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Soit K|Q un corps de nombres et soit ζ K (s) sa fonction L complexe associée. La formule analytique du nombre de classes fournit un lien entre les valeurs spéciales de ζ K (s) et les invariants du corps K. Elle admet une version Galois-équivariante. On a un schema similaire pour les courbes elliptiques. Soit E/Q une courbe elliptique et soit L(E/Q, s) sa fonction L complexe associée. La conjecture de Birch et Swinnerton-Dyer prédit un lien entre le comportement de L(E/Q, s) au point s = 1 et la structure des solutions rationnelles de l'équation definie par E. Comme la formule analytique du nombre de classes, la conjecture de Birch et Swinnerton-Dyer admet une version équivariante. La conjecture de Stark elliptique formulée par H. Darmon, A. Lauder et V. Rotger propose un analogue p-adique de la conjecture de Birch et Swinnerton-Dyer équivariante, qui nécessite certaines hypothèses. Dans leur article, les auteurs formulent la conjecture et donnent une démonstration dans certains cas où E a bonne réduction en p. Pour cela, ils utilisent la méthode de Garrett-Hida qui conduit à une factorisation de fonctions L p-adiques. Dans cette thèse on se concentre sur la conjecture de Stark elliptique et l'on montre comme il est possible d'étendre le résultat de Darmon, Lauder et Rotger.

Dans le cas où E a bonne réduction en p on peut étendre le résultat en utilisant la méthode de Hida-Rankin. Cette méthode nous donne un contrôle meilleur sur les constantes apparaissant dans les formules et nous amène à une formule explicite contenant les invariants de la courbe elliptique. Pour obtenir le résultat on adapte la preuve du théorème principal de Darmon, Lauder et Rotger à notre cas et on utilise une formule p-adique de Gross et Zagier qui relie les valeurs spéciales de la fonction L padique de Bertolini-Darmon-Prasanna et les points de Heegner.

Ensuite on voit comment étendre notre résultat et celui de Darmon-Lauder-Rotger au cas où E a réduction multiplicative en p. Dans ce cadre, on ne peut pas utiliser la fonction L p-adique de Bertolini-Darmon-Prasanna en raison de problèmes techniques. Pour éliminer cette difficulté on consid`ere la fonction L p-adique de Castellà. On utilise aussi la méthode de Garrett-Hida ainsi que la méthode d'Hida-Rankin et l'on obtient des résultats similaires aux cas de bonne réduction.

Introduction

The theory of L-functions plays a key role in modern number theory. After Iwasawa's new insight on this theory, p-adic L-functions became an interesting alternative to classical ones.

A central feature of the theory of L-functions (classical or p-adic) is the study of their special values: this is where the analytic and the algebraic data meet.

Let us describe the most basic example. Let K be a number field of discriminant D K and denote by O K its ring of integers. The seminal example is the Dedekind zeta function of the field K, denoted by ζ K (s). It is defined for (s) > 1 as an Euler product indexed by all prime ideals in O K as follows:

ζ K (s) = ℘⊂O K 1 1 -N K Q (℘) s .
As was first proved by Hecke, this function admits a meromorphic continuation, and satisfies a functional equation of the form:

|D K | s 2 • ζ K,∞ (s) • ζ K (s) = |D K | 1-s 2 • ζ K,∞ (1 -s) • ζ K (1 -s)
where ζ K,∞ (s) is an adequate product of Gamma factors. The integral point s = 0 lies outside the domain of definition and mathematicians were interested in understanding the nature of this value.

Let us recall Dirichlet's unit theorem: the group of units O × K is a finitely generated abelian group, whose free part has rank r 1 + r 2 -1, where r 1 is the number of real embeddings K → R and r 2 is the number of complex embeddings K → C up to conjugation, so that r 1 + 2r 2 = [K : Q].

The behaviour of ζ K (s) at s = 0 is the content of the so-called analytic class number formula, which we state here as follows:

Theorem 0.1 (Class number formula). The following are true: CNF0 The zeta function ζ K (s) admits an analytic continuation and a functional equation relating values at s and 1 -s;

CNF1 The order of vanishing of ζ K (s) at s = 0 equals the rank of O × K , i.e. ord s=0 ζ K (s) = r (analytic rank = algebraic rank); CNF2 The following formula holds true:

lim s→0 s -r ζ K (s) = - h K R K ω K .
where:

h K is the class number of K; xi
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ω K is the number of roots of unity of O K ; -R K is the complex regulator involving the logarithm of units of O K .

One generally refers to the analytic class number formula when speaking about the following result:

Res s=1 ζ K (s) = 2 r1 (2π) r2 h K R K ω K |D K |
which can be easily proven to be equivalent to CFN1 and CFN2 together.

In the 1970's Stark developed in [Stark] an equivariant conjectural refinement of the above formula, now known as Stark's conjectures. More precisely, for any field extension H | K, the Artin formalism allows one to decompose the zeta function ζ H (s) as a product of L-functions over K twisted by irreducible Artin representations ρ of Gal (H|K). The Stark conjectures aim to describe vanishing properties and special values of these twists at s = 0 in terms of invariants linked to the objects involved in a Gal (H|K)equivariant way.

Not surprisingly, one can formulate a similar conjecture for elliptic curves, which will be the main motivation for the present thesis. More precisely, we consider:

• an elliptic curve E defined over K. We denote by V (E) the compatible system of Galois representations induced by its Tate module;

• an Artin representation ρ : Gal (H|K) → GL n (L), where L ⊂ C is the field of coefficients of ρ. We associate to it a compatible system of Galois representations V (ρ).

Our main object of interest is the Hasse-Weil-Artin L-function of E twisted by ρ:

L(E, ρ, s) := L(V (E) ⊗ V (ρ), s),

This function is defined as an Euler product similar to that of ζ K (s), which converges for (s) > 3/2. When ρ = 1 K , the twisted L-function L(E, ρ, s) is equal to the original one L(E/K, s).

According to the Mordell-Weil theorem, E(K) is a finitely generated abelian group. The rank of its free part is called the algebraic rang of E over K, that we denote by r = r(E/K). In the early 60's, Birch and Swinnerton-Dyer formulated in [BSD] the following: Conjecture 0.2 (Birch and Swinnerton-Dyer). The following are true: BSD0 The zeta function L(E/K, s) admits an analytic continuation and a functional equation relating values at s and 2 -s;

BSD1 The order of vanishing at s = 1 equals the rank E over K, i.e. ord s=1 L(E/K, s) = r (analytic rank = algebraic rank); BSD2 The following formula holds true:

lim s→1 s -r L(E/K, s) = Ω E/K • ℘⊂O K c ℘ #Sha E/K #T 2 • R E/K |D K |
where:

-Ω E/K is the complex period attached to E over K;

c ℘ is the Tamagawa number of E at ℘; xiii -Sha E/K is the Shafarevich-Tate group;

-R E/K is the complex regulator involving Néron-Tate heights of a basis of the free part of the Mordell-Weil group.

It is remarkable how theorem 0.1 and conjecture 0.2 share many similarities. Moreover there are equivariant refinements of the BSD conjecture, too. This sets up the basis for a vast generalization known as the equivariant Tamagawa number conjecture (ETNC) which includes, as special cases, both the Stark conjectures and the equivariant Birch and Swinnerton-Dyer conjecture.

In this dissertation we are mainly motivated by the equivariant BSD conjecture as an elliptic curve analogue of the Stark conjecture for number fields.

Let E/K be an elliptic curve and let ρ : Gal (H|K) → GL n (L) and consider the twisted L-function L(E, ρ, s). Assuming the BSD0 we can define the analytic rank associated with E twisted by ρ as: r an (E, ρ) := ord s=1 L(E, ρ, s).

On the algebraic side we consider the vector space V ρ underlying the representation and the set of Galois equivariant homomorphisms ψ : V ρ → E(H) L , where E(H) L := E(H)⊗L. In other words, we consider the possible ways to embed the representation V ρ inside the Mordell-Weil group. In particular, the algebraic rank measures how many times the representation V ρ occurs in E(H) L :

r alg (E, ρ) := dim L Hom G K (V ρ , E(H) L ).
We also define the ρ-isotypical component of the Mordell-Weil group as follows:

E(H) ρ := {ψ} ψ(V ρ ).
where {ψ} denotes a basis of Hom G K (V ρ , E(H) L ). The rank part of the equivariant BSD conjecture predicts that the analytic rank and the algebraic rank are equal, so that: r an (E, ρ) ? = r alg (E, ρ).

The equality has been established in few cases only: there are results when the base field is Q, r an (E, ρ) ≤ 1 and ρ has dimension at most 2, under some additional specific hypothesis. The common feature of these results is the use of Euler systems.

In order to overcome the rank part of the problem and give a unified vision of the Euler systems, Darmon, Lauder and Rotgers formulated in [START_REF] Darmon | Stark points and p-adic iterated integrals attached to modular forms of weight one[END_REF] a p-adic analogue of the equivariant BSD conjecture which they call the elliptic Stark conjecture. We now briefly describe the result of their article. Consider a self-dual representation ρ : Gal (H|Q) → SL 4 (L) which is the tensor product of two odd representations ρ 1 and ρ 2 of dimension 2. By the modularity results of Khare and Winterberger (see [START_REF] Khare | Serre's modularity conjecture (I)[END_REF]) we know that such representations arise from modular forms of weight one, so that ρ 1 = ρ g , ρ 2 = ρ h and ρ = ρ gh = ρ g ⊗ ρ h , where:

g ∈ M 1 (N g , χ) and h ∈ M 1 (N h , χ).

In this sense we can write L(E, ρ gh , s) = L(f ⊗ g ⊗ h, s), so that the L-function can be viewed as the Garrett's triple product L-function. In order to describe the elliptic Stark conjecture in detail, we first need to discuss the hypothesis under which it is formulated. Hypotheses A and B of [START_REF] Darmon | Stark points and p-adic iterated integrals attached to modular forms of weight one[END_REF] say that the L-function L(E, ρ, s) vanishes to order at least two at s = 1 and that the order of vanishing is even. In particular it is assumed that the local signs of the functional equation of L(E, ρ, s) are all positive.
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Hypotheses C and C' of loc.cit. are important for the very definition of p-adic iterated integrals that we now describe. Given a module M on which the good Hecke operators T n act and a common eigenform φ, we define M [φ] to be the subspace of M composed by vectors which have the same eigenvalues for all of the T n 's. For a test vector

(γ, f , h) ∈ M 1 (N p, χ) ∨ L [g α ] × S 2 (N p, 1) L [f ] × M 1 (N p, χ) L [h]
the associated p-adic iterated integral is defined as follows:

γ f • h := γ e g * α e ord ( F • h) (1)
where F is the overconvergent primitive of f , e gα * is the projector onto the g * α -isotypical component and e ord is Hida's ordinary projector. Hypothesis C and C' ensure us that the definition is meaningful by declaring that the g * α -isotypical component of the space of overconvergent modular forms in weight one is made solely of classical forms, so that, in particular, e g * α e ord ( F • h) is classical, too. Then we have the: Conjecture 0.3 (Elliptic Stark conjecture). Let p N g N h be a prime at which E has ordinary reduction, let N f be the tame part of N E and N = lcm(N f , N g , N h ). Assume hypothesis A, B, and C,C' of [START_REF] Darmon | Stark points and p-adic iterated integrals attached to modular forms of weight one[END_REF]. Then:

• if r an (E, ρ) = 2 for i = 1, 2, then there exists a test vector:

(γ, f , h) ∈ M 1 (N p, χ) ∨ L [g α ] × S 2 (N p, 1) L [f ] × M 1 (N p, χ) L [h]
for which:

γ f • h = R p (E, ρ) gα log p (u gα )
is nonzero, where:

u gα is the Gross-Stark unit associated with the adjoint representation associated with g α ;

-R p (E, ρ) gα is a p-adic ρ-equivariant regulator which is defined as the determinant of a 2 by 2 matrix involving elliptic logarithm of points in E(H) ρ L .

• if r an (E, ρ) > 2, then γ f • h = 0 for every possible choice of test vector (γ, f , h).

Let us point out the presence of g α : this is a choice of a p-stabilization of g which is needed to formulate the conjecture-this will be discussed later.

The proposition 2.6 of loc.cit. motivates the terminology of "elliptic Stark conjecture". More precisely, the p-adic iterated integral can be interpreted as the special value of the Garrett-Hida p-adic L-function, which is a p-adic avatar of L(E, ρ, s), and the conjecture contains information about both the order of vanishing of this L-function and its leading term.

In [START_REF] Darmon | Stark points and p-adic iterated integrals attached to modular forms of weight one[END_REF] the authors provide several heuristics in support of the conjecture, and they prove it in some special cases. More precisely, they consider the case in which g and h are theta series associated with Galois characters of a quadratic imaginary field K = Q( √ -D) and (f, K) satisfies the Heegner hypothesis. In this setting, the Heegner hypothesis ensures us that hypothesis A and B are satisfied and also, in most cases, that theta series satisfy hypothesis C and C' (see the discussion of section 4.2). Then the representation ρ splits as the direct sum of two representations ρ 1 and ρ 2 (not necessarily irreducible), and the availability of Heegner points and elliptic units allows the construction, respectively, of canonical elements P i ∈ E(H) ρi L which satisfy the already existent p-adic Gross-Zagier formula studied in [START_REF] Bertolini | p-adic Rankin L-series and rational points on CM elliptic curves[END_REF], and of global units u gα ∈ (O × H )

Ad(gα) L satisfying the Katz-Kronecker limit formula. Using those tools the authors achieve the following: xv Theorem 0.4 (Darmon, Lauder, Rotger). Assume that N = lcm(N E , N g , N h ) is square-free and that p 2N . Assume also that hypothesis C and C' hold. Then:

• if r an (E, ρ i ) = 1, then there exists a test vector:

(γ, f , h) ∈ M 1 (N p, χ) ∨ L [g α ] × S 2 (N p, 1) L [f ] × M 1 (N p, χ) L [h]
and a scalar λ ∈ L × for which:

γ f • h = λ • log E,p (P 1
) log E,p (P 2 ) log p (u gα )

• if r an (E, ρ i ) > 1 for i = 1 or i = 2, then γ f • h = 0 for any choice of test vector (γ, f , h).
Dimostrazione. This is achieved using the Garrett-Hida method, by p-adically interpolating the triple product L-function and comparing it with other p-adic L-functions (cf. [START_REF] Darmon | Stark points and p-adic iterated integrals attached to modular forms of weight one[END_REF]§3]).

Let us point out that this formula is qualitative: no computation is made to make λ explicit. It would be interesting to see what happens to the constant λ if one makes a specific choice for the test vector (γ, f , h). In particular, it is worth to make here the following: Remark 0.5. The quantity on the left depends on f (in fact f ) while the quantity on the right contains the elliptic logarithm, which is usually taken in the literature to be the logarithm associated with the Néron differential ω E . In particular, the Néron differential is pulled back to a multiple of ω f := 2πif (τ )dτ , via the modular parametrization π :

X 0 (N E ) → E, i.e. π * (ω E ) = C E • ω f . The constant C E
would be a product of the Manin constant and the degree of the isogeny from the elliptic curve E f , associated with f via Eichler-Shimura construction, and our elliptic curve E.

We use the result [BDP12, Theorem 3.12] and we want to avoid the constant C E . For this reason, we consider the logarithm associated with the differential ω on E defined by:

π * (ω) = ω f .
This is a non-canonical choice but the results that we obtain can be easily translated in terms of the usual logarithm by adding the constant C E . For a qualitative result this fact does not matter, but for a precise computation of λ it is important.

In [DLR15, remark 3.4], assuming that N = D is square-free, that p N and that g

= h = E 1,χ K ∈ M 1 (D, χ K )
is the Eisenstein series associated with the quadratic character χ K attached to the extension K|Q, the authors verified experimentally that:

γ f • h = #E(F p ) 2 p(p -1)h K • log E,p (P K ) 2 log p (u ℘ )
,

where h K is the class number of K, (u ℘ ) = ℘ h K and P K ∈ E(K) = E(H) 1 K L .
In this specific case the condition N = D ensures us that the choice (γ, f, h) is canonical, where γ is the dual of g.

This raises two main questions:

(i) are we able to uncover some nice arithmetical meaning of the scalar λ, possibly after making some canonical choice of test vector (γ, f , h)?

(ii) can we establish the conjecture in other cases?
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The first question was answered using the Rankin method instead of the Garrett method, but restricting to the case in which h = E 1,χ K . In this case ρ 1 = ρ 2 = ρ g , so that ρ = ρ 2 g and we have a factorization of L-functions:

L(E, ρ, s) = L(E, ρ g , s) 2
The function L(E, ρ g , s) = L(f ⊗ g, s) can be interpolated p-adically with Hida-Rankin's method and its special value can also be interpreted as a p-adic iterated integral. Since g has CM by χ K , it can be seen as the theta series associated with a finite order Hecke character ψ : G K → C × . In this setting, P 1 = P 2 = P ψ , u gα = u ψ2 and the main result of [START_REF] Casazza | Stark points and p-adic iterated integrals[END_REF] is the following:

Theorem 0.6 (C.-Rotger). Assume that (N E , N g /D) = 1 and take N = lcm(N E , N g ) and a prime p 2N . Assume also that hypothesis C and C' hold and that r an (E, ρ g ) = 1. Let us call h = E 1,χ K and let us choose the test vector:

(γ, f , h) ∈ M 1 (N p, χ) ∨ L [g α ] × S 2 (N p, 1) L [f ] × M 1 (N p, χ) L [h]
as follows: f and g are normalized eigenforms for all the Hecke operators, γ is the dual of g and h = E 1,χ N as defined in equation (1.10). Then there exists an explicit non-zero complex number λ( f , g) ∈ Q ψ ( f ) for which

γ f • h = λ( f , g) • log E,p (P ψ ) 2 log p (u ψ2 ) .
In particular, in the case

N E = N g = N h = D the following formula holds true for f = f , g = g: λ(f, g) = (p -a p (f )ψ( ℘) + ψ 2 ( ℘)) 2 p(p -1) • λ 0 h K g K , λ 0 = 1 if ψ 2 = 1, that is to say, if g is Eisenstein 12(p-1) p-(p+1)ψ -2 ( ℘)+ψ -4 ( ℘) if ψ 2 = 1, that is to say, if g is cuspidal.
Note that in the first part of this result we do not assume that N is square-free. In fact, the choice of h forces N g /D to be a non-trivial square, unless N g = D. In this sense the use of Hida-Rankin's method, although restrictive for the choice of h, also proves new cases of the elliptic Stark conjecture in a more explicit way than it is done by Garrett's method, answering both questions (i) and (ii).

The above theorem, together with theorem 0.4, furnishes good theoretical evidence for the elliptic Stark conjecture, but it is far from proving it in general. This leaves spaces for the examination of other cases. The first and natural idea is to see what happens in the case of bad reduction for E at p. For this reason, we decided to prove the case of multiplicative reduction for E, i.e. when p||N E . Define N f = N E /p, then we have the following: Theorem 0.7. The results of theorem 0.4 and 0.6 hold still if we assume that p||N E , p N g N h . The explicit formula of theorem 0.6 is true replacing N E by N f . Although this result is very similar to the previous theorems, we need to substitute the Bertolini-Darmon-Prasanna p-adic L-function with a two variables extension due to Castellà in order to overcome some technical problem.

Let us review briefly the contents of this thesis. In the first chapter we introduce some background material about modular forms, p-adic modular forms and various operators acting on these spaces. We introduce Coleman's classicality result: overconvergent modular forms of small slope are classical. We also discuss complex multiplication points and elliptic units in a way that fulfills our needs.

The second chapter is dedicated to the basics of complex L-functions. We introduce the L-function associated with a compatible system of Galois representations, then we treat several special L-functions of this kind. In particular, we introduce the notation and some results which will be used in the subsequent chapters.

Chapter three is the central part: it contains background material on all the p-adic L-functions that we need. In particular, for each of them we introduce the region of interpolation, the relation with the complex L-function and the results on special values. Most results discussed in this section are already present in the literature but we slightly generalize a few of them and we adapt the notation for our treatment.

The fourth chapter contains the proof of theorems 0.6 and 0.7 that are discussed in the introduction. We start by explaining the elliptic Stark conjecture in the cases we treat and we list the hypotheses for the comfort of the reader. We also discuss in more detail hypothesis C and C' which are needed to formulate the result. These results are the content of the articles [START_REF] Casazza | Stark points and p-adic iterated integrals[END_REF] and [CR2].
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Introdution (français)

La théorie des fonctions L p-adiques joue un rôle clé dans la théorie des nombres moderne. Depuis les travaux d'Iwasawa, les fonctions L p-adiques sont devenues systématiquement une alternative intéressante aux fonctions L classiques. Un thème central de la théorie de fonctions L (classiques et p-adiques) est l'étude des valeurs spéciales : c'est la que les informations analytiques et algébriques se rencontrent.

Décrivons l'exemple le plus simple. Soit K un corps de nombres de discriminant D K et soit O K son anneau des entiers. La fonction zêta de Dedekind associée au corps K, qu'on dénote par ζ K (s), est définie pour tout s tel que (s) > 1 par le produit d'Euler indexé par les idéaux premiers de O K :

ζ K (s) = ℘⊂O K 1 1 -N K Q (℘) s .
Un résultat classique de Hecke nous dit que cette fonction admet un plongement méromorphe et satisfait une équation fonctionnelle de la forme :

|D K | s 2 • ζ K,∞ (s) • ζ K (s) = |D K | 1-s 2 • ζ K,∞ (1 -s) • ζ K (1 -s), où ζ K,∞ ( 
s) est un produit de facteurs Gamma que nous ne spécifions pas. Le point entier s = 0 se trouve en dehors du domaine de définition et les mathématiciens voulaient comprendre la nature de la valeur de la fonction zêta en ce point. Rappelons le théorème des unités de Dirichlet : le groupe des unités O × K est un groupe abélien de type fini et de rang r 1 + r 2 -1, où r 1 représente le nombre de plongements réelles K → R et r 2 le nombre des immersions complexes K → C, à conjugation près, tels que

r 1 + 2r 2 = [K : Q].
Le comportement de ζ K (s) au point s = 0 est décrit par la formule analytique du nombre de classes, que nous décrivons de la façon suivante : 

lim s→0 s -r ζ K (s) = - h K R K ω K .
où :

h K est le nombre de classes de K ; xix xx
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ω K est le nombre de racines de l'unité de O K ;

-R K est le régulateur complexe, qui contient le logarithme des unités de O K .

Ce qu'on appelle souvent « formule analytique du nombre de classes » est le résultat suivant:

Res s=1 ζ K (s) = 2 r1 (2π) r2 h K R K ω K |D K | qui est évidemment équivalent à FNC1 plus FNC2.
Dans les années 70, Stark a formulé dans [Stark] des raffinements conjecturaux de ce théorème, qui sont aujourd'hui appelé « conjectures de Stark ». Plus précisément, pour toute extension de corps H |K, le formalisme d'Artin nous permet de décomposer la fonction ζ H (s) comme produit de fonctions L sur K tordues par des représentations d'Artin irréductibles de Gal (H|K). Les conjectures de Stark décrivent les propriétés d'annulation et des valeurs spéciales de ces fonctions au point s = 0 à partir des invariants des objets considérés d'une façons Gal (H|K)-équivariante.

Ce n'est pas surprenant que l'on puisse formuler une telle conjecture dans le cadre des courbes elliptiques. En particulier, dans notre travail nous considérons :

• une courbe elliptique E définie sur K. On dénote par V (E) le système compatible de représentations galoisiennes induites par le module de Tate;

• une représentation d'Artin ρ : Gal (H|K) → GL n (L), où L ⊂ C est le corps de coefficients de ρ. On lui associe le système compatible de représentations galoisiennes V (ρ). 

Le théorème de

lim s→1 s -r L(E/K, s) = Ω E/K • ℘⊂O K c ℘ #Sha E/K #T 2 • R E/K |D K | où:
-Ω E/K est la période complexe attachée à E sur K ;

c ℘ est le nombre de Tamagawa de E en ℘ ;

-Sha E/K est le groupe de Shafarevich-Tate ;

-R E/K est le régulateur complexe donné par la hauteur de Néron-Tate d'une base de points du groupe de Mordell-Weil.

xxi Les similarités entre 0.8 et 0.9 sont surprenantes, mais bien connues aujourd'hui. Il y a aussi des versions équivariantes de BSD, qui constituent une base pour une vaste généralisation connue comme conjecture équivariante des nombres de Tamagawa (ETNC), qui décrit bien en même temps les conjectures de Stark et la conjecture de Birch et Swinnerton-Dyer.

Ce travail est motivé principalement par la conjecture de BSD équivariante vue comme un analogue de la conjecture de Stark pour des corps de nombres.

Soit E/K une courbe elliptique, soit ρ : Gal (H|K) → GL n (L) une représentation d'Artin et considérons la fonction tordue L(E, ρ, s). En supposant que BSD0 soit vraie, on peut définir le rang analytique de E tordue par ρ de cette manière :

r an (E, ρ) := ord s=1 L(E, ρ, s)
Du coté algébrique, on considère l'espace vectoriel V ρ associé à la représentation ρ et l'ensemble des homomorphismes Galois-équivariants ψ :

V ρ → E(H) L , où E(H) L := E(H) ⊗ L.
C'est-à-dire, on considère les façons distinctes de plonger V ρ dans le groupe de Mordell-Weil. En particulier, le rang algébrique mesure combien de fois la représentation V ρ apparaît dans E(H) L :

r alg (E, ρ) := dim L Hom G K (V ρ , E(H) L ).
On définit aussi la composante ρ-isotypique du groupe de Mordell-Weil comme :

E(H) ρ := {ψ} ψ(V ρ ),
où {ψ} est une base de Hom G K (V ρ , E(H) L ). La partie du rang de la conjecture de BSD équivariante prédît l'égalité du rang analytique et rang algébrique, à savoir :

r an (E, ρ) ? = r alg (E, ρ).
L'égalité est établie dans très peu de cas: il y a des résultats quand le corps de base est Q, r an (E, ρ) ≤ 1 et ρ est de dimension non supérieure à 2, plus autres hypothèses. Les outils utilisés pour obtenir ces types de résultats sont les systèmes d'Euler.

Pour pouvoir dépasser le problème du rang et donner une vision unifiée de certains systèmes d'Euler, Darmon, Lauder et Rotger ont crée dans [START_REF] Darmon | Stark points and p-adic iterated integrals attached to modular forms of weight one[END_REF] une variante p-adique de la conjecture de BSD qui est appelée conjecture de Stark elliptique. Considérons une représentation auto-duale ρ : Gal (H|Q) → SL 4 (L) qui est le produit tensoriel de deux représentations ρ 1 et ρ 2 de dimension 2. Grace aux résultats de modularité de Khare et Winterberger (voir [START_REF] Khare | Serre's modularity conjecture (I)[END_REF]) nous savons que ces représentations sont associées à des formes modulaires de poids 1 de telle sorte que

ρ 1 = ρ g , ρ 1 = ρ h et ρ = ρ gh = ρ g ⊗ ρ h , où : g ∈ M 1 (N g , χ) et h ∈ M 1 (N h , χ).
Nous pouvons donc écrire L(E, ρ gh , s) = L(f ⊗ g ⊗ h, s), ce qui décrit la fonction L comme triple produit de Garrett. Afin de décrire la conjecture de Stark elliptique en détails, nous allons parler des hypothèses nécessaires à sa formulation. Les hypothèses A et B de [START_REF] Darmon | Stark points and p-adic iterated integrals attached to modular forms of weight one[END_REF] disent qu'au point s = 1 la fonction L(E, ρ, s) a un zéro d'ordre pair et supérieur ou égal à 2. En particulier, on suppose que les signes locaux de l'équation fonctionnelle pour L(E, ρ, s) sont tous +1.

Les hypothèses C et C' de loc.cit. sont très importantes pour la définition des intégrales p-adiques itérées que nous allons décrire. Soit M un module sur lequel les opérateurs de Hecke T n agissent et soit φ une forme propre pour tout les opérateurs de Hecke. On définit M [φ] comme le sous-espace vectoriel de M qui contient les vecteurs ayant les mêmes valeurs propres que φ pour tout T n . Considérons un vecteur test :

(γ, f , h) ∈ M 1 (N p, χ) ∨ L [g α ] × S 2 (N p, 1) L [f ] × M 1 (N p, χ) L [h]
. L'intégrale p-adique itérée associée est définie de la manière suivante : • si r an (E, ρ) = 2 pour i = 1, 2, alors il existe un vecteur test :

γ f • h := γ e g * α e ord ( F • h) (2) 
(γ, f , h) ∈ M 1 (N p, χ) ∨ L [g α ] × S 2 (N p, 1) L [f ] × M 1 (N p, χ) L [h]
tel que :

γ f • h = R p (E, ρ) gα log p (u gα )
est différent de zéro, où :

u gα est l'unité de Gross-Stark associée à la représentation adjointe de g α ;

-R p (E, ρ) gα est un régulateur p-adique ρ-équivariante défini par le déterminant d'une matrice de dimension 2 contenant des logarithmes elliptiques de points de E(H) ρ L .

• si r an (E, ρ) > 2, alors γ f • h = 0 pour tout choix possible de (γ, f , h).

Il faut remarquer la présence de g α : il s'agit du choix d'une p-stabilisation de g qui est nécessaire à la formulation de la conjecture, et dont nous allons discuter tout à l'heure.

La proposition 2.6 de loc.cit. explique l'utilisation de la terminologie « conjecture de Stark elliptique ». Plus précisément, l'intégrale p-adique itérée peut être interprétée comme la valeur spéciale de la fonction L p-adique de Garrett-Hida, qui est un analogue p-adique de L(E, ρ, s) et la conjecture contient des informations sur l'ordre du zéro de cette fonction et sur son terme dominant.

Dans [START_REF] Darmon | Stark points and p-adic iterated integrals attached to modular forms of weight one[END_REF], les auteurs donnent de nombreuse exemples numérique pour soutenir leur conjecture et dans certains cas ils donnent aussi une démonstration. Plus précisément, ils considèrent le cas où g et h sont des séries thêta associées à un caractère de Galois d'un corps quadratique imaginaire K = Q( √ -D) et (f, K) satisfait à l'hypothèse de Heegner. Dans ce cadre, l'hypothèse de Heegner assure la validité des hypothèses A et B et, dans la plupart de cas, les séries thêta satisfont aux hypothèses C et C' (voir la discussion dans la section 4.2). La représentation ρ se réduit donc à une somme de deux représentations ρ 1 et ρ 2 (pas forcément irréductibles) et la présence des points de Heegner et des unités elliptiques permet de construire, respectivement, des éléments canoniques P i ∈ E(H) ρi L qui satisfont la formule p-adique de Gross-Zagier étudiée dans [START_REF] Bertolini | p-adic Rankin L-series and rational points on CM elliptic curves[END_REF], et des unités globales u gα ∈ (O × H )

Ad(gα) L qui satisfont la formule de la limite de Katz-Kronecker. Avec ces outils les auteurs obtiennent le résultat suivant : xxiii Théorème 0.11 (Darmon, Lauder, Rotger). Supposons que N = lcm(N E , N g , N h ) soit sans facteur carré et que p 2N . Supposons aussi que les hypothèses C et C' soient satisfaites. Alors :

• si r an (E, ρ i ) = 1 pour i = 1, 2, alors il existe un vecteur test:

(γ, f , h) ∈ M 1 (N p, χ) ∨ L [g α ] × S 2 (N p, 1) L [f ] × M 1 (N p, χ) L [h]
et un nombre λ ∈ L × tel que : Remark 0.12. La quantité à gauche dépend seulement de f (en fait f ) mais la quantité à droite contient le logarithme elliptique, qui est généralement normalisé de façon à être associé au différentiel de Néron ω E . En particulier, le pull-back du différentiel de Néron est un multiple du différentiel ω f := 2πif (τ )dτ , via la paramétrisation modulaire π :

γ f • h = λ • log E,p (P 1 ) log E,p (P 2 ) log p (u gα ) • si r an (E, ρ i ) > 1 pour i = 1 or i = 2, alors γ f • h = 0
X 0 (N E ) → E, c.-à-d. π * (ω E ) = C E • ω f . Le facteur C E est
le produit de la constante de Manin et du degré de l'isogénie qui existe entre la courbe elliptique E f associée à f par la construction d'Eichler-Shimura et notre courbe elliptique E.

Nous utilisons le résultat [BDP12, Théorème 3.12], et pour éviter les constantes C E nous considérons le logarithme associé à la différentielle ω sur E, définie par :

π * (ω) = ω f .
Ceci n'est pas un choix canonique, mais le résultat qu'on obtient peut être traduit plus simplement en termes du logarithme usuel en rajoutant la constante C E . Pour un résultat qualitative ce fait n'est pas important, mais pour un calcul précis du facteur λ il est essentiel.

Dans [DLR15, remarque 3.4], sous les hypothèses que N = D soit nombre premier, que p N et que g = h = E 1,χ K ∈ M 1 (D, χ K ) soit la série d'Eisenstein associée au caractère quadratique χ K de l'extension K|Q, les auteurs ont vérifié avec de calculs numériques la formule suivante :

γ f • h = #E(F p ) 2 p(p -1)h K • log E,p (P K ) 2 log p (u ℘ ) , où h K est le nombre de classes de K, (u ℘ ) = ℘ h K et P K ∈ E(K) = E(H) 1 K L .
Dans ce cas spécifique, la condition N = D garantit que le choix du vecteur (γ, f, h) soit canonique, où γ est le dual de g.

Ce résultat ouvre la discussion avec deux questions principales :

(i) pouvons nous donner un sens arithmétique à λ, si possible d'après un choix intelligent (canonique) du vecteur test (γ, f , h)?

(ii) Pouvons nous établir la conjecture dans d'autres cas?

La première question a une solution : on utilise la méthode de Rankin à la place de la méthode de Garrett, sous l'hypothèse supplémentaire que h = E 1,χ K . Dans ce cas la, ρ 1 = ρ 2 = ρ g , donc ρ = ρ 2 g , et on a la factorisation suivante:

L(E, ρ, s) = L(E, ρ g , s) 2 .

La fonction L(E, ρ g , s) = L(f ⊗ g, s) peut être interpolée p-adiquement avec la méthode de 

(γ, f , h) ∈ M 1 (N p, χ) ∨ L [g α ] × S 2 (N p, 1) L [f ] × M 1 (N p, χ) L [h]
de la façon suivante : f et g sont des formes propres pour tous les opérateurs de Hecke, γ est le dual de g et h = E 1,χ N comme dans l'équation (1.10). Alors il existe un nombre explicite et différent de zéro

λ( f , g) ∈ Q ψ ( f ) tel que γ f • h = λ( f , g) • log E,p (P ψ ) 2 log p (u ψ2 ) .
En particulier, dans le cas où

N E = N g = N h = D la formule suivante est vraie pour f = f , g = g : λ(f, g) = (p -a p (f )ψ( ℘) + ψ 2 ( ℘)) 2 p(p -1) • λ 0 h K g K , λ 0 = 1 si ψ 2 = 1, c'est-à-dire, si g est Eisenstein 12(p-1) p-(p+1)ψ -2 ( ℘)+ψ -4 ( ℘)
si ψ 2 = 1, c'est-à-dire, si g est parabolique.

Pour la première partie du théorème nous n'avons pas pris N sans facteur carré. En fait notre choix de h implique que N g /D soit un carré non trivial, sauf si N g = D. Utiliser la méthode de Hida-Rankin implique de restrictions, mais cela nous permet aussi de donner de nouveaux cas de la conjecture de 

H := {z ∈ C | (z) > 0}
and the space of real analytic functions C ∞ (H, C). For any integer k ∈ Z we define the weight-k-action of GL 2 (Q) + on f : H → C as follows:

f | k γ(z) := det(γ) k-1 (cz + d) -k f (γz).
(1.1)

We say that f is:

(i) slowly increasing (or that f has moderate growth) at infinity if for any γ ∈ SL 2 (Z), there exist positive numbers c, e such that |f | k γ| ≤ c(1 + y -e ) as y → ∞.

(ii) rapidly decreasing (or that f has rapid decay) at infinity if for any e ∈ R and γ ∈ SL 2 (Z), there exists a positive c such that |f | k γ| ≤ c(1 + y e ) as y → ∞;

Let Γ ⊂ SL 2 (Z) be a finite index subgroup. The set of real analytic modular forms M an k (Γ) (resp. cusp forms S an k (Γ)) of weight k and level Γ is the subset of real analytic functions f ∈ C ∞ (H, C) having moderate growth (resp. rapid decay) at infinity such that f | k γ = f for all γ ∈ Γ.

For a couple (f, g) ∈ M an k (Γ)×S an k (Γ), the product f (z)g(z)y k is both Γ-invariant and rapidly decreasing at infinity. Since y -2 dxdy is also Γ-invariant, we can define the Petersson scalar product on the space

S an k (Γ) × M an k (Γ) as follows: f, g N := Γ\H f (z)g(z)y k-2 dxdy. (1.2)
Let N ≥ 1 be an integer and consider the standard congruence subgroups:

Γ 1 (N ) := γ = a b c d ∈ SL 2 (Z) | a -1 ≡ c ≡ d -1 ≡ 0 (mod N ) , Γ 0 (N ) := γ = a b c d ∈ SL 2 (Z) | c ≡ 0 (mod N ) .
We are mainly interested in modular forms for Γ = Γ 1 (N ), hence we will write M an k (N ) := M an k (Γ 1 (N )), S an k (N ) := S an k (Γ 1 (N )).

Definition 1.1. The set of modular forms M k (N ) (resp. cusp forms S k (N )) of weight k and level N is the finite dimensional sub-vector space consisting of the holomorphic functions in M an k (N ) (resp. S an k (N )).

Let f ∈ M k (N ). Since 1 1 0 1 ∈ Γ 1 (N ),
we have f (z + 1) = f (z) and we can consider the Fourier expansion of f at infinity, which is given by:

f (q) = n≥0 a n (f )q n , q = e 2πiz ,
where a n (f ) ∈ C, because a modular form has moderate growth at infinity. In particular:

• f ∈ S k (N ) if and only if a 0 (f | k γ) = 0 for all γ ∈ SL 2 (Z) (in particular, a 0 (f ) = 0); • we say that f ∈ M k (N ) is normalized if a 1 (f ) = 1;
• we define the modular forms with coefficients in some subring A of C, as the set of modular forms whose q-expansion has coefficients in A, and we write M k (N ) A and S k (N ) A for those sets;

• we can define an action of Aut(C) on the q-expansion.

Since a modular form is determined by its q-expansion, we will often define a modular form and work with it using its Fourier coefficients a n (f ). This will be very important in the rest of the dissertation.

On the space of real analytic modular forms we define the Shimura-Maass derivative operator as

δ k := 1 2πi d dz + k 2iy : M an k (N ) -→ M an k+2 (N ) (1.3)
and we also consider its iterate

δ t k := δ k+2t • • • • • δ k : M an k (N ) -→ M an k+2t (N ) (impose δ 0 k := 1)
. The Shimura-Maass operator does not respect the spaces of modular forms: given f ∈ M k (N ), δ k f does not belong to M k (N ) in general, although it is still a real analytic modular form. For an integer 0 ≤ t ≤ k/2 we define the spaces of nearly holomorphic modular forms and cuspforms as follows:

M nh k (N ) := t j=0 δ j k-2j M k-2j (N ), S nh k (N ) := t j=0 δ j k-2j S k-2j (N ).
This is not the most general definition, but it will suit our needs. In particular, we can define the holomorphic projection as the map:

Π hol : M nh k (N ) → M k (N )
induced by the above decomposition. It clearly respects the subspace of cuspforms and, as shown in [Hid93, §10.1], it is both SL 2 (Z)-equivariant under the weight-k-action and Aut(C)-equivariant for the action defined on q-expansions.

Proposition 1.2. Suppose that f ∈ S k (N ) and g ∈ M nh k (N ). Then:

f, g N = f, Π hol (g) N Dimostrazione. See [Hid93, Theorem 10.2].

Nebentype decomposition and Hecke operators

We have a short exact sequence: 

1 → Γ 1 (N ) → Γ 0 (N ) → (Z/N Z) × → 1 a b c d → d which defines the action of (Z/N Z) × on M an k (N )
M an k (N ) = χ M an k (N, χ) When χ = 1 we recover M an k (Γ 0 (N )). If f ∈ M an k (N, χ)
, we say that f has nebentype character χ. The nebentype decomposition respects:

• the subspace of real analytic cusp forms;

• the subspaces of modular forms and cusp forms;

• the subspaces of nearly holomorphic modular forms;

We can summarize the situation in the following diagram of inclusions:

S k (N, χ) ⊂ S nh k (N, χ) ⊂ S an K (N, χ) ∩ ∩ ∩ M k (N, χ) ⊂ M nh k (N, χ) ⊂ M an K (N, χ).
(1.4)

Given a modular form f ∈ M k (N, χ) A we can consider the modular form f * obtained by applying the complex conjugation to the coefficients, i.e.:

f * = n≥0 a n (f )q n . We observe that f * ∈ M k (N, χ) A . If we take (f, g) ∈ M an k (N, χ) × S an k (N, χ), then f (z)g(z)
y k and y -2 dxdy are not only Γ 1 (N )-invariant but also Γ 0 (N )-invariant. For this reason we consider the following normalization of the Petersson scalar product:

f, g N := Γ0(N )\H f (z)g(z)y k-2 dxdy. (1.5) Notice that if N | M , then f, g M = [Γ 0 (N ) : Γ 0 (M )] • f, g, N . Define (N ) := [SL 2 (Z) : Γ 0 (N )], then: f, g M = (M ) (N ) f, g N . (1.6)
We now present a short exposition of the Hecke operators and we refer to [DS05, §5] and [Hid93, §5.3] for more details. Given a prime number p we consider the double coset operator:

Γ 1 (N ) 1 0 0 p Γ 1 (N ) = γ 1 0 0 p γ | γ, γ ∈ Γ 1 (N ) .
This double coset can be written as a disjoint union:

Γ 1 (N ) 1 0 0 p Γ 1 (N ) = p-1 i=0 Γ 1 (N ) 1 0 i p ∪ Γ 1 (N ) p 0 0 1 if p N Γ 1 (N ) 1 0 0 p Γ 1 (N ) = p-1 i=0 Γ 1 (N ) 1 0 i p , if p | N.
This decomposition allows us to define the Hecke operators as the double coset operator acting on the space of modular forms via the weight k action defined in equation 1.1. We denote them by T p when p N and U p when p | N and we call them, respectively, good and bad Hecke operators. For f ∈ M k (N, χ) we have:

a n (T p (f )) = a np (f ) + χ(p)p k-1 a n/p (f ).
where a n/p (f ) = 0 whenever p n. In particular, if f is normalized we have:

a 1 (T p (f )) = a p (f )
The Hecke operators commute with each other and with the Diamond operator. This allows us to define operators T n for all n which satisfy a 1 (T n (f )) = a n (f ).

For a vector space V on which T n are acting, we write h(V ) for the subset of End(V ) generated by the Hecke operators and h(V ) N for the subset generated by good Hecke operators. We use the notation h k (A) := h(S k (N ) A ) and h k (A) N , since this does not create ambiguities on the level. We have the following: Theorem 1.3. For every subring A ⊂ C we have a perfect pairing:

h k (A) × S k (N ) A → A ( T , f ) → a 1 (T (f )) Dimostrazione. See [Hid93, §5.3, Theorem 1]. We say that f ∈ M k (N, χ) is a normalized eigenform if it is normalized (a 1 (f ) = 1
) and it is an eigenform for all the Hecke operators, i.e. for h k (or, if specified, for all good Hecke operators, i.e. for h k,N ). Normalized eigenforms have algebraic integer coefficients and we can define:

Q(f ) := Q(a n (f ) | n ≥ 0).
This field is called the field of rationality of f . It is known to be a number field. Using theorem 1.3 we see that every normalized eigenform f arises as a morphism of A-algebras λ f : h k (A) → A, hence it defines a prime ideal I f ⊂ h k,N (A) as follows:

I f := ker(λ f ) = T n -a n (f ) | ∀n ∈ Z ≥1 , (n, N ) = 1 If f ∈ M k (N, χ
) is a normalized eigenform for all good Hecke operators, we define the f -isotypical component of M k (N, χ) as:

M k (N, χ)[f ] := {g ∈ M k (N, χ) | T p g = a p (f )g, ∀p N }.
Then M k (N, χ)[f ] = ker I f and it is the set of eigenforms g ∈ M k (N, χ) which have the same system of eigenvalues as f for all good Hecke operators.

Oldforms, newforms and basis

For each integer d | N and each modular form f ∈ S k (N/d) we can consider the map:

f (q) → f (q d ) ∈ S k (N )
This gives rise to a dichotomy: in S k (N ) some modular forms are linear combination of modular forms of lower level and some others are not. To be more precise, we consider the map:

ι d : S k (N/d) 2 → S k (N )
given by (f, g) → f (q) + g(q d ). Then we define:

S k (N ) old := p|N ι p (S k (N/p) 2 )
and we denote by S k (N ) new the orthogonal complement of S k (N ) old with respect to the Petersson scalar product. Since those spaces are stable under the action of the Hecke operators we have that:

Theorem 1.4. The spaces S k (N ) old admits an orthogonal basis of eigenforms for h k,N . The space S k (N ) new admits an orthogonal basis of eigenforms for h k .

In particular we can fix a basis {f } of normalized eigenforms for the set S k (N, χ) new and we have the following decomposition:

S k (N, χ) new = f ∈{f } S k (N, χ)[f ],
which is a decomposition in one-dimensional spaces, i.e. S k (N, χ)

[f ] = C • f .
For the space of oldforms we have a different situation. In fact if f is new in level M | N we have that the space S k (N, χ)[f ] admits a basis of normalized eigenforms. In order to describe it, we consider the Hecke polynomial of f at a prime p defined as follows:

T 2 -a p (f )T + χ(p)p k-1 .
This polynomial admits two roots that we will call α p (f ) and β p (f ). It is easy to check that

f (q) -β p (f )f (q p ) ∈ M k (M p, χ) is a normalized eigenform which admits α p (f ) as eigenvalue for U p . Consider a choice µ := {µ p (f )} p|N/M ∈ {α p (f ), β p (f )} p|N/M . Then a basis of S k (N, χ)[f ] is determined by the set of elements of the form f µ (q) := f (q) - p|N/M µ p (f ) • f (q p ), (1.7) 
for all possible choices of µ. In particular, the space

M k (N, χ)[f ] has dimension 2 #{p|N/M } . Given an element g ∈ M k (N, χ)[f ],
we say that f is the associated primitive newform and that M is the conductor of g. Consider an integer k such that χ(-1) = (-1) k . If either k > 2 or k ≥ 1 and χ is non-trivial, then we define the holomorphic Eisenstein series Ẽk,χ of weight k and nebentype character χ to be the modular form defined by:

Eisenstein series

Ẽk,χ (z) = (m,n)∈Z 2 \{0} χ -1 (n) (mN z + n) k ∈ M k (N χ , χ).
It admits a Fourier expansion, but in this form it is not normalized (a 1 = 1). We define the normalized holomorphic Eisenstein series E k,χ (z) of weight k and nebentype character χ as:

E k,χ (z) = N k χ (k -1)! 2(-2πi) k τ (χ -1 )
• Ẽk,χ (z).

(1.8)

Proposition 1.5. Let σ k-1,χ denote the function on the positive integers defined by

σ k-1,χ (n) := d|n χ(d)d k-1 . Then E k,χ is a newform of level N χ and its q-expansion is E k,χ (z) := L(χ, 1 -k) 2 + n≥1 σ k-1,χ (n)q n ∈ M k (N χ , χ)
Dimostrazione. It is a classical result, see for instance [Hid93, Prop. 5.1], [Shi76, (3.4)], or [START_REF] Miyake | Modular forms[END_REF] Consider a multiple N of N χ and let χ N denote the character mod N induced by χ. For every k ≥ 1 such that χ(-1) = (-1) k , we define the non-holomorphic Eisenstein series of weight k and level N attached to the character χ N as the function on H × C given by the rule

Ẽk,χ N (z, s) = (m,n)∈Z 2 \{(0,0)} χ N -1 (n) (mN z + n) k • y s |mN z + n| 2s .
(1.9)

This series only converges for (s) > 1 -k/2, but we have the following result:

Theorem 1.6. The Eisenstein series Ẽk,χ N (z, s) admits a continuation to a meromorphic function of the variable s and satisfies a functional equation relating values at s and at 1 -k -s.

Dimostrazione. See [Hid93, §9.3, Theorem 1] or [Mia76, §7.2].
For any fixed s in the region of convergence, Ẽk,χ N (z, s) is a real analytic modular form. For k > 2, or k ≥ 1 but χ = 1, the series arising by setting s = 0 is holomorphic in z and gives rise to a modular form

Ẽk,χ N (z) := Ẽk,χ N (z, 0) ∈ M k (N, χ).
In a way similar to that of equation (1.8) we can define the normalization of Ẽk,χ N as follows:

E k,χ N (z) := N k (k -1)! 2(2πi) k τ (χ -1 ) • Ẽk,χ N (s) (1.10)
Proposition 1.7. The Eisenstein series E k,χ N (z) and E k,χ (z) have the same eigenvalues for all the good Hecke operators T n , n N .

Dimostrazione. It can be easily seen from [START_REF] Shimura | The special values of the zeta functions associated with cusp forms[END_REF](3.3)] that E k,χ N (z) is a linear combination of E k,χ (dz) for d | N/N χ , hence the result follows. This can also be seen by specializing the formula of [Mia76, Theorem 7.1.3] in our case. Notice that with respect to the latter reference, the normalization we adopt here is non-canonical. In fact a 1 (E k,χ N ) = 1 in general, but it always lies in Q χ .

We can explicitly describe the action of the Shimura-Maass derivative operator on the Eisenstein series with the following:

Proposition 1.8. For t < k/2 we have that Ẽk,χ N (z, -t) ∈ M nh k (N, χ).
In particular:

Ẽk,χ N (z, -t) = (k -2t -1)! (k -t -1)! (-4π) t δ t k-2t Ẽk-2t,χ N (z).
(1.11)

Dimostrazione. For any value of s, the series Ẽk,χ N (z, s) belongs to M an k (N, χ) and one verifies that:

δ k Ẽk,χ N (z, s) = - s + k 4π Ẽk+2,χ N (z, s -1).
Continue by induction on t and put s = 0 to get the result.

Algebraic modular forms

For this section we follow the approach of [START_REF] Katz | p-adic properties of modular schemes and modular forms, Modular functions of one variable[END_REF] as explained in [START_REF] Bertolini | Generalised Heegner cycles and p-adic Rankin L-series (with an appendix by Brian Conrad)[END_REF]. Let R be a ring in which N is invertible and let A be an elliptic curve over R.

We say that a couple (A, t) is an elliptic curve with Γ 1 (N )-level structure if t is a closed immersion of the scheme Z/N Z in A defined over R. This immersion gives rise to a section s : Spec(R) → A of order N which is the image of the section 1 of Z/N Z. We write E(N ) for the set of isomorphism classes of elliptic curves with Γ 1 (N )-level structure, where we consider isomorphisms of elliptic curves preserving the Γ 1 (N )-level structure.

We say that a triple (A/R, t, ω) is a marked elliptic curve if (A, t) is an elliptic curve with Γ 1 (N )-level structure and ω is a global section of the sheaf or relative differentials Ω 1 A/R over R. We write E(N ) for the set of isomorphism classes of marked elliptic curves, where the isomorphism is given by the pullback at the level of differentials.

Define the Tate elliptic curve Tate(q

) := G m /q Z over Z[[q]
] equipped with some level structure t defined over Q((q 1/d )), for some d | N , and the canonical differential ω can := du/u. Then the triple (Tate(q), t, ω can ) is defined over Q((q 1/d )). Definition 1.9. An algebraic modular form of weight k and level N defined over a field F is a rule which associates to every marked elliptic curve (A, t, ω) ∈ E(N ) R defined over an F -algebra R an element f (A, t, ω) ∈ R such that:

(1) (base change compatibility) For all F -algebra homomorphisms φ

: R → R , f ((A, t, ω) ⊗ R ) = φ(f (A, t, ω)); (2) (weight k condition) for all λ ∈ R × , f (A, t, λω) = λ -k f (A, t, ω); (3) (q-expansion) f (Tate(q), t, ω can ) ∈ F [[q 1/d ]]. We say that f is a cusp form if f (Tate(q), t, ω can ) ∈ q 1/d F [[q 1/d ]].
Consider now the open modular curve Y 1 (N ) classifying the elliptic curves with Γ 1 (N )-level structure and its compactification X 1 (N ) obtained by adding the cusps. For N ≥ 3, Γ 1 (N ) is torsion free, hence Y 1 (N ) is a fine moduli scheme admitting a smooth proper model over Z[1/N ], representing the functor R → E(N ) R , whose set of C-points can be identified with the quotient H/Γ 1 (N ). An algebraic modular form defines a modular form in the classical sense by mean of the following rule: for each τ ∈ H,

f (τ ) := f (C/ 1, τ , 1/N, 2πidz),
where z is the standard coordinate of H.

Let π : E → Y 1 (N ) be the universal elliptic curve with level N structure over Y 1 (N ) and ω := π * Ω E/Y1(N ) . An algebraic modular form f gives rise to an element of H 0 (Y 1 (N ), ω k ) via the following map:

ω f (A, t) := f (A, t, ω)ω k ,
where (A, t) ∈ Y 1 (N ) and ω is any generator for Ω 1 E/R . Assuming that N ≥ 5, the cusps of X 1 (N ) are regular in the sense of [DS05, §3.2], hence the line bundle ω admits an extension to X 0 (N ) characterized by the property that

H 0 (X 0 (N ) F , ω k ) = M k (N ) F .

Overconvergent modular forms and Coleman classicality result

Fix a prime number p N and continue writing X 1 (N ) for the rigid analytic space associated with the curve X 1 (N ) Qp . Take the Eisenstein series E p-1 as a lift of the Hasse invariant and consider the ordinary locus:

X 1 (N ) ord := {x ∈ X 1 (N )(C p ) | ord p E p-1 (x) = 0}
and also, for > 0:

X 1 (N ) < := {x ∈ X 1 (N )(C p ) | ord p E p-1 (x) < }.
Then for any complete subfield K ⊂ C p we can define:

M (p) k (N ) K := H 0 (X 1 (N ) ord K , ω k ), M oc k (N ) K := lim -→ >0 H 0 (X 1 (N ) < K , ω k ).
In particular,

M oc k (N ) K ⊂ M (p) k (N ) K .
On these spaces we have an action of the Hecke operators and Diamond operators and we can consider the bad Hecke operator U = U p and the V operator, acting on q-expansions by the rules:

U f (q) := n≥0 a pn q n , V f (q) := n≥0 a n q pn .
We also define the Serre derivative operator as follows:

d := q d dq : M oc k (N ) K → M oc k+2 (N ) K .
Finally, we define the p-depletion of f :

f [p] := (1 -V U )f (q) = p n a n q n .
that we can see as the derivative of the modular form F defined by:

F (q) := p n a n (f ) n q n , more precisely: dF = f [p] .
We call such a F the overconvergent primitive of f , it can be defined as d -1 f := lim t→-1 d t f . The operator U is completely continuous on M oc k (N ) K and it induces a slope decomposition. If f is an eigenform, U (f ) = a p (f ) • f and its slope is the p-order of its eigenvalue, i.e. ord p (a p (f )). We say that f has slope j if ord p (a p (f )) = j and that f is ordinary if ord p (a p (f )) = 0, i.e. if a p (f ) is a p-adic unit. Hida's ordinary projector is defined as the following operator:

e ord := lim n→∞ U n! .
(1.12)

This defines a Hecke equivariant projection from M oc k (N ) K to its ordinary subspace

M oc,ord k (N ) K := e ord M oc k (N ) K .
Consider now the roots α and β of the Hecke polynomial of f at p. We can order them in such a way that ord p (α) ≤ ord p (β). We can define two p-stabilizations of f as follows:

f α (q) := f (q) -βf (q p ) and f β (q) := f (q) -αf (q p ),
in particular we have that U f α = αf α and U f β = βf β . If f is ordinary, then ord p (α) = 0 and we call f α the ordinary p-stabilization of f . For an ordinary modular form we always have an ordinary p-stabilization.

In weight k = 1 we might have 2 distinct ordinary p-stabilizations.

Theorem 1.10. For every k ≥ 2, all overconvergent modular forms of slope strictly less than k -1 are classical. In particular, for every f ∈ M oc,ord k (N ) there exists a modular form g ∈ M k (N ) such that f is the ordinary p-stabilization of g. Dimostrazione. See [START_REF] Coleman | Classical and overconvergent modular forms[END_REF].

From this theorem we can identify M oc,ord k (N ) with the space M k (Γ 1 (N ) ∩ Γ 0 (p)). For a Dirichlet character χ modulo N , the above results can be summarized in the following diagram:

S k (N p, χ) Cp ⊂ S oc k (N, χ) ⊂ S (p) k (N, χ) ∩ ∩ ∩ M k (N p, χ) Cp ⊂ M oc k (N, χ) ⊂ M (p) k (N, χ).
(1.13)

CM points and elliptic units

Let K = Q( √ -D) be a quadratic imaginary field with ring of integers O K . For every c ∈ Z ≥1 we denote the unique order of conductor c in K by:

O c := Z + cO K .
In particular, O 1 = O K . We say that an elliptic curve 

E CM := ∪ c≥1 E CM (O c ).
Every elliptic curve with complex multiplication by O c can be seen as a point j(a) := j(A a ) ∈ X(1) via the j-invariant, hence E CM ⊂ X(1). We may write X(1) CM for the set of CM points on X(1) and, similarly, X 0 (N ) CM and X 1 (N ) CM for the fiber of X(1) CM via the obvious projection maps.

We have an action of Pic(O c ) on the set E CM (O c ) defined as follows:

a * A = A/A[a], for a ∈ Pic(O c ).
Since the action is simply transitive, if we fix A to be the elliptic curve with complex multiplication:

A := C/O c , (1.14)
we can obtain all the other ones via the action of the Picard group, hence we can define

A a = a * A = C/a -1 .
If H is the ring class field of K of conductor c we know that Pic(O c ) Gal (H|K) via the reciprocity map of global class field theory, arithmetically normalized, i.e. a prime ideal ℘ maps to the Frobenius element σ ℘ . The Shimura reciprocity law tells us that:

j(A a ) = σ a j(A).
Assumption 1.11. There exists a cyclic ideal N of O K of norm N i.e. such that O K /N Z/N Z. We also assume that N is coprime to c This is usually called Heegner hypothesis. The Shimura reciprocity law and the Heegner hypothesis ensure that A is defined over H, hence j(A a ) ∈ X(1)(H) and that the fibers in X 1 (N ) and X 0 (N ) are defined over H, too.

CM points on X 1 (N ): let us consider the map X 1 (N ) → X(1). We can consider the fiber of j(a) in X 1 (N ). It is the set of couples x(a) = (A a , t a ) where t a is a Γ 1 (N )-level structure induced by the choice of a section t a : Spec(H) → A[N].

Remark 1.12. The choice of the Γ 1 (N )-structure t a is not unique, then the map a → x(a) is not well defined since we might have several choices for the level structure. For this reason we introduce here a choice that will be useful in what follows. Consider x := x(O c ) = (A, t) where t is a choice of Γ 1 (N )structure. Then we have a natural map A → A a which induces a Γ 1 (N )-structure on A a : this determines a point x(a) ∈ X 1 (N ) uniquely. The set of points:

x(a) ∈ X 1 (N )(H)
defined in this way is in a single orbit for the action of Pic(O c ).

CM points and marked elliptic curves: it is useful to point out another choice that will be considered later on. Starting from a CM point x = x(O c ) ∈ X 1 (N ) we can define a marked elliptic curve x(O c ) := (A, t, ω A ) by fixing a nonzero ω A ∈ Ω 1 A/H . Once such a choice is made, we can define in a coherent way x(a) := (A a , t a , ω a ) such that (A a , t a ) = x(a) and ω a is chosen such that ω is its pullback via the map A → A a , so that x(a) are in a single orbit for the action of Pic(O c ).

CM points on X 0 (N ): In a similar way to that of X 1 (N ), we can consider X 0 (N ) → X(1) and the fiber of j(a) in X 0 (N ). It is a collection of points x(a) ∈ X 0 (N )(H) consisting in couples (A a , A a [N]). All of possible CM points of conductor c on X 0 (N ) are obtained from x with the action of Galois group Gal (H|K) and the Atkin-Lehner involutions as explained for instance in [START_REF] Gross | Heegner points on X 0 (N ), Modular forms[END_REF]. Such a point is often called in the literature a Heegner point. We use here the same notation as for X 1 (N ) since in what follows it will not create ambiguities.

Elliptic units: As explained in [DD06, §1], we fix a choice of a modular unit U ∈ O × Y0(N ) , that is, a holomorphic and nowhere vanishing function on Y 0 (N ) which extends to a meromorphic function on X 0 (N ). Then the evaluation of U at CM points is an algebraic number. More precisely, if we consider x ∈ X 0 (N ), then the element u := U (x) satisfies the following properties:

u ∈ O H [1/N ] × (σ -1)(u) ∈ O ×
H , for all σ ∈ Gal (H|K);

In a similar way we can define u(a) and all of these units are in the same orbit via the action of Pic(O c ).

Capitolo 2

Complex L-functions

In this chapter we introduce one of the main tools that we are going to use in our dissertation: the L-functions.

Their story started from the Riemman zeta function, the Dirichlet L-functions and the subsequent generalizations: zeta function of number fields, Hecke L-functions, etc. The theory of motives is a unifying framework which allows to undercover what an L-function should be in great generality.

The general philosophy is roughly the following: to a "motive" M we can associate an L-function L(M, s) of a complex variable s which is defined as an Euler product for each prime p. For a prime = p one considers the -adic realization M of the motive and defines:

L p (M, T ) = det(1 -T σ p |M Ip )
where σ p is the Frobenius element at p in G Q , and I p is the inertia subgroup at p. The L-function associated to M is then:

L(M, s) := p L p (M, p -s ) -1 .
This L-function (conjecturally) admits a meromorphic continuation and a functional equation. The study of the special values of L(M, s) outside the region of definition contains key information on the motive M and leads to a better understanding of its properties. We have seen in the introduction the prototypical examples which are the analytic class number formula (where the motive is a number field) and the Birch and Swinnerton-Dyer conjecture (where the motive is an elliptic curve defined over a number field). Our main motivation in this dissertation is the Birch and Swinnerton-Dyer conjecture and its equivariant refinement (see Chap. 4). All these are special cases of the (much) more general equivariant Tamagawa number conjecture (ETNC) for motives.

Although the theory of motives and motivic L-functions is a very active and deep field of study, it will be sufficient for our purposes to introduce L-functions in terms of compatible systems of λ-adic representations. Nevertheless, the compatible systems we are going to treat arise from motives (of an elliptic curve, of a modular form, excetera). For this reason we will sometimes talk about the associated motive as the object from which the compatible system that we are treating arise, without any further explaination about the nature of motives. Given a compatible system of λ-adic representations V , its L-function is defined as:

L(V, s) = p Φ p (p -s )
where Φ p (p -s ) are the Euler factors of L(V, s). They are quite simple polynomials evaluated at p -s . This L-function is a product indexed by the finite places but we can complete it with a factor at infinity L ∞ (V, s), a product of gamma functions which is strictly dependent on the object M that generates the compatible system V .

In particular we will need the L-functions associated with modular forms, Hecke characters and Artin Representations. The other L-functions will arise from those three cases by tensoring the associated compatible systems of λ-adic representations. Most important to our discussion will be the Rankin double product L-function and the Garrett triple product L-function.

Compatible systems of λ-adic representations

Let G be a profinite group and let E be a topological field. A representation of G of dimension n with coefficients in E is a continuous group homomorphism:

ρ : G → GL n (E).
It is equivalent to ask for an n-dimensional vector space V over E on which G acts continuously and linearly.

Given two representations ρ and ρ of G whose underlying vector spaces are V and V , and given a group extension G ⊂ G, we can define new representations using linear algebra operations, for example:

• the dual representation (or contragradient representation) ρ ∨ whose underlying vector space is V ∨ = Hom E (V, E);

• the direct sum representation ρ ⊕ ρ , whose underlying vector space is V ⊕ V ;

• the tensor product representation ρ ⊗ ρ , whose underlying vector space is V ⊗ V ;

• the induced representation from G to G Ind e G G (ρ), associated with the vector space

V ⊗ E[G] E[ G];
• the symmetric square representation Sym 2 (ρ) which is the subrepresentation of V ⊗V invariant under the map (v, w) → (w, v);

• the adjoint representation Ad(ρ), whose underlying vector space is the space of trace zero endomorphisms of V , End 0 (V );

• the determinant representation det ρ, whose underlying vector space is ∧ n V .

We will deal with Galois representations which are representations of the absolute Galois group 

G K = Gal (K sep |K) of some field K. A Galois
V I = {v ∈ V | v σ = v, ∀σ ∈ I}.
This is a sub vector space of V and it defines a representation ρ I . We say that ρ is unramified if ρ = ρ I (i.e. if ρ(I) = {1}), otherwise we say that ρ is ramified. Denote by σ p the arithmetic Frobenius of G K , i.e. a lift of the Frobenius morphism which acts on the residue fields as x → x #O K /m K .

We define the characteristic polynomial of ρ as:

Φ(ρ)(T ) := det(1 -T ρ(σ)| V I ) ∈ E[T ] We say that ρ is integral if φ(ρ)(T ) ∈ O E [T ].
If K is a number field, we say that ρ :

G K → GL n (E) is unramified at ℘ ⊂ O K if ρ| G K℘ is
unramified and that it is ramified at ℘ otherwise. We define the characteristic polynomial of the Frobenius at ℘ as:

Φ ℘ (ρ) := Φ(ρ| G K℘ ) ∈ E[T ]
For unramified primes, the degree of the characteristic polynomial equals the dimension of the representation while for ramified primes it does not exceed it. Assume that E is a number field and λ is a finite place of E whose norm is = Nλ. A family of λ-adic representations is a collection V = {ρ λ : G K → GL n (E λ )} indexed by the finite places λ of E (to ease the notation we drop the index).

Definition 2.1. A compatible system of λ-adic representations of K is a family of λ-adic representations V = {ρ λ } such that:

(1) there exists a finite set S of places of K, independent on , such that each representation ρ λ is unramified outside S ∪ {L | };

(2) the characteristic polynomials Φ ℘ (ρ λ ) are in E[T ]. Moreover they do not depend on λ, if ℘ .

The minimal set S for which this holds is the exceptional set of V and the primes ℘ ∈ S (resp. ℘ / ∈ S) are called bad primes (resp. good primes) of V . Since a compatible system of λ-adic representations is essentially a collection of vector spaces, we can consider all of the fundamental operations that we can do with vector spaces, as seen above. In particular we can take the dual, the direct sum, the tensor product, the induced, the symmetric square, the adjoint, etc.

Up to an extension of the scalars in E, there is an obvious notion of isomorphism of representations. It is important to remark that the characteristic polynomials are invariant under isomorphism so that we can consider an isomorphism class of compatible systems of λ-adic representations and we still denote them by V .

Let V be an isomorphism class of compatible systems of λ-adic Galois representations of K, with exceptional set S and characteristic polynomials Φ ℘ (T ). Then we can associate to V an L-function L(V, s) defined as an Euler product as follows:

L(V, s) := ℘ Φ ℘ ((N℘) -s ) -1 .
We will refer to the factors Φ ℘ ((N℘ -s )) as the good Euler factors of L(V, s) if ℘ / ∈ S and as the bad Euler factors of L(V, s) if ℘ ∈ S. For this L-function we have the following properties as for the Artin formalism:

L(V 1 ⊕ V 2 , s) = L(V 1 , s)L(V 2 , s), L(Ind L K V, s) = L(V, s)
In general the L-function associated with a compatible system V is only defined for (s) 0, but in all of the cases of interest for us it will admit a meromorphic continuation to the complex plane. In order to describe the functional equation one needs to consider the completed L-function which involves the presence of the Gamma factors:

Γ R (s) := Γ(s/2) π s/2 , Γ C (s) := 2Γ(s) (2π) s .
(2.1)

CAPITOLO 2. COMPLEX L-FUNCTIONS

We define the completed L-function as:

* (V, s) = L ∞ (V, s)L(V, s),
where L ∞ (V, s) is an appropriate product of the above gamma factors. In the cases we consider, the L-function admits a functional equation which is of the following form:

Λ(V, s) = ε(V )Λ(V ∨ , w -s).
where ε(V ) is a complex number of norm one and Λ(V, s) = A(V ) s/2 L * (V, s), for a well defined positive integer A(V ). We do not describe here the general recipe for L ∞ (V, s) nor we will say more about ε(V ) or A(V ). Instead we will give the explicit recipe of these objects in the specific cases we will treat. Notice that neither the functional equation nor the meromorphic continuation are known to hold in general! The proof of these properties is often obtained from an explicit integral representation of the L-function and this integral representation is not known to exist in general. We now briefly discuss the main sources of examples that will appear during the rest of our dissertation.

1) The compatible system arising from an Artin representation ρ : G K → GL n (C). Since ρ has finite image, it takes value in a number field. Hence, by localization, it gives rise to a collection of λ-adic representations for every λ. This obviously defines a compatible system V (ρ) and we have:

L(V (ρ), s) = L(ρ, s). (2.2)
2) The compatible system arising from a character of the ideal class group of a quadratic imaginary number field K (a finite order Hecke character for K). Such a character:

ψ : Cl K → C × (2.3)
can be seen as a Galois character of G K via the reciprocity law of class field theory, which sends a prime ideal ℘ to the arithmetic Frobenius σ ℘ . By abuse of notation, we still call ψ the associated Galois character so that ψ(℘) = ψ(σ ℘ ). In this way ψ is an Artin representation, hence it induces a compatible system V (ψ) and:

L(V (ψ), s) = L(ψ, s) := ℘ 1 - ψ(℘) N℘ s -1
The exceptional set S consists of the primes dividing D K . In this case L ∞ (ψ, s) = Γ C (s). We will see the more general case of the Hecke characters of quadratic imaginary field in the next section.

3) The compatible system arising from a modular form

f ∈ S k (N f , χ f ), for k ≥ 1.
Recall that a representation is said to be odd if the image of the complex conjugations of G Q has determinant -1. The results of Shimura, Deligne and Serre-Deligne associate to any cuspidal modular form f an irreducible, odd and 2-dimensional -adic Galois representation of G Q such that for all primes p N the characteristic polynomial at p is given by:

Φ p (ρ)(T ) = T 2 -a p (f )T + χ(p)p k-1
These representations actually define a compatible system of representations V = {ρ f, } for which:

L(V (f ), s) = L(f, s) (2.4)
The exceptional set S is composed by the primes dividing the level N f . In this case, L ∞ (f, s) = Γ C (s)

In the discussions which follow it is going to be important to distinguish very similar L-functions. For this reason we introduce more notation. We will call an L-function primitive if it is the L-function associated with a compatible system of Galois representations V . We will denote it by L(V, s). We will call an L-function imprimitive if it is defined by the same Euler product of L(V, s) for almost all primes. In particular if we remove the Euler factor corresponding to the set of primes above N , we will denote the corresponding L-function by L N (V, s). Sometimes imprimitive L-functions are a little bit trickier and they are obtained by substituting the standard bad Euler factors with some other term. Altought we will not use in general the standard notation, it is worth to remind that those imprimitive L-functions are often denoted by D S (V, s) (or simply D(V, s) when there is no ambiguity arising from the choice of the bad Euler factors). In particular we can write:

L N (V, s) = Eul N (V, s)L(V, s),
and

D S (V, s) = Eul S (V, s)L(V, s)
where Eul N (V, s) = ℘∈M Φ ℘ ((N℘) -s ) and Eul S (V, s) is an adequate elementary product of bad Euler factor depending on the choice of D S (V, s).

Hecke characters and L-functions

Let K/Q be a number field and denote by Σ K = Hom(K, Q) the set of infinite places of K (remember that we see Q ⊂ C via our fixed embedding). We say that Z[Σ K ] is the set of infinity types. Any element γ ∈ Z[Σ K ] can be written as:

γ = σ∈Σ K κ σ σ.
Let c ⊂ O K be an integral ideal. Let I c denote the group of fractional ideals of K that are coprime to c and J c := {(α) | α 0, α -1 ∈ c}, where α 0 means that σ(α) > 0 for every real embedding σ ∈ Σ K ).

Definition 2.2. A Hecke character of infinity type γ ∈ Z[Σ K ] for K is a homomorphism

ψ : I c -→ C × , such that ψ((α)) = α γ = σ σ(α) κσ , ∀α ∈ J c .
The largest ideal c ψ for which ψ is a Hecke character modulo c ψ is called conductor of ψ.

Consider the norm characters of Q and K defned by:

N((a)) = |a|, N K = N • N K Q
and the trivial character 1 K for any number field K. Their infinity types are, respectively, 1, σ σ and 0. They all have trivial conductor and their image lies in the positive real numbers.

If γ = 0 we say that ψ is a finite order character. Such a character factors through I c /P c , where P c is the set of principal ideals coprime with c. For this reason, it can be seen as a character of G K via the reciprocity map as explained in the previous section.

Given two Hecke characters ψ 1 , ψ 2 : I c → C of infinity type γ, their quotient ψ = ψ 1 /ψ 2 is an Hecke character of infinity type 0. Hence, given an Hecke character of infinity type γ, all the other characters with the same infinity type can be recovered multiplying by a finite order Hecke character.

Definition 2.3. Consider an ideal c ⊂ c ψ . We define the L-function associated with the Hecke character ψ to be defined by the Dirichlet series:

L c (ψ, s) = a⊂O K (a,c)=1 ψ(a) N K (a) s = (℘,c)=1 1 - ψ(℘) N K (℘) s -1
.

In particular, L(ψ, s) := L c ψ (ψ, s) is the primitive L-function associated with ψ.

It is a classical result due to Hecke that the L-function L c (ψ, s) associated with the Hecke character ψ admits a meromorphic continuation to C and a functional equation relating values at s and 1 -s. This result can be found in [Lan70, XIII and XIV] proved both in the classical way and by means of Tate's argument (see also Tate's thesis, [START_REF] Cassels | Algebraic Number Theory[END_REF]XV]). From the definitions it is easy to verify that for any k ∈ Z we have L(ψ, s) = L(ψN k K , s + k).

(2.5)

There exists a number w(ψ) called weight of ψ such that κ σ + κ σ = w(ψ), for all σ. We define the central character of ψ, denoted by ε ψ , to be an Hecke character of Q (which can be seen as a Dirichlet character) such that:

ψ| Q = ε ψ N w(ψ) K
.

We now restrict our attention to the case where

K = Q( √ -D
) is an imaginary quadratic field of discriminant -D. For this, we fix an embedding σ : K → C so that the only other complex embedding is given by σ. In this way, we simply write α instead of σ(α). In particular, a Hecke character ψ of K of infinity type κ 1 σ + κ 2 σ is given on J c by ψ((α)) = α κ1 ᾱκ1 . Thanks to our choice of σ : K → C we will write (κ 1 , κ 2 ) for the infinity type of such a character.

For any Hecke character ψ of infinity type (κ 1 , κ 2 ) define ψ (a) = ψ(a), where x denotes complex conjugation. We say that ψ is self-dual (or anticyclotomic) if ψ = ψ . This forces κ 2 = -κ 1 so that an anticyclotomic character has infinity type (κ, -κ).

The following lemma is well known. Given a Hecke character of K of infinity type (κ -1, 0) (or (0, κ -1), we can associate to it a theta series as follows: define the quantities a n (ψ) =

a∈I n c ψ ψ(a),
where I n c ψ is the set of the invertible ideals in I c ψ with norm n. Define also a 0 (1) = h K /w K and a 0 (ψ) = 0 otherwise. As shown in [Zag08] or [START_REF] Kani | The space of binary theta series[END_REF], the q-expansion

θ ψ := n≥0 a n (ψ)q n = n≥0 a n (θ ψ )q n ∈ M κ (D K N K Q (c ψ ), χ K ε ψ ) (2.6) defines a normalized newform of weight κ, level D K N K Q (c ψ ) and nebentype χ K ε ψ . Moreover θ ψ is Eisenstein if and only if ψ = ψ ; otherwise θ ψ is a cusp form.
Since θ ψ is a modular form we can associate to it the L-function

L(θ ψ , s) := n≥1 a n (θ ψ ) n s .
From the definitions it is easy to see that L(θ ψ , s) = L(ψ, s). In fact the compatible systems Ind Q K (ψ) and V (θ ψ ) are the same. We will consider the completed L-function L * (ψ, s) = L ∞ (ψ, s)L(ψ, s), where L ∞ (ψ, s) = Γ C (s).

Double product L-function and Rankin's method

2.3.1 Classical Rankin's L-function Let > k > 0 and consider g = n≥1 a n (g)q n ∈ S (N, χ g ) and f = n≥1 a n (f )q n ∈ M k (N, χ f )
We do not assume g and f to be newforms, but we do assume them to be eigenforms for all good and bad Hecke operators. Set χ := (χ g χ f ) -1 and let g * = n≥1 ān (g)q n ∈ S (N, χ -1 g ) denote the modular form whose Fourier coefficients are the complex conjugates of those of g. We have that a p (g * ) = a p (g ⊗ χ g ) for almost all p.

For a rational prime q we let (α q (g ), β q (g )) denote the pair of roots of the Hecke polynomial:

T 2 -a q (g)T + χ g,N (q)q -1 that we label in such a way that ord q (α q (g)) ≤ ord q (β q (g)). Note that (α q (g), β q (g)) = (a q (g), 0) when q | N . If the weight is = 1 and q N then both α q (g) and β q (g) are q-units. In that case we just choose an arbitrary ordering of this pair. Adopt similar notations for f . The Rankin L-function of the convolution of g and f is defined as the Euler product

L(g ⊗ f, s) = q L (q) (g ⊗ f, s), (2.7) 
where q ranges over all prime numbers and

L (q) (g ⊗ f, s) =(1 -α q (g)α q (f )q -s ) -1 (1 -α q (g)β q (f )q -s ) -1 × (1 -β q (g)α q (f )q -s ) -1 (1 -β q (g)β q (f )q -s ) -1 .
Recall that our normalization of the Petersson scalar product on the space of real-analytic modular forms S an (N, χ) × M an (N, χ) is given by equation (1.5):

φ 1 , φ 2 ,N := Γ0(N )\H φ 1 (z)φ 2 (z)y dxdy y 2 .
(2.8)

Proposition 2.5 (Shimura). For all s ∈ C with (s) >> 0 we have: This proposition and the functional equation for the Eisenstein series (theorem 1.6) yield the analytic continuation and the functional equation for the L(f ⊗ g, s).

L(g ⊗ f, s) = 1 2 (4π) s Γ(s) g * (z), Ẽ -k,χ N (z, s -+ 1) • f (z) ,N ( 
Now we want to replace Ẽk-,χ N with a rational modular form having coefficients in Q χ . To do this we essentially follow the computation of [START_REF] Bertolini | Beilinson-Flach elements and Euler Systems I: syntomic regulators and p-adic Rankin L-series[END_REF]. Choose integers m, t such that

= k + m + 2t and set j = ( + k + m -2)/2 = -t -1.
For m ≥ 1 and t ≥ 0, evaluating equation (2.9) at s = j and using equations (1.11) and (1.10) one finds that

f Ran ( , k, m) • L(g ⊗ f, j) = g * (z), δ t m E m,χ N (z) • f (z) ,N , (2.10) 
where

f Ran ( , k, m) = (-1) t (m + t -1)!(j -1)!(iN ) m 2 -1 (2π) +m-1 • τ (χ -1 ) . (2.11) One could consider the completed L-function L * (f ⊗ g, s) = L ∞ (f ⊗ g, s)L(f ⊗ g, s)
, where:

L ∞ (f ⊗ g, s) = Γ C (s)Γ C (s -k + 1). Since L ∞ (f ⊗ g, j) = 4(m + t -1)!(j -1)! (2π) +m-1 ,
we could restate equation (2.10) in the following manner:

(-1) t (iN ) m 2 +1 τ (χ -1 ) L * (f ⊗ g, j) = g * (z), δ t m E m,χ N (z) • f (z) ,N .
(2.12)

Remark 2.6. The L-function above is actually very close to the L-function associated with the compatible system of Galois representations given by:

V (f, g) := V (f ) ⊗ V (g).
Since the eigenvalues of the Frobenius at p are exactly

{ α p (f )α p (g), α p (f )β p (g), β p (f )α p (g), β p (f )β p (g) },
the good Euler factors of L(V (f, g), s) coincide to those of L(f ⊗g, s). Then L(f ⊗g, s) is an imprimitive Lfunction associated to V (f, g). This means that the behaviors of L(f ⊗g, s) and L(V (f, g), s) are essentially the same, but there might be a discrepancy of bad Euler factors, so that:

L(f ⊗ g, s) = Eul N (f, g, s)L(V p (f, g), s)
where Eul N (f, g, s) is a finite product of Euler factors. The Euler factor can be trivial, for instance in the case when g is a theta series defined by an Hecke character of an imaginary quadratic field.

The Gross-Zagier formula

For more details we suggest to have a look at [START_REF] Darmon | Rational points on modular elliptic curves[END_REF]. Let us now consider an elliptic curve E defined over Q of conductor N and a quadratic imaginary field K = Q( √ -D). Consider the following Heegner hypothesis:

Assumption 2.7 (HH). There exists a cyclic ideal N ∈ O c of order N , i.e. O c /N Z/N Z.

As we have seen in section 1.7, this implies the existence of a point x ∈ X 0 (N ) arising from an elliptic curve with complex multiplication by O c . We fix once and for all a choice of this point.

The theorem of modularity ensures a parametrization π : X 0 (N ) → E defined over Q as well as the existence of a modular form f ∈ S 2 (N, 1) such that:

L(f, s) = L(E, s).
Take a finite order anticyclotomic Hecke character ψ. By theorem 2.4 it is a character of Gal (H|K) for H ring class field of conductor c associated with the order O c of conductor c ∈ Z ≥1 . Write E(H) C := E(H) ⊗ C, define P := π(x) and consider the point:

P ψ := σ∈Gal (H|K) ψ -1 (σ)P σ ∈ E(H) ψ C , (2.13) 
where:

E(H) ψ C := {P ∈ E(H) C | P σ = ψ(σ)P }. Consider also the L-function: L(E/K, ψ, s) := L(V (f ) ⊗ V (ψ), s),
which coincides with L(f ⊗ θ ψ , s) under our assumption (HH). The Rankin method gives the analytic continuation and the functional equation. The Heegner hypothesis forces the L-function to have odd order at s = 1 and the theorem of Gross-Zagier guarantees that:

L (E/K, ψ, 1) . = P ψ , P ψ NT ,
where the dotted equal implies the presence of an unspecified non-zero constant and -, -NT is the Néron-Tate height pairing.

Theorem 2.8. If ord s=1 L(E, ψ, s) = 1, then dim C E(H) ψ C = 1 and P ψ is a generator. Dimostrazione. See the main theorem of [START_REF] Bertolini | Kolyvagin's descent and Mordell-Weil groups over ring class fields[END_REF].

Petersson product and L-functions: comparison of various formulae

A classical result due to Petersson (see [Pet49, Satz 6]) relates the special value of L-functions to the Petersson inner product. We have already seen such a result in proposition 2.9. Following the article [START_REF] Shimura | The special values of the zeta functions associated with cusp forms[END_REF] we want to derive a formula for the Petersson product in the specific case of theta series associated with Hecke characters ψ of imaginary quadratic fields and integer conductor c. More specifically, if ψ has infinity type ( -1, 0) (or (0, -1)), we have:

θ ψ , θ ψ . = L(ψ 2 , ),
where the dotted equal means that we hide a constant. In this section we want to explicitly write down the constant in terms of the fundamental invariants of the quadratic order O c = Z + cO K . This result can be derived directly from [Hid81, Theorem 5.1], but we prefer to give a direct argument here which only relies on the result of Petersson.

For this, given two elements f ∈ S k (N, χ f ) and g ∈ M (N, χ g ) we can consider their convolution L-function D(g, f, s) defined by:

D(f, g, s) := n≥1 a n (f )a n (g) n s
whose Euler product is given by factors of the form:

D (p) (f, g, s) = 1 - α p (f )α p (g)β p (f )β p (g) p 2s (2.14) × 1 - α p (f )α p (g) p s -1 1 - β p (f )α p (g) p s -1 1 - α p (f )β p (g) p s -1 1 - β p (f )β p (g) p s -1
.

With our notation χ = (χ g χ f ) -1 it is easy to check that:

L(f ⊗ g, s) = L N (χ -1 , 2s -k -+ 2) • D(f, g, s),
where L N (χ, s) indicates the Dirichlet L-functions with factors at p | N removed. We have already seen in proposition 2.9 that we have a relation between L-functions and Petersson product of real analytic modular forms. The equation (2.5) of [START_REF] Shimura | The special values of the zeta functions associated with cusp forms[END_REF] can be derived from the above result by computing the residue at k = and it states that:

Res s=k D(f, g, s) = 3 π (N ) (4π) ( -1)! f * , g , where (N ) = [SL 2 (Z) : Γ 0 (N )] is the index of Γ 0 (N ) inside SL 2 (Z).
The factor 3/(π (N )) is not present in Shimura's paper because he adopts a different convention for the normalization of the Petersson product.

If we take f = g * = a n (g)q n to be the modular form obtained via the complex conjugation of the Fourier coefficients of g, then we find:

Res s=k D(g * , g, s) = 3 π (N ) (4π) ( -1)! g, g .
(2.15)

Notice that in [Shi76, (2.5)] the complex conjugation doesn't appear. That is a misprint, since the formula is derived from [Shi76, (2.3)], and it was already noticed by Hida in [Hid81, §5]. We introduce the symmetric square L-function associated with the modular form g. We define it by the following Euler product:

L(Sym 2 (g), s) = p 1 - α p (g) 2 p s -1 1 - α p (g)β p (g) p s -1 1 - β p (g) 2 p s -1
.

(2.16)

The result in [Hid81, §5] is expressed in terms of L(Sym 2 (g) ⊗ χ -1 g , s) which can also be seen as an imprimitive adjoint L-function.

Lemma 2.9. If g = g * we have that:

g, g = (N )π 3 • ( -1)! (4π) • L N (χ, 1) L N (χ 2 , 2) • Res s= L(Sym 2 (g), s)
Dimostrazione. Starting from equation (2.14), if we put f = g we find:

D(g, g, s) = 1 - α p (g) 2 β p (g) 2 p 2s 1 - α p (g) 2 p s -1 1 - α p (f )β p (g) p s -2 1 - β p (g) 2 p s -1
.

(2.17)

Using the fact that α p (g)β p (g) = χ(p)p -1 and working on the Euler products one can easily derive the following decomposition of L-function:

L N (χ 2 , 2s -2 + 2) × D(g, g, s) = L(Sym 2 (g), s) × L N (χ N , s -+ 1). (2.18)
We conclude by taking residues and using formula (2.15).

We now specialize the discussion to the case of a theta series of an imaginary quadratic field associated with an Hecke character of integral conductor c and infinity type ( -1, 0). Lemma 2.10. Consider g = θ ψ ∈ S (Dc 2 , χ K ), where ψ is a Hecke character of an imaginary quadratic field K = Q( √ -D) of conductor c ∈ Z and infinity type ( -1, 0), for > 1. Then we have the following decomposition of L-functions:

L(Sym 2 (g), s) = L(ψ 2 , s) • ζ Dc 2 (s -+ 1)
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Dimostrazione. Remember that α p (g)β p (g) = χ K (p)p -1 . To prove the decomposition, we rearrange the Euler factors in four categories and we write:

• p = ℘ 2 , for those primes which ramifies, p | D and do not divide the conductor c. For these primes, ψ(p) = ψ 2 (℘) = α p (g) 2 = p -1 (see [Hid81, (5.10a)];

• p = ℘ ℘, for those primes which split in K and do not divide c;

• p = ℘ for those primes which are inert in K and do not divide c. For these primes we have α p (g) 2 = β p (g) 2 = p -1 and ψ(p) = p -1 ;

• p | c for the primes dividing the conductor of ψ, for which α p (g) = β p (g) = 0.

Then we have:

L(Sym 2 (g), s) = p=℘ 2 1 - α p (g) 2 p s -1 × p=℘ ℘ 1 - α p (g) 2 p s -1 1 - β p (g) 2 p s -1 1 - p -1 p s -1 × p=℘ 1 - p -1 p s -2 1 + p -1 p s -1
and

L(ψ 2 , s) = p=℘ 2 1 - ψ 2 (p) p s -1 × p=℘ ℘ 1 - ψ 2 (℘) p s -1 1 - ψ 2 ( ℘) p s -1 × p=℘ 1 - p -1 p s -1 1 + p -1 p s -1
.

An easy comparison of the factors shows that the discrepancy is exactly:

p Dc 2 (1 -p -1-s ) = ζ Dc 2 (s -+ 1).
Theorem 2.11. Consider the theta series θ ψ ∈ S k (Dc 2 , χ K ) as in the previous lemma and assume that (D, c) = 1. Then we have:

θ ψ , θ ψ = a Pet ( ) • f Pet ( ) • L(ψ 2 , ), (2.19) 
where:

a Pet ( ) = ( -1)! π and f Pet ( ) = h c √ Dc 2 ω c • 2 2-2 .
Here h c = #Pic(O c ) and ω c is the number of roots of unity of O c = Z + cO K .

Dimostrazione. Thanks to lemma 2.10 we have that:

Res s= L(Sym 2 (g), s) = L(ψ 2 , ) p|Dc 2 1 - 1 p .
(2.20)

Since θ ψ has complex multiplication by χ K , i.e. a p (g) = a p (g ⊗ χ K ) for all p Dc 2 , we have that g = g * . Hence we can apply lemma 2.9 that, with equation (2.20), gives us:

θ ψ , θ ψ = (Dc 2 )π 3 • ( -1)! (4π) • L Dc 2 (χ K , 1) ζ Dc 2 (2) p|Dc 2 1 - 1 p L(ψ 2 , k).
Combining the Dirichlet class number formula with the classical formula:

h c = ω c ω K h k c p|c 1 - χ K (p) p we can deduce that L N (χ K , 1) = 2πh c /ω c √ Dc 2 . Since moreover ζ N (2) = π 2 6 p|Dc 2 (1 -1/p 2 ) we find: θ ψ , θ ψ = (Dc 2 )π 3 • ( -1)! (4π) • 12πh c √ Dc 2 ω c π 2 Dc 2 p|Dc 2 1 + 1 p L(ψ 2 , ).
We get the result noticing that (N ) = N p|N (1 + 1/p).

The argument given above is in fact slightly different to that of [START_REF] Hida | Congruences of cusp forms and special values of their zeta functions[END_REF]§5]. Hida uses the L-function L(Sym 2 (g) ⊗ χ K , s) so that the same result reads as follows:

θ ψ , θ ψ = ( -1)! 2 2 -2 π • h c √ Dc 2 ω c • D φ(D) • L(ψ 2 χ K , ), (2.21) 
where φ is the Euler function. Since D/φ(D) = p|D (1 -1/p) -1 , it coincides with the bad factors of L(ψ 2 , ) hence it is equivalent to our result. For a general theta function one can also find a closed formula, but it involves special values of Dirichlet L-function that do not enjoy a straightforward interpretation in terms of the above invariants. Hence, for a more general theta series we can always write:

θ ψ , θ ψ = a Pet ( ) • f Pet ( ) • L(ψ 2 χ g , ), (2.22)
where a Pet ( ) = ( -1)! π and f Pet ( ) = A ψ • 2 2-2 , for a factor A ψ which is independent on . We want to conclude the section by recalling the theorem of Hida that holds for any modular form: Theorem 2.12. Let g ∈ S (N, χ) be a normalized newform, then:

L(Sym 2 (g) ⊗ χ, ) = 2 2 π +1 ( -1)! • A g • g, g
where We might aswell restate the above theorems using the completed L-function instead. It is obtained by adding L ∞ (Sym 2 (g), s) = Γ R (s -+ 1)Γ C (s) and L ∞ (ψ 2 , s) = Γ C (s), so that:

A g = (φ(N ))/(N χ N • φ(N/N χ )) (
L * (Sym 2 (g) ⊗ χ, ) = 2 +1 A g g, g
(2.23)

L * (ψ 2 , ) = 2 -1 ω c h c √ Dc 2 θ ψ , θ ψ . (2.24)
Sometimes in the literature, the result of Hida is described using the adjoint L-function associated with g. In particular, since:

Ad(g) Sym 2 (g) ⊗ χ χ 1- cyc
we have that:

L(Ad(g), s) = L(Sym 2 (g) ⊗ χ, s + -1),
hence the formula can be written as:

L * (Ad(g), 1) = 2 +1 A g g, g .
(2.25)

Triple product L-function and Garrett's method

Let us consider three normalized and primitive cuspidal eigenforms

f = n≥1 a n (f )q n ∈ S k (N, χ f ), g = n≥1 a n (g)q n ∈ S (N, χ g ) and h = n≥1 a n (h)q n ∈ S m (N h , χ h ) of weights k, , m ≥ 2 such that χ g χ f χ h = 1. Let N := lcm(N f , N g , N h ) and let Q f gh := Q f Q g Q h be
the field generated by the Fourier coefficients of the three modular forms. We can consider the compatible system of Galois representations associated with the tensor product of the three representations of f , g and h, i.e.:

V p (f, g, h) = V p (f ) ⊗ V p (g) ⊗ V p (h).
Definition 2.13 (Garrett-Rankin triple product). We define the Garrett-Rankin triple product L-function to be the L-function associated with the compatible system of Galois representations V p (f, g, h) and we denote it by L(f ⊗ g ⊗ h, s).

Remark 2.14. Notice that we consider here the primitive L-function associated with V (f, g, h). In particular, the Euler factors at q N are given by the degree-8 polynomial:

L (q) (g ⊗ f, s) =(1 -α q (g)α q (f )α q (h)T ) -1 (1 -α q (g)β q (f )α q (h)T ) -1 × (1 -β q (g)α q (f )α q (h)T ) -1 (1 -β q (g)β q (f )α q (h)T ) -1 × (1 -α q (g)α q (f )β q (h)T ) -1 (1 -α q (g)β q (f )β q (h)T ) -1 × (1 -β q (g)α q (f )β q (h)T ) -1 (1 -β q (g)β q (f )β q (h)T ) -1
evaluated at T = q -s . On the contrary, if q | N the naive Euler factors at q defined by the above formula do not need to coincide with those of the L-function we are considering. For a precise recipe of the bad Euler factors, see [START_REF] Piatetski-Shapiro | Rankin triple L-functions[END_REF].

The result of Garrett (see [START_REF] Piatetski-Shapiro | Rankin triple L-functions[END_REF]) ensures that the L-function L(f ⊗ g ⊗ h, s), completed with the adequate factor at infinity L ∞ (f ⊗ g ⊗ h), admits a holomorphic continuation and functional equation of the following type:

Λ(f ⊗ g ⊗ h, s) = ε(f, g, h) • Λ(f ⊗ g ⊗ h, k + + m -2 -s)
The study of the global sign ε(f, g, h) of the functional equation is always an important part in the study of the L-function and its properties. In our specific case it gives us information about the vanishing of the function L(f ⊗ g ⊗ h, s) at the central point:

c = k + + m -2 2 .
The global sign for the functional equation of L(f ⊗ g ⊗ h, s) can be decomposed as a product of local signs:

ε(f, g, h) = q|N ∞ ε q (f, g, h).
The triple (k, , m) is said to be unbalanced if there is a dominant weight, i.e. if k ≥ + m (resp. ≥ k + m, resp. m ≥ k + ). In the case when none of the weights is dominant, we say that the triple (k, , m) is balanced. In [START_REF] Prasad | Trilinear forms for representations of GL(2) and local epsilon factors[END_REF] it is proven that

ε ∞ (f, g, h) = -1, if (k, , m) is balanced; +1, if (k, , m) is unbalanced.
From now on we will assume that the local signs ε v (f, g, h) are all equal to +1. In particular we shall assume that the triple of weights (k, , m) is unbalanced and that the dominant weight is , so that:

L ∞ (f ⊗ g ⊗ h, s) = Γ C (s)Γ C (s -k + 1)Γ C (s -m + 1)Γ C (s + 2 -k -m).
This implies of course that the global sign is +1 so that the order of vanishing at s = c must be even thanks to the functional equation. Notice that the condition χ f χ g χ h = 1 implies that k + + m must be even, hence we can write:

= k + m + 2t, t ≥ 0.
We define the trilinear period associated to the triple

( f , g, h) ∈ M k (N, χ f )[f ]×M (N, χ g )[g]×M m (N, χ h )[h]
as follows:

I( f , g, h) := g * , δ t k f • h N ,
The main results of Ichino , Watson and Woodbury says that there exists a choice of test vector ( f , g, h) such that:

|I( f , g, h)| 2 f, f g, g h, h = C(f, g, h) • L * (f ⊗ g ⊗ h, c) L * (Ad(f ), 1)L * (Ad(g), 1)L * (Ad(h), 1) (2.26)
where:

C(f, g, h) = C Pet • v|N ∞ C v ( f , g, h) ∈ Q × .
In fact the result of Ichino (cf. [START_REF] Ichino | Trilinear forms and the central values of triple product L-functions[END_REF]) guarantees the above equality for all of the possible choices of test vectors while the refinements of Watson and Woodbury (see [Wat02] and [START_REF] Woodbury | Trilinear forms and subconvexity of the triple product L-function[END_REF]) assure the rationality and non-triviality of the local factor involved in the product. Here C Pet is an absolute constant only depending on the choice of the normalization of the Petersson product while the C v ( f , g, h) are encoding data on the admissible representations of GL 2 (Q v ) and on the local components at v of f , g and h. In particular, the constant is independent on the weights. From this discussion we can derive the following:

Theorem 2.15 (Harris-Kudla, Ichino, Watson). For an unbalanced triple of modular forms (f, g, h) such that = k + m + 2t, t ≥ 0, there exists a triple of modular forms:

( f , g, h) ∈ M k (N, χ f )[f ] × M (N, χ g )[g] × M m (N, χ h )[h] such that f Gar (k, , m) • L(f ⊗ g ⊗ h, c) = |I( f , g, h)| 2 where f Gar (k, , m) = (c -1)!(c -k)!(c -m)!(c -k -m + 1)!π -2 • 2 1-3 -k-m C Gar and with C Gar = C( f , g, h)/(A f A g A h )
which is independent on the triple of weights (k, , m);

Dimostrazione. Starting from equation (2.26), substitute the adjoint L-function using equation (2.25) and make explicit the factor at infinity of L * (f ⊗ g ⊗ h, c).

Capitolo 3

p-adic interpolation of classical L-functions

The basic setting for the p-adic interpolation of a complex L-function L(M, s) is the following:

(1) one considers a set of special values for s ∈ U ⊂ C, which is large enough, and can see U as a subspace of a p-adically complete space U,

(2) the complex values L(V, s) for s ∈ U can be naturally seen as values in a p-adic Banach algebra A,

(3) those values enjoy good p-adic properties of continuity (or analyticity), then one can create a p-adic L-function L p (M ) : U → A via interpolation. This function satisfies an interpolation and defining property of the form:

L p (M )(s) = c(M, s) • L(M, s), ∀s ∈ U (3.1)
where c(M, s) is a fudge factor that we discuss in more detail below. This new L-function is supposed to encode data about the motive M which is the object of our study, even though it is not defined directly in terms of M . In particular, evaluating the function L p (M ) at a special point outside the region of interpolation U, the resulting value does not correspond anymore to a complex counterpart and might reveal new information about M . It is important to stress that in some cases L p (M ) strongly depends on the region of interpolation that one choses. Therefore, different choices for U could lead to the construction of very different p-adic L-functions arising from the same complex L-function.

There is another way to interpret this interpolation by p-adically varying the motive M , instead of the variable s. More precisely:

(1') fix a variable s, for instance s = 0, and p-adically deform the motive i.e. consider a family M := {M k } k indexed by a p-adically continuous weight variable k ∈ W such that M k0 = M for some k 0 ∈ W,

(2') prove that there exists a dense subset W cl ⊂ W containing k 0 such that the family of complex L-values L(M k , 0) lie in a p-adic Banach algebra A, (3') show that those values enjoy good p-adic interpolation properties.
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The result of this process is a p-adic L-function L p (M) : W → A which interpolates the motive in the following sense:

L p (M)(k) = c(M k ) • L(M k , 0), ∀k ∈ W cl . (3.2)
In particular, L p (M)(k 0 ) = c(M ) • L(M, 0). This kind of L-functions can be interpreted as a sort of p-adic analogous of the derivative of the classical L-function.

In the formulae (3.1) and (3.2) we did not explain in detail the fudge factors which are fundamental for the creation of the p-adic L-function. Some of those might come from the fact that one uses the completed or the uncompleted classical L-function, some might arise from a non-standard normalization of the Lfunction and some other are needed to actually make the p-adic interpolation possible. The latter are the most important in order to be able to realize the points (2), (2') and (3), (3') of the above discussion. In particular:

(2),(2') In order to perform a p-adic interpolation in an algebraic way one needs to remove the transcendental part of the complex L-function, without removing too much information with it. The periods are the canonical transcendental numbers generating an algebraic value out of the (a priori transcendental) special value L(M k , 0) in such a way that the resulting function still contains interesting data (we might pick the function itself as period, but the resulting p-adic analogue would not be so interesting...).

Deligne defines a critical motive M as a motive such that L(M, 0) is a critical value, i.e. such that the factor at infinity L ∞ (M, 0) is a non-zero number. For a critical motive, Deligne conjectures that the motivic period Per(M ) is the good candidate to canonically algebrize the special value L(M, 0), so that:

Per(M ) • L(M, 0) ∈ Q.
(3),(3') The Euler-like factors arise because in the Euler product definition of L there is Φ p (p -s ), the Euler factor at p. Since the function k → p k does not interpolate p-adically, we need to remove it in order to ensure continuity and perform the p-adic interpolation.

Putting everything together, the general (imprecise) form of a p-adic interpolation formula is the following:

L p (M)(k) = e(M k ) • a(k) • f(k) • Per(M k ) • L(M k , 0), ∀k ∈ W cl (3.3)
and this formula uniquely determines the p-adic L-function L p (M). Here

• e(M k ) denotes the Euler factors at p that we remove to perform the interpolation. Sometimes we will simply write e(k) to lighten the notation, when no confusion is created.

• a(k) are the terms which do not behave nicely p-adically arising from the usage of the complete L-function. In particular it will contain powers of π and factorials depending on the weight variable;

• f(k) are factors which contain the information about the normalization taken and they behave nicely p-adically (possibly after a wise choice of p);

Apart from the general philosophy, in practice one first needs to construct those p-adic L-functions and then prove the interpolation property. In this sense, a p-adic L-function is a power series in Z p [[T ]], which can be seen as the Amice transform of a bounded p-adic measure. It is not always an easy goal to achieve the construction and we will not enter in the details of these constructions, although we might give some brief explanations. In this chapter we want to introduce the p-adic L-functions that we need, explaining in details the domain, the region of interpolation and stressing the importance of the constants that we did not show here, expecially the periods. The outcome will be a list of p-adic L-function determined by their respective interpolation properties.

Complex multiplication and p-adic L-functions

Let us fix a quadratic imaginary field K = Q( √ -D). In this section we will introduce:

• Katz two variable p-adic L-function;

• Bertolini-Darmon-Prasanna p-adic L-function (BDP p-adic L-function from now on).

They interpolate special values of complex L-functions along an appropriate subspace of Σ K , the set of Hecke characters of K. In order to make the p-adic interpolation meaningful we need to endow the space Σ K with a p-adic topology that we describe briefly.

We first recall the adelic interpretation of the Hecke characters. A Hecke character ψ : I c → C × of infinity type (κ 1 , κ 2 ) can be seen as a character ψ A : A × K → C × on the idèle group of K, which is trivial on K × . The action of the character is described by:

ψ A (λ • x f • x ∞ ) := ψ A (x f ) • x -κ1 ∞ x -κ2 ∞ , ∀(λ, x f , x ∞ ) ∈ K × × K × K × ∞
where K ∞ = K ⊗ R and K × are the finite idèle. In particular, the data of ψ A is equivalent to the collection of local characters {ψ A,v } v , for all places v of K. For ψ ∈ Σ K , the correspondence ψ → ψ A is determined on ideals a coprime to the conductor c by the following formula:

ψ(a) = v|a ψ A,v (π v ) v(a) ,
where we denote by v both the place and the corresponding prime ideal by abuse of notation. In particular, since ψ A (α) = 1 for every α ∈ J c (in fact for every α ∈ K × ), we recover that ψ((α)) = α κ1 α κ2 . From now on we will denote by ψ both the classical Hecke character and its idèlic interpretation. Let us assume that ψ ∈ Σ K . From our definitions it follows that:

• the image of ψ is an algebraic number;

• on the set A (p) K of idèles prime to p, the image of the character lies in Z p . This implies that we can embed Σ K inside the set of continuous functions C(A (p) K , Z p ). The latter is naturally endowed with the compact open topology which is equivalent to the topology of uniform convergence on Z p . Then we denote by Σ K the completion of Σ K with respect to this topology.

In the definition of both Katz and BDP p-adic L-functions, the space of interpolation is some set Σ 0 ⊂ Σ K of characters whose image is bounded, i.e. there exists a finite extension F of Q p , with ring of integers O, such that the image of any ψ ∈ Σ 0 lies in O.

Periods and complex multiplication

Periods need some more explanations than the other constants described in equation (3.3). Hence we devote this subsection to the introduction of:

• the complex period Ω(A) and the p-adic period Ω p (A) associated to an elliptic curve A with complex multiplication by O K ;

• the complex period Ω(ψ) and the p-adic period Ω p (ψ) associated to an Hecke character ψ of infinity type (κ 1 , κ 2 ).

Since the theory of complex multiplication ensures us that every CM elliptic curve defines an Hecke character of infinity type (1, 0), it is not surprising that we have some relations among those periods.

The Ω(ψ) are the motivic periods associated to an Hecke character ψ of a quadratic imaginary field. While we do not treat the definition here, which is essentially due to Deligne and it can be found in [START_REF] Schappacher | Periods of Hecke characters[END_REF], we focus on their properties. In particular, the following proposition uncovers their importance: Proposition 3.1. If ψ is a Hecke character of K of infinity type (κ 1 , κ 2 ), κ 1 > κ 2 and m critical for L(ψ -1 , s). Then the ratio:

L(ψ -1 , m) (2πi) m Ω(ψ ) lies in the field Q ψ and the assignement ψ → L(ψ -1 ,m) (2πi) m Ω(ψ ) is G K -equivariant.
Dimostrazione. See [START_REF] Goldstein | Séries d'Eisenstein et fonctions L de courbes elliptiques à multiplication complexe[END_REF] and [START_REF] Blasius | On the critical values of Hecke L-series[END_REF].

In other terms, the motivic periods Ω(ψ) describe in the best way the transcendental part of the Hecke L-function. The reason for which we introduce at the same time the periods associated with A is the following proposition which explains the link between them: Proposition 3.2. If ψ is a Hecke character of K of infinity type (κ 1 , κ 2 ), then the ratio:

Ω(ψ ) (2πi) κ2 Ω(A) κ1-κ2 is algebraic. Dimostrazione. See [Sch88, II.1.8].
Moreover since we define

Ω p (ψ ) := Ω p (A) κ1-κ2
Ω(ψ ) (2πi) κ2 Ω(A) κ1-κ2 , the quotient Ω p (ψ )/Ω p (A) is also algebraic. Since we are only concerned with algebraicity properties, this allows us to only define the periods Ω(A) and Ω p (A) in order to proceed in the discussion.

We fix now the elliptic curve A := C/O K , which has complex multiplication by O K , and define the complex period Ω(A). The theory of complex multiplication implies that A is defined over H, the Hilbert class field of K. We chose a regular differential ω A ∈ Ω 1 (A/H) and we define the complex period Ω(A) as follows:

ω A = Ω(A) • 2πidz,
where z denotes the standard coordinate on C/O K . Notice that a different choice of ω A has the effect of multiplying the period by a scalar in H × , so that Ω(A) is only well defined in C × /H × . In particular, the transcendental part is independent on this choice.

To define the p-adic period Ω p (A) we consider the base change of A to C p via our fixed embedding F ⊂ C p . If we assume that A has good reduction at the maximal ideal of O Cp , then we can extend A Cp to a smooth and proper model A O Cp and we can complete along the special fiber to get the formal scheme A O Cp . We have a non-canonical isomorphism of formal schemes:

ι p : A → G m .
The canonical regular differential on G m is defined as du/u, where u is the standard coordinate G m . We can define the p-adic period Ω p (A) as follows:

ω A = Ω p (A) • ι * p (du/u).
Having fixed ω A , the choice ι p only affects the period Ω p (A) by a quantity in Z p × . Both the complex and the p-adic period depend H-linearly on the choice of the regular differential ω A . Since they depend upon it in the same way, their ratio is independent on this choice.

Katz p-adic L-function

Assume that D ≥ 7 and let c ⊆ O K be an integral ideal. Fix a prime p, coprime with c, that splits in K as p = ℘ ℘ (we chose ℘ as the prime defining the embedding K ⊂ Q p ).

Denote by Σ K (c) the set of Hecke characters of K of conductor dividing c. We say that a character ψ ∈ Σ(c) is a critical character if L(ψ -1 , 0) is critical in the sense of Deligne, i.e. L ∞ (ψ -1 , s) has no zeroes nor poles at s = 0 (see also the discussion at the beginning of the chapter). We define Σ crit (c) to be the set of critical characters. This set is naturally the disjoint union of the two subsets

Σ (1) crit (c) = {ψ ∈ Σ crit (c) of infinity type (κ 1 , κ 2 ), κ 1 ≤ 0, κ 2 ≥ 1}, Σ (2) crit (c) = {ψ ∈ Σ crit (c) of infinity type (κ 1 , κ 2 ), κ 1 ≥ 1, κ 2 ≤ 0}.
These sets are conjugates with respect to the involution ψ → ψ if and only if c = c. We denote by Σ crit (c) the completion of Σ crit (c) with respect to the compact open topology discussed at the beginning of the section. Since characters in Σ

(1) crit (c) can be p-adically approximated by characters in Σ

(2) crit (c) and viceversa, we have that:

Σ crit (c) = Σ (2) crit (c) = Σ (1)
crit (c) Katz constructs in [START_REF] Katz | p-adic interpolation of real analytic Eisenstein series[END_REF] a p-adic L-function by interpolating the suitably normalized values L(ψ -1 , 0) as ψ ranges over Σ

(2) K . More precisely, there exists a p-adic analytic function

L p (K) : Σ crit (c) -→ C p
which is uniquely characterized by the following interpolation property:

L p (K)(ψ) Ω p (A) κ1-κ2 = e K (ψ) • a K (ψ) • f K (ψ) • L c (ψ -1 , 0) Ω(A) κ1-κ2 , (3.4) for all ψ ∈ Σ (2) crit (c) of infinity type (κ 1 , κ 2 ), where e K (ψ) = (1 - ψ(℘) p )(1 -ψ -1 ( ℘)); a K (ψ) = (κ 1 -1)! π κ2 ; f K (ψ) = ω K 2 • √ D 2 κ2 .
This p-adic L-function satisfies the functional equation:

L p (K)(ψ) = L p (K)((ψ ) -1 N K ) (3.5)
as shown in [START_REF] Gross | On the factorization of p-adic L-series[END_REF].

The set Σ crit (c) also contains finite order anticyclotomic characters of conductor c dividing c, hence one can approximate them using characters within the region of interpolation. Recall the choice of an elliptic unit u done in section 1.7 and the Hilbert class field H of conductor c. Define:

u ψ := σ∈G H|K ψ -1 (σ)u σ ∈ (O × H ) Q ψ , if ψ = 1 any p-unit u ℘ ∈ O H [ 1 p ] × s.t. (u ℘ ) = ℘ h K , if ψ = 1 (3.6)
The following result is commonly known as Katz's Kronecker p-adic limit formula. It is an explicit formula for the value of L p (K) at a finite order character ψ of G K (cf. [Kat76, §10.4, 10.5], [Gro80, p. 90], [deS87, Ch. II, §5.2]):

L p (K)(ψ) = f p (ψ) • log p (u ψ ), (3.7) 
where

f p (ψ) = 1 2 ( 1 p -1) if ψ = 1 -1 24c (1 -ψ( ℘))(1 -ψ( ℘) p ) if ψ = 1. (3.8)
Here c > 0 is the smallest positive integer in the conductor ideal of ψ.

Bertolini-Darmon-Prasanna p-adic L-function

Let f ∈ S k (N f , χ f ) be an eigenform and let K be an imaginary quadratic field of discriminant -D ≤ -7 fulfilling the Heegner hypothesis relative to f , so that there exists a cyclic ideal N ⊂ O K of order N E .

For any Hecke character ψ of infinity type (κ 1 , κ 2 ), let L(f, ψ, s) denote the L-function associated to the compatible system of Galois representations afforded by the tensor product f |G K ⊗ ψ of the (restriction to G K of) the Galois representations attached to f and the character ψ.

As usual, L(f, ψ, s) = q L (q) (q -s ) is defined as a product of Euler factors ranging over the set of prime numbers. The Euler factors at the primes q such that q N are exactly the same as that of the Rankin L-series L(θ ψ ⊗ f, s) introduced above, but may differ at the primes q such that q | N (details can be found in [START_REF] Gross | Heegner points on X 0 (N ), Modular forms[END_REF] for f modular form of weight 2).

The L-factor at infinity is given, for an hecke character of type (κ 1 , κ 2 ), by the following formula:

L ∞ (f, ψ, s) = Γ C (s)Γ C (s -min(k -1, m) -κ 0 )
where m = |κ 1 -κ 2 | and κ 0 := min(κ 1 , κ 2 ). Following our notation, the completed L-function Λ(f, χ, s) satisfies a functional equation of the form:

Λ(f, ψ, s) = ε(f, χ, s)Λ(f * , ψ, k + κ 1 + κ 2 -s)
For our convenience we now switch the convention and deal with the L-function L(f, ψ -1 , s) rather than L(f, ψ, s). In particular we say that a Hecke character ψ is critical if s = 0 is a critical point for L(f, ψ -1 , s). Critical values for this Rankin L-function were predicted by Deligne and proved by Shimura in [START_REF] Shimura | The special values of the zeta functions associated with cusp forms[END_REF]. An appropriate discussion of those results which serves our purposes is carried out in [BDP13, §4.1]. The discussion in loc. cit. states that the set of critical character Σ f,K in the sense of Deligne can be naturally seen as the disjoint union of the three subsets:

Σ (1) f,K = {ψ ∈ Σ f,K such that 1 ≤ κ 1 , κ 2 ≤ k -1}, Σ (2) f,K = {ψ ∈ Σ f,K such that κ 1 ≥ k, κ 2 ≤ 0}, Σ (2 ) f,K = {ψ ∈ Σ f,K such that κ 2 ≥ k, κ 1 ≤ 0}.

The regions Σ

(2) f,K and Σ

(2 ) f,K are interchanged by the involution ψ → ψ and the associated complex period is a power of the CM period Ω(A). On the region Σ

(1) f,K the period is the Petersson inner product f, f . The so called Bertolini-Darmon-Prasanna p-adic L-function is obtained by an adequate interpolation of the special values of L(f, ψ -1 , s) for an appropriate subset of characters in Σ

(2) f,K . In particular, we say that a character ψ ∈ Σ f,K is central critical if κ 1 + κ 2 = k and ε ψ = χ f . In this way the point s = 0 is critical for L(f, ψ -1 , s) and we write Σ (i) cc for the characters in Σ (i) f,K which are central critical. In particular we can express them as follows:

Σ (1) cc = {ψ ∈ Σ f,K of infinity type (k + j, -j), where 1 -k ≤ λ ≤ -1}, Σ (2) cc = {ψ ∈ Σ f,K of infinity type (k + j, -j), λ ≥ 0}, Σ (2 ) cc = {ψ ∈ Σ f,K of infinity type (-j, k + j), λ ≥ 0}. Let c ∈ Z ≥1 be an integer such that (c, N f Dp) = 1.
We define the set of characters Σ cc (c, N, χ f ) to be the subset of central critical Hecke character ψ of finite type (c, N, χ f ), i.e. such that c ψ | c N and ε v (f, ψ -1 ) = +1 for all finite places v. This set is naturally the disjoint union of two subsets:

Σ (1) cc (c, N, χ f ) = {ψ ∈ Σ cc (c, N, χ f ) of infinity type (k + j, -j), where 1 -k ≤ -j ≤ -1}, Σ (2) cc (c, N, χ f ) = {ψ ∈ Σ cc (c, N, χ f ) of infinity type (k + j, -j), j ≥ 0}. If we take the completion of Σ cc (c, N, χ f ) with respect to the compact open topology, the resulting space Σ cc (c, N, χ f ) contains Σ (2) cc (c, N, χ f ) as a dense subset. On the set Σ (2) cc (c, N, χ f ) the local sign ε ∞ (f, ψ .-1 ) is +1.
Thus the global sign is also positive, hence the central critical value is non-zero most of the times. The Bertolini-Darmon-Prasanna p-adic (Rankin) L-function attached to the pair (f, K) is the function:

L p (f /K) : Σ cc (c, N, χ f ) → C p
defined by the following interpolation formula:

L p (f /K)(ψ) = e BDP (ψ) • a BDP (ψ) • f BDP (ψ) • Ω p (A) 2k+4j Ω(A) 2k+4j • L(f, ψ -1 , 0), (3.9) 
for all characters Ψ ∈ Σ

f,K of type (k + j, -j), for j ≥ 0, where:

• e BDP (ψ) = (1 -α p (f )ψ -1 ( ℘))(1 -β p (f )ψ -1 ( ℘)), • a BDP (ψ) = j!(k + j -1)!π k+2j-1 • f BDP (ψ) = 2 c √ D K k+2j-1 • 2 q|(D K ,N E ) • q|c q-χ K (q) q-1 • ω(f, ψ) -1 .
The factor ω(f, ψ) is defined in [BDP13, (5.1.11)], but we recall here its construction. For ψ of infinity type (k + j, -j), we define ψ j := ψN j K . Because of our hypothesis, N = N N in O c . We can choose an integral O c -ideal b and a nonzero element b ∈ O c such that:

(b, N c) = 1, bN = (b). (3.10)
If we call ω f the generalized eigenvalue of the Atkin-Lehner operator W N (see [BDP13, Lemma 5.2] for more details), then:

ω(f, ψ) := ω f • χ f (N K Q (b)) -1 • ψ j (b)(-N ) k/2+j b -k-2j . (3.11)
It is a root of unity in the field Q ψ (f, √ -N ) and it does not depend on the choice (b, b) made above (see [BDP13, lemma 5.3]).

Remark 3.3. We would like to remark that the period appearing here is not the same used for the construction of the p-adic L-function in [START_REF] Bertolini | Generalised Heegner cycles and p-adic Rankin L-series (with an appendix by Brian Conrad)[END_REF](5.1.15)], where an auxiliary elliptic curve A 0 having complex multiplication by O c is used. Nevertheless, thanks to the theory of complex multiplication and proposition 3.2 both the complex and the p-adic periods arising from A and A 0 are compatible in the sense that

Ω p (A) Ω(A) = Ω p (A 0 ) Ω(A 0 ) ,
hence the above formula holds. In particular one may chose an isomorphism A 0 → G m such that the associated canonical differential ω can on A 0 is compatible with that of A .

Remark 3.4. We do not go into the details of the construction, but it is interesting to remark how the values of the interpolation property are extended to a p-adic L-function. We have that:

a BDP (ψ) • f BDP (ψ) • ω(f, ψ) -1 • L(f, ψ -1 , 0)/Ω(A) 2k+4j =   a∈Pic(Oc) ψ -1 j (a) • δ j k f (x(a))   2 , (3.12) 
where x(a) is defined in section 1.7. On the p-adic side we have the following formula:

L p (f /K)(ψ) =   a∈Pic(Oc) ψ -1 (a)N K (a) -j d j f [p] (x p (a))   2 (3.13) 
where xp := (x, ω can ), xp (a) = (x(a), ω can,a ), with ω can,a is the pullback of ω can via the map A → A a . The two results are, respectively, theorems 5.4 with theorem 5.5 and theorem 5.9 of [START_REF] Bertolini | Generalised Heegner cycles and p-adic Rankin L-series (with an appendix by Brian Conrad)[END_REF]. The second equation is obtained from the first with a comparison of the Shimura-Maass derivative and the Serre derivative of f at CM points, i.e.

δ k f (x(a)) = df (x(a)).
which is essentially the content of [BDP13, Proposition 1.12 (3)].

If ψ is a finite order anticyclotomic character of conductor c | c, then ψN K lies outside the region of interpolation but it can be approximated using characters of Σ cc (c, N, χ f ). The main theorem of [START_REF] Bertolini | p-adic Rankin L-series and rational points on CM elliptic curves[END_REF] asserts that

L p (f, K)(ψ -1 N K ) = f p (f, ψ) × log E,p (P ψ ) 2 (3.14)
where

f p (f, ψ) = (1 -ψ( ℘)p -1 a p (f ) + ψ 2 ( ℘)p -1 ) 2 .

Hida's work and p-adic L-functions

We now want to detail what we informally described in the introduction of the chapter as deformation of a motive. Roughly speaking, given a motive M we expect to find a collection M = {M k } k of motives indexed by a p-adic variable which gives a deformation of M , i.e. there exists k 0 such that M k0 = M and two motives M k and M k are in some sense close enough whenever k and k are close enough p-adically.

We treat here a very specific instance of this: Hida families. Informally, a Hida family is a collection of modular forms {f k } k such that the induced residual representations are all equal. In particular we have congruences between two members of the family which tell us that f k and f k are p-adically close whenever k and k are p-adically close. In this case, the concept of being close for two modular forms can be made precise by working on the coefficients of the q-expansions.

In order to describe Hida's result and explain its usefulness for the creation of p-adic L-functions we first need to discuss the set W in which the weight variable k lives and define precisely what an Hida family is for us. We closely follow the definitions given in [DR14, §2.6], but it might be useful for the reader to also have a look to [START_REF] Hida | Elementary theory of L-functions and Eisenstein series[END_REF], [START_REF] Wiles | On ordinary λ-adic representations associated to modular forms[END_REF], [How07, §2], [Ca1, §2.1] and [START_REF] Washington | Introduction to cyclotomic fields[END_REF].

Iwasawa algebras and the weight space

We fix a rational prime p and we assume for simplicity that p ≥ 3. We will use the notation ∆ N = (Z/N Z) × . Let O be the ring of integers of a finite extension F | Q p and fix a uniformizer π ∈ O. Write q for the residual characteristic of O/πO. A basic structure result, which can be found for instance in [Neu91, II, prop. 5.7], tells us that:

O × µ q-1 × (1 + πO),
so that we also have

F × = π Z × O. The second component 1 + πO can be further decomposed into µ q a × W F , where W F = Z p [F :Qp] is the Z p -free part.
In the case of O = Z p we have:

Z p × µ p-1 × Γ,
where Γ := 1 + pZ p .

The projection ω : Z p × µ p-1 induces a Dirichlet character modulo p that we denote by the same letter ω : ∆ p µ p-1 (notice that µ p-1 ⊂ Q, hence it can be seen both as complex and p-adic number via our fixed embeddings). The latter is called the Teichmuller character. It associates to each class d ∈ ∆ p the unique root of unity of Z p congruent to d modulo p -1. This allows us to identify

Z p × ∆ p × Γ. The second projection -: Z × p Γ is none other then x = ω -1 (x) • x.
The Iwasawa logarithm induces the isomorphism log p : Γ pZ p which implies that Γ is a free Z pmodule of rank one. Remember that log p is the unique morphism defined by the usual power series on Γ and it is zero outside Γ, i.e. log p p = 0 = log p ζ, for every ζ root of unity.

We fix now a topological generator u for Γ once and for all. This choice induces an isomorphism that we will denote as the base u-logarithm:

log u : Γ Z p (3.15) x → log u (x)
where log u (x) = log p (x)/log p (u). In contrast to the Iwasawa logarithm, this is a non-canonical isomorphism, since it depends on the choice of u. The inverse is given by z → u z := exp(z log(u)), which gives a parametrization of Γ.

Recall that if we consider a profinite group G = lim ← -i G i , then we define the Iwasawa algebra associated to G as

Λ G := O[[G]] := lim ← -i O[G/G i ]. Given d ∈ G we write [d]
for the corresponding element in Λ G . Fix a positive integer N coprime to p and define the three Iwasawa algebras:

Λ = O[[Γ]], Λ N := O[∆ N ][[Z p × ]] O[∆ N p ][[Γ]] and Λ = Λ 1 = O[[Z p × ]]. It is well-known that Λ O[[T ]] via the non-canonical isomorphism u → T + 1.
For χ ∈ ∆ N p , consider the projectors:

e χ := 1 |∆ N p | d∈ b ∆ N p χ -1 (d)[d] ∈ Λ N ,
using the fact that e χ Λ N = Λe χ Λ, we obtain the decomposition:

Λ N = χ∈ b ∆ N p e χ Λ N χ∈ b ∆ N p Λ (3.16)
so that we can identify every element γ ∈ Λ N with a collection of power series

g χ (T ) ∈ O[[T ]] indexed by χ ∈ ∆ N p (see [Was80, p. 243]).
Lemma 3.5. For every d ∈ ∆ N p we have:

e χ [d] = χ(d)e χ .
Remark 3.6. When considering Λ (N = 1), every character χ ∈ ∆ p is a power of the Teichmüller character, so that χ = ω i for some i ∈ Z/(p -1)Z and we can write e i := e χ .

Since Λ N is a topological O-algebra endowed with the p-adic topology defined by the ideal (π, [u] -1), we can consider the formal scheme:

W N := Spf( Λ N ) = Hom O-cont ( Λ N , -) Hom(Γ, G m (-)).
Similarly we define W := Spf(Λ) and W := Spf( Λ). For any topological O-algebra B, the B-points of the above scheme are:

W N (B) := Hom O-cont ( Λ N , B) = Hom cont (∆ N p × Γ, B × ) Hom(∆ N p , B × ) × Hom cont (Γ, B × ).
This determines a decomposition:

W N (B) χ∈ b ∆ N p Hom(Λ, B),
hence we have a decomposition of formal schemes:

W N = χ∈ b ∆ N p W χ , (3.17) 
where W χ W, for all χ. Explicitly, for any O-algebra B an element ν ∈ W χ (B) is characterized by the fact that if d ∈ ∆ N p , then ν([d]) = χ(d) so that, in particular, ν(e χ ) = 1 and ν(e ψ ) = 0 for ψ = χ.

We embed Z into the set of O-points of W as follows:

Z → W(O) = Hom O-cont (Λ, O) (3.18) k → {ν k : [u] → u k }
We write W cl for the set Z ≥2 inside W(O) via the map defined in equation (3.18). We call W cl the set of classical points or arithmetic primes of Λ. The evaluation map ν k ∈ W(O) corresponds to the unique prime ideal

P k = ([u] -u k ) ⊂ Λ such that ν k : Λ Λ/P k → O. The map ν k can be represented on O[[T ]
] under the isomorphism defined by T → [u] -1 and it is given by ν k (T ) = u k -1 i.e. the prime ideal P k is the one generated by (T + 1) -u k .

We explicitly translate the action of the evaluation map for the χ-component of W N , i.e. we write the corresponding embeddings Z → W N (O) under the decomposition (3.17) which is given, for each k ∈ Z, by:

ν χ k : (δ, ξ) → χ(δ)ξ k , ∀(δ, ξ) ∈ ∆ N p × Γ.
It can be useful to think ∆ N p × Γ as ∆ N × Z p × under the correspondence (δ, ξ) → (d, x). In this sense, since any character of ∆ p is a power of the Teichmuller character for i ∈ {0, . . . p -2} and since p N , we can write χ = χ t ω i , where χ t is the tame character. In this way, ν χ k acts on (d, x) as follows:

ν χ k (d, x) = χ t (d) • ω i-k (x) • x k
Thanks to the rigid GAGA theory we can see W N , W and W as rigid analytic spaces. Under the same morphism of equation (3.18) we can see Z p as a rigid analytic subspace of the weight space W(O). In this sense, elements of the Iwasawa algebra Λ can be interpreted as analytic functions on W while passing to the fraction field we deal with analytic meromorphic functions.

Λ-adic modular forms and Hida main result

The first attempts made by Serre to define p-adic modular forms led him to the study of congruences between modular forms via the study of congruences between the Fourier coefficients. These congruences give rise to the following naive definition of compatible family of modular forms as a collection {f k = a n (k)q n } k , for almost all positive integers k (i.e. all but finitely many), such that the following congruence relation is respected:

k ≡ k (mod φ(p α )) =⇒ a n (k) ≡ a n (k ) (mod p α ). (3.19)
where φ is the Euler totient function. In particular, k and k lie in the same residue class modulo p -1.

Let us recall that by the work of Deligne we can associate to each f k a compatible system of λ-adic representations V k . These congruences imply that if we reduce modulo p, the residual representations of each member of the family are equal. This is the basic concept behind the theory of p-adic deformation of Galois representations.

In a sense that we now make precise, the Iwasawa algebra gives a better description of those congruences and the concept of p-adic family of modular forms, allowing them to enjoy a geometric interpretation. Let us consider at first an element a ∈ Λ, which can be thought of as a power series in O

[[T ]]. It is easy to check that: k ≡ k (mod φ(p α )) =⇒ ν k (a) ≡ ν k (a) (mod p α ). (3.20) 
This is quite natural if we consider a ∈ Λ being a rigid analytic function on W(O). Hence, given ν ∈ W(O), we also denote ν(a) by a(ν) or a ν . In particular, the function ν k (a) must behave nicely for the p-adic topology, so that it is an analytic function of the variable k. Being an element in the Iwasawa algebra we refer to it as an Iwasawa function, as does the literature, too (cf. [Was80, §12.2]). If Λ f | Λ is a finite flat extension, then we have a natural map W f → W, called weight map, and we can define W cl f ⊂ W f (O) as the pull-back of W cl along this map. The set W cl f is called set of arithmetic primes of Λ f . We say that a point ν ∈ W cl f has weight k ∈ Z ≥2 if ν | Λ = ν k . In terms of prime ideals, ν and ν k correspond to P ⊂ Λ f and P k ⊂ Λ and the weight map is just P → P k := P ∩ Λ.

If we consider a formal power series f = n≥1 a n q n ∈ Λ f [[q]] it is natural to define the action of ν ∈ W(C p ) on f as follows:

ν(f ) = n≥1 ν(a)q n ∈ C p [[q]].
In light of the above discussion we know that if two classical points have weights congruent modulo φ(p α ) then the q-expansions of the corresponding specializations of f are congruent modulo p α . In other terms, a formal q-expansion as above is a p-adic analytic family of q-expansions in C p [[q]]. To mimic the naive definition of p-adic family of modular form, we need to impose that the realizations ν(f ) for ν ∈ W cl f are classical modular forms.

Remark 3.7. In order to lighten the notation we will often write f ν to mean ν(f ).

To properly define the concept of compatible family of modular forms, that we call Λ-adic modular forms, we fix now a component of the weight space W χ W of W N and the decomposition χ = χ f ω i into tame and wild character. Recall that a modular form f is called p-ordinary (or ordinary at p) if its p-th Fourier coefficient is a p-adic unit, i.e. |a p (f )| p = 1. Definition 3.8. A Λ-adic modular form (resp. cusp form) of tame level N and tame character χ f is a quadruple (Λ f , U f , U cl f , f ) where:

(i) Λ f is a complete, finitely generated and flat extension of Λ;

(ii) U f is a non-empty open subset of W f (C p ) and U cl f ⊂ W cl f is dense in U f ; (iii) f ∈ Λ f [[q]] is a formal q-expansion such that, for all ν ∈ U cl f of weight k, f ν ∈ C p [[q]
] is the q-expansion of a classical ordinary modular form form in M k (N p, χ f ω i-k ) Cp (resp. S k (N p, χ f ω i-k ) Cp ).

We denote M(N, χ f ) Λ f (reap. S(N, χ f ) Λ f ) the space of Λ-adic modular forms (resp. cusp forms) of tame level N and tame character χ f having coefficients in Λ f . On the spaces of Λ-adic modular forms M(N, χ f ) Λ f and S(N, χ f ) Λ f we have the Λ-adic analogue of the usual Hecke operators T n . They are compatible with the weight k specializations, i.e. given a Λ-adic modular form f and a classical weight k point ν ∈ U cl f , we have that:

T n (f ) ν = T n (f ν ).
This property can be used to define the Hecke operators on Λ-adic modular forms (see [START_REF] Hida | Elementary theory of L-functions and Eisenstein series[END_REF]§7.3] for more details). In this sense, the multiplication by [d] ∈ Λ N , whose specialization in weight k is given by χ f (d)ω i-k (d)d k , is the Λ-adic version of the Diamond operator.

Remark 3.9. In the literature people often refer to classical weights (or arithmetic primes) in a more general way. They are points of the form ν k,ε : [u] → ε(u)u k , for a finite order character ε on Γ. Since we only restrict to the case in which ε is trivial, we shall often (but not always!) denote without creating ambiguity:

f ν = f k
for a weight-k classical point ν. Moreover, since the set of integers k ∈ Z ≥2 such that k ≡ i (mod p -1) is p-adically dense in Z p , in what follows we will often shrink U cl f to classical points of such weight. With this convention, definition 3.8(iii) will simply becomes:

f k ∈ S k (N p, χ f )
for all k ∈ U cl f . Consider now an ordinary eigenform f . Since |a p (f )| p = 1, the two roots α p (f ) and β p (f ) can be ordered in such a way that α p (f ) is a p-adic unit. We define the ordinary p-stabilization of f to be:

f α (q) := f (q) -β p (f )f (q p ).
The modular form f α is the only normalized eigenform of level N p such that:

T (f α ) = a (f )f α , ∀ = p and U p (f α ) = α p (f )f α
A form that satisfies these properties is said to be ordinary and p-stabilized. If β p (f ) = 0, then f = f α is already stabilized.

Definition 3.10. A Hida family of tame level N and tame character χ f is a Λ-adic modular form (Λ f , U f , U cl f , f ), such that Λ f is finite flat over Λ and for all ν ∈ W cl f of weight k, f ν is an ordinary p-stabilized N -new modular form, i.e. there exists f k of new level N or N p such that f ν = f k,α .

Theorem 3.11 (Hida, 1986). Let f α ∈ S k (N f p, χ f ω i ) be an ordinary newform of tame level N f and tame character χ f (not necessarily new at p). Dimostrazione. See [Hid86].

From now on, we will denote a Hida family by f , its specializations by f ν and the modular form whose p-stabilization equals f ν will be denoted by f ν (in the simplified settings in which we will identify ν with its weight k, we will write respectively f k and f k ). A priori it is unclear wether the weight k specialization of an Hida family f is always old at p or not. The following lemma clarifies this situation: Lemma 3.12. Given a Hida family (Λ f , U f , U cl f , f ), and a weight k > 2 classical point ν ∈ U cl f , the specialization f ν of the Hida family at ν is always old at p (i.e. f ν = f k ). On the contrary, we may have

f 2 = f 2 .
Dimostrazione. See [How07, Lemma 2.1.1] for k > 2. The fact that f 2 = f 2 consider, for instance, the modular form associated with an elliptic curve over Q having multiplicative reduction at p).

The theorem of Hida is a machine to create Λ-adic modular form. Since we now know they exist, we can combine them to create more. Given Λ-adic modular forms

(Λ g , U g , U cl g , g), (Λ f , U f , U cl f , f ) and (Λ h , U h , U cl h , h
) it is possible to construct new ones, in particular:

• given N such that N g | N and an extension Λ g | Λ g , we can consider for each d | N/N g an Iwasawa function λ d ∈ Λ g and define:

g := d|N/Ng λ d • g(q d ) ∈ M(N, χ g ) Λ g .
For a weight specialization map ν ∈ U cl g we have that:

gν d|N/Ng ν(λ d ) • g ν (q d ) ∈ M (N, χ g )
is a oldform in weight and level N . When we consider such a g we write g ∈ M(N, χ g ) Λ g [g].

• the expression g * ∈ Λ g is the Λ-adic modular form determined on ν ∈ U cl g by:

(g * ) ν = g * ν • the ordinary product of Λ-adic modular forms e ord (f × h) ∈ Λ f h := Λ f ⊗ O Λ h , which is uniquely determined on (ν, µ) ∈ U cl f × U cl h by: (e ord (f × h)) ν,µ = e ord (f ν × h µ ) = e ord (f ν,α × h µ,α ).
The Λ-algebra structure on Λ f h is given by the diagonal embedding on group-like elements so that if ν has weight k and µ has weight m, (ν, µ) has weight k + m;

• by [DR14, Prop. 2.18], the expression of the form e ord (d

• f [p] × h) ∈ Λ f h := Λ ⊗ Λ f ⊗ Λ h is a Λ-adic modular form, uniquely determined on (t, ν, µ) ∈ W cl × U cl f × U cl h by: ν t,ν,µ (e ord (d • f [p] × h)) = e ord (d t f [p] ν × h µ ) = e ord (d t f [p] ν,α × h µ,α ). (3.21)
The Λ-algebra structure on Λ f h is given by the embedding

[u] → [u] 2 ⊗ [u] ⊗ [u]
, so that if ν has weight k and µ has weight m, then (t, ν, µ) has weight 2t + k + m (here we are using on purpose the letter t both for the specialization and for the weight).

Castellà's p-adic L-function

We now present a two variables extension of BDP's p-adic L-function L p (f /K) by allowing the variation of f in Hida family. The resulting two variables p-adic L-function is a slight variation of the one first studied by Castellà in [START_REF] Castellà | On the p-adic variation of Heegner points[END_REF]. We propose here a very down to earth construction which better serves our scopes and also provide a slight extension of Castellà's p-adic L-function.

Let us consider a Hida family f ∈ S(N f , 1) and let assume that U cl f is fibered over a single residue class modulo p -1 for simplicity. Fix for now a weight k specialization ν ∈ U cl f and we identify it with its weight since it shall mean no harm. Denote by f k the specialization of the Hida family at ν and by f k the associated newform. Take a quadratic imaginary field K = Q( √ -D) where p = ℘ ℘ splits and satisfying the Heegner hypothesis. Consider the choice of the ideal N above N f from this assumption. We write K p for the completion of K at ℘.

As seen in section 3.1.3, BDP p-adic L-function satisfies the equation (3.13) which we restate here for a classical weight k specialization of an Hida family f as follows: for any character ψ in Σ cc (c, N, 1) of infinity type (k + j, -j) (with j ≥ 0) and conductor c we have that:

L p (f /K)(ψ) =   a∈Pic(Oc) ψ -1 (a)N K (a) -j d j f [p] k (x p (a))   2 (3.22)
where xp (a) = a * (A, t, ω can ) as seen in remark 3.4. To ease the exposition we restrict to a single residue class modulo p -1 for j, too.

The idea is to let those characters appearing in equation (3.22) vary in p-adic family, i.e. define some Λ-adic characters which interpolate them. Let us consider a p-adic Hecke character λ of infinity type (0, 1) and conductor ℘, having image in O × , where O is the ring of integer of a F |K p finite extension containing the values of λ. We can consider the character λ whose image is in the torsion free subgroup of O × . Define the character:

ψ ∞ := λ -k-2j N k+j K . Since both ψ ∞ and ψ are of infinity type (k + j, -j) there exists a finite order character ψ b of conductor c such that:

ψ = ψ b ψ ∞ .
We call ψ b the branch character associated with ψ and ψ ∞ the infinity part.

We consider now the two variables Iwasawa algebra

R := Λ f ⊗ O O[[ Γ]]
where we write Γ = Γ in order to distinguish the variable to which we are referring. We also write d → [d] for the second variable embedding. We can define the R-adic version of ψ ∞ as follows:

Ψ ∞ := N K λ • N K λ 2 .
This R-adic character satisfy the following interpolation property:

Ψ ∞ (k, j) = λ -k-2j N k+j K .
Similarly Ψ := ψ b Ψ ∞ so that Ψ(k, j) = ψ. In this way, for every fixed

a ∈ Pic(O c ), Ψ(a) ∈ R is an element in Λ f [[ Γ]].
In [START_REF] Castellà | On the p-adic variation of Heegner points[END_REF] the author constructs a Λ f -adic measure µ associated to f [p] and a ∈ Pic(O c ) such that the weight-k-specialization is given by:

Zp z j dµ a,k := Zp z j dµ a (k) = d j f [p] k (x(a)).
We can then define, in a similar way to that of [START_REF] Castellà | On the p-adic variation of Heegner points[END_REF], a p-adic L-function in the following way:

L p (f /K)(ψ b ) := a∈Pic(Oc) Ψ(a) -1 [N K (a)] -1

Zp

[z]dµ a such that the specialization in weights k and j is given by:

L p (f /K)(ψ b , k, j) : = a∈Pic(Oc) Ψ(a)(k, j) -1 • [N K (a)] -1 (j) • Zp [z]dµ a (k, j) = = a∈Pic(Oc) ψ b (a) λ(a) k+2j N K (a) -k Zp z j dµ a,k = = a∈Pic(Oc) ( λ(a) -k-2j N K (a) k+j ) -1 • N K (a) j • d j f [p] k (x(a)) = = a∈Pic(Oc) ψ(a) -1 N K (a) j • d j f [p] k (x(a)).
Hence, by equation (3.22) we have that:

L p (f /K)(ψ b , k, j) 2 = L p (f /K)(Ψ(k, j)).
(3.23) Remark 3.13. In our notation it seems that we have thee variables, but the branch character is not an actual p-adic variable since it does not vary with continuity. That is the reason for which we fix a choice and two different choices may produce totally different p-adic L-functions.

Remember that Ψ(k, j) = ψ, Ψ(2, -1) = ψ b N K . Thanks to formula (3.23), the interpolation formula for this p-adic L-function reads exactly as the formula for BDP p-adic L-function:

L p (f /K)(ψ b , k, j) 2 = e BDP (ψ) • a BDP (ψ) • f BDP (ψ) • Ω p (A) 2k+4j Ω(A) 2k+4j • L(f, ψ -1 , 0), (3.24) 
for all characters ψ ∈ Σ

f,K of type (k + j, -j), for k ≥ 0 and j ≥ 0, where:

• e BDP (ψ) = (1 -α p (f )ψ -1 ( ℘))(1 -β p (f )ψ -1 ( ℘)), • a BDP (ψ) = j!(k + j -1)!π k+2j-1 • f BDP (ψ) = 2 c √ D K k+2j-1 • 2 q|(D K ,N E ) • q|c q-χ K (q) q-1 • ω(f, ψ) -1
with ω(f, ψ) as defined in section 3.1.3. If ψ b is a finite order anticyclotomic character of conductor dividing c, then Ψ(2, -1) = ψ b N K lies outside the region of interpolation but it can be approximated by letting (k, j) → (2, -1). The main theorem of [START_REF] Bertolini | p-adic Rankin L-series and rational points on CM elliptic curves[END_REF] asserts that

L p (f /K)(ψ b , 2, -1) = f p (f, ψ b ) × log ω E (P ψ b ) (3.25) where f p (f, ψ b ) = (1 -α p (f )ψ b ( ℘)p -1 )(1 -β p (f )ψ b ( ℘)p -1 ).

p-adic interpolation of trilinear periods

Let now f, g, h be three modular forms of weights k, , m such that ≥ k + m and let

(g, f , h) ∈ M (N, χ g )[g] × M k (N, χ f )[f ] × M m (N, χ h )[h]
be a test vector. In sections 2.3.1 and 2.5 we have seen that trilinear periods of the form:

I g (g, f , h) = g * , δ t f × h
play a crucial role because they create a link between a complex L-function and a Petersson product, which provides an integral representation of the function. The problem is that, in general, those periods are far from being algebraic numbers. Luckily we have the following:

Lemma 3.14. Given an eigenform g ∈ S (N, χ g ) K , for all g ∈ S (N ) K [g] and φ ∈ S k (N ) K we have that the product g, φ is a K-rational multiple of the period g, g .

Dimostrazione. See [DR14, Lemma 2.12].

Hence if we want to interpolate p-adically those values we have to consider the complex period g, g . We define:

J g (g, f , h) = g * , δ t f × h g * , g *
If we can interpolate those periods p-adically we can use the results of sections 2.3.1 and 2.5 to interpolate p-adically the Rankin and the Garrett L-functions. The idea can be simplified in this way: consider a number field K, a modular form g ∈ S (N g , χ g ) K (i.e. assume that Q χg ⊂ K) and two modular forms g ∈ S (N, χ g ) K [g], φ ∈ S (N ) K . Then the expression of the form J g (g, φ) := g, φ g, g is algebraic in light of the above lemma. Hence we want to interpolate p-adically this kind of expression, which is to say that we want to give a meaning to an expression of the form:

J g p (g, φ) := g, φ g, g for Λ-adic modular forms (Λ g , U g , U cl g , g), (Λ g , U g , U cl g , g) and (Λ φ , U φ , U cl φ , φ) such that g ∈ S(N ) Λg [g]
. For this we have the following: Proposition 3.15. Let K g be the fraction field of Λ g . For all g ∈ S(N ) Λg [g] and all φ ∈ S(N ) Λ φ there exists an element J g (g, φ) ∈ K g ⊗ Λ Λ φ such that for all classical points (ν, µ) ∈ U cl g × W cl U cl φ we have:

J g p (g, φ) ν,µ = gν , e gν φ µ g ν , g ν = gν , e gν φ µ g ν , g ν Dimostrazione. It is [DR14, Lemma 2.19].
Notice that having (ν, µ) ∈ U cl g × W cl U cl φ implies that the weights of ν and µ are the same, so that the Petersson product is well defined. The projection e gν appears because although φ µ is an ordinary p-adic modular form, there is no need for it to be classical, hence the Petersson product might be not well defined. Theorem 1.10 implies that its projection onto the g ν -isotypical subspace is a classical modular form.

Hida-Rankin p-adic L-function

In [Hid93, §7.4] Hida constructed a three-variable p-adic L-function interpolating central critical values of the Rankin L-function associated to the convolution of two Hida families of modular forms. We describe here this p-adic L-function following the notations and normalizations adopted in [START_REF] Bertolini | Beilinson-Flach elements and Euler Systems I: syntomic regulators and p-adic Rankin L-series[END_REF].

Consider two Hida families of tame level N :

g ∈ S(N, χ g ) and f ∈ S(N, χ f ).

As seen in the previous section, g and f are parametrized by the rigid analytic covers U g and U f of the weight space W. It will be harmless for our purposes to assume that they are fibered over a single residue class modulo p -1 and to identify the classical specializations with their weights. With this in mind, for each ( , k) ∈ U cl g × U cl f we can consider the newforms g ∈ S (N, χ g ) and f k ∈ S k (N, χ f ) whose ordinary p-stabilizations are g and f k . We associate to them the Rankin product L-function L(g ⊗ f k , s) that we have studied in §2.3.1. Assume from now on that ≥ k + 1. By results of Deligne and Shimura we know that the integer j is critical for L(g ⊗ f k , s) if and only if j ∈ [k, -1], but we shall restrict to integers in the range

j ∈ + k -1 2 , -1 . (3.26)
For a given such j we set t := -j -1 and m := -k -2t.

(3.27)

We define the range of interpolation as the set

U cl HR := {( , k, j) ∈ Z 3 ≥2 | ≥ k + 1 and j ∈ [( + k -1)/2, -1]}
From equation (2.10) we can derive that for all ( , k, j) ∈ U cl HR we have

f Ran ( , k, j) • L(g ⊗ f k , j) = g * (z), δ t m E m,χ N (z) • f k (z) ,N . (3.28)
Define the algebraic part of L(g l ⊗ f k , j) as in [BDR15, (9)]:

L alg (g ⊗ f k , j) := f Ran ( , k, j) L(g ⊗ f k , j) g * , g * ,N = g * (z), δ t m E m,χ N (z) • f k (z) ,N g * , g * l,N . 
(3.29)

The notation L alg is justified since the ratio of Petersson products, the one of the right hand side of the equation (3.29), is an algebraic number by lemma 3.14. More precisely, it represents the coefficient of the holomorphic projection of δ t m E m,χ N (z) • f k (z), as shown for instance [DR14, Lemma 2.12]). Since g and f k are specializations of a Hida family, we expect to p-adically interpolate those values as ( , k) varies.

In order to interpolate the expression on the right-hand side of (3.29), we use the theorem 3.15. Define the Λ-adic modular form E χ N such that for m ∈ U cl E we have:

E χ,ξ = (E m,χ ) α .
By the theorem 3.15 we know that there exists an Iwasawa function J g (g, e ord (d

• E [p] χ × f )) such that: J g (g, e ord (d • E [p] χ × f )) ( ,k,m,t) = g * , e ord (d t E [p] χ,m × f k ) g * , g * for every quadruple of ( , k, m, t) ∈ U cl g × W cl (U cl f × U cl E × W). Remark 3.16. The fact that ( , k, m, t) ∈ U cl g × W cl (U cl f × U cl E × W) implies that = k + m + 2t.
In this way, the choice of m determines t and, according to equations (3.26) and (3.27) we know that it is equivalent to choose m or to chose the central critical value j. In particular, we have that:

m ∈ [1, -k].
For this reason, we will use the variable j as third variable instead of the variable m and remember the definitions of m and t in equations (3.26) and (3.27). Definition 3.17. We define the Hida-Rankin (three variables) p-adic L-function as the element:

L p g (g, f ) := J g p (g, e ord (d • E [p] χ × f )) ∈ K g ⊗ Λ (Λ f ⊗ Λ E ⊗ Λ) When evaluating the p-adic L-function at a classical point ( , k, j) ∈ U cl
HR we get:

L p g (g, f )( , k, j) = g * , e ord (d t E [p] m,χ × f k ) g * , g * (3.30) Define e HR (g , f k , j) := E(g , f k , j) E 1 (g )E 0 (g ) (3.31)
where:

E(g , f k , j) = (1 -β p (g )α p (f k )p t-+1 )(1 -β p (g )β p (f k )p t-+1 ) × (1 -β p (g )α p (f k )χ(p)p t-+1 )(1 -β p (g )β p (f k )χ(p)p t-+1 ), E 1 (g ) = 1 -β p (g ) 2 p -, E 0 (g ) = 1 -β p (g ) 2 p 1-.
The result of [DR14, Theorem 4.7] implies that we have:

L p g (g, f )( , k, j) = e HR (g , f k , j) • g * (z), δ t m E m,χ N (z) • f k (z) ,N g * , g * l,N
, so that we can find the interpolation formula which describes the three variable Hida-Rankin p-adic Lfunction using equation (3.29):

L p g (g, f )( , k, j) = e HR (g , f k , j) • L alg (g ⊗ f k , j) = = e HR (g , f k , j) • a HR ( , k, j) • f HR ( , k, j) L(g ⊗ f k , j) g * , g * ,N
.

(3.32) for all ( , k, j) ∈ U cl HR , where:

• e HR (g , f k , j) as in equation 3.31;

• a HR ( , k, m) = (m + t -1)!(j -1)!π 1--m • f HR ( , k, m) = (-1) t (iN ) m 2 2 +m-2 •τ (χ -1
) . Notice that the point (1, 2, 1) is not in the region of interpolation U cl HR . The following result provides a formula for the value of L p g (g, f )(1, 2, 1). Recall the p-adic iterated integrals from equation (2) of the introduction.

Proposition 3.18. Suppose that g 1 is a classical modular form. Then L p g (g, f ) has no pole at (1, 2, 1) 

and L p (g, f )(1, 2, 1) = γg 1 f 2 • E 1,χ N . ( 3 

Garrett-Hida p-adic L-function

We now want to interpolate the triple product L-function. We essentially follow [DR14] and the computations are totally similar to what we have done in the previous section. In particular, in virtue of theorem 2.15 we are reduced to the interpolation of the trilinear periods

I g (g, f , h) = g * , δ t f × h for a choice of test vector ( f , g, h) ∈ S k (N, χ f )[f ] × M (N, χ g )[g] × M m (N, χ h )[h].
Let us recall that we consider an unbalanced triple of weights ( , k, m) with dominant weight and t = ( -k -m)/2. Hence:

U cl GH := {( , k, m) ∈ Z 3 ≥2 | ≥ k + m}
By the lemma 3.14 the quantity:

J g ( f , g, h) := g, δ t f × h g, g
is an algebraic number, so that we can define the algebraic part of the triple product L-function as:

L alg (f ⊗ g ⊗ h, c) := J g ( f , g, h) 2 (3.34)
In order to perform a p-adic interpolation in a similar way as we did for the Hida-Rankin p-adic Lfunction, we consider three Hida families f , g, h of tame levels N f , N g , N h and describe the associated Λ-adic test vector f , g, h.

Definition 3.19. We define the Garrett-Hida (three variables) p-adic L-function to be:

L p g (g, f , h) := J g p (g, e ord (d • f [p] χ × h)) ∈ K g ⊗ Λ (Λ f ⊗ Λ h ⊗ Λ) (3.35)
In this way we have that:

L p g (g, f , h)( , k, m) = g * , e g e ord (d tf [p] k × hm ) g * , g * Define e GH (g , f k , h m ) := E(g , f k , h m ) E 1 (g )E 0 (g ) (3.36)
where:

E(g , f k , h m ) = (1 -β p (g )α p (f k )α p (h m )p -c )(1 -β p (g )β p (f k )α p (h m )p -c ) × (1 -β p (g )α p (f k )β p (h m )p -c )(1 -β p (g )β p (f k )β p (h m )p -c ), E 1 (g ) = 1 -β p (g ) 2 p -, E 0 (g ) = 1 -β p (g ) 2 p 1-.
A simple computation shows that e GH (g , f k , h m ) equals e HR (g , f k , j) as defined in (3.31) when h m = E m,χ . Because of [DR14, Theorem 4.7] we have that:

L p g (g, f , h)( , k, m) = e GH (g , f k , h m ) • I(g , fk , hm ) g * , g * . Since |I( f , g, h)| 2 = I( f , g, h) • I( f , g, h) = I( f , g, h) • I( f * , g * , h * )
and g , g = g * , g * using theorem 2.15 we find the interpolation formula which relates the p-adic L-function to the values L(g ⊗ fk ⊗ hm , c), where c = (k + + m -2)/2, for all ( , k, m) ∈ U cl GH . It is given by:

L p g (g, f , h)( , k, m)L p g (g * , f * , h * )( , k, m) = e GH (g , f k , h m ) 2 • f Gar (k, , m) • L( fk ⊗ g ⊗ hm , c) g * , g * 2 . (3.37)
Being both L p g (g, f , h) and L p g (g * , f * , h * ) Iwasawa meromorphic functions, we have that their quotient:

ω( , k, m) := L p g (g, f , h)(k, , m) L p g (g * , f * , h * )(k, , m) (3.38)
is a meromorphic Iwasawa function, too. Hence we can rewrite the interpolation formula (3.37) as follows:

L p g (g, f , h)( , k, m) 2 = e GH (g , f k , h m ) 2 • a GH (k, , m) • f GH (k, , m) • L( f ⊗ g ⊗ h, c) g * , g * 2 (3.39)
where:

• e GH (g , f k , h m ) as in equation (3.36);

• a GH (k, , m) = (c -1)!(c -k)!(c -m)!(c -k -m + 1)!π -2 ; • f GH (k, , m) = C Ran • ω( , k, m) • 2 1-3 -k-m .
The point (k, , m) = (1, 2, 1) lies outside the region of interpolation, hence its special value is no more related with its complex counterpart. Proposition 2.6 of [START_REF] Darmon | Stark points and p-adic iterated integrals attached to modular forms of weight one[END_REF] describes it as a p-adic iterated integral in the following way:

L p g (g, f , h)(1, 2, 1) = γgα f • h. (3.40)
Capitolo 4

Proof of the main results

In this chapter, we describe and proof theorem 0.6 and theorem 0.7, which constitute the main results of [START_REF] Casazza | Stark points and p-adic iterated integrals[END_REF] and [CR2]. We begin by describing the general setting of the elliptic Stark conjectures, with special emphasis on our case, then we move to the proofs of the theorems.

Elliptic Stark conjecture and p-adic Gross-Zagier formula

Let E/Q be an elliptic curve of conductor N E and let f ∈ S 2 (N E , 1) be the modular form associated to E by modularity. Fix once and for all a quadratic imaginary field K = Q( √ -D) and denote its associated quadratic Dirichlet character by χ K . Consider the two finite order Hecke characters ψ g , ψ h : G K → C × of conductors c g and c h which define theta series:

g = θ ψg ∈ M 1 (DN K (c g ), χ), and h := θ ψ h ∈ M 1 (DN K (c h ), χ).
Consider the associated representations V g := Ind Q K (ψ g ) and V h := Ind Q K (ψ h ). We define the four dimensional representation ρ := ρ g ⊗ρ h : G Q → SL 4 (L) whose underlying vector space is V gh := V g ⊗V h . If we let ψ 1 := ψ g ψ h and ψ 2 := ψ g ψ h , the representation V gh splits as the direct sum V 1 ⊕V 2 , where V i := Ind Q K (ψ i ). This automatically implies a decomposition of L-functions:

L(E, ρ, s) = L(E/K, ψ 1 , s)L(E/K, ψ 2 , s). (4.1)
Notice that the characters ψ 1 and ψ 2 are ring class character of conductors c 1 and c 2 because of lemma 2.4, since they have trivial central character. Let us define c := lcm(c 1 , c 2 ). Let p be a prime number such that ord p (N E ) ≤ 1 and define N f to be the tame part of N E , i.e.

N f = N E if p N E and N f = N E /p if p||N E .
Assumption 4.1. We will assume from now on the following hypothesis:

(AR) the analytic rank hypotesis: r an (E, ρ, s) = 2;

(HH) The Heegner hypothesis: there exists an ideal N ⊂ O K such that O K /N Z/N f Z. Fix such an ideal N once and for all and assume also that (c, N f D) = 1;

(PP) the prime p splits in K as pO K = ℘ ℘, where ℘ = m Cp ∩ K.

The field H cut by ρ is the ring class field H c where c = lcm(c 1 , c 2 ). Following the discussion of sections 1.7 and 2.3.2, we now fix a Heegner point P ∈ E(H) and an elliptic unit u ∈ O × H and define P ψ as in equation (2.13) and u ψ as in equation (3.6). Assumption (HH), in particular, implies that the order of vanishing of L(E/K, ψ i , s) and L(E/K, ψi , 2) is odd at s = 1. Since we also assume (AR), we have that ord s=1 L(E/K, ψ i , s) = 1, ord s=1 L(E/K, ψi , s) = 1 which implies, by theorem 2.8, that dim L E(H) ψi L = 1 = dim L E(H) ψi L and that P ψi and P ψi are generators of these spaces.

Assumptions (HH) and (PP) ensure us that there is a cyclic ideal above the number N E also when p||N E and it is N℘.

Consider now assumption (PP). The choice of the ideal ℘ determines a Frobenius element σ p ∈ Gal (H c |K) and we set the eigenvalues of σ p acting on V ψg as follows:

α := ψ g (σ p ), β := ψ g (σ p ) = α -1 .

Since we are going to use the cuspidal Hida family passing through g explicitly, we recall here the construction which is described in [Hid93, p.235] with a little modification. Recall the Λ-adic character [ λ ] that we defined in section 3.2.3. We define g as follows:

g(q) := a∈Ic ℘ ψ g (a) λ(a) -1 [ λ(a) ]q N K Q (a) ∈ S(N g , χ) (4.2) and consider U g fibered over the residue class of 1 modulo p -1. Then, following the notation introduced in equation (2.6), we have that:

g (q) = a∈Ic ℘ ψ g (a)λ(a) -1 q N K Q (a) = n≥1
a n (ψ g λ -1 )q n ∈ M (N g p, χ), ∀ ∈ U cl g .

It is then natural to define, for all ∈ U cl g , the Hecke character ψ -1 as follows:

ψ -1 (a) = ψ g (a) λ(a) -1 , if ℘ a; (4.3)

ψ -1 ( ℘) = χ(p) • p -1 ψ -1 (℘) , (4.4) 
so that if we define the theta series g := θ ψ -1 ∈ M 1 (N g , χ) and if m is a prime that spits in O K as mO K = m m, then we have that:

α m (g ) = ψ -1 (m), β m (g ) = ψ -1 ( m) (4.5)

In particular g = g ,α and for = 1 we have that ψ 0 = ψ g (hence g 1 = g), so that also the weight one specialization is a classical modular form. We end this section with the following technical:

Definition 4.2. Let L be a number field. A function

f : U cl g → Q
is L-admissible if it extends to a meromorphic Iwasawa function on U g having no pole at 1 and satisfying f(1) ∈ L × . Similarly, a two variables function f : U cl f g → Q is L-admissible if it extends to a meromorphic Iwasawa function on U f g having no pole at (2, 1) and satisfying f(2, 1) ∈ L × .

Then there exists a number Eul HR N (g , f ) ∈ Q ψ ( f ) such that we have the following equality of critical L-values: L(g ⊗ f , ( + 1)/2) = Eul HR N (g , f ) • L(f, Ψ -1 , 0)

and Eul HR N ((g 1 , f ) = 0.

Dimostrazione. The Euler factors defining L(g ⊗ f , s) and L(f, ψ -1 -1 , s) at good primes coincide, so that the only discrepancies arise for primes q | N . Those factors arise from Hecke polynomials with coefficients in Q ψ ( f ) and lemma 4.7 guarantees that Eul HR N (g 1 , f ) = 0.

Lemma 4.9. Consider the factor ω(f, Ψ ) appearing in BDP interpolation formula 3.9. Then:

ω(f, Ψ ) = (-1) -1 2 ψ -1 (N) N -1 2 E
and ω(f, Ψ 1 ) = ψ(N). Using now the definition of Ψ and the fact that κ + 2λ = -1 and κ = 2, we find ω(f, Ψ) = (-1)

-1 2 • ψ -1 (N)N f N +1 2 E = (-1) -1 2 • ψ -1 (N) N -1 2 E , as claimed.
Lemma 4.10. For every ∈ U cl g ∪ {1} we define the Hecke character Φ of conductor c as follows:

Φ := ψ -2 -1 N K , of infinity type ( , 2 -).

Then there exists a non-zero number Eul Pet N (g ) ∈ Q × ψ such that we have the following equality:

g , g N = (Dc 2 ) (N ) • Eul Pet N (g ) • a Pet ( ) • f Pet ( ) • L(Φ -1 , 0).
where a Pet ( ) and f Pet ( ) are as defined in theorem 2.11.

• Ψ ∈ Σ

(2) cc (c, N, 1), following section 3.1.3,

• Φ ∈ Σ Substituting Katz interpolation formula (3.4) and BDP interpolation formula (3.9), the complex and the p-adic periods defined in section 3.1.1 are simplified and we find that:

L p g (g, f )( ) = Eul N ( ) •
e HR ( )e K (Φ ) e BDP (Ψ )

• a HR ( ) • a K (Φ ) a BDP (Ψ ) • a Pet ( )

• f HR ( ) • f K (Φ ) f BDP (Ψ ) • f Pet ( ) • L p (f /K)(Ψ ) L p (K)(Φ )
.

Using lemma 4.12 we find that for all ∈ U cl g ∩ Z ≥3

L p g (g, f )( )

• L p (K)(Φ ) = f( ) • L p (f /K)(Ψ ).
It remains to prove that f ∞ ( ) extends to an analytic function. Using the explicit expressions for the various factors involved and lemma 4.4, we derive that:

f ∞ ( ) = - (Dc 2 ) (N ) • q|c q -χ K (q) q -1 • N • 2 -q|(N E ,D) h c • D • ψ -1 (N) c 3-N -1 2 E .
(4.9) Since p N , the factor f ∞ ( ) extends to an meromorphic Iwasawa function on U g . The value at 1 is non-zero and the same holds for Eul N (1) as seen in lemmas 4.8 and 4.10. This proves the result.

Since we have a factorization of p-adic L-functions on the whole space U g , which is fibered over 1 modulo p -1, we may ask ourselves what happens at = 1. In particular, because of lemmas 4.8 and 4.10, the number Eul(1) is well-defined and non-zero. Using the explicit equation (4.9) we find:

f ∞ (1) = - (Dc 2 ) (N ) • q|c q -χ K (q) q -1 • N • 2 -q|(N E ,D) h c • Dc 2 • ψ(N) = 0 hence f ∞ (1) = 0 and f( ) is Q ψ ( f )-admissible.
With the help of Katz functional equation (3.5) we find:

L p g (g, f )(1) • L p (K)(ψ -2 ) = f(1) • L p (f /K)(ψ -1 N K ).
The formulae for the special values of BDP and Katz p-adic L-functions (equations (3.7) and (3.14)) allow us to conclude that:

L p g (g, f )(1) = Eul N (1) • f ∞ (1)f p (f, ψ) f p (ψ)
• log E,p (P ψ ) 2 log p (u gα )

The proof of theorem 0.6 then follows from proposition 3.18. To be specific, the factor λ( f , g) appearing in theorem 0.6 is given by:

λ( f , g) = Eul N (1) • f ∞ (1)f p (f, ψ) f p (ψ) .
4.4 Proof of theorem 0.7 and elliptic Stark conjecture when p||N E

Remember assumption (PP) and consider now the setting in which p||N E , i.e. we have multiplicative reduction at p. We denote by N f the tame level of f , by which we mean that N f = N E /p, so that f ∈ S 2 (pN f ), and p does not divide cN f D.

In a setting of bad reduction for f , the omega factor contained in BDP's interpolation formula and the local factors C v of Garrett-Hida p-adic L-function are difficult to analyze in family. Moreover, to get the explicit formula for the constant appearing in the elliptic Stark conjecture in the good reduction case, we needed to assume that the levels were all equal. In order to avoid these problems we let f vary in Hida family, too. In this way, the higher weight specializations are the p-stabilizations of modular forms of level N f not divisible by p. In this way all of the constants are easy to treat. For this reason we need to consider Castellà's extension of BDP's p-adic L-function.

Let f be a cuspidal Hida familiy passing through f and let g be the Hida family described in equation (4.2) passing through g α . In particular we have that f 2 = f and g 1 = g α .

Recall the three ring class characters ψ 1 , ψ 2 defined in section 4.1 and set ψ 0 := ψ g /ψ g . We define the following families of characters:

Ψ gh (k, ) := (ψ g, -1 ψ h ) -1 N k+ -1 2 K , s.t. Ψ gh (2, 1) = ψ 1 N K (4.10) Ψ gh (k, ) := (ψ g, -1 ψ h ) -1 N k+ -1 2 K , s.t. Ψ gh (2, 1) = ψ 2 N K , (4.11) 
Φ g ( ) := (ψ 2 g, -1 χ) -1 N K , s.t. Φ g (1) = ψ 0 N K . (4.12)

Then, we consider the space of classical interpolation U cl gf as the set:

U cl gf := {( , k) ∈ Z 2 | k > 2, ≥ k + 1}
and notice that, for ( , k) ∈ U cl f g , the following holds:

• ( , k, 1) ∈ U cl GH , following section 3.2.6,

• Ψ gh (k, ), Ψ gh (k, ) ∈ Σ

(2) cc (c, N, 1), following section 3.1.3, since they have infinity type (κ + λ, -λ), where κ = k and λ = ( -k -1)/2 ≥ 0. Moreover, following the notation of section 3.2.3, they have branch characters ψ 1 and ψ 2 respectively.

• Φ g ( ) ∈ Σ

(2) crit (c), following section 3.1.2, since it has infinity type (κ 1 , κ 2 ) = ( , 2 -).

Since we restrict to the plane U gf ⊂ U HR via the above map, we shall denote L p g (g, f , h)( , k) := L p g (g, f , h)( , k, 1), e GH (k, ) := e GH (g , f k , h) and use a similar notation for all the other constants appearing in the various interpolation formulae.

Lemma 4.14. The following formulae hold true: Dimostrazione. This is similar to lemma 4.11 and is obtained using equation (4.5).

Lemma 4.15. The following equalities hold true:

e K (Φ g ( )) 2 • e GH (k, ) 2 = e BDP (k, Ψ gh (k, )) 2 e BDP (k, Ψ gh (k, )) 2 , a GH (k, ) • a K (Φ g ( )) 2 = a BDP (Ψ gh (k, )) • a BDP (Ψ gh (k, )) • a Pet ( ) 2 .

Dimostrazione. This again follows from a straight-forward computation using Lemma 4.14 for the first equality.

Lemma 4.16. The following identities hold true:

ω(f, Ψ gh (k, )) = (-1)

-1 2 ψ g, -1 (N)ψ h (N)

N -1 2 f , ω(f, Ψ gh (k, )) = (-1) -1 2 ψ g, -1 (N)ψ h (N) N -1 2 f .
In particular we have ω(f, Ψ gh (2, 1)) = ψ 1 (N) and ω(f, Ψ gh (2, 1)) = ψ 2 (N).

Dimostrazione. The proof is the same as for lemma with N E substituted with N f . Let L 0 = K(ψ g , ψ h , τ (χ), N g , N h ) denote the extension of Q generated by the values of the Hecke characters ψ g and ψ h , the Gauss sum associated to the Dirichlet character χ and the square-roots of N g and N h . Fix test vectors f , g and h as in §3.2.6, giving rise to the p-adic L-function L p g ( f , g, h).

Theorem 4.17. There exists a quadratic extension L/L 0 and a L-admissible function f on U f g (in the sense of definition 4.2) such that the following factorization of two-variable p-adic L-functions holds:

L p g ( f , g, h)(k, ) • L p (K)(Φ g ( )) = f(k, l) • L p (f /K)(ψ 1 , k, ) • L p (f /K)(ψ 2 , k, ).
Dimostrazione. We have a decomposition of classical L-functions given by f GH ( , k, 1) • f K (Φ g ( )) 2 f BDP (Ψ gh (k, )) • f BDP (Ψ gh (k, ))

L f k ⊗ g ⊗ h, k + -1 2 = Eul N (k, ) • L(f k , Ψ gh (k, ) -1 , 0) • L(f k , Ψ gh (k, ) -1 , 0). ( 4 
• v|N ∞ W v ω(k, ) . 
Let us show that f 0 is L 0 -admissible. Notice that the L 0 -admissibility of almost all terms appearing in the numerator and denominator of f 0 (k, ) follows directly from the definitions. Lemma 4.16 determines the L 0 -admissibility of ω(f k , Ψ gh )ω(f k , Ψ gh ), since p N f , and the constant C Ran appearing in f GH ( , k, 1) is independent on the weights k and .

The L 0 -admissibility of the function ω(k, ) appearing in f GH ( , k, 1) follows by the same argument as in the last part of the proof of [DLR15, Theorem 3.9]. Hence we have proved that f 0 is L 0 -admissible and the theorem follows after taking the square-roots on both sides of (4.14).

We now make in force the assumption 4.6(ES), i.e. ψ = ψ g is a ring class character of conductor c ∈ Z ≥1 and ψ h = 1 is the trivial character. In this setting the characters defined in equations (4.10) and (4.11) coincide, i.e. Ψ gh = Ψ gh , thus we simply denote this character by Ψ g , which have branch character ψ = ψ g . Assumption 4.18. (BR) the prime p of assumption 4.1(PP) is such that p N := lcm(N f , Dc 2 ).

Theorem 4.19. There exists a two-variable L-admissible function f(k, ) such that the following factorization of p-adic L-functions holds:

L p g (f , g)(k, ) • L p (K)(Φ g ( )) = f(k, ) • L p (f /K)(ψ g , k, ) 2 .
Dimostrazione. After setting Ψ := Ψ g (k, ), it is easy to verify that L(g ⊗ fk , ( + k -1)/2) = Eul N (k, ) • L(f k , Ψ -1 , 0)

where Eul N (k, ) stands for a product of Euler factors at primes dividing N . The function Eul N (k, ) gives rise to an admissible function as shown in lemma 4.7. From this, the proof proceeds along similar lines as in the proof of Theorem 4.13, replacing the BDP p-adic L-function with Castellà's two variable extension described in §3.2.3.

The explicit expression for the admissible function appearing in the above statement is very similar to that of the case p N E , namely

f(k, ) = Eul N (k, ) • (-1) k 2 (D K c 2 ) (N ) N • 2 -q|(D K ,N f ) h c • D K ψ -1 (N) c 3-N -1 2 f . (4.15)
Theorem 0.7 relative to the extension of theorem 0.4 and 0.6 in the case of bad reduction is then achieved by evaluating the factorizations of theorems 4.17 
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Théorème 0. 8 (

 8 Formule du nombre de classes). Les affirmations suivantes sont vraies : FNC0 La fonction zêta ζ K (s) admet un prolongement méromorphe et une équation fonctionnelle qui relie les valeurs en s et 1 -s ; FNC1 L'ordre du zéro de ζ K (s) au point s = 0 est égal au rang de O × K , c.-à-d. ord s=0 ζ K (s) = r (rang analytique = rang algébrique) ; FNC2 La formule suivante est vraie :

  Mordell-Weil nous garantit que E(K) est un groupe abélien de type fini. Le rang de ce groupe est appelé rang de E sur K et noté par r = r(E/K). Dans les années 60, Birch et Swinnerton-Dyer eut formulé dans [BSD] l'énoncé suivante : Conjecture 0.9 (Birch et Swinnerton-Dyer). Les affirmations suivantes sont vraies : BSD0 La fonction L(E/K, s) admet un prolongement méromorphe et une équation fonctionnelle qui relie les valeurs en s et 2 -s ; BSD1 L'ordre du zéro de L(E/K, s) au point s = 1 est egal au rang de E sur K, c.-à-d. ord s=1 L(E/K, s) = r (rang analytique = rang algébrique) ; BSD2 La formule suivante est vraie :

  via the weight-k-action. For d ∈ (Z/N Z) × we call this operator the Diamond operator and we denote it by d . This operator induces a decomposition of the various spaces of modular forms in χ-component, for every Dirichlet character χ : (Z/N Z) × → C × . If denote by M an k (N, χ) the set of elements of M an k (N ) on which d acts as χ(d), then we can write:

  Let χ : (Z/N χ Z) × → C be a Dirichlet character of conductor N χ and let Q χ denote the finite extension of Q generated by the values of χ. Let τ (χ) = Nχ a=1 χ(a)e 2πia Nχ be the Gauss sum associated with the Dirichlet character χ.

  A/C has complex multiplication by O c if End(A) = O c . Consider the Picard group Pic(O c ) of rank one projective O c -modules up to isomorphisms, then to every element a ∈ Pic(O c ) we can associate the elliptic curve C/a, which has complex multiplication by O c . Let us write E CM (O c ) for the set of elliptic curves having CM by O c up to isomorphism and let:

Lemma 2. 4 .

 4 Let ψ be a finite order Hecke character of conductor c. The following are equivalent: 1. ψ is self-dual; 2. The central character of ψ is trivial; 3. ψ is a ring class character of Gal (H c |K), where H c is the ring class field associated with the order O c and c is a positive generator of c ψ . Dimostrazione. It is a representation-theoretical restatement of [Cox89, Theorem 9.18].

2. 9 )

 9 Dimostrazione. See for instance [Hid93, p. 317, (1)] or[START_REF] Shimura | The special values of the zeta functions associated with cusp forms[END_REF] (2.4)].

  here φ is the Euler phi). Dimostrazione. See [Hid81, Theorem 5.1]. Pay attention to the different normalization of the Petersson product.

  Consider F := Q p [f α ], let O be its ring of integers and Λ := O[[Γ]]. Then there exists a unique Hida family (Λ f , U f , U cl f , f ) of tame level N f and tame character χ f such that f ν = f α for a unique point ν ∈ W cl f of weight k.

Dimostrazione..

  For simplicity call Ψ := Ψ the Hecke character of infinity type (κ + λ, -λ), where κ = 2 and λ = ( -3)/2. Define Ψ λ := ΨN λ K . Following the definition of equation (3.11), choose an ideal b ⊂ O c relatively prime to pcN E and an element b N ∈ O c such that bN = (b N ). Since in our case ω f = 1 and ε f = 1, equation (3.11) givesω(f, Ψ) = Ψ λ (b) • (-1) κ/2+λ N b)Ψ λ (N) = Ψ λ ((b N )) = b κ+2λ NWe can substitute into (4.6) and find:ω(f, Ψ) = (-1) κ/2+λ N

  ), following section 3.1.2, hence it is meaningful to compare the values of the three L-functions. Using Lemmas 4.8 and 4.10 we can restate formula (4.8) as follows:L p g (g, f )( ) = Eul N ( ) • e HR ( ) • a HR ( ) • f HR ( ) f Pet ( ) • L(f, Ψ -1 , 0) L(Φ -1 , 0) .

Ψ

  gh (k, )( ℘) = p +k-1 2 β g β h , Ψ gh (k, )( ℘) = p +k-1 2 β g α h .

  .13) Since p N , the Euler factor in Eul N (k, ) interpolates p-adically and gives rise to an L 0 -admissible function. Combine theorem 2.11 and equation (4.13) with the interpolation formula (3.39). Then use equations (3.9) and (3.4) to replace the classical L-functions with their respective p-adic avatar. An easy check shows that the periods simplify.Thanks to Lemma 4.15 one obtains the following equality, true for every (k, ) ∈ U cl f g :L p g ( f , g, h)(k, l) 2 • L p (K)(Φ g ( )) 2 = (4.14) f 0 (k, ) • L p (f /K)(ψ 1 , k, ) 2 • L p (f /K)(ψ 2 , k, ) 2wheref 0 (k, ) = Eul N (k, ) f Pet ( ) 2 •

  and 4.19 at the point (k, ) = (2, 1) and applying the various formulae for the special values (3.40), (3.18), (3.25) and (3.7)

  

  où F est la primitive surconvergente de f , e g * α est le projecteur sur la composante g * α -isotypique et e ord est le projecteur de Hida ordinaire. Les hypothèses C et C' assurent que la formule est bien définie en déclarant que la composante g * α -isotipique de l'espace de formes modulaires de poids un ne contient que des formes modulaires classiques. De cette façon e g * α e ord ( F • h) est aussi une forme modulaire classique. On peut alors énoncer la : Conjecture 0.10 (Conjecture de Stark elliptique). Soit p N g N h un nombre premier de réduction ordinaire pour E, soit N f la partie modérée de N E et N := ppcm(N f , N g , N h ).

	Sous les hypothèses A, B, et
	C,C' de [DLR15] on a :

  pour tout choix du vecteur test (γ, f , h).

	Idée de démonstration. Le résultat est obtenu en utilisant la méthode de Garrett-Hida, en faisant une
	interpolation p-adique de la fonction L triple produit et en mettant cela en relation avec autres fonctions
	L p-adiques (cf. [DLR15, §3]).
	Il faut noter que la formule est qualitative: il ne s'agit pas d'un calcul totalement explicite et λ n'est
	pas décrit par le théorème Il est intéressant de mieux comprendre la forme de ce facteur, après spécification
	du vecteur test (γ, f , h).

  Hida-Rankin et ses valeurs spéciales peuvent être interprétées comme intégrales p-adiques itérées. Le fait que la série g a multiplication complexe par χ K nous assure qu'elle soit la série thêta d'un caractère de Hecke d'ordre fini ψ : G K → C × . Dans ce cadre, P 1 = P 2 = P ψ , u gα = u ψ2 et le résultat principal de l'article [CR1] affirme que : Théorème 0.13 (C.-Rotger). Supposons que (N E , N g /D) = 1 et prenons N = ppcm(N E , N g ) et un nombre premier p 2N . Supposons aussi que les hypothèses C et C' soient satisfaites et que r an (E, ρ g ) = 1. Appelons h = E 1,χ K et choisissons un vecteur test :

  Stark elliptique et fournit des calculs plus explicites, répondant aux questions (i) et (ii).Le théorème que nous venons de discuter et le théorème 0.11 sont un premier pas vers la conjecture de Stark elliptique, mais ils sont loin de fournir une preuve générale. Pour cette raison nous avons essayé d'étendre le résultat : le premier cas qu'on a voulu regarder c'est le cas où p est un premier de mauvaise réduction pour E. En particulier, on considère la réduction multiplicative, c.-à-d. le cas où p||N E . Définissons N f := N E /p, alors nous avons le résultat suivant : Théorème 0.14. Les résultats de 0.11 et de 0.13 continuent à être vrais si p||N E , p N g N h . La formule explicite de 0.13 reste vraie si l'on remplace N E par N f . Pour conclure nous faisons un petit résumé du contenu de chaque chapitre. Dans le premiér chapitre nous introduisons le matériel et le langage de base sur le formes modulaires, les formes modulaires p-adiques et les opérateurs qui agissent sur ces espaces. Nous introduisons le théorème xxv de classicité de Coleman : les formes modulaires surconvergentes de petite pente sont classiques. Nous allons parler aussi des points à multiplication complexe et des unités elliptiques autant qu'il nous sera nécessaire pour la suite. Nous commençons par expliquer la conjecture de Stark elliptique dans les cas que nous traitons et nous décrivons en détails les hypothèses, afin de simplifier la lecture. Nous allons discuter avec une attention particulière les hypothèses C et C', qui sont nécessaires à la formulation de cette même conjecture. Les résultats de ce chapitre sont contenus extraits des articles[START_REF] Casazza | Stark points and p-adic iterated integrals[END_REF] et [CR2].

	Le deuxième chapitre contient les bases des fonctions L complexes. Nous décrivons les fonctions L
	associées aux systèmes compatibles de représentations galoisiennes, puis nous traitons de nombreuse cas
	spéciaux de fonctions L de ce type. Nous introduisons en particulier de nombreuse résultats et notation qui seront utiles pour la suite. Capitolo 1
	Le chapitre trois est le coeur de cette thèse : il contient tout le matériel nécessaire sur les fonctions L
	p-adiques, avec une attention particulière donnée aux éléments fondamentaux tels que la région d'interpo-
	lation, la relation avec la fonction L complexe associéa et les résultats sur les valeurs spéciales. La plupart des résultats présentés ici se trouvent déjà dans la littérature, mais nous allons généraliser quelque peu Background material
	certains d'entre eux et nous les adaptons à nos objectifs.
	Le quatrième chapitre contient les démonstrations des théorèmes 0.13 et 0.14 qu'on vient d'énoncer.
	1.1 Modular forms for Γ 1 (N )
	Consider the Poincaré upper half plane:
	Le résultat apparaît très similaire aux théorèmes précédents, mais nous sommes obligés de remplacer
	la fonction L p-adique de Bertolini-Darmon-Prasanna par une extension à deux variables étudiée par Ca-
	stellà, pour pouvoir dépasser des difficultés techniques.

  representation is said to be a global representation if K is a global field and a local representation if K is a local field. A representation is said to be an Artin representation if E ⊂ C. It is said to be an -adic representation if E ⊂ Q . Sometimes we call it λ-adic, if λ is the finite place above induced by the inclusion.Let now K | Q p be a finite extension and ρ : G K → GL n (E). Let I ⊂ G K be the inertia subgroup and define:

Acknowledgements

Discussion on hypothesis C and C'

Theorem 1.10 is very important but it only works for k ≥ 2. This is the reason for which we need hypothesis C and C' (see the discussion in the introduction). In the case k = 1 it might happen that S ord k (N p, χ) S oc,ord k (N, χ) and the p-adic iterated integrals might lead to more exotic results. The elliptic Stark conjecture in this setting is discussed in [START_REF] Darmon | Elliptic Stark conjectures and irregular weight one forms[END_REF] and it involves significant new features.

For this reason we need to have some control on the space of overconvergent modular forms of weight one. More precisely, let g ∈ M 1 (N g , χ g ) be a normalized eigenform of weight one. We say that g is regular at p if α p (f ) = β p (f ), otherwise we say that g is irregular at p. Take g α to be a p-stabilization and consider the generalized eigenspace:

Then we consider the following:

] is non-trivial and it only consists in classical modular forms.

Assumption 4.4 (Hypothesis C'). The following holds:

• if g is a cusp form then it is regular at p and is not the theta series of a character of a real quadratic field in which p splits;

• if g is an Eisenstein series then it is irregular at p.

The following proposition explains the relations between the two items in hypothesis C' and hypothesis C: Proposition 4.5. (1) If g is a cusp form and it is regular at p, then the natural inclusion:

is an isomorphism if and only if g is not induced from a character of a real quadratic field in which p splits.

(2) If g is an Eisenstein series then the space S oc,ord 1

] is non-trivial if and only if g is irregular.

Dimostrazione. This is proven in [DLR15, prop. 1.1, prop. 1.2] building on the results of [START_REF] Bellaïche | On the eigencurve at classical weight one points[END_REF].

As explained in [DLR15, §1], while hypothesis C and C' are equivalent when g is a cusp form, hypothesis C' could be weaker than hypothesis C when g is Eisenstein.

In the special case of theta series induced by ring class characters of an imaginary quadratic field K, hypothesis C' for Eisenstein series is automatic, since g = θ ψ is an Eisenstein series if and only if ψ 2 = 1, hence α p (g) = β p (g). When g = θ ψ is a cusp forms, the regularity assumption is sufficient for hypothesis C' (hence hypothesis C) to hold, because ρ g = Ind Q K (ψ) and if ρ g = Ind Q F (ξ) for a character ξ of a real quadratic field F , then Gal (H|K) = C 4 and F is the single real quadratic subfield of F . In this setting, p cannot split in F .

Proof of theorem 0.6

In this section we will treat the proof of theorem 0.6. Its hypothesis are slightly more restrictive than the ones from the general setting. More precisely:

Assumption 4.6. The following are assumed through all this section: (ES) ψ h = 1 is the trivial character, so that h = E 1,χ K . We write ψ := ψ g .

(GR) the prime p in assumption 4.1(PP) is such that p N := lcm(N E , Dc 2 ) Assumption (GR) implies that all the modular forms involved have good reduction at p. Under assumption (ES) and the self-duality condition for ρ we have some consequences that we list for the comfort of the reader:

• ψ is a ring class character cutting H = H c , the ring class field of K of conductor c ∈ Z ≥1 ;

We want to apply Rankin's method as described in section 2.3.1 to L(E/K, ψ, s) = L(f ⊗ g, s). In order to do this, we chose

two normalized eigenform for all Hecke operators. To be explicit, we can write:

as explained in section 1.3 and we define the Λ-adic modular form g as follows:

g(q) := g(q) -d|N/Ng µ d (g)g(q d ),

Lemma 4.7. There exists a meromorphic function Eul N ( f , g, s) such that:

and

Dimostrazione. Comparing the naive Euler factors of L( f ⊗ g, s) with those of L(f, ψ, s) using [START_REF] Gross | Heegner points on X 0 (N ), Modular forms[END_REF]equation (20.2)], we find that:

, which is of course a meromorphic function whose values at integes lie in Q ψ ( f ). An easy verification of the factors shows that Eul N ( f , g, 1) is well defined and nonzero.

Lemma 4.8. For every ∈ U cl g ∪ {1} we define the Hecke character Ψ of conductor c as follows:

Dimostrazione. By proposition 3.15 we know that the function:

interpolates well p-adically and we may compute it explicitly using equation (2.15). We get the result using theorem 2.11.

Lemma 4.11. The following formulae hold true:

Dimostrazione. It is a straightforward computation using equation (4.5).

We now define:

consider the function:

From section 3.2.5 we can restrict Hida-Rankin p-adic L-function to the line ( , k, j) = ( , 2, ( + 1)/2) ∈ U HR . In particular, ( , 2, ( + 1)/2) ∈ U cl HR for every ∈ U cl g and the interpolation formula (3.32) reads as follows

where we write L p g (g, f )( ) := L p g (g, f )( , 2, ( + 1)/2), e HR ( ) = e HR (g , f, ( + 1)/2) and similarly for the other terms. Before the main theorem we need a last:

Lemma 4.12. The following equalities are true:

Dimostrazione. The first part follows from lemma 4.11, the second part is a straightforward comparison.

Then we have the following:

Theorem 4.13. The function f is Q ψ ( f )-admissible in the sense of definition 4.2, i.e. it interpolates to a meromorphic Iwasawa function on U g and f(1) ∈ Q ψ ( f ) × . For all ∈ U g we have the following factorization of p-adic L-functions:

Dimostrazione. First of all notice that for ∈ U cl g ∩ Z ≥3 , we have that:

• ( , 2, ( + 1)/2) ∈ U cl HR , following section 3.2.5,