
HAL Id: tel-01529391
https://theses.hal.science/tel-01529391

Submitted on 30 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inverse procedural Street Modelling : from interactive to
automatic reconstruction

Rémi Cura

To cite this version:
Rémi Cura. Inverse procedural Street Modelling : from interactive to automatic reconstruction. Mod-
eling and Simulation. Université Paris-Est, 2016. English. �NNT : 2016PESC1034�. �tel-01529391�

https://theses.hal.science/tel-01529391
https://hal.archives-ouvertes.fr

École Doctorale Mathématiques et Sciences et Technologies
de l'Information et de la Communication (MSTIC)

Université Paris-Est

Thèse de doctorat
Sciences et technologies de l'information géographique

Rémi CURA

Modélisation et synthèse 3D procédurale
 à partir de données urbaines

Thèse dirigée par Nicolas PAPARODITIS

Soutenue le 12 Septembre 2016
en présence du Jury suivant :

Pr. Christian HEIPKE (IPI)
Pr. Peter VAN OOSTEROM (TUDelft)
Pr. Gilles Gesquière (LIRIS)
Dr. Florent Lafarge (INRIA)
Dr. Julien PERRET (IGN)
Dr. Nicolas PAPARODITIS (IGN)
Dr. Kevin LYVAN (Thales)

Rapporteur
Rapporteur

Président du jury
Examinateur

Encadrant
Directeur de thèse

Encadrant industriel

Laboratoires académiques :
 Institut national de l'information géographique et forestière (IGN)
 Laboratoires COGIT et MATIS
 73 Avenue de Paris
 94160 Saint-Mandé
 FRANCE

Société d'accueil :
 Thales Training&Simulation
 1 Rue du Général de Gaulle
 95520 Osny

Thèse de dispositif CIFRE (ANRT) :
 Bénéficiant de l'aide de l'ANRT 20130042

Figure 1: Japan streets viewed from Osaka Big Wheel, ©Romane Gauriau 2015.

ii

R É S U M É

La population mondiale augmente rapidement, et avec elle, le nombre de citadins, ce
qui rend d’autant plus importantes la planification et la gestion des villes. La gestion
"intelligente" de ces villes et les nombreuses applications (gestion, tourisme virtuel, si-
mulation de trafic, etc.) nécessitent plus de données réunies dans des modèles virtuels
de villes.

En milieu urbain, les rues et routes sont essentielles de par leur rôle d’interface entre
les espaces publics et privés, et entre ces différents usages. Il est difficile de modéli-
ser les rues (ou de les reconstruire virtuellement) car celles-ci sont très diverses (de
par leur forme, fonction, morphologie), et contiennent des objets très divers (mobilier,
marquages, panneaux).

Ce travail de thèse propose une méthode (semi-) automatique pour reconstruire des
rues en utilisant le paradigme de la modélisation procédurale inverse dont le principe est
de générer un modèle procéduralement, puis de l’adapter à des observations de la réa-
lité.
Notre méthode génère un premier modèle approximatif - à partir de très peu d’infor-
mations (un réseau d’axes routiers + attributs associés) - assez largement disponible. Ce
modèle est ensuite adapté à des observations de façon interactive (interaction en base
compatible avec les logiciels SIG communs) et (semi-) automatique (optimisation).
L’adaptation (semi-) automatique déforme le modèle de route de façon à ce qu’il cor-
responde à des observations (bords de trottoir, objets urbains) extraites d’images et de
nuages de points.

La génération (StreetGen) et l’édition interactive se font dans un serveur de base de
données ; de même que la gestion des milliards de points Lidar (Point Cloud Server).
La génération de toutes les rues de la ville de Paris prend quelques minutes, l’édition
multi-utilisateurs est interactive (<0.3s). Les premiers résultats de l’adaptation (semi-)
automatique (∼ minute) sont prometteurs (la distance moyenne à la vérité terrain passe
de 2.0m à 0.5m).

Cette méthode, combinée avec d’autres telles que la reconstruction de bâtiment, de
végétation, etc., pourrait permettre rapidement et semi automatiquement la création de
modèles précis et à jour de ville.

iii

R É S U M É D É TA I L L É

Dans ce résumé détaillé, nous résumons chaque chapitre de la thèse. L’introduction, les
chapitres 1 à 5, la conclusion et l’annexe 1. Chaque résumé de chapitre est introduit par
une illustration qui résume graphiquement ce chapitre.

StreetGen

Adaptation
automatique
du modèle de

route

Edition
interactive

en base

Point Cloud
Server

Chapitre 2, 5
Annexe 1

Observations d'éléments
urbains

Données de télédétection Axe et largeur de route

Modèle de route

Chapitre 2 Chapitre 3

Chapitre 4

Chapitre 5

Figure 2 : Résumé graphique du travail de la thèse. En partant d’un réseau d’axe routier et de
largeur approximatifs, un modèle de rue est généré avec StreetGen (chapitre 3). Ce
modèle peut ensuite être interactivement modifié avec tous les logiciels SIG classiques
en utilisant l’interaction en base (chapitre 4). En complément, le modèle peut aussi
être automatiquement ajusté (chapitre 5) à des observations d’éléments urbains issus
de télédétections massives, qui sont gérées dans le serveur de nuage de point (Point
Cloud Server) (chapitre 2, annexe A).

v

introduction

Contexte

Des villes en accroissement

La population mondiale augmente fortement. Une étude récente (United Nations,
2012) montre que 52% de l’Humanité vit en zone urbaine. De nouvelles villes dépassent
le million d’habitants tous les ans en Afrique et en Asie, et l’absorption des zones ur-
baines devrait dépasser l’augmentation démographique. C’est non seulement le nombre
d’habitants en ville qui augmente, mais aussi la surface qu’occupent les villes. D’après
(Seto et al., 2011), la surface occupée par les villes devrait augmenter de l’ordre de 100

000 km2 dans la prochaine décennie.

Avec la concentration de personnes, les tensions augmentent

En même temps que le nombre total de villes augmente, les villes deviennent plus
grosses : 40% des personnes vivant en zone urbaine sont dans des villes de plus de 1

million d’habitants. La croissance de ces villes est partiellement absorbée par les méga-
poles, où 10% de la population mondiale vit (23 villes de plus de 10 millions d’habitants),
avec une augmentation prévue à 13.5 % d’ici 2025 (United Nations, 2012).

Outre la population, les villes concentrent aussi les inégalités, qui augmentent juste-
ment dans les pays où l’urbanisation sera la plus forte (OECD, 2010, p.37).

La gestion de l’environnement des villes est nécessaire en raison de leur forte densité.
Les flux (entrant et sortant) sont massifs, ce qui impacte fortement l’environnement (eau,
air, chaleur, etc.).

Les villes concentrent les gens dans un environnement complexe, ce qui complique
fortement la gestion de crise, car cela a potentiellement un impact rapide sur un grand
nombre de personnes (inondation, coupure de courant, épidémie, dispersion de produit
toxiques/polluants, etc.).

Un fort besoin d’urbanisme

Les urbanistes travaillent depuis un siècle à la résolution des problèmes cités précé-
demment. Ils utilisent traditionnellement les outils classiques de l’architecture et des
sciences sociales. Pourtant, la complexité et la taille des villes modernes introduisent le
besoin de nouveaux outils complémentaires.

Enjeux

Outils numériques pour l’urbanisme

Les progrès de l’informatique et de l’ingénierie ont apporté de nouveaux outils aux
urbanistes, tels que des outils de simulation qui permettent de tester et d’analyser des
scénarios d’aménagement. Lors du réaménagement d’un quartier par exemple, il est
possible de tester l’aménagement proposé numériquement en analysant la circulation
future, les variables socio-économiques (prix des logements, etc.), les aspects perceptifs
(réalité virtuelle), etc.
La communication est aussi un aspect important d’un projet de réaménagement car

vi

celui-ci impacte potentiellement de nombreux habitants et entités publiques et privées.
De plus, des représentations adéquates des scénarios d’aménagement sont essentielles
pour aider le processus d’élaboration de l’aménagement (visualisation/concertation/ar-
bitrage), et les prises de décisions associées.

Modèle numérique de ville

La gestion, l’aménagement, la communication, les simulations : toutes ces applications
nécessitent un modèle numérique de ville contenant plusieurs niveau d’information (3D,
sémantique, etc.). Un tel modèle numérique de ville est aussi utile pour de nombreuses
autres applications (cf (Niggeler, 2009), et l’illustration 3), telles que le transport, la
gestion de l’énergie, la sécurité, les divertissements, le géomarketing, etc.

Mobilité douce

Transport

Energie &
Environnement Sécurité Divertissement

Communication

GéoMarketing

Urbanisme &
Architecture

distance réelle
et subjective

Simulation de trafic
piétons/cycles/
handicappés

simulation de
transports publiques

simulation de
trafic pour
véhicules

pollution de l'air
 et sonore

analyse de
visibilité et
d'obstacles

température,
qualité de l'air

ressource solaire

innondation

énergie verte
bilan énergétique

réseau sans fil

aide à la décision

préparation aux
situations

support aux
interventions

étude de cas/simulation

jeux sérieux

jeu

Vidéo

tourisme virtuel

jeu pervasif

promotion touristique

patrimoine culturel/
découverte de territoires

transactions
immobilières
choix pour

l'implantation

exposition à
la publicité

Impact visuel

analyse de vue

Simulation
Analyse

Test

Respect de la
réglementation/fiscalité/

plannification

Figure 3 : Exemples d’utilisations d’un modèle numérique 3D de ville (initialement par
(Niggeler, 2009))

Défis

Modéliser numériquement une ville est complexe : une ville peut être à la fois très
grande (∼ km) et contenir des détails essentiel très petits (∼cm). Par exemple, la sé-

vii

paration entre la chaussé et le trottoir fait moins de 10 cmde hauteur, et est pourtant
structurante pour l’organisation de toute la rue.
Une ville est de plus constituée d’un ensemble de couches d’informations interdépen-
dantes et entremêlées qui ne suivent pas nécessairement de règles explicites. Enfin, un
modèle numérique de ville se doit d’être structurée pour être utilisable par plusieurs
autres applications numériques.

La durée de vie des bâtiments est de plusieurs décennies, et les travaux publiques
sont extrêmement coûteux ; pourtant, les villes sont en évolution perpétuelle.

Objectifs

L’objectif de ce travail de thèse est de créer une méthode pour reconstruire numérique-
ment des villes. Nous nous concentrons sur la modélisation des rues. Notre approche
est celle de la modélisation procédurale inverse, où l’on génère d’abord un modèle de
rue assez générique, puis on l’adapte à des observations de la réalité.

Les rues sont des éléments structurants des villes, mais leur reconstruction n’a pas
été beaucoup étudiée. A ce titre, nous analysons aussi les différentes approches de
reconstruction appliquées à d’autres éléments urbains (réseau routier, végétation, objets
urbains) dans le chapitre d’état de l’art (chapitre 1).

Notre approche commence par la génération d’un modèle de rue basique avec très
peu d’informations (réseau d’axes routier et largeurs des routes associées), (StreetGen)
dans le chapitre 3. Ces informations sont disponibles dans de nombreux pays ou peuvent
être reconstruites.

Ce modèle de rues est ensuite adapté finement à la rue par une combinaison d’inter-
actions avec l’utilisateur (chapitre 4) et de méthodes semi-automatiques (chapitre 5).

L’adaptation semi automatique du modèle de rue nécessite des observations de la
rue qui sont extraites de différentes méthodes de télédétections. Pour gérer ces grands
volumes de données, et notamment les nuages de points, nous utilisons un serveur de
nuages de points (Point Cloud Server), décrit dans le chapitre 2 et l’annexe A.

viii

état de l’art sur la reconstruction d’environnements urbains

Positionnement du chapitre au regard de cette thèse

L’objectif de cette thèse est de reconstruire (modéliser) les rues à l’aide d’utilisateurs
et de données de télédétection. Nous recontrons trois grands problèmes pour faire
l’état de l’art des méthodes existantes associées à cet objectifs :

• Problème "peu étudié" : bien que la reconstruction de nombreux éléments
urbains ait été bien étudiée, nous n’avons pas trouvé de méthode dédiée à la
reconstruction de rue.

• Problème "transport" : les rues ont un rôle primordial pour le transport (piéton,
véhicule, publique) ; à ce titre, elle contiennent des routes organisées en un
réseau routier global.

• Problème "objets urbains" : les rues sont en elles-mêmes des éléments com-
plexes (géométriquement par exemple). Or, elles sont aussi constituées de col-
lections organisées d’objets urbains, qui doivent donc aussi être reconstruits
puisqu’ils font partie des rues.

A cause de "peu étudié", nous ne pouvons pas faire un état de l’art classique sur
la reconstruction de rues, et nous étudions donc les méthodes de reconstruction ap-
pliquées à d’autres éléments qui pourraient potentiellement être transposables à la
reconstruction de rues. Du fait de "transport", nous étudions en particulier les mé-
thodes de reconstruction de routes et de réseaux routiers. Enfin, du fait de "objets
urbains", nous analysons les méthodes de reconstruction d’objets urbains, fabriqués
par l’homme ou naturels (végétation).
Cet état de l’art recouvre donc les éléments de la reconstruction urbaine (à l’excep-
tion des bâtiments) dans leur globalité et pas uniquement ceux de la reconstruction
de rue.

Les villes concentrent la majorité de la population mondiale, et la complexité de leurs
rôles envers leurs environnements et leurs habitants rend nécessaire leur planification
et gestion. Des modèles virtuels de villes sont nécessaires pour cela (reconstruction
virtuelle de ville).

En matière de reconstruction, de nombreux travaux ont été consacrés à la reconstruc-
tion de bâtiments, alors que la reconstruction d’un élément essentiel des villes a été
négligé : les rues. Notre objectif est de compléter l’état de l’art sur la reconstruction de
bâtiments de (Musialski et al., 2012) en y ajoutant la reconstruction des autres éléments
urbains.

Tout d’abord nous introduisons l’utilité des modèles virtuels de villes (§1.2 p. 10).
Toute méthode de reconstruction s’appuyant sur des données, nous analysons donc les
types de données les plus communément disponibles pour ce faire (§1.3 p. 17). Nous pré-
sentons ensuite les méthodes de reconstruction de rues/routes (§1.6 p. 28), de réseaux
de rues/routiers (§1.7 p. 33), de végétation urbaine (§1.8 p. 37), et d’objets urbains (§1.9
p. 42).

Les méthodes utilisées pour la reconstruction de ces éléments sont extrêmement va-
riables. Nous en proposons différentes classifications adaptées aux objets reconstruits.
Nous proposons aussi une classification transverse des méthodes de reconstruction se
basant sur le rôle du modèle dans la méthode de reconstruction. Ainsi, le modèle peut
avoir un rôle faible (méthodes orientées données), important (méthodes orientées mo-

ix

orienté
données

orienté
modèle

modélisation
procédurale

orienté
catalogue

Route/Rue

Réseau de rue

Végétation

Objets urbains

Bâtiments

modélisation
procédurale

inverse

Figure 4 : Une classification subjective transverse à la reconstruction des differents éléments
urbains, le critère est le role du modèle dans la reconstruction.

dèles), très important (modélisation procédural), ou primordial (méthode de recons-
truction par catalogue). Certaines méthodes nécessitent un utilisateur, d’autres ne se
contentent pas de reconstruire, mais utilisent les modèles reconstruits pour mettre à
jour des bases de données.

La principale difficulté de la reconstruction semble venir de la nature complexe de
l’environnement urbain, et des limitations des données de télédétections disponibles.
Par ailleurs, les éléments urbains possèdent des relations très fortes, que ce soit entre
eux, envers leurs environnements, et à l’intérieur de relations hiérarchiques.

Les techniques de modélisation procédurale ont la capacité de modéliser ces relations.
Ces techniques pourraient être appliquées à la reconstruction d’environnements urbains
via le paradigme de la Modélisation procédurale inverse.

x

le "point cloud server" (pcs) : un serveur pour gérer les nuages de

points

La reconstruction de rues nécessite des observations des rues à reconstruire. Dans
ce travail de thèse, nous utilisons des données de télédétection acquises dans les
rues par un véhicule de cartographie mobile (Paparoditis et al., 2012). Ces don-
nées sont composées d’images et de nuages de points de type Lidar. Les données
Lidar sont difficiles à utiliser en raison de leur volume (milliards de points), des
recouvrements complexes (un même objet pourrait être acquis par le véhicule à
des distances différentes et à des moments différents, et pourrait être masqué par
occlusion), et parce qu’elles contiennent des informations de bas niveau (simple
points avec quelques attributs physiques). Nous choisissons d’intégrer ces nuages
de points dans un serveur de base de données pour mieux les gérer.

Les avantages sont que toutes les données nécessaires à la reconstruction (vecteur,
ortho-images, nuage de points) sont gérés dans la même base, qui gère aussi la par-
tie modélisationn. Ainsi, l’utilisation combinée de ces données s’en trouve facilitée.
Nous intégrons dans la base des algorithmes utilisant des nuages de points Lidar,
comme la détection d’objets urbains (extraction de marquages, détection de bords
de trottoir, reconstruction de réseau routier).

Nous proposons également un mécanisme de niveau de détails (LOD) qui permet
de réduire de façon contrôlée le nombre de points. Ce mécanisme donne lieu à un
descripteur de dimensionnalité dont nous démontrons l’intérêt par des expériences
de classification. Ces sujets sont développés en annexe (Annexe 1 p. 194) par souci
de concision.

IMPORT
- orienté serveur
- orienté client STOCKAGE

- groupes de points
- compressé

MÉTADONNÉES
- rela�onnel, validé
- étendues (trajectoires, sources)
- généralisa�on/visualisa�on

FILTRAGE
- indexes
- u�lise les données SIG

TRAITEMENT
- prototypage rapide en base
- processe classique hors de
 la base

EXPORT
- orienté server
- orienté client
- streaming
- fichier de points
 en tant que service

fichiers de
nuages de

points

SGBDS

Figure 5 : chapitre 2 : gestion de nuages de point en base de données avec le Point Cloud Server
(PCS).

Les nuages de points ont vu leur disponibilité augmenter, et complètent bien les
données traditionnelles des Systèmess d’Information Géographiques (SIG) tels que les
vecteurs et les images (raster). Ils sont appréciés pour leur précision géométrique et
l’information tri-dimensionnelle qu’ils portent. La gestion des nuages de points est ce-
pendant difficile en raison de leur taille et de leurs spécificités. Plusieurs méthodes
existent, mais elles sont assez spécialisées et ne résolvent qu’une partie du problème de
la gestion.

Nous proposons un système de gestion de nuages de points complet et efficace. Il est
basé sur un serveur de base de données utilisant des groupes de points plutôt que des
points individuels. Ce système est conçu pour résoudre les besoins basiques des utilisa-

xi

teurs de nuages de points : un import rapide, un stockage compressé, des capacités de
filtrage puissantes, un accès et un export facile des données, et des traitements intégrés.
De plus, ce système intègre toutes les métadonnées (comme les positions des capteurs)
et peut utiliser les nuages de points en concordance avec d’autres données géo-spatiales
telles que des images, des vecteurs, des informations topologiques, et d’autres nuages
de points. Ce système propose de plus un environnement pour prototyper rapidement
des méthodes dans la base, des possibilités de traitements parallèles, et une capacité à
passer à l’échelle. Enfin, ce système peut facilement être personnalisé et étendu car il est
conçu autour de technologies libres.

Nous testons le système sur des nuages de plusieurs milliards de points issus du
Lidar (aérien et terrestre) et de la stéréo-vision. La vitesse d’import atteint ∼400 millions
de pts/h, les points sont stockés avec une compression transparente pour l’utilisateur et
un facteur de compression de 2 à 4 :1, le filtrage de groupe de points prend dans les
0.1 s, l’export se fait à une vitesse d’environ un million de points par seconde, et nous
démontrons des capacités de traitements avancées (détection d’objets, classification).

xii

la modélisation procédurale de rue avec streetgen

Le but de ce travail de thèse est de reconstruire numériquement des rues pour
que cette reconstruction soit utilisée par de nombreuses applications (visualisation,
simulation de trafic, analyse spatiale, etc.). Reconstruire numériquement quelque
chose implique forcément de le modéliser (implicitement ou explicitement). Parce
que plusieurs applications vont utiliser notre modèle, notre modèle de rue doit être
facilement accessible et extensible, et assez flexible pour avoir une grande latitude
de modélisation. En effet, modéliser une rue requiert de modéliser les objets urbains,
les surfaces de la rue, mais aussi les informations nécessaires au trafic, qui sont
topologiques (graphes).

Nous choisissons donc de créer et stocker les modèles de rue dans un serveur de
base de données. De cette façon, les rues modélisées et les données de télédétection
sont au même endroit, et de plus les modèles peuvent passer à l’échelle et être
multi-utilisateurs. Ce modèle de rue (StreetGen) est utilisé dans les autres parties
de la thèse.

Serveur de base de données

2546

2513

2499

2515

radius = 3

radius = 3.74

2546

2513

2499

2515

2546

2513

2499

2515

1

2

1

2

1

2609

Entrée : réseau
d'axes routiers Génération de surface de

route
Information de trafic

Objets urbainsHypothèse cinématique

Résumé graphique de StreetGen

Figure 6 : La modélisation procédurale de rue avec StreetGen.

Les rues d’une ville occupent une grande surface, sont extrêmement diversifiées, et
sont utilisées par plusieurs modalités de transports (parfois en conflit) ainsi que pour
des activités sociales et culturelles. L’importance de leurs rôles rend nécessaire leur
gestion, ce qui requiert de les modéliser.

Modéliser les rues (reconstruction numérique de rues) manuellement prend du temps
et est difficile. L’automatisation de la modélisation est difficile en raison de la diversité
des types de routes, du nombre de routes, et du niveau de détail requis (un bord de
trottoir fait quelques cm).

Les méthodes de l’état de l’art se concentrent sur la modélisation de routes (pas de
contexte urbain, pas d’objets urbains), et sont conçues spécifiquement pour une applica-
tion (simulation, visualisation, gestion). Nous proposons une méthode unifiée utilisant

xiii

de vraies données géographiques (vecteurs) qui utilise une hypothèse simple et puis-
sante pour modéliser les rues, de quelques unes à toute une ville. Les rues modélisées
contribuent à un modèle global qui peut être mis à jour localement, ce qui permet
d’améliorer le modèle global en éditant les données d’entrées ou les paramètres. Notre
modèle de rue se base sur les axes de celles-ci ; il contient des informations géométriques
(surface des routes, des trottoirs, des îlots), topologiques (connexions dans le réseau de
rues), ainsi que des informations de trafic (voies, trajectoires aux intersections), et des
objets urbains génériques. La ville de Paris est reconstruite en quelques minutes. Nous
démontrons l’intérêt de la reconstruction numérique des rues à travers plusieurs appli-
cations telles que la création d’un modèle graphique de ville en 3D et la simulation de
trafic.

xiv

création et modification interactive du modèle de rue (streetgen)

L’objectif de ces travaux de thèse est de créer des modèles de rues qui sont adaptés
à des observations de ces rues.

La façon la plus directe d’adapter ces modèles est qu’un utilisateur édite directe-
ment les paramètres de ces modèles. Tant pour le confort que la productivité, une
interface graphique (GUI) est indispensable.

Nous choisissons de ne pas développer à partir de zéro une interface personnali-
sée car ces interfaces sont notoirement difficiles à concevoir correctement. De plus,
une interface personnalisée restreint les possibilités d’édition (elles ne peuvent se
faire qu’avec cette interface).

Notre outil de génération de rue (StreetGen, chapitre 3) ainsi que le modèle de rue
produit sont entièrement compris dans un serveur de base de données. Or, il existe
déjà de nombreux logiciels manipulant les informations géographiques (SIG) qui
ont la capacité d’éditer des données dans un serveur de base de données (PostGIS).
Nous proposons donc de déporter toute les interactions spécifiques nécessaires à
l’édition vers la base de données, et de tirer parti de ces logiciels en les utilisant
comme interface graphique générique à cette base de données.

Outre la généricité (l’édition peut se faire avec n’importe quelle interface SIG
pouvant accéder à PostGIS), nous utilisons les capacités de concurrence du serveur
de base de données pour permettre l’édition collaborative (multi-utilisateurs).

Topologie du réseau d'axes
Rayon de giration

Axes
Limite d'intersection

Largeur de route

1

2

725

9
1
4

891

Voie

Trajectoires en
intersection

Objets urbains

Figure 7 : Nous proposons de gérer l’interaction directement dans la base de données plutôt
que dans un logiciel spécifique. Le modèle de rue (StreetGen) est re-généré automa-
tiquement lorsque l’utilisateur édite les paramètres du modèle à l’aide d’interacteurs
pratiques. Le modèle de route, les informations de trafic et les objets urbains peuvent
être édités.

Nos besoins en données, et particulièrement les données géospatiales, ne cessent
d’augmenter. Parmi celles-ci, les données de type vecteur ont une place de choix car
elles font partie de processus d’abstraction et de prise de décisions.

Créer et modifier ces données organisées nécessite des outils dédiés ; les méthodes de
génération procédurale y sont bien adaptées lorsque les données sont très structurées.
Cependant, contrôler les outils de génération procédural peut s’avérer difficile. De plus,

xv

ces données servent de support à des décisions aux conséquences parfois importantes,
il faut donc pouvoir garantir leur qualité et complétude.

Pour ces deux raisons, il est extrêmement souhaitable qu’un utilisateur puisse contrô-
ler et modifier ces données.

La solution la plus classique pour cela serait de créer un outil disposant d’une in-
terface graphique (GUI). Cet outil serait exactement adapté au modèle de données et
à la méthode utilisée. Cette solution est difficile, prend beaucoup de temps, et reste
spécifique à une méthode, ce qui la rend complexe à partager et réutiliser.

Pourtant, de nombreuses interfaces graphiques génériques capables d’éditer des vec-
teurs existent déjà.

A partir de ces constats, nous proposons un changement de paradigme ; au lieu de
créer des outils spécialisés pour une tâche, nous proposons d’utiliser les logiciels clas-
siques de SIG comme interface graphique, et de déplacer les interactions spécifiques
des logiciels vers la base de données. Avec ce paradigme, les logiciels SIG se contentent
de modifier les géométries et attributs de couches de vecteurs appartenant à la base de
données ; ces changements sont alors utilisés par la base de données comme contrôleurs
pour déclencher et contrôler d’autres tâches automatisées. Par exemple, l’utilisateur
change la valeur de l’attribut de largeur d’un vecteur représentant un axe routier, ce qui
occasionne la re-génération de tout le modèle de rue impacté.

Le premier avantage de ce paradigme est la généricité. Comme les interactions spéci-
fiques au modèle se trouvent dans la base, n’importe quel logiciel SIG peut être utilisé
pour éditer le modèle, que ce soit un logiciel traditionnel ou une application web.
Le deuxième est la gestion de la concurrence et la garantie de cohérence. Les bases de
données sont prévues pour les utilisations concurrentes, ce qui permet de créer des ca-
pacités solides d’édition multi-utilisateurs, et de garantir que le modèle de données est
toujours dans un état cohérent.

Enfin, nous proposons des outils pour faciliter la gestion de l’édition collaborative, à
la fois durant l’édition même (chaque utilisateur sait quelles zones géographiques sont
en train d’être éditées par les autres), ainsi que avant (planification de l’édition) et après
(analyse des parties éditées) l’édition.

xvi

modélisation procédurale inverse de routes

Reconstruire numériquement des rues implique d’adapter un modèle de rue géné-
rique (chap. 3) pour qu’il corresponde à la rue modélisée. Dans certains cas, cette
adaptation peut être le fruit des actions d’un utilisateur (chap. 4).

Cependant, nous considérons qu’une méthode (semi) automatisée est nécessaire
(en utilisant des observations des rues, Chap. 2) lorsque le nombre de rues à recons-
truire numériquement est élevé.

Adapter le modèle de rue à des détections de caractéristiques urbaines de bas
niveau est difficile, car le modèle de rue contient des objets de types extrêmement
variés (réseau d’axes routiers, réseau de voies, surface des routes et trottoirs, ob-
jets urbains tels que mobilier, marquages, etc.). De plus, nous observons que les
éléments du modèle de rue sont organisés (spatialement) en fonction de l’axe de
la rue et de la surface de la route. Par exemple, un marquage rectangulaire blanc
aurait un rôle totalement différent (et constituerait donc une observation totalement
différente) en fonction de son contexte, selon qu’il serait sur la surface de la route
(séparateur de voie) ou en dehors (bande podotactile indiquant un passage piéton).

Du fait de son rôle central, nous choisissons donc de nous concentrer dans un
premier temps sur la reconstruction de la surface des route (et des axes associés).
Les surfaces ainsi obtenues pourraient alors être utilisées pour la reconstruction des
autres parties du modèle de rue.

modèle de route
optimisé :
axes et largeurs.

observation de bords de trottoirs

Observations d'objets
urbains (voitures,
marquages, etc.)

trottoirverité terrain(pas utilisé)

axe de route
et largeur

Donées initiales : modèle
de route approximatif

Consolidation des
détections en

observations. Assignation.

Optimisation non linéaire
par moindre carré

Figure 8 : Les données initiales sont des axes de routes et des largeurs de route approximées, ce
qui décrit un modèle de route basique. A partir de données de télédétections (image,
Lidar), différentes détections d’éléments caractéristiques de la rue sont extraites (ob-
jets urbains, bords de trottoirs, etc.). Ces détections sont consolidées (filtrage, fusion)
en observations, puis assignées à des segments d’axe de route. Une méthode d’opti-
misation robuste non linéaire par moindre carré adapte ensuite le modèle aux obser-
vations. Le modèle adapté est alors beaucoup plus proche de la réalité, même quand
notre modèle de route est trop simple pour une situation complexe (route de largeur
variable, changements de trottoir asymétriques, courbes). L’utilisateur peut de plus
ajouter des observations manuellement si nécessaire.

Les villes tendent à être structurées par leurs routes. Une cartographie détaillée et
à jour des routes est donc nécessaire et un élément important pour la planification

xvii

urbaine, les travaux publiques et la gestion des transports. Ces cartographies sont tra-
ditionnellement réalisées à la main, ce qui représente un travail considérable et lent,
donnant lieu à des décalages avec la réalité.

La cartographie (semi) automatique de route est donc un objectif depuis longtemps,
que ce soit pour de la reconstruction de réseau routier, ou plus localement pour la
reconstruction d’une partie de la route. Dans ce travail, nous naviguons entre ces ap-
proches.

Nous commençons avec un réseau d’axes routiers dont la position et la largeur de
route associés sont approximatives. Ceci (axe + largeur)forme donc un modèle de route
basique. Nous proposons d’utiliser des observations d’éléments urbains et une optimi-
sation pour améliorer ce modèle de route approximatif. Notre définition d’observation
est générique ; celles-ci peuvent donc être dérivées de plusieurs type de données, telles
que des images aériennes, des images de rue, du Lidar de rue, d’autres données SIG, et
des observations créées par l’utilisateur.

Le modèle de route approximatif initial est à une distance médiane de 1.5m du bord
de trottoir issu de la vérité terrain. Notre méthode a le potentiel d’optimiser robus-
tement et automatiquement les paramètres du modèle de route, la distance médiane
diminuant à 0.45m. Ces résultats peuvent encore être améliorés en utilisant les indica-
tions d’un utilisateur et/ou des observations plus précises. La méthode d’optimisation
non linéaire par moindre carré que nous utilisons est extrêmement rapide, allant de
moins d’une seconde pour quelques blocs urbains à quelques minutes pour tout Paris.

L’approche que nous proposons est simple, très rapide, et produit des modèles de
routes basiques mais crédibles. Ces résultats prometteurs ouvrent la voie à plusieurs
applications, telles que l’utilisation interactive dans une interface ou l’intégration dans
une méthode plus puissante et plus globale d’optimisation qui serait capable de changer
la topologie du réseau d’axe et d’utiliser un modèle de route plus complexe.

xviii

annexe : niveau de détail implicite , descripteur de dimensionnalité et

classification de patch de points

Reconstruire (semi) automatiquement le modèle numérique d’une rue nécessite des
données. Parmi celles-ci, nous utilisons des nuages de points issus de Lidar terrestre.
Ces données sont très riches mais aussi très nombreuses (plusieurs milliards de
points). Nous les gérons en utilisant un serveur de nuages de point (Point Cloud
Server, chap. 2).

Une des clefs de l’utilisation pratique de ces milliards de points est de pouvoir
travailler sur une petite partie des données. Nous utilisons deux stratégies à cette
fin. La première est détaillée dans le chapitre 2, et équivaut à filtrer les nuages de
points (potentiellement à l’aide de critères complexes et/ou d’autres données SIG).
Cependant, même après le filtrage, le nombre de points peut encore être très élevé
car le Lidar terrestre produit des nuages de points très denses (environ 1 kpts /m2).

Une solution immédiate pour réduire le nombre de points (la densité) serait du
sous-échantillonnage aléatoire (p. ex. prendre un point sur 10). Cependant cette
méthode de sous-échantillonnage peut grandement réduire la qualité du nuage de
point résultant, et donc son utilité. Nous explorons donc une autre direction pour
réduire le nombre de points : une approche par niveaux de détails (LOD). Cette
méthode a été utilisée par plusieurs des méthodes de traitement de nuages de points
du chapitre 2.

Couleur =
intensité

Couleur=
numéro
de patch

Couleur =
numéro

de classe
Couleur =
intensité

LO
D

Nuage de points
LIDAR (1)

Découpage en
patch (ici, 1m3) (2)

Niveaux de détails
(LOD) (3)

Apprentissage
Filtrage (4)

Figure 9 : (1) Les nuages de points initiaux sont denses et contiennent beaucoup de points.
(2) Les nuages sont découpés en patchs et stockés dans le Point Cloud Server. (3) Les
patchs sont ré-ordonnés selon un ordre de LOD implicite (illustré ici avec un gradient
continu). (4) Le nouvel ordonnancement produit un descripteur de dimensionnalité
multi-échelles utilisé comme descripteur pour de l’apprentissage et du filtrage.

Les jeux de données de nuages de points Lidar atteignent facilement le milliard de
points et sont très denses. L’utilisation de ces données est donc compliqué car la masse
de points est difficile à gérer par les applications ou pour de la visualisation. La solution
classique est de créer des niveaux de détails qui permettent de réduire le nombre de
points.

Dans ce travail nous proposons un nouveau paradigme afin d’obtenir des niveaux de
détails (LOD) géométriques portables à l’aide d’un serveur de nuages de points (PCS).

xix

L’idée principale est de ne pas stocker les informations de LOD dans des fichiers an-
nexes, mais plutôt de stocker implicitement les niveaux de détails en exploitant l’ordre
des points. Le nuage de point est découpé en patchs. Chaque patch est ensuite ordonné
de façon à ce que lire les points dans l’ordre donne de plus en plus de détails sur les
points du patch.

Nous démontrons l’intérêt de notre méthode en testant plusieurs utilisations clas-
siques de LOD telles que la visualisation de nuages de points massifs, l’accélération
d’algorithmes et la détection/correction rapide de pics de densité. De plus, notre LOD
implicite intègre aussi des informations géométriques sur le patch, ce qui permet d’en
extraire un descripteur de dimensionnalité multi-échelles. Nous analysons l’intérêt de
ce descripteur en l’utilisant avec succès pour de la classification rapide (classes simples)
et du filtrage à la volée.

xx

conclusion

Travail de la thèse

Nous proposons avec ce travail de thèse une approche originale de reconstruction nu-
mérique de rue (modélisation de rue). Nous utilisons le paradigme de modélisation
procédurale inverse (IPM) (adapter les paramètres d’un modèle de façon à ce qu’il
corresponde à des observations de la réalité) et montrons qu’il est bien adapté à la
reconstruction de rue.

Nous proposons un outil procédural simple et extensible pour la génération de mo-
dèle de rue (StreetGen, chap. 3). Ce modèle est suffisamment générique pour être utili-
sable par de nombreuses applications (visualisation, simulation de trafic, planification et
analyse spatiale). Les données nécessaires pour la génération numérique des rues sont
limitées (réseau d’axes routiers, largeur des routes) et conceptuellement reconstructibles
à partir de données de télédétection classiques (automatiquement ou semi automatique-
ment). Nous utilisons un système de gestion de base de données spatiales (SGBDS) pour
gérer les entrées, faire la modélisation, et stocker les résultats. Ces interactions peuvent
être vues comme une forme manuelle d’IPM.

Outre l’édition manuelle, nous explorons de plus l’édition (semi) automatique afin de
réduire le travail de l’utilisateur. Pour cela, nous couplons des observations issues de
données de télédétection avec une méthode d’optimisation.

Dans un premier temps, un véhicule de cartographie mobile collecte de grandes quan-
tités de données, notamment des nuages de points Lidar. En raison de leur taille impo-
sante, nous les gérons au moyen d’un serveur de nuages de point (Point Cloud Server
(PCS), 2). Le PCS est une extension d’un SGBDS classique qui permet de stocker les
points (compressés) ainsi que les métadonnées dans une base de données. En outre, ces
points sont généralisés et mis en relation avec d’autre données géospatiales (vecteurs,
rasters, trajectoires, etc.), ce qui permet un filtrage rapide et puissant et un accès ra-
pide aux points. Nous explorons aussi les niveaux de détails et la classification en base
(annexe 1 p. 194).

Des détections d’éléments urbains sont extraites de ces données par des méthodes
tierces (détection de marquages, de bords de trottoirs, etc.), puis consolidés en des ob-
servations. Le modèle de rue est alors adapté pour correspondre à ces observations, en
interprétant le problème comme un problème d’optimisation mécanique (chap. 5), que
nous résolvons de façon robuste par une méthode non linéaire par moindre carré. Nous
ajoutons à cette optimisation automatique la possibilité pour des utilisateurs d’interagir
pour compléter les trous dans les données, valider les résultats et les corriger.

Contributions

Chaque chapitre de ce manuscrit peut être lu indépendamment, et dispose donc d’une
conclusion détaillée.

Notre première contribution est d’utiliser une base de données relationnelle pour la
génération et le stockage d’un modèle de rue (StreetGen). Ceci, couplé avec des mé-
thodes géométriques efficaces, nous permet de modéliser toutes les rues de la ville de
Paris. L’intégration de données, de méthodes de générations et des modèles résultants
dans une base de données est une approche nouvelle puissante qui permet l’utilisation

xxi

concurrente (multi-utilisateurs), la robustesse et le passage à l’échelle. Nous montrons
l’utilité de notre modèle de rue pour plusieurs applications telles que la visualisation
3D et la simulation de trafic.

Notre deuxième contribution est le concept d’interaction en base de données. Ce
nouveau concept utilisant des outils communs et fiables montre un grand potentiel pour
créer facilement des interactions utilisateurs spécifiques qui permettent grandement de
faciliter le travail de l’utilisateur. L’interaction en base présente l’avantage décisif de
l’universalité, puisque toutes les interactions spécifiques sont déplacées à l’intérieur de
la base de données, ce qui permet d’utiliser une interface graphique générique : celle de
nombreux logiciels SIGs, des applications personnalisées, et des clients web.

Nous démontrons l’intérêt de cette stratégie sur plusieurs exemples génériques de
complexité croissante. Cette stratégie est de plus utilisée pour l’édition des tous les
paramètres du modèle de rue de StreetGen.

Notre troisième contribution est une solution complète pour la gestion de nuages de
points dans un serveur de base de données (Point Cloud Server). En plus du stockage
compressé des points, nous montrons que cette solution couvre les aspects basiques de
la gestion de nuages de points : entrée et sortie rapide de données, généralisation de
points et niveaux de détails, utilisation des métadonnées et d’autres données géospa-
tiales pour le filtrage, ainsi que des traitements dans la base et en dehors de la base.

Notre dernière contribution est le traitement complet depuis des observations jusqu’à
un modèle de route, et la démonstration que des données de télédétection permettent
effectivement d’adapter un modèle de route à la réalité, ceci à l’échelle d’une grande
ville (Paris).

Limitations et perspectives

Notre méthode de reconstruction numérique de rues a plusieurs limitations, et pourrait
être améliorée de plusieurs façons intéressantes.

modèle procédural de rue Le modèle de rue que nous utilisons est simple. Par
exemple il ne peut pas modéliser facilement les variations asymétriques de largeurs de
routes, telles que les places de parkings. De plus, les objets de la rue ne sont pas reliés
entre eux, et nous n’utilisons pas de compositions d’objets, qui sont pourtant une des
clefs pour la modélisation réaliste d’ensembles d’objets (p. ex. un passage piéton est
composé de bandes de marquages, de bandes podotactiles, de plots de protection sur le
trottoir, etc.). Nous nous basons en outre sur un réseau d’axes de routes qui ne gère par
les ponts et tunnels.

Les limites d’expressivité de notre modèle pourraient être dépassées par l’utilisation
d’une grammaire (par exemple une grammaire de forme) dans le modèle de rue. Cela
apporterait de la complexité et de l’expressivité au modèle, en particulier pour la gestion
de motifs complexes d’objets.

modélisation procédurale inverse Le modèle de route utilisé dans la modé-
lisation procédurale inverse (chap. 5) est aussi limité, ce qui a probablement un impact
négatif sur la qualité des résultats et la méthode d’optimisation. Ce modèle de route
pourrait être étendu assez facilement (largeur variable par tronçons pour chaque côté).
Les observations pourraient aussi être plus diverses, et venir de plus de types de télé-

xxii

dections différents.
L’optimisation que nous proposons ne peut pas pour le moment changer la topologie
du réseau routier ni supprimer ou ignorer les observations erronées, ce qui constitue
des limitations sérieuses. Notre optimisation pourrait alors être intégrée dans une mé-
thodologie d’optimisation plus large (optimisation globale).

modélisation procédurale inverse avec une grammaire Si le modèle de
rue était étendu à l’aide d’une grammaire, un stratégie d’optimisation différente pour-
rait être choisie. Le problème d’optimisation deviendrait alors de trouver l’instance de
la grammaire qui correspond le mieux aux observations, ce qui peut être résolu avec
une optimisation utilisantvun RJMCMC par exemple (Green, 1995).

interaction avec l’utilisateur Les interactions en base deviennent difficiles à
contrôler lorsque le nombre d’interactions potentielles est grand, et que les interactions
sont interdépendantes. De plus, les possibilités de modifier la structure du réseau de
rue sont limitées dans ce que nous proposons. Cependant, les interactions en base sont
pratiques et génériques, et pourraient être utilement completées par des éléments d’in-
terfaces graphiques spécialisés, tels qu’un plugin couplant une vue SIG 2D classique
avec une vue 3D de type "streetview" (nous proposons un prototype en §4.5.7). Cela
ouvre de nouvelles perspectives pour l’utilisabilité de ces interfaces par une commu-
nauté d’utilisateurs plus large, ainsi que la possibilité de nouvelles interactions plus
complexes permettant de modéliser plus facilement les différents éléments urbains.

le serveur de nuages de points (point cloud server) Nous proposons
d’utiliser un serveur de nuages de points pour gérer les nuages de points, mais nous ne
faisons qu’effleurer les possibilité de traitements qu’il permet. Les traitements que nous
proposons n’ont par exemple pas tous été utilisés à large échelle. Le serveur de nuages
de points pourrait devenir transparent pour l’utilisateur en le transformant en un ser-
vice fournisseur de points, ce qui serait une façon standard de fournir des points, et
potentiellement de les traiter, de la même façon que le WFS et WPS. Ce genre d’amélio-
ration pourrait promouvoir l’interopérabilité des données et des traitements, un élément
tristement manquant actuellement.

passage à l’échelle Nous montrons la génération d’une ville complexe (Paris).
Pourtant, il serait intéressant d’utiliser StreetGen et les autres méthodes présentées à
une plus grande échelle, pour modéliser toutes les rues d’un pays par exemple.

modèle numérique de ville Les méthodes présentées pourraient être combinées
avec d’autres méthodes de reconstruction dédiées aux bâtiments, au mobilier urbain, à
la végétation, (etc.) afin de créer un modèle de ville complet utilisable par de nom-
breuses applications. On peut supposer qu’à long terme une grande partie de l’huma-
nité vivra en milieu urbain. Les intelligence artificielles auraient alors besoin de ces
modèles urbains pour remplir leurs tâches et interagir avec nous. On peut déjà voir les
prémices de ces besoins avec l’arrivée des véhicules autonomes.

xxiii

Figure 10: Republique place, terrestrial Lidar and street view separated by a year. Urban space
use has already been changed.

remerciements

Pas de civilisation sans villes (cives), étymologiquement en tout cas. Ces villes concen-
trent les ressources, ce qui permet l’existence d’une population de métiers spécialisés.
Le chercheur en fait partie, et son travail n’est rendu possible que par celui d’autres
qui s’occupent des besoins plus immédiats de la vie. Cette thèse a ainsi été large-
ment financée par des subventions publiques (provenant de l’ANRT et du Crédit Im-
pôt Recherche), au sein d’un laboratoire publique (l’IGN) et d’une société dont l’Etat
français est un actionnaire important (Thales). De nombreuses personnes ont donc par-
ticipé à mes travaux directement ou indirectement.

En presque 4 ans de travail, j’ai bénéficié de l’aide des équipes d’entretiens, de nettoy-
age, de logistique, d’impression, administratives, de support informatique et syndicale.

De la même façon, le contenu scientifique de cette thèse ne peut exister et se compren-
dre qu’en s’insérant dans les travaux d’une communauté au sens large (de recherche
ainsi que de développement open source). Cela se vérifie pour la filiation des idées
et des outils utilisés dans ce manuscrit, mais aussi directement à travers le travail des
relecteurs anonymes qui ont jugé et critiqué mes articles. Ce travail est bénévole et d’une
importance suffisamment cruciale pour que ce soit un jury composé de ces éminents
chercheurs qui soit chargé de l’évaluation du manuscrit et du travail de thèse associé. Je
remercie les examinateurs d’avoir accepté cette tâche plutôt ingrate, et particulièrement
les rapporteurs qui ont précisément annotée le manuscrit.

La totalité de mon travail est construit sur des logiciels open source de référence
totalisant des milliers de contributeurs et des millions d’utilisateurs. Ces communautés
m’ont beaucoup aidé à travers les mailing-lists et les rencontres réelles.

Une large partie des idées, des méthodes, des articles de référence et des outils utilisés
dans ce travail de thèse viennent de mes collègues de l’IGN et de Thales. En particuliers
j’ai eu l’occasion de créer des nombreux mini-projets et ainsi de travailler avec certains
collègues en dehors de ma thématique directe. Je les remercie pour leur patience et leur
grande générosité scientifique et humaine.

Le doctorat est le grade universitaire le plus élevé, et vient conclure une scolarité de
plus de vingt ans. Je suis reconnaissant et redevable envers ces professeurs qui ont fait
d’un analphabète un docteur.

Mes encadrants ont joué le rôle de mentors. Outre le très solide accompagnement
scientifique, technique et administratif, ils m’ont aussi beaucoup appris sur le plan hu-
main, alors même que ces quatre années ont été pleines de défis pour leurs propre
carrière et vie. Je les remercie profondément.

Ma famille de sang et de cœur m’a toujours soutenu, donnée la passion de la cu-
riosité, et encouragé. De l’affection aux corrections j’ai toujours pu compter sur eux. Je
me suis largement reposé sur mon épouse, humainement par-dessus tout, et par ses
compétences de docteure en traitement d’image et en apprentissage. Je les remercie et
leur exprime ma profonde gratitude et affection.

xxvi

organisation of this manuscript

This thesis manuscript is a lengthy read touching up on widely different subjects, such
as point cloud management and level of details, procedural modelling, user interaction
and non linear least square optimisation.

For each chapter, a special "Thesis thread" section introduces it and explain its global
role in the thesis.

Those "Thesis thread" sections have a different background colour for immediate
identification.

This thesis is designed to offer several faster alternatives to full read.

Very fast Read

Only read Abstract (§ 5 on page 291) and the Graphical Abstract (Figure 12 on
page 5)

Independent read

this manuscript was designed to be split into five chapters that can be read indepen-
dently.

Read one chapter independently (chapter 1 on page 8, 2 on page 51, 3 on page 89, 4

on page 122, 5 on page 148).

Nevertheless we recommend reading Abstract (§ 5 on page 291) and Introduction first
(§ 0 on page 2).

Fast read

read the Abstract (§ 5 on page 291) and introduction (§ 0 on page 2), each chapter
two pages summary (chapter 1 on page 8, 2 on page 51, 3 on page 89, 4 on page 122, 5

on page 148), and the conclusion (§ 6 on page 190).

Fast graphical read

Figure 12 on page 5 is the general graphical abstract of the thesis. Each chapter has a
graphical abstract on its second page.

This thesis contains a graphical table of figures (Page 263), where miniatures of all
figures are listed by chapter, along with a link and page number of the original figure.

The graphical table of figures is page 263. For each chapter, the first figure is this
chapter graphical abstract.

publications

Presented

Cura, 2014

Published

Cura, Perret, and Paparoditis, 2015b
Cura, Perret, and Paparoditis, 2015a

Working Paper

Cura, Perret, and Paparoditis, 2016

xxviii

A C K N O W L E D G E M E N T S

This work uses many open source projects, we thank their communities for great fea-
tures and softwares, especially Paul Ramsey, the author of postgis and pgpointcloud.
We thank our colleagues for their ideas and help both theoretical and practical. This
work was partially supported by an ANRT grant (20130042).

xxix

vocabulary disambiguation

We briefly precise the meaning we give to the vocabulary used throughout this manuscript.

city We use "city" as its most common meaning, that is a densely populated and
socially complex place fulfilling certain functions to its surroundings. For this thesis
cities also contain buildings and streets. We do not consider other public space (garden,
place, etc.).

street We consider that streets are extremely important components of a city. Streets
have a physical aspect (geometry, colour, etc.) but also a semantic aspect (name, organi-
sation, usage, logical relations between constituents, etc.). In particular, streets contains
street objects (or street features), such as trees, markings, urban furnitures, etc. We al-
ways consider that a street is organised around a road. Therefore describing a street
requires describing the underlying road.

road Similarly to streets, roads have a physical and semantic aspect. The physical
part is the roadway, that is the road surface vehicles are using. In a city, the roadway is
limited by sidewalk. The semantic aspect of roads is related to how those roads are used,
and so is related to traffic information (lanes, information about allowed trajectories,
etc.) for vehicles, and pedestrian crossing for pedestrian.

kerb , curbstone , side-walk A side-walk has a close relation to roads, yet has a
much more diverse utilisation (for instance terraces may be set on it.) The sidewalk is
often described as the surface complementary to roads and buildings, even if we con-
sider that to be partially false (counter example : place, garden). Instead, the sidewalk
is a medium that is dedicated to interface public and private space in a city, while also
allowing pedestrian traffic. The sidewalk is separated from the roadway by curbstones
or kerbs, which have a leading role in this thesis, as they structure streets.

model versus modelling "Model" is a confusing word, with different meanings
in social science, physic, computer science, etc. We try to differentiate between the
model, the modelling process and the modelling, where the model is an organisation,
the modelling process the process that adapt the model to fit something, and the mod-
elling is an actual instance of the model. For instance in Chapter 5, we use a simple
road model that is constituted of a road axis network (polylines) associated with a road
width. The road modelling is then the linestring with road width value that forms an
actual (implicit) road surface fitting the reality. Similarly, in Chapter 3, we model street
objects as semantic points whose position and orientation is defined regarding a road
axis. The modelling of such a street object would be an actual semantic label (such as
"public light"), associated with values of curvilinear abscissa and distance to road axis,
along with orientation relative to road axis orientation.

user interaction/ interactive Chapter 4 is dedicated to user interaction, so
that the user can interactively edit the street modelling. By "user interaction", we mean
classical user input through a graphical user interface (any GIS software with read-
/write capabilities to PostGIS in our case).

xxxi

We use two meanings for "interactive". Most often, we mean that the interactive loop
feedback (time between a user input and the end of the triggered reaction) is less than
0.3 ms, which is an estimate of the threshold for instantaneous perception of a complex
visual situation (Below this threshold, the user has the impression that the reaction
was instantaneous). However we relax this definition by considering that occasional
reaction times of a few seconds are still acceptable for a good quality user interaction.
For instance, in StreetGen (Chapter 3), common edits like editing a road direction is
under 0.3 ms, which makes them appear instantaneous. On the opposite, editing several
trajectories at the same time in a very large intersection is less than a few seconds, which
is acceptable because this operation is not frequent.

database Almost all the work of this thesis is performed inside a PostgreSQL Re-
lational database management system. We often shorten this server designation to "the
database". We stress that a database is not only a set of data, but also contains rela-
tions between data, and a set of integrated tools, as well as a dedicated data-retrieval
language (SQL).

generalisation We use the concept of generalisation in Chapter 2 and Appendix
A. We consider the generalisation as the process to make data more general, that is
abstract, simplify and synthesize geospatial data for visualisation or other applications.
We refer to (Burghardt, Duchêne, and Mackaness, 2014, Chap. 1) for a more comprehen-
sive definition.

classification and class We analyse point cloud classification in Appendix A.
We use the commonly accepted definition, that is that classification is the process to
provide for each point a label referring to predefined classes. For instance, after classifi-
cation, a point might have a label ’tree’, ’ground’ or ’2-wheelers’.

xxxii

C O N T E N T S

i introducing the thesis 1

0 a general introduction to this thesis 2

0.1 Stakes . 2

0.2 Challenge . 3

0.3 Methodology . 4

0.4 Goal . 4

ii thesis 7

1 urban reconstruction : a state of the art 8

1.1 Abstract . 9

1.2 Introduction . 10

1.2.1 Context . 10

1.2.2 Stakes . 11

1.2.3 Applications . 11

1.2.4 What is a city . 12

1.2.5 Challenges . 12

1.2.6 City reconstruction/modelling . 14

1.2.7 Plan . 16

1.3 Input data . 17

1.3.1 Lidar data . 18

1.3.2 Images . 20

1.3.3 Raster data . 22

1.3.4 Vector data . 23

1.4 Approaches for reconstruction / modelling 24

1.4.1 Transverse reconstruction method classification 25

1.4.2 Procedural modelling and grammar 26

1.4.3 Inverse procedural modelling . 27

1.5 Buildings and façades . 27

1.6 Street . 28

1.6.1 Introduction to street reconstruction 28

1.6.2 Modelling the geometry of the street 30

1.6.3 Object detection, primitive extraction 31

1.6.4 Relation between objects . 32

1.6.5 Texture synthesis . 32

1.6.6 Conclusion about street reconstruction 33

1.7 Street network . 33

1.7.1 Introduction to street network reconstruction 33

1.7.2 A classification of road network reconstruction methods 34

1.7.3 Conclusion . 36

1.8 Urban vegetation reconstruction . 37

1.8.1 Introduction . 37

1.8.2 Vegetation reconstruction . 39

1.8.3 Classifications of urban vegetation reconstruction methods 40

xxxiii

1.8.4 Conclusion for urban vegetation reconstruction 41

1.9 Urban features . 42

1.9.1 introduction to urban feature reconstruction 42

1.9.2 State of the art . 44

1.9.3 Conclusion . 49

1.10 Conclusion . 50

2 pcs : a point cloud server to manage point clouds 51

2.1 abstract . 53

2.2 Introduction . 54

2.2.1 Problems . 54

2.2.2 Related work . 55

2.2.3 Plan . 56

2.3 Methods . 58

2.3.1 Storing groups of points in a RDBMS 58

2.3.2 Loading . 60

2.3.3 Point Cloud and Context . 61

2.3.4 Point Cloud Filtering . 64

2.3.5 Exporting . 66

2.3.6 Processing Point Cloud with the Server 68

2.4 Results . 69

2.4.0 General System Test . 69

2.4.1 Storing groups of points in a RDBMS 70

2.4.2 Loading . 74

2.4.3 Point Clouds and Context . 75

2.4.4 Point Cloud Filtering . 82

2.4.5 Exporting . 82

2.4.6 Processing Point Cloud with the Server 83

2.5 Discussion . 85

2.5.1 Storing groups of points in a RDBMS 85

2.5.2 Loading . 85

2.5.3 Point Cloud and Context . 86

2.5.4 Filtering point clouds . 86

2.5.5 Exporting . 87

2.5.6 Processing Point Cloud with the Server 87

2.5.7 Future work . 88

2.6 Conclusion . 88

3 streetgen : procedural modelling of streets 89

3.1 Abstract . 90

3.2 Introduction . 91

3.3 Method . 92

3.3.1 Introduction to StreetGen . 92

3.3.2 Introduction to RDBMS . 93

3.3.3 StreetGen Design Principles . 93

3.3.4 Robust and Efficient Computing of Arcs 95

3.3.5 Computing Surfaces from Arc Centres 97

3.3.6 Concurrency and scaling . 100

3.3.7 Generating basic Traffic information 102

xxxiv

3.3.8 Roundabout detection . 105

3.3.9 Street Objects : From Road to Street 106

3.4 Results . 109

3.4.1 Estimating default turning radius 110

3.4.2 StreetGen . 111

3.4.3 Using Streetgen for traffic simulation 114

3.4.4 Extending Streetgen applications . 115

3.5 Discussion . 118

3.5.1 Estimating default turning radius 118

3.5.2 Street data model . 118

3.5.3 Kinetic hypothesis . 118

3.5.4 Precision issue . 118

3.5.5 Streetgen for traffic . 119

3.5.6 Street objects . 119

3.5.7 Extend use for StreetGen . 120

3.5.8 Fitting street model to reality . 120

3.6 Conclusion . 120

4 interactive in-base creation and modification of street models 122

4.1 Abstract . 123

4.2 Introduction . 124

4.2.1 Plan . 125

4.3 Method . 125

4.3.1 Control of procedural modelling . 125

4.3.2 In base interaction concept . 126

4.3.3 Different in-base interaction types 127

4.3.4 Efficient Multi-user data edit . 133

4.4 Result . 136

4.4.1 In base interaction . 137

4.4.2 Interactive road . 137

4.4.3 Interactive traffic . 140

4.4.4 Interactive Street Objects . 141

4.4.5 Efficient Multi-user data edit . 144

4.5 Discussion . 144

4.5.1 In base interaction for procedural modelling 144

4.5.2 Different in-base interaction types 144

4.5.3 Efficient Multi-user data edit . 145

4.5.4 Interactive road . 145

4.5.5 Interactive traffic . 145

4.5.6 Interactive Street Objects . 146

4.5.7 Best of 2D and 3D world for edition 146

4.6 Conclusion . 147

5 inverse procedural road modelling 148

5.1 Abstract . 149

5.2 Introduction . 150

5.2.1 Problem . 150

5.2.2 Related work . 151

5.2.3 Approach . 152

xxxv

5.2.4 Plan . 153

5.3 Method . 153

5.3.1 Choosing a model and optimisation method 153

5.3.2 Modelling the problem . 154

5.3.3 From raw data to suitable observation and parameters 156

5.3.4 Observation and regularisation forces 162

5.3.5 Optimisation . 166

5.4 Results . 169

5.4.0 Resources . 169

5.4.1 Results and Forces visualisation . 169

5.4.2 From raw data to Observation . 170

5.4.3 Observations matching . 170

5.4.4 Optimisation results . 170

5.4.5 Generating streets from optimised road model 177

5.5 Discussions . 179

5.5.1 Modelling the problem . 179

5.5.2 Modelling observation effect as forces 180

5.5.3 From raw data to observation . 181

5.5.4 Observation matching . 183

5.5.5 Optimisation . 183

5.5.6 Results and Forces visualisation . 184

5.5.7 Optimisation results . 184

5.5.8 Generating streets from optimised road model 186

5.6 Conclusion . 186

iii concluding the thesis 189

6 a general conclusion to this thesis 190

6.1 General Conclusion . 190

6.1.1 Thesis work . 190

6.1.2 Contributions . 190

6.1.3 Thesis limitations and perspectives 191

iv appendix 193

a appendix a : implicit level of details for the point cloud server 194

a.1 Abstract . 195

a.2 Introduction . 196

a.2.1 Problem . 196

a.2.2 Related Work . 197

a.2.3 Contribution . 199

a.2.4 Plan . 199

a.3 Method . 199

a.3.1 The Point Cloud Server . 200

a.3.2 Exploiting the order of points . 200

a.3.3 MidOc : an ordering for gradual geometrical approximation . . . 202

a.3.4 Excessive Density detection and correction 205

a.4 Result . 206

a.4.1 Introduction to results . 206

xxxvi

a.4.2 Using the Point Cloud Server for experiments 207

a.4.3 Exploiting the order of points . 207

a.4.4 MidOc: an ordering for gradual geometrical approximation 207

a.4.5 Excessive Density detection and correction 209

a.5 Discussion . 210

a.5.1 Point cloud server . 210

a.5.2 Exploiting the order of points . 210

a.5.3 MidOc : an ordering for gradual geometrical approximation . . . 210

a.5.4 Excessive Density detection and correction 213

a.6 Conclusion . 213

b appendix b : a new dimensionality descriptor for patch classi-
fication for the point cloud server 214

b.1 Abstract . 215

b.2 Introduction . 216

b.2.1 Problem . 216

b.2.2 Contribution . 217

b.2.3 Plan . 217

b.3 Method . 217

b.3.1 The Point Cloud Server . 217

b.3.2 A local multi-scale dimensionality descriptor 218

b.3.3 Classification with the Point Cloud Server 221

b.4 Result . 223

b.4.1 Introduction to results . 223

b.4.2 Using the Point Cloud Server for experiments 224

b.4.3 Multi-scale local Dimensionality descriptor 224

b.4.4 Patch Classification . 227

b.5 Discussion . 231

b.5.1 Point cloud server . 231

b.5.2 Multi-scale local dimensionality descriptor 232

b.5.3 Patch Classification . 233

b.6 Conclusion . 236

c appendix c : generic technical appendix 237

c.1 Point Cloud Server Appendix . 238

c.2 StreetGen Appendix . 240

bibliography 243

xxxvii

Part I

I N T R O D U C I N G T H E T H E S I S

0
A G E N E R A L I N T R O D U C T I O N T O T H I S T H E S I S

context

Fast growing cities

World population is growing fast. A recent survey (United Nations, 2012) shows that
52% of Mankind already lives in urban area. These urban areas are expected to ab-
sorb more than the demographic augmentation, with new cities reaching the million
of inhabitants every year in Africa and Asia. The cities not only grow by number of
inhabitants but also by the area they occupy. The urban land use is expected to increase
in the order of 100 000’s km2 in the next decade (Seto et al., 2011).

0.0.0.1 With population concentration, tensions are building up

While the number of cities is growing, cities are also getting bigger : 40% of city in-
habitants are living in cities over 1 million inhabitants. The growth of cities is partially
absorbed by the constitution of megacities. 10% of world population live in megacities
(23 cities that are bigger than 10 millions), and this should increase to 13.5 % until 2025

(United Nations, 2012)
Cities also concentrate inequalities, which are rising in the country where urbanisa-

tion is expected to be the most significant (OECD, 2010, p.37).
High densities in cities imply careful management of the environment of a city. The

necessary fluxes (in and out) are massive. Although some of thoses fluxes are natural,
they are also heavily impacted by cities (water, air, heat, etc.).

With city being such concentration spots, crisis management is much more difficult,
as any problem might impact a great number of people very fast (flood, power cut, epi-
demic, toxic dispersion, etc.). Morevover the sheer complexity of cities also complicate
crisis management planning.

0.0.0.2 A dire need for urbanism

For about one century the field of urbanism has been dedicated to tackle those problems.
Traditional tools from architecture and social science have been traditionally used, yet
the mere size and complexity of modern city requires more and more complementary
approaches.

0.1 stakes

0.1.0.1 Computer science for urbanism

Advances of computer science and engineering have provided urban planners with
simulation tools to model behaviours and even test planning scenarios. For instance a
redesign scenario of an urban area can be tested with traffic simulation, economic sim-
ulation, virtual reality, etc. More than simulation, communication is also an important

2

aspect of city planning, as planning is spread across several entities, public or private,
as well as the inhabitants. Moreover, a good representation of situations and scenarios
is essential for the decision process as well as for the elaboration of the planning.

0.1.0.2 A new tools: city model

Planning, communication, simulation, all those require a precise city model, in the form
of a 3D model including several levels of information. This 3D model is also needed to
several other applications related to cities (see (Niggeler, 2009), and Figure 11), such as
transport, energy, security, entertainment, communication, geomarketing, etc.

Soft Mobility

Transport

Energy &
Environment Security Entertainment

Communication

GeoMarketing

Urbanism &
Architecture

Real &
subjective
distance

Traffic simulation for
pedestrian/bicycle/

handicap

public transport
simulation

traffic simulation
for vehicle

air and noise
pollution

visibility/
obstacle
annalysis

temperature, air
quality

solar ressource

flood

green energy
energy consumption

wireless network

decision support

situational awarness
real time intervention

case study/simulation

serious game

game

VideoFilm

Virtual tourism

pervasive gaming

tourism promotion

heritage/territory visit

real estate transaction

site selection

advertising impact

Visual Impact

sight analysis

Simulation
Analysis

Test

Control of regulation/
taxation/Local Planning

Regulations

Figure 11: Some example of 3D City models usage (from (Niggeler, 2009))

0.2 challenge

Modelling a city is complex, essentially because the city can be very large, yet con-
tain small and important details. For instance the kerb that separate road surface and
sidewalk is less than 10 cm high, yet it structures the whole street. Moreover, a city is
constituted of intertwined and interdependent layers of informations, possibly (some-

3

times partially) following potentially vague design guidelines. To be useful, a city model
has to be structured, so its information can be leveraged by other numeric methods.

With building life spawning dozens of years, and the extremely high cost of public
work, one could be suprised that cities are nonetheless perpetually changing. Being
massive and changing so frequently, city models can hardly be fabricated manually (or
with prohibitive costs), but need to be generated automatically or semi-automatically.
To this end, information is always already available (city plans, building permits, etc.).

0.3 methodology

The goal of this thesis is to reconstruct the streets of a city.
The methodology we use is the inverse procedural modelling, that is generate a street

model and fit it to sensed reality. We aim at producing reference data, therefore we
consider that integrating users is essential, both for validation and correction, because
full automatic methods are always accurate to a point. Another focus of this work is the
scaling of our methods. Because the requirement is to model whole cities, our methods
must adapt with billions of points, distributed computing and multi-users edits, as well
as local edit of global models.

0.4 goal

The main guiding principle is to generate a procedural generic model and then to adapt
it to reality using observations. Because streets are a defining element of cities, we first
analyse how other city features (road network, streets, vegetation, urban objects) are
reconstructed through the literature (Chapter 1). In our framework, a "best guess" road
model is first generated (Chapter 3) from very little information (road axis network and
associated attributes), that is available in most of national databases. This road model
is then fitted to observations by combining in-base interactive user edition (using com-
mon GIS software as graphical interface)(Chapter 4) with semi-automated optimisation
(Chapter 5). The optimisation approach adapts the road model so it fits observations
of urban features extracted from diverse sensing data. Both street generation (Street-
Gen) and interactions happen in a database server, as well as the management of large
amount of street Lidar data (sensing data) as the observations using a Point Cloud
Server (Chapter 2 and Appendix A).

4

StreetGen

Automatic
Street Model

fitting

Interactive
in base
edition

Point Cloud
Server

Chapter 2, 5
Appendix 1

Urban feature observations

Sensing data Road axis + attributes

Street Modelling

Chapter 2 Chapter 3

Chapter 4

Chapter 5

Figure 12: Thesis graphical abstract. From an approximate road axis network a street modelling
is generated with StreetGen (Chapter 3). Such modelling is interactively edited with
any GIS using Interactive In Base edition (Chapter 4). In complement, the street mod-
elling can be automatically fitted (Chapter 5) to massive sensing data, managed with
a Point Cloud Server (Chapter 2, Appendix A) .

5

Part II

T H E S I S

1
U R B A N R E C O N S T R U C T I O N : A S TAT E O F T H E A RT

The goal of this thesis is to reconstruct (model) streets based on both user inputs and
observations from sensing data. We face three main issues for a thorough state of the art. The
first issue "seldom researched" is that although many urban features reconstruction have
been well researched, we could not find research dedicated to street reconstruction. The
second issue "transportation" is that streets also have a strong role to play in transportation,
and thus contain roads, which are parts of a global network. The last issue "contains other
features" is that by nature streets are composed of essential other urban features (street
furniture, markings, etc.), as such reconstructing streets also involves reconstructing these
urban features.

Due to "seldom researched", we can not do a simple state of the art of street recon-
struction, and so we have to look at reconstruction methods applied to other subject for
inspiration. We put a particular emphasize on road and road network reconstruction due
to "transportation". Last we analyse methods for urban feature reconstruction, be it natu-
ral (vegetation) or man made. Except buildings, all aspects of urban reconstruction are then
covered, and thus this state of the art is not only about street reconstruction but about urban
reconstruction.

1.1 Abstract . 9
1.2 Introduction . 10

1.2.1 Context . 10

1.2.2 Stakes . 11

1.2.3 Applications . 11

1.2.4 What is a city . 12

1.2.5 Challenges . 12

1.2.6 City reconstruction/modelling 14

1.2.7 Plan . 16

1.3 Input data . 17
1.3.1 Lidar data . 18

1.3.2 Images . 20

1.3.3 Raster data . 22

1.3.4 Vector data . 23

1.4 Approaches for reconstruction / modelling 24
1.4.1 Transverse reconstruction method classification 25

1.4.2 Procedural modelling and grammar 26

1.4.3 Inverse procedural modelling . 27

1.5 Buildings and façades . 27
1.6 Street . 28

1.6.1 Introduction to street reconstruction 28

1.6.2 Modelling the geometry of the street 30

1.6.3 Object detection, primitive extraction 31

1.6.4 Relation between objects . 32

1.6.5 Texture synthesis . 32

1.6.6 Conclusion about street reconstruction 33

1.7 Street network . 33
1.7.1 Introduction to street network reconstruction 33

8

1.7.2 A classification of road network reconstruction methods 34

1.7.3 Conclusion . 36

1.8 Urban vegetation reconstruction . 37
1.8.1 Introduction . 37

1.8.2 Vegetation reconstruction . 39

1.8.3 Classifications of urban vegetation reconstruction methods . . 40

1.8.4 Conclusion for urban vegetation reconstruction 41

1.9 Urban features . 42
1.9.1 introduction to urban feature reconstruction 42

1.9.2 State of the art . 44

1.9.3 Conclusion . 49

1.10 Conclusion . 50

1.1 abstract

Data-driven Model-driven Procedural
modelling

Inverse
Procedural
modelling

Catalogue
matching

Road/ Street

Street Network

Vegetation

Street feature

Building

Figure 13: A subjective transverse classification of reconstruction methods by role of model.

World population is raising, especially the part of people living in cities. With in-
creased population and complex roles regarding their inhabitants and their surround-
ings, cities concentrate difficulties for design, planning and analysis. These tasks require
a way to reconstruct/model a city.

Traditionally, much attention has been given to buildings reconstruction, yet an es-
sential part of city were neglected: streets. Streets reconstruction has been seldom re-
searched. Streets are also complex compositions of urban features, and have a unique
role for transportation (as they comprise roads). We aim at completing the recent state
of the art for building reconstruction (Musialski et al., 2012) by considering all other
aspect of urban reconstruction. We introduce the need for city models (Sec. 1.2 on the
following page). Because reconstruction always necessitates data, we first analyse which
data are available (Sec. 1.3 on page 17). We then expose a state of the art of street re-
construction (Sec. 1.6 on page 28), street network reconstruction (Sec. 1.7 on page 33),
urban features reconstruction/modelling (vegetation (Sec. 1.8 on page 37), and urban
objects reconstruction/modelling (Sec. 1.9 on page 42).

Although reconstruction strategies vary widely, we can order them by the role the
model plays, from data driven approach, to model-based approach, to inverse procedu-
ral modelling and model catalogue matching. The main challenges seems to come from

9

the complex nature of urban environnement and from the limitations of the available
data.

Urban features have strong relationships, between them, and to their surrounding, as
well as in hierarchical relations. Procedural modelling has the power to express these
relations, and could be applied to the reconstruction of urban features via the Inverse
Procedural Modelling paradigm.

1.2 introduction

If you read the thesis introduction, you can skip this chapter introduction until
Section 1.2.6 on page 14.

1.2.1 Context

1.2.1.1 Total population living in cities is growing

World population is increasing fast. A recent survey (United Nations, 2012) shows that
52% of Mankind already lives in urban area .

These urban areas are expected to absorb more than the demographic augmentation,
with new cities reaching the million of inhabitants every year in Africa and Asia.

The cities not only grow by number of inhabitants but also by the area they occupy.
The urban land use is expected to increase in the order of 100 000’s km2 in the next
decade (Seto et al., 2011).

1.2.1.2 Tensions are building up

demographic pressure . : concentration of population While the number
of cities is growing, cities are also getting bigger: 40% of city inhabitants are living
in cities over 1 million inhabitants. The growth of cities is partially absorbed by the
constitution of megacities. 10% of world population lives in megacities (23 cities that
are bigger than 10 millions), and this should increase to 13.5% until 2025.

social pressure Cities also concentrate inequalities, which are rising in the coun-
try where the urbanisation is expected to be the most significant (OECD, 2010, p.37).

environmental pressure High densities in cities imply careful management of
environment of a city. The necessary fluxes (in and out) are massive. Although some of
these fluxes are natural, they are also heavily impacted by cities (water, air, heat, etc.).

crisis management Concentration also makes crisis management much more dif-
ficult. Natural hazard (flood, earthquake, power cut) have more potent effects when
hitting a city as they concern more people, and as the very density and complexity of
city infrastructures might leave them more vulnerable. Cities growing very fast may
outgrow their infrastructures.

Moreover, cities importance also makes them more susceptible to human-related haz-
ard (epidemic, toxic dispersion).

10

1.2.1.3 Need for urbanism and city planning

For about one century the field of urbanism has been dedicated to tackle those problems.
The new challenges and the change of scale of the problem necessitate new tools.

1.2.2 Stakes

1.2.2.1 Need for city modelling

Urbanists traditionally use methodologies from social sciences. The advance of com-
puter science and engineering has given them simulations tools to model behaviours
and even test planning scenarios. Planing is spread across several entities, public or
private, as well as the inhabitants. This makes communication an important aspect of
city planing. Moreover, the representation of situations and scenario is essential for the
decision process as well as for the elaboration of the planning.

1.2.2.2 A new tools: the city model

2D maps have been the tool of choice, and can now advantageously be completed by
structured 3D city models created from various information.

1.2.2.3 Answer part of the needs

This new model and the 3D nature brings in turn several new applications (see (Niggeler,
2009) (fr. and ge.). The Figure 14 (inspired from (Niggeler, 2009)) gives an overview of
some applications for a city model.

1.2.3 Applications

1.2.3.1 Urbanism-related applications

(See Fig. 14) City modelling is widely used for urban planning and understanding. Hav-
ing detailed city models is an asset for visualisation and simulation, permitting to test
planning scenarios (new and transformation), analysing various impacts and properties
(noise, pollution, light propagation, flood, power cut, epidemic, toxic dispersion, water
management, temperature), or design transportation system.

Being a place of spatial and social concentration, a city is very sensible to environment
issues. Monitoring and simulating air quality (Moussafir et al., 2013), temperature, wind
speed, solar exposition, water cycle and so is important both for social reasons (per-
ceived cleanness, perceived lightness), for energetical reasons (urban heating or cooling),
as well as for health (being of high density, cities are more prone to epidemics).

Cities models are also used for tourism and communication as a part of the larger Vir-
tual Reality (VR) trend. Similarly, digital mapping is used as a simpler VR application,
permitting to help in a GPS-based navigation system, or simply browse pictures of the
roadside.

1.2.3.2 3D model for entertainment

(See Fig. 14) The important place the cities have in our lives logically pervades into the
collective images used by the entertainment industry.

11

Soft Mobility

Transport

Energy &
Environment Security Entertainment

Communication

GeoMarketing

Urbanism &
Architecture

Real &
subjective
distance

Traffic simulation for
pedestrian/bicycle/

handicap

public transport
simulation

traffic simulation
for vehicle

air and noise
pollution

visibility/
obstacle
annalysis

temperature, air
quality

solar ressource

flood

green energy
energy consumption

wireless network

decision support

situational awarness
real time intervention

case study/simulation

serious game

game

VideoFilm

Virtual tourism

pervasive gaming

tourism promotion

heritage/territory visit

real estate transaction

site selection

advertising impact

Visual Impact

sight analysis

Simulation
Analysis

Test

Control of regulation/
taxation/Local Planning

Regulations

Figure 14: Example of potential usages of a city model.

Thereby many films pictures real or imagined cities, in particular to support special
effects. The game industry needs are even bigger, partly because the recent trend to-
ward Massively Multiplayer Online Role-Playing Game (MMORPG). Such games often
induce massive open cities with believable animated agents. Interestingly, the city sim-
ulation games are similar in nature to serious training tools used to prepare emergency
response, crisis management and police deployment.

1.2.4 What is a city

Defining properly a city is difficult, as it would involves historical and social criterias.
In this work, we consider that a city is a densely populated and socially complex place
fulfilling certain functions to its surroundings.

1.2.5 Challenges

Reconstructing 3D city model is vital for many applications that are necessary to man-
age and plan cities, easing the life of Billions of citizens.

12

1.2.5.1 Reconstructing a multi-level complex of objects

Some of the reasons that make city modelling particularly challenging can be derived
from the definition we used for city: A city is a set of connected components interacting
with each other. In this way the road network usually influences building placement.
The social complexity accounts for various uses of space and therefore various types of
buildings (constructed for various usage and through the time). The dense population
use multi modal transportation networks which share part of space (e.g. bicycle and
cars).

Such a layered nature incite us to decompose the city reconstruction problem into
connected problems: the reconstruction of buildings (which we defer to (Musialski et al.,
2012)) , the reconstruction of streets (Section 1.6) , the reconstruction of street network
(Section 1.7) , the reconstruction of urban vegetation (Section 1.8) and the reconstruction
of urban objects (Section 1.9).

1.2.5.2 Multi scale

The spatial extend of a city model is large (typically in the order of the 100 to 10000km2

), yet many important part of the design are small (e.g. a curb is around 0.1m high but
strictly defines radically different space usages: pedestrian vs vehicle).

1.2.5.3 Automation

Manual modelling as been the tool of choice for a long time but can only be applied to
small parts. Therefore city reconstruction must use automatic or interactive tools. Yet
the more automatic a process is, the more it relies on data quality, which is particularly
problematic in an environment where aerial data is of reduced use and land data is
heavily occluded.

1.2.5.4 Cluttering

Urban environment is so dense and cluttered that usually the data is only partial (e.g. a
tree hides a part of a building facade). This is illustrated in figure 15.

Figure 15: On this street Lidar point cloud, trees are clearly masking building facades, creating
occlusion.

13

1.2.5.5 Many object categories

Cities contains many objects ("object" being used in a wide acceptance) that forms com-
plex patterns of relations. For instance streets markings follow complex rules that en-
force the highway code.

1.2.6 City reconstruction/modelling

1.2.6.1 City reconstruction

Several research communities have been interested in city reconstruction. It has proved
to be a challenging and highly interdisciplinary set of problems, with many major prac-
tical applications.

One could think the upper bound of city reconstruction problem is to have partial
models of how an existing city looks as well as how it works, sometime trough time.

However understanding the functioning of a city is out of our scope and this state of
the art focus on reconstructing its physical components.

The expression "city reconstruction" and "city modelling" are used alike to designate
our problem by different research communities. Both convey the same idea of a partial
view of reality, along with some knowledge about its structure (reconstruction) and/or
behaviour (modelling). More practically, the model is designed to be browsed through
digital imaging (which according to (Ramilo, 2005), is more efficient that a real life
scaled model). To be precise usually the goal is not exactly city reconstruction but more
the reconstruction of a specific urban space with some of its structuring properties and
the abstraction of key characteristics.

1.2.6.2 A link between modelling and reconstruction

The term "modelling" seems to be more used in the Computer Graphic community,
while the term reconstruction seems to be more employed in the Photogrammetry and
Remote Sensing community.

We use both because there is a point of convergence.
Trying to reconstruct a city and its components always involves an implicit model (or

hypothesis) determined by the choices of algorithms and constraints (e.g. most of the
time building are implicitly considered like locally planar blocks, mostly vertical). We
observe a trend in reconstruction to use more abstract knowledge, like semantic consid-
eration (e.g trying to reconstruct buildings parts with traditional stereo reconstruction
as well as primitive fitting (Lafarge et al., 2010)).

In the same time, while modelling is not exclusively dedicated to depict real world
objects, it is still possible to use modelling methods to get a model as close to the
reality as possible. It has traditionally been done with human feedback (a 3D artist uses
pictures of an object and dedicated software to draw it in 3D), but a recent trend tries
to do it automatically: the inverse procedural modelling paradigm (See Sec. 1.4.2 on
page 26) .

The consequence is very important for this work. Indeed most modelling methods
have the potential to be used in reconstruction process via the inverse procedural mod-
elling paradigm, and thus we include these modelling methods in this state of the art.

14

1.2.6.3 Scope

In this work we focus on the reconstruction of the morphological characteristics of a city,
because a full city modelling would also require to model the social and economical
phenomenon, which is way out of our scope.

geometrical models we focus on the methods to obtain models of cities. We limit
the possible usages and data type to the most common. For instance we do not describe
audio feature, even if it is an essential piece for realism (that can also limit the need for
visual details (Mastoropoulou et al., 2005)). We focus on geometrical models.

not only buildings Most of the works in city reconstruction have been focused
on buildings reconstruction (Klavdianos, Zhang, and Izquierdo, 2013; Musialski et al.,
2012). Yet a city is far from being only an aggregate of buildings. Paris, one of the
densest city in the world, is a good example. About 70% of the surface is not occupied
by buildings. The streets occupy 40% and the places 5%.

We can explain this by the fact that a city is by definition a place of complex social
interactions, therefore a need for a common medium is essential and must exist: the
road network and the streets.

Figure 16: Synthetic 3D city model. When urban features are coherent (top), the model is a great
deal more realistic than without any objects (bottom left), or even with the same
amount of objects but un-organised (bottom right).

Moreover, a crude perceptive example (Figure 16) shows the importance of de road
network, street, vegetation, urban objects.

15

A real street view of Toulouse city (Fig 17) with urban objects highlighted shows the
diversity and importance of street objects. Almost all the applications of city modelling

Figure 17: importance objets

(See Figure 11 on page 3) benefit as well from such additions. Another clue of the
importance of non-building elements for city modelling can be given by analysis of City
GML (Kolbe, Gröger, and Plümer, 2005), the leading current standard to represent city.
Building is only one City GML module among a dozen other (transportation, vegetation,
urban furniture ...).

no transport simulation Crowd and traffic simulation is out of the scope of
this work. However, such simulation necessitate reconstruction of specific data which
we will briefly cover. Reader can refer to the recent state of the art of (Duives, Daamen,
and Hoogendoorn, 2013) for more details about traffic simulation.

1.2.7 Plan

Reconstruction always necessitates data representing the city, we first analyse which
data are available (1.3).

City is composed of many components, and many methods from different research
community try to reconstruct them. We first propose a trans-components classification
of reconstruction approaches (1.4).

We then dress independent state of the art for each category of city components being
reconstructed, such as street reconstruction (Section 1.6 on page 28), street network
reconstruction (1.7 on page 33), urban features reconstruction/modelling (vegetation
(1.8 on page 37), and urban objects reconstruction/modelling 1.9 on page 42).

16

This simple ordering is necessary due to the wide differences between methods. For
each of this categories, we propose several ways to classify the state of the art methods,
to allow a multi-level understanding of the field.

We conclude this work by giving perspectives about the evolution of city reconstruc-
tion.

1.3 input data

We analyse what data are available for city components reconstruction. These data can
be ordered from less structured (Lidar data, vector data) to more structured (image data,
raster data), and from less abstract (Lidar data, image data) to more abstract (raster data,
vector data). (See Figure 18)

Lidar
points
cloud

image
Lidar
sensor
image

Sfm
points
cloud

Vector
network

Vector

passive

active

more Remote Sensing more GIS

rastermore
structured

less
structured

less
abstract

more
abstract

Figure 18: Available data types for city components reconstruction, ordered from less to more
abstract, and from less to more structured.

Please note that this classification is based on common usage rather than on strict
mathematical differences. From a mathematical point of view, Lidar, image and raster
data are of same nature (2D lattices, i.e. regularly sampled values), and the definition
of vectors data is vague (parametrized shapes with semantic, the types of shape and
parameters varying).

Moreover the boundaries may be fuzzy. For example it is possible to create an image
from a Lidar pointcloud (sensor view, See Fig. 20 on page 20), and a pointcloud from
multi-images (Structure From Motion, SFM, see Carrivick, Smith, and Quincey, 2016 for
a recent book about sfm and geoscience). Similarly, a conservative two-way conversion
between raster and vector data is possible under certain assumptions (2.5D).

17

In the next sections we introduce each of this available data. Each section is illustrated
by real data for a street of Toulouse city (France), from mobile mapping (Paparoditis et
al., 2012), or from aerial images (French mapping agency, IGN).

1.3.1 Lidar data

Figure 19: Street Lidar Point cloud (intensity tone from blue to white to red).

1.3.1.1 Intro

Light Detection And Ranging (LIDAR, noted "Lidar" for readability) data are becoming
more and more available to the point of being common. Their interest is partly due
to the complementary nature they offer to images, making them extremely popular in
urban reconstruction. In particular, they offer easy access to 3D coordinates. A Lidar
device uses active sensing, and can be fix or embedded on mobile objects (plan, drone,
vehicles, train, etc.). Figure 19 illustrates a point cloud from a terrestrial Lidar.

1.3.1.2 Principle

The Lidar principle is simple and very similar to a Laser measuring tape. The device
emits a short light impulsion (i.e. active sensing) from a know position in a known
direction at a precisely known time. This light signal flies for some time, hits an obstacle
and is partially reflected backward to the device. The device receives this reflected signal.
Then it analyses the time of flight, and given the speed of light in air, it can compute
the distance from the device to the obstacle. This gives the precise 3D position of the
obstacle, hence a 3D point.

18

The magnitude (i.e amplitude of signal) of the return impulse is also extracted, quan-
tifying the ability of the obstacle to efficiently reflect light (at the Lidar frequency, for
a given input angle). Intuitively, a street furniture of polished metal will reflect much
more light than a rugged stone wall.

1.3.1.3 Data volume

Such sensing is made at high frequency (0.1 to 1 Mpts/s), making the data volume huge
and barely tractable in practice. Yet, even at several millions of point per second, we are
short of a typical HD video-film acquisition data rate (1200*1800 pixels, 25 times per
second). However, the data volume is much more difficult to manage with Lidar data
than image data (See Chapter 2 for more details about point cloud management).

One has to remember than photography have been invented two centuries ago, and
that digital imaging has been researched for several decades. In opposition dense 3D
point clouds and Lidar processing are much newer. The industry still lacks standard for-
mats, powerful viewers and editors, and mature compressions (for example : (Mongus,
Rupnik, and Zalik, 2011). The link to the compressive sensing theory (Baraniuk et al.,
2011) does not seem to have attracted much interest either).

All in all, the main issue with Lidar data is no more its volume, but the lack of
management framework as a whole (See Chapter 2).

1.3.1.4 Details and facts

Lidar can be airborne (several points per square meter, precision of 0.1 to 1m) or ground
based (for stationary station: precision less than 1mm, for vehicle: precision around 0.1
to 1cm).

More sophisticated methods allow to acquire and store the full waveform of the return
signal, which can be used to extract multiple points per waveform (e.g. one point for
the forest canopy, one point for the forest mid level and one point for the ground) (Mal-
let, 2010). Other recent technologies propose multi-spectrums Lidar (Hakala et al., 2012;
Wallace, Nichol, and Woodhouse, 2012), but these remain in laboratories for the mo-
ment.

It is important to note that LIDAR data is an accurate and sparse sampling of 3D
objects by nature (e.g. the size of error is small compared to the distance between points).
As such, their sparse and 3D nature is complementary to the high density and 2D nature
of images.

It is possible to create an image from the Lidar device point of view (sensor image,
see Figure 20), because the device physically acquires points following a very regular
pattern (lines, grids). Such an image is equivalent (dual) to the traditional 3D point
cloud, and can be used as a 3D depth map. However it is not commonly used because
working in image space disables the possibility to use classic Euclidian distances. There
is no straight relation between 3D distance and pixel distance (2 points separated by 6

meters in 3D world may be separated by any number of pixels).

19

Figure 20: Lidar points can be seen as images (sensor image) as the acquisition process is regular.

Figure 21: Street View (360° panoramic) .

1.3.2 Images

1.3.2.1 Introduction

Images are very common data for urban reconstruction, partly because they are widely
available and have been used in computer science for a long time, and also because they
are so similar to how we view our environment. Images can be street view images (See
Figure 21) or aerial images (See Figure 22). Efficient image processing is made possible
by the very regular nature of image data (in particular, pixel neighbourhood is known)
and dedicated powerful graphics hardware (Graphics Cards with dedicated in silico
parallel processing pipelines).

1.3.2.2 Principle

Image sensing is an approximation of the complex nature of the light signal emitted/re-
flected by an object at a given time. A camera is only a receiving sensors, making it a
passive method.

The camera has an array of photo-sensible sensors. Each sensor counts the number
of photons arriving during a given time, thus gives an average intensity of light signal

20

over a short time. Matrices of coloured filters allow acquiring the intensity of different
parts of the light spectrum (e.g. (Red,Green,Blue) colours).

1.3.2.3 Aerial image

Figure 22: Aerial image data.

We differentiate aerial images (See Figure 22) from street images as the cameras are
usually significantly different.

Aerial images (satellite and viewed from planes) have extensive geographic coverage
because of the near uniform acquisition process and many satellites available. In ur-
ban context, they tend to have massive occlusion because street canyons are occluding
parts of the city. Several passes with different acquisition angles and directions can help
reduce this problem (Garcia-Dorado and Aliaga, 2013).

Radiometric quality is generally high and distortion low. These images are precisely
geolocated (i.e. we precisely know from where and in which direction the image was
taken in relation to known ground features).

Other spectrum than human-visible colours are often available and give precious
information (e.g. near infra-red for tree detection). Pixel width is typically between 0.1
and 1 meter.

1.3.2.4 Street image

Street views (21) are usually taken from the ground by a person or a dedicated vehicle
circulating the streets. These images allow seeing in great detail buildings façades and
streets.

Geolocation of images is done trough GPS and inertia sensors, but a centimetric reg-
istration of those images is still an open problem.

21

It may be hard to coherently use multiple images because of the level of change and
imprecision.

Spatial coherence is difficult to obtain because of the registration challenge, temporal
coherence because significant parts of the images may be occluded by moving objects,
and radiometric coherence (colours) because the lighting conditions may change very
quickly (e.g. moving from shadow to direct sun light).

The pixel size varies with the depth of the image but can be estimated from 1 to 10cm
average, and the data volume is very sizeable (thousands of images per hour).

It is common to use multiple images to create sparse point clouds using a method
called "structure from motion" (SfM). Such point cloud can then be densified through
dense matching. However such point-clouds are very different from those obtained by
Lidar. Due to instrinsic 3D reconstruction ambiguities, errors and noise are typically
higher, and point sets are sparser in uniform area (e.g. a white texture-less wall). This
differences partially explains why many methods are specific to Lidar pointcloud or
SfM pointcloud. (Musialski, Wimmer, and Wonka, 2012, Sec. 2.2) give an introduction
to SFM.

1.3.3 Raster data

Figure 23: Raster Digital Terrain Model (DTM) data.

1.3.3.1 Introduction

In Geographical Information Science (GIS), a raster dataset is a regularly sampled 2D
distribution (i.e an image) draped over a portion of ground (i.e viewed from above).
This image can contain colors channel (RGB), but also any sampled field values.

The information contained can then simply be a visual texture (an ortho-photography,
making it close to images (Section 1.3.2). But it can also be more abstract, giving for
example some geometric information (the estimated height of roofs in a given area),

22

or semantic information (the probability that the space the pixels cover are made of
vegetation), or even statistical (an estimation of the average income distribution over a
city). The Figure 23 shows a raster representing the ground elevation.

1.3.3.2 Level Of Details (LOD)

Rasters can be very large images (covering large ground with many small pixels). Thus
they typically require a Level Of Details (LOD) approach. A raster can be tiled (reg-
ularly cut into smaller pieces) to access only a part of interest, and/or used at varied
resolution (e.g. pyramid representation of the JPEG 2000 standard). Note that point
cloud can also use LOD approach (See Appendix A).

1.3.3.3 Details

Rasters are prone to quantization errors (intuitively, it is hard to represent a curve with
rectangular pixels). They also have an obvious limitation: they can represent a 2.5D
surface but not all 3D form or volume. Full 3D volume can be obtained with voxel
grids, but these does not seem to be as used as plain rasters.

It is important to note that raster can be more semantically abstract than images and
Lidar because they can sample any distribution. Thus the values can represent other
things than direct sensing data (e.g. a land use map).

1.3.4 Vector data

Figure 24: Vector data: various vector types forming a map.

23

1.3.4.1 Intro

Vector Data are classical data in map making (See Figure 24 which illustrates a number
of vector data forming a map). Intuitively, vector data are arbitrary (mostly 2D) simple
parametrized shapes with attributes, and often associated visualisation rules. Usually
the shapes are limited to points, poly-lines and polygons with holes. More generic forms
like curve (arc of circles,Bezier curves, splines) , or 3D primitives (meshes, triangulated
networks) are less common.
Attributes are values attached to a shape. For instance a tree could be represented as
a polygon for the boundary of its trunk at ground height, along with the attribute
”tree_species” (e.g. "Platanus") and ”height_of_the_tree” (e.g. "12.4"). Vectors are closely
associated with maps, therefore they are often used in complex visualisation rules. For
instance a point with a text attribute can be visualised as a label (text on map).

1.3.4.2 Abstract data

Vector data are usually more abstract than the other data by nature and by usage. By
nature because both images and lidar point clouds can be represented losslessly with
vectors. However vector data is irregular by nature (no information on neighbourhood).
As a consequence representing images as grid of rectangle vectors is of reduced interest.

Vector data are also traditionally more abstract by usage. For instance a 2D polygon
would be very classically used to represent a building footprint. In this case this polygon
is already a simplified model of the building. Given the height, we could extrude the
footprint to create a simple building volume.

1.3.4.3 Obtaining vectors

Vectors are not a direct result of sensing, but an interpretation of reality. Such interpre-
tation can be automatic or done by human. Thus vector data can be obtained by an
analysis of direct sensing data, which is a part of the objectives of the remote sensing
research community (e.g road extraction (Bar Hillel et al., 2012)).

Vectors can also be man-drawn (using aerial images in background), produced by
field survey (involving a positional device to map the objects), or extracted from pre-
existing maps (vectorisation).

Vectors are not regular by nature (no information about neighbourhood), however
using the attributes one can create a so called "topological model", which allows to
create a graph structure over vectors. For instance a road axis network is composed of
road axis (vector) with topological information (axis i and j are connected at node n).

A typical example would be that for each vector an attributes gives its connected
vectors with some orientation information. This data structure is harder to manage
and to use but allows minimizing data duplication. Using such a data structure enable
different applications like traffic simulation, or advanced spatial-relationship analysis.

1.4 approaches for reconstruction / modelling

In this section, we first propose a transverse classification of methods reconstructing/-
modelling the different urban aspects. Then, we give pointers for procedural modelling,
grammar, and inverse procedural modelling.

24

1.4.1 Transverse reconstruction method classification

1.4.1.1 Reconstruction strategies ordered by model importance

In the rest of this chapter, we consider a short state of the art for each aspect of urban
modelling/reconstruction (building reconstruction (Sec. 1.5), street reconstruction (Sec.
1.6), street network reconstruction (Sec. 1.7), urban features reconstruction/modelling
(vegetation (Sec. 1.8), and urban objects reconstruction/modelling (Sec. 1.9).

These aspects are very different in nature, type of data used, and type of results.
Therefore we propose several classifications for the methods of each aspects. Each clas-
sification is intended as a way to compare methods.

All methods deal with the reconstruction of one aspect of urban model, we propose a
transverse classification of these methods. We choose to classify reconstruction strategies
by the role the model play in the reconstruction method. At one end of the spectrum,
the strategy of direct reconstruction from sensing data (e.g. triangulate a point cloud for
instance). In this strategy, the model has a very small role, as it is mostly implicit.

At the other end of the spectrum, the strategy of catalogue matching. In this case the
reconstruction strategy is to identify which model represents best the data, therefore,
the model play a very large role.

This classification is illustrated in Figure 13 on page 9.

data-driven reconstruction Some methods reconstruct directly from sensing
data (low level reconstruction, data-driven), for instance reconstructing the ground sur-
face, the building approximate geometry, the road network from image, etc. Similarly,
points or pixels classification can be seen as low level reconstruction. These methods
have the advantage to rely on an implicit model which may be very generic. Yet, the
sensing data is often sparse and of relative low quality considering the scale of the
considered objects. Moreover, low level reconstruction methods seems to be ill adapted
to output structured/complex results (for instance a facade organisation, a hierarchical
road network, a graph of parts of a man made object, etc.).

model-driven reconstruction A way to simplify a problem too wide is to
add constraints and knowledge about it. Some of the methods therefore add strong
hypothesis about the object to reconstruct, typically exploiting prior knowledge (road
slope and turning radius is constrained by civil engineering rules, trees tends to grow
to maximise exposition to sun light, etc.), and hypothesis of symmetries.

These prior knowledge are then expressed as strong models (Template, pattern, etc),
and the reconstruction is much more model-driven (top-down). For instance when re-
constructing road markings of pedestrian crossing, we can use the hypothesis that each
strip is a rectangle, and that related strips are parallel with a regular spacing.

procedural modelling However template and pattern become difficult to use
when the reconstructed objects follow complex patterns and/or hierarchical patterns.
In this case, procedural model offers a powerful and adaptable way to construct such
results (for instance, expressing a tree procedurally).

When reconstructed objects have important and structuring relationship, a grammar
is a good tool to formalise these while keeping a strong modelling power (for instance,
using a facade grammar, shutters would necessarily be created and linked to a window).

25

Moreover grammar are very hierarchical by nature, which suits well a number of aspects
of urban reconstruction, as both natural and man-made object express .

inverse procedural modelling Procedural modelling and grammar modelling
have great modelling power, but are hard to use in reconstruction. Indeed, they can be
used to create a model, but are hard to adapt to model something in particular. In
this case the paradigm of Inverse Procedural Modelling is necessary, that is given a
model and observations of the object to be reconstructed, what are the parameters and
rules of the model that best suits the observations (for instance, given a pedestrian
crossing detection, what is its orientation, width, number of bands, etc.). The number
of parameters to consider is extremely large, and this, in addition to sparse and noisy
observations, may lead to an intractable problem.

catalogue matching In some case, the objects to reconstruct are very well known
and may have very little variations. Thus, we can adopt a catalogue matching strategy.
Instead of reconstructing an object, we use observations of the object to find the model
that is the best match in a large model database. For instance, using a streetview we
detect a urban furniture. The image is matched to a database of 3D model of street
furniture. The best model is then scaled and oriented. Please note that in this case, the
model almost totally determine the result. This allows to decompose the reconstruction
problem: First find which street object is where, possibly determining some of its prop-
erties, such as its orientation. Then, find or generate a similar 3D model and populate
the reconstructed street with it.

1.4.1.2 Additional considerations for reconstruction strategies

interaction Independently of the strategy used to reconstruct object, a user inter-
action is often necessary. This is especially the case when input data can not be really
trusted, or when the reconstruction method strongly relies on model (procedural mod-
elling for instance). Controlling grammar is difficult and dedicated methods may have
to be tailored (for instance, using brush to describe the different parts of a city; or a
street network may be generated basing its morphology onto the surroundings).

updating database and fusion Most of the methods we presented are straight-
forward modelling/reconstruction methods working on sensing data. However, for real
life application (especially street network reconstruction), one may use not only sensing
data, but also a previous coarser results. For instance an incomplete road network is
completed with road extracted from sensing data. These methods are still about recon-
struction, but they may also contains supplementary parts such as data fusion, data
qualification, etc.

1.4.2 Procedural modelling and grammar

In the procedural modelling paradigm, a model is not defined by a set a parameters,
but by a set of rules that can be combined, for instance in a grammar, to model complex
objects. This type of modelling has a very high descriptive power, which can be hinted

26

by the fact that grammars are at the very basis of how we express ourselves, and at the
veryc ore of computer science.

We recommend the read of the seminal article of Müller et al., 2006; Parish and Müller,
2001 for an introduction to shape grammar (The Figure 25 is extracted from Parish and
Müller, 2001).

Figure 25: An example of usage of shape grammar from the seminal article of Parish and Müller,
2001.

1.4.3 Inverse procedural modelling

Inverse procedural modelling is the paradigm where a procedural model is fitted to
observations. It is important to note that we do not only look for the parameters of the
model, but also for the rules used in the model (i.e. the number of parameters is not
fixed). For instance in the case of a facade grammar, we do not only look for the number
of floors, but for the rules that will be used to generate these floors (for instance, create
window with balcony and shutter).

1.5 buildings and façades

Building reconstruction has received much attention in the past decade. Thus, methods
have focused on diverse parts of buildings reconstruction (facade reconstruction, roof
reconstruction, indoor reconstruction, etc.).

Different types of building may also be reconstructed using different methods (Man-
hattan /Atlanta /Planar-hinged building type (Garcia-Dorado and Aliaga, 2013) or sub-
urban house (Lin et al., 2013)). Some methods focus on large scale solution, efficient
visualization, Level Of Detail feature, etc.

The methods used are so diverse that the author of the recent state of the art (Mu-
sialski, Wimmer, and Wonka, 2012) have chosen a straight order by goal and data input.
Klavdianos, Zhang, and Izquierdo, 2013 also establish a building reconstruction state of
the art.

We refer to the Figure 26 extracted from (Musialski, Wimmer, and Wonka, 2012) for
a quick overview of different approaches for building reconstruction.

In this work we chose to not develop this topic, as it is covered by recent states of the
arts articles for building reconstruction. We note that many of the strategies explained
in these articles could be used for the reconstruction of other objects. We also feel that

27

Figure 26: Illustration of Musialski, Wimmer, and Wonka, 2012 illustrating building reconstruc-
tion.

the building reconstruction community has pioneered many advanced articles about
shape grammar and inverse procedural modelling.

1.6 street

Figure 27: One of Paris street.

1.6.1 Introduction to street reconstruction

1.6.1.1 Challenges for street reconstruction

Streets are essential components of a city model. As the medium pervading all other
structures and objects they are complex. First the geometric nature of streets is specific,
detailed and not normalized.
Second, a street is a complex arrangement of objects that are inter-related and have
their own structure. For instance a pedestrian crossing is located in relation to traffic

28

light and is a structured composition of markings bands.
Third, streets are objects that are strongly defined by the uses the inhabitants of the city
make for it, in particular regarding their displacement.

Thus, a street organisation is partly guided by these functions, and as such, street
reconstruction should provide an ouput compatible with this functions.

streets are complex , even for human Streets are so familiar places that we
specialise very early in using them during childhood. However one can remember the
complexity of the task when travelling in another country. There, every aspect of a street
can be different.

Children have to be taught a long time where and when to walk, not speaking about
driving rules, or using the public transportation system, which are even more complex
tasks. In this spirit, people with even a light intellectual or physical disability may
have significant trouble navigating the public transportation system, which is based on
streets.

street for traffic An essential function of street is multi modal navigation (vehi-
cle, public transport, bikes and pedestrian). Such navigation uses network level features
(Section 1.7) which have great impact at the street level organisation. For instance the
sole purpose of street markings is to support traffics. Being on the ground they are
prone to occlusion and wear, but there use is strictly regulated (e.g. France reference
document is 65 pages long, (French Ministry, 2012)).

Streets are used for several transportation methods (pedestrian, bike, public transport,
vehicle) that are mixed (e.g. a pedestrian crossing is shared between pedestrians and
vehicles).These methods shapes in turn the streets, which add to the complexity of it,
and increases the difficulty to reconstruct the street.

streets are organised Streets are challenging to model because they form a par-
tially organized structure (typically organised relatively to the central axis), yet are
much less locally regular than a building (in particular, the relations are more gener-
alised, like intrinsic partial symmetry vs extrinsic, see (Mitra et al., 2012), ch. 7). Also,
the street components have strong relations between them, which makes difficult to
model a small area at time (in opposition to building which can reasonably be defined
as dissociated from the other close buildings). For example, reconstructing a pedes-
trian crossing usually implies there would be another in the next hundreds of meters.
Some street features may follow a partial symmetry (bollards for instance), a pattern
(pedestrian crossing markings bands), or be organised in inter-related hierarchy (lane
markings and traffic light) .

streets are hard to sense Lastly the data collection is difficult. Aerial sensing
may be impeded by buildings, and the street geometry and features make it difficult
to avoid large occlusions due to traffic, people, trees... In opposition to building, whose
main feature (door, windows, etc) are large (1m), street are partially organised by kerb
(separator between road and sidewalk) which are much smaller (0.1m). The necessary
geometric precision is even greater when considering slope and water drainage.

29

related work There are been remarkably few works on reconstructing streets, even
if streets contribution to a city model is evident. We can conjecture that this is partly due
to the fact that data to the required precision (less than 0.1m for a basic curb) has been
only recently available in urban environment. Also, the geometric nature (streets are
not necessary blocky and have irregular shapes), the diverse and complex arrangement
of objects (markings, signs, furniture), and the dependency on many research fields
(object detection & segmentation, pattern recognition, paving and texturing, intrinsic
symmetry detection) makes the problem challenging.

However the simulation industry has used dedicated data models (for instance, Road-
XML1 or OpenDrive2), which characteristically include network aspect, surface material
and 3D representation, along with road objects and road related objects. Powerful spe-
cialised softwares allow to design intersections in all their aspects (lane size & position,
traffic regulation depending on the traffic throughput, regulatory material) in the con-
struction and CAD field. These software are not included in this state of the art, as we
were not able to test them. They also seem to be more designed oriented than recon-
struction oriented.

Street are also part of a street network, this constraint needs to be enforced at all time,
but can provide precious information (e.g. traffic direction(s), thus orientation of traffic
signs, etc.). Therefore some methods for street network modelling can also be partially
applied to model streets. Even if it has been a common practice, modelling streets like
the complimentary space of buildings is not sufficient (Cornelis et al., 2008) for many
applications, and in many cases simply erroneous (e.g. private garden, places, parks).

1.6.2 Modelling the geometry of the street

One should model the detailed geometry of the street and curb (which is typically vary-
ing to separate pedestrian crossings or driveway entrances). This is counter-intuitively
difficult. Such process cannot rely on Manhattan-like hypothesis, and must deal with
the precision issue.

1.6.2.1 Modelling geometry using primitives

Some road model from road network modelling methods can be applied (See Section 1.7
on page 33) For instance road geometry can be modelled as 3D clothoid (Applegate,
Laycock, and Day, 2011; Bertails-Descoubes, 2012; Galin et al., 2010; McCrae and Singh,
2009b), arc and line pieces (Wilkie et al., 2012), polynomial model (Hervieu and So-
heilian, 2013), B-Spline (local only) (Wedel et al., 2009), using road profile (Despine and
Baillard, 2011), or using brute mesh (Cabral et al., 2009).

1.6.2.2 Modelling geometry using 2D/3D grids

The street / road / ground model can also be far less constrained, and simply be a 2D
or 3D grid. This is very similar to having a raster with a semantic label such as road/no
road. In this case the mode is implicit (for instance you cannot say directly that the road
is of width X at this place).

1 www.road-xml.org

2 www.opendrive.org

30

www.road-xml.org
www.opendrive.org

This type of low level modelling as been especially used for autonomous vehicles (see
Bar Hillel et al., 2012 for a state of the art on road and lane detection for autonomous
vehicle. There are several ways to label the space as in or outside road. In mobile map-
ping, one can use a direct approach based on the expected height profile of the road,
both from Lidar (Yu et al., 2007). Cornelis et al., 2008 carve space and so model more
the free space than the road.

Another way to create these maps of road surface is to classify 2D rasters representing
the scene viewed from above (Fischler, Tenenbaum, and Wolf, 1981). This raster can
come from various sources, such as aerial image, aerial lidar, or be the result of another
process of mobile mapping data (Serna and Marcotegui, 2014).

The classification process to decide if a pixel of such a raster is to be labelled as road or
not is often contextual, in the sense that the value of this pixel may not be sufficient, but
the neighbours values may also be required. For this reason, the classification process
is often only the first step of a more complex workflow (Boyko and Funkhouser, 2011;
Montoya-Zegarra et al., 2014) that will use implicit hypothesis about a road geometry.
For instance, citeBoyko2011 use an active contour to find limit of road, which implicitly
model the road border as smooth.

The fact that the road is part of a network provides another contextual information
that can be leveraged (See part 1.7).

However reaching the required precision might be difficult. In fact, even with massive
terrestrial data, automatically dealing with occlusion to get a coherent street geometry
is still an open problem (Hervieu and Soheilian, 2013; Serna and Marcotegui, 2013).

1.6.3 Object detection, primitive extraction

But street are also a subtle arrangement of related objects. Street objects (like vegeta-
tion (Section 1.8), street furnitures and markings (Section 1.9) are hard to deal with
individually. Detection is already a hard problem, reconstruction is even harder. Detect-
ing objects in street is challenging due to variety of objects and occlusion. (Golovin-
skiy, Kim, and Funkhouser, 2009) use a four steps method to detect objects in street
Lidar: localisation of objects, segmentation, feature extraction and classification for a
small amount of objects. Beside comprehensive testing and proposing several alterna-
tives regarding classification methods, they also reach the same conclusion about the
importance of relations between objects and use ad-hoc features to this end ("contex-
tual feature"). (Zhang, Wang, and Yang, 2010) demonstrate the possibility to perform
urban segmentation based on depth map extracted from video. Local features are ex-
tracted from depth map (height, planarity, distance to camera), then a random forest
classifier followed by a graph cut minimization methods output a labelled segmenta-
tion. (Yu et al., 2011a) focus more on segmentation with a basic classification, but their
method could be used as primary step for detailed classification. Similarly, (Lafarge
et al., 2013) automatically extract primitives (e.g. plan cylinder, torus, etc.) from point
cloud obtained by SfM. Their goal is more toward mesh compression and partial holes
filling, but such primitives could also be used for object segmentation. Although the
core of their method is a planar-based residential house reconstruction, (Lin et al., 2013)
also detect objects (mailbox, plant, road sign, streetlight, waste bin) using an adapted
version of (Zhang, Wang, and Yang, 2010).

31

Whatever the method, the number of types of object detected is small (about 10) and
the error rate varies a lot depending on type of objects. The research field of façade
reconstruction had the same type problem. The trend to resolve it has been toward
leveraging the organisation and relations of objects (contextual information).

Therefore we include in this state of the art a prospective consideration of street
related object relation detection and analysis.

1.6.4 Relation between objects

At the street level it is possible to leverage the pattern and inter-relation of this object
to gain critical information about objects. The Figure 16 on page 15 clearly shows that
street objects are strongly organised (top), to the point where removing this organisa-
tion (bottom right) negate the purpose of these objects. Defining and retrieving relations
amongst objects is an old and multidisciplinary problem. (Clementini and Laurini, 2008)
review related references in linguistic, philosophy, psychology, Geographical Informa-
tion System (GIS), Image processing and qualitative spatial reasoning. They propose a
common evaluation framework.

More related to the GIS community, (Steiniger and Weibel, 2007) present a coherent
typology of spatial relations applied to cartographic generalisation. Their typology is
general enough to be applied outside of this field. In a recent state of the art, (Touya
et al., 2014) describe in great details previous works in the GIS field and propose a new
taxonomy along with several use cases to illustrate the relations.

Extracting such relations is a difficult problem, and could be related to Extrinsic/in-
trinsic symmetries (Mitra et al., 2012). The real world relations are fuzzy like in the
method used by (Vanegas, Bloch, and Inglada, 2013), where alignment and parallelism
spatial relationship in aerial images are defined in a fuzzy way. More generally, com-
plex pattern of objects may need a full grammar to be represented (See Section 1.4.2 on
page 26).

1.6.5 Texture synthesis

When the objective is to get a photo-realist 3D model, a possible strategy is to use real or
synthetic images and drape them on a geometric street model. This texturing process (or
draping) is a major bottleneck for reconstructing a large number of streets. Such textures
are hard to design, and if using data from sensing, they have to be cleaned. (Cornelis
et al., 2008) uses multi-images to blur the detected vehicles and replace them by detailed
3D model. They also use texture map to efficiently store the road and buildings aspects.
A state of the art of texture synthesis and deformation is out of the scope of this article
(interested reader could refer to (Wei et al., 2009)). To pick a few, (Cabral et al., 2009)
uses generic texture deformation by auto-similarity maps to adapt to the geometric
deformation. Also, although the focus is not the same, (Ijiri et al., 2008) could be used
to generate sometime complex pavement pattern of streets ground.

32

1.6.6 Conclusion about street reconstruction

Street reconstruction is a difficult problem, which is essential for urban reconstruction,
but seems to have been much less studied that building reconstruction. However a
large amount of work has been done on road reconstruction, in particular using remote
sensing data such as image and aerial lidar. However these methods only reconstruct
one aspect of a street (geometry, transport related information, street feature, etc.), and
may be of limited precision.

We note that street functions (transportation) and features (objects) are closely inter-
related, which indicates the need of a global method taking both into account.
It seems that streets are strongly determined by their transportation function. As such,
the role each street plays in the more global street network is a key factor that has to be
taken into account when reconstructing this street. This indicates the necessity to have
a multi-scale approach, both at street and street network scale.
Street objects have complex organisation (pattern, symmetry), are interrelated, and may
also depend on street morphology. This indicates that a very powerful approach able to
model hierarchical patterns is needed. Procedural and/or grammar approach appear to
be good candidates for this task.

1.7 street network

In this section we introduce challenges and stakes of street network reconstruction,
then propose three classifications of street network reconstruction methods. The first
classification is by the type of road network that is outputted. The second classification
is by the type of input used. The last classification is by the type of road model used.

Overall, the type of road network output range from simple network to hierarchical
network to fully attributed network for traffic simulation. The input can be from exam-
ple/template, procedurally (without or with interface), specifying constraints or using
GIS data.

Popular procedural methods are L-system, Agent-based simulation, and templates.
((Kelly and McCabe, 2006), page 12).

1.7.1 Introduction to street network reconstruction

Street network modelling is of particular importance for city modelling. A city organisa-
tion relies so heavily on street network that it is often the first step of the city modelling
process(e.g. CityEngine (ESRI, n.d.)). Street are also connected and form a network reg-
ulated by traffic laws and many related signs, thus having a specific nature which must
be taken into account to enable traffic simulation. The street network then becomes a
complex graph which exhibit a partial fractal nature (Frankhauser, 2008). Reconstruct-
ing becomes then much more difficult because the support as well as the connectivity
information must be retrieved and coherent.

1.7.1.1 Challenges in street network reconstruction

In urban planning designing the properties of the road network is essential for the city
growth and for a good interfacing with city surroundings, which makes it a topic of

33

important consequences. The financial and environment-related impacts are also enor-
mous (e.g. road network is commonly used to open up neighbourhood, which can
significantly increase land price. On the opposite a major urban road can negatively
separate a neighbourhood into disconnected pieces, thus weakening the urban fabric).
The street network is the support of several forms of transport which are entangled.
This fact has important repercussions on city reconstruction. A street with major vehi-
cle traffic and bus lanes will be morphologically and functionally very different from a
pedestrian street.

Moreover, reconstructing a city without street network would be pointless because
the street network is the very object that links every others and assure the connectivity
of the urban fabric.

1.7.1.2 Why reconstruct street network

Reconstructing the street network is essential for numerous applications, being for di-
rect use (navigation), or for indirect information (e.g. gives complementary information
about a street that could be used for street morphological properties evaluation for
realism or environmental simulation). Real world road network maintenance and con-
struction is a massive industry (around 0.5% of GDP in Europe, according to (European
Union Road Federation, 2012, pages 29-30).

At such it is not surprising that major COmputer Assisted Design (CAD) software
companies like Bentley3 and Autodesk4 propose advanced products to create/renovate
road networks. These software features would probably place them at the state of the art,
however we could not find enough detailed information to discuss them furthermore.

We note than for procedural city modelling, constructing the street network is of-
ten the first task ((Parish and Müller, 2001) and subsequent shape-grammar based city
modelling), because street structures the city.

1.7.1.3 Street network and road network

Most of the methods we consider reconstruct road network, and not necessary road
network in urban environment, even less street network (that is also reconstruction
street features, street objects, etc.).

As such, these methods focus on reconstructing a network for vehicle, although
streets contains other network, such as pedestrian network. Yet pedestrian network
can be inferred from road and building (Ballester, Pérez, and Stuiver, 2011), or semi-
automatically created with ad-hoc tool (Yirci et al., 2013) and then updated afterward
using GPS trajectories (Park, Bang, and Yu, 2015).

We added methods performing road network reconstruction to this state of the art as
they may be applied for streets.

1.7.2 A classification of road network reconstruction methods

In this section we propose three classification of street network reconstruction methods:
by targeted road network model complexity, by Input type and by road type.

3 www.bentley.com/

4 www.autodesk.com/

34

www.bentley.com/
www.autodesk.com/

1.7.2.1 Classification by targeted road network model complexity

We propose a first ordering of related article by the type of road network they output.

flat road network Some methods are suited to design flat road network (Apple-
gate, Laycock, and Day, 2011; Galin et al., 2010; McCrae and Singh, 2009b; Merrell and
Manocha, 2011). These roads may adapt to terrain geometry and/or constraint (lake,
slope, forbidden area), modelling if necessary bridges, tunnel, over passes, etc.

hierarchical road network Yet road network is intrinsically hierarchical (mo-
torway, primary way, etc.), procedural methods are particularly adapted for this. For
instance, (Chen et al., 2008; Galin et al., 2011; Lipp et al., 2011; Parish and Müller,
2001; Yang et al., 2013) use multi scale methods, but usually only consider the graphical
aspect.

road network with traffic information Lastly methods can output a com-
plete road network with full navigation attributes for traffic simulation and/or visuali-
sation (Despine and Baillard, 2011; Wilkie et al., 2012). These methods are more focused
on filtering, correcting errors, constructing a multi-layer data model (global topological
network, lane network for traffic, geometry+texture for visualisation).

1.7.2.2 Classification by Input type

Methods about street network reconstruction can also be ordered given their data input
type.

First some methods directly reconstruct road network using results from sensing,
such as aerial Lidar (Wang and Weng, 2013), aerial image and radar (Chu He et al.,
2013), GPS traces (Ahmed et al., 2014; Kuntzsch, Sester, and Brenner, 2015), or even
mobile mapping (Mueller et al., 2011).

(Merrell and Manocha, 2011) is example-based (a given model is analysed, then ex-
trapolated to bigger model). A template also plays a role in (Parish and Müller, 2001)
to determine the global pattern of road configuration (e.g. dominant grid-pattern as
Manhattan, or dominant radial pattern as Paris). Similarly, templates are used for high
level road network configuration in (Yang et al., 2013), but more importantly to design
minor roads (indirectly).

The principal weakness of procedural generation is control (See Section 1.4.2). Thus
many methods try to deal with this by providing interfaces. In (Applegate, Laycock,
and Day, 2011; McCrae and Singh, 2009b) user directly sketches road path in 2D and
a 3D clothoid is fitted to the correct elevation and the land is properly dug. In (Lipp
et al., 2011) a user directly edits the network graph with advanced operations (copy-
past, insertion, rotation, translation) that preserve the graph properties. (Yang et al.,
2013) propose some control via constraint layers (e.g. a lake surface, or a given type of
organisation for an area).

Similarly, many methods use constraints as input. Typically mechanisms permit to
define area where road network is constrained, for instance in parks and/or river. (Chen
et al., 2008; Lipp et al., 2011; Parish and Müller, 2001).

It is different for (Galin et al., 2010, 2011) where the constraints system is at the hearth
of the method. In these articles, custom cost functions, special constrains (park, highway

35

without intersection) and a specialised solving system allow the system to generate an
optimal path for the road taking into account the geometry and the nature of the terrain
(constructing bridges or tunnels along the way).

Input data can be even more abstract as in (Despine and Baillard, 2011; Wilkie et al.,
2012), where they use polylines with attributes. The challenges are then as much to filter
and correct input as to use methods to generate a complete road network data suitable
for traffic simulation.

1.7.2.3 Classification by geometry representation of roads

We can also classify the methods for street network reconstruction by the way they
model the road surface.

The clothoid is a popular way to model road. This is due to the fact that clothoids
are mathematical curves along which curvature varies linearly, thus conducting to a
pleasant acceleration while driving. Dut to this property, clothoids have been used by
civil engineer for a long time to construct actual roads. Clothoid can be extended to
piece-wise clothoid or super-clothoid (Bertails-Descoubes, 2012). In urban environment,
acceleration constraints are often less important that historical heritage or global city
layout, thus the model iseems to be less used.

Another popular parametric model is based on arcs (circular arc: (Wilkie et al., 2012),
parabolic arcs: (Despine and Baillard, 2011), or just polylines: (Parish and Müller, 2001)).
See (Wilkie et al., 2012, pages 2-3) for more geometric primitives for road modelling.

1.7.2.4 Other methods that could be applied to road network reconstruction

Some methods are adapted to model 3D network like a road network but where tested
on other fields.

For instance (Merrell and Manocha, 2011) is a very general procedural modelling
method that analyse an input shape (geometric constraint) in order to create a new
bigger procedural model, respecting some user defined constraints. In a different di-
rection, (Krecklau and Kobbelt, 2011) propose a custom grammar adapted to intercon-
nected structures. By defining potential attachment points, and geometrical queries able
to find potential connections, there grammar allows to model different kind of intercon-
nections. This may be naturally extended to road network modelling, taking advantage
of the connectivity that defines a road network.

1.7.3 Conclusion

The street network is essential for urban reconstruction, as it defines many aspects of
the city, and is paramount in the way streets are used. Even more important, the street
network is a structuring element for a city, similarly to how the street axis is structuring
for street. This indicates that an urban model could be based upon the street network.

Most methods focus on road network, few consider urban environment, and no
method reconstruct a real street network, including pedestrian network, and vehicle
network. In the same spirit, not all methods produce a hierarchical network, even fewer
with geometry and traffic information.

The difficulty seems to be coming from the fact that a streets network is a graph em-
bedded in 3D, which makes it much more abstract than the sensing information, hence

36

the complexity. In particular, the intersections, bridges, tunnel, fly-over are supplemen-
tary difficulties.

Because o this complexity, many methods have to rely on user inputs. This indicates
that having an interactive editing capabilities of the street network is important and
necessary.

Some aspects of street network are impossible to determine without street features.
For instance the number of lanes has to be inferred from markings, the connectivity of
the network from traffic lights and traffic signs, etc. This seems to indicate that a street
network reconstruction has to be done at two scales: at the network scale and at the
street scale.

1.8 urban vegetation reconstruction

In this section, we introduce why reconstructing urban vegetation is an important part
of urban modelling, and which challenges it creates. We then discuss vegetation recon-
struction and the various strategies and scale at which it can be done, then we propose
three classifications of vegetation reconstruction methods.

1.8.1 Introduction

1.8.1.1 Why reconstruct vegetation in urban area

vegetation plays an important role for city The vegetation has been pri-
mordial for Mankind for a long time. Forests occupy a large part of land surface (30%
in France). It is then not a surprise that the vegetation is very common and plays a very
important role in cities.

The vegetation in cities has a significant influence on noise propagation, air quality
and temperature, water cycle, and also has a significant impact on human social be-
haviour. Each of these aspects covers a vital part of urban planning, be it for comfort
(temperature, air quality, human behaviour), or for technical management advantages
(water cycle, noise, wind).

vegetation play an important part for city modelling In a pure 3D re-
construction, the vegetation is important for realism and because it is geometrically so
different from its surrounding (a sparse organic spherical form, as opposed to the lo-
cally planar and compact rectangular form of buildings or streets). As such, methods
devised for buildings reconstruction are usually sub-optimal at best for tree modelling.
Because trees are large and recognisable, they alter much the perception of a street.

vegetation is very present in city As a numerical example, about 5% of Paris
surface is dedicated to parks, that is not taking into account the two small forest that
are officially within Paris (bois de Vincenne and Bois de Boulogne). The number of trees
in streets is above 250 000 in Paris. This means that in average there are trees every few
dozen meters in Paris streets.

vegetation reconstruction is useful for other methods Even when re-
construction of vegetation is not explicitly wanted, it can be of great help to have a

37

vegetation model (possibly implicit) for reconstructing other objects occluded by vege-
tation. Another important use of vegetation is for landmark maps. In such context the
large visual space a tree occupies is precious because it is easily recognised.(See (So-
heilian et al., 2013) for a state of the art of landmark based localisation, and (Brenner,
2010) for a localisation using exclusively trees).

1.8.1.2 Challenges in urban vegetation reconstruction

Reconstructing the vegetation in an urban environment is challenging for several rea-
sons, some due to the nature of the vegetation (multiscale, ecosystem), some more tech-
nical (sensing data precision and completeness, scaling).

vegetation is a multi-scale complex ecosystem Vegetation is often a whole
ecosystem, with several species living together. Like many living organisms, plants ex-
hibit a fascinating multi-scale nature with fractal-like properties.

Therefore one must define up to which scale the reconstruction process should stop.
To the best of our knowledge the current state of the art for trees is at the branch

scale, with reconstructed trees having a similar leaf organisation as the model (Pirk et
al., 2012), but not an exact leaf to leaf reconstruction. However a recent work on small
plants suggests a future move toward the leaf scale (Li et al., 2013). Concerning the
vegetation reconstruction, most of the works reconstruct the vegetation in the form of a
distribution of species.

the large number and scaling challenge The vegetation uses large amount
of city surface, and in streets each tree may occupy a large volume. Moreover, the scaling
problem is evident when considering that each tree may have hundred of branches, and
there are hundred of thousands of trees.

modelling trees at city scale At the city scale, a specific modelling strategy
may be needed for trees, as any use of the tree models must introduce a reasonable
hardware requirement. To this end, a solution is to have several models for the same
tree with different level of details.

Trees have a fractal nature, which can be leveraged to allow the efficient modelling
of large areas with many trees. A less detailed model can be rendered when the tree
is far from the viewer, while the more precise model is showed when the tree is close.
(Livny et al., 2011) produce different levels of details for every model of trees. Similarly,
the popular XFrog5 can also be used to produce levels of details. When the trees are re-
grouped, one could also rely on tailored methods to allow realistic and fast visualisation
(e.g. (Bruneton and Neyret, 2012)).

vegetation is hard to sense Another point is that trees are by nature occlud-
ing elements from an aerial point of view. This stems from the tendency of the trees
to capture sun light coming from above, hence they limiting the picturing. For this rea-
son, removing the trees for correct façade reconstruction is a very classical problem in
terrestrial laser and image processing.

5 http://xfrog.com

38

http://xfrog.com

Tree reconstruction is also challenging because the sensors (image, Lidar) give infor-
mation about surfaces, which is fine for a building, but may fail to pass the tree crown to
get the branching structure (full wave or hyperspectral Lidar somehow mitigates this).

1.8.2 Vegetation reconstruction

A global state of the art on vegetation modelling and reconstruction is out of scope of
this work; therefore we will only give an overview of vegetation modelling and focus
on its use in urban context. We also included some method for tree modelling, as these
could potentially be used for tree reconstruction using an Inverse Procedural Modelling
paradigm.

In this section, we briefly introduce the strategies for vegetation reconstrution, then
consider the different scales to which the vegetation can be reconstructed. We then
propose three classifications of methods for vegetation reconstruction.

1.8.2.1 Strategies for vegetation reconstruction

focussed on trees Vegetation reconstruction usually focuses on tree reconstruc-
tion, even though some methods output an ecosystem type rather than a tree species
(Gong, 2002). Orthogonally new Lidar technologies allow accessing more tree proper-
ties. For instance (Hakala et al., 2012; Wallace, Nichol, and Woodhouse, 2012) recover
tree properties and canopy properties using multi spectrum Lidar technology.

a more model oriented reconstruction The strategies for vegetation recon-
struction are slightly different from typical strategies for man-made objects reconstruc-
tion (including buildings and façades). This is due to the fact that tree species evolve
slowly and have been known for centuries, along with key properties of each species.
Moreover, urban tree species are much more limited (order of magnitude : 100) than
potential street furniture types for instance (order of magnitude : 10000).

For these reasons, and because of the multi-scale problem, top down approaches
(model oriented) seems to be much more popular than bottom up approach (data ori-
ented). That is, most model have strong hypothesis and model which are fitted to sens-
ing, rather than directly using sensing to reconstruct trees from scratch.

This is quite different from building reconstruction, where building styles can be
mixed, and each building does not necessarily fully enforces a style.

tree reconstruction or tree growing There are two main approaches to re-
construct the vegetation in cities: an analytical approach, where we try to retrieve direct
morphological information about the tree to reconstruct it as is, and a more synthetic
approach where we try to retrieve general information about the tree (species, height,
crown seize), then synthesize it using growth model and known parameters of the
species.

1.8.2.2 Choosing a scale for reconstruction

Vegetation is multiscale, therefore, before reconstructing, the targeted level of detail has
to be chosen.

39

forest Forest management is a century old tradition. Therefore forest models have
been developed, such as group of trees species repartition, possibly with their age,
height, crown size, etc. These are used for forest exploitation, land planning and so.
Such models are commonly obtained by field surveys, along with information obtained
from remote sensing technologies (aerial images, Lidar) (Gong, 2002). For example (Watt
et al., 2013) use full-wave ground Lidar to estimate two exploitation-related characteris-
tics of a patch of forest.

patch of trees It is also common to model homogeneous patches of ecosystem,
with a larger scope than tree alone, sometimes involving plants modelling. This allows
height/species/spatial statistical distribution analysis.

individual tree Tree models have been actively researched, including tree growth
characteristics and species specificities. Procedural modelling methods are especially
popular.

individual plant Plant modelling is also an age old tradition (Van Gogh, 1888),
with many applications in design and entertainment. More recently plant reconstruction
has also been tackled (Li et al., 2013).

1.8.3 Classifications of urban vegetation reconstruction methods

We propose three classification of methods related to vegetation reconstruction.

1.8.3.1 Classification by input data type

We classify the vegetation reconstruction method based on the input they use, from
dedicated Lidar to more generic remote sensing, to interactive feedback (human inter-
action).

Input data for tree modeling can be point clouds from Lidar tailored acquisition (Livny
et al., 2011; Preuksakarn et al., 2010) or general acquisition (Livny et al., 2010), as well
as point clouds from dense matching (Li et al., 2013). Some methods also use aerial im-
ages (Iovan et al., 2013), or semantic maps (Beneš et al., 2011). Some methods are based
on constraints on the tree growth (Pirk et al., 2012; Runions, Lane, and Prusinkiewicz,
2007; Talton et al., 2011). Lastly, many methods rely on user feedback but may be au-
tomated by using remote sensing data inputs (Krecklau, Manthei, and Kobbelt, 2012;
Krecklau, Pavic, and Kobbelt, 2010; Lintermann and Deussen, 1999).

1.8.3.2 Classification by modelling method

We propose another classification of tree reconstruction following the modelling method
they use, from procedural methods to L system to generic grammars.

Individual tree modeling is a mature research interest. It has been historically focused
on procedural methods. Mature interactive commercial solutions such as XFrog (Linter-
mann and Deussen, 1999) exist and are widespread. In most cases the trees are modelled
procedurally, possibly using parametrised shapes like generalized cylinders (Bloomen-
thal, 1985; Li et al., 2013; Pirk et al., 2012; Preuksakarn et al., 2010; Xfrog, 2014).

40

Explicit grammar systems are also popular, in particular the L-System grammar (Deussen
et al., 1998). More general grammars have been extended to produce trees along with
more rectangular objects (Krecklau, Manthei, and Kobbelt, 2012; Krecklau, Pavic, and
Kobbelt, 2010). See Section 1.4.2 for more details about procedural modelling.

1.8.3.3 Classification by Reconstruction strategy

The last classification of the reconstruction methods we propose is by reconstruction
strategy, from direct from data, to analyse-synthesis to inverse procedural modelling to
whole urban ecosystem design.

Reconstruction strategies can be straightforward (Livny et al., 2010; Preuksakarn et
al., 2010) from direct remote sensing data. It requires however high quality data and has
not been experimented on city scale. However the reconstructed trees can have similar
look and properties as the real one up to the level of group of leafs (Livny et al., 2011),
or even the leaf level (Li et al., 2013).

Other methods focus on an analysis-synthesis approach. The goal is to retrieve a
number of properties of the tree (species, height), along with constraints introduced by
its surrounding, then use a realistic growth method to obtain a tree model hopefully
close to the real tree. (Runions, Lane, and Prusinkiewicz, 2007) use a space constraint
approach to model the competition for space, while (Talton et al., 2011) constrain the
tree leaf coverage by a bitmask, and (Pirk et al., 2012) add solid object constraints as
well as shadow influence. (Iovan et al., 2013) use images to detect and classify urban
trees, then use the extracted parameters as well as space constraints to grow plausible
urban trees.

(Beneš et al., 2011) are even more generic and introduce man-related constraints on a
city area: in some part of the city vegetation growth is strictly controlled (trees species
and spatial repartition), in other the control is less strict. Trees are also spreading over
time. The system is then evolved over a period of time to generate 3D space + time tree
repartition and visualisation.

1.8.4 Conclusion for urban vegetation reconstruction

Vegetation is important for city modelling, both by its sheer presence, the roles it plays
(temperature, pollution, noise, water, human perception, etc.), and its interest for urban
modelling (street morphology, occlusion, landmark for registration).
Yet, the vegetation is hard to reconstruct (complexity, multi-scale, volume), and most
methods focus on trees.

Because vegetation exhibit a regular and hierarchical nature, procedural modelling
methods seem to be very indicated.

We note that the vegetation strongly depends on other urban features. Plant species
will be influenced by the typology of area (residential, industrial, etc.), plant growing
will be influenced by buildings, and realistic trees will most likely be pruned, therefore
being influenced by road surface, and some road feature (road surface, traffic light,
traffic sign).

41

1.9 urban features

1.9.1 introduction to urban feature reconstruction

We consider only man-made urban feature reconstruction (See Section 1.8 on page 37

for vegetation). We found few methods dedicated to urban feature reconstruction (street
furniture, markings, etc.). Therefore we also integrate generic methods for man-made
object reconstruction in this state of the art. We consider that these methods could also
be applied on street objects.

Urban features comprises urban furniture (e.g. barrier), markings (e.g. lane separator
markings), but also features of the street such as local height of sidewalk limit, etc.

1.9.1.1 Importance of street features for city

A city contains large amounts of street features, such a street furnitures, markings, etc.
These are important by their number (over 1 million in Paris), by their diversity (over
13000 references on a site like (ArchiExpo, 2014)), and above all by the functions they ful-
fil (information, security, decoration, etc.). Street furnitures are seldom randomly placed
and chosen, but instead are essential tools for the complex social interactions that a city
host. Figure 16 on page 15 shows well how position and relations are important for
urban features.

Virtually any human behaviour in a city relies on street objects, essentially because
street objects regulate transport (information, rules, isolation, whatever the modality)
and play a role into managing the city (waste, water collection).

1.9.1.2 Importance of urban feature modelling

Modelling urban feature is then essential for traffic simulation, and also for realism
(some piece of street furniture have achieved a landmark status, like Curitiba bus sta-
tions6 in Brazil). Street furnitures can also be extracted to form a landmark map, thus
assisting in the georeferencing of a vehicle or user with basic sensors ((Hofmann and
Brenner, 2009)). Street feature also strongly separate urban space (between sidewalk and
roadway for instance).

1.9.1.3 Challenges for urban feature reconstruction

Reconstructing urban features is difficult because of their relatively small size, essen-
tially disabling any air sensing, and making it difficult to have precise and complete
data (e.g., only a part of a parking meter would be on a street view or on a Lidar ac-
quisition). The geometrical complexity may be high or deceptively simple (e.g. traffic
signs are almost pure 2D). The material used can also complicate data sensing (glass,
shiny metal, reflective paint). However such man-made objects typically expose strong
regularities, symmetries, as well as a dominant plan-based structure which can be used
by methods to improve reconstruction.

6 https://en.wikipedia.org/wiki/Rede_Integrada_de_Transporte

42

https://en.wikipedia.org/wiki/Rede_Integrada_de_Transporte

1.9.1.4 Reconstructing urban features

As always in a reconstruction problem, we have to define up to which scale the ob-
jects are to be reconstructed. For instance when reconstructing a street bench, shall we
simply reconstruct the bench type and orientation, or shall we reconstruct it as several
plans with texture, or shall we reconstruct each plank composing it, or shall we even
reconstruct how the plank were bolted together, etc.

It seems that this level of reconstruction is dictated by the quantity and precision of
input data, as well as how much the method is model driven. This problem is especially
pregnant in streets, were the most precise data (order of magnitude of 0.01 m) are
limitating, as well as the large occlusions.

Of course this level of reconstruction also depends on the intended applications, a
proper generalisation is often necessary for performance reasons (trying to render the
nails in the hundred of thousands of Paris street furnitures would most likely fail and
be useless).

1.9.1.5 Input types

Traditionally street feature reconstruction methods use street lidar and images (Golovin-
skiy, Kim, and Funkhouser, 2009; Soheilian et al., 2013). In the more general object recon-
struction field, other methods use noisy point cloud from images or color and depths
devices (RGBD camera, like the Kinect) ((Stuckler, Biresev, and Behnke, 2012)). Even far-
ther, some methods directly use 3D models ((Shapira et al., 2009)) to analyse structure
and match it against a database. Some methods inputs are even more abstract, like a
set of relations among objects ((Yeh et al., 2012)), or interactive user inputs ((Gal et al.,
2009)).

1.9.1.6 Hypothesis on street features

Street objects will most likely be severely occluded during sensing. Therefore, making
hypothesis is necessary. For many methods the hypothesis are to exploit regularity of
man made object by using combination of simple geometric primitives (plane, sphere,
cone, cylinder ...) with strong common properties (e.g planes will tend to be parallel or
orthogonal, axes of primitives will tend to be collinear), and symmetries.

(Lau et al., 2011; Umetani, Igarashi, and Mitra, 2012) add another level of constraint
by stating that the object can be fabricated (e.g joins between parts must have adequate
resistance and the global object must be stable). On another level (Grzesiak-Kopec and
Ogorzalek, 2013; Yeh et al., 2012) use relationships between objects to define constraints
that the reconstructed objects must satisfy.

1.9.1.7 Strategies for urban feature reconstruction

Because precise street feature reconstruction is quite new and connects to many research
communities, we include methods with very different inputs which could be used for
street feature reconstruction, even if not explicitly stated by the corresponding articles.

Some methods reconstruct directly street features (low level reconstruction), but the
sensing data is sparse and often of relative low quality considering the scale of the
considered objects. As it is often the case a way to simplify a problem too wide is to

43

add constraints and knowledge about it. Some of the approach therefore add strong
hypothesis about the object to reconstruct (Section 1.9.2.1).

Because reconstructing directly street feature may not be feasible, some approaches
turn to classical segmentation/classification methods (Section 1.9.2.2).

This allows to decompose the reconstruction problem: First find which street object is
where, possibly determining some of its properties, such as its orientation. Second, find
or generate a similar 3D model and populate the reconstructed street with it.

However, finding the exact corresponding model from incomplete data for a street
feature may be challenging (see introduction of this section). Therefore other methods
are based on object structure analysis, decomposing it into parts. The reconstruction
is then facilitated by the possibility to switch parts of the object as well as complete
missing parts by a similar one (Section 1.9.2.3).

Another more radical approach, which we could call extreme classification, relies on
an extensive catalogue of objects. The reconstruction process amount then to find the
model in the catalogue that is the closest to the sensed object, then use the catalogue
model as the reconstruction.

1.9.2 State of the art

1.9.2.1 Low level reconstruction

intro There is a great body of literature about generic surface reconstruction, bet it
flat or curved. A naive approach could be to use these methods to directly reconstruct
the street objects. However due to the massive amount of occlusion (a street feature is
commonly occluded halfway), strong hypothesis about the object nature are necessary.
Also, these methods do not provide semantic information about the reconstructed object
(e.g a reconstructed poll wont be identified as a poll but as a cylinder).

direct surface reconstruction (Bessmeltsev et al., 2012) propose a method
to directly generate surfaces from 3D lines as input. The extreme data sparsity is simi-
lar to what may be available in street feature reconstruction. The authors interestingly
make an hypothesis about what type of surface could be expected from a man-designed
object.

Using a noisy point cloud (Guillemot, Almansa, and Boubekeur, 2012) make hypoth-
esis on repetitions in the data to reconstruct a better surface. Their method defines local
patches as small set of points. When reconstructing the surface of a patch they use the
local information as well as informations of similar looking patch elsewhere in the point
cloud.

simple geometric primitives With dense noisy point clouds of man made ob-
jects, (Li et al., 2011) assume that an object consists of regular geometric primitives
globally aligned. So, they iteratively detect the primitives with the associated points
that support it. Then they extract and enforce global relations among these primitives
and remove the associated points from point cloud, before iterating on the reduced
point cloud. ((Labatut, Pons, and Keriven, 2009; Lafarge et al., 2013)) propose other
primitive-based approaches applied to buildings which may be transposed to street fea-
tures reconstruction. The goal of the two works is to extract a mixture of geometric

44

primitives and free-form mesh from noisy stereo-based point clouds. One relies on a
binary space partition tree and a RANSAC detection method while the other uses a
sophisticated energy-based Jump-Diffusion process.

shape grammars The shape grammars like the one defined by (Krecklau and
Kobbelt, 2011) generalise the simple geometric primitives. They are by construction
well adapted to represent man-made objects (and even vegetation (Section1.8) Such
grammars have a great generative power, but one has to resolve an inverse problem to
use them for reconstruction.

This problem is solved via the Inverse procedural Modeling methodology (See Section
1.4.3).

1.9.2.2 Object reconstruction

introduction Given the occlusion in data, it may not be possible or satisfactory to
reconstruct objects directly. Therefore many methods chose a two steps approach, where
the first step detects and classifies objects in the input data. The second step can then be
adapted to each object type. For each object type the options are either to reconstruct it
directly using tailored methods or to populate the street with a model of this object.

Compared to low level reconstruction Section 1.9.2.1 , these methods can be fitted to
each objects, and the inserted models are cleaner than model reconstructed from scratch.
A complete example of this workflow is given by (Cornelis et al., 2008). They use video
streams from a street vehicle to reconstruct a 3D map of a city. Along the way they
detect cars on the side of the road (3D bounding boxes). Ultimately, they insert into
the 3D city model clean 3D car models in these bounding boxes. This greatly improves
accuracy of reconstruction and realism of city model.

Classification is a transverse problem in many computer science fields. Street objects
classification must be adapted to challenging input data (scale, occlusion, sparse data).
Also, as stated in the introduction of this section, the number and types of street fea-
tures is important. This proves to be a major obstacle for machine learning methods
which rely on training data. In these training data some uncommon objects may be sta-
tistically overwhelmed by more common (and similar) objects (see (Golovinskiy, Kim,
and Funkhouser, 2009)).

Another set of difficulties is added by the second step, which imposes not only to
classify objects, but also to measure parameters to correctly insert models (orientation,
state, potentially more parameters for parametrised objects).

We order the related methods by the detection / segmentation / classification task,
the feature extraction task and the matching task. Such order is only practical because
many methods mix these categories. In classification literature the word feature is often
used instead of descriptor. We choose here to use the word descriptor to not introduce
confusion with the topic (Urban/street feature reconstruction).

detection, segmentation, classification In an influential article, (Golovin-
skiy, Kim, and Funkhouser, 2009) use street Lidar input to demonstrate the full locali-
sation/segmentation/classification pipeline. They test multiple classifiers methods and
descriptors, and perform an experiment on large scale real world data. Their method
detects around twenty different object types.

45

(Shao et al., 2012) also illustrate a full pipeline but not in a street object context. They
use interactively segmented colors and depth images (RGBD). The extracted objects are
then matched against a database of 3D models. These models are inserted using an
optimisation process to determinate their size and position.

In order to tackle the scale problem, (Yu et al., 2011b) propose a segmentation of a
massive city point cloud into ground and façades, and potential objects. The work of
(Lippow, Kaelbling, and Lozano-Perez, 2008) adapt to the many type of objects to detect
(in the computer vision field). Their method learns an AND/OR probabilistic tree for
a category of object in annotated images. Such trees are then used for detection, not of
one object, but of the category of this object.

Some usages do not necessitate accurate object reconstruction. For instance (Hofmann
and Brenner, 2009; Soheilian et al., 2013) detect poles (respectively streets signs and
markings) based on simple geometric model in order to create a landmark map which
can then be used to cheaply localise other data.

Timofte and Van Gool, 2011 focus on manhole detetection and reconstruction using a
mix of 2D and 3D methods for image processing.

Similarly, building in real time such localisation map with 3D semantic voxels (Stuck-
ler, Biresev, and Behnke, 2012) significantly improves the registration of their colors +
depth images data (RGBD). These voxel maps may also be used for more abstract task
like human-robot communication.

descriptor extraction The task of classification is often very sensitive to the
choice of descriptors of an object. A good descriptor should reduce the amount of data
necessary to describe the objects, but not reduce the information much. Furthermore,
the descriptors must be chosen to be differentiating between object types. A good choice
of descriptors increases recognition rate and reduces errors.

We refer to the appropriate articles for the classical descriptors used by (Cornelis et
al., 2008; Shao et al., 2012; Soheilian et al., 2013; Stuckler, Biresev, and Behnke, 2012) (Im-
plicit Shape Model, simple local RGBD descriptors, many descriptors selected through
Random Forest, image and contour-based).

Concerning the shape-matching methods, the choice of descriptor is of the essence.
The method performance, speed, scaling and accuracy strongly rely on it. (Papadakis
et al., 2007) use descriptors based on spherical projection, (Shao et al., 2011) use depth
feature as well as geometric primitives, (Eitz et al., 2012) use adapted Gabor filters.

For noisy point cloud data, The work of (Kalogerakis et al., 2009) who extract lines of
curvature may also be used as a descriptor for street feature. According to the authors,
this curvature-based descriptor is specific to man made objects.

(Golovinskiy, Kim, and Funkhouser, 2009) outline that contextual (i.e. relational) de-
scriptors are of great use for object classification.

In that way, (Vanegas, Bloch, and Inglada, 2013) propose a fuzzy relational descriptor
that may be adapted to noisy and incomplete data. Using aerial images, the proposed
method extracts fuzzy spatial relations between objects like alignment and parallelism.

A very complete generalisation of these kinds of relationships is given in (Mitra et al.,
2012). This state of the art provides numerous useful reflections about the presence of
total or partial symmetry in man made objects. For example, (Xu et al., 2012) propose a
method to compute partial symmetries at multiple scales. Such relations could be used
as high level descriptors.

46

model matching To the best of our knowledge no matching system against a 3D
model database has yet been applied to street feature reconstruction. However such
systems have been developed in the field of model matching. These methods may be
transposed to the field of street feature reconstruction, as demonstrated by (Shao et al.,
2012) for indoor objects. In fact, most of the presented shape matching methods use 2D
sketch produced by a user. Nevertheless such an input could be conceptually replaced
by the sensing data of street feature.

The pipeline of (Eitz et al., 2012; Papadakis et al., 2007; Shao et al., 2011; Shao et al.,
2012) is similar and can be decomposed into an off-line data base creation step, and an
on-line query step. First the methods extract descriptors for thousand of 3D objects and
constitute a database associating object model with their descriptors. During the on-line
step, an user input of a 2D drawing is analysed, the same descriptors are computed and
the methods search the 3D models in the database that have the closest descriptors to
the user input. The result is a list of matching shapes from database, with a matching
score.

Howsoever these methods differ by the choice of descriptors, the validation ((Eitz et
al., 2012) analyse the best way to perform dimension reduction (i.e. translating optimally
a 3D model into 2D views)), and the reconstruction step (only performed by (Shao et al.,
2012))).

(Jain et al., 2012) also perform shape matching, but in a fundamentally different way.
The goal of the author is to automatically transfer materials (i.e. texture, colours and
lightning) to a 3D model by matching its different parts with a 3D model database. The
authors also follow the two steps that are the constitution of a database of 3D mod-
els, and then a query step. The originality is that the database is a graph of parts of
models that is automatically computed based on similarities of parts (spatial, geometri-
cal, material-wise). Querying the database then amounts to compute the graph for the
queried 3D model, then add this graph to the database graph and use a loopy belief
propagation algorithm to perform inference.

Interestingly such method introduces the use of structural information about objects.
This information is pivotal to estimate the material of each parts.

1.9.2.3 Object structure analysis

Man made objects are constituted of parts having (potentially hierarchical) relations
(symmetry, fixed angles, etc). This relations describe the object structure.

intro Object structure analysis may be of great help in street feature reconstruction,
and this at two scales. At the part scale (decomposing an object into structured parts,
e.g. a street light may be a cylinder (pole) and a sphere (light bubble)), and at the multi
object scale (decomposing multi objects into structured objects e.g. a dashed marking
line may be described as a repetition of aligned small pieces of plain lines.)

Such structure analysis may be useful at the object scale, because analysing the redun-
dancy, structure and organisation of an object allows to extract higher level information
about it. It can then be used to compensate noisy or incomplete data ((Shen et al., 2012)
do this in a reverse way)(e.g sensing only the front part of a pole may be sufficient if we
have the information that poles follow a rotational symmetry).

Moreover, a strong structural information and presence of symmetries (Mitra et al.,
2012) is typical of man-made objects and may be used as descriptors for classification/-

47

matching (Shapira et al., 2009). Alternatively, such regularities allow for compression
and Levels Of Detail ((Jang et al., 2006)). This also gives an information orthogonal
to pure geometric comparison: it allows to measure how similar the structure of two
objects is, rather than their geometry. For instance, a motor bike and a bycicle are struc-
turally similar, but may have very different geometries.

Secondly, some methods that leverage structure of object may be generalised at the
multi-object scale, i.e. finding and using the structural relations between objects, that
are known to structure the layout of objects in a street (See Section 1.6).

how to detect symmetries Analysing the structure of a 3D object is complex
because it involves unsupervised segmentation as well as a relation extraction between
parts.

Among the relations used in the methods (generalised), similarities are popular.
A typical approximate symmetry pipeline is given in (Mitra, Guibas, and Pauly, 2006),

where the input is a 3D model (which could also be a dense 3D pointcloud). In a first
step they get random sample points from the surface, and perform pairwise symmetry
parameters estimation by taking into account a patch around the points.
Then, in the space of the found pairwise-transformation, a clustering is performed to
extract dominant transformations. The supports for this transformation are then com-
puted by region growing from the sampled points.

(Xu et al., 2012) improve this process by adopting a multi-scale classification.
The authors of (Li et al., 2011) choose another direction and perform the equivalent

of relation clustering with a custom graph simplifying algorithm.
Whereas partial symmetries are covered in (Mitra et al., 2012) as a generalised case

of symmetries, (Vanegas, Bloch, and Inglada, 2013) incorporate them in the fuzzy logic
theory. Exploiting ad-hoc fuzzy operators, they propose a way to compute fuzzy paral-
lelism, fuzzy alignment, etc.

The work of (Cullen and O’Sullivan, 2011) generalise more the symmetry concept by
constructing a tree of symmetry compositions representing a pattern. This method is
very close to a procedural expression. After having computed such trees for two pat-
terns, they can be merged to create a hybrid pattern that mixes the two input patterns.

Other methods use touching relation to extract structure.
(Shapira et al., 2009) use a custom descriptor based on local diameter of the object.

They use it to iteratively fit Gaussian mixtures in order to find parts, then build a graph
representing the relations between parts. They can then perform parts matching taking
into account the context of the parts to match.

(Jain et al., 2012) extract structure by contact and symmetry analysis, and use it for
matching or for generation of hybrid models by genetic evolution.

(Lau et al., 2011) retrieve an even more complex structure as they perform inverse
procedural modelling (See Section 1.4.3). They analyse contacts between parts of an
input 3D model, parsing it into a graph of connections. Then they use a custom grammar
to express this graph by inverse procedural modelling. Using the grammar with the
extracted rules and parameters generate a fabricatable 3D model.

For completeness sake we mention that some methods consider the decomposition
of object into parts as a preprocess step that has already been performed ((Chaudhuri
et al., 2011; Shen et al., 2012; Xu et al., 2012)).

48

using the structure At the object scale having such a structural description of
objects allow (Shen et al., 2012) to match parts of 3D model on noisy and sparse RGBD
point cloud. The authors of (Chaudhuri et al., 2011) tackle another problem by suggest-
ing parts when building a 3D model from scratch. Yet their method may be used to
complete occlusions resulting from street feature sensing.

Expressing the object structure is not necessary if the goal is to respect symmetry
relations between parts of 3D models when editing (structure preserving editing). For
instance (Bokeloh et al., 2011; Bokeloh et al., 2012; Gal et al., 2009) analyse a 3D model
to detect symmetries (respectively more general patterns), which produce a set of con-
straints that are linearised, allowing to edit the shape interactively while computing
a solution respecting the constraints by propagating the changes and minimising an
energy locally (respectively minimising an energy).

At the multiple objects scale, (Krecklau and Kobbelt, 2011) propose an extension to
their grammar that add the possibility to model interconnected structures, which are
common in street. However using such grammar would require to extract relations and
patterns amongst street objects. In the same field (Grzesiak-Kopec and Ogorzalek, 2013)
adapt a shape grammar to resolve a layout problem.

Other methods uses these high level data that model the relationship between ob-
jects. Still, in all the article we present these relational data are user input and are not
extracted (with the exception of (Fisher et al., 2012)).

Putting in leverage these relations allows to use powerful optimisation methods to
generate a good placement for furniture in a room in ((Yu et al., 2011a)). One limitation
is that the number of objects is fixed.

(Yeh et al., 2012) remove this restriction by proposing a similar method that uses
another advanced optimisation framework to find conjointly the number of objects, as
well as their position and orientation.

Those two methods could be used in street object reconstruction by resolving an
inverse problem : given noisy observations and relations, find an optimal objects recon-
struction.

Interestingly, (Fisher et al., 2012) directly extract relationships between objects from a
clean 3D indoor scene using Bayesian networks and Gaussian mixtures. In a further step
they generate a new scene with objects matched from database satisfying the extracted
relationships.

The relationship between street features is discussed in detail in the section 1.6.

1.9.3 Conclusion

Urban features are important (number, role). Urban features are strongly dependent
on context (a same white marking could have totally different meanings if it were on
the road surface or on the sidewalk). Reconstruction is difficult because data is sparse,
yet because the objects are man-made, many hypothesis can be made. When this is
not sufficient, user interaction is necessary. Many reconstruction strategies are possible,
from direct reconstruction, to model oriented reconstruction, to procedural modelling
and grammar, to use of catalogues of objects.

49

1.10 conclusion

In this chapter we tried to consider all aspects of urban modelling/reconstruction (street,
street network, vegetation, urban feature). Each one of this aspect has a dedicated con-
clusion (Sec. 1.6.6 on page 33,Sec. 1.7.3 on page 36,Sec. 1.8.4 on page 41, Sec. 1.9.3 on
the preceding page)

There are common elements for all these aspects of urban reconstruction. The first
element is that each aspect is important for urban reconstruction. We can not simply
reconstruct buildings to reconstruct a city, other aspects also have to be reconstructed.

The second element is that reconstruction is difficult for each aspect, the challenges
come from the complex nature of urban environnement and from the limitations of
available data.

The third element is that all the aspects of urban reconstruction seem to be linked.
Street network reconstruction require information about urban feature, which are influ-
enced by street morphology, which influence urban vegetation.

The last element is that many strategies are available to reconstruct each aspect, from
direct reconstruction to procedural modelling. (Inverse) Procedural modelling seems to
have potential to reconstruct all the aspects.

50

2
P C S : A P O I N T C L O U D S E RV E R T O M A N A G E P O I N T C L O U D S

Performing reconstruction implies to use observations of the objects to be reconstructed. In
our case, we have access to advanced street level data thanks to a mobile mapping system
(Paparoditis et al., 2012). Those data include many street view images and street Lidar files.
Lidar data are especially difficult to deal with, because they can be very large (Billions
of points), with multiple complex overlaps (the same object may be sensed at different
distances at different times depending on the vehicle trajectory, occlusion, etc.), and because
they contain low level information (points with few physical attributes).

We chose to integrate those points into a database server. The advantages are to have
all the relevant data (vector, raster, Lidar points) in the same place as the street modelling,
which allows to combine those data to exploit the Lidar point cloud. We also created in
base processing algorithm of Lidar Point cloud, such as urban feature detection, which are
therefore executed directly within the database (road marks detection, kerb detection, road
network reconstruction).

We propose in-base Levels Of Detail (LOD) construction and usage to parametrically
reduce the number of points. We also extract a dimensionality descriptor from our LOD
method, and demonstrate its interest by using it to perform classification. Due to size con-
siderations, those subjects are developed in an independent setting (Appendix A).

2.1 abstract . 53
2.2 Introduction . 54

2.2.1 Problems . 54

2.2.2 Related work . 55

2.2.3 Plan . 56

2.3 Methods . 58
2.3.1 Storing groups of points in a RDBMS 58

2.3.2 Loading . 60

2.3.3 Point Cloud and Context . 61

2.3.4 Point Cloud Filtering . 64

2.3.5 Exporting . 66

2.3.6 Processing Point Cloud with the Server 68

2.4 Results . 69
2.4.0 General System Test . 69

2.4.1 Storing groups of points in a RDBMS 70

2.4.2 Loading . 74

2.4.3 Point Clouds and Context . 75

2.4.4 Point Cloud Filtering . 82

2.4.5 Exporting . 82

2.4.6 Processing Point Cloud with the Server 83

2.5 Discussion . 85
2.5.1 Storing groups of points in a RDBMS 85

2.5.2 Loading . 85

2.5.3 Point Cloud and Context . 86

2.5.4 Filtering point clouds . 86

2.5.5 Exporting . 87

2.5.6 Processing Point Cloud with the Server 87

51

2.5.7 Future work . 88

2.6 Conclusion . 88

52

LOAD
- server reads
- client sends STORE

- groups of points
- compressed

METADATA
- secure and rela�onal
- extended (trajectory, sources)
- generalisa�on/visualisa�on

FILTER
- indexes
- can use other GIS data

PROCESSING
- in-base easy prototyping
- classic out-of-base workflow

EXPORT
- server sends
- client reads
- point streaming
- point cloud files
 as a service

point cloud
files

RDBMS

Figure 28: Graphical Abstract : In-base point cloud management pipeline in the Point Cloud
Server (PCS).

2.1 abstract

In addition to the traditional Geographic Information System (GIS) data such as images
(rasters) and vectors, point cloud data has become more available. It is appreciated for its
precision and true three-Dimensional (3D) nature. However, managing point clouds can
be difficult due to scaling problems and specificities of this data type. Several methods
exist but are usually fairly specialised and solve only one aspect of the management
problem. In this work, we propose a complete and efficient point cloud management
system based on a database server that works on groups of points rather than individual
points. This system is specifically designed to solve all the needs of point cloud users:
fast loading, compressed storage, powerful filtering, easy data access and exporting,
and integrated processing. Moreover, the system fully integrates metadata (like sensor
position) and can conjointly use point clouds with other geospatial data, such as images,
vectors, topology and other point clouds. The system also offers in-base processing
for easy prototyping, parallel processing and scales well. Lastly, the system is built
on open source technologies and generic and common hardware; therefore it can be
easily extended and customised. We test the system will several billion points from
point clouds from Lidar (aerial and terrestrial) and stereo-vision. We demonstrate ∼400
million pts/h loading speed, transparent-for-user and greater than 2 to 4:1 compression
ratio, filtering in the approximately 50 ms range, and output of about a million pts/s,
along with classical processing, such as object detection.

53

2.2 introduction

The last decades have seen the rise of GIS data availability, in particular through the
open data movement. Along with the traditional image (raster) and vector data, point
clouds have recently gained increased availability (the site opentopography1 is a good
example) and usages (robotic, 3D, virtual reality). Sensors are increasingly cheap, pre-
cise, available, and the point cloud complements images naturally. Point clouds are un-
organized, high geometric precision, low feature level data, where images are organized,
low geometric precision, high feature level data, which makes point clouds dual-like to
images. However, due to their massive un-organized nature (no neighbourhood infor-
mation) and limited integration with other GIS data, the management of point clouds
still remains challenging. This makes point cloud data barely directly accessible to non-
expert users. Yet many fields would benefit from point clouds had they an easiest way
to use them.

2.2.1 Problems

Point clouds data sets are commonly in the TeraByte (TByte) range and have very dif-
ferent usages; therefore every aspect of their management is complex and has to scale.

Having such large data sets makes the compression an essential need. Not only is the
compression necessary, but it also has to maintain a fast read and write access, and be
transparent for the users. Indeed, we observe that today virtually all images and videos
are compressed; most users not noticing it at all.

Similarly, so much data cannot be duplicated and must be shared, following again a
broader trend in the Information Technology world. Sharing data necessarily introduces
concurrency issues (several users simultaneously reading/writing the same data).

Users usually need to access only a part of the data at once, thus efficiently extracting
(filtering) a subset is important. With many varying usages, the criterae for choosing the
subset may be volatile, and sometimes mixed.

Visualising something helps understanding it. In the case of multi-billion point clouds,
a Level Of Detail (LOD) strategy is necessary, because the data set cannot be displayed
in its entirety at once.

Features of point clouds can be very different depending on their source (Lidar, stere-
ovision, medical ...), regarding the number and type of attribute, the geometric precision
and noise, etc. Yet, point clouds usually are geospatial data, which makes them akin to
vectors and rasters from the Geographical Information System (GIS) world. Thus, point
clouds may be used conjointly to other data types, either directly or by converting point
clouds to images or vectors.

Lastly, point clouds are processed in many different ways suiting each users need.
These methods must be fast and easy to design, scale well, and be robust.

Another important problem is related to point cloud management. For various rea-
sons point clouds are often handled as sets of points. Yet, a point cloud (data set) is
much more than points, as it also includes metadata and other informations like sensor
geometry, etc. Managing those data sets is difficult; like knowing which data sets are
available and where. Because data sets are heterogeneous, managing extended meta-
data such as point cloud coverage, date of acquisition and so is also difficult, especially

1 www.opentopography.org

54

www.opentopography.org

without a standard data format. Treating point clouds as only points is especially prob-
lematic, as is illustrated by a very recent benchmark release2, which provides massive
and very useful hand-labelled point clouds, yet does not provide any meta data at all,
neither extended meta data nor contextual data.

In this chapter, we propose to use a point cloud server (PCS) to solve some of these
problems. The proposed server architecture provides perspective for metadata, scala-
bility, concurrency, standard interface, co-use with other GIS data, and fast design of
processing methods. We create an abstraction layer over points by dealing with groups
of points rather than individual points. This results in easy compression, filtering, LOD,
coverage, and efficient processing and conversion.

2.2.2 Related work

file system Historically, point clouds have been stored in files. To manage large
volumes of these files, a common solution is to build a hierarchy of files (a tree structure,
like a quad tree) and access the data through a dedicated set of softwares. This approach
is continuously improved (Hug, Krzystek, and Fuchs, 2004; Otepka, Mandlburger, and
Karel, 2012; Richter and Döllner, 2014) and a detailed survey of the features of such
systems can be found in (Otepka et al., 2013). This approach is simple, and scaling
is relatively easy (provided the Operating System (OS) maximum file number is not
reached). However, using a file-based system has severe limitations. These systems are
usually built around one file format, and are not necessarily compatible. Recent efforts
have been made towards format conversion3. The features of such systems are very
limited (limited meta-data handling, lack of integration with other GIS data, difficulty
to use several point clouds together). Moreover, these systems are not adapted to share
data and multi-users usages (concurrency).

dbms for points Hofle, 2007 proposed to use a Data Base Management System
(DBMS) to cope with concurrency. The DBMS creates a layer of abstraction over the file-
system, with a dedicated data retrieval language (SQL), native concurrency capabilities
(supporting several users reading/writing data at the same time), and the wrapping of
user interactions into transactions that can be cancelled in case of errors. The DBMSs
have also been used with raster and vector data for a long time, and the possibility to
define relations in the RDBMSs (Relational DBMS) offers a simple way to create robust
data models, and deal with meta-data. Adding the capacity to create point clouds as
services, DBMSs solve almost all the problems we face when dealing with point clouds.
Usually, the database stores a great number of tables, and each table stores a point
per row (Lewis, Mc Elhinney, and McCarthy, 2012; Rieg et al., 2014). Such a database
can easily reach billions of rows. Nevertheless, storing these many rows is problematic
because DBMSs may have a non-negligible overhead per row. Moreover, indexing those
number of row is slow and takes a lot of space , and the possibility of compression are
limited.

column store database and no-sql These limitations are more generic than
for point cloud usage, and apply to any massive amount of data which is weakly rela-

2 www.semantic3d.net

3 http://www.pdal.io/

55

www.semantic3d.net
http://www.pdal.io/

tional and does not get updated often. As such, they have been researched and inspired
the concept of column-oriented databases, such as MonetDB4. This database is used
to store individual points (Martinez-Rubi et al., 2014, 2015; van Oosterom et al., 2015).
Thise approach is effective to store large amounts of row without much overhead, and
also solve most of the indexing issues. However points are not compressed, integration
with other GIS data is weak, and scaling to multiple computers is not straightforward
. In parallel, stripped down column stores were proposed, having been specially tai-
lored for massive and weakly relational data with low overhead per row, forming the
NoSQL databases. They scale extremely well to many computers and can deal with large
amount of data (Wang, Aji, and Vo, 2014 and SpatialHadoop5). However, this comes at
a price. NoSQL databases must drop some guarantees on data. They are not integrated
with other GIS data and have much less functionalities. Indeed, NoSQL databases are
closer to being a file-system distributed on many computers (with efficient indexing)
than being DBMSs. Thus massive scaling still necessitates specialised hardware, and
the people to maintain it.

cloud computing A recent possible workaround for this issue is to use Cloud
Computing facilities 6 to store the points, like Amazon S3. In this solution, data storage
is offered as a service and externalized. This may provide the ultimate scaling, but
it suffers from the same aggravated limitations as the NoSQL, with open issues on
indexing.

dbms for patch All the previous data management systems try to solve a very
difficult problem, managing a massive quantity of individual points. The solutions that
scale well must focus on data storage and retrieval, and drop the rest of the management
problem (feature, metadata, integration, processing). Another recent approach is being
explored in (pgPointCloud, 2014-) and other commercial RDBMS. The key idea is to
manage groups of points (called patches) rather than points in a RDBMS. Creating this
abstraction layer over points allows retention of all the advantages of an RDBMS, but
keeps the number of rows low, thus avoiding the associated scaling difficulties (index,
compression) by working on group of points rather than points. Moreover, the proposed
abstraction offers new theoretical possibilities, because it creates generalisation of the
groups of points. The price is that to access a point its whole group has to be accessed
first, and so the way points are grouped must be compatible with intended point usages.

In this work, we present a point cloud management system fully based on pgPoint-
Cloud, 2014- and open source tools. We test this system in every aspects of point cloud
management to prove that it answers all the global needs of point cloud users, as illus-
trated by Figure 28 on page 53.

2.2.3 Plan

Following the IMRAD format (Wu, 2011), the remainder of this chapter is divided into
three sections (Method: Sec. 2.3 on page 58, Result: Sec. 2.4 on page 69, Discussion:
Sec. 2.5 on page 85)

4 www.monetdb.org

5 http://spatialhadoop.cs.umn.edu/

6 https://github.com/hobu/greyhound

56

www.monetdb.org
http://spatialhadoop.cs.umn.edu/
https://github.com/hobu/greyhound

Each section has the same organisation covering the bases of point cloud usages (See
Figure 28 on page 53). First we consider how points can be stored as groups in a Point
Cloud Server (Storing). Then we consider how to load point clouds in the PCS (Loading).
Point clouds contain metadata that can also be stored and used (Point Cloud Context).
We study how to access only a part of the points using conditions (Filtering). Points can
be outputted from the PCS (Exporting). Last we consider various methods to exploit
points (Processing).

Thus, each subsection is found in method, results, discussion. For instance, "Loading"
is in method : Sec. 2.3.2 on page 60 , result : Sec. 2.4.2 on page 74, discussion: Sec. 2.5.2 on
page 85.

57

point patch (group of points) pointclouds Metadata- constrained type - compressed
- indexed

- 1 per table - relationnal
- classical / extended

(2.1,4.7,1.0,9,..)

Point type = XML schema
 X : float, offset, scale, description
 Y : double,

&

e-x AxT

e-x BxT

...

...

5
6
7

1000101001...
1000111101...

1000001110...

generalisations coverage maps todo map vector raster

trajectorymetadata

&

Figure 29: PgPointCLoud storage illustration. Point attributes are described by an XML schema.
Points are grouped in patches, indexed and compressed, which may have several
generalisations. A point cloud is stored in a table, with one patch per row, along
with other table generalising the point cloud (like coverage map). The PCS also store
metadata (date, place) in a relational way, extended metadata like trajectories, and
possibly other GIS data like vector and rasters.

2.3 methods

2.3.1 Storing groups of points in a RDBMS

The proposed solution relies on a PostgreSQL, 2014- RDBMS server using the PostGIS,
2014- and pgPointCloud, 2014- extensions. The key idea is to store a point cloud per
server table, with one row storing a compressed group of points. Groups of points are
called patches of points. The type of a point (attributes size, definition, nature) is defined
in a global XML schema. See Figure 29 for an overview of how storage is organized in
PCS.

The user can load data into the server by several common means (using major pro-
gramming languages, Bash, SQL, Python), from any format of point cloud that can be
expressed as a list of values. Point clouds are stored without loss and are compressed.
The very sophisticated database indexes allow efficient filtering of the patches. Point
clouds can be used with vector and rasters and other point clouds. Metadata are inte-
grated and exploited. Furthermore, point clouds can be easily converted into other GIS
data (vector/raster). Processing methods are directly accessible within the database;
additional methods can be added externally or internally. Accessing points from the
database is also easy and can be done in several ways (whole files, specific points and
streaming).

2.3.1.1 Storing groups of points rather than points

Briefly, storing groups of points offers the advantages of generalisation (potentially
more complex semantic objects), reduces the number of rows in the database by sev-
eral orders of magnitude, reduces index size, allows efficient compression, and offers a
common framework for different types of point clouds coming from different sources.
Working on groups of points separates the filtering and retrieving of points. This allows
to take decisions based on filtering results before retrieving points. For instance based
on the density, an optimal LOD can be automatically chosen. Groups can also be easily
split or fused at any point after data loading.

It is important to note that storing groups of points rather than points also introduces
a fundamental limitation: to obtain an individual point, we need to get the full group

58

first. This means that the grouping points approach is only possible when points can be
categorised into groups that are coherent for the intended applications. Incidentally, all
intended applications must require the same grouping rules.

generalisation Choosing to use groups of points instead of individual points
amounts to use a generalisation of the data, that is an abstraction. Abstracting the data
is very common in GIS. For instance, when making a map of a big city, representing
all individual building footprints would diminish the user understanding of the map.
Instead, building footprints may be aggregated to form urban block. (see Mackaness,
Burghardt, and Duchêne, 2014 for a recent introduction to the generalisation topic).

Regarding point cloud, we may have a group of 10k points sampled along a small
part of the road that is flat (10k 3D points). For some application, we could abstract the
group with a plane (three 3D points). Geometrically representing this group of points by
a plan reduces storage, but the change is more profound, because the plane is another
representation of the underlying object that has been sensed.

The plan could be used as part of a facade reconstruction like Lafarge et al., 2013, or
even be the base for a further building generalisation as in Meng and Forberg, 2007.

The generalisation does not have to be geometric. For instance a group of points can
be abstracted by statistical distributions (similarly to Preiner et al., 2014, although they
use the distribution for surface reconstruction.)

Ummenhofer and Brox, 2015 illustrate both this usage. They use an octree and thetra-
hedrals as support for their geometric generalisation, and aggregates as a statistical
representation. Combining both, they can reconstruct surface without using the points
but only the generalisations.

Such generalisation is by essence higly tailored to an usage, being a form of information-
loosing modeling. In this article we propose several generalisations adapted to a variety
of usages (Figure 46 page 77). Those generalisations can be used conjointly in the Point
Cloud Server. By doing so, we avoid the pitfall of duplicating the data for each specific
usage.

2.3.1.2 Point grouping strategy

reference data
sidewalk
building
not build

temporal
groups of points
(convex hull)
for 4 ms

Figure 30: Rotating Lidar (Velodyn) with strong temporal dependency (200 ms acquisition).

Points should be grouped in regard to how they will be retrieved afterwards. As
points tend to be retrieved by their spatial position (spatial-grouping), grouping the
points that are spatially close together makes sense. Some Lidar devices include a strong
time dependency, and are commonly used to detect moving objects. In this case time-
grouping may be interesting, in order to differentiate easily between points roughly at

59

the same position, but acquired at varying time (See Fig. 30, and Section 2.4.1 and Fig. 41

page 71). Grouping rules may also mix spatial and temporal rules, as well as other rules
like semantic grouping if this information is available (for instance, points pertaining to
buildings would be in separate groups than points pertaining to the ground).

nb of groups

pts/group

Figure 31: Choosing group size is a trade-of between filtering and storage.

While many rules are possible to group points, it always results in a trade-off (see
Figure 31). Small groups means a lot of groups, which is bad for storing, because it will
increase the number of rows, thus the size of the indexes and associated overhead, and
reduce compression possibilities. On the opposite having big groups is bad for filtering
(and maybe compression, if points becomes too dissimilar), because to get one particu-
lar point, the whole group has to be read.
However, we stress that all groups do not have to follow the same rules, thus group
size can be adapted to local characteristics of the point cloud, for instance to geome-
try (grouping depending on density) or semantic (grouping depending on attributes or
classification). See Section 2.4.1 for an example of varying grouping size based on ge-
ometry, where groups are merged/split in 8 3D point clouds (similarly to voxels) until
the target number of points per group interval is met.

2.3.2 Loading

Figure 32: Processes necesary for load (and output) of points into the database can be performed
by the client(s) or the server, depending on the application.

Writing data in a PostgreSQL RDBMS is standard. Clients exist in all major program-
ming languages. Because DBMSs are built for concurrency, all presented methods use
parallelism.

For the specific application of writing point clouds, the goal is to go from point cloud
files to (compressed) patch of points stored in tables inside the database (See Figure
32). To this end, several intermediary steps have to be performed. In a server/client
architecture, we conceptually separate solutions depending on who is supposed to cover
most of the process. In a "Server oriented" design, the server does almost everything.
In a "Client oriented" design, the client does almost everything. Please note that this
division is only conceptual.
Section 2.4.1 page 71 contains more details about how patches are compressed.

parallel loading (’server oriented’) Our first loading method (Figure 33)
reads point cloud files, convert them to a stream of attributes and writes them to tem-

60

point files

PCS

point to
text

program

stdin

COPY
to temp

table

temp
point
table

regroup
points

patch
table

Figure 33: Conceptual schema for parallel loading.

porary tables in the database. The database groups points into patches and adds the
patches to the final point cloud table (see Section 2.4.1 on page 70 for precise rules of
grouping for each test database.). Please note that the database could directly read
point cloud files.

distributed parallel loading (’client oriented’) In previous method, the
database performs the grouping of points into patches and the actual writing of patches
into tables. We could lessen the workload of the server by allowing the client to do the
grouping.
We design a loading method of type ’client oriented’ (Python).

It is similar to the method adopted by the PDAL7 project, which we also test. The
clients read point cloud files one by one (in parallel). For each file, the client group
points into patches, and send the patches to the database. The database compresses the
patches and writes them into the final point cloud table. Please note that the client could
also perform the compression.

2.3.3 Point Cloud and Context

Historically, RDBMS databases have been designed to create and maintain relationships
between data. Because our method relies on a RDBMS, we can leverage this capacity.
One of the goals of our system is to manage point clouds rather than points. By that,
we intend that a point cloud is not a set of points, but rather a set of points associated
with various meta-data and contextual information (and maybe processing methods). In
particular, our system can store the full meta-data model, as well as more indirect meta-
data like the trajectory of the sensor. Meta-data can also be organised in a relational
way to be coherent between different point clouds. By integrating point cloud into a
relational database, and having several representation for patches (See generalisation
concept, in Section 2.3.1.1), we can easily create coverage maps. It also enables to use
several point clouds together as well as mix point clouds and other GIS data (raster and
vector), directly or after converting point clouds to other GIS data types.

managing metadata The point cloud server offers the perfect framework to re-
group all the metadata concerning a point cloud. For instance, the popular .las file for-
mat proposes to store a project id, date of acquisition, and name of the hardware. Being
based on standardized and limited fields, very few metadata are stored. Furthermore,
the information can be missing or erroneous. Using a RDBMS, it is possible to create

7 www.pdal.io

61

www.pdal.io

trajectory

trajectory

trajectorytrajectory

trajectory

tra

trajectory

trajectory

image table

images

sensing_campaign

time_range
point_table
trajectory
sources

sensor

Name
Type
Rate

available_sensor

sensor
sensing_campagn
calibration

points

point

trajectory

trajectory

trajectorytrajectorytrajectorytrajectory

trajectory

trajectory

sensor_calibration

matrices
errors ...

Figure 34: Example of a data model to store metadata. See Hofle (2007, p. 15) for a real model.

an unlimited relational model of the metadata and to easily enforce it (automatically).
For instance, instead of a project id, we could refer to a list of projects, each having an
associated list of partners, start and finish dates, associated authorizations, etc. Instead
of the name of the hardware, we could refer to a list of hardware, having each different
configurations, typical precision of the sensor, point type, methods for reading the raw
data, etc. See Figure 34 for a basic example of metadata schema.

This information is stored in tables which links the table containing the point cloud
to the metadata.

We stress that in fact several point clouds metadata are already related to each other
in an implicit way. For instance the date of acquisition of a point cloud can be implicitely
related to the date of acquisition of another point cloud.

The benefits for point cloud management are numerous, from simple such as looking
for point cloud based on those metadata (e.g. find all point clouds in a given area with
given density, acquired in given time range, whose geometric error is less than 1 cm),
to much more complex, such as on-the-fly re-registering of the point clouds when the
estimated sensor position is updated.

Such metadata could also be used in the filtering step. For instance, for an application
relying on colour, the user would be able to automatically get points acquired through
stereo-vision and not through Lidar.

In a more generic way, we point to the success of the Resource Description Framework
(RDF) in the last decade as a sign that metadata management is important and expected
by users.

coverage map Using the server, we create metadata-like point clouds coverage
maps (Figure 44, 45, page 75) , which are essential to quickly understand point clouds
coverage , similarly to Lewis, Mc Elhinney, and McCarthy, 2012, Figure 8, or Youn et al.,
2014. The idea is to have several representations of a point cloud. The 2-level repre-
sentation would be to represent the area covered by the point cloud by polygons at a
detailed level (large scale). For performance and map-generalisation reasons, the point
cloud could also be represented by a single point when viewed from afar (love scale)

With this set of maps, one can instantaneously and easily check what type of point
cloud is available in a given area using a colour code (for instance). Because the Point
Cloud Server mixes GIS and point clouds, going a step further than the two-levels vi-
sualisation (a point at small scale, detailed polygons at large scale) toward a 4-level
visualisation is natural. More generally, mixing Remote Sensing data and GIS data en-
able much more advanced applications (Aubrecht et al., 2009). See Section 2.4.3.1 for
full details on coverage map creation.

62

extended metadata We can extend the classical notion of metadata a step further
and consider that it also concerns the raw information that was used to create the
point cloud. For Lidar point clouds, this would be the trajectory and position of the
sensing device, along with the raw sensing files. For stereo point clouds, this would
be the camera poses for every image used to construct the point cloud, along with the
images. This information can be stored in the server, and leveraged in filtering (see
Section 2.4.3.3), processing and uncertainty management (for instance registration).

using several point clouds and other gis data Point clouds are created by
different sources, like stereo-vision, aerial Lidar, terrestrial Lidar, RGBZ device (Kinect),
medical imaging devices (MRI), etc. The Point Cloud Server mixes all this data, along
with other GIS data (rasters and vectors). Vectors and rasters are stored and exploited
using PostGIS, 2014-. We can use geo-referenced point clouds together, thus exploiting
their complementarity.

In a typical scenario, a user interested in a place queries the Point Cloud Server. He
automatically obtains points from the several point clouds available at this place, for in-
stance a low resolution, large coverage 1 pt/m2 aerial Lidar point cloud, complemented
by a more detailed but very local 10 kpts/m2 stereo-vision point cloud.

point cloud as raster or vector In the spirit of generalisation (see Section 2.3.1.1),
it is advantageous for some applications to convert points to other GIS data types, such
as raster or vectors, directly within the database. We propose several in-base groups
of points vector representations, such as bounding box, oriented bounding box, con-
cave envelope similar to alpha shape (Edelsbrunner, Kirkpatrick, and Seidel, 1983), and
bounded 3D plans (Figure 46). These representations can be used to extract informa-
tion at the patch level, accelerate filtering, enable large scale visualisation, etc. We also
propose two in-base means to convert points to multi-band rasters by a Z projection.

Figure 35: A part of a point cloud is converted to a raster. We use bilateral smoothing, gradient
(Sobel), and line detection (RRANSAC by Chum and Matas, 2002) to reconstruct the
pedestrian crossing. These operations are much faster and easier on rasters rather
than points.

Rasterisation is a common first step in the literature because neighbourhood rela-
tionships are explicit between pixels, unlike points. Figure 35 illustrates how a first
conversion to raster allows to use powerful and classical image processing methods to
extract information from point cloud.

point cloud patches as graph / topology The specificity of point cloud is
to not embed neighbourhood information. Yet graph analysis offers powerful tools. We

63

propose to take advantage of PGRouting, 2015-, which is a PostgreSQL extension that
adds basic graph functions.

We can build a weighted graph embedded in 3D over the patches (groups of points)
(ie. a graph whose vertices are the groups of points and edges the neighbouring relations
between those groups, while the weight of an edge is the 3D distance between centroids
of groups of points). (See figure 36)

Points (15 M) Vertices (18 k) Edges (89 k)

Figure 36: Building a graph embedded in 3D over point groups. Up-Left: the original part of
the point cloud. Up-Right: the node of graph (centroid of patches). Down-Left: graph
edges: the adjacency relationship between patches. Down-Right: visualisation in GIS.

This graph is in fact a very rough approximation (up to the patch size) of the point
cloud surface. We can leverage it for fast geodesic distance computation along this
surface.

Orthogonally, we can build a simplified graph and use it as the starting point of
road network reconstruction. Road network reconstruction is a large topic with widely
different types of strategy (see Quackenbush, Im, and Zuo, 2013 for an introduction),
we only use this topic to show the PCS capabilities, (see Section 2.4.3.6 and Figure 51

page 79).

2.3.4 Point Cloud Filtering

Figure 37: Illustration of a filtering conditions presented in Section 2.4.3.3 p.76. Among billions
of points, only those respecting complex filtering conditions are found in ∼ 0.1s. Re-
sults are shown in QGIS.

Point clouds are big; yet, we often need a very small part of them (Figure 37, param-
eters in 2.4.3.3 page 76). Thus, the capacity to filter a point cloud is essential for many

64

 SELECT gid, patch
 FROM my_patches
 WHERE
 ST_Intersects(patch::geometry, ...) = TRUE AND
 Pc_NumPoints(patch) BETWEEN 10 AND 100 AND
 file_name ILIKE E'file_.*2.ply' AND
 rc_range(patch, 'intensity') && numrange(0,1.5) AND
 EXISTS (SELECT 1 FROM buildings AS b
 WHERE ST_Intersects(patch::geometry,b.geom))

Spatial position (using any
geometry)

attribute of patch (density)

attribute of patch (source file
name)

attribute of points in patch
(intensity)

Spatial position
(using another vector layer)

Filtering on : SQL query

Figure 38: Example of a filtering query on patches with various type of filtering conditions.

uses. Acceleration structures (commonly called index) are the accepted solutions. This
essentially creates indexes of the data to accelerate searches. Octree, B-tree, R-tree, and
Morton-curves are popular acceleration structures. Designing and optimising these in-
dexes is a major research subject (see (Kiruthika and Khaddaj, 2014), for instance) and
is also the main designing factor in point cloud management systems.

filtering strategy Because our system stores patches (groups of points), we can
separate the filtering and the retrieving of data. The strategy is then to first efficiently
filter data at the patch level by rejecting most of the patches (reducing points from
billions to millions, for instance), then, if necessary, further filter the remaining points
(in database and / or outside).

indexing Our system extensively uses n-D indexes (BTree, RTree) that are native
to PostgreSQL. We index patches (not points). Basically, these indexes answer in about
0.01s to any filtering queries, such as ’What are the patches with f(patch) between ..
and ..’; provided that f(patch) is appropriatly indexed. f(patch) can be anything, a
spatial position, an attribute of the points contained in the patch, a function, etc.

Indexes of functions are very powerful and can save a lot of space. For instance, we
may have a fast function f that gives a measure in [0; 1] of how much the patch looks like
a vertical cylinder. Now, when looking for all the patches p that really resemble cylinder
(f(p) > 0.8), for instance), we do not need to recompute f each time for every patch, nor
store all values of f. The server will only store simplified f values (typically stored on
fewer bits) within the index, use it to remove the vast majority of useless patches, then
recompute f for the few remaining patches that are good candidates. The gain is space
comes from the fact that there is no need to add an extra column to store the value of f
for every row, and from the fact htat hierarchical index are by essence compressed.

PostgreSQL also determines whether to use available indexes or not, and in which
order. This feature may prove essential; indeed when accessing a large amount of infor-
mation, it will be faster to simply read all the data rather than use the index (sequential
vs. random access). This decision is automatically made based on statistics on tables
and a genetic optimisation engine. To give an idea, the database can estimate how much
rows will be needed by a query. Then, knowing the cost of reading one row via index
(random access), and the cost of reading the whole table (sequential access), it can de-
cide which strategy to choose. The genetic optimisation engine is used to choose how
the query will be executed, using join, index, inner loops, etc.

Figure 38 illustrates a filtering query combining various conditions.

65

2.3.5 Exporting

Similarly to Section 2.3.2 (Input, page 60), we divide the output methods into two cat-
egories. The first family of solutions is when the server perform most of the output
processes ("Server oriented"), for instance writing the points in a file at the request of
an user, or letting the user access the points through queries.

The second family of solution is when the clients perform most of the output pro-
cess ("Client oriented"). We can also see the output as a service, be it for classical GIS
client/viewer software (using the lens), or for WebGL browser.

ply file as a service (plyfas) ’server oriented’ Our system can be used
transparently with a file-based workflow. Indeed, users may already have legacy pro-
cessing tools that work with files. Of course, these tools could be easily adapted to read
points from the database and not from files, but users may want to use their usual
tools as-is. For this case, we propose PLYFAS, an easy means to export points from the
database and create a .ply file (please note that PDAL could also be used to export PLY
files). We choose .ply files for their flexibility and power of expression. The user can use
the small PLYFAS API to request the database to create a ply file from any set of points.
The user may simply want one of the exact original point cloud files that were loaded
into the point cloud server (mimicking a traditional workflow). However, the user has
also access to much more power and can request a file with filtered points by any means
introduced in Section 2.3.4, or with the additional processing results of Section 2.3.6. For
instance, the user can request all the points in a given area that have been classified as
’building parts’ with a given confidence, and that were sensed during the second week
of March 2014. In addition, the user can ask to get a target point density (Level Of De-
tails), and to get deduplicated points (duplicated points are removed from the result),
etc. Some of this operations are easy to perform in SQL (See for instance Section 2.4.3.6
page 81).

using postgresql connector (’server oriented’) PostgreSQL can be ac-
cessed using many programming languages, thus any PostgreSQL driver can be used
to connect to the server and output points. This work-flow is very similar to what a
classical processing program would do. The classical ’open point cloud file, read points, do
processing, write results’ becomes ’connect to server, read points, do processing, write results
on the server or elsewhere’.

By using the server to access points, the user gets additional capabilities. For instance
the user does not have to read a whole file (or any files) if he is interested in only a few
points. Using the point cloud server, the user can directly filter the point cloud to obtain
only the points desired, and even use in-base processing or LOD to further limit the
points obtained. Furthermore, the PCS can be accessed concurrently by several users,
facilitating parallel processing, and more notably parallel writing (for the results for
instance) in the server. Last the user can even do a part or all of the processing inside
the database.

massive parallel export (’client oriented’) We also designed a Python
method to perform massive parallel export. Similarly to Section 2.3.2 (Input), the goal
is to reduce the work done on the server and increase the work done on the clients. In

66

this version, the server sends raw binary uncompressed patches (groups of points), and
the transformation to points is done by the client(s). This is almost identical to PDAL
workflow.

lens for traditional gis Point clouds are best visualised in dedicated software.
Yet, point clouds are also geospatial data, and benefits much from being visualised and
analysed in powerful GIS tools (like QGIS). However those tools do not scale over the
Million points range. We propose a "lens" that reveals the points it covers (Figure 39)).
The idea is that a user moves a polygon acting as a "lens" over a place of interest in the
map, revealing the underlying points, using any GIS client that can access the database.
The concept has already been used to improve an interface (See Bier et al., 1993; Lobo,
Pietriga, and Appert, 2015), Pindat et al., 2012 also proposed a lens with varying shape.
Using triggers and a view, we ensure that the points are updated when the lens changes.
Moreover, the lens also allows to choose the density of points it display (using Level Of
Details), and the vehicle pass we are interested in (temporal filtering). This feature is
necessary, because the registration error between several passes may be a problem (See
Figure 39).

Figure 39: A polygon representing a lens that reveals points underneath it (among billions), with
a given Level Of Detail and vehicle pass, at about 100 kpts /s. Points are automatically
updated when the lens if modified by the user, using a pure in-base solution, which
makes it compatible with any client.

asynchronous point cloud streaming to browser

(’server oriented’) The last output possibility is to stream points in a web context.

67

The goal is to display a point cloud into a web browser with background loading (i.e.,
the points are displayed as they arrive, the user keeps browsing and the loading is
non-blocking).

For this, we use a Node.js server between the client and the Point Cloud Server, which
enables non-blocking interactions. We stress that from the PCS perspective, the task is
standard (give points that are at a given place), and work on any point cloud provided
the patches are grouped with rules compatible with visualisation. This method can
also take avantage of LOD (send only the necessary number of points, and not all the
possible points, which may be critical for limited-hardware situation like mobile phone
or tablets). In this case, we can use an implicit LOD scheme which is described in Cura,
Perret, and Paparoditis, 2016 (Working paper).

2.3.6 Processing Point Cloud with the Server

processing point clouds We think it is important to offer both point clouds and
adapted tools to users (leaning toward giving access to services). Indeed, for most of
the users, a point cloud is only a mean to get another information via processing.

Our system can be used for processing in two ways. The most classical is out-of-base
processing. A client obtains the points, does something, and writes the results in the
server or elsewhere.
However, our system also offers in-base processing. In this form the user directly adds
processing methods within the PCS. Processing methods become very close to the data
and can be reused or combined to create more complex methods. The client does not
have to install anything (all methods live within the server), which is more practical
(version management, dependencies ...).

An advantage of in-base processing with the PCS is that it is easy to add new process-
ing methods. These methods can be written for efficiency (C, Cpp) or using high level
languages (Python, R) for very fast prototyping. We determined that the most useful
in-base processing functions should be fast and simple. This way, the newly written
functions can be used in other aspects of the point cloud server, such as indexing, or be
combined directly in SQL queries. For instance,

SELECT c l a s s i f y (e x t r a c t _ p l a n (patch) , e x t r a c t _ f e a t u r e _ 1 (patch) , . . .)
FROM patches
WHERE c o m p u t e _ v e r t i c a l i t y (patch) >0 .8

Of course both type of processing can be used conjointly. In the previous scenario,
the classifier would be trained outside of PCS for better memory and performance
management.

68

2.4 results

2.4.0 General System Test

Figure 40: Paris data set (terrestrial Lidar), Medical Imaging data set (X-Ray CT Scan), Vosges
data set (aerial Lidar), Stereo data set (Stereovision)

We design several experiments to test all components of the point cloud server on
several datasets (Figure 40). All experiments have ample room for optimisation, and
can be easily reproduced (open source tools). We use PostgreSQL 9.3, PostGIS 2.2, Pg-
PointCloud 1.0, Python 2.7, PDAL 1.1, Numpy 1.10 and Scipy 0.17. We stress that all the
facts should be indicative at best, because dealing with massive data introduces a strong
hardware factor. For instance the same loading method (parallelized PDAL) used in the
reference benchmark of van Oosterom et al., 2015 is 4 times slower with our hardware.
Moreover, the PCS uses several layer of caching whose influences may blur the results.

result at the system level Overall, we load several Billion points into the PCS,
perform several processing in and out of base (second to hour), extensively use simple
and complex filtering (response time from millisecond to second), convert points to im-
ages and vectors, and output points (> 100k pts/s). The entire system works as intended
and is efficient and powerful enough to be used in research settings.

data sets used For this work, we mainly use four data sets (including (IQmulus,
2014)) illustrated in Figure 40. They were chosen to be as different as possible (size
from Million to Billion, sensing from active to passive, wavelength from few nanometre
to Near Infrared, nature of sensing from surface to volumetric, different number of
attributes from none to 21) to further evaluate how proposed methods can generalise
on different data. We emphasize that the Vosges data set is a massive aerial Lidar point
cloud covering mountains and forests.

hardware We tested all our methods on two settings corresponding to two target
users. The first use case is non-specialised user with non-dedicated hardware. To this

69

Table 1: Figures of the Point cloud data sets used in experiments.

data set Type
Nb. of
points

Nb. of
original files

Spatial
coverage

Nb. of
attributes

Typical
spacing

Vosges Aerial Lidar 5.2B ∼1450 1330 km2
9 1 m

Paris Terrestrial Lidar 2.15B ∼ 750 42 km 21 1 cm

Stereo Stereovision 70M 16 3 m2
6 0.1 mm

Medical Imaging Medical Imaging 1.95 M 1 20 dm3
0 0.6 mm

end the setting is simple and portable (the point cloud server is hosted on a virtual
box on an external drive). The second use case is for specialised user, with dedicated
hardware. The setting is powerful and offers much more storage place (dedicated server
with 12 cores, 20 GB RAM, SSD for OS, regular disk for storage, Ubuntu 12.04). Timing
are indicative because of influence of caching and configuring.

2.4.1 Storing groups of points in a RDBMS

Table 2: Creating and indexing patches for the test data set . *: estimation. Grp: Grouping

data set
Grp
Size

Grp
Dim

Patch
nb (k) A

vg
pt

s/
pa

tc
h

(k
pt

s)

Pa
tc

h
in

de
x

si
ze

(M
B)

Vosges 50m 2D 580 8.9 42

Paris 1m 3D 6570 0.325 450

Stereo 1
250m 2D 180 0.4 15

Medical 1
100m 3D 4.8 0.4 0.4

Table 2 gives results on the grouping and indexing aspects.

point grouping strategy Points must be categorised into groups that will make
sense for subsequent uses of the point cloud. Groups of points must be big enough so
the number of rows is tractable, but not too big because getting only one point still
necessitates obtaining the entire group. We designed these grouping rules with two
criterias. First the number of rows is less than a few millions so that the index fits in
the server memory (Table 2). Second the range of number of rows is still manageable
for classical GIS software (e.g. QGIS). We can afford to have arbitrary large groups as a
result of the PostgreSQL TOAST8 storage system.
Grouping is done at data loading, but we can change the groups and grouping rules at
any time. Patch index creation is very fast (a few seconds to a few minutes), and the
index size is 6 1 % of the point cloud size.

storing patches and not points Indexes are built on patches and not on points,
and thus are several orders of magnitude smaller and much faster to build. We estimate
the size of indexes if we were to store one point per row rather than one patch per row.

8 http://www.postgresql.org/docs/current/static/storage-toast.html

70

http://www.postgresql.org/docs/current/static/storage-toast.html

For this we measured how PostgreSQL index size and build time evolves with the row
number. The results are mostly linear (tested from 10 kpoints to 10 Mpoints), as seen in
table .

Table 3: Estimating scaling behaviour for uncompressed point cloud and index over points
rather than patches.

XYZ points
table size

RTree index
size

RTree index
building time

65 MB/Mpts 52 MB/Mpts 18 s/Mpts

Using this scaling behaviour, we estimated the spatial index size if the point were
not stored by groups but individually (one point per row). Without surprise index size
and built time would become intractable if points where stored one by one and not by
groups.

Table 4: Extrapolating the point index size and point index build time if points were indexed
one by one and not by patch.

data set
Estimated point
index size (GB)

Estimated point index
build time (h)

Vosges 2600 290

Paris 1000 120

Stereo 35 4

Medical 132 1 min

compressing point clouds Patches are compressed before storage using the di-
mensional pgpointcloud compression9. We compare loaded data set space occupation
on the server with original binary files on the disk (.ply or .las depending on the dataset).
In our case, patches are compressed attribute-wise, with either a run-length, common
bit removal, or zip strategy. This means that for each patch, each attribute (dimension)
is compressed independently using the strategy which is deemed optimal for this at-
tribute. The compressing efficiency widely varies depending on the data and the type
of points attributes (See Table 5). As a comparison, a tool specialised on .las file com-
pression like the one proposed by (Isenburg, 2013) achieves a 8.3 compression ratio on
the Vosges data set. It uses a more adapted delta encoding approach for XYZ and time
and does not compress the attributes.

Compressing and decompressing data introduces an overhead on the data access. We
estimate it by profiling the uncompress and compress functions. Again, the overhead
is dependent on the type and number of attributes. For instance stereo contains double
attributes that are compressed with the zip strategy, which is slower in compression.
See Table 5 for the result.

spatial or temporal grouping In this experiment we use two different group-
ing methods on terrestrial Lidar data. This type of Lidar (Velodyn) rotates around Z axis
at 10Hz (see Figure 30 on page 59 for one rotation), and is commonly used to perform

9 https://github.com/pgpointcloud/pointcloud#compressions

71

https://github.com/pgpointcloud/pointcloud#compressions

Table 5: Analysing compression ratio and compression/decompression speed.

data set Points Disk size Server size
Compression

ratio
Comp. Speed

M pts/s
Decomp. Speed

M pts/s

Vosges 5.2B 170 GB 39 GB 4.36 4.49 4.67

Paris 2.15B 166 GB 58 GB 2.86 1.11 2.62

Stereo 70M 1 GB 490 MB 2.05 2.44 7.38

Medical 2M 23 MB 7.7 MB 2.98 7.66 25.8

object tracking (see the work of Azim and Aycard, 2012 for instance).
In such a case, the main filtering aspect may be temporal, and not only spatial. In the
temporal scenario, we group points acquired every 4 ms together, and display the con-
vex hull for easier visual understanding. In the spatial scenario, we group the points
with a 1m grid.
Without surprise, temporally-grouped patches have a more regular number of points,
whereas the spatially-grouped patches have a much more diverse density (see the his-
togram of Fig. 41). In both cases the compression is similar, as the filtering time.

In the Spatial grouping, knowing precisely the sampling rate (10Hz), it is then easy to
get points that are sensed during a turn n, but not before or after. This capacity would
be the basis of object/change detection.

Figure 41: Temporal (left) and 3D spatial (right) grouping on velodyn terrestrial Lidar data, with
histogram of number of points per patch. Note that in practice we use mixed grouping
(spatio-temporal).

72

adapt patch grouping rules In our solution, points are grouped at loading time
with fixed rules. This system is well adapted to point clouds with homogeneous density,
like aerial Lidar. However, these fixed grouping rules are not optimal for terrestrial
Lidar, where the point density varies strongly based on the distance to the Lidar device.

Figure 42: Illustration of variable patch size repartition in an urban point cloud.

We propose a mechanism to change the patch grouping rules on loaded data sets.
The user fixes a target patch density depending on the expected number of rows and
expected usage of the point cloud. In the example, we target a density between 0.5 and
2 kpts /m3. We then iteratively split/merge patches to try to meet this target. Figure
42 illustrates in 2D and 3D views of patches of different size but containing roughly
the same number of points. With the proposed targets, the global number of patches
is roughly the same, with the benefits of having less frequently too small or too big
patches, which particularly shows in the histogram of the points per patch for fixed size
and variable size patches (43).

po
in

ts
 p

er
 p

at
ch target

1 m patches
0.5 to 8 m patches

nb of patches

Figure 43: Histogram of points per patch for constant and variable size patch. Using variable
size patch strongly reduces the number of very small or very large patches. Total
number of patches is roughly conserved.

This adaptive grouping size also reduces the global quantization error.

73

choosing grouping rule Overall, the chosen grouping rule has no impact on per-
formances as long as the number of rows remains in the same magnitude (few millions).
The impact of using different grouping rules is essentially to enable different applica-
tions. For instance the adaptative grouping rule produces patches with a much more
constant density, which is useful for many processing methods. We refer the reader to
Cura, Perret, and Paparoditis, 2016 (working paper) for more details on point cloud
density correction.

2.4.2 Loading

parallel loading (’server oriented’) In one night, we aim at loading the
data sensed by a Lidar system during one day. Indeed, a mobile mapping vehicle may
be acquiring data all day long, but would most likely not operate during the night
(street views would be useless). Thus the data acquired during the day must be dealt
with during the night so as to keep up when vehicle is used everyday.
Please note that this requirement is specific to only one of our four data sets.

The points are stored in files, over a gigabyte network. We use a specialised program
to convert the points file into ASCII values (CSV). For .ply point files the program
is a modified version of the RPly library10, for the .las files the program is LAStools
11. The points in ASCII values are streamed to a ’psql’ process that is connected to the
database. The ’psql’ executes a ’COPY’ SQL command that reads the ASCII streams and
creates and fills a table with the values from the ASCII stream. When the file has been
fully streamed, we use a SQL query to create points from attributes and group them
into (compressed) patches. These patches are inserted into the final patch table. This
pipeline (Figure 33, page 61) is executed several times in parallel, each pipeline working
on a different file. The process is piped so there are no intermediary files written to
disk.

distributed parallel loading (’client oriented’) In this experiment, we
use clients to send uncompressed patches to the server. The clients read point cloud files
(.ply in our experiment, using the plyfile12 Python module). Then, each client groups
the points into patches using a custom Python module. The grouping rules depends on
the data sets. The patches are sent to the server through Python. The server compresses
these patches and adds them to the final point cloud table. This experiment is a proof of
concept; therefore, we limit the number of clients to one computer, using seven threads.

result We load "Vosges" and "Paris" data sets through ’Parallel loading’, and "Stereo"
through Distributed parallel loading’ (Table 6). Morevover we load a part of Vosges data
set using PDAL (multi-threaded). Because van Oosterom et al., 2015 also use PDAL,
this provide a rough way to compare our results with theirs. We estimate the loading
speed of the Vosges data set with PDAL at 300kpts/s, and the writing speed at about
750kpts/s.

We try to roughly estimate the bottleneck of each method in the following way: we
vary the number of core used. If the timing is linear with the number of core, the process

10 http://w3.impa.br/~diego/software/rply

11 http://lastools.com

12 www.github.com/dranjan/python-plyfile

74

http://w3.impa.br/~diego/software/rply
http://lastools.com
www.github.com/dranjan/python-plyfile

Table 6: Loading and writing time for each point cloud data set, using various methods.

da
ta

se
t

Lo
ad

in
g

ti
m

e

Pa
ra

lle
lis

m

Lo
ad

in
g

sp
ee

d
kp

ts
/

s

W
ri

tt
in

g
sp

ee
d

M
pt

s/
s

w
ri

tt
in

g
lim

it
at

io
n

Vosges 11h30 8 125 1.1 write speed

Paris 8h 6 74.5 0.2
read /

uncompress

Stereo 7’20 7 160 0.55 read

is CPU-bound, that is CPU is the bottleneck. Else, input/output (I/O) is the most likely
bottleneck. We estimate that the pipping mechanism is not likely to be the bottleneck.

For PDAL, the bottleneck is clearly the CPU, for both of our methods, the input/out-
put (I/O) may also play a role. Indeed, the point files are read over the network, and the
point tables are stored on the SSD, but the final patch table is stored on the regular disk,
which also limits how many threads can write data on it at the same time (we observe
almost linear scaling for all methods up to 7 threads).

Please note that PDAL and our methods do not use the same grouping rules (PDAL
uses fixed max size (streaming friendly), while we group points into fixed size cubes
(necessitate to read the whole input file before grouping)). Results are in the table 6.

2.4.3 Point Clouds and Context

First, we demonstrate the construction of several two-dimensional (2D) vectorial visu-
alisations of point clouds. The PCS can work on all point clouds at the same time,
transparently for the user. Point clouds can also be used conjointly with other GIS data
(raster and vector). Lastly, we show an example that demonstrate the use of the sensor
trajectory metadata (Sec. 2.4.3.5 p. 78), and the creation of graph / topology at the patch
level.

2.4.3.1 Coverage visualisation

Creating a coverage visualisation is easy (about 30 SQL lines) and fast (about 150s, one
thread) with our point cloud server.

ST_Buffer(
 ST_Union(
 ST_Buffer(
 patch::geometry
 ,+1)
)
,-1)

ST_Buffer(
 ST_Union(
 ST_Buffer(
 patch::geometry
 ,+10)
)
,-10)
GROUP BY section_id

ST_Simplify(
 trajectory,10
)

ST_Centroid(
 ST_Extent(
 patch::geometry
)
)

Figure 44: Successive visualisations (various scale) of point cloud coverage, see 2.3.3 for details.

75

This visualisations are created using patches 2D extend, and, therefore, do not neces-
sitate to use points. Indeed, instead of working with billions of points, we can work
with millions of patches (generalising the points).

We created several visualisations for the Paris data set, ranging from 5MByte to
100kByte, each adapted to a different scale and purpose. (see Figure 44)

• 1:25 to 1:1500: Precise, occlusions visible (∼1m).
• 1:1.5k to 1:15k: Understand acquisition structure and road morphology (∼8m).
• 1:15k to 1:200k: Use the trajectory. If not available, fabricate a trajectory-ersatz

through basic straight skeleton.
• >1:200k: A simple point with text attributes for details, linked to a relational

model.

Figure 45: "To-Do" hexagonal map showing the places where the mapping vehicle has not sensed
enough points (red hexagon), and where the sensing is sufficient (blue hexagon).
Without this map, the zoomed missing part is challenging to notice on raw data.

As a proof of concept, we propose a coverage hexagonal grid (see Figure 45), con-
ceptually identical to regular grid, with some benefits (see Sahr, 2011). The idea is to
visualise both what was sensed and what remains to be sensed in a given area (here
whole Paris city), to help plan data-sensing missions. The whole process is fully auto-
matic. We fabricate an hexagonal grid over the extent of Paris (about 30s), and remove
the hexagons that are in buildings or too far from road (about 60s). Then we colour the
hexagons depending on whether the point cloud really covers it or not(about 30s). Such
a visualisation is easy to create (about 30 minutes of design), and could be tailored to
more specific needs.

2.4.3.2 Using several point clouds

As a proof of concept of integration of several point clouds, we demonstrate the conjoint
use of stereo-vision point cloud and Lidar point cloud. For this experiment, we choose
to use PostgreSQL inheritance mechanism. The idea is to create a ’parent’ table. We
set the Lidar table and stereo-vision table to be a ’child’ of the ’parent’ table. Then
we can query the ’parent’ table as if it was a super-point cloud comprised of all the
others. Querying the ’parent’ point cloud is as fast as querying one point cloud, and we
correctly attain points from both point clouds. We stress however that all the child point
clouds index are used, which would limit the scaling of this method.

2.4.3.3 Conjoint use with other GIS data

We commonly used vector data with point clouds for various research projects. Here,
the scenario is that we have an accurate but slow pedestrian crossing reconstructing

76

Table 7: Result of filtering.
Total

points
Found
points

Filtering
no rast.

Filtering
w. rast.

Filtering
optim

2.15 Bpts 1.2 Mpts ∼30ms ∼ 5s ∼30ms

Figure 46: Streets and buildings. Generalisation like Bounding Box, Oriented BBox, Spatial clos-
ing. Closing on 3D plan detection. Level Of Details.

process. We want to reconstruct the pedestrian crossing at a given intersection, so we use
advanced filtering to provide the appropriate points to the reconstructing process (see
Figure 37 on page 64). The complete corresponding SQL query is available in Appendix
(C.1 on page 238).

To demonstrate the possibilities, we use the following:
• Corrected version of ODParis13 building layer (350 k rows),
• Lidar sensor trajectory (42 k points regrouped in 900 rows),
• Road network data of BDTopo14 (32 k rows),
• Aerial image in a PostGIS raster table (110k rows, each 30× 30 pixels (10 cm)).

We filter Paris point cloud to obtain patches :
• near street ’Palatine’ and ’Servandoni’ (6 10 m+ road width),
• near Lidar acquisition centre trajectory (6 3 m),
• far from buildings (> 1 m),
• with high density (> 1000 points /m3),
• where the aerial image has a colour compatible with street. markings (240 6 mean

intensity 6 350)
The point cloud server finds all the patches concerned in about 0.6s (with index and

optimally written query) (see Figure 37 and Table 7).

2.4.3.4 Point cloud as a raster or vector

We construct abstract representations of patches that are sufficient for one task, and are
much more efficient than using the points, including the following:

• 2D bounding box (’bbox’) (default)
• oriented bounding box (’obbox’), light
• multi-polygon obtained by successive dilatation and erosion of points (’closing’),

big to store, very accurate
These generalisations are about 0.5% of the compressed patch size. We also tested 3D

generalisations, either by extracting primitives (plan, closing on 3D plan, cylinder) or

13 http://opendata.paris.fr/page/home

14 http://professionnels.ign.fr/bdtopo

77

http://opendata.paris.fr/page/home
http://professionnels.ign.fr/bdtopo

using LOD.
Lafarge et al., 2013 showed that the urban point clouds can be accurately represented
by primitives. For instance, a dozen plans accurately explains (distance 6 1cm) 70 % of
this scene (Figure 46). We extensively tested an orthogonal approach, where instead of
making a new object to generalise a group of points, we represent it by a subset of well
chosen points of this group. The method and its applications (adaptive LOD, density
analysis, and classification using density features) are explained in Cura, Perret, and
Paparoditis, 2016 (Working paper).

2.4.3.5 Using trajectories with point clouds

We imported the Paris trajectory data (the successive positions of the Lidar sensor every
few ms). In fact, using a constrained data model resulted in discovering errors in the
raw trajectory data (some rows were corrupted). Trajectories can be used for filtering
point clouds (for instance, Sec 2.4.3.3).
We demonstrate the use of trajectories for processing in the following scenario. The goal
is to localise all the pedestrian crossings of the Paris data set (few minutes). We (concep-
tually) walk along the trajectories, and every three metres we retrieve the patches closest
to the trajectory. We use a crude marking-detection function on these patches (percent
of points in given intensity range). By thresholding this score, we can be conservative
or very selective (i.e. favour recall or precision). Recall is the amount of correctly found
crossing over the total number of crossing. Precision is the amount of crossing that were
correctly found divided by the total number of found crossing.

For instance, with a recall of 0.95, we have a precision of 0.5, and we already filtered
the point cloud by a 4.8 factor. This indicates that we reduced the number of points to
consider by a factor 4.8 at the price of dropping 5 % of the pedestrian crossing to be
found. This could directly be used as a prefiltering step for a more costly pedestrian
crossing detector, which would work on 4.8 times less points (at the price of missing at
least 5 % of pedestrian crossings).

Orthogonally, with a recall of 0.16 we have a precision of 1, filtering the point cloud
with a factor 100. This indicates that we can guarantee that the found pedestrian cross-
ing are effectively pedestrian crossing for 16% of those. This could be useful for fast
prototyping. Indeed we may want to test a more subtle pedestrian crossing detector. In
this case knowing there is no false positive is important to evaluate the new method.

Figure 47: Rough pedestrian crossing detector.

78

2.4.3.6 Point cloud as Graph / Topology

We generate a graph embedded in 3D from patches and propose three examples of
applications.

First we generate the graph by creating a node per patch, the node being at the
patch centroid. Patches are regularly spatially placed (for instance forming cubes of 1

m3). Because the patches are formed by grouping points on a 3D grid, the nodes have
globally a 3D grid structure. We de-duplicate results to correctly deal with the fact that
the acquisition vehicle made several passes at this place. Then we construct an edge for
each pair of nodes that are spatially close. Depending on the threshold, we can use 4,8
or more connectivity (the graph is in 3D, full 3D connectivity is 26). Figure 48 illustrate
the different kind of connectivity.

Figure 48: Classical example of possible connectivity by connecting patch centres that are closer
(3D distance) than a threshold (1.4, 1.5, 1.9 metres), that is how connected is the graph.

The edge weight is the 3D geometric distance between the nodes (or a more complex
measure).

shortest path The first example takes advantage of geodesic distance to compute
the shortest path between two groups of points (see figure 49). We construct two graphs,
one for the regular fixed-size-grouping (1 m3), and one for a variable-size-grouping (0.25

to 1 m wide patches). We use PGRouting to find the shortest path (about 0.1 sboth cases).
Both results are similar, with the shortest path along varying size patches being a better
approximation, as expected. This functionality of geodesic distance could typically be
used by other advanced processing methods.

semantic isochrone The second example is intended for semantic point clouds.
We suppose that each patch has already a rough classification available (aggregated
from available point classification or the result of a direct patch classification(Cura, Per-
ret, and Paparoditis, 2016, Working Paper). We integrate this classification with the
geometric distance to create a semantic-geometric distance. We use the geometric dis-
tance divided by a measure of similarity of the patch classes. For instance two patches
are spatial neighbours, one being a ground patch and another a building patch. The
semantic-geometric distance will be large.

The graph can then be used for assisted selection. In this scenario we would like to
get all the points pertaining to a façade. A user selects one patch on the façade, then all
the patches within a given semantic-geodesic distances are selected (red/yellow) using
PGRouting isochrone functionality. This results in selecting only the given façade, as

79

Figure 49: Two views of shortest path on regular (yellow) and varying (orange) size patches.∼
100ms

opposed to using a simple geometric distance which would also select point on other
façades (geometrically close, but not connected see Figure 50).

More generally high level object reconstruction algorithm would need this kind of
feature.

selected patches

geometric distance

semantic-geometric dist.

Initial patch:

:

:

Figure 50: Isochrone from the red to yellow, blue points are selected when using geometric
distance, but not selected when using semantic-geodesic distance (about 0.4 s).

road network reconstruction The third example use a simplified graph as
the starting point to reconstruct a road network (See Figure 51). The idea is to regroup
nodes of the graph to simplify it. We generate the simplified graph by sampling patch
centroid on a voxelic grid (8 m) coarser than the typical patch size (1 m wide), taking

80

in priority the patch with greatest number of points, and removing patch that are not
flat enough to be on the ground. We could directly use semantic information if it was
available to keep only ground patches. Edges are created as usual (geometric proximity).

Please note that such down-sampling of patches is easy to write and fast, and could
as easily replaced by more subtle aggregates :

SELECT DISTINCT ON (f l o o r (X) , f l o o r (Y) , f l o o r (Z))
patch_centro id AS node

FROM patch_tab le /*X,Y,Z are patch centroid coordinates*/

WHERE /*trying to characterise ground patches to avoid getting facade and

trees patches*/

num_points > 1000

AND patch_height < 0 . 4 --in meter ...

ORDER BY f l o o r (X) , f l o o r (Y) , f l o o r (Z)
, num_points DESC -- large patches have priority

Figure 51: From simplified graph, all topological distance from a vertex to any vertices close
enough are computed with PGRouting, the result is clustered using spectral cluster-
ing of Pedregosa et al., 2011. We then reconstruct the network with PostGIS Topology,
and perform a final simplification step. For comparison an automated result using a
straight skeleton based method.

Using PGRouting and PostGIS, we compute the accumulated graph-distance between
all the pairs of nodes close enough (50 m). We can see those (node1,node2, t_distance)
as edges of another graph. We create the sparse affinity matrix of this graph using Net-
workx (Hagberg, Schult, and Swart, 2008). Then we use spectral clustering with Scikit-
Learn (Pedregosa et al., 2011), each node is then attributed to a cluster. Networkx and
Scikit-Learn are python modules that we use in base via plpython. We can replace the
cluster by their centroid, and build a network by computing cluster adjacency relations.

81

We then simplify this network by "healing" 2-connected edges. We compare this result
with a more traditional straight-skeleton based approach (use morphological operation
to produce a polygon with holes representing the surface of the streets, use straight
skeleton to produce centrelines, clean the straight skeleton result with morphological
operations, build a network, topologically clean the network).

2.4.4 Point Cloud Filtering

filtering overview Overall, filtering of patches is very fast on the Point Cloud
Server when an index is used (6 0.1s). We tried a great variety of combination of
filtering conditions, and always observed this kind of timing provided that indexes were
used. This is not a suprise, as for the database (postgresql), indexed filtering queries over
millions of rows (filtering on patch) are very standard. The Section 2.4.3.3 was designed
to give an overview of filtering conditions. Advanceed filtering conditions examples can
be found in the method wiki15. Finding the patches is almost always much faster than
actually retrieving them.

Because of caching and the influence of how the query is written, figures are only
indicative. Filtering patches using the indexed functions takes about 0.01s, even when
using many conditions at the same time. This includes filtering with spatial (2D and
2D+Z), temporal, any other attributes, density, volume, etc. This also includes using
vector generalisation. Filtering with other GIS data (vector) is slower (10s), except when
special care is taken to optimise the query (0.01ms), that is purposely write the query
to use the fastest filtering conditions first. This includes using distance to other vector
layers, using other vector layer attributes (e.g. height of building), using time associated
with vectors, etc. Lastly, very complex filtering may take from 10s up to several minutes
depending on the number of patches concerned. This is always the case when the total-
lity of patches have to be used for filtering. For instance, we can cluster the point cloud
so as to filter the patches that are similar (whatever the similarity measure).

2.4.5 Exporting

In this section we list the results for the various output methods of the PCS.
We estimate the output speed using parallelised (8 threads) PDAL to 750kpoints/s

on the Vosges data set, by simply measuring the time taken to output few hundred
million points.

using postgresql drivers/connector (’client oriented’) We create a Python
method that works on a client computer. It reads uncompressed patches from the server
and directly writes them to disk (saving it as Numpy double array). Using seven parallel
workers, the result is in Table 6 p. 75.

ply file as a service (plyfas) ’server oriented’ We create a service that
writes ASCII .ply files at a given network place. The functions (API) have options to
perform all kinds of filtering. We exported several files from the Paris data set, with

15 https://github.com/Remi-C/Pointcloud_in_db/wiki/Point-Cloud-File-As-A-Service#

using-custom-codes

82

https://github.com/Remi-C/Pointcloud_in_db/wiki/Point-Cloud-File-As-A-Service#using-custom-codes
https://github.com/Remi-C/Pointcloud_in_db/wiki/Point-Cloud-File-As-A-Service#using-custom-codes

various filtering options and LOD (from Cura, Perret, and Paparoditis, 2016, working
paper). The global output time observed is around 15 k points/s per worker with a
scaling of up to seven workers.

lens for traditional gis Points are in fact a PostgreSQL materialised view that
store points that are defined by the lens spatial extent and attributes. We also add a
trigger on the lens table so to refresh the point view upon changes on lens. Optionally,
a QGIS plugin16 can also be used to improve interactivity (instantly autosaving changes
concerning PostGIS layers). If the lens is small enough, this method is interactive (∼ 2s).
See figure 39 page 67.

streaming to browser ’server oriented’ We performed a test of point cloud
streaming to a WebGL application, using a Node.js server as the ’man in the middle’.

• The browser is set to a geographical position, and then requests the points around
this position to the Node.js server.

• The Node.js server connects to the PCS to request the points.
• The PCS uses indexes to find patches and get points within these patch. These

points are are then streamed to Node.js server through cursor use.
• The Node.js server compresses the point stream and sends it to the web browser.
• The web browser parses the stream, puts the points into buffers, sends the points

to the graphic card and display them through shaders (WebGL).
We observed a reduced throughput (∼ 20 kpts/s, monothread) because data is ineffi-
ciently transmitted as text, and is serialised/deserialised multiple times.

2.4.6 Processing Point Cloud with the Server

The PCS can be extended by in-base and out-of-base processing. In-base processing are
methods that are executed by the database from within, whereas out-of-base processing
are regular processes executed outside of the database (possibly on other computers)
that get data from database, process, and then write results in database or elsewhere.

We demonstrate how easy it is to create new in-base processing methods. As such the
methods are only cited to illustrate these capacities. Some details may be found in Cura,
2014.

in-base processing Fast prototyping is vital for wider point cloud use. We demon-
strate the potential of using high level languages within the database to write simple
processing methods. The experiment is not to create state-of-the-art processing methods,
but to measure what a Python/R beginner can do in two weeks (designing methods and
implementing), using well established tools like Scikit-learn (Pedregosa et al., 2011) or
the PointCloud Library (Rusu and Cousins, 2011).

((P): directly working on patches, can be used out of the box on all point clouds;
(R): working on rasterised point clouds, need to use a point cloud to raster conversion
method first (in base or out of base))

• (P) clustering points using Minimum Spanning Tree
• (P) clustering points with DBSCAN (Ester et al., 1996)
• (P) extracting primitives (planes and cylinder)

16 http://remi-c.github.io/interactive_map_tracking

83

http://remi-c.github.io/interactive_map_tracking

• (P) extracting a verticality index (using Independent Component Analysis)
• (R) detecting façade footprint
• (R) detecting cornerstones
• (R) detecting road markings

We also used the server for complex out-of-base processing (classifications), although
for the sake of brevity this is detailed in a standalone article (Cura, Perret, and Paparo-
ditis, 2016).

84

2.5 discussion

2.5.1 Storing groups of points in a RDBMS

We introduce storing groups of points in Section 2.3.1 on page 58, and we study differ-
ent grouping rules in Section 2.4.1 on page 70.
Storing groups of points in the PCS offers strong advantages in term of compression, in-
dexing and generalisation. Yet it all depends on the hypothesis that points are grouped
into groups that are meaningful for the intended applications. Both spatial and tem-
poral grouping produces good results. Spatial grouping with fixed size patch can be
a problem when the density varies much (terrestrial Lidar), as patch may contain very
few or too much points. We experimented with varying patch size and demonstrated
that resulting patches have a much more regular density.

We noted a limitation concerning the point cloud types which are strongly con-
strained, thus adding or removing attributes is not immediate. As a perspective, an
inheritance scheme between point types would solve this problem.

We demonstrated that storing groups of points is well adapted to store billions of
points per table. Yet the PCS would have trouble going over a few thousand tables,
theoretically limiting the total number of points to the 10 trillion-points range. To go
beyond that, we would need to use supplementary PostgreSQL sharding and clustering
capabilities. Those capabilities exist but have not been used yet for point cloud, to the
best of our knowledge.

Storing groups also enables a generalisation approach, because instead of workong
with points, we work with various representations of groups of points. By selecting the
appropriate representation (a plane, a 3D bounding box, statistics, etc.) we can accel-
erate and facilitate many point cloud usages. In this work we only considered a few
generalisations, and used them in limited ways. Much more advanced generalisations
and usages would be possible (for instance, using Gaussian Mixture).

2.5.2 Loading

We present several methods to load points into the PCS (Sec. 2.3.2 on page 60), and test
them on several datasets (Sec. 2.4.2 on page 74). We sucessfully demonstrate a sufficient
speed to fulfil our practical requirement of loading one day of sensing data in less than
one night. Examining (Martinez-Rubi et al., 2014, Table 2) shows that data loading could
be much faster. In the Parallel loading (’Server oriented’) scenario, points are converted
to ascii and streamed, which is a wast of ressources. The PCS could directly read .ply
or .las files. In this scenario the database performs the grouping via generic SQL query.
It might be faster to create a tuned C function to do this, as the grouping is made per
file, and therefore not too memory intensive.

In the Distributed parallel loading (’Client oriented’), the client performs the group-
ing, but the database still performs the compression. The client could also compress,
saving bandwidth and computing time for the server. Moreover, our prototype is writ-
ten in Python and could be written for efficiency in lower level languages. As such the
relatively recent initiative, PDAL17 has gained maturity, and would be the ideal candi-
date to solve these two limitations.

17 http://www.pdal.io/

85

In a more distant perspectives, we could skip reading post processed .las or .ply files,
and directly read the raw sensor data, which might be nevertheless difficult due to
current lack of driver and standard accessors.

2.5.3 Point Cloud and Context

Point clouds are not only set of points and also contains very important meta-data
(Sec. 2.3.3 on page 61). We used these meta-data in several ways (Sec. 2.4.3 on page 75).

We demonstrated that such meta-data can be useful to create multi-scale visualisation
of point clouds coverage, as well as help to analyse sensed area ("Todo" map).

Each point cloud meta-data scheme must defined and enforced by the user, mak-
ing it hard to share. A standard minimal data model would be necessary to facilitate
exchanges, similar in spirit to the INSPIRE18 European directive.

A shared meta-data scheme allows to use several point cloud together. We tested
the PostgreSQL inheritance mechanism so all point cloud are parts of one meta-point
cloud. Current limitations of this mechanism would prevent it to be used on more than
a dozen point clouds, but perspectives exist to solve this problem (using rule system or
enforcing a table-wide pre-filter based on table coverage).

In the PCS the point clouds also have representations compatible with other GIS data,
such as vectors and rasters. Conjointly using vectors, rasters and point clouds offers a
new world of possibilities. We face data fusion issues, like difference in precision, gener-
alisation, fuzziness, etc. Moreover, vector, raster and point cloud data may be acquired
at different dates.

In-base conversion from point cloud to raster are currently very slow and tailored,
being based on SQL queries. A python-based prototype19 method may solve these limi-
tations.

Going one step further, we demonstrate that point clouds could be generalised as
graph whith each patch being generalised as a node of this graph. This opens new
possibilities, such as graph based distance, semantic selection and road network recon-
struction. However, the current approaches build the graph using plain PostGIS SQL
queries that can not scale well beyond the million of patches. The bottleneck is simply
the conversion from patches centroid to a graph based on adjacency, and could be done
directly using powerful specialised library, such as Boost graph library20. Moreover, the
reconstructed road network by either methods has large improvement margins (topo-
logically and geometrically). It would be possible to mix PostGIS Topology (2D partition
of the space) for graph queries.

2.5.4 Filtering point clouds

The PCS has very advanced capabilities to access a subset of the point clouds (Filtering,
Sec. 2.3.4 on page 64). Filtering relies on indexing and we demonstrate it is very fast
provided the filtering conditions are indexed and the points are grouped in meaningful
groups (2.4.4 on page 82). Metadata (for instance trajectory) naturally integrate well
into the filtering conditions. Metadata are linked to point cloud via classical relational

18 http://inspire.ec.europa.eu/
19 https://github.com/Remi-C/PPPP_utilities/blob/master/pointcloud/patch_to_raster.py

20 www.boost.org/doc/libs/1_58_0/libs/graph/doc/

86

https://github.com/Remi-C/PPPP_utilities/blob/master/pointcloud/patch_to_raster.py
www.boost.org/doc/libs/1_58_0/libs/graph/doc/

tables. The implicit LOD mechanism we propose also integrates seamlessly with the
filtering framework, because it can essentially be seen as a wrapper over patch that
limits the number of points per patch.

The filtering conditions are especially useful when using other GIS data. It would be
possible to go much further towards complex filtering, by performing algebra between
several rasters, using attributes of vectors to filter patches, etc.
Our entire strategy relies on filtering patches first, then filtering points. In cases when
the patch filtering condition does not filter much, the system is useless.

2.5.5 Exporting

The PCS being based on a popular RDBMS, many ways exist to access data stored in
it (Sec. 2.3.5 on page 66). We demonstrated an array of export methods (Sec. 2.4.5 on
page 82), from classic server based export to multi-client based, up to the notion of point
clouds as service.

The point cloud server can output data in many ways and thus be easily integrated
into any work-flow. We, however, feel that the current speed (100 k points /s, around 2

MByte /s) is too low. It could be easily accelerated using binary outputs and by decom-
pressing patches directly on clients.
Similarly, the lens feature is limited, adapted LOD could be chosen automatically, but
this involves modifying the GIS used for visualisation. Perhaps the true evolution of the
point cloud server would be to stop delivering points, and instead deliver a service that
could be queried through standard mechanisms. For instance, the transactional Web
Feature Service (WFS-t) format could be used to send points out of the box, simply
using a geo-server between the client and the point cloud server. This could be a revolu-
tion in point cloud availability, similar to what happened to geo-raster data (e.g., google
map WFS).

2.5.6 Processing Point Cloud with the Server

One of the advantages of using the PCS is the opportunity to not only store point
clouds, but also the methods to process it (Sec. 2.3.6 on page 68). We demonstrated
the PCS capabilities for fast prototyping of in-base processing methods (Sec. 2.4.6 on
page 83).

The methods we designed are proof of concept, and far from real state of the art.
In-base processing offers many opportunities because it is close to the data and can
be written with many programming languages. Yet, it is also intricately limited to one
thread and the amount of memory allowed for PostgreSQL. The execution is also within
one transaction. It may also be hard to control the execution-flow, during the execution.
However, the Python access both from within and outside the database shows the pos-
sibility to write more ambitious processing methods with several parts executing in
parallel as well as communicating, dealing properly with errors, etc. We sucessfully
integrated the PCS into a more complex classification framework in Cura, Perret, and
Paparoditis, 2016.

87

2.5.7 Future work

Patches and their generalisations are perfect candidates to perform fast and efficient
registration (cloud-to-cloud, cloud-to-raster, etc.). (See figure 52) Indeed, the classical
solution for registering two point clouds relies on a lot of point to point distance com-
puting (in Iterative Closest Point for instance, Besl and McKay, 1992). With large point
clouds the problem grows intractable, and thus a common solution is to subsample the
point clouds to reduce the number of points. This introduces errors, and is still less than
perfect. Using extracted primitives would be better, as visually explained in Figure 52.
Indeed higher level primitives contains much more information (more abstract), and are
much less numerous (more synthetic), both being great for faster registration.

registration
of the two
point clouds

matching
using lines

2 point clouds at
different dates

grouping points geometric proxy
(here lines)

Figure 52: A schematic example of the benefits of using generalisation of points for fast regis-
tering. The critical part of matching could be done on geometric proxies instead of
points, reducing the number of entities to be matched by a factor of at least 103.

Having all the meta-data, the trajectory (or camera position matrices), and the raw
data, it would be possible to change the trajectory (matrices) and regenerate the point
cloud with updated coordinates, all of this from within the database. Indeed the trajec-
tory or camera position are usually known up to a positioning error, being the result
of a process (Structure from motion, GPS positioning, etc.). Yet those positions could be
improved by exploiting other data, manual correction, etc. In this case, the improved
trajectory/ positions could be used to re-generate the point cloud, leading to more ac-
curate point clouds and limiting data duplication. Processing of point clouds would
extract landmarks, which could be matched with a landmark database.

2.6 conclusion

In this article, we presented a complete point cloud server system based on groups of
points (patches). Using these patches as generalisations, we propose solutions for all
point cloud basic user needs (loading, storing, filtering, exporting and processing). The
system is fully open source and thus easily extensible and customisable using many
programming languages (C, Cpp, Python, R, etc.). Our system opens new possibilities
because of intricate synergy with other geo-spatial data. Lastly, we proved through real-
life uses that this system works with various point cloud types (Lidar, stereo-vision), not
only for storing point clouds, but also for processing. As perspective, we could explore
in-base re-registration from trajectory and raw data, in-base cloud-to-cloud registration,
in-base classification, and point streaming, as well as scaling to thousands of billions of
points.

88

3
S T R E E T G E N : P R O C E D U R A L M O D E L L I N G O F S T R E E T S

The goal of this thesis is to reconstruct streets so that the resulting street modelling
can be used in many applications (visualisation, traffic simulation, spatial analy-
sis, etc.). Reconstructing an object always requires to somehow have a model of
it (although it can be implicit). Because we target several applications, we need a
modelling that could be easily extended and accessed, and be flexible with great ex-
pressibility for what it can model. Indeed, street modelling requires to model street
objects, street surfaces, but also several topologies for traffic. To this end, we create
and store the street modelling in a database server. This way, street modelling and
sensing data are in the same place, and this allows scaling and multi-users usage.
This street modelling is used in all other parts of this thesis.

3.1 Abstract . 90
3.2 Introduction . 91
3.3 Method . 92

3.3.1 Introduction to StreetGen . 92

3.3.2 Introduction to RDBMS . 93

3.3.3 StreetGen Design Principles . 93

3.3.4 Robust and Efficient Computing of Arcs 95

3.3.5 Computing Surfaces from Arc Centres 97

3.3.6 Concurrency and scaling . 100

3.3.7 Generating basic Traffic information 102

3.3.8 Roundabout detection . 105

3.3.9 Street Objects : From Road to Street 106

3.4 Results . 109
3.4.1 Estimating default turning radius 110

3.4.2 StreetGen . 111

3.4.3 Using Streetgen for traffic simulation 114

3.4.4 Extending Streetgen applications 115

3.5 Discussion . 118
3.5.1 Estimating default turning radius 118

3.5.2 Street data model . 118

3.5.3 Kinetic hypothesis . 118

3.5.4 Precision issue . 118

3.5.5 Streetgen for traffic . 119

3.5.6 Street objects . 119

3.5.7 Extend use for StreetGen . 120

3.5.8 Fitting street model to reality . 120

3.6 Conclusion . 120

89

3.1 abstract

database server

2546

2513

2499

2515

radius = 3

radius = 3.74

2546

2513

2499

2515

2546

2513

2499

2515

1

2

1

2

1

2609

Input : road axis
network Road surface generation Traffic information

Street ObjectsKynematic hypothesis

StreetGen graphical abstract

Figure 53: StreetGen graphical Abstract.

Streets are large, diverse, and used for several (and possibly conflicting) transport
modalities as well as social and cultural activities. Proper planning is essential and re-
quires data. Manually fabricating data that represent streets (street reconstruction) is
error-prone and time consuming. Automatising street reconstruction is a challenge be-
cause of the diversity, size, and scale of the details (∼ cm for cornerstone) required. The
state-of-the-art focuses on roads (no context, no urban features) and is strongly deter-
mined by each application (simulation, visualisation, planning). We propose a unified
framework that works on real Geographic Information System (GIS) data and uses a
strong, yet simple hypothesis when possible to coherently model streets at the city level
or street level. Because it is updated only locally in subsequent computing, the result
can be improved by adapting input data and the parameters of the model. Our street
model is based on street axis, and contains geometric information (road surface, side-
walk), topological information (street connection), as well as traffic information and
street objects. We reconstruct the entire Paris streets in a few minutes. We tested the
usefulness of our model for several applications, such as 3D city building and traffic
simulation.

90

Figure 54: StreetGen in a glance. Given road axes, reconstruct network, find corner arcs, compute
surfaces, add lanes and markings.

3.2 introduction

Streets are complex and serve many types of purposes, including practical (walking,
shopping, etc.), social (meeting, etc.), and cultural (art, public events, etc.). Managing
existing streets and planning new ones necessitates data, as planning typically occurs
on an entire neighbourhood scale. These data can be fabricated manually (cadastral
data, for instance, usually are). Unfortunately, doing so requires immense resources in
time and people.

Indeed, a medium sized city may have hundreds of kilometers of streets. Streets are
not only spatially wide, they also are very plastic and change frequently. Furthermore,
street data must be precise because some of the structuring elements, like cornerstones
(they separate sidewalks from roadways) are only a few centimetres in height. Curved
streets are also not adapted to the Manhattan hypothesis, which states that city are
organised along three dominant orthogonal directions Coughlan and Yuille, 1999.

The number and diversity of objects in streets are also particularly challenging. Be-
cause street data may be used for very different purposes (planning, public works, and
transport design), it should be accessible and extensible.

Traditionally, street reconstruction solutions are more road reconstruction and are
also largely oriented by the subsequent use of the reconstructed data. For instance,
when the use is traffic simulation Nguyen, Desbenoit, and Daniel, 2014; Wilkie et al.,
2012; Yeh, Zhong, and Yue, 2015, the focus is on reconstructing the road axis (sometime
lanes), not necessarily the roadway surface. In this application, it is also essential that the
reconstructed data is a network (with topological properties) because traffic simulation
tools rely on it. However, the focus is clearly to reconstruct road and not streets. Streets
are much more complex objects than roads, as they express the complexity of a city, and
contains urban objects, places, temporary structures (like a marketplace). The precision
of the reconstruction of the road axis network is, at best, around a metre in terms of
accuracy.

Another application is road construction for the virtual worlds or driving simulations.
In this case, we may simply want to create realistic looking roads. For this, it is possible
to use real-life civil engineering rules, for instance using a clothoid as the main curve
in highway McCrae and Singh, 2009a; Wang, Lawson, and Shen, 2014. When trying to
produce a virtual world, the constructed road must blend well into its environment.
For instance, the road should pass on a bridge when surrounded by water. We can
also imitate real-world road-building constraints, and chose a path for the road that
will minimise costs Galin et al., 2010. Roads can even be created to form a hierarchical

91

network Galin et al., 2011. Such generated roads are nice looking and blend well into
the terrain, but they do not match reality. That is, they only exist in the virtual world.

The aim may also be to create a road network as the base layout of a city. Indeed,
stemming from the seminal work of Parish and Müller, 2001, a whole family of methods
first creates a road network procedurally, then creates parcels and extrudes these to
create a virtual city. These methods are very powerful and expressive, but they may be
difficult to control (that is, to adapt the method to get the desired result). Other works
focus on control method Beneš, Wilkie, and Křivánek, 2014; Chen et al., 2008; Lipp et
al., 2011. Those methods suffer from the same drawback; they are not directly adapted
to model reality.

More generally, given procedural generation methods, finding the parameters so that
the generated model will match the desired result is still an on-going issue (inverse
procedural modelling, like in Martinovic and Van Gool, 2013 for façade, for instance).

In this work, we propose an original approach to the procedural modelling of streets :
StreetGen. We start from rough GIS data (Paris road axis); thus, our modelling is based
on a real road network. Then, we use a basic hypothesis and a simple road model to
generate more detailed data. At this point, we generate street data for a large city (Paris);
the result is one street network model. We use a widespread street network model,
where the skeleton is formed by street axis and intersection forming a network. Then
other constituents (lane, pedestrian crossing, markings, etc.) are linked to this network.
We base all our work on a Relational DataBase Management System (RDBMS), to store
inputs, results, topology, and processing methods.

In Section 3.3 we explain why we chose to base our work on a RDBMS, and explain the
hypothesis, how we generate the road surface, and how the parameters of the resulting
model can be edited. In Section 3.4 we provide results of street generation and results
of editing. In Section 3.5, we discuss the results and present limitations and possible
improvements.

3.3 method

3.3.1 Introduction to StreetGen

Spatial
analysis

Road
axis Road

axis
network

StreetGen

Hypothesis
Street Data

model

Streets
modeling

RDBMS

Visualisation

Traffic
simulation

Figure 55: StreetGen workflow.

The design of StreetGen is a result of a compromise between theoretical and practical
considerations. StreetGen amplifies data using a simple, yet strong hypothesis. As such,
the approach is to attain correct results when the hypothesis appears correct and change

92

the method to something more robust when the hypothesis appears wrong, so as to
always have a best guess result.

Second, StreetGen has been designed to work independently at different level. It can
generates street data at the city level. The exact same method also generates street data
interactively at the street level.

Lastly, StreetGen results are used by different applications (visualisation, traffic sim-
ulation, and spatial analysis). As such, the result is a coherent street data model with
enforced constraints, and we also keep links with input data (traceability).

Figure 55 sum up StreetGen process.
Figure 167 illustrates the street mode lwith the main StreetGen tables and their rela-

tions.

3.3.2 Introduction to RDBMS

We chose to use a RDBMS (*PostgreSQL, 2014- with PostGIS, 2014-) at the heart of
StreetGen for many reasons. First, RDBMSs are classical and widespread, which means
that any application using our results can easily access it, whatever the Operating Sys-
tem (OS) or programming language. Second, RDBMSs are very versatile and, in one
common framework, can regroup our input GIS data, a road network (with topology),
the resulting model of streets, and even the methods to create it. Unlike file-based solu-
tions, we put all the data in relation and enforce these relations. For instance, our model
contains surfaces of streets that are associated with the corresponding street axis. If one
axis is deleted, the corresponding surface is automatically deleted. We push this concept
one step further, and link result tables with input tables, so that any change in input
data automatically results in updating the result. Lastly, using RDBMS offers a multi
OS, multi GIS (many clients possible), multi user capabilities, and has been proven to
scale easily. We stress that the entirety of StreetGen is self contained into the RDBMS
(input data, processing methods, and results).

3.3.3 StreetGen Design Principles

input of streetgen We use few input data, and accept that these are fuzzy and
un-precise, leading to the need of a robust solution.
The first input is a road axis network made of polylines with an estimated roadway
width for each axis. We use the BDTopo1 product for Paris in our experiment, but this
kind of data is available in many countries. It can also be reconstructed from aerial im-
ages Montoya-Zegarra et al., 2014, Lidar data Poullis and You, 2010, or tracking data
(GPS and/or cell phone) Ahmed et al., 2014.
Using the road axis network, we reconstruct the topology of the network up to a toler-
ance using either GRASS GIS (Neteler et al., 2012) or directly using PostGIS Topology
PostGIS Topology, 2014-. We store and use the network with valid topology with Post-
GIS Topology.
The second input is the roughly estimated average speed of each axis. We can simply
derive it from road importance, or from road width (when a road is wide, it is more

1 http://professionnels.ign.fr/bdtopo

93

http://professionnels.ign.fr/bdtopo

circle center
arc

Border point
Border line

lane axis
lane marking

Section
Intersection

Intersection center
Street axis

Figure 56: Street data model. See Appendix C.2 for the detailed database schema

likely that the average speed will be higher).
The third input is our modelling of streets and the hypothesis we create.

Because the data we need can be reconstructed and there is a low requirement on
data quality, our method could be used almost anywhere. In particular, road attributes
may be very basic and can still be corrected if necessary.

street data model Real life streets are extremely complex and diverse; we do
not aim at modelling all the possible streets in all their subtleties, but rather aim at
modelling typical streets with a reasonable number of parameters.

First, we observe that street and urban objects are structured by the street axis. For
instance, a pedestrian crossing is defined with respect to the street axis. At such, we
centre our model on street axes.

Second, we observe that streets can be divided into two types: parts that are morpho-
logically constant (same roadway width, same number of sidewalks, etc.), and transition
parts (intersection, transition when the roadway width increases or decreases).
We follow this division so that our street model is made of morphologically constant
parts (section) and transition parts (intersection). The separation between transition and
constant parts is the section limit and is expressed regarding the street axis in curvilin-
ear abscissa.

Third, classical streets are adapted to traffic, which means that a typical vehicle can
safely drive along the street at a given speed. This means that cornerstone in an inter-
section does not form sharp turns that would be dangerous for vehicle tires. The most
widespread cornerstone path in this case seems to be the arc of a circle, as it is the
easiest form to build during public work. Therefore, we consider cornerstone path to be
either a segment or the arc of a circle. This choice is similar to Wilkie et al., 2012 and is
well adapted to the city, but not so well adapted to peri-urban roads, where the curve
of choice is usually the clothoid (like in McCrae and Singh, 2009b), because it is actually
the curve used to build highways and fast roads.

The surface of intersection is then defined by the farthest points on each axis where
the border curve starts. In this base model, we add lanes, markings, etc.

See Appendix C.2 for the detailed database schema

94

Figure 57: 3 different radius size (3m, 4.9m, 7.6 m) for streets of various importancy, from real
Paris data

kinematic rule of thumb We propose basic hypotheses to attempt to estimate
the radius of the corner in the intersection. We emphasise that these are rules of thumb
that give a reasonable best guess result, and does not mean that the streets were actually
made following these rules (which is false for Paris for instance).

Our first hypothesis is that streets were adapted so that vehicles can drive conve-
niently at a given speed s that depends on the street type. For instance, vehicles tend to
drive more slowly on narrow residential streets than on city fast lanes.
Our second hypothesis is that given a speed, a vehicle is limited in the turns it can make.
Considering that the vehicle follows an arc of circle trajectory, a radius that is too small
would produce a dangerous acceleration and would be uncomfortable. Therefore we are
able to find the radius r associated with a driving speed s through an empirical function
f(s)− > r. This function is based on real observations of the French organisation SETRA
(SETRA, 2006) (For function, see Section 1).

From our street data model and these kinematic rules of thumb, we deduce that if
we roughly know the type of road, we may be able to roughly estimate the speed of
the vehicles on it. From the speed, we can estimate a turning radius, which leads to
the roadway geometry (See Figure 57). We stress that in fact any heuristics or rule of
thumb could be used here, as the kinematic hypothesis is used as a default modelling
hypothesis, but does not accurately represent the reality.

Schematically, we consider that a road border is defined by a vehicle driving along it
at a given speed, while making comfortable turns.

3.3.4 Robust and Efficient Computing of Arcs

goal The hypotheses in the above section allow us to guess a turning radius from
the road type. This turning radius is used to reconstruct the arcs of a circle that limits

95

the junctions. The method must be robust because our hypotheses are just best guesses
and are sometime completely wrong.

Given two road axis (a1,a2) that are each polylines, and not segments), having each
an approximate width (w1,w2) and an approximate turning radius (r = min(r1, r2), or
another choosing rule), we want to find the centre of the arc of the circle that a driving
vehicle would follow.

a1

a2

w1

w2
I

circle
center

r

I I
1

I
2

Figure 58: Finding the circle centre problem. Left classical problem, middle and right using real-
world data.

method Our first method was based on explicit computing, as in Wang, Lawson,
and Shen, 2014, Figure 13. However, this method is not robust, and has special cases
(flat angle, zero degree angle, one road entirely contained in another), is intricately two-
dimensional (2D), and, most importantly, cannot be used on poly-lines. Yet real-world
data is precisely made of poly-lines, due to data specification or errors.

We choose to use morphological and boolean operations to overcome these limita-
tions. Our main operators are positive and negative buffers (formally, the Minkowski
sum of the input with a disk of given size) as well as the surface intersection, union, etc.

We are looking for the centre of the arc of the circle. Thus, by definition the centre
could be all the places of distance of d1 = w1 + r from a1 and distance of d2 = w2 + r

from a2.
We translate this into geometrical operations:

• bufferi, buffer of ai with di

• inter, the intersection of boundary of buffers, which is commonly a set of point
but can also be a set of points and curve. All those place could be circle centre.

• closest, the point of inter that is the closest to the junction centre. We must filter
this among the candidates in order to keep only the one that makes the most sense,
given our hypotheses.

when hypothesis are wrong In some cases closest may be empty (when one
road is geometrically contained in another considering their width for instance). In this
case our method fails with no damages, as no arc is created.
The radius may not be adapted to the local road network topology. This predominantly
happens when the road axis is too short with respect to the proposed radius. In this
case, we reduce the guessed radius to its maximal possible value by explicitly comput-
ing the maximum radius if possible.

96

Figure 59: A method to robustly find circle centres using geometric operations. Buffer of axis
is computed, then the intersection of outer ring of buffer returns a set of candidates
points. Among the candidates, the one closest to the intersection centre are the final
circle centre.

It also happens that the hypotheses regarding the radius are wrong, which creates ob-
viously misplaced arcs. We chose a very simple option to estimate whether an arc is
misplaced or not and simply use a threshold on the distance between the arc and the
centre of the intersection. In this case, we set the radius to a minimum that corresponds
to the Paris lane separator stone radius (0.15 m).

3.3.5 Computing Surfaces from Arc Centres

border points When centre of circles are found, we can compute the associated
arcs and find intersection limit (See Fig. 60). We create the corresponding arc of circles
by projecting the centres of the circle on both axis buffered by wi. In fact, we do not use
a projection, as a projection on a polyline may be ill-defined (for instance projecting on
the closest segment may not work). Instead, we take the closest point.

Similarly, we ’project’ the circle centre onto the road axis. We call these projections
candidate border points. We have two or less border points per axis per intersection.

97

Figure 60: From circle centres, border points that limit the intersection are found by projection
and filtering (farthest from intersection centre).

According to our intersection surface model, we only keep one of the candidates per
axis per intersection, choosing the candidate that is the farthest from the intersection
centre. We define the distance from the intersection centre by using the curvilinear
abscissa, which is necessary because, in some odd cases, the Euclidian distance may be
misleading.

I
border point

border line

estimated

Figure 61: Creating the border line by cutting the section following a local estimation of the
normal.

section and intersection surface We compute the section surface by first
creating border lines at the end of each section out of border points. The border lines
are normal to a local straight approximation of the road axis. Then, we use these lines
to cut the bufferised road axis to obtain the surfaces of road axis that are within the
intersection.

At this point, it would be possible to construct the intersection surface by linking
border lines to arcs, passing by the buffered road axis when necessary. We found it
too difficult to do it robustly because some of the previous results may be missing or
slightly false due to bad input data, wrong hypotheses or a computing precision issue.

98

Figure 62: From cutted axis surfaces and arcs, the function ST_BuildArea build the maximum
area possible.

We prefer a less specific method. We use the "ST_BuildArea" function (See Fig. 62).
Given a set of geometries, it breaks all the geometries into polylines, then creates largest
possible surface from those polylines. We use it on cut roads and arcs.

Figure 63: Variable buffer for robust roadway width transition.

variable buffer In the special case where the intersection is only a change of
roadway width, the arc of the circle transition is less realistic than a linear transition.
We use a variable buffer to do this robustly. It also offers the advantage to being able to
control the three most classical transitions (symmetric, left, and right) and the transition
length using only the street axis.

We define the variable buffer as a buffer whose radius is defined at each vertex (i.e.,
points for linestring). The radius varies linearly between vertices. One easy, but ineffi-
cient solution to compute it is to build circles and isosceles trapezoids and then union
the surface of these primitives. We use the easy version.

lane , markings , street objects Based on the street section, we can build lanes
and lane separation markings. To this end, we cannot simply translate the centre axis
because axis are polylines (See Fig. 64). Instead, a function similar to a buffer has to be
used ("ST_OffsetCurve").

Our input data contains an estimation of the lane number. Even when such data
is missing, it can still be guessed from road width, road average speed, etc., using
heuristics. The number of lane could also be retrieved from various remote sensing

99

Figure 64: Starting from center line (black), a translation would not create correct a lane (red).
We must use the buffer (green).

data. For instance, Jin, Feng, and Li, 2009 propose to use aerial images. We can also
build pedestrian crossings along the border lines.

Using intersection surfaces and road section surfaces, we build city blocks (See Fig.
65). We define crudely a city block surface as the complementary surface to its bounding
road surfaces and road intersections. However, because all the road surface surrounding
a city block may not have been generated, we use the road axis instead the road surface
as city block limit when road surface is missing.

Because the road axis network has been stored as a topology, getting the surface
formed by the road axis surrounding the desired block is immediate. Then, we use
Boolean operations to subtract the street and intersection surfaces from the face. This
has the advantage that this still provides results when some of the street limiting the
block have not been computed, which is often the case in practice. By definition, the
universal face ("outside") is not used as a city block.

Figure 65: We generate city blocks by computing the surface that is bounded by associated road
surface, road intersection, and road axis when no road surface is available (top of
illustration).

3.3.6 Concurrency and scaling

The aim of this work are to model streets for a whole city in a concurrent way (that
is several process could be generating the same street at the same time). Our choice

100

of method is strongly influenced by those factors, and we use specific design to reach
those goals, which are not accessory but essential.

one big query We emphasize that StreetGen is one big SQL query (using various
PL/pgSQL and Python functions).
The first advantage it offers is that it is entirely wrapped in one RDBMS transaction.This
means that, if for any reason the output does not respect the constraints of the street
data model, the result is rolled back (i.e., we come back to a state as if the transaction
never happened). This offers a strong guarantee on the resulting street model as well as
on the state of the input data.

Second, StreetGen uses SQL, which naturally works on sets (intrinsic SQL principle).
This means that computing n road surfaces is not computing n times one road sur-
face. This is paramount because computing one road surface actually requires using
its one-neighbours in the road network graph. Thus, computing each road individually
duplicates a lot of work.

Third, we benefit from the PostgreSQL advanced query planner, which collects and
uses statistics concerning all the tables. This means that the same query on a small or
big part of the network will not be executed the same way. The query planner optimises
the execution plan to estimate the most effective one. This, along with extensive use of
indexes, is the key to making StreetGen work seamlessly on different scales.

one coherent streets model results One of the advantage of working with
RDBMSs is the concurrency (the capacity for several users to work with the same data
at the same time).
By default, this is true for StreetGen inputs (road network). Several users can simulta-
neously edit the road axis network with total guarantees on the integrity of the data.

However, we propose more, and exploit the RDBMS capacities so that StreetGen does
not return a set of streets, but rather create or update the street modelling.
This means that we can use StreetGen on the entire Paris road axis network, and it will
create a resulting streets modelling. Using StreetGen for the second time on only one
road axis will simply update the parameters of the street model associated with this
axis. Thus, we can guarantee at any time that the output street model is coherent and
up to date.

See Appendix C.2 for the detailed database schema.
Computing the street model for the first time corresponds to using the ‘insert’ SQL

statement. When the street model has already been created, we use an ‘update’ SQL
statement. In practice, we automatically mix those two statements so that when com-
puting a part of the input road axis network, existing street models are automatically
updated and non existing ones are automatically inserted. The short name for this kind
of logic (if the result does not exist yet, then insert, else update) is ‘upsert’. Please note
that at the time of the thesis, such ’upsert’ had not been added to PostgreSQL, but have
been available since the version 9.5.

This mechanism works flawlessly for one user but is subject to the race condition for
several users. We illustrate this problem with this synthetic example. The global streets
modelling is empty. User1 and User2 both compute the street model si corresponding
to a road axis ri. Now, both users upsert their results into the street table. The race
condition creates an error (the same result is inserted twice).

101

User1 User2result
table

s_i exists?

no

insert s_i

empty

s_i s_i exists?

update s_i

yes

User1 User2result
table

s_i exists?

no

insert s_i

empty

s_i

s_i exists?

insert s_i

no

error, s_i
already exists

Figure 66: Left, a classical upsert. Right, race condition produces an error.

We can solve this race problem with two strategies. The first strategy is that when the
upsert fails, we retry it until the upsert is successful. This strategy offers no theoretical
guarantee, even if, in practice, it works well. We choose a second strategy, which is
based on semaphore, and works by avoiding computing streets that are already being
computed.

When using StreetGen on a set of road axes, we use semaphores to tag the road
axes that are being processed. StreetGen only considers working on road axes that are
not already tagged. When the computing is finished, StreetGen releases the semaphore.
Thus, any other user wanting to compute the same road axis will simply do nothing
as long as those streets are already being computed by another StreetGen user. This
strategy offers theoretically sound guarantees, but uses a lot of memory.

3.3.7 Generating basic Traffic information

3.3.7.1 Introduction

StreetGen is based on tables in a RDBMS. As such, its model is extremely flexible and
adaptable. We use this capacity to generate basic geometric information needed for
traffic simulation. The world of traffic simulation is complex, various methods may
require widely different data, depending on the method and the scale of the simulation.

For instance, a method simulating traffic nation-wide (macro simulation) would not
require the same data as a method trying to simulate traffic in a city, neither as a method
simulating precise trajectory of vehicle in one intersection.

Moreover, traffic simulation may require semantic data. For instance an ordinary traf-
fic lane and the same lane reserved to bus may be geometrically identical but have a
very different impact in the simulation.

Traffic simulation may require traffic light sequencing, statistics about car speed and
density, visibility of objects, lighting, etc.

Therefore, we do not pretend to provide data for all kind of traffic simulations, but
rather to provide basic geometric data at the scale of a city. The basic geometric in-
formation we choose to provide are lane and lane interconnection. Because lane and

102

interconnection are integrated into StreetGen, the links between lane, interconnection
and road network (road axis, intersection) is always available if necessary.

We define lane as the geometric path a vehicle could follow in a road section. A lane
is strictly oriented and is to be used one-way. The intersections are trajectories a vehicle
could follow while in an intersection, to go from one road section (lane) to another road
section (lane). Similarly, interconnections are one-way.

3.3.7.2 Generating Lanes

Our data contains an approximate number of lane per road axis. Even in absence of
such data, it could be estimated based on the road width and importance.

We compute the lanes of an axis using the buffer operation (formaly Minkowsky
sum with disk), as a simple translation would not produce correct result (See Fig. 64).
We create lane axis and lane separator, the second being a useful representation, and
potential base to generate lane separation markings. The lane generation then depends
on the parity of the number of lane, and is iterative (See Fig. 67). Special care must be
taken so that all polylines generated have a coherent geometric direction.

Figure 67: Generating various number of lanes, displayed in QGIS with dotted lines.

Our data set also gives approximate information direction for each road axis. The
road axis direction may be ’Direct’, ’Reverse’ or ’Both’. ’Direct’ and ’Reverse’ are both
for one-way roads, with the global direction being relative to the road axis geometry
direction (i.e. order of points). In ’Both’ case we only know that the road is not one-way.

Please note that this simple information are very lacking to describe even moderately
complex real roads (for instance, 3 lane in one direction, and one lane in the other). For
lack of better solution, we have to make strong assumptions.

In the case of ’Reverse’ or ’Direct’, all lanes shall have the same direction. In the ’Both’
case, lanes on the right of the road axis should have same direction as road axis, and
lanes on the left opposite direction. In odd case, the center lane will be considered on

103

the right of the road axis. Lane are numbered by distance to road axis, side (right first).
Figure 68 gives an overview of possible lane directions. .

Figure 68: Default possible direction for lanes. Please note that this direction are example, and
not coherent with all driving rules.

3.3.7.3 Generating trajectories in interconnection

Our dataset lacks any information about lane interconnection, i.e. which connexion
between lanes are possible and what trajectory those connections have. For instance,
being on the right lane of street X, is it possible to go to the right lane of street Y at tne
next intersection, and following which trajectory?

Strong assumptions are necessary. We use the orientation of lanes and consider that
interconnection can only join lanes having opposite input direction in an intersection.
Considering an intersection, each lane either comes in or out of this intersection (inter-
section input direction). Furthermore, we consider that lanes of the same road section
are not directly connected (no turn around). Please note that in real life usage such tra-
jectory may be possible. We create an interconnection for each pair of lanes respecting
those conditions.

Actual vehicle trajectories in intersections are very complex, depending both on kine-
matic parameters, driver perceptual parameters, driver profile, vehicle, weather condi-
tion, etc. For instance Wolfermann, Alhajyaseen, and Nakamura, 2011 study a simple
case and model only the speed profile.

We generate a plausible and simple trajectory using Bezier curves. Moreover, we iso-
lated the part responsible for trajectory computing so it can be easily replaced by a more
adapted solution than Bezier curve.

Bezier control points are the points where lane center enter/exit the intersection. The
third control point depends on the situation. It usually is the barycentre of lanes inter-
section and intersection centre. However, when lanes are parallel, lane intersection is
replaced by enter/exit barycentre. In special case when lanes are parallel and opposite,

104

Figure 69: interconnection trajectory, Bezier curve influenced by start/end and possibly intersec-
tion centre.

the centre of the intersection is not considered to obtain a straight line trajectory. Figure
69 presents interconnection trajectory generation in various situations.

3.3.8 Roundabout detection

StreetGen has been used for traffic simulation. StreetGen does not consider semantic
difference for any intersection. However traffic simulation tools make a strong difference
between intersection and round-about.

Still, the traffic modelling is widely different between roundabout and classical inter-
section. Thus we need a method to detect roundabouts. We face a problem similar to
(Touya, 2010, Section 3.1). The main issue is that round-about definition is based on the
driving rules in the intersection (type of priority, no traffic light,...). Yet those details are
not available on the road axis network we use. If we use a strict geometric definition
(round about are rounds), we could try to extract the information from aerial images
(Ravanbakhsh, Heipke, and Pakzad, 2008) or from vehicle trajectory (Zinoune, Bonni-
fait, and Ibanez-Guzman, 2012). Yet both this example are not in street settings, where
round-abouts may be much smaller, and much harder to see on aerial images. Moreover,
vehicle trajectory would be much less precise because buildings mask GPS.

Of course we are far from having this level of information, therefore we used the little
information available, that is geometrical shape of street axis and street names. We need
a way to characterize a round-about that can be used for detection. We cannot define
round-about only based on the topology of the road network (such as : a small loop),

105

nor purely based on geometry (road axis is forming a circle) because round abouts are
not necessary round. We noticed that road axis in a roundabout tends to have the same
name, and/or contain the word ’PL’ or ’RPT’ (IGN short for ’Place’ and ’Rond-Point’
(roundabout)).

Therefore we use two criterias to define a potential roundabout : its road axis may
be round (geometric criteria), and the road axis might have the same name or contain
’PL’ or ’RPT’ in their name (toponym criteria). We use Hough transform (Duda and
Hart, 1972) to detect quadruplets of successive points in road axis that are a good sup-
port for an arc of circle, then perform unsupervised clustering wia DBSCAN algorithm
(Pedregosa et al., 2011, Ester et al., 1996). To exploit road-name we explore the road net-
work face by face while considering if all the road of a face have the same name and/or
some contains special ’PL’ or ’RPT’ key words.

The final results are weighted, and are used by an user to quickly detect roundabouts
(See Figure 70). .

Hough transform DBSCAN clustering

Same street name keyword in street name

Figure 70: Roundabout detection to reduce an user work.

3.3.9 Street Objects : From Road to Street

So far we essentially considered road modelling (road axis, road surface, intersection
centre, intersection surface, lane, interconnection, etc.). However streets can be charac-
terized by the great number and diversity of objects present in it. We use street objects
in a broad sense, including street furniture as well as marking, trees, etc. Figure 71 gives
examples of street objects modelling within StreetGen.

.

3.3.9.1 Generic street objects

Streets contains a great number of diverse objects. We propose to add those to StreetGen
via an extensible mechanism so that the system can easily be completed with complex
semantic or hierarchy in the future.

106

road axis

roadway surface

lane separator

pedestrian crossing

generic street objects

avenue_tree

traffic light

pole

barrier

arrow

bench

slow_down

Legend

Figure 71: Street objects in StreetGen. Objects are semantic points with advanced symbology
viewed in QGIS. Each object can be positioned and oriented relatively to the street
axis or street border.

We observe that lot of street objects are related to the street axis and road surface, be
it for position or orientation. For instance, a pedestrian crossing is defined relatively to
the street axis and the sidewalk. Its orientation is also often related to the street axis
direction (though this is not always the case).

We then design a system where objects can be linked to street axis, so as to be able
to compute orientation and position accordingly. Each object position can be defined in
absolute coordinates, according to street axis or according to side-walk position. If the
object is positioned relatively to street axis or sidewalk, the object position is defined by
its the curvilinear abscissa along the street axis. .

Each object orientation can also be defined as absolute or according to street axis. The
list of possible objects is defined in a table that can eb easily extended, and also used to
build more complex information (for instance, a hierarchy). Triple store format would
be good candidates for this.

Figure 72 illustrates the principle of object positioning and orientation relatively to
street axis and/or street border. Lets take the example of safety barrier. In Paris those
are commonly used on sidewalk, few centimeters from roadway, parallel to street axis.

107

Figure 72: Object position and orientation can be defined relatively to road model.

In our current implementation, generic street object underlying representation is a
point with semantic and possibly relative positioning and orientation information. This
generic representation can be specialised for specialised street objects.

3.3.9.2 Specialised street objects

Generic street objects are numerous in streets, but many objects require more specific pa-
rameters and/or different representation than a point. We demonstrate that specialised
street object can be introduced as specialisation of generic objects. The concept is bor-
rowed from inheritance in object programming design. A new table needs to be created
for each specialized street objects. This table is linked to the generic table through for-
eign key and add-oc triggers. The specialised table store additional parameters and ad-
ditional representation, and is kept synchronised with the relevant objects of the generic
table.

We demonstrate this functionality with the object pedestrian crossing (See Fig. 73).
A pedestrian crossing can be parametrized by its position along the road axis (curvi-

linear abscissa) and its orientation relative to the road axis. Those two parameters are al-
ready defined for generic objects. However, pedestrian crossing also necessitate a width
parameter, defining the width of pedestrian crossing at the road axis level. Furthermore,
a pedestrian crossing is better not represented by a point and a symbol, but rather by
a surface, going from sidewalk to sidewalk, which implies a special geometry (surface
rather than point) and a function to generate this surface based on the pedestrian cross-
ing parameters and the road surface.

.
Creating the pedestrian crossing surface is not immediate because road axis is a poly-

line. We create such function by first creating points delimitating the pedestrian crossing
on the road axis. Then those points are projected left and right with an angle onto the
road surface. Then the road surface border between points is extracted and sewed to-
gether to form the parallelogramoid. Figure 74 illustrates pedestrian crossing surface
creation.

108

angle

curvilinear

abcissia

width

Figure 73: Specialized objects can be added, with adequate paremeters (here width) and repre-
sentation (here surface displayed with qgis dash pattern).

curvilinear
abcissia

12 2

width/2 width/2

3

3

3

3

4

4

angle

angle
angle

angle

5

1
2
3

4
5

generic object point
use width on road axis
project at angle on
road surf.

extract road surf. border
sew together

road axis

road surface

Figure 74: Building the pedestrian crossing surface based on its parameters and road axis and
surface.

3.4 results

This section is dedicated to testing our street modelling method. Our road model relies
on turning radius, as such we start by an experiment about estimating those turning
radius. We then test the core of StreetGen, with experiments on result quality, robust-

109

ness, scaling, concurrency and parallelism. The we test the traffic information generated
in a real world traffic simulation application. Last, we test how generic StreetGen is by
generating challenging roads, roads in another country, and an airport runway.

3.4.1 Estimating default turning radius

Due to lack of information about the turning radius, we had to make the assumption
that turning radius depends on the type of roads (see Section 3.3.3). Although this
hypothesis is a good start and has been empirically verified outside cities, it has not
been tested for city as far as we know.

'trottoir'
sidewalk

Road Speed

Road network
(importance)

Arc of circle
(radius)

radius =
f(importance)

radius =
f(speed)

radius =
random forest

GPS databaseOpen Data Paris

BDTopo

Guesstimate Traffic analysis (SETRA) Machine Learning

Hough Transform Geometric and
semantic distance

Geometric distance

Figure 75: Workflow to test radius hypothesis.

Sadly radius data is not available for Paris, therefore we propose a framework to
estimate this hypothesis for Paris.This test framework is illustrated in figure 75.

First we extract arc of circles from Open Data Paris ’trottoir’ (sidewalk) layer using
a kind of Hough transform (Duda and Hart, 1972) and filtering. Result is noisy be-
cause layer ’trottoir’ contains many round objects that are not cornerstones. We obtain
about 14 thousand arcs of circle. Then we map a GPS road network database containing
approximate driving speed with the BDTopo road network which contains road impor-
tance, road width, number of lane, etc. We use a fuzzy geometric (how much space is
shared by road axis dilated by few meters) and fuzzy semantic distance (comparing
both axis street name using trigram). See Fig. 76.

Based on road data, we try several ways to predict turning radius. The first method
"guesstimate" is to manually design a simple function ’radius = fguess(road impor-
tance)’. The second method is to use the results of french SETRA which link average

110

Figure 76: Radius detection and average road speed obtained by various dataset merging.

vehicle speed and turning radius for peri-urban roads, with ’radius = fspeed(average
speed of vehicles)’, using equation 1.

fspeed(speed,width) = 18.6 ∗

√
speed

|10.0 ∗width+ 65.0− speed|
(1)

Lastly we use machine learning to train a random forest regressor using road impor-
tance, speed, and road width to predict the radius, thus having a ’radius = frforest(importance,
speed, road width)’. Random forest prediction is intended as a comparison to other two
methods. Results are given in table 8 and illustrated in 77.

Table 8: Error for various radius prediction method

metric (m) fguess fspeed frforest

average abs error 2.41 2.18 1.97

median abs error 1.9 1.91 1.69

3.4.2 StreetGen

In this section we perform tests on StreetGen core.

robustness Overall, StreetGen generates the entire Paris road network. We started
by generating a few streets, then a few blocks, then the sixth arrondissement of Paris,
then a fourth of Paris, then the entire south of Paris, then all of Paris. Each time we
changed scale, we encountered new special cases and exceptions. Each time we had to

111

major streetresidential street
fguess

fspeed

frforest

Figure 77: Illustrating radius predicted with various methods, for major and residential roads.

robustify StreetGen. We think it is a good illustration of the complexity of some real-life
streets and also of possible errors in input data.

quality Overall, most of the Paris streets seem to be adapted to our street data
model. StreetGen results looks primarily realistic, even in very complex intersections,
or overlapping intersections.

Results are un-realistic in a few borderline cases (see Figure 79), either because of the
hypotheses or the limitations of the method. Those cases are, however, easily detected
and could be solved individually.

Failure 1 is caused by the fact that axis 1 and 2 form a loop. Thus, in some special
cases, the whole block is considered an intersection. This is rare and easy to detect using
the topological properties of the network.
Failure 2 is caused by our method of computing intersection surface. In a T junction,
a large street orthogonal to a small street will produce a bump. It could be dealt with
using the variable buffer.
Failure 3 is more subtle and happens when one axis is too short with respect to the
radius. In this case, the end of the arc is way out of the intersection, because the in-
tersection is so short. It could be fixed by taking into consideration the next axis with
roughly the same direction, but it would introduce special cases.

We compared the result of StreetGen with the actual roadways of Paris, which are
available through Open Data Paris2. It clearly shows the limit of the input data, chiefly

2 http://opendata.paris.fr/page/home/

112

http://opendata.paris.fr/page/home/

Figure 78: Example of results of increasingly complex intersection.

Figure 79: Various cases of failure from more severe to less severe (1 , 2 , 3). 1 : loop, 2 : bad
buffer use, 3 : radius too big for network.

in roadway width estimations. Using interactive tools (See Fig. 80), it is possible to
update the input data so that it is closer to the reality, until a very good match is reached.
A qualitative evaluation of StreetGen result is not possible without the parameter of the

113

Figure 80: The estimated parameters may be far from reality (Left). It is, however, possible to
manually or automatically fit the street model.

road model being adapted to fit to reality, which is performed manually in Chapter 4

and automatically in Chapter 5.

scaling The entire Paris street network is generated in less than 10 minutes (1 core).
Using the exact same method, a single street (and its one-neighbour) is generated in
∼ 200ms, thus is lower than the human interactive limit of ∼ 300ms.

sql set operations We illustrate the specificity of SQL (working on set) by testing
two scenarios. In the first scenario (no- set), we use StreetGen on the Paris road axis
one-by-one, which would take more than 2hours to complete. In the second scenario
(set), we use StreetGen on all the axis at once, which takes about 10minutes.

concurrency We test StreetGen with two users simultaneously computing two
road axis sets sharing between 100% and 0% of road axis. The race condition is effec-
tively fixed, and we get the expected result.

parallelism We divided the Paris road axis network into eight clusters using the
K-means algorithm3 on the road axis centroid (See Fig. 81). This happens within the
database in a few seconds. Then K users use StreetGen to compute one cluster (paral-
lelism), which reduces the overall computing time to about one minute.

3.4.3 Using Streetgen for traffic simulation

In this section we design an experiment to test the usefulness of StreetGen-generated
traffic information.

Visually, generated lane and interconnection seems to be adapted in most case. The
computation cost is however significantly increased because lane and interconnection
are generated by triggers, and not at a global level. Moreover interconnection uses
PLPython and shapely, which introduce a strong overhead.

3 http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

114

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Figure 81: Clustering road axis centroid with K-Means, K=20, (black segments are convex hull).

We test StreetGen usability for traffic simulation by exporting its model for SymuVia,
a traffic simulation tool (Leclercq, Laval, and Chevallier, 2007). This work was performed
by Lionel Atty (IGN, SIDT) for the project TrafiPollu (Soheilian and Atty, 2016), using a
mix of sql query and python modules orchestrated in a QGIS plugin.

Geometry
simplification

Intersection
semantic

Homogeneous
lane grouping

StreetGen SimuVia

Figure 82: Converting StreetGen Traffic model to SymuVia traffic model.

The principal difficulties were different handling of intersection (SimuVia intersection
model require semantic, like roundabout of classic intersection, see Section 3.3.8), neces-
sity to regroup lanes having the same direction into homogeneous lane groups (See Fig.
82), simplification of geometries and XML export to custom SymuVia format.

Exporting is not fast (10 min for a hundred streets), but exported data is successfully
used in the SymuVia traffic simulation tool.

Figure 83 proposes an example of road network traffic information manually created
in a custom Symuvia tool and the same data automatically created automatically with
StreetGen. Automated results where sucessfully used in SYmuvia traffic simulation tool,
although it outlined the imprecison of StreetGen input data (regarding number of lanes).

3.4.4 Extending Streetgen applications

StreetGen was designed with Paris city in mind, that is many heritage roads. Indeed,
street layout and characteristics vary widely around the world, and special knowledge
about city type greatly helps creating adapted hypothesis. For instance a Manhattan-like
grid layout is much easier to deal with.

115

manual results using
Symuvia tool

Automatic results using
StreetGen

Figure 83: Manually created traffic information and StreetGen automatic traffic information.

We can still test StreetGen genericity and robustness. To this effect, we use StreetGen
in different unusual scenarios.

Figure 84: Experiment on StreetGen genericity : High speed intra city road, Lille, France.

intra city fast lane (lille) The first scenario is to use StreetGen to model
roadway of a modern part of Lille with fast roads (See fig. 84). We stress that this exam-
ple does not contains bridge or over passes, as StreetGen cannot manage those. Those
roads have a modern design and as such do not necessary follow StreetGen hypothesis.
StreetGen model was however sufficiently generic to model well the roadway. This road
model was edited from scratch in one our, using in-base interaction (See 4).

grid-based layout (mali) The second scenario is to use StreetGen for a grid-
based road network (See Fig. 85). We do not have access to ground truth for this area.
However, the results proved to be satisfactory for further use in 3D world building.

116

Figure 85: Experiment on StreetGen genericity : Mostly grid-based city layout, West Africa

Figure 86: StreetGen used on airport runway and service roads, Bergen, Norway

airport (bergen) The last scenario is more stretched, and proposes to use Street-
Gen to generate airport runway and servicing roads (See Fig. 86). With very few ex-
ception StreetGen is able to model the runaway surface (and servicing roads) of the
airport.

However because all dimensions are so different from Paris street (runway width of
40 meter is not uncommon in airport), this scenario higlighted the need to be able to
change default settings easily. To cater for this need, we changed all StreetGen settings
to be stored in a global settings table. Then this glbal settings table can be adapted to
each situation.

117

3.5 discussion

3.5.1 Estimating default turning radius

In Section 3.4.1 we experimented to evaluate how the turning radius could be estimated.
Results in Table 8 are pretty un-conclusive. Whatever the function to predict radius,

results are poor. Radius extracted are simply too noisy, and the average speed informa-
tion we extracted from road speed database lacks details (only 4 values possible). Even
a random forest regressor could not work properly. Intuitively, the radius probably de-
pends also on road construction date, historical data, neighbourhood, or other data. The
SETRA function fspeed (1) results are however relevant when dealing with major roads
(See fig. 77), but not in general.

We tested the hypothesis that maybe the function was correct but was badly parametrised.
To this end, we tried to find the optimal parameters for fspeed using non linear least
square optimisation with loss function to reduce outliers weight. We could not find bet-
ter values. We take that as a proof that we do not have sufficient data to conclude about
this function overall fitness for our need.

This experiment would be better performed using an adjusted StreetGen results.

3.5.2 Street data model

Our street data model is simple and represents the roadway well, but would need to be
detailed in some aspects.
First, parking places are very abundant and important in Paris street layout, yet our
model cannot specifically deal with these.
Lanes cannot have different width nor type (bus lanes, bicycle lanes, etc.).
Our model is just the first step towards modelling streets. Because we model streets, our
model can not deal with bridge, tunnels, overpasses,etc. This limitations steems from
the tools we use for topology management : PostGIS Topology.

3.5.3 Kinetic hypothesis

Overall, kinetic hypotheses provide realistic looking results, but are far from being true
in an old city like Paris. Indeed, a great number of streets pre-date the invention of
cars. We attempted to find a correlation between real-world corner radius (analysing
OpenDataParis through Hough arc of circle detection) and the type of road or the road’s
average speed (from a GPS database). We could not find a clear correlation, except for
fast roads. On those roads, the average speed is higher, and they have been designed
for vehicles following classical engeneering rules.

3.5.4 Precision issue

All our geometrical operations (buffer, boolean operations, distances, etc.) rely on Post-
GIS (thus GEOS4). We then face computing precision issues, especially when dealing

4 http://trac.osgeo.org/geos/

118

http://trac.osgeo.org/geos/

with arcs. Arc type is a data type that is not always supported, and thus it must be
approximated by segments.

Figure 87: Example of a precision issue. Left, we approximate arcs with segments, which in-
troduces errors. Right, the error was sufficient to incorrectly union the intersection
surface.

StreetGen uses various strategies to try to work around these issues. However the
only real solution would be to use an exact computation tool like CGAL The CGAL
Project, 2015. It would also allow us to compute the circle centres in 3D. A recent plugin
called SFCGAL5 integrates parts of CGAL in PostGIS, using exact computing

3.5.5 Streetgen for traffic

Export is successful but a bit slow, although slowness is largely due to the simuvia XML
format. One of the principal problem is that too many interconnections are generated.
Indeed, we generate all possible interconnection, we would greatly benefit from an
heuristic to generate only plausible interconnections.

3.5.6 Street objects

Street objects addition to StreetGen greatly improves modelling possibilities. The system
was however not tested at full scale. At the city scale, storing all objects in one table
may prove to be a limitation (Paris contains dozen of millions of street objects). We
demonstrated point based and surface based objects, however line-based objects like
markings are also very prominent.

The main limitation is however that we did not test automatic object generation based
on rules and patterns. We indeed consider that correctly solving the object problem
requires grammars or similar high level semantic tools which we did not try.

5 www.sfcgal.org/

119

www.sfcgal.org/

3.5.7 Extend use for StreetGen

Using a tool slightly oustide of its intended functionality is always interesting. Among
the limitation, the Lille roadway possessed one road with linearly increasing road width,
which can not be modelled by StreetGen. Mali dataset revealed a problem when input
road axis are not properly topological. Model an airport is clearly a stretch of StreetGen
capabilities. In particular, airport runways posses lots of semantic objects like lights,
beacons, etc. The difference is obvious when comparing StreetGen results with an actual
airport modelling (Fig. 88, courtesy of Thales TTS).

Figure 88: Real airport model, courtesy of Thales TTS

3.5.8 Fitting street model to reality

StreetGen was designed from the beginning to provide a best guess of streets based on
very little information. However, in some cases, we want the results to better fit reality.
For this, we created an interactive behaviour so that several users can fit the automatic
StreetGen results to better match reality (using aerial images as ground truth for in-
stance).

We did not created a Graphical User interface (GUI), but rather a set of automatic in-
base behaviours so that editing input data or special interaction layers can interactively
change the StreetGen results (See Chapter 4). Doing so ensures that any GIS software
that can read and write PostGIS vector can be used as StreetGen GUI.
In some cases, we may have observations of street objects or sidewalks available, pos-
sibly automatically extracted from aerial images or Lidar, and thus imprecise and con-
taining errors. We tested an optimisation algorithm that distorts the street model from
best-guess StreetGen to better match these observations (See CHapter 5).

This subject is similar to Inverse Procedural Modeling, and we feel it offers many
opportunities.

3.6 conclusion

As a conclusion, we proposed a relatively simple street model based on a few hypothe-
ses. This street data model seems to be adapted to a city as complex as Paris. We pro-

120

posed various strategies to use this model robustly. We showed that the RDBMS offers
interesting possibilities, in addition to storing data and facilities for concurrency.

Our method StreetGen has ample room for improvements. We could use more so-
phisticated methods to predict the radius, better deal with special cases, and extend the
data model to better use lanes and add complex street objects managed by grammars.

In our future work, we also would like to exploit the possibility of the interaction of
StreetGen to perform massive collaborative editing. Such completed street modelling
could be used as ground truth for the next step, which would be an automatic method
based on detections of observations like side-walks, markings, etc. Finding the optimal
parameters would then involve performing Inverse Procedural Modelling.

121

4
I N T E R A C T I V E I N - B A S E C R E AT I O N A N D M O D I F I C AT I O N O F
S T R E E T M O D E L S

The goal of this thesis is to reconstruct streets, i.e. to create a street modelling that
fits the actual streets (observations). The most immediate way to fit this model is
when users directly edit the parameters of the model. To this end, a Graphical
User Interface (GUI) is essential. We chose to not develop a custom GUI software
because such GUI are notably difficult to design correctly, and because it strongly
limits the way the street modelling can be edited. Yet the street modelling tool we
use (StreetGen, Chapter 3) is entirely within a database server (PostGIS), as well as
the resulting street modelling. This presents a unique opportunity, because many
GIS software already exist to edit geographical data contained in a database such as
PostGIS. Therefore we chose to deport interactions from the GUI software to inside
the database, which allows to use any GIS software as a GUI. Additional benefits
are multi-user edit capabilities.

4.1 Abstract . 123
4.2 Introduction . 124

4.2.1 Plan . 125

4.3 Method . 125
4.3.1 Control of procedural modelling 125

4.3.2 In base interaction concept . 126

4.3.3 Different in-base interaction types 127

4.3.4 Efficient Multi-user data edit . 133

4.4 Result . 136
4.4.1 In base interaction . 137

4.4.2 Interactive road . 137

4.4.3 Interactive traffic . 140

4.4.4 Interactive Street Objects . 141

4.4.5 Efficient Multi-user data edit . 144

4.5 Discussion . 144
4.5.1 In base interaction for procedural modelling 144

4.5.2 Different in-base interaction types 144

4.5.3 Efficient Multi-user data edit . 145

4.5.4 Interactive road . 145

4.5.5 Interactive traffic . 145

4.5.6 Interactive Street Objects . 146

4.5.7 Best of 2D and 3D world for edition 146

4.6 Conclusion . 147

122

4.1 abstract

Road network topology
Turning radius

Road axis
Intersection limit

Road width

1

2

725

9
1
4

891

Figure 89: Interaction is handled in-base rather than in custom software. Street model is regen-
erated automatically (StreetGen) when user edit street model parameters using con-
venient and effective interactors. Road model, traffic information and street features
can be edited.

Our modern world produces an increasing quantity of data, and especially geospatial
data, with advance of sensing technologies, and growing complexity and organisation
of vector data. Tools are needed to efficiently create and edit those vector geospatial data.
Procedural generation has been a tool of choice to generate strongly organised data, yet
it may be hard to control. Because those data may be involved to take consequence-
full real life decisions, user interactions are required to check data and edit it. The
classical process to do so would be to build an adhoc Graphical User Interface (GUI)
tool adapted for the model and method being used. This task is difficult, takes a large
amount of resources, and is very specific to one model, making it hard to share and
re-use.

Besides, many common generic GUI already exists to edit vector data, each having
its specialities. We propose a change of paradigm; instead of building a specific tool for
one task, we use common GIS software as GUIs, and deport the specific interactions
from the software to within the database. In this paradigm, GIS software simply modify
geometry and attributes of database layers, and those changes are used by the database
to perform automated task.

This new paradigm has many advantages. The first one is genericity. With in-base
interaction, any GIS software can be used to perform edition, whatever the software
is a Desktop sofware or a web application. The second is concurrency and coherency.
Because interaction is in-base, use of database features allows seamless multi-user work,
and can guarantee that the data is in a coherent state. Last we propose tools to facilitate
multi-user edits, both during the edit phase (each user knows what areas are edited by
other users), and before and after edit (planning of edit, analyse of edited areas).

123

4.2 introduction

Our modern world need an increasing quantity of data, and especially geospatial data.
Indeed, our capabilities to sense our environment as increased with ever more pre-
cise satellite imaging, LIDAR scanning, and mobile mapping. In parallel, another trend
tends to connect data and semantize it (semantic web), with more abstract data such as
vector data, becoming more accessible.

The challenge we face is then to design tools to efficiently create and edit those vec-
tor geospatial data. Generating high quality structured data is a challenge for which
procedural tools are well adapted.

Procedural modelling is a powerful generative method, but notoriously hard to con-
trol (see Chen et al., 2008; Lasram, Lefebvre, and Damez, 2012; Lipp et al., 2011 for
examples of increasing control). Hard control comes from the fact that understanding
the link between initial parameters and the resulting model may not be obvious. Mod-
elling is a process of simplification, as the goal is to model a complex phenomenon with
a comparatively simple model.

However, having the capabilities to model something is one thing, finding the best
parameters of the model so it best fits a set observation is another. The latter is called
Inverse Procedural Modelling. The way to find the parameters may be a sophisticated
mathematical method (Martinovic and Van Gool, 2013; Musialski and Wimmer, 2013),
or a user! Moreover, whatever the level of automation, some user control is necessary,
be it to validate and correct results, or to extend it beyond the limits of the procedural
tools used.

Yet numerous non-procedural tools exist to edit geospatial data : GIS software. Even
considering only open source software, several major GIS software exist. Unsurprisingly,
each has strong points. For instance QGIS1 has a user friendly interface and can inte-
grate a great number of other open sources tools via plugins, GRASS GIS2 scales very
well, can be automated and has extensive raster processing, OpenJump3 is light and has
specialized tools for topology edition and validation. Leaflet4 or Openlayer5 allow to
easily build custom light web clients to access and edit data through a browser.

Those tools have their specificities, and it would be pointless to try to create a super-
tool grouping all others, as modern programming paradigm tend toward simplicity
(KISS principle). Users prefer to use several complementary tools to perform various
tasks. However, each one of these software applications have their own programming
language, User Interface (UI), and specific way to customize it. However they all have a
common capability, which is to edit vector geometry and attributes.

We propose to take advantage of this common capability to use GIS software as
interfaces for complex user interaction. Rather than having to create custom interac-
tion handling for each GIS software, we deport the interaction handling inside of the
database.

This approach might be coherent with recent trend to have lighter client that do not
require installing (browser-based client).

1 www.qgis.org

2 https://grass.osgeo.org

3 www.openjump.org/

4 http://leafletjs.com/

5 http://openlayers.org/

124

www.qgis.org
https://grass.osgeo.org
www.openjump.org/
http://leafletjs.com/
http://openlayers.org/

This new paradigm can be used for many interactions, we use it to control an in-base
Procedural Street generation method (StreetGen). As the goal is interaction, speed is
important, with ideal speed under 300ms (not noticeable), with occasional spikes of a
few seconds allowed.

In this work we will use both "edition" and "digitization" as the action of editing a
vector layer (both geometry and attributes).

4.2.1 Plan

In section 4.3 we further introduce the method and the proposed in-base interaction,
with details on patterns to facilitate design of in-base interaction and advanced inter-
action to help teamwork. In section 4.4 we illustrate how those design patterns can be
used for controlling StreetGen and facilitate edits. Section 4.5 introduces perspectives
and limitations, and Section 4.6 concludes this chapter.

4.3 method

In this section, we start by introducing the need to interaction and control for procedu-
ral modelling methods. Then we introduce the in-base interaction concept, where the
specific part of interaction handling is moved from the software to the database (Fig.
90). We present basic design patterns for in-base interaction associated with examples.
Last we consider how in-base interaction could be used to help digitization, and to help
plan it and analyse it afterwards.

4.3.1 Control of procedural modelling

Control of procedural generation tools have limited their use for a long time. Indeed, the
classical workflow would be to use a procedural tool to generate a model, then manually
edit the results for final details. Lets take the example of a drawing software. The goal
is to generate a nice cloudy sky. Realistic clouds can be generated procedurally (using
Perlin noise for instance). Once the user finds the proper parameters of the procedural
clouds, he switches to fine editing, using brushes, erasers and so on to perfectly adjust
clouds.

However, this approach has two major issues. The first is that manual edits are lost if
the user wants to change the parameters of the procedural tool. It greatly reduces the
re-usability, parameters exploration, sharing, etc.

The second issue is more modelling specific. When the user starts manual edition, the
result no longer obeys the model of the procedural tool. This might no be an issue for
drawing, but if the procedural tool generates a driving network, inconsiderate edition
outside the procedural tool might break the topology of the driving graph or introduce
errors. The obvious advantage is that by unconstraining the last human edition step, the
result is not limited by the modelling space of the procedural tool.

We choose another approach where the user only makes changes through the proce-
dural tool. We first automatically generate a modelling (’best guess’), then let the user
tunes parameters of the model, as well as overrides some of the automated results. Each

125

time the user changes something, the relevant part of the model is re-generated at an
interactive rate.

4.3.2 In base interaction concept

BROWSER

custom

interaction

DESKTOP GIS

DATABASE

BROWSER

DESKTOP

CLASSIC INTERACTION

DATABASE

cu
sto

m

in
te
ra
ctio

n

IN-BASE INTERACTION

custom

interaction

GRASSGIS GRASSGIS

BATCH
gis@gis:~$psql -d ...
gis@gis:~$psql -d ...
gis@gis:~$psql -d ...

Figure 90: New proposed User Interface paradigm for GIS software. Instead of building several
custom interactions for each data accessors (desktop GIS, browser GIS, etc.), we pro-
pose to use their basic vector editing (standard) and create custom interaction inside
the database.

We propose a new paradigm for custom user interaction in GIS software (See Fig. 90).
Traditionally, when a custom interaction is needed, GIS softwares have to be amended,
often by adding a plugin, or by coding the desired interaction (web GIS). Custom inter-
actions are therefore costly and limited to one tool. Indeed, wanting the same custom
interaction for several GIS software means creating the same interaction several time so
it is adapted to each GIS software. Furthermore, each custom interaction parts have to
be maintained while the GIS software evolves.

For simple interaction, we propose a much simpler solution, which is to move the
custom interaction handling from GIS software to database, and use the classical GIS
editors (vector edition, geometry and attributes) to trigger those custom interactions.
Thus, the custom interaction becomes available to any GIS software able to edit a vector
in the database, thus nearly universal.

Lets take the example where a user needs a way to create grids. The classical solution
would be to create a QGIS plugin (for instance) with dedicated buttons and forms to
create the grid and manage it. Such a plugin would range from simple to complex,
depending on how well the grids can be managed (grid fusion, etc.). The actual QGIS
functionality for grids has about 15 buttons and forms. Both the UI and actual grid
creation are tailored for this GIS software. On the other hand, we could automate this
grid creation so that modifying a standard polygon layer produces and controls the grid
(See Video 95). Then, grid creation could be performed from any GIS.

For simpler synchronising tasks, in-base interaction are even more powerful. For in-
stance, lets consider a point layer with two orientation fields, one expressed in degrees,
one in radians. Those fields have to be synchronised at all times. One solution would
be to write custom handling in the GIS software, so that any change on one orientation
is also done on the other. However, any changes of orientation done outside this GIS
software would not synchronise orientations, thus leaving the data in an incorrect state.

126

Yet programming this kind of synchronisation in-base is extremely easy and efficient, it
also warranties that the two orientations are always going to be seen as synchronised
(ACID).

More complex in-base interactions may be needed than synchronizing two data val-
ues. Indeed, for inter-dependent values, special care must be taken to avoid useless
computing and possibly circular references.

4.3.3 Different in-base interaction types

In-base interaction relies on triggers: functions that get executed when a table/view is
modified. Thus, the mean of interaction is fixed. However, to reach scalable and safe
interactions, adapted design patterns are needed. In this section we introduce those
basic design ideas, which are not limited to StreetGen but are generic. In following
section,those patterns are then combined to create concrete advanced interactions for a
specific application (in-base street generation with StreetGen). (See Fig. 91).

trigger

"Direct Edition"

"Proxy View"
trigger

view

trigger

trigger

trigger

"Geometric Control"

storing "User Input"

EXCEPT
view

user

auto

Figure 91: Various design patterns for in base user interactions. In "Direct Edition", a trigger
intercepts data. In "Proxy View" a view is used as a man-in-the-middle to avoid cyclic
trigger call. In "Geometric Control", another geometric object is used as a control
(slider, etc.) for the targeted table. Last, storing "User Inputs" in separate table and
combining it with automatically generated results solves the user input persistence
problem.

4.3.3.1 "Trigger in the middle"

The simplest form of interaction is when a user directly modifies a table content. Such
a modification is then processed by a trigger before the modification is applied (Trigger
is between user and table, hence "trigger in the middle"). As such, it is possible to check
and/or correct values modified/inserted by the user.

Lets take for example the multi-users tracking system we implemented as a QGIS
plugin (See Section 4.3.4). In this system, the position and extent of the qgis user view
is registered each time the user moves on the map (screen rectangle), which allows to
know were the user is working, and prevent persons from working on the same area
without knowing it. We observed that user editing data with QGIS never edit objects in
the corner of their screen. Indeed, they tend to move the map so the object that was in
the corner is approximately in the centre of the display. As such, the map seen on the

127

screen (rectangular) is not really the potential edit area, a rounded rectangle would be
more appropriate. We create a trigger which rounds the rectangle when the rectangle is
inserted into the database. See Figure 92 and web video https://www.youtube.com/v/

grlkUvvSf3w?hd=1&start=120&end=134&version=3

User working
on an area

Database

trigger
(round)

user never edits objects in corners
and borders, should be removed

Save user view extend

Figure 92: The position of the user map extent is recorded as a potential edit area. We notice
users never edit features in the corners, which means corners are not potential edit
area. We then create a trigger to round the incoming rectangle in the database, so as
to have more "realistic" potential editing area.

.

Figure 93: Video of automatic tracking of probable editing area via QGIS and PostGIS.
https://www.youtube.com/v/grlkUvvSf3w?hd=1&start=120&end=134&version=3

Another common example is snapping. For instance, given a linestring representing a
building footprint contour, we create a point that represent this building exit door. This
point should always be on the contour. Yet when editing it, a user could move it away
from the line without noticing. To prevent that, a trigger in the database first projects
the edited point on the line before actually saving it.

Maybe the most common usage is for constraint enforcement. An user could modify
an attribute which is constrained. For instance modifying the road width, a trigger
enforce that the road width is positive (simply taking absolute value of user input)
before saving it in the base. Almost all the in-base interactions we present use "Trigger
in the middle".

4.3.3.2 Direct "geometric control"

"Direct Modification" imply to change one by one the object involved.
In some case, it may be much more powerful to use another geometry as a controller.

The idea is fare from new, and is well adapted to database and triggers.

128

https://www.youtube.com/v/grlkUvvSf3w?hd=1&start=120&end=134&version=3
https://www.youtube.com/v/grlkUvvSf3w?hd=1&start=120&end=134&version=3
https://www.youtube.com/v/grlkUvvSf3w?hd=1&start=120&end=134&version=3
https://www.youtube.com/v/grlkUvvSf3w?hd=1&start=120&end=134&version=3
https://www.youtube.com/v/grlkUvvSf3w?hd=1&start=120&end=134&version=3
https://www.youtube.com/v/grlkUvvSf3w?hd=1&start=120&end=134&version=3
https://www.youtube.com/v/grlkUvvSf3w?hd=1&start=120&end=134&version=3
https://www.youtube.com/v/grlkUvvSf3w?hd=1&start=120&end=134&version=3

Lets take for instance a point cloud lens, which is defined as showing all the points
within the lens geometry (See Cura, Perret, and Paparoditis, 2015b. In this case we
control which points amoing billions are displayed with a geometric controller which
is the lens geometry. Triggers on the lens ensure that appropriate points are displayed
when change occurs. In addition, lens attributes can also be used to control other aspects.
For instance a lens attribute "LOD" allows to choose which amount of points are going
to be displayed. Another attribute "pass" allows to choose which vehicle pass to display
(in terrestrial mobile mapping, the mapping vehicle may have made several pass at the
same place at different time.)

Figure 94: A GIS visualisation lens for point cloud, showed in QGIS. A lens (polygon) position
and form controls what points are displayed (among several Billions points). In addi-
tion to lens geometry, lens attributes also controls other aspect of rendering, such as
Level Of Detail (LOD) or the vehicle pass (temporal filtering).

Several Direct geometric control can be used conjointly, from on or several table.
Another example is the hexagonal controller discussed in 4.3.4. The goal is to generate

and edit an hexagonal grid. Rather than adding hexagon by hexagon, we propose to use
a direct "Geometric Control" (a polygon table with attributes) to control the hexagonal
grid. The control table contains triggers, so that upon changes the hexagonal grid is ac-
cordingly created/updated. The control layer contains an attribute ’size’ which control
the size of the hexagons in the hexagonal grid. Such automation are easy to create and
greatly simplify the control of complex objects. (See Video 95).

Figure 95: Using a polygon proxy to control an hexagonal grid (Database triggers), showed in
QGIS..
https://www.youtube.com/v/grlkUvvSf3w&hd=1&start=288&end=323&version=3&

vq=hd720

129

https://www.youtube.com/v/grlkUvvSf3w&hd=1&start=288&end=323&version=3&vq=hd720
https://www.youtube.com/v/grlkUvvSf3w&hd=1&start=288&end=323&version=3&vq=hd720
https://www.youtube.com/v/grlkUvvSf3w&hd=1&start=288&end=323&version=3&vq=hd720
https://www.youtube.com/v/grlkUvvSf3w&hd=1&start=288&end=323&version=3&vq=hd720
https://www.youtube.com/v/grlkUvvSf3w&hd=1&start=288&end=323&version=3&vq=hd720
https://www.youtube.com/v/grlkUvvSf3w&hd=1&start=288&end=323&version=3&vq=hd720
https://www.youtube.com/v/grlkUvvSf3w&hd=1&start=288&end=323&version=3&vq=hd720
https://www.youtube.com/v/grlkUvvSf3w&hd=1&start=288&end=323&version=3&vq=hd720
https://www.youtube.com/v/grlkUvvSf3w&hd=1&start=288&end=323&version=3&vq=hd720

4.3.3.3 Indirect "geometric control"

Geometric control can be pushed one step further. Indeed, in both previous example,
the actual geometry was directly used to control the objects (points or hexagons), that
is the geometry (polygon) representing the control object was directly used. Yet, we can
use geometric controller as graphical control element, that are abstracted from the map
and whose geometry is not related to any geospatial meaning, like a slider.

curvilinear abscissa
updated, re-generation

moving intersection
limit controller

road axis of limit

intersection limit controller

User action

Curvilinear abscissa of limit

Figure 96: An indirect geometric controller permits an easy control of the position of the inter-
section limit which is defined by its curvilinear abscissa. Only controller changes are
used to update the abscissa.

StreetGen manual intersection limit gives a good example of such a design (See Fig.
96). The goal is to allow the user to be able to choose the intersection limit, which is
defined by a curvilinear abscissa along the road axis. This abscissa could be change
through a form, which lacks visual feedback and is time consuming. Instead, we create
an indirect geometrical controller that is a point which represents the limit. We define
triggers so that a change of the controller by the user is interpreted as a change of the
abscissa, which in turns triggers the regeneration of all the impacted geometries (road
surface, road intersection surface, lanes, etc.). In this example, the controller is indirect as
the abscissa definition is not based on the controller. More accurately, controller changes
must be interpreted before having any impact.

In another example, the indirect geometric controller is used both for visualisation
and control (See Figure 97). The aim is to allow the edition of Z values of a 3D polyline
L3D within classical 2D GIS software. Editing the Z value for each node of the polyline
is currently difficult as very few software allow to directly edit it. Furthermore, in GIS
software lines are drawn in the plane (seen from the top), which totally occults the Z
values. We propose to edit the Z values of L3D through the use of an indirect geometric
controller which is the altimetry profile Lalti of the L3D line based on L3D as the origin
axis. Conceptually, for each node N3Di in L3D, we create an equivalent node Nai in
Lalti so that Nai is on the perpendicular (defined on a neighbourhood) to N3Di at
a distance of N3Di.Z− Zmin, where Zmin = minN3Di∈L3D

Z(N3Di). The user directly
visualises Z values and slope. The user can edit Lalti nodes, moving them closer or
farther from L3D. Then a trigger interprets those edits in terms of new Z values for L3D,
which is then updated, and triggers a recomputing of Lalti. This idea is based on the

130

3D linestring
(XYZ)

Indirect geometric controller
for Z (altimetry curve)

User
interactions

updated Z
values

Figure 97: An indirect geometric controller is used to change the Z values of points of a 3D
linestring within a traditional 2D GIS interface (here: QGIS). The altimetry curve is
both a visualisation tool and an easy edit tool.

hypothesis that Z values do not vary significantly faster than X and Y values (or the
altimetry curb would be very far from the initial curve.).

4.3.3.4 "Proxy view"

As seen in StreetGen manual intersection limit example (4.3.3.3), generated geometry
can make a very useful indirect geometric controller. However, this introduces another
issue.

The controller has a trigger that launches when the controller is edited. Yet, this
edition is just a mean for the user to edit the actual value (manual intersection limit
curvilinear abscissa in this case). Now editing this actual value will produce in turn
the re-generation of the controller, so as to have it in a coherent state with the actual
value. Yet, this re-generation of the controller is a change of its geometry, which in turn
launches the trigger, etc. Thus, the risk is to enter an infinite loop of self calling triggers.
The problem may be less direct, coming in the form of cyclic trigger dependencies :
Trigger A launches Trigger B which launches trigger C which launches trigger A, etc.

In the controller case, the problem boils down to be able to differentiate between a
change of the controller by a user, which must be interpreted and "translated", and an
automated change (generation), which is not interpreted.

We propose two specialised designs to deal with this problem.
The first design we propose is the use of a "Proxy view" (or materialised view, or

table), so that the user never edits the controller directly, but rather a view of the con-
troller. That way, we know that changes coming to the controller are only those from
automated regeneration, and changes coming to the view only come from the user. An
additional advantage is to clearly separate the automated generation part from the hu-
man interaction part.

We illustrate this design with an indirect geometric controller that edits an intersec-
tion turning radius through a proxy view. The curbstone arc centre is generated from a

131

radius value and other geometries. We use it as an indirect geometric controller through
a "Proxy view". User edits the arc centre using this view, which is then interpreted as
a new radius (smallest distance between controller and relevant road surfaces). When
the new radius is updated, another trigger re-generates arc centre and other geometries
based on the new radius. This re-generation updates the arc centre. If not using "Proxy
view", it could have triggered the interpretation, entering into an infinite cyclic trigger
call (in fact, PostgreSQL limits the number of recursions, so it simply produces an error,
and not a system crash). The "Proxy view" allows to separate automated changes and
changes coming from user.

new

User edited proxy view:
interpret to get new radius

Radius has been changed :
generate geometries (arc ...)

User Automated

Figure 98: The curbstone arc centre is generated from the radius value and other geometries.
We use it as an indirect geometric controller through a "Proxy view". The user edits
the arc centre using this view, which is interpreted as a new radius. Then, another
trigger re-generates arc centre and other geometries based on the new radius. No
infinite cyclic trigger call occurs thanks to the proxy view which separates automated
changes and user changes.

The second design to be able to separate automated changes from user interaction
is much simpler. At its simplest form, it amounts to require automated changes to not
only change the controller but also another column in a specific way. On the opposite, a
user interaction will only change the controller, and not the other column. That way we
can differentiate between the automated change and the human interaction. We use this
design for indirect geometric controller for StreetGen manual intersection limit. In this
case a dummy column is not needed, as the controller table also possesses the controlled
value. Therefore, we simply check that both controller geometric position and curvilin-
ear abscissa are coherent, knowing that any automated generation will synchronizes
both.

4.3.3.5 Storing user choice

When mixing automated results and human input, Human interaction persistance is
essential.

In StreetGen, users can modify two things : the input data (road axis, road width, etc.)
, and some of the generation results (lane direction and trajectory, intersection trajectory,
intersection limit, turning radius, etc.).

We consider user inputs as overrides of default values. As such, we propose to store
user inputs in separate tables from automated results. This design has practical advan-

132

tages. Because the user input is in a separate table, it becomes easy to save it, to merge
several users inputs, etc. The user input value is stored along with a way to identify
which automated result is concerned (one or several ids may be necessary).

The design is simple and can be coded in two ways using pure SQL.
The first is to use EXCEPT statement.

SELECT id , value
FROM user_overr ide
EXCEPT
SELECT id , value
FROM automated_results ;

However such statement is not handy, as the columns of the table before and after
"EXCEPT" statement must match.

Another more practical solution is to join user and automated tables, then use COA-
LESCE, which might end up to be more costly but is more adaptable. COALESCE(value1,
value2 ..) is a SQL function returning the first non null argument. Using this function
allows to express the condition: if a user value exists for this object, use it, else use the
automated value.

SELECT id ,
COALESCE(user_overr ide . value , automated_results . value)

FROM automated_results
LEFT OUTER JOIN user_overr ide USING (id) ;

We illustrate user input persistance for StreetGen lane edition. By default, lanes are
generated according to the street axis direction and their position regarding the road.
Lane geometry is obtained by offsetting the road axis curve. Users can override the lane
direction. In this case a new row is inserted into the user input lane table. This row
stores the new value chosen by the user (the lane should be in the other direction). If
the road axis is edited, a new lane geometry will still be automatically generated, as the
user only override direction and not geometry. If the user also edits the lane geometry
to customize it, the customized geometry is also stored in the user input lane table.
Now, whenever the lane must be regenerated, its geometry will be overridden by the
corresponding user input. If the user deletes the lane, a triggers interprets that as a
command to return to the default behaviour, and the corresponding row is thus deleted
in the user input lane table.

4.3.4 Efficient Multi-user data edit

The work presented in this section has been achieved together with Lionel Atty (SIDT,
IGN, all the python development). A proof of concept open source QGIS plugin is
available 6.

4.3.4.1 Collaborative data and Gamification

We observe two major trends in the last five years regarding Geographic Information
edition.

6 http://remi-c.github.io/interactive_map_tracking/

133

http://remi-c.github.io/interactive_map_tracking/

1

2 725

9
1
4

891

899

1

2 725

9
1
4

891

899

1

2

725

9
1
4

891899

User overrides lane automatic direction :
UPSERT user input table. Geometry is
still re-generated if necessary (default).

id relates to direction geometry

12 302 True NULL

+geom

User overrides lane geometry :
update user input table.
Geometry is now user fixed

1

2 725

4

891

899

User delete lane, which is
interpretated as a reset:
Corresponding row in user
input table is deleted.
Back to automatic generation

Figure 99: When the user overrides a default behaviour, the parameter is stored in a user input
table. Objects overriden do not use default generation anymore thanks to COALESCE.
The user can still delete the overriden object to return to the generic behaviour.

collaborative editing The first trend is toward collaborative editing. The suc-
cess of projects like OpenStreetMap7 have put into light the advantages of collaborative
editing. Working simultaneously to edit data greatly increase the scaling possibility.
Moreover, supporting several users edit may also improve quality, as a mix of advanced
and regular users is possible, some user possibly having a quality control role.

serious game The other trend is more pervasive, and concerns gamification (or
serious game). Gamification is the integration of game-related elements into a non-game
context. For instance earning virtual points, badges, achievement, etc. It has proved to
be a powerful incentive that can diminish the subjective effort associated with a task.
(See Djaouti, Alvarez, and Jessel, 2011 for a classification of serious game).

We conceptually build on both trends to create a tool helping multi user in-base
interaction.

In order to achieve multi user editing capabilities, we need first to use mechanisms
so that simultaneous edits of the same data is dealt with by the database (See Chapter
3). That is a safeguard against computer errors. The ability to not crash when several
users edit the same data is not sufficient for efficient multi-user editing. Users also need
a way to be aware of each others, and most notably of who is working (or has worked)
on which area, which is a safeguard against human error.

The first problem was introduced and solved in the Chapter 3. In this section, we pro-
pose a solution for the second problem. The proposed methods have been implemented
as a QGIS plugin with Lionel Atty.

4.3.4.2 Better server interaction with auto save and refresh

We introduced in-base interaction concept in 4.3.2. Advantages are numerous, includ-
ing the possibility to use many clients because all the interaction happens inside the

7 www.openstreetmap.org

134

www.openstreetmap.org

database. This interaction concept is based on the fact that when a user edit data or a
controller, it will triggers in-base behaviours.

For instance, a user moves a road axis, which triggers the regeneration of associated
road surface and intersections, as well as lanes and intersection trajectories. For this
interaction to be an efficient human interface, the in-base behaviour should be clear and
fast enough to be interactive (less than a second), and most importantly, the user should
have a feedback when he performs an action. Based on the proposed architecture, the
feedback can only happen when the database received changes on data or controller. Yet,
some GIS software like QGIS do not send changes to database unless user specifically
asks for it (via a button: saving current change inside a layer). This mechanism is in-
tended to provide a local edition (including revert capabilities) before actually sending
the data to database. Based on this, user can not receive any feedback until the changes
are send to database. Furthermore, QGIS has no way of knowing that editing data or a
controller has changed other layers, whose rendering should also be updated.

As a proof of concept, we create a QGIS plugin to disable the local edition, so that
any change on a PostGIS layer is directly sent to the database, and forces refresh of all
rendered objects when a change has been sent to database, with a slight delay. That way,
all the database trigger-based interactions appear to be interactive.

4.3.4.3 Easier collaborative editing with user map tracking

Having the database model and interaction being able to deal with more than one user
is just one of the necessary steps for efficient multi user work. Users are human, so team
work requires adequate processes and tools. We identified one minimal requirement to
enable efficient teamwork, which is to be able, at all time, to quickly see what and where
other people are working on the map.

We propose an approach inspired by Google Doc8 collaborative editor, where the
editing cursor of each user is highlighted in one dedicated colour for the other users
to see. The idea is similarly to display the current and former area of editing of each
member of a team.

Each time an user (with this feature activated) browses the map between minscale

and maxscale, this user screen extend is recorded in a common PostGIS layer. Along
the screen map extend are also recorder a unique user id (session name + IP) and time
(in ms) . A simple layer style with a random colour per user id allows then to see where
each user is working (See Figure 100).

Those screen extents are recorded asynchronously via a stack (LIFO), so as to never
slow the editing or reduce interactiveness.

All users record their screen extent in the same PostGIS layer, with an unique iden-
tifier and precise time. This allows to create PostGIS views to warn when potential
work conflicts occurs. We created two examples of such conflicts. The first is when a
user comes back on an area he edited more than 5 minutes before (potential risk of
re-editing the same area twice). The second is when two user are editing the same place
at roughly (less than 5 minutes) the same time, again potentially risking duplicate work.
We stress that all this is only informational (no coercive ability), users still have full
control.

8 https://docs.google.com

135

https://docs.google.com

user screen extend
(colour = user)

(road network)
WARNING: You, Remi-C
(172.16.3.181), juste edited
something that you already edited
19:22:48 ago. You can re-edit area if
you edited it less than 5 minutes ago

WARNING: User YoYo
(172.16.2.156) and user Remi-C
(172.16.3.181) are in conflict here,
same eidtion separate by only 76
seconds. (only allowed if edits are
separated by > 5 m)

Figure 100: Example of multi-user screen extent tracking. Successive screen extents are recorded
through time (oval geometries), a long with a user-id and precise time. Display-
ing those screen extents immediately informs about who works where. Potential
conflicts (one user editing the same area twice or 2 users editing the same area at
roughly the same time) are automatically detected and a label appears on the screen.

4.3.4.4 Collaborative planing and gamification

We presented a tool to allow users where other users are working, that is to facilitate
teamwork during edit time. However, in a real life work-flow, some planning occurs
before a team edits data for a given area, and some analysis may be performed after the
edit is finished.

We propose to use an hexagonal to-do grid to help planning and analysis, as well as
introduce a small amount of gamification. Before edit starts, a working area is defined
(by several polygons). An in-base interaction (See Section 4.3.4) generates an hexagonal
grid covering the defined area. Each hexagon also holds information ’todo’ or ’done’,
’todo’ by default. Hexagonal tiles are red when ’todo’, and blue when ’done’ When a
user map extend is saved, all the hexagons covered by this extend are set to ’done’. The
hexagonal map is then a fun way to see what has been done and what remains to do,
as tiles change colour.

When edition is finished, the same hexagonal grid can be used as a support to display
information, for instance the cumulated edit time.

4.4 result

In this section we introduce actual in-base interactions that combine previously intro-
duced patterns (see Section 4.3.3). Those examples are partially extracted from Street-
Gen (Cura, Perret, and Paparoditis, 2015a), an in-base tool to generate streets. StreetGen
models several things that can be edited in different ways. (Videos demonstrations are
available for StreetGen (See Fig. 102).)

• The road information (§4.4.2), which separates constant width sections and inter-
sections, and model road surface and intersection surface based on curb stone
with specific turning radius.

• The traffic information (§4.4.3), with lanes and lane interconnection.
• The street objects (§4.4.4), which are semantic objects that may be defined rela-

tively to a road axis.

136

Figure 101: First a working area is defined, which automatically generates an hexagonal ’todo’
grid. Then when user work on an area the corresponding hexagons are marked as
’done’. Afterward, the hexagonal grid can be used ot display editing time spent per
area.

Figure 102: Videos of StreetGen in-base interaction for basic parameters https://youtu.be/

rBWZs50wVHg and lanes and interconnections https://youtu.be/yIG_5MBODfo .

4.4.1 In base interaction

We tested the in-base interaction concept with several common open source GIS soft-
wares (several versions of QGIS, OpenJump, GrassGIS). In all cases, edition correctly
triggers in base interaction.

4.4.2 Interactive road

StreetGen road model parameters (See fig. 103) are the road axis network topology, road
axis geometry, road width, curbstone radius (turning radius) and manual override of
intersection limit.

We present in-base interactions divided in two parts. The first part is the core edition,
which allows to edit all parameters. The second part is improvement of core edition to
create a better user interface.

137

https://youtu.be/rBWZs50wVHg
https://youtu.be/yIG_5MBODfo
https://youtu.be/rBWZs50wVHg
https://youtu.be/rBWZs50wVHg
https://youtu.be/yIG_5MBODfo

Road network topology
Turning radius

Road axis
Intersection limit

Road width

Figure 103: StreetGen road model parameters, each can me modified using in-base interaction.

4.4.2.1 Road editing

editing postgis topology network The very basis of StreetGen modeling is
a road axis network that uses PostGIS Topology. Interactive topology edition is com-
plicated, especially if topology is semantized. The problem stems from the necessary
interpretation of user action to transcribe it into topologically valid operations. We im-
plement this in-base interaction using the "Proxy view" design, so as to provide a safe
and dedicated interface. We add two views : ’edit-node’ and ’edit-edge’. We propose a
proof of concept free and open source 9.

Lets take an example where the topology only contains two nodes and one edge (a
line) between the nodes. The user creates a new node that is close to the middle of the
line, but not exactly on the line. This behaviour has to be interpreted has "I clicked close
to the line, but in fact I meant on the line", thus this node has to be snapped to the
line and the edge split into two parts, with relevant topological information updated, as
well as semantic’.

In more complex edition cases the expected behaviour might not be so well defined.
Therefore, when we create in-base interactions to edit a postgis topology, we purposely
limit the possible user actions with explicit error messages. We limit the interaction so
that in any case we can use the postgis topology API safely. The main limitation is that
except in obvious case, no edge split automatically occurs. See Fig. 104 for example of
user interaction.

editing streetgen road axis network Postgis topology interactive editing
only changes topology. Other triggers are necessary to adapt it to the StreetGen data
model, and ultimately regenerate axis that have been created/updated. In particular,
deleted or created edges will have an impact on all of the StreetGen data model tables.
This changes are propagated with a mix of trigger and using postgres foreign key (for
delete).

editing of road axis Road axis can be edited both for the geometry and for at-
tributes, such as road width and number of lane. We use the proxy view to separate user

9 https://github.com/Remi-C/postgis_topology_edit

138

https://github.com/Remi-C/postgis_topology_edit

20

< 14
28

29

0
-14 >

0

14
< 14

28
29

0
-14 >

0

14

0

0

0

0

28
29

31

15

14 -15 >

15 >

< -14

< 14

< 14
28

29

0
-14 >

0

14
< 14

28
29

0
-14 >

0

14
< 14

28
29

0
-14 >

0

14

node
insertion

edge
insertion

< 14
28

29

0
-14 >

0

14

17

20

34
35

< 20

< 17

-20 >

-17 >

0

2

2

0

17
34

35

< 17

-17 >

0

0

17
34

35

< 17

-17 >

0

0

17
34

35

< 20

-20 >

0

2

17
34

35

< 17

-17 >

0

0

17
34

35

< 17

-17 >

0

0

34
35

44

42
46

48

17
24

22

23

21

2
5

0
0

0

3

3

0

0
0

0

0

0

3

-23 >

-24 >

25 >

<
 2

1

-25 >

2
4

 >

< 17
< -21

< 22

-2
2

>

< -17

<
 2

3

17
34

35

< 17

-17 >

0

0
17

34
35

< 17

-17 >

0

0 forbidden

0

4

0

0

0

0

0

4

< 26

< -26

< -27

< 27

28 >

-28 >

-29 >

29 >

26

27

29

28

49 50

52

56

57

0

0

0

28 >

-28 >

-29 >

29 >

< 26

< -26

< -27

containing_face :4
49 50

52

565726

27

29

28

0

4

0

0

0

0

0

28 >

-28 >

-29 >

29 >

< 26

< -26

< -27

49 50

52

5626

27

29

28

0

4

0

0

57

node
change

-30 >

32 > -32 >

0

0 0

0

0 0

30

31 32

58 59

60
63

64

< 30

< 31 < -31

0
0

0

0

-33 >
33 >

-32 >

3
2
 >

< -30
< 30

< -31

<
 3

1

58 59

60
63

67 33
30

323
1

0
0

0

0

0 0

0

32 > -32 >

-30 >

< 31 < -31

< 30

58 59

60
63

68
31 32

30

0 0

0

30

32
31

< 30

< -31
< 31

0

0
0

0

0
0

58 59

60

61

63

-30 >

-32 >
32 >

-30 >

32 >
-32 >

< 30

< 31
< -31

68

58 59

60
63

0

0 0

0

0 0

30

31
32

forbidden

0 0

0

32 > -32 >

-30 >

< 31 < -31

< 30

58 59

60
63

68
31 32

30

0 0

0

30

32
31

< 30

< -31
< 31

0

0
0

0

0
0

58 59

60

61

63

-30 >

-32 >
32 >

-30 >

32 > -32 >

0

0 0

0

0 0

30

31 32

58 59

60
63

64

< 30

< 31 < -31

-30 >

32 > -32 >

0

0 0

0

0 0

30

31 32

58 59

60
63

64

< 30

< 31 < -31

-30 >

32 > -32 >

0

0 0

0

0 0

30

31 32

58 59

60
63

64

< 30

< 31 < -31

edge
change

< 35

0
-35 >

71 72

0

35

38

3775

76

5

-37 >

< 37

38 >

0

75

76

73

74

38

37

36

< 37

38 >

0

5

5

Left_right_face : 5

75

76

74

37

38

36

38 >

< 36

-36 >

0

0

0

5

5

0

< -38

-37 >

< 37

37

36

38

75

76

74
79

5

0

5

< -38

< 36

-37 >

38 >

-36 >

< 37

0

0

0

39

38

36

3775

76

74

80

5

5

0

5

< -37

-39 >

< 39

< -38

38 >

< 37

-36 >

36 >

0

0

0

0

43

41

86

87

82
83

0

0

<
 43

< 41

-43 >

-41 >

0

0

< 35

0
-35 >

71 72
0

35

forbidden

38

3775

76

5

5

-37 >

< -38

< 37

38 >

0

75

7638

37

< 37

38 >

0

5

5

5
-37 >

< -38

36 74
79

< 36 38 >

-36 >

0

0

warning :
wrong face

< 35

0
-35 >

71 72

0

35

37

36

38

75

76

74
79

5

0

5

< -38

< 36

-37 >

38 >

-36 >

< 37

0

0

0

75

76

74

37

38

36

38 >

< 36

-36 >

0

0

0

5

5

0

< -38

-37 >

< 37

39

38

36

3775

76

74

80

5

5

0

5

< -37

-39 >

< 39

< -38

38 >

< 37

-36 >

36 >

0

0

0

0

43

41

86

87

82
83

0

0

<
 43

< 41

-43 >

-41 >

0

0

Figure 104: Example behaviour of in base interactive topology edit, through two views, ’edit-
node’ and ’edit-edge’. Ambiguous user inputs are avoided.

input from automated modifications. In fact, any change of input data like this simply
triggers a relaunch of StreetGen on the concerned elements, which unify processing.

User can edit radius by typing a new value, or use the indirect "geometric controller"
as seen in Section 4.3.3.4.

editing of intersection limit As seen in 4.3.3.3, intersection limit uses a com-
bination of indirect "geometric controller", "proxy view", and "sotring user choice".

advanced road width editing Default way to edit a road width is to change
the ’width’ value of the road axis attribute, which is a lot of clicks and a waste of time,
as most likely the user does not know the correct value, and will have to try several
widths.

Instead of that, we propose to use an indirect "geometric controller" to streamline
road width edition. The idea is to indirectly provide road width by indicating where
the sidewalk is. Road width is then automatically extracted from the potential sidewalk
position by first assigning each border points to a road section using section surface
(which can be done efficiently with geospatial indexes), then compute new width by
taking the median value to the distance to the relevant road axis. Road width is then
updated with the new value, and the relevant road is re-generated.

We present in-base interactions divided in two parts. The first part is the core edition,
which allows to edit all parameters. The second part is improvement of core edition to
create a better user interface.

139

Assign curbstone points
to road surfaces

853 853

new road width

Compute new width
(median)

1

2

Update road width,
regenerate

3

road axis

road surface
road width

Figure 105: Road width editing is extremely facilitated by the use of an indirect geometric con-
troller. The user simply add points on the cornerstone and the road width is auto-
matically updated, instead of guessing a width and typing it.

In an informal experiment, we try to find the correct width of a street with and
without the indirect controller. Without controller, it takes a dozen tries to find the
correct width with less than 0.1 metre error (30s). With controller, it’s just one click (2
seconds). The advantage of the controller interface is even more obvious when road
axis geometries are adjusted afterward. Indeed, if road axis is not well centred, the road
width must be adjusted, as opposite to the controller version, where the road width is
automatically recomputed when the road axis geometry is changed.

4.4.3 Interactive traffic

StreetGen also generates basic traffic information, such as lane geometry and direction,
and interconnections between lanes in intersections. Both lane and interconnection use a
combination of "Proxy view" and "user choice". Furthermore, interconnection also uses
an indirect "geometric controller" as control point of the Bezier curve.

4.4.3.1 lane editing

As seen in Section 4.3.3.5, the user can edit each lane direction and geometry. When the
user edits direction or geometry, he steps outside of automated generation (Automated
results will be overridden by user edits). However, the user can return to automated
generation by deleting the lane, which is then interpreted as a delete on user override
rather than a real delete of the lane. Lane number is also editable through another
"Proxy view" on road axis.

4.4.3.2 interconnection editing

Interconnection have a more complex behaviour. In lane case, a lane always exists, be-
cause the number of lanes is a parameter. For interconnection, the user needs a way to

140

convey the information that an interconnection between two lanes might not be autho-
rized. For instance, at a given intersection it might physically possible to turn left, but
it is forbidden by law.

This information is stored in a boolean. The user does not set it directly, but instead
deletes the interconnection geometry. If interconnection was not overridden, then the
interconnection is marked as not allowed. Else, user parameters are deleted as for the
lane case.

A particularity of interconnection is the use of Bezier curves to model trajectories (See
Fig. 106).

This curve is controlled by classical control points that are stored in the same table as
the interconnection trajectory (default control points are implicit).

Figure 106: User editing interconnection, both for customized trajectory with bezier curve and
possibility to use this trajectory.

4.4.4 Interactive Street Objects

4.4.4.1 Generic street objects

Generic street objects are semantic points that can be positioned relatively to a street
axis. If this is the case, object position is defined by an curvilinear abscissa and distance
to street axis (or to cornerstone). We stress that relatively positioned object must still
have a synchronised absolute position so as to be correctly displayed in GIS.

Object orientation can be similarly absolute or relative to a street axis. When a street
axis is affected (change of geometry, of width, or change of topology), all the relevant
street objects are updated so as to have coherent relative and absolute positioning (and
orientation). Object positioning types may be overridden. For instance, if an object is
positioned relatively to a street axis, and this street axis is deleted (topology change),
this object must be switched to absolute positioning.

This mechanism warranties that objects are always coherent. We also use "Proxy view"
so that user can interactively create/edit/delete street object. At object creation, user
makes a choice between relative and absolute positioning (and orientation). In case of
relative positioning, the reference can be street axis or side-walk.

141

road axis

roadway surface

lane separator

pedestrian crossing

generic street objects

avenue_tree

traffic light

pole

barrier

arrow

bench

slow_down

Legend

user edits road axis

Figure 107: Street objects can be defined relatively to streets. In this case, a change on street auto-
matically triggers the re-computation of the absolute object position and orientation.

Interaction handling is very complex when object are in a relative position. The first
level of complexity comes from the necessity to synchronise relative and absolute po-
sitioning, knowing that the user can change both, and that those changes must always
be transcribed into relative positioning. For example, an object is defined relatively to a
street axis. The user moves the object in a GIS software (thus changing the object abso-
lute position). Then trigger interprets this move as a need to update relative positioning
based on new absolute positioning. Then a new absolute positioning is generated based
on new relative positioning. In this, street object becomes its own "geometric controller
".

The second level of complexity comes from implicit reference handling. Indeed user
choosing relative positioning never explicitly indicates to which street axis the object
refers. Instead, this axis is automatically found (closest one at creation) and updated (if
an axis is split for instance, or if user moves the object very far from the street). For
instance if the user moves an object from one street to another, the relative positioning
gets updated and references the new street axis.

4.4.4.2 Specialized street objects

We illustrated the possibility of specialised objects with a proof of concept example
about pedestrian crossing.

Specialised objects add a layer of automation on top of regular street objects. For
instance, pedestrian crossing creation is done via a ’proxy view’ strategy. User create
a polygon roughly representing the pedestrian crossing (possibly using only 3 points).
This polygon is then analysed to extract pedestrian crossing parameters (width and
orientation). We could not find in the literature a method to robustly (regarding the

142

Figure 108: Street objects edition can be done through the change of attributes (here, with QGIS).
Simply moving the object also automatically updates relative positioning informa-
tion.

number of points and points repartition) fit a parallelogramoid (both side of the road
may be polylines). Therefore, we propose a simple one: each segment of the polygon
envelop votes for an orientation (weighted by segment length). Final orientation is the
average of the votes. The pedestrian crossing width is determined by separating seg-
ment into left and right of the road axis. Each side determines a width, the final width
is the average width of both sides.

In fact, finding the best pedestrian crossing model adapted to user inputs is already
inverse procedural modelling.

α
w

User input Find parameters Generate model

Figure 109: Specialised object pedestrian crossing creation is greatly facilitated by automatic
parameter extraction and generation.

When a user modifies a pedestrian crossing geometry, its parameters are recomputed.
This way, one graphic controller allows to control all pedestrian crossing parameters (po-
sition, orientation, width). Again, this allows for easy parameter changes via "graphic
control".

143

4.4.5 Efficient Multi-user data edit

4.4.5.1 Better server interaction with auto save and refresh

The auto save and refresh plugin is not necessary per se, provided the frequent use
convenient save and refresh short cuts. However it adds a great deal of comfort and
reduces the number of clicks.

4.5 discussion

In this section we discuss elements of method (4.3) and result (4.4) sections. We start by
analysing need of interaction for procedural modelling, and proposed design patterns.
We examine then how the proposed method to facilitate multi-user work perform.

The next part of discussion is dedicated to interaction in StreetGen, with interactive
road, traffic and objects modelling.

4.5.1 In base interaction for procedural modelling

We stress that the results that can be obtained by our method (interactive procedural
modelling) are limited by the modelling capabilities of the procedural tool. Our simple
road model (fixed width + intersection) can not model all existing roads. Prominently,
some road have varying width. Similarly, our model can not generate all type of corner-
stones, for instance cornerstones using two successive radius, or chamfered.

We propose to amove the interaction from client to database. While it brings numer-
ous advantages, it is ill suited for very complex interactions, where dedicated Human
Machine Interface (HMI) would be more appropriate. Indeed, in base interaction can
happen only after an edit occurred, which prevents any HMI scenario where the HMI
proposes solutions before edit is done. Yet those interaction fall in the significant Guided
Design trend. When the complexity of interaction increases, the current PostgreSQL
trigger framework also becomes a serious limitation. Most popular User Interfaces (UI)
are based on signals (for instance QT10), which can be rudimentary mimicked by Post-
greSQL triggers. However, triggers offer almost no modern control, and, as such the
difference with modern UI is similar to the difference between assembly languages and
modern object oriented languages. Therefore, in base interaction scales badly in terms
of code complexity, generality and maintenance. As such, in base interaction should be
limited to straightforward cases, and not be pushed too far.

4.5.2 Different in-base interaction types

We propose several patterns to facilitate in-base interaction, yet, the distinction between
patterns is quite artificial, and real use cases tend to blend all patterns.

Using controller and/or proxy view necessarily increase the database server work-
load. For a "Proxy view" strategy, the choice between a "VIEW", a "TABLE", or even
a "MATERIALIZED VIEW" may vary a lot depending on the load, quantity of data,
complexity of code maintenance, etc. In this article we only explore triggers for in base

10 www.qt.io/

144

www.qt.io/

interaction. Yet, databases also have powerful rule systems that could be used for basic
interaction.

As a perspective, storing user choices is a first step, but more advanced features could
be attained, like storing user choices and archiving it, so as to have access to former user
choices, rather than delete/overwrite.

4.5.3 Efficient Multi-user data edit

An obvious limitation of the auto save and refresh is to disable local undo/redo control.
It also breaks the concept of in-base interaction as it creates client-side code. The user
map tracking is fuzzy by nature, as the screen map extent is registered each time the
user changes it, regardless if an edition occurred or not. This can not be avoided, as
sometime quality control (mostly not editing things, but checking parts of the map) is
as important as edit, and should also be tracked. Indeed, two users performing a check
on data could easily check the same area without being aware if not using the plugin.
The gamification concept could be pushed much further, with virtual points, awards,
etc. More importantly, a real edit work flow would benefit from more advanced tools
with user having multiple roles (editor, checker, manager, etc.). All the role interactions
could be helped by plugin, and happen in base with the hexagonal grid support. For
instance, a team leader could assign different areas to be reviewed to his colleagues.
After delivery, a client finding a problem could mark the relevant hexagons, so the that
edit team has easy and immediate notification of erroneous area. We stress that although
not limited in theory, we never tested the plugin with more than 3-4 users.

4.5.4 Interactive road

Road editing is seriously limited by the topological road axis network editing. Indeed,
our interactive topology editing may lead to incoherent in the implicit faces of the topol-
ogy. This is an implementation limitation rather than a conceptual limitation. Currently
there is no way to split many edges at the same time, to introduce a road axis cutting
Paris in half for instance. We noticed however that this interactive topology edition is
very useful compared to the alternative, which is to recompute the whole topology from
scratch for each change. PostGis Topology is not fast, building topology for paris street
is several minutes. In some case, we would benefit from higher level operation, like
replace several small intersection with one roundabout for instance.

We also noticed that introducing geometric controller for turning radius and road
width is extremely helpful, with speed gains about one order of magnitude, and edit
much more agreeable.

4.5.5 Interactive traffic

Users can edit lane and interconnections. Lane direction editing could be more effective,
maybe using a geometric controller. Users have to edit a field ’direction’, which is not
handy, especially when several lanes could be edited at once. When users delete inter-
connections, it actually sets the interconnection trajectory as forbidden. This behaviour
greatly speeds editing, because several interconnections can be selected and deleted at

145

once. However, by default all possible interconnection are authorized, which creates a
great number of interconnections in intersections with many lanes. Interaction would
be much more efficient if we could use some heuristics that would connect lanes more
conservatively. Bezier curves are great for ease of control, but rather inaccurate when it
comes to actual vehicle trajectory.

4.5.6 Interactive Street Objects

The street object interface is especially useful as it allows to somehow compensate lim-
itation of road model. For instance, StreetGen road model does not consider parking
spaces, which is a strong limitation in Paris where parking spaces are omnipresent, and
especially meaningful for urbanism. Yet those parking spaces could be modelled as
street objects, using an adhoc object specialisation similarly to pedestrian crossing. We
presented a specialisation for an object which is a surface by nature (pedestrian cross-
ing), yet many street objects are also linear by nature (like some markings and barrier).
Street objects were only tested at street scale.

Moreover, we only presented interactive editing of street objects, and not large scale
generation, with advanced patterns and rules. Good examples of adequate complexity
can be found in shape grammars designed for city generation.

d2

(d1,a1) (d2,a2)

d1

a1
a2

ro
ad

 a
xis

Figure 110: A unique absolute position can correspond to several relative positioning, which
theoretically limits relative positioning setting through absolute geometry.

There is a very fundamental limitation to switch between absolute and relative posi-
tioning like we do (See Fig. 110). Basically, going from relative to absolute positioning
is not a bijection, so, in some cases there is no inverse function (going back). So, in
some cases a couple (curvilinear abscissa, distance to axis) may not be settable through
geometric proxy. This problem also affects the altimetry example we gave (See Fig. 97).
However, when special cases require it, it is still possible to set the relative positioning
manually.

4.5.7 Best of 2D and 3D world for edition

The proposed method is based on common GIS softwares, which represent and deal
with data in 2D. The 2D view (map view) has obvious advantages for edition: it is
simple, clear, and edition can be efficiently performed with usual interactive devices
(mouse). Yet, the 2D view is sometimes confusing, especially for objects like street signs
that might become invisible in 2D. Our brain is also extremely good at understanding
3D scenes. In this optic, we could propose a mixed 2D-3D edition to get the better of
both worlds.

146

We explored this idea with a prototype (work performed by Lionel Atty), where
we use QGIS as he main 2D edition software. We create a plugin containing a web
browser, then display ITowns11, a WebGL application able to show streetview, street
Lidar, and perfom measures and edition. Both are synchronized, so that edits in 3D are
also displayed in 2D, and so that 3D camera position and orientation is also controlled
and displayed in 2D. The 3D streetview gives exemplary context awareness, and can
be used to perform precise edition, while the 2D view gives good overview and fast
navigation, and can be used for classic edit.

Figure 111: Coupled 3D (left, ITowns) and 2D (right, QGIS) visualisation and edit, providing
clear and fast edit (2D) with advanced view and 3D capabilities (3D).

4.6 conclusion

In this chapter we proposed a new paradigm for custom user interaction with GIS soft-
ware, where interaction handling is moved from GIS softwares to the database. In this
paradigm, GIS software simply modify geometries and attributes of database layers,
and those changes are used by the database to perform automated tasks. In the most
basic form, this automated interaction can be used to check changes, for instance round-
ing coordinates. The database can intercept the change and adapt it, for instance to
automatically simplify a polygon. For more complex interaction, we demonstrated the
use of geometric controller, which are conceptually close to UI controller such as slid-
ers, but are made of geometries with attributes. Such geometric controllers can exempt
a user from using a form, thus being an order of magnitude faster. We demonstrated
those capabilities with several examples of various complexity, including the interactive
editing capabilities of StreetGen, an in base procedural street generator tool.

Last in base interaction can also be taken one step further and be leveraged to help
team work. In particular, work planing is possible before editing, work analysis is pos-
sible after the edition is completed (quality), and the edition can even be enhanced by
introducing gamification elements.

11 github.com/iTowns/

147

github.com/iTowns/

5
I N V E R S E P R O C E D U R A L R O A D M O D E L L I N G

To reconstruct actual streets, a street model (Chap. 3) has to be adapted so it matches
actual streets. For many use cases a manual modification may be sufficient (Chap.
4). Yet, for large scale reconstruction, we believe that a (semi) automated process
(with the support of observations (Chap. 2) is necessary. Directly fitting a street
model to raw urban features would be intractable and extremely difficult, as the
street model contains objects of various type (road axis network, lane network, road
surface, street objects, etc.). Moreover, we established that all elements of the street
model seem to be organised around the road surface. For instance, a white rectangle
marking would have totally different role (and thus be a totally different urban
feature) depending on its context: on the road surface or outside.

Therefore we chose to first focus on reconstructing road surface, which could
then be used to fit other aspects of street model more easily, and ultimately lead to
full street reconstruction.

5.1 Abstract . 149
5.2 Introduction . 150

5.2.1 Problem . 150

5.2.2 Related work . 151

5.2.3 Approach . 152

5.2.4 Plan . 153

5.3 Method . 153
5.3.1 Choosing a model and optimisation method 153

5.3.2 Modelling the problem . 154

5.3.3 From raw data to suitable observation and parameters 156

5.3.4 Observation and regularisation forces 162

5.3.5 Optimisation . 166

5.4 Results . 169
5.4.0 Resources . 169

5.4.1 Results and Forces visualisation 169

5.4.2 From raw data to Observation 170

5.4.3 Observations matching . 170

5.4.4 Optimisation results . 170

5.4.5 Generating streets from optimised road model 177

5.5 Discussions . 179
5.5.1 Modelling the problem . 179

5.5.2 Modelling observation effect as forces 180

5.5.3 From raw data to observation . 181

5.5.4 Observation matching . 183

5.5.5 Optimisation . 183

5.5.6 Results and Forces visualisation 184

5.5.7 Optimisation results . 184

5.5.8 Generating streets from optimised road model 186

5.6 Conclusion . 186

148

5.1 abstract

optimized road axis
and optimized width

kerb observation

Urban object
observation
(cars, markings, etc.)

ground truthsidewalk(not used)

initial road axis
and width

Initial road axis,
road segments

Detection from Sensing.
Urban object detection to

object observations.

Non-linear least square
optimisation.

loss fct & regularisation.

Figure 112: Approximate road axis network and road width are available, forming a basic road
modelling. Various sensing methods produce urban feature detections which are
processed into consolidated observations, and assigned to road axis segments. A
robust non linear least square optimisation then fits the road modelling to obser-
vations. The result is much closer to ground truth, even when the road model is
too simple for the actual road configuration (varying width, asymmetric changes,
curves). The user can further input observations if necessary.

Cities are structured by roads. Having up to date and detailed maps of these is thus
an important challenge for urban planing, civil engineering and transportation. Those
maps are traditionally created manually, which represents a massive amount of work,
and may discard recent or temporary changes. For these reasons, automated map build-
ing has been a long time goal, either for road network reconstruction or for local road
surface reconstruction from low level observations. In this work, we navigate between
these two goals. Starting from an approximate road axis (+ width) network as a simple
road modelling, we propose to use observations of street features and optimisation to
improve the coarse model. Observations are generic, and as such, can be derived from
various data, such as aerial images, street images and street Lidar, other GIS data, and
complementary user input.

Starting from an initial road modelling which is at a median distance of 1.5m from
the sidewalk ground-truth, our method has the potential to robustly optimise the road
modelling so the median distance reaches 0.45m fully automatically, with better results
possible using user inputs and/or more precise observations. The robust non linear
least square optimisation used is extremely fast, with computing time from few minutes
(whole Paris) to less than a second for a few blocks.

The proposed approach is simple, very fast and produces a credible road model.
These promising results open the way to various applications, such as integration in an
interactive framework, or integration in a more powerful optimisation method, which
would be able to further segment road network and use more complex road model.

149

5.2 introduction

5.2.1 Problem

Paris is a large city, with thousands of kilometres of streets. Unlike highways, the vast
majority of roads in those streets do not follow strict design guidelines due to histor-
ical reasons (they also pre-date civil engineering guidelines, which have also evolved
anyway). Yet, an up-to-date precise map of those roads is essential for many applica-
tions, like city planning, urbanism, traffic analysis, autonomous driving or simply help
wheelchairs or stroller users navigate urban space. Streets are also changing frequently,
with very frequent public work and planning efforts, as well as effects from other civil
works and maintenance. As a testimony, the ground truth data we use dates from 2011,
however, actual sensing from 2014 showed that a part of the side-walks had been mod-
ified, and we only looked at a small area of a few blocks (See Fig. 128 on page 172,
right)!

Manually creating and updating those road modelling is extremely time consuming,
and we wonder how much time and efforts went into the 1860 Paris plan that include
side-walks (Fig. 113). Thus, a mostly automatic method is needed to create/update

Figure 113: Plan parcellaire municipal de Paris, 1860. Copyright Archive de Paris.

these road modelling. Automatic methods relies heavily on data: actual observations
that can be leveraged to find an adequate road modelling. The ways to observe roads
are numerous, be it through street images or street Lidar, aerial images, legacy GIS
database or digitized legacy maps. All those observations sources should be usable by
the method, as each could suit a particular situation. For instance high buildings reduce
the interest of aerial images, but have no impact on street Lidar. Yet street Lidar data is
unlikely to be available outside of major cities.

Thankfully, such a road modelling is usually not to be created from scratch. At least,
some kind of road axis network is usually available, either from a database, or recon-
structed from sensing data (aerial image/Lidar, vehicle trajectory, phone tracking, etc.),
although reconstructing a road axis network is already a very challenging task in itself.

Of course observations from sensing are not perfect, especially when several sensing
sources are mixed. Therefore, to model a road is in fact akin to finding the optimal road
modelling that fits those observations. A road model with parameters must be defined,
then, a suitable optimisation method can be used to find the optimal values of these

150

parameters. The observation may be erroneous, and so can be the road axis network.
Finding the optimal road modelling may then not only involve finding the optimal
parameter values of the road model, but also to find the optimal number of parameters,
as well as the observations that should be used.

Moreover, urban roads are sometimes so complex that some form of user interaction
is most likely necessary.

5.2.2 Related work

Road surface reconstruction is a popular topic with widely varying methods depending
on the input data, the complexity of expected result, and available computing time.
Methods also vary depending if the goal is to reconstruct local road surface or the road
surface as part of a road network.

observation oriented (sensing) for local reconstruction Many meth-
ods focus on fast methods producing low complexity local road models. This topic is of
particular importance for autonomous vehicles, as they need to be able to reconstruct
the surrounding roads to be able to navigate properly . (Bar Hillel et al., 2012) propose
a state of the art of (local) road and lane reconstruction for autonomous driving.

Those bottom up methods can use street Lidar as in Zhang, Thiemann, and Sester,
2010, street videos (Zhang et al., 2009), or rasterized Lidar (Yang, Fang, and Li, 2013).
In those cases, the goal is more to classify which pixels or points pertain to road, rather
than reconstruct a high level road model.

The local reconstruction can also be based on aerial image, such as in road fol-
lowign methods, which are often used to help an userr, such as in (McKeown and
Denlinger, 1988), which produces a centerline and approximate road width, and in
(Airault, Ruskone, and Jamet, 1994).

observation oriented (sensing) for global reconstruction Other meth-
ods also work on low level input, but try to reconstruct the road network. The base input
can be for instance GPS traces of vehicles such as in (Roeth, Zaum, and Brenner, 2016),
who find then the optimal road network matching these traces with RJ-MCMC. Note
that they reconstruct the raod axis network and not the road geometry. Another input
that can be used is radar (SAR), such as in (Tupin et al., 1998) where a first local detec-
tion step is followed by the global network reconstruction with Markov Random Field.
This workflow is similar to Montoya-Zegarra et al., 2014, who use learning (local) then
Conditional Random Field to reconstruct the road network in urban environment using
aerial rasters.

Fischler, Tenenbaum, and Wolf, 1981 method is also based on aerial images. They
use multiple road detector and dynamic programming to reconstruct the road surface
of the road network. Baumgartner et al., 1999 focus on multiscale road extraction and
fill gap with active contours. They also use context. Ziems, Gerke, and Heipke, 2007

use available GIS database information for contextual information and to help learning.
When the approximate road axis network is available, the problem is then quite differ-
ent, as demonstrated by Ravanbakhsh, Heipke, and Pakzad, 2008 who use local image
processing and active contours to precise road delimitation in intersections.

151

model oriented (gis) On the other side of the spectrum, numerous methods focus
on rebuilding the main component of a road model: the road axis. Reconstructing road
axis involves topology, and can be performed with various data, such as aerial image
(Montoya-Zegarra et al., 2014), Lidar (see Quackenbush, Im, and Zuo, 2013 state of the
art) or vehicle traces (GPS data, see Ahmed et al., 2014).

Such methods focus on network reconstruction, and usually do not consider road
geometry, with the exception of Zhang, 2010 that reconstruct a road network from GPS
traces and also estimate road width, and Clode et al., 2007, which use aerial lidar data
to reconstruct a road network topology along with the border of the road (width is
varying along the road).

fusion Taking advantage of both observation-oriented and model-oriented methods,
some methods fuse low level observation with high level road network. For instance
Hatger and Brenner, 2003 initialise a road segmentation method starting with a road
axis network database, and using aerial Lidar. Road width and slope is then extracted
from the segmentation, but the road axis are constant. Similarly, Boyko and Funkhouser,
2011 start from an approximate urban road network and use it to initialise a road surface
seeking method (snake) based on Lidar raster. The road surface is the final result.

Both these methods directly use low level data (Lidar) to segment road surface.

this work In this work we take a different approach because we do not use the
same input data. First we do not directly use raw sensing data. Instead, we rely on
other methods that extract semantic information about urban features from these raw
data (for instance, markings, cars, signs, etc.). These methods may work on several type
of raw sensing data such as aerial images, street Lidar and images, other GIS data, and
user input.

Second we start from an already existing rough road model composed of a road axis
network where each raod axis as an approximate road width.

Our goal is then to adapt this rough road model to the observations we have. To this
end, we associate the semantic observations extracted from low level detections to the
road model. We then optimise the road model so it better fits these observations. The
result is a fitted high level road model.

5.2.3 Approach

Road modelling as a whole is complex, especially if we want to be able to use diverse
observation type and do so fast enough to allow user interaction. Moreover, even a
superficial look at Paris streets outlines numerous odd roads configurations that would
be complex to extensively integrate into a road model, if possible at all. A complex
model and diverse uncertain observations make a dangerous mix. Therefore, we chose
to model roads in a very simple yet flexible way: a road axis network (composed of road
segments) with a road width for each segment. Such a model is a simple basis upon
which more complex cases can be added when necessary.

Then, we break the optimisation problem of finding the optimal road axis and road
width given a set of observations in two parts. The first part aims at robustly finding
optimal values of this road model parameters given observations, road axis segments
and associated width. We consider it to be the core and maybe the task that potentially

152

needs the less user intervention. As such, it should be fast and robust, yielding good
results in most situations. Some areas may need to be manually corrected when the
road model is not sufficient to handle a complex situation.

The second part aims at finding the optimal number of road segments, and which
observations affect which segments. This involves splitting/merging/creating/deleting
road segments, and removing observations. In our work this part is performed manually.
It could be automatized using a powerful optimisation framework, which we leave for
future work.

5.2.4 Plan

The rest of this chapter is structured as follows: In Section 5.3, we justify the choice of
our road model and optimisation method. Then, we explain how we create observations
from sensing detection and how we use them in the optimisation process. In Section 5.4,
we show results of observation creation and usage in the optimisation, with optimisa-
tion results for various observations and situations. In Section 5.5 we discuss results,
limitations and perspectives.

5.3 method

5.3.1 Choosing a model and optimisation method

5.3.1.1 Context

It seems that the way a problem is modelled strongly depends on the optimisation
method that will be used. Therefore, before exposing our modelling and optimisation
method, we explain our goal and the context.

We suppose we have access to a road axis network with associated estimated road
width. As explained in Chapter 3, this hypothesis is not a reducing one, as those data
are fairly accessible and when not available can be estimated from various inputs (aerial
images, LIDAR, GPS, etc.).

These road axis and road width are only approximate, and lead to a first credible
roadway modelling solution, but the goal is to better estimate these values. For this,
we suppose we also have access to observations related to road or street objects (in a
broad interpretation), for instance road markings, kerbs (separation between roadway
and side-walk), public lights, etc. Again, this hypothesis is not very limiting, as many
methods exist to extract those observations from images, aerial view, Lidar, digitized
maps, etc.
We interpret an observation as the probable presence of an object, as such each obser-
vation is completed by a confidence measure. Each object type has a defined behaviour
regarding road surface. For instance, pedestrian crossings are expected to be within the
roadway (road surface). From an optimisation perspective, the goal is then to find the
best parameters of the model to fit the observations.

5.3.1.2 Optimisation requirement and choice

Following the capabilities of StreetGen (Chapter 3), we seek a method that can work
seamlessly from street to city scale. Moreover, for reasons exposed in Chapter 4, and

153

because observations may be missing entirely in some place, or be noisy, the method
must allow seamless user input integration, as well as user override. More than user
input integration, the method also has to be fast enough to be interactive at street scale
so that user interaction is possible. Lastly, observations can concern many different
street objects, and take many forms depending on the sensing method. Therefore, the
optimisation method has to be generic enough to integrate many types of information
about urban objects.

We considered optimising on loop of kerbs around a city block, but we rejected it
because the street network could be incomplete, and because optimising one isolated
street should be possible.

We choose to formalize the problem as a mechanical problem, where observations
exercise forces over the road axis, and road axe are also subject to forces that resist
changes so the final solution is not too far from the initial one.

5.3.2 Modelling the problem

5.3.2.1 Model

We consider the road axis (polylines constituted of road segments) as a set of connected
points. To each road segment is associated a road width value (parameter / variable).
Segment and width together implicitly describe a simple roadway (road surface), that
is a set of rectangles. The variables (i.e. the only values that will be changed by optimi-
sation, which we will call parameters) of the optimisation are then 3D points (3 scalars
per points) constituting the road axis vertex, and for each road segment, the road width
(on scalar per segment). See Figure 114 and equation 2 on page 156.

road width

road surface

kerbobservation

sidewalk

node

street objectobservations

street objectobservation

parameters groundtruth observation

Figure 114: A roadway is modelled with connected nodes and width, which implicitly describes
a crude road surface (a rectangles). Observations are defined regarding the implicit
road surface.

Observations are semantic 2D geometries (points, polylines, polygons, geometry col-
lections) associated with a confidence.

154

The semantic of street objects is their type (about 100 classes, such as car, street fur-
niture, building, etc.). Each street object class is associated with an overall precision,
confidence, class weight, as well as the expected class behaviour regarding road way.
We consider those as settings of the optimisation, as those depend on data and knowl-
edge on road. Each class has an expected position regarding roadway, which is either
within the roadway area or outside. The expected position can also be defined as in the
border of the road area (in or out of the road), or undefined. Furthermore, if the class
is defined as being on the border of the roadway, it has an additional expected distance
to the border (See Fig. 115).

Figure 115: Each expected observation position is defined regarding the implicit road surface,
with four options: In, Out, Border_in, Border_out. When Border is used, a distance
to the road surface limit can be defined (dist1, dist2 here).

5.3.2.2 Optimisation method

We choose to use a robust non-linear least square optimisation to find the optimal road
axis and road width. We use a generic open source tool to do so (Agarwal, Mierle,
and Others, 2016). The main reasons to choose this family of optimisation is that given
observations and parameters (a road axis and road width), we can significantly measure
how well the parameters fit the observations, and more importantly, we can explicitly
compute changes on parameters to improve fitting.

We consider the problem similarly to a mechanical problem, where all observations
generate forces that can be modelled as geometric vectors. This kind of problem can be
successfully solved with non linear least square.

Another reason to use non-linear least square is that it is extremely fast, which is
one of our requirement for user interaction. So, given an initial road segment network
constituted of
n, a set of nodes,
w a set of width relevant to segment (pair of nodes),
o a set of observations
Fo a set of Forces induced by observations and

155

Fr a set of regularisation forces,
we look for the solution of the optimisation problem S, so that

S(n,w) = arg min
n,w

(|Fo(o,n,w) + Fr(n,w)|2)

Fo(o,n,w) = Fkerb(o,n,w) + Fobject(o,n,w) + Fdirection(o,n)

Fr(n,w) = Fposition(n) + Flength(n) + Fwidth(w) + Fangle(n)

(2)

Forces generated by observations (detailed in Sec. 5.3.4.1 on page 162):
Fkerb(o,n,w) is generated by the kerb points,
Fobject(o,n,w) is generated by the street objects surface,
Fdirection(o,n) is a target road segment angle computed from kerb points.

Forces that regulate the results (detailed in Sec. 5.3.4.2 on page 164):
Fposition(n) limits the nodes toward their initial position,
Flength(n) limits the road segment toward their initial length,
Fwidth(w) limits the road width toward their initial width,
Fangle(n) limits the angle between adjacent road segment toward their initial values.

5.3.3 From raw data to suitable observation and parameters

We model the observations as either points or polygons associated with a confidence,
a weight and a precision, and a classe of street object. theoretically, our use of polygon
is generic enough so any observation type can be modelled (linestrings and points can
be buffered), but we also use points for performance reasons. The weight allows some
distinction for the same object type. For instance, an observation of sidewalk which
has been observed three times should have an heavier weight than an observation of
sidewalk observed once. The confidence, (spatial) precision and class of street object are
outputs of the detection processes. We choose this basic representation of observations
to be able to integrate observation coming from various sources, including low level
sources.

We use street objects observations as surfaces. Kerb are also streets objects, yet, be-
cause they are so influential to determine road surface, and for performance reasons,
we model them as points.

We use several wideliy different methods to extract observations of urban features
from raw sensing data. For some methods we have ot post process the detected ur-
ban features so we can properly use them. In particular, we consolidate and fuse kerb
and objects detected from mobile mapping lidar (Serna and Marcotegui, 2014) because
the results are numerous, noisy, and severly overlapping sometime. Similarly we fuse
pedestrian crossing detection from (Soheilian, Paparoditis, and Boldo, 2010) so as to
transform individual bands into whole pedestrian crossing.

Figure 116 gives an overview of the various data sources we will use in this work and
details in what follows.

156

road axis network road axis segment network

street view

street lidar

aerial image

markings

markings
detection fusion

traffic signs

kerb detection
consolidating
& fusion kerb point

estimated
road direction

object detection fusion

Mapping

O
pt
im
is
at
io
n

optimised position
and width

residual forces

Open
Data
Paris
sidewalk

filtered
split

Figure 116: Data sources for optimisation. The input road axis network is refined into a road axis
segment network. We use the detections from several methods. Those detections are
processed to become useful observations, which are associated with road segments.
The optimisation produces new road segment widths and positions.

5.3.3.1 Raw data for observation

Most of the raw data we use to extract observations come from a mobile mapping vehi-
cle equipped with Lidar and camera (Paparoditis et al., 2012). It is essential to note that
all sensing detections obtained by this vehicle sensors have a geospatial precision lim-
ited to the vehicle geo-positioning precision. Although areas with good GPS coverage
have precision of under 10cm, the precision is also often in the 40cm range. These data
are processed by various methods to extract information.

(a) :object from lidar The main source of data available is the detection of kerbs
and other street objects performed on street Lidar. We have access to results from Serna
and Marcotegui, 2014, obtained on datasets from several hundreds of millions of points
to 2 billions. (In the future we could also use in-base sidewalk detection from Cura,
Perret, and Paparoditis, 2015b).

157

Figure 117: Overview of observations sources (and potential in-base alternatives).

This method performs object detection (including kerb) on point clouds. For this,
point clouds are rasterized (flattened), then, a gradient of height along with various
morphological operation are fed to a random forest learning method. Connected com-
ponents are then extracted, and processed with alpha shape to form polygons. We stress
that raw results are extremely noisy, especially concerning labelling error for street ob-
jects. We performed extended filtering and consolidation to transform those detection
into relatively reliable observations (We detail that in Section 5.3.3.3 on the next page).

(b) marking from street level images We have access to street markings ex-
tracted from street level images (Soheilian, Paparoditis, and Boldo, 2010). Those are
polygons with basic semantic (type of marking based on width of line, and pedestrian
crossing markings), associated with a confidence. Not all markings are detected (low
recall), but erroneous markings are very uncommon (high precision). We performed
basic consolidation to aggregate several detection of the same marking found when the
vehicle passes several times at the same place.

(c) traffic signs from street level images We also use results from Soheil-
ian, Paparoditis, and Vallet, 2013 method, which detects traffic signs based on street
level images through a multiview 3D reconstruction. Results are semantic points, with
confidence and precision. Again the result contains very few false detections. Further-
more, it should be noted that in Paris, the signs are on the side-walk in the vast majority
of cases. The result did not require any processing.

(d) markings from lidar and aerial view We have access to preliminary
results from Hervieu, Soheilian, and Brédif, 2015. They use a sophisticated RJMCMC
framework to detect detailed markings with more diverse semantic from aerial images
or rasterised Lidar. (In future work we could integrate marking detection from Cura,
Perret, and Paparoditis, 2015b.)

(e) user defined kerb points Interaction is essential (See chapter 4), therefore,
we consider another observation raw data which is user defined points or polylines (con-
verted to points (See Sec. 5.3.3.2)) representing kerbs. These geometries are associated
with weight, so that they typically more important than observations from automated
sensing. User defined kerb points are stored in a separate table, to allow easy logging
and backup.

158

(f) kerb from gis open source data Lastly Open Data Paris 1 provides a side-
walk layer, which contains mixed data about sidewalks and urban features, including
kerb polylines. Because this layer does not contain only kerbs, but also mixed infor-
mation, using it besides visual ground truth is difficult. We filter this data to create
an approximated quantitative ground truth, removing parts too small and using data
semantics.

Beside creating an approximate ground truth, we can also create almost perfect kerb
observations from these sidewalks (we convert again polyline to points).

5.3.3.2 from lines to points

Our optimisation method uses kerb observation in the form of points. In several cases,
we have then to convert polylines to those points. (Using Open Data Paris sidewalk,
using kerb detection from Lidar, using linestring user input). For this we split the lines
so that no segment is bigger than l1 (usually a few metres), then we assign the weight
SegmentLength

l1
to each segment node.

5.3.3.3 (A) Street object detections to observations

Curb detection from Lidar data is extremely noisy. Therefore, we had to resort to sophis-
ticated filtering and consolidation. Part of the noise comes from the fact that the sensing
vehicle passed several times in the same street, while its geo referencing systems en-
counter drift of up to 0.4m. We use a two step approach, with first consolidation of
data and geometrical filtering, then contextual filtering. In both steps, we use data that
could be reconstructed from sensing, therefore not loosing any genericity. We perform
the processing using SQL queries and morphological operation with PostGIS.

Starting from noisy kerb points with confidence, the goal is to consolidate the points
into polylines.

Starting from initial detected lines, we dilate (minkowsky sum with a disk) the lines
with a radius of 0.4m (line spatial precision), then perform a boolean union of all ob-
tained surfaces (unioned surface). For each new surface obtained, we transfer the con-
fidence from initial points using weighted mean. We perform a straight skeleton (Aich-
holzer et al., 1996) on unioned surface, then filter the straight skeleton resulting lines to
remove most of the minor radial segments. A simplification step reduces the geometri-
cal complexity of lines (generalisation). Further contextual filtering must be performed,
where (short) lines too close to buildings and crossing road axis are removed. (See Fig-
ure 118).

The cleaning process produces lines as output. We use these lines in two forms, as
kerb points, and as kerb line segments. The first usage is to create weighted points (Sec.
5.3.3.2).

The second usage is to create segments of (almost) constant length l2 that will be
used to robustly determin a target slope of the road segment.

Please note that the example Figure 118 is a very favorable detection case. (See Fig-
ure 125 on page 170 for more common and challenging data.)

1 http://opendata.paris.fr/

159

http://opendata.paris.fr/

Figure 118: Input kerb detection is consolidated and filtered (both geometrically and with con-
text) to produce suitable observations.

5.3.3.4 Road axis network

raw data for road axis network We use road axis geometry with approximate
road width from IGN BDTopo. They consist of polylines with attributes. We create a
PostGIS Topology from these axes, that is a graph of road axis polylines, with polylines
being the edges of the graph, and the nodes being the intersections. Road axis precision
is generally metric2, approximate width precision is usually several meters.

preparing network for optimisation The optimisation works on segments,
therefore, we have to convert polylines into segments, while keeping its filiation to the
road axis network topology. We perform these operations in base with custom SQL
queries. Retaining the filiation allows to keep track of each road segment approximate
width, as well as futur usage and analysis of results.

5.3.3.5 Linking observations to street segments

By design, each observation affects at most one street segment. Each observation must
be attributed to a road segment, which we will call "match". We do not use "mapping"
whihch is more accurate in database context to avoid any confusion with geographical

2 http://professionnels.ign.fr/bdtopo

160

http://professionnels.ign.fr/bdtopo

mapping. Finding the optimal match between observations and road segments is a com-
binatorial problem. The chosen optimisation framework (robust non-linear least square)
is not powerful enough to optimise simultaneously on matching and road model pa-
rameters.

However, we rely on a simple matching method (closest road surface), because streets
tend to be less wide than city blocks, and because initial road axis and road width pro-
vide a rough road surface (precision of a few meters). Outside of intersections, these
properties indicate that an observation can reasonably be matched to only one street,
the other one being too far away to be considered anyway (See Fig. 126 on page 171).

side-walk
ground truth
road axis
network

implicit road
surface

observation

matching

Figure 119: In intersections, kerb observations can not be used as the road model is not adapted.
Using these observations would lead to incorrect results.

A notable exception is for observations near intersections, where our road model
is clearly not adapted to curved kerb and curbstone inside the intersection (See Fig.
119). Please note that these observations are also amongst the noisiest due to limited
curbstone height in Paris intersections. Therefore, we remove observations close to in-
tersection surfaces. To determin intersection surface, we use Streetgen (See Chapter 3).
(Still, those observations could be used to optimise the turning radius in StreetGen road
model.)

This matching process (assigning observations to the closest road surface) is per-
formed in base with carefully written queries. In theory, matching would require to
consider Nobservation ∗Nroadsegment possibilities, which would become intractable
at a city scale (500k ∗ 50k for Paris). However, we use database acceleration structures
(Rectangle tree: GIST) so that only observation-segment pairs spatially close enough are
considered. Processing is only a few seconds for about half an arrondissement (Paris is
divided into 20 arrondissements), and a few minutes for the whole city of Paris.

5.3.3.6 Estimated road direction of road segment from observations

When matches between kerb observations and road segments have been computed, we
use kerb observations to estimate a road direction (see Fig 120) for each road segment
having observations. All observation segments are weighted by their length, then the
direction of each road segment is computed and a weighted median performed on
these directions. We choose the weighted median because it is not very sensitive to
observation noise, while being fast to compute. The estimated road direction is then the
weighted mean of the direction of observations having a direction close to the weighted
median direction (by a threshold we experimentaly fix to 20

◦).

161

For each kerb observation segment
split kerb observation linestrings to weighted kerb observation road segments (weight
= length)
compute direction di for each weighted road segment (si,wi), i ∈ [1,N]

compute directions weighted median dwmedian = weighted_median({(di,wi), i ∈
[1,N]})

estimated road direction = weighted_mean({(di,wi)}, i ∈ [1,N], |di − dwmedian| < th)

Where th is a threshold we experimentaly fix to 20
◦.

ground truth
sidewalk
building road axis

parameter of
optimisation

observations
kerb
estimated direction

Figure 120: Estimated road axis segment slope based on weighted median of kerb observations.
The estimated slope is coherent with the ground truth, and is very different from
the road axis to be optimised.

5.3.4 Observation and regularisation forces

We model the optimisation problem as a mechanical problem, where each observation
generate forces on the road model variables, and additional regularisation forces limits
the variations of variables.

Processing of Section 5.3.3 produces a set of connected road segments with an ap-
proximate width (parameters to be optimized), and observations (weighted points or
polygons, with confidence) matched to those road segments.

For our optimisation framework (Ceres-Solver), all forces are called constraints, with
force values being called residuals, and force directions being called Jacobian (for each
parameters).

Therefore each force defines a residual (whose squared value will be minimised), and
a direction, that will be used to solve the optimisation problem.

5.3.4.1 Observation forces (Fo)

Observations generate forces over node position and road segment width (See Fig. 121).
We define three forces from observations, as seen in equation 2 on page 156

Fo(o,n,w) = Fkerb(o,n,w) + Fobject(o,n,w) + Fdirection(o,n)
The idea is always that an observation generates forces that tend to change the road

model parameters so the road model fits this observation.

162

groundtruth
kerbobservation

Force on node
(moves node)

Force on width
(change width)

OUT BORDEROUT

BORDERIN

IN

street objectobservation

observation

road implicit surface

application of
forces

Figure 121: Example of forces induced by observations.

Each force from observations exists in two versions; one affects node position, the
other affects edge width. The residuals are identical, but the Jacobian changes.

force from kerb points (Fkerb) Each kerb point observation generates forces
so the road surface border passes on this kerb point (See Fig. 121). Both road segment
nodes and road width are affected. We use the same notations as in the open source
implementation3.) Given a road segment NiNj of width w, a kerb observation point Ob.
The goal is to find the orthogonal distance between Ob and implicit road surface (i.e.
implicit rectangle formed by road segment NiNj using road width w).
We compute

−→
Np the normal of the plan P containing Ob,Ni,Nj with

−→
Np =

−−−→
ObNi ×

−−−→
NiNj.

Then d =
|
−→
Np|

|
−−−→
NiNj|

− w
2 .

d is the residual (whose squared value will be minimized).
For the version of the force affecting node positions, Ni and Nj changes happen in P,

in an orthogonal direction to
−−−→
NiNj, whose director vector is computed with

Vja =
−−−→
NiNj

|
−−−→
NiNj|

×
−→
Np

|
−→
Np|

.

For the version of the force affecting width, the proposed width wn is so d = 0, that
is
wn

2 =
|
−→
Np|

|
−−−→
NiNj|

.

object observation (Fobject) We define another observation forces based on
surface-like object observations (See Fig. 121). Objects can be arbitrary polygons po-
tentially having several inner holes.

The idea is similar to the kerb point force: the force is based on the distance between
objects and implicit road surface border. As opposite to point to segment distance com-
putation of kerb observations, the necessary segment to polygon distance for objects is

3 https://github.com/Remi-C/Network_snapping/blob/master/using_ceres/Constraints.h#L409

163

https://github.com/Remi-C/Network_snapping/blob/master/using_ceres/Constraints.h#L409

not easily done. For this, we use GEOS 4 to find the distance between the implicit road
surface (road segment and road width) and the object.

Each object class has an expected behaviour regarding road surface (IN, OUT, BOR-
DER IN, BORDER OUT), that is used in the force. This distance also takes into account
the expected distance between a class and the border of the road if the class is of type
"BORDER". That is, objects of this class are expected to be at a given distance of the
border. For instance, in Paris, a barrier is expected to be 0.2m from the border of the
road (kerb).

Unlike points, a special case occurs when an object in neither entirely in or entirely
out of the implicit road surface. In this case, we consider that the distance is proportional
to the percentage of the object surface that is inside the implicit road surface, i.e.
Area(Object∩RoadSurface)

Area(Object) . This definition is generic enough to work well with any
object we may use, and makes sense at the same time when considering the surface as
the probabilistic location the object may be.

The version of the force that affects nodes has similar direction: orthogonal to edge
axis in X,Y plan. The version of the force that affects width simply propose a new width
so d=0 .

road segment azimuth from kerb points (Fdirection) For the two previous
types of forces, the observations are considered individually. However this may lead
to an ill conditioned problem. Strongly unbalanced observation density may stick the
optimization in a local minimum. Intuitively, two points (at least) are necessary to deter-
mine a segment direction. To solve this problem, we use all observations affecting the
road segment to determine a probable road segment direction do (See Sec. 5.3.3.6 on
page 161).

The force is defined as follows. Given a probable target road segment direction esti-
mated from kerb observation diro, the force rotates the road segment around its centre
point so the road segment direction dirs = diro.

5.3.4.2 Regularisation forces (Fr)

Observations generate forces over node position and road segment width (See Fig. 121).
We define four regularisation forces, as seen in equation 2 on page 156

Fr(n,w) = Fposition(n) + Flength(n) + Fwidth(w) + Fangle(n)

These regularisation forces keep the optimisation result close to the optimisation ini-
tialisation (See Fig. 122).

In other words, the regularisation forces works to push the parameters towards their
initial values, so as to limit changes and avoid large variation of parameters. Such reg-
ularisation are needed for three reasons. First, the initial road segment and road width
(optimisation initialisation) are not far from the optimal solution (few meters). Second,
road segments might not have any associated observations at all. As such, they could
potentially be moved hundreds of meters. Third the optimisation does not perform va-
lidity checks on optimised road segments (for instance, we do not check if a new road
segment position makes it intersect another segment, which would be forbidden in a
topology).

4 https://trac.osgeo.org/geos/

164

https://trac.osgeo.org/geos/

alpha

beta

alpha

initial nodes

current position

initial position

initial length

initial angle
+ width
conservation

Figure 122: Regularisation forces that work to preserve initial values of parameters. The "initial
position" force tends to preserve each node initial position. The "initial length" force
tends to preserve each road segment length. The "initial angle" force tends to pre-
serve initial angle between road segments. The "initial width" tends to preserve the
initial width of each road segments.

The only parameters of the optimisation are road node position and road segment
width, thus, in theory, only two regularisation forces would be necessary. Yet, regular-
isation forces are meant to preserve different properties of the initialisation. Lets take
the example of a perfect road network, with perfect with and node positions values, but
that is translated 1 metre North. Conserving the initial node position would prevent
from translating the nodes 1 metre South to get the correct result. However, stating that
angles between road segments shall be preserved allows the freedom to perform the
translation, but still preserve the overall road network organisation.

We describe each of these regularisation forces (Fposition, Flength, Fwidth, Fangle) in
the following paragraphs.

distance to initial road segment position (Fposition) Before the optimisa-
tion starts, the initial road segment node positions (X,Y,Z) are stored. Then the resisting
force is defined for each node as the euclidean distance between the initial position and
its current position. The Force direction is

−−−−−−→
NioldNi.

distance to initial road segment length (Flength) This force is neces-
sary to limit the deformation of the road segment network. Before the optimisation
starts, the initial road segments length are stored. The resisting force is defined as
trying to maintain the initial road segment length. Force intensity is defined by Fi =

Lengthinitial − Lengthcurrent, the force direction is
−−−→
NiNj, with direction depending

on the sign of Fi.

distance to initial road segment width (Fwidth) This force is particularly
useful to limit large width changes when only a few noisy observations are present. The
initial width is stored for each road segment. Then the resisting force is |InitialWidth−

CurrentWidth|. This force only change width, and has no effects on node positions.

165

distance to initial pair of road segment angle (Fangle) For each succes-
sive road segment node inside a road axis, we store the angle ̂NiNjNk. That is, when
possible, we associate to a node Nj its initial angle (Âj) with previous (Ni) and next
(Nk) node.

The force direction is then the bisector of this this angle
−→
Bj, which is computed with

−→
Bj =

−−−→
NjNi

2∗|
−−−→
NjNi|

+
−−−→
NjNk

2∗|
−−−→
NjNk|

Given the current positions of the 3 nodes, we look for the new position of N ′j so that̂NiN
′
jNk = B̂j. Finding the actual distance d to the new position of the node N ′j along

the bissect is complicated, as it require to solve a system so that
(
−−−→
NjNi − d ∗

−→
Bj)× (

−−−→
NjNk − d ∗

−→
Bj) ·
−→
Np = tan(Âj) ∗ (

−−−→
NjNi − d ∗

−→
Bj) · (

−−−→
NjNk − d ∗

−→
Bj)

where
−→
Np =

−−−→
NjNi×

−−−→
NjNk

|
−−−→
NjNi×

−−−→
NjNk|

.

Instead, we approximate computing of d by considering that |
−−−→
NjNi| = |

−−−→
NjNk|.

5.3.5 Optimisation

As seen in equation 2 on page 156, the optimisation problem is formed of optimisation
variables (road segment node position, road segment width), and forces (from observa-
tions, for regularisation).

In this section we consider the optimisation process in itself, from how we influence
it with several meta-parameters (weight, bounds, loss function), to which optimisation
strategy we use, to how we can use the resulting road model to generate a street model
with StreetGen (See Chapter 3 on page 89).

5.3.5.1 Meta parameters

First we use several level of weights to balance the level of confidence on different data
and prior knowledge, second we bound the variation of the road model variable, then
we weather the influence of outliers using loss functions.

FdirectionFobjectFkerb
Fposition Flength Fwidth Fangle

Observations

Objects classes

Forces

observations regularisation

cars poles markings...

Weights

Figure 123: Several levels of weight allow to set the level of confidence in various data and prior
knowledge.

weights We use several levels of weights to adapt the optimisation process to data
sources (see fig 123).

166

At the lower level, each observation is weighted. It controls how much faith the user
has in this particular observation. If the observation is an object, each class of object is
also weighted. This is necessary because some street objects are much harder to detect
than others (for instance poles are easier to detect than trash cans), then this weight
allows to express a preference between object types.

At the higher level, each type of force has a generic weight. This is crucial to balance
between the confidence in observations and the confidence in the initial solution, or
between forces. For instance, a user may know that the input road axis network is
very precisely positioned, but with imprecise road width. This force-level weight is also
what enables use of our methods in different scenarios. For instance, if observations are
from noisy sensing, the weight of regularisation forces will be higher. On the opposite,
if observations are from legacy GIS data, the regularisation force weight will be low,
because we grant much more confidence to observations.

Choosing all these settings then depends on knowledge about input data and sensing
data. We used an experimental approach to choose these settings.

bounds Bound are used to limit the optimisation search space. For instance the road
width is not realistically expected to vary more than by a dozen meters, neither a node
to move more than a few meters. Bounds both limit the absolute range (e.g. width
should be between 1 and 20 meters), and the relative range of parameters (e.g. width
variation should be less than 10 meters).

loss functions Least square frameworks are very sensitive to outliers. Intuitively,
an absurdly high value would have a very large squared value, which would in turn
dominates the other regular values. Ceres-solver allows to use a classical solution to
this problem: loss functions. Basically, instead of optimizing on x2, we optimise on
f(x)2, where f is a function that acts like the square function at low scale, but is much
flatter at high scale. In our case, we choose the "Soft L1" f(s) = 2 ∗ (

√
1+ s− 1).

5.3.5.2 Meta strategy

We tested two strategies. The first is to optimise all parameters at the same time. The
second strategy is to successively optimise for width and position, until no more im-
provement is reached. The first strategy is canonical and produces the best results, at
the price of slightly more lengthy computation. The Second strategy is faster, but can be
stuck in local minima and can produce worst results. As such, we consider the second
strategy is not worth to be used, and favour the first strategy.

5.3.5.3 Generating streets from optimised road model

We use StreetGen to generate streets from the optimised road model (road axis segment
network and road segment width), as depicted in Figure 124.

regrouping road segments It is important to note that the StreetGen street
model is based on polyline road axis associated with one width per polyline, while the
optimisation road model is based on segment of road axis associated with one width
per segment.

Before optimisation, each polyline is broken into segments.

167

Traffic information

Street Model

interconnection
lane
separator

section
intersection

Ground truth
sidewalk
non_built_area
built_area

Figure 124: We use the optimised road model (kerb observation from sensing) as input to Street-
Gen to generate a complete street model. Note that turning radius have not been
optimised.

A simple solution to use streetgen on the optimisation result would then be to con-
sider that each road segment is in fact an individual road axis (a polyline composed
of only one segment). This works in theory, but introduces many useless intersections.
Indeed in StreetGen intersections are meant to deal with changes of road width and to
deal with intersections of more than two road axis. In the optimised results, many road
segments of the same original polyline may have approximately the same width, and
thus should be regrouped.

However, two factors complicate the regrouping. First, some segments may not have
associated observations, and thus their width has not been optimised. Therefore, their
width is insignificant and should be harmonized with the width of nearby segments
from the same polyline that have observations (if any). Second, only successive segments
should be regrouped.

We solve these issue in three steps. First, we work on segments having observations
and so a significant width. For each polyline, we regroup the segments having approx-
imately the same width using the DBSCAN method (Ester et al., 1996). The new width
is the median width weighted by the number of observation of each segment. Second,
we work on segments not having observations ("no obs"). We try to find other segments
with a significant width in the same polyline. If any is found, the segment closest to
the "no obs" (and with the most observations is two segments are at the same distance)
shares its width with the "no obs". If none is found, the original width of "no obs"
(un-optimised) is used.

168

In a third step, in each polyline, we regroup the successive segments with the same
width.

topology considerations Our optimisation method does not guarantee to pre-
serve topology (no edge should intersect except in intersection node). Instead we use
constraints so result is close to initial values. It suffices in the vast majority of cases
but not all (See Fig. 136 on page 179). A common error case is when a very small edge
is close to an intersection, and therefore has very few chances to have observations
matched to him. In this case, this small edge may be moved and end upintersecting
another edge, which is a topology error. Luckily such topology error detection is easy
and fast using ad hoc SQL query exploiting spatial index.

5.4 results

In this section, we first consider experiment settings and how to display results and
forces (as visual control is as important as qualitative control for a road network). We
present results for the pre-optimisation task, such as the transformation of raw data into
observations, and the matching process between observations and road segments. Last,
we present the optimisation results at different scales with different input data in part
5.4.4.

5.4.0 Resources

We use Ceres-solver5
1.10, the optimisation framework from Agarwal, Mierle, and Oth-

ers, 2016. Our prototype implementation is available as free and open source software6.
We use a Ubuntu 12.04 OS in a virtual box with dedicated 6 GB of RAM and 6 2.4 GHz
Intel Xeon CPU threads. Timings are measured using the standard Cpp library.

5.4.1 Results and Forces visualisation

Optimisation methods are notoriously difficult to control and parametrise, especially
when input data contain outliers. Therefore, we consider essential to have a way to
represent the forces, as well as the parameters, not only before the optimisation starts,
but during the whole optimisation process (each iteration). Rather than create a new
interface from scratch, we prefer to re-use a well known open source interface: QGIS.
For each iteration of the optimiser, we compute forces and export them in Well Known
Text (WKT), along with the iteration number and a (fake) timestamp, into a comma
separated value text file. This text file is imported in QGIS and used with the TimeMan-
ager extension7. This extension creates a time slider to slide through the iteration of the
optimiser, allowing to display both forces, residuals, and parameters.

5 http://ceres-solver.org/

6 https://github.com/Remi-C/Network_snapping

7 https://plugins.qgis.org/plugins/timemanager

169

http://ceres-solver.org/
https://github.com/Remi-C/Network_snapping
https://plugins.qgis.org/plugins/timemanager

5.4.2 From raw data to Observation

In Section 5.3.3.1 on page 157, we introduced pre-processing methods to filter and con-
solidate urban feature detections into suitable observations. The pre-process is espe-
cially necessary for kerb dection from Lidar data (Section 5.3.3.3).

Overall, the filtering and consolidating of kerb detection from Lidar data produce a
much more tractable result than the initial one. The process is a few minutes long for
about half a million detections (mostly due to the Straight Skeleton). The process can not
remove all the errors, in particular because confidence measures are not giving much
information. However, when observation density is sufficient, the optimisation seems to
be robust enough to deal with the remaining noise. We compiled small examples of the
remaining errors in Fig. 125.

Figure 125: Input kerb detection is consolidated and filtered (both geometrically and with con-
text) to produce more reliable observations.

5.4.3 Observations matching

Overall, the straightforward matching approach (closest implicit road segment surface)
seems to work very well for kerb detection, and is fast thanks to our indexed approach
(few seconds for sensing area). Object observation matching also seems to be correct (Fig.
126). We could find one case with incorrect matching, unsurprisingly in an intersection
area (Fig. 126, right illustration, red circle).

5.4.4 Optimisation results

5.4.4.1 Result evaluation

Multiple factors introduce errors in the optimisation process, which complicates result
evaluation (See Fig. 127).

• The ground truth is not perfect (it has not been updated since 2010) and it mixes
side-walk with other urban features.

• The observations are noisy and sometime sparse.
• The input road axis network is not split enough. As our optimisation method

does not change topology, this leads to an under-parametrised problem (or over
constrained). A least square problem is by nature mathematically over-constrained
(observations are redundant and contradictory). However, we refer to the fact that

170

ground truth
sidewalk
building

road axis
observations

kerb
object

mapping
kerb - axis
kerb - object

Figure 126: Observations are attributed to the closest implicit road surface, computed using road
axis and road width. This simple matching works well, except inside intersections
(Third figure, red circle).

a human performing this optimisation would change the number of parameters
by merging edge segment or splitting them.

• The chosen road model is not powerful enough to model all types of roads.
We design various strategies to limit these errors, allowing to analyse the influence of

each source of error independently.

Ground Truth
not up to date

and mixed
Observations

noisy, sparse
Input

Topology
over-constrained

Road Model
too simple

"Paris"

"Sensing"

"User"

Filtering,

Filtering, Visual
check

Filtering, manual
corrections

Use obs. derived
from ground truth

Use obs. derived
from ground truth

Use user input.
Use obs. derived
from ground truth.

over-split road
segments (<9 m)

Manual optimal
split

Experiments

Error sources
strategies

subjective
error

influence

strategy
missing or
of limited

effect

Figure 127: Multiple factors introduce errors in the optimisation process, which complicates re-
sult evaluation. We design various strategies to limit these errors, allowing to analyse
the influence or each source of error independently.

perfect observation derived from ground truth Optimisation results
strongly depend on observations quality (sparsity and noise). To remove this bias from
the analysis, some optimisation are not performed on actual observations, but directly
on ground truth side-walk points from Open Data Paris.

171

user input to complement observation sparsity Lack of observations has
a big impact on optimisation. Therefore, we generate the best possible results with
our noisy and sparse observations from sensing (Sec. 5.3.3.1). In a second step, we
introduce user inputs that will be used in the optimisation. Those user inputs are similar
to StreetGen : user defined curbstone (kerb) points.

qualitative evaluation by measuring residual distance to sidewalk

We design an approximate qualitative measuring. The aim is to measure how much
ground truth road surface is covered by the optimised implicit road surface formed by
road axis and road with. There is no road surface ground truth for Paris, therefore, we
use OpenDataParis side-walk border layer to get Paris sidewalks. We regularly place
points on the ground truth kerb, avoiding the intersection area. The distance between
kerb point and closest implicit road surface is then computed. The distance will be very
small if implicit road surface fits well with the side-walk, and large otherwise. This
measure can not be perfect because the side-walk layer also contains some street objects
(not a perfect ground truth).

5.4.4.2 Experiment areas

choosing experiment areas Three different sized areas are chosen, each having
a specific interest (see Fig. 128).

Figure 128: Three different experiment areas for various experiments, from the whole Paris to
half an arrondissement to a few streets.

• The first area ("Paris") corresponds to the whole city of Paris. Sensing data is not
available for all of Paris. Therefore, we do not use observations from sensing data,
but instead, we create observations from ground truth (Open Data Paris Sidewalk).
This area is used to demonstrate scalability, analyse the use of constraints, and
check the optimisation robustness in extremely complex parts of the road axis
network.

• The second area ("Sensing") is the whole area where sensing data is available. Road
types and observations are very diverse. This area is used to determine how useful
a fully automatic optimisation process would be, as well as evaluate computing
time for this amount of object observation.

• The third area ("User") is a small area with sensing data available. We purpose-
fully chose the most challenging area regarding road surface complexity. Due to
its small size, road axes can be manually split into the relevant number of road seg-
ments, thus eliminating the over-constrained bias of the evaluation. A thorough
visual control is also possible. Last, the moderate size allows some experiments
on the usefulness of user inputs.

172

Area # edges # nodes
Groundtruth

Observation
Kerb
Obs.

Car
Obs.

Markings
Obs.

all objects
Obs.

User
Input

Paris 38.8 k 45 k 522 k

Sensing 186 215 2343 11.7 k 390 1333 5523

User 62 64 475 2628 145 136 2011 12 places

Table 9: Facts for ground truth, parameters and observation for the three experiment areas.

numerical facts about experiment areas Table 9 shows an overview of ex-
periment areas size and content. Optimisation computing time is between a few minutes
("Paris"), a few seconds ("sensing") and less than a second ("user") when no object ob-
servation is used. Using object observations greatly slows the optimisation process as it
relies on the GEOS library to perform geometrical computing at a great cost. As such,
optimising time is a few minutes for "sensing" and a dozen of seconds for "user".

5.4.4.3 Results on "Paris" area

The first subjective result is that optimisation is very successful, the fitting of the model
is greatly increased. The qualitative result (See Table 10) confirms this (median distance
to ground truth diminished by a factor of ten, from 1.547m to 0.104m). At the same time,
because optimisation is performed on ground truth observations, the fact that the result
is not perfect shows that the model is not expressive enough for all types of roads, and
that it is over-constrained.
However, these two bias (model too simple, over-constrained) do not prevent the results
to be very close to ground truth.

The second result on the "Paris" area is that optimisation scales very nicely. The area
represents about 170k parameters, and around half a million observations, plus regu-
larisation constraints. The entire optimisation is done in 3 to 4 minutes, with about 30

seconds spent on reading data and constructing the problem (in a Ceres-solver mean-
ing).

The third result is that optimisation is robust, even when the input road network is
extremely complex (see Fig. 129).

before optimisation after optimisation

Figure 129: Even in very complex situations, where observations are too sparse and the simple
road model is not sufficient, results are stable (no constraints used).

We also looked at the impact of the regularisation constraints that limit changes (See
Section 5.3.4.2). Clearly, constraints can degrade the result, leading to less correctly fitted

173

roads (See Fig 130). This phenomenon is particularly showing when looking at distance
between ground-truth side-walk and road surface envelope (Table 10), especially look-
ing at histograms (131). We stress that constraints can stille be introduced, but with an
influence reduced at will using force weight. That way, the constraints weight can be
adapted to the trust the user has in the observation and road model parameters initial
values.

Figure 130: Constraints are necessary to stay close to the initial solution. However, they can sig-
nificantly degrade the results when there are enough quality observations. Circles
are proportional to the distance between ground truth and result. Note that con-
straint influence can be modulated with weights.

Table 10: For whole Paris, distance to side-walk before and after optimisation using or not regu-
larisation forces.

Type Mean (m) Median (m) Std dev (m)

Initial (no optimisation) 1.797 1.547 1.357

Observation from ground truth (ODParis Sidewalk) 0.392 0.242 0.479

Observation from ground truth, no regularisation 0.316 0.104 0.638

Figure 131: Histogram of absolute distance to ground truth side-walk for "Paris" (optimisation
using ground truth as observations).

174

Type Mean (m) Median (m) Std dev (m)

Initial (no optimisation) 1.856 1.507 1.534

Observations from ground truth (ODParis Sidewalk) 0.481 0.356 0.469

Observations from ground truth, no regularisation 0.281 0.118 0.442

Observations from ground truth, no regularisation, split road seg >10 m 0.117 0.014 0.306

Using Kerb observations 0.825 0.608 0.783

Using Object observations 1.554 1.237 1.201

Table 11: For the entire sensing area, distance to side-walk before and after optimisation with
diverse observations.

5.4.4.4 Results on "sensed" area.

The second area of experiment is the place where sensing data are available (See Sec. 5.4.4.2
on page 172).

Whatever the observation type used, the fitted model is always better than the initial
road modelling, although using only object-observations improves only marginally the
fitting.

Results using kerb observations are subjectively good when enough observations are
available. Quantitative results (Table 11) confirm this impression.

However, there is a large difference between results obtained with observations from
the ground truth (median = 0.12 m) and results obtained with kerb observations from
sensing (median = 0.61 m). The visualisation of observations and distance between
ground truth side-walk and road model immediately informs about the problem (See
Fig. 132, bottom right illustration). Errors come mostly from sparsity of kerb observa-
tions (most often no observation, and in a few cases only one side of the road). Indeed,
finding the correct road segment and road width is not possible if observations are only
available on one side of the road, or not available!

If the whole optimisation process were to not use any user inputs, using sensing data
clearly improves fitting (median distance to ground truth is optimised from 1.51m to
0.61m), but it still remains far from reachable results with more extensive observation
coverage.

Figure 132 gives an overview of results on whole sensed area.

5.4.4.5 Results on "user" area

The last experiment area is a small part of the "sensing" area. We manually ensure that
the road segment network is sufficiently divided. The initial road model (Fig. 133, top
right, viewed with StreetGen) is quite far from the ground truth (top left), especially
concerning road segments width. Observation matching (bottom left and right) shows
the sparsity of observations (especially kerb) and noise (especially objects).

Optimising using kerb observations produces a convincing fitting where observations
are available (see Fig. 134, left, and Table 12). Because bad fitting happens when obser-
vations are missing, a user can input manually relatively few kerb points (middle). The
resulting fitting after optimisation (Fig. 134, right), is extremely close to the ground
truth. However, the distance to ground truth (Table 11, row 4) (median = 0.36 m) is
still higher than the median distance reached for all of Paris with "perfect" observations.
This resulting distance is then a sign of the limit of the expressiveness of the proposed
road modelling (road segment + width). For instance, when the road width increases

175

Figure 132: Optimisation parameters are the street axis network and width attribute, which get
split into a road segment network. A street sensing vehicle detects kerbs and objects,
which are processed into observations, and matched to street segments. Non-linear
least square optimisation fits the parameters to these observations.

only on one side of the road. Indeed, the chosen "user" area contains many intersections,

176

Figure 133: Input data (road axis network + width with matched observations from sensing) for
optimisation in the "user" experiment area.

and problematic situations, like road with non constant width, and complex pedestrian
crossings with pedestrian islands in the middle of the roadway.

We further test the missing data hypothesis with an alternate kerb observation data
set, with more coverage, but also much more noise. As expected, the results are better
(Table 12), the additional noisiness is mostly dealt with by the loss function.

We also experiment using object observations (Fig. 135). Object observations are less
noisy than in other places, and so they can be used for optimisation on their own to
obtain notably better fitting (Table 12), with median distance going from initial 1.8m to
0.96m. However, results are still far from those obtained with kerb observations.

To complete this, we use marking detection from Hervieu, Soheilian, and Brédif, 2015,
which are especially complete and with a limited noise (advanced markings). After
fusion and optimisation, the result is significantly improved compared to other object
observations (median distance of 0.78m).

(See Discussion (Section 5.5.7.1) for analyse of other results of table 12).

5.4.5 Generating streets from optimised road model

In Section 5.3.5.3 on page 167 we introduced how the optimised road network is used
to generate a street network using StreetGen (Chapter 3). We test the method on two
optimisation results: first the road modelling obtained on the "Sensing" experiment area
using kerb observations, then the road modelling obtained on the "Paris" experiment
area using the observations extracted from ground truth side-walk, with a road axis
network split so no road segment is longer than 30 m.

177

Type Mean (m) Median (m) Std dev (m)

Initial (no optimisation) 2.044 1.8 0.937

Ground truth (ODParis Sidewalk) 0.394 0.237 0.448

Ground truth (no constraint) 0.22 0.084 0.404

Using Kerb observations 0.709 0.455 0.724

Using Kerb observations and User input 0.457 0.34 0.413

Using Kerb observation (alternate d.) 0.496 0.39 0.413

Using Object observations 1.344 0.963 1.311

Using Object observations (only markings) 1.53 1.169 1.272

Using kerb and Object (cars,markings,signs) 0.67 0.451 0.696

Using advanced markings (only few streets) 1.009 0.782 0.944

Table 12: For a small part of sensing area, distance to side-walk before and after optimisation
using diverse observations.

Figure 134: Optimisation results based on kerb observations for "user" experiment area.

Figure 135: Optimisation results based on object observation for the "user" experiment area.

The process to regroup road segments is quite fast, with a few seconds for "Sensing"
and a minute for "Paris". See figure 124 on page 168 for illustration on result. Produced
roads and intersection surfaces are available8.

8 https://github.com/Remi-C/Network_snapping/tree/master/data/street_gen_after_optim

178

https://github.com/Remi-C/Network_snapping/tree/master/data/street_gen_after_optim

For "Paris" experiment area, the initial road axis network contains 19531 polylines,
which are then split into 74325 road segments. After optimisation, those segments are
regrouped into 37262 polylines.

Optimisation does not guarantee to preserve topology (See Fig. 136). We detect these
errors (74) and display them, so an user can fix them.

Figure 136: After the optimisation process, the road axis network contains a few topological
errors despite the use of constraint forces. These 74 errors for the whole "Paris"
experiment area can be corrected by a user in about 10 minutes.

5.5 discussions

This section discusses limitations and perspectives for key elements of our method and
its results. First, we discuss the choice of the road model, optimisation framework and
forces choices. Then we discuss how raw data are processed into observations, and how
these observations are matched to road segments. We then discuss the optimisation
process and how to visualise its output. Last, we discuss optimisation results.

5.5.1 Modelling the problem

Our road modelling (road axis segment + width) suits well a city like Paris that has
yet very complex roadway. Our road model can not take into account road with non
constant width, asymmetric road width change, pedestrian islands in the middle of a
roadway, etc.
In fact the current optimisation method could be extended in a minor way by introduc-
ing a road segment type with a linearly varying road width (possibly with variation
different on each side). Such an extension would even be sufficient to model asym-
metric road width change in most situations. This change would greatly enhance the
capabilities of the road model.

Another perspective would be to augment the road model with some "free-form" road
sections that would be much less constrainted that regular road sections (for instance,
any polygon). This could greatly improve the expressiveness of the road model, at the
price of it being partially less abstract.

The choice made toward robust non linear least square optimisation proves to be
capable of fitting the chosen model to observations, and is reasonably robust to outliers
in observations. Because it is fast, it is a good candidate to be integrated into a more
powerful framework such as Reversible Jump Markov Chain Monte Carlo (RJMCMC,

179

Green, 1995) which can handle changes on numbers of parameters, extension of road
model into different type of road segment, and possibly remove outliers.

5.5.2 Modelling observation effect as forces

We consider the optimisation problem as a mechanical problem where observations
produce forces on road segments and road width.

5.5.2.1 Observation forces

kerb points Forces induced by kerb points are extremely fast to compute thanks
to Eigen9 (Guennebaud, Jacob, and others, 2010) library. These forces have a drawback:
distance between observation and road segment is computed for an infinite road seg-
ment. It could be an improvement to actually check that the observation projection is
inside the road segment, which would amount to disable some observations when road
segment changes a lot.

street objects Forces induced by road objects have a lot of room for improve-
ment. We use GEOS10 to compute forces based on object observations, which greatly
increases computing time (by a factor 10 to 100). We chose a sophisticated distance,
based on the actual shared area. It involves computing distance between road segments
and complex surfaces, and computing intersections between road segment surface and
observation surfaces. The reason behind was to exploit exactly the data, without intro-
ducing approximation. However, there is no point to use such a precise measure when
object detections and observations are so noisy! Moreover, observations are systemati-
cally converted to surfaces. This is inefficient: an object observed as a point (a pole for
instance) could use a point to segment distance. Considering the level of precision of
the observations, GEOS could be abandoned to perform surface to segment distance
and intersection area. Instead, all object observations could be modelised as points or
rectangles, and distances and intersection could be directly computed with Eigen.

road segment azimuth from kerb points Target road segment slope has
proved to be successful at accelerating computing and obtaining better results. It may
be due to the robust (although crude) way it is estimated (weighted median). More
advanced methods such as RANSAC could make it more robust. Moreover, this force is
sometimes meaningless for very short road segments that serve as transition in places
where the road model is not sufficient compared to the road complexity. Such cases
could be detected automatically, and slope force cancelled. User inputs are not included
to compute this force, which could also be a significant improvement.

5.5.2.2 Regularisation forces

All regularisation forces suffer from a drawback: they are hard to set, because their value
is a constant, whereas observation forces strength depends on the number of observa-
tion. Regularisation forces could be normalised regarding the number of observations,

9 http://eigen.tuxfamily.org

10 https://trac.osgeo.org/geos/

180

http://eigen.tuxfamily.org
https://trac.osgeo.org/geos/

yet their current behaviour can be seen as desirable (a road with many observations will
have low regularisation, and with few observation strong regularisation).

new road width propagation force We could improve results in case observa-
tions are missing by regularising the width given the neighbour segments width. Let us
take the example of a road axis divided in three road segments, with good observations
on the first and last segments, but no observations for the middle segment. First and last
segments are moved and their widths changed so they fit the observations. Indirectly,
the middle segment is also moved as its end nodes are shared with other segments.
However, there is no such mechanism for width sharing. We could easily add a force
that pushes toward having the same width as neighbour segments. This force would
greatly increase results in place where the road axis network is over segmented.

Similarly, we could add a force limitating the difference of width between two succes-
sive road segments.

distance to initial road segment node position We consider this force to
be very important for scenarios where only a small part of the road network is to be
modified. Indeed, it would be critical for user interaction that a change made by a user
at a place (South of Paris for instance) does not produce changes far away from this
place (North of Paris for instance). This force is a way to achieve that. Let us take the
example where the user wants to edit one road axis. This force can be gradually stronger
for edges as they are inside 1-neighbourhood, 2-neighbourhood, etc.

In a similar scenario, this force is useful for pending edges that are directly connected
to optimised edges but have no observations.

distance to initial road segment length This force could also be modu-
lated, as it is counter-productive for small segments that serve as transition whent he
road model is not powerful enough.

distance to initial road segment width This force works well to prevent
isolated noisy observation to wrongly radically change road width. It proved to be
particulary useful when dealing with noisy objects, as it prevents the width to increase
out without sound reasons.

distance to initial pair of road segment angle We performed an approx-
imation to compute this force due to lack of time. Yet this approximation may be ill
suited when changes of angles are large, possibly leading this force to be inefficient or
even counter productive. We possibly introduce an error in optimisation. The exact an-
alytical change could be computed, which may lead to faster convergence, and maybe
even better results.

5.5.3 From raw data to observation

street lidar for kerb observations The main limitation of kerb observations
is not the noise but the sparsity. It has a much stronger effect on optimisation outcome
than outliers. Some streets have very few kerb detections, sometime on only one side
of the street. The essence of the problem is that side-walks are often masked by parked

181

cars or street objects. This is due to the used Lidar device (Riegl), which samples points
in a plan orthogonal to the vehicle heading. That way, a spot of side-walk may only be
seen from one angle, which would then be easily occluded.

We considered the interest of using another Velodyn Lidar as a complementary Lidar.
The Velodyn lidar is rotating, and thus can sense points from many different angles
when the vehicle closes in and out (See Fig. 137). Figure 137 clearly shows that Velodyn
greatly increases side-walk and kerb coverage. If the distance is sufficient, kerbs can
even be sensed with ray passing under the cars.

However, the Velodyn point cloud is also noisier and much larger. With increased data
volumes and a need to fusion points, Velodyn raises practical challenges. The main one
is that as opposite to Riegl, point clouds can not be processed linearly, file by file. Indeed
a portion of sidewalk may be seen by the Velodyn Lidar in many files, not necessary
temporally close to each other. This problem is hard to solve with a file based solution,
but would be quite easy to deal with the Point Cloud Server (See Chapter 2).

Figure 137: Point cloud sensing with static Lidar (Riegl) is occluded by cars and street objects,
which hides side-walks. Adding a rotating Lidar (Velodyn) greatly reduces occlusion
because the same spot can be sensed from different angles.

street lidar for object observations Objects produced by Serna and Mar-
cotegui, 2014 are most often too noisy to be used. In some cases, carefully filtered car
observations can be used for rough road fitting (such as in "user" experiment area).

markings We mainly use markings detected from stereo-vision (Soheilian et al.,
2013), with a low semantic content and only the main markings detected (pedestrian
crossing and center lines). However, a more powerful new method (Hervieu, Soheilian,
and Brédif, 2015) has been shown to detect more diverse markings, with the potential
to detect parking place markings. Those markings are important because they are close
to the road border, and thus give a good estimate of road width. Indeed, a central line
marking is currently not very useful for the optimisation, as there are very few chances
that this markings would be outside of the initial road surface.

182

5.5.4 Observation matching

wrong matches Intersections are ambiguous place for matching, partially because
our model (road segment + width) is blatantly wrong in those places. For kerb obser-
vations we simply exclude observation within intersection area. Yet we can not proceed
similarly for object observation, as some objects are most frequently found in intersec-
tion area, such as pedestrian crossings and cars.

The problem is that a large object may be at 0 distance of two road segment (i.e.
intersection both). A a supplementary criteria to distance to implicit road surface could
be added to disambiguate in this cases. The additional criteria could be a robust shared
area measure, where the implicit road surface sharing the most area with the object to
be mapped would be the one the object would be mapped with. Another solution would
be to add object knowledge, such as orientation, and favor matching object with road
having a similar orientation. Although it would be an easy change, we feel it potentially
breaks the genericity of the input we use.

dynamic matching The chosen optimisation solution is sensitive to outliers, be
it real incorrect observations, or observations that are incorrectly matched. We stress
that even if the matching is correct before optimisation, it may become wrong during
optimisation when the edges are moved. We detected several cases of such matching
turning wrong. A solution could be to perform dynamic matching. The first way would
be within the optimisation, for each iteration, observation generating large forces are
re-mapped or deactivated. The second more discrete way would be to perform sev-
eral successive optimisations, each time re-matching what looks like outliers, possibly
removing them. In this approach residual distribution of forces can be statistically anal-
ysed to find outliers, but it remains an adhoc process.

optimal matching Another perspective would be to include the matching in a
more powerful optimisation process. In this case, the system would optimize the pa-
rameter values, the number of parameters, as well as the matching between observation
and parameters (including removal of outlying observations). This solution would be
theoretically sound and could rely on good initialisation, but the design and more im-
portantly balance between energy terms might be difficult, and the computing time
potentially prohibitive.

5.5.5 Optimisation

Several settings can be changed for optimising. Main settings are weight of each type
of forces, and scale factor of loss function. In total, it amounts to less than 1O program-
settings. We choose those settings with an empiric trial and error methodology, which
is less than satisfactory.

A ground truth road segment network and width could be manually entered for a
small area, and then those program-settings could be found with a meta optimisation
by measuring the distance to user-defined road model, either with stochastic method
or with a similar non linear least square (although gradient would have to be obtained
numerically and not analytically).

183

We consider this to be essential to analyse the full potential of our optimisation
method, as we could currently be using non optimal program-settings.

Ideally, we would not only find the best parameters for road axis segment position
and width, but also be able to introduce new segments or delete unneeded ones. Simi-
larly, parameters are changed to fit observations, yet some of this observations may be
erroneous, and should be ignored. This would require an optimisation method that not
only find the optimal values for parameters, but also find the optimal number of param-
eters, along with the optimal set of observations! Methods with this kind of capabilities
are pretty limited to direct approach(brute force), more or less clever heuristics, and
RJMCMC. In every case, we can see those kind of optimisation as meta optimisation,
where one level find optimal parameters values for a given number of parameters, and
a second level find the optimal number of parameters (the two levels are intertwined).
Therefore, without loss of generality, we focus on designing a method that find optimal
parameters values first (first level). This method could be further used in more complex
optimisation framework (second level).

5.5.6 Results and Forces visualisation

Visualising results directly within a GIS (QGIS in our examples) is extremely handy,
as results can be compared to aerial view and other reference vector layers. Moreover,
the GIS software is necessary anyway for the user to input manual kerb point and/or
correct automatic observations. Currently the optimisation software is independent, but
it could be integrated as a plug-in, or automatically triggered when user modifies the
observations for instance (See Chapter4 for more in base-interactive behaviour).

5.5.7 Optimisation results

5.5.7.1 Result evaluation

"paris" experiment area The result (Table 10) at Paris scale ("Paris") with ground
truth eliminate observation bias. Without constraints, inputing ground-truth as obser-
vation, we get in the 0.1m range from ground truth. We explain this remaining distance
by the limit of expressiveness of the road model (no asymetric width, no linear varying
width), and more casually, by the ground truth own faults (large avenue ground truth
contains side-walk but also other road features), and by overconstraints (road axis are
not split enough). Figure 138 illustrates those common limitations.

All factors included, 0.1m is a very satisfactory result, as it would be about the same
size as a precise aerial image pixel, or about Open Data Paris official precision.

Using forces to resist change and stay close to the initial road model is unnecessary
when using reliable and dense observations. We could not find a place where regulari-
sation forces were really useful. In a similar topic, optimisation appeared to be robust,
even when the road model was obviously not suited to model the complex roads.

Of course we cannot expect to have access to observations with such a high quality
and coverage for a real life use case.

"sensing" experiment area Results (Table 11) on both regular and alternate
dataset confirm that a fully automatic process with kerb observation can reach 0.6m to

184

Wrong ground truth (blue dashes) Road model too simple

Over constrained (not enough split) Over constrained (not enough split)

Figure 138: Various illustrations of optimisation process limitation. The data used as ground
truth contains errors. Then road axis main not split enough. Last, the simple road
model used can not deal with some features of Paris roadway.

ground truth distance, thus significantly improving the initial median distance (1.5m),
even using quite noisy observations. The main reasons explaining the difference be-
tween this result and the result using observation from ground-truth is visually imme-
diate: observation sparsity.

Given the object detection we dispose of, they are either too sparse (road signs, road
markings) or too noisy (cars, other objects) to be really useful in a full automated pro-
cess. They only marginally improve model fitting, at a high computational cost. How-
ever such object observations have a real potential, as proved by a simple experiment we
performed. We manually created a complete marking dataset for a road. After optimi-
sation, the model was a really good fit (parking place markings are especially useful, as
well as correct pedestrian crossings). Similarly, markings from Hervieu, Soheilian, and
Brédif, 2015 which are more complete delivered promising results.

"Sensing" area is fairly sized, making it representative. For the goal of evaluating the
impact of road axis being over-constrained (not enough split), we automatically split
the road axis so that no road segment is more than 10m long. This gives a fairly good
certitude that road axis are no more over-constrained. The average distance to ground
truth after optimising using ground truth observations is about 0.1m on average, with a
median distance of 0.015m, without regularisation forces and excluding observation in
intersection area (m) from our measures. Therefore, the only remaining factor explain-
ing this residual is the fact that our road model is too simple to explain complex Paris
roads. All considering, this proves that even the very simple road model is sufficient to
come very close to complex road surface of Paris.

"user" experiment area The reduced area is especially telling regarding road
model limitation (Table 12), although this area is smaller so less representative. In this
area, we can manually control that road axis are split into the correct number of seg-
ments, and that sidewalk ground truth only contains sidewalk. When using observation
from ground truth, the only error factor remaining is then the road model limitations
(See Fig. 127). Despite some very complex road features (asymmetric width, pedestrian
island, non constant road), the model is very close to ground truth (0.1m).

185

Using sensing data on the area yields an interesting result, as it gives a realistic ex-
ample of automatic fitting for a well split road axis network. Optimisation results are
about 0.45m from ground truth side-walk. For this area we also tested a user-assisted
approach, where user complement sensed kerb observation with manually added kerb
points. The result is visually more acceptable, but quantitatively not very different. In-
deed, results in this range hit the sensing vehicle geospatial precision, which is about
0.4m in this area where streets are narrow and buildings are high (masking GPS).

Experiments using object observations confirm that it would be hard to produce qual-
ity results using them. However kerb observations can be marginally complemented by
object observations for a small diminution of average distance to ground truth.

5.5.8 Generating streets from optimised road model

Before generating streets with StreetGen, we regroup road segments with similar width
and assign probable width to road segments that have no observations. In a sense this
amount to a regularisation of road widths, and it should be performed directly during
the optimisation process, using for instance the proposed width regularisation force.

StreetGen road model uses turning radius in intersection. These radius could also be
determined by the optimisation process.

Concerning the topology errors, forces could be introduced within the optimisation
process so a road segment can not intersect another one (except 1-neighbours). However
such forces would have to be limited to N-neighbours, with a small N (for instance 3),
so the number of forces is not too large.

5.6 conclusion

Our goal was to find a way to model city roads so it better fits various observations
(kerb, street objects, etc.) in a city surrounding, at various scale (whole city (e.g. Paris),
few hundreds axis, few blocks), starting from the approximate road axis network with
coarse road width. The road is modelled as a network of road segments with their own
width. We formulate the problem as an optimisation problem aiming at finding the best
road parameters (position of segment node, width values) that fits the observations.

Observations can be obtained automatically through sensing (street Lidar and im-
ages, aerial images), manually (user entered) and/or from legacy data (GIS vector layer
describing side-walk). Observations are either consolidated kerb points detections, or
street object detections, where each object type expected behaviour regarding the road
is a setting (for instance pedestrian crossing markings are expected to be inside the
roadway surface). We consider the optimisation problem similarly to a mechanic opti-
misation problem, with observation exerting forces on road segments and width, and
other opposing forces trying to keep close to initialisation values.

Finding the global optimal model to fit the observations is a complex task, as not only
the position of road segments and their width have to be optimised, but also which
observation affects what segment, and even the number of segments (creating/delet-
ing/splitting/merging segments). In this work, we solve only a part of the optimisation
problem within a non-linear least square framework, to find the road edge position
and width optimal values. Initial model fitting is not very good, although reasonable
(median distance between model and (not perfect) ground-truth side-walk is 1.8m).

186

The results with synthetic data (observation derived from ground truth side-walk)
suggest that the optimisation process can produce a solution closely fitting the actual
roads (median distance of 0.1m) at large scale quickly (e.g. whole Paris city in few
minutes). This proves that even a simple road model is sufficient to model the vast
majority of the complex Paris roadway.

Fully automatic results with real sensing data show that kerb detection can be used
effectively to fit the model (median distance 0.6 m), especially when the road network
segments are adequately split (median distance 0.45 m). The main factor explaining the
remaining distance seems to be the lack of data, which can be complemented by user
input (median distance of 0.35 m), and the inherent sensing data precision (about 0.3
m). Object observations have to be reasonably noisy or they are not as useful as kerb
observation (median distance of 1 m), even if they can be used to slightly complement
kerb observations.

Furthermore, our optimisation framework is fast enough (< 1 s)to be used in an in-
teractive guided scenario when focusing on few roads (for editing or corrections for
instance).

Promising and fast results make the proposed method suited to be integrated as a step
into a more powerful optimisation framework, such as a Reversible Jump Markov Chain
Monte Carlo method (RJMCMC, Green, 1995), which would be able to fully deal with
observation outliers removal and adequate introduction/removal of new road segments,
as well as different type of road segment (including one with linearly varying width).

187

Part III

C O N C L U D I N G T H E T H E S I S

6
A G E N E R A L C O N C L U S I O N T O T H I S T H E S I S

6.1 general conclusion

6.1.1 Thesis work

In this thesis, we propose an original approach to reconstruct streets (street modelling).
We argued that the Inverse Procedural Modelling (IPM) paradigm is well suited to street
reconstruction.

Therefore we propose a simple and extensible procedural street generation tool (Street-
Gen, Chap. 3) generic enough to be used by many applications (visualisation, traffic
simulation, urban planing, etc.). It requires very little information (a road axis network
and a few attributes), that are conceptually obtainable (fully automatically or semi-
automatically) from sensing data. We use a relational database management system
(RDBMS) to both deal with inputs, perform the modelling (street generation) and store
the results.

This database is further exploited to host in-base interactive edit (Chap. 4), a new
paradigm of user edit where the handling of edit is not done in a custom software, but
rather directly inside the database. This can be seen as a manual form of IPM. This
approach allows to use any GIS software as a graphical interface provided it can read
and write in a database, and brings an additional multi-user capacity.

We explore an automatic method to reduce the necessary user interaction by using
optimisation together with sensing data.

First, large amount of Lidar point clouds are collected by a mobile mapping ve-
hicle. Given the size and lack of organisation of those data, we introduce the Point
Cloud Server (PCS, Chap. 2) to manage those. The PCS is an extension to a common
database server which allows to store both points (compressed) and meta-data inside
the database. Furthermore, those points are generalised and put in relation with other
geospatial data (vector and raster database, sensing vehicle trajectory, etc.), enabling fast
filtering and access to points. In-base point cloud Level of Detail (LOD) and classifica-
tion are also explored in Appendix A on page 194.

Those sensing data are leveraged by extracting urban feature detection, such as road
markings and curbstones, which are consolidated and filtered into urban feature obser-
vations. We then fit StreetGen road model to the observations, interpreting this optimisa-
tion problem as a mechanical one (Chap. 5), and robustly solving it with non linear least
square method. We further integrate optional user interaction to complement eventual
gaps in sensing data, validate the results and possibly correct them.

6.1.2 Contributions

We stress that each chapter of this thesis can be read independently, detailed conclu-
sions are available at the end of each chapter. Our first contribution is to use relational
database to generate and store a street model (StretGen), which, along with efficient

190

geometrical computing, allowed us to model the whole city of Paris. Embedding data,
generation algorithms and resulting modelling in a database is a new and powerful ap-
proach, with concurrency, robustness and scalability capabilities. This street model has
successfully demonstrated its usefulness for several applications, such as 3D visualisa-
tion and traffic simulation.

Our second contribution is the in-base interaction concept. This new concept using
long established tools shows great potential to easily create custom interaction be-
haviour that greatly accelerate user task. A decisive advantage is universality, as an
interaction in base can then be transparently used (concurrently) by many GIS software,
custom applications and web clients.

This strategy was successfully demonstrated on many generic interaction example,
and can be easily adapted, even in complex case. It proved to be powerful enough to
handle and speed up all interactions for StreetGen.

Our third contribution is a complete solution to manage point clouds in a database
server (Point Cloud Server). More than storing compressed groups of points, we demon-
strated how all aspect of point cloud usage can be covered, with fast input and output,
point generalisation and level of details, use of metadata and other geospatial data for
filtering, as well as in-base and out of base processing.

Our last contribution is a complete workflow from observations to a city model and
the demonstration that sensing data can be effectively be leveraged to fit a road model
at city scale.

6.1.3 Thesis limitations and perspectives

The street modelling solution we propose has several limitations and can be improved
in several interesting ways.

procedural model The street model we use is simple, it cannot, for instance,
model roads with asymmetric width (for instance for parking places). There is still no
relation between objects, and then no composition of objects which are key for real life
complex street objects. Moreover, the street model is based on a road axis network that
cannot deal with bridges or tunnels. An interesting perspective to address these issues
is to use a grammar (for instance shape grammar) in the street model. This would bring
much more complexity and expressiveness to the procedural model, especially to manage
advanced patterns of objects.

inverse procedural modelling The road model used in the optimisation scheme
presented in this thesis is very limited, which probably slows optimisation and lowers
result quality. The road model could be easily extended to better represents Paris street
(varying width, asymmetric width). We could also use more diverse observations from
more sensing data. Most importantly, the proposed optimisation cannot change the road
network topology or remove (or ignore) erroneous observations. We could integrate our
optimisation method into a more complex optimisation framework to solve this prob-
lem.

inverse procedural modelling for grammar If StreetGen street model was
extended using grammars, a different optimisation strategy could even be possible,

191

where a street model based on a street grammar is directly fitted to observations us-
ing a powerful optimisation framework such as RJMCMC (Green, 1995). In this case,
the optimisation problem would become to find the optimal instantiation of a street
grammar that best represents the observations of urban features.

user interaction Interactions become hard to control when a large number of
potential interactions are used together. Moreover, in our proposal, the possibilities to
change the road network are limited. Nevertheless, in-base interactions are very generic,
and could be complemented by more adhoc interfaces, such as plugins coupling classi-
cal GIS view (2D) and modern 3D streetviews (as prototyped in Sec. 4.5.7). This opens
new perspectives for the usability of such tools for a wider community of users as well
as new interaction approaches for the modelling of complex objects such as cities.

point cloud server In this thesis, we only scratch the surface of in-base process-
ing with the Point Cloud Server, and some of those processings have not been demon-
strated on a full dataset. In the future, the Point Cloud Server could be abstracted into a
Point Cloud Service, a standard way to provide points, and possibly process them with
standardized processing, in a similar spirit to Web Feature Service and Web Process
Service. In particular, this direction of research would promote the interoperability of
such data sources.

scaling We demonstrated the generation of a complex city (Paris), yet, it could be
interesting to use StretGen on a much larger scale, such as on a whole country.

city model Our methods could be combined with other reconstruction methods
dedicated to buildings, specific urban furnitures, vegetations, etc., to create a full city
model that could be used for many applications related to city. We suppose that in the
long run, given that most of Mankind is going to live in cities, Artificial Intelligence
system would also need this city model as their task would require them to interact
with citizens.

192

Part IV

A P P E N D I X

A
A P P E N D I X A : I M P L I C I T L E V E L O F D E TA I L S F O R T H E P O I N T
C L O U D S E RV E R

The end goal fo this thesis is to (semi) automatic street reconstruction, which re-
quires data. To this end, we use street Lidars point clouds, which form rich but very
huge datasets (Billions of points). We manage this Lidar dataset by using a Point
Cloud Server (Chap. 2). One of the key to use those Billion of points is to be able
to work on only a small part of it. To this end, we used two strategies. The first is
explored in Chapter 2, and amount to filtering the point clouds (potentially using
complex criterias using other data such as vector or raster). However even after fil-
tering, the resulting number of points may be too large because Lidar Point Cloud
are extremely dense (about 1 kpts /m2).

Reducing point cloud density can be easily done by random subsampling, yet
this type of subsampling can greatly reduce point cloud quality and usefulness.
Therefore we explored another way to reduce number of points by using a Level Of
Details (LOD) strategy. This LOD has been used in various point cloud processing
methods of Chapter 2.

a.1 Abstract . 195
a.2 Introduction . 196

a.2.1 Problem . 196

a.2.2 Related Work . 197

a.2.3 Contribution . 199

a.2.4 Plan . 199

a.3 Method . 199
a.3.1 The Point Cloud Server . 200

a.3.2 Exploiting the order of points . 200

a.3.3 MidOc : an ordering for gradual geometrical approximation . . 202

a.3.4 Excessive Density detection and correction 205

a.4 Result . 206
a.4.1 Introduction to results . 206

a.4.2 Using the Point Cloud Server for experiments 207

a.4.3 Exploiting the order of points . 207

a.4.4 MidOc: an ordering for gradual geometrical approximation . . 207

a.4.5 Excessive Density detection and correction 209

a.5 Discussion . 210
a.5.1 Point cloud server . 210

a.5.2 Exploiting the order of points . 210

a.5.3 MidOc : an ordering for gradual geometrical approximation . . 210

a.5.4 Excessive Density detection and correction 213

a.6 Conclusion . 213

194

a.1 abstract

Color is
intensity

Color is
patch id

Color is
class id

Color is
intensity

LO
D

Lidar
point cloud

Split into
patches

Level Of Detail
(LOD)

Learning
Filtering

Figure 139: Graphical Abstract : a Lidar point cloud (1), is split it into patches (2) and stored in
a Point Cloud Server, patches are re-ordered to obtain free LOD (3) (a gradient of
LOD here), lastly the ordering by-product is a multiscale dimensionality descriptor
used as a feature for learning and efficient filtering (4).

Lidar datasets now commonly reach Billions of points and are very dense. Using
these point cloud becomes challenging, as the high number of points is untractabel for
most applications and for visualisation. In this work we propose a new paradigm to
easily get a portable geometric Level Of Details (LOD) inside a Point Cloud Server. The
main idea is to not store the LOD information in an external additional file, but instead
to store it implicitly by exploiting the order of the points. The point cloud is divided
into groups (patches). These patches are ordered so that their order gradually provides
more and more details on the patch. We demonstrate the interest of our method with
several classical uses of LOD, such as visualisation of massive point cloud, algorithm
acceleration, fast density peak detection and correction.

195

a.2 introduction

a.2.1 Problem

Democratisation of sensing device have resulted into an expansion of acquired point
clouds. In the same time, acquisition frequency and precision of the Lidar device are
also increasing, resulting in an explosion of number of points.

Datasets are now commonly in the multi billion point range, leading to practical issue
to store and use them. Moreover, point cloud data usage is more common and no more
limited to a specialized community. Non specialised users require easy access to data.
By necessitating easy access and storage and processing for a large amount of data,
point clouds are entering the Big Data realm.

Yet all those data are not always needed; having the complete and fully detailed
point cloud is impracticable, unnecessary, or even damageable for most applications.
Therefore, the ability to reduce the number of points is a key point for practical point
cloud management and usages.

The number of points must not only be reduced, but often the density corrected.
Indeed, point clouds from Lidar do not have a constant density. The sensing may be
structured for the sensing device (for instance a Lidar may sense point using a con-
stant angle), but not necessary for the sensed object (see Fig. 140). Furthermore,fusing
multiple point clouds also produce non regular density.

regularsensingirregular sampling

Figure 140: Regular sensing does not imply regular sampling.

There are basically two approaches to reduce the amount of data considered (See Fig-
ure 141). The first is to use a filtering strategy based on data characteristics (position,
time, semantic, etc.) which keeps only a portion the original data. The second is a gen-
eralisation strategy, where we replace many points with fewer objects that represent
appropriately those points. For instance, in order to visualize massive point cloud, it’s
important to fetch only the appropriate points by selecting the ones which are visible
(filtering) and which are the most representative of the scene (generalisation) at the
same time.

Many methods perform filtering, usually by using simple spatial criteria (for instance,
points in polygon). Generalisation is also popular in its most basic form (generalise
points by points). Cura, Perret, and Paparoditis, 2015b covers extensively filtering with
many possibilities (spatial, semantic, attributes, using vector and raster data, using meta-
data), and also proposes generalisation. Nevertheless it uses a generalisation approach
only based on more abstract types (bounding box, planes, stats, etc.), which limits its
use to methods that are adapted to those types. It does not generalise points by points.

In this work we propose to extend the PCS to explore the generalisation of groups of
points by choosing a representative subset of points (See Fig. 141).

We propose to use Level Of Details that reduce successively the number of points
while preserving the geometric characteristics of the underlying sensed object. Our
method is designed to be efficient, robust to point density variation and can be used
for many large point clouds processing, including visualisation.

196

Figure 141: Two strategies to limit the amount of points to work on.

a.2.2 Related Work

Finding a subset of point that represents well all the points is a common problem. It has
been extensively studied in Geographical Information System (GIS)and other research
field. It could be seen as compression, clustering, dimensionality reduction, or Level Of
Detail (LOD) for visualisation.

Sophisticated methods have been proposed to generalise 2D points for cartographic
applications (Sester, 2001, Schwartges et al., 2013). Yet those methods are limited to 2D
points, and could not be easily modified to work in 3D. Indeeed, those methods are
cartographic by nature, which means that they rely on having all the points on a simple
surface : the 3D plan formed by the map. Applying directly such methods to point
clouds would thus require to have access to surfaces of sensed objects. Yet, getting this
surface (reconstruction) is a very hard challenge, sometime without solution, and thus
we can not rely on it. For those limitation and large computing cost, those advanced
methods can not be used for large 3D point clouds.

Other much simpler methods have been designed to work on 3D points. Because the
goal is to produce hierarchical levels of points, it seems natural to use a hierarchical
structure to compute those levels. The main idea is to build a hierarchy of volumes,
then each level of the hierarchy corresponds to a LOD. For each volume, a point is
created/chosen to generalise all the points within the volume. Rusinkiewicz and Levoy,
2000 use a Bounding Sphere Hierarchy for a visualisation application. Yet spheres are
not well adapted to represent planes, which form a large part of man-made objects and
structures. On the other hand, Octree (Meagher, 1982) have become the de-facto choice.
It seems that the most popular use of Octree is as spatial acceleration structure (spatial
index). Octree have several advantages. The first is that their basic nature is closely
related to Morton (or GeoHash) order, making them efficient to build (Sabo et al., 2014,
Feng and Watanabe, 2014). They can also be created out of memory for extremely large
point clouds (Baert, Lagae, and Dutré, 2014). Moreover, their regularity allows efficient
representation and compression (Huang et al., 2006; Schnabel and Klein, 2006), as well
as fast geospatial access to data (Elseberg, Borrmann, and Nüchter, 2013).

197

Octree are also natural condidates to nesting (i.e. create a hierarchy of octrees with
various resolution and occupancy, as in Hornung et al., 2013). Octree construction into
file system hierarchy approach is still popular today (Oscar Martinez-Rubi et al., 2015),
with point cloud in the 600 Billions points range. It has also been adapted to distributed
file system (cloud-computing) 1, with processing of 100 Billions points at 2 Billions pts
/hour using a 32 cores 64 GB computer.

However, the method using Octrees present several disadvantages. Each method uses
a custom octree format that is most often stored in an external file. This raises problems
of concurrency and portability.

There a several ways to use an Octree to generalise points. We could not find a study
of those ways for 3D points. However, Bereuter, 2015 recently gave an overview of how
quad tree can be used for point generalisation. Quad trees are 2D Octrees, yet Bereuter,
2015 analyse can be directly translated in 3D.

The steps are first to compute a tree for the point cloud. Then, the point generalisation
at a given level is obtained for each cell of the same tree level, by having one point
represent all the points of this cell.

There are two methods to choose a point representing the others. The first one is to
select on points among all (’select’). The second method is to create a new point that
will represent well the others (’aggregate’). Both these methods can use geometry of
points, but also other attributes.

In theory, choosing an optimal point would also depend on application. For instance
lets consider a point cloud containing a classification, and suppose the application is
to visually identify the presence of a very rarely present class C. In this case a purely
geometrical LOD would probably hide C until the very detailed levels. On the opposite,
prefering a point classified in C whenever possible would be optimal for this applica-
tion.

However, a LOD method has to be agnostic regarding point clouds, and point clouds
may have many attributes of various type and meaning, as long as many applications.
Therefore, most methods use only the minimal common factor of possible attributes,
that is spatial coordinates. For visualisation applications, aggregating points seems to
be the most popular choice Elseberg, Borrmann, and Nüchter, 2013; Hornung et al.,
2013; Schütz and Wimmer, 2015. with aggregating functions like centroids of the points
or centroid of the cell.

All of this methods also use an aggregative function (barycentre of the points, centroid
of the cell) to represent the points of a cell. Using the barycentre seems intuitive, as it is
also the point that minimize the squared distance to other points in the cell, and thus a
measure of geometric error.

However, using the ’aggregate’ rather than ’select’ strategy necessary introduces ag-
gregating errors (as opposed to potential aliasing error), and is less agnostic. Indeed,
aggregating means fabricating new points, and also necessitate a way to aggregate for
each attributes, which might be complex (for instance semantic aggregating; a point of
trash can and a point of bollard could be aggregated into a point of street furniture).
This might not be a problem for visualization application. Yet our goal is to provide
LOD for other processing methods, which might be influenced by aggregating errors.
Furthermore, the barycentre is very sensible to density variations.

1 https://github.com/connormanning/entwine

198

https://github.com/connormanning/entwine

Therefore, we prefer to use a ’select’ strategy. The point to be selected is the closest
to the centroid of the octree cell. If the point cloud density is sufficient this strategy
produces a nearly regularly sampled point cloud, which might be a statistical advantage
for processing methods. To establish a parallel with statistics, picking one point per cell
is akin to a Latin Hypercube (see McKay, Beckman, and Conover, 1979). Avoiding the
averaging strategy might also increase the quantity of information than can be retrieved
(similar to compressed sensing, see Fornasier and Rauhut, 2010).

We note that most of the LOD systems seems to have been created to first provide
a fast access to point (spatial indexing), and then adapted to provide LOD. Using the
PCS, we can separate the indexing part, and the LOD scheme. From this stems less
design constraints, more possibilities, and a method than is not dedicated to only one
application (like visualisation).

a.2.3 Contribution

This work re-uses and combines existing and well established methods with a focus
on simplicity and efficiency. As such, all the methods are tested on billions scale point
cloud, and are Open Source for sake of reproducibility test and improvements

• In (Section A.3.2) is to store the LOD implicitly in the ordering of the points
rather than externally, avoiding any data duplication. Thus, we don’t duplicate
information, and the more we read points, the more precise of an approximation
of the point cloud we get. If we read all the points, we have the original point
cloud.

• We introduce (MidOc, Section A.3.3), a simple way to order points in order to have
an increasingly better geometric approximation of the point cloud when following
this order.

a.2.4 Plan

This work follows a classical plan of Introduction Method Result Discussion Conclusion
(IMRAD). Section A.3 presents the LOD solution Section A.4 reports on the experiments
validating the methods. Finally, the details, the limitations, and potential applications
are discussed in Section A.5.

a.3 method

In this section, we first present the Point Cloud Server (section A.3.1)(PCS Cura, Perret,
and Paparoditis, 2015b) that this article extends. Then we introduce the LOD solution
that we propose , which consists of reordering groups of points from less to more details
(A.3.2), and then choose which LOD is needed. Although any ordering can be used, we
propose a simple geometric one (A.3.3) which is fast and robust to density variation.

199

LOAD

STORE
- groups of points
- compressed

METADATA
- secure and rela�onal
- extended (trajectory, sources)
- generalisa�on/vis.

FILTER
- indexes
- can use other GIS data

PROCESSING
- in-base easy prototyping
- classic out-of-base workflow

EXPORT
RDBMS

point

(2.1,4.7,1.0,9,..)

patch (group of points) - compressed
- indexed

& e-x AxT

e-x BxT

...

generalisations

pointclouds
- 1 per table

...

5
6
7

1000101001...
1000111101...

1000001110...

- 1 per row

Figure 142: Overall and storage organisations of the Point Cloud Server.

a.3.1 The Point Cloud Server

Our method strongly depends on using the Point Cloud Server described in Cura, Per-
ret, and Paparoditis, 2015b, therefore we introduce its principle and key relevant fea-
tures (see figure 142).

The PCS is a complete and efficient point cloud management system based on a
database server that works on groups of points rather than individual points. This sys-
tem is specifically designed to solve all the needs of point cloud users: fast loading,
compressed storage, powerful filtering, easy data access and exporting, and integrated
processing.

The core of the PCS is to store groups of points (called patches) that are multi-indexed
(spatially, on attributes, etc.), and represented with different generalisation depending
on the applications. Points can be grouped with any rules. In this work, the points are
regrouped spatially by cubes 1m (Paris) or 50m (Vosges) wide.

All the methods described in this work are applied on patches. We propose is to
reorder each patch following the MidOc ordering, allowing LOD and producing a di-
mensionality descriptor per patch. It can then be used to classify patches.

We stress that our method used on any point cloud will provide LOD, but that using
it with the PCS is much more interesting, and adds key feature such as spatial indexing,
fast filtering, etc.

a.3.2 Exploiting the order of points

We propose to exploit the ordering of points to indirectly store LOD information. In-
deed, whatever the format, be it file or database based, points ends up as a list, which
is ordered.

200

points
order :

1
2
3
4...

...
N

LOD 1

LOD 3

LOD∞

Figure 143: 3 Geometrical Level Of Detail (LOD) for the same point cloud. Reading points from 1

to N gradually increases the details, because of the specific order of points (MidOc).

The idea is then to exploit the order of this list, so that when reading the points from
beginning to end, we get gradually a more accurate geometrical approximation of the
point cloud (see figure 143).

For instance, given list L[P1, ..,PN] of ordered points. Reading P1 to P5 gives a rough
approximation of the point cloud, and reading another 16 points (P1 to P21) is going
to give a slightly better approximation. Reading points 1 to N is going to get the exact
point cloud, so there is no data loss, nor data duplication.

Using the point ordering as LOD results in three main advantages.

implicit Except a pre-processing step to write the point cloud following a given
ordering, each time the user wants to get a Level Of Detail version of the point cloud,
there is no computing at all (only data reading). This may not make a big difference for
non-frequent reading, but in a context where the same point cloud is going to get used
several times at several levels and by several users simultaneously (for instance Point
Cloud as a Service), no processing time makes a big difference.

no duplication Another big advantage is that exploiting point ordering does not
necessitate additional storage. This is an advantage on low level. It saves disk space (no
data duplication, no index file). Because the LOD information is embedded right within
the point cloud, it is perfectly concurrent-proof, i.e. the point cloud and the LOD can
not become out of sync. (Even in heavy concurrent Read/Write, a user would always
get a coherent LOD). Lastly because the LOD only relies on ordering the original points,
and does not introduces any other points or data, it avoids all precision-related issues
that may come from aggregating.

201

portable The last advantage comes from the simplicity of using the ordering. Be-
cause it is already something that all point cloud tools can deal with (a list of points!),
it is portable. Most softwares do not change the points order inside a cloud (See Section
A.4.3). Even if a tool were to change the order, it would be easy to add the ordering num-
ber as an attribut (though slightly increasing the storage requirement). This simplicity
also implies that adapting tools to exploit this ordering is very easy.

a.3.3 MidOc : an ordering for gradual geometrical approximation

a.3.3.1 Requirements and hypothesis

The method exploits the order of points to store LOD information, so that the more
points are read, the more detailed the result becomes. Obviously an ordering method
that class the points from less details (LOD0) to full details(LOD∞) is needed. This
ordering is in fact a geometric measure of point relevance, that is how well a point
represents the point cloud (in a neighbourhood depending of the LOD).

This ordering will be used by on different point clouds and for many applications,
and so can not be tailored to one. As such, we can only consider the geometry (the
minimal constituent of a point). Because of the possible varying-density point clouds,
the ordering method also have to recreate a regular-ish sampling.

Although many ordering could be used (for example, a simple uniform-random or-
dering), a suitable one would have low-discrepancy (that is be well homogeneous in
space, see Rainville et al., 2012), not be sensitive to density variations, be regular, be fast
to compute and be deterministic (which simplify the multiuser use of the point cloud).

We make two hypothesis that are mostly verified on Lidar point cloud. The first
hypothesis (’disposable density’) is that the density does not gives information about
the nature of the object being sensed. That is, depending on the sensing situation, some
parts of the cloud are more or less dense, but this has nothing to do with the nature of
the object sensed, thus can be discarded. The second hypothesis (low noise) is that the
geometrical noise is low. We need this hypothesis because ’disposable density’ forbids
to use density to lessen the influence of outliers.

A common method in LOD is to recursively divide a point cloud into groups and
use the barycentre of the group as the point representing this group. The ground of this
method is that the barycentre minimise the sum of squarred distance to the points.

However such method is extremely sensible to density variation, and artificially cre-
ates new points.

a.3.3.2 Introducing the MidOc ordering

We propose the re-use of well known and well proven existing methods that is the octree
subsampling (for instance, the octree subsampling is used in Girardeau-Montaut, 2014).
An octree is built over a point cloud, then for each cell of the octree the LOD point is the
barycentre of the points in the cell. With this, browsing the octree breadth-first provides
the points of the different levels.

We adapt this to cope with density variation, and to avoid creating new point be-
cause of aggregation. We name this ordering MidOc (Middle of Octree subsampling)
for clarity, nonetheless we are probably not the first to use it.

202

points

quad tree
cell

cell centre

distance
to centre
closest pt
to centre

L0

L1

L2

Figure 144: MidOc explained in 2D. Given a point cloud (Blue) and quad tree cells (dashed grey),
the chosen point (green ellipse) is the one closest to the centre (black point) of the
cell.

The principle is very simple, and necessitate an octree over the point cloud (octree
can be implicit though). We illustrate it on Figure 144 (in 2D for graphical comfort).
We walk the octree breadth-first. For each non-empty cell, the point closest to the cell
centre is chosen and assigned the cell level, and removed from the available point to
pick. The process can be stopped before having chosen all possible points, in which
case the remaining points are added to the list, with the level L∞.

The result is a set of points with level (P,Li). Inside one level Li, points can be ordered
following various strategies (see Section A.3.3.4).

Because each point is assigned a level, we can store the total number of points per
level, which is a multi-scale dimensionality descriptor, see Section ??).

a.3.3.3 Implementation

MidOc ordering is similar to octree building. Because Octree building has been widely
researched, we test only two basic solutions among many possibilities.

The first kind of implementation uses SQL queries. For each level, we compute the
centres of the occupied cells using bit shifts and the closest point to these. Picked points
are removed, and the process is repeated on the next level. It relies on the fact that
knowing each point octree cell occupancy does not require to compute the octree (see
Figure 149).

The second implementation uses python with a recursive strategy. it only necessitates
a function that given a cell and a list of points chose the point closest to the centre of
the cell, then split the cell and the list of points for the next level, and recursively calls
itself on this subcells with the sublists.

203

A more efficient and simpler implementation is possible by first ordering the points
following the Morton (Hypothesis : or Hilbert) curve, as in Feng and Watanabe, 2014

(Section 2.5.1, page 37), in the spirit of linear octree.

a.3.3.4 Intra-level ordering

Y Uniform Random

Ordering

Revert Morton

20

13

23

11

19 6

24

10

17

3

18

14

5 12

21

4

9

1

16

2

15

8

22

7

3

4

5

19

20

21

6

7

8

9

10

22

23

24

11

12

13

14

15

16

1

2

17

18

Halton Sequence

15

7

3

9

23

19

11

17

1

21

13

0

16 4

5

8

20

2

10

14

24

12

18

6

22

Revert Hilbert

7

13

23

10

18

5

15

21

12

2

4

20

6

16

22

11

1

17

8

14

24

9

3

19

Figure 145: Several possible intra-level orders with various coverage from bad to good. Revert
Morton and Revert Hilbert have offset for illustration.

Inside one LOD points can be ordered with various methods. The intra-level ordering
will have an impact if the LOD is used in a continuous way, and moreover may influence
methods that relies on low-discrepancy. More precisely, if only a part of the points in
a level are going to be used, it may be essential that they cover well the spatial layout
of the totality of points. Several methods give this kind of coverage (see Rainville et al.,
2012)

Lets take the example where the goal is to find the plan that best fits a set of points
and the method to do so in online (for instance it could be based on online robust PCA
like in (Feng, Xu, and Yan, 2013)). The plan fitting method reads one by one the points
of a designated level Li, and successively computes a better plan estimation.

The Figure 145 presents some possible ordering. If the plan detection method was
applied on the Y ordering, it would necessitate a great number of points to compute a
stable plan. For instance the first 16 points (1 column) would not permit to compute a
plan. Similarly, if the point were ordered randomly, estimating a plan would still require
lots of points, because uniform randomly chosen points are not well spread out (on the
figure, the first 25 points are over represented in the upper left part).

204

On the opposite, using a low discrepancy ordering like the Halton sequence makes
the points well spread, while being quasi-random. Inverted space filling curves like
the Morton or Hilbert curves also cover well space, at the price of being much more
regulars.

The Halton sequence ordering is obtained by generating a Halton sequence (nD
points) and successively pick points closest to the Halton generated points. The revert
Morton ordering and revert Hilbert ordering are the distance along Morton or Hilbert
curve expressed in bit and read backward (with a possible offset).

a.3.3.5 Points streaming from the PCS for interactive web-based visualisation

The open source project LOPOCS2 developped by Paul Blottiere (Oslandia) implements
the LOD concepts and propose a WebGL-based prototype for visualisation.

The number of points per patch sent to the browser is limited using LOD. Patch are
ordered with MidOc, so the visual artefact is greatly reduced, and the data loads more
quickly, as expected.

We also use MidOc at the table level to reduce the number of patches used for visual-
isation. Indeed, simply using MidOc at the patch level results in minimum to one point
per patch. Yet many patches may be in the view frustrum, which would severly affect
performances.

Using MidOc at the table level, only the most relevant of patches which are gener-
alised with only one point are selected.

The global architecture of LOPOCS uses a web server between the Point CLoud Server
and the client browser, enabling asynchronous loading of points.

LOPOCS determines desired LOD of each patch based on a classical view-frustrum
method which amount to how much screen space the patch bounding box will occupy.

a.3.4 Excessive Density detection and correction

Lidar point cloud do not have a constant density, even if the acquisition is performed at
a constant sensing rate, because the sensed object geometry (See Fig. 140).

Important variation of density can be a serious issue for some processing methods.
For instance if millions of points are concentrated in a small volume, a processing
method operating on fixed size volume may exceed the maximum memory of the sys-
tem. Large density variation are also bad for performances in parallel environment.
Indeed, efficient parallel computing may require that all the workers have about the
same amount of work. One worker stumbling upon a very dense part of the point cloud
would have much more points to process than the other workers. The figure 148 shows
a place in the Paris dataset where the density is 5 times over the average value of this
data set. In this context of terrestrial Lidar, this density peak is simply due to the fact
that the acquisition vehicle stopped at this place , while continuing to sense data.

The PCS coupled with LOD patches allows to quickly find abnormally high density.
The PCS filters in few milliseconds the patch containing lots of points. This suffice for
most applications. For a finer density estimation, we compute the approximate volume
of the patch. For a level L, the ppl[L] number of points multiplied by the theoretical
cell size for this level gives an approximate volume (or surface) of the patch. The total

2 https://li3ds.github.io/lopocs/

205

https://li3ds.github.io/lopocs/

number of points divided by this volume (surface) gives a finer volumetric (surface)
density estimation.

Then, correcting density consists of taking into account only the first K points, where
K is computed to attain the approximate patch volume (surface).

a.4 result

a.4.1 Introduction to results

We design and execute several experiments in order to validate all points introduced
in Section A.3. First we prove that is it effectively possible to leverage points order,
even using canonical open sources software out of the box. Second we perform MidOc
ordering on very large point cloud and analyse the efficiency, quality and applications
of the results.

The base DBMS is PostgreSQL, 2014-. The spatial layer PostGIS, 2014- is added to
benefits from generic geometric types and multidimensional indexes. The specific point
cloud storage and function come from pgPointCloud, 2014-. The MidOc is either plpgsql
or made in python with SciPy, 2014-. Timings are only orders of magnitude due to the
influence of database caching.

Figure 146: Histogram of number of points per patch, with a logarithmic scale for X and Y axis

We use two data sets. There were chosen as different as possible to further evaluate
how proposed methods can generalise on different data (See Figure fig:hist-density-
dataset for histogram of patch density). The first data set is IQmulus, 2014 (Paris data
set), an open source urban data set with varying density, singularities, and very chal-
lenging point cloud geometry. Every point is labelled with a hierarchy of 100 classes.
The training set is only 12 millions points. Only 22 classes are represented. We group
points in 1m3 cubes. The histogram of density seems to follow an exponential law (See
figure 146), the effect being that many patches with few points exist.

We also use the Vosges data set, which is a very wide spread, aerial Lidar, 5.5 Bil-
lions point cloud. Density is much more constant at 10k pts/patch . A vector ground
truth about surface occupation nature (type of forest) is produced by the French Forest
Agency. Again the classes are hierarchical, with 28 classes. We group points in 50 ×50m
squares.

206

a.4.2 Using the Point Cloud Server for experiments

All the experiments are performed using a Point Cloud Server (cf Cura, 2014). The
key idea are that point clouds are stored inside a DBMS (postgres), as patch. Patch are
compressed groups of points along with some basic statistics about points in the group.
We hypothesize that in typical point cloud processing workflow, a point is never needed
alone, but almost always with its surrounding points.

Each patch of points is then indexed in an R tree for most interesting attributes (obvi-
ously X,Y,Z but also time of acquisition, meta data, number of points, distance to source,
etc.)

Having such a meta-type with powerful indexes allows use to find points based on
various criteria extremely fast. (order of magnitude : ms). As an example, for a 2 Billion
points dataset, we can find all patches in few milliseconds having : - between -1 and 3

meters high in reference to vehicle wheels - in a given 2D area defined by any polygon
- acquired between 8h and 8h10 - etc.

The PCS offers an easy mean to perform data-partition based parallelism. We exten-
sively use it in our experiments.

a.4.3 Exploiting the order of points

We proposed to implicitly store LOD in the order of the points (Section A.3.2). In this
first experiment we check that point cloud ordering is correctly preserved by common
open source point cloud processing software. For this, we use a real point cloud, which
we order by MidOc ordering. We export it as a text file as the reference file. For each soft-
ware, we read the reference file and convert it into another format, then check that the
conversion did not change the order of points. The tree common open source software
tested are CloudCompare3 , LasTools4 and Meshlab5. All pass the test.

a.4.4 MidOc: an ordering for gradual geometrical approximation

a.4.4.1 MidOc at the patch level

We first test the visual fitness of MidOc ordering. Then we compute MidOc for our two
datasets and evaluate the trade-off between point cloud size and point cloud LOD. As
a proof of concept we stream a 3D point cloud with LOD to a browser.

The figure 147 illustrates LOD on a typical street of Paris dataset The figure ?? shows
LOD on common street objects of various dimensionality.

We compute the size and canonical transfer time associated for a representative street
point cloud. For this order of magnitude, the size is estimated at 5*4 Byte (5 floats) per
point, and the (internet) transfer rate at 1 Mbyte/s.

We use 3 implementations of MidOc, two being pure plpgsql (postgreSQL script lan-
gage), and one Python (See Section A.3.3.3). We successively order all the Paris and
Vosges data sets with MidOc, using 20 parallel workers, with a plpgsql implementation.
The ordering is successful on all patches, even in very challenging areas where there

3 www.danielgm.net/cc

4 www.cs.unc.edu/~isenburg/lastools

5 http://meshlab.sourceforge.net/

207

www.danielgm.net/cc
www.cs.unc.edu/~isenburg/lastools
http://meshlab.sourceforge.net/

Figure 147: Schematic illustration of different LOD. Left to right, all points, then LOD 4 to 0.
Visualized in cloud compare with ambient occlusion. Point size varies for better
visual result.

are big singularities in density, and many outliers. The total speed is about 100 millions
points/hour using in-base processing. We prototyped an out-of-base processing where
the extraction of points from patch is done on the client, and reached a 180 Mpts /h.
The same method, without any ordering (only converting patch to point then point to
patch) reach a 2.3 B pts/h. We consider it to be at least 10 times too slow for practical
use. We briefly analyse performances, and conclude that only 10 workers are efficient.

a.4.4.2 MidOC at the table level

When using MidOc at the patch level, a patch will have at least one point when using
the coarsest LOD. Yet a table may contains millions of patches, which means that using
only patch-level LOD, the coarsest LOD could still contain millions of points.

To solve this problem, we introduce MidOc at the table level. In the PCS, each patch
amount to one row in a point cloud table, and is represented by a point at teh coars-
est LOD. We order those point using MidOc, and write the ranking in an additionnal
column.

Then the maximum number of patches can be limited simply by adding to the SQL
query "ORDER BY midoc LIMIT X", where X is the max number of patches.

This simple mechanism allow an overall control on disk reading from the server, as
this is related to number of patch read.

208

Table 13: Number of points per LOD for the point cloud in the Figure 147 , plus estimated
transfer time at 1 Mbyte/s.

Level
Typical

spacing (cm)
Points

number (k)
Percent of
total size

Estimated
time (s)

All 0.2 to 5 1600 100 60

0 100 3 0.2 0.1

1 50 11.6 0.7 0.4

2 25 41 2.6 1.5

3 12 134 8.4 5

4 6 372 23 14

a.4.4.3 Points streaming from the PCS for interactive web-based visualisation

Several demonstrations are available6, using point clouds from 3 to 300 millions points.
The asynchronous loading means that the user browser is never frozen while waiting
for points. Instead, the user is free to explore, and points are constantly added to the
visualisation.

We stress that the streaming approach also heavily relies on patch filtering, as only
patch inside the view frustrum are considered, which is a fast spatial query in the PCS.

a.4.5 Excessive Density detection and correction

1.5 Million

Points per patch
(read from server)

Density
(CloudCompare) 1.0 Million

0.5 M

Density
Pts per patch

Figure 148: Abnormal density detection and correction. Top points per patch (left) or density
(right), green-yellow-red. Bottom reflectance in grey.

We detect the abnormal density (explained in Section A.3.4) in the Paris data set in
∼ 100ms (See Figure 148). In comparison, computing the density per point with neigh-
bourhood is extremely slow (only for this 1.5 Million extract, 1 minute with CloudCom-
pare,4x2.5GHz, 10cm rad) (top right illustration), and after the density is computed for
each points, all the point cloud still need to be filtered to find abnormal density spot.

6 https://li3ds.github.io/lopocs/

209

https://li3ds.github.io/lopocs/

If the patch are ordered following MidOc, unneeded points are removed by simply
putting a threshold on points per patch (bottom left, 1 to 5k points /m3, bottom right ,
5k to 24 k pts /m3). It considerably reduces the number of points (-33%).

This strategy can be automated by stating than no patch should return points over
Level Li. Then when getting points from the PCS, so that only points in those levels are
sent.

a.5 discussion

a.5.1 Point cloud server

We refer the reader to Cura, Perret, and Paparoditis, 2015b for an exhaustive analyse of
the Point Cloud Server. Briefly, the PCS has demonstrated all the required capacitites to
manage point clouds and scale well. To the best of our knowledge the fastest and easiest
way to filter very big point cloud using complex spatial and temporal criteria, as well as
natively integrate point cloud with other GIS data (raster, vector). The main limitation
is based on the hypothesis than points can be regrouped into meaningful (regarding
further point utilisation) patches. If this hypothesis is false, the PCS lose most of its
interest.

a.5.2 Exploiting the order of points

From a practical point of view, implicitly storing the LOD using the point ordering
seems to be estremely portable. Most softwares would not change the order of points.
For those who might change the order of points, it is still very easy to add the order as
an attribute, thus making it fully portable. However, this approach has two limitations.
The first limitation is that the order of point might already contains precious informa-
tion. For instance with a static Lidar device, the acquisition order allows to reconstruct
neighbourhood information. The second limitation is that an LOD ordering might con-
flict with compression. Indeed ordering the points to form LOD will create a list of
points were successive points are very different. Yet compressing works by exploiting
similarities. A software like LasTool using delta compressing might suffer heavily from
this.

a.5.3 MidOc : an ordering for gradual geometrical approximation

We stress that the LOD are in fact almost continuous (as in the third illustrations of Fig.
139).

MidOc is a way to order points based on their importance. In MidOc, the importance
is defined geometrically. Yet specific applications may benefit from using other measure
of importance, possibly using other attributes than geometrical one, and possibly using
more perceptual-oriented measures.

MidOc relies on two hypothesis which might be false in some case. Indeed, variation
of density may be a wanted feature (e.g. stereovision, with more image on more impor-
tant parts of the object being sense). Again the low geometrical noise hypothesis might

210

be true for Lidar, but not for Stereo vision or medical imaging point cloud. However in
those case denoising methods may be applied before computing MidOc.

a.5.3.1 Applications

MidOc ordering might be of use in 3 types of applications. First it can be used for
graphical LOD, as a service for point cloud visualisation. Second the ordering allows to
correct density to be much more constant. Complex processing methods may benefits
from an almost constant density, or for the absence of strong density variation. Third the
ordering can be used for point cloud generalisation, as a service for processing methods
that may only be able to deal with a fraction of the points.

The illustration 147 gives visual example of LOD result and how it could be used
to vary density depending on the distance to camera. Figure ?? also gives visual exam-
ples for common objects of different dimensionality. It is visually clear that the rate of
increase of points from LOD 0 to 4 for floor lamp (1D) window (2D) and tree (3D) is
very different. Small details are also preserved like the poles or the antenna of the car.
preserving those detail with random or distance based subsampling would be difficult.

a.5.3.2 Implementation

Octree construction may be avoided by simply reading coordinates bitwise in a cor-
rectly centred/scaled point cloud. We centre a point cloud so that the lowest point of
all dimension is (0, 0, 0), and scale it so that the biggest dimension is in [0, 1[. The point
cloud is then quantized into [0..2 ∗ ∗L− 1] for each coordinate. The coordinates are now
integers, and for each point, reading its coordinates bitwise left to right gives the po-
sition of the point in the octree for level of the bit read. This means performing this
centring/scaling/quantization directly gives the octree. Moreover, further operations
can be performed using bit arithmetic, which is extremely fast.

Figure 149: Principle of binary coordinates for a centered, scaled and quantized point cloud.

On this illustration the point P has coordinates (5, 2) in a [0, 23 − 1]2 system. Reading
the coordinates as binary gives (b ′101 ′,b ′010 ′). Thus we know that on the first level of
a quad tree, P will be in the right (x=b ′1xx ′) bottom (y=b ′0yy ′) cell. For the next level,
we divide the previous cell in 2, and read the next binary coordinate. P will be in the
left (x=b ′x0x ′) up (y=b ′y1y ′) cell. There is no computing required, only bit mask and
data reading.

Regarding implementation, the three we propose are much too slow, by an order of
magnitude to be easily used in real situation. We stress however that the slowness comes

211

from ineficient data manipulation, rather than from the complexity of the ordering. It
may also be possible to use the revert Hilbert ordering to directly compute MidOc.
Furthermore, octree construction has been commonly done on GPU for more than a
decade.

a.5.3.3 Size versus LOD trade-off

The table 13 shows that using the level 3 may speed the transfer time by a 10 factor.
The point cloud server throughput is about 2-3 Mbyte /s(monoprocess), sufficient for
an internet troughput, but not fast enough for a LAN 10 Mbyte /s. This relatively slow
troughput is due to current point cloud server limitation (cf A.5.1).

a.5.3.4 Large scale computing

The relatively slow computing (180 Millions points /h) is a very strong limitation. This
could be avoided. A C implementation which can access raw patch would also be faster
for ordering points.

a.5.3.5 Points streaming from the PCS for interactive web-based visualisation

Streaming low level of detail patches greatly accelerate visualisation, which is very use-
ful when the full point cloud is not needed. To further accelerate transmission, patch
LOD is determined according to the distance to camera (frustrum culling). (See Figure
150 for a naive visual explanation.)

Figure 150: Schematic example of LOD depending on distance to camera

As seen before (See Section A.5.3.3), the point cloud server is fast enough for an inter-

212

net connection, but is currently slower than a file-based points streaming. Thus for the
moment LOD stream is interesting only when bandwidth is limited.

The main limitation of this streaming approach is that even when only one point of
a patch is displayed, the PCS has to read the whole point from disk, which slows the
point retrieval at coarse LOD, when viewing the whole point cloud for instance. On the
opposite browsing is pleasantly fast when close enough to points, so that few patches
are read from disk, and many points are used.

a.5.4 Excessive Density detection and correction

a.5.4.1 Fast detection

Density abnormality detection at the patch level offer the great advantage of avoiding
to read points. This is the key to the speed of this method. We don’t know any method
that is as fast and simple.
The limitations stems from the aggregated nature of patch. the number of points per
patch doesn’t give the density per point, but a quantized version of this per patch. So it
is not possible to have a fine per point density.

a.5.4.2 Simple correction

The correction of density peak we propose has the advantage of being instantaneous
and not induce any data loss. It is also easy to use as safeguard for an application that
may be sensible to density peak : the application simply defines the highest number of
points /m3it can handle, and the Point cloud server will always output less than that.
The most important limitation this method doesn’t guarantee homogeneous density,
only a maximum density. For instance if an application requires 1000 points /m3for
ground patches, all the patches must have more than 1000 points, and patch must have
been ordered with MidOc for level 0 to at least 5 (45 = 1024). The homogeneous density
may also be compromised when the patch are not only split spatially, but with other
logics (in our case, points in patch can not be separated by more than 30 seconds, and
all points in a patch must come from the same original acquisition file).

a.6 conclusion

Using the Point Cloud Server, we propose a new paradigm by separating the spatial
indexing and LOD scheme. Subdivision of point clouds into groups of points (patches)
allows us to implicitly store LOD into the order of points rather than externally. Af-
ter an ordering step, exploiting this LOD does not require any further computation.
We propose an geometrical ordering (MidOc) based on the closest point to octree cell
centre that produces reliable LOD, successfully used for visualization or as a service
for other processing methods (density correction/reduction). By also performing intra-
level dedicated ordering, we create LOD that can be used partially and still provide
good coverage.

213

B
A P P E N D I X B : A N E W D I M E N S I O N A L I T Y D E S C R I P T O R F O R
PAT C H C L A S S I F I C AT I O N F O R T H E P O I N T C L O U D S E RV E R

The end goal fo this thesis is (semi) automatic street reconstruction, which requires
data. To this end, we use street Lidars point clouds, which form rich but very huge
datasets (Billions of points). We manage this Lidar dataset by using a Point Cloud
Server (Chap. 2). The key to manage huge number of points is being able to work
on a small part of it.

To this end we use two orthogonal strategies, one being to select only the most
important points (Level Of Details, Appendix A on page 194), the other being to
filter the points having a set of properties (Sec. 2.3.4 on page 64), for example like
being spatially close to a place of interest.

Yet in many case we could also benefit from a semantic filtering, for instance
keeping only the points that pertain to a building facade, as opposed to the point
pertaining to the ground.

To this end, we propose a new geometric descriptor and demonstrates its interest
for point cloud classification and other related tasks. This descriptor is well adapted
to the pathc-based approach of the Point Cloud Server.

b.1 Abstract . 215
b.2 Introduction . 216

b.2.1 Problem . 216

b.2.2 Contribution . 217

b.2.3 Plan . 217

b.3 Method . 217
b.3.1 The Point Cloud Server . 217

b.3.2 A local multi-scale dimensionality descriptor 218

b.3.3 Classification with the Point Cloud Server 221

b.4 Result . 223
b.4.1 Introduction to results . 223

b.4.2 Using the Point Cloud Server for experiments 224

b.4.3 Multi-scale local Dimensionality descriptor 224

b.4.4 Patch Classification . 227

b.5 Discussion . 231
b.5.1 Point cloud server . 231

b.5.2 Multi-scale local dimensionality descriptor 232

b.5.3 Patch Classification . 233

b.6 Conclusion . 236

214

b.1 abstract

x22.2

x21

x23

LOD1
LOD2 LOD3 LOD4

All

not enough
remaining
points

Figure 151: A dimensionality descriptor based on the evolution of voxel occupancy.

Lidar datasets are becomming more and more common. They are appreciated for their
precise 3D nature, and have a wide range of applications, such as surface reconstruction,
object detection, visualisation, etc.

For all this applications, having additional semantic information per point has poten-
tial of increasing the quality and the efficiency of the application.

In the last decade the use of Machine Learning and more specifically classification
methods have proved to be successful to create this semantic information. In this paradigm,
the goal is to classify points into a set of given classes (for instance tree, building, ground,
other).

These methods use descriptors (also called feature) of a point to learn and predict its
class.

Designing the descriptors is then the heart of these methods. They can be based on
points geometry and attributes, use contextual information, etc.

In this work we propose a new simple geometric descriptor that gives information
about the implicit local dimensionnality of the point cloud at various scale. For instance
a tree seen from afar is more volumic in nature, yet locally each leaves is rather plannar.

To do so we use an octree centered on the point, and compare the variation of the
occupancy of the cells across the levels.

We compare this descriptor with the state of the art dimensionality descriptor and
show its interest. We further test the descriptor for classification wihtin the Point Cloud
Server (Cura, 2016), and demonstrate efficiency and correct results.

215

b.2 introduction

b.2.1 Problem

Democratisation of sensing device have resulted into an expansion of acquired point
clouds. In the same time, acquisition frequency and precision of the Lidar device are
also increasing, resulting in an explosion of number of points.

Lidar datasets are becomming more and more common. They are appreciated for their
precise 3D nature, and have a wide range of applications, such as surface reconstruction,
object detection, visualisation, etc.

Semantic information in addition to the raw point data can be very useful for these ap-
plications. It allows to increase quality and to speed computing. For instance a method
that reconstruct facade can safely skip the points pertaining to the ground. Similarly, an
user visually exploring a dataset may find very usefull to isolate points pertaining to
trees for instance.

Logically, adding semantic information to point clouds has been researched for a long
time by many researchers.

In the last decade the use of Machine Learning and more specifically classification
methods have proved to be popular. In this paradigm, the goal is to classify points into
a set of given classes (for instance tree, building, ground, other). Some of this methods
uses descriptors (also called feature) for each point that will be leveraged in a training
set to learn to associate descriptors with semantic information. Once the association is
learned, it can be used to extrapolate semantic classes on similar point clouds.

The heart of such approaches are then to design appropriate descriptors that will
enable to accuratly and efficiently disambiguate between classes. Many different de-
scriptors have been used, based on geometry or other attributes of points, using or not
the context of the point, etc. We refer to the very recent thesis of Weinmann, 2016.

Recently deep learning methods potentially allow to learn features on the fly (see
Huang and You, 2016).

Of course machining learning approach requires substantial training sets, and may
fail if the processed point cloud is too different from the learned point clouds. Further-
more, machine learning methods are sophisticated and require siginficant computing
time.

In this work we focus on a new simple geometric descriptor that gives information
about the implicit local dimensionnality of the point cloud.

The descriptor is designed with massive point clouds and scaling in mind, which
means that it is included in a global Level Of Detail approach, and is computed on
groups of points rather than on individuals points.

Our aim is to provide a basic descriptor that has a direct geometrical interpretation, is
almost free to compute and scales well due to its hierarchical nature. This descriptor can
then be used as a crude pre processing step before visualisation or more sophisticated
methods such as classification and reconstruction.

We compare this descriptor with the state of the art. We demonstrate the potential
of th descriptor to perform efficient patch classification within the Point Cloud Server
(Cura, 2016).

216

b.2.2 Contribution

All the methods are tested on billions scale point cloud, and are Open Source for sake
of reproducibility test and improvements.

Our main contribution is an efficient and robust dimensionnality descriptor with a
scale parameter that is local rather than global. Our second contribution is to explore
the interet of classification of groups of points (patches) rather than points for massive
point clouds.

b.2.3 Plan

This work follows a classical plan of Introduction Method Result Discussion Conclusion
(IMRAD). Section B.3 presents dimensionality descriptor, and how this can leveraged for
classification. Section B.4 reports on the experiments validating the descriptor interest
and how it compares to the state of the art descriptor. Finally, the details, the limitations,
and potential applications are discussed in Section B.5.

b.3 method

In this section, we first present the Point Cloud Server (section B.3.1)(PCS Cura, Perret,
and Paparoditis, 2015b) that this article extends. Then we introduce the dimensionality
descriptor (B.3.2). This descriptor can be used in the PCS to perform density correc-
tion (??) and classification at the patch level (B.3.3). This classification can be directly
transferred to points, or indirectly exploited in a pre-filtering step.

b.3.1 The Point Cloud Server

LOAD

STORE
- groups of points
- compressed

METADATA
- secure and rela�onal
- extended (trajectory, sources)
- generalisa�on/vis.

FILTER
- indexes
- can use other GIS data

PROCESSING
- in-base easy prototyping
- classic out-of-base workflow

EXPORT
RDBMS

point

(2.1,4.7,1.0,9,..)

patch (group of points) - compressed
- indexed

& e-x AxT

e-x BxT

...

generalisations

pointclouds
- 1 per table

...

5
6
7

1000101001...
1000111101...

1000001110...

- 1 per row

Figure 152: Overall and storage organisations of the Point Cloud Server.

217

Our method strongly depends on using the Point Cloud Server described in Cura,
Perret, and Paparoditis, 2016, therefore we introduce its principle and key relevant fea-
tures (see figure 152).

The PCS is a complete and efficient point cloud management system based on a
database server that works on groups of points rather than individual points. This sys-
tem is specifically designed to solve all the needs of point cloud users: fast loading,
compressed storage, powerful filtering, easy data access and exporting, and integrated
processing.

The core of the PCS is to store groups of points (called patches) that are multi-indexed
(spatially, on attributes, etc.), and represented with different generalisation depending
on the applications. Points can be grouped with any rules. In this work, the points are
regrouped spatially by cubes 1m (Paris) or 50m (Vosges) wide.

All the methods described in this work are applied on patches.

b.3.2 A local multi-scale dimensionality descriptor

b.3.2.1 Principle

When using the Implicit LOD MidOc building process, the number of chosen points per
level can be stored. Each ordered patch is then associated with a vector of number of
points per level ppl = (NL1

, ..,NLmax). The number of picked point for Li is almost the
voxel occupancy for the level i of the corresponding octree. Almost, because in MidOc
points picked at a level do not count for the next Levels. Occupancy over a voxel grid
has already been used as a descriptor (See Bustos et al., 2005). However we can go a step
further. For the following we consider that patches contain enough points and levels are
low enough so that the removing of picked points has no influence.

In theory for a level Li, a centred line would occupy 2Li cells, a centred plan 4Li

cells, and a volume all of the cells (8Li cells). Thus, by comparing ppl[Li] to theoretical
2Li , 4Li , 8Li we retrieve a dimensionality indice DimLOD[i] about the dimensionality of
the patch at the level L (See Figure 153). This occupancy is only correctly estimated

Line :
2L occupancy

Surface :
4L occupancy

Volume :
8L occupancy

Figure 153: Voxel occupancy is a crude dimensionality descriptor: 3D line, surface or volume
occupy a different amount of voxels.

when the patch is fully filled and homogeneous. However, we can also characterize
the dimensionality DimLODDiff by the way the occupancy evolves (difference mode).
Indeed, a line occupying k cells of an octree at level Li will occupy 2 ∗ k cells at the level
Li+1, if enough points.

218

We stress that the information contained in ppl is akin to a multi-scale dimensionality
indice, with the scale being the level of the octree. For the rest of this work we consider
that the dimensionality is roughly the same across level (which is entirely false in some
case, see B.4.3.1).

The Figure 154 illustrate this. Typical parts of a street in the Paris dataset were seg-
mented: a car, a wall with window, a 2 wheelers, a public light, a tree, a person, poles
and piece of ground including curbs.
Due to the geometry of acquisition and sampling, the public light is almost a 3D line, re-
sulting in the occupation of very few octree cells. A typical number of points chosen per
level for a public light patch would then be (1, 2, 4, 8, ...), which looks like a 2L function.
A piece of ground is often extremely flat and very similar to a planar surface, which
means that the points chosen per level could be (1, 4, 16, 64...), a 4L function. Lastly a
piece of tree foliage is going to be very volumetric in nature, due to the fact that a leaf
is about the same size as point spacing and is partly transparent to laser (leading to
several echo). Then a foliage patch would typically be (1, 8, 64...) (if enough points), so
a 8L function. (Tree patches are in fact a special case, see B.4.3.1).

b.3.2.2 Comparing crude dimensionality descriptor with covariance - based descriptors

A sophisticated per-point dimensionality descriptor is introduced in Demantké, 2014;
Weinmann et al., 2015, then used to find optimal neighbourhood size. A main difference
is that this feature is computed for each point (thus is extremely costly to compute), and
that dimensionality is influenced by density variation.

At the patch level, we do not need to find the scale at which compute dimensionality,
the descriptor is computed on the whole patch.

This dimensionality descriptors (Dimcov) relies on computing covariance of points
centred to the barycentre (3D structure tensor), then a normalisation of covariance eigen
values. As such, the method is similar, and has the same advantages and limitation, as
the Principal Component Analysis (See Shlens, 2014 for a reader friendly introduction).
It can be seen as fitting an ellipsoid to the points.

First this method is sensible to density variations because all the points are considered
for the fitting. As opposite to our hypothesis (See Section ??), this method considers
implicitly that density holds information about the nature of sensed objects. Second,
this methods only fits one ellipse, which is insufficient to capture complex geometric
forms. Last, this method is very local and does not allow to explore different scale for
a point cloud as a whole. Indeed this method is classically used on points within a
growing sphere to extend the scale.

However scale should be defined as the size of the features being analysed in sensed
objects, and ot the scale of the neighbourhood of the centroid.

We compute both dimensionality descriptor and then compare them for the Paris
dataset.

b.3.2.3 crude dimensionality descriptor as a feature

Using the result of the MidOc ordering has the advantage of not necessitating extra
computing, the patch being ordered with MidOc for LOD anyway.

Moreover, because x1 → (21)x, x2 → (22)x, x3 → (23)x diverge very fast, we only
need to use few levels to have a quite good descriptor. For instance, using L = 2, we

219

Figure 154: All successive levels for common objects (car, window, 2 wheelers, light, tree, people,
pole, ground), color is intensity for other points.

have xi = [4, 16, 64] , which are very distinguishable values, and don’t require a total
density above 70 points per patch. As long as the patch contains a minimal number of
points, the descriptors is density and scale invariant. Lastly a mixed result (following
neither of the xi → (2i)x function) can be used as an indicator that the patch contains
mixed geometry, either due to nature of the objects in the patch, or due to the way the
patch is defined (sampling).

220

Although it might be possible to go a step further and decompose a patch ppl vector
on the base of xi → (2i)x, i ∈ [1..3], the direct and exact decomposition can’t be used
because the decomposition might depends on Li. For instance a plane with a small line
could appear as a plan for L1 and L2, and starts to appear differently over L3 and higher
level. In this case, an Expectation-Maximization scheme might be able to decompose
robustly.

b.3.3 Classification with the Point Cloud Server

b.3.3.1 Principle

We propose to perform patch classification using the Point Cloud Server and the pre-
viously introduced crude multi-scale dimensionality descriptor, along with other basic
descriptors, using a Random Forest classifier. Following the position of the PCS towards
abstraction, the classification is performed at the patch level and not at the point level.
This induces a massive scaling and speeding effect, at the cost of introducing quan-
tization error. Indeed, compared to a point classification, a patch may contain points
belonging to several classes (due to generalisation), yet it will only be classified in one
class, thus the "quantization" error.

Because patch classification is so fast and scales so well, the end goal can be however
slightly different than for usual point classification.

Patch classification can be used as a fast preprocess to another slower point classifica-
tion, be it to speed it (an artificial recall increase for patch classification may be needed,
see Figure 163), or to better a point classification. The patch classification can provide a
rough classification. Based on that the most adapted point classifier is chosen (similarly
to Cascaded classifiers), thus improving the result of the final point classification. For
instance a patch classified as urban object would lead to chose a classifier specialized
in urban object, and not the general classifier. This is especially precious for classes that
are statistically under-represented.

Patch classification may also be used as a filtering preprocess for applications that
only require one class. Many applications only need one class, and do not require all
the points in it, but only a subset with good confidence. For this it is possible to artifi-
cially boost the precision (by accepting only high confidence prediction). For instance
computing a Digital Terrain Model (DTM) only requires ground points. Moreover, the
ground will have many parts missing due to objects, so using only a part of all the
points will suffice anyway. The patch classifier allow to find most of the ground patch
extremely fast. Another example is registration. A registration process typically require
reliable points to perform mapping and registration. In this case there is no need to
use all points, and the patch classification can provide patches from ground and façade
with high accuracy (for point cloud to point cloud or point cloud to 3D model regis-
tration), or patches of objects and trees (for points cloud to landmark registration). In
other applications, finding only a part of the points may be sufficient, for instance when
computing a building map from façade patches.

Random Forest method started with Amit and Geman, 1997, theorized by Breiman,
2001 and has been very popular since then. They are for instance used by Golovinskiy,
Kim, and Funkhouser, 2009 who perform object detection, segmentation and classifica-
tion. They analyse separately each task on an urban data set, thus providing valuable

221

comparison. Their method is uniquely dedicated to this task, like Serna and Marcotegui,
2014 who provide another method and a state of the art of the segmentation/classifi-
cation subject. Both of this methods are in fact 2D methods, working on an elevation
image obtained by projecting the point cloud. However we observe that street point
clouds are dominated by vertical surfaces, like building (about 70% in Paris data set).
Our method is fully 3D and can then easily be used to detect vertical object details, like
windows or doors on buildings.

b.3.3.2 Classification details

features The first descriptor is ppl, the crude multi-scale dimensionality descriptor
produced by the MidOc ordering (see Section B.3.2). We use the number of points for
the level [1..4]. For each level L, the number of points is normalized by the maximum
number of points possible (8L), so that every feature is in [0, 1].

We also use other simple features that require very limited computing (avoiding com-
plex features like contextual features). Due to the PCS patch compression mechanism,
min, max, and average of any attributes of the points are directly available. Using the
LOD allows to quickly compute other simple feature, like the 2D area of points of a
patch (points being considered with a given diameter).

dealing with data set particularities The Paris data set classes are orga-
nized in a hierarchy (100 classes in theory, 22 populated). The rough patch classifier is
not designed to deal with so many classes, and so a way to determine what level of
hierarchy will be used is needed. We propose to perform this choice with the help of a
graph of similarity between classes (See Fig. 158 and 159

We first determinate how similar the classes are for the simple dimensionality de-
scriptors, classifying with all the classes, and computing a class to class confusion ma-
trix. This confusion matrix can be interpreted as an affinity between class matrix, and
thus as a graph. We draw the graph using a spectral layout (Networkx, 2014), which
amounts to draw the graph following the first two eigen vector of the matrix (Similar
to Principal Component Analysis). Those two vectors maximize the variance of the data
(while being orthogonal), and thus best explain the data. This graph visually helps to
choose the appropriate number of classes to use. A fully automatic method may be used
via unsupervised clustering approach on the matrix (like The Affinity Propagation of
Frey and Dueck, 2007).

Even when reducing the number of classes, the Paris dataset if unbalanced (some
class have far less observations than some others). We tried two classical strategies to
balance the data set regarding the number of observation per class. The first is under-
sampling big classes : we randomly under-sample the observations to get roughly the
same number of observation in every class.

The second strategy is to compute a statistical weight for every observation based on
the class prevalence. This weight is then used in the learning process when building the
Random Forest.

b.3.3.3 Using the confidence from the classifier

Contrary to classical classification method, we are not only interested in precision and
recall per class, but also by the evolution of precision when prediction confidence varies.

222

In fact, for a filtering application, we can leverage the confidence information pro-
vided by the Random Forest method to artificially boost precision (at the cost of recall
diminution). We can do this by limiting the minimal confidence allowed for every pre-
diction. Orthogonaly, it is possible for some classes to increase recall at the cost of
precision by using the result of a first patch classification and then incorporate in the
result the other neighbour patches.

We stress that if the goal is to detect objects (and not classify each point), this strategy
can be extremely efficient. For instance if we are looking for objects that are big enough
to be in several patches (e.g. a car). In this case we can perform the classification (which
is very fast and efficient), then keep only highly confident predictions, and then use the
position of predictions to perform a local search for car limits. The classical alternative
solution would be to perform a per point classification on each point, which would be
extremely slow.

b.4 result

b.4.1 Introduction to results

We design and execute several experiments in order to test the descriptors for a random
forest classifier on two large data sets, proving their usefulness. We analyse the poten-
tial of this descriptors, and what it brings when used in conjunction to other simple
descriptors.

The base DBMS is PostgreSQL, 2014-. The spatial layer PostGIS, 2014- is added to
benefits from generic geometric types and multidimensional indexes. The specific point
cloud storage and function come from pgPointCloud, 2014-. The MidOc is either plpgsql
or made in python with SciPy, 2014-. The classification is done with Scikit, 2014-, and
the network clustering with Networkx, 2014. Timings are only orders of magnitude due
to the influence of database caching.

Figure 155: Histogram of number of points per patch, with a logarithmic scale for X and Y axis

We use two data sets. There were chosen as different as possible to further evaluate
how proposed methods can generalise on different data (See Figure fig:hist-density-
dataset for histogram of patch density). The first data set is IQmulus, 2014 (Paris data
set), an open source urban data set with varying density, singularities, and very chal-
lenging point cloud geometry. Every point is labelled with a hierarchy of 100 classes.
The training set is only 12 millions points. Only 22 classes are represented. We group
points in 1m3 cubes. The histogram of density seems to follow an exponential law (See
figure 155), the effect being that many patches with few points exist.

223

We also use the Vosges data set, which is a very wide spread, aerial Lidar, 5.5 Bil-
lions point cloud. Density is much more constant at 10k pts/patch . A vector ground
truth about surface occupation nature (type of forest) is produced by the French Forest
Agency. Again the classes are hierarchical, with 28 classes. We group points in 50 ×50m
squares.

b.4.2 Using the Point Cloud Server for experiments

All the experiments are performed using a Point Cloud Server (cf Cura, 2014). The
key idea are that point clouds are stored inside a DBMS (postgres), as patch. Patch are
compressed groups of points along with some basic statistics about points in the group.
We hypothesize that in typical point cloud processing workflow, a point is never needed
alone, but almost always with its surrounding points.

Each patch of points is then indexed in an R tree for most interesting attributes (obvi-
ously X,Y,Z but also time of acquisition, meta data, number of points, distance to source,
etc.)

Having such a meta-type with powerful indexes allows use to find points based on
various criteria extremely fast. (order of magnitude : ms). As an example, for a 2 Billion
points dataset, we can find all patches in few milliseconds having : - between -1 and 3

meters high in reference to vehicle wheels - in a given 2D area defined by any polygon
- acquired between 8h and 8h10 - etc.

The PCS offers an easy mean to perform data-partition based parallelism. We exten-
sively use it in our experiments.

b.4.3 Multi-scale local Dimensionality descriptor

We test the dimensionality descriptor (ppl) in two ways. First we compare the extracted
(DimLOD) to the classical structure tensor based descriptor (Dimcov). Second we assess
how useful it is for classification, by analysing how well it separates classes, and how
much it is used when several other features are available.

b.4.3.1 Comparing LOD-based descriptor with Structure tensor-based descriptor

We compute Dimcov following the indications of Weinmann et al., 2015 to get pdim− >

[0..1]3, i.e. the probability to belong to [1D,2D,3D]. We convert this to Dimcov with
Dimcov =

∑3
i=1 i ∗ pdim[i].

Optionally, we test a filtering option so that the maximum distance in biggest two
dimensions is more equivalent. However this approach fails to significantly improve
results.

We test several method to extract DimLOD from ppl. The first method is to com-
pute DimLODs[i] = log2(ppl[i])/i, which gives the simple dimensionality indice for
each level. The second method is the same but work on occupancy evolution, with
DimLODd[i] = log2(ppl[i]/ppl[i − 1]) (discarding L0). In both case the result is a di-
mensionality indice between 0 and 3 for each Level. We use both indices to fusion the
dimensionality across Levels (working on DimLODA = DimLODs

⋃
DimLODd). The

first method uses a RANSAC (SciPy, 2014- implementation of Choi, Kim, and Yu, 2009)
to find the best linear regression. The slope gives an idea of confidence (ideally, should

224

be 0), and the value of the line at the middle of abscissa is an estimate of DimLOD. The
second method robustly filters DimLODA based on median distance to median value
and average the inliers to estimate DimLOD.
Dimcov and DimLOD are computed with in-base and out-of-base processing, the lat-

ter being executed in parallel (8 workers). For 10k patches, 12 Mpts, retrieving data and
writing result accounts for 48s, computing DimLOD to 8s, Dimcov to 64s. Computing
ppl (which is multiscale) using a linear octree takes between 58 L6 and 85s L8. (

|DLOD-Dcov|≤0.5
colour = Global Illum.

|DLOD-Dcov|>0.5
colour = random

Figure 156: DimLOD and Dimcov are mostly comparable, except for few patches (5%, coloured)

Comparing Dimcov and DimLOD is not straightforward because the implicit defini-
tion of dimension is very different in the two methods. We analyse the patches where
|DimLOD −Dimcov| <= 0.5. 0.5 is an arbitrary threshold, but we feel that it repre-
sents the point above which descriptors will predict unreconcilable dimensions. Those
patches represent 93% of the data set (0.96 % of points), with a correlation of 0.80. Over-
all the proposed dimensions are similar for the majority of patch, especially for well
filled 1D and 2D patches (See Fig. 156).

We analyse the 684 remaining patches to look for possible explanations of the differ-
ence in dimension (See Fig. 157).

We consider the following four main sources of limitations from Dimcov.

• Elongated patch.
Dimcov=1.42 ,DimLOD=1.92. If the patch is not roughly a square,Dimcov gives a
bad estimation as it is biased by the un-symmetry of point distribution.

• Ellipsoid too simple.
Dimcov=1.68, DimLOD=2.24. Dimcov fits an ellipsoid, which can not cope with
complex objects, especially when the barycentre does not happen to be at a favourable
place.

• Coping with heterogeneous sampling.
pdim=[0.56,0.32,0.12], Dimcov=1.57, DimLOD=2.16.
Dimcov is sensitive to difference in point density. The points on the bottom plan
are much 3 times less dense than in the vertical plan, leading to a wrong estimate.

225

Ellongated patch Ellipsoid too simple

Not same definition Inhomogene sampling

Dimcov:1.42 DimLOD:1.92 Dimcov:1.68 DimLOD:2.24

Dimcov:1.57 DimLOD:2.16pdim :
DimLODD:

[0.11,0.23,0.66]
[3.0,2.17,1.04]

Figure 157: Representative patches for |DimLOD-Dimcov > 0.5|. Most differences are explained
by Dimcov limitations (See B.4.3.1).

• Definition of dimension different.
General:Dimcov ∈ [1.2, 2.6],DimLOD ∈ [1.7..2.7]
This patch: pdim=[0.11, 0.23, 0.66]
ppl=[1,8,36,74..], DimLODD=[3.0,2.17,1.04]. Trees are a good example of how the
two descriptors rely on a different dimension definition. For Dimcov points may
be well spread out, so usually p3D is high. Yet, tree patches are also subject to
density variation, and may also be elongate, which renders Dimcov very variable.
On the opposite, DimLOD considers the dimensionality at different scale (See Fig.
165). From afar a tree-patch is volumetric, at lower scal, it seems planar (leaf and
small sticks form rough plans together). Lastly at small scale, the tree looks linear
(sticks).

b.4.3.2 Usefulness of rough descriptor for classification

Figure 158: Spectral clustering of confusion matrix of Paris data set classification using only
ppl descriptor. Edge width and colour are proportional to affinity. Node position is
determined fully automatically. Red-ish arrows are manually placed as visual clues.

226

Using only the ppl descriptor, a classification is performed on Paris data set, then a
confusion matrix is computed. We use the spectral layout (see Section B.3.3.2) to auto-
matically produce the graph in Figure 158. We manually ad 1D,2D and 3D arrows. On
this graph, classes that are most similar according to the classification with ppl are close.
The graph clearly present an organisation following 3 axis. Those axis coincide with the
dimensionality of the classes. For instance the "tree" classe as a strong 3D dimensionality.
The "Punctual object" class, defined by "Objects which representation on a map should
be a point", is strongly 1D (lines), with object like bollard and public light. The "Road"
class is strongly 2D, the road being locally roughly a plan. The center of the graph is
occupied by classes that may have mixed dimensionality, for instance "4+ wheeler" (i.e.
car) may be a plan or more volumetric, because of the 1m3 sampling. "Building" and
"sidewalk" are not as clearly 2D as the "road" class. Indeed, the patch of "sidewalk" class
are strongly mixed (containing 22 %of non-sidewalk points, See figure 161). The build-
ing class is also not pure 2D because building facade in Paris contains balcony, building
decoration and floors, whcih introduce lots of object-like patches, which explain that
building is closer to the object cluster. (See Figure ??, in the Level 3 for instance). The
dimensionality descriptor clearly separates classes following their dimensionality, but
can’t separate classes with mixed dimensionality.

To further evaluate the dimensionality descriptor, we introduce other classification
features (see B.4.4), perform classification and compute each feature importance. The
overall precision and recall result of these classification is correct, and the ppl descriptor
is of significant use (See Figure 161 and 160), especially in the Vosges data set. The ppl

descriptor is less used in Paris data set, maybe because lots of classes can not really be
defined geometrically, but more with the context.

b.4.4 Patch Classification

b.4.4.1 Introducing other features

The dimensionality descriptor alone cannot be used to perform sophisticated classifica-
tion, because many semantically different objects have similar dimension (for instance,
a piece of wall and of ground are dimensionally very similar , yet semantically very dif-
ferent). We introduce additional simple features for classification (See Section B.3.3.2).
All use already stored patch statistics, and thus are extremely fast to compute. (P : for
Paris , V : for Vosges: - average of altitude regarding sensing device origin(P) - area
of patch_bounding_box (P) : - patch height (P) - points_per_level (ppl), level 1 to 4

(P+V) - average of intensity (P+V) - average of number_of_echo (P+V) - average Z (V)
For Vosges data set, we reach a speed of 1 Mpoints/s/worker to extract those features.

b.4.4.2 Classification Setting

Undersampling and weighting are used on the paris dataset. First Undersampling to
reduce the over dominant building classe to a 100 factor of the smallest class support.
Then weighting is used to compensate for differences in support. For the Vosges data
set only the weighting strategy is used. The weighting approach is favoured over under-
sampling because it lessen variability of results when classes are very heterogeneous.

227

To ensure significant results we follow a K-fold cross-validation method. We again
compute a confusion matrix (i.e. affinity between classes) on the Paris data set to choose
which level of class hierarchy should be used. fig:class-clustering-all-features

b.4.4.3 Analysing class hierarchy

VEGETATION
OBJECTS

BUILDINGS

POLES

VEHICLE

GROUND
Figure 159: Result of automatic spectral clustering over confusion matrix for patch classification

of Paris data set with all simple features. Edges width and colour are proportional
to confusion. Manually drawn clusters for easier understanding.

Choosing which level of the class hierarchy to use depends on data set and applica-
tions. In a canonical classification perspective, we have to strongly reduce the number
of classes if we want to have significant results. However reducing the number of class
(i.e use a higher level in the classes hierarchy) also means that classes are more hetero-
geneous.

Both data set are extremely unbalanced (factor 100 or more). Thus our simple and
direct Random Forest approach is ill suited for dealing with extremely small classes.
(Cascading or one versus all framework would be needed).

For Vosges data set a short analysis convince us to use 3 classes: Forest, Land, and
other, on this three classes, the Land class is statistically overweighted by the 2 others.

For the Paris data set, we again use a spectral layout to represent the affinity graph
(See Figure 159). Introducing other features clearly helps to separate more classes. The
graph also shows the limit of the classification, because some class cannot be properly
defined without context (e.g. the side-walk, which is by definition the space between
building and road, hence is defined contextually).

b.4.4.4 Classification results

We perform a analysis of error on Vosges dataset and we note that errors seem to be
significantly correlated to distance to borders.

The learning time is less than a minute, the predicting time is less than a second.
For both dataset, patches main contain points from several classes. We measure how

much of the patch points pertain to the dominant class. The result is given in the
columns "mix". For instance the patch of the class "building" contains an average of
98.6 %points of the class "building", whereas the patch from the class "forest" con-
tains 88.3 %points of the class "forest". Therefore, to provide a comparison with point

228

Closed Forest

Moor

Not forest

avg/total

pre
c.

re
c.

su
pp.

0.99

0.18

0.86

0.94

0.91

0.68

0.89

0.90

390k

8.7k

128k

526k

mix.

0.883

0.741

1

0.901

0.09 0.06 0.12 0.14

ppl_1 ppl_2 ppl_3 ppl_4 nber of
echo

mean
Z

patch
height

0.57 (0.07+0.13+0.18+0.19)
In

te
ns

ity

Feature usage

Figure 160: Vosges dataset. (table 2) Precision(prec.), recall (rec.), support (supp.), and average
percent of points of the class in the patches, for comparison with point based method
(mix.). (table 1)Feature usage

Figure 161: Results for Paris data set: at various level of class hierarchy. Precision(prec.), recall
(rec.), support (sup.) and average percent of points of the class in the patches of the
class, for comparison with point based method (mix.). Classes of the same type are
in the same continuous tone. Feature usage is evaluated for each level in the class
hierarchy.

based classification, we can compute the precision of the classification per point as
Precisionpoint = Precisionpatch ∗Mix.. (Same for recall).

229

Figure 162: Plotting of patches classified as building, using confidence to increase precision.
Ground truth from IGN and Open Data Paris

b.4.4.5 Precision or Recall increase

As explained in Section B.3.3.3, we can leverage the random forest confidence score to
artificially increase the precision.

We focus on the building class. As seen in the Figure 162, initial classification results
(blue) are mostly correct. Yet, only keeping patches with high confidence may greatly
increase precision (to 100 %). Further filtering on confidence can not increase precision,
but will reduce the variability of the found building patches. This result (red) would
provides a much better base for building reconstruction for instance.

The patch classifier can also be used as a filtering preprocess. In this case, the goal is
not to have a great precision, but to be fast and with a good recall. Such recall may be
increased artificially for class of objects bigger than the sampling size (1m3 for Paris).

We take the example of ground classification (See Figure 163). The goal is to find
all ground patches very fast. We focus on a small area for illustration purpose. This
area contains 3086 patches, including 439 ground patches. Patch classification finds 421

ground patch, with a recall of 92.7%. Using the found patch, all the surrounding patches
(X,Y : 2 m, Z : 0.5 m) are added to the result (few seconds). There are now 652 patches
in the result, and the recall is 100%. This means that from a filtering point of view, a
complex classifier that would try to find ground points can be used on 652/3086 =

21% of the data set, at the price of few seconds of computing, without any loss of
information.

230

Figure 163: Map of patch clustering result for ground. The classical result finds few extra patches
that are not ground (blue), and misses some ground patches (red). Recall is increased
by adding to the ground class all patches that are less than 2 meters in X,Y and 0.5
meter in Z around the found patches. Extra patches are much more numerous, but
all the ground patches are found.

b.5 discussion

b.5.1 Point cloud server

We refer the reader to Cura, Perret, and Paparoditis, 2015b for an exhaustive analyse of
the Point Cloud Server. Briefly, the PCS has demonstrated all the required capacitites to
manage point clouds and scale well. To the best of our knowledge the fastest and easiest
way to filter very big point cloud using complex spatial and temporal criteria, as well as

231

natively integrate point cloud with other GIS data (raster, vector). The main limitation
is based on the hypothesis than points can be regrouped into meaningful (regarding
further point utilisation) patches. If this hypothesis is false, the PCS lose most of its
interest.

b.5.2 Multi-scale local dimensionality descriptor

1.2 1.4 1.6 1.8 2.0 2.2 2.4 Dim

H
is
to
g
ra
m

Dim_LOD
Dim_Cov

Figure 164: Histogram of DimLOD and Dimcov for patch in trees (500 kpts). Tree dimension
could be from 1.2 to 2.6, yet DimLOD is less ambiguous than Dimcov

Tree patches are challenging for both dimensionality descriptor. There possible di-
mension changes a lot (See Fig. 164), although DimLOD is more concentrated. Yet, ppl
is extremely useful to classify trees. Indeed, ppl contains the dimensionality at various
scale, and potentially the variation of it, which is quite specific for trees (See Fig. 165).

x22.2

x21

x23

LOD1
LOD2 LOD3 LOD4

All

not enough
remaining
points

Figure 165: Evolution of tree patch octree cells occupancy, illustrating the various dimensions of
trees depending on the scale. (Dimension is embeded it the power of 2).

We stress that a true octree cell occupancy (i.e. without picking points as in the ppl)
can be obtained without computing the octree, simply by using the binary coordinates
(See ??). We implement it in python as a proof of concept. Computing it is about as fast
as computing Dimcov.

Overall, ppl offers a good alternative to the classical dimensionality descriptor (Dimcov),
being more robust and multiscale. However the ppl also has limitations. First the qual-

232

ity of the dimensionality description may be affected by a low number of points in
the patch. Second in some case it is hard to reduce it to a meaningful DimLOD]. Last
because of assumption on density, it is sensible to geometric noise.

b.5.3 Patch Classification

The ppl descriptor contains lots of information about the patch. This information is
leveraged by the Random Forest method and permit a rough classification based on
geometric differences. As expected, ppl descriptor are not sufficient to correctly separate
complex objects, which is the main limitation for a classification application.

The additional features are extremely simple, and far from the one used in state of
the art. Notably, we don’t use any contextual feature. We choose to classify directly in N
classes, whereas due to the large unbalance indataset, cacade or 1 versus all approaches
would be more adapted.

b.5.3.1 Analysing class hierarchy

The figure 159 shows the limit of a classification without contextual information. For
instance the class grid and buildings are similar because in Paris buildings balcony are
typically made of grids.

To better identify confusion between classes, we use a spectral layout on the affinity
matrix. Graphing this matrix in 2D ammount to a problem of dimensionality reduction.
It could use more advanced method than simply using the first two eigen vector, in
perticular the two vector wouldn’t need to be orthogonal (for instance, like in Hyvärinen
and Oja, 2000).

b.5.3.2 Classification results

First the feature usage for vosges data set clearly shows that amongst all the simple
descriptor, the ppl descriptor is largely favored. This may be explained by the fact that
forest and bare land have very different dimensionality, which is conveyed by the ppl

descriptor.
Second the patch classifier appears to have very good result to predict if a patch is

forest or not. The precision is almost perfect for forest. We reach the limit of precision
of ground truth. Because most of the errors are on border area, the recall for forest
can also be easily artificially increased. The percent of points in patch that are in the
patch class allow to compare result with a point based method. For instance the average
precision per point for closed forest would be 0.99 ∗ 0.883 = 0.874 . We stress that
this is averaged results, and better precision per point could be achieved because we
may use random forest confidence to guess border area (with a separate learning for
instance). For comparison with point methods, the patch classifier predict with very
good precision and support over 6 billions points in few seconds (few minutes for
training). We don’t know other method that have similar result while being as fast and
natively 3D. The Moor class can’t be separated without more specialised descriptor,
because Moor and no forest classes are geometrically very similar.

The principal limitation is that for this kind of aerial Lidar data set the 2.5D approxi-
mation may be sufficient, which enables many raster based methods that may perform
better or faster.

233

The figure 161 gives full results for paris data set, at various class hierarchy level.
Because the goal is filtering and not pure classification, we only comment the 7 classes
result. The proposed methods appears very effective to find building, ground and trees.
Even taking into consideration the fact that patch may contains mixed classes (column
mix.), the result are in the range of state of the art point classifier, while being extremely
fast. This result are sufficient to increase recall or precision to 1 if necessary. We stress
that even results appearing less good (4+wheelers , 0.69 precision, 0.45 recall) are in fact
sufficient to increase recall to 1 (by spatial dilatation of the result), which enables then
to use more subtle methods on filtered patches.
ppl descriptor is less used than for the Vosges data set, but is still useful, particularly

when there are few classes. It is interesting to note that the mean intensity descriptor
seems to be used to distinguish between objects, which makes it less useful in the 7

classes case. The patch classifier for Paris data set is clearly limited to separate simple
classes. In particular, the performances for objects are clearly lower than the state of the
art. A dedicated approach should be used (cascaded or one versus all classifier).

b.5.3.3 Estimating the speed and performance of patch based classification compared to point
based classification

The Point Cloud Server is designed to work on patches, which in turns enable massive
scaling.

Timing a server is difficult because of different layer of caches, and background
workers. Therefore, timing should be considered as order of magnitude. For Paris data
set,extracting extra classification features requires ∼ 400s

nworkers
(1 to 8 workers), learning

∼ 210s, and classification ∼ few s. We refer to Weinmann et al., 2015(Table 5) for point
classification timing on the same dataset (4.28h, 2s, 90s) (please note that the training
set is much reduced by data balancing). As expected the speed gain is high for complex
feature computing (not required) and point classification (done on patch and not points
in our case).

For Vosges data set, features are extracted at 1Mpts/s/worker, learning ∼ fewmin,
classification ∼ 10s. The Vosges data set has not been used in other articles, therefore
we propose to compare the timings to Shapovalov, Velizhev, and Barinova, 2010 (Table
3). Keeping only feature computation and random forest training (again on a reduced
data set), they process 2 Mpoints in 2 min, whereas our method process the equivalent
of 5.5 B points in few minutes.

Learning and classification are monothreaded (3 folds validation), although the latter
is easy to parallelise. Overall, the proposed method is one to three orders of magnitude
faster.

For Paris data set (Fig. 161), we compare to Weinmann et al., 2015(Table 5). As ex-
pected there results are better, particularly in terms of precision (except for the class of
vegetation). This trend is aggravated by taking into account the "mix." factor. Indeed
we perform patch classification, and patch may not pertain to only one class, which is
measured by the mix factor (amount of points in the main class divided by the total
number of point). However, including the mix factor the results are still within the 85

to 90 % precision for the main classes (ground, building, natural).
For Vosges data set (Fig 160), we refer to Shapovalov, Velizhev, and Barinova, 2010

(Table 2). There random forest classifier get trees with 93% precision and 89% recall.
Including the mix factor we get trees with a precision of 87% and 80% recall. As a

234

comparison to image based classification, an informal experiment of classification with
satellite image reaches between 85 % and 93 % of precision for forest class depending
on the pixel size (between 5 and 0.5 m).

Overall, the proposed method get reasonably good results compared to more sophis-
ticated methods, while being much faster. It so makes a good candidate as a preprocess-
ing filtering step.

b.5.3.4 Precision or Recall increase

Because the propose methods are preprocess of filtering step, it can be advantageous to
increase precision or recall.

0.30.2 ...

Figure 166: Precision of 4+wheelers class is a roughly rising function of random forest confi-
dence scores.

In the Figure 162 gives a visual example where increasing precision and reducing
class heterogeneity is advantageous. This illustrates that having a 1 precision or recall
is not necessary the ultimate goal. In this case it would be much easier to perform line
detection starting from red patches rather than blue patches.
The limitation of artificial precision increase is that it is only possible when precision is
roughly a rising function of random forest confidence, as seen on the illustration 166.
For this class, by accepting only prediction of random forest that have a confidence over
0.3 the precision goes from 0.68 to 0.86, at the cost of ignoring half the predictions for
this class. This method necessitates that the precision is roughly a rising function of the
confidence, as for the 4+wheeler class for instance (See Figure 166). This strategy is not
possible for incoherent class, like unclassified class.

The method we present for artificial recall increase is only possible if at least one
patch of each object is retrieved, and objects are spatially dense. This is because a spatial
dilatation operation is used. This is the case for "4+wheelers" objects in the paris data
set for instance. The whole method is possible because spatial dilatation is very fast in
point cloud server (because of index). Moreover, because the global goal is to find all
patches of a class while leaving out some patches, it would be senseless to dilate with a
very big distance. In such case recall would be 1, but all patches would be in the result,
thus there would be no filtering, and no speeding.
The limitation is that this recall increase method is more like a deformation of already
correct results rather than a magical method that will work with all classes.

235

b.6 conclusion

We propose a multi-scale local dimensionality descriptor. It allows to describe local
geometrical dimensionnality of a point cloud in a meaningfull way, and concentrates in-
formation, which can be leveraged by a classifier. We show the interest of this descriptor,
both by comparison to the state of the art dimensionnality descriptor, and by proof of its
usefulness in real Lidar dataset classification. Classification is extremely fast, sometime
at the price of performance (precision / recall). However we prove that those results
can be used as a pre-processing step for more complex methods, using if necessary
precision-increase or recall-increase strategies.

236

C
A P P E N D I X C : G E N E R I C T E C H N I C A L A P P E N D I X

This technical appendix contains selected code and technical documentation about
the various methods used in the thesis.

c.1 Point Cloud Server Appendix . 238
c.2 StreetGen Appendix . 240

237

c.1 point cloud server appendix

The following figure is an example of the filtering query used in the Point Cloud Server
illustration 37 on page 64, further discussed in Section 2.4.3.3 on page 76. It filter a point
cloud by combining many different conditions.

• near street ’Palatine’ and ’Servandoni’ (6 10 m+ road width),
• near Lidar acquisition centre trajectory (6 3 m),
• far from buildings (> 1 m),
• with high density (> 1000 points /m3),
• where the aerial image has a colour compatible with street. markings (240 6 mean

intensity 6 350)

238

WITH s t r e e t _ 1 AS (--getting bufferized road 1

SELECT ST_Union (s t _ b u f f e r (geom , largeur /2 .0+4)) as geom
FROM bdtopo . route AS r
WHERE nom_rue_g = ’R SERVANDONI ’

)
, s t r e e t _ 2 AS (--getting bufferized road 2

SELECT ST_Union (s t _ b u f f e r (geom , largeur /2 .0+4)) as geom
FROM bdtopo . route AS r
WHERE nom_rue_g = ’R PALATINE ’

)
, s t r e e t _ a r e a AS (--intersection of both roads

SELECT S T _ I n t e r s e c t i o n (s1 . geom , s2 . geom) AS geom
FROM s t r e e t _ 1 AS s1 , s t r e e t _ 2 AS s2

)
, t r a j e c t o r y AS (-- getting trajectory of mobile mapping vehicle close to

intersection

SELECT ST_Union (ST_Buffer (t . t r a j _ l i n e , 6)) as geom
FROM s t r e e t _ a r e a AS s , t r a j e c t o r y . t r a j _ p a r i s _ e x t r a c t p a r i s 1 4 0 6 1 6 As t
WHERE S T _ I n t e r s e c t s (t . t r a j _ l i n e , s . geom)

)
, t r a j e c t o r y _ a n d _ s t r e e t AS (-- cutting the trajectory to keep only part in

intersection

SELECT S T _ I n t e r s e c t i o n (t . geom , s . geom) as geom
FROM s t r e e t _ a r e a AS s , t r a j e c t o r y As t

)
, r a s t AS (-- getting aerial image pixels coverage with given values

SELECT ST_Col lec t (r . geom) as geom
FROM t r a j e c t o r y _ a n d _ s t r e e t AS ts , r a s t e r . ortho_651_6861 As r
WHERE S T _ I n t e r s e c t s (r . geom , ST_Transform (t s . geom, 9 3 2 0 1 2))

AND rc_raster_max_mean_value (r a s t) BETWEEN 240 AND 375

)
, f i n a l AS (-- getting lidar patch id matching all conditions

SELECT rpp . gid , rpp . geom
FROM t r a j e c t o r y _ a n d _ s t r e e t AS ts , r a s t , tmob_20140616 . r iegl_pcpatch_proxy

AS rpp
WHERE S T _ I n t e r s e c t s (ST_Transform (t s . geom, 9 3 2 0 1 2) , rpp . geom) =TRUE

AND S T _ I n t e r s e c t s (r a s t . geom , rpp . geom) =TRUE
AND num_points >= 1000

)
SELECT * --actually getting patches (ie binary , containing points)

FROM f i n a l as rpp
-- NATURAL JOIN tmob_20140616.riegl_pcpatch AS rpp2

WHERE NOT EXISTS
(-- exclude patches that are too close to buildings

SELECT 1

FROM odpar i s_correc ted . volume_bati AS b
WHERE ST_DWithin (ST_Transform (b . geom, 9 3 2 0 1 2) , rpp . geom , 2)

) ;

239

c.2 streetgen appendix

The following figure is an illustration of the main tables (within database) of StreetGen
(with the exception of interactive behaviour views).

Figure 167: StreetGen base table schema in database (part 1/2)

(right page) The input (right) is road axis network with information such as approxi-
mate road status, road width, number of lanes, etc.

The axis are stored in a topological model (second from the right) centred around
edges, nodes and faces.

240

The next layer is the tables containing the user specified data, which are separated at
all time from automatically generated results. This table contains custom radius, custom
limit to intersection, lanes and interconnections.

Figure 168: StreetGen base table schema in database (part 2/2)

(left page) This user input are user by StreetGen to generate the results layer, with sev-
eral tables holding the finished model, such as "result_arc", "result_axis", "result_intersection",
and "street_object". Other tables duplicate information for visualisation and ease of use
purpose. The lanes and interconnections tables are added on top of the architecture so
this feature can be toggle on or off (lanes and interconnections increase significantly
computing time).

241

B I B L I O G R A P H Y

Agarwal, Sameer, Keir Mierle, and Others (2016). Ceres Solver.
Ahmed, Mahmuda, Sophia Karagiorgou, Dieter Pfoser, and Carola Wenk (2014). ‘A

Comparison and Evaluation of Map Construction Algorithms Using Vehicle Track-
ing Data.’ In: Geoinformatica 19.3, pp. 601–632.

Aichholzer, Oswin, Franz Aurenhammer, David Alberts, and Bernd Gärtner (1996). ‘A
Novel Type of Skeleton for Polygons.’ In: J.UCS The Journal of Universal Computer
Science. Ed. by Hermann Maurer, Cristian Calude, and Arto Salomaa. Berlin, Hei-
delberg: Springer Berlin Heidelberg, pp. 752–761. isbn: 978-3-642-80352-9 978-3-642-
80350-5.

Airault, Sylvain, Renaud Ruskone, and Olivier Jamet (1994). ‘Road Detection from
Aerial Images: A Cooperation between Local and Global Methods.’ In: Satellite Re-
mote Sensing. International Society for Optics and Photonics, pp. 508–518.

Amit, Yali and Donald Geman (1997). ‘Shape Quantization and Recognition with Ran-
domized Trees.’ In: Neural Computation 9, pp. 1545–1588.

Applegate, C. S., S. D. Laycock, and A. M. Day (2011). ‘A Sketch-Based System for High-
way Design.’ In: Proceedings of the Eighth Eurographics Symposium on Sketch-Based
Interfaces and Modeling. SBIM ’11. New York, NY, USA: ACM, pp. 55–62. isbn: 978-
1-4503-0906-6.

ArchiExpo (2014). ArchiExpo - Public Spaces. http://www.archiexpo.com/cat/public-
spaces-O.html.

Aubrecht, C., K. Steinnocher, M. Hollaus, and W. Wagner (2009). ‘Integrating Earth
Observation and GIScience for High Resolution Spatial and Functional Modeling of
Urban Land Use.’ In: Computers, Environment and Urban Systems 33.1, pp. 15–25.

Azim, A. and O. Aycard (2012). ‘Detection, Classification and Tracking of Moving Ob-
jects in a 3D Environment.’ In: 2012 IEEE Intelligent Vehicles Symposium (IV), pp. 802–
807.

Baert, Jeroen, Ares Lagae, and Ph Dutré (2014). ‘Out-of-Core Construction of Sparse
Voxel Octrees.’ In: Computer Graphics Forum. Vol. 33. Wiley Online Library, pp. 220–
227.

Ballester, Miquel Ginard, Maurici Ruiz Pérez, and John Stuiver (2011). ‘Automatic Pedes-
trian Network Generation.’ In: Proceedings 14th AGILE International Conference on GIS,
pp. 1–13.

Bar Hillel, Aharon, Ronen Lerner, Dan Levi, and Guy Raz (2012). ‘Recent Progress in
Road and Lane Detection: A Survey.’ In: Machine Vision and Applications.

Baraniuk, Richard, Mark Davenport, Marco Duarte, chinmay Hegde, Jason Laska, Mona
Sheikh, and Wotao Yin (2011). ‘An Introduction to Compressive Sensing.’ In: Con-
nexions. Houston, Texas: Rice University, p. 118.

Baumgartner, Albert, Carsten Steger, Helmut Mayer, Wolfgang Eckstein, and Heinrich
Ebner (1999). ‘Automatic Road Extraction Based on Multi-Scale, Grouping, and Con-
text.’ In: Photogrammetric Engineering and Remote Sensing 65, pp. 777–786.

Beneš, B., O. Št’ava, R. Měch, and G. Miller (2011). ‘Guided Procedural Modeling.’ In:
Computer Graphics Forum. Vol. 30, pp. 325–334.

243

http://www.archiexpo.com/cat/public-spaces-O.html
http://www.archiexpo.com/cat/public-spaces-O.html

Beneš, Jan, Alexander Wilkie, and Jaroslav Křivánek (2014). ‘Procedural Modelling of
Urban Road Networks.’ In: Computer Graphics Forum 33.6, pp. 132–142.

Bereuter, Pia (2015). ‘Quadtree-Based Real-Time Point Generalisation for Web and Mo-
bile Mapping.’ PhD thesis. Zurich: Mathematisch-naturwissenschaftlichen Fakultät
der Universität Zürich.

Bertails-Descoubes, Florence (2012). ‘Super-Clothoids.’ In: Comp. Graph. Forum 31.2pt2,
pp. 509–518.

Besl, Paul J. and Neil D. McKay (1992). ‘Method for Registration of 3-D Shapes.’ In: ed.
by Paul S. Schenker, pp. 586–606.

Bessmeltsev, Mikhail, Caoyu Wang, Alla Sheffer, and Karan Singh (2012). ‘Design-Driven
Quadrangulation of Closed 3D Curves.’ In: ACM Trans. Graph. 31.6, 178:1–178:11.

Bier, Eric A., Maureen C. Stone, Ken Pier, William Buxton, and Tony D. DeRose (1993).
‘Toolglass and Magic Lenses: The See-through Interface.’ In: Proceedings of the 20th
Annual Conference on Computer Graphics and Interactive Techniques. ACM, pp. 73–80.

Bloomenthal, J. (1985). ‘Modeling the Mighty Maple.’ In: ACM SIGGRAPH Computer
Graphics. Vol. 19, pp. 305–311.

Bokeloh, M., M. Wand, V. Koltun, and H. P Seidel (2011). ‘Pattern-Aware Shape Defor-
mation Using Sliding Dockers.’ In: ACM Transactions on Graphics (TOG) 30.6, p. 123.

Bokeloh, Martin, Michael Wand, Hans-Peter Seidel, and Vladlen Koltun (2012). ‘An
Algebraic Model for Parameterized Shape Editing.’ In: ACM Trans. Graph. 31.4, 78:1–
78:10.

Boyko, Aleksey and Thomas Funkhouser (2011). ‘Extracting Roads from Dense Point
Clouds in Large Scale Urban Environment.’ In: ISPRS Journal of Photogrammetry and
Remote Sensing 66.6, S2–S12.

Breiman, Leo (2001). ‘Random Forests.’ In: Machine Learning, pp. 5–32.
Brenner, Claus (2010). ‘Vehicle Localization Using Landmarks Obtained by a Lidar Mo-

bile Mapping System.’ In: Proceedings of the ISPRS Annals of the Photogrammetry 38,
pp. 139–144.

Bruneton, Éric and Fabrice Neyret (2012). ‘Real-Time Realistic Rendering and Lighting
of Forests.’ In: Comput. Graph. Forum.

Burghardt, Dirk, Cécile Duchêne, and William Mackaness, eds. (2014). Abstracting Geo-
graphic Information in a Data Rich World. Lecture Notes in Geoinformation and Car-
tography. Cham: Springer International Publishing. isbn: 978-3-319-00202-6 978-3-
319-00203-3.

Bustos, Benjamin, Daniel A. Keim, Dietmar Saupe, Tobias Schreck, and Dejan V. Vranić
(2005). ‘Feature-Based Similarity Search in 3D Object Databases.’ In: ACM Comput-
ing Surveys 37.4, pp. 345–387.

Cabral, M., S. Lefebvre, C. Dachsbacher, and G. Drettakis (2009). ‘Structure-Preserving
Reshape for Textured Architectural Scenes.’ In: Computer Graphics Forum. Vol. 28,
pp. 469–480.

Carrivick, Jonathan L., Mark W. Smith, and Duncan J. Quincey (2016). Structure from
Motion in the Geosciences. John Wiley & Sons. isbn: 978-1-118-89583-2.

Chaudhuri, S., E. Kalogerakis, L. Guibas, and V. Koltun (2011). ‘Probabilistic Reasoning
for Assembly-Based 3D Modeling.’ In: ACM Transactions on Graphics (TOG). Vol. 30,
p. 35.

244

Chen, Guoning, Gregory Esch, Peter Wonka, Pascal Müller, and Eugene Zhang (2008).
‘Interactive Procedural Street Modeling.’ In: ACM Transactions on Graphics 27.3, Arti-
cle 103: 1–10.

Choi, S., T. Kim, and W. Yu (2009). ‘Performance Evaluation of Ransac Family.’ In: Pro-
ceedings of the British Machine Vision Conference.

Chu He, Fang Yang, Sha Yin, Xinping Deng, and Mingsheng Liao (2013). ‘Stereoscopic
Road Network Extraction by Decision-Level Fusion of Optical and SAR Imagery.’
In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6.5,
pp. 2221–2228.

Chum, Ondrej and Jirı Matas (2002). ‘Randomized RANSAC with Td, D Test.’ In: Proc.
British Machine Vision Conference. Vol. 2, pp. 448–457.

Clementini, Eliseo and Robert Laurini (2008). ‘Un Cadre Conceptuel Pour Modéliser
Les Relations Spatiales.’ In: Revue des Nouvelles Technologies de l’Information (RNTI)
14, pp. 1–17.

Clode, Simon, Franz Rottensteiner, Peter Kootsookos, and Emanuel Zelniker (2007). ‘De-
tection and Vectorization of Roads from Lidar Data.’ In: Photogrammetric Engineering
& Remote Sensing 73.5, pp. 517–535.

Cornelis, N., B. Leibe, K. Cornelis, and L. Van Gool (2008). ‘3d Urban Scene Modeling
Integrating Recognition and Reconstruction.’ In: International Journal of Computer
Vision 78.2, pp. 121–141.

Coughlan, James M. and Alan L. Yuille (1999). ‘Manhattan World: Compass Direction
from a Single Image by Bayesian Inference.’ In: Computer Vision, 1999. The Proceedings
of the Seventh IEEE International Conference on. Vol. 2. IEEE, pp. 941–947.

Cullen, B. and C. O’Sullivan (2011). ‘A Caching Approach to Real-Time Procedural
Generation of Cities from GIS Data.’ In: Journal of WSCG 19.3, pp. 119–126.

Cura, R., J. Perret, and N. Paparoditis (2015a). ‘STREETGEN: IN-BASE PROCEDURAL-
BASED ROAD GENERATION.’ In: ISPRS Annals of Photogrammetry, Remote Sensing
and Spatial Information Sciences II-3/W5, pp. 409–416.

Cura, Rémi (2014). A PostgreSQL Server for Point Cloud Storage and Processing. Paris.
— (2016). ‘A Scalable and Multi-Purpose Point Cloud Server (PCS) for Easier and

Faster Point Management and Processing.’ In: ISPRS Journal of Photogrammetry and
Remote Sensing.

Cura, Rémi, Julien Perret, and Nicolas Paparoditis (2015b). ‘Point Cloud Server (Pcs):
Point Clouds In-Base Management and Processing.’ In: ISPRS Annals of Photogram-
metry, Remote Sensing and Spatial Information Sciences 1, pp. 531–539.

— (2016). ‘Implicit LOD for Processing, Visualisation and Classification in Point Cloud
Servers.’ In: CoRR abs/1602.06920.

Demantké, Jerome (2014). ‘Reconstruction of Photorealistic 3D Models of Facades from
Terrestrial Images and Laser Data.’ PhD thesis. Paris: Paris Est.

Despine, Guillaume and Caroline Baillard (2011). ‘Realistic Road Modelling for Driving
Simulators Using GIS Data.’ In: Advances in Cartography and GIScience. Volume 2. Ed.
by Anne Ruas. Lecture Notes in Geoinformation and Cartography. Springer Berlin
Heidelberg, pp. 431–448. isbn: 978-3-642-19213-5 978-3-642-19214-2.

Deussen, Oliver, Pat Hanrahan, Bernd Lintermann, Radomír Mech, Matt Pharr, and
Przemyslaw Prusinkiewicz (1998). ‘Realistic Modeling and Rendering of Plant Ecosys-
tems.’ In: Proceedings of the 25th Annual Conference on Computer Graphics and Interac-
tive Techniques. ACM, pp. 275–286.

245

Djaouti, Damien, Julian Alvarez, and Jean-Pierre Jessel (2011). ‘Classifying Serious Games:
The G/P/S Model.’ In: Handbook of research on improving learning and motivation
through educational games: Multidisciplinary approaches, pp. 118–136.

Duda, Richard O. and Peter E. Hart (1972). ‘Use of the Hough Transformation to Detect
Lines and Curves in Pictures.’ In: Communications of the ACM 15.1, pp. 11–15.

Duives, Dorine C., Winnie Daamen, and Serge P. Hoogendoorn (2013). ‘State-of-the-
Art Crowd Motion Simulation Models.’ In: Transportation Research Part C: Emerging
Technologies 37, pp. 193–209.

Edelsbrunner, H., D. Kirkpatrick, and R. Seidel (1983). ‘On the Shape of a Set of Points
in the Plane.’ In: IEEE Transactions on Information Theory 29.4, pp. 551–559.

Eitz, Mathias, Ronald Richter, Tamy Boubekeur, Kristian Hildebrand, and Marc Alexa
(2012). ‘Sketch-Based Shape Retrieval.’ In: ACM Trans. Graph. (Proc. SIGGRAPH)
31.4.

Elseberg, Jan, Dorit Borrmann, and Andreas Nüchter (2013). ‘One Billion Points in the
Cloud – an Octree for Efficient Processing of 3D Laser Scans.’ In: ISPRS Journal of
Photogrammetry and Remote Sensing. Terrestrial 3D modelling 76, pp. 76–88.

Ester, Martin, Hans-peter Kriegel, Jörg S, and Xiaowei Xu (1996). ‘A Density-Based Algo-
rithm for Discovering Clusters in Large Spatial Databases with Noise.’ In: proceed-
ings of 2nd International Conference on Knowledge Discovery and Data Mining.
AAAI Press, pp. 226–231.

European Union Road Federation (2012). European Road Statistic 2012. Tech. rep. Bel-
gium: ERF, p. 88.

Feng, Jiashi, Huan Xu, and Shuicheng Yan (2013). ‘Online Robust Pca via Stochastic
Optimization.’ In: Advances in Neural Information Processing Systems, pp. 404–412.

Feng, Jun and Toyohide Watanabe (2014). Index and Query Methods in Road Networks.
Springer. isbn: 978-3-319-10789-9.

Fischler, Martin A, Jay M Tenenbaum, and Hans Christoph Wolf (1981). ‘Detection of
Roads and Linear Structures in Low-Resolution Aerial Imagery Using a Multisource
Knowledge Integration Technique.’ In: Computer graphics and image processing 15.3,
pp. 201–223.

Fisher, Matthew, Daniel Ritchie, Manolis Savva, Thomas Funkhouser, and Pat Hanrahan
(2012). ‘Example-Based Synthesis of 3d Object Arrangements.’ In: ACM Transactions
on Graphics (TOG) 31.6, p. 135.

Fornasier, M. and H. Rauhut (2010). ‘Compressive Sensing.’ In: Handbook of Mathematical
Methods in Imaging 1, pp. 187–229.

Frankhauser, Pierre (2008). ‘Fractal Geometry for Measuring and Modelling Urban Pat-
terns.’ In: The Dynamics of Complex Urban Systems. Ed. by Sergio Albeverio, Denise
Andrey, Paolo Giordano, and Alberto Vancheri. Heidelberg: Physica-Verlag HD,
pp. 213–243. isbn: 978-3-7908-1936-6.

Frey, Brendan J. and Delbert Dueck (2007). ‘Clustering by Passing Messages between
Data Points.’ In: science 315.5814, pp. 972–976.

Gal, R., O. Sorkine, N. J. Mitra, and D. Cohen-Or (2009). ‘iWIRES: An Analyze-and-Edit
Approach to Shape Manipulation.’ In: ACM Transactions on Graphics (TOG). Vol. 28,
p. 33.

Galin, E., A. Peytavie, N. Maréchal, and E. Guérin (2010). ‘Procedural Generation of
Roads.’ In: Computer Graphics Forum. Vol. 29, pp. 429–438.

246

Galin, E., A. Peytavie, E. Guérin, and B. Beneš (2011). ‘Authoring Hierarchical Road
Networks.’ In: Computer Graphics Forum. Vol. 30, pp. 2021–2030.

Garcia-Dorado, Ignacio and Daniel G. Aliaga (2013). ‘Automatic Modeling of Planar-
Hinged Buildings.’ In: Eurographics 2013-Short Papers, pp. 89–92.

Girardeau-Montaut, Daniel (2014). CloudCompare Software.
Golovinskiy, A., V. G Kim, and T. Funkhouser (2009). ‘Shape-Based Recognition of 3d

Point Clouds in Urban Environments.’ In: Computer Vision, 2009 IEEE 12th Interna-
tional Conference on, pp. 2154–2161.

Gong, Peng (2002). ‘Photo Ecometrics for Natural Resource Monitoring.’ In: Deposit and
Geoenvironmental Models for Resource Exploitation and Environmental Security. Ed. by
Andrea G. Fabbri, Gabor Gaál, and Richard B. McCammon. Nato Science Partner-
ship Subseries: 2 (closed) 80. Springer Netherlands, pp. 65–80. isbn: 978-1-4020-0990-
7 978-94-010-0303-2.

Green, Peter J. (1995). ‘Reversible Jump Markov Chain Monte Carlo Computation and
Bayesian Model Determination.’ In: Biometrika 82.4, pp. 711–732.

Grzesiak-Kopec, K. and M. Ogorzalek (2013). ‘Intelligent 3D Layout Design with Shape
Grammars.’ In: 2013 The 6th International Conference on Human System Interaction
(HSI), pp. 265–270.

Guennebaud, Gaël, Benoit Jacob, and others (2010). Eigen v3 Software.
Guillemot, Thierry, Andrès Almansa, and Tamy Boubekeur (2012). ‘Non Local Point

Set Surfaces.’ In: Proceedings of the International Conference on 3D Imaging, Moldeing,
Processing, Visualization and Transmission (3DIMPVT).

Hagberg, Aric A., Daniel A. Schult, and Pieter J. Swart (2008). ‘Exploring Network Struc-
ture, Dynamics, and Function Using NetworkX.’ In: Proceedings of the 7th Python in
Science Conference (SciPy2008). Pasadena, CA USA, pp. 11–15.

Hakala, Teemu, Juha Suomalainen, Sanna Kaasalainen, and Yuwei Chen (2012). ‘Full
Waveform Hyperspectral LiDAR for Terrestrial Laser Scanning.’ In: Optics Express
20.7, pp. 7119–7127.

Hatger, Carsten and Claus Brenner (2003). ‘Extraction of Road Geometry Parameters
from Laser Scanning and Existing Databases.’ In: International Archives of Photogram-
metry, Remote Sensing and Spatial Information Sciences 34.3/W13, pp. 225–230.

Hervieu, A., B. Soheilian, and M. Brédif (2015). ‘Road Marking Extraction Using a
Model&data Driven Rj-Mcmc.’ In: ISPRS Annals of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences 2.3, p. 47.

Hervieu, Alexandre and Bahman Soheilian (2013). ‘Semi-Automatic Road/Pavement
Modeling Using Mobile Laser Scanning.’ In: ISPRS. City Models, Roads and Traffic
Volume II-3/W3, p. 31.

Hofle, Bernhard (2007). ‘Detection and Utilization of the Information Potential of Air-
borne Laser Scanning Point Cloud and Intensity Data by Developing a Management
and Analysis System.’ PhD thesis. Institute of Photogrammetry and Remote Sens-
ing, Vienna University of Technology.

Hofmann, Sabine and Claus Brenner (2009). ‘Quality Assessment of Automatically Gen-
erated Feature Maps for Future Driver Assistance Systems.’ In: Proceedings of the
17th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems. GIS ’09. New York, NY, USA: ACM, pp. 500–503. isbn: 978-1-60558-649-6.

247

Hornung, Armin, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Bur-
gard (2013). ‘OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on
Octrees.’ In: Autonomous Robots 34.3, pp. 189–206.

Huang, Jing and Suya You (2016). ‘Point Cloud Labeling Using 3d Convolutional Neural
Network.’ In: Proc. of the International Conf. on Pattern Recognition (ICPR). Vol. 2.

Huang, Yan, Jingliang Peng, C.-C. Jay Kuo, and M. Gopi (2006). ‘Octree-Based Progres-
sive Geometry Coding of Point Clouds.’ In: Proceedings of the 3rd Eurographics/IEEE
VGTC Conference on Point-Based Graphics. Eurographics Association, pp. 103–110.

Hug, C., P. Krzystek, and W. Fuchs (2004). ‘Advanced Lidar Data Processing with Las-
Tools.’ In: INTERNATIONAL ARCHIVES OF PHOTOGRAMMETRY. Vol. 35, pp. 832–
837.

Hyvärinen, Aapo and Erkki Oja (2000). ‘Independent Component Analysis: Algorithms
and Applications.’ In: Neural networks 13.4, pp. 411–430.

IQmulus (2014). IQmulus & TerraMobilita Contest. Paris.
Ijiri, T., R. Mech, T. Igarashi, and G. Miller (2008). ‘An Example-Based Procedural System

for Element Arrangement.’ In: Computer Graphics Forum. Vol. 27, pp. 429–436.
Iovan, Corina, Paul-Henry Cournede, Thomas Guyard, Benoit Bayol, Didier Boldo, and

Matthieu Cord (2013). ‘Model-Based Analysis–Synthesis for Realistic Tree Recon-
struction and Growth Simulation.’ In: IEEE Transactions on Geoscience and Remote
Sensing, pp. 1–1.

Isenburg, Martin (2013). ‘LASzip.’ In: Photogrammetric Engineering & Remote Sensing 79.2,
pp. 209–217.

Jain, Arjun, Thorsten Thormählen, Tobias Ritschel, and Hans-Peter Seidel (2012). ‘Mate-
rial Memex: Automatic Material Suggestions for 3D Objects.’ In: ACM Trans. Graph.
31.6, 143:1–143:8.

Jang, J., P. Wonka, W. Ribarsky, and C. D. Shaw (2006). ‘Punctuated Simplification of
Man-Made Objects.’ In: The Visual Computer 22.2, pp. 136–145.

Jin, Hang, Yanming Feng, and Zhengrong Li (2009). ‘Extraction of Road Lanes from
High-Resolution Stereo Aerial Imagery Based on Maximum Likelihood Segmenta-
tion and Texture Enhancement.’ In: Digital Image Computing: Techniques and Applica-
tions, 2009. Melbourne: IEEE, pp. 271–276. isbn: 978-1-4244-5297-2.

Kalogerakis, E., D. Nowrouzezahrai, P. Simari, and K. Singh (2009). ‘Extracting Lines of
Curvature from Noisy Point Clouds.’ In: Computer-Aided Design 41.4, pp. 282–292.

Kelly, G. and H. McCabe (2006). ‘A Survey of Procedural Techniques for City Genera-
tion.’ In: ITB Journal 14, pp. 87–130.

Kiruthika, J. and S. Khaddaj (2014). ‘Performance Issues and Query Optimization in Big
Multidimensional Data.’ In: 2014 13th International Symposium on Distributed Comput-
ing and Applications to Business, Engineering and Science (DCABES), pp. 24–28.

Klavdianos, P., Q. Zhang, and E. Izquierdo (2013). ‘A Concise Survey for 3D Recon-
struction of Building Fa\ccades.’ In: Image Analysis for Multimedia Interactive Services
(WIAMIS), 2013 14th International Workshop on, pp. 1–4.

Kolbe, Thomas H., Gerhard Gröger, and Lutz Plümer (2005). ‘CityGML – Interoperable
Access to 3D City Models.’ In: Proceedings of the First International Symposium on
Geo-Information for Disaster Management. Springer Verlag, pp. 21–23.

Krecklau, Lars and Leif Kobbelt (2011). ‘Procedural Modeling of Interconnected Struc-
tures.’ In: Computer Graphics Forum. Vol. 30, pp. 335–344.

248

Krecklau, Lars, Christopher Manthei, and Leif Kobbelt (2012). ‘Procedural Interpolation
of Historical City Maps.’ In: EUROGRAPHICS 31.2.

Krecklau, Lars, Darko Pavic, and Leif Kobbelt (2010). ‘Generalized Use of Non-Terminal
Symbols for Procedural Modeling.’ In: Comput. Graph. Forum 29.8, pp. 2291–2303.

Kuntzsch, Colin, Monika Sester, and Claus Brenner (2015). ‘Generative Models for Road
Network Reconstruction.’ In: International Journal of Geographical Information Science,
pp. 1–28.

Labatut, P., J. P. Pons, and R. Keriven (2009). ‘Hierarchical Shape-Based Surface Recon-
struction for Dense Multi-View Stereo.’ In: Computer Vision Workshops (ICCV Work-
shops), 2009 IEEE 12th International Conference on, pp. 1598–1605.

Lafarge, F., R. Keriven, M. Brédif, and V.H. Hiep (2010). ‘Hybrid Multi-View Recon-
struction by Jump-Diffusion.’ In: Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pp. 350–357.

— (2013). ‘A Hybrid Multiview Stereo Algorithm for Modeling Urban Scenes.’ In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 35.1, pp. 5–17.

Lasram, Anass, Sylvain Lefebvre, and Cyrille Damez (2012). ‘Scented Sliders for Proce-
dural Textures.’ In: Computer Graphics Forum (Eurographics conf. proc.)

Lau, Manfred, Akira Ohgawara, Jun Mitani, and Takeo Igarashi (2011). ‘Converting 3D
Furniture Models to Fabricatable Parts and Connectors.’ In: ACM Press, p. 1. isbn:
978-1-4503-0943-1.

Leclercq, Ludovic, Jorge Andres Laval, and Estelle Chevallier (2007). ‘The Lagrangian
Coordinates and What It Means for First Order Traffic Flow Models.’ In: isbn: 978-
0-08-045375-0.

Lewis, P., C. P. Mc Elhinney, and T. McCarthy (2012). ‘LiDAR Data Management Pipeline;
from Spatial Database Population to Web-Application Visualization.’ In: Proceedings
of the 3rd International Conference on Computing for Geospatial Research and Applications,
p. 16.

Li, Y., F. Bao, E. Zhang, Y. Kobayashi, and P. Wonka (2011). ‘Geometry Synthesis on Sur-
faces Using Field-Guided Shape Grammars.’ In: Visualization and Computer Graphics,
IEEE Transactions on 17.2, pp. 231–243.

Li, Yangyan, Xiaochen Fan, Niloy J. Mitra, Daniel Chamovitz, Daniel Cohen-Or, and
Baoquan Chen (2013). ‘Analyzing Growing Plants from 4D Point Cloud Data.’ In:
ACM Trans. Graph. 32.6, 157:1–157:10.

Lin, Hui, Jizhou Gao, Yu Zhou, Guiliang Lu, Mao Ye, Chenxi Zhang, Ligang Liu, and
Ruigang Yang (2013). ‘Semantic Decomposition and Reconstruction of Residential
Scenes from LiDAR Data.’ In: ACM Transactions on Graphics,(Proc. of SIGGRAPH
2013) 32.4.

Lintermann, Bernd and Oliver Deussen (1999). ‘Interactive Modeling of Plants.’ In: Com-
puter Graphics and Applications, IEEE 19.1, pp. 56–65.

Lipp, M., D. Scherzer, P. Wonka, and M. Wimmer (2011). ‘Interactive Modeling of City
Layouts Using Layers of Procedural Content.’ In: Computer Graphics Forum. Vol. 30,
pp. 345–354.

Lippow, M. A., L. P. Kaelbling, and T. Lozano-Perez (2008). ‘Learning Grammatical
Models for Object Recognition.’ In: Logic and Probability for Scene Interpretation, Ser.
Dagstuhl Seminar Proceedings.

249

Livny, Yotam, Feilong Yan, Matt Olson, Baoquan Chen, Hao Zhang, and Jihad El-Sana
(2010). ‘Automatic Reconstruction of Tree Skeletal Structures from Point Clouds.’ In:
ACM Transactions on Graphics (TOG). Vol. 29. ACM, p. 151.

Livny, Yotam, Soeren Pirk, Zhanglin Cheng, Feilong Yan, Oliver Deussen, Daniel Cohen-
Or, and Baoquan Chen (2011). ‘Texture-Lobes for Tree Modelling.’ In: ACM SIG-
GRAPH 2011 Papers. SIGGRAPH ’11. New York, NY, USA: ACM, 53:1–53:10. isbn:
978-1-4503-0943-1.

Lobo, María-Jesús, Emmanuel Pietriga, and Caroline Appert (2015). ‘An Evaluation of
Interactive Map Comparison Techniques.’ In: CHI ’15 Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems. ACM Press, pp. 3573–3582.
isbn: 978-1-4503-3145-6.

Mackaness, William, Dirk Burghardt, and Cécile Duchêne (2014). ‘Map Generalisation:
Fundamental to the Modelling and Understanding of Geographic Space.’ In: Ab-
stracting Geographic Information in a Data Rich World. Ed. by Dirk Burghardt, Cécile
Duchêne, and William Mackaness. Lecture Notes in Geoinformation and Cartogra-
phy. Springer International Publishing, pp. 1–15. isbn: 978-3-319-00202-6 978-3-319-
00203-3.

Mallet, Clément (2010). ‘Analyse de données lidar à Retour d’Onde Complète pour la
classification en milieu urbain.’ PhD thesis. Telecom Paristech IGN Matis.

Martinez-Rubi, Oscar, Martin L. Kersten, Romulo Goncalves, and Milena Ivanova (2014).
‘A Column-Store Meets the Point Clouds.’ In: FOSS4G-Europe Academic Track.

Martinez-Rubi, Oscar, Peter van Oosterom, Romulo Gonçalves, Theo Tijssen, Milena
Ivanova, Martin L. Kersten, and Foteini Alvanaki (2015). ‘Benchmarking and Im-
proving Point Cloud Data Management in MonetDB.’ In: SIGSPATIAL Special 6.2,
pp. 11–18.

Martinovic, Andelo and Luc Van Gool (2013). ‘Bayesian Grammar Learning for Inverse
Procedural Modeling.’ In: CVPR, 2013. IEEE, pp. 201–208. isbn: 978-0-7695-4989-7.

Mastoropoulou, Georgia, Kurt Debattista, Alan Chalmers, and Tom Troscianko (2005).
‘The Influence of Sound Effects on the Perceived Smoothness of Rendered Anima-
tions.’ In: Proceedings of the 2nd Symposium on Applied Perception in Graphics and Visu-
alization. ACM, pp. 9–15.

McCrae, J. and K. Singh (2009a). ‘Sketch-Based Path Design.’ In: Proceedings of the Graph-
ics Interface 2009 Conference. Kelowna, British Columbia, Canada: Canadian Informa-
tion Processing Society, pp. 95 –102.

— (2009b). ‘Sketching Piecewise Clothoid Curves.’ In: Computers & Graphics 33.4, pp. 452–
461.

McKay, M. D., R. J. Beckman, and W. J. Conover (1979). ‘A Comparison of Three Meth-
ods for Selecting Values of Input Variables in the Analysis of Output from a Com-
puter Code.’ In: Technometrics 21.2, p. 239.

McKeown, David M. and Jerry L. Denlinger (1988). ‘Cooperative Methods for Road
Tracking in Aerial Imagery.’ In: Computer Vision and Pattern Recognition, 1988. Pro-
ceedings CVPR’88., Computer Society Conference on. IEEE, pp. 662–672.

Meagher, Donald (1982). ‘Geometric Modeling Using Octree Encoding.’ In: Computer
graphics and image processing 19.2, pp. 129–147.

Meng, Liqiu and Andrea Forberg (2007). ‘3D Building Generalisation.’ In: Challenges in
the Portrayal of Geographic Information. Elsevier Science, Amsterdam, pp. 211–232.

250

Merrell, P. and D. Manocha (2011). ‘Model Synthesis: A General Procedural Modeling
Algorithm.’ In: Visualization and Computer Graphics, IEEE Transactions on 99, pp. 1–1.

Mitra, N. J, L. J Guibas, and M. Pauly (2006). ‘Partial and Approximate Symmetry De-
tection for 3D Geometry.’ In: ACM Transactions on Graphics (TOG) 25.3, pp. 560–568.

Mitra, Niloy J., Mark Pauly, Michael Wand, and Duygu Ceylan (2012). ‘Symmetry in
3D Geometry: Extraction and Applications.’ In: EUROGRAPHICS State-of-the-Art
Report.

Mongus, domen, bojan Rupnik, and Borut Zalik (2011). ‘Comparison of Algorithms for
Lossless LiDAR Data Compression.’ In: Geospatial Crossroads GI_Forum ’11. [S.l.]:
Wichmann, H. isbn: ISBN 978-3-87907-509-6.

Montoya-Zegarra, Javier A., Jan D. Wegner, L ’ubor Ladicky, and Konrad Schindler
(2014). ‘Mind the Gap: Modeling Local and Global Context in (Road) Networks.’ In:
German Conference on Pattern Recognition (GCPR). Springer, pp. 212–223.

Moussafir, Jacques, Christophe Olry, Maxime Nibart, Armand Albergel, Patrick Ar-
mand, Christophe Duchenne, Frédéric Mahe, Ludovic Thobois, and O. Oldrini (2013).
‘Aircity, a Very High-Resolution 3D Atmospheric Dispersion Modeling System for
Paris.’ In: 15th Int. Conf. on Harmonisation within Atmospheric Dispersion Modelling for
Regulatory Purposes.

Mueller, Andre, Michael Himmelsbach, Thorsten Luettel, Felix V. Hundelshausen, and
Hans-Joachim Wuensche (2011). ‘GIS-Based Topological Robot Localization through
LIDAR Crossroad Detection.’ In: Intelligent Transportation Systems (ITSC), 2011 14th
International IEEE Conference on. IEEE, pp. 2001–2008.

Müller, P., T. Vereenooghe, P. Wonka, I. Paap, and L. Van Gool (2006). ‘Procedural 3D
Reconstruction of Puuc Buildings in Xkipche.’ In: Eurographics Symposium on Virtual
Reality, Archaeology and Cultural Heritage (VAST), pp. 139–146.

Musialski, Przemyslaw and Michael Wimmer (2013). ‘Inverse-Procedural Methods for
Urban Models.’ In: Proc. of 1st Eurographics Workshop on Urban Data Modelling and
Visualisation. Ed. by V. Tourre and G. Besuievsky. Girona, Spain: Eurographics Asso-
ciation, pp. 31–32.

Musialski, Przemyslaw, Michael Wimmer, and Peter Wonka (2012). ‘Interactive Coherence-
Based Façade Modeling.’ In: Computer Graphics Forum (Proceedings of EUROGRAPH-
ICS 2012) 31.2, to appear.

Musialski, Przemyslaw, Peter Wonka, Daniel G. Aliaga, Michael Wimmer, Luc van Gool,
and Werner Purgathofer (2012). ‘A Survey of Urban Reconstruction.’ In: EURO-
GRAPHICS 2012 State of the Art Reports. EG STARs. Eurographics Association, pp. 1–
28.

Neteler, M., M.H. Bowman, M. Landa, and M. Metz (2012). ‘GRASS GIS: A Multi-
Purpose Open Source GIS.’ In: Environmental Modelling & Software 31, pp. 124–130.

Networkx, dev. team (2014). Networkx.
Nguyen, H.h., B. Desbenoit, and M. Daniel (2014). ‘Realistic Road Path Reconstruction

from GIS Data.’ In: Computer Graphics Forum 33.7, pp. 259–268.
Niggeler, Laurent (2009). Genève en 3D: une nouvelle dimension pour gérer son territoire

(Genf erschliesst mit 3D eine neue Dimension für die Verwaltung seines Hoheitsgebiets),(3D
Geneva : a new dimension to manage territory). http://www.cadastre.ch/internet/
cadastre/fr/home/docu/publication/F006.html.

OECD (2010). Tackling Inequalities in Brazil, China, India and South Africa. Paris: Organisa-
tion for Economic Co-operation and Development. isbn: 978-92-64-08835-1.

251

http://www.cadastre.ch/internet/cadastre/fr/home/docu/publication/F006.html
http://www.cadastre.ch/internet/cadastre/fr/home/docu/publication/F006.html

Oscar Martinez-Rubi, Stefan Verhoeven, Maarten Van Meersbergen, Markus Schütz, Pe-
ter Van Oosterom, Romulo Goncalves, and Theo Tijssen (2015). ‘Taming the Beast:
Free and Open-Source Massive Point Cloud Web Visualization.’ In:

Otepka, J., G. Mandlburger, and W. Karel (2012). ‘The OPALS Data Manager—Efficient
Data Management for Processing Large Airborne Laser Scanning Projects.’ In: Pro-
ceedings of the ISPRS Annals of the Photogrammetry, Melbourne, Australia 25, pp. 153–
159.

Otepka, Johannes, Sajid Ghuffar, Christoph Waldhauser, Ronald Hochreiter, and Nor-
bert Pfeifer (2013). ‘Georeferenced Point Clouds: A Survey of Features and Point
Cloud Management.’ In: ISPRS International Journal of Geo-Information 2.4, pp. 1038–
1065.

PGRouting, dev. team (2015-). PgRouting.
Papadakis, P., I. Pratikakis, S. Perantonis, and T. Theoharis (2007). ‘Efficient 3D Shape

Matching and Retrieval Using a Concrete Radialized Spherical Projection Represen-
tation.’ In: Pattern Recognition 40.9, pp. 2437–2452.

Paparoditis, Nicolas, Jean-Pierre Papelard, Bertrand Cannelle, Alexandre Devaux, Bah-
man Soheilian, Nicolas David, and Erwann Houzay (2012). ‘Stereopolis II: A Multi-
Purpose and Multi-Sensor 3D Mobile Mapping System for Street Visualisation and
3D Metrology.’ In: Revue française de photogrammétrie et de télédétection 200.1, pp. 69–
79.

Parish, Y. I. H. and P. Müller (2001). ‘Procedural Modeling of Cities.’ In: Proceedings of the
28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 301–308.

Park, Seula, Yoonsik Bang, and Kiyun Yu (2015). ‘Techniques for Updating Pedestrian
Network Data Including Facilities and Obstructions Information for Transportation
of Vulnerable People.’ In: Sensors 15.9, pp. 24466–24486.

Pedregosa, F. et al. (2011). ‘Scikit-Learn: Machine Learning in Python.’ In: Journal of
Machine Learning Research 12, pp. 2825–2830.

Pindat, Cyprien, Emmanuel Pietriga, Olivier Chapuis, and Claude Puech (2012). ‘Jel-
lyLens: Content-Aware Adaptive Lenses.’ In: Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology. ACM, pp. 261–270.

Pirk, S., O. Stava, J. Kratt, M. A. M. Said, B. Neubert, R. M\vech, B. Benes, and O.
Deussen (2012). ‘Plastic Trees: Interactive Self-Adapting Botanical Tree Models.’ In:
ACM Transactions on Graphics (TOG) 31.4, p. 50.

PostGIS Topology, dev. team (2014-). PostGIS Topology.
PostGIS, dev. team (2014-). PostGIS.
PostgreSQL, dev. team (2014-). PostgreSQL.
Poullis, Charalambos and Suya You (2010). ‘Delineation and Geometric Modeling of

Road Networks.’ In: ISPRS Journal of Photogrammetry and Remote Sensing 65.2, pp. 165–
181.

Preiner, Reinhold, Oliver Mattausch, Murat Arikan, Renato Pajarola, and Michael Wim-
mer (2014). ‘Continuous Projection for Fast L-1 Reconstruction.’ In: ACM Transac-
tions on Graphics (TOG) 33.4, p. 47.

Preuksakarn, Chakkrit, Frédéric Boudon, Pascal Ferraro, Jean-Baptiste Durand, Ekko
Nikinmaa, and Christophe Godin (2010). ‘Reconstructing Plant Architecture from
3D Laser Scanner Data.’ In: 6th International Workshop on Functional-Structural Plant
Models. Davis, United States, pp. 12–17.

252

Quackenbush, Lindi J, Iungho Im, and Yue Zuo (2013). ‘Road Extraction: A Review of
LiDAR-Focused Studies.’ In: Remote Sensing of Natural Resources, pp. 155–169.

Rainville, De, Christian Gagné, Olivier Teytaud, Denis Laurendeau, and others (2012).
‘Evolutionary Optimization of Low-Discrepancy Sequences.’ In: ACM Transactions
on Modeling and Computer Simulation (TOMACS) 22.2, p. 9.

Ramilo, Runddy (2005). The Visual Perception and Human Cognition of Urban Environments
Using Semantic Scales. Tech. rep.

Ravanbakhsh, Mehdi, Christian Heipke, and Kian Pakzad (2008). ‘Road Junction Extrac-
tion from High-Resolution Aerial Imagery.’ In: The Photogrammetric Record 23.124,
pp. 405–423.

Richter, Rico and Jürgen Döllner (2014). ‘Concepts and Techniques for Integration, Anal-
ysis and Visualization of Massive 3D Point Clouds.’ In: Computers, Environment and
Urban Systems 45, pp. 114–124.

Rieg, Lorenzo, Volker Wichmann, Martin Rutzinger, Rudolf Sailer, Thomas Geist, and
Johann Stötter (2014). ‘Data Infrastructure for Multitemporal Airborne LiDAR Point
Cloud Analysis – Examples from Physical Geography in High Mountain Environ-
ments.’ In: Computers, Environment and Urban Systems 45, pp. 137–146.

Roeth, Oliver, Daniel Zaum, and Claus Brenner (2016). ‘Road Network Reconstruction
Using Reversible Jump MCMC Simulated Annealing Based on Vehicle Trajectories
from Fleet Measurements.’ In: IEEE, pp. 194–201. isbn: 978-1-5090-1821-5.

Runions, Adam, Brendan Lane, and Przemyslaw Prusinkiewicz (2007). ‘Modeling Trees
with a Space Colonization Algorithm.’ In: Proceedings of the Third Eurographics Con-
ference on Natural Phenomena. NPH’07. Prague, Czech Republic: Eurographics Asso-
ciation, pp. 63–70. isbn: 978-3-905673-49-4.

Rusinkiewicz, Szymon and Marc Levoy (2000). ‘QSplat: A Multiresolution Point Ren-
dering System for Large Meshes.’ In: Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publish-
ing Co., pp. 343–352.

Rusu, Radu Bogdan and Steve Cousins (2011). ‘3d Is Here: Point Cloud Library (Pcl).’ In:
Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, pp. 1–4.

SETRA (2006). Comprendre les principaux paramètres de conception géométrique des routes.
Tech. rep., p. 30.

Sabo, Nouri, A Beaulieu, D Bélanger, Y Belzile, and B Piché (2014). The GeoHashTree: A
Multi-Resolution Data Structure for the Management of Point Clouds. Technical notes 4.
canada.

Sahr, Kevin (2011). ‘Hexagonal Discrete Global Grid Systems for Geospatial Comput-
ing.’ In: Archives of Photogrammetry, Cartography and Remote Sensing 22, pp. 363–376.

Schnabel, Ruwen and Reinhard Klein (2006). ‘Octree-Based Point-Cloud Compression.’
In: SPBG, pp. 111–120.

Schütz, M. and M. Wimmer (2015). ‘High-quality point-based rendering using fast
single-pass interpolation.’ In: 2015 Digital Heritage. 2015 Digital Heritage. Vol. 1,
pp. 369–372.

Schwartges, Nadine, Dennis Allerkamp, Jan-Henrik Haunert, and Alexander Wolff (2013).
‘Optimizing Active Ranges for Point Selection in Dynamic Maps.’ In: Proceedings of
the 16th ICA Generalisation Workshop (ICA’13). Dresden.

SciPy, dev. team (2014-). SciPy: Open Source Scientific Tools for Python.
Scikit, dev. team (2014-). ‘Scikit-Image: Image Processing in Python.’ In: PeerJ 2, e453.

253

Serna, Andrés and Beatriz Marcotegui (2013). ‘Urban Accessibility Diagnosis from Mo-
bile Laser Scanning Data.’ In: ISPRS Journal of Photogrammetry and Remote Sensing
84, pp. 23–32.

Serna, Andres and Beatriz Marcotegui (2014). ‘Detection, Segmentation and Classifica-
tion of 3D Urban Objects Using Mathematical Morphology and Supervised Learn-
ing.’ In: ISPRS Journal of Photogrammetry and Remote Sensing, p. 34.

Sester, Monika (2001). Presentation : Kohonen Feature Nets for Typification. Beijing.
Seto, Karen C., Michail Fragkias, Burak Güneralp, and Michael K. Reilly (2011). ‘A Meta-

Analysis of Global Urban Land Expansion.’ In: PLoS ONE 6.8, e23777.
Shao, T., W. Xu, K. Yin, J. Wang, K. Zhou, and B. Guo (2011). ‘Discriminative Sketch-

Based 3D Model Retrieval via Robust Shape Matching.’ In: Computer Graphics Forum.
Vol. 30.

Shao, Tianjia, Weiwei Xu, Kun Zhou, Jingdong Wang, Dongping Li, and Baining Guo
(2012). ‘An Interactive Approach to Semantic Modeling of Indoor Scenes with an
RGBD Camera.’ In: ACM Trans. Graph. 31.6, 136:1–136:11.

Shapira, L., S. Shalom, A. Shamir, D. Cohen-Or, and H. Zhang (2009). ‘Contextual Part
Analogies in 3D Objects.’ In: International Journal of Computer Vision 89.2-3, pp. 309–
326.

Shapovalov, Roman, Alexander Velizhev, and Olga Barinova (2010). ‘Non-Associative
Markov Networks for 3D Point Cloud Classification.’ In: Photogrammetric Computer
Vision and Image Analysis (PCV 2010). Vol. 38, pp. 103–108.

Shen, Chao-Hui, Hongbo Fu, Kang Chen, and Shi-Min Hu (2012). ‘Structure Recovery
by Part Assembly.’ In: ACM Trans. Graph. 31.6, 180:1–180:11.

Shlens, Jonathon (2014). ‘A Tutorial on Principal Component Analysis.’ In: arXiv preprint
arXiv:1404.1100.

Soheilian, B., O. Tournaire, N. Paparoditis, B. Vallet, and J.-P. Papelard (2013). ‘Gen-
eration of an Integrated 3D City Model with Visual Landmarks for Autonomous
Navigation in Dense Urban Areas.’ In: 2013 IEEE Intelligent Vehicles Symposium (IV),
pp. 304–309.

Soheilian, Bahman and Lionel Atty (2016). A technical report on detailed road modelisation.
Soheilian, Bahman, Nicolas Paparoditis, and Didier Boldo (2010). ‘3D Road Marking

Reconstruction from Street-Level Calibrated Stereo Pairs.’ In: ISPRS Journal of Pho-
togrammetry and Remote Sensing 65.4, pp. 347–359.

Soheilian, Bahman, Nicolas Paparoditis, and Bruno Vallet (2013). ‘Detection and 3D
Reconstruction of Traffic Signs from Multiple View Color Images.’ In: ISPRS Journal
of Photogrammetry and Remote Sensing 77, pp. 1–20.

Steiniger, Stefan and Robert Weibel (2007). ‘Relations among Map Objects in Carto-
graphic Generalization.’ In: Cartography and Geographic Information Science 34.3, pp. 175–
197.

Stuckler, J., Nenad Biresev, and Sven Behnke (2012). ‘Semantic Mapping Using Object-
Class Segmentation of RGB-D Images.’ In: Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on. IEEE, pp. 3005–3010.

Talton, Jerry O., Yu Lou, Steve Lesser, Jared Duke, Radomír Měch, and Vladlen Koltun
(2011). ‘Metropolis Procedural Modeling.’ In: ACM Trans. Graph. 30.2, 11:1–11:14.

The CGAL Project (2015). CGAL User and Reference Manual. 4.6. CGAL Editorial Board.

254

Timofte, Radu and Luc Van Gool (2011). ‘Multi-View Manhole Detection, Recognition,
and 3d Localisation.’ In: Computer Vision Workshops (ICCV Workshops), 2011 IEEE
International Conference on. IEEE, pp. 188–195.

Touya, Guillaume (2010). ‘A Road Network Selection Process Based on Data Enrichment
and Structure Detection.’ In: Transactions in GIS 14.5, pp. 595–614.

Touya, Guillaume, Bénédicte Bucher, Gilles Falquet, Kusay Jaara, and Stephan Steiniger
(2014). ‘Modelling Geographic Relationships in Automated Environments.’ In: Ab-
stracting Geographic Information in a Data Rich World, Methodologies and Applications
of Map Generalisation. Springer. Lecture Notes in Geoinformation and Cartography.
Dirk Burghardt, · Cécile Duchêne, · William Mackaness.

Tupin, Florence, Henri Maitre, J.-F. Mangin, J.-M. Nicolas, and Eugene Pechersky (1998).
‘Detection of Linear Features in SAR Images: Application to Road Network Extrac-
tion.’ In: IEEE transactions on geoscience and remote sensing 36.2, pp. 434–453.

Umetani, N., T. Igarashi, and N. J. Mitra (2012). ‘Guided Exploration of Physically Valid
Shapes for Furniture Design.’ In: ACM Transactions on Graphics 31.4.

Ummenhofer, Benjamin and Thomas Brox (2015). ‘Global, Dense Multiscale Reconstruc-
tion for a Billion Points.’ In: Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 1341–1349.

United Nations (2012). World Urbanization Prospects: The 2011 Revision. Tech. rep. United
Nations.

Van Gogh, Vincent (1888). Les Tournesols.
Vanegas, Maria Carolina, Isabelle Bloch, and Jordi Inglada (2013). ‘Alignment and Par-

allelism for the Description of High-Resolution Remote Sensing Images.’ In: IEEE
Transactions on Geoscience and Remote Sensing 51.6, pp. 3542–3557.

Wallace, Andrew, Caroline Nichol, and Iain Woodhouse (2012). ‘Recovery of Forest
Canopy Parameters by Inversion of Multispectral LiDAR Data.’ In: Remote Sensing
4.12, pp. 509–531.

Wang, Fusheng, Ablimit Aji, and Hoang Vo (2014). ‘High Performance Spatial Queries
for Spatial Big Data: From Medical Imaging to GIS.’ In: The SIGSPATIAL Special 6.3,
pp. 11–18.

Wang, Guangxing and Qihao Weng (2013). Remote Sensing of Natural Resources. CRC
Press. isbn: 978-1-4665-5692-8.

Wang, Jie, Gary Lawson, and Yuzhong Shen (2014). ‘Automatic High-Fidelity 3D Road
Network Modeling Based on 2D GIS Data.’ In: Advances in Engineering Software 76,
pp. 86–98.

Watt, Michael S, Thomas Adams, Hamish Marshall, David Pont, John Lee, David Craw-
ley, and Pete Watt (2013). ‘Modelling Variation in Pinus Radiata Stem Volume and
Outerwood Stress-Wave Velocity from LiDAR Metrics.’ In: New Zealand Journal of
Forestry Science 43.1, p. 1.

Wedel, A., H. Badino, C. Rabe, H. Loose, U. Franke, and D. Cremers (2009). ‘B-Spline
Modeling of Road Surfaces With an Application to Free-Space Estimation.’ In: IEEE
Transactions on Intelligent Transportation Systems 10.4, pp. 572–583.

Wei, Li-Yi, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk (2009). ‘State of the Art in
Example-Based Texture Synthesis.’ In: Eurographics 2009, State of the Art Report, EG-
STAR. Eurographics Association.

255

Weinmann, M., S. Urban, S. Hinz, B. Jutzi, and C. Mallet (2015). ‘Distinctive 2D and 3D
Features for Automated Large-Scale Scene Analysis in Urban Areas.’ In: Computers
& Graphics 49, pp. 47–57.

Weinmann, Martin (2016). Reconstruction and Analysis of 3D Scenes. Cham: Springer In-
ternational Publishing. isbn: 978-3-319-29244-1 978-3-319-29246-5.

Wilkie, David, Jason Sewall, Ming C. Lin, and Ming C. Lin (2012). ‘Transforming GIS
Data into Functional Road Models for Large-Scale Traffic Simulation.’ In: IEEE Trans-
actions on Visualization and Computer Graphics 18.6, pp. 890–901.

Wolfermann, Axel, Wael KM Alhajyaseen, and Hideki Nakamura (2011). ‘Modeling
Speed Profiles of Turning Vehicles at Signalized Intersections.’ In: 3rd International
Conference on Road Safety and Simulation RSS2011, Transportation Research Board TRB,
Indianapolis.

Wu, Jianguo (2011). ‘Improving the Writing of Research Papers: IMRAD and beyond.’
In: Landscape Ecology 26.10, pp. 1345 –1349.

Xfrog (2014). Xfrog - 3D Trees and 3D Plants for CG Artists. http://xfrog.com/.
Xu, K., H. Zhang, D. Cohen-Or, and B. Chen (2012). ‘Fit and Diverse: Set Evolution for

Inspiring 3D Shape Galleries.’ In: ACM Transactions on Graphics (TOG) 31.4, p. 57.
Yang, Bisheng, Lina Fang, and Jonathan Li (2013). ‘Semi-Automated Extraction and

Delineation of 3D Roads of Street Scene from Mobile Laser Scanning Point Clouds.’
In: ISPRS Journal of Photogrammetry and Remote Sensing 79, pp. 80–93.

Yang, Yong-Liang, Jun Wang, Etienne Vouga, and Peter Wonka (2013). ‘Urban Pattern:
Layout Design by Hierarchical Domain Splitting.’ In: ACM Trans. Graph. 32.6, 181:1–
181:12.

Yeh, Anthony G.O., Teng Zhong, and Yang Yue (2015). ‘Hierarchical Polygonization for
Generating and Updating Lane-Based Road Network Information for Navigation
from Road Markings.’ In: International Journal of Geographical Information Science 29.9,
pp. 1509–1533.

Yeh, Yi-Ting, Lingfeng Yang, Matthew Watson, Noah D. Goodman, and Pat Hanrahan
(2012). ‘Synthesizing Open Worlds with Constraints Using Locally Annealed Re-
versible Jump MCMC.’ In: ACM Trans. Graph. 31.4, 56:1–56:11.

Yirci, Murat, Mathieu Brédif, Julien Perret, and Nicolas Paparoditis (2013). ‘2D Arrangement-
Based Hierarchical Spatial Partitioning: An Application to Pedestrian Network Gen-
eration.’ In: Proceedings of the Sixth ACM SIGSPATIAL International Workshop on Com-
putational Transportation Science. ACM, p. 31.

Youn, Choonhan, Viswanath Nandigam, Minh Phan, David Tarboton, Nancy Wilkins-
Diehr, Chaitan Baru, Christopher Crosby, Anand Padmanabhan, and Shaowen Wang
(2014). ‘Leveraging XSEDE HPC Resources to Address Computational Challenges
with High-Resolution Topography Data.’ In: Proceedings of the 2014 Annual Confer-
ence on Extreme Science and Engineering Discovery Environment. XSEDE ’14. New York,
NY, USA: ACM, 59:1–59:2. isbn: 978-1-4503-2893-7.

Yu, Lap-Fai, Sai-Kit Yeung, Chi-Keung Tang, Demetri Terzopoulos, Tony F. Chan, and
Stanley J. Osher (2011a). ‘Make It Home : Automatic Optimization of Furniture
Arrangement.’ In: ACM Press, p. 1. isbn: 978-1-4503-0943-1.

Yu, Si-Jie, Sreenivas R. Sukumar, Andreas F. Koschan, David L. Page, and Mongi A.
Abidi (2007). ‘3D Reconstruction of Road Surfaces Using an Integrated Multi-Sensory
Approach.’ In: Optics and Lasers in Engineering 45.7, pp. 808–818.

256

http://xfrog.com/

Yu, Z., C. Xu, J. Liu, O. C Au, and X. Tang (2011b). ‘Automatic Object Segmentation from
Large Scale 3D Urban Point Clouds through Manifold Embedded Mode Seeking.’
In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 1297–1300.

Zhang, Chenxi, Liang Wang, and Ruigang Yang (2010). ‘Semantic Segmentation of Ur-
ban Scenes Using Dense Depth Maps.’ In: Computer Vision–ECCV 2010. Springer,
pp. 708–721.

Zhang, Geng, Nanning Zheng, Chao Cui, Yuzhen Yan, and Zejian Yuan (2009). ‘An Ef-
ficient Road Detection Method in Noisy Urban Environment.’ In: Intelligent Vehicles
Symposium, 2009 IEEE. IEEE, pp. 556–561.

Zhang, Lijuan, Frank Thiemann, and Monika Sester (2010). ‘Integration of GPS Traces
with Road Map.’ In: Proceedings of the Second International Workshop on Computational
Transportation Science. ACM, pp. 17–22.

Zhang, Wende (2010). ‘LIDAR-Based Road and Road-Edge Detection.’ In: Intelligent
Vehicles Symposium (IV), 2010 IEEE. IEEE, pp. 845–848.

Ziems, M., M. Gerke, and C. Heipke (2007). ‘Automatic Road Extraction from Remote
Sensing Imagery Incorporating Prior Information and Colour Segmentation.’ In:
IntArchPhRS (36), PIA 7, pp. 141–147.

Zinoune, Clément, Philippe Bonnifait, and Javier Ibanez-Guzman (2012). ‘Detection of
Missing Roundabouts in Maps for Driving Assistance Systems.’ In: Intelligent Vehi-
cles Symposium (IV), 2012 IEEE. IEEE, pp. 123–128.

pgPointCloud, Ramsey (2014-). pgPointCloud.
van Oosterom, P., O. Martinez-Rubi, M. Ivanova, M. Horhammer, D. Geringer, S. Ravada,

T. Tijssen, M. Kodde, and R. Gonçalves (2015). ‘Massive Point Cloud Data Manage-
ment: Design, Implementation and Execution of a Point Cloud Benchmark.’ In: Com-
puters & Graphics 49.Special Section on Processing Large Geospatial Data, pp. 92–
125.

257

D E C L A R AT I O N

This work was supported in part by an ANRT grant (20130042).

Paris, Avril 2016

Rémi Cura

colophon

This document was typeset using the typographical look-and-feel classicthesis de-
veloped by André Miede. The style was inspired by Robert Bringhurst’s seminal book
on typography “The Elements of Typographic Style”. classicthesis is available for both
LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Final Version as of March 28, 2017 (classicthesis version 1.10).

https://bitbucket.org/amiede/classicthesis/

G R A P H I C A L TA B L E O F F I G U R E

résumé long

StreetGen

Adaptation
automatique
du modèle de

route

Edition
interactive

en base

Point Cloud
Server

Chapitre 2, 5
Annexe 1

Observations d'éléments
urbains

Données de télédétection Axe et largeur de route

Modèle de route

Chapitre 2 Chapitre 3

Chapitre 4

Chapitre 5

Figure 2 on page v

Mobilité douce

Transport

Energie &
Environnement Sécurité Divertissement

Communication

GéoMarketing

Urbanisme &
Architecture

distance réelle
et subjective

Simulation de trafic
piétons/cycles/
handicappés

simulation de
transports publiques

simulation de
trafic pour
véhicules

pollution de l'air
 et sonore

analyse de
visibilité et
d'obstacles

température,
qualité de l'air

ressource solaire

innondation

énergie verte
bilan énergétique

réseau sans fil

aide à la décision

préparation aux
situations

support aux
interventions

étude de cas/simulation

jeux sérieux

jeu

Vidéo

tourisme virtuel

jeu pervasif

promotion touristique

patrimoine culturel/
découverte de territoires

transactions
immobilières
choix pour

l'implantation

exposition à
la publicité

Impact visuel

analyse de vue

Simulation
Analyse

Test

Respect de la
réglementation/fiscalité/

plannification

Figure 3 on page vii

orienté
données

orienté
modèle

modélisation
procédurale

orienté
catalogue

Route/Rue

Réseau de rue

Végétation

Objets urbains

Bâtiments

modélisation
procédurale

inverse

Figure 4 on page x

IMPORT
- orienté serveur
- orienté client STOCKAGE

- groupes de points
- compressé

MÉTADONNÉES
- rela�onnel, validé
- étendues (trajectoires, sources)
- généralisa�on/visualisa�on

FILTRAGE
- indexes
- u�lise les données SIG

TRAITEMENT
- prototypage rapide en base
- processe classique hors de
 la base

EXPORT
- orienté server
- orienté client
- streaming
- fichier de points
 en tant que service

fichiers de
nuages de

points

SGBDS

Figure 5 on page xi

Serveur de base de données

2546

2513

2499

2515

radius = 3

radius = 3.74

2546

2513

2499

2515

2546

2513

2499

2515

1

2

1

2

1

2609

Entrée : réseau
d'axes routiers Génération de surface de

route
Information de trafic

Objets urbainsHypothèse cinématique

Résumé graphique de StreetGen

Figure 6 on page xiii

Topologie du réseau d'axes
Rayon de giration

Axes
Limite d'intersection

Largeur de route

1

2

725

9
1
4

891

Voie

Trajectoires en
intersection

Objets urbains

Figure 7 on page xv

263

modèle de route
optimisé :
axes et largeurs.

observation de bords de trottoirs

Observations d'objets
urbains (voitures,
marquages, etc.)

trottoirverité terrain(pas utilisé)

axe de route
et largeur

Donées initiales : modèle
de route approximatif

Consolidation des
détections en

observations. Assignation.

Optimisation non linéaire
par moindre carré

Figure 8 on page xvii

Couleur =
intensité

Couleur=
numéro
de patch

Couleur =
numéro

de classe
Couleur =
intensité

LO
D

Nuage de points
LIDAR (1)

Découpage en
patch (ici, 1m3) (2)

Niveaux de détails
(LOD) (3)

Apprentissage
Filtrage (4)

Figure 9 on page xix

introduction to the thesis

Soft Mobility

Transport

Energy &
Environment Security Entertainment

Communication

GeoMarketing

Urbanism &
Architecture

Real &
subjective
distance

Traffic simulation for
pedestrian/bicycle/

handicap

public transport
simulation

traffic simulation
for vehicle

air and noise
pollution

visibility/
obstacle
annalysis

temperature, air
quality

solar ressource

flood

green energy
energy consumption

wireless network

decision support

situational awarness
real time intervention

case study/simulation

serious game

game

VideoFilm

Virtual tourism

pervasive gaming

tourism promotion

heritage/territory visit

real estate transaction

site selection

advertising impact

Visual Impact

sight analysis

Simulation
Analysis

Test

Control of regulation/
taxation/Local Planning

Regulations

Figure 11 on page 3

StreetGen

Automatic
Street Model

fitting

Interactive
in base
edition

Point Cloud
Server

Chapter 2, 5
Appendix 1

Urban feature observations

Sensing data Road axis + attributes

Street Modelling

Chapter 2 Chapter 3

Chapter 4

Chapter 5

Figure 12 on page 5

chapter 1 : urban reconstruction : a state of the art

Data-driven Model-driven Procedural
modelling

Inverse
Procedural
modelling

Catalogue
matching

Road/ Street

Street Network

Vegetation

Street feature

Building

Figure 13 on page 9

Soft Mobility

Transport

Energy &
Environment Security Entertainment

Communication

GeoMarketing

Urbanism &
Architecture

Real &
subjective
distance

Traffic simulation for
pedestrian/bicycle/

handicap

public transport
simulation

traffic simulation
for vehicle

air and noise
pollution

visibility/
obstacle
annalysis

temperature, air
quality

solar ressource

flood

green energy
energy consumption

wireless network

decision support

situational awarness
real time intervention

case study/simulation

serious game

game

VideoFilm

Virtual tourism

pervasive gaming

tourism promotion

heritage/territory visit

real estate transaction

site selection

advertising impact

Visual Impact

sight analysis

Simulation
Analysis

Test

Control of regulation/
taxation/Local Planning

Regulations

Figure 14 on page 12

Figure 15 on page 13 Figure 16 on page 15

Figure 17 on page 16

Lidar
points
cloud

image
Lidar
sensor
image

Sfm
points
cloud

Vector
network

Vector

passive

active

more Remote Sensing more GIS

rastermore
structured

less
structured

less
abstract

more
abstract

Figure 18 on page 17

Figure 19 on page 18 Figure 20 on page 20

Figure 21 on page 20 Figure 22 on page 21

Figure 23 on page 22 Figure 24 on page 23

Figure 25 on page 27 Figure 26 on page 28

Figure 27 on page 28

chapter 2 :pcs : a point cloud server to manage point clouds

LOAD
- server reads
- client sends STORE

- groups of points
- compressed

METADATA
- secure and rela�onal
- extended (trajectory, sources)
- generalisa�on/visualisa�on

FILTER
- indexes
- can use other GIS data

PROCESSING
- in-base easy prototyping
- classic out-of-base workflow

EXPORT
- server sends
- client reads
- point streaming
- point cloud files
 as a service

point cloud
files

RDBMS

Figure 28 on page 53

point patch (group of points) pointclouds Metadata- constrained type - compressed
- indexed

- 1 per table - relationnal
- classical / extended

(2.1,4.7,1.0,9,..)

Point type = XML schema
 X : float, offset, scale, description
 Y : double,

&

e-x AxT

e-x BxT

...

...

5
6
7

1000101001...
1000111101...

1000001110...

generalisations coverage maps todo map vector raster

trajectorymetadata

&

Figure 29 on page 58

reference data
sidewalk
building
not build

temporal
groups of points
(convex hull)
for 4 ms

Figure 30 on page 59

nb of groups

pts/group

Figure 31 on page 60

Figure 32 on page 60

point files

PCS

point to
text

program

stdin

COPY
to temp

table

temp
point
table

regroup
points

patch
table

Figure 33 on page 61

trajectory

trajectory

trajectorytrajectory

trajectory

tra

trajectory

trajectory

image table

images

sensing_campaign

time_range
point_table
trajectory
sources

sensor

Name
Type
Rate

available_sensor

sensor
sensing_campagn
calibration

points

point

trajectory

trajectory

trajectorytrajectorytrajectorytrajectory

trajectory

trajectory

sensor_calibration

matrices
errors ...

Figure 34 on page 62 Figure 35 on page 63

Points (15 M) Vertices (18 k) Edges (89 k)

Figure 36 on page 64 Figure 37 on page 64

 SELECT gid, patch
 FROM my_patches
 WHERE
 ST_Intersects(patch::geometry, ...) = TRUE AND
 Pc_NumPoints(patch) BETWEEN 10 AND 100 AND
 file_name ILIKE E'file_.*2.ply' AND
 rc_range(patch, 'intensity') && numrange(0,1.5) AND
 EXISTS (SELECT 1 FROM buildings AS b
 WHERE ST_Intersects(patch::geometry,b.geom))

Spatial position (using any
geometry)

attribute of patch (density)

attribute of patch (source file
name)

attribute of points in patch
(intensity)

Spatial position
(using another vector layer)

Filtering on : SQL query

Figure 38 on page 65 Figure 39 on page 67

Figure 40 on page 69 Figure 41 on page 72

Figure 42 on page 73

po
in

ts
 p

er
 p

at
ch target

1 m patches
0.5 to 8 m patches

nb of patches

Figure 43 on page 73

ST_Buffer(
 ST_Union(
 ST_Buffer(
 patch::geometry
 ,+1)
)
,-1)

ST_Buffer(
 ST_Union(
 ST_Buffer(
 patch::geometry
 ,+10)
)
,-10)
GROUP BY section_id

ST_Simplify(
 trajectory,10
)

ST_Centroid(
 ST_Extent(
 patch::geometry
)
)

Figure 44 on page 75 Figure 45 on page 76

Figure 46 on page 77 Figure 47 on page 78

Figure 48 on page 79 Figure 49 on page 80

selected patches

geometric distance

semantic-geometric dist.

Initial patch:

:

:

Figure 50 on page 80 Figure 51 on page 81

registration
of the two
point clouds

matching
using lines

2 point clouds at
different dates

grouping points geometric proxy
(here lines)

Figure 52 on page 88

chapter 3 : streetgen : procedural modelling of streets

database server

2546

2513

2499

2515

radius = 3

radius = 3.74

2546

2513

2499

2515

2546

2513

2499

2515

1

2

1

2

1

2609

Input : road axis
network Road surface generation Traffic information

Street ObjectsKynematic hypothesis

StreetGen graphical abstract

Figure 53 on page 90 Figure 54 on page 91

Spatial
analysis

Road
axis Road

axis
network

StreetGen

Hypothesis
Street Data

model

Streets
modeling

RDBMS

Visualisation

Traffic
simulation

Figure 55 on page 92

circle center
arc

Border point
Border line

lane axis
lane marking

Section
Intersection

Intersection center
Street axis

Figure 56 on page 94

Figure 57 on page 95

a1

a2

w1

w2
I

circle
center

r

I I
1

I
2

Figure 58 on page 96

Figure 59 on page 97 Figure 60 on page 98

I
border point

border line

estimated

Figure 61 on page 98 Figure 62 on page 99

Figure 63 on page 99 Figure 64 on page 100

Figure 65 on page 100

User1 User2result
table

s_i exists?

no

insert s_i

empty

s_i s_i exists?

update s_i

yes

User1 User2result
table

s_i exists?

no

insert s_i

empty

s_i

s_i exists?

insert s_i

no

error, s_i
already exists

Figure 66 on page 102

Figure 67 on page 103 Figure 68 on page 104

Figure 69 on page 105

Hough transform DBSCAN clustering

Same street name keyword in street name

Figure 70 on page 106

road axis

roadway surface

lane separator

pedestrian crossing

generic street objects

avenue_tree

traffic light

pole

barrier

arrow

bench

slow_down

Legend

Figure 71 on page 107 Figure 72 on page 108

angle

curvilinear

abcissia

width

Figure 73 on page 109

curvilinear
abcissia

12 2

width/2 width/2

3

3

3

3

4

4

angle

angle
angle

angle

5

1
2
3

4
5

generic object point
use width on road axis
project at angle on
road surf.

extract road surf. border
sew together

road axis

road surface

Figure 74 on page 109

'trottoir'
sidewalk

Road Speed

Road network
(importance)

Arc of circle
(radius)

radius =
f(importance)

radius =
f(speed)

radius =
random forest

GPS databaseOpen Data Paris

BDTopo

Guesstimate Traffic analysis (SETRA) Machine Learning

Hough Transform Geometric and
semantic distance

Geometric distance

Figure 75 on page 110 Figure 76 on page 111

major streetresidential street
fguess

fspeed

frforest

Figure 77 on page 112 Figure 78 on page 113

Figure 79 on page 113 Figure 80 on page 114

Figure 81 on page 115

Geometry
simplification

Intersection
semantic

Homogeneous
lane grouping

StreetGen SimuVia

Figure 82 on page 115

manual results using
Symuvia tool

Automatic results using
StreetGen

Figure 83 on page 116 Figure 84 on page 116

Figure 85 on page 117 Figure 86 on page 117

Figure 87 on page 119 Figure 88 on page 120

chapter 4 : interactive in-base creation and modification of street

model

Road network topology
Turning radius

Road axis
Intersection limit

Road width

1

2

725

9
1
4

891

Figure 89 on page 123

BROWSER

custom

interaction

DESKTOP GIS

DATABASE

BROWSER

DESKTOP

CLASSIC INTERACTION

DATABASE

cu
sto

m

in
te
ra
ctio

n
IN-BASE INTERACTION

custom

interaction

GRASSGIS GRASSGIS

BATCH
gis@gis:~$psql -d ...
gis@gis:~$psql -d ...
gis@gis:~$psql -d ...

Figure 90 on page 126

trigger

"Direct Edition"

"Proxy View"
trigger

view

trigger

trigger

trigger

"Geometric Control"

storing "User Input"

EXCEPT
view

user

auto

Figure 91 on page 127

User working
on an area

Database

trigger
(round)

user never edits objects in corners
and borders, should be removed

Save user view extend

Figure 92 on page 128

Figure 93 on page 128 Figure 94 on page 129

Figure 95 on page 129

curvilinear abscissa
updated, re-generation

moving intersection
limit controller

road axis of limit

intersection limit controller

User action

Curvilinear abscissa of limit

Figure 96 on page 130

3D linestring
(XYZ)

Indirect geometric controller
for Z (altimetry curve)

User
interactions

updated Z
values

Figure 97 on page 131

new

User edited proxy view:
interpret to get new radius

Radius has been changed :
generate geometries (arc ...)

User Automated

Figure 98 on page 132

1

2 725

9
1
4

891

899

1

2 725

9
1
4

891

899

1

2

725

9
1
4

891899

User overrides lane automatic direction :
UPSERT user input table. Geometry is
still re-generated if necessary (default).

id relates to direction geometry

12 302 True NULL

+geom

User overrides lane geometry :
update user input table.
Geometry is now user fixed

1

2 725

4

891

899

User delete lane, which is
interpretated as a reset:
Corresponding row in user
input table is deleted.
Back to automatic generation

Figure 99 on page 134

user screen extend
(colour = user)

(road network)
WARNING: You, Remi-C
(172.16.3.181), juste edited
something that you already edited
19:22:48 ago. You can re-edit area if
you edited it less than 5 minutes ago

WARNING: User YoYo
(172.16.2.156) and user Remi-C
(172.16.3.181) are in conflict here,
same eidtion separate by only 76
seconds. (only allowed if edits are
separated by > 5 m)

Figure 100 on page 136

Figure 101 on page 137 Figure 102 on page 137

Road network topology
Turning radius

Road axis
Intersection limit

Road width

Figure 103 on page 138

20

< 14
28

29

0
-14 >

0

14
< 14

28
29

0
-14 >

0

14

0

0

0

0

28
29

31

15

14 -15 >

15 >

< -14

< 14

< 14
28

29

0
-14 >

0

14
< 14

28
29

0
-14 >

0

14
< 14

28
29

0
-14 >

0

14

node
insertion

edge
insertion

< 14
28

29

0
-14 >

0

14

17

20

34
35

< 20

< 17

-20 >

-17 >

0

2

2

0

17
34

35

< 17

-17 >

0

0

17
34

35

< 17

-17 >

0

0

17
34

35

< 20

-20 >

0

2

17
34

35

< 17

-17 >

0

0

17
34

35

< 17

-17 >

0

0

34
35

44

42
46

48

17
24

22

23

21

2
5

0
0

0

3

3

0

0
0

0

0

0

3

-23 >

-24 >

25 >

<
 2

1

-25 >

2
4

 >

< 17
< -21

< 22

-2
2

>

< -17

<
 2

3

17
34

35

< 17

-17 >

0

0
17

34
35

< 17

-17 >

0

0 forbidden

0

4

0

0

0

0

0

4

< 26

< -26

< -27

< 27

28 >

-28 >

-29 >

29 >

26

27

29

28

49 50

52

56

57

0

0

0

28 >

-28 >

-29 >

29 >

< 26

< -26

< -27

containing_face :4
49 50

52

565726

27

29

28

0

4

0

0

0

0

0

28 >

-28 >

-29 >

29 >

< 26

< -26

< -27

49 50

52

5626

27

29

28

0

4

0

0

57

node
change

-30 >

32 > -32 >

0

0 0

0

0 0

30

31 32

58 59

60
63

64

< 30

< 31 < -31

0
0

0

0

-33 >
33 >

-32 >

3
2
 >

< -30
< 30

< -31

<
 3

1

58 59

60
63

67 33
30

323
1

0
0

0

0

0 0

0

32 > -32 >

-30 >

< 31 < -31

< 30

58 59

60
63

68
31 32

30

0 0

0

30

32
31

< 30

< -31
< 31

0

0
0

0

0
0

58 59

60

61

63

-30 >

-32 >
32 >

-30 >

32 >
-32 >

< 30

< 31
< -31

68

58 59

60
63

0

0 0

0

0 0

30

31
32

forbidden

0 0

0

32 > -32 >

-30 >

< 31 < -31

< 30

58 59

60
63

68
31 32

30

0 0

0

30

32
31

< 30

< -31
< 31

0

0
0

0

0
0

58 59

60

61

63

-30 >

-32 >
32 >

-30 >

32 > -32 >

0

0 0

0

0 0

30

31 32

58 59

60
63

64

< 30

< 31 < -31

-30 >

32 > -32 >

0

0 0

0

0 0

30

31 32

58 59

60
63

64

< 30

< 31 < -31

-30 >

32 > -32 >

0

0 0

0

0 0

30

31 32

58 59

60
63

64

< 30

< 31 < -31

edge
change

< 35

0
-35 >

71 72

0

35

38

3775

76

5

-37 >

< 37

38 >

0

75

76

73

74

38

37

36

< 37

38 >

0

5

5

Left_right_face : 5

75

76

74

37

38

36

38 >

< 36

-36 >

0

0

0

5

5

0

< -38

-37 >

< 37

37

36

38

75

76

74
79

5

0

5

< -38

< 36

-37 >

38 >

-36 >

< 37

0

0

0

39

38

36

3775

76

74

80

5

5

0

5

< -37

-39 >

< 39

< -38

38 >

< 37

-36 >

36 >

0

0

0

0

43

41

86

87

82
83

0

0

<
 43

< 41

-43 >

-41 >

0

0

< 35

0
-35 >

71 72
0

35

forbidden

38

3775

76

5

5

-37 >

< -38

< 37

38 >

0

75

7638

37

< 37

38 >

0

5

5

5
-37 >

< -38

36 74
79

< 36 38 >

-36 >

0

0

warning :
wrong face

< 35

0
-35 >

71 72

0

35

37

36

38

75

76

74
79

5

0

5

< -38

< 36

-37 >

38 >

-36 >

< 37

0

0

0

75

76

74

37

38

36

38 >

< 36

-36 >

0

0

0

5

5

0

< -38

-37 >

< 37

39

38

36

3775

76

74

80

5

5

0

5

< -37

-39 >

< 39

< -38

38 >

< 37

-36 >

36 >

0

0

0

0

43

41

86

87

82
83

0

0

<
 43

< 41

-43 >

-41 >

0

0

Figure 104 on page 139

Assign curbstone points
to road surfaces

853 853

new road width

Compute new width
(median)

1

2

Update road width,
regenerate

3

road axis

road surface
road width

Figure 105 on page 140 Figure 106 on page 141

road axis

roadway surface

lane separator

pedestrian crossing

generic street objects

avenue_tree

traffic light

pole

barrier

arrow

bench

slow_down

Legend

user edits road axis

Figure 107 on page 142 Figure 108 on page 143

α
w

User input Find parameters Generate model

Figure 109 on page 143

d2

(d1,a1) (d2,a2)

d1

a1
a2

ro
ad

 a
xis

Figure 110 on page 146

Figure 111 on page 147

chapter 5 : inverse procedural road modelling

optimized road axis
and optimized width

kerb observation

Urban object
observation
(cars, markings, etc.)

ground truthsidewalk(not used)

initial road axis
and width

Initial road axis,
road segments

Detection from Sensing.
Urban object detection to

object observations.

Non-linear least square
optimisation.

loss fct & regularisation.

Figure 112 on page 149 Figure 113 on page 150

road width

road surface

kerbobservation

sidewalk

node

street objectobservations

street objectobservation

parameters groundtruth observation

Figure 114 on page 154 Figure 115 on page 155

road axis network road axis segment network

street view

street lidar

aerial image

markings

markings
detection fusion

traffic signs

kerb detection
consolidating
& fusion kerb point

estimated
road direction

object detection fusion

Mapping

O
pt
im
is
at
io
n

optimised position
and width

residual forces

Open
Data
Paris
sidewalk

filtered
split

Figure 116 on page 157 Figure 117 on page 158

Figure 118 on page 160

side-walk
ground truth
road axis
network

implicit road
surface

observation

matching

Figure 119 on page 161

ground truth
sidewalk
building road axis

parameter of
optimisation

observations
kerb
estimated direction

Figure 120 on page 162

groundtruth
kerbobservation

Force on node
(moves node)

Force on width
(change width)

OUT BORDEROUT

BORDERIN

IN

street objectobservation

observation

road implicit surface

application of
forces

Figure 121 on page 163

alpha

beta

alpha

initial nodes

current position

initial position

initial length

initial angle
+ width
conservation

Figure 122 on page 165

FdirectionFobjectFkerb
Fposition Flength Fwidth Fangle

Observations

Objects classes

Forces

observations regularisation

cars poles markings...

Weights

Figure 123 on page 166

Traffic information

Street Model

interconnection
lane
separator

section
intersection

Ground truth
sidewalk
non_built_area
built_area

Figure 124 on page 168 Figure 125 on page 170

ground truth
sidewalk
building

road axis
observations

kerb
object

mapping
kerb - axis
kerb - object

Figure 126 on page 171

Ground Truth
not up to date

and mixed
Observations

noisy, sparse
Input

Topology
over-constrained

Road Model
too simple

"Paris"

"Sensing"

"User"

Filtering,

Filtering, Visual
check

Filtering, manual
corrections

Use obs. derived
from ground truth

Use obs. derived
from ground truth

Use user input.
Use obs. derived
from ground truth.

over-split road
segments (<9 m)

Manual optimal
split

Experiments

Error sources
strategies

subjective
error

influence

strategy
missing or
of limited

effect

Figure 127 on page 171

Figure 128 on page 172

before optimisation after optimisation

Figure 129 on page 173

Figure 130 on page 174 Figure 131 on page 174

Figure 132 on page 176 Figure 133 on page 177

Figure 134 on page 178 Figure 135 on page 178

Figure 136 on page 179 Figure 137 on page 182

Wrong ground truth (blue dashes) Road model too simple

Over constrained (not enough split) Over constrained (not enough split)

Figure 138 on page 185

appendix a : implicit level of details for the point cloud server

Color is
intensity

Color is
patch id

Color is
class id

Color is
intensity

LO
D

Lidar
point cloud

Split into
patches

Level Of Detail
(LOD)

Learning
Filtering

Figure 139 on page 195

regular
sensing

irregular
sampling

Figure 140 on page 196

Figure 141 on page 197

LOAD

STORE
- groups of points
- compressed

METADATA
- secure and rela�onal
- extended (trajectory, sources)
- generalisa�on/vis.

FILTER
- indexes
- can use other GIS data

PROCESSING
- in-base easy prototyping
- classic out-of-base workflow

EXPORT
RDBMS

point

(2.1,4.7,1.0,9,..)

patch (group of points) - compressed
- indexed

& e-x AxT

e-x BxT

...

generalisations

pointclouds
- 1 per table

...

5
6
7

1000101001...
1000111101...

1000001110...

- 1 per row

Figure 142 on page 200

points
order :

1
2
3
4...

...
N

LOD 1

LOD 3

LOD∞

Figure 143 on page 201

points

quad tree
cell

cell centre

distance
to centre
closest pt
to centre

L0

L1

L2

Figure 144 on page 203

Y Uniform Random

Ordering

Revert Morton

20

13

23

11

19 6

24

10

17

3

18

14

5 12

21

4

9

1

16

2

15

8

22

7

3

4

5

19

20

21

6

7

8

9

10

22

23

24

11

12

13

14

15

16

1

2

17

18

Halton Sequence

15

7

3

9

23

19

11

17

1

21

13

0

16 4

5

8

20

2

10

14

24

12

18

6

22

Revert Hilbert

7

13

23

10

18

5

15

21

12

2

4

20

6

16

22

11

1

17

8

14

24

9

3

19

Figure 145 on page 204 Figure 146 on page 206

Figure 147 on page 208

1.5 Million

Points per patch
(read from server)

Density
(CloudCompare) 1.0 Million

0.5 M

Density
Pts per patch

Figure 148 on page 209

Figure 149 on page 211 Figure 150 on page 212

appendix b : a new dimensionality descriptor for patch classification

for the point cloud server

x22.2

x21

x23

LOD1
LOD2 LOD3 LOD4

All

not enough
remaining
points

Figure 151 on page 215

LOAD

STORE
- groups of points
- compressed

METADATA
- secure and rela�onal
- extended (trajectory, sources)
- generalisa�on/vis.

FILTER
- indexes
- can use other GIS data

PROCESSING
- in-base easy prototyping
- classic out-of-base workflow

EXPORT
RDBMS

point

(2.1,4.7,1.0,9,..)

patch (group of points) - compressed
- indexed

& e-x AxT

e-x BxT

...

generalisations

pointclouds
- 1 per table

...

5
6
7

1000101001...
1000111101...

1000001110...

- 1 per row

Figure 152 on page 217

Line :
2L occupancy

Surface :
4L occupancy

Volume :
8L occupancy

Figure 153 on page 218 Figure 154 on page 220

Figure 155 on page 223

|DLOD-Dcov|≤0.5
colour = Global Illum.

|DLOD-Dcov|>0.5
colour = random

Figure 156 on page 225

Ellongated patch Ellipsoid too simple

Not same definition Inhomogene sampling

Dimcov:1.42 DimLOD:1.92 Dimcov:1.68 DimLOD:2.24

Dimcov:1.57 DimLOD:2.16pdim :
DimLODD:

[0.11,0.23,0.66]
[3.0,2.17,1.04]

Figure 157 on page 226 Figure 158 on page 226

VEGETATION
OBJECTS

BUILDINGS

POLES

VEHICLE

GROUND
Figure 159 on page 228

Closed Forest

Moor

Not forest

avg/total

pre
c.

re
c.

su
pp.

0.99

0.18

0.86

0.94

0.91

0.68

0.89

0.90

390k

8.7k

128k

526k

mix.

0.883

0.741

1

0.901

0.09 0.06 0.12 0.14

ppl_1 ppl_2 ppl_3 ppl_4 nber of
echo

mean
Z

patch
height

0.57 (0.07+0.13+0.18+0.19)
In

te
ns

ity

Feature usage

Figure 160 on page 229

Figure 161 on page 229 Figure 162 on page 230

Figure 163 on page 231

1.2 1.4 1.6 1.8 2.0 2.2 2.4 Dim

H
is
to
g
ra
m

Dim_LOD
Dim_Cov

Figure 164 on page 232

x22.2

x21

x23

LOD1
LOD2 LOD3 LOD4

All

not enough
remaining
points

Figure 165 on page 232

0.30.2 ...

Figure 166 on page 235

appendix c : miscelanious

Figure 167 on page 240 Figure 168 on page 241

A B S T R A C T

World urban population is growing fast, and so are cities, inducing an urgent need
for city planning and management. Increasing amounts of data are required as cities
are becoming larger, "smarter", and as more related applications necessitate those data
(planning, virtual tourism, traffic simulation, etc.). Data related to cities then become
larger and are integrated into more complex city models.

Roads and streets are an essential part of the city, being the interface between public
and private space, and between urban usages. Modelling streets (or street reconstruc-
tion) is difficult because streets can be very different from each other (in layout, func-
tions, morphology) and contain widely varying urban features (furniture, markings,
traffic signs), at different scales.

In this thesis, we propose an automatic and semi-automatic framework to model and
reconstruct streets using the inverse procedural modelling paradigm. The main guiding
principle is to generate a procedural generic model and then to adapt it to reality using
observations. In our framework, a "best guess" road model is first generated from very
little information (road axis network and associated attributes), that is available in most
national databases. This road model is then fitted to observations by combining in-
base interactive user edits (using common GIS software as graphical interface) with
semi-automated optimisation. The optimisation approach adapts the road model so
it fits observations of urban features extracted from diverse sensing data. Both street
generation (StreetGen) and interactions happen in a database server, as well as the
management of large amount of street Lidar data (sensing data) as the observations
using a Point Cloud Server.

We test our methods on the entire city of Paris, whose streets are generated in a few
minutes, can be edited interactively (<0.3 sto regenerate the street model) by several
concurrent users. Automatic fitting (few min) shows promising results (average distance
to ground truth reduced from 2.0m to 0.5m).

In the future, this method could be mixed with others dedicated to the reconstruction
of buildings, vegetation, etc., so an affordable, precise, and up to date city model can be
obtained quickly and semi-automatically. This will also allow such models to be used
in other application areas. Indeed, the possibility to have common, more generic, city
models is an important challenge given the cost and complexity of their construction.

291

	Dedication
	Foreword
	Publications
	Acknowledgements
	Contents
	Introducing the thesis
	0 A General introduction to this thesis
	0.1 Stakes
	0.2 Challenge
	0.3 Methodology
	0.4 Goal

	Thesis
	1 Urban reconstruction: a state of the art
	1.1 Abstract
	1.2 Introduction
	1.2.1 Context
	1.2.2 Stakes
	1.2.3 Applications
	1.2.4 What is a city
	1.2.5 Challenges
	1.2.6 City reconstruction/modelling
	1.2.7 Plan

	1.3 Input data
	1.3.1 Lidar data
	1.3.2 Images
	1.3.3 Raster data
	1.3.4 Vector data

	1.4 Approaches for reconstruction / modelling
	1.4.1 Transverse reconstruction method classification
	1.4.2 Procedural modelling and grammar
	1.4.3 Inverse procedural modelling

	1.5 Buildings and façades
	1.6 Street
	1.6.1 Introduction to street reconstruction
	1.6.2 Modelling the geometry of the street
	1.6.3 Object detection, primitive extraction
	1.6.4 Relation between objects
	1.6.5 Texture synthesis
	1.6.6 Conclusion about street reconstruction

	1.7 Street network
	1.7.1 Introduction to street network reconstruction
	1.7.2 A classification of road network reconstruction methods
	1.7.3 Conclusion

	1.8 Urban vegetation reconstruction
	1.8.1 Introduction
	1.8.2 Vegetation reconstruction
	1.8.3 Classifications of urban vegetation reconstruction methods
	1.8.4 Conclusion for urban vegetation reconstruction

	1.9 Urban features
	1.9.1 introduction to urban feature reconstruction
	1.9.2 State of the art
	1.9.3 Conclusion

	1.10 Conclusion

	2 PCS : A Point Cloud Server to manage point clouds
	2.1 abstract
	2.2 Introduction
	2.2.1 Problems
	2.2.2 Related work
	2.2.3 Plan

	2.3 Methods
	2.3.1 Storing groups of points in a RDBMS
	2.3.2 Loading
	2.3.3 Point Cloud and Context
	2.3.4 Point Cloud Filtering
	2.3.5 Exporting
	2.3.6 Processing Point Cloud with the Server

	2.4 Results
	2.4.0 General System Test
	2.4.1 Storing groups of points in a RDBMS
	2.4.2 Loading
	2.4.3 Point Clouds and Context
	2.4.4 Point Cloud Filtering
	2.4.5 Exporting
	2.4.6 Processing Point Cloud with the Server

	2.5 Discussion
	2.5.1 Storing groups of points in a RDBMS
	2.5.2 Loading
	2.5.3 Point Cloud and Context
	2.5.4 Filtering point clouds
	2.5.5 Exporting
	2.5.6 Processing Point Cloud with the Server
	2.5.7 Future work

	2.6 Conclusion

	3 StreetGen : procedural modelling of streets
	3.1 Abstract
	3.2 Introduction
	3.3 Method
	3.3.1 Introduction to StreetGen
	3.3.2 Introduction to RDBMS
	3.3.3 StreetGen Design Principles
	3.3.4 Robust and Efficient Computing of Arcs
	3.3.5 Computing Surfaces from Arc Centres
	3.3.6 Concurrency and scaling
	3.3.7 Generating basic Traffic information
	3.3.8 Roundabout detection
	3.3.9 Street Objects : From Road to Street

	3.4 Results
	3.4.1 Estimating default turning radius
	3.4.2 StreetGen
	3.4.3 Using Streetgen for traffic simulation
	3.4.4 Extending Streetgen applications

	3.5 Discussion
	3.5.1 Estimating default turning radius
	3.5.2 Street data model
	3.5.3 Kinetic hypothesis
	3.5.4 Precision issue
	3.5.5 Streetgen for traffic
	3.5.6 Street objects
	3.5.7 Extend use for StreetGen
	3.5.8 Fitting street model to reality

	3.6 Conclusion

	4 Interactive in-base creation and modification of street models
	4.1 Abstract
	4.2 Introduction
	4.2.1 Plan

	4.3 Method
	4.3.1 Control of procedural modelling
	4.3.2 In base interaction concept
	4.3.3 Different in-base interaction types
	4.3.4 Efficient Multi-user data edit

	4.4 Result
	4.4.1 In base interaction
	4.4.2 Interactive road
	4.4.3 Interactive traffic
	4.4.4 Interactive Street Objects
	4.4.5 Efficient Multi-user data edit

	4.5 Discussion
	4.5.1 In base interaction for procedural modelling
	4.5.2 Different in-base interaction types
	4.5.3 Efficient Multi-user data edit
	4.5.4 Interactive road
	4.5.5 Interactive traffic
	4.5.6 Interactive Street Objects
	4.5.7 Best of 2D and 3D world for edition

	4.6 Conclusion

	5 Inverse Procedural Road Modelling
	5.1 Abstract
	5.2 Introduction
	5.2.1 Problem
	5.2.2 Related work
	5.2.3 Approach
	5.2.4 Plan

	5.3 Method
	5.3.1 Choosing a model and optimisation method
	5.3.2 Modelling the problem
	5.3.3 From raw data to suitable observation and parameters
	5.3.4 Observation and regularisation forces
	5.3.5 Optimisation

	5.4 Results
	5.4.0 Resources
	5.4.1 Results and Forces visualisation
	5.4.2 From raw data to Observation
	5.4.3 Observations matching
	5.4.4 Optimisation results
	5.4.5 Generating streets from optimised road model

	5.5 Discussions
	5.5.1 Modelling the problem
	5.5.2 Modelling observation effect as forces
	5.5.3 From raw data to observation
	5.5.4 Observation matching
	5.5.5 Optimisation
	5.5.6 Results and Forces visualisation
	5.5.7 Optimisation results
	5.5.8 Generating streets from optimised road model

	5.6 Conclusion

	Concluding the thesis
	6 A general conclusion to this thesis
	6.1 General Conclusion
	6.1.1 Thesis work
	6.1.2 Contributions
	6.1.3 Thesis limitations and perspectives

	Appendix
	A Appendix A : Implicit Level Of Details for the Point Cloud Server
	A.1 Abstract
	A.2 Introduction
	A.2.1 Problem
	A.2.2 Related Work
	A.2.3 Contribution
	A.2.4 Plan

	A.3 Method
	A.3.1 The Point Cloud Server
	A.3.2 Exploiting the order of points
	A.3.3 MidOc : an ordering for gradual geometrical approximation
	A.3.4 Excessive Density detection and correction

	A.4 Result
	A.4.1 Introduction to results
	A.4.2 Using the Point Cloud Server for experiments
	A.4.3 Exploiting the order of points
	A.4.4 MidOc: an ordering for gradual geometrical approximation
	A.4.5 Excessive Density detection and correction

	A.5 Discussion
	A.5.1 Point cloud server
	A.5.2 Exploiting the order of points
	A.5.3 MidOc : an ordering for gradual geometrical approximation
	A.5.4 Excessive Density detection and correction

	A.6 Conclusion

	B Appendix B : A new dimensionality descriptor for patch classification for the Point Cloud Server
	B.1 Abstract
	B.2 Introduction
	B.2.1 Problem
	B.2.2 Contribution
	B.2.3 Plan

	B.3 Method
	B.3.1 The Point Cloud Server
	B.3.2 A local multi-scale dimensionality descriptor
	B.3.3 Classification with the Point Cloud Server

	B.4 Result
	B.4.1 Introduction to results
	B.4.2 Using the Point Cloud Server for experiments
	B.4.3 Multi-scale local Dimensionality descriptor
	B.4.4 Patch Classification

	B.5 Discussion
	B.5.1 Point cloud server
	B.5.2 Multi-scale local dimensionality descriptor
	B.5.3 Patch Classification

	B.6 Conclusion

	C Appendix C: Generic technical appendix
	C.1 Point Cloud Server Appendix
	C.2 StreetGen Appendix

	Bibliography
	Declaration
	Colophon
	Abstract

