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Abstract 

 

 

In the present work a theoretical investigation of the lowest molecular states of 

BN, SiN and LaH molecule, in the representation 2s+1Λ(+/-), has been performed via 

complete active space self-consistent field method (CASSCF) followed by 

multireference single and double configuration interaction method (MRSDCI). The 

Davidson correction noted as (MRSDCI+Q) was then invoked in order to account 

for unlinked quadruple clusters. The entire CASSCF configuration space was used 

as a reference in the MRCI calculation which has been performed via the 

computational chemistry program MOLPRO and by taking advantage of the 

graphical user interface Gabedit. Forty-two singlet, triplet, and quintet lowest 

electronic states in the 2s+1Λ(+/-)  representation below 95000 cm-1 have been 

investigated of the molecule BN. While twenty-eight electronic states in the 

representation2s+1Λ(+/-)up to 70000 cm-1 of the SiN molecule have been investigated. 

On the other hand the Twenty four low-lying electronic states of LaH in the 

representation 2s+1Λ(+/-) below 35000 cm-1 have been studied by two different 

methods and by taking into consideration the spin orbit effect of the molecule LaH 

we give in the energy splitting of the eight electronic states. The potential energy 

curves (PECs) together with the harmonic frequency ωe, the equilibrium 

internuclear distance re, the rotational constants Be and the electronic energy with 

respect to the ground state Te have been calculated for the considered electronic 

states of BN, SiN and LaH molecule respectively. Using the canonical functions 

approach, the eigenvalues Ev, the rotational constants Bv ,the centrifugal distortion 
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constants Dv and the abscissas of the turning points Rmin and Rmax have been 

calculated for electronic states up to the vibrational level v =51 for LaH molecule. 

Eighteen and Nine electronic states have been investigated here for the first time 

for the molecules of BN and SiN respectively, while for LaH, news results are 

performed for twenty three electronic states of LaH molecule and the spin-orbit 

effect of LaH molecule is given here for the first time. A comparison with 

experimental and theoretical data for most of the calculated constants demonstrated 

a very good accuracy. Finally, we expect that the results of our work should invoke 

further experimental investigations for these molecules.  

 

 

Key Words 

Diatomic molecules, Ab initio Calculations, Multireference Configuration 
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Moment of the electron, Spin-orbit effects. 
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Résumé 

 

 

Une étude théorique ab initio des structures électroniques des molécules 

Diatomiques polaires BN, SiN et LaH dans la représentation 2s+1Λ(+/-) ont été 

effectués par la méthode du champ auto-cohérent de l'espace Actif complet 

(CASSCF), suivie par l'interaction de la configuration multiréférence (MRSDCI). 

La correction de Davidson, notée (MRSDCI+ Q), a ensuite été appliquée pour 

rendre compte de clusters ou agrégats quadruples non liés. L'ensemble de l'espace 

de configuration de CASSCF a été utilisé comme référence dans le calcul MRCI, 

qui a été effectués en utilisant le programme de calcul de chimie physique 

MOLPRO et en tirant parti de l’interface graphique Gabedit. Quarante-deux de 

plus bas états électroniques dans la représentation 2s+1Λ(+/-)au dessous de 95000 cm-

1 ont été étudiés de la molécule BN. Alors que vingt-huit états électroniques dans 

les représentations 2s+1Λ(+/-) jusqu'à 70000 cm-1 de la molécule de SiN ont été 

étudiés. D'autre part, les vingt-quatre bas états électroniques de LaH dans les 

représentations 2s+1Λ(+/-) au dessous de 35000 cm-1 ont été étudiées par deux 

méthodes différentes et en prenant en considération l'effet des spin-orbite de la 

molécule LaH et nous avons observé la division énergétique des huit états 

électroniques. Les courbes d'énergie potentielle ont été construites avec la 

fréquence co-harmonique ωe, la distance internucléaire de l'équilibre re, les 

constantes de rotation Be. L'énergie électronique par rapport à l'état fondamentale 

Te  a été calculée pour les états électroniques considérés comme des BN, SiN et la 

molécule LaH respectivement. En utilisant l'approche des fonctions canoniques, les 
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valeurs propres Ev, les constantes rotationnelles Bv, la constante de distorsion 

centrifuge Dv et les abscisses des points de retournement Rmin  and Rmax ont été 

calculés pour les états électroniques au niveau de vibration v=51 pour LaH 

molécule.  

Dix-huit et neuf états électroniques ont été étudiés pour la molécule BN et SiN 

respectivement, Pour LaH, vingt-trois états électroniques de la molécule LaH et 

l'effet de spin-orbite de molécule LaH sont donnés ici pour la première fois. La 

comparaison avec les données expérimentales et théoriques pour la plupart des 

constantes calculées démontre une très bonne précision. Enfin, ces résultats 

devraient ainsi mener à des études expérimentales plus poussées pour ces 

molécules.  

 

 

 

Mots-Clés 

Diatomique molécules, Ab initio Calculations, Multireference Configuration 
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Introduction 

 

 

The interest since past decade has been increasing in the theoretical and 

experimental study of the electronic structure of polar diatomic molecules, 

particularly due to their importance in chemistry [1], ultra cold interactions [2], 

astrophysics [3], quantum computing [4-6], precision measurements [7] and 

metallurgy [1]. The influence of quantum chemistry in all branches of chemistry 

becomes increasingly remarkable. Organic chemists use plenty quantum mechanics 

to estimate the relative stabilities of molecules, calculate the properties of reaction 

intermediates, analyze NMR and invest the mechanisms of chemical reactions 

spectra. 

 

We report in this study the electronic properties and the spectroscopy of the 

low lying electronic states of several families of diatomic compounds, however, up 

to now theoretical and experimental studies of these molecules are much more 

limited. 

By the reaction of boron atoms with N2 or NH3 at high temperatures, boron 

nitride BN, which is a ceramic material, can be formed [8]. This material is of 

substantial chemical and industrial importance [9]; the solid BN is isoelectronic to 

carbon and exists in several allotropic forms including the graphite-like α-BN and 

the diamond-like β-BN as well as in different morphologies (nanotubes [10-11], 

nanosheets [12], nanocapsules [13], films etc). The BN films can grow by either 
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the chemical vapor deposition (CVD) or the physical vapor deposition (PVD) 

techniques. The accurate determination of the ground electronic state of molecule 

BN has been historically a very difficult task.  

The remarkable interest of silicon nitride reside in many properties such as 

strength, hardness, chemical inertness, good resistance to corrosion, high thermal 

stability, and good dielectric properties [14-15]. And the transition metal 

monohydrides and monohalides have been extensively studied over several 

decades because they are of considerable interest in various fields such as 

astrophysics, catalytic chemistry, high-temperature chemistry and surface material 

[16–18] 

           In chapter 1 of this PhD thesis, we present a brief overview for the 

theoretical backgrounds of the computational methods used in the present work. 

The theoretical backgrounds for the electronic structure calculations in the Hartree-

Fock method, followed by Complete Active Space Calculations and Multireference 

Configuration Interaction methods are written within the formalism of second 

quantization. A brief discussion for the theoretical background of spin orbit 

relativistic interactions in diatomic molecules has been also included within the 

context of the first chapter. 

 

            In chapter 2, we present the canonical function’s approach for solving the 

vibrational and rotational Schrödinger equation in a diatomic molecule. This has 

allowed us to compute the vibrational energy structures and rotational constants for 

the ground and excited electronic states of each molecule. 

 

           In chapter 3, we list the results of our calculations for the electronic 

structures, without spin orbit effects, of BN diatomic molecules. In the present 
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work Forty-two singlet, triplet, and quintet lowest electronic states in the )(1s2 ±+ L  

representation below 95000 cm-1 have been investigated of the molecule BN. 

Potential energy curves were constructed and spectroscopic constants were 

computed. And to be more accurate, the spectroscopic constants are obtained by 

three different methods.Various other physical properties were also computed such 

as the permanent electric dipole moment.  

 

           In chapter 4, we reported the results of our calculations for the electronic 

structures of SiN diatomic molecules, without spin orbit effects. In our present 

work Twenty eight electronic states in the representation2s+1Λ(+/-)up to 70000 cm-1 

of the SiN molecule have been investigated. Potential energy curves were 

constructed and spectroscopic constants were computed. Various other physical 

properties were also computed such as the permanent electric dipole moment. 

 

           In chapter 5, we list the results of our calculations for the electronic 

structures, with and without spin orbit effects, of LaH diatomic molecules. In the 

present work Twenty four low-lying electronic states of LaH in the representation 
2s+1Λ(+/-) below 35000 cm-1 have been studied by two different method. Potential 

energy curves were constructed and spectroscopic constants were computed. 

Various other physical properties were also computed such as the permanent 

electric dipole moment.  

 

          Throughout this thesis, we try to validate our theoretical results by 

comparing the calculated values of the present work to the experimental and 

theoretical values in literature. The comparison between the values of the present 

work to the experimental and theoretical results shows a very good agreement. The 
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small percentage relative error reported in our calculations for all of the molecular 

constants reflects the nearly exact representation of the true physical system by the 

wave functions used in our calculations. The extensive results in the Present work 

on the electronic structures with relativistic spin orbit effects of the molecules LaH 

are presented here for the first time in literature. Finally, we expect that the results 

of our work should invoke further experimental investigations for these molecules.
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Many Body Problems 
 
 

omputational physics is a valuable tool that helps people understand 

problems with the use of a computer and allows one to investigate the 

molecular structure and properties of atoms, molecules and solids. One 

of these techniques is the ab initio calculations, which means in Latin “from the 

beginning”. This name is given to computations that are based on solving the 

Schrödinger equation for any molecule. Once this equation is solved, a variety of 

chemical and physical properties can be determined, derived directly from 

theoretical principles with no inclusion of experimental data [1- 3].  

In this chapter, our goal is to show the development of approximations which are 

more accurate than the independent particle model and can take account of electron 

correlation effects. Hartree-Fock theory followed by the methods of Complete 

Active Space Self Consistent Field (CASSCF) and Multi-reference Configuration 

Interaction (MRCI) play a principle role in the development of approximate 

treatments of correlation effects. A key feature of these calculations is the use of 

the method of second quantization. We therefore start by introducing the second 

quantization formalism in quantum mechanics.  

 

1.1 Many Body Problems and Second Quantization 
 

Second quantization is a formalism that forms an essential ingredient used to 

describe and treating the quantum many-body systems. In the second quantization 

C 
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formalism, the number of the particles is not fixed and the information of the single 

particle bases are integrated in the operators unlike the first quantization 

formalism, the wave function has fixed number of the particles, and is c-number 

which is operated by other operators like Hamiltonian. In this approach, the 

quantum many-body states are represented in the Fock state basis, which are 

constructed by filling up each single-particle state with a certain number of 

identical particles. The second quantization formalism introduces the creation and 

annihilation operators to construct and handle the Fock states, providing useful 

tools to the study of the quantum many-body theory.  

      In this chapter, the main goal is to show how we describe the electronic 

Hamiltonian, other quantum-mechanical operators, spin, and state vectors in 

second-quantization language. We also show how we use the tools of second 

quantization to describe many approximation techniques (e.g., Hartree-Fock, 

configuration interaction (CI), multi-configuration self-consistent field (MCSCF)) 

which are currently in wide use within the quantum chemistry community. The 

need for such approximation methods is, of course, motivated by our inability to 

exactly solve electronic structure problems for more than one electron. First let us 

observe that the Schrödinger equation can be easily written for an atom or, more 

particularly, for a molecule of arbitrary complexity. The difficulty is usually said to 

lie not in writing down the appropriate Eigenvalue problem but in the development 

of accurate approximations to the solutions of this molecular Schrödinger equation. 

However, the Schrödinger equation for a system of arbitrary complexity has 

another problem associated with it, namely, it applies to a fixed number of 

particles. In other words the Schrödinger equation applies to systems in which the 

number of particles is conserved. However, in many physical processes the number 

of particles is not conserved and particles can be created or destroyed. Then there 
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arises the need for a new approach in quantum mechanics, namely the second 

quantization approach, which allows for the creation and destruction of particles. 

 

1.2 Fock space in quantum theory 
 
Fock space is an abstract linear vector space where each determinant is represented 
by an occupation number (ON) vector  
 

                                                                                         (1.1) 

where  

                                                                                         (1.2) 

 

For an orthonormal set of spin orbitals the inner product between two ON vectors 

 and  which have the same number of electrons is  

 

                                                                              (1.3) 

And for the states with different number of electrons 

                                                                                                            (1.4) 

 

F(M, 0) is the subspace which consists of occupied number vectors with no 

electrons; it contains a single vector which is called the true vacuum state 

 

                                                                                       (1.5) 

the vacuum state is normalized to unity 

                                                                                                     (1.6) 
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1.3 Operators in Second Quantization 

1.3.1 Creation Operators 

The second quantization method involves the use of so-called creation and 

annihilation operators. These operators respectively create and annihilate particles 

in specified single-particle states. The basic object of second quantization is the 

creation operator acting on some state, this operator adds a particle to the system in 

the state α. let y  be an arbitrary Slater determinants with N-particles, so let us 

define the creation operator  by its action on this arbitrary state 

 

                                                               (1.7) 

 

clearly that α maps the N-particle state with proper symmetry  to 

N+1 particle state . The order in which two creation operators 

can act to a determinant is crucial. Let us show 

 

                (1.8) 

on the other hand 

 

 

where using the antisymmetry property of Slater determinants. Adding Eqs. (1.8) 

and (1.9), we have 
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                                                                       (1.10) 

where we have  is an arbitrary determinant, we can discover the 

operator relation 

                                                                             (1.11) 

since, 

                                                                                                  (1.12) 

so we can change the order of two creation operators provided and we change the 

sign. If we have (i=j), then we have   

 

                                                                                           (1.13) 

 

This equation states that we cannot create two electrons in the same spin orbital 

(Pauli principle). Thus 

 

  

more generally, 

                                                   (1.14) 

 

This equation states that we cannot create an electron in spin orbital if one already 

exists. 

 

 

1.3.2 Annihilation Operators  
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The Hermitian conjugate of the creation operator is given by  which is 

called an annihilation operator. Suppose  is a state with N+1particles, then 

we have 
 

                                                              (1.15) 

 

The annihilation operator annihilates or destroys a particle from the system, which 

can only act in a determinant if the spin orbital is immediately to the left. Why is 

the annihilation operator defined as the adjoint of creation operators? Let us 

consider the determinant  

 

Ψ                                                                                                (1.16) 

clearly that 

Ψ                                                                                                 (1.17) 

The adjoint of this equation is  

Ψ                                                                                   (1.18) 

 

Multiplying Eq. (1.18) to the right by Ψ , we have 

Ψ Ψ Ψ  

since Ψ Ψ χ therfore our formalism is consistent when  

Ψ Ψ                                                                                    (1.19) 

 

From Eq. (1.18) we can conclude that the annihilation operator  act like a 

creation operator if it operates on a determinant to the left. Similarly,  act like an 

annihilation operator if it operates to the left. 
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To obtain the anticommutation relation satisfied by annihilation operator we have 

 

                                                                                 (1.20) 

since  

                                                                                                     (1.21) 

so we can change the order of two annihilation operators by changing the sign, if 

i=j, then we obtain 

                                                                                              (1.22) 

 

therefore we cannot remove an electron from a spin orbital, if it is not already exist 

 

                                       (1.23) 

 

In order to interchange creation and annihilation operator, consider the operator 

 acting on an arbitrary determinant , if spin an orbital 

 is not occupied in this determinant, we have 

 

 

                                                        (1.24) 

  

On other hand if the spin orbital  is occupied in this determinant, on can find 
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                                                     =  

                                                     =   

                                                     =                                        (1.25) 

 

Since we obtain the same determinant in both cases, therefore we conclude the 

operator relation  

 

                                                                               (1.26) 

 

Finally consider when i≠j, this expression can be 

nonzero only if the spin orbital  appears and the spin orbital  does not appears 

in the determinant. We obtain zero as a result of the antisymmetry property of 

determinants. 

 

 

thus we have  

                                                         i≠j                 (1.28) 

 

Therefore from the Eqs. (1.28) and (1.26), the anticommutation relation between a 

creation and an annihilation operator is  
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                                                                            (1.29) 

 

All property of Slater determinant is combined in the anticommutation relations 

between two creation operators Eq. (1.10), between two annihilation operators Eq. 

(1.20), and a creation and an annihilation operator Eq. (1.29).  

 

Sometimes we need in quantum mechanics a transformation between position 

space (x, y, z) and momentum space (px, py, pz) which is done by the Fourier 

transform 

 

                                                            (1.30) 

and, conversely  

π
                                                                                        (1.31) 

then, the operators themselves obey 

                   ,                 
π

  

                    ,                  
π
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1.4 Expressing of Quantum Mechanical Operators in second 

quantization 

Expectation values of operators correspond to physical observables and should be 

therefore independent of the representation given to the states and operators. We 

need to know how first quantized operators can be translated into their second 

quantized version. In second quantization all operators can be expressed in terms 

of the fundamental creation and annihilation operators defined in the previous 

section. An operator in the Fock space can be thus constructed in second 

quantization by requiring its matrix elements between ON vectors to be equal to 

the corresponding matrix elements between Slater determinants of the first 

quantization operator. The operators can be categorized according to how many 

particles they act on; there are one-body operator which can be written as a sum of 

terms, each of which only involve the coordinates of a single particle and two body 

operators, which can be written as a some of terms, each of which only involve the 

coordinates of a single particle. 

 

1.4.1 one-body operators 

Let us start with the so-called one-particle operators F, in first quantization one 

electron operators (kinetic energy) are written as 

 

                                                                                               (1.32) 

 

where the sums run over all particles in the system and is  an operator acting on 

the i-th particle. The kinetic energy, total momentum, etc. are example of such 

operators. For now, we will focus to give its expression in terms of creation and 
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annihilation operators. Let us suppose that Ψ Ψ  constitute a complete, 

orthonormal set of single particle states. It is obvious that in this basis the total 

quantity F can be calculated by summing over all states and counting how many 

particles occupy them, we can express the operator F in terms of creation  and 

annihilation operators  

 

                                                                                                 (1.33) 

 

where, the operators  shift a single electron from the orbital Ψ  into 

orbital Ψ . Eventually, the summation in Eq. (1.33) runs over all pairs of 

occupied spin orbitals. The term  in second quantization could be linked to the 

first quantization operator by the relation 

 

Ψ Ψ                                                                                                   (1.34) 

 

The second quantization has many advantages, one of them is that it treats systems 

with different numbers of particles on an equal footing. This is a particularly 

convenient when one dealing with infinite systems such as solids. 

To show how the equivalence second quantization with our previous development, 

based on Slater determinant, let us using second quantization to calculate the 

energy of ground state, Ψ , therefore 

 

Ψ Ψ Ψ Ψ                                                                     (1.35) 
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Since  and  trying to eliminate an electron (  to the right and to the left) the 

indices must belong to the set {a,b,….} and therefore 

 

Ψ Ψ Ψ Ψ                                                                  (1.36) 

using the equation  

then we have 

Ψ Ψ Ψ Ψ Ψ Ψ                                               (1.37) 

 

the second term equal to zero, since  try to create an electron that already exist 

in Ψ . Since Ψ Ψ , finally we obtain 

 

Ψ Ψ                                                                 (1.38) 

 

in equivalence with the first quantization. 

 

1.4.2 two-body operators 

On the other hand, now we discuss the representation in second quantization for 

two electron operators such as the electron-electron repulsion and the electron-

electron spin orbit operators. In first quantization these operators were written as 

                                                                                          (1.39) 

 

While the second quantization representation of this operator can then be written as 

 

                                                                               (1.40) 

for the sum of two electron operators, we obtain 
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Ψ Ψ Ψ Ψ                                                  (1.41) 

As the one particle operator the indices I, j, k, l must be belong to {a, b,…} 

Ψ Ψ Ψ Ψ                                              (1.42) 

Our strategy is to move the creation operator to the right until they operate in Ψ  

Ψ Ψ Ψ Ψ Ψ Ψ

Ψ Ψ Ψ Ψ Ψ Ψ

Ψ Ψ

Ψ Ψ Ψ Ψ

 

therefore we get  

Ψ Ψ                                                                    (1.44) 

 

This is in agreement with the result obtained by first quantization for the two 

electrons operators. 

 

First quantization Second quantization 

· One-electron operator: 

  

· One-electron operator: 

  

· Two-electron operator: 

  

· Two-electron operator: 

  

· Operators are independent of the 

spin-orbital basis 

· Operators depend on the spin-

orbital basis 
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· Operators depend on the number 

of electrons 

· Operators are independent of 

electrons 

· Operators are exact · Projected operators 

Table 1.1: Comparison between first and second quantization representations. 

 

1.5 Hamiltonian in second quantization 

To describe the electronic structure of any system we should start always by 

presenting the corresponding Hamiltonian, in this sense, it is important to get 

familiar with the form that some basic Hamiltonians adopt in second quantization. 

Combining the results of previous section, we may now construct the full second 

quantization representation of the electronic Hamiltonian operator. The molecular 

Hamiltonian is represented as a sum of one- and two-electron terms 

 

′                                                                                           (1.45) 

where 

                                                                                                (1.46) 

′                                                                                    (1.47) 

Now we will rewrite this Hamiltonian in terms of creation and annihilation 

operator. Then the single-particle operator  can be expressed with the help of  

and  as: 

 

Ψ Ψ                                                              (1.48)  

and 

Ψ Ψ                                                         (1.49) 

The operator for the electron-electron interaction ′acquires the form 
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′                                                                              (1.50)           

 

therefore the many-body Hamiltonian in second quantization is represented by a 

polynomial in the operators  and  which has the form 

 

                                          (1.51)     

where in atomic unites  

                                                            (1.52)    

                                                              (1.53) 

and  

                                                                                               (1.54) 

 

Here the ZI’s represent the nuclear charges; rI, r12, and RIJ represent the electron-

nuclear, the electron-electron, and the internuclear separations. This Hamiltonian 

contains the full set of electronic interactions in a given basis and is independent of 

the electronic state studied. 

 

1.5.1 The Hamiltonian of a Two Body Interaction 

The electron Hamiltonian of a two body interaction can be written as a summation 

of one and two electron operators. The crucial point is that we can think about both 

the motion in the external potential U (χ), as well as the interaction potential term, 

in terms of the density operator. Therefore we can write H as 
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                                                                                  (1.55)  

where the two-particles Hamiltonian is of the form    

 

 

the eigenstates of a plane wave is of the form 

Ψ .          .               n = (n1, n2, n3)                  (1.57) 

 

with V=L3 and n1,2,3 are integer. Then using Eq.(1.57), the matrix element in 

Eq.(1.56) can be evaluated and has the form. 

 

  

 

This expression can be simplified and evaluated by choosing as an 

integration variable instead of y after which the integral in Eq.(1.58) as 

 

 

where , is the Fourier transform of the interaction 

potential. 

 

                                                         (1.60)  

Finally, we conclude that the Two-Body Hamiltonian takes the form 
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The sum is taken over all integers parameterizing the plane wave states Eq.(1.57) 

subject to the constraint  this constraint, arises due to 

translational invariance of the system. This physically expresses the conservation 

of momentum in two particles scattering. This means that if two particles interact 

the total momentum of the system cannot change. Actually, this is the Coulomb 

interaction occurring between two electrons with U(k) representing the Coulomb 

two electron operator. The whole process could be visualized with the aid of the 

Feynman diagram shown in Figure 1.1. 

 

 

Fig 1.1. The two body interaction 
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1.6 Spin in Second quantization 

1.6.1 Spin Functions 
To completely describe an electron, it is necessary to specify its spin. To do this, 

we introduce two spin functions α(ω) and β(ω) corresponding to spin up and spin 

down respectively. The spin coordinate takes on only two values representing the 

two allowed values of the projected spin angular momentum of the electron ms = 

1/2 and ms = -1/2. The spin space is accordingly spanned by two functions, which 

are taken to be the Eigenfunctions α(1/2) and β(-1/2) of the projected spin angular 

momentum operator Sz where these functions are orthonormal 

 

1== bbaa  . 

0== abba  . 

,    .                                                (1.62) 

These spin functions are usually Eigenfunctions of the total spin angular 

momentum operator S2 

 

.                              (1.63) 

 

These spin Eigenfunctions form an orthonormal set, which is in accordance with 

the general theory of angular momentum in quantum mechanics. To describe a 

system consists of N-electrons, it is more convenient to write the electronic wave 

function ψ as a product of an orbital part and a spin part. Where spin orbital are 

written as  

 

                                                                     (1.64) 
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Therefore the creation and annihilation operators and  are defined to act 

on an electron with orbital functions Φp, Φq and spin eigenfunctions σ and τ.  

 

1.6.2 Spin operators 

In section (1.4) we describe the one and two electron operators neglecting the 

effect of electronic spin. This is an important physical property that must be 

included in the definition of one and two electron operators. From Eq. (1.4) the one 

electron operators has the form 

 

                                                                                                (1.65) 

this can be written in the spin-orbital basis as 

 

                                                                               (1.66) 

 

The integrals vanish for opposite spins 

 

    

                                                           (1.67) 

with 

                                                                            (1.68) 

 

Therefore the one electron operator in the second quantization for the spin free has 

the form 

 

                                                                                                 (1.69) 
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where the singlet excitation operator is given by 

                                                                                    (1.70) 

similar to one electron, the two electron operators can be written as 

                                                    (1.71) 

 

The orthogonality of the spin functions make most of the terms in the two electron 

operator vanish 

 

                                                                                 (1.72) 

 

where are the two-electron integrals in ordinary space and the second 

quantization representation of a two electron operator with the inclusion of spin 

give  

   

 

 

with the two electron excitation operator 
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                                              (1.74) 

 

therefore the second quantization representation of the nonrelativistic molecular 

electronic Hamiltonian in the spin-orbital basis is given by 

 

                                                 (1.75) 

 

This expression of the molecular Hamiltonian given in Eq. (1.75) is different from 

the spin free Hamiltonian operator given in Eq. (1.51) by its dependence on the 

single and double excitation operators (Esq., epqrs), which is in turn depending on the 

spin through the operators  and  appearing in Eqs. (1.70) and (1.74). 

 

 

1.7 The Born Oppenheimer approximation 

The electronic structure and the properties of any molecule, in any of its available 

stationary states may be determined in principle by the solution of Schrödinger’s 

time-independent equation [3] which is a complicated many-body problem. This 

complicity can be reducing considerably by applying some physical 

considerations. For a system of N electrons moving in the potential field due to the 

nuclei, this equation takes the form 

 
Ψ Ψ                                                                                                           (1.76) 

 
where Ψ  is the molecular wavefunction, E is the energy of the system and H is the 

Hamiltonian operator which has the form 
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this equation becomes 

Ψ

Ψ  

 

where MA is the ratio of the mass of nucleus A to the mass of an electron, ZA is the 

atomic number of nucleus A, and riA is the distance of the electron from the 

nucleus A. The first and the second terms are respectively for the calculation of the 

kinetic energies of the electrons, and the nuclei. The third term represents the 

attraction between electrons and nuclei, the fourth and fifth terms represent the 

repulsive forces between electrons and between nuclei, respectively. 

 

Since nuclei are much heavier than electrons, their velocities are much smaller. 

Born and Oppenheimer in 1927 [4] takes note of the great difference between the 

masses of the electrons and those of the nuclei, hence, to a good approximation, 

one can consider the electrons in a molecule to be moving in the field of fixed 

nuclei [5, 6]. Mathematically, this approximation states that Schrödinger equation 

can be separated into one part which describes the electronic wave function for a 

fixed nuclear geometry, and another part which describes the nuclear wave 

function where the energy from the electronic wave function plays the role of 

potential energy. Then the Hamiltonian takes the form.   
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                                                                                             (1.79)                                    

 

where   and   are respectively the nuclear and electronic Hamiltonians. 

In order to separate Eq.(1.78) we use a trial wavefunction Ψ of the form: 

 

Ψ ψ                                                                             (1.80) 

 

where the first factor represents the electronic motions with fixed nuclear 

coordinates and the second factor represents the nuclear motions themselves. 

Substituting Eq. (1.80) into Eq. (1.78) and after some mathematical manipulation 

we get 

ψ

ψ

ψ ψ ψ  

 

The last line on the left hand side of Eq. (1.78) is a perturbation term, which is 

smaller than the first term by a factor of (me/MA) so we can neglect it. Hence Eq. 

(1.81) becomes: 
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ψ

ψ ψ  

 

this can be written in the following form: 

 

ψ

ψ ψ  

 

Dividing Eq. (1.83) by ψ  we get 

ψ

ψ

 

Both sides of Eq. (1.84) should be equal to a constant, say Ee, so it becomes: 

ψ

ψ
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The first line in Eq. (1.85) represents the electronic Schrödinger equation which 

can be written as:      

ψ ψ                                   (1.86)       

 

The solution of Eq.(1.86) is the electronic wave function 

ψ ψ                                                                                                     (1.87)                                                                                

 

Eq. (1.87) describes the motion of the electrons and explicitly depends on the 

electronic coordinates but depends parametrically on the nuclear coordinates. The 

electronic energy is of the form 

 

                                                                                              (1.88)       

After calculating the electronic energy eigenvalues ( ), we should include the 

constant nuclear repulsion term in the expression of the total molecular energy  

 

                                                                        (1.89) 

 

In order to describe the nuclear vibrations and rotations, we should solve the 

nuclear Schrödinger equation (Eq.(1.85)) which can be written as 

                      (1.90) 
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where, the solutions of this equation give the eigenfunctions and eigenvalues of the 

vibrational and rotational energy levels of a molecule. This will be described in 

details in next chapter. 

 

1.8 Variation Principle  

For a very narrow class of systems the Schrödinger equation can be solved exactly. 

In cases where the exact solution cannot be achieved, the wavefunction may be 

approximated by a form that is easier to handle mathematically. In this section we 

will discuss an important theorem, called the variation principle which is a method 

enables us to make estimates of energy levels using trial as guessed wave 

functions. The better the guessed trial state is the better the approximation. 

The variation principle states that the expectation value of the energy  calculated 

with an arbitrary (valid)  wave function Ψ  is an upper bound for the 

exact energy  of the ground state of the system 

 

Ψ Ψ                                                                                    (1.91) 

 

where  is the ground state energy. Eq.(1.91) holds  only when the wave 

function Ψ  is identical to the true exact wave function of the system. One can 

show that the energy  is always greater than or equal to . This means that the 

best choice of Ψ  is the one which minimizes . This is the main idea behind the 

variation theorem in which we take a normalized trial wave function that depends 

on certain parameter that can be varied until the energy expectation value reaches a 

minimum. 
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The process of energy minimization can be greatly simplified if we write the wave 

function as a linear combination of trial basis functions [7]. Consider a normalized 

trial function Ψ  and expand it in basis vectors 

 

Ψ Ψ  

 

where  are the expansion coefficients and Ψ  an Eigen state of H. Substituting 

Eq.(1.92) into Eq.(1.91) we obtain 

Ψ Ψ Ψ Ψ  

To reach the minimization of energy in Eq.(1.93), we should finding the optimum 

set of coefficients , therefore  

 Ψ Ψ          i = 1,2,…………N                                          (1.94)                     

We may enforce the normalization condition, then the process of minimizing a set 

of parameters subject to a constraint this is a constrained optimization and can be 

handled by means of Lagrange multipliers [8].  

 

                                             (1.95) 

then we explicitly minimize the Lagrangian  

                                                                                                               (1.96) 

Then                                                                                                            
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Finally, we can write the secular equation in matrix notation, as 

 

         (1.98) 

 

where H and S are the matrix representations of the Hamiltonian and the overlap 

operator and their elements are defined by 

 

Ψ Ψ                                                                                             (1.99)                       

Ψ Ψ                                                                                                (1.100) 

 

1.9 Hartree–Fock theory 

The main goal is to solve the Schrödinger equation which cannot be completely 

solved for molecules without approximations. The Hartree–Fock (HF) method [10, 

11] is a technique of approximation for the determination of the wave function and 

the energy which is the one simplest approximate theory to solve the many-body 

Hamiltonian. It was developed to solve the electronic time-independent 

Schrödinger equation after invoking the Born-Oppenheimer approximation. The 

problem arises from the fact that the Schrödinger equation for molecules with more 

than one electron cannot be solved exactly due to the presence of the electron-

electron repulsion term. In the previous section we discussed the variational 

theorem which states that the energy calculated from the equation ψ ψ  

must be greater or equal to the true ground-state energy of the molecule. In 
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practice, always we use an approximation to the true wave function of the system, 

thus the variationally calculated molecular energy will always be greater than the 

true energy. Since Hartree-Fock is a variational method, the true energy always lies 

below any calculated energy by this method. 

 

1.9.1 The Hartree–Fock approximation 

The Hartree-Fock approximation seeks to approximately solve the electronic 

Schrödinger equation, and it assumes that the wave function can be approximated 

by a single Slater determinant made up of one spin orbital per electron and the 

energy is optimized with respect to variations of these spin orbitals. The electronic 

Schrödinger equation can be written much more simply by using the atomic units, 

therefore Eq.(1.83) becomes 

ψ ψ  

 

This equation cannot be solved exactly due to the presence of the electron-electron 

repulsion term. This makes it impossible to separate the Schrödinger equation for a 

diatomic molecule into N one-electron equations which could be solved exactly. 

 

1.9.2 Hartree fock wavefunction 

The simplest wavefunction which can be used to describe the ground state can be 

written of the form 
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Ψ                                                                                            (1.102) 

this wavefunction can be written in a simple form 

Ψ

 

 

where  are the occupied best spin orbitals. The best 

spin orbitals to use are the solutions of the one-electron Schrödinger equation 

 

 

 

where F is the Hamiltonian describing the kinetic energy and potential energy of a 

single electron and ε is the energy of the spin orbital. The potential energy in F 

comes from the electrostatic field provided by the nuclei on a single electron and 

the electron-electron repulsion which comes from a single electron and an average 

electrostatic field due to all the other electrons i.e. in this equation a single electron 

is moving in the field of the nuclei and the average field due to all the other 

electrons. This is known as Hartree-Fock approximation and Eq.(1.104) is known 

as the Hartree-Fock equation [11, 12]. To derive this equation we assume a 

wavefunction of the form 

 

Ψ

 

the energy of this wavefunction is given by 

Ψ Ψ

Ψ Ψ
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Since Ψ (χ) is a normalized wavefunction therefore the denominator of equation 

(1.106) is equal to 1. Hence equation (1.106) becomes 

 

Ψ Ψ                         

where H is the full electronic Hamiltonian and it is given by 

    

  

the first term represents the kinetic and potential energies of a single electron and 

the second term represents the electron-electron repulsion.                                                                  

Substituting Eq.(1.108) in Eq.(1.107) and after some mathematical manipulation 

we get 

 

Ψ Ψ Ψ Ψ                                     

 

After expanding the sum of h and substituting Eq.(1.105) into the first part of 

Eq.(1.109) and by taking into consideration the orthonormality of the spin orbitals 

we can write 

 

ψ ψ                                                                        

The second sum in the second term of Eq.(1.109) is over all  unique 

pairs of electrons. Each term in the sum gives the same result because the electrons 

are indistinguishable. So after substituting Eq.(1.105) in the second term of 

Eq.(1.109) and after some mathematical manipulation we obtain 
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ψ ψ                   

 

where Ji and Ki are the coulomb and exchange operators respectively and they are 

defined as 

 

 

 

The Coulomb operator represents the electrostatic repulsion between electrons and 

the exchange operator is a kind of correction to J because electrons in different 

orbitals having same spin avoid each other more than just because of Columbic 

interaction. After substituting Eqs.(1.110) and (1.111) into Eq.(1.109) and 

substituting the obtained equation in 

 

  (1.113) 

we get  

   

 

where, the last term is the internuclear repulsion term in atomic units. The best spin 

orbitals used to construct equation (1.103) are those giving a minimum energy. 

Hence, we should minimize Et with respect to the spin orbitals in a way that the 

spin orbitals remain orthonormal. This is a constrained optimization and can be 

handled by means of Lagrange multipliers [8]. The condition is that a small change 
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in the orbitals should not change the Lagrange function, i.e. the Lagrange function 

is stationary with respect to an orbital variation. So we write 

 

                                            

 

Equation (1.115) is the Lagrange function. The variation of this function is given 

by 

              

 

and the variation of the energy is given by 

 

 

                                                               

Since the sums in equation (1.117) are for all i and j therefore the third and fifth 

terms are identical and the fourth and sixth terms are also identical. So they may be 

collected to cancel the factor of ½ and after some mathematical manipulation 

Eq.(1.117) becomes 

 

                                        

where F is the Fock operator and it is given by 
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The Fock operator may be regarded as the effective Hamiltonian for a single 

electron moving in the field of the nuclei (contained in h) together with an 

effective “coulomb-exchange” field representing the presence of the other 

electrons. Substituting Eq.(1.118) into Eq.(1.116) and making use of the fact that  

φ δφ δφ φ  and φ δφ δφ φ  we get 

 

                                                       

The variation of either δφ  or δφ  should make δ  therefore we can write                                     

 

Taking the complex conjugate of the lower line in Eq.(1.121) and subtracting it 

from the upper line in equation (1.121) we get 

                                                               

 

Equation (1.122) means that the Lagrange multipliers are elements of a Hermitian 

matrix λ λ  . After some mathematical manipulation, we can write the upper 
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line of Eq. (1.121) as a scalar product of δΨ  and a function that must evidently 

vanish, so we can write this function as 

 

                                                                           

Eq.(1.123) can be represented by a system as follows 

  

  

  

  

and 

                                                                                            

Equation (1.124) is not the standard form of Eq.(1.104) because λ is not a diagonal 

matrix. Since λ is a Hermitian matrix, therefore we can transform it to a diagonal 

matrix ε by unitary transformation [13]. Using this transformation, Eq.(1.124) 

becomes 

 

′ ε ′                                                                                                          

Omitting the primes on φ Eq.(1.125) becomes 

                                                                                     

equation (1.126) now has the standard form of Eq.(1.104). In other words, every 

spin orbital satisfies: 

                                                                                                           

 

where  is the Fock operator of the electron occupied in spin orbital φ  and ε  is the 

energy of spin orbital φ . So, we need to minimize the Hartree-Fock wave function. 

Therefore to arrive at the optimal determinant that may be found by solving a set of 
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effective one electron Schrödinger equations, called the Hartree-Fock equations 

and their associated Hamiltonian operator, which is called the Fock operator F  

 

                                                                                     (1.128) 

                                         (1.129) 

 

where, Ji is the Coulomb operator which represents the electrostatic repulsion 

between electrons and Ki which is called the exchange term which is a correction 

to the two Coulomb interactions that arises from the antisymmetry of the wave 

function. In other words, after some mathematical manipulation The Hartree-Fock 

eigenvalue equation can be written 

 

Ψ Ψ                                                                                               (1.130) 

 

where,  is the Fock operator of the electron occupied in spin orbital Ψ  and ε  is 

the energy of spin orbital Ψ .  
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1.10 Roothaan-Hall equations 

In this section, we are concerned with procedures for calculating restricted Hartree-

Fock wavefunctions [14, 15] and especially we consider here only the closed shell 

calculations. The restricted spin orbitals have the same spatial function for spin up 

and down. Therefore, our molecular states are allowed to have only an even 

number (N) of electrons with all electrons paired such that (n=N/2) spatial orbitals 

are doubly occupied. Now we want to convert Eq.(1.126) to a spatial eigenvalue 

equation where each of the occupied spatial orbitals is doubly occupied, this 

equation can be written as 

 

 

According to equation 

 

                                                                                         (1.132) 

 

 φ χ  Have either α or β spin function. Assuming that it has α spin function, 

Eq.(1.131) can be written as 

 

where εj, is the energy of the spatial orbital ψj which is identical with εi. 

Multiplying both sides of Eq.(1.133) by α*(ω1) and integrating over spin gives 

 

 

the lower line of Eq.(1.129) can be written as 
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where, P1 2 is an operator which, operating to the right, interchanges electron 1 and 

electron 2. Now substituting the upper line of Eqs.(1.129) and (1.135) into 

Eq.(1.128) and after some mathematical manipulation we get 

 

 

Therefore, Eq.(1.134) becomes: 

 

Let α ω χ α ω ω  be the closed shell Fock operator. Hence, 

Eq.(1.137) becomes:  
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where we have performed the integration over dω1 in the expression involving h 

(r1) and used P1 2 to generate the explicit exchange form. In a closed shell, the sum 

over occupied spin orbitals includes an equal sum over those with α spin function 

and those with β spin function. Therefore, Eq. (1.138) becomes 

 

 

Now we can perform the integrations over dω1 and dω2. The last term in Eq. 

(1.139) disappears because of spin orthogonality. After little algebra Eq. (1.139) 

becomes 
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the closed shell coulomb and exchange operators are  

 

Hence, the closed shell Fock operator has the form 

 

 

In this section we present the Roothaan-Hall formulation of the Hartree-Fock 

theory, in which the molecular orbitals (MOs) are expanded in a set of atomic 

orbitals (AOs) whose expansion coefficients are used as the variational parameters 

[16, 17]. Therefore, the closed shell spatial Hartree-Fock equation is given by 

 

Ψ Ψ                                                                                                  (1.143) 

In other words, every spatial orbital satisfies 

                                                                                  (1.144) 

where, εj is the energy of spatial orbital . Eq. (1.144) is an eigenvalue equation 

where each spatial orbital  is doubly occupied. Eq. (1.144) can be solved 

numerically, commonly, for atoms. No practical procedures are presently available, 
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however, for obtaining numerical solutions for molecules. The contribution of 

Roothaan [15] and Hall [16] was to show how, by introducing a set of known 

spatial basis functions, Eq.(1.144) could be converted to a set of algebraic 

equations and solved by standard matrix techniques.  

Using the MO–LCAO approach [16, 17], we introduce a set of M basis 

functions θ  and write each spatial orbital as a linear 

combination of these functions: 

                                                                                              (1.145) 

Where csj are unknown coefficients and j=1, 2, , M. Hence, from a set of M basis 

functions we can obtain M linearly independent spatial orbitals, and the problem of 

calculating the spatial orbitals has transformed to one computing the coefficients 

csj. Substituting Eq.(1.145) into Eq.(1.144) we get: 

 

Equation (1.146) is a set of M equations i.e. one equation for each spatial orbital. 

Multiplying each of these M equations by θ1
*, θ2

*…θM
* and integrating, we get M 

sets of equations i.e. one set for each of the basis functions θ. Basis function θ1 

gives: 
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Basis function θ2 gives: 

 

Finally, basis function θM gives: 

 

Where Fr s and Sr s are the elements of the Fock and overlap matrices respectively 

and they are given by: 

 

In the M sets of equations (1.147-1) to (1.148-M) each set itself contains M 

equations, for a total of M M equations. These equations are the Roothaan-Hall 

equations. Roothaan-Hall equations are usually written as: 

 

Where r=1, 2 …M for each j=1, 2 …M, i.e. we have a set of M equations for each 

spatial function ψj. Roothaan-Hall equations can be written also in matrix form: 
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Where F is the Fock matrix with elements Fr s, c is the coefficient matrix with 

elements cs j, S is the overlap matrix with elements Sr s and ε is the energy matrix 

with elements εj. F, c and S are M M Hermitian square matrices and ε is an M M 

Hermitian diagonal matrix. 

Eq. (1.150) cannot be solved directly because the Fock matrix F depends on the 

spatial wave functions. Therefore, Eq. (1.150) should be solved using the self-

consistent field approach (SCF) technique obtaining in each iteration as a new set 

of coefficients cs j and continuing until a convergence criterion has been reached. 

 

1.11 Restricted and unrestricted Hartree-Fock calculations 

In restricted Hartree-Fock (RHF) [20, 21] theory, the electronic state is represented 

by single configuration state functions (CSF), which can be constructed from a 

linear combination of Slater determinants as 

 

                                                                                              (1.151) 

 

where, the  is Slater determinants, with coefficients  fixed by the spin 

symmetry of the wave function. The Slater determinants in Eq. (1.151) belong to 

the same orbital configuration which means that they have identical orbital 

occupation numbers but different spin-orbital occupation numbers. In unrestricted 

Hartree-Fock theory [16], the wave function is represented by a single Slater 

determinant where the wave function is not required to be a spin eigenfunction, 

and different spatial orbitals are used for different spins, which means that no 

restrictions are enforced on the total spin of the system and the wave function is 

not required to transform as an irreducible representation of the molecular point 
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group. Since the alpha and beta spin orbitals are separately optimized, they will in 

general have different spatial forms. 

 

1.12 Configuration interaction 

The configuration interaction method is the conceptually simplest of the common 

many-body techniques based on second quantization and the most accurate one, in 

the sense that it converges to the exact solution, and that the other methods are 

approximations to the Full (CI) method. The purpose of CI method is to treat the 

electron correlation better than does the HF method. The CI method [22, 23] is 

based on the simple idea that one can improve on the HF wavefunction, and hence 

energy, by adding on the HF wavefunctions terms that represents promotion (i.e. 

excitation) of electrons from occupied to virtual spin orbital’s. The method is 

flexible and can give highly accurate wave functions for small closed and open 

shell systems with electron correlation. The principle shortcomings of the CI 

method is that it is difficult to implement for large molecules because of the rapid 

growth in the number of configurations needed to recover a substantial part of the 

correlation energy for larger systems. 

 

1.12.1 The CI Wave Functions 

Since the HF wavefunction consists of the N lowest-energy spin orbitals, but it is 

not a complete representation of the total electronic wavefunction. The idea behind 

the CI calculation is that a better total wavefunction, and from this a better energy, 

is obtained if the electrons are confined not just to the N lowest-energy spin 

orbitals but are allowed to roam over all, or at least some, of the virtual spin 

orbitals. To permit this therefore there is a possibility of improving a trial 



Chapter one: Many Body Problems  

 

62 

 

wavefunction by constructed as a linear combination of determinants or 

configuration state functions CSFs 

 

Ψ

 

 

In the following, the occupied orbitals will be denoted by indices a, b, c,…. etc, 

and the virtual with indices r, s, t,…. etc. where  is the HF determinant and 

are determinants corresponding to the excitation of electrons 

into virtual orbitals. By replacing occupied spin orbitals in the HF determinant by 

virtual orbitals, a whole series of determinants may be generated. These can be 

denoted according to how many occupied HF spin orbitals have been replaced by 

unoccupied spin orbitals i.e. these determinants represent the ground state, singly 

excited, doubly excited, and triply excited state determinants, etc., excited relative 

to the HF determinant, up to a maximum of N excited electrons. 

 

1.12.2 Optimization of the CI Wave Functions 

If we can include all possible determinants in the expansion, then the wave 

function would be the full configuration interaction (FCI) wave functions. Full CI 

calculations are possible only for very small molecules because the promotion of 

electrons into virtual orbitals can generate a large number of states unless we have 

only few electrons and orbitals [24, 25]. The linear coefficients c determined by a 
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variational optimization of the expectation value of the electronic energy are 

obtained by 

 

                                                                                              (1.153)  

                                                                                                    (1.154) 

 

The CI procedures, on a linear variation method are equivalent to an eigenvalue 

problem for the coefficients and the energy 

 

                                                                                                         (1.155) 

where H is the Hamiltonian matrix with the elements 

                                                                                                    (1.156)                       

 

and C is a vector containing the expansion coefficients Ci. The Eq.(1.155) 

corresponds to a standard Hermitian eigenvalue problem of linear algebra. The 

construction of the CI wavefunction may therefore be accomplished by 

diagonalizing of the Hamiltonian matrix in the usual manner, or by other special 

iterative techniques are employed for extracting selected eigenvalues and 

eigenvectors.      

If every possible idealized electronic state of the system, i.e. every possible 

determinant, were included in Eq. (1.151), then the wavefunctions Ψ would be full 

CI wavefunctions. Full CI wavefunctions with an infinitely large basis set would 

give the exact energies of all the electronic states i.e. full CI wavefunctions with a 

large basis set gives good energies for the ground and many excited states. But full 

CI calculations are possible only for very small molecules, because the excitation 
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of electrons into virtual orbitals can generate a huge number of states unless we 

have only a few electrons and orbitals. Since the full CI calculation is possible only 

for small molecules, then for large molecules the expansion should be limited and 

should include only the most important elements. It then becomes necessary to 

truncate the CI expansion so that only a small set of the determinants is included. 

The truncated CI expansion should preferably recover a large part of the 

correlation energy and provide a uniform description of the electronic structure 

over the whole potential energy surface. 

 

1.13 Davidson correction 

The Davidson correction [26, 27] is sometimes added to a variationally determined 

truncated CI energy such as the CI singles and doubles (CISD), which actually 

indirectly includes triply and quadruply excited states. But in case of large 

molecules the (SDCI) is not enough. Therefore, the Davidson correction is 

included when quadruple excited determinants can be important in completing the 

correlation energy. Thus, this correction is given by 

 

                                                                       (1.157) 

 

where ΔEa is the contribution of quadruple excited determinants to correlation 

energy, EDCI is the ground state energy computed in a CI calculation using  

and all it’s doubly excitations. The set c is the coefficients of  for the 

normalized wavefunction of Eq. (1.151) obtained in the (CISD) calculation. ESCF is 

the ground state energy associated with  obtained in HF SCF calculations. 
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1.14 Basis set 

The usual method to obtain a molecular wavefunction is to expand this 

wavefunction in terms of products of linear combinations of atomic orbitals. In 

order to limit the computational expense, a fast convergence of the calculation is 

desirable. The convergence essentially depends on the choice of the atomic basis 

set. This is a set of mathematical functions used to formulate the spatial wave 

function. Hence, the spatial wave function is a linear combination of these 

functions as shown in Eq. (1.145). The basis sets functions are usually centered on 

the atomic nuclei. Several basis functions describe the electron distribution around 

an atom and combining the atomic basis functions yields the electron distribution 

in a molecule as a whole. 

There are two types of basis sets functions commonly used in electronic structural 

calculations: The Slatter type orbital (STO) [28] and the Gaussian type orbital 

(GTO) [29]. The (STO) has the form 

 

 

 

where N is the normalization coefficient and Yl,m is the usual spherical harmonic 

functions. Although Slater orbitals were used for many years, the basis set 

consists of functions that can adjust the shape of the atomic orbital by expressing 

each atomic orbital as a sum of two Slater type orbitals that differ only in the 

value of their exponent ζ, this basis set is called double-zeta. If the valence 

orbitals are expressed by a double zeta representation, and the inner-shell 

electrons are still described by a single Slater orbital, the basis set is called split-

valence basis set. In particular, integrals involving more than one nuclear center, 
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called multicenter integrals, are awkward to calculate using Slater orbitals. When 

using Gaussian functions instead of Slater orbitals, however, all the multicenter 

integrals are very easy to evaluate. Thus, it would see desirable to use Gaussian-

type orbitals [29] of the form 

 

 

 

where lx+ly+lz determine the type of the orbital. The r2 dependence in the 

exponential makes the (GTO) inferior to the (STO) in two aspects. The first one is 

that (GTO) has a zero slope at the nucleus while (STO) has a discontinuous 

derivative this creates a problem for (GTO) in representing the proper behavior 

near to the nucleus. The second one is that (GTO) falls off too rapidly far from the 

nucleus compared with an (STO) so that the tail of the wavefunction is 

represented poorly. Both (GTO) and (STO) are used to form a complete basis set 

but according to the two aspects mentioned above we need more (GTO) to get the 

same level of accuracy achieved by (STO). Since the evaluation of two electron 

integrals requires more excessive computer time if we use (STO), this is why we 

use a linear combination of (GTO) instead of (STO) in all electronic structure 

calculations. In general, we would like to use the largest available basis set with 

the maximum possible consideration of electron correlation. The computer 

hardware (memory, disk storage, processor speed) and inherent size of the 

calculation force compromise on the choice of the basis set. 
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1.15 Effective core potential (ECP) 

From about the third row of the periodic table the large number of electrons has a 

considerable effect on conventional ab-initio calculations, because of the large 

number of two electron repulsion integrals. The usual way of avoiding this 

problem is to add to the Fock operator a one electron operator that takes into 

account the effect of the core electrons on the valence electrons, which latter are 

still considered explicitly. This average operator is called an effective core 

potential (ECP) [30]. With a set of valence orbital basis function optimized for use 

with it, it stimulates the effect of the atomic nuclei plus the core electrons. 

 

1.16 Energy correlation (EC) 

The HF method allows the exact calculation of the interaction effects between the 

electrons and the nuclei, and the approximate calculation of the overall interaction 

effects of the electrons among themselves. The electron correlation is the 

phenomenon of the motion of pairs of electrons in atoms and molecules being 

connected or correlated [31, 32]. Actually, the HF method allows for some 

electron correlation because it uses antisymmetric wavefunctions which ensures a 

zero probability to find two electrons of equal spin at the same point in space. 

Because of this zero probability, and since the wavefunction is continuous, the 

probability of finding them at a given separation should decrease smoothly with 

that separation. This means that even if electrons were uncharged, with no 

electrostatic repulsion between them, around each electron there would still be a 

region increasingly unfriendly to other electrons of the same spin. This quantum 

mechanically engendered “Pauli exclusion zone” around an electron is called a 
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Fermi hole. Besides the quantum mechanical Fermi hole, each electron in a real 

molecule, not in a HF molecule, is surrounded by a region unfriendly to the other 

electrons, regardless of the spin, because of the electrostatic (Coulomb) repulsion 

between electrons. This electrostatic exclusion zone is called a Coulomb hole. 

Since the HF method does not treat electrons as discrete point particles it 

essentially ignores the existence of the Coulomb hole, allowing electrons to get 

too close on the average. This is the main source of overestimation of electron-

electron repulsion in the HF method. 

HF calculations give an electronic energy that is too high. This is partly because 

of the overestimation of electronic repulsion and partly because of the fact that in 

any real calculation the basis set is not perfect. As the size of the basis increases 

the HF energy gets smaller i.e. more negative. The limiting energy that would be 

given by an infinitely large basis set is called the HF limit. A measure of the 

extent to which any particular ab initio calculation does not deal perfectly with 

electron correlation is the correlation energy. The correlation energy for a 

calculation on some molecule or atom is the energy calculated by some perfect 

quantum mechanical procedure minus the energy calculated by the HF method 

using a huge basis set [33-38]. Mathematically this can be written as 

 

 

 

This energy will always be negative because the Hartree-Fock energy is an upper 

bound to the exact energy (this is guaranteed by the variational theorem). 

 

 



Chapter one: Many Body Problems  

 

69 

 

1.17 Dynamic and non-dynamical correlation energy. 

For the majority of molecules, for example all molecules that can be assigned a 

single Lewis structure, the main error in the Hartree-Fock approximation comes 

from ignoring the correlated motion of each electron with all the other electrons. 

This is called dynamical correlation because it refers to the dynamical character of 

the electron-electron interactions. This kind of correlation energy is described 

with the configuration interaction (CI) method. Non-dynamical correlation is 

important for molecules where the ground state is well described only with more 

than one (nearly) degenerate determinant. In this case the Hartree-Fock wave 

function (only one determinant) is qualitatively wrong. This is recovered by the 

multi-configurational self-consistent field (MCSCF) method. 

 

1.18 Pseudo-potential and relativistic pseudo-potential 

We have seen earlier that it is possible to expand almost any smooth function that 

goes to zero at infinity in terms of Gaussian functions, so that the natural first 

choice of the expansion of core potential is a linear combination of the Gaussians. 

We have seen how to generate the explicit numerical forms of the pseudo, 

Coulomb and exchange potential available from atomic calculations so that we 

may use both these forms and the Gaussian expansion method to guide our choice.  

For system involving elements from third row or higher in the periodic table, there 

is a large number of core electrons which in general are unimportant in a chemical 

sense. From the fact that valence electrons determine most of the chemical 

properties of the molecules, an Effective Core Potential (ECP) in the chemical 
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community, while the physics community uses the term Pseudo-potential (PP), 

may be constructed to represent all the core electrons. Thus reduce all-electron 

molecular electronic structure calculations to one involving the valence electrons. 

There are four major steps in designing pseudo-potential: 

1. Generate a good-quality all-electron wave function for the atom. (Hartree-

Fock or a density functional calculations) under consideration. 

2. Replace the valence orbitals by a set of node less pseudo-orbitals.  

3. Core electrons are then replaced by a potential parameterized by expansion 

into a suitable set of analytical functions. 

4. Fit the parameters of the potential such that the solution of the Schrödinger 

equation produces pseudo-orbitals matching the all-electrons valence 

orbitals. 

In all electron method, the basic constituents of a molecule are the N  electrons and 

the nuclei. In all Pseudo-potential methods, the basic constituents of the system are 

assumed to be the Nv valence electrons of the molecule and the fixed ions of each 

atom consisting of the core electrons and the nucleus. The total valence 

Hamiltonian is given by  

                             (1.161) 

where,  is the distance between the nuclei A and B,

 is the net charge of the atomic core A, with  the atomic charge of the atom A, 

and is the Pseudo-potential associated with the core A.  takes into 

account the interaction of valence electrons with the atomic core A [39]. 
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Various effective core potential methods have been developed to determine atomic 

Pseudo-potentials [40-45]. Semi-local potentials has the form [46-51] 

                                                                                   (1.162) 

                                                                                 (1.1.63) 

Is the angular projection over the  sub-space of the spherical harmonics, and 

                                                                                     (1.164) 

are functions of r. The r2 Gaussian dependence of the exponential function is 

generally chosen to simplify further molecular calculations, based on Gaussian 

type functions. 

Non-local pseudo-potentials have the form [39] 

                                               (1.165) 

where   is a function which tends to  for  (core radius). The 

function  is generally Gaussian functions. 

Expression (1.162) of   has the great advantage that molecular calculations 

require only calculation of overlap integrals between the valence basis sets and the 

functions  . 

The direct generalization of the non-relativistic semi-local form (1.162) is to define 

 by  
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 ;            with                                           (1.166) 

 is the operator on two-component spinors [40]. The     

expressions are most often linear combinations of Gaussian functions.  

 

1.19 The Self-Consistent Field Method (SCF) 

The Self-consistent Field (SCF) procedure is a computational procedure for 

obtaining restricted closed-shell Hartree-Fock wave function for atoms or 

molecules, as shown in figure1.2. 

Step (1): Specify a molecule (a set of nuclear coordinates { AR }, atomic 

numbers { AZ }, and number of electrons N). 

Step (2): Choose a basis function set θj. 

Step (3): we formulate the overlap matrix S according to Eq. (1.148). 

Step (4): Constructing a trial wave function and a trial coefficient matrix c 

using Eq. (1.145). 

Step (5): Using Eq. (1.148) we formulate a trial Fock matrix F. 

Step (6): We solve equation Eq. (1.150) where a new set of coefficients and 

energies are obtained. 

Step (7): program compares c’s with the previous c. If the match is not enough, 

the procedures return to step (3) with another SCF cycle inside. 

Step (8): we repeat, in each iteration, steps 3 to 5 using the new coefficients 

obtained from the previous iteration till convergence are achieved. 

At the end of these steps we get the best coefficients cs j used to formulate the 

spatial wave function and the corresponding energies εj for each spatial orbital. 
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Fig 1.2. Illustration of SCF procedure 

 

 

1.20 Multi-Configuration and Multi-Reference Methods 

In many situations, the electron correlation effects are purely of the “dynamic” 

type, in the sense that Hartree-Fock is a good zero-order approximation, and under 

such circumstances, single-reference methods provide an efficient and accurate 

way to get correlation energies and correlated wavefunctions. However, wherever 

bonds are being broken, and for many excited states, the Hartree-Fock determinant 

does not dominate the wavefunction, and may sometimes be just one of a number 

of important electronic configurations. If this is the case, single-reference methods, 

which often depend formally on perturbation arguments for their validity, are 

inappropriate, and one must seek from the outset to have a first description of the 

system that is better than Hartree-Fock. In these cases the most straightforward 

way to give a qualitative correct description of the electronic structure providing 
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the entire necessary configuration included is the multi-reference SCF (MCSCF) 

method [52-54] , which are the most widely used implementation of CI and 

provide a qualitatively correct description of the system. In this approach, a 

selected set of determinants is used instead of single determinant. The wave 

function has the form 

 

Ψ                                                                                                (1.167) 

 

where,  is a spin-and space-symmetry adapted CSF consisting of Slater 

determinants. The orbital coefficients are optimized simultaneously with the CI 

coefficients in a variational procedure. Then the problem of finding the ground 

state MCSCF optimum wave function can be obtained by minimizing the energy 

with respect to the variational parameters 

Ψ Ψ

Ψ Ψ
                                                                                         (1.168)  

 

the major problem with MCSCF method is selecting the necessary configurations. 

This can be achieved by the so-called Complete Active-Space self-Consistent Field 

(CASSCF) [55-57] method. In this approach, the molecular orbitals are divided 

into three classes: 

1. A set of inactive orbitals composed of the lowest energy orbitals which are 

doubly occupied in all determinants. 

2. A set of virtual orbitals of very high energy which are unoccupied in all 

determinants. 

3. A set of active orbitals which are energetically intermediate between the 

inactive doubly occupied and highly excited virtual orbitals. This set 
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contains the spin orbitals that are considered to be the most important ones 

for the process under study. 

The active electrons are the electrons that are not in the doubly occupied inactive 

orbital set. The CSFs included in the CASSCF calculations are configurations (of 

the appropriate symmetry and spin) that arise from all possible ways of distributing 

the active electrons over the active orbitals. 

CASSCF calculations are used to study chemical reactions and to calculate 

electronic spectra. They require judgment in the proper choice of the active space 

and are not essentially algorithmic like other methods [58]. An extension of the 

(MCSCF) method is multireference CI (MRCI). 

In Multi-Reference Configuration Interaction (MRCI), a MCSCF wave function is 

chosen as a reference from which excited determinants are formed for the use in CI 

calculation. The reference determinants will themselves often be singly and doubly 

excited with respect to . In this case, a CISD will include determinants that are 

triply and quadruply excited from . Then CI is performed, optimizing all the 

coefficients of the determinants that have been included. MRCI methods are 

among the most powerful tools for calculating accurate potential energy functions 

and molecular properties [59]. Benchmark calculations, in which MRCI results are 

compared with those from full CI in the same basis, indicate that MRCI is the ab 

initio method of choice for all circumstances in which single determinant 

descriptions do not work, and that very high accuracy may be obtained [60-69]. 

The methods we have been outlining are to be evaluated by two general criteria: 

· Agreement with experimental measurements where the experimental results 

are available. 

· Explanation of phenomena in terms of a set of concepts generated by a 

combination of intuition and theoretical analysis. 
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Clearly the second of these is of little value unless the first is satisfied within some 

well-defined and well-understood hierarchy of approximation; the models for 

molecular electronic structure we have been using fall into a more-or-less strict 

hierarchy: 

1. The potential energy-terms in the Hamiltonian are only those due to 

Coulomb’s law. We exclude magnetic and relativistic effects completely.  

2. The Born-Oppenheimer (fixed nucleus) model is assumed throughout. 

3. The algebraic approximation is the key numerical approximation to make 

the whole project feasible. 

4. The use of only atom-centered basis functions is based on our intuitions 

about the likely distribution of electrons in molecules. 

5. The number and the type of basis sets functions have to be chosen as a 

compromise between accuracy and convenience. 

6. Core potentials are often used both for reasons of economy and to avoid 

difficulties with the description of core electrons. 

The natural question to ask is “can we extend our use of intuitive information and 

physical interpretation to numerical approximations within the calculation?” If the 

answer is, “yes” then there are two possible ways in which we might go forward 

which are not mutually exclusive 

· We can use the physical interpretation of the energy integrals appearing in 

the algebraic approximation to estimate their relative sizes and to make 

numerical estimates of their values. 

The values (or functional forms) of the energy integrals may be used as a method 

of forcing a particular model of molecular electronic structure to agree with 

experiment. That is, we can calibrate a particular model against experiment for 

some chosen property. 
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1.21Multireference CI Wave Function MRSDCI 

The Multireference CI (MRCI) wave function is generated by including in the 

wave function all configurations arising from the single and double excitations 

from the reference space, thus resulting in the multireference singles and doubles 

configuration interaction (MRSDCI) wave function 

Ψ Ψ                                            (1.169) 

In second quantization the single and double excitation operators are represented 

by 

Ψ Ψ Ψ Ψ              (1.170) 

The construction of a multireference CI wave function begins with the generation 

of a set of orbitals and a reference space of configurations Ψ   , which are best 

generated by the CASSCF Method. The CASSCF method writes the wave function 

as a linear combination of determinants or CSFs, whose expansion coefficients are 

optimized simultaneously with the MOs according to the variation principle. The 

fully optimized wave functions in the CASSCF method are then used as a 

reference state in the MRSDCI technique, in which single and double excitations 

are included. 

 

1.22 Spin Orbit Effects  

We discussed in the previous sections the non-relativistic Schrödinger scheme, 

which is not complete because we need to take into account an additional terms to 

the intrinsic magnetic moment of the electron (spin) in molecular system, the exact 

solution of the non-relativistic Schrödinger equation does not reproduce the real 
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experimental energies. The difference arises from relativistic effects, which 

increase with the 4th power of the nuclear charge (Z4) [70]. In cases of lighter 

atoms we can neglect relativistic effects but have to be included when dealing with 

heavy elements. In non-relativistic quantum mechanics, for most measurements on 

the lighter elements in the periodic table, non-relativistic quantum mechanics is 

sufficient, since the velocity of an electron is small compared to the speed of light. 

For the heavier elements in the periodic table the picture is entirely different. For 

the heavy atoms, the inner electrons attain such high velocities, comparable to that 

of light, and non-relativistic quantum mechanics is far from adequate. 

From all the different kinds of relativistic effects the spin-orbit interaction 

represented by the Briet-Pauli Hamiltonian is the most important part [70]. There is 

an important effect, in molecular spectroscopy as well, called the spin-orbit 

interaction which splits the levels. These effects alter the spectroscopic properties 

of molecules containing heavy elements to a considerable extent. Even if a 

molecule has a closed shell ground state the excited states may stem from open 

shell electronic configurations, in which case the spin-orbit interaction not only 

splits the excited states, but mixes different excited states which would not mix in 

the absence of spin-orbit interaction. Indeed, the yellow color of gold is due to 

orbital mixing occurring between the 5d10 and 6s1 orbitals [71]. This relativistic 

effect allows gold to absorb light in the violet and blue regions of the spectrum 

while it allows for the reflection to occur in the yellow and red regions [71]. In the 

last ten years, there have been numerous studies dealing with spin-orbit (SO) 

coupling calculations for rather heavy molecules (including atoms below the 

second line of the periodic table). One of the most convenient schemes in the 

calculations of Λ-Σ coupling is the “atoms in molecule” approximation developed 

by Cohen and Schneider [72] which consists of building an effective matrix of He 
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+ HSO in the basis of Λ electronic states mY  correlated to a given atomic 

configuration. The SO matrix elements are assumed to be independent of 

internuclear distances and determined empirically from the atomic energy splitting. 

The magnitude of the spin orbit coupling Hamiltonian HSO in atoms is: 

 

                                                (1.171) 

where j is the total angular moment j = l + s, l is the orbital angular momentum 

quantum number and s is the spin quantum number. A is the magnitude of the spin-

orbit coupling constant. Expending Eq.(1.169) we get 

 

 

then the magnitude of the spin orbit coupling operator can be calculated 

                                                                           (1.173) 

 

Z is the atomic number, representing the number of protons inside the nucleus and 

α is the fine structure constant . If we imagine ourselves riding on an 

electron in an atom, from our viewpoint and because of the spherical symmetry of 

the atom, the nucleus is moving around the electron. This apparent motion gives 

rise to a magnetic field which interacts with the intrinsic spin magnetic moment of 

the electron, and hence is proportional to L.S where S = å
n

i

Si  (the total spin) and Si 
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is the individual electron angular momentum. Unfortunately, the projection of S 

along the internuclear axis is also called Σ. For Λ = 0, Σ is not defined, that is there 

are no torques on S. For Λ ≠ 0, Σ= S, S – 1, -S +1 ,-S, and the internal magnetic 

field set up causes S to process, coupling the orbital and spin momentum. The total 

angular momentum is called Ω and Ω=|Λ+Σ| the splitting between the sub-states 

arises from the spin-orbit interaction. An example is showing in Fig 1.3. 

 

 

Fig.1.3. Energy level diagram for the multiplet states of 3Φ state. 

 

Teichtel and Speigelman [73] [74] developed a general algorithm in order to 

perform an ab initio CI calculations including relativistic terms within the quasi-

degenerate perturbation theory [75]. The effective Hamiltonian thus introduced in 

the Λ-Σ coupling representation is spanned in the basis of Λ states like in the 

Cohen and Schneider scheme [72] but the SO interactions between Λ states is 

calculated explicitly through the SO ab initio pseudopotentials, the averaged 

relativistic effects being taken into account at the monoelectronic level. Spin-orbit 

energy correction is very small in comparison with the total energy of the electron. 

It may be regarded as a small perturbation. So to calculate the energy correction is 
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sufficient to take the first-order perturbation theory using the previously found 

wavefunctions. The energy correction is then 

 

Ψ Ψ                                                                   (1.174) 

we can calculate the value of  by 

                                                                                 (1.175) 

 

The average values of l
2, s

2 and j
2 are l (l + 1) ħ

2, s(s + 1) ħ
2 and j (j + 1) ħ

2. 

Therefore, then acting on Ψ 

Ψ Ψ                                             (1.176) 

 

the average value of 1/r3
 in a state characterized by quantum numbers n, l, j is 

given by 

 

Ψ Ψ                                                        (1.177) 

 

In view of the results of Eqs.(1.174) and (1.175) the expression for spin orbit 

interaction energy becomes 

 

                                   (1.178) 

 

then the term value of an energy level, by taking spin orbit energy into 

consideration, is 
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                                                                                            (1.179) 

 

and T0 is the term value of some reference level. If Tso is 

negative, the shift is upward and if Tso is positive, the shift of level is downward 

with respect to the reference level. 

 

1.23 Conclusion 

           

          We present in this chapter a brief overview for the theoretical backgrounds 

of the computational methods used in the present work. The theoretical 

backgrounds for the electronic structure calculations in the Hartree-Fock method, 

followed by Complete Active Space Self-Consistent Field Calculations (CASSCF) 

and Multireference Configuration Interaction (MRCI) methods are written within 

the formalism of second quantization. A brief discussion for the theoretical 

background of spin orbit relativistic interactions in diatomic molecules has been 

also included within the context of this chapter. 
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CHAPTER 2 

The Vibration-Rotation Calculation  

In a Diatomic Molecule 
 

2.1 Vibration-rotation canonical functions 

olecular spectra are more complex than atomic spectra. This is 

because atomic spectra are due to electronic transitions while 

molecular spectra are due to electronic, rotational and vibrational 

transitions. Since the electronic Schrödinger equation has solved in previous 

chapter, now it is possible to solve the radial Schrödinger equation. The vibration-

rotation motion of a diatomic molecule is described by the wavefunction fv,J and 

the energy Ev,J which are respectively the eighenfunction and eighenvalue of the 

radial Schrödinger Eq.[1]   

 

 

 

where v and J are the vibrational and rotational quantum numbers respectively, r is 

the internuclear distance,  , and Et(r) is the total electronic energy. Eq. (2.1) 

can be simply represented as 

 

′′  

M 
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where x=r-re (re is the value of r at equilibrium), and 

 

with λ . 

Eq. (2.2) is equivalent to the Voltera integral Eq. [2] 

′ ′  

 

The energy factor Pv,J(x) can be associated with two functions α(x) and β(x) called 

the canonical functions [3] and they are defined as 

 
∞

∞
 

where 

 

 

with A0(x)=1 and B0(x)=x. By using the properties of the Voltera integral equation 

(2.4) we obtain 

1. The wavefunction fv,J(x) is related to the functions α(x) and β(x) by the 

relation: 

    ′  
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2. α(x) and β(x) are two particular solutions of Eq.(2.2) with the well 

determined initial values 

′

′
 

 

3. The initial value f’v,J(0) for the unnormalized wavefunction fv,J(x) can be 

deduced from α(x) and β(x) by using Eq.(2.7) on one hand and on the other 

hand the boundary conditions [4] 

∞
 

one can find 

′

∞

′

 

 

2.2 The rotational Schrödinger equations 

In the Rayleigh-Schrödinger perturbation theory (RSPT) the eighenvalue and 

eighenfunction of Eq.(2.1) are respectively given by 

 
∞

Φ

∞
 

where e0 is the pure vibrational energy, e1 is the rotational constant, en (n>1) are 

the centrifugal distortion constants (CDC), Φ0 is the pure vibrational wavefunction 
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and Φn (n>0) are the rotational corrections. The energy factor Pv,J(x) can be written 

as: 
∞

 

where 

 

 

 

 

By replacing Pv,J(x) in Eq. (2.5) we get: 
∞

∞

′ ∞

 

 

where, ln(x) is determined by the values of Cn(x) and Gn(x) at the boundaries. By 

replacing α(x) and β(x) by their expressions in Eq. (2.14) into Eq. (2.4) we obtain 

 
∞

′

∞

 

Eq.(2.15) may be written as 

Φ

∞
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where Φn(x) depends on Cn(x), Gn(x) and ln(x). Taking the first term out of the 

series in the first line of Eq.(2.14), we can write 

 

Φ Φ

∞

 

 

The first term on the right-hand side of Eq.(2.17) is independent of λ; therefore this 

term is the pure vibrational wavefunction fv(x). Thus, Eq.(2.17) takes the form 

 

Φ

∞

 

 

where Φn(x) are the so-called rotation harmonics. Thus, the rotation effect 

λ in the vibration-rotation wave function fv.J(x) is separated from the 

pure vibration wave function fv(x). Taking the second derivative of Eq.(2.18), we 

obtain 

′′ ′′ Φ′′

∞

 

Substituting Eq.(2.18) into Eq.(2.2), we get 

′′ Φ

∞

 

Substituting Eq.(2.19) in Eq.(2.20) and after some mathematical manipulation we 

get 
∞

Φ

∞

Φ′′

∞
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Comparing coefficients of like powers of λ, we obtain 

Φ′′ Φ  

Φ′′ Φ Φ  

Φ′′ Φ Φ Φ  

 

Φ′′ Φ Φ  

 

The first of these equations is the radial Schrödinger equation of pure vibration. All 

the others are nonhomogeneous differential equations having the same 

homogeneous equations and differing only by the second number, and they are 

called rotational Schrödinger equations. 

 

2.3 Analytic expressions of the rotation harmonics 

2.3.1 Pure vibration (Φ0(x)) 
 

For one electronic state and for a given potential, the solution of the vibrational 

Schrödinger equation (first line in Eq.(2.22)) is given by [5] 

 

Φ Φ Φ′  

 

where αv(x) and βv(x) are the pure vibration canonical functions defined in Eq.(2.5) 

in which we replace Pv,J(x) by Pv(x) (i.e. we make J=0). 
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2.3.2 Calculation of the rotational harmonics (Φn(x)) 

A rotational Schrödinger equation (last line in Eq.(2.22)) is given by 

 

Φ′′ Φ Φ  

 

multiplying Eq. (2.24) by (x-t) and integrating the obtained equation between zero 

and x we get: 

 

Φ Φ Φ′ Φ  

 

substituting the expression of εm(t) given by Eq.(2.13) in Eq.(2.24) we get [5-7]: 

 

Φ Φ Φ′  

where 
∞

 

and 

Φ

Φ  
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For x=0: 

′ ′ ′  

 

Therefore: 

′  

For the ith order derivative (i.e. i>1) we can write: 

 

 

For the unnormalized wavefunction, we chose fv(0)=Φ(0)=1 and by using 

Eq.(2.18) we get 

 

Φ  

Substituting Φn(0) by its value in Eq.(2.26) [7] we obtain: 

Φ Φ′  

 

On the other hand, the rotation harmonics must be vanished at the boundaries (2.9), 

thus Eq.(2.29) becomes 

 

Φ′

∞
 

and the rotational harmonic Φn(x) is given by [6]: 

Φ  
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This expression is valid without any restriction on the form of the given potential 

function. 

 

2.4 Numerical method 

2.4.1 Calculation of the vibration wavefunction Φ0(x) 

For one electronic state and for a given potential, the vibrational wavefunction is 

given by 

 

Φ Φ Φ′  

 

Therefore, the determination of Φ0(x) requires the calculation of αv(x), βv(x) and 

Φ’0(x). 

 

2.4.2 Calculation of αv(x) and βv(x) 

On one interval Ii =[ri ,ri+1] a given potential has a polynomial form 

 

The canonical functions α(x) and β(x) are particular solutions of the vibrational 

Schrödinger equation (first line in Eq.(2.22)); because Et(x) is expanded in 

polynomial [8]; α(x) and β(x) also can be expanded as 

 
∞

∞
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By representing α(r) and β(r) by the same function y(r) for a given potential Et(r) 

and energy E, the function y(r) is given by 

 
∞

 

 

By using the vibrational Schrödinger equation (first line in Eq.(2.22)), we obtain 

the following recursion relation [7] 

 

 

where 

′

 

 

The initial values y(ri) and y’(ri) are given by: 
∞

′

∞
 

where 

′

′
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Therefore, the canonical functions α(r) and β(r) are well determined at any point r. 

 

2.4.3 Calculation of Φ’0(x) 

From Eq.(2.7), the wavefunction Φ0(x) is given by: 

 

Φ Φ′  

By using the boundary conditions (Eq.(2.9)) we can write: 

Φ′

Φ ∞ ∞

′

′
 

 

For unnormalized wavefunction Φ0(0)=1, therefore the vibration wavefunction 

Φ0(r) is determined for any point r.  

 

2.5 Diatomic centrifugal distortion constants (CDC) 

For a diatomic molecule in a given electronic state, and for a given vibration-

rotation level, the vibration-rotation energy Ev,J is commonly represented by the 

empirical relation 

 

 

 

where λ=J(J+1), Ev is the pure vibrational energy, Bv is the rotational constant, Dv, 

Hv are the centrifugal distortion constants (CDC) related to the potential energy 

Et(r).  

The first explicit analytical expression of the distortion constants have been 

derived since 1973 by Albritton et al. [9] using the Rayleigh-Schrödinger 

perturbation theory (RSPT) [10] in its conventional approach. The expressions 
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derived by Albritton are complicated and their computation is tedious, Hutson`s 

algorithm [11] allows the determination of Dv, Hv, Lv, and Mv only. The 

improvements of Hutson`s algorithm introduced by Tellinghuisen [12-16], were 

not sufficient to accede to high orders. Korek et al. [17, 18] showed that by one 

single and simple routine (similar to that integrating the radial Schrödinger 

equation) is sufficient to reach any level and any order, which we represent, 

bellow. The rotational Eqs.(2.22) are all of the form: 

′′  

 

Multiplying Eq.(2.43) by Φ0 and integrating between r0 and ∞ and making use of 

Eq.(2.22), we obtain 

 

′′Φ Φ′′
∞

Φ
∞

 

 

Then we make use of the boundary conditions for Φ0 and z (at ∞) on one 

hand, and of Eq.(2.9) on the other hand, we find: 

′ Φ
∞

 

And similarly for the other boundary condition (at ∞) 

′ Φ
∞

 

The continuity equation for s(r) implies the equality of z’(r0) given by Eqs. (2.45) 

and (2.46), i.e.: 
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Φ
∞

Φ
∞

Φ
∞

Φ

 

 

This equation gives the successive values of s (see Eq.(2.22)) 

 

Φ Φ  

Φ Φ Φ Φ  

 

Φ Φ Φ Φ  

These equations give simple expressions of e1, e2 ... en in terms of Φ0, Φ1 ... Φn-1. 

 

 

 

 

 

 

where 

Φ Φ

Φ Φ
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Consequently, the rotational constant and the centrifugal distortion constants can 

be represented as 

 

 

 

 

Once the eigenvalue Ev=e0 is obtained for a given vibrational level v, the 

determination of e1 = Bv, e2 = −Dv, e3 = Hv is reduced to that of simple definite 

integrals In and Rn depending on Φn [18].  

 

2.6 Conclusion 

          We present in this chapter the canonical function’s approach for solving the 

vibrational and rotational Schrödinger equation in a diatomic molecule. This has 

allowed us to compute the vibrational energy structures and rotational constants for 

the ground and excited electronic states of each molecule. 
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Theoretical calculation of the low-lying 

electronic states of the molecule BN 

3.1 Introduction: 

The accurate determination of the ground electronic state of BN molecule has been 

a very difficult task. The two lowest electronic states, 1Σ+ and 3Π are separated by 

only few tenths of electron volts and both theory and experiment works have had 

difficulty in discerning which the lowest electronic state is. Thus this small 

separation between singlet and triplet states should be a sensitive test of the 

performance of different computational methods. The detailed knowledge of 

molecular and spectroscopic properties can help to clarify the chemical process 

involved. In order to acquire the accurate molecular and spectroscopic properties 

of the BN molecule, a number of experimental and theoretical investigations have 

been made in the past several decades. The potential energy curves (PECs) for the 

X3Π, a1Σ+, b1Π and A3Σ+ electronic states of the BN molecule have been 

performed, in early calculation, by Verhaegen et al. [1] and Melrose and Russell 

[2] using the linear combination atomic orbitals self-consistent field (LCAO-MO-

SCF) approach and the variational calculations respectively. Melrose and Russell 

[3] re-calculated the term value and the equilibrium internuclear separation of the 

D3Π electronic state of the molecule BN [2] while Moffat [4] performed an ab 

initio calculation for the a1Σ+ electronic state of this molecule. In 1985 an ab initio 

study of large number of valence states of the BN molecule have been performed 

by karma and Grein (KG) [5], their computational work was instrumental in 

correcting the original measurements of the band distance for the lowest 3Π. They 

concluded that BN molecule has a3Π ground state and they found that the energy 

difference between the 3Π and 1Σ+ states is of the order 800 cm-1, and in 1988 they 
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investigated the potential energy curves (PECs) of three quintuple electronic states 

[6]. Martin et al. [7] carried out a theoretical study of BN using large basis set and 

extensive electron correlation of the lowest lying 3Π and 1Σ+ state. These 

calculations support the ground state assignment as 3Π and found that 1Σ+ is the 

next excited state lies at 381 cm-1 above the ground state.  

In the literature most of the theoretical calculations focus on the studies of the 

spectroscopic properties of the X3Π and a1Σ+ electronic states [1, 2, 5, 7-23]. Only 

few results concerned the excited electronic states [1-3, 5, 9, 11, 21, 17, 20, 22]. 

An accurate determination of Te for the electronic state a1Σ+ of the molecule BN is 

a very difficult task not only by experimental methods, but also theoretically as 

well. The reasons are two-folds: one is that the X3Π and a1Σ+ electronic states 

nearly degenerate, the other is that the combination of moderate multireference 

character in the X3Π and pathological multireference character in the a1Σ+ 

electronic state makes the Te  excessively sensitive to the electron correlation 

treatment [18]. In 1995 Peterson [10] computed the lowest 1Σ+ and 3Π of C2, CN+, 

BN and BO+ molecules, he supported that the ground state is the lowest 3Π state of 

BN and predict that energy 1Σ+ and 3Π separation of 190 cm-1. Baushlisher and 

partridge [11] based on an ICMRCI calculation found that this energy separation is 

180 cm-1 supporting that 3Π is the ground electronic state. At the MRCI level, Gan 

[17] recommended that the energy separation between 1Σ+ and 3Π states is between 

the values of Martin et al. [7] and those of Peterson [10], and supported that the 

ground state is lowest 3Π. Karton and Martin [18] used the CCSDTQ theory and 

the correlation-consistent basis sets to estimate the value of Te of the a1Σ+ 

electronic state equal 183 ± 40 cm-1. In 2012 Shi et al. [24] calculated in detail the 

PECs of seventeen electronic states by the complete active space self consistent 

field (CASSCF) method followed by the MRCI approach including the core–
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valence correlation and relativistic corrections, their spectroscopic results are in 

reasonable agreement with the experimental data in literature. 

Dauglas and Herzberg [25] reported the analysis of a3Π-3Π transition with three 

weaker bands which were left unassigned. Mosher and Frosch [26] observed the 
3Π-3Π transition and they suggested that the ground state of the BN molecule is 

a3Π. In1984 Bredohl et al. [27] analyzed the singlet transitions 1Σ+-a1Σ+ and 1Σ+-

b1Π, observed under high resolution, and made a new analysis of the triplet 

transition A3Π –X3Π [23] [30]. Lorenz et al. [29] reported a Fourier-transform 

absorption and laser induced fluorescence spectrum of BN in a neon matrix and 

they showed that the ground state is a3Π with the 1Σ+ state at 15-182 cm-1 above the 

ground state with the identification of several excited electronic states. Asmis et al. 

[30] experimentally identified the ground state and three lowest excited states of 

the BN molecule by anion photoelectron spectroscopy of BN. More detail 

spectroscopic investigations for the higher excited electronic states would be of 

great value for better understanding of the electronic structure of BN molecule. In 

the present work, the PECs for 42 electronic states of the BN molecule are 

calculated along with spectroscopic parameters and the dipole moments. The 

comparison of these results with those available in literature showed a very good 

agreement. 

 

3.2 Method of Calculations 

The study of the 42 low-lying electronic states of the molecule BN has been 

performed by using the state averaged complete active space self-consistent field 

(CASSCF) procedure [31, 32] followed by a Multireference Configuration 

Interaction MRDSCI with Davidson correction [33, 34] treatment for the electron 
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correlation. The entire CASSCF configuration space was used as the reference in 

the MRDSCI calculations, which were done via the computational chemistry 

Program MOLPRO [35] taking advantage of the graphical user interface 

GABEDIT [36]. This software is intended for high accuracy correlated ab initio 

calculations. MOLPRO has been run on a PC-computer with LINUX-type 

operating systems. The boron and nitrogen species are treated in all electron 

scheme using basis sets for s, p, d, f, and g functions for each atom. The calculation 

has been done by using for B and N atoms the 3 types of basis sets: the correlation-

consistent polarized triple zeta cc-pVTZ, the correlation-consistent polarized 

quadruple-zeta cc-pVQZ, and the augmented correlation-consistent basis set aug-

cc-pVQZ from the library of MOLPRO. For these 3 bases and from the 12 

electrons for BN molecule 4 inner electrons are frozen in subsequent calculations 

so that the remaining 8 valance electrons are explicitly treated. The corresponding 

active space is )2,3,2:;2,2:(5 00 pssNpsBs  and )2:;2:(2 11 ±± pNpBp orbitals in the C2v 

symmetry where the active molecular orbitals are distributed into the irreducible 

representation a1, b1, b2 and a2 in the following way 5a1, 2b1, 2b2 noted [5, 2, 2, 0]. 

 

3.3 Results and discussion 

The calculation of the potential energy curves (PECs) for 14 singlet, 15 triplet and 

13 quintet electronic states, in the representation )(12 ±+ Ls  of the molecule BN, has 

been performed for 63 internuclear distances in the range 1.0Å≤ R≤ 3.22Å and the 

energy separation between the lowest and the highest obtained electronic quintet 

state is 90501.45 cm-1. These curves are given in Figs. (3.1-3.4) using the basis cc-

pVTZ. 
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Fig. 3.1: Potential energy curves of the states 1S+ and 1D using the basis cc-pVTZ 

of the molecule BN. 

 

Fig.3.2: Potential energy curves of the states 1,3,5P,  and 1,3F using the basis cc-

pVTZ of the molecule BN. 
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Fig. 3.3: Potential energy curves of the states 3S+ and 3D using the basis cc-pVTZ 

of the molecule BN. 
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Table 3.1: Rc and Rav are respectively the positions of crossings and avoided 
crossings and ΔEAC is the energy difference at the positions of avoided crossings. 
 Crossing Avoided crossing 

State(1) State(2) n1state(1)/n2state(2) Rc(Å) Rav(Å) ΔEAC(cm-1) 

X1Σ+ 1Δ 1/1 1.84   
1Σ+ 1Δ 2/1 1.3 

  3/2 1.63 
  2/2 2.59 
  4/2 1.18 
  4/3 1.75 
  4/3 2.35 
  5/3 1.63 

3Π 5Π 1/1 2.59 
  2/1 1.54 

3Π 1Π 2/1 2.65 
  3/2 1.45 
  4/3 1.15 

1Π 5Π 1/1 2.05 
  2/1 1.09 
  3/2 1.78 
  3/2 2.14 

1Π 1Φ 3/1 1.75 
3Σ+ 3Δ 2/1 1.72 

  

2/2 
3/2 
4/2 

2.53 
1.57 
1.3 

  4/3 1.6 
  4/3 1.66 
  4/3 1.81 
  4/3 2.11 
  3/3 2.29 

3Σ- 3Σˉ 1/1 1.36 
  1/2 2.41 
  2/2 1.81 
  2/3 2.20 
  4/3 1.33 

3Σˉ 3Δ 2/1 2.26 
  3/2 1.96 
  3/3 1.66 
  3/3 1.72 

5Σ+ 5Σˉ 1/1 1.95 
  2/2 1.53 
  2/2 1.68 
  2/2 2.25 

5Σ� 5Δ 3/2 2.79 
  2/2 3.09 
  3/2 1.65 
  4/3 1.62 

5Σˉ 5Δ 1/1 1.83 
  2/2 3.00 

3Π 3Π 2/3  2.05 1056.656 
5Π 5Π 3/4  1.47 1099.54 
3Σ+ 3Σ  3/4  1.63 200.81 
3Δ 3Δ 2/3  1.66 1711.12 
3Δ 3Δ 2/3  2.35 726.68 
5Δ 5Δ 2/3  2.76 12.51 
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Such crossings or avoided crossings can dramatically alter the stability of 

molecules. By fitting the calculated energy values of the different investigated 

electronic states, calculated by using the 3 different basis, into a polynomial in R 

around the internuclear distance at equilibrium Re, the harmonic vibrational 

frequencies ωe, the relative energy separations Te, and the rotational constants Be, 

have been calculated. These values with the available data in literature are given in 

Table 3.2.  

Table 3.2: Spectroscopic constants of the different electronic states of the molecule 

BN. 

2S+1
Λ 

states 

Te 

(cm
-1
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DTe/Te 
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(a1)
     1482.82

(a1)
 

 
 

      0
(a2)
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  40892.29
(f)

 3.67     1.468(f) 1.63 2.28  970.3
(f)

 

 852.46
(s1)

 

 848.23
(s2)

 

   14.87 
 40244.19

(s1)
 2.12     1.463(s1) 1.98 2.82 3.11 

 39637
(s2)

 0.62     1.466(s2) 1.77 2.41 2.62 

 
 38135

(v)
 3.29     1.491(v) 0.06  

 (2)
3
Σ⁺  40335.16

(a1)
      1.460(a1)      1.294

(a1)
 

    1.298
(a2)

 

    1.300
(a3)

 

    1.270
(f)

 

    1.304
(s1)

 

    1.303
(s2)

 

  1265.05
(a1)

 

 
 

 40626.32
(a2)

      1.459(a2)    1247.42
(a2)

 

 
 

 40603.02
(a3)

      1.457(a3)    1235.66
(a3)

 

 
 

 41940.81
(f)

 3.82     1.467(f) 0.47 1.88 1195.8
(f)

 

1272.12
(s1)

 

1271.32
(s2)

 

5.79 

 
 41466.88

(s1)
 2.72     1.447(s1) 0.89 0.76 0.55 

 
 41361.09

(s2)
 2.48     1.448(s2) 0.82 0.69 0.49 

 
 41108

(v)
 1.88     1.458(v) 0.13  

 (1)
5
Σ

+
  42666.42

(a1)
      1.463(a1)      1.291

(a1)
 

    1.243
(a2)

 

    1.288
(a3)

 

    1.311
(s1)

 

    1.308
(s2)

 

    1.255
(ab)

 

 1143.54
(a1)

 

 
 

 43454.84
(a2)

      1.489(a2)   977.46
(a2)

 

 
 

 43519.72
(a3)

      1.464(a3)   1100.98
(a3)

 

 
 

 44769.31
(s1)

 4.69     1.444(s1) 1.31 1.52 1160.47
(s1)

 

1156.76
(s2)

 

1386.2
(ab)

 

1.45 

 
 44586.93

(s2)
 4.30     1.445(s2) 1.24 1.29 1.14 

 
 42666.71

(ab)
 0.00     1.477(ab) 0.94 2.86 17.5 

(1)
3
Δ  43721.39

(a1)
      1.503(a1)      1.222

(a1)
 

  1.229
(a2)

 

    1.228
(a3)

 

    1.198
(f)

 

    1.239
(s1)

 

    1.237
(s2)

 

  1037.42
(a1)

 

 
 

 43869.96
(a2)

    1.498(a2)    1037.24
(a2)

 

 
 

 43714.60
(a3)

      1.499(a3)    1020.35
(a3)

 

 
 

 45489.65
(f)

 3.88     1.511(f) 0.52 2.00 1138.8
(f)

 

1068.17
(s1)

 

1064.78
(s2)

 

8.90 

 
 44406.52

(s1)
 1.54     1.485(s1) 1.21 1.37 2.87 

 
 44301.61

(s2)
 1.30     1.486(s2) 1.14 1.21 2.56 

 
 44197

(v)
 1.07     1.499(v) 0.26  

  

(1)
3
Φ 

  

45337.0
(a1)

 

     
    1.585(a1) 

    

   1.099
(a1)

 

    1.106
(a2)

 

    1.105
(a3)

 

  

909.99
(a1)

 

 
 

 45151.93
(a2)

      1.580(a2)   917.41
(a2)

 

 
 

 45046.41
(a3)

      1.580(a3)   915.03
(a3)

 

 (1)
1
Σ¯  47486.62

(a1)
      1.524(a1)      1.188

(a1)
 

    1.195
(a2)

 

    1.189
(a3)

 

 953.24
(a1)

  

 
 

 47298.94
(a2)

      1.520(a2)   952.17
(a2)

  

 
 

 46989.35
(a3)

      1.523(a3)   947.35
(a3)

  

 (4)
3
Π  47509.41

(a1)
      1.604(a1)      1.073

(a1)
 

    1.219
(a2)

 

    1.088
(a3)

 

    1.188
(f)

 

    1.113
(s1)

 

    1.111
(s2)

 

 783.68
(a1)

 

 
 

 48205.37
(a2)

      1.505(a2)    782.31
(a2)

 

  787.31
(a3)

  
 

 48094.12
(a3)

      1.593(a3)   

 
 

 47022.10
(f)

   1.03     1.517(f) 5.73 9.68  1428.3
(f)

 

    934.80
(s1)

 

    931.29
(s2)

 

    45.13 

 
 45497.75

(s1)
   4.42     1.566(s1) 2.42 3.59 16.16 

 
 45051

(s2)
   5.45     1.568(s2) 2.29 3.42 15.85 

 
 38135

(v)
 24.58     1.582(v) 1.39  

 (2)
3
Σ¯  47782.97

(a1)
      1.526(a1)      1.185

(a1)
 

    1.191
(a2)

 

    1.191
(a3)

 

    1.164
(f)

 

    1.207
(s1)

 

    1.204
(s2)

 

     959.98
(a1)

 

    960.55
(a2)

 

    951.88
(a3)

 

    1006.9
(f)

 

    985.403
(s1)

 

    981.88
(s2)

 

 
 

 47774.64
(a2)

      1.522(a2)   

 
 

 47526.55
(a3)

      1.522(a3)   

 
 

 50974.22
(f)

 6.26     1.533(f) 0.45 1.8 4.65 

 
 48596.73

(s1)
 1.67     1.505(s1) 1.39 1.82 2.57 

 
 48493.80

(s2)
 1.46     1.506(s2) 1.32 1.57 2.23 

 
 48272

(v)
 1.01     1.520(v) 0.39   

 (2)
1
Δ  48781.54

(a1)
      1.542(a1)      1.162

(a1)
 

  1.167
(a2)

 

    1.165
(a3)

 

  894.28
(a1)

 

 
 

 48537.65
(a2)

    1.538(a2)    894.58
(a1)

 

 
 

 48184.48
(a3)

      1.539(a3)    898.20
(a3)

 

 (1)
5
Δ  49277.56

(a1)
      1.461(a1)      1.293

(a1)
 

    1.239
(a2)

 

    1.281
(a3)

 

  1170.27
(a1)

 

 
 

 49634.20
(a2)

      1.492(a2)    996.16
(a2)

 

 
 

 49566.86
(a3)

      1.468(a3)    1097.57
(a3)

 

 (3)
1
Π  54491.08

(a1)
      1.481(a1)      1.259

(a1)
 

    1.265
(a2)

 

    1.272
(a3)

 

  1222.432
(a1)

 

 
 

 54248.10
(a2)

      1.477(a2)    1235.026
(a2)

 

 
 

 53890.11
(a3)

      1.473(a3)    1251.93
(a3)

 

 (5)
1
Σ

+
 (F)58590.36

(a1)
      1.451(a1)      1.311

(a1)
 

    0.413
(a1)

 

    1.329
(a2)

 

    1.319
(a3)

 

  1161.97
(a1)

 

 
 

(S)62425.61
(a1)

      2.548(a1)    185.20
(a1)

 

 
 

(F)58802.35
(a2)

      1.441(a2)    1176.59
(a2)

 

 
 

(F)58651.12
(a3)

      1.446(a3)    1148.88
(a3)

 

 (2)
5
Π  58748.56

(a1)
      1.995(a1)      0.693

(a1)
 

    0.685
(a2)

 

    0.684
(a3)

 

 479.34
(a1)

 

 
 

 59958.24
(a2)

      2.007(a2)    492.25
(a2)

 

 
 

 59920.43
(a3)

      2.008(a3)    495.18
(a3)

 

 (2)
1
Σ¯  60063.95

(a1)
      2.009(a1)      0.682

(a1)
   579.37

(a1)
 

 (5)
3
Σ⁺ (F)62005.23

(a1)
      1.459(a1)      1.297

(a1)
 

    0.732
(a1)

 

    1.336
(a2)

 

    1.272
(a3)

 

  1298.94
(a1)

 

 

 
(S)61680.23

(a1)
      1.942(a1)    1128.00

(a1)
 

 

 
(F)61934.53

(a2)
      1.438(a2)    1093.34

(a2)
 

 

 
(F)62226.18

(a3)
      1.467(a3)    1268.74

(a3)
 

 (3)
1
Δ  62509.25

(a1)
      2.735(a1)      0.368

(a1)
    

 (2)
3
Δ (F)62864.17

(a1)
      1.481(a1)      1.257

(a1)
      1080.96

(a1)
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(S)60586.28

(a1)
      2.070(a1)      0.646

(a1)
 

    1.264
(a2)

 

    1.261
(a3)

 

     0.438
(a1)

 

    1061.83
(a2)

 

    1055.08
(a3)

 

 
 

(F)62598.60
(a2)

      1.477(a2)   

 

 
(F)62333.67

(a3)
      1.479(a3)   

 
       (3)

3
Σ¯  63877.55

(a1)
      1.479(a1)      1.263

(a1)
 

    1.281
(a2)

 

     1032.18
(a1)

 

    1035.19
(a2)

  

 
 63620.19

(a2)
      1.471(a2)   

 (4)
5
Σ⁺  66384.50

(a1)
      1.750(a1)      0.901

(a1)
 

    0.889
(a2)

 

   0.891
(a3)

 

     783.28
(a1)

 

    818.33
(a2)

 

    721.55
(a3)

 

 

 
 67209.38

(a2)
      1.761(a2)   

 

 
 67211.01

(a3)
      1.759(a3)   

 (7)
3
Σ⁺ (F)66440.45

(a1)
      1.392(a1)      1.423

(a1)
 

    0.684
(a1)

 

    1.465
(a2)

 

    1.436
(a3)

 

     1228.48
(a1)

 

    937.41
(a1)

 

    1217.13
(a2)

 

    1170.90
(a3)

 

 

 
(S)66904.66

(a1)
      2.010(a1)   

 

 
(F)66713.82

(a2)
      1.373(a2)   

 

 
(F)66415.20

(a3)
      1.386(a3)   

 (3)
5
Π  77741.38

(a1)
      2.046(a1)      0.661

(a1)
 

    0.649
(a2)

 

    0.646
(a3)

 

     397.46
(a1)

 

    349.72
(a2)

 

    332.38
(a3)

 

 
 

 78746.32
(a2)

      2.062(a2)   

 
 

 78776.76
(a3)

      2.066(a3)   

 (4)
5
Π  82073.35

(a1)
      2.459(a1)      0.456

(a1)
 

    0.443
(a2)

 

     279.84
(a1)

 

    228.72
(a2)

  
 

 82617.75
(a2)

      2.492(a2)   

 (5)
5
Σ⁺  82970.68

(a1)
      2.539(a1)      0.432

(a1)
      151.42

(a1)
 

 (6)
5
Σ⁺  90501.45

(a1)
      2.559(a1)      0.422

(a1)
 

    0.402
(a2)

  

     292.32
(a1)

 

    278.70
(a2)

      90947.56
(a2)

       2.620(a2)      

a1) the first entry is for the present work where we use the cc-pVTZ basis set for the two atoms, 

a2) the second entry is for the present work where we use the cc-pVQZ basis set for the two 

atoms, a3) the third entry is for the present work where we use the aug-cc-pVQZ basis set for the 

two atoms, b) Refexp [25], c) Reftheo [28], d)  Refexp [29], e) Reftheo [1], f) Reftheo [5], g) Reftheo [7], 

h) Reftheo [8], i) Reftheo [9], j1.j2) Theory, Reftheo [10], k) Theory, Reftheo [14], l) Reftheo [15], 

m1.m2) Reftheo [16], n) Reftheo [19], o) Reftheo [20] , p) Reftheo [21], q) Reftheo [22], r) Reftheo [23], 

s1.s2) Reftheo [24], u) Refexp [30], v) Reftheo [11], w) Reftheo [17], x) Reftheo [18], y) Reftheo [2], z) 

Reftheo [12], ab) Reftheo [6], (F) is in our work represent the first minimum and (S) represent the 

second minimum 

 

One can notice the absence of our calculated data for the unbound states and for 

electronic states having crossing or avoided crossing at their equilibrium 

internuclear distance positions Re. 

An accurate determination of the value of Te for the first excited electronic state 

a1Σ+ of the molecule BN is a very difficult task not only by experimental 

techniques, but also theoretically as well. One can find that the values of Te 

published in literature vary between 15 cm-1 [29] and 481 cm-1 [8]. Our calculated 

values of Te by the 3 different basis sets are within this range. The reasons for this 

disagreement can be explained by: i) the X3Π and a1Σ+ electronic states are nearly 

degenerate ii) the combination of moderate multireference character in the X3Π 

and pathological multireference character in the a1Σ+ electronic state makes the Te  
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excessively sensitive to the electron correlation treatment [18]. The comparison of 

our calculated values of this constant Te, using the basis cc-pVTZ, with those given 

in literature for 14 electronic states shows a very good agreement with relative 

difference 0.00% (Ref.[6]) ≤ DTe/Te ≤ 11.8% (Ref. [6]) except the 2 values given in 

Refs.[5, 11] for the 2 states (1)3S+ and (4)3P where the relative differences are 

respectively 14.9% and 24.6%. 

By comparing our calculated values of Re and Be with those published for 16 

electronic states in literature we can find respectively an excellent agreement with 

the relative differences 0.0%((1)3Σ¯,Ref.[11])≤DRe/Re≤5.73%((4)3Π,Ref.[11]) and 

0.06%((1)1Σ⁺,Ref.[7])≤DBe/Be≤9.68%((4)3Π, Ref.[5]) except the value of Te given 

in Ref.[1] for the state (3)3Π where the relative difference is 27.05%. Similar 

results can be obtained by comparing the present results of we with those given in 

literature for 15 electronic states where 0.31%((1)1Σ+, 

Ref.[11])≤Dwe/we≤10.2%((1)1Σ+,Ref.[24]). A less agreement is obtained for some 

calculated values by different techniques of we given in Refs.[1, 5, 7] for the states 

X3P, (1)3S+, (1)5P, and (2)1P where the relative difference is 

12.11%(Ref.[7])≤Dwe/we≤16.6%(Ref.[24]). The agreement deteriorate by 

comparing our calculated value of we to those calculated in Ref. [5] for the states 

(2)3Π and (4)3Π where the relative differences are respectively 26.3% and 45.13%. 

The overall good agreement between our investigated values and those given in 

literature may confirm the accuracy and the validity of the results for the new 

studied states obtained in the present work. 

 

3.4 Dipole Moment 
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The static dipole moment is a fundamental electrostatic property of a neutral 

molecule, its importance lying in the description of numerous physical phenomena. 

The expectation value of this operator is sensitive to the nature of the least 

energetic and most chemically relevant valence electrons. By taking the boron 

atom at the origin, the values of the dipole moments have been calculated for the 

considered lowest-lying electronic states using the basis set cc-pVTZ. These values 

are plotted in term of the internuclear distance R in Figs. (3.5 - 3.8). 

 

 

Fig.3.5: Static dipole moment curves of the 1S and 1D states using the basis cc-

pVTZ of the molecule BN 
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Fig. 3.6: Static dipole moment curves of the 1,3,5P,  and 1,3F states using the basis 

cc-pVTZ of the molecule BN. 

 

 

Fig.3.7: Static dipole moment curves of the 3S and 3D states using the basis cc-

pVTZ of the molecule BN  
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 Fig.3.8: Static dipole moment curves of the 5S and 5D states using the basis cc-

pVTZ of the molecule BN 

 

In these figures one can notice that, parts of the curves are positive where the 

dipole moments are oriented from B to N, and the other parts are negative where 

the dipole moments are oriented from N to B. By comparing these curves to the 

potential energy curves in Figs (3.2, 3.3, 3.4) one can notice the agreement 

between the 5 positions of the avoided crossing of the PECs and the crossings of 

dipole moment curves (Table 3.1). This agreement may confirm the validity and 

the accuracy of the calculation of the studied excited electronic states.  

 

3.5 Conclusion  

In the present work an ab initio calculation of 42 singlet, triplet, and quintet lowest 

electronic states in the )(1s2 ±+ L  representation up to 95000 cm-1has been performed 

via CASSCF/MRCI methods using  3 type of basis sets. The potential energy 
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curves have been calculated along with the spectroscopic constants Te, Re, Be, and 

ωe for these states and the static dipole moment m. An accurate calculation of Te of 

the first excited electronic statea1Σ+ of the molecule BN is a very difficult task 

since it is excessively sensitive to the electron correlation treatment. In literature 

there is a large discrepancy in the investigated values either theoretically or 

experimentally.  Our calculated values of Te using the 3 different bases sets are 

within the range of these values, but may be more experimental studies for this 

state can confirm its value of Te. The comparison of our results with the theoretical 

and experimental data available in the literature for other states demonstrated an 

overallvery good accuracy. 
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   Theoretical calculation of the electronic          

structure of the SiN molecule 

4.1 Introduction 

The remarkable interest of silicon nitride reside in many properties such as 

strength, hardness, chemical inertness, good resistance to corrosion, high thermal 

stability, and good dielectric properties [1]. In literature many spectroscopic 

investigations have been focused on the ground and the first excited states where 

some spectroscopic constants have been obtained [2-12]. The spectroscopic 

constants Re, we, wexe and Te have been investigated by different theoretical 

techniques for the doublet and quartet electronic states where the ground state is 

proved to be X2Σ+  and the first excited state is A2Π [13-38]. Recently Xing et al. 

[39] determined the spectroscopic parameters and the PECs of thirteen 2s+1L(±)
 

electronic states using the complete active space self-consistent field method 

followed by the internally contracted multireference configuration interaction 

approach with the Davidson modification (icMRCI+Q).  

By using an ab initio calculation, we investigate in the present work, the 

potential energy curves (PEC’s) for 29 doublet and quartet electronic states of the 

SiN molecule. The spectroscopic parameters (dissociation energy De, excitation 

energy term Te referred to the ground state, equilibrium internuclear separation Re, 

and harmonic frequency ωe) are also calculated for the investigated electronic 

states. The comparison of these results with those reported in the literature showed 

a very good agreement. 

 

4.2 Method of calculations 
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In the present work we study the low-lying doublet and quartet electronic states of 

the molecule SiN using state averaged complete active space self-consistent field 

(CASSCF) procedure followed by a multireference configuration interaction 

(MRDSCI with Davidson correction) treatment for the electron correlation. The 

entire CASSCF configuration space was used as the reference in the MRDSCI 

calculations, which were done via the computational chemistry program MOLPRO 

[41] taking advantage of the graphical user interface GABEDIT [42]. This 

software is intended for high level accuracy correlated ab initio calculations. 

MOLPRO has been run on a PC-computer with LINUX-type operating systems. 

Silicon species are treated in all electron schemes; the 14 electrons of the silicon 

atom are considered using a aug-cc-pV5Z basis set for s, p, d and f functions. The 

Nitrogen species is treated as a system of 7 electrons by using the same basis set 

for s, p, and d functions. Among the 21 electrons explicitly considered for SiN (14 

electrons for Si and 7 for N) 10 inner electrons were frozen in subsequent 

calculations so that 11 valence electrons were explicitly treated. The active space 

contains )3,2,2,1:;4,3,3:(7 00 spssNspsSis  and )2:;3:(2 11 ±± pNpSip orbitals which 

correspond to 11 active molecular orbitals distributed into irreducible 

representation a1, b1, b2 and a2 in the following way: 7a1, 2b1, 2b2, 0, noted [7, 2, 2, 

0]. All computations were performed in the C2v point group. The 14 doublet and 16 

quartet low-lying electronic states of the molecule SiN were generated using the 

MRSDCI calculation for 61 internuclear distances in the range 1Å≤Re≤3Å in the 

representation 2s+1Λ(+/-) where we assumed that, the SiN molecule is mainly ionic 

around the equilibrium position. These potential energy curves are given in Figs 

(4.1-4.4).  
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Fig. 4.1: Potential energy curves of the states 2S± and 2D of the molecule SiN 
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Fig.4.2: Potential energy curves of the states 2P and 2F of the molecule SiN 
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Fig.4.3: Potential energy curves of the states 4S± and 4D of the molecule SiN 
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Fig. 4.4: Potential energy curves of the states 4P of the molecule SiN 
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In the considered range of R, some crossings and avoided crossings occur between 

the potential energy curves of different symmetries at large values of the 

internuclear distance. The positions of these crossings and avoided crossings are 

given in Table (4.1, 4.2). 

Table 4.1: Positions of the crossings between the different electronic states of the 
molecule SiN 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

state 1 

 

 

state 2 

 

 

Crossing between 

(n1) state1/(n2) state2 

 

Rc(Å) 

 

2Σ⁺ 2Δ 3/2 1.60 

  3/2 2.47 

                  3/2 2.77 

                  4/3 2.53 
2Σ⁺ 

2Σ¯                 3/2 1.87 
                  3/2 2.17 
                  4/3 1.84 
                  4/2 1.30 
                  4/3 2.62 

2Π 
2Φ 3/1 1.69 

  4/1 1.33 
4Σ⁺ 4Δ 2/2 2.11 

 
 

3/3 

3/3 

4/3 

1.93 

1.51 

1.45 

  3/2 1.18 

  4/4 2.71 

             4Σ⁺ 
4Σ¯

 2/2 2.05 

 
 2/3 1.84 

 
 3/3              1.30 

 
 4/3 1.33 

 
 3/2 1.30 

          4Σ¯ 4Δ 3/3 1.72 
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Table 4.2: The avoided crossing between different electronic states 

RAC and ΔEAC are respectively the internuclear distance and the energy difference 

at the avoided crossing between the two corresponding states 

The energy separation between the ground and the highest doublet electronic states 

and the lowest and the highest excited quartet electronic state are respectively 

58169.84 cm-1 and 65431.82 cm-1. For the investigated bound electronic states the 

transition energy with respect to the energy minimum for the ground state Te, the 

equilibrium internuclear distance Re, the harmonic frequency we and the rotational 

constant Be have been calculated. These values are given in Table 4.3. 

 
Table 4.3: Spectroscopic constants of the molecule SiN 

2S+1Λ(±) 
states 

Te 
(cm-1) 

ΔTe/Te 
% 

Re 
 (Å) 

ΔRe/Re 
% 

Be  
(cm-1) 

ΔBe/Be 
% 

ωe 
(cm-1) 

Δωe/ωe 
% 

X2Σ+           0.0(a)      1.585(a)      0.717(a)     1115.77(a)  

            0.0(b)      1.572(b) 0.82     0.73(b) 1.78    1155(b)            3.39 
           0. 0c      1.593(c) 0.50          1124(c)            0.73 
           0.0(d)      1.566(d) 1.21        
           0.0(e)      1.582(e) 0.18      
           0. 0(f)      1.568(f) 1.08       1167(f)        4.38 

           0. 0(g)      1.568(g) 1.08       1189(g)  6.15 
          0.0(h)              1151(h)  3.06 
          0. 0(i)      1.578(i) 0.44       1162(i)  3.97 
          0.0(j)      1.589(j) 0.25          

           0.0(k)      1.571(k) 0.89     0.731(k)       1.91    1151.36(k)  3.09 
          0. 0(l)      1.572(l) 0.82     0.73(l)       1.78    

           0.0(m)              1151.3(m)  3.09 
           0.0(n)        0.73(n)  1.78    1151.2(n)  3.07 
           0.0(s)      1.58(s) 0.31     0.722(s)  0.69    1152(s)  3.14 
           (1)2Π     1999.3(a)      1.654(a)      0.658(a)       1004.02(a)    
     2053(b)   2.60     1.639(b) 0.91     0.672(b)  2.08     1044(b)  3.82 
     4785(e) 58.20     1.646(e) 0.48               

State(1)/state(2) RAC(Å) ΔEAC(cm-1) 
(2) 2Π/(3) 2Π 

(1) 4Π/(2) 4Π 

 (4) 4Π/(5) 4Π 

(2) 4Π/(3) 4Π  
(2) 4Π/(3) 4Π  
(2) 4Δ/(3) 4Δ 

1.57 

1.39 

1.99 

1.24 

1.66 

1.84 

1502.54 

1710.32 

298.85 

746.45 

2922.87 

402.46 

(2) 4Σ/(3) 4Σ 2.14 1356.353 

(2) 4Σ/(3) 4Σ 2.23 1201.18 

(3) 4Σ/(4) 4Σ 1.63 1069.41 
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     633(f)      1.64(f) 0.85        1046(f)  4.01 
           1.693(j) 2.30                   
       1.635(k) 1.16     0.675(k)  2.51     1044.41(k)  3.86 

     2032.15(m) 
    2031.37(n) 

1.61 
1.57 

      
    0.67(n) 

  
1.79 

    1031.65(m) 
    1031.94(n) 

 2.67    
2.70    

     2032.4(p) 

    2099(s) 
1.62 
4.74 

    1.641(p) 

    1.65(S) 
0.79 

0.24 

    0.67(p) 

      0.66(s) 
 1.79 

0.30 
     
    1025(S) 

  

(1)4Σ+     20724.4(a)      1.770(a)      0.575(a)       745.88(a)   
     18551(r)  11.71     1.783(r)  0.72               
     22195(s)   6.62     1.756(s) 0.79     0.585(s)  1.70     799(s)  6.64 
           (1)4Π     21892.42(a)      1.900(a)      0.496(a)        605.92(a)   

     20890(r)   4.79     1.892(r)   0.422       

     22809(s) 4.01     1.893(s) 0.36     0.504(s)  1.58     639(s)  5.17 
(2)2Σ⁺    23745.1(a)      1.599(a)      0.705(a)       952.25(a)   
    24122(c) 1.56     1.612(c) 0.80            958(c)  0.6 
    24299.21(k) 2.28     1.579(k) 1.26     0.723(k)  2.48     1031.03(k)  7.64 
    24299.19(m) 2.28          1031.02(m)  7.64 
    24861(s) 4.48     1.59(s) 0.56     0.714(s)  1.26     1025(s)  7.09 
(1)4Δ    25567.0(a) 

  24197(r)  
  27172(s) 

 
5.66 
5.9 

    1.770(a)  
    1.78(r)   
    1.757(s) 

 

0.56 

0.74 

   0.575(a) 
   0.584 

  

1.54 

    746.10(a)  
    779(s) 

  
4.22 

(1)4Σˉ   28878.3(a)     1.770(a)     0.571(a)       715.08(a)   
   27020(r) 6.87    1.784(r) 0.78           
 

(2)2П 
 

  30236(s) 4.49    1.763(s) 0.39    0.581(s)  1.72     760(s)  5.91 
  28887.6(a)     1.875(a)     0.512(a)       680.08(a)   
  27865.63+a(k)     1.857(k) 0.969    0.523(k)  2.1     699.33(k)  2.75 

   28859.55(m) 0.10            699.32(m)  2.75 
   28859.55(q) 0.10            699.32(q)  2.75 
   29652(s) 2.57    1.869(s) 0.32    0.517(s)  0.97     705(s)  3.53 
(1)2Σ¯   32547.9(a)     1.776(a)     0.571(a)       711.93(a)   
   33847(s) 3.84     1.768(s) 0.45    0.577(s)  1.04     755(s)  5.82 
(1)2Δ   32978.4(a)     1.780(a)     0.568(a)       693.76(a)   
   34489(s) 4.38    1.776(s) 0.22    0.572(s)  0.69     739(s)  6.12 
(1)2Φ   34943.4(a)     1.897(a)     0.5(a)       639.7(a)   

  38752(s) 9.82    1.724(s) 10.03    0.607(s)  17.62     1247(s)  48.7 
(2)2Δ   36144.8(a)     1.760(a)     0.582(a)       763.69(a)   

  37592(s) 3.84    1.753(s) 0.39    0.587(s)  0.85     797(s)  4.17 
(3)2Σ⁺   37258.8(a)     1.700(a)     0.62(a)       993.30(a)   

  38713(s) 3.75    1.71(s) 0.58    0.617(s)  0.48     941(s)  5.55 
(2)2Σˉ   39378.1(a)     1.770(a)     0.575(a)       743.93(a)   
(4)2Π   42949.4(a)     1.806(a)     0.552(a)       913.38(a)     
   44861(s) 4.26    1.801(s) 0.27    0.566(s)  2.47     989(s)  7.64 
(2)4Σ⁺ (F)43718.1(a)     1.769(a)     0.576(a)       700.37(a)   
 ( S)48916.7(a)      2.41(a)      0.309 (a)       453.21(a)   
   44895(s) 2.62    1.759(a3) 0.56    0.583(s)  1.20     738(s)  5.09 
(2)4Σˉ   46511.2(a)     2.190(a)     0.372(a)       463.65(a)   
(2)4Π  48149.6(a)     1.599(a)     0.703(a)       803.39(a)   
  49282(s) 2.29    1.59(s) 0.56    0.714(s)  1.54     968(s)  17.0 
(2)4Δ  47638.1(a)     2.340(a)     0.326(a)       330.23(a)   
  50063(s) 4.84    2.35(s) 0.42    0.326(s)  0.00     358(s)  7.75 
(3)4Π  51277.7(a)     1.673(a)     0.644(a)       1139.63(a)   
  53266(s) 3.73    1.695(s)  1.00    0.628(s)  2.54     1134(s)  0.49 
(4)2Σ⁺  52051.9(a)     1.750(a)     0.587(a)       613.01(a)   
(3)2Σˉ  52208.2(a)     1.877(a)     0.509(a)       584.33(a)   
(3)4Σˉ  57066.5(a)     1.785(a)     0.564(a)       644.88(a)   
(3)2Δ  58169.5(a)     1.870(a)     0.509(a)       831.98(a)   
(4)4Π  58464.5(a)     1.699(a)     0.624(a)       857.13(a)   
(5)4Π  62861.3(a)     1 .776(a)     0.57       928.82(a)   
  64362(s) 2.33    1.766(s) 0.56    0.578(s)  1.38     879(s)  5.66 
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(4)4Σ⁺  63275.3(a)     2.340(a)     0.349(a)         46.97(a)   
(4)4Δ  65431.8(a)      1.978(a)     0.460(a)       737.46(a)   

a1)the first entry is for the present work, b)Ref.[22], c)Ref. [29], d)Ref. [14], e)Ref.[13], f) Ref. [18] , g)Ref.[21], 

h)Ref.[16], i)Ref.[20], j)Ref.[17], k) Ref.[3], l)Ref.[4], m)Ref.[9], n)Ref.[10], o) Ref.[12] , p)Ref.[8], q)Ref.[5], 

r)Ref.[15], s)Ref. [32], (F) and (S) represent the first and the second minima respectively. 

 

4.3 Results and discussion 

By comparing our calculating values with those obtained experimentally for the 4 

states X2Σ+, (1)2Π, (2)2Σ⁺, and (2)2П, available in literature, one can find an 

excellent agreements for Te, Re, Be with the relative differences 0.1%(Refs. [5,9] 

(2)2П) ≤ DTe/Te ≤ 2.28% (Refs. [3,9] (2)2Σ⁺), 0.79%(Ref. [8] (1)2Π) ≤ DRe/Re ≤ 

1.26%(Ref. [3] (2)2Σ⁺), 1.78%(Refs. [4,10] X2Σ+) ≤ DBe/Be ≤ 2.48%(Ref. [3] 

(2)2Σ⁺) respectively and a good agreement for the value of we with the relative 

difference 2.67%(Refs. [10] (1)2Π) ≤ Dwe/we ≤ 7.64%(Refs. [3,9] (2)2Σ⁺). The 

comparison of these constants, calculated in the present work, with the theoretical 

values published in literature shows also good agreements with the relative 

differences 1.56%(Ref. [29] (2)2Σ⁺) ≤ DTe/Te ≤ 9.82%(Ref. [32] (1)2Φ),   

0.18%(Ref. [13] X2Σ+) ≤ DRe/Re ≤ 10.03%(Ref. [32] (1)2Φ), 0.00%(Ref. [32] 

(2)4D) ≤ DBe/Be ≤ 2.47%(Ref. [32] (4)2Π) and 1.56%(Ref. [29] (2)2Σ⁺) ≤ Dwe/we ≤ 

9.82%(Ref. [32] (1)2Φ) except the values of Te given in Refs. [13, 18] for the states 

(1)2P and (1)4S and the values Be and we for the state (1)2F calculated by Cai et al. 

[32] at cMRCI level. From this very good agreement with the experimental and 

theoretical data in literature, we can pretend the accuracy of the results concerning 

the new investigated electronic states in the present work which can be confirmed 

by new experiments on this molecule.  

The electric dipole moment is a fundamental property; it is used for the description 

of numerous physical phenomena. The expectation value of this operator is 
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sensitive to the relevant valence electrons. The calculated values of the dipole 

moments for the considered lowest-lying electronic states of the molecule SiN, as a 

function of the internuclear distance, are given in Figures (4.5-4.8).  
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Fig.4.5: Static dipole moment curves of state 2S± and 2D of the molecule SiN 

 

Fig.4.6: Static dipole moment curves of the states 2P and 2F of the molecule SiN 
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Fig. 4.7: Static dipole moment curves of the states 4S± and 4D of the molecule SiN 

By comparing these curves to the potential energy curves (Figs.4.1- 4.4), one can 

notice the agreement between the positions of the avoided crossings of the PECs 

(Table 4.2) and the crossings of dipole moment curves. This agreement may 

confirm the validity and the accuracy of the calculation of the studied excited 

electronic states. 
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Fig.4.8: Static dipole moment curves of the states 4P of the molecule SiN 

4.4 Conclusion  

           An ab initio calculation of 30 doublet and quartet lowest electronic states in 

the )(1s2 ±+ L  representation up to 70000 cm-1 has been performed via CASSCF/MRCI 

methods. The static dipole moment m, the potential energy curves and the 

spectroscopic constants Te, Re, Be, and ωe have been calculated for these electronic 

states. The comparison of our results with the theoretical and experimental data 

available in the literature demonstrated a very good agreement which confirms the 

validity and the accuracy of the investigated electronic states. 
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Theoretical Calculation of the Low-Lying Electronic States 

of the Molecule LaH 

 

5.1 Introduction 

The transition metal monohydrides and monohalides have been extensively studied 

over several decades because they are of considerable interest in various fields 

such as astrophysics, catalytic chemistry, high-temperature chemistry and surface 

material [1–3]. The nature of transition metal–H bonding and the role of the metal 

d orbital in this bonding should be understood. In particular, components of 

diatomic molecules of La atom are of great importance as test cases for modeling 

the role of the d electron in the chemical bond on account of their simpler open d 

shell electronic configurations. These hydrides posses a large number of densely 

packed low-lying electronic states of different spatial and spin symmetries. The 

theoretical and experimental studies of these molecules in literature are much more 

limited. In 1976 Bernard and Bacis [4] assigned the transitions 3Φ - 3∆, 1Σ - 1Π, and 
1∆ - 1Π for several observed bands with a lower state 1Π without observing any 

transitions having a1Σ+. Based on some enamors ab initio calculations on ScH, they 

suspected that LaH probably had a3∆ ground state, but they were not sure about the 

nature of their finding. A complete active space MCSCF calculations of the 

energies and spectroscopic properties Te, Re, ωe, μe, and De of many low-lying 

electronics states of LaH molecule have been performed by Das and 

Balasubramanian [5]. They recognized that the transitions observed by Bernard 

and Bacis [4] was incorrect and tried to reassign them as B1Π - X1Σ+, C1Π - X1Σ+ 

and b3∆ - a3Π. In this calculation they predict 1Σ+ state as ground state and a3∆ as 

low-lying excited electronic state. After comparing their results with YH [7] and 

LaF molecules [8-10], this assumption was confirmed experimentally by Ram and 
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Bernarth [6], and they observed two new electronic transitions A1Π - X1Σ+ and d3Φ 

- a3∆. In order to confirm theoretically the nature of the ground and the other 

results in literature, and investigate new higher excited electronic states, we present 

in this work an ab initio calculation for the molecule LaH.  

The present work is the second theoretical calculation for the electronic states 

below the 19000 cm-1 in literature. An ab initio investigation of the low-lying 

electronic states of LaH molecule has been performed via CASSCF/MRCI method. 

The potential energy curves (PECs) and the spectroscopic constants have been 

obtained for the 24 lowest-lying electronic states. Taking advantages of the 

electronic structure of these electronic states and by using the canonical functions 

approach [11], the vibrational eigenvalues Ev, the rotational constant Bv, and the 

abscissas of the turning points Rmin and Rmax were calculated for several vibrational 

levels up to v= 43. 

 

5.2 Computational approach 

The potential energy curves of the low-lying 24 electronic states of the LaH 

molecule are investigated via CASSCF method. Multireference CI calculations 

(single and double excitations with Davidson corrections), in which the entire 

CASSCF configuration space was used as reference, were performed to account 

the correlation effects. MRCI calculations have been done by using the 

computational chemistry program MOLPRO [12] taking advantage of the 

graphical user interface GABEDIT [13]. This software is intended for high level 

accuracy correlated ab initio calculations. MOLPRO has been run on a PC-

computer with LUNIX-type operating systems. Lanthanum species is treated with 

46 effective core potential and the remaining 11 electrons are considered as 
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valence electrons using the ECP46MHF [14] basis set for the s, p, d functions. The 

hydrogen atom is treated in its only electron scheme by using the aug-cc-pVQZ 

[15] basis set for s, p, d and f functions. 

With the 12 electrons explicitly considered for the LaH molecule and in the C2v 

symmetry the calculation has been performed with 2, 6, 8 and 10 valence electrons; 

the corresponding active orbitals with the distribution into the irreducible 

representation a1, b1, b2 and a2 are respectively  

)2,2:;5,6,6:(5 000 psHdpsLas , )2:;6,5:(3 111 ±±± pHpdLap , )5:(1 2±dLad  noted [6, 3, 3, 

1], )2,2,1:;5,6,5:(6 00 pssHdssLas , )2:;5:(2 11 ±± pHdLap , )5:(1 2±dLad  noted [7, 2, 2, 

1], )2,2:;5,6,5:(5 000 psHdspLas , )2:;55:(3 111 ±±± pHdpLap , )5:(1 2±dLad noted [6, 3, 

3, 1], and )2,2,1:;5,6,5:(6 000 pssHdspLas , )2:;55:(3 111 ±±± pHdpLap , )5:(1 2±dLad  

noted [7, 3, 3, 1]. One can notice that the values of the relative energy with respect 

to the ground state Te of the different electronic states depends on the number of 

valence electrons used in the theoretical calculation (Table 1 in supplementary 

material). In the present work we found that the 10 valence electrons is the best 

choice to obtain the good agreement with the fragmented values of Te, for the 

different electronic states, in literature. The potential energy curves for the 9 

singlet and 14 triplet electronic states in the representation )(12 ±+ Ls  in the range 

0.83Å ≤R≤ 8.42Å are given in Figs. (5.1-5.3)  
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Fig.5.1: Potential energy curves for 1S+ and 1D states of the molecule LaH. 
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Fig.5.2: Potential energy curves for 1P, 3P and 3F states of the molecule LaH. 

 

Fig.5.3: Potential energy curves for 3S+ and 3D states of the molecule LaH. 

 

Using the number of valence electrons equal 10. In this range of R, some crossings 

and avoided crossings of abscissas Rc and Rac respectively occur between the 

potential energy curves of different symmetries at large values of the internuclear 

distance (Table 5.1). 

 

Table 5.1: Positions of the crossings and avoided crossings between the different 

electronic states of the molecule LaH.  
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Rac and ΔEac are respectively the internuclear distance and the energy difference at the avoided 

crossing between the two corresponding electronic states. 

 

The calculated values of Rc, Rac and the energy gap at avoided crossings Eac are 

given in Table 1. Such crossings or avoided crossings can dramatically alter the 

stability of the considered molecule. The equilibrium bond distances Re, the 

harmonic vibrational frequencies ωe, the relative energy separations Te, and the 

rotational constants Be, have been obtained by fitting the calculated energy values 

of the different investigated electronic states into a polynomial in R around the 

internuclear distance at equilibrium Re. Using the values of 10 valence electrons 

for the investigated electronic states, the calculated energy Te, the spectroscopic 

constants we, Be and Re are given in Table 5.2 along with the theoretical values [5, 

19-23, 25, 28] and the fragmented experimental data [ 6, 24, 26-27] in literature.  

 

Table 5.2: Spectroscopic constants for the electronic states of the molecule LaH. 

State Te (cm-1) Re (Å) we (cm-1) Be (cm-1) 

X1Σ+ 

0.0 
 

2.235(a1) 
2.031969(20)(b) 

 
 
2.005(c) 

2.027(d1) 

2.016(d2) 

2.11(e1) 

2.08(e2) 

2.05(e3) 

2.032(f) 

1353.26(a1) 

 
 
1418(2)(n)     

1416(c) 

1446(d1) 
1456(d2) 
1350(e1) 

1380(e2) 

1420(e3) 
1390(f) 

3.37(a) 

4.080534(80)(b)  

3Π 1Π 3/2  6.05   
3333 111

  3/2  2.75   
1Π 3Φ 3/2  5.57   

3Π 
3Φ 

4/2  3.56   

3/2  6.11   

3Σ 
3Δ 

2/3 

2/3 

2/2 

2/2 

 1.38 

6.19 

1.95 

1.40 

  

3Σ 3Σ 
                1/2  3.0219 18.5521 
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2.064(j1)

2.057(j2) 
2.045(j3) 
2.05(g1) 
2.06(g2) 
2.00(g3) 
2.00(g4) 
2.00(g5) 

2.06(o1) 

2.07(o2) 
2.09(o3) 
2.08(o4) 

2.08(k)
 

1421.1(j1)

1443.1(j2) 
1448.2(j3) 
1516(g1) 
1510(g2)  
1521(g3) 

 

 
 
 
 
 
1433(k) 

(1)3П 3880.3(a1) 

3307.3(a2) 

        5147(k) 

2.235(a1) 

 
2.12(k)

 

1341.37(a1) 

 
1341(k)

 

3.37(a1) 

 

(1)3Δ 

3916.3(a1) 

4121.7(a2) 
 
 
 

3987.2(j2) 
 

        2805(k)
 

2.272(a1) 

 
 
2.09(b) 
2.109(j1) 

2.106(j2) 
2.116(j3) 

2.13(k)
 

1314.98(a1) 

 
1355(n)       
 
1342.1(j1) 

1356.9(j2) 
1322.9(j3) 
1352(k)

 

3.25(a1) 
 

 

 

 

(1)1Π 4711.5(a1) 

4174.3(a2) 
        4533.6(n) 

 
        6226(k)

 

2.235(a1) 

 
 
2.074276(b) 
2.13(k)

 

1356.74(a1) 

 

 
 
1309(k)

 

3.36(a1) 

 
 
3.915776(b)   

 

(1)1D 8032.9(a1) 

7960.7(a2) 
        6510(k)

 

2.326(a1) 

 
2.16(k) 

1272.64(a1) 

 
1299(k) 

3.11(a1) 

 

(2)1Δ 8863.8(a1) 

9393.8(a2) 
        17427(k) 

 
 
2.18(k) 

 
 
1234(k) 

 

(1)3Σ⁺ 8969.1(a1) 

8049.2(a2) 
 
 
 

       11794(k)
 

2.236(a1) 

 
2.156(j1) 
2.153(j2) 
2.166(j2) 

2.20(k)
 

1338.11(a1) 

 
1258.3(j1) 
1272.5(j2) 
1244.1(j3)

 

1203(k)
 

3.36(a1) 

 

(2)1Σ⁺

 

9688.2(a1) 

9963.4(a2) 
        9508(m) 

      13025(k) 

2.310(a1) 

 
 
2.20(k) 

1288.97(a1) 

 
 
1230(k) 

3.15(a1) 

 

(2)3Π 9894.9(a1) 

9534.0(a2) 
       11956(k)

 

2.272(a1) 

 
2.19(k)

 

1329.48(a1) 

 
1228(k)

 

3.26(a1) 

 

(1)3Ф 10709.6(a1) 

10415.2(a2) 
 

       10612(k) 

2.297(a1) 

 
2.14(b) 

2.19(k)  

1297.59(a1) 

 
 
1240(k) 

3.19(a1) 

 
 

(3)3Π 11638.2(a1) 

11561.1(a2) 
       15880(k) 

2.253(a1) 

 
2.09(k)

 

1363.12(a1) 

 
1377(k)

 

3.31(a1) 
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(2)3Δ 12902.3(a1) 

13128.4(a2) 
       14020(k) 

2.361(a1) 

 
2.24(k) 

1255.60(a1) 

 
1166(k) 

3.02(a1) 

 

(3)1Δ        13502.3(a1) 

 12741.36(a2) 
       20109(k) 

2.261(a1) 

 
2.20(k)

 

1316.43(a1) 

 
1226(k)

 

3.29(a1) 

 

(2)1Π  14050.2 (a1) 

13997.3(a2) 
       15729(k) 

2.280(a1) 

 
2.16(k)

 

1696.53(a1) 

 
1293(k)

 

3.27(a1) 

 

(4)3Π 14081.8(a1) 

13768.3(a2) 
2.281(a1)

 1348.00(a1)
 3.24(a1)

 

(3)1Π 14259.8(a1) 

14220.8(a2) 
       20170(k) 

2.29(a1) 

 
1460.44(a1) 

 
3.13(a1) 

 

(1)3Σˉ 14268.1(a1) 

 
15622.7(p) 

        12035(k) 

2.303(a1) 

 
 
2.18(k)

 

1316.93(a1) 

 
 
1247(k)

 

3.18(a1) 

 

(4)1Δ  15138.2(a1) 

        14618(a2) 
        20109(k) 

2.243(a1) 

 
2.20(k)

 

1394.48(a1) 

 
1226(k)

 

3.34(a1) 

 

(2)3Φ 16844.3(a1) 
17110.2(a2) 

2.309(a1)
 1311.22(a1)

 3.15(a1)
 

(3)3Δ 17075.0(a1) 

16550.3(a2) 
        23256(k) 

2.271(a1) 

 
2.10(k)

 

1334.13(a1) 

 
1364(k)

 

3.26(a1) 

 

(2)3Σ⁺ 
18816.3(a1) 

18256.1(a2) 
2.273(a1)

 1328.65(a1)
 3.26(a1)
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a1 and a2 represent the calculated values of the present work using 10 and 8 valence electrons 

respectively, bRef.[6], cRef.[19], d1,d2Ref.[20], e1,e2,e3RefTheo.[21], fRef.[22], gRef.[23], jRef.[25], 
kRef.[5],mRef.[26], nRef.[27], oRef.[28]. 

From the calculated values of we for the ground and excited states we can 

approximate our calculated values of Te with the experimental values Tv=0(ground)-

Tv=0(excited state). By comparing our calculated values of Te to those of Mukund 

et al. [27], obtained experimentally, we can find that the first excited state in the 

present work is (1)3P instead of a3D; but the average value of Te for b3P0-, b
3P0+ 

and b3P1 [27] can be approximated to our calculated value with relative difference 

of 6.5% while the theoretical value of Das and Balasubramanian [5] are higher 

than our calculated value by 1267 cm-1 by examining Table 5.3.  

 Te (cm-1)  
States 2 Valence 

electrons 
6 Valence 
Electrons 

8 Valence 
electrons 

10 Valence 
electrons 

8 Valence 
electrons with f 

X1Σ+          0.0        0.0        0.0        0.0 0.00 
(1)3П   2589.62(a1)

  2748.35(a2)   3307.33(a3) 3880.29(a4) 2795.29 
(1)3Δ   2432.65(a1)

  2412.90(a2) 4121.69(a3) 3916.29(a4) 3085.55 
(1)1Π   2972.96(a1)

  3321.83(a2) 4174.26(a3) 4711.53(a4) 3600.97 

(1)1D   5967.24(a1)
  6242.21(a2) 7960.73(a3) 8032.89(a4) 8403.79 

(1)3Σ⁺   7564.48(a1)
  7709.67(a2)  8049.22(a3) 8969.14(a4) 10891.47 

(2)1Δ   6935.60(a1)
  7067.81(a2) 9393.82(a3) 8863.84(a4) 12620.82 

(2)1Σ⁺

 
   9467.14(a1)   8988.36(a2) 9963.40(a3) 9688.15(a4) 11624.89 

(2)3Π   6446.32(a1)
  7028.24(a2)  9533.97(a3) 9894.85(a4) 8395.49 

(1)3Ф    8108.20(a1)
    8163.15(a2) 10415.22(a3) 10709.65(a4) 9819.06 

(3)3Π 11585.25(a1) 11058.72(a2) 11561.05(a3)  11638.18(a4) 12039.99 
(2)3Δ  10574.89(a1) 10429.85(a2) 13128.43(a3)  12902.27(a4) 14560.32 
(3)1Δ  11429.62(a1) 11315.37(a2)  12741.36(a3)  13502.33(a4) 13821.59 
(2)1Π  11969.40(a1) 11836.84(a2)  13997.29(a3)  14050.23(a4) 13005.94 
(4)3Π  12671.48(a1) 12009.97(a2)  13768.28(a3)  14081.84(a4) 15016.25 
(3)1Π  14414.29(a1) 12615.40(a2)  14220.78(a3)  14259.83(a4) 16632.99 
(2)3Σˉ  11861.31(a1) 11310.25(a2) 14391.29(a3)  14268.08(a4) 13020.36 
(4)1Δ  13048.59(a1) 12516.57(a2)  14618.66(a3)  15138.24(a4) 14721.86 
(2)3Φ  15536.32(a1) 14446.12(a2)  17110.18(a3)  16844.33(a4) 17697.89 
(3)3Δ  15632.46(a1) 15263.90(a2)  16550.25(a3)  17074.98(a4) 17578.94 

(2)3Σ⁺  17497.65(a1) 17007.76(a2)  18256.12(a3)  18816.25(a4) 19024.14 

(3)3Σ⁺  30323.49(a1) 28967.78(a2)   30165.73 
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Table 5.3. Calculated values of the transition energy with respect to the ground 

state obtained by using different valence electrons 

 

One can find that the first excited state is 1D by adopting the small number of 

valence electrons 2 and 6, but for the higher valence electron 8, and 10 we find that 

the ground state is 3P. Since the first excited state of Mukund et al. [27] is the a3D 

our calculated value of Te for this state is higher than those of Mukund et al. [27] 

and Das and Balasubramanian [5] but it is in excellent agreement with that given 

by Wang et al. [25] based on the MP2/6-311++G(d,p)/SDD calculation. For the 

electronic state (1)1Π, our calculated value of Te is in good agreement with that 

given in Ref. [27] with relative difference 3.9% but it is lower than that of Ref. [5] 

by 1515 cm-1, while our calculated value of Te for the (1)1D is higher than that of 

Mukund et al. [27] by about 2000 cm-1. Our calculated values of 8863.8cm-

1≤Te<19000cm-1 are smaller than those calculated by Das and Balasubramanian [5] 

except the values of the two electronic states (1)3Ф and (1)3Σˉ with relative 

difference varies between 0.9% and 49% which may be explained by the small 

distribution of the three electrons in the active space and one electron in the 

external space in all possible ways [5]. In the same range of Te our calculated 

values are in very good agreement with the experimental data [26] for the state 

(2)1S+ with relative difference of 1.9% and acceptable agreement for the state 

(1)3S- with relative difference 8.7% [24]. By comparing our calculated value for 

the transition energy Te[(1)3F]-Te[(1)3D]=6793cm-1 to the average value of the 

experimental partial transitions d3Fi-a
3Di [6] one can find an acceptable agreement 

with relative difference 10% which is better than that given by Das and 

Balasubramanian [5] which is equal 27%. Yarlagadda et al. [24] assigned to the 

states D1 and E1 in the transitions (0, 0) D1–X1S+ and (0, 0) E1– X1S+ the state 
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1P, our calculated value of Te [(3)1Π] = 14259.8cm-1 while that of Ref.[5] equal to 

20170 cm-1. The 18509 cm-1 band observed experimentally [24, 29] is assigned to 

the transition 0+–a3D1 by Ram and Bernath [6] while Yarlagadda et al. [24] could 

not assign this band to this transition. In the present work the transitions (1)1S+-

(3)3D and (1)1S+-(2)3Σ⁺ are calculated respectively as 17075.0cm-1 and 18816.3cm-1 

while the first transition is found to be 23256cm-1 by Das and Balasubramanian [5]. 

 The comparison of our calculated values of we with those obtained experimentally 

[27] for the ground X1Σ+ and (1)3Δ states shows a good accuracy with relative 

differences 4.6% and 2.9% respectively. While the comparison with those obtained 

theoretically for all the investigated electronic states shows a very good agreement 

with relative difference 0.0%≤Dwe/we≤12.4%. Our calculated values of Re for the 4 

electronic states X1Σ+, (1)3Δ, (1)1Π, (1)3Ф are larger than those obtained 

experimentally by Ram and Bernath [6] with the relative differences 9.0%, 8.0%, 

7.2% and 6.8% respectively. The comparison of our values of Re, for the different 

investigated electronic states, with those obtained theoretically in literature shows 

also the good agreement with an average difference of 0.10 cm-1. The agreement 

becomes less by comparing our calculating value of Be with the experimental data 

[6] for the 2 states X1Σ+ and (1)1P with relative difference 17.4% and 14.4% 

respectively. We noticed that the use of different values of the valence electrons 

has poor influence on the values of rotational constants Be for the different 

electronic states. 

 

5.3 Spin-Orbit effect 
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By taking into consideration the spin orbit effect of the molecule LaH we give in 

figure (5.4) the energy splitting of the electronic states (1, 2)3P, (1)3D, (1)3F and 

(1)3S+ . 

 

 

 

 

(1)3Π 3307.33 ∆E = 250.76 

(1)3Π 3084.95 

(1)3Π 3335.71 

(1)3Π 3089.66 

(1)3Π 3150.84  

(2)3Π 9533.97

∆E = 754.63 

(2)3Π 8813.10 

(2)3Π 9567.73 

(2)3Π 9403.13 

(2)3Π 9549.73 

(1)3∆ 4121.69

(1)3∆ 4372.52 ∆E = 293.46

(1)3∆ 4245.29 

(1)3∆ 4538.75 

(1)3Φ 10415.22 ∆E = 403.7 

(1)3Φ 10218.13  

(1)3Φ 10622.00  

(1)3Φ 10375.70  
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Fig 5.4: Spin-orbit splitting occurring in the electronic states of the LaH molecule 

in cm-1. 

 

For these states one can notice that the largest energy splitting is for the (2)3P and 

the corresponding spectroscopic constants in the W-representation are given in 

Table 5.4. There is no comparison of these values with other results since they are 

given here for the first time. 

 

 

 

 

 

 

 

 

(1)3Σ 8049.22

(1)3Σ 8080.40

(1)3Σ 7976.35

∆E = 104.05
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Table 5.4: transition energies Te, equilibrium internuclear distances Re, and 

harmonic frequencies ωe for Ω-states of the molecule LaH using 8valence 

electrons.  

 

 

 

 

 

 

Symmetry  States Te (cm-1) Re (Å) we (cm-1) 

  Ω=0⁺  X1Σ+ 0.0 2.215 1357.43 
  [(1)3П] 3084.95            2.22 1239.51 

  [(2)1Σ+] 
[(2)3П] 

9963.40 
9533.72 

2.296 
2.274 

1285.16 
1516.17 

      Ω=0¯  [(1)3П] 3089.66 2.225 1361.64 
  [(1)3Σ⁺] 

[(2)3П] 
7976.35  
9567.73 

2.277 
2.276 

1840.47 
1453.34 

Ω=1  [(1)3П] 
[(1)3Δ]  
[(1)1Π]  
[(1)3Σ⁺] 

[(2)3П] 

3150.84  
4245.29 
4174.26 
8080.40 
9403.13 

2.214 
2.246 
2.217 
2.272 

           2.3 

1294.28 
1388.33 
1358.89 
1647.50 
5726.32 

Ω=2  [(1)3П] 
[(1)3Δ]  
[(1)1Δ]  
[(2)1D]  

3335.71 

4372.52 
7960.73 
9393.82 

2.221 

           2.227 
           2.329 
           2.239 

1324.80 

1392.31 
1228.79 
1321.04 

  [(2)3П] 
[(1)3Ф] 

8813.10 
10218.13 

2.267 
2.277 

1238.39 
1403.06 

Ω=3  [(1)3Δ]  
[(1)3Ф] 

4538.75 
10375.70 

2.254 
2.288 

1231.91 
1268.50 

Ω=4  [(1)3Ф] 10622.00 2.291 1237.20 
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5.4 Vibration-rotation calculation 

The vibration rotation calculation is performed by using the cubic spline 

interpolation between each two constructive points of the potential energy curves 

obtained from the ab initio calculation. Then, we use the canonical functions 

approach [11, 16-18] to calculate the eigenvalue Ev, and the rotational constant Bv 

for the different investigated vibrational levels v. By using the calculated values of 

Ev the abscissas of the turning point Rmin and Rmax have been determined for 

different vibrational levels for fifteen low-lying electronic states of LaH molecule 

1(X ,+S 1(1) ,D 1(2) ,D (3)1Δ, (2)1Σ, 1(1) ,P  (2)1Π, (1)3Δ, (2)3Σ, (2)3Δ, (3)3Δ, 3(1) ,P  

(2)3Π, (1)3Φ, (1)3Σ ). These constants for the electronics states X1S+ and (1)3Δ are 

reported in Tables 4 as example. The data for the other electronic states are given 

in Appendix IV. The comparison of these values calculated for X1S+ with the 

experimental data, obtained from the pure rotational spectra of LaH [6], shows a 

barley acceptable agreement with relative difference DBv/Bv equal 16% and 15% 

respectively for v = 0 and v = 1. 

Table (5.4): Values of the eigenvalues Ev, the rotational constants Bv  and the 

abscissa of the turning points Rmin and Rmax for the different vibrational levels of 

(1)1Σ+, (1)3Δ states of the LaH molecule. 

(1)1Σ+

 
 (1)3Δ 

v 
Ev 

cm-1
 

Bv 

cm-1
 

Rmin 

Å 

Rmax 

Å 
v 

Ev 

cm-1
 

Bv 

cm-1
 

Rmin 

Å 

Rmax 

Å 
0 671.37* 3.389 

  4.041(b) 

       4.041837(h) 

2.074 2.391 655.042 3.262 2.115 2.115 2.436 

1 1995.89 3.350 
  3.964(b) 

1.975 2.529 1943.959 3.218 2.016 2.016 2.578 

2 3293.412 3.308 1.912 2.634 3201.588 3.172 1.955 1.955 2.686 

3 4563.31 3.263 1.825 2.726 4430.715 3.126 1.905 1.905 2.78 

4 5805.309 3.216 1.825 2.810 5631.745 3.077 1.865 1.865 2.868 

5 7019.436 3.167 1.791 2.891 6802.586 3.027 1.832 1.832 2.951 

6 8205.703 3.116 1.762 2.969 7945.941 2.976 1.802 1.802 3.032 

7 9364.49 3.065 1.736 3.045 9060.734 2.924 1.776 1.776 3.111 
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*First entry is for the present work, bRef [6], hRef [24]. 

5.5 Conclusion  

           In the present work, an ab initio investigation for 24 low-lying molecular 

states of LaH molecule has been performed via CAS-SCF/MRCI method. 

8 10496.58 3.013 1.712 3.120 10148.96 2.872 1.753 1.753 3.188 

9 11603.17 2.962 1.691 3.193 11210.82 2.823 1.732 1.732 3.264 

10 12684.85 2.910 1.672 3.266 12249.41 2.774 1.712 1.712 3.339 

11 13741.65 2.859 1.654 3.339 13265.63 2.727 1.694 1.694 3.412 

12 14774.79 2.809 1.638 3.411 14259.95 2.68 1.678 1.678 3.485 

13 15786.12 2.761 1.622 3.482 15234.5 2.635 1.662 1.662 3.557 

14 16776.52 2.713 1.608 3.553 16189.99 2.592 1.648 1.648 3.629 

15 17746.97 2.667 1.595 3.623 17127.56 2.55 1.634 1.634 3.669 

16 18698.88 2.623 1.582 3.692 18048.54 2.51 1.621 1.621 3.769 

17 19632.91 2.580 1.570 3.762 18953.23 2.471 1.609 1.609 3.838 

18 20550.19 2.539 1.559 3.830 19842.68 2.433 1.598 1.598 3.907 

19 21451.29 2.498 1.548 3.898 20717.41 2.396 1.587 1.587 3.975 

20 22337.08 2.46 1.538 3.966 21577.77 2.36 1.577 1.577 4.043 

21 23207.92 2.421 1.529 4.034 22423.95 2.324 1.567 1.567 4.111 

22 24064.51 2.384 1.520 4.101 23256.53 2.288 1.557 1.557 4.179 

23 24907.05 2.348 1.511 4.168 24075.45 2.253 1.548 1.548 4.246 

24 25736.07 2.312 1.502 4.235 24880.77 2.219 1.54 1.54 4.314 

25 26551.73 2.277 1.494 4.302 25672.4 2.183 1.531 1.531 4.382 

26 27354.3 2.242 1.487 4.368 26450.09 2.148 1.523 1.523 4.451 

27 28143.95 2.207 1.479 4.435 27213.82 2.113 1.518 1.518 4.52 

28 28920.85 2.174 1.472 4.503 27963.69 2.078 1.509 1.509 4.59 

29 29685.38 2.141 1.465 4.570 28699.53 2.043 1.502 1.502 4.66 

30 30437.66 2.108 1.459 4.637 29421.34 2.008 1.495 1.495 4.732 

31 31177.91 2.076 1.459 4.705 30129.33 1.973 1.488 1.488 4.803 

32 31906.5 2.043 1.446 4.772 30823.48 1.939 1.482 1.482 4.876 

33 32623.63 2.014 1.440 4.840 31504.65 1.907 1.476 1.476 4.95 

34 33329.76 1.985 1.435 4.908 32174.16 1.878 1.471 1.471 5.024 

35 34025.67 1.957 1.429 4.976 32834.37 1.854 1.465 1.465 5.089 

36 34712.51 1.933 1.424 5.041 33486.31 1.829 1.46 1.46 5.161 

37 35391.8 1.911 1.419 5.104 34126.63 1.793 1.454 1.454 5.237 

38 36063.72 1.886 1.413 5.172   

39 36725.3 1.854 1.409 5.241   

40 37373.05 1.82 1.404 5.309  

41 38009.73 1.797 1.399 5.378  

42 38640.17 1.776 1.395 5.447  

43 39260.72 1.744 1.391 5.516  
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Multireference CI calculations (single and double excitations + Davidson 

corrections) in which the entire CAS-SCF configuration space was used as the 

reference were performed to account the correlation effects. This calculation has 

been done in 4 different ways using 2, 6, 8, and 10 valence electrons. The potential 

energy curves along with the spectroscopic constants Te, re, e
w  and Be have been 

obtained for the investigated electronic states of the molecule LaH. The number of 

valence electrons used in the calculation has an influence on the calculated values 

of Te for the different electronic states. One can consider this influence is the 

responsible of the discrepancy between our calculated values of Te and those of 

Das and Balasubramanian [5] for some electronic states while the comparison with 

other theoretical calculation [25] shows an excellent agreement. Taking advantage 

of the electronic structure of the investigated electronic states of LaH molecule and 

by using the canonical functions approach, the vibrational eigenvalues Ev, the 

rotational constant Bv, and the abscissas of the turning points Rmin and Rmax were 

calculated for the 22 low-lying electronic states. The comparison of our calculated 

data in the present work for the molecule LaH with those obtained theoretically 

and experimentally in literature shows an overall good agreement except the values 

of Te investigated in Ref. [6] for some electronic states.  
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 New 

Conclusion and Perspective 

          

         Ab initio calculations provide us with a valuable tool that helps people 

understand problems with the use of a computer and allow one to investigate the 

molecular structure and properties of atoms, molecules and solides. Computational 

studies can in general be carried out in order to find a starting point for laboratory 

experiments, or to assist in understanding experimental data. Thus computational 

studies can explore new properties and guide new experimental works. Heavy 

polar diatomic molecules form suitable candidates for computational 

investigations, particularly due to their rich inner electronic structures and due to 

their importance in several areas of science, as astrophysics, chemistry, ultracold 

interactions, and molecular quantum computing. In the present work, we perform 

ab initio calculations for the electronic structure of the Boron-nitrides, silicon 

nitride and Lanthanum monohydride (BN, SiN and LaH). The potential energy 

curves (PEC) for the ground and excited electronic states were constructed as a 

function of the internuclear distance R. Then by fitting the calculated potential 

energy curves in to a polynomial in R several spectroscopic constants were 

calculated, such as the transition energy Te relative to the ground state, the 

harmonic vibrational frequencies ωe, the equilibrium internuclear distances Re, and 

the rotational constants Be and De. Relativistic spin orbit effects were included by 

the method of effective core potentials (ECP) and then based on the calculated 

PECs vibro-rotational calculations were performed for the vibrational and 

rotational energy levels of LaH molecule. Our calculations yielded accurate 

spectroscopic constants along with several physical and chemical properties that 

are within a few percent of the experimental values. Many other properties have 
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been also computed that weren’t available in literature on the electronic structures 

of these molecules. 

        Our Perspective is to study in same way the molecule TiN and ZnO, therefore 

to calculate the potential energy curves (PEC) for the ground and excited electronic 

states. Then the spectroscopic constants , such as the transition energy Te relative 

to the ground state, the harmonic vibrational frequencies ωe, the equilibrium 

internuclear distances Re, and the rotational constants Be and De. And To perform 

the Relativistic spin orbit effects by the method of effective core potentials (ECP) 

of (BN, SiN, TiN and ZnO). Then based on the calculated PECs we will do vibro-

rotational calculations to calculate the vibrational and rotational energy levels of 

BN molecule (SiN, TiN and ZnO). 

       In other hand we will try to perform another theoretical calculation in the 

molecule (BN, SiN, TiN and ZnO) in the density functional theory DFT by using 

the WIEN2K program and we will try to link these calculations to our theoretical 

calculations in MOLPRO and we propose through this project to develop ceramic 

oxides and non-oxides in IEMM using an original method of preparation of thin 

films and nanostructures 1D and then to study the optical properties (i.e. 

absorbance and fluorescence) of the materials obtained in order to go back to their 

electronic structures.  

        This original method, "Atomic Layer Deposition (ALD)," allows "atom by 

atom" deposition of inorganic materials and can be used for the synthesis of ultra-

thin layers (<100 nm). Initially employed for the synthesis of catalysts, this 

technique can also be applied to synthesis of materials of different types and 

morphologies such as oxide ceramics, non-oxide ceramics and metals.  

        Thus, we propose to control the morphology of these structures by combining 

ALD with replication techniques like chemical or physical template (i.e. alumina 
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membranes, membranes of polycarbonate, polystyrene spheres, and nanowires 

synthesized by electrospinning). Also, specific morphologies can be obtained (ie 

training nanotubes, concentric nanotubes, nanowires or hollow spheres of 

controlled porosity).  

         The chemical and physical characterization of materials obtained would 

correlate the optical properties (i.e. absorbance and fluorescence) and the change of 

electronic structures with the morphology of the nanostructures obtained (0D, 1D 

and 2D) and to better understands the effect of quantum confinement on these 

properties. 
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APPENDIX I 

MOLPRO INPUT DATA FILE FOR THE CALCULATION OF THE 
ELECTRONIC ENERGIES AND DIPOLE MOMENTS OF ALL THE 

42 STATES OF BN MOLECULE 
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***,Input file generated by gabedit; 
Memory,4000000; 
Gprint,basis;    ! Print basis information  
Gprint,orbital;    ! Print orbitals in SCF and MCSCF  
 
geomtyp=xyz 
geometry={ANGSTROM; 
2 ! number of atoms  
GeomXYZ 
B, 0.0, 0.0, 0.0 
N, 0.0, 0.0, 1.334 
} 
basis={ 
s,B,cc-pVTZ;c 

p,B,cc-pVTZ;c 
d,B,cc-pVTZ;c 
f,B,cc-pVTZ;c 
s,N,cc-pVTZ;c 
p,N,cc-pVTZ;c 
d,N,cc-pVTZ;c 
} 
hf; 
wf,12,1,0; 
orbprint,1000; 
 
multi; 
occ,7,2,2,0; 
closed,3,0,0,0; 
core,0,0,0,0; 
 
wf,12,1,0;state,9; 
wf,12,2,0;state,4; 
wf,12,3,0;state,4; 
wf,12,4,0;state,5; 
 
wf,12,1,2;state,8; 
wf,12,2,2;state,5; 
wf,12,3,2;state,5; 
wf,12,4,2;state,5; 
 
r0 = 1.21 
step = 0.03 
do i=1,7 
 
r = r0 + (i-1)*step 
 
dist(i) = r 
 
geomtyp=xyz 
geometry={ANGSTROM; 
2 ! number of atoms  
GeomXYZ 
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B, 0.0, 0.0, 0.0 
N, 0.0, 0.0, r 
} 
 
multi; 
occ,7,2,2,0; 
closed,3,0,0,0; 
core,0,0,0,0; 
 
wf,12,1,0;state,9; 
wf,12,2,0;state,4; 
wf,12,3,0;state,4; 
wf,12,4,0;state,5; 
 

wf,12,1,2;state,8; 
wf,12,2,2;state,5; 
wf,12,3,2;state,5; 
wf,12,4,2;state,5; 
 
TRAN2,LXX,LYY,LZZ; 
s_Lz_1_1(i)= sqrt(abs(LZLZ(1))) 
s_Lz_1_2(i)= sqrt(abs(LZLZ(2))) 
s_Lz_1_3(i)= sqrt(abs(LZLZ(3))) 
s_Lz_1_4(i)= sqrt(abs(LZLZ(4))) 
s_Lz_1_5(i)= sqrt(abs(LZLZ(5))) 
s_Lz_1_6(i)= sqrt(abs(LZLZ(6))) 
s_Lz_1_7(i)= sqrt(abs(LZLZ(7))) 
s_Lz_1_8(i)= sqrt(abs(LZLZ(8))) 
s_Lz_1_9(i)= sqrt(abs(LZLZ(9))) 
 
 
 
s_Lz_2_1(i)= sqrt(abs(LZLZ(10))) 
s_Lz_2_2(i)= sqrt(abs(LZLZ(11))) 
s_Lz_2_3(i)= sqrt(abs(LZLZ(12))) 
s_Lz_2_4(i)= sqrt(abs(LZLZ(13))) 
 
 
s_Lz_3_1(i)= sqrt(abs(LZLZ(14))) 
s_Lz_3_2(i)= sqrt(abs(LZLZ(15))) 
s_Lz_3_3(i)= sqrt(abs(LZLZ(16))) 
s_Lz_3_4(i)= sqrt(abs(LZLZ(17))) 
 
 
s_Lz_4_1(i)= sqrt(abs(LZLZ(18))) 
s_Lz_4_2(i)= sqrt(abs(LZLZ(19))) 
s_Lz_4_3(i)= sqrt(abs(LZLZ(20))) 
s_Lz_4_4(i)= sqrt(abs(LZLZ(21))) 
s_Lz_4_5(i)= sqrt(abs(LZLZ(22))) 
 
 
! triplet states 
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t_Lz_1_1(i)= sqrt(abs(LZLZ(23))) 
t_Lz_1_2(i)= sqrt(abs(LZLZ(24))) 
t_Lz_1_3(i)= sqrt(abs(LZLZ(25))) 
t_Lz_1_4(i)= sqrt(abs(LZLZ(26))) 
t_Lz_1_5(i)= sqrt(abs(LZLZ(27))) 
t_Lz_1_6(i)= sqrt(abs(LZLZ(28))) 
t_Lz_1_7(i)= sqrt(abs(LZLZ(29))) 
t_Lz_1_8(i)= sqrt(abs(LZLZ(30))) 
 
t_Lz_2_1(i)= sqrt(abs(LZLZ(31))) 
t_Lz_2_2(i)= sqrt(abs(LZLZ(32))) 
t_Lz_2_3(i)= sqrt(abs(LZLZ(33))) 
t_Lz_2_4(i)= sqrt(abs(LZLZ(34))) 
t_Lz_2_5(i)= sqrt(abs(LZLZ(35))) 

 
t_Lz_3_1(i)= sqrt(abs(LZLZ(36))) 
t_Lz_3_2(i)= sqrt(abs(LZLZ(37))) 
t_Lz_3_3(i)= sqrt(abs(LZLZ(38))) 
t_Lz_3_4(i)= sqrt(abs(LZLZ(39))) 
t_Lz_3_5(i)= sqrt(abs(LZLZ(40))) 
 
t_Lz_4_1(i)= sqrt(abs(LZLZ(41))) 
t_Lz_4_2(i)= sqrt(abs(LZLZ(42))) 
t_Lz_4_3(i)= sqrt(abs(LZLZ(43))) 
t_Lz_4_4(i)= sqrt(abs(LZLZ(44))) 
t_Lz_4_5(i)= sqrt(abs(LZLZ(45))) 
 
 
 
!CI calculation 
ci; 
maxiti,maxiter,250,2500; 
occ,7,2,2,0; 
closed,3,0,0,0; 
core,2,0,0,0; 
wf,12,1,0;state,9;option,nstati=12;  
 
s_e_sym1_1(i)= energd(1) 
s_e_sym1_2(i)= energd(2) 
s_e_sym1_3(i)= energd(3) 
s_e_sym1_4(i)= energd(4) 
s_e_sym1_5(i)= energd(5) 
s_e_sym1_6(i)= energd(6) 
s_e_sym1_7(i)= energd(7) 
s_e_sym1_8(i)= energd(8) 
s_e_sym1_9(i)= energd(9) 
 
 
s_d_sym1_1(i)= DMZ(1) 
s_d_sym1_2(i)= DMZ(2) 
s_d_sym1_3(i)= DMZ(3) 
s_d_sym1_4(i)= DMZ(4) 
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s_d_sym1_5(i)= DMZ(5) 
s_d_sym1_6(i)= DMZ(6) 
s_d_sym1_7(i)= DMZ(7) 
s_d_sym1_8(i)= DMZ(8) 
s_d_sym1_9(i)= DMZ(9) 
 
 
 
 
 
table,dist,s_Lz_1_1,s_e_sym1_1,s_d_sym1_1 
DIGITS,,8 
table,dist,s_Lz_1_2,s_e_sym1_2,s_d_sym1_2 
DIGITS,,8 

table,dist,s_Lz_1_3,s_e_sym1_3,s_d_sym1_3 
DIGITS,,8 
table,dist,s_Lz_1_4,s_e_sym1_4,s_d_sym1_4 
DIGITS,,8 
table,dist,s_Lz_1_5,s_e_sym1_5,s_d_sym1_5 
DIGITS,,8 
table,dist,s_Lz_1_6,s_e_sym1_6,s_d_sym1_6 
DIGITS,,8 
table,dist,s_Lz_1_7,s_e_sym1_7,s_d_sym1_7 
DIGITS,,8 
table,dist,s_Lz_1_8,s_e_sym1_8,s_d_sym1_8 
DIGITS,,8 
table,dist,s_Lz_1_9,s_e_sym1_9,s_d_sym1_9 
DIGITS,,8 
 
 
ci; 
maxiti,maxiter,250,2500; 
occ,7,2,2,0; 
closed,3,0,0,0; 
core,2,0,0,0; 
wf,12,2,0;state,4;option,nstati=12;  
 
s_e_sym2_1(i)= energd(1) 
s_e_sym2_2(i)= energd(2) 
s_e_sym2_3(i)= energd(3) 
s_e_sym2_4(i)= energd(4) 
 
 
s_d_sym2_1(i)= DMZ(1) 
s_d_sym2_2(i)= DMZ(2) 
s_d_sym2_3(i)= DMZ(3) 
s_d_sym2_4(i)= DMZ(4) 
 
table,dist,s_Lz_2_1,s_e_sym2_1,s_d_sym2_1 
DIGITS,,8 
table,dist,s_Lz_2_2,s_e_sym2_2,s_d_sym2_2 
DIGITS,,8 
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table,dist,s_Lz_2_3,s_e_sym2_3,s_d_sym2_3 
DIGITS,,8 
table,dist,s_Lz_2_4,s_e_sym2_4,s_d_sym2_4 
DIGITS,,8 
 
 
ci; 
maxiti,maxiter,250,2500; 
occ,7,2,2,0; 
closed,3,0,0,0; 
core,2,0,0,0; 
wf,12,4,0;state,5;option,nstati=12; 
 
s_e_sym4_1(i)= energd(1) 

s_e_sym4_2(i)= energd(2) 
s_e_sym4_3(i)= energd(3) 
s_e_sym4_4(i)= energd(4) 
s_e_sym4_5(i)= energd(5) 
 
 
s_d_sym4_1(i)= DMZ(1) 
s_d_sym4_2(i)= DMZ(2) 
s_d_sym4_3(i)= DMZ(3) 
s_d_sym4_4(i)= DMZ(4) 
s_d_sym4_5(i)= DMZ(5) 
 
 
table,dist,s_Lz_4_1,s_e_sym4_1,s_d_sym4_1 
DIGITS,,8 
table,dist,s_Lz_4_2,s_e_sym4_2,s_d_sym4_2 
DIGITS,,8 
table,dist,s_Lz_4_3,s_e_sym4_3,s_d_sym4_3 
DIGITS,,8 
table,dist,s_Lz_4_4,s_e_sym4_4,s_d_sym4_4 
DIGITS,,8 
table,dist,s_Lz_4_5,s_e_sym4_5,s_d_sym4_5 
DIGITS,,8 
 
ci; 
maxiti,maxiter,250,2500; 
occ,7,2,2,0; 
closed,3,0,0,0; 
core,2,0,0,0; 
wf,12,1,2;state,8;option,nstati=12;  
 
 
 
t_e_sym1_1(i)= energd(1) 
t_e_sym1_2(i)= energd(2) 
t_e_sym1_3(i)= energd(3) 
t_e_sym1_4(i)= energd(4) 
t_e_sym1_5(i)= energd(5) 
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t_e_sym1_6(i)= energd(6) 
t_e_sym1_7(i)= energd(7) 
t_e_sym1_8(i)= energd(8) 
 
t_d_sym1_1(i)= DMZ(1) 
t_d_sym1_2(i)= DMZ(2) 
t_d_sym1_3(i)= DMZ(3) 
t_d_sym1_4(i)= DMZ(4) 
t_d_sym1_5(i)= DMZ(5) 
t_d_sym1_6(i)= DMZ(6) 
t_d_sym1_7(i)= DMZ(7) 
t_d_sym1_8(i)= DMZ(8) 
 
table,dist,t_Lz_1_1,t_e_sym1_1,t_d_sym1_1 

DIGITS,,8 
table,dist,t_Lz_1_2,t_e_sym1_2,t_d_sym1_2 
DIGITS,,8 
table,dist,t_Lz_1_3,t_e_sym1_3,t_d_sym1_3 
DIGITS,,8 
table,dist,t_Lz_1_4,t_e_sym1_4,t_d_sym1_4 
DIGITS,,8 
table,dist,t_Lz_1_5,t_e_sym1_5,t_d_sym1_5 
DIGITS,,8 
table,dist,t_Lz_1_6,t_e_sym1_6,t_d_sym1_6 
DIGITS,,8 
table,dist,t_Lz_1_7,t_e_sym1_7,t_d_sym1_7 
DIGITS,,8 
table,dist,t_Lz_1_8,t_e_sym1_8,t_d_sym1_8 
DIGITS,,8 
 
ci; 
maxiti,maxiter,250,2500; 
occ,7,2,2,0; 
closed,3,0,0,0; 
core,2,0,0,0; 
wf,12,2,2;state,5;option,nstati=12;  
 
t_e_sym2_1(i)= energd(1) 
t_e_sym2_2(i)= energd(2) 
t_e_sym2_3(i)= energd(3) 
t_e_sym2_4(i)= energd(4) 
t_e_sym2_5(i)= energd(5) 
 
t_d_sym2_1(i)= DMZ(1) 
t_d_sym2_2(i)= DMZ(2) 
t_d_sym2_3(i)= DMZ(3) 
t_d_sym2_4(i)= DMZ(4) 
t_d_sym2_5(i)= DMZ(5) 
 
table,dist,t_Lz_2_1,t_e_sym2_1,t_d_sym2_1 
DIGITS,,8 
table,dist,t_Lz_2_2,t_e_sym2_2,t_d_sym2_2 



APPENDIX I 

 

168 

 

DIGITS,,8 
table,dist,t_Lz_2_3,t_e_sym2_3,t_d_sym2_3 
DIGITS,,8 
table,dist,t_Lz_2_4,t_e_sym2_4,t_d_sym2_4 
DIGITS,,8 
table,dist,t_Lz_2_5,t_e_sym2_5,t_d_sym2_5 
DIGITS,,8 
 
 
 
ci; 
maxiti,maxiter,250,2500; 
occ,7,2,2,0; 
closed,3,0,0,0; 

core,2,0,0,0; 
wf,12,4,2;state,5;option,nstati=12;  
 
 
t_e_sym4_1(i)= energd(1) 
t_e_sym4_2(i)= energd(2) 
t_e_sym4_3(i)= energd(3) 
t_e_sym4_4(i)= energd(4) 
t_e_sym4_5(i)= energd(5) 
 
t_d_sym4_1(i)= DMZ(1) 
t_d_sym4_2(i)= DMZ(2) 
t_d_sym4_3(i)= DMZ(3) 
t_d_sym4_4(i)= DMZ(4) 
t_d_sym4_5(i)= DMZ(5) 
 
 
 
table,dist,t_Lz_4_1,t_e_sym4_1,t_d_sym4_1 
DIGITS,,8 
table,dist,t_Lz_4_2,t_e_sym4_2,t_d_sym4_2 
DIGITS,,8 
table,dist,t_Lz_4_3,t_e_sym4_3,t_d_sym4_3 
DIGITS,,8 
table,dist,t_Lz_4_4,t_e_sym4_4,t_d_sym4_4 
DIGITS,,8 
table,dist,t_Lz_4_5,t_e_sym4_5,t_d_sym4_5 
DIGITS,,8 
 
 
 
enddo 
!================================================== 
table,dist,s_Lz_1_1,s_e_sym1_1,s_d_sym1_1 
DIGITS,,8 
table,dist,s_Lz_1_2,s_e_sym1_2,s_d_sym1_2 
DIGITS,,8 
table,dist,s_Lz_1_3,s_e_sym1_3,s_d_sym1_3 
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DIGITS,,8 
table,dist,s_Lz_1_4,s_e_sym1_4,s_d_sym1_4 
DIGITS,,8 
table,dist,s_Lz_1_5,s_e_sym1_5,s_d_sym1_5 
DIGITS,,8 
table,dist,s_Lz_1_6,s_e_sym1_6,s_d_sym1_6 
DIGITS,,8 
table,dist,s_Lz_1_7,s_e_sym1_7,s_d_sym1_7 
DIGITS,,8 
table,dist,s_Lz_1_8,s_e_sym1_8,s_d_sym1_8 
DIGITS,,8 
table,dist,s_Lz_1_9,s_e_sym1_9,s_d_sym1_9 
DIGITS,,8 
 

table,dist,s_Lz_2_1,s_e_sym2_1,s_d_sym2_1 
DIGITS,,8 
table,dist,s_Lz_2_2,s_e_sym2_2,s_d_sym2_2 
DIGITS,,8 
table,dist,s_Lz_2_3,s_e_sym2_3,s_d_sym2_3 
DIGITS,,8 
table,dist,s_Lz_2_4,s_e_sym2_4,s_d_sym2_4 
DIGITS,,8 
 
 
table,dist,s_Lz_4_1,s_e_sym4_1,s_d_sym4_1 
DIGITS,,8 
table,dist,s_Lz_4_2,s_e_sym4_2,s_d_sym4_2 
DIGITS,,8 
table,dist,s_Lz_4_3,s_e_sym4_3,s_d_sym4_3 
DIGITS,,8 
table,dist,s_Lz_4_4,s_e_sym4_4,s_d_sym4_4 
DIGITS,,8 
table,dist,s_Lz_4_5,s_e_sym4_5,s_d_sym4_5 
DIGITS,,8 
 
 
 
 
table,dist,t_Lz_1_1,t_e_sym1_1,t_d_sym1_1 
DIGITS,,8 
table,dist,t_Lz_1_2,t_e_sym1_2,t_d_sym1_2 
DIGITS,,8 
table,dist,t_Lz_1_3,t_e_sym1_3,t_d_sym1_3 
DIGITS,,8 
table,dist,t_Lz_1_4,t_e_sym1_4,t_d_sym1_4 
DIGITS,,8 
table,dist,t_Lz_1_5,t_e_sym1_5,t_d_sym1_5 
DIGITS,,8 
table,dist,t_Lz_1_6,t_e_sym1_6,t_d_sym1_6 
DIGITS,,8 
table,dist,t_Lz_1_7,t_e_sym1_7,t_d_sym1_7 
DIGITS,,8 
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table,dist,t_Lz_1_8,t_e_sym1_8,t_d_sym1_8 
DIGITS,,8 
 
 
 
table,dist,t_Lz_2_1,t_e_sym2_1,t_d_sym2_1 
DIGITS,,8 
table,dist,t_Lz_2_2,t_e_sym2_2,t_d_sym2_2 
DIGITS,,8 
table,dist,t_Lz_2_3,t_e_sym2_3,t_d_sym2_3 
DIGITS,,8 
table,dist,t_Lz_2_4,t_e_sym2_4,t_d_sym2_4 
DIGITS,,8 
table,dist,t_Lz_2_5,t_e_sym2_5,t_d_sym2_5 

DIGITS,,8 
 
 
table,dist,t_Lz_4_1,t_e_sym4_1,t_d_sym4_1 
DIGITS,,8 
table,dist,t_Lz_4_2,t_e_sym4_2,t_d_sym4_2 
DIGITS,,8 
table,dist,t_Lz_4_3,t_e_sym4_3,t_d_sym4_3 
DIGITS,,8 
table,dist,t_Lz_4_4,t_e_sym4_4,t_d_sym4_4 
DIGITS,,8 
table,dist,t_Lz_4_5,t_e_sym4_5,t_d_sym4_5 
DIGITS,,8 
 
 
 
 
put,molden,BN-ci-cc-pvtz-1.molden
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 APPENDIX II 

MOLPRO INPUT DATA FILE FOR THE CALCULATION OF THE 
ELECTRONIC ENERGIES AND DIPOLE MOMENTS OF ALL THE 

28 STATES OF SiN MOLECULE 
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***,Input file generated by gabedit; 
Memory,400000000; 
Gprint,basis;    ! Print basis information  
Gprint,orbital;    ! Print orbitals in SCF and MCSCF  
 
geomtyp=xyz 
geometry={ANGSTROM; 
2 ! number of atoms  
GeomXYZ 
Si, 0.0, 0.0, 0.0 
N, 0.0, 0.0, 1.5730 
} 
basis={ 
s,Si,aug-cc-pV5Z;c 

p,Si,aug-cc-pV5Z;c 
d,Si,aug-cc-pV5Z;c 
f,Si,aug-cc-pV5Z;c 
s,N,aug-cc-pV5Z;c 
p,N,aug-cc-pV5Z;c 
d,N,aug-cc-pV5Z;c 
} 
hf; 
orbprint,1500; 
wf,21,1,1; 
 
multi; 
occ,10,3,3,0; 
closed,5,1,1,0; 
core,0,0,0,0; 
 
wf,21,1,1;state,8; 
wf,21,2,1;state,5; 
wf,21,3,1;state,5; 
wf,21,4,1;state,5; 
 
wf,21,1,3;state,8; 
wf,21,2,3;state,5; 
wf,21,3,3;state,5; 
wf,21,4,3;state,5; 
 
 
 
 
 
r0 = 1.84 
step = 0.03 
do i=1,14 
 
r = r0 + (i-1)*step 
 
dist(i) = r 
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geomtyp=xyz 
geometry={ANGSTROM; 
2 ! number of atoms  
GeomXYZ 
Si, 0.0, 0.0, 0.0 
N, 0.0, 0.0, r 
} 
 
multi; 
occ,10,3,3,0; 
closed,5,1,1,0; 
core,0,0,0,0; 
 
wf,21,1,1;state,8; 

wf,21,2,1;state,5; 
wf,21,3,1;state,5; 
wf,21,4,1;state,5; 
 
wf,21,1,3;state,8; 
wf,21,2,3;state,5; 
wf,21,3,3;state,5; 
wf,21,4,3;state,5; 
 
TRAN2,LXX,LYY,LZZ; 
d_Lz_1_1(i)= sqrt(abs(LZLZ(1))) 
d_Lz_1_2(i)= sqrt(abs(LZLZ(2))) 
d_Lz_1_3(i)= sqrt(abs(LZLZ(3))) 
d_Lz_1_4(i)= sqrt(abs(LZLZ(4))) 
d_Lz_1_5(i)= sqrt(abs(LZLZ(5))) 
d_Lz_1_6(i)= sqrt(abs(LZLZ(6))) 
d_Lz_1_7(i)= sqrt(abs(LZLZ(7))) 
d_Lz_1_8(i)= sqrt(abs(LZLZ(8))) 
 
 
 
d_Lz_2_1(i)= sqrt(abs(LZLZ(9))) 
d_Lz_2_2(i)= sqrt(abs(LZLZ(10))) 
d_Lz_2_3(i)= sqrt(abs(LZLZ(11))) 
d_Lz_2_4(i)= sqrt(abs(LZLZ(12))) 
d_Lz_2_5(i)= sqrt(abs(LZLZ(13))) 
 
d_Lz_3_1(i)= sqrt(abs(LZLZ(14))) 
d_Lz_3_2(i)= sqrt(abs(LZLZ(15))) 
d_Lz_3_3(i)= sqrt(abs(LZLZ(16))) 
d_Lz_3_4(i)= sqrt(abs(LZLZ(17))) 
d_Lz_3_5(i)= sqrt(abs(LZLZ(18))) 
 
d_Lz_4_1(i)= sqrt(abs(LZLZ(19))) 
d_Lz_4_2(i)= sqrt(abs(LZLZ(20))) 
d_Lz_4_3(i)= sqrt(abs(LZLZ(21))) 
d_Lz_4_4(i)= sqrt(abs(LZLZ(22))) 
d_Lz_4_5(i)= sqrt(abs(LZLZ(23))) 
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! quartet states 
q_Lz_1_1(i)= sqrt(abs(LZLZ(24))) 
q_Lz_1_2(i)= sqrt(abs(LZLZ(25))) 
q_Lz_1_3(i)= sqrt(abs(LZLZ(26))) 
q_Lz_1_4(i)= sqrt(abs(LZLZ(27))) 
q_Lz_1_5(i)= sqrt(abs(LZLZ(28))) 
q_Lz_1_6(i)= sqrt(abs(LZLZ(29))) 
q_Lz_1_7(i)= sqrt(abs(LZLZ(30))) 
q_Lz_1_8(i)= sqrt(abs(LZLZ(31))) 
 
q_Lz_2_1(i)= sqrt(abs(LZLZ(32))) 
q_Lz_2_2(i)= sqrt(abs(LZLZ(33))) 

q_Lz_2_3(i)= sqrt(abs(LZLZ(34))) 
q_Lz_2_4(i)= sqrt(abs(LZLZ(35))) 
q_Lz_2_5(i)= sqrt(abs(LZLZ(36))) 
 
q_Lz_3_1(i)= sqrt(abs(LZLZ(37))) 
q_Lz_3_2(i)= sqrt(abs(LZLZ(38))) 
q_Lz_3_3(i)= sqrt(abs(LZLZ(39))) 
q_Lz_3_4(i)= sqrt(abs(LZLZ(40))) 
q_Lz_3_5(i)= sqrt(abs(LZLZ(41))) 
 
q_Lz_4_1(i)= sqrt(abs(LZLZ(42))) 
q_Lz_4_2(i)= sqrt(abs(LZLZ(43))) 
q_Lz_4_3(i)= sqrt(abs(LZLZ(44))) 
q_Lz_4_4(i)= sqrt(abs(LZLZ(45))) 
q_Lz_4_5(i)= sqrt(abs(LZLZ(46))) 
 
 
 
!CI calculation 
ci; 
maxiti,maxiter,150,1500; 
occ,10,3,3,0; 
closed,5,1,1,0; 
core,3,1,1,0; 
wf,21,1,1;state,8;option,nstati=20;  
 
d_e_sym1_1(i)= energd(1) 
d_e_sym1_2(i)= energd(2) 
d_e_sym1_3(i)= energd(3) 
d_e_sym1_4(i)= energd(4) 
d_e_sym1_5(i)= energd(5) 
d_e_sym1_6(i)= energd(6) 
d_e_sym1_7(i)= energd(7) 
d_e_sym1_8(i)= energd(8) 
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d_d_sym1_1(i)= DMZ(1) 
d_d_sym1_2(i)= DMZ(2) 
d_d_sym1_3(i)= DMZ(3) 
d_d_sym1_4(i)= DMZ(4) 
d_d_sym1_5(i)= DMZ(5) 
d_d_sym1_6(i)= DMZ(6) 
d_d_sym1_7(i)= DMZ(7) 
d_d_sym1_8(i)= DMZ(8) 
 
 
 
 
table,dist,d_Lz_1_1,d_e_sym1_1,d_d_sym1_1 
DIGITS,,8 

table,dist,d_Lz_1_2,d_e_sym1_2,d_d_sym1_2 
DIGITS,,8 
table,dist,d_Lz_1_3,d_e_sym1_3,d_d_sym1_3 
DIGITS,,8 
table,dist,d_Lz_1_4,d_e_sym1_4,d_d_sym1_4 
DIGITS,,8 
table,dist,d_Lz_1_5,d_e_sym1_5,d_d_sym1_5 
DIGITS,,8 
table,dist,d_Lz_1_6,d_e_sym1_6,d_d_sym1_6 
DIGITS,,8 
table,dist,d_Lz_1_7,d_e_sym1_7,d_d_sym1_7 
DIGITS,,8 
table,dist,d_Lz_1_8,d_e_sym1_8,d_d_sym1_8 
DIGITS,,8 
 
 
 
ci; 
maxiti,maxiter,150,1500; 
occ,10,3,3,0; 
closed,5,1,1,0; 
core,3,1,1,0; 
wf,21,2,1;state,5;option,nstati=20;  
 
d_e_sym2_1(i)= energd(1) 
d_e_sym2_2(i)= energd(2) 
d_e_sym2_3(i)= energd(3) 
d_e_sym2_4(i)= energd(4) 
d_e_sym2_5(i)= energd(5) 
 
d_d_sym2_1(i)= DMZ(1) 
d_d_sym2_2(i)= DMZ(2) 
d_d_sym2_3(i)= DMZ(3) 
d_d_sym2_4(i)= DMZ(4) 
d_d_sym2_5(i)= DMZ(5) 
 
table,dist,d_Lz_2_1,d_e_sym2_1,d_d_sym2_1 
DIGITS,,8 
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table,dist,d_Lz_2_2,d_e_sym2_2,d_d_sym2_2 
DIGITS,,8 
table,dist,d_Lz_2_3,d_e_sym2_3,d_d_sym2_3 
DIGITS,,8 
table,dist,d_Lz_2_4,d_e_sym2_4,d_d_sym2_4 
DIGITS,,8 
table,dist,d_Lz_2_5,d_e_sym2_5,d_d_sym2_5 
DIGITS,,8 
 
 
ci; 
maxiti,maxiter,150,1500; 
occ,10,3,3,0; 
closed,5,1,1,0; 

core,3,1,1,0; 
wf,21,4,1;state,5;option,nstati=20; 
 
d_e_sym4_1(i)= energd(1) 
d_e_sym4_2(i)= energd(2) 
d_e_sym4_3(i)= energd(3) 
d_e_sym4_4(i)= energd(4) 
d_e_sym4_5(i)= energd(5) 
 
 
d_d_sym4_1(i)= DMZ(1) 
d_d_sym4_2(i)= DMZ(2) 
d_d_sym4_3(i)= DMZ(3) 
d_d_sym4_4(i)= DMZ(4) 
d_d_sym4_5(i)= DMZ(5) 
 
 
table,dist,d_Lz_4_1,d_e_sym4_1,d_d_sym4_1 
DIGITS,,8 
table,dist,d_Lz_4_2,d_e_sym4_2,d_d_sym4_2 
DIGITS,,8 
table,dist,d_Lz_4_3,d_e_sym4_3,d_d_sym4_3 
DIGITS,,8 
table,dist,d_Lz_4_4,d_e_sym4_4,d_d_sym4_4 
DIGITS,,8 
table,dist,d_Lz_4_5,d_e_sym4_5,d_d_sym4_5 
DIGITS,,8 
 
 
ci; 
maxiti,maxiter,150,1500; 
occ,10,3,3,0; 
closed,5,1,1,0; 
core,3,1,1,0; 
wf,21,1,3;state,8;option,nstati=20;  
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q_e_sym1_1(i)= energd(1) 
q_e_sym1_2(i)= energd(2) 
q_e_sym1_3(i)= energd(3) 
q_e_sym1_4(i)= energd(4) 
q_e_sym1_5(i)= energd(5) 
q_e_sym1_6(i)= energd(6) 
q_e_sym1_7(i)= energd(7) 
q_e_sym1_8(i)= energd(8) 
 
q_d_sym1_1(i)= DMZ(1) 
q_d_sym1_2(i)= DMZ(2) 
q_d_sym1_3(i)= DMZ(3) 
q_d_sym1_4(i)= DMZ(4) 
q_d_sym1_5(i)= DMZ(5) 

q_d_sym1_6(i)= DMZ(6) 
q_d_sym1_7(i)= DMZ(7) 
q_d_sym1_8(i)= DMZ(8) 
 
table,dist,q_Lz_1_1,q_e_sym1_1,q_d_sym1_1 
DIGITS,,8 
table,dist,q_Lz_1_2,q_e_sym1_2,q_d_sym1_2 
DIGITS,,8 
table,dist,q_Lz_1_3,q_e_sym1_3,q_d_sym1_3 
DIGITS,,8 
table,dist,q_Lz_1_4,q_e_sym1_4,q_d_sym1_4 
DIGITS,,8 
table,dist,q_Lz_1_5,q_e_sym1_5,q_d_sym1_5 
DIGITS,,8 
table,dist,q_Lz_1_6,q_e_sym1_6,q_d_sym1_6 
DIGITS,,8 
table,dist,q_Lz_1_7,q_e_sym1_7,q_d_sym1_7 
DIGITS,,8 
table,dist,q_Lz_1_8,q_e_sym1_8,q_d_sym1_8 
DIGITS,,8 
 
ci; 
maxiti,maxiter,150,1500; 
occ,10,3,3,0; 
closed,5,1,1,0; 
core,3,1,1,0; 
wf,21,2,3;state,5;option,nstati=20;  
 
q_e_sym2_1(i)= energd(1) 
q_e_sym2_2(i)= energd(2) 
q_e_sym2_3(i)= energd(3) 
q_e_sym2_4(i)= energd(4) 
q_e_sym2_5(i)= energd(5) 
 
q_d_sym2_1(i)= DMZ(1) 
q_d_sym2_2(i)= DMZ(2) 
q_d_sym2_3(i)= DMZ(3) 
q_d_sym2_4(i)= DMZ(4) 



APPENDIX II 

 

178 

 

q_d_sym2_5(i)= DMZ(5) 
 
table,dist,q_Lz_2_1,q_e_sym2_1,q_d_sym2_1 
DIGITS,,8 
table,dist,q_Lz_2_2,q_e_sym2_2,q_d_sym2_2 
DIGITS,,8 
table,dist,q_Lz_2_3,q_e_sym2_3,q_d_sym2_3 
DIGITS,,8 
table,dist,q_Lz_2_4,q_e_sym2_4,q_d_sym2_4 
DIGITS,,8 
table,dist,q_Lz_2_5,q_e_sym2_5,q_d_sym2_5 
DIGITS,,8 
 
 

 
ci; 
maxiti,maxiter,150,1500; 
occ,10,3,3,0; 
closed,5,1,1,0; 
core,3,1,1,0; 
wf,21,4,3;state,5;option,nstati=20;  
 
 
q_e_sym4_1(i)= energd(1) 
q_e_sym4_2(i)= energd(2) 
q_e_sym4_3(i)= energd(3) 
q_e_sym4_4(i)= energd(4) 
q_e_sym4_5(i)= energd(5) 
 
q_d_sym4_1(i)= DMZ(1) 
q_d_sym4_2(i)= DMZ(2) 
q_d_sym4_3(i)= DMZ(3) 
q_d_sym4_4(i)= DMZ(4) 
q_d_sym4_5(i)= DMZ(5) 
 
 
 
table,dist,q_Lz_4_1,q_e_sym4_1,q_d_sym4_1 
DIGITS,,8 
table,dist,q_Lz_4_2,q_e_sym4_2,q_d_sym4_2 
DIGITS,,8 
table,dist,q_Lz_4_3,q_e_sym4_3,q_d_sym4_3 
DIGITS,,8 
table,dist,q_Lz_4_4,q_e_sym4_4,q_d_sym4_4 
DIGITS,,8 
table,dist,q_Lz_4_5,q_e_sym4_5,q_d_sym4_5 
DIGITS,,8 
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enddo 
!================================================== 
table,dist,d_Lz_1_1,d_e_sym1_1,d_d_sym1_1 
DIGITS,,8 
table,dist,d_Lz_1_2,d_e_sym1_2,d_d_sym1_2 
DIGITS,,8 
table,dist,d_Lz_1_3,d_e_sym1_3,d_d_sym1_3 
DIGITS,,8 
table,dist,d_Lz_1_4,d_e_sym1_4,d_d_sym1_4 
DIGITS,,8 
table,dist,d_Lz_1_5,d_e_sym1_5,d_d_sym1_5 
DIGITS,,8 
table,dist,d_Lz_1_6,d_e_sym1_6,d_d_sym1_6 

DIGITS,,8 
table,dist,d_Lz_1_7,d_e_sym1_7,d_d_sym1_7 
DIGITS,,8 
table,dist,d_Lz_1_8,d_e_sym1_8,d_d_sym1_8 
DIGITS,,8 
 
 
table,dist,d_Lz_2_1,d_e_sym2_1,d_d_sym2_1 
DIGITS,,8 
table,dist,d_Lz_2_2,d_e_sym2_2,d_d_sym2_2 
DIGITS,,8 
table,dist,d_Lz_2_3,d_e_sym2_3,d_d_sym2_3 
DIGITS,,8 
table,dist,d_Lz_2_4,d_e_sym2_4,d_d_sym2_4 
DIGITS,,8 
table,dist,d_Lz_2_5,d_e_sym2_5,d_d_sym2_5 
DIGITS,,8 
 
 
table,dist,d_Lz_4_1,d_e_sym4_1,d_d_sym4_1 
DIGITS,,8 
table,dist,d_Lz_4_2,d_e_sym4_2,d_d_sym4_2 
DIGITS,,8 
table,dist,d_Lz_4_3,d_e_sym4_3,d_d_sym4_3 
DIGITS,,8 
table,dist,d_Lz_4_4,d_e_sym4_4,d_d_sym4_4 
DIGITS,,8 
table,dist,d_Lz_4_5,d_e_sym4_5,d_d_sym4_5 
DIGITS,,8 
 
 
 
table,dist,q_Lz_1_1,q_e_sym1_1,q_d_sym1_1 
DIGITS,,8 
table,dist,q_Lz_1_2,q_e_sym1_2,q_d_sym1_2 
DIGITS,,8 
table,dist,q_Lz_1_3,q_e_sym1_3,q_d_sym1_3 
DIGITS,,8 
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table,dist,q_Lz_1_4,q_e_sym1_4,q_d_sym1_4 
DIGITS,,8 
table,dist,q_Lz_1_5,q_e_sym1_5,q_d_sym1_5 
DIGITS,,8 
table,dist,q_Lz_1_6,q_e_sym1_6,q_d_sym1_6 
DIGITS,,8 
table,dist,q_Lz_1_7,q_e_sym1_7,q_d_sym1_7 
DIGITS,,8 
table,dist,q_Lz_1_8,q_e_sym1_8,q_d_sym1_8 
DIGITS,,8 
 
 
 
table,dist,q_Lz_2_1,q_e_sym2_1,q_d_sym2_1 

DIGITS,,8 
table,dist,q_Lz_2_2,q_e_sym2_2,q_d_sym2_2 
DIGITS,,8 
table,dist,q_Lz_2_3,q_e_sym2_3,q_d_sym2_3 
DIGITS,,8 
table,dist,q_Lz_2_4,q_e_sym2_4,q_d_sym2_4 
DIGITS,,8 
table,dist,q_Lz_2_5,q_e_sym2_5,q_d_sym2_5 
DIGITS,,8 
 
 
table,dist,q_Lz_4_1,q_e_sym4_1,q_d_sym4_1 
DIGITS,,8 
table,dist,q_Lz_4_2,q_e_sym4_2,q_d_sym4_2 
DIGITS,,8 
table,dist,q_Lz_4_3,q_e_sym4_3,q_d_sym4_3 
DIGITS,,8 
table,dist,q_Lz_4_4,q_e_sym4_4,q_d_sym4_4 
DIGITS,,8 
table,dist,q_Lz_4_5,q_e_sym4_5,q_d_sym4_5 
DIGITS,,8 
 
 
 
 
put,molden,SiN-ci-1.molden
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 APPENDIX III 

MOLPRO INPUT DATA FILE FOR THE CALCULATION OF THE 
ELECTRONIC ENERGIES AND DIPOLE MOMENTS OF ALL THE 

24 STATES OF LaH MOLECULE WITH SPIN-ORBIT 
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***,Input file generated by gabedit; 
Memory,120000000; 
Gprint,basis;    ! Print basis information  
Gprint,orbital;    ! Print orbitals in SCF and MCSCF  
 
geomtyp=xyz 
geometry={ANGSTROM; 
2 ! number of atoms  
GeomXYZ 
La, 0.0, 0.0, 0.0 
H, 0.0, 0.0, 2.031969 
} 
basis={ 
 ! LANTHANUM    (9s,9p,5d) -> [4s,4p,3d] 

s,LA,0.917300000E+01,0.312000000E+01,0.210400000E+01,0.132000000E+01,0
.496000000E+00,0.618200000E+00,0.454600000E-01,0.177500000E-
01,0.200400000E+00 
c,1.5,-0.548330000E-01, 0.676604000E+00,-0.103442900E+01,-
0.518907000E+00, 0.163160300E+01 
c,6.7,-0.107095000E+00, 0.103344800E+01 
c,8.8, 0.100000000E+01 
c,9.9, 0.100000000E+01 
p,LA,0.917300000E+01,0.312000000E+01,0.210400000E+01,0.132000000E+01,0
.496000000E+00,0.618200000E+00,0.454600000E-01,0.177500000E-
01,0.200400000E+00 
c,1.5,-0.979800000E-02, 0.231262000E+00,-0.601215000E+00, 
0.195189000E+00, 0.107613700E+01 
c,6.7,-0.518690000E-01, 0.100810800E+01 
c,8.8, 0.100000000E+01 
c,9.9, 0.100000000E+01 
d,LA,0.123800000E+01,0.606100000E+00,0.251800000E+00,0.978700000E-
01,0.353600000E-01 
c,1.3,-0.537970000E-01, 0.380144000E+00, 0.720349000E+00 
c,4.4, 0.100000000E+01 
c,5.5, 0.100000000E+01 
 
!f,LA,0.124797100E+03,0.439427000E+02,0.192668000E+02,0.848930000E+01,
0.376720000E+01,0.159020000E+01,0.609800000E+00,0.197300000E+0 
!c,1.5,0.001466,0.013540,0.065590,0.156947,0.286961 
!c,6.6,1.000000 
!c,7.7,1.000000 
!c,8.8,1.000000 
  
! Effective Core Potentials 
                                                                                  
! ------------------------- 
  ECP,la,46,5,3; 
                                                                                  
! h potential 
  1 
  1, 1.0000000,0.00000000; 
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! s-h potential 
  4 
  0, 22.2973900,8.85347000; 
  1, 1.42345000,-2.8566500; 
  2, 1.64320000,-68.417780; 
  2, 1.85122000,110.124630; 
                                                                                  
! p-h potential 
  4 
  0, 1.77635000,2.98675000; 
  1, 1.42345000,-2.8566500; 
  2, 3.98941000,-35.518150; 
  2, 2.47524000,53.6542300; 

                                                                                  
! d-h potential 
  3 
  0, 1.52169000,1.67298000; 
  1, 1.42345000,-2.8566500; 
  2, 1.52182000,18.4662500; 
                                                                                  
! f-h potential 
  3 
  1, 1.42345000,-2.8566500; 
  1, 2.67762000,-4.6443000; 
  1, 10.0660800,-14.431010; 
                                                                                  
! g-h potential 
  1 
  1, 1.42345000,-2.8566500; 
   
                                                                                  
! p-so potential 
  4 
  0, 1.77635000,0.3188456; 
  1, 1.42345000,-0.3049568; 
  2, 3.98941000,-3.7917409; 
  2, 2.47524000,5.7278634; 
   
                                                                                  
! d-so potential 
  3 
  0, 1.52169000,0.0234087; 
  1, 1.42345000,-0.0399702; 
  2, 1.52182000,0.2583833; 
   
                                                                                  
! f-so potential 
  3 
  1, 1.42345000,0.0015168; 
  1, 2.67762000,0.0027235; 
  1, 10.0660800,0.0084629; 
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QZ;c 
s,H,aug-cc-pVQZ;c 
p,H,aug-cc-pVQZ;c 
d,H,aug-cc-pVQZ;c 
f,H,aug-cc-pVQZ;c 
} 
r=2.0319 
int;lat,1e-20,,,40.0; 
hf; 
wf,12,1,0; 
orbprint,3000; 
 
multi; 

occ,8,3,3,1; 
closed,3,1,1,0; 
core,0,0,0,0; 
   
wf,12,1,0;state,6; 
wf,12,2,0;state,3; 
wf,12,3,0;state,3; 
wf,12,4,0;state,3; 
 
wf,12,1,2;state,6; 
wf,12,2,2;state,6; 
wf,12,3,2;state,6; 
wf,12,4,2;state,5; 
   
 
NatOrb; 
Orbital,7100.2; 
 
r0 = 1.8519 
step = 0.03 
do i=1,22 
 
r = r0 + (i-1)*step 
 
dist(i) = r 
 
geomtyp=xyz 
geometry={ANGSTROM; 
2 ! number of atoms  
GeomXYZ 
La, 0.0, 0.0, 0.0 
H, 0.0, 0.0, r 
} 
int;lat,1e-20,,,40.0; 
hf; 
wf,12,1,0; 
orbprint,3000; 
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multi; 
start,7100.2 
occ,8,3,3,1; 
closed,3,1,1,0; 
core,0,0,0,0; 
 
wf,12,1,0;state,6; 
wf,12,2,0;state,3; 
wf,12,3,0;state,3; 
wf,12,4,0;state,3; 
 
wf,12,1,2;state,6; 
wf,12,2,2;state,6; 
wf,12,3,2;state,6; 

wf,12,4,2;state,5; 
 
 
TRAN2,LXX,LYY,LZZ; 
s_Lz_1_1(i)= sqrt(abs(LZLZ(1))) 
s_Lz_1_2(i)= sqrt(abs(LZLZ(2))) 
s_Lz_1_3(i)= sqrt(abs(LZLZ(3))) 
s_Lz_1_4(i)= sqrt(abs(LZLZ(4))) 
s_Lz_1_5(i)= sqrt(abs(LZLZ(5))) 
s_Lz_1_6(i)= sqrt(abs(LZLZ(6))) 
 
 
 
s_Lz_2_1(i)= sqrt(abs(LZLZ(7))) 
s_Lz_2_2(i)= sqrt(abs(LZLZ(8))) 
s_Lz_2_3(i)= sqrt(abs(LZLZ(9))) 
 
 
s_Lz_3_1(i)= sqrt(abs(LZLZ(10))) 
s_Lz_3_2(i)= sqrt(abs(LZLZ(11))) 
s_Lz_3_3(i)= sqrt(abs(LZLZ(12))) 
 
 
s_Lz_4_1(i)= sqrt(abs(LZLZ(13))) 
s_Lz_4_2(i)= sqrt(abs(LZLZ(14))) 
s_Lz_4_3(i)= sqrt(abs(LZLZ(15))) 
 
! triplet states 
t_Lz_1_1(i)= sqrt(abs(LZLZ(16))) 
t_Lz_1_2(i)= sqrt(abs(LZLZ(17))) 
t_Lz_1_3(i)= sqrt(abs(LZLZ(18))) 
t_Lz_1_4(i)= sqrt(abs(LZLZ(19))) 
t_Lz_1_5(i)= sqrt(abs(LZLZ(20))) 
t_Lz_1_6(i)= sqrt(abs(LZLZ(21))) 
 
 
t_Lz_2_1(i)= sqrt(abs(LZLZ(22))) 
t_Lz_2_2(i)= sqrt(abs(LZLZ(23))) 
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t_Lz_2_3(i)= sqrt(abs(LZLZ(24))) 
t_Lz_2_4(i)= sqrt(abs(LZLZ(25))) 
t_Lz_2_5(i)= sqrt(abs(LZLZ(26))) 
t_Lz_2_6(i)= sqrt(abs(LZLZ(27))) 
 
t_Lz_3_1(i)= sqrt(abs(LZLZ(28))) 
t_Lz_3_2(i)= sqrt(abs(LZLZ(29))) 
t_Lz_3_3(i)= sqrt(abs(LZLZ(30))) 
t_Lz_3_4(i)= sqrt(abs(LZLZ(31))) 
t_Lz_3_5(i)= sqrt(abs(LZLZ(32))) 
t_Lz_3_6(i)= sqrt(abs(LZLZ(33))) 
 
 
t_Lz_4_1(i)= sqrt(abs(LZLZ(34))) 

t_Lz_4_2(i)= sqrt(abs(LZLZ(35))) 
t_Lz_4_3(i)= sqrt(abs(LZLZ(36))) 
t_Lz_4_4(i)= sqrt(abs(LZLZ(37))) 
t_Lz_4_5(i)= sqrt(abs(LZLZ(38))) 
 
 
!CI calculation 
ci; 
maxiti,maxiter,50,500; 
occ,8,3,3,1; 
closed,3,1,1,0; 
core,2,0,0,0; 
wf,12,1,0;state,6;option,nstati=12;  
 
s_e_sym1_1(i)= energd(1) 
s_e_sym1_2(i)= energd(2) 
s_e_sym1_3(i)= energd(3) 
s_e_sym1_4(i)= energd(4) 
s_e_sym1_5(i)= energd(5) 
s_e_sym1_6(i)= energd(6) 
 
E1=s_e_sym1_1(i) 
E2=s_e_sym1_2(i) 
E3=s_e_sym1_3(i) 
E4=s_e_sym1_4(i) 
E5=s_e_sym1_5(i) 
E6=s_e_sym1_6(i) 
 
s_d_sym1_1(i)= DMZ(1) 
s_d_sym1_2(i)= DMZ(2) 
s_d_sym1_3(i)= DMZ(3) 
s_d_sym1_4(i)= DMZ(4) 
s_d_sym1_5(i)= DMZ(5) 
s_d_sym1_6(i)= DMZ(6) 
 
 
table,dist,s_Lz_1_1,s_e_sym1_1,s_d_sym1_1 
DIGITS,,8 
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table,dist,s_Lz_1_2,s_e_sym1_2,s_d_sym1_2 
DIGITS,,8 
table,dist,s_Lz_1_3,s_e_sym1_3,s_d_sym1_3 
DIGITS,,8 
table,dist,s_Lz_1_4,s_e_sym1_4,s_d_sym1_4 
DIGITS,,8 
table,dist,s_Lz_1_5,s_e_sym1_5,s_d_sym1_5 
DIGITS,,8 
table,dist,s_Lz_1_6,s_e_sym1_6,s_d_sym1_6 
DIGITS,,8 
 
 
 
ci; 

maxiti,maxiter,50,500; 
occ,8,3,3,1; 
closed,3,1,1,0; 
core,2,0,0,0; 
wf,12,2,0;state,3;option,nstati=12;  
 
s_e_sym2_1(i)= energd(1) 
s_e_sym2_2(i)= energd(2) 
s_e_sym2_3(i)= energd(3) 
 
E7=s_e_sym2_1(i) 
E8=s_e_sym2_2(i) 
E9=s_e_sym2_3(i) 
 
s_d_sym2_1(i)= DMZ(1) 
s_d_sym2_2(i)= DMZ(2) 
s_d_sym2_3(i)= DMZ(3) 
 
 
 
table,dist,s_Lz_2_1,s_e_sym2_1,s_d_sym2_1 
DIGITS,,8 
table,dist,s_Lz_2_2,s_e_sym2_2,s_d_sym2_2 
DIGITS,,8 
table,dist,s_Lz_2_3,s_e_sym2_3,s_d_sym2_3 
DIGITS,,8 
 
!The energy of singlet_symmetry_3 is equal to singlet_symmetry_2 
E10=E7 
E11=E8 
E12=E9 
 
!The enrgy of singlet_symmetry_4 for delta is equal to 
singlet_symmetry_1 for delta  
E13=E2 
E14=E4 
E15=E6  
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ci; 
occ,8,3,3,1; 
closed,3,1,1,0; 
core,2,0,0,0; 
wf,12,1,2;state,6;option,nstati=12;  
 
 
 
t_e_sym1_1(i)= energd(1) 
t_e_sym1_2(i)= energd(2) 
t_e_sym1_3(i)= energd(3) 
t_e_sym1_4(i)= energd(4) 

t_e_sym1_5(i)= energd(5) 
t_e_sym1_6(i)= energd(6) 
 
E16=t_e_sym1_1(i) 
E17=t_e_sym1_2(i) 
E18=t_e_sym1_3(i) 
E19=t_e_sym1_4(i) 
E20=t_e_sym1_5(i) 
E21=t_e_sym1_6(i) 
 
t_d_sym1_1(i)= DMZ(1) 
t_d_sym1_2(i)= DMZ(2) 
t_d_sym1_3(i)= DMZ(3) 
t_d_sym1_4(i)= DMZ(4) 
t_d_sym1_5(i)= DMZ(5) 
t_d_sym1_6(i)= DMZ(6) 
 
 
 
table,dist,t_Lz_1_1,t_e_sym1_1,t_d_sym1_1 
DIGITS,,8 
table,dist,t_Lz_1_2,t_e_sym1_2,t_d_sym1_2 
DIGITS,,8 
table,dist,t_Lz_1_3,t_e_sym1_3,t_d_sym1_3 
DIGITS,,8 
table,dist,t_Lz_1_4,t_e_sym1_4,t_d_sym1_4 
DIGITS,,8 
table,dist,t_Lz_1_5,t_e_sym1_5,t_d_sym1_5 
DIGITS,,8 
table,dist,t_Lz_1_6,t_e_sym1_6,t_d_sym1_6 
DIGITS,,8 
 
 
ci; 
occ,8,3,3,1; 
closed,3,1,1,0; 
core,2,0,0,0; 
wf,12,2,2;state,6;option,nstati=12;  
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t_e_sym2_1(i)= energd(1) 
t_e_sym2_2(i)= energd(2) 
t_e_sym2_3(i)= energd(3) 
t_e_sym2_4(i)= energd(4) 
t_e_sym2_5(i)= energd(5) 
t_e_sym2_6(i)= energd(6) 
 
E22=t_e_sym2_1(i) 
E23=t_e_sym2_2(i) 
E24=t_e_sym2_3(i) 
E25=t_e_sym2_4(i) 
E26=t_e_sym2_5(i) 
E27=t_e_sym2_6(i) 

 
 
t_d_sym2_1(i)= DMZ(1) 
t_d_sym2_2(i)= DMZ(2) 
t_d_sym2_3(i)= DMZ(3) 
t_d_sym2_4(i)= DMZ(4) 
t_d_sym2_5(i)= DMZ(5) 
t_d_sym2_6(i)= DMZ(6) 
 
 
 
table,dist,t_Lz_2_1,t_e_sym2_1,t_d_sym2_1 
DIGITS,,8 
table,dist,t_Lz_2_2,t_e_sym2_2,t_d_sym2_2 
DIGITS,,8 
table,dist,t_Lz_2_3,t_e_sym2_3,t_d_sym2_3 
DIGITS,,8 
table,dist,t_Lz_2_4,t_e_sym2_4,t_d_sym2_4 
DIGITS,,8 
table,dist,t_Lz_2_5,t_e_sym2_5,t_d_sym2_5 
DIGITS,,8 
table,dist,t_Lz_2_6,t_e_sym2_6,t_d_sym2_6 
DIGITS,,8 
 
!The energy of triplet_symmetry_3 is equal to triplet_symmetry_2 
E28=E22 
E29=E23 
E30=E24 
E31=E25  
E32=E26 
E33=E27  
 
ci; 
occ,8,3,3,1; 
closed,3,1,1,0; 
core,2,0,0,0; 
wf,12,4,2;state,5;option,nstati=12;  
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t_e_sym4_1(i)= energd(1) 
t_e_sym4_2(i)= energd(2) 
t_e_sym4_3(i)= energd(3) 
t_e_sym4_4(i)= energd(4) 
t_e_sym4_5(i)= energd(5) 
 
E34=E16 
E35=t_e_sym4_2(i) 
E36=E18 
E37=t_e_sym4_4(i) 
E38=E20 
 
t_d_sym4_1(i)= DMZ(1) 

t_d_sym4_2(i)= DMZ(2) 
t_d_sym4_3(i)= DMZ(3) 
t_d_sym4_4(i)= DMZ(4) 
t_d_sym4_5(i)= DMZ(5) 
 
 
 
table,dist,t_Lz_4_1,t_e_sym4_1,t_d_sym4_1 
DIGITS,,8 
table,dist,t_Lz_4_2,t_e_sym4_2,t_d_sym4_2 
DIGITS,,8 
table,dist,t_Lz_4_3,t_e_sym4_3,t_d_sym4_3 
DIGITS,,8 
table,dist,t_Lz_4_4,t_e_sym4_4,t_d_sym4_4 
DIGITS,,8 
table,dist,t_Lz_4_5,t_e_sym4_5,t_d_sym4_5 
DIGITS,,8 
 
! CI without excitation 
 
 
ci; 
maxiti,maxiter,50,500; 
occ,8,3,3,1; 
closed,3,1,1,0; 
core,2,0,0,0; 
wf,12,1,0;state,6;option,nstati=12;noexc;save,5100.2; 
 
ci; 
maxiti,maxiter,50,500; 
occ,8,3,3,1; 
closed,3,1,1,0; 
core,2,0,0,0; 
wf,12,2,0;state,3;option,nstati=12;noexc;save,5200.2; 
 
ci; 
maxiti,maxiter,50,500; 
occ,8,3,3,1; 
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closed,3,1,1,0; 
core,2,0,0,0; 
wf,12,3,0;state,3;option,nstati=12;noexc;save,5300.2; 
 
ci; 
maxiti,maxiter,50,500; 
occ,8,3,3,1; 
closed,3,1,1,0; 
core,2,0,0,0; 
wf,12,4,0;state,3;option,nstati=12;noexc;save,5400.2; 
 
ci; 
occ,8,3,3,1; 
closed,3,1,1,0; 

core,2,0,0,0; 
wf,12,1,2;state,6;option,nstati=12;noexc;save,6100.2; 
 
ci; 
occ,8,3,3,1; 
closed,3,1,1,0; 
core,2,0,0,0; 
wf,12,2,2;state,6;option,nstati=12;noexc;save,6200.2; 
 
ci; 
occ,8,3,3,1; 
closed,3,1,1,0; 
core,2,0,0,0; 
wf,12,3,2;state,6;option,nstati=12;noexc;save,6300.2; 
 
ci; 
occ,8,3,3,1; 
closed,3,1,1,0; 
core,2,0,0,0; 
wf,12,4,2;state,5;option,nstati=12;noexc;save,6400.2; 
 
 
hlsdiag=[E1,E2,E3,E4,E5,E6,E7,E8,E9,E10,E11,E12,E13,E14,E15,E16,E17,E1
8,E19,E20,E21,E22,E23,E24,E25,E26,E27,E28,E29,E30,E31,E32,E33,E34,E35,
E36,E37,E38]  
ci;options,hlstrans=0;print,HLS=1,VLS=1;hlsmat,ecp,5100.2,5200.2,5300.
2,5400.2,6100.2,6200.2,6300.2,6400.2; 
 
  
eso_1(i) = energy(1) 
eso_2(i) = energy(2) 
eso_3(i) = energy(3) 
eso_4(i) = energy(4) 
eso_5(i) = energy(5) 
eso_6(i) = energy(6) 
eso_7(i) = energy(7) 
eso_8(i) = energy(8) 
eso_9(i) = energy(9) 
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eso_10(i) = energy(10) 
eso_11(i) = energy(11) 
eso_12(i) = energy(12) 
eso_13(i) = energy(13) 
eso_14(i) = energy(14) 
eso_15(i) = energy(15) 
eso_16(i) = energy(16) 
eso_17(i) = energy(17) 
eso_18(i) = energy(18) 
eso_19(i) = energy(19) 
eso_20(i) = energy(20) 
eso_21(i) = energy(21) 
eso_22(i) = energy(22) 
eso_23(i) = energy(23) 

eso_24(i) = energy(24) 
eso_25(i) = energy(25) 
eso_26(i) = energy(26) 
eso_27(i) = energy(27) 
eso_28(i) = energy(28) 
eso_29(i) = energy(29) 
eso_30(i) = energy(30) 
eso_31(i) = energy(31) 
eso_32(i) = energy(32) 
eso_33(i) = energy(33) 
eso_34(i) = energy(34) 
eso_35(i) = energy(35) 
eso_36(i) = energy(36) 
eso_37(i) = energy(37) 
eso_38(i) = energy(38) 
eso_39(i) = energy(39) 
eso_40(i) = energy(40) 
eso_41(i) = energy(41) 
eso_42(i) = energy(42) 
eso_43(i) = energy(43) 
eso_44(i) = energy(44) 
eso_45(i) = energy(45) 
eso_46(i) = energy(46) 
eso_47(i) = energy(47) 
eso_48(i) = energy(48) 
eso_49(i) = energy(49) 
eso_50(i) = energy(50) 
eso_51(i) = energy(51) 
eso_52(i) = energy(52) 
eso_53(i) = energy(53) 
eso_54(i) = energy(54) 
eso_55(i) = energy(55) 
eso_56(i) = energy(56) 
eso_57(i) = energy(57) 
eso_58(i) = energy(58) 
eso_59(i) = energy(59) 
 
dso_1(i) = DMZ(1) 
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dso_2(i) = DMZ(2) 
dso_3(i) = DMZ(3) 
dso_4(i) = DMZ(4) 
dso_5(i) = DMZ(5) 
dso_6(i) = DMZ(6) 
dso_7(i) = DMZ(7) 
dso_8(i) = DMZ(8) 
dso_9(i) = DMZ(9) 
dso_10(i) = DMZ(10) 
dso_11(i) = DMZ(11) 
dso_12(i) = DMZ(12) 
dso_13(i) = DMZ(13) 
dso_14(i) = DMZ(14) 
dso_15(i) = DMZ(15) 

dso_16(i) = DMZ(16) 
dso_17(i) = DMZ(17) 
dso_18(i) = DMZ(18) 
dso_19(i) = DMZ(19) 
dso_20(i) = DMZ(20) 
dso_21(i) = DMZ(21) 
dso_22(i) = DMZ(22) 
dso_23(i) = DMZ(23) 
dso_24(i) = DMZ(24) 
dso_25(i) = DMZ(25) 
dso_26(i) = DMZ(26) 
dso_27(i) = DMZ(27) 
dso_28(i) = DMZ(28) 
dso_29(i) = DMZ(29) 
dso_30(i) = DMZ(30) 
dso_31(i) = DMZ(31) 
dso_32(i) = DMZ(32) 
dso_33(i) = DMZ(33) 
dso_34(i) = DMZ(34) 
dso_35(i) = DMZ(35) 
dso_36(i) = DMZ(36) 
dso_37(i) = DMZ(37) 
dso_38(i) = DMZ(38) 
dso_39(i) = DMZ(39) 
dso_40(i) = DMZ(40) 
dso_41(i) = DMZ(41) 
dso_42(i) = DMZ(42) 
dso_43(i) = DMZ(43) 
dso_44(i) = DMZ(44) 
dso_45(i) = DMZ(45) 
dso_46(i) = DMZ(46) 
dso_47(i) = DMZ(47) 
dso_48(i) = DMZ(48) 
dso_49(i) = DMZ(49) 
dso_50(i) = DMZ(50) 
dso_51(i) = DMZ(51) 
dso_52(i) = DMZ(52) 
dso_53(i) = DMZ(53) 
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dso_54(i) = DMZ(54) 
dso_55(i) = DMZ(55) 
dso_56(i) = DMZ(56) 
dso_57(i) = DMZ(57) 
dso_58(i) = DMZ(58) 
dso_59(i) = DMZ(59) 
 
 
table,dist,eso_1,dso_1 
DIGITS,,8 
table,dist,eso_2,dso_2 
DIGITS,,8 
table,dist,eso_3,dso_3 
DIGITS,,8 

table,dist,eso_4,dso_4 
DIGITS,,8 
table,dist,eso_5,dso_5 
DIGITS,,8 
table,dist,eso_6,dso_6 
DIGITS,,8 
table,dist,eso_7,dso_7 
DIGITS,,8 
table,dist,eso_8,dso_8 
DIGITS,,8 
table,dist,eso_9,dso_9 
DIGITS,,8 
table,dist,eso_10,dso_10 
DIGITS,,8 
table,dist,eso_11,dso_11 
DIGITS,,8 
table,dist,eso_12,dso_12 
DIGITS,,8 
table,dist,eso_13,dso_13 
DIGITS,,8 
table,dist,eso_14,dso_14 
DIGITS,,8 
table,dist,eso_15,dso_15 
DIGITS,,8 
table,dist,eso_16,dso_16 
DIGITS,,8 
table,dist,eso_17,dso_17 
DIGITS,,8 
table,dist,eso_18,dso_18 
DIGITS,,8 
table,dist,eso_19,dso_19 
DIGITS,,8 
table,dist,eso_20,dso_20 
DIGITS,,8 
table,dist,eso_21,dso_21 
DIGITS,,8 
table,dist,eso_22,dso_22 
DIGITS,,8 
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table,dist,eso_23,dso_23 
DIGITS,,8 
table,dist,eso_24,dso_24 
DIGITS,,8 
table,dist,eso_25,dso_25 
DIGITS,,8 
table,dist,eso_26,dso_26 
DIGITS,,8 
table,dist,eso_27,dso_27 
DIGITS,,8 
table,dist,eso_28,dso_28 
DIGITS,,8 
table,dist,eso_29,dso_29 
DIGITS,,8 

table,dist,eso_30,dso_30 
DIGITS,,8 
table,dist,eso_31,dso_31 
DIGITS,,8 
table,dist,eso_32,dso_32 
DIGITS,,8 
table,dist,eso_33,dso_33 
DIGITS,,8 
table,dist,eso_34,dso_34 
DIGITS,,8 
table,dist,eso_35,dso_35 
DIGITS,,8 
table,dist,eso_36,dso_36 
DIGITS,,8 
table,dist,eso_37,dso_37 
DIGITS,,8 
table,dist,eso_38,dso_38 
DIGITS,,8 
table,dist,eso_39,dso_39 
DIGITS,,8 
table,dist,eso_40,dso_40 
DIGITS,,8 
table,dist,eso_41,dso_41 
DIGITS,,8 
table,dist,eso_42,dso_42 
DIGITS,,8 
table,dist,eso_43,dso_43 
DIGITS,,8 
table,dist,eso_44,dso_44 
DIGITS,,8 
table,dist,eso_45,dso_45 
DIGITS,,8 
table,dist,eso_46,dso_46 
DIGITS,,8 
table,dist,eso_47,dso_47 
DIGITS,,8 
table,dist,eso_48,dso_48 
DIGITS,,8 
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table,dist,eso_49,dso_49 
DIGITS,,8 
table,dist,eso_50,dso_50 
DIGITS,,8 
table,dist,eso_51,dso_51 
DIGITS,,8 
table,dist,eso_52,dso_52 
DIGITS,,8 
table,dist,eso_53,dso_53 
DIGITS,,8 
table,dist,eso_54,dso_54 
DIGITS,,8 
table,dist,eso_55,dso_55 
DIGITS,,8 

table,dist,eso_56,dso_56 
DIGITS,,8 
table,dist,eso_57,dso_57 
DIGITS,,8 
table,dist,eso_58,dso_58 
DIGITS,,8 
table,dist,eso_59,dso_59 
DIGITS,,8 
 
 
enddo 
!================================================== 
 
text,FINAL RESULT 
 
table,dist,eso_1,dso_1 
DIGITS,,8 
table,dist,eso_2,dso_2 
DIGITS,,8 
table,dist,eso_3,dso_3 
DIGITS,,8 
table,dist,eso_4,dso_4 
DIGITS,,8 
table,dist,eso_5,dso_5 
DIGITS,,8 
table,dist,eso_6,dso_6 
DIGITS,,8 
table,dist,eso_7,dso_7 
DIGITS,,8 
table,dist,eso_8,dso_8 
DIGITS,,8 
table,dist,eso_9,dso_9 
DIGITS,,8 
table,dist,eso_10,dso_10 
DIGITS,,8 
table,dist,eso_11,dso_11 
DIGITS,,8 
table,dist,eso_12,dso_12 
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DIGITS,,8 
table,dist,eso_13,dso_13 
DIGITS,,8 
table,dist,eso_14,dso_14 
DIGITS,,8 
table,dist,eso_15,dso_15 
DIGITS,,8 
table,dist,eso_16,dso_16 
DIGITS,,8 
table,dist,eso_17,dso_17 
DIGITS,,8 
table,dist,eso_18,dso_18 
DIGITS,,8 
table,dist,eso_19,dso_19 

DIGITS,,8 
table,dist,eso_20,dso_20 
DIGITS,,8 
table,dist,eso_21,dso_21 
DIGITS,,8 
table,dist,eso_22,dso_22 
DIGITS,,8 
table,dist,eso_23,dso_23 
DIGITS,,8 
table,dist,eso_24,dso_24 
DIGITS,,8 
table,dist,eso_25,dso_25 
DIGITS,,8 
table,dist,eso_26,dso_26 
DIGITS,,8 
table,dist,eso_27,dso_27 
DIGITS,,8 
table,dist,eso_28,dso_28 
DIGITS,,8 
table,dist,eso_29,dso_29 
DIGITS,,8 
table,dist,eso_30,dso_30 
DIGITS,,8 
table,dist,eso_31,dso_31 
DIGITS,,8 
table,dist,eso_32,dso_32 
DIGITS,,8 
table,dist,eso_33,dso_33 
DIGITS,,8 
table,dist,eso_34,dso_34 
DIGITS,,8 
table,dist,eso_35,dso_35 
DIGITS,,8 
table,dist,eso_36,dso_36 
DIGITS,,8 
table,dist,eso_37,dso_37 
DIGITS,,8 
table,dist,eso_38,dso_38 
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DIGITS,,8 
table,dist,eso_39,dso_39 
DIGITS,,8 
table,dist,eso_40,dso_40 
DIGITS,,8 
table,dist,eso_41,dso_41 
DIGITS,,8 
table,dist,eso_42,dso_42 
DIGITS,,8 
table,dist,eso_43,dso_43 
DIGITS,,8 
table,dist,eso_44,dso_44 
DIGITS,,8 
table,dist,eso_45,dso_45 

DIGITS,,8 
table,dist,eso_46,dso_46 
DIGITS,,8 
table,dist,eso_47,dso_47 
DIGITS,,8 
table,dist,eso_48,dso_48 
DIGITS,,8 
table,dist,eso_49,dso_49 
DIGITS,,8 
table,dist,eso_50,dso_50 
DIGITS,,8 
table,dist,eso_51,dso_51 
DIGITS,,8 
table,dist,eso_52,dso_52 
DIGITS,,8 
table,dist,eso_53,dso_53 
DIGITS,,8 
table,dist,eso_54,dso_54 
DIGITS,,8 
table,dist,eso_55,dso_55 
DIGITS,,8 
table,dist,eso_56,dso_56 
DIGITS,,8 
table,dist,eso_57,dso_57 
DIGITS,,8 
table,dist,eso_58,dso_58 
DIGITS,,8 
table,dist,eso_59,dso_59 
DIGITS,,8 
 
 
Enddo
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Table (5):Values of the eigenvalues Ev, the rotational constants Bv and the abscissa of the turning points 

Rmin and Rmax for the different vibrational levels of (2)1Σ state of the LaH molecule.                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v )( 1-cmEn  )( 1-cmBn  )(10 15 -´ cmDn  Å)(minR  Å)(maxR  

0 631.447 3.128 7.761 2.16 2.487 

1 1878.524 3.087 7.946 2.06 2.63 

2 3096.175 3.042 8.216 1.996 2.741 

3 4280.933 2.995 8.236 1.947 2.898 

4 5437.345 2.949 8.39 1.906 2.927 

5 6564.963 2.901 8.383 1.872 3.013 

6 7665.826 2.855 8.426 1.842 3.094 

7 8740.932 2.808 8.303 1.815 3.173 

8 9792.486 2.763 8.426 1.791 3.251 

9 10820.04 2.717 8.221 1.769 3.328 

10 11825.8 2.673 8.133 1.749 3.402 

11 12811.47 2.632 7.983 1.73 3.476 

12 13778.56 2.591 7.791 1.713 3.548 

13 14728.45 2.553 7.699 1.696 3.619 

14 15662.25 2.517 7.501 1.681 3.689 

15 16581.1 2.481 7.281 1.667 3.757 

16 17486.22 2.447 7.254 1.653 3.825 

17 18377.97 2.415 7.014 1.64 3.892 

18 19257.34 2.383 6.839 1.628 3.958 

19 20124.91 2.352 6.808 1.616 4.023 

20 20980.89 2.322 6.694 1.605 4.088 

21 21825.49 2.292 6.472 1.595 4.152 

22 22659.09 2.262 6.507 1.584 4.217 

23 23481.32 2.233 6.436 1.575 4.281 

24 24292.4 2.204 6.217 1.565 4.344 

25 25093.01 2.176 6.01 1.556 4.407 

26 25883.57 2.148 6.142 1.548 4.471 

27 26663.12 2.119 6.231 1.54 4.535 

28 27431.04 2.09 5.905 1.532 4.599 

29 28188.21 2.061 5.951 1.524 4.663 

30 28933.91 2.03 6.057 1.517 4.728 

31 29667.5 2.001 5.882 1.51 4.794 

32 30389.37 1.97 6.058 1.503 4.86 

33 31098.34 1.938 5.916 1.496 4.928 

34 31794.35 1.906 6.106 1.49 4.997 

35 32476.1 1.87 6.171 1.484 5.071 

36 33143.1 1.836 6.072 1.478 5.141 

37 33796.04 1.804 5.412 1.473 5.213 

38 34437.49 1.776 5.415 1.467 5.287 

39 35067.03 1.742 6.092 1.462 5.362 

40 35681.23 1.705 6.132 1.457 5.439 

41 36280.25 1.673 5.287 1.452 5.517 

42 36866.73 1.639 6.226 1.448 5.598 
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Table(6):Values of the eigenvalues Ev, the rotational constants Bv and the abscissa of the turning points 

Rmin and Rmax for the different vibrational levels of (1)1Δ state of the LaH molecule. 

v )( 1-cmEn  )( 1-cmBn  )(10 15 -´ cmDn  Å)(minR  Å)(maxR  

0 609.238 3.047 7.783 2.188 2.52 

1 1806.27 3.006 8.043 2.08 2.688 

2 2972.106 2.963 8.239 2.02 2.781 

3 4108.22 2.919 8.428 1.969 2.88 

4 5214.984 2.874 8.493 1.928 2.971 

5 6294.555 2.829 8.63 1.892 3.058 

6 7346.743 2.782 8.778 1.861 3.142 

7 8370.889 2.733 8.701 1.834 3.225 

8 9369.786 2.688 8.443 1.809 3.305 

9 10347.19 2.644 8.567 1.786 3.384 

10 11302.19 2.599 8.36 1.766 3.461 

11 12236.83 2.556 8.28 1.746 3.53 

12 13151.97 2.514 8.077 1.729 3.613 

13 14048.98 2.473 8.073 1.712 3.688 

14 14928.03 2.433 7.769 1.697 3.762 

15 15790.59 2.393 7.833 1.683 3.836 

16 16636.34 2.355 7.592 1.669 3.909 

17 17466.19 2.315 7.562 1.656 3.982 

18 18280.04 2.277 7.506 1.644 4.055 

19 19077.92 2.238 7.325 1.633 4.129 

20 19860.17 2.199 7.447 1.622 4.202 

21 20626.22 2.161 7.21 1.612 4.277 

22 21376.46 2.121 7.219 1.602 4.352 

23 22110.56 2.082 7.274 1.592 4.428 

24 22828.35 2.043 7.013 1.584 4.504 

25 23530.4 2.003 6.925 1.575 4.582 

26 24216.94 1.965 6.9 1.567 4.66 

27 24888.25 1.928 6.651 1.559 4.739 

28 25545.21 1.893 6.413 1.552 4.818 

29 26188.76 1.859 6.107 1.545 4.898 

30 26820.65 1.83 5.537 1.538 4.977 

31 27443.9 1.808 4.802 1.532 5.046 

32 28673.89 1.765 6.183 1.519 5.196 

33 29272.41 1.721 7.502 1.513 5.275 

34 29851.42 1.681 5.231 1.508 5.353 

35 30420.91 1.667 3.734 1.502 5.432 

36 30986.68 1.64 6.712 1.497 5.511 

37 31537.22 1.601 5.048 1.492 5.59 
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Table(7):Values of the eigenvalues Ev, the rotational constants Bv and the abscissa of the turning points 

Rmin and Rmax for the different vibrational levels of (1)1Π state of the LaH molecule. 

v )( 1-cmEn  )( 1-cmBn  )(10 15 -´ cmDn  Å)(minR  Å)(maxR  

0 669.943 3.367 8.65 2.081 2.398 

1 1989.073 3.322 8.817 1.983 2.538 

2 3278.032 3.274 8.969 1.921 2.645 

3 4536.097 3.222 9.109 1.874 2.739 

4 5762.631 3.169 9.176 1.835 2.827 

5 6958.313 3.114 9.246 1.802 2.91 

6 8123.311 3.058 9.255 1.774 2.991 

7 9258.424 3.002 9.229 1.748 3.07 

8 10364.71 2.946 9.146 1.726 3.148 

9 11443.52 2.892 9.092 1.705 3.225 

10 12495.67 2.837 8.994 1.686 3.3 

11 13522.12 2.783 8.844 1.669 3.376 

12 14524.46 2.731 8.622 1.653 3.451 

13 15504.48 2.681 8.488 1.638 3.525 

14 16463.11 2.639 8.302 1.625 3.598 

15 17401.68 2.586 8.097 1.612 3.671 

16 18321.3 2.54 7.952 1.599 3.743 

17 19222.76 2.496 7.773 1.588 3.815 

18 20106.92 2.453 7.63 1.577 3.886 

19 20974.31 2.412 7.473 1.567 3.957 

20 21825.5 2.371 7.377 1.557 4.028 

21 22660.79 2.331 7.249 1.548 4.099 

22 23480.51 2.291 7.084 1.539 4.17 

23 24285.11 2.252 7.032 1.53 4.241 

24 25074.68 2.214 6.94 1.522 4.313 

25 25849.2 2.174 6.948 1.514 4.384 

26 26608.25 2.135 6.805 1.507 4.457 

27 27352.26 2.098 6.582 1.5 4.529 

28 28082.07 2.061 6.616 1.493 4.603 

29 28797.44 2.024 6.448 1.486 4.676 

30 29498.84 1.989 6.195 1.48 4.75 

31 30187.17 1.954 6.203 1.47 4.824 

32 30862.52 1.922 5.821 1.468 4.899 

33 31526.44 1.892 5.565 1.463 4.973 

34 32180.3 1.865 5.063 1.457 5.043 

35 32826.3 1.842 5.02 1.452 5.112 

36 33464.31 1.815 5.576 1.447 5.187 

37 34090.71 1.78 6.401 1.442 5.261 

38 34701.84 1.744 5.303 1.437 5.335 

39 35302.55 1.723 4.322 1.433 5.41 

40 37615.18 1.615 5.813 1.415 5.712 

41 38167.02 1.585 4.217 1.411 5.788 

42 38710.93 1.563 5.253 1.408 5.866 

43 39243.72 1.531 4.679 1.404 5.945 



APPENDIX IV 

 

203 

 

Table(8):Values of the eigenvalues Ev, the rotational constants Bv and the abscissa of the turning points 

Rmin and Rmax for the different vibrational levels of (2)1Π state of the LaH molecule. 

v )( 1-cmEn  )( 1-cmBn  )(10 15 -´ cmDn  Å)(minR  Å)(maxR  

0 649.643 3.249 8.217 2.119 2.441 

1 1933.073 3.209 8.213 2.02 2.577 

2 3195.574 3.165 8.726 1.956 2.689 

3 4418.835 3.105 8.983 1.908 2.787 

4 5603.691 3.057 8.46 1.869 2.876 

5 6764.4 3.002 9.264 1.836 2.961 

6 7889.225 2.949 8.496 1.807 3.044 

7 8989.454 2.894 9.19 1.781 3.124 

8 10058.66 2.841 8.555 1.758 3.204 

9 11102.91 2.785 8.95 1.737 3.282 

10 12119.21 2.736 8.835 1.718 3.36 

11 13109.57 2.681 8.262 1.701 3.437 

12 14077.06 2.628 8.936 1.684 3.514 

13 15018.86 2.58 8.348 1.669 3.591 

14 15937.8 2.525 8.16 1.655 3.667 

15 16834.15 2.474 8.797 1.642 3.745 

16 17705.79 2.423 8.425 1.63 3.823 

17 18553.13 2.366 8.267 1.618 3.903 

18 19375.47 2.309 8.878 1.608 3.988 

19 20171.64 2.257 8.033 1.597 4.073 

20 20948.74 2.223 5.041 1.588 4.156 

21 21725.17 2.22 2.734 1.579 4.203 

22 22516.85 2.236 3.347 1.569 4.262 

23 23321.47 2.235 5.489 1.56 4.324 

24 24122.09 2.199 7.174 1.552 4.37 

25 24904.81 2.154 6.547 1.543 4.434 

26 25673.48 2.126 6.749 1.535 4.527 

27 26427.21 2.079 8.2 1.528 4.586 

28 27160.35 2.053 1.307 1.52 4.608 

29 27908 2.089 1.847 1.513 4.685 

30 28665.84 2.042 1.375 1.506 4.766 

31 29368.89 1.908 1.222 1.499 4.843 

32 30027.83 1.891 -8.432 1.493 4.917 

33 30704.3 1.906 6.686 1.487 4.991 

34 31361.87 1.803 1.312 1.481 5.079 

35 31977.22 1.78 -5.71 1.476 5.161 

36 32600.21 1.749 1.328 1.471 5.245 

37 33188.03 1.701 -2.139 1.466 5.324 

38 33786.67 1.704 1.131 1.461 5.407 

39 34356.44 1.63 9.016 1.456 5.487 
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Table(9):Values of the eigenvalues Ev, the rotational constants Bv and the abscissa of the turning points 

Rmin and Rmax for the different vibrational levels of (1)3Δ state of the LaH molecule. 

v )( 1-cmEn  )( 1-cmBn  )(10 15 -´ cmDn  Å)(minR  Å)(maxR  

0 655.042 3.262 8.237 2.115 2.436 

1 1943.959 3.218 8.449 2.016 2.578 

2 3201.588 3.172 8.547 1.955 2.686 

3 4430.715 3.126 8.635 1.905 2.78 

4 5631.745 3.077 8.829 1.865 2.868 

5 6802.586 3.027 8.756 1.832 2.951 

6 7945.941 2.976 8.907 1.802 3.032 

7 9060.734 2.924 8.783 1.776 3.111 

8 10148.96 2.872 8.85 1.753 3.188 

9 11210.82 2.823 8.574 1.732 3.264 

10 12249.41 2.774 8.505 1.712 3.339 

11 13265.63 2.727 8.467 1.694 3.412 

12 14259.95 2.68 8.164 1.678 3.485 

13 15234.5 2.635 8.112 1.662 3.557 

14 16189.99 2.592 7.917 1.648 3.629 

15 17127.56 2.55 7.667 1.634 3.669 

16 18048.54 2.51 7.648 1.621 3.769 

17 18953.23 2.471 7.402 1.609 3.838 

18 19842.68 2.433 7.244 1.598 3.907 

19 20717.41 2.396 7.18 1.587 3.975 

20 21577.77 2.36 7.093 1.577 4.043 

21 22423.95 2.324 6.858 1.567 4.111 

22 23256.53 2.288 6.84 1.557 4.179 

23 24075.45 2.253 6.807 1.548 4.246 

24 24880.77 2.219 6.693 1.54 4.314 

25 25672.4 2.183 6.63 1.531 4.382 

26 26450.09 2.148 6.604 1.523 4.451 

27 27213.82 2.113 6.564 1.518 4.52 

28 27963.69 2.078 6.474 1.509 4.59 

29 28699.53 2.043 6.381 1.502 4.66 

30 29421.34 2.008 6.324 1.495 4.732 

31 30129.33 1.973 6.317 1.488 4.803 

32 30823.48 1.939 6.088 1.482 4.876 

33 31504.65 1.907 5.812 1.476 4.95 

34 32174.16 1.878 5.302 1.471 5.024 

35 32834.37 1.854 5.065 1.465 5.089 

36 33486.31 1.829 5.634 1.46 5.161 

37 34126.63 1.793 6.742 1.454 5.237 
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Table(10):Values of the eigenvalues Ev, the rotational constants Bv and the abscissa of the turning points 

Rmin and Rmax for the different vibrational levels of (2)3Σ state of the LaH molecule. 

v )( 1-cmEn  )( 1-cmBn  )(10 15 -´ cmDn  Å)(minR  Å)(maxR  

0 626.26 3.104 7.759 2.168 2.496 

1 1858.973 3.062 7.964 2.067 2.641 

2 3060.842 3.016 8.216 2.003 2.753 

3 4229.556 2.968 8.242 1.954 2.851 

4 5369.308 2.92 8.41 1.914 2.942 

5 6479.368 2.87 8.379 1.88 3.029 

6 7561.929 2.821 8.537 1.85 3.113 

7 8616.115 2.77 8.43 1.823 3.194 

8 9644.041 2.721 8.429 1.799 3.275 

9 10646.84 2.672 8.354 1.777 3.354 

10 11625.49 2.623 8.2 1.758 3.431 

11 12581.86 2.578 8.177 1.739 3.509 

12 13516.61 2.532 7.968 1.722 3.585 

13 14431.07 2.488 7.897 1.706 3.66 

14 15325.99 2.444 7.837 1.692 3.736 

15 16201.8 2.401 7.651 1.678 3.81 

16 17059.29 2.358 7.594 1.665 3.885 

17 17898.63 2.316 7.625 1.653 3.96 

18 18719.72 2.274 7.455 1.641 4.035 

19 19522.89 2.232 7.379 1.63 4.111 

20 20308.25 2.19 7.412 1.62 4.187 

21 21075.83 2.149 7.286 1.61 4.263 

22 21825.76 2.106 7.351 1.6 4.342 

23 22556.97 2.061 7.509 1.591 4.421 

24 23268.54 2.016 7.154 1.583 4.502 

25 23962.34 1.976 6.966 1.575 4.854 

26 24639.4 1.935 7.06 1.567 4.666 

27 25299.35 1.895 6.364 1.56 4.748 

28 25945.06 1.86 6.281 1.553 4.831 

29 26577.55 1.827 5.789 1.546 4.913 

30 27199.91 1.804 4.96 1.54 4.993 

31 27816.37 1.786 4.152 1.534 5.053 

32 28430.35 1.773 4.399 1.527 5.129 

33 29039.73 1.746 6.349 1.521 5.809 
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Table(11):Values of the eigenvalues Ev, the rotational constants Bv and the abscissa of the turning points 

Rmin and Rmax for the different vibrational levels of (2)3Δ state of the LaH molecule. 

v )( 1-cmEn  )( 1-cmBn  )(10 15 -´ cmDn  Å)(minR  Å)(maxR  

0 616.604 3.003 7.268 2.205 2.536 

1 1827.232 2.957 7.469 2.105 2.685 

2 3005.126 2.91 7.632 2.042 2.798 

3 4151.209 2.862 7.775 1.992 2.898 

4 5266.14 2.813 7.872 1.951 2.991 

5 6351.05 2.764 7.934 1.917 3.079 

6 7407.282 2.716 7.926 1.885 3.165 

7 8436.778 2.668 7.905 1.86 3.248 

8 9441.204 2.622 7.815 1.836 3.329 

9 10422.65 2.578 7.76 1.814 3.408 

10 11382.3 2.534 7.708 1.794 3.483 

11 12321.23 2.493 7.527 1.775 3.562 

12 13241.4 2.453 7.498 1.758 3.637 

13 14143.38 2.415 7.32 1.741 3.711 

14 15028.63 2.377 7.27 1.726 3.785 

15 15897.65 2.341 7.12 1.712 3.857 

16 16751.4 2.306 7.064 1.698 3.929 

17 17590.23 2.271 6.965 1.685 4.001 

18 18414.66 2.238 6.879 1.672 4.072 

19 19224.97 2.204 6.806 1.661 4.142 

20 20021.42 2.171 6.765 1.65 4.213 

21 20804.07 2.138 6.656 1.639 4.283 

22 21573.21 2.106 6.603 1.629 4.354 

23 22328.95 2.074 6.525 1.619 4.425 

24 23071.45 2.042 6.433 1.61 4.496 

25 23800.83 2.01 6.406 1.601 4.567 

26 24517.15 1.978 6.282 1.592 4.639 

27 25220.73 1.947 6.169 1.584 4.711 

28 25911.76 1.914 6.13 1.576 4.785 

29 26590.39 1.886 6.014 1.568 4.856 

30 27256.98 1.856 5.845 1.561 4.929 

31 27912 1.827 5.693 1.554 5.003 

32 28556.17 1.8 5.589 1.547 5.072 

33 29189.86 1.773 5.61 1.541 5.148 

34 29812.23 1.742 5.988 1.534 5.224 

35 30421.03 1.708 5.961 1.528 5.3 

36 31016.42 1.678 5.29 1.522 5.378 

37 31601.31 1.652 5.41 1.517 5.45 

38 32174.78 1.62 5.836 1.511 5.535 

39 32734.98 1.59 5.119 1.506 5.615 

40 33284.47 1.562 5.572 1.501 5.697 

41 33821.46 1.529 5.386 1.496 5.78 

42 34346.29 1.502 5.203 1.492 5.865 

43 34859.32 1.468 5.628 1.487 5.951 
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44 35359.13 1.439 5.213 1.483 6.04 

45 35846.45 1.404 5.81 1.479 6.131 

 

Table(12):Values of the eigenvalues Ev, the rotational constants Bv and the abscissa of the turning points 

Rmin and Rmax for the different vibrational levels of (1)3Π state of the LaH molecule. 

v )( 1-cmEn  )( 1-cmBn  )(10 15 -´ cmDn  Å)(minR  Å)(maxR  

0 666.56 3.384 8.859 2.075 2.393 

1 1979.685 3.339 9.024 1.977 2.533 

2 3263.38 3.291 9.152 1.915 2.64 

3 4517.59 3.241 9.221 1.868 2.734 

4 5742.997 3.189 9.326 1.829 2.821 

5 6938.867 3.136 9.353 1.796 2.904 

6 8105.74 3.082 9.355 1.767 2.984 

7 9244.235 3.027 9.322 1.741 3.062 

8 10355.2 2.973 9.247 1.719 3.139 

9 11439.74 2.918 9.159 1.698 3.214 

10 12498.72 2.865 9.126 1.679 3.289 

11 13532.47 2.811 8.938 1.662 3.364 

12 14542.54 2.76 8.761 1.646 3.438 

13 15530.45 2.71 8.629 1.631 3.511 

14 16496.97 2.661 8.442 1.617 3.583 

15 17443.2 2.614 8.294 1.604 3.656 

16 18370.02 2.567 8.15 1.591 3.728 

17 19278.01 2.522 7.96 1.58 3.799 

18 20167.94 2.477 7.924 1.569 3.871 

19 21039.87 2.433 7.745 1.559 3.942 

20 21894.31 2.39 7.683 1.549 4.014 

21 22731.21 2.346 7.597 1.54 4.086 

22 23550.71 2.303 7.519 1.531 4.159 

23 24352.92 2.26 7.415 1.522 4.231 

24 25137.94 2.217 7.389 1.514 4.305 

25 25905.29 2.172 7.592 1.507 4.381 

26 26653.71 2.127 7.449 1.499 4.457 

27 27383.58 2.083 7.111 1.492 4.535 

28 28096.27 2.04 7.217 1.486 4.614 

29 28791.31 1.996 7.006 1.48 4.694 

30 29469.58 1.956 6.612 1.473 4.774 

31 30132.8 1.918 6.544 1.468 4.854 

32 30781.79 1.884 5.682 1.462 4.934 

33 31420.27 1.856 5.168 1.457 5.016 

34 32051.32 1.836 4.419 1.451 5.072 

35 32677.94 1.817 5.25 1.446 5.154 

36 33295.7 1.783 6.671 1.441 5.233 

37 33896.74 1.737 6.685 1.437 5.31 

38 34482.13 1.711 3.502 1.432 5.386 

39 35064.69 1.699 4.842 1.428 5.462 
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40 36758.04 1.624 5.444 1.415 5.689 

41 37305.71 1.589 4.565 1.411 5.764 

42 37845.52 1.578 3.571 1.407 5.837 

43 38380.64 1.55 5.468 1.403 5.838 

44 38905.53 1.533 2.99 1.4 5.988 

45 39426.36 1.508 5.983 1.396 6.064 

 

Table(13):Values of the eigenvalues Ev, the rotational constants Bv and the abscissa of the turning points 

Rmin and Rmax for the different vibrational levels of (2)3Π state of the LaH molecule. 

v )( 1-cmEn  )( 1-cmBn  )(10 15 -´ cmDn  Å)(minR  Å)(maxR  

0 650.428 3.252 8.3 2.117 2.44 

1 1927.252 3.203 8.47 2.019 2.584 

2 3172.106 3.153 8.587 1.957 2.693 

3 4386.242 3.102 8.672 1.909 2.79 

4 5570.163 3.048 8.789 1.871 2.88 

5 6723.218 2.995 8.797 1.837 2.965 

6 7846.845 2.94 8.828 1.809 3.048 

7 8941.585 2.887 8.665 1.783 3.129 

8 10010.14 2.834 8.677 1.76 3.208 

9 11053.15 2.783 8.506 1.739 3.285 

10 12072.46 2.733 8.264 1.72 3.361 

11 13070.25 2.686 8.326 1.703 3.436 

12 14046.48 2.639 7.976 1.686 3.51 

13 15003.62 2.595 7.845 1.671 3.583 

14 15942.51 2.552 7.682 1.657 3.655 

15 16864.28 2.511 7.517 1.644 3.727 

16 17769.91 2.471 7.332 1.631 3.797 

17 18660.27 2.433 7.201 1.619 3.867 

18 19535.94 2.396 6.974 1.608 3.936 

19 20397.7 2.359 6.95 1.597 4.004 

20 21245.74 2.324 6.863 1.587 4.073 

21 22080.33 2.289 6.619 1.577 4.14 

22 22901.98 2.255 6.559 1.567 4.208 

23 23710.7 2.221 6.524 1.559 4.276 

24 24506.56 2.187 6.49 1.55 4.343 

25 25289.54 2.154 6.392 1.542 4.411 

26 26059.6 2.121 6.184 1.534 4.479 

27 26816.98 2.087 6.213 1.526 4.548 

28 27561.51 2.054 6.269 1.519 4.617 

29 28292.99 2.022 6.104 1.512 4.686 

30 29011.6 1.988 6.022 1.505 4.756 

31 29717.31 1.956 6.011 1.499 4.827 

32 30410.04 1.923 5.895 1.493 4.898 
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Table(14):Values of the eigenvalues Ev, the rotational constants Bv and the abscissa of the turning points 

Rmin and Rmax for the different vibrational levels of (1)3Φ state of the LaH molecule. 

v )( 1-cmEn  )( 1-cmBn  )(10 15 -´ cmDn  Å)(minR  Å)(maxR  

0 633.012 3.185 8.212 2.139 2.465 

1 1878.37 3.141 8.393 2.039 2.61 

2 3093.565 3.094 8.559 1.975 2.8 

3 4278.174 3.044 8.661 1.927 2.818 

4 5433.048 2.994 8.738 1.887 2.909 

5 6558.774 2.942 8.79 1.853 2.995 

6 7655.966 2.891 8.766 1.824 3.078 

7 8726.066 2.84 8.69 1.798 3.159 

8 9770.735 2.789 8.644 1.774 3.238 

9 10790.93 2.74 8.506 1.753 3.316 

10 11788.28 2.692 8.377 1.733 3.393 

11 12764.12 2.645 8.267 1.715 3.468 

12 13719.43 2.6 8.044 1.699 3.543 

13 14655.87 2.557 7.962 1.683 3.617 

14 15574.06 2.514 7.72 1.668 3.689 

15 16475.39 2.474 7.632 1.655 3.761 

16 17360.36 2.434 7.447 1.642 3.833 

17 18229.87 2.396 7.317 1.63 3.904 

18 19084.41 2.358 7.189 1.618 3.974 

19 19924.46 2.321 7.059 1.607 4.044 

20 20750.46 2.286 6.972 1.597 4.114 

21 21562.66 2.25 6.807 1.587 4.183 

22 22361.5 2.216 6.721 1.577 4.252 

23 23147.2 2.182 6.678 1.568 4.322 

24 23919.74 2.148 6.542 1.559 4.391 

25 24679.31 2.114 6.458 1.551 4.461 

26 25426.12 2.081 6.373 1.543 4.531 

27 26160.42 2.049 6.271 1.535 4.6 

28 26882.26 2.016 6.207 1.528 4.671 

29 27591.75 1.985 6.121 1.521 4.741 

30 28289.09 1.953 6.042 1.514 4.812 

31 28974.29 1.922 5.926 1.508 4.884 

32 29647.69 1.891 5.866 1.501 4.956 

33 31600.84 1.803 5.84 1.483 5.172 

34 32228.5 1.769 6.246 1.478 5.247 

35 32841.51 1.734 5.862 1.473 5.324 

36 33441.44 1.704 5.258 1.468 5.4 
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Table(15):Values of the eigenvalues Ev, the rotational constants Bv and the abscissa of the turning points 

Rmin and Rmax for the different vibrational levels of (1)3Σ state of the LaH molecule. 

v )( 1-cmEn  )( 1-cmBn  )(10 15 -´ cmDn  Å)(minR  Å)(maxR  

0 659.422 3.359 8.866 2.082 2.402 

1 1956.83 3.31 9.002 1.984 2.544 

2 3223.732 3.258 9.111 1.923 2.653 

3 4460.017 3.204 9.194 1.876 2.749 

4 5665.758 3.149 9.249 1.837 2.837 

5 6841.211 3.093 9.267 1.805 2.922 

6 7986.97 3.036 9.253 1.777 3.004 

7 9103.854 2.98 9.173 1.751 3.084 

8 10193.31 2.924 9.053 1.729 3.162 

9 11256.93 2.87 8.963 1.708 3.239 

10 12295.64 2.817 8.8 1.69 3.315 

11 13310.98 2.766 8.609 1.673 3.39 

12 14304.54 2.716 8.48 1.657 3.464 

13 15277.27 2.668 8.223 1.642 3.538 

14 16230.86 2.622 8.095 1.628 3.61 

15 17166.12 2.578 7.849 1.615 3.682 

16 18084.38 2.535 7.716 1.603 3.752 

17 18986.3 2.494 7.497 1.591 3.823 

18 19872.82 2.454 7.358 1.58 3.892 

19 20744.48 2.416 7.208 1.57 3.961 

20 21601.78 2.378 7.041 1.56 4.03 

21 22445.2 2.341 6.952 1.551 4.098 

22 23274.92 2.305 6.799 1.542 4.166 

23 24091.27 2.269 6.707 1.533 4.235 

24 24894.35 2.233 6.638 1.525 4.303 

25 25684.21 2.198 6.504 1.517 4.371 

26 26461 2.163 6.458 1.509 4.439 

27 27224.68 2.129 6.393 1.502 4.508 

28 27975.25 2.097 6.275 1.495 4.577 

29 28712.82 2.06 6.244 1.488 4.647 

30 29437.31 2.026 6.195 1.482 4.717 

31 30148.75 1.992 6.082 1.476 4.788 

32 30847.22 1.958 6.029 1.47 4.859 

33 31532.74 1.925 5.997 1.464 4.931 

34 32205.35 1.892 5.912 1.458 5.004 

35 32865.1 1.858 5.853 1.453 5.077 

36 33511.94 1.825 5.879 1.448 5.152 

37 34145.57 1.791 5.887 1.443 5.228 

38 34765.79 1.757 5.758 1.438 5.305 

39 35372.87 1.725 5.61 1.433 5.382 
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Table(16):Values of the eigenvalues Ev, the rotational constants Bv and the abscissa of the turning points 

Rmin and Rmax for the different vibrational levels of (2)1Δ state of the LaH molecule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v )( 1-cmEn  )( 1-cmBn  )(10 15 -´ cmDn  Å)(minR  Å)(maxR  

0 644.764 3.307 8.812 2.098 2.422 

1 1916.667 3.262 8.868 1.999 2.564 

2 3163.217 3.214 8.991 1.936 2.673 

3 4380.856 3.16 9.111 1.889 2.769 

4 5568.037 3.106 9.06 1.85 2.858 

5 6726.815 3.051 9.232 1.817 2.943 

6 7854.971 2.993 9.151 1.789 3.026 

7 8954.039 2.936 9.217 1.764 3.107 

8 10024.07 2.879 9.025 1.741 3.187 

9 11067.21 2.823 9.106 1.721 3.266 

10 12083.32 2.768 8.802 1.702 3.343 

11 13075.19 2.715 8.841 1.685 3.421 

12 14042.43 2.66 8.771 1.669 3.498 

13 14985.95 2.61 8.46 1.654 3.575 

14 15907.68 2.558 8.508 1.64 3.651 

15 16807.51 2.51 8.299 1.627 3.727 

16 17686.83 2.461 8.141 1.615 3.803 

17 18546.18 2.414 8.025 1.604 3.879 

18 19386.28 2.368 7.943 1.593 3.955 

19 20207.59 2.323 7.719 1.583 4.031 

20 21011 2.279 7.478 1.573 4.108 

21 21797.71 2.238 7.182 1.564 4.185 

22 22569.48 2.2 7.045 1.555 4.256 

23 23326.8 2.161 7.319 1.547 4.333 

24 24066.73 2.112 7.829 1.539 4.411 

25 24786.01 2.065 7.161 1.531 4.49 

26 25488.99 2.031 6.396 1.524 4.569 

27 26178.86 1.99 7.288 1.517 4.648 

28 26851.15 1.948 6.295 1.51 4.728 

29 27510.31 1.917 6.403 1.504 4.808 

30 28156.13 1.877 6.212 1.498 4.888 

31 28789.58 1.851 5.195 1.492 4.967 

32 29415.06 1.824 5.316 1.486 5.04 

33 30033.24 1.807 4.319 1.481 5.108 

34 30646.06 1.776 6.565 1.475 5.19 



APPENDIX IV 

 

212 

 

Table (17):Values of the eigenvalues Ev, the rotational constants Bv and the abscissa of the turning points 

Rmin and Rmax for the different vibrational levels of (3)1Δ state of the LaH molecule.     

 

 

 

 

 

 

v )( 1-cmEn  )( 1-cmBn  )(10 15 -´ cmDn  Å)(minR  Å)(maxR  

0 686.419 3.308 7.835 2.102 2.416 

1 2034.21 3.257 8.032 2.007 2.556 

2 3346.081 3.205 8.198 1.946 2.664 

3 4622.709 3.151 8.338 1.9 2.759 

4 5864.623 3.096 8.439 1.862 2.847 

5 7072.674 3.04 8.517 1.83 2.931 

6 8247.614 2.984 8.566 1.802 3.013 

7 9390.273 2.927 8.593 1.777 3.093 

8 10501.49 2.87 8.617 1.754 3.171 

9 11581.67 2.812 8.704 1.734 3.251 

10 12630.47 2.753 8.541 1.715 3.329 

11 13650.8 2.701 8.005 1.698 3.409 

12 14648.91 2.654 7.906 1.682 3.481 

13 15625.74 2.605 7.897 1.668 3.556 

14 16581.48 2.561 7.417 1.655 3.629 

15 17519.79 2.518 7.603 1.642 3.701 

16 18439.69 2.477 7.152 1.63 3.772 

17 19344.06 2.439 7.394 1.617 3.843 

18 20232.03 2.4 7.02 1.606 3.912 

19 21105.74 2.365 7.326 1.595 3.981 

20 21964.26 2.331 6.963 1.584 4.05 

21 22809.33 2.297 7.247 1.575 4.118 

22 23640.14 2.265 6.965 1.565 4.186 

23 24457.76 2.232 6.937 1.556 4.254 

24 25262.13 2.2 6.93 1.547 4.321 

25 26052.96 2.167 6.54 1.539 4.389 

26 26830.78 2.134 6.564 1.531 4.457 

27 27595.2 2.101 6.189 1.524 4.529 

28 28346.74 2.067 5.98 1.518 4.594 

29 29085.27 2.033 6.039 1.509 4.664 

30 29810.38 1.999 5.753 1.503 4.734 

31 30522.37 1.964 5.773 1.496 4.805 

32 31220.86 1.929 5.979 1.49 4.876 

33 31905.26 1.894 6.127 1.484 4.949 

34 35675.13 1.68 6.689 1.453 5.427 
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Table (18):Values of the eigenvalues Ev, the rotational constants Bv and the abscissa of the turning points 

Rmin and Rmax for the different vibrational levels of (3)3Δ state of the LaH molecule.     

v )( 1-cmEn  )( 1-cmBn  )(10 15 -´ cmDn  Å)(minR  Å)(maxR  

0 647.035 3.256 8.428 2.115 2.438 

1 1915.207 3.202 8.722 2.018 2.586 

2 3144.135 3.145 8.781 1.956 2.697 

3 4339.858 3.09 8.925 1.909 2.796 

4 5501.183 3.026 9.282 1.871 2.89 

5 6623.283 2.963 9.204 1.838 2.98 

6 7709.173 2.894 9.57 1.811 3.069 

7 8755.739 2.826 9.437 1.786 3.158 

8 9765.372 2.753 9.686 1.764 3.247 

9 10736.36 2.68 9.915 1.745 3.337 

10 11667.81 2.604 9.684 1.727 3.429 

11 12561.57 2.527 1.007 1.711 3.523 

12 13416.22 2.449 1.018 1.697 3.62 

13 14231.48 2.367 1.012 1.684 3.72 

14 15007.33 2.283 1.072 1.672 3.823 

15 15741.12 2.194 1.131 1.661 3.934 

16 16430.07 2.098 1.148 1.651 4.053 

17 17074.98 2.009 9.776 1.642 4.185 

18 17689.03 1.953 6.466 1.634 4.294 

19 18293.41 1.931 4.661 1.626 4.395 

20 18899.96 1.921 3.817 1.618 4.476 

 

 

 

 

 


