

Experimental study of H generation associated with peridotite serpentinization at slow spreading ridges Colin Fauguerolles

▶ To cite this version:

HAL Id: tel-01549129 https://theses.hal.science/tel-01549129v1

Submitted on 28 Jun 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ÉCOLE DOCTORALE ENERGIE, MATÉRIAUX, SCIENCES DE LA TERRE ET DE L'UNIVERS

Institut des Sciences de la Terre d'Orléans

THÈSE présentée par :

Colin FAUGUEROLLES

soutenue le : 18 novembre 2016

pour obtenir le grade de : **Docteur de l'université d'Orléans** Discipline/ Spécialité : **Sciences de l'univers**

Étude expérimentale de la production d'H₂ associée à la serpentinisation des péridotites au niveau des dorsales océaniques lentes

Quantification – État rédox – Mécanismes réactionnels

THÈSE dirigée par :	
Michel PICHAVANT	Directeur de recherches, ISTO-Université d'Orléans
RAPPORTEURS :	
Fabrice BRUNET Gleb POKROVSKI	Directeur de Recherche, ISTerre–Université de Grenoble Directeur de Recherche, GET, Toulouse
JURY :	
Lionel MERCURY	Professeur, ISTO–Université d'Orléans , (Président)

Fibre BRUNETDirecteur de Recherche, ISTerre – Université de Grenoble**Gleb POKROVSKI**Directeur de Recherche, GET, Toulouse**Muriel ANDREANI**Maître de Conférence, LGL – UCB Lyon1**Mathilde CANNAT**Directeur de Recherche, ISTO – Université d'Orléans

« La mesure Valérie, la mesure ! » Ben, un soir d'hiver 1992

Remerciements

Je tiens tout d'abord à remercier Mmes Andréani Muriel et Cannat Mathilde ainsi que Mrs Brunet Fabrice, Pokrovski Gleb, Mercury Lionel et Pichavant Michel, jury de cette thèse, pour m'avoir fait l'honneur d'accepter de juger ce travail.

Je remercie *Michel Pichavant* pour m'avoir fait confiance tout au long de ces cinq années, pour m'avoir transmis son savoir faire et son goût pour la recherche expérimentale. J'aimerais également lui dire à quel point j'ai apprécié la grande liberté qu'il m'a laissée dans mon travail. Enfin, j'ai été extrêmement sensible à ses qualités humaines. Ce sera toujours un plaisir de se siffler une bonne bouteille en ta compagnie.

Je remercie également *Teddy Castelain* et *Johan Villeneuve*, postdoctorants sur le projet FLUX-HYD, pour avoir largement contribué à la réalisation des expériences conduites durant ce travail. Je ne saurais oublier de remercier *Stéphane Rouméjon* pour avoir, au cours d'un postdoc express, partagé son expertise des serpentines et de leur caractérisation par spectrométrie Raman.

Je souhaite aussi adresser des remerciements tout particuliers aux techniciens et ingénieurs sans qui, faire de la recherche expérimentale serait tout bonnement impossible. Je pense à *Rémi Champallier* et à tous les gars de l'atelier méca : *Esteban le Moing, Fred Savoie, Rémy Planckaert, Philippe Teulat* et *Nicolas Perron.* Je n'oublie pas *Didier Bellenoue* pour la partie électronique, *Sylvain Janiec* pour les montages en lames minces et *Patricia Benoist-Julliot* pour son aide précieuse en salle de chimie. J'en profite également pour remercier l'équipe administrative : Olivier Gaudefroy, Virginie Lancelot, Chantal Le Coq, Fabienne Le Bihan et Marie-Noëlle Pailhès, le staff info : Laurent Catherine et Yohann Brossard, Manu Le Trong (jamais avare de quelques élégantes lignes de code), ainsi que Nathalie Pothier qui n'a pas son pareil pour dénicher des publis introuvables.

Sans analyses des produits synthétisés, faire des expériences ne servirait pas à grand-chose, aussi, je voudrais remercier chaudement *Ida Di Carlo* pour sa bonne humeur durant ces longues heures passées derrière le MEB ou la Sonde. Je remercie par la même occasion *Philippe Penhoud* pour les analyses DRX, *Claire Carvallo* (IMPMC – UPMC) pour les analyses magnétiques et *Régis Guégan* pour le temps qu'il a su nous accorder lors des analyses Raman.

Enfin, pour ce qui concerne l'ISTO, je souhaite remercier tous mes collègues doctorants, postdoctorants et chercheurs auprès desquels j'ai beaucoup appris (et pas qu'en géologie!). Je pense tout particulièrement à *Malcolm Massuyeau*, *Leila Hashim*, *David Sifré* et *Armel Menant* avec qui j'ai eu l'honneur d'habiter pendant deux ans. Mais aussi à *Nolwenn Le Gall*, ma chère co-bureau, à *Fabrice Gaillard* et *Giada Iacono Marziano*, à *Clairette Ramboz*, à *Seb Jégo*, à *Arnaud Villaros*, à *Bruno* et *Stéphane Scaillet*, à *Juan Andujar*, à *Caroline Martel*, à *Emmanuel Gardés*, à *Bastien Farre*, et à tous ceux, qu'ils me le pardonnent, j'oublie au moment même où j'écris ces quelques lignes.

Aussi, comme la vie serait bien triste sans les activités extra-scolaires, je ne remercierai jamais assez toutes les personnes qu'il m'a été donné de rencontrer hors du labo et avec lesquelles j'ai passé d'innombrables moments inoubliables. Carotte, Nico, Simon, Amé, Cha, Hélène, Davy, Nolwenn, David, Manue, Romano, Maulette, Aurore, Gary et les autres...

Maintenant il est temps que je remercie mes parents *Sylviane* et *Jean Pierre*, tout d'abord pour m'avoir fait, et puis pour m'avoir accordé leur confiance et soutenu tout au long de mes études (j'imagine que ça n'a pas toujours dû être facile...). Je vous dois tout. J'embrasse aussi *Maurin*, mon frère, *Flore* et tous les autres membres de ma famille et les copains du Sud-Ouest : *Lucas*, *Loic, Vince* et tous *les autres* ... Je fais aussi un bisou à *Mamilou* et *Papilou*!

Enfin mes dernières pensées vont à *Muriel*, ma chère et tendre, je ne te serai jamais assez reconnaissant de m'avoir accompagné, pour le meilleur et pour le pire, durant ces trois dernières années. Que le chemin qu'il nous reste à parcourir ensemble soit encore long.

Table des matières

1	Intr	oduction générale	1
	1.1	Généralités	3
	1.2	Rappels sur la serpentinisation	5
		1.2.1 Contexte géologique	5
		1.2.2 Production d'H ₂ et réactions associées à la serpentinisation \ldots	9
	1.3	Travaux expérimentaux antérieurs sur la serpentinisation	15
	1.4	Approche générale de la thèse	19
2	Qua des 2.1	antification expérimentale <i>in situ</i> de la production d'H ₂ et détermination paramètres redox $(f_{H_2} \text{ et } f_{O_2})$ associés à la serpentinisation Introduction	21 23
	2.2	In situ experimental quantification of H_2 generation and determination of redox parameters (f_{H_2}, f_{O_2}) during serpentinization	24 25 25 29
		2.2.4 Discussion	34
		2.2.5 Conclusion	40
		2.2.6 Bibliography	41
		2.2.7 Supplementary	44
	2.3	Conclusions	47
3	Mée	canismes réactionnels associés à la serpentinisation – Contraintes textu-	
	rale	s et propriétés chimiques des minéraux	49
	3.1 3.2	Introduction Reaction mechanisms during serpentinization – Textural constraints and mineral chemistry data from experiments on a harzburgite at 250 – 350 °C, 50 MPa 3.2.1 Introduction 3.2.2 Experimental materials and methods 3.2.3 Analytical methods 3.2.4 Results 3.2.5 Discussion 3.2.6 Conclusions 3.2.7 Bibliography	51 53 54 55 57 57 68 76 77 80
	33	0.2.0 supprementary	0U 81
	0.0		01
4	Effe inte	et de la mobilité de l'H ₂ sur le processus de serpentinisation. Contrôle erne $vs.$ contrôle externe de la f_{H_2} Introduction	83 85
	4.2	Introduction $vs.$ external f_{H_2} buffering in serpentinisation experiments – Results andimplication for the serpentinisation reaction \dots 4.2.1Introduction and experimental strategy4.2.2Materials and methods4.2.3Results	86 87 88 90

		4.2.4 Discussion	95
		4.2.5 Conclusion	101
		4.2.6 Bibliography	103
	4.3	Conclusions	108
-	ń.		
9	Etu	ide du lien entre $f_{\rm H_2}$ et $m_{\rm H_2}$ dans le systeme H ₂ O-H ₂ . Mesures experimen-	100
	tale	s et confrontations aux données et modeles thermodynamiques existants	111
	5.1	Approche de type Lewis & Randall appliquée au système H_2O-H_2	111
	5.2	Approche de type equation d'état appliquée au système H_2O-H_2	112
		5.2.1 Equation d'état de Rédlich & Kwong	113
	50	5.2.2 Resultats	115
	$5.3 \\ 5.4$	Equilibre H ₂ gazeux - H ₂ dissous – Approche thermodynamique	116
		expérimentale	118
		5.4.1 Dispositif expérimental	118
		5.4.2 Profils des $f_{\rm H_2}$ mesurés dans la membrane	118
		5.4.3 Résultats des mesures couplées de f_{H_2} et de m_{H_2}	121
		5.4.4 Détermination des $\gamma_{\mathrm{H}_{2, aq}}$ à partir des couples $(f_{\mathrm{H}_2}, m_{\mathrm{H}_2})$ expérimentaux et	
		des $K_{(Rn5.1)}$	123
	5.5	Effets des ions en solutions sur la correspondance entre f_{H_2} et m_{H_2}	125
	5.6	Conclusions	126
G	Con	aducions généralos et normantivos	197
0	6 1	Le rédeu aggogié à la gementinisation	120
	0.1 6 9	Dereportives	129
	0.2	reispectives	129
\mathbf{A}	Rés	olution des équations cubiques pour l'équation d'état de Redlich & Kwong	g 13 1
В	Cine la n	étiques de diffusion de l'H ₂ dans les parois de l'autoclave et au travers de	195
В	Cine la n	étiques de diffusion de l' ${ m H}_2$ dans les parois de l'autoclave et au travers de nembrane	135
B C	Cine la m Disp	étiques de diffusion de l'H ₂ dans les parois de l'autoclave et au travers de nembrane positifs de contrôle de la $f_{\rm H_2}$ et de la pression totale	135 141
B C	Cine la m Disp C.1	étiques de diffusion de l'H ₂ dans les parois de l'autoclave et au travers de nembrane positifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2}	135 141 143
B C	Cine la m Disp C.1 C.2	étiques de diffusion de l'H ₂ dans les parois de l'autoclave et au travers de nembrane positifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson &	135 141 143
B C	Cinc la m Disp C.1 C.2	étiques de diffusion de l' H_2 dans les parois de l'autoclave et au travers de nembrane positifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried	135 141 143 143
B	Cine la m Disp C.1 C.2	étiques de diffusion de l'H ₂ dans les parois de l'autoclave et au travers de nembrane positifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried	 135 141 143 143
B C D	Cine la n Disp C.1 C.2 Cali	étiques de diffusion de l'H ₂ dans les parois de l'autoclave et au travers de nembrane positifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried	 135 141 143 143 147
B C D E	Cine la m Disp C.1 C.2 Cali Pro	étiques de diffusion de l' H_2 dans les parois de l'autoclave et au travers de nembrane positifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried ibration de la chaîne de mesure de la température tocole de quantification de l' H_2 par échantillonnage du fluide et analyse	 135 141 143 143 147
B C D E	Cind la n Disp C.1 C.2 Cali Pro par	étiques de diffusion de l' H_2 dans les parois de l'autoclave et au travers de nembrane positifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried ibration de la chaîne de mesure de la température tocole de quantification de l' H_2 par échantillonnage du fluide et analyse chromatographie en phase gazeuse	 135 141 143 143 147 153
B C D E	Cind la n Disp C.1 C.2 Cali Pro par E.1	étiques de diffusion de l' H_2 dans les parois de l'autoclave et au travers de nembrane positifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried Seyfried Severtie tocole de quantification de l' H_2 par échantillonnage du fluide et analyse chromatographie en phase gazeuse Échantillonnage in situ du fluide réactionnel	 135 141 143 143 147 153 155
B C D E	Cind la m Disp C.1 C.2 Cali Pro par E.1 E.2	étiques de diffusion de l' H_2 dans les parois de l'autoclave et au travers de nembrane positifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried Seyfried ibration de la chaîne de mesure de la température tocole de quantification de l' H_2 par échantillonnage du fluide et analyse chromatographie en phase gazeuse Échantillonnage in situ du fluide réactionnel Préparation du prélèvement pour l'analyse par chromatographie en phase gazeuse.	 135 141 143 143 147 153 155 156
B C D E	Cind la n Disp C.1 C.2 Cali Pro par E.1 E.2	étiques de diffusion de l' H_2 dans les parois de l'autoclave et au travers de nembranepositifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfriedbibration de la chaîne de mesure de la températuretocole de quantification de l' H_2 par échantillonnage du fluide et analyse chromatographie en phase gazeuseÉchantillonnage in situ du fluide réactionnel Préparation du prélèvement pour l'analyse par chromatographie en phase gazeuse .E.2.1	 135 141 143 143 147 153 155 156 157
B C D E	Cind la n Disp C.1 C.2 Cali Pro par E.1 E.2	étiques de diffusion de l' H_2 dans les parois de l'autoclave et au travers de nembrane positifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried Seyfried ibration de la chaîne de mesure de la température tocole de quantification de l' H_2 par échantillonnage du fluide et analyse chromatographie en phase gazeuse Échantillonnage in situ du fluide réactionnel Préparation du prélèvement pour l'analyse par chromatographie en phase gazeuse . E.2.1 Prélèvement d'un volume d'Ar à P_{Amb} E.2.2 Dilution du prélèvement dans un volume d'Ar connu et à P_{Amb}	 135 141 143 143 147 153 156 157 157
B C D E	Cind la n Disp C.1 C.2 Cali Pro par E.1 E.2	étiques de diffusion de l' H_2 dans les parois de l'autoclave et au travers de nembranepositifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfriedbipation de la chaîne de mesure de la températuretocole de quantification de l' H_2 par échantillonnage du fluide et analyse chromatographie en phase gazeuseÉchantillonnage in situ du fluide réactionnel Préparation du prélèvement pour l'analyse par chromatographie en phase gazeuse .E.2.1Prélèvement d'un volume d'Ar à P_{Amb} E.2.3Prélèvement à P_{Amb} d'un volume du mélange Ar- H_2 pour injection dans le	 135 141 143 143 147 153 155 156 157 157
B C D E	Cind la n Disj C.1 C.2 Cali Pro par E.1 E.2	 étiques de diffusion de l'H₂ dans les parois de l'autoclave et au travers de nembrane positifs de contrôle de la f_{H2} et de la pression totale Dispositif de contrôle de la f_{H2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried bibration de la chaîne de mesure de la température tocole de quantification de l'H₂ par échantillonnage du fluide et analyse chromatographie en phase gazeuse Échantillonnage <i>in situ</i> du fluide réactionnel Préparation du prélèvement pour l'analyse par chromatographie en phase gazeuse . E.2.1 Prélèvement d'un volume d'Ar à P_{Amb} E.2.3 Prélèvement à P_{Amb} d'un volume du mélange Ar-H₂ pour injection dans le chromatographe 	 135 141 143 143 147 153 155 156 157 157 157
B C D E	Cind la n Disp C.1 C.2 Cali Pro par E.1 E.2	étiques de diffusion de l'H2 dans les parois de l'autoclave et au travers de nembrane positifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried Seyfried ibration de la chaîne de mesure de la température tocole de quantification de l'H2 par échantillonnage du fluide et analyse chromatographie en phase gazeuse Échantillonnage in situ du fluide réactionnel Préparation du prélèvement pour l'analyse par chromatographie en phase gazeuse . E.2.1 Prélèvement d'un volume d'Ar à P_{Amb} E.2.3 Prélèvement dans un volume d'Ar connu et à P_{Amb} E.2.3 Prélèvement à P_{Amb} d'un volume du mélange Ar-H2 pour injection dans le chromatographe Analyse du prélèvement par chromatographie en phase gazeuse	 135 141 143 143 147 153 155 156 157 157 157 157 157 158
B C D E	Cind la n Disp C.1 C.2 Cali Pro par E.1 E.2 E.3	étiques de diffusion de l'H2 dans les parois de l'autoclave et au travers de nembrane positifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried bispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried bispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried bispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried bispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried bispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried bispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried bispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried bispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried bispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried bispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried bispositif de contrôle de la température tocole de quantification de l'H2 par échantillonnage du fluide et analyse du prélèvement pour l'analyse par chromatographie en phase gazeuse . E.2.1	 135 141 143 143 147 153 155 156 157 157 157 158 158
B C D E	Cind la n Disp C.1 C.2 Cali Pro par E.1 E.2 E.3	étiques de diffusion de l'H2 dans les parois de l'autoclave et au travers de nembrane positifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried Seyfried ibration de la chaîne de mesure de la température tocole de quantification de l'H2 par échantillonnage du fluide et analyse chromatographie en phase gazeuse Échantillonnage in situ du fluide réactionnel Préparation du prélèvement pour l'analyse par chromatographie en phase gazeuse . E.2.1 Prélèvement d'un volume d'Ar à P_{Amb} E.2.3 Prélèvement à P_{Amb} d'un volume du mélange Ar-H2 pour injection dans le chromatographe Analyse du prélèvement par chromatographie en phase gazeuse . E.3.1 Principe de fonctionnement E.3.2 Calibration du chromatographe	 135 141 143 143 147 153 155 156 157 157 157 158 158 160
B C D E	Cind la n Disp C.1 C.2 Cali Pro par E.1 E.2 E.3 E.3	étiques de diffusion de l'H2 dans les parois de l'autoclave et au travers de nembrane positifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried Seyfried ibration de la chaîne de mesure de la température tocole de quantification de l'H2 par échantillonnage du fluide et analyse chromatographie en phase gazeuse Échantillonnage in situ du fluide réactionnel Préparation du prélèvement pour l'analyse par chromatographie en phase gazeuse . E.2.1 Prélèvement d'un volume d'Ar à P_{Amb} E.2.3 Prélèvement à P_{Amb} d'un volume du mélange Ar-H2 pour injection dans le chromatographe Analyse du prélèvement par chromatographie en phase gazeuse . E.3.1 Principe de fonctionnement E.3.2 Calibration du chromatographie en phase gazeuse . E.3.1 Principe de fonctionnement Calcul de la molalité d'H2 à partir des résultats obtenus par chromatographie en phase gazeuse	 135 141 143 143 147 153 155 156 157 157 157 158 158 160
B C D E	Cind la n Disp C.1 C.2 Cali Pro par E.1 E.2 E.3 E.3	étiques de diffusion de l'H2 dans les parois de l'autoclave et au travers de nembrane positifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried Seyfried ibration de la chaîne de mesure de la température tocole de quantification de l'H2 par échantillonnage du fluide et analyse chromatographie en phase gazeuse Échantillonnage in situ du fluide réactionnel Préparation du prélèvement pour l'analyse par chromatographie en phase gazeuse . E.2.1 Prélèvement d'un volume d'Ar à P_{Amb} E.2.3 Prélèvement à P_{Amb} d'un volume du mélange Ar-H2 pour injection dans le chromatographe Analyse du prélèvement par chromatographie en phase gazeuse . E.3.1 Principe de fonctionnement E.3.2 Calibration du chromatographe B.3.2 Calibration du chromatographe B.3.2 Calibration du chromatographe B.3.2 Calibration du chromatographe	 135 141 143 143 147 153 155 156 157 157 157 158 158 160 162
B C D E	Cind la n Disp C.1 C.2 Cali Pro par E.1 E.2 E.3 E.3	étiques de diffusion de l' H_2 dans les parois de l'autoclave et au travers de nembranepositifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2}	 135 141 143 143 147 153 155 156 157 157 157 158 158 160 162
B C D E	Cind la n Disp C.1 C.2 Cali Pro par E.1 E.2 E.3 E.3 E.4	étiques de diffusion de l'H2 dans les parois de l'autoclave et au travers de nembranepositifs de contrôle de la f_{H2} et de la pression totaleDispositif de contrôle de la f_{H2}	 135 141 143 143 147 153 155 156 157 157 157 158 160 162
B C D F	Cind la n Disp C.1 C.2 Cali Pro par E.1 E.2 E.3 E.4 Men de l	étiques de diffusion de l'H2 dans les parois de l'autoclave et au travers de nembranepositifs de contrôle de la f_{H2} et de la pression totaleDispositif de contrôle de la f_{H2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfriedseyfriedtibration de la chaîne de mesure de la températuretocole de quantification de l'H2 par échantillonnage du fluide et analyse chromatographie en phase gazeuseÉchantillonnage in situ du fluide réactionnelPréparation du prélèvement pour l'analyse par chromatographie en phase gazeuse .E.2.1Prélèvement d'un volume d'Ar à P_{Amb} E.2.3Prélèvement à P_{Amb} d'un volume du mélange Ar-H2 pour injection dans le chromatographeAnalyse du prélèvement par chromatographie en phase gazeuse .E.3.1Principe de fonctionnementE.3.2Calibration du chromatographie en phase gazeuse .E.3.3Prélèvement à Part des résultats obtenus par chromatographie en phase gazeuse .E.3.1Principe de fonctionnementE.3.2Calibration du chromatographeCalcul de la molalité d'H2 à partir des résultats obtenus par chromatographie en phase gazeuse .Calibration du chromatographeCalibration du chromatographeE.3.2Calibration du chromatographeCalibration du chromatographeCalibration du chromatographeCalibration du chromatographeCalibration du chromatographeCalibration du chromatographe<	 135 141 143 143 147 153 155 156 157 157 157 158 160 162 165
B C E F	Cind la n Disp C.1 C.2 Cali Pro par E.1 E.2 E.3 E.3 E.4 Men de l F.1	étiques de diffusion de l' H_2 dans les parois de l'autoclave et au travers de nembranepositifs de contrôle de la f_{H_2} et de la pression totale Dispositif de contrôle de la f_{H_2} Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried bibration de la chaîne de mesure de la températuretocole de quantification de l' H_2 par échantillonnage du fluide et analyse chromatographie en phase gazeuse Échantillonnage in situ du fluide réactionnel Préparation du prélèvement pour l'analyse par chromatographie en phase gazeuse .E.2.1 Prélèvement d'un volume d'Ar à P_{Amb} E.2.2 Dilution du prélèvement dans un volume d'Ar connu et à P_{Amb} E.2.3 Prélèvement à P_{Amb} d'un volume du mélange Ar- H_2 pour injection dans le chromatographe Analyse du prélèvement par chromatographie en phase gazeuse E.3.1 Principe de fonctionnement E.3.2 Calibration du chromatographe Calcul de la molalité d' H_2 à partir des résultats obtenus par chromatographie en phase gazeuse Calcul de la molalité d' H_2 à partir des résultats obtenus par chromatographie en phase gazeuse	 135 141 143 143 147 153 155 156 157 157 157 158 158 160 162 165 167

Table des figures

1.1	Répartition, dynamiques et morphologies des principales dorsales océaniques ter- restres	5
1.2	Représentations schématiques des distributions et des relations spatiales entre les diverses unités lithologiques rencontrées au niveau d'une dorsale lente de type MAR	6
1.3	Fumeurs observés sur substratum ultramafique	$\overline{7}$
1.4	Concentrations en H_2 et variations annuelles des fluides hydrothermaux naturels .	8
1.5	Modèle conceptuel liant nature des fluides hydrothermaux et processus magmatiques opérant lors de l'exhumation du manteau au niveau des dorsales océaniques lentes	9
1.6	Modèles thermodynamiques déterminant les variations de la nature, de la proportion et de la composition des phases produites avec la température lors de la serpentini-	
1.7	sation d'une olivine	10
	de phases produites lors de la serpentinisation d'une harzburgite par un fluide de composition voisine des fumeurs hydrothermaux du type Rainbow	12
1.8	Diagramme T - a_{SiO_2} montrant les domaines de stabilité des phases minérales impli- quées dans la serpentinisation	12
1.9	Modèles thermodynamiques déterminant les variations du rapport Fe^{3+}/Fe_{Tot} en fonction de la température et du rapport Eau/Roche (W/R) lors de la serpentinisation	
1.10	d'une olivine	13
1.11	la concentration d'H ₂ lors de la serpentinisation d'une lherzolite $\ldots \ldots \ldots$ Variation des m_{H_2} au cours du temps dans les précédentes études expérimentales	14
	de serpentinisation du Tableau 1.1	18
2.1	Representative membrane responses following instrumental perturbations in $f_{\rm H_2}$ at 50 MPa total pressure $(P_{\rm Tot})$ and at 250 °C	27
2.2	Time evolution of fluid H ₂ concentrations $(m_{\text{H}_{2, aq}})$ in serpentinization experiments performed at 50 MPa total pressure (P_{Tot}) and at 250, 300 et 350 °C	32
2.3	Time evolution of the H ₂ production (rate of $m_{\text{H}_{2,aq}}$ increase) in the same serpen- tinization experiments as in fig. 2.2	33
2.4	Results of the H ₂ manometry experiments showing the membrane $f_{\rm H_2}$ time evolution and the rate of $f_{\rm H_2}$ increase in serpentinization experiments performed at 50 MPa	
2.5	total pressure (P_{Tot}) and at 250 and 300 °C	33 25
2.6	Comparison between this study and previous fluid sampling serpentinization experiments performed with eliving rich ultrametic rocks between 200 and 400° C with	J J
0.7	mostly fine-grained starting powders and W/R of $1-2,5$	36
2.(serpentinization experiments at 50 MPa total pressure (P_{Tot}) and at 250 and 300 °C	38
3.1	BSE images of the reacted harzburgite showing the global aspect of experimental charges	58
$3.2 \\ 3.3$	SEM images of textures associated with residual crystals of olivine SEM images of textures associated with residual crystals of orthopyroxene	59 60

3.4 3.5 3.6 3.7 3.8	$\begin{array}{l} \mathrm{Mg}\# \ \text{of experimental brucites (see text for the description of the different textures)} \\ \mathrm{plotted \ against \ their \ SiO_2 \ concentration \ (wtPercent) \ \ldots \ \ldots \ \ldots \ } \\ \mathrm{SEM \ and \ Raman \ identification \ of \ serpentine \ polymorphs \ \ldots \ \ldots \ \ldots \ } \\ \mathrm{Mg}\# \ of \ experimental \ serpentines \ plotted \ against \ the \ number \ of \ Si \ atoms \ pfu \ \ldots \ } \\ \mathrm{Mg}\# \ of \ experimental \ serpentines \ plotted \ against \ the \ number \ of \ Si \ atoms \ pfu \ \ldots \ } \\ \mathrm{Mg}\# \ of \ experimental \ serpentines \ plotted \ against \ the \ number \ of \ Si \ atoms \ pfu \ \ldots \ } \\ \mathrm{Mg}\# \ of \ experimental \ crystals \ plotted \ as \ a \ function \ of \ temperature \ \ldots \ \ldots \ } \\ \mathrm{T-log} \ a_{\mathrm{SiO}_2} \ diagram \ showing \ relative \ stability \ fields \ of \ minerals \ associated \ with \ serpentinization \ \ldots \ \ldots \ } \end{array}$	62 64 66 70 71
41	XBD diffractograms of experimental charges produced from Åheim dunite	91
4.2 4.3	SEM images of reacted dunite and San Carlos olivines	92
4 4	against the initial grain size for the San Carlos olivine experiments	$93 \\ 94$
4.5	Jrs/Js as a function of Hcr/Hc plot (Day diagram) for selected experimental products	96
4.6	Schematic representation of fluid-mineral interactions in the oceanic crust illustra- ting internal and external $f_{\rm H_{2}}$ control	99
4.7	Illustration of the two types of f_{H_2} control experimentally developed for testing the influence of f_{H_2} on the serpentinization reaction	100
5.1	Évolution des $f_{\rm H_2}$ et $f_{\rm H_2O}$ calculées avec l'équation d'état de Redlich & Kwong en fonction de $X_{\rm H_2}$ dans le système H ₂ O-H ₂ à $P_{\rm Tot} = 50$ MPa et à 250, 300 et 350 °C Schéme du dispositif currénimental dévelopmé pour effectuer des measures simultanées	116
0.2	Schema du dispositif experimental developpe pour ellectuer des mesures simultanées de $f_{\rm H}$ et de $m_{\rm H}$ dans le système H ₂ O-H ₂	119
5.3	Évolution temporelle des $f_{\text{H}_{2}}$ enregistrés dans la membrane durant les expériences	120
5.4	Mesures expérimentales des couples $f_{\rm H_2}$ et $m_{\rm H_2}$ à $P_{\rm Tot} = 50 \mathrm{MPa}$ et à 250 et 300 °C	122
5.5	Évolution de la $f_{\rm H_2}$ lors de l'abaissement de la température de 300 à 250 °C	123
5.6	$\gamma_{\mathrm{H}_{2,aq}}$ vs. m_{H_2} dans le système H ₂ O-H ₂	124
B.1	Régressions linéaires effectuées dans les domaines de diminution de la f_{H_2} imputable à la diffusion de l'H ₂ dans les parois de l'autoclave	138
B.2	Variation du taux de diffusion de l'H ₂ dans les parois de l'autoclave en fonction de la $f_{\rm H_2}$ à $P_{\rm Tot} = 50$ MPa et à 250 et 300 °C	139
В.3	Evolution de la f_{H_2} en fonction du temps durant la période de relaxation de la membrane	140
C.1	Schéma du dispositif expérimental développé afin d'imposer dans le milieu réaction-	
C A	nel une f_{H_2} indépendante de la pression totale	143
C.2	Schema du dispositif experimental permettant de contraindre la pression de confi- nement ou P_{Tot} indépendamment de la température	145
D.1 D.2	Schéma du dispositif mis en place afin de réaliser la calibration des thermocouples Profils d'évolution temporelle de la FEM_r dans Pb et Sn lors d'un cycle de refroidis- sement et de chauffe au cours duquel les points de solidification et de fusion sont	151
	franchis	152
E.1 E.2	Échantillonnage du fluide réactionnel au moyen d'une seringue étanche aux gaz Détente dans un bécher d'un volume d'Ar contenu en surpression dans une seringue	155
E.3	étanche aux gaz de sorte que la pression interne à celle-ci s'égalise avec P_{Amb} Dilution du prélèvement dans un flacon contenant de l'eau déminéralisée et 10 mL	156
E 4	U AI	107 158
E.5	Chromatogramme obtenu par injection d'un mélange Ar-H ₂ dans le GC	$150 \\ 159$
E.6	Droite de calibration déterminée à partir des mesures couplées de $n_{\rm H_2}^{\rm Inj}$ et de $S_{\rm H_2}^{\rm Flac}$.	162
F.1 F.2	Ligne de mesure de la f_{H_2} en place $\dots \dots \dots$	$\begin{array}{c} 167 \\ 168 \end{array}$

F.3	Répartiteur en « T » réalisé afin d'introduire dans la canne de prélèvement le capil-	
	laire liant la membrane au reste de la ligne de mesure de la $f_{\rm H_2}$	169
F.4	Représentation schématique des 2 détentes et des 4 mesures de pressions associées,	
	nécessaire à la détermination de $V_{\rm Mb}$	170
F.5	Dispositif utilisé afin de déterminer $V_{\rm Mb}$	171
F.6	Schéma en coupe d'une vanne quart de tour à boisseau sphérique utilisé pour isoler	
	$V_{\rm Mb}$ de V_1	171
F.7	Les 15 mesures de $V_{\rm Mb}$ et erreurs associées obtenues à partir des 6 détentes réalisées	173
F.8	Évolution de $\Delta V_{\rm Mb}$ en fonction de $V_{\rm R}$	174
F.9	Les 15 mesures et erreurs associées du volume du dispositif $(V_1 - V_{Vn})$ obtenues à	
	partir des 6 détentes réalisées	174

Table des figures supplémentaires

2.s1	Granulometric distribution of the two starting Vourinos harzburgite powders used	
	in this study	44
2.s2	Schematic illustrations of the two experimental setups and measurement types used	
	in this study	45
2.s3	$f_{\rm H_2}$ evolution in Run 47 where fluid sampling and $f_{\rm H_2}$ manometry were coupled	
	(Tableau 2.1), performed at 50 MPa total pressure (P_{Tot}) and at 300 °C	46
3.s1	Granulometric distribution of the two starting Vourinos harzburgite powders used	
	in this study	80

Liste des tableaux

1.1	Synthèse des travaux expérimentaux antérieurs sur la serpentinisation $\ . \ . \ .$.	16
$2.1 \\ 2.2$	Experimental parameters	$\begin{array}{c} 28\\ 30 \end{array}$
3.1 3.2 3.3 3.4 3.5	Experimental conditionsExperimental resultsRepresentative electron microprobe analysis of experimental bruciteRaman characterization of serpentine polymorphsRepresentative electron microprobe analysis of experimental serpentineRepresentative electron microprobe analysis of experimental serpentine	55 56 63 65 67
4.1 4.2	Experimental results	89 95
5.1	Comparaison des $m_{\rm H_2}$ calculées en utilisant la règle de Lewis et Randall appliquée aux valeurs de $f_{\rm H_2}$ mesurées durant les expériences de serpentinisation avec membrane, aux $m_{\rm H_2}$ mesurées durant les expériences de serpentinisation avec quantification de l'UL part CC	110
5.2	Comparaison des $\phi_{H_2}^{\bullet}$ calculés avec l'équation d'état de Redlich et Kwong (1949) à ceux donnés par Shaw et Wones (1964)	112
5.3	Comparaison des $\phi_{H_2O}^{\bullet}$ calculés avec l'équation d'état de Redlich et Kwong (1949) à ceux donnés par Burnham <i>et al.</i> (1969)	115
5.4	Coefficients de fugacité et fugacités de l'H ₂ et de l'H ₂ O calculés avec l'équation d'état de Redlich et Kwong (1949) pour des mélanges H ₂ O-H ₂ à $P_{\text{Tot}} = 50 \text{ MPa}$ et à 250, 300 et 350 °C	117
5.5	Résultats des expériences de mesures simultanées de la $f_{\rm H_2}$ et de la $m_{\rm H_2}$ dans le système H ₂ O-H ₂ à $P_{\rm Tot} = 50$ MPa et à 250 et 300 °C	121
5.6 5.7	Paramètres des régressions linéaires effectuées à partir des mesures expérimentales couplées de f_{H_2} et m_{H_2} à $P_{Tot} = 50$ MPa et à 250 et 300 °C	123
0.1	et 300° C	124
B.1	Paramètres des régressions linéaires permettant de définir les taux de diminution de la $f_{\rm H_2}$ imputable à la diffusion de l'H ₂ dans les parois de l'autoclave	137
D.2	$f_{\rm H_2}$ dans la membrane durant ces trois périodes $\dots \dots \dots$	139
D.1	Réponses en température de V_{Rb} et V_{Ry} pour différentes FEM _r imposées et déterminées avec V_{Rf}	150
D.2	$\text{FEM}_{\text{f/s}}$ mesurées avec les différents thermocouples à calibrer et coefficient a et b des fonctions affines liant FEM à T_{r}	151
E.1	$n_{\rm H_2}^{\rm Inj}$ des standards utilisés pour la calibration, $S_{\rm H_2}^{\rm Flac}$ correspondantes et erreurs associées	160
F.1	Mesures des pressions avant et après détente dans la ligne de mesure de la $f_{\rm H_2}$	172

Chapitre 1

000

Introduction générale

1.1 Généralités

Le processus de serpentinisation englobe un ensemble de phénomènes physico-chimiques conduisant à la transformation par hydratation des roches ultramafiques du manteau supérieur, les péridotites. Ce processus est associé à de profondes modifications minéralogiques consécutives à l'hydrolyse des olivines et des pyroxènes (minéraux majeurs des péridotites) et à la précipitation, en proportions variées, de nouvelles phases solides dont les principales sont : la serpentine, la brucite et la magnétite. Ces transformations minéralogiques affectent grandement les propriétés physiques et chimiques de ces roches. Il en va de même des propriétés des fluides impliqués dans ces réactions. Sur Terre, ce processus s'opère dans différents contextes géologiques, permettant l'interaction directe entre ces péridotites et les fluides. Dans l'état actuel des connaissances, la serpentinisation peut être observée dans deux grands contextes géodynamiques : l'un divergent, au niveau de dorsales océaniques lentes et l'autre convergent, au niveau des zones de subduction.

L'une des propriétés remarquables du processus de serpentinisation est la production d'hydrogène moléculaire (H₂) qui y est associée. Si son origine, la réduction de l'H₂O couplée à l'oxydation du Fe²⁺ contenue initialement dans les minéraux silicatés du manteau, ne fait aujourd'hui plus grand mystère, les quantités produites, les taux de productions, les propriétés rédox qui sont conférées au fluide et leurs répercussions sur l'ensemble du système hydrothermal (fluide + assemblages minéralogiques) restent encore mal contraints. Aussi c'est autour de cet H₂, produit durant le processus de serpentinisation en contexte de dorsales océaniques lentes, que s'est concentrée la majeure partie de mes travaux de thèse. Pour cela, la méthode expérimentale a été privilégiée. Celle-ci, sans avoir la prétention de reproduire à l'identique la complexité du système naturel, présente l'avantage de fournir des données quantitatives sur l'objet et le processus étudiés au moyen du contrôle précis d'un nombre limité de paramètres indépendants.

Aux questions initiales à l'origine de ce projet, sont venues se greffer, en cours de route, nombre d'autres interrogations. Parmi ces dernières, celles énoncées ci-dessous reflètent les motivations premières qui ont guidé mes réflexions et orienté mes expériences :

- Quelles sont les quantités d'H₂ produites au cours de la serpentinisation?
- Quels sont les effets de la température sur les quantités d'H₂ produites ?
- Quelles sont les cinétiques de productions de l'H₂ et quels paramètres les contrôlent?
- Quelles sont les conditions rédox associées au processus de serpentinisation?
- Quels sont les mécanismes réactionnels conduisant à la formation des phases solides finales ?
- Quels sont les effets de la mobilité de l' H_2 dans le système ?
- Quelles sont les répercussions des mécanismes de contrôle de la fugacité d'H₂ (f_{H_2}) sur la serpentinisation ?
- Quels sont les liens entre la f_{H2} et la concentration en H2 dissous dans le système H2O-H2 (-NaCl) ?

Ce mémoire s'articule en 5 parties principales. À la suite de l'Introduction générale (Chapitre 1), les Chapitres 2 et 3 présentent, sous la forme de deux manuscrits pour publication, les résultats obtenus lors d'une série d'expériences de serpentinisation d'une harzburgite réalisée dans des autoclaves à prélèvement de grand volume. Le Chapitre 2 se concentre sur la quantification de l'H₂ produit et la détermination des conditions rédox lors de la serpentinisation. L'étude détaillée des phases solides produites dans ces expériences fait l'objet du Chapitre 3. Le Chapitre 4, également présenté sous forme d'un manuscrit pour publication, est la synthèse d'une série d'expériences réalisées dans des autoclaves à joint froid sur des cristaux d'olivines et sur une dunite, visant à déterminer l'influence de la mobilité de l'H₂ sur le processus de serpentinisation. Le Chapitre 5 est une discussion, étayée par des modélisations thermodynamiques et des expériences originales réalisées dans le système H₂O-H₂, permettant d'établir rigoureusement le lien entre fugacités d'H₂ (f_{H_2}) et concentrations en H₂ dissout $(m_{H_{2,aq}})$ dans les fluides hydrothermaux. Enfin, le mémoire est complété de 6 Annexes décrivant les appareillages et les divers protocoles développés ou simplement utilisés durant ce travail.

1.2 Rappels sur la serpentinisation

Loin d'être exhaustifs, ces rappels ont pour simple objectif de préciser le contexte géologique naturel dans lequel se déroule le processus de serpentinisation au niveau des dorsales lentes.

1.2.1 Contexte géologique

Exhumation du manteau au niveau des dorsales océaniques lentes

Les dorsales océaniques forment une chaîne montagneuse sous-marine large de 1000 à 3000 km et dont la longueur cumulée dépasse les 60 000 km (Figure 1.1). Elles sont l'expression en surface de remontées de matériel mantellique conduisant à la formation de la croûte océanique et matérialisent les frontières divergentes entre les plaques tectoniques. Actuellement, on distingue, de par leur vitesse d'expansion, trois types de dorsales. Les dorsales rapides dont l'archétype est la dorsale est Pacifique (EPR, Figure 1.1), les dorsales lentes (expansion $< 40 \text{ mm} \cdot \text{an}^{-1}$) dont la plus étudiée à ce jour est la dorsale médio-Atlantique (MAR, Figure 1.1) et enfin les dorsales ultra-lentes (expan $sion < 20 \,\mathrm{mm \cdot an^{-1}}$) comme la dorsale sud-ouest indienne (SWIR, Figure 1.1). En plus des roches magmatiques de la croûte océanique classiquement observées (basaltes, gabbros), les dorsales lentes (et ultra-lentes) ont la particularité d'être associées à des occurrences relativement importantes de roches d'origine mantellique. Au cours des dernières décennies, plusieurs campagnes océaniques ont permis, par échantillonnage (draguage, forage, submersible) et par prospection géophysique (sondage bathymétrique, magnétisme, gravimétrie, sismique), de déterminer la morphologie des dorsales lentes (notamment l'existence d'une segmentation, Figures 1.2a et 1.2b) et d'en contraindre les structures internes (limites fragile/ductile, existence de failles, organisation des différentes unités lithologiques). Dans l'océan Atlantique, les roches magmatiques sont prépondérantes au

FIGURE 1.1 – Répartition, dynamiques et morphologies des principales dorsales océaniques terrestres. MAR : dorsale médio-Atlantique (Mid-Atlantic Ridge), SWIR : dorsale sud-ouest indienne (SouthWest Indian Ridge), CIR : dorsale centrale indienne (Central Indian Ridge), SEIR : dorsale sud-est indienne (SouthEast Indian Ridge), EPR : dorsale est-Pacifique (East Pacific Rise), PAR : dorsale Pacifique-Antarctique (Pacific-Antarctic Ridge) et ARs : dorsales arctiques (Artic Ridges). Le fond topographique provient d'Amante et Eakins (2009) et les vitesses d'expansion océanique sont extraites de DeMets *et al.* (1990).

FIGURE 1.2 – Représentations schématiques des distributions et des relations spatiales entre les diverses unités lithologiques rencontrées au niveau d'une dorsale lente de type MAR. (a) Structure d'un segment le long de la dorsale (modifié d'après Cannat *et al.*, 2010). Le segment est délimité au nord et au sud par des discontinuités qui peuvent être transformantes ou non (Sempéré *et al.*, 1990). Des roches d'origine magmatique (basaltes principalement) affleurent dans la vallée axiale et dans les coins externes tandis que de la péridotite associée à des intrusions magmatiques affleure au niveau des coins internes. Les coupes (b) et (c) sont représentées. (b) Coupe longitudinale de deux segments d'une dorsale (modifié d'après Cannat *et al.*, 1995). La croûte magmatique a une épaisseur allant jusqu'à \approx 6 km au milieu des segments tandis qu'elle s'amincit, jusqu'à localement disparaître, au niveau des discontinuités. La limite lithosphère/asthénosphère (\equiv cassant/ductile) est plus profonde au niveau des discontinuités (jusqu'à \approx 10 km de profondeur) qu'au niveau du centre des segments où elle recoupe les roches gabbroïques. (c) Coupe interprétative normale à la vallée axiale à proximité d'une discontinuité (modifié d'après Cannat *et al.*, 2010). Dans ce modèle, l'association, au niveau du coin interne, de roches magmatiques et de roches d'origine mantellique est expliquée par des intrusions de corps gabbroïques, contemporaines du fonctionnement de la faille de détachement permettant l'exhumation des roches mantelliques. Ce modèle rend également compte de la mise en place de larges volumes de roches magmatiques (2) associés aux roches d'origine mantellique par capture, lors de l'initiation d'une nouvelle faille (1) au niveau de l'axe, d'une partie de la plaque opposée.

centre des segments et dans les coins externes tandis que les roches d'origine mantellique affleurent dans les coins internes en association avec des intrusions d'origine magmatique (Figure 1.2, Karson *et al.*, 1987; Cannat *et al.*, 1992, 1995). Ces observations ont conduit à la mise en place d'un modèle d'exhumation des roches mantelliques le long de failles de détachement (Figure 1.2c, Cannat, 1993; Cannat *et al.*, 2009, 2010). Au niveau de la SWIR, les roches d'origine mantellique affleurent également à distance des discontinuités et des modèles faisant appel à une faible activité magmatique sont proposés pour expliquer leur mise en place (Dick *et al.*, 2003).

Systèmes hydrothermaux sur substratum ultrabasique

La mise en place d'un système hydrothermal requiert trois conditions : 1) une source de chaleur permettant la mise en place d'un gradient thermique, 2) un réservoir de fluide de température variable et 3) un milieu physique rocheux dans lequel le fluide peut circuler (on distinguera les zones d'infiltration du fluide ou zones de « recharge » des zones d'exfiltration du fluide ou zones de « décharge »). Les dorsales océaniques, de par leur nature, sont donc un endroit propice à la mise en place de tels systèmes. En effet l'activité magmatique à faible profondeur (quelques km) fournit une source de chaleur et génère un fort gradient thermique à l'axe de la dorsale. L'océan sus-jacent est un réservoir abondant d'eau (froide dans ce cas) et l'importante fracturation associée à la mise en place du plancher océanique constitue un réseau idéal pour permettre l'infiltration initiale du fluide et ainsi le « démarrage » du système hydrothermal.

Les premiers sites hydrothermaux actifs (zones de décharge en surface témoignant de l'existence d'un système hydrothermal sous-jacent) en contexte de dorsale océanique ont été découverts au niveau de la dorsale des Galápagos (substratum basaltique) à la fin des années 70. Dès lors, les

FIGURE 1.3 – Fumeurs observés sur substratum ultramafique. (a) et (b) Fumeurs noirs observés sur le site hydrothermal d'Ashadze; les bulles de gaz (b) sont une particularité de ce site (Charlou *et al.*, 2010). (c) Évents hydrothermaux observés sur le site hydrothermal de Lost City (photo de D. Kelley, U. of Washington).

découvertes vont se multiplier avec le nombre croissant des campagnes d'exploration. Des sites hydrothermaux sont décrits sur tous les types de dorsales (rapides, lentes) et il est fort probable que ce genre de manifestations existe sur toute la longueur des dorsales océaniques à l'échelle mondiale. L'existence de sites hydrothermaux développés sur substratum ultramafique a été démontrée au cours des années 90 au niveau de la MAR. Cette découverte s'est faite tout d'abord de manière indirecte, en enregistrant des concentrations en CH₄ élevées dans la colonne d'eau située à l'aplomb de péridotites serpentinisées (15°20'N Fracture Zone, Charlou et Donval, 1993). Puis, plusieurs champs hydrothermaux de ce type ont été localisés : Logatchev (14°45'N, Batuev *et al.*, 1994; Bogdanov *et al.*, 1995), Rainbow (36°14'N, Fouquet *et al.*, 1997), Lost City (30°N, Kelley *et al.*, 2001) ou encore Ashadze (12°58'N, Beltenev *et al.*, 2003).

L'analyse des échantillons de fluides prélevés in situ (au niveau des fumeurs, Figure 1.3) permet de distinguer deux familles principales de fluides associés à l'hydrothermalisme en contexte ultrabasique. D'un côté, les fluides du type Lost City se caractérisent par des pH très alcalins (jusqu'à 12), des températures relativement froides $(40 - 94 \,^{\circ}\text{C})$ et de très faibles teneurs en métaux dissous. De l'autre, les fluides émis au niveau des autres sites hydrothermaux mentionnés ci-dessus présentent une très forte opacité (à l'origine du terme de fumeur noir, Figures 1.3a et 1.3b), des pH acides (3-4), des températures relativement élevées $(320-350 \degree C \& Logatchev et 360-365 \degree C \& Rainbow)$ et de fortes concentrations en métaux dissous. Néanmoins, ces deux types de fluides possèdent des propriétés communes qui sont la signature de l'hydrothermalisme en contexte ultrabasique. Parmi celles-ci, on note la forte concentration en H₂ dissous (Figure 1.4), mais aussi en CH₄. Inversement, ces fluides sont, comparativement aux fluides associés à des systèmes hydrothermaux rencontrés en contexte basaltique, pauvres en SiO₂ et en H_2S (Charlou *et al.*, 2010). Afin d'expliquer cette dualité entre les systèmes hydrothermaux développés sur substratum péridotitique et basaltique, Cannat et al. (2010) ont proposé un modèle conceptuel (Cannat et al., 2010). Dans ce dernier, les auteurs distinguent deux cas dans le processus d'exhumation du manteau. Celui-ci serait, dans un premier cas, accompagné par la mise en place de roches magmatiques, ce qui serait à l'origine des fluides du

FIGURE 1.4 – Concentrations en H_2 et variations annuelles des fluides hydrothermaux naturels (d'après Charlou *et al.*, 2010). Les multiples mesures réalisées au cours du temps au niveau du site de Rainbow (trait plein) révèlent une relative constance des concentrations en H_2 des fluides émis. La concentration en H_2 semble plus variable au niveau du site de Logatchev I (trait pointillé).

FIGURE 1.5 – Modèle conceptuel liant nature des fluides hydrothermaux et processus magmatiques opérant lors de l'exhumation du manteau au niveau des dorsales océaniques lentes (compilé d'après Cannat *et al.*, 2010). Deux configurations sont identifiées : (a) Exhumation du manteau en l'absence de processus magmatiques; les fluides associés ont des températures relativement basses (< 250 °C) et les zones de décharge pourraient correspondre aux fumeurs blancs. (b) Exhumation du manteau couplée à l'intrusion de corps magmatiques; dans ce cas les fluides associés sont de type Rainbow.

type Rainbow. Le deuxième cas correspondrait à une exhumation totalement amagmatique reliée aux fluides plus froids.

La géométrie de la zone où le processus de serpentinisation est actif dans le substratum péridotitique reste aujourd'hui encore mal définie. Deux facteurs principaux contrôlent son domaine d'existence. 1) La géométrie des isothermes délimite des domaines de température où les réactions de serpentinisation sont possibles avec notamment une température maximale au-delà de laquelle les minéraux constitutifs des péridotites sont stables. 2) La perméabilité des péridotites qui, étroitement liée à la distribution des failles et fractures les parcourant, permet un drainage du fluide en profondeur plus ou moins efficace.

1.2.2 Production d'H₂ et réactions associées à la serpentinisation

Comme évoqué plus haut, le processus de serpentinisation conduit à de profondes modifications minéralogiques des roches mantelliques. Ceci est imputable au fait que, dans les conditions associées au processus d'exhumation, les olivines et les pyroxènes, principaux constituants des péridotites, sont instables en présence d'eau et vont devoir subir des transformations minéralogiques irréversibles.

En tenant compte des produits couramment observés dans les péridotites serpentinisées, il est possible de décrire cette réaction globale, non équilibrée stœchiométriquement, avec l'équation suivante :

$$(Mg_{0.9}, Fe_{0.1})_2 SiO_4 \pm (Mg_{0.9}, Fe_{0.1}) SiO_3 \pm H_2O \rightarrow \\ Olivine & Orthopyroxène & Fluide \\ (Mg\# = 90) & (Mg\# = 90) \\ (Mg, Fe^{2+}, Fe^{3+})_3 (Si, Fe^{3+})_2O_5(OH)_4 \pm (Mg, Fe^{2+})(OH)_2 \pm Fe^{2+}Fe_2^{3+}O_4 \pm SiO_2 \pm H_2 \quad (Rn1.1) \\ Serpentine & Brucite & Magnétite & Fluide & Fluide \\ \end{array}$$

où $Mg\# = 100 \times at. \frac{Mg}{Mg+Fe}$. Il est à noter que dans cette réaction, comme dans la suite de cette Introduction, le cas des clinopyroxènes n'est pas traité et ceci pour la simple (et bonne) raison que dans les conditions expérimentales (température et durée notamment) imposées durant ce travail de thèse, le clinopyroxène se comporte comme une phase stable (cf. Chapitre 3).

Mécanisme général de production de l'H₂

La production d' H_2 observée lors de la serpentinisation est due à la réaction d'oxydoré duction suivante :

$$2Fe^{2+}O + H_2O = Fe_2^{3+}O_3 + H_2$$
(*Rn*1.2)

Durant la serpentinisation, le Fe^{2+} est initialement contenu dans l'olivine et dans l'orthopyroxène. Le Fe^{3+} produit est, quant à lui, principalement intégré à deux phases néoformées : la magnétite et la serpentine. Cependant, la réaction (Rn 1.1) montre que la totalité du Fe^{2+} n'est pas oxydé. Une part est intégrée à la magnétite dont le rapport $\text{Fe}^{3+}/\text{Fe}^{2+}$ est fixé, une autre part est

FIGURE 1.6 – Modèles thermodynamiques déterminant les variations de la nature, de la proportion et de la composition des phases produites avec la température lors de la serpentinisation d'une olivine (Mg# = 90) à 50 MPa et pour un rapport Eau/Roche proche de 1 (d'après les données de Klein *et al.*, 2013). (a) Nature et proportion relative des différentes phases produites à l'équilibre. (b) Variations du Mg# de la serpentine et de la brucite. On note une relative constance du Mg# de la serpentine tandis que celui de la brucite augmente substantiellement avec la température. (c) Augmentation avec la température de la proportion de Fe³⁺ par rapport au Fe total dans la serpentine. (d) Variation de la quantité d'H₂ produite. On note une augmentation importante associée au domaine de stabilité de la magnétite et une chute drastique associé au domaine de stabilité de l'olivine. En dehors de ces deux domaines, la production d'H₂ est imputable uniquement à l'incorporation de Fe³⁺ dans la structure de la serpentine.

intégrée, en proportions variables, à la brucite et à la serpentine (réaction (Rn 1.1)). La quantité totale d'H₂ produite lors de la serpentinisation est donc fonction de la nature et de la proportion de chacune de ces trois phases, de la quantité de Fe²⁺ contenu dans la brucite et la serpentine et du rapport Fe³⁺/Fe²⁺ dans cette dernière. La modélisation de la production d'H₂ lors de la serpentinisation demande que soient précisés les facteurs de contrôle de la nature, la proportion et la composition des phases produites.

Assemblages minéralogiques et production d'H₂

Comme mentionné précédemment, la production d'H₂ au cours de la serpentinisation va être fonction de la nature des phases produites et de leurs abondances respectives. Parmi les paramètres influant sur ces deux facteurs, la température joue un rôle prépondérant. Elle est d'ailleurs un des paramètres les plus étudiés à ce jour (e.g., Martin et Fyfe, 1970; Moody, 1976; McCollom et Bach, 2009; Klein *et al.*, 2009, 2013, 2014; Malvoisin *et al.*, 2012a,b; Mayhew *et al.*, 2013; McCollom *et al.*, 2016). Le modèle thermodynamique proposé par Klein *et al.* (2013) rend compte des effets induits par la température (Figure 1.6). Pour un protolithe composé d'une olivine de composition Fo_{90} , les effets de la température sur les phases produites sont :

- Stabilité de l'olivine au-delà de $\approx 340\,^\circ\mathrm{C}.$
- En deçà du champ de stabilité de l'olivine les proportions de serpentine et de brucite sont relativement constantes.
- Stabilité de la magnétite entre ≈ 240 et $\approx 340\,^\circ\mathrm{C}.$
- Production d'H₂ quasiment doublée dans le champ de stabilité de la magnétite.

Les conditions rédox influent également sur la stabilité des phases produites et l'observation fréquente, dans les serpentinites naturelles, d'alliages métalliques ou de minéraux contenant du Fe métal (non explicités dans la réaction (Rn 1.1)) tel que l'awaruite (FeNi₃) est expliquée par l'existence des conditions très réductrices (Frost, 1985; Klein et Bach, 2009).

Le rapport Eau/Roche (W/R), en diluant plus ou moins les espèces en solution selon que celuici soit grand ou petit, joue également un rôle prépondérant sur la nature des phases produites. Par exemple, Malvoisin (2015) a démontré par calcul que les assemblages associés à la serpentinisation d'une harzburgite à 300°C et 50 MPa évoluent d'une paragénèse à brucite-serpentineclinopyroxène-wustite pour des W/R < 0.3 à talc-serpentine pour des W/R > 130 - 140, en passant par des paragénèses de type brucite-serpentine-clinopyroxène-wustite-magnétite, bruciteserpentine-clinopyroxène-magnétite, brucite-serpentine-magnétite, serpentine-magnétite et serpentine seule pour des W/R intermédiaires (Figure 1.7).

Enfin, l' a_{SiO_2} joue aussi un rôle prépondérant sur la stabilité des phases produites. Celle-ci dépend au premier ordre du ratio olivine/orthopyroxène dans le protolithe puisque avec un rapport $\frac{Mg+Fe}{Si} = 2$, l'olivine fournit au fluide, en proportion, deux fois moins de Si que l'orthopyroxène ($\frac{Mg+Fe}{Si} = 1$). La dissolution de l'olivine impose donc au système une a_{SiO_2} relativement basse et, lorsque le fluide arrive à saturation, des assemblages contenant de la brucite (sans Si, réaction (Rn 1.1)) peuvent cristalliser (Bach *et al.*, 2006; Seyfried *et al.*, 2007; Klein et McCollom, 2013; McCollom *et al.*, 2016; Figure 1.8). À contrario, lorsque le système contient du pyroxène, l' a_{SiO_2} résultante est trop élevée et la précipitation de brucite n'est jamais observée (Frost et Beard, 2007; Figure 1.8), bien qu'elle soit théoriquement possible pour des protolithes de type harzburgite riche en olivine (olivine > 70 pds.%, Klein *et al.*, 2013).

Composition des phases néoformées et production d'H₂

En plus de la nature et de la proportion des phases produites, la quantité de Fe intégrée à leur structure et la spéciation de celui-ci vont grandement influer sur la production d'H₂. Dans le cas

 $\label{eq:FIGURE 1.7-Variation en fonction de la température et du rapport Eau/Roche des assemblages de phases produites lors de la serpentinisation d'une harzburgite par un fluide de composition voisine des fumeurs hydrothermaux du type Rainbow (modifié d'après Malvoisin, 2015). Abréviations : Ol : olivine; Di : clinopyroxène; Srp : serpentine; Br : brucite; Ta : talc; Tr : trémolite.$

FIGURE 1.8 – Diagramme T- a_{SiO_2} montrant les domaines de stabilité des phases minérales impliquées dans la serpentinisation (modifié d'après Frost et Beard, 2007). Abréviations : Ol : olivine ; Opx : orthopyroxène ; Srp : serpentine ; Bct : brucite ; Tc : talc ; Per : périclase.

de la brucite, seul du Fe^{2+} peut être incorporé (réaction $(Rn \, 1.1)$). Aussi la production potentielle d'H₂ (dépendante de la spéciation du Fe non intégré) sera d'autant plus importante que le Mg# de la brucite sera élevé. Le cas de la serpentine est plus complexe car celle-ci peut intégrer une quantité variable de Fe dans sa structure (variation du Mg#) et ce dernier peut être incorporé aussi bien sous forme de Fe²⁺ que de Fe³⁺ (variation du rapport Fe³⁺/Fe²⁺, Seyfried *et al.*, 2007; Marcaillou *et al.*, 2011; Andreani *et al.*, 2013). En conséquence, une part importante (voire la totalité en dehors du champ de stabilité de la magnétite) de l'H₂ produit est à associer au Fe³⁺ intégré dans la serpentine (Figure 1.6).

Là encore la température et le W/R jouent en rôle important. Dans le même modèle qu'évoqué précédemment, Klein *et al.* (2013) décrivent :

- Une augmentation du Mg# de la brucite avec la température (celui de la serpentine est, quant à lui, relativement stable, Figure 1.6b).
- Une augmentation du rapport Fe³⁺/Fe_{Tot} dans la serpentine avec la température qui atteint des valeurs > 30 pour des températures > 300 °C (Figure 1.6c).
- Une augmentation du rapport Fe³⁺/Fe_{Tot} dans la serpentine avec le W/R, notamment pour les températures < 300 °C (Figure 1.9).

Il est à noter que les effets de la température sur la serpentinisation calculés par Klein *et al.* (2013) sont corroborés par de nombreuses études expérimentales (Moody, 1976; Janecky et Seyfried, 1986; Berndt *et al.*, 1996; Allen et Seyfried, 2003; Seyfried *et al.*, 2007; Marcaillou *et al.*, 2011; Malvoisin *et al.*, 2012a,b; Klein *et al.*, 2015; McCollom *et al.*, 2016) et l'analyse des produits naturels (Klein *et al.*, 2014).

Pour terminer ce rappel concernant les phases produites lors de la serpentinisation, il est important de noter le fait que les paramètres évoqués ci-dessus peuvent varier durant l'avancement

FIGURE 1.9 – Modèles thermodynamiques déterminant les variations du rapport ${}^{\text{Fe}^{3+}/\text{Fe}_{\text{Tot}}}$ en fonction de la température et du rapport Eau/Roche (W/R) lors de la serpentinisation d'une olivine (Mg# = 90) à 50 MPa (d'après Klein *et al.*, 2013). En dessous de 300 °C, une augmentation nette du rapport ${}^{\text{Fe}^{3+}/\text{Fe}_{\text{Tot}}}$ est observée.

du processus et, qu'en conséquence, les phases initialement produites peuvent voir leur composition évoluer ou tout simplement disparaître au profit de la formation de nouvelles phases. Par exemple dans un modèle simulant un renouvellement du fluide réactionnel, qui se traduit notamment par une diminution de la concentration en H₂ dans celui-ci (fluide extrait riche en H₂, eau de mer introduite dépourvue en H₂), Seyfried *et al.* (2007) ont mis en évidence l'apparition et la disparition successives de nouvelles phases solides porteuses de Fe (Figure 1.10).

FIGURE 1.10 – Simulation thermodynamique de l'évolution de la composition minéralogique et de la concentration d'H₂ lors de la serpentinisation d'une lherzolite à 200 °C et 50 MPa (d'après Seyfried *et al.*, 2007). Chaque 0,1 unité d'avancement correspond à l'ajout d'un kilo d'eau de mer. (a) Quantité, nature et composition des phases produites en fonction de l'avancement. (b) Évolution de la concentration en H₂ dans le fluide en fonction de l'avancement. Les paliers de concentrations en H₂ sont dus à la présence d'assemblages tampons qui imposent la concentration en H₂.

1.3 Travaux expérimentaux antérieurs sur la serpentinisation

Au cours des trois dernières décennies, plusieurs études expérimentales ont permis de quantifier l'H₂ produit lors de la serpentinisation des roches ultramafiques. Dans ces expériences, de nombreux paramètres, au premier ordre desquels : la température, la taille initiale des minéraux réactionnels, la durée des expérimentations, la nature minéralogique et chimique des réactants, roches comme fluides, ont été considérés. Le Tableau 1.1 et la Figure 1.11 synthétisent ces études expérimentales en fournissant d'une part, un aperçu des conditions et des paramètres expérimentaux et, d'autre part, une compilation des évolutions temporelles de la concentration en H₂ ($m_{H_{2,aq}}$) au cours de ces expériences. Le Tableau 1.1 privilégie les expériences réalisées dans des autoclaves équipés de cellules réactionnelles flexibles permettant un échantillonnage du fluide, et la quantification de l'H₂ dissous dans le fluide par chromatographie en phase gazeuse. Cette méthodologie a en effet été largement appliquée depuis plus de 30 ans à la simulation expérimentale des processus de serpentinisation. C'est celle qui a été reprise dans ce travail et qui rend les résultats obtenus directement comparables avec ceux de la littérature.

Ce principe de sélection conduit de facto à distinguer certaines études expérimentales importantes de la partie principale du Tableau 1.1. C'est le cas notamment de l'étude de Marcaillou *et al.* (2011) dont le dispositif expérimental diffère grandement de celui utilisé dans les autres travaux (système diphasique L + V, probables difficultés de confinement de l'H₂ dans l'autoclave), et dont l'évaluation de la quantité d'H₂ produite, basée sur la composition et la cristallochimie des phases solides, est indirecte. Malvoisin *et al.* (2012a,b) ont également proposé une paramétrisation de l'avancement de la réaction de serpentinisation et de la production d'H₂ associée qui est indirecte, à partir de l'évolution des propriétés magnétiques des charges. Les expériences de Lafay *et al.* (2012) se distinguent par l'utilisation de fluides de *pH* très basiques. Enfin, l'étude de Mayhew *et al.* (2013) a été conduite à des températures beaucoup plus basses que toutes les autres (55 et 100 °C).

Référence	Exp n°	Température (°C)	Pression Totale (MPa)	Rapport W/R ^a initial	Taille de grain initiale	, fleribles	Composition du protholithe fleribles		Composition initiale du fluide (mmol·kg ⁻¹)	Durée (h)	$m_{\mathrm{H}_{2, aq}}$ finale (mmol·kg ⁻¹ _{fluid})
Janecky et Seyfried (1986)	concen	300	50	10	35 — 75 µm	75 pds.% 25 pds.%	Ol Opx	(Mg# = 89.8) (Mg# = 90.4)	$\sum CO_2 = 2,12 Cl = 543 SO_4 = 29,2 Na = 571 K = 10,2 Mg = 0,14 Ca = 10,9$	17 142	0,33
Berndt <i>et al.</i> (1996)		300	50	2,25	$<75\mu{\rm m}$		Ol	$(\mathrm{Mg}\#=88)$	NaCl = 500 $NaHCO_3 = 8,9$	1658	158
Allen et Seyfried (2003)	1	400	50	4	$Moy{=}60\mu m$		Ol	$(\mathrm{Mg}\#=88.8)$	$\begin{array}{rl} \mathrm{Mg}\!=\!50-60\\ \mathrm{MgCl}_{2}+\mathrm{NaCl}\!\approx\!800 \end{array}$	1536	1,2
	2	400	50	4	$Moy{=}60\mu m$		Opx	$(\mathrm{Mg}\#=83.5)$	$\begin{array}{rl} \mathrm{Mg}\!=\!50-60\\ \mathrm{MgCl}_{2}+\mathrm{NaCl}\!\approx\!800 \end{array}$	1824	25,6
	3	400	50	4	$Moy{=}60\mu m$	${}^{60\%}_{40\%}$	${ m Opx} { m Cpx}$	(Mg# = 83.5) (Mg# = 88.5)	$\begin{array}{rl} \mathrm{Mg}\!=\!50-60\\ \mathrm{MgCl}_{2}+\mathrm{NaCl}{\approx}800 \end{array}$	1824	15,5
	4	400	50	2	$Moy{=}60\mu m$	$76\%\ 17\%\ 7\%$	$\begin{array}{c} \mathrm{Ol} \\ \mathrm{Opx} \\ \mathrm{Cpx} \end{array}$	(Mg# = 88.8) (Mg# = 83.5) (Mg# = 88.5)	$\begin{array}{rl} \mathrm{Mg}{=}& 50-60\\ \mathrm{MgCl}_{2}+\mathrm{NaCl}{\approx}800 \end{array}$	1462	6,8
Seyfried <i>et al.</i> (2007)		200	50	1,1	$50-100\mu{ m m}$	62 vol.% 26 vol.% 10 vol.% 2 vol.%	Ol Opx Cpx Spl	(Mg# = 90.5) (Mg# = 91.6) (Mg# = 91.6)	$Cl = 536SO_4 = 32Na = 466K = 9Mg = 59Ca = 12$	7875	76,7
Klein <i>et al.</i> (2015)		300	35	2,4	$\begin{array}{l} \text{Carottes} \\ (\varnothing \approx 45 \text{mm}) \end{array}$	$70 \mathrm{pds.\%}$ $25 \mathrm{pds.\%}$ $4 \mathrm{pds.\%}$ $0,9 \mathrm{pds.\%}$ $0,1 \mathrm{pds.\%}$	Ol Opx Cpx Cr-Spl Am, V, Sfd	$(Mg\# \approx 91) (Mg\# \approx 91) (Mg\# \approx 91) (Mg\# \approx 91) I$	Na = 463 K = 34 Ca = 31,1	13 441	7,7

TABLEAU 1.1 – Synthèse des travaux expérimentaux antérieurs sur la serpentinisation.

 a W/R : rapport Eau/Roche.

Abbréviations : Ol : olivine ; Ol SC : olivine de San Carlos ; Opx : orthopyroxène ; Cpx : clinopyroxène ; Px : pyroxènes ; Spl : spinelle ; Am : amphibole ; V : verre ; Sfd : sulfides.

Dáfárongo	Exp	Température	Pression Totale (MPa)	Rapport W/R	Taille de grain	Composition du protholithe	Composition initiale du fluide $(mmol kg^{-1})$	Durée	$m_{\mathrm{H}_{2, aq}}$ finale
Itelefence	11	(0)	(WII a)	mittai	IIIItiale	du protiontile	(mmorkg)	(11)	(IIIII01 Kg _{fluid})
Expériences de mesures de	e concer	$tration \ de \ l'H_2$	réalisées dan	s des cellul	es réactionnelle	es flexibles (suite)			
McCollom et al. (2016)	1	200	35	1,8	$53-212\mu\mathrm{m}$	$\mathrm{OlSc}(\mathrm{Mg}\#=91)$	$\begin{array}{rll} \mathrm{NaCl} = & 485 \\ \mathrm{NaHCO}_3 = & 19,4 \end{array}$	3331	0,09
	2	200	35	2,1	$38-53\mu m$	$\mathrm{Ol}\mathrm{Sc}(\mathrm{Mg}\#=91)$	$\begin{array}{rll} \mathrm{NaCl} = & 485 \\ \mathrm{NaHCO}_3 = & 19,4 \end{array}$	9219	2,94
	3	230	35	1,6	$53-212\mu m$	$\mathrm{Ol}\mathrm{Sc}(\mathrm{Mg}\#=91)$	$\begin{array}{rll} \mathrm{NaCl} = & 485 \\ \mathrm{NaHCO}_3 = & 19,4 \end{array}$	8159	5,78
	4	230	35	2,2	$53-212\mu m$	$\mathrm{Ol}\mathrm{Sc}(\mathrm{Mg}\#=91)$	NaCl = 485 $NaHCO_3 = 19,4$	1823	1,21
	5	230	35	2,4	$<53\mu{\rm m}$	$\mathrm{Ol}\mathrm{Sc}(\mathrm{Mg}\#=91)$	NaCl = 485 $NaHCO_3 = 19,4$	4293	25
	6	265	35	2,6	$53-212\mu m$	$\mathrm{Ol}\mathrm{Sc}(\mathrm{Mg}\#=91)$	$\begin{array}{rll} \mathrm{NaCl} = & 485 \\ \mathrm{NaHCO}_3 = & 19,4 \end{array}$	4857	2,45
	7	300	35	2,1	$53-212\mu m$	$\mathrm{Ol}\mathrm{Sc}(\mathrm{Mg}\#=91)$	$\begin{array}{rll} \mathrm{NaCl} = & 485 \\ \mathrm{NaHCO}_3 = & 19,4 \end{array}$	2683	11
	8	300	35	2,2	$53-212\mu m$	$\mathrm{Ol}\mathrm{Sc}(\mathrm{Mg}\#=91)$	$\begin{array}{rll} \mathrm{NaCl} = & 485 \\ \mathrm{NaHCO}_3 = & 19,4 \end{array}$	333	2,86
	9	300	35	2,6	$53-212\mu m$	$\mathrm{Ol}\mathrm{Sc}(\mathrm{Mg}\#=91)$	NaCl = 485 $NaHCO_3 = 19,4$	41	0,56
	10	320	35	2,5	$53-212\mu m$	$\mathrm{Ol}\mathrm{Sc}(\mathrm{Mg}\#=91)$	$\begin{array}{rll} \mathrm{NaCl} = & 485 \\ \mathrm{NaHCO}_3 = & 19,4 \end{array}$	2087	2,6
Autres expériences de serg	pentinis	ation							
Marcaillou et al. (2011)		300	30	1,5	$\approx 1\mu m$	65 vol.% Ol 30 vol.% Px 5 vol.% Spl	Eau distillée	7, 18, 34 et 70 (j)	Mesures par GC^b Calcul par BdM ^c
Malvoisin et al. (2012a,b)		250 - 350	50	$\approx 0,4$	\neq domaines entre $1 - 150 \mu m$	$\mathrm{Ol}\mathrm{Sc}(\mathrm{Mg}\#=91)$	Eau déionisée + parfois NaCl = $33 (g/L)$	jusqu'à 12300	Calcul par BdM
Lafay <i>et al.</i> (2012)		150ou 200	$\substack{0.5 \text{ ou } 1.6\(P_{\mathrm{Sat}})}$	15	\neq domaines $< 150 \mu m$	$\mathrm{Ol}\mathrm{Sc}(\mathrm{Mg}\#=91)$	$\rm NaOH{=}1000$	de 3 (h) à 90 (j)	?
Mayhew <i>et al.</i> (2013)		55 et 100	?	7	$53-212\mu\mathrm{m}$	Fayalite – Magnétite – Ol Sc (Mg# = 91) – Hédenbergite – Petedunnite – Péridotite de San Carlos	seawater	jusqu'à $\thickapprox 2400$	Mesures par GC
Ogasawara et al. (2013)		250	3.98 $(P_{\rm Sat})$	1,33	$25-125\mu\mathrm{m}$	Ol $(Mg\# = 91)$ Opx $(Mg\# = 91)$	Eau distillée	jusqu'à ≈ 1512	?

 b GC : chromatographie en phase gazeuse. c BdM : bilan de masse. En quantifiant le ${\rm Fe}^{3+}$ dans les phases solides.

FIGURE 1.11 – Variation des $m_{\text{H}_{2, aq}}$ au cours du temps dans les précédentes études expérimentales de serpentinisation du Tableau 1.1. Les expériences présentant des $m_{\text{H}_{2, aq}}$ finales < 1 mmol·kg⁻¹_{fluid} ainsi que les expériences de McCollom *et al.* (2016), dont le seul paramètre distinctif est une durée plus courte, ne sont pas représentés. L'insert détaille l'évolution lors des 2500 premières heures.

1.4 Approche générale de la thèse

Les rappels ci-dessus soulignent l'importance des mécanismes d'oxydo-réduction lors du processus de serpentinisation. En voici les principaux éléments :

- Genèse de fluides riches en H_2 et, dans une moindre mesure en CH_4 , par réduction de l'eau de mer.
- Production de minéraux de Fe³⁺ (magnétite, serpentine) à partir de minéraux de Fe²⁺.
- Coexistence de paragénèses réactionnelles à Fe^0 (awaruite) et à Fe^{2+} (brucite) avec d'autres à Fe^{3+} (magnétite, serpentine, hématite, pour cette dernière voir Malvoisin, 2015).
- Corrélation entre production d'H₂, spéciation de Fe dans la paragénèse réactionnelle et le rapport W/R (Figure 1.10).

L'approche classiquement mise en œuvre dans la communauté pour appréhender ces évolutions rédox a été principalement descriptive et analytique. La relation entre serpentinisation et concentration en H₂ dissous dans le fluide est établie depuis 20 ans (Berndt *et al.*, 1996). Plus récemment, l'accent a été mis sur la spéciation du Fe (rapport Fe^{3+}/Fe^{2+}) dans les phases minérales produites lors de la réaction (Seyfried *et al.*, 2007; Marcaillou *et al.*, 2011; Andreani *et al.*, 2013), ce rapport tendant à se substituer à la f_{O_2} dans les raisonnements sur les conditions rédox. Sur ce point, il est remarquable qu'aucune étude ne se soit appliquée à contraindre précisément la fugacité d'oxygène (f_{O_2}) lors de la serpentinisation alors même que les modélisations thermodynamiques (Klein *et Bach*, 2009; Klein *et al.*, 2009, 2013; Malvoisin, 2015) rendent cette détermination envisageable. Seules les approches de Frost (Frost, 1985; Frost et Beard, 2007; Frost *et al.*, 2013) ont souligné l'importance de la f_{O_2} lors de la serpentinisation, et fournissent des informations quantitatives pour préciser cette variable et son influence (voir également Sleep *et al.*, 2004).

Durant cette thèse, un effort particulier a été apporté à quantifier les paramètres rédox lors de la serpentinisation. La démarche générale qui a présidé à ce travail a consisté à substituer à l'approche analytique (paramètres *compositionnels* : concentration en H₂ dissous, rapports $^{\text{Fe}^{3+}/\text{Fe}^{2+}}$) largement utilisée à l'heure actuelle une approche thermodynamique (paramètres *intensifs* : fugacité d'hydrogène ou f_{H_2} , f_{O_2}) encore peu diffusée dans la communauté mais la seule à même, à notre sens, de permettre la modélisation.

Ci-dessous, la relation fondamentale entre les deux paramètres rédox, la $f_{\rm H_2}$ et la $f_{\rm O_2}$, dans les systèmes naturels contenant de l'eau est rappelée :

$$H_2 + \frac{1}{2}O_2 = H_2O \tag{Rn 1.3}$$

$$\log f_{\rm O_2} = 2(\log f_{\rm H_2O} - \log f_{\rm H_2} - \log K_{f,\rm H_2O}) \tag{1.1}$$

avec K_{f,H_2O} : la constante de formation de H₂O (réaction (Rn 1.3)) et f_{H_2O} : la fugacité de H₂O. L'équation (1.1) montre que la détermination de la f_{O_2} demande à la fois la mesure (ou le calcul) de f_{H_2O} et de f_{H_2O} . Pour un fluide H₂O-H₂, la f_{H_2O} peut être calculée en utilisant la relation :

$$f_{\rm H_2O} = \left(P_{\rm Tot} - \frac{f_{\rm H_2}}{\phi_{\rm H_2}}\right)\phi_{\rm H_2O} \tag{1.2}$$

où P_{Tot} correspond à la pression totale, et où ϕ_{H_2} et $\phi_{\text{H}_2\text{O}}$ sont, respectivement, les coefficients de fugacités de H₂ et de H₂O. Ces derniers peuvent être obtenus soit à partir de ceux des gaz purs (approximation de Lewis et Randall), soit à partir d'équations d'état pour le fluide tenant compte

rigoureusement des règles de mélanges (voir Sun *et al.*, 2015). Pour des fluides chimiquement plus réalistes (H₂O-H₂-NaCl plus espèces dissoutes), le calcul de $f_{\rm H_2O}$ est plus complexe bien qu'il reste inchangé dans son principe.

Ainsi, dans ce travail de thèse, l'H₂ sera vu à la fois comme un produit de la serpentinisation (Chapitres 2 et 3) mais aussi, par l'intermédiaire de la variable intensive $f_{\rm H_2}$, comme un paramètre qui va pouvoir influencer en retour l'ensemble du processus d'interaction fluide-roche. Cet aspect est particulièrement développé au Chapitre 4. Il est nécessaire ici de souligner que l'état de référence de l'H₂ dans la réaction (Rn 1.3) et les équations (1.1) et (1.2) (H₂ gazeux pur) n'est pas le même que celui utilisé pour décrire le constituant H₂ dissous dans le fluide (solution aqueuse à 1 mol de H₂ dissous). Aussi, l'établissement d'un lien quantitatif entre l'hydrogène sous ces deux différents états de référence fait l'objet du Chapitre 5.

Chapitre 2

000

Quantification expérimentale *in situ* de la production d'H₂ et détermination des paramètres redox $(f_{\rm H_2}$ et $f_{\rm O_2})$ associés à la serpentinisation

2.1 Introduction

Comme évoqué dans l'introduction, le processus de serpentinisation affectant les roches ultramafiques du manteau affleurant au niveau des dorsales lentes est associé à une importante production d'H₂. L'article présenté dans ce Chapitre est une synthèse des expériences de quantification d'H₂ effectuées durant cette Thèse. Les implications, en terme de conditions redox, de la présence de concentrations importantes d'H₂ y sont détaillées. En plus de la méthode classique de quantification de l' H_2 par prélèvement d'un échantillon du fluide réactionnel et mesure de la quantité d' H_2 par chromatographie en phase gazeuse (méthode détaillée dans l'Annexe E et utilisée dans les précédentes études), ce Chapitre détaille la mise au point d'une nouvelle méthode de suivi de l'enrichissement du fluide hydrothermal en H_2 durant le processus de serpentinisation. Cette méthode s'appuie sur l'utilisation d'une membrane riche en palladium $(Au_{20}Pd_{80}, pds.\%)$ perméable à l'H₂, laquelle permet un suivi en continu et *in situ* de la fugacité de l'H₂ (f_{H_2}) du fluide réactionnel (les caractéristiques de ce dispositif sont présentés dans l'Annexe F). Les expériences de serpentinisation effectuées pour cette étude de quantification de l'H₂ ont été conduites sur des poudres d'harzburgite de l'ophiolite de Vourinos (Grèce), à des températures de 250 à 350 °C, des pressions totales de 50 MPa et pour des durées allant jusqu'à 3310 h. Les résultats présentés dans cet article se concentrent sur les fluides, et plus particulièrement sur leur enrichissement en H₂. L'étude des phases solides issues de ces expériences fait l'objet du Chapitre 3.

Résumé :

Afin de mieux évaluer quantitativement les flux d'H₂ associés au processus de serpentinisation, en particulier au niveau des dorsales océaniques lentes, et de contraindre plus précisément la f_{O_2} durant ce processus, une nouvelle approche permettant de quantifier la production d' H_2 au cours des expériences de serpentinisation est présentée. La méthode utilise une membrane perméable à l' H_2 permettant d'enregistrer la f_{H_2} in situ associée à l'avancement de la réaction de serpentinisation. Les mesures de $f_{\rm H_2}$ sont combinées avec des mesures de concentration de l'H₂ aqueux $(m_{\rm H_2,aq})$ dans les fluides hydrothermaux obtenues par la méthode classique de prélèvement, et les deux variables, $m_{\mathrm{H}_{2,ag}}$ et f_{H_2} , sont reliées quantitativement en utilisant un modèle thermodynamique. Les expériences de serpentinisation ont été réalisées à 50 MPa et entre 250 et 350 °C pour des durées allant de 1012 à 3310 h, en faisant réagir une harzburgite provenant du massif de Vourinos avec de l'eau de mer artificielle. Les $m_{\mathrm{H}_{2, aq}}$ et f_{H_2} ont été mesurées soit en parallèle (expériences distinctes) soit dans la même expérience. Les résultats montrent que la $m_{\text{H}_{2,aq}}$ et la f_{H_2} augmentent progressive-ment avec le temps, atteignant respectivement des valeurs > 100 mmol·kg⁻¹_{fluid} et > 2 MPa à 300 °C. La $m_{\mathrm{H}_{2, aq}}$ augmente de 250 à 300 °C et décroît fortement à 350 °C. Les évolutions temporelles des $m_{\rm H_{2, ag}}$ reflètent les influences de la température et de la granulométrie de la poudre de départ. L'évolution temporelle de la $f_{\rm H_2}$ présente une forme sigmoïdale. Les taux maximaux de production $d'H_2$ sont observés au cours des tout premiers stades (< 300 h) des expériences. Nos valeurs de $m_{\mathrm{H}_{2, aq}}$ sont en bon accord avec celles présentées dans les précédentes études de serpentinisation expérimentale. Cependant, les $f_{\rm H_2}$ calculées (à partir des mesures de $m_{{\rm H}_{2,aq}}$) sont supérieures à celles mesurées, ce qui indique une perte faible mais continue de l' H_2 durant les expériences de mesure de la $f_{\rm H_2}$. Ceci implique que nos mesures de $f_{\rm H_2}$ sont légèrement sous-estimées. Les $f_{\rm O_2}$ expérimentales calculées à partir des $f_{\rm H_2}$, soit mesurées soit calculées, décroissent progressivement avec l'avancement de la réaction de serpentinisation. Des valeurs aussi basses que NNO-4 à NNO-6sont obtenues, démontrant des conditions extrêmement réductrices dans nos expériences. Dans nos conditions de température et de granulométrie, la production d' H_2 a lieu relativement rapidement.

2.2 In situ experimental quantification of H_2 generation and determination of redox parameters (f_{H_2}, f_{O_2}) during serpentinization

Colin Fauguerolles¹

- Teddy Castelain^{1, 2}
- Johan Villeneuve^{1, 2}

Michel Pichavant¹

- ¹ Institut des Sciences et de la Terre d'Orléans, CNRS Université d'Orléans, Orléans, France.
- ² Centre de Recherches Pétrographiques et Géochimiques, CNRS Université de Lorraine, Vandœuvre les Nancy, France.

Abstract:

In order to more quantitatively evaluate H_2 fluxes associated with serpentinization, especially at slow-spreading mid-ocean ridges, and to more precisely constrain f_{O_2} during serpentinization, a new experimental approach to quantify H_2 generation in serpentinization experiments is presented. The method uses a H₂-permeable membrane to record in situ the $f_{\rm H_2}$ during the advancement of the serpentinization reaction. The $f_{\rm H_2}$ data are combined with aqueous H₂ concentration ($m_{\rm H_{2,aq}}$) measurements in serpentinizing fluids obtained with the classical sampling method, and the two variables, $m_{\text{H}_{2,aq}}$ and $f_{\text{H}_{2}}$, are quantitatively related using thermodynamic modelling. The serpentinization experiments were performed at 50 MPa and between 250 and 350 °C for durations between 1012 and 3310 h, by reacting a harzburgite from the Vourinos massif with model seawater. $m_{\rm H_{2, aq}}$ and $f_{\rm H_2}$ were determined both in parallel (separate experiments) and in the same experiment. Results show that both $m_{\mathrm{H}_{2, aq}}$ and f_{H_2} progressively increase with time, reaching values > 100 mmol·kg⁻¹_{fluid} and > 2 MPa respectively at 300 °C. $m_{\rm H_{2, aq}}$ increases from 250 to 300 °C, and then strongly decreases at 350 °C. Time- $m_{\mathrm{H}_{2, aq}}$ evolutions reflect the influences of temperature and granulometry of the starting powder. $f_{\rm H_2}$ follows a sigmoidal response with time. Maximum rates of H_2 production occur during the very early (< 300 h) stages of the experiments. Compared with previous experimental serpentinization studies, our $m_{\mathrm{H}_{2, aq}}$ data are in good agreement. However, calculated $f_{\rm H_2}$ (derived from the $m_{{\rm H}_{2,aq}}$ data) are higher than measured values, indicating that a slow time-integrated H₂ loss takes place in the $f_{\rm H_2}$ measuring device. This implies that our $f_{\rm H_2}$ measurements are slightly underestimated. Experimental f_{O_2} computed from either measured or calculated $f_{\rm H_2}$ progressively decrease with advancement of the serpentinization reaction. Values as low as NNO-4 to -6 are obtained, demonstrating strongly reducing conditions in our serpentinization experiments. Under our conditions of temperature and granulometry, H_2 production takes place relatively rapidly.

2.2.1 Introduction

It is now widely recognized that serpentinization of ultramafic rocks generates H_2 (Neal and Stanger, 1983; Abrajano et al., 1990; Charlou et al., 2002). H₂ production in serpentinization environments has major implications for the origin of life (Martin and Russell, 2007; Martin et al., 2008; Russell et al., 2010), as a potential energy source (Malvoisin et al., 2013) and for the composition of hydrothermal fluids at mid-ocean ridges (Charlou et al., 2002; Cannat et al., 2010). Therefore, it is important to evaluate quantitatively the H_2 fluxes associated with serpentinization. To achieve this goal, several methods are available. Direct analysis of H_2 in fluids sampled in oceanographic campaigns demonstrates high concentrations of H_2 in hydrothermal systems developed on ultramafic rocks (Charlou et al., 2002, 2010). Petrological, mineralogical and geophysical characterization of the serpentinization reaction and products allows the amount of H_2 produced to be estimated by steechiometry using the Fe^{2+}/Fe^{3+} ratio evolution in serpentinites (Oufi et al., 2002; Cannat et al., 2010; Marcaillou et al., 2011; Malvoisin et al., 2012; Andreani et al., 2013). Thermodynamic modelling of fluid-rock interaction processes associated with serpentinization defines conditions appropriate for the generation of H₂-rich fluids (Sleep et al., 2004; Klein and Bach, 2009; Klein et al., 2009; McCollom and Bach, 2009; Klein et al., 2013; Malvoisin, 2015). Lastly, experiments performed to simulate serpentinization processes have demonstrated a progressive increase of the H₂ concentration in the hydrothermal fluids (Berndt et al., 1996; Allen and Seyfried, 2003; Seyfried et al., 2007; Marcaillou et al., 2011; Klein et al., 2015; McCollom et al., 2016).

Despite these significant advances, serpentinization is a complex process (e.g., McCollom et al., 2016). H₂ generation is generally interpreted to be related to kinetically-controlled processes of oxidation of Fe²⁺ from ultramafic minerals to Fe³⁺ in serpentine and magnetite (Andreani et al., 2013). Yet, f_{O_2} in serpentinization environments has rarely been considered in a quantitative manner (Frost, 1985; Frost et al., 2013). In serpentinization experiments, redox processes and conditions are important but f_{O_2} is generally left unspecified (e.g., Berndt et al., 1996; Seyfried et al., 2007). In particular, so far, no quantitative link has been established between the progressive increase of the H₂ concentration in the hydrothermal fluid ($m_{H_{2,aq}}$, the classical parameter used to measure H₂ production in serpentinization experiments) and the redox evolution.

In this study, a new experimental approach to quantify H_2 generation in serpentinization experiments is presented. The approach is based on *in situ* recording of the f_{H_2} with a H₂-permeable membrane in the reaction cell. It provides a new way to monitor reaction progress and H_2 production during serpentinization. The method opens the way for quantitatively linking the H_2 dissolved in the hydrothermal fluid $(m_{H_{2,aq}})$ and the f_{H_2} . Applications include the computation of f_{O_2} from $m_{H_{2,aq}}$ in experimental and natural serpentinization environments. In this paper, f_{H_2} measurements with the new method are presented and the results are combined with $m_{H_{2,aq}}$ determinations in serpentinizing fluids using the classical approach. Focus is placed on fluid H_2 concentration results (*i.e.*, on $m_{H_{2,aq}}$ and f_{H_2}) and on their implications. The characterization of solid phases produced in our serpentinization experiments is the subject of a companion paper (Fauguerolles et al., 2017a).

2.2.2 Materials and methods

Starting materials

Natural harzburgite from the Vourinos ophiolite (Greece) was used as starting material. It comprises $\approx 85 \text{ vol.}\%$ olivine (Fo_{90.5}), 8 - 10 vol.% orthopyroxene (Mg# = 91.5), 2 - 3 vol.% serpentine localized in veins, $\approx 2 \text{ vol.}\%$ chromite and $\approx 1 \text{ vol.}\%$ clinopyroxene. Compositions of olivine and orthopyroxene (electron microprobe data) are similar to previous results on the same rock (Harkins et al., 1980). The harzburgite sample was crushed, ground with an agate ball mill and the powder sieved to below 100 µm. Given the relatively large amount of material necessary for each serpentinization experiment ($\approx 40 \text{ g}$), a second starting powder had to be prepared during the course of this study. The two powders were prepared in the same way yet the latter had an average grain size (median = $5.7 \,\mu$ m) smaller than the former (median = $12.9 \,\mu$ m), the granulometric data being obtained on the < 60 µm fraction (Figure 2.S1). In the following, these two powders will be distinguished (*f-Pwd* for the "fine" powder and *c-Pwd* for the "coarse" powder). Cores (typically 0.5 cm in diameter and $2-3 \,\mathrm{cm}$ in length) were also made from the Vourinos harzburgite and added to the rock powder in four experiments (*Run* 41 to 44, Table 2.1). Millimetric San Carlos olivine (Fo₉₁) crystals were added to the rock powder in one experiment (*Run* 36, Table 2.1). Starting materials consisted of rock powders (either alone or together with cores or San Carlos olivines) plus artificial seawater (demineralized water 3.2 wt.% NaCl). Fluid/rock mass ratios (W/R) were kept between 1.6 and 2 (Table 2.1).

Experimental and analytical methods

All experiments were performed in large volume Dickson-Seyfried pressure vessels fitted with either Ti or Au-Ti flexible reaction cells (Seyfried et al., 1987), both having volumes of about 130 cm^3 . Experiments were performed at 50 MPa (± 2 MPa) total pressure (P_{Tot}), at nominal temperatures of 250, 300 and 350 °C and for durations between 1012 and 3310 h.

Two types of serpentinization experiments (Table 2.1) were performed in parallel (*i.e.*, in separate vessels) so as to monitor independently the concentration of H₂ dissolved in the fluid $(m_{\rm H_{2,ag}})$ and the H₂ fugacity $(f_{\rm H_2})$. In the first type (fluid sampling experiments, performed at 250, 300 and 350 °C), the flexible reaction cell was used in the usual way (Seyfried et al., 1987) allowing the fluid to be periodically sampled from the reaction cell (Figure 2.S2a). Temperatures measured by the thermocouple (calibrated against melting of Sn and Pb) were systematically recorded before each sampling and vary by less than 5° C during the course of the experiments (Table 2.2). They differ by less than 10 °C from the nominal values. Fluid $m_{\rm H_{2,aq}}$ were determined with a Perkin-Elmer Clarus 580 gas chromatograph (GC), using a fused silica capillary column Carboxen 1010PLOT -30 m $\times 0.53$ mm (ID) and a thermal conductivity captor (TCD). In the second type (H₂ manometry experiments, performed at 250 and 300 $^{\circ}$ C), the flexible cell was fitted with an internal semipermeable H₂ membrane made of Au₂₀Pd₈₀ alloy (Scaillet et al., 1992; Schmidt et al., 1995), connected to a pure H_2 line and 0 - 10 MPa pressure gauge (Figure 2.s2b). This device allowed a continuous in situ monitoring of $f_{\rm H_2}$ inside the reaction cell (Frantz et al., 1977). In this study an effort was made to minimize as much as possible the total volume of the membrane and H₂ line (total volume $\approx 0.8 \,\mathrm{cm}^3$). Before heating up, vacuum was imposed in the H₂ line. In one experiment (300 °C), the fluid was sampled by using the confining tube of the membrane as a sampling tube (Figure 2.S2b), enabling fluid sampling and H_2 manometry to be coupled.

Systematic tests were performed to check the operation of the membrane and measure the kinetics of the membrane response, *i.e.*, the time needed for the membrane to respond to a $f_{\rm H_2}$ gradient (Figure 2.1). To do so, $f_{\rm H_2}$ perturbations, either a $f_{\rm H_2}$ increase resulting from pressurization of the H₂ line or a $f_{\rm H_2}$ decrease resulting from H₂ extraction out of the H₂ line, were imposed as part of the serpentinization experiments. The performed tests demonstrate reversibility of the membrane response (Figure 2.1) and allow membrane relaxation times to be determined from statistical analysis of the $f_{\rm H_2}$ time series. At 250 °C, 2.4 h are needed to relax 50 % of the $f_{\rm H_2}$ increase resulting from H_2 pressurization (starting from $f_{H_2} = 3.69 \text{ MPa}$, 4.99 MPa were imposed during $7-8 \min$) and 8.6 h for 90 %. To relax 50 % of the $f_{\rm H_2}$ decrease resulting from H₂ extraction (starting from $f_{\text{H}_2} = 4.01 \text{ MPa}$, 0.04 MPa were imposed during $41 - 42 \min$), 3.9 h are needed and 23.1 h for 90 %. At $300 \,^{\circ}\text{C}$, the kinetics of the membrane response was found to be faster than at 250 °C, for example, 0.56 h were necessary to relax 50 % of the $f_{\rm H_2}$ decrease resulting from H₂ extraction (starting from $f_{\rm H_2} = 2.57 \,\rm MPa$, 0.03 MPa were imposed during $2 - 3 \,\rm min$). The fact that membrane responses are apparently not exactly "symmetrical" is a consequence of H₂ mass fluxes through the membrane being different for the different imposed perturbations. In the same way, the observation that the $f_{\rm H_2}$ does not return to values preceeding the perturbation, either in the case of H_2 pressurization or extraction (Figure 2.1), indicates that the H_2 perturbations propagated to within the reaction cell. The important point is that membrane response times are

much faster than experimental durations, demonstrating the capability of the membrane to record the $f_{\rm H_2}$ evolution inside the reaction cell.

Solid products recovered after the experiments were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM, FE Tescan Mira 3 XMU), Raman microspectrometry (Renishaw in-Via) and electron microprobe (Cameca sxFive). Results of solid phase characterization are detailed in the companion paper (Fauguerolles et al., 2017a).

Figure 2.1: Representative membrane responses following instrumental perturbations in $f_{\rm H_2}$ (either H₂ introduction, *i.e.*, a higher H₂ pressure was imposed in the membrane or H₂ extraction, *i.e.*, H₂ was evacuated from the membrane) at 50 MPa total pressure ($P_{\rm Tot}$) and at 250 °C. These tests were performed at the end of Run 44 (Table 2.1) to check the operation of the membrane. Calculated ends of instrumental perturbations are marked by red arrows (see text). Notice the nearly symmetric evolution in $f_{\rm H_2}$ following each $f_{\rm H_2}$ perturbation.

Run	$\begin{array}{c} \text{Nominal} \\ \text{temperature} \\ (^{\circ}\text{C}) \end{array}$	Duration (h)	Initial fluid (g)	$\begin{array}{c} \text{Mass of rock} \\ \text{(g)} \end{array}$	Initial W/R^a	Grain size b	Type of H_2 monitoring ^c	Cell material
36	300	1823	90.00	$36.80^d (+13.20)^e$	1.80	c- Pwd	\mathbf{GC}	Ti
41	300	2016.5	62.34	$32.00^{d}(+6.53)^{f}$	1.62	c- Pwd	\mathbf{GC}	Au-Ti
43	250	1763	68.40	$36.50^d (+1.50)^f$	1.80	f- Pwd	\mathbf{GC}	Au-Ti
45	300	1329	71.00	40.10^{d}	1.77	f- Pwd	\mathbf{GC}	Ti
46	350	2256.75	71.73	39.50^{d}	1.82	f- Pwd	\mathbf{GC}	Ti
47	300	3310.5	71.83	40.01^{d}	1.80	f- Pwd	GC and $f_{\rm H_2}$	Ti
42	300	1012.5	84.2	$39.89^d (+2.23)^f$	2.00	c- Pwd	$f_{\rm H_2}$	Ti
44	250	1757.5	92.25	$44.71^d (+1.54)^f$	1.99	f- Pwd	$f_{\rm H_2}$	Ti

Table 2.1: Experimental parameters.

 a W/R: water/rock mass ratio.

^b Granulometry of starting powder. *c-Pwd*: coarse powder, *f-Pwd*: fine powder (see text and Figure 2.S1). ^c GC: monitoring by gas chromatography, f_{H_2} : monitoring by *in situ* f_{H_2} manometry (see text).

^d Mass of Vourinos powder. ^e Mass of San Carlos olivine crystals.

 f Mass of Vourinos cores.

Thermodynamic modelling

In order to relate the f_{H_2} and $m_{H_{2,aq}}$ measurements that were respectively carried out in the fluid sampling and H₂ manometry experiments, we consider the equilibrium:

$$\mathbf{H}_{2,\,aq} = \mathbf{H}_{2,\,g} \tag{Rn\,2.1}$$

where $H_{2, aq}$ corresponds to aqueous dissolved H_2 and $H_{2, g}$ correspond to H_2 gas. This equilibrium allows f_{H_2} and $m_{H_{2, aq}}$ to be quantitatively linked (detailed calculations in Fauguerolles, 2016) according to the following relation:

$$f_{\rm H_2} = \gamma_{\rm H_{2,\,aq}} m_{\rm H_{2,\,aq}} K_{(Rn\,2.1)} \tag{2.1}$$

where $K_{(Rn2.1)}$ is the equilibrium constant of (Rn2.1) and $\gamma_{\mathrm{H}_{2,aq}}$ is the activity coefficient of $\mathrm{H}_{2,aq}$. Values of $K_{(Rn2.1)}$ at P and T of interest were obtained using SUPCRT92 (Johnson et al., 1992). For $P_{\text{Tot}} = 50 \text{ MPa}$, $\log K_{(Rn\,2.1)} = 2.764$ and $\log K_{(Rn\,2.1)} = 2.535$ at 250 and 300 °C, respectively. Determination of $\gamma_{H_{2,aq}}$, which describes the non-ideal behavior of aqueous dissolved H₂, is a non trivial issue (Fauguerolles, 2016). At 300°C and for a fluid having the salinity of seawater, Ding and Seyfried (1990) obtained experimentally a $\gamma_{\text{H}_{2,aq}}$ value of 1.25 for $P_{\text{Tot}} = 40$ MPa. Their data show that $\gamma_{\mathrm{H}_{2,\,aq}}$ increases with temperature and decreases with total pressure. Therefore, under our experimental conditions (*i.e.*, $P_{\text{Tot}} = 50 \text{ MPa}$ and 250 and 300 °C), values of $\gamma_{\text{H}_{2,aq}} < 1.25$ are expected. Another way of determining $\gamma_{\mathrm{H}_{2, aq}}$ is to use the "CO₂ approximation" method which assumes that neutral and non polar species have a behavior identical to CO_2 in dilute solutions (Garrels and Thompson, 1962; Garrels and Christ, 1965; Helgeson, 1969). $\gamma_{H_{2, aq}}$ can then be obtained from the data of Drummond (1981) for $\gamma_{\text{CO}_{2,aq}}$. With seawater salinity (*i.e.*, 3.2 wt.%), this method gives $\gamma_{\text{CO}_{2,aq}}$ values ($\equiv \gamma_{\text{H}_{2,aq}}$) of 1.24 and 1.29 for temperatures of 250 and 300 °C, respectively. Because these values are higher than those expected by using the data of Ding and Seyfried (1990), they have been taken as maximum $\gamma_{H_{2,aq}}$ values below. As minimum values, we take $\gamma_{\text{H}_{2,aq}} = 1$ (which is the accepted value for pure H₂O-H₂ solution, Fauguerolles, 2016). Therefore, $\gamma_{\mathrm{H}_{2,aq}}$ of 1 (at both 250 and 300 °C) and either 1.24 or 1.29, depending on temperature, have been used to compute $f_{\rm H_2}$ from our measured $m_{\rm H_{2,ag}}$.

Values of f_{O_2} were computed from f_{H_2} (either directly measured or calculated from $m_{H_{2,aq}}$) at each temperature (250 and 300 °C) and for a total pressure of 50 MPa. The f_{O_2} calculations were performed both with the Lewis-Randall approximation (with fugacity coefficients for the pure H_2 and H_2O fluids taken from Shaw and Wones (1964) and Burnham et al. (1969) respectively) and with an equation of state for H_2O - H_2 fluid mixtures (e.g., Sun et al., 2015).

2.2.3 Results

Fluid sampling experiments

Results of the fluid sampling experiments are detailed in Table 2.2 and illustrated in Figure 2.2. All experiments (except at 350 °C) are characterized by the massive appearance of serpentine minerals as reaction products (Fauguerolles et al., 2017a). At 300 °C and for the coarse grain size (*c-Pwd*), $m_{\text{H}_{2,aq}}$ are very similar in experiments performed with either Ti (*Run* 36) or Au-Ti reaction cells (*Run* 41). Since contact surfaces between Ti metal and H₂-bearing fluids is largely (\approx 20 times) higher for Ti than Au-Ti cells, consumption of H₂ by reduction of the TiO₂ passive layer must be negligible. Au-Ti reaction cells are considered impermeable to H₂ under our experimental conditions (Allen and Seyfried, 2003). Therefore, it is reasonable to conclude that all the H₂ produced stays confined within the reaction cell whatever the type of container material used.

Time	Temperature	$m_{ m H_2}$	Produced H_2^{a}	Fluid mass b								
(h)	(°C)	$(\text{mmol·kg}_{n,\ldots}^{-1})$	$(\text{mmol·kg}_{\text{real}}^{-1})$	(g)	W/R^{c}							
	~ /		V OFOCK/	(0)	,							
Run 36												
721	296	80 ± 6	143 ± 11	90.00	1.80							
1032	296	103 ± 9	185 ± 16	88.32	1.77							
1224.5	295	110 ± 10	196 ± 18	86.54	1.73							
1560	295	131 ± 12	232 ± 23	83.89	1.68							
1823	296	126 ± 12	224 ± 23	82.08	1.64							
Run41												
69	295	6 ± 0	9 ± 1	62.34	1.62							
214.5	295	47 ± 4	74 ± 6	60.19	1.56							
383.5	296	59 ± 5	91 ± 8	58.16	1.51							
713.5	294	85 ± 8	130 ± 13	55.91	1.45							
1056	294	100 ± 9	150 ± 16	53.79	1.40							
1390.5	295	134 ± 14	196 ± 24	51.69	1.34							
2016.5	296	134 ± 14	196 ± 25	48.55	1.26							
Bun 43												
88	245	19 ± 1	35 ± 2	68.40	1.80							
256	245	52 ± 4	92 ± 8	66.30	1.74							
450	245	55 ± 4	96 ± 8	64.17	1.69							
931	244	62 ± 5	107 ± 10	59.60	1.57							
1429	244	57 ± 5	101 ± 10	57.21	1.51							
1763	245	59 ± 5	103 ± 10	54.99	1.45							
		Ru	n 45									
148	294	59 ± 5	104 ± 9	71.00	1.77							
345	295	121 ± 12	211 ± 22	68.85	1.72							
509	295	103 ± 10	182 ± 18	66.30	1.65							
983	295	140 ± 14	240 ± 27	64.12	1.60							
1327	296	142 ± 16	243 ± 30	62.04	1.55							
1329^{d}	296	150 ± 15	256 ± 31	59.51	1.48							
		Bu	n 46									
192	342	6 ± 0	10 + 1	71 73	1.82							
402	342	8 ± 0 8 ± 1	10 ± 1 15 ± 1	69.48	1.82							
2256.75	346	13 ± 1	24 + 2	67.28	1.70							
	0.20			···	1.1.0							
/91 K	300	60 ± 6	193 ± 11	71.83	1.80							
491.9 1960	00∠ 303	09 ± 0 80 ± 8	120 ± 11 158 ± 16	60 50	1.00 1.74							
1209 2882	303 303	09 ± 0 120 ± 13	100 ± 10 200 ± 25	64 02	1.74							
$ 192 \\ 402 \\ 2256.75 \\ 431.5 \\ 1269 \\ 2882 $	342 342 346 302 303 303	6 ± 0 8 ± 1 13 ± 1 Ru 69 ± 6 89 ± 8 120 ± 13	$ \begin{array}{c} 10 \pm 1 \\ 15 \pm 1 \\ 24 \pm 2 \end{array} $ n 47 $ \begin{array}{c} 123 \pm 11 \\ 158 \pm 16 \\ 209 \pm 25 \end{array} $	$71.73 \\ 69.48 \\ 67.28 \\ 71.83 \\ 69.50 \\ 64.02 \\$	$ 1.82 \\ 1.76 \\ 1.70 \\ 1.80 \\ 1.74 \\ 1.60 \\ $							

Table 2.2: Results of the fluid sampling experiments.

^{*a*} Amount of H_2 generated per kg of reactant rock (see text)

^a Amount of H₂ generated per kg of reactant res ^b Mass of fluid in reaction cell before sampling. ^c W/R: Water/Rock mass ratio before sampling. ^d Sampling performed with vessel upside down.

Two fluid samplings, the one normal and the other "vessel upside down", were performed almost simultaneously (at a 2 h time interval) at the end of Run 45. They yielded $m_{H_{2,aq}}$ values identical within error (Table 2.2 and Figure 2.2). This excludes definitively the possibility that phase separation (*i.e.*, L = L + V where L is the liquid phase and G the gaseous phase) occurs within the reaction cell as a consequence of an increase of the H₂ concentration of the hydrothermal fluid. The L-V boundary is well known for the H₂O-H₂ system (Seward and Franck, 1981) but our experimental fluids contain NaCl whose influence on field boundaries remains undetermined. Our data suggest that a single fluid phase is present in our experiments and that all the H₂ produced is dissolved in this hydrothermal fluid.

Apart from the experiment in which the f_{H_2} was also manometrically recorded (Run 47), all fluid sampling experiments performed at 300 °C (Run 36, 41 and 45, Table 2.1) have $m_{\text{H}_2, aq}$ progressively increasing with time, up to plateau values of $\approx 130 - 150 \text{ mmol}\cdot\text{kg}_{\text{fluid}}^{-1}$ (Figure 2.2). At 250 °C (Run 43, Table 2.1), a similar temporal evolution of $m_{\text{H}_2, aq}$ is recorded, and a plateau of $\approx 50 - 60 \text{ mmol}\cdot\text{kg}_{\text{fluid}}^{-1}$ is reached, persisting until more than 1400 h. At 350 °C (Run 46, Table 2.1), the plateau $m_{\text{H}_2, aq}$ value is no more higher than 13 mmol·kg_{\text{fluid}}^{-1} (Table 2.2 and Figure 2.2). In comparison, the $m_{\text{H}_2, aq}$ results for Run 47 (coupled fluid sampling and H₂ manometry) exhibit a slightly different behavior. Although $m_{\text{H}_2, aq}$ progressively increase with time, the values are $\approx 40 \%$ lower than in the corresponding fluid sampling experiment at the same temperature (300 °C, Run 45) and no clear plateau is observed (Figure 2.2). A maximum $m_{\text{H}_2, aq}$ of 120 mmol·kg_{fluid}^{-1} is reached after 2882 h.

As a way to distinguish between the influence of temperature and granulometry on the advancement of the serpentinisation reaction and rates of H_2 production, temporal $m_{H_{2,ag}}$ increases have been compared in experiments carried out either (1) with the same initial grain size at different temperatures (f-Pwd, Run 43, 45 and Run 46, Table 2.1) or (2) at the same temperature with different starting powders (Run 41 with c-Pwd, Run 45 with f-Pwd, Table 2.1). To do so, each segment between two $m_{\mathrm{H}_{2, aq}}$ measurements was time derivated. Results are plotted as a function of time in Figure 2.3. If the $m_{\mathrm{H}_{2, aq}}$ drop in the third fluid sampled in Run 45 (Table 2.1, Figure 2.2) is interpreted as an analytical problem, results show that rates of H₂ production monotonously decrease in experiments performed with f-Pwd. Values close to zero are attained after 400 - 600 h whatever the temperature. Therefore, when the f-Pwd powder is used, most of the H₂ is produced during the very early stages of the experiments. The effect of temperature on the H_2 production rate is clearly visible below 500 h, the maximum being attained at 300° C, followed by 250° C and then $350 \,^{\circ}$ C where actually little H₂ is generated. In contrast, in Run 41, performed with the coarse powder, H_2 production rates begin with an increase, pass through a maximum (lower than in Run 45 performed with the fine powder) and then monotonously decrease (Figure 2.3). The maximum production rate is reached in the 200 - 400 h time interval (and not between 0 - 150 h as with f-Pwd). H₂ is continuously produced until rates of $m_{\text{H}_{2,aq}}$ increase drop to 0 for durations longer than 1350 h (Figure 2.3). Therefore, use of the coarse powder enables H_2 production to last for longer durations.

H₂ manometry experiments

The 3 experiments of this type that were performed at 250 and 300 °C are also characterized by a large proportion of formed serpentine minerals (Fauguerolles et al., 2017a). Discussing separately the coupled fluid sampling and H₂ manometry experiment (*Run* 47), the results for *Run* 44 and 42 (Table 2.1) are very similar. Membrane $f_{\rm H_2}$ readings show a sigmoidal dependence with time demonstrating a progressive increase of $f_{\rm H_2}$ inside the reaction cell as a result of progress of the serpentinization reaction (Figure 2.4 and Table 2.1). At 250 °C, a $f_{\rm H_2}$ increase was clearly detected from the second day. No equivalent $f_{\rm H_2}$ data could be recorded (for technical reasons) at the beginning of the 300 °C experiment but inspection of results shows that the $f_{\rm H_2}$ increase started earlier than at 250 °C. Maximum $f_{\rm H_2}$ values were attained after 73 days at 250 °C and after 42 days at 300 °C. These maxima (3.70 MPa at 250 °C, 2.20 MPa at 300 °C) are not plateau values since membranes were still recording slow $f_{\rm H_2}$ increases until the end of the experiments (Figure 2.4).

Figure 2.2: Time evolution of fluid H₂ concentrations $(m_{\text{H}_{2,aq}})$ in serpentinization experiments performed at 50 MPa total pressure (P_{Tot}) and at 250, 300 and 350 °C. Numbering of the experiments is indicated near the data points (see Table 2.1). All data points correspond to normal fluid sampling conditions (see text) except one (*Run* 45, Table 2.1) sampled with the vessel upside down to check for the absence of gas phase. Fluid sampling and $m_{\text{H}_{2,aq}}$ determinations were coupled with f_{H_2} manometry using a semi-permeable membrane in one experiment (*Run* 47, Table 2.1). Error bars are analytical errors. The temperature and the granulometry of the starting harzburgite powder are specified. Dashed lines indicate use of the fine powder (*f*-*Pwd*) and solid lines of the coarse powder (*c*-*Pwd*). Symbols indicate the type of flexible cell used (triangle for Ti, square for Au-Ti). Further information in text.

The observed rates of f_{H_2} increase are very much non-linear. In both experiments, a strong increase of the f_{H_2} rate is initially observed (Figure 2.4), and maxima are reached after a few days (*i.e.*, at the beginning of the 6th day at 250 °C and at the end of the 4th day at 300 °C, Figure 2.4). Then, rates of f_{H_2} increase drop progressively until the end of the experiments. It is worth noting that the 250 °C H₂ manometry experiment (performed with the *f*-*Pwd*) yields a higher maximum rate of f_{H_2} increase than the 300 °C (performed with the *c*-*Pwd*).

The coupled fluid sampling and H₂ manometry experiment (*Run* 47, Table 2.1) yielded final f_{H_2} values of 3.37 MPa. This is a value which, although higher, is comparable to that of *Run* 42, given notable differences between the two experiments (granulometry of the starting powder, type of membrane, vessel configuration to allow both fluid sampling and membrane to be fitted in). However, the temporal variation of membrane f_{H_2} readings in this experiment is very unusual compared to *Run* 44 and 42. The almost linear f_{H_2} increase with time during the first 1100 h is followed by a marked f_{H_2} jump (from 0.50 to 2.90 MPa in less than 20 h) and then by a progressive f_{H_2} increase from 3.01 to 3.37 MPa in ≈ 1600 h (Figure 2.S3). The magnitude of the f_{H_2} variation (1600 % increase) is inconsistent with the $m_{\text{H}_{2,aq}}$ evolution which only records a 30 % increase during the same period (*i.e.*, between *pt1* and *pt2*, Figure 2.2 and Table 2.2). It is worth emphasizing that, at fixed pressure and temperature, f_{H_2} should be proportional to $m_{\text{H}_{2,aq}}$ as shown by the equation (2.1). Therefore, the f_{H_2} temporal variation in *Run* 47 appears clearly anomalous. It is kept for detailed presentation in this paper because it is the only experiment performed with coupled fluid sampling and H₂ manometry.

Figure 2.3: Time evolution of the H₂ production (rate of $m_{H_{2,aq}}$ increase) in the same serpentinization experiments as in Figure 2.2. Numbering of the experiments is indicated near the data points (see Table 2.1). Temperatures, data points, symbols and lines are kept unchanged. The data enable the influences of granulometry and temperature on the H₂ production to be specified. Further information and discussion in text.

Figure 2.4: Results of the H₂ manometry experiments Run 44 and Run 42 (Table 2.1) showing the membrane $f_{\rm H_2}$ time evolution (left axis) and the rate of $f_{\rm H_2}$ increase (right axis) in serpentinization experiments performed at 50 MPa total pressure ($P_{\rm Tot}$) and at 250 and 300 °C. Numbering of the experiments is indicated near the data points (see Table 2.1). The 250 °C experiment was performed with the fine harzburgite powder (*f-Pwd*) and the 300 °C experiment with the coarse powder (*c-Pwd*).

Results of $f_{\rm H_2}$ calculations

Results of f_{H_2} calculated from the $m_{\text{H}_{2,\,aq}}$ data and using the equation (2.1) are shown in Figure 2.5. At 300 °C, the $m_{\text{H}_{2,\,aq}}$ input data come from $Run\,41$ (Figure 2.5a) and at 250 °C from $Run\,43$ (Figure 2.5b). The calculated values are compared with the f_{H_2} measured respectively in $Run\,42$ at 300 °C and $Run\,44$ at 250 °C (Table 2.1). At both temperatures and except for the very first $m_{\text{H}_{2,\,aq}}$ measurement at 300 °C, calculated f_{H_2} are significantly higher than measured f_{H_2} . At 300 °C, the calculated f_{H_2} that correspond to the last fluids sampled in $Run\,41$ reach values between 4.60 and 5.94 MPa depending on $\gamma_{\text{H}_{2,\,aq}}$. In comparison, membrane f_{H_2} readings range between 2.20 ($Run\,42$) and 3.37 MPa ($Run\,47$) maximum. At 250 °C, the discrepancy between calculated and measured f_{H_2} is less marked. For short durations, the calculated f_{H_2} are significantly higher than the measured f_{H_2} but, for longer durations (> 1400 h, Figure 2.5b), measured and calculated f_{H_2} approach from each other (3.33 - 4.24 MPa depending on $\gamma_{\text{H}_{2,\,aq}}$).

2.2.4 Discussion

Quantification of H₂ generation during serpentinization

Harzburgite-fluid interaction experiments presented in this study are characterized by an important H_2 production. It is worth emphasizing that all experiments have led to the massive crystallization of serpentine minerals at 250 and 300 °C. In contrast, at 350 °C, the proportion of serpentine formed is much lower (Fauguerolles et al., 2017a). Therefore, our results confirm conclusions from previous experimental studies that H_2 generation is related to a mechanism of serpentinization of ultramafic rocks (Berndt et al., 1996; Allen and Seyfried, 2003; Seyfried et al., 2007; Marcaillou et al., 2011; Klein et al., 2015; McCollom et al., 2016).

So far, two main approaches have been followed to quantify H_2 generation in serpentinization experiments and in natural rocks. Fluid sampling experiments similar to those carried out here have demonstrated that serpentinizing fluids contain elevated concentrations of dissolved H_2 (Berndt et al., 1996; Allen and Seyfried, 2003; Seyfried et al., 2007; Klein et al., 2015; McCollom et al., 2016). Factors controlling $m_{\mathrm{H}_{2, aq}}$ in experimental hydrothermal fluids, such as mineralogical composition, temperature, W/R ratio, grain size, have been identified and their influences specified from experiments and thermodynamic modelling, combined (McCollom and Bach, 2009; Klein et al., 2013; Malvoisin, 2015; McCollom et al., 2016) In parallel, detailed mineralogical analysis of product phases of the serpentinization reaction (e.g., phase proportions and compositions, including Fe^{2+}/Fe^{3+} ratios) have enabled model serpentinization reactions to be written and H₂ generation to be estimated by steechiometry (Seyfried et al., 2007; Marcaillou et al., 2011; Andreani et al., 2013; McCollom et al., 2016). Further to these classical approaches, results of the H_2 manometry experiments presented in this study demonstrate the possibility to permanently monitor the $f_{\rm H_2}$ within the reaction cell and to record H_2 production during the advancement of the serpentinization reaction. Overall, H_2 manometry techniques such as implemented in this study have been relatively little used (Frantz et al., 1977; Clemens and McKibben, 1987) and, so far, they have not been applied to the monitoring of the serpentinization reaction. It is therefore important to check the results obtained with this new method. In this work, H_2 manometry has been performed in parallel with fluid sampling, either separately (in most cases) or coupled (in one experiment) and, overall, our data allow the two methods to be compared.

To do so, our $m_{\text{H}_{2,aq}}$ data need *first* to be evaluated against previous experimental serpentinization studies. Results of fluid sampling experiments performed with olivine-rich ultramafic rocks, between 200 and 400 °C, with mostly fine-grained starting powders and W/R of 1 - 2.5, are compiled on Figure 2.6. Values of $m_{\text{H}_{2,aq}}$ widely vary (total range: $0 - 160 \text{ mmol·kg}_{\text{fluid}}^{-1}$, both between and within studies. In all cases, $m_{\text{H}_{2,aq}}$ progressively increases with time as a result of the advancement of the serpentinization reaction. Our data at 300 °C are very close to those of Berndt et al. (1996), both studies using powders that include a very fine-grained fraction. The

Figure 2.5: Comparison between calculated and measured $f_{\rm H_2}$ in serpentinization experiments carried out at 50 MPa total pressure ($P_{\rm Tot}$). Measured $f_{\rm H_2}$ are indicated as dashed lines and calculated $f_{\rm H_2}$ as solid lines. a) Results at 300 °C. Calculations use the $m_{{\rm H_2},aq}$ measurements from Run 41 to compute $f_{{\rm H_2}}$ ($m_{{\rm H_2},aq}$) using two different values of $\gamma_{{\rm H_2},aq}$. b) Results at 250 °C. Calculations use the $m_{{\rm H_2},aq}$ measurements from Run 43 to compute $f_{{\rm H_2}}$ ($m_{{\rm H_2},aq}$) using two different values of $\gamma_{{\rm H_2},aq}$. The $\gamma_{{\rm H_2},aq}$ of 1 in both (a) and (b) corresponds to the value determined for the pure H₂O-H₂ system (Fauguerolles, 2016). The second $\gamma_{{\rm H_2},aq}$ (1.29 in (a), 1.24 in (b)) is derived from "CO₂ approximation" (see text). At 300 °C and whatever the $\gamma_{{\rm H_2},aq}$ value, measured $f_{{\rm H_2}}$ are lower than calculated. The same behavior is observed at 250 °C except that, for long durations, measured and calculated $f_{{\rm H_2}}$ become closer to each other.

Figure 2.6: Comparison between this study and previous fluid sampling serpentinization experiments performed with olivine-rich ultramafic rocks, between 200 and 400 °C, with mostly fine-grained starting powders and W/R of 1-2.5. The $m_{H_{2,aq}}$ data are compiled and plotted as a function of time. Results for durations < 2000 h and $m_{H_{2,aq}} < 36 \text{ mol·kg}_{fluid}^{-1}$ are detailed in the inset. See text.

comparatively lower $m_{\text{H}_{2, aq}}$ data of McCollom et al. (2016) at the same temperature can be explained by a coarser granulometry. Our study at 350 °C and the one of Allen and Seyfried (2003) at 400 °C both demonstrate a strong decrease of the H₂ production at temperatures higher than 300 °C for olivine-rich lithologies, in agreement with theoretical calculations (McCollom and Bach, 2009; Klein et al., 2013; Malvoisin, 2015). Between 200 and 250 °C, the differences in $m_{\text{H}_{2, aq}}$ between previous (Seyfried et al., 2007; McCollom et al., 2016) and this study can be explained by the combined influences of temperature and grain size, besides the mineralogical composition of the starting rock (*i.e.*, lherzolite in Seyfried et al. (2007)). The effect of temperature seen in our experiments between 250 and 350 °C is qualitatively similar to previous results, either from experiments (McCollom et al., 2016) or thermodynamic calculations (McCollom and Bach, 2009; Klein et al., 2013; Malvoisin, 2015). Given the individual influences of the various parameters involved, we conclude that the $m_{\text{H}_{2, aq}}$ data in our fluid sampling experiments are consistent with previous studies.

Second, the good qualitative agreement between the fluid sampling and the H₂ manometry experiments must be noted. The $f_{\rm H_2}$ show a progressive increase with time as do the $m_{\rm H_2, aq}$ data. Rates of $f_{\rm H_2}$ increase are correlated with grain size and maxima are observed during the first 300 h, *i.e.*, in the same time interval than maximum rates of $m_{\rm H_2, aq}$ increase (Figures 2.3 and 2.4). This demonstrates that $f_{\rm H_2}$ and $m_{\rm H_2, aq}$ are two different expressions of the same mechanism of H₂ production inside the reaction cell. However, differences have been noted between, on the one hand, $f_{\rm H_2}$ calculated from $m_{\rm H_2, aq}$ and, on the other hand, measured $f_{\rm H_2}$. Calculated $f_{\rm H_2}$ are significantly higher than measured $f_{\rm H_2}$, especially at 300 °C (Figure 2.5). As an explanation of this discrepancy, thermodynamic uncertainties (e.g., choice of $\gamma_{\rm H_2, aq}$) could be invoked. We note that, for calculated $f_{\rm H_2}$ to approach measured $f_{\rm H_2}$, $\gamma_{\rm H_2, aq}$ values < 1 would be needed. However, $\gamma_{\rm H_2, aq}$ values in this range appear irrealistic given compositions of experimental serpentinizing fluids. In fact, the different $\gamma_{\rm H_2, aq}$ values considered for the calculations of the equation (2.1) are all > 1, whether measured Ding and Seyfried (1990) or estimated with the "CO₂ approximation" (see above). We conclude that adjusting $\gamma_{\rm H_2, aq}$ more precisely would not allow calculated and

measured $f_{\rm H_2}$ to be reconciled. Therefore, it is most likely that the cause of the discrepancy is experimental.

 H_2 manometry as in this study involves transfer of H_2 from the reaction cell to the H_2 membrane, line and pressure gauge. Thus, H_2 is lost from the cell and the measured f_{H_2} should be lower than the actual $f_{\rm H_2}$ with no H₂ manometry device present. This "sink" effect would be consistent with $f_{\rm H_2}$ in H₂ manometry being lower than in fluid sampling experiments, as observed (Figure 2.5). However, the dead volume of the $f_{\rm H_2}$ measuring device has been minimized as much as possible, leading to a volume ratio of ≈ 150 between the reaction cell and the $f_{\rm H_2}$ measuring device and, so, the "sink" effect should be minimal. Rather, it is possible that some H_2 is lost slowly (but continuously) toward the H₂O pressure medium inside the vessel by diffusion through the hot part of the steel tube (Gunter et al., 1987) that encloses the H_2 capillary (Figure 2.82b). This explanation is consistent with the more important H2 loss observed at 300 than at 250 °C (Figure 2.5). Because the H₂ manometry, but not the fluid sampling experiments, are affected by this H₂ type of loss, our measured $f_{\rm H_2}$ data should be viewed as slightly underestimated. This overall minor H₂ loss does not invalidate our H_2 manometry method to quantify H_2 generation during serpentinization but stresses the need to perfect H_2 confinement within the H_2 manometry device. In this respect, the practical importance of the equation (2.1) is emphasized since it provides a way to check the $f_{\rm H_2}$ measurements.

Redox conditions in serpentinizing environments

One major advantage of measuring $f_{\rm H_2}$ with H₂ manometry is to constrain directly one redox variable. At constant pressure, if $f_{\rm H_2}$ is known and $f_{\rm H_2O}$ can be estimated, then $f_{\rm O_2}$ is determined. As an application, the $f_{\rm O_2}$ in our serpentinization experiments has been calculated, assuming that the hydrothermal fluid is a binary H₂O-H₂ mixture. Two methods of estimation of the fugacity coefficients of H₂ and H₂O in the fluid mixture, either the Lewis-Randall approximation or an equation of state (EoS), have been tested. The Lewis-Randall approximation uses fugacity coefficients determined for pure H₂ and H₂O gases (Shaw and Wones, 1964; Burnham et al., 1969). For the EoS, a Redlich-Kwong formulation was applied to the H₂O-H₂ system (Redlich and Kwong, 1949). Although more sophisticated types of EoS for H₂O-H₂ fluids have been recently introduced (Sun et al., 2015), the Redlich-Kwong EoS developed in this study was kept for the calculations, for practical reasons.

The f_{O_2} in Run 42 and Run 44 at 300 and 250 °C have been calculated firstly by using the measured $f_{\rm H_2}$ Figure 2.7a. Results show that $f_{\rm O_2}$ (referenced to the NNO equilibrium buffer calculated at the same pressure and temperature) decreases along with increasing $f_{\rm H_2}$ and advancement of the serpentinization reaction. When calculated with the Lewis-Randall approximation, minimum f_{O_2} (corresponding to maximum $f_{\rm H_2}$ values) are NNO-5.6 at 250 °C and NNO-4.4 at 300 °C, increasing by either $\approx 0.5 \ (250 \ \text{C})$ or $\approx 0.3 \ (300 \ \text{C})$ log units when using the Eos (Figure 2.7a). Secondly, the $f_{\rm O_2}$ calculations have been performed with $f_{\rm H_2}$ derived from $m_{{\rm H}_{2,aq}}$, the calculations using the same $\gamma_{\rm H_{2,ag}}$ values as above (Figure 2.5). Results (only those with the Lewis-Randall approximation are shown, Figure 2.7b) yield f_{O_2} slightly more reducing than with the measured f_{H_2} , the minimum f_{O_2} being NNO-5.7 at 250 °C (difference of 0.1 log unit) and NNO-5.3 at 300 °C (difference of 0.9 log unit). Values 0.2 log units higher are obtained by using $\gamma_{\text{H}_{2, aq}} = 1$. The f_{O_2} of Run 47, calculated in the same way by using the Lewis-Randall approximation, yields NNO-4.8 (measured $f_{\rm H_2}$) and between NNO-5 and NNO-5.2 (calculated $f_{\rm H_2}$). Therefore, very reducing experimental f_{O_2} (< NNO-4) are consistently obtained irrespective of the calculation method and type of input $f_{\rm H_2}$ values. In particular, the influence of experimental H₂ loss on the $f_{\rm O_2}$ determinations is limited to $< 1 \log$ unit.

The presence of elevated concentrations of H_2 in the hydrothermal fluid and the occurrence of phases such as awaruite (FeNi₃) has been considered to indicate that serpentinizing environments are reducing (e.g., Neal and Stanger, 1983; Abrajano et al., 1990; Sleep et al., 2004; Klein and Bach, 2009). Yet, serpentinization involves partial oxidation of Fe from Fe²⁺ in reactants to

Figure 2.7: Evolution of f_{O_2} with time (referenced to NNO equilibrium (Chou, 1987)) during serpentinization experiments at 50 MPa total pressure (P_{Tot}) and at 250 and 300 °C. a) f_{O_2} calculated from manometrically measured f_{H_2} (*Run* 42 and *Run* 44, Table 2.1) using either the Lewis and Randall rule (solid line) or the EoS for the H₂O-H₂ fluid mixture (dashed line). b) f_{O_2} calculated from calculated f_{H_2} (see text), using the Lewis and Randall rule and different $\gamma_{H_{2,aq}}$. Error bars are analytical errors inherited from the $m_{H_{2,aq}}$ measurements.

 ${\rm Fe}^{3+}$ in products. In fact, very few studies have attempted to constrain quantitatively the $f_{\rm O_2}$ during serpentinization (Frost, 1985; Frost et al., 2013), and f_{O_2} has remained largely unspecified in experimental serpentinization studies (e.g., Berndt et al., 1996; Seyfried et al., 2007). Results presented in this work provide the first direct f_{O_2} determinations in serpentinization experiments, and confirm that they can be strongly reducing, with values of f_{O_2} as low as < NNO-4 (Figure 2.7). The data show that the shift toward progressively more reducing conditions goes along with H_2 generation and accumulation in the hydrothermal fluid. It is worth stressing that the method used to compute the f_{O_2} in our experiments is general and applicable to other hydrothermal systems, either natural or experimental. Fluid $m_{\mathrm{H}_{2,\,aq}}$ data must be available to allow $f_{\mathrm{H}_{2}}$ to be computed using the equation (2.1). Then, f_{O_2} can be calculated from estimations of f_{H_2O} for the hydrothermal fluid (taking into consideration the presence of NaCl and of other dissolved species) and total pressure. Lastly, and although results from this study confirm the popular view of reducing conditions in serpentinization environments, it is worth emphasizing that such low f_{O_2} conditions are not in all cases mandatory for serpentinization to take place. Fauguerolles et al. (2017b) have contrasted serpentinization processes under either internally- or externally-controlled $f_{\rm H_2}$ regimes with, in the latter case, hematite crystallizing together with serpentine minerals. Therefore, oxidizing serpentinization environments are also possible. We conclude that both the $f_{\rm H_2}$ and the $f_{\rm O_2}$ should be considered as key variables in serpentinization processes.

Kinetics of H₂ production

Both the fluid sampling and H₂ manometry experiments performed in this study indicate rapid kinetics of H₂ production. Kinetic analysis of the $m_{\text{H}_{2, aq}}$ data reveal that maximum rates of $m_{\text{H}_{2, aq}}$ increase are found for durations lower than 300 h (Figure 2.3). In the same way, maximum rates of $f_{\rm H_2}$ increase occur during the early stages of the H₂ manometry experiments (Figure 2.4). Our data allow the influences of temperature and granulometry on H₂ production to be separated. Results with the *f*-Pwd demonstrate that rates of $m_{\mathrm{H}_{2, aq}}$ increase are progressively higher with increasing temperature, pass through a maximum at 300° C and then decrease for higher temperatures. The optimum temperature range for H₂ production at ≈ 300 °C found in this study is in agreement with estimations of rates of H_2 production from (McCollom et al., 2016). The role of granulometry is clearly apparent from our 300 °C data which shows (1) that the maximum rate of $m_{\rm H_{2,ag}}$ increase becomes higher with decreasing grain size and (2) that H_2 production lasts for longer durations with the *c-Pwd* than the *f-Pwd*. The rate of $f_{\rm H_2}$ increase is also higher at 250 (*f-Pwd*) than at 300 °C (c-Pwd). Considering our experimental grain sizes, our H₂ production rates are in agreement with the effect of granulometry calculated by McCollom et al. (2016). However, H₂ production rates have been modelled by assuming that H_2 generation is linear in serpentinization experiments (McCollom et al., 2016). Rather, our results (and those of Seyfried et al., 2007) are more compatible with serpentinization consisting in several discrete steps, as shown by the existence of plateau values and incubation periods (Figures 2.2 and 2.6). In the same way, Andreani et al. (2013) have emphasized the non-linearity between the Fe^{2+}/Fe^{3+} evolution and the degree of serpentinization. This stresses the importance, for evaluating the kinetics of H₂ production, of considering the textures and compositions of experimental products together with the fluid $(f_{H_2}, m_{H_{2,aq}})$ results (Fauguerolles et al., 2017a).

Another advantage to be noted with the H₂ manometry experiments is that continuous monitoring of the $f_{\rm H_2}$ evolution is possible. In comparison, in fluid sampling experiments, $m_{\rm H_2, aq}$ is measured only at discrete time intervals which can introduce a bias in the kinetic analysis (Figures 2.2 and 2.6). In this respect, the sigmoïdal dependence with time of the $f_{\rm H_2}$ membrane readings, both at 250 and 300 °C, must be emphasized (Figure 2.4). This sigmoïdal evolution, which is not clearly apparent in fluid sampling $m_{\rm H_2, aq}$ results except, maybe, in Run 41 (Figure 2.2) and in Seyfried et al. (2007; Figure 2.6), might be an indication of reaction mechanisms involved in the serpentinization process and of their sequential evolution. It is worth pointing out that the membrane $f_{\rm H_2}$ evolution should not greatly change due to H₂ loss whose influence is marked mostly on high $f_{\rm H_2}$ values and so at long experimental durations.

2.2.5 Conclusion

A new experimental approach has been introduced to monitor reaction progress and H₂ production and to constrain redox parameters (f_{H_2}, f_{O_2}) in serpentinization environments. The approach is based on a new experimental method enabling f_{H_2} to be recorded *in situ* in the serpentinization cell. The method has been demonstrated to work in principle at 250 and 300 °C, 50 MPa, in harzburgite-seawater experiments typical of serpentinization environments. However, a slow time-integrated loss of H₂ from the f_{H_2} measuring device has been revealed from the analysis of the data. This stresses the need to improve the H₂ confinement in future studies of this type.

Results from the H₂ manometry experiments have been combined with fluid sampling experiments performed using the classical method. The two fluid H₂ concentration variables, $m_{\text{H}_{2, aq}}$ and f_{H_2} , have been quantitatively related using thermodynamic modelling. This stresses the importance, for practical applications such as f_{O_2} calculations, of precisely knowing $\gamma_{\text{H}_{2, aq}}$, the activity coefficient of H_{2, aq}.

 f_{O_2} have been calculated to range between NNO-4 and NNO-6 in our experiments. This illustrates that f_{O_2} can be obtained from fluid H₂ concentrations $(m_{H_{2,aq}})$ and reciprocally. These strongly reducing conditions are compatible with the occurrence of awaruite in reaction products. However, f_{O_2} is not necessarily always very reducing in serpentinization environments.

 $m_{\mathrm{H}_{2,\,aq}}$ in our fluid sampling experiments are consistent with previous studies performed on olivine-rich ultramafic rocks. They stress the influence of temperature and granulometry of the starting material on rates of H₂ production and H₂ fluid concentrations.

Membrane $f_{\rm H_2}$ readings show a sigmoidal dependence with time demonstrating a progressive increase of $f_{\rm H_2}$ inside the reaction cell as a result of progress of the serpentinization reaction. Values of $f_{\rm H_2}$ in the range ≈ 2 to ≈ 4 MPa have been obtained for the longest experimental durations. Because of H₂ loss, these must be considered as minimum values.

Maximum rates of f_{H_2} increase occur during the first 300 h, in the same time interval than maximum rates of $m_{\text{H}_2, aq}$ increase. Therefore, f_{H_2} and $m_{\text{H}_2, aq}$ can be viewed as two different expressions of the same mechanism of H₂ production inside the serpentinization cell. Overall, our results stress that H₂ production starts early, increases rapidly and proceeds continuously in the experiments. However, the process is not linear and appears more compatible with the existence of reaction steps such as those identified from studies of solid products (Fauguerolles et al., 2017a).

2.2.6 Bibliography

- Abrajano, T. A., Sturchio, N. C., Kennedy, B. M., Lyon, G. L., Muehlenbachs, K., and Bohlke, J. K. (1990). Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines. Applied Geochemistry, 5(5):625–630.
- Allen, D. E. and Seyfried, Jr., W. E. (2003). Compositional controls on vent fluids from ultramafichosted hydrothermal systems at mid-ocean ridges: An experimental study at 400 °C, 500 bars. *Geochimica et Cosmochimica Acta*, 67(8):1531–1542.
- Andreani, M., Munoz, M., Marcaillou, C., and Delacour, A. (2013). μxanes study of iron redox state in serpentine during oceanic serpentinization. *Lithos*, 178:70–83.
- Berndt, M. E., Allen, D. E., and Seyfried, Jr., W. E. (1996). Reduction of CO₂ during serpentinization of olivine at 300 °C and 500 bar. *Geology*, 24(4):351–354.
- Burnham, C. W., Holloway, J. R., and Davis, N. F. (1969). Thermodynamic properties of water to 1,000 C and 10,000 bars. Geological Society of America Special Papers, 132:1–96.
- Cannat, M., Fontaine, F., and Escartín, J. (2010). Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges. In Rona, P. A., Devey, C. W., dyment, J., and Murton, B. J., editors, *Diversity of hydrothermal systems on slow spreading ocean ridges*, pages 241–264. American Geophysical Union, Washington, D. C.
- Charlou, J. L., Donval, J. P., Fouquet, Y., Jean-Baptiste, P., and Holm, N. (2002). Geochemistry of high H₂ and CH₄ vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). *Chemical Geology*, 191(4):345–359.
- Charlou, J. L., Donval, J. P., Konn, C., Ondréas, H., Fouquet, Y., Jean-Baptiste, P., and Fourré, E. (2010). High production and fluxes of H₂ and CH₄ and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. In Rona, P. A., Devey, C. W., Dyment, J., and Murton, B. J., editors, *Diversity of* hydrothermal systems on slow spreading ocean ridges, pages 265–296. American Geophysical Union, Washington, D. C.
- Chou, I.-M. (1987). Oxygen Buffer and Hydrogen Sensor Techniques at Elevated Pressures and Temperatures. In Ulmer, G. C. and Barnes, H. L., editors, *Hydrothermal Experimental Techniques*, pages 61–99. John Wiley and Sons, New York, NY.
- Clemens, J. D. and McKibben, M. A. (1987). TEFLON as a Hydrogen Diffusion Membrane: Application in Hydrothermal Experiments. In Ulmer, G. C. and Barnes, H. L., editors, *Hydrothermal Experimental Techniques*, pages 121–140. John Wiley and Sons, New York, NY.
- Ding, K. and Seyfried, Jr., W. E. (1990). Activity coefficients of H₂, H₂S in NaCl solutions at 300-425 °C, 300-500 bar with application to ridge crest hydrothermal systems. EOS, Transactions American Geophysical Union, 71:1680.
- Drummond, Jr., S. E. (1981). Boiling and Mixing of Hydrothermal Fluids: Chemical Effects on Mineral Precipitation. PhD thesis, The Pennsylvania State University.
- Fauguerolles, C. (2016). This Thesis Manuscript (I have not found definitive title yet). PhD thesis, Université d'Orléans.
- Fauguerolles, C., Castelain, T., Villneuve, J., Rouméjon, S., and Pichavant, M. (2017a). Reaction mechanisms during serpentinization - Textural constraints and mineral chemistry data from experiments on a harzburgite at 250 – 350 °C, 50 MPa. Not yet submitted, Chapter III of this manuscript.
- Fauguerolles, C., Castelain, T., Villneuve, J., and Pichavant, M. (2017b). Internally vs. externally $f_{\rm H_2}$ controlled experiments results and implication for the serpentinisation reaction. Not yet submitted, Chapter IV of this manuscript.

- Frantz, J. D., Ferry, J. M., Popp, R. K., and Hewitt, D. A. (1977). Redesign of the Shaw apparatus for controlled hydrogen fugacity during hydrothermal experimentation. *Carnegie Institution of Washington Year Book*, 76:660–662.
- Frost, B. R. (1985). On the stability of sulfides, oxides, and native metals in serpentinite. Journal of Petrology, 26(1):31–63.
- Frost, B. R., Evans, K. A., Swapp, S. M., Beard, J. S., and Mothersole, F. E. (2013). The process of serpentinization in dunite from New Caledonia. *Lithos*, 178:24–39.
- Garrels, R. M. and Christ, C. L. (1965). Solutions, Minerals and Equilibria. Freeman and Cooper and Cie, San Francisco, CA.
- Garrels, R. M. and Thompson, M. E. (1962). A chemical model for sea water at 25 degrees C and one atmosphere total pressure. *American Journal of Science*, 260(1):57–66.
- Gunter, W. D., Myers, J., and Girsperger, S. (1987). Hydrogen: Metal Membranes. In Ulmer, G. C. and Barnes, H. L., editors, *Hydrothermal Experimental Techniques*, pages 100–120. John Wiley and Sons, New York, NY.
- Harkins, M., Green, H. W. II, and Moores, E. (1980). Multiple intrusive events documented from the Vourinos ophiolite complex, northern Greece. American Journal of Science, 280(A):284–295.
- Helgeson, H. C. (1969). Thermodynamics of hydrothermal systems at elevated temperatures and pressures. American journal of science, 267(7):729–804.
- Johnson, J. W., Oelkers, E. H., and Helgeson, H. C. (1992). SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 − 5000 bar and 0 − 1000 °C. Computers & Geosciences, 18(7):899–947.
- Klein, F. and Bach, W. (2009). Fe-Ni-Co-O-S phase relations in peridotite-seawater interactions. Journal of Petrology, 50(1):37–59.
- Klein, F., Bach, W., Jöns, N., McCollom, T., Moskowitz, B., and Berquó, T. (2009). Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge. *Geochimica et Cosmochimica Acta*, 73(22):6868–6893.
- Klein, F., Bach, W., and McCollom, T. M. (2013). Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. *Lithos*, 178:55–69.
- Klein, F., Grozeva, N. G., Seewald, J. S., McCollom, T. M., Humphris, S. E., Moskowitz, B., Berquó, T. S., and Kahl, W.-A. (2015). Fluids in the Crust. Experimental constraints on fluid-rock reactions during incipient serpentinization of harzburgite. *American Mineralogist*, 100(4):991–1002.
- Malvoisin, B. (2015). Mass transfer in the oceanic lithosphere: Serpentinization is not isochemical. Earth and Planetary Science Letters, 430:75–85.
- Malvoisin, B., Brunet, F., Carlut, J., Rouméjon, S., and Cannat, M. (2012). Serpentinization of oceanic peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal alteration. *Journal of Geophysical Research: Solid Earth (1978–2012)*, 117(B4).
- Malvoisin, B., Brunet, F., Carlut, J., Montes-Hernandez, G., Findling, N., Lanson, M., Vidal, O., Bottero, J.-Y., and Goffe, B. (2013). High-purity hydrogen gas from the reaction between bof steel slag and water in the 473–673 K range. *International Journal of Hydrogen Energy*, 38(18):7382–7393.
- Marcaillou, C., Munoz, M., Vidal, O., Parra, T., and Harfouche, M. (2011). Mineralogical evidence for H₂ degassing during serpentinization at 300 °C/300 bar. *Earth and Planetary Science Letters*, 303(3):281–290.

- Martin, W., Baross, J., Kelley, D., and Russell, M. J. (2008). Hydrothermal vents and the origin of life. *Nature Reviews Microbiology*, 6(11):805–814.
- Martin, W. and Russell, M. J. (2007). On the origin of biochemistry at an alkaline hydrothermal vent. *Philosophical Transactions of the Royal Society of London B: Biological Sciences*, 362(1486):1887–1926.
- McCollom, T. M. and Bach, W. (2009). Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. *Geochimica et Cosmochimica Acta*, 73(3):856–875.
- McCollom, T. M., Klein, F., Robbins, M., Moskowitz, B., Berquó, T. S., Jöns, N., Bach, W., and Templeton, A. (2016). Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine. *Geochimica et Cosmochimica Acta*, 181:175–200.
- Neal, C. and Stanger, G. (1983). Hydrogen generation from mantle source rocks in Oman. Earth and Planetary Science Letters, 66:315–320.
- Oufi, O., Cannat, M., and Horen, H. (2002). Magnetic properties of variably serpentinized abyssal peridotites. Journal of Geophysical Research: Solid Earth, 107(B5).
- Redlich, O. and Kwong, J. N. S. (1949). On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. *Chemical reviews*, 44(1):233–244.
- Russell, M. J., Hall, A. J., and Martin, W. (2010). Serpentinization as a source of energy at the origin of life. *Geobiology*, 8(5):355–371.
- Scaillet, B., Pichavant, M., Roux, J., Humbert, G., and Lefevre, A. (1992). Improvements of the Shaw membrane technique for measurement and control of $f_{\rm H_2}$ at high temperatures and pressures. *American Mineralogist*, 77(5-6):647–655.
- Schmidt, B. C., Scaillet, B., and Holtz, F. (1995). Accurate control of $f_{\rm H_2}$ in cold-seal pressure vessels with the Shaw membrane technique. *European Journal of Mineralogy*, pages 893–904.
- Seward, T. M. and Franck, E. U. (1981). The system hydrogen-water up to 440°C and 2500 bar pressure. Berichte der Bunsengesellschaft für physikalische Chemie, 85(1):2–7.
- Seyfried, W. E., Janecky, D. R., and Berndt, M. E. (1987). Rocking Autoclaves for Hydrothermal Experiments II. The Flexible Reaction-Cell System. In Ulmer, G. C. and Barnes, H. L., editors, *Hydrothermal Experimental Techniques*, pages 216–239. John Wiley and Sons, New York, NY.
- Seyfried, Jr., W. E., Foustoukos, D. I., and Fu, Q. (2007). Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200 °C, 500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges. *Geochimica et Cosmochimica Acta*, 71(15):3872–3886.
- Shaw, H. R. and Wones, D. R. (1964). Fugacity coefficients for hydrogen gas between 0 degrees and 1000 degrees C, for pressures to 3000 atm. *American Journal of Science*, 262(7):918–929.
- Sleep, N. H., Meibom, A., Fridriksson, T., Coleman, R. G., and Bird, D. K. (2004). H₂-rich fluids from serpentinization: geochemical and biotic implications. *Proceedings of the National Academy* of Sciences of the United States of America, 101(35):12818–12823.
- Sun, R., Lai, S., and Dubessy, J. (2015). Calculations of vapor-liquid equilibria of the H₂O-N₂ and H₂O-H₂ systems with improved SAFT-LJ EOS. *Fluid Phase Equilibria*, 390:23–33.

2.2.7 Supplementary

Figure 2.81: Granulometric distribution of the two starting Vourinos harzburgite powders used in this study. Each powder has a maximum grain size of 100 µm but the granulometric data are determined on the $< 60 \,\mu\text{m}$ fraction. The coarse powder (*c*-*Pwd*) has a median grain size distribution of 12.9 µm. The fine powder (*f*-*Pwd*) has a median grain size distribution of 5.7 µm.

Figure 2.S2: Schematic illustrations of the two experimental setups and measurement types used in this study. a) Fluid sampling experiment: $m_{\text{H}_{2,aq}}$ is measured in periodically sampled fluid. Notice that the sampling tube is made of Ti. b) H₂ manometry experiment: f_{H_2} is permanently measured with an H₂ semipermeable membrane. Inset shows how the H₂ line is confined within the high pressure tube. For practical reasons this tube is made of *316SS*. H₂ loss (see text) likely occurs by diffusion through the walls of the hot *316SS* tube (red arrows). In *Run* 47 (where fluid sampling and H₂ manometry were coupled, Table 2.1), the *316SS* tube is also used for fluid sampling. In the other H₂ manometry experiments, the sampling valve is used only for initial removing of the gas headspace.

Figure 2.S3: $f_{\rm H_2}$ evolution in $Run\,47$ where fluid sampling and $f_{\rm H_2}$ manometry were coupled (Table 2.1), performed at 50 MPa total pressure ($P_{\rm Tot}$) and at 300 °C. The membrane $f_{\rm H_2}$ shows an unusual type of response, marked by a major $f_{\rm H_2}$ jump at ≈ 1100 h. Symbols pt1 to pt3 indicate when fluid sampling for the $m_{\rm H_2, aq}$ determinations (Table 2.2) was performed. The small bumps in $f_{\rm H_2}$ just before pt2 and pt3result from readjustments of total pressure to 50 MPa (increases of 2-3 MPa).

2.3 Conclusions

Une nouvelle approche expérimentale a été introduite afin de contrôler l'avancement de la réaction et la production d'H₂ ainsi que de contraindre les paramètres redox (f_{H_2}, f_{O_2}) associés aux à la serpentinisation. Cette approche est basée sur une nouvelle méthode expérimentale permettant d'enregistrer la f_{H_2} in situ dans la cellule réactionnelle. Il a été démontré que cette méthode est opérationnelle dans son principe à 250 et 300 °C et 50 MPa, pour des expériences d'interaction harzburgite-eau de mer typiques des environnements de serpentinisation. Cependant, l'analyse des données révèle l'existence d'une perte faible mais continue de l'H₂ dans le système de mesure de la f_{H_2} . Ceci souligne le besoin d'améliorer le confinement de l'H₂ dans les futures expériences de ce type.

Les résultats des expériences de mesure de la $f_{\rm H_2}$ par manométrie ont été combinés avec ceux des expériences d'échantillonnage du fluide utilisant la méthode classique. Les deux variables exprimant la concentration d'H₂ dans le fluide, $m_{\rm H_2, aq}$ et $f_{\rm H_2}$, ont été reliées quantitativement en utilisant la modélisation thermodynamique. Ces résultats mettent en avant, pour des applications pratiques telles que le calcul de la $f_{\rm O_2}$, le besoin de connaitre précisément $\gamma_{\rm H_2, aq}$ le coefficient d'activité de $\rm H_{2, aq}$.

Des f_{O_2} allant de NNO-4 à NNO-6 ont été calculées pour nos expériences, ce qui souligne la possibilité d'obtenir des contraintes précises de f_{O_2} à partir des concentrations en H₂ $(m_{H_{2,aq}})$ des fluides, et réciproquement. Ces conditions fortement réductrices sont en accord avec l'occurrence d'awaruite dans les produits réactionnels. Cependant, il convient de faire remarquer que la f_{O_2} n'est pas nécessairement toujours très réductrice dans les environnements de serpentinisation.

Les $m_{\mathrm{H}_{2, aq}}$ dans nos expériences d'échantillonnage du fluide sont en accord avec les précédentes études expérimentales réalisées sur des roches ultramafiques riches en olivine. Ces expériences mettent en évidence l'influence de la température et de la granulométrie du produit de départ sur les taux de production d'H₂ et les concentrations en H₂ des fluides.

Les enregistrements de la $f_{\rm H_2}$ présentent une évolution temporelle sigmoïdale et démontrent, par là même, une augmentation progressive de la $f_{\rm H_2}$ dans la cellule réactionnelle résultant de l'avancement de la réaction de serpentinisation. Des valeurs de $f_{\rm H_2}$ allant de ≈ 2 à ≈ 4 MPa ont été enregistrées à la fin des expériences. Cependant, en raison des pertes d'H₂, ces valeurs doivent être considérées comme minimales.

Les taux maximum d'augmentation de la f_{H_2} ont lieu durant les 300 premières heures, comme les taux maximum d'augmentation de la $m_{H_2, aq}$. Ceci montre que f_{H_2} et $m_{H_2, aq}$ peuvent être vues comme deux expressions différentes du même mécanisme de production de l'H₂ au cours de la réaction de serpentinisation. De façon générale, nos résultats soulignent le fait que la production d'H₂ commence précocement, augmente rapidement et est continuelle durant chacune des expériences. Cependant, ce processus n'est pas linéaire et il pourrait traduire l'existence d'étapes réactionnelles telles que celles identifiées lors de l'étude des phases solides (Fauguerolles *et al.*, 2017b; Chapitre 3).

Chapitre **3**

000

Mécanismes réactionnels associés

à la serpentinisation.

Contraintes texturales et propriétés

chimiques des minéraux

3.1 Introduction

Ce Chapitre présente, sous la forme d'un article, les résultats obtenus suite à l'étude des phases solides associées aux expériences de quantification de l'H₂ présentées dans le Chapitre 2. Cette étude est la première depuis Janecky et Seyfried (1986) à détailler les phases solides produites lors de la serpentinisation d'une harzburgite à des températures autour de 300°C (c'est-à-dire 250, 300 et 350 °C). Plus récemment, des études portant sur le même type de roche ultramafique ont été publiées, mais pour des températures soit inférieures (200°C, Seyfried et al., 2007) soit supérieures (400°C, Allen et Seyfried, 2003) à notre travail. Klein et al. (2015) ont également publié des observations sur la serpentinisation expérimentale d'une harzburgite. Dans leur cas, l'échantillon de départ était sous la forme d'une carotte et non d'une poudre comme dans notre étude, ce qui rend les comparaisons très difficiles, notamment en terme de texture. Dans notre étude, un intérêt particulier a été porté aux domaines réactionnels locaux impliquant les olivines et les orthopyroxènes. Les données texturales et chimiques obtenues ont permis de proposer deux séquences de mécanismes réactionnels décrivant la transformation progressive de ces phases lors de la serpentinisation. Les phases caractéristiques de la réaction de serpentinisation telles que la serpentine, la brucite, la magnétite et l'awaruite ont été caractérisées et les partages Fe-Mg entre réactants et produits de la réaction déterminés. L'existence d'assemblages de phases métastables et d'autres hors d'équilibre indique que la serpentinisation progresse par une succession d'étapes réactionnelles essentiellement contrôlées par des facteurs cinétiques. La serpentinisation doit être vue comme un mécanisme d'ensemble de dissolution irréversible d'olivine et de pyroxènes. Les modèles thermodynamiques décrivant la serpentinisation comme un processus d'équilibre n'ont qu'une valeur de référence.

Résumé :

Des expériences d'interaction fluide-roche ont été conduites à 50 MPa entre 250 et 350 °C afin de simuler l'hydratation des roches ultramafiques au niveau des dorsales médio-océaniques lentes et d'identifier les mécanismes à l'origine de la production d' H_2 . Des poudres d'harzburgite provenant de l'ophiolite de Vourinos et de l'eau de mer artificielle ont été utilisées comme produits de départ. Les expériences ont été réalisées dans des capsules flexibles en Ti ou en Au-Ti montées dans des autoclaves à large volume du type Dickson-Seyfried, et elles ont duré entre 1012 et 3310 h. La production continue d'H₂ a été démontrée par l'échantillonnage des fluides et le suivi de la $f_{\rm H_2}$ (Fauguerolles *et al.*, 2017a). Les phases solides ont été récupérées après les expériences et étudiées par DRX, MEB, microsonde électronique et microspectroscopie Raman. Les propriétés magnétiques de certains échantillons ont également été mesurées. Une attention spéciale a été portée à l'étude des cristaux résiduels (Ol, Opx) présents dans les charges expérimentales. En effet, ceux-ci préservent les stades les moins avancés de la transformation et ils permettent d'identifier les textures et les mécanismes réactionnels. Les charges à 250 et à 300 °C sont principalement constituées d'une matrice riche en serpentine indiquant un stade globalement avancé de la réaction. À 350 °C, la matrice riche en serpentine est absente. Les cristaux résiduels d'Ol et d'Opx montrent des relations texturales complexes impliquant des produits tels que la brucite (Bct), la serpentine (Srp) et la magnétite (Mgt). De l'awaruite a également été trouvée. La séquence réactionnelle dans les domaines locaux autour de l'Ol se décompose en deux étapes, (1) un stade initial à Ol-Bct suivi par (2) un stade Bct-Srp avec remplacement de la Bct par la Srp et cristallisation de la Mgt à une certaine distance de l'Ol. La transformation des Opx se décompose en (1) un assemblage Srp-Opx (sans talc) suivi par (2) un assemblage Srp-Bct-Mgt et finalement (3) un stade marqué uniquement par des agrégats de Mgt. Les Bct ont des Mg# de ≈ 88 en moyenne et des compositions un peu plus enrichies (83) dans les domaines à Ol à 250°C. À 250 comme à 300°C, les Srp dans les matrices ont des Mg# de ≈ 94 en moyenne. Des Mg# plus bas (≈ 88) ont été trouvés pour les Srp associées aux domaines locaux autour des Opx. Les résultats expérimentaux indiquent que, globalement, la réaction de transformation de l'harzburgite a atteint un stade proche de l'équilibre. Toutefois, l'approche vers l'équilibre peut se décomposer en une succession d'étapes réactionnelles favorisées cinétiquement et dans lesquelles interviennent des assemblages de phases métastables et hors d'équilibre. Parmi ceux-ci, soulignons les assemblages Ol-Bct, Opx-Srp et Opx-Srp-Bct systématiquement présents dans nos produits expérimentaux. Notre étude est la première à décrire

un mécanisme réactionnel Ol-Bct au cours d'une expérience de serpentinisation. La réactivité élevée des Opx dans nos expériences résulte d'un couplage avec les réactions impliquant l'Ol qui fixent $a_{\rm SiO_2}$ dans un domaine « moyen » qui favorise la transformation des Opx. La cristallisation de la Mgt est spatialement déconnectée des domaines réactionnels de l'Ol. Bien qu'elles soient plus intimement associées aux domaines locaux autour des Opx, l'apparition de la Mgt est tardive dans les deux séquences réactionnelles. Cette conclusion sur la cristallisation tardive des Mgt est en accord avec certaines études expérimentales et naturelles antérieures. Cependant, et bien que nos expérimentations soient réalistes, de nombreux paramètres, physiques et chimiques, sont impliqués dans la réaction de serpentinisation. L'application directe des résultats expérimentaux aux systèmes naturels doit être faite avec précaution.

3.2 Reaction mechanisms during serpentinization – Textural constraints and mineral chemistry data from experiments on a harzburgite at 250 - 350 °C, 50 MPa

Colin Fauguerolles¹ Teddy Castelain^{1, 2} Rouméjon Stéphane³ Johan Villeneuve^{1, 2} Michel Pichavant¹

¹ Institut des Sciences et de la Terre d'Orléans, CNRS – Université d'Orléans, Orléans, France.

 $^2\,$ Centre de Recherches Pétrographiques et Géochimiques, CNRS – Université de Lorraine, Vandœuvre les Nancy, France.

³ Department of Earth Sciences, ETH, Zurich, Switzerland.

Abstract: Fluid-rock interaction experiments have been performed at 250 - 350 °C, 50 MPa to simulate hydration of ultramafic rocks at mid-ocean ridges and identify mechanisms at the origin of the H_2 production. Starting materials were a harzburgite from the Vourinos ophiolite plus synthetic seawater. The experiments were performed in large-volume Dickson-Seyfried pressure vessels fitted with either Ti or Au-Ti flexible reaction cells and they lasted for between 1012 to 3310 hours. H_2 was continuously produced as monitored by fluid sampling and H_2 manometry (Fauguerolles et al., 2017a). Solid phases were recovered after the experiments and studied by XRD, SEM, electron microprobe and Raman microspectroscopy. Magnetic properties were also determined on selected samples. Special attention was given to residual crystals (Ol, Opx) present in run products because these preserve less advanced stages of transformation enabling reaction textures and mechanisms to be identified. Charges at 250 and 300 °C are mostly made up of a serpentine-rich matrix, indicating advanced reaction. At 350°C, no serpentine-rich matrix is present. Residual Ol and Opx crystals show complex textural relations involving brucite (Bct), serpentine (Srp) and magnetite (Mgt) reaction products. Awaruite was also found. The reaction sequence in Ol domains involves two steps, (1) an initial Ol-Bct step followed by (2) a later Bct-Srp step with Srp replacing Bct and Mgt crystallizing at some distance away from Ol. Opx transforms initially to (1) a talc-free, Srp-bearing assemblage which progressively evolves to (2) Srp-Bct-Mgt and then to (3) Mgt aggregates. Bct have Mg $\# \approx 88$ on average with a few more Fe-rich compositions (83) in Ol domains at 250 °C. Matrix Srp Mg# are ≈ 94 on average at both 250 and 300 °C. Lower Mg# (88) are found for Srp in Opx domains. The experimental results indicate a close approach toward equilibrium between reactants and products. However, mineral reactions proceeded through a sequence of intermediate, kinetically favoured, steps with metastable and disequilibrium phase assemblages being involved. These include Ol-Bct, Opx-Srp and Opx-Srp-Bct assemblages. This study is the first to document an Ol-Bct reaction mechanism during experimental serpentinization. The high Opx reactivity in our experiments results from coupling with the Ol reaction which fixes a_{SiO_2} in an "average" range driving Opx transformation. Mgt crystallization is spatially disconnected from Ol reaction domains. Although more directly associated with Opx transformation, it is late in both reaction sequences. The conclusion about the late crystallization of Mgt is in agreement with previous experimental and natural studies. However, direct application of our experimental results needs caution because of the large number of parameters, chemical and physical, involved in the serpentinization process.
3.2.1 Introduction

Hydration of peridotites, a process designated as serpentinization, severely modifies the mechanical and geophysical properties of the upper mantle. In the context of slow-spreading ocean ridges, the mineralogical transformations associated with serpentinization make such environments highly specific chemically. H₂-rich hydrothermal fluids are generated (Neal and Stanger, 1983; Abrajano et al., 1990; Charlou et al., 2002), and favorable sites for the development of biological activities are created (Sleep et al., 2004; Kelley et al., 2005). Because of their potential importance as an energy source and as a cradle for early life, serpentinization environments are receiving increasing attention. Four main approaches, analytical (Andreani et al., 2007, 2013; Rouméjon and Cannat, 2014), theoretical (Frost, 1985; Evans, 2008; Evans et al., 2013), experimental (Berndt et al., 1996; Allen and Seyfried, 2003; Seyfried et al., 2007; Marcaillou et al., 2011; Malvoisin et al., 2012a,b; Mayhew et al., 2013; Klein et al., 2015; McCollom et al., 2016) and thermodynamical (McCollom and Bach, 2009; Klein et al., 2009, 2013; Malvoisin, 2015) are presently combined to study serpentinization.

Despite a number of recent advances, the mechanisms involved in the serpentinization process remain poorly understood. Serpentinization at slow-spreading ridges takes place at low temperatures (< 350 °C) and, consequently, kinetic factors play an important role. Several model reactions have been proposed to describe serpentinization, a consequence of our poor understanding of the reaction paths involved and of their kinetics (Seyfried et al., 2007; Evans, 2008; Boudier et al., 2010; Malvoisin et al., 2012b). In addition, serpentinization involves a multiphase reactant mineral assemblage (olivine, pyroxenes, oxides). Products of the reaction, such as serpentine minerals, are complex, both structurally and from a crystal chemical point of view. Finally, the fluid phase associated with serpentinization is specific since high H₂ mole fractions are involved (Seyfried et al., 2007; McCollom et al., 2016; Fauguerolles et al., 2017a).

Recently, microtextural and mineralogical approaches have been applied to the characterization of natural serpentinites (Oufi et al., 2002; Bach et al., 2006; Andreani et al., 2007; Rouméjon and Cannat, 2014). In parallel, experimental studies have simulated the serpentinization process (Seyfried et al., 2007; Marcaillou et al., 2011; Malvoisin et al., 2012a,b; Mayhew et al., 2013; Klein et al., 2015; McCollom et al., 2016; Fauguerolles et al., 2017a) and demonstrated that generation of H_2 and other reducing gases takes place during serpentinization (Berndt et al., 1996; Seyfried et al., 2007; McCollom et al., 2016; Fauguerolles et al., 2017a). Reaction rates have been proposed notably for the serpentinization of olivine (Malvoisin et al., 2012b; McCollom et al., 2016). Redox changes associated with serpentinization have motivated studies on the iron speciation in serpentine and the partitioning of iron between serpentinization products (Marcaillou et al., 2011; Andreani et al., 2013). It is now recognized that the production of H_2 is tightly coupled to the oxidation of ferrous iron from the reacting rocks into ferric iron precipitated in product minerals. However the factors that regulate how much of the ferrous iron is oxidized are not well constrained (e.g., McCollom et al., 2016). Thermodynamic calculations using the reaction path approach have constrained the conditions where serpentinization takes place (McCollom and Bach, 2009; Klein et al., 2013; Malvoisin, 2015). They have also served to interpret the experimental results and identify deviations from chemical equilibria (Seyfried et al., 2007; McCollom et al., 2016).

In this paper, new experimental results on the serpentinization of a natural harzburgite are presented. The experiments were performed on the one hand to introduce a new method of quantification of the H₂ production during serpentinization (Fauguerolles et al., 2017a). On the other hand, the solid phases produced in the experiments were subjected to detailed studies, especially textural but also chemical. The experiments were performed with starting harzburgite powders of a relatively large range of granulometries $(1 - 100 \,\mu\text{m}, \text{see below})$. Therefore, depending on the initial grain size, different stages of reaction and mineral transformation textures are recorded in experimental products. This makes possible the identification of intermediate reaction mechanisms in the overall serpentinization process. Transformations of olivine and orthopyroxene are shown to proceed very differently. Mechanisms of development of product phases, brucite, serpentine and magnetite, are identified. Results stress the importance of local, kinetically-controlled, reaction

mechanisms in the sequence of serpentinization events.

3.2.2 Experimental materials and methods

Starting materials

Natural harzburgite from the Vourinos ophiolite (Greece) was reacted with artificial seawater (demineralized water 3.2 wt.% NaCl). The starting harzburgite comprises ≈ 85 vol.% olivine (Fo_{90.5}), 8 – 10 vol.% orthopyroxene (Mg# = 91.5), 2 – 3 vol.% serpentine localized in veins, ≈ 2 vol.% chromite and ≈ 1 vol.% clinopyroxene. The harzburgite sample was crushed, ground with an agate ball mill and sieved to below 100 µm. Two starting powders were used during the course of this study, the first with an average grain size (median = 5.7 µm, *f-Pwd* powder) smaller than the second (median = 12.9 µm, *c-Pwd* powder). The granulometric data (Figure 3.S1) show that, for the *f-Pwd*, 71% of the grains are smaller than 10 µm and, for the *c-Pwd*, 46% (measured on the < 60 µm granulometric fraction). Cores (typically 0.5 cm in diameter and 2 – 3 cm in length) were also made from the Vourinos harzburgite and added to the rock powder in four experiments (*Run* 41 to 44, Table 3.1). Millimetric San Carlos olivine (Fo₉₁) crystals were added to the rock powder in one experiment (*Run* 36, Table 3.1). Rock powders (either alone or together with cores or San Carlos olivines) and artificial seawater were weighted so as to give fluid/rock mass ratios (W/R) between 1.6 and 2 (Table 3.1).

Experimental methods

Informations about experimental equipment and methods are given in full in the companion paper (Fauguerolles et al., 2017a), and only a summary is presented below. All experiments were performed in large volume Dickson-Seyfried pressure vessels fitted with either Ti or Au-Ti flexible reaction cells (Seyfried et al., 1987), both having volumes of about 130 cm^3 . A total of 8 experiments were performed at 50 MPa (± 2 MPa) total pressure (P_{Tot}), at nominal temperatures of 250, 300 and 350 °C and for durations between 1012 and 3310 h (Table 3.1). They were terminated by shutting off the power supply of the furnace and allowing the vessel to cool down to room conditions.

Table 3.1: Experimental conditions.

	Nominal		Initial			
	temperature	Duration	fluid	Mass of rock	Initial	Grain
Run	$(^{\circ}C)$	(h)	(g)	(g)	W/R^{a}	size b
43	250	1763	68.40	$36.50^{c}(+1.50)^{d}$	1.80	f-Pwd
44	250	1757.5	92.25	$44.71^{c}(+1.54)^{d}$	1.99	f- Pwd
36	300	1823	90.00	$36.80^{c}(+13.20)^{c}$	1.80	c-Pwd
41	300	2016.5	62.34	$32.00^{c}(+6.53)^{d}$	1.62	c-Pwd
42	300	1012.5	84.2	$39.89^{c}(+2.23)^{d}$	2.00	c-Pwd
45	300	1329	71.00	40.10^{c}	1.77	f- Pwd
47	300	3310.5	71.83	40.01^{c}	1.80	f- Pwd
46	350	2256.75	71.73	39.50^{c}	1.82	f- Pwd

 a W/R: water/rock mass ratio.

 b Granulometry of starting powder. $c\mbox{-}Pwd$: coarse powder, f-Pwd: fine powder (see text).

^c Mass of Vourinos powder.

^d Mass of Vourinos cores.

 $^e\,\mathrm{Mass}$ of San Carlos olivine crystals.

Run	Phase assemblage XRD	Phase assemblage SEM	$\stackrel{\rm MMF}{({\rm wt.\%})}^a$	$\begin{array}{c} \operatorname{Raman} \\ \operatorname{characterization}{}^{b} \end{array}$
43	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l} Ol-Opx-Cpx-Chr\\ Srp-Bct-Mgt-Hal-Aw \end{array}$	2.051	х
44	$\begin{array}{l} Ol-Opx-Cpx-Chr\\ Srp-Bct-Mgt \end{array}$	$\mathrm{Ol}-\mathrm{Opx}-\mathrm{Chr}\ \mathrm{Srp}-\mathrm{Bct}-\mathrm{Mgt}$	na ^c	х
36	Ol-Srp-Bct-Mgt	$\begin{array}{l} Ol-OlSc-Cpx-Chr\\ Srp-Bct-Mgt \end{array}$	$1.548^{d} \ / \ 3.124^{e}$	
41	$egin{array}{llllllllllllllllllllllllllllllllllll$	Ol - Opx - Cpx - Chr Srp - Bct - Mgt - Hal	1.835	х
42	$\begin{array}{l} Ol-Opx-Cpx-Chr\\ Srp-Bct-Mgt \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	2.118	х
45	$egin{array}{llllllllllllllllllllllllllllllllllll$	$egin{array}{llllllllllllllllllllllllllllllllllll$	na	х
47	?????	na	na	
46	Ol - Opx - Cpx Chr - Srp	$\mathrm{Ol}-\mathrm{Opx}-\mathrm{Cpx}\ \mathrm{Chr}-\mathrm{Srp}-\mathrm{Bct}?$	na	х

Table 3.2: Experimental results.

^{*a*} MMF: magnetite mass fraction.

 b Cf. Table 3.4.

 $^{c}\,\mathrm{na:}\,$ not analyzed.

 d Measured on the total of the whole charge.

^e Measured after removal of San Carlos olivine crystals.

Mineral abbreviations: Ol: olivine; OlSC: San Carlos olivine; Opx: orthopyroxene; Cpx: clinopyroxene; Srp: serpentine; Bct: brucite; Mgt: magnetite; Chr: chromite; Hal: halite; Aw: awaruite.

3.2.3 Analytical methods

At the end of the experiment, the reaction cell was opened. Experimental solid products were recovered, then rinsed with demineralized water and dried in an oven at 110 °C for 24 hours. A small fraction of each sample was taken for X-ray diffraction (XRD). A Inel CPS120 diffractometer equiped with a curved detector and a Co anticathode was used (ISTO, Orléans). For selected samples, another fraction was used for the determination of hysteresis parameters (saturation magnetization: Js; saturation remanent magnetization: Jrs; intrinsic coercivity: Hc; remanent coercivity: Hcr). These magnetic properties were obtained using a vibrating sample magnetometer working at room temperature (MC MicroMag 3900 Series, IPGP Paris). The magnetite mass fraction (MMF) was obtained from Js using the proportionality factor of $92 \,\mathrm{A} \cdot \mathrm{m}^2 \cdot \mathrm{kg}^{-1}$ linking Js and the nominal weight of magnetite (Malvoisin et al., 2012a). The starting Vourinos sample used as background has a MMF corresponding to 0.029 wt.% magnetite. For scanning electron microscope (SEM), Raman microspectroscopy and electron microprobe analyses, the solid fragments were embedded in epoxy resin and polished. The SEM of the joint BRGM-ISTO facility (Tescan Mira 3 XMU, ISTO Orléans) was used both in secondary (SE) and back scattered electron (BSE) modes. Elemental X-ray maps were also obtained with this equipment. Electron microprobe analyses of the joint BRGM-ISTO facility (Cameca sx Five, Isto Orléans) were performed at 15 kV, 6 nA and 10 s counting time on peak. For individual analyses, uncertainties on Mg# are calculated by propagating the errors on FeO_{Tot} and MgO, estimated at $\pm 5\%$ and $\pm 2\%$ respectively. Uncertainties on Mg# averages are calculated with a confidence of 95%. Raman measurements were performed with a Renishaw In-Via Raman spectrometer (joint BRGM-ISTO facility, ISTO Orléans) using a green laser at 514 cm⁻¹ with a beam size of $\approx 3 \,\mu\text{m}$.

3.2.4 Results

General

Phase assemblages differed very little from one experiment to the other. They consist dominantly of olivine (Ol), orthopyroxene (Opx), clinopyroxene (Cpx) and chromite (Chr) as residual phases and of serpentine (Srp), brucite (Bct) and magnetite (Mgt) as product phases (Table 3.2). Opx is missing in charge 36. This charge is characterized by an important amount of San Carlos olivine (Ol Sc) crystals, which would make detection of Opx by X-ray more difficult. However, Opx was not positively identified by SEM. Although present in small amounts in the starting harzburgite, both Cpx and Chr occur in most charges, as detected either from X-ray diffraction or SEM (Table 3.2). Srp, Bct and Mgt are present in all charges except in charge 46 (350 °C, Table 3.1). At this temperature, Mgt is absent, Bct only possibly present and Srp, found only as coatings on residual crystals, is interpreted as inherited from the starting material. Awaruite (Aw, FeNi₃) was looked for in three charges (43, 45 and 46) and positively identified by SEM in two (43 and 45, Table 3.1). Halite occurs in charges 41, 43 and possibly 45, and its presence is attributed to imperfect rinsing of experimental products upon opening of the reaction cell.

Texturally, solid products from the 250 and 300 °C experiments systematically appeared as indurated powders, greyish in color, held together by a serpentine-rich cement (Figure 3.1). In the 350 °C experiment, a loose greenish powder was recovered and no serpentine-rich cement is present. SEM examinations show that the 250 and 300 °C charges comprise two main components, (1) the serpentine-rich cement (designated below as "matrix") which forms the dominant fraction (up to 60 vol.%) of the charge and (2) isolated residual crystals (essentially Ol and Opx) showing various stages of transformation. Voids also form an important fraction on SEM images (Figure 3.1). Voids surrounding crystals (in particular Ol, Figures 3.2a to 3.2d, 3.2f and 3.2g) are of real significance as discussed below whereas empty voids might result from sample preparation and loss of crystals, and will not be further considered. The serpentine-rich cement is quite homogeneous mineralogically, being essentially composed of serpentine minerals, of magnetite aggregates and locally of individual magnetite crystals. It is also homogeneously distributed spatially in the charge, suggesting that it represents the product of advanced transformation of the dominant fine-grained fraction of the starting material. The coarsest granulometric fraction is at the origin of the residual crystals which preserve less advanced stages of transformation.

Reactant phases

Residual olivine typically forms anhedral crystals > 10 µm in size. They appear isolated and frequently separated from the serpentine-rich matrix by voids ranging up to 10 µm width (Figure 3.1 and Figures 3.2a to 3.2d). Olivine dissolution textures are commonly marked by etch pits (Figures 3.2b and 3.2g). The transformation of Ol is evidenced by the appearance of euhedral Bct crystals which mantle and progressively replace residual Ol (Figures 3.2c to 3.2e). Such Ol-Bct assemblages are devoid of magnetite and not generally in direct contact with the serpentine-rich matrix. More advanced stages of Ol transformation are marked by the disappearance of Ol relics (Figure 3.2e), the growth of Bct and the replacement of Bct by Srp (Figure 3.2f). In charge 36, the Ol SC show reaction textures different from the Vourinos crystals (Figures 3.2b and 3.2c). Both types of Ol crystals are characterized by etch pits and voids that separate them from the matrix, but Bct was not found to develop on Ol Sc. In addition, Ol Sc reaction textures are commonly marked by magnetite-rich zones localized in the Srp-rich matrix next to the reacting Ol (Figure 3.2c). Electron microprobe data show that, during progressive transformation, Ol keeps its composition unchanged and identical to that in the starting material.

Figure 3.1: BSE images of the reacted harzburgite showing the global aspect of experimental charges. For each view, the scale bar is $50 \,\mu$ m. (a) $250 \,^{\circ}$ C (Run 43, Table 3.1) and (b) $300 \,^{\circ}$ C (Run 45, Table 3.1). Two main components are identified: the serpentine-rich cement or "matrix" and isolated residual crystals (essentially Ol and Opx). Matrix, which forms the dominant fraction (up to $60 \, \text{vol.\%}$) of the charge, is quite homogeneous mineralogically, being essentially composed of serpentine minerals, of magnetite aggregates and locally of individual magnetite crystals. Magnetites seem more numerous but smaller at $250 \,^{\circ}$ C (a) than at $300 \,^{\circ}$ C (b). Matrix is considered to represent the product of advanced transformation of the dominant fine-grained fraction of the starting material. In contrast, residual crystals correspond to the coarsest fraction of starting powder and preserve less advanced stages of transformation. Voids surrounding crystals (in particular Ol) are of real significance whereas empty voids might result from sample preparation and loss of crystals.

Figure 3.2: SEM images of textures associated with residual crystals of olivine. (a - g): the scale bar is 25 µm, (h): the scale bar is 2 µm. Abbreviations: Vd: void; Mat: matrix; IB: initial boundary; EP: etch pits; Ps: protoserpentine; other abbreviations are given in Table 3.2. (a): moderately reacted residual Ol crystal isolated from Mat by Vd. The initial rim of the crystal is outlined by a continuous bright layer, possibly Ps (BSE, Run 36, Table 3.1). (b): Etch pits on a Ol SC crystal. The crystal is separated from Mat by a void larger than 10 µm. Note the absence of newly-formed mineral between the Ol SC and Mat (BSE, Run 36, Table 3.1). (c): Euhedral Bct mantling Ol. The Ol + Bct assemblages are isolated from Mat by voids. The image also shows a nearly continuous Mgt-rich zone in Mat next to Ol SC. The euhedral large Mgt crystals (up to 5 µm in diameter) are in contact with Mat but not with Ol SC (BSE, Run 36, Table 3.1). (d): Detail of IB showing the possible presence of Ps (BSE, detail of (c), Run 36, Table 3.1). (e): Ol at advanced stage of dissolution in textural association with Bct (BSE, Run 43, Table 3.1). (f): Srp developing at the expense of Bct in an Ol-free reaction zone. Bright crystals in the matrix are SiC grains (BSE, Run 43, Table 3.1). (g): Concentration of individual Mgt crystals in Mat in spatial association with dissolving Ol (BSE, Run 41, Table 3.1). (h): Euhedral isolated Mgt crystal in the Mat (SE, Run 44, Table 3.1).

Figure 3.3: SEM images of textures associated with residual crystals of orthopyroxene. (a-f): the scale bar is 50 µm, (g-h): the scale bar is 10 µm. Abbreviations: Ct: chrysotile; other abbreviations are given in Figure 3.2 and Table 3.2. (a-b): early stages of Opx transformation. Srp is abundant and in direct contact with Opx. The external part of the reaction rim is enriched in Mgt and Bct. Note the planar orientation of newly-formed minerals corresponding to Opx clivage planes and the direct contact between reaction products and Mat (BSE, *Run* 41, Table 3.1). (c-d): More advanced stages of (Mg, Fe)SiO₃ transformation. Most of the reaction rim is made of Bct + Srp + Mgt. Note the higher concentration of Mgt at 300 °C (d) than at 250 °C (c) and its distribution near the rim in (d) (BSE, *Run* 44 and *Run* 41, respectively, Table 3.1). (e) Bct-Mgt (Srp) assemblage with a typical planar orientation corresponding to an almost complete Opx reaction (BSE, *Run* 45, Table 3.1). (f-g) Almost complete stage of Opx transformation. Vd appears at the expense of Bct which still contains some traces of serpentine (distinguished from Bct by elemental X-ray maps). Srp grows towards the Vd from the IB (BSE, *Run* 36, Table 3.1). (h) End stage of Opx transformation. Only Mgt crystals remain and they preserve an orientation inherited from the reacted Opx (BSE, *Run* 36, Table 3.1).

Opx reaction textures differ from Ol. There is crystallographic control on Opx transformation which develops preferentially along clivage planes (Figures 3.3a to 3.3g). Product assemblages are texturally complex and include mixtures in various proportions of Srp, Bct and Mgt (Figures 3.3a to 3.3g). Srp in direct contact with the matrix is initially the dominant product phase (Figures 3.3a and 3.3b). More advanced stages of transformation yield Opx-poor to Opx-free Srp-Bct-Mgt aggregates that commonly preserve a planar orientation (Figures 3.3d to 3.3f). These aggregates evolve by reduction of the Srp modal proportion, yielding Srp-poor Bct-Mgt assemblages and then pure Mgt aggregates dispersed in the matrix which are interpreted as final products of Opx transformation (Figure 3.3h). Electron microprobe analyses show that Opx have compositions unchanged from those in the starting material.

Both the textural and chemical (electron microprobe analyses) data for Cpx and Chr suggest that these two phases did not appreciably react in our experiments. A Cpx inclusion in an Opx was found to be preserved from the Opx transformation reaction.

Brucite

Four brucite textural types were defined. Type A brucite corresponds to euhedral single crystals of various size that mantle OI (Figures 3.2c and 3.2d) and type B to Bct coexisting with Srp and Mgt in Opx reaction textures (Figures 3.3a to 3.3d, 3.3f and 3.3g). Type C brucite is defined as isolated crystals dispersed in matrix and type D as brucite in Opx-free Bct-Srp-Mgt aggregates (Figures 3.3e to 3.3g). Brucite textures C and D derive from A and B, respectively, by disappearance of the reactant phase, either Ol or Opx. Therefore, all four textures above are associated with residual mineral phases. No brucite is present in the serpentine network of the matrix.

Representative electron microprobe analyses of experimental brucite are given on Table 3.3. Data are available for most charges and for the four textures defined above. The analyses have been filtered on the basis of their SiO₂ content. Only brucite analyses with $SiO_2 < 1 \text{ wt.}\%$ are considered below. Analyses with $SiO_2 > 1 wt.\%$ are interpreted to represent mixtures between brucite and serpentine. Even after filtering the data, considerable problems were encountered with the brucite electron microprobe data. Oxide totals were found to be systematically too high, and they lead to Fe + Mg + Mn (at.) largely exceeding 1 when calculated on a 2 oxygen basis. Although only few electron microprobe data are available for brucite in serpentinization experiments, problems similar to those found in this s tudy are apparent in the analyses of McCollom et al. (2016). Conversely, the single brucite analysis given by Seyfried et al. (2007) does not appear anomalous. Our high oxide totals cannot be explained by contamination with either Ol, Opx or Srp since our brucite data have been filtered for SiO_2 . Cation excesses are correlated neither with the brucite $Mg\# (100 \times at. Mg/(Mg + Fe))$ nor with Cl. McCollom et al. (2016) reported the possibility that experimental brucite crystals can form intergrowths with other phases such as iowaite $(Mg_6Fe_2Cl_2(OH)_{16}, 4H_2O)$. Brucite can be intimately intergrown with iowaite without this mineral clearly appearing as a separate phase upon SEM or Raman examination (McCollom et al., 2016). However, Cl-free brucite analyses with high oxide totals occur in our database and so the interpretation proposed by McCollom et al. (2016) does not directly apply. Full explanation of our analytical results needs further work but the positive correlation between the Cl concentration in brucite and the presence of halite in the phase assemblage suggests the possibility that brucite composition could be modified after the experiment, *i.e.*, during the recovery and the treatment of run products.

Brucite Mg# are compared between textures, charges and experimental temperatures (Figure 3.4). At fixed temperature (*i.e.*, at 300 °C where most data are available) and for a given charge, brucite of a given textural type has a nearly constant Mg# (for example for texture A in Run 45, Mg# = $86.0 \pm 0.6 - 89.7 \pm 0.5$, Table 3.3). The dispersion in Mg# is more important for texture D in Run 45 where Mg# are shifted towards lower values. For a given texture, no significant variation in Mg# is observed for different charges at the same temperature (average Mg# = 88.3 ± 0.4 for texture A in Runs 36, 41 and 45, Figure 3.4d). There is also no significant

variation of Mg# between different textures in the same charge. If data between textures are averaged, experimental brucites at 300 °C have Mg# of 88.2 ± 0.3 . At 250 °C, a smaller number of analyses are available. The maximum dispersion ($83.3 \pm 0.7 - 90.1 \pm 0.5$) is found for texture A in *Run* 44 (Table 3.3). Individual analyses from texture A in both *Run* 43 and 44 yield low Mg# (≈ 83), and values ≈ 86 are observed for texture C. The average Mg# of experimental brucites at 250 °C is 87.4 ± 1.9 . Therefore, our data consistently suggest that Fe is slightly preferentially partitioned in Bct relative to Ol and Opx.

Figure 3.4: Mg# of experimental brucites (see text for the description of the different textures) plotted against their SiO₂ concentration (wtPercent). (a-c) 250 °C and (d-g) 300 °C experiments. Representative analyses are given in Table 3.3. At 300 °C, Bct from textures A and C, associated with Ol reaction domains, have Mg# around ≈ 88 (d; f); lower values (≈ 83) are reached at 250 °C (a; c). Mg# for Bct from textures B and D, associated with Opx reaction domains, are similar (b; e; g). However texture D, which corresponds to more advanced stage of Opx reaction, shows a few lower Mg# values (g).

$\operatorname{Texture}^a$	Α																	
Run	43	44			36		41						45					
SiO ₂	0.17	0.45	0.47	0.98	0.30	0.40	0.26	0.56	0.40	0.45	0.90	0.88	0.60	0.76	0.34	0.82	0.37	0.62
TiO_2	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.05	0.02	0.00	0.00	0.00	0.08	0.00	0.01	0.00	0.00
Al_2O_3	0.11	0.10	0.16	0.49	0.06	0.05	0.25	0.29	0.40	0.05	0.13	0.24	0.10	0.21	0.16	0.10	0.02	0.17
Cr_2O_3	0.00	0.00	0.00	0.06	0.00	0.01	0.08	0.00	0.10	0.00	0.00	0.00	0.05	0.00	0.00	0.12	0.00	0.00
FeO	22.70	23.33	14.75	15.06	15.16	15.18	16.35	16.67	17.47	14.00	16.06	16.08	14.63	18.30	20.31	18.70	18.05	16.31
MnO	-	-	_	-	0.99	1.11	_	_	_	_	_	-	-	-	-	_	_	_
NiO	0.00	0.44	0.00	0.23	0.29	0.17	0.00	0.32	0.00	0.83	0.48	0.30	0.31	0.16	0.08	0.00	0.68	0.21
MgO	60.93	65.23	75.02	68.43	72.84	75.87	68.16	69.37	65.48	74.12	62.02	75.06	71.42	73.70	69.81	68.00	70.97	75.16
CaO	0.03	0.05	0.00	0.06	0.01	0.00	0.04	0.14	0.10	0.13	0.00	0.00	0.08	0.04	0.01	0.10	0.21	0.08
Na_2O	0.30	0.00	0.01	0.02	0.02	0.00	0.07	0.05	0.10	0.22	0.17	0.06	0.13	0.03	0.02	0.09	0.18	0.16
K_2O	-	-	_	-	0.00	0.03	_	_	_	_	_	_	-	-	-	_	_	_
Cl	1.17	0.07	0.06	0.11	-	_	1.41	1.17	3.19	2.14	2.50	2.47	0.67	0.03	0.05	0.42	0.40	0.08
Total	85.41	89.67	90.49	85.44	88.68	91.68	86.62	88.57	87.29	91.96	82.26	95.09	87.99	93.31	90.78	88.36	90.88	92.79
$Mg\#^{b}$	82.7	83.3	90.1	89.0	89.5	89.9	88.1	88.1	87.0	90.4	87.3	89.3	89.7	87.8	86.0	86.6	87.5	89.1
	± 0.8	± 0.7	± 0.5	± 0.5	± 0.5	± 0.5	± 0.6	± 0.6	± 0.6	± 0.5	± 0.6	± 0.5	± 0.5	± 0.6	± 0.6	± 0.6	± 0.6	± 0.5

Table 3.3: Representative electron microprobe analysis of experimental brucite.

^{*a*} See text for description of textures A, B, C and D. ^{*b*} Mg# = 100×at. $\frac{Mg}{(Mg+Fe)}$ with total Fe as FeO. Uncertainties as described in text.

Texture	В						С							D					
Run	41					44	44				45			45					
SiO_2	0.81	0.19	0.30	1.00	0.06	0.65	0.40	0.30	0.25	0.22	0.56	0.49	0.47	0.52	0.49	0.24	0.40	0.49	0.20
TiO_2	0.00	0.11	0.00	0.04	0.03	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.06	0.00
Al_2O_3	0.18	0.13	0.13	0.15	0.06	0.18	0.56	0.12	0.31	0.33	0.01	0.22	0.17	0.15	0.03	0.12	0.48	0.19	0.20
Cr_2O_3	0.96	0.00	0.17	0.00	0.00	0.18	0.02	0.06	0.17	0.05	0.00	0.09	0.00	0.82	0.33	0.51	0.00	0.16	0.28
FeO	20.02	15.37	15.15	17.08	18.52	17.33	17.28	14.61	20.37	16.13	14.52	15.79	18.69	22.05	20.77	18.51	14.65	17.08	14.10
MnO	_	-	_	_	-	-	_	_	_	_	_	_	-	-	-	-	-	-	_
NiO	0.57	0.37	0.37	0.00	0.00	0.23	0.24	0.11	0.00	0.66	0.05	0.39	0.78	0.33	0.08	0.02	0.17	0.30	0.65
MgO	71.35	75.32	67.71	62.09	63.54	68.26	70.74	74.49	68.26	71.11	74.65	70.83	69.56	68.43	67.84	71.40	75.19	70.50	71.73
CaO	0.24	0.14	0.01	0.14	0.12	0.03	0.03	0.03	0.03	0.00	0.10	0.06	0.09	0.04	0.03	0.00	0.07	0.08	0.01
Na_2O	0.18	0.11	0.20	0.13	0.05	0.00	0.01	0.00	0.00	0.01	0.15	0.06	0.04	0.09	0.09	0.10	0.17	0.15	0.38
K_2O	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Cl	2.26	2.23	1.11	1.51	2.69	0.08	0.07	0.06	0.10	0.05	0.34	1.01	0.96	0.14	0.22	0.10	0.11	0.25	0.36
Total	96.57	93.97	85.15	82.14	85.07	86.94	89.38	89.78	89.49	88.56	90.38	88.94	90.76	92.60	89.88	91.00	91.24	89.26	87.91
Mg#	86.4 ± 0.6	89.7 ± 0.5	88.8 ± 0.5	86.6 ± 0.6	85.9 ± 0.7	87.5 ± 0.6	87.9 ± 0.6	90.1 ± 0.5	85.7 ± 0.7	88.7 ± 0.5	90.2 ± 0.5	88.9 ± 0.5	86.9 ± 0.6	84.7 ± 0.7	85.3 ± 0.7	87.3 ± 0.6	90.1 ± 0.5	88.0 ± 0.6	90.1 ± 0.5

Serpentine

Two serpentine polymorphs were identified by Raman microspectroscopy: lizardite (Lz) and chrysotile (Ct, Figure 3.5 and Table 3.4). The two polymorphs can coexist in the same experimental charge. However, serpentine-rich matrices in the 250 °C experiments are mainly composed of Ct and of Lz at 300 °C. Raman analysis of matrices surrounding Ol and Opx reaction textures yielded mixtures between Bct, Lz and Ct (Figure 3.5d). High resolution imaging of experimental charges reveals serpentine morphologies typical of either planar lizardite (Figure 3.5a) or cylindrical to conical chrysotile (Figures 3.5b and 3.5c, Andreani et al., 2008). Textural indications suggest that serpentine grows either by replacement of an earlier brucite (such as those mantling Ol), by direct replacement of Opx, or by simultaneous crystallization together with Bct and Mgt as in Opx reaction textures. In the matrix, serpentine is commonly found developing on both sides from an initial texturally specific "layer" which appears brighter on BSE images (protoserpentine?) and could correspond to the rim of the initial reactant crystal (Figures 3.2d and 3.2g and Figure 3.3g).

Figure 3.5: SEM and Raman identification of serpentine polymorphs. Abbreviations: Lz: lizardite; other abbreviations are given in Figures 3.2 and 3.3 and Table 3.2. (a) Lz associated with Mgt in Opx undergoing transformation (scale bar is $2 \mu m$, se, Run 45, Table 3.1). (b) Ct aggregates in the matrix, note crystals with cylindrical to conical shapes (scale bar is 500 nm, se, Run 36, Table 3.1). (c) Isolated Ct fiber (scale bar is 100 nm, se, Run 36, Table 3.1). Red arrows indicate a discontinuity in the fiber structure. (d) Raman spectra of serpentine in experimental matrices showing the coexistence of Lz and Ct at $250 \,^{\circ}$ C and the predominance of Lz at $300 \,^{\circ}$ C. See Table 3.1 for experimental conditions.

Run	Matrix	Olivine domain	Pyroxene domain
43	Lz– Ct	nd^{a}	Lz– Ct
44	Ct	Lz	nd
41	Lz - Ct	Lz– Ct	Lz– Ct
42	Lz - Ct	Lz - Ct	na^{b}
45	Lz - Ct	nd	Lz– Ct
46	na	nd	nd

Table 3.4: Raman characterization of serpentine polymorphs.

 a nd: serpentine not detected. b na: not analyzed.

Serpentine abbrevations: Lz: lizardite; Ct: chrysotile.

Serpentine minerals are the main components of the matrix. In addition to this dominant textural type, serpentine also occurs in reaction textures developed on residual crystals. In Ol-Bct textures, serpentine replaces Bct (Figure 3.2f) and it very rarely grows directly on Ol. It crystallizes together with Bct and Mgt in Opx reaction textures. Initial stages of Opx transformation are dominated by serpentine, and the reaction evolves by progressive increase of the amount of Bct and Mgt (Figures 3.3a to 3.3g). Serpentine clusters found isolated in the matrix are interpreted as rims around "hidden" residual crystals, most probably mantled Opx.

Representative electron microprobe analyses of experimental serpentine are given on Table 3.5. Data are available for matrices in most charges, and also for serpentine associated with residual Opx crystals and more rarely Ol crystals. Serpentine structural formulae have been calculated on the basis of 7 oxygens. The analyses have been filtered by using several criteria. Only compositions with at. Si + Al + Ti in tetrahedral site < 2.05 have been conserved. Analyses yielding more than 3 Mg cations have been interpreted as Srp + Bct mixtures and discarded. For at. Si + Al + Ti< 2, Fe has been added as Fe³⁺ to fulfill the tetrahedral site, according to the ferri-tschermak substitution (Marcaillou et al., 2011; Frost et al., 2013; McCollom et al., 2016). Srp electron microprobe analyses are characterized by variable totals which range from ≈ 65 to ≈ 85 wt.% (Table 3.5). This variability is interpreted to reflect the porous nature of the analysed aggregates since structural formulae, which are compatible with Srp, do not change with the total. Srp in matrices do not significantly vary between experiments at the same temperature (Table 3.5). At 250 and 300 °C, they have almost identical Mg# (94.7 \pm 0.2 and 94.4 \pm 0.3, respectively) and number of Si cations (Figure 3.6). The amount of Fe^{3+} substitution (maximum 6%) also does not vary significantly with temperature. The number of analyses for Srp associated with residual Ol is very small (< 5, Figure 3.6b). Srp associated with residual Opx have variable Mg#, between ≈ 97 and ≈ 95 at 250 °C, and between ≈ 96 and ≈ 88 at 300 °C (Figure 3.6). The same variability is noted for serpentine clusters in the matrix that probably coat "hidden" Opx crystals and which have Mg# ranging from ≈ 96 and ≈ 88 (Figure 3.6b and Table 3.5).

Figure 3.6: Mg# of experimental serpentines plotted against the number of Si atoms pfu. Only two measurements for crystals associated with residual Ol (Ol, stars) are available at 300 °C (high Mg# \approx 96). Most analyses are for crystals either from matrix (crosses), Opx reaction domains (Opx, circles) or clusters that coat "hidden" crystals, probably Opx (Opx?, diamonds). Representative analyses are given in Table 3.5. (a) 250 °C experiments. The average Mg# for matrix crystals is 94.7 ± 0.2. The highest Mg# values are for the Opx? texture. (b) 300 °C experiments. Mg# of matrix crystals are more dispersed than at 250 °C despite the average being similar (94.4 ± 0.3). Crystals associated with residual Opx have lower Mg# than those in the matrix (88.3 ± 0.6 minimum). Crystals associated with the Opx? texture vary in the same range. Note the lack of clear covariation between Mg# and Si whatever the temperature and textural type.

$Texture^{a}$	Matrix										Opx			Opx?					Ol
Run	43	44				41	42	45			41		42	44		41	42	45	45
SiO_2	34.52	31.97	30.87	33.78	38.09	32.18	40.53	36.98	35.60	44.93	41.56	40.10	41.56	42.41	31.25	39.15	40.46	41.62	35.61
TiO_2	0.00	0.08	0.04	0.00	0.00	0.00	0.00	0.05	0.08	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
Al_2O_3	0.12	0.19	0.17	0.30	0.15	0.26	0.26	0.04	0.17	0.11	0.39	0.13	0.85	0.25	0.40	0.10	0.56	0.79	0.04
Cr_2O_3	0.00	0.06	0.00	0.06	0.00	0.13	0.16	0.03	0.00	0.00	0.77	0.00	0.53	0.20	0.06	0.00	0.00	0.28	0.00
FeO	3.14	3.04	3.03	6.09	2.49	7.55	7.34	1.47	3.53	5.06	6.53	3.26	8.70	2.22	3.21	3.14	8.98	2.85	2.33
NiO	0.32	0.36	0.18	0.00	0.09	0.00	0.90	0.50	0.00	0.00	0.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.46
MgO	31.02	30.45	31.56	31.82	36.58	29.92	40.06	33.94	33.33	39.83	42.25	36.22	36.99	39.69	32.52	39.95	37.65	38.80	34.40
CaO	0.01	0.01	0.08	0.01	0.05	0.14	0.41	0.25	0.18	0.17	1.31	0.14	0.12	0.02	0.07	0.01	0.11	0.09	0.03
Na_2O	0.33	0.02	0.03	0.01	0.04	0.21	0.09	0.21	0.58	0.24	0.29	0.28	0.02	0.00	0.04	0.19	0.18	0.20	0.11
Total	69.46	66.18	65.96	72.07	77.49	70.39	89.75	73.48	73.48	90.33	93.41	80.12	88.78	84.79	67.55	82.54	87.94	84.62	72.98
Si	2.036	1.986	1.931	1.959	2.002	1.938	1.907	2.041	1.993	2.042	1.876	2.041	1.968	2.026	1.910	1.946	1.942	2.003	1.994
Ti	0.000	0.004	0.002	0.000	0.000	0.000	0.000	0.002	0.003	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.008	0.014	0.013	0.021	0.009	0.018	0.014	0.002	0.011	0.006	0.020	0.008	0.047	0.014	0.029	0.006	0.032	0.045	0.003
\mathbf{Cr}	0.000	0.003	0.000	0.003	0.000	0.006	0.006	0.001	0.000	0.000	0.027	0.000	0.020	0.008	0.003	0.000	0.000	0.011	0.000
Fe	0.155	0.158	0.158	0.295	0.109	0.380	0.289	0.068	0.165	0.192	0.246	0.139	0.345	0.089	0.164	0.131	0.361	0.115	0.109
Ni	0.015	0.018	0.009	0.000	0.004	0.000	0.034	0.022	0.000	0.000	0.011	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.020
Mg	2.726	2.818	2.942	2.750	2.865	2.685	2.809	2.792	2.782	2.697	2.842	2.747	2.611	2.826	2.962	2.959	2.693	2.783	2.871
Ca	0.001	0.001	0.005	0.001	0.003	0.009	0.021	0.015	0.011	0.008	0.063	0.008	0.006	0.001	0.005	0.001	0.006	0.005	0.002
Na	0.038	0.002	0.004	0.001	0.004	0.025	0.008	0.023	0.063	0.021	0.025	0.027	0.002	0.000	0.005	0.018	0.017	0.018	0.012
Total	4.979	5.004	5.063	5.030	4.996	5.062	5.087	4.966	5.029	4.966	5.112	4.969	4.999	4.963	5.077	5.060	5.050	4.979	5.011
Mg# ^b	94.6	94.7	94.9	90.3	96.3	87.6	90.7	97.6	94.4	93.3	92.0	95.2	88.3	97.0	94.8	95.8	88.2	96.0	96.3
	± 0.3	± 0.3	± 0.3	± 0.5	± 0.2	± 0.6	± 0.5	± 0.1	± 0.3	± 0.3	± 0.4	± 0.2	± 0.6	± 0.2	± 0.3	± 0.2	± 0.6	± 0.2	± 0.2

Table 3.5: Representative electron microprobe analysis of experimental serpentine.

^{*a*} See text for description of textures. ^{*b*} Mg# = 100×atomic $\frac{Mg}{(Mg+Fe)}$ with total Fe as FeO. Uncertainties are described in text.

Magnetite

Magnetite was observed only at 250 and 300 °C. In the matrix, it is found distributed quite homogeneously as aggregates of small $\approx 1 \, \mu m$ individual crystals (Figure 3.1 and Figure 3.3h). These aggregates range from $< 10 \,\mu m$ to several tens of μm in size, and are bigger at 250 than at 300 °C (Figure 3.1). Matrices also contain small ($\approx 2 \,\mu m$) individual magnetite grains (Figures 3.2g and 3.2h). In comparison with the matrix, the distribution of Mgt in residual Opx reaction textures is more heterogeneous. When Opx product assemblages are dominated by Srp. Mgt occupies an external position together with Bct (Figures 3.3a and 3.3b). For more advanced stages of transformation, small Mgt crystals $(0.5 - 1 \,\mu\text{m})$ are commonly found along Opx clivage planes, preferentially associated with Bct and to a lesser extent Srp (Figures 3.3c to 3.3g). Larger Mgt crystals (up to $\approx 3 \,\mu\text{m}$) are clustered near crystal rims outlining Opx ghosts (Figures 3.3f and 3.3g). Grains of monomineralic Mgt (Mgt aggregates) are the end product of Opx transformation (Figure 3.3h). Mgt is not in direct textural association with residual Ol, except when Ol transformation takes place along localized fractures as noted for OlSC crystals (Fauguerolles et al., 2017b). However, Mgt rich zones commonly occur in the matrix next to the reacting Ol. A nearly continuous layer, $\approx 80 \,\mu\text{m}$ long, of euhedral coarse ($\approx 5 \,\mu\text{m}$) Mgt crystals occurs near OlSc in charge 36 (Figure 3.2c).

Although no satisfactory electron microprobe analysis of Mgt could be obtained because of their very small sizes, the data obtained are consistent with Mgt having a near end-member composition (e.g., Seyfried et al., 2007; Malvoisin et al., 2012a,b; McCollom et al., 2016).

Magnetic properties were determined on a total of four samples, one at 250 °C and three at 300 °C (Table 3.2). MMF results range from 1.5 to 3.1 wt.% Mgt which is 2 orders of magnitude higher than in the starting Vourinos sample. Apart from charge 36, all analyzed charges have similar MMF values whatever the temperature. The MMF of charge 36 (whole charge) is slightly lower but similar to the others (Table 3.2). However, when measured after removal of the OISC crystals, a significantly higher MMF is obtained. Because the OISC crystals contain only little Mgt (mostly in fractures), the magnetic data for charge 36 indicate that the matrix plus the residual crystals (*i.e.* the Vourinos fraction of the charge) contains significantly more Mgt than the other charges. This is consistent with textural observations which reveal Mgt-rich zones in the matrix next to the reacting OISC (Figure 3.2c).

Awaruite

Awaruite, detected in matrices of charges 43 and 45 from elemental x-ray maps (Fe, Ni, Si, Mg), forms small ($\approx 1 \,\mu$ m) isolated crystals ($< 10 \,\text{mm}^{-2}$) texturally identical to individual Mgt crystals. Although not positively identified in charge 46, it is possible that awaruite occurs in other charges from this study.

3.2.5 Discussion

Evaluation of equilibrium

Before discussing reaction mechanisms, it is important to note that phase assemblages in our experiments are identical to those expected in a serpentinization process. At 250 and 300 °C, Srp, Bct and Mgt crystallized as reaction products, in agreement with phase assemblages calculated using either theoretical or thermodynamic models of peridotite-seawater interaction (e.g., Frost and Beard, 2007; McCollom and Bach, 2009). The absence of serpentine-rich matrix at 350 °C indicates that little or no serpentine formed at this temperature, in contrast to what happened at 250 and 300 °C. This difference can be explained by 350 °C being a too high temperature for serpentinization, since it lies within the Ol stability field (Klein et al., 2013; Malvoisin, 2015).

Product phases (Bct and Srp) in the 250 and 300 °C charges have Mg# in the range of compositions calculated in reaction path models (Figure 3.7 and Klein et al., 2013). Lastly, and although our experimental fluid compositions have not been determined in full, their high H₂ concentrations (Fauguerolles et al., 2017a) are consistent with a redox mechanism of H₂ production involving oxidation of Fe and reduction of H₂O (e.g., Berndt et al., 1996; Marcaillou et al., 2011; Andreani et al., 2013). Therefore, in our experiments, chemical equilibrium appears to have been closely approached between reactants and products. Experimental charges from this study are texturally and chemically homogeneous despite their large sizes and masses (Table 3.1, see also Seyfried et al. (2007) for comparable charges). It is most likely that approach toward equilibrium was favoured by the important proportion of very fine-grained (< 10 µm) powders in our starting materials.

Despite close approach toward equilibrium at the scale of the entire charge, there are multiple indications indicating departure from full chemical equilibrium. The presence of residual crystals (Ol and Opx) indicates that some reactant phases did not fully react. These residual crystals correspond to the coarser $(> 30 \,\mu\text{m})$ granulometric fraction of our starting materials. Therefore, the preservation of reactant phases is interpreted kinetically, *i.e.*, mineral-fluid reaction rates were too slow for mineralogical transformations to come to completion given our grain sizes and experimental durations. It follows that chemical equilibration must be considered as only partial in our experiments. Another type of indication is provided by the occurrence of metastable phase assemblages, the most typical being Ol-Bct, an assemblage which is interpreted as metastable relative to Srp (see below). Lastly, charges contain mineral assemblages that suggest chemical disequilibrium. Opx reacts by transforming to Srp-Bct-Mgt mixtures, an assemblage which is talc-free. Yet, talc (Tc) would be expected to appear as a product of the local transformation of Opx (Frost and Beard, 2007). Opx and Srp have disconnected stability fields in a T- a_{SiO_2} diagram (Figure 3.8 Frost and Beard, 2007) and, therefore, their coexistence is not possible at equilibrium without the presence of Tc. Coexistence of Opx and Bct is also impossible at equilibrium. The lack of Tc suggests that, in Opx reaction zones, a_{SiO_2} is not locally buffered by Opx dissolution. Rather, a_{SiO_2} is probably controlled (and imposed through the interstitial fluid) by the various reactions that take place simultaneously in the charge. These would fix a_{SiO_2} to an "average" value bounded upwards by the Opx-Tc-Srp equilibrium (Frost and Beard, 2007). At larger scales, we note the coexistence of Mgt and Aw in two charges. According to Frost et al. (2013), the $T-f_{O_2}$ stability field for Bct-Aw (more precisely Bct-Fe Ni alloy) is separated from the Bct-Mgt field by several log units in f_{O_2} . Therefore, their analysis would imply that, at a given f_{O_2} , Mgt and Aw cannot coexist at equilibrium. We conclude that chemical equilibration was at best partial in our experiments.

Reaction domains, mechanisms and kinetics

The indications for disequilibrium outlined above stress the need to interpret our experimental results in terms of reaction mechanisms and kinetics. Equilibration during fluid-mineral reactions would proceed through a sequence of intermediate, kinetically favoured, reaction steps. These involve in particular dissolution and precipitation mechanisms that take place in local domains $(< 10 \,\mu\text{m})$ where reactant, product and fluid phases interact. Reaction sequences are best revealed by detailed textural and chemical studies of Ol and Opx reaction domains. Results demonstrate marked differences between these two local environments.

Olivine domains. Ol shows dissolution textures such as etch pits, observed both on Vourinos and San Carlos crystals (Figure 3.2b). It undergoes a progressive transformation to Bct (Figure 3.2c), and the Ol-Bct texture is typical of Ol reaction domains in our experiments. This demonstrates that Ol can transform directly to a Bct, Srp- and Mgt-free assemblage during serpentinization. In detail, the transformation involves dissolution of Ol in the local fluid, saturation of the fluid in Bct components and crystallization of euhedral Bct from the fluid. It is worth emphasizing that this study is the first to document an Ol-Bct reaction mechanism during experimental serpentinization, although Seyfried et al. (2007) previously mentioned the association between Ol and Fe-rich brucite in lherzolite-seawater experiments at 200 °C. The initial stages of serpentinization of Ol are

Figure 3.7: Mg# of experimental crystals plotted as a function of temperature. Large stars correspond to average values. Mg# of starting Ol and Opx are also plotted for comparison (dotted horizontal lines). (a) Mg# of Bct crystals, all textures encountered are plotted. The solid line is the theoretical Mg# vs. temperature trend calculated for Bct formed by hydration of Fo90 (Klein et al., 2013). The two average values follow the theoretical trend, the particularly large error bar at 250 °C being due to a limited number of measurements. (b) Mg# of Srp matrix crystals. The solid line is the theoretical Mg# vs. temperature trend calculated for Srp formed by hydration of an harzburgite (90 wt.% Fo90 plus 10 wtPercent En90 Klein et al., 2013). The two average Mg# are similar at 250 and 300 °C, as predicted by the model. However, the measured are more than 3 Mg# units higher than the calculated values.

usually described as involving Srp instead of Bct (e.g., Frost and Beard, 2007; Lafay et al., 2012). Serpentinization experiments using San Carlos Ol starting materials have produced Bct-Srp-Mgt assemblages (Malvoisin et al., 2012a,b; McCollom et al., 2016), with Bct possibly armouring Ol (Malvoisin et al., 2012b). Ol-Srp reaction domains have been identified in other serpentinization experiments of OlSC crystals (Fauguerolles et al., 2017b). In this respect, it is worth noting that no Ol-Bct texture was observed associated with Ol Sc crystals in our experiments (Table 3.1). It is possible that Bct initially developed on those crystals but was later dissolved during the course of the experiment. Ol-Bct reaction textures are clearly associated with empty spaces or voids (Figures 3.2c and 3.2d), which indicates that a local fluid is present around the reacting Ol. This fluid would play a critical role in the transport of SiO_2 away from the Ol interface, since Ol dissolution accompanied by Bct crystallization is not an isochemical process. Therefore, it is also possible that the smaller Vourinos Ol crystals defined local "fluid-confined" lower $a_{\rm SiO_2}$ conditions and the larger Ol SC crystals "fluid-dominated" higher a_{SiO_2} conditions in the charge, thus promoting Bct dissolution. The direct Ol to Bct transformation identified in our experiments differs from textural observations of natural serpentinities where brucite crystallizes together with serpentine as replacement products of olivine from mesh centers (Bach et al., 2006). Therefore, mechanisms of Ol transformation during serpentinization are highly variable and flexible (e.g., McCollom et al., 2016).

Bct is absent from the serpentine-rich network of the matrix and Bct is found to be replaced by Srp in Ol domains (Figure 3.2f). This indicates that the Ol-Bct texture corresponds to an early step in Ol conversion. This step is followed by Srp crystallization, at the expense either of Bct (once Ol has been totally consumed) or of Ol-Bct (Ol is still present). This "secondary" Srp crystallization is the main mechanism responsible for the development of the Srp network in the matrix. The sequence of Ol conversion steps is therefore marked by (i) Bct and (ii) Srp probably with Mgt. Because the most advanced stages of Ol transformation are marked by Srp, and because Bct disappears at some point in the Ol reaction sequence, the "early" Ol-Bct assemblage is interpreted as metastable relative to Srp. Metastable Ol-Bct equilibrium buffers a_{SiO_2} to values that are within the Srp stability field (e.g., Frost et al., 2013; McCollom et al., 2016; Figure 3.8) indicating that the Bct to Srp transition is not driven by a large change in a_{SiO_2} in the charge.

The sequence of reaction steps in Ol domains is consistent with the proposition that Srp crystallization during serpentinization proceeds from an early Bct-bearing assemblage (e.g., Bach et al., 2006). According to this model, early Bct would be Fe-rich, with Mg# as low as 70 - 75 (Bach et al., 2006; Seyfried et al., 2007; Frost and Beard, 2007; Frost et al., 2013). However, in our study,

Figure 3.8: T-log a_{SiO_2} diagram showing relative stability fields of minerals associated with serpentinization (modified from Frost and Beard, 2007). The dashed line is the metastable extension of the Ol-Bet equilibrium.

experimental Bct have Mg# on average near 88, the minimum Mg# (83) being for rare Bct in Ol domains at 250 °C (Figure 3.4). Yet, the Mg# of Bct is clearly lower than that of Srp and, therefore, the replacement of Bct by Srp in Ol domains should be accompanied by Mgt. However, Mgt is never found crystallizing in Ol domains. It typically occurs in the matrix, close to but at some distance away from the reacting Ol crystal, either Vourinos or San Carlos (Figures 3.2a, 3.2c and 3.2g). Therefore, and although our observations do not totally support the "early Fe-brucite" model, the sequence of Ol conversion steps in our experiments, defined as (i) Bct then (ii) Srp and Mgt, is broadly consistent with the model.

Orthopyroxene domains. Opx reacts by transforming to a Srp assemblage (Figures 3.3a and 3.3b) which occupies an inner position in Opx reaction domains. Bct and Mgt appear in more external position and mechanisms of Opx transformation are dominated by the crystallization of Srp-Bct-Mgt assemblages. Srp in peripheral position is slightly more Fe-rich (≈ 2 units in Mg#) than Srp in direct contact with Opx (Figures 3.3a and 3.3d), consistent with a_{SiO_2} locally increasing or, alternatively, f_{O_2} locally decreasing from core to rim (see reaction (Rn 3.6) below). Srp-Bct-Mgt assemblages evolve by reduction of the Srp modal proportion to yield Mgt-rich, Bct-bearing products, and then pure Mgt. These Mgt "aggregates" are one contribution of the Opx reaction to the matrix. Therefore, the mineral sequence in Opx reaction domains is the following: (i) Srp, (ii) Srp-Bct-Mgt evolving to Srp-poor Bct-Mgt and (iii) Mgt.

Our experimental observations provide one of the first detailed characterizations of Opx reaction mechanisms in serpentinization environments. Presently, the relative reactivity of Ol and Opx during serpentinization is debated. Allen and Seyfried (2003) found that, at 400 °C, Ol reaction is sluggish, in contrast with reactions involving pyroxenes which proceed rapidly. In contrast, at lower temperatures (< 250 °C), rates of dissolution of Opx and Cpx were found to be considerably less than Ol (Seyfried et al., 2007), in agreement with kinetic results at low pressures in vapour-saturated experiments (Ogasawara et al., 2013). In comparison, our experimental results suggest that, at both 250 and 300 °C, Opx is a highly reactive phase. In *Run* 36, Opx has totally reacted out, being absent from experimental products (Table 3.2). The high MMF in the matrix of charge 36 indicates an elevated modal proportion of Mgt consistent with a more advanced reaction in this experiment. In the other experiments, textures in Opx reaction domains indicate extensive Opx conversion, often approaching completion (Figures 3.3f and 3.3h).

The early stage of Opx conversion is outlined by Srp which is found developing directly on Opx (Figures 3.3a and 3.3b). This disequilibrium assemblage results from a_{SiO_2} values in the charges lower than required to stabilize Tc. Opx dissolution is driven by a_{SiO_2} values dominantly controlled by Ol reaction in other parts of the charge. This interpretation is consistent with the observation that Opx totally reacted out in *Run* 36, precisely in the experiment loaded with Ol SC crystals. Therefore, Ol reaction drives Opx dissolution, both reactions being coupled in our experiments. In other words, and although local variations in a_{SiO_2} might temporarily exist in Opx and Ol domains, both the Opx-Srp and Ol-Bct reaction textures take place in the same "average" a_{SiO_2} range. Values of a_{SiO_2} along the metastable extension of the Ol-Bct equilibrium, on the one hand, and along the extension of the Opx-Tc-Srp invariant point, on the other hand, overlap (Frost and Beard, 2007).

More advanced stages of Opx conversion are marked by the crystallization, in peripheral zones of the crystal, of Srp-Bct-Mgt assemblages (Figures 3.3d and 3.3g). When most of the initial Opx has reacted out, these Srp-Bct-Mgt reaction products evolve by progressive reduction of the proportion of Srp to yield Srp-poor but Bct-present Mgt and then Mgt-rich assemblages. Opx domains are characterized by the presence of Fe-rich reaction products. Bct from texture C have Mg# as low as 86 (Figure 3.4) and Srp compositions, although quite variable, include Mg# as low as 88 (Figure 3.6). These Fe-rich trends could be only apparent, reflecting minor contamination of Bct and Srp analyses with Mgt since Mgt is systematically associated with Opx reaction textures (Figures 3.3e to 3.3g). However, such Fe-rich compositions might also be the result of local gradients in Opx domains either an increase in a_{SiO_2} or a decrease in f_{O_2} , as noted above and explained in more details below.

Model reactions

The establishment of mineral sequences in Ol and Opx domains enables model reactions that describe our experimental observations to be proposed.

Olivine domains. The reaction describing the initial conversion of Ol to Bct can be written:

$$(Mg, Fe)_2 SiO_4 + 2H_2O = 2(Mg, Fe)(OH)_2 + SiO_2$$
(Rn 3.1)
Olivine Fluid Brucite Fluid

which is a classical hydration reaction. Reaction (Rn 3.1) produces silica and so Ol transformation with mechanism (Rn 3.1) involves transport of silica in the fluid. It has no effect on the redox state. The reaction is balanced if, as written, the Mg-Fe partitioning between Ol and Bct is assumed to be unity. However, if the preferential partitioning of Fe in Bct is taken into consideration, reaction (Rn 3.1) becomes:

$$(\mathrm{Mg}_{0.9}, \mathrm{Fe}_{0.1})_2 \mathrm{SiO}_4 + x \mathrm{H}_2 \mathrm{O} + y \mathrm{FeO} = x(\mathrm{Mg}_{0.88}, \mathrm{Fe}_{0.12})(\mathrm{OH})_2 + \mathrm{SiO}_2 \qquad (Rn \, 3.2)$$

Olivine Fluid Fluid Brucite Fluid

where x = 2.045 and y = 0.045. Reaction (*Rn* 3.2) illustrates the fact that some FeO must be added as a fluid component to balance the reaction. More advanced stages of Ol reaction involve replacement of Bct by Srp according to the following reaction:

$$x(\mathrm{Mg}_{0.9}, \mathrm{Fe}_{0.1})(\mathrm{OH})_2 + y\mathrm{SiO}_2 = z(\mathrm{Mg}_{0.95}, \mathrm{Fe}_{0.05})_3\mathrm{Si}_2\mathrm{O}_5(\mathrm{OH})_4 + u\mathrm{FeO} + v\mathrm{H}_2\mathrm{O} \qquad (Rn\,3.3)$$

Brucite Fluid Serpentine Fluid Fluid

where x = 3, y = 1.9, z = 0.95, u = 0.16 and v = 1.1. Reaction (*Rn* 3.3) emphasizes that Fe is slightly preferentially partitioned in Bct rather than in Srp. Mgt does not crystallizes as a product of reaction (*Rn* 3.3), consistent with our observations (Figure 3.2f). The Mgt-forming components are transported in the fluid and precipitate away from the Bct-Srp reaction zone (Figures 3.2a, 3.2e and 3.2g) following a reaction of the type:

$$3\text{FeO} + \text{H}_2\text{O} = \text{Fe}_3\text{O}_4 + \text{H}_2 \qquad (Rn \, 3.4)$$

Fluid Fluid Magnetite Fluid

which emphasizes that the reduction of water is related to the precipitation of Mgt. However, serpentine produced by reaction (Rn 3.3) may also contain Fe³⁺ (Seyfried et al., 2007; Marcaillou et al., 2011; Andreani et al., 2013), and so reaction (Rn 3.3) should be modified accordingly.

Orthopyroxene domains. The initial stage of Opx transformation involves replacement by Srp according to the following reaction:

$$3(Mg, Fe)SiO_3 + 2H_2O = (Mg, Fe)_3Si_2O_5(OH)_4 + SiO_2$$
(Rn 3.5)
Orthopyroxene Fluid Serpentine Fluid

which is a hydration reaction analoguous to reaction (Rn 3.1) for Ol, producing silica and involving silica transport by the fluid. As above, if the preferential incorporation of Mg in Srp relative to Opx is considered, reaction (Rn 3.5) becomes:

$$x(\mathrm{Mg}_{0.9}, \mathrm{Fe}_{0.1})\mathrm{SiO}_3 + y\mathrm{H}_2\mathrm{O} = z(\mathrm{Mg}_{0.95}, \mathrm{Fe}_{0.05})_3\mathrm{Si}_2\mathrm{O}_5(\mathrm{OH})_4 + u\mathrm{FeO} + v\mathrm{SiO}_2 \qquad (Rn\,3.6)$$

Orthopyroxene Fluid Serpentine Fluid Fluid

where x = 3, y = 1.9, z = 0.95, u = 0.16 and v = 1.1. Reaction (Rn 3.6) produces silica. It implies that Srp crystallized from Opx will become more Fe-rich (lower Mg#) if a_{SiO_2} is increased, as observed (see above and Figure 3.3a). Crystallization of Srp-Bct-Mgt assemblages in Opx domains can be described by the following reaction:

 $x(Mg_{0.9}, Fe_{0.1})_3Si_2O_5(OH)_4 + yH_2O =$ Serpentine Fluid

 $z(\mathrm{Mg}_{0.95}, \mathrm{Fe}_{0.05})_{3}\mathrm{Si}_{2}\mathrm{O}_{5}(\mathrm{OH})_{4} + u(\mathrm{Mg}_{0.88}, \mathrm{Fe}_{0.12})(\mathrm{OH})_{2} + v\mathrm{Fe}_{3}\mathrm{O}_{4} + v\mathrm{H}_{2} + w\mathrm{SiO}_{2} \qquad (Rn\,3.7)$ Serpentine Brucite Magnetite Fluid Fluid

where x = 3, y = 1.8, z = 1.15, u = 5.48, v = 0.02 and w = 3.7. Reaction (*Rn* 3.7) is written with no Fe³⁺ in Srp. It emphasizes that crystallization of Bct-Mgt assemblages in Opx domains consumes the Fe component of Srp. A more Mg#-rich Srp is produced (but in lesser amounts and so the modal proportion of Srp decreases) and Bct crystallizes in large amounts. Reaction (*Rn* 3.7) also account for the recrystallization of low Mg# Srp from Opx reaction domains (Figure 3.6b) to more Mg# rich compositions typical of Srp of the matrix.

Further evolution in Opx domains takes place by dissolution of Bct following a reaction such as reaction (Rn 3.3).

Magnetite crystallization and magnetite-awaruite relations

Mineral sequences in Ol and Opx domains illustrate mechanisms of magnetite formation in our experiments. In Ol domains, Mgt is never locally present and, so, there is a spatial disconnection between Mgt crystallization and Ol reaction. Mgt is found crystallizing in the matrix close to but at some distance away from the reacting Ol crystal. The textural relations suggest a mechanism of dissolution of Fe in the fluid, followed by transport of Fe away from Ol domains and then Mgt precipitation in the first 10 μ m of the matrix (reactions (Rn 3.3) and (Rn 3.4)). In comparison, Mgt crystallization is more directly associated with Opx conversion. In Opx domains, Mgt crystallizes together with Bct and Srp and in external position relative to the dissolving crystal. It is the only phase remaining after consumption of Bct and Srp. Therefore, Mgt, especially Mgt aggregates, is a witness of advanced stages of Opx transformation.

Regarding reaction mechanisms, Mgt crystallization in Ol domains is described using reactions (Rn 3.3) and (Rn 3.4), and in Opx domains using reactions (Rn 3.6) and (Rn 3.7), both corresponding to advanced or final reaction steps. Therefore, in our experiments, Mgt crystallization is associated with late stages of mineral reaction sequences. This conclusion might appear at odds with the continuous H₂ generation recorded in the experiments (Fauguerolles et al., 2017a). The f_{H_2} data in particular demonstrate that H₂ was produced after only a few days at 250 and 300 °C (Fauguerolles et al., 2017a). However, Mgt crystallization is not the only mechanism responsible for H₂ generation during serpentinization (e.g., Seyfried et al., 2007; Andreani et al., 2013). It is also worth pointing out that, despite being late in reaction mechanisms, Mgt crystals probably appeared quite early in our experiments because grain sizes were mostly small and, so, mineral reactions rapidly approached completion, at least for the fine fraction of the starting powder. Therefore, it is not possible to conclude on the nature of the H₂-producing mineral reaction mechanism in our experiments, either Mgt or Fe³⁺ serpentine crystallization.

Results above concerning the late crystallization of Mgt in serpentinization sequences are consistent with previous studies. Seyfried et al. (2007) found only trace amounts of Mgt in their lherzolite-seawater experiments at 200 $^{\circ}$ C, 50 MPa. Mass transfers of Fe and the associated H₂ production were interpreted to result essentially from the crystallization of Fe-Srp and Fe-Bct. A minor role was attributed to Mgt although detailed Mgt crystallization mechanisms were not documented (Seyfried et al., 2007). Serpentinization sequences with initially Fe-Bct and Fe-Srp followed by Mgt and then hematite were modelled as a result of the progressive infiltration of seawater in ultramafic rocks (Seyfried et al., 2007; see also Malvoisin, 2015). Lafay et al. (2012) observed no Mgt in hydrothermal serpentinization experiments conducted between 150 and 200 °C. The lack of Mgt, both in Seyfried et al. (2007) and Lafay et al. (2012), was interpreted to reflect the dominant influence of temperature (< 200 °C) on Mgt crystallization (Klein et al., 2014), despite some experimental conditions being very specific (strongly alkaline solutions were used by Lafay et al., 2012). In natural environments, Bach et al. (2006) identified Mgt-free Srp-Bct assemblages as replacement products of mesh centers and also in mesh rims. Frost and Beard (2007) proposed that olivine initially hydrates to Fe-rich Bct and Fe-rich Srp, and later evolves to Mgt-bearing assemblages. In contrast with most studies above where serpentinization mechanisms are discontinuous and Mgt appears late, continuous reaction mechanisms have also been proposed (e.g., Evans, 2008). In experiments by Marcaillou et al. (2011), Malvoisin et al. (2012a,b) and McCollom et al. (2016), Mgt was found to be present from the beginning of the reaction, and it continuously crystallized during the course of the experiment. However, as pointed out above, early presence of Mgt in experimental products is not sufficient to establish an early status for Mgt in the serpentinization mechanism since experimental results are dependent of parameters such as temperature or grain size which control reaction kinetics.

The two Fe-rich phases Mgt and Aw coexist in two charges. On the one hand, Frost et al. (2013) have modelled the stability of Aw by assuming a behavior similar to FeNi alloy. The resulting stability field for Bct-Aw was found to be separated from the Bct-Mgt field by several log units in f_{O_2} (Frost et al., 2013). Therefore, their analysis would imply that, at a given f_{O_2} , Mgt and Aw cannot coexist at equilibrium in presence of Bct. On the other hand, the thermodynamic analysis and calculations by Klein and Bach (2009) enable Mgt and Aw to coexist under specific $T-f_{O_2}-f_{S_2}$ conditions. Thermodynamic data for Aw have been recently revised (Foustoukos et al., 2015). We propose to model the coexistence of Mgt and Aw as found in our experiments and in natural serpentinization environments from the equilibrium:

$$9\text{NiFe}_2\text{O}_4 = 3\text{FeNi}_3 + 5\text{Fe}_3\text{O}_4 + 8\text{O}_2 \qquad (Rn \, 3.8)$$

Trevorite Awaruite Magnetite Fluid

which describes Aw crystallization by reduction of the trevorite component of Mgt, leading to a decrease of the Ni concentration in Mgt. Detailed thermodynamic evaluation of equilibrium of reaction (Rn 3.8) is outside the scope of this paper. Experimental f_{O_2} progressively decrease with run duration in our experiments, reaching values as low as NNO-5.7 at 250 °C and NNO-5.3 at 300 °C after 1757 h and 1012 h respectively. Therefore, it is expected that equilibrium of reaction (Rn 3.8) takes place in a similar f_{O_2} range. According to reaction (Rn 3.8), Aw is later than Mgt in our experimental crystallization sequence.

Applicability of experimental results

Several aspects of our experimental methodology enable the obtained results to be directly applied to serpentinization processes at slow-spreading oceanic ridges. In addition to *P*-*T*-salinity conditions which are all realistic for natural serpentinization processes, the nature of the starting material, a harzburgite from the Vourinos ophiolite massif, ensures that modes of reacting minerals, compositions and textures, are representative of ultramafic rocks being hydrated at ridges. However, other aspects of our experiments are more specific and they need to be kept in mind when applying the results. Notably, our experimental textures, reaction mechanisms and rates reflect the combination of (1) hydrostatic conditions, (2) powdered starting material and (3) \approx constant W/R ratios. In comparison, fluid circulation and reaction at ridges is controlled by extension, uplift and

active fracturation (e.g., Rouméjon and Cannat, 2014). Serpentinization processes are subdivided in individual steps which correspond to different mechanisms of fluid infiltration (Andreani et al., 2007). W/R ratios can be variable and key parameters such as $f_{\rm H_2}$ can change from being internally (low W/R, low rock permeability) to externally (high W/R, high rock permeability) controlled (Andreani et al., 2013; Frost et al., 2013; Fauguerolles et al., 2017b). Natural serpentinization is a reactive transfer process where chemical and physical aspects are coupled. Many parameters are involved and reaction kinetics is difficult to evaluate. This is probably the explanation of the difficulty in the application of experimental findings (e.g., McCollom et al., 2016).

3.2.6 Conclusions

Harzburgite-seawater interaction experiments performed at 250 - 350 °C, 50 MPa, provide textural information and mineral chemistry data on serpentinization mechanisms. The main conclusions are the following:

- Chemical equilibrium was closely approached and product phases identical to those expected in a serpentinization process were obtained. However, mineral conversion reactions proceeded through a sequence of intermediate, kinetically favoured, steps with metastable and disequilibrium phase assemblages being involved.
- The Ol reaction sequence is subdivided in two steps, the first involving Bct and the second Srp plus, at some distance, Mgt. This is the first study to document an Ol-Bct reaction mechanism during experimental serpentinization.
- The Opx reaction sequence starts with a Tc-free, Srp-bearing assemblage. It is followed by a Srp-Bct-Mgt assemblage which progressively evolves to yield Mgt-only aggregates. The Opx reactivity is high in our experiments. It is coupled with the Ol reaction which fixes a_{SiO_2} in an "average" range that drives Opx transformation.
- Mgt crystallization is spatially disconnected from Ol reaction domains. It is more directly associated with Opx transformation. However, in both reaction sequences, Mgt appears late.
- Bct and Srp compositions differ little between textures, experiments and temperatures. Mg# are in the order: Bct < Ol \approx Opx < Srp. Lower Srp Mg# are interpreted to reflect small a_{SiO_2} changes around Opx crystals.
- Textural relations and reaction mechanisms are, on the one hand, consistent with previous experimental results and natural observations (Mgt) and, on the other hand, new and unexpected (Ol, Opx). This stresses the variability and the flexibility of serpentinization reaction mechanisms, a difficulty which needs to be considered in future experimental simulations.

Acknowledgements

This study is part of the PhD thesis of the first author which was supported by a grant from the Région Centre and formed part of the scientific program of the ANR FLUXHYD. We acknowledge stimulating discussions with A.-M. Boullier, F. Brunet, M. Cannat, B. Goffé and F. Klein. Ida Di Carlo, Régis Guégan and Claire Carvallo helped with the SEM, electron microprobe, Raman and magnetic analyses. Reviewed by xxx, yyy and zzz.

3.2.7 Bibliography

- Abrajano, T. A., Sturchio, N. C., Kennedy, B. M., Lyon, G. L., Muehlenbachs, K., and Bohlke, J. K. (1990). Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines. *Applied Geochemistry*, 5(5):625–630.
- Allen, D. E. and Seyfried, Jr., W. E. (2003). Compositional controls on vent fluids from ultramafichosted hydrothermal systems at mid-ocean ridges: An experimental study at 400 °C, 500 bars. *Geochimica et Cosmochimica Acta*, 67(8):1531–1542.
- Andreani, M., Grauby, O., Baronnet, A., and Muñoz, M. (2008). Occurrence, composition and growth of polyhedral serpentine. *European Journal of Mineralogy*, 20(2):159–171.
- Andreani, M., Mével, C., Boullier, A.-M., and Escartin, J. (2007). Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites. *Geochemistry*, *Geophysics*, *Geosystems*, 8(2).
- Andreani, M., Munoz, M., Marcaillou, C., and Delacour, A. (2013). µxanes study of iron redox state in serpentine during oceanic serpentinization. *Lithos*, 178:70–83.
- Bach, W., Paulick, H., Garrido, C. J., Ildefonse, B., Meurer, W. P., and Humphris, S. E. (2006). Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP leg 209, Site 1274). *Geophysical research letters*, 33(13).
- Berndt, M. E., Allen, D. E., and Seyfried, Jr., W. E. (1996). Reduction of CO₂ during serpentinization of olivine at 300 °C and 500 bar. *Geology*, 24(4):351–354.
- Boudier, F., Baronnet, A., and Mainprice, D. (2010). Serpentine mineral replacements of natural olivine and their seismic implications: Oceanic lizardite versus subduction-related antigorite. *Journal of Petrology*, 51(1-2):495–512.
- Charlou, J. L., Donval, J. P., Fouquet, Y., Jean-Baptiste, P., and Holm, N. (2002). Geochemistry of high H₂ and CH₄ vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). *Chemical Geology*, 191(4):345–359.
- Evans, B. W. (2008). Control of the products of serpentinization by the $Fe^{2+}Mg_{-1}$ exchange potential of olivine and orthopyroxene. Journal of Petrology, 49(10):1873–1887.
- Evans, K. A., Powell, R., and Frost, B. R. (2013). Using equilibrium thermodynamics in the study of metasomatic alteration, illustrated by an application to serpentinities. *Lithos*, 168:67–84.
- Fauguerolles, C., Castelain, T., Villneuve, J., and Pichavant, M. (2017a). In situ experimental quantification of H₂ generation and determination of redox parameters (f_{h_2}, f_{h_2}) during serpentinization. Not yet submitted, Chapter II of this manuscript.
- Fauguerolles, C., Castelain, T., Villneuve, J., and Pichavant, M. (2017b). Internally vs. externally $f_{\rm H_2}$ controlled experiments results and implication for the serpentinisation reaction. Not yet submitted, Chapter IV of this manuscript.
- Foustoukos, D. I., Bizimis, M., Frisby, C., and Shirey, S. B. (2015). Redox controls on Ni–Fe–PGE mineralization and Re/Os fractionation during serpentinization of abyssal peridotite. *Geochimica et Cosmochimica Acta*, 150:11–25.
- Frost, B. R. (1985). On the stability of sulfides, oxides, and native metals in serpentinite. Journal of Petrology, 26(1):31–63.
- Frost, B. R. and Beard, J. S. (2007). On silica activity and serpentinization. Journal of Petrology, 48(7):1351–1368.
- Frost, B. R., Evans, K. A., Swapp, S. M., Beard, J. S., and Mothersole, F. E. (2013). The process of serpentinization in dunite from New Caledonia. *Lithos*, 178:24–39.

- Kelley, D. S., Karson, J. A., Früh-Green, G. L., Yoerger, D. R., Shank, T. M., Butterfield, D. A., Hayes, J. M., Schrenk, M. O., Olson, E. J., Proskurowski, G., et al. (2005). A serpentinite-hosted ecosystem: the Lost City hydrothermal field. *Science*, 307(5714):1428–1434.
- Klein, F. and Bach, W. (2009). Fe-Ni-Co-O-S phase relations in peridotite-seawater interactions. Journal of Petrology, 50(1):37–59.
- Klein, F., Bach, W., Humphris, S. E., Kahl, W.-A., Jöns, N., Moskowitz, B., and Berquó, T. S. (2014). Magnetite in seafloor serpentinite-Some like it hot. *Geology*, 42(2):135–138.
- Klein, F., Bach, W., Jöns, N., McCollom, T., Moskowitz, B., and Berquó, T. (2009). Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge. *Geochimica et Cosmochimica Acta*, 73(22):6868–6893.
- Klein, F., Bach, W., and McCollom, T. M. (2013). Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. *Lithos*, 178:55–69.
- Klein, F., Grozeva, N. G., Seewald, J. S., McCollom, T. M., Humphris, S. E., Moskowitz, B., Berquó, T. S., and Kahl, W.-A. (2015). Fluids in the Crust. Experimental constraints on fluid-rock reactions during incipient serpentinization of harzburgite. *American Mineralogist*, 100(4):991–1002.
- Lafay, R., Montes-Hernandez, G., Janots, E., Chiriac, R., Findling, N., and Toche, F. (2012). Mineral replacement rate of olivine by chrysotile and brucite under high alkaline conditions. *Journal of Crystal Growth*, 347(1):62–72.
- Malvoisin, B. (2015). Mass transfer in the oceanic lithosphere: Serpentinization is not isochemical. Earth and Planetary Science Letters, 430:75–85.
- Malvoisin, B., Carlut, J., and Brunet, F. (2012a). Serpentinization of oceanic peridotites: 1. A high-sensitivity method to monitor magnetite production in hydrothermal experiments. *Journal* of Geophysical Research: Solid Earth (1978–2012), 117(B1).
- Malvoisin, B., Brunet, F., Carlut, J., Rouméjon, S., and Cannat, M. (2012b). Serpentinization of oceanic peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal alteration. *Journal of Geophysical Research: Solid Earth (1978–2012)*, 117(B4).
- Marcaillou, C., Munoz, M., Vidal, O., Parra, T., and Harfouche, M. (2011). Mineralogical evidence for H₂ degassing during serpentinization at 300 °C/300 bar. *Earth and Planetary Science Letters*, 303(3):281–290.
- Mayhew, L. E., Ellison, E. T., McCollom, T. M., Trainor, T. P., and Templeton, A. S. (2013). Hydrogen generation from low-temperature water-rock reactions. *Nature Geoscience*, 6(6):478–484.
- McCollom, T. M. and Bach, W. (2009). Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. *Geochimica et Cosmochimica Acta*, 73(3):856–875.
- McCollom, T. M., Klein, F., Robbins, M., Moskowitz, B., Berquó, T. S., Jöns, N., Bach, W., and Templeton, A. (2016). Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine. *Geochimica et Cosmochimica Acta*, 181:175–200.
- Neal, C. and Stanger, G. (1983). Hydrogen generation from mantle source rocks in Oman. Earth and Planetary Science Letters, 66:315–320.
- Ogasawara, Y., Okamoto, A., Hirano, N., and Tsuchiya, N. (2013). Coupled reactions and silica diffusion during serpentinization. *Geochimica et Cosmochimica Acta*, 119:212–230.
- Oufi, O., Cannat, M., and Horen, H. (2002). Magnetic properties of variably serpentinized abyssal peridotites. Journal of Geophysical Research: Solid Earth, 107(B5).

- Rouméjon, S. and Cannat, M. (2014). Serpentinization of mantle-derived peridotites at midocean ridges: Mesh texture development in the context of tectonic exhumation. *Geochemistry*, *Geophysics*, *Geosystems*, 15(6):2354–2379.
- Seyfried, W. E., Janecky, D. R., and Berndt, M. E. (1987). Rocking Autoclaves for Hydrothermal Experiments II. The Flexible Reaction-Cell System. In Ulmer, G. C. and Barnes, H. L., editors, Hydrothermal Experimental Techniques, pages 216–239. John Wiley and Sons, New York, NY.
- Seyfried, Jr., W. E., Foustoukos, D. I., and Fu, Q. (2007). Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200 °C, 500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges. *Geochimica et Cosmochimica Acta*, 71(15):3872–3886.
- Sleep, N. H., Meibom, A., Fridriksson, T., Coleman, R. G., and Bird, D. K. (2004). H₂-rich fluids from serpentinization: geochemical and biotic implications. *Proceedings of the National Academy* of Sciences of the United States of America, 101(35):12818–12823.

3.2.8 Supplementary

Figure 3.81: Granulometric distribution of the two starting Vourinos harzburgite powders used in this study. Each powder has a maximum grain size of 100 µm but the granulometric data are determined on the $< 60 \,\mu\text{m}$ fraction. The coarse powder (*c*-*Pwd*) has a median grain size distribution of 12.9 µm. The fine powder (*f*-*Pwd*) has a median grain size distribution of 5.7 µm.

3.3 Conclusions

Les expériences d'interaction harzburgite-eau de mer conduites à 50 MPa et pour des températures allant de 250 à 350 °C, apportent des informations texturales et des données chimiques sur les phases minérales associées au mécanisme de serpentinisation. Les conclusions principales sont les suivantes :

- Globalement, l'équilibre chimique est quasiment atteint à l'échelle de nos charges, les phases produites étant comparables (assemblages et compositions) à celles attendues lors du processus de serpentinisation. Cependant, l'examen des phases résiduelles montre que les réactions minérales se décomposent en une succession d'étapes favorisées cinétiquement et impliquant des assemblages de phases hors équilibres et métastables.
- La séquence réactionnelle pour l'Ol se divise en deux étapes, la première à Bct et la seconde à Srp. La Mgt cristallise à une certaine distance de l'Ol. Cette étude est la première à mettre en évidence un mécanisme réactionnel impliquant un assemblage Ol-Bct dans une expérience de serpentinisation.
- La séquence réactionnelle pour l'Opx débute par un assemblage à Srp dépourvu de Tc. Elle est suivie par un assemblage à Srp-Bct-Mgt qui évolue progressivement vers un assemblage à Mgt seule. La réactivité des Opx est élevée dans nos expériences. Elle résulte d'un couplage avec la réaction impliquant l'Ol qui fixe a_{SiO_2} dans un domaine « moyen » ce qui favorise la transformation des Opx.
- La cristallisation des Mgt est déconnectée spatialement du domaine de réaction des Ol. Elle est plus intimement associée aux transformations impliquant les Opx. Cependant, dans les deux séquences réactionnelles, la Mgt apparaît tardivement.
- Les compositions des Bct et des Srp diffèrent légèrement selon les textures, les expériences et les températures. Dans l'ordre, les Mg# sont : Bct < Ol \approx Opx < Srp. Les Srp présentant les Mg# les plus bas sont interprétées comme reflétant des variations (locales et faibles) de a_{SiO_2} autour des cristaux d'Opx.
- Les relations texturales ainsi que les mécanismes réactionnels observés sont, d'un côté, en accord avec les études expérimentales antérieures et les observations naturelles (apparition tardive de la Mgt) et, d'un autre côté, nouvelles et inattendues (domaines réactionnels autour des Ol et Opx impliquant des assemblages métastables et hors d'équilibre). Ceci souligne la variabilité et la flexibilité des mécanismes réactionnels associés à la serpentinisation, difficulté qui demande à être prise en compte dans les futures études expérimentales.

Chapitre 4

000

Effet de la mobilité de l'H₂ sur le

processus de serpentinisation.

Contrôle interne vs. contrôle externe

de la $f_{\rm H_2}$

4.1 Introduction

Les résultats présentés dans ce Chapitre sont la synthèse d'une série d'expériences de serpentinisation réalisée sur l'olivine de San Carlos et la dunite de Åheim. Ces expériences se distinguent par plusieurs aspects de celles présentées aux Chapitres 2 et 3. D'une part, les produits de départ sont différents, cristaux d'olivine d'un côté, harzburgite de l'autre. À noter également que le fluide dans les expérimentations de ce Chapitre est de l'eau déminéralisée et non de l'eau de mer artificielle (Chapitres 2 et 3). Enfin, la méthodologie expérimentale dans ce Chapitre est différente de celle mise en œuvre dans les Chapitres 2 et 3. Les expériences sur les olivines de San Carlos ont en effet été réalisées dans des autoclaves horizontaux à trempe rapide et de petit volume. Le but principal de ces expériences est de tester l'influence de la *mobilité* de l'H₂ sur la nature et la cinétique du processus de serpentinisation.

Résumé :

Une série d'expériences hydrothermales démontrant l'effet de la $f_{\rm H_2}$ sur la réaction de serpentinisation est présentée. Les $f_{\rm H_2}$ des fluides expérimentaux ont été contrôlées en faisant varier la mobilité de l' H_2 dans le système réactionnel. Deux cas ont été considérés : (1) un système où l'H₂ produit par la réaction de serpentinisation est confiné dans la capsule servant de réacteur, ce qui permet son accumulation dans le fluide (contrôle interne de la $f_{\rm H_2}$) et (2) un système où l'H₂ produit par la réaction est extrait continuellement et la $f_{\rm H_2}$ contrôlée par le milieu extérieur (contrôle externe de la $f_{\rm H_2}$). La mise en pratique de ces deux cas s'est faite soit en utilisant Au $(imperméable à l'H_2)$ comme container, soit en associant un container en AgPd (perméable à l'H_2) et un vecteur de pression (Ar gazeux) imposant une $f_{\rm H_2}$ externe très basse. Des blocs de tailles millimétriques de la dunite de Åheim et des poudres d'olivine de San Carlos de différentes granulométries (de 1000 à $< 10 \,\mu\text{m}$) ont été utilisés comme produits de départ. Des rapports massiques eau/roche (W/R ratio) de 1 ou de 2 ont été imposés. Les expériences ont été réalisées à 50 MPa et à 300 ou 350 °C dans des autoclaves à joint froid et trempe rapide horizontaux. Des durées de 30, 45 ou 80 jours ont été testées. Les produits finaux ont été observés par DRX et MEB. Leurs propriétés magnétiques ont été étudiées et la fraction massique de magnétite (MMF) déterminée. Les résultats des expériences pour les quelles la f_{H_2} a été contrôlée de façon interne sont en bon accord avec les précédentes études de serpentinisation expérimentale. De la magnétite, de la serpentine, et de la brucite (?) sont produites. La MMF dépend de la température et diminue de 300 à 350 °C. Dans les expériences où la $f_{\rm H_2}$ est contrôlée de façon externe, à 300 comme à 350 °C, de l'hématite (identifiée par DRX) et de la magnétite apparaissent ensemble avec la serpentine. Nos résultats impliquent que la serpentinisation peut avoir lieu dans un domaine de f_{O_2} plus large que celui classiquement considéré. Les valeurs élevées de MMF enregistrées à 350 °C impliquent également que, dans des conditions de contrôle externe de la $f_{\rm H_2}$, la réaction de serpentinisation est possible à plus haute température qu'en cas de contrôle interne de la $f_{\rm H_2}$. De la lizardite et du chrysotile sont observés, mais aucune relation entre température, type de contrôle de la $f_{\rm H_2}$ et polymorphe de la serpentine n'a pu être établie. L'application de nos résultats aux systèmes naturels est limitée par l'absence d'hématite dans les serpentinites naturelles. Cependant, les différents assemblages expérimentaux obtenus montrent que les mécanismes de la serpentinisation dépendent du contrôle de la $f_{\rm H_2}$. Les modalités de contrôle de la $f_{\rm H_2}$ dans nos expériences trouvent des correspondants dans les systèmes hydrothermaux océaniques naturels. Les situations de contrôle interne de la $f_{\rm H_2}$ simulent des stades de serpentinisation en « milieu fermé », marqués par de faibles perméabilités et des rapports W_R petits. Inversement, les situations de contrôle externe de la f_{H_2} sont analogues aux mécanismes d'infiltration de fluides en « système ouvert », contrôlés par l'activité tectonique, des perméabilités des roches transitoirement fortes et des rapports ^W/R élevés. Nos expériences soulignent l'importance de la $f_{\rm H_2}$ et des mécanismes de circulation des fluides sur les mécanismes de la serpentinisation.

4.2 Internal vs. external $f_{\rm H_2}$ buffering in serpentinisation experiments – Results and implication for the serpentinisation reaction

Colin Fauguerolles¹

- Teddy Castelain^{1, 2}
- Johan Villeneuve^{1, 2}

Michel Pichavant¹

- ¹ Institut des Sciences et de la Terre d'Orléans, CNRS Université d'Orléans, Orléans, France.
- ² Centre de Recherches Pétrographiques et Géochimiques, CNRS Université de Lorraine, Vandœuvre les Nancy, France.

Abstract:

A set of hydrothermal experiments demonstrating the effect of $f_{\rm H_2}$ on the serpentinization reaction is presented. Experimental fluid $f_{\rm H_2}$ were monitored from mechanisms controlling the mobility of H₂ in the reacting system. Two cases were considered: (1) a system where the H₂ produced by the serpentinization reaction is confined in the container capsule and allowed to accumulate in the fluid (internal $f_{\rm H_2}$ control) and (2) a system where the H₂ produced by the reaction is continuously extracted and the experimental $f_{\rm H_2}$ is controlled from outside (external $f_{\rm H_2}$ control). In practice, these two cases were achieved by using either Au (H₂ impermeable) or AgPd (H₂ permeable) noble metal capsules as containers and Ar gas from the pressurizing medium as the external $f_{\rm H_2}$ control.

The experiments started from millimetric Åheim dunite chips and San Carlos olivine powders of different grain sizes (from 1000 to $< 10 \,\mu$ m). Water/rock mass ratios (W/R ratio) of 1 or 2 were imposed. The experiments were carried out at 50 MPa and at either 300 or 350 °C in horizontal rapid-quench cold seal pressure vessels. They lasted for 30, 45 or 80 days. Run products were investigated by XRD and SEM. Magnetic properties were investigated and the magnetite mass fraction (MMF) determined. Results of the internally $f_{\rm H_2}$ controlled experiments are broadly consistent with previous experimental serpentinization studies. Magnetite, serpentine and brucite (?) occur as product phases and the MMF drops when temperature is increased from 300 to 350 °C. In the externally $f_{\rm H_2}$ controlled experiments, hematite (identified by XRD) and magnetite occur together with serpentine at both 300 and 350 °C. Our results imply that serpentinization can take place in a larger f_{O_2} range than previously considered. The high MMF found at 350 °C also imply that under external $f_{\rm H_2}$ control, the serpentinization reaction is pushed to slightly higher temperatures than under internal $f_{\rm H_2}$ control. Both lizardite and chrysotile were observed, but no relation between temperature, $f_{\rm H_2}$ control and type of serpentine polymorph could be established. Application of our results to natural systems is limited by the quasi absence of hematite in natural serpentinites. However, differences in product phase assemblages imply that serpentinization reaction mechanisms can vary depending on the type of $f_{\rm H_2}$ control. The behavior of H₂ in our experiments can be compared with that in natural oceanic hydrothermal systems. "Closed-system" serpentinization stages, marked by low rock permeabilities and small W/R ratios, would promote a situation analoguous to internal $f_{\rm H_2}$ control. Conversely, "open-system" fluid infiltration, driven by tectonic activity and high transient rock permeabilities, would lead to $f_{\rm H_2}$ being presumably controlled at low values during serpentinization, similar to our externally controlled simulations. Our experiments stress the importance of $f_{\rm H_2}$ and of fluid circulation mechanisms on serpentinization mechanisms.

4.2.1 Introduction and experimental strategy

At slow spreading ridges, tectonic expansion coupled with low magma production allows the outcropping of large volumes of mantle rocks on the ocean floor (Karson et al., 1987; Cannat, 1993).

Interaction between seawater and peridotite leads to important modifications of the physical (*i.e.* rheology, magnetic, signature, porosity, density, permeability, Toft et al., 1990; Escartín et al., 1997, 2001; Oufi et al., 2002; Iyer et al., 2008; Plümper et al., 2012; Kelemen and Hirth, 2012; Rouméjon and Cannat, 2014; Maffione et al., 2014) and chemical (*i.e.* mineral phase assemblages, compositions of solid and fluid phases, Mével, 2003; Bach et al., 2006; Andreani et al., 2007; Evans, 2008; Cannat et al., 2010; Charlou et al., 2010; Frost et al., 2013; Klein et al., 2014) properties of mantle rocks at crustal scale – a process named serpentinization. One of the most distinctive characteristics of serpentinization environments is the generation of H₂-rich fluids due to the reduction of seawater coupled with the oxidation of ferrous iron from peridotitic minerals (Neal and Stanger, 1983; Abrajano et al., 1990; Charlou et al., 2002). This molecular H₂ is responsible for extremely reducing conditions in serpentinites, consistent with the occurrence of Fe-Ni alloys and minerals such as awaruite (Frost, 1985). The H₂ generated fuels microbial activity and catalyzes abiotic organic synthesis through the reduction of CO₂ (Kelley et al., 2005; Berndt et al., 1996; McCollom and Seewald, 2001, 2007).

Serpentinization can be viewed as a metasomatic process involving mantle rocks and seawater. In this paper, it is considered as an example of reactive transport process which involves coupled deformation, fluid circulation and fluid-rock reaction (Steefel et al., 2005). Modeling of the fluid-reaction part of the serpentinisation process has reached an advanced stage. The chemical aspects of serpentinization, *i.e.*, fluid-rock reactions and equilibria, have been studied with several methodologies. These include theoretical approaches (Frost, 1985; Evans, 2008; Evans et al., 2013), experimental simulations of the serpentinization reaction (Martin and Fyfe, 1970; Moody, 1976; Berndt et al., 1996; Allen and Seyfried, 2003; Seyfried et al., 2007; Marcaillou et al., 2011; Malvoisin et al., 2012a,b; Mayhew et al., 2013; Klein and McCollom, 2013; Klein et al., 2015; Mc-Collom et al., 2016) and thermodynamic calculations, some based on reaction path models (Sleep et al., 2004; McCollom and Bach, 2009; Klein et al., 2009, 2013). More recently, the importance of kinetic factors has been recognized from experiments (Seyfried et al., 2007; Malvoisin et al., 2012b) and analytical characterizations of serpentine minerals (Marcaillou et al., 2011; Andreani et al., 2013). Although there is increasing recognition that fracturing at mid-ocean ridges (MOR) would promote serpentinization (Klein et al., 2015), mechanisms of fluid circulation in oceanic peridotites have been largely confined to field and microstructural studies on natural samples (Andreani et al., 2007; Iyer et al., 2008; Jamtveit et al., 2009; Rouméjon and Cannat, 2014). In order to develop a more comprehensive understanding of serpentinisation at MOR, there is clearly a need to combine the two, modeling and descriptive, approaches.

In this paper, we present a set of hydrothermal experiments that enable to discuss the effect of mobility of H₂ on the serpentinisation reaction. H₂ is a critical component of the serpentinisation process since it is produced during the serpentinisation reaction (Neal and Stanger, 1983; Abrajano et al., 1990; Berndt et al., 1996; Charlou et al., 2002; Allen and Seyfried, 2003; Sleep et al., 2004; Seyfried et al., 2007; Marcaillou et al., 2011; Mayhew et al., 2013; Klein and McCollom, 2013; Klein et al., 2013, 2015; McCollom et al., 2016) In addition, H₂ plays a key role in the control of redox conditions in hydrous systems (e.g., Eugster, 1957; Scaillet et al., 1992). H₂ is also a highly mobile component which behaves probably the closest to what is classically defined as a "perfectly mobile component" (Korzhinskii, 1965). In this paper, the serpentinization experiments have been designed in an original way enabling the mobility of H₂ to be controlled within the reacting system. Two types of experiments have been performed in parallel, (1) internally $f_{\rm H_2}$ -controlled experiments and (2) externally $f_{\rm H_2}$ -controlled experiments. The former were carried out so that $f_{\rm H_2}$ is externally controlled from outside the capsule. Below, we present the experimental and analytical methodologies and detail the experimental results. We show that significant differences appear in

the serpentinization reaction depending on the type of $f_{\rm H_2}$ control and discuss the implications for serpentinization processes at MOR.

4.2.2 Materials and methods

Starting materials

Two distinct starting materials were used in the experiments: the Åheim dunite and the San Carlos olivine. The Åheim dunite contains, in addition to olivine (Fo_{93.6}), about 10 vol.% orthopyroxene (Mg# = 94.1), 0.5 - 1 vol.% chromite, and 5 - 10 vol.% Cr-rich clinochlore (Cr₂O₃ = 3.5 wt.%). Other hydrous silicates such as serpentine and talc, and traces of phlogopite and tremolite, are also present in lesser amounts than clinochlore (Berckhemer et al., 1982; Jackson et al., 1992). Contrary to the observations of Jackson et al. (1992), no magnetite was observed in our Åheim dunite sample. The lack of magnetite was confirmed by the magnetic data which yielded a magnetite mass fraction (MMF) of 2.5×10^{-3} wt.% (see below for details about the magnetic measurements). The San Carlos olivines (Fo₉₁) were separated by hand from slightly disaggregated San Carlos xenoliths.

Experimental charges and capsules

Millimeter sized chips of Åheim dunite were used as experimental starting materials. The San Carlos olivines were used in powder form, obtained by grinding the olivine crystals in an agate mortar. The resulting powders were sieved to different granulometric fractions: 0.5 - 1 mm, 45 - 50 µm, 25 - 32 µm, and < 10 µm. Experimental charges, consisting of either the dunite or the olivine powder plus demineralized water, were loaded in noble metal capsules (4.2 or 5 mm diameter, 30 - 35 mm length, wall thickness 0.2 mm) which were welded shut. Masses of reactants were adjusted to yield water/rock mass ratios (W/R ratio) of either 1 or 2. Capsules were checked for leaks and then inserted in the pressure vessel.

In order to test the effect of internal vs. external control of $f_{\rm H_2}$ during serpentinization, two different capsule materials were used: Au and Ag₂₅Pd₇₅ (wt.%). Au capsules are almost impermeable to H_2 at the temperatures investigated in this study (Allen and Seyfried, 2003). Therefore, in experiments performed with Au capsules, the f_{H_2} is the intrinsic f_{H_2} controlled by, and dependent of, the advancement of the serpentinization reaction (internal $f_{\rm H_2}$ control). On the contrary, $Ag_{25}Pd_{75}$ capsules are quite permeable to H_2 . At 300 °C, H_2 permeabilities are 9 log units higher in Ag₂₅Pd₇₅ than in Au, and 8 log units higher at 350 °C (Gunter et al., 1987). Ag₂₃Pd₇₇ capsules were also used but the small variation in the alloy composition introduces only a negligible effect in terms of H_2 permeability. Use of H_2 permeable capsule materials leads to H_2 loss from inside the capsule (where the H_2 -producing serpentinization reaction takes place) toward the pressurizing gas medium. Volume considerations (the volume of pressurized gas in the vessel is of several cm^3 whereas the volume of the experimental capsule is $0.1 cm^3$) dictate that, in this case, the f_{H_2} within the capsule is imposed by the f_{H_2} of the pressurizing gas medium (external f_{H_2} control). Although the intrinsic $f_{\rm H_2}$ of vessels pressurized with Ar was not specifically measured for this study, previous measurements in the same laboratory and with the same equipment and procedures have shown that $f_{\rm H_2}$ values are of the order of 0.01 to 0.1 MPa (Scaillet et al., 1992; Schmidt et al., 1995; Pichavant et al., 2016).

Run	Grain size (µm)	Capsule material	$\begin{array}{c} \text{Temperature} \\ (^{\circ}\text{C}) \end{array}$	Duration (h)	W/R ratio	Phase assemblage XRD	Phase assemblage SEM	${}^{\mathrm{MMF}^a}(\mathrm{wt.\%})$
						Åheim dunite		
2	≈ 2000	A 11	350	1058	0.98	Ol - Opx - Chl	Ol - Opx - Chl - Chr	0.010
3	≈ 2000	$\mathrm{Ag}_{23}\mathrm{Pd}_{77}$	350	1045	1.00	Ol - Opx - Chl - Mgh?	Ol – Opx – Chl – Srp? – Chr – Fe Ox – Fe-Ni S	0.030
						San Carlos olivine		
33	500 - 1000	Au	300	2010	2.00	Ol	Ol - Srp(Ct?, Lz?) - Fe Ox	0.056
32	500 - 1000	$Ag_{25}Pd_{75}$	300	2010	1.94	Ol	Ol - Srp(Ct?, Lz?) - Fe Ox	0.003
21	45 - 50	Au	300	720	1.98	Ol	Ol - Srp(Ct) - Fe Ox	0.080
27	45 - 50	$Ag_{25}Pd_{75}$	300	722	1.98	$\mathrm{Ol}-\mathrm{Srp}(\mathrm{nd}^b)-\mathrm{Hm}?$	Ol - Srp(Ct?) - Fe Ox	0.007
28	< 10	Au	300	720	1.82	Ol - Srp(Lz) - Mgt?	na^{c}	0.340
29	< 10	$\mathrm{Ag}_{25}\mathrm{Pd}_{75}$	300	720	2.01	Ol - Srp(Lz) - Hm	na	0.057
35	500 - 1000	Au	350	1782	1.97	Ol	$\mathrm{Ol}-\mathrm{Srp}(\mathrm{nd})-\mathrm{Fe}~\mathrm{Ox}$	0.002
40	500 - 1000	$Ag_{25}Pd_{75}$	350	1800	1.97	Ol	Ol - Srp? - Fe Ox	0.001
22	45 - 50	Au	350	738	2.01	Ol	Ol - Srp(Ct) - Fe Ox	0.017
25	45 - 50	$Ag_{25}Pd_{75}$	350	719	1.97	Ol	Ol - Srp(Ct?) - Fe Ox	0.009
23	25 - 32	Au	350	738	2.01	Ol	Ol - Srp(Ct) - Fe Ox	0.012
24	25 - 32	$Ag_{25}Pd_{75}$	350	719	1.99	Ol	Ol - Srp(Ct?) - Fe Ox	0.020
5	< 10	Ău	350	716	1.93	m Ol-Srp(Ct)	na	0.020
16	< 10	$\mathrm{Ag}_{23}\mathrm{Pd}_{77}$	350	709	1.97	$\mathrm{Ol}-\mathrm{Srp}(\mathrm{nd})-\mathrm{Mgt}-\mathrm{Hm}$	na	0.938

Table 4.1: Experimental results.

 a MMF: magnetite mass fraction.

 b nd: not determined.

^c na: not analyzed.

Mineral abbrevations: Ol: olivine; Opx: orthopyroxene; Chl: clinochlore; Srp: serpentine; Ct: chrysotile; Lz: lizardite; Mgt: magnetite; Hm: hematite; Mgh: maghemite; Chr: chromite; Fe Ox: unspecified Fe oxide; Fe-Ni S: Fe-Ni sulfide.
Experimental equipment

In this study, all experiments were performed in René 41 rapid quench cold seal pressure vessels (Rudert et al., 1976; Pichavant, 1987; Schmidt et al., 1995) pressurized with Ar. Experimental temperatures, monitored permanently with an external thermocouple, were controlled with an Eurotherm[®] regulator. Temperatures inside the vessel were calibrated under pressure using an internal thermocouple and are known to within ± 10 °C. Pressure was read with a tube manometer to within ± 2 MPa. In this study, pressure was kept constant (50 MPa) and two temperatures, 300 and 350 °C were investigated. Experiments lasted for 30, 45 or 80 days (Table 4.1). Once completed, the experiment was quenched by removing the pressure vessel from the furnace and allowing it to cool down to room conditions. When cold, the vessel was opened and the capsule extracted and opened.

Analytical methods

Solid products recovered after the experiments were dried at 110 °C for 24 hours. A fraction was ground and mounted in a capillary for X-ray diffraction (XRD) analysis. A Inel CPS120 diffractometer equiped with a curved detector and a Co anticathode was used (ISTO, Orléans). Magnetic data including hysteresis parameters (saturation magnetization: Js; saturation remanent magnetization: Jrs; intrinsic coercivity: Hc; remanent coercivity: Hcr) were obtained using a vibrating sample magnetometer at room temperature (MC MicroMag 3900 Series, IPGP Paris). The magnetite mass fraction (MMF) was obtained from Js using the proportionality factor of 92 A·m²·kg⁻¹ linking Js and the nominal weight of magnetite (Malvoisin et al., 2012a). Another fraction was selected for detailed textural characterization and phase identification using scanning electron microscopy. Run products were either embedded in epoxy and polished or directly glued on a glass plate. The scanning electron microscope (SEM) of the joint BRGM-ISTO facility (Tescan Mira 3 XMU, ISTO Orléans) was used both in secondary (SE) and back scattered electron (BSE) modes.

4.2.3 Results

Dunite

Two experiments have been performed at the same temperature, for the same duration and on a relatively coarse-grained starting material, using either Au or AgPd capsules. In the two experiments, mineral phases initially present in the starting material always persist in experimental products (Table 4.1). However, XRD analyses show a different evolution between olivine and orthopyroxene. In comparison with the starting material, the relative proportion of orthopyroxene in experimental products was found to decrease more importantly than olivine (Figure 4.1).

SEM observations show that dissolution textures are more clearly marked for orthopyroxene than olivine (Figure 4.2a). In the experiment performed with the Au capsule, no Fe-oxide is observed in the products. This is consistent with a MMF in experimental products higer although of the same order of magnitude as the starting material. In the experiment performed with the AgPd capsule, Fe-oxide is identified from SEM imaging (Figure 4.2a). XRD analyses show that these oxides are most probably maghemite (Figure 4.1). However, some magnetite can also be present since, in this experiment, the measured MMF is substantially higher than in the experiment performed with the Au capsule, and also one order of magnitude higher than the MMF of the starting material $(2.5 \times 10^{-3} \text{ wt.\%})$, see above). Fe-oxides are observed either in isolation or associated with Fe-Ni sulphides, and in fractures or at grain boundaries. Fibrous minerals similar in shape to chrysotile are observed in those local environments (Figure 4.2a).

San Carlos Olivine

Fourteen experiments are detailed in Table 4.1. They cover a range of grain sizes and durations, and two temperatures (300 and 350 °C). The data are organized in a way that allows direct comparison of results between Au and AgPd capsules, all the other parameters being equal. XRD analyses show that olivine is still present at the end of all experiments (Table 4.1). In fact, olivine is the only phase detected by XRD except for charges starting with the smallest grain sizes (*Run* 5 and *Run* 16 at 350 °C, *Run* 27, *Run* 28 and *Run* 29 at 300 °C) where serpentine and Fe-oxides are detected from the XRD spectra. In comparison, the SEM observations reveal the presence of newly formed serpentine and Fe-oxides in all analyzed samples, as detailed below. Brucite was never observed.

Figure 4.1: XRD diffractograms of experimental charges produced from Åheim dunite. Bottom: starting dunite. Middle: dunite reacted in Au capsule (Run 2, Table 4.1). Top: dunite reacted in AgPd capsule (Run 3, Table 4.1). Orthopyroxene peaks are highlighted by blue dotted lines. Clinochlore and maghemite peaks are highlighted by purple and red lines, respectively. Other peaks correspond to olivine. All peaks higher than 15,000 counts are clipped and correspond to olivine. Relative peaks intensities demonstrate that orthopyroxene decreases more importantly than olivine during the experiments. Insets are $\times 6$ magnifications of diffractograms centered on the 50.76° and 67.67° peaks which are both characteristic of maghemite. Relatively to olivine peaks, the height of the 50.76° peak (middle: dunite reacted in Au capsule) is similar to that in the starting dunite (bottom). In comparison, this peak is higher in the AgPd experiment (top). The 67.7° peak is present only for the dunite reacted in AgPd capsule (top). These two peaks suggest that the Fe-oxides crystallized in the AgPd capsule include, at least in part, maghemite.

Figure 4.2: SEM images of reacted dunite (a) and San San Carlos olivines (b-h). For each view, the scale bar is 10 µm. Mineral abbreviations same as in Table 4.1. (a-f): polished sections, (g-h): unpolished preparations. (a): BSE image of dunite reacted in AgPd (Run3, Table 4.1). Orthopyroxene is more markedly dissolved than olivine. The nature of the Fe-oxide (either magnetite or maghemite) is undetermined. The fibrous material developed at the grain interface is serpentine, most probably chrysotile. (b): vein developed in olivine crystal, the middle of the vein is occupied by fibrous material, probably chrysotile; Fe-oxides are concentrated in "void" between olivine and the vein material (BSE, Run40, Table 4.1). (c): texture similar to (b) except that the band is filled with material with different contrast, light (lB) and dark (dB); each band is composed of fibrous material but the difference in contrast remains unclear (BSE, Run35, Table 4.1). (d and e): chrysotile layers around olivine crystals (BSE, Run22 and Run25, respectively, Table 4.1). (f): dissolution gulf filled with large Fe-oxides and serpentine, probably chrysotile (BSE, Run32, Table 4.1). (g): Fe-oxides and chrysotile developed on the surface of olivine crystals (BSE, Run21, Table 4.1). (h): fibrous texture of chrysotile (SE, Run21, Table 4.1).

Specific textures such as veins within olivines are observed for relatively coarse reactant starting powders, 0.5 - 1 mm (Figures 4.2b and 4.2c). Veins widths are approximately 5 µm and two different vein types can be distinguished from SEM observations on orthogonal sections. The first type is mainly composed of fibrous material, most probably chrysotile. Fe-oxides are present as small crystals irregularly dispersed along the vein. The vein is not completely filled by the product phases and a void exists between olivine and the material crystallized in the vein (Figure 4.2b). The second type is texturally similar to the first, being also symmetrical with respect to the center of the vein. It comprises the fibrous phase and Fe-oxides but the fibrous phase displays an alternating contrast difference, being either light or dark. Textural evidence suggests that both bands are composed of serpentine (most probably chrysotile) but the origin of the contrast difference between the light and dark bands remains unclear. The dark band occupies the center of the vein, and is surrounded by the light band on both sides. As for the first type, a void is observed between the light band and olivine Figure 4.2c.

For smaller grain sizes, serpentine is found developed on the surface of the residual olivine crystals where it forms a 5 µm layer (Figure 4.2d). Serpentine can totally armor olivine (Figure 4.2e). It is found generally accompanied by Fe-oxides, but the latter phase is present locally in very different proportions. The type of serpentine polymorph was not determined (for example by Raman analysis), but textural evidence suggests that it is mainly composed of chrysotile (Figures 4.2d and 4.2f). For initial grain sizes less than 10 µm, the XRD analyzes at 350 °C yield spectra closer to the standard spectra of chrysotile and, at 300 °C, to the standard spectra of lizardite. However, the differences between the XRD data are quite subtle since serpentine is present in small proportions, and the spectra could be interpreted as mixtures of the two polymorphs.

Both magnetite and hematite occur in experimental products. Magnetite crystallization is demonstrated by an increase of Js and consequently of the MMF (Table 4.1), and also by positive

Figure 4.3: Amount of magnetite in reaction products (magnetite mass fraction, MMF) plotted against the initial grain size for the San Carlos olivine experiments. Experimental details in Table 4.1 and magnetic data in Table 4.2. Experiments are distinguished by capsule material, either Au or AgPd. The baseline is calculated from fits of MMF values of starting olivines with different grain sizes. Hm indicates charges with hematite identified by XRD. (a): 300 °C charges. Note the systematic increase of MMF observed in Au capsules when decreasing the grain size. In AgPd capsules, a small increase of MMF occurs only for the grain size < 10 μ m. (b): 350 °C charges. No significant increase of MMF is observed except for the run performed in AgPd capsule and with the smallest grain size (*Run* 16, Table 4.1).

identification from XRD data in one (Run 16) and possibly another (Run 28) charge (Table 4.1). At 300 °C, all experiments performed in Au capsules show an increase of the MMF upon decreasing the initial grain size (Figure 4.3a), thus suggesting progressive magnetite crystallization. Such an increase of the MMF is also observed, although to a lesser extent, in the AgPd experimental charges (Figure 4.3a). At 350 °C, the MMF values are quite small (except for one charge), generally lower than at 300 °C, thus indicating limited magnetite crystallization at the highest temperature. There is also no systematic change between the Au and AgPd experimental charges at 350 °C. The exception is the AgPd charge performed with the smallest initial grain size < 10 µm (Figure 4.3b) which shows the highest MMF of our dataset and where magnetite crystallization is demonstrated from the XRD data. Hematite was positively identified in 3 charges, all from experiments performed with the < 10 µm and 45 – 50 µm initial grain sizes. At 350 °C, hematite is observed in the experiment performed with the < 10 µm initial grain size.

SEM observations reveal that Fe-oxides seem to grow bigger and in lesser amounts at 300 °C than at 350 °C (Figures 4.2b, 4.2c, 4.2g and 4.2h). Texturally, the Fe-oxides are almost always sandwiched between olivine and serpentine (Figures 4.2b, 4.2c and 4.2g).

Figure 4.4: Detail of XRD evidence for the presence of hematite. Each box is centered on a 2θ value corresponding to a characteristic peak of hematite. The bottom spectrum is the starting San Carlos olivine and the four other spectra are products from San Carlos olivine experiments, all performed with grain sizes < 10 µm (Table 4.1). Hematite is present both at 300 and 350 °C and only in experiments performed in AgPd capsules.

The hysteresis parameters (Table 4.2) are used to calculate Hcr/Hc and Jrs/Js. Our experimental samples (for which the hysteresis measurements have enabled magnetite detection) plus other experimental samples from the literature and data for natural serpentinites are compared in a Day diagram (Figure 4.5, Day et al., 1977). Magnetites produced in Au capsules at 300 °C appear all very similar regardless of the initial grain size. They are also in good agreement, in term of Jrs/Js ratio, with the magnetites from the experiments of Malvoisin et al. (2012a) at 300 °C, although the latter extend to higher Hcr/Hc values. For all our experiments, the crystallized magnetites plot in the pseudo-single domain (PSD) field and overlap with the magnetites from natural systems (Oufi et al., 2002). Yet, it should be noted that the experiments in AgPd capsules systematically yield a slightly higher Jrs/Js ratio than the main trend (Figure 4.5).

4.2.4 Discussion

Comparison between the internally and externally f_{H_2} controlled experiments

The two types of experiments, either internally or externally f_{H_2} controlled, yielded similar results for some aspects and contrasted results for others. Distinguishing between experiments performed on the Åheim dunite and on the San Carlos olivine, results obtained on the Åheim dunite at 350 °C are identical for what concerns the major mineral phases. Olivine is still present at the end of the experiments whatever the type of f_{H_2} control. Orthopyroxene also persists in experimental products despite evidence for orthopyroxene being consumed both in the Au and the AgPd capsule experiments (Figure 4.1) and microtextural indications for orthopyroxene being reacted (Figure 4.2a). Concerning the product phases of the serpentinization reaction, serpentine has been positively identified (SEM observations) only in the AgPd capsule experiment. Maghemite is possibly present (XRD data) in the same experiment. The MMF for the experiment performed with the Au capsule is very low, consistent with XRD and SEM data. MMF is significantly increased

	та	та	77	
	Js^{ω}	Jrs^{a}	HC	Hcr
Run	$(mA \cdot m^2 \cdot kg^{-1})$	$(mA \cdot m^2 \cdot kg^{-1})$	(mT)	(mT)
		8		
		Aheim dunite		
2	9.62	2.52	-18.25	-35.10
3	27.74	8.23	-22.10	-39.21
	Sat	n Carlos olivine		
35	1.51	0.15	-9.91	-21.94
40	1.35	0.13	-3.90	na^{b}
22	15.42	2.33	-11.55	-25.87
25	8.45	0.40	-4.40	-19.75
23	11.15	1.36	-8.63	-19.21
24	18.75	0.85	-4.15	-8.26
5	18.67	3.72	-14.88	-33.63
16	862.53	135.11	-11.33	-28.01
33	51 54	3 90	-7.60	-2462
32	2.87	0.35	-14.32	-35.98
21	73.63	6.43	-8.90	-29.11
27	6.10	1.07	-11.07	-29.10
28	312.83	27.79	-10.76	-35.30
29	51.99	6.85	-10.72	-33.90

Table 4.2: Hysteresis measurements.

a Js and Jrs are weighted by the analyzed sample mass.

 b na: not analysed.

Figure 4.5: Jrs/Js as a function of Hcr/Hc plot (Day diagram, Day et al., 1977) for selected experimental products. Only charges with magnetite mass fractions (MMF) higher than the baseline (see Figure 3) and thus containing a substantial amount of magnetite among reaction products are plotted. SD: single domain, PSD: pseudo single domain and MD: multi domain. The green field corresponds to the experiments of Malvoisin et al. (2012a) on San Carlos olivine plus pure water at 300 °C. The red field corresponds to natural serpentinite samples (DSDP Sites 395, 556, 558, and 560 and ODP Sites 670, 895, and 920, as compiled by Oufi et al., 2002). All our produced magnetites plot in the PSD. The San Carlos charges in AgPd capsules have Jrs/Js higher than the main trend.

in the experiment performed with the AgPd capsule. Therefore, the available evidence (SEM observations, XRD and MMF data) suggest an extent of the serpentinization reaction in the AgPd capsule. In comparison, the small increase of MMF in the Au capsule is the only indication for the appearance of newly formed phases.

For the San Carlos experiments, olivine also persists in all charges whatever the type of $f_{\rm H_2}$ control. Serpentine, whether recognized by SEM or XRD, occurs in all run products. Both lizardite and chrysotile have been identified by XRD, and lizardite was found at 300 °C in either Au or AgPd capsule experiments. Magnetite is also present in all run products despite relatively low MMF values in certain charges. At 300 °C, MMF is higher in Au than in AgPd capsule experiments irrespective of the grain size (Figure 4.3a). In contrast, at 350 °C and for the largest grain sizes, there is no significant difference in MMF between the two types of $f_{\rm H_2}$ control (Figure 4.3b). However, for the smallest grain size, the AgPd capsule has a much higher MMF than the Au capsule. Hematite is demonstrated to be present both at 300 and 350 °C and is exclusively found in experiments performed with AgPd capsules (Figure 4.4).

Differences in MMF values and nature of the Fe-oxide between the San Carlos charges reflect the influence of two parameters, temperature and type of $f_{\rm H_2}$ control. (1) The influence of temperature is clearly seen in the decrease of MMF from 300 to 350 °C in Au capsules (Figure 4.3). This is consistent with thermodynamic simulations of serpentinization which predict 350 °C to be close to the minimum temperature stability limit of Fo₉₀ olivine and to the maximum temperature stability

limit of magnetite (McCollom and Bach, 2009; Klein et al., 2013). Consequently, under conditions of internal $f_{\rm H_2}$ control, our results suggest a more limited extent of the serpentinization reaction at 350 °C than at 300 °C, consistent with previous experimental results under the same conditions (Au capsules) and with the same starting material (San Carlos olivine, Malvoisin et al., 2012a). (2) The influence of $f_{\rm H_2}$ control appears specific of the experimental temperature. At 300 °C, conditions of external $f_{\rm H_2}$ control lead to charges with lower MMF than for internal $f_{\rm H_2}$ control (Figure 4.3a). Since magnetite is accompanied by hematite in those charges, we interpret the lowered MMF to reflect partial substitution of magnetite by hematite (which is a non-magnetic Feoxide) as a result of the advancement of the serpentinization reaction. It is worth emphasizing that, under conditions of external $f_{\rm H_2}$ control, the reactive medium inside the AgPd capsule is quasi instantaneously (in less than a few hours) equilibrated with the $f_{\rm H_2}$ imposed by the autoclave (0.01 to 0.1 MPa). Therefore, a mechanism of syn-crystallization of magnetite and hematite is favored in those charges, rather than the replacement of early formed magnetite by later hematite. Coexistence of the two Fe-oxides (in presence of serpentine) implies that f_{O_2} in serpentinization experiments performed in AgPd capsules reaches conditions defined by the hematite-magnetite (HM) redox equilibrium.

At 350 °C, the AgPd capsule experiment performed with the smallest grain size (Run 16, Table 4.1) is specific. It has the highest MMF of our dataset which suggests an elevated magnetite proportion. However, hematite is also present, and the hematite XRD signals are comparable at 300 and 350 °C (Figure 4.4). Since serpentine is produced, crystallization of the two Fe-oxides must be associated with a serpentinization process. The apparently protracted advancement of the serpentinization reaction in Run 16 (as marked by the high MMF) is at variance with our conclusion above for conditions of internal $f_{\rm H_2}$ control at 350 °C and thus requires an explanation. Under conditions of external $f_{\rm H_2}$ control, it is important to note that the reactive medium is continuously depleted in H₂ and so conditions become highly oxidizing. This should promote the advancement of the reaction according to the Le Chatelier principle. It is also possible that olivine becomes less stable at such a high $f_{\rm O_2}$, thus allowing serpentinization to be pushed to slightly higher temperatures (≈ 350 °C, Klein et al., 2013; Malvoisin, 2015). Both effects would result in a higher extent of the serpentinization reaction. In this respect we note that, at 350 °C for the Åheim dunite, the same behaviour is observed, *i.e.*, little advancement of the reaction in Au and a more enhanced reaction in AgPd.

Consequences for the serpentinization reaction

Chemical reactions involved in the serpentinization process remain poorly understood. It is widely recognized that the production of H_2 is tightly coupled to the oxidation of ferrous iron from the reacting rocks into ferric iron precipitated in product minerals. However the factors that regulate how much of the ferrous iron is oxidized are not well constrained (e.g., McCollom et al., 2016). It has been suggested that factors such as the Fe content of source minerals, activity of silica (a_{SiO_2}), and thermodynamic equilibrium among mineral phases may exert a strong influence on the fate of Fe during serpentinization (e.g., Frost and Beard, 2007; Evans, 2008; McCollom and Bach, 2009; Klein et al., 2013; Fauguerolles et al., 2017a,b).

Despite the different interpretations, there is overall agreement that the serpentinization reaction can be written as:

$$\beta(\mathrm{Mg}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+})_3(\mathrm{Si}, \mathrm{Fe}^{3+})_2\mathrm{O}_5(\mathrm{OH})_4 + \gamma(\mathrm{Mg}, \mathrm{Fe})(\mathrm{OH})_2 + \delta\mathrm{Fe}^{2+}\mathrm{Fe}_2^{3+}\mathrm{O}_4 + \epsilon\mathrm{H}_2 \qquad (Rn\,4.1)$$

$$\beta(\mathrm{Mg}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+})_3(\mathrm{Si}, \mathrm{Fe}^{3+})_2\mathrm{O}_5(\mathrm{OH})_4 + \gamma(\mathrm{Mg}, \mathrm{Fe})(\mathrm{OH})_2 + \delta\mathrm{Fe}^{2+}\mathrm{Fe}_2^{3+}\mathrm{O}_4 + \epsilon\mathrm{H}_2 \qquad (Rn\,4.1)$$

$$\beta(\mathrm{Mg}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+})_3(\mathrm{Si}, \mathrm{Fe}^{3+})_2\mathrm{O}_5(\mathrm{OH})_4 + \gamma(\mathrm{Mg}, \mathrm{Fe})(\mathrm{OH})_2 + \delta\mathrm{Fe}^{2+}\mathrm{Fe}_2^{3+}\mathrm{O}_4 + \epsilon\mathrm{H}_2 \qquad (Rn\,4.1)$$

Reaction (Rn 4.1) as written should be considered as an overall general reaction which describes the irreversible transformation of olivine from mantle rocks under the action of hot seawater. Reaction (Rn 4.1) or an equivalent form is classically used to interpret results of serpentinization experiments (Seyfried et al., 2007; Marcaillou et al., 2011; Malvoisin et al., 2012a,b; McCollom et al., 2016; Fauguerolles et al., 2017b). According to reaction (Rn 4.1), the main product phases of the serpentinization reaction are: serpentine, brucite and magnetite. The α , β , γ , δ and ϵ coefficients depend in detail of the composition of reaction products and of the partitioning of Fe²⁺ and Fe³⁺ between product phases.

Our experimental results under conditions of internal $f_{\rm H_2}$ control are broadly consistent with reaction (*Rn* 4.1). Olivine is consumed and both serpentine and magnetite are produced (Table 4.1 and Figure 4.2). Brucite was not observed in our experimental products but it is likely that $a_{\rm SiO_2}$ in the Åheim dunite (orthopyroxene-bearing) experiments is too high for brucite to be stable (Frost and Beard, 2007; Fauguerolles et al., 2017b). The lack of brucite in our San Carlos olivine experiments may not resist further detailed examinations since Malvoisin et al. (2012b) and Malvoisin and Brunet (2014) report brucite in some of their charges obtained under the same conditions and with the same starting material.

Reaction (Rn 4.1) shows that the amount of H₂ generated is related to the proportion of Fe²⁺ oxidized to Fe³⁺. Magnetite is an important carrier of Fe³⁺ but it is now accepted that Fe³⁺ can be present in significant amounts in serpentine (Seyfried et al., 2007; Marcaillou et al., 2011; Andreani et al., 2013). Brucite contains no Fe³⁺ and magnetite is assumed to be pure Fe₃O₄.

Under conditions of external $f_{\rm H_2}$ control hematite is present as a product phase and reaction $(Rn \, 4.1)$ is rewritten as:

$$\begin{split} \mathrm{Mg}_{1.82}\mathrm{Fe}_{0.18}\mathrm{SiO}_4 + \alpha \mathrm{H}_2\mathrm{O} &\rightarrow \beta (\mathrm{Mg}, \mathrm{Fe}^{2^+}, \mathrm{Fe}^{3^+})_3 (\mathrm{Si}, \mathrm{Fe}^{3^+})_2\mathrm{O}_5(\mathrm{OH})_4 + \\ & \mathrm{Olivine} \ (\mathrm{Fo}_{91}) & \mathrm{Serpentine} \end{split}$$
$$\gamma (\mathrm{Mg}, \mathrm{Fe})(\mathrm{OH})_2 + \delta \mathrm{Fe}^{2^+}\mathrm{Fe}_2^{3^+}\mathrm{O}_4 + \epsilon \mathrm{H}_2 + \zeta \mathrm{Fe}_2^{3^+}\mathrm{O}_3 \qquad (Rn\,4.2)$$

Hematite

Reaction (Rn 4.2) is written with brucite as a product phase for consistency with reaction (Rn 4.1)and despite the fact that brucite is absent in our AgPd capsule experiments. It shows that, when hematite is added as a product phase, the proportion of Fe²⁺ oxidized to Fe³⁺ is higher than in reaction (Rn 4.1). This implies in principle that more H₂ should be produced from reaction (Rn 4.2)than from reaction (Rn 4.1). However, this conclusion needs to be confirmed in practice with the analysis of product phases (including the speciation of Fe in serpentine) in the two types of model reactions. Andreani et al. (2013) have shown that during the early stages of serpentinization, Fe³⁺-bearing serpentine is produced and this generates more H₂ than expected from the amount of crystallized Fe-oxides (magnetite in their case).

Magnetite

Implication for serpentinization processes at mid-ocean ridges

Brucite

The double experimental setup implemented in this study for H_2 is closely analogous to the "internally buffered" vs. "externally buffered" cases classically considered in the modeling of metasomatic processes such as serpentinization (Evans et al., 2013). In the context of hydrothermal fluid systems in the oceanic crust, the differential mobility of H_2 imposed experimentally can be related to mechanisms of fluid circulation.

The case of internal buffering of f_{H_2} in our experiments implies that the f_{H_2} is imposed to the fluid by mineralogical transformations/reactions taking place in the rock (such as serpentinization). This situation is likely to apply in rocks having low permeabilities whose behavior approaches that of a "closed" system. The few permeability data available for ultramafic rocks (Farough et al., 2016) show that such closed system situations would generally apply for non-fractured lithologies. It is also worth emphasizing that, because of the volume expansion that accompanies serpentinization

(Kelemen and Hirth, 2012), porosity will tend to decrease upon hydration of ultramafic rocks, thus lowering their permeability. Ocean floor serpentinities from the MARK area record serpentinization stages formed in a closed, diffusive system, and their high serpentinisation rates imply large volume expansions of the rocks (Andreani et al., 2007). Under these conditions, the fluid composition, including the H_2 concentration and the f_{H_2} , will be determined by rock dominated fluid-rock equilibria (Figure 4.6). This situation is the one simulated in our serpentinization experiments performed with H_2 -impermeable Au capsules (Figure 4.7). It is important to emphasize that this is the situation of most experimental serpentinization studies which as a rule are performed with W/R ratios < 3 (Seyfried et al., 2007; Malvoisin et al., 2012a; Klein et al., 2015; McCollom et al., 2016; Fauguerolles et al., 2017a,b). These experimental studies yield concentrations of dissolved $H_2 (m_{H_2})$ in the fluid up to $\approx 150 \,\mathrm{mol \cdot kg_{fluid}^{-1}}$ and f_{H_2} in the range $2 - 4 \,\mathrm{MPa}$ which correspond to strongly reducing f_{O_2} (NNO-5.3 to NNO-5.7, Fauguerolles et al., 2017a). Small W/R ratio are also considered in most thermodynamic serpentinization models (e.g., McCollom and Bach, 2009; Klein et al., 2013). Natural serpentinites have mineral assemblages that closely correspond to these experimental simulations and thermodynamic models. They comprise serpentine, brucite and magnetite as dominant phases (Mével, 2003; Bach et al., 2006; Frost et al., 2013; Klein et al., 2014), *i.e.* they show a phase assemblage identical to the one produced in our internally $f_{\rm H_2}$ controlled experiments (the lack of brucite being excepted, see above). Properties of product phases such as magnetite (magnetic properties) are similar between natural and experimental serpentinites (Figure 4.5). The common occurrence of awaruite (FeNi₃) as an accessory phase (Frost, 1985; Klein and Bach, 2009; Foustoukos et al., 2015) is also consistent with a "closed" system in which conditions are kept reducing because the low permeability allows H_2 to accumulate in the fluid.

) Mineral assem) 56		non		
	Qz Mgt	Tc Mgt	Srp Mgt	Srp Mgt Ol Bct	Peridotite

b) Internal control of $f_{\rm H_2} \equiv f_{\rm H_2}$ controlled by rock

έ

$\log f_{\rm O_2}$	$\log fH_2$	
	logic	
$\log f_{\rm H_2}$	°8 / _{O2}	

c) External control of $f_{\rm H_2} \equiv f_{\rm H_2}$ controlled by fluid

Figure 4.6: Schematic representation of fluid-mineral interactions in the oceanic crust illustrating internal and external f_{H_2} control. (a): sequence of mineral assemblages encountered assuming constant temperature and variable f_{O_2} , derived from the $\log f_{O_2}$ vs. T diagram of the system Mg-Fe-Si-O-H system from Frost (1985). Qz: quartz; Mgt: magnetite; Tc: talc; Srp: serpentine; Ol: olivine; Bct: brucite. (b): internal control of f_{H_2} , and corresponding f_{O_2} , imposed by the sequence of mineral assemblages in (a). As $\log f_{O_2}$ initially decreases, $\log f_{H_2}$ progressively increases. Both the $\log f_{O_2}$ and $\log f_{H_2}$ are constant at the serpentinization front where serpentine, magnetite, olivine, brucite and fluid coexist (isobarically invariant assemblage in $\log f_{O_2}$ vs. T space, Frost, 1985). (c): external control of f_{H_2} , and corresponding f_{O_2} , imposed by infiltrating fluid. The f_{H_2} is equal to that of the fluid and constant since the fluid to the front serpentinization. The infiltrating fluid is assumed to have a low f_{H_2} .

Figure 4.7: Illustration of the two types of f_{H_2} control experimentally developed for testing the influence of f_{H_2} on the serpentinization reaction. Left: internal control of f_{H_2} . The experiment is performed in Au capsule impermeable to H₂. This allows an increase of the H₂ concentration, and of the f_{H_2} , inside the capsule as serpentinization progresses. The f_{H_2} is high and controlled internally by the serpentinization reaction. This situation is analogous to "closed" system serpentinization where low permeabilities and H₂ accumulation favor strongly reducing conditions to be maintained. Right: external control of f_{H_2} . The experiment is performed in AgPd capsule permeable to H₂. This allows continuous escape of H₂ from the capsule to the gas pressurizing medium. The f_{H_2} is low because volume constraints dictate that it is imposed by the external medium (Ar in this case). This situation is analogous to "open" system serpentinization where high permeabilities driven by tectonic activity promote fluid infiltration. Note the H₂ molecules confined inside the capsule at left and dispersed throughout the capsules and vessel at right. The number of H₂ molecules on the right should be higher than on the left because the serpentinization reaction is promoted under external f_{H_2} control (see text).

The case of external buffering of $f_{\rm H_2}$ in our experiments corresponds to a situation where the $f_{\rm H_2}$ of the system is imposed from outside. In our experiments, we have simulated the situation arising when the f_{H_2} is imposed by an external H₂-poor fluid phase (Ar pressure medium). This situation is analogous to a serpentinization environment where the $f_{\rm H_2}$ is buffered by an external fluid. We assume that serpentinization is an hydration process driven by seawater and, consequently, the external fluid should have a low $f_{\rm H_2}$ (Figure 4.6). It is now accepted that serpentinization takes places in an active tectonic environment where rock fracturation and fluid infiltration are intimately associated (Andreani et al., 2007; Iyer et al., 2008; Plümper et al., 2012; Rouméjon and Cannat, 2014). For example, it has been proposed that the mesh texture initiation results from tectonically controlled penetration of seawater-dominated fluid within peridotites, and that the last stage of serpentinization takes place in the brittle-fracturing regime were advective fluid transfer dominates (Andreani et al., 2007; Rouméjon and Cannat, 2014). During these two stages, the fluid circulation regime is controlled by high permeabilities developed as a result of active fracturation and thus approaches an "open" system regime. In this case, certain components of the fluid phase can be externally controlled. H₂ is likely to be in this group but not necessarily the other fluid components (e.g., a_{SiO_2}). This situation is the one simulated in our serpentinization experiments performed with H_2 -permeable AgPd capsules (Figure 4.7). Our results show that the serpentinization reaction can take place (although modified, reaction (Rn 4.2)) under this condition. The appearance of hematite as a product of the reaction testifies the possibility of an highly oxidizing f_{O_2} during serpentinization. Although our study is the first to demonstrate production of hematite in hydrothermal serpentinization experiments, it is worth emphasizing

that thermodynamic calculations have established the possibility for hematite to be present under conditions appropriate for serpentinization. However, hematite was found only for very elevated W/R ratios (> 20), *i.e.* for conditions analogous to our "open" system situation (Seyfried et al., 2007; Malvoisin, 2015).

The applicability of our experimental results under externally $f_{\rm H_2}$ controlled conditions needs further evaluation in particular because hematite is not a phase characteristic of natural serpentinites. A literature survey shows that hematite is extremely rarely found associated with serpentinization processes. Fe-oxide phases other than magnetite, such as maghemite, have been reported (Prévot et al., 1981; Krammer, 1990; Nazarova et al., 2000), but there is apparently only one hematite occurrence in serpentinized peridotite mentioned in the literature (Smith and Banerjee, 1985). The most likely explanation for the absence of hematite in natural systems is that the $f_{\rm H_2}$ is very rarely low enough for hematite to be stable. Therefore, it is most likely that natural "open" system fluid circulation regimes will not produce an hematite-bearing phase assemblage. In other words, the very low $f_{\rm H_2}$ in our externally buffered experiments might not have a natural counterpart. However, these experiments are still applicable to simulate mechanisms associated with "open" system processes. As an illustration, serpentinities can be characterized by different proportions of magnetite and magnetite production rates (e.g., Oufi et al., 2002; Andreani et al., 2013). It has been recently proposed that the proportion of magnetite crystallizing in serpentinites can be related to differences in the temperature of the serpentinizing system (Klein et al., 2014). Although temperature clearly has an effect, our results stress the need to consider also other parameters and in particular the $f_{\rm H_2}$ of the incoming fluid. It is likely that the $f_{\rm H_2}$ can vary during the sequence of fluid circulation mechanisms (both "closed" and "open") that lead to serpentinites (Andreani et al., 2007, 2013). Magnetite is stable in serpentinization environments both for high and low $f_{\rm H_2}$, *i.e.*, for conditions corresponding to internal and external $f_{\rm H_2}$ buffering in our experiments. However, proportions of crystallized magnetite would be expected to increase from internal to external $f_{\rm H_2}$ conditions. And reani et al. (2013) came to the same conclusion, observing a progressive increase of the ${\rm Fe}^{3+}/{\rm Fe}_{\rm Tot}$ in serpentine with advancement of the serpentinization reaction as a result of a higher W/R ratio.

The two types of experimental configurations investigated in this study are also likely to affect the amount of H₂ generated. Under internally buffered f_{H_2} , H₂ is confined inside the capsule and a high m_{H_2} fluid is reached. In contrast, under externally buffered f_{H_2} , the H₂ generated is lost toward outside the capsule. According to the Le Chatelier principle and in agreement with our experimental observations, the extent of the H₂ generating serpentinization reaction is higher in the case of externally rather than of internally buffered f_{H_2} . This implies that a higher number of moles of H₂ (n_{H_2}) is produced in the former than in the latter situation, despite the f_{H_2} being lower. Therefore, a relation can be expected between the amount of H₂ generated and mechanisms of fluid circulation which control the extent and type of the serpentinization reaction.

4.2.5 Conclusion

Our experiments highlight the key role played by the fluid $f_{\rm H_2}$ during serpentinization. We have demonstrated experimentally that serpentinization can take place in a large range of $f_{\rm H_2}$ (and a correspondingly large range of $f_{\rm O_2}$). To do so, the experimental fluid $f_{\rm H_2}$ was monitored from mechanisms controlling the mobility of H₂ in the reacting system. Two cases were imposed, (1) internal control of $f_{\rm H_2}$ leading to high fluid $f_{\rm H_2}$ and (2) external control of $f_{\rm H_2}$ corresponding to low fluid $f_{\rm H_2}$ imposed from outside. Our results show that serpentinisation occurs in both cases, as demonstrated by the presence of serpentine in reaction products. However, notable differences were found concerning the nature of Fe-oxides produced during the reaction. Magnetite was found as a reaction product in both types of serpentinization experiments and fluid $f_{\rm H_2}$, being joined by hematite in the low fluid $f_{\rm H_2}$ externally buffered experiments. Such differences in product phase assemblages imply that serpentinization reaction mechanisms can vary depending on the fluid $f_{\rm H_2}$. Differences in H₂ production fluxes and rates can be also expected. Our results under external $f_{\rm H_2}$ control can not be applied directly to natural serpentinites mainly because these rocks typically lack hematite. However, the behavior of H₂ in our two types of experiments can be compared with that in natural oceanic hydrothermal systems. At MOR, "closed-system" serpentinization stages, marked by low rock permeabilities and small W/R ratios, coexist with serpentinization stages where "open-system" fluid infiltration is driven by tectonic activity and high transient rock permeabilities. The former fluid regime would promote a situation analoguous to our experimental internal $f_{\rm H_2}$ control where serpentinization leads to the production of H₂ and its local accumulation. Conversely, in the latter case, the $f_{\rm H_2}$ would be presumably controlled at low values by the infiltrating fluid, similar to our externally controlled experimental simulations. Given the differences noted in product phase assemblages between the two types of experiments, the possibility emerges to use the mineralogical composition of serpentinites as indicators of fluid circulation regimes in the oceanic crust.

4.2.6 Bibliography

- Abrajano, T. A., Sturchio, N. C., Kennedy, B. M., Lyon, G. L., Muehlenbachs, K., and Bohlke, J. K. (1990). Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines. *Applied Geochemistry*, 5(5):625–630.
- Allen, D. E. and Seyfried, Jr., W. E. (2003). Compositional controls on vent fluids from ultramafichosted hydrothermal systems at mid-ocean ridges: An experimental study at 400 °C, 500 bars. *Geochimica et Cosmochimica Acta*, 67(8):1531–1542.
- Andreani, M., Mével, C., Boullier, A.-M., and Escartin, J. (2007). Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites. *Geochemistry*, *Geophysics*, *Geosystems*, 8(2).
- Andreani, M., Munoz, M., Marcaillou, C., and Delacour, A. (2013). µxanes study of iron redox state in serpentine during oceanic serpentinization. *Lithos*, 178:70–83.
- Bach, W., Paulick, H., Garrido, C. J., Ildefonse, B., Meurer, W. P., and Humphris, S. E. (2006). Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP leg 209, Site 1274). *Geophysical research letters*, 33(13).
- Berckhemer, H., Kampfmann, W., Aulbach, E., and Schmeling, H. (1982). Shear modulus and Q of forsterite and dunite near partial melting from forced-oscillation experiments. *Physics of the earth and planetary interiors*, 29(1):30–41.
- Berndt, M. E., Allen, D. E., and Seyfried, Jr., W. E. (1996). Reduction of CO₂ during serpentinization of olivine at 300 °C and 500 bar. *Geology*, 24(4):351–354.
- Cannat, M. (1993). Emplacement of mantle rocks in the seafloor at mid-ocean ridges. Journal of Geophysical Research: Solid Earth (1978–2012), 98(B3):4163–4172.
- Cannat, M., Fontaine, F., and Escartín, J. (2010). Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges. In Rona, P. A., Devey, C. W., dyment, J., and Murton, B. J., editors, *Diversity of hydrothermal systems on slow spreading ocean ridges*, pages 241–264. American Geophysical Union, Washington, D. C.
- Charlou, J. L., Donval, J. P., Fouquet, Y., Jean-Baptiste, P., and Holm, N. (2002). Geochemistry of high H₂ and CH₄ vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). *Chemical Geology*, 191(4):345–359.
- Charlou, J. L., Donval, J. P., Konn, C., Ondréas, H., Fouquet, Y., Jean-Baptiste, P., and Fourré, E. (2010). High production and fluxes of H₂ and CH₄ and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. In Rona, P. A., Devey, C. W., Dyment, J., and Murton, B. J., editors, *Diversity of* hydrothermal systems on slow spreading ocean ridges, pages 265–296. American Geophysical Union, Washington, D. C.
- Day, R., Fuller, M., and Schmidt, V. A. (1977). Hysteresis properties of titanomagnetites: grainsize and compositional dependence. *Physics of the Earth and Planetary Interiors*, 13(4):260–267.
- Escartín, J., Hirth, G., and Evans, B. (1997). Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges. *Earth and Planetary Science Letters*, 151(3):181–189.
- Escartín, J., Hirth, G., and Evans, B. (2001). Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere. *Geology*, 29(11):1023–1026.
- Eugster, H. P. (1957). Heterogeneous reactions involving oxidation and reduction at high pressures and temperatures. *The Journal of Chemical Physics*, 26(6):1760–1761.

- Evans, B. W. (2008). Control of the products of serpentinization by the $Fe^{2+}Mg_{-1}$ exchange potential of olivine and orthopyroxene. Journal of Petrology, 49(10):1873–1887.
- Evans, K. A., Powell, R., and Frost, B. R. (2013). Using equilibrium thermodynamics in the study of metasomatic alteration, illustrated by an application to serpentinites. *Lithos*, 168:67–84.
- Farough, A., Moore, D. E., Lockner, D. A., and Lowell, R. P. (2016). Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study. *Geochemistry, Geophysics, Geosystems*, 17(1):44–55.
- Fauguerolles, C., Castelain, T., Villneuve, J., and Pichavant, M. (2017a). In situ experimental quantification of H₂ generation and determination of redox parameters (f_{h_2}, f_{h_2}) during serpentinization. Not yet submitted, Chapter II of this manuscript.
- Fauguerolles, C., Castelain, T., Villneuve, J., Rouméjon, S., and Pichavant, M. (2017b). Reaction mechanisms during serpentinization - Textural constraints and mineral chemistry data from experiments on a harzburgite at 250 – 350 °C, 50 MPa. Not yet submitted, Chapter III of this manuscript.
- Foustoukos, D. I., Bizimis, M., Frisby, C., and Shirey, S. B. (2015). Redox controls on Ni–Fe–PGE mineralization and Re/Os fractionation during serpentinization of abyssal peridotite. *Geochimica et Cosmochimica Acta*, 150:11–25.
- Frost, B. R. (1985). On the stability of sulfides, oxides, and native metals in serpentinite. Journal of Petrology, 26(1):31–63.
- Frost, B. R. and Beard, J. S. (2007). On silica activity and serpentinization. Journal of Petrology, 48(7):1351–1368.
- Frost, B. R., Evans, K. A., Swapp, S. M., Beard, J. S., and Mothersole, F. E. (2013). The process of serpentinization in dunite from New Caledonia. *Lithos*, 178:24–39.
- Gunter, W. D., Myers, J., and Girsperger, S. (1987). Hydrogen: Metal Membranes. In Ulmer, G. C. and Barnes, H. L., editors, *Hydrothermal Experimental Techniques*, pages 100–120. John Wiley and Sons, New York, NY.
- Iyer, K., Jamtveit, B., Mathiesen, J., Malthe-Sørenssen, A., and Feder, J. (2008). Reactionassisted hierarchical fracturing during serpentinization. *Earth and Planetary Science Letters*, 267(3):503–516.
- Jackson, I., Paterson, M. S., and Gerald, J. D. F. (1992). Seismic wave dispersion and attenuation in Åheim dunite: an experimental study. *Geophysical Journal International*, 108(2):517–534.
- Jamtveit, B., Putnis, C. V., and Malthe-Sørenssen, A. (2009). Reaction induced fracturing during replacement processes. Contributions to Mineralogy and Petrology, 157(1):127–133.
- Karson, J. A., Thompson, G., Humphris, S. E., Edmond, J. M., Bryan, W. B., Brown, J. R., Winters, A. T., Pockalny, R. A., Casey, J. F., Campbell, A. C., Klinkhammer, G., Palmer, M. R., Kinzler, R. J., and Sulanowska, M. M. (1987). Along-axis variations in seafloor spreading in the MARK area. *Nature*, 328:681–685.
- Kelemen, P. B. and Hirth, G. (2012). Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation. *Earth and Planetary Science Letters*, 345:81–89.
- Kelley, D. S., Karson, J. A., Früh-Green, G. L., Yoerger, D. R., Shank, T. M., Butterfield, D. A., Hayes, J. M., Schrenk, M. O., Olson, E. J., Proskurowski, G., et al. (2005). A serpentinite-hosted ecosystem: the Lost City hydrothermal field. *Science*, 307(5714):1428–1434.
- Klein, F. and Bach, W. (2009). Fe-Ni-Co-O-S phase relations in peridotite-seawater interactions. Journal of Petrology, 50(1):37–59.

- Klein, F., Bach, W., Humphris, S. E., Kahl, W.-A., Jöns, N., Moskowitz, B., and Berquó, T. S. (2014). Magnetite in seafloor serpentinite-Some like it hot. *Geology*, 42(2):135–138.
- Klein, F., Bach, W., Jöns, N., McCollom, T., Moskowitz, B., and Berquó, T. (2009). Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge. *Geochimica et Cosmochimica Acta*, 73(22):6868–6893.
- Klein, F., Bach, W., and McCollom, T. M. (2013). Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. *Lithos*, 178:55–69.
- Klein, F., Grozeva, N. G., Seewald, J. S., McCollom, T. M., Humphris, S. E., Moskowitz, B., Berquó, T. S., and Kahl, W.-A. (2015). Fluids in the Crust. Experimental constraints on fluid-rock reactions during incipient serpentinization of harzburgite. *American Mineralogist*, 100(4):991–1002.
- Klein, F. and McCollom, T. M. (2013). From serpentinization to carbonation: new insights from a CO₂ injection experiment. *Earth and Planetary Science Letters*, 379:137–145.
- Korzhinskii, D. S. (1965). The theory of systems with perfectly mobile components and processes of mineral formation. American Journal of Science, 263(3):193–205.
- Krammer, K. (1990). Rock magnetic properties and opaque mineralogy of selected samples from Hole 670A. In Detrick, R., Honnorez, J., Bryan, W. B., Juteau, T., and *et al.*, editors, *Proceedings* of the Ocean Drilling Program, Scientific Reports, volume 106/109, pages 269–273.
- Maffione, M., Morris, A., Plümper, O., and van Hinsbergen, D. J. J. (2014). Magnetic properties of variably serpentinized peridotites and their implication for the evolution of oceanic core complexes. *Geochemistry, Geophysics, Geosystems*, 15(4):923–944.
- Malvoisin, B. (2015). Mass transfer in the oceanic lithosphere: Serpentinization is not isochemical. Earth and Planetary Science Letters, 430:75–85.
- Malvoisin, B., Carlut, J., and Brunet, F. (2012a). Serpentinization of oceanic peridotites: 1. A high-sensitivity method to monitor magnetite production in hydrothermal experiments. *Journal* of Geophysical Research: Solid Earth (1978–2012), 117(B1).
- Malvoisin, B., Brunet, F., Carlut, J., Rouméjon, S., and Cannat, M. (2012b). Serpentinization of oceanic peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal alteration. *Journal of Geophysical Research: Solid Earth (1978–2012)*, 117(B4).
- Malvoisin, B. and Brunet, F. (2014). Water diffusion-transport in a synthetic dunite: Consequences for oceanic periodite serpentinization. *Earth and Planetary Science Letters*, 403:263–272.
- Marcaillou, C., Munoz, M., Vidal, O., Parra, T., and Harfouche, M. (2011). Mineralogical evidence for H₂ degassing during serpentinization at 300 °C/300 bar. *Earth and Planetary Science Letters*, 303(3):281–290.
- Martin, B. and Fyfe, W. S. (1970). Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization. *Chemical Geology*, 6:185– 202.
- Mayhew, L. E., Ellison, E. T., McCollom, T. M., Trainor, T. P., and Templeton, A. S. (2013). Hydrogen generation from low-temperature water-rock reactions. *Nature Geoscience*, 6(6):478–484.
- McCollom, T. M. and Bach, W. (2009). Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. *Geochimica et Cosmochimica Acta*, 73(3):856–875.
- McCollom, T. M., Klein, F., Robbins, M., Moskowitz, B., Berquó, T. S., Jöns, N., Bach, W., and Templeton, A. (2016). Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine. *Geochimica et Cosmochimica Acta*, 181:175–200.

- McCollom, T. M. and Seewald, J. S. (2001). A reassessment of the potential for reduction of dissolved CO₂ to hydrocarbons during serpentinization of olivine. *Geochimica et Cosmochimica Acta*, 65(21):3769–3778.
- McCollom, T. M. and Seewald, J. S. (2007). Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. *Chemical Reviews*, 107(2):382–401.
- Mével, C. (2003). Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geoscience, 335(10):825–852.
- Moody, J. B. (1976). An experimental study on the serpentinization of iron-bearing olivines. *The Canadian Mineralogist*, 14(4):462–478.
- Nazarova, K. A., Wasilewski, P. J., and Dick, H. J. B. (2000). Magnetic study of serpentinized harzburgites from the Islas Orcadas Fracture Zone. *Marine Geophysical Researches*, 21(5):475– 488.
- Neal, C. and Stanger, G. (1983). Hydrogen generation from mantle source rocks in Oman. Earth and Planetary Science Letters, 66:315–320.
- Oufi, O., Cannat, M., and Horen, H. (2002). Magnetic properties of variably serpentinized abyssal peridotites. Journal of Geophysical Research: Solid Earth, 107(B5).
- Pichavant, M. (1987). Effects of B and H₂O on liquidus phase relations in the haplogranite system at 1 kbar. *American Mineralogist*, 72(11-12):1056–1070.
- Pichavant, M., Villaros, A., Deveaud, S., Scaillet, B., and Lahlafi, M. (2016). Influence of redox state on mica crystallization in leucogranitic and pegmatitic liquids. *Canadian Mineralogist*. To appear.
- Plümper, O., Røyne, A., Magrasó, A., and Jamtveit, B. (2012). The interface-scale mechanism of reaction-induced fracturing during serpentinization. *Geology*, 40(12):1103–1106.
- Prévot, M., Lecaille, A., and Mankinen, E. A. (1981). Magnetic effects of maghemitization of oceanic crust. Journal of Geophysical Research: Solid Earth, 86(B5):4009–4020.
- Rouméjon, S. and Cannat, M. (2014). Serpentinization of mantle-derived peridotites at midocean ridges: Mesh texture development in the context of tectonic exhumation. *Geochemistry*, *Geophysics*, *Geosystems*, 15(6):2354–2379.
- Rudert, V., Chou, I.-M., and Eugster, H. P. (1976). Temperature gradients in rapid-quench coldseal pressure vessels. *American Mineralogist*, 61(9-10):1012–1015.
- Scaillet, B., Pichavant, M., Roux, J., Humbert, G., and Lefevre, A. (1992). Improvements of the Shaw membrane technique for measurement and control of $f_{\rm H_2}$ at high temperatures and pressures. *American Mineralogist*, 77(5-6):647–655.
- Schmidt, B. C., Scaillet, B., and Holtz, F. (1995). Accurate control of $f_{\rm H_2}$ in cold-seal pressure vessels with the Shaw membrane technique. *European Journal of Mineralogy*, pages 893–904.
- Seyfried, Jr., W. E., Foustoukos, D. I., and Fu, Q. (2007). Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200 °C, 500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges. *Geochimica et Cosmochimica Acta*, 71(15):3872–3886.
- Sleep, N. H., Meibom, A., Fridriksson, T., Coleman, R. G., and Bird, D. K. (2004). H₂-rich fluids from serpentinization: geochemical and biotic implications. *Proceedings of the National Academy* of Sciences of the United States of America, 101(35):12818–12823.
- Smith, G. M. and Banerjee, S. K. (1985). Magnetic-properties of plutonic rocks from the central North-Atlantic Ocean. In Bougault, H., Cande, S. C., Brannon, J. C., Christie, D. M., Clark, M., Curtis, D. M., Drake, N., Echols, D., Ashley Hill, I., Javed Khan, M., Mills, W., Neuser, R., Rideout, M. L., and Weaver, B. L., editors, *Initial Reports of the Deep Sea Drilling Project*, volume 82, pages 377–383. U.S. Government Printing Office, Washington, D.C. 20402-9325 USA.

- Steefel, C. I., DePaolo, D. J., and Lichtner, P. C. (2005). Reactive transport modeling: An essential tool and a new research approach for the Earth sciences. *Earth and Planetary Science Letters*, 240(3):539–558.
- Toft, P. B., Arkani-Hamed, J., and Haggerty, S. E. (1990). The effects of serpentinization on density and magnetic susceptibility: a petrophysical model. *Physics of the Earth and Planetary Interiors*, 65(1-2):137–157.

4.3 Conclusions

Nos expériences soulignent le rôle-clé joué par la $f_{\rm H_2}$ au cours de la serpentinisation. Nous avons expérimentalement démontré que la serpentinisation peut se produire dans un large domaine de $f_{\rm H_2}$ (et, de manière correspondante, dans un large domaine de $f_{\rm O_2}$). Pour cela, la $f_{\rm H_2}$ des fluides expérimentaux a été contrôlée en influant sur la mobilité de l'H₂ dans le milieu réactionnel. Deux cas ont été imposés, (1) un contrôle interne de la $f_{\rm H_2}$ conduisant à des $f_{\rm H_2}$ élevées et (2) un contrôle externe de la $f_{\rm H_2}$ correspondant à de basses $f_{\rm H_2}$ imposées par le milieu extérieur. Nos résultats démontrent que la serpentinisation a lieu dans ces deux cas, la serpentine étant présente dans les deux types de produits réactionnels. Cependant, des différences notables dans la nature des oxydes de Fe apparaissent. La magnétite est présente dans les deux types d'expériences. Elle est associée à l'hématite dans les expériences où la $f_{\rm H_2}$, contrôlée de façon externe, est basse. Ces différences de premier ordre dans les assemblages de phases produits impliquent que les mécanismes de la serpentinisation dépendent de la $f_{\rm H_2}$. On peut également s'attendre à des variations dans les flux et les taux de production de l'H₂ avec la $f_{\rm H_2}$.

Les résultats dans le cas d'un contrôle externe de la $f_{\rm H_2}$ ne peuvent être appliqués directement aux serpentinites naturelles, principalement parce que ces roches sont typiquement dépourvues d'hématite. Cependant, les modalités de contrôle de la $f_{\rm H_2}$ dans nos expériences trouvent des correspondants dans les systèmes hydrothermaux océaniques naturels. Au niveau de la MOR, des stades de serpentinisation en « système fermé », marqués par de faibles perméabilités des roches et des rapports W/R petits, coexistent avec des stades de serpentinisation en « système ouvert » au cours desquels les infiltrations des fluides sont contrôlées par l'activité tectonique, de fortes perméabilités transitoires et donc des rapports W/R élevés. Le premier type de contrôle de la $f_{\rm H_2}$ dans nos expériences simule une situation analogue à une serpentinisation en système fermé entrainant la production d'H₂ et son accumulation locale dans le fluide. Inversement, le second type de contrôle de la $f_{\rm H_2}$ s'approche d'une serpentinisation en système ouvert caractérisé par une dispersion de l'H₂ produit et une $f_{\rm O_2}$ élevée. Si l'on prend en compte les différences de premier ordre observées dans nos deux types d'expériences, la composition minéralogique des serpentinites pourrait constituer un indicateur des régimes de circulation des fluides dans la croûte océanique.

Chapitre 5

000

Étude du lien entre $f_{\rm H_2}$ et $m_{\rm H_2}$ dans le système H₂O-H₂. Mesures expérimentales et confrontations aux données et modèles thermodynamiques existants

À ce jour, qu'elles soient expérimentales ou en contexte naturel, toutes les études quantitatives portant sur la production d'H₂ associée au processus de serpentinisation ont été menées en mesurant la quantité molaire d'H₂ contenue dans un échantillon de fluide. Dans la grande majorité des cas, cette quantité est ensuite pondérée par la masse de fluide prélevée afin d'obtenir une molalité d'H₂ $(m_{\rm H_2})$ exprimée en mol·kg⁻¹ (Berndt *et al.*, 1996; Charlou *et al.*, 2002; Allen et Seyfried, 2003; Seyfried *et al.*, 2007; Charlou *et al.*, 2010; Klein *et al.*, 2015). Il en est de même dans les études utilisant une approche thermodynamique (Sleep *et al.*, 2004; Klein *et al.*, 2009; McCollom et Bach, 2009; Klein *et al.*, 2013).

Durant notre travail expérimental, la production d'H₂ associée à l'avancement du processus de serpentinisation a été observée soit de manière « classique », c'est-à-dire en déterminant par chromatographie en phase gazeuse (GC) la molalité d'H₂ contenue dans des échantillons de fluide réactionnel prélevés ponctuellement, soit par mesure *in situ* et continue de la fugacité d'H₂ (f_{H_2}) du fluide réactionnel (cf. Chapitre 2 et Annexe E). Cette dernière méthode renseigne sur l'évolution des propriétés redox du fluide (Shaw, 1963; Scaillet *et al.*, 1992; Schmidt *et al.*, 1995) mais ne donne pas directement accès aux quantités d'H₂ en présence. L'établissement du lien entre f_{H_2} et m_{H_2} s'avère cependant nécessaire afin de pouvoir confronter les expériences mesurant la f_{H_2} aux autres données issues de la littérature.

Dans ce travail, trois approches ont été utilisées afin de lier f_{H_2} et m_{H_2} . Une présentation des trois différentes approches est détaillée ci-dessous. Toutefois, comme on le verra, seule la troisième est correcte et atteint l'objectif visé de lier m_{H_2} et f_{H_2} . Nous avons néanmoins choisi de présenter les trois « méthodes » dans la mesure où elles reflètent l'évolution des conceptions au cours de la thèse. Notons également que la troisième approche s'appuie sur des expériences spécifiques dont le protocole et les résultats seront présentés.

5.1 Approche de type Lewis & Randall appliquée au système H_2O-H_2

Dans une première phase, nous avons appliqué l'approximation classique de Lewis & Randall (mélange idéal de gaz réels) aux mélanges gazeux H_2O-H_2 . Dans ce système, on peut écrire pour H_2 :

$$X_{\rm H_2} = \frac{f_{\rm H_2}}{\phi_{\rm H_2}^{\bullet} P_{\rm Tot}} \tag{5.1}$$

et pour H_2O :

$$X_{\rm H_2O} = \frac{f_{\rm H_2O}}{\phi_{\rm H_2O}^{\bullet} P_{\rm Tot}} \tag{5.2}$$

dans lesquelles X_{H_2} et $X_{\text{H}_2\text{O}}$ sont respectivement les fractions molaires des constituants H_2 et H_2O dans le mélange, f_{H_2} et $f_{\text{H}_2\text{O}}$ les fugacités de ces constituants, $\phi_{\text{H}_2}^{\bullet}$ et $\phi_{\text{H}_2\text{O}}^{\bullet}$ les coefficients de fugacité des constituants à l'état pur et P_{Tot} la pression totale. Les états de référence sont respectivement les gaz purs $\text{H}_{2,g}$ et H_2O_g à T et P = 1 bar. L'approximation de Lewis & Randall permet de calculer simplement les coefficients de fugacité dans le mélange en connaissant ceux des gaz purs (Shaw et Wones, 1964; Burnham *et al.*, 1969). Pour H₂, on écrira :

$$\phi_{\mathrm{H}_{2}}^{mix} = \phi_{\mathrm{H}_{2,g}}^{\bullet} \quad (\text{dans les mêmes conditions de } P \text{ et } T)$$
(5.3)

et pour H_2O :

$$\phi_{\rm H_2O}^{mix} = \phi_{\rm H_2O_a}^{\bullet} \quad (\text{dans les mêmes conditions de } P \text{ et } T) \tag{5.4}$$

À partir de là, il est possible de convertir $X_{\rm H_2}$ en $m_{\rm H_2}$ en utilisant :

$$m_{\rm H_2} = \frac{X_{\rm H_2}}{M_{\rm H_2O}(1 - X_{\rm H_2})} \tag{5.5}$$

où $m_{\rm H_2}$ est la molalité d'H₂ dissous dans le fluide (H_{2, aq}) et $M_{\rm H_2O}$ la masse molaire de l'eau (le solvant, 1,801 53 × 10⁻² kg·mol⁻¹). Cette approche fournit des $m_{\rm H_2}$ calculées de plus de deux ordres de grandeur supérieures aux $m_{\rm H_2}$ mesurées (Tableau 5.1). Toutefois, deux états de référence différents (H_{2,g} gazeux et H_{2,aq} dissous en solution) sont en fait intervertis dans cette approche, la confusion entre les deux intervenant au niveau de l'équation (5.5). Elle ne peut donc servir à calculer les molalités d'H_{2,aq} ($m_{\rm H_{2,aq}}$) à partir des $X_{\rm H_2}$. Notons toutefois que l'approximation de Lewis & Randall est utile pour permettre un premier calcul de la $f_{\rm O_2}$ à partir de la $f_{\rm H_2}$, comme réalisé dans ce travail (cf. Chapitre 2).

5.2 Approche de type équation d'état appliquée au système H_2O-H_2

La règle de Lewis & Randall est une approximation qui tient uniquement compte des interactions existantes entre les molécules d'H₂ telles qu'elles existent à l'état pur mais ne considère pas les interactions de l'H₂ avec les molécules d'H₂O. Autrement dit, elle est basée sur le postulat que le mélange de gaz réels est idéal. Afin d'essayer d'obtenir de meilleurs résultats, nous avons fait appel à un modèle plus complexe permettant de décrire les paramètres des mélanges gazeux H₂O-H₂ tout en tenant compte des interactions entre les molécules. L'équation d'état de Redlich & Kwong a été utilisée (Redlich et Kwong, 1949). Au vu de ce qui précède concernant l'impossibilité de relier $m_{\rm H_2}$ à partir de $f_{\rm H_2}$ avec un état de référence unique (H_{2,g}), l'utilisation de cette équation d'état permet seulement un calcul plus précis des fugacités des espèces gazeuses, ce qui est important pour la détermination de la $f_{\rm O_2}$ à partir de la $f_{\rm H_2}$ dans nos expériences de serpentinisation.

L'utilisation de l'équation de Redlich & Kwong, si elle peut s'avérer pertinente pour une large gamme de conditions et de compositions de fluides géologiques, tend à être actuellement supplantée par une nouvelle génération d'équations d'état. C'est le cas par exemple pour le système H₂O-H₂ (Sun *et al.*, 2015). Nous l'avons quand même utilisée dans ce travail, l'objectif n'étant pas tant d'obtenir une description la plus exacte possible des mélanges gazeux H₂O-H₂ que de pouvoir calculer des valeurs raisonnables de f_{O_2} connaissant P, T et f_{H_2} .

TABLEAU 5.1 – Comparaison des $m_{\rm H_2}$ calculées en utilisant la règle de Lewis et Randall (LR, équation (5.5)) appliquée aux valeurs de $f_{\rm H_2}$ mesurées durant les expériences de serpentinisation avec membrane, aux $m_{\rm H_2}$ mesurées durant les expériences de serpentinisation avec quantification de l'H₂ par GC (cf. Chapitre 2). Les expériences sont similaires en termes de durées, de granulométries et de températures.

T		$\phi^{\bullet}_{\mathrm{H}_{2}}$	$f_{ m H_2}$	2	m_{H_2}	m_{H_2}	
I I (°C) (N	Tot Sf. MPa)	(1964)	(MP ₂)	ences Run	Calcule avec LR $(mol k a^{-1})$	Experience (mol.kg ⁻¹)	es Run
		(1904)		11411	(IIIOI [·] Kg _{H2O})	(IIIOI·Kg _{fluid})	10
$250 \\ 200$	50	1,207	3,69	44	3,6	$0,059 \pm 0,005$	43

5.2.1 Équation d'état de Redlich & Kwong

Formulée en 1949 par Otto Redlich et Joseph Neng Shun Kwong, cette équation d'état permet de calculer les propriétés P-V-T des fluides dans des conditions d'intérêt géologique, notamment à haute pression, là où l'équation de Van der Waals, dont elle est issue, n'est plus représentative des observations (Redlich et Kwong, 1949). Elle est formulée comme suit :

$$P = \frac{\mathbf{R}T}{\overline{V} - b} - \frac{a}{T^{1/2}\overline{V}(\overline{V} + b)}$$
(5.6)

et, à l'instar de l'équation de Van der Waals, fait appel à deux paramètres a et b (les autres étant : P la pression, T la température, \overline{V} le volume molaire et R la constante des gaz parfaits). Il existe plusieurs méthodes pour définir ces paramètres a et b. Dans ce travail ce sont les définitions universelles de ces deux paramètres, basées uniquement sur les températures et les pressions des points critiques des constituants gazeux purs et assimilant *de facto* ces derniers à des molécules non polaires, qui sont utilisées :

$$a_i = 0.4278 \times \frac{\mathrm{R}^2 T_{c,i}^{5/2}}{P_{c,i}}$$
(5.7)

$$b_i = 0.0867 \times \frac{\mathrm{R}T_{c,\,i}}{P_{c,\,i}} \tag{5.8}$$

où a_i et b_i sont, respectivement les paramètres a et b du constituant i, et $T_{c,i}$ et $P_{c,i}$ la température et la pression au point critique du constituant i.

Pour calculer les paramètres a et b non plus d'un gaz pur mais d'un mélange, différentes règles sont disponibles. Pour le paramètre b, dont la fonction est une simple correction de \overline{V} , le paramètre b_m est défini comme suit :

$$b_m = \sum_i X_i b_i \tag{5.9}$$

où X_i correspond à la fraction molaire du constituant *i*. Le paramètre a_m , quant à lui, rend compte des interactions existantes entre les diverses molécules constituant le mélange. Selon que le mélange est constitué de molécules polaires ou non polaires ou que des réactions sont envisageables entre les molécules, il existe plusieurs façons de calculer a_m . Comme justifié précédemment, dans ce travail, le système H₂O-H₂ est assimilé à un mélange de molécules non polaires et dans ce cas a_m est défini comme suit :

$$a_m = \sum_i \sum_j X_i X_j a_{ij} \tag{5.10}$$

 avec :

$$a_{ij} = (a_i a_j)^{1/2} \tag{5.11}$$

où a_{ij} est la composante résultant de l'interaction de la molécule *i* sur la molécule *j* (*i* et *j* de natures différentes) et correspond à la moyenne géométrique des *a* de chacune des deux molécules. a_{ji} est la composante de l'interaction réciproque de *j* sur *i*. À P et T connus, la résolution de l'équation de Redlich & Kwong consiste à déterminer \overline{V} . Afin d'y parvenir plus aisément, le facteur de compressibilité Z est introduit :

$$Z = \frac{P\overline{V}}{RT} \tag{5.12}$$

ou sous une autre forme :

$$\overline{V} = \frac{ZRT}{P} \tag{5.13}$$

En remplaçant \overline{V} dans l'équation (5.6), l'équation prend la forme cubique suivante où Z est l'inconnue :

$$Z^{3} - Z^{2} + ZP(-PB^{2} - B + A^{2}) - P^{2}A^{2}B = 0$$
(5.14)

avec:

$$A = \left(\frac{a}{\mathbf{R}^2 T^{5/2}}\right)^{1/2} \tag{5.15}$$

$$B = \frac{b}{\mathbf{R}T} \tag{5.16}$$

La méthode de résolution utilisée pour résoudre ce genre d'équation est décrite en détail dans l'Annexe A.

Calcul de la fugacité

Une fois l'équation cubique résolue à P, T et pour une composition du mélange (X_i) donnée, il est possible de calculer le coefficient de fugacité de l'espèce i $(\phi_{i(T, P, X_i)})$ dans le mélange en utilisant la relation suivante (Flowers, 1979) :

$$\ln \phi_{i(T,P,X_i)} = \frac{B_i}{B_m} \left(Z_m - 1 \right) - \ln \left(Z_m - B_m P \right) - \left(2\frac{A_i}{A_m} - \frac{B_i}{B_m} \right) \frac{A_m^2}{B_m} \ln \left(1 + \frac{PB_m}{Z_m} \right)$$
(5.17)

où A_i et B_i sont, respectivement, les paramètres A et B (équations (5.15) et (5.16)) de l'espèce i, A_m et B_m les paramètres A et B du mélange et Z_m la solution de l'équation (5.14) avec $A = A_m$ et $B = B_m$.

Il est ensuite aisé, pour une composition X_i donnée, à P et T, de calculer la fugacité de l'espèce i dans le mélange :

$$f_{i(T,P,X_i)} = P_{\text{Tot}} X_i \phi_{i(T,P,X_i)}$$

$$(5.18)$$

5.2.2 Résultats

Gaz purs

En utilisant l'équation de Redlich & Kwong telle que présentée précédemment, les coefficients de fugacités ont d'abord été calculés pour les gaz purs (H_2 et H_2O) et sont présentés dans les Tableaux 5.2 et 5.3.

TABLEAU 5.2 – Comparaison des $\phi_{H_2}^{\bullet}$ calculés avec l'équation d'état de Redlich et Kwong (1949; RK) à ceux donnés par Shaw et Wones (1964).

T (°C)	P_{Tot} (MPa)	$\phi^{\bullet}_{\mathrm{H}_{2}}$ Calculé avec RK	$\substack{\phi^{\bullet}_{\mathrm{H}_{2}}}_{\mathrm{Shaw \ et \ Wones}}$
250	50	1,220	1,207
$\frac{300}{350}$	$\frac{50}{50}$	$1,201 \\ 1,185$	$1,187 \\ 1,170$

TABLEAU 5.3 – Comparaison des $\phi_{H_2O}^{\bullet}$ calculés avec l'équation d'état de Redlich et Kwong (1949; RK) à ceux donnés par Burnham *et al.* (1969).

T (°C)	P_{Tot} (MPa)	$ \phi^{\bullet}_{\rm H_2O} Calculé avec RK $	$\phi^{\bullet}_{\mathrm{H}_{2}\mathrm{O}}$ Burnham <i>et al.</i>
250	50	0,136	0,088
300	50	0,223	0,167
350	50	0,324	0,278

Dans la gamme de P et T explorée, l'équation de Redlich & Kwong reproduit bien les résultats pour H₂ pur puisque les $\phi_{H_2}^{\bullet}$ calculés sont approximativement 1% supérieurs à ceux proposés par Shaw et Wones (1964). En ce qui concerne H₂O pure, le modèle surestime $\phi_{H_2O}^{\bullet}$. À 250 °C le $\phi_{H_2O}^{\bullet}$ calculé dans ce travail est approximativement 55% supérieur à la valeur proposée par Burnham *et al.* (1969) ($\approx 34\%$ supérieur à 300 °C et $\approx 17\%$ supérieur à 350 °C). Ces écarts sont imputables au caractère polaire des molécules d'eau qui sont négligés dans la version de l'équation de Redlich & Kwong utilisée.

Mélanges H₂O-H₂

Les relations fugacités-compositions calculées sont représentées pour différentes températures et une pression totale de 50 MPa dans la Figure 5.1. Elles soulignent la grande sensibilité des fugacités avec la température dans les mélanges gazeux composés de 80 - 90 % d'H₂O. Les coefficients de fugacité de l'H₂ et de l'H₂O et les fugacités correspondantes calculées avec l'équation d'état pour des compositions H₂O-H₂ correspondant aux points caractériques (extremum, points de rebroussement, Figure 5.1) sont présentés dans le Tableau 5.4. Les fugacités calculées avec la méthode de Lewis & Randall dans les mêmes conditions y sont présentés pour comparaison.

FIGURE 5.1 – Évolution des $f_{\rm H_2}$ (traits pleins, axe de gauche) et $f_{\rm H_2O}$ (traits pointillés, axe de droite) calculées avec l'équation d'état de Redlich & Kwong en fonction de $X_{\rm H_2}$ dans le système H₂O-H₂ à $P_{\rm Tot} = 50 \,\mathrm{MPa}$ et à 250, 300 et 350 °C.

5.3 Équilibre H_2 gazeux - H_2 dissous – Approche thermodynamique

L'originalité du dispositif expérimental dans nos expériences de serpentinisation avec notamment l'utilisation de membranes semi-perméables à l'H₂ permet de tester l'équilibre chimique entre deux phases contenant de l'H₂. La première phase (membrane) est constituée d'H₂ gazeux pur ($H_{2,g}^{\bullet}$). La seconde phase correspond au mélange aqueux dont la chimie (notamment la concentration en H₂ dissous (H_{2,aq}) mais aussi la concentration en autres espèces dissoutes) est contrôlée par la réaction de serpentinisation qui se déroule dans la capsule réactionnelle. L'H₂ dissous dans le mélange peut être décrit comme une espèce à part entière appelée $H_{2,aq}$ et possédant des propriétés thermodynamiques qui lui sont propres. La membrane étant perméable à l'H₂, les deux phases en présence sont en équilibre. On peut donc écrire la réaction suivante :

$$\mathbf{H}_{2,\,aq} = \mathbf{H}_{2,\,g}^{\bullet} \tag{Rn\,5.1}$$

dont la condition d'équilibre est :

$$\mu_{\mathrm{H}_{2,\,aq}} = \mu_{\mathrm{H}_{2,\,q}^{\bullet}} \tag{5.19}$$

où $\mu_{\mathrm{H}_{2, aq}}$ et $\mu_{\mathrm{H}_{2, g}^{\bullet}}$ sont, respectivement, les potentiels chimiques de l'H₂ en solution (soluté dans la phase aqueuse, H_{2, aq}) et de l'H₂ gazeux (gaz pur dans la membrane, H[•]_{2, g}).

TABLEAU 5.4 – Coefficients de fugacité et fugacités de l'H₂ et de l'H₂O calculés avec l'équation d'état de Redlich et Kwong (1949; RK) pour des mélanges H₂O-H₂ correspondant aux points caractéristiques des courbes $f_{\rm H_2}$ et $f_{\rm H_2O}$ vs. $X_{\rm H_2}$ (extremum, points de rebroussement, Figure 5.1), à $P_{\rm Tot} = 50$ MPa et à 250, 300 et 350 °C. Les $f_{\rm H_2}$ et $f_{\rm H_2O}$ calculées avec l'approximation de Lewis & Randall (LR) dans les mêmes conditions sont également données à titre comparatif.

X.,	du (BK)	$f_{\mathrm{H}_{2}}\left(\mathrm{RK}\right)$ (MPa)	$f_{\mathrm{H}_{2}}(\mathrm{LR})$ (MPa)	du o (BK)	$f_{\rm H_{2O}}$ (RK) (MPa)	$f_{\rm H_2O}$ (LR) (MP ₂)		
$n_{\rm H_2}$	$\varphi_{\rm H_2}$ (IIII)	(1111 a)	(IVII a)	$\varphi_{\rm H_2O}$ (IUI)	(IVII a)	(MI a)		
$R\acute{e}sultats$ à $250{ m ^{\circ}C}$								
0,010	48,326	24,163	$0,\!604$	$0,\!136$	6,729	4,356		
0,125	$18,\!387$	114,920	7,544	$0,\!146$	$6,\!388$	$3,\!850$		
0,300	4,290	$64,\!357$	$18,\!105$	0,217	$7,\!590$	1,320		
0,400	2,445	48,901	$24,\!140$	0,292	8,767	1,760		
0,500	1,798	44,954	$30,\!175$	0,374	9,361	2,200		
$0,\!950$	$1,\!224$	$58,\!119$	$57,\!333$	0,906	2,264	0,220		
			Résultats à	300 °C				
0,010	$26,\!257$	$13,\!128$	$0,\!594$	0,223	11,023	8,267		
0,125	10,211	$63,\!817$	7,419	0,239	10,451	$7,\!306$		
0,300	2,853	42,790	$17,\!805$	0,334	$11,\!696$	2,505		
0,400	1,972	39,447	23,740	0,406	12,188	$3,\!340$		
0,500	$1,\!605$	40,130	$29,\!675$	$0,\!480$	$11,\!997$	$4,\!175$		
0,950	1,203	$57,\!163$	$56,\!383$	0,946	2,364	$0,\!418$		
			Résultats à	350 °C				
0,010	$14,\!949$	7,475	0,585	0,324	16,047	13,761		
0,125	5,835	36,471	7,313	0,348	15,204	12,163		
0,300	2,187	32,808	17,550	0,445	$15,\!590$	9,730		
0,400	1,717	34,337	$23,\!400$	0,506	15,195	8,340		
0,500	$1,\!484$	37,094	$29,\!250$	$0,\!570$	$14,\!252$	6,950		
0,950	$1,\!187$	56,363	$55,\!575$	0,975	$2,\!438$	$0,\!695$		

Individuellement, ces deux potentiels chimiques sont reliés à la pression, à la température et à la composition de la phase correspondante de la façon suivante :

$$\mu_{\mathrm{H}_{2,\,aq}} = \mu^{\circ}_{\mathrm{H}_{2,\,aq}(T,\,P)} + \mathrm{R}T\ln m_{\mathrm{H}_{2,\,aq}} + \mathrm{R}T\ln\gamma_{\mathrm{H}_{2,\,aq}}$$
(5.20)

$$\mu_{\mathrm{H}_{2,g}^{\bullet}} = \mu_{\mathrm{H}_{2,g}^{\bullet}(T)}^{*} + \mathrm{R}T \ln f_{\mathrm{H}_{2,g}^{\bullet}}$$
(5.21)

où $\mu_{\mathrm{H}_{2,\,aq}(T,\,P)}^{\circ}$ est le potentiel chimique standard de $\mathrm{H}_{2,\,aq}$ à P, T et référencé par rapport à une solution aqueuse contenant une concentration en H_2 de $1 \,\mathrm{mol} \cdot \mathrm{kg}_{\mathrm{H}_2\mathrm{O}}^{-1}, \mu_{\mathrm{H}_{2,\,g}(T)}^*$ est le potentiel chimique standard de $\mathrm{H}_{2,\,g}^{\bullet}$ à T et 1 bar, $m_{\mathrm{H}_{2,\,aq}}$ et $\gamma_{\mathrm{H}_{2,\,aq}}$ sont, respectivement, la molalité d' $\mathrm{H}_{2,\,aq}$ et le coefficient d'activité d' $\mathrm{H}_{2,\,aq}, f_{\mathrm{H}_{2,\,g}}$ la fugacité d' $\mathrm{H}_{2,\,g}^{\bullet}$. La combinaison des équations (5.19) à (5.21) donne :

$$\frac{\mu_{\mathrm{H}_{2,g}^{\bullet}(T)}^{*} - \mu_{\mathrm{H}_{2,aq}}^{\circ}(T,P)}{\mathrm{R}T} = \ln \frac{m_{\mathrm{H}_{2,aq}}\gamma_{\mathrm{H}_{2,aq}}}{f_{\mathrm{H}_{2,aq}^{\bullet}}}$$
(5.22)

En posant :

$$-\ln K_{(Rn\,5.1)} = \frac{\mu_{\mathrm{H}_{2,g}(T)}^{*} - \mu_{\mathrm{H}_{2,aq}(T,P)}^{\circ}}{\mathrm{R}T}$$
(5.23)

avec $K_{(Rn\,5.1)}$ la constante d'équilibre à T et P de la réaction $(Rn\,5.1)$, et en utilisant les équations (5.22) et (5.23), le lien entre $f_{\mathrm{H}^{\bullet}_{2,q}}$ et $m_{\mathrm{H}_{2,qq}}$ est donné par :

$$f_{\mathrm{H}_{2,q}^{\bullet}} = \gamma_{\mathrm{H}_{2,aq}} m_{\mathrm{H}_{2,aq}} K_{(Rn\,5.1)} \tag{5.24}$$

 $K_{(Rn\,5.1)}$ peut être calculé à T et P avec le logiciel SUPCRT92 et la base de donnée SPRONS92.DAT (Johnson *et al.*, 1992) dans laquelle les états standards sont les mêmes que définis précédemment. Ce modèle permet d'établir un lien direct entre la f_{H_2} mesurée dans la membrane $(f_{H_{2,g}^{\bullet}})$ et la m_{H_2} du système H₂O-H₂ $(m_{H_{2,aq}})$. Cependant il reste tributaire de $\gamma_{H_{2,aq}}$ qui reflète le comportement non idéal de l'H₂ en tant qu'espèce gazeuse neutre dissoute dans le fluide. La valeur de $\gamma_{H_{2,aq}}$ n'est pas connue a priori et elle dépend notamment de la composition du fluide. Il n'existe que très peu de données sur ce paramètre dans la littérature et nous avons choisi de le déterminer expérimentalement pour des fluides H₂O-H₂.

5.4 Mesures couplées de la f_{H_2} et de la m_{H_2} dans le système $H_2O-H_2 - Approche expérimentale$

Cette approche a pour but d'établir un lien expérimental entre $f_{\rm H_2}$ et $m_{\rm H_2}$. Elle consiste à acquérir une série de mesures $m_{\rm H_2}$ pour différentes $f_{\rm H_2}$ imposées dans le système H₂O-H₂. Connaissant $K_{(Rn\,5.1)}$ pour chaque température, les mesures vont ensuite permettre de déterminer $\gamma_{\rm H_{2, aq}}$ selon l'équation (5.24).

5.4.1 Dispositif expérimental

L'appareillage mis en place pour ces expériences est présenté Figure 5.2. Il consiste en un autoclave de type Dickson & Seyfried équipé à la fois d'une membrane perméable à l'H₂ et d'un dispositif d'échantillonnage du fluide permettant, respectivement, de mesurer la $f_{\rm H_2}$ et la $m_{\rm H_2}$. Contrairement aux expériences de mesures de $f_{\rm H_2}$ associées à la serpentinisation, dans cette série d'expériences, l'H₂ n'est pas un produit réactionnel. Il est introduit, ou extrait du milieu, au moyen de la membrane. Pour cela la ligne à H₂ est couplée à un dispositif de contrôle de la $f_{\rm H_2}$ équipé notamment d'un bouteille d'H₂ pur servant de source et d'une pompe à vide permettant, outre de faire initialement le vide, de forcer l'extraction de l'H₂ du milieu.

Afin de réaliser de multiples points de mesures, ce qui exclut l'utilisation classique d'une capsule dont le volume pouvant être échantillonné reste malgré tout limité, ces expériences sont réalisées dans la totalité du volume de l'autoclave, soit ≈ 1 L. L'absence de capsule permet la mise en place d'un second thermocouple en position inférieure (Figure 5.2) ce qui nous a permis d'évaluer l'importance des gradients de température entre le bas et le haut de l'autoclave. Les différences entre les deux thermocouples sont de 7,9 et de 10,6 °C à 250 et 300 °C, respectivement.

5.4.2 Profils des $f_{\rm H_2}$ mesurés dans la membrane

Pour introduire l'H₂ dans le système, une f_{H_2} est imposée dans la membrane durant un certain temps afin que l'H₂ diffuse de la membrane vers le mélange fluide contenu dans l'autoclave (désigné

FIGURE 5.2 – Schéma du dispositif expérimental développé pour effectuer des mesures simultanées de $f_{\rm H_2}$ et de $m_{\rm H_2}$ dans le système H₂O-H₂. Le mélange étudié occupe la totalité du volume de l'autoclave. *Les dispositifs de contrôle de la $f_{\rm H_2}$ et de la pression de confinement ($P_{\rm Tot}$) sont décrits dans l'Annexe C.

par « système » ci-dessous). La membrane est ensuite isolée du dispositif d'introduction d'H₂. Il s'ensuit une période de relaxation durant laquelle la $f_{\rm H_2}$ s'équilibre entre la membrane et le système. Sur les profils $f_{\rm H_2}$ vs. temps (Figure 5.3) où la $f_{\rm H_2}$ est lue dans la membrane, ces deux étapes successives se matérialisent par un plateau de $f_{\rm H_2}$ élevée (①) correspondant à la phase d'introduction de l'H₂, suivi d'une chute (②), puis d'un amortissement de la $f_{\rm H_2}$ (③) correspondant à la phase de relaxation de la membrane. Sur la Figure 5.3b, 4 cycles de remplissage/relaxation sont réalisés durant les 300 premières heures afin d'obtenir une $f_{\rm H_2}$ à l'équilibre suffisamment élevée. Il est à noter que, lors du premier cycle, la phase de relaxation est beaucoup plus lente que lors les cycles suivants. Ceci est dû au fait que, durant ce premier cycle, le volume total de la membrane $(membrane + ligne d'H_2)$ est supérieur car augmenté d'un volume tampon (autoclave de volume $\approx 10\,{\rm cm^3}$). Ce volume tampon n'est plus utilisé par la suite car les durées de relaxation seraient bien trop longues. À l'inverse, la membrane est également utilisée pour extraire de l'H₂ du système au moyen de la pompe à vide. Ces phases d'extractions d'H₂ sont observables sur le profil $f_{\rm H_2}$ vs. temps avant et après le pt2 (Figure 5.3b). À l'instar de la phase d'introduction d'H₂, la phase d'extraction est suivie d'une période de relaxation « symétrique » entre la membrane et le système $H_2O-H_2.$

Après relaxation, les profils $f_{\rm H_2}$ vs. temps mettent en évidence une diminution continue de la $f_{\rm H_2}$ lorsque la membrane est isolée (④, Figure 5.3b). Cette diminution est interprétée comme étant l'enregistrement d'une perte d'H₂ du système par diffusion dans les parois de l'autoclave. En effet, contrairement aux capsules en Ti ou Au/Ti utilisées pour les expériences de serpentinisation, l'acier inoxydable 316L constituant les parois de l'autoclave est bien plus perméable à l'H₂ (Kishimoto *et al.*, 1984, 1985; Chou, 1986; Gunter *et al.*, 1987; Allen et Seyfried, 2003; Marcaillou *et al.*, 2011).

Outre confinement imparfait de l'H₂, l'existence de cette diffusion continue d'H₂ dans les parois de l'autoclave pose le problème de savoir, après introduction d'H₂, à quel moment la diminution de la $f_{\rm H_2}$ n'est plus imputable à la phase de relaxation, mais uniquement à la diffusion de l'H₂. L'implication directe est que, si un prélèvement est effectué alors que la phase de relaxation propre à la réponse de la membrane n'est pas terminée, la détermination d'un couple ($f_{\rm H_2}$, $m_{\rm H_2}$) sera nécessairement faussée. Dans le cas d'une mesure effectuée pendant la période de relaxation post

FIGURE 5.3 – Évolution temporelle des $f_{\rm H_2}$ enregistrés dans la membrane durant les expériences. a) à $P_{\rm Tot} = 50 \,\rm MPa}$ et à 250 °C. b) à $P_{\rm Tot} = 50 \,\rm MPa}$ et à 300 °C. Les points numérotés de pt1 à pt5 indiquent les dates des prélèvements de fluide à partir desquels les $m_{\rm H_2}$ sont déterminées.

remplissage la $f_{\rm H_2}$ sera surestimée et inversement lors d'un éventuel prélèvement post pompage. La solution qui a été apportée à ce problème a consisté à allonger la durée de l'expérience de façon à être certain d'atteindre l'équilibre membrane-système¹.

Afin d'estimer les cinétiques de ce processus de diffusion dans les parois de l'autoclave, des régressions linéaires sont calculées à partir des données $f_{\rm H_2}$ vs. temps acquises en dehors des périodes de remplissage, d'extraction et de relaxation. Le détail du calcul de ces régressions est fourni en Annexe B. Les résultats montrent qu'à 250 comme à 300 °C, les cinétiques de diffusion de l'H₂ au travers de la membrane sont deux ordres de grandeurs supérieures (c'est-à-dire plus rapides) à celles de la diffusion de l'H₂ dans les parois de l'autoclave. Ce différentiel important permet d'affirmer qu'une fois l'équilibre atteint (correspondant aux domaines de diffusion de l'H₂ dans les parois de l'autoclave sur les diagrammes $f_{\rm H_2}$ vs. temps), la $f_{\rm H_2}$ mesurée par la membrane est bien celle du système H₂O-H₂. À 300 °C, le taux de diffusion de l'H₂ à travers la membrane est trois fois supérieur/plus rapide à ce même taux à 250 °C. Cette diminution témoigne d'une augmentation de la cinétique de réponse de la membrane quand la température croît et, à l'inverse, laisse entrevoir une limite d'utilisation des membranes métalliques à basse température. Dans ces conditions, l'utilisation de membranes en TEFLON[©] est envisageable (Clemens et McKibben, 1987).

5.4.3 Résultats des mesures couplées de $f_{\rm H_2}$ et de $m_{\rm H_2}$

Les résultats des mesures couplées de $f_{\rm H_2}$ et $m_{\rm H_2}$ sont présentés dans le Tableau 5.5 et la Figure 5.4. Les paramètres des régressions linéaires effectuées sur les couples $(f_{\rm H_2}, m_{\rm H_2})$ sont présentés dans le Tableau 5.6. Pour chacune des régressions, le passage par l'origine est imposé. Les coefficients de détermination proches de 1 démontrent le caractère linéaire des relations liant $f_{\rm H_2}$ à $m_{\rm H_2}$ pour $P_{\rm Tot} = 50 \,\mathrm{MPa}$, à 250 et 300 °C et dans les domaines de $m_{\rm H_2}$ étudiés.

Mesure	Durée (h)	P_{Tot} (MPa)	$\begin{array}{c} T_{Sup.} \\ (^{\circ}\mathrm{C}) \end{array}$	$\begin{array}{c} T_{Inf.} \\ (^{\circ}\mathrm{C}) \end{array}$	$f_{\rm H_2}$ (MPa)	$\begin{array}{c} m_{\rm H_2} \\ (\rm mol\cdot kg_{\rm fluid}^{-1}) \end{array}$
		E_{z}	xpérienc	e à 250°	С	
pt4	880,1	49,9	258,7	250,8	$0,\!335$	$0,0057 \pm 0,0003$
pt5	2059,8	$49,\!9$	257,7	$249,\!8$	$1,\!115$	$0,017\ \pm 0,001$
		E_{z}	xpérienc	e à 300°	С	
pt1	315,2	49,8	310,5	299,9	1,211	$0,035 \pm 0,003$
pt2	413,5	$49,\!8$	310,5	299,9	0,877	$0,025 \pm 0,002$
pt3	767,8	$49,\!8$	310,5	$299,\!9$	$0,\!443$	$0,016\ \pm 0,001$

TABLEAU 5.5 – Résultats des expériences de mesures simultanées de la $f_{\rm H_2}$ et de la $m_{\rm H_2}$ dans le système H₂O-H₂ à $P_{\rm Tot} = 50$ MPa et à 250 et 300 °C.

^{1.} Toutefois, avec le recul, il existe une façon bien plus simple d'estimer la chute de la $f_{\rm H_2}$ imputable uniquement à la diffusion dans les parois de l'autoclave. En effet, une fois terminée l'imposition d'une $f_{\rm H_2}$ dans le but de recharger le système, il suffit de vider la membrane et ensuite d'observer sa réponse : tant que la $f_{\rm H_2}$ remonte, la membrane et le système s'équilibrent alors que, quand la $f_{\rm H_2}$ commence à chuter, c'est la diffusion d'H₂ dans les parois de l'autoclave qui est enregistrée par la membrane. Afin que la $f_{\rm H_2}$ du système H₂O-H₂ ne soit pas affectée, cette étape de vidange de la membrane ne doit pas être prolongée dans le temps (contrairement aux phases d'extraction de l'H₂ durant lesquelles le pompage de celui-ci dure plusieurs heures). Le rapport de volume entre l'autoclave et la membrane étant largement en faveur de l'autoclave (V_{memb} . $/V_{auto} \approx 8 \times 10^{-4}$), après une vidange de la membrane, c'est le $f_{\rm H_2}$ système qui impose sa $f_{\rm H_2}$ à la membrane.

FIGURE 5.4 – Mesures expérimentales des couples f_{H_2} et m_{H_2} à $P_{\text{Tot}} = 50 \text{ MPa}$ et à 250 et 300 °C. Les paramètres des régressions linéaires sont donnée dans le Tableau 5.6.

Il est important de noter que les $m_{\rm H_2}$ maximales mesurées sont inférieures à celles rencontrées durant les expériences de serpentinisation. En effet, à 250 °C la $m_{\rm H_2}$ maximale enregistrée est de $17 \pm 1 \,\mathrm{mmol \cdot kg_{fluid}^{-1}}$ contre $59 \pm 5 \,\mathrm{mmol \cdot kg_{fluid}^{-1}}$ dans les expériences de serpentinisation (*Run* 43, cf. Chapitre 2). À 300 °C la $m_{\rm H_2}$ maximale enregistrée est de $36 \pm 3 \,\mathrm{mmol \cdot kg_{fluid}^{-1}}$ contre $150 \pm 15 \,\mathrm{mmol \cdot kg_{fluid}^{-1}}$ dans les expériences de serpentinisation (*Run* 45, cf. Chapitre 2). Ces valeurs de $m_{\rm H_2}$ relativement faibles résultent de la difficulté d'introduire au moyen du dispositif utilisé des quantités élevées d'H₂ dans le système.

Les résultats expérimentaux montrent que pour une $m_{\rm H_2}$ donnée, la $f_{\rm H_2}$ correspondante à 250 °C est de l'ordre du double de la $f_{\rm H_2}$ correspondante à 300 °C. Cette observation témoigne une fois de plus de la forte non-idéalité de l'H₂ dans les fluides faiblement hydrogénés, et de la forte augmentation de celle-ci lorsque la température du mélange s'approche du domaine à deux phases (Seward et Franck, 1981).

Une autre preuve directe de l'augmentation de cette non-idéalité lors de la diminution de la température est apportée par l'expérience. En effet, chronologiquement, l'expérience à 300 °C a précédé celle à 250 °C, le passage d'une expérience à l'autre se faisant par un simple réajustement de la température. Or durant cette transition de température, une augmentation de la $f_{\rm H_2}$ est nettement observable puisque celle-ci passe de 0,359 à 0,492 MPa (Figure 5.5). Il est à noter que, contrairement aux résultats obtenus à 250 et 300 °C, la $f_{\rm H_2}$ ne double pas pendant la transition de température (Figure 5.4). Ceci est liée à une diminution de la $m_{\rm H_2}$ concomitante au changement de température et qui résulte de facteurs combinés. Le premier est la diffusion de l'H₂ dans les parois de l'autoclave qui continue d'opérer durant le temps nécessaire à équilibrer la température. Le second est la dilution de l'H₂ du système par addition d'H₂O dans l'autoclave de façon à maintenir la pression totale constante ($P_{\rm Tot} = 50$ MPa).

FIGURE 5.5 – Évolution de la $f_{\rm H_2}$ lors de l'abaissement de la température de 300 à 250 °C. La pression totale est maintenue constante par ajout d'H₂O ($P_{\rm Tot} = 50 \,\mathrm{MPa}$).

5.4.4 Détermination des $\gamma_{\text{H}_{2,aq}}$ à partir des couples $(f_{\text{H}_2}, m_{\text{H}_2})$ expérimentaux et des $K_{(Rn 5.1)}$

Connaissant $K_{(Rn\,5.1)}$ à $P_{\text{Tot}} = 50 \text{ MPa}$ et pour les températures de 250 et 300 °C au moyen de SUPCRT92, il est aisé de déterminer $\gamma_{\text{H}_{2,aq}}$ pour chacun des couples $(f_{\text{H}_2}, m_{\text{H}_2})$ en utilisant l'équation (5.24) (Figure 5.6 et Tableau 5.7).

En faisant l'hypothèse la linéarité entre $f_{\rm H_2}$ et $m_{\rm H_2}$ (Tableau 5.6) il est également possible de déterminer un $\gamma_{\rm H_2, aq}$ indépendante de $m_{\rm H_2}$ pour chacune des deux températures. La validité en étant limité au domaine de $m_{\rm H_2}$ exploré. Pour $P_{\rm Tot} = 50$ MPa, les $\gamma_{\rm H_2, aq}$ ainsi obtenus sont de 1,11 ± 0,08 à 250 °C et de 0,99 ± 0,08 à 300 °C. Du fait de la position de $m_{\rm H_2}$ au dénominateur lors du calcul de $\gamma_{\rm H_{2, aq}}$ avec l'équation (5.24), la propagation de l'erreur de mesure de $m_{\rm H_2}$ conduit

TABLEAU 5.6 – Paramètres des régressions linéaires effectuées à partir des mesures expérimentales couplées de $f_{\rm H_2}$ et $m_{\rm H_2}$ à $P_{\rm Tot} =$ 50 MPa et à 250 et 300 °C. Le passage par l'origine est imposé. Les régressions min. et max. sont effectuées respectivement sur les erreurs maximales et minimales des $m_{\rm H_2}$.

	a	r^2
	Coefficient directeur	Coefficient
Régression	$(\mathrm{MPa}\cdot\mathrm{kg}_{\mathrm{fluid}}\cdot\mathrm{mol}^{-1})$	de détermination
	Ernérience à 250°C	
Régression	64.675	0.995
Régression min.	60,189	0,996
Régression max.	$69,\!884$	0,995
	<i>Expérience</i> à 300 °C	
Régression	33,764	0,971
Régression min.	$31,\!376$	0,971
Régression max.	$36{,}544$	0,970

rigoureusement, pour $\gamma_{\mathrm{H}_{2, aq}}$, à une erreur minimale moindre que l'erreur maximale. Cependant cette différence est faible et les erreurs présentées ici correspondent aux moyennes des deux types d'erreurs précitées.

FIGURE 5.6 – $\gamma_{\text{H}_{2, aq}}$ vs. m_{H_2} dans le système H₂O-H₂. a) à $P_{\text{Tot}} = 50$ MPa et à 250 °C. b) à $P_{\text{Tot}} = 50$ MPa et à 300 °C. Les valeurs discrètes sont calculées à partir de chacun des couples $(f_{\text{H}_2}, m_{\text{H}_2})$. Les valeurs issues des régressions affines de f_{H_2} vs. m_{H_2} (Tableau 5.6) et indépendantes de m_{H_2} sont représentées par les droites pleines et leur domaine d'erreur borné par les droites en pointillés. Les lignes en tiretés représentent les valeurs de $\gamma_{\text{H}_{2, aq}}$ obtenues, pour les mêmes conditions, avec la méthode d'approximation du « CO₂ » (Paragraphe 5.5).

TABLEAU 5.7 – log $K_{(Rn\,5.1)}$ et $\gamma_{\text{H}_{2,aq}}$ déterminés respectivement avec SUPCRT92 et l'équation (5.24) pour chacun des couples $(f_{\text{H}_{2}}, m_{\text{H}_{2}})$ à $P_{\text{Tot}} = 50 \text{ MPa}$ et à 250 et 300 °C.

Mesure	$f_{\rm H_2}$ (MPa)	$\begin{array}{c} m_{\rm H_2} \\ ({\rm mol} \cdot {\rm kg}_{\rm fluid}^{-1}) \end{array}$	$\log K_{(Rn5.1)}$	$\gamma_{{\rm H}_{2,aq}}$
		Expérience à 2	50 °C	
pt4	0,335	$0,0057 \pm 0,0003$	2,764	$1,01 \pm 0,07^{1}$
pt5	$1,\!115$	$0,017\ \pm 0,001$	2,764	$1{,}13\pm0{,}09$
		Expérience à 3	00 °C	
pt1	1,211	$0,035 \pm 0,003$	2,535	$1{,}00\pm0{,}08$
pt2	0,877	$0,025 \pm 0,002$	2,535	$1{,}01\pm0{,}08$
pt3	$0,\!443$	$0{,}016\ \pm 0{,}001$	2,535	$0{,}82\pm0{,}07$

 1 Pour chacun $\gamma_{{\rm H}_{2,\,aq}},$ l'erreur correspond à la moyenne de l'erreur minimale et maximale (voir texte).

5.5 Effets des ions en solutions sur la correspondance entre $f_{ m H_2}$ et $m_{ m H_2}$

Dans les systèmes hydrothermaux, les fluides sont de compositions bien plus complexes que le simple système H₂O-H₂ étudié dans ce chapitre. La présence d'ions en solution dans ces fluides, au premier rang desquels le Na⁺ et le Cl⁻ contenus dans l'eau de mer, influence fortement la structuration du fluide en modifiant les bilans des interactions électrostatiques entre molécules. Dans la majorité des cas, les espèces gazeuses non polaires (comme l'H₂) sont moins solubles dans les solutions électrolytiques, ce qui se traduit par une déviation positive de $\gamma_{H_{2,ag}}$ par rapport à 1. Ce phénomène est connu sous le nom de « salting out effect » dans la littérature anglo-saxone. C'est le cas pour l' H_2 comme le démontre les expériences de Ding et Seyfried (1990). Ces auteurs sont en effet parmi les seuls à avoir déterminé systématiquement $\gamma_{\mathrm{H}_{2,\,aq}}.$ Par exemple, ils obtiennent $\gamma_{\rm H_{2,\,aq}}$ = 1.25 à 300 °C et à $P_{\rm Tot}$ = 40 MPa. Ces expériences démontrent également que $\gamma_{\rm H_{2,\,aq}}$ augmente quand la température augmente ($\gamma_{\text{H}_{2, aq}} = 1.58$ à 400 °C et à $P_{\text{Tot}} = 40 \text{ MPa}$) ou quand la pression diminue (à 400 °C, $\gamma_{\text{H}_{2,aq}}$ de 1,25, 1,58 et 1,94 pour des P_{Tot} de 50, 40 et 30 MPa, respectivement). Les effets des ions en solution sur la solubilité de l'H₂ doivent donc être pris en compte car, comme démontré par Ding et Seyfried (1990), dans les conditions de serpentinisation et pour une $m_{\rm H_2}$ donnée, la $f_{\rm H_2}$ peut varier du simple au double en suivant la variation de $\gamma_{\rm H_2}$ a. Dans la littérature de modélisation des processus hydrothermaux, il existe deux écoles pour contraindre $\gamma_{\text{H}_{2,aa}}$. La première (Allen et Seyfried, 2003; Foustoukos *et al.*, 2015) s'appuie sur les résultats publié par Ding et Seyfried (1990). La seconde (Sleep et al., 2004; Klein et al., 2009; McCollom et Bach, 2009; Klein et al., 2013) utilise l'approximation du « CO₂ » implémenté dans le logiciel EQ3/6 (Wolery, 1992), comme suggéré initialement par Garrels et Thompson (1962) et réaffirmé par Helgeson (1969). Cette approximation est basée sur le postulat qu'à T donnée et pour une force ionique (I) donnée toutes les molécules non polaires dissoutes dans la solution électrolytique vont se comporter de la même manière. Cette approximation revient à attribuer à n'importe quelle espèce non polaire dissoute dans un électrolyte la valeur qu'aurait $\gamma_{CO_{2,aq}}$ dans ce même électrolyte. Dans EQ3/6, $\gamma_{CO_{2,aq}}$ est calculé en se basant sur les travaux de Drummond (1981) qui portent sur le système H_2O-CO_2 -NaCl (équation (5.25)).

$$\ln \gamma_i = \left(C + FT + \frac{G}{T} \right) I - (E + HT) \left(\frac{I}{I+1} \right)$$
(5.25)

avec C = -1.0312, F = 0.0012806, G = 255.9, E = 0.4445, H = -0.001606, T la température et I la force ionique.

Il est intéressant de noter que la pression totale n'intervient pas explicitement dans cette définition de $\gamma_{\text{H}_{2, aq}}$ alors que Ding et Seyfried (1990) ont clairement montré un effet important de celle-ci pour $\gamma_{\text{H}_{2, aq}}$. Néanmoins, la pression intervient dans le calcul au travers de la température puisque les expériences de Drummond (1981) ont été réalisées en conditions de saturation en gaz.

Utilisée comme telle, l'approximation du « CO_2 » appliquée au système H₂O-H₂ conduit à $\gamma_{\text{H}_{2,\,aq}} = \gamma_{\text{CO}_{2,\,aq}} = 1$ puisque I = 0 (solution non-ionique). Il est intéressant de remarquer que ce résultat est conforme à nos mesures dans le système H₂O-H₂ (Figure 5.6). Pour $m_{\text{NaCl}} = 1.2$ et une température de 400 °C, cette approximation « CO_2 » donne $\gamma_{\text{CO}_{2,\,aq}} = 1.82$ alors que, pour les mêmes conditions de T et de m_{NaCl} et à $P_{\text{Tot}} = 40$ MPa, Ding et Seyfried (1990) calculent $\gamma_{\text{H}_{2,\,aq}} = 2.58$, soit une augmentation de $\approx 42\%$ de plus que le modèle basé sur l'approximation « CO_2 ». Pour une eau de mer à 3,2 pds.% de NaCl, les $\gamma_{\text{H}_{2,\,aq}}$ calculés sont respectivement de 1,29 et 1,24 à 300 et 250 °C. Pour une même f_{H_2} , dans le système H₂O-H₂, ces valeurs impliquent des concentrations en H₂ dissous ($m_{\text{H}_{2,\,aq}}$) inférieures à celles mesurées dans cette étude.
5.6 Conclusions

Établir le lien entre f_{H_2} et m_{H_2} dans les fluides associés au processus de serpentinisation revient à déterminer la non-idéalité de l'H₂ dans ces fluides. Celle-ci est le résultat des diverses interactions électrostatiques entre les multiples constituant du fluide que sont l'H₂O, l'H₂ et les espèces en solution, au premier ordre desquelles NaCl. Comme il n'existe pas, à l'heure actuelle, d'équation d'état suffisamment robuste pour décrire le système H₂O-H₂-NaCl, on peut proposer que la nonidéalité de comportement est imputable d'une part aux interactions entre H₂O et H₂ dans le système H₂O-H₂ et d'autre part à l'ajout de sel dans ce système.

Afin de modéliser le comportement de l'H₂ dans le système H₂O-H₂, trois approches thermodynamiques basées sur des données existantes dans la littérature ont été testées et confrontées à des mesures expérimentales couplées de $f_{\rm H_2}$ et de $m_{\rm H_2}$. Les deux premières, basées respectivement sur l'approximation de Lewis & Randall et sur l'équation d'état de Redlich & Kwong, permettent de mesurer l'écart à l'idéalité des mélanges gazeux H₂O-H₂. Ces résultats sont utiles et importants dans des contextes de serpentinisation pour lesquels les quantités d'H₂ présentes sont non négligeables et dans lesquels des outils de calcul des fugacités des espèces gazeuses incluant l'H₂ doivent être disponibles. Notons toutefois que l'approche de type équation d'état mise en œuvre dans ce travail peut être probablement largement améliorée en prenant en compte la non-polarité de la molécule d'eau. Enfin, ce type de modélisation pourrait aussi bénéficier des avancées actuelles sur la structure des équations d'état des mélanges gazeux. La troisième approche, basée sur une formalisation de l'équilibre entre les espèces hydrogénées dissoute et gazeuse, retranscrit bien les observations expérimentales faites dans le système H₂O-H₂. Il est à noter que cette méthode ne s'appuie pas sur une équation d'état mais sur des états standards déterminés expérimentalement à 25 °C et 1 bar, pour chacune des espèces utilisés, puis extrapolés aux P et T voulues.

L'introduction de NaCl n'a pas été testé dans ce travail, cependant les résultats de Ding et Seyfried (1990) montrent clairement un accroissement de la non-idéalité de l'H₂ en solution en présence de NaCl. Largement appliquée à l'H₂ dans les modèles actuels de serpentinisation, l'approximation du « CO_2 » initiée par Garrels et Thompson (1962) va également dans le même sens. Cependant, cette méthode ne tient pas compte explicitement de la pression totale qui apparaît comme un paramètre de premier ordre. De plus, la seule valeur expérimentale exploitable (c'est-à-dire pour des P, T et m_{NaCl} connues) fournie par Ding et Seyfried (1990) est $\approx 42\%$ supérieure à la valeur calculée, dans les mêmes conditions, avec cette méthode.

Afin de faire un pas déterminant vers un modèle décrivant plus fidèlement le comportement de l'H₂ dans les fluides associés au processus de serpentinisation, il semble nécessaire, dans un premier temps, de développer un modèle efficace pour le système H₂O-H₂-NaCl. Pour cela, deux approches sont envisageables. Premièrement, il faudrait développer un équation d'état suffisamment performante pour décrire l'ensemble des interactions moléculaires dans ce système à trois (quatre) constituants. Deuxièmement, un modèle permettant de calculer $\gamma_{\text{H}_{2,aq}}$ et de traduire l'effet du « salting out » à T et P_{Tot} doit être calibré. Dans les deux cas il est nécessaire d'obtenir de nouvelles données expérimentales dans ce système.

Le dispositif développé durant ce travail et décrit dans ce chapitre pourrait être parfaitement utilisé pour déterminer à P et T donnés l'effet du NaCl sur le lien entre $f_{\rm H_2}$ et $m_{\rm H_2}$ et ainsi mesurer expérimentalement $\gamma_{{\rm H}_{2,aq}}$. Afin d'être pleinement efficace, le dispositif devrait néanmoins être optimisé notamment pour diminuer les temps de relaxation de la membrane et permettre ainsi d'augmenter la cadence des mesures. Pour cela, il serait nécessaire d'augmenter la surface de la membrane afin d'accroître les volumes d'H₂ transférés par unité de temps tout en maintenant un rapport volume autoclave sur volume membrane élevé afin que la $f_{\rm H_2}$ du système soit effectivement imposée à la membrane.

Chapitre 6

000

Conclusions générales et perspectives

La majorité des résultats obtenus durant cette thèse ont été présentés sous forme d'articles et de ce fait les différents Chapitres de ce mémoire de thèse forment des parties relativement autonomes. Aussi plutôt que de proposer une nouvelle synthèse des divers résultats obtenus, je souhaiterais profiter de cette conclusion générale pour souligner l'importance du rédox lors de la serpentinisation et présenter certaines des perspectives qui résultent de ce travail.

6.1 Le rédox associé à la serpentinisation

Afin de mieux comprendre la serpentinisation des roches mantelliques au niveau des dorsales océaniques lentes, diverses séries d'expériences ont été réalisées au cours de ce travail de thèse. Un accent particulier a été mis sur la quantification des paramètres rédox afin de déterminer leur influence sur l'ensemble du processus d'interaction fluide-roche. Pour cela, deux méthodes permettant de déterminer la variable intensive $f_{\rm H_2}$ (et la $f_{\rm O_2}$ correspondante) ont été développées. La première consiste en une mesure *in situ* de ce paramètre tandis que la seconde permet de calculer la $f_{\rm H_2}$ à partir de la concentration en H₂ dissous $(m_{\rm H_{2,ag}})$.

Le fait de pouvoir contraindre la $f_{\rm H_2}$ dans les expériences a permis de mettre en avant le rôle capital joué par ce paramètre lors de la serpentinisation. L'illustration la plus frappante est présentée dans le Chapitre 4 où, dans deux expériences dont le seul paramètre distinctif est la $f_{\rm H_2}$, faible dans un cas et élevée dans l'autre, des assemblages, produits de la serpentinisation, avec et sans hématite ont été observés.

De plus, et contrairement à la concentration en H₂ dissous ou son corollaire le rapport Fe³⁺/Fe²⁺, la connaissance des paramètres intensifs $f_{\rm H_2}$ (ou $f_{\rm O_2}$) permet de quantifier, relativement à un tampon rédox connu (NNO dans ce travail), l'état plus ou moins réduit d'un système à une température donnée. Par exemple, dans les expériences de serpentinisation conduites dans les autoclaves à prélèvement (Chapitres 2 et 3), les conditions de $f_{\rm O_2}$ sont plus réduites dans les expériences conduites à 250 °C (NNO-5.6) que dans celles conduites à 300 °C (NNO-5.2) alors que, dans le même temps, la concentration en H₂ ($m_{\rm H_{2, aq}}$) dans le fluide est plus de deux fois supérieure dans les expériences menées à 300 °C.

Ainsi, la prise en compte de l'état rédox revêt une importance primordiale, et c'est seulement à partir de sa quantification qu'il devient possible de calculer, et donc d'anticiper, l'existence possible ou non de telle ou telle phase porteuse de Fe ou la concentration en H_2 du fluide au cours de la serpentinisation.

6.2 Perspectives

Parmi les expérimentations s'inscrivant directement dans la continuité de ce travail et présentant un intérêt direct pour mieux quantifier le processus de serpentinisation, on peut souligner :

- La détermination de $\gamma_{\text{H}_{2,\,aq}}$ pour des mélanges H₂O-H₂-NaCl en utilisant la méthode présentée dans le Chapitre 5, et ce pour différentes pressions totales (30 – 50 MPa), températures (200 – 450 °C), concentrations en NaCl (eau de mer $\approx 0,55 \text{ mol·kg}_{\text{H}_2\text{O}}^{-1}$, puis de 1 à 1,5 mol·kg_{\text{H}_2\text{O}}^{-1}) et concentrations en H₂ dans le fluide. Ces données permettraient de mieux contraindre le lien entre f_{H_2} et $m_{\text{H}_{2,\,aq}}$ pour des compositions de fluides chlorurés représentatifs des systèmes hydrothermaux océaniques.
- La réalisation d'une série d'expériences de type « contrôle externe de le $f_{\rm H_2}$ » (cf. Chapitre 4) mais avec des valeurs de $f_{\rm H_2}$ dans l'autoclave précisément connues et supérieures à celle imposée par l'Ar. Ceci permettrait d'accéder à des paliers de $f_{\rm H_2}$ intermédiaires entre les deux conditions limites explorées au Chapitre 4 et ainsi de déterminer plus finement le lien entre $f_{\rm H_2}$ et phases solides porteuses de Fe produites au cours de la serpentinisation.

Enfin, certaines méthodes et résultats obtenus dans ce travail peuvent être directement transférés aux contextes naturels. Parmi celles-ci :

- La réalisation d'une étude quantitative de la distribution du Ni entre la magnétite et l'awaruite laquelle, couplée à une détermination de la température, pourrait permettre de contraindre la f_{O_2} des serpentinites porteuses de ces deux phases.
- L'utilisation du système de quantification de la $f_{\rm H_2}$ in situ (cf. Chapitre 2) au niveau d'une source hydrothermale. Celui-ci pourrait permettre un suivi en continu des variations de concentrations en H₂ dissous dans les fluides émis et ainsi apporter des informations de nature temporelle sur la composition des fluides hydrothermaux, leur éventuelle cyclicité ou la mise en évidence d'un régime pulsatif.

Annexe \mathbf{A}

000

Résolution des équations cubiques pour

l'équation d'état de Redlich & Kwong

La résolution de l'équation (5.14) consiste à résoudre l'équation cubique de la forme suivante :

$$Z^3 + aZ^2 + bZ + c = 0 \tag{A.1}$$

où :

$$a = -1 \tag{A.2}$$

$$b = P\left(-PB^2 - B + A^2\right) \tag{A.3}$$

$$c = -P^2 A^2 B \tag{A.4}$$

Résolution des équations cubiques

Calcul des paramètres Q et ${\cal R}$:

$$Q \equiv \frac{a^3 - 3b}{9} \tag{A.5}$$

$$R \equiv \frac{2a^3 - 9ab + 27c}{54} \tag{A.6}$$

Détermination du discriminant M :

$$M = R^2 - Q^3 \tag{A.7}$$

Deux cas :

1. $M < 0 \rightarrow$ Le polynôme a 3 racines réelles :

$$Z_1 = -2Q^{1/2}\cos\left(\frac{\Theta}{3}\right) - \frac{a}{3} \tag{A.8}$$

$$Z_2 = -2Q^{1/2}\cos\left(\frac{\Theta + 2\pi}{3}\right) - \frac{a}{3} \tag{A.9}$$

$$Z_3 = -2Q^{1/2}\cos\left(\frac{\Theta - 2\pi}{3}\right) - \frac{a}{3}$$
 (A.10)

 avec :

$$\Theta = \arccos\left(\frac{R}{Q^{3/2}}\right) \tag{A.11}$$

Dans ce cas le système comporte deux phases, et parmi les trois solutions réelles Z_1 , Z_2 et Z_3 , seules la minimale et la maximale sont conservées et attribuées respectivement aux facteurs de compressibilités de la phase liquide et de la phase gazeuse.

2. $M>0 \rightarrow {\rm Le}$ polynôme a une seule racine réelle :

$$Z_1 = S + T - \frac{a}{3} \tag{A.12}$$

$$S = \sqrt[3]{-R + \sqrt{M}} \tag{A.13}$$

 $\mathrm{et}:$

$$T = \sqrt[3]{-R - \sqrt{M}} \tag{A.14}$$

Dans ce cas le système est monophasé et son facteur de compressibilité Z correspondra à l'unique solution réelle.

Annexe \mathbf{B}

-000

Cinétiques de diffusion de l'H₂ dans les parois de l'autoclave et au travers de la membrane

Les données expérimentales sont celles représentées graphiquement dans la Figure B.1. Pour les régressions (1) à (3), les bornes temporelles inférieures des domaines de diffusion sont aisément identifiables car elles correspondent à une inversion de tendance de la $f_{\rm H_2}$. Ce n'est pas cas de la régression (4) qui est calculée à partir de données acquises suite à une phase d'introduction d'H₂. Le problème posé consiste à savoir à partir de quel moment la chute de la $f_{\rm H_2}$ devient uniquement imputable à la diffusion. Résoudre ce problème revient à déterminer la borne temporelle inférieure du domaine de diffusion. Par contraste avec le processus de relaxation au travers de la membrane, le processus de diffusion est relativement linéaire. Connaissant la borne temporelle supérieure du domaine de diffusion qui correspond à la fin de l'expérience, déterminer la borne inférieure du domaine de diffusion revient à chercher le point de mesure à partir duquel le domaine diffusion est formé d'un ensemble de données linéaires comparables aux domaines de diffusion (1) à (3). Afin d'effectuer la comparaison, le coefficient de détermination r² de la régression (4) est calculé et est comparé à $\overline{r^2}$ déterminé comme suit :

$$\overline{\mathbf{r}^2} = \frac{\sum\limits_{i=1}^{3} \mathbf{r}_i^2 d_i}{\sum\limits_{i=1}^{3} d_i} \tag{B.1}$$

avec r_i^2 les coefficients de détermination des régressions (1) à (3) et d_i l'étendue temporelle des domaines de diffusion (1) à (3). Numériquement, l'opération consiste à déterminer r^2 pour la régression (4) calculée sur un domaine initialement trop vaste (c'est-à-dire recouvrant en partie le domaine d'équilibrage) puis de diminuer le domaine en déplaçant la borne inférieure vers des valeurs de temps plus élevées jusqu'à obtenir $r^2 = \overline{r^2}$.

Une fois le calcul des régressions effectué, il apparaît que les prélèvements de fluide pt2 à pt5 sont effectués durant des périodes pendant les quelles la diminution de la $f_{\rm H_2}$ est effectivement imputable à la diffusion de l'H₂ dans les parois de l'autoclave. Ce la semble moins certain pour pt1.

En définissant un taux de diffusion comme l'opposé du taux de perte de l'H₂, lui-même assimilable au coefficient directeur des régressions linéaires exprimé en MPa·h⁻¹, deux tendances majeures se dégagent. Premièrement, à T donnée le taux de diffusion augmente avec $f_{\rm H_2}$. Secondement, à $f_{\rm H_2}$ comparable, le taux de diffusion diminue avec T (Figure B.2).

Ces profils f_{H_2} vs. temps permettent également d'estimer les cinétiques de diffusion de l'H₂ au travers de la membrane (Figure B.3 et Tableau B.2). Pour cela il faut déterminer l'amplitude de variation de la f_{H_2} (δf_{H_2}) durant la relaxation. Dans le cas d'une relaxation faisant suite à une phase d'extraction de l'H₂, l'amplitude est bornée par la f_{H_2} minimale enregistrée à la fin de la phase d'extraction et la f_{H_2} maximale enregistrée au début de la chute de la f_{H_2} imputable à la

TABLEAU B.1 – Paramètres des régressions linéaires permettant de définir les taux de diminution de la $f_{\rm H_2}$ imputable à la diffusion de l'H₂ dans les parois de l'autoclave à $P_{\rm Tot} = 50$ MPa et à 250 et 300 °C.

	Domaine	a_1	a_2	r^2
	de $f_{\rm H_2}$	Coefficient	Ordonnée à	Coefficient de
Régression	(MPa)	directeur	l'origine	détermination
		Ernérience à 250)°C	
\bigcirc	0.941 0.490	1 00 × 10-4	0 490	0.001
$\underline{\mathfrak{G}}$	0,341 - 0,489	$-1,88 \times 10^{-1}$	0,480	0,991
(4)	$0,\!840 - 1,\!263$	$-3,01 \times 10^{-4}$	1,741	0,994
		Expérience à 300)°C	
(1)	0,873 - 0,893	$-6,41 \times 10^{-4}$	1,140	0,981
Ž	$0,\!359-0,\!533$	$-3{,}57\times10^{-4}$	0,715	0,999

FIGURE B.1 – Régressions linéaires effectuées dans les domaines de diminution de la $f_{\rm H_2}$ imputable à la diffusion de l'H₂ dans les parois de l'autoclave. a) à $P_{\rm Tot} = 50$ MPa et à 250 °C. b) à $P_{\rm Tot} = 50$ MPa et à 300 °C. Les coefficients directeurs permettant de déterminer les taux de diminution de la $f_{\rm H_2}$ sont donnés dans le Tableau B.1.

diffusion (Figure B.3b). Dans le cas d'une relaxation faisant suite à une phase d'introduction d'H₂, l'amplitude est bornée par la $f_{\rm H_2}$ maximale correspondant la fin de la phase d'introduction et la $f_{\rm H_2}$ minimale correspond au point de transition déterminé par le calcul et marquant la frontière entre le domaine de relaxation et le domaine de diffusion (cas de la régression ④, voir plus haut, Figure B.3a).

FIGURE B.2 – Variation du taux de diffusion de l'H₂ dans les parois de l'autoclave en fonction de la $f_{\rm H_2}$ à $P_{\rm Tot} = 50 \,\mathrm{MPa}$ et à 250 et 300 °C. Les bornes des domaines correspondent aux $f_{\rm H_2}$ minimales et maximales des jeux de données utilisés pour déterminer les régressions linéaires.

TABLEAU B.2 – Durées nécessaires pour dissiper 50, 90 et 100 % de $\delta f_{\rm H_2}$ et taux de variation de la $f_{\rm H_2}$ dans la membrane durant ces trois périodes pour des températures de 250 et 300 °C et $P_{\rm Tot} = 50 \,\rm MPa.$

			Taux de variation de la $f_{\rm H_2}$ dans la membrane de t_0 à :			
T (°C)	$t_{0.5}$ (h)	$t_{0.9}$ (h)	t_1 (h)	$\begin{array}{c}t_{0.5}\\(\mathrm{MPa}{\cdot}\mathrm{h}^{-1})\end{array}$	$\begin{array}{c}t_{0.9}\\(\mathrm{MPa}{\cdot}\mathrm{h}^{-1})\end{array}$	$\begin{array}{c} t_1 \\ (\mathrm{MPa} \cdot \mathrm{h}^{-1}) \end{array}$
$250 \\ 300$	$71,6 \\ 4,9$	$306,1 \\ 16,2$	649,9 41,1	$\begin{array}{c} -2.79 \times 10^{-2} \\ 7.88 \times 10^{-2} \end{array}$	$\begin{array}{c} -1.17 \times 10^{-2} \\ 4.32 \times 10^{-2} \end{array}$	$\begin{array}{c} -6.1 \times 10^{-3} \\ 1.89 \times 10^{-2} \end{array}$

FIGURE B.3 – Évolution de la $f_{\rm H_2}$ en fonction du temps durant la période de relaxation de la membrane. a) à 250 °C et $P_{\rm Tot} = 50$ MPa, relaxation faisant suite à une extraction d'H₂. b) à 300 °C et $P_{\rm Tot} = 50$ MPa, relaxation faisant suite à une introduction d'H₂. Les trois durées $t_{0.5}$, $t_{0.9}$ et t_1 correspondent, respectivement, aux durées nécessaires pour dissiper 50, 90 et 100 % de $\delta f_{\rm H_2}$ qui correspond à l'amplitude de la variation de $f_{\rm H_2}$ durant la période de relaxation. Les valeurs de $t_{0.5}$, $t_{0.9}$ et t_1 sont données dans le Tableau B.2.

Annexe C

000

Dispositifs de contrôle de la $f_{\rm H_2}$ et de

la pression totale

C.1 Dispositif de contrôle de la $f_{\rm H_2}$

Le dispositif présenté Figure C.1 est directement connecté à la ligne de mesure de la $f_{\rm H_2}$ (c'està-dire : membrane + manomètre + capillaires) dans les expériences faisant appel à ce genre de mesures.

Ce dispositif est utilisé à chaque début d'expériences afin d'établir le vide dans la ligne de mesure de la $f_{\rm H_2}$ (cf. Paragraphe 2.2.2). Il est également utilisé pour introduire ou extraire de l'H₂ dans le milieu réactionnel afin d'en imposer la $f_{\rm H_2}$ (cf. Paragraphes 2.2.2 et 5.4).

FIGURE C.1 – Schéma du dispositif expérimental développé afin d'imposer dans le milieu réactionnel une f_{H_2} indépendante de la pression totale.

C.2 Dispositif de contrôle de la pression totale dans les autoclaves de type Dickson & Seyfried

Dans les autoclaves de type Dickson & Seyfried le médium de confinement est l'H₂O. La pression de celui-ci correspond à la pression de confinement qui est égale à la pression totale (P_{Tot}) de l'expérience. Pour une quantité d'H₂O donnée et à volume constant, une variation de la température est nécessairement accompagnée d'une variation de la pression totale. Dans les expériences réalisées durant cette thèse cette variation est d'autant plus forte que, dans les conditions P et T explorées, l'H₂O utilisée comme vecteur de pression est liquide et donc fortement incompressible.

Le but du dispositif présenté ici (Figure C.2) est de pouvoir contrôler la pression dans l'autoclave indépendamment de la température. Le volume de celui-ci étant constant (≈ 1 L), le seul moyen de contrôler la pression indépendamment de la température est de jouer sur la quantité d'H₂O. Pour cela, le dispositif est équipé d'une pompe haute pression (HP) permettant d'injecter de l'H₂O dans l'autoclave et ainsi d'en augmenter la pression et de vannes d'échappements permettant, au contraire, d'extraire de l'H₂O. Au cours d'une expérience le besoin de réguler la pression peut intervenir dans différents contextes : mise en pression initiale, prélèvement d'un échantillon de fluide, changement de pression totale ou de température. En conséquence le dispositif est conçu afin de répondre au mieux aux différentes situations. Lorsque l'expérience est en cours et qu'aucune intervention sur la pression n'est nécessaire, seule la vanne 4 est ouverte et permet la lecture en continu de la pression de confinement.

Lors d'une augmentation de la température (mise en température initiale, augmentation de la température de l'expérience) de l'autoclave, la pression de confinement augmente concomitamment. Afin de ne pas dépasser la pression maximale d'utilisation du dispositif (≈ 55 MPa) ou tout simplement la pression désirée pour les besoins de l'expérience de l'eau doit être évacuée. Pour cela le dispositif est équipé d'un déversoir qui est une vanne réglable et dont l'ouverture se fait automatiquement lorsque la pression dépasse la pression maximale désirée. L'utilisation du déversoir se fait vannes 1 et 3 fermées.

Lors d'un prélèvement, le volume de fluide échantillonné doit être compensé par l'ajout d'un même volume de fluide de confinement afin de maintenir une pression totale constante. Afin de ne pas faire chuter la pression totale dans l'autoclave au moment de la mise en fonction de la pompe, l'autoclave est tout d'abord isolé du reste du dispositif par fermeture de la vanne 4. Ensuite les vannes 1 et 2 sont ouvertes et la pression dans la ligne HP (en rouge sur la Figure C.2) est réglée au moyen du régulateur de la pompe HP. Le réglage optimal consiste, en jouant sur le régulateur de la pompe et le déversoir, à avoir une pression dans la ligne \approx à la pression dans l'autoclave (la pompe se déclenche pour une pression $\approx 0,1$ MPa inférieure à la pression dans l'autoclave) et que l'excès éventuel d'H₂O injectée dans l'autoclave soit évacué par le déversoir si l'augmentation de la pression totale qu'il génère est trop élevée. Quand les réglages sont effectués, la vanne 4 est de nouveau ouverte et le prélèvement peut être fait. Une fois le prélèvement terminé, la pression totale est ajustée et seules les vannes 1 et 2 sont refermées.

Dans le cas d'une baisse de température, la baisse de pression associée doit être compensée par l'ajout d'H₂O dans l'autoclave. L'opération de maintien de pression est similaire à celle effectuée lors d'un prélèvement, sauf que le volume injecté ne compense plus un volume prélevé mais une augmentation de la densité du médium de confinement.

FIGURE C.2 – Schéma du dispositif expérimental permettant de contraindre la pression de confinement ou P_{Tot} indépendamment de la température. Le code couleur permettant de distinguer les différents types lignes est le suivant : — air de commande (0,6-0,7 MPa), — eau de confinement (eau déminéralisée dans le cas des expériences de mesures simultanées de f_{H_2} et de m_{H_2} , cf. Paragraphe 5.4) à pression atmosphérique et — eau de confinement à haute pression (HP).

Annexe D

000

Calibration de la chaîne de mesure de

la température

Une chaîne de mesure de la température est constituée de deux éléments : un thermocouple et un voltmètre. Le premier est un générateur électrique exploitant l'effet Seebeck¹ et dont la force électromotrice (FEM) est proportionnelle à la température à laquelle il est soumis. Dans la chaîne de mesure le thermocouple joue le rôle de transducteur. Le voltmètre permet, quant à lui, de mesurer la FEM aux bornes du thermocouple. La FEM mesurée est ensuite convertie en une température mesurée (T_m). Pour cela il est nécessaire d'utiliser une table de calibration associant à une série de températures réelles (T_r), connues indépendamment et auxquelles sont soumises le thermocouple, une série de FEM correspondantes. La qualité de mesure de la température (qualité d'autant plus élevée que T_m est proche de T_r) va dépendre de la qualité de la calibration du thermocouple et de la qualité du voltmètre.

Les thermocouples utilisés durant les expériences sont de type K (un fil en alliage de Cr-Ni appelé « Chromel » et un fil en alliage de Al-Ni appelé « Alumel »). Ils sont fournis avec une table de calibration (EIT90) commune à tous les thermocouples de ce type et permettent d'effectuer des mesures dans un domaine allant de -180 à 1370 °C avec une erreur de $\pm 2,5$ °C. Dans ces tables, la température de référence de la soudure froide est de 0 °C alors que celle-ci est de l'ordre de la température ambiante lors des mesures effectués durant les expériences. Pour compenser cet écart de température les voltmètres utilisés sont équipés d'une thermistance mesurant la température de la soudure froide et dont la FEM correspondante est à ajoutée à la FEM mesurée aux bornes du thermocouple. La FEM équivalente à la température à mesurer est ainsi la somme de la FEM mesurée aux bornes de la FEM de compensation mesurée aux bornes de la thermistance.

Au vu de la qualité requise pour les mesures (une précision de ± 5 °C étant largement suffisante) et de la bonne fiabilité de fabrication des thermocouples, une calibration n'est a priori pas nécessaire pour justifier de la qualité des expériences effectuées. Cependant l'observation de gradients de températures entre les thermocouples supérieur et inférieur (7,9 et 10,6 °C à 250 et 300 °C, respectivement) durant les expériences présentées dans le Paragraphe 5.4 implique un besoin de finesse accrue dans la mesure des températures afin de savoir si ce gradient est bien réel ou s'il s'agit d'un artefact résultant d'une mauvaise mesure par l'un des thermocouples (voire des deux).

La méthode de calibration présentée dans cette annexe n'a été appliquée qu'aux chaînes de mesures associés aux dispositifs expérimentaux utilisant les autoclaves de type Dickson & Seyfried. Ces dispositifs sont au nombre de deux et dénommés d'après l'œuvre de Binet : « Robert » et « Raymonde ». « Robert » est utilisé pour les expériences de mesure de la $m_{\rm H_2}$ avec un seul thermocouple en position supérieure (Tc_{Ry}^{sup}) et un seul voltmètre (V_{Rb} , cf. Chapitre 2 et Paragraphe 5.4). « Raymonde » est utilisée dans les expériences de mesure de la $f_{\rm H_2}$ avec un seul thermocouple en position supérieure (Tc_{Ry}^{sup}) et un seul voltmètre (V_{Ry} , cf. Chapitre 2 et Paragraphe 5.4), et dans les expériences de mesures couplées de la $f_{\rm H_2}$ et de la $m_{\rm H_2}$ avec un thermocouple en position inférieure (Tc_{Ry}^{inf}) et un thermocouple en position supérieure (Tc_{Ry}^{sup} , cf. Paragraphe 5.4). Dans ce dernier cas, le même voltmètre (V_{Ry}) est utilisé alternativement avec chacun des thermocouples.

Deux opérations distinctes sont appliquées à $T_{\rm m}$ afin d'obtenir une température corrigée $(T_{\rm cor})$ au plus proche de $T_{\rm r}$:

1. Détermination de la FEM réelle (FEM_r) correspondant à $T_{\rm m}$ (V_{Ry} et V_{Rb} affichent directement la FEM qu'ils mesurent en température). Pour cela un étalonnage est au préalable réalisé pour chacun des voltmètres afin d'établir les correspondances entre les FEM_r auxquelles ils sont soumis et les températures qu'ils affichent.

^{1.} L'effet Seebeck un effet thermoélectrique découvert en 1821 par le physicien allemand Thomas Johann Seebeck. Il se manifeste par l'apparition d'un tension électrique lorsque deux corps conducteurs de natures différentes forment deux jonctions entre eux et que celles-ci sont à des températures différentes. Dans un thermocouple on distingue la jonction chaude au niveau de laquelle la température est mesurée et la jonction froide réalisée par l'appareil de mesure.

2. Calcul de $T_{\rm cor}$ en utilisant le lien entre FEM_r et $T_{\rm r}$ établis par la réalisation d'une calibration propre à chacun des thermocouples.

De plus, pour que les modifications apportées soient optimales, les calibrations et les étalonnages sont réalisés en utilisant des $T_{\rm r}$ et des FEM_r dont les valeurs varient dans des gammes similaires à celles rencontrées durant les expériences (c'est-à-dire entre 200 et 400 °C et entre 8000 et 16 400 μ V).

Étalonnage des voltmètres

Les erreurs de mesures propres aux voltmètres utilisés (FEM ou T correspondante) sont déterminées en étalonnant ceux-ci par rapport à un voltmètre de référence (V_{Rf}, FEM_r) dont la calibration récente est supposée comme étant encore valable. Pour cela une température fixe est imposée à un thermocouple et la FEM à ses bornes est successivement mesurée par V_{Rb} , V_{Ry} et V_{Rf} . L'opération est ensuite répétée à différentes températures (Tableau D.1).

Enfin des fonctions affines liant $T_{V_{Ry}}$ et $T_{V_{Rb}}$ à FEM_r sont déterminées en utilisant la méthode des moindres carrés :

$$FEM_{r} = 39.8T_{V_{Bb}} + 193 \tag{D.1}$$

$$\text{FEM}_{\rm r} = 41.0T_{\rm V_{Bu}} + 103 \tag{D.2}$$

Calibration des thermocouples

La calibration des thermocouples nécessite d'avoir accès à des processus ou des matériaux dont les $T_{\rm r}$ sont parfaitement connues et utilisables comme températures de références. Les processus de fusion/solidification des matériaux purs répondent bien à ces besoins pour trois raisons :

- 1. Contrairement aux processus impliquant des gaz et nécessitant des dispositifs de confinement et de contrôle de la pression, ces processus sont facile à mettre en place.
- 2. Les températures de ces processus sont bien contraintes et ce pour de nombreux matériaux ce qui permet d'accéder avec la même méthode à un large spectre de températures de références.
- 3. Lors d'un changement de phase la température est constante ce qui permet aisément d'identifier le precessus dans un diagramme FEM vs. durée.

Les standards utilisés pour cette calibration sont l'étain (Sn) et le plomb (Pb) dont les températures de fusion/solidification sont, respectivement, de 231,93 et 327,46 °C. Pour chacun des standards, les changements de phases sont réalisés dans un creuset en céramique placé dans un four à atmosphère ambiante (Figure D.1) tandis que l'acquisition en continu des FEM aux bornes

V_{Rb} et V_{Ry} por et déterminées	ur différentes FE avec V_{Rf} .	M _r imposées
$\frac{\rm FEM_r}{(\mu V)}$	$T_{\mathrm{V}_{Rb}}$ (°C)	$\begin{array}{c} T_{\mathcal{V}_{Ry}} \\ (^{\circ}\mathcal{C}) \end{array}$
8098,5	198	194
9990.7	245	241

299

352

408

292

345

398

12001,5

14209,3

16481,6

TABLEAU D.1 – Réponses en température de

du thermocouple en cours de calibration est réalisée avec le voltmètre de référence V_{Rf} . Ainsi les FEM_r correspondant aux processus de solidification et de fusion sont successivement enregistrées. Pour cela le thermocouple est tout d'abord plongé dans le standard préalablement porté à l'état liquide, ensuite la température du four est abaissée en dessous de la température de fusion du standard. Une fois ce dernier entièrement solidifié la température du four est à nouveau réglée à une température supérieure à celle du point de fusion. L'acquisition se termine lorsque le standard est de nouveau à l'état liquide. Le thermocouple est alors retiré et nettoyé.

FIGURE D.1 - Schéma du dispositif mis en place afin de réaliser la calibration des thermocouples. Le four utilisé est à pression ambiante.

Les profils FEM_{r} vs. durée enregistrés durant les étapes successives de solidification et de fusion des standards sont présentés Figure D.2. Que ce soit pour Sn ou pour Pb les profils sont similaires excepté lors du refroidissement de Sn où un phénomène de surfusion est observé avant que la température ne remonte à celle imposée par le processus de solidification. La FEM correspondant à la température des processus de solidification et de fusion (FEM_{f/s}) est déterminée en faisant la moyenne des FEM_r pondérées constituant les plateaux. La pondération des FEM_r constituant les plateaux à pour but d'éviter une surreprésentation dans la valeur FEM_{f/s} du plateau le plus étendu dans le temps.

Pour chacun des thermocouples à calibrer les $\text{FEM}_{f/s}$ des deux standards sont mesurées et utilisées afin de déterminer une fonction affine liant FEM_r à T_r (Tableau D.2).

Comme $T_{\rm r}$ est assimilable à $T_{\rm cor}$ il est ensuite aisé de recalculer pour chacune des chaînes de mesures $T_{\rm cor}$ à partir de $T_{\rm m}$.

TABLEAU D.2 – FEM_{f/s} mesurées avec les différents thermocouples à calibrer et correspondant aux températures de fusion/solidification de Sn et de Pb, et coefficient a et b des fonctions affines liant FEM à $T_{\rm r}$.

	Sn	Pb	$T_{\rm r} ({\rm FEM_r}) = a {\rm FEM_r} + b$	
	FEM _{f/s}	$FEM_{f/s}$	a	b
Thermocouple	(μV)	(μV)	$(^{\circ}\!C\!\cdot\!\mu V^{-1})$	(°C)
Tc_{Bb}^{sup}	9591,7	$13547,\!3$	$2{,}4151\times10^{-2}$	$2,7773 \times 10^{-1}$
Tc_{Ry}^{sup}	9592,8	$13530,\!2$	$2{,}4201\times10^{-2}$	$-2,\!3139 imes 10^{-1}$
${ m Tc}^{inf}_{Ry}$	9590,3	$13521,\!4$	$2{,}4302\times10^{-2}$	-1,1312

FIGURE D.2 – Profils d'évolution temporelle de la $\rm FEM_r$ dans Pb et Sn lors d'un cycle de refroidissement (partie bleue) et de chauffe (partie rouge) au cours duquel les points de solidification et de fusion sont franchis. La zone grisée correspond au processus de surfusion observé pour Sn. Pour chaque élément, le plateau observé lors du refroidissement matérialise le processus de solidification et le plateau observé lors de la chauffe matérialise le processus de fusion. La $\rm FEM_{f/s}$ est déterminée en fonction de ces plateaux (voir texte).

Annexe E

000

Protocole de quantification de $l'H_2$ par échantillonnage du fluide et analyse par chromatographie en phase gazeuse

L'échantillonnage *in situ* d'un fluide réactionnel puis l'analyse par chromatographie de la phase gazeuse qui s'en exsolve ont pour but de déterminer la nature et de quantifier les constituants de cette phase gazeuse. Dans cette étude, seules des concentrations en H₂ ont été déterminées. Les mesures obtenues sont exprimées en mol·kg⁻¹_{fluid} et permettent de quantifier ponctuellement la production d'H₂ liée à la réaction de serpentinisation (cf. Chapitre 2) ou de déterminer la concentration d'H₂ dans un mélange H₂O-H₂ (cf. Paragraphe 5.4). Bien que différent en quelques points sur le protocole utilisé, cette méthode a déjà été éprouvée lors de précédentes études du processus de serpentinisation (Seyfried *et al.*, 2007; Marcaillou *et al.*, 2011; Mayhew *et al.*, 2013; Klein *et al.*, 2015; McCollom *et al.*, 2016).

Le protocole mis en place durant ce travail est divisé en quatre étapes successives qui correspondent aux différentes parties de cette annexe :

- 1. Échantillonnage in situ du fluide réactionnel.
- 2. Préparation du prélèvement pour la mesure par chromatographie en phase gazeuse (GC).
- 3. Analyse du prélèvement par GC.
- 4. Calcul de la molalité d'H₂ à partir des résultats de l'analyse GC.

E.1 Échantillonnage *in situ* du fluide réactionnel

Le prélèvement du fluide réactionnel s'effectue par l'intermédiaire d'une vanne de prélèvement reliée à la cellule réactionnelle par une canne de prélèvement (Figure E.1). Le fluide occupant le volume « mort » de la canne de prélèvement en Ti ($\approx 1 \text{ cm}^3$) est purgé car considéré non représentatif du fluide réactionnel contenu dans la cellule. Afin de minimiser l'influence du prélèvement sur le rapport ^{eau}/roche, le volume prélevé est de l'ordre du mL tandis que le volume de fluide réactionnel est $\approx 40 \text{ mL}$. Les quantités exactes de fluides prélevés (purge + prélèvement) sont déterminées par pesées.

L'H₂ produit au cours de la réaction de serpentinisation est, dans les conditions P, T et X

FIGURE E.1 – Échantillonnage du fluide réactionnel au moyen d'une seringue étanche aux gaz. Les flèches rouges indiquent le trajet emprunté par le fluide réactionnel depuis la cellule réactionnelle jusqu'à la seringue étanche aux gaz. * Le dispositif de contrôle la pression de confinement (P_{Tot}) est décrit dans l'Annexe C.

expérimentés, dissout dans le fluide (Seward et Franck, 1981; Klein *et al.*, 2013). Lors du prélèvement, les conditions P et T du fluide chutent respectivement de 500 à \approx 1 bar et, selon l'expérience, de 250, 300 ou 350 à \approx 25 °C. Ce changement de paramètres a pour effet d'entrainer une démixtion entre le fluide et l'H₂. Le prélèvement est donc diphasique, avec d'un côté une phase liquide constituée d'H₂O chargée en divers éléments (SiO₂, Na⁺, Cl⁻,...) et de l'autre une phase gazeuse constituée uniquement d'H₂. Afin de ne pas perdre la phase gazeuse, le prélèvement est recueilli à l'aide d'une seringue étanche aux gaz.

E.2 Préparation du prélèvement pour l'analyse par chromatographie en phase gazeuse

Cette étape a pour but de résoudre le au problème suivant : d'un côté il faut injecter la totalité de l'H₂ prélevé afin de le quantifier, et de l'autre il est totalement exclu d'injecter du liquide dans le GC. Or, le collecteur du GC étant situé sur sa partie supérieure, injecter directement dans le GC la totalité de l'H₂ du prélèvement sans pour autant y injecter la moindre goutte de liquide s'avère irréalisable.

La stratégie adoptée pour pallier ce problème consiste à diluer la totalité du prélèvement (phase gazeuse + phase liquide) dans un flacon contenant de l'eau déminéralisée et un volume d'Ar connu, puis de quantifier avec le GC l'H₂ contenu dans un volume également connu du mélange Ar-H₂. Il est ainsi possible de ne faire qu'un prélèvement partiel de la phase gazeuse Ar-H₂ contenue dans le flacon ce qui évite d'injecter de l'eau dans le GC. Cette méthode présente également l'avantage de pouvoir effectuer plusieurs prélèvements dans le mélange Ar-H₂ et ainsi de multiplier les mesures GC lors d'un seul échantillonnage de fluide réactionnel.

Avec cette méthode, la seule grandeur extensive directement mesurable est le volume. Afin de pouvoir convertir les volumes mesurés en quantités molaires au moyen de l'équation d'état des gaz parfaits il est nécessaire de contraindre les paramètres intensifs que sont T et P. Ainsi, durant la totalité des injections, mélanges et prélèvements de gaz effectués pour la préparation du prélèvement, ces deux paramètres doivent être connus. Par commodité, durant toute la chaîne de préparation, les différents volumes de gaz sont maintenus à pression ambiante (P_{Amb}) et température ambiante (T_{Amb}).

FIGURE E.2 – Détente dans un bécher d'un volume d'Ar contenu en surpression dans une seringue étanche aux gaz de sorte que la pression interne à celle-ci s'égalise avec P_{Amb} . Le système de verrouillage permet l'étanchéité aux gaz de la seringue.

L'essentiel des difficultés rencontrées durant ces étapes concerne le maintient à P_{Amb} des volumes de gaz. Trois méthodes ont été utilisées et sont décrites dans les paragraphes qui suivent.

E.2.1 Prélèvement d'un volume d'Ar à P_{Amb}

Cette étape a pour but de prélever un volume d'Ar pur dont la pression est égale à P_{Amb} . Pour cela une seringue étanche aux gaz est remplie au maximum d'Ar en prenant soin que la pression interne à la seringue soit supérieure à P_{Amb} . Ensuite l'Ar contenu dans la seringue est détendu dans un bécher contenant de l'eau déminéralisée et ayant une surface libre de sorte que la pression interne de la seringue s'équilibre avec P_{Amb} tout en évitant une contamination avec l'air ambiant (Figure E.2). Le piston est ensuite ajusté (toujours dans le sens d'une diminution du volume) de façon à obtenir le volume désiré.

E.2.2 Dilution du prélèvement dans un volume d'Ar connu et à P_{Amb}

La dilution de la totalité du prélèvement (H₂ + fluide) est effectuée dans un flacon contenant de l'eau déminéralisée et 10 mL d'Ar. Le $V_{\rm Ar}$ injecté au préalable est mesuré comme décrit précédemment. Que ce soit lors de l'injection de l'Ar ou du prélèvement, $P_{\rm Amb}$ est maintenue dans le flacon par relargage de la phase liquide par l'intermédiaire du trop plein (Figure E.3). Ce dernier constituant une surface libre, la pression à l'intérieur du flacon durant les diverses injections est maintenue égale à $P_{\rm Amb}$.

E.2.3 Prélèvement à P_{Amb} d'un volume du mélange Ar-H₂ pour injection dans le chromatographe

L'ultime étape de la préparation du prélèvement avant analyse avec le GC consiste à prélever, au moyen d'une seringue étanche aux gaz, une fraction du mélange Ar-H_2 et ceci toujours en maintenant la pression interne égale à P_{Amb} . Pour cela le flacon est également équipé d'un tropplein, mais cette fois-ci, comme il s'agit d'un prélèvement, il faut introduire de la matière dans le flacon pour maintenir la pression. Comme la composition de la phase gazeuse doit rester inchangée c'est de l'eau déminéralisée qui est injectée au moyen d'une seringue classique (Figure E.4).

FIGURE E.3 – Dilution du prélèvement dans un flacon contenant de l'eau déminéralisée et 10 mL d'Ar. La pression interne au flacon est maintenue égale à P_{Amb} par l'intermédiaire du trop-plein.

Par la suite, le volume de mélange Ar-H₂ prélevé pour injection dans le GC est noté $V_{\text{Tot}}^{\text{Inj}}$. Il est systématiquement de 0,4 mL car, en tenant compte des concentrations maximales d'H₂ espérées dans les expériences ($\approx 250 \text{ mmol·kg}_{\text{fluid}}^{-1}$), ce volume permet d'exploiter au maximum l'amplitude de mesure du capteur du GC avant saturation de celui-ci.

FIGURE E.4 – Prélèvement d'une fraction du mélange Ar-H₂ ($V_{\text{Tot}}^{\text{Inj}}$) pour analyse GC. La pression interne est maintenue égale à P_{Amb} par la surface libre que constitue le trop-plein. Le volume de mélange prélevé est compensé par l'ajout d'un volume d'eau identique ($V_{\text{H}_2\text{O}}$).

Au vu des concentrations d'H₂ mesurées durant les expériences (6 – 150 mmol·kg⁻¹_{fluid}, Tableau 2.2), la fraction d'H₂ encore dissoute dans le fluide prélevé est considérée comme négligeable. En effet à 25 °C la constante d'Henry $K_{h,H_2}^{298,15 \text{ K}}$ définissant la solubilité de l'H₂ dans l'H₂O est de 7,8 × 10⁻⁴ mol·kg⁻¹·bar⁻¹ (Wilhelm *et al.*, 1977), soit des concentrations en H₂ dissout de 1 à 2 ordres de grandeur inférieurs à celles mesurées lors des expériences. De plus, après dilution du prélèvement, la P_{H_2} dans le mélange Ar-H₂ est largement inférieure à P_{Amb} , ce qui a pour effet de diminuer la quantité d'H₂ dissout. La cinétique de démixtion de l'H₂ est de l'ordre de quelques heures, cependant le confinement de l'H₂ n'étant jamais total, attendre plusieurs heures pour que l'équilibre entre H_{2, g} et H_{2, aq} à 25 °C et 1 bar soit totalement atteint impliquerait nécessairement une perte substantielle de l'H₂ prélevé. Aussi, directement après que le mélange Ar-H₂ est réalisé, le flacon est agité quelques instants et l'équilibre est considéré comme atteint.

E.3 Analyse du prélèvement par chromatographie en phase gazeuse

E.3.1 Principe de fonctionnement

L'analyse par chromatographie en phase gazeuse consiste à séparer, selon leur nature, les différentes molécules constituant un mélange gazeux afin de les quantifier. Pour cela, ledit mélange est transporté par un gaz vecteur au travers d'une colonne tapissée d'une phase stationnaire qui présente des affinités variables avec les molécules selon leur nature. Il en résulte que les différentes molécules constituant le mélange ont un temps de résidence au sein de la colonne qui est proportionnel à cette affinité. Ainsi, en sortie de colonne il ne reste plus qu'à identifier et quantifier chacun des groupes de molécules lors de leurs passages successifs pour connaître la composition du gaz injecté.

Le GC utilisé durant cette étude est un PerkinElmer Clarus[®]580. Il est équipé d'une colonne

Carboxen®1010 PLOT – $30 \text{ m} \times 0.53 \text{ mm}$ (diamètre interne). La phase stationnaire est constituée de carbone moléculaire. Le thermostat du four est programmé sur 35 °C, ce qui permet d'éviter les perturbations dues aux variations de la température ambiante tout en ayant un temps de résidence suffisamment long pour bien séparer les molécules analysées (H₂ et Ar). Le gaz vecteur utilisé est du N₂.

Le comptage des molécules en sortie de colonne se fait au moyen d'un capteur TCD (Thermal Conductivity Detector). Ce type de détecteur est constitué d'un filament dont la résistance électrique est dépendante de la conductivité thermique de la phase gazeuse dans laquelle il baigne. Cette conductivité thermique étant, quant à elle, fonction de la composition de la phase gazeuse, l'arrivée d'un gaz autre que le gaz porteur au niveau du capteur va entrainer un changement de la résistance du filament. Cette dernière est ensuite convertie en un potentiel électrique (U en V) au moyen d'un pont de Wheatstone. Ainsi, lors du relargage par la colonne d'un gaz, la tension aux bornes du capteur va dériver de la tension correspondant au gaz porteur et la surface du pic (U vs. t) va être directement proportionnelle au nombre de molécules libérées.

En résumé, lors de la lecture du chromatogramme, la position du pic dans le temps renseigne sur la nature du gaz, tandis que sa surface (S) est proportionnelle au nombre de molécules dudit gaz (Figure E.5). Avec les réglages utilisés, le temps de résidence de l'H₂ est de 1,96 min, tandis que la surface de pic d'H₂ (S_{H_2}) varie de quelques dizaines à plusieurs milliers de mV·min selon la quantité d'H₂ contenue dans le volume injecté $(n_{H_2}^{Inj})$.

FIGURE E.5 – Chromatogramme obtenu par injection d'un mélange Ar-H₂ dans le GC. La ligne de base correspond à la tension (5 mV) aux bornes du capteur TCD lors du passage, en continu, du gaz porteur. Elle délimite la surface des pics. Le pic d'H₂ débute à 1,96 min et atteint son maximum à 2,07 min. La surface du pic d'H₂ ($S_{\rm H_2}$) est proportionnelle à la quantité d'H₂ contenue dans le volume du mélange Ar-H₂ injecté ($n_{\rm H_2}^{\rm Inj}$). Le pic d'Ar débute à 2,98 min. Ce pic est négatif car la variation de conductivité thermique induite par le passage de l'Ar est opposée à celle induite par le passage de l'H₂.

E.3.2 Calibration du chromatographe

Afin de pouvoir déterminer la quantité d'H₂ contenue dans un prélèvement à partir de la surface du pic d'H₂ mesurée avec le GC il faut, au préalable, déterminer une fonction liant S_{H_2} et $n_{\text{H}_2}^{\text{Inj}}$. Pour cela une calibration est effectuée en mesurant différentes S_{H_2} correspondant à différentes quantités d'H₂ injectées dans le GC.

Les standards utilisés pour la calibration sont des mélanges $Ar-H_2$ dont les proportions en Ar et en H₂ sont variables. Ils sont préparés dans des flacons en utilisant les méthodes présentées précédemment. Deux raisons nous ont conduit à utiliser des mélanges $Ar-H_2$ pour la calibration, et non pas seulement de l'H₂ pur. 1) L'utilisation de mélanges permet de fortes dilutions de l'H₂ nécessaires à l'optimisation de la calibration pour de faibles quantité d'H₂. 2) La légère superposition des pics d'H₂ et d'Ar doit être prise en compte dès la calibration afin que celle-ci soit applicable aux mélanges $Ar-H_2$ préparés suite aux prélèvements (Figure E.5).

À P_{Amb} et T_{Amb} la loi des gaz parfaits est applicable au mélange Ar-H₂. Il est ainsi possible de déterminer :

$$n_{\rm H_2}^{\rm Inj} = \frac{V_{\rm Tot}^{\rm Inj} P_{\rm Amb}}{RT_{\rm Amb}} \times X_{\rm H_2} \tag{E.1}$$

avec :

$$X_{\rm H_2} = \frac{V_{\rm H_2}}{V_{\rm H_2} + V_{\rm Ar}} \tag{E.2}$$

où $n_{\text{H}_2}^{\text{Inj}}$ est la quantité d'H₂ contenue dans le mélange Ar-H₂ injecté dans le GC, $V_{\text{Tot}}^{\text{Inj}}$ le volume de mélange Ar-H₂ injecté, X_{H_2} la fraction molaire d'H₂ dans le mélange Ar-H₂, V_{H_2} et V_{Ar} les volumes respectifs d'H₂ et d'Ar constituant le mélange Ar-H₂ et contenus dans le flacon standard.

Lors de la réalisation d'un standard, deux seringues étanches aux gaz, l'une de 5 mL et l'autre de 1 mL sont utilisés pour mesurer les volumes d'H₂ et d'Ar introduits dans le flacon. Ainsi, plusieurs mesures de volumes sont effectuées et sont autant de sources d'incertitudes pour la valeur finale $n_{\rm H_2}^{\rm Inj}$. À ces erreurs de mesures s'ajoutent les variations de $T_{\rm Amb}$ et de $P_{\rm Amb}$. Du fait que la température dans la salle de chromatographie soit régulée, les variations de $T_{\rm Amb}$ sont limitées : $T_{\rm Amb} = 22 \pm 2$ °C. En revanche les variations de $P_{\rm Amb}$ sont entièrement tributaires des conditions météorologiques. En l'absence de connaissance de $P_{\rm Amb}$ le jour de la mesure, le domaine de $P_{\rm Amb}$ retenu correspond aux valeurs maximales et minimales de $P_{\rm Amb}$ rencontrées respectivement lors d'un anticyclone ou d'une dépression : $P_{\rm Amb} = 101325 \pm 3300$ Pa.

TABLEAU E.1 – $n_{\rm H_2}^{\rm Inj}$ des standards utilisés pour la calibration, $S_{\rm H_2}^{\rm Flac}$ correspondantes et erreurs associées.

Standard	$n_{\mathrm{H}_2}^{\mathrm{Inj}}$ (µmol)	$\Delta n_{\mathrm{H}_2}^{\mathrm{Inj}}$ (µmol)	$S_{\mathrm{H_2}}^{\mathrm{Flac}} \ \mathrm{(V \cdot s)}$	$\begin{array}{c}\Delta S_{\mathrm{H}_{2}}^{\mathrm{Flac}}\\(\mathrm{V}\cdot\mathrm{s})\end{array}$
Std 1	1,224	$8,055\times10^{-2}$	$1,\!170162$	$1,\!969294\times10^{-1}$
Std 2	5,508	$3,\!492 imes 10^{-1}$	5,735971	$9,557268 imes 10^{-1}$
Std 3	4,131	$2{,}719\times10^{-1}$	$3,\!803200$	$2{,}403408\times10^{-1}$
Std 4	0,167	$1{,}909\times10^{-2}$	$0,\!124117$	$5{,}325862\times10^{-2}$
Std 5	1,836	$1{,}199\times10^{-1}$	$1,\!676035$	$6,786774 imes 10^{-2}$
Std 6	$0,\!636$	$4{,}653\times10^{-2}$	$0,\!557971$	$5,880221 imes 10^{-2}$
Std 7	0,787	$5,530 imes 10^{-2}$	0,714127	$1,\!209510 imes 10^{-1}$
Std 8	0,087	$7{,}446\times10^{-3}$	$0,\!121406$	$8{,}151518\times10^{-2}$

Le choix a été fait de déterminer l'incertitude sur $n_{\rm H_2}^{\rm Inj}$ ($\Delta n_{\rm H_2}^{\rm Inj}$) comme un majorant de l'erreur. Dans ce cas l'incertitude correspond à l'erreur maximale envisageable et est déterminée comme suit :

$$\Delta n_{\rm H_2}^{\rm Inj} = \left| \frac{\partial n_{\rm H_2}^{\rm Inj}}{\partial P_{\rm Amb}} \right| \Delta P_{\rm Amb} + \left| \frac{\partial n_{\rm H_2}^{\rm Inj}}{\partial T_{\rm Amb}} \right| \Delta T_{\rm Amb} + \left| \frac{\partial n_{\rm H_2}^{\rm Inj}}{\partial V_{\rm Tot}^{\rm Inj}} \right| \Delta V^{1\,\rm mL} + \left| \frac{\partial n_{\rm H_2}^{\rm Inj}}{\partial V_{\rm H_2}} \right| A + \left| \frac{\partial n_{\rm H_2}^{\rm Inj}}{\partial V_{\rm Ar}} \right| B \quad (E.3)$$

avec :

$$A = \Delta V^{5\,\mathrm{mL}} \cdot nI_{\mathrm{H}_2}^{5\,\mathrm{mL}} + \Delta V^{1\,\mathrm{mL}} \cdot nI_{\mathrm{H}_2}^{1\,\mathrm{mL}} \tag{E.4}$$

$$B = \Delta V^{5\,\mathrm{mL}} \cdot nI_{\mathrm{Ar}}^{5\,\mathrm{mL}} + \Delta V^{1\,\mathrm{mL}} \cdot nI_{\mathrm{Ar}}^{1\,\mathrm{mL}} \tag{E.5}$$

où $\Delta P_{\rm Amb} = 3300 \,{\rm Pa}$, $\Delta T_{\rm Amb} = 2 \,{}^{\circ}{\rm C}$, $\Delta V^{1\,{\rm mL}} = 0.02/\sqrt{12} \,{\rm mL}$ est l'erreur de la seringue de 1 mL, $\Delta V^{5\,{\rm mL}} = 0.1/\sqrt{12} \,{\rm mL}$ est l'erreur de la seringue de 5 mL, $nI_{\rm H_2}^{5\,{\rm mL}}$ et $nI_{\rm H_2}^{1\,{\rm mL}}$ sont les nombres d'injections d'H₂ faites avec les seringues de 5 et 1 mL pour la réalisation du standard et, $nI_{\rm Ar}^{5\,{\rm mL}}$ et $nI_{\rm Ar}^{1\,{\rm mL}}$ sont les nombres d'injections d'Ar faites avec les seringues de 5 et 1 mL également lors de la réalisation du standard. Pour l'incertitude de mesure de $V_{\rm Tot}^{\rm Inj}$, $\Delta V^{1\,{\rm mL}}$ est prise car le volume de 0,4 mL est toujours déterminé avec la seringue de 1 mL.

Chaque standard est utilisé pour réaliser n mesures $GC : S_{H_2,1}, S_{H_2,2}, \dots S_{H_2,n}$. La S_{H_2} du flacon $(S_{H_2}^{Flac})$ est déterminée en faisant la moyenne de chacune de ces mesures :

$$S_{\rm H_2}^{\rm Flac} = \frac{1}{n} \sum_{i=1}^n S_{\rm H_2,i}$$
(E.6)

et son incertitude avec un intervalle de confiance à 95% est donnée par :

$$\Delta S_{\rm H_2}^{\rm Flac} = t_{95} \frac{1}{\sqrt{n}} \sqrt{\frac{1}{n-1} \sum_{i=1}^n (S_{\rm H_2,i} - S_{\rm H_2}^{\rm Flac})^2}$$
(E.7)

où t_{95} correspond au coefficient de Student pour un intervalle de confiance à 95 %.

L'ensemble des couples $(n_{\rm H_2}^{\rm Inj}, S_{\rm H_2}^{\rm Flac})$ réalisés pour la calibration sont présentés dans le Tableau E.1. Afin de déterminer de façon optimale la fonction affine liant ces mesures il est nécessaire de tenir compte tant des erreurs sur $n_{\rm H_2}^{\rm Inj}$ que des erreurs sur $S_{\rm H_2}^{\rm Flac}$. Pour cela une simple régression ne peut suffire, et la détermination de la fonction optimale se fait par minimisation du χ^2 en utilisant la méthode de Brent (Press *et al.*, 2007). Il est à noter qu'en plus des couples mesurés, le point associant les valeurs $n_{\rm H_2}^{\rm Inj} = 0$ mol et $S_{\rm H_2}^{\rm Flac} = 0$ V·s est également prit en compte lors du calcul. Les erreurs associés à ce point sont nulles ce qui en fait *de facto* le point le plus fiable. Le coefficient directeur calculé (a) est 9,1836 ± 0,4371 × 10⁵ V·s·mol⁻¹ et l'ordonnée à l'origine (b), quasiment nulle par définition, vaut $-0,204 \pm 1,009 \times 10^{-9}$ V·s (Figure E.6).

FIGURE E.6 – Droite de calibration déterminée à partir des mesures couplées de $n_{\rm H_2}^{\rm Inj}$ et de $S_{\rm H_2}^{\rm Flac}$. L'enveloppe grise correspond à l'erreur associée à cette régression.

E.4 Calcul de la molalité d' H_2 à partir des résultats obtenus par chromatographie en phase gazeuse

Une fois le prélèvement préparé (cf. Annexe E.2.3) les rapports de volumes entre l'Ar et l'H₂ sont identiques dans le flacon (Flac) et dans le volume injecté dans le GC (Inj) :

$$\frac{V_{\rm H_2}^{\rm Flac}}{V_{\rm Ar}^{\rm Flac} + V_{\rm H_2}^{\rm Flac}} = \frac{V_{\rm H_2}^{\rm Inj}}{V_{\rm Ar}^{\rm Inj} + V_{\rm H_2}^{\rm Inj}}$$
(E.8)

ce qui implique :

$$V_{\rm H_2}^{\rm Flac} = \frac{V_{\rm H_2}^{\rm Inj} \times V_{\rm Ar}^{\rm Flac}}{V_{\rm Ar}^{\rm Inj}} = \frac{V_{\rm H_2}^{\rm Inj} \times V_{\rm Ar}^{\rm Flac}}{V_{\rm Tot}^{\rm Inj} - V_{\rm H_2}^{\rm Inj}}$$
(E.9)

où $V_{\text{H}_2}^{\text{Flac}}$ est le volume d'H₂ prélevé lors de l'échantillonnage du fluide réactionnel, $V_{\text{Ar}}^{\text{Flac}}$ le volume d'Ar utilisé pour mélanger le prélèvement (= 10 mL), $V_{\text{Tot}}^{\text{Inj}}$ le volume du mélange Ar-H₂ prélevé puis injecté dans le GC (= 0,4 mL) et $V_{\text{H}_2}^{\text{Inj}}$ le volume d'H₂ injecté dans le GC. Ce dernier est encore inconnu mais calculable à partir de la calibration réalisée précédemment. En effet :

$$V_{\rm H_2}^{\rm Inj} = \frac{n_{\rm H_2}^{\rm Inj} \times RT_{\rm Amb}}{P_{\rm Amb}} = \frac{(S_{\rm H_2}^{\rm Mes} - b)RT_{\rm Amb}}{aP_{\rm Amb}}$$
(E.10)

où *a* et *b* sont, respectivement, le coefficient directeur et l'ordonnée à l'origine de la droite de calibration et $S_{\text{H}_2}^{\text{Mes}}$ la surface mesurée avec le GC pour le prélèvement en cours de quantification. Tout comme $S_{\text{H}_2}^{\text{Flac}}$, calculée lors de la calibration (équation (E.6)), $S_{\text{H}_2}^{\text{Mes}}$ correspond à la moyenne des S_{H_2} obtenues à partir des multiples injections réalisées à partir du flacon préparé avec le prélèvement.

La quantité d'H $_2$ contenue dans le flacon, et donc dans le prélèvement, étant définie par :

$$n_{\rm H_2}^{\rm Flac} = \frac{P_{\rm Amb} V_{\rm H_2}^{\rm Flac}}{RT_{\rm Amb}} \tag{E.11}$$

il ne reste plus qu'à réinjecter les équations (E.9) et (E.10) dans l'équation (E.11) pour déterminer la quantité d'H₂ contenue dans le prélèvement :

$$n_{\rm H_2}^{\rm Flac} = \frac{P_{\rm Amb} V_{\rm Ar}^{\rm Flac} (S_{\rm H_2}^{\rm Mes} - b)}{a P_{\rm Amb} V_{\rm Tot}^{\rm Inj} - (S_{\rm H_2}^{\rm Mes} - b) R T_{\rm Amb}}$$
(E.12)

Enfin, la molalité d'H₂ du fluide réactionnel est déterminée en pondérant la quantité d'H₂ prélevée par la masse de fluide prélevée (\dot{m}_{Prel}) :

$$m_{\mathrm{H}_{2,\,aq}} = \frac{n_{\mathrm{H}_{2}}^{\mathrm{Flac}}}{\dot{\mathrm{m}}_{\mathrm{Prel}}} \tag{E.13}$$

Il est à noter qu'en toute rigueur la définition exacte de la molalité nous obligerait à pondérer $n_{\rm H_2}^{\rm Flac}$ par la masse du solvant c'est-à-dire l'eau pure. Ceci impliquerait de retrancher à $\dot{m}_{\rm Prel}$ la masse d'H₂ mais aussi celle des autres solutés (SiO₂, Na⁺, Cl⁻,...). Cependant, aucune mesure de concentration des espèces en solutions, autre que l'H₂, n'a été réalisée. Excepté pour le NaCl dont la concentration initiale est de 3,2 pds.% et reste de cet ordre là durant la réaction, la masse des autres espèces en solution reste négligeable face à celle de l'eau (Allen et Seyfried, 2003; Seyfried *et al.*, 2007; Marcaillou *et al.*, 2011). Aussi, il est assumé d'assimiler $m_{\rm H_2, aq}$ à une molalité. Un *distinguo* est cependant fait durant ce travail au niveau de l'unité de mesure en notant les molalités déterminées expérimentalement : mol·kg⁻¹_{fluid}.

L'incertitude sur $m_{\rm H_2}$ trouve son origine dans la succession de manipulations du prélèvement depuis le prélèvement jusqu'à l'injection dans le GC. La variabilité de $S_{\rm H_2}^{\rm Mes}$ lors des multiples mesures GC faites à partir du prélèvement est le résultat combiné de l'erreur interne au GC qui est suffisamment faible pour être négligée et de l'incertitude de mesure du volume de mélange Ar-H₂ injecté dans le GC ($V_{\rm Tot}^{\rm Inj}$). Aussi, ajouter à $\Delta m_{\rm H_2}$ la part d'incertitude de $S_{\rm H_2}^{\rm Mes}$ reviendrait à compter deux fois l'incertitude imputable à la mesure de $V_{\rm Tot}^{\rm Inj}$. C'est pourquoi l'introduction d'erreur due à $S_{\rm H_2}^{\rm Mes}$ est négligée dans le calcul de $\Delta m_{\rm H_2}$:

$$\Delta m_{\rm H_2} = \left| \frac{\partial m_{\rm H_2}}{\partial P_{\rm Amb}} \right| \Delta P_{\rm Amb} + \left| \frac{\partial m_{\rm H_2}}{\partial V_{\rm Ar}^{\rm Flac}} \right| \Delta V^{5\,\rm mL} \cdot nI_{\rm Ar}^{5\,\rm mL} + \left| \frac{\partial m_{\rm H_2}}{\partial \dot{m}_{\rm Prel}} \right| \Delta \dot{m}_{\rm Prel} + \left| \frac{\partial m_{\rm H_2}}{\partial T_{\rm Amb}} \right| \Delta T_{\rm Amb} + \left| \frac{\partial m_{\rm H_2}}{\partial V_{\rm Tot}} \right| \Delta V^{1\,\rm mL} + \left| \frac{\partial m_{\rm H_2}}{\partial a} \right| \Delta a + \left| \frac{\partial m_{\rm H_2}}{\partial b} \right| \Delta b \quad (E.14)$$

Annexe F

000

Membrane perméable à l'H₂ et

détermination du volume de la ligne de

mesure de la $f_{\rm H_2}$

F.1 Caractéristiques de la membrane perméable à l'H₂

La ligne de mesure de la $f_{\rm H_2}$ (cf. Chapitre 2 et Paragraphe 5.4) est formée d'une membrane perméable à l'H₂, d'un manomètre 0 - 10 MPa et d'une vanne permettant d'isoler, ou, au contraire, de relier la ligne de mesure au système d'injection ou d'extraction d'H₂ (Annexe C.1). Ces trois constituants sont liés entre eux par des capillaires 1/16" et un raccord en « T » (Figure F.1).

La membrane a été réalisée par nos soins à l'atelier de l'ISTO. Elle est construite à partir d'un tube en Au₂₀Pd₈₀ (pds.%) ayant un diamètre interne de 5 mm, une épaisseur de 0,2 mm et une longueur de 45 mm (Figure F.2). Afin d'éviter l'écrasement de la membrane sous l'effet de la pression, une carotte en mullite poreuse (mullite 80P, 74 pds.% d'Al₂SiO₃ + 26 pds.% de SiO₂, porosité d'ouverture 9%) de 35 mm de long et de 5 mm de diamètre est insérée dans le tube. Avant fermeture des deux extrémités du tube, de la mullite en poudre est ajouté afin de combler les éventuels espaces vides restant entre la carotte et les bouchons. Ces derniers, également en Au₂₀Pd₈₀, sont ensuite liés au tube par soudure TIG (Tungstène Inert Gas) sans apport de matériel. Une des deux extrémités de la membrane est percée de façon à introduire dans celle-ci un capillaire qui vient se loger dans la carotte. Ce capillaire a pour fonction de relier la membrane au reste de la chaine de mesure de la $f_{\rm H_2}$. Enfin, une brasure en argent est réalisée à chacune des deux extrémités dans le but de renforcer le tout et de fixer le capillaire (Figure F.2).

Le capillaire liant la membrane au reste de la chaîne de mesure de la $f_{\rm H_2}$ est introduit dans la capsule réactionnelle par la canne de prélèvement (Figure F.1). Un espace suffisamment large

FIGURE F.1 – Ligne de mesure de la $f_{\rm H_2}$ en place. Les composants appartenant à cette ligne sont encadrés. Les différents capillaires ¹/₁₆" reliant ces derniers entre-eux sont surlignés en pointillés rouges. Sur ce schéma le montage est adapté à l'étude des mélanges H₂O-H₂ (cf. Paragraphe 5.4). Aucune modification n'est apporté à la ligne de mesure de la $f_{\rm H_2}$ quand le montage est adapté à l'étude des conditions rédox associées au processus de serpentinisation (utilisation d'une capsule en Ti, cf. Chapitre 2). * Les dispositifs de contrôle la pression de confinement ($P_{\rm Tot}$) et de la $f_{\rm H_2}$ sont décrits dans l'Annexe C. ** Les méthodes de prélèvement sont décrites dans l'Annexe E.

permet au fluide de passer dans le canne malgré la présence du capillaire. La Figure F.3 présente le répartiteur « T » réalisé afin d'introduire le capillaire de la ligne d'H₂ dans la canne de prélèvement.

F.2 Volume de la ligne de mesure de la $f_{\rm H_2}$

Lors des expériences de serpentinisation conduites uniquement dans le but d'échantillonner ponctuellement le fluide (c'est-à-dire sans membrane, cf. Chapitre 2), l'H₂ produit est cantonné à la cellule réactionnelle. Ceci n'est plus vrai lors de l'ajout d'un dispositif de mesure de la $f_{\rm H_2}$ puisque, dans ce cas, une part de l'H₂ produit occupe le volume de la ligne de mesure de la $f_{\rm H_2}$ ($V_{\rm Mb}$). En conséquence, pour une même quantité d'H₂ produite (c'est-à-dire pour un même avancement de la réaction de serpentinisation) la $f_{\rm H_2}$ dans la cellule réactionnelle avec membrane sera plus basse que la $f_{\rm H_2}$ dans la cellule réactionnelle sans membrane. Ceci est d'autant plus vrai que le rapport des volumes de la membrane et de la cellule réactionnelle ($V_{\rm Mb}/V_{c}$) est élevé. L'ajout d'un dispositif de mesure de la $f_{\rm H_2}$, de par son volume non nul, n'est donc pas neutre, c'est pourquoi il est nécessaire de minimiser tant que possible son volume « mort ».

Dans cette optique, la géométrie du dispositif de mesure de la f_{H_2} a été optimisée de façon à écourter autant que possible les longueurs des capillaires reliant membrane, manomètre et vanne. Toujours dans le même esprit, l'ensemble des volumes « morts » de la ligne a été réduit. Ainsi, de la corde à piano d'un diamètre de 0,18 mm a été insérée dans l'ensemble des capillaires (diamètre interne : 0,21 mm) et des réducteurs de volume en TEFLON[®] usinés sur mesure ont été insérés aux entrées de la vanne, du manomètre et du raccord en « T » (Figure F.1).

Le volume total de la chaîne de mesure de la $f_{\rm H_2}$ a été déterminé afin d'estimer le rapport $V_{\rm Mb}/v_c$. La géométrie du dispositif étant complexe (manomètre, vanne, raccords, capillaires et membrane, Figure F.1) une estimation du volume par différence de masse entre le dispositif rempli d'eau et le

FIGURE F.2 – Membrane utilisée pour la mesure de la $f_{\rm H_2}$. À gauche, photo de la membrane une prête à utilisation. Le capillaire de la membrane est introduit dans la capsule réactionnelle au travers de la canne de prélèvement. À droite, schéma en coupe de la membrane.

FIGURE F.3 – Répartiteur en « T » réalisé afin d'introduire dans la canne de prélèvement le capillaire liant la membrane au reste de la ligne de mesure de la f_{H_2} . Le capillaire de la ligne d'H₂ est solidaire de la manchette supérieure tandis qu'un second capillaire, solidaire de la manchette de gauche, permet d'orienter le fluide vers une vanne de prélèvement.

dispositif sec n'est pas envisageable. Cela l'est d'autant moins qu'il est difficile, une fois le dispositif assemblé, de saturer en eau la mullite contenue dans la membrane. Pour remédier à ce problème, la méthode utilisée afin de déterminer $V_{\rm Mb}$ met en jeu un gaz qui, au contraire de l'eau, peut occuper de façon homogène la totalité du volume de la ligne de mesure de la $f_{\rm H_2}$. Cette méthode repose sur la loi de Boyle-Mariotte qui stipule, qu'à température constante, toute modification de volume $(V_1 \rightarrow V_2)$ d'une quantité définie de gaz s'accompagne d'une modification de sa pression $(P_1 \rightarrow P_2)$ de sorte que :

$$P_1V_1 = P_2V_2 = cste \tag{F.1}$$

En mesurant les pressions avant (P_1) et après (P_2) détente dans la ligne de mesure de la f_{H_2} d'un volume de gaz initialement contenu dans un volume V_1 connu, l'équation (F.1) permet de déterminer V_2 . Ce dernier correspondant à la somme de V_1 et de V_{Mb} , il est ensuite aisé de déterminer V_{Mb} . Le domaine d'application de cette loi reste toutefois limité aux pressions n'excédant pas la dizaine d'atmosphères, et est mieux appropriée aux gaz constitués d'atomes ou de molécules de petites dimensions. Pour ces mesures notre choix s'est porté sur l'Ar.

Cependant V_1 est également difficile à déterminer car, tout comme la ligne de mesure de la f_{H_2} , il est formé par la combinaison des volumes propres de la vanne d'admission du gaz, du manomètre nécessaire à la mesure de P_1 et P_2 et des capillaires et raccords reliant le tout. En conséquence l'équation (F.1) n'a plus une mais deux inconnues. Pour pallier ce problème il faut donc une seconde équation qui, associée à l'équation (F.1), permettra de déterminer à la fois V_1 et V_2 . Dans ce but, un autre couple de pressions (P_3 et P_4 , respectivement avant et après détente dans la ligne de mesure de la f_{H_2}) est mesuré en ayant auparavant modifié le volume total du dispositif par l'ajout d'un réducteur dont le volume est connu (V_R , Figure F.4).

En posant :

FIGURE F.4 – Représentation schématique des 2 détentes et des 4 mesures de pressions associées, nécessaire à la détermination de $V_{\rm Mb}$. $V_{\rm R}$ correspond au volume connu du réducteur (en orange sur le schéma) introduit dans le dispositif avant de réaliser la seconde détente.

$$V_2 = V_{\rm Mb} + V_1 \tag{F.2}$$

on obtient ainsi le système d'équations :

$$\begin{cases} P_1 V_1 - P_2 V_2 = 0\\ P_3 (V_1 - V_R) - P_4 (V_2 - V_R) = 0 \end{cases}$$
(F.3)

dont la solution donnée par :

$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} P_1 & -P_2 \\ P_3 & -P_4 \end{pmatrix}^{-1} \times \begin{pmatrix} 0 \\ V_{\rm R}(P_3 - P_4) \end{pmatrix}$$
(F.4)

permet de calculer $V_{\rm Mb}$ à partir de V_1 et V_2 eux-mêmes calculés à partir des P_1 , P_2 , P_3 , P_4 et $V_{\rm R}$ mesurés.

En pratique, il existe une petite correction à apporter au $V_{\rm Mb}$ mesuré avec cette méthode pour obtenir le $V_{\rm Mb}$ effectif durant les expériences de mesures de la $f_{\rm H_2}$. Ceci vient du fait que la vanne quart de tour à boisseau sphérique isolant $V_{\rm Mb}$ de V_1 possède un volume propre ($V_{\rm Vn}$, Vanne 1 sur les Figure F.5 et Figure F.6) qui, selon la procédure de détermination des volumes, est inclus dans $V_{\rm Mb}$. Or durant les expériences de mesures de la $f_{\rm H_2}$, cette vanne est fermée et $V_{\rm Vn}$ est exclu de $V_{\rm Mb}$. En effet, pour mesurer P_1 et P_2 , le vide est d'abord imposé au volume total, puis la vanne 1 est fermée, du gaz est introduit à P_1 dans $V_{\rm A}$, enfin la vanne 1 est de nouveau ouverte pour permettre la détente et la mesure de P_2 . Or durant la phase pendant laquelle la vanne 1 est fermée, la fraction de gaz contenue dans $V_{\rm Vn}$ est toujours égale à la pression consécutive à l'imposition initiale du vide, ce qui inclus de fait $V_{\rm Vn}$ dans $V_{\rm Mb}$. Il en résulte que le $V_{\rm Mb}$ effectif est égal au $V_{\rm Mb}$ mesuré ôté de $V_{\rm Vn}$. Malgré cet inconvénient, l'utilisation d'une vanne quart de tour reste préférable à celle d'une vanne pointeau qui, selon qu'elle soit ouverte ou fermée, fait varier le volume total. D'autant plus que $V_{\rm Vn}$ est aisément quantifiable.

6 couples de pressions (avant et après détente dans la ligne de mesure de la $f_{\rm H_2}$) ont été mesurés et, pour chacune de ces détentes, un ou plusieurs réducteurs de volumes connus ont été introduits

FIGURE F.5 – Dispositif utilisé afin de déterminer $V_{\rm Mb}$. La zone en pointillés verts englobe les composants contribuant à $V_{\rm Mb}$ et celle en rouges les composants contribuant à V_1 . Durant les mesures, la membrane est confinée dans un autoclave de type Dickson & Seyfried à large volume pressurisée à une dizaine de MPa afin d'éviter sa dilatation. Le réservoir tampon permet de charger un ou plusieurs réducteurs de volume. La vanne 2 permet d'isoler V_1 du dispositif d'introduction d'Ar et de la pompe permettant d'imposer le vide initial. * Le dispositif de contrôle la pression de confinement ($P_{\rm Tot}$) est décrit dans l'Annexe C.

FIGURE F.6 – Schéma en coupe d'une vanne quart de tour à boisseau sphérique utilisé pour isoler $V_{\rm Mb}$ de V_1 . La vanne est en position ouverte en haut et fermée en bas. Les surfaces en violet délimitent le volume propre à la vanne $(V_{\rm Vn})$.

dans le dispositif de mesure (Tableaux F.1 et F.2 et Figure F.5). Sachant qu'il faut deux couples de pression pour déterminer une mesure de volume et que $V_{\rm R}$ (différence entre les volumes cumulés des réducteurs présents dans le dispositif lors des deux détentes) doit être positif, les 6 mesures de détentes effectuées permettent de déterminer 15 $V_{\rm Mb}$. La solution générale est donnée par :

$$nb_{V_{\rm Mb}} = \frac{(nb_{\rm D\acute{e}t} - 1)nb_{\rm D\acute{e}t}}{2} \tag{F.5}$$

où $nb_{V_{\rm Mb}}$ est le nombre de mesures de $V_{\rm Mb}$ calculables et $nb_{\rm D\acute{e}t}$ le nombre de détentes opérées.

Il est à noter que le manomètre utilisé pour ces mesures donne des pressions relatives (c'està-dire qu'il affiche 0 Pa à pression atmosphérique). Il en résulte que les pressions mesurées lors de l'imposition initiale du vide sont négatives (≈ -0.1 MPa) et doivent être retranchées à P_1 et P_2 avant le calcul de $V_{\rm Mb}$. Les 15 $V_{\rm Mb}$ ainsi obtenus sont présentés Figure F.7 et les erreurs associées sont déterminées de la façon suivante :

$$\Delta V_{\rm Mb} = \left(\sum_{i=1}^{4} \left[\left(\frac{\partial V_{\rm Mb}}{\partial P_i}\right)^2 \Delta P_i^2 \right] + \sum_{i=1}^{n} \left[\left(\frac{\partial V_{\rm Mb}}{\partial \varnothing_i}\right)^2 \Delta \vartheta_i^2 + \left(\frac{\partial V_{\rm Mb}}{\partial l_i}\right)^2 \Delta l_i^2 \right] + \sum_{i=1}^{2} \left[\left(\frac{\partial V_{\rm Mb}}{\partial P_{\rm Vide,\,i}}\right)^2 \Delta P_{\rm Vide,\,i}^2 \right] + \left(\frac{\partial V_{\rm Mb}}{\partial \varnothing_{\rm Vn}}\right)^2 \Delta \vartheta_{\rm Vn}^2 + \left(\frac{\partial V_{\rm Mb}}{\partial l_{\rm Vn}}\right)^2 \Delta l_{\rm Vn}^2 \right)^{1/2} \quad (F.6)$$

avec P_i les 4 pressions mesurées au cours des deux détentes conduisant à la détermination de $V_{\rm Mb}$, $P_{\rm Vide, i}$ les pressions mesurées après l'imposition du vide avant chacune des 2 détentes, \emptyset_i et l_i les

TABLEAU F.1 – Mesures des pressions avant et après détente dans la ligne de mesure de la $f_{\rm H_2}$. Les pressions correspondant aux vides initiaux sont négatives car le manomètre utilisé donne des pressions relatives (voir texte). Les caractéristiques géométriques des différents réducteurs utilisés (\checkmark) sont données dans le Tableau F.2.

P_1 (MPa)	P_2 (MPa)	$P_{ m Vide}$ (MPa)	R1	R2	R3	R4	R5	Volume total des réducteurs (cm^3)
0,693	0,615	-0,096	\checkmark					2,215
0,710	$0,\!626$	-0,101			\checkmark			2,521
0,719	$0,\!618$	-0,100			\checkmark		\checkmark	3,566
0,708	0,597	-0,096	\checkmark	\checkmark				4,430
0,725	0,599	-0,101			\checkmark	\checkmark		5,041
0,724	0,568	-0,100			\checkmark	\checkmark	\checkmark	6,086

TABLEAU F.2 – Caractéristiques des différents réducteurs de volume utilisés pour déterminer le volume du dispositif de mesure de la $f_{\rm H_2}$.

Réducteur	Diamètre (cm)	Longueur (cm)	$\begin{array}{c} \text{Volume} \\ (\text{cm}^3) \end{array}$
R1	$0,\!597$	7,913	2,215
R2	0,597	7,911	2,214
R3	$0,\!694$	$6,\!665$	2,521
R4	$0,\!693$	$6,\!681$	2,520
R5	$0,\!693$	2,769	1,044

FIGURE F.7 – Les 15 mesures de $V_{\rm Mb}$ et erreurs associées obtenues à partir des 6 détentes réalisées. La ligne en rouge correspond au volume moyen pondéré, la zone en rouge clair à l'erreur associée.

diamètres et les longueurs des *n* réducteurs de volumes utilisés pour les 2 détentes, et \emptyset_{Vn} et l_{Vn} le diamètre et la longueur permettant de déterminer V_{Vn} . Pour une mesure de V_{Mb} , les 6 pressions sont mesurées avec le même manomètre dont la précision est de ± 2 kPa. Les diamètres et longueurs des différents réducteurs utilisés, ainsi que ceux de V_{Vn} sont mesurés au moyen d'un même pied à coulisse dont la précision est de $\pm 1 \times 10^{-5}$ m.

Le $V_{\rm Mb}$ moyen pondéré obtenu à partir des équations (F.7) et (F.8) est de $0.79 \pm 0.03 \,\mathrm{cm}^3$. Sachant que le volume de la cellule réactionnelle est $\approx 135 \,\mathrm{cm}^3$, le rapport $V_{\rm Mb}/v_c$ vaut $\approx 6 \times 10^{-3}$.

$$\overline{V_{\rm Mb}} = \frac{\sum_{i=1}^{n} \frac{V_{\rm Mb,i}}{\Delta V_{\rm Mb,i}}}{\sum_{i=1}^{n} \frac{1}{\Delta V_{\rm Mb,i}^2}}$$
(F.7)

$$\overline{\Delta V_{\rm Mb}} = \sqrt{\frac{1}{\sum_{i=1}^{n} \frac{1}{\Delta V_{\rm Mb, i}^2}}}$$
(F.8)

La Figure F.7 montre clairement une grande variabilité de l'erreur associée à chacune des mesures de $V_{\rm Mb}$. Quelle que soit la mesure de $V_{\rm Mb}$, ce sont les erreurs sur les mesures de pression qui contribuent très largement à l'erreur globale. La grande variabilité des erreurs s'explique donc par des différences plus ou moins marquées entre les pressions mesurées (l'erreur augmentant quand les différences diminuent). Deux configurations peuvent conduire des petites différences entre les pressions :

- Un volume V_1 très largement supérieur à $V_{\rm Mb}$. Ceci aura pour conséquence une très faible diminution de la pression lors de la détente.
- Un volume $V_{\rm R}$ trop faible. Ceci aura pour conséquence, en partant de pressions pré-détentes normalisées entre elles, un trop faible contraste entre les deux pressions post-détentes.

FIGURE F.8 – Évolution de $\Delta V_{\rm Mb}$ en fonction de $V_{\rm R}$.

Dans nos mesures une bonne partie de l'erreur est imputable au second cas car l'erreur de $V_{\rm Mb}$ est inversement corrélée au $V_{\rm R}$ utilisé pour la calculer (Figure F.8).

Les volumes du dispositif, qui correspondent aux V_1 additionnés de $V_{\rm Vn}$, sont présentés Figure F.9. Le volume moyen correspondant est de $9.6 \pm 0.1 \,\mathrm{cm}^3$ (les erreurs sont calculées de la même façon que pour les $\Delta V_{\rm Mb}$). Ce résultat est satisfaisant en sachant que le volume principal du dispositif est imputable au réservoir tampon dont le volume propre est de $\approx 7.5 \,\mathrm{cm}^3$.

FIGURE F.9 – Les 15 mesures et erreurs associées du volume du dispositif $(V_1 - V_{Vn})$ obtenues à partir des 6 détentes réalisées. La ligne en rouge correspond au volume moyen pondéré, la zone en rouge clair à l'erreur associée.

Bibliographie

- ABRAJANO, T. A., STURCHIO, N. C., KENNEDY, B. M., LYON, G. L., MUEHLENBACHS, K. et BOHLKE, J. K. (1990). Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines. *Applied Geochemistry*, 5(5):625–630.
- ALLEN, D. E. et SEYFRIED, Jr., W. E. (2003). Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges : An experimental study at 400 °C, 500 bars. *Geochimica et Cosmochimica Acta*, 67(8) :1531–1542.
- AMANTE, C. et EAKINS, B. W. (2009). ETOPO1 1 arc-minute global relief model : procedures, data sources and analysis. US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division.
- ANDREANI, M., GRAUBY, O., BARONNET, A. et MUÑOZ, M. (2008). Occurrence, composition and growth of polyhedral serpentine. *European Journal of Mineralogy*, 20(2) :159–171.
- ANDREANI, M., MÉVEL, C., BOULLIER, A.-M. et ESCARTIN, J. (2007). Dynamic control on serpentine crystallization in veins : constraints on hydration processes in oceanic peridotites. *Geochemistry, Geophysics, Geosystems*, 8(2).
- ANDREANI, M., MUNOZ, M., MARCAILLOU, C. et DELACOUR, A. (2013). µxanes study of iron redox state in serpentine during oceanic serpentinization. *Lithos*, 178 :70–83.
- BACH, W., PAULICK, H., GARRIDO, C. J., ILDEFONSE, B., MEURER, W. P. et HUMPHRIS, S. E. (2006). Unraveling the sequence of serpentinization reactions : petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP leg 209, Site 1274). *Geophysical research letters*, 33(13).
- BATUEV, B. N., KROTOV, A. G., MARKOV, V. F., CHERKASHEV, G. A., KRASNOV, S. G. et LISITSYN, Y. D. (1994). Massive sulfide deposits discovered and sampled at 14°45′N, Mid-Atlantic Ridge. BRIDGE Newsletter, 6 :6–10.
- BELTENEV, V., NESCHERETOV, A., SHILOV, V., SHAGIN, A., STEPANOVA, T., CHERKASHEV, G., BATUEV, B., SAMOVAROV, M., ROZHDESTVENSKAYA, I., ANDREEVA, I. et al. (2003). New discoveries at 12°58'N, 44°52'W, MAR : Professor Logatchev-22 cruise, initial results. *InterRidge* News, 12(1) :13–14.
- BEN Alias : BENOÎT POELVOORDE (1992). C'est arrivé près de chez vous. Réalisation et Production : Rémy Belvaux, André Bonzel et Benoît Poelvoorde (Les artistes anonymes), Scénario : Rémy Belvaux, André Bonzel, Benoît Poelvoorde et Vincent Tavier.
- BERCKHEMER, H., KAMPFMANN, W., AULBACH, E. et SCHMELING, H. (1982). Shear modulus and Q of forsterite and dunite near partial melting from forced-oscillation experiments. *Physics of the earth and planetary interiors*, 29(1):30–41.
- BERNDT, M. E., ALLEN, D. E. et SEYFRIED, Jr., W. E. (1996). Reduction of CO₂ during serpentinization of olivine at 300 °C and 500 bar. *Geology*, 24(4) :351–354.

BINET, C. (1980–2012). Les Bidochon, (21 tomes). Audie – Fluide Glacial, Paris.

- BOGDANOV, Y., SAGALEVITCH, A., CHERNYAEV, E., ASHADZE, A., GURVICH, E., LUKASHIN, V., IVANOV, G. et PERESYPKIN, V. (1995). A study of the hydrothermal field at 14°45′N on the Mid-Atlantic Ridge using the "MIR" submersibles. *BRIDGE newsl*, 9 :9–13.
- BOUDIER, F., BARONNET, A. et MAINPRICE, D. (2010). Serpentine mineral replacements of natural olivine and their seismic implications : Oceanic lizardite versus subduction-related antigorite. *Journal of Petrology*, 51(1-2) :495–512.
- BURNHAM, C. W., HOLLOWAY, J. R. et DAVIS, N. F. (1969). Thermodynamic properties of water to 1,000 C and 10,000 bars. *Geological Society of America Special Papers*, 132 :1–96.
- CANNAT, M. (1993). Emplacement of mantle rocks in the seafloor at mid-ocean ridges. Journal of Geophysical Research : Solid Earth (1978–2012), 98(B3) :4163–4172.
- CANNAT, M., BIDEAU, D. et BOUGAULT, H. (1992). Serpentinized peridotites and gabbros in the Mid-Atlantic Ridge axial valley at 15°37′N and 16°52′N. *Earth and Planetary Science Letters*, 109(1):87–106.
- CANNAT, M., FONTAINE, F. et ESCARTÍN, J. (2010). Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges. In RONA, P. A., DEVEY, C. W., DYMENT, J. et MURTON, B. J., éditeurs : Diversity of hydrothermal systems on slow spreading ocean ridges, pages 241–264. American Geophysical Union, Washington, D. C.
- CANNAT, M., MANATSCHAL, G., SAUTER, D. et PERON-PINVIDIC, G. (2009). Assessing the conditions of continental breakup at magma-poor rifted margins : What can we learn from slow spreading mid-ocean ridges? *Comptes Rendus Geoscience*, 341(5):406–427.
- CANNAT, M., MEVEL, C., MAIA, M., DEPLUS, C., DURAND, C., GENTE, P., AGRINIER, P., BELA-ROUCHI, A., DUBUISSON, G., HUMLER, E. *et al.* (1995). Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic ridge (22°–24°N). *Geology*, 23(1):49–52.
- CHARLOU, J.-L. et DONVAL, J.-P. (1993). Hydrothermal methane venting between 12°N and 26°N along the Mid-Atlantic Ridge. *Journal of Geophysical Research : Solid Earth*, 98(B6) :9625–9642.
- CHARLOU, J. L., DONVAL, J. P., FOUQUET, Y., JEAN-BAPTISTE, P. et HOLM, N. (2002). Geochemistry of high H_2 and CH_4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). *Chemical Geology*, 191(4) :345–359.
- CHARLOU, J. L., DONVAL, J. P., KONN, C., ONDRÉAS, H., FOUQUET, Y., JEAN-BAPTISTE, P. et FOURRÉ, E. (2010). High production and fluxes of H₂ and CH₄ and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. In RONA, P. A., DEVEY, C. W., DYMENT, J. et MURTON, B. J., éditeurs : Diversity of hydrothermal systems on slow spreading ocean ridges, pages 265–296. American Geophysical Union, Washington, D. C.
- CHOU, I.-M. (1986). Permeability of precious metals to hydrogen at 2 kbar total pressure and elevated temperatures. *American Journal of Science*, 286(8) :638–658.
- CHOU, I.-M. (1987). Oxygen Buffer and Hydrogen Sensor Techniques at Elevated Pressures and Temperatures. In ULMER, G. C. et BARNES, H. L., éditeurs : Hydrothermal Experimental Techniques, pages 61–99. John Wiley and Sons, New York, NY.
- CLEMENS, J. D. et MCKIBBEN, M. A. (1987). TEFLON as a Hydrogen Diffusion Membrane : Application in Hydrothermal Experiments. In ULMER, G. C. et BARNES, H. L., éditeurs : Hydrothermal Experimental Techniques, pages 121–140. John Wiley and Sons, New York, NY.
- DAY, R., FULLER, M. et SCHMIDT, V. A. (1977). Hysteresis properties of titanomagnetites : grainsize and compositional dependence. *Physics of the Earth and Planetary Interiors*, 13(4):260–267.
- DEMETS, C., GORDON, R. G., ARGUS, D. F. et STEIN, S. (1990). Current plate motions. Geophysical journal international, 101(2) :425–478.

- DICK, H. J. B., LIN, J. et SCHOUTEN, H. (2003). An ultraslow-spreading class of ocean ridge. *Nature*, 426(6965) :405–412.
- DING, K. et SEYFRIED, Jr., W. E. (1990). Activity coefficients of H₂, H₂S in NaCl solutions at 300 425 °C, 300 500 bar with application to ridge crest hydrothermal systems. *EOS*, *Transactions American Geophysical Union*, 71 :1680.
- DRUMMOND, Jr., S. E. (1981). Boiling and Mixing of Hydrothermal Fluids : Chemical Effects on Mineral Precipitation. Thèse de doctorat, The Pennsylvania State University.
- ESCARTÍN, J., HIRTH, G. et EVANS, B. (1997). Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges. *Earth and Planetary Science Letters*, 151(3) :181–189.
- ESCARTÍN, J., HIRTH, G. et EVANS, B. (2001). Strength of slightly serpentinized peridotites : Implications for the tectonics of oceanic lithosphere. *Geology*, 29(11) :1023–1026.
- EUGSTER, H. P. (1957). Heterogeneous reactions involving oxidation and reduction at high pressures and temperatures. *The Journal of Chemical Physics*, 26(6):1760–1761.
- EVANS, B. W. (2008). Control of the products of serpentinization by the $Fe^{2+}Mg_{-1}$ exchange potential of olivine and orthopyroxene. Journal of Petrology, 49(10) :1873–1887.
- EVANS, K. A., POWELL, R. et FROST, B. R. (2013). Using equilibrium thermodynamics in the study of metasomatic alteration, illustrated by an application to serpentinites. *Lithos*, 168:67–84.
- FAROUGH, A., MOORE, D. E., LOCKNER, D. A. et LOWELL, R. P. (2016). Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions : An experimental study. *Geochemistry, Geophysics, Geosystems*, 17(1):44–55.
- FAUGUEROLLES, C. (2016). This Thesis Manuscript (I have not found definitive title yet). Thèse de doctorat, Université d'Orléans.
- FAUGUEROLLES, C., CASTELAIN, T., VILLNEUVE, J. et PICHAVANT, M. (2017a). In situ experimental quantification of H₂ generation and determination of redox parameters (f_{h_2}, f_{h_2}) during serpentinization. Not yet submitted, Chapter II of this manuscript.
- FAUGUEROLLES, C., CASTELAIN, T., VILLNEUVE, J., ROUMÉJON, S. et PICHAVANT, M. (2017b). Reaction mechanisms during serpentinization - Textural constraints and mineral chemistry data from experiments on a harzburgite at 250 – 350 °C, 50 MPa. Not yet submitted, Chapter III of this manuscript.
- FAUGUEROLLES, C., CASTELAIN, T., VILLNEUVE, J. et PICHAVANT, M. (2017c). Internally vs. externally $f_{\rm H_2}$ controlled experiments results and implication for the serpentinisation reaction. Not yet submitted, Chapter IV of this manuscript.
- FLOWERS, G. C. (1979). Correction of Holloway's (1977) adaptation of the modified Redlich-Kwong equation of state for calculation of the fugacities of molecular species in supercritical fluids of geologic interest. *Contributions to Mineralogy and Petrology*, 69(3):315–318.
- FOUQUET, Y., CHARLOU, J. L., ONDREAS, H., RADFORD-KNOERY, J., DONVAL, J. P., DOUVILLE, E., APPRIOUAL, R., CAMBON, P., PELLÉ, H., LANDURÉ, J. et al. (1997). Discovery and first submersible investigations on the Rainbow hydrothermal field on the MAR (36°14′N). Eos Trans. AGU, 78(46) :F832.
- FOUSTOUKOS, D. I., BIZIMIS, M., FRISBY, C. et SHIREY, S. B. (2015). Redox controls on Ni– Fe–PGE mineralization and Re/Os fractionation during serpentinization of abyssal peridotite. *Geochimica et Cosmochimica Acta*, 150 :11–25.
- FRANTZ, J. D., FERRY, J. M., POPP, R. K. et HEWITT, D. A. (1977). Redesign of the Shaw apparatus for controlled hydrogen fugacity during hydrothermal experimentation. *Carnegie Institution of Washington Year Book*, 76:660–662.

- FROST, B. R. (1985). On the stability of sulfides, oxides, and native metals in serpentinite. Journal of Petrology, 26(1):31–63.
- FROST, B. R. et BEARD, J. S. (2007). On silica activity and serpentinization. Journal of Petrology, 48(7):1351–1368.
- FROST, B. R., EVANS, K. A., SWAPP, S. M., BEARD, J. S. et MOTHERSOLE, F. E. (2013). The process of serpentinization in dunite from New Caledonia. *Lithos*, 178 :24–39.
- GARRELS, R. M. et CHRIST, C. L. (1965). Solutions, Minerals and Equilibria. Freeman and Cooper and Cie, San Francisco, CA.
- GARRELS, R. M. et THOMPSON, M. E. (1962). A chemical model for sea water at 25 degrees C and one atmosphere total pressure. *American Journal of Science*, 260(1):57–66.
- GUNTER, W. D., MYERS, J. et GIRSPERGER, S. (1987). Hydrogen : Metal Membranes. In ULMER, G. C. et BARNES, H. L., éditeurs : Hydrothermal Experimental Techniques, pages 100–120. John Wiley and Sons, New York, NY.
- HARKINS, M., GREEN, H. W. II et MOORES, E. (1980). Multiple intrusive events documented from the Vourinos ophiolite complex, northern Greece. *American Journal of Science*, 280(A) :284–295.
- HELGESON, H. C. (1969). Thermodynamics of hydrothermal systems at elevated temperatures and pressures. American journal of science, 267(7):729–804.
- IYER, K., JAMTVEIT, B., MATHIESEN, J., MALTHE-SØRENSSEN, A. et FEDER, J. (2008). Reactionassisted hierarchical fracturing during serpentinization. *Earth and Planetary Science Letters*, 267(3):503–516.
- JACKSON, I., PATERSON, M. S. et GERALD, J. D. F. (1992). Seismic wave dispersion and attenuation in Åheim dunite : an experimental study. *Geophysical Journal International*, 108(2) :517–534.
- JAMTVEIT, B., PUTNIS, C. V. et MALTHE-SØRENSSEN, A. (2009). Reaction induced fracturing during replacement processes. *Contributions to Mineralogy and Petrology*, 157(1):127–133.
- JANECKY, D. R. et SEYFRIED, W. E. (1986). Hydrothermal serpentinization of peridotite within the oceanic crust : experimental investigations of mineralogy and major element chemistry. *Geochimica et Cosmochimica Acta*, 50(7) :1357–1378.
- JOHNSON, J. W., OELKERS, E. H. et HELGESON, H. C. (1992). SUPCRT92 : A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 - 5000 bar and 0 - 1000 °C. Computers & Geosciences, 18(7) :899–947.
- KARSON, J. A., THOMPSON, G., HUMPHRIS, S. E., EDMOND, J. M., BRYAN, W. B., BROWN, J. R., WINTERS, A. T., POCKALNY, R. A., CASEY, J. F., CAMPBELL, A. C., KLINKHAMMER, G., PALMER, M. R., KINZLER, R. J. et SULANOWSKA, M. M. (1987). Along-axis variations in seafloor spreading in the MARK area. *Nature*, 328 :681–685.
- KELEMEN, P. B. et HIRTH, G. (2012). Reaction-driven cracking during retrograde metamorphism : Olivine hydration and carbonation. *Earth and Planetary Science Letters*, 345 :81–89.
- KELLEY, D. S., KARSON, J. A., BLACKMAN, D. K., FRUÈH-GREEN, G. L., BUTTERFIELD, D. A., LILLEY, M. D., OLSON, E. J., SCHRENK, M. O., ROE, K. K., LEBON, G. T. *et al.* (2001). An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. *Nature*, 412(6843) :145– 149.
- KELLEY, D. S., KARSON, J. A., FRÜH-GREEN, G. L., YOERGER, D. R., SHANK, T. M., BUTTER-FIELD, D. A., HAYES, J. M., SCHRENK, M. O., OLSON, E. J., PROSKUROWSKI, G. et al. (2005). A serpentinite-hosted ecosystem : the Lost City hydrothermal field. *Science*, 307(5714) :1428–1434.
- KISHIMOTO, N., TANABE, T., SUZUKI, T. et YOSHIDA, H. (1985). Hydrogen diffusion and solution at high temperatures in 316L stainless steel and nickel-base heat-resistant alloys. *Journal of Nuclear Materials*, 127(1):1–9.

- KISHIMOTO, N., TANABE, T., YOSHIDA, H. et WATANABE, R. (1984). Hydrogen permeation of Hastelloy XR for high-temperature gas-cooled reactors. *Journal of Nuclear Materials*, 120(2): 254–266.
- KLEIN, F. et BACH, W. (2009). Fe-Ni-Co-O-S phase relations in peridotite-seawater interactions. Journal of Petrology, 50(1):37–59.
- KLEIN, F., BACH, W., HUMPHRIS, S. E., KAHL, W.-A., JÖNS, N., MOSKOWITZ, B. et BERQUÓ, T. S. (2014). Magnetite in seafloor serpentinite – Some like it hot. *Geology*, 42(2) :135–138.
- KLEIN, F., BACH, W., JÖNS, N., MCCOLLOM, T., MOSKOWITZ, B. et BERQUÓ, T. (2009). Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge. *Geochimica et Cosmochimica Acta*, 73(22) :6868–6893.
- KLEIN, F., BACH, W. et MCCOLLOM, T. M. (2013). Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. *Lithos*, 178:55–69.
- KLEIN, F., GROZEVA, N. G., SEEWALD, J. S., MCCOLLOM, T. M., HUMPHRIS, S. E., MOSKOWITZ, B., BERQUÓ, T. S. et KAHL, W.-A. (2015). Fluids in the Crust. Experimental constraints on fluid-rock reactions during incipient serpentinization of harzburgite. *American Mineralogist*, 100(4) :991–1002.
- KLEIN, F. et MCCOLLOM, T. M. (2013). From serpentinization to carbonation : new insights from a CO₂ injection experiment. *Earth and Planetary Science Letters*, 379 :137–145.
- KORZHINSKII, D. S. (1965). The theory of systems with perfectly mobile components and processes of mineral formation. *American Journal of Science*, 263(3):193–205.
- KRAMMER, K. (1990). Rock magnetic properties and opaque mineralogy of selected samples from Hole 670A. In DETRICK, R., HONNOREZ, J., BRYAN, W. B., JUTEAU, T. et et al., éditeurs : Proceedings of the Ocean Drilling Program, Scientific Reports, volume 106/109, pages 269–273.
- LAFAY, R., MONTES-HERNANDEZ, G., JANOTS, E., CHIRIAC, R., FINDLING, N. et TOCHE, F. (2012). Mineral replacement rate of olivine by chrysotile and brucite under high alkaline conditions. Journal of Crystal Growth, 347(1):62–72.
- MAFFIONE, M., MORRIS, A., PLÜMPER, O. et van HINSBERGEN, D. J. J. (2014). Magnetic properties of variably serpentinized peridotites and their implication for the evolution of oceanic core complexes. *Geochemistry, Geophysics, Geosystems*, 15(4):923–944.
- MALVOISIN, B. (2015). Mass transfer in the oceanic lithosphere : Serpentinization is not isochemical. *Earth and Planetary Science Letters*, 430:75–85.
- MALVOISIN, B., CARLUT, J. et BRUNET, F. (2012a). Serpentinization of oceanic peridotites : 1. A high-sensitivity method to monitor magnetite production in hydrothermal experiments. *Journal of Geophysical Research : Solid Earth (1978–2012)*, 117(B1).
- MALVOISIN, B., BRUNET, F., CARLUT, J., ROUMÉJON, S. et CANNAT, M. (2012b). Serpentinization of oceanic peridotites : 2. Kinetics and processes of San Carlos olivine hydrothermal alteration. *Journal of Geophysical Research : Solid Earth (1978–2012)*, 117(B4).
- MALVOISIN, B. et BRUNET, F. (2014). Water diffusion-transport in a synthetic dunite : Consequences for oceanic peridotite serpentinization. *Earth and Planetary Science Letters*, 403 :263– 272.
- MALVOISIN, B., BRUNET, F., CARLUT, J., MONTES-HERNANDEZ, G., FINDLING, N., LANSON, M., VIDAL, O., BOTTERO, J.-Y. et GOFFE, B. (2013). High-purity hydrogen gas from the reaction between bof steel slag and water in the 473–673 K range. *International Journal of Hydrogen Energy*, 38(18) :7382–7393.

- MARCAILLOU, C., MUNOZ, M., VIDAL, O., PARRA, T. et HARFOUCHE, M. (2011). Mineralogical evidence for H₂ degassing during serpentinization at 300 °C/300 bar. *Earth and Planetary Science Letters*, 303(3) :281–290.
- MARTIN, B. et FYFE, W. S. (1970). Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization. *Chemical Geology*, 6 :185–202.
- MARTIN, W., BAROSS, J., KELLEY, D. et RUSSELL, M. J. (2008). Hydrothermal vents and the origin of life. *Nature Reviews Microbiology*, 6(11) :805–814.
- MARTIN, W. et RUSSELL, M. J. (2007). On the origin of biochemistry at an alkaline hydrothermal vent. *Philosophical Transactions of the Royal Society of London B : Biological Sciences*, 362(1486) :1887–1926.
- MAYHEW, L. E., ELLISON, E. T., MCCOLLOM, T. M., TRAINOR, T. P. et TEMPLETON, A. S. (2013). Hydrogen generation from low-temperature water-rock reactions. *Nature Geoscience*, 6(6):478–484.
- MCCOLLOM, T. M. et BACH, W. (2009). Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. *Geochimica et Cosmochimica Acta*, 73(3):856–875.
- MCCOLLOM, T. M., KLEIN, F., ROBBINS, M., MOSKOWITZ, B., BERQUÓ, T. S., JÖNS, N., BACH, W. et TEMPLETON, A. (2016). Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine. *Geochimica et Cosmochimica Acta*, 181 :175–200.
- MCCOLLOM, T. M. et SEEWALD, J. S. (2001). A reassessment of the potential for reduction of dissolved CO₂ to hydrocarbons during serpentinization of olivine. *Geochimica et Cosmochimica Acta*, 65(21):3769–3778.
- MCCOLLOM, T. M. et SEEWALD, J. S. (2007). Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. *Chemical Reviews*, 107(2):382–401.
- MÉVEL, C. (2003). Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geoscience, 335(10) :825–852.
- MOODY, J. B. (1976). An experimental study on the serpentinization of iron-bearing olivines. *The Canadian Mineralogist*, 14(4):462–478.
- NAZAROVA, K. A., WASILEWSKI, P. J. et DICK, H. J. B. (2000). Magnetic study of serpentinized harzburgites from the Islas Orcadas Fracture Zone. *Marine Geophysical Researches*, 21(5):475–488.
- NEAL, C. et STANGER, G. (1983). Hydrogen generation from mantle source rocks in Oman. *Earth and Planetary Science Letters*, 66 :315–320.
- OGASAWARA, Y., OKAMOTO, A., HIRANO, N. et TSUCHIYA, N. (2013). Coupled reactions and silica diffusion during serpentinization. *Geochimica et Cosmochimica Acta*, 119:212–230.
- OUFI, O., CANNAT, M. et HOREN, H. (2002). Magnetic properties of variably serpentinized abyssal peridotites. Journal of Geophysical Research : Solid Earth, 107(B5).
- PICHAVANT, M. (1987). Effects of B and H₂O on liquidus phase relations in the haplogranite system at 1 kbar. *American Mineralogist*, 72(11-12) :1056–1070.
- PICHAVANT, M., VILLAROS, A., DEVEAUD, S., SCAILLET, B. et LAHLAFI, M. (2016). Influence of redox state on mica crystallization in leucogranitic and pegmatitic liquids. *Canadian Mineralogist*. To appear.
- PLÜMPER, O., RØYNE, A., MAGRASÓ, A. et JAMTVEIT, B. (2012). The interface-scale mechanism of reaction-induced fracturing during serpentinization. *Geology*, 40(12) :1103–1106.

- PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T. et FLANNERY, B. P. (2007). Numerical recipes 3rd edition : The art of scientific computing. Cambridge university press.
- PRÉVOT, M., LECAILLE, A. et MANKINEN, E. A. (1981). Magnetic effects of maghemitization of oceanic crust. *Journal of Geophysical Research : Solid Earth*, 86(B5) :4009–4020.
- REDLICH, O. et KWONG, J. N. S. (1949). On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. *Chemical reviews*, 44(1) :233–244.
- ROUMÉJON, S. et CANNAT, M. (2014). Serpentinization of mantle-derived peridotites at midocean ridges : Mesh texture development in the context of tectonic exhumation. *Geochemistry*, *Geophysics*, *Geosystems*, 15(6) :2354–2379.
- RUDERT, V., CHOU, I.-M. et EUGSTER, H. P. (1976). Temperature gradients in rapid-quench cold-seal pressure vessels. *American Mineralogist*, 61(9-10) :1012–1015.
- RUSSELL, M. J., HALL, A. J. et MARTIN, W. (2010). Serpentinization as a source of energy at the origin of life. *Geobiology*, 8(5):355–371.
- SCAILLET, B., PICHAVANT, M., ROUX, J., HUMBERT, G. et LEFEVRE, A. (1992). Improvements of the Shaw membrane technique for measurement and control of $f_{\rm H_2}$ at high temperatures and pressures. *American Mineralogist*, 77(5-6):647–655.
- SCHMIDT, B. C., SCAILLET, B. et HOLTZ, F. (1995). Accurate control of f_{H_2} in cold-seal pressure vessels with the Shaw membrane technique. *European Journal of Mineralogy*, pages 893–904.
- SEMPÉRÉ, J.-C., PURDY, G. M. et SCHOUTEN, H. (1990). Segmentation of the Mid-Atlantic Ridge between 24°N and 30°40′N. Nature, 344 :427–431.
- SEWARD, T. M. et FRANCK, E. U. (1981). The system hydrogen-water up to 440 °C and 2500 bar pressure. Berichte der Bunsengesellschaft für physikalische Chemie, 85(1) :2–7.
- SEYFRIED, W. E., JANECKY, D. R. et BERNDT, M. E. (1987). Rocking Autoclaves for Hydrothermal Experiments II. The Flexible Reaction-Cell System. *In* ULMER, G. C. et BARNES, H. L., éditeurs : *Hydrothermal Experimental Techniques*, pages 216–239. John Wiley and Sons, New York, NY.
- SEYFRIED, Jr., W. E., FOUSTOUKOS, D. I. et FU, Q. (2007). Redox evolution and mass transfer during serpentinization : An experimental and theoretical study at 200 °C, 500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges. *Geochimica et Cosmochimica Acta*, 71(15) :3872–3886.
- SHAW, H. R. (1963). Hydrogen-water vapor mixtures : control of hydrothermal atmospheres by hydrogen osmosis. *Science*, 139(3560) :1220–1222.
- SHAW, H. R. et WONES, D. R. (1964). Fugacity coefficients for hydrogen gas between 0 degrees and 1000 degrees C, for pressures to 3000 atm. *American Journal of Science*, 262(7) :918–929.
- SLEEP, N. H., MEIBOM, A., FRIDRIKSSON, T., COLEMAN, R. G. et BIRD, D. K. (2004). H₂-rich fluids from serpentinization : geochemical and biotic implications. *Proceedings of the National Academy of Sciences of the United States of America*, 101(35) :12818–12823.
- SMITH, G. M. et BANERJEE, S. K. (1985). Magnetic-properties of plutonic rocks from the central North-Atlantic Ocean. In BOUGAULT, H., CANDE, S. C., BRANNON, J. C., CHRISTIE, D. M., CLARK, M., CURTIS, D. M., DRAKE, N., ECHOLS, D., ASHLEY HILL, I., JAVED KHAN, M., MILLS, W., NEUSER, R., RIDEOUT, M. L. et WEAVER, B. L., éditeurs : Initial Reports of the Deep Sea Drilling Project, volume 82, pages 377–383. U.S. Government Printing Office, Washington, D.C. 20402-9325 USA.
- STEEFEL, C. I., DEPAOLO, D. J. et LICHTNER, P. C. (2005). Reactive transport modeling : An essential tool and a new research approach for the Earth sciences. *Earth and Planetary Science Letters*, 240(3) :539–558.

- SUN, R., LAI, S. et DUBESSY, J. (2015). Calculations of vapor–liquid equilibria of the H₂O-N₂ and H₂O-H₂ systems with improved SAFT-LJ EOS. *Fluid Phase Equilibria*, 390 :23–33.
- TOFT, P. B., ARKANI-HAMED, J. et HAGGERTY, S. E. (1990). The effects of serpentinization on density and magnetic susceptibility : a petrophysical model. *Physics of the Earth and Planetary Interiors*, 65(1-2) :137–157.
- WILHELM, E., BATTINO, R. et WILCOCK, R. J. (1977). Low-pressure solubility of gases in liquid water. *Chemical reviews*, 77(2) :219–262.
- WOLERY, T. J. (1992). EQ3/6 : A Software Package for Geochemical Modeling of Aqueous Systems : Package Overview and Installation Guide (Version 7.0). Lawrence Livermore National Laboratory Livermore, CA.

Colin FAUGUEROLLES

Étude expérimentale de la production d' ${ m H}_2$ associée à la serpentinisation des péridotites au niveau des dorsales océaniques lentes

Afin de mieux comprendre la serpentinisation des roches mantelliques au niveau des dorsales océaniques lentes, diverses séries d'expériences ont été réalisées à 50 MPa et 250, 300 et 350 °C pour quantifier l'H₂ produit et clarifier les liens entre la production d'H₂, les phases minéralogiques produites et les propriétés rédox dues à la présence d'H₂. Les résultats, qui constituent un effort cohérent de prise en compte des paramètres et conditions rédox lors de la serpentinisation, sont les suivants :

- Une nouvelle méthode expérimentale de mesure *in situ* de la $f_{\rm H_2}$ a été mise au point à 250 et 300 °C, 50 MPa. Les deux variables exprimant la concentration d'H₂ dans le fluide, $m_{\rm H_{2,aq}}$ et $f_{\rm H_2}$, ont été reliées quantitativement. Ces résultats permettent le calcul de la $f_{\rm O_2}$ dans les systèmes hydrothermaux océaniques à partir de la concentration en hydrogène dissout. La production d'H₂ commence précocement, augmente rapidement et est continue au cours de la serpentinisation.
- Les expériences d'interaction harzburgite-eau de mer montrent que la serpentinisation est une dissolution irréversible de l'olivine et de l'orthopyroxene et qu'elle se décompose en une succession d'étapes impliquant des assemblages de phases hors d'équilibre et métastables.
- Les mécanismes de la serpentinisation et les assemblages de phases produits (en particulier les oxydes de fer) dépendent de la $f_{\rm H_2}$ laquelle est étroitement contrôlée par les régimes de circulation des fluides dans la croûte océanique.
- La modélisation thermodynamique des fluides hydrothermaux riches en $\rm H_2$ souligne le besoin de connaître précisément $\gamma_{\rm H_{2, \, aq}}$, le coefficient d'activité de $\rm H_{2, \, aq}$.

Mots clés : serpentinisation, hydrogène naturel, simulation expérimentale

Experimental study of H_2 generation associated with peridotite serpentinization at slow spreading ridges

To better understand serpentinization of mantle rocks at slow-spreading ridges, several series of experiments have been conducted at 50 MPa and 250, 300 et 350 °C to quantify the H_2 production associated with the serpentinization process, and to clarify the relations between the H_2 generation, the nature of product mineral phases and the redox properties of H_2 -bearing hydrothermal systems. The main results of this work, which represents a significant effort toward the consideration of redox parameters and processes during serpentinisation, are the following:

- A new experimental method of *in situ* monitoring of the $f_{\rm H_2}$ has been set up at 250 and 300 °C, 50 MPa. The two variables expressing the H₂ production, $m_{\rm H_{2, aq}}$ and $f_{\rm H_2}$, have been related quantitatively. Results enable the $f_{\rm O_2}$ of hydrothermal oceanic systems to be computed from the dissolved hydrogen concentration. H₂ production starts early, increases rapidly and is continuous in our serpentinization experiments.
- Harzburgite-seawater interaction experiments show that serpentinisation is an irreversible dissolution reaction of olivine and orthopyroxene and that it consists of a sequence of discrete steps involving metastable and disequilibrium phase assemblages.
- Serpentinisation mechanisms and phase assemblages (especially Fe oxides) depend on f_{H_2} , the latter being closely controlled by processes of fluid circulation in the oceanic crust.
- Thermodynamic modelling of $\rm H_2$ -rich hydrothermal fluids stresses the need to know precisely $\gamma_{\rm H_{2,}\,\it aq}$, the activity coefficient of $\rm H_{2,}\it aq$.

Keywords: serpentinization, natural hydrogen, experimental simulation

Institut des Sciences de la Terre d'Orléans 1A, rue de la Férollerie 45071 Orléans CEDEX 2

