Near-Optimal Mobile Crowdsensing: Design Framework and Algorithms
Quasi-Optimal Mobile Crowdsensing: Cadre de Conception et Algorithmes
Abstract
Nowadays, there is an increasing demand to provide real-time environment information
such as air quality, noise level, traffic condition, etc. to citizens in urban areas for
various purposes. The proliferation of sensor-equipped smartphones and the mobility
of people are making Mobile Crowdsensing (MCS) an effective way to sense and
collect information at a low deployment cost. In MCS, instead of deploying static
sensors in urban areas, people with mobile devices play the role of mobile sensors
to sense the information of their surroundings and the communication network (3G,
WiFi, etc.) is used to transfer data for MCS applications.
Typically, an MCS application (or task) not only requires each participant's mobile
device to possess the capability of receiving sensing tasks, performing sensing and
returning sensed results to a central server, it also requires to recruit participants, as-
sign sensing tasks to participants, and collect sensed results that well represents the
characteristics of the target sensing region. In order to recruit sufficient participants,
the organizer of the MCS task should consider energy consumption caused by MCS
applications for each individual participant and the privacy issues, further the organizer
should give each participant a certain amount of incentives as encouragement.
Further, in order to collect sensed results well representing the target region, the organizer
needs to ensure the sensing data quality of the sensed results, e.g., the accuracy
and the spatial-temporal coverage of the sensed results.
With the energy consumption, privacy, incentives, and sensing data quality in
mind, in this thesis we have studied four optimization problems of mobile crowdsensing
and conducted following four research works...
Aujourd’hui, il y a une demande croissante de fournir les informations d'environnement en temps réel tels que la qualité de l'air, le niveau de bruit, état du trafic, etc. pour les citoyens dans les zones urbaines a des fins diverses. La prolifération des capteurs de smartphones et la mobilité de la population font des Mobile Crowdsensing (MCS) un moyen efficace de détecter et de recueillir des informations a un coût faible de déploiement. En MCS, au lieu de déployer capteurs statiques dans les zones urbaines, les utilisateurs avec des périphériques mobiles jouent le rôle des capteurs de mobiles à capturer les informations de leurs environnements, et le réseau de communication (3G, WiFi, etc.) pour le transfert des données pour MCS applications. En général, l'application MCS (ou tâche) non seulement exige que chaque participant de périphérique mobile de posséder la capacité de réception missions de télédétection, de télédétection et de renvoi détecte résultats vers un serveur central, il exige également de recruter des participants, attribuer de télédétection tâches aux participants, et collecter les résultats obtenues par télédétection ainsi que représente les caractéristiques de la cible zone de détection. Afin de recruter un nombre suffisant de participants, l'organisateur d'une MCS tâche devrait considérer la consommation énergétique causée par MCS applications pour chaque participant et les questions de protection dans la vie privée, l'organisateur doit donner a chaque participant un certain montant des incitations comme un encouragement. En outre, afin de recueillir les résultats obtenues par télédétection et représentant la région cible, l'organisateur doit s'assurer que les données de télédétection qualité des résultats obtenues par télédétection, p. ex., la précision et la spatio-temporelle la couverture des résultats obtenus par télédétection. Avec la consommation d'énergie, la protection de la vie privée, les mesures d'incitation, de télédétection et qualité des données à l'esprit, dans cette thèse nous avons étudié quatre problèmes d'optimisation de mobile crowdsensing et mené après quatre travaux de recherche [...]
Domains
Mobile ComputingOrigin | Files produced by the author(s) |
---|