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ABSTRACT 

 The European Mediterranean coastal area has experienced widespread land cover change 

since 1950 because of rapid urban growth and expansion of tourism. Urban sprawl and other land 

cover changes occurred due to post-war economic conditions, population migration, and 

increased tourism. Land cover change has occurred through the interaction of environmental and 

socio-economic factors, including population growth, urban sprawl, industrial development, and 

environmental policies. In addition, rapid expansion of tourism during the last six decades has 

caused significant socioeconomic changes driving land cover change in Euro-Mediterranean 

areas. Mediterranean countries from Spain to Greece experienced strong urban growth from the 

1970’s onwards, and a moderate growth rate is projected to continue into the future. Land cover 

change can result in environmental changes such as water pollution and soil degradation. Several 

previous studies have shown that Mediterranean vineyards are particularly vulnerable to soil 

erosion because of high rainfall intensity and the fact that vineyards are commonly located on 

steeper slopes and the soil is kept bare during most of the cultivation period (November to April) 

when precipitation is at its highest. 

 To date, few Euro-Mediterranean studies of land cover change explicitly explore spatial 

constraints on land cover change patterns. Many modeling tools have been developed to explore 

and evaluate future land cover change possibilities, and time scales have varied greatly from one 

study to another. Most LUCC models relate change to physical and socio-economic factors in a 

grid of cells.  

 The main objective of this thesis is to predict long-term soil erosion evolution in a 

Mediterranean context of rapid urban growth and land use change at the catchment scale. In order 

to achieve this, the following specific aims have been formulated: (i) to analyze the spatial 

dynamics of land cover change from 1950 to 2008; (ii) to compare the impact of historical time 

periods on land cover prediction using different time scales; (iii) to test the impacts of spatial 

extent and cell size on LUCC modeling; and (iv) to predict the impact of land cover change on 

soil erosion for 2025. 

 The study area of approximately 235 km² is situated in the Var, a department located in 

southeastern France near the Gulf of St. Tropez. The western and higher part of the watershed, 
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consisting of about 70% of the catchment, is mostly pine and oak forest; the topography is 

uneven with the highest elevation at about 650 m. The eastern and lower part of the catchment is 

a gently sloping alluvial plain. The catchment area is characterized by a Mediterranean climate 

with hot, dry summers and cooler, rainy winters. Land cover maps were screen-digitized from 

digital orthorectified aerial photographs (1950, 1982, 2003, 2008, & 2011) purchased from the 

Institut Géographique National. In order to determine past land cover change patterns, surfaces 

were classified into five land cover categories based on visual interpretation, namely forest, 

vineyard, grassland, urban, and suburban. To analyze the spatial dynamics of past land cover 

change and create a model to predict future land cover change, surfaces were simplified into four 

categories, namely forest, vineyard, grassland, and built area. (Urban and suburban areas were 

combined into built area due to their small amount of coverage compared to other land cover 

categories.) Finally, soil erosion was predicted for the vineyard category. 

 The aerial photographs from 1950 were the first high-quality post-Second World War 

photographs available when the area was still largely rural. An intermediate date of 1982 was 

selected between 1950 and the most recent photographs. Aerial photographs from 1982 represent 

land cover conditions at the beginning of rapid urban sprawl. Cell size of all digitized maps was 

changed from 1 m to 25 m to make land cover layers compatible with the 25 m DEM used for the 

creation of topographic and distance variables. 

 Land cover change was analyzed using the Land Change Modeler (LCM) and CROSSTAB 

modules of IDRISI (Eastman, 2012). Explanatory variables were selected through Cramer’s 

coefficient. Land cover maps for 2011 were predicted using three different time scales, namely 

1950-1982, 1982-2003, and 2003-2008. These predictions were then compared to the actual 

digitized land cover map from 2011 to evaluate model accuracy. Major topographic and distance 

variables were identified including the following: slope, altitude, distance from roads, distance 

from built area in initial year, and distance from streams. In addition, three constraints and 

incentives-- forest to built area, vineyard to built area, and grassland to built area-- were included 

in the prediction process. These were created from the Plan Local d’Urbanisme (PLU) and the 

Schéma de Cohérence Territoriale (SCOT). Kappa index and confusion matrix were used to 

evaluate the model’s accuracy. LCM of IDRISI was used to predict land cover in 2011. 
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 LCC dynamics, both in terms of absolute and relative change, were first analyzed using 

intensity analysis. Then land cover was predicted for 2011 for large (79.1 km²) and small (36.6 

km²) windows using cell sizes of 25 m, 50 m, 100 m. Spatial resolution effects were also 

analyzed by upscaling from 25 m to 50 m and 100 m and then downscaling back to 25 m. Here 

spatial extent is equivalent to increasing the proportional area of a dormant category. Two spatial 

extents (36.6 km² and 79.1 km²) and three resolutions (25 m, 50 m and 100 m) were tested. The 

50 m and 100 m resolutions were downscaled back to 25 m. Land cover maps dated from 1950, 

1982, 2003 and 2011, and LCM was used to predict 2011 cover. Finally, RUSLE was used to 

predict soil erosion for different years: 1950, 1982, 2003, 2011, and 2025 (predicted).  

 This study found that land cover changes were concentrated mainly in the alluvial plain and 

adjoining foothills. Forest remained the dominant land cover in the catchment, changing only 

slightly from around 86% to 85% in 1950-2008. However, forested areas underwent significant 

swapping with vineyard and grassland areas. The catchment experienced a marked decrease in 

vineyard (-28%) and a substantial increase in grassland (about +50%). Urban and suburban areas 

remained a minor component of the catchment (about 3%), but showed a dramatic relative 

increase (more than 20 times initial cover). Built areas grew at the expense of vineyards, and 

grassland also increased on former vineyards. Losses in vineyard were offset in part by growth of 

vineyard on previously forested foothills close to the alluvial plain. This finding differs from 

other Mediterranean studies that have shown agriculture (i.e. vineyard cultivation), in the face of 

urban pressure, moving to steeper marginal slopes, while abandoning fertile plain soils to 

grassland and forest. Topography (altitude, slope) and distance variables (from roads, streams, 

built area, and the sea) strongly influenced land cover change dynamics in the catchment between 

1950 and 2008. Vineyard located near streams was converted mainly to grassland. Built areas 

were strongly dependent on roads and former built areas for expansion but expanded little near 

streams due to flooding risks. Finally, the rate of change was greater during the latter part of the 

study (1982-2008) than in the earlier period (1950-1982). 

 Kappa index and confusion matrix were used to evaluate the model’s accuracy. Altitude, 

slope, and distance from roads had the greatest impact on land cover changes among all variables 

tested. Good to perfect level of spatial agreement and perfect level of quantitative agreement were 

observed in long to short time scale simulations. Kappa indices (Kquantity = 0.99 and Klocation 
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= 0.90) and confusion matrices were good for intermediate and best for short time scale. The 

results indicate that shorter time scales produce better predictions. Time scale effects have strong 

interactions with specific land cover dynamics; for example, stable land cover categories are 

easier to predict than rapidly changing ones, and overall quantity is easier to predict than specific 

location over longer time periods. 

 Spatial extent had a major impact on land cover change dynamics as absolute and relative 

values of gains/losses were inverted when dormant category increased. It also improved Cramer’s 

V values (1.3 to 1.5 times greater) and disagreement values artificially improved (twice as good) 

in change prediction; this resulted from an increase in the number of correctly classified 

persistent cells. Upscaling/downscaling revealed that coarser cell sizes lose considerable 

predictive power (1.5 to 2 times greater allocation errors), despite validation statistics. In future 

studies, dormant category area should be minimized and upscaling/downscaling should be done if 

data are modeled at coarser resolutions than original cell size. 

 Land use changes were found to have a significant impact on soil erosion rates in different 

years. Between 1950 and 2003, soil erosion prone areas increased in the eastern and central parts 

of the study area; there was decreased soil erosion in the north and western parts of the catchment 

due a shift from vineyard to built area in the alluvial plain area. Vineyard decreased in the alluvial 

plain land, and increased in the upland valley and foothills. Therefore, mean and median slope 

values increased moderately in the same time period. A positive relationship between slope 

gradient and erosion rates in different years (1950, 1982 & 2003) was observed in this study. 
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GENERAL INTRODUCTION 

PURPOSE OF THE STUDY 

 The issue of land cover change has become important throughout the world in recent years, 

not only for researchers, but also for urban planners and environmentalists advocating and 

planning for sustainable land use in the future. In Mediterranean Europe, land cover patterns have 

changed greatly since the Second World War due to intensive human activities, population 

growth, and urban sprawl. The rapid growth in industrial and tourism activities has accelerated 

land cover changes in the Mediterranean coastal area in particular. Moreover, in recent decades, 

urban population growth and expansion of tourism have occurred more in the French 

Mediterranean coastal area than the average for European Mediterranean coastal areas (Blue Plan 

Papers, 2001). The increasing number of secondary homes and sport harbors along the 

Mediterranean coastline of southeast France—“La Côte d’Azur” (the French Riviera)—has 

transformed the pattern of land cover in the French Mediterranean coastal area (Benoit and 

Comeau 2005, EAA 2011). French Mediterranean cities have become popular destinations for 

affluent people from France and other countries to buy vacation and retirement properties. This 

has resulted in significant land cover change in this region, yet very few studies describing land 

cover change in this particular area have been conducted to date. 

 Most of the previous studies on land cover change in the Mediterranean area have highlighted 

one particular issue and/or described one specific type of land cover change. Few studies have 

taken into account multiple changes concurrently. In addition, spatial patterns of land cover 

change and identification of driver variables influencing change have sometimes been considered, 

but these studies have focused mainly on altitude and slope. For example, Fox et al. (2012) 

analyzed the impact of land cover change on total runoff between 1950 and 2003 in the upper part 

of the study catchment area. They noted a small increase in runoff due to a complex pattern of 

land cover change, but much of the lower alluvial plain, where most changes have occurred, was 

ignored, and spatial controls on these changes were not examined. 

 At the outset of this study, 27 recent studies involving land cover change analysis and 

modeling using CA-Markov and Multi-Layer Perceptron (MLP) with multiple land covers and 
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urban areas were examined. No studies were found on the comparison of different time scale 

simulations and the impact of historical time period on land cover prediction using different time 

scales. Thus, in this study, land cover change has been predicted using different time scales to 

assess the impacts of historical time period in predicting the land cover map of 2025. 

 Spatial extent refers to the overall size of a particular area (Turner et al., 1989, Qui & Wu, 

1996, Wu, 2004). The review of 27 recent studies (2001-2014) using CA-Markov and MLPNN 

modeling tools reveals that spatial extent ranged from 114.4 km² to 20,000 km², with mean and 

median values of 3,056.3 km² and 1,200 km², respectively. If land cover change is distributed 

homogeneously throughout space, then spatial extent probably has little impact on model 

prediction outcome. However, many areas have cores of evolving land covers surrounded by less 

active categories. Increasing spatial extent can introduce new land cover change dynamics (Kok 

& Veldkamp, 2001) or land cover categories (Turner et al., 1989), but in this study, larger spatial 

extent will be considered synonymous with increasing the proportional area occupied by a 

relatively dormant category. 

 Dietzel & Clarke (2004) proposed guidelines for urban simulation models on spatial 

resolution (10 m to 1,000 m) in four spatial extents, and found that finer resolutions of less than 

parcel size (≤ 10 m) in land cover simulation may increase error by creating small and false 

changes. This lower limit is well below the most frequently used 30 m resolution. At the upper 

limit, Chen & Pontius (2011) showed that predicted built area accuracy increased with increasing 

spatial resolution from 30 m to 1,920 m. Moreover, the explanatory power of driving variables 

can also increase with coarsening spatial resolutions (minimum resolution was 15 km²) (Kok & 

Veldkamp, 2001). Geri et al. (2011) found that the model’s performance increased to a perfect 

level of agreement with increasing cell size. Spatial extent and cell size may affect the analysis of 

spatial patterns of land cover change separately or together (Wu, 2004). However, few studies 

found tested the influence of these parameters in identifying the best cell size and spatial extent 

for a catchment level land cover change simulation. 

 Land cover change has a significant impact on land degradation including soil erosion. The 

Mediterranean area experiences high storm intensity on dry soil in summer and autumn; at this 

time, vineyard areas remain almost bare and a high rate of erosion can occur (Blavet et al. 2009, 
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Wainwright 1996, Ramos and Martínez-Casasnovas 2006). Mechanical tillage, chemical 

weeding, and intensive use of pesticides are the most common practices in vineyard cultivation 

systems in the Mediterranean area, in which soil remains bare during the whole year (Novara et 

al. 2011, Salome et al. 2014). These practices may result in higher crop yield and better quality 

grapes, but soil in these vineyards is particularly vulnerable to erosion, depletion of organic 

matter, chemical pollution, and loss of biodiversity (Coulouma et al. 2006, Raclot et al. 2009). 

Several studies found a high rate of soil erosion during the storm season (Martínez-Casasnovas et 

al. 2005, Wainwright 1996). Most of the studies dealing with the prediction of soil erosion focus 

on croplands elsewhere in the world, whereas vineyards in the French Mediterranean area have 

been much less studied. 

STATEMENT OF PROBLEM 

The principal aim of this thesis is to predict long-term soil erosion evolution in a Mediterranean 

context of rapid urban growth and land cover change at the catchment scale. 

To achieve this, the following three specific objectives were formulated: 

1. To identify the spatial dynamics of land cover change patterns in a Mediterranean 

catchment, namely the Giscle catchment in Southeastern France. 

2. To determine the impact of temporal scales, spatial extent, and cell size on land use and 

land cover change (LUCC) modeling to predict land cover change accurately.  

3. To determine past soil erosion patterns (1950, 1982, 2003, 2011) and predict them for the 

future (2025) based on projected land cover for 2025. 

ORGANIZATION OF THE THESIS 

 This dissertation consists of seven parts, including four chapters of original research. This 

introductory section outlines the motivations for and goals of the study, as well as the methods of 

investigation. The first chapter presents a literature review of previous studies dealing with 

related research topics. The next four chapters of this thesis present new research findings from 

this study. The dissertation concludes with a final section providing a synthesis of the findings, a 
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discussion of the limitations of this study, and suggestions for future research. These are 

summarized below: 

- Chapter 1 presents an extensive literature review covering previous academic studies on land 

cover change dynamics and land cover change modeling. These studies come from every corner 

of the world and date from 1994 to 2014. 

- Chapter 2 analyzes the land cover change patterns in the study area, and identifies explanatory 

variables for land cover change modeling by quantifying the impacts of topographic and distance 

variables on land cover change for each land cover category. Land cover maps were screen 

digitized from digital orthorectified aerial photographs. Surfaces were classified into five 

categories based on visual interpretation: forest, grassland, vineyards, urban, and suburban areas. 

Land cover change was quantified using the cross tabulation matrix of the CROSSTAB module 

and the Change Analysis module of the Land Change Modeler (LCM) of IDRISI Selva version 

17.02 (Eastman 2012). After creating land cover maps of 1950, 1982, and 2008, land cover 

changes in three temporal periods were investigated: 1950-1982, 1982-2008, and 1950-2008. The 

land cover change determining method proposed by Pontius et al. (2004) was applied for all 

temporal periods to quantify persistence, gains, losses, total change (addition of gains and losses), 

net change, and swapping. Then, the impact of spatial variables such as altitude, slope, distances 

from roads, streams, sea, and built area are presented. 

- Chapter 3 deals with the impact of temporal scales on land cover change modeling. Land cover 

maps of 2011 were predicted from different time scales (1950-1982, 1982-2003, and 2003-2008) 

using the Land Change Modeler (LCM), and compared with the digitized land cover map of 2011 

to measure the model’s accuracy. Spatial variables - namely, altitude, slope, and distances from 

roads, streams, and built area were used in land cover prediction. These variables were tested 

using Cramer’s V coefficient, and identified according to the analysis in Chapter 2. Topographic 

explanatory variables with several spatial and planning components were used to simulate land 

cover change without taking into account any particular spatial agent. Therefore, an agent-based 

modeling approach was not appropriate. The MLPNN-Markov model option of LCM-IDRISI, 

which was originally designed for land cover change evaluation and managing impact on 
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biodiversity, was used to simulate temporal and spatial patterns of change in land cover for both 

short and long time periods. 

- Chapter 4 tests the impact of spatial extent and cell size on the perception of land cover change 

dynamics and land cover prediction. Spatial extent and cell size are interrelated. They can have a 

great impact, not only on land cover prediction, but also on perceived quality of the prediction, 

since calculated agreement/disagreement statistics depend on the number of cells present in the 

study area grid, and this depends directly on cell size and spatial extent. Change dynamics in 

terms of absolute and relative change were first analyzed using intensity analysis, and then land 

cover was predicted for 2011 for large (79.1 km²) and small (36.6 km²) windows using cell sizes 

of 25 m, 50 m, and 100 m. Spatial resolution effects were also analyzed by upscaling from 25 m 

to 50 m and 100 m and then downscaling back to 25 m. 

- Chapter 5 measures the degree of soil erosion, identifies the impacts of land cover changes on 

soil erosion, and predicts soil erosion in vineyards for 2025 at the catchment scale using RUSLE. 

Chapter 3 and 4 are essential steps towards identifying the parameters for predicting land cover 

for the future (2025) and to see how land cover change impacts on soil erosion. Different 

parameters were measured. The rainfall erosion index (R) was estimated from average rainfall in 

the 1975-2005 period following Torri et al. (2006). The soil erodability factor K was calculated 

following the equation proposed by Wischmeier and Smith (1978). Based on previous studies, a 

cover management factor of 0.3 was used on different land cover types and vineyards 

conservation practice factor P is valued at 0.7 except terraces. According to field studies in the 

catchment area, terraces are found in most of the vineyards at slopes above 10%. Therefore, 

vineyards at all slopes above 10% are considered as terraced and valued at 0.2, because terraces 

reduce erosion by more than 50%. Soil erosion maps were predicted for 1950, 1982, 2003, 2011, 

and 2025. Predicted soil erosion maps were simplified into three categories: low (<10 t/ha), 

medium (10-25 t/ha), and high (>25 t/ha) soil erosion, respectively. For estimated erosion rates in 

2025, transition potential maps were created for all possible transitions based on actual historical 

changes during the 1982-2003 period and explanatory variables using the MLPNN algorithm of 

IDRISI (Eastman, 2012). However, only transition potentials with an accuracy rate greater than 

70% were included in land cover prediction, since that approach yielded better final results than 
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one which included all potential transitions. Accuracy rates greater than 70% consisted of the 

following: forest to vineyard, forest to grassland, forest to built area, vineyard to built area and 

grassland to built area. Validation values were weaker when all transitions were included, but the 

trends with regards to spatial extent and cell size were consistent. 
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CHAPTER 1 

LITERATURE REVIEW ON LAND COVER CHANGE 

DYNAMICS AND LAND COVER CHANGE MODELING 

 

1. Land cover change 

 Land cover is the physical and biological cover over the surface of the land including water, 

vegetation, bare soil, and manmade structures (Ellis, 2011). Land use is a more complicated term 

that refers to the human activities such as agriculture, forestry, building construction and any 

other function that alters the land surface or land cover. Land cover is determined by the 

interaction between human activities and environmental factors such as soil characteristics, 

climate, topography, and vegetation.  

 Land cover changes are among the most important human alterations of the Earth’s land 

surface (Lambin et al. 2001) and land cover conversion processes have accelerated since the 

Second World War (Antrop 2005, Geri et al. 2010, Serra et al. 2008). Moreover, land cover 

patterns of Mediterranean Europe have changed a lot since the Second World War (Fox et al. 

2012) due to intensive human activities (Geri et al. 2010). Land cover change has occurred by the 

interaction of environmental (physical) and human (socio-economic) characteristics: population 

growth, urban sprawl, industrial development, and political and environmental policy. In 

addition, rapid expansion of industrial and tourism activities during the last six decades has 

caused important socioeconomic changes in rural areas of the Mediterranean area (Dunjó et al. 

2003). According to Geri et al. (2011), land cover in Mediterranean areas has been changed by 

socio-economic development such as industrial and urban activities since the 1940s. Land use / 

cover change (LUCC) has a great influence on the current global change phenomena in both 

physical and human environments. It affects world bio-diversity and ecosystems, food security, 

human health, urbanization, and global climate change (Falcucci et al. 2007, Geri et al. 2011), 

Sala et al. 2000). It is also responsible for environmental change, water pollution and soil 

degradation (Dunjó et al. 2003). LUCC has resulted in the abandonment of marginal hillside 
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terraces and has shifted farm cultivation to better soils to increase profits. Three common major 

land cover changes in the Mediterranean area are the following: the expansion of tourism along 

the coastline that results in rapid urbanization, intensification of agriculture on alluvial plains and 

low lands, and abandonment of agricultural terraced land in mountainous steep slopes leading to 

their transformation to forest area (Falcucci et al. 2007). 

 Antrop (2005) conducted a study on landscape dynamics in Europe and divided three periods 

of time to show historical landscape changes in Europe: pre 18th century, 19th century to the 

Second World War, and post-World War II. According to the study, traditional landscape 

changes occurred in the first period but many new landscapes were generated upon the traditional 

ones in the second period. Urbanization and globalization were identified as effective factors of 

landscape change in the post war period. In Antrop’s (2005) study, landscape was defined as 

natural, rural, and urban area and characterized by the interaction of natural and human factors. 

Several driving forces of landscape change in Europe such as accessibility, urbanization, 

globalization and the impact of calamities were also discussed in the study, but not all of these 

driving forces are common in the Mediterranean area. Antrop (2005) also mentioned that 

population growth and technological advantages were associated with urbanization. 

 

1.1 Major trends in Euro-Mediterranean land cover change 

 Land cover changed greatly in the Mediterranean coastal area after the Second World War 

because of the industrial and agricultural revolutions. Slope and elevation, soil conditions, and 

other environmental factors were taken into consideration by farmers in the first part of the 19th 

century to establish agricultural farms, but this changed after the Second World War when human 

factors became more influential than environmental factors for land cover change because of high 

demographic pressure and socio-economic development in the Mediterranean area. Urbanization 

increased rapidly along the coastline, with resident population doubling every 30 years and 

tourism every 15 years (Falcucci et al. 2007). 

 According to different studies (Geri et al. 2011, Nunes et al. 2011), two general trends of land 

cover change took place in recent decades in the coastal Mediterranean area. Firstly, dry farming 
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and forest land cover decreased in alluvial plains while reforestation occurred in hilly area. 

Secondly, urbanization occurred rapidly in most of the coastal plains where the tourism industry 

flourished. Development of infrastructure, communication networks, and technological advances 

resulted in socio-economic development that was the main reason for agricultural land 

abandonment on marginal lands. Population growth and socio-economic development caused 

agricultural intensification that increased irrigated crops. Different studies have been carried out 

to identify the factors and spatial patterns of land cover at various scales (Kok and Veldkamp 

2001, Verburg et al. 1999). According to Serra et al. (2008), the expansion of tourism in the 

coastal Mediterranean area, environmental protection of certain areas, and common agricultural 

policy in Alt Empordà county (north west of Catalonia, Spain), caused important land cover 

changes in 1977-1997: “Agrarian abandonment has caused the depopulation of inland hill and 

mountain areas, whereas tourist activities have resulted in substantial population increases along 

the coastal zone” (Serra et al. 2008). 

 In the 1960s, agricultural activities were influenced by natural climatic conditions, such as 

rainfall. About 50% of the total agricultural area in Portugal was utilized for non-irrigated cereal 

cultivation (sown between October to November to make use of precipitation) and unseeded 

fallow rotation (Nunes et al. 2011). But the scenario changed in the latter half of the 20th century; 

agricultural activities became less important in the Mediterranean area due to natural barriers: 

relief and uneven topography, poor soil quality, and uncompetitive farm structures such as small, 

scattered plots. “Nowadays, shrub land cover and vine and olive tree patches are the most typical 

vegetation of the physiognomy and ecology of Mediterranean environments, leading to a whole 

homogeneous landscape and the consequent loss of biodiversity” (Dunjó et al. 2003). 

 Fox et al. (2012) conducted a study to analyze the impact of land cover change on total runoff 

in a Mediterranean catchment between 1950 and 2003 in the context of river management. 

Factors and patterns of land cover change were also explained briefly in the study. According to 

the study, land cover of the study area is strongly influenced by topography and most of the land 

cover changes occurred in the alluvial plain and foothills (about 29% of the catchment). Forest 

occupied about 90% of the gauged catchment and most of this was situated in upper hilly area. 

Vineyards and grassed areas covered the most area after forest and had a high tendency to 
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transform into urban areas. Some forested area also converted to vineyard in the study period but 

it was less than the area transformed from vineyard to forest. 

 Falcucci et al. (2007)  measured land cover changes in the Italian peninsula between 1960 and 

2000. According to the study, land cover/use changes occurred all over the Italian peninsula, 

particularly in Apennines and Mediterranean coastal areas from 1960s. Forest area roughly 

doubled in the Alps and Apennines as it gained land from agricultural areas. Agriculture area 

decreased in hilly and coastal areas but expanded in the rest of the country where traditional 

cultivation was transformed to modern technology based intensive cultivation. Land cover change 

was also related to population density which increased in plains and coastal areas because of 

tourism, agriculture and urbanization. 

 Geri et al. (2010) analyzed land cover change in a Mediterranean catchment (Siena province, 

Italy) in 1954-2000. They observed the direction and rate of land cover change and focused on 

the effects of human activity/disturbance in a Mediterranean environment. Forest and agricultural 

areas were more stable whereas semi natural areas were unstable in their study area. About 6% 

forest cover changed to agricultural land, and 12% and 3.5% of crop land converted to forest and 

semi natural area, respectively. But 55% and 35% of semi natural area transformed to forest and 

agricultural area, respectively. The study revealed that losses of forest area occurred mainly at 

higher elevations and conversion of agricultural land (both crop land and semi natural) occurred 

at lower altitudes. 

 Sluiter and de Jong (2007) conducted a study on land cover change in Peyne, France. 

According to the study, intensification of vineyards increased due to the expansion of the 

worldwide wine market and on automatic harvesting system. They found that about 90% of land 

abandonment occurred before 1940s, and was located further away from urban areas and roads. 

They also mention that intensification and modernization of agriculture were major factors of 

such change at the time of the “Green revolution”. Recent abandoned agricultural areas were near 

urban areas because most of recent abandonment occurred due to urban sprawl and 

industrialization. 
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 Alemayehu et al. (2006) analyzed land cover change in the context of demographic 

desertification in Tabernas (Almeria, Spain) and the study area represented a Mediterranean 

region where a combination of extreme environmental and land cover changes occurred in the 

last decades. The study showed that 32 % (2,507 ha) of dry farming areas were changed into 

different land cover types in 1956-2000, of which 57.7% (1,447.7 ha) changed to irrigated 

farmland (twice the irrigated area in 1956), 34% (857 ha) were abandoned, and about 8.3% (202 

ha) changed to urban and industrial development structures. The study also revealed that land 

abandonment and the transformation of dry farming land to irrigated crops increased soil erosion, 

salinization and pollution.  

 Cori (1999) explained that rapid growth of the tourism industry increased dramatically in the 

last few decades and influenced land cover change on the northern shores of the Mediterranean 

area. According to the study, rapid growth of population, tourism activities, change of settlement 

system, and industrial development were the main causes of land cover change. It was reported 

that agricultural land decreased and non-agricultural land increased in the Spanish, French, and 

Italian Mediterranean regions. It also demonstrated that the agricultural areas were affected due to 

the spread of tourism and traffic infrastructure such as urban structure, hotels, roads etc. In the 

study, several spatial planning policies were discussed and new plans were introduced to 

conserve the Mediterranean environment, particularly in Spain, France and Italy. 

 Van Eetvelde and Antrop (2004) analyzed the characteristics and mechanism of land cover 

change in southern France (Tavernes) in 1960-1999. They explained how structural and 

functional changes influenced new landscape formation in their study area. They also identified 

three main trends of land cover change in Mediterranean areas: development of transportation and 

infrastructure, urban sprawl, and rapid expansion of the tourism industry in the Mediterranean 

coastal area. According to the study, little land cover change occurred in the Tavernes basin in 

1979-1993. A particular pattern of transition was noticed from vineyards to olive groves. Most of 

the changes occurred on the foot slopes in the northern and eastern edge of the basin. 

 Serra et al. (2008) reported that mass tourism on the coast, the development of irrigation 

projects, environmental reserve areas and common agricultural policy (CAP) subsidies for 
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irrigated crops were the main causes behind land cover and land cover changes in the 

Mediterranean area. They revealed that irrigated maize, fruit trees, shrub lands, deciduous forest, 

and urban areas increased significantly in coastal plain areas. Besides, vineyards and olive trees 

decreased in the mountainous areas and transitional sub regions that resulted in land abandonment 

and increased shrub land area. 

 Koulouri and Giourga (2007) conducted a study in Lesvos Island, Greece. They considered 

three land cover “types” such as cultivation, short-time abandonment, and long-time 

abandonment to describe the relationship of land abandonment and soil erosion that occurred by 

the changes in agricultural practices and soil resource management. Significant land cover change 

occurred on steep slopes (≥ 25 %). The study revealed that soil erosion increased significantly on 

steep (≥ 25 %) to very steep slopes (≥ 40 %) because of loss of densely protective plant cover and 

increase in shrub cover. In addition, increased bare soil area was also described as another major 

cause of soil erosion. 

 

1.2 Factors affecting land cover change  

 Land cover change occurs under the pressure of a variety of socio-economic factors that 

interact with the natural environment to determine the nature and location of land cover change. 

The list below is not exhaustive but lists the major factors currently referred to in the scientific 

literature for the Mediterranean area. 

 

1.2.1 Demographic pressure and urban sprawl 

 Population growth and urbanization have occurred in Mediterranean coastal areas as in other 

parts of the world. About 60% of the world’s population resides in a 65 km wide belt close to the 

coastline because of its beauty, natural resources and economic activities (Vallega, 1998). 

Urbanization is a major driving force of land cover change, though it occupies a very small 

fraction of the Earth’s land surface (less than 2%). About 51 % of the world’s population were 

living in urban areas in 2010 (http://data.worldbank.org/topic/urban-development) and about 60% 

http://data.worldbank.org/topic/urban-development
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will be living in urban areas by 2030 (UNFPA 2004). Urbanization affects urban fringe areas 

which are progressively transformed into full urban areas. Brauch (2003) estimates that the 

population of Southern European countries doubled in 1950-2000, and the urbanization rate has 

been projected to increase from 44.2 % in 1950 to 75.2% by 2030; in addition, urban population 

will reach 71.6 % in Greece, 76.1% Italy, 81.6 %, in Portugal, 82.2 %, in France, and 84.5 % in 

Spain by 2030, respectively. In Southern Europe, the population of some major Mediterranean 

coastal cities (Athens, Barcelona, Naples, and Marseille) increased 1.1 to 1.8 fold from 1950 to 

2000 and should stabilize around 2015. 

 The population density in the Mediterranean coastal area (69 inhabitants/km2) is more than 

double the density of population of the region as a whole (47 inhabitants/km2) (Benoit 2001, Cori 

1999). According to Benoit (2001), Mediterranean coastal regions are more urbanized than 

countries as a whole, and urban and total population in Mediterranean area increased by 2.7 and 

1.9 times, respectively, in 1950-1995. Total population growth rates in 1950-1995 were 0.54% 

and 0.29% in France and Spain, respectively, but population growth rates in Mediterranean 

coastal regions of these countries were 0.76% and 0.49%, respectively. According to Falcucci et 

al. (2007), a decrease in population was observed in the Apennines, Alps, and in the central and 

mountainous part of Sicily and Sardina of Italy in 1960-2000 while an increase was noted along 

the coastal areas due to rapid growth of economic activities.  

 Urbanization is a continuous process that was initiated in Europe during the industrial 

revolution in the nineteenth century (Antrop 2005). Socio-economic development and population 

growth were two main factors behind it. In Mediterranean Europe, many large cities experienced 

strong growth rates between the 1950s and the 1980s (Catalán et al., 2008). However, the 

presence of many small and medium-sized urban centers near large cities contributed to knit 

together metropolitan regions (Benoit, 2001). For example, urban sprawl is growing rapidly in the 

Mediterranean area, as in Madrid, Marseilles, and some other cities of southern Europe. 

According to Benoit (2001), the European Mediterranean coast is now almost completely 

urbanized where average distance between urban areas was about 10 km, 17 km, and 18 km in 

Italy, Spain, and France, respectively, in 1995. Moreover, the number of urban areas also 

increased dramatically in the European Mediterranean basin in 1950-1995 (Benoit, 2001). The 
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number of urban areas was 296, 676, and 350 in France, Italy, and Spain, respectively, in 1950, 

and increased to 433, 769, and 415, respectively, in 1995. Urban growth expanded along the 

periphery at the expense of agricultural or forest areas.  

 According to Benoit and Comeau (2005) Mediterranean countries from Spain to Greece 

experienced strong urban growth until the 1970s, and their current moderate growth rates are 

projected to continue. Land cover change has been affected by newly developed artificial areas: 

for example, total built area, roads & car parks, and non-built artificial area (gardens, lawns and 

construction sites) increased by 12%, 10%, and 17%, respectively, in France between 1992 and 

2000 (Benoit and Comeau, 2005). About 34% of Spanish Mediterranean coastal areas have been 

urbanized since 1999 and this figure was 43% for the Italian coastline (Serra et al. 2008). As a 

result, only 4.7% of primary vegetation in Mediterranean Europe remains unchanged (Geri et al. 

2010). In addition, migration from other European countries tends to concentrate in the 

Mediterranean coastline area due to the quality of life in Mediterranean cities (Cori 1999). Aging 

population in Europe has a typical migration trend towards the Mediterranean coastal zone (Van 

Eetvelde and Antrop 2004). 

 

1.2.2 Tourism 

 The Mediterranean is the world’s leading tourist destination where tourism is a major industry 

in terms of economic activity (MAP 2008), and tourism is one of the most important sources of 

income for most Mediterranean countries. Though tourists tend to visit mainly in summer, 

infrastructures such as housing, roads, and entertainment facilities are built permanently, 

contributing to accelerate urban growth. According to Enne et al. (2005), the Mediterranean 

region attracts more than 30% of world tourism. Benoit (2001) predicts an average 250 million 

visitors per year for 2025 in Euro-Mediterranean coastal areas. According to the report of MAP 

(2008), the number of tourists in the Mediterranean coastal area will increase by about 80% 

between 2000 and 2025. 

 Significant human pressure on the Mediterranean coast is caused by the expansion of tourism 

related to seaside resorts. Van Eetvelde and Antrop (2004) explain that natural, cultural and 
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scenic values of Mediterranean landscapes were important factors for developing the tourism 

sector, and new infrastructure developments based on tourism have changed the traditional form 

of land cover and socio-economic conditions. France received 60 million tourists in 1996 and 

over 80 million 2007, representing almost 11% of world tourism at the time (Wikipédia, 

http://fr.wikipedia.org/wiki/Tourisme_en_France). France is the first tourist destination in the 

world with the third highest income from tourism (after the U.S.A. and Spain). In addition, the 

World Tourism Organization (WTO) predicted about 100 million foreign tourists will visit 

France in 2015. Every year, millions of tourists gather in summer in coastal cities to enjoy the 

Mediterranean Sea and the rugged topography of the Southern Alps, because the dominant 

climatic regime is typically Southern Mediterranean with mild winters and dry summers. 

Mediterranean France has a very rich mixed environment, and it presents many of the typical 

features of Mediterranean tourism, especially in coastal areas, where strong urban development is 

related to tourism.  

 According to Cori (1999), Mediterranean countries provide at least 25% of the world’s hotel 

accommodation. Coastal regions of other Mediterranean countries such as Turkey, Cyprus, and 

Morocco have also been influenced by expansion of the tourism industry. These coastal areas are 

more urbanized due to the rapid development of local tourism. Greece and Croatia are the leading 

countries in northeastern Mediterranean with their high potentialities to attract international 

tourism. Greece has the combined appeal of its archeological and artistic heritage with the 

traditional sea-sun-shore. The expansion of tourism on the coastal plains and even in the inner 

mountainous forest areas has reduced the natural and cultural biodiversity, and the degradation of 

former traditional agricultural landscapes has increased forest fires and soil erosion (Serra et al. 

2008). 

 As described by EAA (2011), the number of secondary homes increased by 10% between 

1990 and 1999 in France, creating intensive pressure on the environment, especially in coastal 

and mountain zones. There is a sport harbor every 3 km and most of these harbors are 

accompanied by urban development operations in the Mediterranean coastline of southeast 

France - “La Côte d’Azur” (Benoit 2001, EAA 2011). According to the report of EAA (2011), 

almost 335,000 new secondary homes were built during the past two decades, occupying 22 km² 

http://fr.wikipedia.org/wiki/Tourisme_en_France
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of land. In the 1990s, Mediterranean beaches attracted people of central and Eastern Europe as 

well as the inland population from the Southern side of the Mediterranean basin (Benoit 2001), 

and both domestic and external tourism are increasing. Moreover, retired population from home 

and abroad (many from Northern Europe, and African and Arabian elites) have a tendency to buy 

property and houses in a Mediterranean city. According to (Cori 1999), half of total secondary 

homes in France are situated in the Mediterranean coastal area. 

 

1.2.3 Intensification of agriculture 

 Fine grained rural landscape structures are being replaced by large scale ones leading to loss 

of regional diverse cultural landscapes due to the intensification of agriculture (Van Eetvelde and 

Antrop 2004). Intensive agriculture can be defined as a cultivation system that uses high input 

such as labor, fertilizer, pesticides, herbicides, fungicides and capital to obtain maximum yield 

per unit of land (Lambin et al. 2001). Intensive agriculture requires less land area than extensive 

agricultural farms but it needs high efficiency machinery for planting, cultivating, harvesting, and 

producing a similar profit. Generally, farmers use greater farm areas in intensive cultivation for 

sustainable use of their capital investments and equipment to get higher profit. Nowadays, this 

type of agriculture is practiced throughout the developed world to increase food production for a 

rising population. But the pattern of agricultural landscape has changed in Europe since the 

Second World War because of agricultural and economic development (Geri et al. 2011). Modern 

intensive agricultural practices ensure food security, increased income, and improved farmer’s 

living standards in both developed and developing countries. The intensification of agriculture 

occurred mainly based on technological advances and improvements in agricultural materials and 

machinery, and it has reduced corresponding production costs. Optimum use of organic and 

chemical fertilizer, development of irrigation, and practice of advance technology in agriculture 

and animal husbandry increased productivity of land and crop yields per unit area. The “Agri-

Basin” of Italy has experienced the relocation of profitable agricultural activities from uplands to 

plains due to rapid intensification in agriculture (Quaranta, et al. 2001). In addition, profitable 
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crops such as high yielding varieties are cultivated over huge areas due to increased investment in 

irrigation. 

 Two patterns of agricultural land cover change in European Mediterranean areas over the last 

fifty years can be defined (Baldock et al. 1996).  

 Suitable and more productive land cover was converted to more intensive agricultural uses 

since the 1950s, often with an expansion of arable land at the expense of permanent 

grassland, wetlands, and forest. 

 Marginal areas with physical and socio-economic barriers such as steep slopes, small 

terraces, wet areas without drainage systems, and remote mountain regions have been 

abandoned or replaced by specialized farming systems, plantation forestry or natural 

succession. 

 

1.2.4 Land abandonment 

 “Land abandonment can be defined both qualitatively (as a description of the land condition) 

and quantitatively (as years without use)” (Moravec and Zemeckis 2007). The concept of 

land/farm abandonment is applied to the land where traditional or recent agricultural use has 

stopped. There is no well-defined and commonly accepted definition for land abandonment 

because there is confusion over the term “abandoned farmland”. Sometimes apparently 

abandoned land often is not truly abandoned, but merely temporarily out of use/cultivation and 

awaiting a new owner or tenant. In the European Mediterranean, legal owners of much of the 

abandoned farmland live in a town or city, and they bought their farmland as an investment. The 

statistical survey of France separates abandoned land from fellow land, but there is no specified 

duration when fallow land converts to abandoned land (Moravec and Zemeckis 2007).  

 Dunjó et al. (2003) described the land abandonment process in a typical Mediterranean 

environment (North East Spain) during the last century. They divided four different land cover 

types according to the duration of land abandonment such as cultivated fields (vineyard and olive 

trees, 0 years), recent abandonment (densely and cleared shrubs, 5 years), mid-abandonment 
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(cleared cork trees and dense olive trees, 25 years) and early abandonment. Most of the studies 

(Geri et al. 2010, Koulouri and Giourga 2007, Sluiter and de Jong 2007, Van Eetvelde and 

Antrop 2004) about land abandonment in Mediterranean Europe show that mountainous or semi 

mountainous hillside areas were abandoned because small plots of vineyards and olive trees were 

not profitable. Land abandonment is also a common scenario in Mediterranean France because of 

technological, social, and economic change (Geri et al. 2010, Sluiter and de Jong 2007). Intensive 

agriculture and long term abandonment started around the 1850s and increased to a high rate after 

1900 in ‘Peyne’, Southern France (Sluiter and de Jong 2007). But it is difficult to understand the 

real condition or measure changes that occurred because of complex transitions between 

vegetation and agricultural land. Van Eetvelde and Antrop (2004) describe how land 

abandonment and urbanization have been occurring simultaneously in their study areas - 

Tavernes, le Flexi and Montfaucon of southern France. Most of the changes took place in the last 

few decades because of urbanization and agricultural intensification. 

 There are different causes of agricultural land abandonment and according to Baldock et al. 

(1996) and land abandonment may take place in the following ways: 

 

Temporarily out of use 

 Farmland which is under irregular management or waiting a new owner or tenant may 

seem abandoned. 

 Farmland which is converting to non-agricultural use seems abandoned, typically in urban 

fringe areas. 

 Farmland which is temporarily set aside under the Common Agricultural Policy (CAP) 

arable regime may also appear abandoned. 

Permanently abandoned 

 Land which is under long term set aside schemes, such as habitat creation under 

Regulation 2078/92 and subject to conservation management. 

Converted to other uses 
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 Land which has undergone a planned conservation to another use, typically forestry, 

reservoirs, natural or hunting reserves or urban development. 

 Land which has converted to another use due to spontaneous abandonment (such as 

grazing by itinerant livestock). 

 Environmental factors, geographic location, agricultural structures, social factors, and 

government and regional policy need to be considered for land abandonment (Baldock et al. 

1996). Farmlands which are situated near urban areas have a high probability of being abandoned 

as a result of high income potentiality of urbanization. Moreover, physical conditions such as soil 

fertility, slope, altitude and availability of land for farming are important factors. In addition, 

sometimes land abandonment also occurred due to technological change of farming systems and 

policies for commercialization.  

 Common environmental factors are soil, climate, water availability, topography, and altitude, 

which have a fundamental influence on the agricultural potential of an area (Baldock et al. 1996). 

Moreover, soil productivity depends on fertility, soil structure, and soil depth. Sometimes fertile 

soil may be abandoned due to lack of rainfall. Besides, steep slopes and high altitudes may be 

abandoned because of obstacles to mechanized farming and to the short growing season (Baldock 

et al. 1996). Moreover, very dry or wet soils are unsuitable for tractors and are likely to be 

abandoned (Moravec and Zemeckis 2007).  

 Geographical location is a very important factor for agricultural abandonment. Selling goods 

and buying inputs for farms depend on communication networks such as roads and trains. 

Farming in mountainous areas may have poor access that results in higher input costs and reflects 

the characteristics of Less Favored Area (LFA) according to Baldock et al. (1996).  

 Holding size of less than 10 ha represents 35.2% of total Utilized Agricultural Area (UAA) in 

France and this figure is about 67.5% for the whole EU-15 countries (Eurostat- Farm Structure 

Survey 2005). A small number of large and relatively efficient farms are economically profitable 

and commercially viable, there are also numerous small and marginal holdings. Besides, most of 

the owners of small holdings and farms are involved in agriculture as a part time and marginal 
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activity with little interest. Sometimes, they cultivate their land as a hobby, so these small farms 

have a high probability to change or be abandoned.  

 In many typical Mediterranean areas, some social factors have an important influence on land 

abandonment. Firstly, elderly farmers without successors are a common scenario of mountainous 

rural agricultural practice. An aging population, uncompetitive farm structures, and lack of 

alternative employment opportunities cause abandonment of traditional subsistence systems. In 

addition, abandonment can occur by converting arable land to tree crops (olives, almonds, orange, 

and carobs) in both upland and lowland areas (Koulouri and Giourga 2007). Some arable 

cultivation, vines and tree crops survive traditional practices but most of the systems are closed or 

neglected (Caraveli 2000). Rural population shows a declining trend in the Mediterranean area 

that creates a scarcity of labor necessary for subsistence agricultural in upland areas. Finally, lack 

of important social and entertainment facilities in rural areas such as education, health, and sport 

facilities affect land abandonment.  

 

1.2.5 Economic factors 

 Land abandonment in the Mediterranean region accelerated due to increasing market demand 

and competition with the highly productive agriculture of Northwestern Europe. According to 

(Baldock et al. 1996), relevant economic factors behind land abandonment include the following: 

 competition from other agricultural areas, other land covers and production systems; 

 rising living costs and income aspirations; 

 alternative employment possibilities; 

 relative costs of inputs and outputs; 

 alternative demands for farm products; 

 use of modern technology in agricultural farm land; 

 availability of capital/ loans and subsidies.  

 Other factors, such as “urban fringe”, tourism, forestry, reservoirs, and natural management 

also influence land abandonment in the Mediterranean. 
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1.2.6 Policy and planning 

The European Union took several unique agricultural policies in the early 1960s and reformed 

it in 1992 to provide financial support and to encourage the use of modern technologies for 

farming (www.wwf.org.uk/filelibrary/pdf/ag_in_the_eu.pdf); the main objectives were the 

following: 

 ensure the availability of agricultural goods according to market demand; 

 increase agricultural productivity; 

 increase the living standard of the agricultural community; 

 stabilize the market price and ensure that supplies reached consumers at reasonable prices.  

Nunes et al. (2011) describe how the environment and forest areas have benefited from the 

reform of the CAP in 1992. The CAP provided irrigation subsidies for planting high yielding 

crops that reduced the production of winter cereals in Spain. Moreover, this agricultural policy 

also encouraged large farming enterprises and cultivation of subsidized crops in bigger fields. As 

a result, partial and permanent abandonment of agricultural land increased. Abandoned less 

favorable areas for commercial farming went under afforestation policies to reduce desertification 

and soil erosion (Nunes et al. 2011). According to the Service of Agrarian Recognition and 

Management (SROA) 1970 statistics, about 55% of the total area of the Guarda district, Portugal, 

was occupied by cereal crops in 1950s and this decreased to 10% for the same crops in 2000 

((Nunes et al. 2011). 

 

1.2.7 Results of land abandonment 

 Decreasing landscape diversity and complexity and increasing vulnerability of certain hazards 

such as forest fire, floods, and droughts can be considered as some of the results of intensification 

and abandonment of land cover/use (Serra et al. 2008). Environmental degradation in connection 

with forest fires and hydro-geological changes are common phenomenon due to land 

abandonment in Mediterranean Europe (Moravec and Zemeckis 2007). In addition, land 

http://www.wwf.org.uk/filelibrary/pdf/ag_in_the_eu.pdf
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abandonment also influences biodiversity by changing the habitat of forest and other typical 

biomes. Moreover, rates of soil erosion depend on the history of agricultural activities of an 

abandoned land, regeneration process, and composition of vegetation (Sluiter and de Jong 2007). 

While Koulouri and Giourga (2007) observed some positive impacts of land abandonment, such 

as decreased soil erosion due to regeneration of vegetation which improved soil structure by 

adding organic matter and protecting the soil from erosion.  

 

1.3 Land cover change conclusions 

 Significant land cover changes have been observed in Euro-Mediterranean coastal areas since 

the Second World War. There are several factors and trends of land cover change in the 

Mediterranean area some dominant factors, trends, and patterns are similar for the region. Plain 

and gently steep lands have transformed to intensive agriculture practices and human settlement 

due to urban sprawl. Agricultural activities in mountainous areas and on steep slopes have been 

abandoned and reforested. Moreover, the tourism industry has also flourished rapidly and this has 

influenced land cover change in the coastal area which has been subject to intense  
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2. Land cover change modeling 

 Land use / cover change (LUCC) is a major issue for researchers and managers including 

urban planners, conservationists, ecologists, economists, and resource managers because of its 

relation with global environmental change and sustainable development (Dietzel and Clarke 

2006, Guan et al. 2011, Lambin et al. 2001). LUCC is associated with the interaction between 

human activities and the natural environment, and land cover change models are the supporting 

tools to analyze the causes and consequences of land cover changes (Verburg et al. 2004). Land 

cover change models quantify land cover change patterns and relationships between the human 

and ecological systems (Veldkamp and Lambin 2001). In particular, land cover change models 

are able to identify location and quantity of change, to predict land cover change considering past 

changes and test explanatory variables. For this reason, many interdisciplinary research projects 

have been initiated for land cover change modeling, measuring regional and global land cover 

change, forecasting future conditions, and planning for sustainable development (Verburg et al. 

1999). As a result, researchers have created a large set of operational modeling tools to 

implement prediction and exploration of possible land cover change trajectories, and land cover 

planning and policy in recent years (Verburg et al. 2006). 

 Land cover change, urban growth, and spatial modeling have drawn considerable interest in 

the last two decades due to increased computing power, availability of spatial data, and the need 

for innovative planning tools for decision support (Dietzel and Clarke 2006) . Advanced urban 

and land cover change modeling techniques have been included in many GIS software programs 

and have enriched modeling techniques in geographical research. Different studies of land cover 

change can be summarized as three main core issues: land cover dynamics, driving forces, and 

modeling global or regional land cover change. Most studies are on spatiotemporal urban 

dynamics and urban growth prediction (Batty et al. 1999, Clarke et al. 1997, Dietzel and Clarke 

2006, Engelen et al. 1999, Li and Yeh 2000). Some studies considered socioeconomic issues to 

explain unban expansion (Barredo et al. 2003, Jokar Arsanjani et al. 2013). Other studies 

considered environmental, ecological, and land cover change dynamics (White and Engelen 

1993). Very few studies are on land cover change modeling in the Mediterranean area (Geri et al. 

2011, Oñate-Valdivieso and Bosque Sendra 2010, Petrov et al. 2009). Land cover change has 
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great influence on soil erosion, runoff, deforestation, forest fires, and other natural risks, which 

have direct and indirect impacts on environmental change (Dunjó et al. 2003, Koulouri and 

Giourga 2007, Nunes et al. 2011). 

 This chapter presents an overview of land cover change modeling and the justification of our 

choice of LCM as a modeling tool for our study. An overview of land cover change modeling is 

provided and Cellular Automata (CA) models are described in detail. This is followed by a more 

detailed description of data types, sources, and processing methods of the SLEUTH, MOLAND, 

and Urban Expansion Dynamic (UED) models in sub-sections. The Markov model is then 

presented and a review of Markov chain modeling and the Land Change Modeler (LCM) of 

IDRISI are discussed. After this, a brief description of Agent Based Modeling (ABM) in 

geography is presented. The literature review ends with a discussion of the suitability of the LCM 

model to analyze and simulate land cover change in the context of our study and a summary 

conclusion. 

 

2.1 Land cover and land use change models 

 Different modeling techniques have been designed to analyze present land cover patterns 

using biophysical potentials and socio-economic characteristics (Guan et al. 2011, Kamusoko et 

al. 2009), to explore the impacts of land cover change, and predict for future changes (Barredo et 

al. 2003, He et al. 2008). Huang and Cai (2007) classify land cover modeling into non-spatial 

models, (such as empirical statistical), and spatial simulation models, such as Cellular Automata 

(CA) models (Clarke and Gaydos 1998), Constrained CA models (Engelen et al. 1997), 

Conversion of Land Use and its Effects (CLUE) (Verburg et al. 1999), and the SLEUTH model 

(Clarke and Gaydos 1998). However, Guan et al. (2011) divide models into three classes: 

empirical and statistical models, dynamic models, and system dynamic or integrated models; they 

explain that dynamic models are more suitable to predict land cover change in the future than 

empirical / statistical models. Moreover, an integrated model that is multidisciplinary and 

combines elements of different modeling techniques will probably be best for improving and 

understanding land cover change processes (Guan et al. 2011). Agarwal et al. (2002) reviewed 

spatial and temporal characteristics of 19 land cover change models used over a wide range of 
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scales, from less than a day to more than 100 years and from less than 1 ha to more than 1 million 

km2. They classified 11 models as raster based, 4 were vector based and the remaining were 

classified as neither. According to the review, six models used statistical/econometric models at 

county-level data. The other six models used spatially dynamic approaches. 

 

2.2 Cellular Automata (CA) 

 Automata are mechanisms of processing information according to surroundings and inputs. In 

this process, surroundings and characteristics of automata are changed over time according to the 

rules that govern their reaction. “An automata is a machine that processes information, 

proceeding logically, inexorably performing its next action after applying data received from 

outside itself in light of instructions programmed within itself” (Lavy 1992, p. 15). White (1998) 

defined a CA as “a discrete cell space, together with a set of possible cell states and a set of 

transition rules that determine the state of each cell as a function of the states of all cells within a 

defined cell space neighborhood of the cell; time is discrete and all cell states are updated 

simultaneously at each iteration”. 

A finite automaton (A) can be described by means of a finite set of states S = {S1, S2, S3,... ... ..., 
SN} and a set of transition rules T. 

A ~ (S, T)……………………….(I) 

A Cellular Automaton (CA) is a spatially located and interconnected finite system. In CA, space 

is divided into regular spatial cells and an individual cell represents a particular boundary of 

location of an automaton (Liu 2009). Cells distributed over a grid space represent a finite number 

of states and time moves forward in discrete steps. The overall behavior of the system is 

determined by the combined effect of all the transition rules. Transition rules define an 

automaton’s state, St+1, at the time step (t+1) depending on its state, St (S t+1ϵ S), and input, It, at 

time step t: 

T: (St , It ) →S t+1 ……….…..…. (II) 

An automaton can be defined by A, belonging to a CA lattice as follows: 

A ~ (S, T, R)……………...……(III) 
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Where, R represents automata neighboring A. 

 

2.2.1 Fundamental components of a CA model 

 A cellular automaton consists of five fundamental elements (Liu 2009, White et al. 1999). 

These characteristics are described below.  

1- The cell (C) is the basic spatial unit of two dimensional grids or raster forms of cellular 

automata used in urban growth and land cover change modeling (Liu 2009, White et al. 1999). 

However, one and three dimensional cellular automata have also been developed to explain linear 

objects such as urban traffic, and building heights in developed urban area, respectively (White 

and Engelen 2000).  

2- The states (S) represent the attributes of cells, such as land cover type, and define spatial 

dynamics of the land surface. States can be binary values such as urban or non-urban, qualitative 

values that represent different types of land cover or land-use, social economic status (Benenson 

and Torrens 2004, Santé et al. 2010), or quantitative values such as population attributes, 

population density, rate of development, sediment load in seawater, groundwater levels, and soil 

moisture (White and Engelen 2000). 

3- The time (t) specifies the interval between updates of the states of all cells.  

4- The transition rule (T) governs the state of cells at any time and determines how automata 

adapt over time; and it determines the transition probability of cells according to the highest 

potentiality of change to another state. It defines how the state of one cell transits in response to 

its current state and the states of its neighbors. Transition potentials of each cell are calculated 

from the suitability, accessibility, zoning, and neighborhood effects (White et al. 1999). 

5- The neighborhood (R) of a cell presents the agglomeration of adjacent cells defined by their 

distance from an individual automaton. For example, nine cells and five cells are used in the 

Moore neighborhood and in the “Von Neumann” (four cardinal neighbors) neighborhood, 

respectively. 
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2.2.2 CA models in Geography 

 “Geographical Automata Systems consist of interacting geographic automata of various 

types” (Benenson and Torrens 2004). Ulan and Von Neumann developed Cellular Automata (CA) 

in the late 1940s (White and Engelen 1993, White 1998). Later, Wolfram (1984) described the 

likelihood model of natural phenomena by CA and laid the foundation for the theory of Cellular 

Automata (Santé et al. 2010). The CA framework gained more popularity in the 1950s with the 

development of the first digital computer, and the idea of connecting and interacting spatial units 

was developed by Nobert Wiener’s work on cybernetics (Benenson and Torrens 2004). In CA, 

space is divided into regular spatial cells and an individual cell represents a particular boundary 

of location of an automaton (Liu 2009). The first Cellular Automata approach to geographical 

modeling was defined and proposed by Tobler (1979) (White et al. 1999), and Couclelis (1996) 

and Takeyama (1996) explored the dynamics of natural space and introduced a common 

modeling language for dynamic spatial modeling at all scales within a GIS framework (White 

1998). Dietzel and Clarke (2006) illustrated two general approaches of CA in land cover change 

dynamics: the first group of models treats an urban system as a basic entity consisting of urban 

and non-urban components, and the second approach comprises multiple land covers. (Yeh and 

(Li 2003) demonstrated three main types of urban CA for urban simulation: firstly, to test urban 

theories and hypotheses without using real data (Li and Yeh 2000); secondly, to simulate and 

predict the direction and the pattern of urban development using real data sets (Barredo et al. 

2003, Clarke and Gaydos 1998, White and Engelen 2000); thirdly, to simulate different urban 

forms based on planning objectives (Yeh and Li 2003). 

 Many CA-based urban models have been developed in the last decade due to technological 

advantages in CA modeling (Dietzel and Clarke 2004, Wu et al. 2009) and these have been 

widely used in the last few years (He et al. 2008), especially in urban studies to simulate urban 

expansion (Clarke and Gaydos 1998, Liu 2009, Santé et al. 2010, White 1998, White and Engelen 

2000). CA models have also been implemented in various land use models to simulate multiple 

land use types, to show the dynamic nature of land use change, and to analyze local and regional 

urban growth and sprawl (Jantz et al. 2004). The “Constrained CA model of land use dynamics” 

approach of White and Engelen (1993) has widened CA modeling of urban dynamics and 
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reduced its limitations (Benenson and Torrens 2004). Later, White et al. (1997) modeled urban 

growth using their constrained CA modeling tool to create a decision support system for urban 

planning, in which cell states represented land covers, and the transition rules expressed the 

temporal potentiality of each land cover type. In addition, road network, water bodies, and 

railways were used as spatial constraints for urban land use development. Li and Yeh (2000) 

applied a CA model to simulate sustainable urban planning based on land suitability by 

incorporating local, regional, and global constraints; the objective of their study was to simulate 

sustainable urban development based on constraints that included environmental conservation 

issues and planning.  

 

2.2.3 The SLEUTH model 

 SLEUTH generates dynamic spatial patterns by applying growth rules to a grid of cells, each 

of whose land use state is dependent upon local factors (e.g. roads, existing urban areas, and 

topography), temporal factors, and random factors. In addition, non-urban land cover transitions 

(such as range land to agricultural land) can be simulated assuming urbanization as the driver. 

Annual maps of forecasted change are generated allowing for animated display of forecasts over 

time as well as integration in GIS databases for further spatial analyses. 

 Clarke and Gaydos (1998) proposed the SLEUTH model to simulate the historical urban 

growth of San Francisco and the Washington/Baltimore region. The SLEUTH model is also 

known as the Clarke Cellular Automata Urban Growth Model or the Clarke Urban Growth Model 

(Jantz et al. 2004). SLEUTH is an acronym from the six types of data inputs: Slope, Land use, 

Exclusion, Urban, Transportation, and Hill shading. It is a CA based model that has been widely 

applied (Dietzel and Clarke 2006, Dietzel and Clarke 2007, Jantz et al. 2004, Silva and Clarke 

2002, Wu et al. 2009), and has shown its capabilities for predicting landscape changes. The 

model emphasizes historical changes of urban growth processes that can help predict future urban 

growth trends (Jantz et al. 2004), forecast land use change at different scales (Silva and Clarke 

2002), and simulate the transition from non-urban to urban land use using historical trends as well 

as land use dynamics (Liu 2009, Wu et al. 2009). Dietzel and Clarke (2006) presented the 

SLEUTH model as an appropriate hybrid model that includes both approaches of urban and land 
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use change dynamics, but the model focuses mainly on simulation of urban changes. Silva and 

Clarke (2002) applied the SLEUTH model to Lisbon and Porto and demonstrated that the model 

could be applied to European cities. 

 Jantz et al. (2004) describe four types of urban simulation (spontaneous growth, new 

spreading center growth, edge growth, and road influenced growth) that are controlled by the 

interactions of five growth coefficients: dispersion, breed, spread, road gravity, and slope. These 

five growth coefficients determine the probability of urban growth by calculating each cell’s 

potentiality of urbanization. The implementation of the model occurred in two general phases: 

calibration (simulation of historical growth pattern) and prediction (projection of historical 

growth pattern for future).  

 Wu et al. (2009) presented some limitations of the SLEUTH model: it gives priority to the 

edge growth transition rule that deprives the model to simulate urban development process of 

origin or city center; calibration is time consuming, subjective, and user sensitive; and the 

randomness and cumulative probability of the model affects its performance. The model does not 

explicitly deal with population, policies, and economic impacts on land cover change except in 

terms of growth around roads or those that can be expressed in permissive/controlled growth 

zoning. Jantz et al. (2004) demonstrate several other limitations: sensitivity to cell size, better 

simulation from shorter time series with consistent data, and the calibration method Lee and 

Salles metric influenced by the short time series. They also found that when the Lee and Salle 

statistic was high, urban growth was low, and when the slope coefficient was high, no urban 

growth was observed. Moreover, low density development was ignored, proving the limitation of 

the ability of the model to simulate other urban development. The SLEUTH model is completely 

scalable to the input model unit. It has been applied at regional (8 states), 1 km, and 30 m scales. 

All data must be in a raster format. Historical urban data from at least four time periods is 

required for calibration. 

 

2.2.4 The MOLAND model 

 The land Management Unit of the Institute for Environment and Sustainability (MOLAND) 

has developed an integrated modeling framework based on the CA developed by White et al. 
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(1997) to assess, monitor, and model past, present, and future spatial, urban, regional, and 

sustainable environment management policies in Europe. Several geo-referenced datasets 

consisting of five types of digital maps must be input: actual land use types, accessibility of the 

transport network, inherent suitability for different land uses, zoning status or institutional 

suitability, socio-economic characteristics (Petrov et al. 2009). The model determines the 

transition potentials considering the characteristics of individual parcels and can be applied at the 

global, regional, and local levels. According to Lavalle et al. (2004), the model calculates 

transition potentials for “each cell and function” on the basis of four factors: physical suitability, 

zoning or institutional suitability, accessibility, and dynamics at the local level. The objective of 

this model is to simulate future land cover by taking into account existing spatial plans and 

policies, and to create alternative planning and policy scenarios in terms of their effects on future 

land use development (Barredo et al. 2003). Barredo et al. (2003) simulated future urban land 

cover scenarios for Dublin over 30 years (1968–1998) to show that city built up area had 

increased considerably over the study period. To do the urban simulation, 22 land cover classes 

were grouped into residential, industrial, and “other” built up areas. The model was calibrated 

using visual interpretation, comparing the land use pattern distribution through relatively abstract 

measures like fractal dimension, and using quantitative matrix methods. Urban simulation was 

compared with the actual map of 1998 and was found similar based on visual interpretation. 

Moreover, the comparison matrix was presented using simulated and actual maps of 1998 with a 

kappa value of 0.73, showing a good match. Petrov et al. (2009) used the MOLAND model for 

Algarve, Portugal, to determine land cover change due to rapid expansion of the tourism industry, 

and to take sustainable land management decisions. The study detected two main driving factors: 

increased demand for housing due to population growth and tourism, and the intensity of 

economic activity. They found ‘scattered’ urban development rather than ‘compact’ development 

due to urban policy. 

 Twumasi et al. (2008) illustrated some limitations of the MOLAND model related to the 

practical implementation, and these included the following: customization of the transition rules, 

lack of conflict resolving rules, and problems with zoning implementation. Moreover, Twumasi 

et al. (2008) presented two limitations of MOLAND model to assess and simulate biodiversity. 



31 

 

According to the study, MOLAND is unable to support cell sizes less than 2500 m2, which is too 

large to consider for small scale studies where massive loss of information can be incurred. In 

addition, MOLAND cannot deal with more land cover types, which are essential for biodiversity 

analysis. However, they presented this model as a potential decision support tool for spatial 

planning. 

 

2.2.5 The Urban Expansion Dynamic (UED) model 

 He et al. (2008) presented the Urban Expansion Dynamic (UED) model by incorporating a 

potential model into a CA model. They implemented this model to determine past urban 

development and to predict future expansion of the Beijing municipality (total area 16,808 km2), 

China. The objective of the UED model was to explain the process of urban expansion 

considering the individual cell evolution, overall urban pattern, and the spatial interaction of 

population and capital. The potential model influences transition rules of a CA to locate new 

urban cells not only considering the function of the states of neighborhood cells in the urban 

expansion process but also calculating the probability of conversion of a non-urban cell to a new 

urban cell by considering spatial interaction of distribution and flow of capital and population. 

According to the study, a rapid urban growth observed in 1991-2004 and the projected urban 

patterns for 2015 show that about 746 km2 of non-urban land will be occupied by encroaching on 

green space and cultivated land. The result also revealed that steady population growth and fast 

economic development strengthened the urban expansion process. To calibrate the UED model, 

an ‘adaptive Monte Carlo approach’ was used to avoid subjective or empirical determination of 

weights in transition rules of the CA model. The UED model can be a useful tool to assist the 

understanding of urban expansion process and support urban planning and management. 

 

2.2.6 Advantages and limitations of CA models 

 CA urban models have several benefits: they are interactive, potential outcomes can be 

visualized and quantified, they can be closely linked with GIS, and raster-based spatial data 

derived from remote sensing platforms are easily incorporated into the CA modeling environment 
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(Jantz et al. 2004). According to White and Engelen (2000), CA models are attractive for the 

following reasons: 

1) they are basically spatial, are defined on the raster cell space and are compatible or can be 

made compatible with most spatial data sets; 

2) they are dynamic and capable of representing spatial processes directly; 

3) they are adaptable and can be set up to represent a wide range of situations and processes; 

4) they are rule-based, and can thus capture a wide variety of spatial behaviors; 

5) they are simple, and thus computationally efficient; 

6) they can exhibit extraordinarily rich behavior due to their simplicity. 

 CA models have gained increasing attention from researchers as a powerful modeling tool in 

simulating geographical phenomena (Macmillan and Huang 2008) as well as predicting spatial 

patterns of urban development. Most CA models have been successful in urban development 

studies such as simulation of urbanization, urban density, defining driving factors, and evolution 

of urban spatial structures over time (White and Engelen 2000, Murayama and Thapa 2011, Li 

and Liu 2008). However, they have some limitations in analyzing urbanization processes and 

defining variables (Yeh and Li 2003) and are difficult to calibrate with multiple land use 

categories (Li and Yeh 2002) and complex urban growth processes (Verburg et al. 2004). 

Traditional CA models have some limitations to analyze the influences of human factors such as 

governments, residents and investors, and urban dynamics, and to deal with mobile objects such 

as pedestrians, migrating households, or relocating firms (Benenson and Torrens 2004).  To 

overcome these problems Li and Yeh (2002) utilized CA in combination with Artificial Neuron 

Network (ANN). 

 

2.3 Markov chain modeling 

 The Russian mathematician Andrei Andreyevich Markov (1856-1922) developed the 

“Markov chain” published in 1907 (Balzter 2000, Basharin et al. 2004). Markov chain modeling 

is basically a simulation technique that is also known as Markov modeling or Markov analysis. 

The application of Markov analysis was introduced in geography in 1965 to study the movement 

of central city rental housing areas by Clark (1965). Development in remote sensing and GIS 



33 

 

techniques have widened the Markov model as well as other modeling tools. Markov chain 

analysis has been applied in different geographical and environmental studies: vegetation 

dynamics (Balzter 2000), urban studies such as suburbanization, neighborhood analysis and urban 

land cover change, land cover impact assessment of large public investments such as dams, the 

analysis of historical dynamics of urbanization in agricultural areas (Muller and Middleton 1994), 

and the assessment of the impacts of land cover and land cover change on local climate. Markov 

models create the statistical relationship between land cover change and environmental factors 

(Benenson and Torrens 2004). In particular, this process identifies the quantities of conversion 

area or the amount of change on the basis of immediate preceding states, which are inputted as 

initial conditions (from time 1 and time 2), and make probability matrices for the future from 

many possibilities (conversion probabilities). Finally, Markov analysis of land cover change has 

been combined with GIS to generate a tool for projecting different categories of land cover 

change (Weng 2002). 

 Markov chain analysis is an analytical method of stochastic or random processes (Briassoulis, 

and Balzter 2000, and Lopez et al. 2001). Some specific characteristics of Markov chain analysis 

differ from other analyses of stochastic processes. The Markov process can be described as a set 

of states, S = {S1, S2,........Sn} where one state changes successively to another state with some 

probability at each time step (Zhang et al. 2011). This is a characteristic assumption of Markov 

processes. The probability of moving from one state to another state is called a transition 

probability that can be calculated from two land use maps of different dates without considering 

neighborhood influence (Benenson and Torrens 2004, Jokar Arsanjani et al. 2013). If the initial 

state is Si, and it moves to state Sj in time period t, then the transition probability can be denoted 

by Pij and it is given for every ordered set of states. These probabilities can be represented in the 

form of a transition matrix, P, as shown below: 
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 The Markov chain method is simple and convenient for complex patterns of change, and 

multiple category land cover change modeling (Eastman 2012). Weng (2002) investigated land 

cover change dynamics of the Zhujiang Delta in China using satellite remote sensing data, GIS, 

and Markov chain modeling technique. The result of the study displayed that the Markov chain 

process is able to predict simple trend land cover change. In Zhang et al. (2011), the transition 

probability of the Markov process simulation was determined to predict wetland type distribution 

area in Yinchuan Plain in 2006. The results of the study revealed that integrating remote sensing 

(RS) and GIS technology with the Markov model resulted in a feasible output that can be useful 

for wetland ecological system restoration and environmentally sustainable development planning 

of the study area. The study suggested that high-precision data through remote sensing mapping 

may help to get an accurate transition probability matrix to establish reliable prediction. 

 

2.4 Markov – CA models 

 A Markov-CA model is a combination of two modeling approaches, in which the Markov 

chain process determines the temporal changes among land cover types over time based on 

transition probability matrices (López et al. 2001) and the CA controls the spatial pattern of 

change through neighborhood rules depending on the transition potential of each pixel (Araya and 

Cabral 2010, He et al. 2008). 

 Guan et al. (2011) tested a “Markov-CA model using seven natural and socioeconomic 

factors: slope, elevation, distance to the nearest road and distance to the nearest river, population 

density, GDP per capita, and land price were selected for creating transition potentials. Then 

spatial distribution of land use was simulated on the basis of the transition rules of the CA model. 

Finally, they used the Markov-Cellular Automata model to predict future land use changes of 

Saga city, Kyushu Island, Japan. Kamusoko et al. (2009) combined physical and socioeconomic 

data with the Markov–CA model to simulate future land use change. Different validation analyses 

showed that agriculture, woodland and mixed rangelands were relatively well simulated, but the 

model did not successfully forecast the location of the bare land class due to the shortage of 

spatial data. Kamusoko et al. (2009) predicted future land cover change (up to 2030) in 

Masembura and Musana, Zimbabwe, based on the Markov-CA model. Transition probability 
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matrices were created from Landsat-derived land cover maps using Markov chain analysis, and 

transition potential maps were generated using a multi-criteria evaluation procedure from 

biophysical and socioeconomic data. They simulated land cover maps for 2030 using the 

transition matrix in 1989-2000. Simulation for 2030 revealed that with no development policies 

in the study area, current trends of land cover change will probably continue and severe land 

degradation will occur. 

 In Araya and Cabral (2010), the CA-Markov model of IDRISI Kilimanjaro software was 

applied to identify and analyze urban change patterns within the Setúbal and Sesimbra 

municipalities in 1990-2006. The study revealed an intensive urban sprawl in 1990-2006, where 

urban area increased by more than 90%; and prediction presented the vulnerability of reserved 

Natural Park and agricultural land. Validation of the model carried out by Kappa index and 

overall accuracy of simulation for 2006 calculated 83%. 

 Jokar Arsanjani et al. (2013) used a hybrid model which included a logistic regression model, 

Markov chain, and CA to improve the standard logistic regression model; it was implemented on 

the Tehran metropolitan area to analyze and simulate urban growth, and environmental and 

socioeconomic variables were included to create transition potentials of land cover categories. 

The model could integrate environmental, socioeconomic, and spatial factors to assess its 

influence on urban sprawl. The results presented a positive influence on urban expansion of the 

Central Business District (CBD), demography, population density, vicinity of buildings, parks, 

roads, farm lands, and open space. However, surroundings of existing city centers and parks were 

found more probable to be developed, while steeper slopes had less probability to change. The 

model was validated using ROC, calibrated land cover map 2006, and the model achieved a 

satisfactory result with a match of 89% between simulated and actual maps of 2006.  

 Cabral and Zamyatin (2006) utilized CA-Markov, CA-Advance, and GEOMOD models to 

explain the urban dynamics of Sintra-Cascais municipalities (Portugal) and compared their 

findings. Kappa indices were calculated to validate their models, and they found that both CA-

based models produced better simulation results. However, CA-Markov presented some 

limitations to simulate small land cover changes for long term forecasting where the other two 

models presented better simulations with different dynamics according to location. 
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2.5 IDRISI Land Change Modeler (LCM) model 

 LCM is an ecological analysis module in IDRISI software that was developed by Clark Labs. 

Developers recommended it for predicting and assessing the impact of land cover and land cover 

change on biodiversity. LCM consists of modules to analyze historical change, predict future 

change, validate the model, and calculate the estimated Green House Gas (GHG) (Figure 1.1). 

The Reducing Emissions from Deforestation and forest degradation (REDD) project tab was 

added to LCM of the IDRISI 17.02 edition as an extension to implement a climate change 

mitigation strategy focusing on forest conservation policy (IDRISI). LCM creates bar graphs and 

maps based on land cover changes of individual or all land cover categories, and calculates 

transition potentials between two historical input images. 

 An Artificial Neural Networks (ANN) is a non-linear statistical method defined as a complex 

mathematical function that converts input data to a desired output and consists of a connected 

network of processing units created on the basis of the human brain neuron network (Eastman 

2012). ANNs have been successfully applied to numerous domains and have proven their 

suitability to solve various problem (Mas et al. 2004). In IDRISI, the Multi-Layer Perceptron 

Neural Network (MLPNN) calculates transition potentials of multiple land covers based on 

information from training sites by using multiple output neurons applying a back propagation 

algorithm (Li and Yeh 2002). It has several advantages such as the capability to model group 

transitions and complex relationship between numerous variables and multiple land covers 

(Eastman 2012, Li and Yeh 2002). The MLPNN contains one input layer (blue circles in Figure 

1.2), one output layer (green circles in Figure 1.2) and one or more intermediate hidden layers 

(red circles in Figure 1.2) where each layer contains nodes (or neurons) and layers are connected 

through connecting weights. The performance of MLPNN depends on its architecture (number of 

hidden layers and nodes) and on the training parameters (learning rate, momentum, and number 

of iterations in the case of a back-propagation learning algorithm). The accuracy of the training 

rate is displayed in percent (Eastman 2012, Pérez-Vega et al. 2012). An HTML file is displayed  
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Figure 1.1: Different sub-modules and panels of LCM (red colored sub-modules have 

not used in the study). 
 

with information on the training process, including the relative power of the explanatory variables 

used after completing the training process, and transition potential maps can be created (Eastman 

2012). However, transition potentials with a high accuracy rate (more than 80%) are 

recommended to use for future prediction to achieve better simulation results. 
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Figure 1.2: Structure of a Multilayer Perception Neural Network (MLPNN) model. 

 

 Figure 1.2 presents the simple structure of a MLPNN that is a feed-forward neural network 

(Mas et al. 2004). The basic processing units are neurons or nodes that are indicated as circles and 

connecting weights are presented by lines. The number of neurons (n) in the input and output 

layers are the same and the hidden layer contains 2n+1 neurons (Li and Yeh 2002). Li and Yeh 

(2002) suggested that 2n+1 hidden neurons can assure perfect simulation and reduction in the 

number of neurons may lead to increased inaccuracy.  

 

2.5.1 Literature review on IDRISI-LCM 

 Oñate-Valdivieso and Bosque Sendra (2010) conducted a study to analyze land cover changes 

in the Catamayo-Chira Binational Basin, Spain, to identify explanatory variables, and to explain 

the relationship among the explanatory variables using the LCM module of IDRISI. Land cover 

changes were analyzed following the methodology proposed by Pontius et al. (2004) to calculate 

interchanges among the categories, persistence, loss, and gain. The explanatory variables were 

evaluated through the Cramer’s V coefficient. In this model, six explanatory variables were 

considered: elevation (DEM), slope, total annual precipitation, distance to watercourse, distance 

to the initial location of the cover, and the type of land. After selecting variables, transition 

potential maps were created through both logistic regression and MLPNN that are available in 

LCM using land cover maps of 1986 and 1996. The land cover map of 2001 was then predicted 

through Markov chain. The confusion matrix, Kappa index, and the relative operating 
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characteristic (ROC) (Pontius and Schneider, 2001) were used to evaluate the accuracy of the 

model. According to their observation, logistic regression provided slightly better results than 

MLPNN. 

 Mas et al. (2012) conducted a study to compare simulated land cover map patterns generated 

using two different models (DINAMICA and Land Change Modeler). They used land cover maps 

of 1986 and 1994 and five explanatory variables to simulate a land cover prediction map for 

1994. Land cover changes were analyzed using a Markov matrix which is the common method in 

DINAMICA and LCM. Transition potential maps in IDRISI were created using MLPNN and  

five explanatory variables: distance from urban areas, distance from roads, slope, distance from 

disturbance, and elevation. The weights of evidence method was employed in DINAMICA. The 

findings of the study revealed that deciduous mature forest, savanna, Amazonian mature forest, 

and woodland savanna transformed to anthropogenic disturbed area during the study period. The 

results also showed that LCM generated land cover changes mainly in edges of previous patches 

of anthropogenic disturbance while the changes are scattered in maps generated from 

DINAMICA. 

 Pérez-Vega et al. (2012) reported an assessment of transition potential maps produced by two 

LUCC models DINAMICA and LCM based on the same explanatory variables using the weights 

of evidence method and neural networks, respectively. Three different techniques were employed 

to compare outcome maps from the models: visual interpretation, ROC and an index of 

Difference in Change potential, and they found better results at the per transition level using 

DINAMICA while LCM produced more accurate transition potential maps for overall change.  

 Silva and Tagliani (2012) conducted a study to identify recent land cover dynamics of the 

landscapes surrounding the Patos Lagoon of Brazil to analyze land cover changes in 1987-2000, 

identify driving factors of change, and predict land cover for 2015. Socioeconomic indicators 

such as population, social accountability, standard of living index, income and occupation level in 

agriculture, and government development plans were considered to identify driving variables. 

LCM of IDRISI Taiga was performed to analyze and predict land cover change in the study. 

Transition potential maps were created using land cover maps of 1987 and 2000, distance from 

road, distance from urban areas, geomorphology, and a zoning map incorporated as a constraint. 
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About 480 km2 of forest areas transformed to agricultural which was the largest change in 1987-

2000. Urban area increased by 170 Km2 (20% of urban area in 1987) in the same time interval. 

The model had an overall accuracy of 83%. 

 Johnson (2009) conducted a study to evaluate the structure and accuracy of LCM for ArcGIS 

using the data set of the CONWR case study. In addition, different levels of resolution (1 m, 10 

m, 30 m, 60 m, 90 m, and 120 m) were used to determine the sensitivity of LCM to multiple 

levels of resolution. According to the study, dramatic increases in water, developed, and forested 

areas were observed in 1938-1971. The creation of the lake under the Crab Orchard Creek Project 

was responsible for the increase in the water body, and the forest cover increased due to the tree 

plantation project for reducing soil erosion in the early 1940s. Moreover, much abandoned and 

shrub land area converted to forest. The study highlighted some limitations of LCM, such as the 

wrong tabulation of the .rdc file, confusion in the measurement units, and insufficient quantitative 

data output. Later, recommendations were offered to improve the ability to view numerical data 

in tabular form, improve the capability for exporting tables, matrices, and change graphs, and 

increase the ability to modify the color, axes, and legend of graphs. 

 Tewolde and Cabral (2011) analyzed urban expansion and its impact on agricultural areas and 

forest cover of the Greater Asmara Area (GAA), the capital of Eritrea, in 1989-2009. In addition, 

they also identified major variables of rapid urban growth, loss of agriculture and forest cover, 

and showed the effect of built-up sprawl in the near future using ArcMap and LCM of IDRISI 

Andes. The built up area increased by about 200% from 1,464 ha (7%) to 3,172 ha (15%) in 

1989-2000, and further increased to 5,905 ha in 2009 which resulted in loss of urban agricultural 

land and forest area. Moreover, high population growth ( 5%) after independence of the country 

(1991) and return of refugees from neighboring countries are identified as main causes of land 

cover change and urban sprawl. The model was validated using the Kappa index of IDRISI’s 

VALIDATE module and the it achieved 80% accuracy. 

 Aguejdad (2009) presented urban sprawl simulation of Rennes (France) using LCM. They 

utilized several variables, and applied MLPNN to create transition potential maps. A simulation 

map was created for 2006 and validated with a Kappa index of 0.98. Short term prediction using 

LCM achieved better goodness of fit. Aguejdad and Houet (2008) conducted a study to simulate 
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urban sprawl of Rennes France, using Logistic Regression of LCM. Several distance variable 

(distance from existing urban area, distance from the village center, and distance from major 

road), topographic variables, Land Use Plans (POS) and Local Urban Development Plans (PLU) 

were used as explanatory variables; urban constraints were also added to simulate urban change 

for 2020 using 2000 and 2005 maps as initial inputs.  

 

2.6 Agent Based Modeling (ABM) in Geography 

 Simulation modeling has become an efficient way of analyzing complex theoretical and 

empirical studies using agent based modeling (ABM) and cellular automata (CA) in a common 

computer program (Wu et al. 2009). “An autonomous agent is a system situated within and a part 

of an environment; that senses that environment and acts on it, over time; in pursuit of its own 

agenda and so as to effect what it senses in the future” (Franklin and Graesser 1996 in Benenson 

and Torrens 2004. p. 154). Multi Agent Simulation (MAS) consists a set of agents that interact 

between themselves and their environment to fulfill user’s goals using information and the states 

of the objects in the environment (Ligtenberg et al. 2004). The SLEUTH (Dietzel and Clarke 

2007) and CLUE (Verburg et al. 1999) models are the most recently used agent based land cover 

change simulation models. Applications of agent-based modeling in land cover change are 

usually spatially explicit, and agents represent, for example, households that are relocating their 

homes or individuals using transport systems (Miller et al., 2004). Nowadays, agent-based 

modeling has gained popularity in population, immigration and residential mobility studies, and 

in land cover change modeling research. Agent-based approaches allow modelers to represent 

different individual agents that interact with each other and on the system under consideration 

(Macmillan and Huang 2008, Haase et al. 2010). Moreover, hybrid agent based system (ABS) 

and CA modeling tools are developing day by day where ABS represents mobile agents and CA 

represents environmental characteristics. Hybrid models are designed to simulate complex, 

dynamic and stochastic patterns and, to analyze the interactions between human activities and the 

environment (Wu et al. 2011).  

 Utilization of agent-based or multi-agent system tools for the human environment modeling 

has been increasing among researchers during the last decade. An agent-based model of land 
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cover change consists of two key components (Wu et al. 2011): the first is a cellular model that 

represents the study area and may draw on a number of specific spatial modeling techniques such 

as CA, spatial diffusion, and Markov models. The second component is an agent-based model 

(ABM) that represents human decision making and interactions consisting of a number of human 

agents that interact with each other and with their environment. According to Wu et al. (2011), an 

agent may represent land cover characteristics, component and quality of soil, topographic 

condition, and an assessment of the land management choices of neighbors (the spatial social 

environment) to calculate a land cover decision. Some models seek to link human and natural 

systems at different spatiotemporal scales to understand changes in land cover (Haase et al. 

2010). Macmillan and Huang (2008) focused on the economic and demographic issues linked in 

multi-agent modeling. Haase et al. (2010) used the RESMOBcity model to simulate the pattern of 

residential mobility in Leipzig, Germany. In this model, they used household types and the 

population based on demographic transition and spatial location of housing. It was also able to 

simulate urban population growth and residential mobility. Wu et al. (2011) used a hybrid agent-

based and CA6 model to analyze the evolution of China’s population. They used ABM to 

simulate the behavior of individual migrant members. CA was used to simulate the geographic 

environment in raster format. They used a “population system” and three other sub-systems: 

climate, social and agricultural systems, which influence the total population system. Climate has 

a direct influence on agricultural and social systems, causing migrations that influence the 

population system. Verburg et al. (1999) used the CLUE (the Conversion of Land use and its 

Effects) modeling framework to calculate changes in demand for agricultural products taking into 

account population growth that influenced the spatial distribution of land cover types related to 

agricultural production. The calculations were based on the trends of the past and projections for 

the future. Verburg and Overmars (2009) introduced a modeling approach named ‘Dyna-CLUE’ 

with an application for European land cover where interactions between changing demands for 

agricultural land and vegetation processes lead to the re-growth of natural vegetation on 

abandoned farmland. The Dyna-CLUE model is an adapted version of the CLUE model (Verburg 

et al. 1999) which is based on the spatial allocation of demands for different land cover types to 

individual grid cells. This version combines the top down allocation of land cover change to grid 
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cells with a bottom-up determination of conversions for specific land cover transitions. They 

divided the land cover types into two groups: those driven by demand at the regional level, and 

those where the demand at the regional level cannot be determined. According to the model, the 

spatial allocation module allocates the regional level demand by considering location suitability, 

neighborhood suitability, conversion elasticity and competitive advances. However, the results of 

this model depend on the specific study area, spatial and temporal scale, and the purpose of the 

study (Verburg and Overmars 2009).  

 Evans and Kelley (2004) presented how outcomes from an agent-based land cover change 

model vary with different scales. Results from different model outcomes show that the finest 

resolution produced the most useful results, overall fit was best at this spatial resolution, and the 

model produced a more diverse set of agent types. They suggested using a variety of spatial 

scales to explore the scale dependence of the model outcomes for agent-based models of land 

cover change with a similar household/parcel framework. 

 

2.7 Model choice 

 Advantages, disadvantages, and application of different modeling approaches have been 

discussed in the above sections. CA modeling, concerned mainly with urban growth simulation, 

has shown limitations in multiple complex land cover prediction. Several studies have done well 

with acceptable calibration and validation using CA-Markov chain modeling approach in 

different scales and environments in recent years (Araya and Cabral 2010, Guan et al. 2011, Jokar 

Arsanjani et al. 2013, Kamusoko et al. 2009). Recently, agent based models or multi-agent 

modeling systems have been used to explain and simulate interactions between human action and 

spatial components. In agent-based models, socioeconomic, demographic, and all other spatial 

attributes can be used with a spatial component to describe and simulate a particular issue.  

 In this study, we used topographic explanatory variables with several spatial planning 

components to simulate land cover changes without taking into account any particular spatial 

attribute such as population or socioeconomic data. Therefore, we did not use any agent based 

modeling approach. We used Land Change Modeler (LCM) of IDRISI, a CA-Markov based 

model, to simulate temporal and spatial patterns of change in land cover for both short and long 
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time periods. Several studies were described briefly in the above review, and LCM proved to be a 

powerful modeling tool to simulate change with a variety of land cover types, including urban 

growth simulation studies. Implication analysis (habitat analysis and assessment such as habitat 

and biodiversity change pattern, and modeling) and planning (constraints and incentives, planning 

infrastructure change, corridor planning) tools are included in the LCM model for a variety of 

applications (Eastman 2012). Multi-Layer Perceptron Neural Network (MLPNN), Markov chain, 

and regression models are fully integrated in LCM. MLPNN is a very powerful modeling 

approach, a non-linear system based on human brain function, is able to take into account 

complex relationship between inputted variables (Mas et al. 2004). 

 Pérez-Vega et al. (2012) conducted a study to compare the performance of LCM and 

DINAMICA revealed that potential maps of LCM generated by using neural networks are more 

accurate than individual probabilities obtained through the weights of evidence method of 

DINAMICA. (Fuller et al. 2011) projected deforestation of Central Kalimantan, Indonesia for 

2020, compared results from three different models Dinamica EGO, GEOMOD, and the LCM, 

found the last modeling tool simulated the highest accurate result for allocation of changes. LCM 

model proved to be more powerful than CURBA (California Urban and Biodiversity Analysis 

Model by Landis 1998) and CUF (California Urban Futures by Landis 1995) models because 

LCM can be used for change prediction with a variety of land cover types, including urbanization 

growth simulation studies (Khoi 2011). Khoi (2011) analyzed and predicted deforestation of the 

Tam Dao National Park (TDNP) region in Vietnam using Multi-Layer Perceptron Neural 

Network-Markov chain (MLPNN-M) approach of LCM. Ahmed and Ahmed (2012) used 

Stochastic Markov, CA-Markov, and LCM to compare simulated land cover of Dhaka city for 

2009, and they found the last method was most appropriate. Tewolde and Cabral (2011) applied 

LCM to analyze urban expansion and its impact on agricultural areas and forest cover of the 

Greater Asmara Area (GAA) and achieved 80% accuracy from kappa index. Aguejdad and Houet 

(2008) used LCM to simulate short term urban sprawl of Rennes, and the results suggested that 

LCM could be used to simulate both urban growth and multiple land cover changes of any 

environment. 
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2.8 Conclusion 

 Studies of the temporal and spatial distribution of land cover change have become an 

important issue due to the rapid conversion of land cover and its impact on environmental 

change. Modeling of land cover change and urban growth has been initiated in the last decades to 

predict and simulate future land cover conditions. Several computer modeling techniques 

associated with GIS have been developed and they have improved simulation accuracy. CA 

modeling, developed in the 1950s, was the first stage of modeling on spatial and geographical 

simulation. Markov chain modeling and CA-Markov modeling were developed and combined 

with GIS to generate a tool for projecting land cover and spatial changes. Nowadays, agent based 

modeling has gained popularity in population, immigration, residential mobility and 

communication sectors. LCM in IDRISI has proven to be a powerful land cover change modeling 

tool capable of dealing with complex multiple land cover categories.  
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CHAPTER 2 

SPATIAL DYNAMICS OF LAND COVER CHANGE IN A EURO-
MEDITERRANEAN CATCHMENT (1950-2008) 

(Article published in the Journal of Land Use Science, 2015, vol. 10:277-297, in Appendix) 

 

1 Introduction 

 Land cover changes represent major human alterations of the Earth’s land surface (Lambin et 

al. 2001) and land cover conversion processes in Europe have accelerated since the Second World 

War (Antrop 2005, Geri et al. 2010, Serra et al. 2008). Land cover change has occurred through 

the interaction of environmental and socio-economic characteristics, including population growth, 

urban sprawl, industrial development, and political and environmental policies. In addition, rapid 

expansion of tourism during the last six decades has caused important socioeconomic changes 

(Dunjó et al. 2003) driving land cover alterations in Euro-Mediterranean areas (Geri et al. 2011). 

Land cover changes affect biodiversity and ecosystems, food security, human health, 

urbanization, and global climate change (Falcucci et al. 2007, Geri et al. 2011, Sala et al. 2000). 

They can also be responsible for environmental change, water pollution and soil degradation 

(Dunjó et al. 2003). 

 Several studies have described land cover changes in the Mediterranean area. Mediterranean 

countries from Spain to Greece experienced strong urban growth from the 1970’s onwards, and a 

moderate growth rate is projected to continue (Benoit and Comeau 2005), (Serra et al. 2008) 

reveal that about 34% of Spanish Mediterranean coastal areas were urbanized between 1989 and 

1999. In France’s Provence Alpes Côte d’Azur region (SE France), about 40% of shorelines were 

built in 2006 (IFEN 2012). Migration from other European countries tends to concentrate in the 

Mediterranean coastline area (Brunetta and Rotondi 1996) since the quality of life in 

Mediterranean cities seems to be greater than average in European countries (Cori 1999). Aging 

population in Europe has a typical migration trend towards the Mediterranean coastal zone (Van 

Eetvelde and Antrop 2004). In addition, internal migration also favors coastal areas, increasing 

urban pressure land cover changes in these areas (IFEN 2009). For example, (Van Eetvelde and 

Antrop 2004) analyzed the characteristics and mechanisms of land cover change in southern 

France (Tavernes) and identified a pattern where arable land decreased in foothills while urban 
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areas expanded near the coast. They also found that residential and secondary houses occupied 

traditional terraced foot slopes.  

 Traditional Mediterranean agriculture was comprised mainly of vineyards, olive trees, and 

wheat grown in the nearby hinterland, often on terraces. (Serra et al. 2008) reported that 

vineyards and olive trees decreased in mountainous areas and transitional sub-regions, resulting 

in land abandonment and increased shrub land area. Vineyard area decreased near roads and 

urban areas due to urban sprawl and industrialization in moderately mountainous to flat valley 

areas in Peyne, France (Sluiter and de Jong 2007). Under these conditions, farmland is sacrificed 

to urban expansion (Martínez-Fernández et al. 2013). (Nainggolan et al. 2012) identified several 

biophysical and socioeconomic factors (demography, markets, and subsidies on agriculture) 

responsible for the change in Torrealvilla catchment of South-eastern Spain: population decreased 

in 1960-1980 due to migration from villages to the coastal area and rain fed agricultural, the main 

landscape feature in 1940-1960, was abandoned. However, in 1980-2005, intensification of 

agriculture occurred on flat to gentle slopes and near main roads due to subsidies for agriculture 

and the European highway infrastructure. Other authors have found that land cover change 

affected the overall environment, resulting in deforestation (Kepner et al. 2006), land 

abandonment (Serra et al. 2008), and increased runoff and soil erosion in Portugal and Greece 

(Koulouri and Giourga 2007, Nunes et al. 2011).  

 From a spatial point of view, (Falcucci et al. 2007) describe three common major land cover 

changes in the Mediterranean area of Italy: the expansion of tourism that promotes rapid 

urbanization along the coastline, spatial concentration of agriculture on alluvial plains and low 

lands (except in the coastal area) due to urban sprawl, and abandonment of agricultural terraced 

land in mountainous steep slopes resulting in their transformation to forest. Four general trends of 

land cover change took place during the last decades in the coastal Mediterranean area (Geri et al. 

2011, Nunes et al. 2011). Firstly, dry farming and forest land cover decreased in alluvial coastal 

plains while reforestation occurred in hilly areas. Secondly, urbanization occurred rapidly in most 

of the coastal plains where the tourism industry flourished. Thirdly, population growth and socio-

economic development caused agricultural intensification that increased irrigated crops. Fourthly, 

the development of infrastructure, communication networks, and technological advances resulted 

in socio-economic development that was the main reason of agricultural land abandonment on 

marginal lands.  
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 Most of the studies on land cover change in the Mediterranean area highlight a particular 

issue or describe an individual land cover change such as forest, agriculture, or urban expansion 

(Calvo-Iglesias et al. 2009, Pelorosso et al. 2009), and few studies take into account all these 

changes concurrently. In addition, spatial patterns of land cover change and identification of 

driver variables influencing change are sometimes taken into consideration, but they tend to focus 

mainly on altitude or slope (Geri et al. 2010, Serra et al. 2008) and few authors (Sluiter and de 

Jong 2007) take distance variables into account. Urban population growth and expansion of 

tourism occurred more in the French Mediterranean coastal area than on average for European 

Mediterranean coasts in the last decades (Benoit 2001). This resulted in significant land cover 

change in this region, but very few studies describing land cover change in the area can be found. 

(Fox et al. 2012) conducted a study to analyze the impact of land cover change on total runoff 

between 1950 and 2003 in a context of river management. They noted a small increase in runoff 

due to a complex pattern of land cover change, but spatial controls on these changes were not 

examined.  

 The first objective of this study is to quantify land cover change patterns in terms of gains, 

losses, total change and swapping in a Mediterranean catchment with a strong vineyard activity in 

proximity to a coastal area well known for its tourism. The second objective is to quantify the 

impacts of topographic and distance variables on land cover change for each land cover category. 

 

2. Methods 

2.1 The study area 

 The Giscle watershed has a surface area of about 235 km² and is situated in the Var 

department of SE France near the Gulf of St. Tropez (Figure 0.3). It is characterized by a 

Mediterranean climate with hot dry summers that extend from June to August, and cooler rainier 

winters. Average temperatures range between 22°C to 26°C in summer and 5°C to 10°C in 

winter. The mean annual rainfall is about 900 mm, and the main rainy season is from October to 

January and in April (Fox et al. 2012). The study area includes two topographic units: the hilly 

upper part of the catchment (roughly 70% of the catchment) is made up of metamorphic rocks, 

mostly schists and gneiss, while the lower part of the catchment, located near the gulf, is a gently 

sloping alluvial plain (Fox et al. 2012). 
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 The western (upper) part of the watershed is mostly forest (pine and oaks) and the topography 

of the area is uneven with the highest elevation at about 650 m. Vineyard and moderate to dense 

urban areas are the dominant land cover types of the lower part of the catchment. The region 

became a major tourist destination of Mediterranean France in the second half of the twentieth 

century, with the “Côte d’Azur” development, and this generated a strong growth in urbanization. 

Three main municipalities are located within the catchment: Cogolin, Grimaud and La Môle 

(Figure 0.3). Cogolin and Grimaud are situated in the eastern part of the catchment, about 5 km 

from the Mediterranean coast. They represent the main populated areas with total populations of 

around 11,000 and 4,000, respectively (INSEE 2011). La Môle is a small urban area with a total 

population of around 950 (INSEE 2011). The total population of the catchment increases by 

several times (perhaps as many as 10) in the summer due to tourism and secondary homes. Unlike 

many Mediterranean coastal areas, the sea front is confined by the gulf and topography, and land 

cover change is restricted to the inner near coastal area. 

 

 

Figure 0.3: Location of the catchment. 
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2.2 Data description and land cover classification 

 Land cover maps were screen digitized from acquired (Institut Géographique National) digital 

orthorectified aerial photographs (1950 and 1982 were panchromatic; 2008 was color) using 

ArcGIS (Dangermond 2012). Initial spatial resolution for all aerial photographs was 0.5 m, and 

this was reduced to 1 m to facilitate data manipulation. The aerial photographs of 1950 were the 

first high quality post-Second World War photos available when the area was still strongly rural; 

an intermediate date (1982) was selected between 1950 and the most recent 2008 photographs. 

Aerial photographs of 1982 may represent land cover conditions at the beginning of rapid urban 

sprawl (Baccaini and Sémécurbe 2009, Salvati et al. 2013). 

 Surfaces were classified into five categories based on visual interpretation: forest, prairie or 

grassland, vineyards, urban and suburban areas. High density urban, industrial and commercial 

areas were classified as urban, and moderate density to low density built areas were classified as 

suburban. Urban and suburban areas were distinguished by the density of buildings and other 

infrastructures as described below. Isolated housing was ignored. To avoid creating a small 

isolated category, the Verne water dam (built in 1989-1991) was ignored and left as forest; its 

surface area is negligible compared to total forest cover. Similarly, a small recreational port built 

on the sea at the outlet of the catchment was ignored, and the limit used for the catchment was the 

1950 seashore. After digitization, land cover maps were imported into IDRISI (Eastman 2012). 

Main roads and stream networks were then digitized from the aerial photographs of 2008. Main 

roads were about the same in aerial photographs of 1982 and 2008, so this layer did not change 

over time. Cell size of all digitized maps was changed to 25 m to make land cover layers 

compatible with the 25 m DEM used for the creation of topographic and distance variables. 

 Land cover layers were identified visually. Examples of each land cover type are presented in 

Figure 0.4. Most of the forest areas found in the aerial photographs were evergreen, and were 

clearly identified by their deep grey color in the black and white aerial photographs (1950 and 

1982) and deep green color in color aerial photographs (2008) (Figure 0.4a). Vineyards were 

differentiated by their blocky, geometric shapes and linear texture created by the rows of planted 

vines (Figure 0.4b). Unmanaged or abandoned agricultural areas, new shrub lands with small and 

scattered trees, and pasture land for sheep and horses were all classified as grassland even though 

some of it could more appropriately be called shrubland (Figure 0.4c). Densely to moderately 

built areas, including residential, commercial, and industrial areas, were identified as urban. 
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Urban areas (Figure 0.4d) were distinguished from suburban (Figure 0.4e) by the density of 

buildings and absence of trees and open area. Suburban area is essentially low density residential 

housing. Some small denser communities were considered suburban areas. The presence of trees 

and open spaces were common in the suburban area. Land cover classification was facilitated by 

numerous field visits. 

 
Figure 0.4: Examples of (a) Forest, (b) Vineyard, (c) Grassland , (d) Urban area, (e) Sub-urban 

area. 
 

2.3 Cross tabulation analysis in 1950-1982, 1982-2008, and 1950-2008 

 Land cover change was quantified using the cross tabulation matrix of the CROSSTAB 

module and the Change Analysis module of the Land Change Modeler (LCM) of IDRISI Selva 
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(version 17.02 (Eastman 2012). The cross tabulation matrix is a fundamental process in land 

cover change analysis (Pontius Jr et al. 2004) to show land cover changes between two images of 

different dates. Persistence and pixel numbers of each category from earlier to later classified 

images are displayed through images and tables. After creating land cover maps of 1950, 1982, 

and 2008, land cover changes in three temporal periods were investigated: 1950-1982, 1982-

2008, and 1950-2008. Cross tabulation of 1950-1982 represents the historical land cover change 

shortly after the Second World War; 1982-2008 represents more recent changes in land cover 

from the beginning of the urban sprawl period. The net 58 year change is provided by the 1950-

2008 analysis. The land cover change determining method proposed by (Pontius Jr et al. 2004) 

was applied for all temporal periods to quantify persistence, gains, losses, total change (addition 

of gains and losses), net change, and swapping (exchanges between land cover classes, equal to 

the difference between total change and absolute net change). 

 

2.4 Spatial dynamics 

 To describe spatial dynamics in land cover change, surfaces were simplified into four 

categories: forest, vineyard, grassland, and built area. Urban and suburban areas were combined 

into built area due to their small individual coverage compared to other land cover categories. 

Although data was available for all time periods cited above, maps of losses and gains for 

individual categories were simplified to show the spatial pattern of net 1950-2008 change since 

spatial patterns did not vary significantly between 1950-1982 and 1982-1950. Histograms were 

used to display quantitative losses and gains of each land cover class as a function of topographic 

(altitude, and slope) and distance (from streams, roads, built area, and the sea) variables for the 

1950-1982 and 1982-2008 periods. Altitude and slope were obtained from a 25 m Digital 

Elevation Model (DEM). Only main roads (created by screen digitization) were taken into 

consideration and smaller roads and dirt paths were ignored. Main stream channels were also 

digitized manually due to errors in the automatic tracing of the hydrologic network from the 25 m 

DEM: in the plain, where topography is nearly flat, errors of up to 300 m could be observed 

between the modeled and actual channels. Finally, for changes in land cover occurring in 1950-

1982, distance from built area in 1950 was used. For changes taking place in 1982-2008, distance 

from built area in 1982 was calculated. 
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3. Results 

 The steps in describing the results are the following: overall trends in land cover change over 

the study period, detailed analysis of land cover change patterns for three periods (1950-1982, 

1982-2008, 1950-2008) using CROSSTAB, spatial trends of land cover change, and topographic 

and distance controls on land cover change. 

 

3.1 Areal trends in land cover change 

 Figure 0.5 shows land cover maps digitized from the air photos, and Table 0.1 provides the 

corresponding surface areas and changes in surface area for each category and time period. Forest 

remained by far the dominant land cover in the catchment (Figure 0.5), accounting for more than 

85% of land cover at all times (Table 0.1). Forest cover decreased by more than 200 ha in 1950-

1982, and although this was the largest absolute change in cover, it represents only about 1% of 

its cover due to its large initial surface cover. A further 1.2% loss was experienced in 1982-2008. 

Vineyard was the second dominant land cover and it too declined from about 2,241 ha to 2,089 ha 

(a loss of almost 7%) between 1950 and 1982 (Table 0.1). This trend accelerated in 1982-2008 to 

about 1,616 ha (almost 23% lost). Over the 1950-2008 period, vineyard lost more than a quarter 

of its initial cover. Grassland was the third dominant cover in 1950, though its surface area 

amounted to less than a third of vineyard. Contrary to forest and vineyard, grassland increased 

significantly during the study period, showing an overall 50% increase between 1950 and 2008. 

These first three land cover categories covered 97% (in 2008) of the catchment (Table 0.1). Rapid 

changes occurred in built area (both urban and suburban), which increased steadily to over 700 ha 

in 2008 from below 50 ha in 1950 (Table 0.1). Moreover, urban and suburban areas each covered 

only 0.1% of the catchment in 1950, and they increased to about 1.7% and 1.3% of the catchment 

in 2008, respectively.  

Table 0.1: Surface area of land cover types for 1950, 1982, and 2008, and changes in area for 
1950-1982, 1982-2008, and 1950-2008. 

Land cover 
type 

Surface area in ha (% of catchment) Change in surface area in ha (% of initial 
cover) 

 1950 1982 2008 1950-1982 1982-2008 1950-2008 
Forest 20538 (87.2) 20336 (86.3) 20091 (85.3) -202 (-1.0) -245 (-1.2) -447 (-2.2) 
Vineyard 2241 (9.5) 2089 (8.9) 1616 (6.9) -152 (-6.8) -473 (-22.6) -625 (-27.9) 
Grassland 754 (3.2) 872 (3.7) 1140 (4.8) 118 (15.6) 268 (30.7) 386 (51.2) 
Urban 19 (0.1) 146 (0.6) 402 (1.7) 127 (668.4) 256 (175.3) 383 (2015.8) 
Suburban 13 (0.1) 122 (0.5) 316 (1.3) 109 (838.5) 194 (159.0) 303 (2330.8) 
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 As can be seen in Figure 0.5 most of the changes occurred in the eastern part of the 

catchment. This area corresponds to the alluvial plain where altitudes and slopes are gentler. For 

the vegetation land covers (forest, vineyard, grassed areas), the rate of change, expressed as % of 

initial cover, was greater in 1982-2008 than 1950-1982 (Table 0.1). Calculated on an annual 

basis, the difference would be even greater since the latter period showed greater change in a 

shorter time, 26 years versus 32 for the initial period. Although the contrary appears to be true for 

urban and suburban categories, where % change was greater in 1950-1982 than in 1982-2003, it 

should be noted that the latter period experienced greater absolute change, and small absolute 

differences in 1950-1982 generate an artificially large % change due to the very small initial area. 

The built categories showed the greatest % change of all land cover types during the 1950-2008 

study period with an increase of more than 2,000% each. 

 

 
Figure 0.5 : Land cover maps of (a) 1950, (b) 1982, (c) 2008, (d) 2011. 
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3.1.1 Cross tabulation analysis 1950-1982 

 Cross tabulation for 1950-1982 (Table 0.2) was used to explain persistence, losses, and gains 

in land cover. In this table, columns display time 1 (1950) and rows display time 2 (1982). 

Persistence represents the amount of unchanged land cover between 1950 and 1982; this is 

highlighted in bold in diagonal and values are presented in both ha, and % of initial (1950) area in 

parentheses. As for % change, persistence is often correlated with initial land cover, where 

extensive land covers tend to have greater persistence (Pontius Jr et al. 2004). The sum of each 

column shows total area in 1950 for each land cover type. The sum of each row shows total area 

in 1982. The cross section of each column-row shows the area converted from one land cover to 

another between 1950 and 1982. For example, 407 ha were converted from forest to vineyard 

between 1950 and 1982; in terms of losses/gains, this therefore corresponds to a loss of 407 ha of 

forest to vineyard and a gain of 407 ha of vineyard from forest. 

Table 0.2: Cross-tabulation of land cover in 1950 (columns) and in 1982 (rows). Values are in ha, 
persistence (diagonal) is also expressed in % of total area in initial year (1950). 

 Forest Vineyard Grassland Urban Suburban Total 
Forest 19918 (97.0) 234 184 0 0 20336 
Vineyard 407 1502 (67.0) 180 0 0 2089 
Grassland 164 362 346 (45.9) 0 0 872 
Urban 12 88 22 19 (100.0) 5 146 
Suburban 37 55 22 0 8 (61.5) 122 
Total 20538 2241 754.0 19 13 23565 

 

 Forest had the greatest persistence (97.0%) and most of its loss was conversion to vineyard. 

Vineyard, on the other hand, had moderate persistence (67.0%) and its greatest loss was 

conversion to grassland. In this initial period (1950-1982), the dominant trends among the 

vegetated land covers are a conversion from vineyard to grassed areas (362 ha) and forest to 

vineyard (407 ha). This apparent compensation in vineyard loss is only partial since there is also 

considerable loss of vineyard to forest (234 ha). Among the different land cover types, swapping 

is greatest for forest and vineyard. Although grassland gained in surface area, it had low 

persistence and greater susceptibility to change, showing high losses to both forest and vineyard 

as well as significant gains from these two land cover types, especially from vineyard (362 ha). 

The urban category reflects an “end state” which cannot easily evolve into another land cover 

type, though suburban can evolve into urban. Both urban and suburban gained from all vegetated 
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land cover types. The greatest gains in the built categories were from vineyard. Therefore, 

although all land cover types contributed to the growth of urban and suburban areas, the major 

trend was expansion of built area on vineyard. 

 Table 0.3 summarizes the gains, losses, absolute value of net change, total change, and 

swapping expressed as a percentage of the catchment for each category (Pontius Jr et al. 2004). 

Absolute net change is the absolute value of the difference between % of catchment in 1982 and 

in 1950. Total change is the sum of the absolute value of gains and losses for each category. 

Swapping is the surface area exchanged between land cover categories; this corresponds to the 

difference between total change and net change for each category. For example, equal gains and 

losses between categories 1 and 2 would provide a net change of 0% but could correspond to a 

substantial total change and high swapping if significant areas of category 1 were converted to 2 

and vice versa. 

 As described above, forest, vineyard and grassland experienced the most significant gains and 

losses (Table 0.1 and Table 0.2). Among these, vineyard underwent the greatest total change 

within the catchment (Table 0.3), even though its initial surface area in 1950 was only about 11% 

that of forest (2,241 ha vs 20,538 ha). It also exhibited the highest rate of swapping, 

demonstrating extensive exchanges with other land cover types, especially forest and grassland. 

Of the 5 land cover types, vineyard was the most active, gaining and losing the most area and 

exchanging the most land with other land covers. Built areas had low total change, but especially 

very low swapping since these land covers tend to gain from others but not lose in exchange. 

Table 0.3: Summary of land cover changes (1950-1982) expressed as % of catchment. 

Land cover type Gains Losses 
 

Absolute 
net change 

Total change 
 

Swap 
 

Forest 1.77 2.63 0.86 4.40 3.54 
Vineyard 2.49 3.13 0.64 5.63 4.98 
Grassland 2.23 1.73 0.50 3.96 3.47 

Urban 0.54 0.00 0.54 0.54 0.00 
Suburban 0.48 0.02 0.47 0.51 0.04 

Total 7.52 7.52 3.00 15.04 12.04 
 

3.1.2 Cross tabulation analysis 1982-2008 

 As can be seen in Table 0.4, trends during 1950-1982 continued in 1982-2008. Forest area 

decreased slightly but maintained high persistence (96.6%) due to its high surface area. A large 
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area of vineyard continued to convert to grassland (445 ha), but during this period the 

compensating effect of forest to vineyard was weaker than in 1950-1982 (237 ha vs. 407 ha), and 

vineyard persistence decreased (61%). The conversion of forest to grassland was greater in 1982-

2008 than in 1950-1982 (298 ha vs. 164 ha). As in 1950-1982, urban expansion occurred mainly 

at the expense of vineyard. However, during the latter period, suburban growth took place on 

forest cover before vineyard. Grassed area showed the lowest persistence as significant areas 

converted to forest or vineyard. 

Table 0.4: Cross-tabulation of land cover in 1982 (columns) and in 2008 (rows). Values are in ha, 
persistence (diagonal) is also expressed in % of total area in initial year (1982). 

 Forest Vineyard Grassland Urban Suburban Total 
Forest 19649 (96.6) 202 240 0 0 20091 

Vineyard 237 1275 (61.0) 104 0 0 1616 
Grassland 298 445 397 (45.5) 0 0 1140 

Urban 53 105 64 146 (100.0) 34 402 
Suburban 99 62 67 0 88 (72.1) 316 

Total 20336 2089 872 146 122 23565 

 

 Table 0.5 summarizes the dynamics of land cover change for the 1982-2008 period. During 

this time, grassland surpassed vineyard in both total change and swapping, even though it still 

accounted for only 4.8% of the catchment in 2008 (Table 0.1). The significance of grassland 

changes will be discussed below. Total change in 1982-2008 was greater than in 1950-1982 for 

all categories except vineyard, though vineyard had the greatest net change (-2.01%) (Table 0.5). 

This was particularly true of urban and suburban areas for which total change in 1982-2008 was 

more than double the values for 1950-1982. Overall, the 1982-2008 period experienced more land 

cover change than in 1950-1982 (17.03% of catchment (Table 0.5) compared to 15.04% (Table 

0.3). 

Table 0.5: Summary of land cover changes (1982-2008) expressed as % of catchment. 

Land cover types Gains Losses Absolute net change Total change Swap 
Forest 1.87 2.90 1.03 4.77 3.75 
Vineyard 1.45 3.47 2.01 4.92 2.91 
Grassland 3.13 2.01 1.12 5.14 4.02 
Urban 1.09 0.00 1.09 1.09 0.00 
Suburban 0.96 0.14 0.82 1.11 0.29 
Total 8.51 8.52 6.07 17.03 10.96 
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3.1.3 Cross tabulation analysis 1950-2008 

 Table 0.6 shows the results of almost 60 years of land cover change in the catchment (1950-

2008). Forest remained the dominant category by far and had high persistence (95.3%) but large 

areas of forest were converted to vineyard (458 ha) and grassland (320 ha). These losses were 

only partially compensated by gains from vineyard (331 ha) and grassland (191 ha). Vineyard is 

the land cover type that contributed most to all others, and more particularly to grassland (518 

ha). The majority of urban expansion occurred on vineyard while suburban growth took place 

more or less equally on vineyard and forest. Overall, 3 land cover types showed low persistence: 

vineyard (45.3%), grassland (40.1%), and suburban (40.1%), where the low persistence of 

suburban can be explained by its conversion to urban. 

 

Table 0.6: Cross-tabulation of land cover 1950 (columns) and land cover 2008 (rows) (ha) 

Land cover type Forest Vineyard Grassland Urban Suburban Total 
Forest 19569 (95.3) 331 191 0 0 20091 
Vineyard 458 1015 (45.3) 144 0 0 1616 
Grassland 320 518 302 (40.1) 0 0 1140 
Urban 69 241 66 19 (100) 8 402 
Suburban 123 137 51 0 5 (40.8) 316 
Total 20538 2241 754 19 13 23565 

 

 The net result of land cover changes between 1950 and 2008 is summarized in Table 0.7. The 

greatest land cover change was experienced by vineyard which lost an equivalent of 2.65% of the 

catchment (or 625 ha, Table 0.1) in the 58 year time frame. This, however, was not a simple loss 

in land but corresponds to a complex pattern of exchanges with other land cover types since 

vineyard has the greatest swapping value (5.11%) of all land cover types. The great majority of 

these exchanges were with forest and grassland, where forest experienced high total change 

(6.33%) and loss (4.11%); grassland, on the other hand, progressed significantly within this 

context of land cover swapping. Total and net change were smallest for urban and suburban land 

covers, but these values are high for land covers which had very low initial values (Table 0.1). 

Urban and suburban area increased by about more than 20 times in 1950-2008. 
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Table 0.7: Summary of land cover changes (1950-2008) expressed as % of catchment. 

Land cover types Gains Losses Absolute net change Total change Swap 
Forest 2.21 4.11 1.90 6.33 4.43 
Vineyards 2.56 5.20 2.65 7.76 5.11 
Grassland 3.55 1.92 1.64 5.47 3.83 
Urban area 1.63 0.00 1.63 1.63 0.00 
Suburban area 1.32 0.03 1.29 1.35 0.07 
Total 11.27 11.27 9.09 22.54 13.44 

 

3.2 Spatial dynamics influencing land cover change 

 The spatial dynamics of land cover change will be investigated in two steps. In the first, land 

cover change maps will be used to highlight specific locations. In the second, the impact of 

spatial variables (altitude, slope, distances from roads, streams, sea, and built area) will be 

presented. As described in the methods, urban and suburban are grouped together into a single 

‘built’ category. 

 

3.2.1 General spatial trends 

 Although the rates of change between 1950-1982 and 1982-2008 were different, spatial 

patterns for losses and gains were similar, so only the net 58 year (1950-2008) differences are 

shown here. Gains and losses for each land cover type are shown in Figures 2.5-8; low altitudes 

are portrayed in white while higher values are in black. Losses and gains in forest (Figure 0.6) 

indicate that much of the lost land was in foothills in proximity to the alluvial plain (white patch 

in eastern part of catchment). Area lost was almost twice the area gained (Table 0.7). Gains in 

forest occurred mainly in the south-eastern portion of the alluvial plain. 
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Figure 0.6: Forest change in 1950-2008 Figure 0.7: Vineyard change in 1950-2008 

 

 Whether in terms of % of initial area (Table 0.1), absolute area (Tables 2.1 and 2.6), or % of 

catchment area (Table 0.7), vineyard was the major loser of all land cover types. Lost area clearly 

outstrips gains and was concentrated almost entirely in the alluvial plain (Figure 0.7). Only about 

half the land lost was compensated by gains elsewhere, and these tend to be found outside the 

eastern alluvial plain area, either in nearby foothills or on alluvial soil to the extreme SW of the 

catchment. 

 In terms of absolute area and % of catchment (Table 0.1 and Table 0.6), grassland gained the 

most land, just ahead of urban areas. There is no strong spatial pattern to the gains and losses in 

grassland (Figure 2.6) with gains and losses both occurring in the alluvial plain. There is a weak 

tendency for grassland losses to be absent from higher altitudes (Figure 2.6). 

 The combined gains in urban and suburban covers outstrip individual gains and losses of all 

other land covers (Table 0.1, Table 0.6, and Table 0.7). Built area expansion (Figure 0.9) 

occurred almost exclusively in the alluvial plain and much of it was in close proximity to the core 

city centers of Grimaud and especially Cogolin (Figure 0.3, 2.3c). 



16 

 

  
Figure 0.8: Grassland change in 1950-2008 Figure 0.9: Built area change in 1950-2008 

 

3.2.2 Altitude 

 The impact of altitude on total change for each land cover type is shown in Figure 0.10a and 

8b, respectively. Total change is distinguished into gains and losses for each time period and land 

cover type in Figures 8c-8f. Total change in all land cover types decays exponentially with 

increasing altitude (Figure 0.10a and Figure 0.10b). The decrease in change with increasing 

altitude is the least pronounced for forest, for which about 30% of total change occurs in the 0-25 

m range in both time periods. For the other land cover types, the 0-25 m range accounts for about 

50 to 65% of total change according to the specific cover and time period. Grassland has the 

highest percentage of total change in the 0-25 m for both periods: 64.4% and 58.4% for 1950-

1982 and 1982-2008, respectively. 

 The relationship between gains and losses in forest cover and altitude over time is complex 

(Figure 0.10c). In both time periods, gains outstrip losses in the lowest altitude range (0-25 m); 

this corresponds to the overall increase in forest noted in Figure 0.6 in the SE portion of the 

alluvial plain. At greater altitudes, losses are greater than gains, and in intermediate altitudes (50-

100 m), lost forest area tends to be greater in 1982-2008 than in 1950-1982. Unlike the other land 

cover types, losses in forest cover tend to increase slightly at the highest altitudes (great than 

about 200 m). This loss tends to benefit grassland and then vineyard most. 

 Vineyard changes (Figure 0.10d) tend to be the opposite of forest trends noted above. For 

both time periods, the 0-25 m altitude experienced significant loss in vineyard cover. Although 
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gains at greater altitudes (≥ 25 m) compensate a small part of the losses in vineyard in 1950-1982, 

this is no longer true in 1982-2008 where losses remain significantly greater than gains in the 25-

50 m range. 

 Grassland gains and losses with altitude (Figure 0.10e) are quite different from both forest 

and vineyard. In 1950-1982, gains are slightly greater than losses for all altitude ranges. Although 

the trend remains the same in 1982-2008, the gap between gains and losses is greater. Finally, 

built area (Figure 0.10f) increases at all altitudes and more particularly in the lower range, as for 

the other land cover types. The 1982-2008/1950-1982 gain ratio is substantially greater in the 

intermediate altitude range (25-75 m) than in the 0-25 m range, indicating that higher altitudes 

were preferentially built in the latter time period. 
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Figure 0.10: Land cover changes with altitude in (a) 1950-1982, (b) 1982-2008, (c) Forest, (d) 

Vineyard, (e) Grassland, and (f) Built area. 
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3.2.3 Slope 

 Slope and altitude are correlated in the catchment as higher altitudes tend to have steeper 

slopes. Changes in land cover as a function of slope (Figure 0.11a-f) are therefore similar to the 

trends with altitude and only noteworthy differences will be highlighted here. Overall trends are 

sensitive to the choice of range and in this case, there is an intermediate range (5-15%) where 

values in 2 categories (5-10% and 10-15%) remain constant (Figure 0.11a-b); there seem to be no 

significant exceptions to this trend (Figures 9c-f). Roughly 30% of changes in forest occur on 

slopes less than 5%, and this value ranges from about 50% to 60% for the other land covers. For 

slopes less than 10%, these values increase to about 50% (forest) and 60% to 70% (others), 

respectively. Changes in land cover for the 0-25 m altitudes (Figures 2.8a-f) correspond closely to 

values for the 0-5% slope range (Figures 2.9a-f). 

 Unlike altitude, where forest cover loss increased at higher altitudes (Figure 0.10c), there is 

no increase in land cover loss on steepest slopes (Figure 0.11c). Thus, the loss experienced at 

higher altitudes corresponds to level ground or top slope convexities with low slopes. 
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Figure 0.11: Land cover changes with slope in (a) 1950-1982, (b) 1982-2008, (c) Forest, (d) 

Vineyard, (e) Grassland, and (f) Built area. 
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3.2.4 Distance from streams 

 Total change in the vegetation covers (forest, vineyard, and grassland) all decrease 

exponentially with distance from streams (Figure 0.11a-b). In the initial period (1950-1982), the 

greatest total change near streams concerns vineyards most, and this continues on into 

intermediate distances of up to about 900 m ( 

Figure 0.12a). In the latter period, grassland experiences the greatest total change near streams, 

but there is little difference with vineyard or forest beyond about 100 m and 200 m, respectively ( 

Figure 0.12b). The relationship between total change in built area and distance from stream ( 

Figure 0.12a-b) is unlike any other so far: very little change close to the stream, moderate change 

at intermediate distances (roughly 100-800 m), and then little change again at greater distances. 

 In 1950-1982, forest gains more than twice the surface lost close to streams, but this trend is 

reversed in 1982-2008 ( 

Figure 0.12c). For all other distances and in both periods, forest generally loses more land than it 

gains. In the initial period (1950-1982), lost land tends to peak at about 200-300 m from streams 

whereas it is greatest close to streams in 1982-2008 and decreases with distance. Vineyard loses 

more land than it gains at all times and distances, except for the 1950-1982 period when gains are 

slightly greater than losses at distances greater than about 800 m ( 

Figure 0.12d). At intermediate distances in 1950-1982 (100-400 m), the difference between losses 

and gains is progressively minimized by greater gains, but this no longer holds in the 1982-2008 

period. 

 Trends in grassland (Figure 2.10e) are the general opposite of those noted for forest (Figure 

10c), though the gains in grassland cannot be accounted for entirely by forest and significant 

areas of vineyard (Figure 2.10d) must have contributed to grassland growth close to streams. The 

greatest gains in grassland close to streams (< 400 m) occur in 1982-2008 ( 

Figure 0.12e). Before then, gains and losses are roughly equivalent except at intermediate 

distances (400-600 m) where gains are greater than losses. In the latter period (1982-2008), gains 

become greater than losses again at distances beyond about 1,000 m (Figure 2.10e). 

 Built area gains relatively little land immediately next to streams (< 100 m) (Figure 10f). 

Gains in built area are then relatively stable between distances of 100-700 m and 100-800 m for 

1950-1982 and 1982-2008, respectively. For almost all distances, gains in 1982-2008 were 
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greater than in 1950-1982, with the exception of roughly equivalent values in the 500-700 m 

range. 
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Figure 0.12: Land cover changes with distance from streams in (a) 1950-1982, (b) 1982-2008, 

(c) Forest, (d) Vineyard, (e) Grassland, and (f) Built area. 
3.2.5 Distance from roads 

 Total change in land cover with distance from roads (Figure 0.13a-b) follows the decaying 

exponential trend of most variables taken into consideration. Roughly 40% to 50% of total 

change in forest, vineyard, and grassland occurred within 100 m of a road. This value was greater 

than 95% for built area. In 1950-1982, vineyard was most affected close to roads (0-100 m), but 

in 1982-2008, vineyard and grassland were approximately equal.  

 For both time periods and almost all distance ranges, loss in forest cover was greater than 

gains, and the greatest overall difference was in the 0-100 m range in 1982-2008 (Figure 0.13c). 

Vineyard trends are similar to forest but greatly exaggerated (Figure 0.13d). Losses outweigh 

gains significantly close to roads (0-100 m), but differences are small beyond this distance. 

Grassland gains are greater than losses at all distances, though the land gained and lost decreases 

with distance from roads (Figure 0.13e). Major gains are registered more particularly in the 0-100 

m range for 1950-1982 and in the 100-300 m range for 1982-2008. Built area clearly 

distinguishes itself from the other land cover types since almost all of its gain occurs within 100 

m of a road (Figure 0.13f). 
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Figure 0.13: Land cover changes with distance from road in (a) 1950-1982, (b) 1982-2008, (c) 

Forest, (d) Vineyard, (e) Grassland, and (f) Built area. 
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3.2.6 Distance from built area 

 The relationship between total land cover change and distance from built area (Figure 0.14a 

and b) is strongly time dependent. In 1950-1982 (Figure 0.14a), there is little evolution in land 

cover change with distance from built area despite a tendency for the vegetation covers (forest, 

vineyard, grassland) to show greater change at intermediate distances (300-1300 m) and built area 

to change more close to earlier built area (0-100 m). In 1982-2008, the pattern is totally different 

(Figure 0.14b). For vineyard and grassland, total change first increases with distance from built 

area, peaks at about 100-200 m and then decreases with further distance from built area. Total 

change in forest cover is roughly constant between 0-300 m before decreasing with greater 

distances. Built area change is greatest within 0-100 m, where more than 50% of total change 

takes place in 1982-2008. For comparison, the value for the other land cover types in this distance 

range is approximately 15%. It should be noted that built area was limited to only 32 ha in 1950 

and expanded to almost 270 ha in 1982 (Table 0.1); built area expansion was particularly 

important in the 1982-2008 period (Figure 0.14f and Table 0.1and Table 0.5). 

 Gains and losses in forest vary with time (Figure 12c): in 1950-1982, gains and losses are 

relatively small and tend to occur far from built area. In 1982-2008, forest land is lost close to 

built area (within 200 m) and gained at intermediate distances (200-500 m). Vineyard clearly 

loses significant area near built area (Figure 0.14d). The trend is particularly strong in 1982-2008 

within about 300 m to 400 m from built area. In this range, losses are 3 to 10 times greater than 

gains. Although total changes are similar for vineyard and grassland (Figure 0.14b), the 

relationship with distance from built area is quite different (Figures 12d and 12e for vineyard and 

grassland, respectively); in grassland, losses and gains are better balanced in the estimation of 

total change. In the 0-100 m range, grassland experiences a net loss, but beyond this distance, 

grassland gains are generally greater than losses, even though losses can remain substantial, 

especially in the 100 m to 400 m range. Where vineyard systematically lost area, grassland both 

lost and gained land. Built area expansion in 1982-2008 occurred close to former built area, as 

can be seen in Figure 0.14f. Almost 75% of the land gained in 1982-2008 was located within 200 

m of 1982 built land. 
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Figure 0.14: Land cover changes with distance from built area in (a) 1950-1982, (b) 1982-2008, 

(c) Forest, (d) Vineyard, (e) Grassland, and (f) Built area. 
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3.2.7 Distance from sea 

 Trends for changes in land cover with distance from the sea are distinct from all other patterns 

examined thus far. Before examining these, it should be noted that the catchment sea front is 

restricted to a narrow band near the outlet into the Gulf of St Tropez (Figure 2.1). Total change in 

vineyard, grassland and built area covers tends to be greatest at about 3 to 5 km from the sea front 

in 1950-1982 (Figure 0.15a). This distance corresponds roughly to the centre of the alluvial plain 

and is close the city cores of Cogolin and Grimaud (Figure 0.3). Changes in forest cover peak at a 

greater distance (about 7-9 km) and this corresponds roughly to a secondary peak in change for 

vineyard and grassland. This distance is situated near the foothills peripheral to the alluvial plain 

described in Figure 0.6-7.Finally, there appears to be a third smaller peak in change around 10-12 

km and this corresponds roughly to the area near the town of La Môle (Figure 0.3). Trends for 

1982-2008 (Figure 13b) are generally similar to 1950-1982 (Figure 13a), but changes in forest are 

concentrated within closer distances to the sea, vineyard changes are less great at intermediate 

distances (5-9 km), grassland peaks are greater at both near (3-5 km) and intermediate (7-9 km) 

distances, and built area changes are significantly greater in the 1-4 km range especially. 

 Forest gains and losses are sensitive to distance from the sea (Figure 0.15c). Gains outweigh 

losses close to the sea (within about 2-3 km for both periods and 3-4 km for 1950-1982), but 

losses are generally greater beyond about 5 km. The greatest difference in gain-loss occurs at 

about 7-9 km. Vineyard losses and gains (Figure 0.15d) are strikingly simple. Losses outstrip 

gains at all distances up to 6 km, and gains outweigh losses at all distances beyond 6 km. Peak 

lost land is situated about 3-5 km from the sea and the peak gained land occurs at a distance of 

around 6-9 km. Grassland trends (Figure 0.15e) are more complex and vary less systematically as 

a function of either time period or distance. Three approximate distance peaks can be identified. 

The first is in the 2-5 km range: here, grassland gains more land than it loses in 1950-1982, but 

the trend is reversed in 1982-2008. The second is in the 7-9 km range: gains are greater than 

losses for both time periods. The third is in the 10-13 km range where land gained is also greater 

than lost. Finally, the major peak in gained land for built area (Figure 0.15f) is about 3-5 km from 

the sea in 1950-1982 and 2-6 km in 1982-2008. For the initial 1950-1982 period, significant gains 

were made close to the seafront but these do not persist in 1982-2008. Finally, built area shows 

growth in the distant (11-13 km) range in the latter period. 
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Figure 0.15: Land cover changes with distance from sea in (a) 1950-1982, (b) 1982-2008, (c) 

Forest, (d) Vineyard, (e) Grassland, and (f) Built area. 
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4. Discussion 

 The results above detail land cover changes for the 235 km² Giscle catchment over 2 time 

periods and describe spatial patterns and topographic/distance variables influencing these 

changes. The spatial and temporal dimensions create a complex pattern of change that will be 

simplified in the discussion to highlight the major findings of the study. Before this, it should be 

noted that the topographic and distance variables are often correlated, but may have distinct 

impacts. Altitude and slope are correlated and both reflect a greater distance from the sea; in 

addition, slope influences building costs as it is cheaper to build on flat land than steep slopes. 

Distance from the sea also reflects the impact of built area, as described in the results. The major 

cities of Ste Maxime and St Tropez are located on either side of the Gulf of St Tropez, so distance 

from the sea also represents distance from larger urban centers, seafront tourism, and major road 

and rail transportation networks. Behind all these variables are economic considerations that are 

impossible to isolate and quantify. 

 Perhaps the most frequently cited land cover transition in Mediterranean regions in the 

scientific literature is the abandonment of agricultural practices on marginal land and its 

conversion to forest (Falcucci et al. 2007, Geri et al. 2010, Parcerisas et al. 2012, Pelorosso et al. 

2009, Serra et al. 2008). This was not observed in this catchment. On the contrary, marginal lands 

on steeper slopes were converted from forest to vineyard, as can be seen in Figure 0.16 showing 

vineyard terraces on foothills above the alluvial plain. A forest fire in the catchment in 2003 (Fox 

et al. 2006) revealed extensive terracing on steep slopes, but marginal subsistence farming was 

probably abandoned in the region before 1950, as was the case elsewhere in Mediterranean 

France (Sluiter and de Jong 2007). The Maures mountains (‘Massif des Maures’) are highly prone 

to forest fires and this clearly explains the prevalence of cork oak (Quercus suber) as the 

dominant tree species in the catchment. The thick bark of cork oak protects the heart of the tree 

from intense heat, and most trees survive even high severity fires. Exceptions are the very young 

or old trees, and trees which have recently been harvested for their cork bark. Pine (Pinus 

pinaster) trees, on the other hand, are systematically killed by high severity fires. With regard to 

vineyards, large areas in the plain were converted to grassland, built area, and some forest. This 

was compensated in part (but only partially since the net result is a 28% loss in vineyard cover 

between 1950 and 2008) by planting on steeper slopes in proximity to the plain. These fields 
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therefore find themselves at the interface between the extensive forest on one side and the plain 

on the other. During the large fires of 2003, vineyards served as effective fire breaks; as forest 

fires penetrated into the vineyard, the lack of combustible vegetation extinguished the fire after 

the first few vine rows were burned or dried out. 

 A second common trend cited is the intensification of agriculture on plains (Falcucci et al. 

2007, Geri et al. 2010, Van Eetvelde and Antrop 2004). The term ‘intensification’ is ambiguous 

as it can imply either the clearing of land to plant crops or an increase in mechanization in crop 

production. The latter is true here; wine producers are more mechanized and most harvest grapes 

mechanically and no longer manually in the catchment, as has been the trend elsewhere in 

southern France (Sluiter and de Jong 2007). However, the first interpretation of land clearing 

does not hold since vineyard experienced the greatest loss (-27.9%, Table 0.1) in the alluvial 

plain of all land cover types. Much of this was to built area as urban centers expanded onto 

adjoining land. The tendency for cities to grow onto agricultural land is common throughout the 

world and the Mediterranean area (Serra et al. 2008, Sluiter and de Jong 2007). However, the 

conversion of vineyard to grassland in conjunction with urban expansion is less common 

(Falcucci et al. 2007, Serra et al. 2008). In this case, abandoned vineyard fields generally 

belonged to owners who did not produce their own wine but brought their grapes to a wine 

making cooperative. Grape production was therefore not necessarily central to their livelihood as 

it is for the wine making “domaines”. Furthermore, when land is passed on from one generation 

to the next, grape production can be abandoned but the land retained. Property values are known 

to increase in the region, so land represents a secure financial investment. This explains some of 

the conversion from vineyard to grassland and accounts for the paradoxical situation of 

agriculture conquering marginal lands on steep slopes while abandoning fertile land in the plain 

to grassland and then forest.  

 The shift in agriculture from the alluvial plain to fields located on bedrock soils is probably 

specific to vineyard production since vines adapt better to cultivation on steeper slopes than most 

crops. In addition, steeper slopes with thin soils brought into cultivation are generally terraced, 

and soil depths are significantly improved by terracing. Upland slopes are dominated by schist 

and gneiss which tend to generate slightly acidic sandy soils. In an unpublished analysis of 24 

soil samples from vineyards from both the plain and foothills, there was very little variation 

within the catchment in texture and pH. Clay contents were low for all samples (mean and 
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median of 7.6% and 6.6%, respectively), coarse sand contents were high (mean and median of 

45.3% and 48.4%, respectively), and pH values were all slightly acidic (mean and median of 6.6 

and 6.7, respectively). Hence, soil attribute differences generated by different geological 

substrates were minor, and the French notion of‘terroir’ in wine production can be considered 

preserved despite the move of some fields from the plain to the foothills. It is, however, probable 

that the alluvial plain soils benefit from better soil moisture conditions in the summer, but there 

are no data available to support this. 

 Grassland dynamics are particularly complex in the catchment. As discussed above, some of 

the growth in grassland is due to land abandonment in the fertile alluvial plain. However, several 

other factors come into play. One is the conversion of vineyard to grassland (mostly pasture) 

along stream channels (Figures 2.10d-e) and this is probably related to flooding risks (Figure 

0.17) where lowland areas along stream channels experience regular flooding. This probably also 

accounts for the relatively low gains in built area close to stream channels (Figure 10f). With 

time, abandoned vineyard evolves into grassland (or shrubland) first (Serra et al. 2008), then 

forest afterwards, accounting for grassland-forest transitions and the increase in forest area in the 

alluvial plain in 1982-2008 (Figure 0.6). Although the reverse is intuitively impossible, clearing 

of forest to create fire breaks was a priority after the 2003 fire that ravaged >4,000 ha, and some 

fire breaks were present before then. Finally, some of the vineyard-grassland transition is related 

to the creation of horseback riding activities in recent years. Tourism is a major local industry and 

the proximity of large expanses of forest with paths and dirt roads makes horseback riding an 

attractive tourism activity. (Cori 1999) explains that rapid growth of the tourism industry 

increased dramatically in the last few decades and influenced the land cover change on the 

northern shores of the Mediterranean. He reported that agricultural land decreased and non-

agricultural land increased in the Spanish, French, and Italian Mediterranean regions due to the 

spread of touristic activities. And Nainggolan et al. (2012) found significant land cover change 

over 72 % of their study area in a Mediterranean catchment due biophysical and socioeconomic 

factors, most of which were associated directly or indirectly with rapid urbanization and tourism. 

The combination of all these dynamics explains the high swapping of land between forest, 

vineyard and grassland (Table 0.3, 5, and 7). 
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Figure 0.16: Clearing and terracing of foothills 

for vineyard. 
Figure 0.17: Flooding in vineyard close to 

stream channel. 
 

 Built area increased substantially between 1950 and 2008. During the initial period, about 236 

ha were added to the catchment in 32 years (7.4 ha y-1); this value increased to 450 ha in 1982-

2008 (17.3 ha y-1). Other authors (Antrop 2005, Salvati et al. 2013) have also found that urban 

sprawl accelerated in Euro-Mediterranean countries in the 1980’s. Permanent population for the 3 

main cities grew faster in 1982-2007 (about 296 pers. y-1) than in 1962-1982 (about 229 pers. y-1), 

but built area growth in the region probably depends as much on the non-permanent population. 

Many new secondary homes were built during the past two decades occupying 22 km2 of land 

(EAA 2011) near Mediterranean beaches to attract European and French populations (Blue Plan 

Papers, 2001). In addition, French and immigrated foreign retirees tend to settle in Mediterranean 

cities or use their coastal house as a secondary home. According to Cori (1999), half of total 

secondary homes in France are situated in the Mediterranean coastal area.  Spatially, previous 

built area had a stronger impact on new built area location in 1982-2008 than in 1950-2008, and 

urban expansion occurred almost exclusively within 100 m of roads and was concentrated mainly 

at low altitudes and on low to intermediate slopes. This agrees well with the findings of 

(Schneider and Woodcock 2008) on the growth trends in 25 cities across the World in 1990-2000.  

 

5. Conclusion 

 As in much of Mediterranean Europe, significant land cover changes occurred in 1950-2008. 

Forest remained the dominant land cover at all the times, and relative changes in forest cover 

were small for several reasons: its large surface (more than 85% of the catchment) and location at 

higher altitudes and on steeper slopes. Despite this, forest swapping with vineyard and grassland 

was high. Vineyard lost considerable area. It was converted mainly into grassland, urban, and 
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suburban land covers. Grassland was highly dynamic and experienced large losses and gains due 

to vineyard abandonment and the creation of fire breaks and pasture land. Grassland expanded 

mainly on abandoned vineyards. Most land cover changes occurred at lower altitudes and flat to 

gently sloping areas in the eastern part of the catchment. All distance variables (from streams, 

roads, built area, and the sea) had significant impacts on land cover change dynamics. 
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CHAPTER 3 

PREDICTING LAND COVER CHANGE IN A MEDITERRANEAN 
CATCHMENT AT DIFFERENT TIME SCALES 

(Article published in the Proceedings of the Ninth International Conference on Geographical 
Analysis, Urban Modeling, Spatial Statistics, Geog-and-Mod 2014, 30 June–3 July, 2014, 

Guimaraes , Portugal., in Appendix) 

 

1. Introduction 

1.1 Land cover change modeling 

 Land cover is changing rapidly throughout the world, and it has become an important issue 

for urban planners, ecologists, economists, and resource managers to evaluate environmental 

change and establish sustainable development planning (Dietzel and Clarke 2006, Guan et al. 

2011, Lambin et al. 2001). Land cover change models are able to identify location and quantity of 

change, predict land cover change considering past changes, test explanatory variables, and 

simulate management policies. For this reason, many interdisciplinary research projects have 

been initiated for land cover change modeling, measuring regional and global land cover change, 

forecasting future conditions, and planning for sustainable development (Verburg et al. 1999). As 

a result, researchers have created a large set of operational modeling tools to implement 

prediction and exploration of possible land cover change trajectories and land cover planning and 

policy in recent years (Verburg et al. 2006). Moreover, land cover change, urban growth, and 

spatial modeling have drawn considerable interest in the last two decades due to better computing 

power, availability of spatial data, and the need for innovative planning tools for decision support 

(Dietzel and Clarke 2006). Advanced urban and land cover change modeling techniques have 

been included in many GIS software package. 

 

1.2 The role of time scale in land change prediction 

 The selection of prediction and validation time intervals has a great impact on prediction 

accuracy (Chen and Pontius 2010). Prediction accuracy can depend on the rate and process of 

transitions in both time intervals. Modeling of land cover change using a coarser temporal scale 

may fail to understand landscape change patterns properly and can hamper model performance 

(Álvarez Martínez et al. 2011), so most studies on future land cover change use short to 

intermediate historical time scales (5–15 years). Many studies on urban land cover change 
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modeling use short time scales that achieve better prediction (Ahmed and Ahmed 2012, He et al. 

2006, Li and Yeh 2002, Sang et al. 2011). Some studies use intermediate time scales (Huang and 

Cai 2007, Jenerette and Wu 2001, Kamusoko et al. 2009, Oñate-Valdivieso and Bosque Sendra 

2010, Silva and Tagliani 2012, Tewolde and Cabral 2011, Mhangara 2011, Guan et al. 2011, 

Pérez-Vega et al. 2012) and very few studies use long time scales to simulate urban land cover 

(Bohnet and Pert 2010) and multiple land cover change (Guan et al. 2011, Pérez-Vega et al. 

2012).  

 Very few studies were found on the comparison of the impact of historical time periods on 

land cover prediction using different time scales. To investigate the impact of time interval on 

prediction accuracy in Gorizia-Nova Gorica (Italy), urban area was predicted for different years 

(2005 to 2010) from initial conditions in 1985 and 2004 (Chaudhuri and Clarke 2014). The 

authors found that prediction accuracy increased with decreasing prediction time period.  

Table 0.8 presents historical and prediction time periods of several studies on land cover change. 

Historical time period is accounted from the interval of initial (T1) and second time (T2), and the 

prediction time period is measured from the interval of the second time (T2) and the prediction 

time (T3). In this Table, recent studies on land cover change analysis and modeling for the future 

using CA-Markov and Multi-Layer Perceptron (MLP) with multiple land cover are included. 

Average historical and prediction time periods are about 10 and 12 years, respectively, analyzing 

25 recent studies on land cover change using CA-Markov and Multi-Layer Perceptron (MLP).  

Table 0.8: Temporal scales of different studies. (V- Year of validation, F- year of future 
prediction) 

Authors Study area Time scale Prediction 
date 

Historic 
Interval 

Predict 
Interval 

Ahmed and 
Ahmed, 2011 

Dhaka city, Bangladesh 1989-1999 2009 (V) 
2019 (F) 

10 10 

Álvarez 
Martínez et al., 

2011 

La Sierra d’Ancares, Spain 1991-2004 Land cover 
change 
analysis 

13 - 

Araya and 
Cabral, 2010 

Setúbal and Sesimbra in 
the Lisbon Metropolitan 

Area, Portugal 

1990-2000 2006 (V), 
2020 (F) 

10 20 

Berberoglu 
and Akin, 

2009 

The Cukurova Deltas, 
Turkey 

1985- 1993 
1985-2005 

Land cover 
change 
analysis 

8, 20 _ 

Bohnet and 
Pert, 2010 

Cairns, Queensland, 
Australia 

1952-2008 2031 (F) 56 23 
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Authors Study area Time scale Prediction 
date 

Historic 
Interval 

Predict 
Interval 

Bracchetti et 
al., 2012 

Central Apennines, Italy 1955-1978 
1978-2006 

Land cover 
change 
analysis 

28 _ 

Dadhich and 
Hanaoka, 2012 

Jaipur, India 1989-2000 2002 (V) 11 2 

Dewan and 
Yamaguchi, 

2009 

Greater Dhaka, 
Bangladesh 

1975-
1992,1992-
2003, and 
1975-2003 

Land cover 
change 
analysis 

17, 11, 
and 28 

_ 

He et al., 2006 Beijing, China 1997, 2000 and 
2004 

2004 (V), 
2020 (F) 

3 20 

Huang and 
Cai, 2007 

Shiqian County, China 1988, 2001 2001(V), 
2014 (F) 

13 13 

Jenerette et al., 
2001 

The central Arizona -
Phoenix region of the 

United States 

1975-1995 2015 (F) 20 20 

Kamusoko et 
al., 2009 

Bindura district, 
Zimbabwe 

1973-1989 2000 (V), 2010 
(F), 2020, 2030 

16 20 

Koi 2011 (Ph. 
D. thesis) 

Tam Dao National Park 
Region(TDNP), Vietnam 

1993-2000 2007 (V), 2014 
(F), 2021 

17 14 

Li and Yeh, 
2002 

Dongguan city, China 1988, 1993 2005 (V) 5 12 

Liu et al., 2008 Guangzhou, in thePearl 
River Delta of China 

1988, 1993 2002 (V) 5 9 

Lo´pez et al., 
2001 

Morelia city, Mexico 1960, 1975, 
1990 

1990 (V) 15 15 

Moghadam 
and Helbich, 

2013 

Mumbai, India 1973, 1990, 
2001, 2010 

2010 (v), 2020 
(F), 2030 

11 10 

Pérez-Vega et 
al., 2012 

The state of Colima, the 
western part of Mexico. 

1986-1993, 
2002 

2002 (V) 
Comparison 

7 9 

Sang et al., 
2011 

Beijing, China 2001, 2006 2008 (V), 
2015 (F) 

5 9 

Silva et al., 
2012 

The Rio Grande do Sul 
coastal plain, Brazil 

1987-2000 2015 (F) 13 15 

Tewold and 
Cabral, 2011 

Greater Asmara Area 
(GAA), Eritria 

1989-2000 2009 (V), 2020 
(F) 

11 9 

Valdivieso et 
al., 2010 

Catamayo Chira basin 
south-west borderline 

region between Ecuador 
and Perú 

1986-1996, 
2001 

2001 (V), 
2012 (F) 

10 16 

Verburg et al., 
2002 

Sibuyan Island, 
Philippines 

1997 2017 - 20 

Vliet et al., 
2009 

The Greater Vancouver 
Regional District (GVRD), 

Canada 

1996, 2001 2001 (V) 5  

Wang and Li, Shenzhen City, China 2000, 2005 2010 (V) 5 10 
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Authors Study area Time scale Prediction 
date 

Historic 
Interval 

Predict 
Interval 

2011 
Wang et al., 

2011 
City of Calgary, Canada 1985, 1992, 

1996, 2001 and 
2006 

2006 (V) 5 5 

Wang et al., 
2012 

Changping District, 
Beijing 

1988-1995 2000 (V) 7 5 

Wu et al., 2006 Beijing, China 1986, 1991, 
1996, 2001; 
1986-2001 

2021 (F) 15 15 

Xin et al., 
2012 

Changping, a district of 
Beijing, China 

1988-1998 2008 (V) 10 10 

 

1.3 Objectives 

The objective of this paper is to explore the impact of temporal scales on land cover change 

modeling for predicting land cover change in a Mediterranean catchment in SE France. Land 

cover maps of 2011 were predicted from different time scales (1950-1982, 1982-2003, and 2003-

2008) and compared with the digitized land cover map of 2011 to measure model accuracy. The 

study is part of a larger program to evaluate the impacts of land cover change on runoff and soil 

erosion at the catchment scale. 

 

2. Methods 

Study area, land change modeling steps, and data are discussed in this section. 

 

2.1 Site description 

 The study area (about 235 km²) is situated in the Var department of SE France near the Gulf 

of St. Tropez. The western part of the watershed (about 70% of the catchment) is forest (mostly 

pine and oaks), and the topography is uneven with the highest elevation at about 650 m. The 

lower part of the catchment is a gently sloping alluvial plain. The catchment area is characterized 

by a Mediterranean climate with hot dry summers, and cooler rainier winters. Average 

temperatures range between 22°C to 26°C in summer and 5°C to 10°C in winter. The mean 

annual rainfall is about 900 mm, and the main rainy season is from October to January (Fox et al. 

2012). Several tributaries flow into the Giscle main channel, including the Môle, the Grenouille, 
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the Tourre, and the Verne. Three main municipalities are located within the catchment: Cogolin, 

Grimaud, and La Môle (Figure 0.18). 

 
Figure 0.18: Location of the catchment. 

 

2.2 Land change modeling procedure 

 Land Change Modeler (LCM) was originally designed to manage impacts on biodiversity, 

and analyze and predict land use and land cover changes. Only thematic raster (byte or integer 

value 1-265) images with the same land cover categories listed in the same sequential order can 

be inputted in LCM for analysis, and background areas must be identified on maps coded with 0. 

LCM evaluates land cover changes between Time 1 (initial time) and Time 2 (second time). It 

calculates the changes, and displays the results with various graphs and maps. Finally, it predicts 

future (Time 3) land cover on the basis of relative transition potential maps. LCM was used in 

this study to identify explanatory variables, create transition potentials, and predict future land 

cover maps. Figure 0.19 presents all major steps of the LCM-IDRISI model (Eastman 2012) that 

have been used in the study.  Three major steps: data input, results and validation are presented in 

this flow chart with relevant module name that are used in the study. Digitization of land cover 

maps, creation and selection of explanatory variables, constrains, and transition potentials are 
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shown in the data input section. Results and validation sections are presented with associated 

modules which are incorporated to predict land cover maps and to validate the accuracy of the 

predicted land cover maps. 

 
Figure 0.19: Flowchart of the model 

 

2.2.1 Digital data and land cover categories 

 Land cover maps were digitized from grey scale ortho-rectified aerial photographs of 1950 

and 1982, and color ortho-photos of 2003, 2008, and 2011. Spatial resolution for all aerial 

photographs was reduced to 1 m from 0.5 m to facilitate data manipulation during digitization. 

Surfaces were initially characterized into five categories: forest (F), vineyard (V), grassland (G), 
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urban (U) and suburban (S), but the last 2 categories were collapsed into a single built area (B) 

class to improve category attribution as described below (Table 0.9). Methods of land cover 

digitization, classification, and characteristics of land cover classes were discussed in (Roy et al. 

2014b). Land cover classification was facilitated by numerous field visits, and validation was 

carried out through a group of 15 third year Geography students of the University of Nice Sophia 

Antipolis. Each student was provided with a sample of 20 selected cells to identify land cover 

class; each sample had a roughly equal number of cells in each category, and there were 5 

students for each year (1950, 1982, and 2003). This was the students’ first contact with digital air 

photos, so the validation is considered a worst case scenario. 

 Slope was created from a 25 m Digital Elevation Model (DEM). Road and stream networks 

were screen digitized from the aerial photographs of 2008. Only major roads were taken into 

account, so road network was considered constant for all time periods. In order to make the land 

cover maps compatible with the explanatory variables, cell size was converted to 25 m. 

Table 0.9: Characteristics of the different land cover classes 

Final land cover 
categories 

Description 

Forest Natural forest area including dense shrubland and scattered housing. 

Vineyard Vineyards are identified by their blocky, geometric shapes, and linear 
texture created by the rows of planted vines. 

Grassland Abandoned agricultural land, new shrubland with small and scattered trees, 
and pasture land for sheep and horses. 

 
Built area 

Densely to low developed areas including some small denser communities: 
residential, commercial, and industrial. 

 

2.2.2 Explanatory variables and constraints 

 Topographic and distance variables have been used to simulate land cover change studies 

throughout the world (Khoi 2011, Li and Yeh 2002, Mas et al. 2012, Oñate-Valdivieso and 

Bosque Sendra 2010). In an earlier study (Roy et al. 2014b), major topographic and distance 

variables were identified. These include the following: slope, altitude, distance from roads, 

distance from built area (initial year), and distance from streams. In addition, three constraints 

and incentives (forest to built area, vineyard to built area, and grassland to built area) were 
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included in the prediction process. These were created from the “Plan Local d’Urbanisme” (PLU) 

and “Schéma de Coherence Terrtoriale” (SCOT) (Figure 0.20). The PLU is the local urban plan 

in France; it determines land use guidelines. The SCOT integrates different policies regarding 

urban planning: social and private housing, communication infrastructure and public transport, 

commercial infrastructure, and environment protection. Constraints and incentives are multiplied 

by the corresponding transition potential during modeling. In this study, values of 0 on the map 

were used to define absolute constraint, and 1.1 was used for incentives to emphasize the 

expansion of built areas in suitable selected zones for development according to the regional plan. 

In addition, distance from streams was also added with above mentioned constraints. Disincentive 

areas situated within a distance from streams of 0-25 m, and 25-50 m were defined by values of 

0.6 and 0.8, respectively to maintain the historical trend of less urbanization near stream networks 

in the study area according to (Roy et al. 2014b). 

 
Figure 0.20: PLU and SCOT map of the study area. 
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2.2.2.1 Selection of explanatory variables 

 The simulation of multiple categories of land cover change depends on several explanatory 

variables (Li and Yeh 2002). Explanatory variables that were drivers of past land cover change 

are expected to be an influential force in future changes and are selected based on available data 

and their explanatory abilities. DEM, slope, and distance from road represent the accessibility of 

a neighborhood, and distance from built area highlights the proximate location of urbanization. 

The significance of explanatory variables was tested using Cramer’s V which measures the 

strength of association between two categorical variables based on Chi-square statistics (Pérez-

Vega et al. 2012). In this study, land cover change in a historical time period and explanatory 

variables are taken into account to test Cramer’s V for a particular variable. LCM calculates 

Cramer’s V automatically and displays the association level of explanatory variables with land 

cover categories. Variables with greater values are considered more important than other 

variables. Cramer’s V values of ≥0.4 and ≥0.15 are considered good and useful, respectively; and 

values 0.15 should be removed from the model (Eastman 2012).  

Two topographical variables (slope and altitude) and three distance variables (roads, streams, and 

built area) have significant impacts on land cover change in the study area (Roy et al. 2014b), and 

these are employed in the model. Distances from roads and streams were developed from the 

digitized road and stream layers, respectively. Distance from built area was measured using built 

area of the initial year of the corresponding historical time period. 

 

2.2.3 Transition potentials 

 Transition potential maps were created for each transition possibility (F to V, F to G, F to B, 

V to F, V to G, V to B, G to F, G to V, and G to B) based on historical changes and selected 

explanatory variables. The Multi-Layer Perceptron Neural Network (MLPNN) algorithm of 

IDRISI (Eastman 2012) was employed to create transition potentials. Each transition potential 

was modeled individually using the same explanatory variables, but only transition potentials 

with an accuracy rate greater than 70% were utilized for land cover prediction.  

For all transitions at different time periods, 10,000 iterations were selected. The minimum 

number of cells that transformed into a particular time period for a particular transition is selected 

as the sample size per class, in which 50% of these cells are used for training and another 50% of 

these cells use for testing purposes to measure the calibration of this transition potential (Eastman 
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2012). For example, if ‘x’ cells of forest converted to vineyard in 1982-2003; this (x) is the 

maximum/total cells that converted from forest to vineyard in 1982-2003. ‘The minimum cells 

that persisted’ also displays the persistence of a land cover in that particular time period for all 

possible transitions. 

 

2.2.4 Land cover prediction and time scales test 

 Land cover change prediction has two aspects: the quantity of change is provided by the 

Markov change model matrix and the spatial distribution of change is given by MLPNN. LCM 

provides the quantity of change by evaluating the Markov matrix comparing the initial (T1) and 

second land cover (T2), and then predicts the future land cover (T3) using a transition probability 

matrix for the future. The transition probability matrix displays the probability of each land cover 

category changing into another category. A value close to 0 indicates a low conversion 

probability, and 1 indicates a high conversion probability for the target land cover. Transition 

probabilities can be modified manually and saved but all rows must sum to one (Pontius 2000, 

Eastman 2012). The probability matrices provide the potential for change of each category 

without any spatial distribution of change; this is provided by the transition potential maps 

generated using MLPNN. Land cover maps were predicted for 2011 using transition potential 

maps from several historical time periods (1950-1982, 1982-2003, 2003-2008) (Table 0.10). The 

same variables and constraints were incorporated in all simulations. 

Table 0.10: Historical time periods, prediction and validation dates for different scales. 

Historical time period Prediction date Historical time interval Validation time interval 
1950-1982 2011 32 29 
1982-2003 2011 21 8 
2003-2008 2011 5 3 

 

 

2.2.5 Land cover prediction validation 

 Validation of a model is needed in order to assess its accuracy. To do this, simulated land 

cover maps of 2011 created using different time scales were compared with a digitized map of the 

same year. Both quantitative and location errors were calculated in the study. The quantitative 

error is the difference between the quantity of cells in a particular land cover category in one map 
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(predicted) and the quantity of cells in that category of the other map (actual), and the location 

error is the spatial deviation of a category in one map from same category in another map 

(Eastman, 2012). The accuracy of quantity and location indicates totally different aspects. 100% 

accuracy rate of quantity can be 0% for spatial accuracy. However, the greatest (100%) spatial 

accuracy and the least ( 0%) quantitative accuracy are impossible to find in the same simulation 

for a particular land cover category because spatial accuracy considers spatially wrong 

overestimated and underestimated area where quantitative accuracy only consider the difference 

area in simulated and actual map for a particular category. 

 Kappa indices and error matrix analysis are incorporated in the study for model validation. 

The standard ‘Kappa index’ is a comparative analytical process that measures spatial and non-

spatial aspects between predicted and reference maps (Eastman 2012). Kappa index was first 

introduced by (Landis and Koch 1977), though their guidelines were not accepted by all, and they 

propose the following levels of agreement with a corresponding range of kappa (Table 0.11). 

Kappa values were characterized as excellent over 0.75, 0.40 to 0.75 as fair to good, and below 

0.40 as poor (Eastman 2012).  

Table 0.11: Level of agreement associated with Kappa values by (Landis and Koch 1977) 

Strength of agreement Landis and Koch, 1977 
Poor <00 
Slight 0.00 - 0.20 
Fair 0.21 - 0.40 

Moderate 0.41 - 0.60 
Substantial 0.61 - 0.80 

Almost perfect 0.81 - 1.00 
 

 Kappa indices for different components are developed by (Pontius 2000) to assess the 

reliability of a model which can be expressed by the following equation: 

 Kappa Index = P −PcP −Pc (2)  

 Where Po is the observed proportion correct, Pc is the expected proportion correct due to 

change, and Pp is the proportion correct when the classification is perfect (100%). In equation 

(2), if classification is perfect, Po−Pc=Pp−Pc≠0, then Kappa=1  

 If  Po > ��, �ℎ�� ����� > 0  
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 If  Po = Pc, then Kappa = 0  

 If  Po < ��, �ℎ�� ����� < 0  

 Pontius (2011) shows several components of Kappa indices: Kappa standard (Kstandard), Kappa 

for location (Klocation), Kappa for quantity (Kquantity), and Kappa for no spatial and quantity 

information (Kno). (Pontius and Millones 2011) defines “Kstandard as an index of agreement that 

attempts to account for the expected agreement due to random spatial reallocation of the 

categories in the comparison map, given the proportions of the categories in the comparison and 

reference maps, regardless of the size of the quantity disagreement”. Kno depends on randomly 

selected quantity and spatial allocation of categories in the comparison map. Kquantity is a ratio of 

quantitative difference between the categories in the comparison map and reference map, and 

K location is the spatial allocation agreement between them. 

 The confusion matrix was analyzed using the ERRMAT module of IDRISI (Eastman 2012) to 

assess the fitness of spatial cell allocation between predicted and true values. ERRMAT outputs 

an error matrix containing a tabulation of the number of cells found in each possible combination 

of true and mapped categories, and a summary of statistics (Eastman 2012). Error of omission 

estimates the proportion of the area of a particular land cover that is omitted by the model and 

total area of the same category of the reference image. Error of commission represents the 

proportion of wrongly attributed land cover of a particular category that is overestimated by the 

model for each category. Commission and omission errors were calculated according to the 

following formulae: 

 

Commission error = 
Total area of a particular category in projected map - Persistence

Total area of that category in projected map
 

Omission error =
Total area of a particular category in reference map - Persistence

Total area of that category in reference map
 

ERRMAT also presents the overall and per category Kappa Index of Agreement (KIA) values. 

This module is executed for different predictions that were generated using different time scale. 

 

 

 

 



46 

 

3. Results 

3.1 Land cover change analysis during different time periods 

 The classification validation procedure revealed that classifying land cover into five 

categories was difficult from grey scale photographs and simpler for the 2003 color air photos. 

For 1950, classification error was 27%, and sources of error were either a confusion between 

vineyard and grassland or urban and suburban. The classification error decreased to 20% when 

urban and suburban were collapsed into a single built category. For 1982, category error was 10% 

and 20% for 4 and 5 categories, respectively. Finally, for 2003, the error was only 4% for 4 

categories, down from an initial 15% due to confusion between urban and suburban classes (by 

one student). It should be noted that the exercise was for unexperienced undergraduates just 

introduced to digital air photos. The actual classification was carried out by an experienced user 

over several months and verified thoroughly by a second experienced user, so the actual 

classification accuracy can be considered much greater than the values cited above. 

Figure 0.21 a-d show land cover maps (1950, 1982, 2003, and 2008) digitized from the air 

photos. Most of the land cover changes occurred in the alluvial plain (East), where most of the 

vineyard, grassland and built areas are concentrated. 
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Figure 0.21: (a) Land cover map of 1950, (b) 1982, and (c) 2003, and (d) 2008. 

  

 Figure 0.22a-d present land cover changes (ha) in all categories of the study area, and Table 

0.12 shows the percentage of total surface area of each land cover category in different years. 

Two general trends can be identified in land cover change since 1950: forest and vineyard 

decreased while grassland and built area increased. Some changes in forest occurred in 1982-

2003 as it lost about 120 ha (Figure 0.22). A marked decrease was observed in vineyard (28% of 

the initial year) that lost 854 ha between 1950 and 2003 (Figure 0.22). Then, it increased 67 ha in 

2003-2008 and resumed its decreasing trend in the last time period 2008-2011. Vineyard was 

10.4% of the catchment in 1950 and decreased to 6.6% in 2003 and then remained more or less 

stable till 2011. A clear increase was observed in grassland (50%). However, some fluctuations 

are also observed in grassland change after 2003. Grassland increased from 3.4% to 5.4% of the 

catchment in 1950-2003 and decreased slightly to 4.9% in 2011. It increased greatly (383 ha) in 
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1982-2003, decreased 122 ha in the next time period (2003-2008) but resumed the increasing 

trend again in 2008-2011 (Figure 0.22). Built area remained a minor component of the catchment, 

and increased rapidly from only 0.1% to 3.2% of the catchment during the study period (Table 

0.12). 

 
Figure 0.22: (a) Forest change in 1950-2011. (b) Vineyard change in 1950-2011. (c) Grassland 

change in 1950-2011 (d) Built area change in 1950-2011. 
 

Table 0.12: Percentage of the catchment area for each category 

 Total surface area (% of the catchment) 
 1950 1982 2003 2008 2011 

Forest 86.1 85.9 85.4 85.3 85.1 
Vineyard 10.4 9.3 6.6 6.9 6.8 
Grassland 3.4 3.7 5.4 4.8 4.9 
Built area 0.1 1.1 2.7 3.0 3.2 

  

 Figure 0.23 summarizes the mean rate of change of each land cover category in the different 

time periods. Forest loss was -1.1 ha yr-1 and -5.8 ha yr-1 in 1950-1982 and 1982-2003, 
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respectively, it lost -10.1 ha yr-1 in the recent time period 2003-2011. The average forest 

depletion rate was -3.9 ha yr-1 in 1950-2011. The greatest rate of vineyard loss was -30.1 ha yr-1 

in 1982-2003, and the average overall rate of vineyard depletion was -14 ha yr-1. The rate of 

grassland expansion was 2.7 ha yr-1 in 1950-1982; it increased to 18.2 ha yr-1 in 1982-2003, and 

then to 13.8 ha yr-1 in 2003-2011. Grassland gained an average of 5.9 ha yr-1 in the study period. 

The rate of built area expansion was 7 ha yr-1 in 1950-1982 and increased to 17.6 ha yr-1 in the 

recent time period 2003-2011. So, the average rate of built area expansion was 12 ha yr-1 in 1950-

2011. 

 

Figure 0.23: Mean rate of land cover changes (ha) in different time periods 

 

3.2 Selection of explanatory variables 

 Figure 0.24a-e present all explanatory variables utilized in the study to predict future land 

cover changes using different time scales. It can be seen in these Figures that most of the eastern 

part of the catchment is a plain with low altitudes and gentle slopes. In addition, distances from 

roads, streams, and built areas are than the remaining catchment. As was described in (Roy et al. 

2014b), most of the changes in land cover occurred in the alluvial plain area. 
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Figure 0.24: (a) Slope. (b) Altitude. (c) Distance from road. (d) Distance from built area. (e) 

Distance from streams.  
 The association level between explanatory variables and land cover types in different time 

periods is shown in Table 0.13. It is measured through Cramer’s V. All variables have a Cramer’s 

V value ≥0.15 with all land cover types except forest in the long time period (1950-1982). 

 The strongest explanatory variable is altitude, which has a good association level (Cramer V 

≥0.40) with all land covers except forest for all time periods. A good association level is also 

observed in slope with all land covers in all time periods, especially with vineyard and grassland. 



51 

 

Distance from roads shows a high association level with vineyard in all time periods, and has 

good association level with forest and grassland in the intermediate (1982-2003) and long (1950-

1982) time periods, respectively. Distance from built area also has a good association level with 

forest and vineyard in all time periods. Distance from streams is the weakest variable; it shows 

comparatively limited association with existing land covers and has only a good level of 

association with vineyard in all time periods. The lowest association is observed for forest with 

all variables except distances from road and built area, indicating that the dominant forest 

category (about 85%) is less influenced by topographic variables.  

Table 0.13: Cramer’s V coefficient (relationship between land cover change and explanatory 
variables). Values ≥ 0.40 are highlighted in bold. 

Time period  Altitude Slope Dist. Road Dist. Built area Dist. stream 
 

1950-1982 
Forest 0.20 0.15 0.31 0.40 0.12 

Vineyard 0.69 0.65 0.59 0.46 0.41 
Grassland 0.52 0.50 0.44 0.33 0.32 
Built area 0.39 0.36 0.28 0.22 0.20 

 
1982-2003 

Forest 0.30 0.22 0.49 0.60 0.16 
Vineyard 0.67 0.63 0.59 0.59 0.41 
Grassland 0.40 0.40 0.36 0.33 0.27 
Built area 0.44 0.42 0.30 0.30 0.25 

 
2003-2008 

Forest 0.30 0.22 0.49 0.64 0.16 
Vineyard 0.67 0.62 0.59 0.60 0.41 
Grassland 0.41 0.41 0.36 0.34 0.27 
Built area 0.39 0.38 0.27 0.29 0.25 

 

 

3.3 Transition potentials 

 Transition potentials for different time periods present similar patterns and the same 

explanatory variables were used in all simulations for the different time scales. Therefore, only 

transition potentials for the intermediate time period (1982-2003) are displayed in Figure 6a-i. 

High potential areas for all transitions are found mostly in the alluvial plain (Figure 0.25a-h). 

Most of the lower altitude and gentle slope areas have shown high potentiality of change from 

forest to vineyard and grassland. The same trend is observed in grassland change, where most of 

the grassland far away from streams and roads have a higher potentiality to transform into forest, 

and grassland in lower distance from roads and streams have the higher potentiality to convert 

into vineyard.  
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 Figure 0.25a and b display transition potentials from vineyard and grassland to forest, 

respectively. In the vineyard to forest transition, some scattered vineyard at the edge of the 

existing built area have shown higher potentiality of change to forest, and the rest of the vineyard 

in the plain land has lower potentiality to change into forest, and most of the grassland far away 

from streams and roads have a higher potentiality to transform into forest. Most of the lower 

altitude and gentle slope areas have shown high potentiality of change from forest to vineyard, 

and grassland in lower distance from roads and streams have the higher potentiality to convert 

into vineyard (Figure 0.25c-d). Transition potentials to grassland from forest and vineyard are 

shown in Figure 0.25e and 6f, respectively. Most of the lower altitude and gentle slope areas have 

shown high potentiality of change from forest and grassland (Figure 0.25e). Some scattered 

vineyards at the edge of the existing built area have shown higher potentiality to convert into 

grassland, and have higher potentiality to transform into grassland (Figure 0.25f). Transition 

potentials to built area from all other land covers are presented in Figure 0.25g-i. The plain land 

near road and the existing developed area are more vulnerable to change into built area. 

Transitions from all land cover categories to built area are selected areas near the road network 

and existing built area particularly, huge forest area is shown vulnerable to convert into built area 

Figure 0.25g. 

 



53 

 

 



54 

 

 

 
Figure 0.25: (a) Transition potential from vineyard to forest. (b) Transition potential from 

grassland to forest. (c) Transition potential from forest to vineyard. (d) Transition potential from 
grassland to vineyard. (e) Transition potential from forest to grassland. (f) Transition potential 

from vineyard to grassland. (g) Transition potential from forest to built area. (h) Transition 
potential from vineyard to built area. (i) Transition potential from Grassland to built area. 
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 Table 0.14 presents the accuracy rate of all transition potentials for different time periods. 

Accuracy rate presents the agreement between a particular transition and selected explanatory 

variables. A high accuracy rate is observed for several transitions in all time periods: forest to all 

other categories, and vineyard and grassland to built area. Transition from vineyard to forest in 

2003-2008 also shows high accuracy. Therefore, transition potentials from forest to all and 

vineyard and grassland to built area are good. All transitions from vineyard and grassland to other 

land covers except built area have low to intermediate accuracy rate. 

Table 0.14: Accuracy rate (%) of transition potentials in different time periods (F-Forest, V-
Vineyard, G-Grassland, B-Built area). 

 Accuracy rate (%) 
Time period F-V F-G F-B V-F V-G V-B G-F G-V G-B 
1950-1982 85 86 99 64 58 97 63 58 97 
1982-2003 83 81 97 64 60 85 62 57 83 
2003-2008 91 97 98 100 63 85 63 64 82 

 

3.4 Prediction of land cover change using different time scales 

 The transition probability matrices for all time periods are presented in Table 0.15 where 4 × 

4 matrices are presented for three time periods, the row represents the second year of the initial 

time period (T2) and the column represents the simulation year (T3). Expected transition area 

(diagonal) is also expressed in ha. The Markov transition probability matrices show the transition 

probability of each land cover category, are calculated based on historical land cover changes 

during the periods 1950-1982, 1982-2003, and 2003-2008. The probability of expected amount of 

unchanged land cover represents expected persistence in predicted time period are presented in ha 

in diagonal and in parentheses. The off-diagonal values indicate the probability of a land cover 

change may occur from one land cover category to another. 

 The transition probability matrix can be expressed as the % of a particular land cover in the 

year T2. For example, the probability of forest 0.97 can be expressed as 97%, which indicates 

that most of its coverage will remain unchanged due to its imputed coverage in the catchment. 

For the initial 1950-1982 time period, probabilities of 0.02 and 0.01 exist for vineyard and 

grassland, associated with a transition of 404 ha and 202 ha from forest, respectively. A 

probability of 0.72 is associated with the persistence of vineyard, displays its vulnerability of 

change to other land cover. While, a probability of 0.51 indicates the lowest persistence of 
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grassland, indicates its instability, and shows the highest possibility of change to other land cover 

in 1982-2011. Built area remained constant and it has no probability of change into other land 

covers.  

 Transition probabilities based on the intermediate time period shows that the trend of land 

cover change probabilities based on the long time period (1950-1982) has continued for this time 

period but the probabilities of land cover changes have decreased for this 8 year time period 

(2003-2011). Markov matrix of this time period indicates that built area and forest were the most 

stable land cover categories with the probabilities of 1.0 and 0.98, respectively. However, 

transitions of large area are observed in forest, vineyard, and grassland. A transition probability of 

0.01 is equivalent of a transition area 201 ha associated with deforestation and conversion of 

forest into vineyard and grassland. A probability of 0.18 is equivalent to a transition of 227 ha 

from vineyard to grassland, is associated with vineyard abandonment. While transition 

probabilities of 0.14 and 0.07 are associated with transition of 177 ha and 108 ha of grassland into 

forest and vineyard, respectively. It has shown the probability of interchanges between vineyard 

and grassland. Built area has no probability to transform into other land cover categories. 

 Transition probabilities based on the short time period presents transition probabilities of land 

cover changes in 2008-2011 on the basis of changes in the earlier time period 2003-2008. The 

transition probabilities of all land cover categories are the lowest among all time periods due to 

the short time scale. However, the same trend of conversion continued from the history to recent 

time for both long and short time scales. The highest probability of persistence is observed for all 

land cover categories that actually going to predict almost as the same of its initial year. 
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Table 0.15. Land cover transition probabilities in 1982-201, 2003-2011, and 2008-2011, using 
different time periods 1950-1982, 1982-2003, and 2003-2008, respectively. Expected transition 
area or change area matrix is also expressed in ha in diagonal, accounted from the total area in 

initial year (T2). 

Initial time period Land cover types Forest Vineyard Grassland Built area 
 
 

1950-1982 
 

Forest 0.97 (19,626) 0.02 (404) 0.01 (202) 0.00 (0) 
Vineyard 0.08 (174) 0.72 (1,571) 0.15 (327) 0.049 (109) 
Grassland 0.21 (184) 0.23 (202) 0.51 (448) 0.048 (43) 
Built area 0.00 (0) 0.00(0) 0.00(0) 1.000 (255) 

 
 

1982-2003 

Forest 0.98 (19,709) 0.01 (201) 0.01 (201) 0.00 (00) 
Vineyard 0.01 (15) 0.79 (1,224) 0.18 (227) 0.02 (31) 
Grassland 0.14 (177) 0.07 (108) 0.73 (458) 0.06 (76) 
Built area 0.00 (0) 0.00(0) 0.00(0) 1.000 (627) 

 
 

2003-2008 

Forest 1.00 (20,091) 0.00 (0) 0.00(0) 0.00 (0) 
Vineyard 0.00 (0) 0.98 (1,585) 0.14 (11) 0.01 (16) 
Grassland 0.02 (23) 0.05 (81) 0.91 (639) 0.02 (23) 
Built area 0.00(0) 0.00(0) 0.00(0) 1.000 (702) 

 

 

3.5 Validation of predicted land cover 

 Simulations for 2011 were executed using transition potentials from 1950-1982, 1982-2003, 

and 2003-2008, respectively. Simulated and actual land cover maps of 2011 are presented in Fig. 

7a-d. Dissimilarities are observed mainly in the plain land of the eastern part of the catchment 

where most of the conversion took place as described in (Pontius and Millones 2011). Visual 

interpretation (Figure 0.26 a-c) suggests the simulated maps from intermediate (Figure 0.26b) and 

short (Figure 0.26c) time scales are reasonably similar to the actual map of that year (Figure 

0.26d). 
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Figure 0.26: (a) Predicted land cover map of 2011 from transition potentials 1950-1982. (b) 

Predicted land cover map of 2011 from transition potentials 1982-2003. (c) Predicted land cover 
map of 2011 from transition potentials 2003-2008. (d) Land cover map 2011 (actual) 

 

 

3.5.1 Kappa index analysis for predicted land cover from different time periods 

 The summary of the Kappa indices at different time scale simulations is presented in Table 

0.16. These indices are acquired from the VALIDATION module of IDRISI (Dietzel and Clarke 

2006) and can also be obtained using the Pontius matrix following (Pérez-Vega et al. 2012). 

Results show that all kappa components increase with decreasing time scale up to the near perfect 

level of agreement for the short time scale. However, simulation from long time scale also 

achieved a perfect level for Kquantity, and a reasonable level of agreement for Klocation, and Kstandard. 
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 Values of Kquantity were observed in the perfect level of agreement in all three simulations, and 

these values were increased a little from 0.95 to 1.00 for long to short time scale simulation. 

K location gives the overall spatial accuracy of a simulation. Spatial accuracy was difficult to 

achieve from the long time simulation. Values of Klocation varied greatly from long to short time 

scale though the simulation for the long time scale also had good levels of agreement (0.75); 

these increased to 0.87 and 0.94 for intermediate and short time simulation, respectively. The 

greatest changes were also observed in Kstandard for different time scales which increased from 

0.66 to 0.94 with decreasing time scale. 

Table 0.16: Summary of Kappa indices 

 Initial time period 
 1950-1982 1982-2003 2003-2008 

Kquantity 0.95 0.99 1.00 
K location 0.75 0.90 0.94 
Kstandard 0.66 0.87 0.94 

 

3.5.2 Error matrix analysis for predicted land cover from different time periods 

 Table 0.17 presents the error matrix analysis of actual land cover map 2011 (column) against 

predicted land cover (row) for different time scales. The table contains three 6 x 6 matrices for 

the 1950-1982, 1982-2003, and 2003-2008 time periods. In addition to overall errors, this table 

also shows where the errors occur. For example, 158 ha of vineyard is wrongly attributed to 

forest, and 438 ha of vineyard is omitted that should be forest. 

 Errors for all land covers decreased with decreasing time scales. The lowest commission and 

omission errors were observed in forest for all time scales and these decreased slightly with 

decreasing time scales. Errors of commission and omission were 2.6% and 3.8%, respectively for 

forest in the long time scale prediction, and these decreased to 0.7% and 1.6% in the intermediate 

and 0.5% and 0.4% in the short time scale prediction, respectively. High error of commission 

(45.3%) was observed in vineyard in the long time scale where the greatest amount of vineyard 

(1,082 ha) was wrongly attributed, and commission error decreased markedly in intermediate and 

short time scales. However, error of omission was relatively low in the long time scale simulation 

for vineyard. The highest errors of commission and omission were observed in grassland in all 

time scale simulations, particularly the long time scale where errors of commission and omission 

were 56.6% and 65%, respectively. Errors for this land cover also decreased greatly with 
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decreasing time scale (Table 0.17). Considerable amounts of vineyard and grassland were 

wrongly attributed as forest, and considerable amounts of vineyard and grassland were omitted by 

the model in the long time scale simulation; this occurred mainly due to high swapping of these 

land covers with forest. For this reason, high errors of commission and omission were generated 

for vineyard and grassland in the long time scale; errors decreased considerably in the 

intermediate and short time scale simulations. In long time simulation, errors of commission of 

built area were lower than for vineyard and grassland due to its smallest coverage in the 

catchment, and it was wrongly attributed 72 ha of other land cover. However, high error of 

omission was observed in the same simulation because much built area (388 ha) was omitted. 

Table 0.17: Error matrix analysis of actual land cover map 2011 (Column) against predicted land 
cover from transition potentials for different time periods. Values are expressed in hectares (ha) 

and error of commission and omission are expressed in % and in bold. 

Initial time 
period 

 Forest Vineyard Grassland Built 
area 

Total Error of commission 
(%) 

 
 

1950-1982 
(long) 

Forest 19,277 158 236 113 19,784 2.6 
Vineyard 438 1,305 488 156 2,387 45.3 
Grassland 295 113 403 118 930 56.6 
Built area 20 27 25 378 450 16 

Total 20,030 1,603 1,152 765 23,550  
Error of Omission 

(%) 
3.8 18.6 65 50.6  9.3 

 
 

1982-2003 
Iinterme-diate) 

Forest 19,716 45 52 51 19,864 0.7 
Vineyard 68 1,413 80 30 1,590 11.2 
Grassland 204 119 965 37 1,326 27.2 
Built area 42 26 54 647 770 15.9 

Total 20,030 1,603 1,152 765 23,550  
Error of Omission 

(%) 
1.6 11.9 16.2 15.4  3.4 

 
 

2003-2008 
(short) 

Forest 19,953 30 45 27 20,055 0.5 
Vineyard 16 1,496 94 15 1,621 7.7 
Grassland 44 68 997 17 1,127 11.5 
Built area 16 9 16 706 747 5.4 

Total 20,030 1,603 1,152 765 23,550  
Error of Omission 

(%) 
0.4 6.7 13.4 7.7  1.69 

 

4. Discussion 

 Land cover dynamics and changes in individual land cover also have impact on land cover 

simulation. As it is described in the results, forest is easy to predict, and obtains better level of 

agreement and the lowest error in all simulations using different time scales due to its dominant 

coverage in the study area. It covers mostly the reserve forest situated on the high altitude and 
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steep slope of the study area. While most of the land cover changes in the study area occurred 

mainly in the alluvial plain. For these reasons, forest is selected as less probable to change in all 

transition potentials of forest to other land covers, and it is predicted as the same for the future 

(2011). So Kquantity also shows better for all time scales. 

 Simulations of vineyard and grassland are extremely difficult to predict: accuracy is lower 

and errors greater due to the dynamic changes in different time periods and high swapping 

between these covers. Hence, high commission and omission errors are observed in vineyard and 

grassland simulations, particularly in the long time scale. These errors may occur due to different 

rates of change in initial and prediction time periods and the selection of transition potentials 

where transition potentials from vineyard to forest and grassland, and grassland to forest and 

vineyard were avoided due to their limited accuracy rate (<70%). Simulations of vineyard and 

grassland may improve using constraints for vineyard and grassland. Vineyard fields belonging to 

the wine making “domaines” tend to remain stable and convert to other covers less (Roy et al. 

2014b), so a “domaine” layer could be used as a constraint for vineyard. This information, 

however, was not available in this study. In addition, fire breaks, horseback riding, and other 

tourism related activity zones that are classified as grassland could perhaps be taken as a 

constraint for grassland.  

 Accurate prediction of urban expansion is difficult due to the complexity in urbanization 

which depends on several spatial variables, urban planning, and land use demand (He et al. 2008). 

The rapid relative rate of urban growth impacted the urban prediction. For example, the model 

predicts (for 2011) about 40% less built area than the actual map of 2011 using the long time 

scale because the rate of built area expansion increased by more than double in the latter time 

period (1982-2011) compared to the initial period (1950-1982) (Figure 0.23). However, 

intermediate and short time periods perform better since increasing trends in the initial time 

periods are about the same as in the prediction time periods (2003-2011 and 2008-2011). In 

addition, several scattered urban areas are developed exceptionally far away from existing built 

area in the recent year, and these remain difficult to predict because the model is based on 

historical trends. Earlier trials showed the use of constraints for the transitions to built area from 

other land covers reduced error in built area in all simulations. 

 Time scales have a significant impact on land cover simulation. Quantity was predicted better 

than location, probably due to the dominant forest cover in the study area. Therefore, Kquantity is 
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nearly perfect in all time scales. However, complex land cover changes and swapping between 

land covers generate less perfect levels of agreement for Klocation than Kquantity , and values increase 

with decreasing time scales.  

Although different indexes are used, there is a general trend for Shorter time scales to Produce 

better prediction results (Ahmed and Ahmed 2012, Kamusoko et al. 2009, Khoi 2011, Mhangara 

2011, Oñate-Valdivieso and Bosque Sendra 2010, Pérez-Vega et al. 2012, Sang et al. 2011), as 

found in this study was. The values of Kquantity and Klocation are in acceptable ranges for different 

time scales in this study. Maximum commission and omission errors observed in crops and 

grassland (Oñate-Valdivieso and Bosque Sendra 2010) were also noted in this study since 

complex changes in grassland and vineyard are difficult to simulate. 

 

5. Conclusions 

 Studies of the temporal and spatial distribution of land cover change have become an 

important issue due to the rapid conversion of land cover and its impact on environment change. 

Time scale has a significant impact on prediction. Near perfect quantitative accuracy is achieved 

in all time scales but spatial accuracy varies with different time scales. High quantitative and 

location accuracy are found in forest prediction due to its large surface area, in which changes are 

relatively small and swapping does not impact the prediction. Prediction of vineyard and 

grassland are difficult due to high swapping with one another and forest, and prediction of built 

area is difficult due to dramatic relative growth that increases in the recent time periods and the 

emergence of urban lots far from historic centers. Cell size and catchment area may also impact 

land cover change simulation and this is under study now. 
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CHAPTER 4 

PREDICTING LAND COVER CHANGE: DORMANT CATEGORY 
AND CELL SIZE EFFECTS ON THE PERCEPTION OF CHANGE 

DYNAMICS AND MODEL PERFORMANCE 
(Article manuscript accepted with modifications in Cybergeo, 25 April, 2016; currently being 

corrected) 

 

1. Introduction 

 Land cover change is rapidly changing the environment and spatial organization of societies. 

Globally land cover change is driven by population growth rates, migration, and in many 

countries by rural to urban transitions; other factors include rising competition for land, 

conservation policies, and a myriad of socio-economic and political dynamics (Müller and 

Munroe, 2014; Munroe and Müller, 2007). The Mediterranean area is subject to significant land 

cover change due to rapid urban growth, tourism, and diverse socio-economic factors (Cori 1999, 

Geri et al. 2011, Parcerisas et al. 2012, Serra et al. 2008, Van Eetvelde and Antrop 2004). Coastal 

development and abandonment of marginal lands are frequently cited in the literature as dominant 

trends (Calvo-Iglesias et al. 2009, Sluiter and de Jong 2007), but other land cover transitions 

(intensification of agriculture, suburban sprawl) are common (Falcucci et al. 2007, Geri et al. 

2011). 

 In order for land use managers and policy makers to develop future sustainable land use 

management plans, complex transition processes must be identified (Alo and Pontius Jr 2008). 

Several modelling techniques have been developed to explore and predict land cover change 

(Barredo et al. 2003, He et al. 2008), and topographic and socio-economic factors are considered 

important drivers in understanding and predicting land cover evolution (Munroe and Müller 

2007). However, land cover change prediction accuracy depends not only on the relevance of 

explanatory variables but also on several other variables: type and number of land cover 

categories, historical and future time intervals (Roy et al. 2014a), and spatial extent and resolution 

(Chen and Pontius 2011). 

 Spatial extent refers to the overall size of a particular area (Turner et al. 1989, Wu 2004). A 

review by the authors of about 27 recent studies (2001-2014) using Ca-Markov and MLPNN 
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modeling tools reveals that spatial extent ranged from 114.4 km² to 20,000 km² (mean and 

median values of 3,056.3 km² and 1,200 km², respectively) (Table 0.1). If land cover change is 

distributed homogeneously throughout space, then spatial extent probably has little impact on 

model prediction outcome. However, this is frequently, perhaps even generally, not the case, and 

increasing spatial extent often translates into increasing the surface are of one or two large 

relatively stable categories, such as forest cover for example, around a core (or cores) of actively 

evolving land covers. Increasing spatial extent can introduce new land cover change dynamics 

(Kok and Veldkamp 2001) or land cover categories (Turner et al. 1989), but in this paper, larger 

spatial extent will be considered synonymous with increasing the proportional area occupied by a 

relatively dormant category. 

 Dietzel and Clarke (2004) proposed guidelines for urban simulation models on spatial 

resolution (10 m-1,000 m) in four spatial extents, and found that finer resolutions of less than 

parcel size (  10 m) in land cover simulation may increase error by creating small and false 

changes. This lower limit is well below the most frequently used 30 m resolution. At the upper 

limit, Chen & Pontius (2011) showed that predicted built area accuracy increased with increasing 

spatial resolution from 30 m to 1,920 m. Moreover, the explanatory power of driving variables 

can also increase with coarsening spatial resolutions (minimum resolution was 15 km²) (Kok & 

Veldkamp, 2001). Geri et al. (2011) found that all kappa indices increased to a perfect level of 

agreement with increasing cell size. Spatial extent and cell size may affect the analysis of spatial 

patterns of land cover change individually or together (Wu 2004). These studies suggest that 

modelling land cover change be improved using coarser cell sizes while reducing calculation 

time. 

 The selection of suitable time intervals, spatial extents, cell sizes is as important for land 

cover modeling as the modeling strategy and independent variables. Time scale effects for our 

study area were discussed in Roy et al. (2014b). In this paper, the role of spatial extent (dormant 

category) and cell size are highlighted using the same explanatory variables and modeling 

approach. In the same analysis of 27 recent studies (2001-2014) referred to above, cell size varied 

from 30 m to 1,000 m (mean and median resolutions are 94.8 m and 30 m, respectively. Spatial 

extent and cell size are interrelated and can have a great impact not only on land cover prediction 

but also on perceived quality of the prediction since calculated agreement/disagreement statistics 

depend on the number of cells present in the study area grid, and this depends directly on cell size 
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and spatial extent. The objective of this study is to test the impact of spatial extent (increased 

proportional area of a dormant category) and cell size on the perception of land cover change 

dynamics and land cover prediction for a Mediterranean catchment in SE France. Based on air 

photos from 1950, 1982, 2003, and 2011, change dynamics in terms of absolute and relative 

change were first analyzed using intensity analysis, and then land cover was predicted for 2011 

for large (79.1 km²) and small (36.6 km²) windows using cell sizes of 25 m, 50 m, 100 m. Spatial 

resolution effects were also analyzed by upscaling from 25 m to 50 m and 100 m and then 

downscaling back to 25 m. 

 It should be noted that although the location and category types used here represent a real 

case study, the findings with regards to spatial extent and cell size are independent of location and 

land cover type: replacing the dormant Mediterranean forest category by rice paddies, savannah 

or tropical forest (and changing the other land cover types as well) would produce the same 

statistics so long as the number and relative areas of land covers are maintained. Similarly, a 

range of spatial areas can be concerned by the findings so long as neither new processes nor new 

land categories are introduced as spatial extent is increased. The approach therefore has global 

applications even though the demonstration is linked to a specific environment. 

Table 0.1: Spatial scales, land cover types, and variables of different studies 

Authors Model Categories Spatial Unit 

Cell Size 

Surface area 

Variables 

Ahmed and 
Ahmed 2012 

Ca-Markov 

MLPNN-Markov 
(LCM) 

 Vegetation  Bare soil   Low land  Fellow land  Water bodies 

 Administrative  30 m x 30 m  446 km2 

Undefined 

Álvarez 
Martínez et 
al. 2011 

Binary logistic 
regression (BLR) 

 Forest  Meadow  Shrub land and 
heartlands  Rock outcrops   Bare land   Urban   Water 

 Administrative  30 m x 30 m  1,000 km2 

(i) Administrative data: municipality 
area and number of villages including 
Natural Park. 

(ii) Climate: annual minimum, 
maximum and mean temperature, 
precipitation and solar radiation 
derived from monthly data. 

(iii) Terrain: altitude, slope and 
curvature. 

(iv) Socio-economic factor: 
agricultural and livestock activities, 



66 

 

Authors Model Categories Spatial Unit 

Cell Size 

Surface area 

Variables 

economy, employment, population 
growth and urban expansion, tourism 
and transport. 

Araya and 
Cabral 2010 

CA-Markov  Forest   Urban 
vegetation  Irrigated land  Non irrigated   Bare land  Urban area  Water bodies 

 Administrative  50 m x 50 m  2,957 km2 

(iii) Terrain: Slope, distance from 
roads, water bodies, built area, 
protected area. 

Berberoglu 
and Akin 
2009 

Undefined  Sand dune 
vegetation  Wetland 
vegetation  Bulrush  Woodland  Afforestation  Sand dunes  Salty plain  Agricultural 
land  Settlement  Bare soil  Water 

 Catchment   Undefined  1,500 km2 

 

 

Undefined 

Bohnet and 
Pert 2010 

Undefined  Natural land 
use  Agriculture   Urban  

 Administrative  Undefined  114.4 km2 

 

Bracchetti et 
al. 2012 

Markov Chain  Chestnut 
plantation   Tree plantation  Cropland  Grassland  Shrub land  Woodland  Bare soil  Human 
settlement 

 Catchment  30 m x 30 m  168 km2 

Undefined 

Dadhich and 
Hanaoka 
2010 

MLP and Markov 
Chain 

 Forest  Agricultural 
land  Bare land   Urban  

 Administrative  50 m x 50 m  1,080 km2 

(i) Administrative data: Road 
networks. 

(ii) Terrain: DEM (altitude), slope, 
hill shade, distance from road, city 
center, city periphery of 1989. 

Dewan and ERDAS spatial  Vegetation  Agricultural 
 Administrative  30 m x 30 m 

(i) Administrative data: municipal 
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Authors Model Categories Spatial Unit 

Cell Size 

Surface area 

Variables 

Yamaguchi 
2009 

modeler land  Urban  Water bodies  Bare land   Wetland / low 
land 

 415.64 km2 boundaries, road networks, 
geomorphic units 

 (ii) Terrain: DEM (altitude), slope.  

(iii) Socio-economic factor: 
population growth and GDP. 

Guan et al. 
2011 

CA-Markov  Forest  Agricultural 
land  Built up land  Roads  Water  Others 

 Administrative  Undefined  431.42 km2 

(ii) Terrain: Elevation, lope, distance 
from nearest river, distance from 
nearest road, distance from railway. 

(iii) Socio-economic factor: 
population density, GDP per capita, 
and land price. 

He et al. 2006 CA-Urban 
Expansion 
Scenario (UES) 

 Forest  Agricultural 
land  Shrub land  High density 
urban land  Low density 
urban land  Water  

 Administrative  30 m x 30 m  16,808 km2 

(ii) Terrain: Slope, distance from 
expressway, distance from ring road, 
distance from railway, distance from 
highway, distance from airport, 
distance from central city, distance 
from sub-cities. 

Huang and 
Cai 2007 

CA  Forest  Farmland  Grassland  Urban area  Bare soil  Water 

 Administrative  90 m x 90 m  1,835 km2 

(i) Terrain: DEM, elevation, slope, 
distance from stream, distance from 
road. 

 

Jenerette and 
Wu 2001 

Markov-CA  Agricultural 
land  Urban  Undeveloped 
desert 

 Catchment  250 m x 250 
m   6080 km2 

(i) Terrain: DEM (altitude), slope  

(ii) Socio-economic factors: 
population growth 

(iii) An environmental constraint. 

Kamusoko et 
al. 2009 

Markov-CA 
(IDRISI) 

 Agriculture  Woodland  Mixed 
rangeland  Bare land  Water 

 Administrative  30 m x 30 m  525 km2 

(i) Administrative data: ward 
boundaries. 

(ii) Terrain: DEM, distance to town 
Centre, and distance to Rivers. 

(iii) Socio-economic factors: 
population density, distance travelled 
to fetch fuel wood, fuel wood 
consumption, area under the maize of 
cultivation, area under the cultivation 
of groundnuts, total yield of maize 
produced.  
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Authors Model Categories Spatial Unit 

Cell Size 

Surface area 

Variables 

Khoi 2011 MLP-LCM  Primary forest  Secondary 
forest  Non forest 

 Administrative  30 m x 30 m  1,200 km2 

(ii) Terrain: DEM, slope, proximity to 
road, water, primary forest, secondary 
forest, settlement in 2000, settlement 
in 2007, cropland in 2000, cropland 
2007. 

Li and Yeh 
2002 

ANN-CA  Forest  Cropland  Orchards  Urban area  Construction 
sites  Water 

 Administrative  50 m x 50 m  2,465 km2 

(i) Administrative data: 
Administrative boundary, urban 
centers, roads. 

(ii) Terrain: Slope, soil types, existing 
land use types, distance from major 
urban area, suburban area, and road. 

Neighborhood function: Amount of 
cropland, orchards, construction sites, 
built up areas, forest, and water. 

Liu et al. 
2008 

The kernel-based 
CA model 

 Developed   Non-developed 
 Administrative  50 m x 50 m  445.5 km2 

(i) Terrain: Distance from cite proper, 
distance from city center, distance 
from national and provincial 
highways, distance from roads, 
distance from railways, distance from 
expressways, and number of cells in 
the neighborhood. 

(ii) Constraints: Altitude, land use, 
agriculture suitability. 

López et al. 
2001 

Markov matrices 
and Regression 
analyses 

 Forest  Cropland  Shrubs  Plantation  Shrubs-
grassland  Main urban 
area  Other urban 
settlement 

 Administrative  30 m x 30 m  200 km2 

(i) Terrain: Altitude, slope 

(ii) Socio-economic factors: 
population density. 

Shafizadeh 
Moghadam 
and Helbich 
2013 

CA-Markov 
(IDRISI) 

 Forest and 
green spaces  Open land and 
cropland  Urban area  Wetlands  Water bodies 

 Administrative  30 m x 30 m  465 km2 

(i) Terrain: Slope (Sigmoid), distance 
from roads (J-shaped), distance from 
water bodies (Linear), distance from 
build-up areas (Linear), land use 
categories. 

Pérez-Vega et 
al. 2012 

DINAMICA 
14.0) and LCM 
IDRISI (version 

 Cropland  Tropical 
deciduous 
forest (TDF) 

 Catchment  Undefined  5,543 km2 

(i) Terrain: Altitude, slope, soils 
types, and distance from principal dirt 
roads, distance from secondary dirt 
road, distance from paved road, 
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Authors Model Categories Spatial Unit 

Cell Size 

Surface area 

Variables 

16.05)   Secondary 
TDF  Pasture land 

distance from human settlements. 

(ii) Socio-economic factors: Land 
tenure 

Sang et al. 
2011 

CA-Markov 
(IDRISI) 

 Arable land  Woodland  Urban  Garden  Grassland  Unused land  Water 

 Administrative  100 m x 100 
m  1,990 km2 

Undefined 

Silva and 
Tagliani 2012 

IDRISI Taiga 
(LCM) 

 Forest  Agriculture  Urban  Wetland  Water  Dunes and 
beaches  Silviculture 

 Administrative  Undefined  20,000 km2 

(i) Terrain: Geomorphology, 
topography. 

(ii) Socio-economic factors: 
(including population, social account-
ability, standard of living index, and 
income and occupation level in 
Agriculture) and governmental 
development plan. 

(iii) Constraints: Silviculture zoning. 

Tewolde and 
Cabral 2011 

LCM-MLPNN  Irrigation  Grazing land  Urban  Plantation  Rain fed  Water 

 

 Administrative  30 m x 30 m  212 km2 

Undefined 

Oñate-
Valdivieso 
and Bosque 
Sendra 2010 

IDRISI Taiga 
(LCM), Logistic 
Regration and 
MLP 

 Dry forest  Shrub 
vegetation  Agriculture/ 
crops  Grassland 

 Catchment  100 m x 100 
m  17,199 km2 

(i) Terrain: Elevation (DEM), slope, 
soil types, distance to watercourse, 
distance to the initial location of the 
coverage and the type of land, 
distance from cities. 

(ii) Climate: Total annual 
precipitation. 

Verburg et al. 
2002 

CLUE-S  Forest  Grassland  Coconut 
plantation  Rice field  Others 

 Administrative  1 km x 1 km  456 km2 

(i) Terrain: Altitude, slope, aspect, 
distance from road, distance from 
coast, distance from port, distance 
from streams, erosion vulnerability, 
geology. 

Socio-economic factors: Population 
density. 

Vliet et al. Constrained (CA)  Forest  Administrative (i) Terrain: Slope, distance from 
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Authors Model Categories Spatial Unit 

Cell Size 

Surface area 

Variables 

2009  Agriculture  Undeveloped 
area  Residential 
area  Commercial 
and industrial 
area  Extractive 
industries  Transport and 
Utilities  Water 

 100 m x 100 
m  2,820 km2 

transport network. 

Constraint: Restricted areas for 
development. 

Wang and Li 
2011 

Radial Basis 
Function Neural 
(RBFN) 

 Forest  Orchard  Agriculture  Bare land  Urban area  Water  Beach 

 Administrative  100 m x 100 
m  1,952 km2 

(i) Terrain: Slope, elevation, distance 
from highways, distance from roads, 
distance from railways, distance from 
urban center, distance from country 
centers.  

Wang et al. 
2011 

CA  Forest  Vegetation  The Tsuu T’ina 
land  Urban   Water 

 Catchment  60 m x 60 m  600 km2 

(i) Terrain: Distance to river, distance 
to Calgary City center, and distance to 
road. 

Wang et al. 
2012 

IDRISI, Markov-
CA 

 Agriculture  Woodland  Meadow  Urban   Water  Others 

 Administrative  30 m x 30 m  1,352 km2 

(i) Terrain: Slope, soil class, distance 
from settlements, roads and water. 

Wu et al. 
2006 

Markov-
Regression 

 Forest  Agriculture  Bare land   Rural residence  Urban   Water 

 Administrative  30 m x 30 m   668 km2 

(i) Terrain: DEM, distance from urban 
center. 

(ii) Socio-economic factors: 
agriculture and non-agriculture 
population, per capita income. 

Yang et al. 
2012 

Ant Colony 
Optimization 
(ACO)-CA- 
Markov 

 Forest  Agriculture  Urban  Water  Other used 
land 

 Administrative  30 m x 30 m  1,352 km2 

(i) Terrain: Distance from the major 
urban area, closest town area, closest 
road, and railway. 

Yeh and Li 
2003 

(Artificial Neural 
Network) ANN 

 Urban and   Non-urban 
 Administrative  50 m x 50 m  2,465 km2 

(i) Terrain: Distance from the major 
urban areas, suburban areas, closest 
road, closest expressway, closest 
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Authors Model Categories Spatial Unit 

Cell Size 

Surface area 

Variables 

and CA railway. 

(ii) Socio-economic factors: 
Neighborhood development quantity, 
and agriculture suitability.  

 

 

2. Methods 

 Study area, intensity analysis of land cover change procedures, and land cover modelling 

steps using different spatial areas and cell sizes are explained below. 

 

2.1 Site description 

 The Giscle catchment (about 235 km²) is located in SE France near the Gulf of St Tropez and 

includes three cities (Cogolin, Grimaud, and La Môle) (Figure 0.1). Geophysical and 

topographical characteristics of the catchment are discussed in Roy et al. (2014a). The catchment 

is typical of many land cover transformation scenarios of the Euro-Mediterranean region where 

rapid urbanization along the coast and changes in agricultural activities impact the natural 

ecosystem. The western part of the catchment is forested and has changed little since about 1950 

(Fox et al. 2012, Roy et al. 2014a, Roy et al. 2014b), and much of the land cover change has been 

concentrated in the alluvial plain towards the east near the coast.  

 The small zone selected for this study is a 33.6 km² square that encompasses the main 

populated area in the alluvial plain and the core of much of the land cover change in the 

catchment (Figure 0.1). The large window is a rectangle that includes the small zone and an 

extension reaching westward to include a large tract of stable forest cover; total area of the large 

zone is 79.1 km². Mean altitudes for the small and large windows are 42 m and 167 m, 

respectively; corresponding median values are 32.5 m and 119.5 m, respectively. As expected, 

mean slope is also gentler for the small window, 10.6% vs. 24.7%; median values are 7.2% and 

21.5%, respectively.  

  The two zones are analogous to a core of dynamic land cover change surrounded by a stable 

hinterland that allows us to analyse the impacts of spatial extent and the inclusion of a largely 
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dormant category on our perception of land cover change dynamics. The fundamental 

characteristic of interest in the context of this study is that most of the change is occurring in the 

small window, with very little change in the extended zone. 

 

 
Figure 0.1: Location of the catchment 

 

2.2 Intensity of land cover change 

 Intensity analysis is an effective method to analyze spatiotemporal dynamics among land 

cover categories; this method was developed and applied at different levels of land cover change 

and represents a new mathematical framework in land cover change analysis (Aldwaik and 

Pontius Jr 2012) which is being increasingly integrated in land cover change studies (Huang et al. 

2012 Mallinis et al. 2014). It simplifies the analysis of multiple land cover category changes over 

consecutive time intervals and facilitates the comparison of land cover gain and losses in order to 

determine the magnitude and speed of land cover change at different levels (Aldwaik and Pontius 

Jr 2012). In our case, dynamics that concern spatial extent or cell size effects will be highlighted. 

 In order to determine the relative rates of land cover change with regards to their surface area, 

Aldwaik and Pontius (2012) describe the intensity of land cover change at three levels: interval, 

file:///F:/H_G_ROY/Final_reports/land%20use%20change/Article%203/Final/Article%203-New/Roy-et-al_LUP_2_HGR.docx%23_ENREF_1
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categorical, and transition. Change intensity is expressed as the land cover area changed (overall, 

category gain/loss, transition) divided by the number of years in the historic time interval and 

area. As will be described below, the area in the denominator varies according to the level under 

consideration. Units of intensity analysis are expressed as mean annual percentage units since 

land area converted is divided by the time interval, though this overall mean cannot be interpreted 

as a specific % rate in a given year. In our case, intensity analysis will be used to investigate the 

impact of spatial extent and cell size on the perception of land cover change dynamics. 

 

2.2.1 Interval intensity analysis 

 Interval level intensity analysis considers area converted and rate of change during different 

time intervals by calculating annual change intensities for each time interval (St) and the mean 

change intensity rate (U) of all intervals combined. Therefore, St is the mean annual rate of 

change in a particular time interval per unit area of a landscape, and U is the average annual rate 

of all time intervals, so relatively fast or slow periods of change can be easily identified. If St > U, 

then the rate of change in this interval is relatively fast; if St < U, then it is relatively slow. If 

annual and uniform intensities are the same for all time intervals then the rate of change is 

constant over time (or stationary) as described by Aldwaik and Pontius Jr (2012). 

 

2.2.2 Category intensity analysis 

 Category level change can identify relatively dormant or active categories since both time 

interval and category area are taken into account (Aldwaik and Pontius Jr 2012). It is assumed 

that categories with large areas change more in terms of absolute area than categories with less 

area. For this level of analysis, annual gross gains and losses per category are used. The mean 

annual gross gain intensity of a category is the percentage of gain of the category at the end of the 

time interval, (T1 area–T2 area)/T2 area. The mean annual loss intensity of a category is the 

percentage of loss from the beginning of the time interval, (T1 area–T2 area)/T1 area. Category 

gains and losses can be compared to one another and to the uniform intensity of overall change 

during each time interval (Aldwaik and Pontius Jr 2012).  

 

2.2.3 Transition intensity analysis 
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 Transition level analysis identifies the intensity of transitions in a particular time interval and 

shows the relationship between two transitioning categories relative to the total landscape (Huang 

et al. 2012). Transition matrices were computed for three consecutive time intervals: 1950-1982, 

1982-2003, and 2003-2011. Transition level analysis helps to identify the intensity of specific 

transitions between categories during a time interval. It calculates mean annual intensity of 

transition from a category (i) to a gain category (n) during time interval T1-T2 (mean annual 

transition area from i to n during T1-T2/area of i at T1) and the uniform intensity of annual 

transition from all non-n categories during time interval T1 and T2 (mean annual gross gain of 

category n during T1-T2/area of non n-category at T1). The transition intensity of a loss category 

m to j depends on the area of j at time T2 (mean annual transition area from m to j during T1-

T2/area of j at T2) and uniform transition intensity of a loss category (mean gross loss of category 

m during T1-T2/area of non-category n at T2). 

 The transition intensity level of analysis produces two sets of outputs for each land cover at 

each time interval: one set analyzes transitions for gains (n) and another analyzes transitions for 

losses (m). Since the overall focus of the larger research program and for the sake of brevity, only 

transitions to and from vineyard will be considered here. As described by Roy et al. (2014a), 

vineyard is a category that has been particularly active in the study area over the past 60 years. 

 

2.3 Land cover change modelling steps 

 IDRISI’s (Eastman, 2012) Land Change Modeler (LCM) was used to predict land cover for 

2011. LCM is a widely tested and used model initially designed to predict land cover change for 

the analysis and modelling of impacts on biodiversity using multiple land cover categories (Mas 

et al. 2012, Oñate-Valdivieso and Bosque Sendra 2010, Silva and Tagliani 2012, Tewolde and 

Cabral 2011). The impact of spatial extent and cell size on land cover prediction was carried out 

by predicting 2011 land cover from historic changes between 1982 (T1) and 2003 (T2) and 

explanatory driver variables (described below) and comparing the predicted and real images for 

all spatial extent and cell size combinations. In addition, the 2003 and 2011 maps were compared 

as recommended by Chen and Pontius (2011), though a full relative operating characteristic 

(ROC) analysis was not undertaken. 

 

2.3.1 Land cover mapping 
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 Land cover map digitization and classification were described in Roy et al. (2014a) for the 

entire catchment and are summarized here for the selected study zones. Firstly, land cover maps 

were digitized from ortho-rectified 1 m aerial photographs of 1950, 1982, 2003 and 2011 using 

Arc-GIS (ESRI 2012). Land cover was classified into four categories: forest, vineyard, grassland, 

and built area. Although air photo and digitizing resolution was 1 m, small objects (isolated 

houses, roads, streams, riperian vegetation…) were ignored, so the actual land cover map 

resolution is more correctly represented at the 25 m scale, and vector land cover maps were 

converted into 25 m raster layers. In order to investigate the impact of cell size on land cover 

change modeling, cell sizes were successively converted to 25 m, and 50 m, and 100 m. Altitude 

and distance variables were upscaled using pixel aggregation; categorical images such as land 

cover maps and constraints/incentives were upscaled using the majority-takes-all rule. 

Subsequently, the 50 m and 100 m cell sizes were downscaled to the original 25 m in order 

estimate error introduced during upscaling. To investigate the impact of spatial extent, the small 

window described above and shown in Figure 0.1 was isolated from the larger window, so all 

predictions were run separately (2 spatial extents (Small, Large) * 5 cell size configurations (25 

m, 50 m, 100 m, 50-25 m, 100-25 m)). 

 

2.3.2 Independent variables and constraints 

 After an initial analysis of land cover change drivers (Roy et al. 2014a), five independent 

variables were incorporated in the modelling procedure: altitude, slope, and distances from roads, 

initial built area, and streams. Distance variables (from roads, built area (1982), and streams) 

were created from digitized roads, streams, and built area in 1982 using corresponding land cover 

maps in each cell resolution. Constraints and incentives (forest to built area, vineyard to built 

area, and grassland to built area) were also included in the prediction process to integrate regional 

and municipal land use zoning laws. The “Plan Local d’Urbanisme” (PLU) and “Schéma de 

Cohérence Territoriale” (SCOT) were adapted so that a constraint of 0 was used to characterize 

areas where urban development was completely restricted (reserve forest and agricultural zones) 

and 1.1 was used for incentives to emphasize the expansion of built areas in zones selected for 

development according to urban zoning laws. In addition, disincentive (constraint) areas situated 

within a distance from streams of 0-25 m, and 25-50 m (in original 25 m images before 

upscaling) were defined by values of 0.6 and 0.8, respectively, to maintain the historical trend of 
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less urbanization near stream networks in the study area identified in Roy et al. (2014a). 

Explanatory variable cell sizes were matched to the land cover maps in both upscaling and 

downscaling. The only exception was the slope layer: to avoid introducing excessively artificial 

errors, the original 25 m slope layer was used for the two 50 m and 100 m downscaled layers. 

Other explanatory variables were both upscaled and downscaled, as for the land cover layers. 

 

2.3.3 Explanatory variable and transition potential statistics 

 Cramer’s V was used to evaluate the impact of spatial extent and cell size on the significance 

of explanatory variables. LCM estimates Cramer’s V automatically and displays the association 

level of explanatory variables with land cover categories. Cramer’s V here is an approximation of 

the impact of the explanatory variable on category change (Eastman 2012) and the Multi-Layer 

Perceptron Neural Network (MLPNN) algorithm of LCM provides a more complete and rigorous 

measure of association. However, values from this measure vary according to specific transitions 

and to which explanatory variables are held constant (all, one, backward regression), so the 

results are too extensive for this publication where 2 spatial extents, 5 cell size configurations, 

and 9 transitions per spatial extent * cell size combination are possible (built area cannot 

transition to another category); a full analysis would therefore require 90 tables. For the purposes 

of this study, Cramer’s V provides an indication of the apparent change in explanatory power 

induced by altering spatial extent and cell size. Generally, the greater the value of Cramer’s V, 

the greater its impact on land cover change. Cramer’s V values ≥0.4 and ≥0.15 are considered 

good and useful, respectively (Eastman 2012).  

 Transition potential (probability of a category changing to another) maps were created for all 

possible transitions based on historical changes during 1982-2003 and explanatory variables 

using the MLPNN algorithm of IDRISI (Eastman 2012). However, only transition potentials with 

an accuracy rate greater than 70% were included in land cover prediction since final results were 

better than including all potential transitions. As described in Roy et al. (2014a), high spatially 

random exchanges between vegetation categories (especially vineyard and grassland) made these 

land cover changes difficult to model. Accuracy rates greater than 70% were the following: forest 

to vineyard, forest to grassland, forest to built area, vineyard to built area and grassland to built 

area. Validation values were weaker when all transitions were included, but the trends with 

regards to spatial extent and cell size were identical. 

file:///F:/H_G_ROY/Final_reports/land%20use%20change/Article%203/Final/Article%203-New/Roy-et-al_LUP_3_HGR.docx%23_ENREF_3
file:///F:/H_G_ROY/Final_reports/land%20use%20change/Article%203/Final/Article%203-New/Roy-et-al_LUP_3_HGR.docx%23_ENREF_8
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2.3.4 Land cover simulation 

 Land cover change was predicted for 2011 for each spatial extent * cell size combination by 

LCM which uses a Markov chain model. The Markov matrix defines the quantity of expected 

land cover transition from T2 (2003) to the predicted date (2011) based on the historical trend 

between T1 (1982) and T2 (2003), and LCM allocates the change according to transition potential 

values calculated by the MLPNN algorithm described above. There are therefore two validation 

criteria when comparing predicted versus real maps: quantity and location of change (Pontius & 

Mallones, 2011). 

 

2.3.5 Validation of predicted land cover maps 

 Disagreement indices described by Pontius and Millones (2011) were used in the study to 

validate the model’s accuracy for the different configurations and test the impacts of spatial 

extent and cell size on model performance. Both quantity and allocation disagreement errors are 

derived from the error matrix and measured in terms of the percent of the landscape; the sum of 

these errors represents the total prediction error (Chen and Pontius 2011). Both quantity and 

allocation disagreement errors are expressed as % of landscape (Pontius and Millones 2011). 

 

3. Results 

 Results will be presented in four sub-sections. The first will summarize land cover 

characteristics in the two study zones. The second will cover intensity analysis at the interval, 

category and transitions to and from vineyard levels. The third will consider the impacts of spatial 

extent (dormant category) on Cramer’s V and prediction disagreement. The fourth section will 

cover the impacts of cell size on the same measures.  

 

3.1 Land cover maps and category areas in the small and large zones 

 Table 0.2 compares surface areas for the different land cover categories between the small 

and large zones. In the small zone, forest and vineyard occupy equivalent areas in 1950 (about 

43%), though this balance changes substantially over time as vineyard loses ground to other land 

cover types. In the small zone, built area undergoes a relatively large increase as it changes from 

only 0.8% in 1950 to 16.5% in 2011. Grassland area remains relatively constant over time, but 
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this hides high spatial swapping with forest and vineyard as described in Roy et al. (2014a). As 

expected, forest dominates land cover in the large zone, where it remains stable at about 74%. 

Since most of the other land cover types are concentrated in the small zone, absolute areas of 

these land covers in the large window closely follow values for the small zone in Table 4.3; 

however, percentage values change substantially since total area is greater in the large window. 

For all categories, values expressed in % area are all smaller in the large zone than for the small 

window due to the high forest cover in the large window. 

Table 0.2: Surface area of land cover types for different years. Values are expressed in ha 
(% of catchment area is noted in parentheses). 

 
 

Small 

Category 1950 1982 2003 2011 
Forest 1,466 (43.6) 1,520 (45.2) 1,507 (44.8) 1,492 (44.4) 

Vineyard 1,455 (43.3) 1,170 (34.8) 824 (24.5) 835 (24.8) 
Grassland 415 (12.3) 482 (14.3) 570 (16.9) 482 (14.3) 
Built area 28 (0.8) 192 (5.7) 463 (13.8) 555 (16.5) 

 
 

Large 

Forest 5,884 (74.4) 5,911 (74.8) 5,885 (74.4) 5,861 (74.1) 
Vineyard 1,544 (19.5) 1,287 (16.3) 912 (11.5) 924 (11.7) 
Grassland 449 (5.7) 515 (6.5) 642 (8.1) 560 (7.1) 
Built area 29 (0.4) 193 (2.4) 467 (5.9) 561 (7.1) 

 

 Figure 1.1a-d and Table 0.2 confirm that most of the changes occur in the small window, and 

the western spatial extension added to form the large window remains dominated by forest cover 

with little change in vineyard and grassland and virtually no change in built area (values in Table 

2 are the sums of gains and losses within each category). Apart from forest in 1950-1982 and 

1982-2003, the % of total change occurring in the small window is close to 90% for all categories 

and time intervals, and values are close to 100% for built area for all periods. Forest has the 

lowest % change occurring in the small zone (about 78% for the first two transition periods), but 

even it approaches 90% in 2003-2011. With time, land cover changes in the vegetation categories 

appear to concentrate even more in the alluvial plain (small zone). 
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Figure 0.2: Land cover map of 1950 (a), 1982(b), 2003 (c), and 2011(d) 

 

d) 

c) 

b) 

a) 
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Table 0.3: Category land cover and total change during the different time intervals, and % of 
change occurring in the small window (equal to 100% everywhere for the top rows). 

  Change (ha) % of change in small window 
 
 
 

Small 

Category 1950-1982 1982-2003 2003-2011 1950-1982 1982-2003 2003-2011 
Forest 387 398 137    

Vineyard 703 550 168    
Grassland 504 577 231    
Built area 164 271 93    
TOTAL 1,758 1,796 630    

 
 

Large 

Forest 491 514 153 78.8 77.4 89.5 
Vineyard 781 631 180 90.0 87.2 93.3 
Grassland 549 653 246 91.8 88.4 93.9 
Built area 164 274 94 100 98.9 98.9 
TOTAL 1,985 2,071 673 88.6 86.7 93.6 

 

3.2 Land cover change intensity 

 In this section, all “a” figures show gross change in ha; since the sum of losses of all 

categories corresponds to the sum of gains in all categories (the loss in a category translates into 

an equivalent gain for one or several other categories), the observed change is the total change 

shown in Table 0.2 divided by 2. All “b” figures show change values in % units: in these figures, 

time interval and spatial area are accounted for as described in the Methods. 

 

3.2.1 Interval intensity analysis 

 Figures 0.3a-b show total observed change and mean annual change (expressed as percentage 

of large and small areas, respectively). In addition to site specific historical change dynamics, two 

factors affect the presentation of results in these figures: time interval and surface area. Time 

interval was dealt with explicitly in Roy et al. (2014b), so it will only be touched upon briefly 

here. For similar change dynamics, longer time intervals show more absolute change. In Figures 

0.3a, the relatively small observed change for 2003-2011 results primarily from the short time 

interval (8 years) compared to the other periods (32 and 21 years, respectively), so time interval 

tends to dominate bar height in Figure 4.3a. However, the greatest absolute change was for the 

second period (1982-2003) even though it is 11 years shorter than the initial 1950-1982 interval, 

and this is due to more active change dynamics as discussed in Roy et al. (2014a, 2014b). Figure 

3b demonstrates this clearly since it corrects for different time intervals and shows relative rates 
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of change within each spatial zone. Within each spatial unit, the most active period was 1982-

2003, followed by 2003-2011 and then 1950-1982. Displaying results in ha y-1 would have 

compensated for temporal but not spatial differences as is described below. 

 Absolute change (Figures 0.3a) can only be greater in the large zone, since all changes in the 

smaller zone are included in the large window. Since most of the change is concentrated in the 

alluvial plain, trends are inversed in intensity analysis (Figures 0.3b) where rates of change are 

always greater in the small zone. In the small zone, relative changes are about 2 times greater 

than in the larger window. Trends with regards to a uniform change are similar within each scale 

and both scales show a less than average change rate in the initial 1950-1982 period (bar heights 

are beneath dotted lines for both zones). 

 

 

Figures 0.3: (a) Observed change in different time intervals, (b) intensity of different time 
intervals 

 

3.2.2 Category intensity analysis 

 Figures 0.4-6 show gross gains and losses (a) and gain/loss intensities (b) per category for the 

3 time intervals. As can be deduced from the figures, gains and losses at the categorical level are 

affected by the same 3 components for interval analysis: gain/loss activity, time interval, and 

category area. Specific category activity dynamics and time interval effects were examined in 
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Roy et al. (2014a; 2014b), though intensity analysis was not used in either of these initial 

publications.  

 

Figures 0.4: Gross gains and losses in 1950-1982 (a) and gain and loss intensity in 1950-1982 (b) 

 

 Since the annual rates in Figures 0.4-6b are expressed not as ha y-1 but as a percentage of 

category area, spatial scale impacts are more explicit. Spatial scale impacts are of two types. The 

first is relative variations between categories due to differences in category area. For example in 

Figures 0.4-6a, forest has more or less average absolute gains and losses compared to other 

categories but lower gain and loss intensities than all other categories (Figures 0.4-6b). Built area 

has the lowest absolute gain in Figures 0.4a but the greatest gain intensity in Figures 0.4b. 

Considering only absolute gains and losses gives the impression that forest is relatively active 

while built area is relatively inactive whereas intensity analysis reveals the contrary: forest 

changes little with respect to its surface area and can be considered almost dormant while built 

area is the most active of the land cover types in the initial period. Similarly, vineyard losses at 

both spatial scales in the initial (Figures 0.4a) and intermediate time (Figure 0.5a) periods are 

greatest among all categories, roughly twice as great as grassland losses, but vineyard loss 

intensity (Figures 0.4-5b) is less than grassland due to lower initial grassland areas. 
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Figure 0.5: Gross gains and losses in 1982-2003 (a) and gain and loss intensity in 1982-2003 (b) 

 

 The second spatial extent effect is related to within category differences in study area. In all 

figures of absolute change (Figures 0.4-6a) gross gains and losses in the large window can only 

be equal to or greater than in the small zone. This, however, is not the case for gain/loss intensity 

values, where intensity values in the small zone can be greater than, equal to, or less than in the 

larger window. Forest is one example where absolute values are greater in the large zone but 

intensity values are greater in the small window for all time intervals since most of the forest 

cover is in the extended zone and most of the change in forest is in the small window. Almost all 

the built area and changes in built area are in the small window, so absolute values are nearly 

identical in all time intervals. Finally, both observed change in grassland (Figure 0.5a) and 

intensity rate (Figure 0.5b) are greater for the large zone.  
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Figure 0.6: Gross gains and losses in 2003-2011 (a) and gain and loss intensity in 2003-2011 (b) 

 When comparing category dynamics to a uniform intensity (Figures 0.4-6b) at the large scale, 

only forest is below uniform intensity, all other categories are equal to or above average intensity. 

At the small window scale, trends are different, even though forest remains below average for all 

periods: in Figures 0.4b, vineyard gains are greater than uniform for the large zone but less than 

uniform in the small window; in Figure 0.5b, vineyard gains are close to uniform in the large 

zone but much less than uniform in the small zone; and finally, in Figure 0.6b, vineyard losses are 

greater than uniform at the large scale but equal to uniform in the small window. 

 

3.2.3 Transition intensity analysis 

 Since the larger focus of this research program is on vineyard evolution and its impacts on 

runoff and erosion, only transition potentials affecting vineyard will be considered in Figure 0.7-9 

for conversions to vineyard and in Figure 0.10-12 for changes from vineyard. Y scale values were 

kept constant for the transitions to and from vineyard to facilitate comparisons. As for the 

category changes, land converting to or from vineyard at the large scale can only be greater than 

at the small scale (Figure 0.7-9a). In Figure 0.7-9, built area can never convert to vineyard and is 

0 in all figures (included nonetheless to harmonize with Figure 0.10-12). The reverse is not the 
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case, however, since significant areas of vineyard have been urbanized, as was explained in Roy 

et al. (2014a) and will be discussed with regards to Figure 0.10-12. 

 

 

Figure 0.7: Transition area to vineyard in 1950-1982 (a), annual transition intensity to vineyard in 
1950-1982 (b) 

 Conversion of forest to vineyard is greater than grassland to vineyard for the initial (1950-

1982) and intermediate (1982-2003) periods, as can be seen in Figure 0.7and 8a, respectively. 

The reverse is true in the latter period (Figure 0.9a). Since grassland values are similar in all 

figures, it can be assumed that nearly all the vineyard gains from grassland occur within the small 

window. Vineyard gains more land from forest than grassland in the initial and intermediate 

transition periods (Figure 0.7-8a), but much of this change is focused in the small zone, so 

intensity values (Figure 0.7-8b) are greater for the small window. In contrast to the earlier 

periods, more land is converted to vineyard from grassland than from forest in the latter period 

(Figure 0.9a). 
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Figure 0.8: Transition area to vineyard in 1982-2003 (a), annual transition intensity to vineyard in 
1982-2003 (b) 

 

 

Figure 0.9: Transition area to vineyard in 2003-2011 (a), annual transition intensity to vineyard in 
2003-2011 (b) 

 Transition dynamics from vineyard to other categories (Figure 0.10-12) show some 

differences from the transitions to vineyard described above (Figure 0.7-9). Transitions from 
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vineyard (Figure 0.10-11a) to other categories are greater than transitions to vineyard (Figure 0.7-

8a) for all time intervals but the last (Figure 0.12a and 9a). The rate of change to vineyard (Figure 

0.9b) accelerated in this period while losses from vineyard (Figure 0.12b) slowed after very high 

loss rates in 1950-1982 (Figure 0.10b) and 1982-2003 (Figure 0.11b). As expected, built area 

gains from vineyard are concentrated in the alluvial plain, so absolute and relative large/small 

zone relationships are similar in Figure 0.10-12. Transitions from vineyard to forest are relatively 

dormant at both spatial extents (Figure 0.10-12b) compared to conversion to grassland and built 

area despite relatively large areas converted from vineyard to forest in the first two periods 

(Figure 0.10a and 10b). Transition dynamics with regards to uniform rates are not noticeably 

affected by spatial extent since below and above average rates are similar at both scales in Figure 

0.10-12b. 

 

  

Figure 0.10: Transition area from vineyard in 1950-1982 (a), Annual transition intensity from 
vineyard in 1950-1982 (b). 



88 

 

  

Figure 0.11: Transition area from vineyard in 1982-2003 (a), Annual transition intensity from 
vineyard in 1982-2003 (b) 

  

Figure 0.12: Transition area from vineyard in 2003-2011 (a), Annual transition intensity from 
vineyard in 2003-2011 (b) 

 

3.3 Dormant category impacts on land cover modelling indices 

 In this section, the impacts of spatial extent of the study area on Cramer’s V and disagreement 

indices are considered. The following tables summarize results for both spatial extent and cell 



89 

 

size effects, so readers are asked to focus on spatial extent at the 25 m resolution only for now. 

Differences between cell sizes will be considered afterwards. 

 

3.3.1 Cramer’s V 

 Cramer’s V is a measure of association between a land cover change driver and a category: 

the greater the value, the stronger the relationship, Values for the different spatial extents and cell 

sizes are shown in Table 0.4-7. At this stage, readers should focus on the 25 m cell size (Table 

3a) for spatial extent impacts. Spatial extent clearly has a strong impact on Cramer’s V values. 

Mean values are generally 1.3 to 1.7 times greater for the large zone than for the small window, 

and this holds for all categories and explanatory variables except for built area and the two 

strongest predictors of built area change (distances from roads and 1982 built area). Since 

virtually all the change occurs in the small window, increasing spatial extent should have no 

impact on the capacity to predict category changes. Despite this, for categories with high surface 

areas and very little change outside the window, Cramer’s V values are greater. Similarly, built 

area Cramer’s V values increase for altitude, slope, and distance from streams though no more 

than 1% of built area is located outside the small window (Table 0.3). 

Table 0.4: Cramer’s V coefficient for 25 m cell size. Values ≥ 0.40 are highlighted in bold and 
overall accuracy is in italics 

COVER ALTITUDE SLOPE DIST. 
ROADS 

DIST. 
BUILT 

DIST. 
STREAMS 

 Small Large Small Large Small Large Small Large Small Large 
Forest 0.50 0.70 0.51 0.66 0.44 0.67 0.41 0.64 0.20 0.42 
Vineyard 0.23 0.42 0.30 0.42 0.19 0.39 0.21 0.39 0.14 0.27 
Grassland 0.36 0.42 0.34 0.40 0.16 0.30 0.22 0.32 0.16 0.23 
Built 0.17 0.31 0.09 0.24 0.58 0.58 0.71 0.69 0.15 0.21 
Overall 0.32 0.42 0.32 0.40 0.39 0.46 0.45 0.51 0.16 0.26 
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Table 0.5: Cramer’s V coefficient for 50 m cell size. Values ≥ 0.40 are highlighted in bold and 
overall accuracy is in italics 

COVER ALTITUDE SLOPE DIST. 
ROADS 

DIST. 
BUILT 

DIST. 
STREAMS 

 Small Large Small Large Small Large Small Large Small Large 
Forest 0.50 0.70 0.51 0.66 0.45 0.66 0.41 0.64 0.22 0.42 
Vineyard 0.23 0.42 0.29 0.41 0.20 0.39 0.21 0.38 0.14 0.27 
Grassland 0.36 0.43 0.34 0.41 0.17 0.30 0.23 0.32 0.17 0.24 
Built 0.17 0.30 0.09 0.24 0.57 0.54 0.71 0.70 0.15 0.20 
Overall 0.32 0.42 0.32 0.39 0.38 0.45 0.45 0.51 0.17 0.26 

 

Table 0.6: Cramer’s V coefficient for 100 m cell size. Values ≥ 0.40 are highlighted in bold and 
overall accuracy is in italics 

COVER ALTITUDE SLOPE DIST. 
ROADS 

DIST. 
BUILT 

DIST. 
STREAMS 

 Small Large Small Large Small Large Small Large Small Large 
Forest 0.50 0.69 0.50 0.63 0.47 0.65 0.42 0.63 0.25 0.41 
Vineyard 0.26 0.44 0.31 0.42 0.23 0.40 0.24 0.39 0.18 0.28 
Grassland 0.35 0.41 0.33 0.39 0.20 0.28 0.23 0.30 0.17 0.22 
Built 0.17 0.29 0.14 0.23 0.64 0.54 0.71 0.71 0.18 0.20 
Overall 0.32 0.42 0.32 0.38 0.43 0.44 0.46 0.51 0.19 0.25 

 

3.3.2 Prediction validation 

 With greater Cramer’s V values, one would expect improved prediction for the large window 

and this is apparently the case as shown by the disagreement values in Figure 0.13. Solid fill bars 

show quantity disagreement while hatched bars show allocation disagreement. Quantity 

disagreement is 3-4 times smaller than allocation disagreement for both spatial extents. Both 

quantity disagreement and allocation disagreement are roughly half as great in the large window 

as in the small window. Land cover prediction therefore appears to be much improved in the large 

zone. However, predicted land covers for the surface in the small window are the same for both 

the small and large window predictions. 
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Figure 0.13: Disagreement values according to spatial extent and cell size for 25 m, 50, and 100 
m cells sizes 

 

3.4 Cells size impacts on land cover modelling indices 

 Cell size initially appears to have no impact on Cramer’s V as values in Tables 3a-c are nearly 

identical for the three cell sizes within the two spatial extents. The exceptions are the two 

explanatory variables most strongly related to built area changes – distance from roads and 

distance from built area. For these, Cramer’s V is systematically greater for built area than for 

forest in the small window but not in the large window. The explanatory power of distance to 

roads and distance to built area increases substantially when spatial extent is reduced. When the 

coarser 50 m and 100 m resolutions are downscaled back to 25 m, the relationships between 

explanatory variable and category remain the same with no noticeable changes between Table 0.4 

(original 25 m), Table 0.7 (50-25 m downscaled), and Table 0.8 (100-25 m downscaled).  
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Table 0.7: Cramer’s V coefficient for 50-25 m upscaling/downscaling cell size. Values ≥ 0.40 are 
highlighted in bold and overall accuracy is in italics (values are to be compared to Table 3a and 

4b) 

 
COVER ALTITUDE SLOPE DIST. 

ROADS 
DIST. 
BUILT 

DIST. 
STREAMS 

 Small Large Small Large Small Large Small Large Small Large 
Forest 0.50 0.70 O.52 0.66 0.44 0.66 0.41 0.70 0.21 0.42 
Vineyard 0.23 0.42 0.30 0.42 0.20 0.38 0.21 0.38 0.14 0.27 
Grassland 0.36 0.42 0.34 0.40 0.17 0.30 0.23 0.32 0.16 0.24 
Built 0.17 0.31 0.09 0.24 0.57 0.55 0.71 0.70 0.15 0.21 
Overall 0.32 0.42 0.32 0.40 0.38 0.45 0.45 0.52 0.16 0.21 

 

Table 0.8: Cramer’s V coefficient for 100-25 m upscaling/downscaling cell size. Values ≥ 0.40 
are highlighted in bold and overall accuracy for each explanatory variable is in italics (values are 

to be compared to Table 3a and 4a) 

 
COVER ALTITUDE SLOPE DIST. 

ROADS 
DIST. 
BUILT 

DIST. 
STREAMS 

 Small Large Small Large Small Large Small Large Small Large 
Forest 0.50 0.69 0.50 0.65 0.47 0.65 0.42 0.64 0.25 0.41 
Vineyard 0.26 0.44 0.32 0.43 0.23 0.40 0.24 0.39 0.18 0.28 
Grassland 0.35 0.41 0.31 0.38 0.20 0.28 0.23 0.30 0.17 0.22 
Built 0.17 0.29 0.31 0.23 0.64 0.54 0.71 0.71 0.18 0.20 
Overall 0.32 0.42 0.32 0.39 0.43 0.44 0.46 0.51 0.19 0.25 

 

 The lack of an impact of cell size on model prediction values is also apparently confirmed by 

similar disagreement values between the 25 m, 50 m, and 100 m spatial resolutions (Figure 0.13). 

However, when the downscaled predicted images are compared to the 25 m 2011 reference 

image, disagreement values respond differently (Figure 0.14). Quantity disagreement varies little, 

and even improves slightly at 100 m, but allocation disagreement rises sharply for the 50-25 m 

and 100-25 m land cover predictions for both the small and large study zones. Allocation 

disagreement for the original 25 m image is about 10%, and this value increases to about 17% 

and 24% for the 50-25 m and 100-25 m predictions, respectively. The implications of this are 

discussed below. 
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Figure 0.14: Disagreement values for upscaling / downscaling effects for 25 m, 50-25 m, and 

100-25 m. 

 

 Before moving on to the discussion, the authors would like to point out that although the 

model results shown in Figure 0.13 are reasonably satisfactory, none of the spatial extent / cell 

size combinations performed better than simply comparing the 2003 image to 2011, though the 

spatial extent trends remain the same. Quantity and allocation disagreement values for this 

comparison are in the order of 3.0% and 6.0% for the small window and 1.3% and 3.0% for the 

large zone. Although this has no implications for the findings of the study it reinforces the 

necessity to compare the predicted image to both the synchronous and historical images as 

described by Chen and Pontius (2011). 

 

4. Discussion 

 Spatial extent effects on the perception of land cover change dynamics will be considered 

before discussing spatial extent and cells effects on predictor strength and model validation. 
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4.1 Perception of land cover change dynamics and spatial extent 

 The first section of this paper on intensity analysis demonstrates that the perception of 

category activity depends partly on spatial extent. Based on absolute values of converted land, 

forest was moderately active at both spatial extents, but in terms of its relative spatial area, it was 

much less active than smaller categories undergoing less change in terms of absolute area but 

much greater evolution in terms of % of category area. Vineyard appeared particularly active at 

the large scale but much less so in the small window (for about the same change) when compared 

to intensity values of grassland and built area. In this study, both grassland and built area are 

particularly active with regards to their respective surface areas, and this tends to reduce the 

relative importance of vineyard changes when much of the dominant, relatively stable, forest 

category is excluded from the study by passing from the large to the small window. Below or 

above average activity rates are therefore sensitive to spatial extent and can be quite different 

when a large dormant category is present, and categories that appear particularly active at the 

large scale are below average at the small window level.  

 With respect to spatial extent, three factors come into play in determining category activity 

variations. Firstly, if all, or nearly all, a land cover category is found within the smaller zone 

(built area here) then absolute and annual rates will be nearly identical at both scales. Secondly, if 

a significant amount of a land cover is found outside the small zone, but most of the change is in 

the smaller window (as for forest), then absolute values will be greater at the large scale, but 

relative rates will be lower in the smaller window. Finally, for land covers with significant 

surface areas and important changes outside the small zone, then large/small window tendencies 

can remain the same for both absolute and relative measures of change (no examples of this in 

this study). The case of a small stable area extended to include a highly changing zone is 

excluded because land cover change studies focus on areas undergoing change and not on stable 

landscapes; nobody purposely studies land cover change in an unchanging landscape while 

ignoring a nearby rapidly changing zone. 

 

4.2 Spatial extent and land cover change prediction 

 Predictive power of explanatory variables is strongly affected by spatial extent, and the 

presence of the persistent forest cover gave the impression that explanatory variables were better 

predictors at the large scale than for the small window for the same land cover change. Similarly, 
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disagreement values appeared to indicate a better prediction for the large zone than the small 

zone. However, the actual prediction is virtually the same for both windows in the small zone, so 

the lower disagreement values for the large window are somewhat artificial. Adding a large area 

of persistent land cover appears to reduce quantity and allocation errors. Quantity and allocation 

disagreements are greater in the small window due to changes in three different values used to 

calculate these indices: total area, total absolute change, and correctly predicted area. Both 

disagreement values are calculated as the % of the study area, so values decrease with increasing 

study area if other components remain constant or change little. Quantity disagreement depends 

mainly on absolute total change and allocation disagreement relies on the number of wrongly 

predicted cells. Therefore, both disagreement values are smaller in the large window because 

denominators (study area) increase more than numerators in calculating both fractions. Lower 

disagreement (apparent increase in model performance) is related to the number of correctly 

predicted stable cells. In the small window, about 86% of pixels are correctly predicted persistent 

cells, and in the large window this value increases to about 91% for all cell sizes. Hence, lower 

disagreement values for the large window can be attributed to the correct prediction of persistent 

cells, which are easy to predict in a large expanse of forest with no surrounding cells of other land 

cover categories. This agrees with observations by Chen and Pontius (2010) and Pontius and 

Spencer (2005) that persistence is easier to predict than change. Virtually all the change occurs in 

the small window, and the extended part of the large window is essentially persistent. Actual land 

cover change prediction is the same for the large and small windows, but the large window 

provides more satisfying statistics. 

 Why Cramer’s V improves so strongly with spatial extent (for categories other than built area 

and distance from roads and built area variables) is not clear since about 90% of change for all 

categories except built (close to 100%) occurs in the small zone. One possibility is that as 

window size increases, explanatory variable range increases. For example, the ranges in altitude 

are 237 m and 663 m for the small and large windows, respectively. Similarly, range values for 

slope are 70.5% and 123%, respectively. Even though little area changes outside the small 

window, these small differences may have a large impact on the Chi-Square value used to 

calculate Cramer’s V, the way a few outliers can on a correlation coefficient in linear regression. 

 The selection of spatial extent for modelling land cover change can be driven by process, data 

constraints, or arbitrary decision. Land cover change modelling using data based on 

file:///F:/H_G_ROY/Final_reports/land%20use%20change/Article%203/Final/Article%203-New/Roy-et-al_LUP_3_HGR.docx%23_ENREF_14
file:///F:/H_G_ROY/Final_reports/land%20use%20change/Article%203/Final/Article%203-New/Roy-et-al_LUP_3_HGR.docx%23_ENREF_14
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administrative units is generally restricted by the geographic administrative limits, which may or 

may not add large areas of dormant land covers. Most land cover studies probably extract 

somewhat arbitrary rectangular windows from satellite images or air photos. In such a case, 

scientists should look to minimize the presence of large dormant categories to avoid artificially 

inflating prediction results. 

 

4.3 Spatial resolution and change prediction 

 Grid cell size is driven by many factors and can be subject to different interpretations. It can 

depend on initial cell size of input data (eg. 30 m Landsat vs. 10 m SPOT images) or can refer to 

final cell size after harmonisation, expansion and contraction procedures. Only the second aspect 

was considered here. It can be assumed that finer spatial and spectral resolutions of source data 

lead to better category identification and therefore more reliable land cover maps. In this study, 1 

m air photos were digitized to represent land cover, but without integrating details at the 1 m 

scale. Roads, for example, were left out to avoid creating a supplementary category that would 

only complicate land cover change analysis. The advantage of using such a fine resolution resides 

mainly in a better classification of land cover types and not necessarily in a more detailed land 

cover map. 

 The initial results appear to show that cell size has no impact on land cover change modelling 

since Cramer’s V and disagreement values were unchanged by upscaling. However, the upscaling 

/ downscaling procedure revealed that during upscaling considerable information was lost. The 

impacts of spatial extent and cell resolution on landscape data are discussed in Turner et al. 

(1989), in which the probability of small or rare information loss increases with increasing cell 

size: land cover types with scattered distributions lose area rapidly with coarser cell resolutions 

whereas clustered land covers disappear more slowly. As cell size increases, detail is lost, isolated 

pixels disappear, and the landscape becomes both increasingly simpler and less representative of 

reality. Improved statistics with coarser resolutions (Chen and Pontius 2011, Geri et al. 2011, 

Pontius et al. 2008) may simply be the result of a landscape becoming increasingly simplified and 

composed of larger category patches. The simpler the landscape, the better the prediction; in 

short, the model gets better at predicting a landscape that grows progressively further from 

reality. Downscaling does not restore the initial information, but it allows the modeler to have 

some measure of the amount of information lost by changes in the disagreement values. Studies 
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considering cell size effects should systematically downscale back to the original spatial 

resolution to avoid the potentially false impression that the upscaled model leads to better 

prediction. 

 

5. Conclusions 

 Spatial extent and cell size are two fundamental issues of land cover change modelling which 

continue to require attention in order to better understand land cover changes dynamics and 

prediction results. In this study, increasing spatial extent was synonymous with integrating a large 

dormant category and effects related to adding new categories or processes were not considered. 

Spatial extent has a major impact on perceived land cover change dynamics, where relatively 

large dormant categories can mask smaller more dynamic category changes. It is more difficult to 

model small areas with multiple land cover types undergoing rapid change than larger stable 

zones, and simply adding significant areas of stable land improves model performance without 

improving change prediction. Quantity and allocation disagreement are greater in the small 

window than in the large window because most of the changes occur in the small zone and the 

extended part of the large window is mostly persistent forest and persistence generates greater 

prediction accuracy. 
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CHAPTER 5 

EVOLUTION OF SOIL EROSION IN A MEDITERRANEAN 
CATCHMENT IN 1950-2025 

(Article proposal submitted to AgroMed International Conference 2016 

December 1-2, 2016 Avignon (FRA) with publication in Land Use Science) 

 
1. Introduction 

 Soil is a vital non-renewable resource formed through various physical, chemical, and 

biological processes in the natural environment. Soil degradation due to erosion has become a 

serious environmental problem throughout the world due to the rapid growth of overgrazing, 

deforestation, inappropriate agricultural practices, overexploitation of fuel wood, forest fire, and 

other human activities (Alkharabsheh et al. 2013, Brady and Weil 1999, Terranova et al. 2009). 

In many areas of the world, soil erosion rates exceed soil formation resulting in serious soil 

degradation (Toy et al. 2003). About 56% soil degradation is associated with soil erosion by 

water (Brady and Weil 1999). Soil erosion may cause several environmental and economic 

problems: loss of agricultural productivity, water pollution (silting in streams, rivers, reservoirs), 

and biodiversity loss etc. (Lu et al. 2004, Zhang et al. 2014). Martínez-Casasnovas and Ramos 

(2006) estimate that soil erosion costs about 7-8% of income from grape production in 

Mediterranean NE Spain.  

 Brady and Weil (1999) describe three fundamental steps of soil erosion: detachment of soil 

particles from soil mass, transportation of the detached particles by floating, rolling, dragging, 

and splashing, and deposition of the transported particles to lower elevations. Three forms of 

water erosion are also described in Brady and Weil (1999): sheet erosion, rill erosion, and gully 

erosion. Sheet erosion can be observed when water flow removes soil more or less uniformly; it 

becomes rill erosion when sheet flow concentrates into small channels. When the volume of 

runoff further concentrates and flowing water cuts deeper into the soil, gullies can be formed; the 

size limit distinguishing gullies from rills is when common agricultural tools can no longer erase 

the trace of concentrated erosion. 

 The risk of soil erosion varies from case to case depending on several parameters: 

topography, soil characteristics, local climate, vegetation type and cover, and implemented land 
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use and management practices (Alkharabsheh et al. 2013). Soil erosion affects the land and its 

inhabitants in various ways and changes soil physical and chemical properties (Toy et al. 2003). 

Soil erosion also affects soil formation processes by removing the most fertile upper layer of the 

soil. It alters the infiltration capacity by the removing nutrient-rich A-horizon and exposing less 

fertile B-horizon. The infiltration capacity of the A-horizon is generally greater than the B-

horizon. Soil erosion also affects transportation and deposition of sediments and associated 

substances. Transported agricultural pollutants can damage the ecosystems of downstream water 

bodies. Therefore, soil erosion control is an important issue for researchers in order to maintain 

soil fertility and establish sustainable soil conservation practices. 

 Soil erosion by runoff is an important issue for Mediterranean France. Several studies have 

already been conducted to measure soil erosion and to identify factors of soil erosion for various 

catchments in the Mediterranean area (Blavet et al. 2009, Kosmas et al. 1997, Ramos and 

Martínez-Casasnovas 2006, Torri et al. 2006, Wainwright 1996). 

 

1.1 Factors affecting soil erosion 

 Soil erosion risk depends on different topographic, geographic, and climatic conditions 

among which land cover type, slope, area, soil characteristics, local climatic conditions, and land 

use management play important roles (Alkharabsheh et al. 2013). Slope gradient is a key factor 

for soil erosion which increases significantly on steeper slopes (Fox and Bryan 2000, Liu et al. 

2013, El Kateb et al. 2013, Koulouri and Giourga 2007). Slope length is also important but 

secondary to gradient. Increased soil erosion was observed with increasing slopes, and severe soil 

erosion was observed on slopes greater than 25° in China (Koulouri and Giourga 2007, Zhang et 

al. 2014). Therefore, terracing can decrease soil erosion since both gradient and length are 

reduced (Liu et al. 2013). 

 In addition to direct effects of slope, topography is intimately related to land cover use and 

soil properties. Van Rompaey et al. (2002) show that slope played a significant role in arable land 

and forest conversion during the past 250 years in the Dijle catchment (central Belgium). Arable 

lands were converted into forest mainly on the steeper slopes in 1774-1990, but the reverse 

occurred on lower slopes. Forest increased on steep slopes and badly drained soil while 

deforestation took place in relatively flat and favorable loamy soils with well drained areas.  
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 A significant impact of vegetation and organic matter is noted in Mohammad and Adam 

(2010). The study found that vegetation coverage (P. halepensis) adds organic matter to the soil 

surface, and this can prevent soil erosion by developing soil structure and improving aggregate 

stability. Moreover, vegetation cover protects soil surface from rainfall and reduces the runoff 

energy. 

 Undistributed forest and dense grass provide the best soil protection followed by relatively 

dense forage crops (legumes and grasses). Small grains offer intermediate soil protection to 

surface erosion. Agricultural fields of row crops such as corn, soybeans, and potatoes are more 

vulnerable to surface erosion (Brady and Weil 1999). El Kateb et al. (2013) observed less runoff 

and soil erosion in the forest than in grassland, farmlands and tea plantations. This study also 

revealed that soil erosion is more sensitive than runoff to changes in vegetation cover. In addition, 

Vineyard is reported to be one of the most vulnerable land covers to soil loss in the European 

Mediterranean region (Kosmas et al. 1997, Cerdan et al. 2010). 

 In Alkharabsheh et al. (2013), mean soil loss decreased due to changes in land cover and land 

cover management where a large cultivated area was abandoned during the study period. Many 

fields remained abandoned due to the lower productivity that resulted mainly from climate 

change (decreasing precipitation and increasing temperature). Bakker et al. (2005) identified a 

good relationship between soil erosion and land use change in the western part of Lesvos, Greece. 

To identify the relationship, a logistic regression was performed using land use change as the 

response variable and soil depth, erosion and slope as explanatory variables. They found intense 

soil erosion and land use change in the marginal area of the study area over the last century.  

 Vacca et al. (2000) studied soil erosion and runoff in three different land cover types for plots 

in a Mediterranean catchment. The highest runoff and soil erosion rates were observed under a 

Eucalyptus sp. plantation followed by abandoned grazing and burned macchia. In another study, 

Nunes et al. (2011) revealed how land cover change affects soil erosion and runoff in a 

Mediterranean catchment, Portugal. According to the study, soil erosion increased due to a 30% 

drop in vegetation cover. They found that the Mediterranean region has high soil erosion risk in 

cereal fields due to unprotected ploughed bare soil in the rainy season (autumn), and it is more 

than 20 and 500 times greater than abandoned and pasture plots, respectively. In addition, uses of 

heavy machinery and deep ploughing techniques have also accelerated soil erosion. 
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1.2 The magnitude of erosion in Mediterranean Europe 

 Mediterranean areas are particularly vulnerable to soil erosion due to high rainfall intensities, 

agricultural activities on steep slopes, low organic matter, low nutrient contents, and rapid land-

use changes (García-Ruiz 2010, Novara et al. 2011). García-Ruiz (2010) indicated several 

reasons for accelerated soil erosion in vineyards: soil is bare much of the cultivation period and 

vineyards are relatively common on steeper slopes. In another study, García-Ruiz et al. (2013) 

reviewed analyses on the principal environmental and human factors of soil erosion in the 

Mediterranean area. According to their study, hydrologic and geomorphologic changes occurred 

near the Mediterranean coasts of Spain, France, and Italy due to urban sprawl. Shrub lands and 

forested areas increased in abandoned farmland on hilly areas due a shift to more intensive 

agricultural practices in lowlands.  

 Kosmas et al. (1997) studied seven different sites in Mediterranean Europe including the 

Roussillon region located on the Pyrenese footslopes, France. The study revealed that rain-fed 

croplands in the hilly areas of Mediterranean regions are highly sensitive to erosion due to 

shallow soil and lack of vegetation cover. During spring and winter, soil surfaces of many 

Mediterranean vineyards remain almost bare and highly vulnerable to loss due to high moisture 

content, loose upper layer, and high intensity rainfall events. Moreover, abandonment of 

farmland, expansion of vineyard in the upland forests and cereal fields has also accelerated soil 

erosion risk in this area. Similar results were also found by Le Bissonnais et al. (2002), wherein a 

large area of southwest France was identified as highly threatened by soil erosion due to the steep 

slopes and high rainfall.  

Arnaez et al. (2007) described different factors of soil erosion and used the USLE to estimate 

erosion for a Spanish Mediterranean catchment dominated by vineyards (La Rioja and Penedès). 

The study found that slope gradient, rain drop size, infiltration capacity and water storage have 

direct impacts on erosion processes. The study proposed that soil erosion can be decreased by 

increasing density of vines, changing tillage system (at right angle to the maximum slope gradient 

to favor infiltration), and building terraces along the contour lines. This study also took into 

account the importance of gravel cover on the resistence of soil to erosion in their study. Kouli et 
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al. (2009) analyzed various factors of soil erosion using RUSLE for 9 different watersheds in 

southern Greece, and they found that an extended part of their study area was undergoing severe 

soil erosion. 

 (Terranova et al. 2009) conducted a study to identify highly affected soil erosion by water in 

Calabria (southern Italy) using the RUSLE model. Results from this study show that erosion rates 

decreased from 30 to 12.3 Mg ha-1 y-1  due to land management actions, such as minimum 

cultivation methods, practices to avoid stubble wildfires, controlled partial grass regeneration, 

limiting tilling - harrowing -, increasing in areas with vegetation cover.  

 

1.3 Soil erosion in Mediterranean vineyards 

 The Mediterranean climate is particularly well suited for quality grapes and wine production, 

and vineyard is one of the main agricultural land covers. Vineyards in the Mediterranean area 

have the highest soil erosion rates - greater than rain fed cereals, olives, grassland, and forest 

cover (Kosmas et al. 1997). The Mediterranean area experiences high storm intensities on dry soil 

in summer and autumn when vineyards are frequently bare, so high erosion rates occur at this 

time (Blavet et al. 2009, Wainwright 1996, Ramos and Martínez-Casasnovas 2006). In April, 

farmers kill grasses using mechanical ploughing and chemical herbicide treatments. Use of tillage 

and chemical weeding, and intensive use of pesticides are the most common practices in vineyard 

cultivation system in the Mediterranean area, in which soil remains bare during much of the year 

(Novara et al. 2011, Salome et al. 2014). Generally, chemical methods keep the fields bare for a 

longer time and allow less grass to grow in the off-season. Grapes are harvested in August-

September, and heavy rainfall starts shortly afterwards and continues from October to March. 

These practices are popular to obtain high yielding and better quality grapes. The vineyards are 

vulnerable to erosion, soil organic matter depletion, pollution, and loss of biodiversity (Coulouma 

et al. 2006, Raclot et al. 2009). Wainwright (1996) studied a particular flash flooding event on 22 

September 1992 in the Vaucluse and Drome regions of Southern France where 100 mmh-1 

rainfall for 3 hours generated soil erosion of 37.5 T ha-1. Another flash flood in the Penedes 

region, Catalonia, NE Spain in caused soil loss of 342.6 T ha1 during the storm with a maximum 

intensity of 187 mm h-1 (Martínez-Casasnovas et al. 2005). 

 The effect of land use and management on water erosion in a French Mediterranean wine-

growing vineyard area was described in Blavet et al. (2009) and the highest erosion rate was 
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observed in chemically weeded vineyards. This study observed beneficial effects of vegetation 

cover and mulching and showed that soil organic carbon content can limit runoff and soil erosion. 

However, these factors are not effective on bare soils of chemically weeded vine plots. The study 

also found that young grassland had limited protection against runoff, but fallow grassland with 

good soil aggregate stability and good soil cover had no runoff or soil erosion. 

 Novara et al. (2011) conducted a study to estimate soil loss in an irrigated vineyard in 

Sambuca di Sicilia, in southwestern Sicily under conventional tillage. The study estimated an 

average soil erosion rate of 124.1 T ha-1y-1 using the USLE model and the highest erosion rates 

were observed on the steeper slopes. Ramos and Martínez-Casasnovas (2006) carried out a study 

to calculate nutrient losses in vineyards and their relation with soil erosion in the Alt Penedès 

vineyard region (north-eastern Spain). In their study area, 80% of the cultivated area was 

occupied by vineyards, and soil erosion increased due to intensification and mechanization of 

vineyard cultivation. Soil loss in the study plot reached 207 T ha-1 due to a maximum rainfall 

intensity 170 mm h1 during an event on 10 June 2000 (Ramos and Martı́nez-Casasnovas 2004). 

Usón (1998) in García-Ruiz (2010) determined an erosion rate of about 24.25 T ha−1y−1 for the 

same catchment area (vineyards in Catalonia). De Santisteban et al. (2006) reported soil erosion 

rates (3.6 to 178.5 T ha−1y−1) in vineyards of Navarre (spain) that were about double those of 

cereal crops because of lower vegetation cover and intense rainfall during the rainy season. 

 Augustinus et al. (1996) studied soil conservation methods in vineyards in Mediterranean 

France. The study found that most farmers used herbicide or cultivation methods to remove 

weeds from their vineyard. Therefore, a low permeability crust can form at the soil surface, and 

this increases runoff. The crust can be completely destroyed several times a year due to weed 

removal using a cultivator, and the crust can crack due to natural shrinking and swelling. 

According to the study, the presence of adequate terraces can prevent soil erosion on steep slopes. 

The impact of contouring on straight slopes and on slopes with concavities and convexities was 

also found beneficial. 

 

1.4 Soil erosion models 

 Various erosion models have been interfaced with GIS to assess and predict soil erosion. 

Frequently cited models include the following: Revised Universal Soil Loss Equation (RUSLE) 

(Renard et al. 1997) which is a modified version of the empirical Universal Soil Loss Equation 
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(USLE), Water Erosion Prediction Program (WEPP) hill slope model (Laflen et al. 1991), 

LandSoil (Ciampalini et al. 2012) and the Soil Erosion Model for Mediterranean Regions (de 

Jong et al. 1999). Soil erosion models are important to measure and identify the detachment, 

transportation, and deposition processes of soil erosion using a set of mathematical equations 

related the rainfall, soil characteristics, topography, vegetation, and soil management of a site 

(Brady and Weil 1999). 

 The LandSoil model is based on the Sealing and Transfer by Runoff and Erosion related to 

Agricultural Management (STREAM) model, and the main distinction of this model is to 

consider soil characteristics (soil roughness, surface crusting, and vegetation cover evaluation) as 

the major soil erosion/redistribution process in an agricultural landscape (Ciampalini et al. 2012). 

Landsoil models soil redistribution processes in different topographic and agricultural landscapes, 

and it facilitate landscape design at the catchment scale for soil conservation using different land 

cover types in southern France (Ciampalini et al. 2012). 

 In the same way, Evrard et al. (2010) identified the impact of rainfall seasonality and land use 

change on soil erosion over the last 40 years using the STREAM model for a catchment in 

southern France. The study found that sediment export increased by 168% after land 

consolidation due to the decrease in the grassland cover and increase in field size.  

 Water Erosion Prediction Project (WEPP) predicts soil loss and deposition using a spatially 

and temporally distributed approach and can integrate different land covers (rangeland, forest, 

agriculture land, and urban area) (Mahmoodabadi and Cerdà 2013). It is also able to describe 

runoff and erosion processes and to evaluate the impacts of management intervention and 

environmental change. 

 The Soil Erosion Model for Mediterranean Region (SEMMED) predicts annual rate of soil 

erosion considering detached soil particles by raindrops impact and transport of these particles by 

overland flow, but it does not take into account splash transport and runoff detachment (de Jong 

et al. 1999). The model includes multi temporal vegetation images, a Digital Terrain Model 

(DTM), a digital soil map, and a limited amount of soil physical field data. 

 

1.4.1 The use of the RUSLE model in different studies 

 The USLE model has been used worldwide since the 1970s and it was updated in the early 

1990s to create an erosion prediction tool named the Revised Universal Soil Loss Equation 
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(RUSLE) (Brady and Weil 1999). RUSLE is a factor based model which estimates overall soil 

erosion rate where each factor quantifies one or more processes and interactions (Millward and 

Mersey 1999). It is easy to use and convenient to quantify soil erosion by considering rainfall, 

topography, soil, vegetation, land use, and land management (Zhou et al. 2008). The earlier 

version of this model was developed for agricultural fields, and the updated recent version is 

modified based on stream power theory which is suitable for complex topographic conditions 

(Mitasova et al. 1996, Chakroun et al. 1993). However, this model is unable to consider 

deposition (Terranova et al. 2009).  

 The USLE and its improved version, RUSLE, are the most commonly used models to 

estimate and predict soil erosion for various geographic locations: African (Angima et al. 2003, 

Bewket and Teferi 2009, Lufafa et al. 2003, Alkharabsheh et al. 2013), Mediterranean (Arnaez et 

al. 2007, Kouli et al. 2009), North American (Millward and Mersey 1999, Mitasova et al. 1996, 

Nyakatawa et al. 2001, Royall 2007), Chinese (Zhou et al. 2008), Chilean (Bonilla et al. 2010), 

and Indian (Prasannakumar et al. 2012) catchments have all been modelled using RUSLE, not to 

mention several other regions of the world. The model has been used for vegetation (Zhou et al. 

2008), maize (Millward and Mersey 1999), vineyard (Arnaez et al. 2007, Blavet et al. 2009, 

Chevigny et al. 2014, Pacheco et al. 2014), and various land covers (Angima et al. 2003, 

Nyakatawa et al. 2001, Lufafa et al. 2003). It has also been performed for both plot (Zhou et al. 

2008) and catchment (Millward and Mersey 1999) scales. 

 Angima et al. (2003) evaluated the performance of RUSLE in predicting long term soil loss 

under cropped land dominated by coffe, banana, and corn bean in a hilly catchment area. The 

study found that the rate of soil loss varies mostly with changing slope factor, and soil loss was 

estimated at 134 T ha−1y−1 and 549 T ha−1y−1for average LS factors of 0-10 and 10-20, 

respectively. In a different study, Bakker et al. (2005) used the USLE in various crop lands at the 

Chemoga watershed, Ethiopia. They reported that the model estimated a fairly reliable prediction 

of soil erosion loss. Kouli et al. (2009) quantified soil erosion factors and predicted annual soil 

loss of a Mediterranean catchment in southern Greece. The study found results consistent with 

those of other Mediterranean watersheds and recommends RUSLE for the Mediterranean 

environment at watershed scales. They predicted a mean annual soil loss of about 200 T ha-1 y-1 

for nine different Mediterranean watersheds in Greece with average annual precipitation 900 mm. 

In another study. Lufafa et al. (2003) tested the USLE within a microcatchment at the Lake 
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Victoria Basin (LVB), Uganda. Soil loss was predicted at 93, 52, 47, and 32 T ha-1 y-1 for 

cropland, rangeland, banana–coffee, and banana, respectively. 

 

1.4.2 RUSLE model description 

 RUSLE is designed to predict average annual soil erosion due to runoff from topography, 

rainfall erosivity, soil erodibility, and management systems (Alkharabsheh et al. 2013, 

Nyakatawa et al. 2001). It is an equation based on the principal factors that affect soil erosion 

(Renard et al. 1997). RUSLE calculates the average per unit and patch soil erosion following the 

equation bellow.  

A = R. K. LS. C. P ……..equation-i  

Renard et al. (1997) describes the equation in the following way: 

A is expressed in T ha-1 yr-1 (or T acre-1 yr-1 in imperial units) and is the computed spatial and 

temporal average soil loss per unit area. 

R is the rainfall erosivity factor (MJ mm ha-1 h-1 yr-1).  

K is the erodibility factor (T h MJ-1 mm-1) that depends on the soil loss rate per erosion index unit 

for a specified soil for a standard plot. 

L is the slope length factor. 

S is the slope steepness factor. 

C is the cover management factor. 

P is the support practice factor. 

The R, K, and LS factors determine the erosion rate while the C and P factors are reduction 

factors ranging between 0 and 1 (Meusburger et al. 2010). 

 

1.4.2.1 Rainfall-runoff erosivity factor (R) 

 R is the rainfall erosivity factor that represents an average annual value of aggressiveness of 

rain to cause erosion (Lal, 1990, in (Kouli et al. 2009). It is the total storm energy (E) for the 

maximum 30 minute intensity (I30) calculated for each rainstorm for a particular period (Kouli et 

al. 2009, Renard et al. 1997). However, it could be calculated from the average annual rainfall 
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due to the lack of detailed rainstorm data that is suggested in RUSLE, and mean monthly rainfall 

amount has also been used in USLE (Renard et al. 1997). This factor is considered as the most 

influential for soil erosion in different studies using RUSLE throughout the world (Kouli et al. 

2009, Wischmeier and Smith 1978). Renard and Freimund (1994) developed the following power 

relationship to estimate rainfall erosivity as a function of average annual precipitation (mm) for 

the Continental U.S. (where R is the rainfall erosivity factor and P is the mean annual rainfall 

(mm)). = .  .  

Bewket and Teferi (2009) measured rainfall erosivity using monthly recorded rainfall data from 

three meteorological stations for a 14 year time period (1993-2007). In their study, the following 

equation developed by Hurni (1985) was followed to estimate R factor from annual total rainfall: = − . + .  

 The R factor was estimated at 1226.4 and 1799.6 MJ mm ha-1 h-1 y-1 for the Therisso and 

Keritis watersheds, respectively (Kouli et al. 2009). Angima et al. (2003) calculated R factor 

8527 MJ mm ha−1h−1y−1 for Kianjuki catchment in central Kenya. And Torri et al. (2006) 

developed the following linear relationship between rainfall erosivity and annual rainfall (mm) in 

Italy. 

R = -944 + 3.08P 

 

1.4.2.2 Soil erodibility factor (K) 

 The soil erodibility factor is the soil loss rate per erosion index unit for a specific soil plot, 

which is 22.1 m in length of with a uniform slope of 9 % continuously in clean tilled fallow 

(Renard et al. 1997). It reflects the soil detachment process that is generated by the impact of 

splash or surface flow, and it estimates the influence of soil properties on soil. K depends on soil 

texture (M), organic matter (OM), soil structure (1<s<4), and permeability or infiltration capacity 

(1<p<6) (Morschel and Fox 2004, Renard et al. 1997). The value of K factor ranges from 0 to 1 

(Bewket and Teferi 2009).  = .  × − . − + .  ×  −  � − + .  × − � −  
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 Where, M  is the product of the primary particle size fraction; Wischmeier and Smith (1978) 

proposed a particle size parameter, M = (% of silt + fine sand) (particles of 0.1-0.002 mm) × (100 

– clay (%)), where silt fraction does not exceed 70%. Soil texture has a significant impact on K. 

Fine textured soils with a high clay contents have low K values, ranging from 0.05 to 0.15, 

because of their high resistance to detachment. However, coarse textured soils, such as sandy 

soils have low K values, ranging from 0.05 to 0.2. Medium textured soil such as silt loams have 

moderate K values, ranging from 0.25 to 0.4. OM is the percentage of organic matter. High 

contents of organic matter can decrease erodibility of soil reducing the susceptibility to 

× − . − + .  × −  (�− )+ .  × − (�− )s refers to soil structural class: 

(1) very structured or particulate, (2) fairly structured, (3) slightly structured and (4) solid. And p 

indicates profile permeability codes: (1) rapid, (2) moderate to rapid, (3) moderate, (4) moderate 

to slow, (5) slow and (6) very slow (Meusburger et al. 2010).  

 

1.4.2.3 Topographic factor (slope length and steepness – LS) 

 The LS factor describes the combined effects of slope length (L) and gradient (S). These 

factors reflect the effects of topography on soil erosion (Fu et al. 2006). Slope length (L) can be 

measured as the horizontal distance from the origin of overland flow to where deposition begins 

or runoff becomes concentrated (Wischmeier and Smith 1978, Renard et al. 1997). Renard et al. 

(1997) describe a practical slope length limit of 122 m in many situation, which can occasionally 

be longer (up to 305 m). L is estimated with the following equation: = �/ .  

Where, 22.1 is the plot length in meter, � is horizontal projection of slope length, m is a variable 

slope-length exponent related to the ratio of rill to interrill erosion and is measured by the 

following equation: = �/ + �  

Where, � is the ratio of rill to interrill erosion which is principally caused by raindrop impact. � = �� �/ .  / [ . �� � . + . ] 
Where, � is the slope angle (°). 
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S is the slope steepness factor which is the ratio of soil erosion from the field slope gradient to 

soil erosion from a 9 % slope under the same conditions. It represents the effect of slope 

steepness on soil erosion. = . �� � + .   S < 9 % = . �� � −  .   S < 9 % 

 The shape of a slope also affects the average soil loss that can be 30% greater for a convex 

slope than that for a uniform slope with the same steepness (Renard et al. 1997). The range of the 

LS factor was calculated for 30 different segments in 5-55% slope gradients for three different 

land use types and it ranged from 0.8 to 17(Angima et al. 2003). LS ranged from 0 to 118 in 

Kouli et al. (2009). 

 

1.4.2.4 Cover management factor (C)  

 C is the land cover management factor which is used in RUSLE to estimate the effects of 

cropping and management practices on erosion rates (Renard et al. 1997). This factor considers 

various tillage systems, crop rotations, fertility treatments, and crop residue management (Renard 

et al. 1997). In addition, it highlights the effect of soil conservation plans and their impact on 

average soil loss during various conservation and management schemes to decrease soil erosion. 

The published values of C range from 0.0005 for 100% forest coverage to 1 for bare soil 

(Meusburger et al. 2010 in US Department of Agriculture, 1977). Novara et al. (2011) calculated 

the average C factor value, and it ranged from 0.09 to 0.23 for different Sicilian vineyards.  C 

factor values for various land covers in different study are presented in Table 0.1. 

Table 0.1: C factor values for different land cover categories 

Land cover types C factor values References 

Corn-bean 1 year rotation 0.415 Angima et al. 2003 

Coffee 0.415 Angima et al. 2003 

Banana 0.122 Angima et al. 2003 

Cultivated land (barley, oats and wheat) 0.150 Bewket and Teferi 2009 
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Broad-leaved forest 0.130 Kouli et al. 2009 

Fruit trees and berry plantation 0.180 Kouli et al. 2009 

Mixed forest 0.180 Kouli et al. 2009 

Vineyards 0.300 Kouli et al. 2009 

Pastures 0.540 Kouli et al. 2009 

Natural grassland 0.540 Kouli et al. 2009 

Bare rocks 0.870 Kouli et al. 2009 

Residential 0.003 Fu et al. 2006 

Mixed rangeland 0.011 Fu et al. 2006 

Cropland and pasture 0.150 Fu et al. 2006 

Maize 0.420 Millward and Mersey 1999 

 

1.4.2.5 Conservation practice (P) 

 The positive impact of runoff management controls that change the direction, speed, and 

amount of runoff, particularly the effect of contouring and tillage practices on soil erosion, is 

quantified by the P factor (Renard et al. 1997). Some traditional P factors used in agricultural 

practices are: buffer strips, filter strips, rotation strip cropping, terraces, contour tillage, and sub-

surface drainage (Renard et al. 1997). The P factor is set to 1 where there are no erosion control 

practices. 

 

1.5 Objectives 

 Most of the studies dealing with the prediction of soil erosion focus on crop lands throughout 

the World, whereas vineyards in the French Mediterranean area have been much less studied. The 

main objective of this study is to estimate the evolution in soil erosion in the Giscle catchment 

over time as vineyard areas have evolved (1950-2011) and are expected to change in the coming 

years (to 2025) using the RUSLE model. 
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2. Methods 

2.1 Site description 

 The Giscle watershed is located in SE France and is described in Fox et al. (2012). It covers 

about 235 km² and has a sub-humid Mediterranean climate with a long dry season. Mean annual 

temperature reaches 27°C in the summer and 11°C in the winter, and the mean annual rainfall 

over the last 31 years was about 895 mm. Rainfall mostly occurs in spring and autumn, intensifies 

from October to January in the peak rainy season and a short season in April.  

 Grape production is the main agricultural activity in the catchment. Most of the vineyards in 

the study area are planted in straight rows and are oriented in the slope direction on steeper slopes 

and perpendicular to slope at gentler inclinations, as described below. Vineyards represent about 

10% of catchment area (Roy et al. 2014b). They are located mostly in the sandy floodplain and 

have spread under urban pressure onto steeper slopes in recent years (from 2003) where soils are 

thin, slightly acidic, stony, and of sandy texture (Fox et al. 2006, Roy et al. 2014b). Soil texture in 

most of the vineyards is the following: 60-80% sand, 10-30% silt and 5-15% clay (De Coster 

2013).  Most of the vineyards in the catchment are affected by heavy rainfall in the winter as can 

be seen in Figure 0.1.  

  

Figure 0.1: Vineyard affected by heavy rainfall (Photos: D. Fox) 

 

2.2 Erosion estimation using RUSLE 

 Among the available models, RUSLE was applied in the study, data requirements are easier 

to satisfy compared to the deterministic models and it has been widely tested throughout the 

world, including in Mediterranean vineyards, as described above. The RUSLE module in IDRISI 
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estimates average annual soil loss and determines spatial patterns of soil loss (Eastman 2012). 

The model was run using a 25 m DEM. The soil erodibility (K), rainfall erosivity (R), land cover 

management (C), and conservation practice factors (P) were specified for 1950, 1982, 2003, and 

2011 to estimate soil erosion. As described in earlier chapters, land cover maps of 1950, 1982, 

2003, and 2011 were digitized from aerial photographs. Threshold values (described below) were 

held constant for all simulations. In addition, erosion rates were predicted for the simulated 2025 

land cover map. 

 

2.2.1 RUSLE parameters for soil erosion estimation 

2.2.1.1 Rainfall-runoff erosivity (R) 

 In the absence of rainfall intensity data, R was estimated from mean annual rainfall. Daily 

rainfall recorded by a local weather station (Cogolin) from 1975 to 2005 (31 years) was used to 

estimate rainfall erosion index (R). Torri et al. (2006) calculated R for a region in Tuscany and 

his equation was used to compute R for this study; and then the value was converted to imperial 

units.  Rainfall and runoff erosivity R-factor was estimated from the average annual rainfall of 

895 mm in 1975-2005 which gave an R value of 107 MJ mm yr/ha/h.  

 

2.2.1.2 Soil erodibility (K) 

 A soil map of the watershed was generated from soil data obtained from the local wine-

making cooperative. In all, 24 soil samples were obtained, and soil structure and texture data 

were classified by De Coster (2013). The soil erodibility factor K was calculated for these plots 

following the equation described above from Wischmeier and Smith (1978). A point layer was 

created using calculated K values and then surface interpolation was applied using ‘digital 

elevation model interpolate’ option and the point layer to create a raster layer for the whole 

catchment area. K was expressed in SI units (T h MJ-1 mm-1) then it was converted to imperial 

units (ton. acre -1 per erosion index unit) by multiplying by 7.59 (Renard et al. 1997). The higher 

value of K shows less resistance to erosion and generates greater soil erosion rates. 

 

2.2.1.3 Topographic factor (LS) 

 RUSLE in IDRISI calculates the LS factor automatically from the 25 m digital elevation 

model (DEM). Slope and aspect thresholds used were 5% and 180°. The maximum slope length 
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indicates the distance from the erosion starting point to the deposition point. Maximum slope 

length selected was 80 m. The slope and aspect thresholds were used to divide the whole surface 

into homogeneous topographic patches. The smallest patch size selected was 5000 m2 for each 

date. 

 

2.2.1.4 Cover management (C) 

 The cover management factor for vineyard was 0.3, following the scientific literature (Table 

0.1). 

 

2.2.1.5 Conservation practice (P) 

 The alignment of vineyard rows, which are perpendicular to slope in most of the vineyards in 

the catchment area. This arrangement of vineyard rows contributes to slow flow velocity, trap 

sediments, and reduce erosion compared to a bare surface. Therefore, the P value was set at 0.7 

except for terraces. From field observations in study area, it was noted that terraces are found on 

most slopes above 10%. Therefore, vineyards at all slopes above 10% were considered as 

terraced and attributed a P value of 0.2. 

 

2.2.2 Soil erosion mapping and validation 

 Soil erosion maps were predicted for 1950, 1982, 2003, 2011, and 2025, and erosion values 

were subsequently simplified into three categories: <10, 10-25, and >25 t/ha as low, medium, and 

high erosion, respectively. 

 During two consecutive rainy winters, field observations were made of erosion phenomena. 

Data were collected from different randomly selected vineyards, and the number and size of rills 

was noted as well as any signs of sediment deposition. Unfortunately, the data were lost in the 

time of my moving to Toronto. Results presented here are therefore not validated and their 

publication must await the renewal of field observations. 

 

2.3 Land cover prediction for 2025 

The module describing LCM was presented in Chapter 3 for prediction of 2011. To predict 2025, 

the historical images used were 2003 and 2011. Explanatory variables were the same as in 

Chapter 3 and correspond to driver variables identified in Chapter 2: altitude, slope, and distances 
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from roads, built area, and streams. In addition, the PLU was converted to a constraints/incentive 

layer where land cover restrictions (no building, protected agricultural, protected natural areas) 

were attributed conversion probabilities of 0; incentives (planned urban developed areas) were 

integrated by increasing the transition probabilities by 10 %. Only transition probabilities with 

accuracy rates greater than 70% were included in the model. These were the following: forest to 

vineyard, forest to grassland, forest to built area, vineyard to built area, and grassland to built 

area. 

 

3. Results and discussion 

 The results are described in the following order: the overall trends in vineyard changes over 

the study period, soil erosion factors, description of soil erosion in the catchment and impact of 

land cover change on soil erosion. 

 

3.1 Changes in vineyard area 

 Figure 0.2 shows that total vineyard area declined by around 35% in 1950-2011 due to 

urbanization in the plain (Roy et al. 2014b). Vineyard suddenly dropped in 1982-2003 by around 

30% of its cover, and then it continued to decrease, but at a much slower rate.  

 

Figure 0.2: Vineyard changes in the study area in 1950-2025 (predicted) 
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3.2 Soil erosion factors in the catchment 

  The K and P factors for 2011 are presented in Figure 0.3a and 3b. Most of the soils of the 

catchment were similar: 22 soil samples were sandy and very sandy, and K factors ranged from 

0.52 to 0.028 Mg h MJ-1mm-1 for these soils. 

  

Figure 0.3: a) K factor and b) P factor for 2011 

 Mean slope was 5.9% in 1950 and increased to 6.9% and 8.1% in 1982 and 2003, respectively 

(Figure 0.4). However, it declined slightly to 7.1% in 2011 and increased to 7.6% in 2025 

(median slope values followed similar trends). Increasing trends in the mean and median values 

justify that new vineyards were built in 1950-2003 on steeper slopes. In 2003-2011, change in 

slope was negligible. The 2025 prediction shows an increase in slope, but this value is probably 

overstated. 

a) b) 



116 

 

 

Figure 0.4: Mean and median slope values for different years 

 Mean and median slope lengths are presented in (Figure 0.5). Mean length declined rapidly 

from 197.6 m to 116.3 m in 1950-2003 and remained stable in 2003-2025. Median slope length 

decreased steadily from 125 m to 85.4 m in 1950-2025 (stable in 2003-2011). The difference in 

mean and median trends in 2025 suggests that slope lengths had more extreme values in the 

simulated land cover.  
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Figure 0.5: Mean and median slope length values for different years  

 

 Figure 0.6 presents terraced and non-terraced vineyards in different years. Terraces have a 

direct impact on the P factor where terraced slopes have a value of 0.2 and non-terraced fields are 

0.7. Terraced area increased from 510 ha to 555 ha in 1950-1982, it decreased sharply to 458 ha 

as total vineyard area also dropped in 2003. After a drop to 410 ha in 2011, the predicted value 

rises sharply to 590 ha in 2025. Non-terraced area decreased sharply in 1950-2003 with the 

overall loss of vineyard area described in Chapter 2. Values are stable in 2003-2011 and 

simulated area decreases slightly in 2025. The percentage of terraced vineyard area (terraced area 

/ total area * 100) increased from about 21% in 1950 to 25% and 29% in 1982 and 2003, 

respectively. In 2011 it was 26%, and the predicted 2025 value is estimated at 40% of vineyard 

area. Changes in the terraced vineyard shows the shift of vineyards under urban pressure 

(described in Chapter 2) from the alluvial plain to steeper slope areas. This is coherent with land 

cover change dynamics discussed in this thesis. However, the very high terraced area predicted 

for 2025 is clearly exaggerated and values for this prediction must be taken with circumspection.  
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Figure 0.6: Terraced and non-terraced vineyard area in different years 

 

3.3 Soil erosion in the catchment 

 The mean soil erosion rates for different years are presented in Figure 0.7. This value 

increased from 11.8 T ha-1 yr-1 to 13.2 T ha-1 yr-1 in 1950-1982, and it reached to 14.4 T ha-1 yr-1 

in 2003. However, soil erosion rates dropped to 13.5 t/ha/yr and 11.8 t/ha/yr, in 2011 and 2025, 

respectively. These trends are related to both increases in slope inclination in the earlier period in 

particular (increasing S factor) and the proportion of slopes on terraced land described above. 

Values cited are comparable to those of Cerdan et al. (2010) who analysed soil erosion rates for 

both Mediterranean vineyards and in Europe globally. For vineyards, mean erosion was about 8.6 

T ha-1 yr-1. 

 Vineyard area in different soil erosion classes is presented in Figure 0.8a. The area of low 

erosion rate gradually decreased from 1238 ha to 646 ha in 1950-2003. However, it increased to 

713 ha in 2025 as a greater proportion of the fields found itself on terraced slopes. The area of 

medium erosion rate also sharply declined from 956 ha to 717 ha in 1982-2003; it remains 

relatively stable afterwards. Decreasing trend in low and medium erosion rate might be occurred 

due to the depletion in vineyard in the plain land. The area of high soil erosion rate increased by 

around 35 ha (are you talking about how much it was increased, or you can give the actual 

increased amount like before or after values) in 1950-1982 from 209 ha in 1950, and then 

gradually decreased to 180.4 ha in 2011, respectively (not necessary here). However, it rapidly  
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Figure 0.7: Erosion rate (t/ha/yr) in different years.  

decreased to 71.6 ha in 2025. Use of terraces in vineyard played a significant role to decrease 

medium and high soil erosion rates after 1982. 

 The proportion of vineyard in each erosion class for different study years is presented in 

Figure 0.8b. The proportion of low erosion rate decreased from 51.1% to 40.8%, and the  

 

  

Figure 0.8: a) Area of soil erosion classes in different year, b) % of vineyard in different erosion 
classes. 
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proportion of medium and high erosion rate increased from 40.3% and 8.6% to 45.3% and 14%, 

respectively in 1950 to 2003. The high erosion rate shown in Figure 5.7 is therefore the result of  

the percentage of medium and high erosion rates in Figure 5.8b. The shift to lower rates after 

2003 (Figures 5.7 and 5.8b) corresponds to the decrease in slope (Figure 5.4) noted above. The 

low erosion rates in Figure 5.7 and relatively low percentage of high erosion area shown in Figure 

5.8b for 2025 result from the artificially high proportion terraced fields described above. The 

erosion rate for 2025 is certainly much lower than what could be expected. 

 The soil erosion maps in different years (1950, 1982, 2003, and 2011) are presented in Figure 

0.9a-e. The eastern part remains dominated by low erosion rates between 1950 and 2011, and is 

characterized with low slope and high rates of conversion trend from vineyard to built area. 

Hence, the eroded area shrinks over time. Much of the ‘moderate’ and ‘high’ erosion area also 

decreased in 1950-2011 but to a lesser extent than the low erosion category. The moderate and 

high erosion areas tend to be concentrated on the periphery of the low class zone and in the north-

central area. 

 Total erosion in different years is presented in Figure 0.10. Total soil loss represents the 

amount of sediment that can potentially be injected into the stream network, causing problems for 

aquatic biodiversity and channel navigation in the ports downstream. It is the product of the 

vineyard area times mean soil erosion rate. These two trends were opposite in 1950-1982, where 

vineyard area decreased substantially and mean erosion rate increased as fields were moved out 

of the alluvial plain and onto steeper foothills; therefore, total erosion remained constant in this 

period. After 1982, the great loss in vineyard area (Figure 5.2) outweighed the increase in mean 

erosion rate (Figures 5.7 and 5.8) and provoked a net loss in total soil erosion (Figure 5.10). After 

2003, vineyard area remained stable and mean erosion rates decreased only slightly with less than 

a 10% decrease. Figure 5.10 shows a substantial decrease in total erosion for the simulated 

landscape of 2025, but as described above, this value is probably underestimated.  
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Figure 0.9: a) soil erosion map for 1950, b) soil erosion map for 1982 c) soil erosion map for 
2003, d) soil erosion map for 2011, and e) soil erosion map for 2025. 

 

a) b) 

c) d) 

e) 
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Figure 0.10: Total erosion in 1950-2025 

 

4. Conclusions 

 The study quantified the impact of land cover change on soil erosion in vineyards in the 

Cogolin catchment in SE France in 1950-2011 where RUSLE was used in the IDRISI GIS 

environment to create and compare soil erosion maps of 1950, 1982, 2003, and 2011. Finally, a 

soil erosion map was created using predicted vineyard for 2025. Vineyard area decreased while 

mean erosion rates increased in the 1950 to 2003 time interval. This period represents the phase 

where change occurred rapidly due to strong urban pressure in the alluvial plain and a shift of 

vineyards to steeper slopes. Total erosion was stable in 1950-1982 and then decreased 

progressively, due mainly to the loss in vineyard area and a stabilization in the clearing of steeper 

slopes. Total erosion in 2011 represents about 75% of erosion in 1950-1982. Predicted erosion 

rates for 2025 are probably underestimated as the LCM model continued to move vineyards onto 

steeper slopes where terracing reduces estimated erosion rates.  

  



123 

 

GENERAL CONCLUSION 

SYNTHESIS 

 This study makes a significant contribution to the current knowledge of land cover change in 

the Giscle catchment from 1950 to the present. A complex pattern of land cover change was 

observed in the catchment across various spatial and temporal dimensions. Marginal lands on 

steeper slopes were converted from forest to vineyard and vineyard terraces on foothills above the 

alluvial plain. This finding differs from the most frequently cited previous studies of land cover 

change in the Mediterranean region, which have tended to show the opposite, namely the 

abandonment of agriculture on marginal lands and their conversion to forest. 

 The tendency for cities to grow onto agricultural land is common throughout the world and in 

the Mediterranean area (Serra et al., 2008, Sluiter and de Jong, 2007). However, the conversion of 

vineyard to grassland in conjunction with urban expansion found in this study is much less 

common. Abandoned vineyard fields generally belonged to owners who did not produce their 

own wine, but brought their grapes to a winemaking cooperative. Grape production was therefore 

not necessarily as central to their livelihood as it would be for the winemaking domaines. When 

land is passed on from one generation to the next, grape production can be abandoned but the 

land retained. This explains some of the conversion from vineyard to grassland and then forest, 

and it also accounts for the paradoxical situation of agriculture expanding onto marginal lands on 

steep slopes, while at the same time abandoning fertile land in the alluvial plain to grassland and 

forest. In addition, the “prime à l’arrachement” in the 1980s contributed to eliminate small 

producers. 

 Altitude, slope, and distance from roads had the greatest impact on land cover change 

amongst all the variables tested. Projected land cover changes suggest that built area and 

grassland would increase in forest and vineyard areas following the previous historical trends in 

the catchment. The highest errors were observed in the long time scale prediction. Predicted maps 

were moderately accurate for the intermediate time scale and the most accurate for the short time 

scale. For all time scales, the greatest errors were observed in the prediction of grassland cover. 

The most accurate predictions were derived from the short time scale and the accuracy rate 

decreased with the increase in time scale. Therefore, the initial time period of 1982-2003 was 

selected to project land cover for 2011 in order to test the impact of spatial extent and cell size on 



124 

 

land cover change prediction. Then 2003-2011 was selected to predict land cover for 2025 in 

order to quantify the impact of land cover change on soil erosion. 

 Analysis of spatial extent found that land cover prediction appeared more accurate in the large 

zone than in the small. However, predicted land covers for the surface in the small zone are the 

same for both the small and large zone predictions. No significant impact of cell size on land 

cover change prediction was found in the study. However, when the downscaled predicted images 

are compared to the 25 m reference image from 2011, disagreement values respond differently. 

Quantitative disagreement varies little and even improves slightly at 100 m, but allocation 

disagreement rises sharply for the 50-25 m and 100-25 m land cover predictions for both the 

small and large study zones. Finally, a cell size of 25 m was selected to predict soil erosion. 

 The Giscle catchment was selected to assess the impacts of land use change on soil erosion 

because of its representative topography, climate, agriculture, and other human activites, which 

are typical of the Mediterranean region. Although the rate of erosion increased rapidly between 

1950 and 2003, and then drops in the 2003-2025 period (actual and predicted), the total erosion 

was around the same between 1950 and 1982 and gradually decreases in the 2003-2025 period. 

This decreasing trend of total erosion should result in lower sediment loads in streams within the 

catchment area. This study shows that the spatial pattern of land cover change has a significant 

impact on soil erosion. In particular, vineyard areas in this catchment are highly vulnerable to soil 

erosion. This finding is consistent with other studies in the Mediterranean region (Kosmos et al., 

1999; Cerdan et al., 2010). The ‘high’ and ‘moderate’ soil loss categories had increased by 2003 

but then decreased by 2011. One explanation for this would be the gradual decrease in vineyard 

that occurred between 1950 and 2011. In addition, while new vineyards had appeared in the high 

slope areas by 2011, these were terraced and thus less prone to soil erosion. 

 In general, soil erosion prone areas increased in the central parts of the study area during the 

period of this study. By contrast, there was decreased soil erosion in the eastern part of the 

catchment due to land cover change from vineyard to built area in the alluvial plain area. Slope 

plays a significant role in soil erosion. Mean slope values increased moderately throughout the 

study period, whereas median slope remained more or less constant after 1982. This reflects the 

decrease of vineyard areas in the alluvial plain and the increase of vineyard areas in the upland 

valley and foothills between 1950 and 2003. 
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This issue has become very important, not only to researchers, but also to urban planners and 

environmentalists advocating and planning for sustainable land cover in the future. 

LIMITATIONS  OF THIS STUDY  

 The findings of this study on land cover change and soil erosion in the Gislce catchment can 

be helpful to government policy-makers, urban planners and activists advocating and planning for 

sustainable economic and social development and environmental protection in the future. 

 The limitations of this thesis include the following: 

 The aerial photographs of 1950 were the first high quality post-WWII photos available 

when the area was still strongly rural. Intermediate dates (1982, 2003) were selected 

between 1950 and the most recent photographs (2008, 2011), due to the lack of aerial 

photographs from 1990 and 2000. 

 The research findings presented in the soil erosion chapter are not yet validated and their 

publication must await field validation. 

SUGGESTIONS FOR FUTURE RESEARCH 

 Different land cover change and soil erosion models can be applied to this catchment and 

the entire PACA region taking into account individual land cover and multiple land cover 

categories. 

 Additional plot-based research is needed to determine soil erosion to develop a 

sustainable erosion mitigation plan. 

 The impact of land cover change on climate change in Southern France merits further 

research. 
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Résumé long en Français de  

 

la thèse de Hari Gobinda Roy 

 

« Long term prediction of natural risk evolution in a Mediterranean 
context of rapid urban growth and climate change » 

 

 

INTRODUCTION GENERALE 

Objectif de la thèse 

La question du changement de la couverture terrestre est devenue importante dans le monde 
entier au cours des dernières années, non seulement pour les chercheurs, mais aussi pour les 
planificateurs urbains et les écologistes qui préconisent l'utilisation durable des terres dans 
l'avenir. En Europe méditerranéenne, les caractéristiques de couverture du sol ont 
considérablement changé depuis la Seconde Guerre mondiale en raison des activités humaines 
intensives, de la croissance de la population, et de l'étalement urbain et touristique. 
La plupart des études antérieures sur les changements de l’occupation du sol dans la région 
méditerranéenne se sont centrées sur un problème particulier et / ou ont décrit un type spécifique 
de changement de la couverture terrestre. Peu de recherches ont pris en compte les 
transformations de plusieurs catégories d’occupation du sol en même temps. De même, rares sont 
les travaux qui considèrent plusieurs variables dans le changement de l’occupation du sol au 
cours du temps, au-delà des traditionnels effets de l’altitude et de la pente. Nous souhaitons ici 
intégrer la variété des catégories et des composantes d’évolution. En outre, si certaines études à 
propos de la modélisation des mutations de la couverture terrestre se concentrent sur les variables 
d’influence, peu se penchent sur l’influence de la période historique et des échelles de temps 
différentes sur la prédiction. Ainsi, dans cette thèse, les changements de l’occupation du sol ont 
été prédits en utilisant différentes échelles de temps pour évaluer les impacts de la période 
historique dans la prédiction de la carte de la couverture terrestre d'ici 2025. Enfin, si l’étendue 
spatiale varie dans les différentes recherches, il semble utile de s’interroger sur les effets de la 
taille du terrain d’étude et de la résolution des cellules prises en compte, dans la prédiction.  
Les transformations de l’occupation du sol ont un impact significatif sur la dégradation des terres, 
y compris l'érosion des sols. La région méditerranéenne connaît une grande intensité de tempête 
sur un sol sec en été et en automne : à ce moment, les zones viticoles demeurent presque nues et 
un taux élevé d'érosion peut se produire (Blavet et al. 2009, Wainwright 1996, Ramos et 
Martínez-Casasnovas 2006). Or, la plupart des recherches sur la prédiction de l'érosion des sols se 



140 

 

concentrent sur les terres cultivées ailleurs dans le monde, alors que les vignobles de la région 
méditerranéenne française ont été beaucoup moins étudiés. C’est ce que nous souhaitons faire ici. 
 
 

Enoncé du problème 

Le principal objectif de cette thèse est de prédire les évolutions à long terme de l’occupation du 
sol, et de l'érosion des sols dans un contexte méditerranéen de croissance urbaine, à l'échelle du 
bassin versant. 
Pour ce faire, les trois objectifs spécifiques suivants ont été formulés : 
1. Identifier la dynamique spatiale du changement de la couverture terrestre dans un bassin 
versant méditerranéen, à savoir le bassin versant de la Giscle, dans le sud de France. 
2. Pour déterminer les impacts des échelles temporelles, de l'étendue spatiale et de la taille des 
cellules sur l'utilisation des terres et les transformations de la couverture terrestre (LUCC), afin de 
prédire leurs évolutions.   
3. Pour déterminer les modèles passés d'érosion des sols (1950, 1982, 2003, 2011), et d’avenir 
(2025) sur la base de la couverture terrestre projetée pour 2025. 
 
 

Organisation de la thèse 

Cette thèse se compose de sept parties, y compris les quatre chapitres de la recherche originale.  
L’introduction décrit les motivations et les objectifs de l'étude, ainsi que les méthodes d'enquête. 
Le chapitre 1 présente un examen approfondi de la documentation portant sur les études 
universitaires antérieures, à propos de la dynamique et de la modélisation de l’occupation du sol. 
Ces travaux sont issus du monde entier, et sont publiés entre 1994 et 2014. 
Le chapitre 2 analyse les modèles de transformations de la couverture terrestre dans la zone 
d'étude, et en identifie les variables explicatives pour chaque catégorie d’occupation du sol. Le 
travail a d’abord porté sur la numérisation de l’occupation du sol en 5 catégories (forêt, prairie, 
vignoble, urbain, et suburbain), à partir de photographies aériennes orthorectifiées numériques, à 
trois dates (1950, 1982, et 2008) et donc à trois périodes temporelles d’évolutions (1950-1982, 
1982-2008 et 1950-2008). Les dynamiques du sol ont été déterminées par la méthode de la 
couverture terrestre proposées par Ponce et al. (2004). Ainsi,  les mutations de la couverture 
terrestre ont été quantifiées en utilisant la matrice de tableau croisé du module CROSSTAB et le 
module d'analyse de changement du Land Change Modeler (LCM) de IDRISI Selva Version 
17.02 (Eastman 2012). On a ainsi mesuré la persistance, les gains, les pertes, le changement total 
(addition des gains et pertes), la variation nette, et l'échange entre toutes les catégories. Enfin, les 
influences des variables spatiales telles que l'altitude, la pente, les distances aux routes, aux cours 
d'eau, à la mer, et à la zone de construction sont présentées. 
Le chapitre 3 traite de l’influence des échelles temporelles sur la modélisation des dynamiques de 
l’occupation du sol. La situation en 2011 a été prédite à partir de différentes échelles de temps 
(1950-1982, 1982-2003 et 2003-2008) à l'aide du Land Change Modeler (LCM), et comparées 
avec la carte de la couverture terrestre numérique de 2011 pour mesurer la précision du modèle. 
Différentes variables ont été prises en compte, et testées en utilisant le coefficient V de Cramer : 
des variables explicatives à composantes spatiales (l'altitude, la pente, et les distances des routes, 
aux cours d'eau, et aux zones bâties), et d’autres de planification.  
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Le chapitre 4 teste l'impact de l'étendue spatiale et la taille de la cellule sur la dynamique et la 
prévision de l’occupation du sol. Ces éléments peuvent avoir un impact important sur la qualité 
de la prévision, puisque les indices de comparaison entre la réalité et la prévision se basent sur le 
nombre de cellules. Des analyses ont été réalisées pour la prédiction en 2011 pour une grande 
(79,1 km²) et petite (36,6 km²) fenêtres en utilisant la taille des cellules de 25 m, 50 m et 100 m. 
Les effets de la résolution spatiale ont également été analysés par upscaling de 25 m à 50 m et 
100 m, puis par downscaling retour à 25 m. 
Enfin, le chapitre 5 mesure le degré d'érosion du sol, identifie les impacts des changements de la 
couverture terrestre sur l'érosion des sols, et prédit l'érosion des sols dans les vignobles pour 2025 
à l'échelle du bassin versant en utilisant RUSLE. Différents paramètres ont été mesurés. L'indice 
de l'érosion des précipitations (R) a été estimé à partir des précipitations moyennes dans la 
période 1975-2005 suivant Torri et al. (2006). Le facteur d’érodabilité du sol K a été calculé 
suivant l'équation proposée par Wischmeier et Smith (1978). S’y ajoutent des facteurs de gestions 
des terres et de conservation en fonction du type d’occupation du sol. Des cartes d’érosion des 
sols ont été prévues pour 1950, 1982, 2003, 2011 et 2025. Pour les taux d'érosion estimés en 
2025, la transition des cartes potentielles ont été créées pour toutes les transitions possibles en 
fonction des changements historiques réels au cours de la période de 1982 à 2003 et des variables 
explicatives en utilisant l'algorithme MLPNN de IDRISI (Eastman, 2012). Les taux d'exactitude 
de la prévision de plus de 70% étaient les suivants : de la forêt à la vigne, de la forêt en prairies, 
de la forêt en zone bâtie, de la vigne à la surface construite, et des prairies en zone bâtie.  
Enfin, la thèse se termine par une dernière section qui présente une synthèse des résultats, une 
discussion sur les limites de cette étude, et des suggestions pour la recherche future. 
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CHAPITRE 1 : ETAT DE LA QUESTION SUR LES DYNAMIQUES D’OCCUPATION 
DU SOL ET LA MANIERE DE LES MODELISER 

 

I. Etat de la question sur les changements d’occupation du sol 

1.1 Introduction 

La couverture terrestre est la couverture physique et biologique sur la surface de la terre, y 
compris l'eau, la végétation, le sol nu et structures artificielles (Ellis, 2011). L’occupation du sol 
et des terres est un terme plus complexe qui fait référence aux activités humaines telles que 
l'agriculture, la sylviculture, la construction de bâtiments et toute autre fonction qui modifie la 
surface de la terre ou la couverture terrestre. Les changements d’occupation du sol ont été 
particulièrement importants en Europe méditerranéenne, depuis la Seconde Guerre mondiale (Fox 
et al. 2012) en raison des activités humaines intensives (Geri et al., 2010). Ils sont en effet 
déterminés par l'interaction entre les activités humaines (croissance démographique, étalement 
urbain, développement industriel, tourisme et la politique environnementale, etc.) et des facteurs 
environnementaux (caractéristiques du sol, climat, topographie et végétation, etc.). Les 
changements d’occupation du sol (LUCC, « Land use / cover change ») sont importants à 
comprendre parce qu’ils témoignent de phénomènes plus globaux sur la biodiversité et les 
écosystèmes, la sécurité alimentaire, la santé humaine, la dégradation des sols, l'urbanisation et le 
changement climatique mondial 

1.2. Les dynamiques majeures de changement de l’occupation du sol dans l’espace euro-
méditerranéen  

La zone côtière de la Méditerranée européenne a connu de profonds changements dans 
l’occupation du sol depuis 1950, à cause des révolutions industrielles et agricoles. En outre, la 
pression démographique élevée, le développement socio-économique très fort et surtout sa 
spécialisation dans des activités touristiques dans la région méditerranéenne, ont accentué 
l’urbanisation le long de la côté, à des rythmes très élevés (Cori 1999). Ces phénomènes se sont 
traduits sur les terres agricoles. Selon différentes études (Geri et al. 2011, Nunes et al., 2011), 
deux transformations majeures ont affecté l’occupation du sol de la région côtière de la 
Méditerranée, au cours des dernières décennies. Tout d'abord, dans les plaines alluviales, 
l'agriculture sèche et les terres forestières ont diminué, pendant que les vallons abandonnés et les 
escarpements étaient reboisés spontanément, signes de la décroissance des vignes et des oliviers. 
Ensuite, et parallèlement, l'urbanisation rapide s’est mise en place dans la plupart des plaines 
côtières, associée à une forte activité touristique et à une agriculture résiduelle. Puis, tout ceci a 
entrainé le développement des infrastructures et des réseaux de communication, ce qui a 
irrémédiablement conduit à l’abandon des terres agricoles sur des terres marginales. Serra et al. 
(2008) confirment ces propos pour le comté d’Alt Empordà (nord-ouest de la Catalogne, 
Espagne). Falcucci et al. (2007) signalent, au sujet de l’Italie, que l’agriculture a diminué dans les 
zones montagneuses et côtières, mais s’est étendue dans le reste du pays avec une transformation 
d’une culture traditionnelle en culture intensive basée sur la technologie moderne. Dans leurs 
travaux sur les transformations d’occupation du sol d’un bassin versant méditerranéen (province 
de Sienne, Italie) entre 1954-2000, Geri et al. (2010) ont révélé que ce sont essentiellement les 
terres semi-naturelles qui sont devenues des zones forestières ou des terres agricoles. En outre, les 
pertes de superficie forestière ont eu lieu principalement à des altitudes élevées et la conversion 
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des terres agricoles en semi naturel a eu lieu à des altitudes plus basses. Pour la France, Fox et al. 
(2012) ont mené une étude pour analyser l'impact des changements de la couverture terrestre sur 
écoulement total, dans un bassin versant méditerranéen entre 1950 et 2003. Ils ont montré que la 
couverture terrestre de la zone d'étude est fortement influencée par la topographie et que la 
plupart des changements d’occupation du sol ont eu dans la plaine et les contreforts du bassin, 
avec notamment une transformation des vignobles en zone urbaine 

1.3 Les facteurs influents du changement d’occupation du sol 
Les changements d’occupation du sol se produisent sous la pression d'une variété de facteurs 
socio-économiques qui interagissent avec l'environnement naturel pour déterminer la nature et la 
localisation de ces transformations.   Le facteur majeur demeure la pression démographique et l’étalement urbain, qui se sont 

mis à en place à des rythmes effrénés. Selon Benoit (2001), les régions côtières de la 
Méditerranée sont plus urbanisées que les pays dans leur ensemble, et les populations 
urbaine et totale dans la région méditerranéenne ont augmenté de 2,7 et 1,9 fois, 
respectivement entre 1950 et 1995. Toujours selon ces travaux, la côte méditerranéenne 
européenne est maintenant presque entièrement urbanisée, avec une distance moyenne 
entre les zones urbaines d'environ 10 km, 17 km et 18 km en Italie, en Espagne et en 
France, en 1995. Plus encore, 34% des zones côtières méditerranéennes espagnoles ont été 
urbanisées depuis 1999 et ce chiffre était de 43% pour la côte italienne (Serra et al., 2008). 
Cette artificialisation des sols (urbanisation, routes, parkings, jardins, pelouses, etc.) s’est 
essentiellement développée au détriment des zones agricoles ou forestières.   Le second facteur est bien évidemment le tourisme, puisque la Méditerranée est la 
première destination touristique au monde (MAP 2008). Van Eetvelde et Antrop (2004) 
expliquent que les valeurs naturelles, culturelles et panoramiques des paysages euro-
méditerranéens sont des éléments importants pour le développement du secteur du 
tourisme dans ces lieux. Comme décrit par EAA 2011, le nombre de résidences 
secondaires a augmenté de 10% entre 1990 et 1999 en France, créant une pression 
intensive sur l'environnement, en particulier dans les zones côtières et montagneuses. 
Selon Cori 1999), la moitié des résidences secondaires en France sont situées dans la zone 
côtière de la Méditerranée. Ainsi, les infrastructures à destination des touristes (logement, 
routes, divertissement, etc.) sont construites de façon permanente, ce qui contribue à 
accélérer la croissance urbaine, et donc à modifier l’occupation du sol.   Le troisième facteur concerne l’intensification de l’agriculture. Globalement, deux 
modèles de changement agricole de la couverture terrestre dans les régions 
méditerranéennes européennes au cours des cinquante dernières années peuvent être 
définis (Baldock et al., 1996). D’une part, les lieux les plus appropriés et productifs ont 
été convertis à des usages agricoles plus intensifs depuis les années 1950, souvent avec 
une expansion des terres arables au détriment des prairies permanentes, les zones 
humides, et de la forêt. D’autre part, les zones marginales avec des barrières physiques et 
socio-économiques comme les pentes abruptes, les petites terrasses, les zones humides 
sans systèmes de drainage, et les régions montagneuses reculées ont été abandonnées ou 
remplacées par des systèmes agricoles spécialisés, plantations forestières ou la succession 
naturelle.  L’abandon des terres peut être considéré comme le quatrième facteur. Il s’applique à la 
terre où l'utilisation agricole traditionnelle ou récente a cessé. La plupart des études (Geri 
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et al. 2010, Koulouri et Giourga 2007, Sluiter et de Jong 2007, Van Eetvelde et Antrop 
2004) sur l'abandon des terres en Europe méditerranéenne montrent que les zones de 
collines montagneuses ou semi montagneuses ont été abandonnées en raison de petites 
parcelles de vignes et oliviers non rentables. La plupart des abandons de terres ont eu lieu 
au cours des dernières décennies en raison de l'urbanisation et de l'intensification agricole 
(fertilité du sol, pente, altitude, disponibilité en eau etc. qui définissent le potentiel 
agricole), mais aussi de l'évolution technologique des systèmes et politiques agricoles 
pour la commercialisation ou encore de la population agricole vieillissante.  Puis, les facteurs économiques interviennent pour expliquer les changements d’occupation 
du sol. Selon certaines études (Baldock et al 1996), tout s’explique derrière le terme de 
concurrence : d'autres zones agricoles, d'autres couvertures terrestres, d’autres types 
d’emploi, et d’autres systèmes de production.  Enfin, les politiques et la planification jouent aussi. Nunes et al. (2011) décrivent la façon 
dont les domaines de l'environnement et de la forêt ont bénéficié de la réforme de la PAC 
en 1992. Par exemple, cette politique agricole a encouragé les grandes entreprises 
agricoles et cultures subventionnées dans les grands champs. En conséquence, l'abandon 
des terres agricoles s’est déroulé dans des zones moins favorables pour ces grands 
champs, en vertu également des politiques de boisement pour réduire la désertification et 
l'érosion des sols. 

En outre, ces changements d’occupation des sols ont diverses conséquences en Europe 
méditerranéenne : déclin de la diversité et de la complexité des paysages, augmentation de 
certains risques tels que les incendies de forêt, les inondations et les sécheresses. Mais il peut y 
avoir aussi des effets positifs. Ainsi, dans ce cas, Koulouri et George (2007) ont observé que la 
diminution de l'érosion des sols est due à la régénération de la végétation qui a amélioré la 
structure du sol en ajoutant de la matière organique. 

 

II.  Etat de la question sur la modélisation du changement d’occupation du sol 

2.1 Introduction 

Les changements d’occupation du sol (« Land use / cover change », LUCC) sont devenus un 
enjeu très important pour les chercheurs et gestionnaires, y compris les planificateurs, les 
écologistes, les économistes, en raison de leur relation avec les modifications de l'environnement 
mondial et le développement durable (Dietzel et Clarke 2006, Guan et al. 2011, Lambin et al., 
2001). En effet, ils sont liés à l’interaction entre les activités humaines et l'environnement naturel. 
Leur modélisation permet d’en identifier la localisation, d’en mesurer les niveaux, de  prévoir les 
modifications futures compte tenu des transformations passées et actuelles, et d’en tester des 
variables explicatives. En conséquence, des chercheurs ont créé un vaste ensemble d'outils de 
modélisation opérationnelle pour mettre en œuvre la prédiction et l'exploration de trajectoires 
possibles des changements d’occupation du sol (Verburg et al., 2006). Mais très peu d’études 
portent sur les dynamiques modélisées de l’occupation du sol dans la région méditerranéenne 
(Geri et al. 2011, Oñate-Valdivieso et Bosque Sendra 2010, Petrov et al., 2009). Il s’agit dans ce 
chapitre de présenter un aperçu des méthodes de modélisation des transformations d’occupation 
du sol, et de justifier notre choix d’utiliser l’approche « Land Change Modeler » (LCM) du 
logiciel IDRISI comme outil de modélisation pour notre étude.  
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2.2. Les modèles de couverture terrestre et d’occupation du sol  
Différentes techniques de modélisation ont été conçues pour saisir l’état et l’évolution de 
l’occupation du sol, en utilisant les potentiels biophysiques et les caractéristiques socio-
économiques (Guan et al. 2011, Kamusoko et al., 2009, Barredo et al., 2003, He et al., 2008). 
Certains ont une approche plus statistique, d’autres plus spatiale comme les automates cellulaires 
(CA) ou le modèle de SLEUTH (Clarke et Gaydos 1998). Quatre types peuvent être distingués.  Premièrement, les automates cellulaires fonctionnent à partir d’un ensemble d’états 

cellulaires possibles, qui évoluent à partir de règles de transition prenant en compte la 
situation des cellules environnantes. En quelque sorte, les automates cellulaires sont des 
systèmes spatiaux, dont les cellules sont situées et interconnectées dans l’espace, et qui 
évoluent dans le temps et dans l’espace. Plus précisément, appliqué à notre cas, un 
automate cellulaire se compose (Liu 2009, White et al., 1999) d’un ensemble de cellules, 
unité spatiale de base, définies par des états en fonction d’attributs (type de couverture du 
sol, statut socio-économique, densité de population, etc.), et qui évoluent dans le temps en 
fonction de règles de transition élaborées (probabilités de transformation des cellules, 
calculées à partir de l'accessibilité, du zonage, et des effets de voisinage, etc.) qui 
s’appliquent à l’échelle d’un quartier. 
De nombreuses modélisations à travers les automates cellulaires ont été développées dans 
la dernière décennie, en raison de leur puissance technique et modélisatrice (Dietzel et 
Clarke 2004, Wu et al., 2009), particulièrement dans les études urbaines pour simuler 
l’expansion urbaine dans l’espace (Clarke et Gaydos 1998, Liu 2009, Santé et al. 2010, 
blanc de 1998, White et Engelen 2000). De telles approches ont également été mises en 
œuvre pour simuler plusieurs types d’utilisation des terres, montrer leurs dynamiques, et 
analyser la croissance urbaine locale et régionale (Jantz et al., 2004). Ainsi, par exemple, 
White et al. (1997) ont modélisé la croissance urbaine, grâce aux automates cellulaires : 
les cellules représentaient les couvertures terrestres, les règles de transition exprimaient la 
potentialité temporelle de chaque type de couverture terrestre, et le réseau routier, les 
plans d'eau, et les chemins de fer étaient utilisées comme des contraintes spatiales pour le 
développement urbain de l'utilisation des terres. 
Deux exemples d’application d’automates cellulaires – particulièrement utilisés - sont à 
signalés. D’une part, le modèle SLEUTH intègre six types d’éléments, essentiellement 
locaux, dans les règles de croissance d’une grille de cellules : la pente, l’occupation du 
sol, l’exclusion, l’urbanisation, le transport, et la topographie. D’autre part, l'unité de 
gestion des terres de l'Institut pour l'environnement et le développement durable 
(MOLAND) a mis au point un cadre de modélisation intégrée basée sur le CA développé 
par White et al. (1997) pour évaluer, surveiller, et les politiques de gestion de 
l'environnement spatial, urbain, régional et durable modèle passés, présents et futurs en 
Europe. Ce modèle se distingue donc par sa prise en compte des politiques spatiales 
existantes (Barredo et al., 2003). 
Au-delà de ces exemples, nous avons identifié les avantages et les limites de ce type de 
modélisation par automates cellulaires. Ces modèles sont explicitement spatiaux (Blanc et 
Engelen 2000), dans la localisation et le comportement des cellules, dans leurs capacités à 
représenter des processus spatiaux, et dans leurs facilités d’intégration de données 
spatiales raster dérivées de plates-formes de télédétection. Ils sont en outre capables de 
représenter des dynamiques spatio-temporelles. C’est pourquoi ces modèles sont 
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couramment utilisés dans la connaissance et la simulation du développement urbain 
(White et Engelen 2000, Murayama et Thapa 2011, Li et Liu 2008). Cependant, ces 
modèles avec automates cellulaires ont certaines limites pour saisir les processus 
d’urbanisation complexes (Verburg et al., 2004), et notamment calibrer les multiples 
catégories d'utilisation des terres (Li et Yeh, 2002). En outre, ils n’arrivent pas à intégrer 
les influences de facteurs humains tels que les politiques publiques.  Deuxièmement, la modélisation de la chaîne de Markov est une technique de simulation, 
introduite en Géographie en 1965 pour étudier la dynamique des zones résidentielles dans 
le centre-ville par Clark (1965). Depuis, le développement des outils de télédétection et de 
SIG ont élargi leur utilisation aux études environnementales : dynamique de la végétation 
(Balzter 2000), évaluation des grands investissements publics tels que les barrages et leurs 
impacts sur l’occupation du sol (Muller et Middleton, 1994), ou encore prévision des 
différentes catégories de mutations de l’occupation du sol (Weng 2002). En effet, la 
modélisation de la chaine de Markov évalue les changements récents dans l’espace et les 
utilise comme conditions initiales pour les intégrer dans des matrices de probabilité de 
transition pour simuler l’avenir (Zhang et al., 2011 ). Par exemple, on peut construire des 
matrices de probabilité de transition, en calculant à partir de 2 cartes d’utilisation du sol à 
2 temps, le passage d’un état (terres cultivées, par exemple) à un autre état (zones bâties) 
dans une période de temps donnée (Benenson et Torrens 2004, Jokar Arsanjani et al. 
2013). 
On peut combiner un modèle de Markov, pour déterminer les changements temporels des 
types d’occupation du sol au fil du temps sur la base de matrices de transition de 
probabilité, avec un automate cellulaire, pour contrôler la configuration spatiale du 
changement grâce à des règles de voisinage en fonction du potentiel de transition de 
chaque pixel (Araya et Cabral 2010, He et al., 2008).  Troisièmement, LCM (Modèle de changement d’occupation du sol ou « Land Change 
Modeler ») est un module d'analyse écologique dans le logiciel IDRISI, développé par 
Clark Labs. Il est recommandé pour évaluer et prévoir les changements d’occupation du 
sol, puisqu’il calcule des potentiels de transition entre deux images d’entrée, sur la base de 
réseaux de neurones (méthode statistique non linéaire, qui se compose d’un réseau 
connecté d’unités de traitement). Ce modèle a donc l’avantage de modéliser des 
transitions de groupe et les relations complexes entre de nombreuses variables. Par 
exemple, Mas et al. (2012) ont mené une étude visant à saisir et prévoir l’occupation du 
sol. Ils ont utilisé la répartition des phénomènes fonciers de 1986 et 1994, et cinq 
variables explicatives (distance aux zones urbaines, distance aux routes, pente, distance à 
la perturbation, et altitude), pour simuler une future occupation du sol, en se basant sur 
des cartes de potentiels de transition dans IDRISI, avec une matrice de Markov. Les 
conclusions de l’étude ont révélé d’assez bonnes prédictions de changement du sol.   Enfin, dernièrement, la modélisation multi-agents (SMA) est constituée d'un ensemble 
d'agents qui interagissent entre eux et avec leur environnement pour répondre aux 
objectifs de l'utilisateur en utilisant l'information et les états des objets dans 
l'environnement (Ligtenberg et al., 2004). Cette approche de modélisation est capable de 
tenir compte à la fois de l’état précis de chaque occupation du sol, des interactions 
spatiales et donc de la concurrence entre les différentes couvertures terrestres (Verburg et 
Overmars 2009). Il s’agit d’une modélisation spatialement explicite, et les agents 
représentent, par exemple, les ménages qui déménagent leurs foyers ou des individus qui 
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utilisent des systèmes de transport (Miller et al., 2004). Dans le contexte qui nous 
intéresse, un agent peut représenter les caractéristiques de l’occupation du sol, les 
composants et la qualité du sol, l'état topographique, et également intégrer des choix de 
gestion des terres plus sociaux (politique foncière, dynamique des populations, niveau de 
revenus) 

2.3. Justification du choix d’étude  
Au final, différents types de modélisation ont été présentés et discutés. La modélisation par 
automates cellulaires, principalement utilisée dans la simulation de croissance urbaine, a montré 
ses limites dans la prédiction de l’occupation du sol multiple et complexe. Par ailleurs, peu 
d’études ont réussi avec succès à utiliser la modélisation par chaine de Markov. Cependant, 
plusieurs travaux ont mis au point une prédiction acceptable en combinant ces deux approches 
précédentes (Araya et Cabral 2010, Guan et al. 2011, Jokar Arsanjani et al. 2013, Kamusoko et al 
. 2009). En outre, les modèles multi-agents sont largement utilisés pour intégrer fortement la 
composante spatiale et des variables explicatives humaines et sociales. Enfin, nous avons montré 
que le modèle LCM (Land Change Modeler, modélisation du changement de l’occupation du sol) 
d’IDRISI, basé sur la combinaison automates cellulaires / Markov, était un outil performant pour 
évaluer et prédire les changements spatiaux de l’occupation du sol. En outre, il dispose de 
différents indicateurs qui en font une technique très puissante. En conséquence, dans notre étude, 
nous avons utilisé des variables explicatives topographiques combinées avec des éléments de 
planification spatiale pour simuler les changements d’occupation du sol, sans tenir compte de 
certains attributs sociaux (population et données socio-économiques) ; notre choix ne s’est donc 
pas orienté vers une modélisation à base d’agent. Nous nous sommes alors orientés vers une 
modélisation de transformation d’occupation du sol (LCM) sous IDRISI, un modèle qui couple 
automates cellulaires avec chaine de Markov, pour simuler des tendances temporelles et spatiales.  
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CHAPITRE 2 : DYNAMIQUE SPATIALE DE L’OCCUPATION DU SOL DANS UN 
BASSIN VERSANT EURO-MÉDITERRANÉEN (1950-2008) 

 

I. Introduction 

Nous nous situons un contexte où la région euro-méditerranéenne connaît une très forte 
croissance urbaine depuis les années 1970, du fait du développement du tourisme mais aussi de 
l’attraction migratoire générale de ces espaces. Dans ce cadre, l'agriculture traditionnelle 
méditerranéenne est composée principalement de vignes, d'oliviers et de blé cultivés dans 
l'arrière-pays à proximité, souvent sur des terrasses. De nombreux auteurs ((Serra et al., 2008) ont 
montré que les vignes et les oliviers ont diminué dans les zones montagneuses et les sous-régions 
de transition, ce qui entraîne l'abandon des terres et l'augmentation de la superficie des terres en 
forêt. La vigne a essentiellement diminué à proximité des routes et des zones urbaines en raison 
de l'étalement urbain. 
La plupart des études sur le changement de l’occupation du sol dans la région méditerranéenne 
mettent en évidence un problème particulier ou décrivent un changement de la couverture 
individuelle de la terre, comme la forêt, l'agriculture ou l'expansion urbaine (Calvo-Iglesias et al. 
2009, Pelorosso et al., 2009) ; seuls quelques travaux prennent en compte tous ces changements 
en même temps. En outre, la répartition spatiale des transformations de l’occupation du sol est 
souvent réalisée, mais l’identification des variables clés qui influencent ces changements se limite 
principalement à l'altitude ou la pente (Geri et al. 2010, Serra et al., 2008) ; quelques rares auteurs 
(Sluiter et de Jong 2007) prennent les variables de distance en compte. De plus, si de nombreuses 
recherches s’intéressent à la dynamique de la population urbaine et à l’expansion du tourisme 
dans la zone côtière méditerranéenne française, en termes d’intensification et de littoralisation, 
très peu de travaux décrivent précisément les changements d’occupation du sol dans la région. 
Le premier objectif de ce chapitre est de quantifier la modélisation des dynamiques de 
l’occupation du sol en termes de gains, de pertes, de changement total et de transition dans un 
bassin versant méditerranéen, caractérisé par une activité viticole forte, et à proximité d'une zone 
côtière bien connue pour son tourisme. Le deuxième objectif est de mesurer les impacts des 
variables topographiques et de distance sur les transformations de la couverture terrestre pour 
chaque catégorie d’occupation du sol. 

 

II.  Aspects méthodologiques 

2.1. Présentation de la zone d’étude  
La zone d'étude (environ 235 km²) est située dans le département du Var, dans le Sud-Est de la 
France, près du golfe de Saint-Tropez (figure 2.1). Elle est caractérisée par un climat 
méditerranéen avec des étés chauds et secs et des hivers pluvieux. Les températures moyennes 
varient entre 22° C à 26° C en été et de 5° C à 10° C en hiver. La pluviométrie moyenne annuelle 
est d'environ 900 mm, et la principale saison des pluies est d'octobre à janvier et en avril (Fox et 
al. 2012). 
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Figure 2.1: Localisation de la zone d’étude. 

La zone d'étude comprend deux unités topographiques : la partie supérieure avec les collines du 
bassin versant (environ 70% du bassin versant), et la partie inférieure du bassin, située près du 
golfe, qui se finit en pente douce sur une plaine alluviale (Fox et al. 2012). La partie occidentale 
du bassin versant est constituée de forêt, et la topographie y est inégale, avec des altitudes 
pouvant aller jusqu’à 650 mètres. Plusieurs affluents (la Môle, la Grenouille, la Tourre, Verne) se 
jettent dans la rivière principale qu’est le Giscle.  
L’activité agricole et l’urbanisation modérée à dense sont les types dominants de l’occupation du 
sol, dans la partie inférieure du bassin versant. Les vignobles représentent environ 10% de la 
superficie du bassin versant (Roy et al. 2014). Ils sont, pour la plupart, situés dans la plaine 
inondable de sable, mais se sont également étendus sur des pentes depuis 2003, là où les sols sont 
minces, légèrement acides et pierreux (Fox et al. 2006, Roy et al. 2014). 
La région est devenue une destination touristique majeure de la France méditerranéenne dans la 
seconde moitié du XXe siècle, avec le développement de la « Côte d'Azur", et ceci a généré une 
forte croissance de l'urbanisation. Trois principaux lieux de peuplement existent. Ils sont situés 
dans le bassin versant : Cogolin, Grimaud et La Môle. Cogolin est la commune la plus peuplée 
(11 000 hab en 2011), et Grimaud est de plus petite taille (4000 hab) (INSEE 2011). La Môle est 
un petit village avec une population d’environ 950 habitants (INSEE 2011). La population totale 
du bassin versant augmente très fortement en été, allant jusqu’à être multipliée par 10, du fait de 
l’activité touristique et des résidences secondaires. Sur la population permanente, les variations 
de population sont très faibles. Contrairement à d’autres zones côtières de la Méditerranée, le 
front de mer est confiné par le golfe et la topographie, et les changements de l’occupation du sol 
sont limités à la zone côtière  

2.2. Descriptions des données utilisées et classification de l’occupation du sol  
Des cartes de l’occupation du sol ont été numérisées, à partir de photographies aériennes 
numériques orthorectifiées (1950 et 1982 en panchromatique ; 2008 en couleur). La résolution 
initiale des photographies aériennes était de 0.5 m, mais cela a réduit à 1 m pour faciliter la 
manipulation des données. Les photographies aériennes de 1950 étaient les premières photos de 
haute qualité de la Seconde Guerre mondiale disponibles, à un moment où la région était encore 
fortement rurale ; une date intermédiaire (1982) a été choisie entre 1950 et les plus récentes 
photographies de 2008. L’année 1982 représente également la couverture terrestre au début de 
l'étalement urbain rapide (Baccaini et Sémécurbe 2009, Salvati et al. 2013). 
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Les surfaces ont été classées en cinq catégories en fonction de l'interprétation visuelle réalisée (cf. 
figure 2.2) : la forêt, les prairies, les vignes, les zones urbaines et périurbaines (distinguées en 
fonction de leur densité). La classification de la couverture terrestre a été facilitée par de 
nombreuses visites sur le terrain. Les routes principales et les réseaux de cours d'eau ont ensuite 
été numérisés à partir des photographies aériennes de 2008. La taille des cellules de toutes les 
cartes numérisées a été changée de 1 m à 25 m, afin de les rendre compatibles avec l’échelle du 
MNT (25 mètres), utilisé pour la création des variables topographiques et de la distance. 

2.3. Les matrices de dynamiques temporelles (1950-1982, 1982-2008 et 1950-2008) 

Les mutations de l’occupation du sol ont été quantifiées en utilisant la matrice de tableau croisé 
du module Land Change Modeler (LCM) d’IDRISI Selva, qui est un outil permettant de mesurer 
les changements entre images à dates différentes. Trois périodes temporelles ont été distinguées : 
1950-1982, de 1982 à 2008, 1950 à 2008. Pour chacune d’elles, nous avons calculé et spatialisé 
différents indicateurs : les gains, les pertes, le changement total (addition des gains et pertes), la 
variation nette, et l'échange (échanges entre les classes de couverture terrestre). 

 

III.  Résultats 

3.1. Les tendances générales des dynamiques de l’occupation du sol 

 

Figure 0.2 : Les types d’occupation du sol (a) 1950, (b) 1982, (c) 2008, (d) 2011. 

La figure 2.3. présente l’occupation du sol sous formes de cartes numérisées, à partir de photos 
aériennes. La forêt est la couverture terrestre dominante dans le bassin versant, passant de 86% de 
la surface totale à 85% entre 1950 et 2008. Classé en deuxième place, le vignoble a perdu plus 
d’un quart de sa couverture initiale, surtout depuis 1982. Puis, les prairies ont augmenté de 
manière significative sur toute la période (+50% entre 1950 et 2008), mais ne se placent qu’en 
troisième position. Enfin, en ce qui concerne les zones construites (urbaines et péri-urbaines), 
elles sont de plus en plus présentes sur le territoire (50 ha en 1950, 700 ha en 2008). La plupart de 
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ces changements d’occupation du sol se sont concentrés dans la partie orientale du bassin versant, 
sur la plaine alluviale. 

Ensuite, nous avons réalisé une analyse détaillée des mutations de l’occupation du sol pour trois 
périodes (1950-1982, 1982-2008, 1950- 2008), en utilisant des tableaux croisés, qui indiquent 2 
phases différentes en ligne et en colonne.  Entre 1950 et 1982 (Tableau 2.2), la forêt a la plus grande persistance (surface similaire à 

97%), et ses terres perdues se transforment en vignobles (407 ha). En parallèle, les vignes 
se maintiennent de manière modérée (67%), et l’occupation du sol devient alors surtout de 
la prairie (362 ha). Mais la compensation des pertes de la vigne n’est que partielle, 
puisque une partie des sols en activité viticole se transforme en forêt (234 ha). La 
catégorie urbaine est stable, et son expansion se réalise majoritairement sur le vignoble. 
En conséquence, entre 1950 et 1982, le vignoble est l’occupation du sol qui a subi le plus 
de changements et de transferts, en particulier sur les zones urbaines et avec les forêts et 
les prairies. A l’inverse, les espaces urbains gagnent du terrain, mais ont de faibles 
échanges.  Les tendances en cours entre 1950 et 1982 se sont poursuivies entre 1982 et 2008. La 
superficie forestière a diminué légèrement, mais a maintenu une persistance élevée 
(96,6%) en raison de sa grande surface. Une grande partie du vignoble a continué à se 
convertir en prairies (445 ha) ; mais au cours de cette période, l'effet compensateur de la 
forêt sur la vigne a été plus faible que précédemment (237 ha contre 407 ha) : l’activité 
viticole est donc devenue moins pérenne (61%).En parallèle, entre 1982 et 2008, les 
prairies constituent l’occupation du sol qui bouge le plus, et interagit le plus avec les 
autres catégories, même si elle ne représente qu’une faible part du bassin versant (4,8% de 
la superficie totale en 2008). Les zones urbaines et périurbaines connaissent une forte 
croissance sur cette période  Au final, sur 60 ans, entre 1950 et 2008, on observe des changements majeurs dans 
l’occupation du sol (Tableau 2.6). La forêt est restée la catégorie vraiment dominante, 
mais de grandes zones forestières ont été converties en vignoble (458 ha) et de prairies 
(320 ha). Ces pertes ont été partiellement compensées par des gains de vignoble (331 ha) 
et de prairies (191 ha). La vigne est la catégorie qui a contribué le plus à tous les autres, et 
plus particulièrement aux prairies (518 ha). La majorité de l'expansion urbaine a eu lieu 
sur le vignoble tandis que la croissance des zones périurbaines a eu lieu plus ou moins 
également sur le vignoble et la forêt. Dans l’ensemble, 3 catégories ont montré leur 
fragilité : vignoble, prairies et péri-urbain. Mais les échanges sont complexes entre les 
catégories.  
 

Land cover type Forest Vineyard Grassland Urban Suburban Total 
Forest 19569 (95.3) 331 191 0 0 20091 
Vineyard 458 1015 (45.3) 144 0 0 1616 
Grassland 320 518 302 (40.1) 0 0 1140 
Urban 69 241 66 19 (100) 8 402 
Suburban 123 137 51 0 5 (40.8) 316 
Total 20538 2241 754 19 13 23565 

Tableau 0.1: Mutations entre les occupations du sol en 1950 (colonnes) et 2008 (lignes) 

3.2. Les dynamiques spatiales influençant les changements d’occupation du sol 
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On s’intéresse d’abord à la localisation des dynamiques de l’occupation du sol, entre 1950 et 
2008. Pour la forêt, la majeure partie des terres perdues se situe dans les contreforts à proximité 
de la plaine alluviale, tandis que la forêt progresse dans l’espace principalement dans la partie 
sud-est de la plaine alluviale. Pour la vigne, la zone perdue dépasse nettement les gains, et les 
pertes se sont concentrées dans la plaine alluviale. Les gains en terrain viticole ont tendance à se 
trouver en dehors de la zone plaine alluviale de l'Est, soit dans les contreforts à proximité ou sur 
le sol alluvial à l'extrême sud-ouest du bassin versant. En revanche, pour la catégorie des prairies, 
il n'y a pas de forte structure spatiale des gains et des pertes puisque ceux-ci se localisent tous les 
deux dans la plaine alluviale. Enfin, l’expansion des zones urbaines s’est réalisée exclusivement 
dans la plaine alluviale, et à partir des centres urbains existants (Grimaud, Cogolin). 

Si l’on étudie l’impact des variables spatiales, on peut mettre en évidence les faits suivants :  L’influence de l’altitude est majeure (Figure 2.8). Toutes les catégories d’occupation du 
sol ont une dynamique qui décroît exponentiellement avec l'altitude, et se concentre 
essentiellement dans les altitudes de moins de 25 m. Une certaine organisation spatiale 
apparait ainsi en fonction de l’altitude : à moins de 25 mètres, les vignes déclinent de 
manière importante et laissent la place à des couvertures forestières ou à l’expansion 
urbaine ; à plus de 200 mètres, les pertes du couvert forestier s’intensifient ; et les 
altitudes intermédiaires voient se développer les zones de construction.  La pente et l'altitude sont bien évidemment corrélées dans le bassin versant, et on aboutit à 
des conclusions similaires à propos de leurs effets dans l’espace. La majeure partie des 
mutations se concentrent sur des pentes inférieures à 10%. Quelques apports 
supplémentaires mineurs apparaissent, comme par exemple, l’absence de progression de 
la forêt sur les pentes les plus raides.   La distance aux cours d’eau apparaît comme un facteur important (Figure 2.10), toutes les 
catégories d’occupation du sol diminuant de manière exponentielle en fonction d’elle. 
Entre 1950 et 1982, les progressions majeures des vignes se situent proches des cours 
d’eau ou à distance intermédiaire (moins de 900 mètres). Des processus similaires se 
produisent pour les prairies, dans la dernière période. A l’inverse, la forêt gagne de la 
surface près des cours d’eau entre 1950 et 1982, et en perd dans la même localisation 
entre 1982 et 2008. En ce qui concerne les zones construites, l’effet de la distance au 
cours d’eau se joue non pas à proximité immédiate, mais dans des distances 
intermédiaires (environ 100-800 m). 
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Figure 0.3: Types d’occupation du sol et distance aux cours d’eau, en (a) 1950-1982, (b) 1982-2008 

 

 Les variations des types d’occupation du sol mises en relation avec la distance à la route 
suivent la tendance exponentielle décroissante de la plupart des variables prises en 
considération. Environ 40% à 50% des dynamiques totales de la forêt, de la vigne, et des 
prairies ont lieu à moins de 100 m d'une route. Cette valeur est supérieure à 95% pour la 
zone construite. Entre 1982 et 2008, la distance à la route s’élargit, et c’est plutôt la 
gamme 100-300 mètres qui joue un rôle.   La relation entre les transformations des types d’occupation du sol et la distance aux 
zones construites (Figure 2.12) est fortement dépendante du temps. Entre 1950 et 1982, la 
relation n’existe pas, malgré une tendance pour les couvertures de végétation (forêt, 
vignes, prairies) à montrer un plus grand changement à des distances intermédiaires de la 
zone construite (300-1300 m), et la zone construite à changer de manière plus proche de la 
zone précédemment construite (0-100 m). Entre 1982-2008, le modèle est totalement 
différent. Pour le vignoble et les prairies, les dynamiques totales augmentent d'abord en 
fonction de la distance à  la surface construite, avec des pics à environ 100-200 m, puis 
diminuent au-delà. Les variations de la couverture forestière sont à peu près constantes 
entre 0-300 m avant de diminuer avec de plus grandes distances 

 
Figure 0.4: Types d’occupation du sol et distance aux zones construites, en (a) 1950-1982, (b) 1982-2008 

 

 L’influence de la distance à la mer sur les types d’occupation du sol est distincte de tous 
les autres modèles examinés jusqu'ici. Avant de l’examiner, il convient de noter que le 
front bassin versant de la mer est limité à une bande étroite près de la sortie dans le Golfe 
de St Tropez (Figure 2.1). Les variations majeures des vignes, des prairies et de la zone 
construite se localisent à environ 3 à 5 km du front de mer. Cette distance correspond à 
peu près au centre de la plaine alluviale et est proche des noyaux de Cogolin et Grimaud. 
Les changements dans la couverture forestière se situent à une plus grande distance 
(environ 7-9 km) et cela correspond à peu près à un pic secondaire dans le changement 
des vignes et de prairies. 
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IV.  Discussions 

Il convient de noter que les variables topographiques et de distance sont souvent corrélées, mais 
peuvent avoir des effets distincts. L'altitude et la pente sont corrélées et les deux reflètent une 
plus grande distance de la mer; tous influencent les coûts et donc les niveaux de construction. La 
distance à la mer reflète également l’impact de la distance aux zones construites, les grandes 
villes de Ste Maxime et St Tropez étant situées de chaque côté du golfe de St Tropez. 

Dans la littérature scientifique, la transition de la couverture terrestre la plus fréquemment citée 
dans les régions méditerranéennes est l'abandon des pratiques agricoles sur les terres marginales 
et sa conversion en forêt (Falcucci et al. 2007, Geri et al. 2010, Parcerisas et al. 2012, Pelorosso 
et al., 2009, Serra et al., 2008). Cela n'a pas été observé dans ce bassin versant. Au contraire, les 
terres marginales sur des pentes plus raides ont été converties de forêt en vignoble, comme on 
peut le voir sur la figure 2.14 montrant les vignobles en terrasses sur les contreforts des dessus de 
la plaine alluviale. En ce qui concerne les vignobles, de vastes zones de la plaine ont été 
converties en prairies, en zone bâtie, et en forêt. Ceci a été compensé en partie (mais seulement 
en partie puisque le résultat net est une perte de 28% de couverture du vignoble entre 1950 et 
2008) en replantant sur des pentes à proximité de la plaine. Ces champs se trouvent donc à 
l'interface entre la forêt étendue sur un côté et la plaine de l'autre. 

Dans les différents travaux, une autre tendance commune citée est l'intensification de l'agriculture 
dans les plaines (Falcucci et al. 2007, Geri et al. 2010, Van Eetvelde et Antrop 2004). Dans la 
région étudiée, les récoltes de vin se réalisent mécaniquement et non plus manuellement, et 
témoignent donc d’une intensification de l’agriculture. Mais l’un des résultats majeurs de notre 
étude montre que le vignoble a tendance à se convertir de manière plus fréquente en prairies 
qu’en zone construite. Cela témoigne de l’abandon temporaire de ces vignes, soit par des grands 
propriétaires dont la production de raisin n’est pas au centre de leurs moyens de subsistance (cf. 
les grands domaines), soit par des agriculteurs qui jouent sur la valeur foncière de leur propriété. 
Cela explique en partie la conversion de la vigne à la prairie et rend compte de la situation 
paradoxale de l'agriculture conquérant des terres marginales sur les pentes abruptes tout en 
abandonnant les terres fertiles dans la plaine en prairies et forêts. 

Les dynamiques des prairies sont particulièrement complexes dans le bassin versant. Comme 
indiqué plus haut, une partie de la croissance des prairies est due à l'abandon des terres dans la 
plaine alluviale fertile. Cependant, plusieurs autres facteurs entrent en jeu. Le premier est la 
reconversion des vignobles en prairies (principalement des pâturages) le long des cours d'eau, ce 
qui est probablement lié à des risques d'inondation. Ensuite, une partie de la transition vignoble-
prairies est liée à la création d'activités d'équitation au cours des dernières années. Le tourisme est 
une industrie locale importante et la proximité de grandes étendues de forêt avec des sentiers et 
des chemins de terre transforme l'équitation en une activité touristique attrayante. 

 

V. Conclusion 

Comme dans une grande partie de l'Europe méditerranéenne, des changements importants de la 
couverture terrestre se sont produits dans 1950-2008. La forêt est restée la couverture terrestre 
dominante à tous les temps. Et les changements relatifs à la couverture forestière étaient faibles 
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pour plusieurs raisons: sa grande surface (plus de 85% du bassin versant) et l'emplacement à des 
altitudes plus élevées et sur des pentes raides. Malgré cela, les mutations de la forêt vers les 
vignes et les prairies étaient élevées. Le vignoble a perdu une superficie considérable. Il a été 
converti principalement en prairies, en milieu urbain. La catégorie prairie était très dynamique et 
a connu de grandes pertes et gains en raison de l'abandon du vignoble et la création de coupe-feu 
et des pâturages. La plupart des changements de l’occupation du sol se sont produits à basse 
altitude et à plat ou en pente douce, dans des zones de la partie orientale du bassin versant. Toutes 
les variables de distance (de cours d'eau, aux routes, à la zone bâtie, et à la mer) ont eu un impact 
significatif sur la dynamique des changements de la couverture terrestre. 
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CHAPITRE 3 : PREVISIONS DE CHANGEMENT D’OCCUPATION DU SOL, EN 
MEDITERRANEE, A DIFFERENTES ECHELLES 

 

I. Introduction 

La sélection des intervalles de prédiction et le temps de validation ont un grand impact sur la 
précision de la prédiction (Chen et Ponce 2010). Ainsi, la modélisation du changement de 
l’occupation du sol en utilisant une échelle temporelle grossière peut entraver la performance du 
modèle (Álvarez Martínez et al., 2011). De nombreuses études sur la modélisation de 
l’occupation du sol prennent en compte des échelles de temps courtes qui permettent d'atteindre 
une meilleure prédiction (Ahmed et Ahmed 2012, He et al., 2006, Li et Yeh 2002 Sang et al., 
2011). Rares sont les travaux qui combinent plusieurs échelles de temps.  
L’objectif de ce chapitre est d'étudier l'impact des échelles temporelles sur la modélisation et la 
prévision des transformations de la couverture terrestre dans un bassin versant méditerranéen SE 
France. Des cartes de l’occupation du sol en 2011 ont été ici prédites à partir de différentes 
échelles de temps (1950-1982, 1982-2003 et 2003-2008) et comparées avec la réalité pour 
mesurer la précision du modèle. 

 

II.  Méthodologie adoptée 

La modélisation mise en place (LCM, Land Change Modeler) a permis d’identifier les variables 
explicatives, d’évaluer les changements de couverture terrestre, afin de créer des potentiels de 
transition, pour prédire les répartitions futures de l’occupation du sol. Puis les prédictions sont 
validées en comparant avec la réalité. La figure 3.2. présente les principales étapes de ce modèle 
LCM – IDRISI. 
 

 
Figure 0.5: Les étapes du modèle 



157 

 

Notre travail se base toujours sur la numérisation de photographies aériennes à différentes dates 
(1950, 1982, 2003, 2008 et 2011), sur lesquelles ont été définies 4 catégories d’occupation du sol 
(forêt (F), vigne (V), prairies (G), et bâti (B)), validées par des visites sur le terrain. Nous avons 
ensuite intégré dans la prédiction différentes variables explicatives précédemment identifiées 
comme étant fondamentales pour les transformations passées (et mesurées à partir du test V de 
Cramer) : la pente, l'altitude, la distance aux routes, la distance à la surface construite (de 
première année), et la distance au cours d'eau. Des contraintes et des incitations de localisation 
ont été aussi incluses dans le processus de prédiction ; il s’agit de variables construites à partir de 
documents d’aménagement (PLU et SCOT) qui interdissent la transformation de toute occupation 
du sol (forêt, vigne, prairies) en zone bâtie. 
Des cartes de potentiel de transition ont été créées pour chaque possibilité de transition (F à V, F 
à G, F à B, V à F, V à G, V à B, G à F, G à V, et G à B) sur la base historique les changements et 
les variables explicatives. L'algorithme Multi-Layer Perceptron Neural Network (MLPNN) 
d’IDRISI (Eastman 2012) a été utilisé pour créer des potentiels de transition. Pour toutes les 
transitions à différentes périodes de temps, 10.000 itérations ont été réalisées, et des modes 
dominants et persistants d’occupation du sol ont été déterminés.  
 
La prédiction des transformations d’occupation du sol comporte deux aspects. D’une part, LCM 
fournit la quantité de changement à travers la matrice de Markov qui compare la première (T1) et 
deuxième couverture terrestre (T2) et qui construit ainsi une probabilité de conversion pour 
chaque catégorie, puis LCM prédit la couverture terrestre future (T3) en utilisant cette matrice de 
probabilité de transition pour l'avenir. D’autre part, les distributions spatiales du changement sont 
indiquées par les cartes de potentiel de transition générées en utilisant MLPNN. Ainsi, les 
répartitions d’occupation du sol prévues pour 2011 ont été prévues en utilisant des cartes de 
transition potentiels de plusieurs périodes historiques (1950-1982, 1982-2003, 2003-2008) 
(tableau 3.3). Enfin, la validation de la modélisation pour 2011 a été réalisée en comparant avec 
la carte numérisée réelle de la même année, et des erreurs quantitatives et de localisation ont été 
mesurées, à travers l’indice Kappa et l’analyse de la matrice d’erreur (Eastman 2012).  

 

 

III.  Résultats 

Différents résultats ont été produits, à propos :  Les transformations de l’occupation du sol à différentes périodes de temps. Deux 
tendances générales peuvent être identifiées dans le changement de la couverture terrestre 
depuis 1950 : la forêt et le vignoble ont diminué tandis que les prairies et les zones 
urbaines ont augmenté. Et la plupart de ces modifications se sont produites dans la plaine 
alluviale. Mais au-delà de ces tendances, des fluctuations peuvent exister. Ainsi, par 
exemple, si le vignoble a connu une baisse marquée en 1950 et 2003, il a de nouveau 
augmenté entre 2003 et 2008, puis a repris sa tendance à la baisse dans la dernière période 
2008-2011.  La prise en compte des variables explicatives. Le niveau de l'association entre les 
variables explicatives et les types de couverture terrestre dans les différentes périodes de 
temps est mesuré par l’indicateur V de Cramer. La variable explicative la plus forte est 
l'altitude, sauf avec la catégorie forêt. La distance aux routes montre un niveau 
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d’association élevé avec la vigne à toutes les périodes de temps, et un bon niveau 
d'association avec les forêts et les prairies pour les périodes intermédiaires (1982-2003) et 
longues (1950-1982). La distance aux flux est la variable la plus faible : elle montre une 
relation relativement limitée avec les couvertures terrestres existantes, et ne dispose d'un 
bon niveau d'association qu’avec la vigne dans toutes les périodes de temps.  Les potentiels de transition pour les différentes périodes de temps. Ils présentent des 
profils similaires pour les différents pas de temps, et indiquent tous une forte 
concentration principalement dans la plaine alluviale (Figure 3.8). La plupart des zones 
d'altitude et celles de pentes douces ont montré une haute potentialité de transformation de 
la forêt à la vigne et aux prairies. La plupart des prairies loin des cours d'eau et des routes 
ont un potentiel plus élevé pour se transformer en forêt, et celles à proximité des routes et 
des cours d'eau ont un potentiel plus élevé de se convertir en vignoble. Certains vignobles 
éparpillés au bord de la zone bâtie existante ont montré une possibilité plus forte de 
transition vers la forêt, ce qui n’est pas le cas des vignes de la plaine. Enfin, toutes les 
occupations du sol ont une forte probabilité de se transformer en zone bâtie, quand elles 
sont à proximité du réseau routier et des surfaces construites existantes. En outre, un taux 
d’exactitude a été calculé pour tous ces transferts (tableau 3.7). Il est élevé pour plusieurs 
transitions dans toutes les périodes : la forêt pour toutes les autres catégories, et la vigne et 
les prairies en zone bâtie  Les prévisions des changements de l’occupation du sol. Les matrices de transition sont 
présentées dans le tableau 3.8, avec en colonne la situation résultante simulée à la période 
d’après. Elles sont calculées sur la base de l'historique des changements de la couverture 
terrestre aux cours des périodes 1950-1982, 1982 à 2003, et 2003-2008. La forte 
probabilité de stabilité de la forêt à toutes les périodes apparait. En revanche, une 
probabilité de 0.72 associée à la persistance de la vigne indique sa vulnérabilité face à la 
progression des autres catégories, même si cette fragilité diminue dans le temps. De 
même, une probabilité de stabilité de 0.51 pour la prairie montre clairement son 
instabilité, et une haute possibilité de changement vers les autres types de couverture 
terrestre en 1982-2011. Enfin, la surface bâtie reste quasiment constante. En outre, il faut 
modérer ces probabilités par les superficies transformées. Et également par les périodes de 
temps : sur une phase courte de temps, les transformations sont moins fortement 
probables. Néanmoins, les tendances demeurent les mêmes sur les temps long et court.  
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Initial time period Land cover types Forest Vineyard Grassland Built area 
 
 

1950-1982 
 

Forest 0.97 (19,626) 0.02 (404) 0.01 (202) 0.00 (0) 
Vineyard 0.08 (174) 0.72 (1,571) 0.15 (327) 0.049 (109) 
Grassland 0.21 (184) 0.23 (202) 0.51 (448) 0.048 (43) 
Built area 0.00 (0) 0.00(0) 0.00(0) 1.000 (255) 

 
 

1982-2003 

Forest 0.98 (19,709) 0.01 (201) 0.01 (201) 0.00 (00) 
Vineyard 0.01 (15) 0.79 (1,224) 0.18 (227) 0.02 (31) 
Grassland 0.14 (177) 0.07 (108) 0.73 (458) 0.06 (76) 
Built area 0.00 (0) 0.00(0) 0.00(0) 1.000 (627) 

 
 

2003-2008 

Forest 1.00 (20,091) 0.00 (0) 0.00(0) 0.00 (0) 
Vineyard 0.00 (0) 0.98 (1,585) 0.14 (11) 0.01 (16) 
Grassland 0.02 (23) 0.05 (81) 0.91 (639) 0.02 (23) 
Built area 0.00(0) 0.00(0) 0.00(0) 1.000 (702) 

Tableau 0.2. Matrices de probabilité de transition en 1982-2011, 2003-2011, et 2008-2011, en utilisant 
différentes périodes (1950-1982, 1982-2003, et 2003-2008, respectivement). Les superficies potentielles 

de changement sont indiquées en ha entre parenthèses 

  La validation des occupations du sol prévues. Des simulations pour 2011 ont été 
exécutées à l'aide des potentiels de transition 1950-1982, 1982-2003 et 2003-2008, 
respectivement (Figure 3.9). Des écarts sont observés principalement dans la partie 
orientale du bassin versant. Les indices Kappa (tableau 3.9) montrent que la prédiction 
s’améliore avec la réduction de l’échelle du temps. Ainsi, l’indice Klocation (qui donne la 
précision spatiale globale d’une simulation) est assez correct sur la longue période, mais 
augmente avec les temps intermédiaires et courts. Le tableau 3.10 présente l'analyse de la 
matrice d'erreur de l’occupation du sol en 2011, entre ce qui est réel (colonne) et prévu 
(ligne), pour différentes échelles de temps. Il indique également que toutes les erreurs ont 
diminué avec la réduction des échelles de temps. Les plus faibles erreurs ont été observées 
pour la forêt, et en réduction avec le raccourcissement de l’échelle de temps. Des écarts 
sont à noter dans le vignoble, sur l’échelle de temps longue. De très fortes erreurs sont 
observées pour les prairies, particulièrement à l’échelle de temps long. Des quantités 
importantes de vignes et de prairies ont été attribuées à tort en forêt. 

 



160 

 

Initial time 
period 

 Forest Vineyard Grassland Built 
area 

Total Error of commission 
(%) 

 
 

1950-1982 
(long) 

Forest 19,277 158 236 113 19,784 2.6 
Vineyard 438 1,305 488 156 2,387 45.3 
Grassland 295 113 403 118 930 56.6 
Built area 20 27 25 378 450 16 

Total 20,030 1,603 1,152 765 23,550  
Error of Omission 

(%) 
3.8 18.6 65 50.6  9.3 

 
 

1982-2003 
Iinterme-diate) 

Forest 19,716 45 52 51 19,864 0.7 
Vineyard 68 1,413 80 30 1,590 11.2 
Grassland 204 119 965 37 1,326 27.2 
Built area 42 26 54 647 770 15.9 

Total 20,030 1,603 1,152 765 23,550  
Error of Omission 

(%) 
1.6 11.9 16.2 15.4  3.4 

 
 

2003-2008 
(short) 

Forest 19,953 30 45 27 20,055 0.5 
Vineyard 16 1,496 94 15 1,621 7.7 
Grassland 44 68 997 17 1,127 11.5 
Built area 16 9 16 706 747 5.4 

Total 20,030 1,603 1,152 765 23,550  
Error of Omission 

(%) 
0.4 6.7 13.4 7.7  1.69 

Table 0.3: La matrice d’erreur entre l’occupation du sol actuelle en 2011 (colonne) et prévue, pour 
différentes périodes de temps. Les valeurs sont exprimées en ha, et les erreurs en %. 

 

 

IV.  Discussions 

Les dynamiques passées et récentes de l’occupation du sol ont un impact sur sa simulation future. 
Comme il est décrit dans les résultats, la forêt est facile à prédire, et obtient des écarts entre 
réalité et prévision faibles avec le meilleure Kquantity, à différentes échelles de temps, en raison 
de sa couverture dominante dans la zone d'étude et de sa localisation hors de la plaine alluviale là 
où les transformations majeures ont eu lieu. A l’inverse, les simulations des vignes et des prairies 
sont extrêmement difficiles à prévoir, et provoquent des précisions les plus faibles et des erreurs 
importantes, en raison essentiellement des mutations de ces catégories, de leurs variations 
aléatoires en début de période. S’y ajoutent également l’absence de prise en compte de certaines 
contraintes, notamment en termes de structures foncières (existence de Domaines viticoles, plus 
stables (Roy et al. 2014b)) et d’activités réelles sur les prairies (fonctions touristiques pratiquées 
sur les prairies et qui amènent à une plus forte stabilité). La prédiction exacte de l'expansion 
urbaine est difficile, en raison de la complexité de l'urbanisation qui dépend de plusieurs variables 
spatiales (planification urbaine, choix individuels d’installation, etc. (He et al., 2008)), mais 
également d’une croissance urbaine exceptionnellement rapide, et qui s’est parfois déroulée dans 
des lieux dispersés, loin de la zone bâtie existante. 
Les échelles de temps ont un impact significatif sur la simulation de l’occupation du sol. La 
quantité est mieux prédite que la localisation, probablement en raison de la couverture forestière 
dominante dans la zone d'étude. Par conséquent, Kquantity est presque parfait dans toutes les 
échelles de temps. En revanche, les transformations complexes de l’occupation du sol génèrent 
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des niveaux moins parfaits d'entente pour Klocation que Kquantity, et les valeurs augmentent 
avec la diminution des échelles de temps. 
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CHAPITRE 4 : PREVISION S DE CHANGEMENT D’OCCUPATION DU SOL : EFFETS 
DES CATEGORIES ET DES TAILLES DE CELLULE 

 

I. Introduction 

Plusieurs techniques de modélisation ont été développées pour explorer et prévoir les 
changements de l’occupation du sol (Barredo et al. 2003, He et al., 2008), et les facteurs 
topographiques et socio-économiques sont considérés comme importants dans la compréhension 
et la prédiction de la couverture terrestre (Munroe et Müller 2007 ). Cependant, la qualité de la 
prédiction ne dépend pas seulement de la pertinence des variables explicatives, mais aussi de 
plusieurs autres éléments, qu’il faut désormais prendre en compte : le type et le nombre de 
catégories de l’occupation du sol, les intervalles historiques et la période temporelle à atteindre 
(Roy et al de 2014a.), et l'étendue spatiale et la résolution (Chen et Ponce 2011). Ainsi, une étude 
comparative bibliographique nous montre que si les transformations de l’occupation du sol sont 
distribuées de façon homogène dans l'espace, l’étendue spatiale n’a que peu d’impact sur la 
prévision et sa qualité. Cependant, ce cas est rare, et l'augmentation de l'étendue spatiale se traduit 
souvent par l'augmentation de l’instabilité de catégories et donc par une difficulté à prévoir le 
phénomène. De même, d’autres travaux (Dietzel et Clarke 2004) ont montré que des résolutions 
plus fines, inférieures à la taille des parcelles (<10m) – alors que la résolution de 30m est la plus 
souvent utilisée -, pouvaient augmenter les erreurs de prévision, du fait de la création de petits 
changements non significatifs. A l’inverse, beaucoup d’études suggèrent que la modélisation des 
transformations de l’occupation du sol pouvait être améliorée en utilisant des tailles de cellules 
grossières, tout en réduisant le temps de calcul. 
Les effets des échelles de temps (long, court, intermédiaire) ont été discutés dans les chapitres 
précédents. Dans ce chapitre, nous souhaitons mettre en évidence le rôle de l’étendue spatiale et 
celui de la taille des cellules, dans la modélisation A partir de photos aériennes de 1950, 1982 , 
2003, et 2011, la dynamique de l’occupation du sol a d’abord été analysée à travers des mesures 
d’intensité ; puis, sur cette base, la couverture terrestre a été prédit pour 2011 pour une grande 
(79,1 km²) et petite (36,6 km²) fenêtres en utilisant la taille des cellules de 25 m, 50 m, 100 m. 
Les effets de la résolution spatiale ont également été analysés, en faisant varier les échelles dans 
les deux sens (de 25 m à 50 m et 100 m, puis retour à 25 m). 

 

 

II.  Méthodologie adoptée 

Notre territoire d’étude est toujours le bassin versant de la Giscle. La partie ouest du bassin 
versant est boisée et a peu changé depuis 1950 environ (Fox et al. 2012, Roy et al. 2014A, Roy et 
al. 2014b), et une grande partie du changement de la couverture terrestre est concentrée dans la 
plaine alluviale vers l'est, près de la côte. La première aire d’étude sélectionnée pour ce chapitre 
est une superficie de 33.6 km² (petite zone), et comprend la principale zone peuplée dans la plaine 
alluviale et le noyau de la plupart des dynamiques de l’occupation du sol dans le bassin versant. 
Une seconde zone, plus grande 79.1 km², contient cette zone précédente et une extension vers 
l'ouest pour inclure une grande étendue de la couverture forestière stable. Les altitudes et les 
pentes sont plus douces et moins fortes dans la petite que dans la grande fenêtre. Le point 
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fondamental est que la plupart des transformations se produisent dans la petite fenêtre, alors que 
la grande reste plus stable. 
On choisit ici de travailler sur des taux relatifs de changements de l’occupation du sol, comme 
mesure de l’intensité des transformations. On mesure aussi, pour chaque intervalle de temps, des 
taux de transformations annuels (St), et des taux annuels moyens calculés pour tous les intervalles 
de temps (U), pour déterminer des rythmes de mutations (Aldwaik et Ponce Jr 2012). Pour les 
gains et les pertes de chaque catégorie d’occupation du sol, on calcule aussi des variations 
relatives en fonction de superficie de départ. Les transitions entre catégories ont été aussi 
calculées de manière relative.  
Nous avons utilisé la procédure LCM (Land change Modeler) d’IDRISI pour prédire l’occupation 
du sol de 2011. L’échelle de référence de traitement des catégories est de 1 mètre. Afin d'étudier 
l 'impact de la taille des cellules sur la modélisation des transformations de l’occupation du sol, la 
taille des cellules a été successivement convertie à 25 m et 50 m et 100 m, puis réduite en sens 
inverse (upscaling et downscaling). Pour étudier l’influence de l’étendue spatiale, deux zones de 
tailles différentes ont été sélectionnées 
Différentes variables ont été intégrées dans la procédure de modélisation : l’altitude, la pente et 
les distances des routes, à la surface construite initiale, et aux cours d’eau. Des contraintes et des 
incitations ont été également incluses dans le processus de prédiction, à partir des documents 
d’aménagement (PLU et SCOT) : zones où le développement urbain est restreint (réserve 
forestière et des zones agricoles) ou au contraire privilégié (à proximité des zones bâties, à 
proximité des cours d’eau, etc.). Le test V de Cramer a été utilisé pour évaluer l'impact de 
l'étendue spatiale et de la taille de la cellule sur l'importance des variables explicatives. Grâce aux 
potentiels de transition significative (probabilité d’évolution d'une catégorie à une autre), des 
cartes ont été créées pour toutes les transitions possibles en fonction des changements historiques 
au cours de 1982 à 2003 et les variables explicatives en utilisant l'algorithme MLPNN de IDRISI 
(Eastman 2012). Puis des indices de validation sont établis. 

 

 

III.  Résultats 

L’analyse de la comparaison entre la petite et la grande zone d’étude donne les résultats suivants 
(tableau 4.3). Dans la petite zone, la forêt et le vignoble occupent des superficies équivalentes en 
1950 (environ 43%), bien que cet équilibre change considérablement au fil du temps puisque la 
vigne perd du terrain au profit d'autres types d’occupation du sol. Toujours dans cette petite zone, 
l’espace bâti subit une augmentation relativement importante. A l’inverse, dans la grande zone, la 
forêt domine largement et reste stable à environ 74%. La plupart des changements se produisent 
donc dans la petite fenêtre, dans la plaine alluviale. 
 
  Change (ha) % of change in small window 
 
 
 

Small 

Category 1950-1982 1982-2003 2003-2011 1950-1982 1982-2003 2003-2011 
Forest 387 398 137    

Vineyard 703 550 168    
Grassland 504 577 231    
Built area 164 271 93    
TOTAL 1,758 1,796 630    
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Large 

Forest 491 514 153 78.8 77.4 89.5 
Vineyard 781 631 180 90.0 87.2 93.3 
Grassland 549 653 246 91.8 88.4 93.9 
Built area 164 274 94 100 98.9 98.9 
TOTAL 1,985 2,071 673 88.6 86.7 93.6 

Tableau 0.4: Les différentes catégories d’occupation du sol, en valeurs absolues et relatives, à différentes 
périodes de temps.  

L’influence de l’intervalle de temps sur les caractéristiques d’occupation du sol indique, en règle 
générale, des intervalles de temps plus longs aboutissent à des variations absolues plus grandes : 
ainsi, les transformations relativement faibles observées pour 2003-2011 résultent principalement 
de l'intervalle de temps court (8 ans) par rapport aux autres périodes (32 et 21 ans, 
respectivement). Cependant, si l’on étude cette dynamique en valeur relative, on voit bien que la 
période la plus active a été 1982-2003, suivie de 2003-2011 puis 1950-1982. En outre, comme la 
plupart des changements sont concentrés dans la plaine alluviale, les changements relatifs dans la 
petite zone sont environ 2 fois plus élevés que dans la fenêtre plus grande. Ceci est 
particulièrement vrai en ce qui concerne la zone bâtie. 
 

 

Figure 0.6: Modalités de transition de la vigne aux autres catégories, en ha, en %, entre 1950 et 
1982 

 

Si l’on se concentre sur l’évolution de la vigne (Figure 4.7), on constate des conversions des 
forêts en vigne, plus importantes que les mutations des prairies en vignes, et ceci entre 1950 et 
2003 ; et ce phénomène s’inverse dans la dernière période. Ces phénomènes se produisent 
essentiellement dans notre petite zone d’étude. De même, c’est essentiellement dans cette zone, 
que se concentrent les gains de surface construite sur la vigne.  
Les indices de Cramer permettent de mesurer les impacts de l’étendue spatiale et de la taille des 
cellules (ici 25m dans un premier temps) sur les dynamiques de l’occupation du sol. On constate 
ainsi que les valeurs V de Cramer sont généralement 1,3 à 1,7 fois plus élevées pour la grande 
zone que pour la petite fenêtre, et cela vaut pour toutes les catégories et les variables explicatives, 
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sauf pour la zone de construction et les deux prédicteurs de changement de surface construite 
(distances aux routes et à la zone bâtie). Les indices de désaccords témoignent d’une meilleure 
prédiction de l’occupation du sol pour la grande fenêtre. En ce qui concerne la taille des cellules, 
elle apparaît d'abord n’avoir aucune incidence sur le V de Cramer, puisque ces valeurs sont 
presque identiques pour les trois tailles de cellules dans les deux étendues spatiales. Ceci fait 
exception pour les deux variables explicatives les plus fortement liées à l'évolution de la zone 
construite (distances aux routes et à la zone de construction) : le V de Cramer est 
systématiquement plus grand pour la zone construite que pour la forêt dans la petite fenêtre, mais 
pas dans la grande fenêtre. Les pouvoirs explicatifs de la distance sur les routes et à la zone 
construite augmentent considérablement lorsque l'étendue spatiale est réduite. Les mêmes calculs 
ont été faits avec les résolutions de 50 m et de 100 m, et les relations entre les variables 
explicatives et la catégorie restent les mêmes. L'absence d'un impact de la taille des cellules sur la 
modélisation est également apparemment confirmée par les valeurs de désaccord similaires entre 
les résolutions spatiales de 25 m, 50 m et 100 m 

 

 

IV.  Discussions 

Nos résultats ont montré, à travers l’analyse de l’intensité, que la variation de la catégorie 
d’occupation du sol dépend en partie de l'étendue spatiale. Sur la base des valeurs absolues des 
terres converties, la forêt était modérément réactive à l'étendue spatiale ; mais en valeurs 
relatives, elle était beaucoup moins active que les petites catégories qui subissent moins de 
changement en termes de superficie absolue, mais beaucoup plus en relatif. La vigne est apparue 
particulièrement active à la grande échelle, mais beaucoup moins dans la petite fenêtre. Dans 
cette étude, les deux catégories prairies et zone bâtie sont particulièrement actives en ce qui 
concerne leurs surfaces respectives, ce qui tend à réduire l'importance relative des changements 
de la vigne, quand une catégorie dominante (la forêt) est exclue de l'étude en passant de la grande 
à la petite fenêtre. Ainsi, les taux de variation des catégories sont sensibles à l'étendue spatiale et 
peuvent tout à fait différents quand une grande catégorie de dominante est présente. 
En ce qui concerne l'étendue spatiale, un facteur entre en jeu dans la détermination des variations 
des catégories. Ainsi, si une quantité importante d'une couverture terrestre se trouve en dehors de 
la petite zone, mais que la plupart du changement est dans la petite fenêtre (comme pour la forêt), 
alors les valeurs absolues seront plus importantes à la grande échelle, mais les taux relatifs seront 
inférieurs dans la fenêtre plus petite. En outre, le pouvoir prédictif des variables explicatives est 
fortement affecté par l'étendue spatiale, et la présence de la couverture forestière persistante a 
donné l'impression que les variables explicatives étaient de meilleurs prédicteurs à grande échelle 
que pour la petite fenêtre. De plus, l’ajout d'une grande zone de couverture terrestre persistante 
semble réduire la quantité et la répartition des erreurs : ainsi, la quantité et la répartition des 
désaccords sont plus importantes dans la petite fenêtre en raison de changements dans les trois 
valeurs différentes utilisées pour calculer ces indices (superficie totale, variation absolue totale, et 
la zone correctement prédite). Ceci est en accord avec les observations de Chen et Ponce (2010) 
et Ponce et Spencer (2005) qui montrent que la persistance est plus facile à prévoir que le 
changement. Mais pourquoi le V de Cramer s’améliore t il, dans l’ensemble, si fortement avec 
l’étendue spatiale ? L’une des raisons possibles serait que quand la taille de la fenêtre augmente, 
la variabilité des valeurs explicatives augmente aussi. Ainsi, par exemple, les plages d'altitude 
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sont 237 m et 663 m pour les petites et grandes fenêtres, respectivement. Ces petites différences 
peuvent avoir un impact important sur la valeur du chi carré utilisé pour calculer le V de Cramer. 
Au total, e choix de l’étendue spatiale dans la modélisation des transformations de la couverture 
terrestre peut être lié au processus étudié, aux contraintes de données (fonction des unités 
administratives, par exemple), ou à une décision arbitraire. Dans tous les cas, il faut chercher au 
maximum à la présence de grandes catégories dormantes afin d'éviter d'augmenter 
artificiellement les résultats de prédiction. 
La taille des cellules de la grille est entraînée par de nombreux facteurs et peut être sujette à des 
interprétations différentes. Elle peut dépendre de la taille initiale de la cellule de données d'entrée 
(par exemple 30 m Landsat vs 10 m images SPOT) ou elle peut être liée à des procédures 
d'harmonisation, d'expansion et de contraction. Dans cette étude, nous avons adopté une échelle 
fine de numérisation de la couverture terrestre (1 mètre), afin de créer une meilleure classification 
des types d’occupation du sol et pas nécessairement une carte plus détaillée de la couverture 
terrestre. Les premiers résultats semblent montrer que la taille de la cellule n'a pas d'impact sur la 
modélisation du changement de la couverture terrestre, sur la base du test V en changeant 
d’échelle. Toutefois, la procédure upscaling / downscaling montre que pendant la progression 
vers une plus grande échelle, une grande partie des informations ont été perdues. Les impacts de 
l'étendue spatiale et de la résolution des cellules sur les données du paysage sont discutés dans 
Turner et al. (1989), où les chercheurs montrent que la probabilité de perte d’information 
augmente avec la taille de la cellule. En effet, comme la taille des cellules augmente, le détail est 
perdu, les pixels isolés disparaissent, et le paysage devient à la fois plus simple et moins 
représentatif de la réalité. Cependant, la réduction de l’échelle ne restaure pas l'information 
initiale, mais elle permet au modélisateur d'avoir une certaine mesure de la quantité 
d'informations perdues par des changements dans les valeurs de désaccord. 

 

 

V. Conclusions 

L’étendue d’un territoire et la taille des cellules sont deux questions fondamentales de la 
modélisation des dynamiques de la couverture terrestre. Dans cette thèse, l’étendue spatiale a un 
impact majeur sur la perception de la dynamique des changements de la couverture terrestre, où 
de relativement grandes catégories dormantes peuvent masquer les mutations de catégories plus 
dynamiques et plus petites. En conséquence, il est plus difficile de modéliser les petites zones 
avec plusieurs types de couverture terrestre en mutation rapide que les zones stables plus grandes. 
Les quantités et les répartitions des mesures de désaccord sont plus dans la petite fenêtre que dans 
la grande fenêtre, car la plupart des changements se produisent dans la petite zone et la partie 
étendue de la grande fenêtre composée de la forêt persistante et la persistance génère une plus 
grande précision de la prédiction. 
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CHAPITRE 5 : EVOLUTION DE L’EROSION DU SOL DANS UN BASSIN VERSANT 
MEDITERRANEEN ENTRE 1950 ET 2025 

 

I. Introduction 

1.1.Cadrage sur l’érosion du sol 
Le sol est une ressource non renouvelable vitale formée par divers processus biologiques 
physiques, chimiques, et dans le milieu naturel. La dégradation des sols due à l'érosion est 
devenue un grave problème environnemental à travers le monde en raison de la croissance rapide 
du surpâturage, de la déforestation, de pratiques agricoles inadaptées, de la surexploitation du 
bois de feu, des feux de forêt, et d'autres activités humaines (Alkharabsheh et al. 2013, Brady et 
Weil 1999, Terranova et al., 2009). Dans de nombreuses régions du monde, les taux d'érosion du 
sol dépassent la formation du sol et produisant ainsi une dégradation grave du sol (Toy et al., 
2003). L'érosion du sol peut causer plusieurs problèmes environnementaux et économiques : la 
perte de la productivité agricole, la pollution de l'eau (envasement des ruisseaux, rivières, 
réservoirs), et la perte de la biodiversité, etc. (Lu et al 2004, Zhang et al 2014.). Brady et Weil 
(1999) décrivent trois étapes fondamentales de l'érosion des sols : détachement de particules du 
sol, transport des particules détachées par différents processus et dépôt des particules transportées 
à basse altitude. Trois formes d'érosion par l'eau sont également décrites dans Brady et Weil 
(1999) : l'érosion en nappe, l'érosion des rigoles, et le ravinement. L'érosion en nappe peut être 
observée lorsque l'écoulement de l'eau élimine le sol plus ou moins uniformément ; elle se 
transforme en érosion des rigoles lorsque le débit se concentre dans de petits canaux. Lorsque le 
ruissellement se concentre, des ravines peuvent être formées.  
Le risque d'érosion du sol varie en fonction de plusieurs paramètres : la topographie (gradient et 
longueur pentes), les caractéristiques du sol, le climat local, le type de végétation, l’occupation du 
sol, et les pratiques de gestion des terres (Alkharabsheh et al 2013.). Par conséquent, le 
terrassement peut diminuer l'érosion du sol puisque les deux facteurs topographiques sont réduits 
(Liu et al. 2013). Mais celui-ci doit être combiné à l’occupation du sol (terres arables, progression 
de la foret, etc.). Bakker et al. (2005) ont identifié une bonne relation entre l'érosion des sols et 
l'utilisation des terres dans la partie ouest de Lesbos, Grèce. Pour identifier la relation, une 
régression logistique a été réalisée en utilisant la dynamique de l’occupation du sol comme 
variable à expliquer et la profondeur du sol, l'érosion et la pente comme variables explicatives. En 
outre, un impact significatif de la végétation a été mesuré dans Mohammad et Adam (2010) : la 
couverture de la végétation ajoute de la matière organique à la surface du sol, ce qui peut 
empêcher l'érosion des sols par le développement de la structure du sol et l'amélioration de la 
stabilité des agrégats. Et, le couvert végétal protège la surface du sol de la pluie et réduit l'énergie 
de ruissellement. Ce que conforme une autre étude sur le Portugal (Nunes et al. (2011)).  
 

1.2.Ampleur de l’érosion en Europe méditerranéenne 

L'érosion du sol par le ruissellement est une question importante pour la France méditerranéenne. 
Plusieurs études ont déjà été menées pour mesurer l'érosion du sol et d'identifier les facteurs 
d'érosion des sols pour différents bassins versants dans la région méditerranéenne (Blavet et al. 
2009, Kosmas et al., 1997, Ramos et Martínez-Casasnovas 2006, Torri et al. 2006, Wainwright 
1996). Les régions méditerranéennes sont particulièrement vulnérables à l'érosion des sols en 
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raison de l'intensité des précipitations élevées, des activités agricoles sur les pentes raides, de la 
faible teneur en matière organique, de faibles teneurs en éléments nutritifs et des rapides 
changements d'utilisation des terres (García-Ruiz 2010, Novara et al. 2011). Kosmas et al. (1997) 
ont révélé, à partir d’une étude sur l’Europe méditerranéenne dont les Pyrénées, que les terres 
cultivées dans les zones montagneuses des régions méditerranéennes sont très sensibles à 
l'érosion due à un sol peu profond et au manque de couverture végétale. En outre, l'abandon des 
terres agricoles, l'expansion de la vigne dans les forêts de montagne et les champs de céréales ont 
également accéléré le risque d'érosion du sol dans ce domaine. Arnaez et al. (2007) décrit les 
différents facteurs de l'érosion du sol et utilise l'USLE pour estimer l'érosion d'un bassin 
méditerranéen espagnol dominé par les vignobles (La Penedès et Rioja). L'étude a révélé que le 
gradient de pente, la taille des gouttes de pluie, les capacités d'infiltration et de stockage de l'eau 
ont des impacts directs sur les processus d'érosion. Elle a en outre montré que l'érosion du sol 
peut être diminuée en augmentant la densité de la vigne, en changeant le système de travail du sol 
(à angle droit au gradient de pente maximale pour favoriser l'infiltration), et en installant des 
terrasses de construction le long des lignes de contour. 
Les vignobles dans la région méditerranéenne ont les plus hauts taux d'érosion du sol (Kosmas et 
al., 1997). La région méditerranéenne connaît de fortes intensités de tempête, sur le sol sec en été, 
et à l'automne lorsque les vignes sont souvent nues ; c’est donc sur ces périodes que se produisent  
des taux élevés d'érosion (Blavet et al. 2009, Wainwright 1996, Ramos et Martínez-Casasnovas 
2006). En outre, les agriculteurs utilisent de nombreux traitements herbicides chimiques, afin que 
les champs soient nus pour un temps plus long et que moins d’herbe poussent en hors-saison. Les 
raisins sont récoltés en août-septembre, et les fortes pluies commencent peu après et continuent 
d'octobre à mars. Ces pratiques sont populaires pour obtenir des raisins de qualité à rendement 
élevé et de meilleure qualité. Au total, les vignes sont donc fortement vulnérables à l'érosion, à 
l'épuisement de la matière organique du sol, à la pollution et à la perte de la biodiversité 
(Coulouma et al. 2006, Raclot et al., 2009). 
Novara et al. (2011) ont réalisé une étude pour estimer les pertes de sol dans une vigne irriguée à 
Sambuca di Sicilia, dans le sud-ouest Sicile sous labour conventionnel. L'étude a estimé un taux 
d'érosion du sol moyen de 124,1 T ha-1y-1 en utilisant le modèle USLE et les taux d'érosion les 
plus élevés ont été observés sur les pentes plus raides. D’un autre côté, Ramos et Martínez-
Casasnovas (2006) ont calculé les pertes de nutriments dans les vignobles et leur relation avec 
l'érosion des sols dans la région viticole Alt Penedès (nord-est de l'Espagne). Dans leur zone 
d'étude, 80% de la superficie cultivée a été occupée par les vignes, et l'érosion des sols a 
augmenté en raison de l'intensification et la mécanisation de la culture de la vigne. 
 

1.3.Modélisation de l’érosion des sols 
Différents modèles d'érosion ont été interfacés avec les SIG pour évaluer et prédire l'érosion des 
sols. Les modèles les plus fréquemment cités sont les suivants : le modèle RUSLE (Equation 
revisitée de l’érosion du sol universelle) (Renard et al 1997), le programme de prédiction de 
l’érosion par l’eau (WEPP) (Laflen et al., 1991), et LANDSOIL (Ciampalini et al. 2012). Les 
modèles d'érosion des sols sont importants pour mesurer et identifier les processus de 
détachement, le transport et le dépôt de l'érosion des sols à l'aide d'un ensemble d'équations 
mathématiques liées aux précipitations, aux caractéristiques du sol, à a topographie, à la 
végétation et à la gestion des sols d'un site (Brady et Weil 1999). 
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Le modèle LANDSOIL est basé sur l'étanchéité et le transfert par ruissellement et l'érosion liée à 
la gestion agricole (STREAM) ; et la distinction principale de ce modèle est de considérer les 
caractéristiques du sol (rugosité du sol, encroûtement de surface, et la couverture végétale 
d'évaluation) comme le principal processus d'érosion des sols et de redistribution dans un paysage 
agricole (Ciampalini et al. 2012). Les modèles LANDSOIL traitent de processus de redistribution 
des sols dans différents paysages topographiques et agricoles, et ils facilitent la conception de 
paysage à l'échelle du bassin versant pour la conservation des sols en utilisant différents types de 
couverture terrestre dans le sud de France (Ciampalini et al. 2012). De la même manière, Evrard 
et al. (2010) ont identifié l'impact des précipitations saisonnières et l'utilisation des terres sur 
l'érosion des sols au cours des 40 dernières années en utilisant le modèle STREAM pour un 
bassin versant dans le sud de la France. L'étude a révélé que l'exportation de sédiments a 
augmenté de 168% après la consolidation de la terre en raison de la diminution de la couverture 
de la prairie et l'augmentation de la taille du champ. 
Le projet de prévision de l'érosion de l'eau (PPS) prédit la perte de sol et le dépôt en utilisant une 
approche spatialement et temporellement distribuée et peut intégrer différentes couvertures 
terrestres (pâturages, forêts, terres agricoles, et la zone urbaine) (Mahmoodabadi et Cerdà 2013). 
Il est également en mesure de décrire les processus de ruissellement et d'érosion, et d'évaluer les 
impacts de l'intervention de la direction et les changements environnementaux. 
 

1.4.Le modèle USLE 

Le modèle USLE a été utilisé dans le monde entier depuis les années 1970 et il a été mis à jour au 
début des années 1990 pour créer un outil de prévision de l'érosion nommé : Equation revisitée de 
l’érosion du sol universelle (RUSLE) (Brady et Weil 1999). RUSLE est un modèle à base de 
facteur qui estime le taux d'érosion globale des sols, et qui quantifie un ou plusieurs processus et 
interactions à travers les facteurs (Millward et Mersey, 1999). Il est facile à utiliser et pratique 
pour quantifier l'érosion du sol en tenant compte des précipitations, de la topographie, du sol, de 
la végétation, de l'utilisation des terres et de la gestion des terres (Zhou et al., 2008). La première 
version de ce modèle a été développée pour les champs agricoles, et la version mise à jour récente 
est modifiée sur la base de la théorie de la puissance du courant qui est adapté aux conditions 
topographiques complexes (Mitasova et al. 1996, Chakroun et al., 1993). Toutefois, ce modèle ne 
peut pas envisager de dépôt (Terranova et al., 2009). Le modèle USLE et sa version améliorée, 
RUSLE, sont les modèles plus couramment utilisés pour estimer et prévoir l'érosion du sol à 
différents endroits géographiques. Il a été appliqué sur différentes occupation du sol (végétation, 
vignoble, etc.) et à des échelles différentes (parcelles, bassin versant, etc.). 
RUSLE est conçu pour prédire l'érosion annuelle moyenne du sol (Alkharabsheh et al. 2013, 
Nyakatawa et al., 2001). Il est construit à partir d’une équation basée sur les principaux facteurs 
qui influent sur l'érosion des sols (Renard et al., 1997). Il calcule une perte moyenne du sol par 
unité de surface en fonction des facteurs : d’érosivité des pluies (R), d’érodabilité (K), de 
longueur (L) et d’inclinaison (S) de la pente, de gestion de l’occupation du sol (C), et de pratique 
d’entrainement (P). Les facteurs R, K et LS déterminent le taux d'érosion tandis que P et C sont 
des facteurs de réduction, compris entre 0 et 1 (Meusburger et al., 2010). 
R est le facteur d'érosivité des pluies qui représente une valeur annuelle moyenne de l'agressivité 
de la pluie pour provoquer l'érosion (Lal, 1990, (Kouli et al., 2009). Il traduit l'énergie de la 
tempête totale (E) pour une intensité maximale de 30 minutes (I30) calculée pour chaque tempête 
de pluie pour une période donnée (Kouli et al. 2009, Renard et al., 1997). Cependant, il pourrait 
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être calculé à partir de la pluviométrie annuelle moyenne, en raison de l'absence de données de 
pluie détaillée. Ce facteur R est considéré comme le plus influent de l'érosion des sols dans les 
différentes études utilisant RUSLE à travers le monde (Kouli et al. 2009, Wischmeier et Smith 
1978). 
Le facteur K est le facteur d’érodabilité du sol. Il indique le taux de perte du sol par unité d'indice 
d'érosion pour une parcelle spécifique du sol, qui est de 22,1 m de longueur avec une pente 
uniforme de 9% en continu, et labouré ou en jachère (Renard et al., 1997). Il reflète le processus 
de détachement du sol qui est généré par l'impact des éclaboussures ou des flux de surface, et il 
estime l'influence des propriétés du sol. K dépend de la texture du sol (M), de la matière 
organique (OM), de la structure du sol (1 <s <4), et de la perméabilité ou de la capacité 
d'infiltration (1 <p <6) (Morschel et Fox 2004, Renard et al., 1997). La texture du sol a un impact 
significatif sur K. Les sols à teneurs élevées en argile ont de faibles valeurs de K, en raison de 
leur haute résistance au détachement. Cependant, les sols à texture grossière, comme les sols 
sablonneux ont de faibles valeurs de K. En outre, des teneurs élevées en matières organiques 
peuvent diminuer l’érodabilité du sol, en réduisant la sensibilité au détachement et au 
ruissellement. 
Les facteurs LS décrivent les effets combinés de la longueur de la pente (G) et la pente elle-même 
(S). Ces facteurs reflètent les effets de la topographie sur l'érosion des sols (Fu et al., 2006). La 
longueur de la pente (L) peut être mesurée comme la distance horizontale de l'origine de 
l'écoulement de surface à l'endroit où le dépôt commence ou bien où le ruissellement se concentre 
(Wischmeier et Smith 1978, Renard et al., 1997). La forme d'une pente affecte également la perte 
moyenne du sol qui peut être de 30% supérieure pour une pente convexe que pour une pente 
uniforme avec la même pente (Renard et al., 1997). 
C est le facteur de la gestion de la couverture terrestre, utilisé pour estimer les effets de la culture 
et des pratiques de gestion sur les taux d'érosion (Renard et al., 1997). Ce facteur tient compte de 
divers systèmes de travail du sol, de la rotation des cultures, des traitements de fertilité, et de la 
gestion des résidus de récolte (Renard et al., 1997). En outre, il met en évidence l'effet des plans 
de conservation des sols 
Enfin, le facteur P quantifie l’impact positif des contrôles de gestion des eaux de ruissellement 
qui changent la direction, la vitesse, et la quantité des eaux de ruissellement, à travers certaines 
pratiques agricoles (contournement, bandes tampons, bandes filtrantes, bandes de rotation des 
cultures, terrasses, le drainage du sous-sol, etc.) (Renard et al., 1997). 
 

1.5.Le modèle USLE 

La plupart des études portant sur la prédiction de l'érosion des sols mettent l'accent sur les terres 
cultivées dans le monde, alors que les vignobles de la région méditerranéenne française ont été 
beaucoup moins étudiés. L'objectif principal de ce chapitre est d'estimer l'évolution de l'érosion 
des sols dans le bassin versant de la Giscle, alors que les zones viticoles ont évolué (1950 à 2011) 
et devraient changer dans les prochaines années (jusqu'en 2025) en utilisant le modèle de 
RUSLE. 

 

 

II.  Méthodologie adoptée 
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Le bassin versant de la Giscle est toujours notre terrain d’étude. La production de raisin est la 
principale activité agricole dans le bassin versant. La plupart des vignobles y sont plantés en 
rangées droites et sont orientés dans le sens de la pente sur des pentes raides, et perpendiculaires à 
la pente lors d’inclinaisons plus douces. Les vignes représentent environ 10% de la superficie du 
bassin versant (Roy et al. De 2014b). Elles sont situées principalement dans la plaine inondable 
de sable et se sont propagées sous la pression urbaine sur des pentes plus fortes au cours des 
dernières années (de 2003), là où les sols sont minces, légèrement acides, pierreux et de texture 
sableuse (Fox et al. 2006, Roy et al. 2014b). La texture du sol dans la plupart des vignobles est la 
suivante : 60-80% de sable, 10-30% de limon et 5-15% d'argile (De Coster 2013). La plupart des 
vignobles dans le bassin versant sont touchés par de fortes précipitations en hiver, comme on peut 
le voir à la figure 5.1. 

  

Figure 0.7: Les vignes affectées par de fortes précipitations (Photos: D. Fox) 

 

Le module RUSLE implanté en IDRISI estime la perte annuelle moyenne du sol et détermine la 
répartition spatiale de la perte de sol (Eastman 2012). Le modèle a été exécuté à l'aide d'un 25 m 
DEM. L’érodabilité du sol (K), l’érosivité des pluies (R), la gestion de la couverture terrestre (C), 
et les facteurs de pratiques de conservation (P) ont été spécifiés pour 1950, 1982, 2003, et 2011. 
En outre, les taux d'érosion ont été prévus pour 2025, à partir de cartes simulées de la couverture 
terrestre. 
En l'absence de données sur l'intensité des précipitations, R a été estimé à partir des précipitations 
annuelles moyennes, enregistrées par une station météo locale (Cogolin) de 1975 à 2005. R a été 
calculé sur la base d’une équation mise en place pour une région en Toscane. Les précipitations et 
le ruissellement érosif R-facteur ont été estimées à partir de la pluviométrie annuelle moyenne de 
895 mm en 1975-2005, qui a donné une valeur de R de 107 MJ mm an / ha / h. Pour le coefficient 
K, une carte des sols du bassin versant a été générée à partir des données du sol obtenues à partir 
de la coopérative vinicole locale. Puis, ensuite, on a appliqué l’équation décrite dans Wischmeier 
et Smith (1978), et les points obtenus ont été interpolés. Le modèle RUSLE dans IDRISI calcule 
automatiquement le facteur LS à partir du modèle numérique d'élévation de 25 m (DEM). Le 
facteur de gestion de la couverture terrestre (C) pour le vignoble est de 0,3, choix établi d’après la 
littérature scientifique. La valeur P a été fixée à 0.7, compte tenu du choix de culture de 
l’alignement des rangées de vigne, perpendiculaire à la pente, ce qui contribue à ralentir la vitesse 
d'écoulement, à piéger les sédiments, et à réduire l'érosion par rapport à une surface nue. Pour les 
terrasses, on a choisi la valeur de P=0.2. 
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Les cartes d’érosion du sol ont été estimées pour 1950, 1982, 2003, 2011, et 2025. Les valeurs 
d'érosion ont ensuite été simplifiées en trois catégories: <10, 10-25 et> 25 t / ha comme faible, 
moyen et élevé, respectivement. Pendant deux hivers pluvieux consécutifs, des observations sur 
le terrain ont été faites des phénomènes d'érosion. Les données ont été recueillies auprès de 
différents vignobles choisis au hasard, et le nombre et la taille des ruisselets ont été notés, ainsi 
que les signes de dépôt de sédiments. Malheureusement, ces données ont été perdues durant mon 
déplacement à Toronto. Les résultats présentés ici ne sont donc pas validés et leur publication 
doit attendre le renouvellement des observations sur le terrain. Pour prédire l’occupation du sol en 
2025, nous avons utilisé les données réelles de 2003 et 2011, combinées aux variables 
explicatives définies dans les chapitres 2 et 3. En outre, le PLU a été converti en contraintes 
(zones protégées, zones agricoles), et en incitations (développement de zones urbaines). Seules 
les probabilités de transition avec des taux supérieurs à 70% d'exactitude ont été incluses dans le 
modèle. Elles étaient les suivantes : de la forêt à la vigne, de la forêt à la prairie, de forêt à la zone 
bâtie, de la vigne à la surface bâtie, et des prairies en zone bâtie. 

 

 

III.  Résultats et discussions 

La figure 5.2 montre que la superficie totale du vignoble a diminué d'environ 35% entre 1950 et 
2011, en raison de l'urbanisation dans la plaine (Roy et al. 2014b). Les vignobles ont 
soudainement baissé entre 1982 et 2003, d'environ 30% de leur superficie, puis ont continué à 
diminuer, mais à un rythme beaucoup plus lent. 

 
Figure 0.8: Evolution des vignes entre 1950 et 2025 (prévision) 

En ce qui concerne les facteurs d'érosion des sols dans le bassin versant, on remarque que la 
plupart des sols du bassin versant étaient semblables : 22 échantillons de sol étaient sableux et 
très sablonneux, et les facteurs de K varient de 0,52 à 0,028 Mg h MJ-1mm-1 pour ces sols. La 
pente moyenne était de 5,9% en 1950 et a augmenté à 6,9% et 8,1% en 1982 et 2003. Cependant, 
elle a légèrement diminué à 7,1% en 2011 et a augmenté à 7,6% en 2025. L’augmentation des 
valeurs moyennes entre 1950 et 2003 peut se justifier par la construction de nouveaux vignobles 
entre 1950 et 2003, sur les pentes raides. En 2003-2011, le changement de pente est négligeable. 
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La prédiction 2025 montre une augmentation de la pente, mais cette valeur est probablement 
surestimée. 
L’évolution des vignobles en terrasses est la suivante : ils sont passés de 510 ha à 555 ha en 
1950-1982, et  ont fortement diminué à 458 ha en 2003. Après une baisse de 410 ha en 2011, la 
valeur prédite augmente fortement à 590 ha en 2025. Les vignobles non installés sur des terrasses 
ont décliné entre 1950 et 2003, puis les valeurs sont stables en 2003-2011 et la zone simulée 
diminue légèrement en 2025. Ces changements sont essentiellement liés au déplacement des 
vignes sous pression urbaine, de la plaine alluviale à des zones en pente raide (cf. chapitre 2).  
 

Les taux moyens d'érosion des sols pour différentes années sont présentés à la figure 5.7. Les 
valeurs sont passées de 11,8 T ha-1 an-1 à 13,2 T ha-1 an-1 en 1950-1982, et ont atteint 14,4 T 
ha-1 an-1 en 2003. Cependant, les taux d'érosion du sol ont chuté à 13,5 t / ha / an et 11,8 t / ha / 
an, en 2011 et 2025, respectivement. Ces tendances sont liées à la fois aux augmentations 
d’inclinaison de la pente et à la proportion des pentes en terrasses décrite ci-dessus. Les valeurs 
citées sont comparables à celles de Cerdan et al. (2010) qui a analysé les taux d'érosion des sols 
pour les vignobles méditerranéens. 

 
Figure 0.9: Taux d’érosion par différentes années  

 
Pour les vignes, différentes classes d’érosion des sols sont présentées. La zone à faible taux 
d'érosion a diminué progressivement à partir de 1238 ha à 646 ha entre  1950-2003. Cependant, 
elle a augmenté à 713 ha en 2025, puisqu’une plus grande proportion des champs se trouve sur 
les pentes en terrasses. La zone à taux d'érosion moyen a également fortement diminué, passant 
de 956 ha à 717 ha en 1982-2003; mais elle reste relativement stable par la suite. Ces tendances à 
la baisse du taux d’érosion pourraient être liées à l'épuisement de la vigne sur la terre ordinaire. 
La zone à haut taux d'érosion des sols a augmenté d'environ 35 ha en 1950-1982 à partir de 209 
ha en 1950, puis progressivement a diminué à 180,4 ha en 2011. Cependant, il a rapidement 
diminué à 71,6 ha en 2025. L'utilisation de terrasses dans le vignoble a joué un rôle important 
pour réduire les taux d'érosion élevés du sol. 
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Les cartes d’érosion des sols dans les années différentes (1950, 1982, 2003, et 2011) sont 
présentées dans la figure 5.9a-e. La partie orientale reste dominée par les taux d'érosion faibles 
entre 1950 et 2011, et se caractérise avec une faible pente et des taux élevés de conversion du 
vignoble à la zone bâtie. Par conséquent, la zone érodée se rétrécit au fil du temps. Une grande 
partie de la zone d'érosion «modérée» et «élevée» a également diminué en 1950-2011, mais dans 
une moindre mesure que la catégorie d'érosion faible. Les zones d'érosion modérée et élevée ont 
tendance à se concentrer sur la périphérie de la zone de basse classe et dans la région du centre-
nord. 
L’érosion totale évalue de manière différente. Entre 1950 et 1982, la superficie viticole a 
considérablement diminué et le taux moyen d'érosion s’accru du fait que les champs ont été 
déplacés hors de la plaine alluviale et sur les contreforts raides ; par conséquent, l'érosion totale 
est restée constante durant cette période. Après 1982, la grande perte dans la zone de vignoble 
l'emporte sur l'augmentation du taux d'érosion moyen et a provoqué une perte nette de l'érosion 
totale du sol. Après 2003, la superficie viticole est restée stable, et les taux d'érosion ont diminué 
légèrement avec moins d'une baisse de 10%. 
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Figure 0.10: Niveaux d’érosion du sol a) 1950, b) 1982 c) 2003, d) 2011, e) 2025. 

 

 

IV.  Conclusions 

a) b) 

c) d) 

e) 
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L'étude a quantifié l'impact des changements de la couverture terrestre sur l'érosion des sols dans 
les vignobles dans le bassin versant de Cogolin au SE France entre 1950-2011. Le modèle 
RUSLE a été utilisé dans l'environnement SIG IDRISI et a permis de créer et de comparer 
l'érosion des sols sur des cartes en 1950, 1982, 2003, et 2011. Enfin, une carte de l'érosion des 
sols a été créée en utilisant la vigne prévue pour 2025. Les vignobles ont diminué, tandis que les 
taux d'érosion moyen ont augmenté dans l'intervalle de temps 1950-2003. Cette période 
représente la phase où le changement a eu lieu rapidement en raison de la forte pression urbaine 
dans la plaine alluviale et a conduit à un déplacement des vignes à des pentes plus raides. 
L’érosion totale a été stable entre 1950-1982, puis a progressivement diminué, principalement en 
raison de la perte dans la zone viticole et à une stabilisation dans la clairière des pentes plus 
raides. L’érosion totale en 2011 représente environ 75% de l'érosion dans 1950 à 1982. Les taux 
d'érosion prédits pour 2025 sont probablement sous-estimés, puisque le modèle de LCM a 
continué à déplacer des vignobles vers les pentes les plus raides où le terrassement réduit les taux 
d'érosion estimés. 
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CONCLUSION GÉNÉRALE 

 

SYNTHÈSE 

Cette étude apporte une contribution importante à la connaissance actuelle du changement de la 
couverture terrestre dans le bassin versant Giscle de 1950 à nos jours. Des modalités complexes 
des dynamiques de l’occupation du sol ont été observées dans le bassin versant à travers 
différentes dimensions spatiales et temporelles. Les terres marginales sur des pentes plus raides 
ont été converties de la forêt à la vigne, et des vignobles en terrasses sont apparus sur les 
contreforts au-dessus de la plaine alluviale. Cette constatation diffère des recherches 
précédemment menées, sur les transformations de l’occupation du sol, dans la région 
méditerranéenne, qui ont eu tendance à montrer le contraire, à savoir l'abandon de l'agriculture 
sur des terres marginales et leur conversion en forêt. 
Certes, la tendance à l’expansion urbaine sur les terres agricoles est répandue dans le monde et 
dans la région méditerranéenne (Serra et al., 2008, Sluiter et de Jong, 2007). Cependant, la 
conversion de la vigne à la prairie, en conjonction avec l'expansion urbaine, trouvée dans cette 
étude est beaucoup moins fréquente. En effet, les champs de vignes abandonnés appartenaient 
généralement à des propriétaires qui ne produisaient pas leur propre vin, mais apportaient leurs 
raisins à une coopérative de vinification. La production de raisin n’était donc pas forcément au 
centre de leur vie, comme cela pouvait être le cas pour les Domaines viticoles. Et lorsque la terre 
est transmise d'une génération à l'autre, la production de raisin peut être abandonnée, mais la terre 
retenue. Cela explique une partie de la conversion de la vigne à la prairie, puis en forêt. En outre, 
la « prime à l'arrachement » dans les années 1980 a contribué à éliminer les petits producteurs. 
L’altitude, la pente et la distance aux routes ont eu l’impact le plus grand sur le changement de la 
couverture terrestre parmi toutes les variables testées. Les transformations de l’occupation du sol 
projetées suggèrent que la zone bâtie et les prairies augmenteraient dans les zones forestières et 
viticoles, suivant les tendances historiques précédentes dans le bassin versant. Les erreurs les plus 
élevées ont été observées dans la prévision d'échelle de temps. Les cartes prédites étaient 
modérément précises pour l'échelle de temps intermédiaire et plus précises pour l'échelle de 
temps courte. Pour toutes les échelles de temps, les plus grandes erreurs ont été observées dans la 
prédiction de la couverture des prairies. Les prévisions les plus précises ont été tirées de l'échelle 
de temps court et le taux d'exactitude a diminué avec l'augmentation de l'échelle de temps. Par 
conséquent, la période initiale de 1982-2003 a été choisie pour projeter l’occupation du sol en 
2011, dans le but de tester les influences de l'étendue spatiale et de la taille de la cellule sur la 
prévision des changements de la couverture terrestre. Puis 2003-2011 a été sélectionné pour 
prédire la couverture terrestre en 2025 afin de quantifier l'impact des transformations de 
l’occupation du sol sur l'érosion des sols. L'analyse de l'étendue spatiale a montré que la 
prédiction de la couverture terrestre est apparue plus précise dans la grande zone que dans la 
petite. Aucun impact significatif de la taille des cellules sur la prévision des changements de 
l’occupation du sol n’a été trouvé dans l'étude. Cependant, lorsque les images prédites à échelle 
réduite sont comparées à l'image de 25 m de référence à partir de 2011, les valeurs de désaccord 
réagissent différemment. Enfin, une taille de cellule de 25 m a été choisie pour prédire l'érosion 
des sols. 
Le bassin versant Giscle a été choisi pour évaluer les impacts de l'utilisation des terres sur 
l'érosion des sols en raison de sa topographie, du climat, de l'agriculture et d'autres activités 
humaines, qui sont typiques de la région méditerranéenne. Bien que le taux d'érosion ait 
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augmenté rapidement entre 1950 et 2003, puis décliné dans la période 2003-2025 (réelle et 
prévue), l'érosion totale est environ la même entre 1950 et 1982 et diminue progressivement dans 
la période 2003-2025. Cette tendance à la baisse de l'érosion totale devrait se traduire par des 
charges de sédiments dans les cours inférieurs dans la zone de chalandise. Cette thèse montre que 
la répartition spatiale des changements de la couverture terrestre a un impact significatif sur 
l'érosion des sols. En particulier, les zones viticoles de ce bassin sont très vulnérables à l'érosion 
des sols. Cette constatation est conforme à d'autres études dans la région méditerranéenne 
(Kosmos et al., 1999; Cerdan et al., 2010). Les catégories de perte de sol «haute» et «modéré» ont 
augmenté en 2003, mais ensuite diminué de 2011. Une explication de ceci serait la diminution 
progressive de la vigne entre 1950 et 2011. De plus, les nouveaux vignobles qui sont apparus 
dans les hauteurs des pentes de pente à partir 2011, sont en terrasse et donc moins sujets à 
l'érosion des sols. 
En général, les zones sujettes à l'érosion des sols ont augmenté dans les parties centrales de notre 
territoire pendant la période de cette étude. En revanche, l'érosion des sols a diminué dans la 
partie orientale du bassin, en raison de modification du couvert végétal, du vignoble vers la zone 
bâtie dans la plaine alluviale. La pente joue un rôle important dans l'érosion des sols. Les valeurs 
moyennes de la pente ont augmenté modérément pendant toute la période d'étude, alors que la 
pente moyenne est restée plus ou moins constante après 1982. Cela reflète la diminution des 
zones viticoles dans la plaine alluviale et l'augmentation des surfaces viticoles dans la vallée de 
montagne et les contreforts entre 1950 et 2003. Ce problème est devenu très important, non 
seulement pour les chercheurs, mais aussi pour les planificateurs et les écologistes urbains 
prônant et de la planification pour la couverture durable des terres dans l'avenir. 
 
 

LIMITES DE CETTE THESE 

Les limites de cette thèse concernent deux points. D’une part, les photographies aériennes de 
1950 ont été les premières photos d’après-guerre de haute qualité disponibles lorsque la région 
était encore fortement rurale. Les dates intermédiaires (1982, 2003) ont été sélectionnées du fait 
de leur situation médiane entre 1950 et les photographies les plus récentes (2008, 2011), en raison 
de l'absence de photographies aériennes de 1990 et 2000. Le choix des dates a donc été largement 
contraint par les disponibilités de l’information. D’autre part, les résultats de recherche présentés 
dans le chapitre de l'érosion des sols ne sont pas encore validés et leur publication doit attendre la 
validation sur le terrain. 
 
 

PISTES POUR LA RECHERCHE FUTURE 

Différentes directions de recherche pourraient être envisagées. Premièrement, on pourrait 
envisager d’appliquer la modélisation établie, à l’échelle de la région PACA. Deuxièmement, on 
pourrait intégrer des parcelles complémentaires, pour déterminer l'érosion du sol afin d’élaborer 
un plan d'érosion d'atténuation durable. Troisièmement, l’influence des transformations de la 
couverture terrestre sur le changement climatique dans le sud de la France mérite des recherches 
plus poussées. 
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APPENDIX 2 

Published and submitted articles from this thesis. 
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The Euro-Mediterranean area has experienced widespread land cover change since
1950, but few studies of land cover change explicitly explore spatial constraints on
land cover change patterns. The main objective of this study was to analyze the spatial
dynamics of land cover change from 1950 to 2008 in a French Mediterranean catch-
ment. Aerial photographs (1950, 1982, and 2008) were screen digitized, and surfaces
were classified into five categories: forest, vineyard, grassland, urban, and suburban.
Land cover changes were concentrated mainly in the alluvial plain. Although forest
remained the dominant land cover in the catchment (>85.0%), it underwent significant
swapping with vineyard and grassland. Vineyard decreased (34% of initial loss) while
grassland increased (43% of initial). Urban and suburban areas remained minor in the
catchment (0.2% in 1950 and 3.0% in 2008), but showed a dramatic relative increase
(about 20×). Changes occurred mainly at low altitudes and slopes. Vineyard located
near streams was converted mainly to grassland. Built areas were dependent on roads
and former built areas for expansion but expanded little near streams due to flooding
risks. The rate of change was greater during the latter part of the study (1982–2008)
than in the earlier phase (1950–1982).

Keywords: land cover change; urban expansion; vineyard conversion; topographic
drivers; distance drivers

1. Introduction

Land cover changes represent major human alterations of the Earth’s land surface (Lambin

et al., 2001), and land cover conversion processes in Europe have accelerated since the

Second World War (Antrop, 2005; Geri, Amici, & Rocchini, 2010; Serra, Pons, & Saurí,

2008). Land cover change has occurred through the interaction of environmental and

socioeconomic characteristics, including population growth, urban sprawl, industrial

development, and political and environmental policies. In addition, rapid expansion of

tourism during the last six decades has caused important socioeconomic changes (Dunjó,

Pardini, & Gispert, 2003) driving land cover alterations in Euro-Mediterranean areas

(Geri, Amici, & Rocchini, 2011). Land cover changes affect biodiversity and ecosystems,

food security, human health, urbanization, and global climate change (Falcucci, Maiorano,

& Boitani, 2007; Geri et al., 2011; Sala et al., 2000). They can also be responsible for

environmental change, water pollution, and soil degradation (Dunjó et al., 2003).

Several studies have described land cover changes in the Mediterranean area.

Mediterranean countries from Spain to Greece experienced strong urban growth from
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the 1970s onwards, and a moderate growth rate is projected to continue (Benoit &

Comeau, 2005). Serra et al. (2008) reveal that about 34% of Spanish Mediterranean

coastal areas were urbanized between 1989 and 1999. In France’s Provence Alpes Côte

d’Azur region (SE France), about 40% of shorelines were built in 2006 (IFEN, 2012).

Migration from other European countries tends to concentrate in the Mediterranean

coastline area (Brunetta & Rotondi, 1996), since the quality of life in Mediterranean

cities seems to be greater than average in European countries (Cori, 1999). Aging

population in Europe has a typical migration trend towards the Mediterranean coastal

zone (Van Eetvelde & Antrop, 2004). In addition, internal migration also favors coastal

areas, increasing urban pressure land cover changes in these areas (IFEN, 2009). For

example, Van Eetvelde and Antrop (2004) analyzed the characteristics and mechanisms of

land cover change in southern France (Tavernes) and identified a pattern where arable

land decreased in foothills while urban areas expanded near the coast. They also found

that residential and secondary houses occupied traditional terraced foot slopes.

Traditional Mediterranean agriculture was comprised mainly of vineyards, olive trees,

and wheat grown in the nearby hinterland, often on terraces. Serra et al. (2008) reported

that vineyards and olive trees decreased in mountainous areas and transitional subregions,

resulting in land abandonment and increased shrub land area. Vineyard area decreased

near roads and urban areas due to urban sprawl and industrialization in moderately

mountainous to flat valley areas in Peyne, France (Sluiter & de Jong, 2007). Under

these conditions, farmland is sacrificed to urban expansion (Martínez-Fernández,

Esteve-Selma, Baños-González, Carreño, & Moreno, 2013). Nainggolan et al. (2012)

identified several biophysical and socioeconomic factors (demography, markets, and

subsidies on agriculture) responsible for the change in Torrealvilla catchment of South-

eastern Spain: population decreased in 1960–1980 due to migration from villages to the

coastal area, and rain fed agricultural, the main landscape feature in 1940–1960, was

abandoned. However, in 1980–2005, intensification of agriculture occurred on flat to

gentle slopes and near main roads due to subsidies for agriculture and the European

highway infrastructure. Other authors have found that land cover change affected the

overall environment, resulting in deforestation (Kepner, Rubio, Mouat, & Pedrazzini,

2003), land abandonment (Serra et al., 2008), and increased runoff and soil erosion in

Portugal and Greece (Koulouri & Giourga, 2007; Nunes, de Almeida, & Coelho, 2011).

From a spatial point of view, Falcucci et al. (2007) describe three common major land

cover changes in the Mediterranean area of Italy: the expansion of tourism that promotes

rapid urbanization along the coastline, spatial concentration of agriculture on alluvial

plains and low lands (except in the coastal area), and abandonment of agricultural terraced

land in mountainous steep slopes resulting in their transformation to forest. According to

Geri et al. (2011) and Nunes et al. (2011), four general trends of land cover change took

place during the last decades in the coastal Mediterranean area. First, dry farming and

forest land cover decreased in alluvial coastal plains while reforestation occurred in hilly

areas. Second, urbanization occurred rapidly in most of the coastal plains where the

tourism industry flourished. Third, population growth and socioeconomic development

caused agricultural intensification that increased irrigated crops. Fourth, the development

of infrastructure, communication networks, and technological advances resulted in socio-

economic development that was the main reason of agricultural land abandonment on

marginal lands.

Most of the studies on land cover change in the Mediterranean area highlight a

particular issue or describe an individual land cover change such as forest, agriculture,

or urban expansion (Calvo-Iglesias, Fra-Paleo, & Diaz-Varela, 2009; Pelorosso, Leone, &

2 H.G. Roy et al.
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Boccia, 2009), and few studies take into account all these changes concurrently. In

addition, spatial patterns of land cover change and identification of driver variables

influencing change are sometimes taken into consideration, but they tend to focus mainly

on altitude or slope (Geri et al., 2010; Serra et al., 2008), and few authors (Sluiter & de

Jong, 2007) take distance variables into account. Urban population growth and expansion

of tourism occurred more in the French Mediterranean coastal area than on average for

European Mediterranean coasts in the last decades (Blue Plan Papers, 2001). This resulted

in significant land cover change in this region, but very few studies describing land cover

change in the area can be found. Fox et al. (2012) analyzed the impact of land cover

change on total runoff between 1950 and 2003 in the upper part of the study catchment.

They noted a small increase in runoff due to a complex pattern of land cover change, but

much of the lower alluvial plain, where most changes occurred was ignored, and spatial

controls on these changes were not examined.

The first objective of this study is to quantify land cover change patterns in terms of

gains, losses, total change and swapping in a Mediterranean catchment with a strong

vineyard activity in proximity to a coastal area well known for its tourism. The second

objective is to quantify the impacts of topographic and distance variables on land cover

change for each land cover category.

2. Methods

2.1. The study area

The Giscle watershed has a surface area of about 235 km2 and is situated in the Var

department of SE France near the Gulf of St. Tropez (outlet coordinates 43°16′30″N, 6°

34′24″E). It is characterized by a Mediterranean climate with hot dry summers that extend

from June to August, and cooler rainier winters. Average temperatures range between 22°C

and 26°C in summer and 5°C to 10°C in winter. The mean annual rainfall is about 900 mm,

and the main rainy seasons are from October to January and then in April (Fox et al., 2012).

The study area includes two topographic units: the hilly upper part of the catchment

(roughly 70% of the catchment) is made up of metamorphic rocks, mostly schist and gneiss,

while the lower part of the catchment, located near the gulf, is a gently sloping alluvial plain

(Fox et al., 2012).

The western (upper) part of the watershed is mostly forest (pine and oaks), and the

topography of the area is uneven with the highest elevation at about 650 m. Vineyard and

moderate to dense urban areas are the dominant land cover types of the lower part of the

catchment. The region became a major tourist destination of Mediterranean France in the

second half of the twentieth century, with the ‘Côte d’Azur’ development, and this

generated a strong growth in urbanization. Three main municipalities are located within

the catchment: Cogolin, Grimaud, and La Môle. Cogolin and Grimaud are situated in the

eastern part of the catchment, about 5 km from the Mediterranean coast. They represent

the main populated areas with total populations of around 11,000 and 4000, respectively

(INSEE, 2011). La Môle is a small urban area with a total population of around 950

(INSEE, 2011). The total population of the catchment increases by several times (perhaps

as many as 10) in the summer due to tourism and secondary homes. Unlike many

Mediterranean coastal areas, the sea front is confined by the gulf and topography, and

land cover change is restricted to the inner near coastal area.

Journal of Land Use Science 3
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2.2. Data description and land cover classification

Land cover maps were screen digitized from acquired (Institut Géographique National)

digital orthorectified aerial photographs (1950 and 1982 were panchromatic; 2008 was

color), using ArcGIS (ESRI, 2012). Initial spatial resolution for all aerial photographs was

0.5 m, and this was reduced to 1 m to facilitate data manipulation. The aerial photographs

of 1950 were the first high-quality post-Second World War photos available when the area

was still strongly rural; an intermediate date (1982) was selected between 1950 and the

most recent 2008 photographs. Aerial photographs of 1982 may represent land cover

conditions at the beginning of rapid urban sprawl (Baccaini & Semécurbe, 2009; Salvati,

Sateriano, & Bajocco, 2013).

Surfaces were classified into five categories based on visual interpretation: forest,

prairie or grassland, vineyard, urban and suburban areas. High-density urban, industrial,

and commercial areas were classified as urban, and moderate- to low-density built areas

were classified as suburban. Urban and suburban areas were distinguished by the density

of buildings and other infrastructures as described below. Isolated housing was ignored.

To avoid creating a small isolated category, the Verne water dam (built in 1989–1991) was

ignored and left as forest; its surface area is negligible compared to total forest cover.

Similarly, a small recreational port built on the sea at the outlet of the catchment was

ignored. After digitization, land cover maps were imported into IDRISI (Eastman, 2012).

Main roads and stream networks were then digitized from the aerial photographs of 2008.

Main roads were about the same in aerial photographs of 1982 and 2008, so this layer did

not change over time. Cell size of all digitized maps was changed to 25 m to make land

cover layers compatible with the 25 m digital elevation model (DEM) used for the

creation of topographic and distance variables.

Land cover layers were identified visually. Most of the forest areas found in the aerial

photographs were evergreen and were clearly identified by their deep gray color in the

black-and-white aerial photographs (1950 and 1982) and deep green color in color aerial

photographs (2008). Vineyards were differentiated by their blocky, geometric shapes and

linear texture created by the rows of planted vines. Unmanaged or abandoned agricultural

areas, new shrub lands with small and scattered trees, and pasture land for sheep and

horses were all classified as grassland, even though some of it could more appropriately

be called shrubland. Densely to moderately built areas, including residential, commercial,

and industrial areas, were identified as urban. Urban areas were distinguished from

suburban by the density of buildings and absence of trees and open area. Suburban area

is essentially low-density residential housing. Some small denser communities were

considered suburban areas. The presence of trees and open spaces were common in the

suburban area. Land cover classification was facilitated by numerous field visits

2.3. Cross-tabulation analysis in 1950–1982, 1982–2008, and 1950–2008

Land cover change was quantified using the cross-tabulation matrix of the CROSSTAB

module and the change analysis module of the land change modeler (LCM) of IDRISI

Selva (version 17.02 (Eastman, 2012)). The cross-tabulation matrix is a fundamental

process in land cover change analysis (Pontius, Shusas, & McEachern, 2004) to show

land cover changes between two images of different dates. Persistence and pixel numbers

of each category from earlier to later classified images are displayed through images and

tables. After creating land cover maps of 1950, 1982, and 2008, land cover changes in

three temporal periods were investigated: 1950–1982, 1982–2008, and 1950–2008. Cross-
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tabulation of 1950–1982 represents the historical land cover change shortly after the

Second World War; 1982–2008 represents more recent changes in land cover from the

beginning of the urban sprawl period. The net 58 year change is provided by the 1950–

2008 analysis. The land cover change determining method proposed by Pontius et al.

(2004) was applied for all temporal periods to quantify persistence, gains, losses, total

change (addition of gains and losses), net change, and swapping (exchanges between land

cover classes, equal to the difference between total change and absolute net change).

2.4. Spatial dynamics

To describe spatial dynamics in land cover change, surfaces were simplified into four

categories: forest, vineyard, grassland, and built area. Urban and suburban areas were

combined into built area due to their small individual coverage compared to other land

cover categories. Although data were available for all time periods cited above, maps of

losses and gains for individual categories were simplified to show the spatial pattern of net

1950–2008 change since spatial patterns did not vary significantly between 1950–1982

and 1982–1950. Histograms were used to display quantitative losses and gains of each

land cover class as a function of topographic (altitude and slope) and distance (from

streams, roads, built area, and the sea) variables for the 1950–1982 and 1982–2008

periods. However, since this analysis alone generated 36 figures, only summary figures

of total change will be presented here and gains and losses will be described in the text.

Altitude and slope were obtained from a 25 m DEM. Only main roads (created by screen

digitization) were taken into consideration, and smaller roads and dirt paths were ignored.

Main stream channels were also digitized manually due to errors in the automatic tracing

of the hydrologic network from the 25 m DEM: in the plain, where topography is nearly

flat, errors of up to 300 m could be observed between the modeled and actual channels.

Finally, for changes in land cover occurring in 1950–1982, distance from built area in

1950 was used. For changes taking place in 1982–2008, distance from built area in 1982

was calculated.

3. Results

The steps in describing the results are the following: overall trends in land cover change

over the study period, detailed analysis of land cover change patterns for three periods

(1950–1982, 1982–2008, and 1950–2008) using CROSSTAB, spatial trends of land cover

change, and topographic and distance controls on land cover change.

3.1. Areal trends in land cover change

Figure 1a–c shows land cover maps digitized from the air photos, and Table 1 provides

the corresponding surface areas and changes in surface area for each category and time

period. Forest remained by far the dominant land cover in the catchment (Figure 1a–c),

accounting for more than 85% of land cover at all times (Table 1). Forest cover decreased

by only 34 ha in 1950–1982, represents a change of only about 0.2% of its catchment

cover. This increased slightly to 0.7% loss in catchment cover in 1982–2008. Vineyard

was the second dominant land cover and it too declined from about 2457 –2183 ha (a loss

of 274 ha, almost 11% of the catchment area) between 1950 and 1982 (Table 1). This

trend accelerated in 1982–2008 to reduce vineyard area to about 1616 ha (almost 26%

lost). Over the 1950–2008 period, vineyard lost more than a third (34.2%) of its initial

Journal of Land Use Science 5
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cover. Grassland was the third dominant cover in 1950, though its surface area amounted

to less than a third of vineyard. Contrary to forest and vineyard, grassland increased

significantly during the study period, showing an overall 43.5% increase between 1950

Table 1. Surface area of land cover types for 1950, 1982, and 2008, and changes in area for
1950–1982, 1982–2008, and 1950–2008.

Land
cover type

Surface area in ha
(% of catchment)

Change in surface area in ha
(% of initial cover)

1950 1982 2008 1950–1982 1982–2008 1950–2008

Forest 20,267 (86.1) 20,233 (85.9) 20,091 (85.3) −34 (−0.2) −142 (−0.7) −176 (−0.9)
Vineyard 2457 (10.4) 2183 (9.3) 1616 (6.9) −274 (−11.2) −566 (−25.9) −840 (−34.2)
Grassland 794 (3.4) 879 (3.7) 1140 (4.8) 84 (10.6) 261 (29.7) 345 (43.5)
Urban 19 (0.1) 140 (0.6) 387 (1.7) 121 (645.0) 247 (176.2) 368 (1957.8)
Suburban 13 (0.1) 115 (0.5) 316 (1.3) 102 (787.0) 200 (173.8) 303 (2328.3)

Figure 1. (a) Land cover map of 1950. (b) Land cover map of 1982. (c) Land cover map of 2008.

6 H.G. Roy et al.
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and 2008. These first three land cover categories covered 97% (in 2008) of the catchment

(Table 1). Rapid changes occurred in built area (both urban and suburban), which

increased steadily to over 700 ha in 2008 from below 50 ha in 1950 (Table 1).

Moreover, urban and suburban areas each covered only 0.1% of the catchment in 1950,

and they increased to about 1.7% and 1.3% of the catchment in 2008, respectively.

As can be seen in Figure 1a–c, most of the changes occurred in the eastern part of the

catchment. This area corresponds to the alluvial plain where altitudes and slopes are

gentler. For the vegetation land covers (forest, vineyard, and grassed areas), the rate of

change, expressed as % of initial cover, was greater in 1982–2008 than in 1950–1982

(Table 1). Calculated on an annual basis, the difference would be even greater since the

latter period showed greater change in a shorter time, 26 years versus 32 for the initial

period. Although the contrary appears to be true for urban and suburban categories, where

% change was greater in 1950–1982 than in 1982–2008, it should be noted that the latter

period experienced greater absolute change, and small absolute differences in 1950–1982

generate an artificially large % change due to the very small initial area. The built

categories showed the greatest % change of all land cover types during the 1950–2008

study period with an increase of more than 2000% each.

3.1.1. Cross-tabulation analysis 1950–1982

Cross-tabulation for 1950–1982 (Table 2) was used to explain persistence, losses, and

gains in land cover. In Table 2, columns display time 1 (1950) and rows display time 2

(1982). Persistence represents the amount of unchanged land cover between 1950 and

1982; this is highlighted in bold in diagonal, and values are presented in both ha, and % of

initial (1950) area in parentheses. As for % change, persistence is often correlated with

initial land cover, where extensive land covers tend to have greater persistence (Pontius

et al., 2004). The sum of each column shows total area in 1950 for each land cover type.

The sum of each row shows total area in 1982. The cross section of each column–row

shows the area converted from one land cover to another between 1950 and 1982. For

example, 337 ha were converted from forest to vineyard between 1950 and 1982; in terms

of losses/gains, this therefore corresponds to a loss of 337 ha of forest to vineyard and, of

course, a gain of 337 ha of vineyard from forest.

Forest had the greatest persistence (97.6%), and most of its loss was conversion to

vineyard. Vineyard, on the other hand, had moderate persistence (67.5%), and its greatest

loss was conversion to grassland. In this initial period (1950–1982), the dominant trends

among the vegetated land covers are a conversion from vineyard to grassed areas (394 ha)

and forest to vineyard (337 ha). This apparent compensation in vineyard loss is only

Table 2. Cross-tabulation of land cover in 1950 (columns) and in 1982 (rows). Values are in ha,
persistence (diagonal) is also expressed in % of total area in initial year (1950).

Forest Vineyard Grassland Urban Suburban Total

Forest 19,777 (97.6) 270 186 0 0 20,336
Vineyard 337 1660 (67.5) 186 0 0 2183
Grassland 105 394 379 (47.7) 0 0 879
Urban 12 83 22 19 (100.0) 5 140
Suburban 36 50 21 0 8 (59.1) 115
Total 20,267 2457 794 19 13 23,565
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partial since there is also considerable loss of vineyard to forest (270 ha). Among the

different land cover types, swapping is greatest for forest and vineyard. Although grass-

land gained in surface area, it had low persistence (47.7%) and greater susceptibility to

change, showing high losses to both forest and vineyard as well as significant gains from

these two land cover types, especially from vineyard (394 ha). The urban category reflects

an ‘end state’ which cannot easily evolve into another land cover type, though suburban

can evolve into urban. Both urban and suburban gained from all vegetated land cover

types. The greatest gains in the built categories were from vineyard. Therefore, although

all land cover types contributed to the growth of urban and suburban areas, the major

trend was expansion of built area on vineyard.

Forest, vineyard, and grassland experienced the most significant gains and losses

(Tables 1 and 2). Among these, vineyard underwent the greatest total change within the

catchment, even though its initial surface area in 1950 was only about 12% that of forest

(2457 ha vs. 20,267 ha). It also exhibited the highest rate of swapping, demonstrating

extensive exchanges with other land cover types, especially forest and grassland. Of the

five land cover types, vineyard was the most active, gaining and losing the most area and

exchanging the most land with other land covers. Built areas had low total change, but

especially very low swapping since these land covers gain from others but do not lose in

exchange.

3.1.2. Cross-tabulation analysis 1982–2008

As can be seen in Table 3, trends during 1950–1982 continued in 1982–2008. Forest area

decreased slightly but maintained high persistence (97.0%) due to its high surface area. A

large area of vineyard continued to convert to grassland (457 ha), but during this period

the compensating effect of forest to vineyard was weaker than in 1950–1982 (169 ha vs.

337 ha), and vineyard persistence decreased (61.5%). The conversion of forest to grass-

land was greater in 1982–2008 than in 1950–1982 (279 ha vs. 105 ha). As in 1950–1982,

urban expansion occurred mainly at the expense of vineyard. However, during the latter

period, suburban growth took place on forest cover before vineyard. Grassed area showed

the lowest persistence (46.0%) as significant areas converted to forest and vineyard.

During 1982–2008, grassland surpassed vineyard in both total change and swapping,

even though it still accounted for only 4.8% of the catchment in 2008 (Table 1). The

significance of grassland dynamics will be discussed below. Total change in 1982–2008

was greater than in 1950–1982 for all categories except vineyard, though vineyard had the

greatest net change (−2.4% of catchment area). This was particularly true of urban and

suburban areas for which total change in 1982–2008 was more than double the values for

Table 3. Cross-tabulation of land cover in 1982 (columns) and in 2008 (rows). Values are in ha,
persistence (diagonal) is also expressed in % of total area in initial year (1982).

Forest Vineyard Grassland Urban Suburban Total

Forest 19,636 (97.0) 215 240 0 0 20,091
Vineyard 179 1344 (61.5) 104 0 0 1617
Grassland 279 457 404 (46.0) 0 0 1140
Urban 51 105 63 140 (100.0) 27 387
Suburban 99 62 67 0 88 (76.4) 316
Total 20,233 2183 879 140 115 23,550
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1950–1982. Overall, the 1982–2008 period experienced more land cover change than in

1950–1982 (16.5% of catchment compared to 14.5%).

3.1.3. Cross-tabulation analysis 1950–2008

Table 4 shows the results of almost 60 years (1950–2008) of land cover change in the

catchment. Forest remained the dominant category by far and had high persistence

(96.1%), but large areas of forest were converted to vineyard (358 ha) and grassland

(247 ha). These losses were only partially compensated by gains from grassland (216 ha)

and vineyard (39 ha). Vineyard is the land cover type that contributed most to all others,

and more particularly to grassland (577 ha). The majority of urban and suburban expan-

sion occurred on vineyard, though significant suburban growth was also at the cost of

forest. Overall, three land cover types showed low persistence: vineyard (45.2%), grass-

land (39.7%), and suburban (40.9%), where the low persistence of suburban can be

explained by its conversion to urban.

The greatest land cover change between 1950 and 2008 was experienced by vineyard

which lost an equivalent of 3.5% of the catchment area or 34.2% of its initial area (or

840 ha out of an initial 2457 ha, Table 1) in the 58 year time frame. This, however, was

not a simple loss in land but corresponds to a complex pattern of exchanges with other

land cover types since vineyard has a swapping value of 4.3% (greatest swapping was for

forest, 5.2%). Major swapping trends were a net gain in vineyard from forest of 319 ha

and a net loss in vineyard to grassland of 431 ha, so grassland progressed significantly

within this context of land cover swapping. Total and net change were smallest for urban

and suburban land covers, but these values are high for land covers which had very low

initial values (Table 1). Urban and suburban area increased by about more than 20 times in

1950–2008.

3.2. Spatial dynamics influencing land cover change

The spatial dynamics of land cover change will be investigated in two steps. In the first,

land cover change maps will be used to highlight specific locations. In the second, the

impact of spatial variables (altitude, slope, and distance from roads, streams, sea, and

built area) will be presented. As described in the methods, urban and suburban are

grouped together into a single ‘built’ category. Histograms showing total change will be

described first, and then significant gains and losses will be detailed; however, histo-

grams showing gains and losses are not included here due to the very large number of

figures involved.

Table 4. Cross-tabulation of land cover 1950 (columns) and land cover 2008 (rows) (ha).

Land cover type Forest Vineyard Grassland Urban Suburban Total

Forest 19,477 (96.1) 39 216 0 0 20,091
Vineyard 358 1111 (45.2) 146 0 0 1617
Grassland 247 577 316 (39.7) 0 0 1140
Urban 69 228 64 19 (100) 8 387
Suburban 118 143 50 0 5 (40.9) 316
Total 20,267 2457 794 19 13 23,550
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3.2.1. General spatial trends

Although the rates of change between 1950–1982 and 1982–2008 were different, spatial

patterns for losses and gains were similar, so only the net 58 year (1950–2008) differences

are shown here. Gains and losses for each land cover type are shown in Figure 2a–d; low

altitudes are portrayed in white while higher values are in black to enable better visualiza-

tion of gains and losses. Losses and gains in forest (Figure 2a) indicate that much of the

lost land was in foothills in proximity to the alluvial plain (white patch in eastern part of

catchment). Area lost was almost twice the area gained. Gains in forest occurred mainly in

the south-eastern portion of the alluvial plain.

Whether in terms of percent of initial area (Table 1), absolute area (Table 1), or percent

of catchment area, vineyard was the major loser of all land cover types. Lost area clearly

outstrips gains and was concentrated almost entirely in the alluvial plain (Figure 2b). Only

about half the land lost was compensated by gains elsewhere, and these tend to be found

outside the eastern alluvial plain area, either in nearby foothills or on alluvial soil to the

extreme SW of the catchment.

In terms of absolute area and percent of catchment (Table 1), grassland gained the

most land, just ahead of urban areas. There is no strong spatial pattern to the gains and

Figure 2. (a) Forest change in 1950–2008. (b) Vineyard change in 1950–2008. (c) Grassland
change in 1950–2008. (d) Built area change in 1950–2008.
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losses in grassland (Figure 2c) with gains and losses both occurring in the alluvial plain.

There is a weak tendency for grassland losses to be absent from higher altitudes

(Figure 2c).

The combined gains in urban and suburban covers outstrip individual gains and losses

of all other land covers (Table 1). Built area expansion (Figure 2d) occurred almost

exclusively in the alluvial plain, and much of it was in close proximity to the core city

centers of Grimaud and especially Cogolin (Figure 1a–c).

3.2.2. Altitude

The impact of altitude on total change for each land cover type is shown in Figure 3a

(1950–1982) and 3(b) (1982–2008), respectively, where it can be seen that total change in

all land cover types decays exponentially with increasing altitude. The decrease in change

with increasing altitude is the least pronounced for forest, for which about 30% of total

change occurs in the 0–25 m range in both time periods. For the other land cover types,

the 0–25 m range accounts for about 50% to 65% of total change according to the specific

cover and time period. Grassland has the highest percentage of total change in the 0–25 m

for both periods: 64.4% and 58.4% for 1950–1982 and 1982–2008, respectively.

The relationship between gains and losses in forest cover and altitude over time is

complex. In both time periods, gains outstrip losses in the lowest altitude range (0–25 m);

this corresponds to the overall increase in forest noted in Figure 2a in the SE portion of

the alluvial plain. At greater altitudes, losses are greater than gains, and in intermediate

altitudes (50–100 m), lost forest area tends to be greater in 1982–2008 than in 1950–1982.

Unlike the other land cover types, losses in forest cover tend to increase slightly at the

highest altitudes (greater than about 200 m). This loss tends to benefit grassland and then

vineyard most.

Vineyard changes tend to be the opposite of forest trends noted above. For both time

periods, the 0–25 m altitude experienced significant loss in vineyard cover. Although

gains at greater altitudes (≥25 m) compensate a small part of the losses in vineyard in

Figure 3. (a) Land cover changes in 1950–1982 with altitude (m). (b) Land cover changes in
1982–2008 with altitude (m).
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1950–1982, this is no longer true in 1982–2008 where losses remain significantly greater

than gains in the 25–50 m range.

Grassland gains and losses with altitude are quite different from both forest and

vineyard. In 1950–1982, gains are slightly greater than losses for all altitude ranges.

Although the trend remains the same in 1982–2008, the gap between gains and losses is

greater. Finally, built area increases at all altitudes and more particularly in the lower

range, as for the other land cover types. The 1982–2008/1950–1982 gain ratio is sub-

stantially greater in the intermediate altitude range (25–75 m) than in the 0–25 m range,

indicating that higher altitudes were preferentially built in the later time period.

3.2.3. Slope

Slope and altitude are correlated in the catchment as higher altitudes tend to have steeper

slopes. Changes in land cover as a function of slope (Figure 4a and b) are therefore similar

to the trends with altitude, and only noteworthy differences will be highlighted here.

Overall trends are sensitive to the choice of range and in this case, there is an intermediate

range (5%–15%) where values in two categories (5%–10% and 10%–15%) remain

constant (Figure 4a and b); there seem to be no significant exceptions to this trend.

Roughly 30% of changes in forest occur on slopes less than 5%, and this value ranges

from about 50%–60% for the other land covers. For slopes less than 10%, these values

increase to about 50% (forest) and 60%–70% (others), respectively. Changes in land cover

for the 0–25 m altitudes (Figure 3a and b) correspond closely to values for the 0%–5%

slope range (Figure 4a and b). Unlike altitude, where forest cover loss increased at higher

altitudes, there is no increase in land cover loss on steepest slopes. Thus, the loss

experienced at higher altitudes probably corresponds to level ground or topslope convex-

ities with low slope inclinations.

3.2.4. Distance from streams

Total change in the vegetation covers (forest, vineyard, and grassland) all decrease

exponentially with distance from streams (Figure 5a and b). In the initial period (1950–

Figure 4. (a) Land cover changes in 1950–1982 with slope (%). (b) Land cover changes in 1982–
2008 with slope (%).
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1982), the greatest total change near streams concerns vineyards most, and this continues

on into intermediate distances of up to about 900 m (Figure 5a). In the latter period

(1982–2008), grassland experiences the greatest total change near streams, but there is

little difference with vineyard or forest beyond about 100 m and 200 m, respectively

(Figure 5b). The relationship between total change in built area and distance from stream

(Figure 5a and b) is unlike any other so far: very little change close to the stream,

moderate change at intermediate distances (roughly 100–800 m), and then little change

again at greater distances.

In 1950–1982, forest gains more than twice the surface lost close to streams, but this

trend is reversed in 1982–2008. For all other distances and in both periods, forest

generally loses more land than it gains. In the initial period (1950–1982), lost land

tends to peak at about 200–300 m from streams whereas it is greatest close to streams

in 1982–2008 and decreases with distance. Vineyard loses more land than it gains at all

times and distances, except for the 1950–1982 period when gains are slightly greater than

losses at distances greater than about 800 m. At intermediate distances in 1950–1982

(100–400 m), the difference between losses and gains is progressively minimized by

greater gains, but this no longer holds in the 1982–2008 period.

Gains and losses in grassland are the general opposite of those noted for forest, though

the gains in grassland cannot be accounted for entirely by forest and significant areas of

vineyard must have contributed to grassland growth close to streams. The greatest gains in

grassland close to streams (<400 m) occur in 1982–2008. Before then, gains and losses

are roughly equivalent except at intermediate distances (400–600 m) where gains are

greater than losses. In the latter period (1982–2008), gains become greater than losses

again at distances beyond about 1000 m.

Built area gains relatively little land immediately next to streams (<100 m). Gains in

built area are then relatively stable between distances of 100–700 m and 100–800 m for

1950–1982 and 1982–2008, respectively. For almost all distances, gains in 1982–2008

were greater than in 1950–1982, with the exception of roughly equivalent values in the

500–700 m range.

Figure 5. (a) Land cover changes in 1950–1982 with distance from stream. (b) Land cover changes
in 1982–2008 with distance from stream.
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3.2.5. Distance from roads

Total change in land cover with distance from roads (Figure 6a and b) follows the decaying

exponential trend of most variables taken into consideration. Roughly 40%–50% of total

change in forest, vineyard, and grassland occurred within 100 m of a road. This value was

greater than 95% for built area. In 1950–1982, vineyard was most affected close to roads

(0–100 m), but in 1982–2008, vineyard and grassland were approximately equal.

For both time periods and almost all distance ranges, loss in forest cover was greater

than gains, and the greatest overall difference was in the 0–100 m range in 1982–2008.

Vineyard trends are similar to forest but greatly exaggerated. Losses outweigh gains

significantly close to roads (0–100 m), but differences are small beyond this distance.

Grassland gains are greater than losses at all distances, though the land gained and lost

decreases with distance from roads. Major gains are registered more particularly in the 0–

100 m range for 1950–1982 and in the 100–300 m range for 1982–2008. Built area clearly

distinguishes itself from the other land cover types since almost all of its gain occurs

within 100 m of a main road.

3.2.6. Distance from built area

The relationship between total land cover change and distance from built area (Figure 7a

and b) is strongly time dependent. In 1950–1982 (Figure 7a), there is little evolution in

land cover change with distance from built area despite a tendency for the vegetation

covers (forest, vineyard, grassland) to show greater change at intermediate distances (300–

1300 m) and built area to change more close to earlier built area (0–100 m). In 1982–

2008, the pattern is totally different (Figure 7b). For vineyard and grassland, total change

first increases with distance from built area, peaks at about 100–200 m, and then decreases

with further distance from built area. Total change in forest cover is roughly constant

between 0 and 300 m before decreasing with greater distances. Built area change is

greatest within 0–100 m, where more than 50% of total change takes place in 1982–2008.

For comparison, the value for the other land cover types in this distance range is

Figure 6. (a) Land cover changes in 1950–1982 with distance from road. (b) Land cover changes
in 1982–2008 with distance from road.
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approximately 15%. It should be noted that built area was limited to only 32 ha in 1950

and expanded to almost 270 ha in 1982 (Table 1); built area expansion was particularly

important in the 1982–2008 period (Table 1).

Gains and losses in forest vary with time: in 1950–1982, gains and losses are

relatively small and tend to occur far from built area. In 1982–2008, forest land is lost

close to built area (within 200 m) and gained at intermediate distances (200–500 m).

Vineyard clearly loses significant area near built area. The trend is particularly strong in

1982–2008 within about 300 m to 400 m from built area. In this range, losses are 3 to 10

times greater than gains. Although total changes are similar for vineyard and grassland

(Figure 7b), the relationship with distance from built area is quite different: in grassland,

losses and gains are better balanced in the estimation of total change. In the 0–100 m

range, grassland experiences a net loss, but beyond this distance, grassland gains are

generally greater than losses, even though losses can remain substantial, especially in the

100–400 m range. Where vineyard systematically lost area, grassland both lost and gained

land. Built area expansion in 1982–2008 occurred close to former built area. Almost 75%

of the land gained in 1982–2008 was located within 200 m of 1982 built land.

3.2.7. Distance from sea

Trends for changes in land cover with distance from the sea (Figure 8a and b) are distinct

from all other patterns examined thus far. Before examining these, it should be noted that

the catchment sea front is restricted to a narrow band near the outlet into the Gulf of St

Tropez. Total change in vineyard, grassland, and built area covers tends to be greatest at

about 3–5 km from the sea front in 1950–1982 (Figure 8a). This distance corresponds

roughly to the center of the alluvial plain and is close to the city cores of Cogolin and

Grimaud. Changes in forest cover peak at a greater distance (about 7–9 km) and this

corresponds roughly to a secondary peak in change for vineyard and grassland. This

distance is situated near the foothills peripheral to the alluvial plain. Finally, there appears

to be a third smaller peak in change around 10–12 km and this corresponds roughly to the

area near the town of La Môle in the western part of the catchment. Trends for 1982–2008

Figure 7. (a) Land cover changes in 1950–1982 with distance from built area 1950. (b) Land cover
changes in 1982–2008 with distance from built area 1982.
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(Figure 8b) are generally similar to 1950–1982 (Figure 8a), but changes in forest are

concentrated within closer distances to the sea, vineyard changes are less great at inter-

mediate distances (5–9 km), grassland peaks are greater at both near (3–5 km) and

intermediate (7–9 km) distances, and built area changes are significantly greater in the

1–4 km range especially.

Forest gains and losses are sensitive to distance from the sea. Gains outweigh losses

close to the sea (within about 2–3 km for both periods and 3–4 km for 1950–1982), but

losses are generally greater beyond about 5 km. The greatest difference in gain–loss

occurs at about 7–9 km. Vineyard losses and gains are strikingly simple. Losses outstrip

gains at all distances up to 6 km, and gains outweigh losses at all distances beyond 6 km.

Peak lost land is situated about 3–5 km from the sea, and the peak gained land occurs at a

distance of around 6–9 km. Grassland trends are more complex and vary less system-

atically as a function of either time period or distance. Three approximate distance peaks

can be identified. The first is in the 2–5 km range; here, grassland gains more land than it

loses in 1950–1982, but the trend is reversed in 1982–2008. The second is in the 7–9 km

range; gains are greater than losses for both time periods. The third is in the 10–13 km

range where land gained is also greater than lost. Finally, the major peak in gained land

for built area is about 3–5 km from the sea in 1950–1982 and 2–6 km in 1982–2008. For

the initial 1950–1982 period, significant gains were made close to the seafront but these

do not persist in 1982–2008. Finally, built area shows growth in the distant (11–13 km)

range in the latter period.

4. Discussion

The results above detail land cover changes for the 235 km2 Giscle catchment over two

time periods and describe spatial patterns and topographic/distance variables influencing

these changes. The spatial and temporal dimensions create a complex pattern of change

that will be simplified in the discussion to highlight the major findings of the study.

Before this, it should be noted that the topographic and distance variables are often

correlated, but may have distinct impacts. Altitude and slope are correlated and both

reflect a greater distance from the sea; in addition, slope influences building costs as it is

Figure 8. (a) Land cover changes in 1950–1982 with distance from sea. (b) Land cover changes in
1982–2008 with distance from sea.
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cheaper to build on flat land than steep slopes. Distance from the sea also reflects the

impact of built area, as described in the results. The major cities of Ste Maxime and St

Tropez are located on either side of the Gulf of St Tropez, so distance from the sea also

represents distance from larger urban centers, seafront tourism, and major road and rail

transportation networks. Behind all these variables are economic considerations that are

impossible to isolate and quantify here.

Perhaps the most frequently cited land cover transition in Mediterranean regions in the

scientific literature is the abandonment of agricultural practices on marginal land and its

conversion to forest (Falcucci et al., 2007; Geri et al., 2010; Parcerisas et al., 2012;

Pelorosso et al., 2009; Serra et al., 2008). This was not observed in this catchment. On the

contrary, marginal lands on steeper slopes were converted from forest to vineyard, as can

be seen in Figure 9 showing vineyard terraces on foothills above the alluvial plain. A

forest fire in the catchment in 2003 (Fox, Berolo, Carrega, & Darboux, 2006) revealed

extensive terracing on steep slopes, but marginal subsistence farming was probably

abandoned in the region before 1950, as was the case elsewhere in Mediterranean

France (Sluiter & de Jong, 2007). The Maures mountains (‘Massif des Maures’) are

highly prone to forest fires and this clearly explains the prevalence of cork oak

(Quercus suber) as the dominant tree species in the catchment. The thick bark of cork

oak protects the heart of the tree from intense heat, and most trees survive even high

severity fires. Exceptions are the very young or old trees, and trees which have recently

been harvested for their cork bark. Pine (Pinus pinaster) trees, on the other hand, are

systematically killed by high severity fires. With regard to vineyards, large areas in the

plain were converted to grassland, built area, and some forest. This was compensated in

part (but only partially since the net result is a 28% loss in vineyard cover between 1950

and 2008) by planting on steeper slopes in proximity to the plain. These fields therefore

find themselves at the interface between the extensive forest on one side and the plain on

the other. During the large fires of 2003, vineyards served as effective fire breaks; as forest

fires penetrated into the vineyard, the lack of combustible vegetation extinguished the fire

after the first few vine rows were burned or dried out.

A second common trend cited is the intensification of agriculture on plains (Falcucci

et al., 2007; Geri et al., 2010; Van Eetvelde & Antrop, 2004). The term ‘intensification’ is

ambiguous as it can imply either the clearing of land to plant crops or an increase in

Figure 9. Clearing and terracing of foothills for vineyard.
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mechanization in crop production. The latter is true here; wine producers are more

mechanized and most harvest grapes mechanically and no longer manually in the catch-

ment, as has been the trend elsewhere in southern France (Sluiter & de Jong, 2007).

However, the first interpretation of land clearing does not hold since vineyard experienced

the greatest loss (−34.2% of initial cover, Table 1) in the alluvial plain of all land cover

types. Much of this was to built area as urban centers expanded onto adjoining land. The

tendency for cities to grow onto agricultural land is common throughout the world and the

Mediterranean area (Serra et al., 2008; Sluiter & de Jong, 2007), but the conversion of

vineyard to grassland in conjunction with urban expansion is less common (Falcucci et al.,

2007; Serra et al., 2008). In this case, abandoned vineyard fields generally belonged to

owners who did not produce their own wine but brought their grapes to a winemaking

cooperative. Grape production was therefore not necessarily central to their livelihood as

it is for the winemaking ‘domaines’. Furthermore, when land is passed on from one

generation to the next, grape production can be abandoned but the land retained. Property

values are known to increase in the region, so land represents a secure financial invest-

ment. This explains some of the conversion from vineyard to grassland and then forest,

and it accounts for the paradoxical situation of agriculture conquering marginal lands on

steep slopes while abandoning fertile land in the plain to grassland and forest.

The shift in agriculture from the alluvial plain to fields located on bedrock soils is

probably specific to vineyard production since vines adapt better to cultivation on steeper

slopes than most crops. In addition, steeper slopes with thin soils brought into cultivation

are generally terraced, and soil depths are significantly improved by terracing. Upland

slopes are dominated by schist and gneiss which tend to generate slightly acidic sandy

soils. In an unpublished analysis of 24 soil samples from vineyards from both the plain

and foothills, there was very little variation within the catchment in texture and pH. Clay

contents were low for all samples (mean and median of 7.6% and 6.6%, respectively),

coarse sand contents were high (mean and median of 45.3% and 48.4%, respectively), and

pH values were all slightly acidic (mean and median of 6.6 and 6.7, respectively). Hence,

soil attribute differences generated by different geological substrates were minor, and the

French notion of ‘terroir’ in wine production can be considered preserved despite the

move of some fields from the plain to the foothills. It is, however, probable that the

alluvial plain soils benefit from better soil moisture conditions in the summer, but there

are no data available to support this.

Grassland dynamics are particularly complex in the catchment. As discussed above,

some of the growth in grassland is due to land abandonment in the fertile alluvial plain.

However, several other factors come into play. One is the conversion of vineyard to

grassland (mostly pasture) along stream channels and this is probably related to flooding

risks (Figure 10) where lowland areas along stream channels experience regular flooding.

This probably also accounts for the relatively low gains in built area close to stream

channels. With time, abandoned vineyard evolves into grassland (or shrubland) first (Serra

et al., 2008), then forest afterwards, accounting for grassland–forest transitions and the

increase in forest area in the alluvial plain in 1982–2008 (Figure 2a). Although the reverse

is intuitively unlikely, clearing of forest to create fire breaks was a priority after the 2003

fires that ravaged >4000 ha, and some fire breaks were present before then. Finally, some

of the vineyard–grassland transition is related to the creation of horseback riding activities

in recent years. Tourism is a major local industry and the proximity of large expanses of

forest with paths and dirt roads makes horseback riding an attractive tourism activity. Cori

(1999) explains that rapid growth of the tourism industry increased dramatically in the last

few decades and influenced the land cover change on the northern shores of the
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Mediterranean. He reported that agricultural land decreased and nonagricultural land

increased in the Spanish, French, and Italian Mediterranean regions due to the spread of

touristic activities. And Nainggolan et al. (2012) found significant land cover change over

72% of their study area in a Mediterranean catchment due to biophysical and socio-

economic factors, most of which were associated directly or indirectly with rapid urbani-

zation and tourism. The combination of all these dynamics explains the high swapping of

land between forest, vineyard, and grassland.

Built area increased substantially between 1950 and 2008. During the initial period,

about 223 ha were added to the catchment in 32 years (7.0 ha y−1); this value increased to

448 ha in 1982–2008 (17.2 ha y−1). Other authors (Antrop, 2005; Salvati et al., 2013)

have also found that urban sprawl accelerated in Euro-Mediterranean countries in the

1980s. Permanent population for the three main cities grew faster in 1982–2007 (about

296 pers. y−1) than in 1962–1982 (about 229 pers. y−1), but built area growth in the region

probably depends as much on the nonpermanent population. Many new secondary homes

were built during the past two decades (EAA Annual Report, 2010) near Mediterranean

beaches to attract European and French populations (Blue Plan Papers, 2001). In addition,

French and immigrated foreign retirees tend to settle in Mediterranean cities or use their

coastal house as a secondary home. According to Cori (1999), half of total secondary

homes in France are situated in the Mediterranean coastal area. Spatially, previously built

area had a stronger impact on newly built area location in 1982–2008 than in 1950–2008,

and urban expansion occurred almost exclusively within 100 m of roads and was

concentrated mainly at low altitudes and on low to intermediate slopes. This agrees

well with the findings of Schneider and Woodcock (2008) on the growth trends in 25

cities across the world in 1990–2000.

5. Conclusion

As in much of Mediterranean Europe, significant land cover changes occurred in 1950–

2008. Forest remained the dominant land cover at all the times, and relative changes in

forest cover were small for several reasons: its large surface (more than 85% of the

catchment) and location at higher altitudes and on steeper slopes. Despite this, forest

swapping with vineyard and grassland were high. Vineyard lost considerable area. It was

Figure 10. Flooding in vineyard close to stream channel.
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converted mainly into grassland, urban, and suburban land covers. Grassland was highly

dynamic and experienced large losses and gains due to vineyard abandonment and the

creation of fire breaks and pasture land. Grassland expanded mainly on abandoned

vineyards. Most land cover changes occurred at lower altitudes and on flat to gently

sloping areas in the eastern part of the catchment. All distance variables (from streams,

roads, built area, and the sea) had significant impacts on land cover change dynamics.
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Abstract. Land cover has been changing rapidly throughout the world, and this 

issue is important to researchers, urban planners, and ecologists for sustainable 

land cover planning for the future. Many modeling tools have been developed 

to explore and evaluate possible land cover scenarios in future and time scales 

vary greatly from one study to another. The main objective of this study is to 

test land cover change prediction at different time scales in a Mediterranean 

catchment in SE France. Land cover maps were created from aerial photographs 

(1950, 1982, 2003, 2008, and 2011) of the Giscle catchment (235 Km2) and sur-

faces were classified into four land cover categories: forest, vineyard, grassland, 

and built area. Explanatory variables were selected through Cramer’s coeffi-

cient. Different time scales were tested in the study: short (2003-2008), inter-

mediate (1982-2003), and long (1950-1982). To test the model’s accuracy, 

Land Change Modeler (LCM) of IDRISI was used to predict land cover in 2011 

and predicted images were compared to a real 2011 map. Kappa index and con-

fusion matrix were used to evaluate the model’s accuracy. Altitude, slope, and 

distance from roads had the greatest impact on land cover changes among all 

variables tested. Good to perfect level of spatial and perfect level of quantitative 

agreement were observed in long to short time scale simulations. Kappa indices 

(Kquantity = 0.99 and Klocation = 0.90) and confusion matrices were good for inter-

mediate and best for short time scale. The results indicate that shorter time 

scales produce better predictions. Time scale effects have strong interactions 

with specific land cover dynamics, in which stable land covers are easier to 

predict than cases of rapid change and quantity is easier to predict than location 

for longer time periods. 

Keywords: Time scale, Land cover change modeling, Mediterranean Europe, 

Land change Modeler (LCM).  

1 Introduction 

1.1 Land Cover Change Modeling 

Land cover is changing rapidly throughout the world, and it has become an important 

issue for urban planners, ecologists, economists, and resource managers to evaluate 

                                                           
* Corresponding author. 



316 H.G. Roy, D.M. Fox, and K. Emsellem 

environmental change and establish sustainable development planning [7, 10, 17]. 

Land cover change models are able to identify location and quantity of change,  

predict land cover change considering past changes, test explanatory variables, and 

simulate management policies. For this reason, many interdisciplinary research 

projects have been initiated for land cover change modeling, measuring regional and 

global land cover change, forecasting future conditions, and planning for sustainable 

development [28]. As a result, researchers have created a large set of operational 

modeling tools to implement prediction and exploration of possible land cover change 

trajectories and land cover planning and policy in recent years [29]. Moreover, land 

cover change, urban growth, and spatial modeling have drawn considerable interest in 

the last two decades due to better computing power, availability of spatial data, and 

the need for innovative planning tools for decision support [7]. Advanced urban and 

land cover change modeling techniques have been included in many GIS software 

package.  

1.2 The Role of Time Scale in Land Change Prediction 

The selection of prediction and validation time intervals has a great impact on predic-

tion accuracy [6]. Prediction accuracy can depend on the rate and process of transi-

tions in both time intervals. Modeling of land cover change using a coarser temporal 

scale may fail to understand landscape change patterns properly and can hamper 

model performance [2], so most studies on future land cover change use short to in-

termediate historical time scales (5–15 years). Many studies on urban land cover 

change modeling use short time scales that achieve better prediction [1, 11, 18, 24]. 

Some studies use intermediate time scales [13, 14, 15, 20, 25, 26, 27] and very  

few studies use long time scales to simulate urban land cover [4] and multiple land 

cover change [10, 21]. Average historical and prediction time periods are about 10 

and 12 years, respectively, analyzing 25 recent studies on land cover change using 

CA-Markov and Multi-Layer Perceptron (MLP). 

Very few studies were found on the comparison of the impact of historical time pe-

riods on land cover prediction using different time scales. To investigate the impact of 

time interval on prediction accuracy in Gorizia-Nova Gorica (Italy), urban area was 

predicted for different years (2005 to 2010) from initial conditions in 1985 and 2004 

[5]. The authors found that prediction accuracy increased with decreasing prediction 

time period.  

1.3 Objectives 

The objective of this paper is to explore the impact of temporal scales on land cover 

change modeling for predicting land cover change in a Mediterranean catchment in 

SE France. Land cover maps of 2011 were predicted from different time scales (1950-

1982, 1982-2003, and 2003-2008) and compared with the digitized land cover map of 

2011 to measure model accuracy. The study is part of a larger program to evaluate the 

impacts of land cover change on runoff and soil erosion at the catchment scale. 
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2 Methods 

Study area, land change modeling steps, and data are discussed in this section. 

2.1 Site Description 

The study area (about 235 km²) is situated in the Var department of SE France near 

the Gulf of St. Tropez. The western part of the watershed (about 70% of the catch-

ment) is forest (mostly pine and oaks), and the topography is uneven with the highest 

elevation at about 650 m. The lower part of the catchment is a gently sloping alluvial 

plain. The catchment area is characterized by a Mediterranean climate with hot dry 

summers, and cooler rainier winters. Average temperatures range between 22°C to 

26°C in summer and 5°C to 10°C in winter. The mean annual rainfall is about 900 

mm, and the main rainy season is from October to January [9]. Several tributaries 

flow into the Giscle main channel, including the Môle, the Grenouille, the Tourre, and 

the Verne. Three main municipalities are located within the catchment: Cogolin, Gri-

maud, and La Môle. 

2.2 Land Change Modeling Procedure 

Land Change Modeler (LCM) in IDRISI [8] was originally designed to manage  

impacts on biodiversity, and analyze and predict land use and land cover changes. 

Only thematic raster images with the same land cover categories listed in the same 

sequential order can be inputted in LCM for analysis, and background areas must be 

identified on maps coded with 0. LCM evaluates land cover changes between Time 1 

(initial time) and Time 2 (second time). It calculates the changes, and displays the 

results with various graphs and maps. Finally, it predicts future (Time 3) land  

cover on the basis of relative transition potential maps. LCM was used in this study to 

identify explanatory variables, create transition potentials, and predict future land 

cover maps.  

Digital Data and Land Cover Categories 

Land cover maps were digitized from grey scale ortho-rectified aerial photographs of 

1950 and 1982, and color ortho-photos of 2003, 2008, and 2011. Spatial resolution for 

all aerial photographs was reduced to 1 m from 0.5 m to facilitate data manipulation 

during digitization. Surfaces were initially characterized into five categories: forest 

(F), vineyard (V), grassland (G), urban (U) and suburban (S), but the last 2 categories 

were collapsed into a single built area (B) class to improve category attribution as 

described below. Methods of land cover digitization, classification, and characteristics 

of land cover classes were discussed in [23]. Land cover classification was facilitated 

by numerous field visits, and validation was carried out through a group of 15 third 

year Geography students of the University of Nice Sophia Antipolis. Each student 

was provided with a sample of 20 selected cells to identify land cover class; each 

sample had a roughly equal number of cells in each category, and there were 5  
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students for each year (1950, 1982, and 2003). This was the students’ first contact 

with digital air photos, so the validation is considered a worst case scenario. 

Slope was created from a 25 m Digital Elevation Model (DEM). Road and stream 

networks were screen digitized from the aerial photographs of 2008. Only major roads 

were taken into account, so road network was considered constant for all time periods. 

In order to make the land cover maps compatible with the explanatory variables, celle 

size was converted to 25 m. 

Explanatory Variables and Constraints  

Topographic and distance variables have been used to simulate land cover change 

studies throughout the world [16, 18, 19, 27]. In an earlier study [23], major topo-

graphic and distance variables were identified. These include the following: slope, 

altitude, distance from roads, distance from built area (initial year), and distance from 

streams. In addition, three constraints and incentives (forest to built area, vineyard to 

built area, and grassland to built area) were included in the prediction process. These 

were created from the “Plan Local d’Urbanisme” (PLU) and “Schéma de Coherence 

Terrtoriale” (SCOT). The PLU is the local urban plan in France; it determines land 

use guidelines. The SCOT integrates different policies regarding urban planning: 

social and private housing, communication infrastructure and public transport, com-

mercial infrastructure, and environment protection. Constraints and incentives are 

multiplied by the corresponding transition potential during modeling. In this study, 

values of 0 on the map were used to define absolute constraint, and 1.1 was used for 

incentives to emphasize the expansion of built areas in suitable selected zones for 

development according to the regional plan. In addition, distance from streams was 

also added with above mentioned constraints. Disincentive areas situated within a 

distance from streams of 0-25 m, and 25-50 m were defined by values of 0.6 and 0.8, 

respectively to maintain the historical trend of less urbanization near stream networks 

in the study area according to [23]. 

Selection of Explanatory Variables  

The simulation of multiple categories of land cover change depends on several expla-

natory variables [18]. Explanatory variables that were drivers of past land cover 

change are expected to be an influential force in future changes and are selected based 

on available data and their explanatory abilities. DEM, slope, and distance from road 

represent the accessibility of a neighborhood, and distance from built area highlights 

the proximate location of urbanization. The significance of explanatory variables was 

tested using Cramer’s V which measures the strength of association between two 

categorical variables based on Chi-square statistics [21]. In this study, land cover 

change in a historical time period and explanatory variables are taken into account to 

test Cramer’s V for a particular variable. LCM calculates Cramer’s V automatically 

and displays the association level of explanatory variables with land cover categories. 

Variables with greater values are considered more important than other variables. 

Cramer’s V values of 0.4 and 0.15 are considered good and useful, respectively; 

and values <0.15 should be removed from the model [8].  
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Transition Potentials 

Transition potential maps were created for each transition possibility (F to V, F to G, 

F to B, V to F, V to G, V to B, G to F, G to V, and G to B) based on historical 

changes and selected explanatory variables. The Multi-Layer Perceptron Neural Net-

work (MLPNN) algorithm of IDRISI [8] was employed to create transition potentials. 

Each transition potential was modeled individually using the same explanatory va-

riables, but only transition potentials with an accuracy rate greater than 70% were 

utilized for land cover prediction.  

Land Cover Prediction and Time Scales Test 

Land cover change prediction has two aspects: the quantity of change is provided by 

the Markov change model matrix and the spatial distribution of change is given by 

MLPNN. LCM provides the quantity of change by evaluating the Markov matrix 

comparing the initial (T1) and second land cover (T2), and then predicts the future 

land cover (T3) using a transition probability matrix for the future. The transition 

probability matrix displays the probability of each land cover category changing into 

another category. A value close to 0 indicates a low conversion probability, and 1 

indicates a high conversion probability for the target land cover. Land cover maps 

were predicted for 2011 using transition potential maps from several historical time 

periods (1950-1982, 1982-2003, 2003-2008) (Table 1). The same variables and con-

straints were incorporated in all simulations. 

Table 1. Historical time periods, prediction and validation dates for different scales 

Historical time 

period 

Prediction 

date 

Historical time 

interval 

Validation time 

interval 

1950-1982 2011 32 29 

1982-2003 2011 21 8 

2003-2008 2011 5 3 

Land Cover Prediction Validation 

Validation of a model is needed in order to assess its accuracy. To do this, simulated 

land cover maps of 2011 created using different time scales were compared with a 

digitized map of the same year. Kappa indices and error matrix analysis were used in 

the study for model validation. The standard ‘Kappa index’ is a comparative analyti-

cal process that measures spatial and non-spatial aspects between predicted and refer-

ence maps [8]. Kappa values were characterized as excellent over 0.75, 0.40 to 0.75 

as fair to good, and below 0.40 as poor [8].  

Several components of Kappa indices are described in [22]: Kappa standard (Kstan-

dard), Kappa for location (Klocation),  and Kappa for quantity (Kquantity). They [22] define 

“Kstandard as an index of agreement that attempts to account for the expected agree-

ment due to random spatial reallocation of the categories in the comparison map, 

given the proportions of the categories in the comparison and reference maps, re-

gardless of the size of the quantity disagreement”. Kquantity is a ratio of quantitative 

difference between the categories in the comparison map and reference map, and 

Klocation is the spatial allocation agreement between them. 
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The confusion matrix was analyzed using the ERRMAT module of IDRISI [8] to 

assess the fitness of spatial cell allocation between predicted and true values. 

ERRMAT outputs an error matrix containing a tabulation of the number of cells 

found in each possible combination of true and mapped categories and a summary of 

statistics [8]. Error of omission estimates the proportion of the area of a particular 

land cover that is omitted by the model. Error of commission represents the propor-

tion of wrongly attributed land cover of a particular category that is overestimated by 

the model for each category.  

3 Results 

3.1 Land Cover Change Analysis during Different Time Periods 

The classification validation procedure revealed that classifying land cover into five 

categories was difficult from grey scale photographs and simpler for the 2003 color 

air photos. For 1950, classification error was 27%, and sources of error were either a 

confusion between vineyard and grassland or urban and suburban. The classification 

error decreased to 20% when urban and suburban were collapsed into a single built 

category. For 1982, category error was 10% and 20% for 4 and 5 categories, respec-

tively. Finally, for 2003, the error was only 4% for 4 categories, down from an initial 

15% due to confusion between urban and suburban classes (by one student). It 

should be noted that the exercise was for unexperienced undergraduates just intro-

duced to digital air photos. The actual classification was carried out by an expe-

rienced user over several months and verified thoroughly by a second experienced 

user, so the actual classification accuracy can be considered much greater than the 

values cited above. 

Fig. 1a-d show land cover maps (1950, 1982, 2003, and 2008) digitized from the 

air photos. Most of the land cover changes occurred in the alluvial plain (East), where 

most of the vineyard, grassland and built areas are concentrated. 

 

  

Fig. 1a. Land cover map of 1950  Fig. 1b. Land cover map of 1982  
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Fig. 1c. Land cover map of 2003  Fig. 1d. Land cover map of 2008  

Fig. 2 a-d present land cover changes (ha) in all categories of the study area, and 

Table 2 shows the percentage of total surface area of each land cover category in dif-

ferent years. Two general trends can be identified in land cover change since 1950: 

forest and vineyard decreased while grassland and built area increased. Some changes 

in forest occurred in 1982-2003 as it lost about 120 ha (Fig. 2 a). A marked decrease 

was observed in vineyard (28% of the initial year) that lost 854 ha between 1950  

and 2003 (Fig. 2 b). Then, it increased 67 ha in 2003-2008 and resumed its decreasing 

trend in the last time period 2008-2011. Vineyard was 10.4% of the catchment  

in 1950 and decreased to 6.6% in 2003 and then remained more or less stable till 

2011. Grassland increased from 3.4% to 5.4% of the catchment in 1950-2003 and 

decreased slightly to 4.9% in 2011. It increased greatly (383 ha) in 1982-2003, de-

creased 122 ha in the next time period (2003-2008) but resumed the increasing trend 

again in 2008-2011 (Fig. 2 c). Built area remained a minor component of the catch-

ment, and increased rapidly from only 0.1% to 3.2% of the catchment during the 

study period (Table 2). 

 

  

Fig. 2a. Forest change in 1950-2011 Fig. 2b. Vineyard change in 1950-2011 
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Fig. 2c. Grassland change in 1950-2011 Fig. 2d. Built area change in 1950-2011 

Table 2. Percentage of the catchment area for each category 

 Total surface area (% of the catchment) 

 1950 1982 2003 2008 2011 

Forest 86.1 85.9 85.4 85.3 85.1 

Vineyard 10.4 9.3 6.6 6.9 6.8 

Grassland 3.4 3.7 5.4 4.8 4.9 

Built area 0.1 1.1 2.7 3.0 3.2 

 

 

Fig. 3. Mean rates of land cover change (ha) in different time periods 
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Fig. 3 summarizes the mean rate of change of each land cover category in the dif-

ferent time periods. Forest loss was -1.1 ha yr
-1

 and -5.8 ha yr
-1

 in 1950-1982 and 

1982-2003, respectively, it lost -10.1 ha yr
-1

 in the recent time period 2003-2011. 

The average forest depletion rate was -3.9 ha yr
-1

 in 1950-2011. The greatest rate of 

vineyard loss was -30.1 ha yr
-1

 in 1982-2003, and the average overall rate of vi-

neyard depletion was -14 ha yr
-1

. The rate of grassland expansion was 2.7 ha yr
-1

 in 

1950-1982; it increased to 18.2 ha yr
-1

 in 1982-2003, and then to 13.8 ha yr
-1

 in 

2003-2011. Grassland gained an average of 5.9 ha yr
-1

 in the study period. The rate 

of built area expansion was 7 ha yr
-1

 in 1950-1982 and increased to 17.6 ha yr
-1

 in 

the recent time period 2003-2011. So, the average rate of built area expansion was 12 

ha yr
-1

 in 1950-2011. 

3.2 Selection of Explanatory Variables 

The association level between explanatory variables and land cover types in different 

time periods is shown in Table 3. It is measured through Cramer’s V. All variables 

have a Cramer’s V value 0.15 with all land cover types except forest in the long time 

period (1950-1982). 

Table 3. Cramer’s V coefficient (relationship between land cover change and explanatory 

variables). Values  0.40 are highlighted in bold 

Time 

period 

 Altitude Slope Dist. 

Road 

Dist. Built 

area 

Dist. 

stream 

 

1950-1982 

Forest 0.20 0.15 0.31 0.40 0.12 

Vineyard 0.69 0.65 0.59 0.46 0.41 
Grassland 0.52 0.50 0.44 0.33 0.32 

Built area 0.39 0.36 0.28 0.22 0.20 

 

1982-2003 

Forest 0.30 0.22 0.49 0.60 0.16 

Vineyard 0.67 0.63 0.59 0.59 0.41 
Grassland 0.40 0.40 0.36 0.33 0.27 

Built area 0.44 0.42 0.30 0.30 0.25 

 

2003-2008 

Forest 0.30 0.22 0.49 0.64 0.16 

Vineyard 0.67 0.62 0.59 0.60 0.41 
Grassland 0.41 0.41 0.36 0.34 0.27 

Built area 0.39 0.38 0.27 0.29 0.25 

 

The strongest explanatory variable is altitude, which has a good association level 

(Cramer V 0.40) with all land covers except forest for all time periods. A good asso-

ciation level is also observed in slope with all land covers in all time periods, espe-

cially with vineyard and grassland. Distance from roads shows a high association 

level with vineyard in all time periods, and has good association level with forest and 

grassland in the intermediate (1982-2003) and long (1950-1982) time periods, respec-

tively. Distance from built area also has a good association level with forest and vi-

neyard in all time periods. Distance from streams is the weakest variable; it shows 

comparatively limited association with existing land covers and has only a good level 

of association with vineyard in all time periods. The lowest association is observed 



324 H.G. Roy, D.M. Fox, and K. Emsellem 

for forest with all variables except distances from road and built area, indicating that 

the dominant forest category (about 85%) is less influenced by topographic variables.  

3.3 Transition Potentials  

Transition potentials for different time periods present similar patterns and the same 

explanatory variables were used in all simulations for the different time scales. Table 

4 presents the accuracy rate of all transition potentials for different time periods. Ac-

curacy rate represents the agreement between a particular transition and selected ex-

planatory variables. A high accuracy rate is observed for several transitions in all time 

periods: forest to all other categories, and vineyard and grassland to built area. Transi-

tion from vineyard to forest in 2003-2008 also shows high accuracy. Therefore, tran-

sition potentials from forest to all and vineyard and grassland to built area are good. 

All transitions from vineyard and grassland to other land covers except built area have 

low to intermediate accuracy rate.  

Table 4. Accuracy rate (%) of transition potentials in different time periods (F-Forest,  

V-Vineyard, G-Grassland, B-Built area) 

 Accuracy rate (%) 

Time period F-V F-G F-B V-F V-G V-B G-F G-V G-B 

1950-1982 85 86 99 64 58 97 63 58 97 

1982-2003 83 81 97 64 60 85 62 57 83 

2003-2008 91 97 98 100 63 85 63 64 82 

3.4 Validation of Predicted Land Cover 

Simulations for 2011 were executed using transition potentials from 1950-1982, 

1982-2003, and 2003-2008, respectively. Simulated and actual land cover maps of 

2011 are presented in Fig. 4a-d. Dissimilarities are observed mainly in the plain land  

 

  

Fig. 4a. Predicted land cover map of 2011 

from transition potentials 1950-1982 

Fig. 4b. Predicted land cover map of 2011 

from transition potentials 1982-2003 
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Fig. 4c. Predicted land cover map of 2011 

from transition potentials 2003-2008 

Fig. 4d. Land cover map 2011 (actual) 

of the eastern part of the catchment where most of the conversion took place as de-

scribed in [23]. Visual interpretation (Fig. 4 a-c) suggests the simulated maps from 

intermediate (Fig. 4 b) and short (Fig. 4 c) time scales are reasonably similar to the 

actual map of that year (Fig. 4 d). 

Kappa Indices for Predicted Land Cover from Different Time Periods 

The summary of the Kappa indices at different time scale simulations is presented in 

Table 5. These indices are acquired from the VALIDATION module of IDRISI [8] 

and can also be obtained using the Pontius matrix following [22]. Results show that 

all Kappa components increase with decreasing time scale up to the near perfect level 

of agreement for the short time scale. However, simulation from long time scale also 

achieved a perfect level for Kquantity and a reasonable level of agreement for Klocation, 

and Kstandard. 

Values of Kquantity were observed in the perfect level of agreement in all three simu-

lations, and these values increased a little from 0.95 to 1.00 for long to short time 

scale simulations. Klocation gives the overall spatial accuracy of a simulation. Spatial 

accuracy was difficult to achieve from the long time simulation. Values of Klocation 

varied greatly from long to short time scale though the simulation for the long time 

scale also had a good level of agreement (0.75); this increased to 0.87 and 0.94 for 

intermediate and short time simulations, respectively. The greatest changes were also 

observed in Kstandard for different time scales which increased from 0.66 to 0.94 with 

decreasing time scale. 

Table 5. Summary of Kappa indices 

 Initial time period 

 1950-1982 1982-2003 2003-2008 

Kquantity 0.95 0.99 1.00 

Klocation 0.75  0.90 0.94 

Kstandard 0.66 0.87 0.94 
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Error Matrix Analysis for Predicted Land Cover from Different Time Periods  

Table 6 presents the error matrix analysis of the actual land cover map 2011 (column) 

against predicted land cover (row) for different time scales. The table contains three 6 

x 6 matrices for the 1950-1982, 1982-2003, and 2003-2008 time periods. In addition 

to overall errors, this table also shows where errors occur. For example, 158 ha of 

vineyard was wrongly attributed to forest, and 438 ha of vineyard was omitted that 

should be forest. 

Table 6. Error matrix analysis of actual land cover map 2011 (column) against predicted (row) 

land cover from transition potentials for different time periods. Values are expressed in hectares 

(ha) and errors of commission and omission are expressed in % and in bold.  

Initial time 

period 

 Forest Vineyard Grassland Built 

area 

Total Error of com-

mission (%) 

 

 

1950-1982 

(long) 

Forest 19,277 158 236 113 19,784 2.6 
Vineyard 438 1,305 488 156 2,387 45.3 
Grassland 295 113 403 118 930 56.6 
Built area 20 27 25 378 450 16.0 

Total 20,030 1,603 1,152 765 23,550  
Error of 

Omission (%) 
3.8 18.6 65.0 50.6 9.3 

 

 

1982-2003 

(interme-

diate) 

Forest 19,716 45 52 51 19,864 0.7 
Vineyard 68 1,413 80 30 1,590 11.2 
Grassland 204 119 965 37 1,326 27.2 
Built area 42 26 54 647 770 15.9 

Total 20,030 1,603 1,152 765 23,550  
Error of 

Omission (%) 
1.6 11.9 16.2 15.4 3.4 

 
 

2003-2008 

(short) 

Forest 19,953 30 45 27 20,055 0.5 
Vineyard 16 1,496 94 15 1,621 7.7 
Grassland 44 68 997 17 1,127 11.5 
Built area 16 9 16 706 747 5.4 

Total 20,030 1,603 1,152 765 23,550  
Error of 

Omission (%) 
0.4 6.7 13.4 7.7 1.69 

 
Errors for all land covers decreased with decreasing time scales. The lowest com-

mission and omission errors were observed in forest for all time scales and these de-

creased slightly with decreasing time scales. Errors of commission and omission were 

2.6% and 3.8%, respectively, for forest in the long time scale prediction, and these 

decreased to 0.7% and 1.6% in the intermediate and 0.5% and 0.4% in the short time 

scale predictions, respectively. High error of commission (45.3%) was observed in 

vineyard in the long time scale where the greatest amount of vineyard (1,082 ha) was 

wrongly attributed, and commission error decreased markedly in intermediate and 

short time scales. However, error of omission was relatively low in the long time 

scale simulation for vineyard. The highest errors of commission and omission were 

observed in grassland in all time scale simulations, particularly the long time scale 

where errors of commission and omission were 56.6% and 65%, respectively. Errors 

for this land cover also decreased greatly with decreasing time scale (Table 6). Consi-

derable amounts of vineyard and grassland were wrongly attributed to forest, and 

considerable areas of vineyard and grassland were omitted by the model in the long 
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time scale simulation; this occurred mainly due to high swapping of these land covers 

with forest. For this reason, high errors of commission and omission were generated 

for vineyard and grassland in the long time scale; errors decreased considerably in the 

intermediate and short time scale simulations. In long time simulation, errors of 

commission of built area were lower than for vineyard and grassland due to its small 

coverage in the catchment, and it was wrongly attributed 72 ha of other land covers. 

However, high error of omission was observed in the same simulation because much 

built area (388 ha) was omitted. 

4 Discussion 

Land cover dynamics and changes in individual land covers have an important impact 

on land cover simulation. As it is described in the results, forest is easy to predict, and 

it obtains the best level of agreement and the lowest error in all simulations using 

different time scales due to its dominant coverage in the study area. It is the least 

probable to change in all transition potentials of forest to other land covers, so Kquantity 

is better for all time scales. 

Simulations of vineyard and grassland are extremely difficult to predict: accuracy 

is lower and errors greater due to the dynamic changes in different time periods and 

high swapping between these covers. Hence, high commission and omission errors 

are observed in vineyard and grassland simulations, particularly in the long time 

scale. These errors may occur due to different rates of change in initial and prediction 

time periods and the selection of transition potentials where transition potentials from 

vineyard to forest and grassland, and grassland to forest and vineyard were avoided 

due to their limited accuracy rate (<70%). Simulations of vineyard and grassland may 

improve using constraints for vineyard and grassland. Vineyard fields belonging to 

the wine making “domaines” tend to remain stable and convert to other covers  

less [23], so a “domaine” layer could be used as a constraint for vineyard. This infor-

mation, however, was not available in this study. In addition, fire breaks, horseback 

riding, and other tourism related activity zones that are classified as grassland could 

perhaps be taken as a constraint for grassland.  

Accurate prediction of urban expansion is difficult due to the complexity in urbani-

zation which depends on several spatial variables, urban planning, and land use  

demand [12]. The rapid relative rate of urban growth impacted the urban prediction. 

For example, the model predicts (for 2011) about 40% less built area than the actual 

map of 2011 using the long time scale because the rate of built area expansion in-

creased by more than double in the latter time period (1982-2011) compared to the 

initial period (1950-1982) (Fig. 3). However, intermediate and short time periods 

perform better since increasing trends in the initial time periods are about the same as 

in the prediction time periods (2003-2011 and 2008-2011). In addition, several scat-

tered urban areas are developed exceptionally far away from existing built area in the 

recent year, and these remain difficult to predict because the model is based on histor-

ical trends. Earlier trials showed the use of constraints for the transitions to built area 

from other land covers reduced error in built area in all simulations. 
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Time scales have a significant impact on land cover simulation. Quantity was pre-
dicted better than location, probably due to the dominant forest cover in the study 
area. Therefore, Kquantity is nearly perfect in all time scales. However, complex land 
cover changes and swapping between land covers generate less perfect levels of 
agreement for Klocation than Kquantity , and values increase with decreasing time scales.  

Although different indexes are used, there is a general trend for Shorter time scales 
to Produce better prediction results [1, 15, 16, 20, 21, 24, and 27], as found in this 
study was. The values of Kquantity and Klocation are in acceptable ranges for different 
time scales in this study. Maximum commission and omission errors observed  
in crops and grassland [27] were also noted in this study since complex changes in 
grassland and vineyard are difficult to simulate. 

5 Conclusion 

Studies of the temporal and spatial distribution of land cover change have become an 
important issue due to the rapid conversion of land cover and its impact on environ-
ment change. Time scale has a significant impact on prediction. Near perfect quantita-
tive accuracy was achieved in all time scales but spatial accuracy varied with different 
time scales. High quantitative and location accuracy were found in forest prediction 
due to its large surface area, in which changes are relatively small and swapping does 
not impact prediction. Prediction of vineyard and grassland were difficult due to high 
swapping with one another and forest, and prediction of built area was complicated by 
the dramatic relative growth that increased in the recent time periods and the emer-
gence of urban lots far from historic centers. Cell size and catchment area may also 
impact land cover change simulation and this is under study now. 
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1. INTRODUCTION

The Mediterranean landscape has changed greatly since 1950. Changes in

vineyard area and slope have major repercussions on soil erosion. Erosion

(Figs. 1 & 2) impoverishes the soil and contributes to sedimentation in

channels and ports. The study objective was to analyze land cover changes

from 1950 to 2008 and evaluate their implications for soil erosion.

2. SITE DESCRIPTION AND METHODS
The 235 km² Giscle catchment is located in SE France (Fig. 3). Roughly 70% of the catchment is upland

forest, the remainder is an alluvial plain occupied mainly by vineyards and built areas. Air photos (1950,

1982, and 2008) were digitized to produce land cover maps with 4 categories: forest, vineyard, grassland

(mixed pasture & shrubland), and built areas. These data were complemented by a 25 m DEM and field

observations. The red line in Fig. 3 delimits the watershed, the green line shows the window used for land

cover maps in Fig. 4; most changes occurred in this zone. Land cover results cited are for entire catchment.

3. RESULTS AND DISCUSSION

Temporal land cover maps for the alluvial plain are

presented in Figs. 4a-c. Vineyards decreased from

2,240 ha to 2,089 ha (-151 ha) in 1950-1982, and lost a

further 473 ha in 1982-2008 (Table 1). Vineyard evolved

mainly into grassland and built area.

Grassland increased by 386 ha in 1950-2008. Built area

was 32 ha in 1950 and increased to 268 ha in 1982 and

then 718 ha in 2008 (net gain of 686 ha).

Fig. 4a: Land cover map 1950 Fig. 4b: Land cover map 1982 Fig. 4c: Land cover map 2008

Slope is one of the most important factors affecting soil erosion. Figs. 6a-b

illustrate that vineyard lost most of its area in 1950-1982 on gentle slopes (0-5%),

but some of this was compensated on steeper slopes (>5%). In 1982-2008, losses

were once again greatest on 0-5% slopes but without any compensation

elsewhere. The net 1950-2008 change was a significant loss in area and a shift to

steeper slopes (Table 1).

Fig. 6a: Changes in vineyard 

with slope (%) in 1950-1982

Fig. 6b: Changes in vineyard 

with slope (%) in 1982-2008

1950 1982 2008

Mean slope (%) 5.5 6.6 7.4

Median slope (%) 3.9 4.5 5.6

Vineyard area (ha) 2,240 2,089 1,616

Table 1: Changes in vineyard slope and area

Fig. 7: Expansion on steeper slopes 

accompanied by terracing.

Fig. 1: Rills in vineyard

Fig. 5c: Land cover 2008

4. DISCUSSION AND CONCLUSION
Vineyard area decreased by 28% in 1950-2008. Under urban pressure, vineyards were converted to built

areas and grassland. Mean and median vineyard slopes increased by 34% and 44%, respectively. However,

slopes were calculated from a 25 m DEM which does not take terracing (Fig. 7) into account, so actual

change in vineyard slope is certainly smaller than calculated. The net effect is a probable decrease in overall

erosion rate at the catchment scale over time. Attempts to model erosion for each period are currently

underway.

Fig. 3: Catchment location

Fig. 2: Severe inter-row erosion

Fig. 5b: Land cover 1982Fig. 5a: Land cover 1950

Figs. 5a-c show examples of land cover change

between 1950 and 2008 for a selected site within the

alluvial plain. Although built area expansion began

before 1982, the rate of expansion accelerated greatly

in 1982-2008. Grassland increased overall in 1950-

1982, though there was considerable swapping with

vineyards and forest over time.

3.1 LAND COVER CHANGES

3.2 CHANGES IN VINEYARD SLOPE


