Shift spaces on groups : computability and dynamics
Calculabilité et dynamique des sous-décalages sur des groupes
Résumé
Shift spaces are sets of colorings of a group which avoid a set of forbidden patterns and are endowed with a shift action. These spaces appear naturally as discrete versions of dynamical systems: they are obtained by partitioning the phase space and mapping each element into the sequence of partitions visited by its orbit.Severa! breakthroughs in this domain have pointed out the intricate relationship between dynamics of shift spaces and their computability properties. One remarkable example is the classification of the entropies of multidimensional subshifts of finite type as the set of right recursively enumerable numbers. This work explores shift spaces with a dual approach: on the one hand we are interested in their dynamical properties and on the ether hand we studythese abjects as computational models.Four salient results have been obtained as a result of this approach: (1) a combinatorial condition ensuring non-emptiness of subshifts on arbitrary countable groups; (2) a simulation theorem which realizes effective actions of finitely generated groups as factors of a subaction of a subshift of finite type; (3) a characterization of effectiveness with oracles using generalized Turing machines and (4) the undecidability of the torsion problem for two group invariants of shift spaces.As byproducts of these results we obtain a simple proof of the existence of strongly aperiodic subshifts in countable groups. Furthermore, we realize them as subshifts of finite type in the case of a semidirect product of a d-dimensional integer lattice with a finitely generated group with decida ble word problem whenever d> 1.
Les sous-décalages sont des ensembles de coloriages d'un groupe définis en excluant certains motifs, et munis d'une action de décalage. Ces objets apparaissent naturellement comme discrétisations de systèmes dynamiques : à partir d'une partition de l'espace, on associe à chaque point de ce-dernier la suite des partitions visitées sous l'action du système.Plusieurs résultats récents ont mis en évidence la riche interaction entre la dynamique des sous-décalages et leur propriétés algorithmiques. Un exemple remarquable est la classification des entropies des sous-décalages multidimensionnels de type fini comme l'ensemble des nombres récursivement énumérables à droite. Cette thèse s'intéresse aux sous-décalages avec une approche double : d'un côté on s'intéresse à leurs propriétés dynamiques et de l'autre on les étudie comme des modèles de calcul.Cette thèse contient plusieurs résultats : une condition combinatoire suffisante prouvant qu'un sous-décalage dans un groupe dénombrable est non-vide, un théorème de simulation qui réalise une action effective d'un groupe de type fini comme un facteur d'une sous-action d'un sous-décalage de type fini, une caractérisation de l'effectivité à l'aide de machines de Turing généralisées et l'indécidabilité du problème de torsion pour deux groupes, qui sont invariants de systèmes dynamiques.Comme corollaires de nos résultats, nous obtenons d'abord une preuve courte de l'existence de sous-décalages fortement apériodiques sur tout groupe dénombrable. Puis, dans le cas d'un produit semi-direct de la grille bidimensionnelle avec un groupe de type fini avec problème du mot décidable, nous montrons que le sous-décalage obtenu est de type fini.
Fichier principal
BARBIERI_LEMP_Sebastian_A_2017LYSEN021_These.pdf (10.75 Mo)
Télécharger le fichier
Origine | Version validée par le jury (STAR) |
---|
Loading...