Hybrid real-time operating system integrated with middleware for resource-constrained wireless sensor nodes - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2014

Hybrid real-time operating system integrated with middleware for resource-constrained wireless sensor nodes

Système d'exploitation temps-réel hybride intégré avec un middelware pour les noeuds capteurs sans fil contraints en ressources

Résumé

With the recent advances in microelectronic, computing and communication technologies, wireless sensor network (WSN) nodes have become physically smaller and more inexpensive. As a result, WSN technology has become increasingly popular in widespread application domains. Since WSN nodes are minimized in physical size and cost, they are mostly restricted to platform resources such as processor computation ability, memory resources and energy supply. The constrained platform resources and diverse application requirements make software development on the WSN platform complicated. On the one hand, the software running on the WSN platform should be small in the memory footprint, low in energy consumption and high in execution efficiency. On the other hand, the diverse application development requirements, such as the real-time guarantee and the high reprogramming performance, should be met by the WSN software. The operating system (OS) technology is significant for the WSN proliferation. An outstanding WSN OS can not only utilize the constrained WSN platform resources efficiently, but also serve the WSN applications soundly. Currently, a set of WSN OSes have been developed, such as the TinyOS, the Contiki, the SOS, the openWSN and the mantisOS. However, many OS development challenges still exist, such as the development of a WSN OS which is high in real-time performance yet low in memory footprint; the improvement of the utilization efficiency to the memory and energy resources on the WSN platforms, and the providing of a user-friendly application development environment to the WSN users.In this thesis, a new hybrid, real-time, energy-efficient, memory-efficient, fault-tolerant and user-friendly WSN OS MIROS is developed. MIROS uses the hybrid scheduling to combine the advantages of the event-driven system's low memory consumption and the multithreaded system's high real-time performance. By so doing, the real-time scheduling can be achieved on the severely resource-constrained WSN platforms. In addition to the hybrid scheduling, the dynamic memory allocators are also realized in MIROS. Differing from the other dynamic allocation approaches, the memory heap in MIROS can be extended and the memory fragments in the MIROS can be defragmented. As a result, MIROS allocators become flexible and the memory resources can be utilized more efficiently. Besides the above mechanisms, the energy conservation mechanism is also implemented in MIROS. Different from most other WSN OSes in which the energy resource is conserved only from the software aspect, the energy conservation in MIROS is achieved from both the software aspect and the multi-core hardware aspect. With this conservation mechanism, the energy cost reduced significantly, and the lifetime of the WSN nodes prolonged. Furthermore, MIROS implements the new middleware software EMIDE in order to provide a user-friendly application development environment to the WSN users. With EMIDE, the WSN application space can be decoupled from the low-level system space. Consequently, the application programming can be simplified as the users only need to focus on the application space. Moreover, the application reprogramming performance can be improved as only the application image other than the monolithic image needs to be updated during the reprogramming process. The performance evaluation works to the MIROS prove that MIROS is a real-time OS which has small memory footprint, low energy cost and high execution efficiency. Thus, it is suitable to be used on many WSN platforms including the BTnode, IMote, SenseNode, TelosB, T-Mote Sky, etc. The performance evaluation to EMIDE proves that EMIDE has less memory cost and low energy consumption. Moreover, it supports small-size application code. Therefore, it can be used on the high resource-constrained WSN platforms to provide a user-friendly development environment to the WSN users.
Avec les avancées récentes en microélectronique, en traitement numérique et en technologie de communication, les noeuds de réseau de capteurs sans fil (noeud RCSF) deviennent de moins en moins encombrants et coûteux. De ce fait la technologie de RCSF est utilisée dans de larges domaines d’application. Comme les noeuds RCSF sont limités en taille et en coût, ils sont en général équipés d’un petit microcontrôleur de faible puissance de calcul et de mémoire etc. De plus ils sont alimentés par une batterie donc son énergie disponible est limitée. A cause de ces contraintes, la plateforme logicielle d’un RCSF doit consommer peu de mémoire, d’énergie, et doit être efficace en calcul. Toutes ces contraintes rendent les développements de logiciels dédiés au RCSF très compliqués. Aujourd’hui le développement d’un système d’exploitation dédié à la technologie RCSF est un sujet important. En effet avec un système d’exploitation efficient, les ressources matérielles d’une plateforme RCSF peuvent être utilisées efficacement. De plus, un ensemble de services système disponibles permet de simplifier le développement d’une application. Actuellement beaucoup de travaux de recherche ont été menés pour développer des systèmes d’exploitation pour le RCSF tels que TinyOS, Contiki, SOS, openWSN, mantisOS et simpleRTJ. Cependant plusieurs défis restent à relever dans le domaine de système d’exploitation pour le RCSF. Le premier des défis est le développement d’un système d’exploitation temps réel à faible empreinte mémoire dédié au RCSF. Le second défi est de développer un mécanisme permettant d’utiliser efficacement la mémoire et l’énergie disponible d’un RCSF. De plus, comment fournir un développement d’application pour le RCSF reste une question ouverte. Dans cette thèse, un nouveau système d’exploitation hybride, temps réel à énergie efficiente et à faible empreinte mémoire nommé MIROS dédié au RCSF a été développé. Dans MIROS, un ordonnanceur hybride a été adopté ; les deux ordonnanceurs évènementiel et multithread ont été implémentés. Avec cet ordonnanceur hybride, le nombre de threads de MIROS peut être diminué d’une façon importante. En conséquence, les avantages d’un système d’exploitation évènementiel qui consomme peu de ressource mémoire et la performance temps réel d’un système d’exploitation multithread ont été obtenues. De plus, l’allocation dynamique de la mémoire a été aussi réalisée dans MIROS. La technique d’allocation mémoire de MIROS permet l’augmentation de la zone mémoire allouée et le réassemblage des fragments de mémoire. De ce fait, l’allocation de mémoire de MIROS devient plus flexible et la ressource mémoire d’un noeud RCSF peut être utilisée efficacement. Comme l’énergie d’un noeud RCSF est une ressource à forte contrainte, le mécanisme de conservation d’énergie a été implanté dans MIROS. Contrairement aux autres systèmes d’exploitation pour RCSF où la conservation d’énergie a été prise en compte seulement en logiciel, dans MIROS la conservation d’énergie a été prise en compte à la fois en logiciel et en matériel. Enfin, pour fournir un environnement de développement convivial aux utilisateurs, un nouveau intergiciel nommé EMIDE a été développé et intégré dans MIROS. EMIDE permet le découplage d’une application de système. Donc le programme d’application est plus simple et la reprogrammation à distance est plus performante, car seulement les codes de l’application seront reprogrammés. Les évaluations de performance de MIROS montrent que MIROS est un système temps réel à faible empreinte mémoire et efficace pour son exécution. De ce fait, MIROS peut être utilisé dans plusieurs plateformes telles que BTnode, IMote, SenseNode, TelosB et T-Mote Sky. Enfin, MIROS peut être utilisé pour les plateformes RCSF à fortes contraintes de ressources.
Fichier principal
Vignette du fichier
LIU_2014CLF22472.pdf (1.99 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01170072 , version 1 (01-07-2015)

Identifiants

  • HAL Id : tel-01170072 , version 1

Citer

Xing Liu. Hybrid real-time operating system integrated with middleware for resource-constrained wireless sensor nodes. Other [cs.OH]. Université Blaise Pascal - Clermont-Ferrand II, 2014. English. ⟨NNT : 2014CLF22472⟩. ⟨tel-01170072⟩
286 Consultations
533 Téléchargements

Partager

Gmail Facebook X LinkedIn More