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Introduction

General framework

Disorder and its consequences on transport properties of electronic systems is a long-standing
problem in condensed matter physics, for which the understanding is both of theoretical and
practical importance. However, there is, to date, no complete theory describing entirely the
experimentally observed phenomena.
In metals, as disorder is increased, a Metal-to-Insulator Transition (MIT) can occur due to
Coulomb interactions and localization of the carriers. For superconducting materials, the entan-
glement with superconductivity complexi�es this picture. Although superconductivity should
not be a�ected by disorder according to Anderson's theorem, experimentally, the competition
between the establishment of Cooper pairs, interactions and localization results in the destruc-
tion of superconductivity at high disorder. The understanding of the mechanisms at the origin
of the observed transitions gave rise to a large body of literature in the last 50 to 60 years and
is still, to a large extent, an open question.
In two-dimensional systems, Anderson localization should prevent the establishment of a metallic
ground state. As disorder is increased in initially clean superconductors, one should therefore
encounter a direct Superconductor-to-Insulator Transition (SIT). However, the increased im-
portance of both Coulomb interactions and 
uctuations in low dimensions may disrupt this
long-standing paradigm. As a consequence, unpredicted new states of matter could emerge, such
as 2D metallic phases in between the Superconducting and Insulating phases.

This work aimed at providing an insight on the phenomena at play in disordered thin �lms,
especially in the vicinity of the expected disorder-tuned SIT. For this purpose,we �rst studied
the low frequency electronic transport properties of thin amorphous Nb x Si1�x �lms
at low temperatures ( T < 1 K) . The goal was to understand the origin of the recently ob-
served metallic phases in this system, as well as their destruction by disorder. To do so, we tuned
disorder by modifying either the thickness, the composition or the heat treatment temperature
applied to the �lms - this last experimental tool allowing to �nely tune disorder -. The second
part of this work will be devoted to microwave re
ectometry of superconductors . AC
transport measurements are a powerful probe to determine the ground state and the di�erent
excitations that coexist in a given system. However, these high frequency measurements are
also extremely sensitive to the sample's environment and broadband measurements come at the
price of a full set-up calibration, which is di�cult to perform at low temperatures. We therefore
developed and characterized a microwave re
ectometry calibration device to access the absolute
dynamical response of thin �lms. In the long term, the comparison of both techniques
(low and high frequency) could help to disentangle the various mechanisms at play,
close to the expected TSI, in each phase and at the transitions .

Outline

The �rst part of this work (part I) will be devoted to low frequency transport properties in
2D materials.
Chapter 1 will be dedicated to the state-of-the-art description of the MIT and of the SIT in
disordered �lms. Chapter 2 will focus on the experimental techniques and on the knowledge ac-
quired on a-Nbx Si1�x �lms from previous studies performed in the group. Finally, in chapter 3,
we will present the low temperature characteristics we have performed on 2D a-Nbx Si1�x �lms.
We will especially focus on the transition between the Insulator and the neighbouring metallic
ground states. The careful analysis of the conduction laws and their evolution through the transi-
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tion will bring us to propose a possible interpretation for the origin of the observed ground states.

Part II will be dedicated to microwave re
ectometry measurements of superconducting thin
�lms. The goal was the developpement and characterization of a high frequency measurement
apparatus allowing us to access the absolute electrodynamic response of such systems.
In chapter 4 we will review electrodynamic measurements in thin �lms, and more speci�cally in
�lms close to the SIT. In Chapter 5, we will detail the experimental constraints on low temper-
ature re
ectometry measurements at microwave frequencies (GHz) and provide a description of
the developed apparatus. We will then qualify the device by probing the electrodynamic response
of superconducting Vanadium thin �lms at low temperatures ( T < 4 K).

2
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Chapter 1

State of the Art/Theory

1.1 Introduction

In this chapter, we would like to introduce the major e�ects of disorder on an electronic
system, be it superconducting, metallic or insulating. We will begin with an overview of current
theories in this �eld, starting from the basic description of metals and the theory of localization.
We will then examine how disorder a�ects quantum interferences, enhances e�ective Coulomb
interactions and modi�es electron-phonon interactions. We will derive the corresponding DC
electronic transport properties as both the dimensionality and the disorder are tuned. We will
end this chapter by focusing on the e�ects of disorder on superconductivity. We will detail
theoretical and experimental points of view on the Superconductor-to-Insulator Transition in 2
dimensional systems.

1.2 Basic description of a metal

1.2.1 The Drude Model : A classical representation

In 1900, Paul Drude proposed to model the transport of electric charges in solids by the
motion of free electrons. This model, inspired by the classical kinetic theory of gases, assimilates
electrons to point particles with no interaction. They are driven through the material by an
electric �eld ~E.

in the absence of any force opposing the movement of electrons, which are subject to the
electrostatic force ~F = e~E, the average electron velocity becomes in�nite, which is non-physical.
To take into account the e�ects of the medium, and more precisely the elastic scattering of
electrons by di�usive centers, this model introduces a phenomenological parameter called the
"relaxation time � " . Drude then infers the equation describing the movement of electrons :

m
d~v
dt

= e~E �
m~v
�

(1.1)

where m is the mass of the electron,~v its average velocity ande its charge. From this equation,
one can deduce~v in the stationary regime ( d~v

dt = 0):

~v =
e� ~E
m

(1.2)

The associated current then is :

~j = ne~v = ne
e� ~E
m

(1.3)

Thus, one can de�ne the conductivity � - and the associated resistivity� = � �1 - by Ohm's law
:

~j = � ~E with � =
ne2�

m
=

ne2l
vm

(1.4)

where l is the mean free path, i.e. the average distance travelled by an electron before being
scattered, de�ned as : l = v� .
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1.2. BASIC DESCRIPTION OF A METAL 5

The conductivity derived by Drude therefore depends on an e�ective di�usion time � . In his
original work, he supposed that this quantity only depends on the collisions of electrons with
atoms composing the crystal network. In reality, things are more complicated.

1.2.2 Matthiessen's rule

Contrary to Drude's expectation, electrons are barely scattered by the lattice ions. In fact,
they are more sensitive to defects in the crystal periodicity. They are scattered by movements
of the lattice, the so-called phonons, and by any crystal perturbation such as impurities, bound-
aries, defects ... One can then wonder how these scattering sources contribute to the electronic
conductivity.

One answer comes from the work of Augustus Matthiessen. Indeed, a commonly used rule
in condensed matter, inspired by his 1864 work [Matthiessen and Vogt, 1864] states that the
total resistivity of a crystalline metallic sample is the sum of the resistivities due to the di�erent
scattering processes. This rule applies as long as the scattering sources are independent from
one another. In this case,Matthiessen's rule can be written as :

� T otal = � phonons + � impurities + � defects + � boundaries + ::: (1.5)

In terms of di�usion times, and assuming Drude's law (equation 1.4) for each scattering time,
Matthiensen's rule can be written as :

1
� T otal

=
1

� phonons
+

1
� impurities

+
1

� defects
+

1
� boundaries

+ ::: (1.6)

Scattering by phonons is usually the dominant scattering process. This contribution to trans-
port properties is well known and, at high temperatures, is commonly described by a linear
contribution to the resistivity as a function of the temperature � ph / T . At lower temperatures,
(typically for T smaller than � D , the Debye temperature associated with the material), the re-
sistivity due to phonons is given by a power law� ph / T � where � is a constant which numerical
value depends on the dimensionality1. At low temperature, electron-electron scattering becomes
important and can dominate scattering. This scattering process gives rise to� e�e / T1=2 and
a crossover can occur between a electron-phonon dominated scattering and an electron-electron
dominated regime. Since the other phenomena are barely dependent onT, this law, in addition
to the Drude model, describes both the decrease of the resistivity in metals as a function of the
temperature - when the contribution of phonons or electron-electron interactions is important
- and the saturation of the resistivity at low temperature - where imperfections of the crystal
structure are the dominant scattering process.

This purely classical picture provides us with a �rst understanding of the resistivity in metals.
Furthermore, it gives an indication on the e�ect of disorder within this description : as disorder
is increased, the contribution of defects in the crystalline structure will modify � total and the
associated resistivity will increase. However this approach fails to include the properties of non
metallic materials and does not capture all the e�ects of disorder.

1.2.3 The Fermi Gas Theory

To go beyond the classical picture provided by Drude's law and Matthiessen's rule, one should
consider theFermi Gas Theory . This theory, which still considers free electrons, represents an
improvement of the Drude theory as it allows to understand the di�erences between conducting
materials and insulating ones by using quantum mechanical arguments. This model, described
by Sommerfeld, is the basis of Band Theory in solids.

To explain this theory, let us �rst consider the case of free electrons in a system of sizeL. In
this case, Schr•odinger equation for a free electron is :

(�
~2

2m
r 2) k (r; t) = i~

@
@t

 k (r; t)(= � k (r ) k (r; t)) (1.7)

By introducing a periodic boundary condition to the wave functions, re
ecting the con�ne-
ment of the electron inside the system, one can write that k (x; t) =  k (x + L; t). In this case,

1. Theoretically, for a bulk system, � should range between 3 and 4 [Rammer and Schmid, 1986] but it has
been experimentally found to be between 1 and 4.
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6 1.2. BASIC DESCRIPTION OF A METAL

the eigenvectors are plane waves of the form k (r; t) / ei( ~k:~r �!t ) . By solving equation 1.7 in this
case, one �nds :

� kp =
~2k2

p

2m
(1.8)

where � kp is the energy of an electron withkp = 2p�
L - with p an integer - the associated wave

vector.

In this picture, and for a given material, the Fermi energy EF = ~2 k 2
F

2m (kF being the associ-
ated Fermi wave vector) is de�ned as the chemical potential at zero temperature. It corresponds
to the highest energy of the occupied electronic states. In the 2D free-electron case, the Fermi
surface in the reciprocal space is represented �gure 1.1. FromEF and kF , one can then compute
the electronic density and the corresponding conductivity for the various dimensionalities.

By considering the probability �(k ) of having an occupied state with the wave vectork , such
that �(k )dk corresponds to the number of states with a wave vector betweenk and k + dk, one
can write for a sample of dimensionL :

in 3D

� 3d(k)dk = 2
4�k 2dk
(2�=L )3 (1.9)

in 2D

� 2d(k)dk = 2
2�kdk

(2�=L )2 (1.10)

Figure 1.1: 2D Fermi surface within the Drude-Sommerfeld model.

From these equations, we can calculate the total number of electrons in 3D and 2D. This
quantity is de�ned in d-dimensions by :

N =
Z kF

0
�(k )dk (1.11)

with N = n2dS = n2dL 2 in 2D and N = n3dV = n3dL 3 in 3D, n2d and n3d being respectively the
two dimensional and the three dimensional electronic density. By combining the above equations
with equation 1.4, one obtains :

in 3D

� 3d =
e2

3� 2~
k2

F l (1.12)

in 2D

� 2d =
e2

h
kF l (1.13)

In the case of a quasi-2D system, the derivation is the same as the one obtained for a 3D
system. Indeed, in this case, the density-of-states (DOS), i.e. the density of electrons at a given
energy �(E ) = �(k )dk=dE, is supposed to be 3D but the conductivity is given by� q2d = d? � 3d

where d? is the thickness of the sample. One therefore �nds :

� q2d =
e2

3� 2~
(kF l )(k F d? ) (1.14)
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1.3. LOCALIZATION BY DISORDER 7

Using this theory, we are therefore able toexpress the conductivity � - which is measur-
able by electronic transport experiments -as a function of quantities which depend only
on the system fermiology . These relations have been widely used in condensed matter to
estimate the microscopic parameters, knowing the conductivity of a material.
Let us note that, in this approach, a reduction of the thickness in a quasi-2D material is equiva-
lent to diminishing the mean free path, i.e. to an enhanced e�ective disorder.

Let us now consider the speci�c case of crystals. Schr•odinger equation then takes into account
the crystalline potential U(r ) :

(�
~2

2m
r 2 + U(r )) k (r; t) = i~

@
@t

 k (r; t) (1.15)

The wave functions solution of this equation are periodic due to the crystalline potential, which
imposes k (r; t) =  k (r + a; t), with a the lattice constant. In this case, the wave function is a
Bloch wave , described by :

 (r ) = ei( ~k:~r �!t ) u(r ) (1.16)

with u(r ) a periodic function such that u(r + a) = u(r ). Due to the crystalline potential, the en-
ergy levels are periodically folded back into the �rst Brillouin zone. By a perturbative approach,
one can show that energy levels at the edges of the Brillouin zone are not degenerate and that
energy gaps open between successive bands. Therefore,depending on the Fermi energy, the
material can be either metallic or insulating . It is noteworthy that, in the case of metals,
the wave functions are extended along all the crystal.

The development of the Fermi gas theory (presented here in the limit of zero temperature)
allows us to understand what are a metal and an insulator within band theory. A subsequent
re�nement is due to Laudau who developed theFermi liquid theory . The main results being
analogous to the Fermi gas theory, it will not be detailed here. Let us just outline the main idea
behind this theory : starting from an ideal Fermi gas, interactions between particles are adiabat-
ically introduced and increased. The evolution of the Fermi gas eigenstates is then monitored.
The new eigenstates then correspond to quasiparticles states to which all particles contribute.
For low enough interactions, the new quasiparticle states are similar to the Fermi gas ground
states, provided that the interactions are taken into account by renormalizing the value of phys-
ical quantities, such as the e�ective mass and the heat capacity [H�eritier, 2013].

However, the Fermi liquid theory (and, therefore the Fermi gas theory also)fails when
interactions are either too strong, or attractive, or when dealing with low dimen-
sional systems . We will now examine other theoretical models which have tried to account for
these phenomena.

1.3 Localization by disorder

In the previous section, we have exposed simple models for electrical conduction. However,
their application is limited when dealing with disordered materials. Indeed, they do not account
for all e�ects that are experimentally observed in systems with strong interactions, disorder, or
of low dimensionality.
In this section, we will focus on the localization of the wave function which may result from
disorder e�ects. To describe the e�ects of disorder and localization on the zero temperature
electrical properties of materials, we will �rst expose localization as described by Anderson and
we will then discuss the theory of localization derived by the Gang of Four.

1.3.1 Anderson localization

In 1958 P. W. Anderson [Anderson, 1958] showed that electronic transport could be strongly
altered in the presence of large disorder. For this purpose, he used a tight binding model with a
periodic lattice 2. The Hamiltonian can then be expressed as :

HAnderson =
X

ij

Vij cy
i cj +

X

i

� i ni (1.17)

2. In the literature, this model is sometime referred to as the "Anderson tight binding model".

7



8 1.3. LOCALIZATION BY DISORDER

where cy
i is the operator representing the creation of an electroni , ci its annihilation, ni = cy

i ci

is the occupation number operator representing the occupation of thei th state and Vij is the
hopping element between sitesi and j . Anderson assumes that the hopping matrix elementsVij

are equal to a constantV for nearest neighbours - zero otherwise - and disorder is taken into
account by the on-site energy� i , taken to be a random variable which value varies between� 1

2 W
and 1

2 W . Let us start from a clean material (W = 0), where the wave functions are extended
Bloch waves. AsW increases, Bloch waves lose their phase coherence. Anderson showed that,
for a critical value of W=V, there is a transition from extended to localized wave functions, which
respectively describe a conducting and an insulating ground state. As illustrated �gure 1.2, for
weak disorder , the electrons are scattered on a characteristic lengthscalel , the mean free path,
but the correspondingwave function is still extended . The electronic motion is di�usive
and the material is conducting. On the other hand, for strong disorder , the wave function
can be localized with an exponential decay of its amplitude on the scale of the localization
length � loc such that :

j (~r)j/ exp(�j ~r � ~r0j=� loc ) (1.18)

Figure 1.2: (a) For weak disorder, the one electron wave function is extended even if elec-
trons are scattered on a characteristic distance of the order of the mean free pathl . (b)
In the presence of strong disorder, the wave function is localized on the distance � loc

[Lee and Ramakrishnan, 1985].

As a consequence, a material which would have been a conductor in the absence of disor-
der can be insulating as disorder is increased. By tuning disorder, one can therefore induce a
Metal-to-Insulator Transition, corresponding to a transition between non-localized and localized
electronic states.

The existence of these two limits, with extended wave functions at low disorder and localized
wave functions at strong disorder, let us wonder what happens for intermediate disorder. By
considering this problem for semiconductors,Io�e and Regel showed that if the mean free path
l decreases below the inter-atomic distancea, no metallic state can exist [Io�e and Regel, 1960].
This constraint brought them to de�ne the criterion kF l � 1 for the Metal-to-Insulator
Transition .
Based on the idea of localization by disorder,Mott predicted that in any non-crystalline system,
the states at the edges of the conduction band should be localized [Mott, 1967] [Mott, 1972]. He
therefore predicted a discontinuous transition between the metallic and the insulating ground
states which would occur when the Fermi energyEF crosses a "mobility edge", as represented
�gure 1.3. The corresponding minimum of conductivity � min can be calculated by taking
kF l � kF a � 1, in agreement with the Io�e-Regel criterion. Indeed, by combining this criteria
with equation 1.12, one �nds in 3D :

� min =
e2

3� 2~
1
a

(1.19)

This value would, according to Mott's model, correspond to the minimum conductance achiev-
able for the system before becoming insulating as disorder is increased.

At �rst, some experimental results in systems such as Si:P [Rosenbaum et al., 1980] (where
the conductivity is tuned through the modi�cation of the carrier density n, represented �gure
1.4), V2O3 [Carter et al., 1991] (where the conductivity is changed via a modi�cation of pressure
and composition) Nbx Si1�x [M•obius et al., 1999] or Si1�x Crx [Mobius, 1985] (where the con-
ductivity is tuned through x) seemed to be in agreement with the existence of a minimum of
conductivity.

8



1.3. LOCALIZATION BY DISORDER 9

Figure 1.3: Density-of-states in the conduction band of a non-crystalline material, showing the
mobility edge Ec separated by an energy �E from the band edge. States below Ec are localized
and those above are extended [Mott, 1977].

However, subsequent works [Thomas et al., 1983] showed, through a careful analysis of the con-
duction properties close to the Metal-to-Insulator Transition, that the conducting ground state
was continuously destroyed. Another argument against the existence of a minimum of conduc-
tivity was given by Mott himself [Mott, 1984] : he discussed the fact that no calculation had
managed to compute the mobility edge for a continuous random network (which would best
reproduce the situation of amorphous materials).
Nowadays, although Mott's minimum of conductivity is a founding concept, it has been shown to
be inconsistent both with experiments and with subsequent theoretical developments such as the
localization theory developed by Abrahams et al [Abrahams et al., 1979]. We will now expose
this theory by starting by its basis : the �nite size scaling theory.

Figure 1.4: Semi-logarithmic plot of the zero temperature conductivity, � (0), as a function of
the carrier density n for metallic samples of Si:P [Rosenbaum et al., 1980]. The abrupt decrease
of � (0) with the carrier density can be taken to be a manifestation of Mott's minimum of con-
ductivity : values of � (0) < � min can be interpreted as arising from inhomogeneities.

1.3.2 Finite Size Scaling Theory of Localization

After Mott's developments, a new way to calculate the properties of materials in the presence
of disorder emerged, based on scaling theory. This approach for the study of the Metal-to-
Insulator Transition is detailed in this section.

1.3.2.1 Thouless's approach

A qualitative scaling analysis of the localization problem for non-interacting electrons in a
static disordered lattice has been proposed in 1974 by Thouless [Thouless, 1974]. The basic idea

9



10 1.3. LOCALIZATION BY DISORDER

is that extended states are sensitive to boundary e�ects if the dimensionL of the sample is
smaller than the mean free pathl . By extending this idea, he de�ned the Thouless energy ,
such that :

ET =
~D
L 2 (1.20)

where D is the di�usion constant. In this equation, the energy ET is the characteristic energy
of a di�usive electron travelling through L.

Thouless' vision was to link the macroscopic conductivity to the properties of microscopic
clusters, of local dimensionless conductanceg and of sizeL d, by extending the system size by
successive iterations. Thus the conductivity of a sample of size (2L) d is described from the
properties of the L d sample. One can therefore deduce its conductivity by scaling arguments.
Thouless showed that this dimensionless conductanceg can be written as :

g =
G

e2=~
/

ET

�W
(1.21)

with G the conductance of theL d sample, and�W the mean spacing between the energy levels
of the L d sample. Interestingly, the dimensionless conductanceg is a measurable quantity which
is directly related to the ratio E T

�W . When this ratio between Thouless' energy and the mean
spacing between the energy levels is equal to 1, one should observe a Metal-to-Insulator Transi-
tion. Indeed, as the overlap between di�erent discrete levels of energy decreases, localized states
emerge.
It is noteworthy that, due to the scaling argument, the size of the initial block should be taken
to be insensitive to any microscopic structure3.

This scaling argument by itself does not contradict Mott's idea. Indeed, in a later paper
[Licciardello and Thouless, 1975] using this technique, Licciardello and Thouless found a result
in agreement with Mott's minimum of conductivity. However, the gang of Four using the same
scaling argument, concluded di�erently as we will now see.

1.3.2.2 Abrahams, Anderson, Licciardello & Ramakrishnan : the Gang of Four

Based on the ideas developed by Thouless to probe the Metal-to-Insulator Transition, a gen-
eral scaling description without any microscopic model, but based on the value ofthe micro-
scopic conductance g, has been developed by Abrahams, Anderson, Licciardello & Ramakr-
ishnan [Abrahams et al., 1979]. By combiningbd cubes into blocks of sidesbL they calculated a
function � related to g as follows :

� =
dln(g(L))

dln(L)
(1.22)

This function, giving the derivative of the (logarithmic) dimensionless conductance as a func-
tion of the (logarithmic) evolution of the system dimension, shows how the system conductance
evolves as the system size is increased. In this model, the microscopic conductanceg is a variable
and � allows to eventually infer the corresponding ground state for a macroscopic sample.

By plotting its evolution as a function of ln(g ), the authors obtained the graph displayed
�gure 1.5. As observed, one should distinguish between two di�erent cases when the system size
is extended fromL d to in�nity :

{ for � > 0, the conductance increases with the size of the system. The wave functions are
delocalized and the ground state of the system is metallic.

{ for � < 0, the conductance decreases when the system size increases. The wave functions
are localized and the ground state of the system is insulating.

Let us �rst focus on 3D systems. � (L) can be positive for high enough g and is negative
for g < gc. Therefore, the system, depending on the microscopic conductanceg, can be either
metallic or insulating and gc de�nes the critical point of the Metal-to-Insulator Transition in 3D.
Interestingly, the transition between the two regimes is continuous. A system with a microscopic

3. This should not be a problem since the initial size L is arbitrarily chosen. Eventually, the assumption could
be questionable really close to the MIT due to the divergence of the localization length.

10



1.3. LOCALIZATION BY DISORDER 11

Figure 1.5: The renormalization function � as a function of the conductanceg for dimensions 3,
2 and 1 [Abrahams et al., 1979].

conductanceg < gc would be insulating but a system with microscopic conductanceg� close to
but larger than gc will be conducting with a conductance :

� / ln(
g�

gc
) � (1.23)

where � is a scaling exponent. This contradicts what had been predicted by Mott : the system
conductivity should not present any discontinuity at the Metal-to-Insulator Transition.

For systems of dimension d� 2, � (L) is negative whatever the initial conductance g. Accord-
ing to this theory, even an in�nitesimal amount of disorder is, in this case, su�cient to localize
the electrons as� = 0 is approached but never reached. Therefore,no electronic system of
dimension � 2 can be metallic.
Let us stress that this strong result for 2D systems (and systems of lower dimensions) has been
calculated in the case of non-interacting fermions.

The gang of Four already noticed in their paper that, for 2D systems, depending on the value
of g, a crossover from a weak localization regime (forg >> 1) to a strong localization regime (for
g << 1) should occur. While the resistivity evolution in the strongly insulating regime would be
exponential asL increases, the weakly localized one should have a logarithmic dependence as a
function of the system size :

g = g0 � �ln (
L
L 0

) (1.24)

where � and L 0 are constants. Let us now focus on this weakly localized regime.

1.3.2.3 Weak Localization

Even in the absence of Anderson localization (in the sense of what we have seen in section
1.3.1), quantum corrections to the conductance can dramatically a�ect the system conductivity
and, in some cases, even induce an insulating ground state. In 1983, Bergmann [Bergmann, 1983]
gave a microscopic interpretation of this phenomenon involving the quantum nature of electrons.
As pictured �gure 1.6, electrons can be scattered by di�usion centers. The di�erent paths that
can be taken by an electron are generally not coherent and do not interfere with one another
since they have a random phase di�erence. This is the case for all paths except those which bring
the electron back to the origin. Those can be run either clockwise or counter-clockwise. As these
two paths interfere constructively, they induce an enhanced probability for the electron to
come back to the origin, resulting in localization4.

Thouless (1977) argued that inelastic scattering, with the associated inelastic scattering time
� in , should limit weak localization due to a destruction of phase coherence. Indeed, electrons

4. In the presence of strong spin-orbit coupling, weak-antilocalization can occur. This case is not detailed in
this thesis.
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12 1.3. LOCALIZATION BY DISORDER

need to stay coherent along the interference pattern to interfere. Therefore,localization can
only occur on lengthscales shorter than the Thouless distance :

lT h � L in =
p

D� in (1.25)

with D = vF �=d the di�usion constant, vF the Fermi velocity and � the elastic scattering time.

It has been discussed by Altshuler, Aronov and Khmel'nitskii [Altshuler1982] that the inelastic
time is not the exact relevant quantity to take into account for lT h . Indeed, it usually takes several
inelastic scattering events to completely lose phase coherence. Therefore, the correct length to
take into account should bel � , the phase coherence length, with the associated scattering time
� � . This scattering time has been calculated by Altshuler to be :

� � � (
� in

�E 2 )1=3 (1.26)

with � E the average energy change experienced by an electron after an inelastic collision. How-
ever � in and � � are often confused for one another as they are of the same order of magnitude.

Figure 1.6: Representation of the one-electron interference pattern leading to weak localization
[Bergmann, 1983].

In the weak localization regime , the correction to the conductivity takes the form :

in 3D �� = �
e2

~� 3 (
1
l

�
1
l �

) (1.27)

When the thickness d? of the sample is shorter than the phase coherence length (d? < l � ),
dimensional e�ects appear, a�ecting transport properties. The correction to the conductivity
due to weak localization can then be written :

in 2D �� = �
e2

� ~
ln(

l �
l

) (1.28)

There are several ways to experimentally determinel � based on weak localization. The most
common one is to use a magnetic �eld. Indeed, in the presence of a magnetic �eld, electrons
participating to weak localization acquire an additive phase which depends on the path they run
along. This results in the destruction of weak localization, and therefore in a positive magneto-
conductance.
As many concepts in condensed matter, the backscattering of electrons, which a�ect the system
wavefunction, cannot be directly observed. Only its consequences on electronic transport are
measurable. In cold atoms however, the displacement of particles can be directly imaged and
weak localization has recently been directly evidenced in this model system. The experiment
consisted in releasing non-interacting atoms with a de�ned momentump from an optical trap.
The released atoms travelled through an isotropic laser speckle which reproduced disordered dif-
fusion centers. Measurement of the momentum of the atoms after timest ranging from 0 to 2:5
ms are presented �gure 1.7. At the beginning of the experiment, all atoms have a momentump.

12



1.4. EFFECTS OF INTERACTIONS 13

One can observe that after 1 ms, the atoms begin to backscatter. After 2.5 ms, the distribution of
momentum is isotropic at the exception of a peak of backscattering. This measurement therefore
shows the increased probability of backscattering for atoms in the presence of disorder, signing
weak localization.

Figure 1.7: Cold atoms experiment measuring the momentum distribution after di�erent propa-
gation times t in the presence of disorder [Jendrzejewski et al., 2012].

We detailed here the major e�ects of localization in the absence of interactions and at zero
temperature and showed that, even in the absence of strong localization, electronic transport
can be altered by presence of disorder. However, as we will see in the following, interactions
can have an important in
uence on the picture of localization in physical systems. Thus, in the
following, we will �rst deal with the e�ects of Coulomb and electron-phonon interactions on the
fundamental properties of materials. We will then discuss the conduction laws associated with
localization both in the presence and absence of interactions.

1.4 E�ects of interactions

The concepts presented so far in this thesis, have been developed neglecting the in
uence of
diverse interactions. However, when those are strong, their contribution cannot be neglected.
Realistically, the Hamiltonian can be written as a sum of contributions such that :

H tot = Hph + He + Hee + Heph (1.29)

In this expression, Hph represents the bare phonon contribution, He represents the free-
electron Hamiltonian discussed in section 1.2.3,Hee represents Electron-Electron Interactions
and Heph represents Electron-Phonon Interactions. The resolution of this Hamiltonian is how-
ever hard to achieve without making strong assumptions5.

In this section, we will discuss the origins of these interactions and some of the resulting
modi�cations of the fundamental properties of materials. We will, for each interaction type,
discuss its modi�cation by disorder, beginning by the Electron-Phonon interaction.

1.4.1 The Electron-Phonon Interaction

Phonons have various e�ects on electronic transport. We have already qualitatively described
the phonon-induced scattering of electrons (see section 1.2.2). In this section, we will focus on
Electron-Phonon Coupling and Electron-Phonon-induced Electron-Electron Interaction.

To grab a naive understanding of the origin of the Electron-Phonon Coupling, let us qualita-
tively examine it within the Jellium model. In this model, electrons are uniformly distributed in
the material and move within an uniformly positive background representing the atomic nuclei.
Any time a phonon is excited, it creates a charge density 
uctuation in the positive background.
These charge densities will then electromagnetically interact with the electron gas as the free-
moving electrons will try to screen them. This gives birth to the so-calledElectron-Phonon
Coupling . In addition, these 
uctuations give rise to an increased e�ective mass of the electrons

5. For a more extensive analysis of this Hamiltonian, see [Devreese and Alexandrov, 2009] or [Mahan, 2013].
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14 1.4. EFFECTS OF INTERACTIONS

m� .

The study of Electron-Phonon Interactions has been principally motivated by its role in num-
ber of properties such as the thermal conductivity, the heat capacity, the conductivity of metals
... In particular, it has an in
uence on superconductivity . Indeed, as we will see later, the
BCS model - which is commonly used to describe superconductivity - is based on the assump-
tion of an attractive Electron-Electron Interaction mediated by Electron-Phonon Coupling. In
this framework, McMillan calculated the dependence of the critical temperatureTc as a func-
tion of the phonon spectrum [Morel and Anderson, 1962] [McMillan, 1968]. This formula, can
be written :

Tc =
� D

1:45
exp(

1:041 + �
� + � � (1 + 0:62�)

) (1.30)

where � D is the Debye temperature6, � � is the Coulomb pseudopotential - describing the reduced
Coulomb repulsion between electrons due to their retarded action and to screening e�ects -, and
� is the dimensionless electron-phonon coupling constant, de�ned as a function of the so-called
Eliashberg function � 2(! )F (! ) such that :

� = 2
Z 1

0
� 2F (! )

d!
!

(1.31)

Even if � 2F (! )(� � 2(! )F (! )) is often identi�ed with the phonon density-of-states, it is in
fact the combination of the e�ective electron-phonon coupling function � (! ) and of the phonon
density-of-states F (! ). Let us note that � - which is given in the BCS theory by � � N0V -
characterises the electron mass enhancement due to electron-phonon interaction (m� =m = 1+ �).

The question therefore arises regarding the e�ects of disorder on Electron-Phonon Interac-
tions. Indeed, the phonon structure is de�ned by the eigenvalues of vibrations of the atoms in the
crystal. Therefore, as disorder impacts the crystal structure, it should a�ect the phonon structure
as well as the strength of Electron-Phonon Coupling. Following McMillan formula, this question
has been of major interest for a long time in condensed matter physics. Indeed, the critical tem-
perature Tc is presented as being directly proportional to the Debye temperature �D which is
determined by F (! ), at low energy. It was therefore suspected that disorder could greatly mod-
ify the critical temperature of superconducting materials as it should soften the phonon spectrum.

McMillan showed that Electron-Phonon Interaction can be experimentally accessible - through
the measurement of the Eliashberg function� 2(! )F (! ) - from tunnelling experiments on super-
conducting materials7. To probe the e�ects of disorder on Electron-Phonon Interactions, mea-
surements of� 2(! )F (! ) have been performed in various materials.
Let us cite an experiment performed on Pb, comparing the obtained� 2F (! ) in the case of crys-
talline, disordered and amorphous structures [Knorr and Barth, 1971]. As presented �gure 1.8,
the Eliashberg function is altered by presence of disorder. As the peaks are smeared, the value of
� 2(! )F (! ) increase at low frequency. The Debye Temperature �D should therefore be increased,
inducing a higher critical temperature Tc. However, Bergmann pointed that these modi�cations
of the phonon spectrum should be mostly explained by a modi�cation of the Electron-Phonon
Coupling � (! ) and that the phonon spectrum F (! ) should be almost insensitive to disorder
[Bergmann, 1976], thus leavingTc essentially unchanged.
He then modelled the modi�cation of the Eliashberg function in the presence of disorder8 by
[Bergmann, 1971] :

� 2(! )F (! ) =
~n

4�n A MM 0

1
c3

tr

1
l
! (1.32)

where n is the electron density, M 0 the bare electron mass,nA the number of atoms per vol-
ume, M the atomic mass, ctr the sound velocity and l the mean free path. This expression
is valid at low frequency. Thus an increase of disorder, by decreasingl, should increase the
Electron-Phonon Coupling. This equation, qualitatively describing the in
uence of disorder on
the Electron-Phonon Interactions, allows us to understand why most of disordered materials
have been found to have a stronger Electron-Phonon Coupling than their crystalline counterpart
[Bergmann, 1976].

6. The Debye temperature can be measured by speci�c heat measurements.
7. For a review about the technique and some experiments, see [Wolf, 1985].
8. In this paper, disorder has been modelled by a random displacement of the atoms.

14



1.4. EFFECTS OF INTERACTIONS 15

Figure 1.8: The Eliashberg function � 2(! )F (! ) for crystalline, disordered and amorphous Pb.
The symbols correspond to experimental data points. The lines are guides to the eyes. Source :
[Knorr and Barth, 1971].

Even if the e�ects of disorder on the critical temperature Tc are lower than �rst expected, the
electron-phonon coupling� is increased, modifyingTc in superconducting materials. The same
mechanism can explain the in
uence of disorder on Variable Range Hopping in the insulating
regime, as we will see section 1.5.1.

1.4.2 Electron-Electron Interactions

In a pure metal, e�ects of Electron-Electron Interactions are small and are usually only as-
sociated with Electron-Electron collisions, giving rise, at low temperature, to corrections to the
measured conductivity when the corresponding scattering time is shorter than the one associ-
ated with other processes (see section 1.2.2). In disordered materials however, the e�ects on
conductivity of Electron-Electron Interactions are more important than the one pictured by this
classical description.

Electron-Electron Interactions can give rise to a Metal-to-Insulator Transition as has been
described by Mott using the so-calledMott-Hubbard model . Within this framework, elec-
trons are subject to Coulomb interactions depicted by the average correlation energy U. The
Hamiltonian can then be written as :

HHubbard =
X

i;j;�

t ij (cy
i;� cj;� + H:C:) + U

X

i

ni; " ni# (1.33)

where t ij describes the transition probability between sitesi and j (taken to be non-zero only
for nearest neighbours). There is therefore a competition between the hopping conduction and
the localization by Coulomb interactions. Indeed, if a site is occupied, hopping towards this site
costs an additional energy U. In the limiting cases, this problem can be easily depicted :

{ if U=t << 1, the Hubbard Hamiltonian amounts to a tight-binding Hamiltonian and band
theory can apply.

{ if U=t >> 1, Coulomb repulsion dominates and electrons are localized (one electron per
site).

A representation of this transition in terms of density-of-states is provided �gure 1.9. Starting
from a large U=t, corresponding to an insulating state, where two separate bands correspond to
the singly and doubly-occupied states, let us progressively lower the ratioU=t. Each band (of
characteristic width t) progressively widens. When the two bands overlap, the Metal-to-Insulator
Transition occurs and the ground state is conducting.
Let us note that, in this Hamiltonian, only short distance Coulomb interactions are treated since
the intra-orbital repulsion term U

P

i
ni; " ni# does not take into account the in
uence of the oc-

cupation at site i on other sites. Therefore, this reasoning should, in principle, be limited to the
conducting case where Coulomb interactions are correctly screened.

The in
uence of disorder can be the source of such a Metal-to-Insulator Transition. Indeed, in
the presence of disorder, the screening of Coulomb interactions is a�ected. For a metallic sample
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16 1.4. EFFECTS OF INTERACTIONS

Figure 1.9: One-particle density-of-states in the Hubbard Model as a function of the ratio U
t

[Marnieros, 1998].

presenting strong Electron-Electron Interactions, these interactions have been found to give rise
to singularities at the Fermi level [Pollak, 1970] : the density-of-states is slightly depleted for
energies close to the Fermi energyEF . As disorder is increased, and as screening is diminished,
the strength of Coulomb interactions is increased. For strong enough interactions, this singularity,
as shown by Altshuler and Aronov and represented �gure 1.10 [Altshuler and Aronov, 1979], gives
way to a soft Coulomb gap in the single particle density-of-states at the Fermi level. This gap
has a parabolic energy dependence (N (E ) / E 2) at the Fermi level, in 3D.
This gap is observable only at low enough temperature where it overcomes thermal excitation
i.e. for :

� c =
e3N (E F )1=2

� 3=2
> k B T (1.34)

with � the dielectric constant of the material, and N (E F ) the density-of-states at the Fermi level
in the absence of interactions.

Figure 1.10: Coulomb gap in the density-of-statesg(E ) in an amorphous semi-conductor near
the Fermi level. Source : [Shklovskii and Efros, 1984].

The existence of thisCoulomb gap has been observed using tunnel junctions in a variety of
systems such as doped semiconductors [Shklovskii and Efros, 1984], Ge1�x Aux [Dodson et al., 1981],
Granular Al [Dynes and Garno, 1981], or Nbx Si1�x [Hertel et al., 1983].
The disorder-induced enhancement of Coulomb interactions has for instance been measured in
an experiment performed by Hertel et al. [Hertel et al., 1983] (�gure 1.11) on a-Nbx Si1�x �lms.
The disorder-tuning parameter then was the Nb compositionx of the �lms. At low Nb content,
the density-of-states is �nite. As disorder increases, the Altshuler-Aronov anomaly becomes more
and more pronounced. At the Metal-to-Insulator Transition, the Coulomb gap opens fully, with
a zero density-of-states at zero bias. However, let us note that the measurement of this gap by
tunnelling experiments re
ects the instantaneous density-of-states and not the thermodynamic
density-of-states, accessible, for instance, through speci�c heat measurements.

Even in a less disordered limit (kF l >> 1), it has been shown by Altshuler, Aronov and Lee
that Electron-Electron many-body e�ects can also in
uence the conductivity [Altshuler et al., 1980].
This contribution to transport (which will be explicitly developed in section 1.5) has been char-
acterized by the so-calledHartree parameter F which measures the screening strength.F is
supposed to be of the order of unity in a perfectly screened material (short range interactions)
and F � 0 in the absence of screening (long screening length).
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1.4. EFFECTS OF INTERACTIONS 17

Figure 1.11: Measurement of the density-of-states variation obtained through tunnelling experi-
ments (renormalized by the 25mV value) across the Metal-to-Insulator Transition in a-Nbx Si1�x .
Source : [Hertel et al., 1983].

The evolution of the Hartree parameter has been widely experimentally investigated, for instance
in alloys[Kokanovi�c et al., 1990] or in organic metals [Yoon et al., 1994]. By studying the weak
localization regime in organic metals near the MIT, Yoon and al. showed that the contribution
of Electron-Electron Interactions are of increasing importance as disorder9 is enhanced (�gure
1.12)[Yoon et al., 1994]. In this work, disorder is measured by10 � r = �(1:4 K)=�(300 K). 
F
(
 is a prefactor of order unity) has been measured both by the temperature dependence of the
conductivity and through its magnetic �eld dependence. The good agreement between the two
values shows that weak localization is dominated by interaction e�ects.

Figure 1.12: Evolution of the Hartree parameter as a function of� r obtained from the conduc-
tivity dependence in temperature (full circles) and its magnetic �eld dependence (empty circles).
Source : [Yoon et al., 1994].

Interestingly, it has been shown by Imry and Ovadyahu [Imry and Ovadyahu, 1982] that even
if the system is 2D regarding the coherence length -i.e. with respect to localization- Electron-
Electron Interactions can be either 2D or 3D. Indeed, as pictured �gure 1.13, for �lms su�ciently
thin (a, b, c), the tunnelling conductivity � T evolves logarithmically with the bias voltage V .
This behaviour is typical of 2D Electron-Electron Interactions.

9. Here disorder is modi�ed by doping and by using pressure.
10. The inverse of the usual RRR criterion : the metallic samples have small � r , and the insulators have larger

values of � r .
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18 1.4. EFFECTS OF INTERACTIONS

For thicker �lms (d, e, f) � T is still described by a law proportional to ln(V ) at low bias. At
high voltage however,� T evolves as

p
V , typical of a 3D system. Imry and Ovadyahu therefore

showed in this experiment that there is a dimensional crossover for electron-electron interactions
which is dependent on the energyE and de�ned by the length [Imry and Ovadyahu, 1982]:

l (E ) =
p

~D=E (1.35)

with D the di�usion coe�cient. The energy E has been provided in this experiment by the
applied electric �eld but can be equivalently replaced by the thermal energykB T. This equation
is therefore equivalent to atemperature cross-over at the thermal length L T :

L T =
p

~D=kB T (1.36)

Figure 1.13: Tunnelling conductivity, � T , or resistanceR, of InOx �lms with di�erent thicknesses,
plotted as a function of the applied bias voltage [Imry and Ovadyahu, 1982]. Films a, b and c
(respectively 160, 190 and 210�A-thick) are 2D with respect to Coulomb interactions, whereas d,
e and f (respectively 310, 460 and 2600�A-thick) are 3D.

We saw that electron-electron interactions can modify the properties of a given material by
di�erent ways and can induce a Metal-to-Insulator Transition. The Metal-to-Insulator Transition
is however not the only consequence of electon-electron interactions as we will now see.

1.4.3 Discussion on the e�ects of interactions

In section 1.3, we have seen that disorder-induces localization e�ects that modify transport
properties and might, eventually, change the system ground state.
In two dimensions, we have seen that no metallic state could exist. As a consequence, only two
di�erent ground states should exist in this dimensionality : the system should be either super-
conducting or insulating.

In this section, we have outlined other e�ects of disorder : it increases Electron-Phonon Inter-
actions and, most importantly, it enhances Coulomb interactions that can dramatically a�ect the
system electrical behaviour. Alone, electron-electron interactions mainly lead to a suppression of
conductivity. However, combined with disorder-induced localization, their consequence can be
more complex.
Although the complete theory that treats Electron-Electron Interactions and localization on an
equal footing has yet to be developed, one can already say that the "no 2D metal" dogma has
been put to a challenge due, in part, to Electron-Electron Interactions.
More speci�cally, the evidence of metallic states in 2D electron gases measured by Kravchenko
[Kravchenko et al., 1994]11 has shaken this dogma. To measure these metallic states, Kravchenko
used a Si-MOSFET of which he modi�ed the carrier densityns of the 2D electron gases12 (which

11. The �st claim for a 2D electron gas was in fact reported reported in Ge-MOSFET by Zavaritskaya in
[Zavaritskaya and Zavaritskaya, 1987].

12. The thickness of the gas is given by the Thomas-Fermi screening length.
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1.5. CONDUCTION LAWS LINKED TO LOCALIZATION 19

form at the Si/SiO interface) by using an electric �eld (see �gure 1.14). The Metal-to-Insulator
Transition was then found to occur at nc = 0:96 � 10�11 cm�2 , corresponding to a resistivity of
� 0 � 2h=e2. In these systems, Coulomb interactions are important due to the low carrier density.

At even lower dimension, 1D metallic states have been observed in Si-MOSFET under a mag-
netic �eld in the Quantum Hall regime [Klitzing et al., 1980]. In this experiment (�gure 1.15),
the Hall resistance has been found to have plateaus - pictured in the �gure byUH - at the value
h=ie2, i being an integer depending on the gate voltage. WhileUH experiences these well-de�ned
plateaus, the magnetoresistance, pictured by the corresponding voltageUpp , drops to negligible
values. These concomitant phenomena are due to 1D metallic channels running along the sample
edges.

The measurement of Quantum Hall E�ect and the evidence of metallic states in 2D electron
gases are two instances whereElectron-Electron interactions are thought to be su�ciently
strong to stabilize a low dimensional state of �nite conductivity .
This, in turn, has triggered a renewed interest in the work of Finkel'stein [Finkelstein, 1983][Finkel'stein, 1984]
and Castellani et al [Castellani et al., 1984], who predicted such an e�ect.
A major issue in the theoretical approach provided by these papers is the perturbation approach
used to reach this result, which has been found to be inconsistent at low temperatures. This
has been recently corrected by Punnoose [Punnoose and Finkel'stein, 2005] which introduces -
in the framework of the Renormalization Group Theory - a two-parameters scaling theory of
quantum di�usion in disordered systems in the presence of Coulomb interactions. However, it
has been pointed out that even if this theory - which does not provide a microscopic description
of the phenomenon - quantitatively describes the stabilization of the metal by electron-electron
interactions near the Metal-to-Insulator Transition, it cannot explain large e�ects far from the
transition [Dobrosavljevic et al., 2012].

Therefore, to our knowledge, there is still no complete theory addressing the full interplay
between localization and Coulomb interactions which would allow to fully describe the observed
fermionic metallic states at 2 or lower dimensions.

Figure 1.14: Temperature dependence of the resistivity of a Si-MOSFET for di�erent electron
densities at B=0 [Kravchenko et al., 1995]. For the highest densities, a metallic behaviour is
observed at low temperature instead of the insulating one which is expected for a 2D system in
the absence of Coulomb interactions.

1.5 Conduction laws linked to localization

In previous sections, we exposed di�erent mechanisms linked to localization in the presence of
disorder. In addition, we reviewed some of the microscopic phenomena which a�ect fundamental
properties of materials. We will now focus on their in
uence on electronic transport.
In this section, we will �rst deal with conduction laws in the presence of strong disorder, as
it has been �rst pictured by Anderson. We will then extend this approach in the presence of
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20 1.5. CONDUCTION LAWS LINKED TO LOCALIZATION

Figure 1.15: Hall voltage measurement in a Si-MOSFET as a function of the gate voltageVg

[Klitzing et al., 1980]. The Hall Resistance, pictured by UH , have plateaus at given values of
the gate voltage while the magnetoresistance, pictured byUpp , goes to zero. This behaviour is a
signature of 1D conduction channels running along the sample edges.

Electron-Electron Interactions. Finally, we will concentrate ourselves on detailing the conduction
laws in a less disordered regime, where Weak Localization is relevant.

1.5.1 Variable Range Hopping

In the strong localization regime, we saw that the wave function exponentially decreases on
a typical distance given by � loc . At T = 0, there is therefore no possible conduction. However,
at �nite temperature, due to phonon-assisted tunnelling, the conductivity may be �nite.

In 1968, Mott showed that, assuming Anderson-type localization by disorder (as seen in
section 1.3.1), the hopping frequency for an electron due to phonon-assisted tunnelling is given
by :

p = � ph exp(�2�R �
W

kB T
) (1.37)

where � ph is a coe�cient dependent on the strength of Electron-Phonon Interactions, � = 1=� loc

is the decay rate of the wave function,R the distance between the two sites involved in the
hopping process, andW the energy di�erence between the initial and �nal hopping sites. This
formula, general for hopping conduction in disordered materials, shows that the hopping proba-
bility is dependent on Electron-Phonon Interactions, disorder13, the localization length and the
temperature T.

The major idea of equation 1.37 is that, under certain conditions, nearest neighbour hopping
is not the dominant process. Indeed, as represented �gure 1.16,electrons have to �nd a
compromise between tunnelling to nearest neighbours at the price of an energy
mismatch, or to travel further where the energy di�erence between the two sites
might be smaller. This process is known as Variable Range Hopping (VRH).
We will now examine the di�erent processes that then intervene, depending on the ratio�Rk B T

W .

1.5.1.1 Nearest Neighbour Hopping

In the extreme case of a localization length of the order of the interatomic distancea, hopping
processes should be limited to nearest neighbour . The area of validity of this approach
depends on disorder. Indeed, as discussed by Mott [Mott, 1974], fora� << 1 
uctuations of
the potential W on available sites are too strong to permit the electrons to lower the tunnelling
energy by travelling further away. One should therefore neglect the term 2�R in the hopping

13. Disorder is pictured by W which is a random energy like in the model developed by Anderson.
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frequency and expect a conductivity law of the form :

� = � 0exp(�
� 3

N (E F )kB T
) (1.38)

where N (E F ) is the density-of-states at the Fermi level and� 0 = � ph ( N (E F )
��k B T )1=2.

For lower disorder, as� loc >> a , di�erent processes can occur.

1.5.1.2 Mott Variable Range Hopping

For long enough � loc , there are number of accessible states through tunnelling. The system
will therefore try to lower the cost of tunnelling and one expects a conducting law such that :

� = � 0exp(�(
TMott

T
)

1
1+d ) (1.39)

with TMott = � Mott
d � d=Nd(E F )kB (1.40)

d is here the dimension on which the tunnelling event occurs andNd(E ) is the d-dimensional
density-of-states. � Mott

d is a constant dependent on the dimensionality of the hopping process.
If the hopping occurs in 3D, � Mott

3 = 22:2. If the hopping occurs in a plane (2D), � Mott
2 = 13:8.

Figure 1.16: Illustration of the Variable Range Hopping process. The carriers have the possibility
to travel toward a site nearby in space with an important mismatch in energy (i) or to a further
site but with a lower mismatch in energy (ii). Source : [Mott, 1974].

This conduction law supposes aconstant density-of-states at the Fermi level and ne-
glects e�ects of Electron-Electron Interactions. As we will now see, the in
uence of these inter-
actions can be important for the conduction law.

1.5.1.3 Efros-Shklovskii Variable Range Hopping

Due to Coulomb repulsion , the hopping distance and the number of accessible states for
hopping are greatly reduced. Efros and Shklovskii (ES) found that in this case, even if an electron
is hopping to an empty site, the system should pay the price of Coulomb interaction between the
hopping electron and the remaining hole. Low energy electrons cannot tunnel and a soft gap in
the density-of-states appears. The conduction law should then be given by :

� = � 0exp(�(
TES

T
)

1
2 ) (1.41)

with TES =
� ES

d e2

4��� 0kB � loc
=

� ES
d e2

�� loc
(1.42)

Contrary to the expression of Mott-VRH, this function is independent on the dimensionality of
the system except for the constant� ES

d . Indeed in 3D � ES
3D = 2:8 and in 2D � ES

2D = 6:5.

We discussed earlier the fact that the Coulomb gap appears only at low temperature, where
� C > k B T. For temperatures such that � C << k B T, Efros-Shklovskii Variable Range Hopping
is not relevant and one should consider Mott-Variable Range Hopping conducting law described
earlier. As a consequence, there is a typical temperature for which acrossover occursbetween
ES-VRH and Mott-VRH conductivity laws. This temperature is de�ned as

T� =
e4� loc N (E F )

� 2 (1.43)
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22 1.6. EFFECT OF DISORDER ON SUPERCONDUCTIVITY

1.5.2 Electronic Transport in the weak localization regime

In the presence of weaker disorder,Weak Localization (see section 1.3.2.3) gives rise to
di�erent correction laws to the conductivity, depending on the dominant dephasing process and
the system dimensionality.

In the absence of interactions , the temperature dependence of the inelastic scattering time
can be expressed as :

� in / T �p (1.44)

wherep depends on the dominant scattering mechanism. The associated coherence length
L � can then be expressed as :

L � �
p

D� in = �T �p=2 (1.45)

where � is a numerical factor and D is the di�usion constant. Thus, using this temperature
dependence, equations 1.27 and 1.28 can be rewritten under the form :

in 3D � = � 0 +
p
2

e2

~� 3

1
�

Tp=2 (1.46)

in 2D � = � 0 +
p
2

e2

~� 2 ln(
T
T0

) (1.47)

These equations, when quantum corrections to conductivity are relevant, re
ects an enhanced
localization due to enhanced electron backscattering.
In the case of interaction-free weak localization mechanism, the evolution as a function of the
temperature of the conduction law depends on the dominant scattering mechanism through the
parameter p, but does not depend explicitly on disorder14. One can therefore wonder how dis-
order modi�es these conduction law.

The contribution from disorder comes mainly from enhanced Coulomb interactions . In-
deed, in the presence of Electron-Electron Interactions , the previous equations are mod-
i�ed such that :

in 3D � = � 0 +
e2

2� 2~
(

p
��

T
p
2 +

1:3

2
p

2
(
4
3

�
3
2

F )

r
T
D

) (1.48)

in 2D � = � 0 + (�p + (1 �
3
4

F ))
e2

2~� 2 ln(
T
T0

) (1.49)

whereF can be taken as a measure of the strength of Electron-Electron Interactions (see section
1.4.2). The in
uence of the Hartree factor F in these equations is to decrease the conductance
further than what would be expected from the weak localization laws in the absence of interaction.

1.6 E�ect of disorder on superconductivity

In the previous sections, we almost exclusively dealt with the various e�ects disorder could
have on a metallic state and with the subsequent Metal-to-Insulator Transition. However, the
ground state of all conducting systems is not metallic and it may happen that the system be-
comes superconducting.
Superconductivity is a macroscopic phenomenon with microscopic origins. A modi�cation of
microscopic parameters should has an impact on superconductivity as well. Under su�cient
disorder, one can destroy superconductivity and a Superconductor-to-Metal Transition may be
observable. In 2D, however, since metallic states should not exist, a direct Superconductor-to-
Insulator Transition is expected.

Before dealing with the Superconductor-to-Insulator Transition, we would like to begin by
exposing a few concepts on superconductivity in the presence of weak disorder. We will then
extend the discussion to arbitrary disorder.

14. p is indeed �xed for a given dominant scattering process.
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1.6.1 Superconductivity in the presence of (small) disorder

We will detail here the main ideas behind the description of superconductivity and the e�ects
of small disorder on this phase. We will introduce a distinction between the clean limit and the
dirty limit for s-wave type superconductors in the presence of non-magnetic impurities.

1.6.1.1 Superconductivity : from H.K. Onnes to the BCS theory

Superconductivity has been discovered in 1911 by Heike Kamerlingh Onnes who measured the
vanishing of the resistivity of mercury at the critical temperature Tc = 4.15 K [Kamerlingh Onnes, 1911].
Since then, there have been numerous attempts to explain this phenomenon. In 1935, London
was the �rst to propose a phenomenological picture of superconductivity successfully explaining
the Meissner e�ect, in which the superconducting material expels any constant magnetic �eld on
a lengthscale� L , the so-calledLondon penetration length , given by :

� L =
r

m
� 0ne2 (1.50)

with m the electron mass,� 0 the vacuum permittivity and n the total electron density.

Later, Ginzburg and Landau (1950) intuited a phenomenological microscopic wavefunction
that captured the essential properties of superconductors in most conventional materials. They
introduced a typical length scale over which the wavefunction varies,the coherence length � ,
which they found to be :

� (T ) =

s
~2

2m� (T )
(1.51)

where � (T ) varies as T �T c
Tc

near Tc. But this theory still missed a microscopic explanation for
the mechanisms inducing superconductivity.

The microscopic description of superconductivity was subsequently proposed by Bardeen,
Cooper and Schrie�er (BCS) in 1957. BCS theory emphasizes the importance of interactions
of electrons with phonons, which are described as being at the origin of superconductivity, like
Fr•ohlich (1950) and Bardeen (1951) had already pointed out. The Hamiltonian used for BCS
theory is :

HBCS =
X

k;�

�(k )cy
k;� ck;� +

X

k;k 0

Vk;k 0cy
k; " cy

�k;# ck 0;#c�k 0;"

=
X

k;�

�(k )cy
k;� ck;� +

X

k;k 0

Vk;k 0by
k bk 0

(1.52)

In this equation cy
k;� (ck;� ) is the creation (annihilation) operator for the electron of wave vector

k and spin � (= "; #). The �rst term of this Hamiltonian represents the kinetic energy of the elec-
trons. The second term is the one at the origin of superconductivity :Vk;k 0 (= V for simplicity)
represents the Electron-Electron Interaction which, thanks to the mediation of Electron-Phonon
Interactions, is attractive. This potential allows the condensation of electrons into bosons. These
Cooper pairs consist in the binding of two electronsby

k = cy
k; " cy

�k; #, having opposite spins and

angular momenta
�!
k .

As a consequence of BCS theory, the critical temperatureTc is given by [Bardeen et al., 1957]
:

kB Tc � ~ < ! > exp (�1=N (E F )V ) (1.53)

where< ! > corresponds to a cut-o� frequency such thatVk;k 0 = 0 for frequencies above< ! > .
Therefore, the critical temperature should be only dependent on< ! > , the e�ective electron-
electron interaction V and the density-of-states at the Fermi levelN (E F ) 15. One of the major
success of BCS theory resides in the successful prediction of the expression of asuperconducting
gap � in the single particle density-of-states as a simple function of the sole critical temperature
Tc, given at zero temperature by16 :

�(T = 0) = � 0 = 1:76kB Tc (1.54)

15. This relation - and more precisely its derivation by McMillan - as well as its modi�cation by disorder, have
been discussed in section 1.4.1.

16. This expression is valid for weak-coupling superconductors.
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24 1.6. EFFECT OF DISORDER ON SUPERCONDUCTIVITY

Following BCS, one can �nd an expression of the coherence length� as a function of the
superconducting gap :

� (T = 0) = � 0 =
~vF

� 0
(1.55)

where vF is the Fermi velocity. This equation de�nes the typical size of Cooper pairs. Let us
stress that, due to the existence of a superconducting gap in the single particle density-of-states,
electrons are unlikely to carry an electrical current for energies lower than �. Cooper pairs -
which exist for energies lower than the gap - then short-circuit the electrons and govern the
conduction.

The above description is valid in the clean case, with no disorder. Hence one can wonder
what are the e�ects of disorder within the BCS description of superconductivity.

1.6.1.2 The dirty limit

It seems natural to expect that disorder will a�ect superconductivity as it modi�es the elec-
tronic wavefunction and increases electron-electron interactions. A �rst consideration of the
e�ect of disorder has been proposed by Pippard who examined the e�ect of scattering on super-
conductivity. Within the limit of weak disorder ( kF l >> 1), Pippard made the distinction
between two limiting cases depending on how the mean free path in the normal phasel compares
with � 0 :

{ for l=� 0 >> 1, there is no scattering on the distance for which Cooper pairs exist. This
correspond to theclean limit which has been described in section 1.6.1.1.

{ for l=� 0 << 1, scattering should a�ect Cooper pairs. This limit corresponds to the dirty
limit regime.

Following this description, let us examine how superconductivity is a�ected in the dirty limit.

Abrikosov and Gorkov [Abrikosov and Gor'kov, 1959] and, independently, Anderson [Anderson, 1959],
have shown that the superconducting gap � - and by extension the critical temperature Tc -
is insensitive to non-magnetic impurities and should therefore not be a�ected by disorder.
This constitutes the so-calledAnderson's theorem 17.

Even though � and Tc are, within BCS theory, una�ected by disorder, impurity scattering
in the dirty limit modi�es the characteristic lengthscales associated with superconductivity, as
pictured in the Ginzburg-Landau theory of superconductivity. Indeed, Gorkov showed in 1959
that Ginzburg-Landau equations are a limiting case of the BCS results, valid forT � Tc. One
can therefore use the expressions derived by Ginzburg and Landau regarding thecoherence
length and the penetration length in both the clean and the dirty limit near Tc :

Clean limit Dirty limit
�(T ) � 1:74� 0

p
1 � T=Tc

� (T ) 0:74�0
q

Tc
Tc �T 0:85

p
� 0l

q
Tc

Tc �T

�(T ) 0:71� L

q
Tc

Tc �T 0:62� L

q
� 0
l

q
Tc

Tc �T

According to Anderson's theorem, the expressions obtained in the dirty limit should stay true
whatever the disorder. As we will see in the following developments, this constitutive theorem
for superconductivity is valid only for weak disorder (kF l >> 1). For strong disorder (kF l << 1),
the interplay between superconductivity and disorder cannot be neglected and further
developments are needed to explain the observed experimental results.

1.6.2 Possible e�ects of localization on 3D superconductivity

We have shown in the previous section that � and Tc should not be a�ected by disorder for
kF l >> 1. However at kF l � 1, the question of the e�ects of localization on superconductivity
is more complex. Indeed, experiments on various materials have found a diversity of results
regarding the e�ects of disorder on the suppression of superconductivity, as well as on the dif-
ferent resulting ground states. Furthermore, the problem may depend on the morphology of the

17. This is at least true in the case of an isotropic superconductor. Indeed, in the presence of an anisotropic
binding, the �rst e�ect of disorder is to make it more homogeneous, which, in turn, a�ects superconductivity. As
soon as the binding becomes isotropic, Anderson's theorem applies.
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1.6. EFFECT OF DISORDER ON SUPERCONDUCTIVITY 25

investigated material : the e�ect of disorder could be di�erent if the system is granular, presents
quenched disorder or is (poly-)crystalline. In all cases, however, strong disorder tends to weaken,
and eventually kill, superconductivity.
In this section, we would like to non-exhaustively illustrate the fundamental question of the in-
terplay between superconductivity and disorder by using two di�erent examples, exposing two
extreme cases18 : the treatment of the e�ects of disorder for granular and amorphous supercon-
ducting materials in the 3D limit.

The e�ects of localization on the superconducting properties of materials have �rst been
thought of by analogy with granular systems . In such systems, as described by Imry and
Strongin [Imry and Strongin, 1981], the competition between the charging energy on
each grain Ec and the Josephson-tunnelling energy EJ can be seen as the origin of the
destruction of superconductivity. To model this behaviour, they used the scaling theory with
elementary blocks composed of superconducting grains, with a �xed superconducting gap �.
They therefore considered that superconductivity was well established within one grain, and
neglected the e�ects of Coulomb interactions on the properties of individual grains or the e�ects
of a modi�cation of the Electron-Phonon interaction. By performing a qualitative treatment,
they found di�erent solutions depending on the studied system and the ratio betweenEc and EJ

:
{ If the system is made out of small grains , a 3D system can be either superconducting,

metallic or insulating. Local superconductivity is destroyed when the local conductivity gl

is below a few e2

h .
{ For small Ec, the system can be metallic as the electronic transport is not blocked

when superconductivity vanishes, at least when disorder is small. When the disorder
is increased such thatgl � gc, the critical conductivity of the 3D Metal-to-Insulator
Transition, the system becomes overall insulating.

{ For systems such that Ec become comparable to EJ when disorder is increased,
the system can have a direct Superconductor-to-Insulator Transition as global phase
coherence is destroyed before local superconductivity.

Thus, starting from a superconducting material and progressively increasing the disor-
der, one should observe successively a Superconductor-to-Metal Transition and a Metal-to-
Insulator Transition, or a direct Superconductor-to-Insulator Transition.

{ If the system is made out of large enough grains , the problem is simpler. Indeed, the
charging energyEc is way more important, and therefore electronic transport is blocked
when superconductivity vanishes. The system therefore is superconducting forEc < E J

and is insulating otherwise, with a direct Superconductor-to-Insulator Transition. One can,
in this case, observe two successive transitions in the R(T) characteristic corresponding to
the loss of global phase coherence - giving the critical temperature of the system - and the
loss of superconductivity within localized grains at higher temperature.

Therefore, in these 3D granular materials, both the ratio Ec=EJ and the local conductance de-
termine the ground states.

Although the previous description could, in principle, apply to homogeneous materials in the
sense that these can be seen as granular systems with a typical grain size of the order of the inter-
atomic distance, Ma & Lee [Ma and Lee, 1985] and Kapitulnik & Kotliar [Kapitulnik et al., 1985,
Kotliar and Kapitulnik, 1986] have shown that things were more complicated. Indeed, they con-
sidered the possibility of having asuperconducting ground states starting from localized
single particle states . Both papers showed that superconductivity can exist as long as the
superconducting gap is larger than the inter-level spacing of the density-of-states in the insulator.
This remarkable result is schematically explicited �gure 1.17 : the average values of the super-
conducting gap � and of the super
uid density ns do not go to zero at the Metal-to-Insulator
Transition (point C) and bear �nite values well within the normal insulating regime. � and ns

are even una�ected until point D which marks the limit of validity of Anderson's theorem. Point
D corresponds to the criterion � N (E F )L 3 � 1. For larger disorder levels, global coherence weak-
ens and � and ns 
uctuate in space. They eventually vanish and superconductivity is destroyed.

18. The question of the interplay between localization and disorder will be exposed more exhaustively in the
following sections, in the case of thin �lms.
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Figure 1.17: Evolution of some relevant quantities for a amorphous superconducting material
in the presence of disorder. Point C corresponds to the Metal-to-Insulator Transition. The
dashed line corresponds to the evolution ofL, the correlation length on the metallic side and the
localization length on the insulating side, as a function of disorder. The spatial average of the
superconducting gap � and of the super
uid density ns are also shown [Ma and Lee, 1985].

1.6.3 E�ects of a thickness reduction depending on the morphology

As seen above, material morphology is of primary importance when dealing with the e�ects of
disorder on superconductivity. By changing the thickness of a sample, one can modify the normal
state conductivity of a �lm. Therefore, by taking kF l as a measure of the disorder and through
the Drude model, it is of common belief that changing the thickness of a �lm also modi�es its
e�ective disorder. In this section, we will get a �rst look on the dramatic e�ects that a thickness
modi�cation can have on electrical properties of materials, depending on their morphology.

The behaviour of the resistivity near the thickness-tuned Superconductor-to-Insulator Transi-
tion for granular and amorphous Pb is illustrated �gure 1.18 [Gantmakher and Dolgopolov, 2010].
To compare the two morphologies, the authors have evaporated Pb with or without adding an
amorphous sub-layer of Ge. In the absence of this amorphous layer, and due to interfacial
tensions, the evaporated material will not wet the substrate and islands form, giving rise to
granularity.

In the case ofgranular �lms (illustrated �gure 1.18b for Pb), superconductivity �rst appears
locally, within each grain, at a temperature Tc0, the critical temperature of the bulk material. As
the temperature is further lowered, the grains couple to each other until macroscopic coherence is
achieved. The �lm then becomes superconducting. As the thickness is lowered, the �rst appear-
ance of local superconductivity still occurs at T = Tc0 since the critical temperature within
each grain is essentially unchanged. However, the competition between the charging energyEc

and the Josephson coupling energy between the grainsEJ evolves, similarly to the description
provided by Imry and Strongin (section 1.6.2), such that the superconducting transition
broadens . As disorder is further increased, the ground state becomes insulating19.

In amorphous or, more generally,homogeneously disordered �lms , the superconduct-
ing transition temperature is also a�ected by disorder. As the �lm thickness is reduced, the
superconducting critical temperature Tc is reduced but, contrary to granular �lms, the super-
conducting transition remains sharp as can be seen �gure 1.18a, in the case of a-Pb �lms.
Furthermore, since superconductivity is a�ected in the entire �lm, one should not observe a re-
entrant behaviour of the resistivity at low temperatures.

In these systems, the origin of the destruction of superconductivity and the nature of the
insulating phase is a subject of intense debate in the community. In the following section, we
will present a brief review of the state-of-the-art of the subject.

1.7 Dimensional E�ects on Superconductivity

Dimensional e�ects begin to a�ect superconductivity when the superconducting coherence
length � is of the same order of magnitude than the �lm thickness d? . However, the exact

19. In some cases, re-entrant behaviours are observed in the transport properties as the grains become locally
superconducting but the ground state still is insulating due to the lack of long-range ordering of the phase of the
superconducting order parameter.
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Figure 1.18: Comparaison of the resistance as a function of the temperature for Pb �lms
of di�erent thicknesses in the granular (a) and amorphous (b) cases. Adapted from :
[Gantmakher and Dolgopolov, 2010].

description of a thickness reduction on superconductivity is still an object of debate within
the condensed matter community. In this part, we will detail di�erent models that have been
proposed to describe this issue. To do so, we will �rst detail the e�ects of surface scattering on the
properties of thin �lms. We will then present a mechanism through which phase 
uctuations can
a�ect superconductivity in 2D : the Berezinskii-Kosterlitz-Thouless (BKT) transition. Surface
e�ects and BKT transition play an important role in 2D superconductivity but do not account for
the SIT observed in disordered thin �lms. We will therefore expose current theories explaining
this phenomenon along with experimental evidence which will be discussed in light of the di�erent
models.

1.7.1 Surface e�ects

In this paragraph, we will outline a few theoretical ideas underlying the speci�c role of the
�lm thickness on thin �lms properties. To do so, we will expose di�erent models taking into
account e�ects due to the surface, both for metallic and superconducting materials.

One of the �rst models to describe size e�ects onmetals has been derived byFuchs
[Fuchs, 1938] and Sondheimer [Sondheimer, 1952]. The idea behind this model is that the �lm
resistivity should be in
uenced by specular re
ections of the electrons on the sample surfaces.
Following this description, Sondheimer calculated the correction to resistivity, depending on the
mean free pathl and the thickness of the �lm d? :

for l << d ? � = � 0(1 +
3
8

l
d?

(1 � p)) (1.56)

for l >> d ? � = � 0(
4
3

1 � p
1 + p

l
d ln(l=d)

) (1.57)

where� 0 corresponds to the conductivity of the bulk material in the presence of exactly the same
amount of disorder as the considered �lm andp is a parameter representing the probability of
specular re
ection.

In the case of superconductivity, De Gennes pointed out that boundary conditions should af-
fect the description of superconductivity given by Ginzburg-Landau equations [De Gennes, 1999].
This idea of an in
uence of surfaces has been used by Simonin who, to depict the modi�cation of
the boundary conditions due to a thickness modi�cation, introduced a surface energy term in
the Ginzburg-Landau free energy . Assuming that the material has a thickness-independent
density-of-states, he found the thicknessd? to in
uence the evolution of the critical temperature
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Tc such that :
Tc = Tc0[1 � 2C� 2

0=d? ] = Tc0[1 � dm =d? ] (1.58)

where Tc0 is the bulk value of the superconducting critical temperature, � 0 is the zero tempera-
ture superconducting coherence length anddm is the critical thickness at which superconductivity
disappears. The constantC � a=N(E F )V � 2

0 is material-dependent, with a the Thomas-Fermi
screening length andV the e�ective Electron-Electron Interaction that intervenes in the BCS
theory.

Simonin's model, predicting the behaviour of the critical temperature reduction as a function
of the thickness is rarely mentioned. It has, however, been experimentally veri�ed in numerous
systems, as can be seen �gure 1.1920. It is true that this model does not predict the state
(metallic or insulating) into which the system transits as the critical thickness is crossed, or the
underlying transition mechanism (bosonic or fermionic). However, it takes into account surface
e�ects which are neglected in other models and which, in our opinion, should contribute to the
destruction of superconductivity in thin �lms. Moreover, to the best of our knowledge, there has
not been any theoretical arguments put forward against this description.

Figure 1.19: Superconducting properties of �lms of Nb, Pb and Bi plotted as a function of the
inverse of their thickness. Adapted from [Simonin, 1986].

1.7.2 The Berezinskii-Kosterlitz-Thouless Transition

As dimensionality is reduced, new phenomena can occur in solids. One of these e�ects is
the Berezinskii-Kosterlitz-Thouless (BKT) transition which is observable only at low
dimension. In 2D, thermally activated vortices spontaneously form. For T < T BKT , the BKT
temperature, vortices condense under the form of vortex-antivortex pairs. The corresponding
state is superconducting. ForTBKT < T < T c, with Tc the mean �eld superconducting critical
temperature, the pairs size increases and they acquire su�cient energy to start dissociating.
Their motion then induces a dissipative state.

E�ects of the Berezinskii-Kosterlitz-Thouless transition can be observed by low-frequency
transport measurements. Halperin & Nelson showed that the evolution of the resistivity below
TBKT is then given by [Halperin and Nelson, 1979]:

� � � 0exp(�
b

p
T � TBKT

) (1.59)

where � 0 and b are material-dependent constants. ForT < T BKT , the transition is therefore
characterized by a linear dependence of the logarithmic resistivity as a function of temperature.
This has been experimentaly observed - for example - in InOx thin �lms, as shown �gure 1.20.
BKT mechanism only a�ects the last few % of the resistive transition, but the existence of this
transition is crucial for theoretical models of the Superconductor-to-Insulator transition, such as
the Dirty Boson Model.

20. This description has been found to adequately account for experimental results in other materials such as
Al [Chubov et al., 1969], La [L •optien et al., 2014] or Nb x Si1�x [Crauste et al., 2014].
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Figure 1.20: Resistance of a 100�A-thick InO x �lm with Tc0 the critical temperature of the bulk
system andTBKT the temperature of the BKT transition [Fiory et al., 1983].

1.7.3 The Superconductor-to-Insulator Transition

A pioneering work for the study of the ground state (de�ned at T = 0) in superconducting
thin �lms has been provided by Haviland et al [Haviland et al., 1989] who quench-condensed a-Bi
�lms at low temperature onto an a-Ge layer (�gure 1.21) and studied their transport properties
as a function of their thickness, modi�ed by successive evaporations from 4.36�A to 74.27 �A.
By doing so, they observed a direct transition between the superconducting and the insulating
ground states. This transition occurred at a thickness smaller than 7�A, well below the value of
the superconducting coherence length.
We saw in section 1.2.3 that it is possible to link the resistivity of the �lm to the fermiologic quan-
tity kF l . This Superconductor-to-Insulator Transition has therefore been interpreted as a change
in the system ground state due to a modi�cation of the e�ective disorder, measured through the
Io�e Regel parameter kF l . The question of the physical origin of this Superconductor-to-Insulator
Transition (SIT) has given rise to numerous experiments and theories in the following decades
which tried to characterise and explain the microscopic machinery behind this phenomenon.

In the following, we will try to expose the major theoretical models which aim at explaining
this transition. These models are usually divided into two di�erent categories, depending on the
microscopic nature of the resulting insulating phase : Fermionic or Bosonic. The discussion of
these models will be illustrated by experiments.

1.7.3.1 Fermionic models of the SIT

1.7.3.1.a Maekawa & Fukuyama �rst order calculation

Maekawa and Fukuyama [Maekawa and Fukuyama, 1982] & Takagi and Kuroda [Takagi and Kuroda, 1982]
studied the e�ects of Coulomb interactions on the properties of superconductors. They found
that, in the case of a thicknessd? < l the mean free path, as disorder increases, the increasing
electron-electron repulsion in the material suppresses the superconducting order parameter �,
violating Anderson's Theorem. Thus, they quanti�ed the e�ects of Coulomb interactions on the
critical temperature and found that Tc is lowered as :

ln
Tc

Tc0
= �

e2

6� 2~
g1R� (ln

~
kB Tc�

)3 (1.60)

where � is the time associated with the mean free path,g1
21 is a constant related to electron-

electron interaction, and Tc0 is the transition temperature for the bulk superconductor presenting
the same microscopic structure. This relation has been found to correctly �t the experimental
data when the corrections to Tc0 are small. However this expression fails in the case of highly
disordered �lms. Indeed, the calculation has been made by treating disorder, and thus the thick-
ness reduction, as a �rst order perturbation. For high enough disorder, this approach therefore
had to be extended.

21. g1 = 1 =2 for screened Coulomb interactions.
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Figure 1.21: Evolution of the sheet resistance as a function of the temperature of amorphous-Bi
thin �lms depending of the evaporated thickness [Haviland et al., 1989].

1.7.3.1.b Finkel'stein's theory

In 1984, Finkel'stein [Finkelstein, 1983] extended Maekawa & Fukuyama's theory for more
disordered �lms using the renomalization group. This theory assumed uniformly disordered �lms,
with no electronic or morphological structure and it therefore principally applies to morphologi-
cally homogeneous systems.

Finkel'stein's theory is sometime considered as an extension of the BCS mean �eld theory
[Skvortsov, 2015] which, in addition, takes into account the repulsive e�ects of electron-electron
interactions, which give rise to the vanishing amplitude of the superconducting gap �.
Indeed, in this theory and due to di�usion in the presence of disorder,screening properties
are modi�ed . Thus, repulsive interactions between electrons are enhanced resulting in a nega-
tive correction to the BCS pairing.

By developing this theory, Finkel'stein found that the critical temperature in the presence of
Coulomb interactions in disordered materials should be corrected along :

Tc

Tc0
= exp(�

1



)[(1 +

p
t=2


 � t=4
)(1 �

p
t=2


 � t=4
) �1 ]1=

p
2t (1.61)

with 
 = 1=ln(k B Tc0�=~) and the renormalized sheet resistancet = R� e2=(2� 2~). For small
disorder, this equation is equivalent to equation 1.60.

Fits of the evolution of the critical temperature using equation 1.61 following Finkels'tein's
theory have been performed in various materials like in MoGe (�gure 1.22) and have been found
to be in good agreement with experimental data. The calculation of the critical temperature
evolution provided by Finkels'tein is convenient for analyzing real experiments since the only
free parameter is the mean free path time� .

According to equation 1.61, the Superconductor-Insulator Transition occurs when the modi-
�cation of the sheet resistanceR� leads to a critical temperature Tc = 0. This argument leads
to the critical conductance :

gc =
1

8�
ln(

~
kB Tc0�

) (1.62)
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Figure 1.22: Reduction of the superconducting critical temperature Tc as a function of
the sheet resistance R� in MoGe thin �lms and �t according to Finkelstein's theory
[Graybeal and Beasley, 1984] [Finkelstein, 1983].

This value, due to the presence of� and Tc0, is dependent on the considered material and is
not universal. An important point regarding the development of Finkel'stein's theory is that it
has been developed in a mean �eld approximation and, due to this approximation, is valid for
5<1/
< 9. Outside this range, even though the destruction of superconductivity may still be
described by Coulomb interactions, Finkel'stein's theory should not be quantitatively true.
Let us moreover stress that, in this fermionic picture,superconductivity is destroyed through
its pairing amplitude to give rise to a, a priori, fermionic state . Since, in 2D, the scaling
theory of localization prevents any metallic state to exist, the ground state arising from the
destruction of superconductivity is an insulator .

1.7.3.1.c Experiments pointing to a fermionic scenario in some materials

Non-universal critical resistance Rc

As we will see later, some bosonic models support the idea of a universal value of the critical
resistance at the Superconducting-Insulating transition. On the other hand, as can be seen from
equation 1.62, such expectation does not exist for fermionic models of the SIT. Experimentally,
the critical resistance in most materials has been found to be highly dependent on the considered
system. It has been even showed by A. Yazdani and A. Kapitulnik that a-MoGe �lms of di�er-
ent thicknesses and compositions have critical values of the resistanceRc ranging from 651 to
2026 Ohms and that two �lms of the same composition but with di�erent thicknesses can have
di�erent Rc in a magnetic �eld-tuned SIT [Yazdani and Kapitulnik, 1995]. This has also been
observed in other systems like Nbx Si1�x [Marrache-Kikuchi et al., 2008].

Tunnelling measurements of the superconducting gap
Electron tunnelling directly measures the quasiparticle density-of-states and is therefore a power-
ful tool to measure the superconducting gap. The appearance (or not) of a superconducting gap
in the density-of-states in the insulating state just above the transition will be a direct indication
of the bosonic (or fermionic) nature of the transition.
Di�erent experiments in pure materials usually tend to show that the result is highly dependent
on the morphology of the �lms. Indeed, in amorphous Bi [Valles et al., 1992] (�gure 1.23), the
measurement of the tunnelling conductance shows that the superconducting gap is vanishing near
the Superconductor-to-Insulator Transition, in agreement with what is expected in a fermionic
scenario. On the other hand, in quench-condensed granular Pb [Barber et al., 1994], measure-
ments of the tunnelling conductance on both sides of the transition show that, even when the
�lm is found to be insulating by electronic transport measurements, the superconducting gap
remains and keeps almost the same value as in the bulk.

To gain a more precise view on this issue, one can wonder how the local superconduct-
ing gap evolves. Indeed, using macroscopic tunnelling junctions averages the measurement on
macroscopic sizes, potentially hiding spatial inhomogeneities of the gap. Therefore, if one site
is superconducting and the next metallic, one can measure a non-zero density-of-states using a
macroscopic tunnel junction. By using a more local probe, STM measurements circumvent this
averaging e�ect. Such STM measurements performed in MoC by Szab�o et al. [Szab�o et al., 2016]
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Figure 1.23: (a) Sheet resistance of two a-Bi superconducting �lms close to the Superconductor-
to-Insulator Transition. (b) Tunnelling conductance of the two �lms presented in (a) compared
with the tunneling conductance of a bulk sample [Valles et al., 1992].

are plotted �gure 1.24.b . They show that, in this system, asTc is lowered by modifying the thick-
ness of the sample (�gure 1.24.a.), bothTc and � decrease as the Superconductor-to-Insulator
Transition is crossed, with a ratio �=k B Tc almost constant and independent on the tip position
(�gure 1.24.c). This constancy of the ratio � =kB Tc has been also found by Noat et al. in NbN for
�lms with thicknesses ranging from 2.16 to 15 nm where no inhomogeneity of the order parameter
has been found in the absence of a magnetic �eld [Noat et al., 2013]. These experimental results
therefore favor a fermionic scenario for the destruction of superconductivity in these materials.
We will later see that similar STM measurement conclude otherwise for other materials (see
section 1.7.3.2.d).

Figure 1.24: (a) Sheet resistance of di�erent MoC samples measured by electronic transport
measurements. (b) Tunneling spectra obtained by STM for the same MoC samples. (c) Evolution
of the ratio 2� =kB Tc extracted from the �tting of tunneling spectra as a function of the �lm
thickness. Source : [Szab�o et al., 2016].

1.7.3.2 Bosonic models of the transition

All Superconductor-to-Insulator Transitions may not occur following a fermionic model. In-
deed, as we saw in the 3D case, superconductivity may locally survive to single electron localiza-
tion. Based on an analogy with granular models, di�erent theoretical works have been developed
throughout the years in which the mechanism at the origin of the transition is not the disap-
pearance of the superconducting order parameter but 
uctuations of its phase between di�erent
grains. Some of these scenarii are presented below.

1.7.3.2.a The "Dirty Boson Model"

In the early 90's, M.P.A. Fisher proposed a theory for the 2D Superconductor-Insulator
Transition tuned either by disorder or by a magnetic �eld [Fisher, 1990]. This description of
the Superconductor-Insulator Transition is summarized �gure 1.25. To develop this model, he
started from the existence of the BKT transition and makes use of the existing duality between
Cooper pairs and vortices :

{ In the superconducting phase, the system presents localized vortices and condensed Cooper
pairs.
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{ In the insulating phase, Cooper pairs are localized and the vortices are condensed.

Figure 1.25: Schematic phase diagram for the Superconductor-Insulator Transition in the pres-
ence of disorder � and magnetic �eld B [Fisher, 1990].

Fisher starts by pointing out that a zero-disorder superconducting �lm in zero magnetic �eld
has a critical temperature Tc, given by BKT theory, lower than the bulk value Tc0. Thus, for
T > T c0, thermal 
uctuations destroy the amplitude of the order parameter. For Tc0 > T > T c,
the amplitude of the order parameter is non zero, but its phase 
uctuates, due to the motion of
vortices - which occurs at zero energy -, preventing the establishment of a long-ranged coherent
superconducting state. The Superconductor-to-Insulator Transition is then due to phase 
uc-
tuations and the superconducting order parameter is non-zero in the corresponding insulating
state. The SIT is bosonic in the sense that Cooper pairs survive at the transition, giving rise to
a Bose glass.

This "Dirty Boson Model", has been studied using the scaling description of quantum phase
transitions. Close to the phase transition, the scale of phase 
uctuations is given by the correla-
tion length :

� = jK � K cj �� (1.63)

where K is the tuning parameter, K c its critical value and � is the critical exponent associated
with the coherence length. This scaling law depicts the typical length over which Cooper pairs
in the superconductor and of vortices in the insulator are correlated.

The associated scaling law for resistivity, valid in the quantum critical regime, is :

R
Rc

=
h

4e2 F (�=T � 1
�z ; �=E 1=(� (z+1)) ) (1.64)

where F is a scaling function, � = K �K c
K c

is the distance to the transition and z is the dynamical
critical exponent. Such a scaling law is presented �gure 1.26 on which we can observe that all
curves obtained from resistance measurements of a-Bi samples of di�erent thicknesses collapse
onto the same universal curve (one for the superconducting state and one for insulating state) for
the scaling variable tjd? � d?c j, t being here T��z and d? (d?c ) the sample (critical) thickness.
In this scaling treatment, the authors found a critical exponent product of �z � 1:2.

If a strict duality between Cooper pairs and vortices is assumed, M.P.A. Fisher found that :

� bosons = � vortex (
4e2

h
)2 (1.65)

As the transition should occur when the resistivity of bosons and vortices are similar, this relation
is equivalent to saying that the transition should occur at a universal valueRQ = h

4e2 � 6450 
,
the quantum of resistance for Cooper pairs.

The values of the critical exponents depend on the nature of the transition. It has been
showed by Markovic et al [Markovic et al., 1998] (�gure 1.27) and by Marrache-Kikuchi et al
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Figure 1.26: Sheet resistance as a function of the scaling parametertjd? � d?c j for tem-
peratures ranging from 0.14 to 0.5 K. Di�erent symbols correspond to di�erent temperatures
[Markovic et al., 1998].

[Marrache-Kikuchi, 2006][Marrache-Kikuchi et al., 2008] that, depending on the tuning parame-
ter of the transition, the mechanism underlying the transition may di�er, giving di�erent critical
exponents. Markovic indeed found that, depending on whether the tuning parameter was the
thickness of the �lm or the magnetic �eld, �z have di�erent values ranging from 1.4 (in the case
of the thickness-tuned transition) down to 0.7 (in the case of the magnetic �eld-tuned transition).

Figure 1.27: Phase diagram in thed? � B plane in the T=0 limit. The points correspond to
experimental data obtained from thickness (disorder)-driven transitions (triangles) and magnetic
�eld-driven transition (circles). The critical exponents product is equal to 0.7 for a magnetic
�eld-tuned transition and to 1.4 for a disorder-tuned transition [Markovic et al., 1998].

We discussed the scaling procedure in the framework of the Dirty Boson Model. However it
seems important to us to stress that the scaling procedure should work whatever the nature of the
transition (bosonic of fermionic). Indeed, this process is inherent to the existence of a Quantum
Phase Transition. The mechanisms at the origin of the destruction of superconductivity in the
bosonic and the fermionic scenarii should however di�er, giving rise to di�erent critical exponents
and di�erent scaling functions.

1.7.3.2.b Layered 2D superconductor

Dubi et al. [?] proposed a di�erent model based on the BKT transition to explain the
Superconductor-to-Insulator Transition observed at �nite temperature. They proposed to con-
sider the system as a multilayer of true 2D layers, presenting BKT transitions at Tc � TKBT =
�
2 K . Here K is the phase sti�ness. They computed that disorder modi�es the phase sti�ness of
the superconductor such that K (d? ) � 1

3 K 0d? =a where a is the distance between layers. The
system then exhibits a Superconductor-to-Insulator Transition of bosonic type. The particularity
of their approach is that they found that in this quasi-2D BKT transition, TBKT can be written
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as :

TBKT � Tc0(1 �
6Tc0

�K 0

a
d?

) (1.66)

whereTc0 is the mean �eld critical temperature and K 0 = ~2ns=m with ns the super
uid density
and m the electron mass.

This result is quite interesting since it gives a description of the evolution ofTc (or T BKT ),
in agreement with what Simonin [Simonin, 1986] has found, but by assuming this time a bosonic
model of the SIT22.

1.7.3.2.c Numerical studies of the SIT

The models described below have been developed in the group of Nandini Trivedi by using
numerical calculations in order to give an insight on the nature of the transition. Ghosal et al
proposed to solve this problem in the framework of the BCS theory by solving an attractive
Hubbard model described by the Hamiltonian :

H = �t
X

<ij>;�

(ci;� cy
j;� + cy

j;� ci;� ) +
X

i;�

(Vi � �)n i;� � jU j
X

i

ny
i; " ni; # (1.67)

with � = ("; #), i (j) the electronic sites, ci;� (cy
i;� ) the operator creation (annihilation) of an

electron of spin � on site i , ni;� = cy
i;� ci;� the operator number for a Cooper pair on sitei, and

Vi the disorder potential associated with sitei . The �rst term describes the kinetic energy, the
second one is the one-particle free energy in the presence of disorder and the last one describes
the pairing of Cooper pairs in the presence of the coupling potentialjU j.

By numerically solving this Hamiltonian with a self-consistent Bogoliubov-de Gennes ap-
proach, Ghosal et al. [Ghosal et al., 1998][Ghosal et al., 2001] showed that - at zero temperature
and in a 2D material - the spatial distribution of the superconducting pairing amplitude becomes
inhomogeneous in the presence of disorder. Interestingly, the superconducting gap remains a hard
gap when disorder is increased and, due to inhomogeneities, superconducting puddles appears.
Starting from this numerical result, the authors used a quantum XY model with which they fur-
ther showed that, due to phase 
uctuations, an insulating state can emerge even in the presence
of local superconductivity. The authors therefore predict localized Cooper pairs in the insulator
even if the disorder only a�ects the fermionic part of the Hamiltonian. The destruction of su-
perconductivity however has been treated by assuming the initial existence of Cooper pairs and
by using a quantum XY model.

Further investigations by Bouadim et al. and using the same Hamiltonian, but treating it
with Quantum Monte Carlo techniques, con�rmed this result [Bouadim et al., 2011]. However,
contrary to what had been done by Ghosal, quantum 
uctuations were already included in the
treatment of the model and the authors did not need the addition of the quantum XY model
to explain the transition. Figure 1.28 summarizes the main results of the paper. As phase

uctuations increase by adding disorder (represented here byV), the superconducting critical
temperature Tc vanishes and eventually goes to zero while the superconducting gap, depicted
by the gap in the one particle density-of-states! DOS , remains �nite and almost constant. To
explain the origin of the insulating phase, the authors calculated the pair susceptibility P(! ),
which amplitude corresponds to the energy necessary for inserting a pair at a energy! . They
showed that, in the insulator, this pair susceptibility presents a gap 2! pair representing the dis-
tance on which pair transport is coherent (this distance is proportional to ! �1

pair ). Starting from
the insulating side of the transition, ! �1

pair is �nite. As disorder increases, ! �1
pair increases as the

size of the superconducting islands. As disorder decreases further,! �1
pair eventually diverges at

the Superconductor-Insulator Transition : the superconducting ground state is coherent over
macroscopic distances.

These models gave rise to the concept of"emergent granularity" , even in the absence of
any structural inhomogeneities. Due to many-body interactions, the position and size of the
appearing superconducting puddles are uncorrelated with the initial disorder distribution in the

22. However, let us note that, in our system, the application of this theory has been found to give irrealistic
parameters by [Crauste, 2010].
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Figure 1.28: Evolution of the critical temperature Tc, the gap of the one particule density-of-
states ! DOS , and the two-particles energy scale! pair as a function of the disorder depicted by
the parameter V [Bouadim et al., 2011].

sample. Therefore, even in a homogeneously disordered superconductor, one could in principle
use the same arguments as for the destruction of global phase coherence in granular materials.

One of the predictions of these numerical models is a pseudogap superconducting phase which
should appear at temperatures such thatT > T c and in which ! DOS 6= 0, i.e. where Copper
pairing survives aboveTc.
Experimentally, local measurements of the tunnelling characteristics of thin �lms by Scanning
Tunnelling Microscopy, which gives the superconducting gap with a spatial resolution usually
less than 10 nm, tested the results of these numerical calculations. In several binary alloys,
the superconducting gap has been found to be highly inhomogeneous in space (see �gure 1.29).
These experimental facts have been reported in several materials (InOx [Sac�ep�e et al., 2011], TiN
[Sac�ep�e et al., 2008]) and agree qualitatively with the results obtained by Trivedi's group. The
pseudogap phase also has been observed in these materials. In this phase, it has been found
that disorder can alter the measured tunnelling characteristics of the superconducting phase
by suppressing the superconducting coherence peaks. This feature has been interpreted as the
signature for the loss of global phase coherence in the system.

1.7.3.2.d Some experiment supporting the Bosonic picture

Transport Measurements
In a purely fermionic scenario, as superconductivity is destroyed, the insulator should be fermionic
(with localized electrons). The �rst indication of a di�erent behaviour has been measured by D.
Shahar and Z. Ovadyahu in 2000�A-thick a-InO x �lms [Shahar and Ovadyahu, 1992]. To modify
the �lm disorder, the authors used a thermal annealing procedure which modi�es the oxygen con-
tent within the �lm. By measuring the resistivity of the �lms after several annealings, they found
a direct Superconductor-to-Insulator Transition with nearest-neighbour hopping properties in the
insulating state, close to the transition, i.e. with a resistivity given by �(T ) / exp(T0=T). By
extracting the critical temperature in the superconducting regime Tc and the activation energy
T0 in the insulating regime, they obtained the plot displayed �gure 1.30. Tc does not reach zero
when the insulating regime arises, which is an indication that superconductivity could survive
within the insulator.

Magneto-Transport Measurements Using magneto-resistance measurements, it has been
shown by Gantmakher [Gantmakher and Golubkov, 1996][Gantmakher et al., 2000] that a-InOx
exhibits a giant magnetoresistance in the insulating regime as shown �gure 1.31. This phe-
nomenon has been observed not only a-InOx , but also in polycrystalline disordered materials like
TiN [Baturina et al., 2007].
A mechanism which could explain this giant negative magnetoresistance has been exposed by
Dubi et al. [Dubi et al., 2006]. They assume that the system is made out of superconducting
islands of charging energyEc placed in a normal fermionic matrix which resistance is only weakly
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Figure 1.29: Evolution of the tunnelling gap for a low-disorder InOx sample (a) and a more
disordered sample (b) taken at di�erent temperatures. For the low-disordered �lm, maps of the
superconducting gap (c) and of the height of coherence peaks (d) taken in a 400 nm square with
a spatial resolution around 8nm. [Sac�ep�e et al., 2011][Sac�ep�e, 2011].

Figure 1.30: Dependence of the critical temperatureTc (squares) and of the activation energy
T0 (triangles) as a function of kF l . Source : [Shahar and Ovadyahu, 1992].

a�ected by magnetic �eld. At zero magnetic �eld, the island density is such that they percolate
through the sample and the system is superconducting. At small magnetic �eld, the density of
superconducting islands decreases and above the critical �eld for the SIT,Bc, the percolation
threshold is not attained and the system ground state becomes insulating. Then, an increase in
B localizes Cooper pairs in smaller and smaller islands, thus increasing the overall resistance. At
the �eld corresponding to the maximum of the magnetoresistanceBmax , the density of supercon-
ducting islands and their increased charging energy are such that transport through the normal
matrix is favored. In other words, Cooper pairs start to unbind and participate to the electric
conduction. The resistance then progressively decreases. For �elds such thatBc < B < B max ,
Cooper pairs exist within the insulating phase. For �elds such that B > B max , the insulator is
mostly fermionic.
These measurements have been taken as a proof in favor of a bosonic mechanism for the destruc-
tion of superconductivity.
An interesting experiment performed in the team of J. Valles on Bi �lms quench-condensed onto
a patterned substrate, thus forcing the formation of superconducting puddles coupled by weak
links, shows the same magnetoresistance behavior, enforcing the argument that this phenomenon
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is a signature of a bosonic insulator [Stewart et al., 2007].

Figure 1.31: Measurement of the sheet resistance of a 200�A InO x �lm at di�erent tempera-
tures and as a function of the applied magnetic �eld (a) perpendicular (b) parallel to the �lm
[Gantmakher et al., 2000].

1.7.3.3 A link between the bosonic and fermionic pictures ?

Until now, we have detailed di�erent models for the SIT dependent either on a bosonic or on
a fermionic mechanism for the destruction of superconductivity. The bosonic mechanism usually
describes systems which are inhomogeneous or present granularity (at least electronically), and
for which superconducting grains exist and are connected through weak links. Fermionic scenarii
have been developed in the speci�c case of a system homogeneous at all scales where supercon-
ductivity is uniformly destroyed. However, a description detailed by Skvortsov et al. shows that
the limit between these two descriptions is not as well de�ned as it seems to be.

Indeed, in 2005, Skvortsov discussed the fact that Finkel'stein's fermionic model may give
rise to a bosonic-like scenario near the transition [Skvortsov and Feigel'man, 2005]. The system
then is fermionic at low disorder and becomes bosonic as the system is driven close to the SIT
due to mesoscopic 
uctuations of the order parameter.

What is the origin of these 
uctuations ? We have already discussed the fact that, due to
electron scattering by impurities, weak localization can occur. Weak localization in a metal,
as discussed in by Altshuler [Altshuler, 1985], gives rise to macroscopic 
uctuations of the elec-
tronic wave function. Spivak pointed out that in the case of Cooper pairs, a similar mechanism
should occur. These 
uctuations should give rise to a spatial distribution of the superconducting
gap �(r ), engendering droplets of superconductor in the material, nucleating aboveTc. Said
di�erently, due to quantum phenomena, the system can be locally superconducting without the
macroscopic establishment of superconductivity anda Fermionic model like Finkelstein's will
give rise to a granular-like system , at least on the superconducting side of the transition,
when the system is su�ciently disordered.

In a clean metal, the amplitude of this phenomenon is small since there are few scatter-
ing centers. As disorder in increased, it becomes more and more relevant and gives rise to a
broadening of the superconducting transition. Skvortsov showed that the concentration of these
superconducting droplets varies as :

P � exp(�
1
� d

T � Tc

Tc
) (1.68)

When P increases, the droplets eventually percolate and the system become truly supercon-
ducting. In this equation � d correspond to the width of the superconducting transition due to
mesoscopic 
uctuations. It is given by :

� d =
0:4

g(g � gc)
(1.69)
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whereg is the dimensionless conductance andgc is the critical conductance at the transition. As
one approaches the transition� d becomes increasingly important . Therefore, there is a crossover
between a transition dominated by classical superconducting 
uctuations and one dominated by
quantum 
uctuations as pictured �gure 1.32.

One can wonder if, really close to the transition,� d truly diverges. Indeed, close to the SIT,
g � gc leads to � d ! 1 and therefore to a �nite resistance for T = 0, describing a quantum
metallic state driven by mesoscopic 
uctuations so that the SIT never e�ectively takes place.
However, the described mechanism has been developed in a perturbative way and should stand
only for � d < 1. Otherwise, 
uctuations become too strong and another theory should be
developed [Skvortsov, 2015].

Figure 1.32: Broadening of the superconducting transition due to thermal 
uctuations (grey) and
mesoscopic 
uctuations (orange). A crossover between a thermally activated broadening and a
broadening due to mesoscopic 
uctuations occurs when the dimensionless quantityg � gc � 1.
The red line corresponds to Finkelstein's evolution of the destruction of superconductivity by
Coulomb interactions as disorder is increased [Skvortsov, 2008].

1.7.3.4 Possible metallic states

As we have seen, the study of the Superconductor-to-Insulator Transition is mainly standing
on the paradigm that a 2D metal should not exist. However, some experimental evidences,
supported by recent theories, are pointing toward a more complex scenario.

1.7.3.4.a Experimental evidence

As early as 1986, early studies have, from the outset, shown unexpected "metallic" be-
haviours in 2D �lms, with states having a saturation of the resistivity at low temperature
[Jaeger et al., 1986]. These seemed to appear on both sides of the transition as can be ob-
serve �gure 1.33 and have been found in various ultra-thin granular �lms such Ga, In, Pb and
Al in the absence of any external magnetic �eld.

Due to the theoretical "ban" on 2D metals, these measurements have been for a long time
considered as artefacts and thus discarded. It seems that it is only since the measurement of
metallic states in 2D semiconductor heterostructures (see discussion in section 1.4.3) that the-
oretical and experimental e�orts to measure and test the properties of such metals have found
some support.

Under a magnetic �eld, the existence of such states has been found in MoGe by Mason
and Kapitulnik in 1999 (see �gure 1.34). At non-zero magnetic �eld, the authors indeed found
that the metallic ground state does not only exist as a single point in the phase diagram - as
expected from the Dirty Boson Model for instance - but corresponds to a completely distinct
phase [Mason and Kapitulnik, 1999, A. Kapitulnik and Chakravarty, 2001], calling for a theo-
retical model to explain this discrepancy to existing theories of the Superconductor-to-Insulator
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Figure 1.33: Evolution of the resistance of a series of Ga �lms of di�erent thicknesses ranging
from 12.75 to 26.67�A by increments of 0.05�A [Christiansen et al., 2002].

Transition.

Figure 1.34: a. Resistance versus temperature characteristics of a 30�A-thick Mo 0:43Ge0:57

�lm at di�erent magnetic �elds, with B = 0 � 2T. The inset represents Log(R) versus 1/T.
b. Proposition of a phase diagram for the �eld-tuned SIT at �nite disorder. � represents the
dissipation strength. From [Mason and Kapitulnik, 1999, A. Kapitulnik and Chakravarty, 2001].

One of the early pictures dealing with the existence of such metals, is to imagine that there
are superconducting puddles coupled with each other through metallic weak links, made out
of the normal state material itself. This hypothesis, represented �gure 1.35, has been �rst
used by Feigelman and Larkin [Feigel'man and Larkin, 1998] to explain the existence of a 2D
bosonic metal. It has been re-visited by Spivak [Spivak et al., 2001] who imagined a network of
superconducting islands of radiusR < � , � being the coherence length which, due to di�usion is
given by :

� (T = 0) = min[v F =� 0; (D=� 0)1=2] (1.70)

where � 0 is the zero-temperature value of the gap in the bulk superconductor. By considering
that the system is 2D (d? << � (T = 0)), the author demonstrated that there is a zero temper-
ature quantum Superconductor-to-Normal metal phase transition, the apparition of the metal
being driven by 
uctuations of the superconducting gap �. The origin of these 
uctuations could
be mesoscopic 
uctuations of the order parameter (as discussed in section 1.7.3.3).

This result has been reproduced experimentally by di�erent teams either by using a pat-
terned network of superconducting islands onto a metallic layer [Eley et al., 2012], or by using
graphene as a substrate for superconducting islands [Han et al., 2014]. In the second experiment
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Figure 1.35: Superconducting grains embedded into a normal metal. Source :
[Spivak et al., 2001].

(see �gure 1.36), the coupling between the islands is controlled by tuning the conductivity of
the substrate. For a conducting substrate, the system is superconducting. In the case of a less
conducting substrate, the system becomes metallic.

Figure 1.36: (On the left) Optical micrograph of the sample. The substrate in made of graphene
with tin islands patterned on top of it. (On the right) Sheet resistance of the system as a function
of the gate voltage. Source : [Han et al., 2014].

1.7.3.4.b Fermionic theories of 2D metals

As we have seen in section 1.4.3, 2D metallic states can arise from the competition between
disorder and Coulomb interactions and could well serve as a basis for explaining the dissipative
states observed in the vicinity of the SIT. These would then be fermionic.
In addition to those theoretical developments, let us mention that mesoscopic 
uctuations could
also engender a 2D metal. As we have seen section 1.7.3.3, mesoscopic 
uctuations could well
be important when superconductivity is destroyed. In this framework, Feigel'man and Skvortsov
have calculated the density-of-states, starting from the superconducting phase. They have found
that the BCS peak in the density-of-states is progressively smeared as the transition is ap-
proached, with possible appearance of subgap tail states [Feigel'man and Skvortsov, 2012] (�g-
ure 1.37). The energy width of these states, characterized by �tail , widens near the transition.
Mesoscopic 
uctuations could therefore induce a metallic state which would then be fermionic.

1.7.3.4.c Bosonic theories of 2D metals

Other theoretical models have predicted the existence of ahomogeneous Bose metal. This is
the case, for instance, of the model developed by Das and Doniach [Das and Doniach, 1999]. In
their 1999 paper, the two authors consider the Superconductor-to-Insulator Transition as bosonic.
From this starting point, they point out that the superconducting phase presents a phase ordering
whereas the insulating phase presents a charge ordering. These two order parameters have,a
priori, no reason to change simultaneously. The SIT could then be composed of two distinct
quantum phase transitions : the Superconductor-to-Metal Transition would correspond to the
loss of phase ordering and the Metal-to-Insulator Transition would correspond to the emergence
of charge ordering. In this scenario, the metallic phase would then be a homogeneous phase where
uncondensed vortices, which would also be unbound into vortex-antivortex pairs, would be free
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Figure 1.37: Schematic representation of the density-of-states in a disordered superconductor
[Feigel'man and Skvortsov, 2012].

to move and create dissipation, even at zero magnetic �eld, and hence form a metallic phase.
This ground state, which persists even atT=0, is then characterized by a zero-temperature sheet
resistanceR� varying as:

R� � RQ

�
Rn

Rc
� 1

� 2�

(1.71)

whereRn is the normal state resistance,RQ = h
4e2 the quantum of resistance for Cooper pairs,Rc

is the critical resistance at the Superconductor-to-Metal Transition, and � is the critical exponent
for the correlation length predicted to be of the order of 2/3. This model yields reasonable
agreement with some experimental data [Das and Doniach, 1999, Marrache-Kikuchi, 2006], as
shown �gure 1.38.

Figure 1.38: Zero-temperature resistance as a function of the normal state resistance in Ga thin
�lms [Jaeger et al., 1986, Das and Doniach, 1999].

Another model based on bosonic phases has been developed by Phillips and Dalidovich
[Phillips and Dalidovich, 2003, Dalidovich and Phillips, 2002]. They considered an array of su-
perconducting islands with �xed on-site energies but random Josephson coupling, both positive
and negative to take into account exchange e�ects arising from the hopping of a Cooper pair
through a localized impurity [Spivak and Kivelson, 1991]. They showed that the randomness in
the Josephson coupling combined with quantum 
uctuations gave rise to a phase glass, in which
the phase of the superconducting order parameter has a glassy behavior. The dissipation is then
self-generated by the glassy environment and the corresponding phase is metallic. The predicted
behavior for the thickness-tuned transition then is :

R� / Rc (d? � d?;c )2�z (1.72)

where Rc is the critical resistance at the Superconductor-to-Metal Transition, d?;c is the critical
thickness, � is the critical exponent for the correlation length and z the dynamical critical ex-
ponent. The theoretical predictions have been tested in the case of a-Nbx Si1�x �lms but fail to
explain the experimental results [Marrache-Kikuchi, 2006].
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1.8 Conclusion

In this chapter, we have introduced the disorder-induced Metal-to-Insulator (MIT) and Superconductor-
to-Insulator (SIT) Transitions. We have shown how these Quantum Phase Transitions could
emerge from the competition between disorder-induced localization, Coulomb interactions and
superconductivity. In 3D, we have seen that both transitions are possible, whereas 2D metal-
lic phases are prohibited by standard theories, so that the SIT is believed to be a direct transition.

However, the recent observations of theoretically unpredicted 2D metallic states challenge
this conventional picture of the SIT and have encouraged a more thorough investigation of the
phenomena at play, from both a theoretical and an experimental point of view.

In the following chapters, we will present how we have tried to contribute to this e�ort by
investigating precisely these new metallic states, their emergence and destruction, in a model
disordered system.
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Chapter 2

Low frequency transport
properties of Nb xSi1�x

2.1 Introduction

In this chapter, we will concentrate ourselves on the low frequency transport properties of
amorphous Nbx Si1�x �lms (a-Nb x Si1�x ). This alloy, studied in our group for several years, is a
model system to study the e�ects of disorder on thin �lms - and especially the Superconductor-
to-Insulator Transition - thanks to the di�erent experimentally accessible control parameters :
the thickness d? , the composition x, and the heat treatment temperature � which, as we will
see, allows to �nely tune the disorder without modifying the morphology of the �lm.

In section 2.2, we will detail the measurement apparatus and how our �lms are grown. We
will then, in section 2.3, sum up the results obtained in our group on a-Nbx Si1�x �lms. We will
especially detail how disorder can be modi�ed and the e�ects of the di�erent tuning parameters.
For �lms in the 2D limit, we will review results on the emergence two di�erent unconventional
metallic ground states (M1 and M2) which have been recently found in this system.

2.2 Sample fabrication and measurements

2.2.1 Sample fabrication

Di�erent techniques are available to grow samples. In the framework of this thesis, all samples
have been synthesized in the laboratory by conventional evaporation techniques. This section
will detail how they have been grown as well as their design.

2.2.1.1 Evaporators

2.2.1.1.a Principle of evaporation techniques

The basis of the deposition technique is that all materials can be evaporated if they are
heated up at high enough temperature. This process, coupled with high vacuum techniques,
permits to create a gas of atoms travelling without collision towards a substrate on which they
will condense. The key ingredient is to heat the material at the evaporation temperature while
preventing, via pumping and careful design and operation, any degassing which automatically
occurs as the deposition chamber is heated and might contaminate the sample during its growth.

Two di�erent deposition methods are used in the laboratory, depending on the material to
evaporate.
The �rst method is using Joule e�ect : a high intensity current 
ows through a resistor, or the
crucible itself, to heat up the material positioned inside. We will refer to this technique as Joule
e�ect evaporation.
Another method is to bombard the target with highly energetic electrons. These electrons, ex-
tracted from a tungsten wire by an intense electric �eld, are guided and collimated onto a small
spot of the material. The heating is obtained by the kinetic energy released by the electrons when
they arrive in contact with the material. We will refer to this technique as e-beam deposition .
This last technique has the advantage of heating the material locally which permits to reach a
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higher power and hence to evaporate the material while limiting its degassing. In addition, only
part of the surface of the pellet melts while the bulk remains solid. This reduces the contamina-
tion that might come from the crucible itself.

For our �lms, all materials are grown by e-beam deposition except for SiO, which is grown
by Joule e�ect evaporation.

2.2.1.1.b Co-deposition process for a-Nb x Si1�x

In order to �nely tune the composition x of Nbx Si1�x , we are using a co-deposition process.
It consists in the simultaneous evaporation of Niobium and Silicon onto the substrate as repre-
sented �gure 2.1.

Figure 2.1: Schematic representation of the co-deposition process.

Dedicated pairs of quartz - one pair for each source - allow the control of the proportion of
each compound evaporated. These pairs are separated by a blanker to avoid mixing the readouts
of evaporation rates from each source. Furthermore, the evaporation is never totally isotropic
and using two quartz for a single element permits to correct the anisotropic e�ect and to monitor
more precisely the deposition rate. The compositionx is determined by the relative evaporation
rate of the Nb and Si sources, whereas the sample thicknessd is given by the deposition time at
steady rate of deposition.

Note that it would have been more complicated to have reproducible results by evaporating
an ingot of Nbx Si1�x of a given composition because of distillation e�ect. In comparison, co-
deposition enables a high reproducibility and a greater control of the composition.

A question can arise on the rate at which impurities from the residual gas can contaminate

the sample. One can show that this rate, in molecules/s, is equal to� = � SP
q

1
2�mk B T where

� is the probability for an incoming molecule to stay attached to the sample,S is the surface
of the sample,P is the pressure inside the evaporator,m is the mass of the incoming molecule
and T is the sample temperature. Taking the maximum value �=1, a vacuum level of 10 �7

mbar and the characteristics of O2, this formula gives a rate of incoming impurities equivalent to
0.03 monolayer/s. This hypothetical value is highly overestimated since it supposes that all the
incoming impurities would stick on the sample. It has to be compared to the evaporation rate
which is of the order of 1.5 �A/s, corresponding to � 0.3 monolayer/s. It gives us a maximum
- and improbable - impurity content of 10% in thickness. Taking more reasonable values of the
sticking coe�cient of Oxygen of � Nb = 0:75 on Nb [Dawson and Tam, 1979] and� Si = 3:10�4

on Si [Kim et al., 1998], this value drops to� 1% in thickness for a Nb13:5 Si86:5 �lm by suppos-
ing that the residual gas is composed only of Oxygen. Since previous studies on a-NbSi �lms
have shown no correlation between the deposition pressure and the �lm electrical behaviour, we
believe that the impurities deposited within the �lm are scarce and anyhow do not have a major
e�ect on the transport properties which we are studying.

A drawback of the co-deposition process is linked toshadow e�ect : since the sources are
not at the same point in space, the deposition area de�ned by the shadow mask is not exactly the
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same for each source. This can engender edge e�ects : a superconducting path can be created
on the edge of the sample and bypass the measurement of the sample. A speci�c shape for the
sample has been developed in order to prevent these e�ects as we will see later.

Another drawback of this deposition method is the intrinsic gradient in composition that
exists along the axis of the sources. We have previously estimated this gradient to be of less
than 0.2% in composition [Marrache-Kikuchi, 2006]. It can be corrected by a rotation of the
substrate during the evaporation but its e�ect on transport properties is negligible, as we will
see. We will therefore consider the composition of Nbx Si1�x to be homogeneous along the sample.

2.2.1.2 Sample fabrication

The samples are made thanks to two di�erent evaporators. One is dedicated to the con-
tact pads and the other one to the co-deposition of Nbx Si1�x . Each evaporator contains a mask
changer in order to be able to deposit through various mechanical shadow mask patterns without
breaking the vaccum and contaminating the sample. All depositions are performed under ultra-
high vacuum (P � 10�8 mbar). During the evaporation process, the pressure in the deposition
chamber is usually of a few 10�7 mbar due to degassing. We have seen in the previous paragraph
that this pressure is compatible with an acceptable impurity concentration and therefore is not
prejudicial for the measured electrical properties.

The schematic representation of the overall sample is given �gure 2.2. The sawtooth shape
of the sample has been designed to prevent edge e�ects. Indeed, if one edge is superconducting
due to shadow e�ect, the superconducting path is necessarily interrupted by the neighbouring
insulating edge. Moreover the 6 electrodes enable us to measure di�erent �lm geometries to
cross-check their size dependence.

Figure 2.2: Sample design. The �lm is made of a-Nbx Si1�x and contacted with Nb electrodes.
The wiring to the measurement apparatus is made by bonding on the Au pads.

The �rst step is to deposit a 12 nm-thick amorphous layer of SiO onto a 20x30 mm2 sapphire
substrate by a Joule e�ect evaporation. This under-layer enables to smooth all substrate
defects.
We evaporate the electrodes in three steps :

1. deposition of Gold (� 200 nm thick) with a � 2 nm Chromium under-layer with a �rst
shadow mask to delimit the pads used for wire bonding . The under-layer is used to
increase the adherence of Gold onto the substrate. Gold is used to facilitate the wire
bonding. However, due to the easy migration of this element within Nbx Si1�x , it cannot
be put in direct contact with the �lm. We therefore have to use Nb electrodes to connect
the gold bonding pads to the �lm.

2. deposition of � 50 nm of Niobium with a second mask to delimit the electrodes which
will contact the sample.

3. deposition of � 2 nm of Iridium on top of the Niobium to protect the electrodes from
oxidation.

The corresponding masks are presented �gure 2.3 (a. and b. for step 2., c. for step 3).

The substrate is then removed from the �rst evaporator and inserted in the co-deposition
chamber of the evaporator dedicated to NbSi. We co-deposit theNb x Si1�x by e-beam depo-
sition at the rate of � 1.5 �A/s through the mask presented �gure 2.3 (c). The composition is
computer-monitored in order to ensure the composition reliability during the evaporation.
Finally the �lm is capped by � 12 nm of SiO deposited by Joule e�ect evaporation to protect
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Figure 2.3: Design of the evaporation masks for : (a) and (b) the Niobium contacts (c) the �lm
of interest. The gold pads are not represented. The assembled pattern is seen �gure 2.2. The
masks are designed for a 20x30 mm2 substrate onto which 4 di�erent samples are deposited.

the �lm against oxidation. Taking this care is especially important in the case of very thin �lms.
Indeed, the native oxide layer forming at the surface of a-Nbx Si1�x �lms can be estimated to be
of a few nm. Since this is the typical thickness of our samples, we must prevent this oxide layer
from forming.

2.2.1.3 Heat Treatment Procedure

One of the speci�cities of the present work is the use of aheat treatment to �nely tune
the disorder level within a single sample of Nbx Si1�x . The physical mechanisms behind this
phenomenon will be detailed in section 2.3.2.2. This procedure is the same for all our samples
dedicated to electronic transport measurements.

To do so, we use a dedicated oven which heats the sample under a steady N2 
ow. This is an
additional protection against any spurious oxidation during the process, although the sample is
already protected by a SiO overlayer.

This procedure is divided into di�erent steps as follows :

1. The temperature is progressively increased from room temperature to the heat treatment
temperature � during 1 hour.

2. The temperature is maintained at the heat treatment temperature � for 1 hour.

3. The temperature is set to decrease down to room temperature during 1 hour.

These durations have been chosen to be long enough in order to permit the stabilization of
the electronic modi�cation. Indeed, previous work [Lesueur et al., 1985] on a similar amorphous
system has shown that, during heat treatment, the change in the sample resistivity was negligible
after few minutes.

2.2.2 Cryogenics

In this section, we will detail the cryogenic apparatus used for performing our measurements.

2.2.2.1 Dilution refrigerator

The a-Nbx Si1�x samples measured during this thesis have all been measured in the cryostat
presented �gure 2.4. This dilution refrigerator allows to continuously measure samples down to
7 mK.

In order to reach these temperatures, one uses the dilution properties of a mixture of3He/ 4He
in a close cycle. The working principle of a dilution unit is schematically presented �gure 2.5. It
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Figure 2.4: Picture of the dilution refrigerator used in this work.

Figure 2.5: Schematic representation of the working principle of the dilution refrigerator.

can be described as follows : a �rst cooling of the mixture is achieved thanks to a 1 K pot and a
Joule-Thomson cooler. A dissociation of the mixture into a phase rich in4He and a phase rich
in 3He occurs in the mixing chamber at temperatures lower than 800 mK. As we pump on the
4He-rich phase through the still, 3He evaporates �rst since its vapour pressure is lower than the
one of 4He. The 4He-rich phase is therefore depleted of its3He. In order to stay at thermody-
namic equilibrium, 3He atoms migrate at the interface between the two phases, resulting in an
enthalpy absorption in the mixing chamber. During all these processes, the cooling power from
the evaporated3He is recycled using heat exchangers. The closed circuitry permits to re-use the
mixture inde�nitely.

An extension of the lower temperature part of the cryostat - i.e. the mixing chamber - has
been fabricated in order to lodge the sample holder. Both the sample holder and the mixing
chamber extensions are made out of oxygen-free copper and all the di�erent parts are tightly
screwed to one another in order to minimize the thermal gradient between the mixing chamber
and the sample.
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The sample is �xed onto the sample holder by mechanical springs and vacuum grease for good
thermal anchoring as seen �gure 2.6. The sample gold contact pads are then wire-bonded to the
sample holder contact pads.

Figure 2.6: Sample attached and electrically connected on the sample holder via gold bonding
wires.

2.2.2.2 Thermometry

This work on the measurement of electronic transport properties to study Quantum Phase
Transitions is highly dependent on the precision of the temperature readout. This is whyspecial
care has been taken regarding the precision of the thermometry .

To measure the temperature of the sample, two thermometers are located near the sample
holder :

{ a RuO 2 thermometer, measuring from 300 K down to 50 mK.
{ a Carbon Glass (CG) thermometer, measuring from 100 mK down to 7 mK.
Each of them is encapsulated into a copper shield and is carefully thermally anchored to the

mixing chamber.

These thermometers have repeatedly been calibrated by four di�erent means depending on
the temperature range :

{ down to 4 K, they have been compared to a calibrated commercial Cernox thermometer.
{ down to 20 mK, they have been compared to a known RuO2 thermometer.
{ for temperatures from 1.2 K and down to 15 mK, they have been calibrated via the SRD-

1000 calibration set1, which uses transition temperatures of known superconductors.
{ for temperatures lower than 20 mK, nuclear orientation measurements have been performed.

It consists in the measurement of the anisotropy of the
 radiation of a 60Co source. The
degree of anisotropy gives a primary measurement of the temperature.

All calibrations coincided within experimental uncertainty and no evolution in time has been
found in the CG and RuO2 thermometer characteristics.

2.2.3 Measurement Techniques

We describe here how the low-frequency electronic transport measurements have been carried
out. Depending on the impedance of the sample, di�erent measurement set-ups have been used.

2.2.3.1 Low-frequency AC technique

To measure samples withresistances lower than 1 M 
, we use a dedicated low noise
TRMC2 c
 resistor bridge . This device has been specially developed at the N�eel Institute
(Grenoble) for low temperature and low power measurements. It provides a square wave signal
at 25 Hz and is capable - in theory - of measuring resistances up to a few M
 at 10 mK. This is
possible thanks to a low-noise pre-ampli�er stage positioned directly at the head of the cryostat.
This stage, thanks to an electro-mechanical switch, permits to scan alternatively four di�erent
samples in a single cool-down while performing four-probes measurements.

For impedances lower than a few hundred Ohms , it is possible to verify the obtained
value of resistances withconventional lock-in techniques.

1. http://hdleiden.home.xs4all.nl/srd1000/ for more information on this calibration device.

49



50 2.2. SAMPLE FABRICATION AND MEASUREMENTS

However, both techniques, TRMC2 or lock-in, cannot access the higher impedance range. Indeed,
at very low temperature, the maximum electrical power that is acceptable for measuring the
sample without heating it up is of the order of Pelec = RI 2 = V 2

R � 10�17 W due to electron-
phonon coupling. The minimum current the TRMC2 is able to provide is 10 pA, thus giving
Pelec � RI 2 = 10 �17 W for 1 M
. Moreover the lock-in ampli�ers we are using have a noise
level of 10�14 A=

p
Hz at 100 Hz and 10�13 A=

p
Hz at 1 kHz 2. By taking the lowest value on a

10 M
 resistor (corresponding to the input impedance) and by using a bandwidth of 1 MHz, it
corresponds to an electrical power ofPelec � 10�15 W. For high impedance resistances another
measurement setup has therefore been used.

2.2.3.2 DC technique

For the more insulating samples, a setup using a battery as voltage source allows us to mea-
sure in the resistance range from 300 k
 to several G
, limited by the input-impedance of the
instruments. The use of a battery allows us to reduce the noise due to the electrical source. The
setup is presented �gure 2.7. The voltage across the sample is �rst roughly set by Rp and �nely
tuned with the ten turn potentiometer R pot . The voltage across the sample is �rst ampli�ed
with a low noise SR560 pre-ampli�er and then measured with a Keithley K2000 multimeter.
The current 
owing through the sample is measured with a Keithley K617 ammeter. Since
Rpot + Rp << R sample + R1, R1 being a resistor in series with the sample which can be used
to increase the impedance of the circuit if needed, thevoltage across the sample is almost
constant. This is convenient for the measurement of highly resistive samples at low tempera-
tures.

Rigorously, this setup is a two probes measurement so that the impedance of the lines and
polarisation resistance should be taken into account. However, the resistance of the cables, of
the order of few tens of k
, is negligible in this range of sample resistance.

Figure 2.7: Fixed DC voltage measurement technique.

2.2.3.3 Protection against parasitic power

Parasitic power at low temperature can distort the measurements. Indeed, any spurious
power source (IR radiation, electrical noise, mechanical vibrations, ..) can heat up the incoming
electrons which 
ow through the sample during the measurements. If the corresponding power
is large enough, it can induce an uncontrolled thermal decoupling between the electrons and the
sample lattice, thus a�ecting the measurement. This part explains the measures taken to avoid
such problems.

1. Thermal coupling
In order to avoid spurious heating, incoming electric wires are tightly thermally anchored
at 4 K, 100 mK and 10 mK. Thus, the electrons injected in the sample for measurement
are correctly thermalized.

2. Value for the sr830 lock-in ampli�er.
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2. Protection against IR radiation
The electric cable duct is a possible wave guides for photons. By breaking the continuity of
the insulator, thermal anchoring allows to break these wave guides which may contribute
to the introduction of IR photons at low temperature. In addition, the inside of the 1 K
shield is covered with anti-IR Nextel paint in order to absorb any remaining photon that
might enter this volume.

3. Filtering of the lines
The cabling of the cryostat, via the anchoring points, creates a natural RC �lter distributed
all along the cables. One can demonstrate that the capacitance of a coaxial cable isC =

56� d
Ln 10 (D=d) = 3326

p
� d

Z c
in pF/m with � d the relative permittivity of the dielectric (2.1 for

PTFE) and Zc the characteristic impedance of the cable (here 50 
). Therefore, the
capacitance is of the order of 200 pF for 2 meters of coaxial cables. Taking into account
the resistivity of the cable of the order of 100 
, one �nd a natural RC �lter with a cut-
o� frequency of 10 MHz. In addition to this natural �ltering, passive low-pass �lters are
introduced on all electric lines:
{ All lines dedicated to thermometry are �ltered with Pi-�lters.
{ All lines dedicated to the sample measurement are �ltered at room temperature. However

the kind of �ltering varies depending on the use of the AC or DC techniques mentioned
above. Indeed, for AC measurements, lines are �ltered by the 2nd order low-pass �lter
presented �gure 2.8. This �lter has a cut-o� frequency around 1 MHz, high enough to
let the square-wave signal provided by the TRMC2 unaltered. For DC measurements, a
1st order RC �lter with a cut-o� frequency of 1 Hz has been used. The use of DC allows
us to use a very low cut-o� frequency, providing a more e�cient �ltering.

Figure 2.8: Filter used for low-frequency AC measurements.

4. Vibrations
Vibrations can generate a parasitic power through tribo-electric e�ect or mechanical energy
dissipation. To limit these sources of noise, the cryostat is sustained by springs to suppress
vibrations. At the same time, a bellows hose links the cryostat to the pumps, so that the
vibrations of the pumps are cut-o�.

As we will see in section 3, we are therefore con�dent that our results cannot be explained
by experimental artefacts, and in particular by a spurious heating of the electrons.

2.2.4 Sample homogeneity and morphological structure

As seen in the theoretical introduction to this work, sample morphology is an important
characteristic which may determine the physical phenomena at play. a-Nbx Si1�x has previously
been morphologically characterized [Crauste, 2010] by Atomic Force Microscopy (AFM), Trans-
mission Electron Microscopy (TEM) and and Energy Filtered Transmission Electron Microscopy
(EFTEM) techniques. The �ndings of the study will be summarized in this section.

In this work, we have also performed systematic measurements of the composition and thick-
ness of the samples byRutherford Backscattering Spectrometry (RBS) , which we will
detail here.

2.2.4.1 Rutherford Backscattering Spectrometry

As previously mentioned, the composition and thickness of the �lms are controlled in situ
by sets of piezoelectric quartz. To verify ex situ these important sample parameters, we have
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performed Rutherford Backscattering Spectrometry (RBS) experiments at the CSNSM JANNuS-
Orsay facility.

2.2.4.1.a Principle

RBS consists in accelerating light ions - commonly He+ - by means of an accelerator and to
send them onto the sample. As the ions encounter the sample atoms, they will be retro-di�used
with an energy depending on the mass and atomic number of the encountered atom as well as on
the ions incident energy. The retro-di�used ions energy is then measured by means of a Silicon
PN junction. The obtained spectrum is an histogram of the number of out-coming ions with a
speci�c energy.

Several informations can be extracted from the obtained spectrum :
{ The peaks positions depend on both the depth and the mass of the atoms on which retro-

di�usion occurs. The closer to the surface and the heavier the atoms on which retro di�usion
occurs, the higher the energy of the out-coming ion.

{ The peak area is proportional to the di�usion cross-section (/ Z 4) and to the incident 
ux
of ions and therefore gives information on the number of encountered atoms. Knowing the
material density, it gives information on the deposited thickness.

{ Information about the thickness can also be obtained from the peaks extension in energy.
Indeed, the thicker the layer, the larger the peak width, as incident He ions will lose energy
by penetrating into the sample.

The setup is calibrated :

i. in energy using known references : in our case Au, Al and Co �lms.

ii. in number of atoms using a sample of known density : in our case a Bi implanted target.

The calibration then allows us to identify the sample atoms, by giving the channel/energy cor-
respondence, as well as the density of atoms encountered.

2.2.4.1.b Experiment

During each Nbx Si1�x deposition, a control sample is made for each �lm on a LiF or an a-C
substrate. The samples are later measured ex-situ by RBS. These samples are not protected by
a SiO over-layer since it would induce an excess of Silicon and complicate the interpretation of
the obtained spectra.
The choice of the substrate, with atomic masses far from the ones of interest, enables a good
resolution of the peaks of interest. This is why6C, 3Li and 9F are good candidates as substrates
to measure14Si and 41Nb by RBS.

A typical spectrum on a LiF substrate is presented �gure 2.9 for a relatively thick (650 �A)
a-Nb13:5 Si86:5 sample [Crauste, 2010]. As can be seen, the Nb and Si peaks are well de�ned. The
position of the peaks in energy allows us to identify the atoms present in the sample while the
comparison of the area of the di�erent peaks permits to determine the composition. The total
area of the peaks permits to determine the sample thickness.

However, for �lms of smaller thicknesses, the spectra are slightly more di�cult to interpret
as can be seen �gure 2.10 where the spectrum of a 45�A-thick Nb 13:5 Si86:5 sample is presented.
On this spectrum, we can see both the contribution of the substrate and of the Nbx Si1�x �lm.
We can note that the substrate contribution is large compared to that of the �lm. This is mainly
due to the small sample thickness. However, by performing an integration on the peaks, one can
�nd the sample relative composition in Nb and Si as well as its thickness.

We have also checked the composition of the sample by simulating the spectrum with the
software SIMNRA c
 . This has been performed as shown �gure 2.11. The simulation parameters
are in agreement with the values obtained through the integration method.

For all our �lms, the composition and thickness measured by RBS were, within experimental
uncertainty (�x � � 0:2% in composition and �d ? � � 10 �A in thickness), consistent with their
nominal values measured in situ by the quartz.
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Figure 2.9: Example of a RBS spectrum for a thick a-Nb13:5 Si86:5 sample. We can clearly see
the contribution the LiF substrate in addition to those of the Nb and Si [Crauste, 2010].

Figure 2.10: RBS spectrum of a 45�A-thick Nb 13:5 Si86:5 sample. Red dots and lines are experi-
mental data.

As mentioned before, one cannot rule out a contamination during the deposition process due
to degassing or residual gases present in the deposition chamber. In particular, the Oxygen
contamination is the most probable and the most problematic in our case since silicon oxides
and niobium oxides are generally insulating.
The amount of Oxygen present in our �lm cannot be exactly determined by RBS spectra obtained
from �lms deposited onto a LiF substrate, since its mass is very close to the mass of Fluor. In
samples deposited onto an a-C substrate, it is easier to distinguish an Oxygen peak as one can
see �gure 2.12. Due to the small sample thickness, it is di�cult to determine from the peak
width whether this Oxygen comes from the native oxide layer of both the a-C substrate and the
sample, or is distributed all along the �lm thickness. However, if the contamination in Oxygen
was uniform throughout the �lm thickness, the simulated spectrum would �t the experimental
data for an Oxygen content of 7.5% (in green �gure 2.12). This would, in return, result in a
discrepancy in the �lm thickness of 10% compared to the nominal value given by the quartz
during the deposition process. This is highly unlikely, especially since the simulation with a pure
Nbx Si1�x �lm of nominal thickness with a native oxide layer also well �ts the experimental RBS
spectrum. Moreover, no oxygen peak has been measured in the RBS spectra of bulk samples. We
are therefore con�dent in the fact that the observed Oxygen contamination most predominantly
occurs at the surface through a native layer for the RBS samples3.

3. These RBS samples have not been capped by a SiO layer. The �lms used for transport measurement are
all protected by an SiO overlayer and are therefore less likely to present an Oxygen contamination.
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Figure 2.11: (Red lines and dots) Close-up of the RBS spectrum on the Nb and Si peaks, for a 50
�A-thick Nb 13:5 Si86:5 sample (nominal values). The simulated spectrum (green line) corresponds
to a 44.6 �A-thick Nb 13:4 Si86:6 sample. The parameters of the simulated spectrum are in good
agreement (within � 0.1% for the composition x and � 5 �A for the thickness d? ) with the
nominal values.

Figure 2.12: Close-up of the RBS spectrum on the O, Si and Nb peaks for a 230�A-thick
Nb13:5 Si86:5 sample (nominal values). The simulation for a 254�A-thick Nb 10Si80:5 O7:5 sample is
represented by the green line. The same �t is obtained by simulating a 230�A-thick Nb 13:5 Si86:5

with a naturally oxidized overlayer.

2.2.4.2 Determination of the morphology

a-Nbx Si1�x properties have been sudied for a few years in the group. Morphological charac-
terisation have been carried out by AFM, TEM and EFTEM. In this section, we will describe
those as well as the e�ects of a heat treatment on the structural features of this material.

2.2.4.2.a Structural characterisation techniques

In order to check the continuity of the �lms and the morphological structure of disorder,
Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) measurements
have been performed on samples similar to the ones measured in this thesis [Crauste et al., 2013].
Electronic di�raction has been performed at the same time. The measurement of the di�raction
pattern is a valuable side-product.
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AFM is a technique of surface characterisation. It uses the interaction between the atoms of a
tip, scanning the sample, and the atoms of the sample surface. It measures the surface topology
of a sample on a typical size of several�m 2.

TEM is a microscopy technique where one measures the electrons passing through a thin
sample. To do so, electrons are accelerated by an intense electric �eld4. The transmission of
these incoming electrons through the sample depends on their interactions with the material.
Thus scanning the sample enables to draw a picture of these interactions. This technique is
sensitive both to the electronic structure of the analysed material and to its thickness.
By �ltering the energy on a single atomic emission ray, one can isolate the measurement of a
single element from the sample. We will then refer to Energy Filtered Transmission Electronic
Microscopy (EFTEM).

The use of all these techniques is complementary since it gives us access to di�erent informa-
tion :

{ AFM gives information on the continuity of the sample and surface roughness.
{ TEM permits to access the composition homogeneity of the �lm and to its morphological

structure.
{ Electronic di�raction gives information about the crystallographic properties of the sample.

2.2.4.2.b Observation of as-deposited a-Nb X Si1�x thin �lms

For AFM, the samples have been measured at the Centre Technique Universitaire IEF-
Minerve (Orsay) by Youri Dolgorouky [Crauste, 2010].
a-Nbx Si1�x �lms have been deposited onto a Si substrate without any SiO underlayer. This is
compensated by the presence of native oxidation of the substrate. The �lms have been grown
without a SiO protection layer to be able to access the surface morphology. A typical result,
corresponding to a 25�A-thick Nb 18Si82 sample, is given �gure 2.13.

These measurements showed that the �lms are continuous at least down to 25�A and have
a good thickness homogeneity since the roughness of the �lm is lower than 1�A on the probed
surface.

Figure 2.13: AFM measurement of the surface of a 25�A-thick Nb 18Si82 sample [Crauste, 2010].
The measured area is 0.5x1�m 2.

For TEM measurements, samples have been measured by a Tecnai G2-20 twin FEI oper-
ating at 200 keV at the CSNSM. The experiments have been carried out by Aur�elie Gentils
[Crauste, 2010].
Dedicated samples of 25 and 100�A of Nb18Si82 have been grown onto a 25 nm thick SiO2 mem-
brane, thin enough to provide a good transmission. These �lms have not been protected by a SiO
overlayer to facilitate both the measurement and analysis. Figure 2.14 shows the measurement
of the plain substrate (a), of the 25 �A-thick sample (b) and of the 100 �A-thick sample. The

4. Typically of a few hundreds keV.
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electronic di�raction pictures obtained, performed on the same samples, are given in the insets.

On the TEM pictures, we observe no morphological modi�cation as a function of the thick-
ness. In addition, electronic di�raction pictures show di�usive halos, characteristic of a lack of
atomic order. Our �lms can thus be considered to be amorphous.

Figure 2.14: TEM pictures of (a) a plain SiO2 substrate, (b) a 25 �A-thick a-Nb 18Si82 sam-
ple and (c) a 100 �A-thick a-Nb 18Si82 �lm with their electronic di�raction patterns (insets).
[Crauste et al., 2013].

The absence of clustering can be seen on the EFTEM picture presented �gure 2.15 for a 25
�A-thick Nb 18Si82 sample, on which one can observe the spatial distribution of Nb (�gure b) and
Si (�gure c). Our �lms can therefore be considered to have a homogeneous distribution of Nb
and Si throughout the sample.

In conclusion, our Nb x Si1�x samples are continuous down to the lowest thickness
(25 �A), amorphous and homogeneous both in composition and thickness .

Figure 2.15: (a) TEM pictures of 25 �A-thick a-Nb 18Si82 �lm, (b) picture of the Nb atoms
repartition along the sample, (c) picture of the Si atoms repartition along the sample.
[Crauste et al., 2013].

2.2.4.2.c E�ect of heat treatment on the sample morphology

As we will see in section 2.3.2.2, heat treatments have an e�ect on the e�ective disorder of
the sample. To ensure that the changes in the electronic transport measurements, which will
be detailed in the following sections, were not associated to any morphological change and truly
linked to an intrinsic disorder modi�cation, TEM and electronic di�raction measurements have
also been performed after di�erent heat treatments.
To do so, a sample of 25�A-thick Nb 18Si82 with a 100 �A-thick SiO top layer has been grown. This
top layer has been added, compared to previous TEM measurements, so that the TEM sample
and those for transport measurements have the closest possible structure.

Heat treatments up to 700�C have been performed in the transmission microscope. On �gure
2.16 are presented the observed TEM and electronic di�raction di�raction pictures for a selection
of heat treatment temperatures.
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Figure 2.16: TEM and electronic di�raction pictures obtained without heat treatment (�gures
(a) and (b)) and after a heat treatment at 200�C (�gures (c) and (d)), at 500�C (�gures (e) and
(f)), and at 700�C (�gures (g) and (h)) [Crauste et al., 2013].

For heat treatment temperatures lower than 200�C (�gures (a) to (d)), TEM pictures are sim-
ilar to �gure 2.14. There is no obvious clustering of size larger than 2 nm in the TEM pictures5

and the electronic di�raction images present di�usive halos, characteristic of amorphousness. As
the temperature is increased further (�gures (e) to (f)), we eventually observe a clustering of
the electronic density on TEM measurements. At the same time, well de�ned circles appear in
di�raction measurements 6. This is even more obvious as we reach the highest achievable heat
treatment temperature 7 (�gures (g) and (h)) where crystalline clusters of few nm are clearly
observable in the TEM picture.

This is a �rst element showing that, for moderate heating of the sample, we do not
change the �lm morphology . From 500�C, we do observe a change in the morphological prop-
erties of the sample which may, in turn, a�ect the electric properties of the samples. However,
all the samples studied in this thesis have sustained a heat treatment of� � 250�C. Clustering
as a result of heat treatment can therefore be excluded in the case of our transport samples.

2.3 Characteristics of a-NbSi

As we have seen in chapter 1, a Quantum Phase Transition (QPT), such as the SIT or MIT, is a
transition occurring at zero temperature and tuned by an external parameter. In a-Nbx Si1�x , pre-
vious studies [Marnieros, 1998][Marrache-Kikuchi, 2006][Crauste, 2010][Cou•edo, 2014] have shown
that QPTs can be achieved by tuning the system disorder through the variation of di�erent ex-
perimental knobs. Indeed, the sample compositionx, the thickness d? or the heat treatment

5. This limit is given by the microscope resolution.
6. These have been attributed to nanometric Nb 3Si crystallites forming for � � 500�C.
7. For this experimental apparatus : 700�C.
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temperature � changes the electrical properties of the �lms as well as their ground state.

In this section, we will �rst review the e�ects of disorder on three-dimensional (3D) �lms,
before examining how a variation in the sample thickness, i.e. a change in the e�ective dimen-
sionality of the �lms, a�ects their electronic properties.

But let us �rst de�ne the "disorder" in our �lms.

2.3.1 Estimation of the Disorder

In the previous chapter, we have seen thatkF l has commonly been taken as a measure of
disorder (with kF the Fermi wave vector and l the mean free path) sincekF l > 1 characterizes
a conducting state, whereaskF l < 1 signs an insulating state.

As seen in section 1.2.3, the relation between the Io�e-Regel parameterkF l and experimen-
tally measurable quantities, such as the conductivity � 8 or the sheet resistanceR� = 1

�d ?
,

depends on the dimensionality of the sample.

In this work, our �lms are generally either in the 2D or in the quasi-2D limit where R � is
directly proportional to 1

kF l (see section 1.2.3). In order to compare our samples with one an-
other, we will therefore use thesheet resistance R � as an indication of the disorder level
in our samples . However, an absolute measurementof kF l by transport experiments is chal-
lenging since the above-mentioned expressions of the Io�e-Regel parameter have been developed
in the framework of a free-electron model, i.e. in the absence of any localization or interaction.
The discussion of the meaning of the absolute value of R� with respect to disorder at a given
temperature is beyond the scope of this thesis, but it is important to emphasize that its evolution
is monotonic with disorder.

Usually, disorder is estimated by taking the value of R� either at 4 K or at room temper-
ature. At room temperature, the measured resistance is supposedly closer to Drude's value for
disordered materials, whereas, at low temperatures, other phenomena - such as localization for
instance - have to be taken into account. In our case, for su�ciently conducting samples, includ-
ing samples that have an insulating ground state but are close to the insulating threshold, taking
R� (4K) or R � (300K) has an in
uence on the extracted value ofkF l but has scarcely any e�ect
on the observed trends, as the evolution of R� is monotonic with disorder. In other words, not
subtracting localization e�ects by evaluating kF l through R � (4K) does not modify the properties
described in this manuscript. For samples far in the insulating region, the evaluation ofkF l is
problematic as deviations from Drude's model are then important, even at 300 K. Therefore,
estimating kF l by taking R � (4K) or R � (300K) are almost equally questionable choices. We
therefore arbitrarily chose to take R � (4K) to estimate the disorder level in all our samples.

In previous studies carried out in the group,kF l has been estimated by R� taken either at 4
K [Crauste, 2010] or 500 mK[Cou•edo, 2014]. We saw section 2.2.1.2 that during the fabrication
of our samples, the �lms are connected to superconducting electrodes for electronic transport
measurements. Their superconductivity, at Tc; electrodes can induce a drop of the measured �lm
resistance of� 100 
 which should be corrected as it does not re
ect the �lm properties and can
induces an inaccuracy in the evaluation of disorder9. In the present studies, whenever relevant,
all samples from previous studies have been reanalysed to take the modi�cation of the �lm
resistance belowTc; electrodes into account.

2.3.2 External disorder-tuning parameters for 3D Nb xSi1�x

Let us now examine how disorder a�ects the ground states (de�ned atT = 0) in the case of
3D a-Nbx Si1�x �lms.

8. � is here de�ned as the 3D conductivity.
9. These resistance drops have not been seen in the samples grown for this thesis. In previous studies, to cope

with this experimental issue, the sheet resistance has been corrected by applying the adequate correction in geom-
etry for Tc; electrodes in [Crauste, 2010] or by taking the sheet resistance at T � Tc; electrodes in [Cou •edo, 2014].
These corrections are, rigorously, necessary in order to compare di�erent �lms with one another. However, let
us note that taking into account these corrections or not modi�es the evaluation of kF l by � 10% and does not
change the observed trends.
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2.3.2.1 E�ects of a modi�cation of the composition

For thick samples, a modi�cation of the relative composition x of a-Nbx Si1�x permits to cross
several transitions, from superconductor to insulator as illustrated �gure 2.17. When x dimin-
ishes, the 4 K conductivity � 4K decreases and the critical temperatureTc, when it is de�ned,
simultaneously vanishes. This is in agreement with expectations for an increasing disorder as
seen in section 1.6.2.

Figure 2.17: Evolution of the resistivity of bulk a-Nb x Si1�x �lms for samples of di�erent com-
positions x [Marnieros, 1998].

The evolution of � 4K and Tc with Niobium content is linear and given �gure 2.18. The
compositions at which each of these characteristics go to zero de�ne changes in the system
ground state as follows :

{ The system is superconducting forx & 12%.
{ The system is metallic for 12%& x & 9%.
{ The system is insulating for x . 9%.

Figure 2.18: Evolution of � 4K and Tc for Nbx Si1�x samples of thicknesses larger than 150�A from
[Marrache-Kikuchi, 2006][Crauste, 2010][Cou•edo, 2014] and [Diener, 2013]. The intersections of
Tc(x) and � 4K (x) curves with the x-axis de�ne the Superconductor-to-Metal-Transition (SMT)
and the Metal-to-Insulator-Transition (MIT) respectively.
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As we have seen in the previous section, a decrease in the 4 K conductance,� 4K , corresponds
to an increase in the sample disorder :kF l , extracted from � 4K , diminishes. In amorphous
systems, l is of the order of the inter-atomic distance a. The large variations in kF l that have
been measured can then only be explained by a change inkF since� � (kF l )2 � (kF a)2.
Therefore, our interpretation is that the main e�ect of a change in x is to modify the density-
of-states (and therefore kF ) in the material.
However, varying the sample composition is not the only way to tune the transitions in bulk
samples.

2.3.2.2 Heat treatment : �ne-tuning of the disorder

By using the heat treatment procedure described section 2.2.1.3, it is possible to irreversibly
change the electrical properties of our �lms, as shown �gure 2.19. Indeed, a heat treatment
at a �xed temperature � increases the sheet resistance R� and, when relevant, decreases the
superconducting critical temperature of the �lm Tc. Therefore, a heat treatment procedure is
equivalent to an increase in disorder.

Figure 2.19: Evolution of the low temperature sheet resistance for a 125�A-thick a-Nb 18Si82 �lm
submitted to di�erent heat treatment temperatures.

The evolutions of the observable parametersTc and � 4K , for di�erent �lms as a function of the
heat treatment temperature, are given �gures 2.20 and 2.21.� 4K and Tc are decreasing linearly
with � . Eventually, as observed in �gure 2.21, a change of behaviour occurs at a certain heat
treatment temperature � lim for �lms of thicknesses lower than 50 �A : after an initial decrease
of � 4K with � , corresponding to an increase in the disorder level,� 4K (� > � lim ) increases with
� . We interpret this as the early signs of a change in morphology, probably due to some initial
stages of chemical segregation.� lim depends on the thickness of the �lm : for thinner �lms, the
change in behaviour is observed at lower� lim .
One can remark that � lim is lower than the crystallization temperature found by TEM and X-
ray measurements (section 2.2.4.2.b). This may be due to the limitation in spatial resolution (a
few nm) of the morphological characterization experiments which have been performed. These
results therefore show that transport measurements are extremely sensitive to any morphological
change. For the purpose of our work, we will only analyse samples for� < � lim to avoid spurious
e�ects on electronic transport measurements due to a modi�cation in the system's morphology.

This modi�cation of the disorder as a function of the sustained heat treatment temperature
is counter-intuitive since, for most materials, annealing decreases disorder.
We can therefore wonder what are the microscopic phenomena at play here. As one can ob-
serve �gure 2.22, Hall measurements performed on quench-condensed a-Nb26:3 Si73:7 �lms show
a constant density-of-states10 as a function of the heat treatment [Nava et al., 1986]. Therefore,
since � / (kF l )2, the mean free pathl is the only parameter which should be modi�ed by heat
treatments. This idea is supported by a paper in which the authors [B�eal and Friedel, 1964]
demonstrated that, for binary alloys, a heat treatment will induce subatomic changes in the

10. Represented here by the Hall resistance.
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Figure 2.20: Evolution of the superconducting critical temperature with the heat treatment
temperature � for Nb18Si82 thin �lms of di�erent thicknesses [Crauste, 2010] .

Figure 2.21: Evolution of � 4K as a function of the annealing temperature for several �lms of
Nb18Si82 [Crauste, 2010].

position of the atoms, thanks to the relaxation of structural stress. They showed that these re-
laxations lead to a modi�cation of the interference patterns of the electrons which always induces
a decrease in the local conductance.

Figure 2.22: Variation of the Hall resistance as a function of the heat treatment temperature for
a-Nbx Si1�x alloys (here x = 26:3 %). The evolution of the Hall resistance, if any, is lower than
the error bars [Nava et al., 1986].

Heat treatment is a convenient tool to study the e�ects of disorder in amorphous thin �lms
since it allows to induce slight changes in disorder within a single sample. This can be used for a
variety of materials such as NbSi, AlGe [Lesueur et al., 1985] or InOx [Ovadyahu and Imry, 1983]
for instance. One should however be careful about the interpretation of such e�ects since mecha-
nisms at the origin of the disorder modi�cation may di�er from system to system. Indeed, in the
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case of InOx , the mechanism at the origin the modi�cation of disorder is di�erent from the one en-
countered in NbSi or AlGe. In this particular case, heat treatment induces a modi�cation of both
the composition and the thickness of the sample [Ovadyahu and Imry, 1983][Gantmakher, 1998].

In the present work, we have used � to �ne-tune the disorder level in our samples. In
particular, for �lms close to a QPT, this parameter allowed us to cross the transition very small
steps by very small steps in asingle sample.

2.3.3 Approaching the 2 dimensional limit

We saw that one can modify disorder in our system by tuning either the compositionx or by
submitting the sample to a heat treatment procedure at the temperature� . Another way to do so
is to reduce the dimensionality of the sample by tuning its thicknessd? . In this section, we will
detail the e�ects of a thickness modi�cation. For this purpose, we will de�ne the dimensionality
of the samples by comparing their thickness with di�erent relevant lengths. We will then detail
the e�ect of a thickness modi�cation on the sample resistivity and compare it with the in
uence
of the tuning parameters that we have seen before. Finally, I will present the phase diagram for
Nbx Si1�x obtained in previous studies, and which will be the starting point of this thesis.

2.3.3.1 Characteristic length-scales and dimensions

As seen section 1.7, the e�ects of dimensionality reduction are observable when the relevant
sample dimension is smaller than the characteristic length scale of the considered phenomenon.
The di�erent relevant length scales then de�ne criteria for the cross-over between a 2D and 3D
behaviour.

1. Coulomb interactions

As mentioned section 1.4.2, the e�ects of electron-electron interactions can be impor-
tant in thin �lms since their screening is lowered when the transversal dimension is re-
duced. The crossover in dimensionality is then governed by the thermal lengthL T =q

~D
kB T [Imry and Ovadyahu, 1982]. By taking D = 0:6 cm2/s [Marrache-Kikuchi et al., 2008]

and T = 10 mK, we �nd that L T � 210 nm. All the considered samples in this study will
therefore be considered2D regarding Coulomb interactions at the lowest tempera-
tures.

2. For a metal

As we have seen in section 1.3.2.3, the sample dimensionality for metals - when dealing
with localization - is given by the ratio L T h =d? , where d? is the thickness of the sample
and L T h is the Thouless length. A dimensional cross-over from 3D to 2D happens when
the ratio is � 1, corresponding to the value for which the electrons sense the sample edges.
We can estimate the Thouless length :
{ By using L T h =

p
ll � where l � is the coherence length. For our �lms, by taking the

value of l � for crystalline Si at low temperature (� 5.10�7 m) [Ferry et al., 2009] - as the
�lms are mainly made out of Si - and a mean free path of the order of the inter-atomic
distance (� 5 �A), one �nds L T h = 50 nm, which corresponds to a very crude estimation
as the mean free path has been taken to be minimum and the value of the coherence
length corresponds to non-disordered Si.

{ By studying the magnetoresistance of a 1000�A-thick a-Nb 12Si88 �lm, Juillard et al.
showed that L T h � L in = 16 nm at 4 K [Juillard, 1996].

{ This value can also be experimentally obtained thanks to the cross-over between 3D and
2D localization laws in conduction. For our samples, we will derive a direct measurement
of L T h by this mean in section 3.4.

We would like to stress that the obtained values ofL T h are all larger or of the order of the
thickness of the samples grown for the upcoming study. We therefore considered that our
samples are2D from the point of view of the Thouless length.

3. For an insulator
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For Anderson insulators, dimensionality is determined by comparingd? to the extent of
the wavefunction in space, which is given by the localization length� loc . � loc , in turns,
depends on the dominant conduction mechanism.

Mott insulator
In the case of a Mott insulator, in 2D, � 2

loc = � Mott
2

N (E F )d ? kB TMott
. By taking N (E F ) � 1:1041

states/J/cm 3 [Crauste, 2010], a sample of thicknessd? = 10 nm and a characteristic tem-
perature of the order of 1 K, we found in 2D (� Mott

2 = 13:8) that � loc � 30 nm, well above
the size of our insulating samples. Moreover,� loc increases asd? decreases, so that all sam-
ples exhibiting this regime at low temperature can be considered to be 2D, as con�rmed
by the measured conduction lawR� / e( T 0

T )1=3
, speci�c to two-dimensionality.

Efros-Shklovskii insulator
Regarding ES VRH, in the presence of 2D interactions,� loc = � ES

2 e2

kB TES � with � ES
2 = 6:5 and

� = 4��� 0. Thus, taking a characteristic temperature of 1 K and � � 10 (which is the order
of magnitude of � in Si), � loc � 1:10�5 m, way larger than our sample thicknesses.

All our insulating �lms can therefore be considered2D from the point of view of
VRH at the lowest temperatures.

4. For a superconductor
The criterion for bi-dimensionality of superconducting �lms is the ratio between supercon-
ducting the coherence length� and d? ; when d? � � the �lm is considered to be 2D. As

we have seen section 1.6.1.2,� = 0:85
q

~v F l
� 0

in the dirty limit. For a critical temperature

Tc = 200 mK, taking vF = 4 :105 m/s [Marrache-Kikuchi et al., 2008] and l = 5 �A of the
order of the inter-atomic distance, � = 56 nm. This length is underestimated for most �lms
presented in this manuscript as their mean �eld Tc is usually lower.
All our superconducting �lms can therefore be considered2D with respect to the
superconducting coherence length .

Regarding all the estimated lengths, we will therefore consider ourselves as being 2D whatever
the considered ground state.

2.3.3.2 E�ects of the modi�cation of the thickness

For samples in the 3D limit, we saw that a modi�cation of the proportion of Nb inside the �lm
(x), or a heat treatment procedure at the temperature � , can change the electrical properties of
an a-Nbx Si1�x �lm due to the modi�cation of either the Fermi wave length kF , or the mean free
path l . In both cases, within this limit, the resistivity as a function of the thickness stays constant.

However, as the thickness of the sample is reduced below 100�A typically, the electrical prop-
erties dramatically change. To illustrate this point, we have plotted the evolution of the 4 K
resistivity of a-Nb 18Si82 �gure 2.23. The resistivity is almost constant for thicknesses larger than
100 �A and begins to increase steeply for lower values.

The thickness evolution has a direct in
uence on the ground state of the �lms as one can
observe on �gure 2.25 for a-Nb18Si82 �lms. Indeed, for thick �lms, the ground state is super-
conducting with a critical temperature Tc around 1 K. As the thickness is reduced, the sheet
resistance R� increases andTc, plotted �gure 2.24, vanishes. By reducing the sample thickness
further, the �lm eventually becomes insulating.
The observed linear evolution ofTc as a function of 1/d? , discussed in section 1.7.1, allows us
to de�ne a critical thickness dc, characteristic of a phase transition, at which superconductivity
disappears for a given alloy compositionx.

Let us emphasize that, even for the thinnest �lms presented here, we do not observe any re-
entrance behaviour, which would be characteristic of granular �lms as we have seen section 1.6.3.
This is a further indication, in addition to the ones detailed section 2.2.4.2.b, of the homogeneity
of our �lms.
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64 2.3. CHARACTERISTICS OF A-NBSI

Figure 2.23: Evolution of the 4 K resistivity of a-Nb 18Si82 �lms as a function of their thickness.

Figure 2.24: Evolution of the superconducting critical temperature of a-Nb18Si82 �lms as a
function of the �lm thickness d? . Adapted from [Crauste, 2010].

Figure 2.25: Superconductor-to-Insulator Transition in Nb18Si82 �lms obtained by a modi�cation
of the thickness [Crauste, 2010].

A change in sample thickness can therefore induce a phase transition towards an insulating
state, very much like what has been described in the previous section for a modi�cation ofx
or � . Let us now compare the e�ects of these three di�erent disorder-tuning parameters on the
electrical properties of a-Nbx Si1�x thin �lms.

2.3.3.3 Comparison with other tuning parameters

In this section, we present the comparison between the e�ects of the di�erent tuning param-
eters : x, � and d? . We will �rst compare the e�ects of the Nb composition x and the heat
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treatment temperature � . We will then include the comparison with the e�ects of the thickness
modi�cation d? . These results are summarised in [Crauste et al., 2013].

To compare the e�ects of disorder tuned by a modi�cation of x and � , let us start from
a single superconducting �lm and see how a change in Niobium composition or a change in�
a�ects its properties. On �gure 2.26, we can see that, starting from a 125�A-thick Nb 18Si82 �lm
thermally treated at 70�C, a change of 1 % in composition or a heat treatment at 200�C increases
the disorder in the �lm. Both parameters modify the �lm properties in the same manner : e�ects
on the normal sheet resistance and the superconducting critical temperatureTc are similar.

Another way to see this is to plot the evolution of the Tc as a function of the sheet resis-
tance taken at 4 K (�gure 2.28 (a)). For di�erent compositions and annealing temperatures, the
evolution of the superconducting critical temperature with R � is continuous. In other words,Tc

is completely determined by the disorder level, measured by R� , whatever the disorder-tuning
parameter, x or � . Furthermore, it has been demonstrated [Crauste et al., 2013] that this result
is in qualitative agreement with Finkelstein's theory for the evolution of the critical temperature
with disorder.

We saw that the e�ects of a modi�cation of x and � a�ect the disorder in a similar manner in
our �lms. But what about the e�ects of d? on the disorder ?As seen �gure 2.27, starting from
the same Nb18Si82 125 �A-thick �lm which has been thermally treated at � = 70�C, we can reach
the sameTc reduction either through a change inx or d? , but the corresponding determination
of the disorder level, obtained fromR� , is di�erent. In �gure 2.28 (b), this discordance is clearly
visible since there is no visible continuity of the critical temperature as a function of the disorder.
In other words, Tc is no longer unequivocally determined byR� .

This discrepancy is not due to the choice ofR� as the relevant disorder parameter11. Ex-
tending the analysis to the quasi-2D or 3D limit yields the same result.

Figure 2.26: Comparison of the e�ects of composition and heat treatment on 125�A-thick
Nbx Si1�x �lm. From [Crauste et al., 2013].

Figure 2.27: Comparison of the e�ects of thickness and composition on 125�A and 75 �A-thick
Nbx Si1�x �lms. From [Crauste et al., 2013].

Thus, a modi�cation of x or � has the same e�ects on the disorder in our �lms . A
contrario, d? changes Tc and R� - hence the disorder - in a non-identical manner . We do
not have a clear explanation regarding the nature of this role but we believe that this dimensional
e�ect should be taken into account for the study of the transition, at least for superconducting
�lms.

11. Which implies that the �lms are in the 2D limit : d < � for superconductivity.

65



66 2.3. CHARACTERISTICS OF A-NBSI

Figure 2.28: Evolution of the critical temperature Tc as a function of disorder, evaluated by
the sheet resistanceR� for (a) �lms of Nb x Si1�x of 50 nm with di�erent compositions and
heat treatments (b) �lms of Nb 18Si82 of di�erent thicknesses and heat treatments. From
[Crauste et al., 2013].

2.3.3.4 Di�erent ground states

As seen in section 1.7, for the thickness-tuned transition, one can de�ne a critical thickness
dc below which the �lms become insulating. For binary alloys and since the �lms are 2D from
the point of view of superconductivity, this critical thickness depends on the composition of the
sample and delimits an apparent Superconductor-to-Insulator-Transition. By plotting the de-
pendence of this critical thickness as a function of the compositionx, one can draw the phase
diagram presented �gure 2.29, and obtained by O. Crauste in his PhD thesis [Crauste, 2010].

Figure 2.29: Phase diagram de�ning the thickness-induced apparent SIT observed for di�erent
compositionsx of Nbx Si1�x . The dashed line is a guide to the eye. The straight lines correspond
to the observed 3D phase transitions [Crauste et al., 2014].

One can then wonder what really happens in the vicinity of this transition and if it is possible
to re�ne this diagram. To do so, subsequent work has focused on the systematic study of a-
Nb13:5 Si86:5 �lms of di�erent thicknesses and heat treatment temperatures � , close todc in order
to �nely study the system behaviour close to the observed disorder-induced transition.
By doing so, two additional regimes have been identi�ed in addition to the superconducting and
insulating ones, as one can see �gure 2.30 [Cou•edo, 2014]. These two new regimes are separated
by a dashed line for clarity.
One can therefore categorize the di�erent regimes as follows :
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{ a superconducting phase , with a complete superconducting transition. At the lowest
measured temperature,R� = 0 for these samples.

{ a �rst metallic-like phase, to which we will refer as M1 , for which a sharp decrease in
the resistivity is observable, but for which the resistance of the �lm saturates at a �nite
value at the lowest temperatures.

{ a second metallic-like phase , to which we will refer as M2 . For this phase, the Tem-
perature Coe�cient of Resistance (TCR) dR

dT is 6 0 at all temperatures, but the resistivity
saturates at a �nite value at the lowest temperatures.

{ an insulating phase , with in�nite resistance at zero temperature.

Thus one can sum up the di�erent phases appearing at low temperature in the table below,
taking into account the lowest temperature behaviour of the di�erent phases :

zero temperature resistance superconducting transition TCR sign
Superconductor 0 yes +

M1 �nite value partial transition +
M2 �nite value no -

Insulator 1 no -

Figure 2.30: Sheet resistanceR� as a function of the temperature for a 23 nm-thick a-Nb13:5 Si86:5

�lm where the disorder is varied via di�erent heat treatment temperatures. The dashed line
corresponds to the separation between the M1 and M2 regimes.

For all measured samples, we can therefore use the above mentioned criteria to de�ne the
cross-over between the di�erent regimes. For convenience, we will de�ne here the characteristic
temperature Tc0 as the temperature for which the sign of the second derivative of the resistance
as a function of the temperature, d2 R

dT 2 , changes at low temperature. For a superconducting �lm,
this is a good estimation of the mean �eld superconducting critical temperatureTc. For �lms in
the M1 regime, Tc0 corresponds to the temperature at which the resistance abruptly drops.Tc0

therefore allows us to de�ne a characteristic energy for both superconducting �lms and �lms in
the M1 regime.

For a single �lm measured for di�erent heat treatment temperatures � , Tc0 and the resid-
ual sheet resistanceRmin , obtained at the lowest measured temperature, present two di�erent
changes in regimes as disorder (measured via� 4K = 1=R � (4K ) 12) is increased. These changes
are noti�ed �gure 2.31 by blue lines. The �rst one, as � 4K is lowered, corresponds to the ap-
pearance of a �nite resistanceRmin while Tc0 is still �nite. This characterizes the appearance of
the M1 phase and allows us to de�ne the Superconducting-to-M1 Transition.
A second change occurs at the vanishing point ofTc0. Concomitantly, the evolution of Rmin with

12. � 4K here is a 2D conductivity, contrary to � which is a 3D quantity.
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68 2.3. CHARACTERISTICS OF A-NBSI

kF l (or � 4K ) slows down, and the low temperature TCR changes sign. These three criteria allow
us to de�ne the M1-to-M2 Transition.
Figure 2.32 shows the evolution ofTc0, Rmin and of the TCR for �lms of di�erent thicknesses.
The simultaneity of the three above-mentioned criteria is observed in all cases. The critical sheet
conductance� c;4K at which this transition occurs is however shifted toward higher values as the
�lm thickness is increased.

To characterize the M2-to-Insulator-Transition, we plotted �gure 2.33 the evolution of � min =
1=Rmin for all our �lms in the M2 regime. It is remarkable that the residual sheet conductance
in this metallic regime all collapse on a single universal curve, whatever the �lm composition,
thickness, or heat treatment temperature. Moreover, � min vanishes nearkF l=1, signing the
transition between M2 and the insulating regime at a value close to the Io�e-Regel criterion for
the usual Metal-to-Insulator Transition.

Figure 2.31: Evolution of the residual resistanceRmin and of the characteristic temperatureTc0

as a function of disorder for a 23 nm-thick a-Nb13:5 Si86:5 �lm. Blue lines correspond to limits
between the di�erent regimes.

On the insulating side of the transition, a �rst analysis has been performed by identifying the
evolution of the resistance as a function of the temperature with a thermally-activated Arrhenius
law R = R0e

T 0
T (as seen in section 1.5.1.1). By extracting the characteristic temperatureT0, one

obtains �gure 2.34. T0 is vanishing at about the same value than the one found in �gure 2.33,
con�rming the value of kF l at which the M2-to-Insulator-Transition occurs.

2.3.4 Conclusion

In conclusion, let us comment on the phase diagram as it had been established when we
started this work : �gure 2.35 [Cou•edo, 2014] exhibits the possible ground states of a-Nbx Si1�x

thin �lms depending on their thickness and disorder level (as measured by� 4K ).

As seen section 2.3.2.1, 3D samples (d? & 50 nm) can either be superconducting, metallic or
insulating. The system ground state then is exclusively determined bykF l .

In 2D (d? . 50 nm), standard theories for the destruction of superconductivity predict a
direct Superconductor-to-Insulator Transition, mainly driven by the disorder level. However, for
a-Nbx Si1�x , the experimental situation is more complex. Not only can the ground state also be
metallic, but it is determined both by disorder and the �lm thickness.
For a given thickness, �lms are superconducting at low enough disorder.
As � 4K is lowered, a �rst metallic ground state, M1, emerges. This phase seems to retain fea-
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Figure 2.32: Evolution of the residual resistanceRmin and of the characteristic temperatureTc0

as a function of disorder for a-Nb13:5 Si86:5 �lms of di�erent thicknesses. The lines are guides to
the eye corresponding to the M1-to-M2 Transition for the di�erent �lms.

Figure 2.33: � min as a function of disorder for a-Nbx Si1�x �lms of di�erent thicknesses d? ,
composition x, and heat treatment temperature � . The considered �lms are all in the M2 phase.

tures of Cooper pairing13. The phase coherence is nonetheless absent, causing dissipation at
very low temperature. Although our Nb x Si1�x �lms are amorphous, this behavior recalls the
experimental results obtained in model granular systems [Eley et al., 2012, Han et al., 2014] (see
section 1.7.3.4.a), where each individual grain is superconducting but phase 
uctuations are too
important for Cooper pairs to condense in a single wave function. This intuitive analogy remains
however to be con�rmed.
As disorder is further increased, a second metallic phase, M2, arises. This ground state is neigh-
bouring the 3D metallic state, but the proximity to the M1 phase indicates it may be more
complex than a standard fermionic phase. Finally, below� 4K � e2

h , the system is insulating.
In [Cou•edo, 2014], the di�erent phases have been characterized, but there is to date no clear
picture of their nature 14 (fermionic or bosonic) nor of the mechanism leading to these phase
transitions. Moreover, the speci�c role of the thicknessd? compared with other tuning parame-

13. A signature of this can be seen, for example, in the abrupt drop in resistance at Tc0 .
14. Except, of course, for the superconducting phase.
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Figure 2.34: T0 extracted from Arrhenius �ts of the low temperature behaviours of the resistance
for samples of the CK6 (� and 
 ), CK8 ( � and 
 ), CK9 ( � and 
 ), and CK10 (
 ) batches
[Marrache-Kikuchi, 2006].

Figure 2.35: Disorder-Thickness phase diagram of a-Nbx Si1�x thin �lms. The lines are guides
to the eye. The blue line corresponds to the Io�e-Regel value of the 3D Metal-to-Insulator
Transition.

ters (� and x), at least in the 3 conducting states15, has to be explicited.

Let us end this section by emphasizing the interest of low dimensional systems : the M1 phase
only appears at low d? for instance. New unconventional ground states thus can emerge due to
reduced dimensionality.

15. The insulator, by contrast, seems to appear at a de�nite value of � 4K , no matter what the sample thickness
is.
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Chapter 3

Experimental results

In the previous sections, I have outlined the state-of-the art understanding of the a-NbSi
phase diagram at the beginning of my PhD. By separately tuning the di�erent accessible exper-
imental knobs, unpredicted metallic phases - the M1 and M2 phases - had been evidenced and
the destruction of superconductivity in this system had been characterized. The corresponding
phase diagram has been drawn �gure 2.35 and it will serve as the starting point of this work.

However, the nature of the metallic phases, as well as the evolution from the M2 phase toward
an insulating one, were still open questions. As can be seen �gure 2.35, the M2 phase seems to
arise from a fermionic 3D metal as the thickness is reduced. However the proximity of this phase
with the M1 regime where superconducting 
uctuations are expected to play an important role
may suggest that the M2 phase is actually more complicated than a simple fermionic metal.

Most of the previous work had focused on the study of the transitions using criteria at
the lowest temperatures. One of the challenges of the present work was todetermine if we
could access some information on the mechanisms leading to the observed ground
states by characterizing the features appearing at higher temperature . This has been
the subject of my work which will more particularly focus on the M2 and insulating phases .

More speci�cally, amongst the questions that motivated this study were :
{ Is the M1-to-M2 Transition a real phase transition or a crossover between, for instance,

a regime dominated by superconducting 
uctuations and a regime where the fermionic
component dominates?

{ Is the M2 phase fermionic or bosonic? Is it a 3D or a 2D phase? What are the relevant
properties that de�ne the dimensionality of such a phase? In other words, what are the
dominant mechanisms at play ?

{ How can we describe theR(T ) characteristics in the M2 phase? Could its evolution be
explained by a pure weak localization behaviour before the resistance saturation sets in?

{ How does the M2 phase behave close to the transition?
{ The insulating regime had not yet been studied close to the M2-to-Insulator transition.

How does the insulating phase emerge from a saturating resistance at low temperature
when the transition is crossed ? Is the evolution continuous or abrupt ?

{ 3D insulating a-Nb x Si1�x samples have previously been found to be Anderson insulators. Is
this still the case in 2D? If so, how can the simply activated conductivity law be explained?

{ Is the insulator fermionic or bosonic?

To perform this study, we fabricated - in addition to the pre-existing batches of samples - 6
�lms (batches CKSAS43 and CKSAS61) of a-Nb13:5 Si86:5 with thicknesses ranging from 20 to 50
�A. Their composition and thicknesses have been speci�cally chosen in order to probe both sides
of the M2-to-Insulator Transition. Heat treatment also enabled us to drive the M2 samples very
progressively across the transition.

In the following, we will �rst present the low frequency transport characteristics of these new
�lms at very low temperature (section 3.2) and verify that their properties are in agreement with
previously measured a-Nbx Si1�x samples. We will then analyze the features of the insulating
phase (section 3.3) before examining the M2 samples (section 3.4). In these sections, samples
of previous batches will also be included in the analysis. Section 3.5 will particularly focus on
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the M2-to-Insulator Transition. We will end this chapter by proposing a possible interpretation
of the observed phenomena (section 3.6). But let us �rst justify our choice for the disorder
parameter used throughout this chapter.

3.1 Relevant disorder parameter for transport measure-
ment

In the following, we chose to expose our results by taking the �lms'sheet resistance as the
relevant quantity for transport measurements , as is usual for thin �lms. This choice is
consistent with the fact that our �lms are two-dimensional from the points of view of Coulomb
interactions, localization, Variable-Range-Hopping and superconductivity, at least at tempera-
tures lower than a few hundred mK (see discussion of the relevant length scales section 2.3.3.1).
In addition, since we will mainly focus on the M2-to-Insulator Transition, both the coherence and
localization lengths diverge at the transition, meaning that all samples are two-dimensional close
enough to the transition. Moreover, as mentioned section 2.3.3.3, a previous work has shown
that, for superconducting thin �lms of constant thickness, the 4 K sheet resistanceR4K drives
the destruction of superconductivity [Crauste et al., 2013], thus emphasizing the 2D character of
the transition.

In the same way, in the M2 regime, the relevant parameter is the normalsheet resistance
R4K (or equivalently � 4K = 1

R 4K
). This assertion can be tested by qualitatively comparing the

behaviour of �lms with similar R4K or similar �(4 K). We have done so on �gures 3.1 and 3.2 for
�lms in the M2 regime. Two �lms with similar R4K have similar evolutions in temperature and
the value of the metallic saturation resistance is almost identical (with a 20% di�erence on the
value of R� at 10 mK for a 2.5 % di�erence in R4K ). On the other hand, two �lms with similar
�(4 K) do not behave similarly a low temperature. Indeed, the resistivity of the thinner �lm is
lower at high temperature. Eventually, the resistivities measured at 10 mK di�er by � 100 %
for a 1.2% di�erence in �(4 K). Moreover, analysis shows that these 2 samples follow di�erent
conduction laws as we will later see. TakingR� (300 K) or �(300 K) as references for comparing
di�erent samples yields the same result : the sheet resistance, and not the resistivity, seems
to determine unequivocally the low temperature behaviour and the ground state of the system.
Therefore, the 2D quantity - namely R4K - seems more appropriate to describe the disorder in
our �lms.

Figure 3.1: Comparison of theR� (T) characteristics of two a-Nb13:5 Si86:5 �lms of similar R4K

(an as-deposited 45�A-thick �lm of the CKSAS61 batch is displayed in black and 50 �A-thick �lm
of the CKSAS61 batch, having sustained a heat treatment at 150�C, is displayed in blue).
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Figure 3.2: Comparison of the�(T) characteristics of two a-Nb 13:5 Si86:5 �lms of similar �(4 K)
(an as-deposited 45�A-thick �lm of the CKSAS61 batch is displayed in black and 50 �A-thick �lm
of the CKSAS61 batch, having sustained a heat treatment at 120�C, is displayed in red).

3.2 Thickness evolution of the properties of the samples

As seen in section 2.3.3.2, the electrical properties of thin a-Nbx Si1�x �lms at a given com-
position depend on the thickness of the �lm. By varying the thickness, one can therefore tune
both the electrical properties and the ground state of as-deposited �lms at a givenx.

In this section, we will �rst present the evolution of the resistance of our samples as a function
of temperature. Then, by comparing the 4 K electrical properties of the samples with those
obtained from previous sets, we will de�ne the extension of disorder explored in this work.
Finally, we will detail the e�ects of heat treatment, used to �nely modify the level of disorder
within each sample and, in some cases, to cross the M2-to-Insulator Transition.

3.2.1 As-deposited �lms

We will here focus on the ground state - as well as its evolution as a function of the �lm
thickness - for the as-deposited �lms grown in the framework of this thesis. Measurements of
the sheet resistance for two di�erent parts of each sample (parts a and c shown �gure 3.3)
are presented �gure 3.4. Depending on the probed sample area, we observe small variations of
the R� (T ) characteristics. These can be explained by a gradient in compositionx along the
sample1, and are su�ciently small to be neglected (� 5 % on the sheet resistance at all tem-
perature for the as-deposited metallic samples presented and more generally less than 3 % on
R4K ). This is yet another evidence that the �lms are homogeneous in thickness and composition.

Figure 3.3: Sample design. a, b and c refer to di�erent parts of the sample which can be separately
measured in a 4 probes con�guration.

1. These variations cannot be avoided during co-deposition. As mentioned section 2.2.1.1.b, they have a
maximum value of 0.2 % between the two sides (a and c) of a single �lm.
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74 3.2. THICKNESS EVOLUTION OF THE PROPERTIES OF THE SAMPLES

Figure 3.4: Resistance as a function of temperature for the as-deposited �lms grown in the
framework of this thesis The "D" �lms correspond to part c of the �lm, whereas "G" �lms
correspond to part a of the �lm.

For the thinnest �lms, R4K is large (a few tens of k
), and the corresponding ground state
is insulating. The thickest �lms (50 �A and 45 �A-thick a-Nb 13:5 Si86:5 �lms presented �gure 3.5)
have a resistance that �rst increases as the temperature is lowered and then saturates at very
low temperature. They have been identi�ed to be in the M2 regime described section 2.3.3.42.
We would like to emphasize that, as shown �gure 3.5, these saturations mark an abrupt change
in the behaviour of the resistance compared to that encountered at higher temperatures.

Let us remark that the 45 �A-thick �lm on the metallic side of the transition and the 40
�A-thick �lm on the insulating side are really close to the transition. The transition between
the M2 and insulating states is therefore extremely abrupt , as it occurs within a change
in thickness smaller than 5�A. It is therefore convenient to use a tuning parameter other than the
thickness in order to progressively cross the transition. In this thesis, this parameter is provided
by the heat treatment. However, as the saturations in resistance occur at very low temperatures,
we should �rst verify that the observed results are intrinsic to the sample and not linked to
experimental artefacts.

3.2.2 Experimental artefacts

For this study, it is particularly important, especially in the M2 regime where we do ob-
serve saturations of the resistivity at the lowest temperatures, to be sure that the observed
phases are intrinsic to the samples and are not the result of experimental artefacts. In addition
to the precautions taken in the design of the setup - which have been detailed section 2.2.3.3
- di�erent experimental facts allow us to state that these phases are not linked to spurious e�ects.

As one can observe �gure 3.4, we were able to measure insulating samples down to 13 mK.
For instance, for the �lm CKSAS61 
 D 40�A (also shown �gure 3.6a.), the resistivity has been
found to follow a thermally activated law R = R0e

T 0
T at low temperatures. By plotting the

logarithmic resistance as a function of 1=T (�gure 3.6 (b)), one can observe that there is no devi-
ation from the activation law down to the lowest measurable temperatures. Aswe are able to
measure insulating samples , we are sure that the electrons of the �lms are well thermalised
at temperatures down to 13 mK.

2. Let us note that, according to the Dirty Boson Model, these �lms should be insulating, as they have a
negative TCR at all temperatures.
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Figure 3.5: Resistance as a function of temperature for as-deposited 50�A (red and black points
for the corresponding "D" and "G" �lms) and 45 �A-thick (green and blue points for the corre-
sponding "D" and "G" �lms) a-Nb 13:5 Si86:5 �lms. These exhibit saturations of the resistance at
the lowest temperatures. The dashed lines correspond to guides to the eye obtained by the linear
extrapolation of data before the saturations.

To measure this insulating behaviour, the maximum electrical power that could be injected
before heating the �lm with the DC apparatus presented in section 2.2.3.2 wasPmax � 2.10�17

W at 13 mK. For thicker �lms, as the electron-phonon coupling is proportional to the volume of
the �lm, the electrical power that could be used without heating the sample is larger. For the
as-deposited �lms in the M2 regime,the maximum power used for measuring the sample
is of the order of � 10�17 W, lower than Pmax . Furthermore, �lms were measured at
di�erent excitations to ensure that the resistance was measured in the Ohmic regime.

Finally, to ensure that the existence of the M2 regime was not linked to any electrical noise
or parasitic power3 which could induce a 
attening of the measured resistance at low tempera-
ture, some samples in the M2 regime have been measured usingcold electronics and di�erent

Figure 3.6: (a) Sheet resistance of the as-deposited 40�A-thick a-Nb 13:5 Si86:5 �lm grown in the
framework of this thesis. (b) Close-up of the sheet resistance of the �lm at low temperature. The
dashed blue line corresponds to an activated lawR = R0e

T 0
T .

3. Including infrared radiation, current noise and voltage noise.
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cryostats 4 [Marrache-Kikuchi, 2006] with the same results.

In all cases, the existence of these metallic phases has been found to beindependent of the
surface of the sample, of its volume, of its resistance or conductance, of the parasitic
infra-red environment, of the electronic noise and of the measurement power (when
measured in the Ohmic regime). Therefore, we believethe observed phases are intrinsic to
our samples .

3.2.3 Inclusion in other sets of data

Continuity in the measured electrical characteristics of the �lms between di�erent batches
is crucial. Indeed, it ensures the auto-coherence of the measurements and permits to exclude
pathological samples.

The e�ects of a modi�cation of the thickness or of the composition of the sample on the 4
K sheet resistance are presented �gure 3.7. In the case of a-Nb13:5 Si86:5 , corresponding to the
as-deposited samples, the new batch is in the continuity of the previously obtained ones. Fur-
thermore, the evolution of the 4 K sheet resistance is compatible with those of �lms of di�erent
compositionsx grown in previous studies.
To ensure continuity between the old batches and the new ones, we can in particular compare the
characteristics of 50�A-thick samples obtained during separate depositions (samples of batches
OC5 and CKSAS43). The two experimental points obtained are superimposed on the plot given
�gure 3.7 and are reported in table 3.1, witnessing thegood reproducibility of the evapo-
ration conditions between the di�erent batches.

Let us note that the sheet resistance increases with decreasing thicknessd? , faster than 1
d?

.
As remarked in previous work [Crauste, 2010] [Cou•edo, 2014], this evolution cannot be explained
by a simple model. Indeed, at low thickness (typically d? < 100 �A), it is steeper than what is
expected from Fuchs law5.

The values of the sheet resistance, as well as the corresponding conductivity and ground state,
are summarised for as-deposited a-Nb13:5 Si86:5 �lms in the table 3.1. The 20 �A-thick sample is
not displayed as its 4 K resistance is higher than the measurement capability of our apparatus
(typically 10 G
).

3.2.4 Evolution as a function of heat treatment

Starting from the as-deposited �lms presented �gure 3.4, we used the heat treatment pro-
cedure described section 2.2.1.3 to �nely tune the disorder. Its e�ect on the measured sheet
resistance of the �lm, is presented �gures 3.9 to 3.14 for all samples grown in the framework of
this thesis. When increasing the heat treatment temperature, the sheet resistance of the �lms is
increased : the sample's disorder becomes larger.

As can be seen �gure 3.8,� 4K decreases linearly as the heat treatment temperature� in-
creases. This behavior is a sign that there is no major morphological modi�cation in these �lms
[Crauste, 2010] [Crauste et al., 2013] and characterizes the e�ect of the sole disorder on electri-
cal properties of our samples. Films of di�erent batches, with same thickness and composition
con�rms the reproducibility of the heat treatment e�ects (shown here on 50 �A-thick samples).

The advantage of a-Nbx Si1�x �lms is here apparent : by varying the di�erent tuning parame-
ters for this system (d? , � and x), we are able to probe a very large spectrum of disorder
levels . Even if only considering as-deposited samples ofx = 13:5%, � 4K ranges from 0.16 to
70.7 e2

h if one includes all batches, both new and previously grown.

At lower temperatures, one can see the e�ects of heat treatment on both sides of the M2-
to-Insulator Transition : �lms which were already in the insulating phase become even more
insulating (�gures 3.9, 3.10, 3.11 & 3.12), whereas �lms initially in the M2 regime come closer

4. i.e. di�erent electromagnetic environments.
5. The Fuchs law explains an increase in the resistivity � as d? is decreased through surface scattering e�ects

(see section 1.7.1).
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Sample Thickness d? (�A) R4K (
) � 4K ( e2

h ) Ground state
OC5 350 366 70.7 Superconductor
OC5 300 600 43 Superconductor

CKSAS33 230 691 37.4 Superconductor
OC5 250 739 34.9 M1

CKSAS33 185 863 29.9 M1
OC5 200 929 27.8 M1

CKSAS33 165 990 26.1 M1
CKSAS33 140 1315 19.6 M2

OC5 150 1390 18.6 M2
OC5 100 2170 11.9 M2
CK11 130 2390 10.8 M2
OC5 75 3170 8.1 M2

CKSAS43 50 6049 4.3 M2
OC5 50 6420 4 M2

CKSAS61 45 7600 3.4 M2
CKSAS61 40 10800 2.4 Insulator
CKSAS61 35 18800 1.4 Insulator
CKSAS61 30 162000 0.16 Insulator

Table 3.1: List of as-deposited a-Nb13:5 Si86:5 samples. These include pre-existing (from
[Marrache-Kikuchi, 2006] [Crauste, 2010] & [Cou•edo, 2014]) and new batches. The 4 K sheet
resistance (R4K ) and the conductivity ( � 4K ) as well as the corresponding ground state are men-
tioned.

to the transition (�gure 3.14) or even cross the transition (�gure 3.13).

In the following, we will study in more details the quantitative features of these evolutions,
but let us already note that, in the M2 regime, the insulating-like behavior observed between
40 mK and 1 K is all the more pronounced as� increases. Moreover, the maximum resistance
- which corresponds to the value at saturation - increases strongly with� , gaining more than 1
order of magnitude in the case of the 45�A-thick �lms between � = 70�C and � = 100�C. At
the same time, the temperature below which the saturation in the M2 samples appears tends to
decrease until it vanishes.

For both the insulating and the metallic �lms grown for this thesis, increasing the disorder
via either a modi�cation of the thickness or a heat treatment procedure therefore sharpens the
increase of resistance as a function of temperature, due to enhanced localization e�ects. To go
beyond this qualitative approach, we will here try to characterize this evolution, �rst in the
insulating samples and later in the metallic ones, by including - in addition to our samples -
batches from [Marrache-Kikuchi, 2006] [Crauste, 2010] and [Cou•edo, 2014]. We will also propose
and discuss a way to analyze our samples characteristics near the M2-to-Insulator Transition.

3.3 Analysis of the insulating phase

To analyze our insulating samples, we will restrict ourselves in this section to the study of
the activated resistivity 6 which is expected at low temperature for disordered insulating samples
(see section 1.5.1). As we will see later, di�erent conduction processes, mainly due to weak
localization, become dominant at higher temperature. These will be brie
y discussed in section
3.4.2.

A �rst approach to characterize insulating samples has been performed in [Cou•edo, 2014]
where the conduction mechanism had been analyzed as a unique simply activated law (of Arrhenius-
type). As we will see in the following, this description is valid at very low temperatures but fails
at higher temperatures. In the following, we will describe the transport characteristics of in-
sulating samples at all temperature scales (from 10 to 100K) and we will analyze the di�erent

6. Variable Range Hopping or simply activated conduction.
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78 3.3. ANALYSIS OF THE INSULATING PHASE

Figure 3.7: 4 K sheet resistance of �lms of di�erent compositions as a function of the thickness.
The set of samples grown for this thesis is represented by open symbols.

Figure 3.8: Evolution of the conductance as a function of the heat treatment temperature for
samples of table 3.1.
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3.3. ANALYSIS OF THE INSULATING PHASE 85

regimes and corresponding crossovers.

3.3.1 Brief overview of our results

Before beginning the analysis, we would like to brie
y overview our approach in the study of
insulating samples. This section will serve as a guideline for the following paragraphs.

Let us recall that for activated conduction, the resistance takes the form (section 1.5.1):

R = R0e( T 0
T )n

(3.1)

whereR0, T0 and n are constants characteristic of the conduction mechanism at play. Depending
on the relevant conduction process and the dimensionalityd (2 or 3) regarding the hopping
mechanism, one can obtain di�erent parametersn ranging from n = 1=4 to 1, such that :

{ n = 1 for an simply activated or Arrhenius law, characteristic of either Nearest-Neighbour-
Hopping conduction or a hard gap.

{ n = 1
2 for Efros-Shklovskii (ES) Variable Range Hopping (VRH), characteristic of the

existence of a Coulomb gap.
{ n = 1

d+1 for Mott Variable Range Hopping, characteristic of hopping while having a con-
stant density-of-states.

We will use the so-called Zabrodskii's method described in section 3.3.2.1 to obtain the value
of the parametern. We will characterise how conduction evolves as a function of the temperature
and observe successive insulating regimes. At the lowest temperatures a conduction law with
n � 1 will systematically be observed, giving way to VRH laws at higher temperature. Depending
on disorder, we will observe di�erent behaviours which are represented �gure 3.15. In addition
with n � 1 at the lowest temperature, we will observe :

{ for the most disordered �lms (typically � 4K . 0:05 e2

h ), a crossover to an ES-VRH regime
(�gure 3.15a).

{ for less disordered �lms (typically 0 :05 . � 4K . 2 e2

h ), successive crossovers ton = 1=2
and n = 1=3 regimes (�gure 3.15b), n = 1=3 corresponding to a 2D Mott VRH law.

{ For �lms closer to the MIT, the Mott regime will scarcely be visible as its range in temper-
ature shrinks. We will describe our data in the activated regime with n � 1 at the lowest
temperatures and n = 1=2 at intermediates temperature, before weak localization sets in
(see section 3.4.2).

A �rst overview of our insulating samples and of their conduction behaviours below 1 K is given
in �gure 3.16 for selected samples with 2.5> � 4K > 1:1 e2

h .
In the following, we will call :
{ Tc1 the highest temperature at which a n � 1 regime is observed.
{ Tc2 the highest temperature at which the ES VRH regime is observed.
{ Tc3 the highest temperature at which the 2D Mott VRH regime is observed.
The identi�cation and the consistency of the di�erent activated laws encountered in the in-

sulator will be tested by extracting physical quantities for the di�erent laws as well as through
their evolution with disorder. The corresponding analysis will allow us to express hypotheses on
the various regimes.

3.3.2 Identi�cation of the di�erent laws in the insulator

3.3.2.1 Identi�cation of the di�erent parameters

In a paper studying the Metal-to-Insulator Transition in compensated semiconductors,Zabrod-
skii described a way to unequivocally �nd n for samples having a conduction law of the form
:

R = A T �m e( T 0
T )n

(3.2)

We will see in appendix A.2 that - in our samples -m is negligible so thatA T �m is equatable
to a constant R0 for all our samples. Under the condition ofm � 1, Zabrodskii calculated that
[Zabrodskii and Zinoveva, 1984] :

ln(�
dln(R )
dln(T )

) = ln(n T n
0 ) � n ln (T ) (3.3)
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86 3.3. ANALYSIS OF THE INSULATING PHASE

Figure 3.15: Schematic representation of the di�erent observed regimes as a function of the
temperature in the insulating phase. We observe (a) a unique transition fromn � 1 to n = 1

2 or
(b) two successive crossoversn � 1, n = 1

2 and n = 1
3 .

Figure 3.16: Illustration of the di�erent regimes observed near the M2-to-Insulator Transition at
low temperature (T < 1 K) for a selection of samples. Then � 1 activated regime is represented
in grey. ES VRH regime is represented in green. Black cells correspond toR & 1010 
 (too large
to be measured). The Mott regime, not pictured here, is observed at higher temperature for
samples with � 4K < 2 e2

h .
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Figure 3.17: log(� dln(R )
dln(T ) ) plotted as a function of log(T ) for compensated Ge samples, with

di�erent degrees of compensation. Samples 3, 4 and 5 have a metallic ground state. The
other �lms are insulating. The dashed curve corresponds to the limit in temperature where
log(� dln(R )

dln(T ) ) has a linear dependence as a function oflog(T ) for each sample. Adapted from
[Zabrodskii and Zinoveva, 1984].

By plotting ln(� dln(R )
dln(T ) ) as a function of the logarithmic temperature ln(T ), we can therefore

extract the parameter n from the slope of the obtained a�ne function. As pictured �gure 3.17,
there is a clear transition between the Variable Range Hopping regime, which gives rise to a
linear dependence, and other regimes with a non-exponential evolution ofR(T ). In particular,
metallic samples (samples 3, 4 and 5 in this study) appear, in this representation, with a positive
derivative when T ! 0, unlike insulating samples.

At this point, let us mention that, in the case of our samples, for each insulator,n has been
extracted both :

{ by setting n to values predicted by standard theories (n = 1
3 , n = 1

2 or n = 1).
{ and by letting n be a free parameter, obtained by Zabrodskii's method.

Except otherwise mentioned, both methods yield the same results within error bars.

By using the extracted value of the parametern, we can obtain parametersR0 and T0 through
:

ln(R ) = ln(R 0) + (
T0

T
)n (3.4)

Thus, by plotting ln R as a function of (1
T )n , all parameters are obtained by making no other

assumption than the exponential variation of the resistance as a function of temperature.
We will now examine the evolution of the di�erent relevant parameters in our �lms both in
temperature and with disorder.

3.3.2.2 Application to our �lms

At �rst, let us apply this method to our thinnest - most disordered - as-deposited sample
(�gure 3.18). Depending on the temperature range, we obtain di�erent values of n. At the
lowest temperatures,n = 1. We would like to stress that �nding a simply activated regime at
the lowest temperatures is unusual in the literature of disordered �lms. We will come back on
this point later in section 3.6.
As the temperature is increased, a crossover occurs between 25 and 35 K to an ES-type VRH
regime, which adequately describes the data almost until room temperature.

The value of n obtained by Zabrodskii's method can then be checked by plottingln(R ) as a
function of the corresponding power of the temperature (1T for n = 1 is given �gure 3.19, 1p

T

for n = 1
2 is given �gure 3.20 for the 20�A-thick �lm presented above). The temperature range

of each regime - i.e. the part where the curves are linear in1
T n - are in agreement with what

is found �gure 3.18. The �t of the linear part allows us to directly extract R0 and T0 for each
identi�ed regime. Let us note that for this highly disordered sample, both regimes are clearly
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88 3.3. ANALYSIS OF THE INSULATING PHASE

Figure 3.18: Extraction of the parameter n as a function of temperature for an as-deposited 20
�A-thick a-Nb 13:5 Si86:5 sample using Zabrodskii's technique. The extracted parametern is equal
to 1 at the lowest temperature and 1

2 otherwise, almost until room temperature.

Figure 3.19: Sheet resistanceR� as a function of the inverse temperature for an as-deposited 20
�A-thick sample of a-Nb13:5 Si86:5 . The dashed line is a �t of the linear part of the plot. From this
plot, we can extract T0 = 77 � 4 K and R0 = 27 � 5 k
.

de�ned on about a decade both in temperature and in resistance as pictured �gure 3.21. The
good agreement between the law obtained from the extracted values ofR0, T0 and n and the
experimental data con�rms the validity of the method.

For slightly less disordered �lms, we observe the same trend : Zabrodskii's method reveals
a transition between a regime with n = 1 at the lowest temperatures and a VRH-type law
at intermediate temperatures (�gure 3.22). However, the identi�cation of the exact regime at
intermediate temperatures is less clear than in the previous example. The obtained plot for an
as-deposited 30�A-thick a-Nb 13:5 Si86:5 sample may indeed be compatible with an � 1 regime at
low temperatures having transitions either to :

{ a sole ES VRH.
{ successively an ES VRH and a 2D Mott VRH regime.
{ a sole 2D Mott VRH.

We will later see that due to continuity of physical parameters as disorder evolves,
the last scenario is unlikely.
In order to choose between the di�erent cases which are still possible (i.e. cases a and b of
�gure 3.22), we have conducted numerous tests to examine the consistency of the evolution of
the di�erent regimes, especially with disorder and thickness, as well as the realism of the derived
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3.3. ANALYSIS OF THE INSULATING PHASE 89

Figure 3.20: Sheet resistanceR� as a function of 1
T 0:5 for an as-deposited 20�A-thick sample of

a-Nb13:5 Si86:5 . The dashed line is a �t of the linear part of the plot. From this plot, we can
extract TES = 625 � 25 K and RES = 3950 � 150 
.

Figure 3.21: Sheet resistanceR� (T) for an as-deposited 20�A-thick sample of a-Nb13:5 Si86:5 . The
blue line corresponds to the �t of the simply activated regime (n = 1) and the red line to the �t
of the ES VRH regime (n = 1

2 ).
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90 3.3. ANALYSIS OF THE INSULATING PHASE

Figure 3.22: Extraction of the parameter n as a function of temperature for an as-deposited
30 �A-thick a-Nb 13:5 Si86:5 sample using Zabrodskii's technique. We observe successive crossovers
between an activated regime and VRH regimes, compatible with di�erent scenarii givingn = 1=3
or n = 1=2 for di�erent temperatures (refer to text).

Figure 3.23: Parametern extracted from Zabrodskii's method in the low temperature regime for
the insulating samples grown for this thesis as a function of� 4K .

characteristic parameters. We will here mainly expose the tests and the hypotheses that proved
to be the most realistic and consistent.

3.3.2.3 Extraction of the parameters in the di�erent regimes

The simply activated regime

We will here focus on the regime identi�ed at the lowest temperature in our insulating �lms.
Figure 3.23 shows the evolution ofn, determined by Zabrodskii's method letting n be a free
parameter, as a function of� 4K . It is in good agreement with n = 1, with a � 10% discrepancy
for � 4K < 1:5 e2

h , which is within the error bars for these samples.
Close to the M2-to-Insulator Transition, we found n > 1 for some samples. This "super-activated"
behavior cannot be attributed to uncertainties (n � �n > 1). We will come back on a possible
explanation for this unusual behaviour later (see appendix B). For now, let us stress that these
samples cannot be described by a single law withn = 1 at the lowest temperatures, as shown
�gure 3.24. The corresponding samples could however be compatible with twon = 1 regimes,
with di�erent R0 and T0 (red and blue dashed lines on �gure 3.24(a)), or with a more insulating
law (green dashed line on �gure 3.24(b)),n = 1 :25 in the case of the 45�A-thick a-Nb 13:5 Si86:5

sample which sustained a heat treatment at� = 140�C. These laws have been �tted on a resis-
tance range larger than one decade.

For simplicity, and for coherence with the analysis performed close to the M2-to-Insulator
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3.3. ANALYSIS OF THE INSULATING PHASE 91

Figure 3.24: Sheet resistance of a 45�A-thick a-Nb 13:5 Si86:5 insulating sample which sustained
a heat treatment at 140�C. This sample is close to the M2-to-Insulator transition. It has been
plotted as a function of the inverse temperature 1/T (a) and as a function of 1/T1:25 (b). The
plot (a) is not consistent with a simple n = 1 regime at the lowest temperatures and may be
described with 2 di�erent n = 1 regimes or with a more insulating law (b) (n=1.25 in this case).

Transition, we have chosen to present parameters (R0 ; T0) obtained using the value of n ex-
tracted from Zabrodskii's method where n is set as a free parameter. We have veri�ed that this
treatment does not have a strong in
uence on the extracted parameters. It induces an uncer-
tainty on the extracted T0 and R0 of a factor 2 at most compared to what we would obtain by
setting n = 1. It does not modify the observed trends.

The evolution of parameters R0 and T0 with � 4K is presented �gure 3.25. The prefactor
R0 �rst decreases by a factor about 2 for highly disordered �lms (� 4K < 1:5 e2

h ) and tends to

saturate as we get closer to the M2-to-Insulator Transition, with R0 � (13 � 3) k
=� (� e2

2h )

for � 4K ! 3 e2

h . Simultaneously, T0 decreases continuously over about 3 orders in magnitude.
Thus, both R0 and T0 seems to be independent of the thickness. Indeed, the evolution trend is
similar whatever the thickness of the sample.

As the temperature is increased, we already mentioned that we observe a transition toward
an ES-VRH regime. The extracted crossover temperatureTc1 (presented �gure 3.26) increases
continuously as disorder is increased, independently of the thickness. This crossover is therefore
determined by the sole sheet conductance.

To summarize our �ndings on the simply activated regime :
{ All insulating samples present a simply activated conduction regime ( n � 1) at the

lowest temperatures .
{ As could be expected, itsextension in temperature is larger as disorder is increased.
{ The characteristic resistance R0 and temperature T0 both increase as disorder

is increased. Again this could be expected.
{ None of the characteristic parameters seems to be thickness-dependent.

We will now characterise the VRH regimes which appear at temperatures higher than this
crossover.

The VRH regimes

As seen in section 3.3.2.2, atintermediate temperature and depending on disorder, we iden-
ti�ed two di�erent VRH behaviours, with either a unique ES VRH regime or with a transition
between ES and 2D Mott VRH. We will see in this paragraph in particular that :

{ for � 4K < 0:05 e2

h , the transport properties of the �lm can be described by a unique ES
VRH regime practically until room temperature.

{ for 0:05 e2

h < � 4K < 2 e2

h we observedboth an ES VRH and a 2D Mott VRH regimes
depending on the temperature range.

{ For � 4K > 2 e2

h , as we will see, we can describe our data witha unique ES VRH regime
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92 3.3. ANALYSIS OF THE INSULATING PHASE

Figure 3.25: Extracted values of the pre-factorR0 and the characteristic temperature T0 for
insulating �lms as a function of the 4 K sheet conductance.

Figure 3.26: Measured crossover temperatureTc1 between the n � 1 regime and the ES VRH
regime. Samples of di�erent thicknesses are of di�erent colors.
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3.3. ANALYSIS OF THE INSULATING PHASE 93

before it gives way to a non-activated conduction regime. The Mott VRH regime is
not observable, probably because the corresponding range in temperature is too small to
be experimentally observed.

Before proceeding, let us recall that the characteristic energies for Mott and ES VRH regimes

are respectively given in 2D byTMott = � Mott
2

N (E F )d ? kB � 2
loc

and TES = � ES
2 e2

�� loc
, (see section 1.5.1 for the

de�nition of the di�erent quantities). Moreover, the resistance pre-factor in each regime should
vary as a positive power law of� loc [Pollak and Shklovskii, 1991]. The extracted characteristic
parameters in the Mott and ES VRH regimes are presented �gures 3.27 and 3.287.
The characteristic energies of both the Mott and ES VRH decrease exponentially as a function
of � 4K . This is expected as both energies should vanish at the MIT.
Simultaneously, the prefactor RMott is increasing in the Mott VRH regime. So doesRES for
� 4K < 0:5 e2

h in the ES VRH regime. The increase of the prefactor in both regimes is theoretically
predicted as it varies as a power law of the localization length� loc , and � loc diverges as we get
closer to the MIT [Pollak and Shklovskii, 1991].
However, it seems thatRES saturates at a value (9000� 1000) 
=� (� e2

3h ) for � 4K > 0:5 e2

h .
This saturation of RES has been observed in some 2D materials like 2D gases [Mason et al., 1995]
[Shlimak et al., 1999] [Khondaker et al., 1999] and may indicate a phononless mechanism of hop-
ping -i.e. a hopping mechanism which is not assisted by electron-phonon interaction-. We will
come back on this point in section 3.6.

One may wonder if there is a thickness e�ect in these regimes, especially in the 2D Mott
regime for which one expectsTMott / 1=d? . Although, we do not have samples in this regime
with a su�ciently large range in d? (here 30 �A 6 d? 6 45 �A) to conclude �rmly on this point,
the trends in both evolutions of RMott (resp. RES ) and TMott (resp. TES ) are continuous, so
that, in our case, the e�ects of disorder dominate over thickness e�ects (if any).

To picture the evolution of the di�erent regimes as a function of disorder and temperature,
we can plot the di�erent crossover temperatures between the di�erent regimes (i.e. simply acti-
vated, ES VRH, 2D Mott VRH and weak localization) as a function of disorder (�gure 3.29). As
could be expected, as disorder is reduced, the characteristic temperatures at which each regime
appears decrease. The explored disorder range allowed us to monitor the continuous evolution
of Tc1, Tc2 and Tc3 on two orders of magnitude. Moreover, as can be seen, the temperature
ranges on which the simply activated and the Mott regimes are observable shrink considerably
close to � 4K = 3 e2

h . Eventually, for 2 e2

h < � 4K < 2:5 e2

h , Mott and ES regimes are scarcely
distinguishable. This leads to di�culty in separating the two regimes in the analysis. This
uncertainty vanishes for � 4K > 2:5 e2

h as the ES regime begins to be better de�ned again near

the MIT as we can observe �gure 3.30 for a sample with� 4K = 2:6 e2

h . Although the 2D Mott

VRH regime either could exist on a limited range in temperature, or vanishes at� 4K � 2� 2:5e2

h .

3.3.2.4 Parameters extracted from the crossover temperatures

In this paragraph, we would like to use the crossover temperature between the di�erent
regimes to access some relevant parameters. This will also allow us to validate the hypotheses
underlying the di�erent conduction regimes.

To do so, we can extract the ratios T0
Tc1

, TES
Tc2

, and TMott
Tc3

for a selection of insulating �lms -
spanning the insulating region and for which we were able to identify an activated regime, and
both ES and Mott VRH regimes -. The results are presented in table 3.2. These quantities
will allow us to check one important condition for each of the regimes to exist. Indeed,the
n � 1, as well as the ES and Mott VRH regimes, can theoretically exist only if the
temperatures at which they are observed are smaller than the characteristic energy .
In other words, one must theoretically havef T0

Tc1
, TES

Tc2
, TMott

Tc3
g > 1.

For all samples, these conditions are met, except for the sample closest to the transition(CKSAS61
D 40 �A-thick sample which sustained a heat treatment at 150�C). However, this discrepancy is

7. The uncertainties on T0 and TES are lower than � 5 % for the presented samples. For TMott , uncertainties

range from less than � 5 % for the more insulating �lms to � 20 % for � 4K � 2 e2

h .
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94 3.3. ANALYSIS OF THE INSULATING PHASE

Figure 3.27: Extracted values of the pre-factorRMott and of the characteristic temperatureTMott

for insulating �lms in the 2D-Mott VRH regime as a function of the 4 K sheet conductance.

Figure 3.28: Extracted values of the prefactorRES and of the characteristic temperature TES

for insulating �lms in the ES VRH regime as a function of the 4 K sheet conductance.

Figure 3.29: Crossover temperaturesTc1 (blue dots), Tc2 (red dots) and Tc3 (black dots) as a
function of � 4K for insulating �lms.
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3.3. ANALYSIS OF THE INSULATING PHASE 95

Figure 3.30: Extraction of the parameter n as a function of temperature for a 45�A-thick a-
Nb13:5 Si86:5 sample which sustained a heat treatment at 140�C (� 4K � 2:6 e2

h ), obtained by
using Zabrodskii's technique. We observe a crossover between an activated and an ES VRH
regime.

small and could be explained by our uncertainty in the determination of T0, TES and TMott or
on the crossover temperatures8.

Sample & heat treatment temperature � � 4K ( e2

h ) TMott (K) TES (K) T0 (K) TMott
Tc3

TES
Tc2

T0
Tc1

CKSAS61 G 30�A 150�C 0.08 321 64 8 3.4 3.4 2.3
CKSAS61 G 30�A 70�C 0.15 242 43 7.6 4.9 4.7 3.2
CKSAS61 D 35�A 150�C 0.9 25.7 6.5 1.15 2.6 4.2 1.45
CKSAS61 D 35�A 70�C 1.43 6.3 2.55 0.62 1 2.8 1.25
CKSAS61 D 40�A 150�C 1.69 3.05 1.1 0.32 0.8 1.1 0.8

Table 3.2: Values of the ratios TMott
Tc3

, TES
Tc2

, and T0
Tc1

, for a selection of samples.

Theoretically, the transition between the two VRH regimes (Mott and ES) occurs at :

T � TCG (3.5)

This condition is linked to the �lling of the Coulomb gap due to thermal excitations at temper-
atures aboveTCG , so that the e�ective DOS is no longer depleted by Coulomb interactions and
becomes eventually constant (which is the condition for a Mott-type VRH).

For 3D �lms, where the Coulomb gap is usually described by a parabolic dependence of the
density-of-states with the energy, the crossover between Mott and Efros-Schlovskii VRH regimes
should occur at [Rosenbaum, 1991] [Pollak and Shklovskii, 1991] :

TME = 16
T2

ES

TMott
= 2

� CG
3

kB
= 2

e3N (E F )1=2

� 3=2
(3.6)

where N (E F ) is the non perturbed density-of-states at the Fermi level and� = 4��� 0, with � 0

the vacuum permittivity and � the relative permittivity of the material.

In 3D a-Nb8:3Si91:7 �lms (1000 �A-thick), a crossover between the two VRH regimes - 3D Mott
and ES - has been found at 1 K (�gure 3.31). In this case, the experimentally extracted parame-
ters (given in the �gure caption) are in good agreement with the theoretical value obtained from
equation 3.6.

8. If we take the error bars into account, one obtains for CKSAS61 D 40 �A, TMott
Tc3

= 0 :8 � 0:35 and T0
Tc1

=
0:8 � 0:1.
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96 3.3. ANALYSIS OF THE INSULATING PHASE

Figure 3.31: Zabrodskii �t of a 3D (1000 �A) a-Nb8:3Si91:7 sample. The straight lines correspond
to the 3D Mott ( n = 1=4) and Efros-Shklovskii (n = 1=2) VRH regimes �ts. The analysis allowed
to extract TM =18.2 K and TES =1.08 K with a crossover between the two insulating regimes at
T = 1 K. This is in agreement with the theoretical value ( TME = 1:15K ) obtained from equation
3.6 [Marnieros, 1998].

In lower dimension, the form and the width of the Coulomb gap are altered by the dimen-
sionality. Indeed, the gap is described in 2D by a linear dependence of the density-of-states on
the energy, and its width is given by :

� CG
2 =

e4 N (E F )
� 2 (3.7)

Using the de�nitions of TMott and TES (see section 1.5.1), one can show that equation 3.7 becomes
:

� CG
2 =

kB T2
ES � Mott

2

(� ES
2 )2 TMott

(3.8)

where � ES
2 = 6:5 and � Mott

2 has been found to vary between 13.8 and 18 depending on the
authors([Mott, 1967], [Tsigankov and Efros, 2002] and [Shafarman et al., 1989]). Therefore, we
should observe a crossover between the two regimes at a temperature :

Tc2 � 2
� CG

2

kB
(3.9)

Sample & � � 4K ( e2

h ) measuredTc2 (K) theoretical Tc2 (K) R� (Tc3) (
=�)
CKSAS61 G 30�A 150�C 0.08 18.6 8.5 12250
CKSAS61 G 30�A 70�C 0.15 9.1 5.1 15000
CKSAS61 D 35�A 150�C 0.9 1.55 1.1 14500
CKSAS61 D 35�A 70�C 1.43 0.9 0.7 15500
CKSAS61 D 40�A 150�C 1.69 1 0.3 15300

Table 3.3: Measured and theoretical values ofTc2 obtained using equations 3.9 and 3.8, with
� Mott

2 =13.8 and � ES
2 =6.5. The sheet resistance atT = Tc3 is also given.

The experimentally measured crossover temperatures are presented in table 3.3, along with
the theoretical values obtained from equations 3.9 and 3.8. The comparison between the experi-
mental and theoretical value is presented �gure 3.32 for clarity.
We �nd a good qualitative agreement between the theoretical and experimental values. Quanti-
tatively, they di�er by a factor of about 2. This small discrepancy could well be explained by ex-
perimental uncertainties on the found temperatures and by theoretical uncertainty on� Mott

2 : in
addition to the dispersion found in the literature (13.8 to 18), � Mott

2 may be modi�ed by correlated
hopping e�ects which are not taken into account in the original theory [van Keuls et al., 1997].
Moreover let us emphasize that this value assumes a completely 
at DOS in the Mott regime
which may not be totally realistic in our case.
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Figure 3.32: Measured and theoretical values ofTc2 for the selection of �lms presented table 3.3.

Figure 3.33: Evolution of the Coulomb gap as a function of� 4K . A linear �t gives � CG
2

kB
� 10

mK, our base temperature, for � 4K � 4-7 e2

h . The red line is a guide to the eye.

We therefore believe that there is a fair agreement between theoretical and experimen-
tal values regarding the crossover temperature between Mott and ES VRH regimes .
This is another indication that the two observed regimes are indeed distinct and consistent.
Moreover, Tc2 is a direct measurement of � CG

2 . As expected, the Coulomb gap decreases in size
when nearing the MIT. Its evolution with disorder is given �gure 3.33. As can be seen, � CG

2

evolves exponentially with � 4K . Moreover, � CG
2

kB
� 10 mK, our base temperature, for� 4K � 4-7

e2

h . This means that, even at our lowest available temperature, � CG
2 would be �lled with thermal

excitations for samples with � 4K > 4-7 e2

h . Moreover, it is noteworthy that, according to this
preliminary extrapolation of � CG

2 (� 4K ), � CG
2 does not vanish at the MIT which, as we will see,

occurs at � 4K = 3 e2

h . We will come back on a possible interpretation for this in section 3.6.

Going back to the hypothesis formulated in the analysis of �gure 3.22, we believe we can now
discard the third scenario for insulating samples. For �lms with � 4K < 2 e2

h , we observe two
crossovers, from a simply activated law to an ES and then to 2D Mott VRH regimes.
However the observation of Mott VRH becomes more complicated for �lms really close to the
transition, as its range in temperature shrinks. For samples close to the MIT, the conductivity
will therefore be described as a simply activated regime evolving into an ES regime.
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98 3.3. ANALYSIS OF THE INSULATING PHASE

3.3.2.5 Extracted parameters from Mott VRH

We have seen that we have good reasons to believe in a scenario with 2 distinct VRH regimes.
Another way to make sure that the identi�ed regimes are relevant and realistic is to analyze the
evolution of characteristic lengthscales that can be extracted in this way. For instance, the Mott
characteristic temperature gives an estimate of the localization length� loc , provided the DOS is
known, via the equation :

� loc =

s
� Mott

2

TMott N (E F )d? kB
(3.10)

In a-Nbx Si1�x , the density-of-states has been measured by several authors by speci�c heat
measurements [Marnieros, 1998][Marnieros et al., 2000], Hall measurements [Nava et al., 1986],
by using the combined properties of Variable Range Hopping and scaling [Marnieros, 1998], and
by measuring the critical �eld in the superconducting state [Aubin et al., 2006]. It varies between
0:3 and 1:8� 1041 states.J�1 .cm�3 depending on the measurement, uncorrelated with the value
of x for x 2[0:07; 0:15]. In the following, we will take it to be 1.1041 states/J/cm 3.
For the �lms listed table 3.3, the obtained values of the localisation length � loc have been tran-
scribed in table 3.4. As expected, this distance diverges when we approach the Metal(M2)-to-
Insulator Transition (�gure 3.34). In theory, � loc should diverge as :

� loc / j x � xcj �� (3.11)

where x is the composition driving the MIT, xc its critical value, and � the critical exponent
for the localization length. Since � 4K is proportional to x (see �gure 2.18), we can determine�
by �tting a power law onto the dependence � loc / j � 4K � � 4K;c j �� . Figure 3.34 shows several
equally possible �ts : � then ranges from 1.2 to 4.4 whereas� 4K;c varies from 2.5-5e2

h . Due to
experimental uncertainties and to the limited range in � loc , it is therefore di�cult to con-
clude further than to say that the localization length is compatible with a power
law evolution as a function of disorder and that it diverges close to � 4K;c = 3 e2

h .

From the localization length, one can calculate the most probable hopping distance. In 2D,
this distance is given by [Pollak and Shklovskii, 1991] :

rm � (
2� loc

�N (E F )d? kB T
)1=3 (3.12)

In table 3.4, we estimated both the highest and lowest values ofrm , such that r m (Tc3) < r m <
rm (Tc2). The hopping distance is of the same order or greater than the thickness of
the sample, consistent with the idea of a 2D Mott regime [Shahar and Ovadyahu, 1990].
Furthermore, r m is of the order of a few nm to a few tens of nm, as expected in VRH.

In the conventional theory, one condition for the Mott VRH regime to be valid is that rm >
(� loc ; a) where a is the nearest neighbour distance (in our case� 4.5 �A). This is the case only
for T � Tc2. On the temperature range on which Mott regime is observed,r m � 1

3 � 1
2 � loc . The

validity criterion is thus not strictly obeyed. However, there may be several reasons to explain
this small discrepancy :

{ the e�ective value of r m depends on the estimation ofN (E F ) which may have been under-
estimated.

{ � loc depends on� Mott
2 which values varies with authors (� Mott

2 � 13:8� 18), on N (E F ),
and on experimentally determined parameters (TMott mainly), giving a typical overall un-
certainty of � 50% on its value.

{ such discrepancy has already been observed in other systems and has been explained by cor-
rections to the VRH theory which should be added near the MIT9 [Shafarman et al., 1989].

We therefore believe the validity criterion is reasonably well obeyed.

Finally, we can measurethe resistance at the crossover between this regime and
the weak localization regime at higher temperatures. In the insulating phase, we found

9. Mott VRH assumes a totally 
at density-of-states (which is not necessarily the case), multi-hopping is not
taken into account in conventional VRH theories and the hopping probability calculated in VRH theory has been
derived in a dilute limit (i.e. hopping takes place only between a pair of sites and each pair is independent of other
pairs due to low contributing site densities, which is not necessarily valid near the MIT) [Shafarman et al., 1989].
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it to occur at an almost constant value of R� (Tc3) � (14 � 2) k
=� � h
2e2 (see table 3.3).

Theoretically, a crossover from weak to strong localization is expected atR� = 2� 2 ~
e2 ' 81

k
=� [Larkin and Khmel'nitskii, 1982, Hsu and Valles, 1995]. However, this value was obtained
by developing quantum corrections in the �rst order in kF l . When higher order corrections are
taken into account, as recent developments have [Minkov et al., 2004], the crossover is expected
to occur at a constant resistance h

5e2 < R � < h
e2 , i.e. for 5.17 k
 < R � <25.85 k
. Our

measured value forR� (Tc3) is consistent with this range. This is yet another argument for the
existence of the Mott-VRH regime.

3.3.2.6 Extracted parameters from ES regime

One can also evaluate the hopping distance in the ES VRH regime. In this regime, the
hopping distance is given by :

r ES �
1
4

� loc

r
TES

T
(3.13)

Using the previously determined value of� loc , we calculated rES (Tc2) and r ES (Tc1) (presented
table 3.4), corresponding to the theoretical maximum and minimum values ofr ES (T). Far in
the insulating phase, r ES (Tc2) < � loc < r ES (Tc1). Therefore, the validity criterion for ES VRH
(� < r ES ) works on a restricted temperature range. However, as the transition towards the
metallic state is approached, this condition is no longer ful�lled by a factor 2-3. There may be
several reasons for this :

1. Here again, the di�erent approximations (on N (E F ) or error on the experimental quantities
for instance) may induce some uncertainties explaining these small deviations.

2. The ES VRH theory has been developed for a strongly insulating regime. Nearing the MIT
may modify the expression ofTES and r ES [Lee et al., 1999]. Other authors have found
that, near the MIT, although the validity criterion is not strictly observed, the data may
nonetheless be described by a ES-type conduction law10 [Rodr��guez et al., 2007].

3. Larkin et al. have extended the calculation for conducting samples of large� loc and have
found that the activation energy could have a logarithmic temperature dependence, which
may a�ect the expression of TES and r ES [Larkin and Khmel'nitskii, 1982].

sample & � � loc (m) r m (Tc3) (m) r m (Tc2) (m) r ES (Tc2) (m) r ES (Tc1) (m)
CKSAS61 G 30�A 150�C 3:25 10�9 1:8 10�9 3 10�9 1:5 10�9 3:5 10�9

CKSAS61 G 30�A 70�C 3:7 10�9 2:3 10�9 4 10�9 2 10�9 3:9 10�9

CKSAS61 D 35�A 150�C 1 10�8 5:2 10�9 9:7 10�9 5:1 10�9 7 10�9

CKSAS61 D 35�A 70�C 2:1 10�8 7:6 10�9 1:5 10�8 8:8 10�9 1:2 10�8

CKSAS61 D 40�A 150�C 2:9 10�8 9 10�9 1:5 10�8 7:6 10�9 1 10�8

Table 3.4: Calculated values of the localization length� loc as well as the hopping distancer m

extracted from Mott VRH and the hopping distance rES extracted from ES VRH evaluated at
the crossover temperatures. The hopping distances have been calculated using with� Mott

2 =13.8
and � ES

2 =6.5.

Despite these small inconsistencies regarding for the parameters extracted from the ES
VRH regime, we have good reason to believe that this mechanism describes correctly
the conduction in our samples , even for samples close to the transition. We indeed saw that,
far into the insulating regime, the characteristic parameters extracted are coherent and that the
crossover between the observed Mott and ES VRH regimes (when we are able to measure it) is
in good agreement with what is expected. In addition, the capacity of Zabrodskii's method to
discriminate non activated regime - which will be discussed in section A.2 - as well as the evolu-
tion of the parameters on the metallic side of the transition - as we will see in section 3.4.3.3 -
tend to strengthen our arguments.

To conclude this section, let us summarize our �ndings on the insulating regime :

10. This approach has been justi�ed by the fact that, close to the MIT, the conventional expression of ES VRH
has to be corrected due to : (i) x � xc , so that TES � (1 � x

x c
) can be small. (ii) the wave function has a larger

spatial distribution to take into account short-range structural defects or longer-range defects.

99



100 3.4. ANALYSIS OF METALLIC SAMPLES

Figure 3.34: For the samples listed table 3.4, estimation of the localization length� loc (see text)
and �t attempts using equation 3.11.

{ All insulating samples present a simply activated conduction regime at the lowest
temperatures which gives way to a VRH-type conduction regime (either a single ES or
two successive ES and 2D Mott regimes).

{ The characteristic energies continuously increase when disorder is increased .
{ Close to the MIT, Mott VRH is no-longer observable.
{ It is interesting to note that ES-type VRH is always observable . As we will discuss

in the section devoted to the interpretation of our results, this signals the importance of
Coulomb interactions in these �lms.

{ Moreover, the extrapolation of the evolution of the Coulomb gap with disorder tends to
indicate that it does not vanish at the M2IT.

{ The di�erent validation criteria (T < T charac , r hop > � loc , Tc2 � 2 � 2 CG
kB

) have been
reasonably well veri�ed .

3.4 Analysis of metallic samples

In this section, we would like to review the di�erent conduction mechanisms encountered in
M2 samples. As previously mentioned, when the temperature decreases, the sample �rst presents
a weakly localizing behaviour, from which it sometimes moves away, before the resistance sat-
urates at very low temperatures. We will �rst focus on the weak localization regime and the
deviation from it, before examining the saturation regime.
To do so, we will mainly detail analyzes performed on �lms in the M2 phase, but, whenever we
consider it relevant, we will also mention �lms in the M1 phase. The main aim is to achieve a com-
prehensive picture of the M2 phase and its existence in between the M1 and the insulating states.

3.4.1 Brief overview of the results regarding metallic samples

In metallic samples, we will encounter three types of evolutions of the sheet resistance as a
function of the temperature :

{ In the M1 phase , conductivity will be described by weak localization laws until super-
conducting 
uctuations dominate the conduction (�gure 3.35.a).

{ In the M2 ,
{ near the M1-to-M2 transition, in the M2 phase , conductivity will be described by

weak localization, until the sheet resistance saturates at the lowest temperatures (�gure
3.35.b).
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{ near the M2-to-Insulator transition, in the M2 phase , the situation will be more
complex. We will encounter a conduction law that is more strongly insulating than weak
localization at the lowest temperatures (typically T . 300 mK) before observing the
resistance saturations (observed typically forT . 30 mK). We will therefore describe
conductivity successively with a saturation of resistivity, an activated law and a weak
localization law, as pictured �gure 3.35.c.

In this section, we will :
{ Identify and study the di�erent localization laws observed in the metallic phases (M1 and

M2), outside superconducting 
uctuations.
{ Follow the evolution of the localization laws as a function of disorder and sample thickness,

as they approach the M2-to-Insulator transition.
{ This analysis will lead to a discussion on the transition toward the insulating phase, where

the resistance saturation vanishes.

Figure 3.35: The di�erent regimes observed in metallic sample : (a) the M1 phase. (b) the least
disordered M2 sample. (c) the most disordered M2 sample.

3.4.2 Weak localization in metallic samples

We will here identify and characterize the weak localization mechanisms in our samples, as
well as their evolution as a function of disorder. Indeed, in our metallic �lms, conductivity at
high temperature (typically higher than a few K) can be associated with a 3D weak localization
mechanism, giving rise to a conductance of the form :

� (T ) = � 0 + �T p=2 (3.14)

with � 0 being the Drude conductance,� a constant and p a constant ranging from 1 to 3 for
dimension d � 2, depending on the conduction process and dimensionality (see section 1.5.2).

In �lms in the M1 phase with a characteristic energy 11 Tc0 lower than 80 mK, or in the M2
regime, we found a crossover between 3D and 2D weak localization at typically 500 mK. T .
2 K 12. In this case, the conductance is given at low temperatures by 2D weak localization laws
of the form :

� = � 0 + � wl ln(T ) (3.15)

where � 0 is the Drude conductance and� wl is a constant taking into account the strength
of Coulomb interactions which, in turn, depend on disorder13 (see section 1.5.2 and 1.4.2 for
details).

11. See section 2.3.3.4 or [Cou•edo, 2014] for the de�nition of Tc0 .
12. This crossover is not visible in M1 �lms with higher Tc0 due to superconducting 
uctuations.
13. We will here limit ourselves to the analysis of weak localization in our metallic samples. However, the high

temperature behaviour of insulators - beyond the ES or the 2D Mott VRH regime discussed in the previous section
- is the same : a 2D weak localization regime gives way to a 3D localization regime at even higher temperatures,

at least for �lms having � 4K > 2:5 e2

h .
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3.4.2.1 3D weak localization

For metallic a-Nb13:5 Si86:5 �lms analyzed during this thesis, p = 3=2 is usually found in a
large range of temperatures (typically from room temperature to 1 K) as seen �gure 3.36 for
a M1 sample near the M1-to-M2 transition. A weak localization mechanism with � / T3=4 is
consistent with our data for this 228 �A-thick �lm, from, at least, 200 K to 1 K. In this sample,
eventually, weak localization is counterbalanced by superconducting 
uctuations at the lowest
temperatures.
p = 3=2 is consistent with a 3D weak localization regime dominated by3D electron-electron
inelastic scattering , i.e. (L � , LT ) � d? , where LT =

p
~D=kB T is the thermal length (see

section 1.4.2).
For the thinnest �lms (d ? � 50 �A, � 4K . 4:5 e2

h )- which are closer to the M2-to-Insulator tran-
sition - a parameter p = 1 is found, consistent with a 3D weak localization regime dominated
by 2D electron-electron inelastic scattering , i.e. L� � d? � LT .
The transition between the 2 regimes (2D or 3D electron-electron scattering) occurs typically
when d? � L T . In both cases however, the localization is 3D (d? � L � ).

Figure 3.36: Conductance as a function ofT3=4 for a 228 �A-thick sample which sustained a 110
�C heat treatment (sample of CKSAS33 set from [Cou•edo, 2014]). The sample is in the M1 phase,
near the M1-to-M2 transition. The dashed line is a �t for 3D localization with p = 3

2 .

3.4.2.2 Dimensional crossover for weak localization

Eventually, a dimensional crossover occurs for the weak localization mechanism, as illustrated
�gure 3.37 for a sample in the M2 phase. 3D weak localization is encountered from room temper-
ature to T � 1 K (�gure 3.37.a). At lower temperature, this law is replaced by a more insulating
law, consistent with 2D weak localization (�gure 3.37.b) until the metallic regime induces a sat-
uration of the resistivity.

For non-interacting electrons, this crossover between 2D and 3D weak localization is expected
when the thicknessd? of the sample is such that [Berggren, 1982] :

d? � L in (Tcrossover )(� L � (Tcrossover )) (3.16)

Hence, forT > T crossover , the �lm is 3D from the weak localization point of view, with � / Tp=2.
For T < T crossover , the �lm is 2D regarding weak localization and � / ln(T ) (see section 1.5.2).
The coherence length is such thatL � �

p
D� in and evolves asL � �

p
Tp. Therefore, using the

value of p extracted from 3D weak localization and the crossover temperature, we can obtain
both L � (Tcrossover ) and its evolution as a function of the temperature.

For some representative samples, corresponding to samples near the M1-to-M2 transition
(CKSAS33 228 �A with a heat treatment of 250�C), deep in the M2 phase (OC5 75 �A with a
heat treatment of 70�C) and close to the M2-to-Insulator transition (CKSAS61 50 �A with a
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Figure 3.37: (a) Observation and �t (in red) for 1 K < T < 300 K of a 3D weakly insulating regime
in a 228�A-thick Nb 13:5 Si86:5 sample after a heat treatment at 250�C (sample of the CKSAS33 set
from [Cou•edo, 2014]), which has a M2 ground state. The exponent 3/4 is characteristic of a weak
localization mechanism dominated by 3D electron-electron inelastic scattering.(b) Observation
and �t (in blue) of the 2D weakly insulating regime in the same sample at lower temperatures
(30 mK < T < 1 K). A crossover occurs between 3D weak localization (red dashed curve) and
2D weak localization (blue dashed curve) atT � 1 K.

heat treatment of 70�C), the estimated L � (T ) are presented �gure 3.38, as well as the thermal
length L T estimated with parameters from [Marrache-Kikuchi et al., 2006]14. These samples
are 2D regarding both the coherence length and the thermal length at T = 10 mK ,
with L � & 80 nm and L T � 200 nm, well above the thickness of the thickest sample analyzed in
this thesis, (d? � 250 �A). At low temperatures, all our samples can therefore be deemed
two-dimensional both for weak localization and Coulomb interactions .

We will now concentrate ourselves on the description of the evolution of the 2D weak local-
ization law observed at low temperature, as a function of disorder.

Figure 3.38: Evaluation of the coherence length for di�erent samples, compared with the evolu-
tion of the thermal length. The samples have been chosen to be at various distances (regarding
disorder) to the M2-to-Insulator transition on the M2 side. The dashed lines are extrapolated
values obtained by using the theoretical evolution of the coherence length as a function of tem-
perature and the parameter p extracted from 3D weak localization. LT has been evaluated by
taking D= 0 :6 cm2.s�1 .

14. D= 0:6 cm 2 .s�1 , estimated from measurements of the critical �eld in the superconducting phase of Nb 15 Si85 .
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Figure 3.39: (left) Conductivity of a 228 �A-thick sample for di�erent heat treatment
temperatures. The dashed line corresponds to the M1-to-M2 transition as identi�ed in
[Cou•edo, 2014].(right) Evolution of parameter � wl as a function of� 4K for the same samples. The
blue dashed lines are guides to the eye to highlight the modi�cation of� wl across the M1-to-M2
transition.

3.4.2.3 Evolution of the 2D weak localization law as a function of disorder

Near and across the M1-to-M2 Transition

Once the 2D weak localization regime is identi�ed, we can extract� wl = (1 � 3
4 F )) e2

2~� 2 .
This parameter, which depends on the Hartree parameterF , should give us an insight on the
strength of Coulomb interactions as a function of disorder.
By doing so for a 228�A-thick sample of a-Nb13:5 Si86:5 at di�erent heat treatment temperatures
(presented �gure 3.39), we found that � wl increases linearly as a function of disorder by a factor
of about 2 for a change of� 4K of � 15 %. This increase is expected for enhanced electron-
electron interactions due to impaired screening in less conducting samples. However, as we cross
the M1-to-M2 phase transition, this trend reverses and� wl evolves counter-intuitively, decreas-
ing as disorder increases. We will come back on this in the section devoted to the interpretation
(section 3.6).

For samples of di�erent thicknesses, each one crossing the M1-to-M2 transition through heat
treatment, the same trend is observed (�gure 3.40) : � wl grows with disorder until the M1-to-M2
transition, after which it decreases. The change in the evolution of � wl can therefore be
used as yet another marker for the M1-to-M2 transition. We recover, as identi�ed in
[Cou•edo, 2014], the thickness dependence of the M1-to-M2 transition : this transition occurs at
lower values of� 4K for thinner samples.
By comparing the � 4K;c at the transition obtained by using either the change in the evolution
of � wl or the low temperature criteria (see section 2.3.3.4), represented respectively by arrows
and by vertical lines on �gure 3.40, we �nd a systematic di�erence between the two evaluation
methods : the critical value found using � wl corresponds to one heat treatment hotter.
This small shift could be due the combined uncertainties of both methods, as the transition has
been identi�ed at � one heat treatment temperature in [Cou•edo, 2014].

Near the M2-to-Insulator Transition

In samples exhibiting a M2 ground state, � wl continues at �rst to decrease with increasing
disorder. As presented �gure 3.41, a second change in the evolution of� wl with disorder occurs
for � 4K = (4 :7 � 0:7) e2

h , after which � wl increases with increasing disorder. After the M2-to-

Insulator Transition, which occurs at � 4K � 3 e2

h as we will see in section 3.5,� wl continues to
increase until 2D weak localization is not observable anymore and is replaced by a more insulating
law. As we will see in the interpretation section, the second change in the trend followed
by � wl (at � 4K � 4:7 e2

h ), although it does not correspond to the M2-to-Insulator Transition,
can be viewed as a precursor to the insulating phase .
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Figure 3.40: � wl as a function of � 4K for samples crossing the M1-to-M2 transition with heat
treatment. Each color corresponds to one sample. The dashed lines are guides to the eye. The
dotted line corresponds to the �rst M2 sample as identi�ed in [Cou•edo, 2014]. Arrows point on
the change in evolution of � wl with disorder.

Figure 3.41: Evolution of � wl as a function of � 4K for samples of a-Nb13:5 Si86:5 of di�erent
thicknesses and heat treatment temperatures. The blue lines are guides to the eye extrapolating
the evolution of � wl (� 4K ). They cross at � 4K � 5 e2

h .

Let us now examine the absolute value of� wl . The theoretical value of � wl is of the order
of e2

2� 2 ~ � 1:25 10�5 S:(ln(K) �1 ) for non-interacting weak localizing electrons. In the presence of
interactions, this value should be modi�ed due to a modi�cation of the screening by disorder.
In our samples, we found values of� wl ranging between 1:9 10�5 and 0:9 10�5 S(ln(K) �1 ), close
to the value for non-interacting electrons. The measured order of magnitude for� wl is therefore
consistent with theory.

As shown �gure 3.41, � wl seems to be sample-dependent, or, at least, thickness-dependent.
However, a systematic evolution as a function of disorder is clearly visible and it is particularly
striking that � wl (� 4K ) for the di�erent sample thicknesses all cross close to� 4K � 5 e2

h . This

value of disorder is close to� 4K � 4 e2

h , where the SIT is predicted within the bosonic scenario
(see section 1.7.3.2). We do not currently have an explanation for this and the concidence of
both values could well be fortuitous. A possible interpretation for the general trend of� wl (� 4K )
will however be given in section 3.6.
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3.4.2.4 Toward a more localizing law

We have described how� wl evolves with disorder. We would now like to look into more details
to the low temperature dependence of the resistance near the M2-to-Insulator Transition. More
speci�cally, in this paragraph, we will focus on the deviations from weak localization laws that
are observed as the M2-to-Insulator Transition is neared. To do so, let us examine the evolution
in R(T ) for a 75 �A-thick a-Nb 13:5 Si86:5 sample with the heat treatment temperature.

By monitoring the evolution of the R(T) characteristics of this �lm (presented �gure 3.42),
several points can be noticed as disorder is increased :

{ A �rst observable e�ect is an decrease of the overall conductance with� , in line with what
has been described section 2.3.2.2 : the e�ective mean free path is decreased as� increases.

{ The value of the conductance at saturation, � min , is lower for more disordered �lms15.
{ At the same time, the temperature at which the plateau in resistance appears is lowered

as disorder is increased. Indeed, a variation of 1 % in the resistance compared to 1/� min

occurs at � 45 mK for � =90�C and � 30 mK for � = 250�C.
{ For the more disordered samples, a deviation from weak localisation seems to appear at

very low temperature.

To go beyond this last remark, we plotted �gure 3.43 the deviation of the measured conduc-
tance of the �lms (plotted as 1/ R� ) from the best 2D weak localization �ts. 2D weak localization
is consistent with the measured conduction between 1 K and 200 mK for all� . However, at low
temperature, there is an observable deviation from this law, of small magnitude (. 0.5 % for
� =90�C for instance).
As disorder is increased :

{ The magnitude of this deviation increases by a factor of about 5 between� = 90�C and
� =250�C 16.

{ The maximum deviation (represented by the dotted line on �gure 3.43) occurs at higher
temperatures as� 4K increases, ranging for this sample from 35 to 55 mK17.

The observable deviation from weak localisation is small in this sample. However, its impor-
tance increases as disorder is further increased. To illustrate this point, we plotted �gure 3.44
the resistivity of a 50 �A-thick sample of a-Nb13:5 Si86:5 . The deviation from weak localization,
in this sample, is larger than 10% at low temperature. Deviation from weak localization then
cannot not be neglected and it is likely that a di�erent conduction process comes into play.
Since the low temperature behaviour of M2 samples, in particular close to the M2-to-Insulator
Transition, cannot be accounted for by weak localization only, we will try to understand in the
following paragraph what conduction mechanism could be involved.

3.4.3 Strong localization in the metallic samples

3.4.3.1 Identi�cation of the observed localization law

Since, close to the M2-to-Insulator transition, samples show a behaviour more resistive than
weak localization, at least before the resistance saturates, one can wonder what mechanism
could describe our data. Considering that all activation energies does not go to zero at the
M2-to-Insulator Transition (see section 3.3.2.3), one can also wonder if signs or heralds of the
insulating phase could not be found on the metallic side of the transition.
To answer this question, we have applied Zabrodskii's method to samples on the metallic side,
close to the transition. Although we acknowledge that this represent an unusual approach for
metallic samples, Zabrodskii's method gives an indication on possible conduction mechanism18.

By performing such treatment on samples similar to the one presented �gure 3.44, we found
that, close to the M2-to-Insulator Transition, the conductivity can be described at low temper-
ature (typically T < 300 mK) by an exponential law of the form :

R� = RM e(TM =T )n
(3.17)

15. We will come back on this point in section 3.4.4.2.
16. We would like to note that, as the temperatures at which these deviations appear are similar, this e�ect

cannot be explained by a problem of thermometer calibration. Indeed, such renormalized curves would, in this
case, give a constant deviation at the lowest temperatures.

17. This maximum does not correspond to the onset of the saturating regime.
18. As will be discussed in section A, we will also be able to rule out a power law evolution of the conductivity

with temperature.
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Figure 3.42: R� (T) for a 75 �A-thick a-Nb 13:5 Si86:5 �lm for di�erent heat treatment temperatures
� . The straight lines correspond to �ts of 2D weak localization for the two extreme values of
� . For � = 250�C, a quanti�able deviation from this law appears at low temperatures before
the saturation of the resistance. The arrows correspond to the temperatures at whichR� (T ) =
0:99

� min
.(Sample of the OC5 set, from [Crauste, 2010]).

Figure 3.43: Di�erence in sheet resistance between best 2D weak localization �ts and data
measured on a 75�A-thick a-Nb 13:5 Si86:5 �lm (OC5 set) for di�erent heat treatment temperatures.
The dashed line is a guide to the eye showing the maximum deviation from weak localization in
temperature.
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Figure 3.44: Resistance of an as-deposited 50�A-thick a-Nb 13:5 Si86:5 �lm as a function of tem-
perature. The red curve is a �t of the 2D weak localization regime (CKSAS43 set).

Figure 3.45: Application of Zabrodskii's method on the sample presented �gure 3.44. We found
a constant slope on about one decade in temperature with a linear coe�cient� 1

3 (represented
by a red line), possibly corresponding to a 2D Mott regime. The deviation from the red line
re
ects the resistance saturation observed at very low temperature.

with n = 1
3 . This law adequately describe experimental data on about one order of mag-

nitude in temperature (see �gure 3.45). This regime has been observed for several samples
(3:75 6 � 4K 6 6 e2

h ). As we have already seen in insulators,n = 1
3 corresponds to a2D Mott

VRH regime. We will moreover later see that the characteristic parameters of this evolution
(TM and RM ) are evolving continuously from this regime to the insulating phase.

3.4.3.2 Dependence as a function of the thickness and disorder

By using the same procedure as for insulating �lms, we extractedRM and TM for the samples
in the M2 phase with an identi�ed n = 1

3 regime (�gure 3.46). In this �gure, � 4K is tuned by both
thickness and disorder.RM is found to evolve continuously as a function of disorder.RM seems
to be mainly controlled by the value of � 4K : samples of similar� 4K having di�erent thicknesses
or compositions haveRM that di�er by less than 10 %. However, the evolution of RM with � 4K

is opposite to what has been observed in the Mott and ES VRH regimes for insulating samples.
At the same time, TM is also increasing as samples grow closer to the M2-to-Insulator Tran-
sition. TM is moreover thickness-dependent : for the same disorder level at� 4K � 4:25 e2

h ,
the as-deposited 125�A-thick a-Nb 11:3 Si88:7 sample has a characteristic energy ofTM = 2:3 mK
whereas the as-deposited 50�A thick a-Nb 13:5 Si86:5 sample hasTM = 5:8 mK.
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Figure 3.46: Extracted parametersRM and TM for metallic samples for which an = 1
3 activated

regime has been identi�ed. This �gure includes samples from batches CKSAS43, CK11, CK13
and CK15 (from [Marrache-Kikuchi, 2006]), of thicknesses ranging from 5 to 25 nm andx ranging
from 10 to 13.5 %.

If the identi�ed regime indeed corresponds to a 2D Mott regime, one could expect an e�ect of
the thickness on the characteristic energy sinceTMott / 1

N (E F )d?
. One should therefore obtain

that T M d? is a constant for a givenN (E F ). T M d? has been plotted �gure 3.47. As can be seen,
TM d? presents a continuous evolution as a function of disorder and no longer seems to depend
on the thicknessd? as TM was. This thickness dependence is a strong argument to support that
the observed regime indeed corresponds to a 2D Mott-type VRH regime.

The hopping distance r m calculated from the extracted parameters in this regime is of the
order of 0.15� m for the as-deposited 50�A-thick a-Nb 13:5 Si86:5 sample, which is quite long for a
hopping process. In addition,TM is of the order of 0.1 mK. Considering the validity criteria for
observing a Mott-type VRH regime (section 3.3.2), this value is way too low regarding Mott's
theory. These unusual values are in line with those obtained on the insulating side of the M2-to-
Insulator transition (see section 3.3.2.5) : TMott decreased rapidly as disorder diminished close
to the M2-to-Insulator transition, whereas the average hopping distancer M increased.
Since we are con�dent in our identi�cation of the insulating behavior ( n = 1

3 ), we believe that
the intermediate temperature regime in these M2 �lms can be explained by a 2D Mott-type VRH
with values of the characteristic temperature TM which remain to be understood19.

3.4.3.3 Evolution of the insulating law close to the M2-to-Insulator transition

By increasing disorder further than what has been presented in our metallic state so far, we
expect to eventually cross the M2-to-Insulator Transition. We can wonder what would happen
to the observed Mott regime in this case, as on the other side of the transition we systematically
found an activation law with n � 1 at the lowest temperatures (see 3.3).

For this, let us start from a M2 sample where a 2D Mott regime has been identi�ed at in-
termediate temperatures (namely the as-deposited 50�A-thick a-Nb 13:5 Si86:5 sample). We will
use Zabrodskii's method to follow the evolution ofn as the sample moves closer to the M2-to-
Insulator transition with the heat treatment � . n then is set as a free parameter for Zabrodskii's
method. The corresponding Zabrodskii's plots are shown �gure 3.48.n is barely modi�ed until
� > 100�C. Then, as disorder is further increased, n progressively evolves fromn = 1

3 until it
reachesn = 1

2 for � = 160�C. For this heat treatment temperature, the resistance still saturates
at very low temperature. The sample is therefore still in the M2 regime. However, in the inter-
mediate temperature range, the evolution of conductivity cannot be explained by a Mott-type
VRH regime.

19. As mentioned in section 3.3.2.5, these values could well be acceptable when taking into account corrections
to the VRH theory close to the MIT [Shafarman et al., 1989].
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Figure 3.47: E�ect of thickness and disorder on the extracted characteristic energy. This �g-
ure includes samples of a-Nbx Si1�x from batches CKSAS43, CK11, CK13 and CK15 (from
[Marrache-Kikuchi, 2006], of thicknessesd? ranging from 5 to 25 nm and x ranging from 10 to
13.5 % .

Figure 3.48: Zabrodskii's technique used on a 50�A-thick sample of a-Nb13:5 Si86:5 for di�erent
heat treatment temperatures � (in�C). Only a selection of � is shown for clarity.

The evolution of n is represented �gure 3.49 for a 45�A and a 50 �A-thick a-Nb 13:5 Si86:5 samples
of di�erent � . As can be seen, for both thicknesses,n is constant and signs a 2D Mott regime
for 4 � � 4K � 6e2

h . When disorder is further increased (� 4K � 4:0 � 0:2e2

h ), n increases until it
reaches almostn = 1 close to the M2-to-Insulator transition (which will be properly de�ned in
section 3.5).

Using the value of n determined in this manner, we extracted the parametersRn and Tn

de�ned in this continuously evolving regime by R� = Rn e
� Tn

T

� n
. Under the assumption that Tn

is a characteristic energy for the system, we can examine howTn and Rn evolve with disorder.
The corresponding plots are given �gure 3.50. Both quantities evolve continuously with� 4K .
As could be expected,Tn continues to decrease as disorder lessens. However,Rn concomitantly
decreases, in line with what has been observed forRM in the previous paragraph, but contrary
to what happens for the VRH laws in the insulating regime.
As can be seen �gure 3.51,Tn continuously evolves from the energies found in the previously
identi�ed regime. Thickness dependence in this evolving regime is illustrated �gure 3.52, where
the R� (T ) characteristics have been plotted for samples of similar� 4K ' 3:2 e2

h but di�erent
thicknesses (45�A, 50 �A and 150 �A). Although these samples all present an intermediate regime
with n = 1

2 , the corresponding characteristic temperaturesTn vary with the �lm thickness. Tn
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Figure 3.49: Evolution of the parameter n as a function of disorder for 45�A (in black) and 50
�A-thick (in red) a-Nb 13:5 Si86:5 samples of di�erent � (� ranging from 70 to 160�C for the 50
�A-thick sample and ranging from 70 to 110�C for the 45 �A-thick sample).

Figure 3.50: 50�A-thick sample of a-Nb13:5 Si86:5 : evolution of the parameters Tn and Rn as a
function of heat treatment.

therefore is thickness-dependent, similarly to a Mott-type characteristic energy, even though, for
these samples, the activation law resembles more an ES-type VRH. We will come back on a
possible interpretation of this e�ect in a later section.

3.4.4 The saturations

Until now, we have studied the intermediate temperature behaviour of our metallic samples.
Let us now turn to the very low temperature behaviour of the resistance, namely the "resistance
saturations".

In sections 2.3.3.4, 3.4.1 and 3.4.2.4, we mentioned that previously studied M2 samples pre-
sented a well-de�ned plateau in resistance at very low temperature, which valueRmin = R� (10
mK) increased as disorder increased. The temperature at which the saturation sets in,Tsat also
decreases with� 4K . In the present work, low-disordered M2 samples present the same kind of
behaviour as shown �gures 3.13 and 3.14. However, for more disordered M2 samples, such a
plateau is not measurable at 10 mK, although there is a clear deviation from the higher temper-
ature conduction law.
The question then is : how can we separate the M2 regime from the insulating one?

111



112 3.4. ANALYSIS OF METALLIC SAMPLES

Figure 3.51: (Empty circles) Ti d? (i = M; n) of a single 50 �A-thick sample of a-Nb13:5 Si86:5 at
heat treatment temperatures ranging from 70 to 160�C, and samples from the batches CK11,
CK13 and CK15 (from [Marrache-Kikuchi, 2006]) identi�ed in the n = 1

3 regime (shown �gure
3.49). (Red dots) TM d? for samples which have been identi�ed with a 2D Mott regime for M2
samples in which a 2D Mott regime has been identi�ed. (Black dots) samples withn > 1=3 as
seen in 3.49.

Figure 3.52: Close-up on theR� (T ) characteristic between 0.5 and 1 K of samples of a-
Nb13:5 Si86:5 (50 �A-thick which sustained a heat treatment at 150�C in black, as-deposited 45
�A-thick in blue) and a-Nb 10Si90 (as-deposited 150�A-thick, in green). Fits of the resistivity with
n = 1

2 activated laws are presented in red.
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3.4. ANALYSIS OF METALLIC SAMPLES 113

Figure 3.53: Measurement of theR(T ) characteristics at di�erent bias currents, for a 50 �A-thick
a-Nb13:5 Si86:5 sample which sustained a heat treatment at 160�C. This plot allows us to ensure
that we are in the Ohmic regime.

In order to answer this question, one ought to carefully take into account electron-phonon
decoupling, since the corresponding samples have resistances of the order of a few tens of k

for which measurement at 10 mK is not easy. Indeed, our high impedance set-up gives a large
uncertainty at these values of resistance, and the TRMC2 cannot send excitations lower than
10 pA (see section 2.2.3). In this range of resistance, the measurements are therefore subject to
possible electron heating e�ects which have to be considered.

Let us emphasize that this problem is limited to a small number of samples (the 45�A-thick
Nb13:5 Si86:5 sample with heat treatments of 100 and 110�C). For most of our samples, several
measurements at di�erent biases have been made, ensuring that we indeed were in the ohmic
regime. For instance, �gure 3.53 shows measurements made at biases ranging from 10 to 400 pA
for the 50 �A-thick Nb 13:5 Si86:5 sample with heat treatments of 160�C : if electron-heating e�ects
can be seen at high currents, the three smaller biases give the same value of the resistance.

In this section, we will check that our observed metals cannot be explained by electron-phonon
decoupling linked to an external source of noise or to a limitation of the measurement apparatus.
We will also monitor the evolution of the resistance observed at the lowest measured temperature,
close to the MIT.

3.4.4.1 Electron-phonon decoupling

Measurement of the Electron-Phonon coupling constant

When electrons are subjected to a power source (under the e�ects of an increased polarisation
or of a spurious electromagnetic power for instance), inelastic scattering with phonons may not be
su�cient to thermalize them at low temperature. In this case, the electrons have a temperature
Te which di�er from the temperature of the thermal bath, which we will assume to be equal to
the phonon temperature Tph . This phenomena is described by the following equation :

P
V

= ge�ph (T �
e � T �

ph ) (3.18)

where P is, in our case, the Joule heating power,V is the volume of the �lm, � is a constant
related to the electron-phonon relaxation time20 and ge�ph is the electron-phonon coupling co-
e�cient. If ge�ph is too low - or equivalently P is too high - we may observe a saturation of the
resistance due to electron heating.

20. � = 5 has been found in 100 nm-thick a-Nb 8:3 Si91:7 [Marnieros et al., 2000]. This value is consistent with
a two dimensions electron-phonon interaction in the dirty case [Liu and Giordano, 1991].
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114 3.4. ANALYSIS OF METALLIC SAMPLES

Figure 3.54: Measurement of theR(T ) characteristics at di�erent bias currents, for a 45 �A-thick
a-Nb13:5 Si86:5 sample which sustained heat treatment at 110�C.

ge�ph can be experimentally determined by measuring the considered �lm at di�erent polar-
izations. Indeed, taking the lowest bias as the reference21 - i.e. the one for which electronic and
phononic temperatures are equal -, and acknowledging that the resistance is dependent on the
electron temperature (and not the phonon one), at each (phononic) temperature the resistance
measured at biasI allows to determine the electronic temperature. Then,P(T �

e � T �
ph ) should

be linear with a coe�cient ge�ph [Marnieros et al., 2000].
For the 45 �A-thick Nb 13:5 Si86:5 sample which has sustained a heat treatment at 110�C22, such
bias current e�ect can be seen �gure 3.54. In particular : the 10 pA and 20 pA biases gave
identical values (within the measurement noise) ofR down to 11 mK. This is the region where
the 10 pA measurement was considered trustworthy. However, there is a 10% di�erence in the
resistance measured below 12 mK at 10 pA and at 20 pA. The measurement at 10 pA can there-
fore not be completely trusted to be in the ohmic regime at these temperatures.

By performing the electron-phonon analysis, shown �gure 3.55, we extractedge�ph = (1 �
0:25) � 108 W.K �5 .m�3 in the [11,20 mK] range. This value is consistent with other measure-
ments of the electron-phonon coupling constant that have been performed throughout the years
in the group : for a thick (1000 �A) a-Nb8:3Si91:7 sample,ge�ph = (1:3 � 0:3) � 108 W.K �5 .m�3

was obtained between 30 and 600 mK.

For samples close to the M2-to-Insulator Transition

Having determined the electron-phonon coupling constant, and assuming that it is tempera-
ture independent (in the [8 mK, 30 mK] range), we can simulate the e�ect of Joule heating in
our samples as a function of the applied current. In particular, we are able to check if deviations
occurring at low temperature are linked to electron-phonon decoupling.
We then start from the assumption that the "real" conduction law, corresponding to non-heated
electrons, is the continuation of the law followed at intermediate temperatures. Then, using the
value of ge�ph for the considered �lm, we simulate the sample response for a given bias.
Figure 3.56 shows the result of this modelization for a sample which exhibits a strong localization-
type of law at intermediate temperatures (see section 3.4.3). First, the intermediate temperature
(here 17 < T < 200 mK) law is determined. In the present case, it is of activated type, with
n=0.83, and corresponds to the green line �gure 3.4.3. Then, knowing the electron-phonon cou-
pling constant (here ge�ph = 1 � 108 W.K �5 .m�3 ), we model the e�ect of a 10 pA bias current.
The corresponding curve is shown in orange. As can be seen,the simulated curve cannot
explain the observed resistance saturation . In particular, the value measured at 10 mK is
two times smaller than the simulated value.

21. This is reasonable as long as the two lowest biases yield the same resistance value.
22. This sample is on the verge of the M2-to-Insulator Transition.
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Figure 3.55: P=V as a function of T5
e � T5

ph for the measurements presented �gure 3.54. From
the linear �t (solid line), we obtain ge�ph = (1 � 0:25) 108 W.K �5 .m�3 .

Figure 3.56: Blue points are experimental data, corresponding to the sample presented �gure
3.54 measured at 10 pA. The green line is the extrapolation from high temperatures withR =
33350e( 0:0472

T )0:83
. The orange line is the simulation of the e�ect of electron-phonon decoupling

on the extrapolated green curve, with a current of 10 pA corresponding to the measurement bias,
obtained by assumingge�ph = 1 � 108 W.K �5 .m�3 .

Exclusion of parasitic power

Having excluded that the electrical power injected by the measurement itself could be at the
origin of the observed saturations, one can wonder if those could be explained by a constant
power arriving on the sample, due to bad IR shielding, or noisy instruments for instance. We
have addressed this problem in sections 2.2.3.3 and 3.2.2, but we would here like to provide a
more quantitative analysis.

One way of discarding this artefact is to estimate the outside spurious power necessary to
produce the resistance saturation observed in the M2 regime. Similarly to what has been done
in the previous paragraph, we assume that the conduction law at the lowest temperatures is
the continuation of the intermediate temperature conduction law. Then, knowing the electron-
phonon coupling constant, we estimate the power required to explain the resistance saturation.
Figure 3.57 shows such a simulation for the 50�A-thick as-deposited a-Nb13:5 Si86:5 sample : only
an external power as high asP0 = 2:2 10�14 W can explain the low temperature resistance
behaviour. This value is two orders of magnitude higher than the measurement power (of the
order of 3 � 10�16 W for this sample). This would correspond to a voltage ofUnoise = 25 �V.
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116 3.4. ANALYSIS OF METALLIC SAMPLES

Figure 3.57: Simulation of electron-phonon decoupling on a 50�A-thick as-deposited a-Nb13:5 Si86:5

sample, with a constant powerP0 = 2:2 � 10�15 W (orange line).

This is unrealistic. Indeed, such a high voltage noise source would not allow the measurement
of both the M1 and the superconducting regimes - which were measured in the same cryostat -.
It would alternatively correspond to a current of I noise =800 pA. This is unrealistic as well since
such a current noise source would a�ect more the most insulating samples. A constant incoming
power P0 from the environment is also unlikely : experimentally the temperature at which the
resistance plateau appears decreases as the sample becomes more and more resistive. Moreover,
insulators have been measured in the same cryogenic environment, without observable electron
heating e�ects.
Finally, let us note that this modelisation yields di�erent values of P0 for di�erent samples. For
instance, P0 = 1:4 10�15 W for the 45 �A-thick as-deposited a-Nb13:5 Si86:5 sample. This power
corresponds toUnoise = 10 �V or I noise = 130 pA. This con�rms that the resistance plateaus
cannot be due to a constant noise source, whether current or voltage. Moreover,
it shows that this phenomenon cannot be explained by a constant incoming power
either.

3.4.4.2 Evolution of the saturation as a function of disorder

Having checked that the obtained saturations, even for the highest observed resistances at 10
mK, cannot be explained by electron-phonon decoupling, we can safely use the obtained values of
� min = � � (10mK ) to complete the evolution of � min obtained in [Cou•edo, 2014] (and presented
in section 2.3.3.4). The obtained plot is presented �gure 3.5823 for all samples identi�ed as being
in the M2 phase, grown for this thesis and mentioned in [Marrache-Kikuchi, 2006] [Crauste, 2010]
[Cou•edo, 2014].
The obtain curve allowed us to �nd that :

{ � min evolves linearly as a function of� 4K for � 4K > (4:65� 0:65) e2

h , emphasizing that, for
these samples, quantum corrections are small between 10 mK and 4 K.

{ � min does not depend on the tuning parameter (either composition, thickness or heat
treatment).

{ � min goes to zero as� 4K ! (3 � 0:2) e2

h .
{ As the low temperature correction to conductivity becomes important when we get closer

to the MIT, � min evolves faster (it decreases of 2 orders of magnitude between� 4K = 4:5 e2

h

and � 4K = 3 e2

h ), giving rise to a sharp transition.

Let us recall that, according to the Io�e-Regel criterion, a MIT should occur in the 3D case
for kF l � 1, with � c = e2

h . In our case, we found a transition around � 4K;c � 3 e2

h , close
to this expected value, but slightly higher. This is probably due to the di�culty of determin-

23. To obtain this �gure, the 50 �A-thick a-Nb 13:5 Si86:5 sample from [Crauste, 2010] has been omitted. Indeed,
an important part of the present thesis has been dedicated to the elimination of noise on the presented experiment.
The incriminated sample has been found, a posteriori, to have been a�ected by a non-optimal �ltering of the lines.
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Figure 3.58: � min as a function of � 4K in linear (a) and semilog (b) scales. In red, � min

obtained from the samples grown for this thesis. In black, � min obtained from samples of
[Marrache-Kikuchi, 2006] [Crauste, 2010] [Cou•edo, 2014]. In green, �t of the experimental data
with � min = 0:97� 4K � 1:05 (in e2

h unit).

ing the absolute value ofkF l , in particular in the presence of both localization and interactions24.

Since � min (considered as an estimation of theT ! 0 conductivity) vanishes near the M2-
to-Insulator Transition, it plays a role similar to an order parameter. We can therefore �t the
evolution of � min with the scaling relation :

� min / j � 4K � � 4K;c j � (3.19)

where � is a critical exponent depending on the universality class of the system . By
�tting our data with this scaling law (�gure 3.59), we �nd � 4K;c = 3 e2

h and � = 0:7 � 0:05. This
value can be compared to those found in other 2D MITs [Popovi�c, 2016] which range from 1 to
3. We clearly belong to another universality class, maybe due to :

1. a much higher carrier density (� 1013 cm�2 vs � 1011 cm�2 in Si-MOSFETs)

2. the proximity of a superconducting state.

To summarize our �ndings on the M2 phase :
{ Close to the M1-to-M2 transition, M2 samples exhibit a 2D weak localization behaviour

at intermediate temperatures, with an anomalous dependence of the prefactor� W L with
disorder.

{ When disorder is increased, deviations from the 2D weak localization law is observed and
it gives way to a more localizing behaviour, compatible with an activated conduction law.

{ This activated law is identi�able with a 2D Mott-type VRH, except close to the M2-to-
Insulator transition where the resistance increases more steeply, until it reaches a simply
activated law (n = 1

3 continuously evolves towardsn � 1). The corresponding characteristic
temperatures and resistances increase as the MIT is approached. This evolution is counter-
intuitive for RM (Rn ). Moreover, the values forTM (Tn ) are much smaller than expected
and they are thickness-dependent as would be expected for a Mott-type VRH.

{ At low temperatures, the resistance saturates for all samples in the M2 regime. The
corresponding values of� min are universal and only depend on� 4K . � min goes to zero at
the MIT, as could be expected, although the system is here 2D with respect to all relevant
phenomena.

24. Taking the 300 K conductivity as a measure of disorder gives � 300K;c = 9 e2

h .
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Figure 3.59: Close-up on� min for � 4K . 10e2

h with �ts using the scaling relation given by
equation 3.19 (see laws and parameters in the inset).

3.5 The MIT

In section 3.3, we have analyzed the evolution of the transport properties in insulating �lms
as disorder is varied. In section 3.4, we have done the same for the metallic regime. In this
section, we would like to connect both analyzes and examine what happens at the M2-to-Insulator
transition. We will infer the necessary conditions to have an insulating sample in a-Nbx Si1�x

alloys. We will then draw the phase diagram for our samples and try to propose an interpretation
for the observed phenomena in the next section. But �rst, let us identify the M2-to-Insulator
Transition more precisely.

3.5.1 Identi�cation of the �rst insulating sample in a series

In order to establish more precisely the criteria for the M2-to-Insulator transition, we would
like to examine more closely the case of the 45�A-thick a-Nb 13:5 Si86:5 �lm. As seen �gure 3.13,
a progressive increase in the heat treatment temperature allowed us to sample the transition
: we managed to cross the MITwithin a single sample via � . At the same time, the parame-
ter n increases as observed �gures 3.49 and 3.60. Asn becomes higher than 0.5 at the lowest
temperatures, 2 regimes are clearly de�ned : one withn evolving from 0.5 to 1 (at the lowest
temperatures), and an ES VRH regime (at intermediate temperature).

In section 3.4.4.1 (see �gure 3.56), we have shown that, for� = 110�C ( � 4K = 2:9 e2

h ), this
sample still presented an intrinsic saturation of the resistance and therefore was on the M2 side
of the transition.
One step hotter in the heat treatment temperature renders the same sample insulating. In-
deed, as can be seen �gure 3.61, for� = 120�C ( � 4K � 2:85 e2

h ), the �lm does not deviate
from a simply activated law at low temperature (n extracted through Zabrodskii's method gives
n = 0:98 � 0:05). This activated regime is observed from 12.5 mK to 90 mK, while the resistance
varies by a factor 20 from 25 k
 to 530 k
.
Let us emphasize thatn = 1 (within experimental determination) is only obtained from � = 120

�C and hotter. The intermediate temperature activated regime measured for � = 110�C corre-
sponded to n = 0:85. n = 1 at low temperature therefore signs the emergence of the
insulating phase. We can identify the transition to occur at � 4K = 2:85 e2

h , close to the critical
value determined by the evolution of � min (4K ) observed �gure 3.59.

For this �lm, the Zabrodskii's plot is given �gure 3.63 : the simply activated regime ( T0 �
50 mK ; R0 �13.5 k
) gives way to an ES-type VRH regime for temperatures ranging from 90
mK to 700 mK ( TES �90 mK ; RES �8.6 k
) as described in section 3.3. The corresponding
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Figure 3.60: Zabrodskii's technique used on a 45�A-thick sample of a-Nb13:5 Si86:5 for di�erent
heat treatment temperatures � (in�C). Only a selection of � is shown for clarity. For �lms with
n > 0:5, a intermediate temperature ES VRH regime is clearly visible.

�ts are compared to the experimental data �gure 3.62.

3.5.2 Comparison of the laws at both sides of the MIT

In this thesis, we found and characterized strong insulating laws on both sides of the MIT.
In each case, we extracted a parametern (characteristic of the insulating law), a characteristic
energyTi , and a parameterRi . For all the samples studied in this thesis, including old data sets,
these parameters are presented �gures 3.6425, 3.65 and 3.66.

We saw that, in our metallic �lms ,
{ For samples such that 5:5> � 4K > 4 e2

h , close to the MIT, we have an insulating regime with
n = 1

3 at intermediate temperatures, larger than those for which the resistance saturates.
{ Within our error bars, the extracted parameters Ti and Ri increase continuously as a

function of disorder.
{ We observe an e�ect of the thickness onTM (and Tn ), as expected for a 2D Mott regime.

On the insulating phase , we saw that :
{ We observe di�erent insulating laws ( n � 1, ES and 2D Mott VRH) with T0 < T ES < T Mott

when the three regimes are observed. The hierarchy forTES and TMott is what is expected
theoretically due to the opening of the Coulomb gap. TheTi are diminishing as we get
closer to the TMI.

{ We did not observe any visible e�ects of the thickness on the parameters26 Ti and Ri .
{ RMott and RES decrease when disorder is increased, whileR0 increases.
Now, let us look at the MIT. What is remarkable in �gures 3.23, 3.65 and 3.66 is the con-

tinuity of all measured parameters : The exponents characterizing the strong localization laws
continuously evolves from a singlen = 1

3 law in the M2 regime up to 3 exponents ofn = 1
3 ,

n = 1
2 and n = 1 in the insulator. Concomitantly, the characteristic energies Ti all converge close

to � 4K;c = 3 � 0:2 e2

h , the critical disorder value for the M2-to-Insulator transition. Even more
striking is the convergence of all characteristic resistances at the M2IT, whatever their initial
evolution with disorder in their respective phases.
These implies a very gradual change in the system, more compatible with a crossover than an

25. Only the lowest temperature regime and the ES regime are represented. Moreover, samples showing n > 1:2
(see �gure 3.23) are not presented here for clarity. They are addressed in appendix B and section 3.6

26. Such e�ect is expected in TMott but is not observed due to a limitation in the choice of samples with di�erent
thicknesses in this regime.
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Figure 3.61: R� (1=T) characteristic of a 45 �A-thick a-Nb 13:5 Si86:5 sample which sustained a
heat treatment at 120�C. Dashed line : linear �t showing no deviation to the eT0 =T law at low
temperatures.

Figure 3.62: R� (T ) characteristic of a 45 �A-thick a-Nb 13:5 Si86:5 sample which sustained a heat
treatment at 120�C. In addition are plotted the �ts for the simply activated regime (in green)
and the ES VRH regime (in red). See text for the �tting parameters.
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Figure 3.63: Zabrodskii's method applied on the �lm presented �gure 3.62. Both the simply
activated and the ES VRH regime are clearly determined.

actual transition at � 4K;c = 3 � 0:2 e2

h . In particular, the characteristic energies does not vanish

at � 4K;c . In section 3.3.2.4, we also saw that �CG
2 vanished in the vicinity of � 4K = 4-5 e2

h rather
than at the M2IT. The question then arises on whether the "M2IT" is an actual transition or a
crossover.

3.6 Interpretation

The questions listed at the beginning of this work (introduction of section 2.4) and which we
tried to address could be summarized by :

{ What is the nature of the Metal 2 phase? Is it fermionic or bosonic? Is it 3D or 2D? Are
there any precursor signs of the insulating regime in this dissipative phase?

{ What is the nature of the Insulating phase? Is it fermionic or bosonic? Can it be fully
explained by an activated behavior?

{ Is the Metal 2-to-Insulator a phase transition or a crossover? Is the change continuous or
abrupt?

In order to try to answer these questions, we have performed a detailed study of the M2-
to-Insulator Transition thanks to the three di�erent parameters ( x, d? and � for �ne-tuning)
that were available to modify the disorder in a-Nbx Si1�x �lms. We have focused on character-
izing the evolution of the resistance with temperature for di�erent disorder levels, and analyzed
accordingly the experimental data obtained both during this thesis and in previous works. We
have established that the M2 regime is characterized not only by a saturating resistance at low
temperature, but also by a strongly localized behavior, at intermediate temperatures, when close
to the M2-to-Insulator Transition. This behavior is highly unusual for metallic phases and we
believe it is an important result of this work. Moreover, we have shown that the insulating laws
evolve progressively and continuously, not only in the insulating phase, but also in the M2 phase.
However, the analysis was carried out without much dwelling on a possible interpretation. This is
the object of this paragraph. In the following, we will try to answer these questions by proposing
a scenario which could explain the di�erent observed phenomena.

The Metal 2 phase - The Metal 2 phase is characterized by a negative TCR (dR
dT ) and a

saturation of the resistivity at very low temperatures. In the present work, we have been able to
re�ne our analysis of this ground state. Let us summarize the major observations that have to
be theoretically explained :

{ Close to the M1-to-M2 transition, M2 samples exhibit a 2D weak localization behavior
at intermediate temperatures, with an anomalous dependence of the prefactor� wl with
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Figure 3.64: Evolution of the parameter n as a function of the 4 K sheet conductivity. Dashed
lines correspond ton = 1

3 , n = 1
2 and n = 1. The samples included are from this thesis and

from the sets CK15, CK13, CK11, CK10, CK9, CK8 and CK6 of compositions ranging from 8
to 12.5% in Nb and thicknesses from 125 to 250�A, from [Marrache-Kikuchi, 2006].

Figure 3.65: Evolution of the characteristic energies of the activated regimes observed for the
samples featuring �gure 3.64.
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Figure 3.66: Evolution of the prefactors of the activated regimes, for the same samples than
�gure 3.64.

disorder. In this section, we will refer to this behavior asM2M .
{ When disorder is increased, deviations from the 2D weak localization law is observed and

it gives way to more insulating behaviors, compatible with an activated conduction law. In
this section, we will refer to this behavior asM2I.

{ The observed activated law is compatible with a 2D Mott-type VRH, except close to the
M2-to-Insulator transition, which we will consider in a later paragraph. The corresponding
characteristic temperatures (TM ) and resistances (RM ) increase as the MIT is approached.
This evolution is counter-intuitive for RM . Moreover, the values forTM are much smaller
than expected and they are thickness-dependent as awaited for a Mott-type VRH.

{ At low temperatures, the resistance saturates for all samples in the M2 regime. The
corresponding values of� min are universal and only depend on� 4K . � min goes to zero at
the MIT.

As we have seen section 2.3.3.4, the M2 phase emerges from another metallic phase, the
Metal 1, which has been characterized in [Cou•edo, 2014] and for which it is reasonable to assume
that superconducting 
uctuations play an important role at intermediate temperatures, before
the resistivity saturates. We propose to describe this phase as metallic islands scattered in
a superconducting matrix. In this picture, the proportion of metallic islands is close to the
percolation threshold, thus explaining the �nite resistance measured at low temperature.

Conversely, the Metal 2 could then be pictured as superconducting islands scat-
tered in a fermionic matrix. When disorder is increased, the size of the superconducting
islands decreases. Cooper pairs that were localized in these islands are broken and the corre-
sponding electrons contribute to the fermionic matrix.

The following experimental features could then be explained :
{ The weak localization feature - At high and intermediate temperatures, the fermionic

component dominates, and behaves like a regular disordered 2D fermionic system : weak
localization explains theR� / lnT behavior observed both in the M2M and the M2I phases.

{ Evolution of the weak localization pre-factor � wl -
{ As disorder is increased in the Metal 1,� wl increases as expected when evolving towards

a system where Coulomb interactions are less e�ciently screened (section 3.4.2.3).
{ In the M2M phase, as disorder is increased, superconducting puddles are progressively

destroyed, inducing an increase of the DOS at the Fermi levelN (E F ) which, in turn,
could make � wl diminish.

{ In the M2I phase, as disorder is further increased and the number of superconducting
puddles diminish, the increase inN (E F ) is no longer su�cient to counterbalance the
decrease in the screening e�ciency due to disorder.� wl then increases again as disorder
is increased.
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{ The activated conduction law in the M2I phase - As disorder becomes important,
electrons in the fermionic matrix begin to strongly localize (3.4.3.2), which translates into
an activated conduction law at intermediate temperatures.
{ As seen above, in this phase, one would expect the screening becomes less e�cient. This

would correspond to an Aronov-Altshuler-type anomaly in the density of states. When
this feature appears in the DOS, the e�ect should, at �rst, be small, so that a Mott-type
VRH is possible [Sarachik and Dai, 2002].

{ The characteristic temperature TM could however be a�ected by this non-constant DOS
[Shafarman et al., 1989], which would explain the small measured values. Indeed, the
expression of the VRH characteristic temperatures given section 1.5.1 are only valid well
into the insulating regime and breaks down in the vicinity of the metallic phase, and
should not be valid close to the MIT [Pollak and Shklovskii, 1991].

{ Whether the fact that the transition from M2M to M2I occurs when Coulomb interactions
change in dimensionality is a coincidence or not remains to be investigated.

{ The saturating resistances at low temperature - Our proposed description of the
M2 phase is very similar to a Josephson Junctions Array (JJA) [van der Zant et al., 1996].
These systems are known to, under certain conditions, give rise to metallic states, analo-
gous to those encountered in granular superconductors (see section 1.7.3.4.a). The junctions
would, at low temperature, short circuit the fermionic component. The resistance satu-
rations we observe would then fall under the theories developed in section 1.7.3.4. The
temperature at which the saturation sets in would then re
ect the superconducting critical
temperature Tc of each grain.

The M2-to-Insulator Transition - The M2-to-Insulator Transition is characterized by the
transition between a �nite resistance and a diverging resistance at low temperature. The exper-
imental features that have to be explained are :

{ It occurs for kF l � 3.
{ The activated law at intermediate temperatures in the M2 phase gives way to both an

Efros-Shklovskii-type VRH (at intermediate temperature) and a simply activated behavior
(at low temperature) on the insulating side.

{ The characteristic energy scales on both sides of the transition converge but do not vanish.
Within the developed model, this could be explained as follows. As the screening vanishes, the
DOS begins to be unnegligibly a�ected by Coulomb interactions and a zero-bias dip in the DOS
appears (this behavior has been observed in other materials such as Si:B [Lee et al., 1999] or bulk
NbSi [Bishop et al., 1985]), providing an increasing value of the activation powern. Eventually,
as the DOS becomes almost fully depleted,n ! 1. Indeed, it has been observed in 3D Si:P that,
as disorder is increased, the parabolic gap (g(�) � � 2) becomes deeper and eventually 
attens to
zero at low excitations. This would also explain the converge ofT0 and TES close to the M2IT.

As the Coulomb-induced gap increases, electrons pairing is hindered and superconducting
puddles decrease in size and are more scarce. The Josephson tunneling is then suppressed.
The "transition" could then be more appropriately described as a crossover between a regime
where the fermionic channel dominates the conduction (the insulator) and a regime where the
interplay between the fermionic channel and the superconducting 
uctuations give rise to a
metallic state.

The insulating regime - The insulating regime is characterized by a simply activated
conduction regime at the lowest temperatures which gives way to a VRH-type conduction regime
(either a single ES or two successive ES and 2D Mott regimes). Let us summarize our �ndings
on this phase :

{ The characteristic energies continuously increase when disorder is increased.
{ Close to the M2IT, Mott VRH is no-longer observable.
{ The ES-type VRH is always observable.
{ Close to the M2IT, the extracted characteristic temperatures are lower than expected for

\standard" VRH regimes, and the characteristic resistancesRi all saturate.
{ Close to the M2IT, over-activated behaviors are measured.
These could be explained as follows :
{ The over-activated behavior near the M2IT - This unexpected behavior, observed

in some samples in the immediate vicinity of the M2IT, could be explained by super-
conducting 
uctuations. Indeed, in our picture, superconducting 
uctuations survive in
the M2 phase and could well play a role close to the M2IT. If present, they would lower
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the quasi-particle tunneling probability, inducing an increase resistance which can lead to
n > 1 [Adkins et al., 1980][Kim et al., 1992]. This would explain how, deep in the insulat-
ing regime, this over-activated behavior disappears. An alternative interpretation is given
in appendix B.

{ The low values for the characteristic temperatures near the M2IT - As previously
stated, these could be explained by a DOS that is not completely depleted close to the M2IT
[Shafarman et al., 1989]. Moreover, in Coulomb glasses, Pollack noted that multi-hopping
could occur. This glassy behavior would result in a renormalization of the characteristic
energies encountered in the insulator, compared with what is encountered for single electron
hopping [Pollak and Shklovskii, 1991]. Let us note that this is consistent with the fact that,
as NbSi becomes insulating, it behaves like an electron-glass [Delahaye et al., 2014]. Thus,
glassy behaviour has been evidenced in this disordered system.

{ The saturating values of Ri near the M2IT - Saturation of Ri in VRH regimes is
often taken as a proof of phononless mechanism of hopping as pointed out in section 3.3.2.3.
Pollak has also predicted that multi-hopping mechanism is re
ected through a constant
characteristic resistanceRM , as observed at low temperature where Coulomb interactions
should be larger. This stresses the important in
uence of electron-electron interactions in
the conductivity mechanism.

In this part, we have reported on the low frequency transport measurements that we have
performed on two-dimensional disordered �lms. Indeed, a-Nbx Si1�x is a model system to study
the interplay between quantum interferences, Coulomb interactions and superconductivity. In
2D, these phenomena have to be taken into account on an equal footing, and their competition
may give rise to exotic electronic phases that have not yet been completely characterized.

For a-Nbx Si1�x , the corresponding phase diagram is given �gure 3.67. As can be seen, it
is more complex than a simple Superconductor-Insulator diagram. Indeed, unpredicted metallic
phases set in between the superconducting and the insulating ground states. 2D dissipative states
have been observed, notably by Kravchenko and coworkers in Si-MOSFETs [Kravchenko et al., 1994],
but our system is in the opposite limit : it is very disordered, with a mean free path of the order
of the interatomic distance, and with a large carrier density, more that 2 orders of magnitude
over the usual densities in 2DEGs.

Moreover, our study shows that the traditional dichotomy between fermionic and bosonic
models for the Superconductor-to-Insulator Transitions can be questioned. Indeed, we believe
the di�erent activation laws measured in the insulating phase in a-Nbx Si1�x �lms sign a fermionic
insulator. However, the observed metallic phases are compatible with a two-
uid model where a
fermionic component runs parallel to a bosonic channel. The transition, or , rather, crossover,
is therefore nor fermionic nor bosonic. It is the survivance of superconducting 
uctuations that
renders the dissipative phases possible.

Of course, the sketched scenario would need to be con�rmed. In appendix C, we have listed
a list of experiments we �nd would help the understanding of our system, and, more generally,
the physics of disordered systems.
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Figure 3.67: Phase diagram of 2D a-Nbx Si1�x in the disorder-thickness plane. � 4K is tuned by
either a change in thickness or compositionx, or by heat treatment.
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Part II

Microwave measurements
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Chapter 4

State of the art : electrodynamics
of superconductors

The second part of this manuscript is devoted to the description of the microwave low tem-
perature calibration set-up which we have designed and tested.

Before reporting this new calibration method into more details in chapter 5, we would �rst
like to put this experimental e�ort into perspective and sketch the state-of-the-art for the mea-
surements of electrodynamic properties of disordered superconductors. We will �rst recall the
theoretical predictions in this domain. We will then describe the main techniques used for the
measurement of AC conductivity in superconductors along with some experimental results. We
will end this chapter by describing the main goals of our work within this context.

Contrary to classical systems, where dynamics and thermodynamics are separable, in quan-
tum mechanical systems they are intertwined. In fact, they are indissociable. This comes from
the fact that time acts as an extra dimension for quantum systems [Sondhi et al., 1997]. In other
words, to every characteristic energy scale in the system corresponds a characteristic timescale in
the dynamics. As a direct consequence, measuring the AC response of a quantum system is a way
to know its relevant thermodynamical quantities and therefore constitutes a very powerful tool
to probe the phenomena at play. We will now show how this translates in the case of Quantum
Phase Transitions, and more speci�cally for the Superconductor-to-Insulator Transition.

4.1 Frequency as a probe for Quantum Phase Transitions

As seen in chapter 1, Quantum Phase Transitions (QPT) are transitions between di�erent
ground states that are, strictly speaking, de�ned only at T = 0. However, the manifestations
of QPT are measurable at �nite temperatures in the quantum critical region. Indeed, in the
vicinity of a QPT tuned by an external parameter K , the correlation length diverges as :

� � j � j �� � j K � K cj �� (4.1)

where K c is the value of the tuning parameter at the transition and � the correlation length
exponent. The characteristic length for imaginary times correlatively diverges as :

� � � � z (4.2)

wherez is the dynamical scaling exponent. As illustrated �gure 4.1, as long as the size of sample
in the imaginary time direction, given by ~

kB T , is larger than � � , the system dynamical properties
will be determined by � � and the system will not \notice" that the temperature is �nite (�gure
4.1.a). The system will then be dominated by quantum 
uctuations such that :

~! � kB T (4.3)

Above a certain temperature, � � will be larger than ~
kB T , the dominant 
uctuations will be of

thermal nature (�gure 4.1.c) and the system will behave classically. The cross-over will occur for
temperatures such that ~

kB T ' � � (�gure 4.1.b).

Conversely, a 
uctuation of characteristic frequency ! will be of quantum nature for a given
system if ~! � kB T and classical otherwise. The system response to an AC excitation at
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Figure 4.1: Illustration of the e�ect of the temperature near a QPT. At low temperature, the
system is dominated by quantum 
uctuations of characteristic timescale� � (a), whereas, at high
temperature, the temperature acts as a cut-o� in the imaginary time direction (c). The cross-over
takes place when� � ' ~� = ~

kB T (c). Taken from [Sondhi et al., 1997].

frequency ! will therefore allow to explore both quantum and classical 
uctuations depending
on the value of the ratio ~!

kB T .
The cross-over from the classical to the quantum 
uctuating regimes has been

observed experimentally in bulk metallic NbSi �lms. As can be seen �gure 4.2, the AC conduc-
tance � is solely determined by the frequency! at low temperatures (quantum regime) but is
frequency-independent at high temperatures (classical regime). The cross-over between the two
regimes systematically occurs at~! ' kB T.

Figure 4.2: Real part of the AC conductance� of an a-NbSi thin �lm as a function of
p

! for
di�erent temperatures. The straight line emphasizes the

p
! dependence in the quantum regime.

Taken from [Lee et al., 1998].

In the quantum regime (~! � kB T), and close enough to the quantum critical point (jK �K c j
K c

�
1), scaling theory for QPT predicts that physical quantities G obey the �nite-size scaling law
[Sondhi et al., 1997] :

G(K; T; ! ) � f
�

~!
kB T

;
jK � K cj

K cT
1

�z

�
(4.4)

wheref is a scaling function. This relation enables, from experimental data, to retrieve the value
of the critical exponents � and z and thus determine the universality class the QPT belongs to.

Scaling laws have been measured for the conductivity in the case of the Metal-to-Insulator
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Transition (MIT) for bulk a-NbSi samples [Lee et al., 2000]. As displayed �gure 4.3, the con-
ductivity scales in frequency and temperature, provided that the frequency is scaled by a factor

~
1:54k B

. Three di�erent universal curves are obtained depending on whether the sample is on the
metallic or the insulating side of the MIT, or just at criticality. For this transition, the critical
exponents obtained from the frequency and temperature dependences are� = 1 and z = 2. In
this experiment, the scaling as a function of the distance to the quantum critical point jK �K c j

K c

has not been tested.

Figure 4.3: Conductivity as a function of temperature or frequency for three samples : the most
conducting one is on the metallic side of the MIT, the least conducting one is on the insulating
side of the MIT and the third sample sits at the critical point. The lines represent the DC
conductivity ; the small symbols were obtained via resonant cavity measurements (solid at 5
GHz, open at 12 GHz) ; the large symbols were obtained in the 80-1000 GHz range with a
quasi-optical spectrometer. The frequency has been scaled by a factor of ~

1:54k B
. Taken from

[Lee et al., 2000].

AC measurement is therefore a particularly relevant technique to characterize a QPT. It can
both assess the quantum mechanical nature of the transition and establish the critical behavior
of the system through the determination of scaling laws and critical exponents. However, �nite
frequency measurements can also establish the complete electrodynamic response of the system
in each of the considered phase. We will now detail the expectations regarding AC conductivity
both in the superconducting and the insulating states for disordered superconductors.

4.2 Theory of electrodynamics within the BCS model

The main features of the electrodynamic response of superconductors can be understood
within a simple two-
uid model (section 4.2.1). However, to gain a more complete understanding
of how collective modes a�ect AC conductivity, one has to consider the Mattis-Bardeen theory
(section 4.2.2) which is based on the BCS description of superconductivity. This model therefore
deals with relatively clean superconductors. Disorder e�ects have an additional contribution
which will be outlined in section 4.2.3.

4.2.1 Two-
uid model

The two-
uid model is based on a phenomenological extension of Drude's model where elec-
trons within a superconducting material are described as being either normal - in which case they
are scattered on a characteristic timescale� n - or superconducting - in which case� s ! +1 -.
The two electronic channels are assumed to run parallel to each other. The resolution of Drude's

130



4.2. THEORY OF ELECTRODYNAMICS WITHIN THE BCS MODEL 131

conductivity at frequencies much lower than the superconducting gap (~! � �) then yields :

� 1(! ) =
nse2�

2m
� (! ) +

nn e2� n

m
(4.5)

� 2(! ) =
nse2

m!
(4.6)

where � 1 and � 2 are respectively the real and imaginary parts of the complex conductivity,ns

is the super
uid density, nn the normal electron density and m the electron mass. The �rst
term appearing in the expression of� 1 re
ects the fact that, at ! = 0, superconducting electrons
short-circuit the normal ones. The second term corresponds to thedissipative response due
to quasiparticles at �nite frequencies. The 1

! dependence of� 2 reveals the inductive behavior of
a superconductor.

The two-
uid model therefore considers a superconductor at �nite frequency to e�ectively
behave like aRL circuit (�gure 4.4), with, for a �lm a thickness d? :

R� =
m

d? nn e2� n
the equivalent resistance due to quasiparticles (4.7)

L � =
m

d? nse2 the equivalent inductance due to Cooper pairs (kinetic inductance ).(4.8)

Figure 4.4: Schematic representation of the two-
uid model for a superconductor. Quasiparticles
correspond to the dissipative channel, whereas the Cooper pairs response is modeled by an
inductance.

In order to have an idea of the �nite frequency behavior of a superconductor as a function
of temperature, it is often convenient to use the temperature dependence ofR and L given by
Ginzburg-Landau theory :

R(T ) = Rn exp
�

� 0

T

�
(4.9)

L(T ) =
L 0q

1 � T
Tc

(4.10)

where Rn is the normal state resistance, � 0 = 1:76kB Tc the superconducting gap,Tc the super-
conducting critical temperature, and L 0 the Cooper pairs kinetic inductance at zero temperature
which can be estimated in thedirty limit by :

L 0 =
~Rn

� � 0
(4.11)

Figure 4.5 gives the frequency and temperature dependence of the conductivity, of the cor-
responding complex impedanceZ and re
ectometry signal j�j for a superconducting �lm of
Rn = 10; 4 
 and Tc = 3; 6 K, in the GHz region. As we will see in the next chapter, these
values correspond to the characteristics of a Vanadium �lm of 100�A which we will measure.
The RL circuit analogy is especially transparent in the dependence of the conductivity with
the frequency : the real part being purely resistive, it only depends on the temperature and
is frequency-independent ; the imaginary part varies hyperbolically with ! as expected for an
inductance.

4.2.2 Mattis-Bardeen theory

The two-
uid model is very practical to gain a sense of the behavior of superconductors un-
der a low frequency (~! � � 0) AC drive. However, this simplistic model does not capture all
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Figure 4.5: Predictions for the temperature and frequency dependence of the complex impedance
Z , of the conductanceG and of the re
ectivity j�j according to equations 4.9 and 4.10 (two-
uid
model) for a superconducting �lm of Rn = 10; 4 
 and Tc = 3; 6 K. The frequency is here made
to vary between 100 MHz and 5 GHz by steps of 200 MHz.

features, and misses in particular the characteristic traits of quantum coherence. A more complete
description can be achieved by considering the Mattis-Bardeen theory [Mattis and Bardeen, 1958].

Starting from BCS description, this model describes the electrodynamic response of a super-
conductor in which electron scattering is also taken into account. The system complex conduc-
tivity then is :
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� 1(!; T )
� n

=
2

~!

Z 1

�

[f (E ) � f (E + ~! )] (E 2 + � 2 + ~!E )

(E 2 � � 2)1=2 [(E + ~! )2 � � 2]1=2
dE

+
1

~!

Z ��

��~!

[1 � 2f (E + ~! )] (E 2 + � 2 + ~!E )

(E 2 � � 2)1=2 [(E + ~! )2 � � 2]1=2
dE

(4.12)

� 2(!; T )
� n

=
1

~!

Z �

��~!;��

[1 � 2f (E + ~! )] (E 2 + � 2 + ~!E )

(� 2 � E 2)1=2 [(E + ~! )2 � � 2]1=2
dE (4.13)

where � n is the normal state conductivity, f (E; T ) = (exp ( E=kB T) � 1)�1 is the Fermi-Dirac
distribution, E the energy and � the superconducting gap.

� 1 describes the dissipative response of quasiparticles. The �rst term of equation 4.12 corre-
sponds to the e�ect of thermally excited quasiparticles. It therefore vanishes at zero temperature
[Dressel, 2013]. The second term describes the absorption of a photon to excite quasi-particles.
Since this process requires the breaking of a Cooper pair, the second term is scarcely relevant
unless~! > 2�(T ).

Equation 4.13 shows that Cooper pairs contribution to the AC response is purely inductive.
A simple analytic form can be obtained at low frequency (~! � 2�(T )) and links � 2 to the
superconducting gap [Tinkam, 2004] :

� 2

� n
=

� �(T )
~!

tanh
�

�(T )
2kB T

�
=

8
><

>:

� �(0)
~! for T � Tc

�
2

� 2 (T )
kB T ~! for T ' Tc

(4.14)

Figures 4.6 and 4.7 give the frequency and temperature dependence of the complex conduc-
tivity � = � 1 � i� 2 as predicted by the Mattis-Bardeen theory [Dressel, 2013], assuming that the
ratio of the zero-temperature coherence length to the mean free path is such that :�� (0)

l = 10.

Figure 4.6: Predictions of Mattis-Bardeen theory for the temperature dependence of the complex
conductance� (real part � 1 and imaginary part � 2) for di�erent frequencies under the assumption
that �� (0)

l = 10. Taken from [Dressel, 2013].

The main di�erence with the two-
uid model predictions is the peak in the dissipative part
of the conductivity, close to 0:8Tc. This so-calledcoherence peak in � 1 has a purely quantum
mechanical origin and is due to the coherence factors in BCS theory. It is predicted to shift to
lower temperatures at lower frequencies, and following :

�
� 1

� n

�

max
� log

�
2� 0

~!

�
(4.15)

until it completely disappears for ~! � � 0
2 .

Moreover, � 1(! ) can be viewed as the sum of two components : one due to photon-activated
quasiparticles (visible as the zero temperature contribution in �gure 4.7), whereas the diverg-
ing component at �nite temperatures and low frequency correspond to the thermally activated
quasiparticle response. Since the quasiparticle density-of-states vanish at low temperatures for
energies such that~!

2� < 1, the photon-activated component is negligible in this frequency range.
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Figure 4.7: Predictions of Mattis-Bardeen theory for the frequency dependence of the complex
conductance� (real part � 1 and imaginary part � 2) for di�erent temperatures under the assump-
tion that �� (0)

l = 10. Taken from [Dressel, 2013].

Finally, let us point out that, as Ferrell and Glover have shown [Ferrell and Glover III, 1958],
the dissipative and inductive parts of the conductivity are linked by an oscillator-strength sum
rule : Z 1

0
� 1(! )d! =

�ne 2

2m
(4.16)

where n is the electron density. This equation translates the fact that the spectral weight due
to excitations is conserved on both side of the superconducting transition. AtT = 0, comparing
� n (! ) with � 1(! ), the area missing in the spectrum of� 1 is, in fact, recovered at zero frequency
in the form of a Dirac distribution similar to the one appearing in equation 4.5. At �nite
temperatures, the Dirac distribution widens to give rise to a low frequency peak.

4.2.3 Electrodynamics of disordered superconductors

Mattis-Bardeen theory has been developed for homogeneous and isotropic superconductors
in the kF l � 1 limit [Mattis and Bardeen, 1958], that is to say when electron scattering exists
but with a large scattering time.

Nam [Nam, 1967b, Nam, 1967a] has shown that the Mattis-Bardeen equations were still qual-
itatively valid in the presence of some speci�c disorder. For instance, superconductors containing
magnetic impurities have the same electrodynamic response as a pure superconductor, provided
the value of the gap is renormalized by the spin-
ip relaxation time.

Subsequent work extended these calculations to isotropic superconductors with an arbitrary
purity [Nicol et al., 1991, Akis et al., 1991, Zimmermann et al., 1991], characterized by a mean
free path time � . Numerical calculations carried out by Zimmermann et al. [Zimmermann et al., 1991]
are reproduced �gure 4.8. One of the striking features of these developments is that, a small
deviation from the pure case leads to a peak in the dissipative part for frequencies just above
2�(T ). Moreover, at T = 0:7 Tc and ! ! 0, which corresponds to the region where the coherence
peak is awaited, � 1 diverges more steeply than in the pure case (�gure 4.9). As a result, the
coherence peak is expected to be larger in the disordered case.

4.3 Experimental techniques

The complex conductivity of a given system can be accessed through various probes. In
order to choose between the di�erent experimental techniques, one has to take into account
the di�erent characteristic timescales of the system as well as the regime that one wants to
investigate. Indeed, for a speci�c timescale� to be studied, the excitation frequency! must be
such that ! > 2�

� . Moreover, as we have seen section 4.1, in order to probe the quantum critical
regime of a QPT, the temperature at which the experiment is conducted must be lower than the
excitation frequency : kB T < ~! .

Figure 4.10 summarizes the main experimental techniques which we will brie
y overview in
this section, each one corresponding to a given frequency range. The reviewed techniques will
be limited to those having been used in the study of disordered superconducting thin �lms. For
more complete reviews, see [Armitage, 2009, Basov et al., 2011].
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Figure 4.8: Predictions for the T = 0 frequency dependence (x = ~!
2� 0

) of the real and imaginary
parts of the complex conductivity. Here, � 0 is the DC conductivity, y = ~

2� � 0
is the impurity

parameter (y = 500 is the impure limit, whereas y = 0:0625 is the pure limit). In the top panel,
the normal state conductivity � n is also shown (the corresponding curves are Lorentzians). Taken
from [Zimmermann et al., 1991].

Figure 4.9: Predictions for the T = 0:7Tc frequency dependence (x = ~!
2�(T ) ) of the real part

of the complex conductivity. Here, � 0 is the DC conductivity, y = ~
2� �(T ) is the impurity

parameter (y = 500 is the impure limit, whereas y = 0:0625 is the pure limit. Taken from
[Zimmermann et al., 1991].

4.3.1 Two-coil experiments

The two-coil method, �rst introduced by Hebard and Fiory [Hebard and Fiory, 1980], consists
in placing the sample in a plane transverse to the axis of two coils. The magnetic �eld created
by the primary (drive) coil induces currents in the sample which, in turn, perturbs the mutual
inductance between the two coils, measured by the secondary (pickup) coil. A typical setup
geometry is shown �gure 4.11 [Turneaure et al., 1998]. The typical frequencies of operation
range from a few kHz to a few hundreds of MHz.
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Figure 4.10: Main experimental techniques depending on the excitation frequency range. The
energy scale is also converted to equivalent temperature scales.

Figure 4.11: Geometry of the two-coil experiment in Thomas Lemberger's group
[Turneaure et al., 1998]. The upper coil is the drive, whereas the bottom one is the pickup
coil. A sample of thicknessd sits in between and perturbs the mutual inductance between the
two coils.

The main advantage of this technique lies in its large sensitivity : the magnetic penetra-
tion depth can typically be measured with a precision better than 10% [Turneaure et al., 1996].
Moreover, it is relatively simple, non-destructive and does not require any external calibration,
as is the case for GHz broadband spectroscopy as we will see.

For the study of disordered superconducting thin �lms, the main drawback of this technique
is that it is limited to low frequency. The method has to be operated at (sometimes prohibitively)
low temperature in order to see the in
uence of quantum 
uctuations.

4.3.2 Superconducting cavity resonators

Until recently, measurements in the GHz range had been mainly performed in resonant cavities
such as the one depicted �gure 4.12.a [Lehoczky and Briscoe, 1971]. Microwaves were created by
klystrons and only selected modes could propagate. The introduction of the sample within the
cavity changed its resonant features : from the resonance frequency shift and its broadening, the
complex conductivity could be inferred.

With the development of lithography techniques and the improvement of microwave compo-
nents, such resonant techniques were miniaturized as shown �gure 4.12.b [Day et al., 2003]. In
these cases, a microwave feedline carries the microwave delivered by a Vector Network Analyzer
(VNA). The resonant circuit is capacitively coupled to the feedline and a�ects its transmission
when the feedline frequency is close to the resonator's characteristic frequency.

The main advantage of these techniques is their high sensitivity due to the fact that they
work close to a resonance. Moreover, they do not require an external calibration.

However, they only work at discrete frequencies. In the case of macroscopic cavities, the
frequency was �xed by the klystron source and the geometry of the cavity. In the case of
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Figure 4.12: a. Geometry of a microwave cryostat [Lehoczky and Briscoe, 1971].b. Photogra-
phy of a mesoscopic resonator [Day et al., 2003]. The white region is covered with Aluminum,
whereas the gray region is insulating. The central straight line is the microwave feedline which
transmission is a�ected at the resonant frequency of the capacitively-coupled resonator. The
wiggling line (between points C and D) corresponds to the resonator.

lithographed cavities, the geometry and material used for the resonator determines the resonance.
In the latter case, the electrokinetic modeling for the ensembleffeedline + resonatorg is also
crucial to derive the complex conductivity of the sample and is a source of uncertainty.

4.3.3 Broadband spectroscopy

Since the 1990's, broadband GHz spectroscopy has developed as a powerful tool to probe a
large spectrum of frequencies. A typical experimental set-up is shown �gure 4.13 [Booth et al., 1994].
The microwave, delivered by a VNA, propagates in a coaxial cable until the sample. The sample
response can be detected in transmission, in which case a second coaxial cable on the other side
of the sample is required to collect the signal, or in re
ection, in which case a single coaxial cable
is su�cient.

Figure 4.13: Schematic representation of a broadband microwave re
ection experiment
[Booth et al., 1994] : the microwave arrives on the sample via a coaxial cable. The contact
between the sample and the pin is crucial and guaranteed by the force exerted on the Aluminum
pedestal by a spring.

The major advantage of this technique is to be broadband. In a single experiment, one can
access di�erent ranges of frequencies ranging from a few MHz to tens of GHz. As in the case
of cavity resonators, these frequencies correspond precisely to the range of frequencies at which
disordered superconductors display some characteristic features : coherence peaks, Kosterlitz-
Thouless physics, superconducting 
uctuations, ...
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4.4. MEASUREMENTS OF ELECTRODYNAMICS OF SUPERCONDUCTING THIN

FILMS

However, broadband spectroscopy is extremely sensitive to any imperfection in the circuit.
Indeed, any impedance mismatch leads to a partial re
ection of the incoming wave, thus inducing
errors in the measurement of the sample complex impedance. The set-up has thus to be calibrated
before any measurement, by a three-standard point procedure, as we will see in the next chapter.

The ultimate aim behind this thesis work is the determination of the broadband electrody-
namic response of superconducting thin �lms with Tc between a few hundreds of mK to a few K.
Moreover, we would want to determine the quantum nature of the Superconductor-to-Insulator
(or Superconductor-to-Metal) Transition and the associated timescales. We therefore chose to
use a technique which allowed to probe both the~! < k B T and the ~! > k B T regimes and
could probe the superconducting gap. For this aim, broadband GHz spectroscopy therefore is a
suitable technique.

4.3.4 THz spectroscopy

THz spectroscopy is highly interesting for it allows to probe timescales of great interest in
solids : scattering times of electrons, characteristic vibration times in crystals, carrier lifetimes
in metals and semiconductors, localization peaks, ... However, this technique lies at the interface
between optics and microwave electronics, so that the practical realization of such experiments
is often di�cult. Figure 4.14 gives an example of such a set-up [Pracht et al., 2013], where
a monochromatic THz radiation is provided by a frequency-tunable backward-wave-oscillator
(BWO). Quasi-optical techniques are then used to measure the transmission signal coming from
the sample.

Figure 4.14: Schematic representation of a THz experiment [Pracht et al., 2013] using a Mach-
Zehnder-type interferometer : the microwave arrives on the sample via a coaxial cable. The
transmission then is measured by a detector sensitive to the magnitude and direction of the
electric �eld.

The main advantage of this technique is, as mentioned above, the timescales it probes. More-
over, it does not require any prior calibration outside determining the transmission signal without
the sample in place.

However, as can be seen �gure 4.14, when the sample has to be measured at low temperature,
the set up is external to the cryostat through which the radiation is shone. Because of the space
taken by optics, the setup can hardly be inserted within a cryostat. This introduces some signal
loss and is a potential source of uncertainty. Other uncertainty sources include black-body
radiation and weak sources [Armitage, 2009].

4.4 Measurements of electrodynamics of superconducting
thin �lms

Having brie
y reviewed the main experimental techniques used to characterize the electrody-
namic response of superconductors in the previous section, let us now turn to the experimental
results obtained in BCS-type superconductors.

4.4.1 Clean superconductors

The complex conductivity of clean superconductors has, for the main part, experimentally
been established as early as the 1970s. Indeed, as can be seen by comparing �gures 4.15.a
and 4.7.a, one can clearly observe the existence of the superconducting gap in the frequency
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dependence of the real part of the conductivity� 1. As temperature is increased, the gap closes,
following the BCS prediction, and the spectral weight develops at low frequency. In this case,
Mattis-Bardeen theory quantitatively describes the experimental observations.

Figure 4.15: (a). Temperature and frequency dependence of the normalized real part of the
conductivity � 1

� N
for thin superconducting Lead �lms ( Tc =7.2 K) measured in the THz range by

far-infrared spectroscopy [Palmer and Tinkham, 1968]. The points correspond to experimental
data and the line to the prediction of Mattis-Bardeen theory. (b). Complex conductivity (real
part in black, imaginary part in white dots) as a function of temperature for (weak coupling)
Niobium �lms at 60 GHz, measured by cavity perturbation [Klein et al., 1994]. The solid lines
are �t to Mattis-Bardeen theory, whereas the dashed ones correspond to the strong-coupling
Eliashberg predictions. Niobium is believed to follow the predictions of Mattis-Bardeen theory.

The temperature dependence of conductivity has also been shown to follow the predictions
of Mattis-Bardeen theory (�gure 4.6). The coherence factors that appear in the temperature
dependence of� 1 at frequencies much lower than the gap, although measured by ultrasonic
attenuation and nuclear spin relaxation beforehand [Tinkam, 2004], had not been measured at
microwave frequencies before the 1990s. The �rst experiment to achieve high enough accuracy
in the measurement of the transmission and re
ection coe�cients in this range is due to Klein
et al. on Niobium �lms [Klein et al., 1994]. As can be seen �gure 4.15.b, the results are also in
good quantitative agreement with Mattis-Bardeen theory.

Subsequent studies have examined the dependence of these coherence peaks as a function of
the mean free pathl . As seen �gure 4.16, and as expected from Zimmermann's theory (section
4.2.3), the peaks get larger when disorder is increased, indicating that the superconducting gap
fully opens up at lower temperatures. Moreover, the peaks get higher for lowerl , revealing an
increased contribution of quasiparticles to � 1 within the considered temperature range. In the
experiments reported �gure 4.16, the mean free path is of the order of a few nanometers.

4.4.2 Superconducting 
uctuations

The main advantage of dynamical measurements at frequencyf is the fact that they are,
by de�nition, sensitive to transient regimes, or, in other words, to 
uctuations occurring at
typical timescales of the order of 1=f . For superconducting samples, this is the case of thermally
activated quasiparticles giving rise to the so-called coherence peak, but it can also be seen for
other 
uctuation phenomena which may not be taken into account in the standard Mattis-
Bardeen derivation of the complex conductivity. Indeed, � 1 directly re
ects the rate at which
particle-hole pairs are created through the absorption of photons of frequencyf . Hence, any
quasiparticle scattering mechanism can actually give rise to a peak in the real part of the complex
conductivity, be it electron-phonon or electron-electron scattering for instance.
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Figure 4.16: Width Tc �T n
Tc

(a.) and height � max
� n

(b.) of the coherence peaks measured from� 1(T )
in Aluminum �lms of di�erent mean free paths l [Steinberg et al., 2008].Tn is the temperature at
which � 1 = � n again. � max corresponds to the maximum of the peak.� 0 is the zero temperature
superconducting coherence length.

The latter case is illustrated �gure 4.17.a for a highTc superconductor. For these YBa2Cu307��

�lms, the peak in � 1 just below Tc has been measured via far-infrared re
ection and transmission
experiments, but was absent from NMR measurements, indicating that it cannot be attributed
to a Hebel-Slichter (or coherence) peak. Moreover, the peak experimentally appears at 50 cm�1 ,
almost at �(0) =2, well above the frequency above which Mattis-Bardeen theory predicts the
coherence peak to vanish ( !

2�(0) < 0:1). The existence of this dissipative peak has subsequently
been attributed to electron-electron scattering and the scattering rate inferred.

In low-temperature superconducting �lms, similar dissipation peaks have been observed, for
instance in NbN thin �lms [Mondal et al., 2013] as seen �gure 4.17.b. In this case, this feature
has been interpreted as the signature of Aslamazov-Larkin-type 
uctuations aboveTc : the
quasiparticle lifetime increases when one approaches the superconducting transition from high
temperatures and this results in a characteristic frequency! 0 = 16k b Tc

� ~ ln
�

T
Tc

�
which, in turn,

gives rise to a peak in� 1 when f = ! 0
2� .

As can be seen from these two examples alone, GHz conductivity measurements are a powerful
probe to investigate quasiparticle scattering and/or dynamics and its in
uence on superconduc-
tivity.

4.4.3 BKT transition

As we have seen section 1.7.2, thin superconducting �lms can undergo a Berezinskii-Kosterlitz-
Thouless transition due to the dissociation of vortex-antivortex pairs aboveTBKT . Another way
of explaining this phenomenon is to say that, well below the superconducting temperatureTc, the
superconducting order parameter phase is �xed and does not vary in space. This can be modeled
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Figure 4.17: (a).Temperature dependence of the real part of the complex conductivity for two
YBa2Cu307�� �lms [Gao et al., 1996]. (b). Temperature dependence of the complex conductivity
(real part � 0 and imaginary part � 00) and super
uid sti�ness J = ~2 n s a

4mk b
, with ns the super
uid

density and a the lengthscale associated to 
uctuations, for a NbN �lm of Tc=15.71 K (marked
by the vertical dashed line) [Mondal et al., 2013]. The di�erent colors correspond to di�erent
frequencies ranging from 0.4 to 20 GHz. The DC resistance is also plotted in the upper panel
(thick black line).

by a maximum and constant phase sti�ness T� = n s ( ! )e2 ~d
kb mG Q

1, where ns(! ) is the e�ective

super
uid density, d the �lm thickness and GQ = 4e2

~ . Well above Tc, the phase coherence is
destroyed and the phase sti�ness is therefore zero. ForTBKT < T < T c, the phase coherence
is maintained, but only on a �nite lengthscale which grows larger as temperature decreases.T�

being proportional to the super
uid density and hence to � 2, frequency measurements can probe

the phase sti�ness on a lengthscale given by the vortex di�usion length
q

�D
f , where � is the

penetration depth and D the vortex di�usion coe�cient.
As can be seen �gure 4.18 in the case of InOx �lms,T� does not exhibit any frequency

dependence at low temperature and goes to zero when superconductivity is destroyed. Theoretical
predictions give that the discontinuous jump in phase sti�ness - at zero frequency - due to the
unbinding of vortex-antivortex pairs occurs at a value T� = 4TBKT represented �gure 4.18 by the
pink dashed line. At �nite frequency, this corresponds to the temperature at which T� becomes
frequency-dependent. From these results, one can see that, in these �lms,TBKT is actually the
temperature at which the DC resistance becomes null.

4.5 Frequency measurements and the Superconductor-to-
Insulator Transition

In the previous section, we have seen how frequency measurements could help characterize
important features of superconducting thin �lms such as superconducting 
uctuations or the
BKT transition. In fact, disordered superconducting �lms far enough from the Superconductor-
to-Insulator Transition (SIT) can reasonably well be accounted for using Mattis-Bardeen theory
in which 
uctuations are incorporated. However, close to the SIT, this simple model is expected
to break down and the electrodynamic response of the system may provide interesting information
on the nature of the phases and on the mechanisms at play in this phase transition. In this section,

1. T� was called J in �gure 4.17.
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Figure 4.18: Temperature dependence of the phase sti�nessT� for di�erent frequencies for an
InOx �lm [Liu et al., 2011]. The black line corresponds to the DC resistance. The dashed pink
line depicts the theoretical BKT prediction and the vertical dashed line marks the superconduct-
ing temperature.

we will therefore focus on the contribution of AC transport measurements to the understanding
of the Superconductor-to-Insulator Transition, although, up to now, experimental data are scarce
in this regime.

4.5.1 Electrodynamics of fermionic insulators

Before tackling the issue of the SIT, let us mention results of dynamical conductivity mea-
surements at a closely related transition : the Metal-to-Insulator Transition (MIT). The theory
underlying the MIT has been sketched in sections 1.3 and 1.4. Except for superconductivity,
the main ingredients are the same as for the SIT : disorder e�ects, localization and Coulomb
interactions.

We have already mentioned the scaling relations that have been observed on both sides of
the MIT (section 4.1). We will here concentrate on the AC response measured for a fermionic
insulator, on the disordered side of the MIT.

On the insulating side of the MIT, either Mott or Efros-Shklovskii-type Variable Range Hop-
ping (VRH) is expected. In these regimes, the theoretical predictions for the real part of the
conductivity are :

� 1 = �e 2N 2
0 � 5~! 2

�
ln

�
2I0

~!

�� 4

for Mott-type VRH (4.17)

� 1 = �e 2N 2
0 � 5!

�
ln

�
2I0

~!

�� 4

(~! + U(r w )) for Efros-Shklovskii-type VRH (4.18)

where� is a constant close to unity,� the localization length, I 0 the Bohr energy of the impurities,
U(r w ) = e2

" 1 r w
the Coulomb interaction between two sites, andrw = � ln

� 2I 0
~!

�
the most probable

hopping distance between pairs [Helgren et al., 2004].
The imaginary part of the dynamical conductance is positive, re
ecting a capacitive response

due to localization. Due to Kramers-Kronig relation and the fact that � 1 / ! � (� = 1 in
the case of Efros-Shklovskii VRH and� = 2 for Mott VRH), one has � 2 / ! � , thus yielding
[Dyre and Schr�der, 2000, Helgren and Gruner, 2001] :

� (! ) = � 1(! ) + � 2(! ) = A
�

�i
!
! 0

� �

(4.19)

This is what is shown �gure 4.19 in the case of bulk insulating a-Nbx Si1�x samples. Due to
the rate at which an electron tunnels from one site to the other, VRH-induced AC response is
observable at frequencies of the order of 10-1000 GHz.
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Figure 4.19: Frequency dependence of the real (a) and imaginary (b) parts of the conductivity
for a-Nbx Si1�x samples on the insulating side of the MIT [Helgren and Gruner, 2001]. The three
symbols correspond to three di�erent compositions of the alloy.

GHz or even lower frequencies (1 to 100 kHz) measurements enable to access the dielectric
response of insulators via the relation :

" = "1 + i" 2 = 1 + i
�

� 0!
(4.20)

Combined with low frequency (DC) measurement of the conductivity on the metallic side, the
divergence of the dielectric susceptibility � at the transition de�nes the MIT, as shown �gure
4.20 for doping-induced MIT in Si:P samples.

4.5.2 Electrodynamic characterization of Cooper pairs in the non-superconducting
regime

As previously explained, using dynamical conductance measurements, one can access short-
lived 
uctuations, if any. This has been performed, in the framework of the SIT, on InOx �lms.

Using microwave cavities (9-22 GHz), Crane et al. have measured a non-zero super
uid
sti�ness well into the insulating regime 2 of highly disordered InOx �lms [Crane et al., 2007].
As seen �gure 4.21.a, the points in temperature and �eld where the super
uid sti�ness goes
to zero are frequency-dependent. The higher the frequency, the longer the superconducting

uctuations persist. This has been interpreted as the signature for Cooper pairs with a �nite
lifetime surviving in an extensive region of the insulating regime.

In the limit of low-disorder �lms, using microwave spectroscopy (50 MHz-16 GHz), Liu et
al. have shown that superconducting 
uctuations persist in the magnetic �eld-tuned SIT above
a critical �eld Bsm where the global superconducting phase coherence is lost : the characteristic

uctuation frequency 
 extrapolates to zero at T = 0 for Bsm '4 T (�gure 4.21.b). However
for Bsm < B < B cross where the SIT is expected by the Dirty Boson Model3, superconducting

uctuations are still measured. The authors interpret this as the signature for an unconventional
2D metal where Cooper pairing exists without the global phase coherence.

4.5.3 Electrodynamic characterization of Coulomb interactions

Recently, AC conductivity measurements have been shown to be a very interesting probe
to tackle Coulomb interactions. Indeed, Sherman et al. compared the DC tunneling spectra
and the electrodynamic response of two �lms on both sides on the SIT : one was measured to
be superconducting, with a Tc of about 3 K, by DC resistance measurements and the other

2. The super
uid sti�ness still had a �nite value when the measured DC resistance was over 10 6 
=�.
3. B cross corresponds to the �eld where all R(T ) curves cross. In other words, it is the point at which the

resistance of the sample is constant. The insulator is expected for B > B cross .
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Figure 4.20: Dielectric susceptibility � and zero temperature conductivity � (0) as a function of
the donor concentration n in Si:P samples [Hess et al., 1982]. At the MIT,� diverges on the
insulating side, whereas� (0) goes to zero on the metallic side.

Figure 4.21: Phase diagrams for InOx thin �lms as a function of temperature and magnetic
�eld. (a). High disorder limit [Crane et al., 2007]. The black line indicates the SIT as de�ned
from DC measurements. The colored lines correspond to the points where the super
uid sti�ness
goes to zero at 9, 11 and 22 GHz. (b).low disorder limit [Liu et al., 2013]. The color lines
correspond to di�erent values of the characteristic 
uctuation frequency 
.

was insulating, with an activation energy of about 0.5 K. The comparison is shown �gure 4.22.
Whereas THz measurements show frequency dependencies that are consistent with each regime
(Mattis-Bardeen-type for the superconductor and Drude for the insulator), the tunneling spectra
both present a gap at low energy. On the superconducting side, as expected, the gap is of
BCS-type. On the insulating side however, this gap - which had, in some cases, been attributed
to inhomogeneous superconductivity in such disordered systems - appears as induced by the
tunneling technique. Indeed, if there really was a gap in the density-of-states in the insulating
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sample, it would have been also measured by THz technique. On the contrary, a gap that is
only visible by tunneling spectroscopy could well re
ect the importance of Coulomb interactions
in this system : the counter-electrode used for tunneling is thought to enhance screening and
enable the persistance of superconducting 
uctuations at higher disorder.

AC conductivity measurements therefore are a non-perturbative technique which, by com-
parison with other techniques sensitive to Coulomb interactions, could provide very interesting
insight on the relative importance of screening and localisation in disordered superconducting
thin �lms.

Figure 4.22: Tunneling density-of-states (left) and THz conductance (real part on the upper
right panel, imaginary part on the lower right panel) for InO x �lms on both sides of the SIT
[Sherman et al., 2014].

4.6 Aim of our work

As shown in this chapter, AC transport measurements are extremely powerful to determine
the ground state and the di�erent excitations that coexist in a given system. In particular, close
to the SIT, one could hope to address issues such as the survival of superconducting 
uctuations,
the extent of BKT regime, the importance of Coulomb interactions, the universality class of such
a transition or the quasiparticle relaxation rate.

Given the energy scales we would like to probe (of the order of 10 mK - 1 K), we chose to
work at microwave frequencies (a few GHz). However, as mentioned in section 4.3, these high
frequency measurements are extremely sensitive to the sample ... but also to its environment. In
order to achieve su�ciently precise measurements, one could choose to work at a given frequency
with high-quality resonators. However, to grasp a fuller picture of the system, one would ideally
like to perform broadband spectroscopy. This comes at the price a full set-up calibration, in
conditions as close as possible to the measurement conditions.

In a previous work [Cou•edo, 2014], there has been an attempt to measure the �nite frequency
response of superconducting a-Nbx Si1�x �lms by microwave re
ectometry measurements using
either a room temperature or a 4 K calibration. At low temperature, the signal they wanted to
detect was barely large enough to be extracted from the errors induced by the cooling down4 so
that hypotheses had to be made on the normal and superconducting states5 in order to extract
the response of the sampleat the superconducting transition . Although this method is ex-
tremely powerful for extracting a signal on large temperature scales, it is not entirely satisfactory
since it assumes the knowledge of the sample AC conductivity at three di�erent temperatures.

This is the reason for the present work : we wanted to build anin situ low temperature
calibration set-up. Ideally, in a single cool down and at all temperatures , one could have

4. Indeed, at room temperature (or 4K ), parasitic re
ections and set-up imperfections are compensated thanks
to the calibration. However, as detailed in 5.2.2 the re
ection due to cables, connections, ... evolve in temperature.
At low temperature, the calibration hence no longer counter-balances the electrodynamic response coming from
the sample environment. This induces some uncertainty in the measurement.

5. The hypotheses that were made were two-fold. First, the superconducting state was modeled as a pure
inductance at T � Tc . Second, the normal state was modeled as a pure resistor.
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an exact set-up calibration and hence extract the sample dynamical conductivity with a good
precision.

Figure 4.23: (a). Schematic representation of the set-up used in [Kitano et al., 2008]. The di�er-
ent standards used for calibration are successively measured in order to establish the calibration.
(b). Schematic representation of the set-up used in [Ranzani et al., 2013b]. The sample and the
three standards are measured at all temperatures, using RF electro-mechanical switches.

Di�erent attempts have been made to tackle this problem :

1. One possibility is to successively measure the three standards necessary for a complete
calibration of the set-up (Open, Short and Load, usually) at room temperature and at low
temperature [Reuss, 2000, Kitano et al., 2008]. From the di�erent obtained spectra, one
could theoretically determine a complete calibration at low temperature (�gure 4.23.a).
The drawback of this method is that it assumes a constant reproducibility of the thermal
constraints and electrical contacts between the di�erent cool-downs. In reality, however,
the di�erent thermal cycles degrade the reproducibility with time. Moreover, they are
extremely time-consuming.

2. Commercially available electromechanical switches could also be used. However, the elec-
trical path for the di�erent switching positions are often not exactly the same, induc-
ing uncertainties in the calibration process [Cano and Artal, 2009]. Recent developments
in RF switches [Ranzani et al., 2013b, Ranzani et al., 2013a, Yeh and Anlage, 2013] have
overcome this problem, but are made out of solenoids, sensitive to magnetic �eld. Since the
ultimate aim of this work is to be able to study the AC response near the SIT, including
the magnetic �eld-induced transition, we wanted a calibration set-up that could be robust
to any small magnetic �eld (typically up to 1-2 T).

Our aim was therefore to build a robust mechanical switch that could be used at very low
temperature, under magnetic �eld, and which could provide a reliable and precise calibration at
all temperatures, in a single cool-down. The developments and tests performed to achieve this
goal will be described in the next chapter.
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Chapter 5

Experimental results

5.1 Introduction

We have described the aim of the present work in the previous chapter : build an in-situ
low temperature calibration setup for GHz broadband measurements which would, in principle,
allow us to determine with good precision the absolute value of any sample's complex impedance.

In this chapter we will :
{ Give the working principle of broadband measurements, and especially re
ectometry mea-

surements, and the sources of uncertainties for these methods.
{ Describe the theoretical calibration procedure and how it could be applied in the case of

measurements in a cryogenic environment.
{ Describe the calibration set-up we have developed.
{ Describe the characterisation of Vanadium samples, used for the setup validation.
{ Present the �rst measurements of the GHz response of Vanadium �lms and qualify the

performances of the calibration device.

5.2 Broadband measurement : principle

As previously mentioned, GHz measurements can be obtained though broadband spectrome-
try or by using high quality factor resonators. We have chosen to favour broadband measurements
which can be accessed either through transmission or re
ection on the sample. However, as we
will see in the following, broadband measurement requires a good knowledge of the setup fre-
quency response.

In this section, we will :
{ Explain how broadband measurements are performed.
{ Detail the sources of uncertainties linked to the measurement.
{ Show how a calibration can, in principle, free the experimentalist from the error sources

due to the setup.

5.2.1 Basics of broadband spectrometry

In broadband spectrometry measurements, a multi-frequency microwave is usually synthesized
by the source of a Vector Network Analyser (VNA). This wave will propagate through a line of
characteristic impedanceZ0 given by :

Z0 =

r
L l

Cl
(5.1)

with L l the inductance of the line per unit length and Cl its capacitance per unit length. In the
case of standard coaxial cables,Z0 = 50 
. They then are adapted to the VNA output impedance.

In the case of a modi�cation of the characteristic impedance of the line (presented �gure
5.1.a.), the signal incoming from port 1 (and of amplitude taken to be 1 for simplicity) is partially
and locally re
ected with an amplitude �. Due to conservation of the wave amplitude, the
transmitted signal then has an amplitude given by T = 1 + �. Both � and T can then be
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Figure 5.1: Principle of microwave measurements : a modi�cation of the characteristic impedance
of the line from Z0 to Z induces a re
ected and a transmitted wave (a.). More generally, any
mismatch is represented by a scattering matrix S, characteristic of the mismatch response in
frequency (b.). The excitation is incoming from port 1 and the measurement can be performed
in port 1 (re
ection) or in port 2 (transmission).

measured respectively in port 1 or port 2, which are supposed perfect1. In particular, if the
characteristic impedance of the cable isZ0 before the re
exion and Z after it, � and T are given
by :

� =
Z � Z0

Z + Z0
(5.2)

T =
2Z

Z + Z0
(5.3)

In a more general case, any element inducing a mismatch of the line can be represented by
scattering matrices S, as represented �gure 5.1.b., such that

�
bi

bj

�
= S

�
ai

aj

�
(5.4)

where ak (respectively bk ) with k = fi; j g is the amplitude of the incoming (outgoing) signal
toward (from) the elements represented by S2.

Let us note that even if it is theoretically equivalent, measuring either the transmission co-
e�cient or the re
ection coe�cient a�ects the experiment sensitivity. As one can observe �gure
5.2, the maximum sensitivity in transmission is obtained in the case of an impedance
Z close to 0, whereas the maximum in re
ection sensitivity is achieved for Z close
to Z0. Therefore, combining the two measurement methods should be the best way to have a
sensitive measurement in all cases.

As we will see, such measurements require a calibration of the setup. In the case of re
ective
measurements, the sole characterization of the incoming line will be necessary. In the case of
transmission measurements, one needs - in addition - to calibrate a second line as well as the
transmission between the lines, without modifying the setup. This is complicated to perform in a
low temperature environment. In the following we will therefore mainly describe how to perform
re
ective measurements, corresponding to the approach we adopted in this work.

5.2.2 The error sources

In the previous paragraph, we have seen what the response of a sample would be in the ideal
case where no parasitic re
ection or attenuation occurs. In this subsection, we will examine the
e�ects of the setup imperfections and the possible sources of error in a real-life experiment.

Skin e�ect and propagation

From Maxwell's equations, one can show that - in a conductor - the current is propagating
only on a frequency-dependent thickness� , the skin depth , such that :

� =

r
2

��!
(5.5)

1. I.e. matched to the line such that there is no re
ection at the ports.
2. For perfect ports, and in the absence of other scattering elements, aj = 0.
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Figure 5.2: Modulus of the re
ection and transmission coe�cients ( j�j and jT j, in dB) as a
function of the sample impedance. This curve has been obtained by takingZ0 = 50 
.

Figure 5.3: Schematic representation of the skin e�ect on a cylindrical conductor of radiusd?

and skin depth � .

with ! the angular frequency of the AC signal, � the conductivity of the material and � its
magnetic permeability.
As a consequence, for� < d ? , where d? is the thickness of the conductor, only the surface is
carrying the signal as represented �gure 5.3 for a cylindrical conductor, such as coaxial cables.

The skin e�ect has two major consequences on the system :
{ A conductor has a resistance which is frequency-dependent , given by Rs = 1

�� =p !�
2� .

{ Since cables are resistive, the incoming signal partlydissipates as it propagates within this
medium. For a conductor of lengthz, the propagating signalai is such that ai / e��z e�ikz ,
wherek is the wave vector of the propagating signal and� = 1

2
R s
Z 0

(if the dielectric loss can
be neglected) [Pozar, 2004]. In this expression,e�ikz is the propagation term describing a
progressive phase oscillation as the signal travels along the line, ande��z corresponds to
the attenuation factor.

The consequences of the skin e�ect can be seen �gure 5.4 on which we plotted the measured
re
ection of cables connected in series and terminated by an open (Z = 1). The attenuation
occurring along the cable is indeed frequency-dependent due to skin e�ect. A typical value for
the attenuation along the type of coaxial cables used in this work3 is between -1.5 dB/m and
-0.6 dB/m 4 at 1 GHz. Since the cable resistance is temperature-dependent, the attenuation in
the signal is also temperature-dependent, so that the frequency response of a cable varies with
the temperature. This point will be important when considering how to calibrate the set-up.
One also has to be aware of such an e�ect when designing the sample. Indeed, if the sample
thickness is too large, the electromagnetic �eld will not penetrate in all the volume of the sample,
and the obtained response will only re
ect the properties of the sample surface. We will come
back to this point when dealing with the choice of an appropriate sample, section 5.4.1.

Multiple impedance mismatches

3. Outer conductor diameter of 2.2 mm and central conductor diameter of 0.5 mm for stainless and copper
coaxial cables.

4. Respectively for stainless and copper cables.
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Figure 5.4: Measurement ofj�j (in dB) for coaxial cables terminated with an open, for frequencies
ranging from 10 MHz to 2 GHz. The decreasing re
ection signal signs the skin e�ect. The small
oscillations are due to the multiple impedance mismatches along the line.

In addition to losses, the lines have unavoidable imperfections which can be intrinsic or due
to connections. For instance, any interruption in the line to insert a microwave component such
as an ampli�er, a directional coupler, or, even more basically, a connection to the sample via
SMA-type connectors, induces parasitic re
ections that may become a nuisance if not controlled
or characterized. The measured overall response is then a function of the electrodynamic re-
sponse of the sampleand of the multiple re
ections at each of the line imperfections.

In particular, impedance mismatches can induce Fabry-Perot oscillations , observable
�gure 5.4. These originate from the interferences between the di�erent re
ections of the signal.
This e�ect can be illustrated by a simple example : a single line with an extended impedance
mismatch of length l > � (systematized �gure 5.5). One can show that for such a mismatch, the
total measured re
ection is :

� tot = � 1 +
� 2(1 � � 2

1)
ei� + � 1� 2

(5.6)

with � = 2kl , � 1 the re
ection at the �rst mismatch and � 2 the re
ection at the second mismatch.
As ! = kc

n is tuned, � tot oscillates with a c�
nl periodicity in angular frequency, c being the speed

of light and n the refraction index of the medium. Therefore, oscillations in the overall re
ected
signal appear for each cavity formed by impedance mismatches.

The intrinsic response of the sample can be deconvoluted if the number of resonant cavities
is limited in the corresponding frequency range. For the presented example :

� 1 =
� 2 � ei� � tot

�e i� + � 2� tot
(5.7)

However, when the number of cavities with di�erent lengths and re
ection factors is important,
it is complicated to obtain the intrinsic response of the system by using such a deconvolution
method.

One would, ideally, like to avoid Fabry-Perot e�ects due to the spatial extension of the sample.
Regarding the incoming wavelength, the sample therefore needs to be considered as a point in
space : � � l , with l the length of the sample. At 10 GHz and considering the substrate we
used5, we �nd that this condition gives l �10 cm. We will see that the typical size of our samples
complies with this constraint (section 5.5).

E�ect of the temperature

5. TMM10i with � = 9 :8.
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Figure 5.5: Schematic representation of an extended sample to illustrate the Fabry-Perot e�ect.
The section of length l forms a resonant cavity.

As the temperature is modi�ed, the response of the system is modi�ed by two phenomena :
{ The conductivity of the lines is modi�ed with the above-mentioned consequences on

their characteristics.
{ Thermal contraction occurs . As the di�erent parts of the set-up are made out of di�er-

ent materials, each having its own thermal expansion coe�cient, cooling down a microwave
circuit is not straightforward. For instance, Te
on has a thermal expansion coe�cient of
1.6% between 4 K and 300 K. Therefore, as the RF line is usually of the order of 1 m
long6, Te
on contraction induces a change in the cable length of about 1.6 cm between
room temperature and 4 K.

These phenomena have several consequences on the apparatus :
{ Applying the characterization of the setup made at high temperature to low temperature

measurements induces important errors since both the varying conductivity of the cables
changes the attenuation and thermal contractions induce di�erent impedance mismatches
at each connections and inside the coaxial cables for instance.

{ At each cool down, thermal contractions and thermal gradient distributions change the
overall setup response. The lack of reproducibility in the mechanical and electrical prop-
erties prevents the de�nition of a unique response of the setup from cool down to cool
down.

{ The apparatus is sensitive to temperature changes. More speci�cally, the helium level and
the thermal anchoring of the lines will a�ect the total re
ected signal.

Due to all these reasons, it is important to try to characterize the system at low temperatures,
and, whenever possible, within a single cool down.

5.2.3 Calibration

In order to be insensitive (or, at least, less sensitive) to the apparatus and to obtain the
frequency-dependent complex impedance of the measured sample with a maximum precision,
one needs to fully characterise the response of the system. In the following, we will exclusively
focus on the equations for re
ectometry measurements as we did not performed transmission
measurements during this thesis.

We will �rst detail the calibration principle before extending the discussion to the di�erent
non-standard calibrations used in the literature for such measurements.

5.2.3.1 Mathematical description of calibration

Mathematically, all errors originating from the apparatus can be described by anerror
matrix Serr such that :

Serr =
�

ED ER

1 ES

�
(5.8)

Where ED , ER and ES are frequency-dependent complex coe�cients, representing respectively
the directivity , the re
ection tracking and the source mismatch in the apparatus. The
equivalent system, for re
ection measurements and taking into account these errors, is given
�gure 5.6. All the imperfections of the apparatus are included into Serr . ED is principally due to
mismatches in the transmission line or to the imperfection of additional components used during
the experiments (a directional coupler for instance). ER is principally due to the dissipation of

6. For our experimental set-up, the RF line is of the order of 1.5 m inside the cryostat.
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Figure 5.6: Equivalent representation of the imperfect apparatus, with a transmission line of
impedanceZ0 and a sample of impedanceZ measured in re
ectometry.

the lines and dephasing along the lines. Finally,ES is due to re-re
ection of the signal as it goes
back to the output of the measurement apparatus.

5.2.3.2 Principle

We saw that the errors due to the apparatus can be taken into account by 3 coe�cients,ED ,
ER and ES . Having 3 di�erent well-known standards therefore allows to fully characterize Serr

and retrieve the response of the sole sample.

By using the measurement of di�erent standards 1, 2 and 3 (i.e. samples for which the
electrodynamic response is perfectly known in the considered frequency range), one can calculate
that the error coe�cients are given by [Kitano et al., 2008] :

ED (! ) =
� M 1(� M 2 � � M 3)� ref 2� ref 3 + � M 2(� M 3 � � M 1)� ref 3� ref 1 + � M 3(� M 1 � � M 2)� ref 1� ref 2

(� M 1 � � M 2)� ref 1� ref 2 + (� M 2 � � M 3)� ref 2� ref 3 + (� M 3 � � M 1)� ref 3� ref 1
(5.9)

ER (! ) =
(� M 1 � � M 2)(� M 2 � � M 3)(� M 3 � � M 1)(� ref 1 � � ref 2)(� ref 2 � � ref 3)(� ref 3 � � ref 1)

[(� M 1 � � M 2)� ref 1� ref 2 + (� M 2 � � M 3)� ref 2� ref 3 + (� M 3 � � M 1)� ref 3� ref 1]2
(5.10)

ES (! ) =
� M 1(� ref 2 � � ref 3) + � M 2(� ref 3 � � ref 1) + � M 3(� ref 1 � � ref 2)

(� M 1 � � M 2)� ref 1� ref 2 + (� M 2 � � M 3)� ref 2� ref 3 + (� M 3 � � M 1)� ref 3� ref 1
(5.11)

where � ref i is the expected re
ection for the standard i 2 [1;3] and � Mi is its actual measure-
ment performed with the setup.

Having determined all error coe�cients, one can measure the sample and retrieve its impedance.
Indeed, for a sample of re
ectivity �( ! ), the measured re
ectivity � meas (! ) for the sample with
the given setup is obtained through :

� meas (! ) = ED (! ) +
ER (! )�(! )

1 � ES (! )�(! )
(5.12)

This gives us that the signal originating from the sample is :

�(! ) =
ED (! ) � � meas (! )

�E R (! ) + ES (! )(E D (! ) � � meas (! ))
(5.13)

In the standard calibration for re
ectometry measurements, the 3 calibration points cor-
respond to : an open, a short and a load (matched to the RF line) which characteristics
are listed below :

Standard Impedance � ref

Open 1 1
Short 0 -1
Load Z0 = 50 
 0

Figure 5.7: Standard references, as well as their impedance and re
ection coe�cient �ref .
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5.3. CALIBRATION DEVICE 153

As we saw in section 5.2.2, due to thermal contractions, the lines are modi�ed at each cool
down, making calibration by using successive cool downs of the 3 references and of the sample
di�cult. With some assumptions on the system response, one can lower the number of standards
needed. One can for instance calibrate using only two standards and assuming thatED � 0.
This assumption is equivalent to say that there is no impedance mismatch in the line between
the instruments and the sample. Such hypothesis induces :

�(! ) =
(� M 1 � � M 2)� meas � ref 1� ref 2

�� M 2� meas � ref 1 + � M 1(� M 2(� ref 1 � � ref 2) + � meas � ref 2)
(5.14)

This strong assumption is usually not commendable due to imperfections of the line. It induces
large errors on the retrieved signal �(! ). However, it can give some rough indication for debug-
ging the setup.

Usually, instead of using such assumptions, experimentalists use experimental "tricks" to ob-
tain a "good" calibration of the system and limit the number of cool downs.

5.2.3.3 Non standard calibration techniques

Instead of using the usual Open Short Load calibration, one can indeed use some alternative
calibration methods :

{ Booth et al. [Booth et al., 1994] measured the calibration points at room temperature,
assuming that most of the errors, except the losses due to the line (ER ), could be corrected
in this way. In addition, and to obtain ER , they substituted the measurement of the
short at low temperature by the sample in the superconducting state , assuming a
pure inductive response of the superconductor. This requires to know the kinetic inductance
of the system, and can be used only in the case of superconducting materials.

{ Kitano et al. [Kitano et al., 2008] successively measured all references at low temperature
but substituted the measurement of the load by taking the resistance of the
sample in the normal state , assuming that the resistivity is frequency-independent7.
This calibration can be used for any system with a metallic state described by Drude's
model.

{ Cou•edo et al [Cou•edo, 2014]used the response of the system in both the supercon-
ducting and the normal state to obtain all calibrations points and the response
of the system in a single cool down . To do so, they used two calibration points in
the normal state at low temperature, of di�erent resistances, for which they assumed a
purely resistive response. The third calibration point has been taken in the superconduct-
ing state by assuming a pure kinetic response of the system at the lowest temperatures.
These hypotheses have been validated by an usual Open Short Load calibration. However,
this method is also limited to superconducting samples, or, at least, to samples for which
the frequency response is known at 3 di�erent temperatures.

5.3 Calibration device

To both perform an e�cient calibration and limit the number of cool downs, we chose a
di�erent approach than the above-cited ones : we chose to measure standard calibration
points (Open, Short and Load) in addition to the sample during a single cool down .
This approach required the development of a compact apparatus8 allowing such a calibration,
while the 3 standards and the sample are measured in conditions as similar as possible.

The idea guiding the design of this device was to use a rotating microwave cable connected
to a dial where the standards and the sample are placed. Through successive rotations, the
incoming signal is then connected to the corresponding dial line. The experimental challenges
are :

{ To operate a mechanically rotating cable at low temperature, and located 1-1.5
m-deep in a cryostat.

7. As expected for metals described by Drude's model, for frequencies much lower than the scattering time
(� = 10 �13 s for a good metal).

8. It needs to enter in a 4He cryostat of diameter � = 29mm.
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154 5.3. CALIBRATION DEVICE

{ Design equivalent dial lines , so that the incoming wave sees exactly the same environ-
ment, except for the nature of the sample or device at the end of each line.

{ Ensure that the mechanical rotation of the connector gives similar transmissions for
each of the dial lines.

{ Ensure a good transmission between the rotation microwave cable and the other rigid
cable.

Several designs have been tested during this thesis. In the following, we will only detail the last
one with which the measurements of superconducting vanadium samples have been performed.
In the following, we will detail :

{ How the dial is designed. We will more particularly detail the structure of the lines and of
the di�erent references.

{ How the transition between the coaxial cables and the dial is done.
{ The switching mechanism between the di�erent standards and sample.
{ The validation of the calibration device on a 200 
 dead resistor.

5.3.1 Design of the lines on the dial

The characteristic output impedance of the VNA and the characteristic impedance of the
cables isZ0 = 50 
. To limit the re
ection of the signal during its propagation within the dial
lines, these have to be accordingly adapted. To do so, we adopted a Conductor-Backed Coplanar
WaveGuide geometry (CBCPW) (presented �gure 5.8). It consists in a dielectric of relative per-
mittivity � r (and thickness h) sandwiched between 2 conducting layers (of thicknessesd? ). The
top layer is patterned with a strip of width S = 2a, in the middle of two semi-in�nite ground
planes at a distanceW .

For this geometry, the characteristic impedanceZ0 is given by [Simons, 2001] :

Z0 =
60�

p � ef f

1
K (k1 )
K (k 0

1 ) + K (k 2 )
K (k 0

2 )

(5.15)

where K (k) is the complete elliptic integral of the �rst kind, k1 = a
2a+2 W , k0

1 =
p

1 � k2,

k2 = tanh( �a
2h )=tanh( �b

2h ), k0
2 =

p
1 � k2

2 , and � ef f is given by :

� ef f =
1 + � r

K (k 0
1 )

K (k1 )
K (k 2 )
K (k 0

2 )

1 + K (k 0
1 )

K (k 1 )
K (k 2 )
K (k 0

2 )

(5.16)

Using this geometry presents several advantages :
{ It is easy to design the lines by usual lithography or milling techniques.
{ The geometry is similar to the one of coaxial cables, with a conductor surrounded by ground

planes, which helps the adaptation between the two di�erent geometries.
{ The impedance Z0 of such a line is easily tunable to match the impedance of the coaxial

cables (50 
), by tuning S and W for given d? and h.
{ The radiation losses9 are low thanks to the proximity of the conducting strip to the

ground10.
For our device, we chose as dielectric a 635�m-thick TMM10i ceramic (� = 9:8), which is known
to have low losses at low temperatures and high frequencies. It is covered on both sides by a
17.5 �m-thick copper layer. The analytical computation of Z0 being cumbersome, the geometry
of the lines have been optimized using AppCADc
 . The patterning of the lines has then been
performed using a micro-milling machine at the LPS-Orsay.

5.3.2 Design of the calibration dial

The main idea behind this design, presented �gure 5.9a., is to be able to measure successively
and by staying at low temperatures, all references and the sample, all sitting on a single chip. In
addition, we wanted to add a low frequency measurement of the sample by using a bias-Tee11

9. Dissipation by the environment.
10. In addition, dielectric loss can be reduced by adequately selecting the dielectric material.
11. A bias-Tee is a passive component allowing to mix low frequency and high frequency measurements, without

interferences between them.
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Figure 5.8: Conductor-Backed Coplanar Wave Guide geometry, with a strip line of thicknessd?

and width S. It is separated from the ground by a distanceW on plane andh out of plane. The
substrate has a dielectric constant� r .

(�gure 5.9b.).

Several parameters have then to be taken into account to determine the �nal design of the
lines (presented �gure 5.10) :

{ The 50 
 adaptation along the line, addressed in the previous section.
{ The size of the termination gap : the use of a commercial 50 
 CMS for our load sets

the size of the terminating gap at 200�m, corresponding approximately to the distance
between the metallic pads of the CMS element.

{ The adaptation of the end of the line to the sample to probe : the width of the
line S, and of the gapW is determined by the width of the sample we would like to probe,
which should match the width of the line. In our case, we chose to have a line termination
with S = 600 �m, determining W = 800 �m. This choice is has been made to :
{ easily handle samples. Indeed, these are deposited onto a substrate and it is convenient

to "
ip-chip" (see section 5.5) them onto the dedicated line, so that the �lm to probe
is directly in contact with the microwave line. The sample then is of micro-stipline
geometry.

{ have a CBCPW line geometry to stripline (sample geometry) transition at the end of
the line, allowing to be less sensitive to imperfections at the edges of the sample12.

{ The adaptation between the coaxial cable and the calibration device : it is per-
formed by a right-angle SMP-connector placed in the middle of the chip and presented
�gure 5.11 13. The line at the transition has a width of 350 �m adapted to the size of the
pin of the connector. It imposes the size of the gap at the beginning of the line to be 210
�m, to have a 50 
 adapted transition.

{ The adaptation to a Bias-Tee 14, which footprint has been reproduced on the line of the
sample15 imposesS = 490 �m and W = 390 �m 16.

{ A good de�nition of the ground plane : it is provided by via 17 distant of 1.5 mm
from each other. They have been placed away from the center of the chip in order to avoid
interferences with the rotation of the right-angle connector.

To verify there were no resonances due to the modi�cation of the width along the lines, RF
simulations have been performed usingSonnet c
 . The resulting design is presented �gure 5.12,
with a 3D view of the CAD design created onSolidWorks c
 and a picture of the assembled chip.
The line dedicated to the measurement of the sample will be detailed in section 5.5.

5.3.3 The reference points

We saw in section 5.2.3.2 that calibration in re
ectometry is usually obtained by measuring
3 di�erent standards, which are placed at the end of the lines as represented �gure 5.13.a. In the
case of perfect calibration points (�gure 5.13.b.), the Open is an open line, the Short a direct

12. Such uncontrolled imperfections, due to the cutting process, can engender peak e�ects of the electric �eld
and disturb the measurement.

13. Radiall R222941700W connector.
14. Marki BT-0024SMG.
15. It has been su�ciently spaced from the center of the sample so that it does not mechanically hinder the

motion of the pin of the right-angle connector.
16. To obtain a correct calibration, a small delay due to the bias-Tee has to be taken into account. This delay,

measured separately, is assimilable to an additive propagation length (see appendix D.2).
17. Metallic links between the top and the bottom metallic planes.
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156 5.3. CALIBRATION DEVICE

Figure 5.9: (a) Schematic representation of the calibration chip, with the di�erent CBCPW lines
addressing the references points and the sample. The reference (or calibration) plane is marked
by a dashed line. (b) Schematic representation of the design with a Bias-Tee on the line of the
sample.

Figure 5.10: Design of the dial lines. The various lengths are given in mm.

Figure 5.11: (a) Picture of the right angle connector. (b) Schematic representation of the con-
nector. Source : http://www.radiall.com/.

Figure 5.12: (a) 3D view of the �nal chip design. (b) Pictures of the assembled calibration chip.
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5.3. CALIBRATION DEVICE 157

Figure 5.13: (a) Usual realisation of calibration points in re
ectometry measurements. The
calibration takes into account the setup up to the calibration plane, marked by a dashed line.
(b) Representation of the equivalent circuits for ideal calibration points.

Figure 5.14: Representation of real calibration points. The open is equivalent to a capacityCop

between the line and the ground, the short to an inductanceL sh , and the load to a parallel RCop

circuit.

connection to the ground and the load aZ0 = 50 
 resistor in which the signal is entirely absorbed.

In our case, the open has been obtained by leaving a gap between the line and the ground
plane. The short has been obtained through a direct connection to the ground plane and the
load has been obtained by soldering a CMS 50 
 resistor18 between a line identical to the open
and the ground plane. These can be seen �gure 5.12.

We have, up to now, assumed that the reference points were perfect, as shown in table 5.7
and section 5.2.3.2. However, it is usually not the case and they need to be modeled to achieve a
good calibration. In general,the di�erent calibration points can be modeled as following
(�gure 5.14):

{ The open is modeled by a capacitanceCop between the ground and the line, due to the
proximity of the ground.

{ The short is modeled by a small line of inductanceL sh .
{ The load is modeled by a resistorZ � Z0 = 50 
 in parallel with a capacitance Cop.

Based on this model, one can estimate the parametersL sh and Cop by using either analytical
formula or simulations.

18. The resistor is a Vishay CH2016-50RGFT, certi�ed to be frequency-independent for frequencies up to � 20
GHz.
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Figure 5.15: (a) Schematic representation of the electric-�eld lines in the case of a perfect short.
(b) Schematic representation of the electric-�eld lines in the real case.

Open

For a width of the termination gap lg such that lg . 0:1(S + 2W ), like in our case, an
estimation of Cop is given by [Simons, 2001]:

Cop =
2�0

�
f(S + W )[

ln(� +
p

1 + � 2)
�

+ ln(

p
1 + � 2 + 1

�
) �

1
3

(
1

1 +
p

1 + � 2
)] � (S +

2
3

W )g� r

(5.17)
with � = l g

S+W . Calculating the value, we �nd Cop � 0:1pF.
Using the simulation software Comsolc
 , we �nd a value of Cop � 0:06� 0:02pF, in fair agree-

ment with the obtained analytical value. These values, as we will see later, are barely measurable
on the re
ected signals and can therefore be neglected within our experimental precision.

Short

In the case presented �gure 5.13, by de�nition of the calibration plane, there should be no
contribution coming from the short (L sh = 0). This would be the case for non-disturbed electric-
�eld lines (�gure 5.15.a.). However, due to the presence of the neighbouring ground plane, the
electric �eld lines are deviated as represented �gure 5.15.b., leading to Lsh 6= 0. This can be
interpreted as an arti�cial prolongation of the line, of a length lsh given by [Simons, 2001]:

lsh =
L sh

L l
(5.18)

With L l � Z 0
c

p � ef f for CPW geometry 19. In our case, L sh can be estimated through the
analytical formula [Simons, 2001]:

L sh =
2
�

� 0� ef f (S + W )Z 2
0 (1 �

1
cosh(60� 2=Z0

p � ef f )
) (5.19)

Taking into account the characteristic dimensions of our circuit, it gives L sh � 100 pH andlsh =
250 � m. These values have little in
uence on the measured signals. However, as we would like
to measure superconducting materials with impedance lower than 100 pH, it needs to be taken
into account in this case to correct our raw data, as we will see in section 5.5.

5.3.4 Rotation mechanism

To be able to address the di�erent lines, we fabricated the rotating device presented �gure
5.16. Di�erent elements had to been taken into account to design it:

{ The rotation : the rotation is provided by a drive shaft, a stainless tube going in straight
line from room temperature to the device, ended by gears. The operator can manually
rotate the drive shaft outside the cryostat. The rotation is then transmitted through the
gears to a copper rotating axis through which runs a microwave cable.

{ The incoming �xed microwave cable has to be adapted to the cable running
within the rotating axis and to the dial lines. A slide-on connector20 ensures the con-
nection between the �xed microwave cable and the rotating one. Moreover, the transition
between the rotating cable with the dial is made through a right-angle SMP-connector.

19. The approximation of a CPW line instead of a CBCPW line can be done as the gap is small compared to
the distance from the metallic back ground plane.

20. Made with a 21 MMPX-50-2-1/111 NE and a 11 MMPX-50-2-1/111 NE connector.
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5.3. CALIBRATION DEVICE 159

Figure 5.16: Picture of the device allowing the selection of the lines. (b) Schematic representation
of the device. Picture from [Diener et al., 2014].

{ The positions of the lines on the dial should be easy to �nd : 4 groove slides at 90�
from each other have been drilled on the rotating axis, determining 4 positions which are
locked by ball spring plungers. They de�ne four pre-determined positions corresponding to
the di�erent lines.

Moreover, a good contact between the right-angle connector and the dial lines is of
primary importance. Indeed, due to di�erential thermal contraction of the di�erent materials
composing the lines and the cryostat, a loss of contact can occur. This has been one of the
main problems faced during the development of this device. It has been addressed by using
springs, forcing the right-angle connector to contact the lines. In addition, a 
exible coaxial
cable have been added at approximately mid-length of the cryostat, to reduce the rigidity of the
incoming cables and allow a little mechanical freedom, thus reducing constraints due to thermal
contractions of the RF lines on both the slide-on connector and the setup presented �gure 5.16.

5.3.5 Validation of the calibration procedure on a resistor

In order to validate the calibration device, we have tested it at room and cryogenic tempera-
tures, the sample then being a 200 
 dead resistor. These tests have been perform on a non-�nal
prototype which is slightly di�erent from the one presented section 5.3: the lines have slightly
di�erent geometry and the bias-Tee was not included. It therefore does not fully represent the
performances found with the de�nitive calibration chip, which will be discussed in section 5.5.
However, it provides a �rst proof-of-principle.

In this subsection, we will :
{ Compare the measurement of the bare calibration points with what is expected.
{ Validate the calibration procedure on a 200 
 dead resistor.

5.3.5.1 Measurement of the re
ection coe�cients of the di�erent standards

Let us �rst recall what is expected in the case of perfect calibrations points (summarized in
table 5.1). The re
ected signal is given by � = Z �Z 0

Z +Z 0
= j�je i� . The phase is therefore de�ned

by � = 180
� Arg (�) and the attenuation (in dB) by 20 Logj�j. Therefore, the Short and the Open

should give rise to perfect re
ections (� =1) with respectively, an in-phase and 180�out-of-phase
signal. For the load (50 
 resistor), as all the incoming signal is absorbed by the resistor, � = 0
and the phase is not de�ned.

These references have been measured both at room and low temperature (4 K). As the dif-
ference between the two measurements is mostly due to a modi�cation of the attenuation of the
lines, only the room temperature measurements will be analysed here21.

21. The di�erences between the 2 spectra - at room temperature and 4 K - are mainly due to a lower dissipation
due to a reduced in
uence of the skin e�ect. This also translates into a slight shift in frequency for the oscillations
due to impedance mismatches.
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Standard Impedance j� ref j Attenuation (dB) � (�)
Open 1 1 0 0
Short 0 1 0 180
Load Z0 = 50 
 0 �1 not de�ned

Table 5.1: Standard references, as well as their impedance, re
ection coe�cient � and corre-
sponding attenuation and phase.

We connected the calibration device directly to the VNA through using coaxial cables as
represented �gure 5.18. The selection of the reference points or the 200 
 resistor is driven from
the outside of the cryostat.

The raw re
ectometry measurements of the di�erent reference points (Open, Short, Load)
using the calibration device, as well as the 200 
 dead resistor, are presented �gure 5.17. The
phase shift due to propagation has been compensated prior to the measurement by a delay of�
10.1 ns, identical for each measurement and corresponding to the e�ective cable length22.
The Short and the Open (�gure 5.17.a. and b.) have a near perfect re
ection at low frequency.
At higher frequency, the signal is attenuated due to skin e�ect. The obtained phase is 
at in
frequency. The visible oscillations in both the attenuation and phase are linked to imperfections
of the propagation line (see 5.2.2).
The measurement of theLoad gives an attenuation of about f-30, -35g dB when f ! 0, cor-
responding to a resistance of (52:5 � 1) 
, close to the measured DC value (50� 1 
 obtained
through a 2 probes measurement). In theory,Z = 50 
 should gives j�j ! �1. Experimentally,
this is not the case, due to impedance mismatches along the line (upstream the load) which
induce parasitic re
ections. Measuring the load enables to quantify the setup directivity - i.e. to
quantify ED - (see section 5.2.3.2).
The dead resistor should give an attenuation of 20Log(j 200�50

200+50 j) � � 4:5 dB, close to the mea-
sured value at low frequency. As � > 0, the phase should be equal to 0, as observed (0� 20� 23).
As for the short and the load, additional dissipation at �nite frequency is due to skin e�ect and
oscillations to imperfections of the line.

5.3.5.2 Calibration of the resistor

We applied the calibration procedure detailed in section 5.2.3.1 to test it and to retrieve the
value of the 200 
 dead resistor.

We present �gure 5.19 both the measured signal and the signal obtained through calibra-
tion 24. We notice that :

{ Attenuation due to propagation through the coaxial cables (skin e�ect) and the dial lines
is corrected.

{ The oscillations due to the multiple impedance mismatches along the lines are also sup-
pressed.

The retrieved signal is almost frequency-independent, with small variations at frequencies higher
than 1.3 GHz.

One can now �nd back the impedance by inverting equation 5.2, giving :

Z = �Z 0
� + 1
� � 1

(5.20)

By doing so, we obtain �gure 5.20. We indeed �nd the DC value of the resistor (200 
) in a range
of 10 MHz to 1.3 GHz, within a precision of better than 10 %, and better than 20 % at frequencies
up to 2 GHz. At higher frequencies (not shown) the response of the system is more hazardous,
possibly due to resonances within the calibrator volume. Indeed, due to the size of the calibrator
(typically � 2:6 cm), resonances due to eigenmodes of the box are expected close tof = 2 GHz 25.

22. � 2 meters in the speci�c case of this experiment.
23. The large uncertainty is due to oscillations because of multiple impedance mismatches.
24. For this calibration, L sh has been taken into account.
25. � 1.8 GHz in TMM10i and � 5.8 GHz in liquid He or air, by taking into account that � He � � vaccum = 1.
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5.3. CALIBRATION DEVICE 161

Figure 5.17: Attenuations and phase shifts obtained through the measurement of the re
ection
coe�cients for the Open (a), the Short (b), the Load (c) standards, as well as for a 200 
 resistor
(d).

Figure 5.18: Schematic representation of the setup used to calibrate the 200 
 resistor.
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162 5.4. SAMPLE SELECTION

Figure 5.19: Attenuation (a) and phase (b) of the re
ected signal of the 200 
 resistor without
(blue) and with (red) applying the calibration procedure.

Figure 5.20: Calibrated impedancejZ j (a) and phase (b) obtained through the calibration of a
200 
 dead resistor.

The developed calibration procedure can therefore be used to �nd back the impedance of
samples in re
ectometry measurements. With this �rst prototype, we indeed were able to measure
a 200 
 dead resistor with a precision on the measured resistance of the order of 10 to 20 %.
This proves the feasibility of such a calibration device. The design tested here has then been
improved to measure superconducting samples.

5.4 Sample selection

The above-described calibration device has been designed in order to work at cryogenic tem-
peratures (T< 4 K). In order to test it, we therefore wanted to probe samples with an important
variation of resistance as a function of the temperature (forT < 4 K) to test the limits of the
apparatus on a single sample. Superconducting materials therefore seemed to be good candidates
for such a test.

In this section we will :
{ Explain how the material for the test has been selected.
{ Show how we tuned the properties of the �lm to meet our requirements for the test.
{ Compare the D.C. properties of the chosen �lms with the literature.
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5.4.1 Possibles candidates

Good candidates to validate the calibration device had to meet the following criteria :

1. The �lms should be easily synthesized with conventional evaporation techniques.

2. The �lms needed to becontinuous at the probed thicknesses.

3. They should be superconducting ofBCS weak-coupling type to avoid corrections due to
strong coupling.

4. The critical temperature should be such that 2<T c <4.2 K to be easily measurable in a
4He cryostat with a large enough range in temperature.

5. The thickness of the �lms should be such that the electric �eld penetrates all the sample,
i.e. � L < d ? , to avoid skin e�ect.

A list of candidates is presented in the following table : [Ashcroft and Mermin, 1976, Kittel, 1986]

Compound Tc (K) 2�=k B Tc Screening length� L =
q

m �

n� 0 e2 (�A)

Al 1.2 3.4 160
In 3.40 3.6 220
Nb 9.3 3.8 390
Pb 7.2 4.3 370
Sn 3.7 3.5 340
V 5.4 3.4 530

In order to meet the above criteria, Nb and Pb have been excluded due to their strong cou-
pling. Similarly, In and Sn have been excluded due to small� L compared to the �lm continuity
threshold in these materials. Aluminum samples seemed to be good candidates, with aTc that
could be enhanced by decreasing the thicknesscontrary to most other materials and regarding
the fact that Al �lms had already been measured in the GHz range [Steinberg et al., 2008]. We
actually performed some preliminary tests with this compound, but it turned out that a very
large capacitance appeared between the �lm and the microwave lines, due to Aluminum-oxide
forming at the surface of the sample. This complicated the interpretation of the experimental
data and implied the modelling of the electrodynamic response of the oxide layer. In addition,
the allowed range in temperature was limited by theTc of the measured samples, ranging from
1.5 to 1.7 K26. We therefore abandoned this lead.

Vanadium �lms seemed to be good candidates for the considered test as they possess a high
enough critical temperature, a weak-coupling superconductivity and a large penetration depth,
allowing the electric �eld to penetrate in the sample. Moreover, it is not so sensitive to oxidation,
so that parasitic capacitance e�ects due to �lms oxidation could hopefully be avoided.

5.4.2 Superconductivity in Vanadium, probed by low frequency tech-
niques

According to London's penetration depth, any vanadium sample of thickness lower than 500
�A should be a good candidate for microwave measurements. However, the critical temperature
for bulk samples is too high to be comfortably used in a4He cryostat. Furthermore, the resis-
tivity of vanadium is of the order of � V � 4�
:cm, giving a resistance of less than 1 
 for 500
�A-thick �lms with the considered �lm geometry. A value closer to 50 
 would be preferable to
have a good sensitivity, at least in the normal state, and measure the evolution and precision on
the evolution of the resistivity as a function of the temperature when the �lm becomes super-
conducting. We were therefore interested in modifying the properties27 of Vanadium �lms by
using the thickness as an experimental knob.

In this subsection, we will see :
{ How the �lms are synthesized.
{ How the properties of V are modi�ed by thickness e�ects.
{ How the samples for the calibrator validation have been selected.

26. Obtained by thickness e�ects.
27. Both the low temperature normal state resistance Rn and Tc .
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164 5.4. SAMPLE SELECTION

Figure 5.21: Schematic representation of a Vanadium sample.

5.4.2.1 Sample fabrication

All Vanadium samples presented below have been synthesized by e-beam deposition under
ultra-high vacuum 28. The deposition chamber used is similar to the one described section 2.2.1.1.

The deposition sequence is described below :

Compound Thickness (�A)
SiO 250
V 53 to 406
Au 2000
SiO 250

The vanadium �lm is deposited onto a silicon substrate covered by a 250�A-thick SiO coating
layer in order to reduce the roughness of the surface. We then use shadow masks to de�ne
the geometry of the sample and evaporate Vanadium of the desired thickness, followed by 2000
�A-thick Gold pads for electrical contacts29. In re
ectometry measurements, the gold pads will
enable a good contact between the microwave lines and the 
ip-chipped sample. A protective
250 �A-thick over-layer of SiO is then evaporated without breaking the vacuum, to prevent the
oxidation of the layer. The �nal geometry is presented �gure 5.21.

5.4.2.2 Evolution of the properties of Vanadium �lms with the �lm thickness

As we have seen, in order to be used for the validation of the calibration device, vanadium
superconducting properties had to be tuned. We therefore seized this opportunity to undertake
a preliminary study on the suppression of superconductivity in vanadium thin �lms, due to a
thickness reduction. We therefore synthesized three batches of vanadium �lms (9 �lms in total)
of thicknesses ranging from 50 to 400�A of which we studied DC transport characteristics at low
temperature.

Transport measurements were carried out using a pumped-4He cryostat, having a base tem-
perature of the order of 1 K, and by using standard low-frequency lock-in techniques with 4
probes-measurements. Measurements have been carried out by applying a low enough polarisa-
tion to avoid heating in the normal state and, when superconducting, to be below the critical
current. The temperature of the samples is measured by a calibrated Cernox thermistor ther-
mally anchored to the sample holder.

The characterisation of our samples in the normal state as well as their superconducting
properties will be detailed below.

The normal state

The characteristics of the di�erent evaporated samples are presented in the table below :

28. With a pressure between 1 and 2 � 10�8 mbar during deposition.
29. This geometry de�nes 500 �m-long Vanadium strips between the Au pads for RF measurements : the length

of Vanadium strips is longer than the gap designed on the calibration device (200 �m) in order to avoid alignment
problems.
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Batch Thickness (�A) R300K (
) � 300K (�
:cm) Rn (
) � n (�
:cm)
VHRF01 400 6.5 26.0 0.78 3.1
VHRF01 300 9.25 27.7 1.29 3.9
VHRF01 200 14.48 29.0 2.9 5.8
VHRF02 150 19.72 29.6 4.55 6.82
VHRF02 120 26.43 31.7 6.72 8.1
VHRF02 100 34.84 34.8 10.38 10.4
VHRF04 83 42.78 35.5 15.41 12.8
VHRF04 67 57.93 38.8 23.27 15.56
VHRF04 53 80.23 42.5 37.42 19.8

Table 5.2: Thickness, resistance and resistivity (taken at 300 K and 6 K) of the Vanadium �lms
grown for this study,

The resistivities measured in our �lms are comparable to those found in the literature : at 300
K, � 300K ' 26� 30 �
.cm and at low temperature (6 K), � n ' 3� 5 �
.cm 30. From these val-
ues, the mean-free path time can be estimated via a simple Drude model, usingn ' 5� 1028 m�3

[Reale, 1970, Foner, 1957, Laulajainen et al., 2006, Tsai et al., 1981] and the fact that the e�ec-
tive massm� is about 10 times the electron mass [Radebaugh and Keesom, 1966]:� = m �

ne 2 � 300K
'

2 � 3 � 10�14 s for the thickest �lm. Since the Fermi velocity is of the order of vF ' 1:8 � 105

m.s�1 [Gutsche et al., 1994, Williamson, 1970, Sekula and Kernohan, 1972, Moser et al., 1982],
this corresponds to an estimate for the mean free path ofl ' 40 �A, comparable to what
has been found in similarly grown Vanadium �lms [Kuzmenko et al., 1978, Teplov et al., 1976,
Reale, 1970, Alekseevskii et al., 1976].

Through Matthiessen's rule (see section 1.2.2), the phonon resistivity at 300 K can be esti-
mated as � 300K � � n = � ph (300K ) � � ph (6K ) ' � ph (300K ) ' 23� 1 �
:cm (cf table 5.2). This
value is compatible with what had been found by Teplov et al. [Teplov et al., 1976].

The sharp increase of the low temperature resistivity for thinner �lms cannot be explained
only by geometry e�ects. However, they can be accounted for by the Fuchs-Sondheimer law
(see section 1.7.1) which takes into account isotropic electron scattering, and both surface and
grain-boundary scattering in the case of polycrystalline �lms. � n is then expected to vary as 1=d,
which is indeed the case, as shown �gure 5.22.

All these considerations lead us to think that our Vanadium �lms are of compara-
ble quality to the polycrystalline �lms reported in the literature. Since no par-
ticular precaution was taken during the �lm deposition (the substrate has not been cooled
down), and as is con�rmed by the values of the resistivities, it is highly unlikely that our �lms
are either monocrystalline - in which case the resistivity would be of the order of 1�
.cm
[Gutsche et al., 1994, Laulajainen et al., 2006] - or amorphous - in which case the awaited resis-
tivity is of about 200 �
.cm [Kuzmenko et al., 1978].

The superconducting state

The R(T) characteristics for the di�erent �lms are shown �gure 5.23. All measured �lms are
superconducting. As expected for disordered �lms, asd? decreases, the normal sheet resistance
is increasing and the critical temperatureTc decreases. The evolution of the critical temperature
as a function of the �lm thickness is presented �gure 5.24.Tc have values ranging from 1.56 to 4.9
K and evolve as 1=d? . As is usual forhomogeneous �lms [Gantmakher and Dolgopolov, 2010],
all superconducting transitions are sharp and parallel to one another, and no sign of reentrance
is observed.

Tc evolves as accounted for by Simonin's model, which takes into account the increasing
in
uence of surfaces in thin �lms (see section 1.7.1 for details) :

Tc = Tc0(1 �
dm

d?
) (5.21)

30. In Teplov et al. [Teplov et al., 1976], � 300K � 25 �
.cm and � n � 4 �
.cm for thick polycrystalline
�lms.
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166 5.4. SAMPLE SELECTION

Figure 5.22: Low temperature (6 K) resistivity of Vanadium thin �lms � n as a function of 1/d? .
� n varies linearly as accounted for by Fuchs-Sondheimer model.

where Tc0 is the bulk value of the superconducting critical temperature and dm is the critical
thickness at which superconductivity is destroyed.
By applying equation 5.21 with Tc0 � 5.4 K, close to the tabulated value [McMillan, 1968,
Ashcroft and Mermin, 1976], one �nds dm = (3:7 � 0:5) nm. This minimum thickness for the
existence of superconductivity in vanadium thin �lms is model-independent and is relatively large
as far as elemental superconductors are concerned. Indeed, although any interpretation of this
e�ect is beyond the scope of this thesis, it is noteworthy that, if dm ' 52 �A for Aluminum,
dm ' 41 �A for Indium and dm ' 37 �A for Lead [Jaeger et al., 1989], elemental superconductors
such as Beryllium, Bismuth, Gallium, Molybdenum, Niobium or Tantalum have critical thick-
nesses of the order of a few angstr•oms, 1 nm at most.

Another way to interpret the e�ects of a thickness modi�cation on the critical temperature is
to consider the change in screening it induces and its in
uence on superconductivity, as performed
in Finkelstein's fermionic model (see section 1.7.3.1.b). In this case,Tc is driven by the variation
of the sheet resistance as :

Tc

Tc0
= exp(�

1



)[(1 +

p
t=2


 � t=4
)(1 �

p
t=2


 � t=4
) �1 ]1=

p
2t (5.22)

with 
 = 1=ln(k B Tc0�=~) and the renormalized sheet resistancet = Rn e2=(2� 2~). For the theory
to be valid, the system has to be morphologically homogeneous and such that 5< � 1


 < 10.
In our case, it would be possible to qualitatively describe our data with such a law, assuming
that � � 1 � 10�22 s (�gure 5.25), corresponding to a mean free path of� 2 � 10�17 m, well
below the inter-atomic distance. This value is therefore highly unlikely. In term of 
 , it gives
� 1


 � 20, out of the validity limit of Finkelstein's model.

Both Simonin and Finkelstein's models agree qualitatively with our experimental data on the
destruction of superconductivity in Vanadium �lms. Short of any de�nitive conclusion, let us
just say that we are out of the validity range for Finkelstein's model. Whether Simonin's model
should hence be favoured is a question that needs to be addressed in a later work.

5.4.2.3 Comparison with the bibliography
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Figure 5.23: Sheet resistanceR as a function of temperature for the Vanadium thin �lms.

Figure 5.24: Variation of the superconducting critical temperature Tc of Vanadium thin �lms of
di�erent thicknesses. In blue, �t of the data with Tc(d? ) = 5 :4 � 2�10 �8

d?
.
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Figure 5.25: Variation of the renormalized superconducting critical temperatureTc=Tc0 (Tc0 =
5:3 K) of Vanadium thin �lms as a function of the sheet resistanceRn . The thick line corresponds
to a �t using Finkelstein's equation (equation 5.22) with � = 1 � 10�22 s.

The evolution of Tc with the �lm thickness in Vanadium has been studied exhaustively in the
literature [Alekseevskii et al., 1976, Gutsche et al., 1994, Kuz'menko et al., 1975, Kuzmenko et al., 1978,
Teplov et al., 1976, Teplov and Mikheeva, 1980]. However, although some authors had pointed
out to di�erences between amorphous and polycrystalline �lms [Kuz'menko et al., 1975, Kuzmenko et al., 1978],
we are not aware of a systematic study on the in
uence of the structure, and therefore on the
nature of disorder, on the destruction of superconductivity in this material.

In order to evaluate the in
uence of the nature of disorder (here the �lm structure) on the
destruction of superconductivity, we have compiled experimental data available in the literature.
The corresponding graph is given �gure 5.26. From this plot, there is a clear distinction between
crystalline and polycrystalline �lms on the one hand, and amorphous �lms on the other. Both
have Tc evolving as 1

d?
. However, the bulk values of the superconducting critical temperature,

which can be estimated by taking the 1
d?

! 0 limit, are very di�erent. For mono- or poly-
crystalline �lms, Tc;bulk ' 5.4 K. A contrario, in amorphous �lms, Tc;bulk � 3 K. This can be
related to the fact that Vanadium has its Fermi energy at a maximum of the density-of-states
(DOS). In amorphous �lms, disorder smears the sharp features in the DOS (see section 1.4.1)
which, in this case, is lessened, giving rise to a smallerTc0 [Crow et al., 1969].
Moreover, the rate at which Tc decreases with 1=d? is slower for amorphous �lms, resulting in a
lower critical thickness (dm � 21 �A) than in (poly-)crystalline vanadium ( dm � 31 �A).

One can wonder what happens if we take the normal sheet resistance as a measurement of
disorder, as usually performed for thin �lms. The corresponding evolution is represented �gure
5.27. As can be seen,Rn , despite the commonly accepted picture, is not a good parameter to
account for the destruction of superconductivity in disordered �lms 31 : amorphous �lms and
(poly-)crystalline �lms do not fall on the same trend for Tc(Rn ).
In the case of amorphous �lms, the transition can be described within the framework of Finkel-
stein's theory. Indeed, we �nd for amorphous �lms � � 1 � 10�15 s, giving � 1


 � 7, within
the validity range of the theory. Contrary to what has been found for poly-crystalline �lms,
Finkelstein's model could well explain theTc(Rn ) evolution in amorphous �lms.

The criterion for the applicability of Finkelstein's theory can be questioned. Indeed, it is

31. The problem of linking Rn with disorder for �lms of di�erent thicknesses has already been observed in
a-Nbx Si1�x thin �lms, as reported section 2.3.3.3.
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Figure 5.26: Variation of the superconducting critical temperature Tc in Vanadium thin �lms as
a function of 1/ d? .

striking that Tc(Rn ) can, in both cases (amorphous and (poly-)crystalline), be qualitatively
described by equation 5.22 . One can therefore wonder whether, in the (poly-)crystalline case
for instance, the identi�cation of � with the mean free path time is correct, or, if the existence
of crystallites would introduce a renormalization of this parameter. We can however conclude
on the fact that the microscopic nature of disorder is important to describe the destruction of
superconductivity, at least in this material. It has been indeed found to be dependent on the
morphology, even though theories usually predict a similar mechanism for the destruction of
superconductivity in all homogeneously disordered �lms (i.e. amorphous and (poly-)crystalline,
see section 1.7).

5.4.2.4 RF sample

To select a suitable sample for RF measurements, we saw that two things had to be taken
into account :

{ The sample needs to have aTc in the range easily accessible with our4He test cryostat.
{ As we will measure the re
ection of a microwave signal, the impedance of the sample needs

to be as close as possible to 50 
, for a maximum sensitivity.
Several samples meet these criteria, as can be seen �gure 5.28, where they correspond to those

enclosed in the green region. Their properties have been summarized in the following table :

Batch Thickness (�A) Rn (
) Tc (K )
VHRF02 120 6.72 3.92
VHRF02 100 10.38 3.58
VHRF04 83 15.41 2.84
VHRF04 67 23.27 2.31

The samples of interest have sheet resistances ranging from 6.7 to 23.2 
 andTc varying
from 2.31 to 3.92 K. We favored the measurement of one of the thickest ones (100�A-thick), as it
allowed to have a larger range in temperature where the superconducting properties of the �lm
could be measured before attaining our cryostat base temperature.

For microwave measurements, the samples shown �gure 5.21 have been scribed with a dia-
mond tip in order to �t within the calibration device. The corresponding sample design is then
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Figure 5.27: Variation of the renormalized superconducting critical temperatureTc=Tc0 (Tc0 =
5:3 K for (poly-)cristallyne �lms and Tc0 = 3:2 K for amorphous �lms) in Vanadium thin �lms
as a function of the sheet resistanceRn . The thick lines correspond to �ts using Finkelstein's
equation (equation 5.22) with � = 1 � 10�22 s (in pink) or � = 1:5 � 10�15 s (in grey), respectively
for (poly-)crystalline �lms and amorphous �lms.

schematically shown �gure 5.28. Let us now examine how these �lms respond to a microwave
excitation.

5.5 Microwave measurement of a Vanadium �lm

In this section, we will present the high frequency measurement of the 100�A-thick Vanadium
sample. The sample has been put in contact with the measurement line using a 
ip-chip tech-
nique (presented �gure 5.30) : the pre-designed sample is directly connected to the measurement
line. A PVC strip allows to maintain and press it onto the lines to ensure good electrical contact
(see �gure 5.12.b.).

During these measurements, we simultaneously measured the high frequency response of the
sample and its low-frequency resistance (see �gure 5.31):

{ The high frequency measurement is provided by aR&S r ZVA network analyser. The
rotation mechanism presented in section 5.3.4 allows to measure successively the di�erent
references and the sample. To avoid heating the sample by the noise incoming from the
network analyser, 30 dB attenuation has been added along the lines as pictured �gure 5.32.
By using the internal coupler of the instrument, we avoid any attenuation of the re
ected
signal during the measurement.

{ The low-frequency resistance measurement is performed through the bias-Tee by conven-
tional lock-in techniques32. The measurement was of 4-probes type down to the bias-Tee33.
It was performed at an excitation, given by the lock-in voltage output and the polarisation
resistanceRpola (typically 1 M
), of the order of 1 to 10 �A to avoid heating the �lm.

In the following, we will :
{ Give the awaited response (computed via Mattis-Bardeen equations) of a superconducting

�lm in our experimental conditions as the superconducting transition is crossed.
{ Observe the e�ects of the calibration performed at liquid Helium temperature on the sam-

ple.

32. We used a SR560 lock-in ampli�er.
33. The bias-Tee induces an additive measured resistance of � 2 
 at 300 K and < 0:1 
 at 4 K.
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Figure 5.28: Rn and Tc as a function of 1/d? in the Vanadium thin �lms. The green region
indicates the suitable samples for microwave measurements.

Figure 5.29: Geometry of Vanadium samples probed by microwave measurements.

Figure 5.30: Illustration of the 
ip-chip technique to place the sample between the microwave
lines. One is the incoming line. The other is connected to the ground.
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Figure 5.31: Illustration of the measurement setup used to perform both low frequency and high
frequency measurements of the sample of impedance Z.

Figure 5.32: Insertion of the attenuator needed to perform RF measurements without heating
the superconducting �lms. The attenuator was placed upstream the directional coupler of the
ZVA such that it does not attenuate the re
ected signal. As it also is upstream the reference
measurement, it has no incidence on the measured attenuation. Adapted from the user guide of
the ZVA Network Analyser. Source : https://www.rohde-schwarz.com/.
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Figure 5.33: � 1(T = 0; ! ) and � 2(T = 0; ! ) at frequencies! << � 0. At T = 0, � 1(T = 0; ! ) is
described by a� function and � 2(T = 0; ! ) = � 1

L k 0 ! .

{ Determine the RF response of the sample as a function of the temperature and frequency,
and interpret the corresponding results.

5.5.1 Mattis-Bardeen Predictions

We saw in section 5.4.2.4 that the probed Vanadium �lm has a superconducting transition
with Tc � 3:6 K. Such system can be described at low temperature by a 2 
uid model but
this model cannot describe the data near the transition, and in particular does not predict the
coherence peaks. To explain such an e�ect, one needs to consider Mattis-Bardeen theory (see
section 4.2). In the speci�c case of our �lm, the probed frequencies are ranging from 10 MHz to
2 GHz. Converted in units of � 0, the zero temperature gap , it gives f=[0.0019,0.015]�0, and
should therefore not induce pair breaking.

Let us recall what is expected in the case of the probed sample. At zero temperature, following
BCS theory, we expect a kinetic inductance of :

L k0 =
~Rn

� � 0
� 5pH (5.23)

where Rn � 13:5 
 is the resistance of the �lm in the normal state. One can also evaluateL k0

using London theory :

L k0 =
m�

nse2 � 1:5pH (5.24)

with ns � n
2 � d? = 2 :5 � 1020 m�2 and m� = 10me (see section 5.4.2.2). The two values are

therefore in rough agreement with each other. We will, in the following, take the value obtained
through BCS theory (L k � 5 pH) as a reference.
The expected electrodynamic response atT = 0 is plotted schematically �gure 5.33. The quasi-
particles are all condensed in a� peak at zero frequency, giving rise toRe(� ) = � 1 / � (T ). On the
other hand, the inertial response of Cooper pairs gives rise to a responseIm(� ) = �� 2 = 1

L k 0 ! .
At higher temperature, the electrodynamic response of the sample is given by Mattis-Bardeen
theory. The awaited response as a function of both temperature and frequency is plotted �gure
5.34 for the probed sample, in the frequency range probed in this experiment.

5.5.2 First calibration

5.5.2.1 Normal state

The raw re
ection signal for the 100 �A-thick Vanadium �lm is given �gure 5.35 (blue curve).
As we will see, the dephasing due to the Bias-Tee (see annex D.2) and the inductance of the
short line linking the sample to the ground (see section 5.3.3) are not taken into account in
the calibration procedure. We therefore subtracted these e�ects from the re
ected signal. Once
again, the oscillations in j�j are due to impedance mismatches, and its frequency dependence to
skin e�ect. The frequency dependence of the phase is due to propagation e�ects.
By applying the calibration procedure, we obtain the red curves presented �gure 5.35.
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Figure 5.34: Prediction at the considered frequencies (from 10 MHz to 2 GHz) of the complex
impedanceZ and conductance� , following Mattis-Bardeen theory, of the 100 �A-thick Vanadium
�lm measured during the presented experiment (L k0 = 5 pH, Tc = 3 :6 K). Superconducting

uctuations are not taken into account in this model. Adapted from Mattis-Bardeen simulation
program, curtesy Y. L. Loh & N. Trivedi.

The real part of the complex impedance as extracted from the re
ectometry measurement
(�gure 5.36) agrees well with the value given by the lock-in measurement performed simultane-
ously. Indeed, from 45 MHz to 1.3 GHz, the measured di�erence is lower than 5%. At lower
frequencies, the re
ectometry measurement gives a lower value of the resistance, probably due
to the losses through the bias-Tee inductance (see annex D.2). Between 1.3 and 2 GHz, the

174



5.5. MICROWAVE MEASUREMENT OF A VANADIUM FILM 175

Figure 5.35: Measurement of the attenuation (a.) and phase (b.) obtained by performing re
ec-
tometry measurements on the sample in the normal state. The bare measurement is displayed
in blue. The calibrated measurement is displayed in red.
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Figure 5.36: Real part of the calibrated impedance of the �lm. The red line corresponds to the
low-frequency measured value.

agreement with the awaited value of the resistance is less good and oscillations appear on the
calibrated resistance. This is likely due to a change in the internal ampli�er of the VNA.

We measure a linear increase of the calibrated imaginary part of the impedance (�gure 5.37).
It is due to the geometric inductance of the sample. By �tting this dependence, and by as-
suming the response of the sample is assimilable to a linear inductance in addition to its re-
sistivity (�gure 5.38.a), we �nd that L geo � (250 � 20) pH. For a 200�m line of characteristic
impedance Z0 = 50 
, L CP W = 80 pH. Adding the inductance due to the short line linking
the sample to the ground (see section 5.3.3), we would expect a total geometrical inductance of
L geo � 185 + 80 = 265 pH 34. This value is therefore in excellent agreement with the experiment
and emphasizes how important it is to take into account the inductance of the termination of
the line.
In addition to the inductance of the �lm, an additive capacitance has to be taken into account
due to geometrical factor35 (�gure 5.38.b). One can estimate in our case this capacitance to be
of the order of C � 2L CP W

Z 2
0

= 60 fF 36. This should not strongly in
uence our measurement as,

at our working frequencies, the corresponding impedance isIm(Z C ) = 1
C! > 1000 
, which is

very large compared to the contribution of the LR circuit (of the order of 10 
). The issue of
a parallel capacitance will be addressed in section E in which we will see that it can have an
in
uence on the calibration of the normal state but does not modify the calibration results as
soon as the resistance of the �lm decreases.

By lowering the temperature, the �lm eventually becomes superconducting. We should there-
fore be able to measure the electrodynamic response of the system due to the presence of Cooper
pairs.
The evolution of the probed sheet impedance (respectively the sheet conductance) of the �lm
will be detailed in the following.

5.5.2.2 Evolution of the Impedance as a function of temperature and frequency

By calibrating using the standard procedure (Open, Short, Load), we obtainRe(Z (! )) dis-
played �gure 5.39 for di�erent temperatures. The normal state, as noticed earlier, is well cali-
brated until 1.3 GHz. At higher frequencies, oscillations appear in the calibrated measurement.
This is the case for all temperatures. Di�erent remarks can be made :

{ In the superconducting transition, Re(Z ) become highly frequency-dependent due to the
presence of Cooper pairs.

{ Below the superconducting transition
{ Re(Z ) ! 0 for f ! 0.

34. The substrate of the Vanadium sample is made of SiO on top of the Si substrate. We therefore took
� ef f = � T MM 10i +� Si

2 � 10.
35. The capacitance between the sample and the dial ground plane.
36. As for the estimation of L CP W , the factor 2 comes from the Si substrate.
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Figure 5.37: Imaginary part of the calibrated impedance of the �lm. The straight line corresponds
to a linear �t such that y = 2�L geof , with L geo = 2:5 � 10�10 H.

Figure 5.38: (a) Lumped element representation of the sample by supposing it is equatable
to an inductance in series with Z . The inductance is due to the �nite size of the sample. (b)
Lumped element representation of the sample by assuming an additive capacitance.

{ The frequency dependence ofRe(Z ) diminishes when T is lowered far below the super-
conducting transition as the kinetic inductance diminishes.

These remarks are also observable in �gure 5.40 in which we compare the lock-in measurement
of R(T ), measured at 77 Hz, with the high-frequency measurement performed simultaneously.
Both evolutions are similar, except for of the frequency dependence observed just belowTc due to
the response of Cooper pairs : the higher the frequency, the higherRe(Z ) (inset �gure 5.40). By
comparing the inset of �gure 5.40 with the Mattis-Bardeen theoretical predictions shown �gure
5.34, the measuredRe(Z ) is about 3 to 5 times larger. This may be due to a �nite width of the
superconducting transition (100 mK in our case). All electrons therefore may not condense at
the same temperature.

The imaginary part of the measured impedance is plotted �gure 5.41 as a function of fre-
quency. The development of an inductive part is clearly visible belowTc :

{ At the superconducting transition, the imaginary part of the impedance increases due to
the presence of Cooper pairs and the diverging kinetic inductance.

{ As the temperature is lowered below the superconducting transition, the kinetic inductance
diminishes along with imaginary part of the impedance.

Looking at the evolution of Im(Z ) as a function of the temperature (�gure 5.42), we �nd the
expected peak of the Mattis-Bardeen theory. Its dependence as a function of frequency is qual-
itatively in agreement with theory for T < T c (see �gure 5.34), i.e. the peak is shifted to lower
values of T

Tc
as the frequency is increased. Furthermore, its amplitude is similar to what has

been modeled, withmax(Im(Z )) � 6 
 theoretically and � 3:5 
 measured.
Moreover, asT ! 0:6Tc, the measured value ofIm(Z (T )) ( 2 [0.2,0.6] 
) does not go to zero
as fast as predicted in the Mattis-Bardeen theory. It is however hard to quantify the di�erences
due to noise.
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Figure 5.39: Evolution of Re(Z (! )), plotted for di�erent temperatures ranging from � 0:6 to
� 1:1 Tc, obtained using a standard calibration.

Figure 5.40: Comparison between the resistance measured with the lock-in (77 Hz, in black)
and Re(Z (T )) obtained in high-frequency measurements using a standard calibration, plotted
for di�erent frequencies. A close-up is provided in the inset.

Figure 5.41: Evolution of Im(Z (! )), plotted for di�erent temperatures ranging from � 0:6 to �
1.1 Tc, obtained using a standard calibration.
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Figure 5.42: Im(Z (T ) obtained in high-frequency measurements using a standard calibration,
plotted for di�erent frequencies. The negative values ofIm (Z ) at T > T c are due to impedance
mismatches-induced oscillations ofIm(Z (! )) (see �gure 5.41). A close-up is provided in the
inset.

5.5.2.3 Evolution of the conductance as a function of temperature and frequency

We will here examine the same results as above, by plotting the conductance� = � 1 � I � 2 =
1=Z for a selection of temperatures close toTc

37. This representation is convenient as it allows
to de-correlate the contribution of quasi-particles (taken into account by � 1) and of Cooper pairs
(taken into account by � 2). Furthermore, it allows to evidence the coherence peak and to quantify
the kinetic inductance. Indeed, from Drude model, we can de�ne the kinetic inductanceL k such
that :

L k =
1

� 2!
(5.25)

� (T; ! )

The Real and Imaginary parts of the conductance measured by using a standard calibration
are plotted �gure 5.43. We will here �rst make several qualitative remarks :

{ � 1(T; ! ) has a temperature and frequency dependence qualitatively similar to what is ex-
pected in Mattis-Bardeen theory, due to the broadening of the quasi-particle distribution
at �nite temperature. � 1(! ) increases as the temperature is lowered. It would decrease
again at very low temperature due to the presence of the coherence peak.

{ � 2(T; ! ) evolves as 1/! as expected. This is con�rmed by plotting � 2(T; ! ) � ! (�gure
5.44), which is frequency-independent forf > 500 MHz, except for oscillations which
become important for f & 1:3 GHz. Once again, the frequency-dependence forf . 500
MHz is attributable to the bias-Tee 38.

We therefore observe, at least qualitatively, the same dependence as what is expected in Mattis-
Bardeen theory. The exact numerical values do not �t with theory. We will come back on this
section 5.5.4.

Coherence peak and kinetic inductance

From the measurement of� (T; ! ), one can try to measure the coherence peak and the kinetic
inductance (�gure 5.45), to perform a more quantitative comparison with theoretical expecta-
tions.

As pictured �gure 5.45.a, the dependence of� (T ) is similar to what is expected in Mattis-
Bardeen theory. As the temperature is lowered belowTc, � 1 increases until reaching a maximum
near 0.9Tc. However, we saw in �gure 5.34 that such coherence peak should have an amplitude
� 1
� 0

2 [2; 3]. Taking into account the normal state conductance� 0 � 0:074 S, we have peaks with

37. Far below Tc , both Re(Z ) and Im(Z ) are small. In this region, the sensitivity is lessened (see �gure 5.2)
and � is more a�ected by noise. The uncertainties on � 1 and � 2 are thus prohibitively important.

38. The evolution of the cut-o� frequency as a function of the impedance of the probed sample is also observable
in �gure 5.44 : the lower the impedance (the more superconducting the �lm is), the higher the cut-o� frequency.
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Figure 5.43: � 1
� 0

(! ) and � 2
� 0

(! ) obtained from a standard calibration and plotted for di�erent
temperatures. � 0 is the normal state conductance.

Figure 5.44: � 2
� 0

(! ) � ! obtained using a standard calibration and plotted for di�erent tempera-
tures in linear scale (a) and semi-log scale (b).

an amplitude 10 times higher than expected. Again, this will be discussed in section 5.5.4.

We can also obtain the kinetic inductance of the �lms by extracting � 2! as a function of T
(�gure 5.45.b.). By doing so, we �nd that L k has an abrupt increase close toTc. Due to this
feature near Tc, it is impossible to �t it � 2 � ! with a simple BCS dependence, where :

L �1
k � L �1

k0 (1 � (
T
Tc

)4) (5.26)

We will come back to this point in section 5.5.4. We can however attempt a �t, as shown �gure
5.45.b.), to make a �rst rough estimation of L k0. We thus estimate L k0 � 60 pH. This value is
well above the 5 pH awaited from theory. We will come back to a possible explanation for this
in section 5.5.4. Furthermore, the tendency breaks down below 0.8Tc = 2.8 K, giving the limit
of sensitivity of the experiment as will be discussed in section 5.6.

5.5.3 Improvement of the calibration

5.5.3.1 Using the normal state resistance

In line with of what has been performed by Kitano et al. [Kitano et al., 2008], one can use
an improved calibration by using the normal state of the sample instead of the Load reference.
In this way, the possible imperfections of the Load standard will not a�ect the measurement.

By using the normal state of our Vanadium �lm at Helium temperature ( � 1:2Tc) as a cali-
bration point instead of the 50 
 Load, we have obtained the plot shown �gure 5.46. The normal
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