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Résumé
G

Le Cloud Computing est de plus en plus utilisé pour le déploiement et l'exécution
des applications en général et des applications à base de services en particulier. Les
applications à base de services sont décrites à l'aide du standard Service Component
Architecture (SOA) et consistent à inter-lier un ensemble de services élémentaires et
hétérogènes en utilisant des spéci�cations de composition de services appropriées telles
que Service Component Archi tecture (SCA) ou encore Business Process Execution
Language (BPEL). Provisionner une application dans le Cloud consiste à : (1) allouer
les ressources dont elle a besoin pour s'exécuter et (2) déployer ses sources sur les
ressources allouées. Cependant, les solutions Cloud existantes sont limitées en termes
de plateformes d'exécution. Ils ne peuvent pas toujours satisfaire la forte hétérogénéité
des composants des applications à base de services. Pour remédier à ces problèmes, les
mécanismes de provisioning des applications dans le Cloud doivent être reconsidérés.
Ces mécanismes doivent être assez �exibles pour supporter la forte hétérogénéité des
composants sans imposer de modi�cations et/ou d'adaptations du côté du fournisseur
Cloud. Elles doivent également perme ttre le déploiement automatique des composants
dans le Cloud. Si l'application à déployer est mono-composant, le déploiement est fait
automatiquement et de la même manière, et ce quelque soit le fournisseur Cloud
choisi. Si l'application est à base de services hétérogènes, des fonctionnalités appro-
priées doivent être mises à la disposition des développeurs pour qu'ils puissent dé�nir
et créer les ressources nécessaires aux composants avant de déployer l'application.
Dans ce travail, nous proposons une approche appelée SPD permettant le provision-
ing des applications à base de services dans le Cloud. L'approche SPD est constituée
de 3 étapes : (1) découper des applications à base de services en un ensemble de ser-
vices élémentaires et autonomes, (2) encapsuler les services dans des micro-conteneurs
spéci�ques et ( 3) déployer les micro-conteneurs dans le Cloud. Pour le découpage,
nous avons élaboré un ensemble d'algorithmes formels assurant la préservation de la
sémantique des applications une fois découpées. Pour l'encapsulation, nous avons réal-
isé des prototypes de conteneurs de services permettant l'hébergement et l'exécution
des services avec seulement le minimum des fonctionnalités nécessaires. Pour le dé-
ploiement, deux cas sont traités i.e. déploiement sur une infrastructure Cloud (IaaS)
et déploiement sur une plateforme Cloud (PaaS). Pour automatiser le processus de
déploiement, nous avons dé�ni : (i) un modèle de description des ressources uni�é
basé sur le standard Open Cloud Computing Interface (OCCI) permettant de décrire
l'application et ses ressources d'une manière générique quelque soit la plateforme de
déploiement cible et (ii) une API appelée COAPS implémentant ce modèle et perme-
ttant de l'approvisionnement et la gestion des applications en utilisant des opérations
génériques quelque soit la plateforme cible.

Mots clés: Application à base de service - Approvisionnement de ressource Cloud
- Cloud Computing, Micro-conteneur de services - Modélisation de ressource Cloud

vii



viii



Abstract

Cloud Computing is a new supplement, consumption, and delivery model for IT ser-
vices based on Internet protocols. It is increasingly used for hosting and executing
applications in general and service-based applications in particular. Service-based ap-
plications are described according to Service Oriented Architecture (SOA) and consist
of assembling a set of elementary and heterogeneous services using appropriate service
composition speci�cations like Service Component Architecture (SCA) or Business
Process Execution Language (BPEL).

Provision an application in the Cloud consists of allocates its required resources
from a Cloud provider, upload source codes over their resources before starting the ap-
plication. However, existing Cloud solutions are limited to static programming frame-
works and runtimes. They cannot always meet with the application requirements
especially when their components are heterogeneous as service-based applications. To
address these issues, application provisioning mechanisms in the Cloud must be recon-
sidered. The deployment mechanisms must be �exible enough to support the strong
application components heterogeneity and requires no modi�cation and/or adapta-
tion on the Cloud provider side. They also should support automatic provisioning
procedures. If the application to deploy is mono-block (e.g. one-tier applications),
the provisioning is performed automatically and in a uni�ed way whatever is the tar-
get Cloud provider through generic operations. If the application is service-based,
appropriate features must be provided to developers in order to create themselves dy-
namically the required resources before the deployment in the target provider using
generic operations.

In this work, we propose an approach (called SPD) to provision service-based ap-
plications in the Cloud. The SPD approach consists of 3 steps: (1) Slicing the service-
based application into a set of elementary and autonomous services, (2) Packaging
the services in micro-containers and (3) Deploying the micro-containers in the Cloud.
Slicing the applications is carried out by formal algorithms that we have de�ned. For
the slicing, proofs of preservation of application semantics are established. For the
packaging, we performed prototype of service containers which provide the minimal
functionalities to manage hosted services life cycle. For the deployment, both cases
are treated i.e. deployment in Cloud infrastructure (IaaS) and deployment in Cloud
platforms (PaaS). To automate the deployment, we de�ned: (i) a uni�ed description
model based on the Open Cloud Computing Interface (OCCI) standard that allows
the representation of applications and its required resources independently of the tar-
geted PaaS and (ii) a generic PaaS application provisioning and management API
(called COAPS API) that implements this model.

Keywords: Cloud Computing - Cloud resource modeling - Cloud resource provi-
sioning - Service-based application - Service micro-container
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Chapter 1

Introduction
G

1.1 Context

Cloud Computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of con�gurable computing resources (e.g. networks, servers,
storage resources, applications, services, etc.). These resources should be swiftly pro-
visioned and released with minimal management e�ort and service providers interac-
tions [11].

In this work, we are interested in service-based applications provisioning in Cloud
environments. These applications are built according Service Oriented Architecture
(SOA) which is a software architecture and applications design principle that starts
with an interface de�nition and builds the entire application topology as a topology
of interfaces, interface implementations and interface calls [12].

Service-based applications consist in assembling a set of elementary services using
appropriate service composition speci�cations such as Service Component Architec-
ture (SCA) [13], Business Process Model and Notation (BPMN) [14] or Web Ser-
vices Business Process Execution Language (BPEL) [15]. Service-based applications
are built from components and services that maybe heterogeneous in the sense that
they (1) are not all implemented using the same programming languages (e.g. C++,
Java, etc.), (2) do not support all the same communication protocols (e.g. RMI,
SOAP/HTTP, etc.) and/or (3) do not run on the same hosting frameworks (e.g.
POJO VM, .NET framework, etc.).

Provisioning a service-based application in the Cloud consists of: (1) allocation
of adequate resources to host and execute the application and (2) upload of the ap-
plication artifacts (e.g. binary code) on the allocated resources. This provisioning
requires then the delivery of appropriate frameworks and speci�c runtimes supporting
the heterogeneities presented above. However, existing Cloud platforms are limited to
speci�c programming frameworks and runtimes. For example, Jelastic PaaS do not
support .NET framework provisioning and cannot therefore host and execute .NET-
based applications. Furthermore, each Cloud platform describe, manage and provision
these resources in a proprietary way. These di�erences can be explained by several
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reasons such as the huge variety of manipulated resources and applications and the
absence of universal standards for both applications and Cloud resources. For ex-
ample, to deploy a Java Web application in Cloud Foundry, the developer have only
to provide the application byte code. The allocation of the hosting tomcat server is
performed implicitly by the PaaS based on the application type. While, deploying
the same application in Jelastic requires: (1) the creation (manually) of the hosting
environment containing a tomcat instance by the developer, (2) the upload of the
application and (3) the linking of the application to the created environment for the
concrete deployment.

1.2 Thesis research issues and motivations

On one side, SOA developers manipulate various and heterogeneous application com-
ponents which: (1) do not use necessarily the same programming languages, (2) do
not support all the same communication protocols and/or (3) do not run on the same
hosting frameworks. On the other side, taxonomy of Cloud Computing shows that
all the existing systems are limited to speci�c hosting environments, programming
frameworks and runtimes. Each Cloud system provides a �nite and limited set of
hosting and execution resources (e.g. execution engines, message routers, etc.) and
services (e.g. storage services, logging services, etc.). For example, deploying BPEL
processes (respectively SCA-based applications) in the Cloud requires provisioning,
among others, speci�c execution engines such as Apache ODE (respectively Apache
Tuscany). These limitations impose constraints and makes the use of those systems
di�cult, since SOA developers need to use the related programming languages and
execution frameworks before using the Cloud [16]. Capabilities of Cloud platforms are
limited in terms of hosting and execution resources and cannot meet all the time the
high heterogeneity of application components.

Some of the existing solutions (e.g. Cloud4SOA, mOSAIC, etc.) propose to pro-
vide dedicated frameworks for SOA applications, or to allow developers to install and
con�gure themselves required execution frameworks when deploying the application
components (e.g. [17] for Cloud Foundry PaaS), these solutions delegate installation
and con�guration tasks to developers which complicates signi�cantly the deployment,
constitutes a step backward and is inconsistent with the Cloud business model. Other
solutions (e.g. Cloud Foundry, WSO2 Stratos, etc.) compensate this adhesion to spe-
ci�c programming languages, communication protocols and/or hosting frameworks
by continuous development of extensions requested by end users (for proprietary so-
lutions) or proposed by developers (for open-source solutions). Nevertheless, this
extension task is quite complex and expensive. It is a development task rather than
an integration facility that consists of adding new components without hard coding.

In addition to these constraints, we noticed another type of restrictions when
deploying service-based applications in the Cloud. Such applications are often dis-
tributed, so it is not uncommon to deploy their components separately on multiple
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Cloud platforms for example. However, application required resources are provisioned
by Cloud platforms in a speci�c way. Each Cloud system has proprietary description
models to describe, manage and provision applications and their hosting resources.
This is also re�ected in the heterogeneity of the user APIs implementing these de-
scription models (e.g. proprietary operations, speci�c provisioning scenarios, etc.).
These limitations are forcing developers to adapt their applications and provision-
ing procedure when they provision them into several Cloud platforms and/or when
they move from a Cloud platform to another. These limitations cause application
portability issues which impedes operating such applications in Cloud context. Cloud
applications portability is a concept that refers to the ability to move applications be-
tween Cloud vendors with a minimum level of integration issues. Cloud applications
portability enables the re-use of application components across Cloud platforms and
services [18]. Application portability limitations lead to restriction problems, compat-
ibility drawbacks and vendor lock-in that make operating service-based applications
di�cult in the Cloud due to the di�erences on used resources description models and
user APIs.

To address these issues, we de�ne, in this thesis, a novel approach to provision
service-based applications in Cloud environments. To do this, we propose to de-
sign and implement appropriate mechanisms to support the high heterogeneity of the
applications components and generic operations independent from the target Cloud
environment for applications deployment.

1.3 Thesis objectives and principles

In this thesis, we aim at de�ning an approach to provision automatically service-based
applications in Cloud environments. This approach aims at addressing highlighted
SOA applications heterogeneity limitations and portability issues in the Cloud. Our
approach covers applications described according SOA, and particularly business pro-
cesses modeled through BPEL or BPMN processes and applications whose services
compositions can be modeled as directed graphs such as SCA-based applications.

Our approach consists in de�ning and implementing new provisioning mechanisms
that are �exible enough to support the deployment of high heterogeneous

service-based application components. These mechanisms must also allow ap-

plication portability to enable automatic and uni�ed provisioning and management
procedures whatever is the target Cloud without any modi�cations and/or adaptations
on the Cloud environment side.

To support application components heterogeneity, we propose to slice the applica-
tions into a set of elementary and autonomous services before allocating a dedicated
and appropriate environment for each one of the obtained services. Applications
slicing in elementary services seeks to facilitate deployment task and heterogeneity
constraints satisfaction when instantiating hosting Cloud environments. Indeed, it is
di�cult to meet Cloud provided resources with such varied application components
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hence our idea of slicing. After that, if the provisioning of required Cloud resources
for hosting and execution of these services is not supported by the target Cloud en-
vironment, we propose to perform dedicated service containers wherein we package
sliced services and required execution resources.

To enhance Cloud portability, we de�ne a uni�ed application and resources de-
scription model and a generic API implementing this model. Based on our introduced
model and its correspondent API, we are able to describe, provision and manage
applications and allocated resources on the same way whatever is the target Cloud
infrastructure or platform.

Finally, it should be noted that based on these principles, the execution of the
deployed service-based applications are assimilated to services choreographies instead
of the initial services orchestrations which is more appropriated for decentralized en-
vironments such as the Cloud.

1.4 Thesis Contributions

In order to achieve our stated objectives, we de�ne a novel approach that we called
SPD to perform the provisioning procedure. The SPD approach requires no modi�-
cation and/or adaptation on Cloud provider side and enable applications portability
thanks to the generic resources description model that we de�ne for both application
and Cloud resources.

The SPD approach consists of three steps:

1. Slicing the application into a set of elementary services,

2. Packaging the resulted services into service micro-containers,

3. Deploying the micro-containers in a target Cloud environment.

If the application to deploy is mono-block (e.g. Java Web application), we perform
directly the third step of the approach. Else, if the application has several components,
we perform the �rst step of the approach to slice it before. Note that the second step is
performed only when the target Cloud platform do not support provisioning required
Cloud resources for hosting and execution of sliced services. The three SPD approach
steps are detailed in the following.

1.4.1 Step 1: Slice the service-based application

The slicing step is based on the application deployables and descriptor. Application
deployables are all necessary artifacts (e.g. ZIP �le, EAR �le, con�guration scripts,
etc.) needed to run the application while the application descriptor, often an XML-
based document, is a sort of contract describing how to invoke the application and
giving details regarding its several components, bindings and interactions between
them. The principle of this step is to cut and divide the service-based application into
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an equivalent set of autonomous and operational elementary services while ensuring
the preservation of their initial business semantics. The execution of these resulting
services ensures the same functionality of the initial application.

1.4.2 Step 2: Package the services to deploy

In this step, we package each one of the obtained services from the slicing step in
a particular type of service container. Only one service and necessary resources to
implement its binding types such as communication protocols and its required facilities
such as migration, elasticity or monitoring are packaged in a dedicated container
that we called service micro-container. The micro-containers are generated from the
packaging framework based on the provided service.

1.4.3 Step 3: Deploy the packaged services

Once the services are packaged in micro-containers, we can deploy them in a target
Cloud environment. Depending on the choice of the developer, the micro-containers
can be deployed on Cloud infrastructure (IaaS) or Cloud platform (PaaS). For an IaaS
deployment, service micro-containers are placed on virtual machines as standalone
applications. For a PaaS deployment, we de�ned a PaaS-independent platform and
application resources description model based on the Open Cloud Computing Interface
(OCCI) to enable applications portability. We also performed a REST API called
COAPS implementing this model and enabling uni�ed and automatic provisioning
through generic operations.

1.5 Thesis outline

This thesis includes 7 chapters:

In Chapter 2, we introduce a set of de�nitions and basic concepts before present-
ing the work related to our thesis. We study results of di�erent collaborative re-
search projects (e.g. Cloud4SOA, mOSAIC, etc.), tentatives of standardization (e.g.
TOSCA, CAMP, etc.) and existing solutions for service-based applications descrip-
tion and provisioning in the Cloud. This analysis allows us to highlight the existing
limitations and justify the need of novel appropriate mechanisms for service-based
applications provisioning in the Cloud.

Chapters 3, 4 and 5 are the core of our thesis, which elaborate our de�ned SPD
approach to provision service-based applications in Cloud environments. Each one of
these Chapters details a step of our SPD approach. Concrete illustrative examples
are provided at the end of each Chapter.

In Chapter 3, we present our performed work to achieve the �rst step of the
SPD approach. In this Chapter, we de�ne and comment a set of formal algorithms
that slices service-based applications based on their type (i.e. business processes or
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applications based on service compositions). The de�ned slicing algorithms allow the
preservation of the applications business semantics.

In Chapter 4, we present the architecture of the packaging framework and its
execution process to package sliced services in appropriate service micro-containers.
Extended variants of packaging framework supporting the packaging of non-functional
properties such as migration or monitoring in the micro-containers are also described.

In Chapter 5, we present our proposed applications and platform resources descrip-
tion model. We also describe the COAPS API speci�cations which implements this
model. Our de�ned model allows applications and/or services deployment through
seamless interactions with di�erent and heterogeneous PaaS and address applications
portabiliy issues.

In Chapter 6, we present implementations details and used technologies to realize
each step of the SPD approach. We discuss also the experimentations results that we
have conducted to evaluate our service micro-container performances against classical
service containers in Cloud environments. In the last part of the Chapter, we detailed
two realistic use cases of applications provisioning in Cloud platforms based on our
�ndings.

Finally, in Chapter 7, we summarize our work and give an outlook of the future
work.
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This Chapter is organized as follows: We introduce a set of de�nitions and basic
concepts related to our work in Section 2.1. Then, we present the criteria that we
have selected to evaluate related works in Section 2.2. After that, we discuss results of
collaborative research projects and existing approaches for applications provisioning
in the Cloud in Section 2.3. Finally, we study and compare existing approaches for
Cloud resources description in Section 2.4.
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2.1 Background

In this Section, we introduce de�nitions and basic concepts related to our work.

2.1.1 Cloud Computing

The American National Institute of Standards and Technology (NIST) de�ned Cloud
Computing as a new emerging model for enabling ubiquitous, convenient, on-demand
network access to shared pool of con�gurable computing resources (e.g. networks,
servers, storage resources, applications, services, etc.). These resources should be
swiftly provisioned and released with minimal management e�ort [11].

Based on [19], Cloud Computing is de�ned as a specialized distributed computing
paradigm. It di�ers from traditional ones on the fact that it (1) is massively scalable,
(2) can be encapsulated as an abstract entity that delivers di�erent levels of services
to customers outside the Cloud, (3) is driven by economies of scale, (4) can be dy-
namically con�gured (via virtualization or other approaches) and (5) can be delivered
on demand. The associated delivery models to Cloud Computing are: Infrastructure
as-a-Service (IaaS), Platform as-a-Service (PaaS) and Software as-a-Service (SaaS).

IaaS provides services that furnish to the consumer processing, storage, networks,
and other fundamental computing resources where the consumer is able to deploy and
run arbitrary software, which can include operating systems and applications. At IaaS
level, the consumer does not manage or control the underlying Cloud infrastructure but
has control over operating systems, storage, and deployed applications [11]. Examples
of IaaS are Amazon AWS1, Rackspace Open Cloud2, Google Compute Engine3, etc.

PaaS provides services that furnish to the consumer appropriate resources to de-
ploy in the Cloud infrastructure consumer-created or acquired applications imple-
mented using programming languages, libraries, services and tools supported by the
provider [11]. PaaS consists of a re-usable framework, which provides one or more
application platform components as a service. Examples of PaaS are Cloud Foundry4,
OpenShift5, Windows Azure6, Google App Engine7, Heroku8, Jelastic9, etc.

SaaS provides services that furnish distributed software over the Internet. SaaS
supports a model for access and execution of software deployed over PaaS systems [11].

1aws.amazon.com
2rackspace.com/cloud
3cloud.google.com/compute
4cloudfoundry.org
5openshift.com
6azure.microsoft.com
7appengine.google.com
8heroku.com
9jelastic.com
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Figure 2.3: The online shop process.

delivery information to the customer (line 30).

Listing 2.1: The online shop process descriptor.

1 <process name="Online Shop">

2 <partnerLinks>

3 <partnerLink name="client" partnerLinkType="clientPL"/>

4 </partnerLinks>

5 <variables>

6 <variable name="var" />

7 </variables>

8 <sequence>

9 <receive partnerLink="client" portType="onlineshop" opera t i on="login"

c r e a t e I n s t an c e="yes" va r i ab l e="var" />

10 <switch>

11 <case condition="known customer">

12 <sequence>

13 <receive partnerLink="client" portType="onlineshop" opera t i on="

order" va r i ab l e="var" />

14 <invoke partnerLink="client" portType="onlineshop" opera t i on="

invoice" i nputVar iab l e="var" />

15 </sequence>

16 </case>

17 <otherwise>

18 <flow>

19 <sequence>

20 <receive partnerLink="client" portType="onlineshop" opera t i on="





•
•
•
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component (lines 19-25) which is a remote Web service deployed on a remote Tomcat
container instance. This component determines the tax rate from a Database instance
based on the product ID provided by DisplayPriceIncTax component. It is accessible
through an URI (line 23).

Listing 2.2: ComputePrice composite descriptor.

1 <?xml ve r s i on="1.0" encoding="UTF -8"?>

2 <composite name="ComputePriceApplication">

3 <component name="DisplayPriceIncTaxComponent">

4 <implementation . java class="CalculPrixTtcSCAApplicationWSImplem"/>

5 <service name="CalculPrixTtcSCAService" promote="

DisplayPriceIncTaxComponent/CalculPrixTtcSCAService">

6 <interface . java interface="CalculPrixTtcSCAServiceInterface"/>

7 </service>

8 <reference name="totalPriceService" target="TtcComponent" promote="

DisplayPriceIncTaxComponent/totalPriceService">

9 </reference>

10 <reference name="taxService" target="DetermineTaxRateComponent" promote=

"DisplayPriceIncTaxComponent/taxService">

11 <binding . ws/>

12 </reference>

13 </component>

14 <component name="TtcComponent">

15 <implementation . java class="totalPriceServiceImplem" promote="

DisplayPriceIncTaxComponent/totalPriceService"/>

16 <reference name="taxService" promote="TtcComponent/taxService">

17 </reference>

18 </component>

19 <component name="DetermineTaxRateComponent">

20 <implementation . java class="taxServiceImplem"/>

21 <service name="taxServiceInterface" promote="

DisplayPriceIncTaxComponent/taxService">

22 <interface . java interface="taxServiceInterface"/>

23 <binding . ws uri="http://localhost:8080/axis2/taxServiceInterface"/>

24 </service>

25 </component>

26 </composite>

2.2 Related work evaluation criteria

To address the SOA support issues mentioned in Section 1.2, Cloud platforms should
provide appropriate mechanisms to support SOA application components

heterogeneity. In addition to that, to enable automatic provisioning of these appli-
cations and enhance their portability in such context, we need to use a generic and
common application and Cloud resources description model. Such generic
model uni�es the application provisioning and management steps and enhance appli-
cations portability since it will be described and provisioned, as well as its resources,
in the same way whatever is the target Cloud platform.
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In the following, we enumerate and discuss results of related works which are
interested in addressing these issues. To evaluate these works, we rely on the following
criteria:

• SOA support: Appropriate provisioned Cloud resources to support applications
described according to SOA hosting and execution,

• Applications portability: Provided solutions to minimize modi�cations and adap-
tations of applications from a Cloud platform to another,

• Standardized resources description model: The proposal or not of common and
uni�ed resources description model,

• Standardized user API: The proposal or not of generic user API operations
implementing the resources description model.

2.3 Approaches for applications provisioning in the Cloud

In the following, we present and discuss results of related research projects. For each
one of these projects, we describe its contributions and performed solutions.

2.3.1 PaaSage

PaaSage13, a model-based Cloud platform upperware, is an European project that
aims designing and implementing a platform for applications development and de-
ployment in the Cloud using an appropriate prede�ned methodology [2]. PaaSage's
model-based methodology supports the Cloud lifecycle phases of con�guration, de-
ployment and execution. These phases are based on the Waterfall Model of Software
Development [1] illustrated in Figure 2.6.

Figure 2.6: Application lifecycle
overview [1]. Figure 2.7: Main PaaSage architectural stack [2].

13http ://www.paasage.eu/
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PaaSage architecture is composed of 3 main layers (See Figure 2.7):

1. Integrated Development Environment (IDE) layer : implements the portal of
PaaSage platform. It consists of an extended version of the open source devel-
opment platform Eclipse14 supporting the chosen Cloud Application Modelling
Execution Language (CAMEL) including CloudML [26] [27]. The IDE ensures
the model-based integration of the various functional components in the appli-
cation project.

2. Upperware layer : provides a set of tools for application requirements express
at design time. The Cloud Reasoner allows the use of PaaSage model-based
knowledge integrated to the IDE and ensures mediation between the IDE layer
and the Executionware layer.

3. Executionware layer : provides platform-speci�c mapping and technical integra-
tion of PaaSage to the provider APIs. The Deployer ensures the application
components deployment while the Adapter interacts with the target provider
API.

PaaSage IDE allow development of applications described according to SOA through
appropriate plugins. The deployment and the execution of these application is per-
formed in its own platform (Executionware layer). Archiving application is handled
by the Cloud Adapter in a speci�c way on the upperware layer before the deployment
which hampers application portability. PaaSage provides no standardization e�ort
for resources description and user API. It uses proprietary Cloud infrastructure APIs
when allocating resources.

Table 2.1: PaaSage project synthesis.

SOA support Portability Standardized model Standardized API

YES NO NO NO

2.3.2 mOSAIC project

mOSAIC15, result of an European collaborative project, is an open-source API and
platform for multiple Cloud systems. mOSAIC o�er tools for developing portable
Cloud-applications which can consume hardware and software resources o�ered by
multiple Cloud providers [3].

Figure 2.8 details the mOSAIC platform architecture. The Application Support
includes the API implementations and Application Tools, as well as the Semantic
Engine and Service Discoverer. The API exposes operations to build and manage

14http://www.eclipse.org/
15www.mosaic-cloud.eu
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Figure 2.8: mOSAIC platform overview [3].

Cloudlets. A Cloudlet represents an abstraction of application functionnality and is
subject to be elastic and monitored by the Sotware Platform. The Semantic Engine is
the sub-system supporting the user in selecting APIs components and functionalities
needed to build the Cloudlet, and resources to be allocated from the Cloud providers.
The API operations are generic. This ensures a degree of abstraction of Software
Platform Support when describing the application and its resources.

The Software Platform Support manages the hosting environment of the applica-
tion to deploy based on deployment and application descriptors. The Software Plat-
form Support identi�es the application components and the needed Cloud resources
when parsing the application descriptor. Provided resources do not support appropri-
ate frameworks and engines for applications described according to SOA execution.
However, the Software Platform Support is open source and could be extended by the
community to support SOA in the near future.

The Infrastructure Support provides concrete Cloud resources and services to be
provisioned. The Cloud Agency performs required service providers provisioning
through Vendor agents (e.g. storage service). The selection of the target provider
is based on the brokerage contracts. The Cloud Adaptors implement the speci�c
provider operations to perform the provisioning. Currently, mOSAIC provide Adap-
tors for Amazon EC2, Flexiscale, Eucalyptus and OpenNebula.

Development and deployment stages in mOSAIC are treated separately to avoid
portability issues. Indeed, development is done independently of the Cloud platform
while deployment consists in selecting required Cloud resources and starting the appli-
cation components. Before deployment time, the developer describes the application
components' requirements and dependencies in terms of communication and data in
a uni�ed way through the API implementations.
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Table 2.2: mOSAIC project synthesis.

SOA support Portability Standardized model Standardized API

NO YES YES YES

2.3.3 Cloud4SOA

Cloud4SOA16 is an European research project that provides an interoperable multi-
PaaS Cloud solution for SOA applications. Cloud4SOA o�ers to developers the ability
to select, deploy and manage applications in several PaaS [4]. The main contributions
of this project consists of providing facilities to developers to switch their applications
from one PaaS to another with minimum change and adpatation e�orts, so Cloud4SOA
aims at enabling applications portability. Cloud4SOA establish an abstration layer,
based on an appropriate de�ned ontology, upstream di�erent PaaS and exposes a
common generic management interface to ensure the interoperability of the solution.

Figure 2.9: Cloud4SOA reference architecture [4].

Figure 2.9 details the reference architecure introduced by Cloud4SOA. This archi-
tecture consists of 5 layers:

• Service Front-end layer : provides a dashboard and a set of GUIs to access to
the Cloud4SOA features

• Semantic layer : provides the formal representation of information (e.g. PaaS
resources, application dependencies, etc.). The 3 parts of the ecosystem are sup-
ported by this fomalization (i.e. the Cloud end-user, the Cloud-based application
and the Cloud PaaS provider).

16www.cloud4soa.eu/
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• SOA layer : provides the Cloud4SOA's core functionalities. This layer includes
the Pro�le Management module responsible of managing the PaaS o�erings, ap-
plications and user pro�les. The PaaS Matchmaking module selects the best
PaaS o�erings based on information of the Repository layer and user require-
ments. The PaaS Recommendation module calculates similarities between an ap-
plication and a PaaS o�ering. These similarities and SLA violations events allow
to rate available PaaS o�erings and intervenes in the matchmaking procedure.
The Application Deployment module processes the applications deployment and
governance (start, stop and undeploy) in a PaaS. The Application Deployment
module process deployment on appropriate allocated resources from connected
PaaS o�erings through a harmonized API. The Application Migration module
processes migration of applications from one PaaS to another. The Application
Monitoring module provides an interface to access to the monitoring function-
ality and to retrieve the collected data according to di�erent parameters.

• Governance layer : provides implementation of the business-centric focus of
Cloud4SOA. It allows management of applications lifecycle. The Execution
Manager performs applications (un)deployment, migration and maintenance.
The Monitoring module performs monitoring of deployed applications. The
SLA-based services are responsible of speci�c treatements related to user re-
quirements (e.g. supervising SLA guarantees, SLA violations dealing, etc.).

• Repository layer : provides records as RDF triples related to developer's pro�les
and supported PaaS providers' capabilities.

The provisioning process is performed through a harmonized API that exposes
generic application management operations. A speci�c adapters ensure the mapping
between the harmonized API and the proprietary PaaS o�ering APIs.

Table 2.3: Cloud4SOA project synthesis.

SOA support Portability Standardized model Standardized API

YES/NO∗ YES YES YES

(*) Cloud4SOA provides mechanisms to provision applications described according
to SOA in connected PaaS o�erings as long as they support SOA applications hosting
and execution.

2.3.4 Contrail Project

The Contrail17 project aims to design, implement, evaluate and promote an open
source computational Cloud wherein users can limitlessly share resources [28]. The
Contrail vision is a federation of resources provided by public and private Clouds.

17contrail-project.eu
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O�ered Cloud resources should be integrated into a single homogeneous federated
Cloud that users can access seamlessly. Any organization should be able to be both
a Cloud provider, when its IT infrastructure is not used at its maximal capacity, and
a Cloud customer in periods of peak activity. Infrastructure and platform introduced
by the Contrail project are introduced in Figure 2.10.

Figure 2.10: Contrail architecure [5].

This architecture consists of 3 layers:

• Federation layer which implements a broker-based solution to manage and ne-
gotiate contracts with the providers based on Service Level Agreements (SLA)
documents. This layer exposes a REST API to manage applications, data, users
and providers,

• Provider layer which manages applications and services provisioning and execu-
tion according to the provided SLA (e.g. ConPaaS [29]).

• Resource layer which aggregates resource characteristics and capabilities.

The Contrail project does not support deployment of applications described ac-
cording to SOA. The applications deployment mechanism is based on the Open Vir-
tualization Format (OVF). OVF is an open standard for packaging and distributing
software to be deployed and run in virtual machines. This facilitates the import/-
export applications from one provider to another. However, this requires that the
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target provider supports OVF processing. The federation API exposes aggregated
management operations common to providers. They enable managing applications
and resources in the same way when even if there are delivered by di�erent providers.

Table 2.4: Contrail project synthesis.

SOA support Portability Standardized model Standardized API

NO NO YES YES

2.3.5 Other research projects

The Cloud-TM project18 proposes a middleware platform which exposes a set of APIs
and abstractions for the development, provisioning and administration of large scale
applications across a dynamic set of distributed nodes allocated from IaaS Cloud
providers [30].

4CaaSt19 proposes a solution ensuring the development, description and deploy-
ment of applications [31]. The three processes are seperated. The user can develop
and describe the application through 4CaaSt before delegating the hosting environ-
ment selection and the deployment to the platform. Application archives need to be
adapted after the selection of the hosting platform.

The RESERVOIR20 project provides an infrastructure that allows reliable services
provisioning. Connected Cloud providers to RESERVOIR address end-users' require-
ments leasing computational resources from IaaS providers which interoperate with
each other creating a seamlessly pool of resources and address interoperability issues
based on an OCCI infrastructure implementation [32].

Table 2.5: Other project syntheses.

Project SOA support Portability Standardized model Standardized API

Cloud-TM NO NO YES YES

4CaaSt NO NO YES YES

RESERVOIR NO NO YES YES

2.3.6 Related academic work

When considering generalist application architectures, provisioning procedures are
basically based on resource allocation algorithms that match between applications
requirements, provided by the end user, and available node resources at the provider
side in order to maximize the performances and minimize the operating cost [33] [34]
[35].

18www.cloudtm.eu/
19www.4caast.eu/
20www.reservoir-fp7.eu/
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When considering service-based applications, there are a lot of work which focused
on provisioning appropriate platform resources to support their hosting and execution.

For example, for business processes, the authors in [36] draw up an inventory of
the di�erent delivery models available to execute a BPEL process at IaaS, PaaS and
SaaS layers. The conclusion made by the authors stipulates that there is still several
lacunas to support BPEL processes provisioning in the Cloud especially in terms of
communication processing between the di�erent activities of the process.

In [37], the authors propose a context-oriented methodology supporting Cloud
work�ows design. This approach interacts strongly with the user to allow him to
make contexts explicit in designing Cloud work�ow models. The users could then
customize information, formalize their design strategies, and possibly interact with
the system in a collaborative pattern in order to perform Cloud work�ows operating.

Moreover, some works have proposed to transform and slice business processes to
equivalent sub-processes in order to be able to deploy them (or a part of them) in the
Cloud [36] [38] [39].

Other approaches consists in de�ning algorithms to place and execute work�ows
over allocated Cloud resources optimally [40] [41]. These approaches consider the data
dependencies between work�ow steps and the utilization of resources at runtime to
place the process components over these resources. Placement and resources allocation
decisions are based on prede�ned heuristics. Provided implementations are based on
the ActiveBPEL engine for processes executing and Amazon's Elastic Compute Cloud
for required resources allocation.

In addition to that, it should be noted that several PaaS providers begin to in-
tegrate features to design, deploy and execute business processes in the Cloud. For
example, Amazon Web Service proposes the Amazon Simple Work�ow Service (Ama-
zon SWF) which assists developers to coordinate the various processing steps in the
process to deploy and allow them to manage distributed execution state [42]. Sales-
force introduced a tool called �Visual Process Manager� to support business process
management on Salesforce platform [43]. WSO2, an Apache ODE-based process en-
gine, provides a variant of its business process server as-a-Service [44].

Regarding applications based on services compositions, some works have focused
on de�ning new PaaS prototypes dedicated to support such applications and provi-
sion their needed hosting frameworks. For example, in [35], a PaaS prototype relies
on a con�gurable kernel which is inspired from FRASCATI21, an open source imple-
mentation of SCA speci�cations, to support SCA runtime. There are also additional
works based on FRASCATI and supports recon�guration of SCA applications from
the domain of Software Product Line (SPL) design provided by the developer [45]
[46]. Furthermore, FRASCATI was integrated as standalone framework over several
existing PaaS providers to support execution over these PaaS (e.g. FRASCATI in

21http://wiki.ow2.org/frascati/Wiki.jsp?page=FraSCAti
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Google App Engine22, FRASCATI in Heroku23, etc.)

In [47], the authors introduced an approach to deploy SCA applications in Cloud
environments. In this approach, the initial application provided by the developer is
an SOA application described through a BPMN diagram. This latter is transformed
to a basic equivalent SCA view using Mangrove core tool. After that, the devel-
oper has the ability to re�ne the application architecture (e.g. introducing additional
components, de�ning external dependencies, etc.) and augment then the application
components with virtual node (VN) names. VN concept is an abstraction for the
deployment of distributed applications used by GCM/ProActive wich represents an
implementation of the Grid Component Model (GCM) [48]. The VN abstraction is
used to refer to the location where the GCM components will be deployed without
actually specifying physical nodes, and delaying this association to the moment when
the actual resources are available. From this augmented description, an equivalent
GCM architecture description language descriptor is generated. This descriptor con-
tains the GCM components, their bindings and the VNs where they will be deployed,
thus o�ering a vision obtained directly from the architectural design, and at the same
time closer to infrastructure concerns [47].

In addition to that, the Apache Foundation tried to develop a Cloud-aware version
of Apache Tuscany to be able to be hosted and provisioned e�ciently by a PaaS
provider [49]. They also start a new project called Apache Nuvem which aims to
de�ne a novel API for Cloud application services, to support SOA applications (SCA-
based applications included) deployment across the most popular Cloud providers [50].

2.4 Approaches for Cloud resources description

In the following, we discuss existing related work regarding platform and application
resources description models.

2.4.1 Topology and Orchestration Speci�cation for Cloud Applica-
tions (TOSCA)

TOSCA is a speci�cation, supported by OASIS, that provides an XML-based language
to describe PaaS applications as a set of Nodes with well de�ned Relationships [6].
The Nodes and Relationships are described in Topology Templates which are schema-
tized as a typed graph (See Figure 2.11). Such templates provide the structure of the
application to deploy and the needed details to set its hosting environment and its
artifacts. A Node is instantiated from a Node Template specifying the occurrence of
a Node Type as a component of the application. A Node Type de�nes the properties of
such a component (properties) and the operations (interfaces) available to manipulate
the component.

22http://ow2-frascati.appspot.com/
23http://frascati.herokuapp.com/
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Figure 2.11: TOSCA Service Template overview [6].

A Relationship is instantiated from Relationship Template specifying the occur-
rence of a relationship between Nodes. Each Relationship Template refers to a Rela-
tionship Type that de�nes the semantics and properties of the Relationship. The Re-
lationship Type indicates the elements it connects and the direction of the relationship
(source and target elements) and optionally constraints (if needed) to satisfy in order
to establish the relationship. Note that, Relationship Types (respectively Node Types)
are de�ned separately, so they enable reuse perspectives.

The Service Templates contains also a Plan element that describes the process
models used to create the application and its needed operational management behavior
once deployed (e.g. scaling, backuping, etc.). The Plans are instantiated from Plan
Models and are implemented as work�ows (e.g. BPMN, BPEL, etc.) to bene�t from
compensation, recovery, and transaction concepts [51]. Plans provide values for the
various Node Templates and Relationship Templates properties.

Concretely, according to TOSCA speci�cations, a deployed application is an in-
stance of a Service Template. This instance is created by instantiating the Topology
Template of its Service Template. This instantiation is performed by running a dedi-
cated Plan de�ned for the Service Template. An appropriate CSAR might be used to
package the Node and the Relationship reperesenting this application.

For deployment, TOSCA application elements are encapsulated in a prede�ned
archive format called Cloud Service ARchive (CSAR). CSAR is composed at least of
two directories. The �rst directory is the TOSCA meta �le (.meta) which describes
metadata of all other �les in the CSAR. The second one is the de�nition directory
which contains typically sources and de�nitions related to the application (.tosca). The
use of CSAR meet with applications described according to SOA speci�cations but
the Service Template notion hampers the application portability. Indeed, this requires
a set of modi�cation and adaptation in the PaaS side. Each Cloud platform would
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map the speci�ed Service Topology to its available concrete infrastructure in order to
support concrete instances of the application and adapt the management plans accord-
ingly. In addition to that, most of existing PaaS do not support currently CSAR de-
ployment even if there is some platform prototypes supporting TOSCA speci�cations
(e.g. ServIce O�ering and Provisioning Platform - SIOPP24[52], OpenTOSCA [53]).

Table 2.6: TOSCA synthesis.

SOA support Portability Standardized model Standardized API

YES NO YES YES

2.4.2 Cloud Application Management for Platforms (CAMP)

Figure 2.12: Typical PaaS architecture [7].

Cloud Application Management for Platforms (CAMP) is a speci�cation and
REST API standardized by OASIS [7]. CAMP provides basis for developing multi-
cloud management tools as well as a REST-based approach to application manage-
ment across public and private Cloud computing platforms. Provided management
operations involve application description, packaging and deployment.

Before de�ning application operations management and PaaS API speci�cations,
CAMP performed a census for existing PaaS resources. This is useful besause these
are the resources that will ensure and execute the operations exposed by CAMP API
on the provider side. Figure 2.12 schematizes a typical PaaS architecture as it is
de�ned by CAMP. The PaaS provider implements a set of technical components in
order to meet the deployed application requirements. These requirements are exposed

24SIOPP is pronounced 'shop'
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through the self service API operations by the application developers. The details of
identi�ed platform components are as follows:

• Runtime containers to provide runtime environment and execution frameworks
to applications,

• Firewalls to secure applications invoking,

• Load Balancers and Message Queues to manage applications instances and
received requests,

• Web Servers to host and execute Web applications,

• Databases to manage data persistence,

• Log aggregators for applications logging.

Figure 2.13: CAMP platform resources and relationships [7].

Based on this census, CAMP de�nes speci�cations to formalize applications, PaaS
resources and relations between them (See Figure 2.13). CAMP represents the PaaS
as a set of related application components and using Platform components via an As-
sembly resource. Assembly resources represent a running application. The Platform
resource is described as a set of platform Components o�ering a list of capabilities to
be used by applications. Similarly, an application is a set of application Components
having capabilities and requirements. An application Component can be related to a
platform Component if this latter has the needed capabilities that could be associated
to the requirements of the application Component.



Approaches for Cloud resources description 27

CAMP description model standardizes application provisioning and management
processes. In fact, the technology vendors behind the CAMP speci�cations, which
include CloudBees, Cloudsoft Corporation, Huawei, Oracle, Rackspace, Red Hat and
Software AG, is based on the same common management operations for applications.
The applications are encapsulated is speci�c packages called Platform Deployment
Package (PDP). The PDP archive contains a Plan �le and the application content
�les (e.g. sources code, scripts, etc.). The Plan �le describes the application Assem-
bly(ies) and optionally needed Service(s). The Services are provisioned by the PaaS to
satisfy the application requirements and dependencies (e.g. load balancing, database
linking, etc.). The PDP format is speci�c and requires adaptation on the PaaS side to
support PDP archives and plan documents (YAML-based documents). Moreover, the
PDP allow describing applications described according to SOA. However, the applica-
tion lifecycle management provided by CAMP is still Web-oriented and is not really
appropriate for service-based applications.

Table 2.7: CAMP synthesis.

SOA support Portability Standardized model Standardized API

YES NO YES YES

2.4.3 Open Cloud Computing Interface (OCCI)

OCCI is a set of speci�cations that de�nes a meta-model for abstract Cloud resources
and a RESTful protocol for their management. It o�ers a �exible API with a strong
focus on interoperability while still o�ering a high degree of extensibility.

To enhance modularity and extensibility, OCCI is released as a suite of compli-
mentary documents such as:

1. OCCI core that de�nes a meta-model for Cloud resources description and man-
agement [8],

2. OCCI rendering speci�cations that contains multiple documents describing ren-
dering of the OCCI core model [54],

3. OCCI extensions which are instantiations of the OCCI core meta-model to model
particular Cloud resources (e.g. infrastructure resources [9]).

Figure 2.14 schematizes de�ned types of the core model, as it was introduced in [8],
and relations between them. The Kind type is the core of the types classi�cation
system built into the OCCI core model. Kind is a sort of specialization of Category. It
allows de�nition of all resource capabilities in terms of management actions. An Action
represents an invocable operation applicable to a Resource instance. Any resource
exposed through OCCI is a Resource or a sub-type of Resource instance. The Resource
type is complemented by the Link type which associates one Resource instance to an
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Figure 2.14: UML class diagram of the OCCI core model [8].

another. Entity is an abstract type, which both Resource and Link inherit. Each sub-
type of Entity is identi�ed by a unique Kind instance. Finally, an instance of Mixin
type can be associated with a resource instance, i.e. a sub-type of Entity, to mix-in
additional resource capabilities at run-time.

The OCCI core model is suitable to be extended and serve many other resource
description models such as infrastructure resources. Figure 2.15 illustrates de�ned
types for the OCCI infrastructure model as it was introduced in [9]. These infrastruc-
ture types inherit the OCCI core model Resource base type and all their attributes.
The HTTP Rendering document de�nes how to serialize and interact with these types
using RESTful communication. Table 2.8 lists the OCCI infrastructure types and
their related links. Compute, Storage and Network types inherit the Resource base
type de�ned in OCCI core model. They represent respectively a generic information
processing resource (e.g. virtual machine, CPU), networking devices (e.g. switch)
and data storage devices (e.g. disk). The StorageLink type represents a link from
a Resource to a target Storage instance (e.g. Linking a VM to a disk) while the Net-
workInterface allow interacting with a Network instance (e.g. network adapter). It
can extended using the mix-in mechanism to support speci�c capabilities (e.g. Ipnet-
working mixin for TCP/IP capabilities). In addition to that, the extension provides a
set of attributes to well describe the de�ned types and a set of operations to manage
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Figure 2.15: Overview diagram of OCCI infrastructure types [9].

Table 2.8: The kind instances de�ned for the infrastructure subtypes of Resources, Links
and related Mixins.

Term Scheme Related Kind

Compute < schema > /infrastructure# < schema > /core#resource

Storage < schema > /infrastructure# < schema > /core#resource

Network < schema > /infrastructure# < schema > /core#resource

StorageLink < schema > /infrastructure# < schema > /core#link

NetworkInterface < schema > /infrastructure# < schema > /core#link

Ipnetworking < schema > /infrastructure/network# -

them (e.g. start, stop, etc.).

To summarize, OCCI entities are abstract and need to be extended to support
SOA applications. In addition to that, OCCI speci�cations and API are generic and
are intented to unify Cloud resources provisioning and management. This standard
is open source, so they allow interoperability and portability of resources applications
included.

Table 2.9: OCCI synthesis.

SOA support Portability Standardized model Standardized API

NO YES YES YES
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2.4.4 Related academic work

In the literature, we found several works that tried to de�ne generic operations for
Cloud provider resources management. These works attempt to bene�t from identi-
�ed similarities between Cloud platform representations. In [55], the authors discuss
the need for a generic API that enables Cloud users to specify their requirements
among provider o�ers. Their investigations shows that most of these APIs use similar
concepts with similar properties and actions but with di�erent names and structures.
The authors consider that the interoperability and portability problems arise due to
di�erent modeling and notation of the same features across di�erent Cloud providers.
To handle this issue, the author considers semantic technologies as a solution for
interoperability and portability in the Cloud.

In [56], the authors propose to use existing approaches to describe applications and
their deployment procedure in the Cloud. They use resource templates (as for TOSCA
and CloudFormation) representing recon�gurable entities that can be reused for dif-
ferent applications. Automated deployment of the resources associated to templates
description, can be possible using deployment recipes (using DevOps technologies like
Chef25 or Puppet26)

In [4], the authors suggest that a common API should involve a set of core function-
alities that will meet the basic needs of any Cloud Platform and will unify all di�erent
APIs (an API for all APIs). Accordingly, a common API is proposed with a common
semantics for the needed PaaS resources and actions. This API communicates with
PaaS providers via adapters, and any new provider has to adapt his o�ering following
the same semantics (i.e. using the same models and structures or providing an adapter
to transform its own representation to the common one). To deploy an application,
developers should provide an application pro�le that describes the requirements of
the application. A management module builds an application deployment descriptor
according to the selected PaaS, and then, initiates the application deployment via a
standard API (i.e. Cloud4SOA [57]) that uses the dedicated adapter for the selected
PaaS o�er.

2.5 Synthesis

Table 2.10 details a synthesis of presented related work results. The cited research
projects propose concrete approaches for services and applications provisioning in
Cloud providers. Some of them provide solutions to address portability issues in order
to enable multi-cloud deployment and address portability and vendor lock-in issues
(e.g. mOSAIC, Contrail). However, the majority of them failed to provide e�cient
mechanisms to support the high heterogeneity of applications described according to
SOA. For example, Cloud4SOA allow the deployment of service-based applications

25www.getchef.com/chef/
26puppetlabs.com/
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in connected PaaS o�erings if the target PaaS supports provisioning of its required
resources.

Table 2.10: Synthesis of related work results.

Project SOA support Portability Standardized model Standardized API

mOSAIC NO YES YES YES

PaaSage YES NO NO NO

Cloud4SOA YES/NO YES YES YES

Contrail NO NO YES YES

Cloud-TM NO NO YES YES

4CaaSt NO NO YES YES

RESERVOIR NO NO YES YES

TOSCA YES NO YES YES

CAMP YES NO YES YES

OCCI NO YES YES YES

For the cited academic and existing related work, we noticed that approaches
which are based on the integration of classical service containers in Cloud environ-
ment have limitations. These features are extensions of the Cloud system prede�ned
resources rather than the support of service-based applications execution and hosting
(e.g. FRASCATI-based PaaS solutions, Apache Tuscany cloudware, etc.). Indeed,
based on experimentations results that we have conducted (See Section 6.3.1), we
demonstrated that classic service containers design is still neither elastic nor scal-
able [58] [59].

TOSCA and CAMP are promizing tentatives of standardization, but their intro-
duced speci�c application archives format (i.e. PDP for CAMP, CSAR for TOSCA)
penalizes the application portability. Indeed, to support these formats, we need to
use speci�c implementations (e.g. OpenTOSCA) or perform changes on the Cloud
platform side (e.g. CloudBees to support CAMP speci�cations).

To allow portability between end users and existing Cloud platforms, we need
to design a description model which would help to make abstraction of any provi-
sioning system, of any Cloud service and/or resource. Such a model would enable
a detailed description of complex workloads in order to provision them in an auto-
mated fashion on heterogeneous providers. To achieve this goal, we believe that we
need an object-oriented model speci�cally designed for Cloud Computing and �exible
enough to be enriched with new extensions. For all of these reasons, we choose the
OGF OCCI open standard. Indeed, to the best of our knowledge, OCCI is the only
standard model compliant with these criteria. Moreover, OCCI is an open standard,
that in addition to ensure interoperability and portability, allows not loosing the ef-
�ciency and speci�cities of the Cloud systems. One of the objectives that we want
to achieve in this thesis is to extend OCCI in order to de�ne uni�ed platform and
application resources description model and to propose a REST API implementing
this model and allowing provisioning such resources in a uni�ed way whatever is the
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target PaaS. Such uni�cation upstream Cloud platforms facilitates cooperation and
federation between them and probably will convince users who are still hesitant to
adopt the PaaS economic model. A lot of works have already dealt with this aspect at
IaaS layer and has contribute to cooperate and federate data centers and infrastruc-
ture resources [60] [32] [61]. Furthermore, the resources introduced by OCCI extension
should support applications described according to SOA hosting and execution.

2.6 Conclusion

In this Chapter, we highlighted Cloud platform limitations and drawbacks related to
service-based applications provisioning. We presented a set of related collaborative
research projects that attempt to address these issues. We also detailed a set of
standardization tentatives of application and platform resources description that aims
to unify provisioning and management operations. In the last Section of the Chapter,
we draw a synthesis and we discuss results of cited works.
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3.1 Introduction

Our de�ned SPD approach to provision a service-based application in Cloud envi-
ronments consists of 3 steps: (1) Slicing the service-based application into a set of
elementary and autonomous services, (2) Packaging these services in micro-containers
and (3) Deploying the micro-containers in the target Cloud environment [62]. In this
Chapter, we present and details the �rst step of this SPD approach.

Since service-based applications have often highly heterogeneous components (See
Section 1.1), it is di�cult to satisfy its requirements by provisioning one allocated
hosting environment based on existing Cloud environment capacities. Because of this,
we propose to slice the applications into a set of elementary and autonomous services
before allocating a dedicated and appropriate environment for each one of the obtained
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services. Moreover, the slicing facilitates the deployment of the applications and
allows us to susbstitue the initial application components orchestrations by services
choreographies when executing the application.

For service-based applications, it is not possible to determine in advance the execu-
tion branch that it will follow at runtime. Indeed, branch execution choices depend on
several unpredictable parameters criteria (e.g. variable and parameter values, human
interactions in the middle of the process, handlers processing, etc.). All these aspects
should then be taken into consideration in the slicing step. Furthermore, since these
applications are various in terms of execution speci�cations (e.g. services choreogra-
phy for some, services orchestration for others, etc.) and correspondent descriptors
does not use the same description languages (e.g. Service Component Description
Language (SCDL), etc.), we perform appropriate slicing algorithms. Broadly speak-
ing, this step aims at slicing applications described according to SOA based on formal
representation of their services compositions. We handles in this step slicing of:

• Applications modeled as business processes,

• Applications modeled as compositions of service components.

To perform slicing, we chose to formally represent the service-based applications,
and then process the slicing. This allows us to keep an eye on sliced services interac-
tion and orchestration with other services and then facilitate the veri�cation procedure
of the semantics preservation. Speci�cally, for applications modeled as business pro-
cesses, we covers all speci�cations that can be modelized on Petri nets such as BPEL
or BPMN processes. For applications modeled as compositions of services, we cover
all speci�cations whose services compositions can be modelized as graph-based com-
position (directed graph) such SCA-based applications.

This Chapter is organized as follows: We present our de�ned algorithms to slice
business processes in Section 3.2. We present our de�ned algorithm to slice applica-
tions modeled as compositions of service components in Section 3.3. Proof of preser-
vation of processes semantic and illustrative examples are provided for both cases.

3.2 Slicing of business processes

For business processes slicing, we opted for the use of Petri nets to formally describe
the processes and then, proceed to the slicing step directly on the correspondent Petri
net graphs. The use of Petri net representation as an intermediate step allows us to
preserve semantics of sliced processes.

Preliminaries on Petri nets and WF-nets are �rstly introduced in Section 3.2.1.
The slicing algorithms are presented in Section 3.2.2. Addressed algorithms enable
business processes decomposition into a set of dependent WF-nets through an inter-
mediate Petri net representation. A function to determine the dependencies between
the obtained WF-nets is carried. Based on the results of this function and applying



Slicing of business processes 35

the theorem we have de�ned, we retrieve the same execution of the initial business
process. The proof of the de�ned theorem is given in Section 3.2.3. The algorithms
that we have de�ned are not costly when operating the business processes as they
are executed only once before deploying the processes. To illustrate our �ndings, we
provide an example of a BPEL process slicing in Section 3.2.4.

3.2.1 Preliminaries: Petri nets, WF-nets

In this following, we present some preliminary notions on Petri nets.

3.2.1.1 Petri nets

De�nition 1. A Petri net (Place-Transition net) is a bipartie directed graph N =
〈P, T, F,W 〉 where:

• P is a �nite set of places (cercles) and T a �nite set of transitions (squares) with
(P ∪ T ) 6= ∅ and P ∩ T = ∅,

• A �ow relation F ⊆ (P × T ) ∪ (T × P ),

• W : F → N+ is a mapping that assigns a positive weight to any arc.

Each node x ∈ P ∪T of the net has a pre-set and a post-set de�ned respectively as
follows: •x = {y ∈ P ∪ T | (y, x) ∈ F}, and x• = {y ∈ P ∪ T | (x, y) ∈ F}. Adjacent
nodes are then denoted by •x• = •x ∪ x•. Given a set of nodes S, | S | denotes the
cardinality of S i.e. (the number of elements belonging to S).

The incidence matrix C associated with the net is de�ned as follows : ∀(p, t) ∈
P × T : C(p, t) = W (t, p) − W (p, t). A marking of a Petri net N is a function
m : P → N. The initial marking of N is denoted by m0. The pair 〈N,m0〉 is called
a Petri net system. A transition t is said to be enabled by a marking m (denoted
by m t−→) i� ∀p ∈ •t, W (p, t) ≤ m(p). If a transition t is enabled by a marking m,
then its �ring leads to a new marking m′ (denoted by m t−→m′) s.t. ∀p ∈ P : m′(p) =
m(p) + C(p, t). The set of markings reachable from a marking m in N is denoted

by R(N,m). A run of marked petri net 〈N,m0〉 is a path π = m0
t1−→m1 . . .

tn−→mn.
S. The set of markings reachable from a marking m in N is denoted by R(N,m).
The set of markings reachable from a marking m, by �ring transitions of a subset T ′

only is denoted by Sat(m,T ′). By extension, given a set of markings S and a set of
transitions T ′, Sat(S, T ′) =

⋃
m∈S Sat(m,T

′) . For a marking m, m 6→ denotes that
m is a dead marking, i.e., Enable({m}) = ∅.

Two Petri nets N1 = 〈P1, T1, F1,W1〉 and N2 = 〈P2, T2, F2,W2〉, sharing a subset
of transitions (resp. places), can be composed by merging these transitions (resp.
places) leading to a Petri net regrouping the local attributes of N1 and N2. In the
approach presented in this paper, we manage to compose Petri nets with disjoint sets
of transitions (i.e., sharing only some places).
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De�nition 2. Let N1 = 〈P1, T1, F1,W1〉 and N2 = 〈P2, T2, F2,W2〉 be two Petri
nets such that P1∩P2 6= ∅ and T1∩T2 = ∅. The composition of N1 and N2 by merging
of common places, denoted by N1⊕N2, is a Petri net 〈P, T, F,W 〉 where P = P1∪P2,
T = T1 ∪ T2, F = F1 ∪F2 and W : F1 ∪F2 → N+ is the mapping assigning the weight
Wi(f) to any arc in Fi, for i ∈ {1, 2}.

The decomposition of a given Petri net into two (ore more) subnets corresponds
to the dual operation. Again, the two main decomposition approaches are based on
the splitting of a Petri net into two (ore more) subnets that share a subset of places
or/and a subset of transitions. The sharing of transitions represent a synchronisation
(rendez-vous) between two components while the sharing of places (bu�ers) represent
an asynchronous communication between components.

3.2.1.2 WF-nets

We use a particular Petri net for modeling the control-�ow dimension of a service-based
processes. This is a variant of Work-Flow nets (WF-nets) that have been introduced
in [63].

De�nition 3. (WF-net) Let N = 〈P, T, F,W 〉 be a Petri net. N is said to be a
work�ow net (Wf-net) if

• there is a set of source place I ∈ P s.t. •I=∅ and a set of sink places O ∈ P s.t.
O•=∅, and

• for any node x ∈ P ∪T , for any source place i ∈ I and for any sink place o ∈ O,
there exists a path from i to o which passes through x.

It should be noted that the sole di�erence between the WF-nets introduced in [63]
and the above de�nition is the fact that, we allow a WF-net to have several source
places and/or several sink places. This has no e�ect on the semantics of the obtained
model but is more convenient for our decomposition approach. As a special kind
of Petri nets, WF-nets have the same semantics described above. Its behavior can
then be represented by its reachability graph. As far as the behavior of a work�ow is
concerned, the corresponding WF-net is associated to an initial marking where only
the source places are marked with a single token. Besides, a �nal marking of WF-net
is every place, that is reachable from a such initial marking, where each sink place is
marked and none of the other places is.

3.2.2 Slicing of a Petri net corresponding to a business process

The decomposition of a WF-net corresponding to a business process is based on an on-
the-�y traversal of the whole Petri net, considered as a graph, and takes into account
the following considerations:

1. each sub-net is a WF-net (according to De�nition 3.).
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2. the decision to cut a current subnet and start the construction of a new one is
based on the structure of the Petri net and on the nature of the business process
activities (respectively):

• when the current node (place) has several output transitions i.e., it is a
choice between two (or more) services/activities, (e.g. this may corresponds
to an IF...Else structure in a BPEL process, to an OR operator in a BPMN
process),

• when the current node (place) has several input transitions i.e. it is a
conjonction of several exclusive services,

• when the current node (transition) has several output places i.e., it is the
launch of two (or more) parallel services/activities, (e.g. this may cor-
responds to a Flow structure in a BPEL process, to the execution of a
component in a BPMN process),

• when the current node (transition) has several input places i.e., it is a
synchronization of several concurrent services,

• when the current node (transition) is the waiting point for the reception
of some asynchronous message (e.g. this may corresponds to the Receive
activity in BPEL, to the execution of a component implementing receiving
messages/parameters in a BPMN process),

• when the current node (transition) is the synchronization point from some
synchronous message, (e.g. this may corresponds to the end of the Flow
structure in BPEL, to the end of execution of a component in a BPMN
process),

3. given the resulting set of subnets, a dependency function, computed on-the-�y,
allows to deduce the order of the execution of the services corresponding to
these subnets. Thus, the combination of the set of subnets with such a function
determines the semantics of the whole net.

4. it is possible to compose back the obtained subnets, by merging shared places, to
obtain the original whole WF-net. This allows to preserve the original behaviour
(semantics) of the Petri net and hence the corresponding business process.

Given a process model, which has been translated to WF-net, we use Algorithm 1
to slice the WF-net into several WF-subnets. The inputs of the algorithm are a cur-
rent node (curNode), which can be either a place or a transition, a current subnet
(curServ), to be decomposed, and the whole WF-net (W ). The �rst call to Algo-
rithm 1 is performed using the following input: the source place of the whole WF-net
and a current WF-subnet which is empty. Algorithm 1 is recursive and uses the fol-
lowing functions: NewService() creates a new subnet and initializes its set of places,
transitions and edges with the given parameters.
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Algorithm 1 Decomposition of a WF-net corresponding to a business process.
Require: initNode, curServ,W
Ensure: a set of dependent WF-nets services
1: CutNode={receive, synchronous invoke}
2: curNode = initNode
3: while (| curNode• |=| •curNode |= 1) &

(curNode 6∈ CutNode) do
4: add {curNode} to curServ
5: curNode=curNode•

6: end while
7: if (curNode is a place) then
8: add {curNode} to curServ
9: end if
10: if Alreadytreated(curNode) then
11: for all S ∈ BuiltSlices(curNode) do
12: Dep(curServ, S) =→
13: add S to BuiltSlices(initNode)
14: end for
15: end if
16: return
17: Alreadytreated(initNode) = true
18: if (curNode is a place) then
19: for all (t ∈ curNode•) do
20: if NOT Alreadytreated(t) then
21: S = NewService(curNode, t)
22: Decomposition(t,S,W)
23: end if
24: end for
25: for all (t ∈ curNode•) do
26: for all S ∈ BuiltSlices(t) do
27: Dep(curServ, S) =→
28: add S to BuiltSlices(initNode)
29: for all (t′ ∈ curNode• ∧ t′ 6= t) do
30: for all S′ ∈ BuiltSlices(t′) do
31: Dep(S, S′) = ∨)
32: end for
33: end for
34: end for
35: end for
36: end if

37: if (curNode is a transition) then
38: S = NewService(curNode, •curNode, curNode•)
39: Dep(curServ, S) =→
40: add S to BuiltSlices(initNode)
41: if (| curNode• |> 1) then
42: for all (p ∈ curNode•) do
43: if NOT Alreadytreated(p) then
44: S′ = NewService(p)
45: Decomposition(p,S',W)
46: end if
47: end for
48: for all (p ∈ curNode•) do
49: for all S′′ ∈ BuiltSlices(p) do
50: Dep(S, S′′) =→
51: add S′′ to BuiltSlices(initNode)
52: for all (p′ ∈ curNode• ∧ p′ 6= p) do
53: for all S′′′ ∈ BuiltSlices(p′) do
54: Dep(S′′′, S′′) =||
55: end for
56: end for
57: end for
58: end for
59: else
60: if NOT Alreadytreated(curNode•) then
61: Decomposition(curNode•,S,W)
62: end if
63: for all S′ ∈ BuiltSlices(curNode•) do
64: add S′ to BuiltSlices(initNode)
65: Dep(curServ, S′) =→
66: end for
67: end if
68: end if

The function Dep(S, S′) determines the occurrence dependency between the sub-
nets (services) S and S′. Such a dependency can be of three kinds:

1. S → S′ means that once the execution of S is �nished, the execution of S′ should
start,
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2. S ∨ S′ means that either S or S′ is executed (exclusive or),

3. S || S′ means that the execution of S and the execution of S′ are concurrent
(parallel).

We also save the subnets generated by each node (curNode) in BuiltSlice(), so
that the generation is done once for each encountered node (place or transition) using
the boolean function Alreadytreated().

The slicing algorithm is composed of three main phases: First, starting from the
current node, the current subnet service (curServ) is incremented (by adding places
and transitions) as long as we are following a linear (sequential) branch of the Petri
net i.e. each encountered node has a single input, a single output, and is neither a
receive transition nor a synchronous invoke activity (lines 3−6). When the �rst phase
terminates, i.e. the current node has more than one input/output node. First, if it is
a place then it is the output place of the current subnet (lines 7 − 9). Then, if this
node has been already treated (lines 10 − 15), i.e. a decomposition is starting from
this node or a predecessor node has already been performed, then, the set of built
subnets must be executed before the current one, and are added as resulting from
the decomposition of the initial node (initNode). Finally, two cases are considered
depending on whether the current node is a place (lines 18− 36) or a transition (lines
37 − 68). Notice that, in the second case, we do not distinguish whether the current
transition is a "normal" one or a receive/synchronous invoke transition.

Given the set of WF-subnets constructed by our algorithm and the computed
dependencies between these subnets, one can orchestrate the execution of the whole
process by executing these sub-processes separately. The main novelty in our approach
is that such scheduling is not centralized. It is distributed on the di�erent subnets
in such a way that the currently executed sub-process is able to compute (using the
dependency function) the set of sub-processes that must be enabled after it �nishes
its execution. Algorithm 2 accomplishes such a task. It has as inputs the current
subnet to be executed, a set of subnets SN , and a dependency function Dep. Thus,
an execution of the whole WF-net can be obtained by a call to Algorithm 2 with an
empty subnet, the set of subnets and the dependency function issued from Algorithm 1.
In this algorithm, Choice denotes any maximal subset of subnets, denoted by Ch,
where any couple (sn1, sn2) ∈ Ch× Ch, Dep(sn1, sn2) = ∨. Moreover, DepS , where
Dep is the dependency function and S is a subset of subnets, denotes the projection of
Dep on the subset S. Finally, Dep \DepS denotes the dependency function obtained
by eliminating DepS from Dep.

Algorithm 2 starts by waiting while the precondition of the current subnet is not
satis�ed (lines 1 − 3), i.e. the source places are not all marked. Then, the current
subnet can be executed (leading to a sequence of �ring sequence of transitions) (line
4) before determining the set of subnets to be enabled at the next step Init (line
5). Init contains any subnet sni such that there is no other subnet sj (j 6= i) such
that Dep(snj , sni) =→. If Init contains more than one element, it can be written as
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Algorithm 2 Execution of the current subnet and determination of the next subnets.

Require: Subnet CurSN, Set of subnets SN, Dependency function Dep
Ensure: Executing CurSN and enabling next subnets
1: while Precondition of CurSN is not satis�ed do
2: wait;
3: end while

4: run(CurSN)
5: Set of subnets Init = {sni |6 ∃ snj : Dep(snj , sni) =→}
6: if | Init |> 1 then
7: for all Choice ch ⊆ Init do
8: Let snc be some chosen element of Ch (e.g., satisfying a given condition)
9: Init = (Init \ Ch) ∪ {snc}
10: Dep = Dep \DepCh

11: SN = SN \ Ch
12: end for

13: end if

14: Dep = Dep \DepInit
15: SN = SN \ Init
16: for all sni ∈ Init do
17: Execute− subnet(sni, SN,Dep)
18: end for

the following: Init = ch1 ∪ . . . chk ∪ Par where chi, for i = 1 . . . k are maximal sets
containing exclusive subnets, Par contains concurrent (parallel) subnets (note that,
in the �rst call, Par is necessarily empty), and chi ∩ chj = ∅ and chß ∩ Par = ∅, for
any i 6= j. Lines 6 − 15 allow to keep in Init the subset Par and one representative
of each subset chi and to update the set of subnets SN and the dependency function
Dep. Once we have in Init the set of the subnets to be concurrently enabled at the
next step, each one will be enabled and receives the updated set of subnets and the
dependency function (lines 16 − 18). Enabling a subnet is putting a token in the
source place which coincides with the sink place of the current subnet. Thus, if the
next subnet represents a synchronization between several subnets, it must wait until all
these subnets �nish their execution i.e., each source place is marked (the precondition
becomes then satis�ed).

To conclude, Algorithm 2 is associated to each subnet resulting from the decom-
position of the whole WF-net and allows each subnet, executed separately, to au-
tonomously launch the subnets to be executed in the next step. The �rst call is
performed with an empty subnet unless the �rst enabled subnet is determined, a pri-
ori, by executing lines 5 − 15 in which case the �rst call can be performed by the
subnet resulting from this execution.
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3.2.3 Proof of preservation of semantics

Theorem 1 provides the execution chain to follow for obtained subnets to retrieve the
business functionality of the initial business process.

Theorem 1. Let SN and Dep be respectively the set of subnets and the dependency
function resulting from the application of Algorithm1 on a WF-net N . Let σ be a
sequence of transitions. σ is a �ring sequence of N (i.e. σ ∈ L(N)) i� σ corresponds
to an execution of Algorithm 2 with an empty subnet.

Proof.

• ⇒
Let σ be a run of SN and let us demonstrate, by induction on the length of σ
(|σ|), that σ can be generated by Algorithm 2.

� |σ| = 1. Assume σ = t and let i the source place of SN . Then, t ∈ i• and
m0(i) > Pre(t, i) (wherem0 is the initial marking). Thus, the precondition
of t is satis�ed and the run of some of the subnets containing i (line 4) will
allow to �re the transition t. Note that it is possible that i belongs to
several subnets when, in SN , |i•| > 1.

� Assume that any run of SN , of length n ∈ N, can be generated by Algo-
rithm 2.

Let σ = t1...tn+1 be a run of SN . Then, the sequence t1...tn can be gener-
ated by Algorithm 2. We distinguish the two following cases:

1. tn and tn+1 belong to the same subnet sni . In this case, the run of
sni , by the instruction at line 4 allows to �re tn+1 directtly after the
�ring of tn.

2. tn and tn+1 belong to two di�erent subnet sni and snj respectively. In
this case, only one of the following conditions holds:
(a) Dep(sni, snj) =→
(b) Dep(snj , sni) =→
(c) Dep(sni, snj) = ||

Indeed, the value of Dep(sni, snj) can not be ∨ otherwise tn+1 would
not be friable, within SN , after the �ring of tn.

∗ The two �rst cases being symmetrical, assume thatDep(sni, snj) =→
Then, there exists a set of subnets Pari such that ∀snk ∈ Pari,
∀snl ∈ Pari, Dep(snk, snl) = || ∧Dep(snk, snj) =→ . If such a
set is empty let Pari = sni. There exists m < n s.t. for any subnet
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snk ∈ Pari there exists a run σk of snk s.t. σmksnk
= σk (where σm

is the su�x of σ starting at the transition tm and σmksnk
denotes

the projection of this run on the transitions of snk). Indeed if this
does not hold, then tn+1 would not be enabled within SN . Thus,
the precondition of snj becomes satis�ed (line 1) as soon as tn is
�red and tn+1 is �red by the run of snj (line 4).

∗ Assume now that Dep(sni, snj) = ||. Then, sni and snj can be
launched in parallel by the loop instruction at line 16. One can
then choose an interleaving allowing to �re tn+1 directly after tn.

• ⇐
Let σ = t1...tn be a sequence of transitions (execution) generated by Algorithm 2
and let us assume that σ is not a �ring sequence of SN . Note �rst that t1 is
�reable at the initial marking of SN , otherwise the precondition (line 1) would
not be satis�ed and t1 would not start any sequence generated by Algorithm 1.
Thus, if σ is not a �ring sequence of SN , then there exists 2 ≤ i ≤ n such that
t1...ti−1 is a run of SN and ti is not �reable by the marking reached by this run.
We distinguish the two following cases:

1. ti−1 and ti belong both to a subnet sni . In this case, ti is not enabled by
SN is not possible since instruction 4 launch the subnet sni which has the
control on all its transitions i.e. the �ring of ti depends only on the �ring
of ti−1.

2. ti−1 and ti belong to snk and snl (k = l) respectively. ti is not friable means
that there exists a place pi ∈ •ti whose marking, after the �ring of ti−1, is
strictly less than Pre(ti, pi). This is not possible because the fact that ti
is generated by the algorithm (line 4) means that the precondition of the
subnet snl is satis�ed i.e., all the input places of ti have been su�ciently
marked by the execution of the loop at line 16.

3.2.4 Example: Slicing of the Online shop process

For this example, we recall the online shop BPEL process introduced in Section 2.1.3.
To perform the BPEL to Petri net transformation, we use the BPEL2PN 1 tool.
BPEL2PN tool is a Java-based compiler that transforms a process speci�ed in BPEL
into a Petri net according to the Petri net semantics [64]. The output format of BPEL2PN
is a Petri net in the data format of the Petri net based model checker LoLA [65] [66].
LoLA also o�ers the opportunity to write out the net into the standard interchange
format for Petri nets, the Petri Net Markup Language (PNML) [67]. Thus, since
other modeling languages, which are more frequently used in practice, map to Petri
nets (for BPEL, see e.g. [68], for BPMN, see e.g. [69]), our approach is relevant for

1http://www2.informatik.hu-berlin.de/top/bpel2pn/index.html
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Figure 3.1: The Petri Net corresponding
to the shop process.

Figure 3.2: The decomposed Petri Net
corresponding to the shop process.

a very broad class of modeling languages. The generated Petri net from our shop
process is schematized in Figure 3.1. It should be noted that in all our examples we
used BPEL processes without handlers when we used the BPEL2PN tool.

The execution of Algorithm 1 allow slicing the Petri net into a set of dependent
WF-nets (See Figure 3.2) and calculation of the dependency function Dep (See Ta-
ble 3.1) [70]. After that, we generate and aggregate the java services code correspond-
ing to each subnet using our BPEL2Java tool. This program generates java services
from BPEL activities based on the transformation rules that we have de�ned. More
details about the BPEL2Java tool and de�ned transformation rules are provided in
Section 6.2.1.

3.3 Slicing of applications based on services compositions

To slice applications based on services compositions, we opted for the use of directed
graph to formally respresent the application components before performing the slic-
ing. The use of a graph-based composition enables us to focus on all application
components interactions and dependencies between them when processing the slicing.

Preliminaries on graphs and directed graphs are introduced in Section 3.3.1. The
nodes of directed graphs represent the applications services (e.g. the application com-
ponents in the case of an SCA-based application), the edges represent compositions
between these services (e.g. component bindings in the case of an SCA application)
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sn1 sn2 sn3 sn4 sn5 sn6 sn7 sn8 sn9 sn10 sn11
sn1 - → → → → → → → → → →
sn2 - - ∨ ∨ → ∨ ∨ ∨ ∨ ∨ →
sn3 - - - → ∨ → → → → → →
sn4 - - - - ∨ → → → → → →
sn5 - - - - - ∨ ∨ ∨ ∨ ∨ →
sn6 - - - - - - || → || → →
sn7 - - - - - - - || → → →
sn8 - - - - - - - - || → →
sn9 - - - - - - - - - → →
sn10 - - - - - - - - - - →

Table 3.1: Dependency function of the decomposition of the shop process

and the edge directions indicate the call ways. The slicing algorithm that we have
addressed is presented in Section 3.3.2. This algorithm slices a given application into a
set of elementary and autonomous services based on its directed graph representation
and information in its descriptor (e.g. a .composite �le in the case of an SCA-based
application). The services compositions are replaced by remote calls. An illustrative
example of an SCA-based application slicing is provided in Section 3.3.4.

3.3.1 Preliminaries: graphs, directed graphs

In the following, we introduce both graph and directed graph notions.

De�nition 4. (Graphs & directed graphs) A graph G = 〈V,E〉 comprises a
set V = {1, ..., n} of n nodes, and a set E of directed edges where (i, j) ∈ E is an
edge from node i to node j. We further associate with each edge (i, j) a number δij
that expresses the relative hierarchy of the nodes. Usually, δij= 1 for a directed edge
i → j, meaning that i precedes j by one unit.

3.3.2 Slicing of a directed graph corresponding to an application
based on services compositions

Given an application based on services compositions which have been translated to a
directed graph, we address Algorithm 3 to slice it into several aggregated services. The
input of the algorithm is the directed graph G characterized by set of nodes (V ) and
edges (E). The algorithm provides as result a serviceList structure. Each element of
serviceList describes an application component and all its sub-elements (e.g. service,
references, binding, properties, etc.). This algorithm is executed only once to slice an
application before its deployment.
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Algorithm 3 Slicing and aggregation of an application based on services composi-
tions.
Require: G = 〈V,E〉
Ensure: serviceList
1: serviceList = ∅
2: n= sizeOf(V )
3: k=1
4: while (k <> n) do
5: serviceList(k)← Vk
6: AggregateService(serviceList(k))
7: for all t ∈ E do

8: if (δkt) then
9: GenerateClientInterface(Vk, Vt)
10: end if

11: end for

12: k=k+1
13: end while

Algorithm 3 traverses the graph and assigns each node to a serviceList cell (line
5) before performing a call to AggregateService function (line 6).

AggregateService(serviceList(k)) process service corresponding to Vk code gen-
eration and its validity regarding standard service speci�cations. The service code is
copied from the component source code. In the case of an SCA-based application, the
SCA annotations in the components source code are parsed and transformed to a reg-
ular code. For example, a @Property annotation, which provides the name of a given
property of a component, is transformed in the service code to a simple or a complex
types. A @Reference annotation, which allows a given SCA component implemen-
tation to call another component, is transformed to a local call and the @Remotable
annotations are transformed to remote calls.

After service aggregation, the algorithm checks if the selected graph node have
outgoing edges (line 7) to other nodes (i.e. (δkt) =1, ∀t ∈ E). This indicates if
the service corresponding to this node has interactions with other services of the
application. For all these services, a call to GenerateClientInterface is made (lines
8− 10).

GenerateClientInterface(Vk, Vt) adds a client code to the service code corre-
sponding to Vk to allow it to invoke service corresponding to Vt. This remote call
is carried through con�guration of generic clients. The needed properties (i.e. name
of the target service, name of the operation to invoke, input parameters number and
types, etc.) to set up the clients are determined from the application descriptor (e.g.
the .composite �le in the case of an SCA-based application).



serviceList
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4.1 Introduction

In this Chapter, we detail the second step of the SPD approach. The �rst step of our
de�ned approach involved slicing of a service-based application into a set of elementary
and autonomous services (See Chapter3). This step aims at packaging the obtained
services in micro-containers before deploying them in a target Cloud environment.
The packaging step consists in generating an appropriate micro-container around one
service with the minimal modules implementing its required resources (e.g. speci�c
communication bindings). This step is performed when the target Cloud environment
do not support provisioning required Cloud resources for hosting and execution of
sliced services. The choice of the micro-containers was motivated by (1) the possibility
to provision dynamically services' required resources independently of the target Cloud
capacities and (2) its higher performances against classical service containers (e.g.
Apache Axis) demonstrated in Section 6.3.

Service micro-containers provide the minimal functionalities to manage hosted ser-
vice life cycle according to the de�nition introduced in [71]. These basic functionalities
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ensure the minimal main process of our micro-containers (e.g. services hosting, in-
teraction with clients, etc.). For example, we failed to incorporate a safety module
for managing access since it is a prototype and a service balancer module as we are
assuming a single service per container. However, the design of the micro-containers
was made so that these modules can be added as extensions or add-ons if necessary.
For example, we add extensions to support services non-functional properties (e.g.
migration) if they are requested by the developer. These extensions can be integrated
to the generated micro-containers to provide speci�c features at a very �ne degree
of granularity (i.e. service level). For example, when adding migration facilities to a
given micro-container, we can migrate its service from a hosting machine to another.
This prevents us to migrate the entire machine with all its other running services.

We thought of designing a system composed of two main parts:

1. The service micro-container,

2. The generic packaging platform that build the micro-container and package the
service to host in it.

This Chapter is organized as follows: We present our performed packaging frame-
work and comment the packaging process of a given service in a micro-container in
Section 4.2. Then, we detail the architecture of the generated micro-containers in
Section 4.3. The service micro-container might include one or more non-functional
properties if they are required by the developer such as migration, monitoring and/or
elasticity. These extensions are detailed respectively in Sections 4.4, 4.6 and 4.5. Fi-
nally, illustrative examples consisting in packaging processes of services obtained from
slicing the online shop process (See Section 3.2.4) and ComputePrice application (See
Section 3.3.4) are detailed in Section 4.7.

4.2 Service packaging framework

Since we consider several types of services (languages, bindings, etc.), we are able to dy-
namically generate the correspondent micro-container from the packaging framework
for each service to be deployed [58] [59] [72]. An overview of the main components of
the packaging framework and architecture of generated micro-containers are detailed
in Figure 4.1.

To package a service and build its appropriate micro-container, one must mainly
provide for the deployment framework two elements:

1. The service to package with all its components (code, resources, etc.),

2. A deployment descriptor that speci�es the container options.

The Processor module analyzes the service code, parses its associated descriptor to
determine the service binding types and instantiates an appropriate Communication
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The packaging framework provides also a generic client to invoke packaged service
in the generated micro-container. The client setup is based on the service bindings
type and information described in its contract. For example, for a Java Web service
the contract is a WSDL document and needed information to setup the client are
described in operation, input, output and service elements.

Service micro-containers process client requests according to the following scenario:

1. Receiving of the client request,

2. Extracting communication protocol envelops (e.g. HTTP SOAP header),

3. Invocation of the packaged service,

4. Building of the response message,

5. Send the response back to the client.

4.4 Adding migration facilities to service micro-containers

We extended our micro-containers allowing them to be mobile and give them the
ability to migrate, with its service inside, from one host to another once deployed in
a Cloud environment [73]. To handle this, we used two di�erent approaches:

• JADE-based technology integration in the packaging framework,

• Extension of the packaging framework by adding a generic migration module.

JADE-based migration uses an existent mobile multi-agent platform called Java
Agent DEvelopment Framework 1 to handle service migration. We have integrated
this platform to our service packaging process. The choice of JADE was motivated by
the analysis presented in [74]. In this survey, the authors dress a comparison between
existent mobile agent platforms and show that JADE is the most appealing. JADE
is FIPA-compliant so it allows interoperability between agents and provides many
graphical tools for development and debugging.

The second approach followed consists in extending the packaging framework by
adding a generic migration package which component's can be instantiated and pa-
rameterized during the packaging phase. Both approaches are detailed respectively in
Section 4.4.1 and Section 4.4.2.

4.4.1 JADE-based migration technology integration

The idea we adopted was to encapsulate a micro-container in a mobile agent as detailed
in Figure 4.2.

1http://jade.tilab.com/
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Figure 4.4: Mobile micro-container migration steps.

4.5 Adding elasticity facilities to service micro-containers

In order to add elasticity facilities to micro-containers, we extended the packaging
framework with adding new generic modules implementing elasticity mechanisms. The
added modules are schematized in Figure 4.5.

We have not made changes in the micro-container itself. However, we have include
generation of two additional components in the packaging process to implement and
process the target elasticity mechanisms. On one hand, we designed a controller
container to monitor a designated set of services packaged in micro-containers. The
controller is instantiated from the Generic controller component which implements
a process controller according to a given formal model [75]. On the other hand, we
designed a set of front-end routers (i.e. one per generated service micro-container).
A router is instantiated from the Generic Router component and is assimilated to a
micro-container proxy. The invocation of a service packaged in a micro-container must
henceforth be processed via the dedicated router. Indeed, the router is responsible of
load balancing between all of micro-container instances and ensures then abstraction
of all service copies at duplication/consolidation time. The architecture of the routers
are strongly inspired from micro-containers architecture to optimize changes on the
packaging framework. The routers does not contain services but still contains their
contracts in order to facilitate prospective service invocations. The service copies
management is insured thanks to a routage table.
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also performed packaging framework extensions to add non-functional service prop-
erties support in generated micro-containers if needed. At the end of the Chapter,
we provided details about packaging obtained services after online shop process and
ComputePrice application slicing.

In the next Chapter, we present the third step of the SPD approach i.e. deploying
the packaged services in existing Cloud environments.
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5.1 Introduction

In this Chapter, we detail the third step of our de�ned SPD approach. This step
is the last one of the approach and covers the deployment in a target Cloud after
slicing a service-based application into several elementary services (See Chapter 3)
and packaging them in appropriate micro-containers (See Chapter 4) [62].

According to [78], there are four types of service deployment solutions i.e. manual,
script-based, language-based and model-based deployment. Since we consider our
service micro-containers as standalone and autonomous applications, we opted for the
manual deployment.
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There are two ways to deploy micro-containers: The �rst one consists in deploying
them as standalone applications in a Cloud infrastructure (IaaS), while the second one
consists in deploying them in a Cloud platform (PaaS). Challenges and requirements
are di�erent for an IaaS or a PaaS deployment.

Deploying service micro-containers in IaaS consists in uploading and running the
micro-containers in virtual machines (VMs) instantiated from an infrastructure man-
ager such as OpenNebula1 or OpenStack2. Meanwhile, the micro-containers can also
be deployed in existing Cloud platforms as standalone applications (e.g. See [79] for
deployment in Cloud Foundry, See [80] for deployment in Heroku). This deployment
is based on the Cloud platform description models and is performed through their
user APIs. It should be noted that for an IaaS deployment, unlike for a PaaS deploy-
ment, the developer have to install and con�gure all prospective resources needed by
the application apart service micro-containers (e.g. installation of a database, con-
�guration of the container binding with the database, etc.). Such manipulations add
complexity to the deployment task and it is contradictory to Cloud operating princi-
ples. Indeed, according to the de�nition of the Cloud Computing paradigm [11] and
its correspondent economic model [81] [19], installation and con�guration tasks related
to the deployment should be insured and delegated to the Cloud environment.

Based on this, we can say that a deployment in a PaaS is more appropriate for our
use case. So, as part of our work, we de�ned a generic description model for applica-
tions and PaaS resources to generalize the deployment procedure in Cloud platforms.
Our de�ned model allows seamless interactions with di�erent and heterogeneous PaaS
and address applications portability issues (See Section 1.2). Our model extends the
OCCI standard and provide uni�ed operations through a REST API that we called
COAPS for applications provisioning and management in Cloud platforms.

Once deployed, the micro-containers are started and begin to listen to prospective
client requests for invoking packaged services. To execute a deployed application, a
client sends an invocation request to the micro-container that hosts the �rst service
of the application. The call sequence between the di�erent micro-containers ensures
the semantic functionality of the whole initial service-based application and returns
the same execution result.

This Chapter is organized as follows: We present and comment our de�ned generic
description model for platform and application resources in PaaS in Section 5.2.
COAPS API is a REST API implementing this model and providing generic inter-
faces for applications and PaaS resources provisioning. COAPS API speci�cations are
detailed in Section 5.3. Finally, the deployment procedures of the micro-containers
packaging online shop and ComputePrice services are described in Section 5.4.

1opennebula.org
2openstack.org
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5.2 Model for PaaS resources description and provisioning

We de�ned an OCCI-based model for the description of the platform and application
resources independently from the targeted PaaS [82]. Our proposed model extends
the OCCI core model and is composed of two main parts:

1. An OCCI platform extension which describes all PaaS resources that can be
provisioned by a PaaS to set up an appropriate environment,

2. An OCCI application extension which describes the application resources to
deploy in this environment.

These two extensions de�ne and classify PaaS resources through generic OCCI
types that we have de�ned. Each one of these types is characterized by a set of
attributes and actions to handle and manage it according to the OCCI standard. By
doing so, provisioning and management processes of these resources can be aggregated
which brings us to handle them on the same way through our de�ned properties and
actions independently of the hosting PaaS. Our two de�ned extensions are detailed in
the rest of the Section.

5.2.1 Platform resources description model

Figure 5.1: Overview of the de�ned OCCI platform types.

The �rst part of our extension describes the platform resources layer. These re-
sources allow de�nition and instantiation of an application hosting-environment. Fig-
ure 5.1 illustrates our de�ned platform types. Platform resource types are derived
from Resource type at OCCI core level whereas platform resource mixins are derived
from the Mixin type and the interfaces, which links these resources between them, are
derived from the Link type.

The main de�ned OCCI platform resources are:
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• Database resources which are data store resources for platform applications pro-
cessing persistent data (e.g. MySQL, PostgreSQL, CouchDB, etc.),

• Container resources which are engines to host and run applications (e.g. Apache
Axis container, Bonita, IBM WebSphere, etc.),

• Router resources which are resources that provide protocols, message format
transformations and routing (e.g. ESBPetals router, Apache Synapse, etc.).

We also de�ne a set of links to connect and interact with these resources:

• ContainerLink to connect to Container resources,

• RouterLink to connect to Router resources,

• DatabaseLink to connect a Container resource to a Database resource.

The Kind instances de�ned for each one of the platform Resource or Link sub-
types are described in Table 5.1. In addition to that, a set of platform mixin resources
can be de�ned if needed through this extension to support speci�c platform resource
features (e.g authentication PaaS features, logging PaaS features, etc.).

Table 5.1: The kind instances de�ned for the platform subtypes of Resources and related
Links.

Term Scheme Title Related Kind

Database < schema > /platform# Database Resource < schema > /core#resource

Container < schema > /platform# Container Resource < schema > /core#resource

Router < schema > /platform# Router Resource < schema > /core#resource

DatabaseLink < schema > /platform# Database Link < schema > /core#link

ContainerLink < schema > /platform# Container Link < schema > /core#link

RouterLink < schema > /platform# Router Link < schema > /core#link

De�ned platform resources (i.e. Database, Container and Router) are characterized
by a set of attributes (including OCCI default attribute state) and actions according
to OCCI core model resources. We believe that platform resources, which can be
provisioned by a PaaS, may be assigned to one of these three resources.

The Database resource type

The Database resource type represents storage resources which can be provisioned by
a PaaS provider for applications which process persistent data. Database resources
can be relational (e.g. MySQL, PostgreSQL, etc.) or non-relational (e.g. MongoDB,
CouchDB, etc.). The Database type inherits the Resource base type de�ned in the
OCCI core model.
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Table 5.2: Database type attributes.

Attribute Type Multiplicity Mutability Description
occi.database.name String 0...1 Mutable Name of the in-

stance.
occi.database.type Enum {relational,

KeyValue,
document, graph}

0...1 Mutable Scheme type of the
instance.

occi.database.
architecture

Enum {x86, x64} 0...1 Mutable CPU architecture
of the instance.

occi.database.version String 0...1 Mutable Version label of the
instance.

occi.database.state Enum {available,
unavailable}

1 Immutable Current state of the
instance.

Action Term Target state Attributes
StartDB Available DB credentials
StopDB Unavailable -

RestartDB Available DB credentials
BackupDB None -

Figure 5.2: State diagram and actions applicable to Database type instances

Table 5.2 details the attributes describing the Database type through its Kind
instance (Database scheme). The state attribute indicates the current state of a
given instance. The execution of an action induces to the modi�cation of its value
according to the diagram presented in Figure. 5.2. For example, for an already created
and unavailable Database instance, the execution of the StartDB action brings the
instance state to available by updating the state attribute value. �Action Term� refers
to the term of the Action's category identi�er.

The Database resource attributes and actions are exposed by all Database type
instances and are necessary to describe and handle the context of these instances
(e.g. provisioning of a new instance, updating an existing instance, etc.). Database
resource actions are used to manage these instances (e.g. start an instance, backup
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an instance, etc.). Every de�ned action is identi�ed by a Category instance using
a /database/action# categorization scheme.

The Container resource type

Table 5.3: Container type attributes.

Attribute Type Multiplicity Mutability Description

occi.container.name String 0...1 Mutable Name of the in-
stance.

occi.container.version String 0...1 Mutable Version label of
the instance.

occi.container.
architecture

Enum {x86,
x64}

0...1 Mutable CPU architecture
of the instance.

occi.container.state Enum
{available,
unavailable}

1 Immutable Current state of
the instance.

Action Term Target state Attributes

StartContainer Available -
StopContainer Unavailable -

RestartContainer Available -
SuspendContainer Available -

Figure 5.3: State diagram and actions applicable to Container type instances

We de�ned the Container resource type that represents service containers, ap-
plication servers and engines provisioned by PaaS to host and run applications (e.g.
Apache Axis, Oracle GlassFish Server, etc.). We de�ned a set of attributes to de-
scribe a Container type (See Table 5.3) through its Kind instance (Container scheme)
and a set of actions to manage the di�erent Container instances into a PaaS (See
Figure 5.3).
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The de�ned attributes and actions are exposed by all Container type instances.
Thestate attribute value indicates the current state value of an instance from the
di�erent prede�ned states that a Container instance can have (i.e. available, unavail-
able). The state value evolves after the execution of one of the actions according to
the state diagram introduced in Figure 5.3 to keep a consistent and manageable set
of instances.

The Router resource type

Table 5.4: Router type attributes.

Attribute Type Multiplicity Mutability Description

occi.router.name String 0...1 Mutable Name of the in-
stance.

occi.router.version String 0...1 Mutable Version label of
the instance.

occi.router.
architecture

Enum {x86, x64} 0...1 Mutable CPU architecture
of the instance.

occi.router.state Enum {active,
inactive}

1 Immutable Current state of
the instance.

Action Term Target state Attributes

EnableRouter Active -
Con�gureRouter None Parameters
DisableRouter Inactive -

Figure 5.4: State diagram and actions applicable to Router type instances

The last platform resource type that we have de�ned is the Router. Router re-
sources model message format transformations and routing systems provided by PaaS
to route and deliver messages between PaaS components. Router entities are use-
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ful where for example deployed applications on Cloud platforms are multi-tenant
and/or service-based and requires then several (may be heterogeneous) containers
to be hosted.

Table 5.4 describes the attributes that we have de�ned to describe the Router
type through its Kind instance (Router scheme). The actions applicable to a Router
instance and the diagram schematizing the evolution of the state value in relation with
the execution of these actions are schematized in Figure 5.4. Each action is identi�ed
by a Category instance using a /router/action# categorization scheme.

The DatabaseLink link type

To connect these de�ned platform resources, we modeled a set of platform link entities.
These entities are extended from the OCCI core model Link base type. For example,
to link a Container resource to a Database resource, we de�ne the DatabaseLink
type. This link enables a Database instance to be attached to a Container instance
for applications interacting with a database system management for example (See
Figure 5.5.).

Figure 5.5: DatabaseLink type: A binding between Container and Database resources.

As examples of DatabaseLink, we can cite:

• .NET/Connector: which connects a .NET container to a MySQL instance,

• Mongo+Hadoop Connector: which connects a Hadoop server to a MongoDB
instance.

ADatabaseLink instance can be set up between two or several Container andDatabase
instances through the �Bind� action (see Table 5.5).

Table 5.5: Actions applicable to DatabaseLink instances.

Action Attributes Description

Bind source, target bind a Container instance source to a target Database instance.
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The ContainerLink link type

We de�ned the ContainerLink type to enable connecting one or several homoge-
neous Container resources between them. By homogeneous, we mean same type
container instances (see Figure 5.6.). For example, a multi-tenant J2EE application
deployed onto two or more Apache Tomcat instances.

Figure 5.6: ContainerLink type: A connector between Container and Router resources.

The RouterLink link type

We de�ned the RouterLink type to enable connecting one or several heterogeneous Con-
tainer resources to a Router resource. For example, a BPEL process deployed on an
Apache ODE container instance and invoking as partner link a remote Web service
deployed on an Apache Axis container instance during its execution (See Figure 5.7).

Figure 5.7: RouterLink type: A connector between several Container resources.

Examples of de�ned platform mixins

In addition to these de�ned platform resources and links, we can de�ne platformMixin
if needed. Mixins are de�ned in order to support speci�c features and operations
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o�ered by some PaaS and cannot be described by the main platform resources that we
have de�ned. We consider for example the service micro-container that can be modeled
as platform resource mixin. Indeed, in order to support the particular service micro-
container capabilities (e.g. migration [73], monitoring [76], etc.), a correspondent
mixin, which is a specialization of the Container resource type, is de�ned.

Table 5.6: Service micro-container mixin attributes.

Attribute Type Multiplicity Mutability Description

File_name String 1 Mutable MC �le name (e.g.
JAR name).

Requirements Set of String 0...1 Mutable Running requirements
(e.g. JRE version,
start command, etc.).

state Enum {available,
migrating, restarting,

unavailable}

1 Immutable Current state of the in-
stance.

The service micro-container mixin attributes are listed in Table 5.6. Relative
actions and associated state diagram are presented in Figure 5.8. Note that the
micro-container mixin extends the state diagram of the Container resource type (See
Figure 5.3) with an additional state i.e. migrating related to migration time (i.e.
the MigrateMC action is being executed) from one host to another (See Section 4.4).

Action Term Target state Attributes

MonitorMC Active SLA document
MigrateMC None Target host
DuplicateMC Active -
ConsolidateMC Inactive -

Figure 5.8: State diagram and actions applicable to MicroContainer type instances

A second example of platform mixin might be a WSO2 ESB router mixin.
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Action Term Target state Attributes

InstallModule Available module properties

Figure 5.9: State diagram and actions applicable to WSO2 router type instances

This mixin is specialized from the Router resource type. WSO23 is an Open
Source Enterprise Service Bus (ESB) router which allows users to con�gure message
routing, virtualization, intermediation, transformation, logging, task scheduling, load
balancing, failover routing and event brokering.

WSO2 ESB design is speci�c and strongly extensible to allow integrating new
modules if needed from a remote P2 repository (e.g. installing the Carbon UI Fea-
ture) [83]. To support these speci�c features, a WSO2 ESB router mixin was de�ned.
The correspondent state diagram and relative action are de�ned in Figure 5.9.

Existing PaaS propose, apart platform resources, a set of technical functionali-
ties and features (e.g. authentication, logging, metering, messaging, etc.) and even
paid applications and services through marketplaces (e.g. Heroku add-ons [84], Cloud
Foundry marketplace [85], etc.). These functionalities and services are also considered
as platform resources. They are supported by our extension and can be modeled as
mixins.

5.2.2 Application resources description model

In addition to the platform resource extension, we de�ne an additionnal OCCI-based
application extension. The purpose of this model is to describe an application (i.e.
any computer software or program) that can be hosted and executed by a PaaS us-
ing de�ned platform resources. Quite like our de�ned platform resource types, the
application resource types extends OCCI core types. Both applications resources and
the links between them are respectively derived from Resource and Link types of the

3wso2.com
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OCCI core model (See Figure 5.10). Table 5.7 describes the Kind instances de�ned
for each one of the application Resource or Link sub-types.

Figure 5.10: Overview of the de�ned OCCI application types.

The de�ned OCCI application types are:

• Environment which represents a set of �settings� needed to host and run an Ap-
plication (e.g. runtime, framework, message queue, etc.),

• Application which is the software or program that can be deployed on top of a
PaaS (WAR �le, Ruby program, etc.).

• Deployable which represents the Application deployables (e.g. sources archives,
etc.),

• EnvironmentLink which connects an Application to an Environment.

Table 5.7: The kind instances de�ned for the application subtypes of Resources and related
Links.

Term Scheme Title Related Kind

Environment < schema > /application# Environment Resource < schema > /core#resource

Application < schema > /application# Application Resource < schema > /core#resource

Deployable < schema > /application# Deployable Resource < schema > /core#resource

EnvironmentLink < schema > /application# Environment Link < schema > /core#link

The Environment resource type

The Environment resource models a set of con�gurations and settings of the platform
resources (e.g. Container resources, Database resources, DatabaseLink resources, etc.)
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and needed to host and run applications on PaaS. Environment resource includes,
among others, the needed runtime (e.g. java 7, java 6, ruby, etc.), the needed frame-
works/containers (e.g. spring, tomcat, ruby, etc.) and optionally needed provider
services (e.g. monitoring, messaging, etc.). The OCCI attributes de�ned for an En-
vironment resource through its Kind resource instance are listed in Table 5.8. We
de�ned also an action exposed by all Environment type instances in order to update
an already existing environment (See Table 5.9).

Table 5.8: Environment resource type attributes.

Attribute Type Multiplicity Mutability Description

occi.environment.
name

String 0..1 Mutable Name of the instance.

occi.environment.
description

String 0..1 Mutable Human readable de-
scription of the in-
stance.

occi.environment.
memory

Float, 109 (GiB) 0..1 Mutable RAM allocated to the
instance.

occi.environment.
variables

Set of (var,
value)

0..1 Mutable Environment variables
associated to the in-
stance.

occi.environment.
containersList

Set of URIs 0..1 Mutable Set of URIs of Con-
tainer instances associ-
ated to the instance.

occi.environment.
databasesList

Set of URIs 0..1 Mutable Set of URIs of
Database instances
associated to the
instance.

occi.environment.
routersList

Set of URIs 0..1 Mutable Set of URIs of Router
instances associated to
the instance.

occi.environment.
databasesLink

Set of URIs 0..1 Mutable Set of URIs of
DatabaseLink in-
stances associated to
the instance.

occi.environment.
state

Enum {avail-
able, unavail-
able}

1 Immutable Current state of the in-
stance.

The Application resource type

The Application resource type models any computer software or program that can
be deployed on top of a PaaS. De�ned Environment resource type instance enables
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Table 5.9: Actions applicable to Environment type instances.

Action Term Target state Attributes

Update None Platform resources list

hosting and executing one or more Application resource type instance(s). This hosting
Environment is set up thanks to the instantiation and the con�guration of necessary
platform resources, links and mixins.

To deploy an Application, the end-user speci�es a set of properties (e.g. applica-
tion name, application description, etc.). Moreover, if the target PaaS supports the
management of multiple instances (e.g. Cloud Foundry), the user can specify the de-
sired number of active instances to ensure application scalability and availability (See
Table 5.10).

Once deployed, the Application can be invoked and executed through its public
URL provided by the target PaaS. To manage the di�erent Application instances, we
de�ned a set of actions (See Table 5.11). These actions allow to start (respectively
stop) an already deployed application in a hosting Environment and then to update
its state value to available (respectively unavailable). The update action allow reload
an application after setting and/or Deployables changes.

Table 5.10: Application type attributes.

Attribute Type Multiplicity Mutability Description

occi.application.
name

String 0..1 Mutable Name of the instance.

occi.application.
description

String 0..1 Mutable Human readable de-
scription of the in-
stance.

occi.application.
instances

integer 1..N Mutable Number of the instance
copies.

occi.application.
url

URL 0..1 Mutable The public URL asso-
ciated to the instance.

occi.application.
deployables

Set of URIs 0..1 Mutable Set of URIs of Deploy-
able associated to the
instance.

occi.application.
state

Enum {started,
stopped}

1 Immutable Current state of the in-
stance.
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Table 5.11: Actions applicable to Application type instances.

Action Term Target state Attributes

Update None Application description

Start started -

Stop stopped -

Restart started -

The Deployable resource type

The Deployable type models the Application source archives. By deployables, we mean
all necessary artifacts (e.g. ZIP �le, EAR �le, etc.), con�guration �les (e.g. Chef script,
etc) and/or deployment descriptors (e.g. XML �le, DAT �le, etc.) needed to carry
out the application deployment (see Table 5.12).

The end-user can upgrade Deployable instances to apply new source updates for
example through the �update� action (see Table 5.13).

Table 5.12: Deployable type attributes.

Attribute Type Multiplicity Mutability Description

occi.deployable.
name

String 0..1 Mutable Name of the instance.

occi.deployable.
description

String 0..1 Mutable Human readable description
of the instance.

occi.deployable.
content_type

Enum {arti-
fact, war, jar,
ear}

0..1 Mutable Archive types of the instance.

occi.deployable.
location

URL 0..1 Mutable Location of the artifact associ-
ated to the instance. It can be
a �le path or a logical Name.

occi.deployable.
state

Enum {avail-
able, unavail-
able}

1 Immutable Current state of the instance.

Table 5.13: Actions applicable to Deployable type instances.

Action Term Target state Attributes

Update None Artifacts
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The EnvironmentLink link type

Figure 5.11: EnvironmentLink type: A connector between Application and Environment
resources.

In order to connect an Application resource to a hosting Environment resource,
we de�ned the EnvironmentLink type. EnvironmentLink resources are extended from
the OCCI core model Link base type. Concretely, to deploy an Application on top
of an Environment, one must instantiate an EnvironmentLink which links them (See
Figure 5.11).

5.3 COAPS API speci�cations

In this Section, we detail COAPS API speci�cations. COAPS is a REST-based
and OCCI-compliant API implementing our introduced description model (See Sec-
tion 6.2.3 for COAPS implementation details). The choice of the REST architecture
was motivated by the type of existing Cloud platforms APIs interacting with COAPS
wich are almost all REST-based. COAPS exposes a set of generic interfaces for ap-
plications and PaaS resources provisioning and management and is based on a proxy
system that we have designed to provide appropriate implementations of these inter-
faces when interacting with existing Cloud platforms. The full version of the COAPS
API speci�cations is available at [86].

5.3.1 COAPS generic interfaces overview

The COAPS generic interfaces are classi�ed into two resource management packages:

1. The Environment management package which provides COAPS generic opera-
tions to create and manage Environment resources,

2. The Application management package which provides generic COAPS opera-
tions to create and manage Application resources.

A resource-based representation of the proposed environment management oper-
ations is provided in Figure 5.12. Each box represents an Environment resource (or
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sub-resource), the title text (e.g. /environment, /environment/envId, etc.) rep-
resents the resource identi�er and the body text lists the o�ered operations by this
resource (e.g. FindEnvironments, CreateEnvironment, etc.) and its associated REST
methods (e.g. GET, POST, etc.).

Figure 5.12: The COAPS API environment management operations.

In COAPS speci�cations, we consider the basic operations for an application's
environment creation and management. The environment management resource o�ers
the following operations:

• Create Environment : creates a new environment using the paas_environment
element of the manifest. The operation returns, among others, an environment
ID.

• Update Environment : updates an existing environment. An environment ID
must be provided and the updates must be speci�ed in a new manifest.

• Destroy/Describe Environment : destroys/describes an environment given its ID.

• Find Environments: lists all available environments.

• Get Deployed Applications: lists all deployed applications in an environment
given its ID.

• Get information: lists the runtimes, frameworks and services supported by the
targeted PaaS.
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As for the environment management resource, we consider the basic operations for
an application provisioning and management. Our application resource management
package is represented in Figure 5.13.

Figure 5.13: The COAPS API application management operations.

The application resource management package o�ers the following operations:

• Create Application: creates a new application using the application description
in the manifest. The operation returns, among others, an application ID.

• Deploy Application: deploys an application identi�ed by its ID on an existing
environment identi�ed by its environment ID.

• Start/Stop/Restart/Un-deploy/Destroy Application: starts/stops/restarts/un-deploys/destroys
a deployed application given its ID.

• Update Application: updates an existing application. The application ID must
be provided and the updates have to be speci�ed in a new manifest.

• Describe Application: returns an application description given its ID.

• Find Applications: lists the available applications.

• Destroy Applications: destroys all existing applications.
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to map between the COAPS generic interfaces and the proprietary actions exposed
by the selected PaaS API. Several COAPS interfaces can be coupled to a single PaaS
operation if needed (e.g. POST Deployables and POST Application operations for
Cloud Foundry implementation) and/or some COAPS operations can be ignored (and
then not implemented) for the case where there are not supported by a speci�c PaaS
(e.g. POST RouterLink operation for Cloud Foundry implementation insofar as Cloud
Foundry manages itself the routage between DEA components). Cloud Foundry DEAs
are the components which contains and manages the embedded service containers.
More details about current available COAPS implementations are provided in Sec-
tion 6.2.3.2.

5.3.3 Deployment of service-based applications using COAPS

Generally, service-based applications deployment through COAPS API is performed
according to the scenario steps detailed in Figure 5.17.

Figure 5.17: Provisioning applications scenario steps through COAPS API.

These steps represents generic operations of COAPS detailed in Section 5.3.1.
Thanks to COAPS, to provision an application in a PaaS, we follow the same provi-
sioning scenario, the same API operations and the same resources descriptors whatever
is the target Cloud platform.

5.4 Examples of service-based applications deployment

As illustrative examples, we propose to deploy the shop process and ComputePrice
micro-containers obtained after slicing the applications and packaging their services.
The deployment is performed in both IaaS and PaaS.

For an IaaS deployment, we used the Network and Cloud Federation (NCF) exper-
imental platform deployed at Télécom SudParis. We used OpenNebula IaaS manager
to instantiate hosting VMs. For a PaaS deployment, we used Cloud Foundry PaaS.

In the following, we describe the work that we have done to deploy and execute
shop process and ComputePrice application service micro-containers.

5.4.1 Deployment of shop process

All needed services to deploy the shop process are packaged in micro-containers. There
is no more additional modules (e.g. remote Web services, external partner links)





service1
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2 <paas_application name="Service1" environment="MC_Env">

3 <description>Java Service packaged in MC . </description>

4 <paas_application_version name="version1 .0" label="1.0" url="service1.

cfapps.io">

5 <paas_application_deployable name="MC1.jar" description="Jar_file"

content_type="artifact" l o c a t i o n="/home/yangui/MCs"/>

6 <paas_application_version_instance name="Instance1" initial_state="1

" default_instance="true"/>

7 <paas_application_version_instance name="Instance2" initial_state="1

" default_instance="false"/>

8 </paas_application_version>

9 </paas_application>

After that, we call the DeployApplication operation to process the uploading of
the sources and deployment of the application in the target PaaS provider. Speci�-
cally, this operation requires the already created envId and appId to perform the link
between them ( EnvironmentLink resource).

Once the application is deployed, we call the StartApplication operation to run
it and make it available to prospective request calls

5.4.2 Deployment of ComputePrice application

The ComputePrice SCA-based application has an external component in the form
of remote Web service ( DetermineTaxRate component) and a database instance (See
Section 2.1.4). So, provisioning the ComputePrice application requires the deployment
of: (i) its correspondent micro-containers, (ii) DetermineTaxRate Web service on a
reachable Tomcat instance and (iii) the used database instance. The provisioning is
performed in both NCF infrastructure and Cloud Foundry PaaS.

5.4.2.1 Deployment of ComputePrice application in NCF infrastructure

An overview of the performed deployment is detailed in Figure 5.20. The Com-
putePrice application provisioning in NCF infrastructure is performed as follows:

1. Instantiate the hosting VMs using OpenNebula IaaS manager,

2. Install the JRE in the hosting VMs,

3. Install a Tomcat container instance in a VM and deploy the DetermineTaxRate
on it,

4. Install MySQL DBMS and copy the database records on it,

5. Setup the connector4 between MySQL and Tomcat intances,

6. Upload the JAR �les in the VMs using SSH protocol,

7. Run the JAR �les to start listening to client requests.

4http://dev.mysql.com/downloads/connector/j/
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To provision the tomcat server and the database instance, we create a novel ap-
propriate environment called JavaWeb_Env (See Listing 5.3). Then, we created a
novel application associated to the DetermineTaxRate Web service and we deploy it
JavaWeb_Env environment (See Listing 5.4).

Listing 5.4: The Application resource manifest.

1 <?xml ve r s i on="1.0" encoding="UTF8"?>

2 <paas_application name="DetermineTaxRate" environment="JavaWeb_Env">

3 <description>DetermineTaxRate WS . </description>

4 <paas_application_version name="version1 .0" label="1.0" url="

DetermineTaxRate.cfapps.io">

5 <paas_application_deployable name="DetermineTaxRate.WAR" description

="WAR_file" content_type="artifact" l o c a t i o n="/home/yangui/WS"/>

6 <paas_application_version_instance name="Instance1" initial_state="1

" default_instance="true"/>

7 </paas_application_version>

8 </paas_application>

Figure 5.21: Cloud Foundry Web graphic console screenshot showing deployed Com-
putePrice application services.

Figure 5.21 presents a screenshot of the Cloud Foundry Web graphic console5 show-
ing our three services deployed in Cloud Foundry. Generally, when deploying in PaaS
through COAPS, we have only to provide required platform resources description. In
fact, instantiation and parameterization of these resource (e.g. Tomcat instance in-

5console.run.pivotal.io/
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stallation, MySQL installation, jdbc-connector setup, etc.) are delegated to the PaaS
contrary to what we have done to provision the same application in an IaaS. Finally,
it should be noted that to deploy the ComputePrice application in another PaaS (e.g.
OpenShift), we use exactly the same manifests and the same operations.

5.5 Conclusion

In this Chapter, we presented and detailed the third step of the SPD approach i.e.
deploying the packaged services in micro-containers in the Cloud. Both deployment in
Cloud infrastructures and Cloud platforms are treated. Brie�y, the deployment in IaaS
consists on instantiating VMs and uploads the service micro-containers on them before
starting their execution as standalone applications. For the deployment in a PaaS, we
de�ned a generic description model for applications and PaaS resources. Our proposed
description model is based on the OCCI standard. According to OCCI, each identi�ed
PaaS resource is characterized by a set of attributes, management actions and associate
lifecycle. Based on this model, we are able to describe, provision and manage a given
PaaS resource in an uni�ed way whatever is the target Cloud platform. We also
performed a PaaS-independent REST API called COAPS implementing this model to
process applications deployment and management on target PaaS. We presented and
commented the COAPS speci�cations.

In the last Section of the Chapter, we illustrated our �ndings by showing the
deployment procedures for the shop process and ComputePrice applications in both
NCF infrastructure and Cloud Foundry PaaS.

In the next Chapter, we detail and discuss the implementation details of each one
of the SPD approach steps.
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Chapter 6

Implementation & Experiments

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.1 Application slicers and services aggregation tools . . . . . . . . . . 88

6.2.1.1 BPEL2Java tool . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.1.2 SCA2java tool . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.2 Packaging framework tool . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.3 COAPS API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.3.1 COAPS realistic use cases . . . . . . . . . . . . . . . . . . 94

6.2.3.2 Examples of existing COAPS implementations . . . . . . 96

6.3 Experimentations . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3.1 Service containers limitations in Cloud environments . . . . . . . . 97

6.3.2 Service micro-containers experimentations . . . . . . . . . . . . . . 99

6.3.3 Mobile service micro-container experimentations . . . . . . . . . . 106

6.4 Use case: Provisioning of autonomic applications . . . . . . . . 109

6.4.1 Context and purpose of the use case . . . . . . . . . . . . . . . . . 109

6.4.2 Implementation and validation . . . . . . . . . . . . . . . . . . . . 109

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 Introduction

In this chapter, we present the implementations we have done to realize the SPD
approach, and the experiments we have made to evaluate the e�ectiveness of our
developed tools. Our goal is to prove that our approach is feasible and e�ective in real
uses cases. To that end, we have implemented each step of our de�ned SPD approach.

To implement the �rst step of the SPD approach i.e. slicing a service-based appli-
cation in a set of elementary services, we developed tools implementing our algorithms
introduced in Chapter 3. The developed tools support slicing and aggregating BPEL-
based processes and SCA-based applications.
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To implement the second step of the SPD approach i.e. packaging sliced services in
appropriate micro-containers, we implement the packaging framework that allows the
service micro-containers building from the framework generic modules (See Chapter 4).

To implement the third step of the SPD approach i.e. deploying the micro-
containers in a target Cloud environment, we develop a REST API implementing
our proposed applications and PaaS resources description model (See Chapter 5).
Our performed API is a PaaS-independent solution which enables provisioning and
managing services and applications in existing Cloud platforms through appropriate
implementation of its generic operations.

This Chapter is organized as follows: we describe development details and used
technologies to implement each step of the SPD approach in Section 6.2. Then, we
present the experimentations that we have performed to (1) highlight classical ser-
vice container limitations in Cloud environments and (2) evaluate our service micro-
container performances versus classical service containers in Section 6.3. Finally, we
present a realistic use case resuming our �ndings in Section 6.4.

6.2 Implementation

The implementation details of our developed tools are detailed in the following Section.
For each step of the SPD approach, we developed tools that implements algorithms
and architectures that we have introduced. Applications slicing and services aggrega-
tion tools are detailed in Section 6.2.1. The packaging framework implementation is
detailed in Section 6.2.2. COAPS API implementation is detailed in Section 6.2.3.

6.2.1 Application slicers and services aggregation tools

We develop service-based application slicers and services aggregators implementing
our algorithms introduced in Chapter 3. Our tools support BPEL-based processes and
SCA-based applications processing. For BPEL-based processes, we develop the BPEL2Java
tool that slices a given BPEL according to Algorithm 1 before generating and aggre-
gating the java code of each obtained subnet. For SCA-based applications, we develop
the SCA2Java tool that slices a given SCA application according to Algorithm 3 before
aggregating the java code of obtained services.

6.2.1.1 BPEL2Java tool

For BPEL-based processes slicing, we follow the following methodology:

1. Generate a Petri net graph from the BPEL to deploy,

2. Slice the Petri net into a set of dependent WF-nets,

3. Sort the subnets to obtain the whole execution chain equivalent to the initial
BPEL,
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4. Generate and aggregate services code corresponding to the WF-nets.

Table 6.1: Examples of de�ned transformation rules of basic BPEL activities to Java in-
structions.

BPEL activity Equivalent Java instruction(s)

Invoke:one way Java asynchronous remote call

Invoke Java synchronous remote call

Assign Java assignment instruction

Reply Java return() instruction

Receive Java method endpoint

Fault Java catch sequence

Compensate Java �nally sequence

Wait Java wait() instruction

Terminate Java return(0) instruction

Exit Java return(-1) instruction

The BPEL to Petri net transformation is performed by the BPEL2PN tool (See
Section 3.2.4). Then, we execute Algorithm 1 to slice the Petri net. This algorithm
provides a set of dependent WF-net services. The execution order of these WF-nets
is provided by the execution of Algorithm 2 based on the dependency function Dep
computed by Algorithm 1. Assuming that each subnet corresponds to a fragment of
the .bpel process descriptor, we developed a java tool called BPEL2Java ensuring java
service code generation for each sliced subnet based on the following fundamentals:

• Each Petri Net transition is equivalent to its correspondent BPEL activity,

• None of the Petri net places has equivalent in BPEL. Places make sense only in
a Petri net network.

BPEL2Java sources are available at [87]. These sources are composed of 11
packages, 155 classes and 28131 instructions. The java code generation is based on
transformation rules that we have de�ned to be able to convert a BPEL activity
to an equivalent java sequence instructions (e.g. an Invoke:oneway BPEL activity
will be transformed to a Java asynchronous remote call, an Invoke activity to a Java
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sychronous remote call, an Assign activity to a Java assignment instruction and so on).
Table 6.1 details a non-exhaustive list of transformation rules that we have de�ned.

To support the Invoke activity, we add to services code a parameterized generic
client stemming from a generic soap client code1. The parameters provided to each
client are based on information on the .bpel process descriptor and its prospective
related .wsdl partner link descriptors. Furthermore, the structured BPEL activities
(e.g. IF, Else, While, Switch, Case, etc.) are still the same in Java. The java source
code generation is performed by the use of the Codemodel2 tool. Codemodel is a Java
library providing a way to generate Java programs using appropriate packages.

It should be noted that some information are likely to be lost when we generate the
Petri net from the .bpel descriptor. Indeed, the choice of execution branch is a non-
deterministic choice in a Petri net. Thus, structured BPEL activities (e.g. IF, While,
etc.) can not be represented using a Petri net. To �nd this kind of information, we
annotate the Petri Net elements with these tests and/or conditions.

6.2.1.2 SCA2java tool

Table 6.2: Examples of de�ned transformation rules of SCA annotations to Java instructions.

SCA annotation Equivalent Java instruction(s)

@Property Java type

@Reference local java call

@Remotable remote java call

We developed a tool called SCA2java implementing Algorithm 3 [88]. The tool
sources are available at [87]. These sources are composed of 22 packages, 79 classes
and 27339 instructions. The execution of SCA2java is schematized in Figure 6.1.
The tool parses the .composite of a given SCA-based application descriptor using
Eclipse modeling framework (EMF3) and initializes the serviceList structure. Each
element of serviceList is loaded by an application component and its sub-elements
(e.g. service, reference, properties, binding, etc.). After that, for each element of
serviceList, we create a correspondent java service. Each generated service represents
an implementation of one of the SCA-based application components. These services
are composed of two classes: an interface class and an implementation class of this
interface. The source code of these services is copied from the initial SCA project.
Some aggregation tasks are also performed in the services source code to ensure their

1https://github.com/impactcentre/iif-generic-soap-client
2codemodel.java.net/
3http://www.eclipse.org/modeling/emf/
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Figure 6.1: SCA2java execution process sequence diagram.

validity and compliance with java service speci�cations. Among the major changes
that we operate, we can cite the transformations of the SCA annotations to a standard
java code. Table 6.2 details a non-exhaustive list of transformation rules from SCA
annotations to standard java code that we have de�ned.

The remote java calls instead of @Remotable annotation are performed by injecting
the code of parameterized generic soap client4. The client properties (i.e. name of the
target service, name of the method to invoke, input parameters number and types)
are determined from the .composite SCA-application descriptor and prospective .wsdl
remote services descriptors.

6.2.2 Packaging framework tool

We implemented the packaging framework using java according to the system archi-
tecture introduced in Section 4.2. The generic framework modules are implemented
progressively as java packages and are integrated then in the packaging process when
they are linked to the processing module. By doing so, we guarantee that these mod-
ules are plugables. In fact, adding new communication protocols or programming

4https://github.com/impactcentre/iif-generic-soap-client
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languages support consists in adding the correspondent components in the packaging
framework generic packages.

Before starting the packaging process, the developer can specify some settings (e.g.
location of the generated micro-container, name of the generated micro-container,
listening port value, etc.) through a .properties �le representing the deployment de-
scriptor of the micro-container. In addition to that, the packaging framework provides
the possibility to package in micro-containers services with speci�c requirements (e.g.
speci�c librairies, con�guration �les, etc.). To perform this, the processing module
adapts the service invocation package using the JavaAssist5 tool.

Figure 6.2 schematizes the performed packaging framework tool modules and the
service micro-container generation process. The developed sources are composed of
10 packages, 155 classes and 4543 instructions.

Figure 6.2: Service packaging and micro-container generation sequence diagram.

The Processor module analyzes the service code, parses its associated descriptor
to determine the service binding types and sends it to the Communication Generic
Package to instantiate the appropriate module implementing these bindings. The
same principle is used by the Invocation Generic Package to instantiate the appro-
priate service invocation module. The instantiated modules are sent to the Builder
module which is responsible of generating the micro-container packaging the service,

5javassist.org/
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the instantiated modules and a set of generic service container classes based on in-
formation provided in the deployment descriptor. Generated micro-containers are
autonomous and standalone applications packaged as running Java ARchives (JAR
�le) thanks to One-Jar tool6. The information about the main class to execute in the
micro-container are provided in the JAR manifest according to java standard speci�-
cations. Micro-containers JAR �les can be run over a classical standard Java Virtual
Machine (JVM).

Once running, a micro-container is listening and waiting for hosting service execu-
tion requests through the designated port in the deployment descriptor. The packaged
service into a running micro-container can be then invoked through our generic client.
To that end, we setup the client before invocation by updating its .properties �le with
the appropriate parameters (i.e. micro-containers location, micro-container listening
port, operation name to invoke and parameters.).

We also implemented variants of the packaging framework to support migration
facilities according to the architectures presented in Section 4.4. The �rst variant
allows building mobile micro-containers using JADE-based migration. To perform
this variant, we integrated the JADE-based framework 7 to our packaging process in
order to generate mobile micro-containers (See Figure 4.2). This intermediary step
allows integrating additional migration technical modules to micro-containers (e.g.
context management module). We have also implemented an administrator agent
container to deploy with the mobile containers. This latter is responsible of sending
the migration requests to the micro-containers.

The second variant of the packaging framework with migration facilities consists
on adding a migration facilities package implementing generic migration modules (See
Section 4.4.2). The generic migration modules allow adding a migration component
in the micro-containers that interact with a receiver container to perform migration
(See Figure 4.3).

6.2.3 COAPS API

COAPS API is an OCCI-compliant solution implementing the platform and applica-
tion resources description and provisioning model that we have de�ned [89] (See Sec-
tion 5.2). COAPS API handles Application and Environment resources. Environment
resources are in turn composed of platform resources (e.g. Container, Router,DatabaseLink,
etc.). COAPS sources are composed of 2 packages, 2 classes and 312 instructions.
COAPS API is based on both Representational State Transfer (REST) architec-
ture [90] and the OCCI HTTP Rendering [54]. OCCI HTTP Rendering de�nes how
to interact with an OCCI model to manage its resources while REST architecture
describes a style for building distributed systems. REST architectural style is based
on resources associated to unique identi�ers (e.g. URI). The interactions with these

6one-jar.sourceforge.net/
7http://jade.tilab.com/
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resources are based on a standardized communication protocol (e.g. HTTP).
COAPS API exposes a set of generic and RESTful HTTP operations (i.e. GET,

POST, PUT and DELETE) for Cloud applications management and provisioning
(See Section 5.3). Concretely, these operations implement actions that can be applied
to Environment and Application resources according to our de�ned model. We imple-
mented these resources based on the OCCI4java8 project. OCCI4java implements the
OCCI core speci�cations and the OCCI infrastructure extension. We extended this
project to include implementations of our platform and application extensions.

We also developed a generic Web client (see Figure 6.5) for applications provision-
ing and management in existing PaaS. The Web client acts as an access point for the
API implementations and allows the user to call the Environment/Application man-
agement operations. Through this client, we show that our API allows a seamless (i.e.
using (1) the same application/environment manifests structure and (2) the same

management actions) PaaS application provisioning.
In the following, we discussed two realistic use cases of COAPS API before detailing

its current available implementations.

6.2.3.1 COAPS realistic use cases

COAPS API was taken up in the French FUI CompatibleOne9 project and the Euro-
pean Easi-Clouds10 project.

CompatibleOne project is an open source project which provides, among others, a
platform (i.e. ACCORDS) for Cloud services description and allows interoperability
and portability between di�erent Cloud resources provisioned by heterogeneous Cloud
environments [91]. The ACCORDS platform authorizes application developers to
choose the runtimes and frameworks of their choice to deploy their applications. The
developers are not supposed to consider proprietary characteristics related to a speci�c
PaaS. To ensure these requirements, COAPS API and its related resources description
model were proposed [92]. Indeed, describing applications using a generic model and
using a uni�ed API for their provisioning enabled us to meet the portability challenges
across several PaaS.

As a proof of concept for the COAPS module, the demonstration illustrated in
Figure 6.3 was presented at the project's �nal review. For those demonstration, the
XWiki company, a project partner, provided us with a Cloud-aware version of their
XWiki Enterprise application11 that we have provisioned in two di�erent PaaS in-
stances (i.e. a Cloud Foundry instance and an Openshift instance) using the same ap-
plication descriptor and the same actions. XWiki Enterprise application is a light and
powerful development platform that allows users to customize the wiki to their speci�c
needs (e.g. sharing documents, monitoring project progress, etc.). This demonstration

8https://github.com/occi4java/occi4java
9compatibleone.org/
10easi-clouds.eu/
11http://enterprise.xwiki.org/xwiki/bin/view/Main/WebHome
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EASI-CLOUDS project stands for Extendable Architecture and Service Infras-
tructure for Cloud-Aware Software. This project aims at o�ering novel and bene�cial
solutions for both Cloud consumers and providers. The major expected outcome is an
open-source Cloud platform, the EASI-CLOUDS platform (see Figure 6.4), �that can
be instantiated to set up an application type-speci�c cloud (e.g. e-learning, HPC-on-
demand, storage marketplace) for a private, public, or hybrid usage, and implementing
a given level of security, privacy and QoS� [93]. An EASI-CLOUDS platform must
also provide the required facilities for intra-cloud cooperation and federation.

In this project, one of our objectives is to provide the required facilities promoting
EASI-CLOUDS platforms federation. COAPS is used in this context to enable ap-
plication provisioning/management (i) between EASI-CLOUDS platforms of a same
federation and also (ii) with other existing commercial PaaS (see Figure 6.4).

6.2.3.2 Examples of existing COAPS implementations

Currently, we provide a Cloud Foundry and OpenShift implementations (respectively
called CF-PaaS API and OS-PaaS API) [89]. These implementations are developed
in Java and provided as RESTful Web applications (i.e. WAR). We also developed
a generic Web client for application provisioning and management in PaaS with an
implementation of our API (See Figure 6.5).

Figure 6.5: CF-PaaS Proxy generic Web client.

Source archives and a demonstration video of application provisioning in Cloud
Foundry through CF-PaaS API are available online at [86]. The demonstration video
highlights that the resources provisioning and the application provisioning scenario
are processed in a reasonable time.
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Finnish project partner (i.e. Tampere University) on Easi-Clouds project, which
have developed a collaborative IDE for the Cloud called CoRED [94], uses CF-PaaS
API to deploy their developed services in Cloud Foundry PaaS. In the near future,
they plan to add a new implementation to deploy a part of their services in AppScale
PaaS. Moreover, an egyptian project partner (i.e. Cairo University) have implemented
a GAE-PaaS implementation to deploy their services in Google App Engine PaaS [95].
All these implementations demonstrate the easy way of developing a new COAPS
implementation through the proxy system that we have de�ned, even by a tierce
party, with only the sources and documentation that we provide.

6.3 Experimentations

In this Section, we present and comment the experiments that we have conducted.
The �rst series of experiments was carried out to highlight classical service containers
(e.g. Apache Axis, Apache Tomcat, etc.) limitations in Cloud context. The results
and ascertainments of these experiments are presented in Section 6.3.1. The second
series of experiments was performed to evaluate our service micro-container perfor-
mances against classical service containers in Cloud environments. The results of
these experiments are detailed in Section 6.3.2. Finally, we conducted experiments to
evaluate mobile micro-containers performances and migration overhead. The results
of these experiments are detailed in Section 6.3.3.

6.3.1 Service containers limitations in Cloud environments

Generally speaking, to deploy an application on a service container, one must mainly
provide two elements:

• The application with all its components (e.g. compiled classes, resources, etc.),

• A deployment descriptor that speci�es the container options to run the applica-
tion.

There are several types of service containers. For example, for the J2EE technology
there are: Web containers for servlets and JSP, EJB containers for EJBs, and client
containers for applications on standalone terminals using J2EE components.

In line with the de�nition given in [71], we can de�ne a Web container as an ap-
plication that implements the communication contract between di�erent application
components obeying to a distributed architecture. This contract speci�es a runtime
environment for Web components including safety and competition management, life-
cycle, transactions, deployment and other services. Web containers can generally use
their own Web server and also be used as a plug-in in a dedicated Web server (as is the
case with Apache servers or Microsoft IIS). Examples of Web containers are Tomcat
and Axis which are open sources projects from Apache foundation.
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As part of our work, we decided to conduct a set of experimentation scenarios
involving classical service containers in realistic Cloud context. To that end, we con-
sidered Apache Axis 212 which is one of the most adopted service containers in the
industry world. Therefore, Apache Axis 2 can handle a big number of services at the
same time and response to client's queries in an acceptable time. These experimen-
tations allowed us to highlight its lacunas for deployment and management of a huge
number of Web services in Cloud environments [58] [59].

Figure 6.6 and Figure 6.7 show respectively the behavior of the response time and
memory resources consumption for Apache Axis 2 server regarding the number of
deployed services. To perform these experiments, we have used one virtual machine
with 0.5 GHz of CPU and 512 Mb of memory. We have also developed a test collection
generator to obtain thousands of generated Java Web services code archives and their
correspondent WSDL �les. The functionality which implements these Web services is
basic: calculation of an arithmetic operation of two integers.

Figure 6.6: Apache Axis 2 server response time evolution.

At each iteration of the experiments, we deployed a number of services set in
advance and then we took the measures using a java client. On the one hand, based
on the curve shown in Figure 6.6, we note that the response time of an Axis 2 client
request is too large from 600 deployed services. We also noted a total crash of Axis 2
from 630 deployed services. On the other hand, based on the curve shown in Figure 6.7,
we noticed an important increase of the host machine memory consumption especially
for high numbers of services. These two aspects of Axis 2 behavior are characteristics of
several classical Web containers we studied and represent the two major defects which
prevent these containers to scale and thus makes it unsuitable for Cloud context.

Based on these ascertainments and after studying di�erent architectures of service
containers (e.g. See [96] for Apache Axis 2 container, See [97] for Apache Tomcat
container, See [98] for Web Services Container Reference Architecture), we realized
that they aren't able to scale among many physical machines. Any of those containers

12http://axis.apache.org/axis2/java/core/
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Figure 6.7: Apache Axis 2 server memory consumption evolution.

can be deployed physically just on one machine, so the Cloud using such containers
will reach its limits when this host machine uses its entire resources even if the other
machines are charge free. Based on this, we can say that the Cloud's limit is the same
limit of the host machine in which we deployed the service container. This machine
presents then a bottleneck in every Cloud using such containers for service-based
applications.

This motivated our decision to design and implement the service micro-containers.
We think that if each service is deployed separately, the Cloud can really contain as
much deployed services as it is allowed by the available physical resources of the Cloud.
Each service can be deployed in a micro-container anywhere in the Cloud with the
minimal use of its resources. We can deploy as many micro-containers as it is possible
on any machine, if this machine reaches its limit we can deploy on a second one then
on a third and so on. With this idea we are sure that we use the minimal resources to
encourage the pay as-you-go model of Cloud Computing [99] and we can enforce the
elasticity of Cloud because we just use the resources needed.

6.3.2 Service micro-containers experimentations

To perform these experiments, we chose to evaluate the performance of our micro-
containers opposite to Apache Axis 2. As far as we know, Axis 2 is one of the most
used and e�cient classical services containers. These experiments aimed to validate
the good behaviour of our micro-containers for a huge number of deployed services in a
Cloud context and to demonstrate its superior performances and scalability comparing
to classical service containers such as Axis 2.

Firstly, we developed a test collection generator to obtain thousands of generated
Web services code archives and their WSDL �les. The functionality which implements
these Web services is the same: calculation of an arithmetic operation of two integers.
At each iteration of the experiments, we deployed a number of services set in advance,
we invoke one of these services randomly selected using a classic java client and then
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we took the measures.
We have considered a couple of criteria that we think essential to evaluate the two

service containers performance:

• Response time: Time taken by a service container between request reception
instant and response sending instant,

• Memory consumption: Memory size necessary to load and process deployed
services in the container after receiving a request.

The experiments was conducted in the Network and Cloud Federation (NCF)
experimental platform deployed at Télécom SudParis. When we conducted these
experiments, the NCF platform has: 380 Intel Xeon Nehalem Cores, 1.17 TB RAM
and 100 TB as shared storage. We have used OpenNebula13 resources manager to
create our experimental VMs using various personalized templates. Characteristics of
the templates we used for experimentations are detailed in Table 6.3.

Table 6.3: Used templates details for VMs instantiation.

Template name CPU (MHz) Memory (kb)

T1 1 1024

T2 1 512

T3 0.5 1024

T4 0.5 512

T5 0.25 512

T6 0.25 128

T7 0.25 64

Tp 3 4096

To perform these tests, we de�ned several scenarios with di�erent alternatives.
These scenarios re�ect the objectives that we want to highlight in our experiments.
The details of these experiments are as follows:

1. Compare service containers performance in di�erent VMs,

2. Confront Axis 2 container and the micro-container (MC) in VMs with low mem-
ory,

13opennebula.org
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3. Confront Axis 2 container and MC in VMs with low CPU power,

4. Confront Axis 2 container and MC in overpowering VMs,

5. Compare the number of used VMs by Axis 2 and micro-container to deploy the
same huge number of services.

Obtained results of each one of these scenarios are detailed in the rest of this
Section.

Axis 2 Versus Micro-container with various VMs

In the �rst series of tests, we deployed just one service on Axis 2 and on the micro-
container. After that, we deployed these containers on di�erent virtual machines
created by various templates listed in Table 6.3 and then we took measurements.
The purpose of this experiment is to see the impact of the VM template choice on
performance of the two containers. Figure 6.8 shows the di�erent stored values for
Axis 2 and MC for one service response time deployed in these VMs while Figure 6.9
shows the evolution of their memory resources consumption.

Figure 6.8: Response time evolution with di�erent VMs templates (Axis 2 Vs MC).

Figure 6.9: Memory consumption evolution with di�erent VMs templates (Axis 2 Vs MC).

These experiments show that for the same deployed service and whatever is the
template used to instantiate the hosting VM, the micro-container performances are
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better than Axis 2. The micro-container sends back responses faster than Axis 2 and
consumes less memory. However, for both service containers, we do not notice any
major changes in performance when changing the VMs template except when using
T7 template. Indeed, for this template increases for Axis 2 server and decreases for
service micro-containers.

Axis 2 Versus Micro-container with less memory VM (T4 template)

For this experimentation scenario, we have chosen to use identical VMs to host the
two containers and vary the number of deployed services. The template we used to
instantiate VMs is T4, a low memory template. Figure 6.10 shows the di�erent stored
values for response time experiments.

Figure 6.10: Response time evolution-Axis 2 Vs MC (T4 VM template).

During these experiments, we had to make a choice between:

• Alternative 1: Test by comparing Axis 2 performance versus a single instance
of the micro-container performance,

• Alternative 2: Test by comparing total CPU time between all instances of de-
ployed micro-containers running in parallel versus Axis 2.

Finally, we opted for the �rst alternative plan because we chose to compare perfor-
mance of the two service containers with the same test collection of deployed services.

Figure 6.11: Memory consumption evolution-Axis 2 Vs MC (T4 VM template).
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Based on the curves schematized in Figure 6.10, we note that Axis 2 response time
increases proportionally to the number of deployed services. Concretely, a major part
of this time evolution lies on the time needed for Axis 2 to update hosted services
indexation mechanisms, manage execution contexts and load the requested service.
Processing service request, service execution and response building process times are
roughly steady. For our micro-container, the response time is approximately the same
for all the experiences. This can be explained by the fact that each instance of the
micro-container is independent from the others, and hosts only one service (no service
context management then). Hence, we can deploy as many micro-containers as it
is possible regarding the available resources in the virtual machine without a�ecting
the response time. In this testing environment, Axis 2 crashed when 630 services
are deployed because there is no more memory resources on the hosting virtual ma-
chine for deploying and processing more services. Actually, Axis 2 over�owed into the
virtual machine due to its excessive memory resources consumption. However, our
micro-container reached more than 2000 deployed services using our de�ned approach
without any performance degradation. These interpretations are also veri�ed by the
memory consumption measures presented in Figure 6.11.

Axis 2 Versus Micro-container with less CPU VMs (T5 template)

In this experimentation scenario, we repeated the same tests with changing only the
template used to intantiate the hosting VMs. We used T5 template in order to increase
the memory capacity of the hosts (1Gb of memory instead of 512 Mb) and low CPU
power. The purpose of this operation is to avoid Axis 2 crash observed in the previous
experiment by providing more memory in the hosting VMs. Figure 6.12 shows the
di�erent stored values for response time experiments while Figure 6.13 shows memory
resources consumption evolution for the two containers.

Figure 6.12: Response time evolution- Axis 2 Vs MC (T5 VM template).

We notice that the memory usage is linear and increases according to the evolution
of the number of deployed services in the two containers. Obtained curves show the
savings of the micro-container against Axis 2 in memory usage. This is due to the
large number of programs and operating �les generated by the Axis 2 core to index
and manage hosted services (e.g. archives, index, temporary �les, context �les, etc.).
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Figure 6.13: Memory consumption evolution-Axis 2 Vs MC (T3 VM template).

Axis 2 has exceeded its limit observed in the latest experience due to the lack of
memory, but it still crashing when we increase the number of deployed services (1230
deployed services for this test). This crash is due to an over�ow of the hosting VM
CPU. On the other side, for the same VMs, we deployed more than 2000 services
on micro-containers with steady response times. All this inspired us to repeat these
tests with overpowering templates. The detail of these tests is detailed in the next
subsection.

Axis 2 Versus Micro-container with powerful VM (Tp template)

In this experimentation scenario, we create powerful VMs instantiated using Tp tem-
plate in order to eliminate all physical limit aspects which penalized Axis 2 during last
scenarios. Figure 6.14 schematizes the obtained response time curve, while Figure 6.15
schematizes the obtained memory consumption curve.

Figure 6.14: Time response evolution-Axis 2 Vs MC (Tp VM template).

In this experiments, we note that Axis 2 reaches and exceeds the limits observed
in previous scenarios. However, it crashes for 3860 deployed services while CPU and
memory resources are still available in the hosting VM. In fact, this crash is caused by
the design of Axis 2 itself, which begins to fail from a given number of services even if
the host still have resources. This is an intrinsic limitation related to the architecture
of Axis 2, which is certainly e�cient and adequate for an industrial use but still
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Figure 6.15: Memory consumption evolution-Axis 2 Vs MC (Tp VM template).

unreliable for such environments. This is true for all classical service containers (e.g.
Apache Tomcat, Metro, GlassFish, etc.).

In the same testing environment, we was able to deploy more than 4000 services in
micro-containers with steady response time and memory consumption values. Indeed,
when using micro-containers, the limit number of deployed services is the physical
limit of the VM while Axis 2 crashes when it reaches its logic limit of supported
hosting services.

Based on these curves, we observed that just before the Axis 2 crash, response times
increase abruptly. In fact, for a huge number of services, Axis 2 has to manage much
indexes and service contexts which led it to consume more resources and degrades its
performance. The idea that we had was to determine the optimal range number of
services that Axis 2 can host and then confront the two containers performance in this
range. This can easily be determined by a simple calculation of the memory space
ratio used for a number of deployed services in Axis 2 based on the values of the curve
in Figure 6.15 (i.e. between 800 and 1000 services for these experiments). Recorded
micro-container performance values for this range are better than the Axis 2 values.

Axis 2 Versus Micro-container with mutiple VMs usage (T6 template)

In this experimentation scenario, we use multiple Axis 2 instances deployed on multiple
VMs. We deploy services respectively on Axis 2 and MC until the saturation of the
hosting VM. Then, we instantiate a second with a second Axis 2 instance, and we
resume deployment until the saturation of the second host and so on. This scenario
simulates horizontal scalability in a Cloud provider. For these tests, we used T6 VM
template to reach quickly the VMs limits. When multiple VMs are used, the memory
consumption values represent the sum of all memory spaces used in all allocated VMs.

The curves related to these experiments are shown in Figure 6.16 and Figure 6.17.
Using Axis 2, we used 4 VMs to host 1200 services while we used only 1 VM when
using micro-containers. For the same number of used VMs (i.e. 4 VMs) we have
successfully deployed more than 5000 services using micro-containers, while we could
deployed only 1200 services using Axis 2. Based on this, we can say that not only that
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Figure 6.16: Time response evolution in multiple VMs-Axis 2 Vs MC (T6 VM template).

Figure 6.17: Memory consumption evolution with multiple VMs-Axis 2 Vs MC (T6 VM
template).

micro-container performance are superior to Axis 2 performance but also that using
micro-container on Cloud providers costs less than using classical service containers.

6.3.3 Mobile service micro-container experimentations

We also conduct a set of experiments to evaluate the mobile micro-containers perfor-
mances and determine the overhead of the added migration. We decided to evaluate
our two variants of mobile micro-containers against classical micro-container to eval-
uate their performances when they provide the same functionality (i.e. migration).
To do this, we have considered the same test collections of services (i.e. calculation
of an arithmetic operation of two integers provided as inputs), the Tp template to
instantiate hosting VMs and the same comparison criteria (i.e. server response time
and memory resources consumption) used to evaluate micro-container against Axis 2.
The results of the experimentation of the two variants of the mobile micro-containers
are detailed in the rest of this Section.

JADE-based service micro-container experimentations

Figure 6.18 shows behaviour of obtained response time values for both JADE-based
micro-container and classical micro-container when we vary the number of deployed
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services while Figure 6.19 shows behaviour of memory resources consumption values.
Response time values of both containers increase when we increase the number of
deployed services. Response time values are approximately similar with a slight over-
head for the JADE-based migration. We note also that the JADE platform crashes
when deploying more than 2500 services even though there are available memory and
computing resources in the hosting VM.

Figure 6.18: Response time curve (JADE-based migration Vs MC).

Figure 6.19: Memory consumption curve (JADE-based migration Vs MC).

For memory consumption experiments, we quantify that the used memory over-
head for JADE-based micro-containers exceeds 50% regarding the classical micro-
container memory consumption. Based on these measurements, we can conclude that
adding migration to service micro-containers using JADE platform does not a�ect
service micro-container response time. However, JADE platform usage engenders
an important memory consumption overhead and it crashes when a huge number of
deployed services is reached. These limits are due to the architecture of JADE multi-
agent platform which is composed of agents' server that consume a lot of memory
resources. This Agent server is a technical component of the JADE platform and
mandatory for its deployment and execution. It is responsible of managing the life
cycle of the mobile agents and maintaining an up-to-date list of agents with their
location.
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Migration-based service micro-container experimentations

Figure 6.20 shows behaviour of response time values for both mobile micro-container
and classical micro-container. The two curves shape is almost identical except for
a few minor di�erences in some measures. This can be explained by our approach
when we implemented the migration module. In fact, this module is implemented
and integrated in classical micro-containers as an extension; we have not modi�ed the
architecture and the basic modules (i.e. communication module, invocation module)
of the micro-container.

Figure 6.20: Response time curve (M-MC Vs MC).

Figure 6.21: Memory consumption curve (M-MC Vs MC).

Figure 6.21 shows behaviour of the memory resources consumption for both con-
tainers. The curves shape is identical with a light overhead for mobile micro-container.
This overhead is due to memory resources consumed by the receiver but remains nev-
ertheless neglected. Indeed, we need only one receiver per VM to manage all the
micro-containers hosted in this VM. We conclude the migration overhead in this case
is not signi�cant compared to JADE-based micro container overhead.
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6.4 Use case: Provisioning of autonomic applications

In the following, we present a realistic use case resuming our �ndings. This use case
consists in provisioning applications with autonomic computing capacities in Cloud
platforms. Autonomic applications are applications able to monitor and recon�gure
their components autonomously based on speci�c technical components to be deployed
with the application. We present in the �rst part of the Section the context and the
purpose of autonomic applications provisioning and management in Cloud platforms.
Then, we detail the implementations that we have performed to acheive the stated
objective in the second part of the Section.

6.4.1 Context and purpose of the use case

According to studies that we carried, Cloud platforms do not support monitoring and
recon�guration for deployed applications together at the same time. Indeed, a human
intervention is still required to interpret, as it should be, the application monitoring
data and act based on these data in order to maintain the required execution of the
application. Therefore, Cloud providers do not support provisioning of autonomic
applications. These applications are able to manage, automatically and dynamically,
their required resources to respect their Service Level Agreement (SLA). In this con-
text, we propose a novel approach to provision autonomic applications in existing
Cloud platforms.

To provision an autonomic application in a Cloud platform, we couple:

1. An OCCI-based autonomic resources description model and an API implement-
ing this model [77],

2. Our OCCI-based platform and application resources description model and COAPS
as its implementation.

6.4.2 Implementation and validation

Concretely, our approach proposes to dynamically add autonomic management fa-
cilities to applications when deploying them in a target PaaS. As for elastic SBPs
provisioning approach, our novel framework requires no modi�cation on the Cloud
system side and can be deployed and supported by any PaaS thanks to our performed
generic provisioning mechanisms.

The performed system is schematized in Figure 6.22. To establish our autonomic
computing framework, we start by setting up an OCCI Server. This server encompass
COAPS as the PaaS interface, implements both autonomic resources and platform/ap-
plication description models and is responsible of instantiating and managing OCCI
resources.

The �rst Resource instantiated in this server is the Autonomic Manager Resource.
The Autonomic Manager is responsible of preparing the Application resource based
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Figure 6.22: Autonomic Computing framework overview.

on the provided SLA before its deployment. To perform that, the Autonomic Manager
detects the attributes and/or services that need to be monitored for the application.
Then, it extends the application artifacts by adding necessary monitoring Mixins (i.e.
Polling and/or Subscription) and a Recon�guration Mixin to enable recon�guration
facilities. After that, the Autonomic Manager sends a request to COAPS in order to
instantiate resulting Application Resource (i.e., the basic Application Resource with
their newly added Mixins), deploy it in the target PaaS and start it. We create �rstly
the hosting Environment resource. Then, we create the Application resource and
we process deployment by associating the given EnvId to the AppId before starting
the Application.

After that, the Autonomic Manager instantiates and customizes the needed Re-
sources and Links in order to establish the autonomic framework. For ease of presen-
tation, we refrain from presenting all the Mixins in Figure 6.22. Therefore, we kept
just the needed Mixins instances of Strategies Mixin (i.e. Strategy1 and Strategy2)
and Recon�guration Actions Mixin (i.e. Action1, Action2). The Autonomic Manager
instantiates the Analyzer and subscribes it to the Application Resource. The Ana-
lyzer may receive noti�cations through an instance of the Noti�cation Link. At the
reception of a noti�cation, the Analyzer uses Strategies Mixin to process incoming
monitoring information. If one of the strategies is veri�ed, the Analyzer may raise
alerts to the Planner. Accordingly, the Autonomic Manager instantiates the Planner
and links it to the Analyzer using an Alert Link. The Planner generates then a plan for
recon�guration actions. The used plans are responsible of generating recon�guration
actions.

The last step is to link the Planner to the Application Resource using an Action
Link that can use the generated recon�guration actions and applies them.

This work allows us to provision already performed autonomic computing frame-
work and autonomic applications in Cloud platforms that do not provide basically
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monitoring and recon�guration facilities. In addition to that, the use of COAPS
allows us to make this provisioning PaaS-independent.

6.5 Conclusion

In this Chapter, we presented the implementations that we have done to validate our
SPD approach and prove its feasability and good performance. The total metrics of
all developed tools are 45 packages, 287 classes and 60325 instructions.

For the �rst step of our approach, we achieved BPEL2Java and SCA2java tools
that implements our de�ned slicing and aggregation algorithms for both BPEL-based
processes and SCA-based applications. After that, for the second step, we provide
details about the implementation procedure and technologies that we have used to
implement the packaging framework and service micro-containers building. For the
third step, we presented COAPS API that we have developed to implement our plat-
form and application resources description model and to perform deployment in Cloud
platforms. Results and interpretation of service micro-containers performance exper-
imentations against Apache Axis 2 server in Cloud environment are also provided.

In the last part of the Chapter, we presented a realistic use case consisting in
provisioning autonomic applications in Cloud platforms using COAPS API.
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Chapter 7

Conclusion and Perspectives
G

7.1 Conclusion

Service-based applications are described according to Service Oriented Architecture
(SOA) and consist of assembling a set of elementary and heterogeneous services using
appropriate service composition speci�cations such as Service Component Architec-
ture (SCA), Business Process Model and Notation (BPMN) or Business Process Exe-
cution Language (BPEL). These applications are built from components and services
that may be heterogeneous in the sense that they (1) are not all implemented using
the same programming languages (e.g. C++, Java, etc.), (2) do not support all the
same communication protocols (e.g. RMI, SOAP/HTTP, etc.) and/or (3) do not run
on the same hosting frameworks (e.g. POJO VM, .NET framework, etc.).

Provisioning a service-based application in the Cloud consists of: (1) allocation
of adequate resources to host and execute the application and (2) upload of the ap-
plication artifacts (e.g. binary code) on the allocated resources. This provisioning
task requires then the delivery of appropriate frameworks and speci�c runtimes sup-
porting the heterogeneity of the application components. In addition to that, such
applications are often distributed and require occasionally deploying their components
separately on multiple Cloud platforms. Meanwhile, existing Cloud platforms has pro-
prietary description models to describe, manage and provision applications and their
hosting resources. They expose also proprietary and heterogeneous user APIs (e.g.
proprietary operations, speci�c provisioning scenarios, etc.).

To tackle this issue, we de�ned in this thesis an approach that we called SPD
to provision service-based applications in Cloud environments. The SPD approach
consists in three steps:

1. Slicing the application into a set of elementary services,

2. Packaging the resulted services into service micro-containers,

3. Deploying the micro-containers in a target Cloud environment.
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Since service-based applications have heterogeneous components it is di�cult to
satisfy its requirements by provisioning one allocated hosting environment based on ex-
isting Cloud environment capabilities. Therefore, we propose to slice the applications
into a set of elementary and autonomous services before allocating a dedicated and
appropriate environment for each one of the obtained services. In this step, we consid-
ered: (i) applications modeled as business processes and can be formally represented
using Petri nets and (ii) applications modeled as composition of service components
that can be represented using graph-based composition. The use of formal representa-
tions allows us to preserve semantics of sliced applications. For applications modeled
as business processes, we de�ned algorithms to slice their correspondent Petri net into
a set of dependent WF-nets and to determine the choreography schema to follow for
their execution. We also provided the proof of preservationof initial business process
business semantics when executing the WF-nets. We provide an implementation (i.e.
BPEL2Java) and an illustrative example supporting the slicing of a BPEL process
and the aggregation of its obtained services according to transformation rules that
we have de�ned. For applications modeled as composition of service components, we
de�ned an algorithm to slice its correspondent directed graph into a set of elementary
services and aggregate them. We provide an implementation of this algorithm (i.e.
SCA2Java) and an illustrative example supporting slicing SCA-based applications.

For the second step of our approach, we de�ne a packaging framework architec-
ture that allows service micro-containers building around a given service from generic
modules. Only necessary resources to implement service binding types, such as com-
munication protocols, are selected from the packaging framework and encapsulated in
the generated micro-container to host the service. We also propose extensions of this
framework to include support of a set of non functional properties, such as migration,
monitoring and elasticity, if they are required by the developer. We provide implemen-
tation of the packaging framework for Java services communicating in HTTP/SOAP.
We conduct several experimentations to (1) highlight the classical service containers
limitations in Cloud environments, (2) show the superior performance of our micro-
containers against these service containers and (3) determine the overhead of the
migration facilities if they are included to a micro-container.

In the third step of our approach, we can deploy the service micro-containers in
existing Cloud infrastructures (IaaS) and Cloud platforms (PaaS). The deployment in
IaaS consists in instantiating VMs and uploads the service micro-containers on them
before starting their execution as standalone applications. For the deployment in a
PaaS, we de�ned a generic description model for applications and PaaS resources.
Our proposed description model is based on the OCCI standard. According to OCCI,
each identi�ed PaaS resource is characterized by a set of attributes, management ac-
tions and associate lifecycle. Based on this model, we are able to describe, provision,
and manage applications and PaaS resource in a uni�ed way whatever is the target
Cloud platform. We also developed a PaaS-independent REST API called COAPS
implementing this model to process applications deployment and management on tar-
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get PaaS. We provide COAPS speci�cations proxy architecture and current available
implementations (e.g. CF-PaaS API, OS-PaaS API, etc.). We comment and discuss
the deployment of the micro-containers stemming from our illustrative examples. The
deployment in IaaS is performed on Network and Cloud Federation (NCF) infrastruc-
ture deployed at Télécom SudParis, while the deployment in PaaS is performed in
Cloud Foundry through COAPS.

As a realistic use case of our contributions, we present and detail the process of
provisioning autonomic applications in Cloud platforms. Autonomic applications are
applications able to monitor and recon�gure its components autonomously based on
speci�c technical components to be deployed with the application. Thanks to COAPS,
the application and the related autonomic computing framework are provisioned and
started in Cloud Foundry.

To conclude, our de�ned SPD approach provide �exible deployment mechanisms
to support the strong heterogeneity of the service-based application components and
generic provisioning procedures to allow applications portability and automate and
unify the resources allocation and applications deployment whatever is the target
Cloud environment. Furthermore, the SPD approach easily integrates with existing
applications and handled resources and requires no modi�cation in the Cloud envi-
ronment side.

7.2 Future work

In the future work, we aim at extending our proposed generic resources description
model to include:

1. Cloud platforms management support,

2. Mobile collaborative computing devices and capacities support.

These two perspectives are detailed in the following.

7.2.1 Cloud platform management

Our proposed description model (See Section 6.2) allows the description and the man-
agement of applications and generic platform resources. COAPS API which imple-
ments this model (See Section 6.3) enables provisioning and handling these resources
in existing Cloud platforms.

As perspective of this work, we propose to extend our model and its correspon-
dent API to support management of not only the hosting and execution resources
(e.g. service containers, databases, etc.) but also technical platform components (e.g.
platform load balancers, monitoring services, etc.).

This extension is indented to platform administrators pro�le and plans to add new
mechanisms for managing e�ciently Cloud platforms. In fact, existing PaaS provides
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tools and admin APIs allowing administrating their technical resources (e.g. duplicate
DEA component in Cloud Foundry, monitor the load balancer in Heroku, refresh
Health Controller component in Cloud Foundry, etc.). As it is the case for applications
and hosting resources, these resources and correspondent APIs are proprietary and
speci�c per PaaS.

In this Context, we propose to census all technical Cloud platforms resources and
de�ne a novel generic model allowing their description and management. We plan also
to propose a generic admin API allowing administrating these resources in a uni�ed
way whatever in the target PaaS.

7.2.2 Mobile collaborative computing applications and resources pro-
visioning

The growth of mobile applications using Cloud resources for computing and storage
(e.g. Instagram, Dropbox, etc.) has induced the proliferation of mobile devices which
collaborates each others, usually in real time, by taking advantage of underlying Cloud
resources.

Generally speaking, collaborative computing paradigm presents a uni�ed data pro-
cessing model in which Services, Processes and end users collaboratively work on
shared data towards a common goal [100]. Mobile collaborative computing suggests
that the end user devices are made for portability, and are therefore both compact and
lightweight. Performances of such devices are limited hence the usefulness of using
collaborative computing.

The involved Cloud resources in this process are often speci�c. On one side,
the handled applications are designed and developed for collaborative computing or
include features to let users work together over networks (e.g. Microsoft O�ce and
Exchange, Lotus Notes, Videoconferencing applications, etc.). On the other side,
mobile applications require often speci�c execution frameworks and runtimes (e.g.
Shared Services Framework (SSF), Android application framework, etc.) to meet with
the portable devices characteristics. Moreover, the relationships between the system
components (i.e. applications, mobile end users and available Cloud resources) are
particular. Indeed, the allocated Cloud resources for applications execution and data
storage are ad-hoc while the application must be all the time available. Furthermore,
the management of the incoming/outgoing resources must be transparent for the user.
All this therefore a�ects the way in which we describe the applications, their execution
resources and the way in which we provision them.

In this context, we propose to (1) extend our resources description model to include
describing and provisioning support of mobile collaborative applications and resources
and (2) extend COAPS API by providing additional operations and descriptors to
support provisioning and managing these resources.
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