Towards optical memories : switchable optical systems for electron and energy transfer processes
Vers les mémoires optiques : systèmes moléculaires optiquement modulables pour le contrôle des processus de transfert d’électron et d’énergie
Résumé
The present doctoral thesis work deals with the design, synthesis and characterization of organic and organometallic luminescent molecular frameworks for triggering Photoinduced electron Transfer (PeT) and Electronic Energy Transfer (EET) processes for applications in optical andelectronic devices. First, we turned toward the organic push-pull chromophores because they are useful model systems for studying the mechanism of PeT process. We synthesized new push-pull systems bearing a dicyanovinyl fragment as the electron-acceptor and a strong electron-donorsuch as julolidine and triazatruxene covalently linked through a BODIPY dye bridge. Electrochemical and photophysical studies showed a pronounced charge transfer character within the new push-pull systems. Furthermore, we synthesized and studied a series of chelating N^O-type ligands (Schiff base-type), based on the strong electron-donating julolidine motif, displaying ESIPT process. Their luminescence profiles exhibited panchromatic luminescence band covering the whole visible spectrum. Complexation of N^O-site with boron difluoride fragment suppressed the ESPIT process and highly increased the fluorescence quantum yield. The N^O-chelating ligands were combined with Pt(II) chromophore, B(III) and Ir(III) such as to obtainmultichromophoric frameworks. According to the photophysical studies, EET processes were observed within the multichromophoric systems. We successfully obtained a new florescent switching triad constructed around a photochromic core, [1,3]oxazine, which bears an energy-donor and an energy-acceptor module such as to directly control the EET process.
Le travail de cette thèse de doctorat est axé sur le design, la synthèse et la caractérisation de systèmes moléculaires organiques et organométalliques luminescents dans le but de déclencher des processus de transfert photoinduit d’électron (PeT) ou d’énergie (EET) pour des applications dans les dispositifs optiques ou électroniques. Nous nous sommes d’abord intéressés aux molécules de type push-pull car elless’avèrent être des modèles intéressants pour l’étude du PeT. Nos systèmes sont construits autour de BτDIPY qui sert d’espaceur entre le donneur d’électron (julolidine ou triazatruxène) et l’accepteur d’électron (une unité dicyanovinyl). Les études en électrochimie et spectroscopie ont montrés un caractère à transfert de charge très prononcé. Entre autre nous avons synthétisé et étudié une série de ligands de type N^O (type base de Schiff) dérivés de la julolidine, une amine cyclique avec des propriétés électroniques très inattendues. Ces ligands, subissent des processus de transfert photoinduit de proton à l’état excité (ESIPT) et leurs spectres d’émission présentent une luminescence panchromatique. La compléxation desligands N^O au BF2 supprime l’ESIPT et augment les rendements quantiques de fluorescence. Les ligands derivés de la julolidine sont combinés avec d’autres unités chromophoriques i.e. Ir(III), Pt(II) afin de construire des systèmes multichromophoriques et stimuler des processus de EET entre les composants.Lors de ces travaux de thèse nous nous somme particulièrement intéressés aux systèmes moléculaires photocommutables dont l’unité centrale est un photochrome, le [1,3]oxazine. L’oxazine est combiné à un module moléculaire qui sert de donneur d’énergie et un module accepteur d’énergie choisie de façon optimale afin d’induire un transfert électronique d’énergie de manière contrôlé.
Origine | Version validée par le jury (STAR) |
---|