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A bstract

Nowadays, there is an increasing demand to provide real-time environment informa-
tion such as air quality, noise level, trallc condition, etc. to citizensin urban areas for
various purposes. The proliferation of sensor-equipped smartphones and the mobil-
ity of people are making Mobile Crowdsensing (MCS) an elective way to sense and
collect information at a low deployment cost. In MCS, instead of deploying static
sensors in urban areas, people with mobile devices play the role of mobile sensors
to sense the information of their surroundings and the communication network (3G,
WIFi, etc.) isused to transfer data for MCS applications.

Typically, an MCS application (or task) not only requires each participant's mo-
bile device to possess the capability of receiving sensing tasks, performing sensing and
returning sensed results to a central server, it also requires to recruit participants, as-
sign sensing tasks to participants, and collect sensed results that well represents the
characteristics of thetarget sensing region. In order to recruit sullcient participants,
the organizer of the MCS task should consider energy consumption caused by MCS
applications for each individual participant and the privacy issues, further the orga-
nizer should give each participant a certain amount of incentives as encouragement.
Further, in order to collect sensed resultswell representing the target region, the orga-
nizer needs to ensure the sensing data quality of the sensed results, e.g., the accuracy
and the spatial-temporal coverage of the sensed results.

With the energy consumption, privacy, incentives, and sensing data quality in
mind, in this thesis we have studied four optimization problems of mobile crowdsens-
ing and conducted following four research works:

+ EEMC - In this work, the MCS task is splitted into a sequence of sensing
cycles, we assume each participant is given an equal amount of incentive for
joining in each sensing cydle; further, given the target region of the MCS task,
the MCStask aims at collecting an expected number of sensed results from the
target region in each sensing cycle. Thus, in order to minimizethetotal incentive
payments and the total energy consumption of the MCS task while meeting the
predened data collection goal, we propose EEM C which intends to sdlect a
minimal number of anonymous participants to join in each sensing cycle of the
MCS task while ensuring an minimum number of participants returning sensed
results.

« EMC3- Inthiswork, wefollow the same sensing cycles and incentives assump-
tiond settingsfrom EEM C; however, given a target region consisting of a set of
subareas, the MCS task in this work aims at collecting sensed results covering
each subarea of the target region in each sensing cycle (namely full coverage
constraint). Thus, in order to minimize the total incentive payments and the
total energy consumption of the MCS task under the full coverage constraint,
we propose EM C3 which intends to select a minimal number of anonymous
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participants to join in each sensing cycle of the MCS task while ensuring at
least one participant returning sensed results from each subarea.

+ CrowdRecruiter - In this work, we assume each participant is given an
equal amount of incentive for joining in all sensing cycles of the MCS task;
further, given a target region consisting of a set of subareas, the MCS task
aims at collecting sensed results from a predelhed percentage of subareas in
each sensing cycle (namely probabilistic coverage constraint). Thus, in order
to minimize the total incentive payments the probabilistic coverage constraint,
we propose CrowdRecruiter which intends to recruit a minimal number of
participants for the whole MCS task while ensuring the selected participants
returning sensed results from at least a predelned percentage of subareas in
each sensing cycle.

+ CrowdTasker - In this work, we assume each participant is given a varied
amount of incentives, according to the number of sensing cycles that the par-
ticipant joins in; further we delne a novel sensing data quality metrics based
on both the number of subareas covered by sensed results and the number of
sensed results in each subarea (namely overall coverage quality). Thus, in order
to maximize the overall coverage quality with a [(xed amount of budget for in-
centive payment, we propose CrowdTasker which intends to optimally recruit
a set of participants and determine in which sensing cycles each selected partic-
ipant can join in the MCS task while ensuring the total incentive payment not
exceeding the budget.

Each above work intends to study one practical optimization problem of mobile crowd-
sensing with specilc incentive, energy consumption, privacy and sensing data qual-
ity settings/ objectives. Evaluations with a large-scale real-world dataset show that
our proposed EEMC EMC3, CrowdRecruiter and CrowdTasker outperform heuristic
methods and other baseline approaches.



Resume

Aujourd'hui, il y a unedemande croissante defournir lesinformations d'environnement
en temps regl tels que la qualiteide I'air, le niveau de bruit, eat du tralc, etc. pour
les citoyens dans les zones urbaines aides [ns diverses. La proliferation des capteurs
de smartphones et 1a mobilitelde la population font des Mobile Crowdsensing (MCS)
un moyen ellcace de detecter et de recueillir des informations a un co(t faible de
deploiement. En MCS, au lieu de deployer capteurs statiques dans les zones urbaines,
les utilisateurs avec des periphériques mobiles jouent le réle des capteurs de mobiles a
capturer les informations de leurs environement, et le reseau de communication (3G,
WIFi , etc. ) pour le transfert des données pour MCS applications.

En general, I'application MCS (ou tache) non seulement exige que chaque par-
ticipant de peripherique mobile de posseder la capacité de reception missions de
teledetection, de teledéetection e de renvoi detectélresultats vers un serveur central,
il exige egalement de recruter des participants, attribuer de teledetection taches aux
participants, et collecter les resultats obtenues par t&ledetection ains que represente
les caracteristiques dela cible zone de détection . Ah derecruter un nombre sul] sant
de participants, I'organisateur d'une MCS tache devrait considerer la consommation
energetique causee par MCS applications pour chaque participant e les questions
de protection dans la vie privee, I'organisateur doit donner al chaque participant un
certain montant desincitations comme un encouragement. En outre, alh derecusillir
les resultats obtenues par teledéetection et representant la region cible, I'organisateur
doit sassurer que les donnees de t&edetection qualitel des resultats obtenues par
teledetection, p. ex., la pretision et la spatio-temporelle |la couverture des resultats
obtenues par teledéetection.

Avecla consommation d'energie, la protection delavieprivee, lesmesuresd'incitation,
de teledetection et qualitéldes donnees al'esprit, dans cette these nous avons gtudiel
quatre problemes d'optimisation de mobile crowdsensing e¢ menees apres quatre
travaux de recherche:

+ EEMC - dansle cadre de ce travail, la tache deMCS est divisglen une sequence
de cycles de detection, nous supposons que chaque participant est donnée une
quantite egale de stimulant pour rgjoindre dans chaque cycle de teledetection;
de plus, &ant donnélla region cible du MCS tache, la tache de MCS vise aire-
cueillir le nombre prévu de teledetection resultats de la region cible dans chaque
cycle de teledetection. Ainsi, aln de re&duire au minimum les totaux paiements
d'incitation € la consommation totale d'energie de la tache de MCS tout en
relnion les données predelnies collection objectif, nous proposons EEMC qui
a l'intention de s8lectionner un nombre minimal de participants anonymes de
se joindre al chaque cycle de detection de la MCS tache tout en assurant un
nombre minimal de participants retour resultats detectee.

+ EMC3 - dans le cadre de ce travail, nous avons suivi les mémes cycles de
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détection et des incitations hypotheses/ paramétres de EEMC; toutefois, eant
donng&une region cible composee d'un ensemble de sous-zones, la tache de MCS
dans ce travail vise alcollecter detecteresultats couvrant chaque sous-zone dela
region cible dans chaque cycle de detection (& savoir la pleine couverture con-
trainte). Ains, aln dereduire au minimum les totaux paiements d'incitation et
la consommation totale d'energie de la tache de MCS sous |la couverture totale
contrainte, nous proposons EMC3 qui a l'intention de s8lectionner un nombre
minimal de participants anonymes al se joindre al chaque cycle de détection du
MCS tache tout en assurant au moins un participant retour detecteéles resultats
de chaque sous-zone.

+ CrowdRecruiter - dans le cadre de ce travail, nous supposons que chaque par-
ticipant est donnée une quantiteegale de stimuler pour rejoindre dans tous les
cycles de detection du bac de ramassage tache; de plus, etant donn&une region
cible composel d'un ensemble de sous-zones, la tAche de MCS vise alrecueillir
des resultats detectee par un pourcentage predelni de sous-zones dans chaque
cycle de detection (alsavoir la couverture probabiliste contrainte). Ainsi, aln de
reduire les totaux paiements d'incitation la couverture probabiliste contrainte,
nous proposons CrowdRecruiter qui envisage de recruter un nombre minimal
de participants pour I'ensemble tache de MCS tout en assurant les participants
selectionn&s retour detectél resultats d'au moins un pourcentage predelni de
sous-zones dans chaque cycle de teéledetection.

+ CrowdTasker - dans le cadre de ce travail, nous supposons que chaque partici-
pant est donnge une quantitél variable d'incitations, en fonction du nombre de
cycles de detection que le participant se joigne a; de plus, nous nous delrhir un
roman de détection des donnees métriques de qualitérepose ala fois sur le nom-
bre de sous-zones couvertes par teledetection resultats et le nombre de resultats
détectee dans chaque sous-zone (c-ad couverture globale qualité). Ainsi, aln
de maximiser la couverture globale de qualite avec un montant [xe de bud-
get de paiement incitatif, nous proposons CrowdTasker qui a l'intention de
recruter de faton optimale I'ensemble des participants et de determiner a qui
la teledetection cycles chaque participant selectionné peut se joindre au MCS
tAche tout en assurant le total paiement incitatif depassant pas le budget.

Chaque travail ci-dessus se propose d'étudier une pratique problemed'optimisation de
mobile crowdsensing avec incitation spetilques, dela consommation d'energie, la pro-
tection de la vie privee et des donnees de teledetection paramétres qualit& objectifs.
Les evaluations avec une grande echelle le monde reel dataset montrent que notre
projet EEMC EMC3, CrowdRecruiter CrowdTasker et surpasser les methodes heuris-
tiques e d'autres approches de base.
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1.1 Background

Mobile Crowdsensing (MCS) | aterm coined by Ganti et al. [1] | is becoming in-
creasingly popular as the number of mobile devices equipped with sensors (including
phones, tablets, media players, games and leisure/ sports electronic devices) shows
dramatic growth. Facilitated by the widespread adoption of sensor-equipped smart-
phones, MCS has been successfully adopted to enable an ever-increasing number of
sensing applications, ranging from highway congestion detection [2] to social trend
understanding [3] and urban noise pollution/ air quality monitoring [4, 5]. A main
area of research in this [eld is concerned with enabling distributed monitoring appli-
cations that do not rely on a dedicated sensor network infrastructure; but where the
crowdsensing communication is facilitated by an already existing network between
devices (e.g., mobile phones) that are participating in the sensing tasks [6].

M obile Crowdsensing with M obile Phone Digital Footprints - In MCS,
there are two main players: MCS organizer who is the person or organization coor-
dinating the sensing task, and MCS participants who are the mobile users involved
in the sensing task. To facilitate the mobile crowdsensing with the sensor-enriched
mobile phones, the MCS organizer usually requires each MCS participant uploading
the digital footprints generated by their mobile phones. For example, an MCS appli-
cation intends to monitor the air quality of a big city with a large group of mobile
phone users. Every hour the MCS application collects one sensor reading from each
MCS participant and also fetches each user'sreal-time GPS position. After collecting
the sensed result and the GPS data from each MCS participant, the application maps
the air quality sensor reading to each corresponding GPS point on the Google map,
so as to draw the\ big picture" of air quality in the city. SpeciCcally, following three
types of mobile phone digital footprints have been widely studied:

17
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+ Sensor Readings - A mainstream smartphone might be commonly equipped
with multiple sensors including accelerometers, barometers, compasses, temper-
ature sensors, and magnetic [eld sensors [7, 8]. Furthermore, digital cam-
eras [9], microphones [10], ear-phones [4], wireless antennas [11] and other
devices equipped in the smartphone could be used as sensors for many crowd-
sensing applications. A comprehensive survey on mobile phone sensors and their
applications to mobile sensing is [12]

+ Mohility Traces - The commonly-seen smartphone mobility traces include GPS
trajectories [13], cellular trajectories [14], call detailed records [15], WiFi ac-
cess point and Bluetooth contact traces [16]. Combining the mobility traces of
users with sensor readings, MCS applications can map the sensor readings onto
the geographic map and future illustrate the spatial coverage of the MCS data
collection. For example, [4] leverages a large group of participants in order
to monitor the noise pollution in each street of a city; it continously senses
each participant's surrounding noise using the ear-phone of smartphone while
tracking each participant’ mobility using GPS; further, with the GPS mobility
traces, the application maps each collected noise result to street wherethe result
is collected, so as to get the street-level noise map.

+ Smartphone App Usage Records - Smartphone App Usage records including
phone call logs [15], email sending receiving logs [17], Google map usage logs [18],
and etc. arefrequently used to understand users app usage behavioral patterns
and further predict users future app usage. With the predicted future app
usage, [18, 19] proposes the piggyback crowdsensing mechanism to reduce the
energy consumption caused by the MCS applications through performing MCS
task in parallel with users smartphone app usages e.g., uploading sensed results
while a user placing a 3G call could reduce 75% energy consumption in MCS
data transfer [20].

The Objective of Mobile Crowdsensing - Though the most MCS applica-
tions can be viewed as a process of collecting digital footprints from mobile users,
the objectives of each MCS application is quite diClerent with others, considering the
requirements of specilt sensing applications. For each MCStask, the organizer needs
to specify the target sensing area, which often consists of a set of subareas. The orga-
nizer also needsto specify the sensing duration (e.g. 10 days), which isusually divided
into equal-length sensing cycles (e.g. each cycle lasts for an hour). The objective of
an MCS task is typically to collect certain environment data from mobile crowd in
the target area in each sensing cycle, with the goal of collecting high quality sensed
results and supporting the speciCc environmental monitoring applications. Taking a
one-week urban air quality monitoring MCS task as an example, the MCS organizer
[rst divides the whole area into 1km? grid cells and then splits the one-week MCS
sensing time into a sequence of one-hour sensing cycles [21], where the application
aims at collecting at least one sensed result from each grid cell in each sensing cycle.



Research Motivations and Contributions 19

The Process of M obile Crowdsensing - Whilethe objectives of mobile crowd-
sensing might be dilCerent due to the various goals/ settings for data collection, the
design of MCS applications usually follows a similar paradigm. In general, a mobile
crowdsensing application usually consists of creating MCS applications according to
the requirements, assigning sensing tasks to participants, executing the task (sens-
ing, computing and uploading) on the mobile device of individual participant, and
collecting and processing sensed results from participants. [22] divides the life cycle
of mobile crowdsensing process into four phases: Task Creation, Task Assignment,
Individual Task Execution and Crowd Data Integration, as shown in Fig. 1.1. The
key functionalities of each phase are described as follows:

» Task Creation: The MCS organizer creates an MCS task through providing the
participants with the corresponding mobile sensing applications that would be
deployed in the participants smartphones later.

» Task Assignment: After the organizer creates an MCStask and the correspond-
ing mobile task applications, the next phase is task assignment - recruiting par-
ticipants and assigning them with individual sensing tasks that are supposed to
run in each participant's mobile device. Finding enough and appropriate crowd
sensing participants is the core issue in this stage.

» Individual Task Execution: Once receiving the assigned sensing task, a partic-
ipant would try to [nish it within a pre-delned MCS task duration in paralld
with other tasks. This phaseis called individual task execution stage, which can
be further divided into 3 sub-stages - Sensing, Computing, and Data Uploading.

» Crowd Data Integration: This stage takes the data streams collected from all
the participants as input, aggregates the data and provides end users with what
they need in the appropriate format.

1.2 Research Motivations and Contributions

With respect to the aforementioned objectives and the process of mobile crowdsens-
ing, our research are based on following well-justiCed observations:

Observation |. Users' willingness of MCS participation - It is clear that user
participation is necessary for successful mobile crowdsensing. However, three main
factors are known to compromise the users' willingness to become part of a crowd:

» Privacy - Dueto the privacy concerns, a user may not be willing to participate
in all MCS tasks and may wish to anonymize herself in each MCS task in which
her device participates. To ensure privacy and, as a consequence, to encourage
participation, there must be no way to link a participant to her records in
previous MCS tasks.



20 Introduction

Task Creation Task Assignment Individual Task Execution . Crowd Data Integration

| individual task (user id,
 task id, region id, start
. : time, end time, sensor

 types, ..) Individual Task App
MCS task requirement | Sense  Compute  Upload M
App

| data stream (activity, image, voice,
;. location,...)

(when, what, where) | Cloud Server

; @ Individual Task 3 ey
| MCs : . ‘. off-line analysis
o B3 o ETTTTTER
: ® Individual Task App

mcs
Tasks

Figure 1.1: The Four-stage Life Cycle of Mobile Crowdsensing Process

» Energy Consumption - The energy consumption of MCS on mobile devices
may drain the battery and as such might discourage user participation. The
energy consumption of an MCS task can be viewed locally by each individual
crowd member, or globally from the point of view of the whole crowd. In-
dividual Energy Consumption is concerned with the energy consumed by the
MCStask in the battery of each individual participant's mobile device; and this
depends on the way that the MCS task executes on the device. The Overall
Energy Consumption is concerned with the total energy consumed by all crowd
members.

» Incentive - In addition to ensuring mobile users to save energy in MCS, one
e ective way to encourage mobile users' participation in MCStask isto provide
incentives (e.g., money, 3G internet bandwidth, etc.) to each user. Typically,
each sdlected participant is ollered a certain amount of money as incentive and
thus the MCS organizer needs to prepare a budget equal to the total incentives
paid to all participants in each MCS task.

Observation Il. EOciency and the electiveness of MCS task- While the MCS
participants care more about the energy consumed for participating the MCS task
and the incentives received from the task participation, the MCS organizer concerns
more about the quality of data collected from the MCS task and the total incentives
paid to all participants.

» Sensing Data Quality - Generally, an MCS task might want to collect the
sensing data that well representsthe characteristics of the target sensing region.
Thus, the sensing data quality of an MCS task could be characterized in two
aspects:
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1. The accuracy of sensed results - Supposing there exists noise in each indi-
vidual sensed result [23] (e.g., the sensing deviation of air quality sensors),
it might need to collect multiple sensed results from the target region in or-
der to estimate the accurate results. For example, in order to estimate the
accurate air quality index of a street, an MCS application collects sensed
results from at least 10 MCS participants in the street every hour and
estimates the accurate result by averaging all collected results.

2. The coverage of the sensed results - Rather than the accuracy of each
individual sensed result, the MCS organizer also concerns if the sensed
results collected by theparticipants could fully or partially cover the target
region spatially and temporally. For example, an air quality monitoring
MCS application needs to collect air quality sensor data from each strest
of Paris every hour, so as to monitor the air quality of the whole city.

From above two aspects, we can conclude that the sensing data quality of an
MCS task might be associated to the number of sensed results collected from
the target region and the spatial-temporal coverage of sensed results over the
target region and sensing time dots.

» Total Incentive Payment - It isalso obviousthat the moretotal incentives paid,
the higher MCS sensing data quality achieved. With the sensing data quality
quality and total incentive payment issues in mind, the MCS organizer might
either aim to

1. Maximize the overall MCS sensing data quality with a [xed amount of
incentive budget, or

2. Minimize the total incentive payment while ensuring the collected sensed
results meeting a predelned sensing data quality.

Our Contribution - In the research being presented, we are motivated to propose
MCS framework which addresses the aforementioned concerns from both MCS orga-
nizers and MCS participants, through reduction of energy consumption of individual
crowd members, and electively allocating incentives to the crowds while optimizing
the MCS sensing data quality. Further, we aim to achieve this goal without sacrilc-
ing the privacy requirement. With respect to aforementioned motivations, this thesis
incdudes following four contributions:

1. EEMC - In this contribution, we [Tst propose an energy-ellcient Piggyback
Crowdsensing mechanism reducing energy consumption of MCS data transfer by
receiving task assignment and returning sensed results in parallel with two 3G
calls [20]. Further, assuming each assigned participant would be paid an equal-
mount incentive, EEMC assigns MCS tasksto a minimal number of anonymous
participants while ensuring a predelned number of assigned participants return-
ing sensed resultsin a specilc time-frame, so asto guarantee the data collection
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from a minimum number of participants in the target region also minimizing
overall energy consumption and the total incentive payment. Evaluationswith a
large-scale real-world phone call dataset show that our proposed EEMC frame-
work outperforms the baseline approaches, and it can reduce overall energy
consumption in data transfer by 54% - 66% when compared to the 3G-based
solution.

. EM C3 - While EEMC reduces individual energy consumption and minimizes
overall energy consumption/ total incentive payment under a simplesensing data
quality constraint (i.e., the minimum number of sensed results required in each
cycle), this contribution aims at studying an novel MCS task assignment frame-
work under an more complex data quality constraint| i.e, full spatial-temporal
coverage constraint. In this contribution, EMC? reduces the individual energy
consumption caused by MCS data transfer by leveraging the two-call-based
piggyback crowdsensing mechanism of EEMC. Further, given the target region
divided into subareas, EMC? assigns MCS tasks to a minimal number of anony-
mous participants while ensuring at least one sensed result being returned from
each subarea in a gpecilt time-frame, in order to minimize the overall energy
consumption and the total incentive payment under full coverage constraint.
Speciically, EMC3 incorporates novel pace control and decision making mech-
anisms for task assignment, leveraging participants' current call, historical call
records as well as predicted future calls and mobility, in order to ensure the
expected number of participants to return sensed results and fully cover the
target area, with the objective of assigning a minimal number of tasks. Exten-
sive evaluation with a large-scale real-world dataset shows that EMC? assigns
much less sensing tasks compared to baseline approaches, it can save 43%-68%
energy in data transfer compared to the traditional 3G-based scheme.

. CrowdRecruiter - While EEMC and EMC? intend to assign MCS task to
a minimal number of participants during the MCS task (i.e, online task as-
signment), this contribution studies an olJine participant selection problem,
where prior to the MCS task a minimal number of participants are [rstly se-
lected from volunteers, then during the MCS task each selected participant
is required to join all MCS sensing cycdes while ensuring the spatial cover-
age of the selected participants meeting predelned coverage requirement. In
this contribution, we introduce a novel participant selection framework, named
CrowdRecruiter. CrowdRecruiter operates on top of energy-elicient Piggyback
Crowdsensing (PCS) task model proposed by [18], minimizes the overall incen-
tive payments by selecting a small number of participants while still satisfying
probabilistic coverage constraint. In order to achieve the objective when piggy-
backing crowdsensing tasks with phone calls, CrowdRecruiter [rst predicts the
call and coverage probability of each mobile user based on historical records.
It then elIciently computes the joint coverage probability of multiple users as
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a combined set and selects the near-minimal set of participants, which meets
coverage ratio requirement in each sensing cycle of the PCS task. We evalu-
ated CrowdRecruiter extensively using a large-scale real-world dataset and the
results show that the proposed solution signiCcantly outperforms three baseline
algorithms by selecting 10.0% - 73.5% fewer participants on average under the
same probabilistic coverage constraint.

4. CrowdTasker - While CrowdRecruiter intends to select a minimal number
of participants for joining in all sensing cycles of the MCS task while mesting
the probabilistic coverage constraint, this contribution proposes a novel PCS
task allocation framework| CrowdTasker, which selects one group of partici-
pants for each sensing cycle of the MCS task, in order to maximize the overall
MCS data quality while satisfying the incentive budget constraint. In order to
achieve this goal, CrowdTasker [rst predicts the call and mobility of mobile
users based on their historical records. With a Cexible incentive model and
the prediction results, CrowdTasker then selects a set of users in each sensing
cycle for PCS task participation, so that the resulting solution achieves near-
maximal coverage quality without exceeding incentive budget. We evaluated
CrowdTasker extensively using a large-scale real-world dataset and the results
show that CrowdTasker signilcantly outperformed three baseline approaches by
achieving 3% - 60% higher coverage quality.

1.3 Organization of this Thesis

Therest of thesis is organized as:

+ Chapter 2 gives a comprehensive survey on the state-of-the-art of mobile
crowdsensing, including the related work of (a) recent MCS applications and
frameworks, (b) energy consumption measurement for MCS applications, (c)
energy-saving strategies for MCS applications, (d) MCS incentive model, (e)
MCS sensing data quality, (f) MCS participant selection and task assignment,
and (g) mobility prediction techniques applied to MCS.

»« Chapter 3, Chapter 4, Chapter 5 and Chapter 6 present our work of
EEMC, EMC3, CrowdRecruiter and CrowdTasker respectively, where we in-
troduce (a) the motivating example of each framework and the most closest
related work, (b) research assumptions/ objectives and problem formulation, (c)
detailed framework/ algorithm designs, and (d) evaluation results using the real-
world datasets.

» Chapter 7 discusses several open issues of the four MCS frameworks and con-
cludes this thesis, where we address several future directions of MCS research
in our viewpoints.
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2.1 MCS Applications and Frameworks

There has been much recent research leading to the development of many dilCerent
mobile crowdsensing applications and services; for example: automated recognition of
human activities and context using sensor data [24], automated modeling of location
characterigtics [25] and linking such location semantics to user prolles [26], mapping
network cells to geographic locations [27], social interaction and collective behavior
sensing [28, 29], mobile object discovery [30] in urban areas, and road trallc/ public
transport monitoring [31, 32].

To support the above-mentioned applications, many dilCerent mobile crowdsens-
ing frameworks [33, 34, 35, 36] have been proposed. For example, [35] designs a
framework to deploy MCS applications on mobile devices in order to scale the MCS
system; [33] proposes a framework selecting the MCS participants from volunteers
before MCS task execution, where the participant selection is based on mobility data
mining and reputation modeling for volunteers; [36] introduces CAROMM { an MCS
data collection framework based on mobile data mining in order to reduce the data
transmission for results uploading, while maintaining the accuracy of collected re-
sults; and [34] further develops CAROMM and provides a real-time context-aware
MCS framework delivering integrated sensed results to MCS end-users. [37] has
presented a rapid prototyping framework called \ Madusa" for mobile crowdsensing.

25
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The proposed framework structures mobile crowdsensing into three main stages |
\recruiting-sensing-uploading".

2.2 MCS Energy Consumption

In this section, we mainly introduce the research work measuring the energy con-
sumption of mobile phone for MCS applications. The energy cost for a mobile device
to perform a sensing task can be generally divided into three parts. for sensing, com-
putation and data transfer. In our research we particularly focuses on the energy
consumption caused by following two parts:

Sensing Task Sensors (frequency, duty cycle) | Energy (J) | Total Energy (J)
Accelerometer (160Hz, 10%) 0.66
L I Microphone (1Hz, 50%) 0.755
Human Activity Monitoring Compass (1Hz, 10%) 0.015 1.43
Pressure (1Hz, 100%) 0.0006
Environment Monitoring Temperature (1Hz, 20%) 0.0012 0.3
Microphone (1Hz, 20%) 0.3

Table 2.1: Energy Cost of Sensors and Sensing Tasks

Energy Consumption in MCS Sensing - The power of sensors, including
accelerometer, pressure, temperature, microphone and compass sensors, equipped by
the mainstream mobile phones are also covered by Table 2.1. Theinstrumental results
listed in Table 2.1 is measured by work [8, 38, 39]. Particularly, we take care of the
sensor energy consumption under various frequency and duty cycles settings, so as
to succeed dilerent sensing tasks, e.g., environmental monitoring and human activity
recognition.

Type Connection (J) | Data Transfer (mJ/ byte)
0.04-0.16 download
3G (UTMS) 12.0 0.09-0.3 upload
SMS (SS7) 2.0 3.0
WIFI 5.0-12.0 0.01
2G (GSM/GPRS) 4.0 0.036

Table 2.2: Energy Cost of Data Transfer: the specilt energy consumption depends
on the waiting time, buler size or bandwidth

Energy Consumption in MCS Data Transferring - In Table 2.2, we discuss
the energy consumption of data transfer, including the cost of connection establish-
ment, data uploading/ downloading, connection maintenance and tail, by using the
network of 2G, 3G, WIFI and SMS (SS7). We take the energy consumption to es-
tablish, to maintain and to end a connection into account as \ connection" in the
table. All above measurement and instrumental results are investigated from the
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work [17, 40, 41]; and interested readers are encouraged to see also in these papers.
Since the payload of data uploading/ downloading in MCS, including datagrams for
both the command word of task assignment and sensory data result, is quite small.
Therefore, no matter which data transfer method of 3G, GSM, WIFI or SMS (SS7)
is employed, the MCS data transfer of a few bytes [20, 42] might cost most energy in
connection including connection establishment, maintenance and tail.

2.3 MCS Energy-saving Strategies

As the energy cost for a mobile device to perform a sensing task can be generally
divided into three parts. for sensing, computation and data transfer, we hereby in-
troduce the MCS energy-saving strategies in following three categories:

Saving Energy in M CS Sensing - Toreducethe energy cost for sensing, there
are many proposals ranging from the adoption of low power sensors [43, 10], adaptive
sensor schedulers [44], to using sensing data predictors [32, 49].

Saving Energy in MCS Computing - To savethe energy cost for computing,
mobile sensing systems have turned towards using low power processors [46], and
reducing computation workloads by leveraging energy el cient sensing data processing
algorithms [47, 48] or olloading mechanisms [13].

Saving Energy in MCS Data Transfer - To reduce the energy cost for data
transfer, three lines of research have been conducted

+ Using low power wireless communication [49, 50, 51] can directly reduce the
energy consumption of data transfer.

» Using mobile nodes asrelays [49, 52] to carry and forward data between sensing
devices and the server can save energy, since multi-hop relaying may <till cost
less than uploading data directly to the server.

» Trangferring less sensing data can also save energy. T he compression of sensing
data [53] can reduce the data size directly. Further, strategies exist for mini-
mizing data transfer by communicating only unpredictable data, while inferring
the predictable data [54]. These methods may consume more energy during
computation; so they require a careful trade-ol]1to make the whole system more
energy-elcient.

Finally, energy harvesting mobile sensing systems [55] have been studied to function
with battery-free platforms.

24 MCS Incentive Models

Previous research work about MCS incentives has leveraged game theory and auction
mechanisms to analyze the optimal payment to be ollered by the MCS organizer to
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participants, and to [nd the best compromise between participants and organizer's
prolt (i.e. the utility function in game theory) [56, 57]. As an alternative to mon-
etary reward, some approaches oler other incentives such as service time [58] and
coupons [59]. In general, these approaches assume the users' cost to [hish a task to
be known in advance, and this cost follows some speci[t probability distribution in
their simulation experiments.

2.5 MCS Sensing Data Quality Metrics

T he straight-forward way of measuring the MCS sensing data quality isto use spatial-
temporal coverage [60, 61, 62, 63, 64, 65].T he work of both full coverage [60, 61] and
partial coverage [62, 63, 65] has been studied. [60, 61] uses the full coverage as the
constraint of sensing data quality for MCS data collection; both of them aim to collect
at least one result returned from each subarea of the target region. [62] is the [Tst
to propose to use the probabilistic coverage as the MCS sensing data quality, where
the author delnes the probabilistic coverage as the percentage of subareas covered by
the sensed results in each sensing cycle. [65] delnes a novel type of partial coverage
metrics| opportunistic coverage, which usesthedistribution of time duration between
each two consequent sensed results obtained in each subarea asthe MCS sensing data
quality. All these spatial-temporal coverage metrics are associated to the number of
sensed results obtained, the number of subarea covered by the sensed results, and the
number of sensing cycles that each subarea of the target region are covered.

Rather than using spatial-temporal coverage as the MCS sensing data quality
metrics, Krause et al. [66, 67] propose to usethe observation certainty to measurethe
quality of sensed results obtained in participatory sensing. Authors assume the noise
existsin the obtain sensor data (namely observations) and further assume such noise
follows certain stochastic process (e.g., Gaussian) in spatial and temporal domain. In
this way, this work quantify the MCS sensing data quality as the overall predictive
variance [67] of the collected sensor data.

2.6 MCS Participant Selection and Task Assignment

While the MCS participants care about the energy consumed for participating the
MCS task and theincentives received from the task participation, the MCS organizer
concerns more about the sensing coverage of data collected from the MCS task and
the total incentives paid to all participants. Thus, many previous work studies the
algorithms/ frameworks, selecting participants from volunteers and assigning MCS
tasks to participants subject to energy consumption, total incentive payment and
sensing coverage objectives/ constraints.

In order to minimize the overall energy consumption of an MCS task under MCS
data quality constraint, the research objective becomes kegping the energy consump-
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tion of each mobile device low and [nding the minimal number of participants while
ensuring a predelned MCS data quality e.g., full or partial coverage of the target
region. In [68, 69], the authors introduce the notion of virtual sensors which intend
to collaboratively infer sensing values to reduce physical and redundant sensing, they
propose spatial and temporal coverage metrics for balancing the overall energy con-
sumption and data quality. In [70], Musolesi et al. present several techniques to
optimize the information uploading process for continuous sensing, they also consider
the coverage and overall energy consumption in MCS. Sheng et al. [71] propose a
mechanism to reduce the overall energy consumption in mobile crowdsensing by op-
timizing the schedule of each sensing device, collaboratively all the mobile devices
could fully cover the target region with minimal sensing energy.

In order to maximize the overall sensing data quality of the MCS task under
the total incentive payment constraint. Reddy et al. [72, 33] (st study the research
challenge of participant recruitment in participatory sensing, they propose a coverage-
based recruitment strategy to select a predelned number of participants so as to max-
imize the spatial coverage. More recently, Singla et al. [73] proposes a novel adaptive
participant selection mechanism for maximizing spatial coverage under total incentive
constraint in community sensing with respect to privacy. Also in [74], Cardone et al.
develop a Mobile Crowdsensing platform, where a simple participant selection mech-
anism is proposed to maximize the spatial coverage of crowdsensing with predelned
number of participants.

Whilst above work attempts at maximizing the MCS data quality under the bud-
get constraint, two recent MCS frameworks [62, 75] are proposed to minimizethetotal
incentive payments while ensuring the MCS task meeting the coverage constraints.
First authors attempt to use a mobility model to predict mobile users future loca-
tions. Based on the predicted results they aim to select a minimal number of mobile
users, expecting to cover a certain percentage of the target area in the next timeslot.
However, both [62, 75] focus on the mobility modd and coverage probability predic-
tion. They assume that each user's historical locations are known and the time slot
for mobility prediction is short, as both methods make decisions in each step in order
to select new users based on the coverage probability estimation.

2.7 Human Mobility Prediction for MCS

A variety of schemesthat address the problem of prediction of user location have been
studied. In general, they fall into the schemes based on individual mobility patterns
and collective mobility patterns.

Predictor based on Individual M obility Patterns - These schemestake ad-
vantage of the temporal and spatial regularitiesthat are exhibited in the individual's
mobility patterns. The prediction schemes based on markov models, especially those
based on the higher-order markovian model [76] are considered as the state-of-the-art
in the practical predictor design [77], since it takes the probable locations for next
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movement and the temporal order of movements into account. Besides, some of other
schemes foresee user location by detecting periodic patterns in user traces. The pre-
dictability of prediction schemes based on individual's mobility patterns is limited,
around 90% in the theoretical upper bound [78].

Predictor based on Collective M obility Patterns - In recent years, many
hybrid user location prediction schemes leveraging the collective mobility patterns
have been studied. They postulate that user movement is driven by social-tie [79)],
involving the social community identilcation, and the prediction based on the com-
munity attraction to users. Asatypical example, CMM [80] leveraged user friendship
to cluster users as communities, and then decided user next location by community
attraction. Calabrese et al. [81] introduced the [rst predictor fusing the collective
behaviors and individual mobility patterns of mobile phone users. It employs a pre-
diction scheme based on the periodicity of the individual's mobility pattern, and then
uses the collective geographical preferences to refne the prediction result.
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3.1 Introduction

As has been introduced in Chapter 1.2, while MCS participants concerns more on
individual energy consumption caused by MCS, privacy, and incentives received for
the participation, the MCS organizer focuses more on sensing data quality and total
incentive payment of the MCS task. Thus, we intends to study an MCS framework
reducing energy consumption of each individual participant, minimizing the overall
energy consumption and incentive payments of the whole MCS task while meeting
the predelned sensing data quality goals.

Particularly, this work studies a novel type of MCS task that aims to collect
sensing results from a specilCed number of participants in the target region within a
certain time duration. For example, the air quality of the central business district
in Abidjan City is monitored by an MCS application, which collects forty samples
of air quality sensed by diCerent participants in the district every two hours. Each
of the MCS participants receives a sensing task assignment, then executes it, and
[nally returns the sensing results. As a consequence, the air quality result sensed by
participants in the most recent two hour period can be used to estimate and update
the aggregated air quality index.

With above settings and objectives in mind, we are motivated to reduce indi-
vidual energy consumption caused by MCS data transfer leveraging the low-power
data transfer mechanism, minimize the overall energy consumption/total incentive
payments of the complete MCS task, through the minimization of the total number
of participants assigned with the MCS task. Further, we aim to achieve this goal
without sacrilcing the anonymity requirement of participants.

3.1.1 Proposed Research: Assumptions, Objectives and the Exam-
ple

In terms of energy conservation of MCS applications on mobile device, three main
components | data transfer [82, 83, 84, 54], sensing [45, 13] and computation [47,
46] | have been the focus of study. Dilkerent from the existing work in energy-
ellcient mobile crowdsensing mechanisms (or frameworks) [75, 61, 68, 43], this work
aims at designing a novel energy-ellcient mobile crowdsensing framework (named
EEMC) which addresses three aspects of the problem in an innovative manner. The
mechanism will 1) minimize overall energy consumption due to data transfer, 2)
guarantee that the required number of sensor results will be returned during each
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cycle, and 3) maintain the anonymity of users who have participated at any point
in the lifetime of the crowdsensing activity. Our research is based on a number of
well-justiCed assumptions:

1. Connection Setup Cost, and Energy Conservation in MCS Data Transfer - Re-
cent studies on energy consumption in a range of dilCerent devices note that a
smartphone, operating on a 3G network, typically needsto consume\ 12 Joules
before the [rst byte can be sent" [42, 85]. The energy consumption for small
data transfer (lessthan 10KB) is mainly concerned with establishing (and clos-
ing) the 3G connection, and is also [xed around 12 Joules [17]. Thisis coherent
with our previous study [19] on air quality sensing, where we observed that
when task assignments and the results of the common MCStasks are relatively
simple and the transferred data is quite small (O 10KB), then the energy con-
sumption of data transfer to receive a task assignment and returning the result
is also [Xed at approximately 12 Joules.

2. Paralld Transfer and Energy-ellcient MCS Data Transfer - If a mobile phone
receives the task assignment and uploads the sensed result in parallel with the
user'sregular phone calls, then the additional energy consumed in data transfer
for an MCS task would be signilCcantly reduced thanks to reuse of the already
established 3G connections [51, 19]. Thistype of technique | that piggybacks
data over connections established by voice calls or other 3G mobile applications
| is known commonly as Parallel Transfer. Taking the Nokia N95 phone as
an example, a 3G data connection typically consumes around 12 Joules (which
is consistent with our [rst assumption), while the additional energy incurred
when piggybacking a data packet of 10KB over a 3G call is around 2.5 Joules
(which corresponds to a 75% - 90% reduction in energy consumption). As an
interesting comparison, sensing the noise with a microphone in the same phone
requires about 1 Joule in order to get a valid sample [39].

3. Receive-Sense-Return Cycles and Delay-tolerant MCS - To support MCS appli-
cations, many dilerent task assignment schemes [33, 34, 35, 36, 37] have been
proposed. All these schemes structure mobile crowdsensing applications (on mo-
bile devices) into threemain stages\ Receive] Sense| Return" (or \recruiting|
sensing| uploading" in [37]). In the [rst stage, the mobile device receives task
assignment from the central server, then executes the sensing task during the
second stage, and returns the sensed results back to the central server in the
third and [hal stage. A widerange of MCS tasks (a good example is the previ-
ously mentioned air quality sensing application) can be completed successfully,
provided all mobile devices can go through these three stages within a speciCed
time-frame (delay) for each single task [86].

4. Two-call-based MCS Mechanism for Cyclic Sensing Tasks - Considering the
delay tolerant nature of many MCS tasks, it is a reasonable assumption that
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Figure 3.1: The Use Case of Abidjan's CBD Area

we can divide an MCS task into equal-length (Receive-Sense-Return) cycles. In
each sensing cycle, the central server attempts to collect sensing results from
a required number of participants. With parallel transfer in mind, we can
signiCcantly reduce energy consumption in data transfer of a sensing cycle if
we are able to assign sensing tasks to the mobile phone users who will place
(make or receive) two or more phone calls in the cycle. T hese users receive task
assignments and return their sensed results piggy-backing the data transfer on
top of the calls through the parallel transfer approach.

In summary, to enable energy ellcient mobile crowdsensing with Two-call-based MCS
Mechanism, our initial research makes the assumptions that:

+ Each MCS task lasts for a limited duration and involves a series of sensing
cycles;

» All participants receive task assignments and return sensing results, only when
they are involved in calls;

» In each cycle, a participant will be assigned with tasks no more than once;

» Dueto privacy concerns, all participants will be anonymized for each MCS task
in such a way that we cannot link any participant to records of her previous
MCS tasks.

Based on the above assumptions, our research proposes an MCS task assignment
mechanism which meets two objectives:

1. to ensure the required number of participants returning the sensing results within
the cycle, and

2. to minimize the number of redundant task assignments.
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To further illustrate the proposed research assumptions and objectives, let us recon-
sider the aforementioned air quality sensing use case. An environmental NGO in Ivory
Coast, with the help of a local telco, launches an air quality monitoring MCStask in
Abidjan City's CBD region where 25 cell towers are installed (see also in Fig. 6.2).
In order to provide the timely air quality sensed results to the citizens of Abidjan
city, the MCS task is designed to update the air quality reading once every 2 hours
(i.e., a sensing cycle lasts for 2 hours). In order to provide reliable measures, the
application is designed to secure the data collection from a minimum number (e.g.,
80) of mobile users in the target area per sensing cycle. In order to facilitate the
task assignment, as shown in Fig. 3.1b, EEMC is deployed on a central server which
continuously monitors all mobile users' calls in the target region, analyses the call
activities of MCS participants, and decides, for each incoming call, if a participant
placing (making or receiving) the call should be assigned with a sensing task. Please
note that, only when a participant makes/ receives a phone call in the target region
can she receive the task assignment or return the sensed result. In this way, tasks
are assigned in a sequential manner as new calls are established, tasks assigned and
sensed results returned.

3.1.2 Research Challenges and Our Contributions

In order to achieve the proposed research objectives and validate them through a
realistic use case, we address the following key technical challenges:

» Next-call Prediction for the new arrival caller/ callee based on accumulated call
traces - It is not possible to know in advance which of the crowdsensing par-
ticipants will be involved in (two) phone calls during a particular sensing cycle.
Thus, we need an elective method for predicting possible participation based
on the participant's previous call history. However, due to the anonymization
requirements, we cannot link a user with her phone call records during previous
MCS tasks. Thus, there needs to be a method to predict the future phone call
patterns of users using their accumulated history restricted to the current task.

+ Dynamically decide whether further task assignment is needed - No method
for call prediction can be perfect. As a consequence, tasks may be assigned to
participants (based on their predicted call patterns), who fail to be involved
in the minimum 2 calls required for the \receive" and \return" stages in the
sensor cycle. To mitigate this problem, we propose assigning redundant tasks
in such a way that the required number of results will always be returned even
if individual participant's call behaviour is not as predicted. To avoid energy
waste, the redundant task assignments should be as few as possible. The key
decision that hasto be made is concerned with how to update task assignments
(if it all) when a new call is established during a single cycle.

» Current Calling User vs. Future Users? a non-trivial trade-ol1- Simple analysis



36 EEMC: Energy Ellcient Mobile Crowdsensing with Anonymous Participants

Current Call

Future Calls  []__ Past Calls
()
...... 'J
s
\:
Phase [ Phase I | Participants
Having Returned
Next-Call Prediction Model Assigned with Tasks e |
based on Accumulated Call . T " J
Traces
‘ ¥ ¥

Task Assigned o| Adaptive Pace Controller Near-Optimal Decision

No for Task Assignment Maker for Task Assignment
o
—— Having Returned v Ye l

Exit Yes Further Task
x < >
l No Assignment Tuk N, >
5 | No ! Exit
Collecting Sensing Result for l l\‘u
MCS applications...

Fxit The Current Caller/Callee Receives a Task

Figure 3.2: The Two-phase Task Assignment Framework

would suggest that it is a good strategy to assign atask to any user who has just
established a call (caller or callee), provided that they have not already been
assigned atask and provided that further task assignmentsareneeded. However,
this may not be a good approach if this user has a low chance of being involved
in a second call before the current cycle is complete. The decision should not
be made in a local manner | it is better to compare the probability of the
user meeting the 2-call per cycle requirement with the global probability set of
meeting the same requirement for all other crowd members (i.e., the participants
having not placed any calls in the current cycle but with higher probabilities of
placing two calls before the end of the cyde).

In this work, we propose a two-phase approach (illustrated by the process shown
in Figure 3.2) in order to address the above-mentioned challenges. Consider the
situation where a user is making or receiving a phone call, our [rst phase queries
and updates her mobile phone call traces, and identi(es whether she is a candidate
for task assignment based on phone call prediction. In the second phase, with a user
for whom we haven't yet assigned any task in the current cycle, a two-step decision
making process is proposed to determine whether or not we should assign a task to
her; where the [rst step (using the Adaptive Pace Controller for Task Assignment
component) decides if further task assignments are needed based on tasks already
assigned and the participants having already returned their sensing results, and the
second step (using Near-Optimal Decision Maker for Task Assignment) decides if
the current caller/ callee should receive the task assignment through comparison with
potential callers/ callees in the time remaining of the current cycle. The detailed
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contributions of this work are:

1. Firstly, motivated by saving energy in data transfer of MCS tasks for both indi-
vidual participants and the whole crowd, we propose a novel mobile crowdsens-
ing framework EEMC leveraging both the paralldl transfer mechanism and the
Receive-Sense-Return cycle pattern, whilst also respecting the requirement for
anonymity. Further, we investigate and formulate the technical problem inside
EEMC| atask assignment decision making problem| with minimal number of
task assignments as the goal and the predelned number of returned sensed re-
sults astheconstraint. Tothe best of our knowledge, thisisthe [rst work which
addresses the issue of energy-elicient MCS data transfer in the proposed way.

2. Secondly, we develop a two-step decision making process, and algorithms, to
control the task assignments. When the proposed algorithm makes decision on
task assignment, it considers four types of participants: 1) the calling user, 2)
the participants already assigned with tasks, 3) the participants having already
returned sensing results, and 4) the future users who are (potentially) going to
make two phone calls. Though thisalgorithm is designed for EEMC, other MCS
frameworks with a similar optimization goal { but which do not assume that
each assigned participant will return his her sensed result { can also benelt
from application of the algorithm.

3. Thirdly, we evaluate EEMC on the D4D dataset [15] containing 4-month call
detail records of Ivory Coast citizens. Theresult showsthat EEMC can guaran-
tee that the required number of participants return their sensing results whilst
making fewer redundant task assignments than the baseline schemes. When
we consider overall energy consumption in data transfer for MCS applications,
such as air quality or noise monitoring at the Abidjan CBD area, compared to
the traditional 3G-based scheme the reduction is quite signilicant. In our case
study, EEMC reduces energy consumption in data transfer by approximately
75% for a specilc participant, with a global reduction of 54% - 67% for the
whole crowd.

3.1.3 Comparison with the Most Related Work

Regard the state-of-the-art discussed in the Chapter 2, we sort the most related work
of our study into following three categories:

1. Using low power wireless communication as energy-saving strategy for MCS
data transfer - The most related work is [49, 50]. Our research follows this
approach by leveraging the parallel transfer with voice call [51] as a low power
communication method.

2. Task assignment mechanism minimizing overall energy consumption and total
incentive payment under the sensing data quality constraint - The most related
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Symbols Delnitions
to The starting time of an MCS task;

T The duration of a sensing cycle;

Ne The expected number of returned participants

k The index of a specilc cycle;

t The dapsed time during cyclek, wheret 2 [t, + (K O 1)T;t, + K OT) ;
Ax The set of participants already assigned with tasks in the cyclek;

Rk The set of participants having already returned sensing results k;

Table 3.1: Symbols and Delnitions

work is [33, 34, 35, 36]. Dillerent from all previous work, which assumes that
each assigned participant would return sensed results, EEMC assumes that as-
signed participants may not be able to return sensed results. This is a much
more realistic assumption as it can, amongst other things, cope with a common
scenario of a participating user's phone being turned o1 in the middle of a cy-
de (perhaps due to the battery losing charge). In order to manage this more
realistic model of the crowd of user participants, a more complex allocation al-
gorithm based on redundancy needsto be used. However, redundancy increases
energy consumption. Thus, the research challenge is to have a \ fault tolerant"
allocation mechanism which attemptsto minimize the number of redundant task
assignments.

3. Validation and Experiments - The validation approaches used in previous pa-
persuse either small scale real-world data or a large scale simulated data set. We
argue that there are weaknesses in both these types of evaluation approaches;
and we adopt a large-scale real-world approach using the mobile phone dat aset
D4D to verify the electiveness of our proposed algorithms.

3.2 Problem Formulation

An MCS task consists of a sequence of sensing cycles | assumed to be of the same
length/ frequency | with each cycle requiring a predelned number of sensing data to
be collected. Thisexpected number isthe most important target in data collection as
sensing data processing can be compromised if insullcient updated data is available.
For simplicity, we assume that the expected number of sensing data requirement is
constant throughout the task, and between cycles.

In this work, the MCS tasks are treated as independent of each other in order to
respect the privacy protection policy. Individual calling history information of mobile
users should not be shared amongst MCS tasks. However, during an individual MCS
task, the calling history of a dilCerent group of users can be recorded, but the record



EEMC Framework and Skeleton Algorithm 39

will expire when the MCS task ends. In order to collect a set of sensing data from a
single mobile user in one cyde it is necessary and sullcient that the user be involved
in two calls. one call for assigning a task from the server and the other for returning
sensing data. Also, no mobile user in a sensing cycle can be assigned the task of
collecting sensing data more than a single time. With these conditions in mind, we
formally formulate the problem as follows.

Given an MCS task with starting time tp, sensing cycle T, and the expected
number of sensing data Ng from a sensing cycle, we record the time-stamps and
participants making/ receiving phone calls from tg. We denote Ay asthe set of mobile
users who have been assigned with sensing tasks since the start of cyclek, and Ry as
the set of mobile users who have returned sensing results, where Rg is always a subset
of Ax. Every time a participant makes/ receives a phone call in the sensing cycleKk,
our problem is to decide whether to assign a task to the participant. The goal of task
assignments isto:

minimize jAxj; subject tojRkj 0 Ng
by the end of cyde k. It should be noted that, as we cannot know in advance who
is going to place another call, we cannot statically optimize the task assignment
process. Therefore, the dynamic decision making for task assignments is based on a
phone call history and prediction model. In this way, our research decomposes the
original task assignment problem into two sub-problems. phone call prediction, and
the task assignment decision making based on the prediction.

3.3 EEMC Framework and Skeleton Algorithm

As shown in Fig. 3.2, EEMC consists of two main phases. Candidate User Iden-
tiCkcation based on Call Prediction and Two-step Decision Making Process for Task
Assignment. These two phases are designed to solve the two sub-problems for task
assignment decision making, respectively. In the rest of this section, we will brielly
describe each of the two phases.

3.3.1 Phase | - Candidate User IdentiZcation based on Call Predic-
tion

Given an incoming call, Phase | of EEMC [rst checks if the caller is in the MCS
participant list. If so, it will update the call traces of the current caller, and identify
if the current caller is a candidate for task assignment through predicting her future
calls. Phase | has a simple design to be implemented as a single core functional
module:

« Next-Call Prediction M odel based on Accumulated Call Traces. With
historical call traces of the current caller as the input, a Predictive Model esti-
mates the probability of the user placing another phone call in the remaining
time (from the current time to the end of cyde).
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If the current caller has a high probability of placing another call and has not yet
received any task assignment in the current cycle, then EEMC deemsthat theuser isa
suitable candidat e for task assignment and goes to the second step for task assignment
decision making. If the current caller has received the sensing task assignment but
hasn't returned the sensed result, then EEMC collects the sensed result from her. If
she has already returned the sensed result or is not in the sdlected MCS participant
list, then EEMC sKkips the call and exits the assignment process.

3.3.2 Phasell - Two-step Decision M aking Process for Task Assign-
ment

Given thecurrent caller who hasbeen identiled as a candidate for task assignment (by
Phase l), Phase |l [rstly decides 1) if EEMC nead make further task assignment(s)
and, if so, then 2) it decides if current caller should receive thetask assignment. The
Phase Il design is based on two functional modules, one for each step of the decision
making process:

+ Adaptive Pace Controller for Task Assignment. Given thelist of partic-
ipants already assigned (Ak) and the list of participants already returned (Rg),
EEMC estimates the probability of having a missing number (Ng [0jRgj) of po-
tential returners (Ax [0R) placing another call beforethe end of current sensing
cycle. If the probability is higher than the given success probability Ps, then
we decide the tasks already assigned are able to ensure the expected number of
participants returning and further task assignments are not needed immediately.
If the probability is lower than the given success probability, then EEMC goes
to the second step for decision making of task assignment.

» Near-optimal Decision M aker for Task Assignment. Given thestateand
history of all known participants, EEMC identiles the future candidate users
who haven't placed any call in the current cycle but who are likely to place two
calls before the end of current cycle. Then, from this set of future users, EEMC
predicts the users who have higher probability of placing two calls than the
current caller placing another call. (We name this set the future-surer can-
didates). With the sets of potential returners and future-surer candidates as
inputs, EEMC estimates the probability of having a missing number of partici-
pants{ from thetwoinput sets| returningthe sensed results. If the probability
is higher than the given threshold (Ps), then there exists a sulicient number
of better candidates in future; and EEMC sKkips the current caller and leaves
the sensing task to future candidates. If the probability is lower than the given
threshold, then EEMC assigns the sensing task to the current caller.

With thetwo steps described above, EEMC assignstasksto theparticipants who have
the \ higher probabilities" of placing another call to return their sensing results, and
stops making further task assignment immediately when it predictsthe tasks already
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Algorithm 1: The Skeleton of EEMC Algorithm
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Input : M, K, Ak, R¢,Ui,q .1,Sk:t, S1.::Ska1, and Ps
Output: ftruefalseg{ Assign or Not

beg

end

In
/* Phase I: Candidate User Identification based on Call Prediction */
update Call Model(Ui;t;K); // Predictive Model based on Accumulated Call
Traces
if Ui 2 Ax then
if Ui 2Rk then
| collect Sensing Result(Ui; Rg);
end
return false;
end
/* Phase II: Two-step Decision Making Process for Task Assignment */
if jRkj < Ne then
// Step 1: Pace Controller for Task Assignment
Prunrin  probruirin(Ak; Rk; Ne;t);
if Pruurin < Ps then
// Step 2: Near-Optimal Decision Maker for Task Assignment
if KOM then
// Cold-start
if Pe:tfxi 0 1g> Pk:tfx; 0 0gthen
Ak [ fUig! Ax:
return true;
else
| return false;
end
else
// future-surer user based selection
F Sui futureSurer( Ui:S1::Sk01; Sk;t }:
PfEuII_fiII probeyr i (Ak: Rk: F Su; i Neit);
if Py < Ps then
Ak [ fUig! Ax:
return true;
else
| return false;
end
end
end
end
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Symbols Denitions
The set of participants who make/ receive phone calls from the start

Skt of cyclek tot, wheret 2 [t + (k 0 1) OT:t, + k OT);
S The set of participants who make/ receive phone calls throughout the
k whole cycle k:
c The number of calls made/ received by user U; from the start of cycle
Lkt ktot, wheret 2 [to + (k 0 1) OT:to + k OT);
c The number of calls made/ received by user U; throughout the whole
ik .
cycek;
M The MCS task consists of M cyclesin a day;

P .fx = n T he probability of U; making/ receiving n calls from timet to
tTXi = NG the end of cycle k, wheret 2 [to + (k 0 1) 0Tt + k OT);

The set of future-surer users of U;, where U; makes/ receives a

FSUi phOl"Ie call at t of cyde k, BUJ 2 FSUi y Pk;tf)(j O 29 = Pk;tfxi O 1g,
P the probability of having at least a missing number (N¢ 00 jRkj)
fulrii of potential returners placing another call before the end of cycle;
the probability of having at least a missing number (N¢ 00 jRkj)
P in of sensed results returned from potential returners and future-surer

candidates ((Ax 0 R¢)[ FSy,);

Table 3.2: Variables used in EEMC Algorithms

assigned can secure the expected number of participants returning. Heuristically, the
proposed method can minimize the total number of task assignments.

Following the above-mentioned two-phase framework, we design and implement
the task assignment algorithm of EEMC. The skeleton of the EEMC algorithm is
shown in Algorithm 1, where the variables are de[ned in Table 3.1 and 3.2. We will
describe each module in the design of the EEMC algorithm in the following sections.

3.4 Next-Call Prediction M odel based on Accumulated
Call Traces

EEMC predicts the call of a mobile user dependent upon the periodicity of past
calls in recorded call traces. Assume an MCS task parts one day into M sensing
cycles. Given a sensing cycle k and the elapsed time t, we build a user U;'s call model
in cycde k by mining U;'s call traces (including time-stamps and cell tower ids) in
corresponding cycles of previous days. For instance, to predict the call of a user in
the current sensing cycle from 08:00 to 10:00, all her past call records throughout the
same period 08:00-10:00 will be adopted. Note that the calls made/ received by U; in
the current cycle are likewise incorporated for her call prediction.
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Figure 3.3: An Example: Estimating the Parameter with U;'s Accumulated Call
Traces

3.4.1 Probabilsitic Model of Phone Calls

Assuming the call sequence follows an inhomogeneous Poisson process [87, 88], then
the probability of a user U; placing n phone calls from instant t to the end of cyclek
can be modeled as:

Pictf i = ng = (q;k;t]Tt)" g7 ikt Tt

where [0t = (tg+ K OT) Ot denotes the remaining time from instant t to the end of
the cycle, T is the sensing cycle duration, and [ refers to the Poisson intensity.

3.4.2 Parameter Estimation using Accumulated Traces

According to the Poisson law and maximum likelihood estimation (MLE) [89], when

k O M the Poisson intensity [§-xt = Cjt refersto the number of calls made/ received

by Ui from the start of cycle k to time t; when k > M, [t is estimated as the

average number of phone calls that a user U; has placed in previous corresponding

cycles, specifkally it is modeled as:

i 10k bk=M ¢ Ci(kM +k mod M) + Cik:t
dk=Me

Gkt = (3.1)
where Ci-xom+k moda m) (1 0 kO 0 bk=Mc) refers to the number of phone calls
made/ received by U; in all previous corresponding cycles of cycle k (cycle k is in-
cluded). For example, as shown in Figure 3.3, the sensing cycle k is from 10:00 to
12:00 in the fourth day of the MCStask. Then, Cix modm = 2 CiM+k modm = 3
and Ciom+k mod m = 2 stand for the numbers of phone calls made/ received by Ui
during the corresponding cycles in the [rst, second and third day respectively. As
only one phone call has been made/ received by U; from the start of cycle k to the
elapsed time t, EEMC counts the number of phone calls made in current cycle as
Cik:t = 1. Thus, in this example, the Poisson intensity of U; in the sensing cyclek is
estimated to be [y = &3 271 = 2
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3.5 Adaptive Pace Controller for Task Assignment

In this section, we would like to introduce: 1) the adaptive pace control mechanism
for task assignment, 2) the probability estimation used in adaptive pace control mech-
anism (i.e., estimating if the missing number of sensed results can be returned from
potential returners), and 3) a low-complexity algorithm to reduce the time consump-
tion of the probability estimation in the Adaptive Pace Controller.

3.5.1 Adaptive Pace Control for Task Assignment

Given the set of potential returners (Ak 00 Rg), the missing number of sensed results
(Ne O jRkj) and the instant time (t) in cycle k, we estimate:

* Pruifin| the probability of having at least (N¢[1jRj) potential returners placing
another call before the end of cycle k.

With Ps yisin delned and the success probability threshold Ps given, EEMC controls
the task assignment in a straight-forward way| if Pry iy O Ps then further task
assignments are not needed immediately and EEMC stops making further task as
signments; if Pryirin < Ps then further task assignments are still needed and EEMC
moves to the next step for task assignment decision making (please see also in the
pseudo code between line 9-11 of Algorithm 1). In this way, the key is to calculate

Pruifin-

3.5.2 Probability Estimation for Adaptive Pace Control

In order to estimate Ps yifin, we [rst delne PfXk:t(Ak [ Rk) = N g asthe probability
of having N out of jAg [0 Rkj potential returners placing at least another call before
the end of cyclek, whereN [0 jAx ORgj. To calculate this probability, weneed to (st
enumerate all possible subsets of N participants from Ag 0 Rk. For each subset of N
participants, we need to calculate the probability of having N participants placing at
least another single call before the end of current cycle. Finally, as with the example
shown in Figure 3.4, PfXt(Ax 00 Rx) = Ng provides an estimation of the sum of
probabilities for all possible subsets, and it is calculated as specilled in Equation 3.2.

Ny
PfXkt(Ak O Rk) = Ng=
8s0(AkORk) 8Um2s (3.2)

8Um 2AxORgOs

In this way, Ps s is estimated as the sum of PfXy((Ax O Rg) = Ng, where N is
an integer ranging from the missing number of sensed result (N O jRgj) to the total
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Figure 3.4: The Example of PfXg-t(Ax 0 R¢) = Ng Computing (Best Viewed in
Digital Format)

number of potential returners (jAx O Rgj) (see Equation 3.3).

3o A < No
Prugin = _ | RxR e (3.3)
3 PfXkit(Ak 0 Rk) = Ng; jAkj O Ne
N ONeDjRj

Please note that, when the number of participants already assigned is less than the
expected number of sensed results (i.e, jAkj < Ng) then it is not possible to collect
the pre-deCned number of sensed results, thus Pssip = 0. For the low-complexity
Pt uifin calculation, please refersto Appendix A.1.1.

3.6 Near-Optimal Decision M aker for Task Assignment

Given the incoming call from one of the MCS participants and previous call records,
the key algorithms of this step include 1) identifying all future-surer candidates, 2)
estimating if the missing number of sensed results can be returned from future-surer
candidates and potential returners, and 3) the Near-Optimal task assignment decision
making.

3.6.1 Identifying Future-surer Candidates
Given the current caller U;, we consider U, as a future-surer candidate if:

» Up has placed calls in previous corresponding cycles but hasn't placed any call
in the current cydle, i.e., Un 2 S1[ S OI] Skqq U Sk, and

» U has a higher probability of placing at least two calls than U; placing at |east
another call, i.e,, Px:tfxm O 29> Pytfxi O 1g.

Putting all the future-surer candidates together with regard to U;, they are denoted
asF Sy, .
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Algorithm 2: ldentifying Future-Surer Candidates
Input :S1;82:::;8k01; Skt and U
Output: FSy, : the set of future-surer users for Uj
1 FSy 5
2 for Uy 2 S4[ ST Sk [ S;t do
3 ‘ if Petfx) 029> Pyifx; O 1gthen FSy [ fUg! FSy
4
5

end
return FSy,;

3.6.2 Estimating if the Missing Number of Sensed Results can be
returned from Future-surer Candidates and Potential Return-
ers

Given the set of future-surer candidates F Sy, , the set of potential returners (Ax L R),
and the missing number of sensed results (N [1 jRgj), we estimate Py ,;;,, as the
probability of having at least the missing number of sensed results (Ne[1jRkj) returned
from the potential returners and future-surer candidates ((Ax O Rg) [ F Sy, ) before
the end of cycle k. Apparently the estimation of P{,;,, depends on the probability
of each Up, returning the sensed results (Un 2 (Ak O Rk) [ FSy,) before the end of
cyce k, each Uy 's returning probability can be computed using Equation 3.4.

(
Pe:tfXm 0 1g;Um 2 (Ag 0 Ry)

PO U =
tct(Um) Petf Xm [ 2g;Un 2 F Sy,

(3.4)

In the case of Uy 2 (A O Rg) (belonging to the potential returner set), P,?;t(Um)
is modeled as the probability of U, placing at least another call before the end of
cyclek. In the case of Uy, 2 FSy, (belonging to the future-surer candidate set), then
P,?.t(Um) is modeled as the probability of Uy, placing at least two calls before the
end of cycle k. Given each user Up's returning probability P,?.t(Um), similar to the
estimation of P iy in Equation 3.3, P/}, can be computed using Equations. 3.5
and 3.6, where Pf X, i (F Sy, [ (Akx C'Rk)) = N g refers to the probability of N sensed
results being returned from future-surer candidates and potential returners.

8
0 JJAk[ FSuj < Ne
Pfl: il = N O (AR F Sy;)
o PFXt(FSu [ (Ax ORx))=Ng; jAc[ FSyj 0 Ne
N ONe 0jRyj
(3.5)
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igEN Y
PfXgt(FSuy [ (Ax ORk)) = Ng= Pi(Un)O
8st(Ax ORI FS%} 8Um2s (3.6)
(10 P (Unm))
8Um 2s

For the low-complexity Py ;, calculation, please refers to Appendix A.1.2.

3.6.3 Near-optimal Task Assignment Decision Making

With P{si;, computed and the threshold Ps, EEMC assigns a task to the cur-
rent caller (Uj) if Py;s;, is lower than Pg. The pseudo code of Near-Optimal task
assignment decision making is shown in lines 12-28 of Algorithm 1.

Please notethat, according to our proposed Future-surer Candidates |dentiCcation
listed in Algorithm 2, it is impossible to discover any future-surer candidates in the
sensing cycles of the [rst day in an MCS task (i.e, k O M). Thus, there needs a
method to cold-start theproposed Near-optimal Decision Maker in the (st day of an
MCStask. Rather than comparingthe current caller with potential usersin thefuture,
we propose a method to make the task assignment decision making based on the
current caller's next-call probability alone. Asshown in lines 12-19, when k [ M, this
step decides to assign a task to the current caller U, if Pyfx; O 19> Pyfx; = Og.
If U; doesn't have a higher probability of placing another call before the end of cydle,
then this step skips the current caller.

3.7 Experimental Setups

In this section, we introduce two baselines for comparison with EEMC, then present
an overview of our dataset and experiment coniguration.

3.7.1 Baseline Methods and Parameter Settings
In this section, we present the conlgurations and setups of our proposed baselines.

» Greedy - Themost obviousmethod for task assignment to ensure a predehed
number of sensed resultsisthe Greedy method, which assigns the sensing task
to each new calling participant, until the expected number of sensed results are
returned (i.e. until jRgj = Ng). This baseline method provides an upper bound
of total task assignments to ensure that the expected number of participants
return data.

» Pace - As there is a delay between task assignment to a participant and
the return of the sensed result from the participant (through making another
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Figure 3.5 Statistics of Evaluation Traces in D4D Data Set

call), redundant tasks could be assigned when the expected number of results
have been returned. Indeed, if the expected number of returned results can be
predicted in advance, based on our proposed Adaptive Pace Controller module,
the task assignment process could terminate earlier to avoid some unnecessary
task assignment. The task assignment strategy leveraging the adaptive pace
controller for task assignment module is de[hed as Pace-controller-based
method (or Pace in short).

The comparison between Greedy and Pace shows whether our proposed Pace
controller can stop making further task assignments when the tasks already assigned
are sullcient to guarantee the expected number of participants returning. Further-
more, compared to the Pace method, EEMC assigns tasks considering not only par-
ticipants with tasks already assigned, but also the future callers/ receivers. Thus, the
comparison between Pace and EEMC demonstrates the improved performance of
our proposed Optimal Task Assignment Decision Making method with respect to the
minimization of the total number of task assignments. In all experiments, we set the
threshold Ps=99.99% for the evaluation of Pace controller-based baseline and EEMC.

3.7.2 Dataset and Experiment Setups

The\ Data for Development” (D4D) project collected 4-months of Call Detail Records
(CDR) from Orange Telecom subscribersin the Ivory Coast, nationwide. Each CDR
record indudes the calling time, the cellular tower where the call was made/ received,
and the identiCer of the mobile phone user. The D4D data set has been split into
consecutive two-week periods. In each time period, 50,000 users are randomly se-
lected from all subscribers in the lvory Coast. All selected users are assigned with
anonymized identiCers. Thusin this study, we assume that each MCS task lasts for
two weeks. For each participant, we can retrieve her call traces in the current MCS
task but cannot link to her previous records. As we discussed in Section 3.1, the
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mobile phone users inside the D4D data set perfectly satisfy the privacy constraints
for MCS participants. The detailed experiment settings are as follow:

1. Sensing Cycles - We evaluate EEMC when monitoring the CBD of Abidjan
(shown in Fig. 6.2) from Monday to Friday every week (holidays excluded).
Each sensing cycle lasts two hours; and we sense only in the working hours from
08:00 to 18:00 of a day. Thus, we split a working day into 5 equal-length sensing
cycles (i.e. 8:00-10:00, ..., 16:00-18:00).

2. Participants- In every two-wesk period, 2000-3000 mobile phone usersrecorded
in our dataset would place phone calls in the target area (i.e., approximately
0.3% local mobile subscribers living in the target area). We assume them to
be participants in our MCS task. To further introduce the call behaviors of
these participants, we count the numbers of phone calls, calling participants
and frequent users (those with two or more phone callsin a sensing cycle). The
average/ minimum/ maximum numbers of these are shown in Fig. 3.5. It shows
that 1) on average, 1200-2000 calls will be received/ made in the target region
per sensing cycle, 2) on average, no more than half the calling participants (i.e,,
approximately 200 participants) will place another call in a sensing cycle, and
2) at least 136 users will place two or more phone calls in a sensing cycle.

3. The Expected Number of Sensed Results - Consequently, we cannot ensure
the expected number of participants returning in each of sensing cycles, if we
expect more than 136 participants to return. Thus, for our experiments, we
set the expected number of returned participants in each cycle Ng to be evenly
distributed from 10 to 130, i.e., Ne = 10; 20; 30; :::130.

In the following sections, we will introduce the evaluation results based on the exper-
iment setups speciled above.

3.8 Evaluation Results

In this section, we present and compare the evaluation results of EEMC, Pace and
Greedy methods:

1. In section 3.8.1, we show the overall performance comparison of EEMC, Pace
and Greedy, including the average/ maximal/ minimal number of task assign-
ments and returned participants in each sensing cycle.

2. In section 3.8.2, we extract and present the performance of EEMC at the cold
start period.

3. In section 3.8.3, we examine in detail the execution of the three algorithmson a
subset of the experimental data in order to illustrate their behaviors. Through



50 EEMC: Energy Ellcient Mobile Crowdsensing with Anonymous Participants

a case study of EEMC, Pace and Greedy, we analyse how EEMC assigns tasks
step by step in a sensing cycle.

4. In section 3.8.4, we estimate how much energy our proposed EEMC scheme can
save in data transfer, compared to the commonly-seen 3G-based MCS schemes.

Theresults above will combine to show the excellence of EEMC with respect to min-
imizing the total number of task assignments and saving overall energy consumption
whilst guaranteeing the expected number of participants returning results.

3.8.1 Performance Comparison

In Figure 4.5, we present the average/ minimal/ maximal numbers of task assign-
ments and returned participants for EEMC, Pace and Greedy in each sensing cycle
with varied N¢ (10 to 130).

1. Number of Returned Participants. The primary constraint of our work
isto ensure the expected number of participants returning their sensing results.
Figure 4.5b shows that, for either EEMC, Pace or Greedy, the minimal number
of returned participants in each sensing cycle is equal to or greater than the
expected number (Ng). It means, with any of these methods, the MCS tasks
can be successfully fulllled in each of sensing cycles. However, in all the cases
the number of returned results is bigger than the expected number N, even
though the number of returned results for EEMC is 3.8% - 17% less than Pace
and 23% - 59% less than Greedy on average.

2. Number of Task Assignments. Furthermore, the optimization goal of
EEMC isto minimize the total number of task assignments. Figure 4.5a shows
dearly that EEMC assignslesstasksto participants than Pace and Greedy. On
average, EEMC reduces task assignments by 6%-23% when compared to Pace,
and it reduces task assignments by 27%-62% when compared to the Greedy
method.

For the Greedy method, it is obvious that the delay between the task assignment to
the participant (who returns the Né.h sensed result in this cycle) and thereturn of the
sensed result causes a large number of redundant task assignments and unnecessary
returned results; while the Pace method may assign tasksto the participants not plac-
ing another call in the sensing cycle, which leads to high redundant task assignments.
In contrast, for EEMC, thereason for the redundant task assignment is mainly dueto
the inaccurate call prediction with limited number of call traces. However, in terms
of the number of task assignments and returned results, EEMC still outperforms all
other methods in all conditions. In summary, we can conclude that the overall per-
formance of EEMC is the best among the three schemes. It ensures data collection
from the expected number (10{ 130) of participants and assigns the minimal number
of redundant tasks among all evaluated schemes.



Evaluation Results 5

350 EEMC B pace |

; § EEMC S Pace = Greedy g |
g 300 | d 200 |
w250 T | o |
{ = 1 * FEE
; 150 | & 100 |
g b T i 3 50 . |
3 so| g A | ' g A ‘ |

10 20 30 40 50 60 70 80 90 100 110 120 130 10 20 30 40 SO 60 70 80 90 100 110 120 130
Ne Ne
(a) Task Assignments (b) Returned Participants

Figure 3.6. Comparison of Task Assignments and Returned Participants. EEMC vs
Pace vs Greedy

£ 3so | EEMC:‘Paoe Gree@,r__ g - . E.EMCIIi‘.Pm. -M- :
g 30| £ 200!
¢ 250 g i,
5 m| a1 : . |
g o150 1 _ & 100 it [
100 | ke il ¥
g ' E s I
> el 1+l
ol | || i | i J = ok | | HE S
10 20 30 40 50 60 70 80 90 100 110 120 130 10 20 30 40 50 60 70 80 90 100 110 120 130
Ne Ne
(a) Task Assignments (b) Returned Participants

Figure 3.7: Number of Task Assignments and Returned Participants in Cold Start
Period

3.8.2 Cold-start Performance

As discussed in Section 3.6.3, EEMC needs to cold-start its Near-Optimal decision
making module in the [rst day of every MCS task (namely cold-start periods). Fig-
ure 3.7aillustrates the number of task assignments per cyclein the cold-start periods,
while Figure 3.7b presents the number of returned participants. During the cold-start
periods, EEMC dlightly outperforms Pace but performsworsethan the averagein nor-
mal periods. It is because the Near-Optimal decision making module assigns tasks to
callers with \ maximal probabilities" to return their sensing results after the cold-start
period. Pace also performs worse during the cold-start periods, due to the inaccuracy
of probability estimation at the beginning of MCS tasks.
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3.8.3 Case Study and Analysis

To verify whether each proposed algorithm works as designed using the real-world
data sets, we investigate how EEMC assigns tasks inside a single (typical) sensing
cycle. We choose the sensing cycle of 14 : 0000 16 : 00, 15 Dec 2011 for the case study
and set the expected number of returned participant as 80 (i.e., Ng = 80). Please
note that this sensing task is not in the cold start period.

In Figure 3.8, we count the number of task assignments and returned participants
varying against time inside the chosen sensing cycle and visualize the process of task
assignments. We evaluate all three schemes, observing that:

+ Comparing Greedy with Pace, Pace assigns tasks to the same calling partici-
pants as Greedy but stops assigning new tasks at 14:24 when 42 participants
return their sensed results, while Greedy keeps assigning new tasks until 14:39
when a total of 80 participants return their sensed results. The Pace method
stops 15 minutes earlier than the Greedy method, which causes 65 less redundant
task assignments and 36 less unnecessary returned results. Such improvement is
contributed by our proposed Adaptive Pace Controller which stops assigning a
new task when it estimates that the tasks already assigned are enough to fulCll
the minimum requirement.

+ Comparing EEMC with Pace, EEMC gives up assigning tasks to calling partic-
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Table 3.3: Data Transfer Energy Consumption Estimation

Schemes | Energy Consumption

3G-based scheme | Ne (12 + 12) = 24 [INg

Parallel+ 3G-based scheme | N (3 + 12) = 150N,
EEMC Pace and Greedy JAKj 03+ jRgj O3

ipants even in the beginning of the cycle; because it predicts there are sullcient
number of future users who have higher probabilities to place two calls before
the end of current cycle. We can see that EEMC holds the tasks and leaves
them to future-surer users. In this way, EEMC stops making new task assign-
ments later (at 14:33, when 54 participants return) but assigns less tasks (35
less) than the Pace to fullll thetask. Since EEMC always choose the users with
higher probabilities to place two calls, it can guarantee the expected number of
participants returning after assigning a smaller number of tasks.

Our analysis suggests that it is reasonable to conclude that all three algorithms in
our comparison work as designed on the real world data sets.

3.8.4 Energy Conservation Comparison

With the number of task assignments and returned results obtained, it becomes
possible to estimate the energy consumption of EEMC and corresponding baselines.
In this section, we would like to estimate how much energy our proposed EEMC
scheme can save in data transfer, compared to the following schemes:

+ 3G-based Scheme: receives the task assignment by establishing a new 3G

connection, and returns the sensed results by establishing another 3G connec-
tion.

» Parallel+ 3G-based Scheme: receivesatask assgnment when the participant
places a phone call through parallel data transfer, and returnsthe sensed results
by establishing a new 3G connection.

T hese two schemes do not need redundant task assignments (i.e., both methods can
secure N participants returning their sensed results through assigning tasks to Ng
participants), since all the participants can return the sensed results via a new 3G
connection by using these two schemes. Table4.2 liststhe overall energy consumption
estimation formulas in data transfer for all the schemes; and these formulas are based
on:

1. the common observations reported by existing literature [17, 51, 42, 85] mea-
suring on the energy consumption of N95 and Android phones, and
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Table 3.4: Energy Consumption Comparison: 3G-based vs Paralle+ 3G-based
(P+3G) vs EEMC vs Pace vs Greedy

No | 3G (J) | P+3G (J) | EEMC (J) | Pace (J) | Greedy(J)
10| 240 150 110:37 138.00 281.48
20| 480 300 190:18 229.32 433.75
30| 720 450 268:15 313.75 557.88
40| 960 600 34377 397.35 668.28
50 | 1200 750 417:66 480.78 771.35
60 | 1440 900 494:98 563.03 863.82
70 | 1680 1050 571:48 642.29 953.82
80 | 1920 1200 650:74 722.37 1040.85
9 | 2160 1350 730:73 801.59 1120.88
100 | 2400 1500 811:95 879.31 1199.57
110 | 2640 1650 893:13 958.64 1274.27
120 | 2880 1800 972:88 1037.97 1347.80
130 | 3120 1950 1057:31 1116.76 1419.49

2. the assumption that the data packets for task assignment or sensed resulis are
small (lessthan 10KB each).

Considering the MCS applications such as air quality monitoring and environment
noise monitoring, this assumption is reasonable and the energy estimated using the
formula could serve as a reference for comparison purposes.

Table 4.3 shows each scheme's average energy consumption per sensing cycleas Ng
varies. EEMC outperforms all the other schemes. Specilkcally, it can save 54%{66%
energy compared to the 3G-based scheme; It can save 26%{46% energy compared
to the Paralle+ 3G-based scheme. Note that these evaluations are based on small
number of expected sensed results (i.e., Ne O 130). If an MCS task needs more par-
ticipants to collect sensed data and there are more sensing cycles per day, the total
energy saving will be much more signilcant. Interestingly, if we compare the EEMC,
Pace, Greedy with the Parallel+ 3G-based scheme, we can see that EEMC outper-
forms all the other schemes in all the conditions, but the Greedy method consumes
more energy than the Parallel+ 3G-based scheme when Ng < 60. In summary, all the
evaluation results show the ellectiveness of EEMC in saving energy consumption in
data transfer for both individual participants and the whole crowds.

3.9 Discussion

In this section, we discuss issues which are not reported or addressed in this work due
to space and time constraint; these issues are planned for ongoing and future work.
Prediction and Parameter Adaption: The performance of EEMC depends
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on the accuracy of call prediction and the parameter setting used in the algorithm.
In this study we currently use a simple prediction algorithm and a [(xed set of pa-
rameter settings in all the sensing cycles, in future work we plan to study adaptive
task assignment pace control and decision making strategies, and design advanced
call/ mobility prediction methods.

Two-call-based Data Transfer: Our research assumes a participant needs two
calls to receive task assignment and return her sensed result. This assumption is
made because being involved in a call risks interfering with sensing; a good example
of thisisif the sensors are measuring noise. However, many sensor tasks can be safely
carried out during a call; and in such case only one call is likely to be needed.

Sensing Coverage: In this research, we have not proposed any techniques to
consider the coverage of mobile crowdsensing. In our future work, we will study the
coverage of users by obtaining their mobility traces.

Aggregating Multiple Energy-ellcient Strategies: In addition to piggy-
backing 3G data transfer over 3G calls, other data transfer methods, e.g., transferring
data via WiFi, also consumes less energy when compared to common 3G-based solu-
tions. Furthermore, thereexist a widerange of techniques, such asadopting low-power
consumption sensors or energy-ellcient sensing techniques, that can save energy in
the MCStasks. In our future work, we intend to study an integrated M CS framework
aggregating multiple energy-saving strategies to minimize the energy consumption in
a halistic manner.

Energy Consumption vs Battery Life: For a smartphone, the energy con-
sumption to receive a task assignment and return the sensed result is no more than
0.7% of itsbattery's energy reserve capacity (e.g., Nokia N95 with 950 mAh battery).
However, even given this small percentage, our proposed energy saving mechanism
can have a signiltant impact on individual users. For example, suppose active par-
ticipants are selected for 5 cyclesa day, EEMC can save 2.6% of battery usage, which
is enough to answer the last call of an individual user before battery drain or to put
the phone in standby for one more hour.

Fairness in allocation of tasks: Users may be more motivated to join the
sensing crowd if they know that energy resources are used fairly. In other words,
that tasks are distributed as equally as possible amongst the crowdsensing members.
They may also consider it unfair if they are allocated tasks when their mobile phone
batteries are below a certain threshold value.
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4.1 Introduction

The previous work EEMC studies an mobile crowdsensing framework that intendsto
assign sensing tasks to a minimal number of participants, while ensuring at least a
prede’ned number of participants returning sensed results from the target region in
each sensing cycle. However, in terms of sensing data quality, ensuring a minimum
number of participants returning sensed results might not be a good sensing data
quality criterion, especially for full-coverage-constrained MCS applications where the
target region is divided into a set of subarea and the MCS application is required to
collect at least one sensed result from each subarea in each sensing cycle.

In this work, we propose EMC3| an energy-ellcient mobile crowdsensing frame-
work reducing individual energy consumption caused by MCS data transfer, reducing
the total incentive payment and overall energy consumption by minimizing the num-
ber task assignments, while ensuring at least a predelned number of participants
returning sensed results and at least one sensad result returned from each subarea of
the target region in each sensing cycle.

In order to save the energy of the individual MCS data transfer, EMC? adoptsthe
piggybacked energy-ellcient MCS data transfer strategy proposed in EEMC. Then,
this research is based on following assumptions and settings:

» Only when a user places calls, the device could receive sensing task assignment;
Only when another call comes before the end of cycle, it could return sensed
results to the server (in this work we use the mobile device, mobile user and
participant interchangeably);

» In each cycle, one participant can receive task assignment and upload results at
most once;

» Inthedarting cycle of each MCStask, dueto user identity anonymization, there
are no historical call or mobility traces for any user from other or previous MCS
tasks. All users only accumulate call and mobility traces within one MCS task.

Based on the above assumptions and observations, the research objective of this work
is to fulll the following three goals in each cycle of the MCS task:

» Ensure an expected number of participants returning the sensed results.
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Figure 4.1: Cell Towers in the Abidjan CBD Area
* Make sure that the returned sensed results fully cover the target sensing area.

* Minimize the number of total task assignments to reduce overall energy con-
sumption.

To further clarify the research goals, let's consider the following use case: In the CBD
area of Abidjan city in Cote d'Ivoire (around 7 km?), there are 13 cellular towers
installed in the 3G network as shown in Fig. 1. The city government, with the help of
a telecom operator, launches a series of MCS tasks leveraging the 3G cellular network
infrastructure. One of the MCS tasks is air quality monitoring in the CBD area,
it requires to update the air quality to the citizens of Abidjan once every 2 hours
(cycle) and the task lasts for 2 weeks. In order to provide reliable measurements, the
application needs to get sensed results from at least 40 mobile users, covering all 13
cellular towers in each cycle. Please notethat, in the considered use case and the rest
of this work, we use cell towers as the coverage metrics, primarily due to two reasons:
1) The cell tower 1Ds of mobile phones are accessible in call logs, even though the cell
tower is not the right coverage metrics for many MCS applications, the mobile phone
call logs with cell tower as coverage metrics are used to illustrate the basic idea of
handling coverage constraint problem in MCS applications; 2) For MCS applications
such as urban air quality monitoring [21], noise level monitoring [90], etc., covering all
the cell towersin a given region ensures that each part of the given area is measured
with certain guarantee, even though the sampled granularity in terms of cell tower
may not be the best choice. If it could be characterized more precisely, the proposed
approach could be easily adapted.

With the above research goals and use case, the key issues in designing the MCS
framework include:

1) Identify \ candidate users" who might place two or more calls, and predict which
subarea each user might cover in each MCS cycle. Asonly the users placing two calls
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can fullll sensing task using parallel transfer, and some candidate users must cover
the low-density call subarea, thus it's necessary to choose the right candidates based
on call and mobility prediction of the current caller, to minimize redundant task
assignments. Apparently, assigning sensing task to users placing one call in a cycle
or to candidate users only from high-density call subareas would lead to redundant
task assignments, causing big overall energy consumption.

2) Given the arrived call sequence at certain instant of an MCS cycdle, estimate
if the number of users assigned could expect the predelned number of returned results
and cover all the subareas. As the users receiving task assignment need to wait till
the next call to return sensed results, thus there is a delay between assigning tasks
and receiving the expected number of results from the target area, so it's necessary
to make predictions and stop unnecessary task assignments.

3) If further task assignments are still needed to achieve the goal of getting expected
number of returned results and full coverage, we need to decide if the sensing task
should be assigned to the current one or the future candidates. As there are more
valid candidates than needed and candidates from low-density call subareas might
appear late in one cyde, we should decide the task assignment based on whether the
current candidate or future candidates have higher probability of meeting the three
goals.

4) Ensure the goals to be met despite the time-varying and inaccurate nature of
all probability estimations. As the candidate user selection and task assignment are
all based on future call and mobility predictions, while all those predictions are based
on probability estimations which might not be accurate. For example, both the
future call and mobility predictions are based on the historical traces, in the [rst
MCS cycle, the prediction accuracy for both call and mobility could be very low, this
will delnitdy cause sub-optimal decisions, leading to redundant task assignments.
Fortunately, the estimation of all parameters is carried out with each incoming call,
with continuous monitoring and adjustment, the system is designed to adapt itself to
get both the expected number of sensed results and the full coverage, Cltering out a
lot of unnecessary task assignments.

In summary, the main contributions of this work are:

1) We formulate the problem of energy saving in data transfer of MCS tasks for
both individual and all participants, with consideration of privacy issue as well as full
coverage constraint. To the best of our knowledge, thisis the [rst work addressing
thisissue. In particular, we proposetoleverage the parallel transfer and delay-tolerant
mechanism to achieve the energy saving purpose in MCS applications.

2) We develop a three-step decision making process and the related algorithms
for eClective task assignment in MCS applications. Specilcally, we [Tst identify \ can-
didate users" who might place two or more calls and predict which subarea they
might cover in each MCS cycle; Then we judge if sullcient task assignments have
been made by considering if the number of assigned users could expect to return a
pre-delned number of sensed results and cover all thetarget area; Finally, wedecide if
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a new sensing task should be assigned to the current one or a future candidate, based
on whether the current candidate or the future candidate has higher probability of
meeting the three goals.

3) Through extensive evaluation of our proposed algorithms on the real world
dataset D4D [15], which contains 4-month call records of 50, 000 users from Cote
d'lvoire, we verify that our proposed MCS framework EMC? can ensure the expected
number of participants returning their sensed results with full coverage and much less
redundant task assignments than baseline approaches. Through leveraging paralle
transfer over 3G calls, EM C? reduces around 75% energy consumption in data transfer
for areturned participant and 43% - 68% overall energy consumption in data transfer
for MCS applications, such as air quality or noise monitoring at the Abidjan CBD
area, compared to the traditional 3G-based scheme.

4.2 Problem Statement

With the observations, assumptions and research goals elaborated in theintroduction,
the essence of the research problem of this work is to determine if a task assignment
should be made, given an incoming call and historical call and location traces of a
specilc MCStask, in order to obtain a pre-dened number of returned sensed results
with minimum number of task assignments under the full coverage constraint and
given assumptions. While the number of task assignments and returned results are
easy to count, we need to de[ne what the full coverage of target area means.

In this work, we say that a cell tower is covered by a user when she places a call
receiving a task assignment or returning sensed results to the server in the cell tower.
If a user places one call in one cell tower for receiving a task assignment and another
call in another cell tower for returning the sensed results, then these two cdll towers
are said to be covered by the user. Hence, the full coverage means that all the cell
towers in the target area should be covered by at least one call for receiving task
assignment or returning sensed results. Please note that the cell towers traversed by
the user between the two calls are not counted in this work. In the rest of this work,
we name the participant who covers a cell tower as the covering participant for
the cell tower. With all the above de‘nitions, we formally formulate the MCS task
assignment problem in EMC? as follows:

Given an MCS task with starting time tg, sensing cycle duration T, the expected
number of collected sensing data N from each sensing cycle, and a cover region pre-
dehed by a set of cell towers Tywr; Given the incoming call and all previous call
traces (including the time stamped calls and cell towers associated) in the MCS task,
the elapsed time t in current cycle k, we denote A as the set of participants who
have been assigned with sensing tasks since the start of cycle k, R as the set of
participants who have returned sensed results, and covery as the set of cell towers
that have been covered, where apparently R is a subset of Ax and covery is a subset
of Twr. Our problem is to decide if an MCS sensing task should be assigned to the
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Figure 4.2: The EMC? Framework

current caller, with the objective to
minimize jAkj; subject to jRkj [0 Ng and covery 00 Twr

by the end of cycle k. It is worth noting that we do not know when and where a
participant would place a phone call in advance but there are sullcient number of
calls covering the cell towers of the target area.

4.3 EMC? Framework and Core Algorithms

EMC2 follows a centralized MCS system approach where a central server continu-
ously monitors all the participants' calling activities in the target region and decides
if a user should receive sensing task assignment for each incoming call. As shown in
Fig. 5.2, EMC3 consists of three main components, i.e., candidate user identilcation,
task assignment pace control, and sub-optimal task assignment decision making; T hese
three functional modules correspond to the three-step working process of EMC3, re-
spectively. In addition to the three functional components, EMC? takes the previous
call traces (including the current cycle and previous cycles) as input, it also keepsthe
user list with task assignments as well as the user list with sensed results returned
for task assignment pace control and sub-optimal task assignment decision making.
In the following, we will brielly describe each of the three functional components:
Candidate User Identilication based on Call/ M obility Prediction. Given
an incoming call, the candidate user identiCcation module [rst updates the call
records for the user. Based on the user's historical time-stamped call and location
records, the module can predict the probability of having future calls and the as-
sociated cell towers before the end of the cycle. If the user has a high probability
of placing another call in the desired cell towers, and she hasn't received any task



EMC3 Framework and Core Algorithms 63

assignment in the current cycle, then she is considered as a candidate user for further
task assignment (go to next step for task assignment pace control). Otherwise, EMC?
either collects sensed data from her (in case she received task assignment but hasn't
returned results in the same cycle) or ignores her to take care of the next call.

Qverall Task Assignment Pace Control. Thismodule controlsif further task
assignment is still needed to fullll the goal of getting expected number of sensed
results from all the cell towers. For this purpose, the module [rst counts the number
of returned users and their covered cell towers, collects the user list who have got task
assignment but haven't returned sensed results (defned as potential returners), and
computes their probability of returning the missing number of sensed results in the
desired cell towers. If the number of returned users reaches the pre-delned value and
the returned users fully cover all the cell towers, then the task assignment process of
the current MCS cycle stops; If previous task assignments can expect to return the
pre-deCned number of results covering all cell towers, then no immediate assignment
is needed in order to avoid redundant task assignment. If previous task assignments
cannot ensure the return of expected number of results or the full coverage, then
further task assignment is still needed (goes to next step for task assignment decision
making).

Sub-optimal Task Assignment Decision M aking. Given the incoming call
and previous call records, if the task assignment pace control module informsthat fur-
ther task assignment isstill needed, then this module decidesif the current caller/ receiver
should be assigned with a sensing task in order to meet the three research goals. In
order to make an optimal (sub-optimal) decision, this module counts the number
of returned users and the covered cell towers, collects the potential returner list, and
predicts the future frequent callers who haven't placed phone calls but would have
higher probability of making at least two calls than the current caller making another
call (de[ned as future-surer candidates). With the returned user list, potential re-
turner list and future-surer candidate list, the module estimates if the last two sets
of users can expect to return the missing number of pre-delhed sensed resultsin the
desired cell towers. If the probability is very high, then the task assignment is skipped
for current caller and left to future users; If the last two user lists cannot ensure to
get the missing number of sensed resultsin the required cell towers, the sensing task
is assigned to the current caller, indicating that the current user is among the most
potentially frequent callers.

In the following, we introduce the core algorithms used in the three components
in detail.

4.3.1 Call/ Mobility Prediction

We predict the call/ mobility of a user based on the periodicity of previous calls and
locations in historical call traces. Suppose an MCS task splits one day into M sens-
ing cydes. Given a sensing cycle k and the elapsed time t, we model a user U;'s
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call/ mobility pattern in cycle k by using U;'s phone call traces (including time-stamps
and cell tower ids) in corresponding cycles of previous days. For example, to pre-
dict the call/ mobility pattern of a user in current sensing cycle from 08:00 to 10:00,
we will use all her previous call records during the same period 08:00-10:00. Note
that the calls placed by U; in a current cycle are also included for her call/ mobility
prediction.

43.1.1 Modeling Call Patterns

Assume the call sequence follows an inhomogeneous Poisson process [87], then the
probability of a user U; to place n phone calls from instant t to the end of cyclek can
be modeled as:

PrafXi = Ng= (Fijy 30)" (7w 7=t (4.1)

where (0t = (tp+ K OT) Ot denotes the remaining time from instant t to the end
of the cycle, T is the sensing cycle duration, and [ refers to the Poisson intensity,
which is estimated as the average number of phone calls that a user U; has placed in
previous corresponding cycles, specilcally it is modeled as:

Number of calls of U; in perviois corresponding cycles

k=Me

Dkt =

4.3.1.2 Modeling Mobility Patterns

Given previous call records at sensing cycle k, a participant U;, a set of cell towers
Twr and a cell tower g 2 Twr, we delne U;'s future presence probability in cell
tower g asthethe ratio between the number of U;'s historical calls at corresponding
cyclesin cell tower g and the total number of calls at corresponding cycles, i.e.;:

Di(isj) = Number of calls of U; in the corresponding cyclesin ¢
k\l, -

Number of calls of U; in the corresponding cycles
If the given participant U; hasn't placed any call in the corresponding cycles, then

Dk(i;j) = 0;8qg 2 Twr-
4.3.2 Overall Task Assignment Pace Control

Given the list of potential returners (Ag 0 Rk), the missing number of sensed results
(Ne O jRgj) and theinstant time (t) in cycle k, we estimate

* Pruiin: theprobability of having at least (Ng[1jRk]j) potential returners placing
another call before the end of cycle k.

Given thelist of potential returners (Ax JR), adesired cell tower q 2 (Twr Ccoverg)
and the instant time (t), we estimate
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Algorithm 3: Pace Control Mechanism

1 if jRgj < Ne OR covery & Twr then

computing P yif i

computing Pcover,; for 8q 2 (Twr [ coverg)

if Pruirin < Pe1 OR 9q 2 (Twr [ coverg); Peover, < P2 then
\ Goto Next Step for Further Task Assignment;
end

else

\ No Need for Further Task Assignment;

9 end

10 end

11 else STOP;

L~ kAR w N

* Pcover,: the probability of having at least one potential returner placing another
call to cover the cell tower g before the end of cycek.

With Pruifin and Peover, delned, EMC3 controls the pace of task assignment using
the pseudo codein Algorithm 3, where Pg¢1 and Pgo are two given thresholds. In this
way, the key is to calculate P ¢ i1 and Peoyer, -

4.3.2.1 Estimating Prurin

First, we delne PfX+1(Ax [0 Rk) = Ng as the probability of having N out of
JAk O Rgj potential returners placing at least another call before the end of cyclek,
where N [0 jAk O Rgj (see Eq. 4.2). In this way, Psyuisin is estimated as the sum of
PfXkt:1(Ak O Rk) = Ng, where N is an integer ranging from the missing number of
sensed result (Ng [ jRj) to the total number of potential returners (jAx O Rgj) (see
Eq. 4.3).

9Ny
PfXkt1(Axk O Rk) = Ng=
857A IRy 8Um 25 (4.2)
8Um 2AKkORkOs
8 L
0; JAK] < Ng
% N Ojx ORk]
Pruifin = PfXkt1 (AkORg)=Ng; (4.3)
§ N ONejRj
’ JAkJ O Ng

Please note that, when the number of participants already assigned is less than the
expected number of sensed results{ i.e., jAxj < Ng, thenit isnot possibleto collect the
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pre-delned number of sensed results, thus Py isiy = 0. Considering the complexity
of Pryifin estimation, we propose an algorithm to reduce the computation complexity
and time as shown in Appendix A.1.1.

4.3.2.2 Estimating Pcover,

First, we defne COVx(m;l) as the probability of a given potential returner Up
(Un 2 Ak O Rg) covering a given uncovered cell tower g (g 2 Tywgr [ covery) before
the end of cycle k. Assume Un received the task assignment in cell tower Cassign
(Cassign 2 Twr), apparently there are two possible cases: oneis Cassign = G, the other
IS Cassign & Q. In the case of Cassign = G, COVi¢(m;l) is equal to the probability
of Uy placing at least another call before the end of cycde k (in arbitrary cell tower
TwRr). In the case of g 6 Cassign, COVk:t(m;l) is equal to the probability of Um
placing another call in cell tower ¢ before the end of cycle k. Hence we have:

Pk:tfxm O 1g; G = Cassign

COVki(m;1) =
e (m31) PitfXm 0 190Dk (m;1); ¢ 6 Cassign

(4.4)

where Pyfxm [ 1g denotes the probability of Uy placing at least another call before

the end of cydek, and Dg(m;1) is the probability of U, appearing in cell tower q.

With the above delnition of COVk:t(m;1), Pcover, can be calculated using Eq. 4.5

below [62]: Y
B8Um 2Ax ORg

4.3.3 Sub-optimal Task Assignment Decision M aking

Given the incoming call and previous call records, the key algorithms of this step
include 1) identifying all future-surer candidates, 2) estimating if the missing number
of sensed results can bereturned from future-surer candidates and potential returners,
3) estimating if all desired cell towers can be covered by future-surer candidates and
potential returners, and 4) sub-optimal task assignment decision making.

4.3.3.1 Ildentifying future-surer candidates
Given the current caller U;, we consider Uy, as a future-surer candidate if:

+ Uy hasplaced calls in previous corresponding cycles but hasn't placed any call
in current cycle, and

+ Uy has a higher probability of placing at least two callsthan U; placing at least
another call, i.e.,, Pgtfxm 0 29> Pyfxi 0 1g, or Uy has placed more calls in
any desired cdl tower (Tywgr O covery) than U;.

Putting all the future-surer candidates together with regard to U;, they are denoted
asF Sy;.
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4.3.3.2 Estimating if the Missing Number of Sensed Results can be re-
turned from Future-surer Candidates and Potential Returners

Given the set of future-surer candidates F Sy, , the set of potential returners (Ag O R),
and the missing number of sensed results (N [ jRgj), we estimate Py i, as the
probability of having at least the missing number of sensed results (Ne[jRkj) returned
from the potential returners and future-surer candidates ((Ax [ Rg) [ FSy,) before
the end of cycle k. Apparently the estimation of Py ;;;, depends on the probability
of each Up returning the sensed results (Um 2 (Akx O Rg) [ FSy,) before the end of
cycle k, each Up,"s returning probability can be computed using Eq. 4.6.

(
Pi:tfXm [ 1g;Um 2 (Ak 0 Rk)

P2 (Up) =
fot(Um) PktfXm [ 2g;Um 2 F Sy,

(4.6)

In the case of U, 2 (A O Rg) (belonging to the potential returner set), P,?.t(Um)
is modeled as the probability of Uy, placing at least another call before the end of
cycek. In the case of Un 2 F Sy, (belonging to the future-surer candidate set), then
P,?.t(Um) is moddled as the probability of U, placing at least two calls before the
end of cyce k. Given each user Uy 's returning probability P,?.t(Um), similar to the
estimation of Pr iy in Eq. 4.3, P{;s;, can be computed usind Egs. 4.7 and 4.8.

Pruirin =
0; JAk [ FSu;j< Ne
% ND](Ak%k)[FSUi] (4.7)
PfXkt2 (FSuy )+ Xkt:1(Ak ORk) = Ng;
§ NONeOjR,j

jAk [ FSu,j O Ne
PfXkt2(FSy;) + Xkt:1(Ak ORg) = Ng=
15N Y Y 4.8
P (Un) O (10 P2 (Un)) (49)
8571(Ax TRy ) F Sy; 8Um2s 8Um 25

Considering the complexity of Py, estimation, we use the same algorithm as shown
in Appendix A.1.2 to reduce the computation time.

4.3.3.3 Estimating if all Desired Cell Towers can be covered by Future-
surer Candidates and Potential Returners

Given a desired cell tower g (q 2 (Twr O coverg)), the set of U;'s future-surer
candidates (F Sy, ), and the set of potential returners (Ag [ Rg), we deChe Po%ve”: the
probability of cell tower q to be covered by at least one participant from the set of
potential returners and future-surer candidates ((Ak [l Rk) [ FSuy,). Apparently the

estimation of Pgwe,l depends on the probability of each Uy (Um 2 (Ax O Rg)[ FSy,)
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covering the given cell tower ¢ beforethe end of cyclek, the probability of each U,'s
covering g can be computed using Eq. 4.9.

8
2 COVit(m:l); Um 2 (Ak O R)

COVk:;t(m;l) = PetfXm 0290 (10 (10 Di(m;1))?); (4.9
: Unm 2 FSy,

In the case of Uy 2 (Ak [ Rk) (beélonging to the potential returner set), COV,(m;l)
is the same as COVy.¢(m;l). In the case of Uy 2 FSy, (belonging to the future-
surer candidate set), then COVk:;t(m;I) is modeled as the probability of Uy, placing
at least two calls (at least one of the (st two calls placed in cell tower q), beforethe
end of cycde k . Given the probability of each user Uy, covering cell tower g { i.e,
COV,ét(m; ), similar to the estimation of Peover, in EQ. 4.5, Pgy,e, can be computed
using Eq. 4.10.
O Y O ;

Peover, = 110 (10 COVii(m;1)) (4.10)

Um 2(Ax ORI FSy;

4.3.3.4 Sub-optimal Task Assignment Decision M aking

With P¢sin- Pcover, computed and two thresholds Pg1, Pg2 given, EMC? assigns a
task to thecurrent caller (U;) if Py ¢, islower than Pg4, or there existsany cell tower
G 2 (Twgr O covery) having Pc%ver. lower than Pgo. The pseudo code of sub-optimal
task assignment decision making is shown in Algorithm 4.

Algorithm 4: Sub-optimal Task Assignment Decision Making Mechanism
1 computing Py

2 computing Py, ; for 8q 2 (Twgr O coverg)

3 0f Piyirin < Pe1 OR 9g 2 (Twr [ coverg); Peyer, < Pa2 then
4 \ Assign the sensing task to U;;

5 end
6
7
8

else
‘ Not Assign;
end

4.4 Evaluation

In this section, we will report the evaluation results using the large-scale real-world
call traces to verify the electiveness for our proposed method in reducing energy
consumption in data transfer for MCStasks. We [rst introduce two baseline methods
and the parameter settings for evaluating EMC? briely. Second, we present two D4D
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Figure 4.3: Statistics of CBD Call Traces

phone call traces and the basic experiment settings. Then, the detailed evaluation
resultsof EMC3 with respect to the two baseline methods are presented and compared.
Finally, based on the known methods in energy consumption estimation, the EMC?3
and other relevant schemes are compared in terms of energy consumption for MCS
data transfer.

441 Baseline Methods and Parameter Settings

In our evaluation, we provide two basdine methods with respect to EMC3:

1. Greedy: assigning the sensing task to each new calling user, till the expected
number of sensed results are returned and all the cell towers are covered.

2. Pace Control based M ethod (Pace): leveraging our proposed task assign-
ment pace control mechanism. If the pace control mechanism decides that fur-
ther task assignment is still needed and the current caller is new in this cycle,
it assigns the sensing task to the current caller.

Apparently, Greedy method is the baseline which can show the upper bound for the
maximum number of task assignment and returned results, it can also provide ground
truth for coverage. Compared to the Greedy method, the Pace method can show the
electiveness of pace control mechanism in reducing the redundant task assignment.
The comparison between EMC? and Pace method shows the electiveness of sub-
optimal task assignment decision making mechanism in determining if the current or
future callers are better candidates for task assignment, in order to avoid redundancy
in task assignments. In all the experiments, we set the thresholds Pgq = 99:99% and
Pg2 = (99:99%)'3™RI for evaluating EMC? as well as Pace control based method.

442 Dataset and Experiment Setups

The dataset we use in this research is the D4D dataset, which contains 50,000 users
phone call traces (each call records includes user id, call time, and cell tower) in four
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months from Cote d'lvoire (where 2000 cell towers are installed). Specilkcally, the
50,000 users are re-selected randomly from all the mobile users every 2 weeks with
anonymized user ids. Thus in this study, we assume that each MCS task lasts for
two weeks accordingly. Further more, we split the 4-month data traces into eight
two-week slots, with each two-week slot corresponding to one MCS task. And every
MCS task executes [ve cycles every working day from 8:00 to 18:00, with each cycle
lasting for two hours (i.e. 8:00-10:00, ..., 16:00-18:00). We extract the phone call
records from the CBD area (named \ Plateau”) and a high-end residential district
(named \ Cocody" ) of Abidjan city, and use these two call traces for evaluation:

CBD Traces - Asshown in Fig. 6.2, the [rst target region for the MCS task
execution is assumed to contain 13 cell towers in the CBD of Abidjan city. For each
MCStask (two-week period), about 2000 - 3000 users ! have been found placing calls
in the target region. These users are considered as the crowdsensing participants.
In order to have the ground truth about the CBD region in D4D dataset, we show
the number of calls, calling users, as well as the frequent users (placing at least two
calls in a cycle) in each sensing cycle in Fig. 4.3a. Because the minimum number of
frequent users in these cycles is 101, we thus set the expected number of returned
participants (Ng) from 30 to 100. For coverage, we show the Max/ Min/ AvgZ number
of all covering participantsfound from the datasetsin each cell tower per sensing cycle
in Fig. 4.3b, extracting from the 4-month dataset. It can be seen from Fig. 4.3b that
each cell tower can be covered by at least 3 participants per cycle, which means that
the full coverage constraint is supported by the ground truth of the D4D dataset.

Residential District Traces - Asshown in Fig. 4.4a, the second target region
for the MCS task execution is assumed to contain 50 cell towers in an upmarket
residential area (around 40 km?) of Abidjan city. For each MCS task (two-week
period), about 7000 - 8000 users have been found placing calls in the target region.
In order to get the ground truth about the call traces, we show the number of calls,
calling users, as well as the frequent users in each sensing cyclein Fig. 4.4b. Because
the minimum number of frequent usersin these cyclesis 560, we thus set the expected
number of returned participants Ng = 250 and N = 500 respectively. For coverage,
we show the Max/ Min/ Avg number of all covering participants found from the traces
in each cell tower per sensing cycle in Fig. 44c. It can been seen that each cell
tower can be covered by at least 4 participants per cycle, which means the call traces
of Residential District can also meet the full coverage constraint. Obvioudy, the
Residential District Traces contain more call records from more people in a larger
area.

TAsardference, there are about 7.2 million inhabitantsin Abidjan, where around 75% inhabitants
are mobile phone users [91].
2In this work, we name \ Max/ Min/ Avg" as \ Maximum/ Minimum/ Average" in short.
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443 Performance Evaluation

In this part, we [Tst compare the performance of EMC?, Pace and Greedy methods
in terms of number of task assignments, number of returned results, and coverage;
Then we use an example to explain why the proposed EMC? outperforms Pace and
Greedy method.

4431 Performance Comparison based on CBD Traces

In Fig. 4.5, we present the Max/ Min/ Avg number of task assignments and returned
participants for the three methods under the same MCS setting, when the expected
number of returned results N is set to vary from 30 to 100 based on CBD Traces. In
order to show the coverage of the three methods, we show the Max/ Min/ Avg number
of covering participantsin each cell tower under the same MCS setting with Ng = 40
and 100, respectively in Fig. 4.6. Dueto the space limit, we only select the evaluation
results with Ng = 40 and 100. From the evaluation results shown in Fig. 4.5 and
Fig. 4.6, we observe that:

Task Assignments. Fig. 4.5a shows clearly that EMC? assigns fewer tasks to
participants than Pace and Greedy. On average, EMC? reduces 1%-23% task assign-
ments compared to Pace, and it also reduces 27%-35% task assignments compared to
Greedy method.

Returned Participants. Fig. 4.5b shows, even in the worst case, all EMC3,
Pace and Greedy are able to collect sensed results from more than N participants.
However, in all the cases the number of returned results is bigger than the expected
number N, even though the number of returned results for EMC3 is 1% - 18% fewer
than Pace and 26% - 33% fewer than Greedy on average. For the Greedy and Pace
methods, it's easy to understand that the big number of returned results are due to
the highly redundant task assignments. For EMC3, the reason for the big number
of task assignment and returned resultsis mainly dueto the inaccurate call/ mobility
prediction with limited number of call traces.
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Figure 4.7: Number of Covering Participants (Residential District Traces, Ng = 250
and 500)

Coverage. Fig. 4.6 shows that any of the 13 cell towers can be covered by at
least one participant with these three methods. Specilcally, some cell towers have
more participantsthan the othersin a cycle. Interestingly, the distribution of covering
participants in diCerent cell towers remains more or less the same when Ng varies,
and it's similar to the natural distribution of covering participants shown in Fig. 4.3b.

443.2 Performance Comparison based on Residential District Traces

In Table 4.1, we present the performance comparison between EMC? and baselines
using Residential District Traces. We count the average/ minimum/ maximum number
of task assignments and returned participants. It is obvious that EMC3 outperforms
Pace and Greedy| EMC?3 reduces 8% [1 18% task assignments compared to Pace
and reduces 24% [ 36% task assignments compared to Greedy; and the number of
returned participants by EMC3 is 5% [0 15% and 17% [ 33% less than Pace and
Greedy respectively. Furthermore, in terms of coverage, all 50 cell towers are fully
covered by these three methods in every sensing cycle with all Ng settings (please see
also Fig. 4.7, where the Max/ Min/ Avg number of covering participants in each cell
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Table 4.1: Performance Comparison based on Residential District Traces: EMC3 vs
Pace vs Greedy

Schemes | Task Assignments Returned Participants
Avg. [ Min. | Max. | Avg. | Min. | Max.
Ne = 250
EMC?3 | 44666 | 310 | 979 | 297:2 | 250 574
Pace | 5415 | 387 | 1015 | 3522 | 262 609
Greedy | 7035 | 578 | 1122 | 4455 | 369 714
Ne = 500
EMC3 | 8214 | 695 | 994 | 507.9 | 500 574
Pace | 887.8 | 756 | 1120 | 535.6 | 502 714
Greedy | 1075.2 | 967 | 1194 | 615.5 | 536 718

tower under the setting of Ng = 250 is shown); and the observation about the cov-
ering participants distribution is quite similar to that obtained from our experiment
based on CBD call traces. From the above evaluation results, we can see that EMC3
performs consistently better than the two basdline approaches in terms of task assign-
ment while all the methods can achieve the goal of full coverage and collecting the
prede’ned number of sensed results, when thetarget area and number of participants
are dilerent.

4433 Case Study and Analysis

In order to gain more insights about the observed phenomena, we would like to
show the actual task assignment process using the three methods and the Residential
District call tracesin sensing cycle 16:00-18:00, on 14 December 2011, where Ng is set
to 250. Fig. 5.4 shows the actual task assignment traces of EMC3, Pace and Greedy
in thetop part of the diagram (with thetotal number of task assignmentsjAyj listed),
the number of covered cell towersin themiddle (jcoveryj), and the number of returned
results in the bottom (Rgk). From Fig. 5.4, we can observe the detailed dilerences
among EMC3, Pace and Greedy methods, including:

Pace vs Greedy: In the beginning of the cycle, both Pace and Greedy methods
assign sensing tasksto each new caller/ receiver, but Pace stopsassigningtasksat 16:22
when only 112 participants return their sensed results and 46 cell towers are covered.
Obviously, Pace method doesn't make any further task assignments if the assigned
participants are estimated to meet the requirements of covering all cell towers and
collecting an expected number of sensed results. Greedy, however, stops making new
task assignment at 16:39 when a total of 250 participants return their sensed results
and all 50 cell towers are covered. The Pace method stops 17 minutes earlier than
the Greedy method, which causes 233 less redundant task assignments and 141 less
unnecessary returned results. Apparently, it's all due to the pace control mechanism
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Figure 4.8: Task Assignment Process in the Case Study

based on future call/ mobility prediction.

EM C3 vs Pace: In the beginning of the cycle, also EMC? assigns sensing tasks
to each new caller/ receiver like Pace, because the number of task assignments is
much lower than the expected number of returned results N (250). But with the
number of task assignments and returned results increasing, EMC? begins to select
only \frequent callers/ receivers" who have high probability of covering \ desired cell
towers" for task assignment, while Pace continues to assign sensing tasks to each
new caller/ receiver until the number of task assignments made is estimated to ensure
receiving the expected number of sensed results covering all cell towers. In the case
of Fig. 5.4, Pace stops assigning tasks at 16:22 when 112 participants return their
sensed results and 46 cell towers are covered. EMC3, however, stops making new task
assignment at 16:34 when a total of 152 participants return their sensed results and
49 cell towers are covered. The EMC? method stops 12 minutes later but assigns 36
less redundant tasks than Pace. Apparently, EMC? outperforms Pace because of its
decision making mechanism for task assignment, which is based on the prediction of
call/ mobility for both participants with task assigned and future callers/ receivers.

444 Energy Conservation Comparison

After getting the number of task assignments and returned results with EMC3, we
would like to estimate how much energy our proposed EMC?3 scheme can savein data
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Table 4.2: Energy Consumption Computation Models

Schemes | Energy Consumption

3G-based scheme | Ng 0(12+ 12) = 24 [INg

Parallel+ 3G-based scheme | Ne (3 + 12) = 150N
EMC3, Pace and Greedy JAK] 03+ jRgj O3

transfer, comparing to the following 3G-based MCS schemes:

1. 3G-based Scheme: receives the task assignment by establishing a new 3G
connection, and returns the sensed results by establishing another 3G connec-
tion.

2. Parallel+ 3G-based Scheme: receivesatask assignment when the participant
places a phone call through parallel datatransfer, and returns the sensed results
by establishing a new 3G connection.

Because no redundant task assignment is needed to collect sensed results with the
above two schemes, we thus assume that only N, participants from the 13 cell towers
are selected to perform the MCS sensing task. Based on the literature [92] about the
mobile phone energy consumption estimation method, we model the overall energy
consumption in data transfer for MCS tasks by using the formulas listed in Table 4.2.
Here the energy consumption estimation is based on the setting of Nokia N95 and
the simple assumption that the data packets for task assignment or sensed results are
small (less than 10KB each). Considering the MCS applications such as air quality
monitoring and environment noise monitoring, this assumption is reasonable and the
energy estimated using the formula could serve as a reference for comparison purpose.

Table 4.3 shows each scheme's average energy consumption per sensing cycle with
varied Ng settings for both CBD and Residential District Traces. As can be seen from
Table 4.3, EMC? can save 43% - 68% energy on average, compared to the 3G-based
scheme; It can save 8% - 48% energy compared to the Parallel+ 3G-based scheme.
Till now we are assuming that the number of expected sensed results is small, if the
MCS application needs to recruit hundreds of participants and collect sensed data for
many cydes a day, then the total energy saving would be signiCcant. Interestingly, if
we compare the EMC3, Pace, Greedy with the Parallel+ 3G-based scheme, we can see
that EMC? outperforms all the other schemes in all the conditions, but the Greedy
method consumes more energy than the Parallel+ 3G-based scheme when Ng < 50
(using CBD traces). In summary, all the above evaluation and analytical results
show the electiveness of EMC? in reducing the energy consumption in data transfer
for both individual and all MCS participants.
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Table 4.3: Energy Consumption Comparison: 3G-based vs Parallel+ 3G-based
(P+3G) vs EMC? vs Pace vs Greedy

Ne [ 3G (J) [P+3G (J) [EMC? (J) [ Pace (J) | Greedy(J)

CBD Traces
30 720 450 412.55 416.47 629.77
40 960 600 489.64 506.36 679.33
50 1200 750 548.57 594.95 751.11
60 1440 900 592.20 679.57 831.69
70 1680 1050 634.71 766.97 910.92
80 1920 1200 682.34 850.90 991.24
90 2160 1350 737.41 931.62 1068.25
100 2400 1500 801.48 1013.90 114243
Residential District Traces

250 6000 3750 22314 2681.1 3447
500 | 12000 7500 3897.9 4270.2 5072.1

445 Real-time Performance Analysis

As the decision for task assignment should be made immediately when a partici-
pant places/ receives a phone call, in this section we would like to investigate if the
proposed EMC? algorithm can be executed in the real-time setting. Thus, we [rst
compute EMC?'s response time| i.e., the duration from the initial of a call (from/to
a participant in the target region) to the time when the decision of task assignment is
made; and then, based on the computed response time, we estimate EMC3 maximum
throughput [93]] i.e, the maximum number of mobile users allowed in the MCS sys-
tem. Wecarry out experiments using a common laptop with an Intel Core i7-2630QM
Quart-Core CPU and 8G memory. EMC? algorithm is implemented with the Java
SE platform and is running on a Java HotSpot(TM) 64-Bit Server VM.

In order to compute the response time and maximum throughput in the realistic
deployment condition, we build an EMC? simulator consisting of two phases:

1. Filter - When a mobile user makes/ receives a phone call, the system checks if
the call ismade/ received in thetarget region and if theuser isin thelist of MCS
participants; and all these operations are implemented as a simple DB query
based on an embedded database. In this phase, EMC? identiles participants
in the target region from all calls; and if the calling user is not a participant
or the call is not made/ received in the target region, then EMC? [lters out the
call immediately.

2. Process - Given aparticipant making/ receiving a phone call, this phase executes
the EMC? three-step task assignment decision making algorithm to decide if the
participant should receive a task assignment.
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Table 4.4: EMC3 Average Response Time and the Estimated Maximum T hroughput

Response Time (1073 sec.) | Max. Throughput (calls/ sec.)
Ne | Clter process Cter process
CBD Traces
30 | 0.0076 1.7795 131578.95 561.96
40 | 0.0078 1.9925 128205.13 501.88
50 | 0.0079 2.6816 126582.28 372.91
60 | 0.0080 3.1746 125000.00 315.00
70 | 0.0080 3.9928 125000.00 25045
80 | 0.0080 5.0457 125000.00 198.19
90 | 0.0080 5.9189 125000.00 168.95
100 | 0.0080 6.9771 125000.00 143.33
Residential District Traces
250 | 0.0413 268.2682 24213.08 3.73
500 | 0.0417 475.6196 23980.82 210

Table 6.1 presents the average response time and the estimated maximum throughput
in both phases based on dilerent call traces and MCStask settings. Even when EMC?
is used to monitor the Residential District, it only spends averagely no more than
0.0417 milliseconds ? in the\ (lter" phase, which means EM C3 isableto handle 23980
calls every second. As a reference, according to the D4D dataset?, we estimate there
are approximately 1800 calls made/ received by all mobile phone users from the whole
Cote d'Ivoire every second. Furthermore, EMC? requires averagely 0.475 seconds to
completethethree-step task assignment decision making process using the Residential
District traces where Ng = 500, which means EM C3 is able to make decision for 2.1
incoming calls from MCS participants every second under the given condition, where
Pace on average requires 0.076 seconds to complete the task assignment decision
making process and is able to handle 13 incoming calls per second under the same
setting. As a reference, even in the busiest time slot (i.e, 10:00-12:00 in working
days) of Residential District, there are 0.77 calls averagely made/ received by MCS
participants every second. All above estimation shows that, with a high-performance
server EMC? can easily support an larger target region than either CBD area or
Residential District in real-time; and the response time of EMC3 can be controlled to
a certain value if each server isin charge of a [Xed geographical area.

3The time consumed in communication and networking has not been taken into account here;
because actually EMC? is assumed to be deployed on telecom operator's network.

4D4D dataset contains call traces of 0.3% randomly-sampled nationwide mobile phone population;
and the average number of calls per second in D4D dataset is 5.4 calls/ sec. Thus, we estimate the
the average number of calls per second as 5.4/ (0.3%)= 1800 calls/ sec.
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4.5 Discussion

In this section, we discuss issues which are not reported or addressed in this work,
these could be added to our future work.

Cold Start Problem: Inthe [Trst day of an MCStask, asthere are no historical
call records due to the privacy consideration, the prediction for frequent callers and
future surer candidates won't be accurate. Thus EMC? has the \ cold start" problem
which makes it perform the same as Pace method in sensing cycles of the [rst day,
gradually with the accumulation of historical call records, EMC? performs better and
better. The detailed evaluation results are not reported here due to space limit, but
will be reported in future work.

Prediction and Parameter Adaption: Asthe performance of EMC? depends
on the prediction accuracy of call/ mobility prediction and the parameter setting used
in the algorithm, in this study we currently use a simple prediction algorithm and
a [Xed set of parameter setting in all the sensing cydes, in future work we plan
to study adaptive task assignment pace control and decision making strategies, and
design advanced call/ mobility prediction methods.

Sensing Coverage: Due to the limitation of the D4D dataset, we can only
measure one's coverage at the cell tower level; and the cell towers traversed by users
between two calls are not accessible in this work. Apparently, if the user's mobility
traces can beobtained continuously at [he granularity, we might consider the coverage
of users more precisaly.

Aggregating Multiple Energy-ellcient Strategies: In addition to piggy-
backing 3G data transfer over 3G calls or data packets, other data transfer methods,
e.d., transferring data via WiFi/ Bluetooth, also consumes less energy in data transfer,
compared to common 3G-based solutions. Besides, there exist a wide range of tech-
niques, such as adopting low-power consumption sensors or energy-ellcient sensing
techniques, that can save energy in the MCS tasks. In our future work, we intend to
study an integrated MCS framework aggregating multiple energy-saving strategies to
minimize the energy consumption in a holistic manner.

Enabling Ultra-large Scale Crowdsensing: The evaluation result showsthat
EMC3 is able to handle a large area{with tens of cell towers installed and thousands
of participants making/ receiving phone call<{in the real-time, while securing the data
collection from hundreds of participants and under the full coverage constraint. When
nation scale crowdsensing is needed, we can just dividethe whole nation into multiple
sub-areas and deploy multiple EMC? servers to manage each sub-area collaboratively.
Apparently, in this way, EMC? can scale easily without performance issues.
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5.1 Introduction

In this Chapter, we introduce our third MCS framework CrowdRecruiter, which is
diCerent with EEMC (introduced in Chapter 3) and EMC? (introduced in Chapter 4)
in following ways:

« Probabilistic Sensing Coverage - While EMC3 is designed to collect sensed
results fully covering the target region, CrowdRecruiter uses a novel sensing
coverage metrics namely Probabilistic Coverage. For many MCS applications,
such as environment monitoring, full coverage is not always reguired. It is often
sullcient to ensure a high ratio of spatial coverage in a specilCed time frame and
get an idea of the situations in most places that people frequently visit. Thus,
given the target region consisting of a set of subareas, CrowdRecruiter aims to
collect sensed results covering a predelned percentage of subareas.

+ One-call-based Piggyback Crowdsensing Mechanism - Energy consumption is
known to be one of the key factors compromising the user's willingness for MCS
task participation. While EEMC and EMC3 adopt a two-call-based MCS mech-
anism for energy-elicient MCS data transfer, CrowdRecruiter leverages Piggy-
back Crowdsensing Task Model proposed in [18], where the energy consumption
caused by MCS data transfer, sensing and computing can be reduced by piggy-
backing MCS sensing, computing and data transfer jobs over the smartphone
app opportunities. It is shown in [19, 86] that sensing the air quality and up-
loading sensed resultsin paralld with a 3G call can reduce about 75% of energy
consumption in data transfer compared to the 3G-based solution, while piggy-
back sensing scheme can signilcantly reduce the energy consumed by sensors
and microprocessors when performing MCS tasks [18].

« Participant Recruitment - While EEMC and EMC? decide if to assign an
MCS task to each mobile user during the MCS process, CrowdRecruiter intends
to recruit a group of participants from all volunteering mobile users, prior to
the MCS process, where each recruited participant is required to join in all
sensing cycdles of the whole MCS process. Further, assuming that each recruited
participant is paid an equal-mount of incentive, CrowdRecruiter needs to select
a minimal number of participants while ensuring a predelned percentage of
subareas being covered by the sdected participant in each sensing cycle, in
order to minimize the overall incentive payment under the probabilistic coverage
constraint.

To show the key concepts and ideas of the PCS applications with CrowdRecruiter, a
motivating example is given as follows.

An environment NGO plans to monitor the air quality for citizens in Abidjan City,
Cote d'lvoire, updating the air quality index every hour during daytime. With the help
of a telecom operator, the NGO makes an agreement with around 5000 smartphone
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users, who are willing to be selected for an one-week-long air quality sensing trial and
install a PCS application on their own smartphones. There are 131 cell towers in
the Abidjan downtown area as shown in Fig. 6.2. For the purpose of this trial we
divide each working day into 10 sensing cycles (08:00{ 18:00) and each sensing cycle
lasts for one hour. In order to minimize the total cost of the crowdsensing task while
ensuring the sensing quality for the one wesk trial, NGO hopes to select a minimal set
of users from the 5000 candidates, who are able to place 3G calls at 90% of the 131
cell towers in each sensing cycle. In such a way, each selected mobile user could sense
the air quality and upload the air quality information of the cell tower when the 3G
call is placed at certain cell tower, and the combined set of users can cover 90% of the
131 cell towers in all sensing cycles. To facilitate the selection of the minimal set of
users, one week's call and mobility records of the 5000 candidates (including the time
stamp and cell tower ID for each call) before the trial are made available for NGO
by the telecom operator. After the minimal set of mobile users are selected according
to their historical call/ mobility traces, each selected participant would receive a [xed
sum of incentives from NGO and activate the PCS application on their mobile phones.
The PCS application with the PCS task engine [18] will sense and upload air quality
data when the participant places a 3G call at a new cell tower in each one-hour time
frame throughout the trial period. With the piggybacking mechanism, each participant
is expected to consume a small amount of energy for the PCS task, and the total
incentive cost for the whole PCS task is also maintained minimal.

Note that, in the considered use case and therest of this work, we use cdll towers
as the coverage metrics, primarily due to two reasons: 1) The cell tower IDs of
mobile phones are accessible in call logs, even though the cell tower is not the right
coverage metrics for many MCS applications, the mobile phone call logs with cell
tower as coverage metrics can be used toillustrate the core idea of handling coverage
constraint problem in MCS applications; 2) For MCS applications, such as urban air
quality monitoring, covering a high percentage of cell towersin a given region ensures
that the most part of the given areais measured, even though the sampled granularity
in terms of cell tower may not be the best choice. If it could be characterized more
precisely, the proposed approach could be easily adapted.

From the above use case, it can be seen that the objective of the research work is
to select a minimal set of participants for the PCS task while ensuring a predelhed
cell tower coverage in each sensing cycle, with following two assumptions.

1. Only the selected participants are involved in the sensing and uploading task.
The mobile device of each selected user performs sensing and data uploading
task only when the participant places (makes/ receives) a 3G call at a new cell
tower in each sensing cydle.

2. All the mobile users agreed to participate in the PCS task make their histor-
ical call/ mobility traces available to facilitate the participant selection. Only
the historical call traces in the recent week are provided to NGO, while other
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Figure 5.1: Cell Towersin the Downtown of Abidjan City
personal information is only known to the telecom operator.

In order to solve the above research problem, there are at least three challenges in
the PCS system design:

1) Estimating the spatial coverage probability of selected participants
based on their call/ mobility traces in each sensing cycle. Since we only have
user's historical call activities and mobility traces, and the call/ mobility pattern will
change in the PCS deployment week, we thus have to [nd a way to predict the
call/ mobility pattern of each selected user accurately. Even with inaccurate predic-
tion results, we need further to characterize the spatial coverage probability of each
participant and estimate if the joint spatial coverage of a set of selected participants
meet s the predelned probability threshold.

2) Lowering the complexity and increasing the speed of search for the
minimal set of participants meeting the probabilistic coverage requirement.
A brute-force approach for searching the minimal set of participantsisto enumerate
all the possible combinations from 1 to k participants (out of 5000 users), wherek is
the minimal number that ensures that one of the combined set with k participants
could meet the probabilistic coverage constraint in each sensing cycle. T his search
problem, however, is NP hard in nature [94]. Thus it is necessary to develop a
fast approximation algorithm to [nd a near-minimal set of participants meeting the
coverage constraint.

3) Setting the user selection metrics and stopping criterion for the
near-optimal participant set search. A common approach to search for the near-
minimal set of participantsisthe greedy algorithm [94]. First the best user according
to a certain coverage metric is selected into the solution. Then one more user out of
the unselected candidates is combined with the already selected participants. Among
all the combinations, the set with the highest coverage metrics is selected as the best
set. If the lowest coverage probability of the best set across all sensing cyclesislarger
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than the required threshold, the near-minimal set of participants is found and the
participant selection process terminates. Otherwise, another user needs to be added
to the selected set until the above lowest coverage probability condition holds true.
However, how to combine the coverage probability of multiple users and measure
which user set has higher coverage probability are no-trivial, as these metrics might
allect which user will be selected as part of the participant set and thus determine
how many users will be included in the [hal participant set.

With the abovementioned research objective and challenges, the main contribu-
tions of this work are:

1) We formulatethe problem of selecting minimal number of participantsin piggy-
back crowdsensing (PCS) under probabilistic coverage constraint, with consideration
of both total energy consumption and incentives paid in a PCStask. To the best of
our knowledge, thisis the [rst work addressing the participant selection issue in the
context of PCS, wherewe select participantsaccordingto their historical call/ mobility
pattern and leveraging the call opportunities of mobile users to sense and upload data
for crowdsensing task.

2) In order to select theminimal set of participants under the coverage constraint,
we propose a two-phase participant selection framework named CrowdRecruiter. It
takes a novel approach to measure the coverage probability of multiple users as a
combined set and selects the minimal set of participants. Theoretical analysis shows
that the proposed approximation algorithm can achieve globally near-optimality with
low computational complexity.

3) We evaluate our proposed algorithms with the real world dataset D4D" [15],
which contains 4-month call records of 50, 000 users from Cote d'lvoire. We verify
that the proposed algorithm performs better than three baseline approaches, using the
call records of two separate regions in Abidjan. Specilkally, CrowdRecruiter selects
10.0%-73.5% fewer participants on average than the basdline approaches, under the
same coverage constraint.

5.2 CrowdRecruiter: System Overview

In this section, weformulate the participant selection problem in CrowdRecruiter and
describe the proposed framework to solve this problem.

5.2.1 Participant Selection Problem in CrowdRecruiter

As PCS has provided an energy-ellcient task model, the primary objective of Crow-
dRecruiter is to minimize total incentive payments while meeting a predeCned cov-
erage constraint. In the proposed model, a PCS task may run over a period of time
(e.g., a week) and consist of multiple sensing cycles, such as 10 one-hour cycles per
day from 08:00{ 18:00. We consider that a cell tower t is covered in a sensing cycle

'D4D Dataset | http://www.d4d.orange.com/en/home
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Figure 5.2: The CrowdRecruiter Framework

i if a participant places a call at t in i. Note that if a participant places multiple
calls at dilerent cell towers in i, all these cell towers are said to be covered in i.
Thus the goal for CrowdRecruiter isto select a minimal number of participants from
a set of volunteering mobile users, given their historical call and location traces, in
order to meet the spatial-temporal coverage constraint that speciles the percentage
of covered cell towers in the target area should be equal to or greater than a coverage
threshold during all sensing cycles. With these delnitions, we formally formulate the
participant selection problem in CrowdRecruiter as follows.

Given a set of volunteering mobile users U, a target area consisting of a set of
cell towers T, the call traces of all users in U (including the time stamped calls and
associated cell towers), we denote S as the set of participants selected from U (i.e,
S U), and G(S) asthe set of cell towers being covered in theit" sensing cycle by S.
The problem isthen to Cnd S as a subset of U, with the objective to

G ()
iTj

minimize j§; subject to ORaticand 00 i < N

where N is the total number of sensing cycles for the PCS task. It is worth noting
that we cannot foreknow when and where a participant will place a phone call during
the PCStask (i.e., ¢ (S) isunknown when we select participants). Thuswe decompose
the participant selection problem into two sub-problems: call/ mobility prediction, and
participant selection based on the prediction.

5.2.2 Overall Design of CrowdRecuiter

CrowdRecruiter follows a centralized participant selection approach, where a central
server collects and stores the volunteering mobile users historical call traces in the
target area, and the server selects participants from all volunteering mobile users
before the PCS task execution. Only selected participants are requested to perform
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sensing tasks and return sensed resultsin each sensing cycle. Considering the two sub-
problems in participant selection, we hereby propose a two-phase approach. Given
the historical call traces of all users, the [rst phase predicts each user's call/ mobility
during the PCS task; and the second phase selects participants based on the prediction
results. The framework is shown in Fig.5.2 and works as follows.

Phase | - Data Preparation and User Call/ Mobility Prolling. Given thecall traces
of all volunteering mobile users, this phase computes the call/ mobility prolle of each
user{i.e., probability of each user placing at least one call at a particular cell tower in
a given sensing cycle. Specilcally, CrowdRecruiter computes the prolle of each user
with following two steps:

+ Mapping Call/ Mobility Traces - Given the historical call/ mobility traces
of all users, this step maps each user's historical call/ mobility traces onto N
sensing cycles. Then it counts [:i-t{the average number of calls placed by each
user (u2 U) at each cell tower (1t 2 T) in each sensing cycle (00 i < N);

» Predicting each User's Call/ Mobility - Given [y, this step estimates
Pi-t(u){the probability of the user (u 2 U) placing at least one call at each cell
tower (t 2 T) during each sensing cycle (00 i < N).

Phase Il - lterative Participant Selection Process. Given the call/ mobility proCle
of each user, we propose an iterative process to select participants incrementally:

» The algorithm [rst picks up the singe user having the maximal utility among
all volunteering users and selects that user into the solution, where the utility
is deChed formally in the next section;

» The algorithm then selects an unselected user having the maximal utility when
combing with the selected users and adds that user into the solution;

» The algorithm keeps selecting and adding new participants until the selected
participants could cover a predelhed percentage of cell towersin every sensing
cycle.

Specilkally, an iteration consists of following three steps:

+ Utility-based Selection - Given the full set of volunteering users (U) and
the set of selected participants (S), this step [rst combines each unselected user
(8u 2 UnS) with the selected participants in order to generate a combined set{
i.e, fug[ S;8u 2 UnS, second it calculates the utility of each combined set
(i.e., Utility(fug[ S)); and then it selects the combined set having the maximal
utility and keeps it as the newly selected set of participants for next iteration.

» Covering Probability Vector Calculation - Given the combined s&t (eg.,
fug[ S) having the maximal utility, this step computes a vector of probabilities,
where each element of the vector is the probability of the combined set meeting
the predelned coverage ratio in a specilc sensing cycle.
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+ Stopping Criterion - Given the vector of probabilities based on the combined
set with the maximal utility, this step [rst [nds the minimal probability in
the vector and compares the it to a given stopping threshold. If the minimal
probability is greater than or equal to the stopping threshold, it returns the
combined set as the [hal sdected user set of the algorithm. Otherwise it uses
the combined set as the sdlected participants and starts next iteration.

5.3 Core Algorithms of CrowdRecruiter

In this section, we introduce the core algorithms of Call/ Mobility Prediction, Utility
Calculation and Covering Probability Vector Estimation.

5.3.1 Call/ M obility Prediction

Assuming the call sequence follows an inhomogeneous Poisson process [87], the prob-
ability of a user u to place n phone calls at cell tower t(t 2 T) in sensing cycle
i(00i < N) can be modeled as:

pit(u;n) = [ D& wit=nl (5.1)

where [yt refers to the Poisson intensity, which is estimated as the average number
of calls that u has placed at t in the historical traces corresponding to the sensing
cyclei. For example, to estimate [}, for sensing cycle i from 08:00 to 09:00, we will
count the average number of calls placed by u at t during the same period 08:00-09:00
in the historical records. Therefore, we can estimate the probability of user u placing
at least one call duringi throught as Eq. 5.2.
X1
Pit(u) = Pit(u;n) =10 g tusiat (5.2)

n=1

5.3.2 Utility Calculation of Each Combined Set

Given each combined set (S[ fug) of participants, thisalgorithm computes the utility
of the combined set (Utility(S[ fug)). Specilcally, wedelnetheutility of a combined
set as the expectation of cell towers being covered by the combined set in all sensing
cycles. We compute the utility as:

X X
Utility(S[ fug) = Qi(S[ fug); (5.3)
0Oi<N 12T

where Qit(S[ fug) refers to the probability of a given cell tower t being covered by
the combined set during sensing cycle i, and the probability is estimated as:

Y
Qi(S[ fug) = 10 (10 P;;x(0)) (5.4)
8129 fug
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Given the utility of each combined set, CrowdRecruiter picks the best set having
the maximal utility and continues for next iteration until the stopping criterion is
met. Our theoretical analysisin Algorithm Analysis section shows our approach’s
approximation to an optimal solution.

5.3.3 Coverage Probability Vector Calculation

Given the combined set (S[ fug) with the maximal utility, this algorithm computes
a vector of probabilities, where each element of the vector is the probability of at
least a predelned percentage (Ratio) of cell towers being covered by (S[ fug) in the
corresponding sensing cyce. Eq. 5.5 gives the formula to estimate the probability at
theith sensing cycle.

]1%[] Y

COVi(S[ fug) = Qi-t(S[ fug)
TCE,T 82T, (5.5)

(10 Qio(S[ fug))
Bt TnTc

where 0= dTj ORgatje refers to the minimum number of cell towers that should be
covered in every sensing cycle, Tc is a subset of T, referring to a combination of cell
towers that should be covered (i.e, jT¢ O [). Considering the computational com-
plexity of Eq. 5.5, we introduce an algorithm to reduce the cost in Appendix A.2.1.

5.3.4 Algorithm Analysis

In this section, we analyze the proposed algorithms. First, we propose a brute force
approach that can [hd optimal solution to the participant selection problem. Sec-
ond, we analyze the time complexity of getting the optimal solution using the brute
force approach. Finally, we show how the proposed algorithm could approximate the
optimal solution but with low computational complexity.

Intuitively, it is easy to think of a brute force approach as follows. Suppose there
exists an algorithm, given a number k [ jUj, being capable of enumerating all possible
combinations of k users and further Cnding the combination S with the maximal
coverage of cell towers in all sensing cycles. Given this algorithm, an ideal solution
is to run this algorithm from k = 1;2;3:::, until it Cnds Sxo making a predelned
number of cell towers being covered in each cycle. The resulting Sio should be the
optimal solution.

It is, however, impossible to get the optimal solution using the brute force ap-
proach in polynomial time. The total number of k-user combinations inside U is
% which grows combinatorially when the number of users (jUj) increases.
For example, there are totally 3:0 0 €* % combinations for picking 50 users from 1000
users. Thus we need a solution that approximates the optimal result but with low
computational complexity.
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Table 5.1: Number of Selected Participants (CR. refers to CrowdRecruiter in all
Tables and Figures)

(a) BUSINESS Region
Task [ CR. [ MaxMin | MaxCom [ MaxCov

Ratio = 95%
1 523 601 810 1309
2 510 576 822 1266
3 414 475 748 2130
4 704 753 1424 1965
avg. 537.8 601.3 951 1667.5
Ratio = 85%
1 261 289 413 525
2 257 274 390 454
3 198 255 379 455
4 318 354 506 822
avg. 258.5 293 422 564

(b) RESIDENTIAL Region
Task [ CR. [ MaxMin | MaxCom [ MaxCov

Ratio = 95%
1 501 598 911 2112
2 512 638 714 2251
3 508 624 768 1701
4 500 631 631 1576
avg. 505.3 622.8 756 1910
Ratio = 85%
1 257 315 373 585
2 261 326 345 717
3 268 320 355 618
4 243 350 275 551
avg. 257.3 327.8 337 617.8

(c) MERGED Region

Task [ CR. [ MaxMin | MaxCom [ MaxCov
Ratio = 95%
1 766 859 1239 2368
2 753 818 1113 2385
3 688 760 1109 2479
4 898 1012 1703 2537
avg. 776.3 862.3 1291 2442.3
Ratio = 85%
1 320 419 547 902
2 329 348 599 892
3 285 305 465 959
4 353 437 620 1236
avg. 321.8 377.3 557.8 997.3
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The proposed CrowdRecruiter approach adopts a simple iterative process based
on Greedy Algorithms. In the worst case, the algorithm runs jUj O(jUj + 1)=2 iter-
ations (all users being selected), in order to get the solution. In the best case, the
algorithm needs to run jUj iterations (i.e., selecting a single user meeting the goal).
Further, the utility function we delned is a non-negative/ non-decreasing submodular
set function (proof in Appendix A.2.2). According to the theory of submodular
function maximization [95], this greedy participant selection process gets a Near-
Optimal solution in maximizing the utility function with a constant error bound.
Suppose Skc is the kJuser combination selected by CrowdRecruiter and Sgo is the
optimal solution having the maximal utility among all k(Juser combinations. There
exists Utility(Ske) O (10 1=e) OUtility(Ske) O 0:63 0Utility(Ske) [95]. As a reference,
supposing our algorithm has selected 10 users with the expectation of covering 63
cell towers, the optimal solution among all enumerated 10-user combinations could
cover no more than 100 cell towers in expectation. In this way, when CrowdRecruiter
[hds a set of users being able to meet the predelned coverage ratio in all sensing
cycles, the set of users should be near-minimal. For the theoretical treatment of this
approximation, the readers are encouraged to [nd more details in [94].

5.4 Evaluation

In this section, we report the evaluation results using large-scale real-world call traces
to verify the electiveness of CrowdRecruiter's participant selection algorithms for
PCStasks. We [rst introduce three baseline methods for evaluation. Then we present
three D4D phone call traces and the basic experiment settings. Finally, the detailed
evaluation results of CrowdRecruiter with respect to the three baseline methods are
presented and compared.

54.1 Baseline Methods

In our evaluation, we provide three baseline methods with dilerent utility functions
from CrowdRecruiter, but all of them share the same iteration process and stopping
criterion.

1. MaxMin - Given each combined set (fug[ S), MaxMin computesthe utility as
the minimum probability among all sensing cydes, i.e., mingnj<nfCOV;(fug|
S)g. MaxMin then picks the combined set with maximum utility asthe selected
set in each iteration. Intuitively, the MaxMin algorithm tries to maximize the
minimal probability when adding the next participant tothe selected set in order
to make the proposed stopping criterion being achieved as fast as possible. In
a sense, MaxMin method aims to select the minimal number of participants by
improving the minimal coverage probability of the selected set in each iteration,
while CrowdRecruiter intends to achieve the same objective by improving the
overall coverage probability of the selected set in each iteration.
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2. MaxCom - The basic idea of MaxCom is to select the next participant who
best complementswith the selected set of participantsin terms of coverage prob-
ability. Given the selected users and unselected users, MaxCom [rst computes
the diCerence between the predened probabilistic coverage and the coverage of
selected users, obtaining an error matrix corresponding to user's call/ mobility
prolle. Subsequently the MaxCom algorithm selects the unselected user hav-
ing the most similar call/ mobility proCle to the error matrix. Finally MaxCom
combines the user with the selected users as the combined set for further com-
putation. MaxCom is implemented based on the idea proposed by [33].

3. MaxCov - The basic idea of MaxCov is to simply sdlect the next participant
who covered the most cell towers in the historical call traces, among all the
unselected mobile users.

542 Dataset and Experiment Setups

The dataset we used in evaluation is the D4D dataset [15], which contains 50,000
users phone call traces (each call records includes user id, call time, and cell tower)
from Cote d'lvoire. All these users are re-selected randomly every 2 weeks with
anonymized user ids. Thus in this study, we design experiments based on such two-
week periods. The call tracesin the [rst week were used for participant selection, and
we simulated the spatial-temporal coverage of selected participants using call traces
in the second week. Specilally, we extract the call traces of two connected regions
in four two-week periods and build the following three datasets for our evaluation:

+ BUSINESS - a commercial center of the city where 86 cell towers having
been installed and around 7945-8799 mobile phone users placing phone calls in
any two-week period.

+ RESIDENTIAL - aresidential area where 45 cell towershaving been installed
and around 6034-6627 mobile phone users placing phone calls in any two-week
period.

+ MERGED - combined area of both BUSINESS and RESIDENTIAL regions
where 131 cell towers having been installed and around 11363-12049 unique
mobile phone users placing phone calls in any two-week dot.

We used the four periods call traces to simulate four PCS tasks, each lasting for 2
weeks. We assume that each PCS task executes 5 days per week, 10 sensing cycles
every working day from 8:00 to 18:00, with each sensing cycle lasting for 1 hour
(i.e. 8:00-09:00, ..., 17:00-18:00). In all experiments, we set the stopping threshold in
stopping criterion using an empirical value of (99:99%)=0TI™N) for evaluating Crow-
dRecruiter as well as other three baselines.
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543 Number of Participants Comparison

In Table 5.1, we present the performance comparison on number of selected par-
ticipants between CrowdRecruiter and basdlines. It is cdear that CrowdRecruiter
outperforms MaxMin, MaxCom and MaxCov methods in all PCS tasks| On aver-
age, CrowdRecruiter sdects 10.0% - 21.5% fewer participants compared to MaxMin,
selects 23.7% - 43.5% fewer participants compared to MaxCom, and selects 54.2% -
73.5% fewer participants compared to MaxCov.

In terms of coverage, we show the Max/ Min/ Average percentage of cell towers
being covered by the selected participants for each sensing cyclein Figure 5.3. For all
sensing cycles, the required percentage (i.e., 95% and 85%) of cell towers are covered
by the selected participants for all four methods without signiCcant dilCerences.

5.44 Selection Process Comparison

Here we show and compare the participant selection process of the top three se-
lection methods, using BUSINESS region and Rgiijo = 95% as an example. Fig-
ure 54 illustrates the variation of the minimal coverage among all sensing cyles
(minggj<ny COV,(S)) over the number of already selected participants (jSj) using
CrowdRecruiter, MaxMin and MaxCom, where we can observe how the minimal cov-
erage probability evolves:

1. In Figure 5.4a we can see that CrowdRecruiter makes mingnj<n COV;(S) grow
fastest of all three methods. At the tail of the curve, CrowdRecruiter makes
the Minggi<ny COVi(S) converge to the predelned threshold with the smallest
number of selected participants.

2. From the zoom-in Figure 5.4b, we can [hd MaxMin and MaxCom had higher
Minggi<y COVi(S) than CrowdRecruiter when jSj < 80. However, Crow-
dRecruiter outperforms other two methods in maximizing mingnj<n COV;(S)
when jSj O 83.

Based on above two observations, we conclude that, though CrowdRecruiter is not
designed to optimize mingoi<n COVi(S), it can approximate to the optimal solution
and perform the best among all these methods.

5.45 Participant Selection Overlaps

Now we compare the participants selected by all these algorithms for BUSINESS
region under Ratio = 95% and 85%. We count the number of common participants
shared by any two of algorithms. Figure 5.5 shows a matrix diagram corresponding to
the percentage of common participants selected by both Algorithm, and Algorithmy
inside Algorithmy. For example, Figure 5.5a shows that on average 72% of Crow-
dRecruiter's selected participants are shared with MaxMin when Ratio = 95%, while
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on average 64% of MaxMin's selected participants are shared with CrowdRecruiter
under the same settings. From Figure 5.5a, we can see that CrowdRecruiter shares
a large number of selected participants with MaxMin (72%), MaxCom (65%) and
MaxCov (61%) methods. These results show that the bigger the number of shared
participants between CrowdRecruiter and the baseline method, the better the base-
line method performs. A similar phenomenon can be observed in Figure 5.5b under
the coverage constraint Raiio = 85%.

546 Performance Evaluation and Comparison

In this section we investigate how the proposed algorithms perform when applying to
a large region and two connected sub-regions. Specilkally, we evaluate and compare
the performance of all participant selection algorithms using the BUSINESS, RES-
IDENTIAL and MERGED datasets, where the region for MERGED dataset is just
the sum of two connected sub-areas BUSINESS and RESIDENTIAL. We measure
the computation time and examine the selected participants for these three regions.
We carried out experiments using a laptop with an Intel Corei7-2630QM Quart-Core
CPU and 8GB memory. CrowdRecruiter and basdline algorithms were implemented
with the Java SE platform on a Java HotSpot(TM) 64-Bit Server VM.

5.4.6.1 Computation Time Analysis

Table 6.1 presents the average time consumed in each phase using RESIDENTIAL
(45 cell towers), BUSINESS (86 cell towers) and MERGED (131 cell towers) datasets
with constraint Ratjo = 95%. For any region, CrowdRecruiter consumes signicantly
less time than MaxMin while needing similar time as MaxCom and MaxCov. The
time consumption on MERGED dataset (47.6 sec.) is dightly longer than the sum of
BUSINESS and RESIDENTIAL (31.6 sec.). However, the total time consumption of
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Table 5.2: Computation Time Comparison (in seconds, Phase I: Data Preparation and User
Call/ Mobility ProCling, Phase II: |terative Participant Selection Process)

| CR. [ MaxMin | MaxCom | MaxCov
BUSINESS Region
Phase | 4.9 5.0 4.9 4.9
Phase |l | 16.4 1350.4 259 3.7
RESIDENTIAL Region
Phase | 3.7 3.6 3.6 3.7
Phase |1 6.6 234.9 15.0 2.3
MERGED Region
Phasel | 10.2 1.1 9.8 10.3
Phase |l | 37.4 4611.2 56.9 12.5
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Figure 5.5: Percentage of Shared Participantsamong Dilerent Methods (Best Viewed
in Digital Format)

CrowdRecruiter on MERGED dataset is no more than 1 minute, while MaxMin may
need to spend more than 1 hour to [nd the solution.

5.4.6.2 Analysis of Selected Participants

Now we investigate the question whether it is benelcial to select participants in a
large combined region or in two sub-regions with CrowdRecruiter. We compare the
combined results based on BUSINESS and RESIDENTIAL datasets to the results
based on MERGED dataset, in terms of number of selected participants and spatial-
temporal coverage.

Table 5.3 presents the combined number of selected participants where a partici-
pant selected for both regions is counted only once. Clearly the combined number of
selected participants for all methods is signiClcantly larger than the number of partic-
ipants selected for MERGED region as shown in Table 5.1c. That means, all these
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Figure 5.6: Temporal Coverage Ratio of Cell Towersin BUSINESS, RESIDENTIAL
and MERGED Regions

methods may select more participants if they apply to subareas of a target region,
leading to less computation time but more incentive payments.

As the coverage ratio speciled in this work is not 100%, it is conceivable that
some cell towers may have low temporal coverage or zero coverage (e.g., not covered
in any sensing cycle). Thus we would like to examine the temporal coverage of the
cell towers using the three datasets when Ratio = 85%. As shown in Figure 5.6,
while most cell towers can be covered in more than 80% sensing cycles when using
the BUSINESS, RESIDENTIAL and MERGED datasets, the two least covered cell
towersusing three datasetsfall intothetower id = 724 and id = 646 in the MERGED
region, where both cell towers were still covered in 59% of the sensing cycles.

These results suggest the tradeol] between incentive cost and computation time
when deciding whether to employ divide and conquer selection strategy. When the
computation complexity of participant selection istoo high in a large area, it can be
reduced by selecting a less optimal set of participants in multiple small sub-areas and
paying more incentives.

547 Combine Participants from Each Cycle

CrowdRecruiter has adopted a per-task selection approach, optimizing the selected
participantsfor all the sensing cycles. An alternative approach isto select participants
for each cycle and combine them into the solution for the task. Here we evaluate
the algorithms of CrowdRecruiter under such per-cycle selection settings (denoted as
CrowdRecruiter-A) using the MERGED dataset, and compare the result to that of
CrowdRecruiter's per-task selection approach. The key [ndings are summarized as
follows:

1. Under the per-cycle-selection setting, on average 321 participantsare selected for
each sensing cycle by CrowdRecruiter-A, where more than 65% of the selected
participants for each sensing cycle are also selected by CrowdRecruiter (in per-
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Table 5.3: The Combined Number of Selected Participants using BUSI-
NESS+ RESIDENTIAL Datasets

Task | CR | MaxMin | MaxCom | MaxCov
Ratio = 95%
1 1007 1180 1678 3066
2 1009 1197 1502 314
3 906 1084 1484 3390
4 1178 1354 1999 3201
avg. | 1025 1203.8 1665.8 3212.8
Ratio = 85%
1 515 602 774 1036
2 515 596 730 1114
3 462 570 729 1001
4 553 699 775 1280
avg. | 511.3 616.8 752 1107.8

task-selection setting).

2. Combining the selected participants for all sensing cycles, on average 1491 par-
ticipants are selected by CrowdRecruiter-A over the four PCStasks| i.e, 92.1%
more participants than CrowdRecruiter. SpeciCcally, 95.0% participants se-
lected by CrowdRecruiter also appear in the combined result of CrowdRecruiter-
A; while more than 50% participantsin the combined result of CrowdRecruiter-
A are not selected by CrowdRecruiter.

3. The participants selected by CrowdRecruiter-A for any two diCerent sensing
cycles are mostly diCerent, only around 30% selected participants are shared.

It can be seen that even though CrowdRecruiter-A selects fewer participants for each
sensing cycle, the total number of selected participants for the whole PCS task is
much bigger than that selected by CrowdRecruiter.

5.5 Discussion

In this section, we discuss issues that are not reported or addressed in this work,

which can be added to our future work.
Redundant Cell Tower Coverage: CrowdRecruiter participants return sensed

data by piggybacking over their phone calls. If a participant places multiple calls at a
cell tower in one sensing cyde, the CrowdRecruiter cient on the phone will only sense
and upload during the [rst call to prevent redundancy. In one sensing cycle, however,
a cell tower may still be covered by multiple participants if they all place a call. This
redundant coverage usually is not a problem and for some applications it may even
be desirable to gather multiple samples in one area. By analyzing the CrowdRecruit
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results on MERGED dataset, on average a cell tower gets 2.0 and 3.2 samples from
diCerent participantsin every sensing cycle with 85% and 95% coverage, respectively.
For comparison, if we simply select all users as participants, a cell tower would receive

18 samples on average and 79 samples in maximum.
Call/ M obility and Coverage Prediction: Theactual coverage of CrowdRecruiter

depends on the set of selected participants and the accuracy of call/ mobility predic-
tion. Even though the simple prediction techniques work well in CrowdRecruiter
for participant selection, we intend to further improve the coverage evaluation and
call/ mobility prediction methodsin future work. Notethat if the actual coverage with
historical traces of all volunteersislessthan thetarget coverage, CrowdRecruiter may
not return a solution as it will stop when all users have been selected. In such cases,
the MCS organizer needsto either adjust the desired coverage constraint, or to recruit

more volunteers.
Sensing Coverage and Privacy: Duetothelimitation of the D4D dataset, we

can only measure the sensing coverage at the cell tower level. Asthe CrowdRecruiter's
approach is general, if the user's mobility traces can be obtained continuously at [Cne
granularity [96], we could support the PCS applications meeting the coverage require-
ment also at [he granularity. This, however, leads to privacy concarns. Currently
CrowdRecruiter uses historical call/ mobility traces to derive predictive models. One
way to reduce the privacy threats is to only provide predictive models, rather than
raw traces, to CrowdRecruiter, as supplied by the mobile operators. Or the Crow-
dRecruiter client software running on the user's device can captureraw data, but only

upload predictive models for participant selection.
Leveraging M ultiple Piggyback Sensing Opportunities: In addition to pig-

gyback sensing tasks over mobile phone calls, other piggyback methods also exist. For
instance, executing sensing tasks in parallel with Google Map usage also reduces en-
ergy consumption when performing PCStasks [18]. We plan to study the participant
selection that leverages multiple piggyback sensing opportunitiesin a holistic manner

as many predictive modédls, such as for app usage [97], already exist.
Dillerent Incentive Payment M odels: In this works we adopt the payment

model where each participant receives a [Xxed amount of incentive through the whole
task period. Each participant isrequested to sense and upload data for a PCStask in
every sensing cycle. In other MCS applications, diCerent incentive payment models
may be needed. For instance, a per-job payment may be more engaging for some PCS
tasks that require more eCort (e.g., taking a picture or recording an audio clip) [29].
As a future work, we plan to study diCerent selection strategies that are suitable for

those payment modds.
Using Real Sensing Datasets: For many MCSapplications(e.g., moving object

searching [30] and tracking [98]), the spatial coverage might not be the appropriate
constraint required. In our future work, other performance measures need to be
derived according to the requirements of MCS applications and sensing datasets.
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6.1 Introduction

While Chapter 5introduces CrowdRecruiter framework leveraging the energy-elicient
piggyback crowdsensing (PCS) task model and aiming to minimize the total incentive
payment under probabilistic coverage constraint, in this chapter we propose an novel
PCStask allocation framework, CrowdTasker, intending to maximize the overall cov-
erage quality under the [Xed incentive budget constraint. Instead of characterizing
the MCS sensing data quality using the probabilistic coverage, CrowdTasker leverages
a novel coverage quality measurement considering the number of sensed results obtain
in each subarea/ time-slot and the spatial-temporal coverage; further, rather than re-
warding each participant an equal-amount of incentives, CrowdTask adopts a [exible
incentive model. More specilc, Our research is motivated by following observations:

1. Data Quality of MCS Tasks. For each MCS task (including PCS), the
organizer needs to specify the target sensing area, which often consists of a
set of subareas. The organizer also needs to specify the sensing duration (e.g.
10 days), which is usually divided into equal-length sensing cycles (e.g. each
cycle lasts for an hour). The objective of an MCS task is typically to collect
certain environment data from mobile crowd in the target area in each sensing
cycle, with the goal of ensuring certain data quality in each sensing cycle. In
order to ensure data quality, a common approach is to collect more than one
reading from each subarea, so that the actual value of each subarea can be
deduced from multiple sensor readings. Taking a one-week urban air quality
monitoring MCS task as an example, the MCS organizer [rst divides the whole
area into 1km? grid cells and then splits the one-week MCS sensing time into
a sequence of one-hour sensing cycles [21]. If we request to sense one reading
with one mobile device from each grid cell, the reading might be inaccurate
due to various reasons related to the sensing device or sensing condition. If we
request to sense more readings from several mobile phones in each grid cell, the
deduced value from multiple readings can better characterize the status of the
grid cell. However, if we increase the number of sensing readings in each grid
cell above a certain number, the data quality of the deduced value might not
increase anymore. Therefore, the data quality of the MCS task is associated
with the number of sensor readings in each grid cell, but will saturate when the
number of sensor readings reach a certain threshold [99].

2. Coverage Quality of MCS Tasks. As data quality is associated with the
number of sensor readings in each grid cell, it is thus inCuenced by mobility of
mobile users and the sensing coverage in each sensing cycle. In order to quantify
the data quality in MCS, we propose to use Coverage Quality as the sensing
metrics in this work. The coverage quality of each subarea is characterized by
the number of sensor readings obtained in each sensing cycle when the number
is smaller than a threshold, and it remains constant when the number of sensed
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readings exceeds the threshold. The coverage quality of the whole area is the
sum of the coverage quality of all subareas. For example, if the coverage quality
threshold is set to 3 (i.e. 3 sensor readings are desired in each subarea and each
sensing cycle) for an air quality monitoring trial, the MCS task is said to have
the coverage quality of 0, 1, 2, 3, 3 in a certain subarea when it receives 0, 1,
2, 3, 4 sensor readings, respectively. Namely, the data quality will not increase
when more than 3 sensor readings are obtained in each subarea. If an MCS task
is designed for a target region consisting of [ive subareas, with coverage quality
of 0, 1, 2, 3 and 3 respectively, then the overall coverage quality of the MCS
taskisO+ 1+ 2+ 3+ 3= 9 Intherest of this work, we will use the overall
coverage quality to characterize the data quality of an MCS task, and set the
overall coverage quality as the optimization goal.

3. Incentive M odel and Total Budget. In addition to ensuring mobile usersto
save energy in MCS, one el ective way to encourage mobile users' participation
in MCS task is to provide incentives (e.g., money, 3G internet bandwidth, etc.)
to each user. Typically, each selected participant is olered a certain amount
of money as incentive and thus the MCS organizer needs to prepare a budget
equal tothetotal incentives paid to all participantsin each MCStask. With the
coverage quality and total budget in mind, the MCS organizer needs to select
participants with the objective of either

+ minimizing the total budget while ensuring the coverage quality, or
+ maximizing the coverage quality with a xed budget.

Instead of providing each participant an equal amount of incentive, it is rea-
sonable to give more incentives to active participants if they are requested to
collect sensor readings in more sensing cycles. Thus we adopt a more [exible
incentive modd that consists of the following two components:

+ Base incentive - a [Xed incentive paid to each selected participant (e.g.,
$50),

+ Bonusincentive - a varying incentive proportional to the number of sensing
cycles assigned (e.g., $1 bonus for participating in one sensing cyde).

For example, for the participant shown in Fig. 6.1 who is involved in three
sensing cyclesin a PCStask, shewould be given $50+ $1*3 = $53. In the context
of a PCS task for a target sensing region and the given sensing duration, we
would like to address the task allocation problem in order to maximize the
coverage quality of the PCS system with a [xed amount of incentives.

M otivating Example { The basic idea of CrowdTasker can be illustrated by the
following example. With the help of a telecom operator, an environment NGO plans
to monitor the air pollution for citizens in Abidjan City, Cote d'lvoire, updating the
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Figure 6.1: PCS Task Allocation and Execution

air pollution index every hour during daytime with a total budget of 30000 euros. For
the purpose of air quality sensing, as shown in Fig. 6.2, the NGO splits the urban
area (about 100km? with 131 cell towers installed) into 131 subareas around each cell
tower, where the size of each subarea is less than 1km? : then the NGO divides each
working day into 10 sensing cycles (08:00{ 18:00) and each sensing cycle lasts for one
hour. To accurately deduce the air quality index, the NGO aims to collect 3 sensor
readings from each subarea per sensing cycle. In each subarea, the coverage quality is
counted as 0, 1, 2, and 3 if the MCS task collects 0, 1, 2, and 3 readings, respectively,
and the coverage quality remains 3 if more than 3 sensor readings are collected. The
overall coverage quality of the target region is the sum of coverage quality in each cell
tower.

Through the telecom operator, the NGO makes an agreement with 10000 smartphone
users, who are willing to participate in a [ve-day air quality sensing trial (i.e., 50
cyclesin total) and to install a PCS application [18] on their smartphones. According
to the agreement, (a) a [ve-day's call and mobility records of the 10000 candidates
(including the time stamp and cell tower ID for each call) before the trial are made
available to the NGO by the telecom operator; (b) the NGO will provide each selected
MCS participant a base incentive of 50 euros and a bonus incentive of 1 euro for
each assigned sensing cycle; (c) the PCS application will sense and upload air quality
data when the selected participant places a 3G call at a new subarea in each assigned
sensing cycle.

Thus each selected participant could receive 51 to 100 euros in the [ve-day sensing
trial, depending on how many sensing cycles they are assigned sensing tasks. Given
the budget of 30000 euros, the MCS organizer can recruit 300 to 588 participants and
each selected participant could be assigned MCS task for 1{50 sensing cycles, thus the
best solution to the task allocation with the xed budget of 30000 euros is to [nd the
best user combination and each selected user's best cycle combination, to maximize
the coverage quality across all 50 sensing cycles throughout the [ve-day PCS trial.

Technical Challenges. Given the above use case and research objectives, there
are at least three research challenges in the PCS system design:



Introduction 105

Region
BUSINESS
= RESIDENTIAL

ol a Voguigne _,_. Abidjan
i ® 3 ‘.. - pee!

-
L -
Marciryee = KolnEgE

e

Figure 6.2: Target region in the Downtown of Abidjan City

1) Predicting each user’'s call/ mobility based on their historic call/ mobility
traces and estimating the coverage quality of a selected set of participants
with sensing tasks allocated in dillerent sensing cycles. Since we only have
user's historical call records and mobility traces, and the call/ mobility pattern will
change in the PCS deployment week, we thus have to [hd a way to predict the
call/ mobility pattern of each user accurately. Even with inaccurate prediction re-
sults, we need to characterize the spatial coverage probability of each participant and
estimate the joint coverage quality of the selected set of participants with sensing
tasks allocated in diCerent sensing cycles.

2) Lowering the complexity of task allocation in order to achieve near-
maximal estimated coverage quality under the budget constraint. Consider-
ing the motivating example, a brute-force approach of PCS task allocation isto [rst
enumerate all possible user combinations, where each user combination is a user set
with 300 to 588 users out of 10000 candidates; then for each user set combination,
the algorithm further enumerates all possible user-cycle combinations (user number
ranging from 300 to 588, cycle number ranging from 1 to 50) for task allocation in
diCerent sensing cycles. Finally for each user-cycle combination (a set of participants
with sensing tasks allocated in a set of sensing cycles), the brute-force algorithm
estimates the overall coverage quality and the overall incentive payment, and the
set satisfying the budget constraint while achieving the maximal estimated coverage
quality is selected as the optimal set. This search problem, however, is NP hard
in nature [100, 94]. Thus it is necessary to develop a fast approximation algorithm
to search the near-optimal combination set achieving near-maximal coverage quality
with the given budget.

3) Designing a task allocation process which can approximate the \ real
cost" of each participant and search the near-optimal set of user-cycle
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combinations according to the estimated coverage quality and cost. A com-
mon approach for searching the near-optimal user-cycle combination set isthe greedy
algorithm [101], which incrementally adds new user to the selected set of participants
and searches the best user-cycle combination in terms of estimated coverage quality,
where each user-cycle combination refers to allocating a sensing task to a certain
user in a certain sensing cycle. Specilcally, in each iteration of the greedy search,
each unselected user-cycle combination is combined with already selected ones. And
among all the combined sets, the set with the highest Coverage Quality |mprovement
per Incentive Cost is selected as the best set. If the given budget is used up by the
selected set, the near-optimal combination set is said to be found and the greedy
search process terminates. Otherwise another user-cycle combination is added in the
selected set until the budget is fully utilized. The real incentive cost of each user,
however, depends on how many cyces he/ she gets assigned with sensing tasks. As
we cannot foreknow thisin the process, it is hard to compute the \real cost" of each
user-cycle combination. T herefore, we need to design a task allocation process which
can iteratively approximate the \real cost" of each participant and select the near-
optimal set of user-cycle combinations according to the estimated coverage quality
and cost.

With the above mentioned research objective and challenges, the main contribu-
tions of this work are:

1) We formulated the problem of maximal-coverage-quality task allocation in pig-
gyback crowdsensing (PCS) given the budget constraint, with a Cexible incentive
model. To the best of our knowledge, this is the (st work addressing the task allo-
cation issue in the context of PCS, where we optimally select participants and assign
sensing tasks to participants in diCerent sensing cycles according to the predicted
call/ mobility pattern and leverage the call opportunities of participants to sense and
upload data for crowdsensing task.

2) In order to maximize the coverage quality with a [xed amount of incentives,
we proposed a two-phase task allocation framework named CrowdTasker. It takes a
novel approach to search user-cycle combination set, achieving near-maximal coverage
quality under the budget constraint. Theoretical analysis shows that the proposed
search algorithm can achieve the near-optimality with low computational complexity.

3) We evaluated our proposed algorithms with the real world dataset D4D [19],
which contains 4-month call records of 50,000 users from Cote d'lvoire. We show that
the proposed framework performed better than three baseline approaches, using the
call records of two separate regions in Abidjan. Specilrally, CrowdTasker achieved
3.0%-60% higher coverage quality on average than the baseline approaches, under the
same budget constraint.
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6.2 CrowdTasker System Overview

In this section, we formulatethetask allocation problem and present the CrowdTasker
framework in detail.

6.2.1 Task Allocation Problem in CrowdTasker

In CrowdTasker, assuming (1) a PCS task runs over a period of time (e.g., a week)
and each day is comprised of 10 one-hour sensing cycles from 08:00{ 18:00; (2) The
target region of the PCStask consists of a set of subareas, with each subarea around
a cell tower; (3) Each selected participant produces one sensor reading in a sensing
cycle i if a participant places a call at the corresponding cell tower t in i. Note
that if a participant places multiple calls at diCerent cell towers in i, all these cdll
towers receive a copy of sensor reading from the user in i; (4) CrowdTasker computes
coverage quality of the subarea t in cycle i as the minimum between the number of
expected sensor readings E (i.e., the threshold) and that of returned sensor readings,
while the overall coverage quality is the sum of coverage quality in all subareas across
all sensing cycles.

Then, the goal for task allocation is to select a number of participants from the
volunteering mobile users, and determinesin which sensing cycles each selected partic-
ipant is assigned the PCStask, in order to maximize the overall coverage quality with
the given budget. With these defhitions, we formulate the task allocation problem
in CrowdTasker as follows.

Given a [Xed budget for overall incentive payments B, the Base incentive b; and
Bonus incentive by, a set of volunteering mobile users U, a target area consisting of a
set of cel towers T, the call traces of all users in U (including the time stamps and
associated cell towers of their calls), we denote S as the set of participants selected
from U (i.e,, S U). For each selected participant 8u 2 S, we further denote C, asa
set of cycles assigned to u for PCS task participation (e.g., Cy = f0;2;:::9), and Ny:it
as the number of calls made by u at cell tower t in cyclei. The problem is then to
nd S as a subset of U and for 8u 2 Sto assign a subset of sensing cycles C,, with
the objective to

X X X

max minf minfNy+; 19 OA(Cy;i); Eg
Ooi<| t2T u2s
subject to j§ by + jCujbp OB

u2s

where | is the total number of sensing cycles for the PCS task; A(Cy;i) is a binary
function identifyingif the participant u isassigned the PCStask in cyclei. Specilcally
ifi 2 C, then A(Cy;i) = 1,ifi 2 C, then A(Cy;i) = 0. It is worth noting that we
cannot foreknow when and where a participant will place a phone call duringthe PCS
task, i.e, Nyt is unknown when we select participants.
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Figure 6.3: The CrowdTasker Framework
6.2.2 Overall Design of CrowdTasker

CrowdTasker follows a centralized task allocation approach, where a central server
collects and stores the volunteering mobile users' historical call traces in the target
area, and the server selects participants from all volunteering users (S O U) and as-
signs tasks to each participant in a set of sensing cycles (Cy for each 8u 2 S) before
the PCS task execution. Only sdlected participants are needed to perform sensing
tasks, and each selected participant returns sensor readings only in the assigned sens-
ing cycles when a phone call is made. In order to solve the above task allocation
problem, CrowdTasker employs a two-phase solution. In Phase 1, it predicts each
user's call/ mobility in the trial stage, using the historical call and mobility traces of
all users. In Phase 2, it incrementally selects participants and assigns sensing tasks
to each participant in dilerent sensing cycles based on the prediction results, the es-
timated coverage quality and incentive cost. The framework is shown in Fig.6.3 and
works as follows.

6.2.2.1 Predicting each user's call/ mobility using the historical call/ mobility
traces

Given thecall traces of all volunteering mobile users, this phase computesthe call/ mobility
proCle of each user{i.e., probability of each user placing at least one call at a particular
cell tower in a given sensing cycle. Specilcally, CrowdTasker computes the prolle of
each user with following two steps:

1a. M apping Call/ M obility Traces - Given the historical call/ mobility traces
of all users, this step maps each user's historical call/ mobility traces onto | sensing
cyclesand T cell towers. Then it counts [-t{ the average number of calls placed by
each user (u2 U) at each cdll tower (1t 2 T) in each sensing cycle (00 i < |);

1b. Predicting each User's Call/ M obility - Given [, this step estimates
Pi-t(u){the probability of the user (u 2 U) placing at least one call at each cell tower
(t2 T) during each sensingcycle (00 i < |).
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6.2.2.2 Selecting the participants and determine in which sensing cy-
clesthe participants are allocated sensing tasks using an lterative
Greedy Process

Given the call/ mobility prolle of each user and the overall incentive budget B, we
propose an lterative Greedy Process that can approximate the\real incentive cost" of
each participant and search the near-optimal set of user-cycle combinations according
to the estimated coverage quality and cost. In order to estimate the \real incentive
cogt", Phase Il [rst uses the given budget and a greedy search process with a utility
function considering only the estimated coverage quality (namely Utility4) to select a
set of user-cycle combinations (namely X1), then roughly estimates the incentive cost
of each user-cyde combination using the selected set. With the estimated incentive
cost, Phase Il generates a new Utility function considering both estimated coverage
quality and cost (namely Utility2); then the greedy search process is repeated with
Utility, to re-select a new set of user-cycle combinations (namely X2). In this way,
Phase |l repeatsthe process of estimating the incentive cost using thelast selected set
and searchinganew set (i.e, X" and n = 2; 3;4:::) with the estimated coverage quality
and cost (i.e., using Utility, and n = 2;3;4:::), until the near-optimal combination
set is obtained. Speciltally, each iteration of the lterative Greedy Process consists of
following three steps:

2a. Greedy User-Cycle Combination Set Search - Given the full user set
U and all sensing cycles 0 0 i < |, the algorithm combines each volunteering user
with each sensing cycle so as to get the complete set of user-cycle combinations i.e,,
COM = fhu;iij8u 2 U;0 0 i < 1g, where hu;ii refers to the user-cycle combination
of user u in cycle i. With the total Budget B and the Utility function Utility,
(n=1;2;3:::), the algorithm selects a set of user-cycle combinations incrementally,
where:

» Thealgorithm [rst selects a single user-cycle combination hu;ii 2 COM having
the maximal utility (using Utility,) and adds the combination into solution i.e.,
fhu;iig! Xn;

» Thealgorithm then selects one unselected user-cycle combination hv;ji 2 COMnX"
having the maximal utility when combining with X" using Utility,, and adds
the combination into solution i.e, fhv;jig[ X" 1 X0;

» The algorithm calculates the remaining budget asBg = B 0O b, 0jSj 0 jX"j Oh,
where S is the set of all participants appeared in X". Then the algorithm keeps
selecting another unselected user-cycle combination in each iteration until the
remaining budget is not enough to select one more user-cycle combination, i.e,,
BrR<bhorbh OBr<bh+hwhen8u2Sand0i< | there9hu;ii 2 X".

The algorithm [Cnally obtains a set of user-cycle combinations (i.e.,, X") with the given
budget B and Utilityy,.
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2b. Overall Coverage Quality Estimation and the Stopping Criterion
- Given the set of sdlected user-cycde combinations X" from 2a, the algorithm es-
timates the overall coverage quality CQE(X"), based on prediction results. Then
the algorithm compares CQE (X") to the overall coverage quality of previous iter-
ation CQE(X"™"). If CQE(X") O CQE(X"") then the algorithm returns X"=1:
otherwise the algorithm continues for the next step.

2c. Generating new Utility Function - Given the selected user-cycle combi-
nations X", the algorithm computes a new Utility function Utility,+1 based on newly
estimated incentive cost for the next iteration of 2a.

After the Iterative Greedy Process terminates, all users S appeared in X2 from
2b (where 8hu;ii 2 X"“1:9u 2 S) are selected as participants and each selected
participant u 2 Sis allocated sensing tasks in sensing cycles C,, (where Cy = fijo O
i < | and 9hu;ii9X"“1g).

6.3 Core Algorithms and Analysis

In this section, we introduce the core algorithms of Call/ Mobility Prediction, Utility
Calculation and Coverage Quality Estimation.

6.3.1 Call/ M obility Prediction

Assuming the call sequence follows an inhomogeneous Poisson process [87], the prob-
ability of a user u to place at least one phone call at cell tower t(t 2 T) in sensing
cycdei(00i < N) can be modeled as:

Pi;t(u) = 1] " Cuiiit (6.1)

where [yt refers to the Poisson intensity, which is estimated as the average number
of calls that u has placed at t in the historical traces corresponding to the sensing
cyclei. For example, to estimate [}, for sensing cycle i from 08:00 to 09:00, we will
count the average number of calls placed by u at t during the same period 08:00-09:00
in historical traces.

6.3.2 Utility Calculation

We now describe two types of utility functions Utilityq and Utility, (n O 2). Utility,
isused for the [rst iteration of the lterative Greedy Process, and a new utility function
Utility, (n O 2) is generated for each consecutive iteration.

6.3.2.1 The Utility; Calculation

Given the set of incrementally selected user-cycle combinations X' in the (st iteration
of Iterative Gresdy Process (X! = ; for initialization the greedy search process). The



Core Algorithms and Analysis 111

utility for adding a user-cycle combination hv;ii combining with X' is calculated as:
Utilityq(hv;jijX") = CQE(hv;ji [ X") o cQE(X") (6.2)

where CQE (X')is the estimated coverage quality of X1, and CQE (hv;ji [ X') isthe
estimated coverage quality of the combined set merging hv;ji and X'. Intuitively
Utilitys is the coverage quality improvement after adding hv;ji into X'.

6.3.2.2 The Utility, Calculation (n O 2)

During n'h iteration of the Iterative Greedy Process, given the selected set of user-
cycle combinations X", the algorithm computes the utility for adding each user-cycle
combination hv;ji to the selected set X" as:

CQE(hv;ji [ X") O CQE(X™)
costphv;ji

Utilityn(hv;jijxX") = (6.3)
where cost,hv;ji is the modular incentive cost [102] of the user-cycle combination
hv;ji. Intuitively Utility, isthe coverage quality improvement over the incentive cost
of allocating a sensing task to a specilc user in a specilc sensing cycle. costphv;ji is
computed as:
_ X
costahv;ji = C(X"OT) + (ba + bo)C
husii2fhvjignxno 1
[C(X""T) 0 C(X""nfhu;iig)]
huii2XnCinfhw;jig

(6.4)

where X"“1 s the user-cycle combination set selected in the n 0 11" iteration of
Iterative Greedy Process. The cost function C(X) = by 0jSj + b, 0jXj is the total
budget of the user-cycle combination set X, where S isthe set of participants appeared
in X.

6.3.3 Coverage Quality Estimation

Given a set of user-cycle combinations X, which consists of selected participants S
and each selected participant u's sensing cycles Cy for PCS task participation, the
coverage quality of X is

X X X Y
CQE(X) = minfjUj;Eg ]
OEid.I ZQTBlQ'_S 8u2U - (65)
(Pizu(t) DA(Cy;i)) O (10 Piv(t) OA(Cy; 1))
8v2SvzU

where U refers to the set of participants probably returning their sensor readings in
cyclei and cell tower t, E referstothethreshold of sensor readings expected to receive
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in each subarea/ cyce, and the function A(Cy;i) is delhed in Section 6.2.1. To solve
Eqg. 6.5, we implemented a low complexity algorithm for Eq. 6.5 computation using
Probability Generating Function [103].

6.3.4 Algorithm Analysis

In thissection, we [rst analyze a brute force approach that can [hd optimal solution of
the task allocation problem. We then comparatively show that CrowdTasker achieves
near-optimal solution with much lower computational complexity.

Intuitively, a brute force approach can enumerate all possible combinations of k
B

users where ﬁ Ok O bor by (I isthe total number of sensing cycles). Given each
user-combination S 2 U, the algorithm enumerates the cycles of each user in each
user-combination, and [hds each user's cycle-combination (Cy;8u 2 S) in order to
maximize the estimated coverage quality while ensuring the overall incentive payment
not exceeding the budget B. Among all user-combinations, the algorithm selects the
user-combination S” and the corresponding cycle-combinations (CJ; 8u 2 SY) having
the maximal estimated coverage quality. The resulting S” and Cy;8u 2 S" should be
the optimal solution for task allocation. It is, however, impossible to get the opti-
mal solution using this bruteforce_%plproam in polynomial time. The total number of
k-user combinationsinsideU is m which grows combinatorially when the num-
ber of users (jUj) increases. The total number of cycle-combinations of a k-user com-
bination is 2, which grows exponentially when the number of cycles (1) increases.
As a reference, in our motivating example, there are 1:0 0 €*¥! user-combinations for
picking 388 users from 5000 users and 1:12[1 10" possible cycle-combinations for each
of the 388 users. Thus we need a solution that approximates the optimal result but

with lower computational complexity.

CrowdTasker adopts the Iterative Greedy Process with Nested-Loops. In our ex-
perience which was also demonstrated in [104], the outer loop typically runs 5{7

iterations in the worst case. The inner-loop (i.e. step 2a in I11.B) runs W% i
iterations in the worst case. In the best case, the algorithm needs to run jUj 0Ol 02
iterations where the outer loop runs two iterations and the inner loop runs jUj Ol
times (i.e., selecting a single cycle of a user). Both CQE(X) and C(X) are sub-
modular functions over X, as proved in Appendix A.3.1 and A.3.2. According
to the theory of submodular function maximization under the submodular kapsack
constraint [104], CrowdTasker can guarantee to get a Near-Optimal solution with
(0; 10 e71)-approximation bound (111 22-5) when maximizing CQE with the given
budget. For example, given the Base/ Bonus incentive settings by = $50 and b, = $1,
supposing with $10000 budget the optimal solution obtained by the brute-force enu-
meration algorithm achieves the totally coverage quality of 1000 in expectation, then
CrowdTasker with $10000 ]9%“01 = $10200 budget can achieve at least a coverage
quality of 630.
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6.4 Evaluation

In this section, wereport the evaluation results using large-scale real-world call traces
to verify the electiveness of CrowdTasker's task allocation algorithms for PCS tasks.
We [Trst introduce three baseline methods. Then we present the three D4D phone
call traces collected from three regions of dilerent sizes and the experiment settings.
Finally, the detailed evaluation results of CrowdTasker with respect to the three
baseline methods under dilerent incentive settings and coverage quality thresholds
are presented.

6.4.1 Baselines for Evaluation

We provide three basdline task allocation methods using the greedy and partial enu-
meration for comparative studies.

1) MaxCQE - This method adopts the same Greedy User-Cycle Combination
Set search algorithm (2a. of CrowdTasker): adding a user-cycle combination in each
iteration and using the same stopping criterion but with a diCerent utility function.
In each iteration, given an unselected user-cycle combination hu;ii, the selected set X,
MaxCQE calculates the utility as the coverage quality improvement of adding hu;ii
to the selected set X, namely CQE (hu;ii [ X).

2) MaxUtils - This method uses the same Greedy User-Cycle Combination Set

sear ch algorithm asMaxCQE but with adiCerent utility function <2El - E2e 0
where X = fhv;jij8v 2 §;8] 2 Cyg, C(X) is speciled in Equation 6.4 and refers to
the total incentive of X. The utility function of MaxUtils is defnhed as the ratio of
the coverage quality improvement and thetotal incentive diCerence of adding the new
user-cycle combination.

3) MaxEnum - Rather than sdecting an unsdlected cycle of a user in each
iteration, MaxEnum uses a greedy algorithm to select an unselected participant in
each iteration. In each iteration, MaxEnum [rst enumerates all possible cycle sets
of each user, and sdlects each user's best cycle set (e.g., the cyde set C¥ for user V)

having the maximal utility CQE‘g[bi‘éf:Sﬁ?E‘x’, where C¥ = fhv:jijgj 2 C¥ g and
the utility stands for the \ Performanoe’vCOSt" ratio (coverage quality improvement
versusthe cost) of adding the user v with the cycle set Cf . Then among all unselected
users, it selects/ addsthe user (with the selected cycle set) having the maximal utility.
This algorithm continues selecting/ adding users (with the cycle sets) one by one until
the remained budget is less than b, + by, and the participants (with cycdes) already
selected are returned as the result for task allocation.

6.4.2 Dataset for Evaluation

The dataset we used in evaluation is the D4D dataset [15], which contains 50,000
users phone call records (each call record includes user id, call time, and cell tower)
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Figure 6.5: Spatial Distribution of Sensor Readings in three Regions (B=30000, E =
5 ba=50and b= 1)

from Cote d'Ivoire. All these users are re-selected randomly every 2 weeks with
anonymized user ids and totally 10 two-week periods of call records are stored in the
dataset. In each two-week period, our experiment uses the call/ mobility tracesin the
[rst week for task allocation, and we tested the coverage quality of selected partici-
pants with assigned cycles using call/ mobility traces in the second week. Specilically,
we extracted the call/ mobility traces of two connected regions{BU SIN ESS (86 cdll
towers with 7945 mobile usersin the call records), RESIDENTIAL (45 cdl towers
with 6034 users), and a merged region containing call/ mobility traces from above two
regions{M ERGED (131 cell towers with 11363 users), as shown in Fig. 6.2. We
further assume that each PCS task executes for 5 days from Monday to Friday in a
week, runs 5 sensing cycles every working day from 8:00 to 18:00, with each cycle
lasting 2 hours (i.e. 8:00-10:00, ..., 16:00-18:00). Thus each PCS trial consists of 25
sensing cydles.

6.4.3 Coverage Quality Comparison under Budget Constraint

In Fig. 6.4, we present the average coverage quality in each sensing cycle and each
cell tower of the four methods under the same budget/ incentive settings, when:

« TheBonusincentiveis [Xxed toh, = 1, whilethebaseincentiveis set toBa =10,
30, 50 and 70;

» Thetotal amount of incentive budget is set to B = 10000, 20000 and 30000;

» The coverage quality threshold in each cell tower/ sensing cycleisset toE =1,
3and 5.

Notethat the average coverage quality could not be bigger than E, asthe maximal
coverage quality of each cell tower/ cycle is E. Due to the space limit, we only show
theevaluation results with BUSINESS and MERGED regions for the two-week period
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from Dec. 12, 2011 to Jan. 01, 2012. From the coverage quality comparisons shown
in Fig. 6.4, we can observe that:

» In all the cases CrowdTasker outperformed the three baselines under the same
budget constraint. Specilically, CrowdTasker achieved on average 60% higher
coverage quality than MaxCQE, 18% higher than MaxEnum, and 3% higher
than MaxUtils. The evaluation results based on RESIDENTIAL region shows
similar results.

» Using any of these four methods, higher average coverage quality (per cell tower/ cycle)

can be achieved in the BUSINESS region than that in the MERGED region under
the same budget and incentive settings. When using CrowdTasker, the cover-
age quality in each cell tower/ cycle of the BUSINESS region is on average 21%
higher than that in the MERGED region under all incentive/ budget settings.
Note that BUSINESS region is a subset of the MERGED region with fewer cell
towers installed. Thus, it is reasonable to expect that under the same bud-
get constraint, CrowdTasker could achieve higher coverage quality on average
in small target region (e.g. BUSINESS) than that in big target region (eg.
MERGED).

6.4.4 Spatial Distribution of the Sensor Readings

After evaluating the performance of CrowdTasker and three baselines from coverage
quality perspectives, we evaluate the gpatial distribution of sensor readings using
CrowdTasker with the target regions of dilkerent size. In Fig. 6.5, we present the
average number of sensor readings returned from each cell tower in each sensing
cycle using CrowdTasker, using the dataets from the BUSINESS, RESIDENTIAL
and MERGED regions, with the same setting B = 30000, E = 5, by = 50and b, = 1.
From Fig. 6.5, we can see that when using CrowdTasker, the sensor readings are
uniformly distributed across cell towers in any of the three regions. Whilethe coverage
quality threshold in each cell tower/cycde is set to E = 5, the experiment shows
that each cell tower gets on average 5:3, 4:5 and 3:3 sensor readings using datasets
from RESIDENTIAL, BUSINESS and MERGED regions, respectively. Further the
standard deviation is 0:98, 1:1 and 1:2 for three regions, respectively. This suggests
that each cell tower can get a comparable number of sensor readings in any of the
three regions using CrowdTasker.

6.4.5 Computation Time of CrowdTasker

In this section, we evaluate the computation time of CrowdTasker and three baseline
methods, and show how fast each method could complete thetask allocation process.
We carried out experiments using a laptop with an Intel Corei7-2630QM Quart-Core
CPU and 8GB memory. CrowdTasker and basdline algorithms were implemented
with the Java SE platform on a Java HotSpot ™ 64-Bit Server. Table 6.1 presents
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Table 6.1: Computation Time Comparison (in seconds, B = 30000, E = 5, by = 50
and b, = 1)

Regions CrowdTasker | MaxCQE | MaxEnum | MaxUtils
RESIDENTIAL 929.9 113.1 83.5 408
BUSINESS 30224 168.7 2242 786.1
MERGED 41123 217.9 276.1 843.3

the average time consumed using RESIDENTIAL (45 cdll towers), BUSINESS (86 cdll
towers) and MERGED (131 cell towers) datasets with the setting B = 30000, E = 5,
by = 50 and b, = 1. From Table 6.1, we can see that though CrowdTasker took
longer time than other three methods, the total computation time of CrowdTasker
on MERGED dataset was less than 70 minutes. As the task allocation process is
done ol Hine and the sequential algorithm was run on a laptop, shorter computation
time can be easily achieved by running on a more powerful computer or using paralld
algorithms.

6.5 Discussion

In this section, we discuss issues that are not reported or addressed in this work due
to space and time constraint, which could be added to or explored in our future work.

Using M axUtils for Utilitys calculation: In some cases MaxUtils performed as
well as CrowdTasker. It isreasonableto think whether CrowdTasker could be further
improved when using the Utility function of MaxUtils for Utility, calculation (i.e.,
using MaxUltils to initialize the iterative greedy process). Our experiment, however,
found this solution did not obtain a better result because the coverage quality of
the second selected set of user-cycle combinations did not improve i.e., CQE (X?) [
CQE(X") when replacing Utilitys with the Utility function of MaxUtils.

Call/ M obility Prediction and Privacy: The actual coverage quality achieved
by CrowdTasker dependson the set of selected participants, each participant's selected
cycles for PCStask participation, and the accuracy of call/ mobility prediction. While
the simple prediction techniques worked well in CrowdTasker for task allocation, we
intend to further improve the coverage quality estimation and call/ mobility prediction
methods in future work. To obtain the call/ mobility prediction models, currently
CrowdTasker collects, stores and analyzesthe raw call/ mobility traces of mobile users.
This, however, leads to privacy issues. One way to reduce the privacy threats is to
only provide predictive models, rather than raw traces, to CrowdTasker, as supplied
by the mobile operators. Or the CrowdTasker client software running on the user's
device can capture raw data, but only upload predictive models for task allocation.

Coverage Quality Metrics and Incentive M odels: Dueto the limitation of
the D4D dataset, we can only measure the sensing coverage at the cell tower level.
If the user's mobility traces can be obtained continuously at a Cner granularity [96],
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CrowdTasker is gtill applicable as it is a general approach. Further in this work we
adopt the Base/ Bonus incentive model where each participant receives both Base{a
[xed amount of incentive through the whole task period and Bonus{a [xed amount of
incentive for MCS task participation in each sensing cycle. Each participant is only
requested to sense and upload data for a PCS task in the assigned sensing cycles.
In other MCS applications, dilerent incentive models may be needed. For instance,
a reputation-based incentive model may be more engaging for some PCS tasks that
give each participant diCerent incentives according to his/ her trustworthiness [105].
As future work, we plan to study dilCerent task allocation strategies that are suitable
for those incentive models.

Leveraging Multiple Piggyback Opportunities: In addition to piggyback
sensing tasks over mobile phone calls, other piggyback methods also exist. For in-
stance, executing sensing tasksin parallel with Google Map usage also reduces energy
consumption when performing PCS tasks [18]. We plan to study the participant se-
lection that leverages multiple piggyback sensing opportunities in a holistic manner
as many predictive models, such as for app usage [97], already exist.
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7.1 Summary

In this T hesis, we studied the fundamental question

How can we design a mobile crowdsensing application, in order to collect high
quality sensor data as energy-el] ciently and cost-ellectively as possible?

Most previous approaches that addressed this question have relied upon partial con-
cerns of mobile crowdsensing design, e.g., considering only one or few designing issues
among energy consumption, incentive-based encourage, privacy, overall sensing data
quality and total incentive payment, without taking all these [ive factors into account.

In this T hesis, we presented four novel frameworks for mobile crowdsensing, con-
sidering all aforementioned issues, and with dilCerent optimization objectives/ constraints
(e.g., maximizing sensing data quality under budget constraint, minimizing overall en-
ergy consumption under sensing data quality constraint, and etc.), so asto mest the
requirements of practical MCS applications. In order to reduce energy consumption
of each participant, the frameworks are proposed to leverage various novel energy-
saving strategies like parallel data transfer and piggybacked sensing task moddl. In
order to select MCS participants and assign MCS task precisely, subject to diler-
ent objectives and constraints, we design several participant selection/task allocation
algorithms adopting the sequential decision making, and combinatorial optimization
techniques for these frameworks.

In following sections, we will brielly summarize the key contributions presented in
this Thesis.

119
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7.1.1 Summary of EEMC

In Chapter 3, we have presented EEMC| a framework to enable energy-elicient
mobile crowdsensing, where the goal isto reduce energy consumption in data transfer
for both individual participants and the whole crowds while securing the sensed result
collection from a minimum number of participantswithin a speciCc timeframe (namely
a sensing cycle). The proposed framework embeds several mechanisms from existing
work such as parallel transfer and cycle-based delay-tolerant participatory sensing
into a novel Two-call-based MCS data transfer scheme, which is capable of reducing
energy consumption in data transfer for individual device by 75% compared to the
common 3G-based schemes. In order to reduce overall energy consumption for the
whole crowds, we propose a two-step task assignment decision making algorithm to
avoid redundant task assignments. Evaluations with a large-scale real-world dataset
show that: the proposed algorithm constantly outperforms baseline approaches in
terms of task assignment; and EEMC can reduce overall energy consumption in data
transfer by 54%{66% when compared to the 3G-based schemes.

7.1.2 Summary of EMC?

In Chapter 4, we have investigated the problem of reducing energy consumption of
both individual user and all participants in data transfer caused by task assignment
and data collection of MCS tasks, considering the user privacy issue, minimal number
of task assignment requirement and sensing area coverage constraint. This problem is
motivated by the needs of encouraging more mobile usersto participatein urban-scale
crowdsensing applications. To address the problem, we propose a novel MCS frame-
work called EMC3, leveraging a proposed delay-tolerant MCS setting, the parallel
transfer technique, and a three-step process for task assignment. Evaluations with a
large-scale real-world dataset show that our proposed EMC? framework outperforms
the baseline approaches, and it can reduce 43%-68% overall energy consumption in
data transfer compared to the 3G-based solution.

7.1.3 Summary of CrowdRecruiter

In Chapter 5, we proposed a novel participant selection framework, named Crow-
dRecruiter, for Piggyback Crowdsensing (PCS), which intends to minimize the total
incentive payments by sdlecting a small number of participants while satisfying a pre-
dened coverage constraint. The PCS was adopted to reduce energy consumption
of individual mobile device, by exploiting call opportunities to perform sensing tasks
and return sensed results. In order to select the minimal set of participants under
probabilistic coverage constraint, CrowdRecruiter [rst predicts the call and coverage
probability of each mobile user, then proposes a utility function to measure the joint
coverage probability of multiple users, and [hally deploys a low-complexity but ellec-
tive algorithm to incrementally select the participants. Evaluations with a large-scale



Future Work 121

real-world dataset show that our proposed CrowdRecruiter outperforms three base-
line approaches, and on average it selects 10.0%({73.5% fewer participants compared
to basdline approaches under the same probabilistic coverage constraint.

7.1.4 Summary of CrowdTasker

In Chapter 6, we proposed a novel task allocation framework, CrowdTasker, for Piggy-
back Crowdsensing (PCS). CrowdTasker is designed to maximize the overall coverage
quality across all sensing cydes with a [(xed budget by selecting a number of par-
ticipants and determining in which sensing cycles each selected participant is needed
for the PCStask participation. The PCS was adopted to reduce energy consumption
of individual mobile device, by exploiting call opportunities to perform sensing tasks
and upload sensed data. In order to allocate PCS task maximizing the coverage qual-
ity while satisfying the budget constraint, CrowdTasker (st predicts the coverage
probability of each mobile user, then performs a near-optimal participant/ cycle task
allocation search algorithm with low computational complexity. Theoretical analysis
proves that CrowdTasker can achieve near-optimality, evaluations with a large-scale
real-world dataset show that CrowdTasker outperformed three baseline approaches,
and on average it achieved 3%{60% higher coverage quality compared to baseline
approaches under the same budget constraint.

7.2 Future Work

The long-term goal of our research is pushing at the frontier of the techniques about
mobile crowdsensing, especially in situations where a large group of participants are
needed to distributedly collect sensor data in a large target region. With respect to
this research goal, | plan to continue designing novel MCS frameworks and applica-
tions for urban environmental monitoring.

In my future work, | will try to answer following particular questions:

» How can we determine, which sensing data quality metrics(e.g., spatial-temporal
coverage, humber of samples, con[dential level, and etc.) should be used in
each practical MCS application, in order to delivery accurate sensed result to
the end-users?

+ How can we determine, which type of incentives (e.g., money) and how much
incentives should be paid to each participant, in order to encourage their par-
ticipation in both psychological and economical aspects?

+ How can we make use of mobile users historical digital footprints (e.g., mobility
traces), in order to better understand each user's behavioral/ mobility patterns
but without scarifying users privacy?
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+ How can we build mobile crowdsensing frameworks and applications, which op-

timally recruit participants and allocate sensing tasks, subject to the various
sensor data collection goals/ constraints, addressing the energy, incentive, sens-
ing data quality and privacy issues? Isthere any theoretical guarantee for the
performance of data collection, even in the worst-case?

In order to answer these questions, we might need to solve quite a lot technical chal-
lenges, bring together geographical information processing, human factors of comput-
ing, privacy protecting, machine learning, optimal decision making and other sensor
network areas. Hereby, we need to identify the next steps of future research and the
directions along the way, some of which | outline in the following.

1. Characterizing the target region using Sparse and Partial Observations - Col-

lecting sensor data fully covering the target region or covering the most part of
the target region usually costs so much (eg., total energy and incentive). Re-
cent studies in compressive sensing and spatial correlation shows it is possible
to recover the sensed results of the whole target region, through collecting a few
sensed results that sparsely cover the target region. Exactly, we have already
started studying a novel sparse sampling strategy [106] that intends to collect
sensor data from a minimal number of subareas while inferring sensor data of
the rest subareas with high accuracy.

. Making trade-ol1 among Incentives, Privacy and Energy consumption - Recent

studies in incentive pricing mechanism [56, 57] show that there might exists an
equilibrium price satisfying both the MCS organizer and each MCS participant,
according to the cost (energy consumption, mobile phone usage, risky of pri-
vacy leakage, and etc.) of each participant obtaining a sensed result and the
economical value of the sensed result. In the future research, we plan to study
the incentive payment mechanisms making trade-ol1 among incentives, privacy
and energy consumption, considering the both psychological and economical
aspects.

. Online human behavior/ mobility learning using partial and incremental traces -

In thisthesis, we use users' historical call/ mobility tracesto learn human mobil-
ity patterns and further allocate sensing tasks according to the patterns. In the
practical MCS applications, however, there might not be able to collect users
complete historical traces for a long time. Thus, there needs a method to get
user'sreal-time mobility and behavioral data, further aggregate the data newly
arrived with the traces already collected, in order to obtain the incremental
traces. Further the method should be able to learn users' behavioral/ mobility
patterns through mining the incremental mobility/ behavioral traces.

. Optimal participant selection and task allocation subject to complex MCS data

collection objectives/ constraints - In this thesis, we study several optimization
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algorithms for optimal participant selection and task allocation, subject to some
specilc MCS sensing data quality and incentive objectives/ constraints. Our
future work plans to study a general optimization framework that is able to
handle more complex objectives/ constraints.

| beieve that these directions might pose great potentials for academic research as
well as for building MCS systems and applications that will have great real-world
inCuence with signiCicant benelts to our society.
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A.1 Algorithms and Proofs from Chapter 3 and 4

A.1.1 Low-complexity Algorithms for Psyfin Computation

As the computation complexity of enumerating all subsets from a n-length set is
O(2M), it is very time-consuming to solve Equation 3.2 through a subset-enumeration
algorithm. For example, thereare 2°0 = 1:126 1 ' subsetsin a set with 50 elements.
To reduce the computation complexity of Psyfin in Equation 3.2, we proposes an
algorithm with O(n?) complexity. According to the Probability Generating Function
Theory [103], PfXkt(Akx O Rgx) = Ngis equivalent to the coelicient of ZN in the
following polynomial over z:

Y
(z OPk:tfxm O 1g+ (10 Py:tfxm O 1g)) (A1)
Um2Ak DRk

Finally, we can resolve the above polynomials and calculate all necessary coellcients
by using algorithm 5.

125
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Algorithm 5: Computing Coellcients
Input : Ak, Rk, and Pyfxp = ng
QOutput: coel¥{ the array of coellcients

1 begin
/* initiate the coefficients of polynomial. */
2 coe[s NEW_ARRAY OF _SIZE(1);
coel 0] 1,
/* Cumulative Product of Binomials */
4 for 00 m < jAx O Rgj do
5 new_length LENGTH OF(coels)+ 1;
6 new_coel’s NEW_ARRAY OF SIZE(new_length);
7 for 0 0 i < LENGTH_OF(coells) do
8 new_coel s[i] += coelH[i] * (1-Pk:tfxm [ 19);
9 new_coel§[i+ 1] += coelS[i] * Pktfxm O 1g;
10 end
11 coells new_coelk,
12 end
13 return coells;
14 end

A.1.2 Low-complexity Algorithm for P{; i

Similar to Equation 3.2, Pkaj;t(F Su [ (Ak O Rg)) = Ng is equivalent to the
coellcient of zN in polynomial:
Y
(2 0P{(Um) + 10 Py(Un))
(A.2)
Um2(Ax DRk )L F Sy,
Obviously, all coelIcientsin Equation A.2 can be resolved by an algorithm similar to
Algorithm 5 under O(n2) complexity.

A.2 Algorithms and Proofs from Chapter 5
A.2.1 Low-complexity Algorithms for COV; S) Computation

P . -

The oveFr)aII computation complexity of this approach should be O( ‘kT:JE % O
iTi jTj! iTj iTjl ;

k) = O( L:':m) where L:':W is the number of cel tower com-

binations (k 2 [[]jT]j] refers to the size of each combination), and the complexity
of probability computation for a k-size combination is O(k). However the overall
computation complexity is unacceptable, since the number of cell tower combinations
grows combinatorially when the size of T increases. For example, given an overall set
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of 120 cell towers, there are m 1 1:110110* 19 cell tower combinations, each
of which consists of 100 cell towers.

In order to simplify the calculation of Eq. 5.5, we propose a fast algorithm based
on Probability Generating Function Theory [103]. Specilically, we compute COV;(S]
fug) as:

X
COVi(S[ fug) O coeli(k;S[ fug); (A.3)

k=0

where coelj(k; S[ fug) denotes the coeIcient of zK in the following polynomial over
z

(zOQit(S[ fug) + (10 Qi;t(S[ fug))) (A.4)
t2T

Note that using a dassic polynomial production algorithm [107], we can resolve the
polynomial in Eq. A.5 and calculate all necessary coe’Icientswith O(jTj2) complexity.

A.2.2 Proof {Utility S) is an submodular function

First, we prove Utility(S) is an non-negative/ non-decreasing function over S and a
simple proof is as follows.

Proof - Since 8S 1 U and 8u 2 S there exists 0 1 P;¢(u) O 1, we can conclude
Qi-t(S) O 0. Further 8u®2 UnS there exists Qit(S[ fu)=100110 Qit(S)) O(1 O
Pi;t(uo)) 0 Qjt(S), we can conclude Qj-t(S) a non-decreasing set function. Finally, as
Utility(S) isthe sum of Q;+(S), the utility function is a non-negative/ non-decreasing
function. O

Second, we prove Utility(S) is a sumbodular set function and a simple proof is as
follows.

Proof - 8S 11 U and 8u® u®2 UnS, there exists

Qia(SI futuly) 0 Qi+(S[ fuly)

= (10 Pi(u)) 010 Pig(u9) 0(1 0 Pip(u®)
S
0 (10Pig(u) 010 Pig(u9)
u2s
= Qi«(S[ fuly) 0 Qi(S)

Q;j-+(S) thusis a submodular set function, according to the deCnition of submodu-
larity [95]. Further, since Utility(S) isthesum of Q;(S), Utility(S) isan submodular
set function aswell. O
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A.3 Algorithms and Proofs from Chapter 6

A.3.1 Low-complexity Algorithms for CQE (X) Computation

The straightforward solution to Eq. 6.5 is to [rst, enumerate all possible user com-
binations from all selected participantsin S, to compute the probability of each user
combination returning sensed result in each sensing cycle and each cell tower (eg,
Pu:i-t for the user combination U in cell tower t and cycle i) and further compute the
expected coverage quality of this combination (e.g., minfjUj; Eg UPuys-t), and then
to sum the expected coverage quality of each user combination in each cell tower
and each sensing cyde as the result. The overall computation complexity of this
approach should be O((29 0 1) 0j§ 0jTj 01 ), where 29 [ 1 is the number of user
combinations and j§ refers to the complexity of probability computation. However
the overall computation complexity is unacceptable, since the number of user com-
binations grows exponentially when the size of S increases. For example, given an
overall set of 100 selected users, there are 2190 (11 = 1:27 1e* 30 user combinations.
In order to simplify the calculation of Eq. 6.5, we propose a fast algorithm based on
Probability Generating Function Theory [103]. Specilcally, we compute CQE(X) as:

X X X

CQE(X) O minfjlj; Eg Ocoel(i;t;1;S)
Ooi<1 2T 0ol<jS

where 8hu;ii 2 X there exists 9u 2 Sand 9i 2 Cy, and coel(i;t;];S) denotes the
coellcient of Z' in the following polynomial over z:
Y
(z OPju(t) OA(Cy; 1)) + (110 Pizu(t) DA(Cy;i))) (A.D)
u2s

Note that using a classic polynomial production algorithm [107], we can resolve the
polynomial in Eq. A.5 and calculate all necessary coellcients with O(jSj2) complexity.
Thus the overall computational complexity of this algorithm is O(jTj 0l [jSj?).

A.3.2 Proof {CQE X) is an submodular function

Proof | - CQE(X) is an submodular function: For each cdll tower t and cydle i,
gven a set of users U-Oaﬁigned MCSdask in the cycle i, and the function gi.t(U;) =
uzu; MINFJUEQD  gpy Piu(t) O gyoy, vau (10 Piv(t)) estimating the coverage
quality achieved by users U; in the cyclei and cell tower t, we can simply prove that
Git(U[ fu;ve) D gi+(U[ fug) O g+(U[ fug) O g+(U) whereu and v are two users
assigned with cydei; thuswesay g-+(U) isa submodular function over the set of users
assigned with cyclei. Further CQE (X) is the linear sum of g;-+(U) over each sensing
cyclei and each cell tower t. Thus, we can conclude that CQE (X) is ansubmodular
function. 0
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A.3.3 Proof {The total Base/ Bonus incentive payment is an sub-
modular function over X

Proof 11 - C(X) is an submodular function: Given any user-pair-set X, and two user-
cyde-pairs hu;ii;hv;ji (hu;ii & hv;ji, hujii 2 X, hv;ji 2 X), we prove C(X) as a
submodular function as follows. If there exists another user-cycle-pair of user u in X
then C(X[ fhu;ii;hv;jig)OC(X[ hv;ji) = C(X[ hu;ii)0C(X) = by; elseif uisanew
userinX and u & vthen C(X[ fhu;ii;hv;jig)OC(X[ hv;ji) = C(X[ hu;ii)0C(X) =
byt by elseifuisanewuserin Xand u = vthen C(X[ fhu;ii;hv;jig)OC(X[ hv;ji) =
bo < C(X[ hu;ii) O C(X) = bp+ ba. Thus, C(X[ fhu;ii;hv;jig) O C(X[ hv;ji) O
C(X[ hu;ii) O C(X) and we can conclude C(X) is a submodular set function. O
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Curriculum Vitae and Research
Publications

B.1 Curriculum Vitae

Haoyi Xiong was born in Wuhan, China. From Sept 2011 to present, he is a PhD
student supervised by Prof. Monique Becker, Prof. Daqing Zhang and Dr. Vincent
Gauthier at Ingtitut Mines-Ta&ecom/ TELECOM SudParis and Universite Pierre et
Marie Curie (Paris VI) . He received his M.Sc in Information Technology from the
Hong Kong University of Science and Technology in 2010, and B.Eng in Electrical
Engineering and Automation from Huazhong University of Science and Technology
in 2009. His research interests include mobile crowdsensing, participatory sensing,
and human mobility data mining. He has served as a TPC-member and an external
reviewer for IEEE I-SPAN'14, IEEE WCNC-IOT'14, IEEE UIC '13{14, and IEEE
CPSCom'13, and as a reviewer for Journals including ACM TIST, IEEE ComMag,
and Springer PUC.

B.2 Research Publications

B.2.1 Published or Accepted Papers

1. Haoyi Xiong, Daging Zhang, Guanling Chen, Leye Wang, and Vincent Gau-
thier, CrowdT asker: Maximizing Coverage Quality under Budget Constraint.
IEEE International Conference on Pervasive Computing and Communications
(PerCom'15), to appear.

2. Haoyi Xiong, Daging Zhang, Leye Wang and Hakima Chaouchi, EM C3:
Energy-elicient Data Transfer in Mobile Crowdsensing under Full Coverage
Constraint, 2014. |EEE Transactions on Mobile Computing (TMC), Preprint
Online.

3. Haoyi Xiong, Daging Zhang, Leye Wang, Paul Gibson and Jie Zhu, EEMC:
Enabling Energy-Ellcient Mobile Crowdsensing with Anonymous Participants,
2014. ACM Transactions on Intelligent System and Technology (TIST), to

appear.
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4. Daqing Zhang, Haoyi Xiong, Leye Wang and Guanling Chen, CrowdRecruiter:
Selecting Participants for Piggyback Crowdsensing under Probabilistic Cover-
age Constraint, 2014. ACM International Joint Conference on Pervasive and
Ubiquitous Computing (Ubicomp'14), Seattle, WA.

5. Haoyi Xiong, Daging Zhang, Dagiang Zhang, Vincent Gauthier, Kun Yang
and Monique Becker, MPaaS: Mobility Prediction asa Servicein Telecom Cloud,
Information Systems Frontiers, Vol 16, pp 59{ 75, 2014, Springer.

6. Haoyi Xiong, Leye Wang and Daging Zhang, EEMC: An Energy-Ef7cient
Mobile Crowdsensing Mechanism by Reusing Call/ SMS Connections, D4D Data
Challenge, The Third International Conference on the Analysis of Mobile Phone
Datasets (NetMob' 13), Massachusetts, USA, 2013.

7. Haoyi Xiong, Daging Zhang, Dagiang Zhang and Vincent Gauthier, Predict-
ing Mobile Phone User Locations by Exploiting Collective Behavioral Patterns,
The Sth IEEE Conference on Ubiquitous Intelligence and Computing (UIC'12),
Fukuoka, Japan, 2012. (Best Paper Award).

8. Daging Zhang, LeyeWang, H aoyi Xiong and Bin Guo, 4W1H in Mobile Crowd
Sensing. |EEE Communications Magazine, 2014, |EEE.

9. Dagiang Zhang, Daging Zhang, Haoyi Xiong, Laurence T. Yang and Vincent
Gauthier, NextCell: Predicting Location Using Social Interplay from Cell Phone
Traces, IEEE Transactions on Computers, preprint, IEEE.

10. Daqgiang Zhang, Daqing Zhang, Haoyi Xiong, Ching-Hsien Hsu, Athanasios
Vasilakos, BASA: Building Mobile Ad-Hoc Social Networks on Top of Android,
IEEE Network Magazine, Vol.28, pp 4{9, 2014, IEEE.

11. Dagiang Zhang, Min Chen, Mohsen Guizani, Haoyi Xiong, and Daqing Zhang,
Mobility Prediction in Telecom Cloud Using Mobile Calls, IEEE Wireless Commun-
ication Magazine, Vol 21, pp 26{32, 2014, IEEE

12. Leye Wang, Daging Zhang and Haoyi Xiong, ellSense: Energy-Ellcient and
Cost-Elective Data Uploading in Mobile Crowdsensing, Workshop on Perva-
sive Urban Crowdsensing Architecture and Applications (PUCAA'13) with Ubi-
comp'13.

B.2.2 Under Reviewing/ Revision

1. Leye Wang, Daging Zhang, Animesh Pathak, Chao Chen and Haoyi Xiong,
CCS-TA: Toward Online Task Allocation in Mobile Compressive Crowdsensing,
Submitted.
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2. LeyeWang, Daging Zhang, Zhixian Yan, Haoyi Xiong and Bin Xie, e[Sense: A
Novel Mobile Crowdsensing Framework for Energy-E]cient and Cost-Eective
Data Uploading, Submitted.

3. Leye Wang, Daqging Zhang, Haoyi Xiong and J. Paul Gibson, ecoSense: Min-
imize Participants Total 3G Data Cost in Mobile Crowdsensing Using Oppor-
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