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I

En su grave rincón, los jugadores
rigen las lentas piezas. El tablero

los demora hasta el alba en su severo
ámbito en que se odian dos colores.

Adentro irradian mágicos rigores
las formas: torre homérica, ligero

caballo, armada reina, rey postrero,
oblicuo alfil y peones agresores.

Cuando los jugadores se hayan ido,
cuando el tiempo los haya consumido,

ciertamente no habrá cesado el rito.

En el Oriente se encendió esta guerra
cuyo anfiteatro es hoy toda la Tierra.
Como el otro, este juego es infinito.

II

Tenue rey, sesgo alfil, encarnizada
reina, torre directa y peón ladino

sobre lo negro y blanco del camino
buscan y libran su batalla armada.

No saben que la mano señalada
del jugador gobierna su destino,

no saben que un rigor adamantino
sujeta su albedrío y su jornada.

También el jugador es prisionero
(la sentencia es de Omar) de otro tablero

de negras noches y de blancos días.

Dios mueve al jugador, y éste, la pieza.
¿Qué Dios detrás de Dios la trama empieza

de polvo y tiempo y sueño y agonía?

El Ajedrez, Jorge Luis Borges
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Abstract
Proteochemometrics (PCM) is a predictive bioactivity modelling method to simulta-
neously model the bioactivity of multiple ligands against multiple targets. Therefore,
PCM permits to explore the selectivity and promiscuity of ligands on biomolecular
systems of different complexity, such proteins or even cell-line models. In practice,
each ligand-target interaction is encoded by the concatenation of ligand and target
descriptors. These descriptors are then used to train a single machine learning model.
This simultaneous inclusion of both chemical and target information enables the
extra- and interpolation to predict the bioactivity of compounds on targets, which
can be not present in the training set.

In this thesis, a methodological advance in the field is firstly introduced, namely
how Bayesian inference (Gaussian Processes) can be successfully applied in the con-
text of PCM for (i) the prediction of compounds bioactivity along with the error
estimation of the prediction; (ii) the determination of the applicability domain of
a PCM model; and (iii) the inclusion of experimental uncertainty of the bioactivity
measurements. Additionally, the influence of noise in bioactivity models is bench-
marked across a panel of 12 machine learning algorithms, showing that the noise
in the input data has a marked and different influence on the predictive power of
the considered algorithms. Subsequently, two R packages are presented. The first
one, Chemically Aware Model Builder (camb), constitues an open source platform
for the generation of predictive bioactivity models. The functionalities of camb in-
clude : (i) normalized chemical structure representation, (ii) calculation of 905 one-
and two-dimensional physicochemical descriptors, and of 14 fingerprints for small
molecules, (iii) 8 types of amino acid descriptors, (iv) 13 whole protein sequence
descriptors, and (iv) training, validation and visualization of predictive models.
The second package, conformal, permits the calculation of confidence intervals for
individual predictions in the case of regression, and P values for classification settings.

The usefulness of PCM to concomitantly optimize compounds selectivity and
potency is subsequently illustrated in the context of two application scenarios, which
are: (a) modelling isoform-selective cyclooxygenase inhibition; and (b) large-scale
cancer cell-line drug sensitivity prediction, where the predictive signal of several
cell-line profiling data is benchmarked (among others): basal gene expression, gene
copy-number variation, exome sequencing, and protein abundance data. Overall, the
application of PCM in these two case scenarios let us conclude that PCM is a suitable
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Abstract

technique to model the activity of ligands exhibiting uncorrelated bioactivity profiles
across a panel of targets, which can range from protein binding sites (a), to cancer
cell-lines (b).
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Preface

Drug1 discovery is the process of finding, improving and making suitable for
human intake exogenous or endogenous (e.g. hormones) pharmacologically

active substances, such as chemical formulations, antibodies or siRNAs, which will,
via their administration, improve patients ′ impaired health, be the etiologic agent an
in-born disorder (e.g. autoimmune disease -horror autotoxicus-) or an acquired disease
(e.g. infectious illnesses or mutations).

Historically, drug discovery has been performed phenotypically, which means
that the addition of a substance, e.g. a plant extract or a fungal exudate, to a biological
system, e.g. a bacterial colony or an entire organism, produces a visible and desirable
effect to the system considered. Generally speaking, and in human terms, this means
health recovery from a pathological state. Since immemorial time, the humankind has
profited from the vast range of traditional remedies based upon varied substances,
mainly extracted from medicinal plants, minerals, animals or secondary metabolites
therefrom. However, there is no evidence that the underlying biological events for
the observed phenomena were understood at a molecular level. How the humankind
came across the magic effects thereof has yet to be clarified. In more recent times,
some of the most revolutionary drugs, were discovered under the ’blind’ guidance of
serendipity, such as penicillin (quoting Sir Alexander Fleming: "One sometimes finds
what one is not looking for"). Today, the process of screening (small) molecules on
biological systems using the resulting phenotypes as biological readouts to find new
medicines is termed phenotypic-based screening [Feng et al. (2009)].

The need for understanding the underlying mechanisms whereby poisons and
drugs could exert their effect, not only against infectious diseases but also against
other congenital or acquired disorders, led to the establishment of the first Phar-
macology department by Buchheim in 1847. Since then, several models have been
proposed aiming to shed light on how drugs and other substrates interact with
their biomolecular targets, generally enzymes or structural proteins. These models
have grown steadily in complexity, enabling the scientific community to introduce
more explanatory parameters. By way of example, the consolidated lock-key model
proposed by Fischer (1894) was amplified by Koshland (1958) to account for protein
flexibility. The advancements in cell biology (and related areas such as biochemistry

1from Proto-Germanic draugijaz: dry
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and genetics) during the XIXth and XXth centuries, sometimes permitted the decon-
volution of the observed phenotypes to the underlying molecular events. In some
cases, the observed effect was adscribed to the modulation of a single biomolecular
target, generally proteins. This opened new avenues for drug discovery, as it was
hypothesized that the modulation of single biomolecular targets implicated in a
given disease would be sufficient to overcome the pathological state. Therefore, large
collections of molecules were screned on purified protein extracts, what is known as
target-based screening [Brown (2007)].

Since the 1980s, while target-based approaches (together with developments
such as combinatorial chemistry and high-throughput screening) have gained con-
siderable attention, recent studies show that phenotypic screening is still one of the
main sources of first in class drugs (i.e. those with a new mode of action; 27 out
of 45 drugs approved by the FDA between 1999 and 2008) [Swinney and Anthony
(2011)]. Both target-based and phenotypic-based screening are based on different
but complementary principles. Target-based drug discovery makes it necessary to
first identify biochemical factor(s) mediating disease biology [Hart (2005)], and in a
second step high-affinity modulators of those proteins are identified in the hope that
this modulation will reverse the diseased state back to the healthy state. While this
approach is very amenable to high-throughput techniques, in this case no network
information (neither of intra- nor inter-cellular networks) is taken into account, and
in addition no information concerning ADME/Tox properties or the modulation of
additional targets can be gathered. Hence, while a precisely defined area of chemical
space is sampled in target-based screens (with the hope that this particular activity
will be important in later stages), the information that can be gathered about a e.g.
compound (in particular from the efficacy standpoint) is rather limited.

On the other hand, phenotypic screening evaluates the response of a biological
system to the application of compounds at more complex biological levels, from cell
cultures to whole organisms [Feng et al. (2009)]. Here, an efficacy assessment of chem-
ical substances closer to disease biology is obtained, hence facilitating the collection of
bioactivity information in a physiologically more relevant context. In turn it should
be said that phenotypic screens generally deliver more noisy data than biochemical
screens also due to the underlying biology, and that often high-dimensional readouts
are obtained which are more difficult to interpret. However although the phenotypic
readout is often thought to be more predictive for efficacy in man [Clemons (2004)],
this approach does not permit the identification of the mode of action (MoA) of
the compounds exhibiting bioactivity. Still, when combined with subsequent target
elucidation techniques, phenotypic screening followed by identification of the target
can be seen as a commonly applied and feasible screening strategy in early stage
drug discovery.
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Recent experimental and systems biology studies, e.g. [Cortes-Ciriano et al. (2013);
Koutsoukas et al. (2013); Lounkine et al. (2012); Poroikov et al. (2007); Wahlberg
et al. (2012); Westen et al. (2013)], permitted the characterization of compound-target
bioactivity profiles in a more comprehensive manner than before, by testing and
predicting broad bioactivity profiles against large numbers of targets, now also known
as the polypharmacology that many compounds are thought to exhibit to achieve the
observed clinical effects [Jalencas and Mestres (2013); Peters (2013); Reddy and Zhang
(2013); Westen et al. (2011)]. Consistent with the notion that cross-reactivity and
side-effects stem from the modulation of additional targets, which is an important
cause of attrition in drug development [Hopkins (2007)], Lounkine et al. (2012) con-
ducted the largest prospective evaluation of in silico target prediction to date for 656

known drugs approved for human use on 73 protein targets (focusing on undesired
off-targets). Applying the similarity ensemble approach (SEA) [Keiser et al. (2007)],
adverse drug reactions were linked to predicted off-target interactions. Biochemical
assays confirmed about half of the predictions at in many cases pharmacologically
significant concentrations (1 nM to 30 mM). Due to the large number of classes and
relatively low random hit rates this represents a significant enrichment of active
compounds at the anti-targets considered in the study.

In other words, the conventional lock-and-key or one-compound-one-target paradigm,
which states that a compound exerts its activity via a unique protein target relevant
for this particular disease, has been extended to a more complex scenario where
small-molecules are acknowledged to interact with more than one biomolecular target
at therapeutically relevant concentrations (one-compound-multiple-targets paradigm).
In line with this thinking it was recently established that drugs modulate on average
not only one, but around six targets (though of course the distribution between
targets contribution to the desired action and those that are detrimental or toxic
are often not known) [Mestres et al. (2009)]. This evidence, along with the fact that
phenotypic-based screening appears more effective in the discovery of first-in-class
small molecule drugs than target-based approaches, has revealed that the activity
of compounds on multiple targets needs to be considered (i) for the anticipation of
unwanted side-effects, which might arise from compound activity on functionally
similar or dissimilar targets, (ii) to explore compound promiscuity, and (iii) to opti-
mize their selectivity.

Predictive bioactivity modelling techniques follow the premise that structurally
similar compounds exert similar activities on their biomolecular targets more often
than dissimilar ones (molecular similarity principle). These techniques, of which Quan-
titative Structure-Activity Relationship (QSAR) is probably the most widely known,
deal with information from one space, i.e. the chemical space, to predict compound
activity on individual targets.
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Preface

The main notion underlying this thesis is that compound and target information
complement each other, and, thus, its integration permits to better understand and
predict, with respect to models based on either chemical or biological information,
complex interactions between compounds and their biomolecular targets. To substan-
tiate this assertion, Proteochemometric Modelling (PCM) is applied on several case
studies, where the complexity of the targets ranges from proteins to cell-line models.
PCM is a predictive bioactivity modelling technique that combines chemical and tar-
get descriptors in single machine learning models. Therefore, the activity of multiple
compounds against multiple (related) targets can be simultaneously modelled. This
enables the prediction of the activity of (novel) compounds on (novel) targets, and
has been found to be particularly useful when exploring compound promiscuity and
selectivity.

The first chapter provides an overview of the current state of the field, paying
special attention to: (i) novel machine learning developments, (ii) PCM applications
on therapeutically relevant protein families, and (iii) novel PCM applications, such as
the integration of bioactivity data from different species or the prediction of cell-line
sensitivity. In the second chapter, both the theoretical and practical aspects of gener-
ating and validating PCM models are discussed, and illustrated with a tutorial on
how to generate a full PCM study with the R package camb.

The next two chapters are devoted to the study of the influence of experimental
errors in bioactivity modelling. Chapter 3 proposes the application of Bayesian
inference in PCM using Gaussian Process (GP). This Bayesian framework provides
two main benefits, illustrated on three PCM data sets, with respect to other machine
learning techniques used in the field, namely: (i) the inclusion of the experimental
errors of the bioactivity values as input to the model, and (ii) the generation of indi-
vidual predictions as Gaussian distributions, which serve to asses their confidence.
To further explore the tolerance of common machine learning algorithms to noisy
data, Chapter 4 benchmarks the influence of simulated experimental errors in the
predictive power of QSAR models. The main conclusion is that the tolerance to
noise is significantly different across the studied algorithms, indicating that some
algorithms (and kernels) are better suited to model noisy data. Throughout chapters
3-6, special consideration is given to (i) the estimation of confidence intervals for
individual predictions, and (ii) the assesment of model performance in the light of the
uncertainty of the data. The main outcome is that the maximum model performance
achievable is highly dependent on: (i) the range of bioactivity values modelled, (ii)
their distribution, and (iii) the level of uncertainty thereof. For instance, in most of
the data sets explored here the maximum achievable R2 values on the test set are not
higher than 0.7.

Next, PCM is applied on two cases studies. The first one illustrates the versa-
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tility of PCM for the integration of multispecies bioactivity data from mammalian
Cyclooxygenases (COX). In this chapter, ensemble modelling is introduced in PCM,
showing that higher predictive power can be attained when combining the predictions
of a diverse set of models into a meta-model. The complexity of the target space is
notably amplified in Chapter 6, which is consecrated to the large-scale prediction
of cancer cell-line sensitivity. This illustrates the flexibility of the target concept in
PCM. The main purpose of the chapter is to posit that ’omics’ data of cell-line panels,
such as DNA Copy Number Variation (CNV) or gene transcript levels, can be used as
descriptors in PCM. The results of modelling the growth inhibition 50% bioassay end-
point (pGI50) values of 17,142 compounds screened against 59 cancer cell-lines from
the NCI60 cell-line panel, lead to several conclusions of practical relevance: (i) gene
transcript levels provide the highest predictive signal, (ii) no statistically significant
differences are found between inter- and extrapolation of compound bioactivities to
novel cell-lines and tissues, (iii) extrapolating compound bioactivities to structurally
novel compounds is challenging, although the extrapolation power is not constant
across chemical clusters. Overall, this is the first large-scale study benchmarking the
predictive signal of various cell-line profiling data, which conclusions can help in
the prediction of primary tumour sensitivity from the genomic data of cancer patients.

An epilogue closes the thesis with a discussion on the strengths and limitations
of PCM.
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.3.3 Noise influence in model performance. RMSEtest (red) and R20 ext
(black) values obtained when increasing the noise level (noise variance
added to the diagonal of the covariance matrix) were calculated for:
adenosine receptors (left figure), GPCRs (medium figure) and dengue
virus NS3 proteases (right figure). Upper plots correspond to GP
models calculated with the radial kernel while the bottom plots refer
to GP models with the Normalized Polynomial (NP) kernel. In all
cases, the radial kernel appears more sensitive to noise, while the NP
kernel performs equally well when noise is added to the data. These
data suggest that the NP kernel is more appropriate for the modelling
of noisy PCM data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

.3.4 Analysis of the confidence intervals predicted on (left) the adeno-
sine receptors and (right) aminergic GPCRs test sets. The percentage
of annotated values lying within the intervals of confidence of 68%,
80%, 95%, and 99% (ordinate axis) are depicted versus the size of the
intervals. The blue line defines the theoretical proportionality between
the size of confidence intervals and the number of points within the
intervals, in the frame of the Gaussian cumulative function. The radial,
Pearson VII Function-Based Universal Kernel (PUK), and Normalized
Polynomial (NP) kernels are in close conformity with the cumulative
Gaussian distribution in both data sets, while the Laplacian and Bessel
exhibit a diverse behavior depending on the data set. Therefore, GP
provide prediction errors in agreement with the Cumulative Gaus-
sian distribution which can be reliably used to define intervals of
confidence for the predictions. . . . . . . . . . . . . . . . . . . . . . . . 105

.3.5 GP determine models applicability domain. The differences between
the true and predicted bioactivities (y axis) and the errors on predic-
tions estimated by the GP model (x axis) are compared for the adeno-
sine receptor data set with radial (A) and NP (B) kernel, and for the
GPCRs data set with radial (C) and NP (D) kernels. The distribution
of the differences between true and predicted bioactivities increases
with the GP error on the prediction. This validates the GP error is a
measurement of the Applicability Domain (AD) of the model. . . . . 107

.3.6 Model performance per target on the test set for the adenosine re-
ceptors data set. The upper panel corresponds to R20 test, while the
lower panel to RMSEtest. These values were averaged for ten mod-
els trained on each subset corresponding to a given target. The best
modeled target is the rat adenosine A2b receptor (AA2BR RAT), while
the worst is the rat A3 receptor (AA3R RAT). In all cases, the mean
RMSEtest values are below 0.75 pKi units, indicating that GP modelling
can predict compound bioactivity on subsets corresponding to a given
target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xxiii



List of Figures

.3.7 Distribution of pairwise compound Tanimoto similarity calculated
on the target subsets extracted from the adenosine receptors data
set. The overall mean pairwise similarity is around 0.8. . . . . . . . . 112

.3.8 Evaluation of model performance per target on the GPCRs dataset.
RMSEtest values, averaged on ten models trained on different resam-
ples of the dataset, are represented by bars, colored according to the
number of datapoints per target. The standard deviations on RMSEtest
are shown as error bars. Dark grey bars correspond to targets with
more than two hundred annotated compounds. . . . . . . . . . . . . . 113

.3.9 Evaluation of model performance per target for GPCRs dataset on
the test set. R20 test values, averaged on ten models trained on different
resamples of the dataset, are represented by bars, colored according
to the number of datapoints per target. Dark grey bars correspond
to targets with more than two hundred annotated compounds. Both
negative and infinite R20 test values were set to zero. . . . . . . . . . . 114

.3.10 Heatmap representing the contribution of each chemical substruc-
ture to compounds bioactivity on each adenosine receptor. Columns
are indexed by targets and rows by compound substructures. Depicted
are some examples of compounds containing features beneficial (green)
or deleterious (red) for bioactivity. Although a few substructures are
predicted to have a beneficial or deleterious influence on the pKi, there
are others for which the effect depends on the target considered or
on the rest of substructures present in a given compound. Therefore,
over 90% of the substructures (black) are not implicated in compound
bioactivity or their contribution depends on the other substructures
present in a given compound. . . . . . . . . . . . . . . . . . . . . . . . 115

.3.11 Descriptor importance for the dengue virus NS3 proteases data set.
Descriptor importance is calculated in the frame of Bayesian Automatic
Relevance Determination (ARD) as the inverse of the value of the
length scale of each descriptor. The descriptors of the first and second
residues of the tetra-peptides (positions P1’ and P2’) are the most
relevant for the model. This is in agreement with the higher influence
of these two substrate positions for the cleavage rates of the proteases. 116

xxiv



List of Figures

.4.1 Illustration of two-way interactions between two-level factors, namely:
Algorithm: RF and GP; and Noise: 0 and 100. There is interacion
between two factors (A) when the difference of the mean RMSE values
(response variable) across the levels of a factor (e.g. Algorithm) does
not change across the levels of a second factor (e.g. Noise). In the
example, the difference in performance between GP and RF is the same
across all levels of factor Noise. This is illustrated by the presence
of parallel lines. By contrast, the presence of non parallel lines (B)
indicates that the performance of GP and RF changes depending on
the noise level. Thus, GP outperforms RF at noise level 0%, whereas
RF outperforms GP at noise level 100%. . . . . . . . . . . . . . . . . . 140

.4.2 A,B. Interaction plots. Median RMSEtest values across all data sets
for two-way combinations of factors. The data set-specific intercept
was subtracted from the RMSEtest values in order to make the results
comparable across the seven data sets. . . . . . . . . . . . . . . . . . . 145

.4.3 A. RMSEtest values across all data sets and noise levels for the 12 al-
gorithms. B. RMSEtest values across all data sets and models for the
11 noise levels studied. The data set-specific intercept was subtracted
from the RMSEtest values in order to make the results comparable
across the seven data sets. . . . . . . . . . . . . . . . . . . . . . . . . . 147

.4.4 RMSEtest values for GBM models trained with increasingly higher
bagfraction values across all Noise−Algorithm− dataset combi-
nations. For low noise levels (up to 30%) the performance of all models
is comparable irrespective of the bagfraction value. However, from
noise level 30% upwards, the mean RMSEtest difference between mod-
els trained with bag fraction values of 1 and 0.1-0.2 increases with the
noise level. Overall, these data suggest that the noise sensitivity of
GBM highly depends on the bagfraction value. . . . . . . . . . . . . 148

.5.1 Ensemble modelling with model stacking. A. A set of models are
trained with diverse machine learning algorithms (Model1 .. Model n in
the Figure). The predictions of these models on each data-point in the
training set calculated during cross validation, are used as descriptors
to create a new training matrix, which rows are indexed by the data-
points in the training set and columns by the models in the library. A
machine learning model is trained on this matrix. The resulting model
is the model ensemble. B. The model ensemble is then applied on the
test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

xxv



List of Figures

.5.2 Interpretation of compound substructures. A. Predictive method.
The average influence on bioactivity of a given substructure is cal-
culated as the differnece between the distributions corresponding
to: (i) the predicted bioactivity for all compounds containing that
substructure, and (ii) the predicted bioactivity using PCM for these
compounds, from which that substructure was virtually removed by
setting its count to zero. B. Student’s method. In this case, the average
substructure influence on bioactivity is evaluated as the difference
between the pIC50 distributions for those compounds presenting and
not presenting a given substructure. . . . . . . . . . . . . . . . . . . . . 168

.5.3 Principal Component Analysis (PCA) analysis of the target space.
A. Schematic overview of the COX binding pockets. B. PCA analysis
was applied on the binding site descriptors used to train the models.
The first two principal components explained more than 80% of the
variance, thus indicating that there are mainly two sources of variabil-
ity in the descriptor space, namely the isoenzyme type. This fact can
be seen as COX-1 (triangles) and COX-2 (squares) define two distant
clusters. Overall, the binding sites of orthologue cyclooxygenases are
more similar than those of paralog sequences. These results also indi-
cate that the amino acid descriptors account for structural differences
between COX-1 and COX-2, which can be learnt by the models. Thus,
it is expected that merging orthologues and paralogues will lead to
more predictive models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

.5.4 Statistiscs of the repeated bioactivities for each compound-target
combination. A. The abcissa represents the mean value for the bioac-
tivities repeated for each compound-target combination with more
than one annotated bioactivity. The ordinate represents their stan-
dard deviations. Repeated bioactivities are equally distributed for
low, moderate and high affinity COX inhibitors. B. Histogram of
the standard deviation of the repeated bioactivities. The distribution
is strongly skewed towards 0, thus indicating that the differences
between repeated bioactivities are generally negligible. . . . . . . . . 171

.5.5 PCA of the compound descriptors used to train the PCM models.
The PCA was performed on the pairwise Pearson rank correlation
matrix calculated with the compound descriptors used to train the
models. The two first principal components (PC) explain 58.03% of
the variance. COX-1 and COX-2 are represented with squares and
triangles respectively. Overall, the overlap between the datapoints
indicate that the compounds annotated on different targets cover the
same regions of the chemical space. . . . . . . . . . . . . . . . . . . . . 173

xxvi



List of Figures

.5.6 COX inhibitors selectivity on human COX-1 and COX-2. A. Scat-
terplot corresponding to the comparison of bioactivities against hu-
man COX-1 and COX-2 for 1,288 compounds. A large proportion
of the compounds present a COX-2/COX-1 selectivity ratio between
2 and 4 pIC50 units. Therefore, the present data set includes COX
inhibitors with highly divergent bioactivity profiles for COX-1 and
COX-2 (R20 = −0.420). B. Scatterplot of the observed against the pre-
dicted pIC50 values for the compounds described in A. Blue squares
correspond to the activity on COX-1, whereas orange squares cor-
respond to the activity on COX-2. The PCM models explain more
than 59% of the variance (R20 = 0.593), thus highlighting the ability
of the PCM models to predict the potency of compounds displaying
uncorrelated bioactivity profiles on human cyclooxygenases. . . . . . 174

.5.7 Model performance on the test set. RMSEtest (A) and R20 test (B) values
for the following models: (group A) single PCM, (group B) Family
QSAR and Family Quantitative Sequence-Activity Modelling (QSAM),
(group C) individual QSAR, (group D) model ensembles comprising
those single PCM models exhibiting the highest predictive power, and
(group E) model ensembles comprising the whole model library. Bars
are colored according to the groups defined in Table .5.2. Confidence
intervals correspond to the mean value +/- one standard deviation
calculated with bootstrapping [Efron and Tibshirani (1993)]. . . . . . . 175

.5.8 Y-scrambling. Scatterplots corresponding to the percentage of bioac-
tivities randomized, against (A) R20 test and (B) RMSEtest values. The
intercept in A becomes negative when 25-50% of the bioactivity vari-
able is randomized. This finding indicates that PCM performance is
not the consequency of spurious correlations in the descriptor space. 177

.5.9 Distribution of theoretical R20 test (A) and RMSEtest (B) values. The
mean of the R20 test distribution, 0.68, highlights that the uncertainty in
public bioactivity data does not permit models with R20 test values close
to 1. Similar results were obtained for q2test. The minimum RMSEtest
value that a model can achieve without exhibiting overfitting is close
to the experimental uncertainty. . . . . . . . . . . . . . . . . . . . . . . 178

.5.10 Pairwise Pearson correlation for the cross-validation predictions
across the model library. The predictive power across the model
library is not uniformly distributed, as the predicted values for a large
fraction of model pairs are uncorrelated (yellow areas). Therefore,
the combination of these models in a model ensemble is expected to
lead to higher predictive power than individual models ("wisdom of
crowds"). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

xxvii



List of Figures

.5.11 Confidence intervals calculated from the ensemble standard devia-
tion of the models present in the model ensembles. The percentage
of data-points which predicted bioactivities lie within confidence in-
tervals calculated with increasingly larger β values (Equation .5.1), is
shown for: (i) the cross validated predictions calculated during model
training (Training in the Figure), and (ii) for the predictions on the
test set (Test in the Figure) calculated with the most predictive model
ensemble, namely "Stacking SVM Radial Ensemble". The percentage of
true values lying within the confidence interval derived for a given β
value increases with the number of data-points available during model
training. Overall, the confidence intervals derived from the ensemble
standard deviation provide an estimation of the reliability of individ-
ual predictions, as in practice, this plot can be used to determine the β
value corresponding to a given confidence level. . . . . . . . . . . . . . 183

.5.12 Jaccard pairwise similarity distributions for the compounds anno-
tated on each target. Compounds annotated on the human cyclooxy-
genases (annotated with a star in the plots) display compound simi-
larity distributions with mean values skewed towards 1. By contrast,
compounds annotated on targets with less than 30 annotated bioactivi-
ties display multimodal similarity distributions. A correlation between
model performance and both the number of data-points and chemical
diversity was established (see main text). Distributions were calculated
with the same descriptors than the ones used to train the PCM models.185

.5.13 Target-averaged model performance. The number of data-points is
displayed through the size of the squares A correlation can be estab-
lished between the number of data-points and model performance,
quantified by the standard deviation of the RMSEtest values. Targets
annotated with less than 30 compounds or with chemical structures
displaying high structural diversity (Oryctolagus cuniculus COX-1, Rat-
tus norvegicus COX-1, Bos taurus COX-1, and Bos taurus) are produced
with high mean RMSEtest values. These observations indicate that
PCM models are not always able to extrapolate in the chemical or the
target space if a given target or compound family is not sufficiently
represented in the data set. . . . . . . . . . . . . . . . . . . . . . . . . . 186

xxviii



List of Figures

.5.14 Influence of compound substructures on potency and selectivity on
human COX-1 and COX-2. Rows in the heatmap are indexed by the
isoenzyme type whereas columns correspond to compound substruc-
tures. Substructures are depicted in red within arbitrary molecules
presenting it. The color represents the average influence (pIC50 units)
of each substructure on bioactivity. Red corresponds to an average
increase in bioactivity, whereas blue indicates the a deleterious effect.
Well-known chemical moieties, e.g. pyrrole rings (c), were singled out
as selectivity determinants. For instance, substructure d is present
in sulfonamides such as diflumidone, and substructure B in selective
1,2-diarylpyrroles COX-2 inhibitors. . . . . . . . . . . . . . . . . . . . 188

.5.15 Volcano plots corresponding to the results of the Student’s method
applied on human COX-1 (A) and COX-2 (B). The size of the points
is proportional to the number of molecules in the data set containing
a given substructure. Significant P values are shown in red (two-tailed
t-test, α = 0.05). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

.5.16 Compound substructures predicted to increase the bioactivity on
human COX-2. The 20 substructures predicted to have the highest
influence on bioactivity on human COX-2 (P35354) are plotted. Known
chemical moieties such as pyrrole rings (1), aryl substituents (e.g. 4

and 5) or benzylsulfonamide (17) are represented. These substructures
appear in diverse Non-Steroidal Anti-Inflammatory Drug (NSAID)s
such as rofecoxib or etericoxib, as well as in chemical families of COX-2
inhibitors based on e.g. 1,5-diarylpyrazoles or 3,4-diaryl-substituted
furans [Blobaum and Marnett (2007); Dannhardt and Laufer (2000);
Leval et al. (2000)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

.5.17 Compound substructures predicted to have the same influence on
human COX-1 and COX-2. Sub-strucutures predicted to decrease
bioactivity are accompanied by a blue arrow, whereas that predicted to
increase bioactivity are followed by a red arrow. Smaller substructures
are found in this case, predominating substituents on the benzene
ring. Therefore, substructure-activity relationships are difficult to be
determined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

xxix



List of Figures

.6.1 Modelling workflow and compound clustering. A. pGI50 values for
17,142 compounds on 59 cancer cell-lines (941,831 data-points) were
modeled with PCM Random Forests and conformal prediction. B.
U-matrix for the SOM used to cluster the compounds. Black lines
delimit the 31 clusters defined, whereas red labels indicate the cluster
number. The similarity between each neuron and its 8 neighboring
neurons defines the color code: blue corresponds to high similarity
(homogeneous areas), and red corresponds to low similarity (hetero-
geneous areas). Therefore, clusters presenting blue and red neurons
exhibit higher levels of intra-cluster chemical diversity. . . . . . . . . . 209

.6.2 Distribution of respective maximum and minimum RMSEtest (A,B)
and R20 test (C,D) values for the complete data set. Average maxi-
mum and minimum values of 1.42/0.35 and 0.96/-0.96, were obtained
respectively for RMSEtest / R20 test with the simulated data. The per-
formance of the PCM models on the test set was in agreement with the
uncertainty of the experimental measurements, as mean RMSEtest and
R20 test values of 0.40 +/- 0.00 pGI50 unit and 0.83 +/- 0.00 (with n =
10 models) were obtained. These values are between the two extreme,
maximum and minimum, theoretical RMSEtest and R20 test values. . . 219

.6.3 Y-scrambling validation. Mean RMSEtest (A) and R20 test (B) values
were calculated for the observed against the predicted bioactivities on
the test set calculated with models trained on pGI50 values increasingly
randomized (n=3). R20 test values become negative when 75% of
the bioactivity values are randomized. These data suggest that the
relationships established by the PCM models between compound and
cell-line descriptors, and the pGI50 values did not arise from chance
correlations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

.6.4 Distribution of respective maximum and minimum RMSEtest (A,B)
and R20 test (C,D) values for the variable bioactivity profile data set.
Average maximum and minimum values of 1.90/0.54 and 0.94/-0.90

were obtained respectively for RMSEtest/ R20 test with the simulated
data. The performance of PCM models was in agreement with the
uncertainty of the experimental measurements, as mean RMSEtest and
R20 test values of 0.580 pGI50 unit and 0.79 were obtained. These values
are between the two extreme, maximum and minimum, theoretical
RMSEtest and R20 test values. . . . . . . . . . . . . . . . . . . . . . . . . 221

xxx



List of Figures

.6.5 Benchmarking of the cell-line profiling data set views for com-
pound sensitivity prediction. A. The predictive power of the 16 data
set views (Table .6.1) was quantified by the RMSE values on the test
set. For each data set view, we trained ten models on the variable
bioactivity profile data set. We found significant differences among
the data set views (Analysis of Variance (ANOVA), P < 0.01). Post-hoc
analyses (Tukey’s Honest Significant Difference Test (HSD), α 0.05)
were used to cluster the data set views according to their predictive
power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

.6.5 Figure .6.5 caption continuation Data set views sharing a letter label
performed at the same level of statistical significance and are depicted
in the same color. We consistently found that gene transcript levels,
and the abundance of proteins and miRNA led to the most predictive
models (labeled with a). B. The evaluation of both interpolation and
extrapolation power was evaluated on the complete data set. After
finding significant differences among groups (ANOVA, P < 0.01),
we found that PCM interpolates and extrapolates to new cell-lines
and tissues at the same level of statistical significance (Tukey’s HSD,
α 0.05). By contrast, we found statistically significant differences in
performance between extrapolation and interpolation to new chemical
clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

.6.6 Interpolating compound bioactivities to novel cell-lines, tissues,
and chemical clusters. A. Cell-line-averaged RMSEtest values ranged
from 0.41 +/- 0.01 (U251) to 0.86 +/- 0.01 pGI50 unit (HOP-92). We
found significant differences for tissue-averaged performance (Tukey’s
HSD, P < 1x10−16), with RMSEtest values ranging from 0.48 +/- 0.01

(prostate) to 0.70 +/- 0.01 (leukemia) pGI50 unit. Cell-lines originated
from the same tissue are depicted in the same color (breast: red, central
nervous system: magenta, colon: yellow, lung cancer: grey, leukemia:
green, melanoma: blue, ovarian: orange, prostate: cyan, renal: brown).
We did not observe significant differences in tissue-averaged perfor-
mance for tissues labeled with the same letter. B. Compound-cluster
averaged performance for the 31 clusters defined with Self-Organizing
Map (SOM)s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

.6.6 Figure .6.6 caption continuation (B) One-way ANOVA among the 31

chemical clusters (P > 0.05), with compound cluster-averaged RMSEtest
values in the 0.48 +/- 0.01 and 0.65 +/- 0.01 pGI50 unit range. This
analysis illustrates that the models do not constantly favor specific
chemical clusters, thus making it possible to interpolate compound
bioactivities across the chemical space covered by the data at the
same level of statistical significance. By contrast, interpolating on the
cell-line side depends significantly on the tissue source. . . . . . . . . 226

xxxi



List of Figures

.6.7 Learning curves. Mean RMSEtest (A) and R20 test (B) values were
calculated for the observed against the predicted bioactivity values
on the test set calculated with n=3 models obtained using training
sets covering an increasingly higher fraction of the complete data set.
Models trained on 5% of the data set exhibited a mean RMSEtest value
of 0.52 pGI50 unit, which decreased till 0.39 pGI50 unit when 95% of
the data-points were included in the training set. These data suggest
that PCM models exhibit high interpolation capabilities. In practice,
the compound-cell-line interaction matrix could be completed with in
silico predictions, with a RMSEtest values of 0.39 pGI50 unit, without
requiring further experimental testing. . . . . . . . . . . . . . . . . . . 226

.6.8 Correlation between observed and predicted pGI50 values. Density
correlation plot corresponding to the observed against predicted pGI50

values on the test set for: (A) the Leave-One-Target-Out (Leave-One-
Tissue-Out in chapeter .6) (LOTO) model for melanoma (Root Mean
Squared Error (RMSE)test and R20 test values of 0.43 pGI50 unit and
0.80), and (B) the Leave-One-Cell-Line-Out (LOCO) model for the
melanoma cell-line SK-MEL-5 (RMSEtest and R20 test values of 0.37

pGI50 unit and 0.87. The color bar indicates the density of points
at each region of the plot. For the rest of LOCO and LOTO models
comparable results were obtained, with bioactivity values correctly
predicted along the whole bioactivity range. . . . . . . . . . . . . . . . 227

.6.9 Correlation between observed and predicted pGI50 values for the 81 drugs
present in the complete data set for the following model validation sce-
narios: (A) LOCO, (B) LOTO, and (C) Leave-One-Compound-Cluster-Out
(LOCCO). The x-axis reports the drug NSC identifiers. Compounds dis-
cussed in the main text, namely NSC 630176 and NSC 707389, are marked
with asterisks. Bars are colored according to drug mechanism of action
(MoA). The abbreviations of the mechanisms of action are: A2: alkylating
at N-2 position of guanine; A7: alkylating at N-7 position of guanine; AM:
antimetabolite; Ang: angiogenesis; Apo: apoptosis inducer; Db: DNA binder;
Df: antifolates; DNMT: DNA methyltransferase inhibitor; Dr: ribonucleotide
reductase inhibitor; Ds: DNA synthesis inhibitor; HDAC: Histone deacety-
lase; Ho: hormone; P90: hsp90 binder; PI3K: PI3kinase; PKC: Protein kinase
C; ROS: reactive oxygen species; RSTK: serine/threonine kinase inhibitor; T1:
topoisomerase 1 inhibitor; T2 : topoisomerase 2 inhibitor; Tu: tubulin-active
antimitotic; YK: tyrosine kinase inhibitor. . . . . . . . . . . . . . . . . . . . 228

xxxii



List of Figures

.6.10 Validation of conformal prediction. For each confidence level (ε),
represented in the x-axis, the number of data-points in the test set
which true value lies within the predicted interval is calculated, y-axis.
The high Spearman’s rs is likely due to the large size of the test set
(188,366 data-points) and to the fact that the Confidence Interval (CI)
produced by conformal prediction are always valid [Norinder et al.
(2014)]. These data indicate that the modeling framework combining
PCM models and conformal prediction is more information rich than
what would be possible with only point prediction algorithms. . . . . 230

.6.11 Consistency between the pathway-drug associations calculated with
the experimental and the predicted bioactivity values. Box plots re-
porting the distribution of Spearman’s rs coefficients for pathway-drug
associations calculated with the experimental and the predicted values
over the 56 drugs present in the variable bioactivity profile data set, us-
ing all pathway-drug associations (FDR < 20%) (A), or only significant
associations (C), as estimated in the variable bioactivity profile data
set. Bar plots representing the drug-averaged Spearman’s rs coeffi-
cients calculated with all B. or with only significant (D) pathway-drug
associations, averaged over the models labeled with a in (A). Missing
bars in (D) correspond to drugs for which we did not find significant
drug-pathway associations. . . . . . . . . . . . . . . . . . . . . . . . . . 232

.6.11 Figure .6.11 caption continuation E. Data view-averaged Spearman’s
rs coefficients for patterns of growth inhibition calculated with the
experimental and the predicted values. F. Bar plot reporting the
drug-averaged Spearman’s rs coefficients for the patterns of growth
inhibition calculated with the observed and the predicted bioactivities.
Data views sharing a letter label and color in (A,C,E) perform at the
same level of statistical significance. Significance for the Spearman’s rs
in (B,D,F) is represented with an asterisk if two-sided P value < 0.05,
for the Spearman’s rs coefficients calculated with the predictions gen-
erated with a model trained on the ’G.t.l. 1,000 genes’ data view. Bars
in (B,D,F) are colored according to compound MoA. Abbreviations of
mechanisms of action: MoA: Mechanism of action; A2: alkylating at
N-2 position of guanine; A7: alkylating at N-7 position of guanine;
AM: antimetabolite; Ang: angiogenesis; Apo: apoptosis inducer; Db:
DNA binder; Df: antifolates; DNMT: DNA methyltransferase inhibitor;
Dr: ribonucleotide reductase inhibitor; Ds: DNA synthesis inhibitor;
HDAC: Histone deacetylase; Ho: hormone; P90: hsp90 binder; PI3K:
PI3kinase; PKC: Protein kinase C; ROS: reactive oxygen species; RSTK:
serine/threonine kinase inhibitor; T1: topoisomerase 1 inhibitor; T2 :
topoisomerase 2 inhibitor; Tu: tubulin-active antimitotic; YK: tyrosine
kinase inhibitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

xxxiii



List of Figures

.6.12 Evaluation of the predicted growth inhibition patterns for methotrex-
ate (MTX) on the NCI60 panel. A. Relative growth inhibition pattern
(z-scores) on the NCI60 panel calculated from the experimental pGI50

values. The experimental uncertainty of the measurements is also
displayed. B. Predicted relative growth inhibition pattern of growth
inhibition along with the 75% confidence interval calculated using con-
formal prediction. We used the predicted values on the test calculated
with 10 PCM models (interpolation). Complex inhibition patterns are
reflected by the predictions. . . . . . . . . . . . . . . . . . . . . . . . . . 234

.6.12 Figure .6.12 caption continuation For instance, renal cell-lines TK-
10, RXF-393 and A498 (marked with an asterisk) were predicted to
be highly resistant to MTX, whereas the effect of MTX on sensitive
cell-lines, namely UO-31, SN12C, CAKI-1 and ACHN, was also cor-
rectly predicted. Cell-lines originated from the same tissue are in the
same color (breast: red, central nervous system: orange, colon: olive
green, lung cancer: dark green, leukemia: turquoise, melanoma: blue,
ovarian: blue, prostate: purple, renal: magenta). . . . . . . . . . . . . . 235

.6.13 Correlation of gene expression profiles for the 44 cell-lines present
in both the NCI60 panel and the Cancer Cell Line Enclycopedia
(Cancer Cell-Line Encyclopedia (CCLE)). A. Pairwise Spearman’s rs
correlation of the 1,000 most varying genes between the DTP-NCI60

and the CCLE data sets. Both data sets share 44 cell-lines. The
correlation between the gene expression profiles of identical cell-lines
is higher than 0.8 in all cases (diagonal of the matrix), with a median
Spearman’s rs value close to 0.875. B. The fist box plot on the left
reports the Spearman’s rs correlation, above 0.98, between the gene
transcript levels calculated in triplicates for the NCI60 cell-lines. The
box plot in the middle corresponds to the correlation between the
gene expression profiles of the cell-lines found in both the CCLE
and the NCI60 data set (diagonal of the matrix in (a)). The average
Spearman’s rs correlation is close to 0.875. The third boxplot reports
the Spearman’s rs correlation of different cell-lines (the non-diagonal
elements of the matrix in (a)). The high correlation between gene
expression profiles for the cell-lines present in both the CCLE and the
NCI60 cell-line panel, indicates that the PCM models reported in this
study could be extended to the CCLE. . . . . . . . . . . . . . . . . . . 239

xxxiv



List of Tables

.1.1 PCM studies published between 2010 and 2013. The wide applicabil-
ity of PCM is evidenced by the increased coverage of drug targets in the
studies of the last three years. Although traditional drug targets, such
as GPCRs or kinases, are still widely represented, new applications (e.g.
the modelling of viral genotypes or pharmacogenomics) are gaining
ground steadily. BPN - Back Propagation Networks, BS - Bootstrapping
Validation, CTD - Composition and transition of amino acid properties,
CV - Cross-Validation, DCNB - Dual Component Naive Bayes, DCSVM
- Dual Component Support Vector Machines, DT - Decision Trees, DTV
- Decoy Test Validation, ENR - Elastic Net Regression, EV - External
Validation, GP - Gaussian Processes, KNN - k-Nearest Neighbors, LCO
- Leave-Cluster-Out Validation, LOTO - Leave-One-Target-Out Valida-
tion, NB - Naive-Bayes, NN - Neural Network, MLR - Multiple Linear
Regression, OOB - Out-Of-Bag Validation, PCA - Principal Component
Analysis, PLS - Partial Least Squares, Random Forest - RF, RS - Ran-
dom Splitting, SVM - Support Vector Machines, SVR - Support Vector
Regression, Y-Sc - Y-Scrambling. . . . . . . . . . . . . . . . . . . . . . . . 8

.1.2 Selection of machine learning prediction methods used for PCM . . 13

.2.1 Amino acid descriptor sets used in PCM (adapted from Westen et al.
(2013a)). Those descriptor sets marked with ∗ can be computed with
the R package camb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

.2.2 Covariance functions (kernels) formula. . . . . . . . . . . . . . . . . . . 64

.3.1 Overview of the proteochemometric data sets modeled in this work.
Whereas the completeness of the compound-target interaction matrix
of the dengue virus NS3 proteases data set is almost complete (88.84%),
the adenosine receptors and GPCRs data set are more challenging to
model given: (i) their sparsity (31.11 and 2.43% of matrix completness
respectively), and (ii) the consideration of information from human
orthologues, being the respective number of different sequences 8 and 91. 92

xxxv



List of Tables

.3.2 Internal and external validation metrics for the PCM models. For the
three data sets, the best models are obtained with GP, being the lowest
RMSEtest and highest R20 test values: (i) adenosine receptors: 0.58 and
0.75 with NP kernel, (ii) GPCRs: 0.66 and 0.72 with NP kernel, and (iii)
Dengue virus NS3 proteases 0.44 and 0.92 with Bessel kernel. Overall,
GP models for the three data sets agree with the validation criteria. . 99

.3.3 Number of datapoints per GPCR. Those receptors highlighted by a
’*’ symbol correspond to those present in a subset of human GPCRs
which was first modeled with GP (see subsection GP performance
per Target). GPCRs are named according to UniProtKB/ Swiss-Prot
database [Magrane and Consortium (2011)]. . . . . . . . . . . . . . . . . 109

.4.1 Algorithms benchmarked in this study. The third column indicates the
parameters that were tunned using grid search and cross-validation
(CV). The default values were used for those parameters not indicated
therein. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

.4.2 Data sets modelled in this study. These data sets can be found in the
references indicated in the last two columns. . . . . . . . . . . . . . . . 135

.4.3 Values for the slopes (coefficients) and P-values for the fitted linear
model. The factor levels Random Forest (Algorithm), F7 (Data set),
Morgan fingerpints (Descriptor type), Replicate 1 (Replicate) and
Noise : 0 (Noise level) were used to calculate the intercept term of
the linear model. Noise levels are reported as percentage points. The
significance level was set to 5%, whereas all P-values are two-sided. . 144

.5.1 Composition of the COX data set. The total number of bioactivities,
after duplicate removal and selected from ChEMBL as described in
Materials and Methods, and of distinct compounds are 4,937 and 3,228

respectively. The last column indicates the percentage of the total
number of distinct compounds (3,228) annotated on each target. . . . . 162

.5.2 Internal and external validation metrics (mean values +/- one star-
dard deviation) for the PCM (A), Family QSAM (B), Family QSAR
(B), Individual QSAR models (C), Ensemble PCM models combining
the most predictive models (D), and Ensemble PCM models combin-
ing the whole model library (E). "Best" refers to the ensembles trained
on only the three most predictive RF, GBM and SVM models. MS of
models trained with different algorithms in a models ensemble allows
to increase predictive ability, as the highest R20 test and RMSEtest values,
0.652 and 0.706 pIC50 units respectively, were obtaind with the "MS
SVM Radial Ensemble". The standard deviation for the metrics was
calculated with the bootstrap method [Efron and Tibshirani (1993)]. . . 176

xxxvi



List of Tables

.6.1 Description of the data set views benchmarked for compound sen-
sitivity prediction on the NCI60 panel. The abbreviated names used
in Figure .6.5 are indicated in the second column. Prior biological
knowledge, such as pathway information, was included in some data
set views, whereas the gene transcript levels and mutational status for
genes implicated in cancer, kinases and ABC transporters were gathered
independently and combined in data set views to assess the redundancy
of their predictive signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

.6.2 Notes: 1. N/A refers to data not reported in the corresponding study.
2. Low R2 values do not necessarily mean inaccurate predictions, as
R2 values decrease significantly, even if the predictions closely match
the observations, when the range of values considered is small (see
Figure .2.3). 3. The values reported for the NCI60 data set corre-
spond to those obtaind with the complete data set (see main text for
details). Abbreviations: CCLE: Cancer Cell-Line Encyclopedia; CNV:
Copy Number Variation; CV: Cross-validation; GDSC: Genomics of
Drug Sensitivity in Cancer; LOCCO: Leave-One-Chemical-Cluster-Out;
LOTO: Leave-One-Tissue-Out. . . . . . . . . . . . . . . . . . . . . . . . 236

xxxvii





Introduction

1





.1 Polypharmacology Modelling Using
Proteochemometrics (PCM)

.1.1 Introduction

.1.1.1 Available bioactivity data is growing: but can we make sense
of it?

The cost of developing new drugs has been continuously increasing in recent
years and it is now estimated to be in the order of $1.8 billion per drug. In

addition, price pressure from health care providers has been increasing and there is
a growing relevance of more targeted medicine. Hence, the blockbuster model of
the pharmaceutical industry is being challenged [Akella and DeCaprio (2010); Paul
et al. (2010)]. However, at the same time the amount of bioactivity data available
both inside companies as well as in the public domain has significantly increased,
for example with introduction of ChEMBL and PubChem Bioassay [Gaulton et al.
(2012); Wang et al. (2012)]. This trend can be expected to only gain further speed in
the future. The question now arises how this growing amount of bioactivity data can
be used in real-world drug discovery and chemical biology projects, both to make
drug discovery in commercial settings more efficient, but also to understand on a
more fundamental level how we can use data in order to design a ligand with desired
properties in a biological system.

Predictive bioactivity methods, such as Quantitative Structure-Activity Relation-
ship (QSAR) models, are based upon the compound similarity principle [Bender
and Glen (2005); Willett (2009)]. However, it has been shown that the activity of a
compound against a single target is not sufficient to understand its actions in a bio-
logical system. In fact, promiscuity is intrinsic to chemical compounds [Mestres et al.
(2008, 2009)], bioactivity against related targets frequently needs to be considered for
efficacy of e.g. CNS-active drugs and anti-cancer drugs [Bianchi and Botzolakis (2010);
Shoshan and Linder (2004)], and promiscuity has been used to anticipate side-effects
[Bender et al. (2007)]. Hence, only the simultaneous modelling of both the chemical
and the target domain, across a series of protein targets, permits the meaningful
mining of the compound-target interaction space [Bieler and Koeppen (2012)].
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.1 Polypharmacology Modelling Using Proteochemometrics (PCM)

The term chemogenomics comprises techniques capable to capitalize on this huge
amount of bioactivity data by considering compound and target information, in order
to find unknown interactions between (new) compounds and their (new) targets
[Bredel and Jacoby (2004); Jacoby (2013)]. Proteochemometrics (PCM) modelling
describes methods where a computational description from the ligand side of the
system is combined with a description of the biological side being studied and both
are related to a particular readout of interest [Lapinsh, Prusis, and Gutcaits (2001);
Westen et al. (2011a)].

In this context, ligands are typically small molecules although biologics also
have been explored, whereas the biological parameters in the model can comprise
protein binding sites, but also e.g. gene expression levels of particular cell-lines. The
readout describes the biological effect of a particular ligand on the protein or cell-line
of interest (such as an IC50 value of this particular combination of compound and
biological system). Additionally, PCM relates to personalized medicine as it can
predict the effect of a ligand on a complex biological system, e.g. cell-line, from
genotypic information [Cortes-Ciriano, I et al. (2015)].

.1.1.2 Synergy between ligand and target space

An analysis of the drug-target interaction network demonstrated that a given ligand
interacts with six protein targets on average at therapeutic concentrations [Mestres
et al. (2009)]. Targets with correlated bioactivity profiles might be related or dis-
tant from a sequence similarity standpoint. It has been recently shown that the
classification of class A GPCRs based on ligand activity differs considerably from
that obtained when using a classic description of proteins based upon sequence
alignments [Lin et al. (2013); Westen and Overington (2013)]. Hence, full sequence
similarity from multiple sequence alignments would not generally correlate with
similar ligand affinity. Nevertheless, kinases exhibiting a sequence identity higher
than 60% tend to have similar ATP-binding sites and hence they tend to be inhibited
by similar compounds [Vieth et al. (2005)]. Similarly, compound binding is more
conserved between human and rat orthologous proteins with respect to paralogues
[Kruger and Overington (2012); Westen et al. (2012)]. Thus, to better understand
intra-family and inter-species selectivity both the target and the compound space
need to be considered simultaneously.

In ligand space, chemogenomic approaches relying only on ligand data have
shown that there is an unequal distribution of ligand data. This is due to the fact that
some target classes (e.g. GPCRs or kinases) have been traditionally regarded as more
interesting from a medicinal chemistry standpoint, and are thus overrepresented
in bioactivity databases [Gregori-Puigjané and Mestres (2008b)]. Moreover, while

4



.1.1 Introduction

some chemogenomic methods implicitly consider target information using bioactivity
profiles of groups of similar ligands, i.e. the interaction between these compounds and
a panel of targets, they are outperformed by techniques that explicitly consider target
information [Gregori-Puigjané and Mestres (2008a); Rognan (2007)]. In addition,
bioactivity profiles for related compounds are not always available.

In target space, techniques were employed which benefit from the structural or
sequence information available and rely on groups of related targets with the aim
to identify possible off-target effects and drug specificity for a particular target of
interest [Rognan (2007)]. Based on the inverse similarity principle, related proteins are
likely to interact with similar compounds. As in the previous case, the unavailability
of data also constitutes a limitation for target-based chemogenomics.

The combination of ligand and target data allows the creation of predictive models
that can rationalize e.g. viral or cancer cell-line selectivity, whereas models exclusively
based on ligands cannot explain the role of the target in selectivity [Westen et al.
(2011b)]. Merging data from ligand and target sources into the frame of a single
machine learning model allows the prediction of the most suitable pharmacological
treatment for a given genotype (personalized medicine), which ligand-only and
protein-only approaches are not able to perform. This is precisely the underlying
principle in proteochemometrics (PCM), which employs both ligand and target
features simultaneously, and which therefore enables the deconvolution of both
the target and the chemical spaces in parallel [Lapinsh, Prusis, and Gutcaits (2001);
Westen et al. (2011a)].
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.1 Polypharmacology Modelling Using Proteochemometrics (PCM)
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.1.1 Introduction

.1.1.3 PCM as a practical approach to use chemogenomics data

PCM modelling is a computational technique which combines both ligand infor-
mation and target information within a single predictive model in order to predict
an output variable of interest (usually the activity of a molecule in a particular bio-
logical assay) [Lapinsh, Prusis, and Gutcaits (2001); Westen et al. (2011a)]. It is this
combination of orthogonous information that sets PCM apart from both QSAR and
chemogenomics [Horst et al. (2011); Rognan (2007)]. Generally, the term target refers
to proteins since the majority of PCM models in the literature have been devoted
to the study of the activity of compounds on protein targets. Yet, target can also
refer to a certain protein binding pocket (to allow distinction between binding modes,
protein conformations, or allosteric/orthosteric binding) [Bahar, Chennubhotla, and
Tobi (2007)], or even to a cell-line [Menden et al. (2013)]. Each binding site and each
binding mode can be regarded (computationally) as a different target.

A PCM model is trained on a data set composed of a series of targets and com-
pounds, where compounds have been measured on as many targets as possible
(illustrated in Figure .1.1). The simultaneous modelling of the target and the ligand
space permits to better understand complex drug-target interactions (e.g. selectivity)
[Keiser et al. (2007); Ning, Rangwala, and Karypis (2009); Paolini et al. (2006); Wasser-
mann, Geppert, and Bajorath (2009)] than it would be possible with chemogenomics.
Indeed, the simultaneous modelling of compound and target data allows to assess
the effect of target and chemical variability can be evaluated (e.g. protein mutations
or the effect of chemical substructures on bioactivity). Thus, the aim of PCM is the
complete modelling of the compound-target interaction space (Figure.1.1), including
also the prediction of the bioactivity of novel compounds on yet untested targets.

Initial attempts to incorporate description of several proteins and their ligands
in a single QSAR model involved modelling of the interaction between mutated glu-
cocorticoid receptors and Deoxyribonucleic Acid (DNA) [Tomic, Nilsson, and Wade
(2000); Zilliacus et al. (1992)]. The first full scale PCM study involving different pro-
teins was devoted to the interaction of chimeric melanocortin receptors with chimeric
peptides at Uppsala University [Prusis et al. (2001)]. The name proteochemometrics
was coined later by the same research group [Lapinsh, Prusis, and Gutcaits (2001)].
Since then PCM has been applied on various diverse data sets (Table .1.1) [Bock and
Gough (2005); Lapinsh et al. (2002)]. While the current chapter will focus on recent
developments in the field between 2010 and 2013, a comprehensive discussion of
PCM-related work before 2010 has been presented in a previous review by Westen
et al. (2011a), to which we would like to refer the reader.
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Ta
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Figure .1.1: Ligand-target interaction space. The interaction between ligands (chem-
ical compounds) and targets (biological macromolecules) can be envi-
sioned as a matrix, where rows are indexed by target ids and columns
by compound ids. Each matrix cell contains the binding affinity of a
given compound on a given target, indicated by the following colors: blue
means low affinity and yellow means high affinity. Traditional bioinfor-
matics techniques have dealt with the similarity between targets, normally
based upon sequence similarity. On the other hand, ligand based (QSAR)
models have studied series of compounds acting on a given target. By
contrast to both of them, PCM relates the chemical-target interaction
space by describing targets and compounds with numerical descriptors
permitting to predict activities of a given compound on a given target.

10



.1.1 Introduction

.1.1.4 Practical relevance of PCM

The novel way by which PCM brings together the chemical and the target spaces per-
mits to better understand and predict the influence of target variability on compound
activity. For instance, predicting compound activity on a cancer cell-line panel can
identify selective compounds towards a particular cell-line [Cortes-Ciriano, I et al.
(2015)]. Similarly, the influence of viral proteins mutations in compound activity can
be quantified [Westen et al. (2011b)]. Therefore, PCM opens new avenues: (i) to mine
drug affinity databases with the goal to create multi-target and multispecies models,
(ii) to integrate toxicogenomics and phenotypic data in predictive models, (iii) to
identify designed or natural ligands for orphan receptors (receptor deorphanization),
(iv) and to design personalized medicine for viral infections or a defined cancer type
based on genotypic information. The ability of PCM to model these data depends
on the structure of the input matrix, as we will elaborate on below, and concrete
examples referring to the above fields will be presented in the subsequent section.

Table .1.1 summarizes the main features of the PCM studies published between
2010 and 2013. In addition to traditional therapeutic targets (e.g. kinases or GPCRs),
which continue to be well represented in recent PCM studies, other applications and
techniques are gaining ground steadily, namely:

• The modelling of the selectivity of viral protein mutants, mainly Human Im-
munodeficiency Virus (HIV)

• The inclusion of bioactivity information from mammal orthologues

• The usage of 3D target information

• Toxicogenomics and pharmacogenomics

In the following sections, we will focus on:

• Section .1.2: (novel) machine learning techniques successfully applied in re-
cent PCM studies (Table .1.2) and other predictive modelling contexts such as
chemoinformatics

• Subsection .1.3: recent application of PCM on established protein target classes

• Subsection .1.4.1: Novel target similarity measure

• Subsection .1.4.2: including 3D information of protein targets in PCM

• Subsection .1.4.3: PCM applied to predict binding free energies (PCM-based
scoring functions)
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.1 Polypharmacology Modelling Using Proteochemometrics (PCM)

• Subsection .1.4.4: PCM as an approach to extrapolate bioactivity data between
species

• Subsection .1.4.5: PCM applied to pharmacogenomics and toxicogenomics data

• Section .1.5: pitfalls of PCM

• Section .1.6: future perspectives and concluding remarks

.1.2 Machine Learning in PCM
Most of the currently used machine learning (Partial Least Squares (PLS), rough
set modelling, neural net modelling, Naive Bayesian classifiers, and decision tree
algorithms) as well as data preprocessing techniques in PCM have been described
in recent reviews by Andersson, Gustafsson, and Strömbergsson (2011) and Westen
et al. (2011a). Moreover, feature selection methods and common algorithms have
been recently benchmarked, with the overall conclusion that kernel and tree methods,
such as SVM or Random Forest (RF), do not benefit from feature selection, and
that no particular algorithm-feature selection pair appears to be preferable [Bruce
et al. (2007); Eklund et al. (2012, 2014)]. Therefore, only recent applications of novel
techniques applied to PCM or chemoinformatic modelling will be discussed here,
namely: Support Vector Machines (SVM), Random Forest (RF), Gaussian Processes
(GP) and Collaborative Filtering (CF). A detailed description of the machine learning
algorithms described in the following subsections is given in Table .1.2, whereas the
mathematical formulation for these are given in Section .2.5.

12



.1.2 Machine Learning in PCM
A

lg
or

it
hm

D
es

cr
ip

ti
on

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es
R

ef
er

en
ce

Su
pp

or
t

Ve
ct

or
M

a-
ch

in
es

(S
V

M
)

M
ap

s
th

e
in

p
u

t
sp

ac
e

in
to

a
hi

gh
er

di
m

en
si

on
al

sp
ac

e
w

he
re

a
hy

p
er

-
pl

an
e

is
at

th
e

in
te

rf
ac

e
be

-
tw

ee
n

cl
as

se
s.

M
ed

iu
m

tr
ai

ni
ng

ti
m

e.
P

U
K

ke
rn

el
u

se
s

an
ap

pr
ox

im
at

io
n

of
lin

ea
r,

po
ly

-
no

m
ia

la
nd

R
BF

ke
rn

el
s

O
p

ti
m

iz
e

ba
nd

w
id

th
hy

p
er

-p
ar

am
et

er
.

N
o

co
ns

id
er

at
io

n
of

ex
p

er
i-

m
en

ta
l

er
ro

r.
N

o
er

ro
r

ba
rs

fo
r

th
e

pr
ed

ic
ti

on
s.

B
en

-H
u

r
an

d
O

ng
(2

0
0
8
)

D
u

al
-c

om
p

on
en

t
SV

M
(D

C
-S

V
M

)
A

m
in

o
ac

id
re

si
d

u
es

an
d

co
m

po
un

d
fr

ag
m

en
ts

ar
e

tr
ea

te
d

as
tw

o
co

m
p

o-
ne

nt
s.

A
cc

ur
at

e
pr

ed
ic

tio
n

of
ac

tiv
e

ve
rs

us
in

-
ac

ti
ve

.
H

u
ge

ke
rn

el
m

at
ri

x.
R

e-
d

u
ce

d
ef

fi
ci

en
cy

d
u

e
to

si
ze

.

N
iij

im
a,

Sh
ir

ai
sh

i,
an

d
O

ku
no

(2
0
1
2
)

Tr
an

sd
u

ct
iv

e
SV

M
(T

SV
M

)
Se

m
i-s

up
er

vi
se

d
te

xt
m

in
-

in
g

te
ch

ni
qu

e.
E

ff
ec

ti
ve

w
it

h
u

nb
al

an
ce

d
d

at
as

et
s.

Sm
oo

th
en

th
e

de
ci

si
on

bo
un

da
ri

es
.

D
if

fi
cu

lt
to

im
p

le
m

en
t

w
it

ho
ut

pr
op

er
tu

ni
ng

.
K

on
d

ra
to

vi
ch

,
Ba

sk
in

,a
nd

V
ar

ne
k

(2
0
1
3
)

R
el

ev
an

tV
ec

to
rM

a-
ch

in
e

(R
V

M
)

P
ro

ba
bi

lis
ti

c
co

u
nt

er
p

ar
t

of
SV

M
.

C
on

ta
in

s
sp

ar
se

de
sc

ri
pt

or
s.

Sm
oo

th
en

th
e

d
ec

is
io

n
bo

u
nd

ar
ie

s.
Fa

st
p

re
d

ic
-

ti
on

.
E

as
y

re
tr

ie
va

l
of

im
p

or
ta

nt
d

e-
sc

ri
pt

or
s.

N
on

in
fo

rm
at

iv
e

p
re

-
di

ct
ed

va
ri

an
ce

.
Ti

pp
in

g
(2

0
0
1
)

R
an

d
om

Fo
re

st
(R

F)
C

on
st

ru
ct

s
m

u
lt

ip
le

d
ec

i-
si

on
tr

ee
s

w
ith

ra
nd

om
se

-
le

ct
io

n
of

va
ri

ab
le

s

C
om

p
u

ta
ti

on
al

ly
le

ss
ex

p
en

si
ve

th
an

SV
M

.S
ho

rt
tr

ai
ni

ng
ti

m
e

(p
ar

al
le

liz
a-

ti
on

).

R
eq

u
ir

es
re

la
ti

ve
ly

la
rg

e
am

ou
nt

s
of

m
em

or
y

D
e

B
ru

yn
et

al
.

(2
0
1
3
)

G
au

ss
ia

n
Pr

oc
es

se
s

(G
P)

N
on

-p
ar

am
et

ri
c

B
ay

es
ia

n
te

ch
ni

qu
e.

G
iv

es
ea

ch
pr

e-
di

ct
io

n
as

G
au

ss
ia

n
di

st
ri

-
bu

ti
on

.

M
ea

su
ra

bl
e

in
te

rv
al

of
co

nfi
de

nc
e

(I
C

).
C

on
si

d
er

at
io

n
of

ex
p

er
im

en
ta

l
u

nc
er

-
ta

in
ty

.

Lo
ng

tr
ai

ni
ng

ti
m

e.
Sc

hw
ai

gh
of

er
et

al
.

(2
0
0
7
)

M
at

ri
x

Fa
ct

or
iz

a-
ti

on
C

al
cu

la
te

s
ac

tiv
iti

es
as

do
t

pr
od

uc
to

fc
om

po
un

d
an

d
ta

rg
et

fe
at

ur
es

.

M
is

si
ng

va
lu

es
ar

e
pr

ed
ic

te
d

ef
fic

ie
nt

ly
.

In
te

rp
re

ta
bi

lit
y.

G
ao

et
al

.(
2
0
1
2
)

C
ol

la
bo

ra
tiv

e
Fi

lte
r-

in
g

M
ul

ti
-t

as
k

le
ar

ni
ng

.
In

fe
rr

ed
fe

at
u

re
s

co
u

ld
be

u
se

d
as

d
e-

sc
ri

p
to

rs
in

th
e

ac
ti

vi
ty

m
od

el
.

E
st

i-
m

at
es

si
m

ila
ri

ty
be

tw
ee

n
ta

rg
et

s.

P
er

fo
rm

an
ce

on
sp

ar
se

da
ta

.
Er

ha
n

et
al

.(
2
0
0
6
)

Ta
bl

e
.1

.2
:S

el
ec

ti
on

of
m

ac
hi

ne
le

ar
ni

ng
pr

ed
ic

ti
on

m
et

ho
ds

us
ed

fo
r

PC
M

13



.1 Polypharmacology Modelling Using Proteochemometrics (PCM)

.1.2.1 Support Vector Machines (SVM)

Support Vector Machines (SVMs) are a group of non-linear machine learning tech-
niques commonly used in computational biology [Scholkopf, Koji, and Vert (2004)],
and in PCM in particular [Westen et al. (2011a, 2012)]. SVMs became popular in
the last decade due to their performance and efficient capacity to deal with large
data sets also in high-dimensional variable spaces, even though interpretability can
be challenging [Ben-Hur and Ong (2008); Schlkopf and Smola (2001)] Furthermore
SVMs require proper tuning of the so-called hyper parameters, usually determined
by an exponential grid search.

In a recent study from Lapinsh et al. (2013) Random Forest (RF), k-Nearest Neigh-
bours (KNN), and SVMs were applied to construct a PCM model of Cytochrome P450

(CYP) inhibition. The models were trained on 5 CYPs and 17,143 compounds. CYPs
were described with transition and composition description of amino acids, while
compounds were described with structural signature descriptors. These PCM models
were shown to outperform single target models in terms of Area Under the Curve
(Area Under the Curve (AUC): PCM: >0.90, QSAR: 0.79-0.89) that were constructed
in parallel by Cheng et al. (2011). Of the methods used, RF and SVM were shown to
be comparable in terms of accuracies and AUC. The high performance of the SVM
model in the external validation (AUC: 0.94) evidences the suitability of this approach
to correctly extrapolate in both the target and compound space.

SVMs can use different internal methods (kernels) to derive bioactivity predic-
tions, the most dominant being the Radial Basis Function (RBF) kernel [M G Genton,
N Cristianini, J Shawe-Taylor (2001)]. Radial basis function kernels have been shown
to perform well on PCM data [Westen et al. (2011a, 2012)]. Recently the VII Pearson
function-based Universal Kernel (PUK) [Üstün, Melssen, and Buydens (2006)] was
also applied to PCM. Wu et al. (2012) showed that they were able to improve the
mapping power of their PCM models for 11 Histone Deacetylase (HDAC)’s by using
a PUK kernel. Nonetheless, the radial kernel still constitutes a common option when
inducting bioactivity models given the necessity to tune only one kernel parameter,
which in practice means shorter training times. Based on those results, the experi-
enced user should keep in mind that although the radial kernel is a robust option
with reliable results (in the experience of the authors), a proper kernel choice should
be made on the basis of the data at hand [Duvenaud et al. (2013)].

Dual Component SVMs (DC-SVM) are an extension of the classical SVM and have
been applied by Niijima, Shiraishi, and Okuno (2012) to a kinase data set spanning
the whole kinome. They proposed a dual component Naive Bayesian model in which
kinase-inhibitor pairs are represented by protein residues and ligand fragments that
form dual components. Hence the probability of being active is simply estimated as
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.1.2 Machine Learning in PCM

the ratio of bioactivity values between active and inactive pairs. This method was
further extended to SVMs by modifying a Tanimoto kernel to include compound
fragments. PCM DC-SVMs outperformed ligand based SVMs (QSAR) in internal
validation, as accuracies of 90.90% and 86.20% were respectively obtained. However
the same level of accuracy was not achieved when using external data sets, which
produced accuracies of 73.90% and 81.30% for DC-SVM and ligand based SVM.
Therefore, these results do not permit to conclude that DC-SVM outperform SVM
although this might happen with other data sets.

A second type of SVMs, Transductive SVMs (TSVMs), have been applied to model
small (between 1,000 and 3,000 datapoints) and unbalanced QSAR data sets from the
Directory of Useful Decoys (DUD) HDAC repository displaying a balanced accuracy
higher than 30% on some data sets with respect to SVM [Kondratovich, Baskin,
and Varnek (2013)]. The concept relies on transduction, allowing the modelling of
partially labeled data which cannot be included using regular SVM. TSVMs could
be potentially extended to PCM and have been shown to outperform SVMs in some
cases [Collobert et al. (2006); Wang, Shen, and Pan (2007)].

A third flavor of SVMs are Relevance Vector Machines (Relevance Vector Machine
(RVM)s) [Tipping (2001)]. The added value of RVM is the interpretability of the
models, which is a consequence of their Bayesian nature. Each descriptor is asso-
ciated to a coefficient, which determines its relevance for the model. Coefficients
associated to low relevance descriptors are close to zero, hence the model becomes
sparse and therefore permits shorter prediction times. Although the predicted vari-
ance is not informative in regression studies, class probabilities can be efficiently
determined in classification [Lowe et al. (2011)]. RVMs have been demonstrated by
binary classifiers trained on a subset of the MDL Drug Data Report (MDDR) database
[Lowe et al. (ibid.)]. Therein, it was demonstrated that RVMs performed on par with
SVM, encouraging the authors to conclude that RVM should be added to the current
chemoinformatic tools and as such potentially applied to future PCM studies.

On the basis of the above, SVM constitutes a useful algorithm in which initial
drawbacks such as interpretability (e.g. the determination of which chemical sub-
structures most contribute to compound bioactivity) can be overcome with new
developments (e.g. RVM).

.1.2.2 Random Forests (RF)

Random Forest (RF) models are often comparable in performance to SVMs [Westen
et al. (2011a)], and are also non-linear. However, contrary to SVMs RFs tend to
have relatively short training times and do not require extensive parameter tuning
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.1 Polypharmacology Modelling Using Proteochemometrics (PCM)

[Svetnik et al. (2003)]. Furthermore, in addition to their comparable performance,
RFs permit an evaluation of both feature contribution and feature importance in
PCM models, as shown by Cortes-Ciriano et al. (2015); De Bruyn et al. (2013). An
example of such evaluation is given in the identification of organic anion-transporting
polypeptide (Organic Anion-Transporting Polypeptide (OATP)) inhibitors, where
continuous descriptors, both z-scales (proteins) and physiochemical features (com-
pounds), were binned into discrete classes. For each feature (protein and ligand) the
correlation to activity and importance was calculated for each target class. In that
way, compound inactivity was correlated with the presence of chemical substructures
positively charged at pH 7.4, number of atoms < 20, and molecular weight < 300.
Conversely, chemical substructures with a number of ring bonds between 18 and 32,
without atoms with positive charge, and with a log D value between 3.4 and 7.5 were
found to favour OATP inhibition.

Although RFs have a high interpretability it should be noted that they do not
output error estimates (as is also the case with SVM), although recent papers suggest
the usefulness of the variance along the trees of a random forest model to determine
its applicability domain. Error estimates are of tremendous importance given the
high levels of noise and error annotations in public bioactivity databases. Thus, fully
informative predictions should be accompanied by individual uncertainties. This
issue can be remediated by applying Quantile Regression Forests (QRF) which infer
quantiles from the conditional distribution of the response variable [Meinshausen
(2006)]. To our knowledge, QRFs have not been applied to QSAR or PCM yet.
Gaussian Processes are a machine learning technique that has been used in PCM
with inherent error estimation capabilities, as described below.

.1.2.3 Gaussian Processes (GP)

The determination of the applicability domain (AD) of a model (when are model
predictions reliable or when can a model extrapolate) is one of the major concerns in
bioactivity modelling (see previous studies [Bosnić and Kononenko (2009); Netzeva
et al. (2005); Tetko et al. (2006)] for comprehensive reviews). Major obstacles to the
AD determination are the errors and uncertainties contained in bioactivity databases
[Kalliokoski et al. (2013); Kramer and L (2012); Kramer et al. (2012); Tiikkainen et al.
(2013)], which are mainly due to data curation and experimental errors [Kramer et al.
(2012)], as well as the accurate quantification of distances in the descriptor and the
biological space, which would enable to anticipate prediction errors. Gaussian Pro-
cesses (GP) aim to address these concerns by permitting to handle data uncertainty
as input into a probabilistic model.

Figure .1.2 illustrates the basic idea underlying GP modelling. The prior prob-
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.1.2 Machine Learning in PCM

ability distribution (Figure .1.2A) covers all possible functions candidate to model
the data, each of which has a different weight determined by the kernel (covari-
ance) parameters. Subsequently, only those functions from the prior distribution in
agreement with the experimental data are kept (Figure .1.2B). The mean of these
functions is considered as the best fit to the data. Given that each prediction is a
Gaussian distribution, different confidence intervals can be defined from its variance
(Figure .1.2B).

Gao et al. (2013) showed that SVMs performed, in general, slightly better than
GPs when modelling a data set composed of 128 ligand and 9 human aminergic
GPCRs, although the models trained on the best combination of descriptors exhibited
equal Q2 values of 0.74 for GP and SVM. Worth of mention, the difference in perfor-
mance between GP and SVM was not assessed neither statistically nor by comparing
the results of a series models trained on different resamples of the whole data set.
Moreover, the predicted error bars by the GP PCM models were not considered. More
recently, Cortes-Ciriano et al. (2014) showed the actual potential of GPs by applying
both SVMs and GPs implemented with a panel of diverse kernels to multispecies
PCM data sets, namely: human and rat adenosine receptors, mammal GPCRs and
dengue virus proteases. GP and SVM performed comparably as absolute differences
were statistically insignificant. However, GP provided notable added values via: (i)
the determination of the model AD, (ii) the probabilistic nature of the predictions,
and (iii) the inclusion of the experimental uncertainty in the model.

In the experience of the authors regarding the application of GP in PCM [Cortes-
Ciriano et al. (ibid.)], and in agreement with [Schwaighofer et al. (2007)], the intervals
of confidence (IC) calculated by GP are in accordance with the cumulative Gaussian
distribution. Therefore, these intervals of confidence provide valuable information
about individual prediction errors. In practice, knowing the error for each prediction
can certainly guide decision-making about which compounds should be tested in
prospective experimental validation of in silico PCM models. Overall, GP appear as
an appealing approach for PCM in spite of the longer CPU time required for the
training, as GP is an algorithm of O(N3) time complexity (i.e., it scales with the third
power of the size of the data set) [Rasmussen and Ws (2006)].

.1.2.4 Collaborative Filtering (CF)

One of the requirements for PCM is that target (protein) features need to be defined
explicitly (usually by physicochemical characterization of amino acids). While this
approach is effective, it nevertheless requires a certain level of information about
target sequences and structures. An alternative approach would be to infer target
features from an unsupervised approach and not use them as model input a priori.
This was done quite recently in multi-target QSAR study for the hedhog signalling
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Figure .1.2: Illustrative example of GP theory in a two-dimensional problem. ( A)
The prior probability distribution embraces all possible functions which
can potentially model the data set. A subset of six prototypical functions
is depicted. Normally, the mean of the distribution is set to zero (black
dashed line). (B) The inclusion of bioactivity information (red dots)
accompanied by its experimental uncertainty (blue error bars) updates
the prior distribution into the posterior probability distribution. In the
posterior probability distribution, only those functions in agreement with
the experimental data are kept. The uncertainty (pink area) notably
increases in those areas with little experimental information available.
The mean of the posterior distribution (black dashed line) is considered
the best fit to the data. A prototypical function from the posterior is
shown in blue. For a new compound-target combination, the bioactivity
is predicted as a Gaussian distribution, in which the mean is the best
prediction and its variance the uncertainty. A radial-kernelled GP with
σ = 1 was employed to generate the figure. The python infpy package
helped to produce the plots (John Reid, Version 0.4.13).
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.1.3 PCM Applied to Protein Target Families

pathway acroos multiple cell-lines [Gao et al. (2012)].

Gao et al. (ibid.) incorporated a CF approach between 93 cyclopamine derivatives
and four cell-lines (BxPC-3, NCI-H446, SW1990 and NCI-H157), and showed that
Collaborative Filtering multi-target QSAR outperforms normal QSAR for their data
set. The mean Root-Mean Squared Error (RMSE) for four cell-lines was 0.65 log units
for CF while it increased to 0.85 log units for (single target) Support Vector Regression
(SVR). The collaborative QSAR framework, combined with a feature selection method-
ology based on Collaborative Filtering and the content-based recommender systems
(a system used by electronic retailers and content providers such as amazon.com)
[Breese, Heckerman, and Kadie (1998)], enabled the definition of weights for the
compound descriptors (drug-like index). When interpreting their models the authors
could determine that molecular volume, polarity, and the cyclic degree are the most
influent compound features for multi-cell-line inhibitors for this particular pathway.
Erhan et al. (2006) also used CF with a large library of compounds against a family
of 12 related targets screened in AstraZeneca’s High-Throughput Screening (HTS)
campaigns. The authors elegantly demonstrated how the principles of CF filtering
can be used to derive a predictive model with the capability to extrapolate on the
target side. However, better results were obtained when using target descriptors
(binding pocket fingerprints of 14 bins in this case, where each bin accounts for a type
of interaction -ionic, polar, or hydrophobic in the binding site). Another novelty of
this work was the introduction of the kernel-based method Jrank (a kernel perceptron
algorithm), which was able to outperform the multi-task neural network in most
cases.

The overview presented above shows that PCM heavily draws on recent devel-
opments in the machine-learning field. In the following we will also summarize
PCM applications in the medicinal chemistry and chemical biology fields, to different
target classes as well as different types of biological readout.

.1.3 PCM Applied to Protein Target Families
As was touched upon above, PCM has been applied to a very diverse selection of
protein targets. Here we will focus on a small selection of targets relevant for drug
discovery, namely G Protein-Coupled Receptors (GPCRs), kinases, epigenetic markers,
viral enzymes, and human cancer cell-lines.

.1.3.1 G protein-coupled receptors
Early PCM virtual screening studies by Bock and Gough (2005) to identify ligands of
orphan GPCRs (oGPCRs) used physiochemical properties of the amino acids of the
entire primary sequence of GPCRs, such as accessible surface area or surface tension,

19



.1 Polypharmacology Modelling Using Proteochemometrics (PCM)

rather than binding site residues. The authors screened 1.9 million ligand-oGPCRs
combinations and were able to identify 4,357 highly active ligands of oGPCRs. The
method, based on SVM, outputs a ranked list of putative oGPCRs ligands. In practice,
the most relevant feature of their predictive pipeline is the description of GPCRs with
only physicochemical descriptors, thus avoiding the usage of exact 3D information of
the receptors [Bock and Gough (2005)]. Subsequently, Jacob et al. (2008) demonstrated
that the usage of bioactivity data from 4,051 GPCR-ligand combinations (80 human
GPCRs from classes A, B and C, and 2,446 ligands) extracted from the GLIDA GPCR
ligand database [Okuno et al. (2006)] in PCM models improves the performance
over single receptor models, leading to more reliable predictions. The authors used
Tanimoto 2D and pharmacophore 3D kernels to describe the ligands, and kernels to
describe the GPCRs, namely: Dirac, multitask, hierarchy, binding pocket and poly
binding pocket. The best combination thereof was shown to be 2D Tanimoto for the
compound side and the binding pocket kernel for the GPCRs, as the authors reported
an accuracy of 78.1% when predicting ligands for orphan receptors.

These findings were further capitalized upon in the papers of Frimurer et al. (2005),
and Weill and Rognan (2009). Both papers devised features for the 7Transmembrane
(TM) core ligand-binding site and cavity fingerprints to improve the structure guided
drug discovery approaches and provide a general class A GPCR similarity metric
[Frimurer et al. (2005); Weill and Rognan (2009)]. The former approach introduced an
in silico pipeline to relate 7TM GPCRs based upon the physicochemical properties
of the ligand binding site, taken from the crystal structure of the bovine rhodopsin.
The pipeline is composed of five steps, which are: (i) sequence alignment of the TM
domain of the GPCRs of interest, (ii) selection of the residues in the core binding site
important for ligand binding, (iii) definition of binding site signatures and generation
of physicochemical descriptors for them, and (iv) use of these descriptors to rank,
cluster or compare 7TM GPCRs. The authors applied this pipeline to identify ligands
for the rhodopsin-like receptor, CRTH2, which by that time only had one annotated
ligand besides prostaglandin D2, namely indomethacin. The screening of a library
of 1.2 million compounds yielded 600 candidate hit compounds. 10% thereof were
confirmed as ligands in a CRTH2 receptor-binding assay, using a IC50 cut-off value of
10 mM to consider a compound as active.

On the other hand, Weill and Rognan (2009) introduced a new type of Protein-
Ligand Fingerprints (PLFP), which encodes pharmacophoric properties of ligands
and their binding cavities. These fingerprints were applied to two GPCRs data sets,
namely: (i) 168,536 GPCR-ligand combinations (160,286 inactive and 8,250 active
combinations), and (ii) 234,137 GPCR-ligand combinations (202,019 inactive and 32

118 active combinations). The total number of GPCRs considered was 160. The
authors reported a cross-validated classification accuracy higher than 0.90 when
using SVM, though the most predictive models on external data sets were not those
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presenting the highest accuracy values in cross-validation [Kubinyi, Hamprecht, and
Mietzner (1998)].

Overall, PCM models trained on GPCRs binding site amino acid descriptors
have proven to be a powerful approach to identify the GPCRs targets for a given
compound, and to predict ligands for orphan GPCRs. The increasing availability
of bioactivity data on GPCRs of interest and orthologous sequences [Cortes-Ciriano
et al. (2014)], as well as the development of novel methodologies to assess GPCRs
similarity, is likely to increase the application of PCM on this target family.

.1.3.2 Kinases

Another important protein family in drug discovery subjected to PCM studies is
the kinase superfamily which comprises more than 500 different human proteins
[Manning et al. (2002)]. The role of kinases in cell signalling and their involvement
in more than 400 human diseases have rendered this protein family an attractive
target [Cohen (2002); Melnikova and Golden (2004)]. Each kinase generally contains
a conserved kinase 1 domain that binds ATP in its active site, though some kinases
contain more than one kinase domain. Inhibitors targeting this conserved binding
site are known as Type I inhibitors. The activation loop of kinases, necessary for
the transfer of a phosphate group, exhibits two different conformations, namely
DFG-in and DFG-out (where DFG stands for the catalytic triad, Asp-Phe-Gly). Type
II inhibitors bind to both the conserved ATP-binding site and to an adjacent pocket
present in the DFG-out conformation. These compounds are more selective and thus
attractive as drug candidates. Given the ability of PCM to model bioactivities against
related targets, it is very well suited to model the affinity of small molecule inhibitors
to the kinase family [Westen et al. (2011a)]. Different PCM models have been reported
to analyze drug selectivity and predict bioactivity profiles against 15 kinases [Cao
et al. (2013b); Subramanian et al. (2013)].

In a recent study by Cao et al. (2013b), the full kinase sequence space was de-
scribed by alignment-independent -Composition, Transition and Distribution (CTD)
features,127 along with topological features of compounds. The data set comprised
a total number of kinase-compound interactions of 54,012, with data from 22,229

compounds and 372 kinases. The best RF model exhibited a classification accuracy in
five-fold cross-validation of 93.7%, and a sensitivity of 92.26%. Moreover, this high
predictive power was maintained in the four validation levels suggested by [Park and
Marcotte (2012)], as the following accuracies and sensitivities (respectively and in
percentage units) were obtained: (i) L1: 93.15 and 91.23; (ii) L2: 89.53 and 88.24; (iii)
L3: 90.71 and 89.48; and (iv) 87.30 and 85.82. Hence the statistically soundness of this
PCM model enabled the classification of compound-kinase pairs as interacting, using
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a 100 nM compound concentration as cut-off, or non-interacting. The high predictive
ability of the models should be considered nevertheless with caution as the degree of
completeness of the bioactivity matrix used in the training was only 0.65%. Therefore,
to improve the predictive power of these PCM models they should be iteratively
updated as more bioactivity values become available. Interestingly, kinases similar in
the sequence space exhibited high dissimilarity when assessing their similarity with
the inhibitors bioactivities. This was assessed using 120 kinases with more than 15

bioactivity annotations, 14,400 datapoints in total. Thus, these data highlights the
adequacy of considering chemical and target space to optimize kinase inhibitors.

While high affinity is generally desired for drugs (except possibly in case of
multicomponent therapeutics) [Borisy et al. (2003)], selectivity is equally important
when targeting a protein family with highly similar binding sites, such as in this case
kinases. Subramanian et al. (2013) applied PCM models to a kinase data set compris-
ing 50 different proteins in the DFG-in conformation to better understand both the
residue and compound features which determined whether the ATP-binding site of
kinases are involved in compound binding. The resulting PCM models, using PLS
including cross-terms (see Section 2.3), demonstrated the added value of PCM over
ligand based approaches, as statistically satisfactory QSAR models were reported for
only 44% of the targets. More importantly, the models could be visually interpreted,
thus enhancing the practical usefulness of PCM for the optimization of compound
selectivity. Further details on this study are given in Section 4.4, as models targets
were encoded with 3D information.

As shown by these recent PCM studies on the kinase superfamily, PCM can
support new concepts for kinase inhibition implicating the simultaneous interaction
of kinase inhibitors with several targets leading to multi-target kinase chemotherapy
[Gujral, Peshkin, and Kirschner (2014)].

.1.3.3 Histone modification and DNA methylation

Epigenetic markers have been identified as emerging therapeutic targets in various
malignancies and diseases by correlating phenotypes and differential expression
patterns [Prinjha, Witherington, and Lee (2012)]. Key protein families involved in
these processes are readers (bromodomains), writers (DNA modifying enzymes, his-
tone 1 acetylases, methyltransferases) and erasers (histone deacetylases) [Knapp and
Weinmann (2013)]. Most of the bromodomain epigenetic targets have the ability to
selectively modulate the gene expression pattern and contribute to post-translational
modifications, chromatin binding, inflammation, oncogenesis [Prinjha, Witherington,
and Lee (2012)], moreover there is a clear linkage to some diseases, e.g. multiple
myeloma [Delmore et al. (2011); Floyd et al. (2013)]. Vidler et al. (2012) studied
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the druggability of the different members of the bromodomain family focusing on
amino acid signatures in the bromodomain acetyl-lysine binding site, which resulted
in a bromodomain family classification more correlated with the binding of small
molecules in comparison with a whole-sequence similarity classification. Numerous
successful chemical probes like JQ1 have also been identified as bromodomain in-
hibitors by the Structural Genomics Consortium (SGC) [Gruetter (2012)]. However,
the bromodomain family still has unexplored therapeutic potential. To date there are
no PCM studies performed on this family.

Recently, Wu et al. (2012) utilized structural similarity between three classes of
HDACs and generated a predictive model for a novel candidate anti-tumour drug.
They implemented various descriptors (physicochemical properties) and similarity
descriptors (sequence and structure) of compounds and targets in the PCM model
and successfully identified class-selective inhibitors for class-I and class-II HDACs.
The best model exhibited high predictive ability, as the authors reported a Q2 value
on the external set of 0.75. Overall, the increasing importance of epigenetic targets in
drug discovery as well as the availability of large-scale resources of epigenetic targets
and its modulators [Arrowsmith et al. (2012); Huang et al. (2012b)], will facilitate the
application of PCM to this target family.

.1.3.4 Viral mutants

Previous sections highlighted the ability of PCM to model bioactivities of several
human protein superfamilies, yet PCM based approaches are not bound to human
protein targets. PCM has also been applied in a number of studies to predict activity
profiles of ligands against different viral protein variants [Westen et al. (2011b)]. In the
field of HIV, Westen et al. (ibid.) used 451 compounds tested against 14 HIV reverse
transcriptase sequences to train a model that was able to predict the bioactivity of
317 new compound-mutant pairs. Interestingly, when the prediction was validated
prospectively with wet lab experiments it was found that the prediction error (RMSE
of 0.62 log units) was comparable to experimental uncertainty of the assay (0.50

log units). In a similar setting, Huang et al. (2012b) showed that the inclusion of
Protein-Ligand Interaction Fingerprints (PLIFs) of viral residues and ligand structures
as cross-terms improved model predictive power over models lacking them. PCM
models were trained on 92 compounds and 47 HIV-1 protease variants with about
160 Ki values. The best PCM model exhibited a Q2 value of 0.83 on the external set.

Next to these applications, PCM has been used to model the sensitivity of viral
mutants to antiretroviral drugs, which could potentially guide HIV treatment [Westen
et al. (2013b)]. Resistance testing and prediction using these models is achieved
by incorporating genotypic (protein) and drug (chemical) data and subsequently
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linking them to phenotypic data (resistance). PCM then allows the prediction of
optimal treatment regimens. The advantage of PCM over established sequence-based
approaches is that interpretation of a single model allows the combined elucidation
of residues responsible for the change in efficacy and the complementary chemical
features affected [Doherty et al. (2011); Junaid et al. (2010); Kontijevskis et al. (2009);
Lapinsh et al. (2008)].

For instance, Westen et al. (2013b) trained PCM models based on a large clini-
cal data set composed of circa 300,000 datapoints combining both phenotypic and
genotypic data. The application of PCM enabled the integration of the similarity of
marketed drugs together with protein sequence similarity. The best model exhibited
a fold change error of 0.76 log units, which constitutes an improvement of 0.15 log
units with respect to previously reported models trained on only protein sequence
similarity (0.91 log fold change error). In addition, the authors identified novel muta-
tions of both HIV reverse transcriptase and HIV protease conferring drug resistance,
underlining the ability of PCM models not only to model bioactivity information, but
to also learn about features relevant for activity from both the ligand and the protein
target side.

Similarly, drug susceptibility profiles were predicted based on PCM. In that way,
two models have been reported for the prediction of: (i) the susceptibility (bioactivity
profile) of a given HIV protease genotype to seven commonly used protease inhibitors
[Lapinsh et al. (2008)]; and (ii) the susceptibility of HIV reverse transcriptase to eight
nucleoside/nucleotide reverse transcriptase inhibitors [Junaid et al. (2010)]. PCM
models were trained on 4,792 HIV protease-inhibitor combinations, obtaining a Q2

value on the external set for the best model of 0.87. These models have been made
publically available via web-services available at http://www.hivdrc.org/services,
allowing free use of these algorithms [Spjuth et al. (2011)].

While the ligands of most PCM studies discussed here were small molecules,
protease peptide substrates are also amenable to PCM. This has been demonstrated
recently by Prusis et al. (2008, 2013) to study the enzyme kinetics parameters for
designed small peptide substrates on four dengue virus NS3 proteases using PCM
modelling. It was found that the PCM models for Km and Kcat were significantly
different. Therefore, by optimizing peptide amino acid properties important for Km
activity it was possible to improve peptide affinity to protease, while preventing the
catalytic activity of the proteases on the peptides.

These studies [Prusis et al. (2008, 2013); Westen et al. (2013b)] are some of the few
reports in which predictions have been validated prospectively, demonstrating the
predictive power of PCM in different scenarios.
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.1.4 Novel Techniques and Applications in PCM

.1.4.1 Novel target similarity measure

In the context of GPCRs, studies developing better similarity metrics have helped
to determine key binding residues within the GPCR trans-membrane (TM) helical
bundle [Frimurer et al. (2005); Gloriam et al. (2009); Surgand et al. (2006)], have aided
intra family similarity determination using cavity fingerprints [Andersson, Chen,
and Linusson (2010)], and have fueled high-throughput homology models that sup-
ported cavity detection programs [Andersson, Chen, and Linusson (2010); Glinca and
Klebe (2013); Liu et al. (2008); Weill and Rognan (2009)]. PCM approaches including
these features have also helped in off-target predictions, and in target prediction
for GPCR-focused combinatorial chemolibraries [Reutlinger et al. (2014); Weill (2011)].

The binding site focused techniques used allowed for the identification of or-
thosteric and allosteric sites on the same target for different ligand families. In this
line, Gao et al. (2013) obtained the higher predictive ability with models trained
on trans-membrane identity descriptors (Q2 = 0.74) over z-scales (Q2 = 0.72) when
modelling the inhibition constant of 9 human aminergic GPCRs and 128 ligands,
(310 ligand-target combinations). Similarly, Shiraishi et al. (2013) revealed specific
chemical substructures binding to relevant TM pocket residues, which it is not only
relevant to mutational analysis but also serves as a complementary approach to
Structure-Based Drug Discovery (SBDD) [Shiraishi et al. (2013); Yabuuchi et al. (2011)].
TM identity descriptors and TM kernels behave more discriminatingly than z-scales
for GPCRs and allow identification and interpretation of GPCR residues associated
with binding of ligands (of a particular chemotype). Therefore, the identification of
chemical moieties and residues involved in ligand binding enables the development
and optimization of GPCRs inhibitors with respect to both potency and selectivity.

.1.4.2 Including 3D information of protein targets in PCM

The binding of a ligand to a protein is a complex process, governed on the structural
level by the 3D composition of the protein binding site, the 3D conformation of the
ligands approaching, and the complementarity of their pharmacophoric features.
Hence it is expected that inclusion of spatial information from the protein binding
sites would improve the predictive power of PCM. Unfortunately, this approach is
frequently limited by the lack of high quality 3D structures, poor understanding of
ligand-induced conformational changes, and inaccurate superimposition of protein
structures. The latter can be (partly) overcome by the use of alignment-free protein
descriptors [Andersson, Gustafsson, and Strömbergsson (2011); Weill and Rognan
(2009)], but usually at the cost of lower resolution, loss of target-related information
and poor interpretability.
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Jacob et al. (2008) found no improvement through the use of 3D information.
In this study an analysis of 2,446 ligands interacting with 80 human GPCRs was
performed using a linear vector representing conserved amino acids in the binding
pockets. While the binding pocket kernel implicitly encodes 3D information, the
spatial arrangements were derived from the comparison to only two template pro-
teins. Overall, the 3D kernels ( 77% prediction accuracy) did not show improvements
compared to lower dimensional protein descriptions ( 77% prediction accuracy with
a protein similarity kernel). Likewise Wassermann, Geppert, and Bajorath (2009)
found little improvement using 3D information in their analysis of interactions of 12

proteases with 1,359 ligands using the TopMatch similarity score [Sippl and Wieder-
stein (2008)], which used all amino acids within 8 Å around the catalytic residues
to describe the target proteins. This 3D description did not perform better ( 61%
recovery rate) than the sequence ( 57%) and protein class-based ( 62%) kernels used
in this publication.

Conversely, early work by Strömbergsson et al. (2006) used local protein sub-
structures, encoded as motifs of amino acid stretches, which are closer than 6.5 Å
to each other. This local substructure method showed for a set of 104 enzymes an
improvement over the use of global SCOP (Structural Classification of Proteins) folds
and the RMSE values on the external validation set decreased from 2.06 to 1.44 pKi
units. Additionally, it was found that local substructures close to the ligand binding
sites were assigned more importance in the models than more distant ones, which
is intuitively understandable. Similarly, Meslamani and Rognan (2011) did find an
improvement by using 3D information. 581 diverse proteins were described by the
3D cavity descriptor FuzCav [Weill and Rognan (2010)], which is a vector of 4,834

integers reporting counts of pharmacophoric feature triplets mapped to Cα-atoms
of residues lining the binding site. The use of cavity 3D kernels showed a clear
advantage (F-measure 0.66) over sequence-based descriptions (F-measure 0.54) in
predicting target-ligand pairings for a large external test set (>14,000 ligands, 531

targets), especially in local models. This difference seems to be even more pronounced
for data sets with limited ligand data (<50 ligands). Likewise, a recent study by
[Subramanian et al. (2013)] described the superimposed binding sites of 50 (unique)
kinases by molecular interaction fields derived from knowledge-based potentials and
Schrodinger’s Water-Maps [Hoppe, Steinbeck, and Wohlfahrt (2006); Robinson, SH,
and Farid (2010)]. Also in this example a significant improvement for 3D methods
(r2 = 0.66, q2 = 0.44) compared to sequence-based methods (r2 = 0.50, q2 = 0.34) was
reported. Additionally, this combination of methods allows interpretation and easy
visualization of PCM results within the context of ligands and binding pockets.

Earlier studies have not clearly shown the advantages of 3D PCM over solely
sequence-based approaches, whereas more recent studies show that including 3D
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information appears to improve performance. The particular data set used (e.g.
number of ligands), and the quality of the data provided, likely determines if there is
a possible gain in this type of description. However, the constantly increasing number
of protein structures, more robust alignment-free methods (e.g. Nisius and Gohlke
(2012) and Andersson, Gustafsson, and Strömbergsson (2011)), and introduction of
protein descriptors with easier interpretability (e.g. Desaphy et al. (2013)), might help
the interpretation and the visualization of PCM models in the future.

.1.4.3 PCM in predicting ligand binding free energy

The application of PCM to docking might not be directly obvious. Yet, the concepts
used in PCM, quantitatively relating ligand and protein-side descriptors to affin-
ity/activity, very much resemble empirical scoring functions. Molecular docking
has led to the discovery of active compounds [Laine et al. (2010)], yet it suffers from
several well described limitations, among which is the relatively low performance
in prediction of interaction energies [Yuriev, Agostino, and Ramsland (2011); Yuriev
and Ramsland (2013)]. In contrast, PCM models can predict the difference in Gibbs
free energy (∆G = −RT ln Kd) between the initial state, where the protein and the
compound do not interact, and the final ligand-target complex. Therefore, the princi-
ples of PCM can be applied to develop PCM-based scoring functions.

Kramer and Gedeck (2011a) demonstrate this concept by building a structure-
based PCM scoring function. Their method inducts a bagged stepwise multiple linear
regression model with a subset of 1,387 protein-ligand complexes extracted from the
PDBbind09-CN database [Wang et al. (2004)]. Subsequently a new compound-target
interaction descriptor based upon distance-binned Crippen-like atom type pairs was
introduced. The best model outperformed commercially available scoring functions
assessed on the PDBbind09 database and was able to explain 48% of the variance of
the external set, providing a RMSE equal to 1.44 Kd units. Although similar methods
had been previously proposed [Artemenko (2008); Das, Krein, and Breneman (2010);
Deng, Brenema, and Embrechts (2004); Sotriffer et al. (2008); Zhang, Golbraikh, and
Tropsha (2006)], this was the first study where a sufficiently large validation was
accomplished to ascertain the model’s predictive power. Additionally, the implemen-
tation of bagged stepwise multiple linear regression (MLR) and PLS enabled the
evaluation of the importance of ligand and target descriptors for the PCM model.

Similarly, a subsequent study reported the development of a scoring function
based upon the CSAR-NRC HiQ benchmark data set (http://csardock.org) [Kramer
and Gedeck (2011b)]. The best model exhibited acceptable statistics with a cross-
validated R2 = 0.55 and RMSE = 1.49 [Kramer and Gedeck (ibid.)]. Finally, Koppisetty
et al. (2013) were able to predict for the first time ligand binding free energies where
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the enthalpic and entropic contributions for a given binding event were deconvoluted.
Therein, the authors demonstrated the importance of including ligand descriptors
(QIKPROP and LIGPARSE calculated in Schrodinger suite [Schrödinger (2013)]) to
the models in addition to 3D ligand-protein interaction descriptors.

As demonstrated above, PCM overlaps with methods that are originally coming
from the structure-based field due to PCM describing in principle any method to
relate ligand features and protein/target features on a large scale to an output
variable of interest. Another source of complementary information is the information
from divergent and convergent homologous sequences. This allows PCM models to
extrapolate the bioactivity of ligands to the same protein target in different species as
shown below.

.1.4.4 PCM as an approach to extrapolate bioactivity data between
species

Given that PCM considers bioactivity data from related targets, these related targets
can also include similar targets from different species. Given a group of related tar-
gets, a distinction can be made from an evolutionary standpoint between gene pairs
originated from intra-species gene duplication events (paralogy, within species) or
from speciation events (orthology, across species) [Koonin (2005)]. Since orthologous
genes will tend to maintain the original function, binding modes will also tend to
be more conserved than in paralogues, where the original protein function is less
conserved.

This has also been shown to be true for affinities of ligands binding to these
orthologues by analyzing bioactivity data in a recent study by Kruger and Overing-
ton (2012). The authors demonstrate that the same small molecule exhibits similar
binding affinities when acting on orthologues (though some exceptions were found,
e.g. Histamine H3 receptor). Moreover, the authors verified that larger differences in
binding affinity are observed for paralogues with respect to orthologues by analyzing
the differences in binding for a total number of 20,309 compounds on 516 human
targets, with 651 being the final number of orthologous pairs. These observations
aid in optimizing ligands for their interaction with conserved residues across a given
protein family, thus making them more desirable lead compounds (thus avoiding
their interaction with unrelated targets) [Lounkine et al. (2012)].

In the field of PCM, Lapinsh et al. (2002) demonstrated for the first time the
capability of PCM to successfully combine the pKi values of 23 organic compounds
on 17 human (paralogues) and 4 rat (orthologues) aminergic GPCRs. The authors
were able to deconvolute the binding site interactions into two types, namely: those
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involved in specificity and those involved in affinity. Therefore, compound design can
be envisioned from the viewpoint of affinity or specificity. Similarly, the contribution
to compound affinity of TM regions involved in the interactions of aminergic GPCRs
and compounds was also quantified. For example, TM regions 2, 3, 4, 6 and 7 are
responsible for low overall affinity in β2 receptors; however, the same regions are
positive contributors to overall high affinity in α1 receptors. Westen et al. (2012)
built on this by including in a PCM model bioactivity data from four human and
rat adenosine receptors (A1, A2A, A2B and A3). The authors screened a commercial
chemolibrary composed of 791,162 compounds with the most predictive PCM model
obtained, which exhibited Q2 and RMSE values of 0.73 and 0.61 pKi units, respec-
tively. Prospective experimental validation led to the discovery of new high-affinity
inhibitors, among which a compound with a pKi value of 8.1 on the A1 receptor.

Finally (chapter .5), the authors have applied PCM to model the pIC50 value of
3,228 distinct compounds on 11 mammalian cyclooxygenases (COX) using ensemble
PCM [Cortes-Ciriano et al. (2015)]. The final ensemble PCM model, trained on the
cross-validation predictions of a panel of 282 RF, SVM and Gradient Boosting Ma-
chine (Gradient Boosting Machine (GBM)) models, each one trained with different
values of the hyperparameters, led to predictions on the test set with RMSE and R20
values of 0.71 and 0.65, respectively. Additionally, the description of compounds with
unhashed Morgan fingerprints permitted a chemically meaningful model interpreta-
tion, which highlighted chemical moieties responsible for selectivity towards COX-2
in agreement with the literature [Cortes-Ciriano et al. (ibid.)].

The ability of PCM to embrace multispecies information using only sequence
descriptors allows the creation of models capable to predict compound activity on
targets with little available data points on the human orthologue. The existing large
body of bioactivity data collected on organisms other than human (e.g. rat and mouse)
provides a good resource. This data was derived from the traditional usage of rodent
tissues as a source of proteins for biochemical and pharmacological assays. Moreover,
the difference in bioactivity between a compound acting on its human target with
respect to its orthologue in another species (e.g. the CCR1 antagonist BX471) hampers
the utilization of animal models to study human diseases at a molecular level [Horuk
(2009)]. Thus, PCM can help not only to reduce the number of experiments required
to complete the compound-target interaction matrix [Menden et al. (2013)], but also
appears as a practical tool to understand complex diseases in scenarios where current
experimental settings are insufficient (e.g. undeveloped enzymatic assays for a given
protein). Similarly, PCM might be applied as a supporting tool in allometric scaling
to predict the behavior of clinical candidate drugs in humans [Kagan et al. (2010);
Zhang, Surapaneni, and Guan (2012)]. Nonetheless, the extrapolation capabilities of
PCM models are subjected to the completeness of the bioactivity matrix ( .1.1). In
practice, even though high performance can be attained with a matrix completeness
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level below 3%, the variability of the chemical space plays a key role in determining
the extrapolation capability of a PCM model on the chemical side [Cortes-Ciriano
et al. (2014)]. Therefore, a balance has to be found between the coverage of chemical
and target space, and the degree of completeness of the bioactivity matrix.

.1.4.5 PCM applied to pharmacogenomics and toxicogenomics data

The biological space in a PCM model can be further extended from single proteins
to whole cell-lines. A step forward in this regard is the inclusion of cell-line de-
scriptors in a PCM model in order to model cell-line sensitivity to cancer drugs or
toxic compounds. Given that individual cell-lines have been shown to demonstrate
diverse profiles with respect to drug sensitivity, the variability on the cell-line side,
which constitutes now the target side of PCM, can be exploited to concomitantly
predict both drug potency and cell-line selectivity [Cortes-Ciriano, I et al. (2015)].
Additionally, PCM can also facilitate the interpretation of differential gene expression
or mechanism of toxicity of compounds [Lapinsh et al. (2013)], as will be shown below.

The availability of pharmacogenomics and toxicogenomics data has enabled
predictive modelling of cancer cell-line sensitivity. These models consider as the
dependent variable the response of a whole cell to a given drug, such as in the form
of EC50 values, which determines the concentration at which a compound exerts
half of its maximal effect. Therefore, the target component in the PCM model is no
longer a single protein, described in terms of binding site properties, but by more
complex (usually genomic) features such as oncogene mutations, cell karyotypes or
gene expression levels.

In the context of human cell-lines, the work on the United States National Can-
cer Institute (NCI)-60 cell-line panel, which covers cells from 9 different cancer
types, has helped to find novel molecular determinants of drugs sensitivity, as well
as to develop drugs targeting concrete tumor types (disease-oriented); e.g. 9-Cl-2-
methylellipticinium acetate for central nervous system tumours Shoemaker 2006.
However, the number of cancer cell-lines with drug sensitivity data has vastly in-
creased with the release in 2012 of two major cancer cell-line panels, namely: the
CCLE consisting of 947 cancer cell-lines and the Genomics of Drug Sensitivity in
Cancer (GDSC) consisting of 727 cancer cell-lines [Basu et al. (2013)]. The setup
of both cell-line collections, sharing a total number of 471 cell-lines, enabled large
scale pharmacological profiling thereof. In that way, Barretina et al. (2012) measured
the chemotherapeutic effect of 24 drugs on the CCLE panel, while Garnett et al.
(2012), tested 130 chemical compounds on the GDSC cell-line collection. In both cases,
the cell-lines were further characterized genomically, by measuring gene expression
data, chromosomal copy numbers, oncogene mutations, and microsatellite instability.
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Recently, Basu et al. (2013) measured the sensitivity of 242 cell-lines form the CCLE
panel to an Informer Set composed of 354 diverse molecules, including 54 clinical can-
didates and 35 United States Food and Drug Administration Agency (FDA)-approved
drugs. The sensitivity data is publicly available at the Cancer Therapeutics Response
Portal (CTRP, http://www.broadinstitute.org/ctrp).

The availability of public bioactivity profiles for compounds in combination with
detailed genetic information of the cell-lines constitutes a scenario where machine
learning can be applied for predictive cell-line sensitivity modelling. In this area,
Menden et al. (2013) exploited cell-line drug sensitivity information from the GDSC
and incorporated genomic features in combination with chemical descriptors in non
parametric models, i.e. neural networks and Random Forests. These models allowed
the authors to determine the missing drug response (IC50) values in the original
cell-line compound matrix. The best model predicted the sensitivity on the external
(blind) test with a correlation between observed and predicted of 0.64, while a value
of 0.61 was obtained when predicting the response on a tissue unseen by the model
in the training phase. Recently, the authors have integrated PCM random forest
models with conformal prediction for the large-scale prediction of cancer cell line
sensitivity with error bars [Cortes-Ciriano, I et al. (2015); Norinder et al. (2014)].
Compounds were described with Morgan fingerprints, whereas a total of 16 cell-line
profiling data sets were benchmarked for their predictive signal. Gene expression
data constantly led to the highest predictive power. Interestingly, the authors found
statistically significant differences in predictive power between PCM models trained
on cell-line identity fingerprints (inductive transfer knowledge between cell-lines
[Brown et al. (2014)]) and cell-line profiling data, suggesting that the explicit inclusion
of cell-line information improves the prediction of cell-line sensitivity. Of practical
relevance, the predicted bioactivities enabled the prediction of growth inhibition pat-
terns on the NCI60 panel and the identification of genomic markers of drug sensitivity.

The cancer cell-line collections described above still remain to be fully exploited.
While they constitute a great opportunity for PCM to integrate both drug sensitivity
and genomics data in single models, this data integration still remains challenging
due to the disagreement of drug sensitivity measurements between the CCLE and
the GDSC [Haibe-Kains et al. (2013); Weinstein and Lorenzi (2013)]. Overall, the
principles of PCM, namely the combination of chemical and cell-line (target) infor-
mation in single machine learning models, are suited to integrate and exploit the
increasing availability of drug sensitivity measurements on cancer cell-line panels.
The application of PCM in pharmacogenomics is a recent sub-field of which the
authors are certain it will grow in the near future. Moreover, in silico drug sensitivity
prediction is a cost-efficient method capable to relate large-scale pharmacogenomics
data, which is likely to foster the identification of chemotherapeutic lead compounds
in both the academic and pharmaceutical cancer drug discovery pipeline.
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.1.4.6 Other potential PCM applications

As reviewed above PCM has been applied in a wide range of drug discovery settings,
yet more applications remain unexplored. The prediction of compound toxicity on
cell-lines (toxicogenomics) [Heijne et al. (2005); McHale et al. (2010); Suter, Babiss, and
Wheeldon (2004)], beyond the aforesaid cancer cell-line collections, is also amenable to
PCM. Recently, Kaggle (https://www.kaggle.com/competitions.), a crowd-sourcing
platform, hosted two competitions in the field of chemoinformatic modelling. Two
pharmaceutical companies, Boehringer Ingelheim and Merck, provided structure-
activity relationship data sets to the community in order to find the most predictive
machine learning algorithms. The Merck challenge consisted of 15 data sets, each of
which containing the bioactivities of a series of molecules on a different target. The
winners of the competition applied restricted Boltzmann machines (deep learning)
[Hinton, Osindero, and Teh (2006)]. Interestingly, the winning team noted that the
similarity between the data sets (targets) could be exploited by inducting a single
neural network with all data sets, which output a layer with fifteen different units
(neurons). On the other hand, Boehringer Ingelheim provided a data set with 1,776

compound descriptors. The response variable was binary, a value of 0 corresponded
to a compound not eliciting the expected activity whereas a value of 1 corresponded to
a compound showing activity. In this case, the highest predictive ability was obtained
with model ensembles (Random Forests, Gradient Boosting Machines, and k-Nearest
Neighbors). In a similar vein, the modelling challenge DREAM8 was proposed to the
scientific community to model the toxicity of 106 compounds on 884 lymphoblastoid
cell-lines, which were characterized by SNP genotypes and gene transcript levels
quantified by RNA sequencing [DREAM: Dialogue on Reverse Engineering Assessment
and Methods project; Norman et al. (2011); Stolovitzky, Monroe, and Califano (2007)].

As described in the previous sections, a large variety of protein targets have been
modelled using PCM. Beyond the modelling of the activity of compounds on targets
of diverse nature, the interaction between nucleic acids and proteins is also amenable
to PCM modelling. In this context, Bellucci et al. (2011) predicted protein-RNA
interaction based upon the physicochemical properties of both the polypeptide and
the nucleotide chains. However, to best of our knowledge, few studies have been
published in this area.

.1.5 PCM Limitations

The usefulness of PCM in computational drug design has been extensively proven in
silico and in prospective experimental validation. Nevertheless, there are a number of
limitations that should not be overlooked. Publicly available bioactivity databases
contain a non-negligible degree of experimental uncertainty [Kalliokoski et al. (2013);
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Kramer and L (2012); Kramer et al. (2012); Tiikkainen et al. (2013)], which should be
certainly included in the modelling phase, as recently proposed by [Cortes-Ciriano
et al. (2014)]. Similarly, intervals of confidence for individual predictions should
be reported, which can be calculated with algorithm-dependent approaches, e.g.
Gaussian Processes [Cortes-Ciriano, I et al. (2015)], or with algorithm-independent
techniques, such as conformal prediction [Norinder et al. (2014)].

In addition to being informative for biologists, these confidence intervals consti-
tute a valuable source of information about the applicability domain (AD) of a given
model [Cortes-Ciriano et al. (2014)]. The AD is defined as the amount of ligand and
target space to which a given model can be reliably applied. Thus, in addition to
the model validation schemes presented above, an estimation of model AD should
accompany any reported model in order to be of practical usefulness.

Another limitation which is often inherently related to bioactivity data is that of
data skewness. Some data sets mostly report active [Morgan, Falcon, and Gentle-
man (GSEABase: Gene set enrichment data structures and methods)] or inactive molecules
[Li, Wang, and Bryant (2009)], and thus compound-target combinations untested
experimentally are normally considered as inactive or active interactions, respectively.
Moreover, public data in general tend to favor a relatively small number of proteins
classes that have been extensively explored (e.g. GPCRs and kinases). As such, for
some targets the available data might not be sufficient for PCM projects given that
imbalanced data sets can lead to models with high negative or false positive rates.
Nevertheless, the modelling of cell-line sensitivity has shown that PCM displays high
interpolation power, as the accuracy of prediction reached a plateau when 20% of
the whole compound-cell-line matrix was included in the training set [Menden et al.
(2013)].

Beyond the quality of the data, the descriptor choice still constitutes a field of
active research, specially with respect to protein descriptors, which development
will deeply influence the success of PCM in the coming years. A recent paper by
Brown et al. (2014) suggested that PCM mostly relies on inductive transfer knowledge
and that protein descriptors mostly act as labels and do not account for structural
differences among them. However, we have recently shown that both amino acid
descriptors and cell-line profiling data sets account for structural information of
eukaryotic, mammal and bacterial DHFR, and cancer cell-lines, where the difference
in performance on the test set between inductive transfer and PCM models was
statistically significant [Cortes-Ciriano, I et al. (2015); Paricharak et al. (2015)].

PCM requires the concatenation of ligand and target descriptors, and sometimes
also cross-terms, which substantially increases the dimensionality of the input space
with respect to QSAR. Although this higher dimensionality might lead to overfitting
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in PCM [Hawkins et al. (2006)], in practice, PCM has been shown to exhibit higher
predictive power on the test set than QSAR [Cortes-Ciriano et al. (2014); Westen et al.
(2012)].

.1.6 Conclusions
PCM is becoming a mature technique that allows the simultaneous use of both the
chemical and the biological spaces in predictive bioactivity modelling. Both retrospec-
tive validation and prospective validation have underscored the advantages of PCM
over ligand-based methods. However, it is the extensive expertise developed in the
fields of QSAR and chemoinformatics on which PCM can build. Nowadays, a wide
choice of properly benchmarked ligand and protein descriptors is available as well
as different linear and nonlinear modelling algorithms. Nonetheless, conceptually
diverse machine learning algorithms (e.g. GP), the inclusion of three-dimensional
information of both ligands and targets, and the use of pharmacogenomics data are
still under exploration.

Overall, the ability of PCM to become a customary technique in both the public
and the private domain in the following years will certainly rest on its capability
to capitalize on biological data of diverse nature, including personalized omics data
(personalized medicine), in combination with structural data of ligands, be those
small molecules, antibodies or peptides.
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In general, predictive bioactivity modelling studies (among which PCM) share a
common algorithmic structure, which can be summarised in 4 model generation

steps:

• Compound structure normalization (section .2.1)

• Compound and target descriptor calculation (section .2.2)

• Preprocessing, feature selection, model training and validation (sections .2.3,
.2.4, .2.6, .2.7 and .2.8)

• Bioactivity prediction for new molecules

Although many programming languages provide libraries for machine learning
and statistical modelling, the R programming language provides a flexible platform
for statistical analyses, and its applicability in medicinal chemistry has been reviewed
elsewhere [Mente and Kuhn (2012)]. Although R is extensively used in diverse biolog-
ical domains, e.g. genomics, the availability of R packages for cheminformatics and
medicinal chemistry is limited. Moreover, it does not exist a unified and open-source
framework in R for the generation and validation of predictive bioactivity models
comprising all four steps mentioned above. Nonetheless, R still constitutes the most
frequent choice in the medicinal chemistry literature for compound bioactivity and
property modelling [Mente and Kuhn (ibid.)].

In order to fulfill this shortage, we have created the R package camb: Chemically
Aware Model Builder [Murrell et al. (2014)]. camb provides a complete and open
framework in R to:

• Manipulate compound structures

• Generate compound, amino acid, and protein descriptors

• Train and validate QSAR, Quantitative Structure-Property Relationship (QSPR),
QSAM, PCM and chemogenomic models

• Process and make predictions for external molecules

• Visualize chemical structures and the output of varied statistical analyses
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Thus, camb enables the generation of predictive models (QSAR, QSPR, QSAM and
PCM) starting with: chemical structure files, protein sequences (if required), and the
associated properties or bioactivities.

The present chapter provides an overview of the aforementioned 4 modelling
steps, both theoretically and in practice, as each step is related (when possible) to the
correponding camb functions. A tutorial on how to use camb for the generation of a
PCM model is provided with the package documentation.

.2.1 Compound standardization

Chemical structure representations are highly ambiguous, even if, e.g. canoni-
cal SMILES are used for representation -for example when considering aromatic-
ity of ring systems, protonation states, and tautomers present in a particular en-
vironment. Hence, standardization (also termed as normalization) is a step of
crucial importance when either storing structures, which should later be usable
e.g. for structural searches, but also before descriptor calculation, such as in the
current case, since many molecular properties are dependent on a consistent as-
signment of the above criteria in the first place. If one looks into large chemi-
cal databases one can see how important this step is -a rather good explanation
for PubChem [Wang et al. (2012)], one of the largest public databases around,
can be found at this address: http://pubchemblog.ncbi.nlm.nih.gov/2014/06/19/
what-is-the-difference-between-a-substance-and-a-compound-in-pubchem/. Hence,
standardizing chemical structures is crucial in order to provide consistent data for
later modelling steps.

This step can achieved by the StandardiseMolecule function of the R package camb
[Murrell et al. (2014)]. The function StandardiseMolecules enables the depiction of
molecular structures in the same (i.e. standardized or normalized) form. camb makes
use of Indigo’s InChI [InChI (2013); Indigo (2013)] plugin to represent all tautomers in
canonical SMILES by converting molecules to InChI, discarding tautomeric informa-
tion, and converting back to SMILES. The different arguments of this function allow
control over the maximum number of fluorines, chlorines, bromines and iodines
the molecules can contain in order to be retained for training. Inorganic molecules
(those containing atoms not in the following set: {H, C, N, O, P, S, F, Cl, Br, I}) are
removed if the argument remove.inorganic is set to "TRUE", which is the default value.
Additionally, upper and lower limits for the molecular mass can be set with the
arguments min.mass.limit and max.mass.limit.
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.2.2 Descriptors

Figure .2.1: Illustration of the descriptors used as input features in PCM.
Compound-target pairs are encoded by the horizontal stacking of com-
pound and target descriptors. The resulting matrix is used as input data
to train a single machine learning model.

.2.2 Descriptors

The ligand-target interaction space can be visualized as a matrix containing the activ-
ities of all possible ligand-target combinations (Figure .1.1 on page 10) [J E S Wikberg
(2004)]. PCM attempts to predict the activity of a ligand on any target and vice versa,
the activity of any ligand on a given target. The integration of these independent
compound-target interactions is however possible in PCM due to the combination of
chemical and target information in a single machine learning model. In practice, this
is performed by horizontally stacking compound and target descriptors (Figure .2.1).
This combination of chemical and biological information permits the extrapolation in
either (or both) the chemical or target space (to the extent the training data allow).

.2.2.1 Target descriptors

As was touched upon above, PCM is rather flexible and can deal with a multitude
of different target descriptors. Here, we will summarize some of the more common
descriptors and later on in the review focus on novel descriptor types, for a full
overview of established descriptors please see [Westen et al. (2011)]. By far the most
common descriptors depend on a multiple sequence alignment of the sequences
[Lapinsh et al. (2005)]. This type of protein descriptors are usually obtained from
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a concatenation of physicochemical descriptors of the amino acids composing the
binding site of the proteins considered, to which we refer in the following as amino
acid descriptor sets.

Most amino acid descriptor sets have been developed by applying principal com-
ponent analysis (PCA) over a matrix comprising properties for individual amino acids.
The resulting principal components (PCs) are then used as amino acid descriptors,
which generally explain > 80% of the variance present in the original matrix [Westen
et al. (2013a)]. These amino acid descriptor sets can be categorized depending on the
amino acid properties from which they are derived (Table .2.1). The first category
comprises descriptor sets obtained by applying PCA on a matrix of physicochemical
descriptors. The most common set of this category are 3 and 5 z-scales [Sandberg
et al. (1998)], where 3 and 5 refer to the number of PCs kept. This descriptor set was
derived by applying PCA on a matrix comprising physicochemical properties of 87

amino acids such as thin-layer chromatography and Nuclear Magnetic Resonance
(RMN) data. Althoug the interpreation of z4 and z5 is not obvious, the PCs of z-scales
are related to the following properties: z1 lipophilicity, z2 bulk, z3 charge and polarity,
z4 and z5 electronegativity, electrophilicity, hardnees and heat of formation.

Similarly, Protein Fingerprint (ProtFP) were also derived from PCA analysis of
58 physicochemical descriptors obtained from the AAindex database [Westen et al.
(2013a)], but only considering the 20 natural amino acids. The FASGAI descriptor
set [Liang and Li (2007)], from Factor analysis scales of generalized amino acid
information, was derived from 335 physicochemical properties of these 20 amino
acids. However, the dimensionality was reduced with factor analysis instead of PCA
[Liang and Li (ibid.)]. The second category is composed by ST-Scales [Yang et al.
(2010)] and T-Scales [Tian, Zhou, and Li (2007)], which were derived from a PCA
analysis on 167 and 135 amino acid topological properties, respectively.

The third category is more heterogeneous and is composed of the following de-
scriptor sets: MS-WHIM, VHSE, and BLOSUM. The MS-WHIM (MS-WHIM) set is de-
rived from 36 electrostatic potential properties calculated from the three-dimensional
structure of the amino acids [Zaliani and Gancia (1999)]. The VHSE descriptor set
(Principal Components Score Vectors of Hydrophobic, Steric, and Electronic proper-
ties) are computed by PCA analysis of 50 physicochemical properties, comprising
18 hydrophobic, 17 steric and 15 electronic properties [Mei et al. (2005)]. Finally, the
BLOSUM descriptor set was derived by a VARIMAX analysis of physicochemical
properties of the 20 natural amino acids and from the BLOSUM62 alignment matrix
[Georgiev. (2009)]. Further details about these descriptors and their predictive signal
in PCM can be found in two recent publications [Westen et al. (2013a,b)].

Given than in PCM the information from several proteins is combined, it is
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Descriptor set Type Derived by Number
of PCs

Variance
ex-
plained

AAs
covered

ref

BLOSUM∗ Physicochemical
and substitution
matrix

VARIMAX 10 n/a 20 Georgiev. (2009)

FASGAI∗ Physicochemical Factor Analysis 6 84% 20 Liang and Li (2007)
MSWHIM∗ 3D electrostatic po-

tential
PCA 3 61% 20 Zaliani and Gancia

(1999)
ProtFP (PCA 3 PCs) Physicochemical PCA 3 75% 20 Westen et al. (2012a)
ProtFP (PCA 5 PCs) Physicochemical PCA 5 83% 20 Westen et al. (2012a)
ProtFP∗ (PCA 8 PCs) Physicochemical PCA 8 92% 20 Westen et al. (2012a)
ProtFP (Feature) Feature based Hashing n/a n/a 20 Westen et al. (2013a)
ST-scales∗ Topological PCA 5 91% 167 Yang et al. (2010)
T-scales∗ Topological PCA 8 72% 135 [Tian, Zhou, and Li

(2007)]
VHSE∗ Physicochemical PCA 8 77% 20 Mei et al. (2005)
z-scales∗ (3 PCs) Physicochemical PCA 3 n/a 87 Sandberg et al. (1998)
z-scales∗ (5 PCs) Physicochemical PCA 5 87% 87 Sandberg et al. (1998)
z-scales (Binned) Physicochemical PCA followed

by binning
n/a n/a 20 Sandberg et al. (1998)

Table .2.1: Amino acid descriptor sets used in PCM (adapted from Westen et al.
(2013a)). Those descriptor sets marked with ∗ can be computed with the R
package camb.

normally required to align the sequence of the difference binding sites. This can
be done using multiple sequence alignment by established tools such as ClustalW
[Sievers et al. (2011)]. In this way, each column in the descriptor matrix corresponds
to the same amino acid position in the alignment. A value of zero is normally used
to describe gaps appearing in the multiple sequence alignment [Murrell et al. (2014)].
The reader is referred to a pair of benchmarking studies recently published for more
information on this type of descriptors [Westen et al. (2013a,b)].

When no reliable alignment is possible, target descriptors can be only calculated
using the whole protein sequence [Rao et al. (2011)]. The usage of only primary
sequence descriptors to predict protein-protein interactions was shown to be efficient
by Shen et al. (2007) who were able to train a SVM model based on more than 16,000

protein-protein pairs described with conjoint triad feature amino acid descriptors.
Similarly, analyses of sequence variability among targets exhibiting uncorrelated
bioactivity profiles, enabled the characterization of binding pocket residues energeti-
cally important for ligand binding and selectivity for GPCRs and kinases [Kuhn et al.
(2007); Sheinerman, Giraud, and Laoui (2005); Surgand et al. (2006)].

If present, structural information from crystallographic structures can be used
by selecting residues near the ligand binding site (e.g. 5 or 10 Å sphere around the
co-crystallized ligand) [Kruger and Overington (2012); Lapinsh et al. (2005); Murrell
et al. (2014)]. Subsequently, the corresponding residues for other targets can be
obtained from sequence alignment. This semi-structural method is less reliable than
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a full structural superposition and alignment gaps might appear. Paradoxically, the
former appears in practice to have better performance, which might be due to the
fact that domains not involved in ligand binding are not considered [Cortes-Ciriano
et al. (2015); De Bruyn et al. (2013); Horst et al. (2011); Westen et al. (2012b)]. To
date, binding sites in PCM models have been derived from single crystallographic
structures [Ain et al. (2015); Cortes-Ciriano et al. (2015); Paricharak et al. (2015);
Westen et al. (2012b)], thus ignoring the intrinsically dynamic nature of proteins.
However, databases such as Pocketome [Kufareva, Ilatovskiy, and Abagyan (2012)]
might facilitate the introduction of dynamic properties of protein binding sites in
PCM models, as they contain ensembles of conformations for druggable binding sites
extracted from co-crystal structures in the PDB. Similarly, the identification of protein
cavities and the analysis of their dynamics could also contribute to better describe
protein binding sites [Desdouits, Nilges, and Blondel (2015)]. To the best of my
knowledge, descriptors accounting for the dynamic properties of binding site amino
acids have not been reported in the literature. Including this dynamic information
might lead to a better description of protein targets in cases where small molecule
binding is dependent on the binding site conformation, e.g. kinases.

Beyond sequence similarity, targets have also been described in different ways to
model compound bioactivities on multiple targets [Kalinina and Wichmann (2011);
Meslamani and Rognan (2011); Weill et al. (2011); Willighagen et al. (2011); Yabuuchi
et al. (2011)]. Among others, targets have been characterized by:

• Structural pocket similarity analyses

• Topology analyses of both compound-target and protein-protein interaction
networks

• The combination of pharmacophoric and interaction fingerprints

• 3D alignment-free methods of binding sequences [Gloriam et al. (2009); Kinnings
and Jackson (2009); Mestres et al. (2009); Subramanian et al. (2013); Weill and
Rognan (2009)]

The availability of a plethora of target descriptors enables the application of PCM
to targets families where, for instance, little structural information is available. In
cases where targets are not proteins, but more complex biological systems, such as
cell-lines (chapter .6), the target space can be described with omics data, namely:
CNV data, gene expression levels, exome sequencing data, target fingerprints, protein
abundance, and miRNA expression levels [Cortes-Ciriano, I et al. (2015); Menden
et al. (2013)].

In camb, 8 amino acid descriptor sets can be computed (indicated with ∗ in
Table .2.1). Multiple sequence alignment gaps are supported by this camb functionality.
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Descriptor values for these gaps, indicated with ’-’, are encoded with zeros. Similarly,
the function SeqDescs permits the calculation of 13 types of whole protein sequence
descriptors from UniProt identifiers or from amino acid sequences [Xiao and Xu
(2014)], namely:

• Amino Acid Composition (AAC)

• Dipeptide Composition (DC)

• Tripeptide Composition (TC)

• Normalized Moreau-Broto Autocorrelation (MoreauBroto)

• Moran Autocorrelation (Moran)

• Geary Autocorrelation (Geary)

• CTD (Composition/Transition/Distribution) (CTD)

• Conjoint Traid (CTriad)

• Sequence Order Coupling Number (SOCN)

• Quasi-sequence Order Descriptors (QSO)

• Pseudo Amino Acid Composition (PACC)

• Amphiphilic Pseudo Amino Acid Composition (APAAC)

Further details about these descriptors can be found in Xiao and Xu (ibid.).

.2.2.2 Ligand descriptors
Similarly, from the ligand side a large number of descriptors have been employed
in PCM in the last decade [Karelson (2000); Todeschini and Consonni (2008)]. Cir-
cular fingerprints are the most commonly applied due to both their consistent good
performance and interpretability when using the unhashed (keyed) version [Glenn
et al. (2006); Rogers and Hahn (2010)]. In addition, they have been shown to provide
high retrieval rates in comparative studies [Bender et al. (2009); Koutsoukas et al.
(2013)]. These fingerprints encode compound structures by considering radial atom
neighborhoods [Bender, Mussa, and Glen (2004)].

In the calculation of circular Morgan fingerprints (Figure .2.2) [Cortes-Ciriano
(2013)], all substructures in a molecule, with a maximal user-defined bond diameter,
are assigned an unambiguous integer identifier. These identifiers are then mapped
either into an unhashed or hashed array. This process is repeated for all molecules
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comprised in a given data set. For the hashed array, the position in the array where
the substructures will be mapped is given by the modulo of the division of the
substructure identifier by the fingerprint size. In the case of unhashed (keyed) finger-
prints, each bit in the fingerprint is associated to only one substructure, producing
a length of the unhashed fingerprints equal to the number of distinct substructures
present in the data set [Cortes-Ciriano (2013); Murrell et al. (2014)]. Both hashed
and unhashed fingerprints can be stored in binary and count format. Keyed circular
fingerprints enable the interpretation of models and the identification of chemical
substructures implicated in compound potency and selectivity. The performance of
models trained on hashed and unhashed circular Morgan fingerprints do not vary
significantly [Cortes-Ciriano et al. (2015); Cortes-Ciriano, I et al. (2015)]. Therefore,
we advocate for the customary usage of unhashed fingerprints in order to enhance
the interpretability of PCM models.

Next to the circular fingerprints, physicochemical descriptors, such as DRAGON
or PaDEL [A Mauri (2006); Yap (2011)], have been widely used in recent years (Table
1). Other ligand descriptors, such as atom types, topological indices, MACCs keys or
ligand shape descriptors, have been also applied in the context of PCM.

In my experience, the description of compounds with circular Morgan fingerprints
permits the generation of statistically validated PCM models but in several occasions
the addition of physicochemical properties to fingerprints has been demonstrated to
improve performance [De Bruyn et al. (2013)]. This was especially true on data sets
with a large chemical diversity, e.g. resulting from screening a diverse set or resulting
from covering a group of targets with diverse ligands.

In camb physicochemical PaDEL descriptors can be calculated with the function
GeneratePadelDescriptors, whereas the function MorganFPs permits the calculation of
hashed and unhashed Morgan fingerprints in binary and count format.

.2.2.3 Cross-term descriptors

Thirdly, some PCM studies have defined an additional class of descriptors, called
cross-terms, by multiplying ligand and target descriptors. These descriptors serve as
descriptors for the non-linear components of the interaction between ligand and target
(e.g. a hydrogen bond that can be formed in one target but not in another) [Lapinsh et
al. (2005); Prusis et al. (2006)]. Therefore, its application is advisable when using linear
modelling techniques (such as Partial Least Squares (PLS)). In the case of non-linear
techniques, cross-terms are not essential as the models should be able to capture
this information [Doddareddy et al. (2009); Westen et al. (2012b)]. Nonetheless, my
experience indicates that cross-terms might be nevertheless useful to improve model
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Figure .2.2: Illustration of the computation of circular Morgan fingerprints. A. In
the calculation of circular Morgan fingerprints, all substructures in a
molecule, with a maximal user-defined bond radius (2 in the example),
are assigned an unambiguous integer identifier. In the figure, 1 and 2

correspond to two arbitrary atoms. The atoms, namey Cl and N, are
taken as root atoms to illustrate how the the adjacent atom layers are
considered in the definition of the substructures present in the molecule.
B. The position in the array where a substructure will be mapped in the
fingerprint is given by the modulo obtained by dividing the fingerprint
integer identifier by the fingerprint size. The substructure IDs shown in
the Figure are arbitrary.
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performance when using SVM or GP even though their interpretability might not
be straightforward. For further reading on different types of descriptors applied in
PCM we refer the reader to Westen et al. (2011).

.2.3 Statistical Preprocessing

Descriptors with constant value across all data-points do not provide any predictive
signal, and thus can be removed with the function RemoveNearZeroVarianceFeatures
from the R package camb [Kuhn (2008); Kuhn and Json (2013); Murrell et al. (2014)].
Correlated descriptors provide the same amount of predictive signal. Thus, they
can be considered as redundant. In order to remove these descriptors (except for
one which is kept) the function RemoveHighlyCorrelatedFeatures from the R package
camb [Murrell et al. (2014)]. Subsequently, the remaining descriptors are centered
to zero mean and scaled to unit variance with the function PreProcess from the R
package camb. This is done given that each descriptor has a different range of values.
For instance, the range of the descriptor accounting for the number of e.g. Carbon
atoms is much smaller than that of the descriptor molecular weight. The reason for
normalizing is that these differences in the range of values can have an influence on
the importance (the weight) a model can assign to a descriptor, irrespective of its
amount of predictive signal.

.2.4 Generation of PCM Models

The values of the model parameters can be optimized with multivariate optimization
algorithms such as Monte Carlo Sampling or conjugate gradient. However, in practice,
it is computationally less expensive to optimize the value of the parameters by grid
search and k-fold Cross-Validation (CV) [Hawkins, Basak, and Mills (2003)]. In this
way, the optimized values are sufficiently close to the optimal value to permit the
generation of highly predictive models.

Recent studies recommend the usage of nested cross-validation (NCV) to report
model performance [Krstajic et al. (2014); Pahikkala et al. (2014); Park and Marcotte
(2012); Varma and Simon (2006)]. In NCV, two validation loops are nested: the inner
one serves to optimize the values of the hyperparameters through traditional k-fold
cross-validation, whereas the outer loop serves to assess the predictive ability of the
model trained on the whole training set. This procedure is repeated k times, each
time changing the composition of the training and the test sets. Thus, NCV does not
provide the best parameter combination, as in each k round the best values of the
hyperparameters might change due to the variance of the different training sets. Still,
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it provides the best estimate of the CV error as it provides an error interval [Krstajic
et al. (2014)].

In CV, the training set, which normally comprises 70% of the data, is split into k
folds by e.g. stratified or random sampling of the bioactivity values. The remaining
fold, generally 30% of the data, constitutes the test set. The values of the parameters
are optimized in the following way. For each combination of parameters, a model
is trained on k− 1 folds, and the values for the remaining fold are then predicted.
This procedure is repeated k times, each time holding out a different fold. The
values of the parameters exhibiting the lowest average RMSE value along the k folds
is considered as optimal. Subsequently, a model is trained on the whole training
set, using the optimized values for the parameters. The predictive power of this
model can be assessed on the test set. To significantly compare the quality of the
modeling with different machine learning algorithms, the same folds are used to
train all models.

The R package caret provides a common interface to the most popular machine
learning packages that exist in R, and, as such, camb invokes caret, a common interface
to the most popular machine learning packages that exist in R, to set up cross
validation frameworks and train machine learning models (see the package tutorial
for more details).

.2.5 Commonly used Algorithms

This section briefly presents the theory underlying some of the most widely used
algorithms in predictive modelling, which will also be applied throughout this thesis.

Given a data set D = {X, y} where X = {xi}ni=1 is the set of compound descriptors,
and y = {yi}ni=1 is the vector of observed bioactivities, the aim of supervised learning
is to find the function (model) underlying D, which can be then used to predict
the bioactivity for new data-points, xnew. In the following subsections we briefly
summarize the theory behind the algorithms explored in this study.

Kernel Methods

Kernel functions, statistic covariances [Genton (2002)], or simply kernels permit
the computation of the dot product between two vectors, x ∈ X, in a higher dimen-
sional space, F (potentially of infinite dimension), without explicitly computing the
coordinates of these vectors in F:

〈φ(x), φ(x’)〉 = K(x, x’) (.2.1)
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where φ() is a mapping function from X to F, φ : X → F. This is known as the
kernel trick [Scholkopf, Koji, and Vert (2004)]. Thus the value of the kernel applied
on the input vectors is equivalent to their dot product in F. In practice, this permits
to apply linear methods based on dot products, e.g. SVM, in F while using X in the
calculations (thus, not requiring to compute the coordinates of the input data in F).
This is computationally less expensive than the explicit calculation of the coordinates
of X in F, which in some cases might not even be possible. The linear relationships
learnt in F are non-linear in the input space. Moreover, kernel methods are extremely
versatile, as the same linear method, e.g. SVM, can learn diverse complex non-linear
functions in the input space because the functional form is controlled by the kernel,
which in turn can be adapted to the data by the user.

The formulae for the kernels used throughout this thesis are:

Bessel Kernel K(x, x ′) = Jv+1(σ||x−x ′||)
||x−x ′||−n(v+1)

Laplacian Kernel K(x, x ′) = e−σ||x−x||

Normalized Polynomial Kernel K(x, x ′) = (scale xT x ′+offset)degree√
xxT x ′x ′T

Polynomial Kernel K(x, x ′) = (scale xTx ′ + offset)degree

PUK Kernel K(x, x ′) = 1

[1+(
2

√
||x−x ′||2

√
2(
1
ω )−1

σ )2]ω

Radial Kernel K(x, x ′) = e−
||x−x ′||2

2l2

Table .2.2: Covariance functions (kernels) formula.

where ||x − x ′|| is the Euclidean distance, J the Bessel function of first kind, and
xT the transpose of x.

1. Gaussian Process (GP) In Bayesian inference [MacKay (2003)], the experimental
data is used to update the a priori knowledge assumed for a certain problem. In the
context of supervised learning, we a priori assume a distribution over the functions
candidate to model the data, i.e. the prior distribution. The prior is then updated with
the training examples, which yields the posterior probability distribution:
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P(GP(x)|D) ∝ P(y|GP(x),X) P(GP(x)) (.2.2)

where: (i) P(GP(x)|D) is the posterior probability distribution giving the bioactiv-
ity predictions; (ii) the likelihood P(y|GP(x),X) is the probability of the observations,
y, given the training set, X and the model GP(x); and (iii) P(GP(x)) is the prior.

GP [Rasmussen and Ws (2006)] are a stochastic process that, similar to a multi-
variate Gaussian distribution, defined by its mean value and covariance matrix, is
fully specified by its mean function, µ, (usually the zero function) and its covariance
function, CX:

GP(x) ∼ N (µ, CX + σ2dδ(xi, xj)) (i, j ∈ i, . . . , n) (.2.3)

where δ(xj, xk) is the Kronecker delta function and σ2d is the noise of the input
data, which is assumed to be normally distributed with mean zero. CX is obtained
by applying a positive definite kernel function to X, CX = Cov(X). The function
values for any set of input vectors follow a multidimensional normal distribution,
and, therefore, the bioactivity value, ynew, for a new input vector, xnew, will also
follow a Gaussian distribution defined by MacKay (2003); Puntanen and Styan (2005):

P(ynew) ∼ N(µynew = kTC−1
X y, σ2ynew = m− kTC−1

X k) (.2.4)

where the best estimate for the bioactivity of xnew is the average value of ynew,
µynew = 〈P(ynew)〉.

As it will be seen in Eq. .3.5, those input vectors in X similar to xnew, contribute
more to the prediction of ynew, as y is weighted by kT. The predicted variance,
σ2ynew , corresponds to the difference between the a priori knowledge about xnew:
m = Cov(xnew, xT

new), and what can be inferred about xnew from similar input vectors:
kTC−1

X k.

2. Support Vector Machines (SVM) SVM [Ben-Hur et al. (2008); Cortes and Vapnik
(1995)] fit a linear model in a higher dimensional dot product feature space, F, of the
form:

f(x|w) = 〈wTφ(x)〉+ α0 (.2.5)

where w is a vector of weights ∈ F. The kernel trick can be applied if w can be
expressed as a linear combination of the training examples, namely w =

∑n
i=1 αiφ(xi).

Given the definition of kernel given above, Eq. .2.5 can be rewritten as:
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f(x) =
n∑
i=1

αiyi〈φ(xi), φ(x)〉+ α0 =

n∑
i=1

αiyiK(xi, x) + α0 (.2.6)

The optimization of the αi values is usually performed by applying Lagrangian
multipliers (dual formulation):

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjαiαjK(xi, xj) (.2.7)

subject to
∑n
i=1 αiyi = 0 and 0 6 αi 6 C. C is a regularization parameter that

penalizes for incorrect predictions during training. Thus, the larger the value of C,
the larger this penalty.

3. Relevant Vector Machines (RVM) RVM [Tipping (2000)] follow a similar formu-
lation to SVM with the exception that the weights are inferred from the data in a
Bayesian framework by defining an explicity prior probability distribution, normally
Gaussian, on the parameters αi:

f(x|α) =

n∑
i=1

αiyiK(xi, x) + α0 (.2.8)

This formulation leads to sparse models as a large fraction of the weights are
sharply distributed around zero. Thus, only a small fraction of the examples from X
(the Relevance Vectors) are used when making predictions using Eq. .2.8.

Ensemble Methods

Ensemble methods use multiple weak simple models (base learners) to get a meta-
model attaining a predictive power higher than that of the models used individually.
Thus, building a model ensemble consists of (i) training individual models on (subsets)
of the training examples, and (ii) integrating them to generate a combined prediction.
Although it is possible to build model ensembles using different machine learning
algorithms as base learners, e.g. model stacking [Cortes-Ciriano et al. (2015); Hastie,
Tibshirani, and Friedman (2001)], decision tree-based ensembles are predominant in
the literature. The following subsection briefly presents the ensemble methods used
in this study.

1. Bagging: Bagged CART Regression Trees (Tree bag) Bootstrap aggregating or
Bagging is a technique that averages the prediction of a set of high-variance base
learners (normally regression trees, e.g. CART) [Breiman et al. (1984)], each trained
on a bootstrap sample, b, drawn with replacement from the training data. Thus,
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bagging leads to higher stability and predictive power with respect to the individual
base learners, and reduces overfitting [Hastie, Tibshirani, and Friedman (2001)]. In
practice, high-variance and low-bias algorithms, such as regression trees, have proved
to be very well suited for bagging [Hastie, Tibshirani, and Friedman (ibid.)]. The
model can be formulated as:

f(x) =
1

B

B∑
b=i

Tb(x) (.2.9)

where Tb(x) corresponds to the tree base learner trained on the b-th bootstrap
sample.

2. Boosting: Gradient Boosting Machines (GBM) Boosting [Breiman (1998); Hastie,
Tibshirani, and Friedman (2001); Natekin and Knoll (2013)] differs from bagging in
that the base learners, here regression trees, are trained and combined sequentially.
At each iteration, a new base-learner is trained on the b-th bootstrap sample, Gb, and
added to the ensemble trying to minimize the loss function associated to the whole
ensemble. The loss function, Ψ, can be e.g. the squared error loss, i.e. the average of
the square of the training residuals: Ψ(y, f) = 1

n

∑n
i=1(yi − f(xi))

2.
The final model is given by:

f(x) =
B∑
b=i

wbGb(x) (.2.10)

where Gb(x) is the base learner trained on the b-th bootstrap sample, wb its
weight, and B the total number of iterations and trees. The weight for a base learner,
wb, is, thus, proportional to its prediction accuracy. The update rule for the model
can be written as:

fb(x) = fb−1(x) + ν wb Gb(x); 0 < ν > 1 (.2.11)

where fb(x) corresponds to the ensemble at iteration b, and ν to the learning rate (see
below). Deepest gradient descent is applied at each iteration to optimize the weight
for the new base learner as follows:

wb = min
w

n∑
i=1

Ψ(yi, fb−1(x) +Gb(x)) (.2.12)

To minimize the risk of overfitting of GBM, several procedures have been proposed.
The first one consists of training the individual base learners on bootstrap samples
of smaller size than the training set. The relative size of these samples with respect
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to that of the training set is controlled by the parameter bag fraction or η. A second
procedure is to reduce the impact of the last tree added to the ensemble on the
minimization of the loss function by adding a regularization parameter, shrinkage or
learning rate (ν). The underlying rationale is that sequential improvement by small
steps is better than improving the performance substantially in a single step. Likewise,
the effect of an inaccurate learner on the whole ensemble is thus reduced. Another
way to reduce overfitting is to control the complexity of the trees by setting the
maximum number of nodes of the base learners with the parameter tree complexity
(tc). Finally, the number of iterations, i.e. number of trees in the ensemble (ntrees),
also needs to be controlled. The training error decreases with the number of trees,
although a high number of iterations might lead to overfitting [Natekin and Knoll
(2013)].

3. Random Forest (RF) Like in bagging, RF [Breiman (2001)] build an ensemble
(forest) of regression tress and average their predictions:

f(x) =
1

B

B∑
b=i

TFb(x) (.2.13)

where TFb(x) corresponds to the tree base learner in the forest trained on the b-th
bootstrap sample. The difference with bagging is that the node splitting is performed
using only a subset of descriptors randomly chosen. This additional level of random-
ization decorrelates the trees in the forest leading, in practice, to a predictive power
comparable to boosting [Hastie, Tibshirani, and Friedman (2001)].

In QSAR, RF have been shown to be robust with respect to the parameter values.
In practice, a suitable choice of the number of trees (ntrees) was shown to be 100, as
higher values do not generally lead to significantly higher predictive power [Sheridan
(2012, 2013)].

Partial Least Squares Regression (PLS)

Partial least squares or projection to latent structures [Wold, Sjöström, and Eriksson
(2001)], is a multivariate modeling technique capable to extract quantitative rela-
tionships from data sets where the numbers of descriptors, P, is much larger than
the number of training examples, N. Multiple linear regression fails to model this
type of data sets since for small (N/P) ratios, X is not a full rank matrix and it will
be probably collinear (the "small N large P problem") [Abdi (2010)]. In Principal
Components Regression (PCR), the principal components of X are taken as predictors,
thus reducing P (dimensionality reduction) and the problem of multicollinearity. PLS
extends this idea by simultaneously projecting both X and y to latent variables, with
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the constraint of maximizing the covariance of the projections of X and y. Subse-
quently, the response variable is obtained on the latent vectors obtained on X. We refer
the reader to Abdi and Williams [Abdi and Williams (2010)] for further details on PLS.

k-Nearest Neighbours (k-NN)

The k-NN algorithm averages the response value over the k closest neighbours to
estimate the response value for a data-point as:

f(x) =
1

k

k∑
i=1

yi (.2.14)

The Euclidean distance is used to find the k closest neighbours.

.2.6 Validation of PCM Models
Due to the previously mentioned bias in bioactivity data (both from a chemical point
of view and target point of view) the ligand-target interaction matrix is virtually
never complete [Gregori-Puigjané and Mestres (2008a,b); Rognan (2007)]. I have
trained PCM models on sparse data sets with a degree of matrix completeness in
the 2-3% range that demonstrated good performance on the test set (interpolation)
[Cortes-Ciriano et al. (2014)]. However, the degree of completeness of the ligand-target
interaction matrix is only one parameter influencing the predictive ability of a model.
The variability on the chemical and the target side are the other two factors that
need to be considered both in model validation and to assess its applicability domain
[Cortes-Ciriano et al. (ibid.)]. Hence, I strongly suggest validating PCM models
following a number of basic guidelines, which are in line with the recommendations
from Park and Marcotte (2012).

• Validation on the test set, which would correspond to completing the ligand-
target interaction matrix, i.e. interpolation. A model is trained on e.g. 70%
percent of the data (training set) and the bioactivity for the remaining 30% (test
set) is predicted. In this case, all targets and compounds are present in both the
training and the test set. This method corresponds to a Park and Marcotte C1

validation and serves to determine if a reliable model can be fit on the data set.

• Leave-One-Target-Out (LOTO) validation: all bioactivity data annotated on
a target is excluded from the training set. A model is subsequently trained
on the training set, and the model is used to predict the bioactivities for the
compounds annotated on the hold-out target. This process is repeated for each
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target. This validation scheme corresponds to a Park and Marcotte C2 validation
and reflects the common situation in prospective validation where there is no
information for a given target for which we intend to find hits.

• Leave-One-Compound-Out (LOCO) validation: the bioactivity data for a com-
pound on all targets is excluded from the training. Similarly to the LOTO
validation, the PCM model trained on the remaining data is used to predict
the bioactivity for the hold-out compound on each target. This data availability
scenario corresponds to a Park and Marcotte C2 validation and resembles the
situation where a PCM model is applied to novel chemistry in a e.g. prospective
validation screening campaign. If the number of compounds in the training data
set is large, compound clusters can be used instead of single compounds, thus
leading to the Leave-Once-Compound-Cluster-Out validation scenario (LOCCO)
[Cortes-Ciriano et al. (2014)].

We note in particular that in chapter .6 the following abbreviations change:
(i) LOTO: Leave-One-Tissue-Out -extrapolation to cell-lines originated from
tissues not present in the training set-, (ii) LOCO: Leave-One-Cell-Line-Out
-extrapolation to novel cell-lines-, and (iii) LOCCO: Leave-One-Compound-
Cluster-Out -extrapolation to novel chemical clusters (see subsection .6.2.5)-.

In addition to the above scenarios, I suggest to compare the performance of the
PCM model trained on all data to single-target QSAR models.

• Individual QSAR models. The goal of this validation is two-fold. Firstly a
direct comparison to QSAR can determine if it is wise to apply PCM to a data
set. Secondly, as was touched upon above, bias in the data can be the cause of
some targets being reliably modeled and some targets being poorly modeled
[Gregori-Puigjané and Mestres (2008a,b); Rognan (2007)]. When calculating
validation parameters (such as the correlation coefficient) on the full test set,
poorly modeled targets can be masked. In order to notice discontinuities, I
recommend to not only calculate the validation parameters on the full test set,
but to also calculate them on the test set data points grouped per target and
points that are grouped per ligand [Cortes-Ciriano et al. (2014); Westen et al.
(2013b)]. The values of the statistical metrics calculated per target can be directly
compared with those obtained with single QSAR models. A direct comparison
with the values calculated on the full test set would not be appropriate, as the
effect of targets badly modelled might be masked by targets modelled with
high accuracy.

• Extrapolation on both the ligand and the target spaces. Ideally, the final valida-
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tion is one where a target and all compounds that have been tested on this (and
other targets) are iteratively excluded from the training set. This approach cor-
responds with a Park and Marcotte C3 validation. C3 validation is considered
extrapolation rather than interpolation, as both parts of the pair (the ligand and
the target) have not been seen in the training set by the model.

• Family Quantitative Structure-Activity Relationship (QSAR F): models are
trained on all data-points in the data set using exclusively compound descriptors
as input features. A QSAR F model learns on the bioactivity values, and predicts
the average likelihood for a compound of being active on the targets considered.
In this way, a QSAR F model serves to assess whether the explicit inclusion
of target information improves the prediction of compound activity for those
compounds exhibiting variable bioactivity profiles across the target panel. If
a compound is not selective against particular targets, and thus displays a
comparable activity value across the target panel, a QSAR F model would
suffice to predict the average likelihood of that molecule to be active against
any target. However, in the case of a compound displaying selectivity towards
particular targets, i.e. being active against particular targets and inactive against
others, a QSAR F model would fail to predict the activities of that compound
across the target panel, as compound activity would depend to a large extent
on the biological side and not much on the chemical side.

• Family Quantitative Structure-Activity Modelling (QSAM F): these models are
trained on all data-points in the data set using exclusively target descriptors as
input features. This validation scheme assesses whether compound bioactivities
are correlated on a given target, i.e. a diverse compound set displays the same
activity on a given target. Therefore, high predictive ability of a QSAM F model
indicates that bioactivity prediction depends to a large extent on the target, and
to a much lesser extent on the compound structures. In that case, the inclusion
of compound descriptors would not provide any predictive signal.

• Inductive Transfer (Inductive Transfer (IT)): the idea underlying IT is that the
knowledge acquired in a given task, e.g. the prediction of compound activity
on a given target, is used to solve similar problems, e.g. to predict the activity
of the same compound set on a new target. In IT, two sources of information
were input to the model, namely: (i) compound descriptors, and (ii) Target
Identity Fingerprints (TIFP). TIFP are binary descriptors, of length equal to the
number of different targets considered, where each bit position corresponds
to one target. To describe a given target, all bits were set to zero except for
the bit corresponding to that target. Therefore, targets are located in a high
dimensional space where they are equidistant. Formally, TIFP are defined as:
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TIFP(i, j) = δ(i− j)(i, j ∈ 1, .., Ncells) (.2.15)

where δ is the Kronecker delta function and Ncells the number of distinct targets.
In cases where the targets are cell-lines, these fingerprints are known as Cell-
Line Identity Fingerprints (CLIFP) (chapter .6). This setting can also be regarded
as a multi-task learning approach [Brown et al. (2014)].

Taken together, these validation scenarios enable a thorough and earnest vali-
dation of PCM models. Finally, I also suggest to calculate the statistical metrics on,
at least, the predictions calculated with three models trained on different subsets
of the complete data set, and to accompany them with the standard deviation ob-
served over the repetitions [Cortes-Ciriano et al. (2014)]. The bootstrap [Efron and
Tibshirani (1993)] method can also be used to estimate the standard deviation for
the statistical metrics. Similarly, it is advisable to carefully estimate the maximum
achievable performance given the uncertainty of the data [Cortes-Ciriano et al. (2014);
Cortes-Ciriano, I et al. (2015)] (section .2.7).

.2.6.1 Statistical metrics

The statistical metrics proposed by Golbraikh and Tropsha (2002a) can be used
(similar to QSAR) to validate models using observed and predicted values on a test
(or external) set:

Internal validation (predictions on the cross-validation hold-out folds):

q2int or R
2
int = 1−

∑Ntr
i=1 (yi − ỹi)

2∑Ntr
i=1 (yi − ȳtr)

2
(.2.16)

RMSEint =

√
(yi − ỹi)2

N
(.2.17)

where Ntr, yi, ỹi and ȳtr represent, respectively, the size of the training set, the
observed, the predicted and the averaged values of the dependent variable for those
data-points included in the training set. The ith position within the training set is
defined by i.

External validation (predictions on test or external sets):

Q21 test = 1−

∑Ntest
j=1 (yj − ỹj)

2∑Ntest
j=1 (yj − ȳtr)2

(.2.18)
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Q22 test = 1−

∑Ntest
j=1 (yj − ỹj)

2∑Ntest
j=1 (yj − ȳtest)2

(.2.19)

Q23 test = 1−
[
∑Ntest
j=1 (yj − ỹj)

2]/Ntest

[
∑Ntr
j=1 (yj − ȳtr)

2]/Ntr
(.2.20)

RMSEtest =

√
(yj − ỹj)2

N
(.2.21)

Rtest =

∑Ntest
j=1 (yj − ȳtest)(ỹj − ỹtest)√∑Ntest

j=1 (yj − ȳtest)2
∑

(ỹj − ỹtest)2
(.2.22)

R20 test = 1−

∑Ntest
j=1 (yj − ỹ

r0
j )
2∑Ntest

j=1 (yj − ȳtest)2
(.2.23)

where Ntr, Ntest, yj, ỹj, and ȳtest represent the size of the training and test sets,
the observed, the predicted, and the averaged values of the dependent variable for
those data-points comprising the test set, respectively. ȳtr represents the averaged
values of the dependent variable for those data-points comprising the training set.
The jth position within the training set is defined by j.

R20 ext is the square of the coefficient of determination through the origin, being
ỹr0j = kỹj the regression through the origin (observed versus predicted) and k its slope.
For a detailed discussion of both the evaluation of the predictive ability through the
external set and about the three different formulations for Q2ext, namely Q21 ext, Q

2
2 ext,

and Q23 ext, see Consonni, Ballabio, and Todeschini (2010). Although the predictive
power of a model needs to be put into context (e.g. models with low predictive ability
might be useful in hit identification, whereas not in lead optimization), it is generally
ackownledged that to be considered as predictive, a model must satisfy the following
criteria [Golbraikh and Tropsha (2002b); Tropsha and Gramatica (2003)]:

1. q2int > 0.5

2. R2test > 0.6

3. (R2testR
2
0 test)

R2test
< 0.1

4. 0.85 6 k 6 1.15

All these metrics can be calculated with the function Validation of the R package
camb [Murrell et al. (2014)].
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Figure .2.3: Toy example showing the influence of the range of the response vari-
able (e.g. bioactivities) on R2 values. A. R2 and RMSE values of 0.91

and 0.90, respectively, are obtained when the response values range from
0 to 10 (arbitrary units). B. By contrast, the R2 drops to 0.08 when the
response value ranges from 0 to 1. Note that in both cases the RMSE
values are the same, namely 0.90. To simulate y, random noise with mean
0 and standard deviation equal to 1 was added to x. The noise added
was the exactly the same in both cases, namely (A) and (B).

It is important to note that the correlation metrics, e.g. R2test or Q2test, are very
sensitive to the range of the response variable, as narrow ranges might lead to low R2

or Q2 values even if the predictions closely match the observed values. This effect
is illustrated with a toy example in Figure .2.3. This example illustrates that low
R2 values obtained with LOTO, LOCO and, especially LOCCO, do not necessarily
imply that the predictions are inaccurate. LOCCO and Leave-One-Compound-Out
are particularly prone to this situation, as in many cases, the activities of a given
compound across a target or cell-line panel do not cover a wide range of bioactivity
values. Thus, in these cases the comparison across models should be mainly based on
RMSE values, as RMSE values are not affected by the range of the response variable.
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.2.7 Assessment of Maximum and Minimum Achievable
Model Performance

To assess the maximum and the minimum achievable RMSEtest and R20 test values
according to the experimental uncertainty of the bioactivity values (e.g. pIC50 or
pGI50), simulated data can be used in the following way:

• Maximum performance. A sample, A, of a size equal to the size of the test set
is randomly extracted from the vector containing the whole set of bioactivity
values. Subsequently, the noise corresponding to the experimental errors (un-
certainty) is added to each data-point in A, thus defining the sample B. Finally,
the RMSEtest and R20 test values (or the values for other metrics, e.g. Q2test) are
calculated for A with respect to B. These steps are repeated a large number of
times (e.g. 1,000), leading to the definition of the distributions of maximum and
minimum achievable RMSEtest and R20 test values.

• Minimum performance. The procedure is the same as in the previous case
except for the fact that sample A is randomly permuted before calculating the
RMSEtest and R20 test values.

These calculations can be performed with the functions MaxPerf and MinPerf from
the R package camb [Murrell et al. (2014)]. If the uncertainty of individual data-points
is not available, estimated average uncertainties from ChEMBL for pIC50 and Ki data
can be used instead [Kalliokoski et al. (2013); Kramer et al. (2012)] (chapter .5).

.2.8 Conformal Prediction

In the following section, the conformal prediction framework is presented. An entire
section is devoted to this method given that: (i) it is used in the case study presented
in chapter .6, (ii) it has been implemented in R, leading to the publication of the R
package conformal [Cortes-Ciriano, I, Bender, A, and Malliavin (2015)].

Assessing the reliability of individual predictions is foremost in machine learning
to determine the applicability domain of a predictive model whatever is the modelling
task: classification or regression. The applicability domain is usually defined as the
amount (or the regions) of descriptor space to which a model can be reliably applied.
Conformal prediction is an algorithm-independent technique, i.e. it works with
any predictive method such as Support Vector Machines or Random Forests, which
outputs confidence regions for individual predictions in the case of regression, and P
values for categories in a classification setting.
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.2.8.1 Regression

In the conformal prediction framework [Norinder et al. (2014); Shafer and Vovk
(2008)], the data-points in the training set are used to define how unlikely a new
data-point is with respect to the data presented to the model in the training phase.
The unlikeliness (nonconformity) for a given data-point, x, with respect to the training
set is quantified with a nonconformity score, α, calculated with a nonconformity
measure, which here we define as:

α =
|y− ỹ|

ρ̃
(.2.24)

where y is and ỹ are respectively the observed and the predicted value calculated
with a point prediction model, and ρ̃ is the predicted error for x calculated with an
error model.

In order to calculate confidence intervals, we need a point prediction model, to
predict the response variable, and an error model, to predict errors in prediction
(ρ̃). The point prediction and error models can be generated with any machine
learning algorithm. Both the point prediction and error models need to be trained
with cross-validation in order to calculate the vector of nonconformity scores for the
training set, Di = {xi}

Ntr
i .

The cross-validation predictions generated when training the point prediction
model serve to calculate the errors in prediction for the data-points in the training set,
yi − ỹi. The error model is then generated by training a machine learning model on
the training set using these errors as the dependent variable. The (i) cross-validated
predictions from the point prediction model, and (ii) the cross-validated errors in
prediction from the error model, are used to generate the vector of nonconformity
scores for the training set. This vector, after being sorted in increasing order, can be
defined as:

αtr = {αtr i}
Ntr
i (.2.25)

where Ntr is the number of data-points in the training set.
To generate the confidence intervals for an external set, Dext = {xext}

Next
j , we have

to define a confidence level, ε. The α value associated to the user-defined confidence
level, αε, is calculated as:

αε = αtr i if i ≡ |Ntr ∗ ε| (.2.26)

where ≡ indicates equality. Next, the errors in prediction, ρ̃ext, and the value for
the response variable, yext, for the data-points in the external dataset are predicted
with the error and the point prediction models, respectively.
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Individual confidence intervals (CI) for each data-point in the external set are
derived from:

CIext j = |yext j − ỹext j| = αε ∗ ρ̃ext j (.2.27)

The confidence region (CR) is finally defined as:

CR = ỹext j + /−CIext j (.2.28)

The interpretation of the confidence regions is straightforward. For instance, it we
choose a confidence level of 80% the true value for new data-points will lie outside
the predicted confidence regions in at most 20% of the cases.

.2.8.2 Classification
Initially, a Random Forest classifier is trained on the training set using k-fold cross-
validation. In the case of classification, the nonconformity scores are calculated on
a per class basis as the ratio between the number of trees in the forest voting for
a given class divided by the total number of trees (label-wise Mondrian off-line
inductive conformal prediction -MICP-) [Norinder et al. (2014)]. For instance, in a
binary classification example, if 87 trees from a Random Forest model comprising
100 trees classify a data-point as belonging to class A, the nonconformity score (or
probability) for this class would be 0.87 (87%), whereas its value for class B would
be 0.13. This process generates a matrix (nonconformity scores matrix) which rows
correspond to the data-points in the training set, and its columns to the number of
distinct classes (two in the binary classification example) (Figure .2.4A). Here, we
have implemented the pipeline proposed by [Norinder et al. (ibid.)] using Random
Forest models. Nevertheless, other ensemble methods could be used to calculate the
nonconformity scores.

Next, each column of the matrix is sorted in increasing order. These columns
are called Mondrian class lists (MCL) (Figure .2.4A). As in regression, a confidence
level, ε, needs to be specified. We define significance as 1− ε. The model trained
on the whole dataset is used to classify the data-points comprised in the external
dataset (Figure .2.4). Let’s consider one data-point from the external set, namely xext j.
The number of trees in the Random Forest voting for each class is computed, which
enables the caculation of the nonconformity scores or probabilities (p) for that point,
xext j. In the binary case, this is defined as:

p(xext j;A) =
NtreesvotingA

Ntrees
; p(xext j;B) =

NtreesvotingB

Ntrees
(.2.29)

To calculate the P values for each class, the number of elements in the corre-
sponding Mondrian class list smaller than the probability values, i.e. p(xext j;A) and
p(xext j;B), is divided by the number of data-points in the training set, Ntr:
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   B          
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1/7 for A, and 6/7 for B 
The p.values are thus: 

p.value(A): 3/7 = 0.14; p.value(B): 6/7=0.86

p(A): 0.2;  p(B): 0.8
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A: No (0.14 < 0.20): 
X ext j is not 

predicted to belong to 
class A for that 

confidence level (0.8)

B: Yes (0.86 > 0.20): 
X ext j is 

predicted to belong to 
class B for that 

confidence level (0.8)

A B

Figure .2.4: Calculation of conformal prediction errors (P values) in a binary clas-
sification example considering a confidence level of 0.80.

Pvalue(xext j;A) =
|{MCL(A) < P(xext j;A)}|

Ntr

Pvalue(xext j;B) =
|{MCL(B) < P(xext j;B)}|

Ntr

(.2.30)

Finally, these P values are compared to the significance level defined by the user
(1− ε). For a data-point to be predicted to belong to a given class, the P value needs
to be higher than the significance level. For instance, if Pvalue(xext j;A) = 0.46 and
Pvalue(xext j;B) = 0.18, with a significance level of 0.2, xext j would be predicted to
belong to class A, but not to B. If both Pvalue(xext j;A) and Pvalue(xext j;B) were
higher than the significance level, xext j would be predicted to belong to both classes.
Similarly, if both P values were smaller than the significance level, xext j would be
predicted to belong to neither class A nor to class B.
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.3 Proteochemometric Modelling in a
Bayesian Framework

.3.1 Introduction

The applicability domain (AD) of a bioactivity model is defined as the range of
chemical (and target in PCM) space to which the model can be reliably applied

[Bosnić and Kononenko (2009); Netzeva et al. (2005); Tetko et al. (2006)]. Therefore,
the AD is a measure of the generalization properties of a given model: the volume of
chemical and target space that can be reliably predicted [Sahigara et al. (2012)]. Given
that compounds are encoded with descriptors when training predictive models, it is
important to distinguish between the chemical space (referring to chemical structures)
and the chemical descriptor space. This distinction is important as in the calculation
of some popular descriptors (e.g. Morgan fingerprints [Rogers and Hahn (2010)]),
chemical substructures are hashed: different chemical substructures are mapped at
the same descriptor position. Consequently, two different structures in the chemical
space can be represented by the same descriptor values. A detailed discussion of
the different methods proposed to assess models AD can be found in [Sahigara et al.
(2012)], to which the interested reader is referred. In PCM, the AD is an essential
feature, as extrapolation has to be used to predict the bioactivity for new chemicals
on new targets [Westen et al. (2011a)].

In parallel to the concern about the evaluation of individual bioactivity predic-
tions, recent publications have aimed at establishing the level of uncertainty in public
bioactivity databases [Kalliokoski et al. (2013); Kramer and L (2012); Kramer et al.
(2012); Tiikkainen et al. (0)]. In this vein, Brown, Muchmore, and Hajduk (2009)
highlighted the importance of including the uncertainty of bioactivity data into the
evaluation of models quality. Hence, predictive models should be assessed through:
the analysis of the experimental error of the data, the evaluation of the models AD
as well as the definition of intervals of confidence for the predictions. However,
acceptable levels of prediction errors are also determined by the context in which
the model will be applied. Indeed, models exhibiting high prediction errors can be
nevertheless useful in a high-throughput (HTS) campaign while not being suitable in
lead optimization [Brown, Muchmore, and Hajduk (ibid.)].
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Bayesian inference provides a reliable theoretical framework to handle all previ-
ously mentioned aspects, i.e. AD and uncertainty on bioactivity data) within a unique
bioactivity model. Gaussian Processes (GP) are a non-parametric machine learning
method based upon Bayesian inference: they thus permit an evaluation of the AD of
a given model as well as providing the most objective estimation of the predictions
uncertainty. Furthermore, the experimental bioactivity error can be used as model
input. A GP prediction of a given compound-target combination is a Gaussian dis-
tribution whose variance defines intervals of confidence: in principle, this variance
measures the distance of the compound-target pair to the training set. GP models can
be globally validated by traditional statistical metrics (e.g. R2 or Q2) [Golbraikh and
Tropsha (2002); Tropsha and Golbraikh (2010); Tropsha and Gramatica (2003)] while
also providing individual assessment for predictions. GP were firstly introduced in
the field of QSAR modelling by Burden (2001). Later on, GP were also used for: (i)
the modelling of ADMET properties [Obrezanova and Segall (2010); Obrezanova et al.
(2007)]. (ii) the prediction of electrolyte solubility [Schwaighofer et al. (2007)], (iii) the
bioactivity prediction of small peptide data sets [Ren et al. (2011); Zhou et al. (2008,
2010)], (iv) protein engineering [Romero, Krause, and Arnold (2013)], and (v) the
bioactivity prediction of bioactivity-focused (GPCRs) combinatorial chemolibraries
[Reutlinger et al. (2014)].

The purpose of this chapter is to propose Gaussian Process (GP) to simultane-
ously model chemical and multispecies protein information in the frame of PCM. GP
models are validated by comparing their performance to that of SVM using a panel
of kernels. on two PCM data sets extracted from ChEMBL database [Gaulton et al.
(2011)], involving adenosine receptors (10,999 data points, 8 sequences) and aminergic
GPCRs (24,593 data points, 91 sequences), and on a third data set extracted from the
literature concerning the catalytic activity of four dengue virus NS3 proteases (199

data points, 4 sequences).

.3.2 Materials and Methods

.3.2.1 Data sets

Aminergic GPCRs

The aminergic GPCRs data set was assembled by gathering bioactivity information of
91 different receptors (9 species) from ChEMBL 15 [Gaulton et al. (ibid.)], producing
a total number of data-points of 24,593. A high quality bioactivity data set was
assembled by keeping only assay-independent bioactivity information, namely: the
constant of inhibition, Ki, and the constant of dissociation, Kd. In those cases where
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a given compound-target pair had multiple bioactivity values annotated, the mean
value was used. Moreover, annotations with anything other than ’=’ were discarded.
Agonist, antagonist and partial agonist ligands were included. Bioactivity values
in the data set range from 2.030 to 11.570 pKi units. The component amino acids
of the transmembrane binding site were taken from Gloriam et al. (2009) Further
information about the data set can be found in Table .3.1 and Table .3.3.

Adenosine receptors

This data set previously published by Westen et al. (2012) is composed of 10,999

bioactivity data points measured on the rat and human adenosine receptors, A1, A2A,
A2B and A3. The data set was extracted from ChEMBL2 [Gaulton et al. (2011)]. Only
compounds tested on rat or human receptors by radio-ligand binding assays and for
which pKi bioactivity values were annotated with a ’=’ relationship were included in
the final data set. Bioactivity values range from 4.50 to 10.52 pKi units. Compounds
were normalized and ionized at pH 7.4. Subsequently, they were assigned 2D coordi-
nates and converted to fingerprints. See Table .3.1 for further details about the data set.

Dengue virus NS3 proteases

This data set was collected from the proteochemometric study published by Prusis
et al. (2008), which modeled the catalytic activity of the dengue virus NS3 proteases
from four viral serotypes using data-points measured on 56 different tetra-peptide
substrates (Table .3.1). These substrates were designed to evaluate the role amino acid
residues located at P1’-P4’ in the sequence. The catalytic efficiency was measured as
the turnover number (kcat) for the cleavage of the substrate. In contrast to the two
data sets presented above, the number of data points in this case was only 199.

.3.2.2 Descriptors
Chemical compounds were described by Scitegic circular fingerprints (Extended
Connectivity Fingerprints (ECFP)_6 type) [Glen et al. (2006); Rogers and Hahn (2010)],
calculated in PipelinePilot 8.5.0.200 [Scitegic Accelrys Software Inc. Pipeline Pilot Stu-
dent Edition, version 615 (San Diego, USA): Scitegic Accelrys Software Inc (2007)]. For
the calculation of keyed ECFP_6 fingerprints, each compound substructure, with a
maximal diameter of three bonds, is treated as a compound feature. The substructures
are then mapped into an unhashed array of counts, thus enabling the estimation
of their contribution to bioactivity. The efficiency of these fingerprints to identify
chemical features relevant for bioactivity has been previously demonstrated [Bender
et al. (2009); Westen et al. (2012)].

91



.3 Proteochemometric Modelling in a Bayesian Framework

Adenosine Receptors Dengue Virus
NS3 Proteases

Aminergic GPCRs

Data-points 10,999 199 24,593

Sequences 8 4 91

Ligands 4419 56 11,121

Source Organ-
isms

H. sapiens and Rattus
norvegicus

dengue virus H. sapiens, Rattus
norvegicus, Mus mus-
culus, Bos taurus, Sus
scrofa, Canis familiaris,
Cavia porcellus, Chloro-
cebus aethiops, and
Mesocricetus auratus

Bioactivity pKi Kcat pKi

Matrix Com-
pleteness (%)

31.11 88.84 2.43

Table .3.1: Overview of the proteochemometric data sets modeled in this work.
Whereas the completeness of the compound-target interaction matrix of
the dengue virus NS3 proteases data set is almost complete (88.84%), the
adenosine receptors and GPCRs data set are more challenging to model
given: (i) their sparsity (31.11 and 2.43% of matrix completness respec-
tively), and (ii) the consideration of information from human orthologues,
being the respective number of different sequences 8 and 91.

Pairwise compound similarity plots were calculated in R using the vegan package
[Oksanen et al. (2013)]. Protein amino acids of the GPCRs and adenosine receptors
binding sites, as well as the dengue virus NS3 proteases substrates, were described
with five amino acid extended principal property scales (5 z-scales). The property
calculation was conducted in R [R Core Team (2013)] via in-house scripts following
the work of Sandberg et al. (1998) In the GPCRs data set a descriptor accounting for
the amino acids side chain charge at pH 7.4 was also added (with values of: +1 if the
charge is positive, -1 if negative and 0 for neutral amino acid). The four dengue virus
NS3 protease variants were described with binary descriptors.
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.3.2.3 Modelling with Bayesian inference

Gaussian Processes

Given a data set D = {X, y} where X = {xi}ni=1 is the set of compound and target
descriptors, and y = {yi}ni=1 is the vector of observed bioactivities, the aim is to
find a Gaussian Process [Rasmussen and Ws (2006)], GP(x), capable to infer the
relationships within D, in order to predict the bioactivity ynew for new compound-
target combinations xnew. In the frame of Bayesian inference, GP are defined as:

P(GP(x)|D) ∝ P(y|GP(x),X) P(GP(x)) (.3.1)

where: (i) P(GP(x)|D) is the posterior probability distribution giving the bioactiv-
ity predictions, (ii) the likelihood P(y|GP(x),X) is the probability of the observations,
y, given the training set, X and the model GP(x), and (iii) P(GP(x)) is the prior proba-
bility distribution of the functions GP(x) candidates to model the data set D.

The prior probability distribution is updated with the information contained in D
via the likelihood, leading to the definition of the posterior probability distribution as
the set of functions efficiently modelling D. The average of the posterior distribution
is considered as the bioactivity prediction (Figure .1.2 at page 18). GP(x) is a random
function which functional values follow a centered Gaussian distribution for any
set of data-points. Thus, the P(GP(x)) values for a finite subset of compound-target
vectors xi, .., xn follow a multidimensional normal distribution with mean µ (normally
set to zero) and covariance matrix CX:

GP(x) ∼ N (0, CX + σ2dδ(xj, xk)) (j, k ∈ 1, . . . , n) (.3.2)

where δ(xj, xk) is the Kronecker delta function and σ2d is the noise of the data-
points (experimental error), which is assumed to be normally distributed with
mean zero. The value of σ2d accounts for the noise in the observed bioactivities,
y = GP(x) +N (0, σ2d) which in turn reflects the trade-off between the quality and
smoothness of the fitting.

CX is obtained by applying a positive definite kernel function (also known as
statistic covariance) [Genton (2002)] to X, CX = Cov(X). Owing to the fact that
the covariance function is based upon dot products, the kernel trick can be applied
in a similar way as in SVM [Ben-Hur et al. (2008)]. Kernel parameters are called
hyperparameters since their values define the probability of each function of the prior
probability distribution. The different kernels implemented in this study are listed in
Table .2.2.
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Bioactivity prediction for new data-points

The bioactivity, ynew, of a new compound-target combination, xnew, can be predicted
from the joint prior probability distribution P =

( y
ynew

)
of y and ynew, due to the

multivariate Gaussian distribution assumed for y:[
y

ynew

]
∼ N

(
0, CX =

[
CX = Cov(X), k = Cov(X, xnew)

kT, m = Cov(xnew, xnew)

])
(.3.3)

where kT is the transpose of the matrix k, which describes the similarity between X
and xnew. The predicted bioactivity is obtained as the mean value of the probability:

P(ynew|xnew,D, y) (.3.4)

and the uncertainty of the prediction corresponds to the standard deviation of this
probability distribution.

To calculate P(ynew|xnew,D, y), the joint probability distribution, P
( y

ynew

)
, is di-

vided by the probability of the observed bioactivities, P(y). Subsequently, the
predicted probability for ynew is obtained by calculating the Schur complement
[Puntanen and Styan (2005)]:

P(ynew) ∼ N(µynew = kTC−1
X y, σ2ynew = m− kTC−1

X k) (.3.5)

where the best estimate for the bioactivity of xnew is the average value of ynew,
µynew = 〈P(ynew)〉, σynew , the standard deviation, being its uncertainty.

As can be seen in Eq. .3.5, those compound-target combinations in X similar to
xnew, contribute more to the prediction of ynew, as y is weighted by kT. This means
that GP, as a kernel method, mainly infers the value of ynew from the most similar
compound-target combinations in descriptor space present in the training set, X.

On the other hand, the predicted variance, σ2ynew , is equal to the difference
between the a priori knowledge about xnew: m = Cov(xnew, xnew), and what can
be inferred about xnew from similar compound-target combinations present in X:
kTC−1

X k.

Thus, in the case of xnew being similar to the compound-target combinations in X,
the value of σ2ynew is small. By contrast, a high value of σ2ynew indicates that xnew is
not similar (is distant) to the compound-target combinations in X. In that case, the
GP cannot learn much about xnew from the training set, so the prediction should be
consider as less reliable. Consequently, σ2ynew gives an idea of the applicability domain
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(AD) of the model and thus serves to evaluate the uncertainty of the prediction.

.3.2.4 Computational details

Determining the kernel hyperparameters

As previously stated (Equation .3.2), the prior distribution of a GP is mainly defined
by its covariance, CX, which is in turn characterized by its hyperparameter values.
For the simplest kernel, Radial Basis function kernel (RBF), also known as Squared
Exponential or simply Radial (Table .2.2), the hyperparameters are (Ω = {l, σ2d}) where
l are the length scales, (one per descriptor) and σ2d the noise variance. In this case, the
covariance between two input vectors can be defined as:

Cov(xi, xj) = e
−12

∑P
p=1

(xip−xjp)
2

l2p (.3.6)

where p is the descriptor index and P the total number of descriptors. Each
length scale, l, is treated as a hyperparameter wich value needs to be optimized
during model training. High length scale values will be assigned to irrelevant features
for the model. Therefore, the inverse of the optimized l value obtained for a given
descriptor gives an idea of its importance for the model. This inherent ability of
Bayesian inference to infer the relevance of each descriptor is the so-called Automatic
Relevance Determination (ARD) [Rasmussen and Ws (2006)]. In the context of PCM,
ARD can be exploited to provide a biologically meaningful interpretation of the
models.

In the frame of Bayesian inference, we search for the hyperparameter values
maximizing the probability of having obtained the observed data. Thus, the hyper-
parameter values should define a prior distribution P(GP(xnew)) maximizing the
probability of the functions along the data. The problem can be rewritten as: the
search of hyperparameter values maximizing the posterior probability distribution
over the hyperparameters: P(Ω|D). In a Bayesian line of reasoning, this posterior
probability can be expressed as:

P(Ω|D) ∼ P(y|Ω,X) P(Ω) (.3.7)

where P(y|Ω,X), is the marginal likelihood:
P(y|Ω,X) =

∫
P(y|GP(xnew) P(GP(xnew)) dGP(xnew). The hyperparameter values Ω

can thus be determined by maximizing the logarithm of the marginal likelihood
[MacKay (2003); Rasmussen and Ws (2006)]:
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lnP(y|Ω,X) = −
1

2
yTC−1y −

1

2
ln |C|−

n
2

ln 2π (.3.8)

Several methods can be implemented to accomplish this multivariate optimiza-
tion problem, such as a simplex method, Monte Carlo (MC) Sampling [Neal (1996)],
a genetic algorithm, nested sampling [Skilling (2006)], forward variable selection
[Obrezanova et al. (2007)] or the conjugate gradient method [Rasmussen and Ws
(2006)].

In the present study, kernel hyperparameters were optimized by grid search and
k-fold cross-validation (CV) in the case of the adenosine receptors and aminergic
GPCRs data sets, because of their large size and high number of descriptors. The
experimental error, σ2d, (Equation .3.2) was considered as fixed with a value of 0.29

pKi units, this value being taken from the work of Kramer et al. (2012) The same
length scale value, l, was used for all descriptors to simplify the hyperparameter
optimization.

For the dengue virus data set, due to its small size, and to the lack of information
concerning the experimental uncertainty, the noise variance, σ2d, was optimized by
conjugate gradient as implemented in the GPML toolbox [Rasmussen and Nickisch
(2010)]. As the number of descriptors is only 24, we optimized the length scales using
the radial kernel. In the frame of Automatic Relevance Determination (ARD), the
importance of each descriptor for the model was estimated using the inverse of the
optimized l values, in the way described above.

GP tolerance to noise

To better understand the influence of the experimental error in GP modelling, we
trained 15 models for each data set with increasing levels of noise with both the
radial and the normalized polynomial (NP) kernel, thus leading to a total number of
90 models. Their predictive ability was monitored on the test set. The levels of added
noise (noise variance) ranged from 0 to a maximum value of 10, which corresponds
to a noise deviation of 3.2 pKi units for the adenosine receptors and GPCR data sets,
and 3.2 log units for the dengue virus NS3 proteases data set.

Machine learning analyses and implementation

Machine learning models were built in R using the caret package [Kuhn (2008)].
Non-default kernels for GP were introduced in the caret framework by in-house R
scripts and by the definition of custom models (custom option in the caret package)
implementing kernel functions from either the kernlab [Karatzoglou et al. (2004)]
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package or in-house kernel functions. Likewise, The Gaussian Process for Machine
Learning (GPML) Toolbox version 3.2 [Rasmussen and Nickisch (2010)] was used to
build GP models in Matlab version 7.15 [MATLAB (2013)] to assess the importance of
ligand descriptors (Automatic Relevance Determination).
Descriptors were preprocessed as described in section .2.3, whereas models were
trained using grid seach with CV (section .2.4). Model validation was performed as
described in section .2.6.

.3.2.5 Assessment of maximum model performance

The Tropsha validation criteria [Golbraikh and Tropsha (2002); Tropsha and Golbraikh
(2010); Tropsha and Gramatica (2003)], were used for accepting or dismissing the
model (section .2.6.1). The distributions of maximum RMSEtest, Q2test, R

2
0 test, and R2test

were calculated for each data set as explained in section .2.7. The distributions of
maximum and minimum values for these metrics then used to validate the metrics
values obtained when evaluating the bioactivities predicted for the test sets. If the
obtained metrics were beyond the maximum values (for Q2test, R

2
0 test, and R2test) or

the minimum values (for RMSEtest) of the distribution, the model is likely to be
over-optimistic.

The experimental errors required to define the random samples B were deter-
mined in the following way. For adenosine and GPCR data sets, the experimental
error of pKi data was considered to be approximately 0.29 pKi units, which corre-
sponds to the average standard deviation value for public Ki data sets estimated by
Kramer et al. (2012). The experimental error of the dengue data set was inferred from
the data by considering its uncertainty as a hyperparameter of the GP model since
we could not find information about the experimental uncertainty in the study of
Prusis et al. (2008).

.3.2.6 Interpretation of ligand substructures

To calculate the influence of a given feature (chemical substructure) to pKi, we itera-
tively set the count of the feature equal to zero in all compound descriptors presenting
it, in order to virtually remove the substructure. Bioactivity values were then pre-
dicted using the modified compound descriptors, and the differences between the
predicted values in the presence or absence of a given feature were calculated.

The average value of these differences, weighted by the number of counts of
the feature in each compound, corresponds to the contribution of that feature to
bioactivity. The contribution was estimated for all compound features considered in
the model. The sign of the difference ({+/-}) indicates if the feature is respectively
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beneficial or deleterious for compound bioactivity. This approach is closely related to
the method proposed by Westen et al. (2011b), although two modifications have been
made: (i) the weighting of the average difference between predicted and observed
bioactivities, and (ii) the calculation of descriptor importance on a per target basis.

.3.3 Results

.3.3.1 Model validation
PCM GP models agree with the validation criteria

Overall, the models obtained for the three data sets with Gaussian Process modelling
display statistics in agreement with our validation criteria (Table .3.2).To ensure that
these results were not the consequence of spurious correlations, we trained GP models
with randomized bioactivity values (y-scrambling).[Clark and Fox (2004)] For all
data sets, the intercept was negative, thus ensuring the statistical soundness of our
modelling. The best GP model for the adenosine receptors data set was obtained
with the normalized polynomial (NP) kernel, exhibiting RMSEtest and R20 test values
of 0.58 pKi units and 0.75 respectively. Similarly, in the case of the GPCRs data set,
the NP kernel led to the best predictive model, with RMSEtest and R20 test values of
0.66 pKi units and 0.72. As these GP models were trained with a noise deviation of
0.54 pKi units, the substraction of the experimental uncertainty, 0.54 pKi units, from
the RMSEtest gives a residual error arising from the modelling below 0.12 pKi units.
These RMSEtest values correspond to 6.05% and 10.88% of the range of bioactivity
values in the training set for the GPCRs and the adenosine receptors data sets.

In the case of the dengue virus data set, GP models show better predictive ability
than those reported by [Prusis et al. (2008)], as Q2test value of 0.92 is obtained here
(Table .3.2) for the best GP model based on the Bessel kernel. The optimization of the
noise variance, σ2d, as an hyperparameter during the training process led to a value
of 0.27 log units, similar to the values of about 0.3 log units reported by Prusis et al.
(2013) in a recent study with similar experimental setup.

GP statistics are within the limits of the theoretical maximum model performance

The distributions of maximum R2test, R
2
0 test, and Q2test and minimum RMSEtest theo-

retical values, obtained as described in subsection Assessment of Maximum Model
Performance in Materials and Methods, are given in Figure .3.1 for the three data
sets.

The mean value of the distribution of maximum R20 test values are equal to 0.80,
0.68 and 0.96 for the adenosine, GPCRs, and dengue virus NS3 proteases data sets,
which highlights that the maximum correlation values that can be gathered when
modelling public data are far from the optimal maximum correlation value of one.
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Adenosine Receptors data set
R2int RMSEint R20 test RMSEtest

GP Bessel 0.64 0.70 0.70 0.63

GP Laplacian 0.67 0.68 0.67 0.66

GP Norm. Polynomial (NP) 0.69 0.65 0.75 0.58

GP Polynomial 0.70 0.64 0.70 0.63

GP PUK 0.57 0.79 0.56 0.77

GP Radial 0.65 0.69 0.65 0.68

PLS 0.29 0.97 0.30 1.00

SVM Norm. Polynomial (NP) 0.70 0.64 0.73 0.60

SVM Polynomial 0.71 0.63 0.71 0.62

SVM Radial 0.68 0.65 0.70 0.64

QSAR F 0.31 0.70 0.31 0.96

Aminergic GPCRs data set
R2int RMSEint R20 test RMSEtest

GP Bessel 0.56 0.83 0.56 0.80

GP Laplacian 0.62 0.78 0.63 0.75

GP Norm. Polynomial (NP) 0.69 0.68 0.72 0.66

GP Polynomial 0.68 0.71 0.70 0.68

GP PUK 0.46 0.93 0.46 0.90

GP Radial 0.69 0.69 0.71 0.66

PLS 0.69 0.69 0.27 1.05

SVM Norm. Polynomial (NP) 0.69 0.68 0.72 0.66

SVM Polynomial 0.69 0.69 0.71 0.66

SVM Radial 0.69 0.69 0.72 0.66

QSAR F 0.38 0.98 0.38 0.97

Dengue virus NS3 proteases data set
R2int RMSEint R20 test RMSEtest

GP Bessel 0.91 0.43 0.92 0.44

GP Laplacian 0.88 0.54 0.91 0.50

GP Linear 0.91 0.45 0.91 0.48

GP Norm. Polynomial (NP) 0.88 0.50 0.91 0.48

GP Polynomial 0.91 0.42 0.92 0.44

GP PUK 0.77 1.10 0.81 1.13

GP Radial 0.91 0.45 0.91 0.45

PLS 0.90 0.45 0.91 0.49

SVM Norm. Polynomial (NP) 0.86 0.54 0.91 0.46

SVM Polynomial 0.89 0.46 0.90 0.51

SVM Radial 0.90 0.48 0.90 0.48

QSAR F 0.29 1.19 0.48 1.13

Table .3.2: Internal and external validation metrics for the PCM models. For the
three data sets, the best models are obtained with GP, being the lowest
RMSEtest and highest R20 test values: (i) adenosine receptors: 0.58 and 0.75

with NP kernel, (ii) GPCRs: 0.66 and 0.72 with NP kernel, and (iii) Dengue
virus NS3 proteases 0.44 and 0.92 with Bessel kernel. Overall, GP models
for the three data sets agree with the validation criteria.
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Figure .3.1: Distribution of the maximum theoretical values of RMSEtest (A, C and
E) and R2

0 test (B, D and F) for the adenosine receptors (A, B), GPCRs
(C, D) and dengue virus NS3 proteases data sets (E, F). These curves
permit to estimate the reliability of R2

0 test and RMSEtest obtained for the
GP models.

This is not surprising given the noise levels in public bioactivity data [Kalliokoski
et al. (2013); Kramer et al. (2012)]. The best RMSEtest and R2

0 test values (Table .3.2)
obtained with GP are respectively: 0.58 and 0.75 (adenosine receptors), 0.66 and 0.72
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(GPCRs), and 0.44 and 0.92 (dengue virus NS3 proteases), which remain in the limits
of these extreme theoretical values (Figure .3.1), thus supporting the suitability of our
modelling pipeline to handle data uncertainty. The mean values of the theoretical
RMSE distribution were close to the experimental uncertainty on bioactivity, for the
adenosine receptors and the dengue virus NS3 proteases data sets, with respective
mean RMSEtest values of 0.54 pKi units and 0.27 log units (Figure .3.1). However, the
mean RMSEtest value increases up to 0.68 pKi units for the GPCRs data set owing to
its larger size and sparsity.

PCM outperforms QSAR on the studied data sets

A comparison between models trained on only compound descriptors, ’Family QSAR’
(QSAR F) [Brown et al. (2014)], and PCM permits to assess whether the use of GP
improved the bioactivity modelling, by simultaneously modelling the target and the
chemical spaces within a PCM study [Westen et al. (2011a)]. Indeed, radial kerneled
Family QSAR models with ligand descriptors (Table .3.2) failed to model the data,
being the RMSEtest and R20 test values respectively: 0.96 and 0.31 (adenosine receptors),
0.97 and 0.38 (GPCRs), and 1.13 and 0.48 (dengue virus NS3 proteases).

Strong mapping power of the normalized polynomial kernel

Radial and polynomial kernels have been traditionally used in QSAR and PCM mod-
elling [Huang et al. (2012); Westen et al. (2012)], but the versatility of other kernels
for bioactivity modelling has been recently demonstrated [Huang et al. (2012); Qifu
et al. (2009); Wu et al. (2012)]. To investigate this point in the frame of GP models, we
compared the performance of various kernels (Bessel, Laplacian, NP, and PUK) with
the radial and polynomial kernels.

As described above, in contrast to Huang et al. (2012) we found the normalized
polynomial (NP) kernel to have enough mapping power to model the three data
sets (Table .3.2). Nonetheless, in the case of the dengue virus NS3 proteases data
set, although NP kernel produces a statistically correct modelling with RMSEtest and
R20 test values of 0.48 and 0.91, it is slightly outperformed by the Bessel kernel, which
displays respective RMSEtest and R20 test values of 0.44 and 0.92 (Table .3.2).

The PUK kernel [Qifu et al. (2009)] exhibited strong mapping power in a previous
study of HIV-1 proteases and histone deacetylases (HDAC) inhibitors [Huang et al.
(2012); Wu et al. (2012)], but in the present study we could not obtain satisfactory
models for none of the three data sets. The Laplacian and Bessel kernels allow a
proper mapping of the three data sets with R20 test values within the range 0.60-0.90

(see Table .3.2 for further details).
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For the adenosine receptors data set, different statistics values are observed
between the internal (on the hold-out folds in CV) and external validation (on the
test set), as the RMSEtest values are larger for the radial kernel (0.68) than for the
polynomial and Bessel kernels (0.63 in both cases). Nonetheless, a different picture is
observed for RMSEint, as the values for the radial, polynomial and Bessel kernels are
0.69, 0.64 and 0.70 pKi units. Although RMSEtest and RMSEint values are similar, the
small increase of RMSEtest with the Bessel kernel might suggest a slight degree of
overfitting [Kubinyi, Hamprecht, and Mietzner (1998)].

GP and SVM perform on par

The performance of the GP and SVM models was compared for each data set using the
radial, the polynomial, and the NP kernels, as the first two are the most widespread
kernels within the modelling community [Huang et al. (2012); Westen et al. (2012);
Westen et al. (2013)]. Using different seed values, we trained ten different models for
each modelling technique and data set, resulting in a total of 60 models (Figure .3.2).

To be able to statistically test the difference between the models results, dis-
tributions of the RMSEtest and R20 test were generated for each kernel / data set
combination. Both RMSEtest and R20 test statistics were normally distributed in all
cases (Shapiro-Wilk normality test, α 0.05), and a two-tailed t-test of independent
samples (α 0.05) was applied to compare the behavior of SVM and GP. As it can be
seen in Figure .3.2 and from the result of the t-test, both SVM and GP perform on par
in the three case studies for radial and NP kernels. Similar results (data not shown)
were obtained for the polynomial kernel.

To probe the linearity of the data sets, we trained linear PLS models. For two
data sets, PLS appears unable to infer the complex (non-linear) relationships within
the data, leading to RMSEtest and R20 test of 1.00 and 0.30 for the adenosine receptors,
and 1.05 and 0.27 for the GPCRs data sets, respectively (Table .3.2). At contrary, the
dengue NS3 proteases data set presents a clearly linear relationship, with RMSEtest
and R20 test values of the PLS model of 0.49 and 0.91. But, on the same data set, the
model obtained with a linear kerneled GP model outperformed PLS, with respective
RMSEtest and R20 test values of 0.48 and 0.91.

Noise influence on GP depends on the kernel

RMSEtest and R20 test were calculated for adenosine receptors, GPCRs, and dengue
virus NS3 proteases for different levels of noise σ2d added to the diagonal of the co-
variance matrix CX (Equation .3.2). The results obtained for radial kernels (Figure .3.3,
upper plots) appear more sensitive to the noise than the ones obtained for NP kernels
(Figure .3.3, bottom plots), for which the variations of the RMSEtest and R20 test sets
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Figure .3.2: Comparison between the performance of GP and SVM with either the
radial or the NP kernel. Ten models were calculated for each data
set and for each combination of modelling technique and kernel, thus
resulting in a total of 60 models. The performance of GP and SVM was
assessed by kernel for the three data sets. Given that the distributions
of RMSEtest and R20 test values were normally distributed, a two-tailed
t-test of independent samples was applied to statistically evaluate their
differences. These analyses let us conclude that SVM and GP perform on
par for the modelling of the three data sets considered in this study.

are lower than 0.10 pKi or log units. This trend is the most obvious for the dengue
virus NS3 proteases data set, probably originating from the small size of this data set.

The polynomial kernel displayed robustness similar to those of NP kernel. These
analyses suggest that NP or polynomial kernels would constitute a reasonable choice
when modelling noisy data.

To summarize, GP models perform on par with SVM and outperform Family
QSAR and PLS on the three data sets. The NP kernel leads to the best GP models
being also the most tolerant kernel to noisy bioactivities. GP models trained on the
dengue virus NS3 proteases systematically display better metrics than the other data
sets, likely due to the high matrix completeness (88.84%) of this data set (Table .3.1).
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Figure .3.3: Noise influence in model performance. RMSEtest (red) and R2
0 ext (black)

values obtained when increasing the noise level (noise variance added
to the diagonal of the covariance matrix) were calculated for: adenosine
receptors (left figure), GPCRs (medium figure) and dengue virus NS3

proteases (right figure). Upper plots correspond to GP models calculated
with the radial kernel while the bottom plots refer to GP models with
the Normalized Polynomial (NP) kernel. In all cases, the radial kernel
appears more sensitive to noise, while the NP kernel performs equally
well when noise is added to the data. These data suggest that the NP
kernel is more appropriate for the modelling of noisy PCM data sets.

.3.3.2 Predicted confidence intervals follow the cumulative density
function of the Gaussian distribution

GP predictions mostly follow the cumulative Gaussian distribution

To analyze the reliability of the error bars obtained with GP with the tested kernels,
different intervals of confidence (IC) for each predicted bioactivity value on the test
set were defined, namely: 68%, 80%, 95%, and 99%. Subsequently, the percent-
age of compound-target combinations for which the experimental bioactivity value
lied within the bounds of each interval was calculated. Following the cumulative
density function of the Gaussian distribution (cumulative Gaussian distribution)
[Schwaighofer et al. (2007)], the percentage of satisfactory cases should be propor-
tional to the interval size.
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To test this hypothesis, the percentages of predicted bioactivities for which the
experimental values were within the confidence intervals were compared to the size
of these intervals (Figure .3.4). As the small size of the dengue virus NS3 proteases
did not allow a good sampling of the Gaussian distribution, this data set was not
included in the comparison. This analysis was thus performed for the adenosine
receptors and GPRCs data sets with the Bessel, Laplacian, NP, PUK, and radial
kernels. It is noteworthy that the predicted variance obtained with the polynomial
kernel is much larger than the range of bioactivity values, thus making impossible to
evaluate their concordance with the cumulative distribution. However, the NP kernel
allows to obtain values within the interval {0, 1} for the predicted variance thanks to
its normalized formulation.
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Figure .3.4: Analysis of the confidence intervals predicted on (left) the adenosine
receptors and (right) aminergic GPCRs test sets. The percentage of
annotated values lying within the intervals of confidence of 68%, 80%,
95%, and 99% (ordinate axis) are depicted versus the size of the intervals.
The blue line defines the theoretical proportionality between the size of
confidence intervals and the number of points within the intervals, in
the frame of the Gaussian cumulative function. The radial, PUK, and
Normalized Polynomial (NP) kernels are in close conformity with the
cumulative Gaussian distribution in both data sets, while the Laplacian
and Bessel exhibit a diverse behavior depending on the data set. Therefore,
GP provide prediction errors in agreement with the Cumulative Gaussian
distribution which can be reliably used to define intervals of confidence
for the predictions.
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The experimental values for the radial kernel match the theoretically expected
behavior, represented on Figure .3.4 by bullet points connected by a blue line, and
calculated in the context of a Gaussian cumulative function. The match between
experiment and theory holds for the PUK and NP kernels for both data sets. The
difference between the cumulative Gaussian distribution and the different intervals
of confidence calculated for the Adenosine receptors data set is around 10% for the
other kernels (Figure .3.4, left plot). By contrast the Bessel and Laplacian kernels do
not provide informative intervals of confidence for the GPCRs data set (Figure .3.4,
right plot).

GP determine the AD of the model

The variance predicted with GP models, σ2ynew , quantifies how much information
the model can infer from the data (Eq. .3.5). Therefore, we hypothesized that: the
distribution of the differences between the predicted and the observed bioactivity val-
ues, are more dispersed for compound-target pairs distant from the training set (high
values of σ2ynew). To verify this hypothesis, we binned the test set into four groups
depending on the value of the predicted variance: {0.25, 0.5, 0.75, 1}. The differences
between true and predicted bioactivities were compared (Figure .3.5) to the bioactivity
errors predicted in the GP model. This analysis was done on the adenosine receptors
and GPCR data sets for the predicted variances obtained with the NP and the radial
kernels. As the dispersion of the distribution of the differences increases with the
errors predicted by GP, irrespective of the kernel or data set considered, this error
can be thus considered as a reliable estimate of the applicability domain (AD).

Interestingly, while the average differences between predicted and observed bioac-
tivities are close to zero for the subsets of GP errors of 0.25, 0.5, and 0.75, this average
value is biased towards few tenths of a pKi unit (Figure .3.5) for the subset displaying
the largest GP error. This observation indicates that errors on bioactivities are un-
derestimated by the GP model for compound-target pairs distant from the training set.

GP models with the NP and radial kernels provide prediction errors in agree-
ment with the cumulative Gaussian distribution, which is the maximum theoretical
precision attainable. Furthermore, the applicability domain of GP models can be
determined from the errors predicted by GP.

.3.3.3 Analysis of GP performance per target
To further understand the predictive capability of GP models on each analyzed target,
we trained ten GP models with the NP kernel. Different seed values were used
for the generation of the training and the test sets. Once the GP predictions have
been obtained, we divided the test set into subsets grouped by target, and calculated
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Figure .3.5: GP determine models applicability domain. The differences between
the true and predicted bioactivities (y axis) and the errors on predictions
estimated by the GP model (x axis) are compared for the adenosine
receptor data set with radial (A) and NP (B) kernel, and for the GPCRs
data set with radial (C) and NP (D) kernels. The distribution of the
differences between true and predicted bioactivities increases with the
GP error on the prediction. This validates the GP error is a measurement
of the AD of the model.

107



.3 Proteochemometric Modelling in a Bayesian Framework

average R20 test and RMSEtest values on these subsets. This analysis per target was
conducted only on the data sets of adenosine receptors and GPCRs, because of their
large sizes and numbers of involved targets.

Adenosine receptors

The highest mean RMSEtest value is between 0.70 and 0.75 pKi units, and the lowest
mean R20 test value is 0.62 (Figure .3.6). In this data set, the performance is not directly
related to the number of compounds annotated per target. Indeed, the best result
is obtained on the rat A2b receptor (AA2BR RAT, 803 compounds) whereas one
of the worst results is displayed by the human A1 receptor (AA1R HUMAN, 1635

compounds).
On the other hand, the results cannot be related to the chemical diversity of

the compounds, analyzed with pairwise Tanimoto similarity (Figure .3.7). Indeed,
the two targets displaying the largest variability in the range of 0.50-0.75 Tanimoto
similarity are rat A3 (AA3R RAT) and human A2b (AA2BR HUMAN), for which
quite different performances are observed (RMSEtest in the 0.70-0.75 range and in the
0.59-0.61 range respectively: Figure .3.6). Similarly, human A1 (AA1R HUMAN) and
A2a (AA2AR HUMAN) receptors, display the smallest variability for compounds,
and show quite different levels of performance (R20 test in the 0.56-0.60 range and in
the 0.70-0.74 range respectively).

The lack of connection between the performance and the chemical diversity could
arise from the binding site residue selection, which might not be equally suited for all
adenosine receptors. This is supported by two other facts, namely: (i) the differences
in extracellular loop length that are known for the adenosine receptor paralogues;
and (ii) secondly the knowledge that these loops are important for ligand binding
[Jaakola et al. (2008); Peeters et al. (2011a); Peeters et al. (2011b)].

GPCRs

In the GPCR data set, the best RMSEtest (Figure .3.8) and R20 test (Figure .3.9) values
are obtained on target subsets with a number of annotated compounds larger than
200 (in grey in Figures .3.8 and .3.9). Between the subsets, no major differences in
performance are observed for an amount of annotated compounds between several
hundreds and over 1500. It is however noticeable that the predictive ability of the
models increased as the target space included in the training data set broadened.
Indeed, a bioactivity selection previously done including information from 26 human
aminergic GPCRs (4,951 data-points), marked with an asterisk in Table .3.3, did
not produce any sound statistical metrics, as R20 test values lower than 0.40 were
obtained whatever the kernel or machine learning algorithm used. But, the addition
to the first selection of the bioactivities measured on mammal orthologues improved
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the prediction, although some of the additional bioactivity sets were singletons
(Table .3.3).

A large diversity of performance with RMSEtest values in the range of 0.00-2.50

pKi units is observed for the targets annotated with one compound (Figure .3.8). A
relationship can be nevertheless established between these performances and the
number of annotated compounds on orthologues proteins. For example, the 5-HT2C
mouse receptor (5HT2C MOUSE) annotated with three compounds exhibits a mean
RMSEtest value between 0.00 and 0.20 pKi units (Figure .3.8), because 345 and 558

compounds are respectively annotated on the orthologue rat and human 5-HT2C
receptors. The good performance obtained for this mouse receptor is probably due to
the similarity of the 345 and 558 compounds to the ones annotated to the 5-HT2C
mouse receptor.

Protein ID Frequency Protein ID Frequency Protein ID Frequency
5HT1A HUMAN* 1152 ACM1 HUMAN* 379 ADRB2 HUMAN* 122

5HT1A MOUSE 28 ACM1 MOUSE 9 ADRB2 MOUSE 21

5HT1A RAT 1953 ACM1 RAT 443 ADRB3 HUMAN* 190

5HT1B HUMAN* 436 ACM2 HUMAN* 573 ADRB3 MOUSE 1

5HT1B RAT 103 ACM2 MOUSE 7 DRD1 BOVIN 182

5HT1D HUMAN* 446 ACM2 RAT 275 DRD1 HUMAN* 315

5HT1D MOUSE 5 ACM3 HUMAN* 421 DRD1 MOUSE 7

5HT1D PIG 3 ACM3 RAT 109 DRD1 PIG 97

5HT1D RAT 1 ACM4 HUMAN 105 DRD1 RAT 366

5HT1E HUMAN 10 ACM4 MOUSE 1 DRD2 BOVIN 111

5HT1F HUMAN 90 ACM5 HUMAN 42 DRD2 CHLAE 14

5HT1F RAT 1 ADA1A BOVIN 97 DRD2 HUMAN* 2340

5HT2A BOVIN 5 ADA1A HUMAN* 619 DRD2 MOUSE 8

5HT2A HUMAN* 699 ADA1A RAT 253 DRD2 RAT 1778

5HT2A PIG 12 ADA1B HUMAN* 624 DRD3 HUMAN* 1349

5HT2A RAT 669 ADA1B MESAU 17 DRD3 RAT 348

5HT2B HUMAN* 162 ADA1B RAT 36 DRD4 HUMAN* 1326

5HT2C HUMAN* 558 ADA1D HUMAN 544 DRD4 RAT 35

5HT2C MOUSE 3 ADA1D RAT 205 DRD5 HUMAN* 134

5HT2C RAT 345 ADA2A BOVIN 76 DRD5 RAT 11

5HT4R CAVPO 11 ADA2A HUMAN* 276 HRH1 CAVPO 18

5HT4R HUMAN 139 ADA2A PIG 3 HRH1 HUMAN* 162

5HT4R RAT 115 ADA2A RAT 50 HRH1 RAT 82

5HT5A HUMAN 57 ADA2B HUMAN 144 HRH2 HUMAN 37

5HT5A MOUSE 38 ADA2B RAT 45 HRH3 CAVPO 73

5HT5A RAT 19 ADA2C HUMAN* 236 HRH3 HUMAN* 857

5HT5B RAT 1 ADA2C RAT 4 HRH3 RAT 612

5HT6R HUMAN* 638 ADRB1 HUMAN* 111 HRH4 HUMAN* 70

5HT7R HUMAN* 234 ADRB1 RAT 69 HRH4 RAT 2

5HT7R MOUSE 1 ADRB2 BOVIN 21

5HT7R RAT 216 ADRB2 CANFA 26

Table .3.3: Number of datapoints per GPCR. Those receptors highlighted by a ’*’
symbol correspond to those present in a subset of human GPCRs which
was first modeled with GP (see subsection GP performance per Target).
GPCRs are named according to UniProtKB/ Swiss-Prot database [Magrane
and Consortium (2011)].
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The importance of various targets for GP prediction was assessed for the adeno-
sine receptors and GPCRs data sets. To obtain statistically validated models, a balance
has to be found between two trends: (i) the inclusion of bioactivity information from
orthologues improves the predictive ability of the models for both data sets, but (ii)
an increase of the chemical diversity might hamper the acquisition of sound models
as shown for the adenosine receptors data set.

.3.3.4 Model interpretation of ligand descriptors
Compounds bioactivity depends on multiple weak contributions of chemical
substructures

The influence of the substructures on compound bioactivities, for both the adenosine
receptors and the GPCRs, was analyzed as described in section Interpretation of
ligand substructures. In the present study, the contribution of more than 90% of
substructures to the pKi values is close to zero (black regions in Figure .3.10). We
observed similarly that chemical substructures contributing in a very variable way
to the pKi values (average contribution equal to zero and standard deviations in the
range of 0.50 - 1.00 pKi units), are present in sets of compounds displaying large
variability in experimental bioactivity on a given target.

Hence, more than 90% of the substructures from the data sets analyzed here,
display alternatively the following properties: (i) they are not implicated in compound
bioactivity as their presence or absence does not influence compounds bioactivity,
(ii) their contribution to the pKi values, is conditioned to the presence or absence of
other substructures [Klekota and Roth (2008)].

The highest contributions to the pKi values, on both the GPCRs and the adenosine
receptors data sets, is close to 1 pKi units (Figure .3.10), in the range similar to those
obtained by Westen et al. (2013) Therefore, even those few substructures with a large
contribution, highlighted in Figure .3.10, do not explain a large proportion of the
bioactivity.
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Figure .3.6: Model performance per target on the test set for the adenosine recep-
tors data set. The upper panel corresponds to R20 test, while the lower
panel to RMSEtest. These values were averaged for ten models trained
on each subset corresponding to a given target. The best modeled target
is the rat adenosine A2b receptor (AA2BR RAT), while the worst is the
rat A3 receptor (AA3R RAT). In all cases, the mean RMSEtest values are
below 0.75 pKi units, indicating that GP modelling can predict compound
bioactivity on subsets corresponding to a given target.
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Figure .3.7: Distribution of pairwise compound Tanimoto similarity calculated on
the target subsets extracted from the adenosine receptors data set. The
overall mean pairwise similarity is around 0.8.
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Figure .3.8: Evaluation of model performance per target on the GPCRs dataset.
RMSEtest values, averaged on ten models trained on different resam-
ples of the dataset, are represented by bars, colored according to the
number of datapoints per target. The standard deviations on RMSEtest
are shown as error bars. Dark grey bars correspond to targets with more
than two hundred annotated compounds.
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Figure .3.9: Evaluation of model performance per target for GPCRs dataset on the
test set. R20 test values, averaged on ten models trained on different
resamples of the dataset, are represented by bars, colored according to
the number of datapoints per target. Dark grey bars correspond to targets
with more than two hundred annotated compounds. Both negative and
infinite R20 test values were set to zero.
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.3 Proteochemometric Modelling in a Bayesian Framework

ARD provides a biologically meaningful interpretation of PCM models

The substrates in the dengue virus NS3 proteases data set are tetra-peptides. The
relative importance of the four residues of these tetra-peptides was deconvoluted in
the frame of ARD, described in Materials and Methods, by taking the inverse of the
optimized l value of the radial kernel (Figure .3.11).
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Figure .3.11: Descriptor importance for the dengue virus NS3 proteases data set.
Descriptor importance is calculated in the frame of Bayesian ARD as the
inverse of the value of the length scale of each descriptor. The descriptors
of the first and second residues of the tetra-peptides (positions P1’ and
P2’) are the most relevant for the model. This is in agreement with the
higher influence of these two substrate positions for the cleavage rates
of the proteases.

The largest inverse values are obtained for P1’ followed by P2’, P3’ and P4’ dis-
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.3.4 Discussion

playing similar values. Thus, the first amino acid (P1’) is the most relevant for the
model followed by the second one (P2’), in contrast to the third and fourth ones (P3’
and P4’). In the study of Prusis et al. (2008), the PLS coefficients with the highest
values correspond to the first and second amino acids, as it is also the case here.
A further detailed comparison of the PLS and the presented GP model is beyond
the scope of this study. However, it should be noticed that the descriptors used in
the present study and in [Prusis et al. (ibid.)] differ: 5 z-scales in our case versus 3

z-scales, C7.4, t1-Rig, and t2-Flex [Gottfries (2006)] in the PLS model. Although the
PLS and GP models might assign different weights to the different descriptors, they
both identify the first amino acid position as having the largest influence on Kcat, in
agreement with experimental results [Prusis et al. (2008)].

GP models were interpreted on the basis of ligand descriptors. For data sets
where ligands are compound descriptors (GPCRs and adenosine receptors data sets),
the interpretation was not conclusive. By contrast, the interpretation of GP models
according to the amino acids of the tetra-peptide ligands in the dengue data sets gave
biologically meaningful results, in agreement with the scientific literature [Prusis
et al. (ibid.)]. In that way, ARD can be applied to biologically interpret systems: e.g.
identify residues responsible for compound binding. Additionally, ARD with the
radial kernel can model non-linear relationships, which is not possible with PLS
without the introduction of (not easily interpretable) cross-terms [Prusis et al. (2008);
Westen et al. (2011a)].

.3.4 Discussion

In this chapter, we have demonstrated that Gaussian Processes (GP) allow to predict
compound bioactivities on biomolecular targets. The statistically soundness of GP
models is observed for a broad panel of kernels, among which the NP and radial
kernels display the best results. GP and SVM display statistically similar performance
for the modelling of multispecies proteochemometric data sets of different sizes.
Moreover, Family QSAR and PCM models were trained on the same number of
data-points and PCM produce much better results than Family QSAR, due to the
introduction of target descriptors.

GP were applied on the following data sets: two large data sets involving GPCRs
and adenosine receptors and one small data set (199 data-points) comprising four
dengue NS3 proteases. The dengue data set exhibits a high degree of linearity, as
demonstrated by the high performance of both PLS and GP with a linear kernel on
this data set. Unsurprisingly, a better performance of GP is observed with different
kernels for the dengue data set than for the two other ones, due to the high matrix
completeness in the dengue data set and to its linearity. The satisfactory results
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.3 Proteochemometric Modelling in a Bayesian Framework

obtained for the dengue data set encourages the application of GP to model relatively
small data sets issued from a single laboratory. The use of such in-house data sets
would reduce the bias introduced by the annotation errors and by the use of non-
normalized experimental conditions.

The inclusion of chemical and target information from several organisms (or-
thologues) increases model performance and the applicability of models to predict
bioactivity for new compound target-combinations. These observations are in favor
for the routine inclusion of multispecies bioactivity information in PCM settings.
These results disagree with Gao et al. (2013), who stated that the addition of ortho-
logues to human aminergic GPCRs would reduce the AD. Our understanding of
the results obtained here is that the incorporation of bioactivity data from a wide
range of species led to a significant increase of models performance given that bind-
ing patterns tend to be conserved among orthologues [Kruger and Overington (2012)].

We have seen on the GPCR data set, that the inclusion of singletons compounds
bioactivities on human orthologues helps to increase models performance. This may
be of tremendous relevance in the often encountered cases where limited bioactivity
information is known on a given human target, but a much larger number of bioactiv-
ities have been measured on orthologues of this target [Fredholm et al. (2001); Kruger
and Overington (2012); Westen et al. (2012)]. Our results suggest that the chemical
diversity considered and the number of data-points have to be balanced to obtain
sound models while exhibiting proper predictive abilities.

An additional outcome of GP with respect to SVM is the estimation of the un-
certainty of predictions. Indeed, the Bayesian formulation of GP permits to obtain
intervals of confidence for individual predictions defined from the GP predicted vari-
ance. These intervals were shown to be in agreement with the cumulative Gaussian
distribution when using the radial and NP kernels, but not always for the Bessel or
Laplacian kernels, highlighting that the kernel choice has to be made in the light of
both models performance and reliability of the predicted variances.

We have also shown here that GP using as covariance function the polynomial
or the NP kernel can handle noisy data sets, as the GP performance is only slightly
affected when noise is introduced in the data. Nonetheless, each kernel should be
chosen in the light of underlying structure of the data set, as the kernel controls
the prior distribution over functions, and thus the models generalization properties
[Duvenaud et al. (2013); Rasmussen and Ws (2006)]. It is noteworthy to mention that
we have implemented a broad, though not exhaustive, panel of kernels, which is
susceptible to be further completed with other base kernels or kernel combinations
(composite kernels) [Duvenaud et al. (2013); Kronberger and Kommenda (2013);
Rasmussen and Ws (2006)].
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.3.5 Conclusion

GP can consider individual experimental errors as input for the probabilistic
model which may constitute a preeminent advantage when gathering information
from diverse sources, each of which including distinct levels of experimental uncer-
tainty [Schwaighofer et al. (2007)]. In the present study, an approximation of the
experimental uncertainty of heterogeneous pKi values, recently reported by Kramer
et al. (2012) to exhibit a standard deviation of 0.54 pKi units, has been introduced in
the model. Nonetheless, GP allow the inclusion of the uncertainty of each individual
datapoint into the model, which might lead to a more accurate modelling pipeline in
cases where the experimental uncertainty of each datapoint is available.

Traditionally, the application of GP to model large data sets has been limited since
the inversion of the covariance matrix scales with the cube of its dimension, i.e. GP
is an algorithm of complexity O(N3) [Obrezanova et al. (2007); Rasmussen and Ws
(2006)]. In the present study, we have not reported training times since models have
been trained with GP implementations coded in different programming languages
(subsection Machine Learning Analyses and Implementation). In the experience of
the authors, the application of ARD is limited by the size of the data sets, being not
applicable in practice to data sets with more than several thousands of data-points,
or with more than several hundreds of descriptors. Nevertheless, new GP implemen-
tations have proved to seemingly decrease calculation times [Csato and Opper (2002);
Paciorek et al. (2013); Tresp (2000)], which might increase the applicability of GP to
large PCM data sets in the future.

Overall, we have shown here that GP simultaneously provides bioactivity predic-
tions and assessment of their reliability. The application of GP to PCM data sets, gives
the insight that GP could also be very useful in the drug discovery for personalized
medicine, when the target space includes several mutants of a given target [Lapinsh
et al. (2008); Westen et al. (2013)]. In the same way, GP could even be used in the
context of decision making in clinics [Spjuth et al. (2011)].

.3.5 Conclusion
Gaussian Processes (GP) have been proposed and tested for the prediction of bioac-
tivity measurements, and found to perform at the same level of statistical significance
as Support Vector Machines (SVM). In addition, GP is the only method, up to now, to
give predictions as probability distributions, thus permitting the estimation of errors
on the bioactivity predictions as well as an estimation of the applicability domain.
Moreover, GP are tolerant to noisy bioactivities. GP models trained on PCM data sets
can also be used to analyze the effect of ligand features (compound substructures or
peptide residues).
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.4 Benchmarking the Influence of
Simulated Experimental Errors in
QSAR

To date, no systematic study has assessed the effect of random experimental errors
on the predictive power of QSAR models. To address this shortage, we have

benchmarked the noise sensitivity of 12 learning algorithms on 12 data sets (15,840

models in total), namely: Support Vector Machines (SVM) with radial and polynomial
(Poly) kernels, Gaussian Process (GP) with radial and polynomial kernels, Relevant
Vector Machines (radial kernel), Random Forest (RF), Gradient Boosting Machines
(GBM), Bagged Regression Trees, Partial Least Squares and k-Nearest Neighbours.
Model performance on the test set was used as a proxy to monitor the relative noise
sensitivity of these algorithms as a function of the level of simulated noise added to
the bioactivities from the training set. The noise was simulated by sampling from
Gaussian distributions with increasingly larger variances, which ranged from zero
to the range of pIC50 values comprised in a given data set. General trends were
identified by designing a full-factorial experiment, which was analyzed with a normal
linear model.

Overall, GBM displayed low noise tolerance, although its performance was
comparable to RF, SVM Radial, SVM Poly, GP Poly and GP Radial at low noise levels.
Of practical relevance, we show that the bag fraction parameter has a marked influence
on the noise sensitivity of GBM, suggesting that low values (e.g. 0.1-0.2) for this
parameter should be set when modelling noisy data. The remaining 11 algorithms
display a comparable noise tolerance, as a smooth and linear degradation of model
performance is observed with the level of noise. However, SVM Poly and GP Poly
display significant noise sensitivity at high noise levels in some cases. Overall, these
results provide a practical guide to make informed decisions about which algorithm
and parameter values to use according to the noise level present in the data.

.4.1 Introduction
Computational chemogenomic [Cortes-Ciriano et al. (2015a)] techniques capitalize on
bioactivity data to (quantitatively) predict and better understand unknown interac-
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tions between small molecules and their biomolecular targets. The development of
these techniques has been mainly fostered by (i) the increase of computing resources
and the availability of scalable machine learning software, and (ii) the advent of
high-throughput technologies, which have contributed to a vast increase of propri-
etary and public bioactivity data [Gaulton et al. (2011); Wang et al. (2012)]. Although
public bioactivity databases have growed in size steadily over the last decade, detailed
information about the assays used and the experimental errors of the measurements
are generally not reported. The question then arises how the experimental errors (or
the lack thereof) should be included in the generation and validation of in silico pre-
dictive models, and to which extent the quality of the data affects models predictive
ability on new molecules. These issues need to be addressed prior to model training,
e.g. which algorithms are robust to noisy input data and to which extent?, and
further downstream in the modelling pipeline, e.g. how should bioactivity models
be validated in the light of the noise of the data?. In this manuscript, we consider
experimental error, or simply noise, as the random error of a measured variable, e.g.
IC50 values [Fuller (2008)].

The quality of the data can be determined by the divergence of the average value
of the experimental replicates (i.e. sample mean) with respect to the true bioac-
tivity value, which would correspond to the average value of an infinite number
of replicates (i.e. the population mean). The sample standard deviation decreases
with the number of replicates. Thus, the difference between the population and the
sample mean will decrease as the number of replicates increases, leading to a more
precise estimation of the true bioactivity value. Therefore, in practice, the number of
replicates and their standard deviation can serve to determine the quality of a data
set. In this line, Wenlock and Carlsson (2014) have benchmarked the influence of
the quality of the data in the generation of drug metabolism and pharmacokinetic
models using data sets from AstraZeneca. The authors defined high-quality data as
those bioactivity values measured in replicates with a standard deviation below a
given threshold. This study showed that the quality of the training data is correlated
to model performance on external molecules.

Whereas discarding those data-points measured only once would constitute a rea-
sonable cleaning step in the data collection phase [Wenlock and Carlsson (ibid.)], in
practice, this might lead to a marked decrease in the number of data-points avali-
able for modelling, thus compromising the generation of statistically robust models.
Therefore, it is paramount to control the trade-off between the quality and the size of
the data. Two recent publications [Kalliokoski et al. (2013); Kramer et al. (2012)] have
analyzed the variability of pKi and pIC50 values from ChEMBL. The authors reported
standard deviations for heterogeneous pIC50 and pKi values of 0.68 and 0.54, respec-
tively. In practice, these average experimental errors for public pIC50 and pKi data, or
the experimental errors of each data-point when available [Cortes-Ciriano, I, Bender,
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A, and Malliavin (2015); Cortes-Ciriano, I et al. (2015)], can serve to assess whether
the predictive power of the models is realistic or not [Brown, Muchmore, and Hajduk
(2009); Cortes-Ciriano et al. (2015b); Cortes Ciriano et al. (2014); Cortes-Ciriano, I,
Bender, A, and Malliavin (2015); Cortes-Ciriano, I et al. (2015)]. In this line, Brown,
Muchmore, and Hajduk (2009) provided practical rules-of-thumb to evaluate the
maximum R2 (coefficient of determination) values attainable for the observed against
the predicted pIC50 values for a set of compounds as a function of the range of pIC50

values considered and of the number of data-points. This scheme was extended by
Cortes Ciriano et al. (2014) by also considering the distribution of these pIC50 values,
and by proposing to calculate the distribution of minimum RMSE and maximum
R2 values given the quality of the data. These distributions of the maximum values
for correlation metrics (e.g. R2, R20 or Q2), and of the minimum values in the case of
RMSE, can serve to assess whether the predictive power of the models is justified
by the quality of the underlying training data, as well as to quantify the probability
of obtaining a given R2 or RMSE value. Thus, the distributions of maximum and
minimum values can be regarded as sampling distributions for the validation metrics.

Although there exist algorithms to handle noisy input data [Ge, Xia, and Tu (2010);
Qin, Xia, and Li (2010); Rasmussen and Ws (2006); Tsang et al. (2009); Zhang (2004)],
the vast majority of the models reported in the medicinal chemistry literature are still
based on algorithms that (i) treat the dependent variable as a definite point value,
and (ii) that do not consider the experimental errors of the input data. Most machine
learning algorithms have been developped assuming noise-free input data [Atla et al.
(2011)]. Thus, their application to real-world problems, where noisy data sets are
prevalent, might lead to overfitting [Hawkins, Basak, and Mills (2003)], and thus
to a decrease of model performance on external data. Assessing the magnitude of
this decrease and the robustness to noise of different learning paradigms has been
subject of intense investigation in the machine learning community [Angluin and
Laird (1988); Atla et al. (2011); Kearns (1998); Manolopoulos and Spirakis (2003);
Natarajan et al. (2013); Teytaud (2001); Zhu and Wu (2004); Zhu, Wu, and Chen
(2003)]. Most of these studies have dealt with classification problems [Manolopou-
los and Spirakis (2003); Nettleton, Orriols-Puig, and Fornells (2010); Zhu and Wu
(2004); Zhu, Wu, and Chen (2003)]. Nettleton, Orriols-Puig, and Fornells (2010)
compared the tolerance to noise, both on the descriptors and on the class labels, of
the following classifiers on 13 highly unbalanced data sets: (i) Naive Bayes [John
and Langley (1995)], (ii) C4.5 decision trees [Quinlan (1993)], (iii) IBk instance-based
learner [Aha, Kibler, and Albert (1991)], and (iv) Sequential Minimal Optimization
(SMO) Support Vector Machines (SVM) [Platt (1998)]. The authors found Naive-Bayes
as the most robust algorithm, and SMO SVM the most sensitive, in agreement with
Atla et al. (2011). Interestingly, the authors showed that noise in the labels affects
to a greater extent the performance of the learners when compared to noise in the
descriptors. These results are reminiscent of the work by Norinder and Bostrom
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(2012). Therein, the authors benchmarked the tolerance to noisy chemical descriptors
of decision tree ensembles across 16 QSAR data sets, finding that, in practice, the in-
troduction of uncertainty in chemical descriptors does not reduce model performance.

To date, no systematic study has assessed the effect of random experimental errors
of bioactivities on the predictive power of commonly used learning methods in QSAR.
The present contribution aims at addressing this shortage. We recently compared the
influence of the experimental errors on the predictive power of regression Gaussian
Process (GP) models, finding that the radial kernel appears more robust to noisy
input data than polynomial kernels [Cortes Ciriano et al. (2014)], what agrees with
the machine learning literature [Steinwart (2002)]. Here, we extend this study by
evaluating the influence of the experimental errors on the predictive power of 8

commonly used machine learning algorithms in a robust statistical manner (Table .4.1).
The 8 machine learning algorithms, covering 5 learning paradigms, gave rise to 12

models as some parameters vary for a given method, e.g. kernel type. For the sake
of clarity, these 12 models will be referred to as algorithms or models throughout
the rest of the manuscript. The learning paradigms and algorithms are, respectively
(Table .4.1): (i) kernel methods: GP (radial and polynomial kernel), SVM (radial
and polynomial kernel), and Relevant Vector Machines (RVM) (radial kernel), (ii)
ensemble bagging methods: Random Forest (RF) and Bagged CART Regression Trees
(Tree bag), (iii) ensemble boosting methods: Gradient Boosting Machines (GBM),
(iv) linear methods: Partial Least Squares (PLS), and (v) k-Nearest Neighbour (NN)
learning (5-NN, 10-NN and 20-NN). We used 12 QSAR data sets reporting compound
potency as pIC50 values (Table .4.2). Chemical structures were encoded with Morgan
fingerprints and 1-D and 2-D physicochemical descriptors. For each triplet (data set,
algorithm, descriptor type) we trained each of the 12 models 11 times, each time with
an increasingly higher level of simulated noise added to the pIC50 values from the
training set. Model performance on the test set, quantified by the RMSE values for the
observed against the predicted pIC50 values, was used as a proxy to assess the noise
sensitivity of the 12 algorithms explored here. In order to identify general trends in a
statistically sound manner, and thus to assess the robustness of these algorithms with
respect to the level of noise in the input data, we designed a balanced fixed-effect
full-factorial experiment with replications. This experimental design was analyzed
with a normal linear model using the RMSE values on the test set as the dependent
variable.
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Learning Paradigm Algorithm Parameters and values used in CV ref
Kernel Gaussian Process Radial Kernel (GP Radial) σ ∈ {2−10, 2−4..22, 24}; σ2d (noise

variance): 0.001
Rasmussen and
Ws (2006)

Kernel Gaussian Process Polynomial Kernel (GP
Poly)

scale ∈ {2−10, 2−4..22, 24}; degree
∈ (k)6k=2; σ2d : 0.001

Rasmussen and
Ws (2006)

Kernel Relevant Vector Machines Radial Kernel
(RVM Radial)

σ ∈ {2−6, 2−4..22, 24} Tipping (2000)

Kernel Support Vector Machines Radial Kernel
(SVM Radial)

σ ∈ {2−10, 2−4..22, 24};
C ∈ {2−10, 2−4..22, 24, 10, 100}

Cortes and Vap-
nik (1995)

Kernel Support Vector Machines Polynomial Ker-
nel (SVM Poly)

scale ∈ {2−10, 2−4..22, 24}; offset: 0;
degree ∈ (k)6i=2;
C ∈ {2−10, 2−4..22, 24, 10, 100}

Cortes and Vap-
nik (1995)

Ensemble: bagging Bagged CART Regression Trees (Tree bag) - Breiman et al.
(1984)

Ensemble: boosting Gradient Boosting Machines (GBM) Learning rate (ν)
∈ {0.04,0.08,0.12,0.16}; ntrees: 500;
tree complexity (tc): 25; bag fraction (η):
0.5

Friedman
(2001); Natekin
and Knoll
(2013)

Ensemble: bagging Random Forest (RF) ntrees: 500 Breiman (2001)
Linear Partial Least Squares (PLS) - Wold, Sjöström,

and Eriksson
(2001)

k-Nearest Neighbours
(NN)

5-NN Nneighbours: 5 Fix and Hodges
(1989)

k-Nearest Neighbours 10-NN Nneighbours: 10 Fix and Hodges
(1989)

k-Nearest Neighbours 20-NN Nneighbours: 20 Fix and Hodges
(1989)

Table .4.1: Algorithms benchmarked in this study. The third column indicates the
parameters that were tunned using grid search and cross-validation (CV).
The default values were used for those parameters not indicated therein.

.4.2 Materials and Methods

.4.2.1 Data sets

.4.2.2 Data sets

We gathered a total of 12 QSAR data sets from the literature (references given in
Table .4.2) and from ChEMBL database version 19 [Gaulton et al. (2011)]. All data
sets report compound potency as IC50 values. These values were modelled in a
logarithmic scale (pIC50 = −log10 IC50). The size of the data sets range from 334

datapoints (Human Factor 7) to 2,312 (Cyclooxygenase 2). Detailed information about
these data sets can be found in Table .4.2.

.4.2.3 Molecular Representation

The function StandardiseMolecules from the R package camb [Murrell et al. (2014)] was
used to normalize all chemical structures using the default options. This normaliza-
tion step is crucial for the generation of compound descriptors, as the value of most
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of them (except for e.g. heavy atom counts) depend on a consistent representation of
molecular properties such as aromacity of ring systems, tautomer representation or
protonation states.

.4.2.4 Molecular Representation
The function StandardiseMolecules from the R package camb [Murrell et al. (2014)]
was used to normalize all chemical structures using the default options. This nor-
malization step is crucial prior to the generation of compound descriptors, as the
value of most of them (except for e.g. heavy atom counts) depend on a consistent
representation of molecular properties such as aromacity of ring systems, tautomer
representation or protonation states.

.4.2.5 Compound Descriptors
Compounds were encoded with circular Morgan fingerprints [Glen et al. (2006);
Rogers and Hahn (2010)] calculated using RDkit (release version 2013.03.02) [Cortes-
Ciriano (2013); Landrum (2006)]. Morgan fingeprints encode compound structures by
considering radial atom neighborhoods [Rogers and Hahn (2010)]. The choice of Mor-
gan fingerprints as compound descriptors was motivated by the high retrieval rates
obtained with these fingerprints in benchmarking studies of compound descriptors
[Bender et al. (2009); Koutsoukas et al. (2013)]. The size of the fingerprints was set to
256 bits, whereas the maximum radius of the substructures considered was set to 2

bonds. To calculate the fingerprints for a given compound, each substructure in that
compound, with a maximal diameter of four bonds, was assigned to an unambiguous
identifier. Subsequently, these substructures were mapped into a hashed array of
counts. The position in the array where each substructure was mapped was given
by the modulo of the division of the substructure identifier by the fingerprint size.
A total of 188 1-D and 2-D physicochemical descriptors was computed with RDkit
(release version 2013.03.02) [Landrum (2006)].
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.4.2.6 Model generation

The function RemoveNearZeroVarianceFeatures from the R package camb was used to
remove those descriptors displaying constant values across all compounds (near-zero
variance descriptors) using a cut-off value equal to 30/1 [Kuhn (2008); Kuhn and Json
(2013); Murrell et al. (2014)]. Subsequently, the remaining descriptors were centered
to zero mean and scaled to unit variance (z-scores) with the function PreProcess from
the R package camb.

Grid-search with 5-fold cross validation (CV) was used to optimize the model
parameters [Hawkins, Basak, and Mills (2003)]. The whole data set was split into
6 folds of the same size by stratified sampling of the pIC50 values. One fold, 1/6,
was withheld as the test set and served to assess the predictive power of the models.
The remaining folds, 5/6, constituted the training set and were used to optimize the
values of the parameters in the following way. For each combination of parameter
values in the grid, a model was trained on 4 folds from the training set, and the
values for the remaining fold were then predicted. This procedure was repeated 5

times, each time holding out a different fold. The values of the parameters exhibiting
the lowest average RMSE value across these 5 repetitions was considered as optimal.
Subsequently, a model was trained on the whole training set, using the optimized
values for the parameters. The predictive power of this model was assessed on the test
set by calculating the RMSE value for the observed against the predicted bioactivities.

We run five replicates (models) for all factor level combinations. The training
and test sets for each replicate were composed of different subsets of the complete
data set. In order to make the results comparable on a given data set for a given
replicate, all models were trained using the same fold composition. Thus, for a given
data set and replicate the same test set was used to assess the predictive power of all
algorithms at all noise levels. We note in particular that simulated noise was never
added to the test sets.

.4.2.7 Machine Learning Implementation

Machine learning models were built in R using the wrapper packages caret [Kuhn
(2008)] and camb [Murrell et al. (2014)]. The following R packages were used to
train the machine learning algorithms considered here: (i) kernlab [Karatzoglou et
al. (2004)] for Support Vector Machines (SVM) [Ben-Hur et al. (2008)], Relevance
Vector Machines (RVM) [Tipping (2000)], and Gaussian Processes (GP) [Rasmussen
and Ws (2006)], (ii) gbm [Ridgeway (2013)] for Gradient Boosting Machines (GBM)
[Friedman (2001)], (iii) class [Venables and Ripley (2002)] for k-Nearest Neighbours
(KNN) [Fix and Hodges (1989)], (iv) pls [Mevik, Wehrens, and Liland (2013)] for
Partial Least Squares (PLS) [Wold, Sjöström, and Eriksson (2001)], (v) randomForest

136



.4.2 Materials and Methods

[Liaw and Wiener (2002)] for Random Forest (RF) [Breiman (2001)], and (vi) ipred [Ps
and Hothorn (2013)] for bagged Classification And Regression Trees (CART) [Breiman
et al. (1984)].

.4.2.8 Simulation of Noisy Bioactivities

To assess the effect of random experimental errors on the predictive power of QSAR,
11 models per triplet (data set, algorithm, descriptor type) were trained, each of them
with an increasingly larger level of noise, ε, added to the pIC50 values from the
training set. Noise levels were simulated by sampling from a Gaussian distribution
with zero mean and corresponding larger variance, σ2noise. The value of the variance
across the 11 noise levels was defined as a function of the range of bioactivities
considered in each data set:

{σ2noise i}
10
i=0 = (max(pIC50) −min(pIC50)) ∗Noiselevel i; (.4.1)

where i is the index of the noise level, and (max(pIC50) −min(pIC50)) corre-
sponds to the range of pIC50 values comprised in a given data set. Noiselevel was
defined as:

Noiselevel = {i/10}10i=0 (.4.2)

The first noise level corresponds to a variance of 0, i.e. no noise was added and,
therefore, the bioactivity values corresponded to the reported pIC50 values. The
bioactivity values for the training set, Ytr Noise, were calculated as:

Ytr Noise i = Ytr + ε ∼ N(0, σ2noise i) (.4.3)

where Ytr Noise i corresponds to the noisy pIC50 values for noise level i, Ytr to the
reported pIC50 values, and ε to the vector containing the simulated noise. Therefore,
Ytr Noise i was used as the dependent variable during model training.

The simulated noise is thus sampled from a Gaussian distribution with variance:
σ2noise i. This choice makes the results comparable across data sets irrespective of the
range of pIC50 values comprised in each of them. For convenience, noise levels will be
reported in the following as percentage points (e.g. noise level 0.5 would correspond
to 50%). We note in particular that this noise simulation method is sensitive to outliers
(i.e. highly active or inactive compounds), as the range of pIC50 values would be
considerably enlarged in their presence. Thus, we advise to remove outliers for the
generation of the range of noise levels.

We are aware that the reported pIC50 values, which would correspond to noise
level 0%, already contain random experimental errors. We are not overly concerned
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about this issue given that all models trained on a given data set need to deal with
that base level of noise.

.4.2.9 Experimental Design

In order to investigate the relative noise sensitivity of the 12 algorithms, a balanced
fixed-effect full-factorial experiment with replications was designed [Winer, Brown,
and Michels (1991)]. The following four factors were considered, namely: data set
(Data set), noise level (Noise), descriptor type (Descriptor type), and learning
algorithm (Algorithm). Given that the factor Data set has an influence on model
performance, as some data sets are better modelled than others, but it is irrelevant to
the effect of interest (i.e. the effect of noise across learning algorithms irrespective
of the data set), it was considered as a blocking factor [Winer, Brown, and Michels
(ibid.)]. Similarly, the factor Descriptor type was also added as a blocking factor.

This factorial design was studied with the following linear model:

RMSEi,j,k,l,m test = Data seti +Descriptor typej+ (.4.4)
Noisek +Algorithml + (Noise ∗Algorithm)kl + µ0 + εi,j,k,l,m

(i ∈ {1, ..., Ndata sets = 12}; j ∈ {1, ..., NDescriptor type = 2};
k ∈ {1, ..., Nnoise levels = 11}; l ∈ {1, ..., Nalgorithms = 12}; m ∈ {1, ..., Nresamples = 100})

where the response variable, RMSEi,j,k,l,m test, corresponds to the RMSE values
on the test set. Data seti, Descriptor typej, Noisek and Algorithml are the main
effects, and Noise ∗ Algorithm corresponds to the interaction term between the
learning algorithm and the noise level. The factor levels Random Forest (Algorithm),
F7 (Data set), Morgan fingerpints (Descriptor type), and Noise : 0 (Noise level)
were used as reference factor levels to calculate the intercept term of the linear model,
µ0, which is simply the mean RMSEtest value for this combination of factor levels.
The coefficients (slopes) for the other factor level combinations, e.g GP:Noise 20%,
correspond to the difference between their mean RMSEtest value and the intercept.
The error term, εi,j,k,l,m, corresponds to the random error of each RMSEtest value,
which are defined as: εi,j,k,l,m = RMSEi,j,k,l,m test − RMSEi,j,k,l. These errors are
assumed to (i) be mutually independent, (ii) have zero expectation, and (iii) have
constant variance.

One model was trained for all factor level combinations, giving rise to 15,840 models
(12 learning algorithms x 11 noise levels x 12 data sets x 2 descriptor types x 5 repli-
cations). The predictive power of the models, which serves as a proxy to evaluate the

138



.4.2 Materials and Methods

noise sensitivity of the algorithms, was assessed on the test set and quantified by the
RMSE value, RMSEi,j,k,l,m=1 test, for the observed against the predicted bioactivities.
Bootstrapping [Efron and Tibshirani (1993)] was used to generate 100 resamples
(Nreplications) for these RMSEi,j,k,l,m test values (i.e. RMSEi,j,k,l,m=2:100 test), thus en-
suring a balanced experimental design. Therefore, the total number of observations
considered in the linear model was 1,584,000 (15,840 trained models x 100 resamples
each). The significance level was set to 5%. The normality and homoscedasticity
assumptions of the linear model were respectively assessed with (i) quantile-quantile
(Q-Q) plots, and (ii) by visual inspection of the RMSEtest distributions, and by plotting
the RMSEtest values against the residuals [Winer, Brown, and Michels (1991)].

The interaction term was introduced to assess the interaction effects between
the factors Algorithm and Noise. Figure .4.1 illustrates the concept of two-way
interactions (i.e. between two factors) with a toy example where both the factor
Algorithm and the factor Noise have only two levels, namely: Algorithm: RF and
GP; and Noise: 0 and 100. There is no interaction between two factors when the
difference of the mean values of the dependent variable (in this case RMSE) across the
levels of a factor (e.g. Algorithm) does not change across the levels of a second factor
(e.g. Noise). In the example, this means that the difference in RMSE between RF and
GP is the same irrespective of the level of noise (Figure .4.1A). Therefore, it could
be concluded that the difference in performance between RF and GP is not affected
by the level of noise. This can be easily showed in an interaction plot (Figure .4.1A
right panel) by plotting the levels of the factor Noise against the RMSE values for GP
and RF. In the absence of interaction, the lines connecting the points corresponding
to the RMSE values for each algorithm along the levels of the factorNoise are parallel.

By contrast, in the presence of interaction (Figure .4.1B), the difference in RMSE
between RF and GP would vary across the levels of the factor Noise. Therefore, the
performance of the algorithms would depend on the level of noise, and the lines in
the interaction plot would not be parallel (Figure .4.1B right panel). Consequently, it
would not be possible to conclude about the effect of a single independent variable
(e.g. factor Algorithm) on the RMSE (termed main effects), as the RMSE values would
depend on the level of other factors (e.g. Noise). For instance, in Figure .4.1B, it
would not be possible to state that RF perform better than GP because the RMSE
values corresponding to each algorithm depend on the level of noise. Therefore, in
the presence of interaction, the influence of a factor on the dependent variable has
to be analyzed for each level of the second factor, which is known as analysis of
simple effects. In the example (Figure .4.1B), this would correspond to stating that
GP perform better than RF when no noise is present in the input data, whereas RF
perform better than GP when the level of noise equals 100%.

139



.4 Benchmarking the Influence of Simulated Experimental Errors in QSAR

Figure .4.1: Illustration of two-way interactions between two-level factors, namely:
Algorithm: RF and GP; and Noise: 0 and 100. There is interacion
between two factors (A) when the difference of the mean RMSE values
(response variable) across the levels of a factor (e.g. Algorithm) does not
change across the levels of a second factor (e.g. Noise). In the example,
the difference in performance between GP and RF is the same across
all levels of factor Noise. This is illustrated by the presence of parallel
lines. By contrast, the presence of non parallel lines (B) indicates that the
performance of GP and RF changes depending on the noise level. Thus,
GP outperforms RF at noise level 0%, whereas RF outperforms GP at
noise level 100%.
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The fitted linear model displayed an adjusted R2 value (adjusted by the complexity
-number of parameters- of the model) of 0.71, and a standard error for the residuals
of 0.27. This analysis showed significant interaction between the factors Noise and
Algorithm (P-value < 0.001), thus indicating that the effect of Noise on the RMSEtest
values is not constant across the algorithms studied, and vice versa. This is illus-
trated by the presence of non-parallel lines in the interaction plots (Figure .4.2A,B).
Figure .4.3A shows the distributions of RMSEtest values for the 12 learning algo-
rithms across all replications, data sets, descriptor types, and noise levels, whereas
Figure .4.3B reports the distributions of RMSEtest values for the 11 noise levels con-
sidered across all data sets, descriptor types, algorithms and replications. The values
for the coefficients, namely slopes and intercept, and their P-values are reported in
Table .4.3.

RVM Radial constantly displays the worst predictive power (Figure .4.2A), followed
by GBM, Tree bag, 5-NN, 10-NN and 20-NN. This effect can also be inferred from
the high value for the slope corresponding to the factor level RVM Radial, namely
0.34 pIC50 units (Table .4.3, first column). Although low, the predictive power of
RVM exhibits a smooth degradation with the level of noise comparable to the other
methods, with the exception of GBM. This indicates that RVM are less sensitive to
noise than GBM. Interestingly, GBM displays mean RMSEtest values comparable to
those obtained with RF, SVM Radial, GP Radial, GP Poly and SVM Poly for noise
levels 0 and 10% (Figure .4.2A), which is also indicated by the slope value for GBM,
namely -0.09 (Table .4.3, first column). However, the mean RMSEtest values signifi-
cantly increase from noise level 20% upwards, thus indicating that the performance
of GBM highly depends on the noise level. The sensitivity to noise of the remain-
ing 11 algorithms displays a smooth and linear degradation with the level of noise
(Figure .4.2B), showing that these algorithms exhibit a comparable tolerance to noise,
and, thus, are less prone to overfitting than GBM.

The sensitivity to noise of boosting algorithms has been previously reported
[Long and Servedio (2010)]. Introducing randomness in ensemble modelling by
subsampling has proved efficient to increase the generalization ability of a model and
to reduce its susceptibility to overfitting [Breiman (2001); Dietterich (2000); Natekin
and Knoll (2013)]. In GBM, randomness during training is introduced by controlling
the fraction (bag fraction) of the training data randomly sampled without replacement
that will be used to fit the next base tree learner at each consecutive learning iteration.
The value for bag fraction is set to 0.5 by default [Natekin and Knoll (2013)]. To
further understand the effect of this parameter on the noise tolerance of GBM in
QSAR, we trained a model using Morgan fingerprints as compound descriptors for
all Algorithm-Noise combinations across a wide range of bag fraction values (bag
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fraction ∈ (k/10)10k=1) for 7 data sets of diverse size, thus giving rise to 840 models
(7 data sets * 12 algorithms * 10 bag fraction values). Figure .4.4 reports the mean
RMSEtest values for these models. Up to a noise level of 30%, the performance of all
models is comparable across the range of bag fraction values explored. By contrast,
from 30% onwards the difference increases abruptly. In all cases, the mean RMSEtest
difference between models trained with bag fraction values of 1 and 0.1-0.2 increases
with the noise level, reaching a difference value of ∼1.5 pIC50 units at noise level
100%. Taken together, these data evidence that a proper tuning of the bag fraction
parameter is required to palliate the noise sensitivity of GBM.

SVM Poly displayed low noise sensitivity at low noise levels, although the tol-
erance to noise conspicuously decreased at noise levels higher than 50%. This is
illustrated by the inter-point distance in Figure .4.2A. This phenomenon was less
marked for GP Poly, and was not observed for GP Radial nor SVM Radial. Overall,
the noise sensitivity of GP Poly is comparable to that of SVM Radial, GP Radial and
RF. Nevertheless, GP Poly and SVM Poly exhibit high noise sensitivity in some cases,
as indicated by the corresponding tails in the violin plots in Figure .4.3A.

Similar to GBM, the machine learning community has reported the propensity
of k-Nearest Neighbours to overfitting when modelling noisy data in classification
settings [Kononenko and Kukar (2007); Sánchez, Luengo, and Herrera (2013, 2014);
Wu, Ianakiev, and Govindaraju (2002)]. The performance of 5-NN, 10-NN and 20-NN
was found comparable to that of Tree bag and PLS, and lower than that of RF, SVM
Radial, SVM Poly, GP Poly and GP Radial. The sensitivity to noise of Tree bag, 5-NN,
10-NN and 20-NN decreased more sharply at high noise levels, which can be observed
by the inter-point distance in Figure .4.2A. As a rule of thumb, it is considered that
the sensitivity to noise decreases with the increase of the number of neighbours (k)
[Everitt et al. (2011)]. Here, we did not observe this trend, as the noise sensitivity of
5-NN, 10-NN and 20-NN remains constant across all noise levels, as illustrated by the
parallel lines observed in Figure .4.2A. Therefore, k-NN appears robust to noise in
the context of QSAR across the data sets studied. The performance of k-NN models
was slightly lower than that of Tree bag across all noise levels (Figure .4.2A), whereas
RF constantly displayed comparable predictive power (Figure .4.2A,B) to Tree bag. It
is known that bagging reduces the variance of the final model [Hastie, Tibshirani, and
Friedman (2001)]. In the case of RF, the additional layer of randomization is expected
to decrease the sensitivity to noise, and, thus, lead to higher predictive power on the
test set. However, this effect was not observed across the algorithms, noise levels,
data sets and descriptors explored in this study.

Worth of mention is the fact that at the highest noise levels explored, PLS displays
the highest predictive power, as well as the smoothest degradation in performance as
the level of simulated noise increases. This can be observed by the low inter-point
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distance in Figure .4.2A, and by the low slope of the line corresponding to PLS
(orange) in Figure .4.2B. Therefore, PLS appears more robust to noise than more
algorithmically complex techniques such as RF.
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.4.4 Discussion

We have benchmarked the noise sensitivitiy of 12 learning algorithms commonly
used in QSAR, comprising 5 learning paradigms, on 12 data sets using two descriptor
types, namely: Morgan fingerprints (topological descriptors) and physicochemical-
property-based descriptors. Model performance on the test set was used as a proxy
to monitor the relative noise sensitivity of these algorithms as a function of the level
of noise added to the bioactivities from the training set. The noise was simulated
by sampling from Gaussian distributions with increasingly larger variances, which
ranged from zero to the range of pIC50 values comprised in a given data set. Al-
though the exploration of machine learning algorithms (and data sets) reported is
not exhaustive, we have conducted robust statistical analyses, which have evidenced
general trends about the behaviour of these algorithms across different noise levels
and, in the case of kernel methods, across kernel types. Overall, GBM displayed low
tolerance to noisy bioactivities although its performance was comparable to RF, SVM
Radial, SVM Poly, GP Poly and GP Radial for low noise levels.

We note in particular that at noise level 0%, the lowest predictive power, excluding
RVM Radial, is displayed by 5-NN, 10-NN and 20-NN and PLS, which are the least
algorithmically complex methods among the learning strategies explored. This also
indicates that the relationship between the pIC50 values and the molecular properties
presents a certain degree of non-linearity, thus making the data sets used here suitable
to benchmark the noise sensitivity of non-linear algorithms. Similarly, it is important
to note that the aim here is to assess the noise sensitivity of a set of algorithms
covering diverse learning paradigms, but not to compare their relative performance
on these data sets (although all models displayed sufficient predictive power to be
considered as statistically robust) [Golbraikh and Tropsha (2002)].

In a previous publication [Cortes Ciriano et al. (2014)], it was reported the differ-
ential tolerance to noise of Gaussian Process models depending on the kernel chosen.
Here, we found that both GP models with radial (GP Radial) and polynomial (GP
Poly) kernels displayed high predictive power on the test set for low noise levels (0
and 10%). By contrast, the RMSEtest values slightly increased in the case of GP Poly
with the level of noise, which agrees with the machine learning literature [Atla et al.
(2011); Cortes Ciriano et al. (2014); Hastie, Tibshirani, and Friedman (2001); Steinwart
(2002)]. This effect was more evident in the case of SVM models. In practice, it is
advisable to use a low degree for the polynomial kernels when used with SVM, as
polynomial kernels of higher degree are prone to overfitting and are less robust to
noise [Hastie, Tibshirani, and Friedman (2001)]. From a practical standpoint, we
observed that the noise tolerance of SVM Poly and GP Poly could be improved (data
not shown) if the grid used to optimize the model parameters in cross-validation
covers a wide range of values (Table .4.1). Therefore, we advocate to perform grid

146



.4.4 Discussion

0.0

2.5

5.0

7.5

RF

SVM
 R

ad
ial

SVM
 P

oly

GP R
ad

ial

GP P
oly

RVM
 R

ad
ial

5 
NN

10
 N

N

20
 N

N

Tr
ee

 b
ag

GBM
PLS

R
M

S
E

 (
pI

C
50

)

0.0

2.5

5.0

7.5

0 10 20 30 40 50 60 70 80 90 100
Noise level (%)

R
M

S
E

 (
pI

C
50

)
A

B

Figure .4.3: A. RMSEtest values across all data sets and noise levels for the 12 algo-
rithms. B. RMSEtest values across all data sets and models for the 11
noise levels studied. The data set-specific intercept was subtracted from
the RMSEtest values in order to make the results comparable across the
seven data sets.

147



.4 Benchmarking the Influence of Simulated Experimental Errors in QSAR

1.0

1.5

2.0

2.5

3.0

R
M
S
E
(p
IC
50
)

COX 1

1

2

3

COX 2

1

2

3

4

R
M
S
E
(p
IC
50
)

DHFR rat

1

2

3

4

DHFR homo

0.4

0.6

0.8

1.0

1.2

R
M
S
E
(p
IC
50
)

F7

1

2

3

0 10 20 30 40 50 60 70 80 90 100

Noise level (%)

IL4

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100
Noise level (%)

R
M
S
E
(p
IC
50
) Bag fraction

0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8

0.9 1

MMP2

Figure .4.4: RMSEtest values for GBM models trained with increasingly higher
bagfraction values across all Noise−Algorithm− dataset combina-
tions. For low noise levels (up to 30%) the performance of all models
is comparable irrespective of the bagfraction value. However, from
noise level 30% upwards, the mean RMSEtest difference between models
trained with bag fraction values of 1 and 0.1-0.2 increases with the noise
level. Overall, these data suggest that the noise sensitivity of GBM highly
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search across a broad range of parameter values for GP Poly (scale) and SVM Poly
(scale and C).

Interestingly, the noise sentivity of SVM Radial and GP Radial was comparable,
thus indicating that the variability in noise sensitivity for SVM and GP is more
dependent on the kernel choice than on the machine learning technique. Although
GP and SVM display comparable predictive power [Cortes Ciriano et al. (2014)], the
Bayesian formulation of GP enables the inclusion of the experimental error of each
datapoint as input to the model. This property of GP might be useful when modelling
data sets in which the experimental errors for individual datapoints are reported.

Another interesting observation is the low noise tolerance of GBM under the
default parameter settings, i.e. the bag fraction η = 0.5. These results are in line
with Dietterich (2000), who reported that boosting displays higher performance than
bagging in classification on noise-free data, whereas in the presence of noise bagging
outperforms boosting. Therefore, these data indicate that careful attention should be
given to the choice of parameter values when using GBM in QSAR.

It is important to note that noise in QSAR does not always correspond to random
experimental errors. For instance, the purity of compounds can degrade over time
and their solubility in the assay medium is not always verified. Similarly, IC50 values
depend on the assay conditions. Therefore, it is advisable to consider these sources
of error prior to building QSAR models whenever possible. For a detailed review of
the sources of errors in bioactivity data see ref. Kramer and L (2012). Concerning the
quantification of the level of noise (quality) of bioactivity data, Wenlock and Carlsson
(2014) considered as high quality data those datapoints whose replicate standard
deviation was below an arbitrary cut-off value. Whereas information about the quality
of the data might be available when using in-house data obtained in normalized
experimental conditions, this is not generally possible for academic laboratories, as
public databases lack detailed information about the assay protocols and the variation
across experimental replicates. Therefore, assessing the quality of public data might
not always be possible. In these cases, it is reasonable to consider respective standard
deviations of 0.68 and 0.54 for heterogeneous pIC50 and pKi values [Kalliokoski et al.
(2013); Kramer et al. (2012)].

Overall, this study provides a practical guide to make informed decisions about
which algorithm and parameter values to use according to the noise level present in
the data. As we have shown here, an inappropriate algorithmic (or kernel) choice can
have a significant impact on the predictions on external molecules when modelling
low quality data, even for low noise levels. Therefore, the quality of the data, be
it estimated from replicates or from the literature [Kalliokoski et al. (2013); Kramer
et al. (2012)], should become a customary criterion to guide how to approach a given
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bioactivity modelling task from an algorithmic standpoint and how to validate the
resulting models.
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.5 Isoform Selectivity Prediction: COX

.5.1 Introduction

Cyclooxygenases (EC 1.14.99.1), also known as endoperoxidases, prostaglandin
G/H synthases or simply COX, are involved in the biosynthesis of prostaglandin

H2 from arachidonic acid [Luo, He, and Bohlin (2005)]. Prostaglandin H2 is further
converted into prostanoids which play a key role in inflammation. Thus, since the
development of aspirin® in 1899 [Vane (1971)], the inhibition of the cyclooxygenase
activity with non-steroidal anti-inflammatory drugs (NSAIDs) has been exploited to
treat inflammation. Nonetheless, kidney failure and gastrointestinal side-effects, such
as peptic ulcer, have been correlated to long-term intake of NSAIDs [Fine (2013)].
Until 1991, only one form of the enzyme (COX-1) was thought to be responsible for
both the constitutive and the local biosynthesis of prostaglandins. In that year [Xie
et al. (1991)], an inducible cyclooxygenase (COX-2) was discovered and the different
roles of both isoenzymes were revealed. There does exist some overlap: COX-1
is constitutively expressed serving as the source of housekeeping prostaglandins,
whereas the expression of COX-2 increases in pathophysiological situations such as
acute pain, inflammation or cancer [Sostres, Gargallo, and Lanas (2014)]. From this
it is thought that efficacy and side-effects can, to some extent, be delineated when
blocking the prostaglandin synthesis pathway associated with inflammation and pain.

In the last two decades, research in both the pharmaceutical industry and aca-
demic laboratories has been driven by the hypothesis that selective COX-2 inhibitors
would exhibit strong anti-inflammatory and analgesic properties without leading to
the unwanted gastrointestinal side effects [Warner et al. (1999)]. Nevertheless, a few
organs, e.g. the brain cortex and renal glomeruli, express COX-2 constitutively [Luo,
He, and Bohlin (2005)]. The association between the inhibition of COX-2 in these
organs with cardiovascular hazard (CVH) was ratified in 2004 and 2005 [Bresalier
et al. (2005); Nussmeier et al. (2005)]. These findings led the US Food and Drug
Agency (FDA) to retrieve rofecoxib (Vioxx) and valdecoxib (Bextra) from the market,
and to include boxed warnings for all selective COX-2 inhibitors. Higher risk of
heart attack and hypertension have also been reported for non-selective NSAIDs,
thus highlighting that cardiovascular risk might not be related to the degree of COX
selectivity [Howes (2007)]. In 2012, Yu et al. (2012) demonstrated that the cardiovas-
cular risk originates from COX-2 inhibition by selective and not selective NSAIDs
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and is taking place in blood vessels. These authors have shown that COX-2 inhibition
leads to a decrease in prostaglandin (mainly PGI2) and to increased nitric oxide (NO)
production which is sufficient to increase the risk of heart failure, hypertension and
thrombosis [Yu et al. (2012)].

Nevertheless, there are still niche populations which can benefit from selective
COX-2 inhibitors, e.g. patients who cannot afford to take non-selective COX inhibitors,
due to an increased risk of peptic ulcers or cancer. In addition, selective COX-2 in-
hibitors continue to be the common treatment for chronic inflammatory and pain
disorders [Crofford (2013); Fine (2013)], and NSAIDs are known to reduce the risk of
(among others) [Hson et al. (2013); Robak, Smolewski, and Robak (2008); Zhang et al.
(2014)]: colon cancer [Chen et al. (2008); Moore and Simmons (2000); Soh et al. (2008);
Thun, Henley, and Patrono (2002)], Alzheimer’s disease, and platelet aggregation
[Jouzeau et al. (1997); Sostres, Gargallo, and Lanas (2014)]. Overall, NSAIDs are still
one of the most commonly prescribed drugs in the world [Jones et al. (2008)], and
this trend is likely to increase owing to the aging of the population. Therefore, the
administration of NSAIDs in clinics is currently subject to a benefit-risk assessment
between the patients clinical profile and potential drugs side-effects [Curiel and Katz
(2013)], always aiming at optimizing both the dosage and the duration of the drug
regimen [Fine (2013)].

The isoform selectivity of COX inhibitors stems from a structural difference in
the binding site. The binding site of both cyclooxygenases is highly conserved except
for the substitution of an isoleucine at position 523 in COX-1 with a valine in COX-2
[Blobaum and Marnett (2007)]. This substitution results in a larger binding site in
COX-2, as the smaller size of valine allows access to a side-pocket. This structural
difference has been exploited for the rational design of potent and selective COX-2
inhibitors by both medicinal and computational chemistry [Blobaum and Marnett
(2007); Dannhardt and Laufer (2000); Leval et al. (2000)].

To date, a plethora of in silico studies have been published with the aim of better
understanding and predicting the potency of COX inhibitors on either COX-1 or
COX-2 using molecular docking and QSAR models [Dube et al. (2014); Gupta and
Kumar (2012); Kim et al. (2004); Narsinghani and Chaturvedi (2006); Reddy et al.
(2007)]. Nonetheless, none of these studies was able to integrate bioactivity infor-
mation from multiple mammalian COX in the frame of a single machine learning
model. Given that the bioactivity profiles of selective COX inhibitors on COX-1 and
COX-2 are highly uncorrelated, thus presenting high selectivity ratios [Dannhardt
and Laufer (2000); Leval et al. (2000)], only a predictive model trained on both the
chemical and the target space would be able to simultaneously predict compound
potency on a panel of cyclooxygenases, as well as to predict the activity of a given
compound on a yet untested isoform. In that way, new potent, selective and safe COX
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inhibitors could be discovered.

Here, we apply the principles of PCM to model the potency of 3,228 compounds
on 11 mammalian cyclooxygenases. To this aim, we have trained PCM models
with different machine learning algorithms on public IC50 values from ChEMBL 16

[Gaulton et al. (2011)], including data on human COX-1, COX-2, and on 9 orthologues.
In an attempt to increase model performance, these models have been combined
in ensembles (ensemble modelling), thus constituting the first PCM study where
ensemble PCM modelling is applied. Additionally, the description of compounds
with keyed fingerprints has enabled the deconvolution of the chemical space to
rationalize both the potency and the selectivity of COX inhibitors towards a particular
isoenzyme.

.5.2 Materials and Methods

.5.2.1 Data set

IC50 values for 11 mammalian cyclooxygenases, listed in Table .5.1, were retrieved
from ChEMBL 16 [Gaulton et al. (ibid.)]. To ensure the reliability of the bioactivity
values, only IC50 values corresponding to small molecules and satisfying the following
criteria were kept: (i) activity relationship equal to ’=’, (ii) assay score confidence > 8,
and (iii) activity unit equal to ’nM’. The average pIC50 value was calculated when
multiple IC50 values were annotated on the same compound-target combination.
The application of these filters led to a final data set composed of 3,228 distinct
compounds and 11 sequences, being the total number of data-points 4,937 (13.9%
matrix completeness). The negative logarithm with base 10 of the IC50 values (pIC50)
was used as the response variable to train all models. We decided to mix bioactivity
data from different assays given that Kalliokoski et al. (2013) reported that the
standard deviation of public IC50 data is 25% larger than the standard deviation
corresponding to public Ki data, and thus mixing IC50 data from different assays
adds a moderate level of noise. The crystallographic structure of the ovine COX-1
complexed with celecoxib (PDB ID: 3KK6 [Berman et al. (2000); Rimon et al. (2010)])
was used to extract the residues in the binding site. Those residues within a sphere of
radius equal to 10Å centered in the ligand were selected. The corresponding residues
for the other 10 sequences were identified by multiple sequence alignment [Sievers
et al. (2011)].

.5.2.2 Descriptors

Chemical structures were standardized (section .2.1) with the function Standardis-
eMolecules from the R package camb [Murrell et al. (2014)] with the following options:
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UniProt
ID

Type Organism Number of
Bioactivities

% Compounds
Annotated

P23219 1 Homo sapiens 1,346 41.7
O62664 1 Box taurus 48 1.5
P22437 1 Mus musculus 50 1.5
O97554 1 Oryctolagus

cuniculus
11 0.3

P05979 1 Ovis aries 442 13.7
Q63921 1 Rattus Norvegicus 23 0.7
P35354 2 Homo sapiens 2,311 71.6
O62698 2 Bos taurus 21 0.7
Q05769 2 Mus musculus 305 9.4
P79208 2 Ovis aries 341 10.6
P35355 2 Rattus Norvegicus 39 1.2

Table .5.1: Composition of the COX data set. The total number of bioactivities, after
duplicate removal and selected from ChEMBL as described in Materials
and Methods, and of distinct compounds are 4,937 and 3,228 respectively.
The last column indicates the percentage of the total number of distinct
compounds (3,228) annotated on each target.

(i) inorganic molecules were removed, and (ii) molecules were selected irrespectively
of the number of fluorines, chlorines, bromines or iodines present in their structure,
or of their molecular mass. Morgan fingerprints [Glen et al. (2006); Rogers and Hahn
(2010)] were calculated using RDkit (release version 2013.03.02) [Cortes-Ciriano (2013);
Landrum (2006)]. Physicochemical descriptors (PaDEL) [Yap (2011)] were calculated
with the function GeneratePadelDescriptors from the R package camb. The R package
vegan was used to generate the distributions of pairwise compound similarities (Jac-
card distance) [Oksanen et al. (2013)].

The amino acids composing the binding site of the mammalian cyclooxygenases
considered in this study (Table .5.1), were described with five amino acid extended
principal property scales (5 z-scales) [Sandberg et al. (1998)]. z-scales were calculated
with the R package camb [Murrell et al. (2014)].

.5.2.3 Machine learning implementation

Machine learning models were built in R using the packages caret [Kuhn (2008)] and
camb [Murrell et al. (2014)]. Model ensembles were created with the help of the R
package caretEnsemble [Mayer and E (2015)]. Both the data set and the modelling
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pipeline coded in R is available in the documentation of the R package camb [Murrell
et al. (2014)].

.5.2.4 Model generation

Descriptors with a variance close to zero were removed with the function Remove-
NearZeroVarianceFeatures from the R package camb using a cut-off value equal to
30/1 [Kuhn (2008); Kuhn and Json (2013); Murrell et al. (2014)]. Subsequently, the
remaining descriptors were centered to zero mean and scaled to unit variance with
the function PreProcess from the R package camb.

The values of the model parameters were optimized by grid search and 5-fold
cross validation (CV) [Hawkins, Basak, and Mills (2003)] (section .2.4). To significantly
compare the quality of the modelling with different machine learning algorithms, the
same folds were used to train all models.
Both single PCM models and model ensembles were used to predict the bioactivities
for the test set, and their error in prediction compared. The bioactivity values corre-
sponding to the data-points in the test set were not considered when building neither
the single PCM models not the model ensembles.

In order to assess whether merging the chemical and the target space in a single
PCM model enhances model performance, we trained two Random Forest (RF)
models using either: (i) only compound descriptors (Family Quantitative Structure-
Activity Relationship -QSAR-) [Brown et al. (2014)], or (ii) only target descriptors
(Family Quantitative Sequence-Activity Modelling -QSAM-) [Brown et al. (ibid.)].
Obtaining a high performance with a Family QSAR model would indicate that the
bioactivities of a given compound on different targets are correlated. Thus, target
descriptors would not contribute to increase model performance. On the other
hand, high performance observed for a Family QSAM model would indicate that
the bioactivity values only depend on the targets and not on the compounds, i.e. the
bioactivities of a set of diverse compounds are correlated on a given target. In this
case, compound descriptors would not be required to predict compounds affinity, as
target descriptors alone would be sufficient.

.5.2.5 Model validation

Both internal and external validation were performed according to the criteria pro-
posed by Golbraikh and Tropsha (2002); Tropsha and Golbraikh (2010); Tropsha and
Gramatica (2003), and to the RMSE values. These criteria and the formulae of the
statistical metrics are given in sections .2.6.1.
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.5.2.6 Assessment of maximum model performance

To further assess the reliability of the models in the light of the uncertainty of the
bioactivity values [Kalliokoski et al. (2013); Kramer and L (2012); Kramer et al. (2012)],
we established the maximum R20 test and q2test, and minimum RMSEtest values achiev-
able given: (i) the uncertainty of public IC50 data, and (ii) the number of data-points
in both the training and the test set. The distributions of minimum RMSEtest, and
maximum q2test, and R20 test values were calculated as explained in section .2.7.

The maximum and minimum values of respectively R20 test / q2test and RMSEtest
were then used to validate model performance on the test set (section .2.7). If the
obtained metrics were beyond the maximum values (for q2test and R20 test) or the mini-
mum values (for RMSEtest) of the corresponding distributions, the model is likely to
be over-optimistic [Hawkins, Basak, and Mills (2003)]. This estimation of the maxi-
mum achievable model performance takes into account the range and distribution of
the bioactivities present in the data. This is of particular importance as it has been
recently reported by Sheridan [Sheridan (2012)] that (i) certain bioactivity ranges are
better predicted than others, and (ii) R20 values might be very low if the bioactivity
range considered is too narrow, even if the predictions closely match the observed
values.

.5.2.7 Ensemble modelling

Gradient-boosting machines (GBM) [Friedman (2001)], Random Forest (RF) [Breiman
(2001)], and Support Vector Machines (SVM) [Ben-Hur et al. (2008)] were implemented
to train a model library. The resulting models were combined in model ensembles
using two techniques, namely: greedy optimization and model stacking. Depending
on the models considered when training an ensemble, two types of model ensembles
were defined: (i) homo-ensembles: the same algorithm was used to train all models
of the ensemble, though the parameter values were different in each model, (ii)
hetero-ensembles: the number of algorithms used to train the models combined in
the ensemble was greater or equal than 2.

Greedy optimization

Greedy optimization, based on the work of Caruana et al. (2004), optimizes the
RMSE on the cross-validation predictions on the hold-out folds. These predictions
were calculated with the model library trained on a training set with identical fold
composition. Each model was assigned a weight in the following manner. Initially,
all models had a weight equal to zero. Afterwards, the weight of a given model was
repeatedly incremented by 1 if the subsequent normalized weight vector allowed a
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closer match between the weighted combination of cross-validated predictions and
the observed values. This repetition was carried out n times, n = 1, 000 in the present
work, and the resulting weight vector was normalized to obtain the final models
weighting. The final model ensemble was used to predict the activities on the test set,
and the error in prediction compared to that of single PCM models on same set.

Model stacking (MS)

The concept of model stacking is illustrated in Figure .5.1. In this case, the predictions
on the training set calculated with the model library during cross-validation served
as descriptors. Thus, a training matrix was defined where rows were indexed by the
data-points in the training set used to train the model library, and columns by the
models in the aforesaid library.

A machine learning model was trained on this matrix, irrespective of the algo-
rithms used to generate the model library. This model is then used to predict the
bioactivities for the test set, and the error in prediction compared to that of single
PCM models on the test set. The bioactivity values corresponding to the data-points
in the test set are not considered when building the ensemble. If the selected algo-
rithm has the inherent capability to determine the importance of each descriptor,
as for Elastic Net, a vector of weights for the models can be defined. Given that
each descriptor corresponds to a particular model, this vector will determine its
contribution to the generated ensemble. In the present study we used the following
algorithms: linear model, Elastic Net, SVM with linear and radial kernels, and RF.

.5.2.8 Estimation of the error of individual predictions
In order to estimate errors for individual predictions, we used the standard deviation
of the predictions of the individual models composing a given model ensemble,
i.e. ensemble standard deviation (Estd). Previous studies [Dragos, Gilles, and A
(2009); Sheridan (2012, 2013); Wood et al. (2013)] have highlighted the usefulness of
considering the ensemble standard deviation as a domain applicability (DA) measure,
specially in the case of RF models, where the calculation of the standard deviation
along the trees is straightforward [Sheridan (2012, 2013)]. Here, we extend this
idea to ensembles composed of models trained with different algorithms (hetero-
ensembles). For each data-point in either the test set or in the hold-out fold in the
case of cross-validation, we calculated the standard deviation of the predictions
generated with each model conforming the model ensemble. Subsequently, the
ensemble standard deviation was scaled with the parameter β. This permits to obtain
individual confidence intervals for each prediction, which are thus defined as:

IC = ỹ± Estd β {β ∈ R | β > 0} (.5.1)
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Figure .5.1: Ensemble modelling with model stacking. A. A set of models are
trained with diverse machine learning algorithms (Model1 .. Model n
in the Figure). The predictions of these models on each data-point in the
training set calculated during cross validation, are used as descriptors to
create a new training matrix, which rows are indexed by the data-points
in the training set and columns by the models in the library. A machine
learning model is trained on this matrix. The resulting model is the model
ensemble. B. The model ensemble is then applied on the test set.
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To assess the practical usefulness of the derived confidence intervals, the percentage of
data-points for which the predicted values lied within IC (0 < β < 4) was calculated.
Both the predictions calculated during model training (using the optimal parameter
values), i.e. cross-validated predictions, as well as the predictions on the test set were
used.

.5.2.9 Interpretation of compound substructures
The contribution of chemical substructures to bioactivity on human cyclooxygenases
was deconvoluted using a predictive and a Student’s method (Figure .5.2):

Prediction of bioactivity values with and without each compound substructure
(predictive method, Figure .5.2A)

This first technique quantifies the contribution of each chemical substructure to
bioactivity by calculating the distribution of differences between (i) the predicted
bioactivity for all compounds containing a given substructure, and (ii) the predicted
bioactivity using PCM for these compounds, from which that substructure was
virtually removed [pcm_lead_opt; Cortes-Ciriano et al. (2014); Marcou et al. (2012);
Polishchuk et al. (2013); Rosenbaum et al. (2011); Spowage, Bruce, and Hirst (2009)].
To virtually remove a substructure, we iteratively set its count equal to zero in all
compound descriptors presenting it. The difference between the predicted bioactivity
values in the presence or absence of a given substructure was then calculated. The
average value of these differences, weighted by the number of counts of the feature in
each compound, corresponds to the average contribution of that feature to bioactivity
[Cortes-Ciriano et al. (2014)]. The contribution was estimated for all compound
features considered in the model. The sign of the difference ({+/-}) indicates whether
the feature is respectively beneficial or deleterious for compound bioactivity.

Statistical significance between bioactivity distributions with and without each
compound substructure (Student’s method, Figure .5.2B)

In order to identify chemical substructures that might not be recognized by the
predictive method due to moderate PCM model performance, we also deconvoluted
the chemical space in a model-independent way. We created two bioactivity sets, each
containing the pIC50 values for either human COX-1 or human COX-2. For each of
these bioactivity sets and for each substructure, we defined two distributions, namely:
(i) the distribution A of pIC50 values corresponding to the compounds presenting
a given substructure in a given bioactivity set, and (ii) the distribution B of pIC50

values for those compounds not presenting that substructure in the same bioactivity
set. The normality of these distributions was assessed with the Shapiro-Wilk test
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Figure .5.2: Interpretation of compound substructures. A. Predictive method. The
average influence on bioactivity of a given substructure is calculated
as the differnece between the distributions corresponding to: (i) the
predicted bioactivity for all compounds containing that substructure, and
(ii) the predicted bioactivity using PCM for these compounds, from which
that substructure was virtually removed by setting its count to zero. B.
Student’s method. In this case, the average substructure influence on
bioactivity is evaluated as the difference between the pIC50 distributions
for those compounds presenting and not presenting a given substructure.
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(α = 0.05). If both distributions, A and B, followed the Gaussian distribution, a two-
tailed t-test for independent samples (α = 0.05) was applied to statistically evaluate
the difference between them. If the difference was significant, we assumed that the
considered substructure has an influence on bioactivity on the isoenzyme associated
to the bioactivity set considered.

The sign of the difference between the mean value of A and B indicates whether
the presence of the substructure hampers or fosters compound bioactivity on that
isoenzyme. Therefore, each substructure was assigned a label, ’deleterious’ or ’benefi-
cial’, depending on its influence on bioactivity on either COX-1 and COX-2.

Finally, we intended to assess which substructures always increase or decrease
compound bioactivity on human COX-1 and COX-2. In that way, substructures
identified in the previous step are finally identified as: (i) increasing or decreasing
bioactivity on human COX-1, (ii) increasing or decreasing bioactivity on human
COX-2, and (iii) increasing or decreasing bioactivity on both human COX-1 and
COX-2.

.5.3 Results

.5.3.1 Analysis of the chemical and the target space
Target space

The PCA analysis of the amino acid descriptors of the binding site of the 11 mam-
malian cyclooxygenases (Table .5.1) is shown in Figure .5.3. Orthologue sequences
COX1 and COX2 define two distant clusters. As paralogues display more sequence
variability than orthologues, and as small molecules tend to display similar binding
within orthologues [Kruger and Overington (2012)], we hypothesize that merging
bioactivities from orthologues and paralogues will lead to more predictive models. In
addition, these results indicate that the amino acid descriptors account for structural
differences between COX-1 and COX-2.

Chemical space

The initial bioactivity selection from ChEMBL 16 [Gaulton et al. (2011)], consisted of
6,804 data-points. As previously highlighted [Kramer et al. (2012)], a large number
of target-compound combinations in ChEMBL are annotated with more than one
bioactivity value, hence the total number of different compound-target combinations
after duplicate removal was 4,937. As in Figure .5.4A, the standard deviations for
the bioactivity values annotated on the same compound-target combination are in
less than 2% of the cases higher than two pIC50 units, whereas more than 90% of
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.5 Isoform Selectivity Prediction: COX

Figure .5.3: PCA analysis of the target space. A. Schematic overview of the COX
binding pockets. B. PCA analysis was applied on the binding site de-
scriptors used to train the models. The first two principal components
explained more than 80% of the variance, thus indicating that there are
mainly two sources of variability in the descriptor space, namely the
isoenzyme type. This fact can be seen as COX-1 (triangles) and COX-2
(squares) define two distant clusters. Overall, the binding sites of ortho-
logue cyclooxygenases are more similar than those of paralog sequences.
These results also indicate that the amino acid descriptors account for
structural differences between COX-1 and COX-2, which can be learnt by
the models. Thus, it is expected that merging orthologues and paralogues
will lead to more predictive models.
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Figure .5.4: Statistiscs of the repeated bioactivities for each compound-target com-
bination. A. The abcissa represents the mean value for the bioactivities
repeated for each compound-target combination with more than one
annotated bioactivity. The ordinate represents their standard deviations.
Repeated bioactivities are equally distributed for low, moderate and high
affinity COX inhibitors. B. Histogram of the standard deviation of the
repeated bioactivities. The distribution is strongly skewed towards 0,
thus indicating that the differences between repeated bioactivities are
generally negligible.

the repeated bioactivities exhibit a standard deviation close to zero (Figure .5.4B).
Consequently, we decided to take the average of these repeated values instead of the
median value: this latter value would be more suitable only if outliers were more
aboundant.

Selectivity data set

As stated in the introduction, the main advantage of a PCM model applied to
mammalian cyclooxygenases would be to anticipate the potency of a given compound
towards a particular isoenzyme. To ensure that our data set covered chemical entities
with diverse bioactivity profiles on COX-1 and COX-2, we selected all compounds
annotated on both human cyclooxygenases. This resulted in a selection of 1,086

compounds, out of a total of 3,228 different inhibitors present in the data set. The
scatterplot of the bioactivities of these compounds on human COX-1 against human
COX-2 (Figure .5.6A) reveals that the difference in bioactivity for some compounds
depending on the isoenzyme is higher than 4 pIC50 units (upper left corner of
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Figure .5.6A). RMSE and R20 values for the bioactivities on COX-1 with respect to
COX-2 are, respectively, 1.69 pIC50 units and -0.42. As the area above the diagonal
of Figure .5.6A is more populated, there are more compounds with higher activity
on COX-2 than on COX-1. Therefore, these data let us conclude that the data set
comprises compounds exhibiting high selectivity towards COX-2. In addition, the
overlap between the data-points in the PCA of the compound descriptors (Figure .5.5)
indicates that the compounds annotated on the COX targets cover the same regions
of the chemical space.

.5.3.2 PCM validation
Overall, the models obtained with GBM, RF, and SVM (Table .5.2A and Figure .5.7)
satisfied our model validation criteria namely: q2int > 0.5 and, q2test and R2test 0 > 0.6.
The performance of the three algorithms is comparable since R20 test values range from
0.60 to 0.61, and RMSEtest from 0.76 to 0.79 pIC50 units between the different models.
Interestingly, the predictive power did not vary when using hashed or unhashed
fingerprints, being the R20 test and RMSEtest differences smaller than 0.01 in both cases
(data not shown). Thus, we decided to rather use unhashed fingerprints as this choice
enables an interpretation of the models according to chemical substructures.
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Figure .5.5: PCA of the compound descriptors used to train the PCM models. The
PCA was performed on the pairwise Pearson rank correlation matrix
calculated with the compound descriptors used to train the models. The
two first principal components (PC) explain 58.03% of the variance. COX-
1 and COX-2 are represented with squares and triangles respectively.
Overall, the overlap between the datapoints indicate that the compounds
annotated on different targets cover the same regions of the chemical
space.
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Figure .5.6: COX inhibitors selectivity on human COX-1 and COX-2. A. Scatterplot
corresponding to the comparison of bioactivities against human COX-1
and COX-2 for 1,288 compounds. A large proportion of the compounds
present a COX-2/COX-1 selectivity ratio between 2 and 4 pIC50 units.
Therefore, the present data set includes COX inhibitors with highly
divergent bioactivity profiles for COX-1 and COX-2 (R20 = −0.420). B.
Scatterplot of the observed against the predicted pIC50 values for the
compounds described in A. Blue squares correspond to the activity on
COX-1, whereas orange squares correspond to the activity on COX-2.
The PCM models explain more than 59% of the variance (R20 = 0.593),
thus highlighting the ability of the PCM models to predict the potency
of compounds displaying uncorrelated bioactivity profiles on human
cyclooxygenases.
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Figure .5.7: Model performance on the test set. RMSEtest (A) and R20 test (B) val-
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(1993)].
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Figure .5.8: Y-scrambling. Scatterplots corresponding to the percentage of bioactivi-
ties randomized, against (A) R20 test and (B) RMSEtest values. The intercept
in A becomes negative when 25-50% of the bioactivity variable is random-
ized. This finding indicates that PCM performance is not the consequency
of spurious correlations in the descriptor space.

To ensure that our modelling results did not arise from chance correlations, we
trained models with an increasingly bigger fraction of randomized bioactivity values
(y-scrambling) [Clark and Fox (2004)]. The representation of model performance
as a function of the percentage of randomized bioactivities is given in Figure .5.8.
When approximately 35% of the bioactivity values are randomized, R20 test become
negative, which indicates that the relationships found by our models between both
the chemical and the target space, and the bioactivity values are not spurious [Clark
and Fox (ibid.)].

.5.3.3 PCM models are in agreement with the maximum achievable
performance

The distributions of the respectively maximum and minimum achievable R20 test and
RMSEtest values are depicted in Figure .5.9. The maximum correlation values R20 test
are far from 1, which agrees with observations previously reported for public data
[Brown, Muchmore, and Hajduk (2009); Cortes-Ciriano et al. (2014)]. The mean of the
minimum theoretical RMSEtest values lies between 0.68 and 0.69, which is comparable
to the level of uncertainty in public IC50 data reported by Kalliokoski et al. (2013) The
mean of the distribution of theoretical R20 test values is between 0.67 and 0.69. The
minimum RMSEtest and maximum R20 test values obtained with the individual models,
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Figure .5.9: Distribution of theoretical R20 test (A) and RMSEtest (B) values. The
mean of the R20 test distribution, 0.68, highlights that the uncertainty in
public bioactivity data does not permit models with R20 test values close to
1. Similar results were obtained for q2test. The minimum RMSEtest value
that a model can achieve without exhibiting overfitting is close to the
experimental uncertainty.

0.76 and 0.61 respectively (Table .5.2A and Figure .5.7), thus appear consistent with
the underlying uncertainty in the present data set.

.5.3.4 PCM outperforms both Family QSAR and Family QSAM on
this data set

Interestingly, neither the Family QSAR nor the Family QSAM model alone could infer
the relationships in the data set, as the respective R20 test and RMSEtest values were: (i)
for Family QSAR: 0.17 and 1.09 pIC50 units, and (ii) for Family QSAM: 0.16 and 1.10

pIC50 units (Table .5.2B and Figure .5.7). Taken together, these results suggest that: (i)
compound bioactivities on different targets are not correlated, as indicated by the low
performance of the Family QSAR model, and (ii) compound bioactivities depend on
compounds structure, as highlighted by the low performance of the QSAM model.
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.5.3.5 PCM outperforms individual QSAR models
We then evaluated on individual targets the usefulness of PCM in comparison with
QSAR models (Table .5.2C and Figure .5.7). Independent QSAR models for those
targets with more than 100 bioactivities, namely: human COX-1 and COX-2, ovine
COX-1 and COX-2, and mouse COX-2. The human COX-2 model exhibits a RMSEtest
value of 0.78 pIC50 units, which is 0.03 pIC50 units larger than the RMSEtest value for
the data-points annotated on human COX-2 averaged over ten PCM models, namely
0.76 +/- 0.04 pIC50 units. By contrast, the R20 test value drops to 0.54, indicating the
higher peformance of PCM. Better correlations are obtained for the individual QSAR
models corresponding to both the mouse and the ovine COX-2, for which the R20 test
values are 0.57 in both cases, whereas the RMSEtest values are 0.81 and 0.79 pIC50

units. In contrast, the human and the ovine COX-1 QSAR models cannot relate the
descriptor space to the bioactivity values in a statistically sound manner, as they
exhibit respective R20 test values of 0.30 and 0.36.

Altogether, these data evidence the versatility of PCM to integrate incomplete
information from different sequences. Furthermore, PCM strongly outperforms one-
target and one-space models (Family QSAR, individual QSAR, and Family QSAM)
[Cortes-Ciriano et al. (2015)].

.5.3.6 Model ensembles exhibit higher performance than single
PCM models

As the most predictive PCM model exhibited moderately high R20 test and q2test values,
as well as moderately low RMSEtest values (Table .5.2A and Figure .5.7), we explored
the possibility of enhancing model performance by combining different models into a
more predictive model ensemble ( .5.2D, E and Figure .5.7). Two ensemble techniques
were implemented, namely: greedy optimization and model stacking (Model Stacking
(MS)), previously described in section "Ensemble Modelling". To gather a library
of diverse models, we trained a total of 282 GBM, RF and SVM models. Each of
these models was trained with different parameter values. Hence, the performance
of single models ranged from very poor to that of the individual models described
above (Table .5.2A and Figure .5.7).

Initially, we created ensembles using only the most predictive GBM, RF and SVM
models (Table .5.2D and Figure .5.7). Overall, all model ensembles (Table .5.2D)
exhibited higher predictive power than single models (Table .5.2A). The best R20 test
value, 0.63, was obtained with the greedy and the MS linear ensemble. The weights
for the three models in the greedy ensemble were: (i) GBM: 0.35, (ii) RF: 0.12, and
(iii) SVM: 0.53. The MS Elastic Net ensemble displayed the highest predictive power,
with a RMSEtest value of 0.72 (Table .5.2D and Figure .5.7). The small differences in
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performance observed between ensembles, with the exception of the RF ensemble are
negligible, since, in the experience of the authors [Cortes-Ciriano et al. (2014)], the
standard deviation observed for the R20 test and RMSEtest values when using different
samples during model training are between 0.1 and 0.3. The only model that led to
worse results was the RF ensemble, with R20 test and RMSEtest values of 0.58 and 0.77

respectively.

In a second step, ensembles were optimized using all models in the model library,
namely 282 (Table .5.2E and Figure .5.7). Interestingly, the values of the statistical
metrics of all ensembles increased. The MS SVM ensemble with radial kernel dis-
played the highest predictive ability, with R20 test and RMSEtest of 0.65 and 0.71 pIC50

units, which only differs marginally from the minimum theoretical RMSEtest value,
namely 0.68 (Figure .5.9).

Worthy of mention is the lack of performance improvement (data not shown) of
homo-ensembles (i.e ensembles created with models trained with a given algorithm
but with different parameter values) with respect to the most predictive single models
(Table .5.2A and Figure .5.7), as the difference in R20 test and RMSEtest values was below
0.01 for both metrics. By contrast, the ensembles exhibiting the highest predictive
power on the test set were obtained when combining models with high and low
predictive ability. This increase in performance is likely to arise from the fact that
these models display uncorrelated resampling profiles, i.e. the predictions calculated
on the hold-out folds during cross-validation are not correlated (Figure .5.10). Overall,
these data underline the highest predictive power of hetero-ensembles generated with
a model library displaying a comprehensive range of predictive abilities.

.5.3.7 The ensemble standard deviation enables the definition of
informative confidence intervals

Figure .5.11 displays the percentage of data-points which predicted values lie within
confidence intervals calculated with increasingly larger β values (Equation .5.1). The
ensemble model exhibiting the highest predictive power (RMSEtest: 0.71; R20 test: 0.65),
namely MS SVM Radial Ensemble, was used to make the predictions and to calculate
confidence intervals. Confidence intervals calculated for the cross-validated predic-
tions (shown as squares in Figure .5.11) require larger β values to reach a given level
of confidence when compared to those calculated on the test set (shown as triangles
in Figure .5.11). This can be seen as the percentage of data-points for which true
value is within the confidence interval (β = 1) for the cross-validated predictions is
40%, whereas this value increases till 70% in the case of the test set. This difference
might be due to the fact that predictions on the test set are made with models trained
on a larger fraction of the data set. Nevertheless, the error in prediction on the test
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Figure .5.10: Pairwise Pearson correlation for the cross-validation predictions
across the model library. The predictive power across the model li-
brary is not uniformly distributed, as the predicted values for a large
fraction of model pairs are uncorrelated (yellow areas). Therefore, the
combination of these models in a model ensemble is expected to lead to
higher predictive power than individual models ("wisdom of crowds").
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set might increase if the compounds present therein were structurally dissimilar. In
those cases, a larger β value would be required, with respect to that for the training
set, to reach a given confidence level.

Overall, the percentage of true values lying within the confidence interval derived
for a given β value is expected to increase with model performance. Figure .5.11 can
be used to determine the β value corresponding to the confidence interval required
by the user.

.5.3.8 Ensemble modelling enables the prediction of uncorrelated
human COX inhibitor bioactivity profiles

As previously stated, selectivity is a crucial aspect in the discovery and optimization
of COX inhibitors. To assess whether PCM models were able to predict the pIC50

values for compounds displaying uncorrelated bioactivity profiles on human COX-1
and COX-2, we predicted the bioactivity values for the 1,086 compounds annotated
on both human COX-1 and COX-2. Figure .5.6B, which displays the observed against
the predicted pIC50 values for these compounds, shows that PCM models are able
to predict the potency for compounds displaying uncorrelated bioactivity profiles
on human cyclooxygenases. Indeed, the R20 test and RMSEtest values calculated for
the observed pIC50 values with respect to those predicted by the PCM model are,
respectively, 0.59 and 0.76 pIC50 unit.

Subsequently, we analyzed the capability of PCM models to correctly predict
the bioactivity for both selective and non-selective compounds. A compound was
considered as selective or non selective if the absolute value of the difference between
its bioactivity on COX-1 and COX-2 is larger or smaller than 2 pIC50 units. On this
basis, 226 compounds were considered as selective, and 860 as non selective. The
error in prediction for the non selective compounds was lower than 1 pIC50 unit in
85.4% of the cases, and lower than 0.5 pIC50 unit for 55.6% thereof. On the other
hand, the error in prediction was lower than 1 pIC50 unit for 73.23% of the selective
compounds, and lower than 0.5 pIC50 unit for 42.9% thereof. When considering a
more stringent selectivity cut-off value, namely 3 pIC50 units, we obtained a set of 61

compounds. The error in prediction for this set was lower than 1 pIC50 unit in 66.4%
of the cases, and lower than 0.5 pIC50 unit for 40.2% thereof.

Consequently, these data indicate that PCM models are capable to predict the
potency for both selective and non selective compounds on human COX-1 and COX-2.
In addition, we anticipate that model performance is likely to increase with the
inclusion of more bioactivity data in the models.

182



.5.3 Results

0 1 2 3 4

0
20

40
60

80
10
0

%
ob
se
rv
ed

va
lu
es

w
ith
in
th
e
in
te
rv
al

Training
Test

β

Figure .5.11: Confidence intervals calculated from the ensemble standard devia-
tion of the models present in the model ensembles. The percentage of
data-points which predicted bioactivities lie within confidence intervals
calculated with increasingly larger β values (Equation .5.1), is shown
for: (i) the cross validated predictions calculated during model training
(Training in the Figure), and (ii) for the predictions on the test set (Test in
the Figure) calculated with the most predictive model ensemble, namely
"Stacking SVM Radial Ensemble". The percentage of true values lying
within the confidence interval derived for a given β value increases with
the number of data-points available during model training. Overall,
the confidence intervals derived from the ensemble standard deviation
provide an estimation of the reliability of individual predictions, as in
practice, this plot can be used to determine the β value corresponding
to a given confidence level.
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.5.3.9 Model performance per target is related to compound
diversity

To further assess model performance on a per target basis, we generated 10 RF models
each one trained on a different subset of the whole data set. The variation of per-
formance between the protein targets can be also related to the compound diversity
(Figure .5.12).

Human cyclooxygenases, with the highest number of annotated compounds
(Table .5.1), exhibited average RMSEtest values between 0.74 and 0.76 pIC50 unit. For
these proteins, the distributions of pairwise compound similarity (Figure .5.12) are
skewed towards high similarity values, with mean values between 0.75 and 0.85.

Likewise, mouse COX-2 and ovine COX-1 display average RMSEtest values of
0.70 and 0.73 pIC50 unit probably related to the smaller number of compounds
annotated on these proteins (Table .5.1). High predictive ability on mouse COX-2
was expected given the high R20 test value, 0.57, obtained with the individual QSAR
model, whereas low performance was expected for ovine COX-1, as the individual
QSAR model displayed a R20 test value of 0.36. Unsurprisingly, skewed distributions
in compound diversity are observed for mouse COX-2 and ovine COX-1 (Figure .5.12).

Conversely, ovine COX-2, with 341 annotated compounds, displayed a worse
average RMSEtest value, within the 0.80-0.85 range of pIC50 unit (Figure .5.13). This
decrease in performance for ovine COX-2 might be ascribed to the higher dispersion
of the pairwise compound similarity distribution with respect to those observed for
mouse COX-2 and ovine COX-1 (Figure .5.12).

The dependency of model performance on compound diversity is even more
contrasted for targets with less than 100 annotated bioactivities. Indeed, the average
RMSEtest value for mouse COX-1, with 50 compounds, lies within the 0.57-0.62 range
of pIC50 unit and the distribution of compunds diversity is skewed towards high
similarity values (Figure .5.12). However, the average RMSEtest value increases till
0.80-0.90 pIC50 unit for bovine COX-1 (Figure .5.12), annotated with 48 bioactivities
and for which the pairwise compound similarity distribution presents several peaks,
thus highlighting the structural diversity of the compounds. Finally, targets with less
than 30 annotated compounds exhibit multimodal pairwise similarity distributions
and, consequently, model performance is low, with standard deviations in the 0.50-
1.00 range of pIC50 unit (Figure .5.13).

Overall, chemical diversity in the training set contributes to enhance the applica-
bility of a PCM model. Nonetheless, a balance needs to be established between this
diversity and the number of data-points to ensure model convergence.
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Jaccard Similarity

Figure .5.12: Jaccard pairwise similarity distributions for the compounds anno-
tated on each target. Compounds annotated on the human cyclooxyge-
nases (annotated with a star in the plots) display compound similarity
distributions with mean values skewed towards 1. By contrast, com-
pounds annotated on targets with less than 30 annotated bioactivities
display multimodal similarity distributions. A correlation between
model performance and both the number of data-points and chemical
diversity was established (see main text). Distributions were calculated
with the same descriptors than the ones used to train the PCM models.
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Figure .5.13: Target-averaged model performance. The number of data-points is
displayed through the size of the squares A correlation can be established
between the number of data-points and model performance, quantified
by the standard deviation of the RMSEtest values. Targets annotated
with less than 30 compounds or with chemical structures displaying
high structural diversity (Oryctolagus cuniculus COX-1, Rattus norvegicus
COX-1, Bos taurus COX-1, and Bos taurus) are produced with high mean
RMSEtest values. These observations indicate that PCM models are not
always able to extrapolate in the chemical or the target space if a given
target or compound family is not sufficiently represented in the data set.

186



.5.3 Results

.5.3.10 Interpretation of compound substructures
Predictive method

The usage of unhashed fingerprints permitted the deconvolution of the chemical
space to determine the influence of compound substructure on bioactivity. Two
substructure analysis methodologies were implemented, as described in the section
"Interpretation of Compound Substructures". The first approach, predictive method,
relies on the PCM model to correctly predict the bioactivity for a compound when
a given substructure is virtually removed from a compound descriptor. The second
approach, Student’s method, is a pipeline designed to statistically assess how the
presence of a given substructure influences, on average, bioactivity on the compounds.

Figure .5.14 shows the contribution of each substructure to bioactivity on hu-
man COX-1 and COX-2 calculated with the predictive method. Red and blue areas
correspond respectively to substructures that, on average, enhance or decrease com-
pound bioactivity. Representative substructures either deleterious or beneficial for
bioactivity are also shown. Generally, substructures shown to have an influence on
bioactivity display an opposite behaviour depending on the isoenzyme type. For
example, a pyrrole ring with aryl substituents in the 2,3-positions (substructure c
in Figure .5.14) is predicted to have a high influence on bioactivity, increasing it
on COX-2 and decreasing it on COX-1. This observation is in agreement with the
literature as the 2,3-diarylpyrrole series with an halogen substituent in the 5-position
acting as electron withdrawing group have been found as selective COX-2 inhibitors
[Wilkerson et al. (1994, 1995)]. The pyrrole moiety with a radical in the 1-position
is also found as a selectivity feature towards COX-2 (substructure b in Figure .5.14).
This agrees with the discovery by Khanna et al. (1997) of a series of 1,2-diarylpyrroles
as potent and selective COX-2 inhibitors.

On the other hand, substructures conferring a deleterious effect could also be
identified. substructure e in Figure .5.14 is represented within compound 3-(1H-indol-
5-yloxy)-5,5-dimethyl-4-(4-methylsulfonylphenyl)furan-2-one (CHEMBL322276). This
compound is part of a series of 3-heteroaryloxy-4-phenyl-2(5H)-furanones reported
as selective COX-2 inhibitors by Lau et al. (1999). Its COX-1/COX-2 selectivity ratio
is larger than 4.17, which agrees with the prediction of decreasing bioactivity on
COX-1. In general, substructures decreasing bioactivity tend to be small and less
informative (e.g. single atoms or substructures with two heavy atoms), than those
fostering compound potency.

Student’s method

The implementation of the Student’s method to deconvolute the chemical space (Fig-
ure .5.15), which evaluates the statistical significance between bioactivity distributions
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Figure .5.14: Influence of compound substructures on potency and selectivity on
human COX-1 and COX-2. Rows in the heatmap are indexed by the
isoenzyme type whereas columns correspond to compound substruc-
tures. Substructures are depicted in red within arbitrary molecules
presenting it. The color represents the average influence (pIC50 units) of
each substructure on bioactivity. Red corresponds to an average increase
in bioactivity, whereas blue indicates the a deleterious effect. Well-known
chemical moieties, e.g. pyrrole rings (c), were singled out as selectivity
determinants. For instance, substructure d is present in sulfonamides
such as diflumidone, and substructure B in selective 1,2-diarylpyrroles
COX-2 inhibitors.
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Figure .5.15: Volcano plots corresponding to the results of the Student’s method
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proportional to the number of molecules in the data set containing a
given substructure. Significant P values are shown in red (two-tailed
t-test, α = 0.05).

in the presence or absence of each compound substructure, led to the following
observations: (i) 74 substructures increase bioactivity on COX-2, (ii) 64 substructures
decrease bioactivity on COX-2, (iii) 9 substructures increase bioactivity on COX-1, (iv)
2 substructures decrease bioactivity on COX-1, (v) 1 substructure increases bioactivity
on both COX-1 and COX-2, and (vi) 6 substructures decrease bioactivity on both
COX-1 and COX-2.

Well-known chemical moieties conferring selectivity to COX-2 were present in this
substructure selection. Figure .5.16 shows the 20 substructures predicted to have the
highest influence to increase bioactivity on human COX-2. For instance, substructures
containing thiazole, pyrrole, pyrazole and oxazole rings were enriched for COX-2
[Dannhardt and Laufer (2000); Leval et al. (2000)]. Likewise, tri-fluorometil and sul-
fonamide radicals, which appear in e.g. celecoxib, were also enriched [Dannhardt and
Laufer (2000)]. Substructures predicted to influence in the same way the compound
bioactivity on both COX-1 and COX-2 are small, which makes difficult to extract
medicinal chemistry knowledge therefrom (Figure .5.17).

It is nevertheless remarkable that the output of both methods is contradictory
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Figure .5.16: Compound substructures predicted to increase the bioactivity on hu-
man COX-2. The 20 substructures predicted to have the highest in-
fluence on bioactivity on human COX-2 (P35354) are plotted. Known
chemical moieties such as pyrrole rings (1), aryl substituents (e.g. 4 and 5)
or benzylsulfonamide (17) are represented. These substructures appear
in diverse NSAIDs such as rofecoxib or etericoxib, as well as in chem-
ical families of COX-2 inhibitors based on e.g. 1,5-diarylpyrazoles or
3,4-diaryl-substituted furans [Blobaum and Marnett (2007); Dannhardt
and Laufer (2000); Leval et al. (2000)]
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Figure .5.17: Compound substructures predicted to have the same influence on hu-
man COX-1 and COX-2. Sub-strucutures predicted to decrease bioactiv-
ity are accompanied by a blue arrow, whereas that predicted to increase
bioactivity are followed by a red arrow. Smaller substructures are found
in this case, predominating substituents on the benzene ring. Therefore,
substructure-activity relationships are difficult to be determined.

for some substructures. By way of example, substructure d in Figure .5.14 is consid-
ered as deleterious for bioactivity on COX-1 by the predictive method, whereas it is
regarded as beneficial by the Student’s method. Dannhardt, Fiebich, and Schwep-
penhäuser (2002) highlighted the key role of the carbonyl moiety for the potency
of a series of diarylmethanone compounds on both COX isoenzymes. Nonetheless,
Scholz et al. (2012) have recently reported a series of ortho-carbaborane derivatives
of indomethacin as selective COX-2 inhibitors. Furthermore, substructure d also
appears in a series of [2-[(4-substituted or 4,5-disubstituted)-pyridin-2-yl]carbonyl-(5-
or 6-substituted or 5,6-disubstituted)-1H-indol-3-yl]acetic acid analogues identified
as COX-2 inhibitors [Hayashi et al. (2012)]. Plausible reasons for this divergence are
analyzed in the Discussion section.

Overall, both substructure analysis pipelines have proven to be able to highlight
chemical moieties conferring or decreasing potency and selectivity in agreement with
the literature.
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.5.4 Discussion

In this chapter two ensemble modelling techniques, namely greedy optimization and
model stacking, have been presented and benchmarked on a PCM data set comprising
the bioactivities of COX inhibitors on 11 mammalian cyclooxygenases (Table .5.1).
PCM has been shown to relate the target and the chemical spaces to bioactivity in a
statistically sound manner (Table .5.2) [Golbraikh and Tropsha (2002); Tropsha and
Golbraikh (2010); Tropsha and Gramatica (2003)]. Family QSAR as well as Family
QSAM displayed poor performance (Table .5.2B and Figure .5.7).

Three machine learning algorithms (GBM, RF and SVM) have been implemented
individually and combined in model ensembles. The application of ensemble mod-
elling has been shown to outperform single machine learning models, the improve-
ment being larger if the three most predictive GBM, RF and SVM models are combined
in the same ensemble (Table .5.2D and Figure .5.7). Nonetheless, the model stacking
(MS) SVM radial kernel model trained on the predictions of a library of 282 single
PCM models (Table .5.2E and Figure .5.7) displayed the lowest RMSEtest and the
highest R20 test values. This non-linear model combination led to a RMSEtest value
comparable to the experimental uncertainty of public IC50 data [Kalliokoski et al.
(2013)]. It is noteworthy to mention that this ensemble was obtained by combining
several hundreds of poor and highly predictive models instead of only the most
predictive models of each class, GBM, RF and SVM (Table .5.2D and Figure .5.7).
Therefore, these results suggest that if sufficient computing resources are available,
higher predictive ability can be obtained with a large and diverse model library.
Given that the ensemble concept is not restricted to any particular machine learning
algorithm, the pipeline proposed in this study can be further explored.

The variability in the predictions of the individual models composing model en-
sembles, quantified by the ensemble standard deviation, served to define informative
confidence intervals. Previous studies highlighted the usefulness of this variability as
a applicability domain metric [Dragos, Gilles, and A (2009); Sheridan (2012, 2013);
Wood et al. (2013)]. Here, we have extended this concept to ensembles of models
trained on different algorithms (Figure .5.11). The higher performance of model
ensembles has already been observed [Costello et al. (2014); Marbach et al. (2012)].
This phenomenon, usually termed ’wisdom of crowds’, arises from the fact that
different models provide complementary information. Moreover, the combination
of a number of models palliates the effect of extreme predictions by averaging them
(regression to the mean), and the chances of obtaining erroneous predicitons with
a single model decrease. Interestingly, it has been recently reported in the context
of cell line sensitivity prediction [Costello et al. (2014)] that higher performance was
obtained by combining moderate predictive models, instead of the most predictive
models of each class. This observation has been corroborated in the present study
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(Table .5.2E and Figure .5.7). Overall, the application of ensemble modelling with a
model library trained with either the same algorithm but different parameter values
(homo-ensemble), or with different algorithms (hetero-ensemble) constitutes a promis-
ing alternative to single models in the context of predictive bioactivity modelling.

High predictive ability for compounds displaying uncorrelated bioactivity profiles
on COX-1 and COX-2 was attained with both single models and model ensembles
(Figure .5.6B). Therefore, the present study illustrates how the combination of the
target and the chemical spaces in a single PCM model improves the prediction of
compound potency in the context of multi-target systems. The implications of COX-2
in widespread diseases, e.g. cancer, has prompted the design of potent and selective
COX-2 inhibitors since the early 1990s [Dannhardt and Laufer (2000); Leval et al.
(2000)]. Thus, the suitability of PCM to predict COX inhibitor potency and to integrate
multispecies bioactivity data opens new avenues for the design of cyclooxygenase
inhibitors.

The two approaches presented in this study for the deconvolution of the chem-
ical space, namely: (i) bioactivity prediction with and without a given compound
substructure (predictive method), and (ii) assessment of the statistical difference
between the bioactivity distributions corresponding to compounds presenting or not
a given compound substructure (Student’s method), singled out chemical moieties
responsible for COX-2 selectivity in agreement with the scientific literature.

The divergent results described for substructure d in Figure .5.14, plausibly arise
from the following properties of the two methods. As in the predictive method
the bioactivity is predicted by calculating the average difference between the pre-
dicted value for a compound with and without a given substructure, the (potentially
non-linear) relationships between the substructures present in a molecule can be es-
tablished, and the dependence of bioactivity on additional substructures or scaffolds
present in the molecule accounted. On the other hand, the Student’s method con-
siders the substructures as independent. The two methods can thus give contrasted
results for example in the following case.

We can envision a compound, A, presenting a substructure, S1, having no effect
on bioactivity, and a second substructure, S2, strongly fostering bioactivity on the
studied biomolecular target. Additionaly, we consider compound B, which only
harbors substructure S2. Contradictory results would be given by the two methods
with respect to the influence of substructure S1 on bioactivity. The predictive method
would predict a similar bioactivity value for compound A with and without substruc-
ture S1, as the bioactivity depends on substructure S2. By contrast, the Student’s
method would consider substructure S1 as relevant for bioactivity given that the
difference between the bioactivities of compounds A and B, i.e. either presenting or
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not substructure S1, would be significant. It follows from the preceeding that the
predictive method is best suited to give insight into the contribution of single sub-
structures to the bioactivity of individual compounds, whereas the Student’s method
is more suited for the identification of the general relevance of the substructures to
bioactivity. Another important consideration is the presence of substructures whose
effects on bioactivity are correlated. In the situation where a compound presents two
substructures whose influences on bioactivity are correlated, the predictive method
would likely predict a similar activity when either of them is deleted. Covering
diverse structures in the data set might alleviate this issue, as the probability of
finding repeated substructure pairs is likely to decrease with chemical diversity and
data set size. Overall, if the general influence of a substructure on bioactivity is
assessed with the predictive method, both the mean value and the standard deviation
of the differences between the predicted bioactivity values with and without a given
substructure should be reported, as the standard deviation indicates whether the
influence of that substructure to bioactivity depends on other substructures or not
[Cortes-Ciriano et al. (2014)].

In the Student’s method, the pIC50 difference associated to a significant p-value
might be negligible from a medicinal chemistry standpoint. In addition, the capability
of the t-test to identify significant differences depends on the sample size. Thus,
a small pIC50 difference can be detected as significant if the sample size is large,
whereas it might not be detected for smaller samples. Therefore, the conclusions
extracted from the application of the Student’s method depend on the analyzed data
set, whereas the predictive method might be less dependent on the data set composi-
tion if the models are applied within their applicability domain. In the present study,
we have not applied any method to control the family-wise error rate which comes
from the multiple comparisons problem [Shaffer (1995)]. However, we anticipate that
in other studies comprising a larger number of substructures, it would be advisable
to control this problem. For a recent and detailed discussion of the application of
the student t-test to assess the statistical significance of bioactivity differences in
the context of Matched Molecular Pair Analysis (MMPA), the reader is referred to
Kramer et al. (2014). In summary, the application of both methods can help to unravel
whether the contribution of a given substructure to compound bioactivity depends
exclusively on itself, or on the presence of other substructures or chemical scaffolds
[Klekota and Roth (2008)].

.5.5 Conclusion

Ensemble modelling has been introduced in the context of PCM to predict the potency
of mammalian cyclooxygenase inhibitors. The combination of single models in model
ensembles has led to increased predictive ability, as well as to the definition of
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.5.5 Conclusion

confidence intervals for individual predictions. PCM has been shown to enable the
prediction of the potency for compounds exhibiting uncorrelated bioactivity profiles
with high confidence. Finally, the implementation of two different substructure
analysis pipelines, which reliability for different purposes has been pointed out, has
permitted the recognition of chemical moieties implicated in potency and selectivity
in agreement with the scientific literature.
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.6 Large-scale prediction of growth
inhibition pa�erns on the NCI60
cancer cell-line panel

.6.1 Introduction

Cultured cell-lines have proved versatile disease models for cancer drug discovery
[Weinstein (2012)]. In the last decades, large-scale multi-omics initiatives have

catalogued the somatic alterations of cancer cell-line panels coupled with their phar-
macological response to thousands of compounds [Barretina et al. (2012); Garnett
et al. (2012); Shoemaker (2006)]. The US National Cancer Institute (NCI) pioneered
these efforts by assembling the NCI60 tumour cell-line panel, which, to date, has
been assayed for their sensitivity to over 130,000 compounds and extensively profiled
at the molecular level [Shoemaker (2006)]. Although these cell-line collections have
proved valuable to identify genomic markers of drug sensitivity [Barretina et al.
(2012); Garnett et al. (2012)] and to develop new drugs [Adams and Kauffman (2004)],
the question now arises how these pharmacogenomic data can be meaningfully
mined, both to discover cancer-specific drugs, but also to design personalized cancer
treatments.

Previous computational modelling on the NCI60 panel include the identification
of drug mechanism of action (MoA) [Weinstein et al. (1992)], visualization tools for
drug sensitivity data [Paull et al. (1989); Weinstein et al. (1997)], and drug sensitivity
prediction based on cell-line profiling data ([Kutalik, Beckmann, and Bergmann (2008);
Riddick et al. (2011); Staunton et al. (2001); Szakacs et al. (2004)]. Beyond algorithmic
differences, the conceptual limitation shared by these models was the unfeasibility of
extrapolating to novel compounds and cell-lines simultaneously, as cell-line profiling
data or growth inhibition patterns were separately used as predictive features. Hence
these models were able to do one of the two depending on the information they
were trained on. To overcome this limitation, two recent studies have pioneered the
combination of drug and cell-line information (gene expression, gene-copy number
variation and mutation profiles) on the data from the Genomics of Drug Sensitivity
in Cancer project for drug sensitivity prediction [Garnett et al. (2012)]. Menden et al.
(2013) modelled the sensitivity of 608 cell-lines to 131 drugs with neural networks and
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Random Forest models, obtaining a R2 value on a blind test of 0.64. Ammad-ud-din
et al. (2014) applied kernelized Bayesian matrix factorization to model the sensitivity
of 650 cell-lines to 116 drugs (R2 = 0.78). The authors showed that the combination of
chemical and cell-line information improved model performance, which permitted to
interpolate drug activities in order to complete the missing entries of a cell-line-drug
interaction matrix (482 cell-lines x 116 drugs).

Here, we propose the simultaneous modelling of chemical and cell-line infor-
mation in single machine learning models to predict with error bars the growth
inhibition 50% bioassay end-point (GI50) of 17,142 compounds screened against 59

cancer cell-lines from the NCI60 panel. The integration of these different, yet com-
plementary, streams of information is often termed Proteochemometrics (PCM) or
pharmacogenomic modelling (PGM) [Cortes-Ciriano et al. (2015a); Wheeler et al.
(2013)]. In typical PCM models, although other approaches exist [Jacob and Vert
(2008); Yamanishi et al. (2010)], each compound-cell-line interaction is numerically
encoded by the concatenation of compound and cell-line descriptors, which are
related in single machine-learning models to a specific biological readout of interest
[Cortes-Ciriano et al. (2015a); Westen et al. (2011)] Thus, PCM helps in understanding
complex relationships, such as compound selectivity towards a given cancer cell-line,
and enables the estimation of the bioactivity for (novel) compounds on (novel) cell-
lines (Figure .6.1).

We downloaded and curated cell-line profiling data consisting of 59 cell-lines
from which we assembled 16 profiling datasets, denoted here as data set views. We
benchmark their predictive signal, and demonstrate that the simultaneous modelling
of compound and cell-line information enables the prediction of compound potency
and cell-line selectivity. Unlike previous methods, our models interpolate and
extrapolate compound bioactivities to novel cell-lines and tissues on the NCI60 panel,
and to chemically dissimilar compounds. Finally, we demonstrate that the predicted
bioactivities can be used to predict growth inhibition patterns across the NCI60 panel
and that significant drug-pathway associations are consistent with the experimental
data published in the literature.

.6.2 Materials and Methods

.6.2.1 Data sets

Raw pGI50 values (−log10 GI50), compound concentration necessary to reduce cell
growth by 50%, were downloaded from CellMiner (Database version 1.4) [Reinhold et
al. (2012)]. The mean value was calculated when several measurements were available
for the same compound-cell-line combination. The standard deviation of these
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Figure .6.1: Modelling workflow and compound clustering. A. pGI50 values for
17,142 compounds on 59 cancer cell-lines (941,831 data-points) were
modeled with PCM Random Forests and conformal prediction. B. U-
matrix for the SOM used to cluster the compounds. Black lines delimit
the 31 clusters defined, whereas red labels indicate the cluster number.
The similarity between each neuron and its 8 neighboring neurons defines
the color code: blue corresponds to high similarity (homogeneous areas),
and red corresponds to low similarity (heterogeneous areas). Therefore,
clusters presenting blue and red neurons exhibit higher levels of intra-
cluster chemical diversity.

replicates was considered as the experimental uncertainty. Chemical structures were
sketched with the same stylistic convention with the function StandardiseMolecules of
the R package camb using the default values [Murrell et al. (2014)]. The final data
set consisted of 941,831 data-points, 17,142 compounds and 59 cell-lines (the NCI60

panel except ME.MDA_N), which corresponds to a matrix completeness of 93.08%.
Table .6.1 summarizes the profiling data set views used to describe the cell-lines.
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.6 Large-scale prediction of growth inhibition patterns on the NCI60 cancer cell-line panel

.6.2.2 Compound descriptors
Compounds were described with circular Morgan fingerprints in count format. The
size of the fingerprints was set to 256 bits, whereas the maximum radius of the
substructures considered was set to 2 bonds.

.6.2.3 Compound clustering
Compounds were clustered with periodic two-dimensional Self-Organizing Maps
(SOMs) [Bouvier et al. (2014)]. A 2D SOM is defined by a 3D matrix. Two dimensions,
here 50x50, determine the map size and were chosen to be periodic, whereas the third
dimension contained the compound fingerprints. Each of the vectors along the third
dimension is called a neuron, v. The same fingerprints used to train the PCM models
served as input vectors to the SOMs. SOM values were initialized from a uniform
distribution spanning the values present in the input vectors. At each training step,
the most similar neuron to the input vector considered, i.e. the Best Matching Unit
(BMU), was updated. To delineate the clusters, the conventional Unified distance
matrix (U-matrix) was calculated. The U-matrix value associated to a given neuron,
Uheight(v), is defined as the average Euclidean distance between that neuron and its
eight closest neighbours:

Uheight(v) =
1

8

∑
µ∈Nv

Ed(v, µ) (.6.1)

where N(v) is the set of neighbors and Ed(v, µ) the Euclidean distance between
neurons. A distance threshold value was then applied to the U-matrix in order to
define the contours of the compound clusters [Bouvier et al. (ibid.)].

.6.2.4 Model generation
Random Forest (RF) models [Breiman (2001)] were trained with the module ensem-
ble.RandomForestRegressor of the python library scikit-learn [Pedregosa et al. (2011)],
using the following values for the parameters:

• Number of trees in the forest: 100 [Sheridan (2013)].

• Criterion to assess the quality of a split: mean squared error.

• Minimum number of data points to split a node: 1.

• Minimum number of data points in a leaf to keep a given node split: 1.

• Maximum number of randomly selected descriptors considered when splitting
a node: dimensionality of the input space.
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Original profiling data set Abbreviated data set view
name

Details

Cell-line fingerprints [Lorenzi et al.
(2009)]

Cell Fingerprints Number of short tandem repeats at 16 genomic
loci.

DNA copy-number variation
[Varma et al. (2014)]

CNV CNV for the 967 genes exhibiting at least two
mutations in the NCI60 panel. DNA gain
(>3N, log2 = 0.58) was encoded as 1, DNA
losses (<1N, log2 = -1) as -1, and the rest
(2N) with 0.

DNA copy-number variation
[Varma et al. (2014)]

CNV Onc. & T. Suppre. CNV for oncogenes and tumour suppressors.

Global proteome expression [Gho-
lami et al. (2014)]

Cor. Proteome Spearman’s rs matrix (59 x 59) between the
expression levels of 8,113 proteins.

mRNA [Reinhold et al. (2010)] G.t.l ABC Transcript levels (log2) of 47 ABC
transporters.

mRNA [Reinhold et al. (2010)] G.t.l Onc. & T. Suppre. Transcript levels (log2) of (i) oncogenes, and
(ii) tumour suppressors.

mRNA [Reinhold et al. (2010)] G.t.l Kin. Transcript levels (log2) of 402 human kinases.
mRNA [Reinhold et al. (2010)] G.t.l 1000 genes Transcript levels (log2) of the 1,000 genes

displaying the highest variance across the
NCI60 panel.

mRNA [Reinhold et al. (2010)] G.t.l 1000 pathways Average transcript levels (log2) of the 1,000

pathways displaying the highest variability
among the NCI60 panel.

mRNA [Reinhold et al. (2010)] G.t.l 1000 genes & Kin. &
Onco. & T. Suppre.

Transcript levels (log2) of (i) the 1, 000 genes
displaying the highest variability among the
NCI60 panel, (ii) the human kinome, (iii)
oncogenes, and (iv) tumour suppressors.

mRNA [Reinhold et al. (2010)] G.t.l Kin. & Onco. & T. Sup-
pre.

Transcript levels (log2) of (i) the human
kinome, (ii) oncogenes, and (iii) tumour
suppressors.

mRNA [Reinhold et al. (2010)] Cor. Transcriptome Spearman’s rs matrix (59 x 59) between the
transcript levels (log2) of 19,965 genes for all
cell-line pairs.

miRNA [Reinhold et al. (2010)] miRNA Expression (log2) of 627 miRNAs.
Reverse-phase lysate arrays
[Nishizuka et al. (2003)]

RPLA Normalized protein abundance levels (log2)
for 89 proteins.

Whole exome sequencing [Abaan et
al. (2013)]

Exome Mutation status (1: mutated, 0: non mutated) of
112 Type II variants predicted to be deleterious
(Polyphen score higher than 0.85)

Whole exome sequencing & DNA
copy-number variation

Exome & CNV Concatenation of data set views exome seq.
and CNV.

Table .6.1: Description of the data set views benchmarked for compound sensi-
tivity prediction on the NCI60 panel. The abbreviated names used in
Figure .6.5 are indicated in the second column. Prior biological knowl-
edge, such as pathway information, was included in some data set views,
whereas the gene transcript levels and mutational status for genes impli-
cated in cancer, kinases and ABC transporters were gathered independently
and combined in data set views to assess the redundancy of their predictive
signal.
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.6 Large-scale prediction of growth inhibition patterns on the NCI60 cancer cell-line panel

Random forests [Breiman (2001)] were chosen to train all models because of (i)
the smaller training times required if compared to kernel methods, and because of
(ii) the robustness of their performance with respect to the value of their parameters
[Sheridan (2013)]. Therefore RF do not require to perform grid search and cross-
validation to determine the best values for the hyperparameters. All calculations
were conducted in a machine with 16 Intelr Xeonr processors E5-2670 and a total
memory of 256 GB. Training times on the complete data set ranged between 6-8 hours.

Prior to model training, the data set was randomly divided into (i) a training set
comprising 90% of the data-points, and (ii) a test set comprising the remaining 10% of
the data. This process was repeated ten times, each time holding-out a different subset
of the data, which enabled the generation of predicted values for all data-points. The
predictive power of the models was assessed on the test set according to the RMSEtest
and R20 test values [Golbraikh and Tropsha (2002a,b); Tropsha and Golbraikh (2007)]
and section.2.6.

.6.2.5 Model validation

To quantify the contribution of the target and the chemical spaces to model learning,
the following strategies were explored [Brown et al. (2014)]:

• Family Quantitative Structure-Activity Relationship (QSAR F): models were
trained on all data-points in the data set using exclusively compound finger-
prints as input features. A QSAR F model learns on the 59 pGI50 values, and
predicts the average likelihood for a compound of being cytotoxic. In this way,
a QSAR F model serves to assess whether the explicit inclusion of cell-line
information improves the prediction of compound activity for those compounds
exhibiting variable growth inhibition profiles across the cell-line panel. If a
compound is not selective against particular cell-lines, and thus displays a
comparable activity value across the cell-line panel, a QSAR F model would
suffice to predict the average likelihood of that molecule to be active against
any cell-line, i.e. cytotoxic. However, in the case of a compound displaying
selectivity towards particular cell lines, i.e. being active against particular cancer
cell-lines and inactive against others, a QSAR F model would fail to predict
the activities of that compound across the cell-line panel, as compound activity
would depend to a large extent on the biological side and not much on the
chemical side (accounted by the compound descriptors).

• Family Quantitative Cell-Line-Activity Modelling (QCAM F): these models were
trained on all data-points in the data set using exclusively cell-line descriptors as
input features. This validation scheme assesses whether compound bioactivities
are correlated on a given cell-line, i.e. a diverse compound set displays the same
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activity on a given cell line. Therefore, high predictive ability of a Quantitative
Cell-Line-Activity Modelling (QCAM) F model indicates that bioactivity predic-
tion depends to a large extent on the cell-line, and to a much lesser extent on
the compound structures. In that case, the inclusion of compound descriptors
would not provide any predictive signal.

• Individual QSAR models per cell-line: one QSAR model per cell-line was
trained exclusively on compound descriptors. In this case, the comparison
was made with the cluster-averaged interpolation power of PCM to evaluate
whether the integration of compound and cell-line information leads to higher
predictive ability with respect to per cell-line QSAR models.

• Inductive Transfer (IT) PCM: the idea underlying IT is that the knowledge
acquired in a given task, e.g. the prediction of compound activity on a given
cell-line, is used to solve similar problems, e.g. to predict the activity of the
same compound set on a new cell-line. In IT, two sources of information were
input to the model, namely: (i) compound descriptors, and (ii) CLIFP. CLIFP
are binary descriptors, of length equal to the number of different cell-lines
considered, where each bit position corresponds to one cell-line. To describe a
given cell-line, all bits were set to zero except for the bit corresponding to that
cell-line. Therefore, cell-lines are located in a high dimensional space where
they are equidistant. Formally, CLIFP are defined as:

CLIFP(i, j) = δ(i− j)(i, j ∈ 1, .., Ncells) (.6.2)

where δ is the Kronecker delta function and Ncells the number of distinct cell-
lines. This setting can also be regarded as a multi-task learning approach
[Brown et al. (ibid.)].

• Explicit Learning (EL) PCM: the models were trained on (i) compound descrip-
tors, and on (ii) one cell-line profiling data set view. Compound and cell-line
descriptors were horizontally stacked prior to model training.

Additionally, the extrapolation power of the methods was assessed using the
following scenarios [Cortes-Ciriano et al. (2015a)].

• Leave-One-Cell-Line-Out (LOCO): all data-points annotated on a given cell-line
were held out from the training set, whereas a PCM model was trained on
the remaining data. Subsequently, the values for the test set were predicted.
RMSEtest and R20 test values were then calculated for the predicted bioactivities
with respect to the observed ones. The previous steps were repeated each
time holding-out the data-points corresponding to a different cell-line. This
procedure intends to describe the situation where a PCM model is challenged
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to extrapolate to novel cell-lines, although cell-lines originated from the same
tissue might be present in the training set.

• Leave-One-Tissue-Out (LOTO): PCM models were further challenged to ex-
trapolate to cell-lines which tissue of origin was not present in the training set.
This scheme is similar to LOCO, except for the fact that all cancer cell-lines
originated from the same tissue were held out from the training set at each time.

• Leave-One-Compound-Cluster-Out (LOCCO): all data-points annotated on a
given chemical cluster were held out from the training set, whereas a PCM
model was trained on the remaining data. This data availability scenario reflects
the situation where a model is challenged to predict the bioactivity for dissimilar
compounds, and thus permits the assessment of the extrapolation capabilities
of PCM on the chemical space.

Finally, the performance of all models was evaluated on a per cell-line and on
a per compound cluster basis. To this aim, RMSE and R20 values were calculated
on subsets of the test set grouped by cell-line (cell-line-averaged performance) or
by compound cluster (compound cluster-averaged performance). The maximum
and minimum achievable performance was evaluated as described in .2.7. For this
calculation, we defined experimental uncertainty as the standard deviation of replicate
pGI50 measurements. In cases where no experimental uncertainty was available for a
data-point, the mean of the available replicate-averaged experimental uncertainties,
namely 0.272 pGI50 unit, was used.

.6.2.6 Conformal prediction
Conformal prediction was applied to calculate confidence intervals for individual pre-
dictions (section .2.8). To calculate and validate the predicted intervals of confidence,
the following pipeline was implemented [Norinder et al. (2014)] and section .2.8.
Firstly, the whole data set was divided into an external set (20% of the data), and
a training set (80%). The latter was subsequently split into a calibration set (30%)
and a proper training set (70%). Two models were trained on the proper training
set, the first of which predicted pGI50 values (point prediction model), whereas the
second predicted errors in prediction (error model). Both models were trained with
compound fingerprints and the ’G.t.l 1,000 genes’ data set view as input features. The
point prediction model was generated by training a RF model on the proper training
set with 10-fold cross-validation, and with pGI50 values as the dependent variable.

.6.2.7 Pathway-drug associations
The average of the log2 gene transcript levels for the genes composing each pathway
in the MSigSB C2 Canonical Pathways gene set [Liberzon et al. (2011)] was taken as
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the expression level of each of these pathways. To assess the association between
drug response (pGI50) and the expression of a given pathway, we fitted a linear
model controlled by tissue source (i.e. using the tissue of origin as a blocking factor)
[Haibe-Kains et al. (2013)], defined as:

pGI50 = βpPi +βTTi + ε (.6.3)

where Pi and Ti correspond to the expression of pathway i in a given cell-line
or tissue, respectively, and ε to the error term. The significance of pathway-drug
associations was estimated by the statistical significance of βp (two-sided t-test, α
0.05).

.6.2.8 Comparison to previous methods

To compare our modeling approach to previous studies, we applied PGM to two
additional datasets, namely the CCLE and GDSC. The metrics used to evaluate model
performance were RMSE and R2 as these were the metrics reported by those.

Preparation of the GDSC data set

MAS5-normalized gene transcript levels, measured with HT-HGU133A Affymetrix
whole genome array, were downloaded from the GDSC website (http://www.cancerrxgene.
org/) on February 16th 2015. Compound IC50 values were converted to log10 (IC50

µM) in order to enable the comparison of our results with previous studies [Ammad-
ud-din et al. (2014); Menden et al. (2013)]. In addition, we converted the IC50 values to
pIC50 values, i.e. -log10 (IC50 M). To describe the cell-lines we selected the transcript
levels of the 1,000 genes displaying the highest variance across the cell-line panel.
10-fold cross-validation was used to assess the interpolation power of the models. To
assess extrapolation on the cell-line space, we used Leave-One-Tissue-Out (LOTO)
validation, whereas Leave-One-Compound-Out validation was used to assess the
predictive power on new molecules. We used Leave-One-Compound-Out instead of
Leave-One-Compound- Cluster-Out validation given that the total number of distinct
compounds was not high, namely 139, and thus permitted to assess the extrapolation
power on a per compound basis. All models were trained using: (i) 256-bit hashed
Morgan fingerprints in count format using a maximum substructure radius of 2

bonds, and (ii) transcript levels for the 1,000 genes displaying the highest variance
across the cell-line panel.

We note in particular that in Ammad-ud-din et al. (2014) the extrapolation power
of the models to new chemical structures was assessed by randomly dividing the
compounds in 8 sets. A model was trained on 7 sets and this model was then used
to predict the bioactivities for the held-out set. This process was repeated 8 times,
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each time holding out a different set. In this setting, which is similar to LOCCO
except for the fact that compounds are not grouped based on a similarity clustering,
it is likely that the distribution of IC50 values for a given set spans a wide range
of values, thus permitting to obtain high R2 values for the observed against the
predicted bioactivities (Figure .2.3). By contrast, the range of IC50 values is likely to
be much narrower for individual compounds across the cell-line panel. Therefore,
the R2 values obtained with Leave-One-Compound-Out validation with PGM models
are likely to be smaller than those obtained with LOCCO for the same accuracy in
prediction, quantified with the RMSE value for the observed against the predicted
bioactivities. From this, it is important to note that although the R2 values reported
by Ammad-ud-din et al. (2014) when assessing the extrapolation power of the models
on new molecules (compound sets in their case), namely 0.52 +/- 0.37, might be
higher in some cases than those obtained with Leave-One-Compound-Out validation,
this does not necessarily mean higher predictive power (Figure .2.3). Therefore, the
comparison between the two studies should be done in terms of RMSE values. We
note in particular that we did not apply the same validation as Ammad-ud-din et al.
(ibid.), namely partitioning the data set in 8 compound sets, as the composition of
the 8 different sets was not reported by the authors.

Preparation of the CCLE data set

Gene transcript levels (Affymetrix U133+2 arrays), RMA-processed and normalized
using quantile normalization, and compound IC50 values (µM) were downloaded
from the CCLE website (https://www.broadinstitute.org/ccle/home) on February
16th 2015. IC50 values were converted to pIC50 values, i.e. −log10 (IC50 M), and to
ln (IC50 µM). We used the natural logarithm (ln) instead of the logarithm with base
10, as in the GDSC data set, given that the range of values was higher for ln (IC50

µM) than for the log10 (IC50 µM) values. To describe the cell-lines we selected the
transcript levels of the 1,000 genes displaying the highest variance across the cell-line
panel. The same learning strategies applied to the GDSC data set were applied here,
namely: 10-fold cross-validation, LOTO and Leave-One-Compound-Out. All models
were trained using: (i) 256-bit hashed Morgan fingerprints in count format using a
maximum substructure radius of 2 bonds, and (ii) the transcript levels for the 1,000

genes displaying the highest variance across the cell-line panel. Previous studies have
not integrated chemical and cell-line data to predict compound IC50 values using the
CCLE data set. We provide the results obtained with these PGM models to allow the
benchmarking of future predictive methods.

A word of caution

It is paramount to note that the application of predictive models trained on either
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the CCLE or the GDSC should be restricted to those data sets, as models trained
on one of these data sets is likely to fail on the other one. This has been previously
indicated by Haibe-Kains et al. (2013):

"Ultimately, the poor correlation in these published studies [CCLE and GDSC] presents
an obstacle to using the associated resources to build or validate predictive models of drug
response. Because there is no clear concordance, predictive models of response developed
using data from one study are almost guaranteed to fail when validated on data from another
study, and there is no way with available data to determine which study is more accurate.
This suggests that users of both data sets [CCLE and GDSC] should be cautious in their
interpretation of results derived from their analyses."

.6.3 Results

.6.3.1 Summary of the cell-line profiling data set views

We collected seven profiling data sets for 59 cell-lines from the NCI60 panel, exclud-
ing ME.MDA-N due to the lack of gene transcript microarrays (Table .6.1). We then
combined these molecular/phenotype data sets in a variety of different ways, what
we term, in analogy to database views, data set views [Costello et al. (2014)]. We
define data set view as: (i) a profiling data set, (ii) a subset thereof, e.g. gene transcript
levels of gene sets, or (iii) as a modification of the data set to which prior knowledge
is added, e.g. the calculation of pathway expression levels based on knowledge of cell
signalling networks. A total of 16 data set views were defined, which are summarized
in Table .6.1.

In addition to the complete data set, comprising all available data, namely: 17,142

distinct compounds and 941,831 data-points, we assembled two additional data sets:
(i) variable bioactivity profile data set: comprising 3,641 distinct compounds (199,940

data-points) which bioactivity distribution on the 59 cell-lines exhibit standard devia-
tions higher than 0.5 pGI50 unit. It served to assess model performance on compounds
displaying a dynamic range of bioactivities across the cell-line panel; and (ii) high
confidence data set: comprising exclusively data-points averaged over at least two
experiments (304,212 data-points and 5,302 distinct compounds), which served to
evaluate whether model performance improves when using replicate-averaged drug
sensitivity data.

Characterization of the chemical space

To assess the chemical diversity in the data, we clustered the 17,142 compounds with
Self-organizing maps (SOM) (Figure .6.1B and subsection .6.2.3), which resulted in
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the definition of 31 distinct chemical clusters. Several clusters, e.g. 4 and 18, are
chemically homogeneous, as highlighted by the high inter-neuron similarity (blue
areas in Figure .6.1B). By contrast, other clusters comprise more diverse compounds
(shown in red in Figure .6.1B). For instance, cluster 2 is composed of polycyclic
aromatic compounds with diverse halogen substituents and topologies. The definition
of chemical clusters will help to challenge the inter- and extrapolation power of the
models to dissimilar structures.

Model validation

PCM models trained on the complete data set, using compound fingerprints and
the data set view "G.t.l 1,000 genes" as input features, exhibited respective mean
RMSEtest and R20 test values of 0.40 +/- 0.00 pGI50 unit and 0.83 +/- 0.00 (n = 10).
These values were consistent with the theoretical maximum and minimum achievable
performance since maximum and minimum mean RMSEtest and R20 test values of
1.42/0.35 pGI50 and 0.96/-0.96 were respectively obtained with the simulated data
(Figure .6.2). Moreover, model performance did not stem from chance correlations,
as R20 test values became negative when 75% of the bioactivities were randomized
[Clark and Fox (2004)] (Figure .6.3).

Modelling the high confidence data set led to similar performance, with RMSEtest
and R20 test values of 0.45 pGI50 unit and 0.84, respectively. This indicates that the
predictive power does not decrease when including data-points measured in only
one experiment. PCM was further challenged on the variable bioactivity profile
data set, on which it exhibited RMSEtest and R20 test values of 0.58 pGI50 unit and
0.79, respectively. These RMSEtest and R20 test values were also found in agreement
with the maximum achievable performance for the most variable profile data set
(Figure .6.4).

PCM outperformed models trained exclusively on cell-lines descriptors (QCAM
F), but not the ones trained exclusively on compound descriptors (QSAR F). Indeed,
QCAM F displayed poor predictive power, with RMSEtest and R20 test values of 0.95

pGI50 unit and 0.02 respectively, whereas the much higher predictive ability of the
QSAR F model on the complete data set with RMSEtest and R20 test values of 0.449

pGI50 unit and 0.780, respectively, indicates (compared to 0.40 pGI50 unit and R20

test =0.83 for PCM) that the bioactivities of identical compounds are correlated on
the cell-line panel. Similarly, PCM displayed higher performance than QSAR F on the
variable bioactivity profile data set, with respective RMSEtest values of 0.58 versus
0.69 pGI50 unit, highlighting that PCM is more suited for modelling compounds
exhibiting uncorrelated bioactivities on a cell-line panel.

Moreover, PCM significantly outperformed individual cell-line models (two-sided
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Figure .6.2: Distribution of respective maximum and minimum RMSEtest (A,B)
and R2

0 test (C,D) values for the complete data set. Average maximum
and minimum values of 1.42/0.35 and 0.96/-0.96, were obtained respec-
tively for RMSEtest / R2

0 test with the simulated data. The performance
of the PCM models on the test set was in agreement with the uncertainty
of the experimental measurements, as mean RMSEtest and R2

0 test values
of 0.40 +/- 0.00 pGI50 unit and 0.83 +/- 0.00 (with n = 10 models) were
obtained. These values are between the two extreme, maximum and
minimum, theoretical RMSEtest and R2

0 test values.

t-test, α 0.05, P < 0.05), trained on the data-points corresponding to a given cell-line
and using exclusively compound descriptors as input features. These individual
models displayed an average RMSEtest value of 0.73 +/- 0.05 pGI50 unit, whereas the
integration of information from different cell-lines performed by PCM improves drug
sensitivity prediction with RMSEtest values in the 0.40-0.58 pGI50 unit range.
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Figure .6.3: Y-scrambling validation. Mean RMSEtest (A) and R20 test (B) values were
calculated for the observed against the predicted bioactivities on the test
set calculated with models trained on pGI50 values increasingly random-
ized (n=3). R20 test values become negative when 75% of the bioactivity
values are randomized. These data suggest that the relationships estab-
lished by the PCM models between compound and cell-line descriptors,
and the pGI50 values did not arise from chance correlations.

Benchmarking cell-line profiling data sets

In order to benchmark the predictive signal of the cell-line profiling data sets we used
the variable bioactivity profile data set, as it contains the compounds displaying the
less correlated bioactivities on the cell-line panel, and is thus more challenging to
model, and crucially more likely to give specific insights into the underlying biology
and mechanisms of action. For each data set view, we trained 10 models using that
data set view and compound fingerprints as input features. This resulted in a total
of 160 models (16 data set views x 10 replicates). An analysis of variance (ANOVA)
on the RMSEtest values (Figure .6.5) yielded significant differences (P value < 1x10−17).

As stated previously [Costello et al. (2014)], we observed that gene transcript
levels led to the highest predictive power, with median RMSEtest values in the 0.56-
0.58 pGI50 unit range (Figure .6.5A). However, the combination of transcript levels
from different gene sets (Figure .6.5A) did not translate into increased performance,
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0 test (C,D) values for the variable bioactivity profile data set.
Average maximum and minimum values of 1.90/0.54 and 0.94/-0.90 were
obtained respectively for RMSEtest/ R2

0 test with the simulated data. The
performance of PCM models was in agreement with the uncertainty of
the experimental measurements, as mean RMSEtest and R2

0 test values of
0.580 pGI50 unit and 0.79 were obtained. These values are between the
two extreme, maximum and minimum, theoretical RMSEtest and R2

0 test

values.

suggesting that these data set views contain redundant biological information. Be-
sides, no statistically significant differences in performance were observed between
the models trained on gene set transcript levels and those trained on miRNA abun-
dance or Reverse Phase Protein Lysate Microarray (RPLA) data (Tukey’s Honestly
Significance Difference (HSD), P value < 0.05).

Interestingly, the performance of the models trained on Copy Number Variation

221



.6 Large-scale prediction of growth inhibition patterns on the NCI60 cancer cell-line panel

(CNV) or exome sequencing information was significantly worse (Figure .6.5A), with
RMSEtest values in the 0.63-0.68 pGI50 unit range. This poorer performance was
expected as the number of gene gain and losses corresponds to only 2.66% of the
58,020 possible cell-line-gene combinations in the descriptor matrix. Similarly, only
0.03% of the entries in the exome seq. descriptor matrix corresponded to mutations.
Thus, the sparseness of these data is plausibly the reason for poor model performance.

We then tested whether PCM performance arises from Explicit Learining (EL)
on cell-line descriptors or inductive transfer knowledge (IT) [Brown et al. (2014)]
among cell-lines. In explicit learning, cell-lines descriptors would account for genomic
differences of the cell-lines, and therefore their distance in descriptor space would
be proportional to those differences, which are related to drug sensitivity. This
would permit the models to explicitly learn the differences among the cell-lines.
By contrast, if the descriptors do not account for genomic differences among cell-
lines, they would simply act as labels, and model performance would arise from
inductive transfer knowledge among cell-lines. PCM (explicit learning) outperformed
IT models (Tukey’s HSD, P value < 0.05) (Figure .6.5A), which highlights that the
explicit inclusion of cell-line profiling data as input features improves compound
sensitivity prediction.

Bioactivity interpolation to cell-lines and compound clusters in the training set

To assess the interpolation power of PCM models, we evaluated the cell-line-averaged
(Figure .6.6A) and compound cluster-averaged performace (Figure .6.5B), by calculat-
ing the RMSEtest values on subsets of the test set grouped by cell-line or compound
cluster. If not otherwise indicated, the results presented in the following subsections
were calculated using models trained on the variable bioactivity profile data set, with
(i) compound fingerprints and (ii) the ’G.t.l. 1,000 genes’ data set view as input
features. Cell-line-averaged RMSEtest values ranged from 0.41 +/- 0.01 (U251) to 0.86

+/- 0.01 pGI50 unit (HOP-92).

We found significant differences for tissue-averaged performance (Tukey’s HSD,
P < 1x10−16), with RMSEtest values ranging from 0.48 +/- 0.01 (prostate: cyan) to 0.70

+/- 0.01 (leukemia: green) pGI50 unit (Figure .6.5A). Additionally, learning curves
showed that RMSEtest values of approximately twice both the replicate-averaged
experimental uncertainty (0.272 pGI50 unit) and the maximum achievable performance
(0.35 pGI50 unit) can be obtained when less than 10% of the data is used as training
set (Figure .6.7). By contrast, an ANOVA analysis did not yield statistically significant
(P > 0.05) differences among the 31 chemical clusters (Figure .6.6B), with observed
median RMSEtest values in the 0.48-0.65 pGI50 unit range.
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Figure .6.5: Benchmarking of the cell-line profiling data set views for compound
sensitivity prediction. A. The predictive power of the 16 data set views
(Table .6.1) was quantified by the RMSE values on the test set. For each
data set view, we trained ten models on the variable bioactivity profile
data set. We found significant differences among the data set views
(ANOVA, P < 0.01). Post-hoc analyses (HSD, α 0.05) were used to cluster
the data set views according to their predictive power.
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.6 Large-scale prediction of growth inhibition patterns on the NCI60 cancer cell-line panel

Figure .6.5: Figure .6.5 caption continuation Data set views sharing a letter label
performed at the same level of statistical significance and are depicted
in the same color. We consistently found that gene transcript levels,
and the abundance of proteins and miRNA led to the most predictive
models (labeled with a). B. The evaluation of both interpolation and
extrapolation power was evaluated on the complete data set. After finding
significant differences among groups (ANOVA, P < 0.01), we found that
PCM interpolates and extrapolates to new cell-lines and tissues at the
same level of statistical significance (Tukey’s HSD, α 0.05). By contrast,
we found statistically significant differences in performance between
extrapolation and interpolation to new chemical clusters.

Extrapolation to novel cell-lines and tissues

We further evaluated to which extent PCM extrapolates compound bioactivities to
novel cell-lines and tissues with Leave-One-Cell-Line-Out (LOCO) and Leave-One-
Tissue-Out (LOTO) validation using the complete data set. LOCO models exhibited
mean RMSEtest values of 0.43 +/- 0.08 pGI50 unit on the complete data set (Fig-
ure .6.5B), with the lowest, 0.31, and the highest, 0.61, RMSEtest values observed for
cell-lines U251 and OVCAR-5, respectively. Notably, we found that LOCO and the
cell-line-averaged interpolation performance are highly correlated (Spearman’s Rank
Correlation coefficient (rs) = 0.92), indicating that the interpolation and the extrap-
olation to novel cell-lines are correlated. RMSEtest values for LOTO models ranged
between 0.35 (prostate) and 0.63 pGI50 unit (leukemia). Remarkably, prediction errors
were similar across the entire bioactivity range (Figure .6.8).

Overall, we did not observe significant differences in performance among LOCO,
LOTO (Figure .6.5B), cell-line-averaged (Figure .6.6A), and compound cluster-averaged
(Figure .6.6B) results (Tukey’s HSD, P < 0.05). We found that the RMSE value between
the observed and predicted pGI50 values for 47 out of 81 drugs, such as Imiquimod
(NSC 369100) and Bendamustine (NSC 138783), was below 0.5 pGI50 unit ( .6.9a,b).
The highest RMSE values, between 1 and 1.5 pGI50 units, were found for 11 drugs,
such as the folate antimetabolite pemetrexed (NSC 698037) and irinotecan (NSC
728073). Altogether, these data indicate that PCM models extrapolate compound
bioactivities to novel cell-lines and tissues at the same level of statistical significance
as for interpolation within a given cell-line or tissue.

Extrapolation to novel chemistry

A markedly different trend was observed for the ability of the models to generalize
across the chemical space, assessed with Leave-One-Chemical-Cluster-Out (LOCCO)
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Figure .6.6: Interpolating compound bioactivities to novel cell-lines, tissues, and
chemical clusters. A. Cell-line-averaged RMSEtest values ranged from
0.41 +/- 0.01 (U251) to 0.86 +/- 0.01 pGI50 unit (HOP-92). We found
significant differences for tissue-averaged performance (Tukey’s HSD,
P < 1x10−16), with RMSEtest values ranging from 0.48 +/- 0.01 (prostate)
to 0.70 +/- 0.01 (leukemia) pGI50 unit. Cell-lines originated from the same
tissue are depicted in the same color (breast: red, central nervous system:
magenta, colon: yellow, lung cancer: grey, leukemia: green, melanoma:
blue, ovarian: orange, prostate: cyan, renal: brown). We did not observe
significant differences in tissue-averaged performance for tissues labeled
with the same letter. B. Compound-cluster averaged performance for the
31 clusters defined with SOMs.
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.6 Large-scale prediction of growth inhibition patterns on the NCI60 cancer cell-line panel

Figure .6.6: Figure .6.6 caption continuation (B) One-way ANOVA among the 31

chemical clusters (P > 0.05), with compound cluster-averaged RMSEtest
values in the 0.48 +/- 0.01 and 0.65 +/- 0.01 pGI50 unit range. This analy-
sis illustrates that the models do not constantly favor specific chemical
clusters, thus making it possible to interpolate compound bioactivities
across the chemical space covered by the data at the same level of statisti-
cal significance. By contrast, interpolating on the cell-line side depends
significantly on the tissue source.

0.40

0.44

0.48

0.52

0.25 0.50 0.75 1.00

0.75
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0.25 0.50 0.75 1.00
Percentage Training

RMSE R0
2

BA

Figure .6.7: Learning curves. Mean RMSEtest (A) and R20 test (B) values were calcu-
lated for the observed against the predicted bioactivity values on the test
set calculated with n=3 models obtained using training sets covering an
increasingly higher fraction of the complete data set. Models trained on
5% of the data set exhibited a mean RMSEtest value of 0.52 pGI50 unit,
which decreased till 0.39 pGI50 unit when 95% of the data-points were
included in the training set. These data suggest that PCM models exhibit
high interpolation capabilities. In practice, the compound-cell-line interac-
tion matrix could be completed with in silico predictions, with a RMSEtest
values of 0.39 pGI50 unit, without requiring further experimental testing.

validation using the complete data set. LOCCO models exhibited mean RMSEtest
values of 0.83 +/- 0.17 pGI50 unit (Figure .6.5B), which differed significantly from
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Figure .6.8: Correlation between observed and predicted pGI50 values. Density
correlation plot corresponding to the observed against predicted pGI50

values on the test set for: (A) the LOTO model for melanoma (RMSEtest
and R20 test values of 0.43 pGI50 unit and 0.80), and (B) the LOCO model
for the melanoma cell-line SK-MEL-5 (RMSEtest and R20 test values of 0.37

pGI50 unit and 0.87. The color bar indicates the density of points at each
region of the plot. For the rest of LOCO and LOTO models comparable
results were obtained, with bioactivity values correctly predicted along
the whole bioactivity range.
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Figure .6.9: Correlation between observed and predicted pGI50 values for the 81 drugs
present in the complete data set for the following model validation scenar-
ios: (A) LOCO, (B) LOTO, and (C) LOCCO. The x-axis reports the drug NSC
identifiers. Compounds discussed in the main text, namely NSC 630176 and
NSC 707389, are marked with asterisks. Bars are colored according to drug
mechanism of action (MoA). The abbreviations of the mechanisms of action
are: A2: alkylating at N-2 position of guanine; A7: alkylating at N-7 position
of guanine; AM: antimetabolite; Ang: angiogenesis; Apo: apoptosis inducer;
Db: DNA binder; Df: antifolates; DNMT: DNA methyltransferase inhibitor; Dr:
ribonucleotide reductase inhibitor; Ds: DNA synthesis inhibitor; HDAC: Histone
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the LOCO and LOTO results (Figure .6.5B) (Tukey’s HSD, P < 0.01), and from the
compound cluster-averaged interpolation performance (Figure .6.6B). Thus, extrapo-
lating bioactivities to novel chemical clusters is more challenging than extrapolating
to novel cell-lines and tissues. Notably, chemical diversity within compound clusters
was not correlated with model performance, as low RMSEtest values were consistently
obtained for heterogeneous and homogeneous clusters (Figure .6.1B).

The lowest RMSEtest value was obtained for cluster 24, namely 0.53 pGI50 unit,
which contains 485 compounds presenting polycyclic ring systems, generally with
no more than 3 rings fused, as well as ring assemblies linked by sulfide, sulfinyl,
secondary amines, carbonyl and alkyl groups. Bigger molecules were found in
cluster 16, which was modelled with the highest RMSEtest value, namely 1.23 pGI50

units. Cluster 16 mainly contains molecules presenting tri- and tetracycles presenting
hydroxybenzene, methoxybenzene and quinone rings in their structure. We obtained
RMSE values below 0.5 pGI50 unit values for 15 out of 81 drugs and below 1 pGI50

unit for 43. The worst modelled drugs were depsipeptide (NSC 630176) and the
halichondrin B analogue NSC 707389, with respective RMSE values of 4.29 and 4.35

pGI50 units. Taken together, these data indicate that it is possible to obtain low
errors in prediction for structurally dissimilar drugs. However, the range of errors
is considerably large (> 4 pGI50 units) and extrapolating to some compounds still
remains a challenging task.

Conformal prediction provides informative confidence intervals

Conformal prediction was included in the modelling framework (section .2.8 and
Figure .6.10) to provide confidence intervals (CI) for individual predictions. The CI,
defined as the percentage of data-points for which the predicted value lied within
different intervals of confidence, were found to be highly correlated with the size
of the intervals (Spearman’s rs > 0.99) ( .6.10). Thus, the combination of random
forests and conformal prediction provides more information than individual machine
learning models.

Consistency of pathway-drug associations with predicted bioactivities

To investigate whether the bioactivities predicted with PCM make it possible to
identify genomic markers of drug sensitivity, we evaluated the consistency between
the pathway-drug associations inferred from the experimental and from the predicted
bioactivities for the 37 FDA-approved drugs and the 17 compounds in clinical trials
present in the variable bioactivity profile data set. For each pathway, we fitted a linear
model controlled by tissue source, where the average expression was considered as
predictor of drug sensitivity.
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Figure .6.10: Validation of conformal prediction. For each confidence level (ε), rep-
resented in the x-axis, the number of data-points in the test set which
true value lies within the predicted interval is calculated, y-axis. The
high Spearman’s rs is likely due to the large size of the test set (188,366

data-points) and to the fact that the CI produced by conformal prediction
are always valid [Norinder et al. (2014)]. These data indicate that the
modeling framework combining PCM models and conformal prediction
is more information rich than what would be possible with only point
prediction algorithms.
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Overall, no significant differences (Tukey’s HSD, P < 0.05) were observed be-
tween pathway-drug associations calculated with the most predictive PCM models
(Figure .6.11A) and the LOCO validation, as median Spearman’s rs values were in
the 0.75-0.91 range (Figure .6.11B). Significant differences were however found among
these groups and LOCCO and LOTO validation, for which median RMSEtest values
were respectively 0.63 and 0.03. We obtained similar results when considering only
the pathways significantly associated to drug response (false discovery rate (FDR) <
20%) (Figure .6.11C,D).

Next, we analysed whether pathway-drug associations are consistently predicted
for drugs exhibiting different mechanisms of action (MoA). Out of the 56 drugs
considered, 26 exhibited median Spearman’s rs values in the 0.5-0.75 range and 18

above 0.75 (Figure .6.11B). High Spearman’s rs values were obtained across the 22

distinct drug MoAs, thus indicating that no specific MoA is favoured. Notably, most
Spearman’s rs values increased (Figure .6.11D) when the calculation of pathway-drug
associations was restricted to the pathways significantly associated to drug response
(FDR < 20%). Together, we can conclude that the identification of genomic markers
of drug sensitivity is significantly dependent on the presence of cell-lines originated
from the same tissue and structurally similar compounds in the training set.

Prediction of growth inhibition pa�erns on the NCI60 panel

The experimental and predicted growth inhibition patters determined from the ex-
perimental and predicted bioactivities with the most predictive models were fairly
correlated (Figure .6.11E), with median Spearman’s rs values in the 0.53-0.58 range
and higher than 0.5 for 32 out of the 56 drugs from the variable profiles data set
(Figure .6.11F). LOCO, LOTO and LOCCO validation (Tukey’s HSD, P value < 0.001)
displayed nevertheless a marked decrease of the rs values (Figure .6.11E) with respect
to the most predictive models. Relative growth inhibition values on the NCI60 panel
can be depicted in a bar plot with z-scores calculated on the predicted bioactivities.

Figure .6.12 depicts the observed and the predicted growth inhibition patterns
for methotrexate (MTX), as its complex growth inhibition pattern renders this drug
suitable for illustration. The predictions accounted in 55 out of 59 cases for the relative
sensitivity of the cell-line. For instance, the six leukemia cell-lines (green turquoise)
were predicted to be sensitive to MTX. Moreover, complex inhibition patterns for
renal derived cell-lines (light magenta) were accounted by the predictions, as cell-lines
TK-10, RXF-393 and A498 were predicted to be highly resistant to MTX, whereas the
effect of MTX on sensitive cell-lines, namely UO-31, SN12C, CAKI-1 and ACHN, was
also correctly predicted (Figure .6.12B). Taken together, these data indicate that the
drug sensitivity predictions were able to account for complex patterns of cell-line
growth inhibition.
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Figure .6.11: Consistency between the pathway-drug associations calculated with
the experimental and the predicted bioactivity values. Box plots re-
porting the distribution of Spearman’s rs coefficients for pathway-drug
associations calculated with the experimental and the predicted values
over the 56 drugs present in the variable bioactivity profile data set,
using all pathway-drug associations (FDR < 20%) (A), or only significant
associations (C), as estimated in the variable bioactivity profile data
set. Bar plots representing the drug-averaged Spearman’s rs coefficients
calculated with all B. or with only significant (D) pathway-drug associa-
tions, averaged over the models labeled with a in (A). Missing bars in (D)
correspond to drugs for which we did not find significant drug-pathway
associations.
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.6.3 Results

Figure .6.11: Figure .6.11 caption continuation E. Data view-averaged Spearman’s
rs coefficients for patterns of growth inhibition calculated with the
experimental and the predicted values. F. Bar plot reporting the drug-
averaged Spearman’s rs coefficients for the patterns of growth inhibition
calculated with the observed and the predicted bioactivities. Data views
sharing a letter label and color in (A,C,E) perform at the same level
of statistical significance. Significance for the Spearman’s rs in (B,D,F)
is represented with an asterisk if two-sided P value < 0.05, for the
Spearman’s rs coefficients calculated with the predictions generated
with a model trained on the ’G.t.l. 1,000 genes’ data view. Bars in
(B,D,F) are colored according to compound MoA. Abbreviations of
mechanisms of action: MoA: Mechanism of action; A2: alkylating at
N-2 position of guanine; A7: alkylating at N-7 position of guanine;
AM: antimetabolite; Ang: angiogenesis; Apo: apoptosis inducer; Db:
DNA binder; Df: antifolates; DNMT: DNA methyltransferase inhibitor;
Dr: ribonucleotide reductase inhibitor; Ds: DNA synthesis inhibitor;
HDAC: Histone deacetylase; Ho: hormone; P90: hsp90 binder; PI3K:
PI3kinase; PKC: Protein kinase C; ROS: reactive oxygen species; RSTK:
serine/threonine kinase inhibitor; T1: topoisomerase 1 inhibitor; T2 :
topoisomerase 2 inhibitor; Tu: tubulin-active antimitotic; YK: tyrosine
kinase inhibitor.

Comparison to previous methods

To compare our results to previous studies, namely Ammad-ud-din et al. (2014);
Menden et al. (2013), we applied PGM to the GDSC and CCLE data sets, using
Morgan fingerprints as compound descriptors, and the gene transcript levels for the
1,000 genes displaying the highest variance across the cell-line panels to describe the
cell-lines. For the GDSC data set (Table .6.2), we obtained lower mean RMSEtest and
higher R2test values, namely 0.75 +/- 0.01 and 0.74 +/- 0.01, respectively, in compari-
son to Menden et al. (2013) (RMSEtest = 0.83; R2test = 0.72), and Ammad-ud-din et al.
(2014) (RMSEtest = 0.83 +/- 1.00; R2test = 0.32 +/- 0.37). The same trend was observed
for the LOTO validation (Table .6.2), with mean RMSEtest and R2test values of 0.81 +/-
0.16 and 0.72 +/- 0.08, respectively, in opposition to Menden et al. (2013) (RMSEtest =
0.99; R2test = 0.61). Comparable results are obtained here (RMSEtest =1.40 +/- 0.80)
and in Ammad-ud-din et al. (2014) (RMSEtest = 0.85 +/- 0.41) when extrapolating to
new compounds.

We have applied our PGM methodology, using Morgan fingerprints and the
transcript levels for the genes displaying the highest variance across the cell-line panel
as compound and cell-line descriptors. Although this combination of descriptors
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Figure .6.12: Evaluation of the predicted growth inhibition patterns for methotrex-
ate (MTX) on the NCI60 panel. A. Relative growth inhibition pattern
(z-scores) on the NCI60 panel calculated from the experimental pGI50 val-
ues. The experimental uncertainty of the measurements is also displayed.
B. Predicted relative growth inhibition pattern of growth inhibition along
with the 75% confidence interval calculated using conformal prediction.
We used the predicted values on the test calculated with 10 PCM mod-
els (interpolation). Complex inhibition patterns are reflected by the
predictions.
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.6.3 Results

Figure .6.12: Figure .6.12 caption continuation For instance, renal cell-lines TK-10,
RXF-393 and A498 (marked with an asterisk) were predicted to be
highly resistant to MTX, whereas the effect of MTX on sensitive cell-
lines, namely UO-31, SN12C, CAKI-1 and ACHN, was also correctly
predicted. Cell-lines originated from the same tissue are in the same
color (breast: red, central nervous system: orange, colon: olive green,
lung cancer: dark green, leukemia: turquoise, melanoma: blue, ovarian:
blue, prostate: purple, renal: magenta).

has led to the most predictive models on the NCI60 panel, other combinations of
descriptors might be more suitable for other data sets. Thus, we advise to explore as
many descriptor combinations as possible in future modeling studies on other data
sets.
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.6.4 Discussion

The major goal of this chapter was to capitalize on in vitro sensitivity and molecular
profiling data of untreated cells to simultaneously predict compound cytotoxicity
and selectivity on the NCI60 panel. Although the principles of PCM are not new,
the present study represents considerable progress in the field as, to our knowledge,
it is the first effort to exploit the large-scale NCI anticancer screening data and to
benchmark cell-line profiling information of the NCI60 panel for drug sensitivity
prediction with error bars. Unlike previous modelling studies on the NCI60 panel
[Abaan et al. (2013); Paull et al. (1989); Staunton et al. (2001); Szakacs et al. (2004)],
we integrate chemical information and cell-line profiling data simultaneously, which
enables us to predict growth inhibition patterns and to inter- and extrapolate on
the chemical and cell-line domains. Additionally, coupling conformal prediction
to a machine learning algorithm, here Random Forests, enabled the definition of
confidence intervals for individual predictions.

We consistently found the highest predictive signal in gene expression, miRNA
and protein abundance data. The incorporation of prior biological knowledge, by
including pathway information or by considering gene sets involved in cancer biol-
ogy (e.g. oncogenes and tumour suppressors), did not improve model performance.
Interestingly, predictive signals for selectivity and toxicity were present in the genes
displaying the most variable transcript levels along the cell-line panel. We note in
particular that the sparseness of the CNV and exome sequencing data is plausibly
the reason for poor model performance, and thus anticipate that the modelling of
cell-line panels with less sparse mutational data might lead to better models [Costello
et al. (2014)]. A major challenge to drug sensitivity prediction is the extrapolation of
compounds bioactivities to novel cell-lines and to structurally distinct compounds.
We did not find significant differences in performance between interpolation and
extrapolation to new cell-lines (LOCO) and tissues (LOTO), with RMSEtest values
smaller than twice the mean uncertainty value of the bioactivity measurements. This
observation enables the prediction of compound activities on cancer cell-lines con-
taining little bioactivity data, although extrapolation is improved by the presence of
cell-lines from the same tissue/ontogeny in the training set. Obtaining this degree of
extrapolation is notable, as the concatenation of chemical and cell- line descriptors
intends to account for the whole set of complex interactions occurring in the cell
upon compound administration.

Given that the compound space displays a much larger variability than the cell-
line space, and that similar compounds exhibit similar growth inhibition profiles
[Shivakumar and Krauthammer (2009)], it was expected that model performance
would considerably decrease when extrapolating bioactivities to structurally dis-
similar compounds. Nevertheless, mean RMSEtest values of approximately three
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times the average experimental uncertainty were obtained when extrapolating on the
chemical space (LOCCO). Although the error in prediction should ideally be close
to the experimental uncertainty, this performance is high enough to be pragmatic
for experimental compound prioritization. Previous studies have shown that the
addition of physicochemical descriptors or increasing the bit-string length of the
Morgan fingerprints (here set to 256) leads to higher predictive power when mod-
elling a highly diverse set of molecules [De Bruyn et al. (2013)]. Here, we did not
obtain higher predictive power when increasing the bit-string length, when adding
physicochemical descriptors to the compound fingerprints, or when using Morgan
fingerprints in binary format [Cortes-Ciriano et al. (2015b); Murrell et al. (2014)].
These results likely arise from the fact that the compound and cell-line descriptors
used here do not account for cellular events implicated in compound sensitivity, e.g.
cell permeability. Although the modelling has been restricted to the NCI60 panel,
we further anticipate that our approach could be extended to the Cancer Cell-Line
Encyclopedia (CCLE) [Barretina et al. (2012)], as gene expression profiles for the 44

cell-lines shared with the NCI60 panel are highly correlated (Spearman’s rs = 0.88)
(Figure .6.13). The extrapolation of compound bioactivities to cell-lines from the
CCLE could open repurposing opportunities for the 17,142 compounds considered
here, which could lead to novel cancer treatments and to testable hypotheses for the
discovery of biomarkers of drug sensitivity.

Although cultured cell-lines and primary tumours might differ genetically [Borrell
(2010)], investigating to which extent gene expression (and other cell-line profiling)
data can be used to model in vitro cell-line sensitivity, can help to develop approaches
for the prediction of primary tumour sensitivity from the genomic data of cancer
patients.
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Figure .6.13: Correlation of gene expression profiles for the 44 cell-lines present in
both the NCI60 panel and the Cancer Cell Line Enclycopedia (CCLE).
A. Pairwise Spearman’s rs correlation of the 1,000 most varying genes
between the DTP-NCI60 and the CCLE data sets. Both data sets share
44 cell-lines. The correlation between the gene expression profiles of
identical cell-lines is higher than 0.8 in all cases (diagonal of the matrix),
with a median Spearman’s rs value close to 0.875. B. The fist box plot on
the left reports the Spearman’s rs correlation, above 0.98, between the
gene transcript levels calculated in triplicates for the NCI60 cell-lines.
The box plot in the middle corresponds to the correlation between the
gene expression profiles of the cell-lines found in both the CCLE and the
NCI60 data set (diagonal of the matrix in (a)). The average Spearman’s
rs correlation is close to 0.875. The third boxplot reports the Spearman’s
rs correlation of different cell-lines (the non-diagonal elements of the
matrix in (a)). The high correlation between gene expression profiles for
the cell-lines present in both the CCLE and the NCI60 cell-line panel,
indicates that the PCM models reported in this study could be extended
to the CCLE.
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.7 Epilogue

This thesis aimed at predicting compound activity on biomolecular targets of
increasing complexity, from protein binding sites to cancer cell-lines, by inte-

grating chemical and biological information in the frame of single machine learning
models. Whereas the presented models fit reasonably well to the data, meaning that
the errors in prediction on the test set (interpolation) are close to the experimental
errors, extrapolating compound activity to structurally novel compounds remains a
challenging task.

I was personally motivated to evaluate the influence of the experimental errors
in both the training and the validation of bioactivity models. From chapters .3 and
.4, it is clear that the noise in the data has a deep influence on model performance,
and that the robustness to noisy bioactivity values is not constant across machine
learning algorithms (and kernels) commonly used in predictive bioactivity modelling.
Thus, the experimental uncertainty should: (i) guide the choice of the most suitable
machine learning algorithm, and (ii) be used to validate the maximum achievable
model performance given the data at hand.

These results also prompted me to evaluate the performance of algorithmically
diverse methods to predict confidence intervals, and to include them in the modelling
phase. The main conclusion is that conformal prediction appears as the most robust
and suitable technique for this task, as (i) it is algorithm-independent, (ii) it does
not require to optimize parameters beyond those of the algorithm chosen, and (iii)
the confidence intervals are always valid, which means that the true value will not
lie outside the confidence interval in more than a user-defined percentage of the cases.

PCM appears as a suitable technique to extrapolate bioactivities across species,
specially across orthologous proteins (Chapter .5). However, the description of bind-
ing sites with amino acid descriptors could be further improved by e.g. considering
protein dynamics. A recent paper by Brown et al. (2014) claimed that current state-of-
the-art amino acid descriptors do not provide higher predictive signal than indicator
(dummy) variables (which corresponds, following the terminology used in this thesis,
to IT models). Although we have demonstrated that the difference in predictive
power between models trained on (i) target descriptors and (ii) indicator variables is
statistically significant in many cases, this difference might still be negligible from a
medicinal chemistry standpoint, as it is in some cases less than half the average value
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of the experimental errors. This effect might not always be due to PCM flaws, as in
many available data sets (including the data set of the NIEHS-NCATS-UNC DREAM
Toxicogenetics Challenge) compound activities are highly correlated across the target
panel, i.e. a given compound displays similar acitivity across the targets considered.
Thus, the models are not properly challenged to predict the activity of compounds
whose activities are not correlated across the considered targets, and the difference
in predictive power between Family QSAR and PCM models not tested thoroughly.
This evidence claims for the definition of benchmarking PCM data sets, on which
new methodologies could be tested, and more importantly, the predictive power
of the proposed models on novel compounds and novel targets thoroughly challenged.

Due to the mathematical formulation of PCM, inherited from machine learning,
protein targets need to be related, be this relationship orthology, e.g. COX, or paralogy,
e.g GPCRs. This originates from the fact that the covariates in a PCM model using
binding site amino acid descriptors to encode the target space, need to correspond
to the same biological aspect across the targets considered, which in this case means
a given amino acid position in the binding site. The usage of full-sequence protein
descriptors need to be further explored in order to integrate bioactivity data from
structurally and functionally different proteins, and thus to leverage this data for the
prediction of compound affinity across panels of unrelated targets1.

On the interpretation side, PCM faces the same problems as QSAR, exacerbated
by the following aspects. In QSAR, certain methodologies, e.g. RF, permit to deter-
mine which covariates (descriptors) are important for the model, and, normally, also
assumed to be important for compound activity. This assumption is due to the fact
that models are considered to be capable to relate compound activity to compound
properties or features that are actually implicated in activity, although in some cases,
random correlations might appear. For instance, if a compound feature irrelevant for
activity is always present in active compounds but not in inactive molecules. In that
case, a given descriptor would be important (and useful) for the model to predict
compound activity, although the property encoded by it would not be responsible
for activity. In PCM, data sets comprise more than one target. Therefore, identifying
which descriptors are important to predict compound actitivity, does not reveal

1 It is important to note that I use the term affinity. Other chemogenomic techniques, such as Bayesian
classifiers, have been used to predict the probability of interaction between a compound and a
panel of unrelated targets in the form of Bayesian scores. However, it is paramount to highlight
that a high Bayesian score means that a given compound is likely to interact with a given target,
and not that the compound exhibits high affinity. As a matter of fact, this affinity might be in
the low, or even high, µM range, which also depends on the affinities considered in the training
data [Cortes-Ciriano et al. (2013)]. We have investigated these issues in two publications, namely
Cortes-Ciriano et al. (2013); Paricharak et al. (2015). In the latter, PCM and in silico target prediction
were integrated in a novel drug discovery framework for the retrospective discovery of Plasmodium
falciparum dihydrofolate reductase inhibitors.
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whether the chemical properties encoded by them are important for pan-activity,
or for activity against a particular target. Although several model interpretation
methods have been proposed in this thesis, their low performance and failure in some
cases [Cortes-Ciriano, I, Bender, A, and Malliavin (2015)], makes them unsuitable for
real-world drug discovery campaigns, e.g. in a company setting, and of little help for
medicial chemists.

The most relevant part of this thesis corresponds to the prediction of cancer
cell-line sensitivity from genomic data. This aim was partly fulfilled, as the errors in
prediction in interpolation and extrapolation on the cell-line side were, on average,
smaller than twice the average experimental error. Therefore, PCM can help (to the
extent the training data allows) to (i) develop new cancer drugs, (ii) drug repurposing
of existing drugs, and (iii) design tailored drug regimens on the basis of the patients
genetic makeup. Nevertheless, extrapolating on the chemical domain still remains
challenging, indicating that the current description of compound-cell-line interactions
is far from complete and that special attention should be given to not overstep the
applicability domain of the models. This is also evidenced by the fact that model
predictive power reaches a plateau [Cortes-Ciriano, I et al. (2015); Menden et al. (2013)]
irrespective of the combination of compound and cell-line descriptors used, which
might indicate that many variables important for cell-line sensitivity are missed in
the current modelling setting (e.g. cell permeability).

Haibe-Kains et al. (2013) have recently demonstrated the low concordance be-
tween drug sensitivity values between the CCLE and the GDSC, thus raising concern
about the suitability of using these data in predictive modelling. However, gene tran-
script levels for identical cell-lines were highly correlated across intitutions (see also
subsection .6.4). Given the high predictive signal provided by gene expression data,
PCM can build upon the vast experience gained in the last decades to standardize
gene expression microarrays and their analysis, and use cell-line profiling data form
different institutions as cell-line descriptors.

Another concern is how we quantify cell-line sensitivity. In this line, Fallahi-
Sichani et al. (2013) applied muti-parametric analysis to a data set comprising the
activity of 64 anticancer drugs on 53 breast cancer cell-lines. The results of this
study indicate that the parameters of the dose-response curve vary systematically
depending on the cell-line or drug class. For instance, drugs mechanism of action
has a strong influence on drug efficacy (Emax), potency (IC50), and on the steepness
of the drug response curve. Overall, this study indicates that other parameters than
potency of the drug response curve might be considered in comparative studies of
drug activity, as they are likely to provide crucial insight into the biology of cell-line
response to drug treatment, and into drugs mechanism of action.
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.7 Epilogue

Overall, these studies highlight anew the complexity of predicting (or even
measuring) cancer cell-line sensitivity, suggesting that predictive methods might be
limited to making testable hypothesis and that prospective experimental validation
is foremost to reach any biological conclusion. To date, PCM studies in the field
[Ammad-ud-din et al. (2014); Cortes-Ciriano, I et al. (2015); Menden et al. (2013)] have
quantified cell-line sensitivity using IC50 and GI50 values. Thus, there exists ample
room for exploring new ways of: (i) encoding compound-cell-line interactions, and
(ii) quantifying cancer cell-line drug sensitivity.
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