈
(E1 |[∆]|E2,M), (B (E1 |[∆]|E2, true), N)

〉
∈ R and tran-

sition (E1 |[∆]|E2,M)
ρ1−→1 (E′1 |[∆]|E2, M

′), where transition label ρ1 ∈ {αj (c), j ∈
1..q | c is a vector of constants } ∪ {λ}.
Then, we need to prove that if

(
B (E1 |[∆]|E2, true), N

)
 2(

B (E′1 |[∆]|E2, true), N′
)
, where ρ2 ∈ {αj (c, fN), j ∈ 1..q} ∪ {λ(fN)}

and fN is the value assigned to f by N as usual, it follows that〈
(E′1 |[∆]|E2,M

′), (B (E′1 |[∆]|E2, true),N′)
〉
∈ R.

By appeal to the definition of Figure 4.3, it follows directly that:

t (E1 |[∆]|E2, true) = par ∆ in t (E1, true) || t (E2, true) end par (4.71)

The following eb3 reduction rule can be applied to eb3 expression E1 |[∆]|E2:

(E1,M)
ρ1−→1 (E′1, M

′)

(E1 |[∆]|E2, M)
ρ1−→1 (E′1 |[∆]|E2, M′)

¬in(ρ1,∆)

Hence, transition (B (E1, true), N) 2 (B (E′1, true), N) induces the following set of
reduction rules:

{loop g := f ; D end loop} N 1−→ ◦ 3−→ {loop g := f ; D end loop} N1 (4.72)

{t (E1, true)} N 2−→ {t (E′1, true)} N2 (4.72)

(B (E′1, true), N) 2 (B (
√
, true), N′)

(4.73)

where N1, and N2 are intermediate LNT memories such that “N′
.
= N⊕ (N2	N)⊕ (N1	

N)” and M′ ≈ N′ by the inductive hypothesis. Note that rule (4.72) relates to the right
construct of B (E0, true), i.e. to memory process M . Then, it follows easily that:

{t (E1, true)} N 2−→ {t (E′1, true)} N2

{t (E1 |[∆]|E2, true)} N 2−→ {t (E′1 |[∆]|E2, true)} N2

(4.74)

{loop g := f ; D end loop} N 1−→ ◦ 3−→ {loop g := f ; D end loop} N1 (4.75)

(4.74) (4.75)

(B (E1 |[∆]|E2, true), N) 2 (B (E′1 |[∆]|E2, true), N′)
(4.76)

as only construct t (E1, true) is affected. From Rule (4.76) and M′ ≈ N′, it follows
directly that:

〈(E′1 |[∆]|E2,M
′), (B (E′1 |[∆]|E2, true),N′)

〉
∈ R.

Now, transition (E1 |[∆]|E2,M)
ρ1−→1 (E′1 |[∆]|E′2, M′) is similar and will, therefore,

not be treated.

Unfortunately, transition (
√
|[∆]|

√
,M)

λ−→1 (
√
, M) inducing the following trivial eb3

reduction rule:

(
√
|[∆]|

√
,M)

λ−→1 (
√
, M)

4.6. PROOF OF EQUIVALENCE OF EB3 AND LNT SPECIFICATIONS 129

cannot be simulated by the corresponding LNT reduction rule:

{B (
√
, true)

.
= null} N exit−−→b {stop} N {B (

√
, true)

.
= null} N exit−−→b {stop} N

(B (
√
|[∆]|

√
, true), N)

exit−−→b (stop 6 .= B (
√
, true), N)

(4.77)

The reason lies in the fact that the inert action λ used to denote execution of eb3 process√
|[∆]|

√
cannot be matched to LNT communication label

exit−−→b, as if we assume

that “B (
√
, true)

.
= null”, no transition of the form “(B (

√
|[∆]|

√
, true), N)

exit−−→b

(B (
√
, true), N)” can take place in rule (4.77). However, bisimilarity between TSeb3

and TSLNT is restored if we remove the inert transition (
√
|[∆]|

√
,M)

λ−→1 (
√
, M)

from the set of eb3 reduction rules, while we consider that (
√
|[∆]|

√
) is an equivalent

form of
√

.

• Let E = P (v). From Figure 4.3, it follows that ge = true.

Hence, we consider tuple
〈
(P (v),M), (B (P (v), true), N)

〉
∈ R. Let also transition

(P (v),M)
ρ1−→1 (E′, M′), where ρ1 ∈ {αj (c), j ∈ 1..q | c is a vector of constants }∪{λ}.

Then, we need to prove that if
(
B (P (v), true), N

)
 2

(
B (E′, true), N′

)
, where ρ2 ∈

{αj (c, fN), j ∈ 1..q} ∪ {λ(fN)} and fN is the value assigned to f by N as usual, it
follows that

〈
(E′,M′), (B (E′, true),N′)

〉
∈ R.

By appeal to the definition of Figure 4.3, it follows directly that:

t (P (v), true) = P [α1, . . . , αq, λ] (v) (4.78)

The following eb3 reduction rule can be applied to eb3 expression P (v):

(E[x := v],M)
ρ1−→ (E′,M)

(P (v),M)
ρ1−→ (E′,M′)

P (x) = E

By way of the induction principle, transition (B (E[x := v], true), N) 2

(B (E′, true), N) induces the following set of reduction rules:

{loop g := f ; D end loop} N 1−→ ◦ 3−→ {loop g := f ; D end loop} N1 (4.79)

{t (E[x := v], true)} N 2−→ {t (E′, true)} N2 (4.83)

(B (E[x := v], true), N) 2 (B (E′, true), N′)
(4.80)

where N1, and N2 are intermediate LNT memories such that “N′
.
= N ⊕ (N2 	 N) ⊕

(N1	N)” and M′ ≈ N′ by the inductive hypothesis. Note that rule (4.83) relates to the
right construct of B (E[x := v], true), i.e. to memory process M . Then, by replacing
E[x := v] with P (v) in (4.84), we obtain the following reduction rules:

{loop g := f ; D end loop} N 1−→ ◦ 3−→ {loop g := f ; D end loop} N1 (4.81)

{t (P (v), true)} N 2−→ {t (E′, true)} N2 (4.81)

(B (P (v), true), N) 2 (B (E′, true), N′)
(4.82)

From Rule (4.82) and M′ ≈ N′, it follows directly that:

〈(E′,M′), (B (E′, true),N′)
〉
∈ R.

130 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

• In all other cases, for which ge does not use attribute functions, the proof goes as follows:

We consider tuple
〈
(ge ⇒ E,M), (B (E, ge), N)

〉
∈ R. Let also transition (ge ⇒

E,M)
ρ1−→1 (E′, M′), where ρ1 ∈ {αj (c), j ∈ 1..q | c is a vector of constants } ∪ {λ}.

Then, we need to prove that if
(
B (ge ⇒ E, true), N

)
 2

(
B (E′, true), N′

)
, where

ρ2 ∈ {αj (c, fN), j ∈ 1..q} ∪ {λ(fN)} and fN is the value assigned to f by N, it follows
that

〈
(E′,M′), (B (E′, true),N′)

〉
∈ R.

By way of the induction principle, transition (B (E, true), N) 2 (B (E′, true), N)
induces the following set of reduction rules:

{loop g := f ; D end loop} N 1−→ ◦ 3−→ {loop g := f ; D end loop} N1 (4.83)

{t (E, true)} N 2−→ {t (E′, true)} N2 (4.83)

(B (E, true), N) 2 (B (E′, true), N′)
(4.84)

where N1, and N2 are intermediate LNT memories such that “N′
.
= N⊕ (N2	N)⊕ (N1	

N)” and M′ ≈ N′ by the inductive hypothesis. Note that rule (4.83) relates to the right
construct of B (E[x := v], true), i.e. to memory process M .

– By appeal to the definition of Figure 4.3, it follows directly that:

t (E, ge) = if mod (ge) then t (E, true) else stop end if

The following eb3 reduction rule can be applied to eb3 expression ge⇒ E:

(E,M)
ρ1−→ (E′,M′) [[ge]]M3 (M) = true

(ge⇒ E,M)
ρ1−→ (E′,M′)

We recall that evaluation “[[ge]]M3 (M) = true” is, by force of Theorem 4.6.3, equiv-
alent to “{mod (ge)} N→e true” that will be used later.

Then, by slightly transforming (4.84), we obtain the following reduction rules:

{loop g := f ; D end loop} N 1−→ ◦ 3−→ {loop g := f ; D end loop} N1(4.85)

{t (E, true)} N 2−→ {t (E′, true)} N2 {mod (ge)} N→e true

{if mod (ge) then t (E, true) else stop end if} N 2−→ {t (E′, true)} N2

(4.86)

(4.86) (4.85)

(B (E, ge), N) 2 (B (E′, true), N′)
(4.87)

From Rule (4.87) and M′ ≈ N′, it follows directly that:

〈(E′,M′), (B (E′, true),N′)
〉
∈ R.

– If “[[ge]]M3 (M) = true”, then TSeb3 blocks. Similarly, “t(E, ge) = stop” and TSLNT
blocks too.

– If ge uses attribute functions, then the proof goes as follows: By appeal to the
definition of Figure 4.3, it follows directly that:

t (E, ge) = par α1, . . . , αq, λ in (4.88)

t (E, true) || prge [α1, . . . , αq, λ] (vars (ge))

end par

4.6. PROOF OF EQUIVALENCE OF EB3 AND LNT SPECIFICATIONS 131

Rule (4.89) denotes synchronization on communication label αj (xN , fN) between
the left and right construct of t(E, ge) for some j ∈ {1, . . . , q}. Moreover,
Rule (4.90) is part of the induction principle that remains unchanged. Now, let
the following definitions:

N3
.
= N⊕ [start← false]

N4
.
= N′ ⊕ [start← false]

Hence, we obtain the following reduction rules:

{t (E, true)} N 2−→ {t (E′, true)} N2 (4.94)

{t (E, ge)} N 2−→ {t (E′, true)} N2

(4.89)

{loop g := f ; D end loop} N 1−→ ◦ 3−→ {loop g := f ; D end loop} N1(4.90)

(4.89) (4.90)

(B (E, ge), N) 2 (B (E′, true), N3)
(4.91)

Let also the following LNT behaviours:

B1
.
= select

α1 (?x, ?f) where mod (ge) [] . . . [] αq (?x, ?f) where mod (ge)

end select

B2
.
= select α1 (?x, ?f) [] . . . [] α1 (?x, ?f) end select

B3
.
= select

if start then start := false;B1 else B2 end if [] break L

end select

B4
.
= loop L in B3 end loop

Hence, the definition of prC can be modified as follows:

process prC [α1, . . . , αq, λ : any] (vars (C) : type (vars (C))) is

var start : bool, x : T ac, f : T in
start := true; B4

end var
end process

Let also the following definitions:

B5
.
= trap L in B3 else B4 end trap

B6
.
= trap L in B1 else B4 end trap

B7
.
= trap L in null else B4 end trap

Rule (4.94) denotes reduction of prge [α1, . . . , αq, λ] (vars (ge)). In particular, vari-
able start is initially set to true, then changes to false, mod(ge) is evaluated to

132 CHAPTER 4. TRANSLATION OF EB3 TO LOTOS-NT (LNT)

true, and communication label αj (xN , fN) is executed.

{B4} N⊕ [start← true]
exit−−→b {B1} N3

{B5} N⊕ [start← true]
exit−−→b {B6} N3

(4.92)

(4.96)

{B6} N3
αj (xN ,fN)−−−−−−−→b {B7} N3

(4.93)

{start := true} N exit−−→s N⊕ [start← true] (4.92) (4.93)

{prge [α1, . . . , αq, λ] (vars (ge))} N 2−→ {B7} N3

, (4.94)

where “
2−→ .

=
exit−−→b ◦

αj (xN ,fN)−−−−−−−→b”. Note that, by way of the standard semantics
regarding the trap construct, B7 can be substituted by B4. Moreover, Rule (4.96)
unfolds the following set of rules:

{mod (ge)} N3 →e true {αj (?x, ?f)} N3
αj (xN ,fN)−−−−−−−→b {null} N3

{αj (?x, ?f) where mod (ge)} N3
αj (xN ,fN)−−−−−−−→b {null} N3

(4.95)

(4.95)

{B1} N3
αj (xN ,fN)−−−−−−−→b {null} N3

(4.96)

Note that evaluation “[[ge]]M3 (M) = true” is, by force of Theorem 4.6.3, equivalent
to “{mod (ge)} N3 →e true

.
= {mod (ge)} N →e true”, since variable start cannot

appear syntactically in mod (ge). Furthermore, Rule (4.96) has no effect on LNT
memory N3, as xN and fN are the respective values assigned by LNT memory N
to vectors x and f . From Rule (4.96), M′ ≈ N′, and N4 = N′ ⊕ [start ← false], it
follows directly that:

〈(E′,M′), (B (E′, true),N4)
〉
∈ R.

If communication label αj (xN , fN) is substituted by λ(fN), the proof follows
similar lines.

Similarly, if start is equal to false, then Rule (4.96) can be modified as follows:

αj (?x, ?f)} N3
αj (xN ,fN)−−−−−−−→b {null} N3

{B1} N3
αj (xN ,fN)−−−−−−−→b {null} N3

(4.97)

and the rest of the proof remains unchanged.

4.7 Conclusion

We proposed an approach for equipping the eb3 method with formal verification capabilities
by reusing already available model checking technology. Our approach relies upon a new
translation from eb3 to LNT, which provides a direct connection to all the state-of-the-art

4.7. CONCLUSION 133

verification features of the CADP toolbox. The translation, based on alternative memory se-
mantics of eb3 [VD13] instead of the original trace semantics [FSt03], was automated by the
eb32lnt translator and validated on several examples of typical ISs. So far, we experimented
only the model checking of MCL data-based temporal properties on eb3 specifications. How-
ever, CADP also provides extensive support for equivalence checking and compositional LTS
construction, which can be of interest to IS designers. We also provided a partial formal
proof of the translation from eb3 to LNT, which could serve as reference for translating eb3

to other process algebras as well.
As future work, we plan to study abstraction techniques for verifying properties regardless

of the number of entity instances that participate in the IS, following the approaches for
parameterized model checking [ABJ+99]. In particular, we will observe how the insertion of
new functionalities into an IS affects this issue, and we will formalize this in the context of
eb3 specifications.

Chapter 5

Verification of Temporal Properties

5.1 Model Checking Language

In this section, we define the syntax and the formal semantics of the Model Checking Lan-
guage (MCL) [MT08]. MCL is an extension of the alternation-free modal µ-calculus [Eme86]
with action predicates enabling value extraction, modalities containing extended regular ex-
pressions on transition sequences, quantified variables and parameterized fixed point oper-
ators, programming language constructs, and fairness operators encoding generalized Büchi
automata. These features make possible a concise and intuitive description of safety, liveness,
and fairness properties involving data, without sacrificing the efficiency of on-the-fly model
checking, which has a linear-time complexity for the dataless MCL formulas [MT08].

In particular, MCL consists of data expressions e, action formulas α and state formulas φ.
Let a set of data variables X and a set of function identifiers F with standard interpretation.
Data expressions e are defined as follows:

e ::= x | f(e1, . . . , en),

where x ∈ X and f ∈ F denoting typed function identifiers.

Action formulas α consist of:

• action patterns of the form {c !e1 . . . !en} such that, if action {c v1 . . . vn} occurs,
vk matches expression ek for k ∈ {1, . . . , n},

• action patterns of the form {c ?x1 : T1 . . . ?xn : Tn}1 such that, if action {c v1 . . . vn}
occurs, vk is assigned to variable xk for k ∈ {1, . . . , n}, and

• usual Boolean operators.

To sum up, the abstract syntax of action formulas α is given by the following grammar:

α ::= {c !e1 . . . !en} | {c ?x1 : T1 . . . ?xn : Tn} | ¬α | α1 ∧ α2 | α∗

Let propositional variables Y ∈ Y that denote functions F : T1× . . .×Tn → 2S ∈ F , where
T1, . . . , Tn are domains and S is the state space. State formulas consist of data expressions,
propositional variables Y ∈ Y, boolean operators, quantifiers and fixed point operators.

1Tk denotes xk’s type as well as the corresponding domain of elements that can be assigned to xk

134

5.1. MODEL CHECKING LANGUAGE 135

Note also that fixed point operations fall within the scope of an even number of nega-
tions (MCL formulas µ(. . .)Y.φ and ν(. . .)Y.φ are syntactically monotonic) [Koz83]. For the
efficiency of model checking, mutual recursion between minimal and maximal fixed point
operators is not allowed [EL+86].

We assign values to propositional variables x ∈ X appearing in expressions e and action
formulas α that are denoted as δ : X → T1∪ . . .∪Tn. Moreover, we assign functions to all free
propositional variables Y appearing in MCL state formulas that are denoted as ρ : Y → F .
Notations “µY.φ” and “νY.φ” denote the corresponding fixed points of monotonic functions
over Y → 2S .

Other useful operators like if and case can also be used to construct MCL formulas. Their
definition is found in [MT08].

Action patterns are enriched with additional features such as the wilcard clause any that
matches any value and the “where V ” clause denoting that the pattern-matching takes place
on condition that condition V evaluates to true. Remark that parameters ?x : T can appear
syntactically in V .

The abstract syntax of MCL state formulas is given by the following grammar:

φ ::= e | ¬φ | φ1 ∨ φ2 | 〈α 〉 φ | µY. φ

| exists x1 : T1, . . . , xn : Tn. φ | Y (e1, . . . , en)

| let x1 : T1 := e1, . . . , xn : Tn := en in φ end let

| if φ1 then φ′1 elsif φ2 then φ′2 else φ′3 end if

| case e is p1 → φ1 | . . . | pn → φn end case

The necessity modality is the dual of possibility modality “[α] φ = ¬〈α 〉 ¬φ”. The max-
imal fixed point operator is the dual of the minimal fixed point operator: “ν(. . .)Y.φ =
¬µ(. . .)Y.¬φ[Y/¬Y]”, where [Y/¬Y] denotes the syntactic substitution of Y by ¬Y . Note
that “〈α∗ 〉 φ” is syntactic sugar for “µY (φ ∨ 〈β 〉 Y)”.

The semantics of expressions, action formulas and state formulas is given below:

Expressions

[[x]]δ = δ(x)

[[f(e1, . . . , en)]]δ = f([[e1]]δ, . . . , [[en]]δ)

Action formulas

[[{c !e1 . . . !en}]]δ = {c[[e1]]δ . . . [[en]]δ}}
[[{c?x1 : T1 . . . ?xn : Tn}]]δ = {cv1 . . . vn | ∀1 ≤ i ≤ n, vi ∈ Di}

[[¬α]]δ = A \ [[α]]δ

[[α1 ∨ α2]]δ = [[α1]]δ ∪ [[α2]]δ

envα({c ?x1 : T1 . . . ?xn : Tn})δ = [x1 ← v1, . . . , xn ← vn],where α
.
= c v1 . . . vn

envα({c ?x1 : T1 . . . ?xn : Tn})δ = [], otherwise

136 CHAPTER 5. VERIFICATION OF TEMPORAL PROPERTIES

State formulas

[[e]]ρ δ = {s ∈ S | [[e]]δ}
[[¬φ]]ρ δ = S \ [[φ]]ρ δ

[[φ1 ∨ φ2]]ρ δ = [[α1]]ρ δ ∪ [[α2]]ρ δ

[[〈α 〉 φ]]ρ δ = {s ∈ S | ∃s α−→ s′. a ∈ [[α]]δ ∧ s′ ∈ [[φ]]ρ
(
δ ⊕ enva(α)

)
}

[[exists x1 : T1, . . . , xn : Tn. φ]]ρ δ = {s ∈ S | ∃v1 : T1, . . . , vn : Tn. a ∈ [[α]]δ ∧
s ∈ [[φ]]ρ

(
δ ⊕ [x1 ← v1, . . . , xn ← vn]

)
}

[[Y (e1, . . . , en)]]ρ δ = ρ(Y)([[e1]]δ, . . . , [[en]]δ)

[[µY. φ]]ρ δ =
⋂
{ T ⊆ S | T ⊆ [[φ]](ρ⊕ [Y ← T])δ }

[[let x1 : T1 := e1, . . . , xn : Tn := en in

φ end let]]ρ δ = [[φ]]ρ (δ ⊕ [x1 ← [[e1]]δ, . . . , xn ← [[en]]δ),

where ⊆ is the set inclusion operator. A state s satisfies a formula φ denoted as s |= φ if and
only if s ∈ [[φ]][][]. An LTS M = 〈S,A, T, s0 〉 satisfies a formula φ denoted as M |= φ if
and only if s0 |= φ.

MCL’s expressiveness is not limited to safety and liveness properties. Deadlock freedom is
formalized as “[true∗] 〈 true 〉 true”. The fair reachability [QS83] of an action a is formalized
as “[(¬a)∗] 〈 (¬a)∗.a 〉 true”. For more complex fairness properties, we use the infinite looping
operator ∆β of PDL-∆ [Str82], denoted as β@ in MCL, which states the existence of an
infinite (unfair) sequence made by concatenating subsequences satisfying β.

5.2 Library Management System Revisited

We illustrate below the application of the eb32lnt translator in conjunction with CADP for
analyzing an extended version of the IS library management system, whose description in
eb3 can be found in Annex C of [Ger06]. With respect to the simplified version presented
in Chapter 2, the IS enables e.g., members to renew their loans and to reserve books, and
their reservations to be cancelled or transferred to other members on demand. The desired
behaviour of this IS was characterized in [FFC+10] as a set of 15 requirements expressed
informally as follows:

R1. A book can always be acquired by the library when it is not currently acquired.

R2. A book cannot be acquired by the library if it is already acquired.

R3. An acquired book can be discarded only if it is neither borrowed nor reserved.

R4. A person must be a member of the library in order to borrow a book.

R5. A book can be reserved only if it has been borrowed or already reserved by some member.

R6. A book cannot be reserved by the member who is borrowing it.

R7. A book cannot be reserved by a member who is reserving it.

5.2. LIBRARY MANAGEMENT SYSTEM REVISITED 137

R8. A book cannot be lent to a member if it is reserved.

R9. A member cannot renew a loan or give the book to another member if the book is
reserved.

R10. A member is allowed to take a reserved book only if he owns the oldest reservation.

R11. A book can be taken only if it is not borrowed.

R12. A member who has reserved a book can cancel the reservation at anytime before he
takes it.

R13. A member can relinquish library membership only when all his loans have been returned
and all his reservations have either been used or cancelled.

R14. Ultimately, there is always a procedure that enables a member to leave the library.

R15. A member cannot borrow more than the loan limit defined at the system level for all
users.

5.2.1 MCL Formulas for Requirements R1 to R15

We expressed all the above requirements using the property specification language
MCL [MT08]. MCL is an extension of the alternation-free modal µ-calculus [Eme86] with ac-
tion predicates enabling value extraction, modalities containing extended regular expressions
on transition sequences, quantified variables and parameterized fixed point operators, pro-
gramming language constructs, and fairness operators encoding generalized Büchi automata.
These features make possible a concise and intuitive description of safety, liveness, and fair-
ness properties involving data, without sacrificing the efficiency of on-the-fly model checking,
which has a linear-time complexity for the dataless MCL formulas [MT08].

We show below the MCL formulation of two requirements from the list above, which denote
typical safety and liveness properties. Requirement R2 is expressed in MCL as follows:

[true∗.{ACQUIRE ?B : string}.(not {DISCARD !B})∗.{ACQUIRE !B}] false

This formula uses the standard safety pattern “[β] false”, which forbids the existence of
transition sequences matching the regular formula β. Here the undesirable sequences are those
containing two Acquire operations for the same book B without a Discard operation for B in
the meantime. The regular formula true∗ matches a subsequence of (zero or more) transitions
labeled by arbitrary actions. Note the use of the construct “?B : string”, which matches
any string and extracts its value in the variable B used later in the formula. Therefore, the
above formula captures all occurrences of books carried by Acquire operations in the model.
Requirement R12 is formulated in MCL as follows:

[true∗.{RESERVE ?M : string ?B : string}.
(not ({TAKE !M !B} or {TRANSFER !M !B}))∗]
〈 (not ({TAKE !M !B} or {TRANSFER !M !B}))∗. {CANCEL !M !B} 〉 true

This formula denotes a liveness property of the form “[β1] 〈β2〉 true”, which states that
every transition sequence matching the regular formula β1 (in this case, book B has been
reserved by member M and subsequently neither taken nor transferred) ends in a state from

138 CHAPTER 5. VERIFICATION OF TEMPORAL PROPERTIES

which there exists a transition sequence matching the regular formula β2 (in this case, the
reservation can be cancelled before being taken or transferred).

Requirement R7 can be formulated as follows:

[true∗ . {RESERVE ?M : string ?B : string} . (not ({TAKE !M !B} or {CANCEL !M !B}))∗ .
{RESERVE !M !B}] false

5.2.2 Verification of the Library Management System

Using eb32lnt, we translated the eb3 specification of the library management system to
LNT. The resulting specification was checked against all the 15 requirements, formulated in
MCL, using the EVALUATOR 4.0 model checker of CADP. The experiments were performed
on an Intel(R) Core(TM) i7 CPU 880 at 3.07GHz. Table 5.1 shows the results for several
configurations of the IS for NbLoans = 1, obtained by instantiating the number of books (m)
and members (p) in the IS. All requirements were shown to be valid on the IS specification.
The second and third line of the table indicate the number of states and transitions of the LTS
corresponding to the LNT specification. The fourth line gives the time needed to generate
the LTS and the other lines give the verification time for each requirement. Note that the
number of states generated increases with the size of m and p as EVALUATOR 4.0 applies
explicit techniques for state space generation.

Comparison with [FFC+10] We recall that CADP was used in [FFC+10] for the verifi-
cation of a version of the library management system with similar functionalities. According
to the same paper, the time needed to generate the corresponding LTS for NbLoans = 1,
was 970.2 sec approximately, the average time needed to verify the system requirements was
74.63 sec and no information is provided for the size of the LTS, which means that no reliable
comparison of the two works is possible. Note also that the LNT specification, to whom the
results of Table 5.1 are related, was automatically generated by eb32lnt, whereas the results
of [FFC+10] correspond to a manual LNT specification of the library management system.

5.3 File Transfer System Revisited

We express in MCL the system requirements related to the simplified file transfer system of
Chapter 4 and model-check them with CADP.

5.3.1 MCL Formulas for Requirements P1 to P6

Requirement P1 “A client C sends a file transfer request " Rqt !F !C" to the server
interface regarding file F . Ultimately, if file F is stocked in server S, there is always a
procedure that forwards the previous request to server S " Fwd !F !C" . ”

5.3. FILE TRANSFER SYSTEM REVISITED 139

Table 5.1: Model checking results for the library management system
(m, p) (3,2) (3,3) (3,4) (4,3)

states 1,002 182,266 8,269,754 27,204,016

trans. 5,732 1,782,348 105,481,364 330,988,232

time 1.9s 14.4s 31’39s 140’22s

R1 0.3s 1.8s 5’19s 20’13s

R2 0.2s 2.9s 9’26s 36’7s

R3 0.2s 9.4s 97’46s 26’47s

R4 0.2s 1.7s 5’15s 18’40s

R5 0.2s 2.2s 6’46s 21’52s

R6 0.2s 4.1s 38’30s 10’19s

R7 0.2s 7.4s 65’22s 24’33s

R8 0.2s 2.2s 6’52s 22’27s

R9 0.2s 2.3s 6’38s 22’29s

R10 0.3s 13.3s 43’59s 62’07s

R11 0.3s 2.5s 6’36s 22’14s

R12 0.3s 4.0s 10’47s 45’09s

R13 0.4s 4.3s 11’46s 36’07s

R14 0.3s 3.6s 10’41s 37’33s

R15 0.2s 2.8s 7’53s 28’56s

macro R1 (F,C) =
(

[(not ({Chown !F ?any} or {Rqt !F ?any))∗. {Rqt !F !C}]
〈 (not ({Fwd !F ?any))∗ . {Fwd !F ?S : string

where (((F = ”F1”) and (S = ”S1”)) or ((F = ”F2”) and (S = ”S2”)))} 〉 true
and
[true∗ . {Chown !F ?S : string} . (not ({Chown !F ?any} or {Rqt !F !C}))∗.
{Rqt !F !C}] 〈 {not ({Fwd !F ?any))∗ . Fwd !F !C !S} 〉 true

)
end macro
P1("F1", "C1") and P1("F2", "C2")

We assume that file F1 is initially stocked in server S1 and that file F2 is initially stocked
in server S2. Hence, the first conjunct in formula R1 is a classical liveness property expressing
the eventuality that the file transfer request reaches the server in question provided that
the file does not change owner in the meantime. The second conjunct assumes that the file
requested changes ownership first. The rest of the formula has a similar interpretation as
usual.

Requirement P2 “The message should only be sent to one client at a time. In particular,
if request message " Fwd !F !C !S" from client C regarding file F reaches server S via the
server interface, then file F eventually is sent from server S and reaches client C. Moreover,
no pieces of file F can be sent from any other server S1 6= S to any other client C1 6= C. ”

140 CHAPTER 5. VERIFICATION OF TEMPORAL PROPERTIES

macro P2 (F,C) =
(

[true∗ . {Fwd ?F : string ?C : string ?S : string} . (not ({Trans !F !S !C}))∗]
〈 {Trans !F !S !C} 〉 true
and
[true∗ . {Fwd ?F : string ?C : string ?S : string} . (not ({Trans !F !S !C}))∗ .
{Trans !F ?S1 : string ?C1 : string where (S1 6= S) or (C1 6= C)}] false

and
[true∗ . {Fwd ?F : string ?C : string ?S : string} . (not ({Trans !F !S !C}))∗
{Trans !F !S !C} . (not ({Trans !F !S !C}))∗]
〈 Trans !F !S !C 〉 true
and
[true∗ . {Fwd ?F : st ring ?C : string ?S : string} . (not ({Trans !F !S !C}))∗
{Trans !F !S !C} . (not ({Trans !F !S !C}))∗ .
{Trans !F ?S1 : string ?C1 : string where (S1 6= S) or (C1 6= C)}] false

)
P2()

We assume that every file is truncated into 2 equal pieces. The first conjunct expresses
the eventuality that a forward request for certain file will be followed by the transfer of a
part of the requested file from the server that is the actual owner of this file to the client
that requested it. Compared to the first conjunct, the second conjunct being a purely safety
property predicates that no other server transfers pieces of the requested file to the client
initially requesting it and that no other client receives pieces of the requested file. The third
conjunct differs from the first conjunct in that it refers to the second part of the requested
file. Similar is the relation of the fourth conjunct to the second conjunct.

A generic MCL formula (an independent from the size of the requested file formula) is
impossible under the present MCL model checker capabilities. In order to achieve this, we
would have to extract the exact size of each file from array sizef . However, the extraction of
information from complex data structures is actually not supported.

Requirement P3 “The server interface can set the owner of file F to server S2 via com-
munication label "Chown !F !S2" provided that F is not being transferred to any client.
”

macro P3 (F,C) =
(

[(not ({Chown !F ?S1 : string where S1 6= S)})∗) . {Rqt !F ?C : string} .
(not ({Ack !F !S !C)∗) . {Chown !F ?S2 : string where S2 6= S).
(not ({Ack !F !S !C)∗) . (Ack !F !S !C)] false

and
[true . {Chown !F !S}) . {Rqt !F ?C : string} .
(not ({Ack !F !S !C)∗) . {Chown !F ?S2 : string where S2 6= S).
(not ({Ack !F !S !C)∗) . (Ack !F !S !C)] false

)
end macro

5.3. FILE TRANSFER SYSTEM REVISITED 141

P3("F1", "C1") and P3("F2", "C2")

This property corresponds to the pattern “α1 does not occur between α2 and α3”, which
is expressed by the following scheme, easily recognizable in this formula:

[true∗ . α2 . (not α3)∗ . α1 . (not α3)∗ . α3] false

In particular, communication labels "Chown !F ?S : string" cannot occur between commu-
nication labels "Rqt !F ?C : string" and "Ack !F !S !C". File F1 is initially stocked in
server S1 and file F2 is initially stocked in server S2 as usual.

Requirement P4 “The maximum number of file requests is limited to 2. ”

macro P4() =
(

[true∗ . {Rqt ?F1 : string ?C : string} . (not ({Rqt ?F2 : string ?C : string})∗) .
{Rqt ?F3 : string !C} . (not ({Rqt ?F4 : string !C}))∗ . {Rqt ?F5 : string !C}]

false
)

end macro
P4()

Requirement P4 is a classical safety property. The previous formula is equivalent is equivalent
tot the MCL formula expressed in natural language as follows:

“There is no execution path containing 3 commmunication labels of the form " Rqt ?F :
string ?C : string" .

Requirement P5 “If file F is being transferred to client C, no other client can ask for F ,
unless the acknowledgement packet " Ack !F !S !C" has been sent to client C (denoting
correct termination of the file transmission).

macro P5 (F,C) =
(

[(not ({Chown !F ?S1 : string)})∗) . {Rqt !F ?C : string} .
(not ({Ack !F !S !C)∗) . {Rqt !F ?C2 : string where C2 6= C).
(not ({Ack !F !S !C)∗) . (Ack !F !S !C)] false

and
[true . {Chown !F ?S1 : string}) . (not ({Chown !F ?S2 : string)∗) .
{Rqt !F ?C : string} . (not ({Ack !F !S !C)∗) .
{Rqt !F ?C2 : string where C2 6= C) .
(not ({Ack !F !S1 !C)∗) . (Ack !F !S1 !C)] false

)
end macro
P5("F1", "C1") and P5("F2", "C2")

The first conjunct denotes that no communication label "Rqt !F ?C1" can occur between
communication labels "Rqt !F !C" and "Ack !F !S !C". The second conjunct is similar.

142 CHAPTER 5. VERIFICATION OF TEMPORAL PROPERTIES

Table 5.2: Model checking results for the Simplified File Transfer System
(c, s) (3,2) (3,3) (3,4) (4,3) (4,4) (4,5) (5,4)

states 9,519 21,376 37,965 110,341 196,113 306,381 899,733

trans. 23,502 56,517 106,980 284,514 532,056 872,390 2,381,004

time 2.1s 2.3s 2.5s 3.1s 4.1s 5.4s 11.1

P1 0.6s 0.8s 0.9s 1.6s 2.4s 3.9s 13.5

P2 0.5s 0.7s 0.9s 2.1s 4.0s 6.7s 29.3

P3 0.6s 0.7s 0.8s 1.4s 2.1s 3.0 11.4

P4 0.3s 0.5s 0.7s 1.7s 3.4s 5.6 32.8

P5 0.6s 0.8s 1.1s 2.3s 3.8s 6.1 24.2

P6 0.5s 0.4s 0.4s 0.5s 0.6s 0.6 1.0

Requirement P6 “While a file is being transferred to client C, C can ask for a second file.
As a means not to exceed the upper limit on the total numbers of requests, we must make sure
that no other requests are made in the meantime.

macro P6 (F1, C1) =
(

[(not ({Rqt !F1 ?C1 : string} or {Rqt !F2 ?C1 : string})∗))
{Chown !F1 ?S : string)}
(not ({Chown !F1 ?S2 : string)} or {Rqt !F1 ?C1 : string} or {Rqt !F2 ?C1 : string})∗) .
{Rqt !F1 ?C : string}]
〈 (not ({Ack !F1 !S !C} or {Rqt !F2?C1 : string})∗) . {Rqt !F2 ?C} 〉 true

)
end macro
P6("F1", "C1") and P6("F2", "C2")

5.3.2 Verification of the Simplified File Transfer System

Table 5.2 shows the results for several configurations of the LNT simplified file transfer system
Specificaton, obtained by instantiating the number of clients (c) and servers (s) in the IS. All
requirements were shown to be valid on the IS specification as expected.

5.4 Conclusion

In this chapter, we presented the experimental results related to the verification with MCL of
the LNT specifications that were generated by eb32lnt corresponding to the library manage-
ment system and the simplified file transfer system. We also demonstrated how the functional
requirements for each system were specified in MCL. The basic drawback of our approach in
general is that the functional requirements cannot be generated automatically as is the case
for LNT specifications. Instead, they should be expressed manually in MCL, which implies
that eb3 users should be familiar with MCL’s syntax and expressivity.

Chapter 6

Parametric Model Checking (PMC)

6.1 Introduction

Parametric systems are systems, whose behaviour is scaled in keeping with the predefined
value of a system parameter. The parametric model checking problem (pmcp) consists in
deciding whether a temporal property is true for a parametric system regardless of the value
assigned to its system parameter. In this paper, we study the pmcp for a particular class of
information systems expressed in process algebra eb3. We define the parctl, which covers
a subset of the ctl∗ without the next-time operator x, as the temporal logic to describe the
properties preserved in the parametric system. We then determine the conditions that render
eb3 models parametric.

6.2 Background

The combinatorial blow-up of the state-space representation of a concurrent system, also
known as state-space explosion, is a usual limitation of conventional model checking tech-
niques. Many approaches have been employed to combat state-space explosion, among which
symbolic methods [BMC+92], bounded model checking [BCC+99], partial order reduction
[GP93, KP88] and abstraction techniques [CC77, CGL92, DGG97, LGS+95]. The study of
finite state concurrent systems with component-wise symmetry, such as caches, bus protocols
and network protocols, gave birth to a new branch of abstraction techniques, the so-called
symmetry-based model checking [CEF+96, ESW96, ID96]. Symmetry-based techniques ex-
ploit the system symmetry to define permutation groups that preserve the system’s state
labelling and transitions. Such groups specify bisimulation equivalences on the state space
and the induced (by the bisimulation relations) quotient model, often smaller than the original
one, is used to verify properties in ctl∗ [EH82] of the original model.

A wide range of concurrent systems, whose state-based models are susceptible to potential
state-space explosion, can be classified as parametric systems. Parametric systems contain
one or more system parameters that are natural numbers in most cases and can vary giving
different instances of these systems. The parametric model checking problem (pmcp) is the
model checking problem of parametric systems. Unluckily, it was proven to be undecidable
in [AK86]. Since then, substantial model checking techniques [CGB86, EK00, EN95, HBR09]
have aimed to limit the pmcp to frameworks that render the problem decidable. They focus
on establishing an equivalence relation between instances Nn and Nn+1 of the parametric

143

144 CHAPTER 6. PARAMETRIC MODEL CHECKING (PMC)

system1. This allows to find cut-offs c such that for any n ≥ c and temporal property
φ, Nn satisfies φ if and only if Nc satisfies φ, denoted by Nc |= φ ⇔ ∀n ≥ c : Nn |= φ.
PMC techniques are closely-related to symmetry-based techniques; the difference being in the
equivalence relation obtained. In the pmcp, instance Nn+1 is related to Nn with stuttering
bisimulation equivalence, which implies that the fragment of ctl∗ to be preserved, has to
be insensitive to repeated occurences of the same state. In other words, only ctl∗\x (ctl∗

without the next-time operator x) is preserved.

The rest of this chapter is organised as follows: Section 6.3 treats the PMC for the library
management system directly on the LTS level. Section 6.4 generalizes the approach for
eb3 specifications. Section 6.5 evaluates our technique and compares it existing approaches.
Finally, Section 6.6 summarizes the results and draws up lines for future work.

6.3 State-based PMC

The formal verification of information systems (ISs) with the use of model checking techniques
is hampered by state space explosion [FFC+10, VLD+13]. Inspired by the PMC abstraction
techniques developed in [CGB86, EN95], we apply similar reasoning to address the problem
in the context of ISs. In this section, we apply our adapted abstraction technique on the
state-based specifications describing ISs.

First, we introduce the notion of parametric transition systems (PTSs) defined on index
sets. A PTS TSn defined on index set N with cardinality n is an LTS enriched with special
atomic propositions indexed with values from N . We, then, define the notion of stuttering
bisimulation equivalence for PTSs. Stuttering bisimulation equivalence preserves a fragment
of the ctl∗ that we call parametric ctl (parctl). parctl interpreted over PTSs includes all
of the ctl∗ with the exception of the next-time operator x. In addition, it permits formulas
of the form ∨iΦi and ∧iΦi, where Φi is a formula of this logic and i belongs to the index set
of the PTS in question.

We study a library management system the desired behaviour of which was characterized
in [Ger06]. We specify the library management system as a PTS TSp with index set MID
denoting the IDs of potential members participating in the IS; p being equal to MID’s car-
dinality. Alternatively, one could use book IDs to reason about the system. As a first step,
we show that the temporal properties, in which we are interested, can be expressed in the
parctl. Then, we prove that TSp and TSp−1 are stuttering bisimilar. We move on to prove
that TSp−1 and TSp−2 are stuttering bisimilar etc. Repeating this procedure and exploit-
ing compositionality, model checking TSp against parctl properties can be reduced to model
checking some PTS TSc with c < p against the same parctl properties, whose special atomic
propositions are indexed with values among c potential member IDs. We reason about the
optimal (minimal) value of c depending on the system specifications. We call c the cut-off
value for MID’s cardinality. Since the cardinality of TSc ’s index set is strictly less than the
cardinality of TSp ’s index set, the use of PMC on verifying temporal properties of TSp oughts
to be very effective.

6.3.1 Theoretical Framework

Definition 6.3.1. Parametric Transition Systems (PTSs)

1Nn denotes the instance for system parameter equal to n∈N

6.3. STATE-BASED PMC 145

A Parametric Transition System (PTS) TSm is a tuple (S ,→, s0 ,AP ,BP ,N ,L), where:

• S is a set of states,

• →⊆ S × S is a transition relation2,

• s0 is the initial state,

• AP is a set of atomic propositions,

• N is a set of indexed values (index set) with cardinality m

• BP is a set of atomic propositions,

• L : S → P(AP) ∪ P(BP ×N)3 is the labelling function assigning elements of AP and
indexed elements of BP with values from N to states of TSm

4.

Definition 6.3.2. Paths and Partitions of Paths
Let TS = (S ,→, s0 ,AP ,BP ,N ,L) be a PTS. A path π in TS is an (infinite) sequence s0s1 . . .
of states si ∈ S such that si → si+1 with i ≥ 0. For integer i ≥ 0, πi stands for the (i+1)-th
state of path π and πi.. stands for the subsequence of π starting from πi. A partition of path π
is denoted by S1S2 . . . such that if sj ∈ Si, then |S1|+. . .+|Si−1| < j ≤ |S1|+. . .+|Si−1|+|Si|,
where |Si| denotes the number of states in Si.

Definition 6.3.3. Stuttering Bisimulation for PTSs
Let TS1 = (S1,→1, s

0
1, AP,BP,N1, L1) and TS2 = (S2,→2, s

0
2, AP,BP,N2, L2) be two PTSs.

Let E ⊆ N1×N2 be a total relation over sets N1 and N2, which we call correspondence relation
of PTSs TS1 and TS2. A stuttering bisimulation relation between TS1 and TS2 is defined as
a set of relations R .

= {Rj,k ⊆ S1 × S2 | for j ∈ N1, k ∈ N2 with (j, k) ∈ E} such that for
every s1 ∈ S1, s2 ∈ S2, and (s1, s2) ∈ Rj,k, the following conditions are satisfied:

i) (s0
1, s

0
2) ∈ Rj,k,

ii) for all A ∈ AP , it follows that A ∈ L1(s1)⇔ A ∈ L2(s2) and for all B ∈ BP , it follows
that Bj ∈ L1(s1) ∩ (BP × {j})⇔ Bk ∈ L2(s2) ∩ (BP × {k}),

iii) if s1 →1 s
′
1 such that (s′1, s2) 6∈ Rj,k, then there exists a finite path fragment s2u1 . . . uns

′
2

in TS2 such that n ≥ 0, (s1, ui) ∈ Rj,k, i = 1, . . . , n, and (s′1, s
′
2) ∈ Rj,k,

iv) if s2 →2 s
′
2 such that (s1, s

′
2) 6∈ Rj,k, then there exists a finite path fragment s1u1 . . . uns

′
1

in TS1 such that n ≥ 0, (s2, ui) ∈ Rj,k, i = 1, . . . , n, and (s′1, s
′
2) ∈ Rj,k.

Definition 6.3.3.ii denotes, on the one hand, equality among unindexed atomic proposition
labels for states s1 and s2. On the one hand, it introduces a notion of correspondence among
indexed atomic labels of state s1 and state s2 based on relation E over N1 and N2. Notice
that E oughts to be total over index sets N1 and N2, i.e. for all c ∈ N1, there exists d ∈ N2

such that (c, d) ∈ E and vice-versa. In the following, we say that TS1 is stuttering bisimular
to TS2 if there is a stuttering bisimulation relation R between TS1 and TS2 . Furthermore,
for states s1 ∈ S1, s2 ∈ S2 such that (s1, s2) ∈ Rc,d, we say that s1 and s2 are stuttering
bisimular states with respect to Rc,d.

2we write s1 → s2 instead of (s1, s2) ∈→
3P(K) is the dynamic set of set K
4we write Bj ∈ BP ×N instead of (B, j) ∈ BP ×N

146 CHAPTER 6. PARAMETRIC MODEL CHECKING (PMC)

Definition 6.3.4. ctl∗\x Let TSm = (S ,→, s0 ,AP ,L) be an LTS. ctl∗\x formulas are
defined as follows:

Φ ::= α true Φ1 ∧ Φ2 ¬Φ ∃φ
φ ::= Φ ¬φ φ1 ∧ φ2 φ1Uφ2.

Definition 6.3.5. Parametric CTL (PARCTL)

Let TSm = (S ,→, s0 ,AP ,N ,BP ,L) be a PTS. Parametric CTL (parctl) formulas are
defined as follows:

Φ ::= α true Φ1 ∧ Φ2 ¬Φ ∃φ ⊕Ψ

Ψ ::= Φ β

φ ::= Φ ¬φ φ1 ∧ φ2 φ1Uφ2.

Basic ingredients of parctl are atomic propositions α ∈ AP , Boolean connectors like
conjunction ∧, disjunction ∨, and negation ¬. We may derive propositional logic operators,
such as disjunction ∨, and → as usual. parctl consists mainly of two types of formulas:

• state formulas Φ expressing properties of states,

• intermediary formulas Ψ that are prefixed by operator ⊕, and

• path formulas φ expressing properties of paths.

In particular, complex state formulas are obtained by prefixing path formulas either with the
path quantifier ∃ (for “some path”) or the path quantifier ∀ (for “all paths”). The universal
path quantifier ∀ can be defined by way of existential quantification and negation: ∀φ = ¬∃¬φ.
The absence of the usual next-time operator x of the ctl∗ is to note among the usual path
formula operators of ctl∗ used in the parctl. As opposed to ctl∗, parctl formulas may
contain the parametric operator ⊕ that is related to the atomic propositions b ∈ BP . The
abstract syntax of parctl is further restricted as follows:

• Operator ⊕ cannot appear syntactically in formulas embedded within the scope of other
operators ⊕, e.g. ⊕(α ∧ β ∧ ⊕β) is not a valid parctl state formula.

• Operator ⊕ cannot appear syntactically in path formulas φ1 and φ2 of complex path
formulas φ1Uφ2.

We derive the temporal operators ♦, and � with the aid of the temporal operator U as
follows: ♦φ = trueUφ, and �φ = ¬♦¬φ.

We define an auxiliary function N , whose role is to associate a parctl formula to a ctl∗\x
formula.

Definition 6.3.6. From the PARCTL to the ctl∗\x
Let TS be a PTS (S ,→, s0 ,AP ,N ,BP ,L) and let Φ be a parctl state formula. The effect
of function N on state formula Φ is defined as follows:

N (Φ ::= true) = true N (α) = α N (⊕Ψ) =
∨
i∈N N (Ψ)

N (Φ1 ∧ Φ2) = N (Φ1) ∧N (Φ2) N (¬Φ) = ¬N (Φ) N (∃φ) = ∃N (φ)

6.3. STATE-BASED PMC 147

the effect of N on intermediary formula Ψ is defined as follows:

N (Ψ ::= Φ) = N (Φ) N (β) = βi

and the effect of N on path formula φ is defined as follows:

N (φ ::= Φ) = N (Φ) N (φi ∧ φ2) = N (φ1) ∧N (φ2)
N (¬φ) = ¬N (φ) N (φ1U φ2) = N (φ1)U N (φ2).

Definition 6.3.7. Satisfaction Relation for the ctl∗\x
Let TS = (S,→, s0, AP, L) be an LTS. The satisfaction relation |= for ctl∗\x state formulas
Φ to is defined inductively on the structure of Φ as follows:

TSm, s |= true

TSm, s |= α ∈ AP ⇔ α ∈ L(s) TSm, s |= Φ1 ∧ Φ2 ⇔ TSm, s |= Φi, i = 1, 2

TSm, s |= ¬Φ⇔ TSm, s 6|= Φ TSm, s |= ∃φ⇔ TSm, π |= φ for some π ∈ Paths(s),

where Paths(s) denotes the paths in TSm starting from state s. For path π, the satisfaction
relation |= for restricted parctl path formulas φ is derived as below:

TSm, π |= Φ⇔ TSm, π0 |= Φ

TSm, π |= ¬φ⇔ TSm, π 6|= φ

TSm, π |= Φ1 ∧ Φ2 ⇔ TSm, π |= Φ1 and TSm, π |= Φ2

TSm, π |= φ1Uφ2 ⇔
there exists j ≥ 0 such that TSm, πj .. |= φ2, and for all 0 ≤ k < j, TSm, πk.. |= φ1.

ctl∗\x formulas are interpreted over the states and the paths of given LTS of the form:

TSm = (S ,→, s0 ,AP ,L).

The notation TSm , s |= f denotes that state formula f holds at state s of TSm , whereas
TSm , π |= g denotes that path formula g holds along path π of TSm . Formula ∃φ holds in
state s if there exists some path satisfying φ that starts from s. Dually, formula ∀φ holds in
s if all paths starting in s satisfy φ. Formula φ1Uφ2 holds for a path if there is some state
along the path for which φ2 holds, and φ1 holds in all states prior to that state.

Theorem 6.3.1. Stuttering bisimulation equivalence over paths of PTSs
Let TSmi = (Si,→i, s

0
i , AP,Ni, BP,Li), i = 1, 2 be stuttering bisimilar PTSs. Let E be the

correspondence relation and let R be the stuttering bisimilation relation between TSm1, and
TSm2. We consider j ∈ N1 and k ∈ N2 such that (j, k) ∈ E. For states s1 ∈ S1, s′1 ∈ S2

such that (s1, s
′
1) ∈ Rj,k and for every (infinite) path π = s1s2 . . . in TSm1, there should be a

corresponding path π′ = s′1s
′
2 . . . in TSm2 such that:

• π can be partitioned into S1S2 . . ., and π′ can be partitioned into S′1S
′
2 . . .

• for all j ∈ 1.., s ∈ Sj, and s′ ∈ S′j, s is stuttering bisimilar to s′, i.e. (s, s′) ∈ Rj,k.

Proof. We prove this by induction on the length of path π.

• Let π be a path of length one, i.e. trivially π = s1. Then, π′ = s′1.

148 CHAPTER 6. PARAMETRIC MODEL CHECKING (PMC)

S1 Sn

S′1 S′n
s′1

s1

s′p. . .

. . .

.

sl

S1 Sn

S′1 S′n

s1

s′1

sl+1

. . . s′p

. sl

Figure 6.1: Partitioning of π and π′ for (sl+1, s
′
p) ∈ Rcd

S1 Sn

S′1 S′n
s′1

s1

s′p. . .

. . .

.

sl

S′1 S′n S′n+1

S1 Sn Sn+1

. . .

s1

s′p+1.

sl

u1 un. . .

. sl+1

s′1 s′p

Figure 6.2: Partitioning of π and π′ for (sl+1, s
′
p) 6∈ Rcd

• Let π = s1s2 . . . sl. By the inductive hypothesis, there exists a partition for finite path
π equal to S1 . . . Sn, and there exists a path π′ = s′1s

′
2 . . . s

′
p in TSm2 with corresponding

partition S′1 . . . S
′
n such that for all j ∈ 1..n, and s ∈ Sj , s′ ∈ S′j , we have (s, s′) ∈ Rj,k.

Now, let’s consider a valid path πsl+1, i.e. sl+1 ∈ {s | sl →1 s}. By way of TSm1 and
TSm2 being stuttering bisimilar (Definition 6.3.3), we have that:

1. if (sl+1, s
′
p) ∈ Rj,k, then state sl+1 can be added to Sn, and S′n remains unchanged.

Hence, the partition for path πsn+1 becomes S1 . . . Sn, where Si = Si, for i < n
and Sn = Snsn+1. The partition for π′ becomes S

′
1 . . . S

′
n, S

′
i = S′i, for i ≤ n.

2. if (sl+1, s
′
p) 6∈ Rj,k, there exists a finite path fragment s′pu1 . . . ums

′
p+1 in TS2 with

m ≥ 0 and (sl, ui) ∈ Rj,k, 0 < i ≤ m and (sl+1, s
′
p+1) ∈ Rj,k. Then, a new

fragment Sn+1 containing sl+1 can be concatenated to the existing partition for π.
States u1, . . ., um can be added to the existing fragment S′n. Hence, the partition
for path πsl+1 becomes S1 . . . SnSn+1, where Si = Si, for i ≤ n and Sn+1 = sn+1.
The partition for π′u1 . . . ums

′
p+1 becomes S

′
1 . . . S

′
nS
′
n+1, where S

′
i = S′i, for i < n,

S
′
n = S′nu1 . . . um, and S

′
n+1 = s′p+1. Notice that the balance5 for both cases i) and

ii) remains zero ensuring that the inductive procedure is sound.

Regarding Theorem 6.3.1, we say that paths π and π′ are stuttering bisimilar with regards to
Rc,d. Notice that the converse of Theorem 6.3.1 is valid too. Figure 6.1 depicts the inductive
construction of partitions Sn and S′n (sl+1, s

′
p) ∈ Rj,k, as well as the stuttering bisimilarity

between corresponding states. Figure 6.4 treats the complementary case (sl+1, s
′
p) 6∈ Rj,k.

Theorem 6.3.2. Preservation of the PARCTL
Let TSmi = (Si,→i, s

0
i , AP,Ni, BP,Li), i = 1, 2 be stuttering bisimilar PTSs. Let E be the

correspondence relation and let R be the stuttering bisimilation relation of TSm1 and TSm2.
For stuttering bisimilar states s1 ∈ S1, s′1 ∈ S2 with regards to R, i.e. (s1, s

′
1) ∈ Rc,d and

stuttering bisimilar paths π = s1s2 . . . in TSm1, π′ = s′1s
′
2 . . . in TSm2 with regards to R, it

follows that:

5the difference between the number of state fragments into which π and π′ are partitioned

6.3. STATE-BASED PMC 149

• TSm1 , s1 |= N1(Φ)⇔ TSm2 , s
′
1 |= N2(Φ) for every parctl state formula Φ.

• TSm1 , π |= N1(φ)⇔ TSm2 , π
′ |= N2(φ) for every parctl path formula φ.

Proof. We proceed with structural induction on parctl state formula Φ and parctl path
formula φ.

• Φ = true. It holds trivially.

• Φ = α ∈ AP .

TSm1 , s1 |= N1(α) = α⇔ α ∈ L1(s1) (Def. 6.3.6, 6.3.7)

for all (s1, s
′
1) ∈ Rc,d, α ∈ AP, α ∈ L1(s1)⇔ α ∈ L2(s′1) (Def. 6.3.3.ii)

α ∈ L2(s′1)⇔ TSm2 , s
′
1 |= N2(α) = α (Def. 6.3.7, 6.3.6)

By way of transitivity, it follows that:

TSm1 , s1 |= N1(α)⇔ TSm2 , s
′
1 |= N2(α).

• Φ = ¬Φ1.

TSm1 , s1 |= N1(¬Φ1) = ¬N1(Φ1)⇔ TSm1 , s1 6|= N1(Φ1) (Def. 6.3.6, 6.3.7)

TSm1 , s1 6|= N1(Φ1)⇔ TSm2 , s
′
1 6|= N2(Φ1) (Induction Hypothesis)

TSm2 , s
′
1 6|= N2(Φ1)⇔ TSm2 , s

′
1 |= N2(¬Φ1) = ¬N2(Φ1) (Def. 6.3.7, 6.3.6)

By way of transitivity, it follows that:

TSm1 , s1 |= N1(¬Φ1)⇔ TSm2 , s
′
1 |= N2(¬Φ1).

• Φ = ⊕Ψ.

• Let Ψ = β.

TSm1 , s1 |= N1(⊕β) =
∨
i∈N1

βi ⇔ for some c ∈ N1, βc ∈ L1(s1) (Def. 6.3.6, 6.3.7)

for all (s1, s
′
1) ∈ Rc,d, d ∈ N2, (c, d) ∈ E , βc ∈ L1(s1)⇔ βd ∈ L2(s′1) (Def. 6.3.3.ii)

βd ∈ L2(s′1)⇔ TSm2 , s
′
1 |= βd =

∨
i∈N2

βi = N2(⊕β) (Def. 6.3.7, 6.3.6)

By way of transitivity, it follows that:

TSm1 , s1 |= N1(⊕β)⇒ TSm2 , s
′
1 |= N2(⊕β).

The proof for the opposite direction is similar.

• Let Ψ = Φ′.

for some c ∈ N1, TSm1 , s1 |= N1(⊕Ψ′) =
∨
i∈N1

N1(Ψ′) = N1(Ψ′)[i← c]

(Def. 6.3.6 and 6.3.7)

for some d ∈ N2 such that (c, d) ∈ E and

TSm1 , s1 |= N1(Ψ′)[i← c]⇔ TSm2 , s
′
1 |= N2(Ψ′)[i← d] (Induction Hypothesis)

TSm2 , s
′
1 |= N2(Ψ′)[i← d] =

∨
i∈N2

N2(Ψ′) = N2(⊕Ψ′) (Def. 6.3.7, 6.3.6)

150 CHAPTER 6. PARAMETRIC MODEL CHECKING (PMC)

By way of transitivity, it follows that:

TSm1 , s1 |= N1(⊕Ψ′)⇒ TSm2 , s
′
1 |= N2(⊕Ψ′).

The proof for the opposite direction is similar.

• Φ = Φ1 ∧ Φ2.

TSm1 , s1 |= N1(Φ1 ∧ Φ2)⇔ for i = 1, 2, TSm1 , s1 |= N1(Φi) (Def. 6.3.6, 6.3.7)

for i = 1, 2, TSm1 , s1 |= N1(Φi)⇔ for i = 1, 2, TSm2 , s
′
1 |= N2(Φi) (Induction Hypothesis)

TSm2 , s
′
1 |= N2(Φi), i = 1, 2⇔ TSm2 , s

′
1 |= N2(Φ1 ∧ Φ2) (Def. 6.3.7, 6.3.6)

By way of transitivity, it follows that:

TSm1 , s1 |= N1(Φ1 ∧ Φ2)⇔ TSm2 , s
′
1 |= N2(Φ1 ∧ Φ2).

• Φ = ∃φ.

TSm1 , π |= N1(∃φ)⇔ for some π ∈ Paths(s1), TSm1 , π |= N1(φ) (Def. 6.3.6, 6.3.7)

there exist struttering bisimilar paths π, π′ such that:

TSm1 , π |= N1(φ)⇔ TSm2 , π
′ |= N2(φ) (Induction Hypothesis)

for some π′ ∈ Paths(s′1), TSm2 , π
′ |= N2(φ)⇔ TSm2 , s

′
1 |= N2(∃φ) (Def. 6.3.7, 6.3.6)

By way of transitivity, it follows that:

TSm1 , π |= N1(∃φ)⇒ TSm2 , π
′ |= N2(∃φ).

The proof for the opposite direction is similar.

• φ = φ1 ∧ φ2. This case is similar to Φ = Φ1 ∧ Φ2.

• φ = ¬φ1. This case is similar to Φ = ¬Φ1.

• φ = Φ.

TSm1 , π |= N1(Φ)⇔ TSm1 , π0 |= N1(Φ) (Def. 6.3.6, 6.3.7)

TSm1 , π0 |= N1(Φ)⇔ TSm2 , π
′
0 |= N2(Φ) (Induction Hypothesis)

TSm2 , π
′
0 |= N2(Φ)⇔ TSm2 , π

′ |= N2(Φ) (Def. 6.3.7, 6.3.6)

The validity check of path formula φ over path π translates to the validity check of state
formula Φ over the first state of π, i.e. π0. The induction hypothesis is applicable over
state formula Φ, and π0 = s1. By way of transitivity, it follows that:

TSm1 , π |= N1(Φ)⇒ TSm2 , π
′ |= N2(Φ).

The proof for the opposite direction is similar.

6.3. STATE-BASED PMC 151

• φ = Φ1UΦ2. By force of Def. 6.3.6, it is found that N1(Φ1UΦ2) = N1(Φ1)UN1(Φ2).
Then, by Def. 6.3.7, it follows that:

TSm1 , π |= N1(φ1Uφ2)⇔ there exists j ≥ 0 such that: (6.1)

TSm1 , πj .. |= N1(φ2) and ∀k < j, TSm1 , πk.. |= N1(φ1)

Due to Theorem 6.3.1, there should be path π′ ∈ TSm2 such that π′0 = s′1 permitting
the partitioning of path π into S1S2 . . ., and the partitioning of path π′ into S′1S

′
2 . . .

such that for all j ∈ 1.., s ∈ Sj , and s′ ∈ S′j , state s be stuttering bisimilar to state
s′, i.e. (s, s′) ∈ Rc,d. Conforming to (6.1), let πj be the state belonging to Sr for
which TSm1 , πj .. |= N1(φ2). This means that it should be “|S1| + . . . + |Sr−1| < j ≤
|S1| + . . . + |Sr−1| + |Sr|”. πj .. is obtained by eliminating the first j states in π. In
other words, the prefix S1 . . . Sr−1, and the first “j − |S1| − . . . − |Sr−1|” states in Sj
are removed from path π to obtain πj ... Note that for l = |S′1|+ . . .+ |S′r−1|, path π′l..
will be stuttering bisimilar to πj ... By way of the induction hypothesis, we have that
TSm1 , πj .. |= N1(φ2) ⇔ TSm2 , π

′
l.. |= N2(φ2). For 0 ≤ m < l, there is index k with

0 ≤ k < j such that πk.. be stuttering bisimilar to π′m... Note that k is strictly inferior
to j, because l corresponds to the first state in S′r. Then, TSm1 , πk.. |= N1(φ1) ⇔
TSm2 , πm.. |= N2(φ1), for all 0 ≤ m < l (Induction Hypothesis). As a result, we obtain
the following:

TSm2 , π
′ |= N2(φ1Uφ2)⇔ there exists l ≥ 0 such that:

TSm2 , π
′
l.. |= N2(φ2), and ∀m < l, TSm2 , π

′
m.. |= φ1,

which leads to TSm1 , π |= N1(φ1Uφ2)⇒ TSm2 , π
′ |= N2(φ1Uφ2). With similar reason-

ing, and by way of the converse of Theorem 6.3.2, we prove that the opposite direction
of Theorem 6.3.2 for φ = Φ1UΦ2.

6.3.2 System Specification

We provide here a succinct description in natural language of a simplified version of the library
management system of [Ger06]. The following specifications have been selected among the
standard specifications of the system on the grounds that they account for a PTS, which is
amenable to PMC:

R1. A book can always be acquired by the library when it is not currently acquired.

R2. A book cannot be acquired by the library if it is already acquired.

R3. An acquired book can be discarded only if it is not borrowed.

R4. A person must be a member of the library in order to borrow a book.

R5. A member can relinquish library membership only when all his loans have been returned.

R6. Ultimately, there is always a procedure that enables a member to leave the library.

152 CHAPTER 6. PARAMETRIC MODEL CHECKING (PMC)

6.3.3 Formalization

Let the library management system be specified by the following PTS:

TSp = (Sp,→p, s
0
p, AP,Np, BP,Lp).

Natural p, which serves as the system parameter, stands for the maximum number of persons
entitled to register. Alternatively, one could reason over the maximum number of books m
available for acquisition. The actual set of books is denoted by BID = {1, . . . ,m} and the set
of persons eventually obtaining membership in the library is denoted by MID = {1, . . . , p}.
Let also atomic proposition acqi denote acquisition of book i by the library and let regj
denote that j registers to become member of the library. Atomic proposition bori,j signifies
that member j borrows book i. The set of atomic propositions characterizing states in TSp
is defined as AP = {acq1, . . . , acqm} and the indexed set of atomic propositions is defined as
BP = {reg, bor1, . . . , borm}. For state s ∈ Sp, we specify A = {i | acqi ∈ Lp(s)} that stands
for the index set of books currently acquired by the library. The index set of registered
members is denoted by M = {j | regj ∈ Lp(s)} and the current loans are denoted by
B = {(i, j) | bori,j ∈ Lp(s)}. Hence, the proposition labelling of TSp is defined alternatively
as follows:

Lp(s) = {acqi| i ∈ A} ∪ {regj | j ∈M} ∪ {bori,j | (i, j) ∈ B},
the set of states in TSp is represented as Sp = { s | Lp(s) = 〈A,B,M〉 }, the initial state of
Sp is defined as s0

p = 〈∅, ∅, ∅〉 and the transition relation →p of TSp is given by the following
formula:

→p = { (s, s′) | Lp(s) = 〈A,B,M〉, Lp(s′) = 〈A′, B′,M ′〉 such that (6.2)

(∀i ∈ 1..m, {i} ∩A = ∅ ∧ modA(A ∪ {i})) (6.3)

⊗ (∀i ∈ A, ∀j ∈M, {(i, j)} ∩B = ∅ ∧ modA(A \ {i})) (6.4)

⊗ (∀j ∈ 1..p, {j} ∩M = ∅ ∧ modM (M ∪ {j})) (6.5)

⊗ (∀i ∈ A, ∀j ∈M, {(i, j)} ∩B = ∅ ∧ modM (M \ {j})) (6.6)

⊗ (∀i ∈ A, ∀j ∈M, {(i, j)} ∩B = ∅ ∧ modB(B ∪ {(i, j)})) (6.7)

⊗ (∀i ∈ A, ∀j ∈M, (i, j) ∈ B ∧ modB(B \ {(i, j)})) } (6.8)

Rules (6.3)-(6.8) describe all possible operations occurring in the system. Rule (6.3) refers to
book acquisitions (ACQ). Rule (6.4) refers to book removals by the library (DIS). Notice that
removals are possible only for books that are not being currently lent to members. Rule (6.5)
refers to member registrations (REG). Rule (6.6) denotes the option for membership removal
(UNREG) on condition that the member in question does not owe any book to the library.
Rule (6.7) describes loans carried out by members of the library and (6.8) denotes returning
books to the library. The use of the XOR operator ⊗ ensures asynchronous and unique
execution of operations in every step. The expression modx(x′ = f(x)) appearing in the body
of the aforementioned rules expresses a special kind of predicate on the current and the primed
values of set variable x ∈ {A,B,M}. The values of variables belonging to {A,B,M} \ {x}
remain unchanged after operation completion. For example, predicate modA(A ∪ {i}) is
equivalent to “A′ = A ∪ {i} ∧ B′ = B ∧M ′ = M”. Figure 6.3 displays the PTSs simulating
the library management system for configurations (m = 1, p = 1) and (m = 1, p = 2). Initial
states s0

1 ∈ TS1 and s0
2 ∈ TS2 are denoted by blank (unlabelled) nodes in both graphs.

Transitions are bidirectional.

6.3. STATE-BASED PMC 153

acq1

acq1, reg1

reg1

acq1, reg1,

bor1,1

acq1, reg1

acq1, reg2

reg1, reg2

acq1, reg2,

bor1,2

acq1, bor1,2,

reg1, reg2

reg1

reg2

acq1, bor1,1,

reg1, reg2

acq1

acq1, reg1,

bor1,1

acq1,

reg1, reg2

Figure 6.3: Library management system for (m = 1, p = 1) and (m = 1, p = 2)

6.3.4 Temporal Properties over TSp

We formalize the specifications of Section 6.3.2 in the parctl. The point is to make sure
that the formalization of Section 6.3.3 conforms to the system’s desired behaviour. Most
specifications of Section 6.3.2 can be translated in the parctl as follows:

R1. ∧i ∀� (¬acqi → ∃♦ acqi)
R3. ∧i ∀� (∧j¬bori,j ∧ acqi → ∃ (∧j¬bori,j ∧ acqiU¬acqi)) ∧ ∧i∀� (¬acqi → ∧j¬bori,j)
R4. ∧j ¬∀� (¬regj → ∃ (¬regjU ∨i bori,j))
R5. ∧j ∀� (∧i¬bori,j → ∃ (∧i¬bori,jU¬regj)) ∧ ∧j∀� (∧i¬bori,j → regj)

R6. ∧j ∀� (regj → ∃♦ ¬regj)

Among the Boolean expressions used in formulas R1, R3, R4, R5, R6, conjunctions (dis-
junctions) can be indexed with book IDS, i.e. ∧i (∨i) or member IDs, i.e. ∧j (∨i).

• Formulas R1 and R6 denote classical liveness properties of the form “∀� (a→ ∃♦ b)”
stating that for states satisfying formula a there exists a transition sequence leading to
states satisfying formula b.

• Property R2 cannot be expressed under the current formalization. The reason lies in
the standard action-based nature of the library management system in total opposition
to the state-based formalization of Section 6.3.3. In particular, there is no way to
distinguish between the last executed action (in this case, the acquisition of book bi)
and a past action, whose effect is still present in the state label (in this case, the
library having acquired book bi, and still possessing it). To palliate this, an alternative
formalization would cater for the possibility to deduce from the current state label
the possibly enabled actions as well as the last executed action. However, one such
formalization would not be interesting at this point. Formula R5 is similar in nature
to R3.

• Formula R3 consists in two conjuncts. The first conjunct expresses a typical liveness
property stating that a state s1, in which acquired book bi is not currently under loan,
may transit into another state s2, in which bi has been discarded from the library. The
transition sequence leading from s1 to s2 matches states, in which bi is neither lent

154 CHAPTER 6. PARAMETRIC MODEL CHECKING (PMC)

to any member or discarded. The second conjunct constituting a safety property of
the form “∀� a” expresses the fact that a discarded book bi cannot be lent to any
member of the library. Notice that R3 violates the second restriction on acceptable
parctl formulas, because it contains indexed disjunctions over member IDs within the
scope of the temporal operator ∀�, which derives from temporal operator U. However,
supposing that we interchange the roles of members IDs with book IDs; thus, considering
book IDs as the new system parameter, then, if we manage to establish the stuttering
bisimulation relation between TSm and TSm+1 for fixed value of p (the proof is fairly
similar to the proof in Section 6.3.5), R3 can be evaluated over TSmc , where mc stands
for the cut-off value of m.

• Property R4 is formalized as the negation of the eventuality that a non registered
member borrows a book.

6.3.5 Stuttering Bisimulation Equivalence of TSp and TSp+1

In this section, we show that TSp and TSp+1 are stuttering bisimilar PTSs. By way of
Corollary 6.3.3 and exploiting compositionality, this result allows us to pass from TSp+1 to
TSp, then repeat this reasoning gradually descending from TSp to TSp−1 . . . etc. until a
cut-off value is discovered for the system parameter p. The model checking of formulas R1,
R3, R4, R5, and R6 over TSp is reduced to the model checking of formulas R1, R3, R4,
R5, and R6 over TSc.

In practice, the step-by-step system reduction is completed as soon as it is of no more
interest to reduce it further. In this case, this may occur if the system is already reduced
to an IS of exactly one member, i.e. p = 1, or if the initial library management system
specifications establish some sort of interplay among multiple members in the form of events
(it is not the case for the simplified version of Section 6.3.2). As an intuitive example of the
latter situation, consider operation TRANS(b1 : BID,m1 : MID,m2 : MID) of the classical
library specification in [Ger06] associating member m1 to member m2. TRANS suggests that
member m1, while being the current borrower of book b1, should hand it over to member m2.
In general, cut-off values for system parameters can be determined upon concrete criteria
over the initial system specification.

TSp+1 has one more member than TSp, or more formally Np+1 = Np∪{p+1}. We specify:

R = {Rj,k | ∀j ∈ 1..p, ∀k ∈ 1..p, (j, k) ∈ E ∧ j = k} ∪ {Rp,p+1}, (6.9)

where E ⊆ Np ×Np+1, Rj,k ⊆ Sp × Sp+1 and Rp,p+1 ⊆ Sp × Sp+1 are defined as follows:

E = {(j, k) | j ∈ 1..p, k ∈ 1..p such that j = k} ∪ {(p, p+ 1)} (6.10)

Rj,k = {(s1, s2) | s1 ∈ Sp, s2 ∈ Sp+1 with Lp(s1) = 〈A1, B1,M1〉, Lp+1(s2) = 〈A2, B2,M2〉
such that for all i ∈ 1..m, i ∈ A1 ⇔ i ∈ A2 and (6.11)

j ∈M1 ⇔ k ∈M2, (i, j) ∈ B1 ⇔ (i, k) ∈ B2} (6.12)

Rp,p+1 = {(s1, s2) | ∀s1 ∈ Sp, ∀s2 ∈ Sp+1 with Lp(s1) = 〈A1, B1,M1〉, Lp+1(s2) = 〈A2, B2,M2〉
such that for all i ∈ 1..m, i ∈ A1 ⇔ i ∈ A2 and (6.13)

p ∈M1 ⇔ p+ 1 ∈M2, (i, p) ∈ B1 ⇔ (i, p+ 1) ∈ B2} (6.14)

For states s1 ∈ Sp, and s2 ∈ Sp+1 such that (s1, s2) ∈ Rj,k, the definition of Rj,k is interpreted
as follows:

6.3. STATE-BASED PMC 155

• the library has acquired, and still possesses exactly the same books in states s1 ∈ Sp
and s2 ∈ Sp+1 (6.11); also, if j has registered to the library (and is still a member) in
state s1 ∈ Sp, then member k has also registered to the library (and is still a member)
in state s2 ∈ Sp+1 (6.12), and vice-versa,

• if the library is lending book i to registered member j in state s1 of TSp, then it must
be lending book i to registered member k in state s2 of TSp+1, and vice-verca,

Similar is the interpretation of relation Rp,p+1. The interplay among members p and p+ 1 in
Rp,p+1 is identical to the interplay among members j and k in Rj,k. Relation E is total over
sets N1 and N2 as expected. Notice, also, that TSp is a sub-graph of TSp+1 in the sense that
Sp ⊆ Sp+1 and →p⊆→p+1.

Theorem 6.3.3. Relation R = {Rj,k | j ∈ 1..p, k ∈ 1..p + 1, (j, k) ∈ E} as given in (6.9)
defines a stuttering bisimulation relation between TSp and TSp+1 of the library management
system.

Proof. We verify that relation R satisfies the criteria of stuttering bisimulation relations over
PTSs as given in Definition 6.3.3.

• Let s0
p ∈ Sp be the initial state of TSp, for which Lp(s

0
p) = ∅ and let s0

p+1 ∈ Sp be the

initial state of TSp+1, for which Lp+1(s0
p+1) = ∅. Trivially, we have that (s0

p, s
0
p+1) ∈ Rj,k

for all j ∈ 1..p, k ∈ 1..p, and (j, k) ∈ E , which establishes Definition 6.3.3.i.

• Now, let j ∈ 1..p and k ∈ 1..p + 1 such that (j, k) ∈ E . Let also state Lp(s1) =
〈A1,M1, B1〉 ∈ Sp and state Lp+1(s2) = 〈A2,M2, B2〉 ∈ Sp+1 such that (s1, s2) ∈ Rj,k.

a. The set of atomic propositions AP is defined in Section 6.3.3 as AP =
{acq1, . . . , acqm} for both PTSs TSp and TSp+1. If j, k ∈ 1..p with j = k, then,
due to (6.11), for all i ∈ 1..m, it is i ∈ A1 ⇔ i ∈ A2. If j = p and k = p + 1, then,
due to (6.13), for all i ∈ 1..m, it is i ∈ A1 ⇔ i ∈ A2. Therefore, for all (j, k) ∈ E and
(s1, s2) ∈ Rj,k, it is i ∈ A1 ⇔ i ∈ A2 (or, equivalently, A1 = A2).

b. The set of atomic propositions BP is defined as BP = {reg, bor1, . . . , borm} for both
PTSs TSp and TSp+1 in Section 6.3.3. If j, k ∈ 1..p such that j = k, then, due
to (6.12), it follows that j ∈ M1 ⇔ k ∈ M2. If j = p and k = p + 1, then, due
to (6.14), it follows that p ∈ M1 ⇔ p+ 1 ∈ M2. Therefore, for all (j, k) ∈ E and
(s1, s2) ∈ Rj,k, it follows that j ∈M1 ⇔ k ∈M2. By force of (6.12) and (6.14), it is
(i, j) ∈ B1 ⇔ (i, k) ∈ B2 for all (j, k) ∈ E and (s1, s2) ∈ Rj,k.

The previous bullets illustrate that relation R meets the criteria of Definition 6.3.3.ii
for stuttering bisimulations over PTSs. For Lp(s1) = 〈A1,M1, B1〉 ∈ Sp and state
Lp+1(s2) = 〈A2,M2, B2〉 ∈ Sp+1 such that (s1, s2) ∈ Rj,k, we write M1 ∼ M2 and
B1 ≈ B2. Obviously, relations ∼ and ≈ are reflexive and transitive.

• Let j ∈ 1..p and k ∈ 1..p+1 such that (j, k) ∈ E . Let also state Lp(s1) = 〈A1,M1, B1〉 ∈
Sp and state Lp+1(s2) = 〈A2,M2, B2〉 ∈ Sp+1 such that (s1, s2) ∈ Rj,k. We consider that
state s1 ∈ Sp is characterized by the book acquisitions acqi1 , .., acqin (or, equivalently,
A1 = {i1, .., in}), by the registered members regj1 , .., regjr (or, equivalently, M1 =
{j1, .., jr}) and by the active loans carried out by the library bork1,l1 , .., borkq ,lq (or,

156 CHAPTER 6. PARAMETRIC MODEL CHECKING (PMC)

equivalently, B1 = {(k1, l1), .., (kq, lq)}). As a means to ensure the consistency of our
approach, we assume that the index set of acquired books by the library constitutes a
subset of the index set of possible book IDs, i.e. A1 ⊆ {1, ..m}. We impose a similar
restriction regarding the set of registered members, i.e. M1 ⊆ {1, ..p}. As for the set of
active loans, the books on loan should be a subset of the currently acquired books and
the members, to whom these books are being lent, should be a subset of the currently
registered members to the library. Formally, we write {k1, ..kq} ⊆ A1 and {l1, ..lq} ⊆M1.
Similar restrictions should be placed on s2 ∈ Sp+1. The proof proceeds as follows:

a. We consider transition s1 →p s
′
1 ∈ TSp starting from state s1 such that (s′1, s2) 6∈ Rj,k

and Lp(s
′
1) = 〈A′1,M ′1, B′1〉 ∈ Sp. In order to establish Definition 6.3.3.iii, we must

prove that there exists state Lp+1(s′2) = 〈A′2,M ′2, B′2〉 ∈ Sp+1 and finite path fragment
s2u1 . . . uns

′
2 in TSp+1 such that n ≥ 0, (s1, ui) ∈ Rj,k, i = 1, .., n and (s′1, s

′
2) ∈ Rj,k.

b. The converse condition to a must be treated in order to establish Definition 6.3.3.iv.

In keeping with transition relation →p, we consider all possible forms of transition
s1 →p s

′
1.

1. (⇒) Let s1 → s′1 ∈ TSp be of the form (ACQ). Due to (6.3) of Section 6.3.3,
there should be i ∈ 1..m such that {i} ∩ A1 = ∅, A′1 = A1 ∪ {i}, B′1 = B1,
and M ′1 = M1. By A1 = A2 and (6.12), it follows that {i} ∩ A = ∅. As a
consequence of the respective rule (6.3) for transition relation →p+1, there should
be state s′2 = 〈A′2, B′2,M ′2〉 ∈ Sp+1, and transition s2 →p+1 s

′
2 ∈ Tp+1 such that

A′2 = A2 ∪ {i}, B′2 = B2, and M ′2 = M2. Since A1 = A2, A′1 = A1 ∪ {i}, and
A′2 = A2 ∪ {i}, we deduce that A′1 ∼ A′2. Since M1 ∼ M2, M ′1 = M1, and
M ′2 = M2, we deduce that M ′1 ∼ M ′2 and, similarly, from B1 ≈ B2, B′1 = B1, and
B′2 = B2, we deduce that B′1 ≈ B′2. Combining A′1 ∼ A′2, M ′1 ∼M ′2, and B1 ≈ B2,
we prove that for every (j, k) ∈ E , (s′1, s

′
2) ∈ Rj,k. Hence, state s2 executes an

(ACQ) transition to state s′2 in TSp+1 without stuttering , i.e. n = 0.
(⇐) The proof for the opposite direction is similar.

2. (⇒) Let s1 →p s
′
1 ∈ TSp be of the form (DIS). Due to rule (6.4) of transition

relation →p in Section 6.3.3, there should be i ∈ A1 such that for all j ∈ M1,
{(i, j)} ∩B1 = ∅, A′1 = A1 \ {i}, B′1 = B1, and M ′1 = M1.

(a) We assume that for all j ∈ M2, {(i, j)} ∩ B2 = ∅. As a consequence of
the respective rule (6.4) for transition relation →p+1, there should be state
s′2 = 〈A′2, B′2,M ′2〉, and transition s2 →p+1 s

′
2 ∈ TSp+1 such that for all j ∈M2,

{(i, j)} ∩ B2 = ∅, A′2 = A2 \ {i}, B′2 = B2, and M ′2 = M2. From A1 = A2,
A′1 = A1 \ {i}, and A′2 = A2 \ {i}, we deduce that A′1 ∼ A′2. From M1 ∼ M2,
M ′1 = M1, and M ′2 = M2, we deduce that M ′1 ∼ M ′2 and, similarly, from
B1 ≈ B2, B′1 = B1, and B′2 = B2, we deduce that B′1 ≈ B′2. Combining
A′1 ∼ A′2, M ′1 ∼ M ′2, and B1 ≈ B2, we prove that for all (j, k) ∈ E , it is
(s′1, s

′
2) ∈ Rj,k. Hence, state s2 executes a (DIS) transition to state s′2 in

TSp+1 without stuttering , i.e. n = 0.

(b) i. Let j = k. Unluckily, it cannot be established from (6.12) that for all
j ∈ M2, {(i, j)} ∩ B2 = ∅. Therefore, it may be the case that for some
k′ ∈M2 such that k′ 6= k = j, (i, k′) ∈ B2. However, discarding book bi is
not possible in state s2 ∈ TSp+1, unless member mk′ returns book bi to the

6.3. STATE-BASED PMC 157

library beforehand. This has the implication that state s2 transits to state
u1 = 〈A2,M2, B2 \ {(i, k′)}〉 ∈ TSp+1 via a (RET) operation. Then, state
u1 transits to state s′2 = 〈A2 \ {i},M2, B2 \ {(i, k′)}〉 ∈ TSp+1 via a (DIS)
operation. Following similar arguments to those advanced in 2a and 1, we
establish that for every (j, k) ∈ E , (s′1, s

′
2) ∈ Rj,k. Hence, state s2 takes a

stuttering path of length n = 1 to state u1 via a (RET) operation before
going to state s′2 via a (DIS) operation.

ii. Let j = p and k = p+ 1. The proof is similar.

(⇐) The proof for the opposite direction is similar.

3. (⇒) Let s1 → s′1 ∈ TSp be of the form (REG). Due to (6.5) of Section 6.3.3, there
should be j′ ∈ 1..p such that {j′}∩M1 = ∅, A′1 = A1, B′1 = B1, and M ′1 = M1∪{j′}.
We, then, need to reason on the possible values of j′.

(a) Let j = j′.

i. If j = k, then, by (6.12) and {j}∩M1 = ∅, it follows that {k}∩M2 = ∅. As a
consequence of the respective rule (6.5) for transition relation→p+1, there
should be state s′2 = 〈A′2, B′2,M ′2〉, and transition s2 →p+1 s′2 ∈ TSp+1

such that {k} ∩M2 = ∅, A′2 = A2, B′2 = B2, and M ′2 = M2 ∪ {k}. It is
fairly easy to prove that for every (j, k) ∈ E such that j = j′, (s′1, s

′
2) ∈ Rj,k

(see corresponding parts of proof in 1 and 2a. Therefore, state s2 executes
a (REG) transition to state s′2 without stuttering , i.e. n = 0.

ii. If j = p and k = p + 1, then, by (6.14) and {p} ∩M1 = ∅, it follows that
{p + 1} ∩M2 = ∅. Hence, there should be state s′2 = 〈A′2, B′2,M ′2〉, and
transition s2 →p+1 s

′
2 ∈ TSp+1 such that {p + 1} ∩M2 = ∅, A′2 = A2,

B′2 = B2, and M ′2 = M2 ∪ {p+ 1}. The rest of the proof follows the lines
of 3(a)i.

(b) Let j 6= j′.

i. If j = k, then (s′1, s2) ∈ Rj,k, since (6.12) still holds for states s′1 and s2

after the execution of s1 → s′1 ∈ TSp.
ii. If j = p and k = p + 1, then (s′1, s2) ∈ Rj,k, since (6.14) still holds for

states s′1 and s2 after the execution of s1 → s′1 ∈ TSp.
(⇐) The proof for the opposite direction is similar.

4. (⇒) Let s1 → s′1 ∈ TSp be of the form (UNREG). Due to (6.6) of Section 6.3.3,
there should be j′ ∈ 1..p such that for all i ∈ A1, {(i, j′)} ∩ B1 = ∅, A′1 = A1,
B′1 = B1, and M ′1 = M1 \ {j′}. We, then, need to reason on the possible values of
j′.

(a) Let j = j′.

i. If j = k, then, relying on the fact that forall i ∈ A1, {(i, j′)} ∩B1 = ∅ and
(6.12), we deduce that forall i ∈ A2, {(i, j)}∩B2 = ∅. As a consequence of
the respective rule (6.6) for transition relation→p+1, there should be state
Lp+1(s′2) = 〈A′2, B′2,M ′2〉, and transition s2 →p+1 s

′
2 ∈ TSp+1 such that

forall i ∈ A2, {(i, j)} ∩ B2 = ∅, A′2 = A2, B′2 = B2, and M ′2 = M2 \ {j}.
The rest of the proof is straightforward.

ii. If j = p and k = p + 1, then, relying on the fact that forall i ∈ A1,
{(i, j′)}∩B1 = ∅ and (6.14), we deduce that forall i ∈ A2, {(i, p+1)}∩B2 =
∅. The rest of the proof follows the lines of 4(a)i.

158 CHAPTER 6. PARAMETRIC MODEL CHECKING (PMC)

(b) Let j 6= j′.

i. If j = k, then (s′1, s2) ∈ Rj,k, since (6.12) holds for states s′1 and s2 after
the execution of s1 → s′1 ∈ TSp.

ii. Let j = p and k = p+ 1. If j′ 6= p, the rest of the proof is similar.

(⇐) The proof for the opposite direction is similar.

5. (⇒) Let s1 → s′1 ∈ TSp be of the form (LEND). Due to (6.6) of Section 6.3.3,
there should be i ∈ A1, and j′ ∈ M2 such that {(i, j′)} ∩ B1 = ∅, A′1 = A1,
B′1 = B1∪{(i, j′)}, and M ′1 = M1. We, then, need to reason on the possible values
of j′.

(a) Let j = j′.

i. If j = k, then, by (6.12) and {(i, j′)} ∩ B1 = ∅, it follows that
{(i, j′)} ∩ B2 = ∅. As a consequence of the respective rule (6.7) for tran-
sition relation →p+1, there should be state Lp+1(s′2) = 〈A′2, B′2,M ′2〉, and
transition s2 →p+1 s′2 ∈ TSp+1 such that {(i, j′)} ∩ B2 = ∅, A′2 = A2,
B′2 = B2 ∪ {(i, j′)}, and M ′2 = M2. The rest of the proof is straightfor-
ward.

ii. If j = p and k = p + 1, then, by (6.14) and {(i, p)} ∩ B2 = ∅, we deduce
that {(i, p+ 1)} ∩B2 = ∅. The rest of the proof follows the lines of 5(a)i.

(b) Let j 6= j′.

i. If j = k, then (s′1, s2) ∈ Rj,k, since (6.12) holds for states s′1 and s2 after
the execution of s1 → s′1 ∈ TSp.

ii. Let j = p and k = p+ 1. The rest of the proof is similar.

6. (⇒) Let s1 → s′1 ∈ TSp be of the form (RET). Due to (6.7) of Section 6.3.3, there
should be i ∈ A1, and j′ ∈M2 such that {(i, j′)} ∈ B1, A′1 = A1, B′1 = B1\{(i, j′)},
and M ′1 = M1. We, then, need to reason on the possible values of j′.

(a) Let j = j′.

i. If j = k, then, by (6.12) and {(i, j′)}∩B1 = ∅, it follows that {(i, j′)} ∈ B2.
As a consequence of the respective rule (6.7) for transition relation →p+1,
there should be state s′2 = 〈A′2, B′2,M ′2〉, and transition s2 →p+1 s′2 ∈
TSp+1 such that {(i, j′)} ∈ B2, A′2 = A2, B′2 = B2\{(i, j′)}, and M ′2 = M2.
The rest of the proof is straightforward.

ii. If j = p and k = p+ 1, then, by (6.14) and {(i, p)} ∈ B2, we deduce that
{(i, p+ 1)} ∈ B2. The rest of the proof follows the lines of 6(a)i.

(b) Let j 6= j′.

i. If j = k, then (s′1, s2) ∈ Rj,k, since (6.12) holds for states s′1 and s2 after
the execution of s1 → s′1 ∈ TSp.

ii. Let j = p and k = p+ 1. The rest of the proof is similar.

Figure 6.4 illustrates the stuttering bisimilar states of TS1 and TS2 with regards to R1,1

for m = 1 (one book). States in TS2 of the same colour belong to the same partition class
and they are stuttering bisimilar to the corresponding states of TS1 of the same colour. For
clarity reasons, each state s ∈ S2 has been labelled with L2(s) ∩ (BP × {1}). As a example,

6.3. STATE-BASED PMC 159

acq1

acq1, reg1

s1

reg1

s′1

acq1, reg1,

bor1,1

acq1, reg1

s′2

acq1

reg1

acq1 acq1, reg1 s2

reg1
acq1, reg1,

bor1,1

acq1

acq1, reg1,

bor1,1

acq1, reg1

u1

Figure 6.4: Partitioning of S1 and S2 into stuttering bisimilar classes of states w.r.t. R1,1

let state s1 ∈ S1 and state s2 ∈ S2 such that (s1, s2) ∈ R1,1 as depicted in Figure 6.4. State
s1 transits to s′1 via a (DIS) operation of book b1. Following the description of 2(b)i, state
s2 cannot mimic the behaviour of s1 directly, because book 1 is currently lent to member
2, i.e. bor1,2 ∈ L2(s2) (see Figure 6.3), which deters the book from being discarded by the
library. This, however, triggers the stuttering of s2 via a (RET) operation to state u1 ∈ S2,
which suggests that member 2 return book 1 to the library. Once the book is returned to
the library, it may now be discarded. In other words, the system may now transit from u1 to
s′2 ∈ S2 with (s′1, s

′
2) ∈ R1,1.

Note that the cut-off value for p is 1 as the lowest value that can be assigned to parameter
p for which TSp and TSp+1 is 1. Hence, the system requirements of Section 6.3.2 can be
verified on TS1, which turns out to be an important result from a model-checking point of
view.

6.3.6 Modified System Specifications

The goal of this section is to bring some light on the area regarding the necessary conditions
PTS specifications should fulfil so that consecutive instances of the system namely TSp and
TSp+1 can be proven stuttering bisimilar. To this end, we consider the following modifications
of the library management system:

1. Favourizing members. As a first case, we assume that the library favourizes a registered
member against the rest of its registered members. For argument’s sake, we suppose that
member p+ 1 is entitled to keep any book he borrows for an indeterminate period of time
or, further simplifying the case, p+ 1 is entitled to keep any book he borrows forever.
Notice that p+ 1 does not take part in TSp at all. Transition relation→p is, then, defined

160 CHAPTER 6. PARAMETRIC MODEL CHECKING (PMC)

as follows:

→p= { (s, s′) | s = 〈A,B,M〉, s′ = 〈A′, B′,M ′〉 such that

(∀i ∈ 1..m, {i} ∩A = ∅ ∧ modA(A ∪ {i}))
⊗ (∀i ∈ A, ∀j ∈M, {(i, j)} ∩B = ∅ ∧ modA(A \ {i}))
⊗ (∀j ∈ 1..p, {j} ∩M = ∅ ∧ modM (M ∪ {j}))
⊗ (∀i ∈ A, ∀j ∈M, {(i, j)} ∩B = ∅ ∧ modM (M \ {j}))
⊗ (∀i ∈ A, ∀j ∈M, {(i, j)} ∩B = ∅ ∧ modB(B ∪ {(i, j)}))
⊗ (∀i ∈ A, ∀j ∈M, (i, j) ∈ B ∧ j 6= p + 1 ∧ modB(B \ {(i, j)}))
⊗ (A′ = A ∧ B′ = B ∧ M′ = M) }

The principal difference between this version of the library management system and the
initial model of Section 6.3.3 lies in Rules (6.15) and (6.8), which constitute (RET) oper-
ations. In particular, member p+ 1 is banned from taking any (RET) operation. Notice
also the presence of Rule (6.15), which is added to ensure that in case of blocking, the
system state remains unchanged. This effect is represented by self-loops to all states in
Figure 6.3. These simple modification alter the system behaviour considerably. Transition
s1 →p s

′
1 of TSp, which denotes discarding book b1 from the library, cannot be mimicked

by any stuttering path of TSp+1 starting from s2 ∈ TSp+1. The stuttering bisimulation
relation of TSp and TSp+1 cannot be established, and, thus, the preservation of parctl is
not guaranteed. We conclude that concrete values of the system parameter affecting the
control flow of the system may potentially violate the stuttering bisimulation relation of
TSp and TSp+1.

2. Extending loans. As a second case, we assume that the library extends the time a book
may be on loan. This may be viewed as a gesture of goodwill to the current borrower,
whose total number of book loans has reached a predefined value. For simplicity’s sake,
we set this value to n ∈ N and we suppose that the book loan extension to the current
borrower is for life. For this, we need a variable nbl to keep record of the total number
of loans carried out by each member. The set N = ∪pj=1{nblj = k| k ∈ N} codes this
information set-theoretically. Hence, the proposition labelling of TSp is defined as follows:

Lp(s) = {acqi| i ∈ A} ∪ {regj | j ∈M} ∪ {bori,j | (i, j) ∈ B} ∪ N,

the set of states in TSp is represented as Sp = { s | Lp(s) = 〈A,B,M,N〉 } and the initial
state of Sp is defined as s0

p = 〈∅, ∅, ∅, {nbl1 = 0, . . . , nblp = 0}〉. Finally, transition relation
→p is modified appropriately:

→p = { (s, s′) | s = 〈A,B,M,N〉, s′ = 〈A′, B′,M ′, N ′〉 such that

(∀i ∈ 1..m, {i} ∩A = ∅ ∧ modA(A ∪ {i}) ∧ N′ = N)

⊗ (∀i ∈ A, ∀j ∈M, {(i, j)} ∩B = ∅ ∧ modA(A \ {i}) ∧ N′ = N)

⊗ (∀j ∈ 1..p, {j} ∩M = ∅ ∧ modM (M ∪ {j}) ∧ N′ = N)

⊗ (∀i ∈ A, ∀j ∈M, {(i, j)} ∩B = ∅ ∧ modM (M \ {j}) ∧ N′ = N)

⊗ (∀i ∈ A, ∀j ∈M, {(i, j)} ∩B = ∅ ∧ modB(B ∪ {(i, j)}) ∧ nbl′j = nblj + 1)

⊗ (∀i ∈ A, ∀j ∈M, (i, j) ∈ B ∧ nblj < n ∧ modB(B \ {(i, j)}) ∧ N′ = N)

⊗ (A′ = A ∧ B′ = B ∧ M′ = M ∧ N′ = N) }

6.4. PARAMETRIC ISS AND PARCTL 161

Rule (6.15), which is a (RET) operation, increments the total number of book loans nblj
taken by member j so far every time j takes a new loan. Finally, if nblj has reached value
n, Rule (6.15) bans (RET) operations from taking place. Let’s imagine that p+ 1 has
taken n book loans so far and is the current borrower for book 1. Hence, as is the case for
case 1, transition s1 →p s

′
1 cannot be mimicked by any stuttering path of TSp+1 starting

from s2 ∈ TSp+1.

6.4 Parametric ISs and PARCTL

In this section, we consider the pmcp for ISs specified in eb3. Based on the fact that the
eb3 models are translated to LTS models, we apply the results of Section 6.3.6 directly to
the eb3 models. First, we conclude that the control flow of the IS in question cannot be
affected by concrete values of the system parameter (the book ID in the case of the library
management system). Furthermore, the exact nature of the assigned values to the system
parameter cannot change the control flow. In other words, the system cannot “look into” the
values of the system parameter. To this respect, only equalities and inequalities with abstract
values of the system parameter are allowed. For example, the classic function card (found
in the library management specification) that returns the cardinality of sets relating to the
system parameter is not allowed.

We sum up these results into the following precise criteria, which are necessary (but not
sufficient) conditions for the preservation of parctl:

1. Only abstract values of system parameters can appear in the body of eb3 expressions.
The existence of concrete values would potentially break system symmetry.

2. Operations on system parameters can only involve abstract values. The outcome of
these operations is by no means affected by concrete values.

3. The only predicates allowed containing abstract values of system parameters are equal-
ities and inequalities.

4. Operations involving the size of sets pertaining to system parameters are strictly for-
bidden.

6.5 Evaluation and Related Work

The technique developed in this chapter permits efficient model-checking of parctl properties
over eb3 models. It is fairly straightforward to verify if an eb3 specification satisfies the
conditions of Section 6.4. However, the satisfaction of the aforementioned conditions does
not mean that the eb3 models in question constitute parametric ISs. This is one of the weak
points of our approach. The proof that TSp and TSp+1 are stuttering bisimilar has to be
done manually. Once the proof is completed, the user must determine the cut-off. For the
time being, there is no automated technique that calculates the cut-off, but it should be
fairly easy to determine the cut-off by simple observation of the eb3 specification and the
devised proof of correspondence. For example, this should be equal to the different number
of values of the system parameter appearing syntactically in eb3’s guards. In the guard
“m1 = m2 ∧ m2 6= m3 ⇒ Lend(b1,m3)” extracted from a modified version of the library

162 CHAPTER 6. PARAMETRIC MODEL CHECKING (PMC)

management system’s specification, where m1,m2,m3 are variables denoting members, the
cut-off is three. As soon as the cut-off is determined, the user may use eb32lnt in order to
translate the eb3 model in question, whose system parameter is instantiated to the cut-off
value, to its equivalent LNT model and verify any temporal properties expressed in MCL. Note
that MCL allows the specification of action-based properties, whereas parctl is a state-based
calculus. Thankfully, the correctness of this approach is supported by the theoretic results of
[DV90] guarantee.

We note that our technique was inspired by the standard abstraction techniques of PMC
[CGB86, EN95], which are nonetheless restricted to systems expressed as LTSs. The work
closest to ours can be found in [Laz99], where the author addresses the PMCP in the context
of process algebra CSP and determines cut-offs for ISs expressed in CSP. The model-checking
tool related to CSP is FDR [Bro00] and the verification is based on refinement-checking,
where the user expresses the temporal property as a process that refines the process related
to the CSP model (the execution trace of the process related to the property is a subset of
the execution trace of the CSP model). This is, in our humble view, the drawback of this
approach, since temporal properties should all be expressed as CSP processes.

6.6 Conclusion

We addressed the PMCP in the context of ISs specified in eb3. First, we showed how the
standard theory on PMC can be applied to the library management system on a merely state-
based level and specified the conditions under which eb3 models, whose behaviour depends
on a system parameter, preserve the the temporal logic parctl.

As future work, it is obviously of great practical importance to determine the cut-offs for
these system parameters, and to find as small a threshold value as possible. It would also be
interesting to investigate and develop abstraction techniques based on abstract interpretation
[CC77], or even find a relation between PMC and abstract interpretation. Another interesting
issue to study would be multi-parameter systems, i.e. parametric systems with multiple
system parameters in the lines of [HSB+10].

Chapter 7

Conclusion

In this thesis, we proposed an automatic approach for equipping the eb3 method with formal
verification capabilities by reusing already available model checking technology. Our work was
motivated by the need for efficient model-checking techniques adapted to IS specifications.
This task was a priory hard, given that ISs are complex systems by nature involving heavy
data management and non-trivial concurrency. The project became all the more complicated
as soon as we recognized the importance of pursuing a merely automatic approach, which
would apply globally for every eb3 specification without user intervention. In our humble
opinion, this is the strong point of our method compared to other relevant approaches in
the field that, despite being automatic, are restricted to the verification of safety properties
[GFL05, GFL06] or, despite offering verification capabilities for the full spectrum of temporal
properties, require user intervention [FFC+10, ETL+04].

Our approach relied upon a new translation from eb3 to LNT, which provides a direct
connection to all the state-of-the-art verification features of the CADP toolbox. Despite the
relatively many common features between eb3 and LNT, we were obliged to reconciliate the
standard traced-based semantics of eb3 [FSt03] with the typical state-based semantics of
LNT, which led us to define eb3’s semantics alternatively [VD13]. The translation, based
on eb3’s new alternative memory semantics, was automated by the eb32lnt translator and
validated on several examples of typical ISs. So far, we experimented only the model checking
of MCL data-based temporal properties on eb3 specifications. However, CADP also provides
extensive support for equivalence checking and compositional LTS construction, which can
be of interest to IS designers. We also provided a formal proof of the translation from eb3

to LNT, which could serve as reference for translating eb3 to other process algebras in the
future.

It should be noted that eb32lnt offers insight to interested readers on how to code global
state as a process running parallel to the principal system specification, an approach that
comes in very handy when state-based IS specifications are studied. On the other hand, the
main limitation of the proposed translation is that model-checking becomes intractable for
specifications describing multiple concurrent processes as is the case for the library specifi-
cation for more than four members and four books. This inconvenience is attributed to the
fact that CADP employs explicit techniques instead of symbolic techniques for state space
generation. Another drawback of the proposed translation arises at the stage of property
verification. Properties should be expressed in MCL, which implies that eb3 users should be
familiar with MCL’s syntax. Also, user intervention is indispensable at this level.

163

164 CHAPTER 7. CONCLUSION

Chapter 6 of the present thesis was concerned with improving the model checking of eb3

specifications with the aid of abstraction techniques. Based on the inherent symmetry of eb3

models, we concentrated on PISs namely ISs, whose behaviour is scaled in keeping with the
predefined value of some system parameter. The goal of this approach was to effectively cut
down on the number of components participating in the IS model, while making sure that the
temporal property we wish to verify is preserved in the reduced model. For the time being,
our approach requires user intervention so that the equivalence between initial and reduced
model is established.

As future work, we will direct our attention to abstraction techniques with the purpose
of improving and making automatic the PMC approach. In particular, we will study further
how the insertion of new functionalities into an IS affects the issue, and we will formalize this
in the context of eb3 specifications.

Chapter 8

Appendix

8.1 LNT Code for the Simplified Library Management System

We give the optimized LNT code for the simplified Library Management System of Chapter 4,
with 2 members, 1 book, and NbLoans set to 1.

165

166 CHAPTER 8. APPENDIX

module library is

type mId is m1,m2,m⊥ with ”eq”, ”ne”, ”ord”, ”val” end type

type BID is b1, b⊥ with ”eq”, ”ne”, ”ord”, ”val” end type

type NB is array[0..2] of NAT end type

type BOR is array[0..1] of MID end type

process M [Acquire,Discard ,Register ,Unregister ,Lend ,Return : any] is

var mId : MID , bId : BID , bId ′ : BID ,

mId ′ : MID , borrower : BOR, nbLoans : NB in

mId := m⊥; borrower := BOR(m⊥); nbLoans := NB(0);

loop

select

Acquire (?bId)

[] Discard (?bId , ?borrower)

[] Register (?mId)

[] Unregister (?mId)

[] Lend (?bId , ?mId , !nbLoans, !borrower);

borrower [ord (bId)] := mId ;

nbLoans [ord (mId)] := nbLoans [ord (mId)] + 1

[] RET (?bId);

mId ′ := borrower [ord (bId)];

nbLoans [ord (mId ′)] := nbLoans [ord (mId ′)]− 1;

borrower [ord (bId)] := m⊥

end select

end loop

end var

end process

process loan [Lend ,Return : any] (mId : mId , bId : BID) is

var borrower : BOR, nbLoans : NB in (* NbLoans is set to 1 *) in

Lend (bId , mId , ?nbLoans, ?borrower)

where
(
(borrower [ord (bId)] eq m⊥) and (nbLoans [ord (mId)] eq 1)

)
;

Return (bId)

end var

end process

process book [Acquire,Discard : any] (bId : BID) is

var borrower : BOR in

Acquire(bId); Discard (bId , ?borrower) where (borrower [ord (bId)] eq m⊥)

end var

end process

8.2. EB3 CODE FOR THE EXTENDED LIBRARY MANAGEMENT SYSTEM 167

process member [Register ,Unregister ,Lend ,Return : any] (mId : mId) is

Register (mId);

loop L in

select break L [] loan [Lend ,Return] (mId , b1)

end select

end loop;

Unregister (mId)

end process

process Main [Acquire,Discard ,Register ,Unregister ,Lend ,Return : any] is

par Acquire,Discard ,Register ,Unregister ,Lend ,Return in

par

loop L in

select break L [] book [Acquire,Discard] (b1)

end select

end loop

||

par

loop L in

select break L [] member [Register ,Unregister ,Lend ,Return] (m1)

end select

end loop

||

loop L in

select break L [] member [Register ,Unregister ,Lend ,Return] (m2)

end select

end loop

end par

end par

||

M [Acquire,Discard ,Register ,Unregister ,Lend ,Return]

end par

end process

end module

8.2 EB3 Code for the Extended Library Management System

We give the eb3 code for the extended Library Management System of Section 5.2, with
2 members (MID = {m1,m2}), 2 books (BID = {b1, b2}), and NbLoans set to 1.
Functions “add reservation”,“cancel reservation”, “last reservation”, “nil reservation” and

168 CHAPTER 8. APPENDIX

“is reserved” are standard functions on lists. They are not attribute functions. Their defini-
tions are given in the corresponding LNT specification.

Acquire (bId : BID);
Discard (bId : BID);
Register (mId : mId);
Unregister (mId : mId);
Lend (bId : BID , mId : mId);
Take (bId : BID , mId : mId);
Transfer (mId : mId , bId : BID);
Reserve (mId : mId , bId : BID);
Cancel (mId : mId , bId : BID);
Return (bId : BID);

nbLoans (T : T ,mId : MID) : Nat⊥ = borrower (T : T , bId : BID) : mId⊥ =
match last (T) with match last (T) with
⊥T : ⊥ ⊥T : ⊥

| Register (mId) : 0 | Lend (bId ,mId) : mId
| Lend (bId ,mId) : | Take (bId ,mId) : mId

nbLoans (front (T),mId) + 1 | Transfer (mId , bId) : ⊥
| Take (bId ,mId) : | : nbLoans (front (T),mId)

nbLoans (front (T),mId) + 1 end match;
| Return (bId) :

if mId = borrower (T, bId) then acquired (T : T , bId : BID) : BOOL =
nbLoans (front (T),mId)− 1 match last (T) with

| Unregister (mId) : ⊥ ⊥T : false
| Transfer (mId ′, bId) : | Acquire (bId) : true

if mId = borrower (T, bId) then | Discard (bId) : false
nbLoans (front (T),mId) + 1 | : acquired (front (T), bId)

| Unregister (mId) : nbLoans (front (T),mId) end match;
end match;

reservation (T : T , bId : BID) =
match last (T) with
⊥T : NIL

| Reserve (mId , bId) : add reservation(mId , reservation (front (T), bId))
| Take (bId ,mId) : cancel reservation(mId , reservation (front (T), bId))
| Cancel (bId ,mId) : cancel reservation(mId , reservation (front (T), bId))

: reservation (front (T),mId)
end match;

8.2. EB3 CODE FOR THE EXTENDED LIBRARY MANAGEMENT SYSTEM 169

book (bId : BID) = Acquire (bId).
(borrower (T, bId) = ⊥) ∧ (nil reservation (reservation (T, bId)))⇒ Discard (bId);

member (mId : MID) =

(acquired (T, bId) = true) ∧ (borrower (T, bId) = ⊥) ∧
(nbLoans (T,mId) < NbLoans) ∧
(nil reservation (reservation (T, bId)) = true) ⇒ Lend (bId ,mId).

((acquired (T, bId) = true) ∧ (borrower (T, bId) = ⊥) ∧
(nil reservation (reservation (T, bId)) = true) ⇒ Renew (bId))∗.

(acquired (T, bId) = true) ∧ (borrower (T, bId) = mId) ⇒ Return (bId)

|

(|mId ′ : MID \ {mId} :
(acquired (T, bId) = true) ∧ (borrower (T, bId) 6= mId ′) ∧
(nbLoans (T,mId) > 0) ∧ (nbLoans (T,mId) < NbLoans) ∧
(nil reservation (reservation (T, bId)) = true) ⇒ Transfer (mId ′, bId))

|

(borrower (T, bId) 6= ⊥) ∧ (borrower (T, bId) 6= mId) ∧
(acquired (T, bId) = true) ∧
(is reserved (bId , reservation (T, bId)) = false) ⇒ Reserve (mId , bId).

(acquired (T, bId) = true) ∧ (borrower (T, bId) = ⊥) ∧
(nbLoans (T, bId) < NbLoans) ∧
(last reservation (mId , reservation (T, bId)) = false) ⇒ Take (mId , bId)

|

Cancel (mId , bId)

|

(acquired (T, bId) = true) ∧ (borrower (T, bId) = mId) ⇒ Return (bId)

|

(|mId’ : MID \ {mId} :
(acquired (T, bId) = true) ∧ (borrower (T, bId) = mId) ∧
(nbLoans (T,mId) > 0) ∧ (nbLoans (T,mId) < NbLoans) ∧
(nil reservation (reservation (T, bId)) = true) ⇒ Transfer (mId’ , bId));

main =
(|||bId : BID : book (bId)∗) |||
(|||mId : MID : (Register (mId). (|||bId : BID : member (mId , bId)∗).

(nbLoans (T,mId) = 0) ∧ (is reserved (mId , reservation (T, b1)) = false) ∧
(is reserved (mId , reservation (T, b2)) = false) ⇒ Register (mId))∗)

170 CHAPTER 8. APPENDIX

8.3 LNT Code for the Extended Library Management System

We give the LNT code for the extended Library Management System (NbLoans = 1). This
code is generated by eb32lnt except the functions “add reservation”,“cancel reservation”,
“last reservation”, “nil reservation” and “is reserved”, which are coded by hand, since our
compiler does not support user-defined eb3 types and (non-attribute) functions. We also
define type “RESERV ” to simplify the coding. By convention, for every type T we have
ord(⊥) = 0, ord(firstT) = 1, etc.

module library is

type mId is m1,m2,m⊥ with “eq”, “ne”, “ord”, “val” end type

type BID is b1, b2, b⊥ with “eq”, “ne”, “ord”, “val” end type

type MIDLIST is

NIL,CONS (HD : MID , TL : MIDLIST) with ”eq”, ”ne” end type

type ACQUIR is array [0..1] of BOOL end type

type BOR is array [0..1] of MID end type

type NB is array [0..1] of NAT end type

type RESERV is array [0..1] of MIDLIST end type

function add reservation (m : MID , l : MIDLIST) : MIDLIST is

case l in var temp mem : MID , temp list : MIDLIST in

NIL→ return CONS (m,NIL)

| CONS (temp mem, temp list)→
return CONS (temp mem, add reservation(m, temp list))

end case

end function

function cancel reservation (m : MID , l : MIDLIST) : MIDLIST is

case l in var temp mem : MID , temp list : MIDLIST in

NIL→ return NIL

| CONS (temp mem, temp list) where (temp mem eq m)→ return temp list

| CONS (temp mem, temp list)→
return CONS (temp mem, cancel reservation(m, temp list))

end case

end function

function nil reservation (l : MIDLIST) : BOOL is

case l in var temp list : MIDLIST in

NIL→ return true

| ANY MIDLIST → return false

end case

end function

8.3. LNT CODE FOR THE EXTENDED LIBRARY MANAGEMENT SYSTEM 171

function is reserved (m : MID , l : MIDLIST) : MIDLIST is

case l in var temp mem : MID , temp list : MIDLIST in

NIL→ return false

| CONS (temp mem, temp list) where (temp mem eq m)→ return true

| CONS (temp mem, temp list)→ return is reserved(m, temp list)

end case

end function

function last reservation (m : MID , l : MIDLIST) : BOOL is

case l in var temp mem : MID , temp list : MIDLIST in

NIL→ return false

| CONS (temp mem, temp list) where (temp mem eq m)→ return true

| CONS (temp mem, temp list)→ return false

end case

end function

172 CHAPTER 8. APPENDIX

process M [Acquire,Discard ,Register ,Lend ,Take,Renew ,Return,Reserve,

Cancel ,Unregister ,Transfer : any] is

var mId : mId , bId : BID , acquired : ACQUIR,

borrower : BOR, nbLoans : NB , reservation : RESERV in

acquired := ACQUIR(false); borrower := BOR(m⊥);

nbLoans := NB(0); reservation : RESERV (NIL);

loop

select

Acquire (?bId);

acquired [ord (bId)] := true

[] Discard (?bId , !borrower, !reservation);

acquired [ord ()] := false

[] Register (?mId);

nbLoans [ord (mId)] := 1

[] Unregister (?mId !nbLoans !reservation)

nbLoans [ord (mId)] := 0

[] Lend (?bId , ?mId , !acquired, !borrower, !reservation, !nbloans);

borrower [ord (bId)] := mId ;

nbLoans [ord (mId)] := nbLoans [ord (mId)] + 1

[] Reserve (?mId , ?bId , !acquired, !borrower, !reservation);

reservation [ord (bId)] := add reservation(mId , reservation [ord (bId)])

[] Take (?mId , ?bId , !acquired, !borrower, !reservation, !nbLoans);

borrower [ord (bId)] := mId ;

nbLoans [ord (mId)] := nbLoans [ord (mId)] + 1;

reservation [ord (bId)] := cancel reservation(mId , reservation [ord (bId)])

[] Cancel (?mId , ?bId);

reservation [ord (bId)] := cancel reservation(mId , reservation [ord (bId)])

[] Transfer (?mId , ?bId , !acquired, !borrower, !reservation, !nbLoans);

nbLoans [ord (borrower [ord (bId)])] := nbLoans [ord (borrower [ord (bId)])]− 1;

borrower [ord (bId)] := mId ;

nbLoans [ord (mId)] := nbLoans [ord (mId)] + 1

[] Renew (?bId , !acquired, !borrower, !reservation)

[] Return (?bId , !acquired, !borrower);

nbLoans [ord (borrower [ord (bId)])] := nbLoans [ord (borrower [ord (bId)])]− 1;

borrower [ord (bId)] := m⊥

end loop

end var

end process

8.3. LNT CODE FOR THE EXTENDED LIBRARY MANAGEMENT SYSTEM 173

process book [Acquire,Discard : any] (bId : BID) is

var acquired : ACQUIR, borrower : BOR, reservation : RESERV in

Acquire(bId); Discard (bId , ?borrower, ?reservation)

where ((borrower [ord (bId)] eq m⊥) and
(nil reservation (reservation[ord (bId)]) eq true))

end var

end process

process member [Lend ,Take,Renew ,Return,Reserve,Cancel ,Transfer : any]

(mId : MID , bId : BID) is

var acquired : ACQUIR, borrower : BOR, reservation : RESERV , nbLoans : NB in

select

Lend (!bId , !mId , ?acquired, ?borrower, ?reservation, ?nbloans)

where ((acquired [ord (bId)] eq true) and (borrower[ord (bId)] eq m⊥) and
(nbLoans[ord (mId)] lt 2) and
(nil reservation (reservation [ord (bId)] eq true))

loop L in select break L []

Renew (!bId , ?acquired, ?borrower, ?reservation)

where ((acquired [ord (bId)] eq true) and (borrower[ord (bId)] eq mId) and
(nil reservation (reservation [ord (bId)]) eq true))

end select end loop;

select

Return (!bId , ?acquired, ?borrower)

where ((acquired [ord (bId)] eq true) and (borrower[ord (bId)] eq mId))

[] var mId ′ : MID in

mId ′ := any MID where ((mId ′ ne m⊥) and (mId ′ ne m⊥));

Transfer (!mId ′, !bId , ?acquired, ?borrower, ?reservation, ?nbLoans)

where ((acquired [ord (bId)] eq true) and (borrower [ord (bId)] eq mId) and
(nbLoans [ord (mId ′)] gt 0) and (nbLoans [ord (mId ′)] lt 2) and
(nil reservation (reservation [ord (bId)]) eq true))

end var

end select

174 CHAPTER 8. APPENDIX

[] Reserve (!mId , !bId , ?acquired, ?borrower, ?reservation, ?nbLoans)

where ((acquired [ord (bId)] eq true) and
(borrower[ord (bId)] ne m⊥) and (borrower[ord (bId)] ne mId) and
(is reserved (mId , reservation [ord (bId)]) eq false);

select

Take (!mId , !bId , ?acquired, ?borrower, ?reservation, ?nbloans)

where ((acquired [ord (bId)] eq true) and
(borrower[ord (bId)] eq m⊥) and (nbLoans[ord (mId)] lt 2) and
(last reservation (mId , reservation [ord (bId)]) eq true))

[] Cancel (!mId , !bId)

end select

[] Return (!bId , ?acquired, ?borrower)

where ((acquired [ord (bId)] eq true) and (borrower[ord (bId)] eq mId))

[] var mId ′ : MID in

mId ′ := any MID where ((mId ′ ne m⊥) and (mId ′ ne m⊥));

Transfer (!mId ′, !bId , ?acquired, ?borrower, ?reservation, ?nbLoans)

where ((acquired [ord (bId)] eq true) and (borrower [ord (bId)] eq mId) and
(nbLoans [ord (mId ′)] gt 0) and (nbLoans [ord (mId ′)] lt 2) and
(nil reservation (reservation [ord (bId)]) eq true))

end var

end select

end var

end process

process Main [Register ,Lend ,Take,Renew ,Return,Reserve,Cancel ,Unregister ,

Acquire,Discard : any] is

par Register ,Lend ,Take,Renew ,Return,Reserve,Cancel ,Unregister ,Acquire,Discard in

par

par

loop L1 in select break L1 []

book [Acquire,Discard] (b1)

end select end loop

||

loop L1 in select break L1 []

book [Acquire,Discard] (b2)

end select end loop

end par

8.3. LNT CODE FOR THE EXTENDED LIBRARY MANAGEMENT SYSTEM 175

||

par

loop L1 in select break L1 []

Register(m1);

par

loop L2 in select break L2 []

member [Lend ,Take,Renew ,Return,Reserve,Cancel ,Transfer] (m1, b1)

end select end loop

||

loop L2 in select break L2 []

member [Lend ,Take,Renew ,Return,Reserve,Cancel ,Transfer] (m1, b2)

end select end loop;

end par;

var nbLoans : NB , bId : BID , reservation : RESERV in

Unregister (m1, ?nbLoans, ?reservation)

where ((nbLoans [ord (m1)] eq 1) and
(is reserved (m1, reservation [ord (b1)]) eq false) and
(is reserved (m1, reservation [ord (b2)]) eq false))

end var

end select end loop

||

loop L1 in select break L1 []

Register(m2);

par

loop L2 in select break L2 []

member [Lend ,Take,Renew ,Return,Reserve,Cancel ,Transfer] (m2, b1)

end select end loop

||

loop L2 in select break L2 []

member [Lend ,Take,Renew ,Return,Reserve,Cancel ,Transfer] (m2, b2)

end select end loop

end par;

var nbLoans : NB , bId : BID , reservation : RESERV in

Unregister (m2, ?nbLoans, ?reservation)

where ((nbLoans [ord (m2)] eq 1) and
(is reserved (m2, reservation [ord (b1)]) eq false) and
(is reserved (m2, reservation [ord (b2)]) eq false))

end var

end select end loop;

end par

176 CHAPTER 8. APPENDIX

||

M [Acquire,Discard ,Register ,Lend ,Take,Renew ,Return,Reserve,Cancel ,Unregister ,
Transfer]

end par

end process

end module

8.4 MCL Formulas for Requirements R1 to R15

Requirement R1 “A book can always be acquired by the library when it is not currently
acquired”

macro R1 (B) =
(

[(not {ACQUIRE !B})∗] 〈 {ACQUIRE !B} 〉 true
and
[true∗ . {DISCARD !B} . (not {ACQUIRE !B})∗] 〈 {ACQUIRE !B} 〉 true

)
end macro

R1 ("B1") and R1 ("B2") and R1 ("B3")

This is a classical liveness property. The second conjunct of “R1 (B)” expresses the even-
tuality that a book be withdrawn from the library before it is reacquired.

Requirement R3 “An acquired book can be discarded only if it is neither borrowed nor
reserved”

[true∗ . {?G : string ?any : string ?B : string where (G = "LEND") or (G = "TAKE")} .
(not {RETURN !B})∗ . {DISCARD !B}] false

and

[true∗.{RESERVE ?any : string ?B : string} .
(not ({CANCEL ?any : string !B} or {RETURN !B}))∗ . {DISCARD !B}] false

Requirement R4

“A person must be a member of the library in order to borrow a book”

8.4. MCL FORMULAS FOR REQUIREMENTS R1 TO R15 177

macro R4 (M) =
(

[(not {JOIN !M})∗ . ({LEND !M ?any : string} or {TAKE !M ?any : string})] false

and

[true∗.{LEAVE !M} . (not {JOIN !M})∗ .
({LEND !M ?any : string} or {TAKE !M ?any : string})] false

)
end macro

R4 ("M1") and R4 ("M2") and R4 ("M3")

The first conjunct or “R4 (M)” expresses the fact that a member cannot borrow a book
if (s)he has not registered to the library. The second conjunct expresses that if a member
relinquishes his/her membership, (s)he may not lend a book neither via the regular loan
action LEND nor the reservation action RESERVE.

Requirement R5

“A book can be reserved only if it has been borrowed or already reserved by some
member”

macro R5 (B) =
(

[(not ({LEND ?any : string !B} or {TAKE ?any : string !B}))∗ .
{RESERVE ?any : string !B}] false

and

[true∗ . {RETURN !B} .
(not ({LEND ?any : string !B} or {TAKE ?any : string !B}))∗ . {RESERVE !B}] false

and

[(not ({LEND ?any : string !B} or {TAKE ?any : string !B} or
{TRANSFER ?any : string !B} or {RESERVE ?any : string !B}))∗ .
{RESERVE ?any : string !B}] false

)
end macro

R5 ("B1") and R5 ("B2") and R5 ("B3")

The first conjunct expresses the obligation for a book not to be lent in order to be added
to the reservation list. The second conjunct complements the first in the sense that at least
one loan cycle is completed in the beginning of the transition sequence via “{ RETURN !B }”
thus making the book available for loan again. The third conjunct denies any reservation
history for the book in question. All possible loan operations should be excluded as well.

Requirement R6 “A book cannot be reserved by the member who is borrowing it”

[true∗.{LEND ?M : string ?B : string} .
(not ({RETURN !B} or {TRANSFER ?M2 : string !B}))∗ . {RESERVE !M !B}] false

178 CHAPTER 8. APPENDIX

The difficulty here lies in the fact that the borrower may transfer the book to another
member. For this reason, the following formula is false.

[true∗ . {LEND ?M : string ?B : string} . (not ({RETURN !B}))∗ . {RESERVE !M !B}] false

Requirement R8 “A book cannot be lent to a member if it is reserved”

macro R8 (B,M1,M2) =
(

[true∗ . {RESERVE !M1 !B} . (not ({TAKE !M1 !B} or {CANCEL !M1 !B}))∗ .
{LEND !M2 !B}] false

)
end macro

R8 ("B1", "M1", "M2")

In this case (as well as for the subsequent requirements R9, R11, R13, R14, and R15), we
only check the property for a specific book (B1) and members (M1, M2). So doing, we exploit
the symmetry of the specification (all books and members have similar behaviour), which is
crucial to avoid the exponential state space explosion.

Requirement R9 “A member cannot renew a loan or give the book to another member if
the book is reserved”

macro R9 (B,M) =
(

[true∗ . {RESERVE !M !B} . (not ({TAKE !M !B} or {CANCEL !M !B}))∗ . {RENEW !B}] false
)

end macro

R9 ("B1", "M1")

Requirement R10 “A member is allowed to take a reserved book only if he owns the oldest
reservation”

[
true∗ .
{RESERVE ?M1 : string ?B : string} .
(not ({TAKE !M1!B} or {CANCEL !M1!B} or {TRANSFER !M1!B}))∗ .
{RESERVE ?M2 : string !B where M2 6= M1} .
(not ({TAKE !M1!B} or {CANCEL !M1!B} or {TRANSFER !M1!B}))∗ .
{TAKE !M2!B}

] false

8.4. MCL FORMULAS FOR REQUIREMENTS R1 TO R15 179

This property has been rephrased in the following way: If two members reserve a book,
the first member to get it, is the first to have ordered it.

Requirement R11 “A book can be taken only if it is not borrowed”

macro R11 (B,M) =
(

[true∗ . ({LEND !M !B} or {TAKE !M !B}) . (not ({RETURN !B}))∗ .
({LEND !M !B} or {TAKE !M !B}) . (not ({RETURN !B}))∗ . {RETURN !B}] false

)
end macro

R11 ("B1", "M1")

This property corresponds to the pattern “α1 does not occur between α2 and α3”, which
is expressed by the following scheme, easily recognizable in this formula:

[true∗ . α2 . (not α3)∗ . α1 . (not α3)∗ . α3] false

Requirement R13 “A member can relinquish library membership only when all his loans
have been returned and all his reservations have either been used or cancelled”

macro R13 (B,M) =
(

[true∗ .
({LEND !M !B} or {TAKE !M !B}) .
(not ({RETURN !B} or {TRANSFER !"M2" !B} or {TRANSFER !"M3" !B}))∗ .
{LEAVE !M} . (not ({RETURN !B} or {TRANSFER !"M2" !B} or {TRANSFER !"M3" !B}))∗ .
({RETURN !B} or {TRANSFER !"M2" !B} or {TRANSFER !"M3" !B})] false

and

[true∗ . {RESERVE !M !B} . (not ({TAKE !M !B} or {CANCEL !M !B}))∗ .
{LEAVE !M} . (not ({TAKE !M !B} or {CANCEL !M !B}))∗ .
({TAKE !M !B} or {CANCEL !M !B})] false

)
end macro

R13 ("B1", "M1")

Requirement R14 “Ultimately, there is always a procedure that enables a member to leave
the library”

180 CHAPTER 8. APPENDIX

macro R14 (M) =
(

[true∗ . {JOIN !M} . (not {LEAVE !M})∗] 〈 (not {LEAVE !M})∗ . {LEAVE !M} 〉 true
)

end macro

R14 ("M1")

Requirement R15 “A member cannot borrow more than the loan limit defined at the
system level for all users”

macro R15 (M) =
(

[true∗ . let B1 : string := "B1", B2 : string := "B2" in
({LEND !M !B1} or {TAKE !M !B1}) .
(not ({TRANSFER ?M2 : string !B1} or {RETURN !B1}))∗ .
({LEND !M !B2} or {TAKE !M !B2}) end let] false

)
end macro

R15 ("M1")

This property is dependent on the maximum number NbLoans of books a member can
have at any time in his/her possession. In the above, NbLoans was set to two.

Index

	, 84
⊕, 24
π-compatible environment, 24
ctl∗- x, 145
eb3 memory, 32
SemM , 46
SemT/M , 32

[[.]]M1 , 33
[[.]]T1 , 24
[[.]]M2 , 37
[[.]]T2 , 27
[[.]]M3 , 37
[[.]]T3 , 27
SemT , 23

action label, 11
attribute function, 13
attribute function ordering, 16

bisimilar system, 46
bisimulation equivalence, 47

communication label, 81
compatible eb3 memory, 56
cut-off, 9, 144

environment, 23

gate, 77, 81
guard-action atomicity, 86, 92, 97

information system, 5

labelled transition system (LTS), 47
liveness property, 6

parametric CTL (PARCTL), 146
parametric information system (PIS), 9
parametric model checking (PMC), 9
parametric transition system (PTS), 144

partition, 145
path, 145

safety property, 6
stuttering bisimulation for PTSs, 145

trace environment, 24

well-formed eb3 specification, 19
well-formed action prototype definition, 13
well-formed attribute function definition, 16
well-formed guard, 18
well-formed process expression, 18
well-formed process expression definition, 19
well-formed type (1) value expression, 15
well-formed type (2) value expression, 17

181

Bibliography

[ABJ+99] P.A. Abdulla, A. Bouajjani, B. Jonsson, M. Nilsson. Handling Global Conditions
in Parameterized System Verification. In Proceedings of Conference on Computer-Aided
Verification, LNCS vol. 1633, pages 134–145, Springer, 1999.

[Abr05] J.R. Abrial. The B-Book - Assigning programs to meanings. Cambridge University
Press, 2005.

[AK86] K. R. Apt, D. C. Kozen. Limits for Automatic Verification of Finite-State Concurrent
Systems. In Journal of Information Processing Letters, ACM vol. 22, pages 307–309,
ACM, 1986.

[Bro00] N. Brownlee. Failures-divergence refinement. Formal Systems (Europe) Ltd. In
Blount MetraTech Corp. Accounting Attributes and Record Formats, 2000.

[BCC+99] A. Biere, A. Cimatti, E. Clarke, Y. Zhu. Symbolic Model Checking without BDDs.
In Proceedings of Workshop on Tools and Algorithms for the Construction and Analysis
of Systems, LNCS vol. 1579, pages 193–207, Springer, 1999.

[BPS01] J.A. Bergstra, A. Ponse, S.A. Smolka. Handbook of Process Algebra, Elsevier, 2001.

[BK84] J.A. Bergstra, J.W. Klop. Process Algebra for synchronous communication. In Jour-
nal of Information Control, vol. 60, pages 109–137, Elsevier, 1984.

[BK85] J. A. Bergstra, J. W. Klop. Algebra of Communicating Processes with Abstraction.
In Journal of Theoretical Computer Science, vol. 37, pages 77–121, Elsevier, 1985.

[BMC+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang. Symbolic
Model Checking: 1020 States and beyond. In Journal of Information and Computation,
pages 142–170, Elsevier, 1992.

[Cl] ClearSy. Atelier B. http://www.atelierb.societe.com.

[Cho10] R. Chossart. Évaluation d’outils de vérification pour les spécifications de systèmes
d’information. Master’s thesis, Université de Sherbrooke, 2010.

[CC77] P. Cousot, R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Proceedings of
Symposium on Principles of Programming Languages, pages 238-252, ACM, 1977.

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R.
Sebastiani, A. Tacchella. NuSMV 2: An opensource tool for symbolic model checking.
Springer, 2002.

182

BIBLIOGRAPHY 183

[CCG+11] D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, C. McKinty, V. Powazny,
F. Lang, W. Serwe, G. Smeding. Reference Manual of the LOTOS NT to LOTOS
Translator – Version 5.4. INRIA/VASY, 2011.

[CEF+86] E. M. Clarke, E. A. Emerson, A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. In Journal of Transactions on
Programming Languages and Systems, vol. 8, pages 244–263, ACM, 1986.

[CEF+96] E. M. Clarke, R. Enders, T. Filkorn, S. Jhay. Exploiting Symmetry in Temporal
Logic Model Checking. In Journal of Formal Methods in System Design, vol. 9, pages
77–104, Springer, 1996.

[CGB86] E. M. Clarke, O. Grumberg, M. C. Browne. Reasoning about Networks with many
identical Finite-State Processes. In Proceedings of Symposium on Principles of Dis-
tributed Computing, pages 240–248, ACM, 1986.

[CGL92] E. M. Clarke, O. Grumberg, D. E. Long. Model Checking and Abstraction. In
Proceedings of Symposium on Principles of Programming Languages, vol. 16, pages 343-
354, ACM, 1992.

[DGG97] D. Dams, R. Gerth, O. Grumberg. Abstract Interpretation of Reactive Systems. In
Journal of Transactions on Programming Languages and Systems, vol. 19, pages 253–291,
ACM, 1997.

[DV90] R. De Nicola, F. Vaandrager. Action versus state based logics for transition systems.
In Proceedings of the LITP spring school on Theoretical Computer Science on Semantics
of systems of concurrent processes, pages 407–419, Springer, 1990.

[Eme86] E. Allen Emerson, C-L. Lei. Efficient Model Checking in Fragments of the Proposi-
tional Mu-Calculus. In Proceedings of Symposium on Logic in Computer Science, pages
267–278, 1986.

[EH82] E. A. Emerson, J. Y. Halpern. Decision Procedures and Expressiveness in the Tem-
poral Logic of Branching Time. In Proceedings of Symposium on Theory of Computing,
pages 169–180, ACM, 1982.

[EK00] E. A. Emerson, V. Kahlon. Reducing Model Checking of the Many to the Few. In
Proceedings of Conference on Automated Deduction, LNCS vol. 1831, pages 236–254,
Springer, 2000.

[EL+86] E. A. Emerson and C-L. Lei. Efficient Model Checking in Fragments of the Proposi-
tional Mu-Calculus. In Proceedings of Symposium on Logic in Computer Science, pages
267–278, 1986.

[EN95] E. A. Emerson, K. S. Namjoshi. Reasoning about Rings. In Proceedings of Symposium
on Principles of Programming Languages, pages 85–94, ACM, 1995.

[ESW96] E. A. Emerson, A. P. Sistla, H. Weyl. Symmetry and Model Checking. In Journal
of Formal Methods in System Design, vol. 9, pages 105–131, Springer, 1996.

184 BIBLIOGRAPHY

[ETL+04] N. Evans, H. Treharne, R. Laleau, M. Frappier. How to verify dynamic properties
of information systems. In Proceedings of Workshop of Software Engineering and Formal
Methods, pages 416–425, 2004.

[FFC+10] M. Frappier, B. Fraikin, R. Chossart, R. Chane-Yack-Fa, M. Ouenzar. Compar-
ison of model checking tools for information systems. In Proceedings of International
Conference on Formal Engineering Methods, LNCS vol. 6447, pages 581–596, Springer,
2010.

[FM11] M. Frappier, A. Mammar. Proving Non-interference on Reachability Properties: A
Refinement Approach. In Proceedings of Software Engineering Conference, pages 25–32,
2011.

[FSt03] M. Frappier, R. St.-Denis. eb3: an entity-based black-box specification method for
information systems. In Journal of Software and System Modeling, LNCS vol. 2, pages
134–149, Springer, 2003.

[Ger06] F. Gervais. Combinaison de spécifications formelles pour la modélisation des systèmes
d’information. PhD thesis, Université de Sherbrooke, 2006.

[Gla87] R. J. van Glabbeek, F. W. Vaandrager. Petri Net Models for Algebraic Theories of
Concurrency, in: In Proceedings of Conference on Parallel Architectures and Languages
Europe, LNCS vol. 259, pages 224-242, Springer-Verlag, 1987.

[GFL05] F. Gervais, M. Frappier, R. Laleau. Synthesizing B Specifications from eb3 Attribute
Definitions. In Proceedings of Conference on Integrated Formal Methods, LNCS vol. 3771,
pages 207–226 Springer, 2005.

[GFL06] F. Gervais, M. Frappier, R. Laleau. Refinement of eb3 Process Patterns into B
Specifications. In Proceedings of Conference on Formal Specification and Development
in B, LNCS vol. 4355, pages 201–215, Springer, 2006.

[GLM+11] H. Garavel, F. Lang, R. Mateescu, W. Serwe. CADP 2011: A toolbox for the
construction and analysis of distributed processes. In International Journal on Software
Tools for Technology Transfer, LNCS, vol. 15, pages 89–107, Springer, 2011.

[GM84] U. Goltz, A. Mycroft. On the Relationship of CCS and Petri Nets. In Proceedings of
Colloquium on Automata, Languages and Programming, LNCS, vol. 172, pages 196–208,
Springer-Verlag, 1984.

[GSS+09] H. Garavel, G. Salaün, W. Serwe. On the semantics of communicating hardware
processes and their translation into LOTOS for the verification of asynchronous circuits
with CADP. In Journal of Science of Computer Programming, vol. 74, pages 100–127,
2009.

[GP93] P. Godefroid, D. Pirottin. Refining dependencies improves Partial Order Verification
Methods. In Proceedings of Conference on Computer-Aided Verification, LNCS, vol. 697,
pages 438–449, Springer, 1993.

[Hoa78] C. A. R. Hoare. Communicating Sequential Processes. In Communication of the
ACM, vol. 21, pages 666–677, ACM, 1978.

BIBLIOGRAPHY 185

[Hol04] G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley 2004.

[HBR09] Y. Hanna, S. Basu, H. Rajan. Behavioral Automata Composition for Automatic
Topology Independent Verification of Parameterized Systems. In Proceedings of Sympo-
sium on the Foundations of Software Engineering, pages 325–334, ACM, 2009.

[HSB+10] Y. Hanna, D. Samuelson, S. Basu, H. Rajan. Automating Cut-off for Multi-
parameterized Systems. In Proceedings of Conference on Formal Engineering Methods,
2010, vol. 6447, pages 338–354, Springer, 2010.

[ID96] C. N. Ip, D. L. Dill. Better Verification through Symmetry. In Journal of Formal
Methods in System Design, vol. 9, pages 97–111, ACM, 1996.

[Jac06] D. Jackson. Software Abstractions. MIT Press, 2006.

[JFG+10] M. E. Jiague, M. Frappier, F. Gervais, P. Konopacki, R. Laleau, J. Milhau, R. St-
Denis. Model-Driven Engineering of Functional Security Policies. In Proceedings of
Conference on Enterprise Information Systems, vol. 12, pages 374–379, 2010.

[Koz83] D. Kozen. Results on the Propositional -calculus. In Journal of Theoretical Computer
Science, vol. 27, pages 333–354, 1983.

[KP88] S. Katz, D. Peled. An efficient Verification Method for Parallel and Distributed
Programs. In Proceedings of Workshop on Linear Time, Branching Time and Partial
Order in Logics and Models for Concurrency, LNCS vol. 354, pages 489–507, Springer,
1988.

[Laz99] R.S. Lazic. A Semantic Study of Data Independence with Applications to Model
Checking PhD thesis, Oxford University Computing Laboratory, 1999.

[Lot01] ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard number
15437:2001, International Organization for Standardization – Information Technology,
Genève, 2001.

[LB03] M. Leuschel, M. Butler. ProB: A model checker for B. In Proceedings of Symposium
on Formal Methods, LNCS vol. 2805, pages 855–874, Springer-Verlag, 2003.

[LGS+95] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, S. Bensalem, D. Probst. Property
Preserving Abstractions for the Verification of Concurrent Systems. In Proceedings of
Conference on Formal Methods in System Design, vol. 6, pages 11–44, Springer, 1995.

[LMC00] M. Leuschel, T. Massart, A. Currie. How to make FDR spin: LTL model checking
of CSP by refinement. Technical report, 2000.

[LSH+09] F. Lang, G. Salaün, R. Hérilier, J. Kramer, J. Magee. Translating FSP into LOTOS
and networks of automata. In Journal of Formal Aspects of Computing, vol. 22 pages
681–711, Springer, 2009.

[Mil80] R. Milner. A Calculus of Communicating Systems. In Proceedings of Computer
Science, LNCS vol. 92, Springer, 1980.

186 BIBLIOGRAPHY

[Mor98] C .C. Morgan. Programming from Specifications, Prentice Hall, 1998.

[MIL+11] J. Milhau, A. Idani, R. Laleau, M.A. Labiadh, Y. Ledru, M. Frappier. Combining
UML, ASTD and B for the formal specification of an access control filter. In Journal of
Innovations in Systems and Software Engineering, vol. 7, pages 303–313, Springer, 2011.

[MK+06] J. Magee, J. Kramer. Concurrency: State models and Java programs ACM, 2006.

[MPW+92] R. Milner, J. Parrow, D. Walker. A calculus of mobile processes. In Journal of
Information and Computation, vol. 100, pages 1–40, ACM, 1992.

[MR05] M .R. Mousavi, M .A. Reniers. Congruence for Structural Congruences. In Proceed-
ings of Conference on Foundations of Software Science and Computational Structures,
vol. 3441, pages 47–62, Springer, 2005.

[MS10] R. Mateescu, G. Salaün. Translating Pi-calculus into LOTOS NT. In Proceedings
of Conference on Integrated Formal Methods, LNCS vol. 6396, pages 229–244, Springer,
2010.

[MT08] R. Mateescu, D. Thivolle. A model checking language for concurrent value-passing
systems. In Proceedings of Symposium on Formal Methods, LNCS vol. 5014, pages 148–
164, Springer, 2008.

[Par81] D. Park. Concurrency and automata on infinite sequences. In Proceedings of Confer-
ence on Theoretical Computer Science, LNCS vol. 104, pages 167–183, Springer-Verlag,
1981.

[Pet75] C. A. Petri. Concurrency. In Advanced Course: Net Theory and Applications, 1975.

[QS83] J-P. Queille and J. Sifakis. Fairness and Related Properties in Transition Systems-A
Temporal Logic to Deal with Fairness. In Journal of Acta Informatica, vol. 19, pages
195–220, 1983.

[Ros98] B. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall PTR,
1998.

[Str82] R. Streett. Propositional Dynamic Logic of Looping and Converse. In Journal of
Information and Control, vol. 54, pages 121–141, 1982.

[ST02] S. Schneider, H. Treharne. CSP Theorems for Communicating B Machines. Techni-
cal Report CSD-TR-02-12, Dept. of Computer Science, Royal Holloway, University of
London, 2002.

[Tar55] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. In Pacific
Journal of Mathematics 5, vol. 2, pages 285–309, 1955.

[Ten91] R. Tennent. Semantics of Programming Languages. Prentice Hall, 1991.

[VD13] D. Vekris, C. Dima. Efficient Operational Semantics for EB3 for Verification of Tem-
poral Properties. In Proceedings of Conference on Fundamentals of Software Engineering,
LNCS vol. 8161, pages 133–149, Springer, 2013.

BIBLIOGRAPHY 187

[VLD+13] D. Vekris, F. Lang, C. Dima, R. Mateescu. Verification of EB3 Specifications using
CADP. In Proceedings of Conference on Integrated Formal Methods, LNCS vol. 7940,
pages 61–76, Springer, 2013.

[Win84] G. Winskel. A new definition of Morphism on Petri Nets. In Proceedings of Sym-
posium on Theoretical Aspects of Computer Science, LNCS vol. 166, pages 140–150,
Springer-Verlag, 1984.

188 BIBLIOGRAPHY

Abstract: eb3 is a specification language for information systems. The core of the eb3

language consists of process algebraic specifications describing the behaviour of entities in a
system, and attribute functions that are recursive functions evaluated on the system execution
trace describing entity attributes. The verification of eb3 specifications against temporal
properties is of great interest to users of eb3. In this thesis, we focus on liveness properties
of information systems, which express the eventuality that certain actions take place. The
verification of liveness properties can be achieved with model checking.

First, we present an operational semantics for eb3 programs, in which attribute functions
are computed during program evolution and their values are stored into program memory.
This semantics permits us to define an automatic translation from eb3 to LNT, a value-passing
concurrent language with classical process algebra features. Our translation ensures the
one-to-one correspondence between states and transitions of the labelled transition systems
corresponding to the eb3 and LNT specifications. Then, we automate this translation with
the eb32lnt tool, thus equipping the eb3 method with the functional verification features
available in the model checking toolbox CADP.

With the aim of improving the model checking results of this approach, we explore ab-
straction techniques for information systems specified in eb3. In particular, we concentrate on
a specific family of systems called parametric, whose behaviour is scaled in keeping with the
predefined value of a system parameter. Finally, we apply this method on the eb3 context.
Keywords: Information Systems, Process Algebras, Model Checking, Abstraction Tech-
niques

Resumé: eb3 est un langage de spécification développé pour la spécification des systèmes
d’information. Le noyau du language eb3 comprend des spécifications d’algèbre de processus
afin de décrire le comportement des entités du système et des fonctions d’attributs qui sont des
fonctions récursives dont l’évaluation se fait sur la trace d’exécution du système décrivant les
attributs des entités. La vérification de propriétés temporelles en eb3 est un sujet de grande
importance pour des utilisateurs de eb3. Dans cette thèse, on se focalise sur les propriétés de
vivacité concernant des systèmes d’information exprimant l’éventualité que certaines actions
puissent s’exécuter. La vérification des propriétés de vivacité se fait à l’aide de model checking.

Dans un premier temps, on presente une sémantique opérationnelle de eb3, selon laquelle
les fonctions d’attributs sont évaluées pendant l’exécution du programme puis stockées. Cette
sémantique nous permet de définir une traduction automatique de eb3 vers LNT, qui est une
algèbre de processus. Notre traduction assure la correspondance un à un entre les états
et les transitions des systèmes de transition étiquetés correspondent respectivement à des
spécifications eb3 et LNT. Ensuite, on automatise la traduction grâce à l’outil eb32lnt
fournissant aux utilisateurs de eb3 tous les outils de vérification fonctionnelle disponible dans
CADP.

Dans le but d’améliorer les résultats de notre approche concernant le model checking, on
explore des techniques d’abstraction dédiées aux systèmes d’information spécifiées en eb3. En
particulier, on se focalise sur une famille spécifique de systèmes appelés paramétriques dont
le comportement varie en fonction de la valeur prédéfinie d’un paramètre du système. Enfin,
on applique cette méthode dans le contexte de eb3.
Mots clès: Systèmes d’Information, Algèbre de Processus, Model Checking, Techniques
d’Abstraction

