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Abstract

The News-Vendor Problem (NVP) has been continuously studied over the
last decades for the decision making in manufacturing and service indus-
tries. Although a lot of work has been done in the NVP area, interest on
this topic does not decrease. As new trends emerge in business, e.g. interna-
tional flow of products and e-commerce, retailers are facing new situations
and the literature of NVP needs to be enriched. In this work, we propose
three new NVP extensions considering important issues faced by the NV:
multiple discounts, product variety and assortment as well as drop-shipping
and product returns problems that are related to e-commerce. Our work
adds value from earlier achievements in several aspects: relaxation of as-
sumptions, consideration of new issues, new formulations and methodology
as well as interesting insights. We formulate the models and give the opti-
mality conditions of the order quantity. Useful insights are provided based

on numerical studies.

In particular, for dealing with overstock, we present a NVP model with
price-dependent demand and multiple discounts. We prove the concavity of
the expected profit on order quantity under general demand distributions.
The optimal initial price and discount scheme are also analyzed. The prod-
uct variety is treated in a multi-product NVP with demand transfer (the
demands of products not included in the assortment proposed in the store
are partly transferred to products retained in the assortment) and demand
substitution between products that are included in the assortment, by fo-
cusing on the joint determination of optimal product assortment decision
and optimal order quantities for products that are included in the assort-
ment to optimize the expected total profit. For e-commerce, we consider
a NV managing both a physical store inventory and a sale channel on in-

ternet that is fulfilled by a drop-shipping option, as well as the possibility



of reselling products that are returned by consumers during the selling sea-
son. The concavity of the expected profit is proven and various results are

obtained from a numerical analysis.

Some managerial insights are derived from these models: using multiple
discounts can increase the expected profit remarkably and it is shown that
it is better to decrease the selling price slowly in the beginning of the selling
season. The increase of the fixed cost related to including a product variant
in the assortment will reduce the optimal assortment size and also the ex-
pected profit. Moreover, drop-shipping, can bring some important increase

of the expected profit.

Key words: Inventory management, News-Vendor Problem, Multiple dis-

counts, Substitution, Assortment, Drop-shipping, Product returns
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Introduction

In this chapter, we give a general introduction for the work carried out in this thesis.
The objective of this chapter is: first, to provide a description of the various types of
products for which the inventory modelling approach used in this thesis can be applied;
second, to give details on the News-Vendor Problem (NVP) which is the inventory
control problem that our work is based on; third, to describe the work done in this

thesis and present our main contributions.

1.1 Background

The News-Vendor (NV) context which this thesis is based on is particularly adapted
for some types of products characterized by a short life cycle, long replenishment times
and/or seasonal demand patterns. Indeed, the world economy is six times larger than
it was half a century ago, growing at an annual rate of 4% during the period. New
technologies have paved the way for more efficient production systems in a wide range of
industries and have promoted the economic growth. The rise of globalization, especially
over the past two decades with the growing trade and financial integration of the world
economy led to much faster diffusion of ideas and cultural products [I]. One of the most
profound changes in the last decade is the dramatic shrinkage of product life cycles [2]
because of the ever-increasing competition: a manufacturer faces competition from
many other global companies in addition to local manufacturers and everyone offers
more and more new products to the market with innovations brought by technological

advances. For example, electronic products update very fast: iPhone has tens of major
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releases since the original one born in 2007. For fashion, apparel, luxury and other soft-
good industries, the product life cycle is also very short. Zara, for instance, delivers
new products twice a week to its 1,670 stores around the world. This adds up to more
than 10,000 new designs each year [3].

The second important characteristic for products of interest (those for which the
NVP is well suited) is the seasonal profile observed in sales. Many retail businesses see
a great part of their profits generated in one or two seasons during the year, the end-of
year or Christmas season being such a typical busy period. Examples of products with
highly seasonal demand include: Christmas gifts, Valentine gifts, fireworks, swimwear,
holidays, clothes, etc. Another obvious example of demand seasonality is the great
online sale peak (in 2015 for example, 91.2 billion CNY in 24 hours) which happens on
11 November, the ”singles day” in China.

These products which have short selling periods are called seasonal products com-
pared to permanent products which are displayed in markets all the time. Seasonal
products bring many challenges especially for retailers because the demand is uncer-
tain: they need to make a purchasing order before the selling season because of the
long production and/or distribution lead time compared with the short selling period;
if the stock is not enough, there is a risk that there will be an underage in the selling
period and a penalty cost should be paid in many situations; if the order quantity is too
big, there will be depreciation at the end of the season. Managers often have to make
decisions regarding the inventory level over a very limited period, this is the case, for
example with seasonal products such as Christmas cards that should satisfy all demand
in December, but any cards left in January have almost no value.

Retailers of seasonal products need to sell products within a short time while the
needs of consumers are constantly changing. A successful retailer managing seasonal
products must satisfy two requirements: to adjust for trends and to improve revenue.

Three characteristics should be especially considered for such products.
e dealing with overstock (discount)
e product variety

e free product returns policy



1.2 Context: the News-Vendor Problem

Indeed, using discounting can permit to reduce the risk of overage for products sold
in the season. Besides, product variety and assortment decision is a key factor for prod-
ucts offered to consumers. Furthermore, product returns is a more and more observed
phenomenon in contexts such as retail e-commerce. The goal of the present thesis is to
consider these three extensions in order to contribute to enhance the understanding of
challenges associated with the NV inventory control problem. Our aim is to contribute
to the development of models pertaining to the NVP, so as to gain useful guidelines for

practitioners.

1.2 Context: the News-Vendor Problem

The NVP, also known as the single-period inventory problem or Newsboy Problem, is a
classical problem in inventory management aiming at finding the optimal order quantity
which maximizes the expected profit under probabilistic demand. Its name derives from
the context of a NV purchasing newspapers to sell before knowing how many will be
demanded that day. The optimal order quantity is deduced from the trade-off between
two situations: if the order quantity is not enough, the NV loses some possible profit; on
the other hand, if the order quantity is too large, overstock happens. It occurs whenever
the demand is random, a decision must be made regarding the order quantity prior to
finding out how much is needed, and the economic consequences of having ”too much”
and "too little” are known. The NVP has a long history that can be retrospected to [4]
in which a variant is used to describe and solve a bank cash-flow problem. The NVP
has been paid more and more attention over the past half century. The increasing
attention can be explained that the NVP is applicable in many real situations: service
industries [5] that have gained increased dominance, fashion and sporting industries
[6], etc.

In Sect. we will firstly present the basic model of NVP. In Sect. we
will present early achievements on NVP by dividing the extensions of the NVP into 4

categories.

1.2.1 Basic problem: classical NVP model

To solve the classical NVP, researchers have developed an approach by maximizing the

expected profit. To show how this research approach works, we define the following
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notations. These notations will be used throughout the thesis.

X the demand during the selling season, a

random variable

f(x) the probability density function of x
F(x) the cumulative distribution function of x
v unit selling price

w unit purchasing cost

S unit salvage value

p unit shortage penalty

Q order quantity, the decision variable

Since the demand is not realized before the selling season, the NV does not know
the future profit. The traditional approach is based on assuming a risk neutral NV
who decides the optimal order quantity before the selling season to get the maximum

expected profit. The profit per period is:

W_{vx—w@%—s(@—x) ifex <@ (1.1)

vQ —wQ — p(r — Q) otherwise

By taking the expected value of w, we get the following expected profit:

Q Q
E(m) = /0 (s—w)Qf(a:)da:+/0 (v—s)zf(x)dx +

/Oo(v—w—i-p)Qf(x)dx—i-/oo —pxf(z)dx (1.2)
Q Q

By using Leibniz’s rule to obtain the first and second derivatives, we show that F(7)
is strictly concave. The optimal order quantity (Q*) condition satisfies the following
formula:

_ptv—w

@)=t (13)
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The expected profit corresponding to the optimal order quantity @Q* turns to be:
inf

E(m(Q") = (v —s)u— (v —5+p) / of(x)da (1.4)

*

Some researchers use also a cost minimizing approach to solve the problem in terms
of balancing the costs of underestimating and overestimating demand and they find

same results. We use the expected profit maximizing approach in our work.

1.2.2 Early achievements

After [7] formulated the NVP, interest in the NVP remains unabated and many ex-
tensions to it have been proposed in the last decades. [8] reviewed these extensions
and classified them into 11 categories: 1. Extensions to different objectives and utility
functions. 2. Extensions to different supplier pricing policies. 3. Extensions to different
NV pricing policies and discounting structures. 4. Extensions to random yields. 5. Ex-
tensions to different states of information about demand. 6. Extensions to constrained
multi-product. 7. Extensions to multi-product with substitution. 8. Extensions to
multi-echelon systems. 9. Extensions to multi-location models. 10. Extensions to
models with more than one period to prepare for the selling season. 11. Other exten-
sions. [9] extended the prior review by considering several specific extensions such as
integrating marketing effort, stock dependent demand, and buyer risk profiles and how
they influence the determination of the optimal NV order quantity.

These two works bring lot of convenience for future research, however, there are some
extensions of NVP not included in these categories, e.g. NVP extensions considering
the product assortment problem or product returns. We use a more intuitive way
to classify the research works on the NVP by considering three actors (supplier, NV
and consumers) and one object (product). Therefore, we can classify the different
extensions developed so far into four categories as illustrated in Figure In fact,
the extensions on the NVP are based on different assumptions according to activities
that can be described in these 4 categories. For example, the extension considering
quantity discounts comes from the fact that suppliers often provide discounts for the
NV according to the quantity he/she orders. This discount activity is operated by the
supplier. The NV also uses discount to attract consumers, this activity is operated by
the NV. By using this method, we provide an intuitive way to present the extensions

on NVP and future extensions can find their positions in this classification.
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Objective of the NV
Risk profile of the NV
Initial inventory
Multiple discounts
Marketing effort

Random vyield

Quantity discounts
Emergency supply option
Multiple suppliers

* Price-dependent demand
¢ Multiple locations
* Stock-dependent demand

* Product substitution
+ Assortment
* Product returns

Figure 1.1: 4 categories of NVP extensions

1.2.2.1 Extensions concerning the supplier

Extensions in this category consist of random yields (the production capacity of the
supplier is a random variable), quantity discounts, emergency supply option, etc, for
both single- and multi-supplier cases. Some of these extensions are described below.
Random yield: [I0] reviewed random yield models, and presented five basic ap-
proaches: (i) a Bernoulli process; (ii) stochastically proportional yield; (iii) stochastic
yield proportional to order quantity; (iv) random capacity; and (v) general model that
specifies the probability of each output for each order quantity. [11] solved the NVP
under multiple suppliers with stochastic yield. [12] derived the optimal order quantity
for interdependent demand and supply for a NV facing stochastic supply yield, in addi-
tion to stochastic demand. Increasing product complexity, manufacturing environment
complexity and product quality all lead to uncertainties in production. [I3] assumed
the productive capacity is a random variable y, fo(y) is the probability density of y,
and Fp(y) is the cumulative distribution function of y. The planned production is Q,
so the actual production is min{@,y}. [13] proved that the expected profit is concave
on order quantity and the optimal quantity is the same with the classical NVP model.

Quantity discounts: The determination of the optimal order quantity when the
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supplier offers quantity discounts has been treated in many NVP extensions [14] [15]
16]. There are basically three types of quantity discounts [14]: a. All-units quantity
discounts (for Q such that ¢; < @ < gj41, the cost per unit is w;. The discount
applies to all units purchased); b. Incremental quantity discounts (the discount applies
only to the additional units after the break-points); c. Carload-lot discounts (any
quantity in the ”carload-lot” interval assesses the maximum cost). [I4] showed that the
behavior of a NV facing an all-units quantity discount depends on the cost of disposing
of excess inventory which can be: (i) zero, (ii) negative and (iii) positive. [17] proposed
algorithms for solving a NVP in which Q is made up of a number of containers with
standard sizes. The NV can choose any combination of container sizes. The larger the
container the smaller the unit cost. [I6] considered all-units and incremental quantity
discounts and dual performance measures. [I5] proposed three extensions to the NVP:
(1) supply of inventory is a random variable due to a supplier with variable capabilities,
(2) suppliers are charged a penalty for not being able to meet contract obligations; the
penalty can be fixed or proportional to the quantity of shortage and (3) a secondary
supplier can supply additional units when the primary supplier can’t provide @Q*. The
secondary supplier charges a higher unit price.

Emergency supply option: [18] assumed that when the primary supplier can not
provide Q*, a secondary supplier can supply additional units. But only a proportion of
demand can be satisfied from the emergency supply option in case of a shortage. r is
the unit cost from the emergency supply option while w < r < v+ p. [I8] showed that
the optimal order quantity is smaller than the optimal order quantity in the classical
problem: in presence of emergency supply, some demand is not lost when there is a
shortage. [19] incorporated the drop-shipping as an emergency option into the single-
period model framework and showed that it can lead to a significant increase in expected
profit. [20] assessed three different organizational forms that can be used when a store-
based sales network coexists with a web site order network. The three organizational
forms are store-picking, dedicated warehouse-picking and drop shipping. Authors used
a NV type order policy model to compare the three different models and to analyze the
impact of some parameters on inventory policies in the supply chain. [2I] proposed a
mixed mode that utilizes both traditional and drop-shipping modes for seasonal fashion
and textiles chains, in order to take full advantage of demand fluctuation and improve

the profit-making ability.
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Multiple suppliers: [22] studied a supplier selection problem, where a buyer,
while facing random demand, is to decide ordering quantities from a set of suppliers
with different yields and prices. [23] considered the problem of a NV that is served by
multiple suppliers, where any given supplier is defined to be either perfectly reliable
or unreliable. [24] addressed the supplier selection and purchase problem with fixed
selection cost and limitation on minimum and maximum order sizes under stochastic

demand.

1.2.2.2 Extensions concerning the NV

Extensions in this category consist of different objectives and profiles of the NV, ini-
tial inventory, multiples discounts and marketing effort. Some of these extensions are
described below.

The NV with other objectives: Besides the objective to maximize the expected
profit or minimize the expected cost, some researchers consider the maximization of the
probability of achieving a target profit |25 26, 27]. They suggested that maximizing
the probability of achieving a target profit level is a realistic managerial objective in
the NVP.

Risk profile: The NV can have various risk preferences including, risk-neutral,
risk-averse and risk-seeking preferences. Alternative risk preferences such as loss-
aversion, have also been analyzed in the context of the NVP. [28] provided a detailed
investigation of the effects of risk, risk aversion and changes in various price and cost
parameters for a risk-averse retailer. [29] investigated the pricing, ordering and promo-
tion policies of a risk-sensitive (risk-averse or risk-seeking) NV under price-dependent
and stochastic demand. [30] examined the ordering policy of a loss-averse NV.

Initial inventory: This situation occurs in practice when there is an initial stock
I or a stock of convertible units that can be transformed into end items [31, 32] [33].
[32] showed that expected profit is concave in I and @ and that there is a critical level
of I above which no order will be placed under certain yield, and this level is the same
under random yield.

Multiple discounts: It happens frequently in practice that multiple discounts are
progressively used to sell excess inventory. Multiple discounts are especially common
in the apparel industry where discounts get steeper as the season draws to an end. [27]

solved a NVP with multiple discounts with these assumptions: every discount results
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an additional demand, which is proportional to the original demand; the remaining
inventory can be sold at the final discount. [27] proved that for the NVP under pro-
gressive multiple discounts, the expected profit is concave and developed the optimality
condition.

Marketing effort: The assumption is that the demand is influenced by marketing
effort (e.g. advertising). An increase in mean demand due to marketing effort leads to
an increase in the optimal stocking quantity *, but it is not so clear for the impact of
an increase in demand variability. [34] proved that the optimal marketing effort can be
determined by the following formula, where C is the unit cost of effort: (U_w)% — % =
0. The analysis presented is extended to a situation where marketing effort affects
demand in a way that demand variance decreases as more effort is made in the selling
season. [35] examined the effects of demand randomness on optimal order quantities
and the associated expected costs by applying mean-preserving transformations to the

demand variable.

1.2.2.3 Extensions concerning consumers

Price-dependent demand: The demand can be influenced by the selling price. Ex-
tensions on this subject give some basic price-demand relationship assumptions. The
linear and multiplicative relationships are the basic ones.

In the classic NVP, the selling price is considered as exogenous, over which the
retailer has no control. This is true in a perfectly competitive market where buyers are
mere pricetakers. However, retailers may adjust the current selling price in order to
increase or decrease demand. Therefore, several researchers have suggested extensions
of NVP in which demand is assumed to be price dependent. [36] assumed that price-
dependent demand is affected additively by a random variable, which is independent
of the selling price. [37] introduce the case of a multiplicative model in which the
stochastic demand is affected multiplicatively by a random variable. Price-dependent
demand NVP has then been largely studied [26] 3T, 38, [39, [40} 4T].

Location: Multi-location NVP extensions can be divided into two types: (1) all lo-
cations have the same selling season and (2) the selling seasons of the different locations
lag each other. [42] analyzed the effects of centralization on the multi-location NVP.
In this model, there are n retail centers which raises the opportunity for centralization.

[42] compared the expected cost of two configurations: (a) a decentralized system in
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which a separate inventory is kept at each center and (b) a centralized system in which
inventory is kept at central warehouse. [42] assumed normal demand distribution and
linear holding and penalty costs and showed that the expected cost of the decentral-
ized facilities exceeds that of the centralized facility with the difference depending on
the correlation of demands. For uncorrelated and identically distributed demands, the
expected cost of the centralized facility increases as the square root of the number of
consolidated centers. [43] considered the situation where a NV exploits the difference
in timing of selling seasons of geographically dispersed markets. For example, a US
garment maker can sell his/her remaining summer fashion in Australia where summer
is about to begin. [43] treated both centralized and decentralized case.
Stock-dependent demand: [44] was the first to consider stochastic demand when
inventories stimulate demand within a single-product, single-period setting. [45] devel-
oped a stochastic model that jointly optimized inventory and price and captured the
effects of a store’s fill-rate on consumer utility. [46] proposed a more general, stochas-
tic demand modeling framework that encapsulates the influence of inventory on the
demand distribution. They provided insights on the optimal inventory policy of a sin-
gle product when price is also a decision variable. [47] employed the same modeling
framework to capture the dependence of demand on inventory in a stochastic setting

and extended it to the case of two products under product substitution.

1.2.2.4 Extensions concerning products

In the real situation, it is not usual for a retailer to sell only one product. Two products
or even multiple products could be involved in the business. With multiple products,
the NV needs to consider the substitution effect (some consumers preferring one product
which is out of stock could buy other products for substitution) and to decide which
products to sell in the selling season. In addition, product return is also an important
issue for retailers to considering when they are making decisions. Here are some related
extensions on NVP.

Substitution: The topic of product substitution in inventory management first
appears in [48]. Papers on this topic can be divided into 3 categories according to the
substitution type: papers of the first category deal with one-direction substitution or
firm-driven substitution, where only a higher grade (e.f. quality, size, etc.) product

can substitute a lower grade product, when the supplier makes decisions for consumers

10
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on choosing substitutes (see, e.g., [49, 50, [51] 52), 53]). The second category consists of
papers where arriving consumers’ number follows a stochastic function and consumers
make purchasing decisions under probabilistic substitution when their preferred product
is out of stock (see, e.g., [54] and [55]). The third category consists of papers considering
that each product can substitute for other products and the fraction that one out-
of-stock product is substituted by another product is deterministic (see[48, 56, 57,
58, B9l 60, 611, 62, [63], 64]). [61] obtained optimality conditions for both competitive
and centralized versions of the single period multi-product inventory problem with
substitution.

Assortment and substitution: Assortment planning in the area of NVP has been
extensively studied too. [65] made a comprehensive review of the recent literature. In
some papers, the substitution effect and the assortment planning are simultaneously
considered. Two major types of demand modelling were used in earlier achievements:
utility maximization (see [59], 66, [67]) and exogenous demand models (see [54} [68]). [66]
considered a static substitution model with multinomial logit (MNL) demand distribu-
tions assuming that consumers are rational utility maximizers. They show that in this
model the optimal solution consists of the most popular product. [55] studied a joint
assortment and inventory planning problem with stochastic demands under dynamic
substitution (assuming that a consumer’s choice is made from stock on hand) and gen-
eral preferences where each product type has per-unit revenue and cost, and the goal
is to maximize the expected profit. Assuming that consumer sequences can be sam-
pled, they propose a sample path gradient-based algorithm, and show that under fairly
general conditions it converges to a local maximum. [67] consider a single-period joint
assortment and inventory planning problem under dynamic substitution with stochastic
demands, and provide complexity and algorithmic results as well as insightful structural
characterizations of near-optimal solutions for important variants of the problem.

Product returns: In the literature, consumer returns are typically assumed to be
a proportion of products sold (e.g.[69, [70} [71, [72] [73]), which obviously implied that if
more items are sold, more products will be returned from consumers. [74] empirically
showed that the amount of returned products has a strong linear relationship with
the amount of products sold. Based on the assumption that a fixed percentage of
sold products will be returned and that products can be resold at most once in a

single period, [70] investigated optimization of order quantities for a NV style problem

11
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in which the retail price is exogenous. [75] considered a manufacturer and a retailer
supply chain in which the retailer faces consumer returns. [76] also assumed that a
portion of sold products would be returned and discussed the coordination issue of a
one manufacturer and one retailer’s supply chain. [73] examined the pricing strategy
in a competitive environment with product returns. [77] considered consumer return
for retailer who is confronted with two kinds of demand: one needs immediate delivery
after placing an order and the other accept delayed shipment, and a NV model with
resalable returns and an additional order is developed. However, the model was under
assumption that total demand distribution is given and each kind of demand presents

a proportion of the total demand and concavity is not proved.

1.2.3 Motivations

Although lots of work have been done in the NVP area, interest in the NVP is still
important. The literature of NVP has seen a big rise in the last decade. As economic
activities are showing new tendencies, e.g. international cooperation and e-commerce,
retailers are facing new situations. As a result, the literature of the NVP needs to be
enriched. In the following, we highlight some motivations with regard to models we
develop in this thesis.

Our models aim at solving problems encountered in practice within a NV framework.
Multiple discounts, product variety and e-commerce (i.e. drop-shipping and product
returns) are three important issues that we consider.

First, we are inspired by the fact that most retailers use several discounts to sell
excess inventory. In this situation demand depends on product selling price and dis-
counts are a certain percentage of the initial selling price. Indeed, in many situations,
demand depends on product’s selling price since demand would increase when selling
price decreases. This relationship enables retailers to adjust the selling price to influ-
ence demand. In chapter 2, we consider this problem and assume that demand is price
dependent. Two special demand-price relations are considered: additive and multi-
plicative cases. The motivation for the assumption of multiple discounts is reported
in [27]. In realistic situations, multiple discounts are progressively used to sell excess
inventory that, in turn, impact demand. This is for instance encountered in the apparel

industry where the initial selling price has an important influence on demand realized
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during the regular selling period and discounts get deeper as the season draws to the
end.

Second, product variety is another key element that is interesting to analyze in a
NV context. Demand for variety comes both from the taste of diversity for an indi-
vidual consumer and diversity in tastes for different consumers. However, despite the
advantages of product variety, the full range of variety cannot be supplied generally,
owning to the increase in inventory, shipping, and merchandise presentation (i.e. prod-
uct display cost), etc. Within this context, the optimization of product assortment (i.e.
products that will be offered for purchase within the store), and the optimal order quan-
tity for each product, is a relevant decision that retailers face. By considering multiple
products, two important factors should be considered to optimize the assortment and
the optimal order quantities. First, product variety brings possible substitution when
underage happens: the different variants of the same product (variants are products of
different colors for instance), may act as substitutes when the consumer finds that a
product is out of stock. Second, besides the purchasing cost which increases with the
order quantity, there is a fixed cost associated with each variant of product included in
the assortment, e.g. the material handling and merchandise presentation cost stemming
mainly from the space and labor cost required to display products in the store, etc.
Joint assortment planning and inventory management problems with substitution have
been extensively studied in the literature [65]. However, some limits exist in earlier
works, e.g. [54] assumed that the order quantities are set to achieve a fixed service
level and give two bounds of the product demand. The final results are based on the
approximation of the demand and the numerical examples are mainly in the case of
items with uniform market share. We consider two effects in a multi-product NVP: the
transfer of demand owning to the unlistment of some products, then the substitution
between products included in the assortment and give the formulation of the expected
total profit.

Third, e-commerce activity along with the drop-shipping option is another variant
that we analyze. In recent years, retailers have used the drop-shipping mode as an
order fulfilment strategy. Drop shipping is especially interesting for seasonal products.
Seasonal products have short selling season and long lead replenishment time thus the
order is placed to a faraway supplier before the selling season and it is not possible to

place another one during the season when the retailer finds that the product is out of
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stock. Then drop shipping can be used to fulfill this part of demand. We assume a
mixed strategy to satisfy demand: use both store inventory and drop shipping option.
The motivation of this assumption is reported in [19]. A disadvantage of e-commerce
is that product returns are especially problematic: products sold through e-commerce
tend to have higher return rate than traditional process [70]. As the classical NVP,
store demand (the demand of consumers shopping physically in the store) is satisfied
by store inventory. The NV can use the store inventory to satisfy internet demand
and has in addition a drop shipping option for internet demand. When products are
delivered, some consumers are unsatisfied and then a portion of products is returned

to the store.

1.3 Description of the manuscript and main contributions

This thesis consists of 3 main parts. Those three parts deal with the inventory man-
agement for a NV by focusing on specific points. Chapter 2 addresses particularly the
pricing and overstock issues by introducing multiple discounts. Chapter 3 rather fo-
cuses on the assortment planning problem by considering the substitution effect for a
NV who provides multiple products. Chapter 4 focuses on the mixed supplying strategy
for a NV who uses drop-shipping to satisfy Internet demand and has a free return pol-
icy. Those chapters are all organized in the same way: introduction, related literature
revue, modeling, formulation of the model, numerical results and conclusion.

In more details, Chapter 2 considers a NVP with multiple discounts that are used
progressively after the regular selling season. The demand is price dependent and the
NV decides the initial selling price to make a maximal profit. As we know, the optimal
initial price is affected by the discount scheme (which consists of discount frequency
and discount percentages), and the initial price itself affects the optimal inventory
decision. Therefore, we analyze the joint determination of optimal order quantity,
optimal initial selling price and optimal discount scheme. Firstly, we prove the concavity
of the expected profit in function of the order quantity. We develop a general expression
of the optimal order quantity for both the additive and multiplicative price-dependent
demand cases with general demand distributions and provide a simple expression of
the expected profit corresponding to the optimal order quantity. In addition, these

expected profit equations show a much clearer insight into the impact of initial price and
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discount number on the expected profit. Approximate functions for the expected profit
are derived. Numerical examples show that at a given initial price, the expected profit
increases with the discount number, but it has an upper bound. It is not reasonable to
use too many discounts, because the increasing speed of the expected profit decreases
and tends to be zero. For additive demand, the expected profit is approaching the
maximum value with the linear discount scheme and with the exponentially declining
scheme for multiplicative demand. Numerical examples show also that the approximate
functions provide accurate results.

In Chapter 3, we extend the classical NVP to consider the assortment and substitu-
tion effects. We develop a model considering demand transfer and demand substitution.
The transfer and substitution fractions are formulated. Then, a random-walk Monte
Carlo method provides an efficient computational approach to get the value of the ex-
pected optimal profit and optimal order quantities for a product assortment. Numerical
examples show insights regarding the performances of the NVP. Our examples indicate
that demand transfer and substitution have important impacts on the assortment, ex-
pected profit, and optimal order quantities. With a global optimization policy, several
results can be derived from numerical results: the expected profit decreases with the
fixed cost value, the fraction of lost sale and demand uncertainty. Assortment size in-
creases with the fraction of lost sale but decreases with the fixed cost value. The model
can easily be adapted to problems with other kinds of substitution such as one-item
substitution, which can be treated in the same way by our model only changing the
demand transfer and substitution equations.

In Chapter 4, we consider a NVP with drop-shipping option to satisfy demand.
Many retailers use a mixed drop-shipping and store inventory strategy to satisfy de-
mand. In this chapter we formulate a NV model for inventory management of a mixed
supplying strategy considering different return rates for different kinds of delivery: store
inventory to store demand, drop-shipping for internet demand and store inventory to
internet demand. We provide the optimal solution for store order quantity under gen-
eral demand distributions and the expression of the corresponding expected profit. In
a situation where the return rate of drop-shipping is higher than the one of store inven-
tory to internet demand delivery, the expected profit is proved to be a concave function
of the store order quantity under a reasonable condition. Our examples indicated a high

reliance on store inventory for the NV and thus it is not reasonable for the e-retailer to
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use only drop-shipping option and the higher is the return rate related to drop-shipping
option, the higher is the reliance on store inventory.

At the end of the manuscript, we close the thesis by giving general concluding
remarks and highlighting directions for future research.

The work associated with Chapter 2 was presented on the 5th International Confer-
ence on Information Systems Logistics and Supply Chain held at the Castle of Breda,
Netherlands. We have submitted it to ”Journal of Industrial and Management Op-
timization”. The work of Chapter 3 was presented on the International Conference
on Industrial Engineering and Systems Management held at Seville, Spain and has
been submitted to "OR Spectrum”. The work of Chapter 4 has been submitted to

”International Journal of Production Research”.
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NVP with price-dependent

demand and multiple discounts

Existing papers on the NVP that deal with price dependent demand and multiple
discounts often analyze those two problems separately. This chapter considers a setting
where price dependence and multiple discounts are observed simultaneously, as is the
case of the apparel industry. Henceforth, we analyze the optimal order quantity, initial
selling price and discount scheme in the NVP context. The term ”discount scheme”
is often used to specify the number of discounts as well as the discount percentages.
We present a solution procedure of the problem with general demand distributions and
two types of price-dependent demand: additive and multiplicative case. We provide
interesting insights based on a numerical study. An approximation method is proposed

which confirms our numerical results.

2.1 Introduction

Pricing and multiple discounts are common features observed in real life NVP. In many
situations, demand depends on product’s selling price since demand would increase
when selling price decreases. This relationship enables retailers to adjust the selling
price to influence demand. Furthermore, multiple discounts mean that the retailer uses
a certain number of discounts to sell excess inventory, rather than performing only
one discount. In realistic situations, multiple discounts are progressively used to sell

excess inventory that, in turn, impact demand. This is often encountered in the apparel
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industry where the initial selling price has an important influence on demand realized
during the regular selling period and discounts get deeper as the season draws to the
end. This end of season, for example, is called the discount period in France, which
happens twice every year.

The work we carry in this chapter is motivated by the fact that most retailers use
several discounts to sell excess inventory. In this situation demand depends on the
selling price and discounts are a certain percentage of the initial selling price. The
term ”discount scheme” is often used to specify the number of discounts as well as the
discount percentages. A special discount scheme where the discount prices are equally
spaced, is called a linear discount scheme. In this work, given the unit purchasing
cost, salvage value and the price-demand relationship, we are concentrating on the
determination of the order quantity, the initial selling price and the discount scheme
that would maximize the expected profit. Two special demand-price relations are
considered: additive and multiplicative cases. In the additive case, the mean demand
decreases linearly with the selling price, while in multiplicative case, the mean demand
decreases exponentially. These two relations are common expressions used to represent
the price-dependent demand in practice [9]. [27] obtains the optimality condition of
the order quantity for a NV considering multiple discounts. [78] extends to the case
where multiple discounts are used and the demand is price-dependent. The concavity
is proved for the NVP with uniformly distributed demand, the condition of optimal
order quantity is obtained while the discount prices are linear and the demand-price
relationship is considered to be additive.

This chapter extends the work of [78] since: (1) we demonstrate the concavity for
the NVP with multiple discounts and price-dependent demand under general demand
distributions and obtain the optimality condition of the order quantity, i.e. the con-
cavity is not limited to uniform distribution; (2) we provide a simple expression of the
optimal expected profit; (3) we obtain optimality conditions of the order quantity for
both additive and multiplicative demand case; (4) based on a numerical study, we show
some new insights, e.g. on the optimal discount scheme; (5) under some conditions we
write the expected profit function in a manner that enables to search the numerical
optimal initial selling price. This approximation method confirms the insights observed

in numerical studies.
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2.2 Literature review

The rest of this chapter is organized as follows. Section 2.2 presents the literature
review related to the work we carry in this chapter. In section 2.3, we formulate the
multiple discounts and price-dependent NVP. In Section 2.4, we solve the order quantity
and initial pricing decisions with the objective of maximizing the expected profit, for
additive price-dependent demand. Numerical examples are then provided. In Section
2.5, we treat the case of multiplicative demand in the same way. Section 2.6 contains

further discussions and some suggestions for future research.

2.2 Literature review

Interest in price-dependent and multiple discounts problem goes on in the last decades.
One of the latest work is [79] who consider the price-dependent and multiple dis-
counts problem with multiple periods over a product’s life. [79] review works on price-
dependent and multiple discounts problem, but they are not focused on the NVP.
Therefore, we review the earlier achievements in the area of NVP, which consists of
two streams, i.e.: (1) the NVP with price-dependent demand and (2) the NVP with
multiple discounts.

In the classic NVP, the selling price is considered as exogenous, over which the
retailer has no control. This is true in a perfectly competitive market where buyers
are merely pricetakers. However, retailers may adjust the current selling price in order
to increase or decrease demand. Therefore, several researchers have suggested exten-
sions of NVP in which demand is assumed to be price dependent. [36] assumes that
price-dependent demand is affected additively by a random variable, which is indepen-
dent of the selling price. [37] introduce the case of a multiplicative model in which the
stochastic demand is affected multiplicatively by a random variable. [26] examine the
pricing and ordering policies of a NV facing a random price-dependent demand under
two different objectives, (1) the objective of maximizing the expected profit and (2) the
objective of maximizing the probability of achieving a certain profit level. Analytical
solutions are obtained for the additive price-demand relationship with normal distri-
bution. They develop numerical procedures for another case of demand: the demand
distribution is constructed using a combination of statistical data analysis and experts’
subjective estimates. [31] investigates the joint pricing and ordering decisions under

general demand uncertainty, aiming to reveal the fundamental properties independent
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of demand pattern. Unimodality of the expected profit function that traces the best
price trajectory over the order-up-to decision was proved under the assumptions that
the mean demand is a monotone decreasing function of price. [38] investigate the price-
dependent NV model in a competitive environment. They show the conditions for the
existence of the pure-strategy Nash equilibrium and its uniqueness. [39] introduces a
price-dependent demand with stochastic selling price into the classical NV, analyses
the expected average profit for a general distribution function of price and obtains
an optimal order quantity. [40] studies the channel coordination with a return policy
that lets the manufacturer share the risk of demand uncertainty. The manufacturer’s
decision is to identify both the optimal wholesale price and the return policy, based
on the retailer’s reaction on that offer. The retailer in turn optimizes the retail price
and the order quantity to meet a price-dependent uncertain demand. [4I] develops a
distribution free approach to NVP with price-dependent demand for the situations in
which the NV may be missing demand distribution information or historical demand
data may not fit any standard probability distributions. Lower bounds on the expected
profit are shown to be jointly concave in price and order quantity.

[27] solves a NVP in which multiple discounts are used to sell excess inventory.
In this model, retailers progressively increase the number of discounts until all excess
inventories are sold out. The product is initially sold at a regular price vy. After some
time, if any inventories remain, the unit price is reduced to v1, vg > v1. Then, a second
discount with a selling price va(v; > v2) is made, etc. The amount demanded for each
value of v; is assumed to be a multiple of the demand realized at the regular selling price
and moreover, the coefficients are assumed to be given. [27] solves the problem under
two objectives: (a) maximizing the expected profit and (b) maximizing the probability
of achieving a target profit. [27] shows that the expected profit is concave and derived
the sufficient optimality condition for the order quantity. A closed-form expression for
the optimal order quantity is obtained for the objective of maximizing the probability
of achieving a target profit. [80] develops an algorithm for identifying the optimal
order quantity for the multi-discount NVP when the supplier offers the NV an all-units
quantity discount. [81] provide a solution algorithm to the multi-product multi-discount
constrained NVP. [78] extends the NVP to the case where demand is additively price
dependent and multiple discount prices are used to sell excess inventory. Given the

initial price and linear discount scheme, he solved the condition of the order quantity
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which maximizes the expected profit prior to any demand being realized. [82] consider
an inventory problem for gradually obsolescent products with price-dependent demand
and multiple discounts. They assume that the increase of demand due to price change
is linearly correlated with the difference between prior and present prices. However,
the demand is assumed to be deterministic as a function of time, which is a limited
assumption for the NVP context.

Our work focuses on the NVP and differs from previous works according to the dif-
ferent points summarized in Table We generalize the NVP with multiple discounts

in three aspects: price-demand relation, demand distribution and discount scheme.

parameter [27] [78] our work
price-demand relation fixed additive additive and multiplicative
demand distribution | general | uniform and normal general
discount prices known linear all types (linear and non-linear)

Table 2.1: Comparison with the work of Khouja (1995,2000)

2.3 The problem under study

Figure represents the sequence of events in a selling season. A season consists of
n+1 sub-periods where each sub-period i (i=0,...,n) is characterized by a unit selling
price and a stochastic demand which depends on the selling price offered to customers
during the sub-period. At the beginning of the season, the NV buys from the supplier a
quantity @ of products at unit price w. This quantity has to cover all demand during the
selling season since we assume in this model that the NV can not buy products during
the season. In sub-period i=0, i.e. the regular selling period, the product unit selling
price is vg, the random demand is Xy and the realization of X is x¢. In sub-period i=1,
i.e. the first discount period, the product unit selling price is v, the total demand until
the end of this period (including Xy) is Xi, and z; is the realization of X;. The rest of
periods can be deduced in the same way. As selling season goes on, the discounts get
deeper and the NV captures some additional demand in each discount period, until the
final discount period, i.e. sub-period i=n, where all remaining products are disposed

of at a unit price s where s = v,,. These discount prices are not given, but for a linear
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scheme, the discount prices are equally spaced between vy and s. Otherwise, we call it

a non-linear scheme.

The objective of our problem is to find the order quantity ) that maximizes the

expected profit.

reaular first N_1th final
g. discount discount discount
period ) . .
period period period
unit selling price: Vo ‘ Vi Vha V=S
demand realizations: Xo X1 77 Xy X1

Figure 2.1: Sequence of events for a selling season

Define the following notations used in Chapter 2:

Xo Demand during the regular period with mean ¢ and standard deviation
00

o Realization of X

f Density function of X

F Cumulative distribution of X

Xi(i >0) Demand accumulated till the sub-period i, with mean p; and standard
deviation o;, u, = oo (all products are disposed of with s)
zi(i > 0) Realization of X;

Given variables:

s Salvage price per unit, s = v,
w Purchase price per unit

Decision variables:
vo Regular selling price (initial price) per unit,
n  The number of discounts during the season
v;  Unit selling price at the i-th discount period, vg > vy > --- > v; > -+ > v,
@ Order quantity

The random profit function is a multivariate function of selling prices and the order
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demand
quantity:
[ 00Q —wQ 20> Q
voxo + (Q — xzo)v1 — wWQ 20 < Q<21
vozo + (z1 — zo)v1 + (Q — z1)v2 — WQ 21 <Q < x2
Q) =1 : (2.0)

voxo + (x1 — xo)v1 + -+ + (Tic1 — i—2)Vi—1 + (Q — Ti—1)vi — WQ i1 < Q<

vozo + (21 — xo)v1 + -+ (Tn—1 — Tn—2)Vn-1+ (Q — Tn—1)vn —WQ Tp_1 <Q

The profit related to the interval: z;_1 < @ < z;, is the sum of the revenue of the
regular period vz, the first i-1 periods (z; — zg)vy + -+ - + (xj—1 — Ti—2)v;—1, and the
i-th period (@ — x;—1)v;, subtracted by the total purchase cost w@.

Let us remark that the quantity demanded at the i-th discount period is a function
of the quantity demanded in the first (regular) period and the selling price associated
with the i-th discount. This function depends on how the price-demand relation is
modeled. Hence two cases are considered, the additive price-dependent demand (cf.

Section 2.4) and the multiplicative price-dependent demand (cf. Section 2.5).

2.4 Optimal pricing and ordering decisions for additive

price-dependent demand

In the case of additive price-dependent demand, the mean demand u decreases linearly
with the price v, i.e., u = a — bv, a and b are both positive constants obtained from
historical data. [78] assumes that v = W — Bz, where B is a positive constant known
to the NV (it equals to 1/b in our model), and W is a random variable with a known
probability distribution whose realization becomes known only after ordering. At the
end of the regular period, g becomes known, thus W can be calculated by: W = v+ 7.
We refer readers for more details to [78], which has considered the additive price-
dependent demand case, as explained in the literature review section. Then z; =

(W — v;)b can be written as:

T = xo + Mg — Mo (2.1)
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2.4.1 Optimal expected profit and optimal order quantity

If we replace x; in the profit function 7(Q) by xp (equation 2.0), we can derive the
expected profit function E(7(Q)) (c.f. Appendix 1).

The expected profit can be developed to (c.f. Appendix 1):

E(r(Q)) =

Ql—w + vy + Z(Uz‘ﬂ — ;) F(Q + po — 1)) +
i=0
n—1

Q+up—u;
Z/ (vi — vit1)(x + u; — ug) f(x)dx
i=0 /0

Lemma 1. The expected profit function E(m(Q)) is concave.

Proof. The proof is provided in Appendix 2. O

The condition of the optimal order quantity is given by:

n—1

Z(Ui —0i41)FIQ" + po — ps]) —vo +w =0 (2.3)
=0

When n=1, we get the optimality condition for the classical NVP:

F(Qx) = 27 (2.4)

Vg — S

According to equation the first term of equation [2.2]is zero for Q*. So, we have:
. noleQ* fpo—p
@) =3 [ (01— vi1) (& + i — o) f(@)da (2.5)

=0

Equation gives the optimal expected profit. We note that when n=1, we get the
profit associated with the classical NVP:

"
Br(@) = [ (0= s)af(@yie (2.6)
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2.4.2 Numerical Analysis

We use normally distributed demand (e.g. [78]) in our examples. Other demand distri-
butions will also work. The concavity enables us to search the optimal order quantity
by using a Golden Section method (The golden section search is a technique for finding
the extremum of a strictly unimodal function by successively narrowing the range of
values inside which the extremum is known to exist). Given a discount scheme, we
obtain the expected profit for an arbitrary value of the initial selling price by equation
2.5l Thus we can search the optimal initial price by numerical global optimization
methods.

Consider a practical example: A supplier provides a new type of T-shirt at a price
w = 3 Euros per piece. The amount of demand(X) has a normal distribution N( g, 09),
the mean py will decrease linearly with the price(vg): po = a — bvg. T-shirts can be
disposed of at the end of the selling season with a price s. A manager finds that multiple
discounts can improve the profit. The problem is: before the selling season, he needs
to determine the order quantity, the initial selling price and discount scheme in order

to maximize the profit.

2.4.2.1 First case: Linear discount scheme

s

v; = oy * vg, and in the linear discount case, a; = 1 — 17T7T°z(z =1,..,5). Consider
oo = 0 (deterministic distribution), 2, 4, 6, 8; n increases from 2 to 21, a = 80, b = 8,
and s = 2. By setting vop = 8, we have pp = 16. Figure shows E(m(Q*)) as a
function of n.

The graph shows that the expected profit E(m(Q*)) increases with the discount
number n (with ¢ = 2, the expected profit is improved by about 100% with n = 5
compared with the classical case n = 1), but the increase speed is decreasing and tends
to be 0 when n — oco. The reason for this result is that when n > 1, the NV has
more opportunity to sell more products at unit price bigger than s and the opportunity
tends to a limit when n — oo. We find that the expected profit decreases with oy.
This is reasonable because for the classical NVP with normally distributed demand,
the expected profit decreases with the uncertainty too. We repeated computations
similar to figure for many different combinations of w(w € [2,4]), s(s € [1,3]),
a(a € [60,100]), b(b € [6,12]), vo(vy € [6,12]), and similar results are obtained.
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180

expected profit

110
2

I I I I . . . I L
4 3 8 10 12 14 18 18 0 2
discount number

Figure 2.2: Expected profit E(7(Q*)), as a function of the discount number, for normally
distributed demand

In real life, the value of n would be limited. So we consider n = 5 in our analysis.
Then vy changes from 7 to 11. For each value of vy, equation [2.5] gives the related

expected profit value. Figure [2.3]is the computing graph of the expected profit.

165

do=0
To=2
ag =4
oa =6 H
To =

160

1851

180

1451

140

expected profit

135

130

1251

120 . . . . . . . . .
B5 7 75 8 85 3 95 10 105 11 115
initial price

Figure 2.3: Expected profit E(7m(Q*)), as a function of the intial price

The graph shows that for the different oy = 0, 2,4, 6,8, the expected profit is con-
cave, thus we can derive the optimal value of the initial price from the graph. Similar
results are got repeating the computations with different combinations of w, s, a, b, n.

oo reflects the degree of uncertainty in demand forecast and according to pg =
a — byg, b’s magnitude reflects demand’s sensitivity to price. The value of oy and
i determine the probability function f(z). Using equation table gives the
values of v§, @* and E(w(Q*,v()) for various combinations of b, o and n. v, Q* and

E(m(Q*,v)) all increase with n; the effects of b follow intuitive expectation too: a lower
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value of b enables the firm to set a higher price, have a larger quantity of products,
and realize a higher expected profit. When the uncertainty increases, E(m(Q*,vg))

decreases. This reflects the potential value of reducing demand uncertainty.
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test ‘ n ‘ b ‘ 00 ‘ vy ‘ Q* ‘ E(m(Q*,v5))
1 4| 6 2 | 10.20 | 55.8 249.0
2 416 | 4 |10.18 | 55.9 246.9
3 41 6 6 | 10.24 | 56.1 245.0
4 41 6 | 8 | 10.23 | 56.9 243.4
5) 4| 8 | 2 | 854 | 504 153.3
6 4| 8 | 4 | 858 | 49.8 151.6
7 41 8| 6 | 859 | 49.6 150.2
8 |4 8 | 8 | 857 | 500 148.6
9 4 |10 2 | 6.60 | 46.3 95.0
10 |4 ]10] 4 | 6.64 | 44.5 94.3
11 |4]10] 6 | 6.64 | 44.3 93.6
12 |4]10| 8 | 6.61 | 44.6 92.2
13 | 5] 6 2 | 11.41 | 56.6 263.9
14 |5 6 | 4 | 11.51 | 56.4 262.0
15 | 5] 6 | 6 | 11.47 | 56.7 260.2
16 | 5| 6 | 8 | 11.54 | 574 258.2
17 | 5] 8 | 2 | 881 | 51.9 159.8
18 |5 8 | 4| 871 | 509 158.6
19 | 5| 8 | 6 | 875 | 50.8 157.4
20 | 5] 8 | 8 | 881 |51.2 155.8
21 |5 (10| 2 7.09 | 45.7 100.1
22 | 5110 4 | 7.06 | 45.0 99.8
23 | 510 | 6 | 7.01 |45.1 98.8
24 | 5110 8 | 7.09 | 45.3 97.6
25 |6 6 | 2 |11.90 | 57.6 271.5
26 | 6] 6 | 4 |11.90 | 57.2 270.0
27 | 6] 6 | 6 | 11.88 | 57.5 268.3
28 | 6] 6 | 8 | 12.0 | 58.2 266.3
29 |6 8 | 2 | 891 | 52.6 164.5
30 |6 8| 4 | 891 | 515 163.7
31 |6] 8| 6 | 894 | 51.6 162.6
32 | 6] 8 | 8 | 891 | 521 161.0
33 | 610 | 2 | 7.16 | 44.8 103.8
34 | 610 | 4 | 7.18 | 45.7 103.3
35 |6 ]10| 6 | 7.19 | 45.8 102.3
36 | 6|10 8 | 7.18 | 46.1 100.0

Table 2.2: The optimal order initial price, order quantity and expected profit for different

combinations of n,b,oy for normally distributed demand
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2.4.2.2 Second case: Non-linear discount scheme

Consider the numerical example n = 5,0 = 4,w = 3,s = 2,a = 80,b = 8. The
discount prices were produced as: ajvg, qovgy, Q3vg, 4V, S. In the linear case, a; =
1-— ?z(z =1,...,5). Then «; is generated by adding a term to these proportions for
non-linear cases. We produce a series of discount scheme produced with a certain logic
in order to asses the sensitivity of the linear discount scheme.

a;=1— %H—coe(a’)—i)i(i =1,...,5). We change the coefficient coe to control the
perturbation of the linear discount scheme. We show here 7 series of discounts (coe=-

0.03, -0.02, -0.01, 0, 0.01, 0.02, 0.03) (Figurd2.4), and compute the optimal expected
profit (Table [2.3)).

—&—scheme 1
—HB—scheme 2
——scheme 3
—+ linear scheme
—+—scheme 4
scheme §
—&—schame B

o o
o @

e
o
ft

percentag
o o o o
W = o

o
i

discount number

Figure 2.4: Discount schemes

scheme ‘ coe ‘ optimal expected profit

linear 0 158.5
1 -0.03 144.9
2 -0.02 151.1
3 -0.01 155.8
4 0.01 159.1
5 0.02 157.8
6 0.03 153.4

Table 2.3: Optimal epected profit for different discount schemes

The first line in table 2.3] is the linear case. Others are non-linear. For coe > 0,
when coe is larger, the discount scheme curve is farther from the linear discount line
and we found that the maximum expected profit decreases. The optimal initial price

tends to decrease two. For coe < 0, when coe decreases, we find the same properties.
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And when the coe has the same absolute value, the positive one lead to bigger expected
profit,e.g. the expected profit of scheme 5 is bigger than that of scheme 2. In our cases,
the linear scheme gives almost the largest expected profit, but the expected profit of
scheme 4 is a little bigger. The extreme case of non-linearity is the case where all the
first four discounts are 100% or the same to s. This is the same to the case that only

one discount s happens: the classical NVP.

To summarize, after the discount number is fixed, it is more profitable to cut down
the price slowly at the beginning of the season and then at a faster magnitude at the
end of the selling season. The linear discount scheme brings an expected profit which

is very close to the best one.

2.4.3 Approximation of the optimal expected profit and condition for
the optimal initial price

The above numerical examples show some interesting properties, e.g. the expected
profit seems to be a parabola function of the initial price and the optimal initial prices
for different demand uncertainties are close to each other, see figure 2.3 However,
they are not obvious to be explained from equation An approximation method is
proposed in order to explain them and it provides a faster way for the NV to make
decisions. We write equation [2.5] in another way, by two steps. In the first step we
consider the deterministic demand case. In the second step, we introduce the impact
of the uncertainty of demand. The equation of the expected profit can therefore be

decomposed in 2 components:

E(r(Q) =Es+ Ey +e¢ (2.7)

FE, is a part of expected profit depending on o only, F, is a part of expected profit
depending on the prices the NV uses only and € is an error. Equation [2.7] allows us to
get the optimality condition of vg. In order to be clearer, principle results are presented

in table 2.4
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Distribution Ulpo — o0, o + o0] | N(po,00)
Condition for e =0 Vi, 00 < % Vj,00 < %
E(#(QY)) E, + E, E, + E,
E(m(Q¥)) for linear case equation [2.11 equation [2.11]
E, equation [2.8 equation [2.]

E, equation [2.9 equation [2.10]
v equation 4.14 equation 4.15

Table 2.4: Expected profit function for uniform and normal distributions

We have:
n—1l Q" 4po—p
Br@) =Y [ (0 — Vi) (@ + i — po) () dz;
=0
and

n—1

Z(Ui = vip1) F[Q" + po — pi] = vo — w

=0

For a NVP with uniformly distributed demand for example, if Vj,u; —uj—1 > 0¢/2.
There must be a i that if j > 4, then F(Q* — pu; + po) = 0 and if j < 4, we have
F(Q* — 1y + o) = L.

Thus, F(Q* — p; + po) = ﬁ

We have F(Q* — u; + po) > 0, as a result, % > 0, thus v; > w. In other words,
the inventory with quantity Q* is all sold with prices higher than the purchasing price
w. In fact, when the total discount number n is fixed, the latter discounts are unused,
as a result, if the NV cuts the price slower in the beginning (before the price is cutten to
be lower than w), more discounts are really used. This explains why the best discount
scheme cuts down the price slowly in the beginning of the selling season and faster in
the ending, in our numerical examples. Though the demand distributions have higher
uncertainties, it can be explained in the same way. The optimal expected profit can be
written as: E(m(Q*)) = (vo—v1)po+(v1 —v2) i+ 4 Wi —vi) (1) + fy? 0T (-
vis1)(@ + pi — po) f(x)dz. We have [ 07 (v — vip1) (@ + pi — o) f(x)da = (v; —
w)p; — 2 (v — vig1)(1 = (2:25% — 1)%). Then, E(7(Q*)) = E, + E,, with

Vi —Vi41
__90. _ _ 9 Ui W N2y
By = =2 = via)(1 - 22— 1)) = Ofen)
E, = (vo —v1)po + (v1 —vo)pr + -+ + (vie1 — v) (pi—1) + (v; — w) 4 (2.8)
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Lemma 2. For an additive price dependent demand with uniform distribution(U [ug —
00, o + 00] ), the optimal expected profit E(mw(Q*)) is the sum of E,, E, and an error
€; E; = O(0y), a function of the uncertainty og; if Vi, o9 < %, e=0.

Similarly, for any demand distribution function who has an upper bound and a
lower bound, the optimal expected profit can be developed to the sum of E,, E,
and e. The most used distributions, like normal distribution, Poisson distribution,
can be approximated by bounded distributions. For example, we can use triangular
distribution to approximate normal distribution. Here we give the expressions of FE,
for normal distribution and uniform distribution and the conditions that makes ¢ = 0:

For uniform distribution, if Vj, oo < #=5= € = 0,

o) Vi —wW 2
Es,=——(v; —v; 1-2—— -1 2.9
(s~ o)1 - (22 1)) (29)
For normal distribution, if Vj, oo < #==1 ¢ =0,
o v—w
Ey ~ —og(vi — vip1) f(F T (——— (2.10)
Vi — Vi1

The ” =~ ” comes from the fact that it’s not a finite distribution.

A numerical example can well verify these results(c.f. Appendix 5). It’s practically
feasible for the manger to approximate the expected profit by F,+ E,, and numerically
it’s faster. Taking the classical NVP with uniform distribution for example: FE, =
(vo — vi)po + (vo — w)po = (vo — w)po; By = —F(vo — s)(1 — 22=% — 1)%); if
Vi,o0 < 5%, € = 0, in fact this condition can be satisfied for all op because u; = oo.
Developing equation [2.6] we get the same equation as F, + E.

For a NV with additive demand, z; = u; + €, and u; = a — bv;. a and b are both
positive constants, and ¢ is a random variable with a probability density function and
cumulative distribution function with a mean of zero. When discounts are linearly
decreasing, v; = vo — (vg — s)i/n. In conditions that make e = 0, the optimal expect

profit is developed to:

b(w + s) b o bws b
TUO—I—§w —aw—%—i—i(w—vl)(vzﬂ—w)
(2.11)

Subtract E(7w(Q*)) by E, and the last term, it turns to be a parabola of vy and

E(r(Q")) = Eo—i—(—g—%)v%—l—avo—l—

hyperbola of n.
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x b b b
E(r(QY)) = Ea+Q(UO*S)2+(UO*U})(@*WO)*%(UO*M)(UO*8)+§(w*w)(vi+1*w)
(2.12)
Then
. b(w + s b bws b
E(r(QY)) = a+(22n)v§+avg+(2n)vo+2w2aw2n+2(wvi)(vi+1w)
(2.13)
In conditions that make ¢ = 0, the expected profit function is the sum of E, with order
25, the last term with order - (we have 0 < Pw —vi)(vig1 —w) < %%) and a

function of vy and n.
This function is a parabola of vy and hyperbola of n. This explains the numerical

results that the expected profit increases with n but has an upper limit.

2na+b(w+s)

We define v, the optimal condition of the parabola, v, = SIGES))

. Obviously,

the v, increases with n.

2.5 Optimal pricing and ordering decisions for multiplica-

tive price-dependent demand

In the case of multiplicative price-dependent demand, [37] assume that: Xo = u(vo)e,
¢ is independent of price. The demanded quantity till the i-th discount period can
be expressed as: X; = p(v;)e. After the demand in the regular period is realized,
we assume that € becomes known and takes the value €p. Then zy = p(vg)ep and
x; = p(vi)eg. So we have:

z; = 2t (2.14)
H0

Let us provide some argument in support of the assumption of multiplicative price-
dependent demand. The actual sale of the product during the season depends on
whether or not customers like that particular product. In terms of modeling, this is
represented through the random term that affects sales. The higher the random terms
(compared to the average value of one), the larger the actual sales. And conversely, the
lower the random terms (compared to the average value of one), the lower the actual
sales. If we assume that customers coming during the sales season will statistically have
the same behavior as those coming during the regular season, it is therefore consistent

to use the same random term to reflect whether the product under consideration is
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successful. Let us illustrate this further. Consider a sweater with two colors. Color 1
has been very successful during the regular season and the actual sales were 40% higher
than the expected value. On the other hand customers did not like very much Color 2
and the actual sales were 30% lower than expected. It is reasonable to assume that the
sales of Color 1 sweater during the sales season will be 40% higher than expected while

the sales of Color 2 sweater during the sales season will be 30% lower than expected.

2.5.1 Optimal expected profit and optimal order quantity

Replace z; in the profit function 7(Q) by xo (equation 2.0). The expected profit function
is derived in the Appendix 3.

Lemma 3. The expected profit function E(m(Q)) is concave.

Proof. The proof is provided in the Appendix(c.f. Appendix 4). O

The condition of optimal order quantity is given by:

n—1
Z(Ui — Ui+1)F[Q*@] —v+w=0 (2.15)

i=0 v

When n=1, we get the optimality condition for the classical NVP:

Vg — W

F(Qs) =

Vg — S

Similar to the additive demand case, the optimal expected profit is:

Qo

n—1
) = "o — i) P a f (2)d .
Bw@N=3 [ 0im v s @ (216

Let’s note that when n=1, we get the profit for the classical NVP:
* Q*
B(@)= [ (= 9)af(@)do
0

2.5.2 Approximation of the expected profit function

The approximation method in the additive case inspires us to do the same thing in
this multiplicative case in the same way. For this reason we propose the approximation

method first and then after we will give the numerical examples for both section 5.1

34



2.5 Optimal pricing and ordering decisions for multiplicative
price-dependent demand

and 5.2. In this way we can make comparisons between results in these two sections.

The equation of the expected profit can therefore be decomposed in 3 components too:
E(m(Q")) = Es + Ey + ¢ (2.17)

E, is a part of expected profit depending on ¢ only, E, is a part of expected profit
depending on the prices the NV use only and € is an error. Equation [2.17] allows us to

get the optimality condition of vg. In order to be clearer, principle results are presented
in Table 2.5

Distribution Ulwo — 00, o + 00] | N(uo,00)
Condition that e =0 Vi,00 < % Vi,00 < %
E(7(Q*)) E, + E, E, + E,
Exponential case equation |2.21 equation |Tﬂ|
E, equation [2.18 equation [2.1§
E, equation [2.19 equation |Tﬂ5|

Table 2.5: Expected profit function for uniform and normal distributions

Ey = (vo —v1)po + (v1 — va)pa
+ oot (vie = vi) (pie1) + (v — w)p (2.18)

Lemma 4. For a uniform distribution(U|uo — 0o, o + 00] ), the optimal expected profit
is the sum of E,, E, and €; E; = O(0y); if Vi, 09 < %, e=0.

Similarly, for any demand distribution function who has an upper bound and a
lower bound, the optimal expected profit can be developed to the sum of F,, E, and
€. Here we give the expressions of F, for normal distribution and uniform distribution
and the conditions that makes ¢ = 0.

For uniform distribution, if Vj,o0 < =5 e =0, E, =

o0 M
O b W1 — (2
4 o (0 = i) = ( Vi — Vig1

vy — W

—1)?) (2.19)

For normal distribution, if Vj, o0 < #-=2 ¢ =0, E, ~

v — W

- aaﬁm —vi) f(FY( (2.20)

Vi — Vi+1
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For multiplicative demand, x; = p;e, where p; = av; b In this case, a and b are also
both positive constants with the additional restriction that b > 1, and € is a random
variable with a probability density function and cumulative distribution function with
a mean of 1. A special case is when the discounting prices are exponentially declining,
we can simplify equation t" = s/vp and t is the ratio. We have always an i that
Vir1 < w < ;.

1—t+ vyt (v (1= t70) +w(t' =0 — 1))

E(W(Q*) = 1_1-b

avi ™ + E, (2.21)

Fix vg, when n increases, E(m(Q*) tends to the limit given in equation

. 11— (w/v)' ™
nh_}rrolo E(m(Q") = avy T b (2.22)
Fix n, for w = v; or w = vi41, B(7(Q*) =
( )1/n w
1fb+ _ (PN\1-b
avg — (vi) (1-b)/n (1 (’Uo) ) (223)

No direct expression for optimal initial price is obtained. But equation [2.23| can help a
manager to get an approximate value of it. Numerical examples will show more insights

on it.

2.5.3 Numerical analysis

We use normal distributed demand N (p9,09) in our examples. Let’s note that other
distributions will also work well. Give s = 2,w = 3,a = 4000,b = 4. The optimal
expected profit is obtained by equation [2.16

2.5.3.1 First case: discount prices are exponentially declining

We work on the multiplicative price-dependent demand in an exponential declining
discount case. According to lemma 4, E(7(Q*)) — E, — E, = ¢, and € = 0 in the
conditions obtained. According to equation the expected profit should have a
limit close to avé_b% = 38.7. Set vg = 5, 09 = 0(deterministic demand),
0.1, 0.2p0, 0.310, and n increases from 2. The expected profit F(7(Q*)) is calculated
by equation [2.16} Figure shows the values of E(7(Q*)) — E, and E,.

The graph shows that E(m(Q*)) — E, and E, increase with the number of discounts;

the increase speed is decreasing and tends to be 0 when n — oo. These results are
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Figure 2.5: Expected profit as function of discount number n

similar to the additive demand case. When n < 7, ¢ = 0 for these values of gg; then
e will increase with n, but even at n=20, ¢ < 3.6%FE,. Repeat computations with
different combinations of s, w, a, b, vy, we get similar results. So it is practically feasible
to calculate the expected profit by the sum of F, and E,. And numerically it’s much

quicker.

2.5.3.2 Second case: the prices are not exponentially declining

We take in our analysis n = 6, o9 = 0.1ug, and vy changes from 3 to 12. The discount
prices were produced as: i1vg, QaUy, Q3Vg, QL4VQ, Q5VQ, S. O = (%)’/n(l + coe(n —
i)i)(i = 1,...,n). We change coe to control the perturbation of the exponential discount
scheme. When coe = 0, it is the exponentially declining case. We show here 7 series of
discounts (coe=-0.03, -0.02, -0.01, 0, 0.01, 0.02, 0.03), and compute the expected profit
by equatio (Figure . Figure shows also the approximate expected profit
value for the exponential discount scheme (equation .

As Figure shows, the approximate curve is concave, it has the optimal expected
profit(29.7) at the initial price vy = 6.3, while the equation gives two poles (scheme
0). The first maximum (30.2, which is also the global maximum) occurs at vg = 6.1. The
difference between these two initial prices is 3.3%, and 2% between the optimal expected
profits. We find that the two curves coincide at vg = 6.7: in this case, v4 = w = 3, this
is a special case when equation [2.23| equals to equation When vy < 5, these two
curves share the same values. But error of the approximate equation turns bigger
when initial price is bigger. This error comes from our assumption: v; = w, while in

fact, v; < w < v;—1. This assumption gives an error between [0, v;—1 —v;). In this case,

37



2. NVP WITH PRICE-DEPENDENT DEMAND AND MULTIPLE
DISCOUNTS

—B—scheme 0
—— scheme 1
08t —+— scheme 2
—+—scheme 3
—+— scheme 4
081 scheme 5
—%— scheme B

percentage
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Figure 2.7: Expected profit as function of initial price
Viml — U = ((%)(ifl)/n — (%)i/”)vo, it increases with vg.
The expected profit can have several poles (e.g.scheme 6). Comparing the expo-
nentially declining scheme to others, we get similar results to the additive case. The
discount scheme 3 with coe = 0.01 gives the maximum value (31.0) of optimal expected

profit, and it’s close to the exponentially declining case(30.2).

To conclude, the best discount scheme happens when the selling price is cut down
a little slower than the exponential case at the beginning of the selling season; the
exponentially declining discount scheme brings an optimal expected profit which is
very close to the best discount scheme; when the manager choose the exponentially
declining discount scheme, an approximate function can be used to get the optimal

initial price.
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2.6 Conclusion

2.6 Conclusion

In this chapter, we extend the classical NVP to the case where demand is price depen-
dent and multiple discounts are used to sell excess inventory, which is disposed of at
the end of the selling season. We determine the optimal order quantity, initial selling
price and discount scheme.

We develop a general profit formulation for a NVP having multiple discounts. We
prove the concavity of the expected profit for both additive and multiplicative price-
dependent demand cases under general demand distributions with no limit on the
discount scheme (in other words, it works for any discount scheme with decreasing
percentages). We then develop the optimality conditions of the order quantity for both
cases. Furthermore, we provide a simple expression of the expected profit corresponding
the optimal order quantity.

Numerical examples show that the expected profit increases with the discount num-
ber, but it has an upper bound. It is not profitable to use too many discounts, because
the increasing speed of the expected profit decreases and tends to zero.

For additive and multiplicative demand, a common result is that it is not good to
cut down prices at a high speed in the beginning of the season. The optimal scheme in
our examples cuts the price in a slow manner at the beginning of the season and faster
at the end.

An approximation method is also developed. We write the profit function as the sum
of a function of price, a function of uncertainty and an error term. We derive conditions
where this error is zero and the optimality conditions of the initial selling price. These
expected profit equations show a much clearer insight into the impact of initial price
and discount number on the expected profit and confirm our numerical results. In
additional case with linear discount scheme, the optimal initial price increases with
discount number.

Similar to [27] and [78], our work is limited to the assumption that the additional
demand related to each discount has a fixed value or is proportional to the demand
realized during the regular selling period. Practically it can be different and the sup-
plementary demand related to each discount is a random variable. An ambitious future
research would be to investigate the multi-discount NVP by supposing that the sup-

plementary demands related to each discount is a random variable.
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Another point is related to the fact that our numerical examples show that the
expected profit corresponding to the optimal order quantity is concave in function of
the initial selling price. It would be interesting to prove it analytically. If this property
is proved, the program for solving the optimal initial price can then be simplified by a
Golden Section method.

Future research can address several extensions of our model. An extension consid-
ering the discounting cost will make it possible to obtain the optimal discount number.
Such a cost is observed in practice (advertising cost, marking cost,etc.). The complexity
of the problem will increase, so heuristic procedures may have to be used. The optimal
discount scheme is not completely solved in this chapter, it will also be an interesting
point for future research. Other extensions can deal with the objective of maximizing
the probability for achieving a target profit or assume a second purchasing opportunity

during the selling season.

40



Assortment and Demand
Substitution in a Multi-Product
NVP

Retail stores are confronted to make ordering decisions for a large category of products
offered to end consumers. In this chapter, we consider a multi-product NVP with
demand transfer (the demands of products not included in the assortment proposed in
the store are partly transferred to products retained in the assortment) and demand
substitution between products that are included in the assortment. We focus on the
joint determination of optimal product assortment decision and optimal order quantities
for products that are included in the assortment to optimize the expected total profit.
Computational algorithms are presented to solve the problem. We compare five policies
that can be used in practice by developing a thorough numerical study which reveals

some interesting managerial implications.

3.1 Introduction

Product variety is a key element of competitive strategy. Demand for variety comes
both from the taste of diversity for an individual consumer and diversity in tastes for
different consumers. For instance, Coca-Cola has a product portfolio of 3,500 beverages
spanning from sodas to energy drinks to soy-based drinks [83]. Many retailers become

successful by offering a wide range of product assortment. Supermarkets such as Wal-
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Mart and Carrefour are good examples from grocery retailing offering a range of 100,000
products in stores. However, despite the advantages of product variety, the full range of
variety cannot be supplied generally, owning to the increase in inventory, shipping, and
merchandise presentation (i.e. product display cost), etc. In a Carrefour supermarket,
for example, only a part of coca-cola beverages among the whole product category
is displayed. Within this context, the optimization of product assortment (i.e. the
products that will be offered for purchase within the store), and the order quantity for
each product, is a relevant decision that retailers face.

By considering multiple products, two important factors should be considered to
optimize the assortment and the optimal order quantities. First, product variety brings
possible substitution when underage happens: the different variants of the same product
(variants are products of different colors for instance), may act as substitutes when the
consumer finds that a product is out of stock. A survey reports that only 12-18% of
shoppers said that they would not buy an item on a shopping trip if their favorite brand-
size was not available; the rest indicated that they would be willing to buy another size
of the same brand, or switch brands [84]. Second, besides the purchasing cost which
increases with the order quantity, there is a fixed cost associated with each variant
of product included in the assortment, e.g. the material handling and merchandise
presentation cost stemming mainly from the space and labor cost required to display
products in the store, etc. In these situations, the fixed cost will clearly push to reduce
the assortment size (the number of products included in the assortment) and then affect
the optimal order quantities.

This chapter considers a Multi-Product NVP with Demand Substitution where we
aim at determining the optimal product assortment and product order quantities con-
sidering two factors that are substitution and demand transfer. We develop a model
that captures the demand transfer effect when some products are unlisted (not included
in the assortment). We use the Monte Carlo method to solve the multi-product NVP
under substitution. The analysis of illustrative examples shows that assortment opti-
mization and substitution may have significant effects on the expected optimal profit.

The rest of this chapter is organized as follows. Section 3.2 presents the literature
related to the model we present in this chapter. In Section 3.3, we present the multi-
product NVP under demand substitution and transferring. In Section 3.4, we present

five decision policies to solve the joint optimization of assortment and optimal order
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quantities and give computational algorithms. In Section 3.5, numerical examples are

provided. Section 3.6 contains some concluding remarks.

3.2 Literature review

The bulk of the literature has focused on supply chains that deal with a single product
type. However, supply chains often supply many products that are variants of a com-
mon product, and that may act as substitute products. Hence, the assortment is an
important decision to be defined. Therefore in this section, first we review the earlier
achievements on product substitution and then we consider papers that deal with both
product assortment and product substitution. All these achievements are in the area
of the NVP.

The topic of substitution in inventory management first appears in [48]. Papers on
this topic can be divided into 3 categories according to the substitution type: papers
of the first category deal with one-direction substitution or firm-driven substitution,
where only a higher grade (e.f. quality, size, etc.) product can substitute a lower grade
product, when the supplier makes decisions for consumers on choosing substitutes (see,
e.g., [49, 50, 51l 52, 53]). For example, the retailer provides a high quality product
as a substitute for a consumer who prefers a product with lower quality but is out
of stock. The second category consists of papers where arriving consumers’ number
follows a stochastic function and consumers make purchasing decisions under proba-
bilistic substitution when their preferred product is out of stock (see, e.g., [54] and
[55]). Here consumers come one by one and choose their substitutes within the remain-
ing products by themselves. The third category consists of papers considering that
each product can substitute for other products and the fraction that one out-of-stock
product is substituted by another product is deterministic. Moreover, this category
can be divided into subcategories as either the two-product (see [48, 56, 57, 58, HI])
or multi-product case (see [60, 611 [62, [63]) and centralized or competitive case. In the
centralized case, only one NV manages all products, thus is interested with a global
profit optimization, while in the competitive case, each NV takes care of his/her own
profit considering the competition with other NVs. [61] obtain optimality conditions for
both competitive and centralized versions of the single period multi-product inventory

problem with substitution. [64] study a multi-product competitive NVP with shortage
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penalty cost and product substitution. They characterize the unique Nash equilibrium
of the competitive model. An iterative algorithm is developed based on approximating
the effective demand by a service-rate approximation approach.

Joint assortment planning and inventory management problems with substitution
have been extensively studied. We refer the reader to [65] for a comprehensive review
of the recent literature. Two major types of demand modelling are used in earlier
achievements: utility maximization (see [55], 66, [67]) and exogenous demand models
(see [54] [68]). [66] consider a static substitution model with multinomial logit (MNL)
demand distributions assuming that consumers are rational utility maximizers. They
show that in this model the optimal solution consists of the most popular product.
[55] study a joint assortment and inventory planning problem with stochastic demands
under dynamic substitution (assuming that a consumer’s choice is made from stock on
hand) and general preferences where each product type has per-unit revenue and cost,
and the goal is to maximize the expected profit. Assuming that consumer sequences
can be sampled, they propose a sample path gradient-based algorithm, and show that
under fairly general conditions it converges to a local maximum. [67] consider a single-
period joint assortment and inventory planning problem under dynamic substitution
with stochastic demands, and provide complexity and algorithmic results as well as
insightful structural characterizations of near-optimal solutions for important variants
of the problem. [54] consider a dynamic substitution model specified by first choice
probabilities and a substitution matrix. They assume that the order quantities are set
to achieve a fixed service level and give two bounds of the product demand. However,
the final results are based on the approximation of the demand and the numerical
examples are mainly in the case of items with uniform market share (the initial market
share is the same for each product). The sensitivity analysis of the profit function to
the use of the bounds is not done for other market share types, while practically the
market share is non-identical. [68] consider also the demand cannibalization of the
standard product demand owning to retailing its customized extensions.

Our work differs from earlier research in many ways. Unlike [54] who model demand
by a negative binomial process and [68] who model demand as a Poisson process, our
model formulation is under a stochastic distribution and is valid for general demand
distributions. We consider two phenomena in a multi-product NVP: the transfer of

demand owning to the unlistment of some products, then the substitution between

44
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products included in the assortment and give the formulation of the expected total
profit. The problem is solved with the objective to find the optimal assortment as well
as the order quantity for each product in order to optimize the expected total profit.
The first order optimality condition is derived. Furthermore, we develop heuristic so-
lutions to solve the problem. Numerical results with different market share types are
presented for the different policies considered: policy 1 considering neither substitution
nor assortment, policy 2 considering only assortment, policy 3 considering only sub-
stitution, policy 4 considering sequentially assortment and substitution and policy 5

considering simultaneously assortment and substitution.

3.3 Problem modeling

We consider a set of similar products. This set is defined as a product category. Each
product is associated with a market share percentage p;, which represents its market
occupancy defined in terms of units of product. Each product has a unit selling price,
unit purchasing cost and in case of over-stock, the product is disposed of with a sal-
vage value. When a product is out of stock, consumers may choose other products to
substitute the product in shortage. A fixed display cost K; is payed for each product
variant included in the assortment during the season. Considering a product category
N that consists of n substitutable products in the market, the NV has to determine
the product assortment M which consists of m product variants over the n product
variants because of a trade-off: on one hand, the higher is m, the higher will be the
NV sales and therefore the profit. On the other hand, the fixed cost K; is considered
for each product variant included in the category, this parameter pushes to decrease
m. The other variants remaining in the set R = N \ M will not be offered for sale in
the store.

Before the selling season, the NV decides both the products to sell in the selling
season, the order quantity for each product and present the selected products in the
catalog. At the beginning of the selling season, the ordered products are received and
consumers get information of the product variants offered by the store. Consumers
preferring other products (products in set R) either not enter the store (first kind
of lost sale, with a proportion L’) or enter the store to choose products offered (in

set M): the demand pertaining to products not included in the assortment is partly
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transferred to products displayed in the store. During the season, if the product variant
a consumer intends to purchase is out of stock, he makes substitutions or leaves the
store without purchasing any product (second kind of lost sale, with proportion L”).

The objective of the NV is to maximize the expected profit considering both assortment

and substitution. Figure shows the considered model.

Product category Store display
e |

i
/|

( initial demand x;_ modified demand x;’

effective demand x;°

; t T of demand .

lost\portion L lost portion L,;”

first kind second kind
of lost sale of lost sale

Figure 3.1: Considered model

Define the following notations used in Chapter 3:

x

a random variable representing the total demand for the entire product
category. x has a continuous probability density function f(z) with
mean y and standard deviation o, and a cumulative distribution function
F(a),

initial demand for product 4, with a probability density function f;(x;)
and cumulative distribution function F;(z;),

the market share of demand for product 1,

the portion of consumers who prefer product ¢ which is not displayed in
the store and do not want to purchase another product,

the portion of consumers who prefer product ¢ which is displayed but in
shortage and do not want to purchase another product,

fixed cost related to include product ¢ in the assortment,

unit selling price for product 1,

unit purchasing price cost product %,

unit salvage price for product i.

Decision variables:

M

q;
Q

the set of products to be included in the assortment,
the order quantity for product i, i € M,
the vector of order quantities, Q = [¢;], i € M.

The assumptions can be stated formally as follows:
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ASSUMPTION 1: The total demand distribution for the entire product category, i.e.
the initial set N, is known before the selling season begins.
ASSUMPTION 2: Given the total demand x, the demand x; is assumed to be equal to
pix, 1 € N.
ASSUMPTION 3: If consumers choose to substitute but the substitute product is out
of stock, the sale is lost, i.e. there is no second substitute attempt.

Assumptions 1, 3 is common to [54], except that we use continuous demand distri-

butions while [54] consider binomial distribution.

3.4 Model formulation

The NV decides both which products to display within the store (the assortment)
and the order quantity for each product displayed. The objective of the NV is to
optimize the expected profit. We use two approaches to solve the problem: sequential
optimization and global optimization. The first approach (i.e. policy 4 in Sect.
determines the optimal product assortment considering only the transfer of demand.
Then with the obtained assortment, considering the substitutions between products
displayed, we determine the optimal order quantities. In other words, the optimal
assortment and order quantities are solved separately. The second approach (i.e. policy
5 in Sect. is a global optimization policy considering simultaneously the transfer
of demand and substitution to determine the optimal assortment and order quantities.

Besides, three other policies may be used in practice: policy 1 considers neither
assortment nor substitution, policy 2 considers only assortment and policy 3 considers
only substitution. Our goal in examining these policies is: 1. to understand qualita-
tively any distortions that might be introduced in inventory decisions if one ignores
substitution effects (comparison between policy 2 and 4), 2. to gauge the impact of
assortment on the expected profit (comparison between policy 1 and 2 and between
policy 3 and 5), and 3. to understand any distortions that might be introduced if one
considers the assortment and substitution effects independently (comparison between

policy 4 and 5).

3.4.1 Modeling the transfer of demand

Additional notations:
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Policy 2: NV with
assortment.

(Assortment size: m;
substitution: No)

P(_)li_c_yll: N‘é“’ith n ;"" Policy 3: NV with
t t . ’/ . o
mnitial pro uc. S - substitution. :
(Assortn}ent_ s1ze. (Assortment size: m= Policy 4: Sequential
m=n; substitution: No) ! n; substitution: yes) optimization.
' ./ (Assortment size: m;
/ substitution: yes)
Assortment
+Substitution Policy 5: Global
A Optimization.
(Assortment size: m;
substitution: yes)

Figure 3.2: Policies analysed

x; modified demand for product ¢ considering demand transfer ef-
fect, with a probability density function fz/ (x;) with mean M;
and standard deviation 0;, and cumulative distribution func-
tion F} (x;), i € M,

x?  effective demand for product ¢ considering both demand trans-
fer and substitution effect, i € M,

p; the new market share proportion of demand for product 7 after
the transfer of demand, i € M,

aj;  the fraction of consumers that purchase product j as a substi-
tute when product ¢ is out of stock, i,j € M.
When a product variant j of the set R is unlisted, a percentage L; of its demand is

lost. The rest of the demand pertaining to product j is distributed among products of

the set M. The additional demand transferred to each product i (i € M) is:

<31 - L] (3.1
. 37 :
i Di JeR
After the transfer of demand, the modified demand (the sum of initial demand and

additional demand) z; for each product i (i € M) is obtained as:

/

ZjeR [pj(l - Lj)]
ZieMpz’

pir + - Z [(1-— L;-).CU]‘] =piz(1+ ) (3.2)

ZieMpi )

48



3.4 Model formulation

After demand transfer, the new market share p; of product i is therefore:

Sjer pi(1 = L))]

S p (3.3)

pi=pi(l+

Property 1: The probability density function for the modified demand x; for

product i denoted as f; (z;) follows:

filw;) = ? (3.4)

Proof: The proof is provided in the Appendix 1
Other properties can then be derived from Property 1.

Property 2: The cumulative distribution function for the modified demand x; for

product i denoted as F} (x;) follows:

Property 3: The standard deviation of x; is :
0 = p;o (3.6)

Property 4: The mean value of $; is:

’ /

[; = Pyl (3.7)

3.4.2 Modeling the various policies

The different policies of interest are presented in this section.

Policy 1: NV with n products: neither demand transfer nor substitution.
In this model there is neither demand transfer nor product substitution. In fact, it can
be solved as n independent classic NVP by adding a fixed cost K; to each product 4.
The expected profit for product i is given by:

m(qi) = v — wigi + si(q — x) — K if <
' v;iq; — wiq; — K; otherwise
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The expected total profit is the sum of the profit for each product and is given by:

n

E(r(Q)) = z;[/oqi(ﬂfi(% —w;) — (¢ — x;)(w; — 8;)) fi(ws)dw; (3.9

4
The second derivative of the expected total profit proves that it is concave with ¢;,

Vi € N. The optimal order quantity for product i is:

Vi — Ws
Fi(gf) = —— 1
(4) = 2= (3.10)
Then the optimal expected profit is derived as:
* - %
B(r(@) = 301 [ (o= s ffa)dos - K (3.11)
i=1

Policy 2: NV with assortment: the NV considers only the transfer of
demand. For a given product set M, the demand follows a continuous probability
function fi/, i € M (cf. Sect. . The total profit can be developed in the same
way as equation by replacing f; by le and n by m. The second derivative of the
expected profit function proves that it is concave with ¢;, Vi € M. The optimal order
quantity ¢; for product i respects the following equation:

. Vs — ws
Fi(Qi): - -

3.12
V; — S5 ( )

The corresponding expected profit is:

*

Br(@) = Y[ loi = i)l e — K (313)

iem 70
We find the same order quantity conditions as policy 1 because we consider no substitu-
tion effects in this policy. Enumeration of all possible M gives M* that maximizes the
optimal expected profit without considering the substitution effect. For some demand
distributions, the expected profit equation can be simplified to a linear equation (c.f.

Appendix 2).

Policy 3: NV with substitution: the NV considers only the substitution

effect between n products.
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The assortment is not considered. All products in NV are included, i.e. the NV pays
K for each product in N. The problem is a multi-product substitution problem similar
to the one considered by [61]. During the selling season, for each producti € 1,---,n, a
stock-out could happen and a part of unsatisfied demand will be lost with the proportion
L;. The remaining demand will be shared among the other products proportionally to
their new market shares p;-. With a similar logic to equation the substitution

fractions «;; are developed as:

_p-L)  p1- L)
Zk;;éi,keNplk Zk;éi,keNpk’

Qi (3.14)
The effective demand (the real functional demand after demand transfer and substitu-
tion) «f for product 4, which is the sum of the modified demand x; and the additional
demand for product ¢ received from other out-of-stock products caused by substitution.
We have:
x; = l‘; + Z aji(z; —qj)" (3.15)
Jj#i,jEN

Here 27 = maz (0, z). The expected profit function is:
E(m(Q) = E) [(vi —wi)a} — (v — wi) (@ — ¢i)" — (wi — si)(¢: — 25)* — K] (3.16)
i=1

Then the first-order necessary optimality conditions are derived from equation [3.16] as
follows:

Vi — Wy

* * Uj — 5 * *
P(z; < q) — P(x; < qf < i) + Z I P > qf 25 < qf) = (3.17)

Vi — 8 v — 8;
]751 (3 (3 3 7

q; denotes the optimal order quantity for product ¢ in set N. P is the probability
function. Let us note that equation is the same as the one of [61] and the fixed
display cost K; does not appear in equation Thus the fixed cost does not change

the optimal inventory decision for the NV.

Policy 4: Sequential optimization: the NV considers sequentially the
transfer of demand and the substitution. We use the value of M* obtained in
policy 2 then consider the substitution effect to get the optimal order quantities and

the expected total profit.
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First step: the Assortment Decision: We obtain the optimal set M* by con-
sidering only the transfer of demand. Order quantity conditions (equation and
the optimal expected profit are given by equations and Enumeration of all
possible M gives M* that maximizes the optimal expected profit without considering

the substitution effect.

Second step: Consideration of the substitution: Once the NV determines
M*, the demand follows a continuous probability functions fl-/, i € M*. The sub-
stitution fractions, the effective demand and the total profit can be developed in the

same way as equations |3.14|, |3.15|, |3.16| and |3.17| by replacing f; by fi' and n by m* (the

assortment size of M™).

The substitution fractions o;; are developed as:

(11— L] (1-L!
aij = pit ), - Pz L) (3.18)
Zk;ﬁi,keM* Py, Zk;éi,keM* Pk
The effective demand:
x; = + Z Oéji(:lij — qj)Jr (3.19)
jAi,jEM*

The expected profit function is:

E(r(Q) =B [(vi —wi)aj — (v; —wi) (@] — gi) " — (wi — s:) (¢ — x5)" — K] (3.20)
i=1

The first-order necessary optimality conditions are derived from equation as fol-

lows:

Vi — 55 Vi — W
P(x;<q)—P(x; <q <xi)+ Z v]- _sjlaijP(:U¢>qf,;r§<q;): vz _S.Z (3.21)
j#ijems T v

q; denotes the optimal order quantity for product 7 in set M*. Let us note that the
second and third term on the left-hand side of equation [3.21| equal to zero for the spe-
cial case where no substitution is considered, then equation becomes the order

quantity optimality condition for the classical NVP (equation |3.12)).

Policy 5: Global optimization: the NVP considers simultaneously the

demand transfer and substitution effects.
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3.4 Model formulation

To obtain the optimal set M* determined by the sequential optimization policy
(policy 4), we need to consider simultaneously the demand transfer and substitution
effects.

Given a product set M*, the modified demand z’ and the effective demand x; are
derived in equations and The expected profit and the optimal order quantities
are given by equations and The difference is that the set M™ is no longer given
by a previous assortment decision, but has to be optimized. There are 2™ possibilities
for M, we enumerate all of them and we can find M™* that maximizes the expected

total profit.

3.4.3 Algorithm for policy 3, 4 and 5

Caused by the complexity of equation [3.17], one cannot obtain directly the optimal
order quantities within feasible run time. Thus we use a Random-walk Monte Carlo
method to find the solution. The procedure is as follows:

Step 1: Initialize Q) with the values obtained by the optimal order quantity condition
of M independent classic NVP; initialize the walk length A and its limit: e.

Step 2: generate n random points around @) with a distance A to ). And get the
best point Q/ among these n points;

Step 3: if Q' is better than Q, assign the value of Q" to Q, go to step 2. If not,
halve the value of A, if A > €, go to step 2, otherwise, go to step 4;

Step 4: if Q' satisfies the optimality condition, stop, otherwise go to step 1.

In order to determine in step 3 that Q' is better than Q or not, we define an
objective function as the difference, denoted a, between the left side and right side of
equation If the order quantities are optimal, equation should be satisfied,
thus the objective equation should be equal to zero. But in fact, zero can not be strictly
realized in computation. We consider that Q is better than Q if h(Q") < h(Q) and the
optimality condition is satisfied when h(Q/) < 0.1 (see Figure ;

Step 4 is required because when we are generating N points around @), it is possible
that they are concentrated, thus the optimality condition can not be satisfied at the end
of only one random walk. The fourth step ensure the optimality condition is satisfied

and ends the loop.
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Enter model parameters including M,
generate a realization of demand

Initialize Q=Q; (the optimal
order quantities of policy 1),
& A=10

Generate N points around Q (with a
distance A): Get Q' that minimizes a:

Figure 3.3: Flow chart of the algorithm for calculating the optimal order quantities

For this reason, another method is not recommended: regarding Q/ is better than
Q if Q' brings a better expected profit than @, with the value of expected profit is

obtained from equation [3.16] This method can fall into local maximums.

3.5 Numerical analysis

3.5.1 Numerical examples

In this section, we use a normally distributed demand, other demand distributions
will also work. We consider a category of n = 6 initial products with total mean
demand p = 100 and varying o values. The selling price, purchasing cost, salvage
value, fixed cost and lost sale portion are assumed to be the same for all products:

v=11w = 8,s = 3,K; = K, and L; = L;/ = L. Three market share types are
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considered: the linear type with p;=(0.09, 0.12, 0.15, 0.18, 0.21, 0.25), the exponential
type with p;=(0.03, 0.06, 0.09, 0.15, 0.25, 0.42) and the uniform type with p;=(0.17,
0.17, 0.17, 0.17, 0.17, 0.17). These simplifications facilitate the comparison between
different policies and makes it easier to analyze how different performances vary with
market shares. For policy 3-5, we use the Monte Carlo method to compute the optimal
order quantities and expected profits. In this example, we use the default random
generator in Matlab generating 10000 samples to represent the demand with normal
distribution (at about a confidence level of 98% with a sampling relative error 2.3%).

By setting K = 10, L = 0.3 and exponential market shares, the expected total
profit comparison for the five policies as a function of ¢ is given in Figure Results
show that the optimal expected profit decreases with o and the global optimization
policy outperforms the other policies and the sequential optimization does very well
particularly, achieving 100%, 100%, 98.9%, 97.6% of the profit generated by the global
optimization policy, respectively, for o = 10, 20, 30 and 40.

Another result is that the substituted NV (policy 3) performs poorer than the
assorted NV (policy 2) when o = 10, but performs better as o increases. This is
because when demand uncertainty is bigger, the risk of inventory shortage or overage
is more important. In this case, the substitution has a more important effect.

Optimal order quantities for each of the 6 products obtained by different policies
(with ¢ = 30 and exponential market shares) are shown in Figure We find that
the order quantity increases with the market share value for each policy and when the
assortment is considered, only high demand products are included in the assortment.
As a result, the number of enumeration is largely reduced: from 2° to 6. Therefore,
the combination possibility for a product category with n product variants is only n,
which reduces significantly the computing time. Similar results are found with other
values of o.

As shown in Table the assortment size is intensively reduced compared with
Policy 1 when using the sequential optimization or global optimization policy, which
indicate that the performance of the classical NV model without assortment nor sub-
stitution can be quite limited in practice.

Comparing policy 1 with policy 2 and 3: For a fixed value of o, the optimal
order quantity for each product obtained by policy 1 do not change with K or L because

policy 1 ignores both the effect of demand transfer and substitution.
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|0=10][0=20][0=30]0=40]

Policy 1 6 6 6 6
Policy 2 3 3 2 2
Policy 3 6 6 6 6
Policy 4 3 3 2 2
Policy 5 3 3 3 3

Table 3.1: Optimal assortment size for different policies with o = 10, 20, 30, 40

Considering the assortment or substitution, both increase the profit. As the as-
sortment size decreases from n to M™*, the total fixed cost decreases, thus the profit
could increase. Considering the assortment, some products are unlisted in some cases
and the unlistment begins with the product having the smallest market share: firstly,
the display cost K; leads to unlist the low demand products because the revenue of
these products are relatively smaller. Secondly, popular products make more sales thus
bring higher profit. They have larger mean demand, thus more demand will be lost
if they are unlisted, while unlisting less popular products will lose less demand. The
substitution improves the profit in two aspects: on one hand, the underage cost for a
product is lower because the unsatisfied demand for one product may be substituted
by another product; on the other hand, the overage cost for a product is lower too,
because it receives some additional substitute demand from other products.

Comparing policy 5 with policy 2 and 3: The global optimization policy leads
to a higher profit compared with these two policies. The combination of assortment and
substitution significantly improves the profit because the fixed cost related to includ-
ing all products in the assortment can be high and the substitution brings additional
demands.

Comparing policy 5 with policy 4: In our examples, policy 5 needs a computa-
tion about 10 times longer than policy 4. It obtains the same results as the sequential
optimization policy when 0=10 and 20. But as demand uncertainty becomes bigger,
i.e. 0 = 30 and 40, the assortment size is bigger than the one obtained by policy
4, the order quantities for the products are also different, and the profit is up to 5%
bigger than the one of policy 4 (see Appendix 3 to find combinations of (K, L, o) that

maximize the difference between policy 4 and 5). We try different combinations of
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parameters (K, L,o) and get the same results: the assortment size and the expected
total profit are not smaller than the ones obtained by sequential optimization policy.
The substitution makes it possible to enlarge the assortment size, because while
one product is not profitable in policy 2, the substitution can make it receive some
additional substitute demand from other products, thus this product can be profitable

and is not unlisted.

3.5.2 Sensitivity to demand uncertainty

i
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Figure 3.6: Optimal expected profit for policy 5 with the exponential market share type
as a function of K (with L=0.3) or L (with K=10), with ¢=10, 20, 30, 40.

A common result found in our numerical examples is that the expected profit de-
creases with o, as shown in Figure We get the same result for all values of K, L
and for all three types of market shares.

For the global optimization (policy 5), the assortment size, as shown in Figure
does not respect a simple and obvious rule as o changes.

When we fix K and change L values, for K = 10, the assortment size decreases
with o, except of the case L=0. Intuitions to this result are the following: when L and
o are both small, e.g. L = 0, ¢ = 10, the demand substitution benefit is less than
the fixed display cost K of an additional product. For the special case where L = 0,

0=10, the assortment size is 1, this means there is no alternative product to buy when
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Figure 3.7: Optimal assortment size for policy 5 with the exponential market share type
as a function of K (with L=0.3) or L (with K=10), with =10, 20, 30, 40.

the product is in shortage, thus there is no substitution. For other values of L greater
than 0, the assortment size is bigger than one. As explained in Section 3, there are two
kinds of lost demand: when a product variant is not included in the assortment and
when a product variant is in shortage during the season. For a fixed L, on one hand,
a larger assortment size means more product variants are included, thus less demand
is lost, i.e. the first kind of lost demand is reduced (this increases the profit), however,
there will be more display cost (this reduces the profit); on the other hand, the second
kind of lost sale does not change with the assortment size because the proportion of the
second kind lost demand is fixed: L. So it is a trade-off to determine the assortment
size between reducing the first kind of lost sale and increasing the display cost. When o
is small, the profit coming from reducing the lost sale is bigger, so the trade-off pushes
to bigger assortment size.

Then we fix L and change K values. For L = 0.3, the assortment size decreases with
o when K < 20 in our examples, and increases with o when K is bigger. Special case is
that when K > 20, the assortment size tends to be 1, thus there is no substitutions. In
this situation, the fixed cost is bigger than the demand substitution benefit. For other

cases, we have the same results and same interpretations as in the previous paragraph.
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3.5.3 Sensitivity to L

Let K=10, ¢ = 20. Considering three market share types, i.e. linear, exponential
and uniform market share, the profit and assortment size are calculated for the five
policies. It is intuitive that the expected profit for policy 1 does not change with L
and is always not bigger than the other policies. For other policies (policy 2,3,4,5), the
profit decreases as L increases. This is because the lost sale related to demand transfer
and underage substitution both increase with L. We get the following insights (See
Figure |3.8):

1. As L approaches 1, the expected profit (policy 3, 4, 5) becomes identical to the
one of policy 1. When L = 1, the substitution effect becomes zero, and demand transfer
effect becomes zero too, thus equals the one of policy 1.

2. The assortment size (policy 2, 4, 5) increases with L. When L is bigger, there is
more lost sale, and as explained before, the lost sale can be reduced by increasing the
assortment size.

3. The expected profit of policy 2 is bigger than policy 3 when L has a small value,
but becomes smaller when L increases. The reason for this is that when L is small, the
assortment size for policy 2 is small, thus the NV reduces a large part of the cost by
reducing the assortment size. When L is bigger, the assortment size gets bigger, the
total display cost increases and the cost of policy 2 increases. As a result, the effect of
considering the assortment decreases.

We have also done some numerical analysis where the two lost sale proportions are
different: L' # L”. Similar properties are obtained. A special case where L' = 0, thus

no demand transfer, is shown in Figure [3.9

3.5.4 Sensitivity to K

Let L=0.3, 0 = 20. Considering three market share types, the profit and assortment
size are calculated for the five policies. It is obvious that the expected profit for policy
1 decreases linearly with K and is always not bigger than the other policies. For other
policies (policy 2, 3, 4, 5), the expected profit decreases with the fixed cost. We get
the following insights (See Figure [3.10)):

1. As K approaches 0, the expected profit (policy 4,5) is identical to the one of

policy 3. When K=0, it is always optimal to include all items in the assortment (policy
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4,5), the assortment size is 6, thus the expected profit is the same of policy 3.

2. The assortment size (policy 2, 4, 5) decreases with K. The effect of fixed cost is

more important when K is bigger. Thus for a bigger K, the assortment size is reduced.

3. The expected profit of policy 3 is bigger than the one of policy 2 when K has

61



3. ASSORTMENT AND DEMAND SUBSTITUTION IN A

MULTI-PRODUCT NVP

a small value, but becomes smaller when K increases. The reason is when K is small,

the assortment size for policy 2 is 6, thus the NV reduces a limited part of the cost by

using policy 3. When K is bigger, the assortment is smaller, the NV can reduce a large

part of the cost by including more products in the assortment. As a result, the effect

of considering the assortment increases.
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Figure 3.13: The expected profit as a function of K, with ¢ = 20, for exponential market

sharing, linear market sharing and uniform market sharing
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Figure 3.14: The assortment size as a function of K, with ¢ = 20, for exponential market

sharing, linear market sharing and uniform market sharing

As shown in Figure 3.11], [3.12] [3.13] and [3.14] the type of market share has an

important effect on the assortment size and the expected profit.

From the exponential market share to the uniform one, the assortment size increases
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faster with L. The reason is that when the market share becomes more balanced,
the substitution effect is even more important. In the exponential case, the optimal
assortment size cannot even reach the value of 6, even though all demand for product
1 will be lost when L = 1, because the profit of the first product is less than the fixed
cost K.

As shown in Figure [3.14] the first product is unlisted faster with an exponential
market share. It is because the first product is less profitable in this case, and will be
quickly unlisted because the display cost will be larger than its profit.

Another insight is on the value of K and L for which policy 2 and policy 3 have
the same expected profit. We can see that this value of L decreases when the market
share becomes more balanced and the value of K increases. The balance of market

share reinforce the effect of substitution and reduces the impact of fixed display cost.

3.6 Conclusion

This chapter extends the classical NVP to solve the joint optimization of product as-
sortment and order quantities by considering demand transfer and substitution effects.
We formulate the transfer and substitution fractions. A random-walk Monte Carlo
method provides an efficient computational approach to get the value of the expected
optimal profit and optimal order quantities for a product assortment.

Our numerical examples show new insights regarding the performances of the NVP.
In particular, demand transfer and substitution have significant effects on the assort-
ment size, expected profit, and optimal order quantities. Additionally, the sequential
optimization policy and global optimization policy both bring better profit performance
than considering only one effect. Sequential optimization policy shows close results to
global optimization policy and the computing time is reduced up to about 10%. But in
some cases the expected profit of sequential optimization policy is up to 5% less than
the one of global optimization policy, thus it is necessary to use the global optimization
policy to obtain the best profit. The difference between policy 1 and policy 5 increases
with the value of fixed cost and decreases with the value of lost sale proportion.

With the global optimization policy, several insights can be derived from numerical
results: The expected profit decreases with the fixed cost value, the fraction of lost

sale and demand uncertainty. Assortment size increases with the fraction of lost sale
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but decrease with the fixed cost value. The total order quantity does not respect strict
behaviors but it shows that the order quantity reaches its maximum when lost sale
fraction is zero or 100%, and tends to decrease with fixed cost value.

The model can easily be adapted to problems with other kinds of substitution such
as one-item substitution, which can be treated in the same way as our model by only
changing the demand transfer and substitution equations. This could be interesting
because different kinds of substitution happens for different kinds of products: in the
textile industry for example, consumers could substitute to a shirt with a bigger size
but probably not in the contrary way. In this case, it is a one-direction substitution.

An interesting direction, related to this model, lies in investigating the difference
between two demand lose portions. As we explained in our modeling assumptions, the
lost portion related to a product not displayed is expected to be larger than the one of
a displayed but under-stocked product. Numerical analysis can show the impacts by
examining the change of both the optimal assortment and order quantities when the
NV increases the not-displayed portion.

Our work is limited by supposing that the demands of product variants are all
related to the total demand, while practice, it may be not the case. Future research
can be developed to a case where the demand for each product variant is independent of
others’ and individual demands are given. In this case, the demand transfer formulation
will be different: it will be difficult to derive the distribution functions of demands for
the products after demand transfer (the only case there we have found a solution is
when demands are all normally distributed). However, using the Monte Carlo method,
the complexity of programming for numerical results will not be increased compared
with our model.

In our numerical examples, the expected profit appears to be unimodal in the
order quantity of each product variant. But analytically we have not succeeded to
prove it. We have actually demonstrated the non-concavity of the expected profit on
each demand, but the non-unimodality is to be proven analytically. Demonstrating
analytically the unimodality would enable us to cut down the programming time for

numerical examples.
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4

The NVP with Drop-shipping
Option and Resalable Returns

As e-commerce expands, more and more products are offered online to attract internet
consumers’ interest. These products are often provided at consumers’ home by a drop-
shipper. Indeed, in recent years, drop-shipping seems to be a good option to sell
products in addition to physical stores. In addition, both types of products, either sold
in store or on Internet can be returned by consumers, with often a higher return ratio
for those purchased on Internet. To model these two sales channel and interactions
between them, we consider a NV managing both a physical store inventory and a sale
channel on internet that is fulfilled by a drop-shipping option. In addition to these
two supply options, we consider the possibility of reselling products that are returned
by consumers during the selling season. The concavity of the expected profit is proven
and the optimality condition is obtained. Various results are obtained from a numerical
analysis. In particular, the expected can be 14.4% less than the optimal expected profit
if the return effect is ignored. Using drop-shipping option can reduce the optimal store
inventory by 31.2% and if the NV has no drop-shipping option, the expected profit can
be 9.0% less.

4.1 Introduction

E-commerce is constantly growing in various industrial sectors. According to Remar-

kety [85], in 2015, 57.4% of the US population and 80% of the population of Japan shop
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online. Hence, more and more suppliers and retailers have presence on the internet to
offer products which are also sold in physical stores, in order to provide end consumers
a larger choice regarding the channel along which they can buy products without in-
creasing operation costs. In apparel industry, Zara for example, uses a distribution
center to provide products for physical stores as well as internet sales at the same time
[86].

E-commerce thus brings a new opportunity for retailers to supply products to con-
sumers through electric markets. Indeed, drop shipping is a recent order fulfilment
approach where the retailer does not keep goods to be sold in store but instead, dis-
plays products on his/her company website, collects and transfers consumer orders to
the wholesaler or the supplier, who is then in charge of shipping goods directly to end
consumers.

Drop shipping can be attractive for the retailer since it does not require him/her to
bear the cost of holding inventory in the store. As a result, products can be offered to
the consumer at a lower unit selling price on Internet, in comparison to the unit selling
price that the consumer would have to pay if the product is bought in the physical
store. Drop-shipping can also be attractive for the the wholesaler/supplier by enabling
him /her to sale products on the retailers’ websites.

Drop shipping can be especially interesting for seasonal products. Such products
have generally a short selling season and a long replenishment lead time where the order
is generally placed to a distant supplier before the selling season. The NV Problem is
a classical model used for such products, it aims at finding the optimal order quantity
which maximizes the expected profit under probabilistic demand [8 [9]. The demand
for the product is unknown before the selling season, thus the order quantity for the
product should be optimized from the trade-off between two situations: if the order
quantity is too large, overstock happens; if the order quantity is not enough, underage
happens and lost sale causes lost profit. If the order is smaller than the realized demand,
it is not possible to place another order during the season to the distant supplier. In
such a case, drop shipping (i.e. ordering products from a wholesaler/supplier which is
geographically closer to the retailer) can be used to fulfill demand.

One of the major issues related to e-commerce operations concerns product returns
since products sold through e-commerce tend to have a higher return rate than those

sold within stores [70]. This return rate can be as high as 75% for Internet sales
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[87]. Hence, in many businesses such as textile or electronics, consumers have the
legal right to return a product purchased online within a certain time frame if it is in
good condition. Such products return to the retailer store during the selling season
and can be reused as new products after some treatment by the retailer, e.g. quality
examination, product repairing, re-labelling/packaging, etc. Thus it is important to
consider this potential return flow when making inventory decisions.

This chapter considers a NV managing both a physical store and sales on internet
fulfilled by a drop-shipping option. We also assume that returns are resalable during the
selling season after a certain treatment. The objective is to optimize the order quantity
(thus the store inventory that will be available at the beginning of the season) for the
order placed before the selling season. As the classical NV problem, store demand (the
demand of consumers shopping physically in the store) is satisfied by store inventory.
The NV can also use the store inventory to satisfy internet demand and has in addition
a drop shipping option for excess internet demand (i.e. a mixed fulfillment strategy
is used). In case that store demand is not totally satisfied, a part of the unsatisfied
store demand is substituted to Internet demand. When products are delivered, some
consumers are unsatisfied and a portion of products is returned to the store. The return
rates are assumed different depending on where products are supplied from (store or
drop shipper) and whom products are sold to (store consumer or Internet consumer).
Under these assumptions, we express the expected profit formulation and demonstrate
the concavity of the function. Optimality condition is also given. The optimal expected
profit equation is then derived. We present two model variants depending on whether
Internet returns can be used for store demand. Some special cases are discussed. A
numerical analysis is conducted leading to interesting results. We illustrate the impact
of return, drop-shipping and different parameters e.g. the substitution fraction.

The rest of this chapter is organized as follows. Section 4.2 presents the related
literature. In Section 4.3, we present the NV Problem with a mixed supply strategy
considering product returns. In Section 4.4, we formulate the optimal drop-shipping
order quantity in each case for two variants of model. The expected profit is formu-
lated and the optimal order quantity for store inventory is developed. In Section 4.5,

numerical examples are provided. Section 4.6 contains some concluding remarks.
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4.2 Literature review

As e-commerce is expanding, research on drop-shipping and product returns has been
increasing. Thus we review earlier achievements regarding two streams of NV Problem
which are associated to our work: (1) the NV Problem with drop-shipping option and
(2) the NV Problem with product returns.

[18] first solved a NVP with an emergency supply option in case of shortage. Unsat-
isfied demand can be satisfied by an emergency supply option. which will be analogous
to the drop shipping option. [19] explicitly incorporated the drop-shipping as an emer-
gency option into the single-period model framework and showed that it can lead to
a significant increase in expected profit. [88] analyzed drop shipping for a multi-actor
problem. The analysis was conducted under different power structures and included
marketing and operational costs. The retailer carries out the marketing and advertising
activities and the wholesalers handles the fulfillment process. [20] assessed three dif-
ferent organizational forms that can be used when a store-based sales network coexists
with a web site order network. The three organizational forms are store-picking, ded-
icated warehouse-picking and drop shipping. Authors used a NV type order policy to
compare the efficiency of three different models and to analyze the impact of transport
costs, Internet market size and demand hazards on the profits of the stakeholders on
inventory policies in the supply chain. [89] proposed that growth in product popularity
leads to an increased reliance on store inventory. As [90] reported, the drop-shipping
mode results in cost savings but reduces the unit profit margin, whereas the traditional
mode (purchasing from the supplier with a lower unit purchasing cost and selling to
consumers in the store with a higher price) provides a higher profit from each unit. [21]
proposed a mixed mode that utilizes both traditional and drop-shipping modes for sea-
sonal fashion and textiles chains, in order to take full advantage of demand fluctuation
and improve the profit-making ability.

In the literature, consumer returns are typically assumed to be a proportion of
products sold (e.g.[69, [70} [71], 72} [73]), which obviously implies that if more items are
sold, more products will be returned from consumers. [74] empirically showed that
the amount of returned products has a strong linear relationship with the amount of
products sold. Based on the assumption that a fixed percentage of sold products will

be returned and that products can be resold at most once in a single period, [70]

70



4.3 Problem modeling

investigated optimization of order quantities for a NV-style problem in which the retail
price is exogenous. [75] considered a manufacturer and a retailer supply chain in which
the retailer faces consumer returns. [70] also assumed that a portion of sold products
would be returned and discussed the coordination issue of a one manufacturer and one
retailer’s supply chain. [73] examined the pricing strategy in a competitive environment
with product returns. [77] considered consumer return for retailer who is confronted
with two kinds of demand: one needs immediate delivery after placing an order and the
other accept delayed shipment. A NV model with resalable returns and an additional
order is developed. However, the model was under assumption that the total demand
distribution is given and each kind of demand presents a proportion of the total demand,
in addition, the concavity is not proved.

To the best of our knowledge, no research has treated the product returns issue
within a mixed fulfillment strategy using both drop-shipping and store inventory. In this
chapter, we model a retailer who faces product returns (such returns are not considered
by [19]) from both store and Internet consumers. Earlier works ([69} [70, [7T], [72, [73]),
consider only the store sale channel and not both channels. Compared to the latest work
that considers a comparable problem to us [77], who provided a numerical analysis based
on a necessary condition without proving the concavity, we demonstrate the concavity of
the expected profit function and derive the optimal order quantity condition considering
independent demands for store and internet sales (i.e. two random variables instead
of a unique one in [77]), different return rates instead of an identical return rate in
[77], different selling prices instead of an identical selling price in [77]. In addition, we

consider the effect of demand substitution in case of under-stock in store.

4.3 Problem modeling

We consider a NV which uses a combination of store inventory and drop-shipped prod-
ucts for fulfilling two types of demand: demand that occurs in the store and demand
related to internet sales. More precisely, before the season begins, the NV orders a
quantity of products @)1, at a unit product purchase cost wi, from the traditional (dis-
tant) supplier. During the season, those products, stored in the store, can be used to
satisfy both store demand x1 and Internet demand 9. x1 and x2 are assumed to be two

independent random variables. In case x5 is not satisfied by ()1, there is an alternative
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drop shipping option that enables the NV to benefit from a replenishment quantity Qo
from a (closer) drop shipper, at a unit product purchase cost we. Such drop-shipped
products are assumed to be provided directly to consumers’ home (without transiting
by store). Hence, while x; has to be entirely served by @1, x2 can be both served by
()1 and ()2, as shown in Figure

From the end consumer perspective, products can therefore be bought from the
store at a unit product selling price v or from Internet at a unit product selling price
ve. When products are bought on Internet, the replenishment source is either the store
(when @ is high enough) or the drop shipper.

Both store demand and Internet demand are subject to product returns. Indeed, a
portion of products bought is assumed to be systematically returned. The return rates
are assumed deterministic. Furthermore, return rates are considered to be different
for different types of flows: [y is the return rated associated with products sold in
store (products that are replenished from the distant supplier); B2 is the return rate
associated with products sold on Internet and replenished from the drop shipper; f3 is
the return rate associated with products sold on Internet and replenished from store.
Practically (3 is smaller than others because e-commerce tends to have a higher return
rate than traditional commerce. [ > (3 since when Internet demand is satisfied by
store inventory (rather than the drop-shipper), we expect that the NV would offer a
higher quality than the drop shipper in packaging, labeling delivery, and other consumer
services to ensure a good consumer satisfaction which is a key element for the NV, which
would reduce the return rate.

Returned products are considered to be resalable in the selling period (as new
products) after a certain treatment process performed in store at a unit cost w, that
includes the delivery cost between consumer and store, product examination and control
cost, an eventual repair cost, product repackaging and relabeling cost, etc. We assume
that the time between the initial sale and a resale in case the product is returned is
small relative to the selling season. Hence, returned products are considered as part of
store inventory immediately after treatment.

Store demand x; is served by store inventory ordered before the season (1 and by
product returns occurring during the season. Internet demand x2 is served by store
inventory, drop shipping option ()2 and returns occurring during the season. In other

words, the quantity Q2 can not be used for serving store demand directly.
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The unit selling price vy is lower than vy and the unit purchasing cost wy for drop
shipping is higher than w;, because the retailer usually needs to pay the drop-shipper
a higher product unit purchase cost than to the distant supplier and in addition, the
unit selling price paid by the internet consumer is expected to be lower than the price
applied in the physical store. Therefore, when there is not enough inventory to satisfy
both x1 and z9, the NV allocates store inventory to satisfy 1 (with priority 1) and
then use the remaining inventory for xo (with priority 2).

If a unit of product remains at store at the end of the selling season, it is assumed
to be salvaged at unit price s.

In case of shortage in the store, it is assumed that a portion ¢ of consumers switch
to the drop shipping option, i.e. they become Internet consumers. For the rest of store

consumers, a lost sale penalty p per unit of product is applied.

Hereafter are the additional modeling assumptions:

e Store demand and internet demand are two independent random variables. The
probability distribution function of each demand is assumed to be known when

ordering Q1.

e The supply capacity of drop-shipping option is unlimited, i.e. there is no restric-

tion on values that ()2 can take.

e We also make the following assumption that is standard for NV Problem: v; >

wyp > S, Vg > Wy > S.

Hence, by formulating the expected profit function for the NV, Q)2 is deduced from
the realizations of x; and x9, while the optimal store order quantity )1 is determined
by optimizing the expected profit.

If we eliminate the assumption on product returns, the model is equivalent to the

one of [19].

Define the following notations used in Chapter 4:
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I

the random variable representing demand at store. It is assumed to have a
continuous probability function fi(z;) and cumulative function Fj(z1), with
mean g1 and standard deviation o,

xo the random variable representing demand on Internet. It is assumed to have a
continuous probability function fa(x2) and cumulative function Fy(z2), with
mean o and standard deviation oo,

B1  return rate associated with products sold in store,

B2 return rate associated with products replenished from drop shipper and sold
on Internet,

B3 return rate associated with products replenished from store and sold on Inter-
net,

t  proportion of consumers who accept switching from store to drop-shipping
option in case of shortage in the store,

w, unit return handling cost in the store,

vy unit selling price for a product bought in store,

vo  unit selling price for a product bought on Internet,

wi unit purchasing price cost from the distant supplier,

wy  unit purchasing price cost for the drop-shipping option,

p  unit penalty cost of shortage when store demand is unsatisfied,

s unit discount price for store inventory when overstock happens,

@1 order quantity before the season, the decision variable of the model,

()2 drop-shipping order quantity.

unit selling price v, unit selling price v,

Store Internet
demand x, demand x,
B.< B,
B1< Bs
Bs< B,
Store Drop-
inventory Qq shipping Q,
Unit purchasing Unit purchasing
cost:w;, cost: w,

Figure 4.1: Problem modeling
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4.4 Problem formulation

The mathematical formulation of the model is obtained by considering different situa-
tions that may arise regarding the inventory that is available in store (i.e. the sum of
@1 and product returns that are used to satisfy demand after being treated in store)
and the quantity @2 ordered from the drop-shipper (as well as the associated product
returns) on one hand, and the realizations of demands x1 and x5 on the other hand.
More specifically, we identify several cases.

The first case, i.e. Case 1 here below, corresponds to the situation where the sum
of ()1 and product returns associated with store and Internet demands is sufficient to
satisfy both the realizations of 1 and xs.

In the second case, i.e. Case 2, the quantity (1 and product returns associated
with store are sufficient to satisfy z;. xo is then satisfied with the remaining store
inventory and the quantity ()2 ordered from the drop shipper as well as the related
product returns.

The third case, i.e. Case 3, corresponds to the situation where the sum of Q)
and product returns associated with store demand are not sufficient to satisfy x;.
Depending on the assumption considered, we identify two variants of models. In Model
1, we assume that product returns associated with Internet sales cannot be used to
satisfy x1. Thus, only product returns associated with store can be used to satisfy
x1 (this assumption can be seen in [77]). In Model 2, we relax this assumption by
considering that both types of product returns (store and Internet) can be used to
satisfy x1.

Note that in the variants of models, store demand z; is assumed to be satisfied in
priority compared to Internet demand xs.

To sum up, two variants of model, i.e. Model 1 and Model 2, can be formulated
depending on whether returns associated with Internet sales can be used for satisfying
z1. In the following, we give the formulations of both variants. Firstly, we formulate
the elementary profits associated with Case 1 and 2 that are common to Model 1 and 2.
Then section [4.4.1] gives the formulation of the complete expected profit pertaining to
Model 1. Section gives the formulation of the complete expected profit pertaining
to Model 2.
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Case 1: the store inventory at the beginning of the selling season i.e. 1, together
with product returns is enough to satisfy both x1 and xo. In this situation, the NV
needs no drop-shipping. We denote the realized demand at store as Xj, then the
associated return is X /31, thus the net sale related to X; is X;(1— $1). With the same
logic, the net sale related to the realized internet demand Xs is X5(1 — (3) and the
related return is X983. Obviously, (1 should not be smaller than the total net sale,

thus the condition for case 1 is:

Q1= z1(1— pr) +22(1 — f3)

Case 2: the realized demands X; and X5 can not be entirely satisfied by Q.
Store inventory is first used to satisfy store demand X;, thus the net store sale is
X1(1— 1) and the related return is X;10;. The NV uses the rest of store inventory i.e.
Q1 — X1(1 — p1) as well the drop-shipped quantity Q2 to satisfy Xy. We have

Q1 —Xq(1- 1) Q232
Xy = e O w
which gives
Qs = Xo(1—B3) + X1(1—B1) — Q1

1— B3+ B2
The net sale on Internet is thus (Q1 — X1(1 — 1)) + Q2 and the related return is

Qa6 | (@1—21(1-p1))Bs3
1-P83 1-p3 :

()1 should be larger than the net sale related to X, and Q)2 should be positive.

Thus the condition for case 2 is:
z1(1 = B1) + 221 — B3) > Q1 = z1(1 — pr)

4.4.1 Model 1

In this model, the return associated with xo can not be used to satisfy z1. In case
3, the sum of ()1 and product returns associated with store sales are not sufficient to
satisfy x1. Figure displays the areas associated with Case 1, 2 and 3 as a function
of 1 and xs.

Case 3, demand x; is larger than the store inventory )1 and the associated product
returns: @1 < x1(1 — f1). Thus the store sale equals to Q1 and the related return

(f?_l—gi. A portion of store consumers switch to drop-shipping option when there is

no more inventory in store, i.e. the unsatisfied store demand X; — 159;1 is partly

is
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X3

(0.2

1- 5, Case 2

(0,0)

(ﬁ.o) Xl
Figure 4.2: 3 cases for model 1 as the realized values X; and X5 change

transferred to Internet demand. This new Internet demand transferred from store

demand is denoted as Xé: Xé = t(X1 — 17&). The rest is lost with a penalty cost:

()2 is ordered to the drop-shipper and Q232 products are returned:

Q282 = (X2 + X5 — Q2)(1 — fB3) (4.1)
Thus
0, = (Kot X)(1= )
1— B3+ B2
The net Internet sale equals to Q2 and the related return is Q202

1-p3

case sales realized in store return related to X; sale realized on Internet return related to Xo

1 X1(1 = B1) X161 Xo(1 = B3) X203
2 Xi(1-51) X161 Q2+ Q1 —Xi(1—py) el 4 Q=G U=PI
3 @ e @ fern

Table 4.1: Total sale and return for 3 cases in model 1

Total sale and return for different cases are shown in Table[.1l One condition needs

to be validated: the revenue related to s is larger than the return cost, otherwise it is
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not profitable to reuse the returned products.

Q252 4 (Q1—x1(1 = B1))B3

(Q2 + Q1 —z1(1 = B1))(v2 — we) > 5" s w;
As a result,
Q2(ve — wy) > 1Q_26623 W, = Uy — Wy > 1 6253 e

The profit function is derived as in equation

viz1(l — B1) +vexa(1 — B3) —wi1Q1 + s(Q1 —x1(1 — B1) — x2(1 — B3)) — (x181 + x283)wr
m=quizi(l = f1) +v2(Q1 — 21(1 — f1) + Q2) —wi1Q1 — w2 Q2 — (z151 + QQiﬁz + W) wr
11Q1 + v12Q2 — w1 Q1 — w2Q2 — (1 — t)p(x1 — 1?2;1) (1 N B1+ 1= 53 B2)wy

(4.2)

wo2—S§
vot+wr—s -’

Proposition 1. The expected profit is concave when B > B3 —

Proof. Proof is provided in Appendix 1. O

Practically B2 > B3, meanwhile, it is a key element for the NV to ensure a good
consumer satisfaction and as he is in direct communication with consumers, he makes

more efforts than the drop shipper in packaging, labeling delivery, and other consumer

services. Thus By > (3 — v;ﬁ;is and thus the concavity is validated.
The optimal condition is derived by setting the equation bellow (equation of
Appendix 1) equal to 0:

Q1

Q1 Q1 /151 Q1 1-05
Ao F A3(1—F A1—A2)F: — dr; =0
2 1<1_ﬁ1)+ 3( 1(1—ﬂ1))+ . ( 1 2) 2(1—63 1_/83x1)f1(x1) 1
(4.3)
See A, A2 and A3 in Appendix 1.
Proposition 2. The optimal expected profit function is derived as:
o0 o
=5
E((@D) = s [ oy P/ + [ s+ bap
- - (4.4)
— /3 i [3 —1, z1 1—ﬂ
bl bg / ! / : — 53.%'1 +$2)f2(£€2)d1‘2f1(1‘1)d1‘1
See a1, ag, by and by in Appendix 1.
Proof. Proof is provided in Appendix 2. O
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The above results are the formulations for general situations, but in practice, some

special cases can happen:

4.4.1.1 Special case: 51 =8, =03=0

When we do not consider the return effect, 81 = B2 = 83 = 0, equation is derived

as:
v1—wi+p—(v2—wa+p)t—(v1—w2+p—(v2—wa+p)t) F1(Q1) — (w2—5) F142(Q7) (4.5)

Equation 4.5/ can be adapted to general demand distributions. We will find same results
as in [19], which developed a NV problem with drop-shipping option but no product

returns.

4.4.1.2 Special case: 31 = 3 = 33 =73

This special case assumes that all return rates are identical. In this situation, our model
is greatly simplified. The expected profit is concave and the optimal order quantity is

developed as:

(w27’wl)F1( 1 ?%1 )+(v1—w1702t+w2t+ 1511)7“6 (tf]_)ﬁ»il_;;p)(lfFl( 1 (;2161 ))4»(“)278)1:’1_._2(%) =0
(4.6)
The optimal expected profit is:
E(r(Q7)) = (1 = B)(va — w2)t — fwyt — (1 —t)p) /QI z1f(z1)dxy
1-8
Qf

Hor=un)(1=8) = wB) [ a1l e+ (02 - un)(1 - B) - woBs

o

+ (wg —5)(1 - 5)/_ B /_ o (21 + x2) fa(w2)dx f1(21)dxy
@)

4.4.1.3 Special case: z; =0

This is the case where the NV is a pure e-retailer without a store. Companies like
Amazon put the entire consumer experience - from browsing products to placing orders
to paying for purchases - on the Internet. The NV has also two options of supplying: to

pass an order to the supplier before the selling season and drop-shipping option during
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the season. Considering the return effect, the problem can be treated as a special case of
our model with zero store demand. The optimal order quantity condition is developed
as:

Q1
1—0s

Ao + ()\1 — /\Q)FQ( ) =0 (4.8)

thus
Q] ) = (B2 — B3)(v2 + wy) + wo — wi (1 4 B2 — B3)
1—-p3 (B2 — B3)(v2 + wy) + wa — s(1+ B2 — B3)

When 3 > 3 — ~22-*—, the expected profit is concave; if not, the optimal order

v2t+wr

Fy(

(4.9)

quantity Q7 = 0.
And the optimal expected profit is developed as:

*

Q1
E(m(Q})) = bapa + (b — by) / T ra fa(2e)das
= (v —wa — fiwﬁrs)l _1%%52 1 (4.10)
QF
1—-p55 Bow,  Pswy | [TF3
+m(w2—8+ 1_[@3 — 1—63)/_00 ZUQfQ(.’L‘Q)dZEQ

When £y = 3, the optimal order quantity and expected profit is derived as:

QT W2 —wy

I —
2(1—53 wo — S

(4.11)

Q1

B(r(@1) = (o2~ w2 = ) (1= falpa + (1= ) —) [

Let us note that equation is analogue to the optimality condition for a NV

? zafo(we)drs (4.12)

with an emergency option derived by [I§], if we consider drop-shipping as a special
emergency option. Since 1 — 83 < 1, Q@ = (1 — 53)F2_1(%) < FQ_I(%). In
other words, the optimal order quantity in presence of product returns is smaller than
the one of the NV problem with an emergency option but no product returns. Such a
result is intuitive because in the presence of product returns, some demand does not
result in a real sale because the product is returned and the price is payed back to the
consumer, thus less inventory is required. If f2 = 83 = 0, equation is identical to
the one in [I8]. When we = w9, equation gives ()7 = 0. This is the special situation
that the two supply options have same purchasing cost and same return rate, there will

be no longer any interest to stock an initial store inventory.
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4.4.1.4 Special case: no drop-shipping option

This special case assume that no drop-shipping option is available for the NV. This
is a NVP with two independent demands and product returns. In this situation, as
the demands realize, we have same 3 cases as in model 1 but with Q3 = 0, the profit

function is derived as in equation

vz (1 — f1) + vawa(l — f3) —w1Q1 + s(Q1 — z1(1 — B1) — 22(1 — B3)) — (x161 + z283)wy

m=quzi(l=B1) +v(Q1 —21(1 = B1)) —wiQ1 — (z151 + W)wr

v1Q1 —wi1Q1 — p(z1 — 1?231) - 19@ Brws
(4.13)
The first derivative can be derived as:
dE(r(Q1)) _ p B
e R T R
B3w; Brwy P Q1
(v 1-083 1-5 1—ﬁ1) 1(1—ﬁ1)
Q1
B3wy =51 Q1 1-5
#7250 [ R - T A
(4.14)

Proposition 3. The expected profit is concave.
It is easy to prove that the second derivative is negative, thus the expected profit

is concave. The optimal condition is derived by setting equation |4.14] equals 0.

4.4.2 Model 2

In this model, case 3 has two subcases: case 3a and 3b, see Figure [£.3] In case 3a,
the sum of quantity (1 and product returns associated with store are not sufficient
to satisfy x1, but the sum of quantity ()1 and product returns associated with store
and from Internet are sufficient to satisfy x1. In case 3b, the sum of quantity ()1 and
product returns associated with store and from Internet are not sufficient to satisfy .

Case 3a: the demand X is larger than the store inventory )1 and the associated
product returns: 1 < X1(1 — 81). Thus the NV uses returned products from internet
sales for unsatisfied part of X7. ()2 is ordered to the drop-shipper and Q283> products
are returned, which is partially used to serve Xj: X7(1 — 1) — Q1. Then the net store

81
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X2 M\
(D,I_ng)
’ Case
2
QZ
= E
(0,0)

Figure 4.3: 3 cases for model 2 as the realized values X; and X, change

sale is X (1—/1) and the related return is 1 31. The other part Q282 —(X1(1—51)—Q1)
is used for Xy — Qo:
Q262 — (Xa(1 = B1) — Q1)
1— 83

Thus the net sale on Internet is Q2 — X1(1 — 1) + @1 and the related return is

Q28> | (@1—X1(1-p51))Bs3
1-P83 1-83 )

— Xy — Oy (4.15)

Xo(1—p3)+ X1(1 = p1) — @1
1— B3+ B2

Q1 < X1 and Q282 — (X1(1 — B1) — Q1) > 0. Thus the condition for case 3a is:

Q2 =

z1(1—=B1) > Q1 = x1(1 — B1) — 2202

Case 3b: the demand X is larger than the store inventory )1 and the associated
product returns, the NV uses all returned products from internet sale for the rest part
of Xi. In this situation, the NV passes an maximal internet order to the drop shipper:
Q2 = Xs, then the returned product is Q282 which is all used for store demand Xj.
Then the net sale in store is Q1 + @232 and the related return is Ql%%ﬁ? B1. The net
sale related to Xs is Q2 — (D22 and the related return is QQo5o.

As we know, X7 is not totally satisfied, we have Q11+_7Qﬁ?,82 < Xi. Then the condition

for case 3b is:

r1(1 = B1) — 2262 > Q1
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Considering that store consumers may switch to drop-shipping option when there is

no inventory in store, the unsatisfied store demand X; — Q1+%25 2

to internet demand. This Internet demand transferred from store demand is denoted

is partly transferred

as Xyt Xy = t(X; — Qlf“_i%iﬂ?) The rest demand is lost with a unit penalty cost:
Q1+Q28
(1 p(X, — DEQabe)

An order of QIZ is passed by the NV to drop shipper for satisfying xlzz Xé =
Q5 + T 222 We have the net sale related to X, is @, and the related return equals to
52Q2
1-Bs"

' Q1+ @282, 1-—3
Qg = t(X1 — )
1—=01 "1— B3+ B2
case | sale in store | return related | sale related to | return related | sale related to | return related
to X; X, to X» X, to X,
Xi(1=51) | Xaph Xa(1 = Bs) X2fs 0 0
Xi1(1-061) | Xup Q2 + @1 — QQBZ + 10 0
X1(1-p51) W
3a Xl(l—ﬂl) X1B1 Qz + Q1 — Q262 + 0 0
X, (1— 51) (Q1 Xll(}%ﬂl))ﬁs /
3b | Qi+ Qufs | HERf2g Q:— Q282 | Q2B Q> 2

Table 4.2: Total sale and return for 4 cases in model 2

Total sale and return for different cases are shown in Table[d.2l One condition needs

to be validated: the revenue related to xs is larger than the return cost, otherwise it is

not profitable to reuse the returned products.

(Q2 + Q1 — z1 (1 — 1)) (v2

This should be satisfied for both Case 2 and 3. As a result,

Q2(v2 — wa) >

The profit function is derived as in equation

Proposition 4. The expected profit is concave when 8y > B3 —

Proof. Proof is provided in Appendix 3.

83

QzﬁQ (Q1—z1(1 = B1))B3
wa) > 1-— 53 rt 1— 03 o
Q252 B2
1_B3wT:>UQ—w2> 1_5310
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viz1(l — B1) +vezo(1 — B3) —wiQ1 + s(Q1 — z1(1 — B1) — x2(1 — B3)) — (x1 81 + 283wy
viz1(l— 1) +v2(Q1 — z1(1 — B1) + Q2) —w1Q1 — w2Q2 — (2151 + ?Egi + (Qllelﬁlﬂgﬁl))ﬁ?’ Jwr
m=cviz1(l —F1) +v2(Q1 — z1(1 — f1) + Q2) —w1Q1 — w2Q2 — (z1 51 + ?_222 + (Qllelilﬂgﬁl)mg' Jwy
v1(Q1+ Q252) +12Q2(1 — ) — w1 Q1 — w2 Q2 + (V2 — w2) Qs

— (w1 — BED202) (1 — )p — (2B + 122 Bp + 122 B)w,

(4.16)

Practically 82 > B3, meanwhile, it is a key element for the NV to ensure a good
consumer satisfaction and as he is in direct communication with consumers, he makes

more efforts than the drop shipper in packaging, labeling delivery, and other consumer

services. Thus B9 > 83 — Uzqﬁu_s_s and thus the concavity is validated.

The optimal condition is derived as :

Ast /: (Aa = )‘3)F2(x1(1 —f1) = QT)fl(xl)dxl

& B2 (4.17)
+/1B1 (O — )\2)F2(1 6;21/83 _ i:ggm)fl(:cl)dm =0

See A1, Ao, A3 and A4 in Appendix 3.
Proposition 5. The optimal expected profit function (c.f. Appendix 4) is:

1Q:£ 1Q£ _iiglwl 1-p
E(W(QT))=a2M1+b2M2+(b1—b2)/ 1 / o (l—ﬂ;xl

+ x2) fo(x2)dx2 f1(21)d2)

z1(1-81)—QF

* Ba 1—p
+(ba—b3) [ . (— 71 + 22) fo(x2)dxo f1(21)d2y
/1Qé1 /oo BQ

(4.18)

See ao, by, ba, b and by in Appendix 3.

Some special cases happen in practice:

4.4.2.1 Special case: 1 =0, =03 =0

When we do not consider the return effect, 51 = 82 = 83 = 0, equation [£.17] is derived

as:

v1—w1+p—(v2—wz+p)t— (V1 —wa+p—(v2—wa+p)t) F1(Q7) — (wa—5) F142(Q1) (4.19)

84
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case 2
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4.4 Problem formulation

As in Model 1, Equation can be adapted to general demand distributions. We find

same results as in [19].

4.4.2.2 Special case: 31 =32 =33 =73

This special case assume that all return rates are identical. In this situation, the
expected profit is concave and the optimal order quantity is developed as:

QT w2 — w1
F _
1+2(1_5) p—

v —wy — 25 — 25((1 = B)(v2 — wa)t — Buyt — (1= )p) [  41(1—B) — Qi

— F d
Wy — s % 2( 3 )fl(-Tl) X1
=0
(4.20)
The optimal expected profit is:
E(m(Q7)) = agpir + bapa + (by —b2)/ / (w1 + x2) fo(22)d22 f1(21)d2]
—0 Joc (4.21)
00 11(175)7Q1 1 _ B
+ (by — 53)/@{ / (— 5 o + x2) fo(z2)dz2 f1(21)d21
-5 7>

4.4.2.3 Special case: 1 =0, 0, =0

This is the case where the NV is a pure e-retailer without a physical store. We have
same results as in model 1 since when x; = 0, the assumption that return products

from Internet sale can be used for store demand does not make sense.

4.4.2.4 Special case: no drop-shipping option

We have same results as in model 1 since when Q2 = 0, the assumption that return
products from Internet sale satisfied by drop-shipping can be used for store demand
does not make sense.

The contrary to the above situations is that the NV does not offer a higher quality
than the drop-shipper satisfying Internet demand. Thus the proportion of return is
larger than drop-shipping option (83 > f2). We consider it as a extreme case and will
show some insights on it by numerical examples in Appendix 5. The concavity of the
expected profit is no longer guaranteed and equation [£.3]becomes the necessary optimal

condition.
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4.5 Numerical examples

Since Model 1 and 2 give similar results, we concentrate on Model 2 in this section.

We use normally distributed demand in our examples. Other demand distributions will

also work. Consider an example of a NV selling an item with the following parameter

values shown in Table [4.3| (the first 6 parameters are the same as [19]). The aim of this

section is threefold: 1) to evaluate the impact of the parameters on the optimal order

quantity Q7 and the optimal expected profit E(7(Q7)); 2) to identify the impact of

ignoring the product returns when the NV makes decisions; 3) to identify the benefit
of the drop-shipping option. @7 and E(7(Q7)) are derived by equations and

parameter value/unit
v1, unit selling price for an store demand 50
ve, unit selling price for an drop-shipping demand 45
w1, unit purchasing cost for the store order 20
ws, unit purchasing price cost for the drop-shipping option 21
s, unit discount selling price for store inventory 10
p, unit shortage penalty cost 5
t, substitution fraction 30%
wy, unit return cost 10
B1, return rate associated with products sold in store 0.1
B2, return rate associated with products replenished from drop 0.3
shipper and sold on Internet

(B3, return rate associated with products replenished from store 0.2

and sold on Internet

Table 4.3: Data for the numerical examples

4.5.1 Impact of wy, ws, w,,s, B, B2, B3

In this part, we take an example with p; = 100, ue = 10 and cv = 0.1,0.2.0.3. The

impact of parameters wi, wa, wy, s, 81, B2, B3 are similar for other demand settings. In

section we will show the impact of other parameters that are not the same for

different demand settings.
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The impact of increasing values of w1, wy and s on QF and E(7(Q7)) are as expected
intuitively. In particular, Figure shows that Q7 and E(7(Q7)) decrease with w;.
Second, on Figure we observe that when wsy increases, the NV tends to increase

7 in order to reduce the order of drop-shipping. E(m(Q7)) decreases also with ws.
Finally, when the unit salvage value s increases, as expected, Q7 and E(7(Q7)) both
increase (cf. Figure [4.6).

The impact of parameters w,, 81, B2 and B3 that are relative to product returns
are represented on Figures [4.8, and Q7 increases with w,. The reason is
that when w, is bigger, the NV wants to reduce product returns. Since the return rate
related to drop-shipping is bigger than the one related to store inventory (83 < f32), to
reduce the return cost, the NV uses more store inventory. E(m(Q7)) decreases with w,
due to the fact that the return cost rises, cf. Figure

Q)7 decreases with 31, because the net store demand (the difference between the ”ini-
tial” consumers’ demand and product returns) decreases with ;. E(m(Q7)) decreases
too, because net demand decreases and return cost increases, cf. Figure [£.8]

Q] increases with 2. The reason is that when (3 increases, the NV reduces ()2, thus
the NV uses more store inventory for satisfying Internet demand. E(mw(Q7)) decreases
with 8> for the same reason of 31, cf. Figure

Q] decreases with 3. This is because when [33 is bigger, there will be more possible
return products when the NV satisfies internet demand using store inventory (including
the returned products that can be reused). As a result, the NV reduces @7 and orders
more from drop-shipper. The expected profit decreases with 83 for the same reason of
B1, cf. Figure

E(m(Q7)) decreases slower with 82 than others. The reason is that when 32 in-
creases, the net Internet demand decreases, thus the NV tends to increase )7 to satisfy
more Internet demand by store inventory, as a result, the quantity of drop-shipping is
reduced and the influence of 3y is weaken. E(m(Q7)) decreases faster with §; than the
others, because when (1 increases, the NV can not use drop-shipping to satisfy store

demand in order to reduce returns related to store sale.

4.5.2 impact of vy, vy, p,t

Q7 and E(m(Q7)) both increase with u2, see Figure This is because when Internet

demand is bigger, on one hand, the NV increases the order quantity because there is
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more demand, on the other hand, when ()1 is bigger, the risk of under-stock decreases
and the risk of overstock of x1 is reduced because (1 can be used for satisfying xo. Thus
it is obvious that if us is big enough, Q)7 can probably satisfy all store demand. For this
reason, some results are different for different demand settings (impact of vy, ve, p, t):
when po is bigger or close to 1, the results can be different from those for a small
o compared with 1. Therefore, we give numerical analysis in two parts: one with
a big pg compared with pug (u1 = 100, pe = 100) and the other one with a small o

(Nl = 100> M2 = 10)
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Figure 4.12: impact of vy

4.5.2.1 pq = 100, s = 100, cv = 0.1,0.2,0.3

With this setting of demands, when the NV orders )], store demand can probably be
all satisfied in the selling season and no under-stock happens.

The unit store selling price has no impact on Q7 and E(7(Q7)) increases with it,
see Figure When v; increases, obviously the NV wants more store sales. However,
since all store demand are already satisfied by store inventory, increasing )] does not
increase store sale. E(m(Q7)) increases because the revenue related to each store sale
increases with the unit selling price.

Q7 and E(m(Q7)) both increase with the unit Internet selling price, see Figure
[4.13] When unit Internet selling price is higher, the NV wants more Internet sale. The
increase of optimal order quantity brings more Internet sale: when the order quantity is
bigger, less Internet demand is lost because the return rate related to Internet demand
satisfied by store inventory is smaller than by drop-shipping.

Numerical examples show that ¢ and p have no impact on Q7 or E(m(Q7)). As we

explained, with this setting of demands, under-stock for store demand rarely happens,

thus penalty and substitution are both negligible.

4.5.2.2 p; =100, pe =10, cv =0.1,0.2,0.3

With this setting of demands, ()7 is much less than that with us = 100, see Figures
As a result, under-stock for store demand probably happens during the

selling season.
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Figure 4.13: impact of vs

Q7 and E(m(Q7)) increase with the unit store selling price, see Figure The
reason is that when wv; increases, the NV wants more store sale. Since under-stock
happens during the season, the NV can increase store sale by increasing Q7. E(m(Q7))
increases because the unit selling price increases.

Q7 decreases with the vy and E(7m(Q7)) increases, see Figure When unit vy is
higher, the NV reduce )7 because unsatisfied store demand can be partly transferred
to Internet demand payed by a higher unit selling price vy. E(7(Q7)) increases because
the unit Internet selling price is higher.

Q7 decreases with the substitution fraction ¢ and E(7w(Q7)) increases, see Figure
Q7 decreases because when ¢ is bigger, more unsatisfied store demand is substi-
tuted towards x2, thus the NV can reduce Q7. E(7(Q7)) increases with ¢ because more
unsatisfied store demands are transferred to x2 and satisfied by Q2.

Q7 and E(m(Q7)) both increase with the unit penalty cost, see Figure The

reason is that when p is bigger, unsatisfied store demand results higher penalty cost.

4.5.3 impact of ignoring product returns

If the NV ignores product returns when deciding the order quantity, he would not
consider the part of the demand that is lost due to returns. When product returns are
ignored, the optimal order quantity denoted as @Y is obtained by equation the
related expected profit is obtained by equation [6.42

As expected, numerical examples show that QY > Q% and E(7(Q?)) < E(7(Q%)).
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The difference between Q(l) and @7, so as to the difference between E(W(Q?)) and
E(m(Q7)), increases with 51 (see Figure [4.18)), 53 (see Figure [4.19)), and decreases with
B2 (see Figure [4.20)).

The worst case is when (7 and (3 are great, (s is small. For instance, in our
numerical example, if we take 51 = f5 = pB3 = 0.3, ignoring product returns leads to

an expected profit which is 14.4% less than the optimal expected profit.

4.5.4 impact of drop-shipping

If the NV does not use drop-shipping, the optimal order quantity denoted as chl is ob-
tained by equation by letting the first derivative equals zero. The related expected
profit is obtained by doing the expect operation from equation
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Figure 4.21: impact of drop-shipping with p; = 100, pue = 100, 1 = 0.1, B3 = 0.2

As expected, numerical examples show that Q¢ > Q% E(n(Q%)) < E(n(Q%)). The
reason is that NV can use drop-shipping for satisfying Internet demand. The difference
between Q¢ and Q%, thus the difference between E(7(Q9)) and E(m(Q%)), decrease
with [2 (see Figure , because ()] increases with [z and Q‘li is constant. The
difference increases with 3 (see Figure because when f3 is bigger, the NV uses
more drop-shipping for satisfying Internet demand for reducing Internet sale returns.
The difference increases with pg (see Figure because when there is more Internet
demand, there is more interest in using drop-shipping option. The difference does not
have obvious change when 1 increases, because the product returns related to store
sale has no relation with drop-shipping option.

Without drop-shipping option, NV orders an inventory bigger than the optimal and
the related expected profit will be less than the optimal. The worst case is when (3 is
big, B9 is small, and p9 is big. In our example, if we take 81 = 0.1, fo = B3 = 0.2, =
100, cv = 0.3, using drop-shipping let the NV order a quantity 31.2% less and brings
an expected profit 9.0% larger.

4.6 Conclusion

Using drop-shipping to satisfy demand is an interesting option for e-commerce retailers
in order to reduce inventory related costs. However, the high product-return rate related

to e-commerce business can challenge the use of drop-shipping as the only option for
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satisfying demand. Many retailers prefer therefore to use a mixed drop-shipping and
store inventory replenishment strategy to satisfy demand.

In this chapter we formulate a NV model for identifying the optimal mix of drop-
shipping quantity and store inventory by considering different return rates for different
types of flows (store inventory to store demand, drop-shipping to Internet demand and
store inventory to Internet demand). We provide the optimal condition under general
demand distributions as well as the optimal expected profit equation.

For two variants of Model, we demonstrate the concavity of the expected profit
function and give the optimal expected profit equation. Some special cases are also
considered: the case with no product returns, the case with identical product-return
rates, the case with no store demand and the case with no drop-shipping option. Nu-
merical analysis is provided to illustrate the impact of model parameters.

Our work presents also some limits. We have assumed that all returned products
are resalable, while in practice this may not be the case. To solve this problem, a
parameter of resalable products portion can be introduced. Such a parameter already
exists in the NV model with returns but no drop-shipping option [87].

Another possible research can be to take the timing of returns into consideration:
the single period can be extended to a multi-period problem where returned products
arriving after the end of the first selling season can be resold at the next selling periods.

It will also be interesting to consider a problem where the suppliers (both drop-
shipper and the distant supplier) offer quantity discounts in addition to the assumptions
of our model. The mixed supplying strategy will be different according to the quantity

discounts policies.
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Conclusion and perspectives

Interest in the NVP has increased over the past 50 years. This interest can be attributed
in part to the increased globalization. Also, the reduction in product life cycles brought
about by technological advances makes the NVP more relevant. In this chapter, we
give general concluding remarks and present directions for future research. For further
details, we refer the reader to the concluding sections of the previous chapters.

In this thesis, we focused on three different extensions of the NVP: multiple dis-
counts, product variety and free product returns policy. Our analysis leads to both
qualitative and quantitative results.

In particular, we have investigated the impact of multiple discounts on inventory
management. Using multiple discounts is a common way for retailers to deal with
overstock in order to reduce the overage cost. This policy, in return, influences the
optimal order quantity decision since the overage cost is reduced by using multiple
discounts. We developed the model that provide the optimal ordering quantity for a
NV using multiple discounts and showed insights on discount schemes. For instance,
numerical results show that increasing discount numbers increases the expected profit:
in our example, the expected profit is increased up to 100% with 5 progressive discounts
compared with only one final discount. However, there is an upper limit of the expected
profit when the NV increases the discount number.

Next, we analyzed the impact of product variety in inventory management. We
developed a model considering the substitution effect and compared it with several
models that can be used in practice. Considering the substitution and assortment

effect significantly increases the expected profit up to 32% in our examples.
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Then, we proposed a model for a NV that has a mixed supplying strategy (using
both drop shipping and store inventory) and resalable returns related to store sale and
Internet sale. We assumed that drop-shipping can be only used for Internet demand
and store inventory can be used for both store demand and Internet demand. We inves-
tigated then the impact of the parameters with different demand settings, illustrated
the impact of ignoring product returns and the benefit of drop-shipping. If the NV ig-
nores the product returns, the expected profit is reduced by up to 14% compared with
the optimal. The drop-shipping option, meanwhile, can bring an increase of expected
profit up to 9%.

In the following, we provide some interesting research perspectives that can be
developed as new extensions of the NVP.

One may extend our work by incorporating the effects of advertising in the NVP.
Indeed, demand can be influenced not only by pricing but also by advertising. Many
researchers assumed that the demand is a function of price, but few of them have
taken into account the impact of advertising on demand. Advertising is a lever that
is frequently used by companies to target consumers so that they buy more products.
A joint determination of optimal order quantity and the advertising policy (e.g. the
advertising spending) can be an interesting research area. Such kind of work is emerging
recently in some papers, e.g. [91], but there are still lots of work that can be done
considering the advertising effect in different situations, for instance, a NV often uses
both pricing and advertising to influence the demand.

A second interesting research perspective is a multi-echelon NV structure, since in
practice a NV can have a distribution center and some physical stores. For instance,
when one develops a drop-shipping model used by the NV, internet demand can be
satisfied by both the distribution center and the drop-shipper, while store demands
only served by the stock in each store. Thus, the order quantity for distribution center
inventory and the order quantity of drop-shipping need to be simultaneously considered.

Another possible area for future research lies on the consideration of a different
objective for the NV. Earlier research is mainly based on the profit maximizing opti-
mization objective, while sustainable supply chains is becoming a global need. Reducing
overall carbon footprint, reducing energy and resource consumption can be considered

while the NV optimizes the operations to achieve greater cost savings and profitabil-
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ity (e.g. [92]). The overage of stock, which brings wastes of energy and resource, for

example, can be an interesting research area for sustainable NVP.
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6. APPENDICES

6.1 Appendix of chapter 2

Appendix 1: Expected profit for additive price-dependent demand:

inf Q
E(r(Q)) = /Q 0@ — wQ)f (x)dx + / ooz + (@ — )1 — wQlf()dar +

Ho—p1+Q

po—p1+Q
T / o + (1 — po)o1 — (i — pio + )2 + (03 — w)Q)f(@)da + - -
po—p2+Q

po—pi—1+@Q
+ / [vox + (1 — po)vi + -+ + (pim1 — pi—2)vi—1 — (i1 — po +
Ho—pi+Q

Ho—Hn—11+@Q
+ 2)v; + (v; —w)Q|f(z)dx + - - —|—/0 [vox + (1 — po)vr + - -+ +

+ (Un—1 = pn—2)Vn-1 — (-1 — po + T)vp—1 + (vp — ) Q| f(z)dx (6.1)
E(n flﬂf (vo — w) f(z)dx + fﬂo Hie 1+Q( — w) + f(z)dx + po—fi—1+Q
po—pi+Q
(vi = + [H0T U O gw + (1 — po)vr — (11 — o + 2ol f (w)da + -+

,Z)O:IZZ;CI;Q[UOOC + (p1 — po)vr + -+ (im1 — pi—2)vie1 — (Hi—1 — po + z)vi] f(z)dz

) 1+Q [vox + (1 — po)v1 + -+ + (-1 — n—2)Vn—1 — (n—1 — po + )vp—1] f(x)dz

= Q~w +vo + Y10 (Vg1 — v) F(Q + po — )] + 2y i lﬁ?:lZ:gQ(Uj_
vjen) (@ =t + po) f(@)da + Y570 [40 7T (0 — vy (@ — iy + o) f () dr
= Q[—w + vo + Z?:_ol(vi—i—l — UZ)F(Q + to — ,Uz)] + Z Q+u0 U (’Uz‘ — vi+1)(x + u; — uo)f(a?)dw

Appendix 2: Proof of lemma 1:
Use Leibniz’s rule, we get the derivative of E(Q):

n—1
dE(;TQgQ)) = _Z(Ui_’Uz‘+1)F(Q+M0—M¢)+v0—w (6.2)

=0
The second derivative of E(7(Q)) is:

2 T n—1
dE;l(zQ(Q)) ==Y (i = vip ) F(Q+ po — s) (6.3)

=0

f(z) >0, v; —vip1 >0, so dQEd(QiﬂéQ)) < 0, then E(m(Q)) is concave.
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Appendix 3: Expected profit of multiplicative price-dependent demand:

inf Q
E((Q)) = / (0Q — wQ)f()dz + / (voz + (Q — 2)1 — wQ) f(x)da +
Q e,
e T
o e+ (= oo = prva) + (2~ w)Q)S () + -
200 Ho

K2

a0} Q
Hi—1 T
+AO (vox + —((1 — po)v1 + -+ +

ToU;
+ (Hi-1 — pi—2)vi-1) — E(Mz‘—l) + (vi —w)Q) f(x)dw + - -
Ko
o x T,
+/ U (wor + (1 — po)vr ++ + (Hno1 — fin2)Vn-1) — — (pin-1) +
0 Ho Ho
+ (vn —w)Q) f(z)dx (6.4)
Use Leibniz’s rule, we get the derivative of E(7(Q)):
dE(r(Q) _ o
—a0 - ZZ;(UZ vH_l)F(QE) + v —w (6.5)
Appendix 4: Proof of lemma 3:
The second derivative of E(7(Q)) is:
2B (w —
TEEDD) — 3 (w1 - v QL) (6.6

d*Q — fi” i

f(z) >0, v; —viy1 >0, so ‘12%(2778(‘2)) < 0, then E(m(Q)) is concave.

Appendix 5: Numerical example for chapter 4.3

Consider the practical example: w = 3, The amount of demand(x) has a normal
distribution N(po, 0¢) or Ulug— o0, po+00], o = a—bv,a = 80,b = 8, s = 2. According
tolemma 2, E(7(Q*))—Es;—E, = ¢, and € = 0 in some conditions. In the linear discount
case, according to equation2.11] the expected profit should be close to a hyperbola
of n. And the maximum is:180. By setting vg = 8, we have pg = 16. Consider
oo = 0O(deterministic demand),2,4,6,8, and n increases from 2. The expected profit
E(m(Q*)) is calculated by equation 2.5} Figure[6.1] [6.2show the values of E(7(Q*))—E,
and FE,.

It is obvious that € increases with n, the reason is that when n is larger the condition

of oy tends to be not satisfied. In the uniform distribution case, the graph shows that
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Figure 6.1: The value of (E(7(Q*)) — E,), as a function of discount number, with normal

distribution
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Figure 6.2: The value of (E(7(Q*))—E,), as a function of discount number, with uniform

distribution

e = 0 for n < 11; in the normal distribution demand case, it is exact for n < 7. In
practice, this n = 7 is rather big for a multi-discount selling season. Even at n = 21,

e < 1.7T%E,. These results works for all g < u/2. Repeat the computation with

158

L L
20 25

30 35

discount number

40

45

different combinations w, s, a, b,vg, similar results were got.

equation € is rather small or even zero.
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6.2 Appendix of chapter 3

Appendix 1
:U; = p;:v, thus the probability that x € (a,b) equals to the probability that ZL’; €
(p;a, p;b), regardless the value of a and b:

bp; ! / ’ b
, fi(@;)dx; —/ f(z)dx
ap; a

= [ I g (67

7
P; p’L

bpz f(x*?)
p, !
_ / i

, (A
p;, P

This equation should be available for any value of a and b, thus we have equation [3.4

Appendix 2

Vs — Wy

P and

For policy 2, we have Fi(¢) =
q; ,
E(r(Q")) = Z[/ (vi = si)zif; (@:)dw; — Ki] (6.8)
iem 70
For normal distribution,

! ’ ! !

/Qi (vi — si)zif; (23)da; = (vi — wi)p; — (v; — )00 f; (F,
0

Vi — Wy

V; — S5

When the products have same selling price, purchase cost and salvage value, a; f; (Fi/_1 (=2)) =

v—S8
fo(Fy 1(11’;1;’)) is a constant value, thus

Em(@) = Y (A +0iB) = Y pl(uA +0B) (6.10)

€M €M

With A = v —w, B = —(v — 5) fo(Fy 1(2=Y)), fo is the standard normal probability

v—S8

density function and Fy is the standard normal cumulative distribution function.

For uniform distribution [p — o, p + o],

qa , , 1 — (28 — )2
/ (vi — si)xif; (x5)dx; = (v; — wi)p; — (v — si)0; 14 (6.11)
0
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When the products have same selling price, purchase cost and salvage value,

BE(r(Q%)) = Z(NiA +0;B) = Zp;(“A +oB) (6.12)
ieM ieM
_ (V=W _1)2
With A = v—w, B — — -

For exponential distribution with parameter A;,we haveu; = 1/\;,0; = 1/X;. We

have
qa; , . Mgt e M% — 1
/ (vi = si)zifi (zi)dzi = (v; = si)(—ge™ ™ — ————)
0 %
U —wy _ (wi - Si) In % (6.13)
Ai i
Vi — S5

= (Ui — fwi),ui — (’wi — Si)O'i In Wi — 5

When the products have same selling price, purchase cost and salvage value,

Em(@) = Y (mA+0:B) = Y pl(uA +0B) (6.14)

€M ieM

With A = (v —w),B = —(w — s)In > =.

Appendix 3: combinations of (K, L,c) that maximize the difference be-
tween policy 4 and 5

In this part, we are interested in values of o, K and L that maximize the difference
between policy 4 and 5. As shown in Figure [3.10] and [3.8] policy 4 get the same results
as policy b, except for a few cases. The analysis of these cases shows that there are some
points maximizing the difference between policy 4 and 5. At these points, policy 2 shows
an interesting character: the expected profit calculated by policy 2 E,, corresponding
to the optimal assortment M including m product variants is very close to the expected
profit E,,11 related to the assortment with an additional product j, i.e. Fp, =~ En41.
Em = ien(iA+0oiB) =3 icns p;(pA+0B). With normally distributed demand, for
example, A =v —w, B = —(v — s) fo(Fo (=%
density function. A necessary condition for maximizing the difference between policy
4 and 5 is derived:

)), fo is the standard normal distribution

/ K
pj(pA+oB) = T (6.15)

Take Figure for example, L = 0.3, 0 = 20 thus yA + ocB = 240. The difference

between policy 4 and 5 gets maximum when the optimal assortment size m equals 1.
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Thus the additional product j is the product with the second largest market share:
pj = 0.25. According the equation the fixed display cost K that maximize the
difference is: K = p;(uA—FUB)L = 18. Which is close to the result seen in Figure
K = 20. It is not exactly the same value to the one derived by equation because

the case K = 18 is not shown in the figure.
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6.3 Appendix of chapter 4

Appendix 1: Proposition 1

Proof. Let
o] = Ul(l — ,31) — wrﬁl — 8(1 — 61) (6.16)
b1 = va(1 — B3) — wyfB3 — s(1 — B3) (6.17)
Al =—wi+ s (6.18)
ay =v1(1—B1) —wva(l — By) + - ﬁlﬁgw — Brw,—(wg 4+ 2% — ) B (6.19)
1— 753 r r 1-83 1—/3+062
Bowy 1— 3
by — (0 — Wy — 6.20
2= (2~ 1—P3"1— P35+ P2 (6.20)
63w?’ B2wr 1

Ao = U9 — — — 6.21
2o 1—53+(w2+1—ﬁ3 Uz)l—ﬁzﬁ—ﬁz (6.21)

(1 — B3)(v2 — wa)t Bowyt
a3 = — —(1—1¢ 6.22
R e i v A (0:22)

,82107« 1-—- 63
by = — — 6.23
3 = (2 w2 1—53)1—534-52 (6.23)
Brwy 1 (1= p3)(va — wa)t Bawyt (1—-t)p
A3 = v —wy — — — + 6.24
P T 1—ﬂ1( 1— B3+ P2 1—53+52) 1—p (6.24)
Substituting them in equation [4.2] gives
o121 + bire + A1Qq1  case 1

T =S aoxy + bawo + A2 case 2 (6.25)

asxy + bgro + A\3Q)1  case 3

Now we search the optimal order quantity which maximizes the expected profit,

E(n).
Q1 1-584

Q1
-8 T—fB3 1-pB3*1
E(r) = / ' [/ ’ P (o + bizg 4+ M Q1) fo(zo)day

o o
o0

o 1 (2@ Fbawa + XoQn) fo(wr)dzs] fi(w)day (6.26)
EEETI

1-B3 1-B3

+ / Z; [ /_ Z(a3$1+b3x2‘|‘)\3Q1)f2($2)d$2]f1(x1)d:v1
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The first derivative is derived as:

dE(m
T R (-2 ) a1 - B2 )
d@Q 1-5 1—-751 (6.27)
*/&10 )P~ IO e
— — X X
- Lo )T T T g il
d?E(r Q
#:—(As—)\z)fl( <)
e =5 (6.28)
0 —m/l%w O LB () /(1 - )
2 1 - 2 1_[@3 1_63 1)J1 1 1 3
We have A2 — Ao — v1 — +wr63_wr61_w2+fzul;;_”2_ 1 ((1—53)(112—102)'5_ Bawrt
CRAVE A3 T A2 = UL 2T g T 1=y~ 1-Ps+F;  1-Ai\  1-PstB: T—B3+P2
(1 —1t)p), it is easy to find that
wrﬁ?) wrﬁl
— >0
1-83 1-p5
And
Bawy
wo + TEZ — vy 1 1— — o)t wyt
v — vy — 5 (( Bs) vz — up) & —(1—=1t)p)

1—B3+fs 1-p1° 1-Ps+B  1-PBs+ps

_utu (B2 —Bs) —wa — 2% +0a(Bs— B2) 1 (1 B3)(va—wa)t  Powyt

- - (1t
1= Bs + /o A T-fih 1 Bih )
. v1 + (Ul - U2)(ﬁ2 - 53) — w2 — % _ 1 ((1 — 53)(112 — ’IUQ)t_ ﬁszt —(1—t)p)
1— B3+ P2 1-p5 1— B3+ B2 1— B3+ B2
- v1—(v1—v2)—w2—% 1 ((1—53)(1)2—102)15_ Bowyt _ (-1
- 1— B3+ P2 1—-p1 1— B3+ p2 1— B3+ f2
Bl Tt N B e 3]t S S ST
1— B3+ B2 1—-p 1— B3+ B2 1— B3+ P2
_O-tp o wm o PR -H1-B)
1—p1 1— B3+ B2 1—p1
Thus
A3 — Ay >0
When Gy > B3 — v;ﬁ;is, we have
wy + (vg + wy) (B2 — B3)
Ao — A = —5>0
2 1— B3+ B2 i
The probability functions are non-negative, thus & E(m) < 0. O

dQ?
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Appendix 2: The optimal expected profit
The proof is similar as in Appendix 4.

Appendix 3: Proposition 3

Proof. Let
a1 = 1)1(1 — ,81) - wrﬁl - S(l - 51) (629)
by = v2(1 — B3) —wrBs — s(1 — Bs) (6.30)
AM=—wi+s (6.31)
_ 1-p Bawr 1-51
az =vi(l = f1) —v2(l = B1) + — 6353% = Prwp—(w2 + 25 —v2) =55 (6.32)
o Powr 13
b = (v2 —wy 1—53)1—534-52 (6.33)
. Bzw; Bow, 1
)‘Q_UQ_wl_1753+(w2+1fﬁ3_v2)1753+52 (6.34)
a5 = 0a(1 = 1) = a1 = 1)+ T e = B — (wa + 12— ) P
(6.35)
/82wr 1- 53
b3—(v2—w2—1_53 1— B3+ B2 (6.36)
_ B3wy Bawy 1
>\3_v2_w1_1-53+<w2+1—ﬁg_v2)1—,83+,82 (637)
1- - T
= A - T (639
_ Baw, Bo (1= B3)(va—wa)t  Powrt
by = v2(1=Fa)— (wat1— 5 —v1f2) -7 51( 1= B3t By 1—fs+ ﬁz—(l(;t;];;

_ Brwy +oup — 1 ((1 - B3)(U2 - w2)t . Baw,t
1—p 1-5 1— B3+ f2 1— B3+ B2
Substituting them in equation gives

Ay = —wi —(1=1)p) (6.40)

(

a1z + bixe + M@ case 1
aox1 + boxo + A case 2
o 201 222 2Q1 (6.41)
as3xy + bgro + A\3@Q1 case 3

41 + bgxo + AgQ)1  case 4

112



6.3 Appendix of chapter 4

Now we search the optimal order quantity which maximizes the expected profit,
E(m).

1-5
B

Q}% Q}% _
-5 1—B3 1-p53
E(m) =/ [/

—00 —00

1

(11 + biza + M Q1) fo(z2)dzo

(6.42)

+ / . (a2x1 + bawa + X2Q1) fa(w2)dxa] f1(21)dxy

1

+ /OO [/:o (a3z1 + b3z + A3Q1) fa(xa)dxs

Q1 1(1-B1)=Qy
1-81 B2

z1(1-81)—-Qq
B2

+ (a1 + byzo + M\4Q1) f2(x2)dw2] f1(21)dy

The first derivative is derived as (c.f. Appendix 1):

= )\3+/Oo ()\4—>\3)F2(x1(1_ﬁ1) L

o 5 ) fi(z1)da (6.43)
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Use Leibnizs rule, the first derivative of equation [6.42] is:

Q1
dE(T(‘) . -5 [oe}
Q1 {/oo {/Ql 71761x1()‘2f2($2)d$2

1-B3 1-B3
@ 1- 513}1
1-p3 1-53

Q1 —1_6155
1— B3 1—f3 "

(a1 + b

)+ A2Q1) fa(

1
1-85 )

Q1 7173111 B
+ /;ﬁg T fale)da + 1 153 (11 +b1(5 Qlﬁg - 1 - g;xl)
T O YA
1 > Q1 Q1
1 ~ 5 /0 (Oézl_ﬁl +b2w2+)\2Q1)f1(1_51)}
" { /1Q[131 {/"1(1521)Q1 )\3f2<1‘2)d$2
n i(agml n 63961(1 —B1) — @ n )\3Q1)f2(x1(1 —B1) — Q1)
B2 B2 B
z1(1-81)-@1
+/ ” (A fa(w2)dzo
- om0, PEREZ ) (P PIZ ) L
B2 B2 B2
1 > 1 Q1
1.5 /0 (a3 e +baz2 + A3Q1) fi(5 —51)}
(6.44)
Because a3z = 9, bg = bg, )\3 = )\2,
1 > Q1 Q1
T /0 (agl — 5 + b3xo + )\3Q1)f1(1 — 51) (6.45)
1 * Q1 Q1 |
15 /0 (a2 5 +ba2 +A2Q1) fi(5 _51) =0
i(agm N b3$1(1 —B1) - N Ang)fg(xl(l —B1) — Q1)
B2 B2 B2
- ;2(0(4951 + b4:c1(1 _521) —@ + )\4Q1)f2(x1(1 _521) — Ql) = 512((0@ — o)z
+ (b3 — b4)x1(1 —A) =G + (A3 — /\4)Q1)f2(x1(1 —B) - Ql)
B2 B2
(6.46)
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Because ag —ay = —(1 — 51)(Ag — \g) = — 1;261 (bs — bs), equation equals to 0.
We can prove in the same way that

1 Q1 1—p1
s T _53331) + A1Q1) fa(

The first derivative can then be derived

@1

r1) + )\2Q1)f2(1 — 5

Q1 B
1-p5 —2) =0

! x1)+
- — &1
L= Fs (6.47)

(a1x1 + b1(

1 Q1 1-B81

dE(r) _ /1Q@1 {/OO (Ao fo(z2)day —|—/163163m(>\1f2(332)d$2}

d@s ) Q__1-P1,, —00

1—83 1-Ps3

z1(1=81)-@1

0o 00 at=cl=g
+/Q1 {ﬁq(l—ﬁﬂ—% )\3f2($2)d$2+/_00 i ()\4f2($2)dl‘2}
-B1 B2

1
Q1

-8, 1—
:/_ ﬁ {)\2(1_&(1?153 N 1—?:13331))

Q1 1—-p1 o0 r1(1 = B1) — Q1 (6.48)
+)\1F2(1 — 51 _63151)} +/1;Q}3 {)\3(1 — Fy( 3, )

aupy MU0 |
165
> (1-51) -
=3+ (A — Ag) Fo(2 ) fi(x1)dzy
/162}31 B2
Q1
+ /161 (A — /\Q)FQ(l 6;2153 — 1:g;xl)f1(x1)dx1

TEO = w0 pMUE =0 e,

dQ? Q1
Q1 = 165 (6.49)
1
1-6 1-—
— (A2 — Al)/ " fal @ _ Blﬂfl)fl(ﬂfl)dxl/(l — B3)
—00 1- 63 1- 53
BQUJT
_ B cB | WRtiTEg 2 1 ((1=B3)(va—wa)t _ PBowyt
We have Ay —A3 = 01 =02+ 1230 — 1250 — =500 A (C ofid . T is
(1 —t)p). It is easy to find that
wrﬁ?; o wrﬁl <0
1-p3 1-p
And
/BQUJT
wo + T55- — V2 1 1— — t t
ot vy 1—Bs B (( Bs)(v2 — wo) Bowrt (1— 1))

1—B3+B2 11—/ 1-P3+B  1—P3+ps
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12; + ’UQ(B?; - 62) B 1 ((1 — ,33)(1)2 — wQ)t_ ngrt
1— B3+ 52 1—0 1— B3+ B2 1 — B3+ B2

_u +v1(B2 — B3) — w2 — ?3 —(1-t)p)

_ ot (01— v2) (B2 — Bs) — wp — 2% 1 (1= B3)(va—wa)t  Bowyt

_ — —(1—t
1 — P34 P2 1—51( 1—f3+ P2 1— B3+ P2 =)
_ _ _ _ Bawr
. v; — (v1 — v2) — w2 I—B3 1 ((1 — B3)(v2 — wo)t _ Pawrt —(1=1t)p)
> 1= Bs+ B 1-B1° 1-B3+ 5 1— B3+ B2 Y
_ w2 dar 1 ((1 —B3)(va —wo)t  Powrt (1—t)p)
1—f3+pB  1-B1° 1-Ps+0e L= B3+ f2
Bawr
_ (1_t)p+v2—w2* g, (1— 1) —t(1— Bs) <0
1-75 1— 583+ 1-p53
Thus
A — 23>0
When 8y > 3 — -52-%, we have
wa + (vg + wy) (B2 — B3)
e — A\ = —5>0
oA 1— B3+ Ba ’
. . . d’E()
The probability functions are non-negative, thus < 0. 0

Q3

Appendix 4: The optimal expected profit

We develop equation as the sum of three parts: z1, 22 and Q1:
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Q1
E(r) = {/_;51 [alxIFQ(l ?1& — 1:?;901)

+ agl'l(l — F2(1 6;21/33 — 1 : g;l’l))]fl($1)d$1
+/1:131 [a3x1(1—F2(x1(1 _521) — Ql))+a4x1F2(x1(1 _521) - Ql)]fl(x1)dw1}
15% 152%% _izglwl
+ { / ' [/ ’ (b1 — ba)wafo(xa)dxa + bapa) fi(w1)day
0o 931(1*51)*@1
+ [ © (ba — b3)wafo(wa)dzs + 53M2]f1(3?1)da?1}
/lQél /oo

Q1

+ Ql{ /1B1 [AFa(q 6;2153 - 1 :g;xl) + A2 (1 — Fi(

Qi 1-p
-5 1-6")

> T =B — @ 21(1—B1) — @
n / o, Dt - BRI o= >J}
Q1
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(6.50)

For 1 = @7, the last term is zero. Thus we can derive the optimal expected profit
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function:

1?;1; 1?;{3 _tglm 1-5
E(r(Q1)) = apur + bapz + (b1 — ba) / 1 / L (e
oo Jeoo — P

+ 2) f2(w2)dzo f1(71)d21

z1(1-61)—Q7

> 2 1—p
+(ba—b3) [ . ’ (— 71 + 22) fo(x2)dxo f1(21)d2y
/1?[131 /—oo /32

(6.51)

Appendix 5: Numerical examples for particular cases

First we consider a special situation: the return probabilities for internet demand by
store inventory or drop-shipping option are identical, e.g. 51 = 0.1, 8o = 83 = 0.2, the
expected profit is concave and thus only one solution can be computed using equation
which is the optimal order quantity: Q* = 308. The first derivative function of
the expected profit (equation is shown in Figure .

First derivative of the expected profit

L . . L . . .
0 a0 100 150 200 250 300 340 400
Qrder guantity

Figure 6.3: First derivative of the expected profit function for identical return probabili-
ties

In the stable stage of the curve, the second term in the right-hand side approximates
—(A4—A3), the third is approximately zero and fourth equals to zero, thus equation
has a value of A3 = wy —w; = 1 > 0, and this positivety is always guaranteed because
wy > wi in our model. Thus the optimal order quantity situates after the stable stage
as shown in the graph. In the optimal condition, the second term approximates 1, the

fourth term equals to zero, we have an approximate equation for the optimal order
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quantity, which gives the same result @* = 308:

Qf

=ch Q3 1-p1 A3 w2 — w1
F — dx ~ = 6.52
/—oo 2(1 —-B3 1- 53561)]01(:61) o A2 — A\ wy — 8 (6.52)

In this case, the optimal order quantity is a function of purchasing cost, discount
price and return proportions. The return cost doesn’t change the value of optimal order
quantity.

In normal situations we have similar graph as with 81 < B2, f1 < B3 and
Bs < Ba.

Abnormal situation is when 3 > 5. Three subcases are possible: First case:

W2 — Wy

B2 > B3 —

V9 + w, — Wy

In this first case, A3 > 0, the stable stage is positive, and the expected profit function
is concave. The graph is thus similar to the normal situation.

Second case:

wa — Wy — Wy

< B <P
’UQ+U]T*S\ 258 V9 + Wy — W

B3 —
In this second case, the expected profit function is concave. Thus their is only one
possible solution for equation A3 < 0, the stable stage is not positive, therefore
he optimal order quantity happens before the stable stage. The third term of equation
approximates zero (Figure[6.4)). Thus the optimality condition is:
Q1 A4

F 5 =
1_2(1—/81) )\4—A3

Third case:

wy — 8
B2 < B3 — m

In this third case, the expected profit function is not concave. A3 < 0, the stable stage
is negative (Figure . After the stable stage, the coefficient of the third term in
equation |4.17]is positive and thus the first order derivative of expected profit becomes
increasing with order quantity. But the first derivative is always negative after the

stable stage:

Q1
1-p5

)= (o = M) Py ?161) <

Ay — (A1 — A3) F _s(
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First derivative of the expected profit

L I I L I I I
o a0 100 150 200 250 300 350 400
Order guantity

Figure 6.4: First derivative of the expected profit function for identical return probabili-
ties, with s =5, g1 = 0.1, 2 = 0.24 and 3 = 0.6

/\4—()\4—)\3)*1—(>\2—/\1)*1:>\3—/\2+)\1:)\1<O

As a result, their is also only one possible solution to equation The optimality

condition is:

Q1 A1
F1—§( -

1—/31)_/\4—)\3

First derivative of the expected profit

L I I L I I I
o a0 100 150 200 250 300 350 400
Order guantity

Figure 6.5: First derivative of the expected profit function for identical return probabili-

ties, with s =5, g1 = 0.1, 2 = 0.15 and 3 = 0.6

To conclude from the numerical analysis, for any given value of the variables, only
one positive solution for equation [4.17| can exist for normal distributed demand. Thus

we can derive the optimal order quantity from equation for any cases.
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In both the second and third case, the NV has an lower reliance on store inventory.

The only necessary condition for it is:

B2 < Py — —2 L
v + w, — Wy

The situation for this condition in practice can be that the NV is not good at managing
internet sales (e.g. bad packaging), while the drop-shipper is more professional and thus
the return proportion of internet business is smaller with drop-shipping option.

Let B1 = 0.1, B2 = 0.2, B3 = 0.35, the optimal order quantity @Q* decreases with w,
(Figure . This is because 83 > B2 and therefore there will be more returns to sell
the same amount of products to satisfy internet demand from store inventory than to
rely on drop-shipping. When the unit return cost increases, the difference between their
return cost is more important, thus the NV stocks less store inventory. The optimal
order quantity value falls down at w, = 3.75, this is because B = 53 — —22—YL_ a¢

Vot wr—w1
Wy = % and after this point, the NV relies more on drop-shipping option.

300

Optirnal order quantity Q1
= — ") ra
=] m = i}
=] =} =] =}

il
a

o

L . L L L L . . .
0 2 4 6 g 10 12 14 16 18 20
Unit return cost

Figure 6.6: Optimal order quantity as a function of unit return cost
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Figure 6.7: Optimal expected profit as a function of unit return cost
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