Towards Efficient and Fault-Tolerant Optical Networks: Complexity and Algorithms

Keywords: Asymmetric nodes, forbidden transitions, shared risk link group, routing and spectrum assignment, tree-decomposition, complexity. Vers des Réseaux Optiques Efficaces Noeuds asymétriques, transitions interdites, groupe de liens partageant un risque, routage et allocation de spectre, décomposition arborescente, complexité

We study in this thesis optimization problems with application in optical networks. The problems we consider are related to fault-tolerance and efficient resource allocation and the results we obtain are mainly related to the computational complexity of these problems.

The first part of this thesis is devoted to finding paths and disjoint paths. Finding a path is crucial in all types of networks in order to set up connections and finding disjoint paths is a common approach used to provide some degree of protection against failures in networks. We study these problems under different settings. We first focus on finding paths and node or link-disjoint paths in networks with asymmetric nodes, which are nodes with restrictions on their internal connectivity. Afterwards, we consider networks with star Shared Risk Link Groups (SRLGs) which are groups of links that might fail simultaneously due to a localized event. In these networks, we investigate the problem of finding SRLG-disjoint paths.

The second part of this thesis focuses on the problem of Routing and Spectrum Assignment (RSA) in Elastic Optical Networks (EONs). EONs are proposed as the new generation of optical networks and they aim at an efficient and flexible use of the optical resources. RSA is the key problem in EONs and it deals with allocating resources to requests under multiple constraints. We first study the static version of RSA in tree networks. Afterwards, we examine a dynamic version of RSA in which a non-disruptive spectrum defragmentation technique is used.

Finally, we present in the appendix another problem that has been studied during this thesis. It is a graph-theoretic problem referred to as minimum size treedecomposition and it deals with the decomposition of graphs in a tree-like manner with the objective of minimizing the size of the tree.

We study in this thesis problems motivated by applications in optical networks. In this introduction, we briefly present the context and motivations behind the problems we consider. Then, we present our contributions and the thesis organization.

Context and motivation

Optical networks are at the heart of long-distance communication networks [START_REF] Senior | Optical Fiber Communications[END_REF][START_REF] Mukherjee | Optical Communication Networks. McGraw-Hill series on computer communications[END_REF][START_REF] Ramaswami | Optical Networks: A Practical Perspective[END_REF]. In optical networks, the data is encoded into pulses of light and carried on a very thin strand of glass or plastic called the optical fiber. This fiber is a very efficient transmission medium thanks to its large bandwidth and its low dispersion and attenuation properties [START_REF] Senior | Optical Fiber Communications[END_REF][START_REF] Ghatak | An Introduction to Fiber Optics[END_REF]. It is usually composed of a core of glass or plastic surrounded by a cladding of a different glass or plastic, with a lower index of refraction. The light signal travels in the core of the fiber through a series of reflections as illustrated in Fig. 1.1. The optical fiber enables the optical networks to provision very high data rates on very long distances and to constitute hence the backbone carrying the global data traffic. This traffic is however, growing on a daily basis at exponential rates and is not expected to slow down in the near future. According to a Cisco report [START_REF]Cisco Systems[END_REF], the global IP traffic has increased more than fivefold in the past 5 years, and will increase nearly threefold over the next 5 years. This makes it necessary to think of ways to use the optical resources more efficiently, in order to satisfy the growing traffic, and also to provide more fault-tolerance in order to protect this traffic on which the world has become very dependent. In this thesis, we tackle mainly optimization problems related to these two desired properties of optical networks: fault-tolerance and efficiency.

Light pulses

Fault-tolerant optical networks. Fault-tolerance is an important requirement in optical networks [START_REF] Ramaswami | Optical Networks: A Practical Perspective[END_REF]. These networks carry significant amounts of data and any failure can result in the loss of considerable traffic and the disruption of numerous services. Failures in optical networks can be full or partial, single or multiple, software or hardware caused. They can be triggered by a fiber cut or a power outage, by a human error or a natural disaster. Service providers have to account for all these types of failures while designing the schemes which ensure the resiliency of their networks. These schemes are generally of two types: protection schemes and restoration schemes [START_REF] Ramamurthy | Survivable WDM mesh networks. part i-protection[END_REF]. In the protection schemes, redundant capacity is reserved in the network and used to reroute the traffic in case of failures. These schemes ensure a fast failure recovery (within 50 ms in general). In the restoration schemes, the resources ensuring the recovery are computed after the detection of a failure and the traffic is restored on a slower time scale [START_REF] Ramaswami | Optical Networks: A Practical Perspective[END_REF]. We will be concerned in the first part of this thesis with protection schemes and more precisely with the dedicated path protection scheme (DPP).

The DPP consists in computing for each demand two paths. One path, called working or primary path, is used to transmit data under normal operation and the other one, the protection or alternate path, is reserved as a backup to carry the traffic in case of failures. A general requirement is that these paths have to be disjoint, so that at least one of them can survive a failure in the network. In the first part of this thesis, we investigate the DPP problem under two different settings.

Firstly, we consider networks with asymmetric nodes. These are nodes with restrictions or constraints on their internal connectivity; nodes in which the signal entering from a given ingress port can only reach a subset of the egress ports. In these networks, we consider single link or node failures and formulate the DPP as the problem of finding link or node-disjoint paths with some restrictions.

Secondly, we consider a different type of failures; namely multiple simultaneous localized failures captured by the notion of star Shared Risk Link Groups (SRLG). An SRLG is a set of links that are likely to fail at the same time due to a single event and star SRLGs are SRLGs localized around nodes. In networks with star SRLGs, we formulate the DPP as the problem of finding SRLG-disjoint paths, i.e. paths that share no risk of failing at the same time with respect to the multiple failures we consider.

Efficient use of the optical spectrum. In order to meet the growing demand, the optical networks need to evolve. New research has been conducted in this direction and a new generation of optical networks has emerged; one that is more efficient and more scalable: the Elastic Optical Networks (EONs) [GJLY12, JTK + 09]. EONs offer the possibility to use the optical spectrum efficiently so as to allocate to de-mands exactly the resources they need. The technologies enabling EONs, e.g. new transceivers and switches, are being actively developed and experiments are being conducted both in the laboratory and in the field. In parallel, optimization problems related to the resource allocation in EONs are being formulated and studied. In the second part of this thesis, we are concerned with one of these problems, namely, the problem of Routing and Spectrum Assignment (RSA).

In the RSA problem, we are given a network and a set of requests or connection demands and the aim is to provision the requests or set up the connections with the objective of minimizing the number of utilized optical resources and under constraints dictated by the new EON technologies. To provision a request, a path has to be found from its source to its destination (routing), and a spectrum interval has to be allocated to the request on all the links of this path (spectrum assignment).

We study different versions of the problem of RSA. Firstly, we study a static version of RSA in the particular case of optical networks in form of trees. In the static RSA, all of the demands are known in advance and the objective is to provision them all with minimum spectrum. Since in tree networks, there is only one path between each pair of nodes, the routing problem is already solved. RSA reduces then to the problem of Spectrum Assignment (SA). Secondly, we study a dynamic version of RSA. In the dynamic RSA, requests arrive and leave the network dynamically and the objective is to provision each request as it arrives to the network. The decisions made to allocate optical resources to an arriving request have to be wise in the sense that they should not decrease the chances of provisioning future requests nor cause more spectrum fragmentation.

Contributions and organization of the thesis

This thesis is organized in two parts and an appendix. In the first part, entitled On paths and disjoint paths, the focus is on the problems related to the fault-tolerance property in optical networks. In the second part, entitled On routing and spectrum assignment, the focus is on the problems related to the efficiency. The appendix is devoted to another approach followed in the study of the problem of routing and spectrum assignment as well as to another graph-theoretic problem tackled during this thesis. We use throughout the thesis graph models and various tools of algorithmic graph theory (see [START_REF] Bondy | Graph Theory[END_REF] for definitions). Our contributions for the problems we consider consist mainly of establishing computational complexity results; we prove the NP-completeness of many of these problems and then we design approximation algorithms or polynomial-time algorithms for special cases. We provide, in what follows, short descriptions of the chapters of this thesis including our contributions.

Part I: On paths and disjoint paths

Chapter 2: On paths in Networks with Asymmetric Nodes. We tackle in this chapter the problems of finding a path and disjoint paths in optical networks with asymmetric nodes. The graph theoretic framework we use to study these problems is the graph with forbidden transitions where a transition is a pair of adjacent edges. In this model, the network is a graph G = (V, E) and the asymmetric nodes are captured by a set of forbidden transitions F ✓ E ⇥ E associated to the graph. If a signal entering via link e (ingress port e) cannot leave via link e 0 (egress port e 0), then the pair of edges {e, e 0 } forms a forbidden transition.

Given a graph G = (V, E), a set of forbidden transitions F ✓ E ⇥ E and two vertices s, t 2 V , we first study the problem of finding a path avoiding forbidden transitions. This problem consists in finding a path, from s to t, which uses none of the forbidden transitions of F; said otherwise it is forbidden for the path to consecutively use two edges forming a pair in F. It has been proved in the literature that finding a non-elementary path (i.e. a path which can repeat vertices) avoiding forbidden transitions is polynomial while finding an elementary path is NP-hard in general graphs. We strengthen the hardness result and prove that finding an elementary path avoiding forbidden transitions is NP-hard even in well-structured graphs such as grids. We also prove that the problem is polynomial in graphs with bounded treewidth.

Afterwards, we show that finding k 2 arc-disjoint non-elementary paths avoiding forbidden transitions can be done in polynomial time in directed graphs while it is NP-complete to find k 2 vertex-disjoint non-elementary paths in directed as well as undirected graphs. We recently discovered that this last result follows also from results of [START_REF] Gourvčs | On paths, trails and closed trails in edge-colored graphs[END_REF] and we highlight this in section 2.5. On the positive side, we also prove that finding k 2 vertex-disjoint non-elementary paths is polynomial in directed acyclic graphs.

Some of the results presented in this chapter were presented in Algotel'2015 [KMMN15b] and WG'2015 [KMMN15a].

Chapter 3: On Disjoint Paths in Networks with Star SRLGs. This chapter deals with the problem of k-diverse routing in networks with star Shared Risk Link Groups (SRLGs). An SRLG is a set of network links that fail simultaneously when a given event (risk) occurs and a star SRLG is an SRLG in which all links share an endpoint. In networks with SRLGs, the k-diverse routing problem consists in finding k pairwise SRLG-disjoint paths between a pair of nodes. The graph theoretic framework we use for studying problems in networks with SRLGs is the colored graph model. The network topology is modeled by a graph G = (V, E) and the set of SRLGs by a set of colors C. Each SRLG is modeled by a distinct color, and that color is assigned to all the edges corresponding to the network links subject to this SRLG. A colored graph is therefore defined by the triple (V, E, C), where C is a coloring function, C : E ! 2 C , that assigns a subset of colors to each edge.

Using this model, we study the problem of finding SRLG-disjoint paths in networks with star SRLGs as the problem of finding k color-disjoint paths. We first prove that finding k SRLG-disjoint paths is NP-complete even for only two paths (this implies that the "polynomial" algorithm proposed in [START_REF] Luo | Diverse routing in WDM optical networks with shared risk link group (SRLG) failures[END_REF] to find two SRLG-disjoint paths in a network with star SRLGs is not correct unless P=NP). Afterwards, we show that the problem can be solved in polynomial time in particular sub-cases which are relevant in practice. Namely, we solve the problem in polynomial time when the maximum degree is at most 4 or when the input network is a directed acyclic graph. Moreover, we show that the problem is fixed-parameter tractable when parameterized by the number of SRLGs. Finally we consider the problem of finding the maximum number of SRLG-disjoint paths in networks with SRLGs satisfying the star property. We prove that this problem is hard to approximate within O(|V | 1 "

) for any 0 < " < 1, where V is the set of nodes in the network. Then, we provide exact and approximation algorithms for relevant sub-cases.

The results presented in this chapter have been published in TCS [BCDM15] and have been presented in the Student Workshop ACM CoNEXT'2012 [BCDM12], Algotel'2013 [BCDM13b], and DRCN'2013 [BCDM13a].

Part II: On Routing and Spectrum Assignment

We start this part by giving more details on Elastic Optical Networks (EONs) and by defining the problem of Routing and Spectrum Allocation (RSA) and its different versions.

Chapter 4: On Spectrum Assignment in Tree-Networks. In this chapter, we focus on the problem of static routing and spectrum assignment in elastic optical tree networks. In trees, since the routing is fixed, the RSA problem reduces to the problem of Spectrum Allocation (SA). In the SA problem, we are given a graph N = (N, L) modeling the optical network and a set of requests R such that each request r 2 R has a path P (r) and a demand d(r). A spectrum assignment of (N , R) is a mapping f from R to N ⇤ such that for every pair of requests r, r 0 2 R, if P (r) and P (r 0

) share a link, then {f (r), . . . , f(r)+d(r) 1}\{f (r 0), . . . , f(r 0)+d(r 0) 1} = ;. The objective of the SA problem is to find a spectrum assignment f which minimizes the number of used spectrum slots, i.e. the smallest integer s(f) such that for each request r 2 R, f (r) + d(r) 1  s(f).

In trees, even though the routing is fixed, the spectrum allocation (SA) is NPhard. We survey the complexity and approximability results that have been established for the SA in trees and prove new results for stars and binary trees. Namely, we prove that SA is NP-hard in undirected stars of 3 links and in directed stars of 4 links, and show that it can be approximated within a factor of 4 in general stars. Afterwards, we use the equivalence of SA with a graph coloring problem (interval coloring) to find constant-factor approximation algorithms for SA on binary trees with special demand profiles. Namely, we examine the cases where the demands are in a set {k, kX} (k, X 2 N ⇤), in a set {kX, k(X + 1)} (k, X 2 N ⇤), or bounded by D. For the latter case, we give a general approximation when the demands are bounded by D 2 N and then give better approximations for the cases where the demands are bounded by D 2 {3, 4, 5, 6}.

Results presented in this chapter were presented in Algotel'2015 [Moa15].

Chapter 5: On Dynamic RSA with Push-Pull. In this chapter, we tackle the problem of dynamic routing and spectrum assignment with the use of a nondisruptive defragmentation technique called Push-Pull. In dynamic traffic scenarios, as requests arrive and leave, the optical spectrum becomes fragmented. This means that small and unusable fragments of spectrum are accumulated. This fragmentation can cause the blocking of a request even though the overall free resources in the network can provision it. To deal with this problem, many defragmentation techniques are proposed to consolidate the existing free spectrum. In this chapter, we consider one of these techniques, namely the Push-Pull technique [CSS + 12]. This technique uses the characteristics of the EONs and of the flexible transponders to shift the spectrum allocated to a request without disrupting the traffic. This is done as follows. The frequency at the transmitter is pushed at a frequency sweep rate, and since the difference between the frequencies of the transmitter and the receiver should not exceed a given offset, the frequency at the receiver is pulled towards the frequency of the transmitter. This technique can only perform spectrum re-allocation and not re-routing. Furthermore, the order of the requests in the spectrum interval does not change. We propose algorithms to solve the dynamic RSA with the use of Push-Pull while optimizing the length of the routing path and the delay of the defragmentation. Results presented in this chapter were presented in Algotel'2014 [CJM14] Part I

Paths and Disjoint Paths

The aim in networks in general and optical networks in particular is to ensure the communication between different nodes. This relies primarily on finding a path from a source to a destination. This problem can be solved efficiently if there are no constraints on the network using well-known algorithms such as the Dijkstra's algorithm and the Bellman-Ford's algorithm. However, finding a path becomes more challenging when some constraints are introduced. In the first chapter of this part (Chapter 2) we focus on the problem of finding a path in networks with constraints on the internal connectivity of their nodes. We refer to these networks as networks with asymmetric nodes.

Another aim in optical networks is to provide fault-tolerance services and protect the connections against failures (fiber cuts, failures of transceivers, power outages, etc). Towards this purpose, many protection and restoration schemes have been proposed [START_REF] Ramamurthy | Survivable WDM mesh networks. part i-protection[END_REF][START_REF] Ramaswami | Optical Networks: A Practical Perspective[END_REF]. In the protection schemes, backup resources are reserved and dedicated to recover the traffic in case of failures. In the restoration schemes, the backup resources are found upon the occurrence of a failure. Protection schemes provide better guarantees on the recovery of the network and they perform on a fast time scale. They can be broadly classified under four categories defined by whether they are dedicated or shared, and whether they provide link or path protection [START_REF] Ramamurthy | Survivable WDM mesh networks. part i-protection[END_REF]. In dedicated protection, each connection has dedicated resources to ensure its protection. In the shared protection, on the other hand, the reserved resources are shared between many connections. In link protection, resources are reserved such that the traffic on a failed link can be rerouted around that link. In path protection, resources are reserved to restore the traffic between the endpoints of a path upon its failure. We focus in this part on the dedicated path protection (DPP) scheme. The DPP consists in computing for each demand two paths. One path, called working or primary path, is used to carry the traffic under normal operation and the other one, the protection or alternative path, is reserved to reroute the traffic when failures occur. A general requirement is that these paths have to be disjoint, so that at least one of them can survive a single failure in the network. In this part, we investigate the DPP problem in two different contexts. First, in Chapter 2, we consider single link or node failures in networks with asymmetric nodes. In this setting, the DPP problem consists in finding link or node-disjoint paths. Second, in Chapter 3, we consider multiple simultaneous localized failures captured by the notion of star Shared Risk Link Groups (SRLG). In this setting, the DPP problem consists in finding SRLG-disjoint paths.

Introduction

In optical networks, nodes can be highly asymmetric with respect to their switching capabilities as pointed out in [START_REF] Bernstein | Modeling WDM wavelength switching systems for use in GMPLS and automated path computation[END_REF]. This means that an optical node might not be fully connected internally and that, consequently, signal on a certain ingress port cannot reach all of the egress ports. As explained in [BLGM09, CHW + 13, HTTN11], a node can be asymmetrically configured for many reasons such as the limitation on the number of physical ports of the optical switch components and the low cost of asymmetric nodes compared to symmetric ones. Figure 2.1 from [CHW + 13] shows a diagram of a 4-degree Reconfigurable Optical Add-Drop Multiplexer (ROADM) with four directions named east, west, north and south. In Figure 2.1-a, the ROADM is symmetrically configured and an ingress port can reach anyone of the egress ports. In Figure 2.1-b, an asymmetric architecture of the ROADM is presented. In this architecture, cheaper equipment is used at the ports and the optical signal coming from any of the four directions can only reach two of the other three directions.

Asymmetric nodes are not exclusive to optical networks but can be found in road networks as well. In road networks, it is possible that some roads are closed due to traffic jams, construction, etc. It is also frequent to encounter no-left, no-right and no U-turn signs at intersections. With these prohibited roads and turns, it might be not possible to go from a given road to any other one at an intersection. The existence of asymmetric nodes in a network needs to be accounted for while solving key problems such as finding one or many disjoint paths. In road networks for instance, a path should not use a forbidden turn, and in optical networks a path should cross an asymmetric node according to the way it is internally connected. The graph theoretic framework we use to study problems in networks with asymmetric nodes is the graph with forbidden transitions where a transition is a pair of adjacent edges. In this model, the network is a graph G = (V, E) and the asymmetric nodes are captured by a set of forbidden transitions F ✓ E ⇥E associated to the graph. In this setting, finding a path or k disjoint paths consists in finding a path or k disjoint paths avoiding forbidden transitions. A path P = (v 0 , . . . , v q) is avoiding forbidden transitions if it contains none of the transitions of F, i.e., {{v i 1 , v i }, {v i , v i+1 }} / 2 F for i 2 {1, . . . , q 1}.

Related work

Finding a path. When the problem of finding a path avoiding forbidden transitions (PAFT) is studied, a distinction has to be made according to whether the path to find is elementary (cannot repeat vertices) or non-elementary. Indeed, PAFT can be solved in polynomial time [START_REF] Gutiérrez | Labeling algorithm for the shortest path problem with turn prohibitions with application to large-scale road networks[END_REF][START_REF] Ańez | Dual graph representation of transport networks[END_REF][START_REF] Speičvcys | Computational data modeling for network-constrained moving objects[END_REF][START_REF] Winter | Modeling costs of turns in route planning[END_REF] for the non-elementary case while finding an elementary path avoiding forbidden transitions has been proved NP-complete in [START_REF] Szeider | Finding paths in graphs avoiding forbidden transitions[END_REF]. We will discuss in more details results related to each problem in Section 2.3.

PAFT is a special case of the problem of finding a path avoiding forbidden paths (PFP) introduced in [START_REF] Villeneuve | The shortest path problem with forbidden paths[END_REF]. Given a graph G, two vertices s and t, and a set S of forbidden paths, PFP aims at finding an s-t-path which contains no path of S as a subpath. When the forbidden paths are composed of exactly two edges, PFP is equivalent to PAFT. Many papers address the non-elementary version of PFP, proposing exact polynomial-time solutions [START_REF] Villeneuve | The shortest path problem with forbidden paths[END_REF][START_REF] Hsu | An efficient algorithm for the shortest path problem with forbidden paths[END_REF][START_REF] Ahmed | Shortest paths avoiding forbidden subpaths[END_REF]. The elementary counterpart has been recently studied in [START_REF] Pugliese | Shortest path problem with forbidden paths: The elementary version[END_REF] where a mathematical formulation is given and two solution approaches are developed and tested. The computational complexity of the elementary PFP can be deduced from the complexity of PAFT which has been established in [START_REF] Szeider | Finding paths in graphs avoiding forbidden transitions[END_REF]. Szeider proved in [START_REF] Szeider | Finding paths in graphs avoiding forbidden transitions[END_REF] that finding an elementary path avoiding forbidden transitions is NP-complete and gave a complexity classification of the problem according to the types of the forbidden transitions. In more details, in [START_REF] Szeider | Finding paths in graphs avoiding forbidden transitions[END_REF], Szeider defines for each vertex v 2 G; a transition graph T (v). The vertices of T (v) are the edges incident to v and there is an edge between two vertices of T (v) if and only if the two corresponding edges form a forbidden transition. Afterwards, he shows that with respect to the class A including T = {T (v) | v 2 V }, PAFT is either NP-complete or it can be solved in linear time.

Another problem that is a generalization of PAFT is the problem of finding a path avoiding forbidden pairs (PAFP). In this problem, we are given a graph G, two vertices s and t and a set K of forbidden pairs of edges (or vertices) and the objective is to find a path from s to t which contains at most one edge (or vertex) of each pair of the set K. When each pair of K consists of adjacent edges, then PAFP is equivalent to PAFT. This problem has been proven NP-complete in [START_REF] Gabow | On two problems in the generation of program test paths[END_REF] and in [START_REF] Kolman | On the complexity of paths avoiding forbidden pairs[END_REF], other complexity results with respect to the structure of the pairs have been established.

PAFT is a generalization of the problem of finding a properly colored path in an edge-colored graph (PEC). Given an edge-colored graph G and two vertices s and t, the PEC problem aims at finding an s-t-path such that any consecutive two edges have different colors. It is easy to see that PEC is equivalent to PAFT when the set of forbidden transitions consists of all pairs of adjacent edges that have the same color. The PEC problem is polynomial-time solvable in undirected graphs [START_REF] Szeider | Finding paths in graphs avoiding forbidden transitions[END_REF] and it has been proved to be NP-complete in directed graphs [START_REF] Gourvès | Complexity of trails, paths and circuits in arc-colored digraphs[END_REF] which directly implies that the PAFT problem is NP-complete in directed graphs1 .

In this chapter, we study the elementary version of the PAFT problem in planar graphs and more particularly in grids. Our interest for planar graphs is motivated by the fact that they are closely related to road networks. They are also an interesting special case to study while trying to capture the difficulty of the problem. Furthermore, to the best of our knowledge, this case has not been addressed before in the literature. We also study the elementary PAFT in general graphs with bounded treewidth.

Finding disjoint paths. The problem of finding disjoint paths avoiding forbidden transitions has not been addressed much before. In the context of dedicated path protection in optical networks with asymmetric nodes, [START_REF] Hashiguchi | Node-disjoint paths search in WDM networks with asymmetric nodes[END_REF] study the problem of finding two vertex-disjoint paths. In the paper, the authors present a heuristic to solve the problem. The heuristic uses graph transformations in order to adapt the classical Bhandari's algorithm [START_REF] Bhandari | Optimal physical diversity algorithms and survivable networks[END_REF] used to find 2 vertex-disjoint paths with minimum cost. These transformations are designed to avoid some trap scenarios caused by the asymmetric nodes. It is not specified in [START_REF] Hashiguchi | Node-disjoint paths search in WDM networks with asymmetric nodes[END_REF] whether the paths to find are elementary or not and the algorithm used to find one path is not detailed. In the context of road networks, the problem of alternate routing has been studied in many papers such as [START_REF] Bader | Alternative route graphs in road networks[END_REF][START_REF] Abraham | Alternative routes in road networks[END_REF][START_REF] Luxen | Candidate sets for alternative routes in road networks[END_REF]. In this problem, the objective is not to find one route but several different ones. The papers discuss the different criteria to choose good alternate routes and to quantify their quality and develop algorithms to find them. In [START_REF] Dees | Defining and computing alternative routes in road networks[END_REF], disjointness is considered among the criteria to choose alternate routes and a classical heuristic is proposed to compute disjoint routes by iteratively computing the shortest path, adding it to the solution, and deleting all its edges.

As discussed earlier, finding an elementary path avoiding forbidden transitions is an NP-complete problem. It is straightforward then that the problem of finding k disjoint paths (vertex-disjoint or edge-disjoint) is NP-complete as well if the paths are required to be elementary. For this reason, we focus in this chapter on the problem of finding k disjoint non-elementary paths avoiding forbidden transitions. This problem still captures the protection and the alternate routing and at the same time it is a relaxation of the elementary version and may be hence easier to solve. the one of Szeider [START_REF] Szeider | Finding paths in graphs avoiding forbidden transitions[END_REF] established in 2003 and extends to the problems of PFP and PAFP.

• We prove that the problem of finding an elementary path avoiding forbidden transitions can be solved in time O(k2 (3k) 2k n) in n-node graphs with treewidth at most k and maximum degree . In other words, we prove that the PAFT problem is FPT in k + .

• We show that finding k arc-disjoint non-elementary paths avoiding forbidden transitions can be done in polynomial time in directed graphs while it is NPcomplete to find k vertex-disjoint non-elementary paths in directed as well as undirected graphs 2 . We also prove that finding k vertex-disjoint paths is polynomial in directed acyclic graphs.

The chapter is organized as follows. In Section 2.2, we present some notations and definitions. In Section 2.3, we discuss in details the difference between finding an elementary and non-elementary path avoiding forbidden transitions. Afterwards, in Section 2.4, we study the problem of finding an elementary path avoiding forbidden transitions. We present the results obtained for the problem of finding k disjoint paths avoiding forbidden transitions in Section 2.5. Finally, we give perspectives and open questions in Section 2.6.

Notations and definitions

We model the network as an undirected graph G = (V, E), where the vertices represent the nodes and the edges represent the links. Given a subgraph H of G, a transition in H is a (not ordered) set of two distinct edges of H incident to a same vertex. Namely, {e, f } is a transition if e, f 2 E(H) and e\f 6 = ;. Let T denote the set of all transitions in G. Let F ✓ T be a set of forbidden transitions. A transition in A = T \ F is said allowed.

A walk in G is any sequence (v 0 , v 1 , • • • , v r) of vertices such that e i = {v i , v i+1 } 2 E for any 0  i < r. Given two vertices s and t in G, a walk P = (v 0 , v 1 , • • • , v r) is called an s-t-walk if v 0 = s and v r = t. If the walk uses distinct edges, i.e., for any 0  i, j < r, e i 6 = e j , then it is called a trail (or a non-elementary path). If the walk uses distinct vertices, i.e., for any 0  i, j  r, v i 6 = v j , then it is called a path (or an elementary path). Finally, a walk, a trail or a path P = (v 0 , v 1 , • • • , v r) is F-valid if any transition in P is allowed, i.e., {e i , e i+1 } / 2 F for any 0  i < r. We say that k walks, trails or paths are vertex-disjoint if they share no vertex and edge-disjoint if they share no edge.

Since the model of a directed graph is also relevant in the networks we consider, and because the problems we consider and particularly the problems of disjoint trails seem to be different according to the class of graphs, we also prove and state results in terms of directed graphs (especially in Section 2.5). For a directed graph D = (V, A), a transition in a subgraph K of D, is a pair of arcs (u, v), (u 0 , v 0

) such that v = u 0 . All of the definitions above apply to directed graphs when considering arcs instead of edges.

Walks, trails and paths avoiding forbidden transitions

Finding a walk, a trail or a path are equivalent problems in directed and undirected graphs. However, when the graph has a set of forbidden transitions F and the walk, the trail or the path is required to be F-valid, the equivalence between the three problems does not hold. In this section, we discuss the relation between the following three problems in both directed and undirected graphs.

Problem 1 (Finding a Walk Avoiding Forbidden Transitions, WAFT). Given a graph G = (V, E), a set F of forbidden transitions and two vertices s, t 2 V . Is there an F-valid s-t-walk in G?

Problem 2 (Finding a Trail Avoiding Forbidden Transitions, TAFT). Given a graph G = (V, E), a set F of forbidden transitions and two vertices s, t 2 V . Is there an F-valid s-t-trail in G?

Problem 3 (Finding a Path Avoiding Forbidden Transitions, PAFT). Given a graph G = (V, E), a set F of forbidden transitions and two vertices s, t 2 V . Is there an F-valid s-t-path in G?

Table 2.1 summarizes the complexities of these three problems.

WAFT TAFT PAFT

Directed Graphs

WAFT () TAFT NP-complete [Sze03] Polynomial [Win02, ABP96] Undirected Graphs Polynomial Polynomial NP-complete [Sze03] (Theorem 1)

Directed graphs

In directed graphs, any walk avoiding forbidden transitions contains a trail avoiding forbidden transitions, and since any trail is a walk, the problems of WAFT and TAFT are equivalent. The problems TAFT and PAFT are however different, because the existence of an F-valid trail does not imply the existence of an F-valid path as illustrated in the example of Figure 2.2. In the example, there exists an Fvalid trail from s to t, namely (s, v

5 , v 6 , v 7 , v 4 , v 2 , v 1 , v 4 , t) while there is no F-valid path from s to t. v 1 v 5 v 7 s t v 2 v 3 v 4 v 6 Figure 2.2: A directed graph G with a set of forbidden transitions F = {(v 7 , v 4), (v 4 , t)}
In fact, as pointed out in the introduction, TAFT and PAFT have different complexities. The PAFT problem is NP-complete [START_REF] Szeider | Finding paths in graphs avoiding forbidden transitions[END_REF] while TAFT can be solved in polynomial time [START_REF] Winter | Modeling costs of turns in route planning[END_REF][START_REF] Ańez | Dual graph representation of transport networks[END_REF]. The TAFT problem has been addressed in the context of routing in road networks modeled as directed graphs. Two main solution approaches can be distinguished: Dual graph technique. This technique has been used in [START_REF] Winter | Modeling costs of turns in route planning[END_REF][START_REF] Ańez | Dual graph representation of transport networks[END_REF]. Given a directed graph D = (V, A), two vertices s and t in V and a set of forbidden transitions F, a dual graph D 0 = (V 0 , A 0) is constructed (which is a subgraph of the line graph [START_REF] Brandstädt | Graph Classes: A Survey[END_REF]). Vertices of D 0 correspond to arcs of D and arcs of D 0 correspond to allowed transitions. In more details, D 0 is built as follows.

• A node v a 2 V 0 is associated to each arc a 2 A.

• An arc (v a , v b) is added to A 0 if (a, b) is an allowed transition in D.
• Two additional vertices s 0 and t 0 are added to V 0 . For each outgoing arc a of s, an arc (s 0 , v a) is added to A 0 and for each ingoing arc b of t 0 , an arc (v b , t 0) is added to A 0 . Finding a trail avoiding forbidden transitions from s to t in D is equivalent to finding a path from s 0 to t 0 in D 0 . In fact, a trail (s, u 1 , . . . , u q , t) in D corresponds to a path (s 0 , v (u 1 ,u 2) , . . . , v (u q 1 ,uq) , t 0) and vice-versa.

Labeling algorithm technique. This technique is used in [START_REF] Gutiérrez | Labeling algorithm for the shortest path problem with turn prohibitions with application to large-scale road networks[END_REF] to find a trail avoiding forbidden turns in a directed road network. The authors propose an algorithm which is an extension of the Dijkstra's algorithm. The key idea is to maintain labels and distances at arcs instead of vertices. At the beginning of the algorithm, temporary labels are assigned to the outgoing arcs of the source. Afterwards, at every iteration, the temporarily labeled arc at minimum distance from the source is permanently labeled and the distances to the arcs which form allowed transitions with it are updated. The algorithm stops when the destination is reached or all arcs are permanently labeled.

Remark for DAGs. Note that in DAGs, since there are no cycles, every trail is a path. This implies that the PAFT problem is equivalent to TAFT and can be solved in polynomial time in DAGs.

Undirected graphs

Unlike in directed graphs, the existence of an F-valid walk does not imply the existence of an F-valid trail. This is mainly due to the fact that an edge can be crossed in two different directions. In the example presented in Figure 2.3, there exists an F-valid walk from s to t, namely (s, v

5 , v 6 , v 7 , v 4 , v 2 , v 1 , v 3 , v 2 , v 4 , t)
while there is no F-valid trail from s to t. The TAFT problem is then different from WAFT in undirected graphs, and it is also different from PAFT. In fact, the undirected version of the example of Figure 2.2 illustrates the fact that the existence of an F-valid trail does not imply the existence of an F-valid path. In undirected graphs, the PAFT problem is NP-complete [START_REF] Szeider | Finding paths in graphs avoiding forbidden transitions[END_REF] and WAFT can be solved in polynomial time as follows. Given a graph G, two vertices s and t and a set of forbidden transitions F, we first transform G to the corresponding symmetric digraph D where each edge {u, v} is replaced by two arcs (u, v) and (v, u). Afterwards we associate to D, the set of forbidden transitions F 0 defined as follows. If {{u, v}, {v, w}} 2 F, then {(u, v), (v, w)}, {(w, v), (v, u)} 2 F 0 and if {{u, v}, {v, u}} 2 F, then {(u, v), (v, u)} 2 F 0 . It is easy to check that an F-valid walk from s to t in G is equivalent to finding an F 0 -valid walk from s to t in D. The latter problem can be solved using the techniques described in the previous subsection.

v 1 v 5 v 3 v 7 s t v 2 v 4 v 6
As for the TAFT problem, we prove the following theorem.

Theorem 1. The TAFT problem can be solved in polynomial time in undirected graphs with forbidden transitions.

Proof. Let G = (V, E) be a graph, s and t two vertices of V and F a set of forbidden transitions. We build the dual graph G 0 = (V 0 , E 0) of G as we explained for the directed graphs: for each edge e 2 E, we associate a vertex v e in V 0 and we connect two vertices v e and v 0 e of V 0 if and only if {e, e 0 } is an allowed transition. We also add a vertex s 0 (resp. t 0) connected to all vertices v e 2 V such that e is incident to s (resp. t 0) in G. Furthermore, we color the edges of G 0 with colors {c v | v 2 V } as follows. To each edge {v e , v f } such that e \ f = {u} of G 0 , we associate the color c u , and to each edge {s 0 , v e } (resp. {v e , t 0 }), we associate the color c s (resp. c t). We are going to prove that finding an F-valid trail from s to t in G is equivalent to finding a properly colored path (PEC) from s 0 to t 0 in the edge-colored graph G 0 . As we have stated in the introduction, in the problem of finding a PEC, we are given an edge-colored graph G c and two vertices s and t, the objective is to find an s-t-path such that any consecutive two edges have different colors. It has been proved in [START_REF] Szeider | Finding paths in graphs avoiding forbidden transitions[END_REF] that finding a PEC can be done in polynomial time in undirected graphs.

Let T = (s, u 1 , . . . , u k , t) be an F-valid trail from s to t in G. Let e 0 = {s, u 1 }, e k = {u k , t} and e i = {u i , u i+1 } for i 2 {1, . . . , k 1}. The path (s 0 , v e 0 , . . . , v e k , t 0

) is a properly colored path in G 0 . In fact, for each i 2 {0, . . . , k 1}, f i = {v e i , v e i+1 } is an edge in G 0 since {e i , e i+1 } is an allowed transition in G. Furthermore, if we suppose that two consecutive edges f i and f i+1 have the same color, then the edges e i , e i+1 , and e i+2 share a vertex v which implies that the trail T uses twice the edge e i+1 (in two directions) which is not possible in a trail. Now let us suppose that there is a properly colored path P = (s 0 , v e 0 , . . . , v e k , t 0) from s 0 to t 0 in G 0 . Let us prove that T = (s, e 0 , . . . , e k , t) is an F-valid trail in G. Let us first suppose that T is not a trail, this implies that either there exist 0  i < j  k such that e i = e j or that T uses consecutively three edges sharing a vertex (and hence that one of these edges is used twice in two different directions). The first case would imply that there exist 0  i < j  k such that v e i = v e j , and this is not possible since P is a path. The second case would imply that P is not properly colored, which is not the case. The sequence of edges T is hence a trail from s to t. Furthermore, since f i = {v e i , v e i+1 }, for i 2 {0, . . . , k 1}, is an edge in G 0 , then {e i , e i+1 } / 2 F. This implies that T is an F-valid trail.

A path avoiding forbidden transitions

We focus in this section on the PAFT problem. We prove first that the PAFT problem is NP-complete in grids and then we present an FPT algorithm when the parameter is the sum of the treewidth and the maximum degree. All proofs are done for the undirected graph model but they also work for the directed model as we will point out at the end of the first subsection.

NP-completeness in grids

We start by proving that the PAFT problem is NP-complete in grids. For this purpose, we first prove that it is NP-complete in planar graphs with maximum degree at most 8 by a reduction from 3-SAT. Then, we propose simple transformations to reduce the degree of the vertices and prove that the PAFT problem is NP-complete in planar graphs with degree at most 4. Finally, we prove it is NP-complete in grids.

Lemma 1. The PAFT problem is NP-complete in planar graphs with maximum degree 8.

Proof. The problem is clearly in NP. We prove the hardness using a reduction from the 3-SAT problem. Let be an instance of 3-SAT, i.e., is a boolean formula with variables {v

1 , • • • , v n } and clauses {C 1 , • • • , C m }.
We build a grid-like planar graph G where rows correspond to clauses and columns correspond to variables. We define a set of forbidden transitions F and two vertices s and t in G such that an F-valid path from s to t passes through every row and for each row passes through every column. The way the path crosses the columns of a row defines a truth assignment which satisfies the corresponding clause. Moreover, the way the graph G is built forces the same truth assignment to be defined at all rows. In what follows, we present the gadgets used to build a row, the way we build a clause-graph corresponding to a row and then the way we combine the rows to build the main graph G.

Please note that the colors are only used to make the presentation easier. Note also that we use a multigraph in the reduction for the sake of simplicity. This multigraph can easily be transformed into a simple graph by subdividing each edge once and without changing the maximum degree. We present in what follows the gadgets needed to build the graph G.

Gadget G ij . For any i  n and j  m, we define the gadget G ij depicted in Figure 2.4a and that consists of 4 edge-disjoint paths from s ij to t ij : two "blue" paths BT ij and BF ij , and two "red" paths RT ij and RF ij defined as follows.

• RT ij = (s ij , a ij , true ij , x ij , true 0 ij , y ij , z ij , t ij); • BT ij = (s ij , b ij , true ij , x ij , true 0 ij , y ij , z ij , t ij); • RF ij = (s ij , x ij , y ij , c ij , false ij , z ij , false 0 ij , t ij); • BF ij = (s ij , x ij , y ij , d ij , false ij , z ij , false 0 ij , t ij).
The forbidden transitions F ij (equivalently the set of allowed transitions A ij) of the gadget G ij are defined in such a way that the only way to go from s ij to t ij is by following one of the paths in {BT ij , BF ij , RT ij , RF ij }. It is forbidden to use any transition consisting of two edges from two different paths of the set {BT ij , BF ij , RT ij , RF ij }. The allowed transitions are explicitly defined in Table 2.4b. Note that in case there are multi-edges between two vertices x and y, then there are exactly two parallel edges, a blue one and a red one. We denote the blue edge by {x, y} b and the red edge by {x, y} r . We use this notation in the whole chapter.

Intuitively, assigning the variable v i to T rue will be equivalent to choosing one of the paths BT ij or RT ij (called positive paths) depicted with full lines in Figure 2.4a. Respectively, assigning v i to F alse will correspond to choosing one of the paths BF ij or RF ij (called negative paths) depicted with dotted lines in Figure 2.4a.

true ij true' ij false' ij false ij s ij x ij y ij z ij t ij a ij b ij c ij d ij RT ij BF ij RF ij BT ij (a)
Example of the Gadget-graph G ij for variable v i , and 1  j  m. The pink (resp., green) edge is added if v i appears positively (resp., negatively) in C j . If v i / 2 C j , none of the green nor the pink edges appear. So far, it is a priori not possible to start from s ij by one path and arrive in t ij by another path. In particular, the color by which s ij is left must be the same by which t ij is reached. If Variable v i appears in Clause C j , we add one edge to G ij as follows. If v i appears positively in C j , we add the pink edge {a ij , b ij } that creates a "bridge" between BT ij and RT ij . Similarly, if v i appears negatively in C j , we add the green edge {c ij , d ij } that creates a "bridge" between BF ij and RF ij . When the gadget G ij contains a pink (resp. green) edge, all the transitions containing the pink (resp. green) edge are allowed; this makes it possible to switch between the positive (resp. negative) paths BT ij and RT ij (resp. BF ij and RF ij) when going from s ij to t ij . Hence, if v i appears in C j , it will be possible to start from s ij with one color and arrive to t ij with a different one. Note that, the type of path (positive or negative) cannot be modified between s ij and t ij .

vertex v allowed transitions around v a ij {{s ij , a ij }, {a ij , true ij }} and, if v i appears positively in C j , {{s ij , a ij }, {a ij , b ij }} and {{b ij , a ij }, {a ij , true ij }} b ij {{s ij , b ij }, {b ij , true ij }} and, if v i appears positively in C j , {{s ij , b ij }, {b ij , a ij }} and {{a ij , b ij }, {b ij , true ij }} true ij {{a ij , true ij }, {true ij , x ij } r } and {{b ij , true ij }, {true ij , x ij } b } x ij {{true ij , x ij } r , {x ij , true 0 ij } r }, {{true ij , x ij } b , {x ij , true 0 ij } b }, {{s ij , x ij } r , {x ij , y ij } r }, and {{s ij , x ij } b , {x ij , y ij } b } true 0 ij {{x ij , true 0 ij } r , {true 0 ij , y ij } r } and {{x ij , true 0 ij } b , {true ij , y ij } b } y ij {{x ij , y ij } r , {y ij , c ij }}, {{x ij , y ij } b , {y ij , d ij }}, {{true 0 ij , y ij } r , {y ij , z ij } r }, and {{true 0 ij , y ij } b , {y ij , z ij } b } c ij {{y ij , c ij }, {c ij , false ij }} and, if v i appears negatively in C j , {{y ij , c ij }, {c ij , d ij }} and {{d ij , c ij }, {c ij , false ij }} d ij {{y ij , d ij }, {d ij , fasle ij }} and, if v i appears negatively in C j , {{y ij , d ij }, {d ij , c ij }} and {{c ij , d ij }, {d ij , false ij }} false ij {{c ij , false ij }, {false ij , z ij } r }, and {{d ij , false ij }, {false ij , z ij } b } z ij {{false ij , z ij } r , {z ij , false 0 ij } r }, {{false ij , z ij } b , {z ij , false 0 ij } b }, {{y ij , z ij } r , {z ij , t ij } r }, and {{y ij , z ij } b , {z ij , t ij } b } (b) Allowed transitions A ij
We characterize the F ij -valid s ij -t ij -paths in G ij with the following straightforward claims.

Claim 1. The F ij -valid s ij -t ij -paths in G ij are RT ij , BT ij , RF ij , BF ij and • if variable v i appears positively in Clause C j :
the path RBT ij that starts with the first edge {s ij , a ij } of RT ij , then uses pink edge {a ij , b ij } and ends with all edges of BT ij but the first one;

the path BRT ij that starts with the first edge {s ij , b ij } of BT ij , then uses pink edge {a ij , b ij } and ends with all edges of RT ij but the first one;

• if variable v i appears negatively in Clause C j :

the path RBF ij that starts with the subpath (s ij , x ij , y ij , c ij) of RF ij , then uses green edge {c ij , d ij } and ends with the subpath of BF ij that starts at d ij and ends at t ij ;

the path BRF ij that starts with the subpath (s ij , x ij , y ij , d ij) of BF ij , then uses green edge {d ij , c ij } and ends with the subpath of RF ij that starts at c ij and ends at t ij ; Claim 2. Let P be an F ij -valid s ij t ij -paths in G ij . Then, either

• P passes through true ij and true 0 ij and does not pass through false ij nor false 0 ij , or

• P passes through false ij and false 0 ij and does not pass through true ij nor true 0 ij .

Claim 3. Let P be an

F ij -valid s ij t ij -paths in G ij .
Then the first and last edges of P have different colors if and only if P uses a green or a pink edge, i.e., if

P 2 {RBT ij , BRT ij , RBF ij , BRF ij }.
Clause-graph G j . For any j  m, the Clause-gadget G j is built by combining the graphs G ij , i  n, in a "line" (see Figure 2.5). The subgraphs G ij are combined from "left to right" (for i = 1 to n) if j is odd and from "right to left" (for i = n to 1) otherwise. In more details, for any j  m, G j is obtained from a copy of each gadget G ij , 1  i  n, and two additional vertices s j and t j as follows:

• If j is odd, the subgraph G j starts with a red edge {s j , s 1j } and then, for 1 < i  n, the vertices s ij and t i 1,j are identified. Finally, there is a blue edge from t nj to vertex t j .

• If j is even, the subgraph G j starts with a blue edge {s j , s nj } and then, for 1 < i  n, the vertices t ij and s i 1,j are identified. Finally, there is a red edge from t 1j to vertex t j . The forbidden transitions F j include, besides all transitions in F ij , i = 1, . . . , n, new transitions which are defined such that, when passing from a gadget G ij to the next one, the same color must be used. This means that if we enter a vertex t ij = s i,j+1 by an edge with a given color, the same color must be used to leave this vertex. However, in such vertices, we can change the type (positive or negative) of path. These new transitions are explicitly given in Table 2.5c.

Note that if we enter a Clause-graph with a red (resp. blue) edge, we can only leave it with a blue (resp. red) edge. This means that a path must change its color inside the Clause-graph, and must hence use a pink or green edge in some gadgetgraph. The use of a pink (resp. green) edge forces a variable that appears positively (resp. negatively) in the clause to be set to true (resp. false) and validates the Clause.

The key property of G j relates to the structure of F j -valid paths from s j to t j , which we summarize in Claims 4 and 5.

Claim 4. Any F j -valid path P from s j to t j in G j consists of the concatenation of: Case j odd. the red edge {s j , s 1j }, then the concatenation of F ij -valid paths from s ij to t ij in G ij , for 1  i  n in this order (from i = 1 to n), and finally the blue edge {t nj , t j }; Case j even. the blue edge {s j , s nj }, then the concatenation of F ij -valid paths from s ij to t ij in G ij , for 1  i  n in the reverse order (from i = n to 1), and finally the red edge {t 1j , t j }. By the previous claim, for any F j -valid path P from s j to t j , the colors of the first and last edges differ. Hence, by Claim 3 and the definition of the allowed transitions between two gadgets, we have the following claim.

Claim 5. Any F j -valid path P from s j to t j must use a green or a pink edge in a gadget G ij for some 1  i  n.

Main graph. To conclude, we have to ensure that the assignment of the variables is coherent between the clauses. For this purpose, let us combine the subgraphs G j , j  m, as follows (see Figure 2.6). First, for any 1  j < m, let us identify t j and s j+1 . Then, some vertices (depicted in dark grey in Fig 2 .6) of G ij are identified with vertices of G i,j+1 in such a way that using a positive (resp., negative) path in G ij forces the use of the same type of path in G i,j+1 . That is, the choice of the path used in G ij is transferred to G i,j+1 and therefore the same truth assignment for Variable v i is defined at lines j and j + 1.

Namely, for each 1  j < m and for each 1  i  n, we identify the vertices true i,j+1 and false 0 ij on the one hand, and the vertices true 0 ij and false i,j+1 on the other hand to obtain the "grey" vertices. Finally, forbidden transitions F of G, include, besides all transitions in F j for j = 1, . . . , m, new transitions which are defined in order to forbid "crossing" a grey vertex, i.e., it is not possible to go from G i,j to G i,j+1 via a grey vertex (see Figure 2.6). The following claims present the key properties of an F-valid path in G. Claim 6 is straightforward and its proof is omitted.

s 1j t 1j t 2j t 3j t 4j t j s j v 1 v 2 v 3 v 4 negative in positive in does not appear in positive in C j C j C j C j (a) Clause-graph G j for a Clause C j = v1 _ v 2 _ v 4 in
, x 1j } r } {{z ij , t ij } r , {t ij , a i+1,j }}, {{z ij , t ij } r , {t ij , x i+1,j } r }, t i,j = s i+1,j {{z ij , t ij } b , {t ij , b i+1,j }}, {{z ij , t ij } b , {t ij , x i+1j } b }, 1  i < n {{false 0 ij , t ij } r , {t ij , a i+1,j }}, {{false 0 ij , t ij } r , {t ij , x i+1,j } r }, {{false 0 ij , t ij } b , {t ij , b i+1,j
Claim 6. Any F-valid path P from s 1 to t m in G consists of the concatenation of F j -valid paths from s j to t j in G j from j = 1 to m.

Claim 7. Let P be an F-valid s 1 -t m -path in G. Then, for any 1  i  n, either

• for any 1  j  m, the subpath of P between s ij and t ij passes through true ij and true 0 ij and does not pass through false ij nor false 0 ij , or

• for any 1  j  m, the subpath of P between s ij and t ij passes through false ij and false 0 ij and does not pass through true ij nor true 0 ij .

Proof of claim. By Claims 4 and 6, for any 1  i  n and any 1  j  m, there is a subpath P ij of P that goes from s ij to t ij . Moreover, the paths P ij are pairwise vertex-disjoint (since the path P does not use a vertex more than once).

For 1  i  n, by Claim 2, P i1 either passes through true i1 and true 0 i1 , or through false i1 and false 0 i1 . Let us assume that we are in the first case (the second case can be handled symmetrically). We prove by induction on j  m that P ij passes through true ij and true 0 ij and does not pass through false ij nor false 0 ij . Indeed, if P passes through true ij = false 0 i,j+1 and true 0 ij = false i,j+1 , then P i,j+1 cannot use false i,j+1 nor false 0 i,j+1 since P ij and P i,j+1 are vertex-disjoint. By Claim 2, P i,j+1 passes through true i,j+1 and true 0 i,j+1 Note that (G, F) can be constructed in polynomial-time. Moreover, G is clearly planar with maximum degree 8. Hence, the next claim allows to prove Lemma 1.

Claim 8.

is satisfiable if and only if there is an

F-valid s 1 -t m -path in G.
Proof of claim. Let ' be a truth assignment which satisfies . We can build an F-valid s 1 -t m -path in G as follows. For each row 1  j  m, we build a path P j from s i to t j by concatenating the paths P ij , 1  i  n, which are built as follows. Among the variables that appear in C j , let v q be the variable with the smallest index, which satisfies the clause. Note that this choice is arbitrary and that we can choose any variable satisfying the clause.

• For 1  i < q, if '(v i) = true, then P ij = RT ij if j is odd and P ij = BT ij if j is even. If '(v i) = false, then P ij = RF ij if j is odd, and P ij = BF ij if j is even. • For i = q, if '(v i) = true, then P ij = RBT ij if j is odd, and P ij = BRT ij if j is even. If '(v i s) = false, then P ij = RBF ij if j is odd, and P ij = BRF ij if j is even. • For q < i  n, if '(v i) = true, then P ij = BT ij if j is odd, and P ij = RT ij otherwise. If '(v i) = false, then P ij = BF ij if j is odd, and P ij = RF ij otherwise.
The path P obtained from the concatenation of paths P j for 1  j  m is an F-valid path from s 1 to t m . Now let us suppose that there is an F-valid path P from s 1 to t m . According to Claim 7, for any 1  i  n, for any 1  j  m, P passes through true ij and true 0 ij and does not pass through false ij and false 0 ij or for any 1  j  m, P passes through false ij and false 0 ij and does not pass through true ij and true 0 ij . Let us then consider the truth assignment ' of such that for each 1  i  n:

• If P uses true ij and true 0 ij in all rows 1  j  m, then '(v i) = true. • If P uses false ij and false 0 ij in all rows 1  j  m, then '(v i) = false.
By Claim 7, ' is a valid truth assignment which means that each variable is assigned either the value true or the value false and not both. We need to prove that ' satisfies . According to Claim 6, for each row 1  j  m, P contains an F j -valid path P j from s j to t j . Each path P j uses a green or a pink edge as stated by Claim 3. With respect to the possible ways to use a green or a pink edge which are stated in Claim 2, the use of a pink edge in P j forces P j (and hence P) to use the vertices true ij and true 0 ij for a variable v i that appears positively in C j . Similarly, the use of a green edge in P j forces P j (and hence P) to use the vertices false ij and false 0 ij for a variable v i that appears negatively in C j . This means that for each clause C j , for one of the variables that appear in C j which we denote v q , '(v q) = true (resp. '(v q) = false) if v q appears positively (resp. negatively) in C j . Thus, the truth assignment ' satisfies .

⇧

With this we have proved that the PAFT problem is NP-complete in planar graphs with maximum degree 8.

Lemma 2. The PAFT problem is NP-complete in planar graphs with maximum degree 4.

Proof. The graph G used in the reduction of the proof of Lemma 1 is planar and each vertex of G has either degree 8, degree 5 or degree at most 4. Let E be the planar embedding of G that is obtained by embedding the smaller gadgets as in Figures 2.4a, 2.5, and 2.6. We transform G into a planar graph G 0 with maximum degree 4 and an associated set of forbidden transitions F 0 such that finding an Fvalid path in G is equivalent to finding an F 0 -valid path in G 0 . The transformation goes as follows.

Vertices of degree 5. The vertices of degree 5 in G are the vertices s 1j and t nj for j odd , and s nj and t 1j for j even. We transform these to vertices of degree 3 as follows. For j odd, we remove the two blue edges incident to s 1j and the two red edges incident to t nj . For j is even, we remove the two red edges incident to s nj and the two blue edges incident to t 1j . The removed edges do not belong to any allowed transitions around the vertices s 1j , t nj , s nj and t 1j . Therefore, their removal does not affect the elementary F-valid paths from s 1 to t m .

Vertices of degree 8. We replace each vertex v of degree 8 by a gadget g v of maximum degree 4. Gadget g v is designed such that it can be crossed at most once by a path of G 0 and only if the edges used to enter and leave g v correspond to an allowed transition around v. According to its corresponding transitions and to the planar embedding of its adjacent vertices, a vertex v of degree 8 of G is of one of 3 different types. We present in what follows these types as well as the corresponding gadget g v for each type.

Type 1: The edges incident to v are E(v) = {e, e 0 , f, f 0 , g, g 0 , h, h 0 } and the allowed transitions around v are A(v) = {{e, e 0 }, {f, f 0 }, {g, g 0 }, {h, h 0 }}. The edges incident to v appear in the planar embedding E as presented in Figure 2.7a.

In the graph G, v is one of the vertices

x ij or z ij , 1  i  n, 1  j  m.
In this case, g v is built as follows. For each ↵ 2 E(v), a vertex v ↵ is created.

For each {↵, } 2 A(v), vertices v ↵ and v are linked with a path P ↵ of length four. The four paths P ↵ , {↵, } 2 A(v) are pairwise intersecting in distinct vertices as illustrated in Figure 2.7b. The allowed transitions in g v are the transitions of the paths

P ↵ , {↵, } 2 A(v). Now to replace v with g v in G, each edge ↵ 2 E(v) of G is linked to vertex v ↵ of g v .
The gadget g v is planar, and edges ↵ 2 E(v) are connected to it in the same "order" they are connected to v in the planar embedding E of G as illustrated in Figure 2.7.

Note the gadget g v cannot be crossed twice with the same path (i.e. no path has two subpaths in g v), otherwise the path is not simple. Moreover, g v can be crossed if and only if the edges used to enter and leave form an allowed transition around v.

Type 2: The edges incident to v are E(v) = {e, e 0 , f, f 0 , g, g 0 , h, h 0 } and the allowed transitions around v are A(v) = {{e, e 0 }, {f, f 0 }, {g, g 0 }, {h, h 0 }}. The edges incident to v appear in the planar embedding E as presented in Figure 2.8a.

In the graph G, v is one of the vertices true ij , true 0 ij , false ij , false 0 ij , or y ij ,

1  i  n, 1  j  m.
In this case, g v is built as follows. For each (b) Gadget g v : the paths P ee 0 , P ff 0 ,P gg 0 , and P hh 0 are respectively the pink, yellow, green and black paths. Transitions around vertices v ↵ , ↵ 2 E(v) and transitions of paths P ee 0 , P ff 0 ,P gg 0 , and P hh 0 are allowed

↵ 2 E(v), a vertex v ↵ is created. For each {↵, } 2 A(v),
Figure 2.7: Type 1 in G, each edge ↵ 2 E(v) of G is linked to vertex v ↵ of g v .
The gadget g v is planar, and edges ↵ 2 E(v) are connected to it in the same "order" they were connected to v in the planar embedding E of G as illustrated in Figure 2.8.

Note that the gadget g v cannot be crossed twice with the same path (i.e. no path has two subpaths in g v), otherwise the path is not simple. Moreover, g v can be crossed if and only if the edges used to enter and leave form an allowed transition around v. (b) Gadget g v : the paths P ee 0 , P ff 0 ,P gg 0 , and P hh 0 are respectively the pink, yellow, green and black paths. Transitions around vertices v ↵ , ↵ 2 E(v) and transitions of paths P ee 0 , P ff 0 ,P gg 0 , and P hh 0 are allowed Type 3: The edges incident to v are E(v) = {e, e 0 , f, f 0 , g, g 0 , h, h 0 } and the allowed transitions around v are A(v) = {{e, e 0 }, {e, g 0 }, {f, f 0 }, {f, h 0 }, {g, g 0 }, {g, e 0 }, {h, h 0 }, {h, f 0 }}. The edges incident to v appear in the planar embedding E as depicted in Figure 2.9a. In the graph G, v is one of the vertices

s ij , 1  i  n, 1  j  m.
In this case, g v is built as follows. Let A 1 (v) = {{e, e 0 }, {f, f 0 }, {g, g 0 }, {h, h 0 }}. For each {↵, } 2 A 1 (v), vertices v ↵ and v are linked with a path P ↵ of length (b) Gadget g v : the paths P ee 0 , P ff 0 ,P gg 0 , and P hh 0 are respectively the pink, yellow, green and black paths. transitions around vertices v ↵ , ↵ 2 E(v), transitions of the paths P ee 0 , P ff 0 ,P gg 0 , and P hh 0 , and transitions containing the orange edge are allowed Figure 2.9: Type 3 6. Each two of the paths P ↵ intersect in one or two vertices as illustrated in Figure 2.9b. Furthermore, we add two edges linking the paths P ee 0 and P gg 0 , and P ff 0 and P hh 0 , respectively, depicted by orange edges in Figure 2

.9b. Now to replace v with g v in G, each edge ↵ 2 E(v) of G is linked to vertex v ↵ of g v .
The gadget g v is planar, and edges i 2 E(v) are connected to it in the same "order" they were connected to v in the planar embedding E of G as illustrated in Figure 2.9.

For {↵, } 2 A(v) \ A 1 (v), let ↵ 0 and 0 be the vertices such that {↵, ↵ 0 }, { , 0 } 2 A 1 (v). We define the path P ↵ , as the path which starts at v ↵ , uses a subpath of P ↵↵ 0 , an orange edge and then a subpath of P 0 and then ends at v r .

Note that the gadget g v cannot be crossed twice with the same path (i.e. no path has two subpaths in g v), otherwise the path is not simple. Moreover, g v can be crossed if and only if the edges used to enter and leave form an allowed transition around v.

The graph G 0 obtained from G after applying the transformations described above is planar and has maximum degree 4. The set of forbidden transitions F 0 consists of the transitions of the set F and the forbidden transitions of the gadgets g v as described above.

Let us now suppose that there is an F-valid path P from s to t in G. Let P 0 be the s-t-path of G 0 constructed as follows: P 0 uses all edges used by P . Furthermore, if P uses a degree 8 vertex with a transition {e, e 0 } then P 0 uses e, subpath P ee 0 , and e 0 . The path P 0 is F 0 -valid. Now, let us suppose that there is an F 0 -valid path P 0 from s to t in G 0 . If P 0 only uses edges from G, then it can be considered as an F-valid path from s to t in G. If P 0 uses an edge that is not in G, then P 0 crosses one of the gadgets g v . Gadgets g v are designed such that they can be crossed at most once by a path

v 1 v 5 v 3 v 7 s t v 2 v 4 v 6 (a) A planar graph G of maximum degree 4 v 1 v 5 v 3 v 7 s t v 2 v 4 v 6 (b) A planar grid embedding of G (v is used to denote Q(v))
Figure 2.10: Example of a planar grid embedding because otherwise the path is not simple, furthermore, the edges used to enter and leave the gadget form an allowed transition in G. This implies that the intersection of each gadget g v with the path P 0 is either the empty set or exactly one subpath of P 0 . If it is a subpath then the edges surrounding it in P 0 form an allowed transition in G. We can then remove the edges of P 0 that do not belong to G to obtain an F-valid path P in G.

Theorem 2. The PAFT problem is NP-complete in grids.

Proof. To prove the theorem we use the notion of planar grid embedding [START_REF] Tamassia | On embedding a graph in the grid with the minimum number of bends[END_REF].

A planar grid embedding of a graph G is a mapping Q of G into a grid such that:

• Q maps each vertex v of G into a distinct vertex Q(v)
of the grid, and

• Q maps each edge e = (u, v) of G into a path of the grid Q(e) whose endpoints are Q(u) and Q(v), the mappings of the vertices linked by e, and

• for every pair {e, e 0 } of edges of G, the corresponding paths Q(e) and Q(e 0) have no points in common, except, possibly, the endpoints. In bold are the paths corresponding to the edges of G in the planar grid embedding.

It has been proved in [START_REF] Valiant | Universality considerations in VLSI circuits[END_REF], that if G = (V, E) is a planar graph with n vertices and maximum degree  4, then a planar grid embedding of G in a grid of size at most 9n 2 can be found in polynomial-time. Let us consider an instance of the problem of finding a path avoiding forbidden transitions in a planar graph G = (V, E) of maximum degree at most 4 with a set of allowed transitions A. Let Q be a grid planar embedding of G into a grid K of size at most O(|V | 2

). Finding a PAFT between two nodes s and t in G with the set A is equivalent to finding a PAFT between the nodes Q(s) and Q(t) in K with the set of allowed transitions A 0 defined such that:

• For each e 2 E, all the transitions in the path Q(e) are allowed.

• For each {e, e 0 } 2 A, the pair of edges of Q(e) and Q(e 0

), which share a vertex, is an allowed transition.

• All other transitions are forbidden. Sometimes, vertices s and t might be mapped to adjacent vertices in K while they are not adjacent in G. This would make the problem of solving PAFT between Q(s) and Q(t) in K easier than solving PAFT between s and t in G. To avoid this, we always make sure that except for Q((s, t)), no other path between Q(s) and Q(t) consists of only one edge in K, if it is not already the case, we increase the size of K to endure that the distance between Q(s) and Q(t) is at least 2.

Since we have proved in Lemma 2 that PAFT is NP-complete in planar graph with maximum degree 4, Theorem 2 follows.

Remark for directed graphs. Please note that all of the constructions in the NP-completeness proofs can be done with directed graphs, which implies that PAFT is NP-complete in directed grids. In fact, the gadgets G ij which are the elementary components of our construction, can be built with directed paths RT ij , BT ij , RF ij and BF ij instead of undirected ones. As for the edges {a ij , b ij } and {c ij , d ij }, they can be replaced by arcs (a ij , b ij) and (c ij , d ij) if j is odd and arcs (b ij , a ij) and (d ij , c ij) otherwise. In the clause-graphs G j , we can have arcs (s j , s 1j) and (t nj , t n) replace of the edges {s j , s 1j } and {t nj , t n }. Now, to transform the vertices from a degree 8 to a degree 4, it is always possible to use the mini-gadgets g v but with directed paths instead of undirected ones. Finally, a directed graph of degree at most 4 can be embedded in a directed grid by first embedding its undirected underlying graph and then directing the edges of the embedding.

Parameterized complexity

On the positive side, by using dynamic programming on a tree-decomposition of the input graph, we prove that the PAFT problem is FPT when the parameter is the sum of the treewidth and the maximum degree.

A tree-decomposition of a graph [START_REF] Robertson | Graph minors. II. algorithmic aspects of tree-width[END_REF] is a way to represent G by a family of subsets of its vertex-set organized in a tree-like manner and satisfying some connectivity property. The treewidth of G measures the proximity of G to a tree. More formally, a tree-decomposition of G = (V, E) is a pair (T, X) where X = {X u |u 2 V (T)} is a family of subsets, called bags, of V , and T is a tree, such that:

• S u2V (T) X u = V ;
• for any edge {a, b} 2 E, there is a bag X u (for some node u 2 V (T)) containing both a and b;

• for any vertex a 2 V , the set {u 2 V (T)|a 2 X u } induces a subtree of T . The width of a tree-decomposition (T, X) is max u2V (T) |X u | 1. The treewidth of G, denoted by tw(G), is the minimum width over all possible tree-decompositions of G.

Computing an optimal tree-decomposition -i.e., with width tw(G) -is NPcomplete in the class of general graphs G [START_REF] Arnborg | Complexity of finding embeddings in a k-tree[END_REF]. For any fixed k 1, Bodlaender designed an algorithm that computes, in time O(k k 3 n), a tree-decomposition of width k of any n-node graph with treewidth at most k [START_REF] Bodlaender | A linear-time algorithm for finding treedecompositions of small treewidth[END_REF]. Very recently, a single-exponential (in k) algorithm has been proposed that computes a treedecomposition with width at most 5k in the class of graphs with treewidth at most k [BDD + 13].

Many NP-hard problems can be solved in polynomial time in the class of graphs of bounded treewidth using dynamic programming algorithms. For instance, the Maximum Independent Set, the 3-Coloring, the Vertex Cover, and the Hamiltonian cycle are all FPT when parametrized by the treewidth of the graph. A notion that is usually used to prove such results and that we will also use in what follows is the nice tree-decomposition [Klo94, CNP + 11].

Definition 1. A rooted tree-decomposition ((T, X), r) of G is nice if r 2 T , T is rooted in r and for every node u 2 V (T):

• u has no children and |X u | = 1 (u is called a leaf node), or

• u has one child v with X u ⇢ X v and |X u | = |X v | 1 (u is called a forget node),or • u has one child v with X v ⇢ X u and |X u | = |X v | + 1 (u is called an introduce node), or • u has two children v and w with X u = X v = X w (u is called a join node.).
The following lemma is a well-known result about tree-decomposition [START_REF] Kloks | Computations and Approximations[END_REF]. In this section, we use the nice tree-decomposition and dynamic programming techniques described in a general context in [START_REF] Bodlaender | Treewidth: Algorithmic techniques and results[END_REF][START_REF] Telle | Algorithms for vertex partitioning problems on partial k-trees[END_REF], to prove Theorem 3 .

Our approach is similar to the one used to find Hamiltonian cycles in graphs with bounded treewidth and which is nicely presented in [START_REF] Marx | Fixed parameter algorithms[END_REF].

Theorem 3. The PAFT problem is FPT when parameterized by k + where k is the treewidth and is the maximum degree. In particular, given a graph G with n vertices and maximum degree , and a tree-decomposition of G with width k, PAFT can be solved in G in time O(k 2 (3k) 2k n). Proof. Let G = (V, E) be a graph with bounded treewidth k, F ✓ E ⇥ E a set of forbidden transitions, and s and t two vertices of V . We would like to find the shortest F-valid path P from s to t.

Let e and f be two edges incident to s and t, respectively. We define G e,f as the graph obtained from G, by deleting all edges incident to s and t except for e and f . Finding the shortest F-valid path from s to t in G is equivalent to finding the shortest path among all shortest F-valid paths from s to t in G e,f , for each possible pair (e, f). In the following we will present how to find the shortest F-valid path P from s to t in G e,f . To obtain the solution in G, we will need to repeat the algorithm at most 2 times.

Let (T, X) be a nice tree-decomposition of width k of G e,f . To minimize the number of cases to handle in the proof, we assume that s appears in one introduce bag which is the root of T and t in two bags, a leaf and its introduce parent. This is easy to obtain since we can first find a tree decomposition of G \ {s, t} and then add a node containing e = {s, x} adjacent to a bag containing x and a node containing {t, y} adjacent to a bag containing y. Finally, we root this tree-decomposition at the bag containing s and make the tree-decomposition nice.

Let A ✓ V , G[A] is the subgraph of G e,f induced by the vertices A. For each u 2 V (T) we denote by X u ,T u and V u the bag corresponding to u (i.e. the set X u of vertices of G), the subtree of T rooted at u, and the union of the bags corresponding to the nodes of T u , respectively. We also denote by X u , the set of vertices X u \ X v , where v is the parent of u and u is not the root of the tree. If u is the root, we set X u = ;.

If there exists an F-valid path P from s to t, then the intersection of this path with G[V u] for a node u 2 T , which is not the root, is a collection of F-valid paths with endpoints exclusively in X u [{t} as illustrated in Figure 2.12. We denote this collection by P u = G[V u] \ P . With respect to P u , vertices in X u can be partitioned into three subsets (see Figure 2.12):

• X 0
u , which are the vertices of X u that are not in P u .

• X 1 u , which are the vertices of X u that have degree 1 in P u . Note that X 1 u ⇢ X u [{t}.

• X 2 u , which are the vertices of X u that have degree 2 in P u .

To encode the collection of paths P u at a node u, we need besides the sets X 0 u , X 1 u , and X 2 u , two more sets which are: • M u , which is a matching of the vertices of X 1 u . This matching decides which vertices are endpoints of the same path in P u . According to whether t is in V u or not, M is either a matching of the vertices of X 1 u , or a matching of the vertices of X 1 u [{t}.

X u V u X u X u u 0 1 2 (a) t / 2 V u X u V u X u X u u 0 1 2 t (b) t 2 V u
• S u , which for each vertex v in X 1 u , contains an edge incident to v. This set decides which edges incident to X 1 u are in P u and it is needed to be able to extend P u (using only allowed transitions) to a new collection of F-valid paths in the dynamic programming approach.

For each node u 2 T , we say that (X, Y, Z, M, S) is a realization of u if there exists a set of F-valid paths P u in V u such that (X, Y, Z, M, S) = (X 0 u , X 1 u , X 2 u , M u , S u). To find an F-valid path from s to t, we need to check whether there exists a realization (X, Y, Z, M, S) of the root such that Y = {s}; the collection of paths corresponding to such a realization is an F -valid path. To do that, we compute at each node u of the tree-decomposition, from the leaves to the root, all of the realizations of u. Since several path collections may correspond to one realization, we only keep for a realization (X, Y, Z, M, S) the collection which minimizes the number of edges which we denote by S((X, Y, Z, M, S)). This way the F-valid path we obtain at the end (if there exists one) is a shortest path.

For each node u 2 T , there are at most 3 k+1 possible partitions of the vertices of X u into the 3 different sets, k k possible matchings for a set of k elements and possible edges for each element of X 1 u . Hence, at node u there are at most 3 k+1 k k k realizations. Let us see how to decide if (X, Y, Z, M, S) is a realization of a node u supposing that all the realizations of its children have been computed.

For two collection of paths A and B, min(A, B), is the collection with the minimum number of edges. We distinguish the following cases.

Node u is a leaf. We have X u = {a}. The only realization of u is ({a}, ;, ;, ;, ;) and the corresponding collection of subpaths is the empty set, i.e. S(({a}, ;, ;, ;, ;)) = ;. Node u is a forget node. Let v be the child of u. We have X u = X v \ {a} and we can distinguish two cases:

• If a 6 = t, then R u = (X, Y, Z, M, S) is a realization of u if and only if R 1 v = (X [{a}, Y, Z, M, S) or R 2 v = (X, Y, Z [{a}, M, S) are realizations of v. In this case S(R u) = min(S(R 1 v), S(R 2 v)) (see Figure 2.13a). • If a = t, then R u = (X, Y, Z, M, S) is a realization of u if and only if R v = (X, Y [{a}, Z, M, S) is a realization of v. In this case, S(R u) = S(R v) (see Figure 2.13b).
To compute all the realizations of a forget node, we need at most

O(3 k k k k) steps. X V v Y Z v X V u Y Z u U{a} a X V v Y Z v X V u Y Z u U{a} a a a (a) a 6 = t X V v Y Z v X V u Y Z u U{t} t t (b) a = t
Figure 2.13: Finding solutions at a forget node: u is a forget node and v is its child and

X u = X v \ {a}
Node u is a join node. Let v and v 0 be its children. Recall that

X u = X v = X v 0 .
For any two realizations of v and v 0 we check if the union of the two solutions gives a realization of node u. The union U of two solutions gives a realization of node u if in U , every vertex v of X u has degree at most two and the transitions used around v are allowed (see Figure 2.14). For each realization of u, we keep the solution with the minimum number of edges.

Since there are at most (3 k+1 k k k) 2 pairs of realizations at v and v 0 and for each pair of solutions we need to check the degree and the transitions around each vertex of X u , we need at most O((

3 k k k k
) 2 k) steps to find all of the realizations at a join node.

Node u is an introduce node. Let v be the child of u. We have X u = X v [{a} and all neighbors of a in V u are in X u . Note that a 6 = t since t appears in a leaf node and its introduce parent. We can distinguish the following cases:

• If a 2 X, then (X, Y, Z, M, S) is a realization of u if and only if (X \ {a}, Y, Z, M, S) is a realization of v (see Figure 2.15a).
• if a 2 Y , let {a, b} be the edge incident to a in S. Since all neighbors of a in

V u are in X u , then b 2 X u \ X v . If b = t, then X u = {a, b} (recall that t V v v v' V u u + V v' a a a (a)
The union of the two solutions at v and v 0 is a solution at u if the transition used around a is allowed

V v v v' V u u + V v' (b)
The union of the two solutions at v and v 0 is not a solution at u because it has a vertex of degree 3

Figure 2.14: Finding solutions at a join node: u is a join node and v and v 0 are its children appears only in a leaf and its introduce parent) and R u = (;, {a, t}, ;, {(a, t)}, {{a, t}}) is the only realization of u and S(R u) is the edge {a, t}. If b 6 = t, we have the following cases: • If a 2 Z, then for every two neighbors b and c of a in X u such that {{b, a}, {a, c}} is an allowed transition, we have the following cases (Note that the number of pairs of neighbors of a to consider is of the order of k 2 .).

-If b 2 Y , then R u = (X, Y, Z, M, S) is a realization if and only if (a, b) 2 M , the edge incident to b in S is {a, b} and R v = (X [{b}, Y \ {a, b}, Z, M 0 , S 0) where M 0 = M \ {(a, b)} and S 0 = S \ {{a, b}} is a re- alization of v. In this case S(R u) = S(R v) [{{a, b}} (see Figure 2.15b). -If b 2 Z, then R u = (X, Y, Z, M, S)
-

If b 2 Y and c 2 Y , then R u = (X, Y, Z, M, S) is a realization of u if and only if R v = (X 0 [{b, c}, Y \ {b, c}, Z \ {a}, M 0 , S 0), where M 0 = M \ {(b, c)} and S 0 = S \ {{a, b}, {b, c}}, is a realization of v. In this case S(R u) = S(R v) [{{a, b}, {a, c}} (see Figure 2.15d). -If b 2 Z and c 2 Z, then R u = (X, Y, Z, M, S) is a realization of u if and only if v has a realization among the following collec- tions R h,h 0 ,b 0 ,c 0 v = R v (X, Y [{b, c}, Z \ {a, b, c}, M 0 , S 0
), where To solve all of the subproblems at an introduce node, we need at most

M 0 = M [{(b, h), (c, h 0)} \ {(h, h 0)}, (h, h 0) 2 M ,
O((3 k k k k)k 2) steps. X V v Y Z v X V u Y Z u a \{a} (a) a 2 X X V v Y Z v X V u Y Z u a \{a,b} b U{b} b (b) a 2 Y , b 2 Y X V v Y Z v X V u Y Z u a \{a} b U b c c {b} \{b} d d (c) a 2 Y , b 2 Z X Y Z v X Y Z u \{a,b} b U c \{a} V v {a,b} b c V u a (d) a 2 Z, b, c 2 Y X Y Z X Y Z u a U b c {b,c} \{a,b,c} V u h' h v b c h' h V v c' b' c' b' (e) a 2 Z, b, c 2 Z X Y Z X Y Z u a U b c {b}\{c} \{a,b} V u d v b' b c d b' V v U{c} (f) a 2 Z, b 2 Z, c 2 Y Figure 2
.15: Finding solutions at an introduce node: u is an introduce and v is its child,

X u = X v [{a}

Time complexity:

The algorithm for G e,f runs in time O(k(3k) 2k n) and knowing that we repeat it at most 2 times to obtain the solution for G, the overall time

complexity is O(k 2 (3k) 2k n).
Complexity for planar graphs The complexity of many dynamic programming algorithms on graphs with bounded treewidth can be improved for planar graphs using their planarity and structural properties. A speedup can usually be achieved, by using instead of the classical tree-decompositions, new decompositions that have been defined for planar graphs such as the sphere cut branch decomposition [START_REF] Dorn | Efficient exact algorithms on planar graphs: Exploiting sphere cut branch decompositions[END_REF] and the geometric tree-decomposition [START_REF] Dorn | Dynamic programming and planarity: Improved treedecomposition based algorithms[END_REF]. In particular, these techniques have been used to improve the complexity of the algorithm which solves the Hamiltonian cycle problem in planar graphs from O((3k

) k) to O(6 k),
where k is the treewidth. This is primarily due to the fact that the number of matchings to consider in such special tree-decompositions is bounded by 2 k+1 as proved in [START_REF] Dorn | Efficient exact algorithms on planar graphs: Exploiting sphere cut branch decompositions[END_REF]. This is roughly due to the fact that, in these special tree-decompositions, the vertices of a bag form a Jordan curve. This curve does not intersect with the curves corresponding to the edges of the planar embedding of the graph. Since in the matching we need to define, two matched vertices correspond to the endpoints of a subpath and the subpaths cannot cross each other, the number of valid matchings is bounded by a Catalan number. Taking this into consideration, our algorithm can run in time O(k 2 (6) 2k n)) for planar graphs.

Disjoint trails avoiding forbidden transitions

We have studied in the previous section the problem of finding a path avoiding forbidden transitions and we have proved that it is NP-complete even in grids. This implies that finding disjoint paths is also NP-complete. In fact, taking an instance of PAFT from s to t in a graph G, we transform it into an instance of finding k 2 disjoint paths avoiding forbidden transitions as follows. We construct a graph G 0 by taking G and adding k 1 valid disjoint paths from s to t. Finding k valid paths from s to t in G 0 is equivalent to finding a valid path from s to t in G.

In this section, since finding a trail avoiding forbidden transitions can be solved in polynomial time as we discussed in Section 2.3, we focus on the problem of finding disjoint trails avoiding forbidden transitions. We present results on the problems of finding k vertex-disjoint and k edge-disjoints trails avoiding forbidden transitions which are formulated as follows.

Problem 4 (Finding a k Vertex-Disjoint Trails avoiding Forbidden Transitions, k-VDT). Given a graph G = (V, E), a set F of forbidden transitions and two vertices s, t 2 V . are there k vertex-disjoint F-valid s-t-trails in G?

Problem 5 (Finding a k Edge-Disjoint Trails avoiding Forbidden Transitions, k-EDT). Given a graph G = (V, E), a set F of forbidden transitions and two vertices s, t 2 V . are there k edge-disjoint F-valid s-t-trails in G?

We have proved that k-EDT can be solved in polynomial time in directed graphs and then shown that k-VDT is NP-complete in directed and undirected graphs and polynomial in DAGs. After proving our results, we have found out that even though the complexity of the problem of finding disjoint F-valid trails has not been established in the context of road networks nor optical networks, the related problems of finding vertex-disjoint monochromatic paths and edge-disjoint properly colored trails have been already studied and they imply stronger hardness results than some of the results we have proven. We briefly present these results before giving our proofs.

Related work

In an edge-colored graph, a properly-colored path (trail or walk) is a path which does not use consecutively two edges of the same color and a monochromatic path (trail or walk) is a path (trail or walk) which uses only edges of the same color. Both problems can be seen as problems of finding a path (trail or walk) avoiding forbidden transitions. In the first one, we forbid all of the transitions consisting of edges of the same color and in the second problem, we forbid all of the transitions consisting of edges of different colors. It has been proved in [START_REF] Gourvčs | On paths, trails and closed trails in edge-colored graphs[END_REF], that finding two vertex-disjoint monochromatic paths with different colors between two vertices is NP-complete in undirected edge-colored graphs with maximum degree 4 and directed graphs with maximum degree 8. Since the problems of monochromatic paths and trails are equivalent, it is NP-complete to find two vertex-disjoint monochromatic trails in undirected graphs. This implies that for k 2, k-VDT is NP-complete in undirected graphs with maximum degree 4 and directed graphs of maximum degree 8. In [ADF + 08], it has been proven that finding 2 edge-disjoint properly colored trails is NP-complete in undirected graphs. As a consequence, for k 2, the problem k-EDT is NP-complete for undirected graphs.

Arc-disjoint trails avoiding forbidden transitions

Theorem 4. Finding k 2 arc-disjoint trails avoiding forbidden transitions between two given vertices in a directed graph can be done in polynomial time.

Proof. Let D = (V, A) be a directed graph and s and t two vertices of V . Let D 0 = (V 0 , A 0) be the corresponding dual graph (as defined in section 2.3.1). Finding k arc-disjoint trails from s to t in D = (V, A) is equivalent to finding k vertex-disjoint paths from s 0 to t 0 in D 0 = (V 0 , A 0). We do the proof for k = 2. Let P 1 = (s, v 1 , . . . , v p , t) and P 2 = (s, w 1 , . . . , w q , t) be two arc-disjoint F-valid trails in D. The two paths P 0 1 = (s 0 , u (v 1 ,v 2) , . . . , u (v p 1 ,vp) , t 0) and P 0 2 = (s 0 , u (w 1 ,w 2) , . . . , u (w q 1 ,wq) , t 0) are two vertex-disjoint paths in D 0 . In fact, since {{v i , v i+1 }, {v i+1 , v i+2 }} / 2 F and {{w j , w j+1 }, {w j+1 , w j+2 }} / 2 F the arcs

(u (v i ,v i+1) , u (v i+1 ,v i+2)
) and (u (w j ,w j+1) , u (w j+1 ,w j+2)) exist in D 0 and since every vertex in D 0 corresponds to an arc in D, the arc-disjointness implies the vertex-disjointness. Now let us suppose that there are two vertex-disjoint paths in D 0 , P 0 1 = (s 0 , u a 1 , . . . , u ap , t 0

) and P 0 2 = (s 0 , u b 1 , . . . , u bq , t 0). Let P 1 and P 2 be the trails of D formed by the arcs a 1 , . . . , a p and the arcs b 1 , . . . , b q , respectively. Since there is an arc between u a i and u a i+1 in D 0 for 1  i  q, then the arcs a i and a i+1 form an allowed transition in D and hence P 1 is an F-valid trail. Similarly, P 2 is an F-valid trail. Finally, since every vertex in D 0 corresponds to an arc in D, the vertex-disjointness implies the arc-disjointness.

Vertex-disjoint trails avoiding forbidden transitions

We focus in this section on the k-VDT problem. We first prove that it is NP-hard in general directed graphs and polynomial in directed acyclic graphs. Afterwards, we show that it is NP-hard in undirected graphs.

Vertex-disjoint trails in directed graphs

As pointed out in Section 2.5.1, since finding two vertex-disjoint monochromatic paths with different colors between two vertices is NP-complete in arc-colored directed graphs with maximum degree 8 [START_REF] Gourvčs | On paths, trails and closed trails in edge-colored graphs[END_REF], then finding 2 vertex-disjoint trails is NP-complete in directed graphs with maximum degree 8. We present in what follows a weaker result with an easy reduction.

Theorem 5. The k-VDT problem, for k 2, is NP-complete in directed graphs.

Proof. The problem is clearly in NP. To prove the hardness we use a reduction from the problem of finding two vertex-disjoint paths in a directed graph. In this problem, we are given a directed graph D and two pairs of vertices (s 1 , t 1) and (s 2 , t 2) and the objective is to find two vertex-disjoint paths P 1 and P 2 in D such that P 1 is from s 1 to t 1 and P 2 is from s 2 to t 2 . This problem has been proven NP-complete in [START_REF] Fortune | The directed subgraph homeomorphism problem[END_REF].

Let

(D = (V, A), (s 1 , t 1), (s 2 , t 2
)) be an instance of the problem of finding 2 vertex-disjoint paths in a directed graph. We build a directed graph D 0 with a set of forbidden transitions F and two vertices s and t such that finding 2 vertex-disjoint paths in D is equivalent to finding 2 vertex-disjoint F-valid trails from s to t in D 0 . To build D 0 , we replace each arc of A with two parallel directed paths of length 2; one red path and one blue path. We add a vertex s connected to s 1 with a red arc (s, s 1) and connected to s 2 with a blue arc (s, s 2). We add a vertex t connected to t 1 with a red arc (t 1 , t) and to t 2 with a blue arc (t 2 , t). The set of forbidden transitions F contains all the transitions of D 0 which consist of a blue arc and a red arc. Figure 2.16 presents an example illustrating the reduction.

Let P 1 and P 2 be two vertex-disjoint paths in D, such that P 1 is from s 1 to t 1 and P 2 is from s 2 to t 2 . Let P 0 1 (resp. P 0 2) be the path in D 0 obtained from P 1 (resp. P

2) by replacing each arc by the corresponding red (resp. blue) directed path of length 2 in D 0 . Let P " 1 be the directed path of D 0 obtained from the concatenation of the arc (s, s 1), the directed path P 0 1 and then the arc (t 1 , t) and P " 2 be the directed path of D 0 obtained from the concatenation of the arc (s, s

2), the directed path P 0 2 and then the arc (t 2 , t). The two paths P " 1 and P " 2 are F-valid since they only use transitions of arcs of the same colors, they are also vertex-disjoint since the subpaths P 0 1 and P 0 2 are vertex-disjoint. Now let P 1 and P 2 be two vertex-disjoint F-valid trails from s to t in D 0 such that P 1 is the path using arc (s, s 1). Since P 1 is F-valid and F contains all transitions consisting of a red and blue edge, P 1 only uses red arcs and it hence uses the arc (t 1 , t). Similarly, P 2 uses only blue arcs and hence uses the arc (t 2 , t). Let P 0 1 be the subtrail of P 1 from s 1 to t 1 and P 0 2 the subtrail of P 2 from s 2 to t 2 . By removing all the subcycles of P 0 1 and P 0 2 , we obtain two vertex-disjoint paths in D, one from s 1 to t 1 and the other from s 2 to t 2 .

Vertex-disjoint trails in DAGs

We prove in this section, through Theorem 6, that k-VDT is polynomial in DAGs.

In the proof of the theorem, we use ideas of [START_REF] Chakaravarthy | New results on the computability and complexity of points-to analysis[END_REF], in particular that of layered directed graph and a construction similar to that used to find a polynomial time algorithm for disjoint paths with forbidden pairs in layered directed graphs (Theorem 6 of [START_REF] Chakaravarthy | New results on the computability and complexity of points-to analysis[END_REF]).

Definition 2 (Layered directed graph). A directed graph G = (V, E) is layered if there is a layering function l : V ! [0, 1, . . . , (|V | 1)] such that for every arc

(u, v) 2 E, l(v) = l(u) + 1.
We say that vertex u is in layer l(u) and arc (u, v) is in layer l(u). Layered directed graphs are acyclic.

Theorem 6. The k-VDT problem, for a fixed k 2, can be solved in polynomial time in directed acyclic graphs.

Proof. Let D be DAG with a set of forbidden transitions F and let s and t be two given vertices. As we want to find (in polynomial time) directed paths from s to t, we can delete the vertices not on a directed path from s to t, and so we suppose in what follows that, in D, s is the unique vertex with no in-neighbor and t the unique vertex with no out-neighbor. For the ease of presentation, we first give the transformation for k = 2. The algorithm that finds 2 vertex-disjoint paths from s to t in D uses two transformations:

Transformation 1 We first associate with the DAG D and the set of forbidden transitions F a layered DAG LD and a set of forbidden transitions F 0 as follows. We denote by (v) the set of the in-neighbors of v, i.e; vertices u such that (u, v) 2 E.

F = n {{s, u 1 }, {u 1 , u 4 }}, {{s, u 2 }, {u 2 , u 3 }}, {{s, u 3 }, {u 3 , u 5 }} o s u 1 u 4 t u 5 u 3 u 2 v 1 v 2 v 3 e 0 e 1 e 2 e 3 f 3 h 2 g 2 f 2 f 1 g 1 h 1 l 1 g 0 f 0 (b) The corresponding layered DAG LD
with a set of forbidden transitions

F 0 = {e 0 , e 1 }, {g 0 , h 1 }, {g 1 , g 2 } s t (e 0 ,f 0) (e 0 ,g 0) (f 0 ,g 0) (e 1 ,g 1) (e 1 ,l 1) (g 1 ,l 1) (e 1 ,h 1) (f 1 ,l 1) (e 2 ,h 2) (e 2 ,g 2) (f 2 ,h 2) (e 3 ,f 3) (c) The corresponding directed graph H Figure 2
.17: Example the transformations for a DAG

We compute the function l : V ! N defined as follows:

l(v) = (0 when v = s, 1 + max u2 (v) l(u) otherwise.
In such a level function, l(v) is the length of the longest path from s to v, and t has the maximum value as there is a directed path from any vertex to t in the reduced DAG. In the example of Figure 2.17a, we have l(u

1) = l(u 2) = 1, l(u 3) = 2, l(u 4) = l(u 5) = 3
, and l(t) = 4. Now we replace every arc (u, v), such that l(v) > l(u) + 1, with a directed path P uv from u to v of length l(v) l(u) (thus possibly adding new vertices and arcs). The set of forbidden transitions F 0 in LD is defined as follows. For an arc (u, v) of D, all of the transitions of the path P uv are allowed. Furthermore, if (w, u) and (u, v) form an allowed (resp. forbidden) transition in D, then the last arc of P wu and the first arc of P uv form an allowed (resp. forbidden) transition in LD. In Figure 2.17b, we give the layered DAG LD obtained from the DAG D of Figure 2.17a. We have given a name to each arc with a lower index indicating the level of the arc.

Therefore, in what follows we consider a layered DAG LD with its set of forbidden transitions F 0 and two specific vertices s and t.

Transformation 2 We use in this transformation ideas similar to that used in [START_REF] Chakaravarthy | New results on the computability and complexity of points-to analysis[END_REF] to solve the problem of finding a pair of vertex-disjoint paths with for-bidden pairs of edges in a layered DAG such that the edges of a forbidden pair are in the same layer.

With LD we will associate a directed graph H with two specific vertices s and t, such that there exist 2 vertex-disjoint F 0 -valid paths in LD from s to t if and only if there exists a directed path from s to t in H.

There is a vertex in H for every pair {e i , f i } of arcs in LD at the same layer i, with 0  i  l(t) 1, such that e i \f i 2 {s, t}. We also add to H two vertices s and t. Now we join, by an arc in H, s to all the vertices (pairs) {e 0 , f 0 }. Similarly we join every vertex {e l(t) 1 , f l(t) 1 } in H by an arc to t. Finally, for 0  i  l(t) 2, we join in H each vertex {e i , f i } to a vertex {e i+1 , f i+1 } if in LD we have the following properties:

1. the terminal vertex u i of e i is the initial vertex of e i+1 , and {e i , e i+1 } is an allowed transition (i.e. not forbidden); and 2. the terminal vertex u v of f i is the initial vertex of f i+1 , and {f i , f i+1 } is an allowed transition (i.e. not forbiden). For example, we have three vertices corresponding to pairs of arcs of layer 0 of LD: (e 0 , f 0), (e 0 , g 0) and (f 0 , g 0) and 5 vertices corresponding to pairs of arcs of layer 1: (e 1 , g 1), (e 1 , h 1), (e 1 , l 1), (f 1 , l 1), and (g

1 , l 1). Vertex (e 0 , f 0) is not connected to vertex (e 1 ,
= (s, f 0 , v 0 , f 1 , . . . , f l(t) 2 , v l(t) 1 , f l(t) 1 , t) implies the existence of a directed path from s to t namely P Q = (s, {e 0 , f 0 }, {e 1 , f 1 }, . . . , {e l(t) 1 , f l(t) 1 }, t) in H.
Conversely, let W be a path in H written in the form W = (s, w 0 , w 1 , . . . , w l(t) 1 , t) where w i corresponds to the pair {e i , f i } and w i+1 to the the pair {e i+1 , f i+1 } such that {e i , e i+1 } and {f i , f i+1 } are allowed transitions in LD. Then, the two directed paths P = (s, e 0 , u 0 , e 1 , . . . , e l(t) 2 , u l(t) 1 , e l(t) 1 , t)

and Q = (s, f 0 , v 0 , f 1 , . . . , f l(t) 2 , v l(t) 1 , f l(t) 1 , t
) are vertex-disjoint and F 0 -valid. In the example of Figure 3.6c, H has two directed paths from s to t. For example with the directed path P = (s, {e

0 , g 0 }, {f 1 , l 1 }, {f 2 , h 2 }, {e 3 , f 3 }, t), the vertex- disjoint F 0 -valid paths P 1 = (s, e 0 , f 1 , f 2 , e 3 , t) and P 2 = (s, g 0 , l 1 , h 2 , f 3 , t) in LD and the two vertex-disjoint F-valid paths (s, u 1 , u 3 , u 4 , t) and (s, u 2 , u 5 , t) in D are associated.
The algorithm can be generalized to find k color-disjoint paths from s to t in a DAG D, for any k 2. We first transform D to a layered graph LD as before. Then, in the second transformation, instead of having a vertex for every pair of arcs of the same layer, we create a vertex for every k-tuple of arcs {e 1 i , e 2 i , . . . , e k i } at the same layer i, such that the e j i , for j = 1, . . . , k, are disjoint or only share s or t. Then an arc is added from node {e 1 i , e 2 i , . . . , e k i } to node {e 1 i+1 , e 2 i+1 , . . . , e k i+1 } if there exists an ordering of the e j i and of the e j i+1 such that the terminal vertex of e j i is the initial vertex of e j i+1 and the transitions {e j i , e j i+1 } are allowed.

Vertex-disjoint trails in undirected graphs

As pointed out in Section 2.5.1, since finding two vertex-disjoint monochromatic paths with different colors between two vertices is NP-complete in undirected edgecolored graphs with maximum degree 4 [GLMM12], then finding 2 vertex-disjoint trails is NP-complete in undirected graphs with maximum degree 4. We present in what follows a weaker result with a different reduction in which the graph is 1-planar, i.e. a graph that can be embedded in the plane in such a way that each edge has at most one crossing point, where it crosses a single additional edge.

Theorem 7. The k-VDT problem, for k 2, is NP-complete in undirected graph with maximum degree 8.

Proof. The problem is clearly in NP. We prove the hardness using a reduction from the 3-SAT problem. The reduction is similar to the one used in the proof of Lemma 1. Let be an instance of 3-SAT, i.e., is a boolean formula with variables {v

1 , • • • , v n } and clauses {C 1 , • • • , C m }.
We build a grid-like planar graph G similar to the one in the proof of Lemma 1. The difference between the graph G and the main graph in the proof of Lemma 1 is mainly in the way the clausegraphs are combined; a new gadget called the 2-path-gadget is used to combine the clause-graphs. In particular, this new way of combining the clause-graphs breaks the planarity our reduction. In what follows we present how to build G using the clause-gadgets and the 2-path-gadgets. Here again, multigraphs can be easily transformed to graphs by subdividing the edges and the colors and the multi-edges are only used to make the presentation easier.

Clause-graph G j . For each 1  j  m, we build a Clause-gadget G j with a set of forbidden transitions F j similar to the one built in the proof of Lemma 1 (see Figure 2.18b).

Any F j -valid trail from s j to t j starts with a red edge and ends with a blue edge (or the inverse). Since it is not possible to go from a red edge to a blue edge without using a pink or a green edge, Claim 9 follows.

Claim 9. Any F j -valid trail P from s j to t j must use a green or a pink edge in a gadget G ij for some 1  i  n.

Another important property of F j -valid trails is the following.

Claim 10. If P is an F j -valid trail from s j to t j in G j , then for each 1  i  n:

• P passes through both vertices true ij and true 0 ij , or

• P passes through both vertices false ij and false 0 ij . Let P be an F j -valid trail from s j to t j in G j . For 1  i  n, P passes necessarily through true ij or false ij . Let us suppose P uses vertex true ij , for a given 1  i  n. If true ij appears in P after one of the vertices a ij and b ij , then with the way the set of forbidden transitions F j is defined, the vertices after true ij should be x ij and true 0 ij . Namely, around true ij the allowed transitions containing

true ij true' ij false' ij false ij s ij x ij y ij z ij t ij a ij b ij c ij d ij RT ij BF ij RF ij BT ij (a) Gadget G ij s 1j t 1j t 2j t 3j t 4j t j s j v 1 v 2 v 3 v 4 negative in positive in does not appear in positive in C j C j C j C j (b) Clause-graph G j (j odd) for a Clause C j = v1 _ v 2 _ v 4 in
a ij (resp. b ij) is {{a ij , true ij }, {true ij , x ij }} (resp. {{b ij , true ij }, {true ij , x ij }}) and the allowed transition around x ij is {{true ij , x ij }, {x ij , true 0 ij }}.
Otherwise, if true ij appears in P after x ij , then with the way the set of forbidden transitions F j is defined, the vertex used before x ij should be true 0 ij . If P uses vertex true 0 ij , for a given 1  i  n, then if true 0 ij appears in P after the vertex x ij , then with the way the set of forbidden transitions F j is defined, the vertex before x ij should be true ij . Otherwise, if true 0 ij appears in P after the vertex y ij , then with the way the set of forbidden transitions F j is defined, the vertices that appear after true 0 ij should be x ij and then true ij . The proof is similar for the case where P uses vertices false ij and false 0 ij . Note that unlike the paths in the proof of Lemma 1, an F j -valid trail from s j to t j in G j can use true ij and true 0 ij and at the same time false ij and false 0 ij . ⇧ 2-path-gadget ⇧. This gadget consists of two intersecting paths of length 4n each.

• (x 1 , true 1 , y 1 , true 0 1 , . . . , x n , true n , y n , true 0 n , x n+1); this path is depicted in full black in the example of Figure 2.19.

1 , v 2 , v 3 } • (x 1 , false 1 , y 1 , false 0 1 , . . . , x n , false n , y n , false 0 n , x n+1); this path is depicted in dotted black in the example of Figure 2.19.
The set of forbidden transitions F ⇡ in the 2-path-gadget ⇧ contains all the transitions {{true i , y i }, {y i , false 0 i }}, and {{false i , y i }, {y i , true 0 i }}, 1  i  n. Claim 11 presents the properties of an F ⇡ -valid trail in ⇧. Note that any F ⇡ -valid trail between x

1 and x n+1 is a path. Claim 11. Let P be an F ⇡ -valid trail between x 1 and x n+1 in ⇧. Then, for 1  i  n either • P passes through true i and true 0 i and does not pass through false i nor false 0 i , or • P passes through false i and false 0 i and does not pass through true i nor true 0 i .

Main Graph G. The graph G is built by combining the clause-gadgets G j , 1  j  m, as well as m 1 copies ⇧ j , 1  j < m, of the 2-path-gadget ⇧ (we denote by v j a vertex v of the copy ⇧ j). An illustrating example of the combination is presented in Figure 2.20 and the details are in what follows.

• For each 1  j < m, we identify the vertices t j and s j+1 .

• For each 1  j  m 2, we add a black edge between x j n+1 and x j+1 1 . Note that these are the only edges breaking the planarity.

• We add a black edge between s 1 and x 1 1 and another black edge between x m 1 n+1 and t m .

• For each 1  j < m, and for each 1  i  n we do the following:

-We identify the vertices true 0 ij and false 0 ij of G j with the vertices true j i and false 0j i of ⇧ j , respectively. -We identify the vertices true 0j i and false j i of ⇧ j with the vertices true i,j+1 and false i,j+1 of G j+1 , respectively.

The set of forbidden transitions F include besides all the forbidden transitions F j of G j , 1  j  m, and F j ⇡ of ⇧ j , 1  j < m, all transitions consisting of a black edge and a blue or red one. This way it is not possible to go from G j to ⇧ j . Note that the maximum degree of the graph G is 8.

The following claims present the key properties of an F-valid trail from s 1 to t m in G and the properties of 2 vertex-disjoint F-valid trails from s 1 to t m in G.

1 = v1 _ v 2 _ v 4 , C 2 = v 2 _ v3 _ v4 and C 3 = v1 _ v3 _ v 4 .
The two bold paths in black and red-blue from s 1 to t 3 are 2 vertex-disjoint paths corresponding to the assignment of v 1 , v 2 and v 4 to True and v 3 to False. This assignment satisfies all clauses.

Claim 12. If P is an F-valid trail from s 1 to t m in G, then: • P consists of the concatenation of F j -valid trails from s j to t j in G j , from j = 1 to m, P is called then a colored trail; or

• P consists of the concatenation of F j ⇡ -valid trails from x j 1 to x j n+1 in ⇧ j , from j = 1 to m 1, and the edges {s

1 , x 1 1 }, {x j n+1 , x j+1 1 } for 1  j  m 2 and {x m 1 n+1 , t m }, P is called then a black trail.
Proof of claim. Let P be an F-valid trail from s 1 to t m in G. If P uses the black edge {s, x 1 1 }, then P only uses black edges since all transitions containing a black edge and a blue or red edge are forbidden. In the subgraph of G induced by the black edges, an F-valid trail from s 1 to t m consists of the concatenation of F j ⇡ -valid trails from x j 1 to x j n+1 in ⇧ j , from j = 1 to m 1, and the edges {s

1 , x 1 1 }, {x j n+1 , x j+1 1 } for 1  j  m 2 and {x m 1 n+1 , t m }.
If P uses the red edge {s, s 11 }, then P cannot use black edges. In the subgraph of G induced by the red, blue, pink and green edges, an F-valid trail from s 1 to t m consists of the concatenation of F j -valid trails from s j to t j in G j , from j = 1 to m. ⇧ Note that for every 2 vertex-disjoint F-valid trails from s 1 to t m in G, one trail uses the black edge {s, x 1 1 } and is hence a black trail and the other uses the red edge {s, s 11 } and is hence a colored trail.

Claim 13. If P and P 0 are 2 vertex-disjoint F-valid trails from s 1 to t m in G, then P is a colored trail and P 0 is a black trail or vice-versa.

Claim 14. If P and P 0 are 2 vertex-disjoint F-valid trails from s 1 to t m in G and P is the colored path, then, for any 1  i  n, either

• for any 1  j  m, the trail P passes through true ij and true 0 ij and does not pass through false ij nor false 0 ij , or

• for any 1  j  m, the trail P passes through false ij and false 0 ij and does not pass through true ij nor true 0 ij .

Proof of claim. By Claims 12, for any 1  j  m, there is a subtrail P j of P that goes from s j to t j . Let us prove first that for 1  j  m, for any 1  i  n the subtrail P j passes through true ij and true 0 ij and does not pass through false ij nor false 0 ij or passes through false ij nor false 0 ij and does not pass through true ij and true 0 ij . By Claim 10, for 1  i  n, P j either passes through true ij and true 0 ij , or through false ij and false 0 ij . Let us assume that we are in the first case (the second case can be handled symmetrically). Since P j is using true 0 ij = true j i and P is vertex disjoint from P 0 , then by Claims 12 and 11, P 0 is using false 0j i = false 0 ij . Again, since P and P 0 are vertex disjoint, P j does not use false 0 ij nor false ij . Now, let us suppose that for a given 1  i  n, that P 1 passes through true i1 and true 0 i1 , and does not pass through false i1 and false 0 i1 (the second case can be handled symmetrically). We prove by induction on j  m that P j passes through true ij and true 0 ij and does not pass through false ij nor false 0 ij . Indeed, if P j passes through true ij = true 0j 1 i and true 0 ij = true j i , then P j+1 cannot use false i,j+1 nor false 0 i,j+1 since P 0 which is vertex disjoint from P uses by claim 11 false j i = false i,j+1 . ⇧ Claim 15. is satisfiable if and only if there are 2 vertex-disjoint F-valid trails from s 1 to t m in G. Proof of claim. Let ' be a truth assignment which satisfies . We can build two vertex-disjoint F-valid trails P and P 0 from s 1 to t m in G. The trail P is a colored trail and can be built as was built the path in the proof of Claim 8. In more details, For each row 1  j  m, we build a path P j from s i to t j by concatenating the paths P ij , 1  j  m, which are built as follows. Among the variables that appear in C j , let v q be the variable with the smallest index, which satisfies the clause.

• For 1  i < q, if '(v i) = true, then P ij = RT ij if j is odd and P ij = BT ij if j is even. If '(v i) = false, then P ij = RF ij if j is odd, and P ij = BF ij if j is even. • For i = q, if '(v i) = true, then P ij = RBT ij if j is odd, and P ij = BRT ij if j is even. If '(v i s) = false, then P ij = RBF ij if j is odd, and P ij = BRF ij if j is even. • For q < i  n, if '(v i) = true, then P ij = BT ij if j is odd, and P ij = RT ij otherwise. If '(v i) = false, then P ij = BF ij if j is odd, and P ij = RF ij otherwise.
The path P obtained from the concatenation of paths P j for 1  j  m is an F-valid path from s 1 to t m . The trail P 0 is a black trail and is built from the concatenation of the edges {s 1 , x 1 1 }, {x j n+1 , x j+1 1 } for 1  j  m 2 and {x m 1 n+1 , t m } and the subtrails P j , 1  j < m, built as follows. From i = 1 to m, P j uses the vertex x j i , then:

• If P ij uses true ij , P j uses vetices false i,j+1 , y j i and then false 0 ij .

• If P ij uses false ij , P j uses vetices true i,j+1 , y j i and then true 0 ij .

At last, P j uses vertex x j n . The trail P 0 is F-valid and by definition vertex-disjoint from P

1 . Now let us suppose that there are two vertex-disjoint F-valid paths P and P 0 from s 1 to t m . Let P be the colored one. According to Claim 14, for any 1  i  n, for any 1  j  m, P passes through true ij and true 0 ij and does not pass through false ij and false 0 ij , or P passes through false ij and false 0 ij and does not pass through true ij and true 0 ij . Let us then consider the truth assignment ' of such that for each 1  i  n:

• If P uses true ij and true 0 ij in all rows 1  j  m, then '(v i) = true.
• If P uses false ij and false 0 ij in all rows 1  j  m, then '(v i) = false.

Thanks to Claim 14, ' is a valid truth assignment. We need to prove that ' satisfies . According to Claim 12, for each 1  j  m, P contains an F j -valid path P j from s j to t j and according to Claim 9, P j uses a green or a pink edge. We prove in the following that for 1  i  n and 1  j  m, if P j uses a pink edge {a ij , b ij }, then P uses the vertex true ij and if P j uses a pink edge {c ij , d ij }, then P uses the vertex false ij .

• Let us suppose that P j uses a pink edge {a ij , b ij } and does not use the vertex true ij . This implies that P 1 contains the cycle {t i 1,j , a ij , b ij } and hence P 1,j uses at least 3 edges incident to t i 1,j from the side of s (two edges to leave and enter the cycle and an additional edge to cross again the cut-vertex t i 1,j towards t j). Trail P j uses then at least one edge {z i,j 1 , t i,j 1 } and at least one edge {false 0 i,j 1 , t i,j 1 }. This is not possible since it implies that P j uses vertices true i 1,j and false i 1,j which contradicts Claim 14.

• Let us suppose that P j uses a green edge {c ij , d ij } and does not use the vertex false ij . This implies that P j contains the cycle {y ij , c ij , d ij } and hence P j uses at least 3 edges incident to y i,j from the side of s (two edges to enter and leave the cycle and an additional one to cross again the cut-vertex y i,j towards t j). This implies that P uses one edge {z i 1,j , t i 1,j } and one edge {false 0 i 1,j , t i 1,j }. This is not possible since it implies that P j uses vertices true i 1,j and false i 1,j which contradicts Claim 14.

Thus, the use of a pink edge in P j forces P j (and hence P) to use, for a variable v i that appears positively in C j , the vertices true ij and true 0 ij . Similarly, the use of a green edge in P j forces P j (and hence P) to use, for a variable v i that appears negatively in C j , the vertices false ij and falce 0 ij . This means that for each clause C j , for one of the variables that appear in C j which we denote v i , '(v i) = true ('(v i) = false) if v i appears positively (negatively) in C j , respectively. Thus, the truth assignment ' satisfies . ⇧

Remark. Please note that all of the constructions in the NP-completeness proof of Theorem 7 can be done with directed graphs, which implies that k-VDT is NP-complete in directed graphs with maximum degree 8. In fact, the gadgets G ij can be built with directed paths RT ij , BT ij , RF ij and BF ij instead of undirected ones. As for the edges

{a ij , b ij } and {c ij , d ij }, they can be replaced by arcs (a ij , b ij) and (c ij , d ij) if j is odd and arcs (b ij , a ij) and (d ij , c ij) oth- erwise.
In the clause-graphs G j , we can have arcs (s j , s 1j) and (t nj , t n) replace of the edges {s j , s 1j } and {t nj , t n }. Moreover, the 2-path-gadget can be built with two directed paths (x 1 , true 1 , y 1 , true 0 1 , . . . , x n , true n , y n , true 0 n , x n+1) and (x 1 , false 1 , y 1 , false 0 1 , . . . , x n , false n , y n , false 0 n , x n+1) and the edges {x j n+1 , x j+1 1 } can be replaced by the arcs (x j n+1 , x j+1 1).

Conclusion

Table 2.2 summarizes the complexity results on the problems we have investigated in this chapter: finding a path, a trail and disjoint trails avoiding forbidden transitions.

We have proved that the problem of finding a path avoiding forbidden transitions is NP-complete even in well-structured graphs as grids. We have also proved that PAFT can be solved in polynomial time when the treewidth is bounded. In fact, we believe that the PAFT problem is actually W [1]-hard when parameterized by the treewidth. This would imply that unless F P T = W [1], PAFT is not FPT when parameterized by the treewidth only, that is there is no algorithm which finds a path avoiding forbidden transitions in O(f (k)poly(n)), where k is the treewidth and n is the size of the graph. Future work might focus on proving this conjecture as well as on the study of the parameterized complexity with other parameters such as the number of asymmetric nodes or forbidden transitions. Another interesting direction in the study of PAFT could be to consider the optimization problem where the objective is to find a path with minimum number of forbidden transitions and to investigate possible approximation solutions.

As for the problem of finding disjoint trails, we have proved that when the trails are required to be vertex-disjoint the problem is NP-complete both in directed

Directed graphs

Undirected graphs Finding a path (PAFT)

• NP-complete in general [Sze03] • NP-complete in directed grids • Polynomial in DAGs • NP-complete in general [Sze03]
• NP-complete in grids • Polynomial in graphs with bounded treewidth Finding a trail (TAFT)

Polynomial [Win02, ABP96] Polynomial Finding k vertex-disjoint trails (k-VDT)
• NP-complete in directed graphs with maximum degree 8 (also implied by [START_REF] Gourvčs | On paths, trails and closed trails in edge-colored graphs[END_REF])

• Polynomial in DAGs • NP-complete in undi- rected graphs with maxi- mum degree 8 • NP-complete in undi- rected graphs with degree  4 [GLMM12] Finding k edge- disjoint trails (k-EDT) Polynomial NP-complete [ADF + 08]
Table 2.2: Summary of complexity results for problems of finding paths avoiding forbidden transitions. and undirected graphs. On the positive side, if the paths are only required to be edge-disjoint, the problem can be solved in polynomial time in directed graphs. The reduction graph in the proof of the NP-completeness of finding 2 vertex-disjoint trails avoiding forbidden transitions is 1-planar, which means that it can be embedded in the plane in such a way that each edge has at most one crossing point, where it crosses a single additional edge. This makes us wonder if the k-VDT problem is NP-complete in planar graphs. Future work might focus on answering this question. Moreover, we have proved that for a fixed k, k-VDT is polynomial in DAGs. Since, the algorithm we use has time complexity O(n poly(k)), we would like to see if this complexity can be improved and if k-VDT is FPT in DAGs when parameterized by k the number of disjoint paths. It would be also interesting to study the generalization of the k-EDT problem in which we look for k edge-disjoint paths avoiding forbidden subpaths. Since k-EDT is polynomial in directed graphs, it would be nice to see if the generalized problem is polynomial as well in directed graphs. We would also like to investigate possible approximations for the optimization version of the k-VDT problem. That is the problem of finding k minimum vertex-overlapping trails, i.e. trails sharing the minimum number of vertices. We study in this chapter, the problem of finding risk disjoint paths in networks where links are subject to risks localized around the nodes. Results presented in this chapter are joint work with J.-C. Bermond, D. Coudert, and G. D'Angelo and they have been published in Theoretical Computer Science [BCDM15] and presented in the Student Workshop ACM CoNEXT'2012 [BCDM12], Algotel'2013 [BCDM13b], and DRCN'2013 [BCDM13a].

Introduction

The dedicated path protection scheme, which we have defined in the beginning of Part I, is used to ensure reliable communications in networks in general and optical networks in particular. It consists in finding a pair of disjoint paths: one working path to ensure the communication and one protection path to reroute the traffic in case of a failure. This method works well in a single link failure scenario, as it consists in finding two edge-disjoint paths between a pair of nodes. This is a well-known problem in graph theory for which there exist efficient polynomial time algorithms [START_REF] Suurballe | Disjoint paths in a network[END_REF][START_REF] Suurballe | A quick method for finding shortest pairs of disjoint paths[END_REF]. However, the problem of finding two disjoint paths between a pair of nodes becomes much more difficult, in terms of computational complexity, in case of multiple correlated link failures that can be captured by the notion of Shared Risk Link Group (or SRLG, for short). In fact, a SRLG is a set of network links that fail simultaneously when a given event (risk) occurs. The scope of this concept is very broad. It can correspond, for instance, to a set of fiber links of an optical backbone network that are physically buried at the same location and therefore could be cut simultaneously (i.e. backhoe or JCB fade). It can also represent links that are located in the same seismic area, or radio links in access and backhaul networks subject to localized environmental conditions affecting signal transmission, or traffic jam propagation in road networks. Note that a link can be affected by more than one risk. In practice, the failures are often localized and common SRLGs satisfy the star property [START_REF] Luo | Diverse routing in WDM optical networks with shared risk link group (SRLG) failures[END_REF] (coincident SRLGs in [START_REF] Doucette | Shared-risk logical span groups in spanrestorable optical networks: Analysis and capacity planning model[END_REF]). Under this property, all links of a given SRLG share an endpoint. Such failure scenarios can correspond to risks arising in router nodes like card failures or to the cut of a conduit containing links issued from a node (see Figure 3.1). The graph theoretic framework for studying optimization problems in networks with SRLGs is the colored graph model [DS08, YVJ05, Far06, DG05, LW05, CDP + 07]. In this model, the network topology is modeled by a graph G = (V, E) and the set of SRLGs by a set of colors C. Each SRLG is modeled by a distinct color, and that color is assigned to all the edges corresponding to the network links subject to this SRLG. Also, an edge modeling a network link subject to several SRLGs will be assigned as many colors as SRLGs. A colored graph is therefore defined by the triple (V, E, C), where C is a coloring function, C : E ! 2 C , that assigns a subset of colors to each edge. The colored graph model is also known as the labeled graph model [START_REF] Fellows | The parameterized complexity of some minimum label problems[END_REF]. Furthermore, some studies assumed that an edge is assigned at most one color [CDP + 07, FGK10, JRN04]. Notice that the computational complexity of some optimization problems may be different in the model in which an edge is assigned at most one color than in the model in which it can be assigned multiple colors, and the impact of the transformation from one model to the other on problems complexities has been investigated in [START_REF] Coudert | Combinatorial optimization in networks with Shared Risk Link Groups[END_REF]. In the setting of colored graphs, the star property means that all the edges with a given color share a common vertex.

l 1 l 6 l 5 l 4 l 3 l 2 l 8 l 7 l 1 l 6 l 5 l 4 l 3 l 2 l 8 l 7 r 4 r 3 r 2 r 1 v v Card1 Card3 Card2

Related work

In the context of colored graphs, basic graph connectivity problems have been restated in terms of colors and proven much more difficult to address than their basic counterparts. For instance, the minimum color st-path problem is to find a path from vertex s to vertex t in the graph that minimizes the cardinality of the union of the colors of the edges along that path. This problem has been proven NPhard [SYR05, BLWZ05, CDKM00] and hard to approximate [CDP + 07, HMS07] in general, W [2]-hard when parameterized by the number of used colors and W [1]-hard when parameterized by the number of edges of the path [START_REF] Fellows | The parameterized complexity of some minimum label problems[END_REF]. However, it has been proven in [START_REF] Coudert | Combinatorial optimization in networks with Shared Risk Link Groups[END_REF] that the minimum color st-path problem can be solved in polynomial time in colored graphs with the star property. Other optimization problems on graphs have been studied in the context of colored graphs such as the minimum color cut [Far06, CDP + 07], the minimum color st-cut [CDP + 07], the minimum color maximum matching [START_REF] Fellows | The parameterized complexity of some minimum label problems[END_REF] .

The k-diverse routing problem in presence of SRLGs consists in finding a set of k SRLG-disjoint paths between a pair of vertices (i.e. paths having no risk in common). Note that many authors use, in the case k = 2, diverse routing instead of 2-diverse routing. With no restriction on the graph structure and on the assignment of SRLGs to edges, even finding two SRLG-disjoint paths is NP-complete [START_REF] Hu | Diverse routing in mesh optical networks[END_REF], and therefore many heuristics have been proposed [SYR05, YVJ05, GL07, TR04b, TR04a, ZSXT07]. The problem is polynomial in some specific cases of localized failures: when SRLGs have span 1 (i.e. an edge can be affected by only one SRLG, and the set of edges belonging to the same SRLG forms a connected component, see [CDP + 07]), and in a specific case of SRLGs having the star property [START_REF] Datta | Graph transformation approaches for diverse routing in shared risk resource group (SRRG) failures[END_REF] in which a link can be affected by at most two risks and two risks affecting the same link form stars at different nodes (this result also follows from [CDP + 07]).

Our results

We study the k-diverse routing problem when SRLGs have the star property and there are no restrictions on the number of risks per link nor on the number of links per risk. This case has been studied in [START_REF] Luo | Diverse routing in WDM optical networks with shared risk link group (SRLG) failures[END_REF] in which the authors claim that finding two SRLG-disjoint paths under the star property can be solved in polynomial time. In this chapter, we establish the following results:

• We demonstrate that the algorithm proposed in [START_REF] Luo | Diverse routing in WDM optical networks with shared risk link group (SRLG) failures[END_REF] is not correct; indeed we exhibit, in Section 3.3, counterexamples for which their algorithm concludes to the non existence of two SRLG-disjoint paths although two such paths exist.

• We prove, in Section 3.4, that finding k SRLG-disjoint paths is in fact NPcomplete even for only two paths.

• On the positive side, we show in Section 3.5, that the k-diverse routing problem can be solved in polynomial time in particular subcases which are relevant in practice. Namely, we solve the problem in polynomial time when the maximum degree is at most 4 or when the input network is a directed acyclic graph. Moreover, we show that the problem is fixed-parameter tractable when parameterized by the number of colors in C.

• Finally, we consider the problem of finding the maximum number of SRLGdisjoint paths. We prove that, under the star property, the problem is hard to approximate within O(|V | 1 ") for any 0 < " < 1, where V is the set of nodes in the network, and we give polynomial time algorithms for some of the above relevant subcases.

We give the notation used in this chapter in Section 3.2.

Notations and problem statement

We model the network as an undirected connected graph G = (V, E), where the vertices in V represent the nodes and the edges in E represent the links. We associate a color with each SRLG. Let us denote by C the set of all the colors. Then a network with SRLGs is modeled by a colored graph that is a triple We can now model the star property defined in the introduction as follows. A color c 2 C is called a star color if all edges of E(c) are incident to the same vertex. A colored graph has the star property if it has only star colors.

G c = (V, E, C), where (V, E) is a graph and C is a coloring function, C : E ! 2 C , that
Given a colored graph G c and two vertices s and t, an st-path is an alternating sequence of vertices and edges, beginning with s and ending with t, in which each edge is incident to the vertex immediately preceding it and to the vertex immediately following it. A path is denoted by the sequence of vertices and edges. We say that two paths P 1 and P

2 are color-disjoint if ([e2P 1 C (e)) \ ([e2P 2 C (e)) = ;, i.e
. the edges of one path do not have any color in common with the edges of the other path.

The k-diverse routing problem defined in the introduction consists then in finding k color-disjoint paths and for every k can be formally formulated as follows:

Problem 6 (k-Diverse Colored st-Paths, k-DCP). Given a colored graph G c and two vertices s and t, are there k color-disjoint paths from s to t?

In this chapter we study the k-DCP problem where the colored graphs have the star property.

Counterexamples to the algorithm of Luo and Wang

Luo and Wang [START_REF] Luo | Diverse routing in WDM optical networks with shared risk link group (SRLG) failures[END_REF] proposed an algorithm to find a pair of color-disjoint paths with minimum total cost from a source s to a destination t in graphs with colors (SRLGs) satisfying the star property. The algorithm is an adaptation of the Bhandari's edge-disjoint shortest-pair of paths algorithm [Bha98, Chapter 3.3, pages 46-68] (which itself is a variation of the Suurballe-Tarjan's algorithm [START_REF] Suurballe | Disjoint paths in a network[END_REF][START_REF] Suurballe | A quick method for finding shortest pairs of disjoint paths[END_REF]) and is based on augmenting a shortest path P a between s and t.

In what follows, we argue that the algorithm is incorrect, as there are at least two problems with it.

Counterexample 1

The first problem comes from the fact that the algorithm implies that the first and last edges of the shortest s-t path P a should be contained necessarily in the pair of paths returned by the algorithm. However, if no edge incident to s (to t) is colordisjoint with the first (the last) edge of P a , respectively, the algorithm will ignore the existence of 2 color-disjoint paths even if they exist.

The counterexample in Figure 3.2 illustrates this first problem: color c is shared between edges {s, v 0 } and {s, v 1 } and color c 0 6 = c is shared between edges {s, v 0 } and {s, v 2 }. All other unmarked edges have distinct colors different from c and c 0 . The shortest path from s to t is P a = (s, v 0 , t). Applied on the graph of Figure 3.2, the algorithm described in [LW05, page 451, lines 9-10] does not find any edge to start and hence terminates concluding that there are no two color-disjoint paths. However two color-disjoint paths clearly exist, namely they are

P 1 = (s, v 1 , w 1 , t) and P 2 = (s, v 2 , w 2 , t). v 2 w 1 w 2 v 0 c 0 c 0 c c v 1 t s Figure 3.2: Example 1.

Counterexample 2

The second problem is that the algorithm only checks color-disjointness around nodes of P a and never checks other nodes. It assumes implicitly that the only nodes that can be shared by the two color-disjoint paths are nodes belonging to P a and ignores the existence of any other possibilities.). We have two color-disjoint paths P 1 = (s, a, z, w, u, v, b, t) and P 2 = (s, a 0 , w, u 0 , v, b 0 , t). However, the algorithm of [START_REF] Luo | Diverse routing in WDM optical networks with shared risk link group (SRLG) failures[END_REF] uses the shortest path P a = (s, a, v, b, t) and then performs a backwards phase which never finds w again. Then the algorithm terminates, missing the fact that there exist two colordisjoint paths. Note that the disjointness is not ensured, if there exists in w some common color for example on the edges {w, u} and {w, u 0 }, showing that a local consideration around the shortest path is not sufficient. In fact, in the next section we will prove that the problem is NP-complete.

NP-completeness

In this section we will prove that, even with the star property, the k-DCP problem is NP-complete for every constant k 2. We use a reduction from the problem of finding a path avoiding forbidden transitions which we have studied in Chapter 2 and which was proven NP-complete in [START_REF] Szeider | Finding paths in graphs avoiding forbidden transitions[END_REF]. This again contradicts the supposed correctness of the polynomial algorithm of [START_REF] Luo | Diverse routing in WDM optical networks with shared risk link group (SRLG) failures[END_REF], unless P = NP .

We recall that in the PAFT problem we are given a graph G = (V, E), a set F of forbidden transitions and two vertices s, t 2 V and we need to decide whether an F-valid s-t-path (i.e. a path which uses none of the transitions in F) exists in G or not.

It has been proven in [START_REF] Szeider | Finding paths in graphs avoiding forbidden transitions[END_REF] that PAFT is NP-complete and it remains NPcomplete for the family G 4 of simple graphs where vertices s and t have degree 3 and any other vertex has degree 3 or 4, and the set of allowed transitions A(v) around a vertex v is such that:

• If d(v) = 3, A(v)
consists of two pairs of edges {e, h} and {f, h} where e, f and h are the 3 edges incident to v; Theorem 8. The k-DCP problem is NP-complete for any fixed constant k 2, even if all the following properties hold:

v h e f (a) v in G, A(v) = {{e, h}, {f, h}} v x 0 e x e x f x 0 f x h x 0 h (b) v in H Edge Colors {v, x e } C ef , C ef 0 {v, x 0 e } C e 0 f , C e 0 f 0 {v, x f } C ef , C e 0 f {v, x 0 f } C ef 0 , C e 0 f 0 {v, x h } C h , {v, x 0 h } C 0 h , (
v e g f h (a) v in G, A(v) = {{e, f }, {g, h}} v x 0 g x g x 0 f x f x 0 e x 0 h x e x h (b) v in H Edge Colors {v, x e } C eg , C eg 0 , C eh , C eh 0 {v, x 0 e } C e 0 g , C e 0 g 0 , C e 0 h , C e 0 h 0 {v, x f } C fg , C fg 0 , C fh , C fh 0 {v, x 0 f } C f 0 g , C f 0 g 0 , C f 0 h , C f 0 h 0 {v, x g } C eg , C e 0 g , C fg , C f 0 g {v, x 0 g } C eg 0 , C e 0 g 0 , C fg 0 , C f 0 g 0 {v, x h } C eh , C e 0 h , C fh , C f 0 h {v, x 0 h } C eh 0 , C e 0 h 0 , C fh 0 , C f 0 h 0 (c) Color assignment
• the star property;

• the maximum degree is fixed with max{8, k}; Proof. We first prove the statement for k = 2 and then extend it for any fixed k 3.

It is easy to see that the problem is in NP since, given two paths, we just have to check whether they are color-disjoint.

Given an instance (G, s, t, F) of the PAFT problem with G in the family G 4 , we define an instance of 2-DCP as follows. We associate with G a colored graph H = (V H , E H , C) where:

• For each node in G, we associate a node in H;

• For each edge e = {u, v} in G, we associate in H two nodes x e and x 0 e and two paths of length 2: {u, x e , v} and {u, x 0 e , v}. H has then |V (G)| + 2|E(G)| vertices and 4|E(G)| edges.

• We assign the colors to edges incident to a vertex v in H as follows:

-Distinct new colors are assigned to the edges incident to t.

-For each pair of edges e and f incident to s in G, such that e 6 = f , we will use 4 colors C ef , C ef 0 , C e 0 f and C e 0 f 0 . We assign colors C ef and C ef 0 to the edge {s, x e }; colors C e 0 f and C e 0 f 0 to the edge {s, x 0 e }, colors C ef and C e 0 f to the edge {s, x f } and colors C ef 0 and C e 0 f 0 to the edge {s, x 0 f }. -For each v 6 = s, t, and for each pair of edges e and f incident to v in G such that e 6 = f and {e, f } is a forbidden transition (i.e. {e, f } 2 F), we assign colors C ef and C ef 0 (C e 0 f and C e 0 f 0) to the edge {v, x e } ({v, x 0 e }), and colors C ef and C e 0 f (C ef 0 and C e 0 f 0) to the edge {v, x f } ({v, x 0 f }), respectively. As each vertex has either degree 3 or 4, two cases can occur:

(i) If d(v) = 3
, let e, f and h be the 3 edges incident to v and let A(v) = {{e, h}, {f, h}}, then the colors are assigned as described in Figure 3.4. (ii) If d(v) = 4, let e, f, g and h be the 4 edges incident to v and A(v) = {{e, f }, {g, h}}, then the colors are assigned as described in Figure 3.5.

The transformation is polynomial time computable and the star property holds. Moreover, note that each edge has at most 4 colors, each color is associated with two edges, the degree of each vertex is at most 8 and the color degree is at most 16. It follows that cpe  4, epc  2,  8, and C  16.

To prove the theorem, we will use the following properties.

Property 1. Given an edge e incident to s in G, the edge {s, x e } in H shares a color with all the other edges incident to s, except {s, x 0 e }. In other words, the only pair of edges incident to s having no color in common are of the form {{s, x e }, {s, x 0 e }} for some e.

Property 2. If v 6 = s, t, d(v) = 3 and A(v) = {{e, h}, {f, h}}, then two edges incident to v share a color if and only if one is {v, x e } or {v, x 0 e } and the other is {v,

x f } or {v, x 0 f }. Property 3. If v 6 = s, t, d(v) = 4 and A(v) = {{e, f },
{g, h}}, then two edges incident to v share a color if and only if one is {v, x e }, {v, x 0 e }, {v, x f } or {v, x 0 f } and the other is {v, x g }, {v, x 0 g }, {v, x h } or {v, x 0 h }. In other words, two edges incident to a node v are color-disjoint if and only if they correspond to an allowed transition of v or are of the form {v, x e } and {v, x 0 e }. We first show that if there exists an F-valid path in G, then there exist two color-disjoint paths in H. Let P = (s, e 1 , v 1 , . . . , e p , v p , e p+1 , t) be an F-valid path from s to t in G.

Then Q = (s ⌘ v 0 , x e 1 , v 1 , . . . , x ep , v p , x e p+1 , t) and Q 0 = (s ⌘ v 0 , x 0 e 1 , v 1 , . . . , x 0 ep , v p ,
x 0 e p+1 , t) are two color-disjoint paths in H. In particular, by Properties 1, 2, and 3, any edge {v i , x e i+1 } ({x e i , v i }) has no color in common with {v i , x 0 e i+1 } ({x 0 e i , v i }), respectively, for each i = 0, 1, . . . , p. Conversely, we now show that if there exist two color-disjoint paths in H, then there exists an F-valid path in G. Let the two color-disjoint paths in

H be Q = (s, x 1 , v 1 , . . . , x p , v p , x p+1 , t) and Q 0 = (s, y 1 , u 1 , .
. . , y p 0 , u p 0 , y p 0 +1 , t). We prove by induction on i 2 {1, . . . , p + 1}, that {x i , y i } = {x e i , x 0 e i }, v i = u i and p = p 0 . For i = 1, by Property 1, {s, x 1 } and {s, y 1 } have no color in common only if {x 1 , y 1 } = {x e , x 0 e } for an edge e incident to s and then v 1 = u 1 . Let us suppose that the statement is true until i = l; we will prove it for i = l + 1. Let the two edges entering u l = v l used by Q and Q 0 be {x e l , v l } and {x 0 e l , v l }.

If d(v l) = 3, we distinguish two cases:

• e l belongs to only one allowed transition of A(v l) say {e l , h l } and the paths Q and Q 0 , being color-disjoint, can only use the edges {v l , x h l } and {v l , x 0 h l }.

• e l belongs to two allowed transitions of A(v l), {e l , f l } and {e l , h l }. If one path uses the edge {v l , x h l } ({v l , x 0 h l }) the other path cannot use the edge {v l , x f l } or {v l , x 0 f l } by Property 2, it has then to use edge {v l , x 0 h l } ({v l , x h l }), respectively.

Therefore, in both cases {x l+1 , y l+1 } = {x h l , x 0 h l } and v l+1 = u l+1 .

If d(v l) = 4, by Property 3, the only possibility as Q and Q 0 are color-disjoint is that they use the edges {v l , x e l+1 } and {v l , x 0 e l+1 }, respectively, where {e l , e l+1 } 2 A(v l) and so the statement is true for i = l + 1.

It follows that the path P = (s, e 1 , v 1 , . . . , e p , v p , e p+1 , t) satisfies {e i , e i+1 } 2 A(v i) for every i 2 {1, . . . , p} and then it is F-valid.

To show that the problem remains NP-complete even for fixed cpe 2, epc 4 and C 4, it is enough to modify the above transformation by using a different color assignment. In detail, the color assignment differs from the one given above as follows:

• Edges incident to vertex s (which has degree 3) have the color assignment reported in Table 3.1a;

• Edges incident to vertices with degree 4 in G have the color assignment reported in Table 3.1b;

• The other vertices (i.e. t and those with degree 3 in G) keep the same color assignment as before.

The above proof works with this color assignment with slight changes. Indeed in Property 3 edge {v, x e } shares colors with edge {v, x f }. But the proof is still valid as when d(v l) = 4, if Q (Q 0) uses the edge {v l , x e l } ({v l , x 0 e l }), then Q (Q 0) uses the edge {v l , x e l+1 } ({v l , x 0 e l+1 }), respectively, where {e l , e l+1 } 2 A(v l). It follows that 2-DCP is NP-hard even for fixed cpe 2, epc 4 and C 4.

Edge Colors {s, x e } C 1 , C 2 {s, x 0 e } C 3 , C 4 {s, x f } C 1 , C 3 {s, x 0 f } C 2 , C 4 {s, x h } C 1 , C 4 {s, x 0 h } C 2 , C 3 (a) Color assignment for vertex s. Edge Colors {v, x e } C 1 , C 2 {v, x 0 e } C 3 , C 4 {v, x f } C 1 , C 2 {v, x 0 f } C 3 , C 4 {v, x g } C 1 , C 3 {v, x 0 g } C 2 , C 4 {v, x h } C 1 , C 3 {v, x 0 h } C 2 , C 4 (b)
Color assignments for vertices with degree 4.

Table 3.1: Color assignments for vertex s (Table 3.1a) and for vertices with degree 4 (Table 3.1b) when cpe 2 and epc 4.

We can extend the proof to the case where k 3 in various ways. In a first version we added k 2 paths of length 2 from s to t, P i = (s, w i , t) for i = 3, 4, . . . k, with a new color assigned to each edge {s, w i }. The following construction which gives better results was suggested by one referee; we modify H = (V H , E H , C) as follows:

• We introduce two additional vertices s 0 and t 0 .

• We add k 2 paths of length 2 from s 0 to t 0 , P i = (s 0 , w i , t 0

) for i = 3, 4, . . . k, with a new color assigned to each edge {s 0 , w i } and {t 0 , w i }. These paths are pairwise color-disjoint.

• We add two paths of length 2 from s to s 0 , A i = (s 0 , a i , s) for i = 1, 2, with a new color assigned to each edge {s, a i } and {s 0 , a i }.

• We add two paths of length 2 from t to t 0 , B i = (t, b i , t 0) for i = 1, 2, with a new color assigned to each edge {t, b i } and {t 0 , b i }.

Finding k color-disjoint paths from s 0 to t 0 in this new graph is equivalent to finding 2 color-disjoint paths from s to t . Moreover, this assignment does not change cpe and epc,and and C are either the same or equal to k.

Polynomial cases

In this section we give polynomial time algorithms for k-DCP for some important special cases. In detail, we solve k-DCP for the cases where the number of colors is bounded by a constant (i.e. |C| = O(1)), for some cases where the maximum degree of the graph is strictly smaller than 5, and for the cases where the input graph is a Directed Acyclic Graph (DAG). All the given algorithms work only when the star property holds, but the one for the case when |C| = O(1) which works for any possible color assignment.

Bounded number of colors

In this section, we give an algorithm to find k color-disjoint paths in the special case where the number |C| of colors in the network is bounded by a constant, i.e. |C| = O(1). We observe that such an algorithm works for every graph topology and even if the star property does not hold.

We will reduce our problem to the Set Packing problem.

Problem 7 (Set Packing). Given a set X, a collection S of subsets of X and an integer k, is there a collection of disjoint sets

S 0 ✓ S such that |S 0 | = k?
The Set Packing problem is known to be NP-hard [GJ79, Problem SP3, page 221] but is polynomial-time solvable when the size of X is bounded [START_REF] Björklund | Set partitioning via inclusion-exclusion[END_REF].

A subset A ✓ C of colors will be called realizable, if the subgraph G A induced by the edges whose colors are all in A (i.e. edges e such that C (e) ✓ A) contains at least one path from s to t. Note that such a path uses only colors of A.

The idea of the algorithm is to enumerate all the realizable subsets of C and then find k disjoint realizable subsets by using an exact algorithm for the Set Packing. As the size of C is constant, the computational time required by such algorithm is polynomial.

The details of the algorithm along with its correctness and complexity are given in the next theorem.

Theorem 9. The k-DCP problem is FPT when parameterized by the number of colors |C|. In particular, there exists an algorithm for solving the k-DCP problem in time

O(f (|C|)(|V | + |E|))
, where f is a function depending solely on |C|.

Proof. Let X = C and let S be the family of realizable subsets of colors. Then there exists a collection of k disjoint sets S 0 ✓ S if and only if there exist k colordisjoint paths from s to t. Indeed, to each subset A 0 of S 0 is associated a path using uniquely colors of A 0 (as A 0 is realizable) and two disjoint subsets correspond to two color-disjoint paths.

Determining if a subset of colors is realizable requires O(|V |+|E|) computational time. Furthermore, it is known that there exist polynomial time algorithms to solve the Set Packing problem when the size of X is bounded. For instance, the exact algorithm proposed in [START_REF] Björklund | Set partitioning via inclusion-exclusion[END_REF]

Bounded degree

In this section, we assume that the star property holds and that |C| is unbounded and we give algorithms for finding k color-disjoint paths when < 4 and for finding 2 color-disjoint paths when = 4. First, note that the maximum number of colordisjoint paths in a graph is upper bounded by .

If  2 the problem is trivial as the graph is either a path or a cycle. In the first case, there always exists only one path from s to t. In the second case, the only vertices where the two possible paths can share colors are s and t and hence it is enough to check if the two edges incident to s (and t) are color-disjoint.

If  3, observe that if two paths share an internal vertex of degree 3, they necessarily share also an edge and hence all the colors of that edge. Consequently, they cannot be color-disjoint. Furthermore, if two paths are color-disjoint the colors of their first edges should be disjoint and also the colors of their last edges should be disjoint.

If = 3 and k = 3, there are 3 color-disjoint paths if and only if G has 3 vertexdisjoint paths between s and t and the 3 first edges of these paths have disjoint colors and also the 3 last edges. That can be checked in O(|V | + |E|) time: constant time for checking the color disjointness of the 3 first (last) edges, and O(|V | + |E|) time for checking the existence of 3 vertex-disjoint paths between s and t (see [START_REF] Ford | A simple algorithm for finding maximal network flows and an application to the hitchcock problem[END_REF]).

If k = 2 and = 3 or 4, we give an algorithm in the proof of the following theorem:

Theorem 10. Algorithm 1 solves 2-DCP in graphs with the star property and = 3

or 4 in time O(|V | + |E|).
Proof. We say that a pair {s i , s j } of neighbors of s in G is admissible, if the edges joining s to them have disjoint colors, i.e. C ({s, s i }) \ C ({s, s j }) = ; and similarly we say that {t i 0 , t j 0 } is an admissible pair of neighbors of t if the edges joining them to t have disjoint colors. Then, with each admissible pair {s i , s j } and each admissible pair {t i 0 , t j 0 }, we associate the admissible graph G(s i , s j , t i 0 , t j 0

) obtained from G by deleting the edges {s, s `} with `6 = i, j and the edges {t `0 , t} with `0 6 = i 0 , j 0 .

We solve 2-DCP when = 3, 4 by using Algorithm 1 whose correctness is given in what follows.

Note first that since all colors satisfy the star property, they are localized around vertices and the color-disjointness of two paths can be ensured by the colordisjointness around their shared vertices.

By definition, if there exist two vertex-disjoint paths from s to t in G(s i , s j , t i 0 , t j 0) the first edges and last edges of such paths have disjoint colors and so we conclude that there are 2 color-disjoint paths (lines 2, 3).

Algorithm 1: Solving 2-DCP when = 3, 4.

1 foreach admissible graph G(s i , s j , t i 0 , t j 0

) do 2 if there exist 2 vertex-disjoint paths from s to t in G(s i , s j , t i 0 , t j 0) then 3

There exist two color-disjoint paths from s to t in G;

4 else 5 if all the cut-vertices that separate s from t in G(s i , s j , t i 0 , t j 0) have degree 4 and are not incident to bridges then 6 foreach cut vertex v that separates s from t in G(s i , s j , t i 0 , t j 0) do

7

Let e and f be the edges incident to v in the connected component containing s, and let e 0 and f 0 be the incident edges in the connected component containing t;

8 if not 0 @ C (e) \ C (f) = ; and C (e 0) \ C (f 0) = ; and  [C (e) \ C (e 0) = ; and C (f) \ C (f 0) = ;] or [C (e) \ C (f 0) = ; and C (f) \ C (e 0) = ;] 1 A then 9
No 2 color-disjoint paths from s to t exist in G;

10 There exist two color-disjoint paths from s to t in G;

11 No 2 color-disjoint paths from s to t exist in G.

Otherwise, if there exists a cut vertex (i.e., a vertex which removal disconnects s from t and hence should be included in any path from s to t) v of degree 3, we cannot have color-disjoint paths containing this vertex. That is in particular the case when = 3. If there exists a cut-vertex v of degree 4 that is incident to a bridge, then v belongs to at most one 2-connected component which is not a bridge. In this case, there are no two color-disjoint paths from s to t. So, let us now assume that = 4, all the cut vertices are of degree 4 and, each cut vertex is incident to two 2-connected components which are not bridges. Between every two cut vertices, the two paths use vertex-disjoint subpaths. If at the cut vertex v one path uses edges e and e 0 (e and f 0), the other path uses necessarily f and f 0 (f and e 0), respectively, and the conditions on colors are necessary and sufficient for the color disjointness of the paths at v (the center of the colors used in v).

Since we have at most 6 admissible pairs of neighbors of s (of t), respectively, we have at most 36 graphs to consider. For each graph we have to check if it is 2-connected (that can be done in time O(|V | + |E|) [START_REF] Hopcroft | Algorithm 447: efficient algorithms for graph manipulation[END_REF]) and if it is not 2connected to satisfy coloring conditions at each cut vertex (all of the cut-vertices can be determined in linear time using the algorithm for finding the biconnected components of a graph in [START_REF] Hopcroft | Algorithm 447: efficient algorithms for graph manipulation[END_REF]), which can be done in constant time for a given vertex and so overall in time O(|V |).

Note that Algorithm 1 cannot be extended in a straightforward manner neither to find 3 or 4 color-disjoint paths on a graphs with = 4, nor to the case of = 5, 6, 7 in polynomial time. In fact, for these cases, while the number of admissible graphs stays bounded and finding vertex-disjoint path segments stays polynomial, the number of possible ways to cross the cuts explodes exponentially.

Directed acyclic graphs

In this section, we propose an algorithm for finding k color-disjoint paths in a colored directed acyclic graph (DAG) with the star property. The definitions given for undirected colored graphs can be easily extended to colored DAGs by assigning an acyclic orientation to the edges of the graph. As each color is a star color we can associate with each color c its center v defined as the common vertex to all arcs with color c. If the color has only one occurrence we choose arbitrarily as associated center one of the end vertices of the arc containing this color. We will say that the color c is centered in v.

The algorithm given in the proof of the next theorem is similar to the one proposed in Section 2.5.3.2 to find k vertex-disjoint paths avoiding forbidden transitions in DAGs. We again use ideas from [START_REF] Chakaravarthy | New results on the computability and complexity of points-to analysis[END_REF] and especially the notion of layered directed graph that we have defined in Section 2.5.3.2. Although the transformations are a bit similar, we include them in detail for the sake of completeness.

In Theorem 11, we present an algorithm for solving the k-DCP problem in a DAG with the star property in time O(cpe 2 |V ||E| 2k

). This algorithm is therefore polynomial only when k is a fixed constant.

We will then show in Section 3.6 that the problem is W [1]-hard and therefore it is not possible to find an FPT algorithm (i.).

Proof. Let D be a multicolored DAG and let s and t be two given vertices. As we want to find (in polynomial time) directed paths from s to t, we can delete the vertices not on a directed path from s to t, and so we suppose in what follows that D is this reduced DAG. Now s is the unique vertex with no in-neighbor and t the unique vertex with no out-neighbor. The algorithm that finds k color-disjoint paths from s to t in D uses two transformations:

Transformation 1 We first associate with a multicolored DAG D a multicolored layered DAG LD as follows. We denote by (v) the set of vertices preceding v, i.e; vertices u such that (u, v) 2 E. We compute the function l : V ! N defined as follows: In such a level function, t has the maximum value as there is a directed path from any vertex to t in the reduced DAG. In the example of Figure 3.6a, we have l(u 1) = 1, l(u 2) = 2, l(u 3) = 3, l(u 4) = l(u 5) = l(u 6) = 4, and l(t) = 5. Now we replace every arc (u, v), such that l(v) > l(u) + 1, with a directed path P uv from u to v of length l(v) l(u) (thus possibly adding new vertices and arcs). We assign to the first arc of the directed path P uv the colors of the arc (u, v) centered in u (or a new color if there are no colors centered in u) and to the last arc of the directed path P uv the colors of the arc (u, v) centered in v (or a new color if there are no colors centered in v) and to the intermediate arcs, if any, new distinct colors. The resulting layered DAG LD is such that there exist k color-disjoint paths in the DAG D from s to t if and only if there exist k color-disjoint paths in LD from s to t. In Figure 3.6b, we indicate the layered DAG LD obtained from the DAG D of Figure 3.6a. We have given a name to each arc with a lower index indicating the level of the arc; we also indicate inside parentheses the colors attributed to each arc. For example the arc (s, u

l(v) = (0 when v = s, 1 + max u2 (v) l(u) otherwise. s u 1 u 2 u 3 u 4 u 5 u 6 t c 3 c 1 , c 2 c 1 , c 4 c 3 c 3 , c 6 c 2 , c 5 c 4 , c 6 c 6 c 5 c 9 c 8 c 7 (a) Example of muticolored DAG D s u 1 u 2 u 3 u 4 u 5 u 6 t g 0 (c 3) f 0 (c 1) e 0 (c 1) h 1 (c 3) g 1 (c 3) f 1 (c 2) e 1 (d) g 2 (c 6) f 2 (c 2 , c 5) e 2 (c 4) g 3 (c 4 , c 6) f 3 (c 6) e 3 (c 5) g 4 (c 9) f 4 (c 8) e 4 (c 7) (b) LD obtained after the layering of D s f 0 g 0 e 0 g 0 f 1 g 1 f 1 h 1 e 1 g 1 e 1 f 1 e 1 h 1 f 2 g 2 e 2 g 2 e 2 f 2
3) which had colors c 1 , c 4 has been replaced by a path with 3 arcs: e 0 at level 0 which gets the color c 1 (centered at s), e 1 at level 1 which gets a new color d and e 2 at level 2 which gets the color c 4 (centered at u 3). Therefore, in what follows we consider a layered DAG LD with two specific vertices s and t.

Transformation 2 We use in this transformation ideas similar to that used in [START_REF] Chakaravarthy | New results on the computability and complexity of points-to analysis[END_REF] to solve the problem of finding a pair of vertex-disjoint paths with forbidden pairs of edges. Here instead of vertex-disjointness we seek edge-disjointness and the forbidden pairs of edges are forbidden pairs of subpaths sharing a color.

With LD we will associate a directed graph H with two specific vertices s and t, such that there exist k color-disjoint directed paths in LD from s to t if and only if there exists a directed path from s to t in H. For the ease of presentation, we first give the transformation for k = 2.

There is a vertex in H for every pair {e i , f i } of arcs in LD at the same layer i, with 0  i  l(t) 1, such that C (e i) \ C (f i) = ;. We also add to H two vertices s and t. Now we join, by an arc in H, s to all the vertices (pairs) {e 0 , f 0 }. Similarly we join every vertex {e l(t) 1 , f l(t) 1 } in H by an arc to t. Finally, for 0  i  l(t) 2, we join in H each vertex {e i , f i } to a vertex {e i+1 , f i+1 } if in LD we have the following properties:

1. the terminal vertex u i (v i) of e i (f i) is the initial vertex of e i+1 (f i+1), respectively, and 2. either For example, we have three vertices corresponding to pairs of arcs of layer 2 of LD: e 2 f 2 , e 2 g 2 and f 2 g 2 but only two vertices corresponding to pairs of arcs of layer 3: e 3 f 3 and e 3 g 3 . Vertex e 2 g 2 is connected to vertex e 3 g 3 as condition 3 is fulfilled but it is not connected to f 3 g 3 as none of the conditions 3 and 4 is fulfilled. The existence of two disjoint colored directed paths in LD named P = (s, e 0 , u 0 , e 1 , . . . , e l(t) 2 , u l(t) 1 , e l(t) 1 , t) and Q

u i 6 = v i 3. or u i = v i and the set of colors of C (e i) [C (e i+1) is disjoint from the set of colors of C (f i) [C (f i+1) 4. or u i = v i and the set of colors of C (e i) [C (f i+1) is disjoint from the set of colors of C (f i) [C (e i+1).
= (s, f 0 , v 0 , f 1 , . . . , f l(t) 2 , v l(t) 1 , f l(t) 1 , t) implies the existence of a directed path from s to t namely P Q = (s, {e 0 , f 0 }, {e 1 , f 1 }, . . . , {e l(t) 1 , f l(t) 1 }, t) in H.
Conversely, let W be a path in H written in the form W = (s, w 0 , w 1 , . . . , w l(t) 1 , t) where w i corresponds to the pair {e i , f i } and w i+1 to the pair {e i+1 , f i+1 } such that the set of colors of C (e i) [C (e i+1) is disjoint from the set of colors of C (f i) [C (f i+1); such ordering is possible since one of the color conditions is fulfilled.

Then, the two directed paths P = (s, e 0 , u 0 , e 1 , . . . , e l(t) 2 , u l(t) 1 , e l(t) 1 , t) and The algorithm can be generalized to find k color-disjoint paths from s to t in a DAG D, for any k 2. We first transform D to a layered graph LD as before.

Q = (s, f 0 , v 0 , f 1 , . . . , f l(t) 2 , v l(t) 1 , f l(t)
Then, in the second transformation, instead of having a vertex for every pair of arcs of the same layer, we create a vertex for every k-tuple of arcs {e 1 i , e 2 i , . . . , e k i } at the same layer i, such that the C (e j i) , for j = 1, . . . , k, are disjoint. Then an arc is added from node {e 1 i , e 2 i , . . . , e k i } to node {e 1 i+1 , e 2 i+1 , . . . , e k i+1 } if there exists an ordering of the e j i and of the e j i+1 such that the terminal vertex of e j i is the initial vertex of e j i+1 and the sets C (e j i) [C (e j i+1) are pairwise disjoint. To decide if a k-tuple {e 1

i , e 2 i , . . . , e k i } is a vertex of H, we need to check the colordisjointness of C (e j i) , for j = 1, . . . , k. This can be done in at most k(k 1) 2 cpe 2 steps. Deciding on the existence of an edge between two vertices of H can be done in

k!k(k 1)cpe 2 (O(cpe 2
)) time; indeed we can choose an ordering of {e 1 i , e 2 i , . . . , e k i } and for each of the k! possible orderings of {e 1 i+1 , e 2 i+1 , . . . , e k i+1 }, we check whether the sets C (e j i) [C (e j i+1) are pairwise disjoint in at most k(k 1)cpe 2 steps. Finally, as each arc in D is replaced in LD by a path containing at most one arc of each layer, the number of arcs at a given layer in LD is at most |E|. So, the graph H has at most l(t)|E| k vertices and l(t)|E| 2k edges. Therefore, we get the complexity of the theorem as l(t)  |V |.

Remark 1. The algorithm presented in the proof of Theorem 11 can be adapted to find a minimum cost pair of color-disjoint paths in an arc-weighted DAG by applying the modifications presented in what follows.

Let us consider a weight function on the arcs of a DAG D. We assign the original weight of the arc (u, v) to the first arc of the path replacing it in LD. Then, in H we assign to the edge joining s to {e 0 , f 0 } the sum of the weights of e 0 and f 0 , and to the edge joining {e i , f i } to {e i+1 , f i+1 } the sum of the weights of {e i+1 and f i+1 }. With these modifications, the shortest path in H corresponds to the optimal pair of color-disjoint paths in D.

Remark 2. We can also use the algorithm presented in the proof of Theorem 11 to find a pair of color-disjoint paths with the minimum total number of colors by applying the modifications presented in what follows.

Let C ((u, v)) (C + ((u, v))
) be the set of colors of arc (u, v) centered at u (v), respectively. In H, we assign to the arc from {e

i , f i } to {e i+1 , f i+1 } a weight equal to |C + (e i) [C (e i+1) [C + (f i) [C (f i+1)|, to the arc from s to {e 0 , f 0 } a weight equal to |C (e 0) [C (f 0)| and to the arc from {e l(t) 1 , f l(t) 1 } to t a weight equal to |C + (e l(t) 1) [C + (f l(t) 1)|.
We have proven above that every directed path P from s to t in H corresponds to two color-disjoint directed paths P 1 and P 2 from s to t in the layered graph LD (and equivalently to two color-disjoint paths from s to t in D) and with the way we have defined the weights in H, the weight of P is equal to the number of colors used by P 1 and P 2 . The shortest path in the weighted graph H will then correspond to the pair of color-disjoint paths with the minimum number of colors.

Maximum number of color-disjoint paths

In this section we reformulate the problem of finding SRLG-disjoint paths as an optimization problem where we aim at finding the maximum number of color-disjoint paths:

Problem 8 (Max Diverse Colored st-Paths, MDCP). Given a colored graph G c and two vertices s and t, find the maximum number of color-disjoint st-paths.

In the next theorem we give complexity results for MDCP by using an approximation factor preserving reduction from Maximum Set Packing (MSP).

Definition 3 (Maximum Set Packing, MSP). Given a set X and a collection S of subsets of X, find the maximum cardinality set packing, i.e., a collection of disjoint sets S 0 ✓ S such that |S 0 | is maximized.

It has been proven that problem MSP is equivalent to the problem of finding a maximum clique in a graph under a PTAS reduction where the number n of vertices in the graph corresponds to |S| [START_REF] Ausiello | Structure preserving reductions among convex optimization problems[END_REF]. In detail, approximation algorithms and inapproximability results (in terms of the number of vertices in the graph) carry over to the MSP problem. It is NP -hard to approximate the problem of finding a maximum clique within O(n 1 "

), for any 0 < " < 1 [H 99] and then, unless P = NP , MSP is not approximable within O(|S| 1 "

), for any 0 < " < 1. Moreover, if the cardinality of all sets in S is upper bounded by a constant c 3, then the problem is AP X-complete [START_REF] Kann | Maximum bounded 3-dimensional matching is MAX SNPcomplete[END_REF]. The next theorem gives inapproximability results for the MDCP problem. The proof uses an approximation-preserving reduction from MSP to MDCP where the vertices of V correspond to the elements of S.), for any 0 < " < 1, even if epc is fixed, epc 2. Moreover, it is AP X-hard if cpe is fixed, cpe 3. These inapproximability results hold even in DAGs with the star property.

Proof. Given an instance I MSP of MSP over a set X and a collection S , we define an instance I MDCP of MDCP on a graph G C as follows.

• for each element S i of S, we associate a vertex v S i ;

• we add two vertices s and t and the edges {s, v S i } and {v S i , t}, for each S i 2 S;

First Coloring

• for each S i , S j 2 S, such that i 6 = j and S i \ S j 6 = ;, we add a new color c ij and associate it with {s, v S i } and {s, v S j };

• for each edge not yet colored (in particular for each edge {v S i , t}) we put a new color.

Second Coloring

We define a color c x for each element x 2 X and, for each S i = {x 1 , . . . , x h } 2 C, we associate the |S i | colors c x 1 , . . . , c x h with the edge {s, v S i }. For each edge not yet colored (in particular for each edge {v S i , t} we put a new color. In this way, if the cardinality of all sets in S is upper bounded by a constant c 3, then cpe  c.

In both cases the transformation is polynomial-time computable and the star property holds. Furthermore, the graph we obtain is the bipartite complete graph K 2,|S| . This graph can be oriented into a DAG in a straightforward way. Now we can associate to a family S 0 = {S 1 , S 2 , . . . , S q } of sets in S, the set P of paths P j = (s, v S j , t), j = 1, 2, . . . , |S 0 | of G C and vice versa. Note that by construction two sets S i and S j are disjoint if and only if the corresponding paths P i and P j are color-disjoint.

Consider an optimal solution S 0 OP T for MSP, with S 0) inapproximability of MSP, for any 0 < " < 1, and from the fact that |V | = |S| + 2. Note that in the first coloring each color is associated with at most two edges which implies that epc  2. The second statement follows from the fact that MSP is AP X-hard if the cardinality of all sets in S is upper bounded by a constant c 3 and that using the second coloring cpe  c. The results for DAGs come from the fact that the graph K 2,|S| obtained in the transformation can be oriented into a DAG in a straightforward way.

OP T = {S 1 , S 2

Parameterized complexity

The next results are expressed in terms of parameterized complexity [START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF]. Recall that a problem with input size n is fixed parameter tractable with respect to some parameter k (and so is in FPT) if it can be solved in time

O(f (k) • n O(1)
) where the function f depends only on k. A problem is W [1]-hard if a W [1]-complete problem (e.g., deciding if the graph contains a clique of size k) can be reduced to it in FPT-time.

Theorem 13. MDCP is W [1]-hard when parameterized by the number k of colordisjoint paths, even in DAGs and when the star property holds.

Proof. It is enough to observe that the reduction used in Theorem 12 is a parameterized-preserving reduction where the parameter is the number of colordisjoint paths which corresponds to the number of disjoint subsets in a set packing. In [START_REF] Downey | Fixed-parameter tractability and completeness II: On completeness for W[1[END_REF] (see also [START_REF] Niedermeier | Invitation to fixed-parameter algorithms[END_REF]Chapter 11.4.2,) it has been shown that MSP is W [1]-hard if the parameter is the number of disjoint subsets.

The above theorem implies that, unless F P T = W [1], MDCP is not in F P T when parameterized by the number of color-disjoint paths, that is there is no algorithm which finds k color-disjoint paths in O(f (k) • poly(|V | + |E|)) time in DAGs, unless F P T = W [1]. Moreover, Theorem 8 shows that even finding a fixed number k 2 of color-disjoint paths is NP-complete in general undirected graphs. This implies that MDCP is ParaNP-hard in undirected graphs, that is, it is impossible to devise an algorithm which finds

k color-disjoint paths in O((|V | + |E|) f (k)
) time, unless P = NP .

The algorithm in Section 3.5.1 can be used to find an exact polynomial-time algorithm for MDCP when |C| = O(1). In fact, it is enough to search for the maximum k for which such algorithm returns k color-disjoint paths. As the maximum number of color-disjoint paths is upper bounded by , we can use a binary search approach to solve the problem, applying at most log times the algorithm of Section 3.5.1. The next corollary follows. We can use the algorithms for bounded degree presented in Section 3.5.2 for solving MDCP when  4. We get a polynomial-time exact algorithm for  3 and a 2-approximation algorithm for = 4 as the maximum number of color-disjoint paths is upper bounded by = 4.), for any 0 < " < 1 unbounded = 3 AP X-hard unbounded unbounded W [1]-hard when parameterized by the number of paths

Conclusion

Our results, presented in this chapter and summarized in Table 3. • The complexity of the problem is still open for the cases where the maximum degree of the network is equal to 5, 6 or 7 and for the cases where epc 2 {2, 3} and cpe 2 {2, 3}. Solving these cases will give a complete complexity characterization of the problem with respect to the maximum degree of the network and the parameters epc and cpe.

• In the problem definition, we assumed that C (e) 6 = ;, for each e 2 E, which means that each edge of the network must have at least one color associated with. If we allow edges with no colors, then color-disjoint paths are not necessarily edge-disjoint, since an edge that is not affected by any SRLG can be shared by any number of paths. Therefore, an interesting direction would be to constrain the paths to be edge-disjoint as well; so, the problem would be to find k SRLG-disjoint edge-disjoint paths in the case where the number of SRLGs is bounded by a constant and the number of edges with no SRLG is linear in the size of the network. This does not affect the hardness results that hold for the (restricted) case where each edge has a color and hence also for the (more general) case where colorless edges are allowed. However, the polynomial-time algorithms proposed in Section 3.5 do not work in this case.

• It would be interesting to consider the unsolved cases for directed graphs since we only have results for the specific case of DAGs so far.

Part II

Routing and Spectrum Assignment

We have tackled in the first part of this thesis problems of finding paths and disjoint paths. These problems are related to the dedicated path protection scheme used to make networks more fault-tolerant. In this part, we focus on problems of resource allocation in optical networks with improved spectrum efficiency.

The internet traffic has been growing exponentially due to the emergence of high-rate applications, such as high-definition videos and cloud-based services. To face this rapid growth, a new more efficient generation of optical networks is being developed; the Elastic Optical Networks (EONs), also known as Flex-grid or SLICE optical networks [GJLY12, JTK + 09]. EONs are emerging as a potential candidate to replace the currently deployed Wavelength Division Multiplexing (WDM) networks.

In WDM networks [Muk97, MG02], which have been in use for more than a decade, the optical spectrum is subdivided into channels of fixed width (e.g. 50GHz) called wavelengths. This results in what is referred to as the ITU fixedgrid. Each wavelength of this fixed-grid can provision a connection with a bitrate up to 100Gbps. When a connection requires less than 100Gbps, it is still assigned a full wavelength which leads to an inefficient use of the spectrum. On the other hand, when a connection requires more than 100Gbps, it cannot be supported by one wavelength. High bitrate connections can still be provisioned on a fixed grid network by demultiplexing the demand to smaller ones, this however results in the use of more spectrum than if the connection was carried as a single entity.

In EONs [GJLY12, WLV13, JTK + 09], new technologies such as optical Orthogonal Frequency Division Multiplexing (OFDM), modulation techniques (such as the Quadrature phase shift keying (QPSK) and the 16-ary quadrature-amplitude (16-QAM)), bandwidth variable transponders (BV-Ts), and flexible spectrum selective switches are used to ensure an efficient utilization of the optical resources and to enable a flexible grid as opposed to the WDM fixed-grid. In this flexible grid, the available optical spectrum is divided into a set of slots of a fixed and finer spectral width, e.g. 25GHz, 12.5GHz or even 6.25GHz. With these fine granularity slots, connections of small bitrates are not over-provisioned and big bitrates can be satisfied as single entities by using multiple contiguous slots. In other words, instead of forcing all connections to use the same spectrum width, EONs allow connections to use a number of slots according to their needs.

Figure 3.8, taken from [START_REF] Gerstel | Elastic optical networking: a new dawn for the optical layer? Communications Magazine[END_REF], shows an existing ITU grid (top) vs. a flexible grid (bottom) and spectral widths of different bitrates (side). In the fixed grid, we can see that for small bitrates a channel is not fully utilized and that bitrates of 400Gbps and 1Tbps cannot be supported as such since they overlap with at least one 50 GHz grid boundary. On the other side, for the flexible grid, these big bitrates can be provisioned and the spectrum is used more efficiently for small bitrates.

EONs offer then an efficient and flexible use of the spectrum as presented in more details in [GJLY12, WLV13, JTK + 09]. However, the advantages they propose make the problems of resource allocation more difficult than their counterparts in WDM networks. The key resource allocation problem in WDM networks is the Routing and Wavelength Assignment (RWA) [START_REF] Ramaswami | Routing and wavelength assignment in all-optical networks[END_REF][START_REF] Zang | A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks[END_REF]. In this problem, we are given an optical network and a set of requests where each request has a source Figure 3.8: Fixed-grid vs Flexgrid [START_REF] Gerstel | Elastic optical networking: a new dawn for the optical layer? Communications Magazine[END_REF] and a destination and the objective is to find for each request a path from the source to the destination and a wavelength over this path. Each request must use the same wavelength over all the links of its path (continuity constraint) and on a given link, a wavelength can be used by at most one request (non-overlapping constraint). In EONs, since we allow heterogeneous demands and we accord to each request contiguous slots, RWA is replaced by the problem of Routing and Spectrum Assignment (RSA). In RSA, we are still given an optical network and a set of requests and each request has, besides its source and destination, a demand in terms of the number of slots it needs. The objective in RSA is to allocate to each request a path in the optical network and an interval of spectrum slots along that path. The spectrum allocated to a demand has to be contiguous (contiguity constraint), it has to be the same over all links of the routing path (continuity constraint), and a spectrum slot on a link can be used by at most one request (non-overlapping constraint). RWA can be seen as the special case of RSA where all requests have unit demands.

With respect to the pattern of the considered traffic, we can distinguish two versions of RSA: the static RSA and the dynamic RSA.

• Static Routing and Spectrum Assignment, also referred to as offline RSA. In this case, the traffic is static and the entire set of requests is known in advance.

Static RSA allocates paths and spectrum to these known requests with the objective of minimizing the utilized spectrum or alternatively, maximizing the number of provisioned requests for a fixed spectrum interval. Since static RWA is NP-complete [START_REF] Chlamtac | Lightpath communications: an approach to high bandwidth optical WAN's[END_REF], static RSA is NP-complete as well and to make it more tractable, it is usually partitioned into two subproblems that are solved separately: the routing subproblem where the aim is to find paths for the requests and the Spectrum Assignment (SA) subproblem. In SA, we suppose that each request has a fixed path and the objective is to assign spectrum to the requests under the continuity, contiguity and non-overlapping constraints.

• Dynamic Routing and Spectrum Assignment, also referred to as online RSA.

In this case, the traffic is dynamic, i.e. requests arrive and leave the network dynamically. The objective of dynamic RSA is to allocate paths and spectrum to the arriving requests so as to minimize the spectrum blocking probability. This is not an easy problem to solve, since without a prior knowledge of the requests that will arrive or leave, it is difficult to make routing and spectrum assignment decisions that are guaranteed to cause less blocking. Furthermore, the dynamicity of the traffic usually causes spectrum fragmentation which is the accumulation of small unusable fragments of spectrum. This makes it necessary to use some defragmentation techniques together with the dynamic RSA algorithms.

This part of the thesis is devoted to the problem of Routing and Spectrum Assignment. In Chapter 4, we study static RSA in tree networks. Since the routing is fixed in trees, the problem reduces to Spectrum Assignment. In Chapter 5, we investigate the problem of dynamic RSA with the use of a non-disruptive defragmentation technique called Push-Pull. In this chapter, we study the problem of static routing and spectrum allocation in elastic optical tree-networks. In trees, even though the routing is fixed, the Spectrum Allocation (SA) is NP-hard. We look at the complexity and approximability results that have been established for the SA in paths and prove new results for stars and binary trees. The results in this chapter are joint work with J.-C. Bermond and they have been presented in Algotel'2015 [Moa15].

Introduction

In the problem of Spectrum Assignment (SA) in elastic optical networks, we are given a network and a set of requests where each request has a demand and a predefined path. The objective is to assign to each request an interval of spectrum of width equal to its demand such that no two requests share the same spectrum slot on a given link. This problem is a generalization of the well studied problem of Wavelength Assignment (WA) in fixed-grid networks. In fact, WA can be seen as the special case of SA where all requests have unit demands. Since WA has been proved NP-complete in [START_REF] Chlamtac | Lightpath communications: an approach to high bandwidth optical WAN's[END_REF], SA is also NP-complete. In fact, SA remains NP-hard even in networks where WA is tractable, particularly in path networks. Indeed, SA has been proved to be equivalent to other problems studied in the literature which we describe in details in Section 4.2. Using the results obtained for the equivalent problems, SA is NP-complete in paths even if the requests' demands do not exceed 2 slots [BEJ + 06]. Furthermore, SA is NP-complete in paths with 4 links and unidirectional rings with 3 links [TBL + 14]. On the positive side, SA can be approximated within a factor of 2+" in paths, a factor of 4+" in rings (for all " > 0), and a factor of O(log(k)) in binary trees where k is the number of requests [START_REF] Shirazipourazad | On routing and spectrum allocation in spectrum-sliced optical networks[END_REF].

Contribution In this chapter, we study the spectrum assignment problem in trees. We focus on special cases where the tree is a star or where the demands of the requests are bounded by a constant and the tree is binary. By studying these special cases, we hope to gain more insight into the general problem in trees and design a constant-factor approximation algorithm or prove that such algorithm does not exist. We establish the following results.

• We prove that SA is NP-hard in undirected stars of 3 links and in directed stars of 4 links, and show that it can be approximated within a factor of 4 in stars in general.

• Afterwards, we use the equivalence of SA with a graph coloring problem (interval coloring) to find constant-factor approximation algorithms for SA on binary trees with special demand profiles. Namely, we examine the cases where the demands are in a set {k, kX} (k, X 2 N ⇤), in a set {kX, k(X +1)} (k, X 2 N ⇤), or bounded by D. For the latter case, we give a general approximation when the demands are bounded by D 2 N and then give better approximations for the cases where the demands are bounded by D 2 {3, 4, 5, 6}.

This chapter is organized as follows. In Section 4.2, we formally define the problem of spectrum assignment and survey its relation to other problems and its complexity in path networks in particular. Afterwards, we present our results in stars and binary trees in Sections 4.3 and 4.4, respectively.

Problem statement and related problems

In this section, we first define the problem of Spectrum Allocation (SA) and then present some related problems and highlight their equivalence to SA. In the last subsection, we list implications of these equivalences on the complexity of SA in paths.

Spectrum Assignment

Let N = (N, L) be a graph modeling an optical network such that N is the set of nodes and L is the set of links. Let R be a set of requests where each r 2 R has a path P (r) in N and a spectrum demand d(r) 2 N (number of slots). We say that two requests r, r 0 2 R are conflicting if their paths P (r) and P (r 0

) share a link. A spectrum assignment of (N , R) is a mapping f from R to N ⇤ such that for every pair of conflicting requests r, r 0 2 R, we have {f (r), . . . , f(r) + d(r) 1} \ {f (r 0), . . . , f(r 0) + d(r 0) 1} = ;. We say that all the slots in {f (r), . . . , f(r) + d(r) 1} are occupied by r. In fact, the set of slots {f (r), . . . , f(r) + d(r) 1} corresponds to the spectrum interval]f (r) 1, f(r) + d(r) 1] and we sometimes use them interchangeably.

The span of a spectrum assignment f , denoted s(f), is the smallest integer s such that for each request r 2 R, f (r) + d(r) 1  s. The span of an instance (N , R), denoted by s(N , R) is the minimum of spans over all possible spectrum assignments. We formulate the spectrum assignment problem as follows: Problem 9 (Spectrum Assignment (SA)). Given an instance (N , R), compute s(N , R).

For an instance (N , R) of SA, the load of a link `, denoted by ⇡(`), is the sum of the demands of the requests using `and the load of an instance, denoted by ⇧(N , R), is the maximum load over all its links. It is straightforward that

⇧(N , R)  s(N , R).
In the approximations we obtain for SA in this chapter, the span is usually upper bounded by a function of the maximum load.

The greedy algorithm for SA is an algorithm which assigns spectrum to requests ordered in a given order r 1 , . . . , r n , such that a request r i is assigned the smallest positive integer g(r i) such that {g(r i), . . . , g(r i) + d(i) 1} \ {g(r j), . . . , g(r j) + d j 1} = ; for each r j in {r 1 , . . . , r i 1 } conflicting with r i . We will use this algorithm many times in the remainder of this chapter.

Related problems

We list in this section problems which are related to SA.

Scheduling Tasks on Multiprocessor Systems

It has been proved in [TBL + 14] that SA in a network of k links can be reduced to the problem of Scheduling Tasks on Multiprocessor Systems (STMS) with k processors. In the STMS we are given a set of n tasks and a set of identical processors, a processing time d j and a prespecified set P j of processors for each task j, j 2 {1, . . . , n}. The objective is to schedule the tasks so as to minimize the makespan C max = max j C j , where C j denotes the completion time of task j, under the following constraints: (1) preemptions (interruptions of a task) are not allowed, (2) each task must be processed simultaneously by all processors in P j , and (3) each processor can work on at most one task at a time.

Given an instance (N , R) of SA, an instance of STMS is constructed as follows. For each link `of N , we associate a processor w `, and for each request r in R with path P (r) and demand d(r), we associate a task t r with processing time d(r) and a set of processors {w `| `2 P (r)}. [START_REF] Hoogeveen | Complexity of scheduling multiprocessor tasks with prespecified processor allocations[END_REF] that the problem of STMS is strongly NP-complete even if the number of used processors is at most 3. On the positive side, it has been proved in [START_REF] Goemans | An approximation algorithm for scheduling on three dedicated machines[END_REF] and [START_REF] Huang | A simple linear-time approximation algorithm for multi-processor job scheduling on four processors[END_REF] that STMS can be approximated within 7 6 and 1.5 when the number of processors is 3 and 4, respectively. Theorem 14 follows from these approximations.

Complexity of STMS. It has been shown in

Theorem 14. There are approximation algorithms with ratios 7 6 and 1.5 for SA in networks with 3 and 4 links, respectively.

Dynamic Storage Allocation

When the network is a path, the SA problem is equivalent to the problem of Dynamic Storage Allocation (DSA). In the DSA problem, we are given a set A of items to be stored, each a 2 A having size d(a), an arrival time ↵(a), and a departure time (a) (with (a) > ↵(a)). A storage allocation for A is a function f : A ! N ⇤ which associates to each item a 2 A a storage interval I(a) = {f (a), . . . , f(a) + d(a) 1} such that for all a, a 0 2 A with a 6 = a 0 , if I(a) \ I(a 0

) is non empty then]↵(a), (a)]\]↵(a 0

), (a 0)] is empty. The storage size used by a storage allocation f denoted by s(f) is the smallest integer s such that for each item a 2 A, f (a) + d(a) 1  s. The objective in DSA is to find a storage allocation which minimizes the used storage size.

If we consider the time interval as a path network and each of the items to be stored as requests we can see the equivalence between the problem of SA in paths and the DSA problem. In more details, given an instance of SA on a path (v 1 , . . . , v k), we associate to each request r with demand d(r), an item a r of size d(r). We also associate to each vertex v i of the path network time i. Let v i and v j be the endvertices of the path P (r) of the request r (i < j), then we choose for the associated item a r the arrival time ↵(a r) = i and the departure time (a r) = j. The fact that two requests r and r 0 are conflicting corresponds to the fact that the time intervals]↵(a r), (a r)] and]↵(a r 0

), (a r 0)] intersect. Then a spectrum assignment with value corresponds to a storage allocation using a storage size . Conversely, using the opposite transformation, we can associate to an instance of DSA an instance of SA on a path.

Complexity of DSA. The problem of DSA has been extensively studied. It has been proved that DSA is strongly NP-complete, even when restricted to instances where the storage size of all items is in {1, 2}. The proof of NP-completeness is by reduction from the 3-PARTITION problem and can be found in the appendix of [BEJ + 06]. On the positive side, many approximation algorithms have been proposed to solve DSA. The first proposed algorithms are based on a greedy algorithm called First Fit (FF) and its performance for online coloring of interval graphs. The relation between online coloring of interval graphs and dynamic storage allocation can be found in [START_REF] Chrobak | On some packing problem related to dynamic storage allocation[END_REF]. Using FF, a linear approximation of DSA has been proved in [START_REF] Kierstead | The linearity of first-fit coloring of interval graphs[END_REF] and a 6-approximation was given in [START_REF] Kierstead | A polynomial time approximation algorithm for dynamic storage allocation[END_REF]. Gergov has adopted another approach not using FF, yielding an approximation of 5 and 3 sequentially in [START_REF] Gergov | Approximation algorithms for dynamic storage allocation[END_REF] and [START_REF] Gergov | Algorithms for compile-time memory optimization[END_REF]. In his approach, Gergov defines and uses a 2-allocation which is a storage allocation where two items but not three are allowed to overlap. A better approximation has been achieved in [BKK + 04] where the authors use the idea of boxing items to design a 2 + "-approximation algorithm. Better approximations were achieved for DSA with restricted item sizes. In [START_REF] Li | New approximation algorithms for some dynamic storage allocation problems[END_REF], the authors present a 4 3 -approximation algorithm when the maximum size is 2, and a 1, 7-approximation algorithm when the maximum size is 3. In [START_REF] Murthy | Approximation algorithms and heuristics for the dynamic storage allocation problem[END_REF], it is proved that for instances with sizes of 1 and X, an approximation of ratio 2 1 X can be guaranteed. All these results established for DSA apply, by equivalence, to SA in paths.

Interval Coloring

As pointed out in [START_REF] Shirazipourazad | On routing and spectrum allocation in spectrum-sliced optical networks[END_REF], the problem of SA is also equivalent to a graph coloring problem called Interval Coloring (IC). An interval coloring or a contiguous coloring [START_REF] Golumbic | Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics[END_REF] of a vertex-weighted graph

(G = (V, E), w) is a mapping f : V ! N ⇤ such that for every v, v 0 2 V , if (v, v 0) 2 E then {f (v), . . . , f(v) + w(v) 1} \ {f (v 0), . . . , f(v 0) + w(v 0) 1} = ;
. The number of colors used by an interval coloring f , denoted by f (G, w) is the smallest integer ↵ such that for each vertex v 2 V , f (v) + w(v) 1  ↵. The interval chromatic number of a weighted graph (G, w), denoted by (G, w), is the least number of colors needed to color the vertices with intervals, i.e. it is the minimum f (G, w) among all possible interval colorings f of (G, w). The interval coloring problem is defined as follows. Problem 10 (Interval Coloring (IC)). Given a vertex-weighted graph (G, w), compute (G, w).

To see the equivalence between SA and IC, we do the following. For an instance (N , R) of SA, we create a weighted graph (G = (V, E), w) modeling the dependency between the different requests and call it the conflict graph. We associate to every request r 2 R a vertex v r in V . We add an edge between two vertices v r and v r 0 if and only if the corresponding requests r and r 0 are conflicting. The weight w(v r) of each vertex v r is equal to the bandwidth demand of the corresponding request r (i.e. w(v r) = d(r)). Figure 4.1 illustrates an instance of SA on a tree (r i (j) is request r i with demand j) and the corresponding conflict graph (weights of the vertices are inside the vertices).

If (N , R) is an instance of SA and (G, w) is its conflict graph, then finding a spectrum assignment of (N , R) is equivalent to finding an interval coloring of (G, w) and s(N , R) = (G, w). [START_REF] Golumbic | Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics[END_REF] where its relation to other problems such as DSA has been highlighted. It has also been proved in [START_REF] Golumbic | Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics[END_REF] that IC is equivalent to the problem of finding, for a vertexweighted graph, an acyclic orientation which minimizes the length of the longest path, where the length of a path is the sum of the weights of its vertices. The complexity of DSA implies that IC is strongly NP-complete in interval graphs. IC is also strongly NP-complete in proper interval graphs [START_REF] Shalom | On the interval chromatic number of proper interval graphs[END_REF]. On the positive side, IC is polynomial in comparability graphs [START_REF] Golumbic | Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics[END_REF] and can be approximated within a factor of 2 + " in interval graphs [BKK + 04], a factor of 2 for proper interval graphs [START_REF] Shalom | On the interval chromatic number of proper interval graphs[END_REF] and claw-free chordal graphs [START_REF] Confessore | An approximation result for the interval coloring problem on claw-free chordal graphs[END_REF], and a factor of O(log(n)) in chordal graphs where n is the number of vertices.

Complexity of IC. The problem of IC has been introduced in

Since the conflict graph associated to an instance of SA in a path is an interval graph, all the results established for IC in interval graphs apply to SA in paths. In section 4.4, we will use the fact that the conflict graph associated to a binary tree is a chordal graph to obtain results for SA in binary trees using interval coloring of chordal graphs.

Spectrum Assignment in Paths

The problem of spectrum assignment in paths has been studied in [TBL + 14] and [START_REF] Shirazipourazad | On routing and spectrum allocation in spectrum-sliced optical networks[END_REF]. The complexity results established in these two papers as well as the ones deduced from the equivalence to the problems defined above can be summarized as follows.

• With respect to the number of links, SA is NP-complete in path networks with 4 links and polynomial in paths with at most 3 links [TBL + 14], and it can be approximated within a factor of 1.5 in paths with 4 or 5 links [TBL + 14].

• With respect to the demands, SA is strongly NP-complete even if the requests have demands in the set {1, 2} [BEJ + 06]. It can be approximated within a factor of 4 3 and a factor of 1, 7 when the maximum demand is 2 and 3, respectively [START_REF] Li | New approximation algorithms for some dynamic storage allocation problems[END_REF]. It also can be approximated within a factor of 2 1 X when the demands are in the set {1, X} [MB99].

• In general, SA in paths can be approximated in paths within a factor of 2 + "

[BKK + 04] and it can be approximated within a factor of 2 when the paths of the requests are such that no path is strictly included in another [START_REF] Shalom | On the interval chromatic number of proper interval graphs[END_REF].

Spectrum Assignment in Stars

A star is a tree-network with at most one node of degree at least 2. The problem of wavelength assignment (WA) is NP-complete in undirected stars but polynomial in directed stars [START_REF] Beauquier | Communication dans les réseaux optiques par multiplexage en longueur d'onde[END_REF]. The polynomiality of WA in directed stars was useful because optical networks are usually symmetrically directed and because it helped in the design of constant-factor approximation algorithms for WA in directed trees [START_REF] Beauquier | Communication dans les réseaux optiques par multiplexage en longueur d'onde[END_REF]. We prove in this section that SA is not only NP-complete in undirected stars but also in directed stars with 4 links. On the positive side, we prove the existence of a 4-approximation algorithm for the general case.

Theorem 15. The problem of Spectrum Assignment is strongly NP-complete in undirected stars with 3 links.

Proof. It was shown in [TBL + 14] that the SA problem is strongly NP-complete in a 3-link unidirectional ring. Let us consider an instance of SA in a 3-link ring C = (l 1 , l 2 , l 3) with a request set R. Let us build a star S with three links l 0 1 , l 0 2 and l 0 3 , and a set of requests R 0 defined as follows. For each request r 2 R using at most 2 links, we create a request r 0 in R 0 such that if the path of r in C is P (r) = l i , i 2 {1, 2, 3}, then the path of r 0 in S is P (r 0) = l 0 i , and if P (r) = l i l j , then P (r 0) = l 0 i l 0 j . Solving SA in (C, R) is equivalent to solving SA in (S, R 0). Theorem 16. The problem of Spectrum Assignment is weakly NP-complete in directed stars with 3 ingoing links and one outgoing link or 3 outgoing links and one ingoing link.

Proof. The proof is by reduction from the 2-PARTITION problem. In the 2-PARTITION problem, we are given a set A of k integers a 1 , a 2 , . . . , a k such that B = P k j=1 a j and the objective is to decide whether A can be partitioned into two disjoint sets A 1 and A 2 such that P a j 2A 1 a j = P a j 2A 2 a j . Given an instance of the 2-PARTITION problem with a set of k integers A = {a 1 , a 2 , . . . , a k } such that B = P k j=1 a j , we create an instance of spectrum assignment in a 4-link directed star network S (Figure 4.2a) and a set of requests R. The star S has 3 ingoing links l 1 ,l 2 , and l 3 and one outgoing link l 4 . The set of requests R consists of the requests presented in Figure 4.2b: requests r a , r b , r c , r 1 , and r 2 and for every integer a i in the set A, a request r i 3 with demand a i and using link l 3 . We prove that finding a spectrum assignment for (S, R) with span 3 2 B is equivalent to finding a partition of A into two sets A 1 and A 2 such that P a j 2A 1 a j = P a j 2A 2 a j = B 2 . In fact, if there is a partition of A into A 1 and A 2 such that P a j 2A 1 a j = P a j 2A 2 a j = B 2 , then we can assign spectrum as shown in Figure 4.2c. Now let us suppose there is a spectrum assignment for (S, R) with span 3 2 B. There are two possible symmetric assignments to the requests on links l 1 and l 2 . We suppose we assign to r 1 , r a , r 2 and r b spectrum intervals]0

, B],]B, 3 2 B],] B 2 , 3 2 B]
, and]0, B 2], respectively (the analysis is similar for the other assignment). This assignment forces request r c to use the interval] B 2 , B] and the other requests on link l 3 will have to be partitioned into two sets of the same size B 2 . The proof is similar if we consider a reduction graph which is a star with 3 outgoing links and 1 ingoing link.

l 1 l 3 l 2 l 4 (a) Star S request demand path r a B/2 l 1 l 4 r b B/2 l 2 l 4 r c B/2 l 3 l 4 r 1 B l 1 r 2 B l 2 r i 3 , 1  i  k a i l 3 (b) Requests R l 1 l 2 l 3 l 4 B 3B/2 B/2 0 r 1 r a r 2 r b r c A 2 A 1 r a r b (c) Spectrum assignment
Theorem 17. The problem of Spectrum Assignment in directed stars with at most 3 links or exactly 2 ingoing links and 2 outgoing links can be solved in polynomial time.

Proof. In all of these cases, the span is equal to the maximum load and the greedy algorithm with specific orders can achieve the optimal span.

• When the star has only ingoing or outgoing links, the problem is trivial since any conflicting requests use the same link and the greedy algorithm with any order can achieve the optimal span.

• For the case where the star is a directed path of length 2, an optimal spectrum assignment consists in using the greedy algorithm with an order where the requests using two links come first. This way, the spectrum span will be defined by the link with the maximum load.

• For the case where the star has two ingoing links l 1 and l 2 and one outgoing link l 3 (or the opposite), let A i3 be the sum of the demands of the requests using l i and l 3 for i 2 {1, 2} and let A i be the sum of the demands of the requests using only link l i for i 2 {1, 2, 3}. First, the requests using l 1 and l 3 are assigned with the greedy algorithm; the span of the spectrum used on links l 1 and l 3 is equal to A 13 . Afterwards all requests using only one link are assigned with the greedy algorithm; the span of the spectrum used on links l 1 , l 2 , and l 3 is) which is exactly the maximum load of the instance.

A 13 + A 1 , A 2 ,
• When the star has 2 ingoing links l 1 and l 2 and 2 outgoing links l 3 and l 4 , let A ij be the sum of the demands of the requests using l i and l j for i 2 {1, 2} and j 2 {3, 4} and let A i be the sum of the demands of the requests using only link l i for i 2 {1, 2, 3, 4}. First, the requests using l 1 and l 3 and the requests using l 2 and l 4 are assigned with the greedy algorithm; the span of the spectrum used on links l 1 and l 3 is equal to A 13 , and the span of the spectrum used on links l 2 and l 4 is equal to A 24 . Afterwards, the requests using only one link are assigned; the span of the spectrum used on links l 1 , l 2 , l 3 , and l

4 is A 13 + A 1 , A 24 + A 2 , A 13 + A
3 , and A 24 + A 4 , respectively. Finally, the requests using l 1 and l 4 and the requests using l 2 and l 3 are assigned with the greedy algorithm; the span of the spectrum used on links l 1 and l 4 is equal to max(⇡(l 1), ⇡(l 4)), and the span of the spectrum used on links l 2 and l 3 is equal to max(⇡(l 2), ⇡(l 3)). This means that the span of this spectrum assignment is equal to the maximum load of the instance.

Theorem 18. Let (N , R) be an instance of SA. If the length of the paths associated to the requests in R is at most ↵, then the greedy algorithm gives a 2↵-approximation for the SA problem. In particular there is a 4-approximation polynomial-time algorithm for the SA problem in stars.

Proof. Let (N , R) be an instance of SA. Let the requests of R be ordered in the non-increasing order of demands r 1 , r 2 , . . . , r q (i.e., d(r

1) d(r 2) • • • d(r q)
). Let ⇧ be the maximum load. We will use at most 2↵⇧ slots to allocate spectrum to the requests of R. Suppose that we have already assigned spectrum to the first requests r j , j < i with the span 2↵⇧ and consider the request r i with demand d(r i) = d. For each link l of the path P (r i), let R i (l) be the set of already assigned requests conflicting with r i on the link l. As the load of the link l is at most ⇧, the sum of the demands of the requests of R i (l) is at most ⇧ d. Since each of these requests has demand at least d, we have at most ⇧ d d requests in R i (l). This implies that the path P (r i) has at most ↵(⇧ d) d requests conflicting with r i which have been already assigned spectrum. Consider the slots not occupied by these requests (available slots). If there exists an interval of d or more available slots below these requests or between two requests, we can assign to request r i the first such interval.

Otherwise, between slot 1 and the first slot occupied by the conflicting requests and between the last slot occupied by a request and the first slot of the next request there are at most d 1 available slots. As there are at most ↵(⇧ d) d requests conflicting with r i , we have at most ↵(⇧ d) d such intervals. As the requests in R i (l) occupy at most (⇧ d) slots, we have at most ↵(⇧ d) slots occupied by the conflicting requests and at most ↵(⇧ d) d (d 1) slots available where we cannot provision r i . Altogether, we have a number of non usable slots equal to

↵(⇧ d) + ↵(⇧ d) d (d 1) = 2↵⇧ 2↵d ↵(⇧ d) d
. So, there is an interval of 2↵d + ↵(⇧ d) d available contiguous slots above all of the requests conflicting with r i . We can allocate to r i d contiguous slots in this interval. Therefore, if ↵ = 2 as is the case in stars, we obtain a 4-approximation.

This approximation algorithm for stars together with the 2 + "-approximation algorithm for paths presented in [BKK + 04], imply constant factor approximations for tree networks which are spiders. A spider is a tree with one vertex of degree at least 3 and all others with degree at most 2. The following theorem states the approximation result on SA in spiders.

Theorem 19. There is a 6 + "-approximation for SA in spiders, for all " > 0.

Proof. Let (S, R) be an instance of SA in a spider tree. Let v be the vertex of S of degree 3 and let S 0 be the star induced by v and all the vertices of S which are at distance 1 from v. The idea is to use the 4-approximation presented in Theorem 18, to allocate spectrum to the requests R 0 using the star S 0 and then for each path P of the paths of S \S 0 , use the 2+"-approximation algorithm to allocate spectrum to the requests using P and which are not in R 0 . This would yield the 6 + "-approximation algorithm.

Spectrum Assignment in Binary Trees

The problem of Spectrum Assignment in binary trees has been studied in [START_REF] Shirazipourazad | On routing and spectrum allocation in spectrum-sliced optical networks[END_REF]. It has been proved that SA can be approximated within a ratio of O(log(k)) where k is the number of requests. The proof is based on the equivalence between SA and the problem of Interval Coloring (IC). In fact, the conflict graph of an instance of SA in a binary tree corresponds to an edge intersection graph of paths in a binary tree. These graphs have been proved to be chordal graphs in [START_REF] Golumbic | Representing edge intersection graphs of paths on degree 4 trees[END_REF][START_REF] Golumbic | Edge and vertex intersection of paths in a tree[END_REF]. Using the problem of interval coloring in chordal graphs, we give in this section some constant-factor approximation algorithms for the problem of spectrum assignment in binary trees with special demand profiles. Namely, we examine the cases where the demands are in a set {k, kX} (k, X 2 N ⇤), in a set {kX, k(X + 1)} (k, X 2 N ⇤), or bounded by D. For the latter case, we give a general approximation when the demands are bounded by D 2 N and then give better approximations for the cases where the demands are bounded by D 2 {3, 4, 5, 6}. It is important to recall here that even if the network is a path and the demands are bounded by 2, SA is strongly NP-complete. We first start by giving some definitions and then we state our results.

Definitions

A chord of a cycle C in a graph is an edge of the graph connecting two vertices that are not adjacent in C. A graph G is chordal if every cycle of G with at least 4 vertices has a chord. One important property of chordal graphs is their perfect elimination order. The perfect elimination order (PEO) of a graph is an ordering x 1 , x 2 , . . . , x n of the vertices of the graph such that for i = 1, . . . , n 1, the neighbors of x i in G[{x i+1 , . . . , x n }] 1 form a clique. It is well known that a graph is chordal if and only if it has a perfect elimination order. Paper [START_REF] Tarjan | Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs[END_REF] describes a linear time algorithm called maximum cardinality search that can be used to determine if a given graph has a perfect elimination order and construct such an ordering if it exists. Throughout the remainder of this chapter, we use the reverse perfect elimination order (RPEO) in the design of some algorithms. Note that if v 1 , v 2 , . . . , v n is a RPEO of the vertices of a chordal graph, then for i = 2, . . . , n, the neighbors of v i in G[{v 1 , . . . , v i 1 }] form a clique. Another tool we will be using is the greedy algorithm for IC. Defined similarly to the greedy algorithm for SA, the greedy algorithm for IC, also called the First Fit algorithm (FF) is an algorithm which assigns colors to vertices in a given order v 1 , . . . , v n such that a vertex v i is assigned the smallest positive integer

g(v i) such that {g(v i), g(v i) + w(v i) 1} \ {g(v j), g(v j) + w(v j) 1} = ; for each v j in {v 1 , . . . , v i 1 } which is adjacent to v i .
In a weighted graph (G = (V, E), w), we define the weight of a subset S ✓ V to be the quantity w(S) = P v2S w(v). The maximum weighted clique is a clique with the biggest weight. The density of (G = (V, E), w) is the weight of the maximum weighted clique and is denoted by (G, w). It is straightforward that (G, w)  (G, w), where (G, w) is the interval chromatic number of (G, w).

In the remainder of this section, we present our results for SA in binary trees with bounded demands as corollaries after proving theorems for IC in weighted chordal graphs with bounded weights. We note here that even though every conflict graph of an instance of SA in a binary tree is a chordal graph, the opposite is not true [START_REF] Golumbic | Edge and vertex intersection of paths in a tree[END_REF]. In what follows, we provide approximation algorithms for IC in weighted chordal graphs with bounded weights. These algorithms give an upper bound on the interval chromatic number in terms of the density. The results we prove for IC in weighted chordal graphs with bounded weights with respect to upper bounds on (G, w) in terms of (G, w) are summarized in Table 4.1.

Demands k and kX

In this section, we present an approximation algorithm for the SA problem when the demand of each request is either k or kX, k, X 2 N ⇤ . We start by proving the following theorem for interval coloring in chordal graphs.

Theorem 20. Let (G, w) be a weighted chordal graph with weights in the set {1, X}.

There exists a polynomial-time algorithm that finds an interval coloring of (G, w) with 2 (G, w) b (G,w) X c colors.

Proof. It has been proved in [START_REF] Murthy | Approximation algorithms and heuristics for the dynamic storage allocation problem[END_REF] that there is an algorithm to find a (2 1 X)approximation for the problem of interval coloring in interval graphs whenever we have only two weights 1 and X. We generalize this algorithm for chordal graphs as follows.

Let (G, w) be a weighted chordal graph with weights in {1, X} and let = (G, w) be its density. We will use 2 b X c colors to color (G, w) as follows. We partition the colors into two sets. The first set S 1 contains colors from 1 to and the second set S 2 contains colors from + 1 to 2 b X c.

Weights

Upper bounds We order the vertices of G in the reverse perfect elimination order. Let v 1 , . . . , v n be the obtained ordering. Recall that the neighbors of v i in {v 1 , . . . , v i 1 } form a clique in the graph induced by {v 1 , . . . , v i 1 }. We use the greedy algorithm to assign colors to the vertices in this order with the additional property that colors assigned to a vertex are either included in S 1 or S 2 (We cannot use colors from both sets). We prove that with this algorithm, all vertices will be assigned colors in S 1 or S 2 . • All vertices of weight 1 will have a color in S 1 . In fact, if a vertex v i of weight 1 cannot be assigned a color in S 1 , then its neighbors in {v 1 , . . . , v i 1 } occupy all colors of S 1 . This implies that the density of the graph is at least + 1 which is not possible.

{k, kX} (2 1 X) (G, w) + k k, X 2 N ⇤ {kX, k(X + 1)} (1 + 1 X) (G, w) k, X 2 N ⇤ 
• For vertices of weight X, suppose that there is a vertex v j of weight X to which we cannot assign colors in S 1 nor in S 2 . The minimum number of colors used in S

1 that can make it not possible to color v j with colors from S 1 is b X c (X 1 free colors then 1 occupied color, then X 1 free colors and 1 occupied color . . .). The weight of the neighbors of v j in {v 1 , . . . , v j 1 } which use colors in S 1 is at least b X c. Since we cannot assign colors from S 2 to v j and knowing that only vertices of the same weight X use colors from S 2 with the greedy algorithm, we deduce that the sum of the weights of the neighbors of v j in {v 1 , . . . , v j 1 } which use colors in S 2 is at least |S 2 | (X 1). So v j and its neighbors form a clique of size

X + b X c + |S 2 | (X 1) = + 1 as |S 2 | = b X c
. This implies that the density of G is at least + 1, which is not possible.

We have proved that when the weights are in the set {1, X}, we can color the graph with at most 2 b X c colors.

Corollary 2. Let (G, w) be a weighted chordal graph with weights in the set {k, kX}.

There exists a polynomial time algorithm that finds an interval coloring of (G, w) with 2 (G, w) kb (G,w) kX c colors.

Proof. Note that to color a graph (G, w) with weights in {k, kX}, we can transform it to a graph (G, w 0) with weights in {1, X}, color (G, w 0) and then transform the colors we found into intervals of colors of size k. The number of colors used for G will be then at most k times the number of colors used for G 0 . Note also that the density of (G, w) is k times the density of (G, w 0

). This means that if we can color (G, w 0

) with a ((G, w 0

)) + b colors, then we can color (G, w) with a ((G, w)) + kb colors.

This implies that when the weights are in the set {k, kX}, we can color the graph with at most 2 (G, w) kb (G,w) kX c colors.

Thanks to Corollary 2, we can deduce the following corollary.

Corollary 3. Let I be an instance of SA in a binary tree such that the demands of requests are in the set {k, kX} and the span of I is OPT . There is a polynomial-time algorithm that finds a spectrum assignment for I with span less than (2 1 X)OPT +k.

Now, in what follows of this subsection, we find a lower bound on the number of colors that can be used to find an interval coloring of a weighted chordal graph with weights in {k, kX}.

Theorem 21. There exists a family of weighted chordal graphs (G m) m2N ⇤ , with weights in the set {k, kX}, for which the ratio between the interval chromatic number and the density tends to 2 1 X when m tends to infinity.

Proof. For m > 0, we build the weighted graph G m of density k(mX 2 +1) as follows. • mX 2 + 1 vertices of weight k each forming a "big" clique. • For each subset S of mX + 1 vertices of the big clique, we add m(X 1) new vertices of weight kX each. These vertices form a clique with the vertices of S.

In any contiguous coloring of G m , there exists an integer in {0, . . . , kX 1} such that the "big" clique uses mX + 1 colors congruent to modulo kX. Suppose that this is not true and that the big clique uses for each integer i in {0, . . . , kX 1} at most mX colors which are congruent to i modulo kX. This means that the number of colors used is at most kmX 2 . This is not possible since this maximum clique has weight k(mX 2 +1). Let S be the subset of vertices of the big clique using colors that are congruent to modulo kX. Vertices of S form a clique with m(X 1) vertices of weight kX. Each of these vertices uses a color congruent to modulo kX. In total, m(2X 1) + 1 colors which are congruent to are used. This means that the number of colors used is at least kmX(2X 1)+1. The ratio between the chromatic number and the density is then at least kmX(2X 1)+1

k(mX 2 +1) = 2 1 X (2k 1)X k kX(mX 2 +1)
. When m goes to infinity, this ratio goes to 2 1 X .

Demands kX and k(X + 1)

In this section, we present an approximation algorithm for the SA problem when the demand of each request is either kX or k(X + 1). We start by proving the following theorem for interval coloring in chordal graphs.

Theorem 22. Let (G, w) be a weighted chordal graph with weights in {kX, k(X+1)}.

There is a polynomial time algorithm to color G with at most X+1 X (G, w) colors. Proof. Let (G, w) be a weighted chordal graph with weights in {kX, k(X + 1)}. Let m = b (G,w) kX c, we prove that we can color (G, w) with k(X + 1)m colors. We partition the set of colors {1, . . . , k(X + 1)m} into m contiguous intervals I i , 1  i  m of size k(X + 1) each. Let us order the vertices of (G, w) in the RPEO order. We use the greedy algorithm to color the vertices in this order using for each vertex colors from exactly one interval I i , 1  i  m. Suppose that we cannot color some vertex v j , this means that each interval I i , 1  i  m, contains a neighbor of v j with weight at least kX (recall that the weights are either kX or k(X +1)). Since the neighbors of v j which appear first in the RPEO form a clique with v j , we have a clique of weight at least mkX + kX > (G, w) which is not possible. Therefore we can color all the vertices.

Theorem 22 implies the following corollary.

Corollary 4. There is a X+1 X -approximation algorithm for SA in binary trees when the demands of the requests are in the set {kX, k(X + 1)}.

Maximum demand D

In this section, we present an approximation algorithm for the SA problem when the maximum demand is D. The approximation algorithm proposed for Interval Coloring in chordal graphs in [START_REF] Pemmaraju | Approximating interval coloring and max-coloring in chordal graphs[END_REF] and which gives 2log 2 (n) approximation where n is the number of vertices, allows to prove the following theorem.

Theorem 23. Let (G, w) be a weighted chordal graph with maximum weight W .

There is a polynomial time algorithm that finds an interval coloring of (G, w) which uses at most 2 dlog 2 (W)e (G, w) colors. Proof. The proof is due to [START_REF] Pemmaraju | Approximating interval coloring and max-coloring in chordal graphs[END_REF] which proposes a O(log 2 (n))-approximation where n is the number of vertices. We only replace n by the maximum weight. We include it for completeness.

We prove that there is a 2 dlog 2 (W)e-approximation for interval coloring of chordal graphs where W is the maximum weight. Let (G, w) be a vertex-weighted chordal graph with maximum weight W . We set k = dlog 2 (W)e. Let us partition the set of vertices V into k subsets S i , i 2 {1, . . . , k} such that for each vertex v 2 S i ,

w(v) 2 [W 2 i , W 2 i 1].
We first ignore the weights and optimally color each graph G i induced by the subset S i . As the graphs are chordal, we can color the vertices of G i with !(G i) colors where !(G i) is the clique number of G i . Afterwards, we replace the color of each vertex v 2 G i by an interval of w(v) colors. This way, we obtain an interval coloring of G i with at most W 2 i 1 !(G i) colors. Therefore, the vertices of G can be colored with c colors where c

= k P i=1 W 2 i 1 !(G i). Note that W 2 i !(G i)  (G, w) which implies that c  k P i=1 2 (G, w) = 2k (G, w).
The 2 dlog 2 (W)e-approximation follows.

Theorem 23 implies the following corollary.

Corollary 5. There is a 2 dlog 2 (D)e-approximation for SA in binary trees where D is the maximum demand.

Maximum demand at most 6

In the previous subsection, a 2 dlog 2 (D)e-approximation algorithm for the SA problem in binary trees where the maximum demand is at most D has been presented. This approximation is achieved by partitioning the requests into subsets of close demands. This technique is used not only in binary trees but also in general graphs as a heuristic [START_REF] Wang | Spectrum management in heterogeneous bandwidth optical networks[END_REF]. In what follows, we use different techniques to find better approximations for SA in binary trees for some given values of the maximum demand D. The techniques we use were introduced in [LLQ04] to approximate DSA. Results in [START_REF] Li | New approximation algorithms for some dynamic storage allocation problems[END_REF] can extend directly to SA in path networks giving approximation algorithms with factors 4 3 and 1.7 when the spectrum demands are bounded by 2 and 3, respectively. In what follows we use the same techniques to design constant-factor approximations for SA in binary trees when the spectrum demand is bounded by 6.

We first prove the following theorem for interval coloring.

Theorem 24. Let (G, w) be a weighted chordal graph. There are polynomial-time algorithms which find an interval coloring of (G, w) with at most Proof. As in the previous sections, (G, w) refers to the density of the weighted graph (G, w) and will be abbreviated in this proof to .

Let C(d, S) denote the set of instances of IC in which the graph is chordal, the density is at most d and the weights are in the set S. Let c(d, S) denote the smallest integer ↵ such that for each instance of C(d, S), there is an interval coloring with at most ↵ colors (if such ↵ exists).

We present first the general approach to solve the problem for any maximum weight W before presenting the cases W 2 {3, 4, 5, 6} in details.

General Approach Let (G, w) be a weighted chordal graph with maximum weight W . To color the graph G, we proceed in two phases as follows.

• Partitioning the vertices into multi-level blocks: in this phase, the vertices are partitioned into blocks. We will have for each i 2 {1, . . . , W }, a set B i of n i level-i blocks B 1 i , . . . , B n i i each of density d i . We order the blocks in the lexicographic order: block B j i is before block B j 0 i 0 if i < i 0 or i = i 0 and j < j 0 . Our algorithm consists in considering successively the vertices in the RPEO order and assigning a new vertex v to the first available block (in the block's order). In more details, we assign a vertex v to a block B if the weight of the clique induced by v and its neighbors in B does not exceed the density of the block. The vertex v and its neighbors in B indeed form a clique since the graph is chordal and we consider the vertices in the RPEO order.

We will choose the parameters d i and n i (see details after) in such a way that the following property is satisfied:

Property *: Each vertex of weight i is assigned to some block in the set B l such that l  i.

In particular, this means that at the end of the algorithm each vertex is assigned to some block.

• Solving the problem of interval coloring for each block: in this second phase, the vertices of each block B j i are colored using an algorithm to solve instances with density d i and weights in S i = {i, . . . , W } (the possible weights of the vertices in B j i). Note that the vertices of a block B j i induce a graph which belongs to C(d i , S i). The algorithm we use is designed to use no more than c(d i , S i) colors.

Therefore, the total number of colors used to color the whole graph is at most

W X i=1 n i c(d i , {i, . . . , W })
The total number of colors depends on n i and d i . In fact, we will proceed as follows. For a chosen set of values of the densities d i , we will choose the smallest possible n i such that Property* is satisfied. Afterwards, we will compute c(d i , {i, . . . , W }) and therefore the total number of colors for the chosen values of d i . We will do this for many values of the densities d i and keep the set of values which minimize the total number of colors.

Choice of the n i Note that, if for some i, d i < i, then n i = 0 as a block of B i cannot be used to assign a vertex of weight i (recall that the vertices of weight < i are by Property * all assigned to blocks of B l with l < i). So, in the following claims, we suppose d i i for all i. Claim 18. n i = 2 6 6 6

+1 i i 1 P l=1 n l l i i i 3 7 7 7
where l i = max{l, d l + 1 i}.

Proof. Suppose that a vertex v of weight i cannot be assigned to any block of B l with l  i. This means that, for each block B of B l , vertex v and its neighbors in B form a clique of size > d l and so the weight of the neighbors of v in B is at least d l + 1 i. Furthermore, as all the vertices of weight < l are assigned to blocks of B j for j < l, v has necessarily one neighbor of weight at least l in any block of B l . Therefore, if we let l i = max{l, d l + 1 i}, the clique induced by v and its neighbors in the RPEO has a weight at least i P l=1 n l l i + i which exceeds for

n i = 2 6 6 6 +1 i i 1 P l=1 n l l i i i 3 7 7 7
. colors {1, 2, 3, 4, 5} to color this graph. If one of the vertices of weight 1 uses color 3, then its neighbor which has weight 3 cannot be colored. Otherwise, if the vertices of weight 1 use colors {1, 2, 4, 5}, then the vertex of weight 2 which is adjacent to the vertices of weight 1 which have colors 2 and 4 cannot be colored.

To color any instance in C(4, {1, 2, 3}) with at most 6 colors, we use the first fit algorithm in the RPEO.

1 1 The First Fit algorithm in the RPEO, colors any instance in C(4, {2, 3}) with at most 4 colors.

1 1 3 3 3 3 2 2 2 2 2 2
• c(5, {1, 2, 3}) = 7.

We first prove that c(5, {1, 3}) 7. Let us consider the graph G consisting of a clique of 5 vertices each of weight 1 and such that each pair of vertices of the clique is connected to a vertex of weight 3. The graph G is chordal with density 5 and weights in {1, 3}. Let us suppose that we can color G with only six colors. There are either two vertices of weight one colored with colors 2 and 4 or two vertices of weight one colored with colors 3 and 5. In both cases the vertex of weight 3 adjacent to these two vertices cannot be colored. Now let us describe an algorithm that takes an instance of C(5, {1, 2, 3}) and colors it with at most 7 colors. The algorithm is a First Fit algorithm in the RPEO of the vertices with the additional feature that colors 5 and 6 are forbidden for vertices of weight 1.

- Maximum weight 4 Let us first compute c(4, S) for some basic sets S.

• c(4, {2, 3, 4}) = 4.

A First Fit algorithm in the RPEO uses at most 4 colors. In fact, in an instance of C(4, {2, 3, 4}), vertices of weights 3 or 4 are isolated and it suffices to color vertices of weight 2 with {1, 2} or {3, 4}.

• c(4, {3, 4}) = c(4, {4}) = 4.
In an instance of C(4, {3, 4}), all vertices are isolated and can be colored independently.

• c(6, {1, 2, 3, 4}) = c(6, {1, 2, 3}) = 9.

We first prove that c(6, {1, 3}) 9. Let us consider the graph G consisting of a clique of 6 vertices of weight 1 each and such that the vertices of each triple of the clique are connected to a vertex of weight 3. The graph G is chordal with density 6 and weights in {1, 3}. Let us suppose that we can color G with only 8 colors. There are three vertices of weight 1 using colors {1, 4, 7} or three vertices of weight 1 using colors {2, 5, 8} or two vertices of weight 1 using colors {3, 6}. In any of these three cases, a vertex of weight 3 cannot be colored.

Now let us describe an algorithm that takes an instance of C(6, {1, 2, 3, 4}) and colors it with at most 9 colors. The algorithm is a First Fit algorithm in the RPEO of the vertices with two additional features: colors 6,7 and 8 are forbidden to vertices of weight 1, and each vertex of weight 2 is assigned colors {1, 2}, {3, 4}, {5, 6}, or {7, 8} and not any other contiguous combination of two colors. This algorithm uses at most 9 colors.

-If a vertex v of weight 4 is considered, then if v has a neighbor of weight 2 which has been already colored, the possible sets of color used by this neighbor are {1, 2}, {3, 4}, {5, 6}, or {7, 8}. In any case, v can be colored with 4 contiguous colors. If v has two neighbors of weight 1 each that have been already colored, then either one of the colors 9 or 5 is not used by this neighbor, and in this case v can use it along with the colors {6, 7, 8} (which are forbidden for vertices of weight 1), or both colors 9 and 5 are used and v can use colors {1, 2, 3, 4}. -If a vertex v of weight 3 is considered, then if v has a neighbor of weight 3 colored with {↵, ↵ + 1, ↵ + 2}, we color v with {1, 2, 3} if ↵ 4 or with {7, 8, 9} if ↵  3. If v has two neighbors one of weight 2 colored with {↵, ↵ + 1} and one of weight 1 colored with , then we color v with {6, 7, 8} if ↵ = 1 or 3; {1, 2, 3} if ↵ = 5 or 7 and 4; {7, 8, 9} if ↵ = 5 and  3; {4, 5, 6} if ↵ = 7 and  3.

-If a vertex v of weight 2 is considered. If all its neighbors that have been already colored are of weight 1, then v can be assigned colors {7, 8}. If Maximum weight 5 Let us first compute c(5, S) for some basic sets S.

• c(5, {1, 2, 3, 4, 5}) = 8.

In fact, we know that c(5, {1, . . . , 4}) = 8 and for any chordal graph with density 5 and maximum weight 5, vertices of weight 5 are isolated and can be colored independently from the others.

• c(5, {2, 3, 4, 5}) = 5.

In a chordal graph of density 5 and weights in {2, . . . , 5}, vertices of weight 4 or 5 are isolated and can be easily colored. For other vertices, we know that c(5, {2, 3}) = 5.

• c(5, {3, 4, 5}) = c(5, {4, 5}) = 5.

All vertices are isolated and can be easily colored.

• c(6, {1, 2, 3, 4, 5}) = 10.

We first prove that c(6, {1, . . . , 5}) = 10. Let us consider the graph G which consists of a clique C of 6 vertices of weight 1 each such that each of the vertices of C is connected to a vertex of weight 5, and each pair of vertices of C is connected to a vertex of weight 4. Let us suppose that we can color G with 9 colors. No vertex of weight 1 can use color 5 because otherwise its neighbor of weight 5 cannot be colored. In any possible coloring of the vertices of weight 1 without using color 5, there are two vertices whose neighbor of weight 4 cannot be colored.

The First Fit in the RPEO colors any instance of C(6, {1, . . . , 5}) with at most 10 colors.

• c(6, {2, 3, 4, 5}) = 8.

Vertices of weight 5 are isolated and can be easily colored. As for other vertices we have already proved that c(6, {2, 3, 4}) = 8.

• c(6, {3, 4, 5}) = 6.

Vertices of weight 4 and 5 are isolated and vertices of weight 3 can be colored using First Fit in the RPEO with either the colors {1, 2, 3} or {4, 5, 6}.

• c(7, {1, 2, 3, 4, 5})  12.

To obtain a coloring with 12 colors, we use the First Fit algorithm in the RPEO with the additional feature of forbidding colors {8, 9, 10, 11, 12} to vertices of weight 1 and colors {8, 9} and {9, 10} for vertices of weight 2. The proof that the algorithm works is done by considering the various possibilities when a new vertex is added. For maximum weight 6, we obtain an approximation is with a multiplicative ratio of 287 100 and an additive constant of 885 200 . Theorem 24 implies the following corollary. Corollary 6. Let I be an instance of SA in a binary tree. Let OPT be the span of I. There are polynomial-time algorithms which find a spectrum assignment for I with a span less than when the maximum request demand is bounded by 3,4,5 and 6, respectively.

Conclusion

We have studied in this chapter the problem of spectrum assignment in tree networks. We have proved that SA is NP-complete in undirected stars with 3 links and directed stars with 4 links. We have also shown that there is a 4-approximation algorithm to solve the problem in general stars. Afterwards, we have focused on SA in binary trees with special demand profiles and we have designed constant approximation algorithms for several cases. As future work, we would like to find approximation algorithms for interval coloring in chordal graphs in general and to SA in binary trees in particular. Towards this objective, we believe the following directions might be useful.

• It would be interesting to try to use the clique graph of the chordal graph [START_REF] Galinier | Chordal graphs and their clique graphs[END_REF] to find an acyclic orientation where the number of maximal cliques to which a path belongs is bounded. In fact, finding a k-approximation for interval coloring is equivalent to finding an acyclic orientation in which the longest directed path has vertices in at most k maximal cliques [START_REF] Golumbic | Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics[END_REF]. This approach has been used to find a 2-approximation for interval coloring in clawfree chordal graphs [START_REF] Confessore | An approximation result for the interval coloring problem on claw-free chordal graphs[END_REF].

• It would be also helpful to try to use ideas from the approximation algorithms used for interval coloring in interval graphs. These algorithms were developed for the problem of Dynamic Storage Allocation (DSA) as we mentioned in Section 4.2.2.2 and they use mainly three techniques.

-2-coloring (2-allocation) [START_REF] Gergov | Algorithms for compile-time memory optimization[END_REF]: in this technique, which yields a 3approximation for Interval Coloring (IC) in interval graphs, first, a 2coloring is found where 2 adjacent vertices but not three might use the same color. This 2-coloring is transformed afterwards to a normal coloring. Is it possible to find a 2-coloring for chordal graphs in polynomial time? Knowing that if we directly apply the technique used by Gergov [START_REF] Gergov | Algorithms for compile-time memory optimization[END_REF] to find a 2-coloring for an interval graph to chordal graphs, we will have instances where a color is shared by an unbounded number of adjacent vertices. -Boxing vertices [BKK + 04]: in this technique, which yields a 2 + " approximation for IC in interval graphs, vertices are modeled as rectangles (the dimensions of a rectangle corresponding to a vertex v are the weight of v and the interval corresponding to v in the interval representation of the graph). These rectangles are cleverly boxed or gathered in larger rectangles. Afterwards an exact algorithm is used to color these large rectangles. Is it possible to adapt such technique to chordal graphs and find a clever way to box the vertices? -Buddy-decreasing-size algorithm [START_REF] Chrobak | On some packing problem related to dynamic storage allocation[END_REF]: in this algorithm, which yields a 6-approximation for IC in interval graphs, vertices are colored in the decreasing order of their weights. Some of the challenges in this direction is that using it as it is for chordal graphs cannot give better than a log(n)approximation; there is a tight example in [START_REF] Pemmaraju | Approximating interval coloring and max-coloring in chordal graphs[END_REF]. In the tight example however all the vertices have the same weight which means that there is an exponential number of possible orders. Is there a clever order (something similar to lexicographic order?) which can give a better approximation ratio?

Introduction

Spectrum fragmentation [START_REF] Wright | The network capacity benefits of flexgrid[END_REF] in Elastic Optical Networks is one of the issues that are subject to significant research in the optical community. As connections are set up and torn down in the network, the optical spectrum becomes fragmented as the hard disk of a computer does. Small free fragments of spectrum are accumulated and might become unusable either because they are not well aligned on the links of a given path or because they are not contiguous. The spectrum fragmentation caused by the misalignment of free spectrum fragments is due to the continuity constraint and it was a problem even in the traditional optical networks; it is referred to as horizontal fragmentation. On the other hand, the fragmentation caused by the non-contiguity was introduced in elastic optical networks and is mainly due to the contiguity constraint; it is referred to as vertical fragmentation. To illustrate these types of fragmentation, let us consider a simple path network of 4 nodes, and an optical spectrum of 4 slots. In the first example in Figure 5.1a, request r 1 from a to c is using the spectrum interval]0, 2] and request r 2 from c to e is using the spectrum interval]2, 4]. If a new request r requiring two spectrum slots from a to e arrives, it cannot be provisioned even though 2 contiguous spectrum slots are available on each link of the path from a to e. This is because the spectrum is horizontally fragmented and the continuity constraint cannot be satisfied. In the second example in Figure 5.1b, request r 1 from a to d is using the spectrum interval]0, 1] and request r 2 from b to e is using the spectrum interval]2, 3]. If a new request r requiring two spectrum slots from a to e arrives, it cannot be provisioned even though the same 2 spectrum slots are available on each link of the path from a to e. This is because the spectrum is vertically fragmented and the contiguity constraint cannot be satisfied. To address the issue of fragmentation, many techniques have been proposed. These techniques are either preventive or remedial. The preventive techniques are used to avoid or limit the fragmentation and they consist in general in using fragmentation-aware routing and spectrum allocation algorithms. These are algorithms which allocate routes and spectrum to requests in a way to give new requests more chances to be accepted. For instance, in a preventive technique proposed in [START_REF] Wang | Spectrum management in heterogeneous bandwidth optical networks[END_REF], the spectrum is partitioned and requests of almost the same demand are provisioned on the same partition, and we have seen in Chapter 4 that, for spectrum assignment in an offline setting, this partition technique achieves good approximation ratios in some types of networks.

The remedial techniques, on the other hand, offer a cure to fragmentation after it happens and they perform a defragmentation of the spectrum, which is a consolidation of the small fragments of free spectrum. To defragment the spectrum, rerouting and spectrum re-allocation of the already established requests are usually performed. This can cause some disruption to the traffic or can be done seamlessly without causing any disruption in the network. The Make-before-Break technique [ABG + 01], is one of the non-disruptive defragmentation techniques. In the Makebefore-Break, to reroute or re-allocate spectrum to a request, a new connection is established from the source to the destination, the traffic is switched to this new connection and then the first connection is torn down. To establish the second connection, additional costly transponders are needed. Lately, a new non-disruptive technique, which does not require additional transponders, has been proposed. This technique uses the characteristics of the EONs and of the flexible transponders to shift the spectrum allocated to a request without disrupting the traffic. It is referred to as Push-Pull (PP) [CSS + 12] and it performs as follows. The frequency at the transmitter is pushed at a certain frequency sweep rate and since at the receiver, the difference between the frequencies of the transmitter and the receiver should not exceed a given offset, the frequency at the receiver is pulled. This technique can only perform spectrum re-allocation and not re-routing. Furthermore, the order of the requests in the spectrum interval does not change. This means that if requests r and r 0 occupy on a link `slots and 0 , respectively, such that < 0 , then under any shifting with Push-Pull the new slots and 0 occupied by the requests r and r 0 , respectively, are such that < 0 . All in all, with Push-Pull, requests are shifted in the spectrum, a request does not change its path and does not transgress other requests. We study in this part, spectrum defragmentation in EONs using Push-Pull.

Related work. The Push-Pull technique has been first introduced in [CSS

+ 12].
It is considered to be cheap and non-disruptive because it does not require additional transponders and does not disrupt the optical layer by requiring channel re-equalizations [CSS + 12]. To prove its feasibility, experimentations have been conducted with Push-Pull in [CPM + 13] and with what seems to be a similar technique in [START_REF] Sekiya | Photonic network defragmenttaion technology improving resource utilization during operation[END_REF]. Moreover, algorithms have been proposed in [START_REF] Wang | Provisioning in elastic optical networks with non-disruptive defragmentation[END_REF] to use Push-Pull in the defragmentation of networks that are not heavily loaded where it performs quite well.

In [START_REF] Wang | Provisioning in elastic optical networks with non-disruptive defragmentation[END_REF], proactive and reactive algorithms are designed to defragment networks using non-disruptive defragmentation. The proactive algorithms are run periodically to defragment the spectrum and consist in general in shifting all requests to one end of the spectrum. In the reactive algorithms, the defragmentation is performed only when a request is blocked and already provisioned requests are shifted in order to create enough free contiguous spectrum for the blocked request.

Simulations in [START_REF] Wang | Provisioning in elastic optical networks with non-disruptive defragmentation[END_REF] showed that reactive strategies perform better than the proactive ones in terms of the blocking propability. Particularly, the proposed reactive optimal algorithm has the best performance. The algorithm routes and allocates spectrum to a new request in an EON, using the non-disruptive defragmentation Push-Pull. It first pre-computes a set of paths for the request. Then, it finds on each path a position in the spectrum which minimizes the delay. The delay of insertion of a new request using Push-Pull indicates the duration of the shifting done to free the needed space. In [START_REF] Wang | Provisioning in elastic optical networks with non-disruptive defragmentation[END_REF], the authors take the number of slots through which the shifting is done over as an indicator of the delay and consider two types of parallelism to compute it as illustrated in Figure 5.2. In this chapter, we study the problem of dynamic and spectrum assignment in an online setting where requests arrive and leave dynamically and the Push-Pull defragmentation can be used. Given an optical network and already established requests, a new request arrives, we aim at deciding whether we can route and allocate spectrum to the new request knowing that the Push-Pull defragmentation can be used and respecting the continuity, contiguity and non-overlapping constraints. We first suppose that the routing is fixed and study the spectrum allocation and then we focus on the problem where we need to route and allocate spectrum. Our contribution is as follows.

• We introduce a graph-theoretic framework to manage requests and Push-Pull shiftings in the network (Section 5.2).

• We build on the algorithm of Wang and Mukherjee [START_REF] Wang | Provisioning in elastic optical networks with non-disruptive defragmentation[END_REF] to solve SA with PP with minimum delay (Section 5.3).

• We solve exactly the routing and spectrum assignment with two different objectives; shortest path and minimum delay. Both algorithms are pseudopolynomial, i.e. polynomial in the size of the input and the numerical value of the available spectrum (Section 5.4).

Preliminaries

In this section, we give some definitions and notations used throughout the chapter. Afterwards, we give the graph model we use to manage the shiftings of the requests. Finally, we state the problems we tackle in the chapter.

Definitions and notations

Let N = (N, L) be a graph modeling an optical network, N is the set of nodes and L is the set of links. The available spectrum on each link is S; the spectrum is slotted into S slots. Slot i, for i 2 {1, . . . , S}, represents the spectrum interval

]i 1, i].
Let R be a set of established requests where each request r 2 R has a path P r in N , a spectrum demand d r (number of slots) and an interval]b(r), e(r)] in the spectrum such that e(r) = b(r) + d r . We refer to b(r) as the beginning slot of r and e(r) as the ending slot of r. Note that the non-overlapping, continuity and contiguity constraints are all satisfied. With respect to the possible shiftings of the requests, two network states have been defined in [START_REF] Wang | Provisioning in elastic optical networks with non-disruptive defragmentation[END_REF], the delta state and the del state.

• The delta state (4 state) is the state of the network after shifting all the requests down (towards 0) until they are blocked.

• The del state (O state) is the state of the network after shifting all the requests up (towards S) until they are blocked.

In these states we define b 4 (r)/e 4 (r) and b O (r)/e O (r) which are the beginning/ending spectrum slots of request r in the 4 state (i.e. when all existing requests are shifted to their lowest spectrum) and the O state (i.e. when all existing requests are shifted to their highest spectrum), respectively.

Dependency DAG

We introduce in this section the model used to capture the dependency between the requests and the possible shiftings in the spectrum. This model is the dependency DAG and it is similar to the conflict graph we used in Chapter 4: vertices correspond to requests and two vertices are linked by an arc if they are routed through paths which share at least one link. In more details, the spectrum dependency graph D = (V, E), is a directed acyclic graph with two special vertices floor and ceiling and where each vertex r of V \ {floor, ceiling} is associated with a request r 2 R. For each vertex r, there exists an arc from ceiling to r with weight S e(r) and an arc from r to the floor with weight b(r). There exists an arc from r to r 0 if r and r 0 occupy consecutive spectrum intervals on some link `2 L and b(r) e(r 0

); this means that both r and r 0 use link `, b(r) e(r 0

), and no slot between b(r) and e(r 0) is used by another request on `. The arc (r, r 0

) has a weight equal to b(r) e(r 0) and a set of colors (labels) equal to the set of links in L used by both the paths of r and r 0 and where the requests are consecutive on the spectrum band. The example in Figure 5.3 illustrates how to build the dependency DAG. Note that we keep labels on arcs in order to keep track of the origin of the dependency. This is useful when we delete nodes since it helps establishing the dependencies between the in-neighbors and out-neighbors of the deleted node. We can restrain from using labels, but in that case we will need to have much more arcs in the DAG. The dependency DAG is used to capture the dependency between the requests and to compute the possible shiftings. It can be updated in case of shiftings by changing the weights of the arcs, and in case of arrival or departure of requests by adding or deleting nodes and updating the weights and labels of the arcs (see Figure 5.3 for a simple example). Moreover, the dependency DAG is used to compute for every request r the values of e O (r) and b 4 (r) which are related respectively to the length of the shortest path from the ceiling to r and the length of the shortest path from r to the floor. Expressly, if ↵ 1 and ↵ 2 are the length of the shortest path from the ceiling to r and the length of the shortest path from r to the floor, respectively, then e O (r) = e(r) + ↵ 1 and b 4 (r) = b(r) ↵ 2 . The dependency DAG also helps keeping track of the dependency between the requests. In particular, we say that a request r i is constrained to be below another request r j if on the dependency graph, r i is in a path from r j to the floor (i.e. r i is a successor of r j). In the spectrum, the position of r i cannot be bigger than the position of r j , under any shifting, particularly, e 4 (r i)  b 4 (r j) and e O (r i)  b O (r j). A request r i is constrained to be above another request r j if on the dependency graph, r i is in a path from the ceiling to r j (i.e. r i is a predecessor of r j). In the spectrum, the position of r i cannot be smaller than the position of r j , under any shifting, particularly, e 4 (r j)  b 4 (r i) and e O (r j)  b O (r i).

Problems Statement

We have introduced the definitions and the notations we need and the model we use to keep track of the dependency between the requests. Now, in this section, we formally state the problems we consider using Push-Pull. Given an optical network and a set of provisioned requests. We consider two problems. The first problem is spectrum assignment using Push-Pull. In this problem, a new request arrives with a predefined path and the objective is to allocate spectrum to this request respecting all of the constraints and knowing that the spectrum can be defragmented using Push-Pull. The second problem we consider is more general. Given a new request with no predefined path, we would like to route and allocate spectrum to this new request. We recall that with Push-Pull, requests can be shifted in the spectrum but their order stays the same. We formally state the problems as follows.

Problem 11 (SA-PP). Given a network, a set of provisioned requests R, and a new request q with demand d q and path P q . Is it possible to assign spectrum to q, knowing that only Push-Pull defragmentation can be used? Problem 12 (RSA-PP). Given a network, a set of provisioned requests R, and a new request q with demand d q , source s and destination t. Is it possible to route and assign spectrum to q, knowing that only Push-Pull defragmentation can be used?

Spectrum Assignment with Push-Pull

It has been proved in [START_REF] Wang | Provisioning in elastic optical networks with non-disruptive defragmentation[END_REF], that SA-PP can be solved in polynomial time. We prove here that SA-PP with minimum delay can be solved in polynomial time. We will first explain the polynomial algorithm presented in [START_REF] Wang | Provisioning in elastic optical networks with non-disruptive defragmentation[END_REF], show that it does not necessarily allocate spectrum with minimum delay, and then state and prove our result.

Algorithm of Wang and Mukherjee [WM13]

Let us first present some definitions and notations borrowed from [START_REF] Wang | Provisioning in elastic optical networks with non-disruptive defragmentation[END_REF]. Let q be a new request and P q its path. We call the conflict set, CS(P q), the set of provisioned requests that use paths sharing some links with P q . We set k = |CS(P q)|. If provisioned, the new request q will partition the set CS(P q) into two subsets, requests above q and requests below q, i.e., every position in the spectrum of q corresponds to a partition A [Ā of CS(P q).

A partition A[Ā gives the largest free interval when we shift the requests that are above (i.e. A) to the O state and those below (i.e., Ā) to 4 state. We define the floors of a position ↵ = (A, Ā) before and after defragmentation as f (↵) = max{e(r) : r 2 A} and f ⇤ (↵) = max{e 4 (r) : r 2 A}, respectively. Similarly, we define the ceilings before and after defragmentation of the position ↵ as c(↵) = min{b(r) : r 2 Ā} and c ⇤ (↵) = min{b O (r) : r 2 Ā}, respectively. The widths of a position ↵ = (A, Ā) before and after defragmentation are given by w(↵) = c(↵) f (↵) and w ⇤ (↵) =

• ({r 4 , r 1 , r 2 }, {r 3 }); above {r 4 , r 1 , r 2 } and below r 3 with delay 5 • ({r 4 , r 1 , r 2 , r 3 }, ;); above {r 4 , r 1 , r 2 , r 3 } with delay 4 Among these positions, the one with minimum delay is (;, {r 4 , r 1 , r 2 , r 3 }) which is illustrated in Figure 5.4b. The position with minimum delay over all possible positions is, however, above r 1 and below {r 2 , r 3 , r 4 } with delay 1 as illustrated in Figure 5.4c.

SA-PP with minimum delay

In this section, we prove that by checking more positions, we can find a position which minimizes the delay. We prove the following theorem.

Theorem 26. The SA-PP problem with minimum delay can be solved in polynomial time.

Let q be the new request, P q its path, and |CS(P q)| = k. Instead of checking only the k + 1 decision-positions ↵ i , i 2 {0, . . . , k}, defined earlier, we check O(k 2) relative positions ↵ j i , i 2 {0, . . . , k}, j 2 {0, . . . , i 1}, defined as follows. For i 2 {1, . . . , k}, let ↵ i = (A i , Āi) and let < x 1 , . . . , x i > be the set A i sorted in the descending order of their ending slots, i.e. e(x 1) e(x 2) • • • e(x i). For j = 0, we set ↵ j i = ↵ i and for j 2 {1, . . . , i 1}, we set B j = {x 1 , x 2 , . . . , x j } and we define the position

↵ j i = (A i \ B j , Āi [B j).
Algorithm 2 (page 119) is the algorithm solving SA with minimum delay. It checks if it is possible to empty spectrum for the new request q with the use of one of the positions ↵ j i , and then chooses the position with the minimum delay. Its correctness is drawn from Lemma 4. Lemma 4. Request q is provisionable over P q with delay using Push-Pull, if and only if there exists some i 2 {0, . . . , n}, and j 2 {0, . . . , i 1} such that w ⇤ (↵ j i) d q and (↵ j i)  .

Let us evaluate the difference between and 0 according to the following cases:

• If min n f (↵) f ⇤ (↵), c ⇤ (↵) c(↵), dr w(↵) 2 o = f (↵) f ⇤ (↵), then 0 = d r w(↵) (f (↵) f ⇤ (↵))
, and since w(↵) w() and

f (↵) f ⇤ (↵) f () f ⇤ (), this implies that 0  d r w() (f () f ⇤ ())  . • If min n f (↵) f ⇤ (↵), c ⇤ (↵) c(↵), dr w(↵) 2 o = c ⇤ (↵) c(↵), then 0 = d r w(↵) (c ⇤ (↵) c(↵)). In this case, since w(↵) c(↵) = f (↵) = f () = w() c(), then 0 = d r w() + c() c ⇤ (↵) and since c ⇤ (↵) c ⇤ () we have 0  d r w() + c() c ⇤ ()  . • If min n f (↵) f ⇤ (↵), c ⇤ (↵) c(↵), dr w(↵) 2 o = dr w(↵)

2

, then 0 = dr w(↵)

2
and since w(↵) w(), we have 0  .

Algorithm 2: SA-PP with minimum delay Require: Network N = (N, L), a set of provisioned requests R and a new request q with a path P Ensure: Allocate spectrum to q on P with minimum delay 1: b(q) = None, = ; and = 1 2: Find CS(P) the set of requests conflicting with q on P and sort it in the ascending order of e 4 . The sorted list is < r 1 , r 2 , . . . , r k >. The corresponding decision-positions are ↵ 0 , ↵ 1 , . . . , ↵ n such that ↵ i = (A i , Āi) 3: for all i 2 0, . . . , n do 4:

if w ⇤ (↵ i) d q then 5:
Sort the requests in A i in the descending order of e(x). The sorted list is < x 1 , x 2 , . . . , x i > and

↵ j i = ({A i \ {x 1 , x 2 , . . . , x j }} [{ Āi , {x 1 , x 2 , . . . , x j }}) for j 2 {1, . . . , i 1} and ↵ 0 i = ↵ i 6:
for all j 2 {0, . . . , i 1} do

7: if (↵ j i) < then 8: = ↵ j i and = (↵ j i) and b(q) = max(f () , f ⇤ ())

Routing and Spectrum Assignment with Push-Pull

In this section we solve the problem of RSA-PP. We first solve RSA-PP with the shortest path and then solve RSA-PP with minimum delay. Let q be a request from s to t with spectrum demand d q . We call absolute position, a position in the spectrum range i.e., a value in the interval [0, S] which can be assigned to b(q). We call a relative position (A, B), a position between two sets of requests. Allocating position (A, B) to a request r means that request r is above the set of requests A, and below the set of requests B in the spectrum range.

We say that (A, B) is a valid relative position if no request of B is constrained to be below a request of A. A relative position (A, B) is valid on a link `if it is valid and (A, B) is a partition of the requests using `. To every relative position (A, B), we associate a complete relative position (A c , B c) such that A c contains the requests in A and all the requests constrained to be below them and B c contains the requests in B and all the requests constrained to be above them. We recall that requests constrained to be above or below a given request r are respectively the requests corresponding to the predecessors and the successors of the vertex r in the dependency DAG.

We say that two relative positions (A, B) and (C, D) are conflicting if and only if A c \ D c 6 = ; or C c \ B c 6 = ;.

RSA-PP with the shortest path

Theorem 27. The RSA-PP problem with shortest path can be solved in pseudopolynomial time.

Algorithm 3 is the algorithm we use to solve RSA-PP with shortest path. It is a natural approach to such problems. Since there are S d q + 1 absolute positions on the spectrum to allocate to request q, then for each absolute position , we create the graph consisting of all of the links of N where the position can be freed for request q (by shiftings) and then find the shortest path from s to t in this graph. At the end we choose the shortest path among the ones found for each position and on this path we allocate spectrum with minimum delay.

The correctness of the algorithm is based on the fact that if we can free a position on a set of links (i.e. free all slots of] , + d q]), then we can free this position on the same set using non-conflicting shiftings or in other words non-conflicting relative positions on the links. This is what we prove with Lemma 5. Note that freeing position on link `using the relative position (A, B) means that (A, B) is a valid relative position on `, and requests of A can be shifted below and requests of B can be shifted above + d q .

Lemma 5. If the absolute position can be freed for a request q with demand d q on a set of links E, then there are valid non-conflicting relative positions on the links of E which can free for q.

Proof. We proceed by induction on the size of E. Let E = {`, `0} and let (A, B) and (A 0 , B 0

) be the two relative positions with which `and `0 free , respectively. Let (A c , B c) and (A 0 c , B 0 c) be the complete relative positions corresponding to (A, B) and (A 0 , B 0) , respectively. Let us suppose that (A, B) and (A 0 , B 0) are conflicting. We suppose without loss of generality that A c \ B 0 c = I 6 = ;. This implies that A 0 c \ B c = ;. Let J be the set of the requests I and all the requests that are constrained to be below them. We prove that (C, D), where C = (A 0 c [J) \ CS(`0) and D = (B 0 c \ J) \ CS(`0), is a valid relative position on link `0, that frees position and that is not conflicting with (A, B).

Algorithm 3: RSA-PP with shortest path

Require: A network N = (V, L), a set of provisioned requests R and a new request q with demand d q , source s and destination t Ensure: Route and allocate spectrum to q using the shortest path 1: for all `2 L do 2:

sort requests using `by the increasing order of their beginning slots b(r); the sorted list is < r 1 , . . . , r k >.

3:

e 4 (r 0) = 0 and b O (r k+1) = S 4:
for all 2 {0, 1, . . . , S d q } do 5:

for all i 2 {0, 1, . . . , k} do

6: if [, + d q] ✓ [e 4 (r i), b O (r i+1)] then 7:
color link `with color and break 8: Find the shortest monocolored st-path P . {a monocolored path is a path whose links share a color} 9: Find a position on P using Algorithm 2

• First, (C, D) is a valid position on `0. C [D = (A 0 c [B 0 c) \ CS(`0) = CS(`0) and C \ D = A 0 c \ B 0 c = ;, so (C, D) is a partition of CS(`0). Let r C be a request of C. If r C 2 A 0 then r C is
below all the requests in D (this conclusion comes from the validity of the position (A 0 , B 0

)). Otherwise, if r C 2 J, we know that all the requests constrained to be below r C are in the same set J and no one of them can be in D = (B 0 \J) \ CS(`0). Position (C, D) is then valid.

• Second, (C, D) can free . This means that if we define as before the floor and ceiling of (C, D) after defragmentation as f ⇤ ((C, D)) = max{e 4 (r) : r 2 C} and c ⇤ ((C, D)) = min{b O (r) : r 2 D}, respectively, then f ⇤ ((C, D))  and c ⇤ ((C, D)) +d q . In fact, we have

D ✓ B 0 , then c ⇤ ((C, D)) c ⇤ ((A 0 , B 0)) + d q and we have f ⇤ ((C, D))  max{e 4 (r) : r 2 J}  f ⇤ ((A, B))  . • Third, (C,
C = (A 0 c [J) \ CS(`0) and (A 0 c [J) \ B c = ;, then C \ B c = ;
. This implies that r s 2 C 0 \ B c . Since r s 2 B c , all the requests constrained to be above it should be also in B c , among which at least one element of C (since r s 2 C 0), which is not possible since C \ B c = ;. Now suppose it is true for |E| = n 1 and let us prove it for |E| = n. Let E = {`1, . . . , `n} be a set of links that can all free absolute position . With the induction assumption, considering the set E 0 = {`1, . . . , `n 1 }, for every `i 2 E 0 there is a relative position (A i , B i

) that can free such that all the relative positions

(A i , B i), i 2 {1, . . . , n 1}, are not conflicting. Let (A i c , B i c) be the complete relative position corresponding to (A i , B i
), for i 2 {1, . . . , n 1}. We set A = S i2{1,...,n 1} A i c and B = S i2{1,...,n 1} B i c . We know there is a relative position (A n , B n

) on `n corresponding to the absolute position , let (A n c , B n c) be the corresponding complete relative position. If A\B n c = ; and B \A n c = ;, then (A n , B n) is not conflicting with any (A i , B i), for i 2 {1, . . . , n 1}. Otherwise, as we did for the case where n = 2, we find a position (C n , D n

) on `n not conflicting with (A, B). With the same arguments, it will be a valid position that can free and that is not conflicting with any of the positions

(A i , B i
), for i 2 {1, . . . , n 1}.

RSA-PP with minimum delay

Theorem 28. The RSA-PP problem with minimum delay can be solved in pseudopolynomial time.

Let q be a request with demand d q , source s and destination t. The delay of freeing position on link `for request q with relative position (A, B) is given by the formula: `(A, B) = max{0, e(A) , +d q b(B)} where e(A) = max{e(x) : x 2 A} and b(B) = min{b(x) : x 2 B}. The delay of insertion in position on a path P is P = max `2P `(A `, B `) where (A `, B `) is the relative position used to free on link `.

Algorithm 4 is the algorithm we use to solve RSA-PP with minimum delay. For each absolute position , the algorithm checks for each link `of the network if position can be freed on `. The link is then weighted with the minimum delay `with which can be freed. Afterwards, a path P from s to t is found. This path should use only links which can free , and minimize the value P = max{ `| `2 P }. Among all the paths P , the one with the minimum delay is chosen for the routing and the corresponding absolute position is chosen for the spectrum assignment. The correctness of the algorithm is drawn from Lemmas 6 and 7. Lemma 6. For an absolute position and a link `, there are at most two relative positions freeing on `with minimum delay and if there are two such positions they are of the form (A, B) and (A [{x}, B \ {x}), where x is a request using `.

Proof. We have the following two cases.

• If the minimum delay to free on `is 0, then there is exactly one corresponding relative position (A, B). Suppose that there are two relative positions (A, B) and (C, D) freeing with delay 0, and suppose without loss of generality that C = A [I and D = B \ I, I 6 = ;. `(A, B) = 0 implies that b(I) + d q and then e(I) > . On the other hand, `(C, D) = 0 implies that e(I)  , which is not possible.

• If the minimum delay to free on `is 6 = 0, then there are at most two relative positions freeing with delay and they are of the form (A, B) and (A [Algorithm 4: RSA-PP with minimum delay Require: Network N = (N, L), a set of provisioned requests R and a new request q with demand d q , source s and destination t. Ensure: Route and allocate spectrum to q with minimum delay.

1: P = ;, b(q) = None and = 1 2: for all `2 L do 3:

`= 1 and sort requests using `by the increasing order of their spectrum occupancy; the sorted list < r 1 , . . . , r j `>. 4: for all 2 J0, S d q K do 5:

for all `2 L do 6:

for all i 2 J0, j l K do 7: if [, + d q] ✓ [e 4 (r i), b O (r i+1)] then 8:
if `is not colored with then 9:

Color link `with color 10:

if `> `({r 1 , . . . , r i }, {r i+1 , . . . , r j `}) then 11:

`= `({r 1 , . . . , r i }, {r i+1 , . . . , r j `})

12:

Find shortest path P from s to t using only links colored with and which minimizes P = max{ `| `2 P } . Now, since E ✓ C and F ✓ B, e(E) < e(C) and + d q b(F) < + d q b(B). This implies that `(E, F) < which is not possible since is the minimum delay. So |I|  1. (A,B) and (A [{x}, B \ {x}) free on `with minimum delay, we will refer to (A, B) as the position minimizing the delay.

By convention, if two positions

Remark 3. Note that if (A, B) is the position minimizing the delay on `, then any relative position on `obtained by shifting up some requests of A has a delay strictly bigger than the minimum delay.

Lemma 7. For an absolute position and two links `and `0, if (A, B) is the relative position that frees on `with minimum delay and (C, D) is the relative position that frees on `0 with minimum delay, then, (A, B) and (C, D) are not conflicting (i.e. their respective complete relative positions are not conflicting).

Proof. Let be an absolute position and `and `0 two links in the network. Let (A, B) and (C, D) be the two positions that free with minimum delay on `and `0, respectively. Suppose that (A, B) and (C, D) are conflicting and suppose without loss of generality that A c \ D c = I. Let J be the set containing the requests in I and all the requests constrained to be below them and K the set containing the requests in I and all the requests constrained to be above them.

As shown in the proof of Lemma 5,

(A 0 , B 0) = (A \ (K \ CS(`)), B [(K \ CS(`)) is a valid relative position on `that frees and (C 0 , D 0) = (C [(J \ CS(`0)), D \ (J \ CS(`0))
) is a valid relative position on `0 that frees . We have then `(A, B) < `(A 0 , B 0

) (according to Remark 3) and `0 (C, D)  `0 (C 0 , D 0). With respect to the sets A, B 0 , D, and C 0 , we have the following two inequalities.

• e(A) < +d q b(B 0); in fact, `(A, B) < `(A 0 , B 0) means that max(e(A) , +d q b(B)) < max(e(A 0

) , +d q b(B 0)), and since e(A) e(A 0) (because A 0 ⇢ A), this implies that max(e(A 0

) , + d q b(B 0)) = + d q b(B 0
) and then that e(A)

< + d q b(B 0). • + d q b(D)  e(C 0) ; in fact, `0 (C, D)  `0 (C 0 , D 0) means that max(e(C) , + d q b(D))  max(e(C 0) , + d q b(D 0
)), and since

+ d q b(D 0) < + d q b(D) (because D 0 ⇢ D), this implies that max(e(C 0) , + d q b(D 0)) = e(C 0) and then that + d q b(D)  e(C 0
) . Now, we know that e(C 0

) = e(J \ CS(`0)), b(D) = b(J \ CS(`0)), b(B 0) = b(K \ CS(`)
) and e(A) = e(K \ CS(`)). The two inequalities above will be then written as:

e(K \ CS(`)) < + d q b(K \ CS(`)) (2)
and

+ d q b(J \ CS(`0))  e(J \ CS(`0)) (3)
Since J contains the requests of I and all the requests constrained to be below them, then e(J) = e(I), which implies that e(J \ CS(`0))  e(I). Moreover, for any request r 2 I, if r / 2 K \ CS(`), then r / 2 CS(`) (r is necessarily in K since I ✓ K). Since I ✓ A c , then r is constrained to be below a request r 0 2 CS(`) which implies that e(r)  e(r 0

). The request r 0 belongs to K \ CS(`) (r 0 2 K by definition of K). So, e(I)  e(K \ CS(`)). This implies that

e(J \ CS(`0))  e(K \ CS(`)) (4)
Since K contains the requests of I and all the requests constrained to be above them, then b(I) = b(K), which implies b(I)  b(K \ CS(`)). Moreover, for any request r 2 I, if r / 2 J \ CS(`0), then r / 2 CS(`0) (r is necessarily in J since I ✓ J). Since I ✓ D c , then r is constrained to be above a request r 0 2 CS(`0) which implies that b(r) b(r 0

). The request r 0 belongs to J \ CS(`0) (r 0 2 J by definition of J). So, b(J \ CS(`0))  b(I). This implies that b(J \ CS(`0))  b(K \ CS(`))

(5) Inequalities (2), (3), (4) and (5) give e(K \ CS(`))

+ d q b(K \ CS(`))
and e(K \ CS(`)) < + d q b(K \ CS(`))

which is not possible.

Simulations

We use settings similar to the ones used in [START_REF] Wang | Provisioning in elastic optical networks with non-disruptive defragmentation[END_REF]. We run our simulations on the following network topologies: USNET (24 nodes and 43 links) in Figure 5.5a, NSFNET (14 nodes and 22 links) in Figure 5.5b, and COST239 (11 nodes and 26 links) in Figure 5.5c. The spectrum is slotted into 380 slots where each slot corresponds to a spectrum interval of width 12.5 GHz. The requests arrive to the network with a Poisson distribution (with arrival rate). Each request spends in a network an exponentially distributed duration (with normalized mean 1/µ = 1). The offered load is determined by ⇢ = /µ = (Erlang). For each load, a total of 10 5 requests is simulated. The source and destination are uniformly selected between the nodes of the network. Three types of request demands are considered 100Gb/s , 400Gb/s and 1Tb/s corresponding to 4, 10 and 24 slots respectively. We capture three measurements with our simulations: the Spectrum Blocking Ratio (SBR) which is equal to the ratio of the spectrum of the blocked requests to the overall spectrum, the Average Delay (AD) which is equal to the ratio of the sum of all delays to the number of accepted requests and the Average Shifted Distance (ASD) which is equal to the ratio of the sum of all performed shiftings to the number of accepted requests.

MinDelay is the exact algorithm which minimizes the delay (Algorithm 4, page 123). ShortPath is the exact algorithm which finds the shortest path (Algorithm 3, page 121). R-opt is the algorithm proposed by Mukherjee and Wang in [START_REF] Wang | Provisioning in elastic optical networks with non-disruptive defragmentation[END_REF]. In this algorithm, we compute the k = 3 shortest paths between each pair of nodes of the network. Afterwards, when a request r arrives, for each path P of the k shortest paths between the source and the destination of r, we solve the spectrum assignment problem on P as explained in Section 5.3.1. Finally, we choose among the k paths, the path and the spectrum assignment with the minimum delay. R-optM is an algorithm similar to R-opt in which we use Algorithm 2 (page 119) to solve the spectrum allocation problem over a path. It has already been demonstrated through simulations in [START_REF] Wang | Provisioning in elastic optical networks with non-disruptive defragmentation[END_REF] that R-opt performs well in terms of minimizing the blocking probability compared to classical algorithms using First-Fit and also compared to proactive algorithms using Push-Pull. In what follows, we compare the performance of R-opt with our algorithms.

In Figure 5.6, the SBR is plotted as function of the load. We observe that the Shortpath algorithm gives the minimum SBR. This due to the fact that we always choose the path with the minimum number of links and hence minimize the utilized resources offering new requests more chances to be accepted. We also see that R-opt and R-optM have almost the same SBR. This is understandable since the two algorithms differ only in the position chosen to minimize the delay. As for MinDelay, we can see that in NSFNET and COST239, it performs poorly, since it can choose very long paths to assign spectrum with minimum delay and hence uses more resources causing the blocking of new requests. This is not the case for the less connected network USNET. This might be due to the fact that the path chosen by MinDelay cannot deviate much from the shortest paths due to the limited number of paths between two nodes in the network. As for the average delay, we observe that R-optM performs only slightly better than R-opt. The improvement is in fact negligible and seems not to be worth the increased running time (compared to the running time of R-opt). MinDelay gives the minimum AD for USNET which is coherent with the blocking probability of the same algorithm. As for NSFNET and COST239, MinDelay gives even worst delay than R-opt. This might be because the fragmentation scenarios caused by MinDelay are more complex than the ones caused by R-opt (this fragmentation might also be the reason behind the high blocking probability). It is important to recall here that, with our algorithms, the local decisions (for a given request) are guaranteed to be optimal in terms of the acceptance of the request and in terms of the delay or the length of the path, however, globally (for all requests), no guarantees are given. Finally for ShortPath, the delay presented is the largest since minimizing the delay is not the primary objective. For the Average Shifted Distance (ASD), we observe that the algorithm that does the maximum number of shiftings is ShortPath and the one performing the minimum number of shiftings is MinDelay. It is important to note here that even if MinDelay does not give the minimum AD in COST239 and NSFNET, it gives the minimum ASD. This highlights the difference between the two measurements AD and ASD.

Overall, the simulations reveal that choosing the shortest path is always a good choice for the blocking ratio but not necessarily for the delay. Also, the R-opt gives a good trade-off between the blocking probability and the delay especially since the improvement in the delay brought by R-optM is negligible.

Conclusion

We have studied in this chapter dynamic RSA with Push-Pull. We have proposed two exact algorithms to solve the problem with two different criteria, the length of the routing path and the delay of the spectrum assignment. We have also built up an existing algorithm of SA with Push-Pull, to solve SA with Push-Pull with minimum delay. Simulations showed that our algorithms are mainly of theoretical interest and that the existing algorithm offers a good trade-off between the delay, the blocking probability and the running time. We have also developed some Integer Linear Programming (ILP) formulations for the problem that we did not include in the chapter since they have not been validated with simulations. Future research directions for the problem of dynamic RSA with Push-Pull might focus on the three following axes.

• Optimizing another criterion instead of the delay. This criterion might be the number of requests shifted in order to empty space for the new arriving request. This number is significant since it translates the number of messages exchanged at the control plane in order to enable the shiftings.

• Combining the proactive and reactive techniques using Push-Pull in order to decrease even more the spectrum blocking probability. We note here that in the proactive techniques requests are shifted periodically in order to consolidate the free spectrum.

• Examining the case where not only one request but a set of requests arrives at the same time and we need to decide if they can all be provisioned.

Chapter 6

Conclusions and perspectives

Fault-tolerance and efficient resource use, these are two of the highly desired properties in optical networks; the backbone of long-distance communication networks.

It is important to provide fault-tolerance services in optical networks in order to protect the huge amounts of data they carry and to avoid costly service disruptions.

It is also crucial to make an efficient use of the optical resources so as to meet the exponential growth of the traffic. We have studied in this thesis problems related to these two properties. Namely, we have considered the problem of finding disjoint paths related to the dedicated path protection scheme (DPP). In this scheme, the purpose is to protect connections against network faults by reserving resources on backup paths to reroute the traffic in case of failures. We have also tackled the problem of Routing and Spectrum Assignment (RSA) in Elastic Optical Networks, the new efficient and scalable generation of optical networks. In RSA, the objective is to set up connections in the network so as to make optimum use of the available resources.

Using mainly graph-theoretic models and tools, we established complexity results for these problems under different settings and we have answered questions such that: How hard is it to find a path or disjoint paths in networks with nodes which are not fully connected internally? How hard is it to find disjoint paths in networks where sets of links around a node can fail simultaneously? How hard is RSA in star networks? Can RSA be approximated in special cases of tree networks? How to utilize a non-disruptive defragmentation technique in EONs so as to minimize the spectrum blocking probability? The results we have obtained suggest that both problems DDP and RSA are hard to solve under the settings we consider. However, it is sometimes possible to identify polynomial cases or approximation algorithms. These cases and algorithms can hopefully help design efficient heuristics to tackle these problems for practical cases. We briefly describe in what follows the established results and recall some of the questions we have presented at the end of the chapters.

In Chapter 2, we have used graphs with forbidden transitions to model networks with asymmetric nodes. We have proved that the problem of finding a path avoiding forbidden transitions (PAFT) is NP-complete even in well-structured graphs such as grids. We have also proved that PAFT can be solved in polynomial time in graphs with bounded treewidth. Afterwards, we have tackled the problem of finding disjoint trails. We have shown that when the trails are required to be vertex-disjoint the problem is NP-complete in both directed and undirected graphs. On the positive side, if the paths are only required to be edge-disjoint, the problem can be solved in polynomial time in directed graphs. There are many interesting questions to inves-tigate in graphs with forbidden transitions. For instance, it would be nice to look deeper into the parameterized complexity of the problem of finding a path avoiding forbidden transitions. In fact, we believe that the PAFT problem is W [1]-hard when parameterized by the treewidth. It would be hence interesting to try to prove this conjecture and also to consider other parameters, instead of the treewidth, such as the number of asymmetric nodes. It would be also nice to study the complexity of the problem of finding disjoint trails avoiding forbidden transitions in planar graphs. Finally, it would be interesting to explore the optimization versions of the problems we have studied with the aim of finding good approximations. Namely, the problem of finding a path using a minimum number of forbidden transitions and the problem of finding trails avoiding forbidden transitions which overlap on a minimum number of links of nodes can be considered.

In Chapter 3, we gave an almost complete characterization of the complexity of the problem of finding SRLG-disjoint paths in networks with SRLGs satisfying the star property. We have shown that finding k SRLG-disjoint paths is NP-complete even for k = 2. On the positive side, we have proved that the problem can be solved in polynomial time in particular subcases which are relevant in practice. Namely, we solve the problem in polynomial time when the maximum degree is at most 4 or when the input network is a directed acyclic graph. Moreover, we have shown that the problem is fixed-parameter tractable when parameterized by the number of SRLGs. Finally, we have considered the problem of finding the maximum number of SRLG-disjoint paths. We have proved that, under the star property, the problem is hard to approximate within O(|V | 1 "

) for any 0 < " < 1, where V is the set of nodes in the network, and we have given polynomial time algorithms for some of the above relevant subcases. The complexity of the problem of finding k SRLG-disjoint paths, under the star property is still open for the cases where the maximum degree of the network is equal to 5, 6 or 7 and for the cases where the number of SRLGs per link or the number of links per SRLG are equal to 2 or 3. Solving these cases will give a complete complexity characterization of the problem with respect to the maximum degree of the network, SRLGs per link and the number of links per SRLG. It would also be interesting to consider the unsolved cases for directed graphs since we only have results for the specific case of DAGs so far.

In Chapter 4, we have studied the problem of spectrum assignment in tree networks. We have proved that SA is NP-complete in undirected stars with 3 links and directed stars with 4 links. We have also shown that there is a 4-approximation algorithm to solve the problem in general stars. Afterwards, we have focused on SA in binary trees with bounded demands and we have designed constant approximation algorithms for several cases using the problem of interval coloring of chordal graphs. As future work, we would like to find constant-factor approximation algorithms for interval coloring in chordal graphs in general and to SA in binary trees in particular, or prove that such algorithms do not exist. Towards this objective, we believe it would be useful to try to adapt the approximation algorithms proposed for the problem of interval coloring in interval graphs.

In Chapter 5, we have studied in this chapter dynamic RSA with Push-Pull. We have proposed two exact algorithms to solve the problem with two different criteria, the length of the routing path and the delay of the spectrum assignment. We have also built up an existing algorithm of SA with Push-Pull, to solve SA with Push-Pull with minimum delay. Simulations showed that our algorithms are mainly of theoretical interest and that the existing algorithm offers a good trade-off between the delay, the blocking probability and the running time. Future research directions for the problem of dynamic RSA with Push-Pull might focus on optimizing another criterion instead of the delay. It would be also interesting to try to combine the proactive and reactive techniques using Push-Pull in order to decrease even more the spectrum blocking probability. Finally, it would be nice to examine the case where not only one request but a set of requests arrives at the same time and we need to decide if they can all be provisioned. As a general perspective, we believe that heuristics are a strong tool to confront the difficulty of the problems of DPP and RSA. It would be then interesting to invest in finding good performant heuristics for the problems. These heuristics can be inspired by the polynomial algorithms used to solve exactly or approximately some special cases.

A.1 Introduction

In the problem of static routing and spectrum assignment, the input is a set of traffic requests and the objective is to allocate to each request, a path in the optical network and an interval of spectrum slots along that path, minimizing the utilized spectrum or maximizing the number of accepted requests for a fixed spectrum interval. The spectrum allocated to a demand has to be contiguous (contiguity constraint), it has to be the same over all links of the routing path (continuity constraint), and on a given link of the network a spectrum slot can be used by at most one request (non-overlapping constraint).

The problem of static RSA is NP-complete even when the routing is fixed and the network has few links as detailed in Chapter 4. Since heuristics and ILPs are usually used to deal with difficult problems, many ILP formulations have been proposed in the literature for RSA [START_REF] Klinkowski | Routing and spectrum assignment in spectrum sliced elastic optical path network[END_REF][START_REF] Christodoulopoulos | Elastic bandwidth allocation in flexible ofdm-based optical networks[END_REF][START_REF] Wang | A study of the routing and spectrum allocation in spectrum-sliced elastic optical path networks[END_REF]. In [START_REF] Velasco | Modeling the routing and spectrum allocation problem for flexgrid optical networks[END_REF], these formulations were surveyed and a new more compact formulation was proposed. In this new formulation, the contiguity and continuity constraints which are usually difficult to model and handle are removed from the ILP and the notion of channel is introduced. A channel is a set of contiguous spectrum slots of a given width. With channels, the RSA consists in assigning to each request a path and a channel of width equal to the demand of the request.

The ILP formulations proposed for RSA are not practical to solve moderate size realistic instances because of the large number of variables. To deal with this issue, decomposition methods can be used. In [RPZ + 13], Ruiz et al. presented an application of a decomposition method called Column Generation (CG) to RSA. In CG, the Linear Programming (LP) problem is solved with a small list of the variables (or columns). This list is iteratively extended with variables which can improve the objective function value. To generate these variables (columns), a pricing problem is formulated and solved. CG has been widely studied in the context of RWA [START_REF] Jaumard | On column generation formulations for the rwa problem[END_REF]. A classical CG-based formulation for RWA consists in generating lightpaths, where a lightpath consists of a path and a wavelength. This formulation is somehow similar to the one proposed in [RPZ + 13] which also consists in lightpath generation, where a lighthpath consists of a path and a channel. Another formulation for RWA which performs quite well consists in generating, instead of lightpaths, configurations, where a configuration is a set of paths which can provision a fraction of the traffic over the same wavelength. In this chapter, we examine the applicability of the configuration-based formulation proposed in [START_REF] Jaumard | On column generation formulations for the rwa problem[END_REF] to the problem of static routing and spectrum assignment.

We first start by stating the problem in Section A.2. In Section A.3, we present the principal of column generation and briefly comment on the CG-based formulations for RWA. Afterwards, in Section A.4, we present the formulation presented in [RPZ + 13] and give our configuration-based formulations. Finally in Section A.5, we discuss some numerical results we obtained and give our conclusions.

A.2 Problem Statement

We model the elastic optical network represented by a graph N = (V, L) with a node set V = {v 1 , v 2 , . . . , v n } and link set L = {`1, `2, . . . , `m}. The bandwidth over each link is slotted into S small intervals of width 1 each called slots. The traffic is defined by a set R of requests where each request r 2 R has a source s r , a destination t r and a demand in spectrum d r . We denote by P r the set of elementary paths from the source of r to its destination and by P the overall collection of elementary paths.

The RSA problem can be formally stated as follows. Given a graph N corresponding to an elastic optical network, and a set of requests, find a path and a spectrum allocation for every request respecting the continuity and contiguity constraints. The objective is to minimize the blocking rate, that is equivalent to maximizing the number of accepted requests. We detail in what follows the constraints which need to be respected.

• Spectrum contiguity: each request is assigned contiguous spectrum i.e., consecutive slots of the spectrum.

• Spectrum continuity: the assigned spectrum slots should be the same for each link of the routing path.

• Non-overlapping: each slot in each link can be allocated to at most one request.

• Link capacity: the number of slots used at a link cannot exceed the available bandwidth.

We recall that the Routing and Wavelength Assignment (RWA) problem can be considered as the special case of RSA where all requests have unit demands. In this case, there is no contiguity constraint.

A.3 About Column Generation

A linear program (LP) is a problem of optimization (minimization or maximization) of a linear function of variables, called the objective function, subject to a set of linear inequality constraints. If the variables are constrained to be integer, the LP is then called Integer Linear Program (ILP). Some LPs are very large and have a huge number of variables. Since it is hard to consider all these variables explicitly, some techniques have been designed to consider only a subset of the variables. Column generation (CG) is one of these techniques. In CG, the goal is to find the optimal solution without enumerating all of the variables (also referred to as columns), but by generating the columns which have the potential to improve the objective function.

In CG, the problem to solve, referred to as the master problem (MP), is split into two problems: the restricted master problem (RMP) and the pricing problem (PP).

• The restricted master problem consists of the master problem over a subset of the variables.

• The pricing problem is a problem created to generate the variables that can improve the objective function if included in the subset over which the RMP is solved. According to whether the MP is a maximization or a minimization problem, the pricing problem consists in general in finding variables with positive (in case of maximization) or negative (in case of minimization) reduced cost. This reduced cost depends on the dual optimal solution of the RMP.

The column generation technique consists in solving iteratively the RMP followed by the PP. When the RMP is solved, its dual optimal solution is used to create the PP. If the PP generates new variables then these variables are added to the subset over which the RMP is solved. If no new variable is generated by the PP, then the optimal solution has been achieved and the column generation algorithm terminates.

When we have ILPs instead of LPs (which is the case in this chapter), a branchand-price approach utilizing column generation is used to solve the ILP to optimality [BJN + 98]. In this chapter, we will not use branch-and-price, instead we will solve the relaxation of the MP using the column generation technique. Afterwards, we will use the final set of columns, which gives the optimal value for the relaxed MP, to solve the integer MP. We hope to have, by this approach usually, good bounds on the optimal solution of the ILP. For more details on column generation, the reader is referred to [START_REF] Nemhauser | Integer and Combinatorial Optimization[END_REF][START_REF] Desrosiers | A primer in column generation[END_REF].

Column generation for RWA

Many column generation formulations have been proposed for the problem of Routing and Wavelength Assignment. In [START_REF] Jaumard | On column generation formulations for the rwa problem[END_REF], a review and comparison of several of these formulations are presented.

One of the straightforward and classical formulations for RWA is the path formulation. In this formulation, the variables correspond to lightpaths, where a lightpath is the combination of a routing path and a wavelength. Each request should be assigned a lightpath from its source to its destination such that the non-overlapping and the link capacity constraints are respected. With such formulation, the pricing problem consists in finding lightpaths with positive reduced cost. For RWA, this formulation suffers from the drawback of exhibiting a wavelength symmetry as explained in [START_REF] Jaumard | On column generation formulations for the rwa problem[END_REF], one can deduce a factorial number (as a function of the number of wavelengths) of alternate solutions for any given solution through wavelength permutations. This symmetry causes any branch-and-bound approach to perform poorly because the problem does not change much after branching.

Other column generation formulations with better performance and qualities have been proposed. One of which is based on the notion of configuration [START_REF] Jaumard | On column generation formulations for the rwa problem[END_REF]. A configuration is associated with a set of paths that can be used for satisfying a fraction of requests with the same wavelength. The formulation based on configurations is such that the number of used configurations cannot exceed the number of available wavelengths on a link and a request r is satisfied if one of the configurations containing a path of P r is used. The pricing problem consists in finding a configuration with positive reduced cost. It can be noted that with this formulation the symmetry (with respect to the permutations of wavelength) is not problematic as it is the case for the path formulation. In fact, the wavelengths are assigned to configurations only after the problem is solved to optimality.

Since the configuration-based formulations work well for RWA, our purpose in this chapter is to find configuration-based formulations for the problem of RSA and check their performance with comparison to the CG-formulation proposed by [RPZ + 13] and which rather resembles the path formulation of RWA.

A.4 Column generation for RSA

We first present in this section the column generation model presented in [RPZ + 13] and then our configuration-based model.

A.4.1 Model of Ruiz et al. [RPZ + 13]

To the best of our knowledge, only one paper has proposed a column generation formulation for the problem of routing and spectrum allocation so far, and that is [RPZ + 13]. The authors of [RPZ + 13] use the notions of channel which is a set of contiguous spectrum slots of given width and lightpath which is the combination of a path and a channel. A lightpath (p, c) can provision request r if p 2 P r and the width of the channel c is equal to d r s. They formulate their master problem in terms of lightpaths which allows them to hide the constraints of continuity and contiguity. Their pricing problem consists in generating a new lightpath that can improve the objective function if included in the solution and it is equivalent to finding a shortest path in the network, with weights that depend on the solution of the dual of the master problem. To generate new columns, the shortest path algorithm is ran for every source-destination pair for each possible channel. Note that this formulation is similar to the path formulation for RWA with the difference that a ligthpath for RWA is a path combined with a wavelength and a lightpath in RSA is a path combined with a channel.

A simplified version of the master problem in [RPZ + 13] in what follows. In fact, in [RPZ + 13], each request has a minimum demand and a maximum demand (these demands translate the bit-rates interval in which the request should operate if satisfied) and the objective of the master problem is to maximize the number of accepted requests (primary objective) and the amount of served bit-rate (secondary objective). In the version we present, we consider requests with fixed demand.

Notations

P (r)

set of all the lightpaths (path,channel) that can accommodate request r. P (r, `, s) set of all the lightpaths (path,channel) using link `and slot s, that can accommodate request r. S overall set of slots S p set of slots used by lightpath p. x p r binary decision variable; equal to 1 if request r uses lightpath p and 0 otherwise.

Master Problem max X r2R X p2P (r)
x p r Furthermore, while in RWA, configurations are defined independently from wavelengths and wavelengths are assigned to the configurations after the problem is solved, in our formulation, each configuration should be defined with a slot in order to ensure the contiguity constraint.

Because of the complexity of our formulations, we were not optimistic about their performance. We have nonetheless run some simulations to have more insight on how they work in practice.

A.5 Numerical results and conclusion

A.5.1 Numerical results

As in [RPZ + 13], we run our simulations with: Gbps. For each request r, the set P r consists of the 5 shortest paths from the source of r to its destination.

• Instances: for each load, we solve the problem for 5 instances and return the average in the tables.

• Slots: we have run the simulations for 10 slots and 40 slots.

• Initial configurations: we proceed similarly to the MaxLeft algortihm presented in [RPZ + 13]: we sort requests in the decreasing order of the demand, then create greedily the maximum independent set of requests (i.e. requests whose shortest paths do not intersect), then create configurations from this set using slots from 1 the size of the biggest request. We repeat this process until all requests have been allocated to some configuration. We refer to the initial set of configurations with C i and to the final set of configuration (at the termination of the CG algorithm) with C f .

We have implemented the formulations in Python using the PuLP modeler and the CPLEX 12.4 solver. The simulation were run on a 2,6 GHz Core i7 machine with 8 GB RAM running an OS X 10.8.3.

We capture in the tables the load in Tbps, the number of requests |R|, the number of initial configurations |C i |, the number of final configurations |C f |, the solution of the LP relaxation obtained with the column generation algorithm, solution of the ILP problem with the final set of configurations as variables, the CPLEX time used in the CG algorithm and to solve the ILP, the gap between the LP and ILP solutions and finally the number of iterations in the CG. Since the link formulation (Tables A.2, A.4) has more constraints and variables than the path formulation (Tables A.1, A.3), it performs slower. However, it gives better integer solutions and hence better gaps than the path formulation. The important thing to note here is that in both cases, the gap between the linear and integer solutions is big. In order to reduce this gap, we have tried an implementation of the path formulation with rounding off: we run a column generation iteration, examine the solution to see the variables y that are close enough to one (0.7), round them off to one (which implies forcing the acceptance of a given request on a given starting slot), and then run another column generation iteration. This is repeated until no new variables y can be rounded off i.e. no variables are close enough to one. However, this has not yielded better gaps.

Afterwards, we have implemented the channel-based compact formulation (the master problem presented in Section A.4.1) proposed in [RPZ + 13] to check the quality of the integer solutions we can have. To obtain the set of channels, for every request, the 5 shortest paths are computed and then for each path all possible channels are created (considering all possible contiguous sets of slots of width equal to the demand of the request). Results of the experiments captured in Tables A.5,A.6 show a very small gap between the linear and integer solutions.

The fact that the gap is small with the compact formulation of [RPZ + 13] indicates that there are indeed configurations which can give good integer solutions. These configurations were not generated with our formulations.

A.5.2 Conclusion

Our approach of using configuration-based column generation formulations for the problem of Routing and Spectrum Assignment, added complexity to the model instead of simplifying it as discussed in Section A.4.3. Furthermore, preliminary numerical results show that while there exist configurations which can give good most k, let l k (G) denote the smallest size (length) of a path-decomposition of G with width at most k. For any fixed k 4, computing l k is NP-complete in the class of general graphs and it is NP-complete, for any fixed k 5, in the class of connected graphs [START_REF] Dereniowski | Minimum length path decompositions[END_REF]. Moreover, computing l k can be solved in polynomial-time in the class of graphs with pathwidth at most k for any k  3. Finally, the "dual" problem is also hard: for any fixed s 2, it is NP-complete in general graphs to compute the minimum width of a tree-decomposition with size s [DKZ13]1 . We have generalized the problem of minimum size path-decomposition presented in [START_REF] Dereniowski | Minimum length path decompositions[END_REF], and introduced the problem of minimum size tree-decomposition in [LMN14,LMNS15]. To the best of our knowledge, no other paper has dealt with the computation of tree-decompositions with minimum size before [LMN14,LMNS15]. However, very recently, following the work in [LMN14] We first prove in Section B.2 that, for any (fixed) k 4, the problem of computing s k is NP-hard in the class of graphs with treewidth at most k. Moreover, the computation of s k for k 5 is NP-hard in the class of connected graphs with treewidth at most k. Furthermore, the computation of s 4 is NP-complete in the class of planar graphs with treewidth 3. In Section B.3, we present a general approach for computing s k for any k 1. In the rest of the chapter, we prove that computing s 2 can be solved in polynomial-time. Finally, we prove that s 3 can be computed in polynomial time in the class of trees and 2-connected outerplanar graphs. applying the Reduce operation if it is possible (i.e., if a bag is contained in another one). In particular, any minimum size tree-decomposition is reduced.

1 X 2 X d X X 1 T 2 T d T 1 X 2 X d X X 1 T 2 T d T ➡ (T, X) (T*, X*) Figure B.4: In a tree-decomposition (T, X), N T (X) = {X 1 , • • • , X d } and for any 1 < i  d, X i \ X ✓ X 1 . For 1  i  d, T i [X i induces the subtree containing X i in T \ {XX i }. We replace each edge X i X 2 E(T) by an edge X i X 1 for any 1 < i  d. This gives a tree-decomposition (T ⇤ , X ⇤) = Leaf (X, X 1 , (T, X)). X is a leaf-bag in (T ⇤ , X ⇤
).

We conclude this section by a general lemma on tree-decompositions. This lemma is known as folklore, we recall it for completness.

Lemma 11. Let (T, X) be a tree-decomposition of a graph G. Let X 2 X and v, w 2 X. If there exists a connected component in G \ X containing a neighbor of v and a neighbor of w, then there is a neighbor bag of X in (T, X) containing v and w.

Proof. First, let us note that, for any connected subgraph H of G, the set of bags of T which contain a vertex of H induces a subtree of T (the proof can be done by induction on |V (H)|).

Let C be a connected component in G \ X containing a neighbor of v and a neighbor of w. Let T 0 C be the subtree of T induced by the bags that contain at least a vertex of C. Because no vertices of C are contained in the bag X, then

T 0 C is a subtree of T \ X. Let T C be the connected component of T \ X that contains T 0 C . Let Y 2 V (T C) be the bag of T C which is a neighbor of X in T . Let x 2 N (v) \ C be a neighbor of v in C.
Then there exists a bag Z 2 X in T C containing both x and v. So both X and Z contain vertex v. Then the bag Y , which is on the path between X and Z in T , also contains v. Similarly, we can prove that w 2 Y . Corollary 8. Let (T, X) be a tree-decomposition of a 2-connected graph G. Let X 2 X and |X|  2. Then there is a neighbor bag

Y of X in (T, X) such that X ✓ Y . Proof. Since G is 2-connected, |V (G)| 3.
So there exist at least another bag except X in X .

of n-vertex graphs in C. Moreover, a minimum size tree-decomposition of width at most k can be constructed in the same time.

Proof. Let G 2 C be a n-vertex-graph. Let us apply Algorithm A k to find a subgraph H of G in g(n) time, which is a k-potential-leaf of G. Let S ⇢ V (H) be the set of vertices having a neighbor in G \ H and G 0 = G S \ (V (H) \ S). Then, by Lemma 12, s k (G) = s k (G 0

) + 1. Finally, |V (G 0)|  n 1 and G 0 has treewidth at most k. We then proceed recursively. So the total time complexity is O(g(n) • n). Moreover, for any minimum size (s k (G 0

)) tree-decomposition (T 0 , X 0) of G 0 of width k, there is a bag X containing S since S induces a clique in G 0 . Add a new bag N = V (H) adjacent to X in (T 0 , X 0

). The obtained tree-decomposition is a minimum size (s k (G) = s k (G 0

) + 1) tree-decomposition of G of width at most k.

B.4 Graphs with treewidth at most 2

In this section, we describe the algorithm A 2 which computes a 2-potential-leaf of a given graph. In particular, all graphs considered in this section have treewidth at most 2, i. Proof. Let (T, X) be any tree-decomposition of G with width at most 2 and size at most s 1. We show how to modify (T, X) to obtain a tree-decomposition with width at most 2 and size at most s and in which {f, p, q} is a leaf bag.

Since fp 2 E(G), there is a bag B in (T, X) containing both f and p. We may assume that B is the single bag containing f (otherwise, we delete f from any other bag). Similarly, since pq 2 E(G), let X be a bag in (T, X) containing both p and q.

First, let us assume that X = B = {f, p, q}. In this case, we may assume that X is the single bag containing p (otherwise, we delete p from any other bag). If X is a leaf bag, then the lemma is proved. Otherwise, let X 1 , • • • , X d be the neighbors of

• Otherwise, let B 0 be the neighbor of B on the path between B and X. In this case, q 2 B 0 and x / 2 B 0 . Moreover, q does not belong to any neighbor of B that contains x and the other way around. For any neighbor Y of B with q 2 Y (and hence x / 2 Y), we replace the edge Y B 2 E(T) with the edge Y B 0 . Finally, we replace the edge BB 0 2 E(T) by the edge BX. See Figure B.6b. In the resulting tree-decomposition of G, B and X are adjacent and we are back to the first case.

B X 1 T 2 T ➡ q,p,y f,q,x f,p,q N 1 T 2 T q,x,y (a) In the tree-decomposition (T, X), let T 1 [B (resp. T 2 [B) induce the subtree containing B (resp. X) in T \ {B}.
We delete B and X, make each of their neighbors adjacent to the new bag N = {q, x, y}, and add a leaf-bag {f, p, q} adjacent to N .

B X ➡ q,p,y f,q,x Y q,... q,...

B' B X

q,p,y f,q,x Y q,... q,...

B'

x,... Lemma 15. Let G be a graph with treewidth at most 2 and q 2 V (G) such that q has one neighbor f with degree 1 and for any vertex w 2 N (q) \ {f }, {w, q} belongs to a 2-connected component of G.

If G has an isolated vertex ↵, then {q, f, ↵} is a 2-potential-leaf; otherwise {q, f } is a 2-potential-leaf (see Figure B.5(c)).
Proof. Let (T, X) be any tree-decomposition of G with width at most 2 and size at most s 1. We show how to modify (T, X) to obtain a tree-decomposition with width at most 2 and size at most s and in which {f, q, ↵} is a leaf bag if G has an isolated vertex ↵; and {f, q} is a leaf bag otherwise.

Since fq 2 E(G), there is a bag B in (T, X) containing both f and q. We assume that B is the single bag containing f (otherwise, delete f from any other bag).

1. If B = {f, q}, then the intersection of B and any of its neighbor in T is empty or {q}. If there is a neighbor of B containing q, then let X be such a neighbor; otherwise let X be any neighbor of B. By definition of the operation Then B = {f, q} is a leaf-bag.

Proof. Let G = (V, E) be a graph of treewidth at most 2. Let b 2 V with exactly 2 neighbors a, c 2 V satisfying the hypotheses of the lemma. If V = {a, b, c}, the result holds trivially, so let us assume that |V | 4. Let (T, X) be a reduced tree-decomposition of width at most 2 of G. From (T, X), we will compute a tree-decomposition (T ⇤ , X ⇤) of G without increasing the width nor the size and such that {a, b, c} is a leaf-bag of (T ⇤ , X ⇤

). Let X be any bag of (T, X) containing {a, b} and Y be any bag containing {b, c}. The bags X, Y exist because ab, bc 2 E. If X = {a, b}, then there exists a connected component in G \ X containing a neighbor of a and a neighbor of b. By Lemma 11, there is a neighbor of X in (T, X) that contains both a and b, contradicting the fact that (T, X) is reduced. So |X| = 3 and, similarly, |Y | = 3.

• Let us first assume that X = Y = {a, b, c}. In particular, it is the case when N (a) = {b, c} since {a, b, c} induces a clique. We may assume that b only belongs to bag X (otherwise, we remove b from any other bag).

If N (a) = {b, c}, then we can also assume that a only belongs to X. Let Z be any neighbor of B containing c if it exists; otherwise let Z be any neighbor of B (Z exists since |V | 4).

Otherwise, there exists a path P between a and c in G \ {b} with at least one internal vertex. In this latter case, there exists a connected component in G \ X containing a neighbor of a and a neighbor of c. So by Lemma 11, there is a neighbor bag Z of X in (T, X) containing both a and c. In both cases, Leaf (X, Z, (T, X)) is the desired tree-decomposition.

• X = {a, b, x} and Y = {b, c, y} with x 6 = c and y 6 = a; and there exists a path P between a and c in G \ {b} with at least one internal vertex. Let Q be the path between X and Y in (T, X). We may assume that b only belongs to the bags in Q, because otherwise b can be removed from any other bag.

-If X is adjacent to Y , then by properties of tree-decomposition, X \ Y separates a and c. Since {b} does not separate a and c, X \ Y = {b, x}, i.e. x = y. In this case, (T ⇤ , X ⇤) is obtained by making X = {a, c, x} and removing Y from (T, X), then making all neighbors of Y adjacent to X and finally, adding a bag {a, b, c} adjacent to X.

-Otherwise, let X 0 be the bag in the path Q containing a, which is closest to Y . Similarly, let Y 0 be the bag in the path Q containing c, which is closest to X. Finally, let Q 0 be the path from X 0 to Y 0 in T and note that b belongs to each bag in Q 0 and a and c do not belong to any internal bag in Q 0 . Also we may assume that b only belongs to the bags in Q 0 , because otherwise b can be removed from any other bag.

If X 0 and Y 0 are adjacent in T , the proof is similar to the one in previous item. Otherwise, let Z be the neighbor of X 0 in Q 0 . By properties of tree-decompositions, X 0 \ Z separates a and c. Since {b} does not separate a and c, let X 0 \ Z = {b, x 0 }. Since Z 6 = {b, x 0 } because (T, X) is reduced, then Z = {b, x 0 , z} for some z 2 V . We replace b with a in all the bags. By doing this (T, X) is changed to a tree-decomposition

(T c , X c
) of the graph G/ab obtained by contracting the edge ab in G. In (T c , X c

), the bag X 0 has become X c = {a, x 0 } and Z is changed to be Before going further, let us introduce some notations. A bridge in a graph G = (V, E) is any subgraph induced by two adjacent vertices u and v of G (i.e., uv 2 E) such that the number of connected components strictly increases when deleting the edge uv, but not the two vertices u, v in G, i.e., G 0 = (V, E \ {uv}) has strictly more connected components than G. A vertex v 2 V is a cut vertex if {v} is a separator in G. A maximal connected subgraph without a cut vertex is called a block. Thus, every block of a graph G = (V, E) is either a 2-connected component of G or a bridge or an isolated vertex. Conversely, every such subgraph is a block. Different blocks of G intersect in at most one vertex, which is a cut vertex of G. Hence, every edge of G lies in a unique block, and G is the union of its blocks.

Z c = {a, x 0 , z}. So X c can be reduced in (T c , X c). Moreover Y is changed to Y c = {a,
Let G = (V, E) be a connected graph and let r 2 V . A spanning tree T of G is a BFS-tree of G if for any v 2 V (G), the distance from r to v in G is the same as the one in T . Let B = {C : C is a block of G}. The block graph of G is the graph B(G) whose vertices are the blocks of G and two block-vertices of B(G) are adjacent if the corresponding blocks intersect, that is, There is a linear (in the number of edges) algorithm for computing all blocks in a given graph [START_REF] Hopcroft | Algorithm 447: efficient algorithms for graph manipulation[END_REF]. Also a BFS-tree can be found in linear (in the number of vertices plus the number of edges) time. So given a graph G = (V, E), we can compute a block tree F of G in O(|V | + |E|) time. Now we are ready to prove the next theorem by using the Lemmas 13-16.

B(G) = (B, {C 1 C 2 : C 1 , C 2 2 B and C 1 \ C 2 6 = ;}). Note that B(G) is connected.
Theorem 31. There is an algorithm that, for any n-vertex-m-edge-graph G with treewidth at most 2, computes a 2-potential-leaf of G in time O(n + m).

Proof.

If n  3, then V (G) is a 2-potential-leaf of G.
Let us assume that n 4. First, let us compute the set of isolated vertices in G, which can be done in O(n) time. If G has only isolated vertices, then any three vertices induce a 2-potential-leaf of G. Otherwise, there is at least one edge in G.

Let G 1 be any connected component of G containing at least one edge. If |V (G 1)| = 2, then from Lemma 16, either G has an isolated vertex ↵ and {↵, u, v} is a 2-potential-leaf or {u, v} is a 2-potential leaf.

Otherwise, |V (G 1)| 3. We compute a block tree F of G 1 rooted in an arbitrary block R. This can be done in time O(n + m). Note that any node in F corresponds to either a 2-connected component of G or a bridge uv 2 E(G). Let C be a leaf block in F , which is furthest from R and |V (C)| is maximum. There are several cases to be considered.

B.5 Minimum-size tree-decompositions of width at most 3

In this section, we present algorithms to compute s 3 in the class of trees and 2connected outerplanar graphs.

B.5.1 Computation of s 3 in trees

In this subsection, given a tree G, we show how to find a 3-potential-leaf in G. We characterize a complete set of 3-potential-leaves of trees in Figure B.11. We first prove that each of the subgraphs in Figure B.11 is a 3-potential-leaf and then that any tree with at least four vertices contains one of them. = B 00 = {f, f 0 , f 00 , p}, then the intersection of B and any of its neighbors in T is contained in {p}. A desired tree-decomposition can be obtained from Lemma 17.

2. If B = B 0 = {f, f 0 , p}, then we delete f 00 from B 00 and add f 00 to B. We will be back then to case 1. The proof is similar for B = B 00 = {f, f 00 , p} or B 0 = B 00 = {f 0 , f 00 , p}.

If B = B 0

= {f, f 0 , p, x} and x 6 = f 00 , then the intersection of B and any of its neighbors in T is contained in {p, x}. If x is a child of p, then x is also a leaf in G and x play the same role as f 00 . We are then in case 1. Therefore, in the following we assume that x is not a child of p.

If x is not the parent of p, then p is not adjacent to x. So there is a connected component in G \ B containing a neighbor of p and a neighbor of x. From Lemma 11, there exists a neighbor bag of B in (T, X) containing p and x.

Let Y be such a neighbor of B in T . By definition of the operation Leaf , the tree-decomposition Leaf (B, Y, (T, X)) has width at most 3, same size as (T, X), and B = {f, f 0 , p, x} is a leaf. We delete x from B and obtain a tree-decomposition having a bag {f, f 0 , p}. We are back then to case 2.

Otherwise, if x is the parent of p, let P be the path in T from B to B 00 . Then p is contained in all bags on P . Let Y be the neighbor of B on P . If B \ Y = {p, x}, then by definition of the operation Leaf , the treedecomposition Leaf (B, Y, (T, X)) has width at most 3, same size as (T, X), and B = {f, f 0 , p, x} is a leaf. By deleting x from B we will be back to case 2. Otherwise, if B \ Y = {p}, then {p} separates x from all vertices in B 00 \ {p}. All vertices in B 00 \ {p} are children of p and so they are leaves in G. We can assume then that any vertex in B 00 \ {p} is contained only in B 00 (otherwise we can delete it in any other bag). We delete f, f 0 from B, add vertices of B 00 \ {f 00 , p} in B, and make B 00 = {f, f 0 , f 00 , p}. We will be back then to case 1.

The cases B = B 00 = {f, f 00 , p, x} and x 6 = f 0 or B 0 = B 00 = {f 0 , f 00 , p, x} and x 6 = f can be proved in a similar way. 4. Otherwise, no two vertices of f, f 0 , f 00 are contained in a same bag.

If |B|  3, then we delete f 0 in B 0 and add f 0 in B. We will be then in case 2 or 3. The proof is similar if

|B 0 |  3 or |B 00 |  3. Otherwise |B| = |B 0 | = |B 00 | = 4.
In the following, we are going to modify (T, X) to obtain a tree-decomposition with width at most 3 and size at most s having a bag X containing at least two of the vertices f, f 0 , f 00 or f 2 X and |X|  3. We are then in the above cases. Note that all children of p play the same role (they are all leaves) in G. So it is enough to have that X contains at least two children of p or that X contains one child of p and |X|  3.

Let T p be the subtree in T induced by all the bags containing p. If |V (T p)|  2, there exists one bag containing at least two children of p since p has at least

• If p has only one child and any child of g has exactly one child, then {f, p, g} is a 3-potential-leaf of G from Lemma 21;

• If p has only one child and there exists a child p 0 of g, which has exactly two children f 1 , f 2 , then {f 1 , f 2 , p 0 , g} is a 3-potential-leaf of G from Lemma 22; • If p has only one child and there exists a child p 0 of g, which has at least three children f

1 , f 2 , f 3 , then {f 1 , f 2 , f 3 , p 0 } is a 3-potential-leaf of G from Lemma 23; • If p has exactly two children f, f 0 , then {f, f 0 , p, g} is a 3-potential-leaf of G from Lemma 22;
• Otherwise, if p has at least three children f, f 0 , f 00 , then {f, f 0 , f 00 , p} is a 3-potential-leaf of G from Lemma 23.

In fact, the algorithm for trees can be extended to forests by considering their connected component, i.e., trees. The only difference is in Lemma 21 the 3-potentialleaf becomes {f, p, g, ↵} if there is an isolated vertex ↵ in the given forest. In the rest of this subsection, let G be a 2-connected outerplanar graph and C be the Hamiltonian cycle in G.) of G [ae with the same width and size. Then (T 0 , X 0) is the desired tree-decomposition.

From Lemmas 29 and Corollary 9, we obtain the following result.

Corollary 12. s

3 can be computed and a minimum size tree-decomposition of width at most 3 can be constructed in polynomial-time in the class of 2-connected outerplanar graphs.

B.6 Conclusion

In this chapter, we gave preliminary results on the complexity of minimizing the size of tree-decompositions with given width. Table B.1 summarizes our results as well as the remaining open questions.

As future research direction, we would like to investigate the problem of computing s 3 in the class of connected graphs with treewidth 2 or 3. We have already solved the problem for trees and 2-connected outerplanar graphs. However, solving the problem for the general case seems to be more tricky. It seems that a global view of the graph needs to be considered to decide wether a subgraph is a 3-potentialleaf. The example in Figure B.14a illustrates this fact. In the example, G is a connected outerplanar graph and {r, a, b, c} is not a 3-potential-leaf of G, but it is a 3-potential-leaf of G \ {yw}. Let G 0 ⌘ G \ {a, b, c}, G 0 is 2-connected outerplanar. Using the algorithm of computing s 3 in 2-connected outerplanar graphs presented in subsection B.5.2, we have s 3 (G 0) = 5. So if {r, a, b, c} is a potential-leaf of G, 3 (G) = 6. However, there exists a tree-decomposition of G of width 3 and size 5, where the bags are {a, r, z, y}, {r, y, x, w}, {b, r, w, v}, {r, v, u, e}, {c, r, d, e}. This implies that {r, a, b, c} is not a 3-potential-leaf of G. Now, let us consider the graph G 00 ⌘ G \ {yw}. We can prove that s 3 (G 00) = 5 and there is a minimum size tree-decomposition containing {r, a, b, c} as a leaf bag. This implies that {r, a, b, c} is 3-potential-leaf of G 00 . Therefore, the existence of the edge yw, not incident to any vertex in {r, a, b, c}, has an influence on whether {r, a, b, c} is a 3-potential-leaf or not. The five bags {a, r, z, y}, {r, y, x, w}, {b, r, w, v}, {r, v, u, e}, {c, r, d, e} connected as a path in this order forms a tree-decomposition of G.

C.2 La tolérance aux pannes dans les réseaux optiques

Les réseaux optiques transportent de gros volumes de données et toute panne peut entraîner la perte d'un trafic important et la perturbation de nombreux services. Il est donc essentiel de fournir des services de tolérance aux pannes dans ces réseaux [START_REF] Ramaswami | Optical Networks: A Practical Perspective[END_REF]. Les pannes dans les réseaux optiques peuvent être totales ou partielles, uniques ou multiples. Elles peuvent être déclenchées par une coupure de fibre ou par une panne de courant, par une erreur humaine ou une catastrophe naturelle. Les fournisseurs de services doivent tenir compte de tous ces types de pannes et concevoir des stratégies qui assurent la survie de leurs réseaux. Ces stratégies sont généralement de deux types : les stratégies de protection et celles de restauration [START_REF] Ramamurthy | Survivable WDM mesh networks. part i-protection[END_REF]. Les stratégies de protection consistent à utiliser des ressources prédéterminées et réservées pour rerouter le trafic interrompu, alors que dans les stratégies de restauration, les ressources utilisées pour rétablir le trafic sont calculées au moment de la panne. Nous nous intéressons dans la première partie de cette thèse aux stratégies de protection et plus précisément à la protection avec chemin dédié (DPP). La DPP consiste à calculer pour chaque demande deux chemins. Un chemin, dit chemin principal, est utilisé pour transmettre les données dans les conditions normales et l'autre, chemin secondaire ou chemin de protection, est réservé pour rerouter le trafic en cas de panne. Ces deux chemins doivent être disjoints de sorte qu'au moins un d'entre eux peut survivre en cas de défaillance dans le réseau. Dans la première partie de cette thèse, nous étudions le problème DPP dans deux contextes différents. D'abord, dans le chapitre 2, nous considérons des scénarios de pannes d'un lien ou d'un noeud dans des réseaux avec noeuds asymétriques; nous examinons le problème de trouver un seul chemin et puis le problème de trouver des chemins disjoints. Ensuite, dans le chapitre 3, nous nous focalisons sur un autre type de pannes, à savoir, les pannes simultanées multiples localisées autour des noeuds (les SRLGs en étoile). C.1 résume les résultats de complexité obtenus pour les problèmes considérés.

Graphes orientés

Graphes non-orientés Trouver un chemin élémentaire

• NP-complet en général [START_REF] Szeider | Finding paths in graphs avoiding forbidden transitions[END_REF] • NP-complet dans les grilles orientées Dans ce chapitre, nous nous focalisons sur les groupes de liens partageant un risque (Shared Risk Link Groups, (SRLGs)). La notion de SRLG a été introduite pour modéliser des problèmes de tolérance aux pannes simultanées d'ensembles de liens d'un réseau. Un SRLG peut correspondre par exemple à un ensemble de liens enterrés dans la même tranchée et qui peuvent tous tomber en panne à cause d'un coup de pelleteuse ou qui peuvent tous être affectés par un tremblement de terre ou par la pluie. Dans un réseau avec des SRLGs, le problème du routage diversifié consiste à trouver un ensemble de chemins SRLG-disjoints entre une paire donnée de noeuds du réseau. Ce problème a été prouvé NP-complet en général [START_REF] Hu | Diverse routing in mesh optical networks[END_REF] Nous avons trouvé des contre-exemples à l'algorithme polynomial proposé dans [START_REF] Luo | Diverse routing in WDM optical networks with shared risk link group (SRLG) failures[END_REF] pour le calcul de paires de chemins SRLG-disjoints dans les réseaux Dans les EONs, des nouvelles technologies telles que l'OFDM (Orthogonal Frequency Division Multiplexing) optique, les techniques de modulation adaptative (tels que le QPSK (quadrature phase-shift keying) et la modulation d'amplitude en quadrature (16-QAM)), et les commutateurs sélectifs en longueur d'onde, sont utilisées pour assurer une utilisation efficace des ressources optiques et pour transformer la grille fixe des réseaux WDM en une grille souple. Dans cette grille souple, le spectre optique est divisé en un ensemble de bandes de largeur spectrale fixe et fine (25 GHz, voire 12.5GHz ou 6.25GHz), appelées slots ou minigrids. Ainsi, les connexions à petits débits ne sont pas sur-provisionnées et les grands débits peuvent être satisfaits sur des slots contigus multiples. En d'autres termes, au lieu de forcer toutes les connexions à utiliser la même largeur de spectre, les EONs permettent aux connexions d'utiliser un certain nombre de slots optiques contigus en fonction de leurs besoins.

La Figure C.4, tiré de [START_REF] Gerstel | Elastic optical networking: a new dawn for the optical layer? Communications Magazine[END_REF], illustre le différence entre la grille fixe de WDM (en haut) et la grille souple des EONs (en bas). Dans la grille fixe, un canal n'est pas pleinement utilisé par un petit débit, et les débits de 400 Gbps et 1 Tbps ne peuvent pas être pris en charge par un seul canal. De l'autre côté, dans la grille souple, les grands débits peuvent être approvisionnés et le spectre est utilisé de manière plus efficace pour les petits débits. D'autres avantages des EONs sont détaillés dans [GJLY12, WLV13, JTK + 09].

La flexibilité offerte par les EONs n'est cependant pas gratuite; elle est accompagnée de plus de complexité dans les problèmes d'allocation de ressources. Dans les réseaux WDM, le poblème clé d'allocation de ressources est dit routage et allocation de longueurs d'ondes (RWA) [START_REF] Ramaswami | Routing and wavelength assignment in all-optical networks[END_REF][START_REF] Zang | A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks[END_REF]. Ce problème consiste à attribuer à chaque connexion un chemin optique, c'est-à-dire un chemin et une longueur d'onde de la source à la destination. Chaque connexion doit utiliser la même longueur d'onde sur tous les liens de son chemin (contrainte de continuité) et deux connexions traversant le même lien ne peuvent pas utiliser la même longueur d'onde (contrainte de non-chevauchement). Dans les EONs, puisqu'il est possible d'attribuer des bandes de spectre de largeurs quelconques, RWA est remplacé par le problème de routage et d'allocation de spectre (RSA). Le problème RSA consiste à attribuer à chaque requête un chemin et un intervalle de spectre. Le spectre attribué à une demande doit être contigu (contrainte de contiguïté), il doit être le même sur tous les liens du chemin de routage (contrainte de continuité) et les intervalles attribués à deux requêtes traversant le même lien doivent être disjoints (contrainte de nonchevauchement). RWA peut être considéré comme le cas particulier de RSA où toutes les requêtes ont la même demande.

On peut distinguer deux versions du problème RSA par rapport au type du trafic: RSA statique et RSA dynamique.

C.4 La décomposition arborescente

Un autre problème traité durant cette thèse, présenté en annexe, est les décompositions arborescentes de taille minimum. Une décomposition arborescente d'un graphe est une manière de le représenter sous forme d'un arbre (chaque sommet de l'arbre est appelé 'sac'), en préservant des propriétés de connexité. Les décompositions arborescentes ont été beaucoup étudiées pour leurs applications algorithmiques qui utilisent, en particulier, la programmation dynamique. En annexe B, nous étudions les décompositions de taille minimum, c'est-à-dire avec un nombre minimum de sacs. Etant donné un entier k 4 fixé, nous prouvons que le problème de calculer une décomposition arborescente de largeur au plus k et de taille minimum est NP-complet dans les graphes de largeur arborescente au plus 4. Nous décrivons ensuite des algorithmes qui calculent des décompositions de taille minimum dans certaines classes de graphes de largeur arborescente au plus 3 (en particulier dans les arbres et les graphes planaires extérieurs). La Table C.4 résume nos résultats sur le problème de décomposition arborescente de taille minimum (MSTD). Dans la table, s k dénote le problème de calculer une décomposition arborescente de largeur au plus k et de taille minimum.

C.5 Conclusion

La tolérance aux pannes et l'utilisation efficace des ressources sont des propriétés bien souhaitées dans les réseaux optiques. Il est important de fournir des services de tolérance aux pannes dans les réseaux optiques en vue de protéger les quantités énormes de données qu'ils transportent. Il est également essentiel d'utiliser avec efficacité le spectre optique pour pouvoir répondre à la croissance exponentielle du trafic. Nous avons étudié dans cette thèse des problèmes liés à ces deux propriétés. Nous avons d'abord examiné le problème de trouver des chemins disjoints. Ce problème est essentiel dans la stratégie de protection par chemin dédié (DPP). Dans En utilisant des modèles et des outils de la théorie des graphes, nous avons établi des résultats de complexité de ces problèmes sous différentes hypothèses. Nous avons répondu à des questions telles que: quelle est la difficulté de trouver un ou plusieurs chemins disjoints dans les réseaux avec des noeuds avec restrictions sur leur connectivité interne ? Quelle est la difficulté de trouver des chemins disjoints dans les réseaux où des ensembles de liens partageant un noeud peuvent tomber en panne simultanément ? Quelle est la difficulté du problème RSA dans les réseaux sous forme d'étoiles ? Le problème RSA peut-il être approché dans des cas particuliers de réseaux d'arbres ? Comment utiliser une technique de défragmentation nonperturbatrice dans les EONs de façon à minimiser la probabilité de blocage du spectre ? Les résultats que nous avons obtenus suggèrent que les deux problèmes DDP et RSA sont difficiles à résoudre sous les conditions que nous avons considérées. Cependant, il est parfois possible de trouver des cas polynomiaux et des algorithmes d'approximation. Ces cas et des algorithmes pourraient peut être aider à concevoir des heuristiques efficaces. Nous décrivons brièvement dans ce qui suit les résultats établis et nous présentons quelques questions ouvertes.

Dans le chapitre 2, nous avons utilisé les graphes avec transitions interdites pour modéliser les réseaux avec noeuds asymétriques. Nous avons prouvé que le problème de trouver un chemin évitant les transitions interdites (PAFT) est NP-complet, même dans des graphes bien structurés comme les grilles. Nous avons également prouvé que PAFT peut être résolu en temps polynomial lorsque la largeur arborescente est bornée. Nous avons aussi abordé le problème de trouver des chemins disjoints. Nous avons montré que lorsque les chemins doivent être noeud-disjoints le problème est NP-complet à la fois dans les graphes orientés et non-orientés. Sur le côté positif, si les chemins sont lien-disjoints, le problème peut être résolu en temps polynomial dans les graphes orientés. Il serait intéressant d'étudier plus pronfondément la complexité paramétrée du problème PAFT. En effet, nous pensons que PAFT est W [1]-difficile quand il est paramétré par la largeur arborescente. Il serait aussi intéressant d'étudier la complexité du problème de trouver des chemins noeuddisjoints évitant les transitions interdites dans les graphes planaires. Enfin, il serait aussi possible d'explorer les versions d'optimisation des problèmes que nous avons étudiés dans le but de trouver de bonnes approximations. A savoir, le problème de trouver un chemin utilisant un nombre minimum de transitions interdites et le problème de trouver des chemins évitant les transitions interdites et partageant un nombre minimum de liens ou de noeuds.

Dans le chapitre 3, nous avons donné une caractérisation presque complète de la complexité du problème de trouver des chemins SRLG-disjoints dans les réseaux avec SRLGs satisfaisant la propriété de l'étoile. Nous avons montré qu'il est NP-complet de trouver k chemins SRLG-disjoints même quand k = 2. Sur le côté positif, nous avons prouvé que le problème peut être résolu en temps polynomial dans des cas particuliers. À savoir, nous avons résolu le problème en temps polynomial lorsque le degré maximum est au plus 4 ou lorsque le réseau est un graphe orienté acyclique. En outre, nous avons montré que le problème est FPT quand il est paramétré par le nombre de couleurs dans C. Enfin, nous avons considéré le problème de trouver le nombre maximum de chemins SRLG-disjoints. Nous avons prouvé que, le problème est difficile à approcher à un facteur de O(|V | 1 "

) pour tout 0 < " < 1, où V est l'ensemble des noeuds du réseau, et nous avons donné des algorithmes polynomiaux pour certains cas. La complexité du problème de trouver k chemins SRLG-disjoints, sous la propriété d'étoile, est toujours ouverte pour les cas où le degré maximum du réseau est égal à 5, 6 ou 7 et pour les cas où le nombre de SRLGs par lien (ou le nombre de liens par SRLG) est égal à 2 ou 3. La résolution de ces cas donnera une caractérisation complète de la complexité du problème par rapport au degré maximum du réseau, au nombre de SRLGs par lien et au nombre de liens par SRLG.

Dans le chapitre 4, nous avons étudié le problème d'allocation de spectre (SA) dans les réseaux sous forme d'arbre. Nous avons prouvé que SA est NP-complet dans les étoiles non orientées à 3 liens et les étoiles orientées à 4 liens. Nous avons également montré qu'il existe un algorithme d'approximation d'un facteur 4 pour résoudre le problème dans les étoiles orientées et non-orientées. Ensuite, nous nous sommes focalisés sur le problème SA dans les arbres binaires avec des profils de demandes spécifiques. Nous avons conçu des algorithmes d'approximation de facteurs constants en utilisant le problème de coloration par intervalles des graphes chordaux. Comme piste de recherche pour ce problème, il serait intéressant de trouver un algorithme d'approximation de facteur constant pour le problème de coloration par intervalles des graphes chordaux en général ou de prouver qu'un tel algorithme n'existe pas. Pour ce faire, il serait utile d'essayer d'utiliser les algorithmes d'approximation conçus pour le problème de la coloration par intervalles des graphes d'intervalles.

 Context and motivation . 1 1.2 Contributions and organization of the thesis 3 1.3 List of publications . 7

CladdingCoreFigure 1 . 1 :

 11 Figure 1.1: Light guided in an optical fiber [Wik]

Figure 2

 2 Figure 2.1: Diagram of a 4-degree ROADM [CHW + 13]: a. symmetric case; b. asymmetric case

Figure 2 . 3 :

 23 Figure 2.3: An undirected graph G with a set of forbidden transitions F = {{v 7 , v 4 }, {v 4 , t}}

Figure 2

 2 Figure 2.4: Gadget G ij and the corresponding set of allowed transitions A ij

Figure 2 . 6 :

 26 Figure 2.6: Combining C j = v1 _ v 2 _ v 4 and C j+1 = v 2 _ v3 _ v4 (Case j odd). The bold path corresponds to an assignment of v 1 , v 2 and v 4 to T rue, and of v 3 to F alse and it satisfies both clauses.

 vertices v ↵ and v are linked with a path P ↵ of length 7. Each two of the four paths P ↵ , {↵, } 2 A(v) intersect in two different vertices as illustrated in Figure2.8b. The allowed transitions in g v are the transitions of the paths P ↵ , {↵, } 2 A(v). Now to replace v with g v A vertex v of degree 8 and allowed transitions A(v) = {{e, e 0 }, {f, f 0 }, {g, g 0 }, {h, h 0 }} (edges are ordered as in the planar embedding E of G)

 A vertex v of degree 8 and allowed transitions A(v) = {{e, e 0 }, {e, f 0 }, {f, f 0 }, {f, e 0 }, {g, g 0 }, {g, h 0 }, {h, h 0 }, {h, g 0 }} (edges are ordered as in the planar embedding E of G)

Figure

 Figure 2.8: Type 2

 A vertex v of degree 8 and allowed transitions A(v) = {{e, e 0 }, {e, g 0 }, {f, f 0 }, {f, h 0 }, {g, g 0 }, {g, e 0 }, {h, h 0 }, {h, f 0 }} (edges are ordered as in the planar embedding E of G)

Figure 2 .

 2 Figure 2.10 illustrates an example of a planar grid embedding of a planar graph G.In bold are the paths corresponding to the edges of G in the planar grid embedding.

Figure 2

 2 Figure 2.11: Types of nodes in a nice tree-decompositions

Lemma 3 .

 3 [START_REF] Kloks | Computations and Approximations[END_REF] When given a tree-decomposition of width k of G, in polynomial time we can construct a nice tree-decomposition (T, X) of G of width at most k, with |V (T)| 2 O(kn), where n = |V (G)|.

Figure 2 . 12 :

 212 Figure 2.12: Examples of the intersection of P with G u

 is a realization of u if and only if v has a realization among the collections R c v = (X, Y \{a}[{b}, Z \{b}, M 0 , S 0) where M 0 = (M \ (a, c)) [(b, c) and S 0 = (S \ {a, b}) [{b, c} where c is a neighbor of b in V v and {{a, b}, {b, c}} / 2 F (there are at most such possible realizations). In this case S(R u) = min c (S(R c v)) [{{a, b}} (see Figure 2.15c).

 and S 0 = S [{{b, b 0 }, {c, c 0 }} where b 0 and c 0 are neighbors of b and c in V v , respectively, and {{a, b}, {b, b 0 }}, {{a, c}, {c, c 0 }} / 2 F. There are at most 2 possible choices for a pair (b 0 , c 0), and at most k possible choices for the pair(h, h 0). In this case S(R u) = min h,h 0 ,c 0 ,b 0 (S(R h,h 0 ,c 0 ,b 0 v)) [{{a,b}, {a, c}} (see Figure 2.15e). -If b 2 Z and c 2 Y , Let d be the vertex matched with c in M . R u = (X, Y, Z, M, S) is a realization of u if and only if v has a realization among the collections R b 0 v = (X [{c}, Y \ {c} [{b}, Z \ {a, b}, M 0 , S 0), where M 0 = M \ {c, d} [{b, d} and S 0 = S \ {{a, c}} [{{b, b 0 }} where b 0 is a neighbor of b in V v such that {{a, b}, {b, b 0 }} / 2 F. There are at most possible choices for b 0 . In this case S(R u) = min b 0 (S(R b 0 v)) [{{a, b}, {a, c}} (see Figure 2.15f).

 A DAG D with a set of forbidden transitions

Figure 2 .

 2 Figure 2.17c indicates the directed graph H obtained from the layered DAG LD of Figure 2.17b. For example, we have three vertices corresponding to pairs of arcs of layer 0 of LD: (e 0 , f 0), (e 0 , g 0) and (f 0 , g 0) and 5 vertices corresponding to pairs of arcs of layer 1: (e 1 , g 1), (e 1 , h 1), (e 1 , l 1), (f 1 , l 1), and (g 1 , l 1). Vertex (e 0 , f 0) is not connected to vertex (e 1 , g 1) since the transition (e 0 , e 1) is forbidden. The existence of two vertex-disjoint F 0 -valid paths in LD named P = (s, e 0 , u 0 , e 1 , . . . , e l(t) 2 , u l(t) 1 , e l(t) 1 , t) and Q = (s, f 0 , v 0 , f 1 , . . . , f l(t) 2 , v l(t) 1 , f l(t) 1 , t) implies the existence of a directed path from s to t namely P Q = (s, {e 0 , f 0 }, {e 1 , f 1 }, . . . , {e l(t) 1 , f l(t) 1 }, t) in H. Conversely, let W be a path in H written in the form W =

 a formula with 4 Variables.

Figure 2 .

 2 Figure 2.18: The clause-gadget (reminder)

Figure 2

 2 Figure 2.19: A 2-path-gadget for an instance with 3 variables {v 1 , v 2 , v 3 }

Figure 2

 2 Figure 2.20: The graph G for an instance of 3-SAT with 4 variables v 1 , v 2 , v 3 and v 4 and 3 clauses C1 = v1 _ v 2 _ v 4 , C 2 = v 2 _ v3 _ v4 and C 3 = v1 _ v3 _ v 4 .The two bold paths in black and red-blue from s 1 to t 3 are 2 vertex-disjoint paths corresponding to the assignment of v 1 , v 2 and v 4 to True and v 3 to False. This assignment satisfies all clauses.

 . 55 3.1.1 Related work . 57 3.1.2 Our results . 57 3.2 Notations and problem statement 58 3.3 Counterexamples to the algorithm of Luo and Wang 59 3.4 NP-completeness . 60 3.5 Polynomial cases . 65 3.5.1 Bounded number of colors . 65 3.5.2 Bounded degree . 66 3.5.3 Directed acyclic graphs . 68 3.6 Maximum number of color-disjoint paths 72 3.7 Conclusion . 75

Figure 3

 3 Figure 3.1: Example of localized risks: link l 4 shares risk r 2 , corresponding to Card 2 failure, with links l 5 and l 6 , and shares risk r 4 , corresponding to a conduit cut, with links l 2 and l 3 .

 assigns a subset of colors to each edge of E.We denote by E(c) the set of edges having color c 2 C, by C (e) the set of colors associated with edge e 2 E, by cpe = max e2E |C (e)| the maximum number of colors per edge, and by epc = max c2C |E(c)| the maximum number of edges having the same color. We assume that C (e) 6 = ; for each e 2 E. Given a vertex v, (v) denotes the set of neighbors of v and d(v) = | (v)| its degree. A color is incident to v if it is assigned to an edge incident to v. The colored degree of v, denoted by d C (v), is the number of colors incident to v. The maximum degree and the maximum colored degree of a graph are denoted by and C , respectively.

Figure 3

 3 Figure 3.3: Example 2 Figure 3.3, illustrating the second problem, shows a counterexample to the algorithm in [LW05] that furthermore can give to the reader a flavor of the difficulty of the problem. In this figure, we have 2 specific colors c and c 0 6 = c forming a star in v. All other unmarked edges have distinct colors different from c and c 0 . As vertex v is a cut-vertex any s-t path should contain v. Moreover {a, v} cannot be used as it shares a color both with {v, b} and {v, b 0 }. Therefore, to ensure the color-disjointness, one path should use the subpath u, v, b and the other one should use the subpath (u 0 , v, b 0). We have two color-disjoint paths P 1 = (s, a, z, w, u, v, b, t) and P 2 = (s, a 0 , w, u 0 , v, b 0 , t). However, the algorithm of[START_REF] Luo | Diverse routing in WDM optical networks with shared risk link group (SRLG) failures[END_REF] uses the shortest path P a = (s, a, v, b, t) and then performs a backwards phase which never finds w again. Then the algorithm terminates, missing the fact that there exist two colordisjoint paths. Note that the disjointness is not ensured, if there exists in w some common color for example on the edges {w, u} and {w, u 0 }, showing that a local consideration around the shortest path is not sufficient. In fact, in the next section we will prove that the problem is NP-complete.

 Figure 3.4: Color assignment for vertices with degree 3.

Figure 3 . 5 :

 35 Figure 3.5: Color assignment for vertices with degree 4.

 e. having time complexity O(f (k) • poly(|V | + |E|)), for any function f), unless F P T = W [1]. Theorem 11. There exists an algorithm that solves k-DCP in a DAG with the star property in time O(cpe 2 |V ||E| 2k

e 3 g 3 e 3 f 3 f

 3 Figure 3.6: Transformations for the DAG.

Figure 3 .

 3 Figure 3.6c indicates the graph H obtained from the layered DAG LD of Figure 3.6b.For example, we have three vertices corresponding to pairs of arcs of layer 2 of LD: e 2 f 2 , e 2 g 2 and f 2 g 2 but only two vertices corresponding to pairs of arcs of layer 3: e 3 f 3 and e 3 g 3 . Vertex e 2 g 2 is connected to vertex e 3 g 3 as condition 3 is fulfilled but it is not connected to f 3 g 3 as none of the conditions 3 and 4 is fulfilled. The existence of two disjoint colored directed paths in LD named P = (s, e 0 , u 0 , e 1 , . . . , e l(t) 2 , u l(t) 1 , e l(t) 1 , t) and Q= (s, f 0 , v 0 , f 1 , . . . , f l(t) 2 , v l(t) 1 , f l(t) 1 , t)implies the existence of a directed path from s to t namely P Q = (s, {e 0 , f 0 }, {e 1 , f 1 }, . . . , {e l(t) 1 , f l(t) 1 }, t) in H. Conversely, let W be a path in H written in the form W =

Theorem 12 .

 12 Unless P = NP , MDCP cannot be approximated within O(|V | 1 "

Figure 3 . 7 :

 37 Figure 3.7: Examples where S = {S 1 = {a, b, c}, S 2 = {d, e, f }, S 3 = {a, b, d}} (left) and S = {S 1 = {a, b, d}, S 2 = {b, c, d}, S 3 = {b, e, f }} (right).

↵

 , . . . , S |S 0 OP T | }; the associated set P of paths P j = (s, v S j , t), for each j = 1, 2, . . . , |S 0 OP T | is a feasible solution for I MDCP with |P| = |S 0 OP T |, and so, OP T (I MSP)  OP T (I MDCP). (3.1) Now suppose that there exists an ↵-approximation algorithm A for MDCP, the output of this algorithm for the instance I MDCP is a set P of disjoint paths P j = (s, v S j , t), j = 1, 2, . . . , |P|, whose cardinality satisfies |P| = val A (I MDCP) 1 OP T (I MDCP). Consider the algorithm A 0 applied to I MSP which gives as output the family S 0 = {S 1 , S 2 , . . . , S |P| } associated with P. The family S 0 is a feasible solution for I MSP , whose value is val A 0 (I MSP) = |P| 1 ↵ OP T (I MDCP) and by inequality (3.1) val A 0 (I MSP) 1 ↵ OP T (I MSP) and so A 0 is an ↵-approximation algorithm for MSP. Finally the first statement of the theorem follows from the O(|S| 1 "

Corollary 1 .

 1 The MDCP problem is FPT when parameterized by the number of colors |C|. Moreover, there exists an algorithm for solving the MDCP problem in timeO(f (|C|)(|V | + |E|) log), where f is a function depending solely on |C|, and is the maximum degree of the graph.

 2, give an almost complete characterization of the problem of finding SRLG-disjoint paths in networks with SRLGs satisfying the star property. For the case epc = 1, the problem of finding k color-disjoint paths is equivalent to finding k edge-disjoint paths, thus a flow algorithm such as the Ford-Fulkerson's[START_REF] Ford | A simple algorithm for finding maximal network flows and an application to the hitchcock problem[END_REF] can be used to solve k-DCP in time O(|V | + |E|) and MDCP in time O(|E|). As for the case cpe = 1, every edge has one color and since the star property is satisfied, all colors have span 1 (i.e. an edge has only one color and the set of edges having the same color forms a connected component). The problem of finding color disjoint-paths in graphs with span 1 has been proven polynomial in [CDP + 07]. To conclude, we point out some open questions for further research:

Figure 4 . 1 :

 41 Figure 4.1: Example of the construction of a conflict graph

Figure 4 . 2 :

 42 Figure 4.2: Reduction from 2-PARTITION to SA in a directed star

 Consider the case W = 2, and let d 1 = 2 and d 2 = 2. Applying the formula we get n fact that c(2, {1, 2}) = c(2, {2}) = 2, the number of colors used by the algorithm to color a chordal graph with weight bounded by 2 is at most 2n 1

Figure 4 . 4 :

 44 Figure 4.4: An example showing that c(4, {1, 2, 3}) 6 = 5

 Now we can compute the number of colors for d 1 = 7 and d 2 = d 3 = d 4 = d 5 = 5. The number of colors used is n 1 c(7, {1, 2, 3, 4, 5}) + n 2 c(5, {2, 3, 4, 5}) + n 3 c(5, {3, 4, 5}) + n 4 c(5, {4, 5}) + n 5 c(5, {5}) = 12n 1 + 5n 2 + 5n 3 + 5n 4 + 5n 5 .

Figure 5 . 1 :

 51 Figure 5.1: Fragmentation in EONs

 Figure 5.2: Shifting requests with Push-Pull

 Figure 5.3: Dependency DAG

Figure 5 . 4 :

 54 Figure 5.4: Spectrum assignment to a request with Push-Pull

 D) is not conflicting with (A, B). (A c , B c) and (C c , D c) are the complete relative positions corresponding to (A, B) and (C, D), respectively. We prove that A c \ D c = ; and B c \ C c = ;. In fact, D ✓ B 0 c \J, which implies that A c \ D c = ;. Suppose that B c \ C c 6 = ; and let r s be an element of this intersection. Let C 0 be the set of requests constrained to be below C. Since

13 :

 13 if P < then P = P , = P and b(q) = {x}, B \ {x}). Let (A, B) and (C, D) be two relative positions corresponding to with delay . Suppose without loss of generality that C = A [I and D = B \ I, I 6 = ;. Suppose that |I| 2 and let J be a proper subset of I and (E, F) = (A [J, B \ J). First, recall that = max{e(A) , + d q b(B)} = max{e(C) , + d q b(D)}. Since A ✓ C and D ✓ B we have e(A) < e(C) and + d q b(D) < + d q b(B). Thus, = + d q b(B) = e(C)

 Figure 5.5: Network topologies

Figure 5

 5 Figure 5.6: Spectrum Blocking Ratio (SBR)

Figure 5

 5 Figure 5.7: Average Delay (AD)

Figure 5

 5 Figure 5.8: Average Shifted Distance (ASD)

•

 Network: the Spanish Telefonica network which has 21 nodes and 35 links as illustrated in Figure A.1.

Figure A. 1 :

 1 Figure A.1: The Spanish network

 and [DKZ13], Bodlaender et al. [BN15] have proposed exact subexponential time algorithms to solve the problems of minimum size tree-decomposition and minimum size path-decomposition for a fixed width k in 2 O(n/ log(n)) time and showed that the two problems cannot be solved in 2 o(n/ log(n)) time, assuming the Exponential Time Hypothesis. Contribution Let k be any positive integer and G be any graph. If tw(G) > k, let us set s k (G) = 1. Otherwise, let s k (G) denote the minimum size of a treedecomposition of G with width at most k. See a simple example in Figure B.1.

Figure B. 1 :

 1 Figure B.1: Given a tree G with five vertices, for any k 1, a minimum size tree-decomposition of width at most k is illustrated: s 1 (G) = 4, s 2 (G) = s 3 (G) = 2, and s k>3 (G) = 1.

 e. partial 2-trees. Please see a complete set of 2-potential-leaves of graphs of treewidth at most 2 in Figure B.5. We are going to prove that any of the subgraphs in Figure B.5 is a potential-leaf and then that each non-empty graph of treewidth at most 2 contains one of them as a 2-potential-leaf.

Figure B. 5 :

 5 Figure B.5: Complete set of 2-potential-leaves of graphs of treewidth at most 2.

 For the sake of simplicity, we show only the induced path from B to X in T and two neighbors Y, Z 6 = B 0 of B. Y contains q and Z contains x. Then we just make Y adjacent to B 0 instead of B and make B adjacent to X instead of B 0 .

Figure B. 6 :

 6 Figure B.6: Examples illustrating the proof of Lemma 14.

Figure B. 7 :

 7 Figure B.7: To the sake of simplicity, we show only the subtree induced by B, Y and three neighbors Z, W, U of B. Y contains q; Z, U both contain x and W does not contain x. First we make the bag not containing x, e.g. W adjacent to Y instead of B; and make the bag containing x except Z, e.g. U adjacent to Z instead of B. Second, we make Z adjacent to Y instead of B and delete x in B.Then B = {f, q} is a leaf-bag.

➡Figure B. 8 :

 8 Figure B.8: For the sake of simplicity, we show only the path from X to Y . After the two transformations, {a, b, c} is a leaf-bag.

Figure B. 9 :

 9 Figure B.9: Graph G is connected. For i = 1, . . . , 11, each C i is a block of G. B(G) is the block graph of G. The BFS tree of B(G) with bold edges is a block tree of G with root C 1 .

Figure

 Figure B.10: This graph G is an induced subgraph of the graph in Figure B.9. Its block tree F , with root C 1 , has two blocks less than the one in Figure B.9 (the blocks C 6 and C 10). Each one of the leaf blocks, C 7 , C 8 , C 9 , C 11 , in F contains two vertices of G.

 Figure B.11: Complete set of 3-potential-leaves of trees.

BFigure B. 12 :

 12 Figure B.12: Complete set of 3-potential-leaves of 2-connected outerplanar graphs.

Figure B. 13 :

 13 Figure B.13: F is the set of all inner faces with only one chord of G, such as f 1 , f 2 , f1 , f2 . The faces f 0 , f 1 , f 2 satisfy the properties in Claim 19. But f0 , f1 , f2 does not satisfy the properties since f0 contains two edges ey, xy which are not in any face of F.

 at most tw 4 Table B.1: Complexity of MSTD (P=Polynomial) then s

 {r, a, b, c} is not a 3-potential-leaf of G, but it is a 3-potential-leaf of G \ {yw}.

 In any minimum size tree-decomposition of width 5 (and size 2) of this tree, there exists a bag inducing a non-connected subgraph. For example, in a tree-decomposition of width 5 and size 2, one bag is {r, a 1 , a 2 , a 3 , b 1 , b 2 } and the other one is {r, b 2 , b 3 , c 1 , c 2 , c 3 }.

Figure B. 14

 14 Figure B.14

C.2. 1

 1 Chapitre 2 : Les chemins dans les réseaux optiques avec noeuds asymétriques Dans ce chapitre, nous étudions le problème de trouver des chemins et des chemins disjoints dans les réseaux optiques avec noeuds asymétriques [BLGM09]. Les noeuds asymétriques sont des noeuds qui ne sont pas entièrement connectés à l'intérieur; cela veut dire que le signal entrant d'un certain port ne peut pas arriver à tous les autres ports. Dans [BLGM09, CHW + 13, HTTN11], il est expliqué qu'un noeud peut être configuré de façon asymétrique pour plusieurs raisons comme le nombre limité de ports dans les commutateurs optiques et le coût réduit des noeuds asymétriques par rapport aux noeuds symétriques. La Figure C.2 de [CHW + 13] présente un diagramme d'un multiplexeur optique d'insertion-extraction reconfigurable (ROADM) de degré 4. Dans la Figure C.2-a, le ROADM est symétrique et d'un port d'entrée, on peut atteindre n'importe quel port de sortie. Dans la Figure C.2-b, une architecture asymétrique du ROADM est présentée. Dans cette architecture, des équipements moins chers sont utilisés au niveau des ports. Le signal optique provenant d'une direction peut atteindre seulement deux parmi les trois autres directions.

Figure C. 2 :

 2 Figure C.2: Diagramme d'un ROADM [CHW + 13]: a. cas symétrique; b. cas asymétrique

 et certains cas polynomiaux ont été caractérisés [CDP + 07]. Nous avons étudié le problème du routage diversifié dans les réseaux satisfaisant la propriété d'étoile [LW05]. Dans un réseau satisfaisant la propriété d'étoile, un lien peut être affecté par plusieurs SRLGs, mais tous les liens affectés par un même SRLG sont incidents à un même sommet. Un exemple de tels SRLGs est présenté dans la Figure C.3. Dans l'exemple, des liens incidents à la même carte d'un routeur forment un SRLG puisqu'ils peuvent tous être affectés par une panne de la carte.

 longueurs d'onde. Ceci mène à l'utilisation de plus de spectre que si la connexion a été satisfaite par un seul canal contigu de spectre.

Figure C. 4 :

 4 Figure C.4: Fixed-grid vs Flexgrid [GJLY12]

 Table C.4: Complexité of MSTD (P=Polynomial) cette stratégie, pour protéger le trafic entre deux noeuds, deux chemins disjoints sont réservés : un chemin pour assurer la connexion et un chemin pour rerouter le trafic en cas de panne du premier. Nous avons également abordé le problème de routage et d'allocation de spectre (RSA) dans les réseaux optiques élastiques; la nouvelle génération des réseaux optiques. Dans RSA, l'objectif est d'établir des connexions dans le réseau de manière à assurer une utilisation optimale des ressources optiques.

Table 2 .

 2 1: Complexity of WAFT, TAFT, and PAFT.

 a formula with 4 Variables.

								t j
	s 1j	t 1j		t 2j		t 3j		t 4j
	s j							
	v 1	is assigned True	v 2	is assigned True	v 3	is assigned False	v 4	is assigned True

(b) The bold path corresponds to an assignment of v 1 , v 2 and v 4 to T rue, and of v 3 to F alse.

vertex v allowed transitions around v s 1j {{s j , s 1j }, {s 1j , a ij }} and {{s j , s 1j }, {s 1j

 • cpe, epc and C are fixed with either [cpe 4, epc 2, and C max{16, k}] or [cpe 2, epc 4 and C max{4, k}].

 has time complexity O(|S|2 |X| |X| O(1)). As |X| = |C| and |S|  2 |C| , we deduce that finding k color-disjoint paths requires O(2 2|C| |C| O(1) (|V | + |E|)) overall time, and so that the k-DCP problem is FPT when parameterized by the number of colors |C|.

 1 , t) are color-disjoint. In the example of Figure3.6c, H has many directed paths from s to t. For example with the directed path P = (s, {e

	0 , g 1 = (s, e 0 }, {e rected paths P 0 , e 1 , h 1 }, {e 1 , e 2 , g 2 , f 3 , g 2 }, {e 4 , t) and P 3 , g 3 }, {e 2 = (s, g 4 , g 4 }, t), the two color-disjoint di-0 , h 1 , f 2 , e 3 , e 4 , t) in LD and
	the two color-disjoint directed paths (s, u	3 , u 4 , t) and (s, u	1 , u	2 , u	3 , u	6 , t) in D are
	associated.					

 Both algorithms require O(|V | + |E|) time.

			epc epc epc	cpe cpe cpe	k-DCP k-DCP k-DCP			MDCP MDCP MDCP
	Undirected	unbounded	1 unbounded	unbounded Solvable in O(|V | + |E|) 1 Solvable in O(|V | + |E|) [CDP + 07]	Solvable in O(|E|) Solvable in O(C |E|) [CDP + 07]
	graphs	8	2 4	4 2	NP-hard for	max{8, k}	Not approximable within O(|V | 1 "), for any 0 < " < 1
		 3 = 4	unbounded unbounded Solvable in O(|V | + |E|) unbounded unbounded Solvable in O(|V | + |E|) for k = 2	Optimum in O(|V | + |E|) 2-approximation in O(|V | + |E|)
	|C| O(1), even = without star	unbounded unbounded unbounded	Solvable in O(f (|C|)(|V | + |E|)), in FPT when param-eterized by |C|	Optimum in O(f (|C|)(|V | + |E|) log), in FPT when param-eterized by |C|
			3	3				NP-hard
			2	6				
	DAG	unbounded	2	unbounded	Solvable in O(cpe 2 |V ||E| 2k)	Not O(|V | 1 " approximable	within

Table 3

 3

.2: Summary of complexity results for k-diverse routing.

 Proof. Suppose that a vertex v of weight 1 cannot be assigned to any block of B 1 . This means that, for each block B of B 1 , vertex v and its neighbors in B form a clique of size > d 1 and so the weight of the neighbors of v in B is at least d 1 . This implies that the weight of the neighbors of v in all of the blocks in B

	Claim 16. n	1 =	l	d 1	m
							1 is at
	least n	1 d	1 . Since we are considering the vertices in the RPEO, this implies that the
	l clique induced by v and its neighbors in B m n 1 = d 1 . This is not possible.	1 is of weight n	1 d	1 +1 which exceeds for
	Claim 17. n	2 =	l		1 n 1 (d 1 1) 2 2	m	where 2 2 = max{2, d

2

1}.

Proof. Suppose that a vertex v of weight 2 cannot be assigned to any block of B 1 or B 2 . This means that, for each block B of B 1 (resp. B 2), vertex v and its neighbors in B form a clique of size > d 1 (resp. > d 2) and so the weight of the neighbors of v in B is at least d 1 1 (resp. d 2 1). However, if d 2 = 2, as all the vertices of weight 1 are assigned to blocks of B 1 , v has necessarily one neighbor of weight 2 in each block of B 2 . Therefore, if we let 2 2 = max{2, d 2 1}, the clique induced by v and its neighbors in the RPEO has a weight at least n 1 (d 1 1) + n

 If a vertex v of weight 3 is considered, then if v has a neighbor of weight 2 colored with {↵, ↵ + 1}, we color v with {1, 2, 3} if ↵ 4 or {5, 6, 7} if ↵  3. If v has two neighbors of weight 1; if color 7 is not used we color v with {5, 6, 7}. If color 7 is used, but not color 4 we color v with

{4, 5, 6}. If both colors 4 and 7 are used, we color v with {1, 2, 3}.

 with a cut vertex. From Lemma 14, {f, p, f 0 } is a 2-potential-leaf.Otherwise, P has only one child block C in F containing the cut vertex p. Then any vertex in N G (p) \ {f } belongs to P . If P is also a bridge in G, i.e., P consists of one edge pq 2 E(G), then p has degree 2 in G. (For example, in Figure B.10, take C as C 11 , whose parent C 5 is also a bridge in G.) From Lemma 13, {f, p, q} is a 2-potential-leaf of G. Otherwise, P is a 2-connected component of G and p 2 V (G) satisfies the hypothesis of Lemma 15. For example, in Figure B.10, we take C as C 7 , whose parent C 4 is a 2-connected component of G. Hence, either G has an isolated vertex ↵ and {↵, f, p} is a 2-potential-leaf or {f, p} is a 2-potential-leaf. • Finally, let us assume that C is a 2-connected component of G. It is known that any graph with at least two vertices of treewidth k contains at least two vertices of degrees at most k [BK11]. There is no degree one vertex in C because C is 2-connected. So there exists two vertices with degree 2 in C. Since C is a leaf in F , there is only one cut vertex of G in C. So there exists a vertex b in C which has degree two in G. If |V (C)| 4, then there exists a path between two neighbors a, c of b in G \ {b} containing at least one internal vertex. For example, in Figure B.9, we take C as C 10 . From Lemma 16, {a, b, c} is a 2-potential-leaf. Otherwise C is a triangle {a, b, c} with at least two vertices with degree 2 in G. Again from Lemma 16, {a, b, c} is a 2-potential-leaf. So the total time complexity is O(n + m).Corollary 10. s 2 can be computed in polynomial-time in general graphs. Moreover, a minimum size tree-decomposition can be constructed in polynomial-time in the class of partial 2-trees.Proof. Let G be any graph. It can be checked in polynomial-time whether tw(G)  2 (e.g. see[START_REF] Wald | Steiner trees, partial 2-trees, and minimum ifi networks[END_REF]). If tw(G) > 2, then s 2 = 1. Otherwise tw(G)  2, then the result follows from Theorem 31 and Corollary 9.

								. Its
	block tree F , with root C	1 , has two blocks less than the one in Figure B.9 (the
	blocks C	6 and C	10). Each one of the leaf blocks, C	7 , C	8 , C	9 , C	11 , in F contains two
				vertices of G.			

• let us first assume that C is a bridge in G, i.e. C consists of one edge fp 2 E(G) and p is a cut vertex. Then f has degree one in G because C is a leaf block in F . Let P be the parent block of C in F . Then any child block A of P in F consists of one edge because C has the maximum number of vertices among all the children of P ; and A is a leaf block in F because C is a furthest leaf from the root block R. If P has another child block except C in F containing the cut vertex p, then this child block also consists of one edge f 0 p 2 E(G), where f 0 has degree one in G because this child is also a leaf block in F . For example, in Figure B.10, we take C as C 8 , which intersects C 9

 Table C.1: Résultats de complexité des problèmes dans les réseaux avec transitions interdites C.2.2 Chapitre 3 : Chemins disjoints dans les réseaux avec des SRLGs en étoile

				• NP-complet en général [Sze03]
				• NP-complet dans les grilles
			• Polynomial dans les DAGs	• Polynomial dans les graphes avec treewidth
				borné
	Trouver	un	Polynomial	Polynomial
	chemin	non-	[Win02, ABP96]	
	élémentaire		
	k-VDT		• NP-complet dans les graphes orientés avec un	• NP-complet dans les graphes non-orientés avec
			degré  8 • Polynomial dans les DAGs	un degré  8 • NP-complet dans les graphes non-orientés avec
	k-EDT		Polynomial	un degré  4 [GLMM12] NP-complet [ADF + 08]

 Exemple de risques localisés : le lien l 4 partage un risque r 2 , correspondant à une panne de la carte 2, avec les liens l 5 et l 6 , et il partage un risque r 4 , correspondant à une coupure du conduit, avec les liens l 2 et l 3 . satisfaisant la propriété d'étoile. Puis, en utilisant un modèle de graphes colorés où les couleurs correspondent aux SRLGs, nous avons prouvé que ce problème est en effet NP-difficile. Plus généralement, nous avons montré que le problème du routage diversifié dans les réseaux avec la propriété d'étoile est NP-difficile, APX-difficile, et W[1]-difficile lorsque le paramètre est le nombre de chemins SRLG-disjoints. Enfin, nous avons caractérisé des instances polynomiales, en particulier lorsque le degré maximum des sommets est 4, ou lorsque le réseau est acyclique. La Table C.2 résume les résultats de complexité obtenus pour les problèmes considérés. Dans la table, V , E, C, epc, cpe, k-DCP, et MDCP dénotent respectivement l'ensemble des noeuds, l'ensemble des liens, l'ensemble des SRLGs, le nombre de liens atteints par le même SRLG, le nombre de SRLGs auxquels peut appartenir un lien, le problème de trouver k chemins SRLG-disjoints, et le problème de trouver le nombre maximum de chemins SRLG-disjoints. C.3 L'utilisation efficace du spectre dans les réseaux optiques Pour faire face à la croissance exponentielle du trafic Internet, une nouvelle génération de réseaux optiques est en cours de développement; les réseaux optiques élastiques (les EONs), aussi connus sous le nom des réseaux Flex-grid [GJLY12, JTK + 09]. Les EONs sont proposés pour remplacer les réseaux Wavelength Division Multiplexing (WDM) actuellement déployés. Dans les réseaux WDM, le spectre optique est divisé en canaux de largeur fixe (par exemple 50 GHz) appelés longueurs d'onde, formant la grille fixe traditionnelle de WDM. Chaque longueur d'onde de cette grille fixe peut assurer une connexion à un débit qui peut atteindre 100 Gbps. Même si une connexion nécessite moins de 100 Gbps, on y alloue une longueur d'onde complète. Ce qui résulte en une utilisation inefficace du spectre. D'autre part, quand une connexion exige plus de 100Gbps, on y alloue plusieurs

	l 1 O(|V | + |E|) [CDP + 07] l 2 l 8 l 7 k-DCP k-DCP k-DCP non borné O(|V | + |E|) l 6 Card3 l 5 Card2 l 4 epc v cpe cpe cpe 1 non borné l 3 Card1 l 1 l 2 non borné 1 8 2 4 NP-difficile pour max{8, k} 4 2  3 non borné non borné O(|V | + |E|) = 4 non borné non borné O(|V | + |E|) pour k = 2 l 3 r 1 |C| = O(1) non borné non borné non borné Graphes non orien-tés O(f (|C|)(|V | + |E|)), FPT si parametré par |C| 3 3 2 6 Figure C.3: epc epc DAG non borné O(cpe 2 |V ||E| 2k) 2 non borné	l 6 O(C |E|) [CDP + 07] l 5 l 4 r 4 r 3 r 2 v MDCP MDCP MDCP O(|E|) Non approximable à O(|V | 1 "), pour 0 < " < 1 l 8 l 7 Optimum en O(|V | + |E|) 2-approximation en O(|V | + |E|) Optimum en O(f (|C|)(|V | + |E|) log), FPT si parametré par |C| NP-difficile), Non approximable à O(|V | 1 " pour tout 0 < " < 1
	non borné	= 3	AP X-difficile

non borné non borné W [1]-difficile si parametré par le nombre de chemins Table C.2: Résultats de complexité des problèmes dans les réseaux avec des SRLGs en étoile.

•

 Le RSA statique. Dans ce problème, l'ensemble des requêtes est connu à l'avance. L'objectif est d'allouer des chemins et du spectre à ces requêtes en minimisant le spectre utilisé ou en minimisant le nombre de requêtes bloquées. Puisque le problème RWA statique est NP-complet[START_REF] Chlamtac | Lightpath communications: an approach to high bandwidth optical WAN's[END_REF], le RSA statique est NP-complet aussi. Pour le résoudre, il est généralement divisé en deux sous-problèmes qui sont résolus séquentiellement: le sous-problème de routage où le but est de trouver des chemins pour les requêtes et le sousproblème d'allocation de spectre (SA). Nous avons traité le problème SA dans des réseaux en arbre dans le chapitre 4. • Le RSA dynamique. Dans ce problème, les requêtes arrivent et quittent le réseau dynamiquement. L'objectif est de minimiser le taux de blocage des requêtes dans le réseau. La dynamicité du trafic peut causer la fragmentation du spectre. Ceci veut dire l'accumulation de petites bandes de spectre qui deviennent inutilisables, soit parce qu'elles ne sont pas continues ou parce qu'elles ne sont pas contiguës. Dans le chapitre 5, nous avons étudié le problème RSA dynamique avec une technique de défragmentation non-perturbatrice appelée Push-Pull. C.3.1 Chapitre 4 : Allocation de spectre dans les réseaux en arbre Dans le problème d'allocation de spectre (SA), nous avons en entrée un réseau et un ensemble de requêtes tel que chaque requête a un chemin et une demande en spectre. L'objectif est d'allouer du spectre aux requêtes sous les contraintes de la contiguïté et le non-chevauchement. Dans ce chapitre, nous traitons le problème d'allocation de spectre dans les réseaux optiques élastiques en arbre. Nous démontrons que le problème est NP-difficile dans les étoiles non-orientées à trois liens et les étoiles orientées à deux liens entrants et deux liens sortants. Ensuite, nous présentons une 4approximation du problème dans les étoiles orientées et non-orientées. Nous étudions également le problème dans les graphes binaires. Nous démontrons qu'il y a des approximations à facteurs constants pour le problème de SA dans les arbres binaires avec des profils de demandes spécifiques. Ces approximations sont présentées dans la Table C.3. Dans la table, OPT est la valeur optimale du spectre qui peut être utilisée pour résoudre le problème. Table C.3: Bornes supérieures sur le spectre utilisé par nos algorithmes d'approximation pour résoudre SA dans des arbres binaires avec des profils de demandes spécifiques. C.3.2 Chapitre 5 : RSA dynamique avec Push-Pull Pour remédier au problème de la fragmentation, des techniques de défragmentation sont utilisées. Nous avons étudié le problème RSA dynamique avec une technique de défragmentation qui s'appelle le Push-Pull. Cette technique permet de décaler les bandes de spectre utilisées par d'autres requêtes en vue de libérer de la place pour les nouvelles. D'abord, nous avons travaillé avec un algorithme proposé par Wang and Mukherjee dans [WM13] pour résoudre le problème d'allocation de spectre avec Push-Pull. Nous avons modifié l'algorithme pour qu'il retourne la position dans le spectre qui minimise le délai d'attribution du spectre à la nouvelle demande. Ensuite, nous avons proposé des algorithmes pseudo-polynomiaux pour résoudre exactement le problème de routage et d'allocation de spectre avec Push-Pull. Le premier algorithme minimise la longueur du chemin alloué à la nouvelle requête alors que le deuxième minimise le délai d'attribution du spectre.

	Demandes	Bornes supérieures
	{k, kX} k, X 2 N ⇤ {kX, k(X + 1)} k, X 2 N ⇤	(2 1 X)OPT + k (1 + 1 X)OPT
	 3	19 10 OPT + 8 5
	 4	59 27 OPT + 67 27
	 5	859 336 OPT + 229 56
	 6	287 100 OPT + 885 200
	 W	2 dlog	2 (W)e OPT

Note that, in[START_REF] Gourvès | Complexity of trails, paths and circuits in arc-colored digraphs[END_REF], the authors state that their result can be extended to planar directed

After proving these results, we have found out recently that even stronger NP-completeness results, for the problem of finding vertex-disjoint non-elementary paths, can be deduced from some related problems. We discuss this in more details in the beginning of Section 2.5.

For S ✓ V , we define G[S] as the subgraph of G induced by the vertices of S, i.e. the subgraph of G containing the vertices of S and all the edges of G which have both endpoints in S.

This result was proved in[START_REF] Dereniowski | Minimum length path decompositions[END_REF] in terms of path-decomposition but it is straightforward to extend it to tree-decomposition.

Acknowledgments

First of all, I would like to express my gratitude to my advisor, David Coudert, for welcoming me into the COATI team, directing this thesis, and for the faith he has shown in me.

I would also like to thank all of my co-authors and especially Jean-Claude Bermond and Nicolas Nisse. Collaborating with them was a real pleasure and their insights, feedback and guidance were an enormous help.

Many thanks to Pr Arie Koster and Pr Yann Vaxès for reviewing this manuscript and for providing me with remarks to improve it.

My warm thanks go to all the COATIs and the former COATIs. Thank you all for creating a delightful work environment.

I would also like to express my appreciation to all the friends and people I met during my thesis and who made my experience pleasant and enjoyable: Olfa, Bi, Sawsan, Alvinice, Ameni, Karol, Julio, Zineb, Guillaume, Patricia, Ewa ... Special thanks to my dear friend Khouloud who has shared with me, day by day, my whole french experience. It would not have been the same without her.

Finally, all my gratitude to my family, my parents and my sisters Nabila, Hind and Sara. Thank you for all of your support, prayers and encouragements. You were, are and will always be my source of inspiration.

Sophia Antipolis October 22, 2015

Appendix

In the appendix, we present another direction we followed in the study of the static routing and spectrum assignment problem in elastic optical networks. We also present another problem tackled during this thesis; it is a problem not related to optical networks and it concerns tree-decompositions with minimum size.

Appendix A: On static Routing and Spectrum Assignment. We present in this chapter column generation formulations for the problem of routing and spectrum assignment in a static setting. The formulations we present are inspired from a column generation model for the problem of routing and wavelength assignment; the counterpart of RSA in the classical optical networks.

Appendix B: Minimum Size Tree-Decompositions. We study in this chapter, a problem of graph theory concerning graph decomposition. Namely we study the problem of minimum size tree-decomposition. A tree-decomposition of a graph is a way to represent it by a family of subsets (bags) of its vertex-set organized in a tree-like manner and satisfying some connectivity property. Tree-decompositions have been widely studied for their algorithmic applications especially that they are the corner-stone of many dynamic programming algorithms for solving graph problems. We consider the problem of computing a tree-decomposition of a graph with width (i.e number of vertices per bag) at most k and minimum size (i.e. number of Maximum weight 3 Let W = 3. We choose some values for d i and using the claims above, we obtain the following values of n i :

To compare the values of the total number of colors we need to compute c(3, S) for some basic sets S. We recall that c(d, S) is the minimum number of colors which can be used in an interval coloring of any chordal graph with density d and weights in S.

• c(3, {1, 2, 3}) = 4.

We first prove that c(3, {1, 2}) 4. Let us consider the example presented in Figure 4.3 in which the density is 3 and the maximum weight is 2. The graph in the example consists of a clique of 3 vertices of weight one, such that each vertex of weight one is joined to a vertex of weight 2. This graph cannot be colored using only 3 colors. If we suppose that it can be colored with 3 colors {1, 2, 3}, then one of the vertices of weight one will have to be assigned color 2. For this vertex, the neighbor of weight 2 cannot be colored since the only available colors are 1 and 3 which are not contiguous.

To prove that c(3, {1, 2, 3})  4, we use the First Fit algorithm in the RPEO which needs at most 4 colors . In fact in an instance of C(3, {2, 3}), all vertices are isolated and we can hence easily color them with at most 3 colors.

• c(4, {1, 2, 3}) = 6.

We first prove that c(4, {1, 2, 3}) 6. Let us consider the example presented in Figure 4.4 which consists of a clique of four vertices of weight one. Each vertex of weight one is joined to a vertex of weight 3 and each pair of vertices of weight one is joined to a vertex of weight 2. Suppose that we only use 5

-If a vertex v of weight 2 is considered, then if v has 3 neighbors of weight 1, we color v with {5, 6}. If it has one neighbor of weight 2 colored {↵, ↵ + 1} and one of weight 1 colored , then we color v with {5, 6} if ↵  3; with {1, 2} if ↵ 4 and 3; with color {6, 7} if ↵ = 4 and  2 or {3, 4} if ↵ 5 and  2.

• c(5, {2, 3}) = 5.

The First Fit algorithm in the RPEO in which we forbid color 3 to vertices of weight 2 uses at most 5 colors. Now, we can compute the number of colors for the 3 cases considered above. it is at most 3 2 + 2n

1 + 1. Finally, as n 1  5 + 4 5 , the number of colors used is at most 19 10 + 13 5 .

We have tried other values of d i and n i but we obtained bigger numbers of colors. For example:

• If we set d 1 = 4, d 2 = d 3 = 3, using c(4, {1, 2, 3}) = 6, the number of colors is at most 17 8 + O(1).

• If we set d 1 = d 2 = 4, and d 3 = 3, using c(4, {2, 3}) = 4 the number of colors is at most 13 6 + O(1).

• If we set d 1 = 6, and d 2 = d 3 = 3, then using c(6, {1, 2, 3}) = 9 (to be computed after), the number of colors is at most 23 12 + O(1).

• If we set d 1 = 6, d 2 = 5 and d 3 = 3, then using c(5, {2, 3}) = 5, the number of colors is at most 23 12 + O(1).

In summary, the best approximation obtained for maximum weight 3 is with a multiplicative ratio of 19 10 and an additive constant of 8 5 .

v has two colored neighbors of weight 2 each, or one colored neighbor of weight 2 and two other colored neighbors with weight 1, or one colored neighbor of weight 3 and another of weight 1, or one vertex of weight 4, then one of the channels {1, 2}, {3, 4}, {5, 6}, or {7, 8} is necessarily free to be used.

• c(6, {2, 3, 4}) = 8.

We first prove that c(6, {2, 4}) 8. Let us consider the graph G which consists of a clique of 3 vertices of weight 2 each, and such that each vertex of weight 2 is connected to a vertex of weight 4. The graph G is chordal and has density 6 and weights in {2, 4}. Let us suppose that we can color G with only 7 colors.

In any possible coloring of the vertices of weight 2, a vertex v of weight 2 has to use either colors {3, 4} or {4, 5}. In both cases, the neighbor of v which has weight 4 cannot be colored. Now let us describe the algorithm that colors an instance of C(6, {2, 3, 4}).

The algorithm uses First Fit in the RPEO with the additional feature that the possible combinations of colors for vertices of weight 2 are the following: {1, 2}, {3, 4}, {5, 6}, and {7, 8}. We have computed the number of colors for other choices of the d i but the values are bigger. The best approximation obtained for maximum weight 4 is with a multiplicative ratio of 59 27 and an additive constant of 67 27 .

We have n We have computed the number of colors for other choices of the d i but we obtained bigger values as we present in what follows. Maximum weight 6 Let us first compute c(6, S) for some basic sets S. Note that with a density at most 6, any vertices of weight 6 are isolated. We can then deduce the following from what we have computed for a maximum weight of 5.

• c(6, {1, 2, 3, 4, 5, 6}) = 10.

• c(6, {2, 3, 4, 5, 6}) = 8.

• c(6, {3, 4, 5, 6}) = c(6, {4, 5, 6}) = c(6, {5, 6}) = c(6, {6}) = 6.

• c(7, {1, 2, 3, 4, 5, 6}) = 12.

We use the algorithm which gives c(7, {1, 2, 3, 4, 5, })  12. If a vertex v of weight 6 is added it is joined to at most one vertex of weight 1 of color .

If  6, we color v with colors {7, 8, 9, 10, 11, 12}) and if = 7 with colors {1, 2, 3, 4, 5, 6}) and so c(7, {1, 2, 3, 4, 5, 6})  12.

To show that c(7, {1, 2, 3, 4, 5, 6}) 12, we consider the chordal graph consisting of a clique of 7 vertices of weight one such that each vertex of this clique is joined to a vertex of weight 6. Furthermore we join each pair of vertices of weight 1 to a vertex of weight 5. Suppose that we can color the graph with 11 colors. Color 6 cannot be used for any vertex of weight 1, otherwise its neighbor of weight 6 cannot be colored. Furthermore we can use for vertices of weight 1 at most one of the pair of colors {2, 7}, {3, 8}, {4, 9}, {5, 10}. So we have altogether 5 colors forbidden for vertices of weight 1 and so only 6 available colors which is impossible.

Now we can compute the number of colors for d

The number of colors used is n 1 c(7, {1, 2, 3, 4, 5, 6}) + n 2 c(6, {2, 3, 4, 5, 6}) + n 3 c(6, {3, 4, 5, 6}) + n 4 c(6, {4, 5, 6}) + n 5 c(6, {5, 6}) + n 6 c(6, {6}) = 12n 1 + 8n 2 + 6n 3 + 6n 4 + 6n 5 + 6n 6 . We have n In this chapter, we study the problem of dynamic Routing and Spectrum Assignment with the use of a non-disruptive technique called Push-Pull to deal with spectrum fragmentation. Results in this chapter are joint work with D. Coudert and B. Jaumard and have been presented in Algotel'2014 [CJM14].

, respectively. To check if we can provision request q on a position

, the minimum delay of insertion in position ↵ is null. Otherwise, if w(↵) < d r , this delay is given by the following formula (taking into account the types of parallelism presented in Figure 5.2):

Let CS(P q) be sorted as < r 1 , r 2 , . . . , r k > in the ascending order of the requests ending slots in the 4 state, i.e., e 4 (r

We define the decision-positions of q over path P q as the k + 1 positions ↵ i such that ↵ 0 = (;, {r 1 , . . . , r k }) and ↵ i = ({r 1 , . . . , r i }, {r i+1 , . . . , r k }), for i 2 {1, . . . , k}. Wang and Mukherjee have proved that to decide if it is possible to allocate spectrum to q on path P q , it is sufficient to check the k + 1 decision-positions ↵ i , i 2 {0, . . . , k}, and that the following theorem holds.

Theorem 25. [START_REF] Wang | Provisioning in elastic optical networks with non-disruptive defragmentation[END_REF] Let q be a request of demand d q and path P q , |CS(P q)| = k and ↵ i , i 2 {0, . . . , k} the corresponding decision-positions. Request q is provisionable over P q using Push-Pull, if and only if there exists some i 2 {0, . . . , k}, such that w ⇤ (↵ i) d q . Thanks to Theorem 25, to solve the SA-PP problem, Wang and Mukherjee have designed an algorithm which checks all of the decision-positions then chooses the one over which the new request can be provisioned with minimum delay. However, we show with the following example that the returned position does not minimize the delay over all possible positions.

Example

Let us consider the example presented in Figure 5.4a. We have a path network of length 6 with an available spectrum of 9 slots and 4 requests: r 1 from a to d occupying the spectrum interval]5, 6] , r 2 from c to e occupying the spectrum interval]1, 3], r 3 from b to e occupying the spectrum interval]8, 9], and r 4 from e to g occupying the spectrum interval]8, 9]. Suppose that a new request r 5 from c to f requiring 4 spectrum slots arrives and needs to be provisioned. This request is conflicting with r 1 , r 2 , r 3 and r 4 . To allocate spectrum to r 5 , the algorithm of Mukherjee and Wang will first sort the existing requests in the increasing order of their spectrum occupancy e 4 (r). The obtained order is < r 4 , r 1 , r 2 , r 3 > and the five possible decision-positions according to this order are: Proof. Let us suppose that a request q can be provisioned on path P q with position = (B, B) (i.e. in the spectrum interval, q is above the requests in B and below the requests of B) and delay () = .

In the proof of Theorem 25, can be transformed into a decision-position ↵ i = (A, Ā), i 2 {0, . . . , n} such that q can be provisioned on ↵ i . The position ↵ i is found as follows. Suppose r is the request that yields the floor of = (B, B) after defragmentation, i.e. e 4 (r) = f ⇤ (). Let < r 1 , r 2 , . . . , r n > be the requests in CS(P q) sorted in the ascending order of 4 state, i.e., e 4 (r 1)  e 4 (r 2)  • • •  e 4 (r n) and let i be the index such that e 4 (r i) = e 4 (r) and e 4 (r i+1) > e 4 (r). It is proved in Theorem 25 that if q is provisionable on path P q with position = (B, B) then q is provisionable on path P q with position ↵ i = (A, Ā) where A = {r 1 , . . . , r i }. Note that the position ↵ i is obtained by shifting down some requests of B, and that B ✓ A and Ā ✓ B. These shiftings may affect the delay (see formula of delay in equation (1) page 116). The idea is to shift back up some of the requests that might change the delay which are the requests x such that e(x) > e(r 0

) where r 0 is the request that yields the floor of , i.e., f () = e(r 0

) . Let < x 1 , x 2 , . . . , x i > be the list of requests of A sorted in the descending order of their ending slots, i.e., e(x 1) e(x 2) • • • e(x i). Let x j be the request such that e(x j+1) = e(r 0

) and e(x j) > e(r 0). We prove that

) is a position which can provision q with delay (↵ j i)  . We first set ↵ = ↵ j i to simplify the notation. For positions ↵ and , we have the following.

, . . . , x j } ✓ A) and ↵ i and have the same floor after defragmentation (by construction of ↵ i).

• f (↵) = f (); this is due to the fact that f () = e(r 0

), f (↵) = e(x j+1) and e(r 0) = e(x j+1).

and with the equations above, we deduce that w ⇤ (↵) c ⇤ () f ⇤ (), and hence w ⇤ (↵) w ⇤ () d q . This implies that ↵ can provision q. The equations above also imply that w(↵) w(). Now, let us prove that 0 = (↵)  . Note that if = 0, then w() d q . This implies that w(↵) d q and 0 = 0. Let us assume that both and 0 are not null. We recall that We give in this chapter column generation formulations for the problem of static routing and spectrum assignment. These formulations were written in collaboration with D. Coudert and B. Jaumard. subject to:

A.4.2 Our configuration model

A configuration is associated with a set of paths that can be used for satisfying a given fraction of the requests with the same spectrum slot. There is at most one path per request in a configuration. Let C s be the set of configurations associated to slot s and let C be the set of all configurations:

We present in what follows two column generation formulations for the problem of RSA based on configurations: a path formulation and a link formulation. In the path formulation, variables x p r are used to decide if a request r can be routed with path p and a link-path flow formulation is used for the pricing problem. In the link formulation, variables x r are used to decide if a request r can be routed using link `and a node-link flow formulation is used for the pricing problem.

x p r 2 {0, 1} r 2 R, p 2 P r (A.10)

Constraints (A.4) ensure that one spectrum slot is used by at most one configuration (non-overlapping constraint). Constraints (A.5) ensure that each request, if granted, uses at most one path. Constraints (A.6) ensure that for a given request r only configurations using the same path for r are used. Constraints (A.7) ensure that a request has at most one starting slot. Constraints (A.8) ensure that if a request has a starting slot, then it is fully provisioned with contiguous spectrum. Note that in constraints (A.8), the contiguous slots are used on the same path thanks to constraints (A.7).

Pricing problem PP(s c). The reduced cost for variable z c is (note that the dual variables are introduced next to their corresponding constraints and that s c is the slot used by configuration c)

To find whether there is a configuration with a positive reduced cost, let us consider the following problem which needs to be solved for each slot s c :

Constraints A.12 ensure that the paths chosen for the configuration are disjoint (p `= 1 if path p uses link `and 0 otherwise) and constraints A.13 ensure that at most one path is selected for each request.

A.4.2.2 Link Formulation

We use the following notations.

a c r`i s equal to 1 if request r uses link `in configuration c. z c binary decision variable; equal to 1 if configuration c is used and 0 otherwise. x r binary decision variable; equal to 1 if request r uses link `and 0 otherwise.

Constraints (A.15) ensure that each slot is used by at most one configuration. Constraints (A.16) ensure that for each node, a request uses at most one outgoing link. Constraints (A.17) ensure that if a link is not used, all the configuration using it are not. Constraints (A.17) and (A.16) ensure that a request uses at most one path. Constraints (A.18) ensure that a request has at most one starting slot. Constraints (A.19) ensure that if a request has a starting slot, then it is fully provisioned with the same contiguous spectrum over the first link of the path and hence to all other links of the path.

The pricing problem PP(s c). The reduced cost for variable z c is (note that the dual variables are introduced next to their corresponding constraints and that s c is the slot used by configuration c)

o find whether there is a configuration with a positive reduced cost, let us consider the following problem which needs to be solved for each slot s c :

Constraints A.23 ensure that an link in a configuration is used by at most one request and the other constraints are flow conservation constraints.

A.4.3 Discussion

Compared to the formulation using lightpaths in [RPZ + 13] and to the configuration based formulation for RWA in [START_REF] Jaumard | On column generation formulations for the rwa problem[END_REF], the configuration formulations for RSA seem to be more complex and have more constraints and variables. This is mainly due to the fact that it is difficult to handle the contiguity constraints with configurations. These constraints were successfully hidden with the use of channels in [RPZ + 13], but with configurations, we could not ensure them without the use of additional constraints.

For the configuration formulation of RWA, a variable a c r is used to indicate if a request r can be provisioned with a configuration c, and only decision variables z c are used to decide if a configuration is used or not and hence is a request is satisfied or not. In our formulation, we use variables a c r,p instead of a c r since we need to know, not only if a request can be provisioned with a configuration, but also with which path. We also use decision variables x p r and x r besides the variables z c to ensure that the used configurations use the same path for a given request. integer solutions for the problem, the configurations generated by our formulations are not of good quality in terms of the integer solution they provide. This has discouraged us from investing more in these formulations by trying a branch-andprice approach. In this chapter, we consider the problem of computing a tree-decomposition of a graph with width at most k and minimum size, i.e. the number of bags in the tree-decomposition. More precisely, we focus on the following problem: given a fixed k 1, what is the complexity of computing a tree-decomposition of width at most k with minimum size in the class of graphs with treewidth at most k? The results of this chapter are in a collaboration with B. Li and N. Nisse. They were presented in the conference ICGT 2014 [LMN14] and LAGOS 2015 [LMNS15].

Appendix B

Minimum Size Tree-Decompositions

B.1 Introduction

A tree-decomposition of a graph [RS86] G, as we have defined it in Section 2.4.2 of Chapter 2, is a way to represent G by a family of subsets of its vertex-set organized in a tree-like manner and satisfying some connectivity property. The treewidth of G measures the proximity of G to a tree. More formally, a tree-decomposition of G = (V, E) is a pair (T, X) where X = {X t |t 2 V (T)} is a family of subsets of V , called bags, and T is a tree, such that:

• for any edge uv 2 E, there is a bag X t (for some node t 2 V (T)) containing both u and v;

• for any vertex v 2 V , the set {t 2 V (T)|v 2 X t } induces a subtree of T .

The width of a tree-decomposition (T, X) is max t2V (T) |X t | 1 and its size is the order |V (T)| of T . The treewidth of G, denoted by tw(G), is the minimum width over all possible tree-decompositions of G. If T is constrained to be a path, (T, X) is called a path-decomposition of G. The pathwidth of G, denoted by pw(G), is the minimum width over all possible path-decompositions of G.

Tree-decompositions are the corner-stone of many dynamic programming algorithms for solving graph problems. For example, the famous Courcelle's Theorem states that any problem expressible in MSOL can be solved in linear-time in the class of bounded treewidth graphs [START_REF] Courcelle | The monadic second-order logic of graphs. i. recognizable sets of finite graphs[END_REF]. Another framework based on graph decompositions is the bi-dimensionality theory that allowed the design of sub-exponentialtime algorithms for many problems in the class of graphs excluding some fixed graph as a minor (e.g., [START_REF] Demaine | The bidimensionality theory and its algorithmic applications[END_REF]). Given a tree-decomposition with width w and size n, the time-complexity of most of such dynamic programming algorithms can often be expressed as O(2 w n) or O(2 w log w n). These algorithms have mainly theoretical interest because their time-complexity depends exponentially on the treewidth and, on the other hand, no practical algorithms are known to compute a "good" tree-decomposition for graphs with treewidth at least 5.

Since the computation of tree-decompositions is a challenging problem, we propose in this chapter to study it from a new point of view. Namely, we aim at minimizing the number of bags of the tree-decomposition when the width is bounded. This new perspective is interesting on its own and we hope it will allow to gain more insight into the difficulty of designing practical algorithms for computing treedecompositions.

We consider the problem of computing tree-decompositions with minimum size. If the width is not constrained, then a trivial solution is a tree-decomposition of the graph with one bag (the full vertex-set). Hence, given a graph G and an integer k tw(G), we consider the problem of minimizing the size of a tree-decomposition of G with width at most k.

Related work

The problem of computing "good" tree-decompositions has been extensively studied. Computing optimal tree-decomposition -i.e., with width tw(G) -is NP-complete in the class of general graphs G [START_REF] Arnborg | Complexity of finding embeddings in a k-tree[END_REF]. For any fixed k 1, Bodlaender designed an algorithm that computes, in time O(k k 3 n), a tree-decomposition of width k of any n-vertex graph with treewidth at most k [START_REF] Bodlaender | A linear-time algorithm for finding treedecompositions of small treewidth[END_REF]. Very recently, a single-exponential (in k) algorithm has been proposed that computes a tree-decomposition with width at most 5k in the class of graphs with treewidth at most k [BDD + 13]. As far as we know, the only practical algorithms for computing optimal tree-decompositions hold for graphs with treewidth at most 1 (trivial since tw(G) = 1 if and only if G is a tree), 2 (graphs excluding K

B.2 NP-hardness in the class of bounded treewidth graphs

In this section, we prove that:

Theorem 29. For any fixed integer k 4 (resp., k 5), the problem of computing s k is NP-complete in the class of graphs (resp., of connected graphs) with treewidth at most k.

Note that the corresponding decision problem is clearly in NP. Hence, we only need to prove it is NP-hard.

Our proof mainly follows the one of [START_REF] Dereniowski | Minimum length path decompositions[END_REF] for size-constrained pathdecompositions. Hence, we recall here the two steps of the proof in [START_REF] Dereniowski | Minimum length path decompositions[END_REF]. First, it is proved that, if computing l k is NP-hard for any k 1 in general graphs, then the computation of l k+1 is NP-hard in the class of connected graphs. Second, it is shown that computing l 4 is NP-hard in general graphs with pathwidth 4. In particular, this implies that computing l 5 is NP-hard in the class of connected graphs with pathwidth 5. The second step consists of a reduction from the 3-PARTITION problem [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF] to the one of computing l 4 . Precisely, for any instance I of 3-PARTITION, a graph G I is built such that I is a YES instance if and only if l 4 (G I) equals a defined value `I.

Our contribution consists first in showing that the first step of [START_REF] Dereniowski | Minimum length path decompositions[END_REF] directly extends to the case of tree-decompositions. That is, it directly implies that, if computing s k is NP-hard for some k 4 in general graphs, then so is the computation of s k+1 in the class of connected graphs. Our main contribution of this section is to show that, for the graphs G I built in the reduction proposed in [START_REF] Dereniowski | Minimum length path decompositions[END_REF], any tree-decomposition of G I with width at most 4 and minimum size is a pathdecomposition. Hence, in this class of graphs, l 4 = s 4 and, for any instance I of 3-PARTITION, I is a YES instance if and only if s 4 (G I) equals a defined value `I. We describe the details in what follows.

Lemma 8. If the problem of computing s k for an integer k 1 is NP-complete in general graphs, then the computation of s k+1 is NP-complete in the class of connected graphs.

Proof. Let G be any graph. We construct an auxiliary connected graph G 0 from G by adding a vertex a adjacent to all vertices in V (G). Given two integers k, s 1, in the following, we prove that there is a tree-decomposition of G with width at most k and size at most s if and only if there is a tree-decomposition of G 0 with width at most k + 1 and size at most s.

First, let us assume that (T, X) is a tree-decomposition of G with width at most k and size at most s. By adding a in each bag of X , we obtain a tree-decomposition of G 0 with width at most k + 1 and size at most s.

Now let (T 0 , X 0) be a tree-decomposition of G 0 with width at most k + 1 and size at most s. We are going to find a tree-decomposition of G with width at most k and size at most s. Let X a be the set of all bags in X 0 containing a. Let T a be the subtree of T 0 induced by the bags in

). For any edge uv 2 E(G), there is a bag X ◆ {a, u, v} in X 0 since {a, u, v} induces a clique in G 0 . This implies that X 2 X a . We delete a from each bag of X a and denote by X the obtained set of bags. So (T a , X) is a tree-decomposition of G with width at most k and size at most s. This problem is NP-complete even if |S j | = 3 for all j = 1, . . . , m [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF].

Given an instance of 3-Partition, in the following, we construct a disconnected graph G(S, b) as in [START_REF] Dereniowski | Minimum length path decompositions[END_REF]. First, for each i 2 {1, . . . , 3m}, we construct a connected graph H i as follows. We take w i copies of K 3 , denoted by K i,q 3 , q = 1, . . . , w i , and w i 1 copies of K 4 , denoted by K i,q 4 , q = 1, . . . , w i 1 (the copies are mutually disjoint). Afterwards, for each q = 1, . . . , w i 1, we identify two different vertices of K i,q 4 with a vertex of K i,q 3 and with a vertex of K i,q+1

3

, respectively. This is done in such a way that each vertex of each K i,q 3 is identified with at most one vertex from other cliques. Informally, the cliques form a 'chain' in which the cliques of size 3 and 4 alternate. See Figure B.2a for an example of H i for w i = 3.

Second, we construct a graph H m,b as follows. We take m + 1 copies of K 5 , denoted by K 1 5 , . . . , K m+1

5

, and m copies of the path graph P b of length b (P b has b edges and b + 1 vertices), denoted by P 1 b , . . . , P m b (again, the copies are mutually disjoint). Now, for each j = 1, . . . , m, we identify one of the endpoints of P j b with a vertex of K j 5 , and identify the other endpoint with a vertex of K j+1 5 . Moreover, we do this in a way that ensures that, for each j, no vertex of K j 5 is identified with the endpoints of two different paths. See As proved in Lemma 2.3 of [START_REF] Dereniowski | Minimum length path decompositions[END_REF], each bag in (T, X) contains exactly one of the cliques K i,q 3 , K i,q 4 , K j 5 . Indeed, each of these cliques has size at least 3. Moreover, any two of them share at most one vertex, and no two cliques of size 3 (K i,q

3) share a vertex. So each bag of (T, X) contains at most one of the cliques K i,q 3 , K i,q 4 , K j 5 . Moreover, any clique of the graph is fully contained in a bag of (T, X). Since s equals the number of the cliques K i,q 3 , K i,q 4 , K j 5 , each bag of (T, X) contains exactly one of them. Now, let us prove that any edge in K i,q 4 , K j 5 , P j b (i.e. both the two endpoints of the edge) is contained in exactly one bag. Since each bag in (T, X) contains exactly one of the cliques K i,q 3 , K i,q 4 , K j 5 , the two endpoints of any edge in the paths P 1 b , . . . , P m b are contained in a bag containing some K i,q 3 . In fact, the bags containing a K i,q 4 (resp., K j 5) cannot contain two additional vertices (resp., one vertex) since (T, X) is a tree-decomposition of width at most 4. Every bag containing some K i,q 3 contains at most one edge in the paths P 1 b , . . . , P m b , because the bag can contain at most two additional vertices and K i,q 3 and P j b are disjoint. There are mb edges in the paths P 1 b , . . . , P m b and there are mb bags containing some K i,q 3 , so every bag containing a K i,q 3 contains exactly one edge in the paths P 1 b , . . . , P m b . Any edge in the paths P 1 b , . . . , P m b is then contained in exactly one bag. Also each bag containing some K i,q 3 contains 5 vertices, so it does not contain any edge (i.e. both its endpoints) in K i,q 4 or K j 5 . Therefore, any edge on K i,q 4 , K j 5 is contained in exactly one bag. Now we prove that there are only two leaves in T and so T is a path. If a bag containing some K i,q

3 and an edge uv on some path P j b is a leaf bag in T , then its neighbor bag also contains u, v because both u and v are incident to other edges in G(S, b). This is a contradiction with the fact any edge (its two endpoints) on P j b is contained in only one bag. Hence, any bag containing some K i,q 3 is not a leaf bag in T . Similarly, we can prove that any bag containing any K i,q 4 or K j 5 for 1 < j < m+1 is not a leaf bag in T . Thus there are only two bags containing K 1 5 and K m+1 5 which are leaves in T . Thus, we obtain the following corollary. Lemma 9 is still true and for Lemma 10 to be correct, we need to prove that if G(S, b) has a tree-decomposition (T, X) of width at most 4 and size at most s = 1 2m + 2 P 3m i=1 w i , then there is a bag of (T, X) containing F i , for each F i , i 2 {1, . . . , m + 1}. Let us denote by K i 3 and K i 4 the two cliques sharing exactly one edge that form F i . Each of these cliques, should appear in one bag. Note that among all the cliques of G(S, b), the only cliques that can coexist in a bag are of the form K i 3 and K i 4 since the sum of the number of vertices of any other two cliques is more than 5. Let us suppose that there exists j 2 {1, . . . , m+1} such that no bag of (T, X) contains F j , i.e. K j 3 and K j 4 are not in the same bag. In this case the number of bags of (T, X) is at least the number of the cliques K i,q 3 , K i,q 4 , K i 0 4 (i 0 6 = j), plus the two bags containing K j 3 and K j 4 . This gives a size of at least 2 2m + 2 P 3m i=1 w i wich is not possible.

B.3 Preliminaries

In this section, we present the definitions and notations used throughout the chapter and some well-known facts about tree-decompositions.

B.3.1 Notations

Let G = (V, E) be a graph. Throughout this chapter we refer to an edge of E as uv instead of {u, v}, for ease of presentation. Given a subset S ✓ V , and two vertices a, b 2 V \ S, we say that S separates a and b if any path between a and b contains a vertex in S. A subset S ⇢ V is a separator in G if there exists two vertices a, b 2 V \ S such that S separates a and b in G. For an integer c 0,

Let (T, X) be any tree-decomposition of G. Abusing the notations, we will identify a node t 2 V (T) and its corresponding bag X t 2 X . This means that, e.g., instead of saying t 2 V (T) is adjacent to t 0 2 V (T) in T , we can also say that

Note that a k-potential-leaf has size at most k + 1. Given a class of graphs C and integer k 2 N ⇤ , a set of graphs P is called a complete set of k-potential-leaves of C, if for any graph G 2 C, there exists a graph H 2 P such that H is a k-potential-leaf of G.

A tree-decomposition is reduced if no bag is contained in another one. It is straightforward that, in any leaf-bag B of a reduced tree-decomposition, there is v 2 V such that v appears only in B and so N [v] ✓ B. Note that it implies that any reduced tree-decomposition has at most n 1 bags.

In the following we define two transformation rules which take a treedecomposition (T, X) of a graph G, and computes another one without increasing the width nor the size. (T,X)) denote the treedecomposition of G obtained by replacing each edge X i X 2 E(T) by an edge X i X 1 for any 1 < i  d. Note that X becomes a leaf-bag after the operation. See in Figure B.4.

Reduce. Let XX 0 2 E(T) with X ✓ X 0 . Let (T ⇤ , X ⇤) = Reduce(X, X 0 , (T, X)) denote the tree-decomposition of G obtained by deleting the bag X from the tree-decomposition Leaf (X, X 0 , (T, X)). Note that the size of the treedecomposition is decreased by one after the operation.

From any tree-decomposition of G with width k and size s, it is easy to obtain a reduced tree-decomposition of G with width at most k and size at most s 1 by If |X| = 1, let X = {v}. Then there is a neighbor bag Y of X containing v, since G is 2-connected and v is adjacent to some vertices in G. If X = 2, let X = {v, w}. Let G 1 be any connected component in G \ X. If v is not adjacent to any vertex in G 1 , then {w} separates V (G 1) from {v}. This contradicts with the assumption that G is 2-connected. So any connected component in G \ X contains a neighbor of v and a neighbor of w. From Lemma 11, there is a neighbor bag Y of X containing v, w, i.e. X ✓ Y .

B.3.2 General approach

In what follows, we present the general approach used to design polynomial-time algorithms to compute minimum-size tree-decompositions of graphs with small treewidth. Our algorithms mainly use the notion of potential-leaf.

Let k 1 and G = (V, E) be a graph with tw(G)  k. The key idea of our algorithms is to identify a finite complete set of potential-leaves. Then, our algorithms are recursive: given a graph G and a k-potential-leaf H from the complete set, we compute a minimum-size tree-decomposition of G by adding H to a minimum-size tree-decomposition of a smaller graph.

The next lemmas formalize the above paragraph. Proof. Let us first prove s k (G)  s k (G S \ (B \ S)) + 1. Suppose that (T S , X S) is a minimum size tree-decomposition of width at most k of the graph G S \(B \S). Then there exists a bag X 2 X S containing S because S induces a clique in the graph G S \(B \S). We add the bag B and make it adjacent to X in the tree-decomposition (T S , X S). We obtain then a tree-decomposition of width at most k for graph G of size s k (G S \ (B \ S)) + 1. Now we prove that s k (G) s k (G S \ (B \ S)) + 1. Let (T, X) be a minimum size tree-decomposition of G of width at most k such that B is a leaf bag in (T, X) . Note that, if B = V then G S \ (B \ S) is the empty graph. Let us assume that B ⇢ V . Then (T, X) is also a tree-decomposition of G S . Let B be adjacent to the bag Y in (T, X). Then S ⇢ Y since each vertex in S is contained in another bag in (T, X). Let (T 0 , X 0

) be the tree-decomposition obtained by deleting the vertices in B \ S in all the bags of (T, X). Then B is changed to B 0 = S 2 X 0 and let Y be changed to Y 0 2 X 0 . So B 0 ✓ Y 0 . Then the tree-decomposition Reduce(B 0 , Y 0 , (T 0 , X 0

)) is a tree-decomposition of

This lemma implies the following corollary: Corollary 9. Let k 2 N ⇤ and C be the class of graphs with treewidth at most k.

If there is a g(n)-time algorithm A k that, for any n-vertex-graph G 2 C, computes a k-potential-leaf of G. Then s k can be computed in O(g(n) • n) time in the class X in T . Since f and p appear only in X, then X \ X i ✓ {q} for any 1  i  d. By definition of the operation Leaf , the tree-decomposition Leaf (X, X 1 , (T, X)) has width at most 2 and the same size as (T, X), and X is a leaf.

Second, consider the case when X 6 = B. There are two cases to consider. Either B = {f, p} or B = {f, p, x} with x 6 = q. In the latter case, note that there is another bag B 0 , neighbor of B, that contains x unless x is an isolated vertex of G. In the former case or if x appears only in B (in which case, x is an isolated vertex), let B 0 be any neighbor of B. Let (T 0 , X 0

) be obtained by deleting f, p in all bags of (T, X). Then, we contract the edge BB 0 in T 0 , i.e., we remove B and make any neighbor of B adjacent to B 0 . Note that, in the resulting tree-decomposition of G \ {f, p}, there is a bag X 0 containing q and with |X 0 |  2 (the bag that results from X). Finally, we add a bag {f, p, q} adjacent to X 0 and, if node x was only in B, then we add x to X 0 . The result is the desired tree-decomposition. Lemma 14. Let G be a graph with treewidth at most 2 and q 2 V (G) such that q has at least two one-degree neighbors f and p (see Proof. Let (T, X) be any tree-decomposition of G with width at most 2 and size at most s 1. We show how to modify (T, X) to obtain a tree-decomposition with width at most 2 and size at most s and in which {f, p, q} is a leaf bag.

Since fq 2 E(G), there is a bag B in (T, X) containing both f and q. We may assume that B is the single bag containing f (otherwise, we delete f from any other bag). Similarly, since pq 2 E(G), let X be a bag in (T, X) containing both p and q. Again, we may assume that X is the single bag containing p (otherwise, we delete p from any other bag).

First, let us assume that X = B = {f, p, q}. If X is a leaf bag, then the lemma is proved. Otherwise, let X 1 , • • • , X d be the neighbors of X in T . Since f and p appear only in X, then X \ X i ✓ {q} for any 1  i  d. By definition of the operation Leaf , the tree-decomposition Leaf (X, X 1 , (T, X)) has width at most 2, and the same size as (T, X), and X is a leaf.

Second, let us assume that X = {f, q} or B = {p, q}. In the former case, we remove p from any bag and add p to X. In the latter case, we remove f from any bag and add f to B. In both cases, we obtain a bag {f, p, q} as in the first case.

Otherwise, let B = {f, q, x}, x 6 = p, and X = {p, q, y}, y 6 = f .

• If B and X are adjacent in T , then we add a new bag N = {q, x, y}, remove B and X and make each of their neighbors adjacent to the new bag N and, finally, add a leaf-bag {f, p, q} adjacent to N . see Figure B.6a. The obtained tree-decomposition has the desired properties.

• Otherwise, if there is a neighbor B 0 of B with q, x 2 B 0 , then we remove B, make all neighbors of B adjacent to B 0 and finally add a leaf-bag {f, p, q} adjacent to X. The obtained tree-decomposition has the desired properties.

Leaf , the tree-decomposition Leaf (B, X, (T, X)) has width at most 2, same size as (T, X), and B is a leaf. If there are no isolated vertices, we are done. Otherwise, if there is an isolated vertex ↵ in G, then we delete ↵ in all bags of the tree-decomposition Leaf (B, X, (T, X)) and add ↵ to bag B, i.e. make B = {f, p, ↵}. The result is the desired tree-decomposition.

2. Otherwise let B = {f, q, x}.

(a) If x is a neighbor of q, then x and q are in a 2-connected component of G. So there exists a connected component in G \ B containing a vertex adjacent to x and a vertex adjacent to q. From Lemma 11, there is a neighbor X of B in (T, X) containing both x and q. By definition of the operation Leaf , the tree-decomposition Leaf (B, X, (T, X)) has width at most 2, same size as (T, X), and B is a leaf. Then we delete x in B, i.e. B = {f, q}. Finally, if ↵ is an isolated vertex of G, we remove it from any other bag and add it to B. The result is the desired tree-decomposition.

(b) If x is not adjacent to q. If there is a neighbor X of B in (T, X) containing both x and q, then (T, X) is modified as in case 2a. Otherwise, any neighbor of B in (T, X) contains at most one of the vertices q and x.

If there is a neighbor of B in T containing q, then let Y be such a neighbor of B; otherwise let Y be any neighbor of B. We delete the edges between B and all its neighbors not containing x except Y in (T, X) and make them adjacent to Y . If there is no neighbor of B containing x, then x is an isolated vertex and we obtain a tree-decomposition of the same size and width as (T, X), in which there is a leaf bag B = {f, q, x}. It is a required treedecomposition.

Otherwise, let Z be a neighbor of B in (T, X) containing x, then we delete the edges between B and all its neighbors containing x except Z in (T, X) and make them adjacent to Z. Lemma 17. Let (T, X) be a tree-decomposition of a tree G. Let X 2 X and

Then there is a tree-decomposition (T 0 , X 0

) of G of the same width and size as (T, X) such that X is a leaf bag.

Proof. If there is a bag X i for 1  i  d containing x, then let B be X i . Otherwise let B be any neighbor of X. By definition of the operation Leaf , the tree-decomposition Leaf (X, B, (T, X)) is the desired tree-decomposition.

Lemma 18. Let G be a tree rooted at r 2 V (G). Let f be a leaf in G, p be the parent of f and g be the parent of p in G. Let p have degree 2 in G. Let (T, X) be a tree-decomposition of G of width at most 3 and size at most s 1. If there is no bag in (T, X) containing all of f, p, g, then there is a tree-decomposition (T 0 , X 0

) of G of width at most 3 and size at most s such that {f, p, g} 2 X 0 is a leaf bag.

Proof. Since fp 2 E(G), there is a bag B in (T, X) containing both f and p. We may assume that B is the single bag containing f (otherwise, we delete f from any other bag). Similarly, since pg 2 E(G), let X be a bag in (T, X) containing both p and g. Let P be the path in T from B to X. Then p is contained in all bags on P and we may assume that p is not contained in any other bags (otherwise, we delete p from any other bag). Let B 0 be the neighbor of B on P . Then {p} ✓ B \ B 0 . Note that it is possible that B 0 = X. If B = {f, p}, then we make all other neighbors of B adjacent to B 0 and delete B. We add a bag {f, p, g} adjacent to X. The result is the desired tree-decomposition (T 0 , X 0

). Otherwise, B contains at least one vertex not in {f, p}.

We make Z adjacent to all neighbors of B and all neighbors of B 0 , delete the two bags B and B 0 , and delete f, p from all bags. Finally, we add another new bag N = {f, p, g} adjacent to some bag containing g. The obtained tree-decomposition has width at most 3, same size as (T, X), and a bag N = {f, p, g} as a leaf.

Lemma 19. Let G be a tree rooted at r 2 V (G) and |V (G)| 4. Let f be a leaf in G, p be the parent of f and g be the parent of p in G. Suppose that both p and g have degree 2. Let h be the parent of g (see Proof. Let (T, X) be any reduced tree-decomposition of width at most 3 and size at most s 1 of G. We show how to modify (T, X) to obtain a tree-decomposition with width at most 3 and size at most s and in which {f, p, g, h} is a leaf bag.

From Lemma 18, we can assume that there is a bag B in (T, X) containing all f, p, g. We may assume that B is the single bag containing f, p (otherwise, we delete f, p from any other bag). Since gh 2 E(G), let Y be a bag in (T, X) containing both h and g.

1. If B = Y = {f, p, g, h}, then the intersection of B and any of its neighbor in T is contained in {h}. A desired tree-decomposition can be obtained from Lemma 17.

2. If B = {f, p, g}, then the intersection of B and any of its neighbors in T is contained in {g}. From Lemma 17, there is a tree-decomposition (T 0 , X 0) of the same width and size as the ones of (T, X) such that B = {f, p, g} is a leaf. Then we delete B in the tree-decomposition Leaf (B, B 0 , (T, X)) and add a new bag N = {f, p, g, h} adjacent to Y . The obtained tree-decomposition has the desired properties.

3. Otherwise, B = {f, p, g, x} where x 6 = h. Then the intersection of B and any of its neighbor in T is contained in {g, x}. Let P be the path in T from B to Y . Then g is contained in all bags on P . Let B 0 be the neighbor of B on P . Note that it is possible that B 0 = Y . If B \ B 0 = {g}, then {g} separates h from x. So x 2 {f, p} i.e. B = {f, p, g}, a contradiction with the assumption. So we have B \ B 0 = {g, x}. By definition of the operation Leaf , the treedecomposition Leaf (B, B 0 , (T, X)) has width at most 3, same size as (T, X), and B = {f, p, g, x} is a leaf. Then we delete B in the tree-decomposition Leaf (B, B 0 , (T, X)) and add a new bag N = {f, p, g, h} adjacent to Y . The obtained tree-decomposition has the desired properties since {g, x} ✓ B 0 and {g, h} ✓ Y .

Lemma 20. Let G be a tree rooted at r 2 V (G) and |V (G)| 4. Let f be a leaf in G, p be the parent of f and g be the parent of p in G. If p has degree 2 and g has a child f 0 , which is a leaf in

Proof. Let (T, X) be any reduced tree-decomposition of width at most 3 and size at most s 1 of G. We show how to modify (T, X) to obtain a tree-decomposition with width at most 3 and size at most s and in which {f, p, g, f 0 } is a leaf bag.

From Lemma 18, we can assume that there is a bag B in (T, X) containing all of the vertices f, p, g. We may assume that B is the only bag containing f, p (otherwise, we delete f, p from any other bag). Since gf 0 2 E(G), let Y be a bag in (T, X) containing both f and g. We may assume that Y is the single bag containing f 0 (otherwise, we delete f 0 from any other bag).

• If B = Y = {f, p, g, f 0 }, then the intersection of B and any of its neighbors in T is contained in {g}. A desired tree-decomposition can be obtained from Lemma 17.

• If B = {f, p, g}, then we delete f 0 in Y and add f 0 in B; we will be back then to the previous case.

• Otherwise, B = {f, p, g, x} where x 6 = f 0 . The intersection of B and any of its neighbors in T is contained in {g, x}. Let P be the path in T from B to Y . Then g is contained in all bags on P . Let B 0 be the neighbor of B on P . If B \ B 0 = {g, x}, then by definition of the operation Leaf , the tree-decomposition Leaf (B, B 0 , (T, X)) has width at most 3, same size as (T, X), and B = {f, p, g, x} is a leaf. In the tree-decomposition Leaf (B, B 0 , (T, X)), we delete f 0 in Y , remove x from B, and add f 0 to B, i.e. make B = {f, p, g, f 0 }. The obtained tree-decomposition has the desired properties since {g, x} ✓ B 0 . Otherwise, if B \ B 0 = {g}. We delete f 0 from the bag Y , add x to Y , delete x from B, and add f 0 in B, i.e., make B = {f, p, g, f 0 }. Finally, we make all neighbors of B except B 0 adjacent to Y since now {g, x} ✓ Y . The result is the desired tree-decomposition.

Lemma 21. Let G be a tree rooted at r 2 V (G) and |V (G)| 3. Let f be one of the furthest leaves from r, p be the parent of f and g be the parent of p in G. If g has degree at least 3 and any child of g has degree 2 in

Proof. Let (T, X) be any reduced tree-decomposition of width at most 3 and size at most s 1 of G. We show how to modify (T, X) to obtain a tree-decomposition with width at most 3 and size at most s, and in which {f, p, g, f 0 } is a leaf bag.

From Lemma 18, we can assume that there is a bag B in (T, X) containing all the vertices f, p, g. We may assume that B is the only bag containing f, p (otherwise, we delete f, p from any other bag).

1. If B = {f, p, g}, then the intersection of B and any of its neighbors in T is contained in {g}. The desired tree-decomposition can be obtained from Lemma 17.

2. Otherwise, B = {f, p, g, x}. In this case, the intersection of B and any of its neighbors in T is contained in {g, x}.

(a) If there is a neighbor B 0 of B such that B \B 0 = {g, x}, then by definition of the operation Leaf , the tree-decomposition Leaf (B, B 0 , (T, X)) has width at most 3, same size as (T, X), and B = {f, p, g, x} is a leaf. We delete x in B in the tree-decomposition Leaf (B, B 0 , (T, X)) since {g, x} ✓ B 0 . The obtained tree-decomposition has the desired properties.

(b) Otherwise any neighbor of B contains at most one of the vertices g and

x. If x is not adjacent to g, then there is a connected component in G \ B containing a neighbor of g and a neighbor of x. From Lemma 11, there exists a neighbor bag of B in (T, X) containing g and x. This is a contradiction and x is hence adjacent to g in this case.

i. x is a child of g. Then x has exactly one child y, which is a leaf in G since f is one of the furthest leaves from r. Since yx 2 E(G), there is a bag Y in (T, X) containing both y and x. We may assume that Y is the only bag containing y (otherwise, we delete y from any other bag). Since {g, x} ⇢ B and any neighbor of B contains at most one of the vertices g and x, any bag except B contains at most one of the vertices g and x. Then g / 2 Y because x 2 Y . The vertices y, x, g are hence not contained in one bag. From Lemma 18, we can modify (T, X) to obtain a tree-decomposition (T 0 , X 0

) of width at most 3 and size at most s having a leaf bag X = {y, x, g}. Note that x (resp. y) plays the same role as p (resp. f) in G, i.e., g, p, f and g, x, y are symmetric in G. Hence, the result is the desired tree-decomposition. ii. x is the parent of g. Let p 0 be another child of g and let f 0 be the child of p 0 , which is a leaf in G. Let B 0 be the bag in (T, X) containing both f 0 and p 0 . We may assume that B 0 is the only bag containing f 0 (otherwise, we delete f 0 from any other bag). Let X 0 be a bag containing both p 0 and g. Then we have X 0 6 = B (because p 0 / 2 B). Since g 2 X 0 , any bag except B contains at most one of the vertices g and x, we have x / 2 X 0 . In the following, we modify (T, X) to obtain a tree-decomposition (T 0 , X 0

) with width at most 3 and size at most s having a bag {f 0 , p 0 , g}. We will be back then to case 1, since g, p, f and g, p 0 , f 0 are symmetric in G. If B 0 = X 0 = {f 0 , p 0 , g} then, we are done. If B 0 = X 0 = {f 0 , p 0 , g, x 0 }. Then x 0 6 = x, which is the parent of g, since x / 2 X 0 . So we can do as in case 2a or case 2(b)i. Otherwise, B 0 6 = X 0 . From Lemma 18, we can modify (T, X) to obtain a tree-decomposition with width at most 3 and size at most s having a leaf bag {f 0 , p 0 , g}.

Lemma 22. Let G be a tree rooted at r 2 V (G) and |V (G)| 4. Let f a leaf in G, p be the parent of f , and g be the parent of p. If p has exactly two children

Proof. Let (T, X) be any reduced tree-decomposition of width at most 3 and size at most s 1 of G. We show how to modify (T, X) to obtain a tree-decomposition with width at most 3 and size at most s and in which {f, f 0 , p, g} is a leaf bag.

Since fp 2 E(G), there is a bag B in (T, X) containing both f and p. We may assume that B is the only bag containing f (otherwise, we delete f from any other bag). Similarly, let B 0 be the only bag in (T, X) containing both f 0 and p. Let X be a bag containing both p and g.

= X = {f, f 0 , p, g}, then we can assume that B is the only bag containing p (otherwise, we delete p from any other bag). The intersection of B and any of its neighbor in T is contained in {g}. The desired treedecomposition can then be obtained from Lemma 17.

2. If B = B 0 = {f, f 0 , p}, then the intersection of B and any of its neighbors in T is contained in {p}. Let Y be a neighbor of B in T containing p. By definition of the operation Leaf , the tree-decomposition Leaf (B, Y, (T, X)) has width at most 3, same size as (T, X), and B = {f, f 0 , p} is a leaf. We delete B and add a new bag N = {f, f 0 , p, g} adjacent to X. The result is the desired tree-decomposition.

If B = B 0

= {f, f 0 , p, x} and x 6 = g, then the intersection of B and any of its neighbors in T is contained in {p, x}. Since x / 2 {f, f 0 , g}, p is not adjacent to x. There is a connected component in G \ B containing a neighbor of p and a neighbor of x. From Lemma 11, there exists a neighbor bag of B in (T, X) containing p and x. Let Y be such a neighbor of B in T . By definition of the operation Leaf , the tree-decomposition Leaf (B, Y, (T, X)) has width at most 3, same size as (T, X), and B = {f, f 0 , p, x} is a leaf. We delete x from B and obtain a tree-decomposition having a bag {f, f 0 , p}. We will be back then to case 2.

Proof. Let (T, X) be any reduced tree-decomposition of width at most 3 and size at most s 1 of G. We show how to modify (T, X) to obtain a tree-decomposition with width at most 3 and size at most s and in which {p, f, f 0 , f 00 } is a leaf bag.

Since fp 2 E(G), there is a bag B in (T, X) containing both f and p. We may assume that B is the only bag containing f (otherwise, we delete f from any other bag). Similarly, let B 0 (resp. B 00) be the only bag in (T, X) containing both f 0 (resp. f 0) and p. three children. We assume then that |V (T p)| 3. There is a bag R 2 V (T p) containing both p and g. We root T p at R. Let L 2 V (T p) be one of the furthest leaf bags in T p from R. If there is no child of p in L, then we can delete p from L and consider T p \ {L}. We can assume then that there is a vertex l 2 L, which is a child of p in G. Let Y be the neighbor of L in T p . If the intersection of L \ Y = {p}, then p separate any vertex in L \ {p} and any vertex in Y \ {p}. So at least one of the bags L, Y contains only p and children of p. We denote this bag by X. Either X contains at least two children of p or X contains only one children and |X| = 2. So (T, X) and X satisfy the desired properties.

We make Z adjacent to all neighbors of Y, L in T and delete Y, L. Finally, we make X adjacent to R. The obtained tree-decomposition and X have the desired properties.

Otherwise, Y has at least another child L 0 in T p . Then L 0 is also a furthest leaf from R in T p , since L is a furthest leaf from R. For the same reason as L, there is a vertex l 0 2 L, which is a child of p in G. Let L = {l, p, x, y} and L 0 = {l 0 , p, x 0 , y 0 }. The intersection of L (resp. L 0) and any of its neighbors in T except Y is contained in {x, y} (resp. {x 0 , y 0 }). We create a new bag N = {x, y, x 0 , y 0 } adjacent to all neighbors of L and L 0 and delete L and L 0 . Finally, we add another bag X = {p, l, l 0 } adjacent to Y . The obtained tree-decomposition and X have the desired properties.

From Lemmas 19-23 and Corollary 9, we obtain the following result. Corollary 11. s 3 and a minimum size tree-decomposition of width at most 3 can be computed in polynomial-time in the class of trees.

Proof. From Corollary 9, it is enough to prove that we can find a 3-potential-leaf in any tree in polynomial time.

Let G be any tree.

We root G at any vertex r. Let f be one of the furthest leaves from r in G. Let p, g, h be the first three vertices on the path from f to r in G (if they exist), i.e. p is f 's parent; g is the parent of p, and h is the parent of g in G.

• If g, p both have only one child in G, then {f, p, g, h} is a 3-potential-leaf of G from Lemma 19;

• If p has only one child and g has a child f 0 , which is a leaf in G, then {f, p, g, f 0 } is a 3-potential-leaf of G from Lemma 20;

The vertices v 1 , . . . , v j 2 V (G), for 2  j  |V (G)|, are consecutive in C (we also say that they are consecutive in G) Proof. Let (T, X) be any tree-decomposition of width at most 3 and size at most s 1 of G. We show how to modify (T, X) to obtain a tree-decomposition with width at most 3 and size at most s, and in which {a, b, c, d} is a leaf bag.

Since {a, b, c} induces a clique in G, there is a bag B containing all of the vertices a, b, c. Let X be a bag in (T, X) containing both c and d (such bag exists since cd 2 E(G)). Note that b is not incident to any chords, i.e. has degree 2. In fact, if by 2 E(G) is a chord in G, then deleting all chords except ac, by in G and contracting the edges in C except ab, bc we get a K 4 -minor in G. This is a contradiction with the fact that G is outerplanar.

We replace vertices b, c with vertex a in all bags of (T, X). Then (T, X) becomes a tree-decomposition (T 0 , X 0

) of the graph G 0 obtained by contracting the edges ab and bc. The bag X becomes X 0 , which contains both a and d, and

From Corollary 8, in both cases there exists a neighbor Y of B 0 such that B 0 ✓ Y . So B 0 can be reduced in (T 0 , X 0

). The tree-decomposition Reduce(B 0 , Y, (T 0 , X 0)) has one bag less than (T, X). Finally, add a new bag N = {a, b, c, d} adjacent to X 0 , which contained both a and d, in the tree-decomposition Reduce(B 0 , Y, (T 0 , X 0

)). The result is the desired tree-decomposition, because b, c are not adjacent to any vertices in V (G) \ N . Proof. Let (T, X) be any tree-decomposition of width at most 3 and size at most s 1 of G. We show how to modify (T, X) to obtain a tree-decomposition with width at most 3 and size at most s and in which {a, b, c} is a leaf bag.

Since {a, b, c} (resp. {c, d, e}) induces a clique in G, there is a bag X (resp. Y) containing all the vertices a, b, c (resp. c, d, e). Note that b, c, d are not adjacent to any vertices in V (G) \ {a, b, c, d, e}.

We delete b, c, d in all bags of (T, X). Then (T, X) becomes a tree-decomposition

From Corollary 8, in both cases there exists a neighbor A of X 0 such that X 0 ✓ A. So X 0 can be reduced in (T 0 , X 0

). Similarly, the bag Y becomes Y 0 , which can also be reduced in (T 0 , X 0). After reducing the two bags X 0 , Y 0 in (T 0 , X 0

), let the obtained tree-decomposition be (T 00 , X 00

). Finally, add two new bags N 1 = {a, b, c} and N 2 = {a, c, d, e}; make N 1 adjacent to N 2 and make N 2 adjacent to a bag Z containing both a and e in the tree-decomposition (T 00 , X 00) (Z exists because ae 2 E(G 0).) The result is the desired tree-decomposition.

Lemma 27. Let C l be a cycle of l 4 vertices. Let (T, X) be a tree-decomposition of C l of width at most 3. Then there exist either a bag containing all vertices of V (C l) (only if l = 4) or two bags X, Y 2 X such that X (resp. Y) contains at least three consecutive vertices . Proof. The treewidth of any cycle is bigger than 1, so there exists a bag in any treedecomposition of a cycle (with at least 4 vertices) containing two vertices which are not consecutive (not adjacent in the cycle). We prove the lemma by induction on l in the following.

First let us prove that it is true for l = 4. Let a, b, c, d be the four consecutive vertices in C 4 . Let (T, X) be a tree-decomposition of width at most 3. Then there exists a bag containing a, c or b, d. W.l.o.g we assume that a, c are contained in one bag. So (T, X) is also a tree-decomposition of the graph H obtained from C 4 by adding the edge ac. The set {a, b, c} induces a clique in H. So there is a bag X containing a, b, c. For the same reason, there is a bag Y containing c, d, a. If X = Y then there is a bag containing all a, b, c, d of V (C 4). Otherwise there are two bags X, Y such that X ◆ {a, b, c} and Y ◆ {c, d, a}. We see that {ab, bc} \ {cd, da} = ;. So the lemma is true for l = 4. Now, let us suppose it is true for l  n 1 and prove it for l = n 5. Note that since (T, X) has width 3 and l 5, there is no bag containing all vertices of V (C l). So in the following we prove that there always exist two bags X, Y with the desired properties. Let v 1 , . . . , v n be the n consecutive vertices in C n . Let (T, X) be a tree-decomposition of width at most 3 of C n . Then there exists a bag containing two non-adjacent vertices v i , v j for 1  i < j  n. So (T, X) is also a tree-decomposition of the graph H obtained from C n by adding the edge v i v j . The graph H is also the union of two subcycles C 1 induced by {v i , . . . , v j } and C 2 induced by {v j , . . . , v n , . . . , v i }.

)) be the tree-decomposition of C 1 (resp. C 2) obtained by deleting all vertices not in C 1 (resp. C 2) in the bags of (T, X).

)| 4 then, by induction, there exist either a bag in Proof. Let (T, X) be any tree-decomposition of width at most 3 and size at most s 1 of G. We show how to modify (T, X) to obtain a tree-decomposition of G, which has width at most 3, size at most s and a leaf bag {a, b, c, d}.

Note that the vertices of C 0 induce a cycle in G. Without confusion, we denote this cycle by C 0 . Let (T 0 , X 0

) be the tree-decomposition of C 0 obtained by deleting all vertices not in C 0 in the bags of (T, X). From Lemma 27, there is either a bag containing all vertices in C 0 (only if |C 0 | = 4), or two bags X, Y containing three consecutive vertices in C 0 respectively and the two corresponding edge sets do not intersect.

In the former case, V (C 0) = {a, b, c, d} and so (T, X) is also a tree-decomposition of G [{ac}, from Lemma 25, {a, b, c, d} is a 3-potential-leaf of G.

In the latter case, let X ◆ {u, v, w} and Y ◆ {u 0 , v 0 , w 0 }, where u, v, w (resp. u 0 , v 0 , w 0) are consecutive in C 0 . Since {uv, vw} \ {u 0 v 0 , v 0 w 0 } = ;, we have either xy / 2 {uv, vw} or xy / 2 {u 0 v 0 , v 0 w 0 }. W.l.o.g. we assume that xy / 2 {uv, vw}. Then u, v, w are also consecutive in C and at least one of u, w has degree 2 in G. W.l.o.g. we suppose that w has degree 2 in G, i.e.w / 2 {x, y} (since x, y have degree at least 3 in G). Let z 2 C 0 be the other neighbor (except v) of w in C 0 (z exists because w / 2 {x, y}.) (T, X) is also a tree-decomposition of G [{uw}, which is still an outerplanar graph by our assumptions. Note that w has degree 3 in the graph G [{uw}. So from Lemma 25, we can modify (T, X) to obtain a tree-decomposition (T 0 , X 0

) of G [{uw}, which has width at most 3, size at most s and a leaf bag L containing four consecutive vertices {u, v, w, z}. Note that (T 0 , X 0

) is also a treedecomposition of G. So we obtain a tree-decomposition where a leaf bag contains 4 consecutive vertices of C 0 . It remains to show how to modify it to obtain a treedecomposition with a leaf bag {a, b, c, d}.

Let B be the neighbor of L in T . Then u, z 2 B since each of u, z is adjacent to some vertices in G \ L. We can assume that L is the single bag containing v, w in (T 0 , X 0

), because otherwise we can delete them in any other bags. Thus, by deleting the bag L in (T 0 , X 0

), we get a tree-decomposition (T 1 , X 1) of the graph G 1 , which is the graph obtained by deleting v, w and adding an edge uz in G. So (T 1 , X 1) has width at most 3 and size at most s 1. Note that the graph G 1 is isomorphic to the graph G 2 ⌘ G [{ad} \ {b, c} since z 2 C 0 . So from the tree-decomposition (T 1 , X 1) of G 1 we can obtain a tree-decomposition (T 2 , X 2) of G 2 with the same width and size. Note that since ad 2 E(G 2), there is a bag Y containing both a and d. Finally, we add a new bag N = {a, b, c, d} adjacent to Y in (T 2 , X 2). The result is the desired tree-decomposition. • If there exists an inner face f with at most one chord of G and f has at least four vertices, then from Lemma 28, the set of any four consecutive vertices in f , which are also consecutive in C, is a 3-potential-leaf in G.

• If there is an inner face f = {a, b, c} with only one chord ac of G and c has degree 3, then let d be the other neighbor of c except b, a. From Lemma 25, the set of four consecutive vertices a, b, c, d, is a 3-potential-leaf in G.

• Otherwise, let F be the set of all inner faces with only one chord of G. Then any face f 2 F has three vertices and both the two endpoints of the chord in f have degree at least 4, i.e., they are incident to some other chords except this one. We can prove by induction on |V (G)| that: We prove that it is true for |V (G)| = n. Note that F 6 = ; if there is at least one chords in G, which is valid in this case. Let f 2 F have three consecutive vertices x, y, z and let xz 2 E(G) be the single chord in f . Then the graph G\y is a 2-connected outerplanar graph with n 1 vertices. From the assumption, we have the desired faces f 0 0 , f 0 1 , f 0 2 in G \ y. If xz is not an edge in any face of f 0 1 , f 0 2 , then these faces are also the desired faces in G. Otherwise, let xz be an edge of f 0 1 or f 0 2 = {x, z, t}. Then z has degree 3 in G, i.e. it is not incident to any other chords except xz, since xt 2 E(G). So we are in second case above, which contradicts with the assumption.

In the following, let f 0 , f 1 , f 2 be the faces as in Claim 19. If ae 2 E(G), then from Lemma 26, {a, b, c} is a 3-potential-leaf of G.

Otherwise, we can prove that any tree-decomposition of G of width at most 3 can be modified to a tree-decomposition of G [{ae} with the same width and size in the following. So {a, b, c} is a 3-potential-leaf of G.

Let (T, X) be a tree-decomposition of width at most 3 and size at most s 1 of G. Let (T 0 , X 0) be the tree-decomposition obtained by deleting all vertices not in f 0 . Then (T 0 , X 0) is a tree-decomposition of f 0 (f 0 is used to denote the face and the cycle induced by vertices in f 0 as well). From Lemma 27, there is a bag containing three consecutive vertices u, v, w in f 0 and uv, vw case of trees. Indeed, our polynomial-time algorithms to compute s k , k  3, in trees mainly rely on the fact that, for any tree T , there exists a minimum-size tree-decomposition of T with width at most 3, where each bag induces a connected subtree. This is unfortunately not true anymore in the case of minimum size treedecompositions with width 5. The example in Figure B.14b illustrates this fact. In the example, we have a tree G (with 10 nodes) obtained from a star with three 3 leaves by subdividing twice each edge. For G, s 5 (G) = 2 and any minimum size tree-decomposition has a bag X such that G[X] is disconnected.

Appendix C

Résumé des travaux de thèse La fibre optique permet de véhiculer des données à très haut débit sur de longues distances. C'est pour cela que la quasi-totalité du trafic internet est transportée Dans le chapitre 5, nous avons étudié le problème RSA dynamique avec Push-Pull. Nous avons proposé deux algorithmes exacts pour résoudre le problème en optimisant deux critères différents, la longueur du chemin de routage et le délai d'attribution du spectre. Nous avons également modifié un algorithme existant de SA avec Push-Pull, pour qu'il retourne la position dans le spectre qui minimise le délai. Les résultats d'expérimentations ont montré que l'intérêt de nos algorithmes est plutôt de nature théorique car un algorithme existant offre un meilleur compromis entre le délai, la probabilité de blocage et le temps d'exécution. Les pistes de recherche pour le problème RSA dynamique avec Push-Pull pourraient inclure l'optimisation d'autres critères à la place du délai et de la longueur du chemin de routage. Il serait également intéressant d'essayer de combiner les techniques proactives et réactives de défragmentation avec Push-Pull afin de diminuer encore plus la probabilité de blocage du spectre. Enfin, il serait bien d'examiner le cas où non seulement une demande, mais plusieurs demandes arrivent en même temps et nous avons besoin de décider si elles peuvent toutes être satisfaites.

C.6 Liste des publications

Journal international