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Preamble

Les plans les plus méticuleux peuvent toujours être déjoués
par les évènements, réduit à un magma confus.

— Daniel Woodrell Sous la lumière cruelle

The philosophy of this document is to present a unified vision of my research started with my
Master and PhD Thesis about data assimilation using observers with applications in cardiology...

The document is structured as follows. The first part is a presentation of my research
contributions and my research project. My objective with this part is to clearly present my
specific contributions and my research program for the next years. Then in a complementary
second part, I present in more details my research results in an unified setting. In this respect, I
have also included classical results of the literature and some new results that are only submitted
or about to be submitted. This second part is separated in two chapters, a data assimilation
chapter and a modeling and applications chapter.

I also want to emphasize that the bibliography is separated in two categories. My own papers
are cited with numbers [N] in the rest of the document. I have also distinguished proceedings,
preprint and thesis from articles in my bibliography. The rest of the literature is cited with the
first author et al. convention [First Author et al., YEAR].
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PART I

Summary of my research contribution &
Research project
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CHAPTER

1 Summary of my research
contribution

L’incertitude n’est pas dans les choses mais dans notre tête :
l’incertitude est une méconnaissance.

— Jacques Bernoulli Ars conjectandi
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6 Chapter 1. Summary of my research contribution

1.1 Introduction

My research activity is mainly devoted to developing methodological aspects of data assimi-
lation in the realm of the biomechanical modeling of tissues and organs, with a particular focus
on the cardiovascular system. My work can thus be seen as at the crossroads of several fields
among: applied mathematics, mechanical engineering, physiology, cardiology. However, I would
say that the most important component of my work is the methodological aspect, hence the
applied mathematics aspects with contributions that comprise: (1) modeling components (2)
inverse problem methodologies (3) numerical procedures formulated and analysed within the
context of direct and inverse simulations, and finally (4) applications to demonstrate that the
novelty of the proposed approach offers new perspectives for actual problems. In this context of
applied mathematics, I choose to consider data assimilation as a deterministic inverse problem
in the sense that we infer the classical input – initial condition, parameters, boundary conditions
etc. – of the model of a classical system from classical outputs, namely partial measurements.
The main originality of this inverse problem is that the models are dynamical models and ob-
served in their natural context without a full experimental access to the system. In this sense, I
like to refer to an image stemming from geophysics, namely, heart forecasting, to summarize the
problem. Considering this inverse problem, I follow the path to develop original contributions
that belong more to control theory than optimization. Indeed, as a natural point of view is
to solve this inverse problem by a least square minimization of the input to match the given
outputs, I propose new developments in the context of observer theory where the dynamical
model is controlled during its evolution to better match at each time the given outputs and
jointly retrieve the uncertainties initially present in the inputs. With this main scientific ambi-
tion, the 4 aspects of my research can then be re-enumerated by saying that I (1) investigate
original and effective inverse problem methodologies from an observer point of view (2) develop
and analyze adapted numerical methods (3) show that they can have an impact within real
medical application. And considering (3) we face the classical necessity of (4) improving the
modeling components and numerical aspects of the underlying models in order to improve their
predictivity, and afterwards the quality of the resulting estimation.

1.2 What is data assimilation ?

In many application fields, a momentous aspect of the modeling chain is to be able to register the
conceptualized system on actual measurements at hand, in order to define a predictive model.
This key concept is referred to as estimation in its most general form, a typical terminology in
statistics. In the context that we present here, we adopt the terminology data assimilation, a
more and more employed terminology, especially but not only when dealing with large dynamical
systems.

We can affirm that data assimilation belongs to the inverse problems category, in the
sense that some data that are generally potential outputs of the system help to retrieve specific
inputs of the model: unknown initial conditions, physical parameters, etc.. Historically, the
terminology data assimilation has appeared in the 70’s in geophysics [Blum et al., 2009] where
complex physical models need to be registered on the real data collected. A typical application
of data assimilation is weather forecasting. But since data assimilation can be understood
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as an inverse problem or an estimation problem, its origins are much older in connection to
decision theory, identification, control etc.. Moreover, while it was for several decades focused
on geophysics applications, data assimilation has nowadays reached new fields, in particular the
concept has now appeared in life sciences and in particular in the cardiovascular context with
the first initiatives of [Sainte-Marie et al., 2006] and [28].

Our objective in this introduction is now to show how the data assimilation theory is adressed
in the scientific community by showing the various aspects that can be covered by this theory.
Following this idea, we believe that we can highlight some classification keywords that show
the variety of points of view in data assimilation. But eventually all these points of view are
strongly connected, thus unveiling a very profound unified theory. Here are our keywords:

Stochastic / Deterministic – In a statistics context, we consider a hidden random variable
y called the state of a system – with a probability measure P(y). This variable is observed
through an observation or a measurement z. We associate with this realization a random
variable denoted by z with a probability measure P(z). The purpose of estimation is to find a
function of z – denoted by ŷ = ϕ(z) and called estimator – that summarizes the information
on y observable through z, hence be in essence a sufficient statistics [Casella and Berger, 2002].

In the literature various estimators have been proposed. Here we recall three of them which
often appear in data assimilation:

• The Minimum Mean-Square Estimator (MMSE):

ŷ = argmin
φ

{
E((y − φ(z))ᵀ(y − φ(z)))

}
which in fact can be proved to be given by conditional expectation ŷ = E(y|z).

• The The Least Square Estimator (LSE): which is the statistics defined by

ŷ = argmin
φ

{
J (φ) =

(
φ

z

)ᵀ

P−1

(
φ

z

)}
,

where P−1 is the covariance matrix associated with the couple of random variables (y, z)

P−1 =

(
P yy P zy

P yz P zz

)
=

(
Cov(y) Cov(y, z)

Cov(z,y) Cov(z)

)
.

• The Best Linear Unbiased Estimator (BLUE):

ŷ = E(y) +G(z − E(z))

where

G = argmin
φ

{
E((y − φ)(y − φ)ᵀ)

}
, with φ = φ(z) linear

and many other estimators can be cited, for instance the maximum a posteriori estimator etc.
These estimators are defined with their own objectives. However, they are also equivalent in
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some situations. Indeed, the LSE and the BLUE are equivalent and for gaussian variables, the
MMSE, the LSE and the BLUE coincide. In that case, the estimate is then given by

ŷ = E(y|z) = E(y) + Cov(y, z) Cov(z)−1 (z − E(z)
)

(1.1)

Note that, as we see in the last expression, ŷ as a function of the random variable z is itself
a random variable. However, for a given real observation z, there exists a realization of the
estimation ŷ which can be apprehended in a deterministic context.

Imagine now that we can model the measurement procedure by an observation operator C
– assumed to be linear to begin with. For instance, we consider a target state y̌ so that the
given observations come from

z = Cy̌ + χ

where χ is an observation error realization. We associate with χ a random variable χ of zero
mean value and covariance Cov(χ) = W . Moreover, we assume to have some a priori knowledge
on the state variable given by its first two moments y� = E(y) and P− = Cov(y). Then, following
(1.1) we end up with

ŷ = y� + P−Cᵀ(W + CP−Cᵀ)−1
(
z − Cy�

)
,

or equivalently
ŷ = y� +

(
(P−)−1 + CᵀWC

)−1
CᵀW−1

(
z − Cy�

)
,

and we call a posteriori covariance the quantity

P+ =
(
(P−)−1 + CᵀWC

)−1
.

As a consequence, when we consider a given realization z, we get the corresponding estimate

ŷ = y� + P+CᵀW−1
(
z − Cy�

)
. (1.2)

The relation (1.2) can be retrieved in a purely deterministic context by computing a
generalized inverse of C with an additional regularization term based on our a priori knowledge
on y. Introducing the state space Y, equipped with its norm ‖·‖Y , we introduce a symmetric
definite operator N� bounded and of bounded inverse so that the equivalent norm

‖y‖2Y,N� = 〈y,N�y〉Y ,

weighs our a priori knowledge. We proceed identically with the observation space Z with the
introduction of symmetric definite operator R bounded and of bounded inverse such that

‖y‖2Z,R = 〈y,Ry〉Z .

Then we introduce a least square criterion to be minimized

min
y

{
J (y) =

1

2
‖y − y�‖2Y,N� +

1

2
‖z − Cy‖2Z,R

}
, (1.3)

where the weights are supported by the norms. The resulting minimizer is

ŷ = y� + P+CᵀR
(
z − Cy�

)
,
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which corresponds exactly to the statistical estimator for the measurement realization z when
W = R−1 and P− = N−1

� .

In data assimilation, this compatible stochastic and deterministic description holds in a very
general setting, where in addition to very general observation models there exists a dynamical
model describing the state evolution up to some modeling error. On the one hand, the model
can be formalized as a stochastic dynamics of the form

dy = A(y, θ) dt+B dw, (y(0), θ) random

Here the state y is a random process, the model parameters θ a random variable and dw

is typically an additive white noise process associated with some modeling error [Bensoussan,
1971,Curtain, 1975]. On the other hand, the model can also be considered as deterministic with
unknown functions to be estimated. We define

ẏ = A(y, θ) +Bν, (y(0), θ, ν) unknown,

where the state variable is in an adequate functional space with – possibly – an uncertain initial
condition y(0), θ is a set of unknown parameters in some regular space and ν some additional
model error depending of the time1. The introduction of this dynamical model does not modify
the estimation purpose which is to estimate the state y(t), t ∈ [0, T ] given some measurements
at hand of the form z(t), t ∈ [0, T ]. Moreover, there is a strong correspondence in the resulting
estimates in the stochastic or deterministic approaches [Bensoussan, 1971]

We choose to focus on the deterministic formulation of the estimation problem.
This means that our framework will be deterministic. However, we will use from time to time
some probabilistic interpretation of our results, for instance keeping the vocabulary of covariance
operator when meeting some P+ operators. In so doing, we will also try to report the possible
connections between the stochastic and deterministic context.

Variational / Sequential – In the deterministic context, we have seen that the most natural
way to estimate the state from the observations is to introduce a least square criterion of the
form (1.3) generalized in a dynamical context. To be more specific, let us consider the following
class of system solutions 2 {

ẏ|ζ,ν = A(y|ζ,ν , t) +Bν(t)

y|ζ,ν(0) = y� + ζ
(1.4)

a class of system where we formalize the state dependency with respect to uncertainties ζ and
ν. Here, we adopt a classical probability notation with the bar | to underline that the state y|ζ,ν
can be computed knowing ζ, ν. The target trajectory is still denoted by y̌ with

∀t, z(t) = C(y̌(t), t) + χ(t).

Here, in a deterministic context, χ represents an error between the observation at hand z (that
we could write zχ to avoid any ambiguity) that should be considered as small in the norm of
the observation space (‖zχ − ž‖Z ≤ ε).

1Note that more general modeling errors could be considered
2the question of uncertain parameters will be treated below
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We now complete the state and observation spaces introduced in the previous paragraph
with the model noise space Q equipped with the norm ‖·‖Q. We also weigh this norm with the
introduction of a symmetric definite bounded isomorphism S with bounded inverse in order to
define

‖ν‖2Q,S = 〈ν, Sν〉Q
depending of our estimation a priori. We can then define the least square criterion to be
minimized, namely

min
ζ,ν

{
J (ζ, ν, t) =

1

2
‖ζ‖2N� +

1

2

∫ t

0

(
‖z(s)− C(y|ζ,ν(s), t)‖2R + ‖ν(s)‖2S

)
ds

}
. (1.5)

The resulting minimizer produces an estimation of the observed trajectory taking into account
the a priori knowledge. The weights that we have introduced moderate our confidence in the
data and in the modeling choices. Quite often, the operators N� and S are only homothetics
with small parameters aiming at regularizing the solution reconstructed from the data. But
in a general data assimilation context, there is no reason to believe more in the data than in
the model, and every weighting operator should be defined with respect to our quantification of
the uncertainty on each modeling and data ingredient. In this respect, a history of comparable
estimation plus some statistical tools are required, linking again the statistical interpretation to
the deterministic interpretation of our estimation problem, and opening the field of uncertainty
quantification. Typically in statistics, as previously seen, the inverse of the operator P� = N−1

� ,
W = R−1 and Q = S−1 are understood as error covariance operators.

In the Data Assimilation community, minimizing (1.5) is known as the variational approach
as reflected in the popular 4D-Var methodology [Le Dimet and Talagrand, 1986], where the
criterion gradient is obtained through an adjoint model integration corresponding to the dy-
namical model constraint under which the criterion is minimized. As a result, the minimization
problem is classically solved by a gradient descent algorithm involving numerous iterations of
the combination of the model and adjoint dynamics.

Whereas the variational approach is attractive [Le Dimet and Talagrand, 1986, Courtier,
1997,Nassiopoulos and Bourquin, 2010,Cîndea and Munch, 2015] in particular due to its “gener-
icity”, it involves the solution of a costly optimization problem. Original alternatives can be
inspired from the point of view of feedback control theory – rather than optimization – leading
to possibly more effective strategies, notwithstanding the deep fundamental interrelations of
optimal control and feedback theories [Baras and Bensoussan, 1987,Puel, 2008]. The key con-
cept is to define a so-called observer – also referred to as sequential estimator in the stochastic
context – that uses the data as a control to track the actual trajectory, and concurrently retrieve
the unknown parameters. This sequential approach gives a coupled model-data system solved
similarly to a usual PDE-based model. We thus define a new dynamical system ŷ that pursues
the target trajectory and parameters via a feedback control Gy only depending of the similarity
measure J(z, y, t) = z(t)− C(y, t){

˙̂y = A(ŷ, θ̂) +GyJ(z, y, t)

ŷ(0) = y�
(1.6)

The objective of this estimator is to converge in time to the target solution y̌ that originally has
produced the measurement z. The objective of a sequential estimator is thus slightly different
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from the variational estimator which produces a trajectory estimation on the whole time-window.
In particular a sequential estimator is not meant to estimate the initial condition, even if we
will see how this apparent limitation can be overcome.

The challenge in sequential estimation is now to propose adequate feedbacks. As a first
proposal, a generic feedback can be defined from the variational estimates. Indeed, the so-called
optimal sequential estimate is defined by

∀t ∈ R+, ŷ(t) = y| argmin J (·,t)(t). (1.7)

In fact – see Section (2.2.1) – the time differentiation of the definition (1.7) leads to a sequential
estimate of the form of (1.6) for large classes of model and observation operators. When all
these operators are linear, the resulting estimate is the famous Kalman estimator [Kalman and
Bucy, 1961], with for instance in the case of state estimation with a dynamics of the form
A(y) = Ay + β, 

˙̂y = Aŷ + β + PC∗
(
z − Cŷ

)
Ṗ = AP + PA∗ − PC∗RCP +BSB∗

ŷ(0) = y�

P (0) = P�

The genericity of the optimal sequential estimator has a cost. A definition of the form (1.7)
is classical in dynamic programming [Bellman, 1957] with the well known “curse of dimension-
ality”. Therefore, we will see the limitations of Kalman-like approaches when considering large
dimensional systems such as those coming from PDE models. Fortunately, other choices of feed-
backs are possible when we limit the objective of the observer to only retrieve asymptotically
the target trajectory. This means that in the absence of modeling errors and observation errors
we expect that

ŷ(t) −−−→
t→∞

y̌(t)

Moreover, this asymptotic should be robust to modeling errors and observation errors. In this
case we call the resulting observer an asymptotic observer. In this class of observer, various
new feedbacks can be designed specifically with respect to the model and observation at hand
as envisioned by [Luenberger, 1964, Luenberger, 1966, Luenberger, 1971]. In each case, the
asymptotic convergence of the observer should be assessed and is generally based on a so-called
observability condition that ensures that enough information is contained in the measurements.
When this condition is not fulfilled, a weaker result is expected, for instance that the distance
between the estimator and the target trajectory decreases in time [Krener and Duarte, 1996], or
that the observable part of the target system is retrieved [Haine, 2014b]. As examples for various
PDE types, we can cite the specific observers for the wave equation [Ramdani et al., 2010],
the elasticity system [Li and Xu, 2011], quantum physics [Bonnabel et al., 2009], hyperbolic
problems of conservation laws [Auroux and Blum, 2008], or parabolic problems and reaction-
diffusion systems etc.. An important result for Luenberger observer design is that the most
simple G = γC∗ can often be a good feedback candidate due to the stabilization properties
associated with γC∗C, see for instance [Haraux, 1989,Liu, 1997].

Considering this landscape of strategies, our work is clearly focused on sequential
estimation with a particular concern for proposing adapted feedback laws for large
dimensional systems, hence on asymptotic observers.
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Continuous-time / Discrete-time – Until now, we have presented the estimation problem
for continuous-time dynamical systems. However, the estimation objective can also be defined
for discrete-time dynamical systems – namely sequences. In the discrete-time framework, the
counterpart of (1.4) will be to consider a sequence in Y defined recursively byyn+1|ζ,(νk)nk=0

= An+1|n(yn|ζ,(νk)n−1
k=0

) +Bnνn, n ∈ N
y0|ζ,(νk)nk=0

= y� + ζ
(1.8)

with An+1|n the transition operator from step n to step n + 1, (νk)
n
k=0 a sequence of unknown

contributions in Q that can be seen as a discrete-time model noise and Bn the model noise
operator at step n. Here again, we adopt a useful notation | to say that An+1|n is a forward
operator giving the state at n + 1 knowing the state at n. This type of discrete-time model
can be considered in itself but – and it is our point of view – can also correspond to a time
discretization of continuous-time model of the form (1.4). As an example we could consider
– when stable – an explicit discretization of the continuous-time model (1.4) and we would then
have

An+1|n(·) = 1 + ∆tA(·, tn), Bn = ∆tB.

Similarly for an implicit discretization An+1|n and Bn are defined implicitly – and computed in
practice as a limit of the Newton algorithm – then

An+1|n(·) = (1−∆tA(·, tn+1))−1, Bn ' ∆tB.

where the second equality is in fact only an approximation at the first order of a non-linear
model noise.

Typically, our objective can be summarized as follows. We want to estimate a real trajectory
– time-continuous in essence in our case – by extending to our observer the discretization (1.8)
that we would consider as made in a direct simulation. To do so, two strategies are possible.
The first consists in discretizing directly the time-continuous estimator (1.6) based on classical
finite-difference time-discretization in the spirit of what has been done with (1.8). We obtain
for state estimation only a scheme of the form{

ŷn+1 = An+1|n(ŷn) +Gy,nJ(zn, yn, tn)

ŷ0 = y�
(1.9)

to be analyzed in terms of consistency and stability. Another strategy is to first discretize the
model following (1.8) and then apply the estimation formalism to the discrete-time system [Ben-
soussan, 1971,Kailath et al., 2000,Simon, 2006]. The resulting estimator can then be analyzed
as an consistent estimator of the continuous-time model [Dontchev, 1996,Mordukhovich, 1996].
Here also, the classical stability and consistency aspects must be verified, but they can be
simplified by the discrete stable operators generated by the discrete-time estimation formal-
ism [Kalman, 1960a,Hager and Horowitz, 1976,Boutayeb et al., 1997]. Moreover, the ultimate
objective for an estimator is to prove its convergence with respect to the target system. In this
respect, additional properties such as discrete-time observability conditions may be easier to
prove when following a strategy based on estimation principles at the discrete-time
level.
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For instance, when considering the variational approach, we can introduce a discrete-time
counterpart of the least square criterion. We introduce Jk : (z, y) 7→ Jk(z, y, t) and the criterion

min
ζ,(νk)k<n

{
J +

n (ζ, (νk)k<n) =
1

2
‖ζ‖2N� +

1

2

n∑
k=0

‖Jk(zk, yk, tk)‖2Rk +
1

2

n−1∑
k=0

‖νk‖2Sk

}
. (1.10)

Note that, in order for (1.10) to be consistent with (1.5), we need for instance Rk = δtR

and Sk = δtR. When minimizing this criterion over the constraint of the dynamics (1.8), a
discrete-time adjoint model appears as the Lagrange multiplier of the constraint, furnishing a
direct stable discretization of the continuous-time adjoint. The resulting minimizing trajectory
is defined by

∀n ∈ N, ∀k ∈ [0, n], ȳ+
k,n = yk|argminζ(J +

n ),

and the optimal observer can be defined by

∀n ∈ N, ŷ+
n = ȳ+

n,n.

This resulting discrete-time observer will be of the general form (1.9). The interest of such an
approach is that the stability of the discretization can be directly inferred from the optimality
at the discrete level. This is typically the case when jointly analyzing the two initial estimation
results for linear dynamics, namely the discrete-time Kalman filter in [Kalman, 1960b] and its
time-continuous counterpart in [Kalman and Bucy, 1961], see for instance a typical example of
result in [Aalto, 2014a].

One of the key aspects of our work is to propose and analyze various discretization
strategies combining discrete-time estimation concepts, classical numerical analysis,
discrete-time observability condition.

Finite-dimensional / Infinite-dimensional – Another fundamental classification concerns
the state dimension. The methodologies behind estimation are in fact very dependent of the
state dimension either for theoretical questions but also for practical matters. To summarize,
we can say that the results are more numerous for finite dimensional systems and covered from
more than half a century by the control theory. Here we can give some historical perspective
with the pioneer works of Wiener [Wiener, 1949] and Kolmogorov [Kolmogorov, 1939] followed
by the very important results of [Kalman, 1960b] and [Kalman and Bucy, 1961] that have
given birth to a tremendous literature. In optimal filtering we can in particular cite among
many others contributions that have inspired our research: [Fleming and Rishel, 1975, James
and Baras, 1988, Baras et al., 1988] or [Krener and Hermann, 1977, Krener, 2003a, Krener,
2003b,Kailath et al., 2000] etc.. with influences from dynamic programming, games theory...
For specific design, [Luenberger, 1964, Luenberger, 1971] give fundamental results and were
originally thought for finite-dimensional systems even if today they have a larger echo3. In finite-
dimensional filtering design, there are also many ramifications, in particular when considering
non-linear systems [Slotine and Lohmiller, 1998,Bullo, 2005].

The question of estimation has also become popular for infinite dimensional systems. The
state y(t) describes the time evolving solution of an evolution PDE y(·, t), the state space is

3however in a less extensive study of infinite dimensional than of finite dimensional systems [Andrieu and
Praly, 2006]
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a functional space – typically a Hilbert space – and the model operator A even when linear
is unbounded. A large community has arisen, extending numerous results obtained for finite
dimensional systems to infinite dimensional systems. We can typically cite very inspiring works
such as [Lions, 1968,Bensoussan, 1971,Bensoussan et al., 1993,Curtain and Zwart, 1995,Curtain
and Pritchard, 1978, Lasiecka and Triggiani, 2000, Zabczyk, 1992, Russell, 1978], again among
many others. There are numerous difficulties introduced by the infinite dimension in order to
define solutions of the original systems and the observer, but also to prove the observability of
the system – namely, the fact that there is enough information in the observations to estimate
the uncertainties considered – hence obtaining the convergence of the observer. Note that, as
with finite dimensional systems, authors have first started with optimal filtering strategies before
developing specific feedbacks adapted to given PDE formulations as previously cited. Moreover
PDE dynamical systems are now also studied in the light of notions covered more regularly in
finite dimensional systems such as attractors or Lyapunov theory, see for instance the inspiring
examples in [Coron, 2007,Joly, 2006,Fridman, 2013].

One fascinating aspect of observer (and also control) theory is that when the theoretical
difficulties introduced by the infinite dimension are finally solved, their discretization raises
new stabilization questions. Indeed, the classical discretizations have proved to not conserve
at the discrete level, the stabilization properties obtained for the initial PDE. Typically, the
limitation comes from the fact that, at the discrete level the observability constants depend
of the discretization, hence are not uniform. This has led to numerous works for proposing
adapted space discretization [Glowinski et al., 1989, Banks and Ito, 1991, Banks and Fabiano,
1998, Zuazua, 2005, Ramdani et al., 2007, Ervedoza, 2009] – and also time discretization as
already mentioned – with adapted strategies to prove the convergence of the discretized observer
to the real trajectory. Finally, the space discretization of the PDE has also consequences on
the practical usability of the designed observer. In fact, numerous designs – in particular those
coming from optimal filtering approaches in linear and even more in non-linear settings – are
confronted with a curse of dimensionality [Bellman, 1957]. As a consequence, the filters obtained
are unpractical for the large dimensional discretization used nowadays. Two ways are then
foreseen for circunventing this curse of dimensionality: (1) the Luenberger approach or (2)
reduced-order optimal filtering strategy where the optimal feedback is computed and applied
on a sub-space of Y. We have already cited numerous works on (1). Concerning (2), we based
our own developments on the inspiring feedback propositions of [Pham et al., 1998a, Pham
et al., 1998b,Pham, 2001] with the Singular Evolutive Extended Kalman Filter (SEEK) and the
Singular Evolutive Interpolated Kalman Filter (SEIK).

In our work, we have then decided to propose filters for PDEs which can be
discretized, hence implemented in a practical numerical environment. Moreover, our
objective is to be able to propose the numerical analysis of these discretizations, hence
proving that the discretized observer converges to the target trajectory with the
discretization refinement.

State estimation / parameter identification – So far we have considered a general class
of dynamical model {

ẏ(t) = A(y(t), t) +Bν(t), t ∈ R+

y(0) = y� + ζ
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where the unknown contributions can be seen as a model noise, and the initial condition con-
tribution ζy – y� being the known a priori part. We now discuss how to also estimate – or
identify – uncertain parameters in the model operator dynamics A(y(t), θ, t). We then say that
θ is uncertain around an a priori θ� so that θ = θ� + ζθ.

We also introduce a parameter space P equipped with a norm‖·‖P . Then we consider the
symetric definite operator Nθ, a bounded isomorphism of bounded inverse that weighs the norm

‖θ‖2P,Nθ = 〈θ,Nθθ〉P .

As a first idea, we can directly extend the variational approach in order to identify parameters
[Navon, 1998]

min
ζy ,ζθ,ν

{J (ζy, ζθ, ν, t)

=
1

2
‖ζy‖2N� +

1

2
‖ζθ‖2Nθ +

1

2

∫ t

0

(
‖z(s)− C(y|ζy ,ζθ,ν(s))‖2R + ‖ν(s)‖2S

)
ds

}
.

However, the extension can be less obvious when considering observers. The principle is, in
fact, to define a pseudo-dynamics for the parameters. Then an augmented state vector ( yθ ) is
associated with the dynamics

ẏ|ζy ,ζθ,ν = A(y|ζy ,ζθ,ν , θ|ζθ , t) +Bν

θ̇ = 0

y|ζy ,ζθ,ν(0) = y� + ζy

θ|ζθ = θ� + ζθ

(1.11)

This results in the sequential approach in the definition of a new dynamical system (ŷ θ̂)ᵀ that
pursues the target trajectory and parameters via a feedback control G = (Gy Gθ)

ᵀ acting on
the similarity measure J(z, y, t). The dynamics then reads

˙̂y = A(ŷ, θ̂) +GyJ(z, y, t)
˙̂
θ = GθJ(z, y, t)

ŷ(0) = y�

θ̂(0) = θ�

(1.12)

The second equation in (1.12) enables the identification of parameters through a new dynamics.
The final value of the parameter estimation corresponds to the expected identification. Note
that the parameter dynamics is obvious to invert, namely the final value coincides with the
initial value. This is not the case with the rest of the state initial condition, which can be
difficult to reconstruct with observers.

Let us now give some vocabulary and references about joint state and parameter estima-
tion. When assuming perfectly known parameters, we classically refer to state estimation. The
question of extending a state observer to a joint state-parameter observer is known as adap-
tive observer design. Adaptive observer is clearly a notion that has been introduced in finite
dimensional estimation. But there were some attempts to propose extensions for PDEs, for in-
stance [Baumeister and Scondo, 1987a,Demetriou and Rosen, 1994a,Chapouly and Mirrahimi,
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2010]. Finally, we mention that there exist a lot of works where only parameter identification are
considered [Chavent, 2010,Banks and Kunisch, 1989]. In the formalism (1.11)-(1.12), it is then
quite simple to see that parameter identification only is a singular case where the initial condi-
tion confidence is infinite. We have in particular studied the consequences of such asymptotic
consideration in terms of theoretical identification results, but also in term of observer design
– namely, is the state feedback Gy is null when we only consider uncertain parameters?

All the notions that we have introduced in the previous paragraphs have extensions for
joint state-parameter estimation. The observability condition will then express the fact that
there is enough information in the measurements to retrieve all the uncertainties including for
identifying the parameters, see for instance [Demetriou and Rosen, 1994b, Zhang, 2002, Alves
et al., 2009]. Then, the observability condition is often called identification condition.

In our work, we have proposed a quite general strategy to extend a state observer
to a joint state-parameter observer with a convergence proof strategy relying on
a joint state-parameter observability condition that can be followed in different
cases. Moreover, we have linked this approach to a least square criterion and proposed original
discretizations.

Remark 1.2.1 (Machine learning / data assimilation)
To end this section, we would like to emphasize some subjects that are not covered by data assimilation.
Indeed, in data assimilation a fundamental assumption is that we can reasonably describe the system
behavior and measurement procedures. In other words, in data assimilation there is a quite strong
confidence in our capability to define models of the dynamics and models of the observation. Typically in
weather forecasting, since L.F. Richardson (1922), numerous models of the atmospheric circulation have
been developed. Considering the cardiac system, complex causal models exist to describe the physiology
[Nash and Hunter, 2000]. This is to be opposed to some other organs as for instance brain studies where
the physiology is still so complex that there is limited success in describing the causal chain between the
brain state (if describable) and observation from a Electroencephalography or a Magnetoencephalography
for instance. When models are unknown, we enter in a vast domain of statistical learning where knowledge
on observations and corresponding state contribute to learn these models [Hastie et al., 2001]. These
theories are not intrinsically incompatible. In a way, data assimilation is more promising as soon as
the models are accurate. But an overstep of statistical learning can be considered if some modeling
ingredients are unreachable. For instance in cardiology, modeling the environmental impact on the
cardiac system as a direct physiological input can be very complex. Then some meta-models, statistical
learning and big data concept can be envisioned to cover these aspects. But this goes beyond our
presentation.

1.3 The cardiovascular system playground

The heart and more generally the cardiovascular system is a complex system. The heart function
is to drive the blood circulation at every beat. It is primarily a muscular pump triggered by
electrical signals. Its structure consisting of several admission and ejection chambers and its
electromechanical properties make it a biological engine well-adapted to this function. We find
in cardiac modeling various biophysical phenomena with

• electrophysiology which is a bio-chemical phenomenon typically understood as reaction-
diffusion phenomenon. The resulting action-potential is typically diffused up to the skin
where it can actually be measured with an electrocardiogram;
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Figure 1.1: Cardiac anatomy

• cardiac contraction, resulting from the action-potential propagation, which involves
large strain elastodynamics equations with specific micro-macro constitutive laws;

• fluid-structure interaction, in the cardiac cavity but also in the arterial systems con-
nected to the cardiac system. Moreover, the heart tissue is also perfused by blood hence is
a poro-mechanics system integrating solid and fluid. Finally when the heart is of interest,
some simplified fluids models can be envisioned leading to linear or non-linear hyperbolic
systems, typically a shallow-water (Saint-Venant) type of systems.

• Wave equations in recent data acquisition techniques. In particular much promise re-
sides in the elastography modality [Pernot et al., 2011] that records waves generated by
a controlled actuator in a tissue. There, transient elastography – provided by ultrasound
(US) devices – leads to wave propagation equations as opposed to Magnetic Resonance
Elastography (MRE) that assumes a harmonic regime, hence Helmoltz-like equations.

We see that the cardiovascular system is a beautiful modeling playground involving many dif-
ferent types of PDEs with multi-scale aspects in space and even time – as the heart can be
seen during a heart beat up to its remodeling during life. Moreover, we see that this system
is indirectly observed by many ways. We have already mentioned the electrocardiogram and
introduced the promise of elastography. Clearly, medical images such as echography, Magnetic
Resonance Imaging (MRI) or computed tomography (CT) bring a lot of information on the
heart contraction. There are also pressure recordings typically by catheters; flow recordings by
Doppler or Phase Contrast MRI. Therefore, we see that the cardiovascular system is not only a
playground for modeling but also for coupling models and observations.

But eventually it is clearly more than just a playground. Cardiovascular diseases (CVD)
have a significant impact on the European society in terms of mortality, morbidity and related
healthcare costs. Indeed, they cause over 1.9 million deaths in the EU every year (40% of all
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deaths), with a total estimated cost of e196 billion per year. As a consequence, there have been
many attempts to bring multidisciplinary expertise into medical research, and in partic-
ular modern computer sciences tools with the aim of introducing modeling and simulation
capabilities for such a complex biophysical system [Smith et al., 2011]. In the past years, a
growing understanding has appeared on the necessity that these simulations be personalized
on each subject to really offer diagnosis and prognosis tools. This requires acquiring the
specific anatomy, but even more importantly registering the biophysical state – with possibly
non-standard conditions associated with a disease. The biophysical personalization is based
on the abundant data available for each patient: medical imaging, pressure records, electro-
cardiograms... Mathematically speaking, this problem directly falls into the data assimilation
framework. Indeed, the principle is to benefit from the data at hand to retrieve the
specific state and parameters of the underlying dynamical physical model, as com-
monly done in weather forecasting or climatology, hence the possible epithet of heart forecasting.
At the forefront of the development of original data assimilation strategies of effective use in
a real context, we have developed observer strategies to jointly estimate the cardiac state and
identify parameters relevant to the diagnosis of certain pathologies.

1.3.1 Electrophysiology

Cardiac electrophysiology describes the electrical phenomena that occur in the cardiac tissue and
trigger the cardiac mechanical contraction. Over the past decades, cardiac electrophysiological
modeling has made huge progresses, and very realistic modeling and simulations are presented in
the literature as reviewed in [Keener and Sneyd, 2004,Colli Franzone et al., 2014], in particular in
pathological cases. Various electrophysiological models – based on a reaction-diffusion model –
exist as for example the bidomain model and its first approximation the monodomain model. The
bidomain equation can be written – in terms of we, the extracellular potential and wm = wi−we,
the transmembrane potential with wi, the intracellular potential – as

am

(
cm∂twm + iion(wm, κ)

)
−∇ ·

(
σ
i
· ∇wm

)
= ∇ ·

(
σ
i
· ∇we

)
+ amiapp, in Ω× (0, T ),

∇ ·
((
σ
i
+ σ

e

)
· ∇we

)
= −∇ ·

(
σ
i
· ∇wm

)
, in Ω× (0, T ),

where Ω denotes the domain of interest, and with appropriate boundary conditions{ (
σ
i
· ∇we

)
· n = −

(
σ
i
· ∇wm

)
· n, in ∂Ω× (0, T ),(

σ
e
· ∇we

)
· n = 0, in ∂Ω× (0, T ),

where am is a positive constant denoting the ratio of membrane area per unit volume, cm the
membrane capacitance per unit surface and iapp a given applied stimulus current. The term
iion(wm, κ) – called the reaction term – represents the ionic current across the membrane and
depends of internal current variable κ that have their own dynamics [Colli Franzone et al.,
2014]. It models the transmembrane potential evolution in the cell over time. The extra-
cellular potential we is defined up to a constant. In order to have a well-posed problem, the
condition

∫
Ωwe = 0 is added. Initially, the cell is at the resting potential around −80mV. Due

to a stimulus, the cell becomes depolarized very quickly and the value of the transmembrane
potential is around 20mV (1mV in rescaling cases). During the depolarization phase – called the
plateau phase – the mechanical contraction of the cell occurs. Then the repolarization of the cell
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begins. During this phase, the cell is in refractory phase, which means that a new stimulus cannot
trigger a new depolarization. The reaction term iion(wm, · · · ) governs these different states of
the cell. In order to describe this complex process which occurs across the membrane, one (or
more) ordinary differential equation(s) can be coupled with the previous bidomain equations.
There is a large variety of ionic models which represent the action potential. The existence and
uniqueness of the bidomain model has been studied for different ionic models in the literature,
see again [Colli Franzone et al., 2014] and references therein. A particular case of the bidomain
model is the monodomain model, obtained by assuming that that the intra- and extracellular
domains have equal anisotropy ratios

{
am

(
Cm∂twm + iion(wm, κ)

)
−∇ ·

(
σ
m
· ∇wm

)
= AmIapp, in Ω× (0, T ),(

σ
m
· ∇wm

)
· n = 0, in ∂Ω× (0, T ).

Finally we can say that electrophysiological models belongs to the class of reaction-diffusion
systems that we can write in the general form


∂tw −∇ · (D · ∇w) = kf(w, κ), in Ω× (0, T ),

κ̇ = g(κ,w) in Ω× (0, T )

(D · ∇w) · n = 0, on ∂Ω× (0, T ),

w(x, 0) = w0(x), in Ω.

And as a first analysis step we will also consider even simpler reaction diffusion systems where
we omit the internal variables.

1.3.2 Cardiac Mechanics

The heart contraction results from the cardiac muscle cells contraction that occurs at the
nanoscale of a hierarchical multi-scale structure with the attachment of so-called cross-bridges
within sarcomeres, namely, the creation of chemical bonds between myosin heads and specific
sites on actin filaments [Tortora and Derrikson, 2009]. Therefore, the subcellular scale is where
biochemistry and mechanics are intimately coupled, of consequence at the macroscopic scales
with the organ contraction. The objective of a heart model is then to incorporate in a contin-
uum mechanics formulation the active stresses driving the contraction and resulting from the
formation of cross-bridges triggered by the activation.

For a continuum mechanics description, we consider the heart domain denoted by Ω(t) at any
time t. This domain is the image of a reference configuration Ω0 through the solid deformation
mapping ϕ

ϕ :

∣∣∣∣∣Ω0 × [0, T ] −→ Ω(t),

(ξ, t) 7−→ x = ξ+ u(ξ, t)

where u is the solid displacement. The solid velocity is given by v = u̇. The deformation
gradient F is given by F (ξ, t) = ∇ ξφ = 1 + ∇ ξu, and its determinant is denoted by J . The
right Cauchy-Green deformation tensor is defined by C = F ᵀ ·F , the Green-Lagrange tensor by

e = 1
2(C−1) = 1

2

(
∇ ξu+(∇ ξu)ᵀ+(∇ ξu)ᵀ·∇ ξu

)
, and its linearization by ε = 1

2

(
∇ ξu+(∇ ξu)ᵀ

)
.
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In the reference configuration, the strong form of the principle of dynamics reads{
ρ∂tv − div(T ) = f, in Ω0

Boundary conditions
(1.13)

where ρ is the volumic mass, T is the first Piola-Kirchhoff stress tensor, and f are some volumic
forces. In a weak form – also known as the Principle of Virtual Work – we have a balance
between the virtual power of inertia forces, of internal forces and of external forces. Namely,
with V(Ω0) the space of admissible virtual displacements, we have

∀v[ ∈ V(Ω0), Pi(v
[) + Pint(v

[) = Pext(v
[)

with typically

Pi(v
[) =

∫
Ω0

ρ∂tv · v[ dΩ, Pext =

∫
Ω0

f · v[ dΩ

and
Pint(v

[) =

∫
Ω0

T : ∇ v[ dΩ =

∫
Ω0

Σ : due(u) · v[ dΩ

where Σ = F−1 · T is the second Piola-Khirchoff stress tensor.

In cardiac mechanics, the objective at the organ level is then to propose a modeling of
the stress tensor to include the muscle contraction along the fiber. Hence, in general [Glass
et al., 1991,Guccione and McCulloch, 1993,Nash and Hunter, 2000,Rice and de Tombe, 2004]
or [Sainte-Marie et al., 2006,Pathmanathan et al., 2010], we end up with

Σ = Σ
p

+ Σ
v

+ σa(t)τ ⊗ τ

where Σ
p
represents the passive – typically hyperelastic – stresses, Σ

v
represents the viscous

stresses and σ(t) is the active stress along the fiber direction τ . In the rest of this manuscript
we use Σ

v
= ηė and Σ

p
= ∂W

∂e with W a function of the invariants [Le Tallec, 1994], for instance
for biological tissues [Humphrey, 2003,Holzapfel and Ogden, 2009] propose choice of the form

W = α0 exp(α1(J1 − 3)2) + α2 exp(α3(J4(τ)− 3)2).

In this landscape, [Sainte-Marie et al., 2006], [14] have proposed a multi-scale strategy
allowing to link microscopic description of the active contraction [Huxley, 1957, Huxley and
Simmons, 1971, Eisenberg and Hill, 1978, Panerai, 1980, Bestel et al., 2001, Rice et al., 2003,
Marcucci and Truskinovsky, 2010,Guérin et al., 2011] accounting for the number of actin-myosin
crossbridges that are generated to the macroscopic description σa. A cross-bridge is seen as
a special chemical entity having internal mechanical variables – or degrees of freedom [Hill,
2004, Maugin and Muschik, 1994]. For instance in one of the pioneering and most studied
work [Huxley, 1957], the cross-bridge is seen as a system with one mechanical degree-of-freedom
(dof) corresponding to a linear spring that is under tension as soon as the myosin head attaches
to the actin filament.

Remark 1.3.1 (Active strain models)
Note that, recently, some works [Rossi et al., 2014] have followed the path of considering models of active
contraction through a decomposition of F between and active part and a passive part as it is naturally
the case when dealing with mechanical models of growth. The advantage of such models is that their
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mathematical analysis is facilitated by the fact that they directly induce energy balances. However,
the strategy proposed in [14] also allows energy balances and is adapted to stress-based active model,
hence benefiting from their large acceptation in the computational engineering but also biomechanics
and physiology communities due to their clearer physiological basis.

1.3.3 The cardiovascular system

The main external loading applied to the myocardium is not a volume loading f but corresponds
to the blood pressure pv applied on the internal cavity walls. In other words, the virtual power
of the external forces corresponds to

Pext = −
∫

Γendo

pvn · F−1 · v[J dΓ

where n is the normal vector and Γendo represents both the left and right endocardiums. There-
fore, we need to model the time evolution of pv. For the heart, we distinguish different phases.
When the valves are closed – which corresponds to an isovolumic phase of the heart contraction –
the internal pressure is mathematically – as a Lagrange multiplier – the result of the isovolumic
constraint in the cavity, see [Sainte-Marie et al., 2006]. However, when the valves are open, the
pressure results from a balance with the circulatory system. Then, the pressure can be given
when it is measured, or modeled by coupling the solid mechanics with a circulation model. Here,
3 levels of description exist: 0D, 1D or 3D models, and variations by coupling theses models are
possible [Formaggia et al., 2009,Xiao et al., 2013].

Windkessel

valve

Ventricle
pv pat

pvspar
q Rp Rd

Cp Cd

pd

Figure 1.2: A Windekessel model coupled to the ventricle

The 0D models, also called Windkessel models, consist in modeling the pressure in the cavity
as uniform and linking it to a simplified model of circulation describing the relation between
flow and pressure as an electrical circuit linking current and voltage. For instance, a double
Windkessel as in Figure 1.2 gives

Cpṗar +
par − pd
Rp

= q,

Cdṗd +
pd − par
Rp

=
pvs − pd
Rd

.
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with q the blood flow ejected by the heart, given by (see Figure 1.3)

q = − d

dt

∫
Γ̄endo

v · F−1 · nJ dΓ.

The ventricular pressure pv = par when the aortic valve is open for the left ventricle – the
pulmonary valve is open for the right ventricle, respectively.

pv

pat

par

q = 0

q < 0

Ωfluid

Γvalve

Γ̄endo

Γendo

Figure 1.3: Schematic of the ventricular cavity

The 1D models are often considered for modeling arteries as monodimensional systems
following the central line of the vessels [Formaggia et al., 2009]. We typically end up with
models with an hyperbolic part very similar to what we usually find in shallow water models{

∂ta+ ∂x(av) = 0, in Ω

∂t(av) + ∂x
(
av2
)

+ a
ρ
∂p
∂x + ν va = 0, in Ω

where a is the section area of the artery and v is the flow. These models can then be coupled
to a 3D model of the intra-cavity circulation or more often a 0D model. Moreover, junctions
between vessels are also often modelled with 0D transmission models.

Finally, 3D models of complete fluid structure interaction models can be considered to model
the blood within the cardiac cavity, but also to represent arterial blood flows. In this respect,
we rapidly summarize the classical formulation of a fluid-structure interaction problem in an
artery. We denote the solid and fluid quantities with s and f subscripts, respectively. We adopt
an Arbitrary Lagrangian Eulerian (ALE) formulation in the fluid by introducing the mapping

ϕale : Ωf
0 × [0, T ]→ Ωf(t),

such that ϕale|Σ0 = ϕ
s
|Σ0 ,but does not necessarily follow the material trajectories inside the

domain. We then associate the corresponding deformation gradient F
f
(ξ

f
, t) = ∇ϕale(ξf

, t),

and determinant Jf(ξf
, t) = detF

f
(ξ

f
, t). The fluid domain velocity is denoted by vale(ξf

, t) =
d
dtϕale(ξf

, t). Noting that vale|Σ0 = vs|Σ0 , we have thus defined an extension map such that

vale = Ext(vs|Σ0), in Ωf
0.
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Ωs(t)

Γinlet Γoutlet
pout

Rp
pd

Cd

Rd

Figure 1.4: Reference (top) and current domain (bottom) in the ALE
formulation

The strong form of the coupled fluid-structure problem consists of the two formulations
(1.14a),(1.14b) with the coupling conditions on the interface (1.14c)

vale = Ext(vs|Σ0), in Ωf
0,

ρf

Jf
∂t(Jfvf)

∣∣∣
ξ

f

+ ρf(vf − vale) · ∇xvf − 2µ∇
x
(ε

f
(vf)) +∇xpf = ρff f

, in Ωf(t),

∇x · vf = 0, in Ωf(t)

(1.14a)


ρs∂tvs −∇ξ · T s

= 0, in Ωs
0,

T
s
· ns = −ks(us − ub), on Γs

in,

T
s
· ns = −ksus − csvs, on Γs

(1.14b)

{
vf = vs, on Σ(t),

T · ns = Jfσf
(vf , pf ) · (F

f
)−ᵀ · ns, on Σ0,

(1.14c)

where d
dt

∣∣∣
ξ
represents the ALE time derivative (see [Formaggia et al., 2009] and references

therein) and f
f
is a force per unit mass – for example the gravity that may not be negligible in

the blood flow domain for long vertical arteries.

1.4 Past contributions

In order to summarize my research in one sentence my main research objective is to formulate
and mathematically justify original data assimilation strategies that can use data as provided
by the measurement procedure, in order to estimate unknown PDE model inputs such as initial
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conditions or parameters. With this objective in mind, the point of view is that of observer
theory in general in a deterministic context to control the initial PDE model so that it
pursues the observed trajectory.

To further classify my results, and more generally to partition the observer research field, we
can distinguish 5 fundamental challenges to be solved for each PDE model and measurement
at hand.

Challenge 1: Formulation of adequate similarity measures adapted to the system of interest
and design of the control feedback;

Challenge 2: Analysis of the resulting observer: existence, stability, convergence;

Challenge 3: Joint identification of model parameters – namely, adaptive observer formu-
lation – and analysis of identification properties;

Challenge 4: Discretization, numerical strategies and numerical analysis of the observer for-
mulation;

Challenge 5: Applications with real data, in particular in the cardiovascular context.

1.4.1 Data similarity measures and observer design

As recalled in the introduction, optimal filtering is very general in its formulation but its appli-
cation is limited when considering PDEs, as the covariance operator becomes uncomputable. In
order to overcome this difficulty, we have followed two directions depending of the nature of the
PDE considered:

• For dissipative problems, as the frequencies of interest can be considered as limited
we chose to rely on reduced-order Kalman-based filtering where the optimal filtering
principles are limited to a subspace of interest. In essence, this means that the covariance
operator is proved to be decomposed into

∀t, P (t) = L(t)U(t)−1L(t)∗,

where L∗ is a projection operator on a subspace (potentially finite dimensional) and U

is an invertible covariance operator on this subspace. There the dynamics of L and U

can be computed. In this respect, our work on reduced-order filtering [16, 22–24] – see
Section 2.3.1.4 – has allowed us to experiment with some reduced state filtering design for
two examples of systems that are aimed to be discretized with a reduced basis strategy
– POD in our case. The POD basis is then also used to decompose the initial condition
uncertainty into a small space to be filtered and the rest. The first system example is an
over-damped mechanical system as can be the case in cardiac mechanics [13]. The second
system was of reaction-diffusion type occurring in electrophysiology [19].

• For conservative problems, there is no hope to rely on reduced-order optimal filtering
as unfiltered error will increase in the uncontrolled space and irremediably pollute the
estimation. Therefore, we must rely on a Luenberger observer, which implies to design
specifically the feedback for each type of PDE and type of measurement. In this context,
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we proposed in particular an original observer feedback for mechanical systems when only
the displacement field – as opposed to the velocity field – is partially observed. Indeed,
when the velocity is observed, a classical observer for wave-like equations is given by the
Direct Velocity Feedback (DVF). Typically, for a wave equation observed on a subdomain
Ωobs, the DVF observer reads

˙̂u(x, t) = v̂(x, t), (x, t) ∈ Ω× (0,∞)

˙̂v(x, t)−∆û(x, t) = −γ 1Ωobs(x)
(
z(t)− v̂|Ωobs(x, t)

)
, (x, t) ∈ Ω× (0,∞)

û(x, 0) = u�(x), v̂(x, 0) = v�(x), x ∈ Ω

But there was no equivalent when the displacement is directly measured and cannot be
differentiated in time without dramatically amplifying the measurement noise. More gen-
erally saying, we aim at designing a feedback that can use directly the observed field of a
wave-like system and not its time-derivative. In [25] we propose such an original filter in
and give several results concerning its practical implementation. It reads

˙̂u(x, t) = v̂(x, t) + γ ExtΩobs

(
z(t)− û|Ωobs(x, t)

)
, (x, t) ∈ Ω× (0,∞)

˙̂v(x, t)−∆û(x, t) = 0, (x, t) ∈ Ω× (0,∞)

û(x, 0) = u�(x), v(x, 0) = v̂�(x), x ∈ Ω

with

ExtΩobs :

∣∣∣∣∣∣∣∣∣∣
H1(Ωobs)→ H1

0 (Ω)

φ 7→ ψ s.t. :


∆ψ = 0, in Ω\Ωobs

ψ = 0, on ∂Ω

ψ = φ, in Ωobs

and we called it the Schur Displacement Feedback (SDF) observer – see Section 2.3.2.

From this first design, we found an important advantage of our SDF when considering shape
measurements in cardiac mechanics. Indeed, an important question in data assimilation for
cardiac mechanics is to be able to handle data that correspond to the contours {S(t), t ∈
[0, T ]} of the beating heart observed through medical imaging. In that case, we derived in
[25,26] a similarity measure based on the distance to the contour that generalizes the case where
we observed the normal displacement at the boundary, namely by derivating the least square
functional

Jdata(z, y, t) =

∫
Σ
|distS(ξ+ u(ξ, t), t)|2 dΓ,

where distS is the signed distance to the contour surface S. In fact, from our experience of the
SDF definition [25] we prove that a more efficient similarity measure is given by

Jdata(z, y, t) = Ext(distS(ξ+ u, t);nS)‖2El ,

with ‖.‖2El the norm associated with the linearized elastic energy in the solid, namely equivalent
to the H1-norm and

ψext = Ext(ψ; τ) :



div(A : ε(ψext)) = 0 in Ω

ψext · τ = ψ in Γuobs

(A : ε(ψext)) · τ⊥1 = (A : ε(ψext)) · τ⊥2 = 0 in Γuobs

same boundary conditions as the model on ∂Ω\Γuobs
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is a lifting of a scalar data given on the boundary along the direction τ , – with (τ , τ⊥1 , τ
⊥
2 ) a

local orthonormal basis – see Sections 2.3.3.1 & 2.4.1.1.

Therefore our SDF is directly generalized in the non-linear case. We even go further in this
aspect by considering an other type of shape observation with the Tagged-MRI modality [33],
an imaging modality were a magnetic grid is imprinted on the tissue. We also extend our results
to other shape similarity measures with the introduction in a data assimilation framework of the
concept of shape descriptors based on the formalism of currents popularized by L. Schwartz, a
state of the art framework in computational geometry [34], by which surfaces are “embedded”
into a Reproducing Kernel Hilbert space (RKHS) with a distance norm of the form

‖S1 −S2‖2 =

∫∫
S1

n1(x) · k(x′, x)n1(x′) dΓ dΓ +

∫∫
S2

n2(x) · k(x′, x)n2(x′) dΓ dΓ

− 2

∫
S1

∫
S2

n1(x) · k(x′, x)n2(x′) dΓ dΓ.

where k is the kernel of the RKHS. When considered in an observer context, S1 is then the
deformed boundary of the object and S2 the observed boundary and the discrepancy defined
from the norm must be differentiated with respect to the deformation – see Section 2.4.1.2.

Finally, we have developed feedback design principles for non-linear models using transfor-
mations that convert the original system into one where feedbacks are well-known. Then we
carry over the observer to the underlying non-linear initial equation by an “inverse transforma-
tion”:

• In [6] – see Section 2.3.3.3 – we use this principle for non-linear hyperbolic systems such
as the shallow-water equations. By using a kinetic representation, we transform our initial
system to a linear system – up to the collision term – with an additional kinetic variable,
namely a dynamics of the form

∂

∂t
m(t, x, v) + v

∂

∂x
m(t, x, v) = q(t, x, v)

where v is the kinetic velocity variable, m is a particle density and q is a collision operator
which satisfies

∫
R
q(t, x, v) dv = 0,

∫
R
vq(t, x, v) dv = 0,

∫
R

v2

2 q(t, x, v) dv ≤ 0. The
initial system corresponds to the first moments of this generic dynamics, namely

h =

∫
R

m(t, x, v) dv, hu =

∫
R

vm(t, x, v) dv.

On this kinetic representation, a well-designed observer simply reads

∂tm̂+ v
∂

∂x
m̂ = γ (mz − m̂) ,

where mz is a density reconstructed from the available observations. Then we find the
feedback of the initial system by taking the moment of the kinetic representation observer.
We end up, for the shallow water system with observed water height z = ȟ + noise, with
the following non-linear observer

∂ĥ

∂t
+

∂

∂x

(
ĥû
)

= γ(z − ĥ)

∂

∂t

(
ĥû
)

+
∂

∂x

(
ĥû2 +

g

2
ĥ2
)

= γû(z − ĥ)
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The kinetic representation also allows to prove the efficiency of the resulting observer when
compared to the literature.

• In [18] and [31] – see Section 2.4.2 – we propose to design an observer for reaction-diffusion
system {∂w|ζ

∂t −∇ · (D · ∇w|ζ) = kf(w|ζ), x ∈ B, t ∈ [0, T ]

w|ζ(0) = w� + ζ

presenting traveling waves solutions and where only the front position is observed. The
data are therefore typically of the form of an image of the region

∀t ∈ [0, T ], z(t) = Dw̆(t) = {x ∈ Ω, w̆(x, t) + noise > cth}

Here, the model and the data present strong non-linearities. Our strategy is to compare
the asymptotic eikonal equation describing the traveling wave propagation in a level set
framework

∂φw
∂t

= |∇ φw|
(
∇ ·

(
D · ∇ φw
|∇ φw|

)
+ α0

)
, (x, t) ∈ B× (0, T ).

with a similar eikonal equation arising in image processing for regularizing a data-fitting
functional. This is typically the case in the Mumford-Shah theory where the eikonal
equation appears in the gradient-descent associated with minimization over level sets φ of
the following type of functional

JMS(φ) =

∫
Dφ

(
z(t)− C1(Dφ)

)2
dx +

∫
B\Dφ

(
z(t)− C2(Dφ)

)2
dx,

with

C1(Dφ) =

∫
Dφ
z dx∫

Dφ
dx

, C2(Dφ) =

∫
B\Dφ z(t) dx∫

B\Dφ dx
.

From this analogy, we deduce natural observer for our asymptotic system of the form

∂φŵ
∂t

= |∇ φŵ|
(
∇ ·

(
D · ∇ φŵ
|∇ φŵ|

)
+ α0

)
+ γ δF α(|∇φ|)

(
−
(
z(t)− C1(D)

)2
+
(
z(t)− C2(D)

)2)
(x, t) ∈ B× (0, T ),

that we carry over to the original system by an “inverse asymptotic” procedure to propose
the following original observer for reaction diffusion problem

∂ŵ

∂t
−∇ · (D · ∇ ŵ) = kf(ŵ)

+ γ δFα(|∇ ŵ|)
(
−
(
z(t)− C1(D)

)2
+
(
z(t)− C2(D)

)2)
, (x, t) ∈ B× (0, T ).

1.4.2 Observer analysis results

Once the observer has been envisioned, we can proceed to its analysis. Here, we must define
the necessary framework to prove that (1) the observer dynamics is well posed (2) the observer
converges asymptotically to the target trajectory in the absence of observation errors and (3)
the estimation is robust to noise.
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In [10], we have demonstrated (1) and (2) on our original SDF observer by linking the
observer asymptotic convergence to an observability condition of the type

∃c > 0, ∀T > T0,

∫ T0

0
‖u|ζu,ζv(·, t)‖2H1(Ωobs)

dt ≥ c
(
‖ζu‖2H1(Ω) + ‖ζv‖2L2(Ω)

)
,

∀(ζu), ζv) ∈ H1
0 (Ω)× L2(Ω)

and u|ζu,ζv a solution of the wave equation with initial condition ζu, ζv. This observability is
not proved in the litterature and we propose a demonstration where by local equirepartition
of the energy we directly link this condition to the classical geometric control condition (GCC)
that, usually, justifies an observability condition for velocity measurements, hence for the DVF
observer, – see Section 2.3.3.1. We generalized this results to a beam equation in [11] and
to elasticity in a subsequent paper (see [Imperiale, 2013]). In the latter – of original interest
for us having the cardiac application in mind – the GCC is replaced by the elastic geometric
control condition stating that every combination of pressure (P) and shear (S) waves ray should
encounter the subdomain of observation, knowing that these rays are independent in the domain
interior and coupled on the boundary as any (P) ray reflects on the boundary to give a (P) ray
and (S) ray, and conversely for the (S) rays.

We also investigate the stabilization property of the SDF in a fluid-structure interaction
formulation [4]. In this case, we do not have a complete mathematical proof for the observability
condition. However, we show by a spectral sensitivity analysis the type of observability condition
that can and can-not be expected in this coupled problem – see Section 2.3.3.2.

In [24] – see Proposition 2.3.6 – we investigate the point (3) for the classical DVF observer.
More precisely when the stabilized operator can be shown to be Riez Spectral, namely that the
eigenelements of the stabilized system generate a Riez basis, we evaluate the impact of a white
measurement noise on the estimation error.

In [6] (see Theorem 2.3.11), we also propose several analysis results concerning (1), (2) and
(3) concerning the observer design of hyperbolic conservation laws based on a kinetic description.
Indeed we analyse convergence of the observer with respect to a scalar gain multiplying the
feedback and we investigate the impact of noisy observation, which shows to be not negligible
in the strong L2 norm because of its high oscillations, but is smaller in a weaker H−α norm. It
remains, however, to have a complete understanding of the asymptotic convergence with respect
to time, in particular for partial measurements.

In [18] (Propositions 2.4.1 & 2.4.2), we show a stabilizing property – a prerequisite of (2) – of
our reaction-diffusion estimator based on front data. In this non-linear case, we show that, as
soon as the data are sufficiently contrasted – namely, the front is sharp enough in the data – our
feedback allows a decrease of the linearized estimation error. This implies that our observer can
converge for small estimation errors. However, on this last observer, there are still numerous
open questions to finalize our analysis. In particular, the necessary condition of existence of the
observer remains as the observer involves a singularity in the feedback term.

1.4.3 Parameter estimation results

In [24], we study the question of adaptive parameter estimation in order to propose a strategy
of parameter identification that can be coupled to any state observer. In other words, our
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objective is to propose for any state observer of the original system, a generic additional
parameter feedback allowing to jointly identify some parameters. In this respect, we
demonstrate that an efficient approach is to combine, with the initial state feedback Ğ, a reduced-
order optimal estimator restricted to the parameter space. Indeed, the state estimate allows to
stabilize the error on the parameter subspace justifying to limit the Kalman-like covariance
operator on this subspace. In a fully linear context, we have a joint estimator of the form

˙̂y = Aŷ +Dθ̂ + Ğ(z − Cŷ) + L
˙̂
θ, ŷ(0) = y�,

˙̂
θ = U−1L∗C∗R(z − Cŷ), θ̂(0) = θ�,

L̇ = (A− ĞC)L+D, L(0) = 0,

U̇ = L∗C∗RCL, U(0) = P θ.

We analyse this strategy in a linear context with the change of variable

(ỹ, θ̃) 7→ (η, θ̃) = (ỹ − Lθ̃, θ̃),

that gives the following error dynamics{
η̇ = (A− ĞC)η
˙̃
θ = −U−1L∗C∗RCLθ̃ − U−1L∗C∗RCη + U−1L∗C∗Rχ,

This error system is luminous as it partially decouples a typical state estimation error dy-
namics η̇ = (A − ĞC)η and a typical parameter identification error dynamics of the form
˙̃
θ = −U−1L∗C∗RCLθ̃. In particular our proof allows to understand that a classical simple pa-
rameter identification approach cannot be robust to any state error including initial condition,
discretization errors or modeling errors when Ğ = 0 as η can be excited by various errors, hence
pollute the parameter error θ̃. Therefore, we advise to always consider a state observer and rely
in any identification problem on a joint state-parameter estimator much more robust to errors.
In a non-linear context for the coupled state and parameters – which is very common when
considering parameter identification – the operators in the dynamics of L and U are the tangent
of dynamics and/or the observation model in the spirit of the EKF filter, hence we propose a
Reduced Order Extended Kalman Filter (ROEKF) applied to the parameter space. Here, we
propose elements of analysis based on the linearization of error dynamics where our arguments
obtained for linear systems can be reused. For further details see Section 2.3.4.

From the results obtained in [24] we derive two important extensions by replacing the
ROEKF applied to the parameters by a Reduced Order H∞ Filter in [16] (Sections 2.3.4.3)
and a Reduced Order Unscented Kalman Filter (ROUKF) in [22, 23] (Section 2.3.4.4). On the
one hand, the H∞ version allows to present an original alternative analysis, in particular in a
deterministic context as it represents a worst case scenario. On the other hand, the UKF version
is very useful in practice as it computes the parameter sensitivity from a stencil of particles,
hence is model tangent free. This has shown to very interesting when dealing with complex
models – for instance fluid-structure interaction problems [5] or electromechanical problems [19]
– and non-linear discrepancy measurements as in [33, 34]. Note that, in order to rely on UKF,
we manage to formulate the reduced-order version of the UKF estimator in its most general
form [22] (see Section 2.3.1.4).

It is also important to underline that our principle of coupling Luenberger observers with
reduced-order optimal filters has also allowed us in [19] to formulate an adapted estimator for a



30 Chapter 1. Summary of my research contribution

coupled parabolic and hyperbolic problem. On the one hand, the Luenberger observer is devoted
to the hyperbolic system where the complete space must be stabilized, and on the other hand
the reduced-order optimal filter increases the stabilization of the low frequencies of the parabolic
system.

1.4.4 Discretization Results

The first objective is to propose adequate discretizations in terms of consistency and stability.

• In this respect, we put a lot of effort in demonstrating on realistic cases the computational
efficiency of our new formulated state observer in [25] or [33,34] where we propose conser-
vative time-schemes, but also splitting methods which are both convenient for practical
implementations but also for numerical analysis. Indeed, with a splitting strategy we can
separate the initial model discretization, the feedback discretization and eventually some
additional numerical viscosity to enforce the stabilization rate to be robust with respect
to the discretization and avoid spurious high frequencies (see Section 2.3.2.3).

• Concerning our reduced-order optimal filter in [16, 23, 24], we also propose adequate
discretizations based on the time-discrete optimal filter theory, hence we formulate the
Reduced-Order time-discrete optimal filter (see Section 2.3.4.2).

• Moreover, we assess the consistency of our new formulated ROUKF by comparison with
the ROEKF of the linearized error system. In [6], we also cover the discretization question.
Here we show the potential of the kinetic representation to propose adequate discretizations
of our observer of hyberpolic systems. In fact, we are able to obtain a stabilization result
at the discretized level.

• Finally, in an upcoming paper [37] (see Section 2.2.1), we propose a time-discrete version of
the exact optimal filter for non-linear systems. For time-continuous systems, the Mortensen
filter extends the Kalman filter by{

˙̂y(t) = A(ŷ, t)− (∇2V (ŷ(t), t))−1 dyJ(ŷ(t), t)ᵀRJ(ŷ(t), t), t ∈ R+

ŷ(0) = y�

where a cost-to-come V is the solution of a Hamilton Jacobi Bellman equation of the form{
∂tV (y, t)− H̄

(
y,∇V (y, t), t

)
= 0, (y, t) ∈ Y ×R+

V (y, 0) = 1
2‖y − y�‖2Y,N�

with H̄ (y, q, t) = 1
2‖J(y, t)‖2Z,R− 1

2q
ᵀBQBᵀq− qᵀA(y, t). However, there is no equivalent

result for time-discrete system. In [37], we prove that for a large class of non-linear
systems, the extension of the time-discrete Kalman filter for non-linear systems is given
by the following procedure: From the costs-to-come solutions of the following Bellman
equation 

V +
n (y) = V −n (y) + 1

2‖Jn(y)‖2Rn ,

V −n+1(y) = V +
n (y̆) + 1

2∇V −n+1(y)ᵀBnQnB
ᵀ
n∇V −n+1(y)

with y = An+1|n(y̆) +BnQnB
ᵀ
n∇V −n+1(y),

V −0 (y, 0) = 1
2‖y − y�‖2Y,N� ,
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compute 

Initialization:

ŷ0 = y�,

V −0 = 1
2‖y − ŷ−0 ‖Y,N� ;

Correction:

Starting from initial guess ŷ−n which satisfies

∇V +
n (ŷ−n ) = dJn(ŷ−n )ᵀRnJn(ŷ−n ),

compute (by Newton’s method) for n ∈ N, ŷ+
n such that

∇V +
n (ŷ+

n ) = 0;

Prediction:

ŷ−n+1 = An+1|n(ŷ+
n ), n ∈ N which satisfies

∇V −n+1(ŷ−n+1) = 0;

Our second objective is to propose complete numerical analyses of the state observers and
then of the joint state-parameter observers. Our most important result appears in [11] – see
Theorem 2.3.5 – where we prove that the observer can be a better approximation of a real system
than the usual discretized system. In essence, our result restarts from the usual numerical con-
vergence estimates for the full discretization of the a wave equation with a spatial discretization
of order hθ and temporal discretization of order ∆tα, namely

‖ŷnh − y̆(n∆t)‖Y ≤ c(y0, n∆t) max(hθ,∆tα), ∀n ∈ N

This estimates deteriorates when time increases. However with the observer we manage to
obtain with ε = max{∆t, hθ}

‖ŷnh − y̆(n∆t)‖Y ≤ c(y0) max(ε, ε2 h−1∆t), ∀n ∈ N.

Therefore, when data are available, it is always positive to incorporate them in the
numerical simulation through the definition of an observer. In order to prove the result
in [11], we demonstrate an exponential stability result uniform with respect to the discretization
– space or time. When this result is added to the usual paradigm of consistency and stability in
numerical analysis, then we can show that the observer is a better approximation of a real system
than the usual discretized system since the use of the available data allows to counterbalance
the effect of time in classical numerical estimates. We point out that this result obtained for the
wave equation can be generalized to several other systems, as we did for instance for a beam
equation [11].

Sampling
period

Observer using
interpolated data

Data noise &
Initial errors

using data 
only when
available

Observer Fig. Regimes
where time-sampled 
observers are more 
likely to be eff icient

In [17] we investigate the fundamental
question of assimilating time-sampled data.
This question is very sensitive when consider-
ing medical imaging data as for instance MRI
techniques that are known to have a strong
resolution in space but not as strong in time
as opposed to ultrasound technics that have
a good resolution in time but not as good in
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space. Mathematically speaking, we improve the result of [11] by incorporating a data time-
sampling parameter – see Theorem 2.3.7. Then we compare two choices of data assimilation.
On the one hand the estimation uses interpolated data at each time-step of the model discretiza-
tion. On the other hand, an observer uses the data only when they are available. The resulting
optimal strategy depends of the level of data noise and of the data sampling period. Note that
we also investigate the question of data space discretization in the particular case of tagged-MRI
data [Imperiale, 2013] – see Section 2.4.1.3.

Finally we show in [13] that when parameter estimation is defined as a second stage of a
system discretized by reduced basis approaches – in our paper we consider the case of Proper
Orthogonal Decomposition – the question of the stability of the state discretization with respect
to the parameter variation must be assessed carefully. More precisely, we prove that the POD
basis must be built from trajectory snapshots generated from a sampling of the parameter space
where the target parameter is expected.

1.4.5 Modeling and application results

From the beginning of our work on data assimilation we aim at convincing the cardiovascular
community of the potential of using data assimilation, and more precisely sequential strategies,
in order to build patient-specific models [28] and [33, 39–41] – see Section 3.4. In a first step,
we proceed by presenting our methods on realistic synthetic examples [5,6,18,19,25] or [33,40].
Then we succeed in presenting complete cardiovascular applications with real data on two cases:

• In [8] we estimate the contractility of a pig infarcted heart using Cine-MRI segmenta-
tions of the left ventricle. On a controlled animal experiment we are able to quantify
the infarct by identifying a contractility parameter in the model using as data only the
deforming contours of the geometry extracted from the image sequence segmentation. Up
to our knowledge, this article is the first article integrating a complete data assimilation
framework with real data for a cardiovascular application.

• In [21], we identify the boundary condition representing the tethering of external organs
on an aorta fluid-structure interaction model and using CT segmentations of the aortic
walls. The deformation of arteries is very much impacted by the surrounding organs, as for
instance the aorta that is partially tethered to the spine. To avoid too much complexity
in the modeling of such external organs we propose to replace them by a simpler model of
boundary conditions that then need to be identified. We again use real data segmentations
of medical images assimilated in the complete fluid-structure interaction model to perform
a joint state and parameter estimation. There is also [3] where in-vitro estimation results
on a controlled real experiment mimicking a vascular system are excellent.

The efficiency of our ROUKF method has motivated other international groups to use
sequential strategies for identification in a cardiac context, see for instance our collaborations
in [3, 20, 29]. In [29] the collaboration has allowed to illustrate how UKF-based estimation can
be used to identify a parameter of a quasi-static hyperelastic model. In [20] the ROUKF filter
developed in our opensource Library Verdandi4 is used in a large collaboration in a clinical

4developed in collaboration with Inria-project Clime
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context. Qualitatively the results are interesting but remain to be improved quantitatively due
to modeling issues. A similar type of collaboration has also been set-up in [3] for stiffness
identification in a blood-flow FSI model. This effort toward the cardiovascular community is
finally summarized in the two review papers [9, 12].

Note that in order to apply our observer strategy in a real context, we faced the necessity to
improve the quality of our cardiac and cardiovascular models in terms of formulation [7,14,15],
discretization [14, 15], boundary conditions [26], experimental calibration [7] or even clinical
predictivity with respect to a given pathology [27]:

• Original models – In [14] (see Section 3.2.1.1), we complement the first model of cardiac
contraction proposed in [Sainte-Marie et al., 2006] by improving the coupling between
the microscopic model and the macroscopic formulation. In particular we obtain in this
paper a complete energy balance between the macroscopic kinetic energy and hyperelastic
energy and the microscopic elastic energy of the cardiac actin-myosin bridges. In [7] (see
Section 3.3.1), we proposed an asymptotic formulation of the 3D cardiac model in order to
define an adequate 1D model of cardiac fiber and 0D model of cardiac cavity. These two
models are very interesting as they contain the same constitutive law as the 3D model.
Therefore, we prove in [7] that they are very useful for calibration purposes. In [15] (see
Section 3.2.2), we propose a new poromechanics formulation formulation that is adapted
to the large deformations and rapid flows present in the heart. This general model reads

ρs0(1− φ0)
dvs

dt
−∇ξ · (F · Σs

)− Jφ2k−1
f
· (vf − vs)

+pJF−T · ∇ξφ = ρs0(1− φ0)f, in Ω0

1

J

d

dt
(Jρfφvf) +∇x ·

(
ρfφvf ⊗ (vf − vs)

)
− θvf + φ2k−1

f
· (vf − vs)

+φ∇xp−∇x · (φσvis) = ρfφf, in Ωt

1

J

d

dt
(Jρfφ) +∇x ·

(
ρfφ(vf − vs)

)
= θ, in Ωt

with φ the volume fraction of fluid phase. These equations present an interesting structure
of Fluid-Structure interaction where the solid velocity plays the role of an ALE – here not
arbitrary, however. We prove that the system is energy balanced as was not the case for
a more classical coupling involving a structure with a Darcy fluid.

• Boundary conditions – In [26], we propose to use viscoelastic boundary conditions for
the solid in order to easily integrate the tethering of external tissue around the system.
Therefore, we have in general on the solid boundary

T
s
· ns = −ks(us − ub)− csvs, on ∂Ωs

0

where ks is an elastic coefficient, ub is a given displacement and cs a viscous coefficient.
These simple boundary conditions have shown to be quite effective on our cardiac and
arterial modeling [26] and are now well adopted in the community. Note that it is also
possible to consider these boundary conditions on the deformed configuration and not the
reference configuration.
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• Discretization – In [14] for our cardiac model (see Theorem 3.2.3) and in [15] for our
poromechanics model (see Theorem 3.2.5), the energy balance that we obtained at the
continuous level have allowed us to formulate energy balanced time-discretization of these
non-linear systems. Therefore, these discretizations offer a chance to prove convergence,
at least in their linearized version.

• Experimental calibration In [7] (see Section 3.3.1.2), we complete the intricate work
of making our 1D asymptotic model to fit complex sets of experimental data obtained
by Y. Lecarpentier on mice. This work is then for the team an important validation and
calibration step of the original model that we have proposed. It was also a necessary step
before pursuing our application objective of inverse problems on real data.

• Clinical predictivity In [27] we prove that cardiac modeling can now be of practical use,
for instance in order to optimize the pacemaker lead positions. To this end, we based the
simulation of [27] on heartLab, the cardiac FEM code with data assimilation capabilities
that we have specifically developed.

Note finally that we have also decided to better understand some measurement procedures such
as ultrasound [32], tagged-MRI [33] or electro-cardiograms (ECG) [30] etc. In fact we believe
that there is a real need in combining model and data for both estimating the models, but also
understanding and filtering the measurement procedure.

1.4.6 Other Results

Finally, the paper [2] concerned a classical “static” inversion problem about the Radon transform
from partial measurement and numerical methods associated with it. This result is not strictly
devoted to observer theory or cardiovascular applications. However, it corresponds to a first
experience in inverse problems and has some interesting echos in my actual work.

1.5 Perspectives: Research Project

We conclude this chapter by giving some perspectives and future works and here again we believe
that the matrix of our 5 challenges in observer theory naturally classifies our future research.

1.5.1 Challenge 1: From Data similarity measures to observer design

We have formulated – in specific cases [18,25] and [31,33,34]– some original observers strategies
which can tackle shape-based measurements. These observer formulations combine image
analysis considerations, shape optimization methods and control theory. Some of
them have already have led to original formulations that were numerically assessed in synthetic
cases. We now believe that we are at the forefront of developing a general theory on observers
based on shape data. In particular, we think that our Mumford-Shah approach (see [18] and [31]
and Section 2.4.2) can be further analyzed and generalized to multiple PDEs. We have in mind
two interesting model examples with potential cardiac applications.
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• The first one is a biomechanical model of the contraction where we replace our distance-
based or currents-based feedback term by a feedback based on the Mumford-Shah func-
tionnal. One difficulty is that the Mumford-Shah similarity measure must be adapted in a
H1 context in order to extract the maximal observability from the data, hence to envision
stability results at least for small errors in a H1 context.

• A second class of system concerns wave-like systems in infinite domains with application
to elastography. Wave propagation in acoustics or elasticity can also be observed via
wavefronts as with new echographic devices that image the wave propagation [Pernot
et al., 2011] (see Fig. 1.5). In this case, whereas the detailed values of the propagating
wave are unknown, the pattern associated with the propagation is visible and provides a
wealth of information on the wave and the underlying medium. In cardiac applications,
this novel measurement modality has a tremendous potential. Indeed, the local properties
of the tissue can be assessed by focusing on a small volume of tissue at high frequencies
uncoupled from the heart rate. After rewriting a wave equation in a first-order hyperbolic

Figure 1.5: Wave propagation echography in a medium with a penetrable
inclusion (courtesy M. Pernot)

system with y = (u v)ᵀ, our starting strategy will be to introduce a Mumford-Shah
feedback of the formρ ∂tû(x, t)−∇ · v̂(x, t) = −βδΓ̂(x,t)

|∇ŷ|

((
I[y̆](x, t)− C1(t)

)2−(I[y̆](x, t)− C2(t)
)2)
, x ∈ Rn,

µ−1 ∂tv̂(x, t)−∇û(x, t) = 0, x ∈ Rn.

Note that this system is unbounded and, having in mind its implementation, we must take
into account the necessity to impose transparent boundary conditions, or at least absorbing
boundary conditions. However, the question of transparent boundary conditions is already
challenging for standard wave-like equations, and we will now face the situation to make
them compatible with our observer definition.

In the spirit of our design principle by transformation and inverse transformation, with Marie
Doumic – and our PhD Student Aurora Armiento – we recently started a collaboration con-
cerning the estimation of models of population dynamics, and more precisely Lifschitz-Slyozov
models of depolymerization [1]. In this model, a concentration u of polymers reacts with a
concentration v of monomers leading to the dynamics

∂

∂t
u(x, t) +

∂

∂x

((
ko(x)v(t)− kd(x)

)
u(x, t)

)
= 0, x ∈ R+, t ≥ 0,

v(t) =

∫
R+

xu(x, t)dx = ρ > 0

u(x, 0) = u0(x),

v(0) = v0
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where ko is a polymerization rate, kd a depolymerization rate, and ρ the total mass of monomers.
In this context, the measurements considered by the biologists are the moments of u of order
k = 0, 1 or 2

z =

∫ ∞
0

xku(x, t)dx.

Here again, we aim at defining a joint state and parameter estimator. To do so, we project to
reduce the Lifschitz-Slyozov system by considering the dynamics of its moments with adequate
closure relations, hence defining a finite dimensional non-linear system where the measurements
at hands are direct observations of the state. Then, combining the existing theory of observation
of non-linear system in finite dimension, we believe that we can propose and justify original state
estimators. The parameters estimation design will follow naturally from our previous works.

1.5.2 Challenge 2: Observer analysis

Reaction-diffusion with shape observations – We have formulated for reaction-diffusion
problems original observer strategies that can tackle shape-based measurements [18] [31]. From
this first step of design, we now want to further analyze the formulated observer. The question
is to give a sense to the singular data-driven term. In a starting collaboration with Romain
Joly, we find that this question is close to similar problems formulated around the Mumford-
Shah functionals and related Gradient Flow systems [Gobbino, 1998, Feng and Prohl, 2004].
Therefore, starting from our first result of stability for small errors [18], we believe that a more
complete analysis can be performed to show that asymptotically the observer converges to a
propagating wave solution with accurate front velocity.

Observer for wave-like equations in unbounded domain – The extension of our front
based feedback to wave equations imposed to first develop a theory of observers for wave equa-
tions in unbounded domain, a work in close collaboration with Sonia Fliss, Sebastien Imperiale
and Antoine Tonnoir. Here, our formulation should take into account the specificity of control
theory for unbounded domain, as for instance when the Geometric Control Condition in exterior
domain replaces the classical GCC. An alternative is to develop transparent boundary condi-
tions compatible with the observer in order to re-introduce a bounded domain. In the latter, we
think that there is then an opportunity to consider the transparent boundary condition – for
instance based on Dirichlet-to-Neumann condition – as a supplementary stabilization operator
that controls the energy within the bounded domain. Therefore, we believe that there a fruitful
dialog can emerge between control theory and transparent boundary condition theory, as both
fields can bring new ideas and principles to each other.

Observer for population dynamics models – Concerning our work with Marie Doumic,
we recall that the Lifschitz-Slyozov system is non-linear, hence any proposed observer will be
difficult to analyze. However, considering the measurement at hand, an idea is to rely on a
moment-based reduction that allows to define with an adequate closure relation a finite di-
mensional system that approximates the Lifschitz-Slyozov model. This system, as it is finite
dimensional, can be analyzed with classical results of non-linear control-observation, in partic-
ular with Lie brackets to justify the observability of the system.
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Recently, the paper [Ramdani et al., 2015] has introduced an original observer for an age-
structured population model, an integro-differential model where the non-local term appears
this time in the initial condition. This model presents the characteristics of having an unstable
subspace of finite dimension. We believe that this system offers a very interesting setup for
formulating, but more importantly analyzing intensively our reduced-order filtering methods.

Finally, chemotaxis models are systems of growing interest [Perthame, 2004] where patterns
appear and where a shape observer could be proposed and analyzed.

1.5.3 Challenge 3: Parameter estimation

In [24], we propose a joint state and parameters estimation procedure using a space-discretized
form. The proof is written in a form that could be naturally extended to infinite dimensional
systems. However, the complete analysis in this context remains to be done. More precisely, the
article is based on an observability condition that has to be verified for each system of interest.
One important goal of our future work is then to link this particular observability condition to
more classical observability inequalities appearing in identification problems for specific partial
differential equations, such as Carleman inequalities. One target class of systems for carrying
on the complete analysis are wave-like systems – including elastodynamical systems – where we
typically identify the wave velocity or an additive potential.

In rare situations, a parameter identification can be obtained with a more direct method
than a Carleman inequality. This is typically the case in [Cristofol et al., 2014] where it is proved
that a front velocity measurement allows to identify the reaction term in a reaction-diffusion
model presenting front propagations. This result is also a typical target for completing the proof
of convergence of a joint state and parameter estimator for a reaction-diffusion system observed
through front data.

1.5.4 Challenge 4: Discretization

We believe that there is still a lot of work in the complete understanding of observer theory, in
particular linking the nudging approach in data assimilation to control results. Moreover, the
sequential estimation approach has known a strong development in data assimilation around
the EnKF formulations, but the optimal control description envisioned in the 80s is now less
studied, at least theoretically. We also believe that the links between the stochastic approaches
and the deterministic approaches can be reinforced in particular to envision new discretization
methods. For instance, in the continuity of our work [37], we are concerned with a tractable
“space” discretization of the deterministic Mortensen estimator for nonlinear systems, hence
breaking the curse of dimensionality. In this respect, we can study the connection between
the Mortensen filter and the corresponding stochastic filter, namely the Zakai filter [James and
Baras, 1988, Fleming and McEneaney, 2000]. A motivation for this arises from the numerous
efficient Monte Carlo strategies developed for the implementation of the Zakai filter. Therefore,
we expect to be able to extend the use of Monte Carlo methods to adequately approximate the
Hamilton-Jacobi-Bellman (HJB) equation formulated in the Mortensen filter. Similar uses of
Monte Carlo based HJB approximations are already known in control theory [Desai et al., 2003],
but the approach has not been carefully defined and analyzed for observers.
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We also think that the stability results with respect to noise can be improved. Numer-
ous works treat the noise as stochastic, leading for instance to the strong results obtained
in [Bensoussan, 1971] but at the cost of a quite complex formalism. By contrast, we aim at
complementing our deterministic approach by introducing a more systematic treatment of our
noise, as apprehended with Hs with s < −1

2 function of time [Nussbaum and Pereverzev, 1999].
This noise enters in the observer as a source term and we want to mathematically analyze the
impact of such a perturbation, potentially by defining less regular solutions as initiated in [6].

Finally, we think that concerning the numerical aspects of observer design, there is still
a lot of work to popularize their use in actual applications. This is why we have made a
lot of efforts in developping – with Vivien Mallet and other members of the Inria Project-
Team Clime – the generic open-source Library Verdandi that integrates state of the art data
assimilation methods in a generic formalism such that it can be directly linked to numerous model
implementations [12]. However, there is still a lot to do, in particular with the growing need of
compatibility with parallel architectures. Indeed, more and more models are developped to be
run on parallel architectures. This has led to the popularization of numerical approaches such
as domain-decomposition, and time-parallelism. As a consequence, a new challenge appears
– as illustrated by the CEMRACS 2016 that we co-organize on this topic – of having data
assimilation methods that do not slow down this parallel implementation, and even benefit
from this parallelism. Note that this question is by far not limited to computational aspects,
but implies to develop original numerical methods, as illustrated for instance by our ROUKF
design.

1.5.5 Challenge 5: Applications

As we strongly believe that real applications are a very important trigger for developing efficient
methods, we aim at continuing our work on cardiac modeling and data coupling. For instance,
concerning our historic focus on cardiac estimation from segmentation sequences, we think that
there is now an opportunity to introduce our Mumford-Shah based discrepancy measure instead
of our distance-based discrepancy measure. Moreover, we plan to continue our investigation
on coupling multiple modality observations, for instance coupling image modalities to some
signals modalities such as ECG, peripheral pressure signals, sismo-cardiograms that measure
the acceleration of the chest during the heart contraction, ballisto-cardiograms etc.. Here, our
objective is to evaluate the observability gain offered by these modalities in the spirit of our
work [19], but also to see the potential of these signals to monitor a simplified heart model [7]
over long time evolutions. Up to now, we liked to refer to heart forecasting to summarize our
applications of data assimilation in cardiac estimation. When moving from the time-scale of
the heart beat to the time-scale of the heart evolution, we could now use the image of heart
climatology to summarize the new modeling challenges that we will face, and also the new
data assimilation challenges, as we will surely need to couple multiple scales in the estimation
procedure.

Moreover, we believe that the most ambitious project about cardiac modeling concerns the
new imaging modality of elastography. As a measurement of the mechanical behavior of the
heart, much promise resides in this modality, which consists in measuring waves induced by a
controlled actuator in a tissue. Two techniques are now considered. On the one hand, transient
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elastography is performed using ultrasound (US) devices generating an impulse and recording
the resulting traveling waves. On the other hand, magnetic resonance imaging (MRI) allows to
measure harmonic vibrations in a tissue submitted to periodic excitation. Originally designed
for breast cancer detection, elastography is now used for various other organs like the liver, and
has recently been applied to the heart [Pernot et al., 2011]. This measurement is intrinsically
very different from kinematics measurements coming from other medical imaging modalities.
Here, indeed, we access the mechanical properties of the tissue by submitting it to controlled
excitations. Therefore, we believe that the observability provided by these measurements is very
strong. Hence, we have a big opportunity to couple our state of the art model of contractions
with new observers-based model of the wave propagation in the tissue, in order to propose very
original approaches to identify mechanical parameters in cardiac laws. On this subject, we have
initiated a collaboration with M. Pernot from ESPCI among the most promising techniques of
transient ultrasound elastography that are being developed.

But our work is not restricted to cardiac applications. First of all, our approach on shape-
based feedback design can be of interest in numerous applications. We have already talked
about chemotaxis models and also wave propagation which can be useful in non-destructive
control. There are also potential applications in geophysics where satellite images also present
shape data [Chabot et al., 2015]. For instance, our collaboration with Jacques Sainte-Marie
concerns the observations of propagating sea-waves and topography estimation in shallow water
systems. There are also potential applications in ice-sheet models where we observe the front
of the ice sheets that have been losing mass at an increasing rate for more than two decades.
In this context, there is still the challenge of having complex models presenting all the required
physical ingredients, but with data in a form of moving front [Gillet-Chaulet et al., 2012]. The
same type of question arises with wild fire propagation [Rochoux et al., 2013].

Finally, our work with Marie Doumic is also based on real experiments analysis as Marie
Doumic has been collaborating for a long time with Human Rezai, a biologist from Inra who
realizes depolymerization experiments.





PART II

Detailed presentation of my past contributions

41





CHAPTER

2 Data assimilation contributions

Tout est dans le contrôle

— M. Platini
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2.1 Introduction

This chapter consolidates my various results on sequential estimation. Some results concern
optimal estimation with the formulation of the new deterministic optimal observer for non-
linear time-discrete systems, and (with K. Mauffrey) some review contributions of formulating
and analysing a Kalman-like observer for parabolic problems. Then there are contributions
to Luenberger observers: (1) First for wave equation with their analysis (with D. Chapelle, N.
Cîndéa, M. de Buhan, A. Imperiale); (2) Then for mechanical systems with complex observations
(with D. Chapelle, A. Imperiale, P. Le Tallec) or in FSI (with C. Bertoglio, D. Chapelle, M.A.
Fernàndez , J.-F. Gerbeau); (3) For hyperbolic systems (with A.-C. Boulanger, B. Perthame,
J. Sainte-Marie); (4) For reaction-diffusion observation (with A. Collin, D. Chapelle). Finally
I have worked intensively on formulating, analyzing and discretizing so-called reduced-order
optimal strategies that allow to apply a Kalman-like optimal observer on a subsystem of interest
with applications on state estimation for parabolic problems (with C. Corrado, D. Chapelle, A.
Gariah, J.-F. Gerbeau, J. Sainte-Marie) or for joint state and parameter estimation (with D.
Chapelle, P. Le Tallec).

2.2 Toward a unified theory in optimal filtering of non-linear
finite dimensional systems

In this section, our objective is to introduce to some extent the principles behind optimal fil-
tering design in a quite general non-linear framework. In this context, even if the subject has
been much studied since the second part of the last century, numerous challenges remain in the
light of the various dual visions that we have presented in Chapter 1. Indeed, to some extent,
these visions – variational/sequential, stochastic/deterministic, discrete-time/continuous-time
or finite-dimensional/infinite-dimensional – were proved to be consistent with each other, hence
to form a unified estimation framework. This is particularly true for linear systems around the
Kalman filter theory [Kalman, 1960a,Kalman and Bucy, 1961]. However, for non-linear systems,
we still encounter some open questions. For instance, the variational/sequential equivalence is
well understood in the deterministic framework with the Mortensen filter [Mortensen, 1968,Flem-
ing, 1997]. Moreover, some comparisons have been made between stochastic and deterministic
approaches for continuous-time dynamical systems [Hijab, 1982,Hijab, 1984,Daum, 1986,Baras
et al., 1988, James and Baras, 1988]. However, there were very few results linking the discrete-
time and continuous-time sequential estimator (except with the time-scale approach [Peng et al.,
2010]). In fact, there was no optimal filter for discrete-time deterministic systems, a question to
which I have endeavored to contribute [37].

2.2.1 Least square estimation and corresponding optimal estimator

We consider a general class of dynamical model on a finite dimensional space Y ∼ RNy

{
ẏ|ζ,ν(t) = A(y|ζ,ν(t), t) +Bν(t), t ∈ R+

y|ζ,ν(0) = y� + ζ
(2.1)
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where y is the state variable, A is the dynamical operator, ν represents an unknown contribution
that can be seen as a model noise, y� is the known part of the initial condition but ζ is to
be determined. In other words, the initial condition of this system is considered potentially
uncertain around an a priori y�.

Considering this class of system, we assume to have at our disposal some measurements – or
observations – on a particular instance of this model leading to a target trajectory {y̌(t), t ∈ R+}.
We model the measurement generation in a general form

∀t ∈ R+, z(t) = C(y̌(t), t) + χ(t),

where C is called the observation operator from Y to the observation space Z ∼ RNobs and
χ is an unknown function assimilated to a measurement noise. Using these measurements
{z(t), t ∈ R+}, we seek to reconstruct a complete trajectory without knowing initially (ζ̌, ν̌).

We have seen in Chapter 1 that there are two classes of estimation strategies. First, the
variational strategy consists in minimizing the least square criterion often through an adjoint
model integration associated with the dynamical model constraint under which the cost function
is minimized. We define the least square estimator (LSE) minimizing the criterion defined on a
specific time window [0, t]

min
ζ,ν(.)

{
J (ζ, ν(.), t) =

1

2
‖ζ‖2Y,N� +

1

2

∫ t

0

(
‖J(y|ζ,ν(s), s)‖2Z,R + ‖ν(s)‖2Q,S

)
ds

}
, (2.2)

where the discrepancy between the model and the measurement is computed through

∀t ∈ R+,∀y ∈ Y, J(y, t) = z(t)− C(y, t),

and ‖·‖Y,N� , ‖·‖Z,R and ‖·‖Q,S define norms characterizing the initial condition uncertainty, the
observation noise and the model noise, respectively, by bounded invertible symmetric operators
of bounded inverse

‖y‖Y,N� = 〈y,N�y〉
1
2
Y , ‖z‖Z,R = 〈z,Rz〉

1
2
Z , ‖ν‖Q,S = 〈ν, Sν〉

1
2
Q.

Therefore, the inverse of these three weighting operators

P� = N−1
� , W = R−1, and Q = S−1,

are related to error covariances in the probabilistic framework [Kailath et al., 2000]. For the
sake of compactness, we classically introduce the Lagrangian functional

L :

∣∣∣∣∣∣
Y ×Q×R+ → R

(y, ν, t) 7→ 1

2
‖J(y, t)‖2Z,R +

1

2
‖ν‖2Q,S

We denote by {ȳt(s), s ∈ [0, t]} the trajectory associated with the minimizers ζ̄t, ν̄t. Clearly the
more t increases the better the minimizing trajectory should approximate the target trajectory.
The most common approach for solving this least square problem consists in minimizing the
criterion with the help of the adjoint equation associated with the dynamics constraint under
which we minimize the criterion. In fact, defining the adjoint variable from a given trajectory
{yt(s), s ∈ [0, t]} by{

q̇t(s) + dyA(yt(s), s)
ᵀqt = dyJ(yt(s), s)

ᵀRJ(yt(s), s), s ∈ [0, t]

qt(t) = 0



46 Chapter 2. Data assimilation contributions

the variational estimator dynamics can be summarized by introducing the system Hamiltonian

H :

∣∣∣∣∣Y × Y ×Q×R+ → R

(y, q, ν, t) 7→ L (y, ν, t)− qᵀ(A(y, t) +Bν)

since we have for all s ∈ [0, t]

˙̄yt = −∇qH (ȳt, q̄t, ν̄t, s), ˙̄qt = ∇yH (ȳt, q̄t, ν̄t, s), ∇νH (ȳt, q̄t, ν̄t, s) = 0.

By Pontryagin’s principle and dynamic programming [Bellman, 1957, Fleming and Rishel,
1975], this minimization problem can be characterized through the solution of a Hamilton-
Jacobi-Bellman (HJB) equation. Let us introduce the cost-to-come associated with the initial
minimization

∀(y, t) ∈ Y ×R+, V (y, t) = min
ν|y(t)=y

J (ζ(y, ν), ν, t),

in the sense that the initial condition of the trajectory is imposed by the final state and the
choice of the model noise function. Assuming that the minimization problem (2.2) has a unique
solution then the cost-to-come is a solution of the Hamilton-Jacobi-Bellman equation

∂tV (y, t)−min
ν

H (y,∇V (y, t), ν, t) = 0. (2.3)

For the sake of simplicity, we consider a linear dependency of the model with respect to the model
noise. Therefore the HJB equation (2.3) can be simplified by directly finding the minimum in
ν. We introduce for all (y, q, t) ∈ Y2 ×R+,

H̄ (y, q, t) = min
ν

H (y, q, ν, t) =
1

2
‖J(y, t)‖2Z,R −

1

2
qᵀBQBᵀq − qᵀA(y, t),

and the cost-to-come is solution of{
∂tV (y, t)− H̄

(
y,∇V (y, t), t

)
= 0, (y, t) ∈ Y ×R+

V (y, 0) = 1
2‖y − y�‖2Y,N�

(2.4)

Then, when the cost-to-come is a C1 solution, the adjoint variable can be characterized by

∀s ∈ [0, t], ∇V (ȳt(s), s) = q̄t(s). (2.5)

The relation (2.5) is the starting point of a fundamental unification between variational and
sequential approaches. Indeed, a very effective observer candidate can be derived from the least
square criterion by considering at every time t the least square estimate minimizing the criterion
aggregating the data up to the time t, namely we define the sequential optimal1 ŷ by

ŷ(t) = ȳt(t).

From the final condition satisfied by the adjoint variable q̄t(t) = 0, we can characterize ŷ with
(2.5) to get

∀t ∈ R+, ∇V (ŷ(t), t) = 0,

1denoted as optimal because of its link with the optimal criterion estimator
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where the time-window value t associated with J (·, ·, t) is no longer fixed. Hence, using again
the chain rule we get for t ∈ R+,

0 =
d

dt

(
∇V (ŷ(t), t)

)
= ∇∂tV (ŷ(t), t) +∇2V (ŷ(t), t) · ˙̂y(t)

= ∇H̄ (ŷ(t),∇V (ŷ(t), t), t)

∇2V (ŷ(t), t) · ∇qH̄ (ŷ(t),∇V (ŷ(t), t), t) +∇2V (ŷ(t), t) · ˙̂y(t),

and from the partial derivatives of H̄ , we finally obtain the filter dynamics{
˙̂y(t) = A(ŷ, t)− (∇2V (ŷ(t), t))−1 dyJ(ŷ(t), t)ᵀRJ(ŷ(t), t), t ∈ R+

ŷ(0) = y�
(2.6)

and the optimal gain is given by

G = (∇2V (ŷ(t), t))−1 dyJ(ŷ(t), t)ᵀR.

This deterministic non-linear optimal observer was first introduced by [Mortensen, 1968] – who
called his filter the Maximum Likelihood filter – with several in depth-studies in [Fleming,
1997,James and Baras, 1988,Krener, 2003b]. Following [Fleming, 1997], we will call the optimal
observer in a non-linear framework the Mortensen observer.

Remark 2.2.1 (Infinite dimensional systems)
The validity of this formulation for infinite dimensional systems is an intricate problem that goes far
beyond the formal replacement of the transposition by a general duality notation. We refer to the [Barbu
and Da Prato, 1985] for general HJB solutions in Hilbert spaces.

In a linear framework, namely when all operators are assumed to be linear

∀t ∈ R+, A : y → A(t)y + β(t), C : y → C(t)y,

it is well known that the optimal observer is given by the popular Kalman filter [Kalman and
Bucy, 1961] {

˙̂y(t) = A(t)ŷ(t) + β(t) + P (t)C(t)ᵀR
(
z(t)− C(t)ŷ(t)

)
, t ∈ R+

ŷ(0) = y�
(2.7)

where P satisfies the following Riccati equation{
Ṗ (t) = A(t)P (t) + P (t)A(t)ᵀ − P (t)C(t)ᵀRC(t)P (t) +BQBᵀ, t ∈ R+

P̂ (0) = P�
(2.8)

and can be interpreted in a probabilistic standpoint as the state estimation covariance. It is
easy to prove that the Kalman filter formulation is in fact consistent with the non-linear filter
formulation (2.6) since, in that case, the cost-to-come is given by

∀(y, t) ∈ Y ×R+, V (y, t) =
1

2

(
y − ŷ(t)

)ᵀ
P−1(t)

(
y − ŷ(t)

)
+

1

2

∫ t

0
‖z(s)− C(s)ŷ(s)‖2Z,R ds.
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2.2.2 Principle of the time-discretization and related time-discrete estimator

From the starting point of the time-continuous Mortensen filter, our problem is then to under-
stand how the Mortensen filter can be discretized. A standard discretization approach would be
to propose an accurate discretization of the cost-to-come based on classical adapted non-linear
time-discretization for hyperbolic systems, with for instance a Godunov discretization of (2.4).
Then, the discretized cost-to-come must be introduced in a discretization of the Mortensen ob-
server (2.6) depending of the discretization constraint imposed by the operator dynamics A. Our
point of view in [37] is different and inspired from what has been done for linear dynamics when
passing from the continuous-time Kalman filter to the discrete-time Kalman filter. Everything
starts by first considering a discrete-time version of (2.1)yn+1|ζ,(νk)nk=0

= An+1|n(yn|ζ,(νk)n−1
k=0

) +Bnνn, n ∈ N
y0|ζ,(νk)nk=0

= y� + ζ
(2.9)

with An+1|n the transition operator from step n to step n + 1, (νk)
n
k=0 a sequence of unknown

contribution in Q that can be seen as a discrete-time model noise definition, and Bn the model
noise operator at step n. Note that this discrete-time system can be considered in itself or as a
consistent and stable discretization of (2.1). In this respect, we introduce a sequence of times
(tn)n∈N and a discretization parameter ∆t considered here to be constant for simplicity, i.e.
∆t = tn+1 − tn. Then the transition operator and the model noise operator would typically
satisfy

lim
∆t→0,tn→t

1

∆t
(An+1|n(y)− 1) = A(y, t), lim

∆t→0,tn→t
Bn
∆t

= B(t).

As an example we could consider – when stable – an explicit discretization of the continuous-time
model (2.1) and we would then have

An+1|n(·) = 1 + ∆tA(·, tn), Bn = ∆tB,

but similar definitions hold for implicit scheme. We also note that in the context of discretization
we can assume that An+1|n is a bijection without being too restrictive since it corresponds to a
perturbation of the identity, at least for ∆t small enough.

In this discrete-time context, we consider the target sequence (y̌n)n∈N and an observation
operator Cn at each time step, so that some measurements zn are given by

zn = Cn(y̌n) + χn,

with an additive noise sequence (χn). Note that, in general, measurement procedures are in
essence time-sampled and the observation discrete-time model should be more directly defined
than the observation continuous-time model. Then the latter is regenerated by interpolation
from the sampled measurements with a measurement error ν integrating some interpolation
error. Eventually, we can consider the two frameworks independently or assuming that for all
t ∈ [tn, tn+1], we have ‖C(y, t)− Cn(y)‖ = O(∆t)).

One way to propose a discrete-time estimator compatible with (2.9) – i.e. the discretization
of (2.1) – hence propose a discretization of (2.6), is to rely on least square estimation at the
discrete-time level. Typically, one least square criterion minimization considers

min
ζ,(νk)k<n

{
J +

n (ζ, (νk)k<n) =
1

2
‖ζ‖2Y,N� +

1

2

n∑
k=0

‖Jk(yk)‖2Rk +
1

2

n−1∑
k=0

‖νk‖2Sk

}
.
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with, by extension,

J +
0 (ζ) =

1

2
‖ζ‖2Y,N� + ‖J0(yk)‖2R0

.

or another2

min
ζ,(νk)k≤n

{
J −

n+1(ζ, (νk)k≤n) =
1

2
‖ζ‖2Y,N� +

1

2

n∑
k=0

‖Jk(yk)‖2Rk +
1

2

n∑
k=0

‖νk‖2Sk

}
.

Here again, the continuous-time criterion and the discrete-time criterion are defined in
contexts which can be completely independent or related as the time-discrete framework is
defined after time-discretization of the continuous-time system. In the latter, the two criteria
should be defined consistently as ∆t goes to 0. In this respect, we could for instance consider

Rn = ∆tR, Sn = ∆t S or equivalently Wn =
1

∆t
W, Qn =

1

∆t
Q,

so that lim∆t→0 J +
n (·, ·) = J (·, ·, n∆t).

As we denoted the trajectory associated with the minimizing arguments in the time-continuous
context by

∀s ∈ [0, t], ȳ|t(s) = y|argmin(J (·,t))(t),

we now define in a discrete-time context

∀0 ≤ k ≤ n, ȳ+
k,n = yk|argminζ(J +

n ).

Moreover, the optimal sequential estimator defined from the trajectory associated with the
minimizer by

∀t ∈ R+, ŷ(t) = y|argmin(J (·,t))(t),

becomes in a time-discrete context

ŷ+
n = ȳ+

n,n = yn|argminζ(J +
n ). (2.10)

and equivalently for a ŷ−n .

The question is now to formulate the resulting recursive equation governing the dynamics
of ŷ+

n or ŷ−n , and then to show how these discrete-time dynamics correspond to consistent and
stable discretizations of (2.6).

This question is solved since [Kalman, 1960a,Kalman and Bucy, 1961] in the case of linear
time-discrete dynamics and observation operators

∀n ∈ N, An+1|n : y 7→ An+1|ny + βn, Cn : y 7→ Cny,

Indeed it is well known that the discrete-time optimal estimator – discretizing (2.7) – is given
by 

Initialization:

ŷ−0 = y�

Correction:

ŷ+
n = ŷ−n +Gn

(
zn − Cnŷ−n

)
, n ∈ N

Prediction:

ŷ−n+1 = An+1|nŷ+
n + βn, n ∈ N

2the interest of the plus subscript notation will appear shortly.
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where the (discrete-time) Kalman filter is given by prediction-correction dynamics

Gn = P+
n C

ᵀ
nRn = P−n C

ᵀ
n(Wn + Cᵀ

nP
−
n Cn)−1

with the state covariances P±n satisfying the discrete-time Riccati equation

Initialization:

P−0 = P�

Correction:

P+
n = P−n − P−n Cᵀ

n(CnPnCn +Rn)CnPn, n ∈ N
Prediction:

P−n+1 = An+1|nP+
n A

ᵀ
n+1|n +BnQnB

ᵀ
n, n ∈ N

Here we use a classical notation in Kalman filter theory [Simon, 2006] where the predicted state
is denoted by a minus superscript whereas the correction step is identified by a plus superscript.
It is optimal in the sense of (2.10) since, here, it can be easily proven [Kailath et al., 2000,Simon,
2006] that

ŷ+
n = ȳ+

n|n = yn|argminζ(J +
n ).

Moreover, we can also prove
ŷ−n = ȳ−n|n = yn|argminζ(J−

n ).

Finally the consistency is quite straightforward to obtain and the stability analysis comes directly
from the stability property of the least square estimate, hence the interest to satisfy variational
criteria at the discrete-time level.

Our contribution aims at extending this result in the case of non-linear dynamics and
observation operator by introducing the exact counterpart of (2.6) in the discrete-time context.
We call this new estimator the discrete-time Mortensen estimator. This estimator is presented
with ad-hoc regularity assumptions to facilitate its definition.

Proposition 2.2.1 (Discrete-Time Mortensen Filter (Moireau, P.))
We assume that for all n An+1|n ∈ C1(Y) with dAn+1|n(·) invertible, Bn is bounded, Cn ∈ C1(Y)

with dyCn(·) bounded. Moreover dAn+1|n(·), Bn and dyCn(·), are supposed to be bounded
with respect to n. Considering the two optimal criteria

min
ζ,(νk)k≤n

{
J −

n+1(ζ, (νk)k≤n) =
1

2
‖ζ‖2Y,N� +

1

2

n∑
k=0

‖Jk(yk)‖2Rk +
1

2

n∑
k=0

‖νk‖2Sk

}
,

min
ζ,(νk)k<n

{
J +

n (ζ, (νk)k<n) =
1

2
‖ζ‖2Y,N� +

1

2

n∑
k=0

‖Jk(yk)‖2Rk +
1

2

n−1∑
k=0

‖νk‖2Sk

}
,

we assume that they have unique minimizers. We introduce two discrete costs-to-come functions
– called the prediction cost-to-come and the correction cost-to-come – defined for all n ∈ N

V +
n (y) = min

(νk)k<n
yn=y

J +
n (ζ, (νk)k<n)

V −n+1(y) = min
(νk)k≤n
yn+1=y

J −
n+1(ζ, (νk)k≤n), V −0 (y) =

1

2
‖y − y�‖2Y,N� ,
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Then, assuming that V −n and V +
n are smooth enough – namely C2(Y) – for all n, they are

solutions of the following system

V +
n (y) = V −n (y) + 1

2‖Jn(y)‖2Rn ,

V −n+1(y) = V +
n (y̆) + 1

2∇V −n+1(y)ᵀBnQnB
ᵀ
n∇V −n+1(y)

with y = An+1|n(y̆) +BnQnB
ᵀ
n∇V −n+1(y),

V −0 (y, 0) = 1
2‖y − y�‖2Y,N� ,

and the estimators built from the prediction sequence (ŷ−n )n∈N and the correction sequence
(ŷ+)n∈N defined by

∀n ∈ N,
{
ŷ+
n = ȳ+

n,n = ȳ−n,n+1,

ŷ−n = ȳ+
n+1,n = ȳ−n+1,n+1,

can be computed by the recursive procedure

Initialization:

ŷ0 = y�,

V −0 = 1
2‖y − ŷ−0 ‖Y,N� ;

Correction:

Starting from initial guess ŷ−n which satisfies

∇V +
n (ŷ−n ) = dJn(ŷ−n )ᵀRnJn(ŷ−n ),

compute (by Newton’s method) for n ∈ N, ŷ+
n such that

∇V +
n (ŷ+

n ) = 0;

Prediction:

ŷ−n+1 = An+1|n(ŷ+
n ), n ∈ N which satisfies

∇V −n+1(ŷ−n+1) = 0;

(2.11)

In particular, when An+1|n, Bn and Cn are linear we retrieve the Kalman estimator prediction-
correction sequence introduced in [Kalman, 1960a].

2.2.3 Approximated optimal filters in the light of the discrete-time Mortensen
filter

As we see, the Mortensen filter and its corresponding time-discrete version are condemned
to be used with systems of very small dimension. We have implemented a version in [37]
that can be used for 2-dimensional or 3-dimensional systems, hence implying 2-dimensional or
3-dimensional Bellman equations to be solved. We believe that with state-of-the-art spatial
discretizations, for instance using Sparse-Grids we can reach up to 10 dimensions at the extreme
limit as it is a typical barrier for people confronted to similar problems [Fleming and McEneaney,
2000, Bokanowski et al., 2013]. Therefore, for larger systems, we must rely on approximated
optimal filters. In our application cases we have worked on two such filters:

• The Extended Kalman Filter (EKF),

• The Unscented Kalman Filter (UKF).
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These two filters, EKF and UKF, will be present in numerous results presented in this manuscript.
Thus, it is the occasion to see their structure in the light of (2.6) and (2.11).

Remark 2.2.2 (EnKF)
Nowadays, there is a huge research effort going on the alternative Ensemble Kalman Filter (EnKF) that,
however, we have not considered. In fact, the UKF filter is close to the EnKF, at least algebraically. We
will see in the next paragraph that, in spirit, the UKF is more deterministic than the EnKF, hence its
interest in our research.

The Extended Kalman Filter – The initial principle of the Extended Kalman Filter is to
replace the linear operators appearing in the Kalman estimator by the tangent of the non-linear
dynamics of interest. Therefore, the continuous-time EKF is formally given by

˙̂y(t) = A(ŷ, t) + P (t) dC(ŷ, t)ᵀR
(
z(t)− C(ŷ, t)

)
Ṗ (t) = dA(ŷ, t)P (t) + P (t) dA(ŷ, t)ᵀ − P (t) dC(ŷ, t)ᵀR dC(ŷ, t)(t)P (t) +BQBᵀ

ŷ(0) = y�

P̂ (0) = P�

(2.12)

with obvious extension for infinite dimensional system using the proper adjoint operators. Note
that the EKF can also be rewritten using the discrepancy operator J . It is a less classical form
but very useful in practice when dealing with an implicit observation operator as in Section 2.4.

˙̂y(t) = A(ŷ, t)− P (t) dJ(ŷ, t)ᵀRJ(ŷ, t)

Ṗ (t) = dA(ŷ, t)P (t) + P (t) dA(ŷ, t)ᵀ − P (t) dJ(ŷ, t)ᵀR dJ(ŷ, t)(t)P (t) +BQBᵀ

ŷ(0) = y�

P̂ (0) = P�

We understand that the principle of the EKF is to replace the cost-to-come second derivative
by a computable operator solution of a Riccati equation.

Moreover the non-linear discrete-time version is given by

Initialization:

ŷ−0 = y�

P−0 = P0

Correction:

ŷ+
n = ŷ−n +Gn

(
zn − Cn(ŷ−n )

)
Gn = P+

n dCn(ŷ+
n )ᵀRn = P−n dCn(ŷ+

n )ᵀ
(
Wn + dCn(ŷ+

n )ᵀPn(ŷ−n )− dCn(ŷ+
n )
)−1

P+
n = P−n − P−n dCn(ŷ+

n )ᵀ
(

dCn(ŷ+
n )Pn dCn(ŷ+

n ) +Wn

)−1
dCn(ŷ+

n )Pn

Prediction:

ŷ−n+1 = An+1|n(ŷ+
n )

P−n+1 = dAn+1|n(ŷ+
n )P+

n dAn+1|n(ŷ+
n )ᵀ +BnQnB

ᵀ
n

and it is consistent and stable time discretization of the (2.12) as soon as the stability of the
estimator (2.12) can be established. Here again, when compared to (2.11), we see that the
Newton iterations of ∇V +

n (ŷ+
n ) is limited to their first iteration, whereas the propagation of the

cost-to-come is simplified by the time-discrete Riccati equation with tangent operators.
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The Unscented Kalman Filter – Another approximate optimal filter is given by the UKF
filter. This filter was originally introduced in [Julier et al., 1995, Julier et al., 2000] with the
objective to better represent how a non-linear transformation ϕ acts on the first two moments
of a random variable y. As we also recall in [23], it is possible to generate some sampling
points – called sigma-points in UKF – centered around E(y) to propagate them with ϕ and then
compute the first two moments of the random variable ϕ(y) from the empirical moments of the
sampling points. Let Np be the number of sigma-point to be considered; we define Np weight
coefficients α = (αi)1≤i≤Np and a set of sigma-points y = (yi)1≤i≤Np such that

Np∑
i=1

αi = 1

Eα(y) =

Np∑
i=1

αiyi = E(y)

Covα(y) = Eα((y − Eα(y))(y − Eα(y))ᵀ)

=

Np∑
i=1

αi(yi − Eα(y))(yi − Eα(y))ᵀ = Cov(y)

Introducing a deviation of each particle with respect to the mean value

yi = Eα(y) + ỹi,

with Eα(ỹ) = 0 we get the conditions that

Np∑
i=1

αiỹi = 0

Np∑
i=1

αiỹiỹ
ᵀ
i = Cov(y)

which allows to approximate the first two moments of the random variable yϕ from the propa-
gated sigma points yϕ = (yϕi )1≤i≤Np = (ϕ(yi))1≤i≤Np . Indeed, we easily show

Eα(yϕ) =

Np∑
i=1

αiy
ϕ
i

= ϕ(E(y)) + d2ϕ(E(y)) : Cov(y) + o
(
E
(
‖y‖2

))
,

and

Covα(yϕ) =

Np∑
i=1

αi(y
ϕ
i − Eα(yϕ))(yϕi − Eα(yϕ))ᵀ

= dϕ(E(y)) · Cov(y) · dϕ(E(y)) + o
(
E
(
‖y‖2

))
.

Therefore the UKF filter in [Julier et al., 1995], uses that the discrete-time Kalman correction
on a random state y using a random measurement z is a BLUE of the form (1.1) but computed
with the empirical covariances, namely

ŷ = Eα(y) + Covα(y, z) Covα(z)−1 (z − E(z)
)
,
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where the empirical mean and covariance are applied to a random variable from the sigma-points
generated around it. This implies that the discrete-time UKF estimator is of the form

Initialization:

ŷ−0 = y�

P−0 = P0

Sampling:

ŷ−n,i = ŷ−n +
√
P−n ỹi

Correction:

ẑ−n,i = Cn(ŷ−n,i)

ŷ+
n = ŷ−n +Gn

(
zn − Eα(ẑ−n )

)
Gn = Covα(ŷ−n , ẑn)

(
Covα(ẑ−n ) +Wn

)−1

P+
n = P−n − Covα(ŷ−n , ẑn)

(
Covα(ẑ−n ) +Wn

)−1
Covα(ŷ−n , ẑn)

Re-Sampling:

ŷ+
n,i = ŷ+

n +
√
P+
n ỹi

Prediction:

ŷ−n+1,i = An+1|n(ŷ+
n,i)

ŷ−n+1 = Eα
(
ŷ−n+1

)
P−n+1 = Covα

(
ŷ−n+1

)
+BnQnB

ᵀ
n

(2.13)

Considering now (2.13) and the discrete-time Mortensen filter (2.11), we can have a completely
deterministic interpretation of UKF as already pointed out in [23]. The objective of UKF and
EKF are very close. In EKF we define a modified discrete-time Riccati equation based on an
operator computed from the non-linear dynamics tangent. In UKF, the modified discrete-time
Riccati equation is based on an operator computed from multi-dimensional finite difference
approximations using the sigma-points as a stencil – see also the UKF interpretation given
in [Lefebvre et al., 2002]. As a consequence, the UKF filter and the EKF filter coincide with
the Kalman Filter when all the operators are actually linear. Moreover, as the EKF in [Reif
and Unbehauen, 1999, Krener, 2003a, Bonnabel and Slotine, 2015], the UKF can be analyzed
identically for small errors – in the spirit of [23] – leading to the diagram Figure 2.1.

Remark 2.2.3 (EnKF)
Considering the stochastic interpretation of the UKF filter, it is close to the EnKF imagined by [Evensen,
2007] at the same period. However, the specificity of the sampling points involved in UKF defined and
in a smaller number implies that UKF is in practice more deterministic in spirit than EnKF.

Finally, the discrete-time UKF reveals to be very useful in practice as (1) it is much easier
to develop since it is tangent free, (2) for linearized errors, it has the same stabilizing proper-
ties as the EKF and (3) for very non-linear systems, as described in [Julier et al., 1995], the
heuristics shows that UKF can behave more efficiently than EKF. Having in mind the discrete-
time Mortensen filter, this is clearly understandable for a similar reason to when using a secant
method instead of a gradient based Newton when choosing a root-finding algorithm.

Remark 2.2.4 (Construction of the unitary sigma-points)
There exist several choices of points that allow to create a finite-difference stencil in dimension Nr, that
we report here for futur use in this manuscript. For instance we have the:
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Discrete-time
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Continuous-time
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stability
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error linearization

error linearization error linearization

Figure 2.1: Relations between filtering procedures

• Canonical sigma-points – they are Np = 2Ny particles defined from the canonical basis of the
space RNy of each side of the origin. Therefore we define

ei =

{√
Ny if 1 ≤ i ≤ Ny

−
√

Ny if Ny + 1 ≤ i ≤ 2Ny

with the corresponding weight αi = 1
Ny

• star sigma-points – they are Np = 2Ny + 1 particles defined from the canonical basis of the
space RNy of each side of the origin plus the origin. We define

ei =


√

Ny if 1 ≤ i ≤ Ny

−
√

Ny if Ny + 1 ≤ i ≤ 2Ny

0 if i = 2Ny + 1

and the corresponding weight can be αi = 1
Ny+1 . In [Julier et al., 2000], the origin weight is bigger

than others. For example choosing

αi =

{
ai if 1 ≤ i ≤ 2Ny

bi if i = 2Ny + 1

allows to also approximate the next third and fourth moments of yϕ.

• simplex sigma points – they corresponds to the minimum number of sigma-points to define the
covariance of y, i.e. Np = Ny + 1. The unitary simplex sigma points are typically positioned on
a regular simplex of radius

√
Np [Uhlmann and Julier, 2002]. Eventually, the associated weights

are uniform αi = 1
Ny+1 .
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2.3 Control-based sequential estimation strategies for PDEs

2.3.1 Optimal-control-based strategies

2.3.1.1 Observer formulation for parabolic problems

We have discussed in Section 2.2 the principles underlying optimal filtering, where optimal
means that the feedback is derived from a least square criterion optimization. The presentation
in Section 2.2 was limited to finite dimensional dynamical system. Our objective here is then to
understand the interest of possible extensions to infinite dimensional systems such as systems
associated with evolution PDEs. In a recent work with K. Mauffrey [35], we investigated and
reviewed the different aspects of optimal observer design consolidating results for the definition
of the minimization problem, the existence of Riccati solutions and observer trajectory, and more
importantly proving the asymptotic convergence of the observer to the target trajectory at least
in the absence of measurement noise. These results complete the theory presented in [Baras and
Bensoussan, 1987].

To present our result, we restart with a linear system of the form{
ẏ|ζ,ν(t) = A(t)y|ζ,ν(t) + β(t) +B(t)ν(t), t ∈ R+

y|ζ,ν(0) = y� + ζ
(2.14)

where y is the state variable in a Hilbert space Y, A is a perfectly known time-varying dynamical
operator defined in the next paragraph. Moreover β(t) ∈ L2(0,+∞;Y) is a time-dependent
source term. Additionally ν ∈ L2(0,+∞;Q) – with Q a Hilbert space – represents an unknown
contribution that can be seen as a model noise acting on the dynamics through a model noise
operator B. Finally the initial condition contribution y� ∈ Y is the known part of the initial
condition, whereas ζy ∈ Y is to be determined.

In fact, for infinite dimensional state and observation spaces, the definition of the initial
system, the Riccati solution and the observer can be quite intricate. We cannot investigate here
all the cases when (2.14) defines a dynamical system with an underlying PDE structure, hence
we will focus on one example of interest: a simple generalized heat equation.

First, we may consider that the model dynamics is a time-independent operator A which
is self-adjoint for a parabolic (dissipative) system. Then typically A : D(A) ⊂ Y → Y is the
infinitesimal generator of a C0-semigroup (Tt)t≥0 on the Hilbert space Y. Actually, we can be
more general by considering time varying model operators A(t) following [Tanabe, 1979,Baras
and Bensoussan, 1987]. Then A is defined through a mapping a : [0,+∞)× V × V → R – with
V a dense subspace of Y – which satisfies the following properties:

• for a.e. t ≥ 0, a(t; ·, ·) is bilinear on V × V,

• a(t; ·, ·) is bounded on V × V uniformly with respect to t, i.e. there exists M > 0 such
that:

|a(t;u, v)| ≤M‖u‖V‖v‖V , ∀(u, v) ∈ V × V, ∀t ∈ [0,+∞),



2.3 Control-based sequential estimation strategies for PDEs 57

• a(t; ·, ·) is V-elliptic with respect to Y, uniformly with respect to a.e. t, i.e. there exists
ν > 0 and λ ≥ 0 such that:

a(t; v, v) + λ‖v‖2Y ≥ ν‖v‖2V , ∀v ∈ V, a.e. t ∈ [0,+∞),

• for each bounded interval [t0, t1] ⊂ [0,+∞), there exist α0 ∈ (0, 1] and M0 > 0 such that

|a(t;u, v)− a(s;u, v)| ≤M0 |t− s|α0 ‖u‖V‖v‖V ,

for all t, s in [t0, t1] and all u, v in V.

A is then defined by:
〈A(t)u, v〉V ′,V = −a(t;u, v),

for (u, v) ∈ V × V and t ∈ [0,+∞). In particular, A ∈ L∞(0,+∞;L(V,V ′)).
With a time-varying parabolic system, we can expect for all t a solution y ∈ L2([0, t],V)

with also ẏ ∈ L2([0, t],V ′). For all (t, s), we denote by Υ(t, s) the mild evolution operator from
time s to time t generated by A [Tanabe, 1979].

Second, we consider a bounded observation operator C ∈ L∞(0,+∞,L(Y,Z)) with Z a
Hilbert space. Note that boundary operators are often not bounded but still very useful in
practice. We refer to [Weiss, 1989, Lasiecka and Triggiani, 2003,Tucsnak and Weiss, 2009] for
the numerous specificities raised by these operators that we do not treat here for the sake of
clarity. The observations are still given by z ∈ L2(0,+∞,Z) Finally, we also consider a bounded
model noise operator B ∈ L∞(0,+∞,L(Q,V ′)).

The least square criterion remains the same as (2.2) for finite-dimensional systems. Note
that, as in finite dimension, we assume that P� ∈ L(Y), S ∈ L(Q) and R ∈ L(Z) are self-
adjoint, non-negative and invertible operators. The adjoint system can be directly defined since
it is based on −A∗ in reverse time, which is also dissipative. Therefore the adjoint variable has
the same regularity. In order to formalize the Kalman observer in this case, we must then give
a proper definition of the so-called covariance operator solution of the Riccati equation. In fact,
the covariance operator can be intrinsically defined as the bounded operator on Y associated
with the mapping q 7→ ȳt,λ(t)

ȳt,λ(t) = P (t)λ, ∀λ ∈ Y.
where 

˙̄ys,λ(s) = A(s)ȳs,λ(s) +B(s)QB(s)∗q̄t,λ(s), in (0, t),

− ˙̄qt,λ(s) = A(s)∗q̄t,λ(s)− C(s)∗RC(s)ȳt,λ(s), in (0, t),

ȳt,λ(0) = P�q̄t,λ(0),

q̄t,λ(t) = λ.

and can be shown to satisfy the Riccati equation (2.8) in the mild sense, namely

P (t)λ = Υ(t, 0)P�Υ(t, 0)∗λ+

∫ t

0
Υ(t, s)B(s)QB(s)∗Υ(t, s)∗λ ds

−
∫ t

0
Υ(t, s)P (s)C(s)∗RC(s)P (s)Υ(t, s)∗λ ds.
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In the case where the model dynamics is associated with a semi-group generator, we have
y ∈ C1([0, t],Y) ∩ C0([0, t], D(A)) and we can justify that the covariance operator P satisfies
the Riccati equation (2.8) in a weak sense, namely

d

dt
〈p, P (t)q〉Y = 〈A∗p, P (t)q〉Y + 〈P (t)p,A∗q〉Y − 〈CP (t)p, CP (t)q〉R + 〈B∗p,B∗q〉Q .

and also as strong solution C1(R,S+(Y)) where S+(Y) is the space of positive symmetric op-
erators.

Once the covariance operator is defined as a proper Riccati solution, we can then prove that
the Kalman observer ŷ (see (2.7) with a duality ∗ replacing the transpose ᵀ) exists with the same
regularity as the target y.

As a typical example of (2.14), we can think of a classical heat equation.{
∂tu(x, t)−∆u = f, x in Ω

u(x, t) = 0, x on ∂Ω

where f is a source term, typically in L2(Ω). We consider Y = L2(Ω) and V = H1
0 (Ω). We can

now consider an simple observation operator associated with the measurement of the solution
on a subdomain Ωobs ⊂ Ω

∀t ∈ R+, C : y(t) 7→ z(t) = 1Ωobs(·)u(·, t).

and a model noise operator which applies to the complementary subset Ω \ Ωobs

∀t ∈ R+, B : ν(t) 7→ r(t) = 1Ω\Ωobs
(·)u(·, t).

In [Bensoussan, 1971,Lions, 1968] it is asserted that we can associate with the covariance oper-
ator P (t) a function called kernel π(·, ·, t) ∈ L2(Ω× Ω) such that

∀y ∈ L2(Ω), (P (t)y)(x) =

∫
Ω
π(x, x′, t)u(x′, t) dx′.

It is even possible to derive the integro-differential equation satisfied by the kernel. We show
that
π ∈ L2(0, t;H1

0 (Ω× Ω)) ∩ L∞(0, t;L2(Ω × Ω)) and

∂tπ(t; x, x′) = (∆x + ∆x′)π(t; x, x′)− γ
∫

Ωobs

π(t; x, x′′)π(t; x′′, x′) dx′′ + β1Ω\Ωobs
(x)δ(x− x′),

in D′((0, t)), (x, x′) ∈ Ω× Ω,

π(0; x, x′) = π0(x, x′), (x, x′) ∈ Ω× Ω,

π(t; x, x′) = π(t; x′, x), ∀t ∈ [0, t], (x, x′) ∈ Ω× Ω,

Moreover, we have∫
Ω×Ω

π(t; x, x′)ϕ(x)ϕ(x′) dxdx′ ≥ 0, ∀ϕ ∈ L2(Ω), ∀t ∈ [0, t].

Using the kernel π, the observer ŷ is now a strong solution of the PDE∂tû(x, t)−∆û = f + γ

∫
Ωobs

π(t; x, x′)
(
ǔ(x′, t)− û(x′, t)

)
dx′, x in Ω

u(x, t) = 0, x on ∂Ω
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Remark 2.3.1 (kernel formulation validity)
This formulation is quite appealing in itself but numerous questions are raised here to justify it completely.
In fact the kernel existence cited by [Lions, 1968] is intricate to justify. Even if it is clear for distributions
with the Schwartz kernel Theorem [Gask, 1960], then it is less obvious for the covariance operator solution
of the Riccati equation, see for instance [Temam, 1971,Rosen, 1991]. In [Temam, 1971], the existence of
the kernel is demonstrated only for C = 1 which, in the case of observation theory, is rather restrictive.
In particular in [Rosen, 1991], the kernel existence is demonstrated in a quite general context for the
operator C∗RC, but, in practice, the hypotheses are still difficult to verify even in a simple case like the
one presented bellow leading still to ongoing work.

2.3.1.2 Analysis

The question is now to prove that the observer ŷ converges in time to the target trajectory y̌ at
least with no measurement noise

z = Cy̌,

namely the so-called asymptotic convergence sought for any observer formulation.

To this end, we equivalently prove that the estimation error ỹ = y̌ − ŷ is stable to 0.

To obtain the convergence we need some observability and controllability conditions as in
finite dimension. In our work, we need the following assumptions directly related to observability
and controllability conditions :

1. There exist a time TC > 0 and a positive constant CC(TC) for which we have

cC(TC) ‖Υ(T + TC , T )ζ‖2Y ≤
∫ T+TC

T
‖C(t)Υ(t, T )ζ‖2Z dt, ∀ζ ∈ Y,

for every T ≥ 0.

2. There exists a positive constant CB such that

CB‖λ‖2Y ≤ ‖Υ(t2, t1)∗λ‖2Y +

∫ t2

t1

‖B(t)∗Υ(t2, t)
∗λ‖2Q dt, ∀λ ∈ Y, (2.15)

for every interval [t1, t2] ⊂ [t0,+∞).

3. supt≥t0 ‖P (t)−1‖L(Y) < +∞.

Theorem 2.3.1 (Mauffrey-Moireau)
Under the model hypotheses and the additional observability and controllability conditions 1-3,
we have

‖ỹ(t)‖Y ≤ c1e
−c2(t−t0)‖ζ‖Y , ∀t > t0,

where c1 = ‖P−1
� ‖1/2L(Y)‖P‖

1/2
∞ γ−1/2, c2 = ln(γ−1)/(2TC) and γ ∈ (0, 1) is a constant which only

depends on cB, λ, TC , cC(TC), ‖B‖L(Q,Y), ‖C‖L(Z), ‖S‖L(Q), ‖S−1‖L(Q), ‖R‖L(Z), ‖R−1‖L(Z)

and ‖P−1‖∞.

The conditions to obtain the exponential convergence are rather classical and the of result
obtained in (2.3.1) is announced in numerous work but we did not find it in a clear and complete
statement. Note however that the controllability condition (2.15) is even weaker that the classical
controllability condition.
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2.3.1.3 Discretization and curse of dimensionality

Once the analysis of the estimator has been performed, we can now consider its space and
time discretization. We have already seen a strategy to time-discretize the system based on
the discrete-time Kalman filter. Hence, we focus here on space discretization aspects. Let us
consider a Galerkin discretization – in a space Vh– of the heat equation. For a function uh ∈ Vh
we associate the vector of degrees of freedom u ∈ RNdof . We have the following finite dimensional
dynamical systems

Mu̇ + Ku = f.

In this simple case, the state is directly given by y = u, the dynamics operator A = −M−1K,
and the right hand side β = M−1f such that we can write

ẏ = Ay + β+ Bν.

For this class of system we consider a target trajectory {y̌(t), t ∈ R+} which corresponds to
the space-discretization of the time-continuous trajectory {y̌(t), t ∈ R+} and a space-discretized
observations operator C such that a discretized version of the observations z are given by

z = Cy̌ + χ,

where χ contains now the measurement noise and the space discretization error. Let us now
consider the natural discretized space norm. For example for all (uh, zh, νh) ∈ Vh×Zh×Wh we
have

〈C∗zh, uh〉Y = 〈zh, Cuh〉Z = zᵀMΩobs (Cu) = (zᵀMΩobsCu)ᵀ = uᵀCᵀMΩobsz,

and
〈B∗uh, νh〉Y = 〈uh, Bνh〉Y = uᵀM (Bν) = (uᵀM (Bν))ᵀ = νᵀBᵀMu.

In other words, the natural norms after space discretization appear as symmetric matrix opera-
tors M and MΩobs that weigh the usual euclidian norm. We can now apply the optimal observer
formalism to the finite dimensional system followed by y and observed through z and get{

M˙̂y(t) = −Kŷ(t) + γMP(t)M−1CᵀMΩobs (z(t)− Cŷh(t)) , t > 0,

ŷ(0) = y�,

where the finite dimensional covariance operator satisfies
MṖ(t) = −KP(t)−MP(t)M−1Kᵀ − γMP(t)M−1CᵀMΩobsCP(t)

+ βMBM−1BᵀM, t > 0,

P(0) = P0.

We then realize that this equations leads to a full matrix operator – in fact Pij is directly related
to the discretization of the kernel π. Therefore, the space discretization drastically limits the
use of the Kalman filter for infinite dimensional systems in particular for PDEs in dimension
2 or 3. This is again a curse of dimensionality example for these filters coming from dynamic
programming paradigms.

Remark 2.3.2
The complete analysis of a space and time discretization of the Kalman filtering for infinite dimensional
systems has been investigated in different works. For instance in [Bensoussan, 1971], some Galerkin
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approximation strategies are used to prove the existence of the continuous covariance operator, giving
by this way some discretization analysis arguments. We can also cite the convergence work of [Hager
and Horowitz, 1976] the recent works [Aalto, 2014a,Aalto, 2014b] which analyses intensively the space
discretization and time discretization of the Kalman filter in a stochastic context.

2.3.1.4 Reduced-Order strategies

Principles – A way to circumvent the curse of dimensionality consists in assuming a specific
reduced-order form for the covariance operators. For example, when forgetting the model noise
we can consider the ansatz

∀t, P (t) = L(t)U(t)−1L(t)∗ (2.16)

with U is an isomorphism and L an extension operator – hence L(t)∗ is a projection operator. As
we have shown in [24] – strictly speaking in the finite dimensional case but with clear extension
in the infinite dimensional case – the solution of the Riccati equation form reduces to

L̇ = AL and U̇ = L∗C∗RCL, (2.17)

Since A stable, it is straightforward to define L. Moreover, U is a positive definite operator as
soon as its initial condition is. This, by the way, illuminates the analysis of the initial Riccati
solution P .

The initialization of this dynamics is based on the following initial decomposition. We define
by Vr ⊂ Y a space where the initial condition uncertainty – denoted by ζr – is reduced and Πr

is the projector on this subspace. Therefore we should parametrize the initial condition as

y = y� +Π∗r ζr.

There, we aim at defining L(0) = Π∗r and U(0) = U0 as the inverse of an error covariance
operator on Vr – namely an operator weighting the natural norm of Vr. We end up with a
Reduced Order Kalman Filter (ROKF) estimator of the form

˙̂y = Ay + f + LU−1L∗C∗(z − Cy)

L̇ = AL

U̇ = L∗C∗RCL

ŷ = y�

L(0) = Π∗r
U(0) = U0

The principle of this reduction is not new as it can be envisioned in the square-root approaches
of optimal filtering in finite dimensional systems [Kailath et al., 2000]. Moreover, the Singular
Evolutive Extended Kalman filter proposed in the data assimilation community is exactly based
on the same decomposition [Pham et al., 1998a]. We can also cite [Le Bris and Rouchon, 2013]
where the question of Riccati decomposition is intensively studied. Note that similar reduction
startegies have also been proposed in [Aalto, 2014b].

In our work [24], we complete the previous works on reduced-order strategy by two remarks.
First and taking inspiration from [Pham et al., 1998a], we have that the resulting observer can
still be associated with an optimal criterion. In that case, we easily show that the Reduced
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Order Kalman Filter (ROKF) obtained from (2.17) is associated with the minimization of the
criterion

min
ζr

{
J (ζr, t) =

1

2
‖ζr‖2U0

+
1

2

∫ t

0

(
‖z(s)− C(y|ζr(s))‖2R

)
ds

}
. (2.18)

The second result is a convergence analysis principle inspired from the observer analysis
in [Zhang, 2002]. We first proceed formally in a general setting before specifying some results
for our initial parabolic problem. For any y ∈ Y, let us introduce y⊥ = (1−Πr)y the projection
of y on the supplementary space V⊥ so that Y = V⊥ ⊕ Vr. Hence every y ∈ Y is characterized
by
(
y⊥ yr

)
. Accordingly we decompose L =

(
L⊥ Lr

)
with in particular L⊥(0) = 0. We then

introduce the estimation error ỹ = y̌− ŷ =
(
ỹ⊥ ỹr

)
. By construction the error dynamics is the

same as for the Kalman filter, namely

˙̃y = (A− PC∗RC)ỹ + PC∗Rχ,

with P decomposed as in (2.16). Then we proceed (when valid) to the change of variable

(ỹ⊥, ỹr) 7→ (η, µ) = (ỹ⊥ − L⊥L−1
r ỹr, (Lr)

−1ỹr), (2.19)

that leads to the rewriting of the error dynamics in{
η̇ = (A⊥⊥ − L⊥L−1

r Ar⊥)η

µ̇ = −U−1L∗C∗RCLµ− U−1L∗C∗RC(1−Πr)(η + χ),
(2.20)

We point out that (2.20) is obtained when formally assuming that Lr is an isomorphism for all
t. The remarkable consequence of our change of variable – inspired from [Pham et al., 1998a]
and then completed in our work [38] and [19, 24] – is that (2.20) is tridiagonal. Thus, if we
can obtain that η is exponential stable to 0, the stability of µ is defined by its homogeneous
part µ̇ = −U−1L∗C∗RCLµ which is characteristic of Kalman-based error dynamics where a
quadratic term L∗C∗RCL is weighed by a covariance operator U−1, reduced in our case.

The specific configuration where Ar⊥ = 0 is worth studying. It corresponds to the con-
figuration where the dynamics on the reduced space is decoupled from the dynamics on the
supplementary space, at least in the sense that the part of the state on V⊥ has no impact in the
dynamics on the reduced space. In this configuration, the dynamics of the error (2.20) is then
easier to analyze. First, Lr is solution of

L̇r = ArrLr, Lr(0) = 1,

a simple autonomous system. Then the dynamics of η is also autonomous

η̇ = A⊥⊥η, η(0) = ỹ⊥(0),

in the unfiltered space.

Let us look at the consequence of this assumption in our heat equation example. We consider
the eigen-decomposition (λi, ϕi)i∈N of the laplacian

−∆ϕi = λiϕi,

and define Vr = span{ϕi}1≤i≤Nr the finite dimensional space of Nr lower order frequencies. In
that case, we have indeed Ar⊥ = 0, Lr an invertible matrix – even if ill-conditioned – and η
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exponentially stable to 0. The reduced optimal filter is computable in practice and we can
manage the exponential stability constant by choosing carefully the number of low frequencies.

We point out that the decomposition of the state into a stable part and a part to be
controled is a rather general idea. It has been used in control with optimal control design, see a
nice example in [Breiten and Kunisch, 2015] with a cardiac application. A general definition of
the projector can be found in [Curtain and Zwart, 1995] and we also invite the interested reader
to read in [Ramdani et al., 2015] the very precise review of this problem for observer design.

Remark 2.3.3 (Extension to model noise)
The reduced order decomposition is incompatible with general model noise operator B unless we assume
that it can be decomposed on the same controlled and uncontrolled spaces. Otherwise, an artificial
projection on the controlled space can be envisioned, leading to

BQBᵀ → L(LᵀL)−1LᵀBQBᵀL(LᵀL)−1Lᵀ,

giving a modified dynamics of the reduced covariance inverse

U̇ = LᵀCᵀRCL− UL(LᵀL)−1LᵀBQBᵀL(LᵀL)−1LᵀU,

certainly more intricate to analyze.

Extension to non-linear systems – The heat equation is a rather simple example and
our objective is typically to design efficient feedbacks for more general models such as those
encountered with the cardiac system. Typical models of interest for us are reaction diffusion
models, hence non-linear models, a topic on which we have only made some formal investigations.
The idea is to formally derive an extension of the ROKF for non-linear systems based on the
Extended Kalman Filter principles. The resulting estimator is called Reduced-Order Extended
Kalman Filter (ROEKF). This idea takes its origin in [Pham et al., 1998a] for discrete-time
dynamical systems but can be also developed for continuous-time systems as we have shown
in [24]. As the derivation is only formal, we limit our presentation to finite dimensional systems
typically obtained after spatial discretization. Besides, our formalism is directly compatible with
non-linear observation operators. Indeed, the estimator dynamics reads

L̇ = ( dA)L

U̇ = Lᵀ( dC)ᵀR( dC)L,

L(0) = Π

U(0) = U0

As we have seen in Section 2.2.3, the EKF filter is a simplification of optimal filter equations
based on a linearization approximation. Then it has been analyzed for – and only for – small
estimation errors as for instance in [Reif and Unbehauen, 1999,Krener, 2003a]. We believe that
the same type of analysis can be conducted for the ROEKF as we initiate in [38] and then [19,24].
There we consider the dynamics of the linearized error δy, and a change of variable similar to
(2.19) gives {

η̇ = ( dA⊥⊥ − L⊥L−1
r dAr⊥)η

µ̇ = −U−1L∗ dC∗R dCLµ− U−1L∗ dC∗R dC(1−Π)η,
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where the differentials of the operators are taken with respect to the observer trajectory or to
the target trajectory.

The applicability of such an estimator has been numerically investigated in [13, 19] in con-
junction with reduced basis strategies based on Proper Orthogonal Decomposition (POD) to
define the reduced space. We briefly recall that, with POD, the order reduction is achieved by
using pre-computed solutions to generate a well-chosen subspace within which an approximate
solution is then sought, e.g. by Galerkin projection. We refer to [Chapelle et al., 2012] and
references therein for an introduction to POD strategies, also recalling that a POD approxi-
mation corresponds to a modal decomposition when the dynamics operator is linear, hence a
POD decomposition can be seen as a natural non-linear extension of the modal reduction that
we introduced for the heat equation. This POD extension and the resulting ROEKF strategy
have been applied to a reaction-diffusion model in [19]. In [13] the numerical investigations
cover a damped mechanical model of cardiac contraction. In both cases, the initial condition
uncertainty reduction on the POD basis is efficient with a number of POD vectors from 10 to
40.

Time-discretization of the ROEKF – Concerning the time discretization of these reduced-
order strategies, here again the principle is to discretize the initial model, and then consider the
minimization of a discretized version of (2.18). We obtained a discrete-time Reduced-Order
Kalman Filter which can then be extended to a discrete-time ROEKF (similar to the SEEK
of [Pham et al., 1998a]).

1. Initialization: 
ŷ−0 = y�

L0 = Π

U0 = U�

2. Correction: 
Gn = LnU−1

n Lᵀ
n dC− ᵀ

n Rn

ŷ+
n = ŷ−n + Gn(zn − Cn(ŷ−n ))

P+
n = LnU−1

n Lᵀ
n

3. Prediction: 
ŷ−n+1 = An+1|n(y+

n )

Ln+1 = dAn+1|nLn

Un+1 = Un + Lᵀ
n+1 dC− ᵀ

n+1Rn+1 dCn+1Ln+1

P−n+1 = LnU−1
n+1Lᵀ

n

The ROUKF alternative – Moreover, we can use other types of approximated optimal filters
for non-linear systems as alternatives to the discrete-time estimator (2.21). In this respect we
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have introduced in [23] a new reduced-order filter based on the UKF principles. The central idea
behind a ROUKF formulation is the possibility that there exist a decomposition of the form

P+
n = Γ+

n∆+
nΓ+ᵀ

n and P−n+1 = Γ−n+1∆+
n+1Γ−ᵀn+1.

This is due to the following proposition demonstrated in our paper [23]. We refer to Sec-
tion 2.2.3 for the notation.

Proposition 2.3.2 (Chapelle-Moireau)
Let y ∈ Rd be a random variable with mean and covariance represented by the empirical mean
and empirical covariance of sigma-points y = (y(i))1≤i≤r respecting the construction rules of a
given family of – i.e. canonical, stars, simplex etc. – sigma points v = (v(i))1≤i≤r with associated
weights α = (αi)1≤i≤Np . Denoting by dα the diagonal matrix construct from the vector α, we
have the identity

Covα(y) = ydαv
ᵀ(vdαv

ᵀ)−1vdαy
ᵀ

Using Proposition 2.3.2, we propose in [23] a ROUKF estimator distinguishing two cases:
(1) the simplex sigma-points case, and (2) the case of general sigma-points. The simplified
formulation for simplex sigma-points is due to the following remarks. Simplex sigma-points
correspond to the minimum number of particles – namely Np = Nr + 1 – to define a stencil
of dimension Nr. Therefore, when the covariance operator P of reduced rank is decomposed
with simplex sigma-points, we are certain that after any non-linear transform ϕ, the resulting
covariance operator Pϕ computed from the ϕ-propagated sigma-points is at most of rank Nr and
therefore can still be decomposed with a reduced operator of size Nr and corresponding projection
operators. This is not the case anymore for generalized sigma-points since the resulting space
generated by the propagated sigma-points is in general of dimension Np − 1 > Nr. In this case
a supplementary singular value decomposition where we keep only the biggest Nr eigenvalues
of the propagated covariance operator must be performed to project the propagated covariance
operator on the space of operator of rank Nr in the Frobenius norm sense.

Consequently, the resulting estimator for simplex sigma-points is very natural as exposed
in [23] (we denote by e = (ei)i are unitary simplex sigma points)

1. Initialization: 
ŷ−n = y�

L0 = Π
√
U−1
�

U0 = 1

2. Sampling

{
Γn =

√
U−1
n

ŷ−n,i = ŷ−n + Lnei
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3. Correction: 

ẑ−n,i = Cn(ŷ−n,i)

Υn = ẑ−ndαe
ᵀ

Un = 1 + Υᵀ
nRnΥn

Gn = LnUnΥᵀ
nRn

ŷ+
n = ŷ−n + Gn

(
zn − Eα(ẑ−n )

)
P+
n = Lᵀ

nU−1
n Ln

4. Re-Sampling {
Γn =

√
U−1
n

ŷ+
n,i = ŷ+

n + LnΓnei

5. Prediction: 
ŷ−n+1,i = An+1|n(y+

n,i)

ŷ−n+1 = Eα
(
ŷ−n+1

)
Ln+1 = ŷ−n+1dαe

ᵀ

P−n+1 = Lᵀ
n+1Ln+1

The most general form with the additional SVD can be found in [22], generalizing a first pre-
sentation in [23].

We point out that the reduced-order filter called the Singular Evolutive Interpolated Kalman
Filter (SEIK) that has been proposed in the seminal works [Pham et al., 1998b,Pham, 2001]3

can be reinterpreted as a ROUKF. Indeed, our contribution proves that SEIK is a special
form of ROUKF with a particular choice – potentially suboptimal – of simplex sigma-points and
corresponding weights. From this fundamental remark, we deduce the generalized version in [22]
and introduce some principle of analysis at the discrete-time level but also at the continuous-
time level. In fact, we prove in [22] that the algorithms (2.21) and (2.22) are exactly equivalent
when considering linear operators as it was the case for UKF and EKF. This is summarized by
the Diagram 2.2 similar to the Diagram 2.1 in Section 2.2.3.

As a conclusion, our unified theory allows to understand that, in practice, the ROUKF is a
very interesting alternative to ROEKF as it is (1) tangent free, (2) has the same stabilization
property for linearized errors and (3) is heuristically robust to large non-linearities. This last
property is particularly true with enough sampling points, and the SVD projection.

2.3.2 Luenberger observers formulations – The wave equation case

In the previous section, we have seen the so-called optimal estimators in the sense that they are
linked to a variational criterion. Then, we have seen that this can imply an asymptotic property
for the observer, namely that

ŷ(t) −−−→
t→∞

y(t)

3The SEEK mentioned in the ROEKF section was also formulated by D.T. Pham
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ROUKF

Discrete-time
Red. Order Kalman

Continuous-time
Red. Order Kalman

stability

consistency

Discrete-time ROEKF
Continuous-
time ROEKF

stability

consistency

error linearization

error linearization error linearization

Figure 2.2: Relations between reduced order filtering procedures

at least when no noise and modelling errors are present. This asymptotic property is a fun-
damental objective for an observer, meaning that the homogenous dynamics of the observer is
stable. Then, this must be completed by some robusteness results concerning the impact of the
modeling errors and measurement noises. This robustness is typically provided in optimal filter-
ing by the underlying variational criterion. One critical aspect of optimal filtering is the curse of
dimensionality for practical numerical implementations. This has led us to define reduced-order
optimal filters where the controlled space is of reduced dimension (potentially finite). This re-
quires that the uncontrolled space be stable by itself, otherwise no robustness with respect to
noise and errors could be obtained. This reduced-order approach was presented for dissipative
systems where the uncontrolled space is made of highly damped substates. However, this is
not appropriate for conservative systems such as wave-like equations (wave, elasticity, beams)
or even general hyperbolic problems. In this case, the need of whole state-space stability is in-
compatible with the dimensionality limitation imposed by optimal filtering. Therefore, we need
to base our observer design on alternative approaches where we keep the asymptotic properties
and relax the need for a variational criterion. In other words, we thus seek a filter G such that
the observer

˙̂y = Aŷ + β +G(z − Cŷ)

tends to the target trajectory y̌ as time increases. This implies to devise G for linear systems
so that the error ỹ = y̌ − ŷ

˙̃y = (A−GC)ỹ + errors

is stable to 0 when no errors are present and robust to these errors. Requiring only this stability
property for designing G is typically what has driven [Luenberger, 1964, Luenberger, 1971] in
his observer design strategy. Hence, we use the denomination Luenberger observers for charac-
terizing this approach.

With the objective of our cardiac mechanics applications, the wave equation reveals to be a
fundamental case for observer design and analysis. Hence, it has been for us a subject of intensive
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research with many different papers [10, 11, 17, 24, 25]. In fact on the wave equation, we have
been contributing to all of the 5 problems mentioned in Section 1.4). In [10, 25] we formulate
an original observer for wave equations using field measurements (Problem 1). In [10, 24] we
prove the exponential convergence of some observers (Problem 2). In [25], we propose a strategy
to also estimate some parameters for wave-like equations (Problem 3). In [11, 17] we proceed
to the numerical analysis of the observers (Problem 4). Note finally that the original observer
formulated in [25] for wave-like equations has been applied to a complex mechanical problem in
cardiac modeling with real data in our work [8] (Problem 5).

Remark 2.3.4 (Variational approaches)
The optimal filtering strategy is cursed for wave equations but a direct minimization of the variational
criteria can be performed. In [Cîndea and Munch, 2015] their solution of the extremal problem by duality
allows to define an estimator of the wave equation with adequate discretization.

2.3.2.1 Observer formulation

We consider a bounded domain Ω of Rn with a regular boundary ∂Ω. Given a known source
term f ∈ L1(R+, L2(Ω)) with ḟ – namely, the time derivative of f – also in L1(R+, L2(Ω)), we
consider the general wave equation

ü|ζu,ζv(x, t)−∆u|ζu,ζv(x, t) = f(x, t), (x, t) ∈ Ω× (0,∞)

u|ζu,ζv(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞)

u|ζu,ζv(x, 0) = u0(x) + ζu(x), x ∈ Ω

u̇|ζu,ζv(x, 0) = v0(x) + ζv(x), x ∈ Ω

(2.23)

with uncertainties ζu, ζv on the initial condition.

To define a first order state form of (2.23) we introduce yζ(t) =
(
u(t)
v(t)

)
(with ζ =

(
ζu,
ζv

)
)

such that {
ẏ|ζ(t) = Ay|ζ(t) + β(t), t > 0

y|ζ(0) = y� + ζ,
(2.24)

where y0 = ( u0
v0 ) and A : D(A)→ Y with

D(A) = D(−∆)×D(−∆
1
2 ), Y = D(−∆

1
2 )×H, A =

(
0 I

∆ 0

)
, β =

(
0

f

)
,

for H = L2(Ω) here. Note that with the boundary conditions considered in (2.23) we have
D(−∆

1
2 ) = H1

0 (Ω) and D(−∆) = H2(Ω) ∩H1
0 (Ω). The operator A generates a group and for

all y0 ∈ Y then (u, u̇) ∈ C((0, T );Y) for any T > 0, see e.g. [Pazy, 1983].

This model is entirely defined by its initial condition and in particular the trajectory of
interest {y̌(t), t > 0} is defined by an unknown ζ̌ = (ζ̌u, ζ̌v). However, some measurements
associated with the trajectory y̌ are available. For instance, we consider that we know the target
solution at every time t in Ωobs ⊂ Ω, an open and non-empty subset of Ω. These measurements
can be produced from a target trajectory with the use of the following observation operator

∀t ≥ 0,

∣∣∣∣∣L2(Ω)→ L2(Ωobs)

v(·, t) 7→ z(t) = v̌(·, t)|Ωobs

(2.25)
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or more interestingly

∀t ≥ 0,

∣∣∣∣∣H1
0 (Ω)→ H1(Ωobs)

u(·, t) 7→ z(t) = ǔ(·, t)|Ωobs

We point out that due to measurement noise the second case can not be derived in any case
from the first one by a simple time-derivation. Moreover, we expect a higher space regularity in
the second case.

In each case, introducing the observation space Z = L2(Ωobs) or Z = H1(Ωobs), we can
define an observation operator C ∈ L(Y,Z) by

C =
(

0 \C
)
, or C =

(
\C 0

)
, (2.26)

respectively, with \C the restriction operator on Ωobs. We aim to define an observer of the form{
˙̂y(t) = Aŷ(t) + β +G(z(t)− Cŷ(t)), t > 0

ŷ(0) = y�

with G a gain operator to be defined in L(Z,Y) in our case. Hence, the dynamics followed by
the error ỹ = y̌ − ŷ reads {

˙̃y = (A−GC)ỹ(t), t > 0

ỹ(0) = ζ̌

and then G should stabilize ỹ to 0.

Considering time-derivative measurements associated with (2.25), a convenient, and still
efficient, choice is to choose G = γ

(
0

1Ωobs

)
for any γ > 0. The corresponding observer is built

from a Direct Velocity Feedback (DVF) giving
¨̂u(x, t)−∆û(x, t) = f + γ1Ωobs(x)(z(x, t)− ˙̂u|Ωobs(x, t)), (x, t) ∈ Ω× (0,∞)

û(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞)

û(x, 0) = u�(x), ˙̂u(x, 0) = v�(x), x ∈ Ω

and the error follows
¨̃u(x, t)−∆ũ(x, t) + γ1Ωobs(x) ˙̃u(x, t) = 0, (x, t) ∈ Ω× (0,∞)

ũ(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞)

ũ(x, 0) = ũ0(x), ˙̃u(x, 0) = ṽ0(x), x ∈ Ω

(2.27)

a system whose stability properties have been intensively studied in different communities [Lions,
1968,Tucsnak and Weiss, 2009,Preumont, 2002,Zuazua, 2005].

When the measurements are directly the wave field, we propose in [10, 25] an observer
that does not necessitate a time-differentiation of the measurement, hence avoids amplifying
measurements errors. In return, we will see that the strategy necessitates some measurements
spatial regularity. To formulate the observer, we introduce ExtΩobs a harmonic lifting operator

ExtΩobs :

∣∣∣∣∣∣∣∣∣∣
H1(Ωobs)→ H1

0 (Ω)

φ 7→ ψ s.t. :


∆ψ = 0, in Ω\Ωobs

ψ = 0, on ∂Ω

ψ = φ, in Ωobs

(2.28)
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We easily verify that ExtΩobs is bounded from H1(Ωobs) to H1
0 (Ω) using the trace and lifting

properties to write

‖ExtΩobs(φ)‖2H1
0 (Ω) ≤ ‖∇φ‖2L2(Ωobs)

+ c1‖φ|∂Ωobs‖2H1/2(∂Ωobs)
≤ c2‖φ‖2H1(Ωobs)

.

As a candidate observer, we propose to choose G = γ
(
ExtΩobs

0

)
which gives the following first-

order system with γ > 0.
˙̂u(x, t) = v̂(x, t) + γ ExtΩobs

(
z(t)− û|Ωobs(x, t)

)
, (x, t) ∈ Ω× (0,∞)

˙̂v(x, t)−∆û(x, t) = f, (x, t) ∈ Ω× (0,∞)

û(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞)

û(x, 0) = u�(x), v̂(x, 0) = v�(x), x ∈ Ω

This observer is original in the control theory community since the feedback correction is applied
on the primary equation linking originally the time-derivative of the field to its velocity. This
observer was first formulated in [25] in a general wave-like context after a Galerkin spatial
discretization. The feedback was named “Schur Displacement Feedback” (SDF). The strong
formulation was then introduced in [10]. Note that in essence the filter proposed by [Li and Xu,
2011] for the beam equation is close to our formulation, in particular our beam formulation of
the SDF [11]. Ultimately we derive the error dynamics with

˙̃u(x, t) = ṽ(x, t)− γ ExtΩobs(ũ|Ωobs(x, t)), (x, t) ∈ Ω× (0,∞)
˙̃v(x, t)−∆ũ(x, t) = 0, (x, t) ∈ Ω× (0,∞)

ũ(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞)

ũ(x, 0) = ζu(x), ṽ(x, 0) = ζv(x), x ∈ Ω

These observer extend to boundary measurements on Γobs where we originally have Neu-
mann boundary conditions. For the DVF, the resulting observer is also well known with a
generalized Robin boundary condition on Γobs of the form

∂u

∂n
= −γv, on Γobs

However, the analysis of this observer is known to be quite intricate since the observation opera-
tor is not bounded anymore, hence we must prove that the observation operator is admissible. In
our case of direct field measurement, the resulting observer is directly compatible with boundary
measurement by considering this time the extension (2.28) from the boundary. Moreover, we
point out that the observation operator remains bounded in this case.

2.3.2.2 Observer Analysis

The question is now to analyze the convergence of the resulting observer. For the DVF, the error
system (2.27) has been extensively studied. A first remark is that the error system is dissipative
since the system energy

E (y, t) =
1

2

(∫
Ω
|∇u|2 dΩ +

∫
Ω
|v|2 dΩ

)
,

decreases for the error with
d

dt
E (ỹ, t) = −γ

∫
Ωobs

|ṽ|2 dΩ = −γ‖ṽ‖2L2(Ωobs)
. (2.29)
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This can be considered as the minimal requirement for the observer. In essence it also means
that there is no side effect in using the observer instead of the initial system to model and
simulate the target trajectory. This point of view has been mathematically translated into the
observer objective definition of [Krener and Duarte, 1996].

To obtain a stronger property of convergence for the observer, the objective is now to prove
that the dissipation in (2.27) which appears only on a small subdomain is sufficient to stabilize
the solution on the whole domain. In this respect and taking the example of the well studied
DVF error system we enumerate the various available strategies. First we need to distinguish
two types of stability: the exponential stability and a weaker stability where the rate is not
exponential.

Proving the asymptotic stability without any convergence rate can be done with a very nice
combination of spectral analysis of the uncontrolled model operator A and unique continuation
principles “à la Holmgrem” [Tataru, 1995]. We refer to the monograph [Burq and Gérard, 2002]
where this widespread idea has been consolidated under the name of “weak stability”.

Theorem 2.3.3 (asymptotic stability theorem [Burq and Gérard, 2002] )
Considering an error system for wave equations of the form{

˙̃y = (A− γC∗C)ỹ(t), t > 0

ỹ(0) = ζ̌

Any solution verifies
lim

t→+∞
E (ỹ, t) = 0

if one of the following equivalent condition is satisfied:

1. for all initial condition ζ̌ = φ̃ with φ̃ an eigenvector of A− C∗C, limt→+∞ E (ỹ|φ̃, t) = 0;

2. for all eigenvectors φ̃ of A− C∗C we have Cφ̃ = 0⇒ φ̃ = 0;

3. for all eigenvectors φ of A we have Cφ = 0⇒ φ = 0;

4. for all eigenvectors ϕ of −∆, we have \Cϕ = 0⇒ ϕ = 0.

Theorem 2.3.3 is fundamental to understand the minimum requirement for observer con-
vergence. Moreover, unique continuation results are compatible with potential time and space-
varying coefficients in the equations [Tataru, 1995].

The exponential stability corresponds to an exponential decay of the error energy. Remem-
ber that we prove an exponential stability with optimal filter approaches in Theorem 2.3.1.
For any skew-adjoint model operator as in the wave equation case, it is directly related to the
observability condition4 [Haraux, 1989,Ramdani et al., 2005] satisfied by system (2.24)

∃(c0, T0) s.t ∀T > T0,

∫ T

0
‖Cy|ζ‖Z dt ≥ c0‖y|ζ(0)‖Y . (2.30)

Note that proving the exponential stability is not obvious when comparing (2.30) and (2.29).
Indeed in (2.30), the conditions involves the initial system that is conservative. However in

4the conservative property of the operator implies that there is no need of a controllability results to excite
the system as in 2.3.1
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(2.29), we need a controllability condition on the error system, a system which is exponentially
decreasing, hence a more difficult condition – but still true – to prove. Let us now give various
methods developed in the literature to prove this identifiability condition:

• Spectral methods – Numerous works are based on spectral analysis of the couple (A,C)

to obtain the exponential stability of the error system, hence for us the convergence of
the observer. Here we see two classes of results: (1) abstract spectral results analyzing
the impact of the observation operator on the A spectral elements and (2) computing and
analyzing the spectral elements of the closed loop operator A − GC operators. For the
first case, the idea is to extend the weak stability property from a spectral analysis of
A. When A is skew-adjoint as it is the case for wave-like equations, the question is more
intricate. A well developed answer is based on a resolvent condition [Burq and Zworski,
2004,Miller, 2005, Ramdani et al., 2005] which consists in proving that there exist two
positive constants m1 and m2 such that

∀ϕ, ‖\A 1
2ϕ‖ ≤ m2‖(\A− λI)ϕ‖2 +m1‖\Cϕ‖

with here \A = −∆. Concerning (2), the objective is to directly perform a spectral analysis
of the closed loop system and prove that the resulting operator is spectral in the sense
of [Curtain and Zwart, 1995], namely that it can be decomposed over its spectral elements.
The main difficulty is here to prove that the spectral elements of A−GC which are different
from A form a complete basis. This has only been done in specific 1D or 2D cases in [Cox
and Zuazua, 1994,Shubov, 1997]. Note that in [24], we have given an interesting numerical
criterion to understand the distance between the subspace of generated by the spectral
elements of A – where the complete basis property is easily obtained – with the subspace
generated by the spectral elements of A−GC. When the operator is spectral, its analysis
is considerably simplified since the growth abscissa

µ0(A) = inf
t>0

ln
Tt
t
,

and the spectral abscissa of the system

σ(A) = sup{<(λ) |λ ∈ G(A)}.

coincide as it is the case for operators with compact resolvent, see Remark 2.3.5.

• Multiplier method – The principle of the multiplier method takes was given in [Lions,
1968] to demonstrate controllability results. The principle is to use specific test functions
of the form q∇w in the weak form of the dynamics in order to prove and observability
condition. The resulting observability condition is typically obtained for boundary ob-
servation [Komornik, 1994] through the condition that there exists a point x0 such that
the domain of observation is seen from this point. Concerning the interior observation
problem, the multiplier techniques can easily be Extended when the subdomain Ωobs is a
neighborhood of Γ(x0) [Zuazua, 2005].

• Carleman estimates – More complete and general inequalities can be obtained through
Carleman estimates strategies – see for instance [Lasiecka et al., 1999,Baudouin et al., 2013]
and the references therein. Here again the boundary observations are more classically
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considered but not necessarily. Moreover, it can produce results with Neumann boundary
conditions. We also point out that one important application of Carleman estimates is
to prove some uniqueness continuation results – see for instance [Tataru, 1996] – hence
allowing to obtain some weak stability results when the exponential stability is not valid
[Lebeau, 1996].

• Microlocal analysis – Finally the last approach and certainly the most precise is given
by microlocal analysis which aims at studying the high frequency behavior of wave-like
equations in order to understand the propagation of singularities in the domain. The idea
is to show that the information is supported by optic geometric rays. Hence, in [Bardos
et al., 1988, Lebeau et al., 1992] the Geometric Control Condition (GCC) is introduced
– also valid for Neumann boundary conditions as shown in [Bardos et al., 1988] – testing
if there exists a time T0 such that every optical ray encounters the observation domain
under which the observability condition is fulfilled with T > T0. Recently, the original
microlocal approach of [Lebeau et al., 1992] has been greatly simplified [Burq and Gérard,
1997] by using the microlocal defect measures introduced by [Gérard, 1991]. This allows
to prove very elegantly the geometric control condition sufficient for exact controllability
for domains of class C3 and equations with C2 coefficients.

Remark 2.3.5 (Comparison with dissipative systems)
We point out that for an operator A with compact resolvent, the exponential stability can directly
be obtained from spectral analysis with the Holmgrem continuation principle. Indeed, there exists in
this case a generalization – see [Ramdani et al., 2015] – of the famous Hautus test for finite dimension
systems [Hautus, 1970] saying that if

(φ ∈ D(A) ∪ Y |Aφ = λφ and Cφ = 0 )⇒ φ = 0

is satisfied then A,C is detectable, namely there exists G such that A − GC generates an exponential
semi-group. For conservative systems, we have just seen that the link with a spectral analysis inspired
from finite dimensional analysis is much more intricate as the Hautus test in Theorem (2.3.3) gives
only an asymptotic stability but not necessarily exponential. We understand anyway why the spectral
properties of A is so crucial to deduce the stability of the error system.

Concerning our original observer formulation using field measurements, we prove in [10]
the exponential stability when the GCC is satisfied. Our proof starts from the classical results
obtained for the DVF and that we convert for the SDF. The next proposition considers without
loss of generality that y� = 0.

Proposition 2.3.4 (Chapelle-De Buhan-Cîndea-Moireau)
Assume that the geometric control condition of Bardos, Lebeau and Rauch [Bardos et al., 1988]
is satisfied for some Ω[

obs strict subset of Ωobs such that dist(Ω\Ωobs,Ω
[
obs) > 0, in the time

interval ]0, T0[ for T0 > 0. Then the observability condition∫ T0

0
‖u|ζu,ζv(·, t)‖2H1(Ωobs)

dt ≥ C
(
‖ζu‖2H1(Ω) + ‖ζv‖2L2(Ω)

)
, ∀(u0, v0) ∈ H1

0 (Ω)×L2(Ω), (2.31)

holds for the same time T0. As a consequence, there exist strictly positive constants c and µ

such that the energy Ẽ of the error system decreases with

Ẽ (t) ≤ ce−µtẼ (0), ∀t > 0.
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To prove (2.31), we demonstrate an interesting equirepartition over time of the local energy
localized within the subdomain Ωobs between the kinetic and potential contributions. This type
of equirepartition properties typically appears in [Zhang, 2000] and in Carleman estimates – with
additional weighting and more complex functions. Note that we believe that a direct proof with
micro-local analysis with H1-defect measures could also be conducted. We underline the fact
that (2.31) is not valid with ‖u|ζu,ζv(·, t)‖L2(Ωobs) without relaxing the norms on the right hand
side. Hence, this means that for the wave equation in its natural spaces, we must
have some spatial regularity in the data if we do not want to rely on time-derivative
of measurements.

2.3.2.3 Observer discretization and numerical analysis

The first difficulty is to propose a discretization that preserves the dissipative property for the
estimation error, hence ensuring there is eventually no arm in using the observer. In this re-
spect, standard discretization principles allow to propose adequate discretizations as soon as
the feedback is based on the “physical” properties of the underlying system, as opposed to the
genericness offered by Kalman-based approaches. For instance, let us consider the discretiza-
tion of the wave equation (2.23) where we decide to rely on a standard finite element space
discretization and a Newmark time-scheme for the time discretization.

We consider for instance a Lagrange discretization and denote by u the vector of degrees of
freedom associated with uh the finite element approximation of the field u. We introduce the
mass and stiffness matrix operators associated with the finite element discretization

uᵀMw =

∫
Ω
uhwh dΩ, uᵀKw =

∫
Ω
∇uh · ∇wh dΩ

and the Newmark scheme reads as a mid-point rule on both the field and its time-derivative
un+1 − un

δt
=

vn+1 + vn
2

M
vn+1 − vn

δt
+ K

un+1 + un
2

= f
(2.32)

In the rest of the document we will use the mid-point notation ∗n+ 1
2

= ∗n+1+∗n
2 .

We recall that the Newmark time-scheme is more common for the elastodynamics problem
discretization and furnishes a direct first-order system discretization. In practice however, it is
solved by (M

δt
+

K

2

)
un+1 =

(M

δt
− K

2

)
un +

M

δt
vn + f (2.33)

followed by

vn+1 =
2

δt
(un+1 − un)− vn, (2.34)

and we will see the importance of these aspects when examining the performances and complexity
of our observer implementation. We also recall that the Newmark scheme can be rewritten as a
– maybe more classical – θ-scheme with θ = 1

4

M
un+1 − 2un + un−1

2δt2
+ K

vn+1 + 2vn + vn−1

4
= f.
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This scheme is conservative. Indeed, by computing the energy

E (y) = vᵀMv + uᵀKu = ‖uh‖L2(Ω) + ‖∇uh‖L2(Ω),

we directly infer En+1 = En for the homogenous system.

Considering the DVF case, a natural observer discretization is based on a mid-point dis-
cretization of the feedback so that

ûn+1 − ûn
δt

= v̂n+ 1
2

M
v̂n+1 − v̂n

δt
+ Kûn+ 1

2
= f + γ\CᵀMΩobs

(
zn+ 1

2
− \Cv̂n+ 1

2

)
where \C is the interpolation operator from the discretized space of the velocity field to the
discretized space of observation. Moreover MΩobs is the L2 mass operator associated with the
Ωobs subdomain. To evaluate the relevance of this discretization, let us consider for now that zn
is in fact a velocity field associated with the discretized wave equation (2.32). In other words, let
us assume – which is only exact up to discretization errors added to measurement errors – that

zn+ 1
2

= \Cv̆n+ 1
2
.

Then, by considering the error yn = y̆n − ŷn, we easily verify that

Ẽn+1 − Ẽn
δt

= −γṽn+ 1
2

\CᵀMΩobs
\Cṽn+ 1

2
,

which proves the dissipative property at the discretized level.

Considering now the SDF case, we introduced in [25] a comparable discretization as for
the DVF. We introduce the discrete operator KΩobs associated with the extension problem. We
consider for all φ ∈ Im\C, the extension ψ solution of the mixed problem associated with(

K \Cᵀ

\C 0

)(
ψ

λ

)
=

(
0

φ

)
(2.35)

Provided this system is solvable in λ, we define KΩobs such that λ = −KΩobsφ, hence

Kψ = \CᵀKΩobsφ.

Therefore, after spatial discretization, we have{
K ˙̂u = Kv̂ + γ\CᵀKΩobs(z − \Cû)

K ˙̂v + Kû = f

giving that the energy error decays as

dẼ

dt
= −γũ\CᵀKΩobs

\Cũ.

Then after time discretization,
K

ûn+1 − ûn
δt

= Kv̂n+ 1
2

+ γ\CᵀKΩobs

(
zn+ 1

2
− \Cûn+ 1

2

)
M

v̂n+1 − v̂n
δt

+ Kûn+ 1
2

= f
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leading to a similar decay as for the DVF

Ẽn+1 − Ẽn
δt

= −γũn+ 1
2

\CᵀKΩobs
\Cũn+ 1

2
.

We now understand that the DVF and SDF formulations are meant to be very similar both
at the continuous and discrete level. Typically, we consider the discrete state y =

(
u
v

)
∈ Yh

equipped with the norm of Y represented by the operator

N =

(
K 0

0 M

)
= P−1

0

Then the observation operators acting on the state are given by

CDVF =
(

0 \C
)

or CSDF =
(
\C 0

)
with the associated observation norms RDVF = γMΩobs and RSDF = γKΩobs . We have in both
cases a time scheme of the form

ŷn+1 − ŷn
δt

= Aŷn+ 1
2

+ P0CᵀR
(
zn+ 1

2
− Cŷn+ 1

2

)
, (2.36)

with the energy balance
Ẽn+1 − Ẽn

δt
= −ỹᵀ

n+ 1
2

CᵀRCỹn+ 1
2
.

The discretizations are compatible with energy balances. Hence, we could expect to have the
observer convergence property transposed to the discrete level.

To finalize a full convergence analysis we need to convert the dissipative properties at the
discrete level into an exponential stabilization of the system. In this respect, we therefore seek
an observability condition at the discrete level of the form

n∑
k=1

ỹᵀ
n+ 1

2

CᵀRCᵀỹn+ 1
2

vs ỹᵀ0Nỹ0.

Exponential stability at the discrete level – However, the discretization difficulties do not
end here, since even for natural discretizations it is now well known that the observability condi-
tion is not verified at the discrete level [Zuazua, 2005]– namely, the operator Tᵀ

n+ 1
2
|0CᵀRCTn+ 1

2
|0

is not coercive with a constant independent of the discretization– due to high spurious frequen-
cies. These non-physical high frequencies are not controlled by the observation and may pollute
the observer convergence as soon as the initial condition discretization excites them.

Here, there is a tremendous literature on possible remedies to this difficult problem, see for
instance [Glowinski et al., 1989, Banks et al., 1991, Banks and Fabiano, 1998, Ramdani et al.,
2007, Tebou and Zuazua, 2007, Ervedoza et al., 2008, Ervedoza, 2009, Ervedoza and Zuazua,
2009b,Abdallah et al., 2012]. In essence, we can classify the remedies into 2 categories: additional
numerical viscosity methods and mixed formulation discretization methods.

In [11], we have thus followed the strategy of adding some numerical viscosity to damped
the high frequencies. Let us first introduce the span of all eigenvectors of the space-discretized
dynamics

Ch = span
{
φh such that µj ≤ η

}
.
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then we define for any ε, an viscosity operator Λε as defined in [Ervedoza and Zuazua, 2009b]
that damped the system in C⊥h .

. Using this prediction correction scheme we can then assess the convergence of the observer.

Theorem 2.3.5 (Chapelle-Cîndea-Moireau)
Let \A : D(\A)→ H be a self-adjoint, definite positive operator with compact resolvent and let
C ∈ L(D(\A

1
2 ),Z) be a bounded linear operator such that System (2.23) is exactly observable

with (2.26). Let (Uh)0<h<h∗ be a family of finite dimensional subspaces of D(\A
1
2 ) (associated

with standard assumptions (2.6)-(2.11) of [11]), and let ∆t ∈ (0,∆t∗) be the time discretization
step. Set ε = max{∆t, hθ} and let Λε ∈ L(Yh) be a viscosity operator as in [Ervedoza and
Zuazua, 2009b]. Then, considering the discrete system

ŷ−n+1 − ŷ+
n

∆t
= A

ŷ−n+1 + ŷ+
n

2
+ \CᵀR

(
zn+ 1

2
− \C

ŷ−n+1 + ŷ+
n

2

)
ŷ+
n+1 − ŷ−n+1

∆t
= −Λεŷ+

n+1

for an initial condition y0 ∈ D(\A
3
2 )×D(A0) there exists a positive constant c(y0), independent

of h, ∆t and n, such that

‖ŷnh − y̆(n∆t)‖Y ≤ c(y0) max(ε, ε2 h−1∆t), ∀n ∈ N. (2.37)

In essence, the above theorem shows more than the observer convergence. It ensures that
the observer converges to the target trajectory better than a classical standard discretization,
starting from the exact initial condition but not using the observations. This result is fun-
damental: it justifies to rely on observers in numerical simulation to always benefit
from all the data sources available on a problem. We note that there are still some ef-
forts to simplify the assumptions on the viscosity operators. An important result is to show that
physical damping operators are sufficient (for example of Rayleigh type) to handle the spurious
high frequency. Therefore, we could rely on the viscosity already present in the system.

Observation sampling and noise – Until now, we have only considered perfect measure-
ments, namely measurements that are direct outputs of the model. However in practice, the
observation are corrupted by noise coming from the measurement procedure. We have investi-
gated this question with two main results.

The first results are published in [24] where we consider a wave-like equation with velocity
measurements corrupted by white noise. In order to avoid the introduction of cylinder set mea-
sures – see the very complete [Bensoussan, 1971] on this respect – we define a finite dimensional
observation operator sampling the space. More precisely, the observation operator is made of
Nobs non-overlapping contiguous measurement cells generating a subdomain Ωobs. The resulting
measurement corresponds to an average on each cell

∫
Ωobs

siv̌dΩ using weight functions (si)
Nobs
i=1

centered on each cell and such that ‖si‖L2(Ωobs) = 1. Then we say that the measurement is
defined by

z = Cv + χ

with a white noise χ ∈ RNobs of covariance W = diag(α2
i )

Nobs
i=1 . With such an observation opera-

tor, we consider a DVF observer on a time window [0, T ] and prove the following proposition.
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Proposition 2.3.6 (Moireau-Chapelle-Le Tallec)
Let us introduce µ0 and τ , a constant and a characteristic time τ such that{

µ0 · T � 1 if uniformly exponential stability

µ0 = 0 if only stability

and

τ =


1

µ0
� T if uniformly exponential stability

T if only stability

Then we have

E(‖ỹ‖E ) ≤ c
(
e−2µ0tE

(
‖ζ̃‖E

)
+ τγ2‖y − yh‖L2([0,T ],E ) + τγ2

Nobs∑
i=1

α2
i

)
.

Note that the estimation is not necessarily sharp with respect to the discretization as [24]
was published before [11]. Moreover in [24], we show that even when only stability is available
it is still possible to obtain an exponential stability on the initial condition part E

(
‖ζ̃‖E

)
by

assuming further regularity on it.

The second type of results concerns the fundamental question of the data sampling which
is inherent to every measurement procedure. In particular, we are concerned by coarse data in
time with respect to the model discretization. As an illustration, we can cite the case of the
assimilation of image sequences for cardiovascular systems – described e.g. in [8, 21] or [33]–
where the time-sampling of the data is of one or two orders of magnitude larger than the model
time-step discretization. This example justifies our need of an observer that directly uses the
field measurements and not their time derivatives, but it also imposes to understand the impact
of the data time sampling in an estimation of the type (2.37).

Facing this situation, there exist two alternatives. The first one – considered for example in
[25] – consists in interpolating the data in time in order to regenerate a time-continuous sequence
which can then be compatible with any time discretization of the model. This approach is very
attractive from an abstract standpoint but at the price of an additional time-interpolation error
perturbing the observer dynamics as any other measurement noise. Moreover, this perturbation
has the consistency of the data sampling period. A second approach – often used in practice
without even mentioning it – is to compute the discrepancy only when the data are available.
This intermittent correction is potentially error free but may induce correction shocks that limit
the stabilization of the error between the observer trajectory and the pursued trajectory. In
order to evaluate these two alternatives, we consider in [17] a splitting time-discretization of
the observer inspired from [Ervedoza and Zuazua, 2009a]. Once the time discretization of the
observer is chosen, we define (jr)r∈N ⊂ N as a strictly increasing sequence of natural numbers
so that the available measurements are

zr = z(jrδt), r ∈ N.

We then consider two strategies to introduce these time-sampled data in a discrete observer.
The first one is to consider the data only when they are available, hence in essence γn = 0 when
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the data zn is not available. The second one consists in interpolating the data to generate an
approximated zn for all n. We summarize these two strategies by (we choose here Λε = νδtA

2)
ŷ−n+1 − ŷ+

n

δt
= A

ŷ−n+1 + ŷ+
n

2
, n > 0

ŷ+
n+1 − ŷ−n+1

δt
= δn+1γC∗

(
dn+1 − Cŷ+

n+1

)
+ νδtA

2ŷ+
n+1, n > 0

ŷ0
+ = ŷ0,

(2.38)

where (δn)n∈N and (dn)n∈N will be referred to as the switching coefficients and the interpolated
data respectively. For the first idea – named on/off switch and where the correction term only
appears when measurements are available – we have

δn =

{
1

0
dn =

{
zr
0

if ∃r ∈ N : n = jr
otherwise.

The second choice where we interpolate in time the data reads, in the particular case of linear
interpolation,

δn = 1 ∀n, dn =
n− jr
jr+1 − jr

zr+1 +

(
1− n− jr

jr+1 − jr

)
zr jr ≤ n ≤ jr+1.

We can now give the convergence estimate for the on/off observer.

Theorem 2.3.7 (Cîndea-Imperiale-Moireau)
Let A be a skew-adjoint operator with compact resolvent and C ∈ L(Y,Z) be a bounded linear
observation operator such that the observability inequality (2.30) holds. Assume that there exists

a strictly positive integer N such that jr = rNδt, n ∈ N. Then, for every y0 ∈ D(A2
0) × D(A

3
2
0 )

there exist positive constants M0, µ0(N), c1 and c2, independent of δt ∈ (0, 1) and n, such that
ỹn+ solution of estimation error for the on-off scheme satisfies

‖ỹ+
n ‖Y ≤M0 exp(−µ0αnδt)‖ỹ0‖Y +

δt

1− exp(−µ0ρ∆t)

(
δt2c1 + νδtc2

)
.

where αn = card{j, 1 ≤ j ≤ n, δj = 1} =
⌊ n
N

⌋
, and ρ =

cn
n
. By comparison, the estimation

error in the case of interpolated data is given by positive constants M̃0, µ̃0, c̃1, c̃2 and c̃3,
independent of δt ∈ (0, 1) and n, such that,

‖ỹ+
n ‖Y ≤ M̃0 exp(−µ̃0nδt)‖ỹ0‖Y +

δt

1− exp(−µ̃0δt)

(
δt2c̃1 + νδtc̃2 + γc̃3|εd|

)
.

where |εd| = max1≤i≤n‖εid‖Z is the maximum of the interpolation errors εid = Cy̌(iδt)− di.

In the light of Theorem 2.3.7 we understand that choosing a strategy – interpolated or on/off
– relies on a compromise between stability and consistency. On the one hand, the observer with
intermittent correction phases bear an exact consistency with respect to the data, however
corrections shocks may occur thus leading to potential instabilities. On the other hand, the
observer fed with interpolated data admits a correction phase at each model time-step – hence
its greater stability – but artificially induces noise in the observer dynamical system due to data
interpolation error. In practice, the on/off switch has shown an incredible robustness
to large data time steps compared to the second observer whose efficiency, in that case, is
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Sampling
period

On/O�
switch

Observer using
interpolated data

Data noise &
Initial errors

Figure 2.3: Illustration of the different regimes where observers are more
likely to be efficient.

deteriorated by a significant amount of interpolation error. However, in the case of high
initial errors or high data noise, it appears to be more efficient to interpolate the
data, since the subsequently obtained dynamical system will benefit from a stabilizing operator
at each time step. This trade-off is summarized in Figure 2.3.

Computational issues – Even if the presented observer is attractive, there are various techni-
calities to be handled in order to propose an efficient numerical method following Theorem 2.3.5
in the case of the SDF. Most of them where addressed in [25] and [Imperiale, 2013].

The first issue concerns the need for solving an additional mixed formulation (2.35) to
compute the SDF feedback. We easily see that this mixed problem corresponds in fact to the
minimization of

min
ψ | \Cψ=φ

{1

2
ψᵀKψ

}
As an alternative, we propose in [25] to solve a penalized problem

min
{ ε

2
ψᵀKψ+

1

2
‖φ− \Cψ‖MΩobs

}
Then the computation of KΩobs can be approximated by

K(εK + \CᵀMΩobs
\C)−1\CᵀMΩobs −−→ε→0

\CᵀKΩobs .

This allows to rewrite the resolution as
(εK + \CᵀMΩobs

\C)
ûn+1 − ûn

δt
= (εK + \CᵀMΩobs

\C)v̂n+ 1
2

+ γ\CᵀMΩobs

(
zn+ 1

2
− \Cûn+ 1

2

)
M

v̂n+1 − v̂n
δt

+ Kûn+ 1
2

= f + γ\CᵀMΩobs

(
zn+ 1

2
− \Cv̂n+ 1

2

)
(2.39)

which is much more direct to solve. We point out that finally the systems continues to read as
in (2.36), but with a modified operator P0.

One drawback of the SDF discretization (2.39) is that it imposes to solve a 2Ndof degrees
of freedom system instead of solving the Ny dof system (2.33) followed by (2.34). First in
[25] we show that an iterative scheme over systems of size Ndof can be quite effective. We
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started to investigate prediction-correction – namely splitting – strategies in [Imperiale, 2013].
In addition to their possible analysis as in (2.38), these prediction-correction time-schemes are
also numerically attractive. In essence they read

ŷ−n+1 − ŷ+
n

δt
= A

ŷ−n+1 + ŷ+
n

2
ŷ+
n+1 − ŷ−n+1

δt
= P0CᵀR

(
zn+1 − Cŷ+

n+1

)
− P0Λεŷ

+
n+1

which allows to limit the computational impact of the correction as an extra-step. We further
mention that the correction can also be rewritten in the form

ŷ+
n+1 = ŷ−n+1 + P+

0,δtC
ᵀR
(
zn+1 − Cŷ−n+1

)
− P+

0,δtΛεŷ
−
n+1

with
P+

0,δt = P0(N + δtCᵀRC + δtΛε)
−1

which is exactly a classical BLUE correction as available in data assimilation codes and library
such as Verdandi [12].

Therefore, our observer formulation has also been carefully designed from a com-
putational stand-point to be easily integrated in simulation codes.

Initial condition estimation remark – We have investigated many subjects on observer
design for wave equations. However, we never had the opportunity to study the reconstruction
of the initial condition uncertainty. Indeed, one drawback of classical observer formulations with
respect to standard variational approaches is that we filter the initial condition uncertainty but
do not reconstruct it. In cardiovascular problems, most of the examples we have dealt with
are periodic, hence, the asymptotic reconstruction allows to retrieve the initial condition. In
all other cases, we want to rely on the back and forth strategy proposed by [Ramdani et al.,
2010] and analysed on various aspects (convergence, discretization) in the literature [Ito et al.,
2011, Haine and Ramdani, 2012, Haine, 2014b]. This strategy uses the time-reverse property
of the wave generator to reconstruct the initial condition via an observer of the time-reverse
equation. This back and forth strategy has also been designed for other conservative system
in [Auroux and Blum, 2008] with the appellation back and forth nudging (BFN). We point out
that our SDF strategy is completely compatible with a back and forth observer approach as
already used in [Haine, 2014a].

2.3.3 Luenberger observers: other models

We have presented on the wave-like equation the various challenges related to the state observer
design, analysis and discretization. We can now move slightly closer to the cardiac application
by showing how our design for the wave equation leads to extensions for mechanical problems.
In this respect, we will present here formulations derived for elasticity, then cardiac non-linear
mechanics and finally fluid-structure interaction. We have not reached on this problem the
same level of mathematical analysis as most of these problems are non-linear, but numerical
investigations will show that the strategy is still strongly relevant. Finally, at the very end of
this section we present a Luenberger observer for a vast class of hyperbolic systems that admit
a kinetic representation.
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2.3.3.1 Observer in structure mechanics

The elastodynamics case – First, we should start with elastodynamics in small displacement
∂tu = v, in Ω

ρ∂tv − div(σ) = f, in Ω

boundary conditions on ∂Ω

(2.40)

where σ = A : ε(u). We will also use ∆e = div(A : ε). The mechanical energy reads

‖u‖Em =

∫
Ω
ε(u) : A : ε(u) dΩ,

and is equivalent to an H1 semi-norm.If we assume to have some measurements on a subdomain,
for instance some velocity measurements on Ωv

obs and displacement measurements on Ωu
obs then

our wave observer directly extends to elasticity by simply considering [25]
∂tû = v̂ + γuExtΩuobs

(zu − û|Ωuobs
), in Ω

ρ∂tv̂ − div(σ̂) = f + γv1Ωvobs
(zv − v̂Ωvobs

), in Ω

same boundary conditions as (2.40) on ∂Ω

where the extension is given by

ψext = ExtΩuobs
(ψ) :


div(A : ε(ψext)) = 0 in Ω\Ωu

obs

ψext = ψ in Ωu
obs

same boundary conditions as (2.40) on ∂Ω

If the measurements are on the boundary, we then have
∂tû = v̂ + γuExtΓuobs

(zu − û|Γuobs
), in Ω

ρ∂tv̂ − div(σ̂) = f, in Ω

σ̂ · n = γv(zv − v̂Γvobs
)

same boundary conditions as (2.40) on ∂Ω\Γvobs
where this time

ψext = ExtΩuobs
(ψ) :


div(A : ε(ψext)) = 0 in Ω

ψext = ψ in Γuobs

same boundary conditions as (2.40) on ∂Ω\Γuobs

Note again that the feedback associated with velocity measurements is the classical DVF [24],
whereas on the displacement part we rely on our SDF design. With mechanical formulations,
this SDF is quite similar to the feedback imagined concurrently on the beam problem in [Li and
Xu, 2011] when compared to our formulation for the beam problem in [11, Appendix]. We also
point out that all these formulations correspond to the semi-group formulation

˙̂y = Aŷ + C∗R(z − Cŷ),
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with R a simple scaling operator by γv and γu in each subspace of observation.

On the elastodynamics problem, the analysis of the observer is very similar to the analysis
performed for the scalar wave equation. To our best knowledge, however, few results exist on
geometric control condition for elasticity problems when the boundary conditions are not of
Dirichlet type. In this case, [Khenissi et al., 2010] consolidate the elastic geometric control
conditions stating that every combination of pressure (P) and shear (S) waves rays should
encounter the subdomain of observation, knowing that these rays are independent in the domain
interior and coupled on the boundary, as any (P) ray reflects on the boundary to give a (P)
ray and (S) ray, and conversely for the (S) rays. The specific cases of glancing rays etc. are
completely defined. We then can follow the same path as for the wave equation to prove
[Imperiale, 2013]

Theorem 2.3.8 (Chapelle-Imperiale-Moireau)
We assume that there exists a constant C and a time T such that every solution of

u̇ = v, in Ω

ρv̇ −∆eu = 0, in Ω

u = 0, on ∂Ω

satisfies the elastic geometric condition for a domain Ω[
obs slightly smaller than Ωobs, namely,

with Ω[
obs ⊂ Ωobs and dist(Ω\Ωobs, Ω̌obs) > 0. Therefore the observer

∂tû = v̂ + γExtΩobs
(zu − û|Ωuobs

), in Ω

ρ∂tv̂ −∆eû = f, in Ω

û = 0 on ∂Ω

converges exponentially to the target system
ǔ = v̌, in Ω

ρ ˙̌v −∆eǔ = f, in Ω

ǔ = 0, on ∂Ω

such that z = ǔ|Ωobs
.

We point out that our proof is still based on energy equi-repartition, manipulation whereas a
direct proof using H1 micro-local defect measures for elasticity [Burq and Lebeau, 2001] should
allow to avoid the definition of Ω[

obs.

Non-linear mechanics – The question is now to propose an observer for non-linear mechanics
of the form 

∂tu = v, in Ω0

ρ∂tv − div(T ) = f, in Ω0

boundary conditions on ∂Ω0

where T is the first tensor of Piola-Kirchhoff and Ω0 is the reference configuration. Concerning
the DVF, the feedback is the same but, for the SDF, the question is now to understand in which



84 Chapter 2. Data assimilation contributions

sense the extension should be considered. As explained in [25], after spatial discretization, the
analysis of the linearized error between the observer and the target system indicates that the
extension should be considered with the linearized stress tensor around the trajectory. However
this tensor is not necessarily associated with a well-posed problem since coercivity is not always
satisfied, for instance in compression. In these cases it may be more robust to stick with a time-
constant extension based on the linearized tensor with respect to the reference configuration.
In fact, the practical results in [25] show some very good observer convergence with these two
choices.

2.3.3.2 Fluid-structure interaction

A common data assimilation problem in blood flow modeling consists in considering a fluid-
structure interaction model of a part of an artery that must be registered on measurements of
the wall displacement. In that case the question remains to design an observer using structure
displacements, but this time for coupled problems. We address this question in [4] where we
simply define the observer as the coupling of the structure mechanics observer and a non observed
fluid. We then try to understand how this coupled problem – hyperbolic for the solid and
parabolic for the fluid in essence – is then controlled by observation on the structure. This
type of question of controlling coupled system by actioning only on one them is becoming a
more and more intensive field of research that remains particularly intricate. We can cite for
instance [Zhang and Zuazua, 2006,Duyckaerts, 2007,Raymond and Vanninathan, 2010,Court,
2014,Badra and Takahashi, 2014] – see also references therein – for results on FSI stabilization
and control that should give the necessary tools for an extensive mathematical analysis of this
problem. As it was a preliminary analysis, we have limited our approach by simply showing the
additional stability brought by the observer and trying to quantify it by a spectrum sensitivity
analysis.

Energetic balance associated with the observer – We consider a standard FSI model
as given in (1.14) (Section 1.3.3) coupled to a RCR-Windkessel model. On the solid part, we
assume to have at our disposal some interior measurements or boundary measurements on the
external part of the wall boundary (the uncoupled boundary). First, we prove that our coupled
observer brings no unstable perturbation to the non-linear Navier-Stokes-Elasticity problem.

Proposition 2.3.9 (Bertoglio-Chapelle-Fernández-Gerbeau-Moireau)
Defining

Ê (t) =
ρf

2
‖v̂f‖2L2(Ωf(t))

+
ρs

2
‖v̂s‖2L2(Ω0) +

1

2
‖ûs‖2Em,s +

C

2
p̂2,

D̂(t) =2µf‖εf(v̂f)‖2L2(Ωf(t))
+ ηs‖v̂s‖2Em,s +

p̂2

Rd
+RpQ̂

2,

for the DVF observer, the energy balance reads

d

dt
Ê (t) ≤ −D̂(t)− γv

2
‖v̂s‖2L2(∗) +

γv
2
‖zv‖2L2(∗) −

∫
Γin∪Γout

ρf

2
v̂f · nf |v̂f |2 dΓ,

whereas for the SDF observer, we have

d

dt
Ê (t) ≤ −D̂(t)− γu

2
‖Exts∗(ûs)‖2Em,s +

γu
2
‖Exts∗(zu)‖2Em,s −

∫
Γin∪Γout

ρf

2
v̂f · nf |v̂f |2 dΓ,
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with ∗ standing for the domain of observation namely either Ωobs or Γobs.

Sensitivity analysis – We now proceed to a sensitivity analysis in the spirit of [Preumont,
2002]. Let us start by the solid only when we add a DVF or a SDF. To simplify the presentation
we consider a Galerkin spatial discretization. As originally done in this case in [38], we compute
the sensitivity to the feedback by introducing the quadratic eigenvalue problem of the DVF

Find (φu, λ) such that
(
λ2Ms + λ(Λs + γv

\Cᵀ
vRv

\Cv) + Ks

)
φu = 0. (2.41)

The solution (λ,φu) of this problem (2.41) is a function of γv and we denote by (λ|0,φu|0) the
solutions when γv = 0. Recalling that in our case we choose Λs = ηsKs, they verify

Ksφu|0 = ω2Msφu|0, and λ2
|0 + ηsω

2λ|0 + ω2 = 0,

and we can normalize them such that φᵀ
u|0Msφu|0 = 1 (note that we can consider real-only

eigenmodes in our case). Then we can compute the Fréchet derivative of λ with respect to γv
to compute a sensitivity. We obtain(

2λ|0
∂λ

∂γv

∣∣∣
γv=0

Ms + λ|0
\Cᵀ

vR
\Cv +

∂λ

∂γv
Λs

)
φu|0 +

(
λ2
|0Ms + λ|0Λs + Ks

) ∂φu
∂γv

∣∣∣
γv=0

= 0.

Finally, left-multiplying by φᵀ
u|0 and using that, by definition, (λ2

|0Ms +λ|0Λs + Ks)φu|0 = 0, we
obtain (

2 + ηs
ω2

λ|0

) ∂λ
∂γv

∣∣∣
γv=0

= −φᵀ
u|0(\Cᵀ

vR
\Cv)φu|0.

Then for an initially undamped structure the initial eigenvalues on the imaginary axis λ2
|0 = −ω2

are moved to the half plane of negative real parts by

∂λ

∂γv

∣∣∣
γv=0

= −
φ
ᵀ
u|0(\Cᵀ

vR\Cv)φu|0
2

= −1

2

‖\Cvφu|0‖2L2(Ωobs)

‖φu|0‖2L2(Ωs)

.

Therefore, when we have an observability inequality of the form: there exist two positive con-
stants T0 and α such that

∀T ≥ T0,

∫ T

0
‖\Cvvs(t)‖2L2(Ωobs)

dt ≥ α
(
‖u(0)‖2Es,m + ‖v(0)‖2L2(Ω)

)
,

then we see that
∂λ

∂γv

∣∣∣
γv=0

≤ − α

2T0
.

In [4] we then develop the same computation for the SDF observer to retrieve the same
sensitivity

∂λ

∂γd

∣∣∣
γd=0

≤ − α

2T0
,

as indeed in [25] we design the SDF with this objective.

A typical illustration of the poles behavior is given in Figure 2.4 inspired from [4]. Note
also that the pole representation allows to understand the over-damping phenomena, namely,
the fact that large values of the gain are counter productive with respect to the stabilization
rate – see [38] for a more complete description on this aspect.
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Figure 2.4: Poles of the DVF (left) and the SDF (right) estimators in
elastodynamics with boundary observation and for different values of the
gain. The grey arrows sketch the trajectories of the poles when increasing
the feedback gain

We can now investigate the impact of the fluid on the SDF observer. We start by considering
only an inviscid incompressible fluid. Hence, the forcing pressure p is driven by an elliptic
problem with interface coupling conditions reducing to

−∆p = 0, in Ωf

∇p · nf = 0, on Γin

p = 0, on Γout

with the coupling condition{
∇p · nf = −ρf∂tσs

· nf , on Σ

ηsσs
(vs) · ns + σ

s
(us) · ns − p nf = 0, on Σ

By eliminating the pressure variable by a Schur complement we end up with the discretized
problem [

Ks 0

0 Ms + Ma

][
u̇s

v̇s

]
=

[
0 Ks

−Ks −Λs

][
us

vs

]
where Ma is the so-called added mass operator given by

Ma = ρfBfKsB
ᵀ
f with ∀ph ∈ Vp,h, vs,h ∈ Vv,h, vsBfp =

∫
Σ

phvs,h · nf dΓ.

Then, the sensitivity analysis gives for the SDF

∂λ

∂γd

∣∣∣
γv=0

≤ −1

2

‖\Cvφu|0‖2L2(Ωobs)

‖φu|0‖2a + ‖φu|0‖2L2(Ωs)

,
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with ‖φu|0‖a = φ
ᵀ
a,dMaφa,d. For the DVF however, we have

∂λ

∂γv

∣∣∣
γv=0

≤ −1

2

(
1−

‖\Cdφu|0‖2a
‖φu|0‖2a + ‖φu|0‖2L2(Ωs)

)
Here, we see that the SDF is still very efficient whereas the DVF sensitivity is close to 0 as for
some modes φᵀ

a,dMaφa,d is close to 1. In fact, the DVF must be changed in this FSI configuration
to take into account the added mass-effect by changing

\Cᵀ
vMobs

\Cv → \Cᵀ
v(Ms + \CvMa

\Cᵀ
v)
\Cv

in order to retrieve a good sensitivity. We see here the interest of the sensitivity analysis to
design efficient feedbacks.

To go further in the analysis we consider an FSI problem where the outflow pressure con-
dition is given by a coupled lumped-parameter model – namely a Windkessel model – as it is
often the case in blood flow modeling. In [4], we proceed again to a sensitivity analysis com-
bining exact computation and order of magnitude analysis to determine the sensitivity of our
feedback in actual situation. Our conclusion is that the SDF can still be very effective in that
case whereas the DVF is limited intrinsically by the quasi-static nature of the Windkessel pole,
which makes it impossible to stabilize with velocity-based strategies.

We finally move to the evaluation of the sensitivity for an Elastodynamics-Stokes coupling
problem. Here we are exactly in the case of the parabolic-hyperbolic situation [Duyckaerts,
2007]. In [4] we again combine pole analysis and numerical computations to justify how the
fluid pole are stable but rather unaffected by the observer on the solid part. This indicates that
an objective for fluid-structure interaction data assimilation problems is to rely on measurements
on both the solid and the fluid part. In blood flows, this is typically achieved by combining
standard MRI with phase contrast MRI where the flow is recorded, or Doppler images.

2.3.3.3 Hyperbolic problems with kinetic representation/interpretation

As we have seen with the wave equation, data assimilation offers an effective strategy to deal
with the various sources of error entering and propagating during a simulation and restricting
the performance of a numerical prediction. This is in fact true for hyperbolic systems in general,
and especially for conservative systems where, in the absence of dissipation, every type of errors
– model errors, numerical errors – propagate and possibly expand in time. We thus want to
consider here a general class of conservation laws that may contain non-linearities as for instance
transport equations, Burgers equation, shallow water or Euler systems for gas dynamics, and
we focus on non-viscous configurations. The presence of non-linearities introduces a new step
of difficulty for the formulation of observers as compared to what we have seen with the wave
equation [Bardos and Pironneau, 2005]. However, we propose in [6] an original approach based on
a kinetic description [Perthame, 2004] to circumvent the difficulty brought by the non-linearities.
Indeed, the kinetic description is formalized by a linear – up to the collision term – transport
equation in which the advection velocity is an additional free variable. Hence, we can easily
design a Luenberger observer at the kinetic level leading to a BGK (Bhatnagar–Gross–Krook)
type equation. Then, we derive the observer of the original system by computing the macroscopic
variable from the kinetic observer. The resulting observer feedback can be non-linear and proves
to be more effective than other nudging operator computed directly at the macroscopic level.
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A first simple result on transport equations Let us first study the simple configuration
of a transport equation model defined on [0, 1] with periodic boundary conditions

∂u

∂t
+ α

∂u

∂x
= 0

u(x, 0) = u0(x)

(2.42)

We further assume that α is constant. We choose as the state space L2([0, 1]) and easily prove
that (2.42) is associated with the group generator A = −α ∂

∂x of domain

D(A) = {H1((0, 1)) s.t. u(0) = u(1)}.

On this system, we follow a target trajectory {ŭ} starting from ŭ0 = u�+ ζ and we consider
that we have at our disposal partial observations of the target trajectory over time up to some
measurement errors

z(x, t) = 1ω(x)ŭ+ χ

with typically ω = (a, b) ⊂ [0, 1]. The observation space is defined by Z = L2((a, b)) and the
observation operator C = 1ω(x)· is bounded.

We define the observability condition for this transport equation as the existence of a time
T0 and constant c such that

∀T ≥ T0,

∫ T

0
‖u‖L2(ω) dt ≥ c‖u0‖L2([0,1]).

We directly verify the observability condition from the equation characteristics.

Proposition 2.3.10
We denote by {xx,t(s), s ≥ 0} the characteristics passing by x at time t. The time passed into ω
when following a characteristic is denoted by τx0 = 1

α

∫ t
0 1ω(xx0,0(s)) ds. If τmin = minx0 τx0 > 0,

then the observability condition is satisfied for all t > T0 = τmin.

Then we directly infer an effective observer
∂û

∂t
+ α

∂û

∂x
= γ1ω(z − û)

û(x, 0) = u�(x)

and with the following estimation error
∂ũ

∂t
+ α

∂ũ

∂x
= −γ1ωũ+ γ1ωχ

ũ(x, 0) = ζ(x)

(2.43)

The homogeneous part of system (2.43) is exponentially stable. Indeed, we have on every
characteristics

dũ

dt
(xx0,0(t)) = −γ1ωũ(xx0,0(t))

which implies that for all t > T0

‖ũ‖ ≤ exp

(
−γ
∫ t

0
1ω((xx0,0(s)) ds

)
≤ e−λτmin ,

with easy extension with measurement errors.
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Kinetic description of systems of conservation laws From this simple example we can
now propose an observer strategy for a wide class of hyperbolic systems. Considering the
following scalar conservation law

∂tu+

d∑
i=1

∂xiAi(u) = 0

u(t = 0, x) = u�(x) + ζu(x)

with the entropy inequalities, for any convex function S (·) and corresponding entropy flux ηi,

∂tS (u) +
d∑
i=1

∂xiηi(u) ≤ 0,

the kinetic description can be written{
∂tm(t, x, v) + α(v) · ∇ xm(t, x, v) = q(t, x, v)

m(0, x, v) = m�(x, v) + ζm(x, v)

with u is the macroscopic variable, m is the density function which is related to u by its first
moment:

u(t, x) =

∫
Rd

m(t, x, v) dv,

q is the collision operator. Nonlinearities are hidden in the density function m, and shocks are
confined in the collision operator. But we emphasize the fact that for fixed v, the kinetic equation
can be handled as a linear equation. The equivalence proof is based on simple integration of the
kinetic equations. Then, the observer equations at the macroscopic level{

∂tû+∇ x ·A(û) = γ (u− û)

û(0) = u�

are formulated at the kinetic level{
∂tm̂+ α(v) · ∇ xm̂ = γ (mz − m̂)

m̂(0) = m�

At the macroscopic level, the nonlinearity of the flux A is the main obstacle to easy convergence
proofs of û towards u. Possible techniques are based on L1 contraction principle in the scalar
case, but do not easily extend to systems. At the kinetic level, the equation gains linearity and
we can even have the explicit solution:

m̂(t, x, v) = m̂0(x− α(v)t, v)e−γt +

∫ t

0
e−γsmz(t− s, x− α(v)s, v)ds,

as soon as mz(t, x, v) can be generated from the measurements z. This leads to theoretical
convergence results, consolidated in [6] with and without measurement noise.

The Saint-Venant example and its kinetic description – We consider the illustrative
example of the Saint-Venant system (or shallow-water system), that reads in 1D after simplifying
the source term 

∂h

∂t
+

∂

∂x

(
hu
)

= 0

∂

∂t

(
hu
)

+
∂

∂x

(
hu2 +

g

2
h2
)

= 0

(2.44)
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where h stands for the water height, u for the water velocity and g is typically the gravity
parameter. For now we do not mention any boundary condition. Note that a similar type of
model also appeared in Section 1.3.3 as a 1d asymptotic model of the cardiovascular circulation
in arteries.

System (2.44) naturally comes with an entropy inequality for the so-called energy

E (h, u) = h
u2

2
+ g

h2

2
,

which satisfies for weak solutions

∂E

∂t
+

∂

∂x

(
u
(
E +

gh

2

))
≤ 0.

On this system we consider the configuration where we measure the water height at every
point of the domain. Thus we have on the target trajectory {(h̆, ŭ), t > 0},

z = h̆+ χ. (2.45)

In the literature [Auroux and Blum, 2008,Auroux and Nodet, 2008], the following observer
has been proposed 

∂ĥ

∂t
+

∂

∂x

(
ĥû
)

= γ(z − ĥ)

∂

∂t

(
ĥû
)

+
∂

∂x

(
ĥû2 +

g

2
ĥ2
)

= 0

which satisfies the energy balance (even without observation error)

∂Ê

∂t
+

∂

∂x

(
û
(
Ê +

gĥ

2

))
≤ −γh̃

( û2

2
− gĥ

)
where the right hand side is of uncontrolled sign.

Instead we propose to introduce a kinetic representation of (2.44). Formally, we have an
equivalence between the macroscopic conservation law plus its energy inequality and a kinetic
formulation of the form

∂

∂t
m(t, x, v) + v

∂

∂x
m(t, x, v) = q(t, x, v) (2.46)

where v is the kinetic velocity variable, m is a particle density and q is a collision operator which
satisfies ∫

R

q(t, x, v) dv = 0,

∫
R

vq(t, x, v) dv = 0,

∫
R

v2

2
q(t, x, v) dv ≤ 0.

A density of interest is given by

m(t, x, v) =
h

c
ψ
(v − u

c

)
, with c =

√
gh

2
and ψ(x) =

1

π

√
1− x2

4
1|x|≥2. (2.47)

so that in particular the density moments give

h =

∫
R

m(t, x, v) dv, hu =

∫
R

vm(t, x, v) dv.
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Then in the kinetic theory [Perthame, 2004], it is known that a system of the form

∂

∂t
f(h, u− v) + v

∂

∂x
f(h, u− v) = γ(f(h, u− v)−m(h, u− v))

will converge to the solution of (2.46). In [6], we prove that by replacing m with mz = z
cψ(v−uc )

computed only from the measurement z given in (2.45), we have the same property. In the
absence of measurement noise z = h̆, we end up with the following theorem.

Theorem 2.3.11 (Boulanger−Moireau−Perthame−Sainte-Marie)
Let h(t, x) ∈ L∞([0, T ]×Rx) be solution of (2.44), and mz = ž

cψ(v−uc ). Let m̂(t, x, v) solution
of

∂

∂t
m̂+ v

∂

∂x
m̂ = γ (mz − m̂)

with the constraint of being of the form (2.47). Assuming some regularity on mz defined by

∂

∂t
mz + v

∂

∂x
mz

(
v − u
c2

)
mz = q ∈ C([0, T ], L1(Rx ×Rv))

then, there exists γ′ > 0 such that for all T > 0

‖m̂(T )−mz(T )‖L1(Rx×Rv) ≤ ‖m̂(0)−mz‖L1(Rx×Rv)e
−(γ−γ′)T

+ sup
0≤t≤T

‖q(t)‖L1(Rx×Rv)
1− e−(γ−γ′)T

γ − γ′ .

Note hat in our article [6], we also investigate the effect of noise by combining the result
from Theorem 2.3.11 and a comparison between the exact m̌z = ž

cψ(v−uc ) and the noisy density
mz = z

cψ(v−uc ).

By taking the moments of the kinetic observer, we then obtain an observer at the macro-
scopic level, namely here

∂ĥ

∂t
+

∂

∂x

(
ĥû
)

= γ(z − ĥ)

∂

∂t

(
ĥû
)

+
∂

∂x

(
ĥû2 +

g

2
ĥ2
)

= γû(z − ĥ)

(2.48)

which, this time, satisfies a controlled energy balance of the form

∂Ê

∂t
+

∂

∂x

(
û
(
Ê +

gĥ

2

))
≤ −γ(E − Ê ).

The advantage of the kinetic representation to design an effective observer (2.48)
is now clear. It allows to benefit from the “linearity” to formulate and analyse
observers with properties conserved (despite the non-linearity) at the macroscopic
level. Moreover the kinetic representation is also well adapted to the formulation
of conservative time-schemes [Bristeau et al., 2011]. Hence, in [6], we present an observer
discretization that satisfies an energy balance at the discretized level.
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2.3.4 Hybrid feedback design

So far we have presented two different alternatives for sequential estimation. The first one is
based on optimal control, whereas the second one is more related to approximate controllability.
The main advantage of the optimal approach is its genericity, hence the Kalman-like feedback
can be designed for any dynamics. However, it faces the “curse of dimensionality” that binders
its application with PDEs when not relying on reduced-order startegies. On the contrary, the
approach inspired from Luenberger allows to propose effective feedbacks which are easily imple-
mentable but necessitate to specifically design the feedback for each dynamics and observations
at hand. In our opinion, this is particularly technical when the observation operator gives a
very indirect measurement of a state variable as in the two following situations:

• the sequential identification of some parameters using an observation operator which gen-
erally acts only on the state,

• the estimation of coupled systems where the measurements are related to only one sub-
variable of the state.

For instance, to our best knowledge, the design of Luenberger estimator for parameter identifi-
cation is limited to very specific situations where typically the whole state is observed [Hoffmann
and Sprekels, 1985,Baumeister and Scondo, 1987b,Demetriou and Rosen, 1994a]. For coupled
systems, it is classical to limit the action of the feedback on the sub-system which is observed as
we did with fluid-structure interaction formulations. To overcome this difficulty, we have pro-
posed a hybrid sequential strategy that combines a Luenberger observer – when available – with
a reduced-order optimal feedback on the remaining un-controlled space. We have investigated
the potential of this strategy for identification purposes mainly, but also in the context of a
weakly coupled system.

2.3.4.1 Joint state and parameter estimator continuous formulation

We first consider a dynamical system where the source term depends of some parameter θ to be
estimated. The system then reads

ẏ|ζ,ν = A(t)y|ζy ,ζθ +D(t)θ|ζθ
y|ζy ,ζθ(0) = y� + ζy

θ|ζθ = θ� + ζθ

On this system we assume to have the following observation z = C(t)y̌ + χ5, about the target
solution y̌, and we want to jointly estimate the initial condition unknown ζy and parameter
unknown ζθ – see the same question covered in [Alves et al., 2009].

Let us now further assume that we have already designed an effective Luenberger feedback
Ğ for the state dynamics. We denote by y̆ this state estimator following the dynamics

˙̆y = Ay̆ +Dθ̌ + Ğ(z − Cy̆), y̆(0) = y�.

5In the rest of the section the time-dependency of the operators is discard to ease the reading, but general-
ization to time-dependent operator is straightforward
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We then propose in [24] to extend the state estimation to a joint state-parameter estimation
by using a ROKF on the remaining uncontrolled space, namely the parameter space. This is
inspired by – hence it unifies – two different works, one on adaptative estimation [Zhang, 2002]
and one on reduced-order Kalman approaches [Pham et al., 1998a]. Following our description
in Section 2.3.1.4, we end up with the estimator defined by

˙̂y = Aŷ +Dθ̂ + Ğ(z − Cŷ) + L
˙̂
θ, ŷ(0) = y�,

˙̂
θ = U−1L∗C∗R(z − Cŷ), θ̂(0) = θ�,

L̇ = (A− ĞC)L+D, L(0) = 0,

U̇ = L∗C∗RCL U(0) = P θ.

(2.49)

Let us first give some insight on this estimator. The operator L – described in Section 2.3.1.4
as an extension operator – can here be conceived more intuitively as a sensitivity operator.
Indeed we have

L(t) = dθy̆(t), t ≥ 0,

as they follow the same dynamics starting from the same initial condition. We then understand
that the ROKF formulation introduces in the state dynamics of (2.49) a correction L

˙̂
θ that

integrates the parameter dynamics through the state dynamics.

The analysis of the estimator convergence is based on a similar change of variable as in
(2.19)

(ỹ, θ̃) 7→ (η, θ̃) = (ỹ − Lθ̃, θ̃),

that leads to the rewriting of the error dynamics into{
η̇ = (A− ĞC)η,
˙̃
θ = −U−1L∗C∗RCLθ̃ − U−1L∗C∗RCη + U−1L∗C∗Rχ.

(2.50)

With (2.50) we understand precisely the key element of the joint estimator convergence. First
we see that η follows the same error as the state observer error dynamics y̌ − y̆, and η should
converge to 0 as soon as the state observer is properly designed. Therefore we can focus on the
parameter error by demonstrating that U−1L∗C∗RCη converges to 0. The homogeneous part
of the parameter error

˙̃
θ = −U−1L∗C∗RCLθ̃,

follows a Grammian-based dynamics remarkable of a Kalman-like approach with U a covariance
operator and L∗C∗RCL a positive operator feeding the covariance dynamics. For instance, a
Liapunov approach [Zhang and Xu, 2001] gives the convergence of this homogenous part under
an identifiability condition of the form

∃(c1, c2, T ), c1‖θ‖2P,Nθ ≥
∫ T

0
‖C(Lθ)‖2Z,R dt ≥ c2‖θ‖2P,Nθ , (2.51)

Following this intuitive strategy, we proceed in [24] to the complete analysis of the estimation
error. We consider a stochastic set-up for the noise but limit our proof to a spatially discretized
system to avoid the technicalities of cylinder set measures that would have been introduced
with a space- and time-continuous white noise. Hence, we recall that in [24] the observation
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operator measures the average velocity on set of q cells with weights αi as described above
Proposition 2.38. However, we believe that similar results can be obtained on a deterministic
infinite dimensional set-up.

Theorem 2.3.12 (Moireau-Chapelle-Le Tallec)
We define λinf(t) as as the smallest solution of the generalized eigenvalue problem

LᵀCᵀRCLθ = λUθ,

then, if the state estimator is exponentially stable, we have that

E(‖θ̃‖2U(0)) ≤
c(

1 + λinf(t)
)2{1 + ‖L‖2L2([0,T ];L)

[
c2

obs

( q∑
i=1

(αi)
2

3∑
j=1

‖vji ‖2R
)

+(cobs)
4
(
τE(‖ζy‖2Y) + (1 + t τγ2)‖y̌ − y̌h‖2L2([0,T ];Y) + t τγ2

q∑
i=1

α2
i

)]}
,

(2.52)

where τ is the time constant directly related to the exponential stability of the chosen state
observer and given in Proposition 2.3.6.

We further underline that the condition (2.51) is a natural condition for identification pur-
poses exploited in the literature [Zhang, 2002,Demetriou and Rosen, 1994b]. It is very similar to
an observability condition applied to the parameter through the use of the sensitivity operator
L. Therefore, we believe that this condition can be precisely stated in various configurations as
it is for instance – in a similar form – in [Alves et al., 2009].

Another important remark concerns the crucial role of the state estimator in our joint
estimation. Numerous identification approaches are based on a variational criterion that only
takes into account the parameter uncertainties [Chavent, 2010]

J (ζθ, T ) =
1

2
‖θ‖2P,Nθ +

1

2

∫ T

0
‖z − Cy|ζθ‖2Z,R dt. (2.53)

Sometimes, it is even proved that the identification problem is then well posed under the con-
dition of perfectly well known initial state condition. With our approach, we see that this kind
of result can be shown to be very sensitive to any state errors: initial condition errors but also
discretization errors or model errors. Indeed, one fundamental advantage of relying on ROKF is
that we know that ROKF is equivalent to the minimization of a variational criterion on the re-
duced space. For our parameter estimation, we then show in [24] that our joint state-parameter
estimation is equivalent to the minimization of

J (ζθ, T ) =
1

2
‖θ‖2P,Nθ +

1

2

∫ T

0
‖z − Cy̆|ζθ‖2Z,R dt, (2.54)

where now it is the state observer which appears in the minimization. Now, if we choose Gy = 0

we retrieve the classical criterion (2.53) but end up in our observer convergence analysis with
an autonomous dynamics for η i.e. η̇ = Aη. Hence if A is skew-symmetric as for example for
the wave equation, then η does not converge to 0 as soon as η(0) = ỹ(0) 6= 0 and the parameter-
only estimator does not converge anymore. This means that the state observer is almost
mandatory to ensure the robustness of any parameter identification problem.

Remark 2.3.6 (Initial condition estimation)
We point out that such an adaptive observer allows to identify the initial condition even for parabolic
problems as in this case we define y|ζy,ζθ (0) = y� + Πζθ. We use this strategy in [18] with a reaction-
diffusion problem.



2.3 Control-based sequential estimation strategies for PDEs 95

2.3.4.2 Joint state and parameter estimator discretizations

A second fundamental advantage on relying on ROKF to formulate the adaptive observer (2.49)
is that we directly know an efficient discretization. First, we consider a uniformly convergent
discretization for the state observer such as we did for the wave equation in Section 2.3.2.3

y̆n+1|ζθ = An+1|ny̆n|ζθ + Dnθ|ζθ + Ğn(z − Cny̆n)

y̆0|ζθ = y�

θ̆0|ζθ = θ� + ζθ

We can then use the discrete-time ROKF to formulate a consistant and stable discretization
of the parameter dynamics hence of the joint state-parameter estimation. We end up with a
prediction correction scheme on top of the state discretization – which, by the way, can also use
a splitting time-scheme. The complete estimator reads

1. Initialization: 
ŷ−0 = y�

θ̂−0 = θ�

L0 = 0

U0 = U�

2. Prediction: 

ŷ−n+1 = An+1|ny+
n + Dnθ̂

+
n + Ğn(z − Cnŷ+

n )

θ̂−n+1 = θ̂+
n+1

Ln+1 = An+1|nLn

Un+1 = Un + Lᵀ
n+1C− ᵀ

n+1Rn+1Cn+1Ln+1

(P−y,n+1 = LnU−1
n+1Lᵀ

n)

3. Correction: 
Gθ,n+1 = U−1

n+1Lᵀ
y,n+1Cᵀ

n+1Rn+1

ŷ+
n+1 = ŷ−n+1 + Ln+1Gθ,n+1(zn+1 − Cn+1ŷ−n+1)

θ̂+
n+1 = θ̂−n+1 + Gθ,n+1(zn+1 − Cn+1ŷ−n+1)

(P+
y,n+1 = Ln+1U−1

n+1Lᵀ
n+1)

Note that here the scheme starts with a prediction since the first correction would have been
null.

2.3.4.3 H∞ extensions

Another strong advantage of the optimal control structure of our adaptive observer is that the
H2 criterion (2.54) can be replaced by a H∞ criterion as we propose in [16]. The principle is to
define the reduced-order parameter estimator by seeking

sup
z,ζθ

∫ T
0 ‖ŷ − y̆|ζθ‖2Oy + ‖θ̂ − ζθ‖2Oθ dt

‖ζθ‖2Nθ +
∫ T

0 ‖z − Cy̆|ζθ‖2R dt
≤ 1

%
,
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Then – as is classical in H∞ theory, see e.g. [Başar and Bernhard, 1995] – we replace the inf-sup
criterion by the following cost function

J %(ζθ, T ) =
1

2

∫ T

0
‖ŷ − y̆|ζθ‖2Oy + ‖θ̂ − ζθ‖2Oθ dt− 1

2%

(
‖ζθ‖2Nθ +

∫ T

0
‖z − Cy̆|ζθ‖2R dt

)
.

on which we seek stationary points. We easily end up with a reduced-order H∞ filter to be
applied to the parameter space modifying (2.49) into

˙̂y = Aŷ +Dθ̂ + Ğ(z − Cŷ) + L
˙̂
θ, ŷ(0) = y�

˙̂
θ = U−1L∗C∗R(z − Cŷ), θ̂(0) = θ�

L̇ = (A− ĞC)L+D, L(0) = 0

U̇ = L∗C∗RCL− %(LᵀOyL+Oθ) U(0) = P θ

Here, we emphasize that the essential difference with the observer formulated in (2.49) lies in
the dynamics of U , namely, with the “negative” term associated with % in the right-hand side.

Then in [16] the same type of error analysis as in Theorem 2.3.12 is carried on.

2.3.4.4 Non-linear extensions

One final interest of the ROKF setting is its easy generalization in non-linear situation. In [23,24]
we typically studied the case where

ẏ|ζ,ν = A(θ|ζθ , t)y|ζy ,ζθ + β(t)

y|ζy ,ζθ(0) = y� + ζy

θ|ζθ = θ� + ζθ

Then the prediction steps of joint-state estimator is directly modified into

1. Prediction: 

ŷ−n+1 = An+1|n(y+
n , θ̂

+
n ) + Ğn(z − Cnŷ+

n )

θ̂−n+1 = θ̂+
n+1

Ln+1 = dAn+1|nLn

Un+1 = Un + Lᵀ
n+1C− ᵀ

n+1Rn+1Cn+1Ln+1

(P−y,n+1 = LnU−1
n+1Lᵀ

n)

Concerning the analysis, one possible strategy is to use the EKF stability property for small
errors [Reif and Unbehauen, 1999, Krener, 2003a, Bonnabel and Slotine, 2015] to obtain an
extended result of (2.52). Then two major difficulties remain: (1) we will need to prove a
persistant excitation property in a non-linear system configuration and (2) the convergence of
the state estimator needs to be robust with respect to the parameter dependency as the operator
dynamics is now a function of uncertain parameters.

When seeking a discretization, we can consider the discrete-ROEKF. But since the anal-
ysis should be based on linearization, we can also rely on a ROUKF formulation at the time-
discretized level as sketched in Figure 2.2.

We then end up with the following discrete estimator, proposed in [23]
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Master
ROUKF

(Sampling)

[i]

Particle
Prediction

[Np]

Particle
Prediction

[1]

Particle
Prediction

y+
i,n, θ

+
i,n

y+
Np,n

, θ+
Np,ny+

1,n, θ
+
1,n

MASTER
ROUKF

(Correction)

y−i,n+1, θ
−
i,n+1

y−Np,n+1, θ
−
Np,n+1y−1,n+1, θ

−
1,n+1

Figure 2.5: Estimation algorithm

1. Initialization: 
ŷ−n = y�

Ly,0 = 0

Lθ,0 = 1

U0 = U0

2. Sampling 
Γn =

√
U−1
n

ŷ−n,i = ŷ−n + Ly,nΓnei

θ̂−n,i = θ̂−n + Lθ,nΓnei

3. Prediction: 
ŷ−n+1,i = An+1|n(y+

n,i, θ
+
n,i) + Ğn(z − Cny+

n,i)

ŷ−n+1 = Eα
(
ŷ−n+1

)
Ly,n+1 = ŷ−n+1dαe

ᵀ

Lθ,n+1 = 0̂
+
n+1dαe

ᵀ

4. Re-Sampling (possibly) Γn+1 =
√
U−1
n+1

ŷ−n+1,i = ŷ−n+1 + Ly,n+1ei
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5. Correction: 

ẑ−n+1,i = Cn+1(ŷ−n+1,i, θ̂
−
n+1,i)

Υn+1 = ẑ−n+1dαe
ᵀ

Un+1 = 1 + Υᵀ
n+1Rn+1Υn+1

ŷ+
n+1 = ŷ−n+1 + Ly,n+1Υᵀ

n+1Rn+1

(
zn+1 − Eα

(
ẑ−n+1

))
θ̂+
n+1 = θ̂−n+1 + Lθ,n+1Υᵀ

n+1Rn+1

(
zn+1 − Eα

(
ẑ−n+1

))
which leads to the same error analysis as for (2.55) after linearization of the operators. In fact,
in [23] we prove that the change of variable should be in this case

(ỹn, θ̃n) 7→ (ηn, µn) = (ỹn − Ly,nL
−1
θ,nθ̃n, L

−1
θ,nθ̃n).

The advantage of this formulation is its simplicity of implementation following the algorithm
illustrated in Figure 2.5. Here again the scheme starts with a prediction since the correction
would have been null. The simplicity and parallel structure of this scheme allows
its used with a variety of models, see for instance [3, 20] or [Marchesseau et al.,
2012,Lombardi, 2013,Xiao, 2013].

2.3.4.5 An estimator for a weakly coupled system appearing in cardiac electrome-
chanics

One final example of hybrid observer is the one formulated in [19] for a weakly coupled system
appearing in cardiac electromechanics. We recall that the electrical activation of the cardiac
tissue is the input of the heart contraction. Moreover, numerous works neglect the mechanical
effects and the domain deformation on the cardiac action potential propagation. Eventually, we
end up with a formulation{

ẏ` = A`(y`), y`(0) = y`� + ζ`,

ẏm = Am(ym, y`), ym(0) = ym
� + ζm.

written after spatial discretization to ease the presentation. On this system we assume to have
at our disposal a measurement of the mechanical displacement field on a subdomain typically
extracted from tagged-MRI – see Section 2.4.1.3

zm(t) = Cmym + χm.

Moreover, on the electrical part we consider to have the ECG signal that we recall to correspond
to the measurement at the surface of the skin of the electrical potential diffused through the
thorax

z`(t) = C`y` + χ`.

Having in mind these two types of observations, we can envision a Luenberger observer on
the mechanical part as described in Section 2.3.3.1 and a POD-based reduced-order Kalman-like
filter (see Section 2.3.1.4) for the electrical part. One possibility to design the resulting observer
is to introduce a block-diagonal feedback for the coupled system. However, a more involved
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approach consists in incorporating the mechanical measurement directly into the control of the
electrical part with our hybrid observer strategy.

In the sequel, we use the notation “ dm” et “ d`” for the partial derivative with respect to ym

and y`, respectively, whereas d is used for the total derivative. We introduce in our ROEKF
L =

(
L`
Lm

)
, C =

(
C` 0
0 Cm

)
and z =

(
z`
zm

)
, so that the dynamics reads

˙̂y` = A`(ŷ`) + L`U−1Lᵀ dCᵀR(z− C(ŷ))

˙̂ym = Am(ŷm, ŷ`) + Ğm(zm − Cm(ŷm)) + LmU−1Lᵀ dCᵀR(z− C(ŷ))

L̇` = ( dA`(ŷ`))L`

L̇m = ( dmAm(ŷm, ŷm)− Ğm dCm(ŷm))Lm + ( d`A
m(ŷm, ŷ`))L`

U̇ = Lᵀ( dC)ᵀR( dC)L

(2.58)

starting from ŷ`(0) = y`�, ŷm(0) = ym
� , Lm = 0, L` = 1 and U(0) = U`

�.

Note that in the dynamics (2.58), the Luenberger filter applies only on the mechanical
part. However, the optimal filter corrects the electrophysiology evolution from the electrical
measurements and the mechanical measurement. This correction is then reverberated

˙̂ym = Am(ŷm, ŷ`) + Ğm(zm − Cm(ŷm)) + Lm(L`)−1 ˙̂y`,

when assuming (L`) invertible.

To obtain some element of analysis, we get after linearization of the error dynamics, the
following system of the linearized error{

δ̇ỹ` = −U−1Lyᵀ( dC)ᵀR( dC)δỹ,

δ̇ỹm = ( dmA− Ğm dmCm)δỹm + ( d`A)δỹ` + Lm(L`)−1δ̇ỹ`

starting from δỹ`(0) = ζ` et δỹm(0) = ζm.

Here we introduce the change of variables

(δỹm, δỹ`) 7→ (δη, δµ) = (δỹm − Lm(L`)−1δỹ`, (L`)−1δỹ`),

and obtain 
δ̇η = ( dmA− Ğm dmCm)δη, δη(0) = ζm

˙δµ = −U−1Lᵀ( dC)ᵀR( dC)Lδµ,

−U−1Lᵀ( dmCm)ᵀRm( dmCm)δη, δỹ`(0) = ζ`.

The first equation corresponds to the dynamics of the linearized error studied for the mechanical
system. Hence it converges to 0. Therefore the second term in the second equation tends to
0. The homogeneous part of the second equation can then be proved to converge to 0 if the
following observability condition (2.59) is satisfied with our linear observation operator – namely,
dC = C in our particular example. Namely, we expect for all initial error δỹ`(0) that

∃(C, T0), ∀T ≥ T0,

∫ T

0
‖C(Lδµ‖2R ≥ C‖δỹ`(0)‖2

U`�
, (2.59)

which can be at least verified numerically. In the last observability condition, we have that
Lδµ = L(L`)−1δỹ` represents the effect of a variation on δỹ` on both the electrophysiology and
the mechanics. This effect is then observed through C. The observability is thus expected to
be improved with respect to the situation where only the electrophysiology is considered. This
will be confirmed numerically.
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2.4 Shape-based data assimilation

In recent works, the question has been raised of taking into account more indirect observations
than z = Cy̌ + χ, as in an image I[y̌] that gives the shape of the solution pattern, i.e. not a
direct measurement of the state. For instance, in weather forecasting numerous contributions
deal with information contained in satellite images where we can track moving clouds, hence
compute wind flows [Titaud et al., 2010]. In cardiac medical imaging, it is common to image
the beating heart under time sequences of 2D or 3D images. By processing these images, one
hopes to extract a flow field or a displacement field of the heart [Carranza-Herrezuelo et al.,
2010,Le Guyader and Vese, 2011], see Figure 2.6.

Figure 2.6: A cine-MRI sequence with segmented left ventricle

In widefire propagation, images data allow to follow the front propagation of the fire. Simi-
larly, in electrophysiology, actual reconstruction of the heart electrical activity from body surface
potential (ECGI) aims at building at the epicardium a map of the depolarization time, hence
a measurement of the propagating depolarization front [Ramanathan et al., 2004]. We can
also think of ice sheet forming observations, species dispersion monitoring etc. where shapes
associated with the PDE solutions are observed, see Figure 2.7.

Figure 2.7: Epicardial isochrone maps reconstructed from ECGI for 4
representative heart failure – reproduced from [Rudy, 2013]

In fact, we believe that these complex observations will represent the future of data assim-
ilation and we have tried so far to initiate this research direction in cardiac applications with
two contributions:



2.4 Shape-based data assimilation 101

• how to use a time-sequence of images of deforming organs to jointly estimate the state
and parameters of a mechanical model,

• how to estimate a full bidomain model (reaction-diffusion) from front data typically ob-
tained from time-depolarization maps.

2.4.1 Motion extraction from images by sequential estimation based on a
biomechanical model

2.4.1.1 Estimation from segmentation of moving object based on simple distances
computations

In the work [8] – resp. [21] – we consider the case where the wall motion of the heart – resp. an
artery – is tracked via a time-sequence of segmented 3D images – MRI in [8], in CT [21]. These
segmentations generate a sequence of surface objects (Sk)1≤k≤NI

representing the boundary of
the system to be modeled. From a practical point of view, we can consider that these surfaces
are numerically stored as triangular meshes (Tk)1≤k≤NI

.

In correspondence with these observations, we assume to have a model of the mechanical
behavior of the system of interest such as in Section 1.3.2. Namely, we assume that we can
simulate a model of the solid displacement{

∂tu = v, in Ω0

ρ∂tv − div(T ) = 0, in Ω0

(2.60)

As it is not straightforward to compare a surface object from the state solution of the
mechanical system (2.60), we do not introduce in [25] a standard observation operator of the
form z = Cy̌+χ. Instead, we notice that in estimation, an observation alone is never considered
since it is always compared to the model with the computation of the innovation z −Cŷ. More
generally in data assimilation, we only need to define a discrepancy operator – or similarity
operator depending of the point of view – J generalizing the comparison

J(z, y) = z − Cy,

when the substraction operation can not be defined. We thus decide to rely on distance operators
to define the discrepancy between the surfaces object and the state of our mechanical system.
First, assuming that the surfaces are available for all time, we introduce the signed distance field

distS :

∣∣∣∣∣ (L2(Σ))3 7→ (L2(Σ))3

x(ξ)→ distS(x(ξ))

Note that the signed distance allows to determine on which side of the surface the model lies.
Based on these distance fields, we can build a discrepancy measure defined for example as the
L2(Σ)-norm of the distance on the surface

J(z, y) = measL2(Σ){S}(y, t) =

∫
Σ
|distS(ξ+ u(ξ, t), t)|2 dΓ, (2.61)

which is null for the pursued actual displacement field. Therefore, if this discrepancy vanishes,
then the given state is consistent with the observations. The nudging direction is then obtained
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by differentiating the distance with respect to the state, namely nS(ξ + u, t) which is directly
related to be the tangent field of the distance [25].

The distance (2.61) considers an L2-norm on the interface Σ, but other norms are possible.
However, we have seen in Section 2.3.3.1 – see also the spectral comparaison in [25] – for linear
elasticity that an H 1

2
-norm defined with a lifting operator Ext is a more effective norm for the

state observer. The question is now to generalize this idea for non-linear discrepancy operators.
We then propose in [25] the following extension

meas
H

1
2 (Σ)
{S}(y, t) =

∫
Ω0

‖Ext(distS(ξ+ u, t);nS)‖2El dΩ,

with ‖.‖2El the norm associated with the linearized elastic energy in the solid, namely, equivalent
to the H1-norm and

ψext = Ext(ψ; τ) :



div(A : ε(ψext)) = 0 in Ω

ψext · τ = ψ in Γuobs

(A : ε(ψext)) · τ⊥1 = (A : ε(ψext)) · τ⊥2 = 0 in Γuobs

same boundary conditions as the model on ∂Ω\Γuobs
is a lifting of a scalar data given on the boundary along the direction τ , – with (τ , τ⊥1 , τ

⊥
2 )

giving a local orthonormal basis. Therefore its corresponding discrepancy operator becomes

P
H

1
2 (Σ)
{S}(y, t)(u[) =

∫
Ω0

〈
Ext(distS(ξ+ u, t);nS),Ext

(
(u[ · nS);nS

)〉
El
dΩ, u[ ∈ V.

This operator can be shown to be close for small distances to

P
H

1
2 (Σ)
{S}(y, t)(u[) =

∫
Ω0

〈
Ext(distS(ξ+ u, t);nS), u[

〉
El dΩ,

using the extension characterization– see [Imperiale, 2013]. The discrepancy is used as a cor-
rection term in the equation relating the solid displacement time derivative to the solid velocity
to ensure the stabilization of the state estimator as described for linear elastodynamics system.
In [25], we also develop some linearization arguments to justify the extension in non-linear formu-
lations. One remaining difficulty lies in the linearization of non-linear mechanical formulations
that are known to be ill-posed around certain trajectories (for instance around compression).
Hence the complete analysis remains to be done. Eventually, we propose the following observer
correction in weak form

∀u[ ∈ V,
∫

Ω0

〈∂û
∂t
, u[s

〉
El
dΩ =

∫
Ω0

〈v̂, u[〉El dΩ + γ

∫
Ω0

〈
Ext(distS(ξ+ û, t);nS), u[

〉
El
dΩ,

where γ represents the gain parameter to adjust the nudging. Hence in strong formulation we
substitute

∂û

∂t
= v̂ + γExt(distS(ξ+ û, t);nS),

replacing the canonical identity ∂u
∂t = v.

Concerning the space discretization of such observers, the non-linear extension of what we
propose in the linear case in Section 2.3.3.1 is quite straightforward and is presented in [25]

(εK + duJMΣ duJ)
∂û

∂t
= (εK + duJMΣ duJ)v̂ − γ duJᵀMΣJ(z, û). (2.62)
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Concerning the time discretization, one key aspect of our observer formulation is to limitate
the cost of the feedback computation. We propose in [25] and elegant mid-point scheme of the
form

(εK + duJMΣ duJ)
ûn+1 − ûn

∆t
= (εK + duJMΣ duJ)v̂n+ 1

2
− γ duJᵀMΣJ(zn+ 1

2
, ûn+ 1

2
)

We point out that there is no need to compute the second derivative of J related to curvature
computations to obtain a stable feedback for small errors at the discrete level. Then we propose
in [33, 34] – see details in [Imperiale, 2013] – an even more efficient prediction-correction time
scheme

Correction: û+
n+1 = û−n+1 − γ∆t(εK + duJMΣ duJ)−1 duJᵀMΣJ(zn+1, ûn+1)

interpretable as a BLUE algorithm with a priori covariance εK−1, an observation covariance
γ∆tMΣ and a tangent observation operator − duJ.

In the beginning of this section, we mentionned that in practice a sequence of images is finite
with a certain sampling. As we discussed for the linear wave equation, we face the alternative:
(1) use the data only when they are available or (2) interpolate the data information. The
question is now to give a sense to the solution (2) when the data are in fact surfaces. We show
in [25] that the good definition of the notion of interpolation is to interpolate not the data
– namely the surfaces – but the discrepancies. For instance the L2-measure (2.61) becomes

J(u, t) = measL2(Σ){Sk}(y, t) =

∫
Σ
|dist{Sk}(ξ+ u, t)|2 dΓ,

with

dist :

∣∣∣∣∣L
2(Σ)× [0, T ] 7→ L2(Σ)

(x(ξ), t)→
( tk+1−t

∆T

)
distSk(x(ξ)) +

(
t−tk
∆T

)
distSk+1

(x(ξ)), t ∈ [tk, tk+1]

and a nudging direction
( tk+1−t

∆T

)
nSk(x(ξ)) +

(
t−tk
∆T

)
nSk+1

(x(ξ)) when t ∈ [tk, tk+1]. Note that
again this choice implies that the feedback is no more causal.

2.4.1.2 Estimation from segmentation of moving object based on the theory of
Currents

In the previous section, we built a discrepancy measure using a simple signed distance between
the given surface data and the corresponding deformed model geometries. However, computing
simple distances is not (by far) the state of the art strategy to compare shapes [Younes, 1998,
Younes, 2010]. Hence, we may suffer from standard disadvantages as illustrated in Figure 2.8.
The efficiency of the data assimilation procedure can then be deteriorated in complex geometrical
situations. In order to avoid these matching difficulties, we consider the formalism of surface
currents [Vaillant and Glaunès, 2005, Durrleman et al., 2009, Younes, 2010] which has been
successfully used in the field of medical image analysis, and represents one of the state-of-the-
art geometrical data representation. In fact we investigate in [34] – see more details in [Imperiale,
2013] – how the obtained observability is improved. Naturally, this improvement has a price in
terms of mathematical complexity, but also in terms of numerical complexity as we will see in
the sequel.



104 Chapter 2. Data assimilation contributions

×
M

Model geometry

Data geometry

×ΠM

×
Π′M

(a) Non uniqueness of the projection point

Model geometry
Data geometry

×M ×ΠM

(b) Irrelevant shape discrepancy

Figure 2.8: Disadvantages of the signed distance operator.

The formalism of currents is based on the idea that, through its normal vector field, any
surface can be represented as a computational support. More precisely, if we consider a test
vector field w defined in the ambient space and a surface S admitting nS as its normal then
one can consider the following operation resulting in the scalar value:

SS(w) =

∫
S
w · nS dΓ. (2.63)

The validity of this expression is entirely conditioned by the regularity of the involved vector
fields and the relationship between W, the space of test vector fields, and N , the space of
admissible normal vector fields, is a recurrent topic when dealing with currents. One appealing
example is when we expect the least regularity on W, that is to say the trace of any test
vector field is defined allowing (2.63) to make sense. This leads to w ∈ W = H1(R3,R3) and
nS ∈ N ⊂ L2(S,R3). In the following we will say that a surface S is represented as a current
if its normal n belongs to N and if the couple (W,N ) is such that SS belongs to W∗, the dual
of the space of test vector fields. Additionally, if W is a Hilbert space, then for any surface S

represented as a current we can define its Riesz representation s ∈ W such that

∀w ∈ W SS(w) = 〈SS, w〉W∗,W = (sS, w)W =

∫
S
w · nS dΓ.

It is clear that if we want to rely on the theory of currents in our data assimilation procedure,
we need to define W according to the level of regularity of the surfaces S that can be generated
by a mechanical model. Up to now this constitutes an open question and even if we are able
to define this space precisely, we may find spaces where the computation of currents is very
intricate. We believe that there may be a path in considering target solutions regular enough
so that these currents can be easily defined and computed. Then the observer relying on this
currents should be proved to have some hidden regularity to generate surfaces in the same space.
Avoiding this question, we proceed formally on this topic, and adopt a very convenient spaceW
for pratical implementations.

In order to provide numerically tractable forms for currents, we follow [Vaillant and Glaunès,
2005,Durrleman et al., 2009,Younes, 2010] and defineW as a Reproducing Kernel Hilbert Space
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(RKHS)6 where the evaluation functions

∀x ∈ R3, ∀α ∈ R3 δαx

∣∣∣∣∣W → R

w 7→ δαx (w) = α · w(x),

are continuous linear forms, namely δαx ∈ W∗. As an example, we can think of Gaussian kernels
of the form k(x, x′) = exp

(
− ‖x−x′‖2

µ2

)
. Applying the reproducing property in the definition of

the operator SS, we obtain for any test vector field w ∈ W

〈SS, w〉W∗,W =

∫
S
w · n dΓ =

∫
S

(k(x′, ·)n,w)W dΓ = (sS, w)W ,

which easily gives the Riesz representer s =
∫
S k(x′, ·)n dΓ.

If S1 and S2 are two surfaces represented as currents, then, using the expression of their
Riesz representers, we have

(S1,S2) = (sS1 , sS2)W = 〈SS1 , SS2〉W∗ = 〈S2, s1〉W∗,W

=

∫
S1

∫
S2

nS2
(x) · k(x′, x)nS1

(x′) dΓ dΓ,

and the norm between these objects can be computed by

‖S1 −S2‖2 = ‖S1‖2W∗ − 2〈S1, S2〉W∗ + ‖S2‖2W∗

=

∫∫
S1

n1(x) · k(x′, x)n1(x′) dΓ dΓ+

∫∫
S2

n2(x) · k(x′, x)n2(x′) dΓ dΓ

− 2

∫
S1

∫
S2

n1(x) · k(x′, x)n2(x′) dΓ dΓ.

We now understand that we can define elegant discrepancies between surfaces. In fact,
the surfaces are embedded into a vector space, hence we can rely on to classical observation
operators. In order to exploit this new discrepancy in an observer formalism, we rely on the
same type of manipulation as for the distance. When we see the final formulation (2.62) after
spatial discretization, we understand that we need to compute

duJ(δu) = −〈 duΣt(u)(δu),St − Σt〉 = −〈 duΣt(u)(δu), sSt − sΣt(u, t)〉W∗,W

= −
∫

Σt

(
∇
(
sSt − sΣt(u, t)

)
· δu
)
· n dΓ−

∫
Σt

(
sSt − sΣt(u, t)

)
· du(n dΓ)(δu).

The term du(n dΓ)(δu) is classical in shape optimization but also in shell theory [Chapelle and
Bathe, 2011]. Following the notation introduced in [Chapelle and Bathe, 2011], we can show
that

du(n dΓ)(δu) = (ν(δu) + τ(δu)) dΓ

with ν the normal derivative operator

ν(δu) = dn(δu) = −
∑
i=1,2

(
n · δu ,i

)
ai

= −a1 ⊗ n · δu ,1 − a2 ⊗ n · δu ,2,
6Concerning the question of admissible regularity we believe that a Hs(Ω0,R

3) with s ≥ 2 could be a good
candidate for the admissible displacements space compatible with the use of RKHS spaces
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and τ the surface derivative

τ(δu) dΓ = −
(
n⊗ a1 · δu ,1 + n⊗ a2 · δu ,2

)
dΓ.

Therefore duJ(δu) can be computed if for all t Σt is represented by a triangulation T =

(Ti)1≤i≤NT
with [Imperiale, 2013]

duJ(δu) =

NT∑
i=1

∫
Ti

(
∇
(
sSt − sΣt(u, t)

)
· δu
)
· ∂xi
∂r
∧ ∂xi
∂s

dr ds

−
∫
Ti

(
sSt − sΣt(u, t)

)
·
(∂δu
∂r
∧ ∂xi
∂s

+
∂xi
∂r
∧ ∂δu
∂s

)
dr ds.

which leads to the same terms as in [Vaillant and Glaunès, 2005] when integrals are numerically
approximated by evaluating each integrand at the center of the deformed triangle.

Then in order to propose adequate discretizations of the form (2.62), we need to compute
the bilinear form

( duΣt(δu1), dΣt(δu2)) =

∫
Σt

∫
Σt

(
∇ 2k(x′, x)

)
· u[1(x)n(x) ·

(
ν(u[2) + τ(u[2)

)∣∣∣
x′

dΓ dΓ

+

∫
Σt

∫
Σt

(
∇ 1k(x′, x) · u[2(x′)

)
n(x′) ·

(
ν(u[1) + τ(u[1)

)∣∣∣
x

dΓ dΓ

+

∫
Σt

∫
Σt

(
∇ 2k(x′, x) :

(
u[1(x)⊗ u[2(x′)

))
n(x′) · n(x) dΓ dΓ

+

∫
Σt

∫
Σt

k(x′, x)
(
ν(u[2) + τ(u[2)

)∣∣∣
x′
·
(
ν(u[1) + τ(u[1)

)∣∣∣
x

dΓ dΓ.

(2.64)

which computation on a triangulation is fully developed in [Imperiale, 2013].

To evaluate the performance of this new discrepancy and feedback with respect to that
obtained with the standard distances, some numerical evaluation are presented in [Imperiale,
2013] and reproduced here see Figure 2.9. The dynamics is considered as linear with a damping
proportional to the stiffness in order to avoid the spurious high frequencies. We solve the
eigenvalue problem[

(εK + duJMΣ duJ) duJMΣ duJ

0 M

][
u̇

v̇

]
=

[
0 (εK + duJMΣ duJ)

−K −Λ

][
u

v

]
The first plot in Figure 2.9 corresponds to the complete displacement feedback on the whole
surface Σ as described in Section 2.3.3.1. The next two plots concern the feedback of the normal
component displacement and the linearized signed distance operator. We clearly see here the
loss of observability induced by observation only on the normal displacement compared to the
complete displacement feedback on the boundary. Moreover, we also illustrate that the tangent
operator associated with the distance discrepancy is a normal displacement on the boundary
operator.

The last three plots concerns the observer based on the current formalism. The difference
between the three plots is that we start from a large value of the kernel width – in the first
plot µ = 50 – and we evolve towards smaller values, namely µ = 10 and µ = 0.1. These plots
illustrate a crucial concept of the discrepancy measure based on currents. Namely, as the kernel
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Figure 2.9: Spectral analysis and comparison of the various observers.
(From [Imperiale, 2013])
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width decreases the stabilization property appears to significantly improve. This is due to the
fact that the kernel width directly controls the sensitivity of the metrics to shape variations and
any shape dissimilarities of characteristic length below µ will not be perceived by the discrepancy
measure. Therefore, when µ→ 0, the stability seems to be as good as when we observe the total
displacement on the surface, whereas we only compare surface objects. In fact, we see in (2.64)
that in the stabilization operator associated with the currents, the total displacement appears.
However, nothing is really magical in the sense that when µ → 0, the kernel focuses so much
that the stabilization is strong but the innovation coming from the discrepancy is null. In other
words, when µ → 0, the kernel acts as a Dirac delta function. Hence the Riesz representation
of the data surface can be assimilated to

sS ∼
µ→0

δSnS,

entailing
S− Σ →

µ→0
0,

which could be interpreted as a non-visibility of the data from the model standpoint. To con-
clude, this spectral analysis shows that the choice of the kernel width is of prime importance
and corresponds to a compromise between stability and observability.

For a reasonable value of the bandwidth, we observe that the stability is not as as good as
when the complete displacement is observed. But still we obtain a significantly improvement of
the damping of the system compared with the distance-based observer. This property justifies
numerically the interest of the formalism of currents as a state-of-the art surface discrepancy
operator.

2.4.1.3 Estimation from tagged-MRI sequences

Despite all our efforts, it was very clear from the spectra computed in [25] that boundary obser-
vations will have a limited observability with respect to interior observations. This very intuitive
idea is in fact the reason for the development of new imaging modalities such as tagged-MRI.
Tagged-MR is often considered to be the “gold standard” in cardiac imaging, in particular as re-
gards the assessment of so-called “cardiac mechanical indicators”, namely, indicators pertaining
to displacements, strains, and volumes [Axel et al., 2005]. As a matter of fact, tagged-MR images
visualize the deformations of grids associated with the actual tissues, which is of course most
valuable for clinical purposes, both from a qualitative standpoint as assessed by the physician’s
eye, and with a view to obtaining such quantitative indicators. From tagged-MRI, numerous
image processing works have the ambition to reconstruct 3D material displacements [Denney
and Prince, 1995,Pan et al., 2005,Chen et al., 2010,Carranza-Herrezuelo et al., 2010]. In that
case, the linear observation operator of the form C : u 7→ u|ω can directly be used with the SDF
observer. However, the problem of extracting actual 3D material displacements from a tagged-
MR sequence gives rise to serious difficulties, and in fact in many cases only 2D “apparent”
displacements are obtained [Clarysse et al., 2000], which may introduce specific inaccuracies in
the displacement-based quantitative indicators, in addition to usual inaccuracies pertaining to
image processing. In [33] – with details in [Imperiale, 2013] – our objective was then to show
that the tagged-MR data can be more directly used – without relying on field reconstruction
– in an observer, so that the observer reconstructs “online” the 3D displacement. Again, our
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Figure 2.10: Tagged-MRI at marking time and at systole (full heart con-
traction) and corresponding tag grids

strategy is to avoid unnecessary data processing by using the data as they are, and define an
observation operator adapted to them.

We believe that a good target for the data processing is to assume that a first step of image
processing leads to the construction of geometrical objects taking the form of tag grids or tag
planes and following in time the deformations of the tag patterns – see [Young, 1999] for an
example of tag planes construction and [Chen et al., 2010] for tag grids.

Tag planes First, let us consider that the data consist in a set of NP tag planes T =
⋃NP

i Pi

deforming over time. Then the discrepancy between the model and the data will be measured
using the signed distances between the tag planes and the corresponding synthetic data, namely,
deforming surfaces obtained by applying the model displacements to the initial configuration of
the tag planes. Note that we should also be able to define a discrepancy with the formalism
of current but since the grids are narrow, we believe that we should have more relevant shape
discrepancy with tagged than with boundary segmentations. Let us then denote by T0 =⋃NP

i Pi
0 the set of tag planes in the reference configuration, mapped by the estimated trajectory

û to T̂ =
⋃NP

i P̂i. For any point in a synthetic tag plane x̂ = ξ + û(ξ) ∈ P̂i for some ξ ∈ Pi
0,

we can compute the signed distance to the corresponding actual tag plane by

dist(x̂,Pi) = (x̂−ΠPi x̂) · nPi .

The discrepancy operator is then the application mapping the displacement field to this collection
of (scalar) distance fields defined over the planes of T0 – see Figure 2.10. When differentiating
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with respect to the displacement field we have

dudist(x̂,Pi)(δu) = nPi · δu,

hence, the application of the above-described strategy gives an observer that follows the me-
chanical system of equations (1.14b), except for the first equation modified into

˙̂u = v̂ − γ
NP∑
i=1

ExtPi0
(
dist(x̂,Pi); nPi(x̂)

)
.
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Figure 2.11: Spectra of the time continuous operators. (up-left) : In
(cyan) operators without filter, in (red) complete displacement observer.
(up-right): In (green) (3D) tag planes with spacing 8 mm. (down-left):
In (green) (3D) tag planes with spacing 3.5 mm. (down-right): In (green)
(3D) tag planes with spacing 0.25 mm

Tag grids We now consider the data in the form of a collection of tag lines deforming within
a set of (2D) image slices. We thus assume that we have NP such lines

(
Lij
)NP

i=1
in each 2D

image Ij , with 1 ≤ j ≤ NI. We cannot directly design the discrepancy operator based on
the corresponding model lines, since displacement fields are not well-defined along lines in the
variational space, hence this would not give a well-posed observer problem. To circumvent this
difficulty, we again consider the tag planes in the model and project each point of the planes
onto the neighboring image slices – by the Euclidean orthogonal projection denoted by ΠIj for
image Ij – and compute the signed distance of the projected point to the corresponding tag
line within each image, i.e.

dist(ΠIj x̂,L
ij) =

(
ΠIj x̂−ΠLijΠIj x̂

)
· nLij .
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Then, we can interpolate the signed distances thus-obtained in the various images concerned –
which provides interpolated distance fields over the model tag planes as a discrepancy operator,
namely,

Ji(û, z) = I
(
dist(ΠIj x̂,L

ij)
)
,

for each plane Pi
0, where I denotes the interpolation operator. When differentiating this ex-

pression, we have
dudist(ΠIj x̂,L

ij)(δu) = nLij · δu,
but we also have a contribution coming from the interpolation operator derivative. Since this
interpolation only depends on the coordinate of the point considered along the axis orthogonal to
all image slices, denoting by I ′ the derivative with respect to this coordinate, a straightforward
computation finally yields

duJi(û, z)(δu) =
(
I
(
nLij

)
+ I ′

(
dist(ΠIj x̂,L

ij)
)
nI

)
· δu,

where nI denotes the director vector of the orthogonal axis. Note that when considering a linear
interpolation between the two adjacent planes, the derivative I ′ is directly given by the finite
difference expression computed between these two adjacent planes. This finally gives for the
observer correction equation

˙̂u = v̂ − γ
NP∑
i=1

ExtPi0

(
I
(
dist(ΠIj x̂,L

ij)
)
; ei
)
,

with ei = I
(
nLij

)
+ I ′

(
dist(ΠIj x̂,L

ij)
)
nI.

We thus understand that there are strategies to use directly the tags as shapes hence to
avoid some unnecessary processing. The question is then to understand the observability content
of these raw data. In [Imperiale, 2013] elements of analysis are given to show that having 3 sets
of orthogonal tagged planes is similar to having the 3D displacement fields discretized on a grid
of same spacing parameter as the tags. In fact, if we consider tagged planes, we should get after
linearization an observability inequality with a term of the form

∀ϕ, ‖ϕ‖2Z =

NP∑
i=1

‖ExtPi0
(
ϕ
)
‖2H1(Ωobs)

,

where Ωobs is the region spanned by the tag grid. In a first stage of analysis, we consider this
expression for a discrete function ϕh̃ constructed based on piecewise-bilinear shape functions
associated with the regular tagged grid, h̃ denoting the distance between two adjacent planes
in any direction. We denote this discrete space by Qh̃1(Ωobs). Then, straightforward scaling
arguments – as is standard in finite element analysis, see e.g. [Chapelle and Bathe, 2011] – show
that we have the following equivalence of norms

‖Ih̃(ϕh|Ωobs)‖2Z ≥ C‖Ih̃(ϕh|ω0)‖2H1(Ωobs)
≥ Ch̃,h‖ϕh‖2H1(Ωobs)

,

where Ih̃ denotes the interpolation operator into the tag grid discrete space. Then we believe
that we can complete a convergence analysis with two levels of discretization: one coming from
the model and the one coming from the data. Note that we have already encountered two levels
of sampling when we considered that the data time-sampling did not correspond to the time-
discretization. Here, the consequence will be the same, i.e. if the data sampling is too coarse
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then the observer would not be able to stabilize modes with variations smaller than the data
grid. The remaining modes must therefore be damped by the natural damping of the system
see Figure 2.11.

2.4.2 A Luenberger observer for reaction-diffusion models with front posi-
tion data

Last but not least, we want to present another shape-based observer applied this time to a
reaction-diffusion problem such as one encountered in electrophysiology. Our objective here is to
propose an effective strategy for performing estimation in an electrophysiology model with data
in the form of isochrones of the depolarization front. These data are typically reconstructed in
electrocardiographic imaging [Ramanathan et al., 2004,Rudy, 2013] from body surface potentials
– the same type of signals as those producing ECGs but typically gathered from a complete
thoracic vest. From these isochrones of the depolarization front we can generate a sequence of
level sets of the electrical potential separating the depolarized zone from the repolarized zone.
Therefore we propose to design an observer that can consider a reaction-diffusion class of model
of the form 

∂w|ζ
∂t

(x, t)−∇ ·D(x)∇w|ζ(x, t) = k(x)f(w|ζ , t), x ∈ B, t > 0

w|ζ(0) = w� + ζ
(2.65)

with propagating solutions [Keener and Sneyd, 2004]. On an unknown target solution w̆ we
assume to have at our disposal the time evolution of the front

Fw̆(t) = {x ∈ B, w̆(x, t) = cth},

where cth is a threshold value characterizing the front, and the already traveled-through region
is given by

Dw̆(t) = {x ∈ Ω, w̆(x, t) > cth},

up to some measurement noise. These data can be represented as a sequence of images (I)1≤k≤NI

that essentially take two different values inside and outside the traveled-through region. In the
rest of this section we will thus define our observation z as a field given on B and taking two
different values, or a regularized version thereof. We propose in [18] to show how a Luenberger
observer of w̆ can be designed to use these data.

Inspiration from image-processing strategies – When seeking a propagating solution for
reaction-diffusion models, it is now common to derive the so-called eikonal-curvature equation,
an asymptotic formulation designed to follow the front over time. As shown in [Keener and
Sneyd, 2004], a level set φw of the front Fw follows the dynamics

∂φw
∂t

= |∇ φw|
(
∇D · ∇ φw

|∇ φw|
+ b0

)
, (x, t) ∈ B× (0, T ). (2.66)

with b0 a constant depending of f . We see that the front propagation is driven by a term along
the normal of the front

√
Dk c0|∇ φw| and a curvature term |∇ φw|∇D · ∇ φw

|∇ φw| .
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On this model, the use of the data is more natural since the state of the eikonal-curvature
equation is a front as for the data. In fact, eikonal-curvature models are very popular in image
processing to segment objects. Our idea is thus to get inspiration from the data similarity
compatible in image processing with an eikonal-curvature equation. This lead us naturally to
Mumford-Shah-based data driven terms, and in particular the data-fitting term of the piecewise-
smooth Mumford-Shah functional of [Chan and Vese, 2001]

JMS =

∫
Dφ

(
z(t)− C1(Dφ)

)2
dx +

∫
B\Dφ

(
z(t)− C2(Dφ)

)2
dx,

where

C1(Dφ) =

∫
Dφ
z dx∫

Dφ
dx

, C2(Dφ) =

∫
B\Dφ z(t) dx∫

B\Dφ dx
.

Following similar computations as in [Delfour and Zolésio, 2011,Hintermüller and Ring, 2004]
based on the shape derivation of JMS, a good observer candidate for (2.66) can be

∂φŵ
∂t

= |∇ φŵ|
(
∇D · ∇ φŵ

|∇ φŵ|
+ b0

)
+ γ δF α(|∇φ|)

(
−
(
z(t)− C1(D)

)2
+
(
z(t)− C2(D)

)2)
(x, t) ∈ B× (0, T ). (2.67)

where δF is the single layer distribution associated with the front F, γ is the nudging gain and
α is any positive function.

Shape based observer – The system (2.67) is a good candidate as an observer for the eikonal-
curvature model (2.66). However our objective is to propose a feedback for (2.65) where all the
physical content is present. Therefore, we carry over the observer to the initial reaction-diffusion
model by an inverse asymptotic analysis, namely by intuitively designing the reaction-diffusion
observer so that, after an asymptotic analysis similar to [Keener and Sneyd, 2004], we end up
with (2.67). We easily end up – see [18] – with

∂ŵ

∂t
−∇ ·D∇ ŵ = kf(ŵ)

+ γ δFα(|∇ ŵ|)
(
−
(
z(t)− C1(D)

)2
+
(
z(t)− C2(D)

)2)
, (x, t) ∈ B× (0, T ), (2.68)

and find that α(|∇ ŵ|) = 1
|∇ ŵ| is a good scaling so that the feedback is intrinsic with respect to

the single layer definition, since the use of 1D Dirac function gives δ(w(x)) =
δF(x)
|∇w| . In fact we

have in this case that the correction is exactly given by

∇JMS = δF
1

|∇ ŵ|
(
−
(
z(t)− C1(D)

)2
+
(
z(t)− C2(D)

)2)
,

In order to give some first elements of analysis, the idea is again to understand the stabi-
lization brought by the feedback. Since it is non-linear we limit ourselves to a formal analysis
for small errors around the target trajectory. With this aim in mind we expect the following
property 〈

∇2JMS(w̃) , w̃
〉
≥ 0. (2.69)

Following a shape derivation strategy [Delfour and Zolésio, 2011, Hintermüller and Ring,
2004], we then obtain in [18] the following sensitivity.
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Proposition 2.4.1 (Chapelle-Collin-Moireau)
For regular enough data, the second derivative of the data fitting around the target trajectory
term is given with α(|∇ ŵ|) = 1

|∇ ŵ| by

〈∇2
wJMS(δw2), δw1〉 =

∫
Fw

κα(|∇w|)
((
z − C1(Dw)

)2 − (z − C2(Dw)
)2)

δw2
δw1

|∇w| dσ

−
∫
Fw

α′(|∇w|)
((
z − C1(Dw)

)2 − (z − C2(Dw)
)2)

δw2 ∂nδw1 dσ

−
∫
Fw

α′(|∇w|) ∂2
nw
((
z − C1(Dw)

)2 − (z − C2(Dw)
)2)

δw2
δw1

|∇w| dσ

+2

∫
Fw

α(|∇w|) ∂nz
(
C2(Dw)− C1(Dw)

)
δw2

δw1

|∇w| dσ

−2
1

|Dw|

∫
Fw

(
z − C1(Dw)

) δw1

|∇w| dσ ×
∫
Fw

α(|∇w|)
(
z − C1(Dw)

)
δw2 dσ

−2
1

|B \Dw|

∫
Fw

(
z − C2(Dw)

) δw1

|∇w| dσ ×
∫
Fw

α(|∇w|)
(
z − C2(Dw)

)
δw2 dσ

+

∫
Fw

α(|∇w|)
((
z − C1(Dw)

)2 − (z − C2(Dw)
)2)

∂nδw2
δw1

|∇w| dσ,

hence for small estimation errors we have

〈 dwJMS(w̃), w̃〉 = 2
(
C2(Dw)− C1(Dw)

) ∫
Fw

∂nz
( w̃

|∇w|
)2

dσ

− 2

(
C2(Dw)− C1(Dw)

2

)2( 1

|Dw|
+

1

|B \Dw|

)(∫
Fw

w̃

|∇w| dσ

)2

,

This gives the following proposition.

Proposition 2.4.2 (Chapelle-Collin-Moireau)
Let us define the characteristic length hz, – the wavelength of the front width in the data – by

1

hz
= min

x∈Fw

|∂nz|
|C1(Dw)− C2(Dw)| .

Assuming
1

hz
≥ 1

4

(
1

|Dw|
+

1

|B \Dw|

)
|Fw|, (2.70)

then the condition (2.69) is satisfied, hence the observer effect is energy-decreasing in the lin-
earized error.

Condition (2.70) pertains to the sharpness of the front in the data – in other words to image
contrast – a condition that is clearly also required in image processing, see e.g. [Hintermüller
and Ring, 2004].

In [18] we finally show that, once the state observer is defined, it is then possible to com-
plement it with a parameter estimation stage in the spirit of [23, 24]. The discrepancy used for
the parameter estimation remains JMS, rewritten in the following least-square-like form

JMS =

∫
B

(
H(φw|ζw,ζθ

)
(
z−C1(D)

)
+ (1−H(φw|ζw,ζθ

))
(
z−C2(D)

))2
dx =

∫
B
J(z, y|ζy ,ζθ)

2 dx.
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We then rely on the ROUKF after time and space discretization, and show that it is possible
to jointly estimate the state, some diffusion parameters and also some initial condition param-
eters. This initial condition estimation allows to restart the estimation on multiple cycles of
propagation when the front tracking is not good enough during the first cycle.

Topological gradient-based extension – In the recent work [31], we remark that the pre-
vious observer is limited in the sense that it can only correct the front Γŵ that is already present
in the simulation. This means that, if we do not have a propagation front to be associated
with the data, we are not able to compute any observer correction. We want to circumvent this
limitation in order to track complex types of propagation patterns in reaction-diffusion problem.
In electrophysiology, this will be particularly helpful to monitor a fibrillation on a patient.

In order to improve the observer formulation, we follow a strategy of increasing importance
in shape optimization [Burger et al., 2004] or “level-set”-based image segmentation [Hintermüller
and Laurain, 2009, He et al., 2007], where the required shape derivatives, used to modify the
shape contours is complemented by a topological derivative that represents the sensitivity of
JMS when removing a small part of the domain. We thus introduce

dtopoJMS(D)(x) = lim
x→0

JMS(D \Bρ,x)−JMS(D)

|D ∩Bρ,x|
, ∀x ∈ D,

Bρ,x denoting a ball of radius ρ and center x. This gives in our case

dtopoJMS(x) =
(
z(x, t)− C1(D)

)2 − (z(x, t)− C2(D)]
)2
, ∀x ∈ B

Then we see in [31] that in order to a define a feedback of adequate sign we must consider

∇topoJMS =

(
1 + sign

(
dJMS × (w − cth)

))
dtopoJMS,

where the first term selects the region where we want to act(
1 + sign

(
dJMS × (w − cth)

))
=

{
0 if x ∈ I ∪ III
2 if x ∈ II

while the topological derivative dJMS provides the direction (creation or destruction, see Fig.3.1
left and right, respectively). Therefore, the observer (2.68) is complemented to read

∂ŵ

∂t
−∇ ·D∇ ŵ = kf(ŵ)

+ γtopo

(
1 + sign

(((
z − C1(D)

)2−(z − C2(D)]
)2)

(w − cth)
))(

z − C1(D)
)2 − (z − C2(D)]

)2
wm + γsh δFα(|∇ ŵ|)

(
−
(
z(t)− C1(D)

)2
+
(
z(t)− C2(D)

)2)
.

Application to the bidomain model – The application of this observer to electrophysiology
is very straightforward as we simply apply the correction to the bidomain equation. However,
we should mention that in practice the ECGI data allows to reconstruct the data only on the
epicardium. In [18] and [31], we consider a surface bidomain model proposed in [Chapelle et al.,
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2013], particularly well-suited to the atria very thin walls. This model is posed on the midsurface
of the wall and therefore can directly used the front data as for our reaction-diffusion model
(2.65). We typically end up with

Am

∫
Σ

(
Cm

∂ŵm
∂t

+ Iion(ŵm)
)
φ dΓ +

∫
Σ

(
~~σi ·

(
~∇ŵm + ~∇ûe

))
· ~∇φ dΓ

= −
∫

Σ

(
λ~∇shĴMS + µ~∇topoĴMS

)
φdS +Am

∫
Σ
Iappφ dΓ,∫

Σ

(
(~~σi + ~~σe) · ~∇ûe

)
· ~∇ψ dΓ +

∫
Σ

(
~~σi · ~∇wm

)
· ~∇ψ dΓ = 0,

where ~∇ is the surfacic gradient.

Concerning the ventricles, it is still possible to formally apply a feedback supported by the
observed front, but this front is a line on the epicardium which should introduce even more
technicalities when trying to justify that we have enough regularity on the front to define the
observer.

We mention eventually that other works consider the problem of estimating the cardiac
electrical state from data, in particular from front data. [Moreau-Villeger et al., 2006,Konukoglu
et al., 2010] use a variational strategy with simplified models. In these strategies, however, they
do not differentiate the front with respect to the state and limit their minimization to gradient-
free approaches.
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3 Cardiac modeling and model-data
interaction

Tous les modèles sont faux, certains sont utiles

— G. Box
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3.1 Introduction

This chapter first summarizes my modeling results on the cardiovascular system. Regarding the
micro-macro model of the heart contraction, we develop (with D. Chapelle and P. Le Tallec)
original non-linear rheology laws and time-discretization to obtain energy balance at the continu-
ous and discrete level. The topic of the heart tissue perfusion by the blood was the opportunity
to revisit poromechanics and propose thermodynamically compatible formulation for systems
presenting large displacements and strong fluid inertia. The question of model reduction is of
crucial importance for the cardiac system if we expect to reduced time computations, hence for
instance propose efficient models for monitoring. We have contributed to two types of model
reduction, the first one is based on asymptotic reduction. This work initiated with D. Chapelle
during my Master Thesis was concluded with R. Chabiniok and M. Caruel by comparing simu-
lation results with Y. Lecarpentier’s experiments on mice papillary muscles. The second type of
reduction is based on reduced-basis reduction since we investigate POD reduction for our heart
model (with D. Chapelle, A. Gariah and J. Sainte-Marie).

The second part of the chapter gathers my results on complete estimation trials on real data
or in a real data context. Indeed, we have (with R. Chabiniok,and D. Chapelle, in collaboration
with the medical doctors P.-F. Lesault, A. Rahmouni, J.-F. Deux) the first data assimilation
result on real data for a heart model. We also have (with Philippe C. Bertoglio, N. Xiao, C. A.
Figueroa, C. A. Taylor, D. Chapelle, and J.-F. Gerbeau) the first data assimilation result on real
data for a blood flow simulator. Our results on electrophysiology (with D. Chapelle, A. Collin,
C. Corrado and J.-F. Gerbeau) using ECG or ECGI data are about to be tested on real data
as they are very promising when evaluated in a synthetic but very realistic applicative context.
Finally, our work on data assimilation for the heart has induced fruitful collaboration/transfer
with other teams, as for instance with Inria Team Asclepios or with Kings College London.

3.2 Energy preserving models and coupling

3.2.1 An energy preserving micro-macro model of the heart contraction

As already mentioned in the introduction, the modeling of the active mechanical behavior of
the myocardium has been the object of abundant researches in the literature with two levels of
focus: on the one hand, the micro-scale bio-chemico-mechanical behavior of the fundamental
agents of the contraction, i.e. the actin-myosin bridges [Huxley, 1957, Huxley and Simmons,
1971,Eisenberg and Hill, 1978,Panerai, 1980,Bestel et al., 2001,Rice et al., 2003,Marcucci and
Truskinovsky, 2010,Guérin et al., 2011] and on the other hand, at the tissue level in order to
simulate the heart contraction at the organ scale [Glass et al., 1991,Guccione and McCulloch,
1993,Nash and Hunter, 2000,Rice and de Tombe, 2004,Sainte-Marie et al., 2006,Pathmanathan
et al., 2010]. However, relatively little attention has so far been devoted to carrying over the
microscopic considerations to the macroscopic level in the muscle tissue models [Engelbrecht
et al., 2000]. Therefore, at the macroscopic level, most of formulations lack energy considerations
– balances and exchanges – that are of utmost value, whereas such mechanisms are well-described
at the cellular level in the biophysics literature. As a consequence, the formulations are often
phenomenological and may lack mathematical background since energy balances are strong
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properties to carry out an existence analysis, but also a numerical analysis. To circumvent this
difficulty, some mathematical teams have made the choice to favor the mathematical foundation
of their tissue-level formulation, taking some distance with the original physiological description
of the muscle contraction of Huxley. On the contrary, we have tried in our work to show how
micro and macro descriptions are perfectly compatible by showing how, in a non-linear large
deformation context, we can integrate some state-of-the-art microscopic model of the actin-
myosin attachment up to the macroscopic level in order to formulate a complete, well-balanced
macroscopic model of the heart. This model then contains the most characteristic bio-physical
features, can be shown – at least after linearization – to be well posed, and can be discretized
efficiently with energy-consistent time-scheme.

We restart our presentation from the general solid formulation (1.13) given in the intro-
duction. We here specify the boundary conditions. In the spirit of our work on cardiovascular
modeling [26] – see also Section 3.4.2 – we model the external organs by visco-elastic boundary
conditions on a sub-part of the epicardium which, in reference configuration, gives

T · n = ksu+ csv on Γn(t).

Regarding the intra-cavity pressure load, we consider a uniform following pressure on the left
and right endocardium easily written in deformed configuration

σ · nt = −pv,int on Γn,i(t), i = {1, 2}.

Obviously, theses choices are simplified. The external tissue support could be more deeply
modeled with contact conditions– see some preliminary extension in [Imperiale, 2013] – and the
intra-cavity pressure load corresponds in fact to a complex fluid-structure interaction problem
to be set up. However, a reasonable heart model can be described by

∂tu = v, in Ω0

ρ∂tv − div(T ) = 0, in Ω0

T · n = ksu+ csv, on Γn

T · n = −Jpv,iF−ᵀ · n, on Γc,i

T · n = 0, on ∂Ω0\((∪iΓc,i) ∩ Γn)

(3.1)

where the constitutive law describing T must be specified. Now, most cardiac models where the
active behavior is taken into account in the stress law define the second Piola-Kirchhoff stress
tensor Σ = F−1 · T as

Σ = Σ
p

+ σ1D(e1D, t)τ ⊗ τ
where e1D = τ · e · τ is the strain in the fiber direction.

3.2.1.1 A microscopic model of contraction adapted to large scale problems

In the active law σ1D, a fundamental objective is to integrate the state-of-the art microscopic
models of the muscle contraction. Indeed, the subcellular scale is where biochemistry and me-
chanics are intimately coupled, with the attachment of so-called cross-bridges within sarcomeres,
namely, the creation of chemical bonds between myosin heads and specific sites on actin fila-
ments. A cross-bridge in itself can be seen as an elementary chemical entity having internal
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mechanical variables – or degrees of freedom (dof)– characterizing its attached or unattached
state. In the original model [Huxley, 1957], the cross-bridge is seen as a system with one me-
chanical dof associated with a linear spring that is under tension as soon as the myosin head
attaches to the actin filament, which collectively induces muscle contraction. This model was
later refined in the literature [Huxley and Simmons, 1971,Eisenberg and Hill, 1978] by including
additional chemical states in the attached configuration. Nowadays, this research is still very
active with for example the original alternative approach [Marcucci and Truskinovsky, 2010]
by which a purely mechanical model was substituted for the chemical states of the attached
cross-bridge, with two dofs corresponding to one bi-stable element in series with a linear spring.
Once the cross-bridge behavior has been modeled, we must aggregate over the spatial scales the
behavior of the many individual cross-bridges at work within the sarcomeres, cells and tissue.
Given the large number of cross-bridges – at the sarcomere level and above – it is quite natural to
adopt a statistical description, as already proposed in [Huxley, 1957], by which the total active
force/stress is given by the mean of the individual cross-bridge forces with an appropriate scaling
factor. Typically σ1D is directly related to n, the probability density functions of cross-bridges,
which follow a dynamics of the form

∂n

∂t
+ ėc

∂n

∂s
= (n0 − n)f − ng, (3.2)

where s is a microscopic variable, ec is the fiber deformation and n0(ec) is the maximum number
of bridges that can be created for a given fiber deformation. Then a macroscopic active stress
can be computed with

τc(t) =

∫
∂Wm(t, s)

∂s
n(t, s)ds,

with Wm the mechanical potential associated with each cross-bridge, f and g are binding and
unbinding rates.

Among these models, the model envisioned in [Sainte-Marie et al., 2006] and completed in
our work [14] represents a good compromise between the microscopic description and the need for
a tractable model at the macroscopic level. The idea is to mitigate the resulting computational
costs in the simulation process by making some approximations on the bridges density function.
For instance [Zahalac, 1981] proposes to replace (3.2) by the dynamics of a limited number of
so-called moments

µp =

∫
R

spn(s, t) ds.

with a closure relation, a strategy quite typical in the kinetic formalism. In fact, under certain
modeling assumptions the moments equations are exact, and directly provide the active stresses
themselves as solutions of a dynamical equation. This is the spirit of [Bestel et al., 2001] and [14].
Indeed, by choosing Wm(t, s) = k0

2 (s+ s0)2 and

f(s, t) = |u(t)|+ 1s∈[0,1],

g(s, t) = |u(t)|+ α |ėc| − f(s, t).

u(t) = |u(t)|+ − |u(t)|− with

{
|u(t)|+ = kATP1[Ca2+]>C

|u(t)|− = kRS1[Ca2+]<C

we show in [14] that the moments
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1. 0th-order moment: with an appropriate rescaling, this represents the equivalent stiffness
of the sarcomere in the current configuration of active bridges, which we denote by kc

kc = k0

∫
R

n(s, t) ds.

2. 1st-order moment: let τc be the stress associated with the set of “springs” considered at
equilibrium when s = −s0 ≤ 0 – meaning that for s = 0 the spring is under tension:

τc = k0

∫
R

(s+ s0)n(s, t) ds.

satisfy {
k̇c = −(|u|+ α |ėc|)kc + n0k0 |u|+
τ̇c = −(|u|+ α |ėc|)τc + ėckc + n0σ0 |u|+

a dynamics close to the original model derivation in [Bestel et al., 2001]. Such a formulation is
reasonably simple to simulate at the macroscopic level, since it only involves two more internal
variables in the constitutive relation, as can encountered in numerous complex mechanical for-
mulations [Maugin and Muschik, 1994, Engelbrecht et al., 2000]. Moreover it contains crucial
microscopic characteristics, with for instance the chemical entry u or the so-called Frank-Starling
effect [Tortora and Derrikson, 2009] in n0,. Therefore, this model produces comparable results
as experiments at the fiber level, see our validation in [7]. And finally it shows a very interesting
energy balance with the following result

Proposition 3.2.1 (Chapelle-Le Tallec-Moireau-Sorine)
The energy averaged over the collection of bridges

Uc =
k0

2

∫
R

(s+ s0)2n(s, t) ds.

satisfies the dynamics

U̇c =
k0

2

∫
R

(s+ s0)2f ds− (|u|+ α |ėc|)Uc + ėcτc

= −(|u|+ α |ėc|)Uc + ėcτc + n0U0 |u|+ ,
with U0 = k0

2 (s2
0 + s0 + 1

3) > 0, so that it can control the macroscopic variable – i.e. depending
uniquely from the variables τc and kc – variation

Ψc =
1

2kc
τ2
c ,

by

∀t, Uc ≥ Ψc.

This energy balance integrated over the scales is the key element for a complete mathematical
analysis. Indeed, it shows that the macroscopic variable that will be simulated is controlled by
the microscopic energy exchange that enters the mechanical energy balance (3.5).
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3.2.1.2 General non-linear rheology for the cardiac fiber

In order to integrate completely the active part with the rest of the mechanical components,
typically the passive 3D behaviors in Σ

p
, we propose to follow [Sainte-Marie et al., 2006] and

rely on rheological models – see among others [Le Tallec, 1994]. The main idea is to describe
the global macroscopic behavior resulting from the combination of several constitutive elements
by an analogy with a combination of spring and damping elements in series and parallel.

Under the small displacements assumption, the natural rules of series and parallel associa-
tions apply. However, when considering the general non-linear case, the combined laws are more
intricate as envisioned in [Sainte-Marie et al., 2006] and fully presented in our work [14]. In fact,
let us consider a 1D element corresponding to two elastic materials in series. We then have for
the deformation maps

φ = φ2 ◦ φ1 ⇒ ∇ φ = ∇ φ2 · ∇ φ1,

so that

1 + 2e = (1 + 2e1)(1 + 2e2). (3.3)

Considering the stresses, we sum the free energies G (e) = G1(e1) +G2(e2) under the kinematical
constraint (3.3). Minimizing the energy allows then to characterize e1 et e2 at the equilibrium

(e1, e2) = argmin
1+2e=(1+2e1)(1+2e2)

G (e),

so that we have {
G ′1 de1 + G ′2 de2 = 0

(1 + 2e2) de1 + (1 + 2e1) de2 = 0

with G ′1 and G ′2 the derivatives of G1 and G2 with respect to the scalar strains e1 and e2,
respectively. We then obtain

G ′1
1 + 2e2

=
G ′2

1 + 2e1
.

Finally, the total stress in the element σ = ∂G
∂e is thus given by

dG = σ de = G ′1 de1 + G ′2 de2

=
G ′1

1 + 2e2
((1 + 2e2) de1 + (1 + 2e1) de2)

=
G ′1

1 + 2e2
de,

and equally when switching the index 1 and 2. Therefore, the rheological law is finally modified
to give

σ =
σ1

1 + 2e2
=

σ2

1 + 2e1
.

With the rheological non-linear relations, we can consider a full rheological model such
as that presented in Figure 3.1 and then integrate the energy balance considerations of each
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τc , k
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e

c

Figure 3.1: Hill-maxwell rheological model of the cardiac structure.

element. We end up in [14] with the formulation

u̇ = v∫
Ω0

ρv̇ · v∗ dΩ +

∫
Ω0

Σ : due · v∗ dΩ = Pext(v
∗), ∀v∗ ∈ V

Σ =
∂We

∂e
+
∂Wv

∂ė
+ σ1D τ1 ⊗ τ1

(τc + µėc)(1 + 2ec)
3 = Es(e1D − ec)(1 + 2e1D)

k̇c = −(|u|+ α |ėc|)kc + n0k0 |u|+
τ̇c = −(|u|+ α |ėc|)τc + ėckc + n0σ0 |u|+

(3.4)

under the above definition of the fiber stress and strain

σ1D =
( 1 + 2ec

1 + 2e1D

)
σc, σc = τc + µėc and e1D = τ1 · e · τ1,

and where Pext(v
∗) is the virtual work associated with the external forces. This model is proved

to be thermodynamically compatible with the following energy balance.

Proposition 3.2.2 (Chappelle-Le Tallec-Moireau-Sorine)
The model (3.4) satisfies the energy balance

d

dt

(
K + Ee +

1

2

∫
Ω0

Ese
2
s dΩ +

∫
Ω0

Uc dΩ

)
=

Pext(v) +

∫
Ω0

n0U0 |u|+ dΩ−
∫

Ω0

(|u|+ α |ėc|)Uc dΩ−
∫

Ω0

µ(ėc)
2 dΩ−

∫
Ω0

∂Wv

∂ė
: ė dΩ. (3.5)

where the various energy contributions are as follows:

• K =
1

2

∫
Ω0

ρ |v|2 dΩ is the kinetic energy;

• Ee =
∫

Ω0
We dΩ is the hyperelastic energy of the 3D matrix;
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• 1
2

∫
Ω0
Ese

2
s dΩ is an additive passive elastic energy associated with the fiber;

• Uc is the microscopic elastic energy of the actin-myosin bridges.

For the source terms:

• Pext is the power of external forces;

•
∫

Ω0
n0U0 |u|+ dΩ is the positive power consumed by the actin-myosin engine.

As for the dissipative terms:

•
∫

Ω0
(|u|+ α |ėc|)Uc dΩ is the energy dissipated during the binding-unbinding mechanisms;

•
∫

Ω0
µ(ėc)

2 dΩ is the (passive) viscous dissipation in the contractile element;

•
∫

Ω0

∂Wv
∂ė : ė dΩ is the dissipated energy due to the passive viscosity of the 3D matrix.

Proposition 3.2.2, combined with Proposition 3.2.1 then allows to produce a complete math-
ematical analysis of the model (3.4) at least for a linearized formulation but also with a mathe-
matically grounded non-linear extension. This will be published in forthcoming works. Moreover
it allows to propose the following energy-consistent discretizations

un+1 − un
∆t

=
vn+1 + vn

2∫
Ω0

ρ
vn+1 − vn

∆t
· v∗ dΩ +

∫
Ω0

Σn+ 1
2
] : due

n+ 1
2
] · v∗ dΩ = P

n+ 1
2

ext (v∗), ∀v∗ ∈ V

Σn+ 1
2
] =

∂We

∂e

∣∣∣n+ 1
2
]

+
∂Wv

∂ė

∣∣∣n+ 1
2
]

+ σ
n+ 1

2
]

1D τ1 ⊗ τ1,

(√
kn+1
c

( τc√
kc

)n+1
+ µ

en+1
c − enc

∆t

)
(1 + 2e

n+ 1
2

c )3 = Es(e
n+ 1

2
1D − en+ 1

2
c )(1 + 2e

n+ 1
2

1D )

kn+1
c − knc

∆t
= −

(
|un+1|+ α

∣∣∣en+1
c − enc

∆t

∣∣∣)kn+1
c + n0k0|un+1|+

1

∆t

(( τc√
kc

)n+1
−
( τc√

kc

)n)
=

√
kn+1
c

en+1
c − enc

∆t

+
n0σ0|un+1|+√

kn+1
c

(
1− k0

2σ0

√
kn+1
c

( τc√
kc

)n+1
)

−1

2

(
|un+ 1

2 |+
∣∣∣en+1
c − enc

∆t

∣∣∣)( τc√
kc

)n+1

(3.6)

where we use the standard notation

gn+ 1
2 =

gn + gn+1

2
,

except when specified otherwise for some variables that we denote by gn+ 1
2
], typically the strain

values
en+ 1

2
] = e(un+ 1

2 ),
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due
n+ 1

2
] · v∗ =

1

2
(F (un+ 1

2 )ᵀ · ∇
ξ
v∗ +∇ᵀ

ξ
v∗ · F (un+ 1

2 )),

ėn+ 1
2
] =

en+1 − en
∆t

.

For the passive elastic stress

∂We

∂e

∣∣∣n+ 1
2
]

=
∂We

∂e
(en+ 1

2
])

+

(
We(e

n+1)−We(e
n)

∆t
− ∂We

∂e
(en+ 1

2
]) : ėn+ 1

2
]

)
ėn+ 1

2
]

ėn+ 1
2
] : ėn+ 1

2
]
,

while viscous stresses are given by

∂Wv

∂ė

∣∣∣n+ 1
2
]

=
∂Wv

∂ė
(ėn+ 1

2
]).

The series fiber stress is given by the combined formula

σ
n+ 1

2
]

1D =
σ
n+ 1

2
]

s

1 + 2e
n+ 1

2
c

=
σ
n+ 1

2
]

c

1 + 2e
n+ 1

2
s

,

with
σ
n+ 1

2
]

s = Ese
n+ 1

2
s ,

and

σ
n+ 1

2
]

c =

√
kn+1
c

( τc√
kc

)n+1
+ µ

en+1
c − enc

∆t
.

Indeed,we have the next theorem proved in [14].

Theorem 3.2.3 (Chapelle-Le Tallec-Moireau-Sorine)
By construction, the proposed time discretisation scheme (3.6) preserves the global energy dis-
sipation properties of the original problem.

3.2.2 An energy balanced coupling of porous flows and hyperelastic formu-
lations

Poromechanics has been a very active subject of research for decades, in particular in geosciences.
There, in a context of small displacements mechanical theories have been developed to define
the mechanical response of a two-phase system combining a solid skeleton with a fluid. We can
classify the available approaches with the mixture theory [Biot, 1972, Coussy, 2004, de Boer,
2005, Loret and Simões, 2005] or with homogenization theory [Rohan and Cimrman, 2010].
Recently, poromechanical models have found new application in life sciences since numerous
organs are perfused with fluids, in particular blood. Considering the heart or the lungs for
instance, these new systems face new regimes with large deformation and high fluid inertia
imposing to revisit the field to circumvent various limitations of the existing theories. In the
context of mixture theory we decide in [15] to propose a complete reformulation of a fluid
perfusing a solid in large deformations without neglecting inertial effects. We believe that the
mixture theory offers a very nice framework to devise adapted formulations at the organ scale
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that are compatible with the thermodynamics principles. Therefore, they have energy balances
allowing again to measure the physiological energetic exchange but also to propose formulations
that are well-posed from a mathematical point of view and of stable discretizations even in
non-linear configurations.

In the mixture theory we consider a material that contains at each point a volume fraction
φ of fluid phase, and a remaining fraction 1−φ of solid phase. The mixture field will be denoted
without subscript, whereas the solid phase fields are defined by a s subscript and the fluid phase
fields by a f subscript.

Then by standard conservation laws we have the mass conservation on the deformed domain

d

dt
(ρfφ) +∇x · (ρfφ vs + w) = θ.

where θ represents a distributed mass source term, and w = w = ρfφ (vf − vs). Then we have
the conservation of momentum leading to the principle of virtual work

∀v∗ ∈ V (Ω), Pi(v
∗) + Pint(v

∗) = Pext(v
∗),

with

Pi(v
∗) =

∫
Ωt

(
ρs(1− φ)γ

s
+ ρfφγf

)
· v∗ dΩ =

∫
Ω0

(
ρs0(1− φ0)γ

s
+ (ρf0φ0 +m)γ

f

)
· v∗ dΩ

Pint(v
∗) =

∫
Ωt

σ : ε(v∗) dΩ =

∫
Ω0

Σ : due · v∗ dΩ

Pext(v
∗) =

∫
Ωt

ρf · v∗ dΩ +

∫
∂Ωt

t · v∗ dΓ =

∫
Ω0

(ρ0 +m)f · v∗ dΩ +

∫
∂Ω0

t0 · v∗ dΓ

where we adopt capitalize letters or a 0 subscript for variables on reference domain. The difficulty
in [15] was then to derive in large deformation the Clausius-Duhem inequalities associated with
the second principle of thermodynamics. This is summarized by the following results

Theorem 3.2.4 (Chapelle-Moireau)
The second principle is verified with the following conditions:

• For the heat rate, we suppose that Fourier’s law is satisfied, namely,

JQ = −λQ∇ξT.

• For the stress tensor, we assume it is the sum of the three contributions

Σ = φΣvis +
∂Ψ

∂e
+
∂Ψdamp

∂ė
,

with Ψdamp(e, ė) a viscous pseudo-potential convex in the variable ė =
de

dt = due · vs and
satisfying ∂Ψdamp

∂ė (e, 0) = 0, which entails

∂Ψdamp

∂ė
: ė ≥ 0.

• For the fluid viscous term, we assume we always have the dissipation inequality

σvis : ε(vf) ≥ 0.
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• For the relative velocity of the fluid, there exists a positive definite second order tensor
K

f
such that

1

ρf
W = K

f
·
(
−∇ξp+ ρfF

ᵀ · (f − γ
f
) +

1

φ
F ᵀ · ∇ξ · (φΠvis)

)
,

meaning in the Eulerian framework that

1

ρf
w = k

f
·
(
−∇xp+ ρf(f − γf

) +
1

φ
∇x · (φσvis)

)
,

with k
f

= 1
JF ·K f

· F ᵀ.

We end up wit the following strong formulation

ρs0(1− φ0)
dvs

dt
−∇ξ · (F · Σs

)− Jφ2k−1
f
· (vf − vs)

+pJF−T · ∇ξφ = ρs0(1− φ0)f, in Ω0

1

J

d

dt
(Jρfφvf) +∇x ·

(
ρfφvf ⊗ (vf − vs)

)
− θvf + φ2k−1

f
· (vf − vs)

+φ∇xp−∇x · (φσvis) = ρfφf, in Ωt

1

J

d

dt
(Jρfφ) +∇x ·

(
ρfφ(vf − vs)

)
= θ, in Ωt

(3.7)

where we recognize in (3.7)2 an equation very similar to the conservative form of the so-called
Arbitrary Lagrangian Eulerian (ALE) formulation of the compressible Navier-Stokes equations
[Vidrascu et al., 2005], where here the domain velocity is given by the skeleton physical velocity
and the product ρfφ plays the role of a varying fluid mass density. However, compared with
standard fluid-structure interaction problems, we have the additional distributed coupling term
k−1

f
· (vf − vs) representing the interaction between the two phases.

Moreover, the interest of satisfying the thermodynamical principles is that we can then
prove an energy balance property useful both physically and mathematically.

Theorem 3.2.5 (Chapelle-Moireau)
The solution of the general poromechanics problem written in (3.7) satisfies the following energy
balance

dK

dt
+

dW

dt
= −

∫
Ω0

∂Ψdamp

∂ė
: ė dΩ−

∫
Ωt

φσvis : ε(vf) dΩ−
∫

Ωt

(vf − vs) · φ2k−1
f
· (vf − vs) dΩ

+ Ptotal
ext + JK b + JK θ + JW b + JG θ,

with
JK b = −1

2

∫
∂Ωt

ρfφv
2
f (vf − vs) · n dΓ, JK θ =

1

2

∫
Ωt

v2
f θ dΩ,

the incoming rates of fluid kinetic energy due to the boundary flow and source term, respectively,
and

JW b = −
∫
∂Ωt

ρfφψm(vf − vs) · n dΓ, JG θ =

∫
Ωt

gmθ dΩ,

similar incoming rates of Helmholtz and Gibbs free energies.
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In particular this gives the opportunity to define stable discretizations. In [15], we propose
the discretization

∫
Ω0

ρs0(1− φ0)
vn+1

s − vns
∆t

· v∗ dΩ + P
f,n+ 1

2
]

i (v∗) +

∫
Ω0

Σn+ 1
2
] : due

n+ 1
2
] · v∗ dΩ

=

∫
Ω0

ρ0f
n+ 1

2 · v∗ dΩ +

∫
∂Ω0

t
n+ 1

2
0 · v∗ dΓ,

P
f,n+ 1

2
]

i (v∗) +

∫
Ω
n+ 1

2

(φn+ 1
2
])2 (v

n+ 1
2
]

f − vn+ 1
2

s ) ·D
f
· v∗ dΩ

=

∫
Ω
n+ 1

2

(
−φn+ 1

2
]∇xp

n+ 1
2 + φn+ 1

2
] fn+ 1

2
)
· v∗ dΩ

∫
Ω0

q∗
mn+1

f −mn
f

∆t
dΩ +

∫
Ω
n+ 1

2

∇x ·
(
ρfφ

n+ 1
2
] (v

n+ 1
2
]

f − vn+ 1
2

s )
)
q∗ dΩ =

∫
Ω
n+ 1

2

q∗θn+ 1
2 dΩ

(3.8)

to which we add the boundary conditions

v
n+ 1

2
]

f = v
n+ 1

2
s on ∂Ωn+ 1

2
,

and in System (3.8) we make use of the following discretization choices :

• For the fluid inertia

P
f,n+ 1

2
]

i (v∗) =

∫
Ω0

kn+1
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2 v∗dΩ−1

2

∫
Ω
n+ 1

2

∇x·
(
ρfφ

n+ 1
2
] (v

n+ 1
2
]

f −vn+ 1
2

s )
)
v
n+ 1

2
]

f ·v∗dΩ

+

∫
Ω
n+ 1

2

∇
x
·
(
ρfφ

n+ 1
2
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2
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2
]
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2
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)
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2

∫
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2
]

f · v∗ dΩ.
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φn+ 1
2
] =

m
n+ 1

2
f

ρfJ(u
n+ 1

2
s )

, mn+ 1
2 = m

n+ 1
2

f − ρfφ0.

whereas mf = ρfJφ and kf =
√
mfvf are discretized such that

k
n+ 1

2
f =

kn+1
f + knf

2
, mn+ 1

2 = m
n+ 1

2
f − ρfφ0,

and

∂kf

∂t

∣∣∣n+ 1
2
]

ξ
=
kn+1

f − knf
∆t

v
n+ 1

2
]

f =
k
n+ 1

2
f√
mf

n+ 1
2

• Regarding the second Piola-Kirchhoff stress tensor we draw our inspiration from [Le Tallec
and Hauret, 2003,Gonzalez, 2000] and propose

Σn+ 1
2
] =

∂Ψ

∂e

∣∣∣n+ 1
2
]

+
∂Ψdamp

∂ė

∣∣∣n+ 1
2
]
,
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with the viscous contribution given by

∂Ψdamp

∂ė

∣∣∣n+ 1
2
]

=
∂Ψdamp

∂ė
(en+ 1

2
], ėn+ 1

2
]),

and the hyperelastic part by

∂Ψ

∂e

∣∣∣n+ 1
2
]

=
∂Ψ

∂e
(en+ 1

2
],mn+ 1

2 )

+

(
Ψ(en+1,mn+ 1

2 )−Ψ(en,mn+ 1
2 )

∆t
− ∂Ψ

∂e
(en+ 1

2
],mn+ 1

2 ) : ėn+ 1
2

)
ėn+ 1

2

ėn+ 1
2 : ėn+ 1

2

,

while the pressure is obtained by

pn+ 1
2

ρf
=
∂Ψ

∂m

∣∣∣n+ 1
2
]

=
Ψ(en+1,mn+1)−Ψ(en+1,mn+ 1

2 ) + Ψ(en,mn+ 1
2 )−Ψ(en,mn)

mn+1 −mn
.

Finally we prove

Theorem 3.2.6 (Chapelle-Moireau)
The time scheme (3.8) is unconditionally stable, and of second-order accuracy.

3.3 Reduced-order modeling

With the title “reduced order modeling” we broach the subject of finding strategies to accelerate
the simulations of our models. This question has become very popular with the emergence of
complex systems and is also often referred as reduced modeling which can give the false impres-
sion that the model is simplified. In our case, we have studied two types of model reduction:
(1) a dimension reduction operated by considering simplified geometrical configurations and (2)
a reduced-basis projection in the Galerkin spatial discretization of a model.

3.3.1 Dimensional reductions of a cardiac model for effective validation and
calibration

In [36] and then in [7] we demonstrate how, using geometrical arguments, a generic 3D model
can be used to derive associated reduced-dimensional models both in “0D” (zero-dimensional)
– typically, to represent a cardiac cavity – and in “1D” one-dimensional – to model a fiber or a
myocyte. Such reduced models can then be combined with 3D models to provide dramatic ef-
fectiveness gains without compromising modeling accuracy at the local scale. Hence we envision
different purposes such as:

• 1D-0D: to obtain fast translations of experimentally assessed properties – based on 1D
samples – to the “organ” level approximately represented by the 0D model;

• 1D-3D: to infer much more accurate translations to the organ level, e.g. including spatial
heterogeneities and detailed fiber distributions;
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• 0D-3D: to easily calibrate the constitutive properties based on global indicators prior to
running 3D simulations.

To proceed to the model reduction, we consider the formulation (3.1) where we decide to
make geometrical, hence kinematics assumptions. These assumptions consists in the shape of
the system to be considered – namely, a sphere or a fiber – and an hypothesis of small thickness
to derive an asymptotic behavior within the thickness. Note that our geometrical assumptions
are coupled with geometrical assumptions within the constitutive law about the orthotropic
behavior, and with the boundary conditions.

3.3.1.1 0D-formulation

We consider a simplified problem in which the geometry and the physical behavior are endowed
with spherical symmetry properties. The simplified geometry for a ventricle is given by a sphere
of radius R0 and thickness d0 in the stress-free reference configuration Ω0, see Fig.3.2. We

R

d

P v

iφ1

iφ1

iφ2 iφ2i r

Figure 3.2: Spherical model of a ventricle

denote by (ir, iφ1
, iφ2

) an orthonormal basis and show that in this basis the displacement field
with respect to the reference configuration is radial, namely, given by u = u ir = (R − R0) ir,
and the right Cauchy-Green deformation tensor has the special form

C =

 Crr 0 0

0 C 0

0 0 C

 ,

where
√
C = 1+u/R0 is the ratio of circumferential lengths between the reference and deformed

configurations. Moreover, assuming incompressible behavior, we have detC = 1, hence Crr =

C−2. Therefore, we have for example

( due · y∗)φφ = (1 + y/R0)(y∗/R0).

Then we proceed with classical arguments of shell theory that justify that the radial stress
Σrr can be neglected compared to the orthoradial components [Chapelle and Bathe, 2011].
Therefore, in the incompressible limit of the second-Piola Kirchhoff definition

Σ = Σ
p
(J3 = 1) + σ1D(e1D, t)τ ⊗ τ − pJC−1

the Lagrange multiplier p can be explicitly inferred from Σrr = 0, viz.

p = C−2
(
Σ
p

)
rr
.



3.3 Reduced-order modeling 131

0 0.2 0.4 0.6

0.6

0.8

1

1.2

time (s)

V
(·1

0
−

4
m

3
)

0 0.2 0.4 0.6

− 10

0

10

20

time (s)
Q

(·1
0
−

4
m

3
/s
)

0 0.2 0.4 0.6
0

0.5

1

1.5

time (s)

P
v
(·1

0
4
P
a)

0.6 0.8 1 1.2
0

0.5

1

1.5

V ( ·10− 4 m3 )

P
v
(·1

0
4
P
a)

0 0.2 0.4 0.6

0.2

0.4

0.6

time (s)

e

0 0.2 0.4 0.6

0

100

200

time (s)

τ c

0 0.2 0.4 0.6

0

2

4

6
·104

time (s)

k
c

0 0.2 0.4 0.6
0

2

4

·104

time (s)

Σ
φ
φ

Figure 3.3: Cardiac cycle obtained with the 0D-model

Hence, we find

Σ : due · u∗ =
(
1 +

u

R0

) u∗
R0

(
Σφ1φ1 + Σφ2φ2

)
=

(
1 +

u

R0

) u∗
R0

Σsph,

with the combined stress quantity Σsph defined by

Σsph =
(
Σ
p

)
φ1φ1

+
(
Σ
p

)
φ2φ2

+ σ1D − 2C−3
(
Σ
p

)
rr
.

hence the principle of virtual work leads – see [36] and [7] for details - to the ordinary differential
equation

ρd0ü+
d0

R0

(
1 +

u

R0

)
Σsph = Pv

(
1 +

u

R0

)2
.

This model allows to compute in real-time complete cardiac cycles such as for example in Fig-
ure 3.3.

3.3.1.2 1D-formulation

For the isolated muscle fibers, we consider a 1D formulation – see Fig.3.4 – corresponding to a
circular cylinder of radius R0 and length L0 in the reference configuration Ω0, with corresponding
values R and L in the deformed configuration.

(b)
ir1

ir2
R ix

L

Ftip

Figure 3.4: Cylindrical model of a cardiac muscle sample
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Figure 3.5: Strain (top) and stress (bottom) response of a single papil-
lary muscle for a loading experiment (top). Dashed lines, experimental
measurements; solid lines, simulations

As an orthonormal basis we use a first vector ix oriented along the fiber – i.e. τ = ix – and
we define two arbitrary equivalent directions (ir1 , ir2) in the cross-section. An external force Ftip
is applied at the end of the sample along the ix-direction, and we seek the resulting longitudinal
displacement u(x) at each point of the sample. Due to the incompressibility condition, the
Cauchy-Green tensor takes the special form

C =

 C 0 0

0 C−
1
2 0

0 0 C−
1
2

 ,

where
√
C = 1+u′(x) is now the length ratio in the ix-direction. Then we can compute quantities

like (
due · u∗

)
xx

=
(
1 + u′

)
(u∗)′,

Following the same strategy as for the 0D formulation, we end up with the 1D principle of
virtual work ∫ L0

0

[
ρ üu∗+ Σxx

(
1 + u′

)
(u∗)′

]
dx =

Ftip
A0

u∗(L0), ∀u∗∈V

or in strong form {
ρü−

[
Σxx

(
1 + u′

)]′
= 0

Σxx(L0)(1 + u′(L0)) =
Ftip
A0

This type of model can then be used to simulate loading experiments on a fiber such as in
Figure 3.5.
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3.3.2 Proper Orthogonal Decomposition for parameter-dependent problems
– application to parameter estimation

A second strategy in reduced-order modeling consists in the use of a projection of a Galerkin
formulation over a reduced basis. In this respect, we already mentioned the use of the Proper
Orthogonal Decomposition for such a reduction. This subject has led to intensive research
and application in cardiac modeling. However, the electrophysiology problem has been more
investigated [Boulakia et al., 2012,Chapelle et al., 2012] and also [13, 19] than the mechanical
problem. In [13] however, we illustrate the use of such a POD formulation for our cardiac model,
including some parameter estimation.

One key aspect of our investigation on POD, is the understanding of the robustness of the
POD basis with respect to parameter variations in order to rely on the POD reduction in esti-
mation. We prove in [13] a robustness estimate as soon as the POD basis has been constructed
with trajectories computed with parameters surrounding the target value. The numerical inves-
tigation on the electrophysiological problem in [13, 19] justifies our theory. Moreover, our tests
on the mechanical formulation, hence on a very different model formulation, are consistent with
this estimate.

3.4 Model-data interaction for the cardiovascular system

In this last section, we want to present various cardiovascular applications of our sequential joint
state and parameter estimation methodology. Indeed we have put a lot of effort in showing that
our strategy is compatible with large systems and real data, so that it can be envisioned in the
future to define through estimation patient-specific models, not only from a geometrical point
of view but also from a biophysical point of view.

3.4.1 Estimation of tissue contractility from cardiac Cine-MRI – a pig ex-
periment

In [8], we assess a joint state-parameter estimation procedure to identify some regional values of
key biophysical parameters in a beating heart model, using actual Cine-MR images. We use a
complete heart model of the type (3.4) estimated with a combination of a Luenberger observer
for the state and a ROUKF filter for the parameters. The data at hand consist in a sequence
of segmentations as described in Sections 2.4.1. In order to allow for a detailed assessment
of the estimation results, we specifically devise and perform an animal experiment in which a
controlled infarct was created. In this experiment, imaging and pressure data are acquired before
and after infarction – at two subsequent stages. Therefore, we can quantitatively compare the
estimation results pertaining to regional values for a major biophysical parameter of interest in
this context – namely, the tissue contractility σ0 in (3.4) characterizing the ability of the muscle
fiber to generate active stresses under the effect of electrical activation – at the various stages.
Moreover, we also acquire late enhancement images, a modality where a contrast agent is used
to locate – but not quantify – an infarct region. This modality helps us to evaluate the accuracy
of our estimation.

The results presented in [8] are very good in almost all the 17 AHA regions – the subdivision
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used by cardiologists – allowing to localize but also relatively quantify the impact of the infarct.
Not all the regions are in perfect accordance with the late enhancement modality but, in this
case, we clearly see the impact of over-simplified boundary conditions that limit the model
sensitivity.

Therefore we see that our method can be applied to very complex models with complex real
(shape) data. Then, the use of the estimation completes the actual data with new information
from the model but also allows to understand where the model should be improved to better
adjusted to the patient data. Up to our knowledge, this result is the first result of full cardiac
estimation using real data.

Note that this work was completed in [33] – see details in [Imperiale, 2013] – with synthetic
data experiments where we combine cine-MRI data with tagged-MRI data in order to estimate
a decreased contractility in the infarct regions but also an increased passive stiffness. Here, we
show as expected that if we seek a richer estimation, we must rely on richer data.

3.4.2 Identification of boundary support parameters in a fluid-structure vas-
cular model using patient image data

In [26], we propose some simplified visco-elastic boundary conditions in order to represent the
tethering of the surrounding organs when modeling a vessel portion. Surprisingly, whereas fluid
boundary condition is a subject of intensive research, there are few modeling papers on solid
boundary conditions in cardiovascular modeling. This is particularly important for the ascending
aorta which is connected to the moving heart and partially tied to the spine. In [26], we propose
a calibration of the model, that allows to drastically reduce the motion error evaluated by
comparing the computed deformation with a sequence of segmentations extracted from scan
images. We then propose in [21] to automatize the boundary support parameter characterization
with a sequential joint state and parameter estimation. The model is a full fluid-structure
interaction problem and the data are again shape data defined by a sequence of boundary
segmentations. The results presented in [21] show a substantial improvement of the simulation
from the automatically identified parameters when compared to the manually calibrated ones
of [26]. Moreover, certain parameter shows no convergence in the sequential estimation with
persistent oscillations during the cardiac cycle. Again this is typical of modeling errors that are
compensated by the estimation. In this case we find that this lack of identifiably was due to an
undesignated region where the aorta is in reality sustained from below by the pulmonary trunk.

Again, the conclusion of this work is that it is now possible to couple complex models with
state of the art estimation strategy. This type of FSI simulation take approximately one day of
computational time for the direct simulation which limits the use of variational methods, hence
the advantage of our hybrid sequential method. The model-data coupling allows to specify the
model but also to evaluate it with natural systems that cannot be assessed otherwise.

3.4.3 Estimation in electrophysiology

As already mentioned, we have also proposed effective strategies for electrophysiology estimation.

In [18] and [31], we propose an original approach to complement the ECGI modalities. ECGI
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consists in reconstructing the activation map from body surface potentials – a generalization
of the classical ECGs. This method is now used in clinical applications as for instance with
the cardioInsight technology1. Our method shows how to reconstruct a bidomain state model
and possibly jointly estimate some model parameters using the activation maps. Our method is
adapted to complex electrical patterns such as fibrillation, etc. We believe that this approach
can be of great potential with actual data.

Moreover, we proceed in [19] to a complete set up of a bidomain estimation using a weakly
coupled electromechanical model with a combination of ECG and mechanical measurements
(typically obtained from medical images and pressure measurements). We show in our syn-
thetic examples that the associated inverse problem which consists in identifying the electrical
parameters from all the available data – mechanical and electrical – is better defined than the
pure electrophysiology inverse problem. This result is fundamental for helping the community to
understand how the model should be chosen and the data be acquired to offer robust estimation.

3.4.4 Applications within international collaborations

We have also participated in large projects with the aim of delivering patient-specific models
for cardiac applications. In [29] for instance, we participate to the set-up of a recursive quasi-
static estimation based on the UKF filter in order to identify some parameters of the passive
law. In [3], a nice experimental experiment is designed to evaluate the estimation accuracy for
fluid-structure interaction problems with real data. In [20], a tentative of sequential estimation
of contractility parameters is performed using only regional volumes data – a classical clinical
indicator. In this last case, however, the resulting contractility is overestimated when compared
to [8] due to simulation errors associated with the numerical locking of incompressible systems.
However, the sensitivity remains accurate, validating again the efficiency of the ROUKF strategy.

1www.cardioinsight.com

www.cardioinsight.com




Personal References – Articles

[1] A. Armiento, M. Doumic, P. Moireau, and H. Rezaei. Estimation from Moments Measure-
ments for Amyloid Depolymerisation. Journal of Theoretical Biology, March 2016. 35

[2] G. Bal and P. Moireau. Fast numerical inversion of the attenuated Radon transform with
full and partial measurements. Inverse Problems, 20(4):1137–1164, 2004. 34

[3] C. Bertoglio, D. Barber, N. Gaddum, I. Valverde, M. Rutten, P. Beerbaum, P. Moireau,
R. Hose, and J.-F. Gerbeau. Identification of artery wall stiffness: In vitro validation and
in vivo results of a data assimilation procedure applied to a 3D fluid-structure interaction
model. J Biomech, 47(5):1027–1034, 2014. 32, 33, 98, 135

[4] C. Bertoglio, D. Chapelle, M. A. Fernández, J.-F. Gerbeau, and P. Moireau. State observers
of a vascular fluid-structure interaction model through measurements in the solid. Comput
Method Appl M, 256(C):149–168, April 2013. 28, 84, 85, 87

[5] C. Bertoglio, P. Moireau, and J.-F. Gerbeau. Sequential parameter estimation for fluid-
structure problems: Application to hemodynamics. Int. J. Numer. Meth. Biomed. Engng.,
28(4):434–455, April 2012. 29, 32

[6] A.-C. Boulanger, P. Moireau, B. Perthame, and J. Sainte-Marie. Data Assimilation for hy-
perbolic conservation laws. A Luenberger observer approach based on a kinetic description.
Communications in Mathematical Sciences, 13(3):587–622, 2015. 26, 28, 30, 32, 38, 87, 89,
91

[7] M. Caruel, R. Chabiniok, P. Moireau, Y. Lecarpentier, and D. Chapelle. Dimensional
reductions of a cardiac model for effective validation and calibration. Biomechanics and
modeling in mechanobiology, 13(4):897–914, December 2013. 33, 34, 38, 121, 129, 131

[8] R. Chabiniok, P. Moireau, P.-F. Lesault, A. Rahmouni, J.-F. Deux, and D. Chapelle.
Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model.
Biomechanics and modeling in mechanobiology, 11(5):609–630, May 2012. 32, 68, 78, 101,
133, 135

[9] R. Chabiniok, V. Y. Wang, M. Hadjicharalambous, L. Asner, J. Lee, M. Sermesant, E. Kuhl,
A. A. Young, P. Moireau, M. P. Nash, D. Chapelle, and D. A. Nordsletten. Multiphysics

137



138 PERSONAL REFERENCES – ARTICLES

and multiscale modelling, data-model fusion and integration of organ physiology in the
clinic: ventricular cardiac mechanics. Interface Focus, 6(20150083):24, February 2016. 33

[10] D. Chapelle, N. Cîndea, M. De Buhan, and P. Moireau. Exponential Convergence of
an Observer Based on Partial Field Measurements for the Wave Equation. Mathematical
Problems in Engineering, 2012:1–12, 2012. 28, 68, 69, 70, 73

[11] D. Chapelle, N. Cîndea, and P. Moireau. Improving convergence in numerical analysis
using observers The wave-like equation case. Mathematical Models and Methods in Applied
Sciences (M3AS), pages 1–34, March 2012. 28, 31, 32, 68, 70, 76, 77, 78, 82

[12] D. Chapelle, M. Fragu, V. Mallet, and P. Moireau. Fundamental principles of data assim-
ilation underlying the Verdandi library: applications to biophysical model personalization
within euHeart. Med Biol Eng Comput, November 2012. 33, 38, 81

[13] D. Chapelle, A. Gariah, P. Moireau, and J. Sainte-Marie. A Galerkin Strategy with Proper
Orthogonal Decomposition for Parameter-Dependent Problems - Analysis, Assessments and
Applications to Parameter Estimation. ESAIM: M2AN, 47(6):1821–1843, November 2013.
24, 32, 64, 133

[14] D. Chapelle, P. Le Tallec, P. Moireau, and M. Sorine. An energy-preserving muscle tissue
model: formulation and compatible discretizations. Int J Multiscale Com, 10(2):189–211,
2012. 20, 21, 33, 34, 120, 122, 123, 125

[15] D. Chapelle and P. Moireau. General coupling of porous flows and hyperelastic formula-
tions—From thermodynamics principles to energy balance and compatible time schemes.
European Journal of Mechanics-B/Fluids, 46:82–96, 2014. 33, 34, 125, 126, 128

[16] D. Chapelle, P. Moireau, and P. Le Tallec. Robust Filtering for Joint State-Parameter
Estimation in Distributed Mechanical Systems. Discrete Contin. Dyn. Syst., 23(1-2):65–84,
2009. 24, 29, 30, 95, 96

[17] N. Cîndea, A. Imperiale, and P. Moireau. Data assimilation of time under-sampled mea-
surements using observers, the wave-like equation example. ESAIM Control Optim. Calc.
Var., 21(3):635–669, 2015. 31, 68, 78

[18] A. Collin, D. Chapelle, and P. Moireau. A Luenberger observer for reaction–diffusion models
with front position data. J Comput Phys, 300(C):288–307, November 2015. 27, 28, 32, 34,
36, 94, 112, 113, 114, 115, 134

[19] C. Corrado, J.-F. Gerbeau, and P. Moireau. Identification of weakly coupled multiphysics
problems. Application to the inverse problem of electrocardiography. J Comput Phys,
283(C):271–298, February 2015. 24, 29, 32, 38, 62, 63, 64, 98, 133, 135

[20] S. Marchesseau, H. Delingette, M. Sermesant, R. Cabrera-Lozoya, C. Tobon-Gomez,
P. Moireau, R. M. F. i. Ventura, K. Lekadir, A. Hernandez, M. Garreau, E. Donal,
C. Leclercq, S. G. Duckett, K. Rhode, C. A. Rinaldi, A. F. Frangi, R. Razavi, D. Chapelle,
and N. Ayache. Personalization of a cardiac electromechanical model using reduced order
unscented Kalman filtering from regional volumes. Medical Image Analysis, 17(7):816–829,
October 2013. 32, 98, 135



PERSONAL REFERENCES – ARTICLES 139

[21] P. Moireau, C. Bertoglio, N. Xiao, C. A. Figueroa, C. A. Taylor, D. Chapelle, and J.-F.
Gerbeau. Sequential identification of boundary support parameters in a fluid-structure
vascular model using patient image data. Biomechanics and modeling in mechanobiology,
12(3):475–496, June 2013. 32, 78, 101, 134

[22] P. Moireau and D. Chapelle. Erratum of article “Reduced-order unscented Kalman filtering
with application to parameter identification in large-dimensional systems” [MR2801324].
ESAIM Control Optim. Calc. Var., 17(2):406–409, 2011. 24, 29, 66

[23] P. Moireau and D. Chapelle. Reduced-Order Unscented Kalman Filtering with Application
to Parameter Identification in Large-Dimensional Systems. ESAIM Control Optim. Calc.
Var., 17(2):380–405, April 2011. 24, 29, 30, 53, 54, 65, 66, 96, 98, 114

[24] P. Moireau, D. Chapelle, and P. Le Tallec. Joint state and parameter estimation for dis-
tributed mechanical systems. Comput Method Appl M, 197(6-8):659–677, 2008. 24, 28, 29,
30, 37, 61, 62, 63, 68, 72, 77, 78, 82, 93, 94, 96, 114

[25] P. Moireau, D. Chapelle, and P. LeTallec. Filtering for distributed mechanical systems using
position measurements: perspectives in medical imaging. Inverse Problems, 25(3):035010,
March 2009. 25, 30, 32, 34, 68, 69, 70, 75, 78, 80, 82, 84, 85, 101, 102, 103, 108

[26] P. Moireau, N. Xiao, M. Astorino, C. A. Figueroa, D. Chapelle, C. A. Taylor, and J.-F. Ger-
beau. External tissue support and fluid–structure simulation in blood flows. Biomechanics
and modeling in mechanobiology, 11(1-2):1–18, 2012. 25, 33, 119, 134

[27] J.-M. Peyrat, C. A. Rinaldi, M. Sorine, M. Sermesant, R. Chabiniok, P. Chinchapatnam,
T. Mansi, F. Billet, P. Moireau, K. Wong, J. Relan, K. Rhode, M. Ginks, P. Lambiase,
H. Delingette, D. Chapelle, R. Razavi, and N. Ayache. Patient-specific electromechanical
models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical
validation. Medical Image Analysis, 16(1):201–215, January 2012. 33, 34

[28] M. Sermesant, P. Moireau, O. Camara, J. Sainte-Marie, R. Andriantsimiavona, R. Cimr-
man, D. L. G. Hill, D. Chapelle, and R. Razavi. Cardiac function estimation from MRI using
a heart model and data assimilation: advances and difficulties. Medical Image Analysis,
10(4):642–656, August 2006. 7, 32

[29] J. Xi, P. Lamata, J. Lee, P. Moireau, D. Chapelle, and N. Smith. Myocardial transversely
isotropic material parameter estimation from in-silico measurements based on a reduced-
order unscented Kalman filter. Journal of the Mechanical Behavior of Biomedical Materials,
4(7):1090–1102, October 2011. 32, 135





Personal References – Proceedings -
Preprints - Thesis

[30] D. Chapelle, M. A. Fernández, J.-F. Gerbeau, P. Moireau, J. Sainte-Marie, and N. Zemzemi.
Numerical simulation of the electromechanical activity of the heart. In Functional Imaging
and Modeling of the Heart, pages 357–365, 2009. 34

[31] A. Collin, D. Chapelle, and P. Moireau. Sequential State Estimation for Electrophysiology
Models with Front Level-Set Data Using Topological Gradient Derivations. In Proceedings
of the 8th International Conference FIMH, volume LNCS 9126, pages 402–411, 2015. 27,
34, 36, 115, 134

[32] Q. Duan, P. Moireau, E. D. Angelini, and D. Chapelle. Simulation of 3D ultrasound with
a realistic electro-mechanical model of the heart. In Functional Imaging and Modeling of
the Heart, pages 463–470, January 2007. 34

[33] A. Imperiale, R. Chabiniok, P. Moireau, and D. Chapelle. Constitutive Parameter Esti-
mation Methodology Using Tagged-MRI Data. In Functional Imaging and Modeling of the
Heart, pages 409–417. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. 26, 29, 30, 32,
34, 78, 103, 108, 134

[34] A. Imperiale, A. Routier, S. Durrleman, and P. Moireau. Improving efficiency of data
assimilation procedure for a biomechanical heart model by representing surfaces as currents.
In S. Ourselin, D. Rueckert, and N. Smith, editors, Proceedings of the 7th International
Conference FIMH, volume LNCS 7945, pages 342–351, 2013. 26, 29, 30, 34, 103

[35] K. Mauffrey and P. Moireau. Optimal observers strategies for partial differential equations
with applications to parabolic equations. in preparation, 2016. 56

[36] P. Moireau. Assimilation de données en modélisation cardiaque. Master’s thesis, Université
Pierre et Marie Curie - Paris VI, 2005. 129, 131

[37] P. Moireau. A time-discrete optimal filtering approach for non-linear systems as a stable
discretization of the mortensen observer. Submitted to COCV, 2015. 30, 37, 44, 48, 51

[38] P. Moireau. Filtering based data assimilation for second order hyperbolic PDEs - Applica-
tions in cardiac mechanics. PhD thesis, Ecole Polytechnique X, December 2008. 62, 63,
85

141



142 PERSONAL REFERENCES – PROCEEDINGS - PREPRINTS - THESIS

[39] P. Moireau and D. Chapelle. Effective estimation in cardiac modelling. In Functional
Imaging and Modeling of the Heart, pages 361–372, January 2007. 32

[40] P. Moireau, D. Chapelle, and M. Yvinec. Cardiac Motion Extraction from Images by
Filtering Estimation Based on a Biomechanical Model. In Functional Imaging and Modeling
of the Heart, pages 220–228, January 2009. 32

[41] M. Sermesant, P. Moireau, R. Andriantsimiavona, J. Sainte-Marie, O. Camara, R. Cimr-
man, D. L. G. Hill, D. Chapelle, and R. Razavi. Progress toward using mri and a heart
model to estimate patient-specific indices of cardiac function. In ESAIM: Proceedings, pages
224–234, January 2005. 32



Bibliography

[Aalto, 2014a] Aalto, A. (2014a). Convergence of discrete time Kalman filter estimate to con-
tinuous time estimate. arXiv.org. 13, 61, 43

[Aalto, 2014b] Aalto, A. (2014b). Spatial discretization error in Kalman filtering for discrete-
time infinite dimensional systems. arXiv.org. 61, 43, 44

[Abdallah et al., 2012] Abdallah, F., Nicaise, S., and Valein, J. (2012). Uniformly exponen-
tially or polynomially stable approximations for second order evolution equations and some
applications. ESAIM Control Optim. Calc. Var. 76, 59

[Alves et al., 2009] Alves, C., Silvestre, A. L., Takahashi, T., and Tucsnak, M. (2009). Solving
inverse source problems using observability. Applications to the Euler-Bernoulli plate equa-
tion. SIAM J Control Optim. 16, 92, 94, 74, 76

[Andrieu and Praly, 2006] Andrieu, V. and Praly, L. (2006). On the Existence of a Kazantzis–
Kravaris/Luenberger Observer. SIAM Journal on Control and Optimization. 13, 14

[Auroux and Blum, 2008] Auroux, D. and Blum, J. (2008). A nudging-based data assimilation
method: the Back and Forth Nudging (BFN) algorithm. Nonlinear Processes In Geophysics,
15(2):305–319. 11, 81, 90, 12, 63, 72

[Auroux and Nodet, 2008] Auroux, D. and Nodet, M. (2008). The Back and Forth Nudging
algorithm for data assimilation problems: theoretical results on transport equations. ESAIM:
COCV, 1(1). 90, 72

[Axel et al., 2005] Axel, L., Montillo, A., and Kim, D. (2005). Tagged magnetic resonance
imaging of the heart: a survey. Medical Image Analysis, 9(4):376–393. 108, 91

[Başar and Bernhard, 1995] Başar, T. and Bernhard, P. (1995). H∞-Optimal Control and Re-
lated Minimax Design Problems - A Dynamic Game Approach. Birkhaüser, 2nd edition. 96,
78

[Badra and Takahashi, 2014] Badra, M. and Takahashi, T. (2014). Feedback Stabilization of a
Fluid-Rigid Body Interaction System. Advances in Differential Equations, 19(11-12):1137–
1184. 84, 66

143



144 BIBLIOGRAPHY

[Banks and Fabiano, 1998] Banks, H. T. and Fabiano, R. H. (1998). Approximation issues
for applications in optimal control and parameter estimation. Numerical Mathematics and
Scientific Computation, pages 141–165. 14, 76, 59

[Banks and Ito, 1991] Banks, H. T. and Ito, K. (1991). A numerical algorithm for optimal
feedback gains in high dimensional linear quadratic regulator problems. SIAM Journal on
Control and Optimization. 14

[Banks et al., 1991] Banks, H. T., Ito, K., and Wang, C. (1991). Exponentially stable approxi-
mations of weakly damped wave equations. In Estimation and control of distributed parameter
systems (Vorau, 1990), pages 1–33. Birkhäuser, Basel, Basel. 76, 59

[Banks and Kunisch, 1989] Banks, H. T. and Kunisch, K. (1989). Estimation Techniques for
Distributed Parameter Systems. Birkhauser Boston. 16

[Baras and Bensoussan, 1987] Baras, J. S. and Bensoussan, A. (1987). On observer problems for
systems governed by partial differential equations. Technical Report SCR TR 86-47, DTIC.
10, 56, 11, 38, 39

[Baras et al., 1988] Baras, J. S., Bensoussan, A., and James, M. R. (1988). Dynamic observers
as asymptotic limits of recursive filters: special cases. Siam J Appl Math, 48(5):1147–1158.
13, 44, 26

[Barbu and Da Prato, 1985] Barbu, V. and Da Prato, G. (1985). Hamilton-Jacobi equations in
Hilbert spaces; variational and semigroup approach. Annali di Matematica Pura ed Applicata,
142(1):303–349. 47, 29

[Bardos et al., 1988] Bardos, C., Lebeau, G., and Rauch, J. (1988). Un exemple d’utilisation
des notions de propagation pour le contrôle et la stabilisation des problèmes hyperboliques.
Rendiconti del Seminario Matematico del Universita Politecnico Torino, Fascicolo spe-
ciale(Hyperbolic Equations (1987)):12–31. 73, 55, 56

[Bardos and Pironneau, 2005] Bardos, C. and Pironneau, O. (2005). Data assimilation for con-
servation laws. Methods and Applications of Analysis, 12(2):103–134. 87, 70

[Baudouin et al., 2013] Baudouin, L., De Buhan, M., and Ervedoza, S. (2013). Global Carleman
estimates for waves and applications. Communications in Partial Differential Equations,
38(5):823–859. 72, 55

[Baumeister and Scondo, 1987a] Baumeister, J. and Scondo, W. (1987a). Adaptive methods for
parameter identification. In Optimization in mathematical physics (Oberwolfach, 1985), pages
87–116. Lang, Frankfurt am Main. 15, 16

[Baumeister and Scondo, 1987b] Baumeister, J. and Scondo, W. (1987b). Asymptotic embed-
ding methods for parameter estimation. In 26th IEEE Conference on Decision and Control,
pages 170–174. IEEE. 92, 74

[Bellman, 1957] Bellman, R. (1957). Dynamic Programming. Princeton University Press. 11,
14, 46, 28



BIBLIOGRAPHY 145

[Bensoussan, 1971] Bensoussan, A. (1971). Filtrage optimal des systèmes linéaires. Dunod. 9,
12, 14, 38, 58, 60, 77, 10, 41, 43, 98

[Bensoussan et al., 1993] Bensoussan, A., Da Prato, G., Delfour, M. C., and Mitter, S. K.
(1993). Representation and control of infinite-dimensional systems. Vol. II. Systems & Con-
trol: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA. 14

[Bestel et al., 2001] Bestel, J., Clément, F., and Sorine, M. (2001). A Biomechanical Model
of Muscle Contraction. In Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2001, pages 1159–1161. Springer Berlin Heidelberg, Berlin, Heidelberg. 20, 118, 120,
121

[Biot, 1972] Biot, M. A. (1972). Theory of finite deformations of porous solids. Indiana U Math
J, 21(7):597–620. 125

[Blum et al., 2009] Blum, J., Le Dimet, F.-X., and Navon, I. M. (2009). Data assimilation for
geophysical fluids. Computational Methods for the Atmosphere and the Oceans, 14:385–441.
6

[Bokanowski et al., 2013] Bokanowski, O., Garcke, J., Griebel, M., and Klompmaker, I. (2013).
An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman
equations. J Sci Comput, 55(3):575–605. 51, 34

[Bonnabel et al., 2009] Bonnabel, S., Mirrahimi, M., and Rouchon, P. (2009). Observer-based
Hamiltonian identification for quantum systems. Automatica, 45(5):1144–1155. 11, 12

[Bonnabel and Slotine, 2015] Bonnabel, S. and Slotine, J.-J. E. (2015). A Contraction Theory-
Based Analysis of the Stability of the Deterministic Extended Kalman Filter. IEEE Trans.
Automat. Control, 60(2):565–569. 54, 96, 37, 78

[Boulakia et al., 2012] Boulakia, M., Schenone, E., and Gerbeau, J.-F. (2012). Reduced-order
modeling for cardiac electrophysiology. Application to parameter identification. Int. J. Numer.
Meth. Biomed. Engng., 28(6-7):727–744. 133

[Boutayeb et al., 1997] Boutayeb, M., Rafaralahy, H., and Darouach, M. (1997). Convergence
analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-
time systems. IEEE Transactions on Automatic Control, 42(4):581–586. 12

[Breiten and Kunisch, 2015] Breiten, T. and Kunisch, K. (2015). Compensator Design for the
Monodomain Equations . Technical Report SFB-Report No. 2014-017, SpezialForschungs-
Bereich. 63, 45

[Bristeau et al., 2011] Bristeau, M.-O., Goutal, N., and Sainte-Marie, J. (2011). Numerical
simulations of a non-hydrostatic shallow water model. Computers and Fluids, 47(1):51–64.
91, 73

[Bullo, 2005] Bullo, F. (2005). Geometric control of mechanical systems, volume 49. Springer
Science & Business Media. 13, 14

[Burger et al., 2004] Burger, M., Hackl, B., and Ring, W. (2004). Incorporating topological
derivatives into level set methods. J Comput Phys, 194(1):344–362. 115, 97



146 BIBLIOGRAPHY

[Burq and Gérard, 1997] Burq, N. and Gérard, P. (1997). Condition nécessaire et suffisante
pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math., 325(7):749–752.
73, 55

[Burq and Gérard, 2002] Burq, N. and Gérard, P. (2002). Contrôle optimal des equations aux
derivees partielles. Cours de l’Ecole Polytechnique. 71, 53

[Burq and Lebeau, 2001] Burq, N. and Lebeau, G. (2001). Mesures de défaut de compacité,
application au système de Lamé. Ann. Sci. Ecole Norm. Sup. (4), 34(6):817–870. 83, 65

[Burq and Zworski, 2004] Burq, N. and Zworski, M. (2004). Geometric Control in the Presence
of a Black Box. Journal of the American Mathematical Society, 17(2):443–471. 72, 54

[Carranza-Herrezuelo et al., 2010] Carranza-Herrezuelo, N., Bajo, A., Sroubek, F., Santamarta,
C., Cristobal, G., Santos, A., and Ledesma-Carbayo, M. J. (2010). Motion estimation of
tagged cardiac magnetic resonance images using variational techniques. Computerized Medical
Imaging and Graphics, 34(6):514–522. 100, 108, 82, 91

[Casella and Berger, 2002] Casella, G. and Berger, R. L. (2002). Statistical Inference. Duxbury
Press, 2nd edition. 7

[Chabot et al., 2015] Chabot, V., Nodet, M., Papadakis, N., and Vidard, A. (2015). Accounting
for observation errors in image data assimilation. Tellus A. 39

[Chan and Vese, 2001] Chan, T. F. and Vese, L. A. (2001). Active contours without edges.
IEEE Trans Image Process, 10(2):266–277. 113, 94

[Chapelle and Bathe, 2011] Chapelle, D. and Bathe, K. (2011). The Finite Element Analysis of
Shells - Fundamentals - Second Edition. Computational Fluid and Solid Mechanics. Springer.
105, 111, 130, 87

[Chapelle et al., 2013] Chapelle, D., Collin, A., and Gerbeau, J.-F. (2013). A surface-based elec-
trophysiology model relying on asymptotic analysis and motivated by cardiac atria modeling.
Mathematical Models and . . . . 115, 116, 97

[Chapelle et al., 2012] Chapelle, D., Gariah, A., and Sainte-Marie, J. (2012). Galerkin approxi-
mation with proper orthogonal decomposition : new error estimates and illustrative examples.
ESAIM: M2AN, 46(4):731–757. 64, 133, 46

[Chapouly and Mirrahimi, 2010] Chapouly, M. and Mirrahimi, M. (2010). Distributed source
identification for wave equations: an observer-based approach. arXiv.org. 15, 16

[Chavent, 2010] Chavent, G. (2010). Non linear Least Squares for Inverse problems. Scientific
Computation. Springer Netherlands. 16, 94, 76

[Chen et al., 2010] Chen, T., Wang, X., Chung, S., Metaxas, D. N., and Axel, L. (2010). Auto-
mated 3DMotion Tracking Using Gabor Filter Bank, Robust Point Matching, and Deformable
Models. Ieee T Med Imaging, 29(1):1–11. 108, 109

[Cîndea and Munch, 2015] Cîndea, N. and Munch, A. (2015). Inverse problems for linear hy-
perbolic equations via a mixed formulation. Inverse Problems, 31(7):1–39. 10, 68, 50



BIBLIOGRAPHY 147

[Clarysse et al., 2000] Clarysse, P., Magnin, I. E., Basset, C., Khouas, L., Croisille, P., Friboulet,
D., and Odet, C. (2000). Two-dimensional spatial and temporal displacement and deformation
field fitting from cardiac magnetic resonance tagging. Medical Image Analysis, 4(3):253–268.
108, 91

[Colli Franzone et al., 2014] Colli Franzone, P., Pavarino, L., and Scacchi, S. (2014). Mathe-
matical Cardiac Electrophysiology, volume XIV of MS&A. Springer. 18, 19

[Coron, 2007] Coron, J.-M. (2007). Control and nonlinearity, volume 136 of Mathematical Sur-
veys and Monographs. American Mathematical Society, Providence, RI. 14

[Court, 2014] Court, S. (2014). Stabilization of a fluid-solid system, by the deformation of the
self-propelled solid. Part I: The linearized system. EECT, 3(1):59–82. 84, 66

[Courtier, 1997] Courtier, P. (1997). Dual formulation of four-dimensional variational assimila-
tion. Quarterly Journal of the Royal Meteorological Society, 123(544):2449–2461. 10

[Coussy, 2004] Coussy, O. (2004). Poromechanics. John Wiley and Sons. 125

[Cox and Zuazua, 1994] Cox, S. and Zuazua, E. (1994). The Rate at Which Energy Decays in
a Damped String. Communications in Partial Differential Equations, 19(1-2):213–243. 72, 54

[Cristofol et al., 2014] Cristofol, M., Kaddouri, I., Nadin, G., and Roques, L. (2014). Coefficient
determination via asymptotic spreading speeds. Inverse Problems, 30(3):035005. 37, 99

[Curtain, 1975] Curtain, R. F. (1975). A survey of infinite-dimensional filtering. SIAM Rev.,
17:395–411. 9, 10

[Curtain and Pritchard, 1978] Curtain, R. F. and Pritchard, A. J. (1978). Infinite dimen-
sional linear systems theory, volume 8 of Lecture Notes in Control and Information Sciences.
Springer-Verlag, Berlin. 14

[Curtain and Zwart, 1995] Curtain, R. F. and Zwart, H. J. (1995). An introduction to infinite-
dimensional linear systems theory, volume 21 of Texts in Applied Mathematics. Springer-
Verlag, New York. 14, 63, 72, 45

[Daum, 1986] Daum, F. E. (1986). Exact finite-dimensional nonlinear filters. IEEE Trans.
Automat. Control, 31(7):616–622. 44, 26

[de Boer, 2005] de Boer, R. (2005). Trends in Continuum Mechanics of Porous Media. Springer.
125

[Delfour and Zolésio, 2011] Delfour, M. and Zolésio, J.-P. (2011). Shapes and Geometries: Anal-
ysis, Differential Calculus, and Optimization (Advances in Design and Control). SIAM, second
edition. 113, 95

[Demetriou and Rosen, 1994a] Demetriou, M. A. and Rosen, I. G. (1994a). Adaptive identifi-
cation of second-order distributed parameter systems. Inverse Problems, 10(2):261–294. 15,
16, 92, 74



148 BIBLIOGRAPHY

[Demetriou and Rosen, 1994b] Demetriou, M. A. and Rosen, I. G. (1994b). On the persistence
of excitation in the adaptive estimation of distributed parameter systems. Automatic Control,
IEEE Transactions on DOI - 10.1109/9.989154, 39(5):1117–1123. 16, 94, 76

[Denney and Prince, 1995] Denney, T. and Prince, J. (1995). Reconstruction of 3-D left ven-
tricular motion from planar tagged cardiac MR images: An estimation theoretic approach.
Ieee T Med Imaging, 14(4):625–635. 108, 91

[Desai et al., 2003] Desai, R., Lele, T., and Viens, F. (2003). A Monte-Carlo method for portfolio
optimization under partially observed stochastic volatility. In Computational Intelligence for
Financial Engineering, 2003. Proceedings. 2003 IEEE International Conference on, pages
257–263. 37, 98

[Dontchev, 1996] Dontchev, A. L. (1996). Discrete approximations in optimal control. In Non-
smooth analysis and geometric methods in deterministic optimal control (Minneapolis, MN,
1993), pages 59–80. Springer, New York, New York, NY. 12

[Durrleman et al., 2009] Durrleman, S., Pennec, X., Trouvé, A., and Ayache, N. (2009). Sta-
tistical models of sets of curves and surfaces based on currents. Medical Image Analysis,
13(5):793–808. 103, 104, 85, 86

[Duyckaerts, 2007] Duyckaerts, T. (2007). Optimal decay rates of the energy of a hyperbolic-
parabolic system coupled by an interface. Asymptotic Analysis, 51(1):17–45. 84, 87, 66,
69

[Eisenberg and Hill, 1978] Eisenberg, E. and Hill, T. L. (1978). A cross-bridge model of muscle
contraction. Prog Biophys Mol Bio, 33(1):55–82. 20, 118, 120

[Engelbrecht et al., 2000] Engelbrecht, J., Vendelin, M., and Maugin, G. A. (2000). Hierar-
chical internal variables reflecting microstructural properties: application to cardiac muscle
contraction. J Non-Equil Thermody, 25(2):119–130. 118, 121

[Ervedoza, 2009] Ervedoza, S. (2009). Spectral conditions for admissibility and observability of
wave systems: applications to finite element schemes. Numer Math, 113(3):377–415. 14, 76,
59

[Ervedoza et al., 2008] Ervedoza, S., Zheng, C., and Zuazua, E. (2008). On the observability of
time-discrete conservative linear systems. Journal of functional Analysis, 254(12):3037–3078.
76, 59

[Ervedoza and Zuazua, 2009a] Ervedoza, S. and Zuazua, E. (2009a). Uniform exponential decay
for viscous damped systems. Progress in Nonlinear Differential Equations and their Applica-
tions, 78:95–112. 78, 61

[Ervedoza and Zuazua, 2009b] Ervedoza, S. and Zuazua, E. (2009b). Uniformly exponentially
stable approximations for a class of damped systems. Journal de Mathématiques Pures et
Appliqués, 91(1):20–48. 76, 77, 59

[Evensen, 2007] Evensen, G. (2007). Data Assimilation – The Ensemble Kalman Filter. Springer
Verlag. 54, 37



BIBLIOGRAPHY 149

[Feng and Prohl, 2004] Feng, X. and Prohl, A. (2004). Analysis of gradient flow of a regularized
Mumford-Shah functional for image segmentation and image inpainting. ESAIM: M2AN,
38(2):291–320. 36, 99

[Fleming and Rishel, 1975] Fleming, W. and Rishel, R. (1975). Deterministic and stochastic
optimal control. Springer. 13, 46, 28

[Fleming, 1997] Fleming, W. H. (1997). Deterministic nonlinear filtering. Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (4), 25(3-4):435–454 (1998). 44, 47, 26, 29

[Fleming and McEneaney, 2000] Fleming, W. H. and McEneaney, W. M. (2000). A max-plus-
based algorithm for a Hamilton–Jacobi–Bellman equation of nonlinear filtering. SIAM Journal
on Control and Optimization, 38(3):683–710. 37, 51, 34, 98

[Formaggia et al., 2009] Formaggia, L., Quarteroni, A., and Veneziani, A., editors (2009). Car-
diovascular Mathematics – Modeling and simulation of the circulatory system. Springer-Verlag
Milan. 21, 22, 23

[Fridman, 2013] Fridman, E. (2013). Observers and initial state recovering for a class of hyper-
bolic systems via Lyapunov method. Automatica, 49(7):2250–2260. 14

[Gask, 1960] Gask, H. (1960). A Proof of Schwartz’s Kernel Theorem. Mathematica Scandinav-
ica, 8:327–332. 59, 41

[Gérard, 1991] Gérard, P. (1991). Microlocal defect measures. Communications in Partial Dif-
ferential Equations, 16(11):1761–1794. 73, 55

[Gillet-Chaulet et al., 2012] Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand,
G., Ritz, C., Zwinger, T., Greve, R., and Vaughan, D. G. (2012). Greenland Ice Sheet
contribution to sea-level rise from a new-generation ice-sheet model. The Cryosphere Discuss,
6:2789–2826. 39

[Glass et al., 1991] Glass, L., Hunter, P., and A, M., editors (1991). Theory of Heart – Biome-
chanics, Biophysics, and Nonlinear Dynamics of Cardiac Function. Institute for Nonlinear
Science. Springer New York. 20, 118

[Glowinski et al., 1989] Glowinski, R., Kinton, W., and Wheeler, M. F. (1989). A mixed finite
element formulation for the boundary controllability of the wave equation. International
Journal for Numerical Methods in Engineering, 27(3):623–635. 14, 76, 59

[Gobbino, 1998] Gobbino, M. (1998). Gradient flow for the one-dimensional Mumford-Shah
functional. Annali della Scuola Normale Superiore di Pisa- . . . . 36, 99

[Gonzalez, 2000] Gonzalez, O. (2000). Exact energy and momentum conserving algorithms for
general models in nonlinear elasticity. Comput Method Appl M, 190(13-14):1763–1783. 128

[Guccione and McCulloch, 1993] Guccione, J. M. and McCulloch, A. D. (1993). Mechanics of
active contraction in cardiac muscle: Part I–Constitutive relations for fiber stress that describe
deactivation. Journal of biomechanical engineering, 115(1):72–81. 20, 118

[Guérin et al., 2011] Guérin, T., Prost, J., and Joanny, J.-F. (2011). Dynamical behavior of
molecular motor assemblies in the rigid and crossbridge models. Eur Phys J E, 34(6). 20, 118



150 BIBLIOGRAPHY

[Hager and Horowitz, 1976] Hager, W. W. and Horowitz, L. L. (1976). Convergence and sta-
bility properties of the discrete Riccati operator equation and the associated optimal control
and filtering problems. SIAM Journal on Control and Optimization, 14(2):295–312. 12, 61,
43

[Haine, 2014a] Haine, G. (2014a). An observer-based approach for thermoacoustic tomography.
In The 21st International Symposium on Mathematical Theory of Networks and Systems,
pages 1–9. 81, 63

[Haine, 2014b] Haine, G. (2014b). Recovering the observable part of the initial data of an
infinite-dimensional linear system with skew-adjoint generator. Mathematics of Control Sig-
nals and Systems, 26(3):435–462. 11, 81, 12, 63

[Haine and Ramdani, 2012] Haine, G. and Ramdani, K. (2012). Reconstructing initial data
using observers: error analysis of the semi-discrete and fully discrete approximations. Numer
Math, 120(2):307–343. 81, 63

[Haraux, 1989] Haraux, A. (1989). Une remarque sur la stabilisation de certains systèmes du
deuxième ordre en temps. Portugal. Math., 46(3):245–258. 11, 71, 54

[Hastie et al., 2001] Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Sta-
tistical Learning. Springer Series in Statistics. Springer New York Inc., New York, NY, USA.
16, 7

[Hautus, 1970] Hautus, M. L. J. (1970). Stabilization controllability and observability of linear
autonomous systems. Indagationes Mathematicae (Proceedings), 73(Complete):448–455. 73

[He et al., 2007] He, L., Kao, C. Y., and Osher, S. (2007). Incorporating topological derivatives
into shape derivatives based level set methods. J Comput Phys, 225(1):891–909. 115, 97

[Hijab, 1982] Hijab, O. (1982). Asymptotic nonlinear filtering and large deviations. Advances
in Filtering and Optimal Stochastic Control, pages 170–176. 44, 26

[Hijab, 1984] Hijab, O. (1984). Asymptotic Bayesian estimation of a first order equation with
small diffusion. Ann. Probab., 12(3):890–902. 44, 26

[Hill, 2004] Hill, T. H. (2004). Free Energy Transduction And Biochemical Cycle Kinetics. Dover.
20

[Hintermüller and Laurain, 2009] Hintermüller, M. and Laurain, A. (2009). Multiphase Image
Segmentation and Modulation Recovery Based on Shape and Topological Sensitivity. J Math
Imaging Vis, 35(1):1–22. 115, 97

[Hintermüller and Ring, 2004] Hintermüller, M. and Ring, W. (2004). An Inexact Newton-CG-
Type Active Contour Approach for the Minimization of the Mumford-Shah Functional. J
Math Imaging Vis, 20(1-2):19–42. 113, 114, 95, 96

[Hoffmann and Sprekels, 1985] Hoffmann, K. H. and Sprekels, J. (1985). On the identification
of coefficients of elliptic problems by asymptotic regularization. Numerical functional analysis
and optimization, 7(2-3):157–177. 92, 74



BIBLIOGRAPHY 151

[Holzapfel and Ogden, 2009] Holzapfel, G. A. and Ogden, R. (2009). Constitutive modelling
of passive myocardium: a structurally based framework for material characterization. Phil.
Trans. R. Soc. A, 367:3445–3475. 20

[Humphrey, 2003] Humphrey, J. (2003). Continuum biomechanics of soft biological tissues. P
R Soc A, 459(2029):3–46. 20

[Huxley, 1957] Huxley, A. F. (1957). Muscle structure and theories of contraction. Prog Biophys
Biophys Chem, 7:255–318. 20, 118, 120

[Huxley and Simmons, 1971] Huxley, A. F. and Simmons, R. M. (1971). Proposed mechanism
of force generation in striated muscle. Nature. 20, 118, 120

[Imperiale, 2013] Imperiale, A. (2013). Image-based data assimilation methods for the personal-
ization of mechanical models - Application to cardiac mechanics and tagged-MRI. PhD thesis,
Université Pierre et Marie Curie - Paris VI. 28, 32, 80, 81, 83, 102, 103, 106, 107, 108, 111,
119, 134, 63, 65, 84, 85, 88, 89, 91

[Ito et al., 2011] Ito, K., Ramdani, K., and Tucsnak, M. (2011). A time reversal based algorithm
for solving initial data inverse problems. DCDS-S, 4(3):641–652. 81, 63

[James and Baras, 1988] James, M. R. and Baras, J. S. (1988). Nonlinear filtering and large
deviations: A PDE-control theoretic approach. Stochastics: An International Journal of
Probability and Stochastic Processes, 23(3):391–412. 13, 37, 44, 47, 26, 29, 98

[Joly, 2006] Joly, R. (2006). Convergence of the wave equation damped on the interior to the
one damped on the boundary. J. Differential Equations, 229(2):588–653. 14

[Julier et al., 1995] Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. (1995). A new ap-
proach for filtering nonlinear systems. American Control Conference, 1995. Proceedings of the
DOI - UR -, 3:1628–1632 vol.3. 53, 54, 35, 36, 37

[Julier et al., 2000] Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. (2000). A new method
for the nonlinear transformation of means and covariances in filters and estimators. Automatic
Control, IEEE Transactions on DOI - 10.1109/9.989154, 45(3):477–482. 53, 55, 35, 38

[Kailath et al., 2000] Kailath, T., Sayed, A. H., and Hassibi, B. (2000). Linear estimation,
volume 1. Prentice Hall Upper Saddle River, NJ. 12, 13, 45, 50, 61, 27, 32, 44

[Kalman, 1960a] Kalman, R. E. (1960a). A new approach to linear filtering and prediction
problems. Journal of basic Engineering, 82(1):35–45. 12, 44, 49, 51, 26, 31, 33

[Kalman, 1960b] Kalman, R. E. (1960b). Contributions to the theory of optimal control. Bol.
Soc. Mat. Mexicana (2), 5:102–119. 13

[Kalman and Bucy, 1961] Kalman, R. E. and Bucy, R. (1961). New results in linear filtering
and prediction theory. Trans. ASME J. Basic. Eng., 83:95–108. 11, 13, 44, 47, 49, 26, 29, 31

[Keener and Sneyd, 2004] Keener, J. and Sneyd, J. (2004). Mathematical Physiology. Springer.
18, 112, 113, 94, 95



152 BIBLIOGRAPHY

[Khenissi et al., 2010] Khenissi, M., Daoulatli, M., and Dehman, B. (2010). Local Energy Decay
for the Elastic System with Nonlinear Damping in an Exterior Domain. SIAM Journal on
Control and Optimization, 48(8):5254–5275. 83, 65

[Kolmogorov, 1939] Kolmogorov, A. N. (1939). Sur l’interpolation et extrapolation des suites
stationnaires. CR Acad. Sci, 208:2043–2045. 13

[Komornik, 1994] Komornik, V. (1994). Exact controllability and stabilization. The multiplier
method. RAM: Research in Applied Mathematics. Masson, Paris. 72, 55

[Konukoglu et al., 2010] Konukoglu, E., Clatz, O., Menze, B. H., Stieltjes, B., Weber, M. A.,
Mandonnet, E., Delingette, H., and Ayache, N. (2010). Image Guided Personalization of
Reaction-Diffusion Type Tumor Growth Models Using Modified Anisotropic Eikonal Equa-
tions. Ieee T Med Imaging, 29(1):77–95. 116

[Krener, 2003a] Krener, A. J. (2003a). The convergence of the extended Kalman filter. In
Lecture Notes in Control and Inform. Sci., pages 173–182. Springer, Berlin. 13, 54, 63, 96,
46, 78

[Krener, 2003b] Krener, A. J. (2003b). The convergence of the minimum energy estimator. In
New trends in nonlinear dynamics and control, and their applications, pages 187–208. Springer,
Berlin. 13, 47, 29

[Krener and Duarte, 1996] Krener, A. J. and Duarte, A. (1996). A hybrid computational ap-
proach to nonlinear estimation. In Decision and Control, 1996., Proceedings of the 35th IEEE,
pages 1815–1819. 11, 71, 12, 53

[Krener and Hermann, 1977] Krener, A. J. and Hermann, R. (1977). Nonlinear controllability
and observability. IEEE Trans. Automat. Control, AC-22(5):728–740. 13

[Lasiecka and Triggiani, 2000] Lasiecka, I. and Triggiani, R. (2000). Control theory for partial
differential equations: Volume 1, Abstract parabolic systems: Continuous and approximation
theories, volume 1. Cambridge University Press. 14

[Lasiecka and Triggiani, 2003] Lasiecka, I. and Triggiani, R. (2003). L2(Σ)-regularity of the
boundary to boundary operator B∗L for hyperbolic and Petrowski PDEs. Abstract Applied
Analysis, 2003(19):1061–1139. 57, 39

[Lasiecka et al., 1999] Lasiecka, I., Triggiani, R., and Yao, P. F. (1999). Inverse/observability
estimates for second-order hyperbolic equations with variable coefficients. Journal of mathe-
matical analysis and . . . , 235(1):13–57. 72, 55

[Le Bris and Rouchon, 2013] Le Bris, C. and Rouchon, P. (2013). Low-rank numerical approx-
imations for high-dimensional Lindblad equations. Physical Review A, 87(2):022125. 61, 44

[Le Dimet and Talagrand, 1986] Le Dimet, F.-X. and Talagrand, O. (1986). Variational algo-
rithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus
A, 38(2):97–110. 10, 11

[Le Guyader and Vese, 2011] Le Guyader, C. and Vese, L. A. (2011). A combined segmentation
and registration framework with a nonlinear elasticity smoother. Comput Vis Image Und.
100, 82



BIBLIOGRAPHY 153

[Le Tallec, 1994] Le Tallec, P. (1994). Numerical Methods for Nonlinear Three-dimensional
Elasticity. In Ciarlet, P. G. and Lions, J.-L., editors, Handbook of Numerical Analysis, pages
465–622. Handbook of Numerical Analysis. 20, 122

[Le Tallec and Hauret, 2003] Le Tallec, P. and Hauret, P. (2003). Energy conservation in
fluid structure interactions. International Center Numerical Methods Engineering (CIMNE),
Barcelona, 2003, pages 94–107. 128

[Lebeau, 1996] Lebeau, G. (1996). Equation des ondes amorties. In Algebraic and geometric
methods in mathematical physics, pages 73–109. Kluwer Academic. 73, 55

[Lebeau et al., 1992] Lebeau, G., Bardos, C., and Rauch, J. (1992). Sharp Sufficient Conditions
for the Observation, Control, and Stabilization of Waves from the Boundary. SIAM Journal
on Control and Optimization, 30(5):1024–1065. 73, 55

[Lefebvre et al., 2002] Lefebvre, T., Bruyninckx, H., and de Schuller, J. (2002). Comment
on "A new method for the nonlinear transformation of means and covariances in filters
and estimators" [and authors’ reply]. Automatic Control, IEEE Transactions on DOI -
10.1109/9.989154, 47(8):1406–1409. 54, 36

[Li and Xu, 2011] Li, X.-D. and Xu, C.-Z. (2011). Infinite-dimensional Luenberger-like observers
for a rotating body-beam system. Systems & Control Letters, 60(2):138–145. 11, 70, 82, 52,
65

[Lions, 1968] Lions, J.-L. (1968). Contrôle optimal de systèmes gouvernés par des équations aux
dérivées partielles. Avant propos de P. Lelong. Dunod, Paris. 14, 58, 59, 69, 72, 41, 52, 55

[Liu, 1997] Liu, K. (1997). Locally distributed control and damping for the conservative systems.
SIAM Journal on Control and Optimization, 35(5):1574–1590. 11, 12

[Lombardi, 2013] Lombardi, D. (2013). Inverse problems in 1D hemodynamics on systemic
networks: A sequential approach. Int. J. Numer. Meth. Biomed. Engng., 30(2):160–179. 98,
80

[Loret and Simões, 2005] Loret, B. and Simões, F. (2005). A framework for deformation, gener-
alized diffusion, mass transfer and growth in multi-species multi-phase biological tissues. Eur
J Mech A-Solid, 24(5):757–781. 125

[Luenberger, 1964] Luenberger, D. G. (1964). Observing the state of a linear system. Military
Electronics, IEEE Transactions on, 8(2):74–80. 11, 13, 67, 14, 50

[Luenberger, 1966] Luenberger, D. G. (1966). Observers for multivariable systems. IEEE Trans.
Automat. Control, 11(2):190–197. 11

[Luenberger, 1971] Luenberger, D. G. (1971). An introduction to observers. IEEE Transactions
on Automatic Control, 16:596–602. 11, 13, 67, 14, 50

[Marchesseau et al., 2012] Marchesseau, S., Delingette, H., Sermesant, M., and Ayache, N.
(2012). Fast parameter calibration of a cardiac electromechanical model from medical im-
ages based on the unscented transform. Biomechanics and modeling in mechanobiology. 98,
80



154 BIBLIOGRAPHY

[Marcucci and Truskinovsky, 2010] Marcucci, L. and Truskinovsky, L. (2010). Muscle contrac-
tion: A mechanical perspective. Eur Phys J E, 32(4):411–418. 20, 118, 120

[Maugin and Muschik, 1994] Maugin, G. A. and Muschik, W. (1994). Thermodynamics with
Internal Variables. Part I. General Concepts. J Non-Equil Thermody, 19(3):217–249. 20, 121

[Miller, 2005] Miller, L. (2005). Controllability cost of conservative systems: resolvent condition
and transmutation. Journal of functional Analysis, 218(2):425–444. 72, 54

[Mordukhovich, 1996] Mordukhovich, B. S. (1996). Optimization and finite difference approx-
imations of nonconvex differential inclusions with free time. In Nonsmooth analysis and ge-
ometric methods in deterministic optimal control (Minneapolis, MN, 1993), pages 153–202.
Springer, New York, New York, NY. 12

[Moreau-Villeger et al., 2006] Moreau-Villeger, V., Delingette, H., Sermesant, M., Ashikaga,
H., McVeigh, E., and Ayache, N. (2006). Building maps of local apparent conductivity of the
epicardium with a 2-D electrophysiological model of the heart. Biomedical Engineering, IEEE
Transactions on, 53(8):1457–1466. 116, 98

[Mortensen, 1968] Mortensen, R. E. (1968). Maximum-likelihood recursive nonlinear filtering.
J. Optim. Theory Appl., 2(6):386–394. 44, 47, 26, 29

[Nash and Hunter, 2000] Nash, M. P. and Hunter, P. (2000). Computational mechanics of the
heart - From tissue structure to ventricular function. Journal of Elasticity, 61(1-3):113–141.
16, 20, 118, 7

[Nassiopoulos and Bourquin, 2010] Nassiopoulos, A. and Bourquin, F. (2010). Fast three-
dimensional temperature reconstruction. Comput Method Appl M, 199(49-52):3169–3178. 10

[Navon, 1998] Navon, I. M. (1998). Practical and theoretical aspects of adjoint parameter esti-
mation and identifiability in meteorology and oceanography. Dynamics of Atmospheres and
Oceans, 27(1-4):55–79. 15

[Nussbaum and Pereverzev, 1999] Nussbaum, M. and Pereverzev, S. V. (1999). The degree of
ill-posedness in stochastic and deterministic noise models (Preprint No 509, WIAS-Berlin).
www.wias-berlin.de. 38, 98

[Pan et al., 2005] Pan, L., Prince, J., Lima, J., and Osman, N. (2005). Fast tracking of cardiac
motion using-3D-HARP. IEEE Transactions on Biomedical Engineering, 52(8):1425–1435.
108, 91

[Panerai, 1980] Panerai, R. B. (1980). A model of cardiac muscle mechanics and energetics. J
Biomech, 13(11):929–940. 20, 118

[Pathmanathan et al., 2010] Pathmanathan, P., Chapman, S., Gavaghan, D., and Whiteley,
J. (2010). Cardiac electromechanics: the effect of contraction model on the mathematical
problem and accuracy of the numerical scheme. The Quarterly Journal of Mechanics and
Applied Mathematics, 63(3):375–399. 20, 118

[Pazy, 1983] Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Dif-
ferential Equations, volume 44 of Applied Mathematical Sciences. Springer-Verlag, New York.
68, 51



BIBLIOGRAPHY 155

[Peng et al., 2010] Peng, Y., Xiang, X., and Jiang, Y. (2010). Nonlinear dynamic systems and
optimal control problems on time scales. ESAIM: COCV, 17(3):654–681. 44, 26

[Pernot et al., 2011] Pernot, M., Couade, M., Mateo, P., Crozatier, B., Fischmeister, R., and
Tanter, M. (2011). Real-Time Assessment of Myocardial Contractility Using Shear Wave
Imaging. JAC, 58(1):65–72. 17, 35, 39, 99

[Perthame, 2004] Perthame, B. (2004). Mathematical tools for kinetic equations. Bulletin of
the American Mathematical Society, 41(2):205–244. 37, 87, 91, 73

[Pham, 2001] Pham, D. T. (2001). Stochastic methods for sequential data assimilation in
strongly nonlinear systems. Monthly weather review, 129(5):1194–1207. 14, 66, 48

[Pham et al., 1998a] Pham, D. T., Verron, J., and Christine Roubaud, M. (1998a). A singular
evolutive extended Kalman filter for data assimilation in oceanography. Journal of Marine
systems, 16(3-4):323–340. 14, 61, 62, 63, 64, 93, 44, 46, 74

[Pham et al., 1998b] Pham, D. T., Verron, J., and Gourdeau, L. (1998b). Filtres de Kaiman
singuliers évolutifs pour l’assimilation de données en océanographie. Comptes Rendus de
l’Académie des Sciences-Series IIA-Earth and Planetary Science, 326(4):255–260. 14, 66, 48

[Preumont, 2002] Preumont, A. (2002). Vibration Control of Active Structures, An Introduction.
Kluwer Academic Publishers, 2nd edition. 69, 85, 52, 67

[Puel, 2008] Puel, J.-P. (2008). A non standard approach to a data assimilation problem and
Tychonov regularization revisited. SIAM Journal on Control and Optimization, 48(2):1089–
1111. 10, 11

[Ramanathan et al., 2004] Ramanathan, C., Ghanem, R. N., Jia, P., Ryu, K., and Rudy, Y.
(2004). Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhyth-
mia. Nat Med, 10(4):422–428. 100, 112, 82, 94

[Ramdani et al., 2005] Ramdani, K., Takahashi, T., Tenenbaum, G., and Tucsnak, M. (2005). A
spectral approach for the exact observability of infinite-dimensional systems with skew-adjoint
generator. Journal of functional Analysis, 226(1):193–229. 71, 72, 54

[Ramdani et al., 2007] Ramdani, K., Takahashi, T., and Tucsnak, M. (2007). Uniformly expo-
nentially stable approximations for a class of second order evolution equations—application
to LQR problems. ESAIM Control Optim. Calc. Var., 13(3):503–527. 14, 76, 59

[Ramdani et al., 2015] Ramdani, K., Tucsnak, M., and Valein, J. (2015). Detectability and
state estimation for linear age-structured population diffusion models. HAL INRIA. 37, 63,
73

[Ramdani et al., 2010] Ramdani, K., Tucsnak, M., and Weiss, G. (2010). Recovering the initial
state of an infinite-dimensional system using observers. Automatica, 46(10):1616–1625. 11,
81, 12, 63

[Raymond and Vanninathan, 2010] Raymond, J.-P. and Vanninathan, M. (2010). Null control-
lability in a fluid-solid structure model. J. Differential Equations, 248(7):1826–1865. 84,
66



156 BIBLIOGRAPHY

[Reif and Unbehauen, 1999] Reif, K. and Unbehauen, R. (1999). The extended Kalman filter as
an exponential observer for nonlinear systems. IEEE Trans. Signal Process., 47(8):2324–2328.
54, 63, 96, 46, 78

[Rice and de Tombe, 2004] Rice, J. J. and de Tombe, P. P. (2004). Approaches to modeling
crossbridges and calcium-dependent activation in cardiac muscle. Prog Biophys Mol Bio,
85(2-3):179–195. 20, 118

[Rice et al., 2003] Rice, J. J., Stolovitzky, G., Tu, Y., and de Tombe, P. P. (2003). Ising Model of
Cardiac Thin Filament Activation with Nearest-Neighbor Cooperative Interactions. Biophys.
J., 84(2):897–909. 20, 118

[Rochoux et al., 2013] Rochoux, M. C., Cuenot, B., Ricci, S., Trouvé, A., Delmotte, B., Massart,
S., Paoli, R., and Paugam, R. (2013). Data assimilation applied to combustion. Comptes
Rendus Mecanique, 341(1):266–276. 39

[Rohan and Cimrman, 2010] Rohan, E. and Cimrman, R. (2010). Two-Scale Modeling of Tissue
Perfusion Problem Using Homogenization of Dual Porous Media. Int J Multiscale Com,
8(1):81–102. 125

[Rosen, 1991] Rosen, I. G. (1991). Convergence of Galerkin approximations for operator Riccati
equations—a nonlinear evolution equation approach. Journal of Mathematical Analysis and
Applications, 155(1):226–248. 59, 41

[Rossi et al., 2014] Rossi, S., Lassila, T., Ruiz-Baier, R., Sequeira, A., and Quarteroni, A.
(2014). Thermodynamically consistent orthotropic activation model capturing ventricular
systolic wall thickening in cardiac electromechanics. Eur J Mech A-Solid, 48:129–142. 20

[Rudy, 2013] Rudy, Y. (2013). Noninvasive electrocardiographic imaging of arrhythmogenic
substrates in humans. Circ Res. 100, 112, 82, 94

[Russell, 1978] Russell, D. L. (1978). Controllability and stabilizability theory for linear partial
differential equations: recent progress and open questions. SIAM Rev., 20(4):639–739. 14

[Sainte-Marie et al., 2006] Sainte-Marie, J., Chapelle, D., Cimrman, R., and Sorine, M. (2006).
Modeling and estimation of the cardiac electromechanical activity. Computers & Structures,
84(28):1743–1759. 7, 20, 21, 33, 118, 120, 122

[Shubov, 1997] Shubov, M. A. (1997). Spectral operators generated by damped hyperbolic
equations. Integral Equations Operator Theory, 28(3):358–372. 72, 54

[Simon, 2006] Simon, D. (2006). Optimal State Estimation: Kalman, H∞, and Nonlinear Ap-
proaches. Wiley-Interscience. 12, 50, 32

[Slotine and Lohmiller, 1998] Slotine, J.-J. E. and Lohmiller, W. (1998). On contraction analysis
for non-linear systems. Automatica, 34(6):683–696. 13, 14

[Smith et al., 2011] Smith, N. P., de Vecchi, A., McCormick, M., Nordsletten, D. A., Camara,
O., Frangi, A. F., Delingette, H., Sermesant, M., Relan, J., Ayache, N., Krueger, M. W.,
Schulze, W. H. W., Hose, R., Valverde, I., Beerbaum, P., Staicu, C., Siebes, M., Spaan, J.,



BIBLIOGRAPHY 157

Hunter, P. J., Weese, J., Lehmann, H., Chapelle, D., and Rezavi, R. (2011). euHeart: person-
alized and integrated cardiac care using patient-specific cardiovascular modelling. Interface
Focus, 1(3):349–364. 18, 17

[Tanabe, 1979] Tanabe, H. (1979). Equations of evolution, volume 6 of Monographs and Studies
in Mathematics. Pitman (Advanced Publishing Program), Boston, Mass.-London. Translated
from the Japanese by N. Mugibayashi and H. Haneda. 56, 57, 39

[Tataru, 1995] Tataru, D. (1995). Unique continuation for solutions to PDE’s; between Hörman-
der’s theorem and Holmgren’s theorem. Communications in Partial Differential Equations,
20(5-6):855–884. 71, 53, 54

[Tataru, 1996] Tataru, D. (1996). Carleman estimates and unique continuation for solutions to
boundary value problems. J Math Pure Appl, 75(4):367–408. 73, 55

[Tebou and Zuazua, 2007] Tebou, L. T. and Zuazua, E. (2007). Uniform boundary stabilization
of the finite difference space discretization of the 1d wave equation. Adv Comput Math, 26(1-
3):337–365. 76, 59

[Temam, 1971] Temam, R. (1971). Sur l’équation de Riccati associée à des opérateurs non
bornés, en dimension infinie. Journal of functional Analysis, 7:85–115. 59, 41

[Titaud et al., 2010] Titaud, O., Vidard, A., Souopgui, I., and Le Dimet, F.-X. (2010). Assimi-
lation of image sequences in numerical models. Tellus A, 62(1):30–47. 100, 82

[Tortora and Derrikson, 2009] Tortora, G. J. and Derrikson, B. (2009). Principles of Anatomy
and Physiology. John Wiley & Sons, Inc, 12 edition. 19, 121

[Tucsnak and Weiss, 2009] Tucsnak, M. and Weiss, G. (2009). Observation and control for
operator semigroups. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag,
Basel. 57, 69, 39, 52

[Uhlmann and Julier, 2002] Uhlmann, J. K. and Julier, S. J. (2002). Reduced sigma point filters
for the propagation of means and covariances through nonlinear transformations. American
Control Conference, 2002. Proceedings of the 2002, 2:887–892 vol.2. 55, 38

[Vaillant and Glaunès, 2005] Vaillant, M. and Glaunès, J. (2005). Surface matching via currents.
Inf Process Med Imaging, 19:381–392. 103, 104, 106, 85, 86, 88

[Vidrascu et al., 2005] Vidrascu, M., Le Tallec, P., Gerbeau, J.-F., and Hauret, P. (2005). Fluid
structure interaction problems in large deformation. Comptes Rendus Mecanique, 333:910–
922. 127

[Weiss, 1989] Weiss, G. (1989). Admissible observation operators for linear semigroups. Israel
Journal of Mathematics. 57

[Wiener, 1949] Wiener, N. (1949). Extrapolation, interpolation, and smoothing of stationary
time series, volume 2. MIT press Cambridge, MA. 13

[Xiao, 2013] Xiao, N. (2013). Simulation of 3-D Blood Flow in the Full Systemic Arterial Tree
and Computational Frameworks for Efficient Parameter Estimation. PhD thesis, Stanford
University. 98, 80



158 BIBLIOGRAPHY

[Xiao et al., 2013] Xiao, N., Alastruey, J., and Figueroa, C. A. (2013). A systematic comparison
between 1-D and 3-D hemodynamics in compliant arterial models. Int. J. Numer. Meth.
Biomed. Engng., 30(2):204–231. 21

[Younes, 1998] Younes, L. (1998). Computable elastic distances between shapes. Siam J Appl
Math, 58(2):565–586. 103

[Younes, 2010] Younes, L. (2010). Shapes and diffeomorphisms. Springer. 103, 104, 86

[Young, 1999] Young, A. A. (1999). Model tags: direct three-dimensional tracking of heart wall
motion from tagged magnetic resonance images. Medical Image Analysis, 3(4):361–372. 109,
91

[Zabczyk, 1992] Zabczyk, J. (1992). Mathematical control theory: an introduction. Systems &
Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA. 14

[Zahalac, 1981] Zahalac, G. I. (1981). A distribution-moment approximation for kinetic theories
of muscular contraction. Mathematical Biosciences, 114:55–89. 120

[Zhang, 2002] Zhang, Q. (2002). Adaptive observer for multiple-input-multiple-output (MIMO)
linear time-varying systems. IEEE Trans. Automat. Control, 47(3):525–529. 16, 62, 93, 94,
44, 74, 76

[Zhang and Xu, 2001] Zhang, Q. and Xu, A. (2001). Global adaptive observer for a class of
nonlinear systems. Decision and Control, 2001. Proceedings of the 40th IEEE Conference on
DOI - 10.1109/.2001.980478, 4:3360–3365 vol.4. 93

[Zhang, 2000] Zhang, X. (2000). Explicit observability estimate for the wave equation with po-
tential and its application. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456(1997):1101–
1115. 74, 56

[Zhang and Zuazua, 2006] Zhang, X. and Zuazua, E. (2006). Long-Time Behavior of a Cou-
pled Heat-Wave System Arising in Fluid-Structure Interaction. Arch. Ration. Mech. Anal.,
184(1):49–120. 84, 66

[Zuazua, 2005] Zuazua, E. (2005). Propagation, Observation, and Control of Waves Approxi-
mated by Finite Difference Methods. SIAM Review, 47(2):197. 14, 69, 72, 76, 52, 55, 59


	Preamble
	I Summary of my research contribution & Research project
	Summary of my research contribution
	Introduction
	What is data assimilation ?
	The cardiovascular system playground
	Electrophysiology
	Cardiac Mechanics
	The cardiovascular system

	Past contributions
	Data similarity measures and observer design
	Observer analysis results
	Parameter estimation results
	Discretization Results
	Modeling and application results
	Other Results

	Perspectives: Research Project
	Challenge 1: From Data similarity measures to observer design
	Challenge 2: Observer analysis
	Challenge 3: Parameter estimation
	Challenge 4: Discretization
	Challenge 5: Applications



	II Detailed presentation of my past contributions
	Data assimilation contributions
	Introduction
	Toward a unified theory in optimal filtering of non-linear finite dimensional systems
	Least square estimation and corresponding optimal estimator
	Principle of the time-discretization and related time-discrete estimator
	Approximated optimal filters in the light of the discrete-time Mortensen filter

	Control-based sequential estimation strategies for PDEs
	Optimal-control-based strategies
	Luenberger observers formulations – The wave equation case
	Luenberger observers: other models
	Hybrid feedback design

	Shape-based data assimilation
	Motion extraction from images by sequential estimation based on a biomechanical model
	A Luenberger observer for reaction-diffusion models with front position data


	Cardiac modeling and model-data interaction
	Introduction
	Energy preserving models and coupling
	An energy preserving micro-macro model of the heart contraction
	An energy balanced coupling of porous flows and hyperelastic formulations

	Reduced-order modeling
	Dimensional reductions of a cardiac model for effective validation and calibration
	Proper Orthogonal Decomposition for parameter-dependent problems – application to parameter estimation

	Model-data interaction for the cardiovascular system
	Estimation of tissue contractility from cardiac Cine-MRI – a pig experiment
	Identification of boundary support parameters in a fluid-structure vascular model using patient image data
	Estimation in electrophysiology
	Applications within international collaborations


	Personal References – Articles
	Personal References – Proceedings - Preprints - Thesis
	General References


