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1
Résumé Étendu

L’élasticité est l’une des principales caractéristiques du cloud computing. Il s’agit
de la capacité d’un cloud à allouer ou à désallouer automatiquement des ressources
informatiques à la demande en fonction de l’évolution de la charge de travail [48] que
doit traiter le système déployé sur le cloud (CBS, selon l’acronyme anglais). L’objectif
principal de l’élasticité est de maintenir la Qualité de Service du CBS à un niveau
adéquat et avec un coût minimum [26]. L’élasticité du cloud doit être assurée au plus
juste en ajoutant des nouvelles ressources informatiques lorsque le CBS est surchargé,
en désallouant des ressources lorsqu’elles sont sous-utilisées.

1.1 L’Élasticité en Cloud Computing

Le cloud computing a été largement adopté commercialement comme une plate-
forme pour l’allocation dynamique de ressources informatiques [78]. Le fournisseur du
Cloud loue l’accès à des applications complètes, des environnements de développement
et de déploiement, ainsi qu’à l’infrastructure informatique, en fournissant du stockage et
des traitements de données [24]. Ainsi, le cloud computing est un modèle d’accès à la
demande à des ressources informatiques partagées.

Bersani et al. [26] proposent un modèle de l’élasticité, où des machines virtuelles
(Virtual Machines VMs) sont allouées/désallouées à la demande. La Figure 1.1 représente
ce modèle de l’élasticité. Les clients envoient leurs requêtes au CBS. La quantité de
requêtes caractérise la charge de travail (workload, en opérations/seconde). Les besoins
des clients n’étant pas constant, la charge de travail varie avec le temps, ce qui induit
des variations dans l’utilisation des ressources informatiques. Pour éviter la surcharge
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6 CHAPTER 1. RÉSUMÉ ÉTENDU

des ressources ou leur sous-utilisation, un contrôleur gère l’élasticité en faisant varier
l’allocation des ressources selon la demande. Il surveille l’infrastructure du cloud et
en fonction de seuils prédéfinis fixant l’utilisation optimale des ressources, il décide
de réaliser des allocations ou désallocations. Cette stratégie est la norme suivie par les
principaux fournisseurs commerciaux de cloud tels que Amazon Elastic Compute Cloud
(Amazon EC2) et Google Cloud Platform.
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Cloud IaaS Provider

 

Cloud-Based

add/remove

 

VM

+/-

System
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  Public
Interface

resource usage /
system load

monitoring

control
 action

  Cloud
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Figure 1.1 – Vue générale de l’élasticité d’un CBS

En mettant en œuvre l’élasticité, un CBS passe par différents états. La Figure 1.2
représente ces états et leurs transitions dans un diagramme de machine à états. Au
début, le CBS est lancé et entre dans l’état ready, où la quantité de ressource alloué
est stable (ry_s substate). Il se place alors dans le sous-état stable (steady). Ensuite,
si le CBS est exposé pendant un certain temps à un nombre de requête au delà du
seuil nécessitant une allocation scale-out threshold (sous-état ry_sor), le contrôleur
d’élasticité commence à allouer une nouvelle ressource. À ce stade, le CBS se place dans
l’état scaling-out et reste dans cet état pendant que la ressource est allouée. Après un
scaling-out, l’application revient à l’état ready. De la même manière, lorsque le seuil
de désallocation est franchi pendant un certain temps (sous-état ry_sir), le contrôleur
d’élasticité commence à supprimer une ressource et les CBS se déplacent vers l’état
scaling-in.

1.2 Motivation

L’élasticité dans le cloud computing n’est pas trivial et peut affecter la Quality of
Service (QoS) du CBS ou causer des défaillances. Selon Bersani et al. [26]:
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Figure 1.2 – Les états vis-à-vis de l’élasticité pris par un CBS

L’allocation et désallocation de ressources peut entraîner des opérations non
triviales à l’intérieur du système. La synchronisation et l’enregistrement de
composants, la réplication et la migration des données sont les exemples les
plus connus, qui peuvent également dégrader la QoS du système.

Par conséquent, pour garantir la qualité d’un CBS, il doit être soigneusement testé en
considérant élasticité, ce qui nécessite des adaptations de ressources.

Gambi et al. [39] proposent un framework conceptuel pour les tests pendant l’élasticité
qui couvre quatre activités de test : la génération de cas de test, l’exécution des tests,
l’analyse des données et l’évolution des tests. La génération de cas de test et l’exécution
des tests sont primordiaux dans les tests logiciels, tandis que l’analyse des données et
l’évolution des tests sont des activités de test post-exécution. Dans cette thèse, nous
nous concentrons sur les deux premières activités, requises pour l’exécution de tout test
pendant l’élasticité. Compte tenu de la complexité du déploiement et de la gestion des
CBSs élastiques, ces activités font face aux problème suivants.

La génération de cas de test peut se faire manuellement ou automatiquement. Elle
est guidée pour atteindre des objectifs de test spécifiques, ce qui produit des cas de test
regroupés en suites de tests [39]. Les cas de test spécifient les caractéristiques et les
configurations du CBS et du générateur de charge utilisé pour générer la charge de travail
en entrée du CBS, la configuration des propriétés d’élasticité sur le Cloud, ainsi que la
configuration des outils de test. Chaque configuration nécessite une certaine expertise,
elle a tendance à être complexe et laborieuse en raison de la quantité de paramètres
impliqués. Ainsi, il est nécessaire d’abstraire ces configurations, et de rendre les langages
de configuration de l’élasticité plus spécifiques à cette tâche. Gambi et al. [39] suggère
également que les testeurs utilisent des outils génériques pour gérer automatiquement les
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exécutions de test sur différentes plates-formes.

La génération ou l’écriture de cas de test manuellement peut entraîner l’oubli de
configurations critiques, qui en manquant des bugs risque d’entraîner la défaillance du
CBS. En effet, le test pendant l’élasticité admet de nombreux paramètres et une sélection
aléatoire peut entraîner des cas de test qui ne combinent que des paramètres qui ne
perturbent pas l’exécution du CBS. D’autre part, compte tenu du nombre de paramètres,
le test de tous les cas de test possibles peut être long et coûteux. Par conséquent, nous
avons besoin d’une approche qui réduit le nombre de cas de test, tout en maintenant la
capacité à trouver des problèmes d’élasticité.

L’objectif principal en testant pendant l’élasticité le CBSs est de vérifier la manière
dont il fonctionne pendant ces états spécifiques à l’élasticité. Plus précisément, les
testeurs peuvent vouloir tester le CBS tout au long d’un comportement élastique prédéfini.
Par exemple, il peut être nécessaire de tester le comportement du CBS tout au long d’une
séquence d’allocation de ressources. Dans un autre cas, il peut être nécessaire de stresser
un CBS en le menant à travers une alternance d’allocations et désallocations, ce qui
devrait nécessiter les différentes adaptations CBS à plusieurs reprises. L’élasticité réagit
principalement aux variations de la charge, nous devons donc exprimer les cas de test
en termes de charge de travail pour forcer un état d’élasticité particulier ou déclencher
des adaptations élastiques spécifiques [39]. Cependant, ce contrôle fait face à un défi
dans l’estimation des variations de charge de travail nécessaires pour mener un CBS à
travers un comportement élastique prédéfini. En effet, l’impact d’une charge de travail
peut être différent en fonction des CBSs et de la ressource sur laquelle il est déployé. Par
conséquent, nous avons besoin d’une approche qui, compte tenu d’une charge de travail
et d’un CBS, estime avec précision les variations de charge de travail qui mènent le CBS
tout au long d’un comportement élastique requis.

Si un cas de test est écrit afin de tester une adaptation spécifique du CBS, il ne devrait
être exécuté que si une telle adaptation est effectuée. Par exemple, considérons que le
testeur veut tester la synchronisation d’un composant (e.g., des nodes dans notre cas
d’étude MongoDB), i. e., lorsqu’un nouveau composant est ajouté au système en cours
d’exécution. La synchronisation des composants n’est effectuée qu’après l’allocation
d’une nouvelle ressource. Par conséquent, le test de cette adaptation nécessite d’être
exécuté à ce moment précis. C’est une tâche difficile, où les testeurs doivent identifier
différents états du CBS en continu, et en parallèle, exécutez les tests appropriés.

Les test doivent être déterministes quand ils sont répétés [36, 15]. De cette manière,
quand un test détecte un bug, il peut être relancer pour le diagnostiquer et corriger. De la
même manière, il est possible d’effectuer des tests de non-régression. Chaque exécution
doit reproduire le même comportement, ce qui exige que la conception des tests soit
déterministe. Dans le cas d’un test pendant l’élasticité, la première exigence consiste à
reproduire le comportement élastique. En outre, la seule reproduction du comportement
élastique peut ne pas suffire à la reproduction de certains tests liés à l’élasticité, et
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prévenir la détection d’un bug. La reproduction de certains tests peut nécessiter une
combinaison d’adaptation avec d’autres conditions. C’est le cas du bug 7974 de la base
de données MongoDB NoSQL, dont le diagnostic nécessite que les tests reproduisent
des interactions avec le système pendant des états spécifiques : la création d’un index
unique avant que l’un de ses nœuds de cluster ne soit supprimé et télécharge un document
après qu’un nouveau nœud est été ajouté au cluster. D’autre part, le bug 2164 d’Apache
ZooKeeper ne se produit que lorsque le composant leader quitte un système avec trois
nœuds, ce qui nécessite qu’une ressource spécifique (i. e., celle qui héberge le leader)
soit supprimée. Par conséquent, nous avons besoin d’une approche qui reproduise le
comportement élastique CBS, et en parallèle, qu’elle satisfasse d’autres conditions pour
la reproduction des bugs liés à l’élasticité.

1.3 Contributions

Nous proposons cinq contributions pour traiter ces problèmes. Chaque contribution
est brièvement décrite ici.

1.3.1 Langage Spécifique au Domaine (DSL) pour le Test d’Élasticité

Nous proposons un langage spécifique au domaine (DSL) pour la configuration des
tests pendant l’élasticité, qui réduit la complexité de cette configuration en utilisant une
syntaxe adaptée. En outre, notre DSL réduit le nombre de mots par rapport à d’autres
langages. Nous proposons également un moyen de compiler les spécifications de test
d’élasticité dans notre DSL d’une manière indépendante du fournisseur cloud. Cela
permet d’exécuter le même test pour différents fournisseurs de cloud sans modification
des spécifications.

Ce DSL est divisé en trois parties indépendantes du fournisseur de cloud : dé-
ploiement des composants CBS (Deployment), élasticité (Elasticity), et configuration
des tests pendant l’élasticité (ElasticityTesting). Nous proposons également une qua-
trième partie (Provider), qui dépend du fournisseur du cloud, utilisée pour répertorier les
ressources disponibles sur un fournisseur de cloud.

La Figure 1.3 représente un aperçu de notre méthodologie pour compiler la con-
figuration de test d’élasticité écrite dans notre DSL vers le code exécutable. Dans la
figure, nous voyons que les configurations dépendantes du fournisseur de cloud (Provider

Dependent) et les configurations indépendantes du fournisseur de cloud computing
(Provider Independent) sont décrites dans des fichiers séparés. Ensuite, si le même test
doit être exécuté sur différents fournisseurs de cloud, le seul fichier qui doit être modifié
est Provider Dependent. En outre, ce fichier ne doit être écrit qu’une seule fois, et un
fichier Provider Dependent peut être réutilisé à partir d’exécutions précédentes des tests.
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Notre méthodologie de compilation est divisée en deux étapes : resource matching et
génération de scripts.

Provider

CloudResources Commands

RequiredRes

Elasticity

CBSComponents

Deployment

CBSDriving

StateBasedTesting

ElasticityTesting

EventsScheduling

SelectiveElasticity

Resource
Matching Ip

Instantiation Script
Generation Si

Deployment Script
Generation Sd

Test Script
Generation St

Input

File Generation

Provider
Independent

Provider Dependent

Figure 1.3 – Compilation des configurations de test pendant l’élasticité en code exé-
cutable

La phase de correspondance des ressources consiste à associer les spécifications dans
RequiredRes et CloudResources d’un fournisseur de cloud p, en générant un fichier Ip.
Ce fichier contient les descriptions de ressources dans RequiredRes mises à jour avec des
valeurs de ressources associées en CloudResources.

La deuxième étape de notre méthodologie de compilation consiste à générer tous
les scripts nécessaires à l’exécution des tests pendant l’élasticité : instanciation de
ressources (Si), CBS (Sd) et tests eux mêmes (St). Ces scripts contiennent des com-
mandes Command-line Interface (CLI), utilisées pour interagir avec le fournisseur du
cloud.

Cette approche réduit considérablement la quantité de mots pour l’écriture des
spécifications de test pendant l’élasticité, et ces spécifications sont portables entre les
fournisseurs de cloud.
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1.3.2 Génération de Séquences de Test pour le Test d’Élasticité

Les tests d’élasticité ont un très grand espace de configuration, où l’exécution de
tous les tests possibles est prohibitive. Par conséquent, nous devons générer un nombre
réduit de configurations tout en veillant à ce qu’elles soient pertinentes. Étant donné
que la technique Combinatorial Interaction Testing (CIT) (Combinatorial Interaction
Testing) ont été utilisées dans la littérature, en présentant des résultats convaincants [63],
nous basons notre méthodologie sur celle-ci. La CIT est une stratégie qui consiste à
tester toutes les combinaisons de paramètres T-wise d’un système. Cela signifie que, en
considérant les valeurs des paramètres n, les tests combinatoires T-wise n’introduisent
que 2T ·

(

n

T

)

configurations Par rapport à n! Requis pour des tests exhaustifs.
La Figure 1.4 représente notre flux de travail méthodologique, qui se divise en

trois étapes: 1) Tout d’abord, nous modélisons les aspects du comportement élastique
(paramètres d’élasticité), tels que les états d’élasticité, les seuils et la charge de travail
dans un Classification Tree Model (CTM). 2) Ensuite, nous générons un ensemble de
configurations de test couvrant toutes les interactions T-wise valides entre les paramètres
de l’élasticité. 3) Enfin, nous générons des séquences de test couvrant toutes les transi-
tions possibles entre les configurations de test. Finalement, les séquences de test peuvent
être exécutées sur un CBS.
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Figure 1.4 – Les trois étapes de notre méthodologie

Les résultats préliminaires encouragent d’autres recherches, alors que les cas de test
générés par la couverture par paires révèlent déjà plusieurs problèmes liés à l’élasticité
dans une étude de cas.

1.3.3 Pilotage du CBS à Travers de l’Élasticité

Nous affirmons que les testeurs devraient pouvoir conduire le CBS de manière
déterministe, en contrôlant l’élasticité en fonction de la propriété qu’ils souhaitent tester.
En plus d’être plus précis dans les tests, cela peut également réduire le temps d’exécution
des tests en optimisant l’élasticité. Cela induit également une réduction des coûts
puisque la plupart des fournisseurs de cloud utilisent la politique de pay-as-you-go, où
les consommateurs paient pour le temps qu’ils utilisent les ressources.
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La Figure 1.5 représente le processus proposé, qui est divisé en trois phases d’exécution:
workload profiling, calcul de la charge de travail et application leading. Le CBS peut
réagir de manière distincte lorsqu’il est exposé à la même charge de travail [26]. Par
conséquent, avant de calculer la variation de la charge de travail, nous devons faire
un profil de chaque combinaison de CBS et de la charge de travail. Gambi et al. [42]
considèrent qu’une charge de travail d’entrée a trois caractéristiques: la charge de travail

(dont son type), le mélange de demandes (pattern), et l’intensité des demandes. Basé
sur cela, nous calculons l’intensité des demandes qui conduisent le CBS dans des états
d’élasticité requis (RES). Dans la phase application leading, nous menons les CBSs
en utilisant les intensités de charge de travail calculées (WI). Nous exposons le CBS à
chaque intensité de charge de travail jusqu’à ce que l’état d’élasticité demandé se termine.
Nous surveillons périodiquement l’infrastructure de cloud computing pour identifier si
les états d’élasticité sont atteints.

Workload 
Pattern

Target CBS

Application 
Leading

Workload Intensities (WI)

Profiling 
Intensity

Workload
Calculation

Resource 
Usage

Required Elasticity States
RES = {s1, s2, …, sn}

Workload 
Profiling

Thresholds

1

2

3

WI={(s1,660), …,(sn,270)} 

Workload 
Generator

Figure 1.5 – Processus pour piloter le CBS

Les résultats montrent que l’approche est capable de conduire CBSs à travers des
comportements élastiques prédéfinis en peu de temps, et sans stresser les CBS.

1.3.4 Test Basé sur les États d’Élasticité

Nous proposons une méthodologie pour tester des CBSs qui est basé sur les états
d’élasticité. Nous nous concentrons sur l’association des tests avec des états d’élasticité
spécifiques et la synchronisation des exécutions de test en conséquence.

Pour associer un test à un état d’élasticité, les testeurs doivent configurer certains
paramètres prédéfinis: la priorité (priority), le retard (delay) et la répétition repeat.
Priority se réfère à la séquence dans laquelle le test est exécuté, dans le cas de plusieurs
méthodes de test pour le même état. Les tests avec la même priorité sont exécutées en
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parallèle. Delay est le temps par lequel l’exécution du test est retardée, permettant des
adaptations du CBS spécifiques. Repeat est un paramètre booléen qui définit si le test
doit ou non être ré-exécuté pendant l’état d’élasticité. S’il est à vrai (true), l’exécution
du test est répétée jusqu’à ce que CBS soit dans l’état d’élasticité voulu.

Grâce à cette méthodologie, nous avons découvert les causes de la dégradation de la
performance d’une étude de cas. Pour une telle étude de cas, la méthodologie est utilisée
pour identifier l’état d’élasticité où se produisent des dégradations de performance, puis
tester le étude de cas pendant cet état.

1.3.5 Reproduction des Tests pendant l’Élasticité

Nous proposons un prototype qui aborde les spécificités de la reproduction des
tests d’élasticité : le contrôle de l’élasticité, l’élasticité sélective, et la planification de
événements. Nous proposons également un moyen d’accélérer l’élasticité lors de la
reproduction des tests. En effet, la conduite de CBSs prend beaucoup de temps puisque
les contrôleurs de l’élasticité prennent un certain temps pour réagir à une demande de
ressources. Étant donné qu’un test peut être ré-exécuté plusieurs fois, cela implique un
coût élevé.

La Figure 1.6 représente l’architecture globale du prototype. Cette architecture est
composée de quatre composants: Elasticity Controller Mock (ECM), Workload Generator
(WGen), Event Scheduler (ES) et Cloud Monitor (CM).

Le rôle du composant ECM est de fournir le contrôle de l’élasticité et l’ élasticité

sélective. Il simule le comportement du contrôleur d’élasticité du fournisseur de cloud,
ce que imite l’addition et la suppression des ressources de façon déterministe. Le rôle du
Cloud Monitor (CM) est d’identifier les états d’élasticité, en maintenant cette information
à jour sur l’ECM, ce qui aide à assurer le contrôle de l’élasticité. Le CM implémente le
composant de surveillance du pilote d’élasticité. Le WGen génère la charge de travail
qui devrait conduire les CBS à travers des états d’élasticité demandés. Le WGen est
également basé sur le prototype du pilote d’élasticité. De manière analogue à son nom
en anglais, l’Event Scheduler (EvS) assure la planification des événements en synchro-
nisant les événements avec des changements élastiques. L’EvS reçoit comme entrée un
ensemble S, contenant des paires d’événements (e) et un changement d’élasticité (ec).
Lorsqu’un nouveau changement élastique commence, l’EvS reçoit un message de l’ECM.
Ensuite, tous les événements connexes sont exécutés en fonction de leurs paramètres.

Ce prototype accélère également la reproduction des tests. Nous utilisons ce prototype
pour reproduire 3 bugs représentatifs, où le prototype a réussi à les reproduire tous.
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Figure 1.6 – Architecture Génerale

1.4 Travaux Futurs

Nous avons l’intention de mettre toutes ces approches ensemble dans un framework

de test et de le mettre à la disposition du milieu de la recherche. Cependant, avant cette
étape, nous visons à améliorer chaque approche séparément.

La phase de compilation de l’approche DSL est jusqu’à présent manuelle, et nous
souhaitons la mettre en œuvre dans le cadre d’un travail futur. Une autre perspective
consiste à étendre le DSL pour que les testeurs l’utilisent pour écrire leurs tests plutôt que
d’autres langages (e.g., JUnit). Enfin, nous pourrions modifier la syntaxe du DSL pour la
rapprocher d’un langage de programmation plutôt que d’un fichier de configuration.

Concernant la génération de cas de test, nous prévoyons mener une expérimenta-
tion complète qui identifie quelle est la couverture minimale des paramètres de test
d’élasticité pour révéler la plupart ou tous les problèmes liés à l’élasticité. Cela nécessite
également une évaluation plus approfondie des paramètres de test d’élasticité, telles que
des configurations de charge de travail supplémentaires. Une autre perspective est de
prendre en compte une plus grande suite de tests, qui couvre d’autres aspects en plus de
la performance du CBS et d’autres études de cas de CBS.

Le pilote d’élasticité considère que le CBS a une évolutivité linéaire, ce qui peut
ne pas être vrai en fonction des CBSs ou de la quantité de ressources. Par conséquent,
nous prévoyons proposer une stratégie qui considère l’évolutivité non linéaire. Une
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autre perspective est d’adapter notre approche pour considérer des politiques d’élasticité
prédictive, car jusqu’à présent, cela ne fonctionne qu’avec des réactives.





2
Introduction

In cloud computing, the cloud provider, i. e., the company that administrates cloud
computing infrastructures, rents access to a pool of computing resources. Elasticity is
one of the main characteristics that arose with cloud computing, which is the ability of a
system to allocate or deallocate computing resources on demand to meet the workload
changes [48].

Bersani et al. [26] present a general model of cloud computing elasticity. In their
model, customers send their requests (workload) to the system deployed on a cloud
computing infrastructure (the Cloud), i. e., Cloud-Based System (CBS). Since customers
are seasonal, the workload varies over time, which likewise varies the demand of com-
puting resources. To avoid resource overuse or underuse, the cloud computing elasticity
controller (or simply elasticity controller) monitors the resource usage, and decides when
to scale-out (allocate) or scale-in (deallocate) a resource based on preset resource usage
thresholds.

2.1 Motivation

Since the elastic controller scales the resources at CBS run-time, the CBS must
deal with intermittent computing resources by adapting themselves constantly. This
adaptations are not trivial and may affect the CBS execution. According to Bersani et
al. [26]:

“Scaling up or down resources, may incur in non-trivial operations inside
the system. Component synchronization, registration, and data migration

17
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and data replication are just the most widely known examples[. . . ], which
may degrade system Quality of Service (QoS).”

Therefore, to guarantee the CBS quality, we must test it in the elasticity presence, i. e.,
elasticity testing. For the remainder of this thesis, we must be aware of the difference
between scalability testing and elasticity testing, which is motive of confusion [48].
While the scalability testing consists in testing the CBS after a resource scaled out or in,
the elasticity testing includes the CBS testing during resource scaling.

All over this thesis, we only consider elasticity testing, which have some require-
ments. Section 2.2 describes elasticity testing requirements. Section 2.3 describes the
contributions of this thesis to meet such requirements.

2.2 Problem Statement

This section presents and discusses five elasticity testing requirements and the activi-
ties necessary to meet them.

2.2.1 CBS Driving Throughout Elasticity

The main goal of testing elastic CBS is to verify how the system works in the presence
of elasticity. More specifically, testers may need to test CBS throughout a preset elastic
behavior. For instance, one could need to test a CBS by interleaving resource scale out
and in, which should reproduce most of CBS adaptations. Since elasticity controllers
react to variations in the workload [39], to drive the CBS, tests must lead workload
variations that result in the preset elastic behavior. However, this faces a challenge in
estimating the workload variations. Indeed, the effect of a workload depends on the
CBS and the resource that hosts it. Therefore, the CBS driving depends on profiling the
effects of the workload on the CBS, and then, calculating and generating the workload
variations.

2.2.2 Elasticity Test Synchronization with CBS States

If testers aim at testing a specific CBS adaptation, they should only execute the
test when such adaptation occur. For instance, let us consider the tester needs to test
a CBS component registration, i. e., when a new component registers to the running
CBS. Such registration is only performed when the new component is running, i. e.,
after a resource scale-out. Thus, tests that verify the registration of CBS components
should only be executed after a resource scale-out. Another case is to test the CBS
during different resource configurations, e. g., during a resource allocation, and when it
is already allocated. This reduces each test extent, and makes the analysis of test results
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more specific. Both test synchronizations require to model the CBS states, to identify
these states at CBS run-time, and to synchronize test executions according to CBS states.

2.2.3 Elasticity Test Reproduction

During software development, testers have to execute regression tests regularly [36],
which requires the design of deterministic tests. Then, tests expose the tested systems to
the same conditions as the previous execution, which should reproduce the same behavior.
Testers must design elasticity tests to repeat the elastic behavior and possible further
conditions, which we call time-based events, such as user interactions with the CBS. This
is the case to test the MongoDB NoSQL database bug 7974 [8]. The first requisite to
reproduce this bug, is the following elastic behavior: create a MongoDB replica set [11]
with three nodes (three resource scale-out), remove a MongoDB node (one resource scale-
in), and add a new MongoDB node (one resource scale-out). The bug reproduction also
requires two time-based events: 1) to create a unique index before one of the MongoDB
nodes is removed (the resource scale-in), and 2) upload a document after a new node
is added (before the last resource scale-out). To repeat an elastic behavior testers must
design the elasticity test to repeat the workload generation. To repeat time-based events
testers must design the elasticity test to synchronize their executions by identifying when
they occur.

Reproducing elasticity tests sometimes also requires to repeat a strict variation of
CBS components. Indeed, CBS components can have different status, such as master and
slaves, assigned dynamically, such as by an election algorithm. Since elasticity controllers
work at resource level, they do not consider the CBS component status to make decision
of which resource to variate. Thus, during the test execution CBS components vary in a
non-deterministic manner, where different executions may result in distinct component
variations. However, to reproduce the same CBS behavior, elasticity tests must manage
the CBS component variation in a deterministic manner. For instance, the Apache
ZooKeeper bug 2164 [13] only occurs when the leader component leaves a ZooKeeper
cluster. When testing such bug, the test must manage to repeat the deallocation of the
leader component.

2.2.4 Elasticity Test Implementation

Implementing elasticity tests is complex, laborious, and requires the tester to master
cloud computing and its particularities. The tester must interact with the cloud provider
multiple times for: deploying and configuring the CBS and testing tools, configuring
the elasticity controller, and executing the tests. Since each cloud provider has its
own interfaces (e. g., Web dashboard, Command-line Interface (CLI), and Application
Programming Interface (API)), when testers need to execute tests over different cloud
computing infrastructures, they must repeat all the process. This requires a method that
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abstracts the complexity of elasticity testing implementations, reduces the tester interac-
tions with the cloud provider, and is portable among cloud computing infrastructures.

2.2.5 Elasticity Test Generation

Testers can create elasticity tests manually, or use test case generators to create them
automatically [39]. Creating elasticity tests manually or randomly may miss critical
combinations of elasticity testing parameters, which reveal CBS issues. Indeed, elasticity
tests admit many parameters for each interaction with the cloud provider. For instance,
the CBS deployment allows to configure different resources where to deploy it, while the
elasticity controller accepts a range of values to configure the resource usage thresholds.
Furthermore, different workloads can drive the CBS throughout elasticity. Ideally, a
set of elasticity tests should cover all the possible combinations of elasticity testing
parameters. However, given the great number of parameters, this set is too large, which
impedes its execution within a reasonable time and an affordable cost. Therefore, the set
of elasticity tests should cover critical combinations of elasticity testing parameters, and
be small enough to executed in a feasible time.

2.2.6 Summary of Elasticity Testing Requirements

Table 2.1 summarizes the elasticity testing requirements and the activities necessary
to meet them.

2.3 Contributions

This thesis proposes approaches that meet the elasticity testing requirements. This
section briefly describes each approach.

To drive the CBS, we propose an approach divided into three phases: workload

profiling, workload calculation, and application leading. The workload profiling phase
consists in profiling the resource usage for combinations of CBSs and workloads. Then,
in the workload calculation phase, the approach uses the resource usage profiles to
calculate the workload variations that drive the CBS throughout a preset elastic behavior.
Finally, in the application leading phase, the approach generates the calculated workload
variations. This approach allows to drive different combinations of CBSs and workloads
in a deterministic manner. In a second approach, we propose a way to synchronize
elasticity tests by CBS state. We model the CBS states as resource configurations, which
we call elasticity states: the scaling-out state is the resource allocation period, the ready

state is the period while the resource is steady, i. e., it is not being varied, and the scaling-

in state is the resource deallocation period. We also propose a way to associate the tests
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Elasticity Testing Requirement Activities to Meet the Requirement

CBS Driving Throughout Elasticity -Profile the effect of the workload on the CBS.

-Calculate the necessary workload variations.

-Lead the workload generation.

Elasticity Test Synchronization with CBS States -Model the CBS states.

-Identify the states at CBS run-time.

-Coordinate the synchronization of tests with the CBS states.

Elasticity Test Reproduction -Repeat the CBS elastic behavior.

-Repeat the time-based events.

-Repeat the CBS component variation.

Elasticity Test Implementation -Deploy and configure the CBS.

-Configure the elasticity parameters of the elasticity con-

troller.
-Deploy and configure the elasticity testing tools.

-Execute the elasticity test executions.

Elasticity Test Generation -Model the elasticity testing parameters.

-Generate a small set of elasticity tests that cover critical

combinations of the modeled elasticity testing parameters.

Table 2.1 – Elasticity Testing Requirements

to elasticity states. Then, the approach monitors the CBS and the Cloud to identify the
elasticity states, and coordinates the tests execution accordingly.

The third approach ensures the elasticity test reproduction by repeating the elastic
behavior, the time-based events, and the CBS component variation in a deterministic
manner. To repeat the elastic behavior, the approach only repeats the workload generation,
configure such as in the first approach. To repeat the time-based events, the approach
consists in associating them to elasticity states, such as in the second approach. Then,
the approach identifies the elasticity states at CBS run-time, and synchronizes the time-
based events accordingly. To repeat the CBS component variation, the approach has a
component that mimics the elasticity controller, and bases the resource deallocations on
the CBS component status.

The fourth approach introduces a Domain Specific Language (DSL) to configure
elasticity tests. Testers use this DSL to configure the deployment and the configuration of
the CBS and the testing tools and the elasticity controller parameters, and to plan the test
execution. Then, this approach uses a cloud provider-independent compilation strategy
to execute elasticity test configurations over different cloud computing infrastructures.

Finally, the fifth approach proposes a way to generate a small set of elasticity tests
that cover critical combinations of elasticity testing parameters. In this approach, testers
model the elasticity testing parameters into a Classification Tree Model (CTM) by
mapping them as dependent variables into a tree structure. In this CTM, the parameter



22 CHAPTER 2. INTRODUCTION

values are tree leaves. Then, the approach traverses the tree, and generates a set of
elasticity tests that covers all T -wise combinations of parameters values [63]. This means
that, when considering n parameter values, T -wise combinatorial testing investigates
only 2T ·

(

n

T

)

combinations compared to the n! required for exhaustive testing. Finally,
the approach arranges the generated elasticity tests in test sequences that mimic CBS
reconfigurations, and therefore, can be executed in a single run. In the experiments, this
approach reveals several elasticity-related issues of a case study by reducing the number
of elasticity tests by ≈ 92%.

2.4 Outline of the Thesis

The remainder of this thesis is organized as follows. Chapter 3 introduces cloud
computing and software testing to contextualize the work in this thesis, and discusses
the major work in CBS elasticity testing. Then, Chapter 4 to Chapter 7 present the
approaches proposed in this thesis. Chapter 4 presents the approach for CBS driving.
Chapter 5 presents the approach for elasticity state-based tests. Chapter 6 presents the
approach for elasticity test reproduction. Chapter 7 presents the DSL-based approach
for elasticity test implementation. Chapter 8 presents the approach for elasticity test
generation. Chapter 9 concludes this thesis by recapitulating all the contributions, and
gives directions of future work.



3
State of the Art

This chapter presents the literature related to the topics addressed in this thesis.
Section 3.1 starts by contextualizing cloud computing, its service models and the elasticity
feature. Then, Section 3.2 contextualizes software testing. Section 3.4 presents research
efforts that focus on automating CBS deployment on the Cloud. Section 3.5 discusses
about the state of the art of CBS elasticity testing.

3.1 Cloud Computing

Cloud computing infrastructures have been adopted commercially as a platform for
dynamic resource allocation [78]. The cloud provider rents access to featured application,
development and deployment environments, and computing infrastructure, such as data
storage and processing [24]. Indeed, cloud computing is a model for on demand access
to shared computing resource pool.

3.1.1 Cloud Computing Service Models

the Cloud provides computing resources as three service models [24, 73, 65]: Software-
as-a-Service (SaaS), Platform-as-a-Service (PaaS), and Infrastructure as a Service (IaaS).
Figure 3.1 depicts the roles of customers and cloud providers for each cloud computing
service model.

Definition 1 (SaaS) It is the service model where the cloud provider manages the un-

derlying cloud infrastructure completely, while the only consumers role is to use the

23
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Figure 3.1 – Cloud Computing Service Model (Adapted from Schouten [35])

provided application.

Definition 2 (PaaS) It is the service model where the cloud provider still manages the

underlying cloud infrastructure, while consumers can run and deploy application on the

Cloud in a restricted way.

Definition 3 (IaaS) It is the service model where the cloud provider only manages the

layer of resource virtualization, while consumers can deploy arbitrary software.

In the SaaS model, consumers cannot deploy and manage software. In the PaaS
model, consumers have to the languages and tools supported by the cloud provider. In the
IaaS model, consumers manage the operating system, virtual resources, such as network
interfaces, and can deploy software using the language they choose. It is the model that
most resembles a system deployment on physical machines.

3.1.2 Cloud Computing Elasticity

On the cloud, computing resources are allocated on demand [24]. This feature, called
by several authors [19, 24, 48, 26] as elasticity, is the ability of a cloud infrastructure to
vary computing resource as soon as possible, according to application demand.

Consumers can configure the cloud computing elasticity controller, i. e., mecha-
nism that provides elastic resource allocation, in diverse manners. Galante and Bona
classify elasticity controllers into four main categories [38]: scope, policy, purpose,
and method. Figure 3.2 shows the classification proposed by them, each one with its
sub-classifications.

The scope is where the elasticity controller controls the elasticity: infrastructure

(IaaS), platform (PaaS) or application (SaaS). The policy is the type of elasticity man-
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Figure 3.2 – Classifications of Elastic Mechanisms [38]

agement: manual or automatic. The automatic policy has two subdivisions: reactive,
which reacts to a monitored factor, such as Central Processing Unit (CPU) usage, and
predictive, which uses heuristic methods to predict the elasticity. The purpose of elastic-
ity can be diverse, including performance, capacity, cost, and energy saving. Finally, the
method is the manner the elasticity controller scales the computing resources: replication,
redimensioning, or migration. The replication method consists in adding or removing
instances on a virtual environment. The redimensioning method consists in resizing
computing resources, such as CPU and memory, from a running virtual machine, i. e.,
vertical scaling. The migration method consists in transferring a Virtual Machine (VM)
that is executing on a physical server to another one.

Elasticity Model

Bersani et al. [26] present a model for elasticity, where an elasticity controller
allocates/deallocates VMs (by replication), in a reactive manner. The authors do not
consider any specific purpose for the elasticity. Figure 3.3 depicts a high level view of
the elasticity model they propose. Customers send their requests (i. e., workload) to the
system deployed on the Cloud, i. e., CBS. Since customers are seasonal, the workload
varies over time, which likewise varies the demand of computing resources. Avoiding
resource overuse or underuse, the elasticity controller varies the amount of resource on
demand. It monitors the cloud infrastructure, and decides whether scale-out (allocate) or
scale-in (deallocate) a resource, based on preset resource usage thresholds. This strategy
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is also a standard among commercial cloud computing infrastructures, such as Amazon
Elastic Compute Cloud (Amazon EC2) and Google Cloud Platform.
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Figure 3.3 – High Level View of IaaS Elasticity (Adapted from Bersani et al. [26])

Figure 3.4 depicts a hypothetical workload that is used to detail Bersani et al. [26]
model. This workload first has an intensity increase from 0 to ≈150 Operations per
Second (OPS), and then it decreases to 0.
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Figure 3.4 – Hypothetical Workload Intensity Variation

Figure 3.5 illustrates the resource demand variation for the hypothetical workload
of the previous figure. In the figure, the allocated resource is 1 mono-processed VM.
The workload below the Allocated Resource line means resource over-provision, while
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the gray area above it corresponds to resource under-provision. The resource under-
provision can be harsh for the consumer. Therefore, one could deploy the same CBS on
2 VMs. Considering the same workload, there would not have resource under-provision.
However, most of the time the resource would be over-provisioned, what means wasting
of resource. In this case, an elastic infrastructure (i. e., infrastructure that provides
elasticity) could ameliorate the resource usage.

Figure 3.6 illustrates how an elasticity controller reacts to the hypothetical workload
growth. The resource demand increases until breaching the scale-out threshold. If it
breaches the scale-out threshold only temporary, the elasticity controller does not react to
it. Otherwise, if it breaches the scale-out threshold for a preconfigured time, i. e., scale-

out reaction time, the elasticity controller instantiates a new resource (see Figure 3.6b).
The elasticity controller takes a while to instantiate a new resource and make it available,
i. e., scale-out time. Once the resource is available, the elasticity controller considers new
scale-in and scale-out threshold values, which refer to the new amount of resource.

Figure 3.7 illustrates the elasticity controller reaction to the hypothetical workload
decreasing. In the figure, the resource demand becomes lower than the scale-in threshold

(Figure 3.7a) for a while, i. e., scale-in reaction time, the elasticity controller releases a
resource (Figure 3.7b). We call the period to release a resource as scale-in time. When a
resource release begins, the resource is no longer available, and the elasticity controller
considers new threshold values immediately.

Figure 3.8 depicts the complete scenario: a resource scale-out, and then a resource
scale-in. Compared to Figure 3.5, the under-provision area is smaller. However, this is
only an illustrative example that do not focus on an optimal resource allocation.

We propose the following, which we use all over this thesis:

— Scale-out Threshold: is the resource usage boundary used as a parameter to
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trigger a resource scale-out.

— Scale-out Reaction Time: is the time during which a resource demand must
breach the scale-out threshold to trigger a resource scale-out.
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— Scale-out Time: is the time the elasticity controller takes to scale-out a resource.

— Scale-in Threshold: is the resource usage boundary used as a parameter to trigger
a resource scale-in.

— Scale-in Reaction Time: is the time during which a resource demand must breach
the scale-in threshold to trigger a resource scale-in.

— Scale-in Time: is the time the elasticity controller takes to scale-in a resource.

3.2 Software Testing

Many factors can cause a software to fail, such as a wrong design, hardware abnor-
malities, or unexpected input. Software testing raises software quality and reliability
by identifying its fails [61]. There are two main processes used for software testing:
static and dynamic testing. Static testing is a process that reviews the software design,
architecture, or code for errors without executing it, while dynamic testing is a process
that needs the software execution [6].

Figure 3.9 illustrates the dynamic testing process by dividing it into four main
steps [5]. As a first step, testers design and implement tests, which consists in configuring
the test specifications and the test environment requirements. Then, the second step con-
sists in setting up testing environment according to requirements. Once the environment
is ready, testers can execute the test specifications (third step). After test execution, the
analysis of results may notice issues. In that case, tests report the issue as a fourth step.

Almeida [34] represents these processes in a more specific manner. Figure 3.10
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illustrates this process. Initially, the tester writes a test case, which describes the test

specifications. Then, the tester executes this test case on the system that is being tested,
i. e., System Under Test (SUT), which is associated to the test environment setup. The
test execution generates test results (actual results) that a test oracle compares to the
expected results. Such comparison results in a test verdict. If the actual and the expected

results match, the test passes, i. e., no issues noticed. Otherwise, the test fails.
Test cases are design to test functional or non-functional aspects of the SUT, i. e.,

functional or non-functional testing. Functional testing “verifies a program by checking
it against SUT design document or specification” [53]. For instance, it sends an input
to the SUT and checks whether the output is the expected. Non-functional testing is
the testing of non-functional requirements of the SUT. For instance, the way a system
operates, such as its performance, rather than specific behaviours of that system.

3.3 Test Case Generation

“The most important consideration in software testing is the design and creation of
effective test cases” [61].According to Gambi et al., testers can write test cases manually
or automatically by using a test case generation tool [39]. This section presents automatic
strategies for test cases generation.

The number of test cases can be high depending on the SUT configuration domain,
where each test case covers a SUT configuration. This makes the testing execution
expensive [29]. Therefore, the number of test cases must be little, a problem which
several work [29, 46, 63, 64, 62, 66, 27] solve by using Combinatorial Interaction Testing
(CIT). In CIT, testers model the SUT as MSUT = {P, V, C}, where P is the set of
parameters P = {p1, p2, . . . , pn}, V is the set of parameter values V = {V1, V2, . . . , Vn}
where Vi is a set of pi values, and C is the set of constraints among parameters. Then,
testers leverage a CIT algorithm that generates a set of test cases that covers all T
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combinations of parameter values and satisfies the constraints.
The survey proposed by Grindal et al. [46] ranks the main coverage degrees as:

N-wise, t-wise, pairwise (or 2-wise), and each-used (or 1-wise). N-wise coverage, also
known as all-wise, generates test cases that cover all possible combination of values of
the N parameters. t-wise coverage requires the inclusion of every possible combination
of t parameter values in a test cases. Pairwise (2-wise) coverage requires the inclusion of
every possible combination of pair of parameter values in a test case. Each-used coverage
is the simplest coverage criteria, which requires the inclusion of every parameter value in
at least one test case in the test suite.

Figure 3.11 illustrates the test suite sizes by coverage degree, where test suites
generated with the highest degree include all the test cases in test suites generated with
the lowest levels.

Table 3.1 shows test suite sizes (in number of test cases) of coverage degrees for two
examples.

1. 8 parameters (N = 8) with 4 possible values each (V = 4), and
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Figure 3.11 – Test Suite Size (Space) by Coverage Degree

2. 4 parameters (N = 4) with 8 possible values each (V = 8).

For illustrative reasons, in the examples, all the parameters have the same quantity
of possible values. The test suite size for N-wise coverage is the product of all possible

values
N
∏

i=1

|Vi|. For t-wise coverage, the test suite size derives from the number of

possible values for each one of the t parameters with the most choices. In the table,
3-wise illustrates t-wise, where the test suite size calculation is O(nml), where n, m and
l are the number of possible values for each one of the three parameters with the most
choices. For pairwise coverage, the test suite size calculation is O(nm), where n and
m are the number of possible values for each one of the two parameters with the most
choices. Finally, the test suite size for each-used coverage is the maximum number of
possible values MaxN

i=1
Vi, where vi denotes the number of possible values for the ith

parameter.

Coverage Degree Test Suite Size
Calculation

Example 1
N=8, V=4

Example 2
N=4, V=8

N-wise
N
∏

i=1

Vi 65 536 4096

3-wise (t-Wise) O(nml) 64 512
pairwise O(nm) 16 64

each-used MaxN
i=1

Vi 4 8

Table 3.1 – Test Suite Sizes by Coverage Degree

In Table 3.1, test suite size reduces exponentiallyas coverage degree decreases. In
both examples, given the number of test cases, executing test suites generated with the
highest coverage degree (N-wise) is exhaustive. Nevertheless, test suites generated with
the lowest coverage degree (each-used) may not be representative, which generates only
4 test cases for the first example.
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Despite pairwise coverage only generates few test cases, it is a standard among
software testing practitioners, and its adoption continues to increase [56]. One of the
reasons is that even with few test cases, which represents less effort in executing them,
empirical experiences demonstrate that it still reveals 50-75% of software faults [71, 33].
In the literature, pairwise coverage is used in distinct domains: Software Product Line
(SPL) [64], software with high variability [62], self-adaptive systems [66], and scenario-
based testing [27].

Perrouin et al. [64] use pairwise coverage to generate test cases for SPL products.
The authors use Feature Model (FM) [54] to represent product features and dependencies,
formalizing them by using the constraint language Alloy [59]. Then, they use a constraint
solver to generate valid test cases from the FM with pairwise coverage.

Nguyen et al. [62] propose an approach that combines model-based and combinatorial
testing. The authors convert system Final State Machine (FSM) paths into a CTM [28].
CTM are also known as predictive models, where data observations are modeled as
dependent variables. They are used to structure system features into a hierarchical tree,
where the root element is the system, and the branches (compositions) represent its
components. Non-decomposable components are defined as classifications, structured
in classes that implement them. In their approach, Nguyen et al. generate test cases by
covering pairwise combinations of classes of the CTM.

Sen et al. [66] present an approach for self-adaptive systems. Their approach gen-
erates a sequence of test configurations (or test cases) to evaluate the extent to which
reconfigurations affect system QoS. The authors also model system parameters as a FM,
using pairwise combinations to generate test cases. Then, their approach orders the test
cases into a test sequence that mimics system reconfigurations.

Finally, Bousquet et al. [27] propose the use of pairwise coverage to generate test
suites for scenario-based testing. Scenario-based testing requires a sequence of actions to
test an application. The authors consider these actions as ordered method call instances,
denoted factors. Therefore, a test case is composed of a sequence of factors. For test
case generation, they extend classical pairwise coverage into method call instantiation
coverage, where they cover pairwise combinations among possible factor values.

3.4 Cloud Automation

Cloud computing adds an extra layer of complexity to the process of software
development [70], and consequently, to CBS testing. It requires specific interactions with
the cloud provider: the tester must request the needed computing resources, deploy the
CBS, and configure the CBS and the elasticity parameters. Testers can write deployment
scripts that use cloud provider APIs for such interactions. However, cloud provider APIs
are heterogeneous, which requires the tester to re-write the deployment scripts when
testing is executed on different cloud providers.
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Several research efforts from both, research [70, 72, 40] and industry [17, 18] com-
munities, aim at softening the deployment complexity by proposing frameworks or/and
languages for the deployment and management of CBS on the Cloud.

Sledziewskiz et al. [70] presents a DSL for software deployment on the Cloud.
In their approach, the user describes his software in a DSL, whose editor is available
as a SaaS. Then, software description is compiled to code that is used by their own
deployment tool to deploy software onto the Cloud.

Thiery et al. [72] propose a DSL to set up the deployment of CBS in a provider-
independent manner. Their DSL is divided into three main parts: the first part describes
available cloud provider resources, the second part describes software components that
must be deployed, and the third part describes the resource requirements for each software
component. Programs written in this DSL are compiled into executable code, which
can be used to interact with the cloud provider. When deploying CBS on other cloud
providers, the only part that must be changed is the one that describes the cloud provider
resources .

Gambi et al. [40] present the AUToCLES [40], a Test-As-A-Service (TaaS) in the
form of black-box system testing. AUToCLES implements all the functionalities required
to manage the lifecycle of test executions on the Cloud. Indeed, testers use a Web interface
to provide test specifications and elastic system configuration, and AUToCLES automates
all the process. AUToCLES requires that applications are self-managing, that is, they
have all the logic to automatically scale up or down.

Chef [17] is an open source framework for infrastructure automation, which abstracts
the management of infrastructure resources using configuration units called cookbooks.
Chef is composed of three main components: Chef development kit (DK), Chef server,
and Chef client. The Chef DK is a set of tools used to code infrastructure automation, and
to interact with Chef server and the Chef clients. The Chef server is a central repository,
where cookbooks are stored, and where they are read from by the Chef clients. Chef
client is an agent that runs locally on every node that is being managed by Chef. It is
also the component that receives user interactions, and where the cookbooks are ran.

Puppet is a commercial framework that works in the same manner as Chef, where
the user writes code that automates infrastructure management and software deployment.
In Puppet, this code is called manifest. In their Website [18] they state that it “provides
a standard way of delivering and operating software, no matter where it runs.” Using
a specific language, the user sets up the software components she wants to execute,
component configurations, and how the infrastructure looks like. Puppet runs in an
agent/master architecture, where servers run Puppet master, and managed nodes run
Puppet agents. Puppet master stores the manifests, while Puppet agents, which run on
managed nodes, poll the master on a given schedule, checking for differences in the
manifests, and applying them. The user can also interact with Puppet agents and directly
request them to execute a manifest.



3.5. TESTING ELASTIC CLOUD-BASED SYSTEMS 35

Table 3.2 summarizes the cloud automation work presented in this section. Two of
these work are purely DSL [70, 72], and Chef and Puppet are frameworks for infrastruc-
ture automation that also propose DSLs. AUToCLES is a TaaS, it uses a Web interface
for elastic configurations rather than a DSL.

One of the goals of this thesis is to abstract the implementation of elasticity testing.
Out of the approaches for cloud automation, all of them support infrastructure automation
and software deployment. However, they do not support the elasticity configuration, only
the AUToCLES does it, but at application level.

Approach Infrastructure Automation CBS Deployment Elasticity Configuration

Sledziewskiz et al. [70] DSL YES YES NO

Thiery et al. [72] DSL YES YES NO

AUToCLES [40] TaaS YES YES at Application Level

Chef [17] Infrastructure Automation YES YES NO

Puppet [18] Infrastructure Automation YES YES NO

Table 3.2 – Summary of Cloud Automation Approaches

3.5 Testing Elastic Cloud-Based Systems

This section presents different research efforts on elasticity testing. Section 3.5.1
starts by discussing elasticity metrics, which positions the existing concerns on CBS
elasticity. Then, Section 3.5.2 discusses the research efforts on elasticity testing.

3.5.1 Elasticity Metrics

Weinman [75] propose two elasticity metrics: over-provisioning and under-provisioning.
Figure 3.12 illustrates these metrics. In the figure, a hypothetical resource demand curve
(D(t)) indicates the needed resource. The dotted line represents the resource allocation
at each instant (R(t)), which grows linearly. For Weinman, an idealistic elasticity would
be R(t) = D(t). Therefore, he identifies situations where resource exceeds the demand
(over-provisioning, where R(t) > D(t)) or the resource is less than the demand (under-
provisioning, where R(t) < D(t)). Over-provisioning refers to how much money the
consumer wastes by paying for resource that is not being used by the current workload.
In contrast, under-provisioning refers to how much the resource shortage affects the
consumer.

Islam et al. [51] base their metrics on Weinman’s ones. In addition to Weinman’s met-
rics, Islam et al. propose financial penalties for over-provisioning and under-provisioning
periods. The basis of their over-provisioning penalty model is the difference between
chargeable (i. e., resource that the user pays for) and demanded resource. In their
under-provisioning penalty model, customer sets financial penalties for performance
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Figure 3.12 – Resource Under and Over-Provisioning [75]

degradations, e. g., a dollar value for each percent of rejected requests. Then, they cal-
culate a total penalty rate per execution, which sums up all the over-provisioning and
under-provisioning penalty scores.

Shawky and Ali [68] base their elasticity metrics on material’s elasticity ones. The
authors define physics elasticity as “the physical property of a material that returns to its
original shape after the stress”. Its notation is

E =
Stress

Strain
(3.1)

where Stress is the measure of how strong a material is. That is, how much pressure the
material can stand without physical changes. Strain is the measure an object stretching.

For cloud computing elasticity, Shawky and Ali model stress of cloud as the ratio
between new demands of computing capacity and the allocated computing capacity.
To measure the strain of cloud, the authors use the change in the average network
bandwidth (in and out) and the time to allocate/deallocate a resource. Both measurements
comparison before and after a resource scaling indicates how elastic a cloud infrastructure
is.

Coutinho et al. [31] propose metrics for performance analysis of CBS through
elasticity. Their metrics consider the response time of elasticity operations and used

resources. Basically, their metrics measure the time and the used resources through four
different states: under-provisioning, over-provisioning, stable, and transitory. Under-

provisioning is the period while a resource is being added. Over-provisioning is the
period while a resource is being removed. Stable is the period while a resource is stable
(neither addition nor removal). Transitory is the period the effects of addition or removal
of resources are still in progress.
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Summary of Elasticity Metrics

Table 3.3 summarizes the metrics presented in this section. This thesis aims at testing
CBS throughout elasticity. However, all the existing metrics described in this section
only propose how to measure cloud computing infrastructure elasticity. Most of the
metrics compare the demand and the allocated resources. The only metric related to
the CBS is the response time, used by Coutinho et al., who also introduce the elasticity
measurement during different CBS states.

Elasticity Purpose Metrics Measures

Weinman [75] resource allocation over-provisioned, demanded and allocated
and under-provisioned resource
resources

Islam et al. [51] cost over-provisioning penalty, chargeable and demanded
under-provisioning penalty, resource, and
and total penalty rate performance degradation

Shawky and Ali [68] resource allocation stress and stain demanded and allocated
of cloud resources, network bandwidth, and

time for resource changes

Coutinho et al. [31] performance, response time, response time, and
and resource allocation and used resource through allocated resource

different states

Table 3.3 – Summary of Elasticity Metrics

3.5.2 Test of Elastic Cloud-Based Systems

Out of testing approaches for cloud computing, several work execute tests on the
Cloud [25, 49], while others test the Cloud [30, 32, 47, 69, 77, 76, 37, 45, 44]. The first
group of work use cloud infrastructure as resource pool to execute tests that require huge
amounts of computing resource, which is out of this thesis scope. Part of the work for
CBS testing focus on benchmarking CBSs [30, 32, 47, 69, 77] rather than effectively
testing them, while other part focuses on testing the cloud infrastructure reaction to
resource demand [76, 37, 45, 44]. This section only presents the work that effectively
test CBSs throughout elasticity, which are not numerous[52, 74, 42, 41].

Islam [52] investigate the effect of fine-scaled workload burstinesson the elasticity
of cloud based Web applications. They propose a manner to model fluctuations into
the arrival of existing workloads, which makes such workloads highly variable at fine
timescale. They experiment a Web application (TPC-W [12]), evaluating how fine-scaled
burstiness affects resource allocation and the Web application performance. In their
experiments, fine-scale burstiness affects the case study in a condisderable manner.

While the main focus of Vasar et al. [74] work is not to test CBS they propose
a strategy to test the scalability of Web applications throughout elasticity. The main
contribution of their work is a predictive algorithm that auto-scales Web servers based
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on weighted average of requests arrival rate. They generate the workload based on trace
logs [2], comparing the scalability of Web application when using standard reactive
elasticity and their algorithm. In their experiments, the authors consider the reaction time
and maximum throughput.

Gambi et al. introduce novel ideas on CBS testing, identifying resource challenges,
and given future direction on this field [42]. They use elastic physics materials metaphor,
where the SUT is the material, the workload is the stress factor, and the changes in the
resource is the material deformation, mapping mechanical testing metaphor to analogies
in elastic CBS. The authors also propose a conceptual framework for CBS testing. Their
framework has four main components: test case generation, test execution, data analysis,
and test evolution. Test case generation receives testing goals as input and produces a set
of test specifications as output. Then, these specifications lead the CBS testing, and the
testing result analysis sometimes requires refining test specifications. This whole process
is cyclically (re-)executed.

In a second work, Gambi et al. [41] distinguish two types of system strain: fair

operations that are compatible to the system resources, and excessive operations that
overload the system. They consider that it is easy to break a system by stressing it with
excessive load, while a system can break even when it receives fair operations. However,
finding a right sequence of fair operations to break a system is a complex task. Therefore,
they aim at generating test cases that expose systems to fair operations, causing multiple
resource changes, to identify faults related to elasticity. They combine surrogate models,
that abstract system description, and search-based methods to find specific test cases that
break the system.

Summary of CBS Testing Approaches

Table 3.4 summarizes the work discussed in this section. Gambi et al. [42] work is a
conceptual testing framework. This work gives directions for part of the approaches that
we propose in this thesis, such as the approaches for CBS driving throughout elasticity
and elasticity tests generation. The other work are all related either to scalability or
performance testing, and their elasticity purpose is a miscellaneous. Islam et al. and
Vasar et al. work generate the workload based on log traces, while Gambi et al. [41]
generates the workload by using genetic algorithms. Therefore, no work proposes a way
to drive the CBSs in a deterministic way, which is one of the problematics this thesis
resolves. Finally, none of them covers the other problematics.

3.6 Conclusion

Cloud computing elasticity is a new trend that introduces many challenges in software
testing, such as the ones discussed in the thesis introduction. Only few work in the
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Type of Testing Elasticity Purpose Workload Generation

Islam et al. [52] performance testing cost and QoS based on log traces

Vasar et al. [74] scalability testing response time and based on log traces
throughput

Gambi et al. [42] conceptual testing – –

Gambi et al. [41] scalability testing resource efficiency genetic algorithms

Table 3.4 – Summary of Elasticity Testing Approaches

literature focus on elasticity testing, and they do not cover the problematics tackled
in this thesis. The work for cloud automation lack of procedures for elasticity setup.
Among the work that propose elasticity metrics, Coutinho et al. one is the only work
that considers CBS testing. The authors also propose a manner to test CBS throughout
different states. However, they identify such states by a post-execution strategy. The
approaches for elasticity testing are diverse, where none of them propose a manner to
lead CBS throughout elasticity in a deterministic way.





4
Driving Cloud-Based Systems (CBS)
Throughout Elasticity

Elastic cloud infrastructures vary resources (allocate, or deallocate) at CBS runtime.
To deal with these variations, CBS must behave in an elastic manner, i. e., adapt itself for
the new resource configuration. If the CBS is not designed in such way, it may fail or its
performance may not be adequate.

Testers should be able to drive CBS in a deterministic way, controlling its elastic
behavior. Thus, they can be more specific and model situations they judge as critical.
Furthermore, this can also reduce testing execution time since the elasticity behavior
is specific. In cloud computing, this also means reduction of cost since most of cloud
providers use the policy of pay-as-you-go, where consumers pay for the time they use
resources.

To manage resource changes, the tester can interact with cloud provider directly.
However, in a real-world scenario elasticity derives from workload variations, which
changes the resource demand. Then, the elasticity controller reacts to new resource
demands, and allocates or deallocates resources.

This chapter proposes an approach to control CBSs driving throughout elasticity states
by varying the workload accordingly. Section 4.1 defines elasticity states after the typical
CBS elasticity. Section 4.2 describes an approach for CBS driving. Section 4.3 describes
a prototype that implements the approach for CBS driving. Section 4.4 describes the
results of experiments conducted by using the prototype. Finally, Section 4.5 concludes,
and gives directions of future work.

41
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4.1 Elasticity States

We identify three elasticity states in the elastic behavior presented in Figure 3.8 :
scaling-in (si), scaling-out (so), and ready (ry), which contains the substates stable (ry_s),
scale-out threshold breaching (ry_sor), and scale-in threshold breaching (ry_sir).

Figure 4.1 depicts these states and their transitions in a Unified Modeling Language
(UML) State Machine diagram. At the beginning, the CBS enters into the ready state (ry),
when the resource configuration is steady (ry_s substate). Then, if the CBS is exposed to
a workload that breaches the scale-out threshold (sub-state ry_sor) during the scale-out

reaction time, the elastic controller starts adding a new resource. At this point, the CBS
enters the scaling-out state (so) and remains in this state while the resource until the
elasticity controller finishes adding the new resource. After a scaling-out, the application
returns to the ready state. Then, when the workload leads the resource demand to a level
that breaches the scale-in threshold during the scale-out reaction time (ry_sir substate),
the elastic controller starts removing a resource and the CBS enters the scaling-in state
(si).

ready
(ry)

si_reaction
(ry_sir)

steady
(ry_s)

so_reaction
(ry_sor)

scaling-in
(si)

scaling-out
(so)

RESOURCE_DEALLOCATED/

si_reaction_time IS OVER/
deallocating_resource()

 RESOURCE_ALLOCATED/

so_reaction_time IS OVER/
allocating_resource()

SO_THRESHOLD_BREACHED/ SI_THRESHOLD_BREACHED/

Figure 4.1 – Elasticity States

4.2 CBS Driving Approach

This section describes the approach for CBSs driving throughout a preset list of elas-
ticity states. Elasticity state transitions occur due to workload variations that eventually
breach the thresholds. Therefore, this approach proposes a way to generate the workload
variations in a deterministic manner.
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Gambi et al. consider that an input workload has three characteristics [42]: workload

type, request mix, and request intensity. The workload type is the type of requests sent to
the CBS, such as read and write operations. The mix of requests is the set of requests
associated to a workload type. Finally, the request intensity is the amount of requests
sent to the CBS in a period of time. Given a workload type, this approach calculates the
requests intensity variation that should drive the CBS throughout a preset list of elasticity
states.

Figure 4.2 depicts the approach workflow, which has three execution phases: work-

load profiling (Section 4.2.1), workload calculation (Section subsec:workloadcalc), and
application leading (Section 4.2.3).

Workload 
Pattern

Target CBS

Application 
Leading

Workload Intensities (WI)

Profiling 
Intensity

Workload
Calculation

Resource 
Usage

Required Elasticity States
RES = {s1, s2, …, sn}

Workload 
Profiling

Thresholds

1

2

3

WI={(s1,660), …,(sn,270)} 

Workload 
Generator

Figure 4.2 – CBS Driving Procedure Workflow

4.2.1 Workload Profiling

CBSs may react in a distinct way when exposed to the same workload [26]. Therefore,
before calculating the workload variation, we must profile each combination of CBS and
workload.

The workload profiling phase has four parameters: the target CBS, the workload

generator, the workload type, and Profiling Intensity (PI). The target CBS is any
application that runs on the Cloud and supports elasticity. The workload generator is the
tool that generates the workload. The workload type describes the type or set of requests
sent to the CBS. Finally, PI defines the number of requests per second sent to the CBS
during the workload profiling phase.

To profile the effect of the workload on the CBS, the approach generates the workload
according to the workload profiling parameters. Then, it calculates the Average Resource
Usage (ARU) for the period, which is the input of the workload calculation phase.
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4.2.2 Calculation of Workload Variations

In this phase, the CBS driving approach calculates the request intensity(ies), which
we call workload intensity(ies), that drive the CBS throughout the Required Elasticity

States (RES).
Therefore, to drive a CBS throughout elasticity states we must know which are the

workload intensities that breach the scale-out, and the scale-in thresholds, which we call
multipliers. The scale-out multiplier, denoted by Mso, is the workload intensity that
breaches the scale-out threshold (⊤). The scale-in multiplier, denoted by Msi, is the
workload intensity that breaches the scale-in threshold (⊥).

The following equation calculates the scale-out multiplier:

Mso =
PI · ⊤

ARU
(4.1)

The following equation calculates the scale-in multiplier:

Msi =
PI · ⊥

ARU
(4.2)

Table 4.1 shows an example of multipliers. For their calculations, we hypothetically
consider that the PI value is 100, the ARU value is 10% of CPU usage (i. e., 0.1), the
scale-out threshold (⊤) corresponds to 60% of CPU usage (i. e., 0.6), and the scale-in
threshold (⊥) corresponds to 30% of CPU usage (i. e., 0,3). Thus, Mso value is equal to
600, while Msi is equal to 300.

Threshold Threshold Value Multiplier

scale-out 60% of CPU usage (0,6) Mso = 600
scale-in 30% of CPU usage (0,3) Msi = 300

Table 4.1 – Example of Multipliers

Workload Intensities

Before calculating the workload intensities, we must choose how to variate the
workload, where its variation may follow one of the following strategies: (i) gradual
ramp up or down, (ii) random, (iii) based on log traces, and (iv) in stages. Since a gradual
ramp up and down variation (i) either stresses the CBS or lasts too long, we discard
it. Since the CBS driving methodology aims at controlling the elasticity according to
a preset elastic behavior, we also discard the random (ii) and base on log traces (iii)
strategies. Therefore, we choose to variate the workload in stages (iv), which allows to
control of the CBS elastic behavior.
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Figure 4.3 depicts the possible downsides of using ramp up workload variation. The
figure depicts two situations: hurried rate (Figure 4.3(a)), and lazy rate (Figure 4.3(b)).
In a hurried rate, a scale-out threshold breaching occurs right after the previous resource
scale-out completes, which requests resource changes as soon as possible. For that, the
workload increases in a rate determined by the gradient formula as follows:

HR =
Mso

x
(4.3)

where x represents the total time for scale-out a resource (i. e., x = ∆T so
r + ∆T so).

During the hurried rate the resource is often under-provisioned, what potentially stresses
the CBS. To avoid the resource under-provision, we should increase the workload using
the lazy rate, calculated as follows,

LR =
Mso

2 · x
(4.4)

which delays the threshold breaching (2 · x), and never stresses the CBS. However,
depending on the RES, CBS driving could take too long, what makes it time–and
perhaps–cost prohibitive, since in the Cloud long periods can result in high cost.
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Figure 4.3 – Hurried Rate (a) and Lazy Rate (b)

Varying the workload in stages consists in generating a fixed workload intensity per
period of time, which corresponds to the elasticity state in RES. We calculate a workload
intensity for each elasticity state in RES, either breaching or not the thresholds. Indeed,
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the intensity should be Mso for a scaling-out state, Msi for a scaling-in state, breaching
the respective thresholds, and between Mso and Msi for a ready state, when we should
not breach any threshold. However, since scaling states (scaling-out and scaling-in)
change the amount of resources over time, the amount of Allocated Resource (AR)
is a key parameter. In this case, considering a linear scalability, which is the case of
distributed Web applications [58], to breach the thresholds one only need to multiply Mso

and Msi by AR. We call the product of this multiplication as current multiplier (CM ),
where CMso = Mso · AR and CMsi = Msi · AR. However, external factors that affect
resource consumption, such as network latency and concurrent processes, may disturb
the CBS driving. Therefore, we also consider a percentage of resource variation, which
we call as predictive variation index, denoted by ι. The approach calculates the workload
intensities as following:

WIry_s = CMso · (1− ι · 2) (4.5a)

WIry_sor = CMso · (1 + ι) (4.5b)

WIso = CMso · (1 + ι) (4.5c)

WIry_sir = CMsi · (1− ι) (4.5d)

WIsi = CMsi · (1− ι) (4.5e)

In the ready sub-state ry_s, the thresholds are not breached and the resource remains
unchanged. Therefore, the workload intensity for this state (WIry_s) must lead the
resource usage to a level ι · 2 lower than CMso (Equation 4.5a). Thus, the workload
intensity leads the resource demand close to the scale-out threshold, a significant amount
of work, but without breaching any threshold. However, one could use any intensity that
keeps resource demand between scale-out and scale-in thresholds. The goal here is this
intensity to result in a high amount of work, forcing the CBS to process high amounts of
data.

The ready sub-state ry_sor is when the workload breaches the scale-out threshold.
To ensure that the workload intensity breaches such threshold, it is ι percent higher than
CMso (Equation 4.5b). The workload intensity for the scaling-out state (Equation 4.5c)
must keep the scale-out threshold breached while a new resource is allocated.

The ready sub-state ry_sir is when the workload breaches the scale-in threshold.
We calculate the workload intensity for this state as ι percent lower than CMsi (Equa-
tion 4.5d). This keeps the resource demand just below the scale-in threshold. We use the
same calculation for scaling-in state (Equation 4.5e).

To exemplify these calculations, we use the following RES:

RES = {sry_sor
1

, sso
2
, sry_sor

3
, sso

4
, sry_sir

5
, ssi

6
, sry_sir

7
, ssi

8
, sry_s

9
} (4.6)
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Table 4.2 shows the sequence of states for the example RES, the amount of resource
during each state, and the workload intensity we arbitrarily use 10% (i. e., 0,1) as ι value.
In this example, we consider that the initial and minimum resource amount is 1, and
this amount varies according to the elasticity state. For instance, the RES state s_2 is a
scaling-out state, when the resource amount increases. Then, at the following RES state
(s_3), the resource amount is 2.

RES State Elasticity State/Substate Resource Amount Workload Intensity

s1 ry_sor 1 660
s2 so 1 660
s3 ry_sor 2 1320
s4 so 2 1320
s5 ry_sir 3 810
s6 si 2 540
s7 ry_sir 2 540
s8 si 1 270
s9 ry_s 1 270

Table 4.2 – Example of Workload Intensities Values

The output of the workload calculation is a set of pairs (elasticity state, intensity),
as the following set (extracted from Table 4.2).

WI = {(ry_sor, 660), (so, 660), (ry_sor, 1320), (so, 1320),

(ry_sir, 810), (si, 540), (ry_sir, 540), (si, 270), (ry_s, 270)}
(4.7)

4.2.3 Application Leading

In the application leading phase, we lead the CBS using the calculated workload
intensities (WI). Algorithm 1 illustrates this approach phase. We expose the CBS to
each workload intensity until the elasticity state ends. We monitor cloud infrastructure
periodically to identify the elasticity states.

Figure 4.4 depicts the relation between workload and resource variation. The figure
is only illustrative, where we hypothetically consider all the elasticity states last for the
same time, i. e., 60 seconds. In the figure, we consider the workload intensities listed in
Table 4.2, where each time slot between vertical lines is an elasticity state in RES. The
solid line represents both the workload variation (left axis y) and the resource demand
variation (right axis y2). The dashed line represents the variation in the amount of AR
(right axis). We see that AR amount increases from 1 to 3, then decreases to 1.
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Algorithm 1: Application Leading
Data: workload intensities WI
monitorElasticity();
foreach p < s, i > ∈ WI do

while s,isUp do
generateWorkload(i);

end
end
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Figure 4.4 – Example of Workload and Resource Variation During Application Leading

4.3 Elasticity Driver Prototype

This section presents a prototype that implements the CBS driving approach, which
has two components: a coordinator, and several generators. These two components
communicate by using remote calls (e. g., Remote Method Invocation (RMI)), which
allows to deploy them on distinct VMs.

The coordinator has several roles: front-end, monitoring, calculation of workload
intensities and synchronization of load tasks. Each generator runs and controls an
instance of a load generation application, such as a benchmark tool, and leads it to
execute the load tasks received from the coordinator, i. e., workload type and intensity.
Using multiple generators we reproduce a more realistic workload, which also allows us
to generate high workload intensities.

Figure 4.5 shows an UML sequence diagram that represents the application leading
phase. The coordinator starts by monitoring the resource status on the cloud frontend,
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identifying the elasticity states. In the sequence, the coordinator balances the workload
generation among the multiple generators. Then, the generators keep generating the
same workload until receiving another instruction from the coordinator, which occurs
every time the coordinator identifies a new elasticity state. This process is repeated for
all pairs in WI .

:Generator

destroy

for (p:WI)

while (s.isUP)   

repeat

[each 

second ]

parallel

                      elasticityState

monitorElasticityStates()

generateWorkload(i)

:Cloud Frontend:Coordinator

Figure 4.5 – Sequence Diagram of Application Leading Phase

In the current version, we implement the prototype in Java, where all the parameters
are configured in a Java property file. The generators can run any load generation
application that has an API, or supports command line execution. We identify elasticity
states and monitor resource usage by using cloud provider’s API, which allows us to get
instances’ information, such as resource usage statistics and initialization status.

4.4 Experiments

In this section, we present and discuss the three experiments we conduct. The
first experiment (Section 4.4.4) aims at confirming the assumption that driving CBS
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throughout RES by using a gradual ramp up workload variation in a hurried rate stresses
the CBS. The second experiment (Section 4.4.5) aims at confirming the assumption that
driving CBS throughout RES by using a gradual ramp up workload variation in a low

rate takes too long. Finally, the last experiment (Section 4.4.6) aims at controlling the
feasability the CBS driving approach.

4.4.1 Cloud Infrastructure Setup

We conduct the experiments on Amazon EC2 cloud infrastructure, with the scale-out

threshold as 60% of CPU usage, and the scale-in threshold as 30% of CPU usage. We
configure both reaction times as 60 seconds.

Table 4.3 describes the configuration of each VM type used in the experiments.

Machine Type CPU Memory Disk

m3,medium 1 vCPU (2,4GHz) 3,7GB 10GB
m3,large 2 vCPU (2,4GHz) 7,5GB 10GB

Table 4.3 – Configuration of Amazon EC2 Virtual Machines

4.4.2 Case Study

As a CBS case study, we use the PHP version of the RUBBoS, a realistic web
application modeled after an online news forum like Slashdot [10]. Figure 4.6 depicts
the n-Tier deployment of RUBBoS in the experiments. In a m3.large VM, we deploy

*           1  

MySQL

Database

«m3.large VM»

1            *

  

         RUBBoS

    Web Application

 

 Apache 

 HTTP Server

«m3.medium VM»

 

HTTP Load

Balancer

«m3.large VM»

Figure 4.6 – RUBBoS n-Tier Architecture

the HAProxy 1 Hypertext Transfer Protocol (HTTP) load balancer, which distributes the
requests among Web servers. The Web servers host RUBBoS, and run on m3.medium

1. http://www.haproxy.org/



4.4. EXPERIMENTS 51

VMs. It uses a centralized MySQL database server, deployed on a m3.large VM. The
elasticity controller scales Web server VMs during the experiments, which initial amount
of this resource is 1.

4.4.3 Workload Generation

As load generation application, we use the RUBBoS benchmark tool. We choose the
workload type browse, and vary the workload intensity by number of clients, whereas for
the workload profiling phase, we use 100 clients (PI = 100).

Table 4.4 describes the threshold and multipliers for the experiments. In the workload
profiling phase, the ARU values is 40% of CPU usage (ARU = 0,4). Therefore, the
workload multipliers are Mso = 150, and Msi = 75.

Threshold Threshold Value Multiplier

scale-out 60% of CPU usage (0,6) Mso = 150
scale-in 30% of CPU usage (0,3) Msi = 75

Table 4.4 – Multipliers for the Experiments

4.4.4 Gradual Workload Variation in a Hurried Rate

In this experiment, we drive the CBS case study by using a workload that varies in a
hurried rate.

For this experiment and the next one, we must calculate the gradual variation, which
requires the total times of scale-out and scale-in (see Section 4.2.2). We discover which
are the scaling-out and scaling-in times when varying resource changes manually, and
calculating their times at the end. A scaling-out takes ≈360 seconds, while a scaling-in

takes ≈120 seconds. Considering reaction and scaling time values, the total scale-out

time is 420 seconds, while the total scale-in time is 180 seconds.
Using the HR formulas from Section 4.2.2, the increasing hurried rate is ≈ 0,36

(150/420) OPS, and a decreasing hurried rate is≈ 0,42 (75/180) OPS. In this experiment,
we drive the CBS through 5 scale-out, then 5 scale-in, considering such rates.

For the scale-out, we must increase the workload for 2520 seconds, i. e., (scale-outs

+1) · total scale-out time, where the +1 is the time to breach the first scale-out threshold.
This results in a workload that goes from 0 to 907 OPS. For the scale-in, we must
decrease the workload for 1080 seconds. We decrease the workload from 450 to 0 since
450 is the WIry_sir that breaches the scale-in threshold when AR is 6, i. e., amount of
resource after 5 scale-out. Scale-out and scale-in sum up together ≈1 hour.

Figure 4.7 illustrates the behavior of the CBS case study and the cloud infrastructure
during this experiment.
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Figure 4.7 – Gradual Workload Variation in a Hurried Rate

In the figure, we see that most of the time the workload (dashed line) is higher
than the throughput (solid line). This represents the CBS stress, which occurs due to
resource under-provision, as we described in Section 4.2.2, confirming the assumption
that requesting elasticity states by varying the workload gradually in a hurried rate
stresses the CBS.

4.4.5 Gradual Workload Variation in a Lazy Rate

In this experiment, we drive the CBS case study by using a workload that varies
gradually over time in a lazy rate. Using the LR formulas, the increasing lazy rate is
≈ 0,18 (150/2 · 420) OPS, and a decreasing hurried rate is ≈ 0,21 (75/2 · 180) OPS.
We also drive the CBS through 5 scale-out, then 5 scale-in. For the scale-out, we must
increase the workload for 5,040 seconds, and decrease it for 2,160 seconds, summing up
2 hours.

Figure 4.8 illustrates the CBS behavior in this experiment execution. In this figure,
the workload and the throughput lines are close each other. Despite the throughput is not
as steady as the workload, this is not a problem. Indeed, this reflects RUBBoS benchmark
thinking time, which delays some requests to mimic real users behavior. We see that the
execution time of this experiment takes the double of time compared to the hurried rate
experiment.

This experiment results confirm the second assumption about gradual workload
variation: requesting elasticity states by varying the workload gradually in a lazy rate
takes the double of time than in a hurried rate. However, it does not stress the CBS.
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Figure 4.8 – Gradual Workload Variation in a Lazy Rate

4.4.6 Experiment with the Elasticity Driver

In this experiment, we use the elasticity driver to drive the CBS case study throughout
the 5 scale-out and 5 scale-in. This is the sequence of elasticity states:

RES = {sry_sor
1

, sso
2
, sry_sor

3
, sso

4
, sry_sor

5
, sso

6
, sry_sor

7
, sso

8
, sry_sor

9
, sso

10
, sry_sir

11
,

ssi
12
, sry_sir

13
, ssi

14
, sry_sir

15
, ssi

16
, sry_sir

17
, ssi

18
, sry_sir

19
, ssi

20
, sry_s

21
}

(4.8)

Table 4.5 lists the elasticity states and the calculated workload intensities, where we
consider ι value as 10% (ι = 0,1).

Figure 4.9 illustrates these experiment results. The elasticity driver prototype success-
fully drives the CBS case study throughout the RES. Workload and throughput lines are
close each other all along the experiment, which shows that the prototype does not stress
the CBS at any time. This experiment executes within the time of the first experiment
(hurried rate). Therefore, the elasticity driver drives the CBS in a minimal time, without
stress.

4.5 Conclusion

The results of the experiments confirm that a gradual variation of workload either
stresses the CBS or prolongs the CBS driving. Indeed, varying the workload in a hurried

rate stresses the CBS, while varying the workload in a low rate prolongs the time the
CBS remains in each elasticity state. The elasticity driver drives the CBS throughout
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RES State Elasticity State/Substate Resource Amount Workload Intensity

s1 ry_sor 1 165
s2 so 1 165
s3 ry_sor 2 330
s4 so 2 330
s5 ry_sor 3 495
s6 so 3 495
s7 ry_sor 4 660
s8 so 4 660
s9 ry_sor 5 825
s10 so 5 825
s11 ry_sir 6 450
s12 si 5 375
s13 ry_sir 5 375
s14 si 4 300
s15 ry_sir 4 300
s16 si 3 225
s17 ry_sir 3 225
s18 si 2 150
s19 ry_sir 2 150
s20 si 1 75
s21 ry_s 1 75

Table 4.5 – Workload Intensities Values for the RES
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Figure 4.9 – Driving Using the Elasticity Driver
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elasticity within the same time of using a hurried and gradually increased workload, but
without stressing the CBS. This part of the work is published at [22].

The elasticity driver is the first step on driving CBS throughout elasticity. So far, it
considers the CBS scalability as linear, which may not be true depending on the CBS or
the amount of allocated resources. Therefore, as a first future work we plan to propose a
strategy that considers non-linear scalability. A second improvement is to profile more
generic workloads, such as workloads based on log traces. Finally, we plan to adapt the
elasticity driver to address predictive elasticity policies since so far it only works with
reactive ones.





5
Elasticity State-Based Testing

Driving the CBS through different elasticity states triggers elasticity state-related
adaptations, which only occur during specific states. For instance, a component reg-
istration only occurs during the scaling-out state, before CBS stabilizing itself. In the
literature, most of the testing approaches only test CBS during the ready state, when CBS
is already stable. However, even if CBS recovers when it is back to the ready state, we
must test it through the scaling periods must they can still affect customers experience.
Therefore, CBS testing should consider all the elasticity states.

Coutinho et al. [31] proposes an approach that considers multiple CBS states. How-
ever, in their approach, testers must run the same test throughout CBS execution, and
identify the CBS states after the execution. In such scenario, the test of a component
registration, for instance, would execute through all the states unnecessarily.

This chapter proposes an approach to test CBS that switches among test cases
based on their association to elasticity states. This approach identifies elasticity state
occurrences at real-time, and switches among tests accordingly.

This chapter has three sections: Section 5.1 presents the elasticity state-based testing
approach, Section 5.2 describes a prototype that implements the approach,and Sec-
tion 5.3 describes some experiments and discusses their results. Finally, Section 5.4
concludes, and gives directions of future work.

5.1 Methodology for Elasticity State-Based Testing

This section presents the elasticity state-based testing approach. This approach focus
on associating tests with specific elasticity states (Section 5.1.1) and synchronizing tests

57
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execution accordingly (Section 5.1.2).

5.1.1 Test Methods Setup

To associate a test with an elasticity state, testers must set up some predefined
parameters: priority, delay, and repeat. Priority is the sequence in which the test
executes, in case of multiple test methods for the same state. Test methods with the same
priority execute in parallel. Delay is the period of time before the test execution, which
allows specific adaptations. Repeat is a boolean parameter, which configures whether or
not the test must execute repeatedly during the elasticity state. If it is true, test execution
repeats as long as CBS is in the elasticity state.

Table 5.1 shows three test examples: t1, t2, and t3. Test t1 executes during all the
elasticity states (∗), t2 during scaling-out and scaling-in, and t3 during scaling-out. Since
both, t2 and t3, execute during the scaling-out state and have the same priority, they
execute in parallel, whereas t3 has a delay of 10 seconds and does not repeat.

Test Elasticity State Priority Delay Repeat

t1 * 1 0 true

t2 scaling-out, 2 0 true

scaling-in

t3 scaling-out 2 10 false

Table 5.1 – Examples of Test Parameters

5.1.2 Test Synchronization

Algorithm 2 describes the test synchronization. This algorithm receives as an input a
set of tests (Tests) ordered by the priority parameter, and the RES. Testers can execute
the tests in two manners: using the elasticity driver (Section 4.3), or in parallel to
alternative approaches. For instance, testers could expose a CBS to a random workload
rather than driving it with the elasticity driver. If this algorithm executes apart from the
elasticity driver, RES value is null, and the algorithm starts an elasticity state monitor.
Otherwise, the algorithm uses the elasticity driver elasticity state monitor.

The monitor updates the variable eState periodically , which keeps information of
the current elasticity state. Then, the test synchronization executes while CBS is running
(mon,cbsIsRunning) and RES is incomplete or unset (i < sts || sts == null). At
each iteration, the algorithm executes all the tests (test ⊂ Tests) related to the current
elasticity state (csi), where each test execution respects the test parameters. Since the
approach only focus on synchronizing test executions, the algorithm requires the tester
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to write the logic necessary to assign a verdict to the test. Indeed, each test must return a
boolean assertion as test verdict, which expresses whether the test execution passed or
failed. Then, the algorithm stores each test verdict into a matrix V .

Algorithm 2: Test Synchronization
Data: Tests Tests, Required Elasticity States RES

1 i← 0;
2 if RES == null then
3 mon← monitor();
4 else
5 sts← RES,size();
6 end
7 csi ← null;
8 while mon,cbsIsRunning && (i < sts || sts == null) do
9 if csi <> mon,eState then

10 killAllTests();
11 i++;
12 csi ← mon,eState;
13 foreach test ⊂ Tests do
14 if csi ⊂ test,eStates then
15 if test,delay > 0 then
16 wait(test,delay);
17 else
18 if test,repeat then
19 V test

csi
← repeat(test);

20 else
21 V test

csi
← test,run();

22 end
23 end
24 end
25 end
26 end
27 end

Tests configure to repeat have multiple verdicts, one for each execution, which
requires an overall verdict calculation for each of them. Algorithm 3 calculates the
overall verdict for such tests. It receives as input all the test verdicts (v ⊂ V test), and
an accuracy index (ai). Then, it verifies whether the percentage of pass verdicts is
higher than or equal to ai, when the overall verdict is pass. Otherwise, it is fail. Indeed,
among test verdicts there can be false positives. For instance, some conditions, such as
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concurrent software executions or bandwidth issues, may disturb the CBS performance.
Therefore, the algorithm uses an ai parameter, which expresses a tolerated margin of fail
verdicts.

Algorithm 3: Test Oracle
Data: Test Verdicts V , and Accuracy Index ai

1 if (|{v ⊂ V test : v = pass}|/|V test| ∗ 100) ≥ ai then
2 return pass;
3 else
4 return fail;
5 end

5.2 Prototype for Elasticity State-Based Testing

This section describes a prototype that implements the approach for elasticity state-
based testing. Section 5.2.1 describes a way to write the tests, while Section 5.2.2
describes a way to read and execute the tests.

5.2.1 Writing Tests

We propose to write tests in Java programming language, which is popular, cross-
platform, and has a rich standard library. A Java class, which we call test file, contains all
the tests, where annotated Java methods (@StateBasedTest) implement the tests. This
annotation supports the parameters described in Table 5.1: elasticity state, priority, delay

and repeated.
Listing 1 presents a simple example of test file for the three tests illustrated in

Table 5.1. In this example, tests execute naive math, where t1 sums 2 and 2, t2 multiplies
2 by 2, and t2 divides 2 by 2. Each tests, as an assertion, verifies whether the calculated
value is equal to the expected one, and returns the boolean value of such assertions.

Listing 1 – Example of Test File
p u b l i c c l a s s T e s t s {
@Sta teBasedTes t ( s t a t e =" * " , p r i o r i t y = 1 , d e l a y = 0 , r e p e a t = t rue )
p u b l i c boolean t 1 ( ) {

I n t e g e r sum = 2 + 2 ;
re turn sum . e q u a l s ( 4 ) ;

}
@Sta teBasedTes t ( s t a t e = " s c a l i n g−out , s c a l i n g−i n " , p r i o r i t y = 2 , d e l a y
→֒ = 0 , r e p e a t = t rue )

p u b l i c boolean t 2 ( ) {
I n t e g e r mul t = 2 * 2 ;
re turn mul t . e q u a l s ( 4 ) ;



5.3. EXPERIMENTS 61

}

@Sta teBasedTes t ( s t a t e = " s c a l i n g−o u t " , p r i o r i t y = 2 , d e l a y = 10 ,
→֒ r e p e a t = f a l s e )

p u b l i c boolean t 3 ( ) {
I n t e g e r d i v = 2 / 2 ;
re turn d i v . e q u a l s ( 1 ) ;

}
}

5.2.2 Executing Tests

We write the test synchronization algorithm in Java, where the the elasticity driver
monitor identifies the elasticity states. This algorithm uses Java Reflection to read the
test file and the test methods. It is a tester responsibility to write the code that connects
to CBS and test it.

5.3 Experiments

This section discusses the two experiments where the elasticity state-based testing ap-
proach assists us in identifying performance degradations and their causes. Section 5.3.1
presents the web application case study, and the motivation for the two experiments.
Section 5.3.2 describes the first experiments, which aims at testing performance degrada-
tions per elasticity state. Section 5.3.3 describes the second experiment, which aims at
testing Web servers availability after a resource scale-out. Finally, Section ?? discusses
the experiments results.

5.3.1 Case Study and Motivation

The CBS case study are native Apache HTTP servers deployed in a distributed
manner on two different cloud providers: Amazon EC2 and Google CP. Each server
is deployed on a small VM, t1.small on Amazon EC2, and g1.small on Google CP.
Cloud provider elasticity controllers (de)allocate HTTP servers on-demand, and the
cloud provider native load balancer balances the incoming requests among the servers.
The elasticity driver drives the CBS throughout the following RES, which corresponds to
two resource scale-out:

RES = {sry_sor
1

, sso
2
, sry_sor

3
, sso

4
, sry

5
} (5.1)

As workload generator, we use the httperf [60].
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Elasticity State/Substate Resource Amount Workload Intensity (Amazon EC2) Workload Intensity (Google CP)

ry_sor 1 320 300
so 1 320 300

ry_sor 2 640 600
so 2 640 600
ry 3 960 900

Table 5.2 – Workload Intensities

Table 5.2 shows the workload intensities calculated by the elasticity driver for both
cloud providers.

Figures 5.1a and 5.1c depict the workloads generated by the elasticity driver to drive
CBS on Amazon EC2 and Google CP. Figure 5.1b depicts the throughput, on Amazon
EC2, while Figure 5.1d depicts the throughput on Google CP. On Amazon EC2, the
workload and throughput variations are close to each other, which indicates that the
performance is as expected. However, on Google CP, the CBS has several throughput
drops (throughput lower than the workload), which indicate performance degradations.
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Figure 5.1 – Workload and Throughput During the Case Study Driving on Google CP

The experiment described in Section 5.3.2 aims at discovering when the degradations
occur. A further experiment (Section 5.3.3) checks the cause of these degradations.
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We execute both experiments on Google CP, the cloud provider where CBS faces
performance degradations.

5.3.2 First Experiments: Performance Testing per Elasticity State

This experiment aims at identifying which are the elasticity states where the per-
formance degradations occur. This experiment uses the CBS driving described in the
previous section, and in parallel, the approach for elasticity state-based testing syhchro-
nizes a performance test (testPerformance). Table 5.3 shows the setup of this test, which
must execute repeatedly in every elasticity states.

Test Elasticity State Priority Delay Repeat

testPerformance * 1 0 true

Table 5.3 – Test Parameterization for Experiment 1

Listing 2 shows the test file for this experiment, which contains the test testPerfor-

mance. This test algorithm calls the external procedure getPerformance each 10 seconds,
which reads the workload and throughput from workload generation logs. Then, the
algorithm asserts the performance by comparing both values. For such comparison,
the algorithm uses a relax index, which configures the limit of divergence between the
workload and the throughput (performanceLimit), i. e., performance degradation. In
the algorithm, this index is 20% (0,2). Then, if throughput is higher than or equal to
performanceLimit, there is no performance degradation (assertion returns true, which
means the verdict is pass). On the contrary, there is performance degradation (assertion
returns false, which means the verdict is fail).

Listing 2 – Test File for Experiment 1
p u b l i c c l a s s T e s t s {
@Sta teBasedTes t ( s t a t e =" * " , p r i o r i t y = 1 , d e l a y = 0 , r e p e a t = t rue )
p u b l i c boolean t e s t P e r f o r m a n c e ( ) throws I n t e r r u p t e d E x c e p t i o n {

/ / Read t h e C u r r e n t Per formance

Map< I n t e g e r , I n t e g e r > p e r f o r m a n c e = g e t P e r f o r m a n c e ( ) ;
Set < I n t e g e r > keys = p e r f o r m a n c e . k e y Se t ( ) ;
I n t e g e r work load = keys . i t e r a t o r ( ) . n e x t ( ) ;
I n t e g e r t h r o u g h p u t = p e r f o r m a n c e . g e t ( work load ) . i n t V a l u e ( ) ;
/ / Re lax I n d e x

F l o a t r e l a x I n d e x = ( f l o a t ) 0 . 2 ;
F l o a t p e r f o r m a n c e L i m i t = ( f l o a t ) ( work load * (1− r e l a x I n d e x ) ) ;
/ / S l e e p f o r 10 s e c o n d s

Thread . s l e e p ( 1 0 0 0 0 ) ;
/ / A s s e r t i o n

i f ( t h r o u g h p u t >= p e r f o r m a n c e L i m i t ) {
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re turn t rue ;
} e l s e {

re turn f a l s e ;
}

}
}

Figure 5.2 depicts the total of pass and fail verdicts for the two states through which
the CBS is driven: ready and scaling-out. The 8 fail verdicts are all in the ready state,
which means that it is the state where the performance degradations occur. Looking
back to the RES used to drive the CBS, we find three ready states: one at beginning
of the sequence, and two that follow scaling-out elasticity states. In Figure 5.1d, there
are two periods of performance degradations, which coincide with the ready states that
follow scaling-out states. Therefore, a plausible cause of performance degradations is the
Google CP load balancer, which may be sending requests to the new Web server (added
during the scaling-out state) before it is ready, i. e., HTTP service is up. This is what the
next experiment investigates.
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Figure 5.2 – Test Verdicts for the First Experiment

5.3.3 Second Experiment: Testing Web Servers Availability

This experiment aims at checking the assumption that new Web server receives
requests before being ready. This experiment also repeats the case study driving, and
execute a test (testServers) that tests whether the last allocated Web server is ready.

Table 5.4 shows the parameterization for this test. Since the first experiment reveals
that the performance degradations are only in the ready state, we configure this test to
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execute in this state. It is also configured with priority 1 since it is the only test, not to be
delayed or repeated.

Test Elasticity State Priority Delay Repeat

testServers ready 1 0 true

Table 5.4 – Test Parameterization for Experiment 2

Listing 3 shows the test file for this experiment, which contains the test testServers.
This test algorithm calls an external procedure that at each 10 seconds (same interval as
in the first experiment) gets the host address of the last allocated Web server. Then, it
tries to connect to this server, and if the server is unavailable, the assertion returns fail.
Otherwise, the assertion is pass.

Listing 3 – Test File for Experiment 2
p u b l i c c l a s s T e s t s {
@Sta teBasedTes t ( s t a t e =" r e a d y " , p r i o r i t y = 1 , d e l a y = 0 , r e p e a t = t rue
→֒ )

p u b l i c boolean t e s t S e r v e r s ( ) {
boolean a l l L i s t e n n i n g = t rue ;
I n t e g e r p o r t = 8 0 ;
A r r a y L i s t < S t r i n g > s e r v e r s = g e t S e r v e r s ( ) ;
f o r ( S t r i n g h o s t : s e r v e r s ) {
So c k e t s = n u l l ;

t r y {
s = new So c k e t ( hos t , p o r t ) ;

} ca tch ( E x c e p t i o n e ) {
a l l L i s t e n n i n g = f a l s e ;

}
}
Thread . s l e e p ( 1 0 0 0 0 ) ;
re turn a l l L i s t e n n i n g ;

}
}

Figure 5.3 illustrates the verdicts of the test execution, where there are 10 pass verdicts,
and 8 fail verdicts. The verdicts match to the ones assigned in the first experiment during
the ready state. This is an evidence that performance drops occur due to a load balancer
issue, where the new Web server added during the scaling-out state receives requests
before its HTTP service is running.
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Figure 5.3 – Test Verdicts for the First Experiment

5.4 Conclusion

Thank to the approach for elasticity state-based testing the experiments reveal the
causes of performance degradations on Google CP. In the first experiment, the proposed
approach assists the elasticity states identification where performance degradations occur.
In the second experiment, it synchronizes the Web server test to execute during the ready
state, which reduces test execution efforts.

The elasticity state-based testing approach reduces the efforts in executing elasticity
tests. However, we can still reduce this effort by improving the monitoring process
to consider more specific CBS states. For instance, this approach idea is to test CBS
adaptations. Thus, if we improve the approach to identify CBS adaptations rather than
the current elasticity states, the test would be more specific, which would reduce the test
execution efforts.



6
Elasticity Test Reproduction

During software development, regression tests should be executed regularly [36] to
detect, diagnose, and correct bugs. Each execution must reproduce the same behavior,
which requires test design and execution to be deterministic. For CBS elasticity testing,
Chapter 4 already discusses the CBS driving importance. However, for some tests this
may not be enough, since they may require to combine elasticity states along with further
conditions.

By analysing the bug tracking of two popular CBSs, i. e., MongoDB and ZooKeeper,
we discover some requirements for reproducing elasticity tests. One case is for the
MongoDB NoSQL database bug 7974 [8]. For testing this bug, the test must manage to
repeat the following elastic behavior: create a MongoDB replica set [11] with three nodes
(three resource scale-out), remove one of the MongoDB node (one resource scale-in),
and add a new MongoDB node (one resource scale-out). The test must also manage to
repeat two time-based events: 1) to create a unique index before one of the MongoDB
nodes is removed (the resource scale-in), and 2) upload a document after a new node is
added (before the last resource scale-out). Another case is for the Apache ZooKeeper
bug 2164 [13], which only occurs when the leader component leaves a ZooKeeper cluster.
For testing this bug, the test must manage to repeat the CBS components variation in a
deterministic manner, which consists in managing to repeat the deallocation of the leader
component.

This chapter presents a prototype that tackles the discovered requirements for elastic-
ity test reproduction: the repetition of an elastic behavior, the repetition of time-based

events, and the repetition of CBS components variation. The approach also accelerates
the test reproduction by anticipating the reaction to resource demand. Indeed, driving

67
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CBS is time consuming since elastic controllers take a while (at least 60 s) to react to a
resource demand. Since a test may be re-executed for multiple times, this implies in high
cost.

This chapter is organized as follows: Section 6.1 describes the requirements for
elasticity test reproduction. Section 6.2 presents a prototype that aims at tackling such
requirements. Finally, Section 6.3 presents the experiments that validate the prototype.

6.1 Requirements for Elasticity Test Reproduction

Elasticity test reproduction consists in exposing the CBS to the same conditions as
previous executions, which should stimulate the CBS to repeat the same behavior. Then,
testers can check whether changes in the CBS, such as new features, affect its behavior,
or introduce bugs. Another use is to find CBS bugs, correct them, and then check whether
they have been fixed.

To discover which are the conditions that CBSs face, we analyse elasticity-related
bugs reported in the bug tracking of two popular CBSs: ZooKeeper, and MongoDB. Bug
reports have rich information since developers use it to reproduce bugs. Therefore, this
information reveals the conditions necessary to reproduce elasticity-related bugs, and as
a consequence, elasticity tests. The search for elasticity-related bugs has two steps:

1. Select bugs reports that contain in their description words that may refer to elastic-
ity, such as: elasticity, scaling, adding, removing, node, sync (for synchronization),
and replic (for replication).

2. Gather the bug reports whose description refers to resource changes, excluding
bug reports where the resource changes do not reflect an elastic behavior, such as
the ones that restart a VM rather than remove or add one.

The two CBSs projects use JIRA 1 issue tracker to report their bugs. Therefore, for
the Step 1, we use the query in Listing 4 to select bug reports related to elasticity. In the
query, we change $PROJECT by the project name that corresponds to the CBS, where
for MongoDB the project name is SERVER, while for ZooKeeper, it is ZOOKEEPER.
We exclude bug reports that resolution is Cannot Reproduce or Duplicate. The first
resolution refers to bugs that developers could not reproduce due to either wrong or
insufficient information, while the second resolution refers to duplicate bug reports.

Listing 4 – Query Used at Step 1
p r o j e c t = "$PROJECT" AND i s s u e t y p e = Bug AND r e s o l u t i o n n o t i n ( " Cannot Reproduce " , "

→֒ D u p l i c a t e " ) AND ( d e s c r i p t i o n ~ " e l a s t i c i t y " OR d e s c r i p t i o n ~ " s c a l i n g " OR
→֒ d e s c r i p t i o n ~ " a d d i ng " OR d e s c r i p t i o n ~ " removing " OR d e s c r i p t i o n ~ " node " OR
→֒ d e s c r i p t i o n ~ " sync " OR d e s c r i p t i o n ~ " r e p l i c " )

1. https://jira.atlassian.com
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Table 6.1 lists the number of bugs selected at each search step. MongoDB has 25,780
bugs reported on its bug tracker system, where we find 316 in the first step, and 43 in
the second step. ZooKeeper has 2,677 bugs reported, where we find 188 bugs in the first
step, and 9 in the second step.

Total of Bugs Bugs in Step 1 Bugs in Step 2

MongoDB 25,780 316 43
ZooKeeper 2,677 188 9

Table 6.1 – Selected Bugs in the Systematic Search

The selected bugs reveal three main requirements for reproducing elasticity-related
bug, which we also consider for elasticity tests reproduction: elasticity control, selective

elasticity, and event scheduling. Despite speediness is not a requirement, it is an exigency
to reduce the elasticity test reproduction cost.

— Elasticity Control is the ability to reproduce a specific elastic behavior. All the se-
lected Elasticity-related bugs occur after a specific sequence of resource allocations
and deallocations.

— Selective Elasticity is the need to manage a specific resource deallocation. For
instance, deallocating a resource associated to the master component of a cloud-
based system.

— Event Scheduling is the necessity to synchronize further events that may happen in
parallel to elasticity changes. An event is any interaction with or stimulus to CBS,
such as forcing a data increment or to simulate infrastructure failures.

— Speediness is the ability of reproducing a CBS test as fast as possible. Repeating an
elastic behavior consists in repeating the workload generation, where we already
know which are the workload and the predicted resource usage. Thus, to make the
elastic behavior repetition faster, the approach anticipates the resource changes.

Table 6.2 shows the quantity of requirements for each CBS bug reproduction. As said
previously, all the selected bugs require elasticity control, where 13 MongoDB (30%)
and 3 ZooKeeper (33%) do not require the other requirements. Out of MongoDB bugs,
30 bugs (70%) also need further requirements, within which 6 (14%) bugs need all the
requirements. Out of ZooKeeper bugs, 6 bugs (66%) need further requirements, and 5
(55%) of them need all the requirements.

6.2 Prototype for Elasticity Test Reproduction

This section describes the prototype for elasticity test reproduction, which meets
all the requirements from previous section. The prototype only focus on repeating
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Elasticity
Control

Selective
Elasticity

Event
Scheduling All

Only
Elasticity
Control

MongoDB 43 19 17 6 13

ZooKeeper 9 4 3 5 3

Table 6.2 – Requirements for Bug Reproduction

test executions, whereas for testing purposes one could use the approach presented in
Section 5.

6.2.1 Overall Architecture

Figure 6.1 depicts the overall architecture of the prototype. This architecture has four
components: Elasticity Controller Mock (ECM), Workload Generator (WGen), Event

Scheduler (ES), and Cloud Monitor (CM).
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Figure 6.1 – Overall Architecture

Table 6.3 summarizes the requirements ensured by each component, which we further
explain in the sequence.
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Component
Elasticity
Control

Selective
Elasticity

Event
Scheduling Speediness

ECM Yes Yes No Yes

WG Yes No No No

ES No No Yes No

CM Yes No No No

Table 6.3 – Requirements Ensured by the Components

Elasticity Controller Mock (ECM)

The role of the ECM component is to provide elasticity control and selective elasticity.
It simulates the behavior of the cloud provider elasticity controller by allocating and
deallocating given resources.

The ECM receives two inputs, a set of Elasticity Changes (EC) and a set of Selective
Elasticity Requests (SER). Each ec ⊂ EC is a pair composed of an elasticity state (es)
and a workload (W ), where the workload consists of types of work and intensities (see
Section 4.2.2). Each ser ⊂ SER is a pair composed of an elasticity change (ec) and an
elasticity selection (ese).

Listing 5 presents the EC settings in a Java property file.

Listing 5 – Example of Elasticity Changes Input
ec1= ready , ( 6 6 0 , r e a d )
ec2= s c a l i n g −out , ( 6 6 0 , r e a d )
ec3= ready , ( 5 4 0 , r e a d )
ec4= s c a l i n g −in , ( 2 7 0 , r e a d )

Listing 6 presents the SER settings in an annotated Java method.

Listing 6 – Example of Selective Elasticity Input File
@Selec t i on {name=" e se1 " , e l a s t i c i t y _ c h a n g e =" ec4 " }
p u b l i c S t r i n g s e l e c t 1 ( ) {

. . . / / code t o f i n d a r e s o u r c e ID

re turn r e s o u r c e I D ;
}

For each ec ⊂ EC, before requesting the elasticity change, the ECM sends the
workload parameters to the WGen component, and notifies the Event Scheduler (EvS)
that a new elasticity state has began. Then, it starts the specified resource change by using
cloud provider API to interact with cloud infrastructure directly. Transitions between ec
are determined by the end of the elasticity state set in ec, which is informed by the Cloud
Monitor (CM).

When a pair ser ⊂ SER contains the current ec, the ECM executes the ese. The
ese refers to an executable code that returns a resource identifier. For instance, this code
could query the CBS to discover the identifier of the resource that hosts the CBS master
component. Then, ECM deallocates that specific resource.
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The ECM anticipates the elasticity changes without waiting for the elasticity con-
troller to react to a resource demand. Indeed, elastic controllers, such as the ones from
Amazon EC2 and Google CP, have a minimum reaction time. For instance, Amazon EC2
takes a minimum of 60 s to react to a resource demand. Since the approach generates
the workload in a deterministic manner, we already know which resource should change,
and anticipate this change.

Cloud Monitor (CM)

The only role of the CM is to identify elasticity states, keeping this information up to
date on the ECM, helping in ensuring the elasticity control. The CM implements the mon-
itoring component of the prototype introduced in Section 4.3, with a new functionality:
sending an alert to the ECM when the current elasticity state ends.

Workload Generator (WGen)

The WGen is to generate the workload that drives the CBS throughout the RES,
which also ensures the elasticity control. The WGen is based on the elasticity driver
prototype introduced in Section 4.3. However, rather than receiving a sequence of
workload intensities, it receives workload pairs 〈type, intensity〉 at a time. Then, the
workload generator keeps generating the workload until a new pair arrives.

Event Scheduler (EvS)

Analogously to its name, the EvS ensures the event scheduling by synchronizing
events with elasticity changes. When a new elasticity change begins, EvS receives an
input S from the ECM, which contains pairs of an event (e) and an elasticity change (ec).
Then, the event scheduler executes all the related events according to their parameters.
The EvS implements the Algorithm 2 introduced in Section 5.1.2, from which we only
suppress the repetition. This is because events have punctual interactions with the CBS,
which occur once and at a specific time. Listing 7 illustrates the settings by using an
annotated method in Java, where each event parameter is an element of the @Event
annotation.

Listing 7 – Example of Event Scheduler Input File
@Event{ e l a s t i c i t y _ c h a n g e =" ec1 " , p r i o r i t y =" 1 " , d e l a y =" 0 " }
p u b l i c vo id e v e n t 1 ( ) {

. . . / / Any code t h a t i n t e r a c t s t o t h e CBS

}
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6.2.2 Architecture Workflow

Figure 6.2 illustrates the prototype execution sequence. This execution starts by the
CM component, which interacts with the Cloud (Cloud) to get information that identifies
the current elasticity state. Then, the prototype executes the ec ⊂ EC in parallel to the
elasticity states identification. For each ec ⊂ EC, the ECM sends a message to WGen,
which generates the workload Wi until the ECM sends a message to stop this process.
The ECM sends this message when the CM identifies that the current elasticity state has
ended. During the workload generation, if esi is different from ready, the ECM changes
the resource. Otherwise, it only waits for a given timeframe before moving to the next ec.
When a new elasticity state begins, the ECM sends a message to the EvS, which executes
all the events related to this state. The prototype repeats this process until the last ec
ends.

6.3 Experiments

This section presents three experiments that aim at validating the elasticity test
reproduction approach. The experiments reproduce three representative elasticity-related
bugs from two different CBS: MongoDB and ZooKeeper. The first bug is the MongoDB-

7974 from the MongoDB elasticity-related bugs described in Section 6.1. The other two
bugs, ZooKeeper-2164 and ZooKeeper-2172 from the official bug tracking of ZooKeeper,
another popular CBS.

We attempt to reproduce all the bugs in two ways: using the elasticity test reproduc-
tion approach, and manually (relying on the cloud computing infrastructure). Then, we
compare both approaches results to verify whether they meet the requirements described
in this chapter.

6.3.1 Experimental Environment

CBS Case Studies

MongoDB is a NoSQL document database. MongoDB has three different compo-
nents: the configuration server, MongoS and MongoD. The configuration server stores
metadata and configuration settings. While MongoS instances are query routers, which
ensure load balance, MongoD instances store and process data.

Apache ZooKeeper [1] is a service for maintaining configuration information. A
cluster of ZooKeeper nodes makes an ensemble, composed of a leader and follower

nodes, where a distributed algorithm elects the leader. The leader works as a proxy,
distributing the request among the followers. The followers keep a local copy of the
configuration data to respond to requests.
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loop
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eState

getState()

stateEnded

Figure 6.2 – Prototype Execution Sequence

Cloud Computing Infrastructure

We execute all the experiments on the cloud provider Amazon EC2, where the
scale-out and scale-in thresholds are 60% and 20% of CPU usage.

In the experiment with MongoDB, the MongoS instance is deployed on a large
machine (m3.large), while the other instances are deployed on medium machines
(m3.medium). In the experiments with ZooKeeper, every node is deployed on a medium
machine ( m3.medium) [4].
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Workload Tools

The Yahoo! Cloud Serving Benchmark (YCSB) [30] is the workload generation tool
that generates the workload for the experiment with MongoDB. For the experiments with
ZooKeeper, the workload generation tool is an open-source benchmark tool [50].

Selected Bugs: Requirements for Reproduction

Table 6.4 summarizes the requirements for the three selected bug reproductions.
Those bugs cover all the possible combinations of requirements, constrained by the
mandatory presence of elasticity control, and the need of at least one of the others
requirements. We do not aim at reproducing any bug that only requires elasticity

control, since one could reproduce the required elastic behavior using the elasticity driver
(Section 4), and then, meets elasticity control requirement only.

FEATURE

BUG
Elasticity
Control

Selective
Elasticity

Event
Scheduling

MongoDB − 7974 Yes Yes Yes

ZooKeeper − 2164 Yes Yes No

ZooKeeper − 2172 Yes No Yes

Table 6.4 – Requirements for Reproducing the Three Selected Bugs

MongoDB bug 7974

This bug affects the MongoDB versions 2,2,0 and 2,2,2, when a secondary component
leaves a MongoDB replica set [11]. Indeed, MongoDB elects one replica set component
as primary member, which works as a coordinator, while the others remain as secondary
members.

This bug reproduction requires a specific elastic behavior: initialization of a replica
set with three members, deallocation of a secondary member, and allocation of a new
secondary member. Therefore, the second step of the elastic behavior requires the
deallocation of a precise resource, one of the secondary members. The bug reproduction
also requires two events synchronized to elasticity changes. Right after the secondary
member deallocation, we must create a unique index, and after the last step of the elastic
behavior, we must add a document in the replica set.

In conclusion, this bug reproduction needs to meet all the requirements considered in
this chapter: elasticity control, selective elasticity, and event scheduling.
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ZooKeeper bug 2164

This is a ZooKeeper bug that concerns the leader election. According to the bug
report [13], in an ensemble with three nodes, when the node running the leader shuts
down, a new leader election starts and never ends.

This bug reproduction must follow a precise sequence: initialization (allocation of
the first node), followed by two nodes allocation and the deallocation of the leader node.
The main difficulty of reproducing this bug is that for a three nodes ZooKeeper ensemble,
the deallocated node is not necessarily the leader.

In conclusion, this bug reproduction needs to meet two requirements: elasticity

control and selective elasticity.

ZooKeeper bug 2172

This is a ZooKeeper bug that introduces the dynamic reconfiguration. According to
the bug report [14], when a third node enters a ZooKeeper ensemble, the system enters
an unstable state and cannot recover.

The analysis of available logs identifies the bug occurs when a leader election starts
right after a third node allocation. More precisely, when a new node joins the ensemble, its
synchronizes the configuration data with the leader. Therefore, if the data synchronization
does not end before the leader election, the bug occurs.

This bug reproduction requires a simple elastic behavior: initialization and two
node allocations. However, this sequence alone does not reproduce the bug: the leader
election must start before the end of the data synchronization process. Increasing the
data amount through an event synchronized with the third node allocation can ensure
this bug reproduction.

This bug reproduction needs to meet two requirements: elasticity control and event

scheduling.

6.3.2 Bug Reproduction

This section describes the use of the elasticity test reproduction approach to reproduce
the three bugs, and compare the results to the manual reproduction attempts. We do not
explain in details the setup of manual reproductions. We assume that one can manage
the control elasticity and meet this requirement. Indeed, reproducing elasticity is a native
feature of cloud computing infrastructures, and we just drive CBS through required
elastic behavior using the elasticity driver (Section 4).

MongoDB-7974 Bug Reproduction

To reproduce MongoDB bug 7974 using the elasticity test reproduction approach,
we first manually create the MongoDB replica set, composed of three nodes. Then, we



6.3. EXPERIMENTS 77

configure the following sequence of elasticity changes, which should drive MongoDB
through the required elastic behavior:

E = 〈ry1, 〈4500, r〉〉 , 〈si1, 〈1500, r〉〉 , 〈ry2, 〈3000, r〉〉 , 〈so1, 〈4500, r〉〉 , 〈ry3, 〈4500, r〉〉

Since this bug reproduction requires to deallocate a secondary member of MongoDB
replica set, an elasticity selection (ese1) discovers a secondary member. Then, this ese is
associated to the scaling-in state, i. e., elasticity change ec2 (〈si1, 〈1500, r〉〉). Listing 8
presents this ese algorithm, which first calls the external procedure getAllMember that
returns all the members of MongoDB replica set. Then, the algorithm uses MongoDB API
to query the first member of the replica set for the replica set status (getReplicaSetStates).
To discover a secondary member, the algorithm queries the replica set status whether
each member is the master, and returns the first member that is not the masters, i. e., is a
secondary member.

Listing 8 – Elasticity Selection that Discover MongoDB Secondary Members
@Selec t i on {name=" e se1 " , e l a s t i c i t y _ c h a n g e =" ec2 " }
p u b l i c S e r v e r A d d r e s s discoverMongoDBSecondary ( ) {
A r r a y L i s t < S e r v e r A d d r e s s > members = getAl lMembers ( ) ;
R e p l i c a S e t S t a t u s r e p l S e t S t a t u s = new R e p l i c a S e t S t a t u s ( ) ;
r e p l S e t S t a t u s = members . g e t ( 1 ) . g e t R e p l i c a S e t S t a t u s ( ) ;
f o r ( S e r v e r A d d r e s s member : members ) {

i f ( ! r e p l S e t S t a t u s . i s M a s t e r ( member ) ) {
re turn member ;

}
}
}

Two events implement the user interactions with the MongoDB during the test
reproduction. Event e1 creates a unique index, while event e2 inserts a new document in
the replica set. The e1 is associated to elasticity change ec3, a ready state that follows the
scaling-in state that deallocates a secondary MongoDB member. The e2 is associated to
elasticity change ec5, the last ready state.

Elasticity Change Event ID Execution Sequence Wait Time

ec3 e1 1 0 s
ec5 e2 1 0 s

Table 6.5 – MongoDB-7974 Event Schedule

We repeat the bug reproduction three times. After each execution, we look for the
expression “duplicate key error index” in the log files. If we find this expression, we
consider the bug as reproduced.
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Table 6.6 shows the result of all the three executions, either using the elasticity test
reproduction approach or manually. All the attempts using the approach reproduce the
bug, while none of the manual attempts do it.

Reproduction Reproduced Not Reproduced

Elasticity Test Reproduction Approach 3 0
Manually 0 3

Table 6.6 – MongoDB-7974 Bug Reproduction Results

In the executions without the approach for elasticity test reproduction, we force Mon-
goDB to elect the intermediate node (in the order of allocation) as primary member [3],
what can occasionally occur in a real situation. In this scenario, independent of scale-in
settings, cloud computing infrastructure always deallocate a secondary member, since
Amazon EC2 only allows to deallocate the oldest or newest nodes. Even though cloud
computing infrastructures may reproduce the required elastic behavior, this bug still
needs the event executions. This is the reason why the execution without the elasticity
test reproduction approach does not reproduce the bug .

ZooKeeper-2164 Bug Reproduction

To reproduce this bug, we translate and complete the scenario (Section 6.3.1) into the
following sequence of elasticity changes:

E = 〈ry1, 〈3000, r〉〉 , 〈so1, 〈5000, r〉〉 , 〈ry2, 〈5000, r〉〉 ,

〈so2, 〈10 000, r〉〉 , 〈ry3, 〈10 000, r〉〉 , 〈si1, 〈5000, r〉〉

The sequence of elasticity changes first initializes the cloud system with one node,
then it requests two scale-out. Once the three nodes are running, the sequence requests a
scale-in.

To discover the ZooKeeper leader node, a ese is associated to the scaling-in state,
i. e., elasticity change e6 (〈si1, 〈5000, r〉〉). Listing 9 presents this ese. Since ZooKeeper
API does not provide a method to query which is the ZooKeeper leader, the elasticity
selection algorithm connects to each ZooKeeper node, and executes the ZooKeeper
command stat. This command returns statistical information, which includes the node
execution mode, i. e., leader or follower. Then, the algorithm returns the node that is the
leader. We use the Java library JCsh [7] to implement the procedures that connect to the
ZooKeeper nodes (sshSession) and execute remote commands (sshCommand).

Listing 9 – Elasticity Selection that Discover ZooKeeper Leader
@Selec t i on {name=" e se1 " , e l a s t i c i t y _ c h a n g e =" ec6 " }
p u b l i c S t r i n g d i s c o v e r Z o o K e e p e r L e a d e r ( ) {
S t r i n g u s e r = ’ a t l a n m o d e l s ’ ;
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S t r i n g password = ’ s e c r e t ’ ;
A r r a y L i s t < S t r i n g > h o s t s = g e t A l l H o s t s ( ) ;
S t r i n g l e a d e r H o s t = n u l l ;
S t r i n g o u t p u t S t r e a m = n u l l ;
f o r ( S t r i n g h o s t : h o s t s ) {

S e s s i o n s e s s i o n = s s h S e s s i o n ( hos t , u se r , password ) ;
s e s s i o n . c o n n e c t ( ) ;
o u t p u t S t r e a m = sshCommand ( ’ echo s t a t | nc l o c a l h o s t 2181 | g r e p Mode
→֒ ’ ) ;

i f ( o u t p u t S t r e a m . e q u a l s ( ’Mode : l e a d e r ’ ) ) {
l e a d e r H o s t = h o s t ;
s e s s i o n . d i s c o n n e c t ( ) ;
break ;

}
s e s s i o n . d i s c o n n e c t ( ) ;

}
re turn l e a d e r H o s t ;
}

The sequence of elasticity states, which includes a selective elasticity, should reproduce
the bug. To verify whether the failure occurs, we implement a JUnit [43] test oracle.
This test oracle executes after the last elasticity change (〈si1, 〈5000, r〉〉), and repetitively
searches for a leader until finding it or the timeout is over. In the first case, the verdict is
pass, what means the approach reproduces the bug. Otherwise, the verdict is fail.

As well as in the first experiment, this experiment is executed in two ways: using the
elasticity test reproduction approach, and manually. This experiment is repeated three
times for each setup.

Since the selective elasticity is one of this bug reproduction requirements, when
executing without the reproduction approach, we try to reproduce a real scenario, where
a leader election can ellect any node as the leader. Therefore, we force the ZooKeeper
to elect a different node as the leader at each execution: the newest, the oldest, then the
intermediate node. Then, Amazon EC2 elastic controller deallocates a node. Its policy
is to deallocate either the newest or the oldest node, it is not possible to deallocate the
intermediate node. Hence, during the first two executions we can configure Amazon EC2
to deallocate the leader, but not during the last one.

Table 6.7 summarizes the results. When using the reproduction approach, all the
three test executions pass, which demonstrates the ability of the approach to reproduce
the bug. In contrast, only two manual executions pass, the ones where the leader is the
newest or the oldest node. Therefore, manual attempts to not reproduce the bug.

ZooKeeper-2172 Bug Reproduction

This bug reproduction (Section 6.3.1) requires the following sequence of elasticity
changes:
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Reproduction Pass Verdicts Fail Verdicts

Elasticity Test Reproduction Approach 3 0
Manually 2 1

Table 6.7 – ZooKeeper-2164 Bug Reproduction Results

E = 〈ry1, 〈3000, r〉〉 , 〈so1, 〈5000, r〉〉 , 〈ry2, 〈5000, r〉〉 , 〈so2, 〈10 000, r〉〉 , 〈ry3, 〈10 000, r〉〉

According to the bug log files, the bug occurs when the leader election starts before
the end of the data synchronization between the third node and the previous leader. Thus,
the test sequence must ensure that the data synchronization process is longer than the
delay needed to start a new election, which is about 10 s according to the log files. The
event e1 requests a data increasing to an amount that should take longer than 10 s to
synchronize. Table 6.8 describes this event association with the elasticity state so2. Since
this experiment uses Amazon EC2 m3,large machines, which have a bandwidth of
62,5MB/s, the data amount must be ≈625MB of data.

Elasticity Change Event ID Execution Sequence Wait Time

ec4 e1 1 0 s

Table 6.8 – ZooKeeper-2172 Event Schedule

We use the test oracle as for the bug 2164 by executing it during the last ready

elasticity state which should identify ZooKeeper leader before a timeout. Table 6.9
summarizes the experiment execution. In all the three executions, the test verdict is
pass, which means that the testing approach reproduces the bug. Since the Amazon EC2
cannot manage events synchronized with elasticity states natively, the three execution do
not reproduce the bug.

Reproduction Pass Verdicts Fail Verdicts

Elasticity Test Reproduction Approach 3 0
Manually 0 3

Table 6.9 – ZooKeeper-2172 Bug Reproduction Results

6.4 Conclusion

In the experiments, we use the prototype proposed in this chapter to reproduce bugs
of two popular CBSs. The prototype reproduces all the bugs, while the attempts without
it cannot reproduce the bugs. We repeat each bug reproduction multiple times, where
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without the proposed prototype each bug reproduction fails at least once. This indicates
that the proposed prototype reproduces elasticity-related bug in a deterministic manner.
This part of the work has been published at [23].

Since testing is not only about reproducing, but also diagnosing them, an evolution for
the reproduction approach is to integrate it to the approach for test sequences generation.
Then test configurations will cover the approach features, such as selective elasticity,
and event scheduling. Finally, we plan to investigate how fast a test execution can be
executed without compromising the CBS behavior.





7
A Domain-Specific Language for
Elasticity Test Deployment,
Configuration, and Execution

Managing CBS during elasticity testing is complex, laborious, and requires the
tester to master cloud computing and its particularities.. For this management, testers
must interact with cloud providers multiple times, requesting computing resources,
deploying CBS components, and configuring system elasticity and test parameters. The
laboriousness increases when testers need to execute a test over different cloud providers,
since each provider has its own procedures and language.

Previously in Section 3.4, we presented some research efforts that propose high-
level languages for CBS deployment, making this process less complex and laborious.
However, none of them addresses the system elasticity configuration nor elasticity testing.
To fill this gap, in this chapter, we propose a Domain-Specific Language (DSL) for
deploying, configuring, and executing elasticity tests, which abstracts the complexities
of elasticity testing by using a friendly syntax. Furthermore, programs expressed in this
DSL are less verbose than other languages. Along with the DSL, we propose a way to
translate DSL programs into cloud provider specific CLI calls. This translation allows a
test execution over different cloud providers with no program change.

This chapter is divided as follows. Section 7.1 illustrates the main activities and
concepts in elasticity test configuration. Section 7.2 proposes a DSL and the way it is
translated into executable code. Section 7.3 presents a configuration case study, its
translation into executable code, and discusses the results. Finally, Section 7.4 concludes,

83
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and gives directions of future work.

7.1 Elasticity Test Deployment and Configuration

Managing a CBS during elasticity testing includes three main activities:

1. CBS component deployment: specification of the CBS under test, its dependencies,
as well as its operating system and hardware requirements.

2. Elasticity parameter configuration: specification of different cloud provider param-
eters: thresholds, monitored resources, etc.

3. Testing parameter configuration: required system states, history of state transitions,
association between system states and test cases, etc.

7.1.1 CBS Component Deployment Concepts

Figure 7.1 depicts the activities a tester must perform to test a CBS component. First,
she must connect to the cloud provider. Then, she must select the resources required for
the component deployment, (i. e., an Operating System (OS) image and a VM type). An
image is a copy of a OS state, while a VM type describes the hardware configuration,
such as CPU, storage, and memory. Testers must also grant external access to the CBS
by configuring its ports on the Cloud firewall. Then, the tester launches an instance with
the selected resources, deploys and configures the component on it.

Figure 7.2 presents a UML Class Diagram representing the deployment configuration
of a CBS. In this diagram, a Provider (Cloud Provider) may provide several Instances,
which implements an Image, a MachineType, and one or more SoftwareComponents. A
MachineType has a name, a storage capacity, a quantity of CPU, and a memory capacity.
An Image has an identifier and implements an OS (Operating System), which has a
distribution, a version, and an architecture. A SoftwareComponent has a name and
describes the manner to install it (i. e., replication or installation package). It has four
Source files: a pre- and a post-installation scripts, an installation file, and a configuration
file. A Source file has a location and a destination. A cloud Provider has at least one
SecurityGroup, which groups one or more PortConfigurations. The last describes a port
and a reachability.

While there are different manners to install software components, we consider so
far that they are either installed by direct folder replication, or using a package manager.
The source file associated to a software component allows its initial installation and
configuration, as well as calling scripts before and after the component execution.
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Figure 7.1 – CBS Deployment Activities

7.1.2 Elasticity Configuration Concepts

Enabling elasticity in a cloud system requires the configuration of different parameters.
Figure 7.3 illustrates tester activities when enabling cloud system elasticity. After
connecting to the cloud provider, the tester sets up a resource pool, where he/she describes
the resource that should scale. Then, he/she sets up scale-out and scale-in thresholds, and
the policies to scale the resource. Finally, the tester creates an auto-scaling group that
implements such setups.

Figure 7.4 depicts a UML Class Diagram representing the concepts related to elas-
ticity configuration. In this diagram, an elasticity Policy defines an action (i. e., add or
remove a resource), the quantity of concerned resources, and the reaction time needed to
apply the action, after a threshold breach. Each policy is associated to a pool, at least
one scale-in threshold, and at least one scale-out Threshold. A Threshold corresponds
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Figure 7.2 – CBS Deployment Setup Model

to a resource, the kind of measure (i. e., average, minimum, etc.), a comparator, and a
reference value. A ResourcePool has a minimum and a maximum size and refers to a
cloud resource, an Instance (see Figure 7.2).

7.1.3 Elasticity Test Configuration Concepts

The elasticity test configuration depends on the properties the tester wants to verify.
In this section, we recapitulate the concepts related to the elasticity testing approaches
described in the previous chapters.

Elasticity Driving Configuration

Figure 7.5 depicts the model of elasticity driving configuration, based on the approach
described in Chapter 4. In this model, an elasticity Driving refers to two SoftwareCompo-

nents (see Figure 7.2). The first one is the component that receives the workload leading
to the required elasticity behavior. The second one is the tool that generates the workload.
A driving also defines an intensity when profiling the resource usage, and is associated to
one or more RequiredElasticityStates, which has elasticity states, and the workload that
leads to such states.
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Figure 7.3 – Elasticity Configuration Activities
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Figure 7.5 – Elasticity Driving Configuration Model

Elasticity State-Based Test Configuration

Figure 7.6 depicts the model of elasticity state-based test configuration, based on the
approach described in Chapter 5. In this model, a TestSchedule has an ElasticityState and
an execution priority. A test schedule refers to a Test, which has a name, a pre-execution
delay, and a repetition choice.

TestSchedule

-elasticityState: ElasticityState
-priority: Integer

Test

-testName: String
-delay: Integer
-repeat: Boolean

«Enumeration»
ElasticityState

ry_s
ry_sir
ry_sor
so
si

test

1

Figure 7.6 – Elasticity State-Based Configuration Model

Event Scheduling Configuration

Figure 7.7 depicts the event scheduling configuration model, based on the approach
described in Chapter 6. In this model, an EventSchedule has an execution priority and
references an Event and one or more ElasticityChange. Events has a name and a pre-
execution delay. Elasticity changes use a unique sequence number to keep a historical
trace of elasticity state changes.
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Figure 7.7 – Event Scheduling Setup Model

Selective Elasticity Configuration

Figure 7.8 presents the selective elasticity configuration model, which is based on the
approach described in Chapter 6. In this model, a procedure for resource Selection has a
name and is associated to one or more elasticity changes.

Selection

-name: String

ElasticityChange

-sequence: Integer
-elasticityState: ElasticityState

eChange

1..*

Figure 7.8 – Selective Elasticity Setup Model

7.2 A DSL for Elasticity Test Deployment and Execu-
tion

After presenting the main concepts of elasticity testing deployment and execution, we
present in this section a DSL based on these concepts. Programs written in this language
can configure and execute elasticity tests independently of the cloud provider. To make
this independence possible, we base this approach on Thiery et al. work [72].

7.2.1 DSL to Configure Elasticity Testing

The DSL is divided into three parts, according to the tester actions when managing
elasticity tests: deployment of CBS components (Deployment), elasticity configuration
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(Elasticity), and elasticity testing configuration (ElasticityTesting). We also propose a
fourth part (Provider), which is cloud provider-dependent, that lists available resources
on a cloud provider.

In order to reduce the DSL syntax presentation, we propose a simple case study,
which consists of the following activities:

— Deploy on a Cloud a distributed Web application, composed of native Apache
HTTP servers and a HTTP proxy.

— Deploy the software components for elasticity driving, elasticity state-based testing,
and workload generation.

— Configure elasticity configuration parameters on a cloud provider.

— Configure elasticity driving and elasticity state-based test configuration.

We use this case study to exemplify the DSL in the next sections.

Deployment Part

Deployment part is sub-divided into two sub-parts: RequiredRes that describes the
required resource for each CBS component, and CBSComponents specifies the required
CBS components. Looking back at Figure 7.2, RequiredRes corresponds to the parts in
white, while CBSComponents corresponds to the parts in pink.

Despite RequiredRes refers to cloud provider resources, its configuration is cloud
provider-independent. That is, the tester specifies the required resources regardless of
their availability in the cloud provider. Listing 10 shows an example of RequiredRes

configuration. As required resources, the tester describes machine types, OSs, and ports.
We do not describe Image and Instance (see Figure 7.2) in this part. They concern the
required resources implementation, whose configuration is generated in the compilation
phase by matching the required resources to those available in the cloud provider.

Listing 10 – Example of RequieredRes Specification

RequiredRes {
MachineTypes {

medium {
s t o r a g e C a p a c i t y = 3 ;
cpuFrequency = 1 . 7 ;
ramCapac i ty = 3 ;

}
l a r g e {

s t o r a g e C a p a c i t y = 2 0 ;
cpuFrequency = 3 . 5 ;
ramCapac i ty = 5 ;

}
}
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OSs {
ubuntu32 {

d i s t r i b u t i o n = Ubuntu ;
v e r s i o n = 1 0 ;
a r c h i t e c t u r e = i 38 6 ;

}
}
Ports {

h t t p {
p o r t = 8 0 ;
r e a c h a b i l i t y = ’ 0 . 0 . 0 . 0 ’ ;

}
}
}
. . .

Listing 11 shows an example of a CBSComponents setup. First, it describes the
external files (Sources) necessary to install and configure the CBS components. Then, it
describes their installations, where each installation associates a software component to
the required resources and external files. More precisely, the HTTP proxy installation, a
Web server, a workload generator, an elasticity driver, and state-based tests. Installations
are analogous to Instances from the model presented in Figure 7.2. However, since in
CBSComponents we only consider required resources, not existing ones, in the remainder
of this thesis we refer to installations as abstract instances.

Listing 11 – Example of CBSComponets Specification

. . .
CBSComponents {
Sources {

a d d S e r v e r {
l o c a t i o n = ’ . / add−s e r v e r . sh ’ ;

}
r emoveServe r {

l o c a t i o n = ’ . / remove−s e r v e r . sh ’ ;
}
haproxy {

l o c a t i o n = ’ . / haproxy −1 . 7 . 3 / ’ ;
d e s t i n a t i o n = ’ ~ / haproxy / ’ ;

}
h a p r o x y _ c o n f i g {

l o c a t i o n = ’ . / haproxy . c f g ’ ;
d e s t i n a t i o n = ’ ~ / haproxy / ’ ;

}
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e l a s t i c i t y _ d r i v e r {
l o c a t i o n = ’ . / e l a s t i c i t y −d r i v e r −1 . 0 . 0 / ’ ;
d e s t i n a t i o n = ’ ~ / e l a s t i c i t y −d r i v e r / ’ ;

}
s t a t e _ b a s e d _ t e s t i n g {

l o c a t i o n = ’ . / s t a t e −based−t e s t i n g −1 . 0 . 0 / ’ ;
d e s t i n a t i o n = ’ ~ / s t a t e −based− t e s t i n g / ’ ;

}
}
i n s t a l l h t t p _ p r o x y on MachineType l a r g e {

os = ubuntu32 ;
i n s t a l l a t i o n = R e p l i c a t i o n ;
i n s t a l l a t i o n F i l e = haproxy ;
c o n f i g F i l e = h a p r o x y _ c o n f i g ;
p o r t = h t t p ;

}
i n s t a l l w e b _ s e r v e r on MachineType medium {

so f twareComponen t = ’ apache2 ’ ;
os = ubuntu32 ;
i n s t a l l a t i o n = Package ;
p r e S c r i p t = a d d S e r v e r ;
p o s t S c r i p t = removeSe rve r ;
dependency = haproxy ;

}
i n s t a l l w o r k l o a d _ g e n e r a t o r on MachineType l a r g e {

so f twareComponen t = ’ h t t p e r f ’ ;
os = ubuntu32 ;

}
i n s t a l l e _ d r i v e r on MachineType l a r g e {

os = ubuntu32 ;
i n s t a l l a t i o n = R e p l i c a t i o n ;
i n s t a l l a t i o n F i l e = e l a s t i c i t y _ d r i v e r ;

}
i n s t a l l s _ b a s e d on MachineType medium {

os = ubuntu32 ;
i n s t a l l a t i o n = R e p l i c a t i o n ;
i n s t a l l a t i o n F i l e = s t a t e _ b a s e d _ t e s t i n g ;

}
}
. . .
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Elasticity Part

Listing 12 presents an example of an Elasticity configuration, where a resource pool
contains from 1 to 10 web server abstract instances, from Listing 11. The example
defines two threshold levels, the first for when the maximum CPU usage is higher than
60% (highCPU), and the second for when the maximum CPU usage is lower than 30%
(lowCPU). It also defines two policies, the first one defines that the resource pool should
expand when the first threshold is breached for more than 60 s and the second one defines
that the resource pool should shrink when the second threshold is breached for more than
60 s.

Listing 12 – Example of Elasticity Specification

. . .
E l a s t i c i t y {
ResourcePools {

w e b s e r v e r _ p o o l = w e b _ s e r v e r [ 1 , 1 0 ] ;
}
Thresholds {

highCPU { Maximum CPU > 60 } ;
lowCPU { Maximum CPU < 30 } ;

}
P o l i c i e s {

a d d _ s r v { i f highCPU during 60 then Add 1 in w e b s e r v e r _ p o o l } ;
rm_srv { i f lowCPU during 60 then Remove 1 from w e b s e r v e r _ p o o l
→֒ } ;

}
}
. . .

Elasticity Testing Part

We sub-divide the ElasticityTesting part into four sub-parts, each one addressing
different aspects of elasticity tests: CBS Driving describes elasticity driving, State Based

Testing describes the state-based tests, Events Scheduling describe event scheduling, and
Selective Elasticity describes the selective elasticity.

In the case study, only the CBS Driving and the State Based Testing parts are necessary.
Listing 13 shows a driving configuration, that configures the application web_server

driving through the following sequence of states: ry_s, ry_sor, and so. The workload
has a read pattern and a profiling intensity of 100, generated by the previously defined
generation tool (workload_generator).
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Listing 13 – Example of CBSDriving Specification

. . .
E l a s t i c i t y T e s t i n g {
Driv ing {

R e q u i r e d E l a s t i c i t y S t a t e s {
r e s 1 = { ( ry_s , ’ r e a d ’ ) , ( r y _ s o r , ’ r e a d ’ ) , ( so , ’ r e a d ’ ) } ;

}
d r i v e w e b _ s e r v e r through r e s 1 with w o r k l o a d _ g e n e r a t o r {
→֒ p r o f i l i n f I n t e n s i t y = 100 } ;

}
. . .

Listing 14 shows the State Based Testing configuration for three tests, t1, t2 and t3,
and associate then to the states ready, scaling-out, and scaling-in. In the execution
configuration, a comma means that tests are in a sequence, while a pipeline means they
are parallel. This expresses test priority, represented in the model of Figure 7.6, where
tests executed in sequence have incremental priority, while tests executed in parallel have
the same priority. For instance, through ready state, t1 has priority 1, while t2 and t3

have priority 2.

Listing 14 – Example of StateBasedTesting Specification

. . .
S t a t e B a s e d T e s t i n g {

T e s t s {
t 1 {

d e l a y = 0 ;
r e p e a t = f a l s e ;

}
t 2 {

d e l a y = 1 0 ;
r e p e a t = f a l s e ;

}
t 3 {

d e l a y = 0 ;
r e p e a t = t r u e ;

}
}
e x e c u t e t 1 , t 2 | t 3 through r y _ s ;
e x e c u t e t 1 , t 2 through so ;
e x e c u t e t 3 through s i ;

}
}
}
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Using Java annotations to configure test cases, such as proposed in Section 5.2.1,
is a straightforward solution. However, testers must write all the test specification
using annotation parameters, which may be confusing due to the low level of abstraction.
Furthermore, as previously explained, it is not possible to configure the priority according
to elasticity state. With the proposed DSL, the test execution specification has a higher
level of abstraction.

Figure 7.9 illustrates the difference between both specifications, where (a) shows the
configuration with annotations, and (b) shows the configuration in the proposed DSL.
Note that when using the DSL, method declarations are annotated with @Test, all the
other specifications are in a separated file. Furthermore, using the DSL allows to divide
the configuration among different staff. For instance, given the complexity of the CBS
management, one tester could write the test code, while other tester could schedule and
manage test executions. This improves the collaboration among software testers.

@Test{state=”ready,scaling-out”, priority=1, 
delay=0, repeat=false}
public void t1( ) { … }
@Test{state=”ready,scaling-out”, priority=2, 
delay=10, repeat=false}
public void t2( ) { … }
@Test{state=”ready,scaling-in”, priority=2, 
delay=0, repeat=true}
public void t3( ) { … }

(a) Test Methods (Java Annotation Approach)

@Test
public void t1( ) { … }
@Test
public void t2( ) { … }
@Test
public void t3( ) { … }

(b) Test Methods (DSL Approach)

Figure 7.9 – Example of Test Methods Source Code

Provider Part

A Provider is divided into two sub-parts: Resources that describe the cloud provider
available resources, and Commands that parameterize the CLI commands necessary to
interact with cloud provider while leading elasticity testing. Similarly to RequiredRes,
CloudResources specification also corresponds to the white parts in Figure 7.2. How-
ever, while RequiredRes specification is cloud provider-independent, CloudResources is
specific for each cloud provider, which describes existing resources.

Listing 15 shows an example of CloudResources setup. In the example, we describe
resources of Amazon EC2 cloud provider: an image with hypothetical identifier ami-

1234, which runs the OS distribution Ubuntu, with version 7.04 and architecture i386,
and machine types m3.medium and m3.large.
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Listing 15 – Example of CloudResources Specification

Provider EC2 {
CloudResources {

Images {
ami−1234 {

os {
d i s t r i b u t i o n = ’ Ubuntu ’ ;
v e r s i o n = ’ 7 . 0 4 ’ ;
a r c h i t e c t u r e = ’ i 38 6 ’ ;

}
}

}
Machines {
m3 . medium {

s t o r a g e C a p a c i t y = 4 ;
cpuFrequency = 2 . 6 ;
ramCapac i ty = 3 . 7 5 ;

}
m3 . l a r g e {

s t o r a g e C a p a c i t y = 3 2 ;
cpuFrequency = 5 . 2 ;
ramCapac i ty = 7 . 5 ;

}
}

}
. . .

Listing 16 shows an example of a parameterized command, which corresponds to
the Amazon EC2 CLI command to create an instance. Each command specification
has a fixed name, a CLI command, and several command arguments. The command
name never changes, even when a Command specification is (re-)written for a further
cloud provider. Conversely, the CLI command and its arguments dependend on the
cloud provider. Furthermore, argument value is a reference to a parameter from other
configurations. In the example, the values of arguments –image-id and –instance-type

refer to an image and a machine type from CloudResources, respectively.

Listing 16 – Example of Commands Specification

. . .
Commands {

instantiat ionCommand ’ aws ec2 run− i n s t a n c e s ’ {
arguments {
−−image−i d Image ;
−−i n s t a n c e−t y p e MachineType ;
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}
}
. . .

}
}

7.2.2 Compilation of Elasticity Test Configuration

Figure 7.10 depicts a methodology to compile DSL programs into executable code.
In the figure, the cloud provider-dependent and the cloud provider-independent parts are
in separated files. If the same test is executed on different cloud providers, the only file
that the tester must change is the Provider Dependent one. Furthermore, this file is only
written once, since a Provider Dependent file can be re-used from other executions. The
compilation has two steps: resource matching and script generation. In the following
sections, we detail these steps.

7.2.3 Resource Matching

The first compilation step consists in matching the required resources to the available
resources from a cloud provider and in generating a resource matching file. This file
contains the resource descriptions from the Required Res part, updated with the values of
matched resources from Cloud Resources.

The matching function considers the minimum distance between resources described
in both files, which is repeated for every required resource (res) in RequiredRes. Algo-
rithm 4 illustrates this function. It is a brute-force algorithm that calculates the distance
between a required resource (res ⊂ RequiredRes) and every available resource of the
same type (cr ⊂ CloudResources). At the end, the algorithm returns the cloud resource
(cr) with the least distance to the required resource (res). For numeric values we consider
their arithmetic difference as distance metric, while for literal values we consider the
Levenshtein distance [57].

Listing 17 shows an example of a resource matching file, where an instance named
as mediumUbuntu runs image ami-1234 on a machine of type m3.medium. Note that
attribute names correspond to instance attributes in the model of Figure 7.2, while their
values refer to resources of cloud provider Amazon EC2 described in CloudResources

(Listing 15).

Listing 17 – Example of Resource Matching File (IEC2)

i n s t a n c e mediumUbuntu {
image := ami−1234 ,
machineType := m3 . medium ,
g e o g r a p h i c Z o n e := eu−west−1
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Figure 7.10 – Compilation of Elasticity Testing Setup into Executable Code

}

7.2.4 Script Generation

The second compilation step consists in generating all the scripts necessary to execute
elasticity tests: resource instantiation (Si), CBS deployment (Sd) and elasticity test (St)
scripts. These scripts contain CLI commands to interact with the cloud provider.

Instantiation Script Generation

The instantiation script (Si) commands instantiate the required resources on the Cloud.
This script is generated by replacing argument values of the corresponding command in
the specification by the attribute values from the resource matching file.

Listing 18 shows an example of the generated instantiation script (Si). Since a
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Algorithm 4: Resource Matching Function
Data: Required Resource req, Available Resources R
minDist← infinity;
for i = 1 to lenght(R)− 1 do

cr ← R[i];
if dist(res, cr) < minDist then

minDist← dist(res, cr);
matchedRes← cr;

end
end
return matchedRes;

resource instantiation code may be reused to deploy more than one CBS component, each
instantiation code is placed in a block named instantiation. Note that there is exactly one
instantiation block for each instance in the resource matching file. Instantiation scripts
execute along with deployment scripts.

Listing 18 – Example of an Instantiation Script

i n s t a n t i a t i o n mediumUbuntu {
aws ec2 run− i n s t a n c e s −−image−i d ami−1234 −−i n s t a n c e−t y p e
→֒ m3 . medium −−r e g i o n eu−west−1

}

Deployment Script Generation

The deployment script (Sd) deploys CBS components on the Cloud, and configures
the elasticity parameters. The deployment of a CBS component is done in three steps:
launching an instance that meets the resource requirements, deploying the components,
and configuring the provider elasticity parameters. The script generator gathers informa-
tion from the CBSComponents, Elasticity and Commands parts and from the resource
matching file (Ip).

Test Script Generation

Test script contains the commands necessary to execute test suites. The first task of
the generation is to transform test specifications into inputs for testing tools. For instance,
in state-based testing, this consists in transforming the StateBasedTesting specification
into a Java file with annotated methods. The second task is to generate the commands to
send such inputs to the testing tools, and to orchestrate their executions.
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7.3 Experiment

This section presents an experiment that aims at measuring the tester effort when
writing elasticity tests by using the DSL proposed in this chapter. As case studies,
we consider two elasticity tests, previously presented in Chapters 5 and 6: CS1) the
MongoDB bug 7974 reproduction (Section 6.3.1), and CS2) the performance testing of a
distributed Web application throughout a preset elastic behavior (Section 5.3.2).

For each case study, we write the elasticity test by using the DSL proposed in this
chapter, and translate it into three cloud provider CLIs: Amazon EC2, Google CP, and
OpenStack. Then, we compare the tester effort to write elasticity tests in both, the DSL
and the cloud provider CLIs. We measure the tester effort in number of words: total of

words, and cumulative words.

7.3.1 Total of Words

The total of words is the amount of words necessary to write the tests. Table 7.1
presents the results for the case studies. The tests written in the DSL result in fewer
words for all the cloud providers and case studies. They are the same for all the cloud
providers, whereas tests written in CLIs are specific to each provider. The DSL
reduces considerably the tester effort to write tests: Amazon EC2 (CS1 ≈ −24%,
CS2 ≈ −22%), Google CP (CS1 ≈ −38%, and CS2 ≈ −36%), and OpenStack
(CS1 ≈ −43%, and CS2 ≈ −39%).

Cloud Provider CS1 CS2
DSL

All Cloud Providers 213 192
CLI

Amazon EC2 264 238
Google CP 292 265
OpenStack 298 275

Table 7.1 – Total of Words in Case Studies

Figure 7.11 depicts the tester effort to write the case studies. In the figure, the dashed
line connects CS1 efforts, while the solid line connects CS2 efforts.

7.3.2 Cumulative Words

The cumulative words (CW ) is the sum of the new words necessary to re-write an
existing elasticity test to execute it in a further cloud provider infrastructure. We use the
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Figure 7.11 – Tester Effort to Write the Case Studies

following formula to calculate the CW :

n
∑

i=1

CWi−1 + (Si−1 ⊙ Si) (7.1)

The i denotes the sequence to write the elasticity test, and Si−1 ⊙ Si denotes the new
words from the previous (Si−1) to the next test (Si).

The graph of Figure 7.12 illustrates the CW as the case studies are (re-)written
for a given sequence of cloud provider infrastructures: Amazon EC2, Google CP, and
OpenStack. The solid lines illustrate the CW for tests written in the DSL, while the
dot-dashed lines illustrate the CW for tests written in the cloud provider CLIs. While
the CW for tests written in the DSL is stable, it almost triples from the first to the last
elasticity test for tests written in the cloud provider CLIs. This is because the tests written
in the DSL are portable over cloud providers, while when using the cloud provider CLIs
the test must be completely re-written.

7.4 Conclusion and Future Work

In this chapter, we proposed a DSL-based approach to configure the elasticity tests
implementation. Its major contributions are the tester effort reduction to write elasticity



102CHAPTER 7. A DSL FOR E. TEST DEPLOYMENT, CONF., AND EXECUTION

0

100

200

300

400

500

600

700

800

900

CLI (CS1) CLI (CS2) DSL (CS1) DSL (CS2) 
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tests, and the portability of tests over cloud providers. In the experiments, the tests written
in the DSL contain less words than the tests written in the cloud provider CLIs. However,
the major effort reduction is for elasticity tests that must be re-written to execute over
different cloud provider infrastructures, where the same test can execute without any
change This part of the work has been published at [20].

The compilation phase of the DSL-based approach is so far theoretical, which we
wish to implement as part of a future work. The next challenge will be to tune this
approach to find cloud computing resources automatically, where testers must not write
cloud provider-dependent specifications. Another plan is to extend the DSL to test code
level, in a way testers use it to write their tests rather than other languages, and test code
calls testing approaches directly. Finally, a future plan is to change the DSL syntax, and
make it closer to a programming language than a configuration file.



8
Generation of Test Sequences for
Elasticity Testing

Elasticity testing admits many parameters. For instance, the CBS deployment requires
to list the required resources, while different workloads drive the CBS throughout
elasticity. Ideally, elasticity tests should cover all the combinations of elasticity testing
parameters, i. e., test configurations. However, given the number of parameters, executing
all the test configurations is time and cost prohibitive. In contrast, a random generation
of test configurations may miss the critical parameter combinations that cause the CBS
issues. Therefore, testers must generate a set of test configurations that is small enough
to execute in a feasible time, and covers critical combinations of elasticity testing
parameters. Furthermore, test configurations should be in a sequence, which mimics
CBS reconfigurations and allows them to execute in a single run. Then, testers can
implement different test oracles to test the CBS throughout this sequence.

This chapter presents an approach based on CIT to generate small sets of test
configurations, and to arrange them as executable test sequences. We conduct a sys-
tematic experiment by using the proposed approach, which reveals several performance
degradations in MongoDB, a CBS case study.

The remainder of this chapter is organized as follows. Section 8.1 presents the test
sequence generation approach. Section 8.2 presents an experiment. Finally, Section 8.3
concludes and gives directions of future work.
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8.1 Approach for Test Sequence Generation

This section presents an approach to generate elasticity tests and test sequences for
elasticity testing. Elasticity testing parameters have a large configuration space, where
testing all the configurations is prohibitive. Therefore, the tester needs to reduce the
number of test configurations, and at same time, to ensure that they are relevant. Since in
the literature CIT presents convincing results [63], we base the approach on it.

Figure 8.1 depicts the approach workflow, which is divided into three steps:

1. Elasticity Modeling: modeling the elasticity testing parameters, such as elasticity
states, thresholds and workload, into a CTM (Section 8.1.1).

2. Test Configurations Generation: leveraging CIT algorithms to generate a set of
test configurations covering all the T -wise interactions among the elasticity testing
parameters (Section 8.1.2).

3. Test Sequences Generation: applying a graph traversal algorithm to generate
test sequences covering all the possible transitions between test configurations
(Section 8.1.3).

Step 1

Elasticity 

Modeling

Elasticity

Parameters

Classification

Tree

Model

Step 2

Test

Configuration

List of

T-wise Test

Configurations

Step 3

Test Sequence Test

Sequences

T-wise 

Parameter
Step

Intermediate Output Data

ParameterScalability 

Parameter
Constraints

Elasticity State 

Machine
Legend:

Generation Generation 

Figure 8.1 – Approach for Test Sequence Generation Workflow

8.1.1 Elasticity Modeling

In the first step of our approach, we use a CTM to represent the elasticity testing
parameters. CTM structures system features into a hierarchical tree [67], where the root
element is the system, and the branches (compositions) represent its components. Non-
decomposable components are defined as classifications, structured in classes, which
implement them. In a comparison between the CTM and the SUT model described in
Section 3.3 (MSUT = {P, V, C}), CTM classifications correspond to the parameters set
P , while CTM classes correspond to the parameters values set V . The constraint set C is
configured in the next step.

Figure 8.2 shows an example of CTM representing the controlled elasticity testing
parameters. The root of the CTM is the elasticity property, i. e., the CBS characteristic
the tester wants to verify. We decompose elasticity testing parameters into two main
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compositions, namely the cloud infrastructure, which encompasses the parameters
pertaining the CBS deployment, and the benchmark, which models the workload of the
system.

elasticity

threshold

cloud_infrastructure
benchmark

workload_type workload_intensityscale_out_cpu_t scale_in_cpu_t
60% 75% 90% 10% 25% 40% read write

elasticity_state
ready scaling_out scaling_in read_write overloading non-overloading

Figure 8.2 – CTM of Elasticity Testing Parameters

The cloud infrastructure is decomposed into the elasticity_state classification, and the
threshold sub-composition containing classifications that represent scale-out (scale_out_cpu_t)
and scale-in (scale_in_cpu_t) thresholds. The elasticity state classes represent the
CBS states (see Figure 4.1). The classes in the classifications scale_out_cpu_t and
scale_in_cpu_t are the usage percentages of the allocated resources. For example, a 60%
scale-out threshold entails that the system switches to the scaling-out state when the CPU
usage exceeds 60%.

The benchmark composition is decomposed into the workload_type and work-

load_intensity classifications. In particular, the workload_type classes represent the
three basic workload profiles consisting of read, write, or read and write operations.
The workload_intensity classes represent two ways to drive the CBS through a scaling-
out state: using a workload intensity that attempts to exhaust the allocated resource
(overloading), or any other workload intensity (non-overloading).

8.1.2 Test Configuration Generation

In the second step of our approach, we propose a CIT-based methodology to generate
test configurations. Before introducing the methodology for test configuration generation,
we define the concept of test configuration.

A test configuration is a tuple

conf_i = 〈v1, v2, . . . , vn〉

where v1 ∈ V1, v2 ∈ V2, . . . , vn ∈ Vn and V ∈MSUT (see Section 3.3). Considering
a CTM, a test configuration is composed of one class of each classification. For instance,
conf_i can refer to the first class of each classification:

conf_i = 〈ready, 60%, 10%, read, overloading〉
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The methodology consists in generating a test configuration set, where each test
configuration covers T -wise combination of elasticity testing parameters and satisfies
the constraints (C). This methodology only considers one cross-tree constraint, which
models a particular aspect of the elasticity testing domain: a test configuration associated
to the classes ready or scaling-in cannot be associated to overloading. Otherwise, an
overloading workload could unexpectedly trigger a resource scale-out while the tester is
testing the CBS in those two states. For instance, the conf_i is an invalid test configuration
since it combines the ready and overloading classes.

This methodology reduces the number of test configurations while ensuring variety in
the CTM classes, in a way that the number of test configurations and their variety increase
with the value of T . For instance, the CTM in Figure 8.2 has 5 classifications, where
the T value can vary from 2 to 5. Despite the proposed methodology is independent of
the T value, previous studies on CIT present convincing results when using pairwise
(T = 2) [55]. Therefore, we believe that pairwise should be sufficient to test elastic
CBSs.

Table 8.1 lists all the test configurations satisfying pairwise interactions of elasticity
testing parameters and the constraint. Note that only considering pairwise interactions,

the number of test configurations reduces from 162 (
N
∏

i=1

|Vi|) to 12.

scale scale
elasticity _out _in workload workload

_state _cpu _cpu _type _intensity
_t _t

2w-conf_0 scaling_in 90% 40% read_write non_overloading

2w-conf_1 scaling_out 90% 25% write overloading

2w-conf_2 scaling_out 75% 10% read non_overloading

2w-conf_3 ready 60% 25% write non_overloading

2w-conf_4 scaling_out 60% 40% read overloading

2w-conf_5 scaling_out 60% 10% read_write overloading

2w-conf_6 scaling_in 75% 25% read_write non_overloading

2w-conf_7 scaling_in 60% 10% write non_overloading

2w-conf_8 ready 90% 10% read_write non_overloading

2w-conf_9 ready 75% 40% read non_overloading

2w-conf_10 scaling_in 90% 25% read non_overloading

2w-conf_11 scaling_out 75% 40% write overloading

Table 8.1 – The Twelve Pairwise Test Configurations
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8.1.3 Test Sequence Generation

The third step of the proposed approach concerns the test sequences generation. A
test sequence is an ordered list of test configurations covering all the possible reconfigu-

rations, i. e., transitions between test configurations. This mimics a real CBS behavior,
where the CBS receives parameters that vary during its execution, such as the resource
allocation and the workload. The test sequences generation is divided into three sub-steps:
generation of a list of reconfigurations, generation of a reconfiguration tree, and selection
of a set of test sequences.

Reconfiguration List Generation

Reconfigurations follow the transitions from the elasticity states model (Figure 4.1),
where scaling-out and scaling-in states cannot succeed to one another, a ready state al-
ways precedes or follows them. Since each reconfiguration is a pair of test configurations,
they are composed of a previous test configuration associated to the elasticity_state class
ready and a next test configuration associated to the elasticity_state class scaling_out or
scaling_in.

Table 8.2 shows an excerpt of the 54 reconfigurations among the 12 pairwise test
configurations. This table reports the previous and next test configurations, and the
change in the amount of resources. The change in the amount of resources regards
the classification elasticity_state of the next test configuration. For instance, the next
test configuration of reconfiguration 2w-reconf_0 is associated to the elasticity_state

class ready, when the number of resources does not change (=0). In contrast, the next
test configuration of reconfiguration 2w-reconf_9 is associated to the elasticity_state

class scaling_in, when a resource deallocation occurs (−1). In the reconfiguration
2w-reconf_10, the next test configuration is associated to the elasticity_state class
scaling_out, when a resource allocation occurs (+1).

previous next changes in the
test configuration test configuration amount of resource

2w-reconf_0 2w-conf_0 2w-conf_3 0
... ... ... ...
2w-reconf_3 2w-conf_1 2w-conf_3 0
... ... ... ...
2w-reconf_9 2w-conf_3 2w-conf_0 -1
2w-reconf_10 2w-conf_3 2w-conf_1 +1
2w-reconf_11 2w-conf_3 2w-conf_2 +1
... ... ... ...

Table 8.2 – Excerpt of the 54 Reconfigurations Between Pairwise Test Configurations
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Reconfiguration Tree Generation

One can generate test sequences of any length by chaining reconfigurations in the
reconfiguration list. Figure 8.3 illustrates this in a graph of the reconfiguration list
excerpt in Table 8.2. The nodes of the graph represent test configurations, while the
edges represent reconfigurations. Each edge has a number of resources allocated or
deallocated during the reconfiguration, which corresponds to the last column of Table 8.2.
A test sequence can generated covering a path over this reconfiguration graph.

2w-conf_3

2w-conf_2

2w-conf_1

2w-conf_0

0

+1-1

0

0+1

Figure 8.3 – Excerpt of the Pairwise Reconfigurations Graph

Since the graph in Figure 8.3 is cyclic, a test sequence could be infinite. To create
finite test sequences, this graph is transformed into a tree, which we call reconfiguration

tree. The tree root can be any test configuration associated to the elasticity_state class
ready, regarding to the elasticity state at the FSM beginning in Figure 4.1. Furthermore,
the tree branches cannot contain repeated reconfigurations.

As shown in the fourth column of Table 8.2, reconfigurations are associated to
changes in resource allocation. Thus, particular paths over the graph could lead to
resource exhaustion when resource is continuously de-allocated, while other paths could
allocate too many resources. Therefore, the following constraints bound the amount
of resources (a): the initial number of resource (i), the minimum number of resources
(Min), and the maximum number of resources (Max).

Figure 8.4 illustrates a reconfiguration tree transformed from the graph in Figure 8.3.
This tree root corresponds to a test configuration associated to the ready state (2w-
conf_3). Let us assume that i = 1, Min = 1 and Max = 2. On the first level
(diamonds 1 and 2), 2w-conf_0 is discarded since it is associated to the elasticity_state

class scaling_in, which would lead to an amount of resource lower than Min. Then, only
2w-conf_1 and 2w-conf_2 can occur. On the third level of the left branch (diamond 3),
2w-conf_1 and 2w-conf_2 are discarded since they are associated to the elasticity_state

class scaling_out, which would lead the amount of resource upper the maximum. Finally,
the two sequences end on the sixth level (diamonds 4 and 5) since all the reconfigurations
(the six edges of each branch) were already used.
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Figure 8.4 – Reconfiguration Tree from the Excerpt of Pairwise Reconfigurations Graph

Test Sequences Selection

Creating an optimal sequence that covers all the reconfigurations without repeating
them is a NP-complete problem. Therefore, the approach creates several sequences,
where each sequence covers a subset of unique reconfigurations, and then selects several
sequences covering together all the reconfigurations.

Each branch of the reconfiguration tree (Figure 8.4) is a possible test sequence.
However, a branch may not cover all the reconfigurations in the graph. In contrast, the
longest branches maximize the chances to cover all the reconfigurations. Therefore, if a
single branch does not cover all the reconfigurations, the approach uses as test sequences
the longest branches that together cover all the reconfigurations. In the case of the tree in
Figure 8.4, any branch covers all the reconfigurations.

8.2 Experiment

This section presents an experiment that aims at investigating the efficiency of test
sequences generated by the approach proposed in this chapter to reveal CBS issues. In
the experiment, the we generate test sequences by covering pairwise combination of
elasticity testing parameters, and use the following constraints to bound the amount of
resources: i = 1, Min = 1, and Max = 2. This results in two test sequences: test
sequence 1 (2w-TS1) that contains 50 reconfigurations, and test sequence 2 (2w-TS2)
that contains 47 reconfigurations. These test sequences cover together all the allowed
reconfigurations between pairwise test configurations.

Equation 8.1 shows the test sequence 2w-TS1:
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2w − TS1 = {conf_3, conf_11, conf_8, conf_10, conf_8, conf_11, conf_3,

conf_7, conf_3, conf_4, conf_8, conf_0, conf_3, conf_2, conf_9, conf_0,

conf_8, conf_4, conf_3, conf_10, conf_3, conf_5, conf_3, conf_0, conf_9,

conf_1, conf_9, conf_7, conf_9, conf_11, conf_9, conf_6, conf_9, conf_4,

conf_9, conf_10, conf_9, conf_2, conf_8, conf_7, conf_8, conf_2, conf_3,

conf_6, conf_3, conf_1, conf_3}

(8.1)

Equation 8.2 shows the test sequence 2w-TS2:

2w − TS2 = {conf_8, conf_2, conf_8, conf_10, conf_8, conf_11,

conf_3, conf_10, conf_3, conf_5, conf_9, conf_7, conf_3, conf_11,

conf_9, conf_0, conf_9, conf_5, conf_8, conf_0, conf_3, conf_2,

conf_9, conf_6, conf_3, conf_4, conf_9, conf_10, conf_9, conf_4,

conf_8, conf_6, conf_9, conf_1, conf_3, conf_7, conf_9, conf_2,

conf_3, conf_0, conf_8, conf_4, conf_3, conf_6, conf_8, conf_1,

conf_8, conf_7, conf_8, conf_5}

(8.2)

8.2.1 Experimental Setup

As a CBS case study, we use the document database MongoDB [9] deployed as a
sharding cluster [16]: a configuration server, a mongos instance, and several shard

instances. The configuration server stores meta-data, mongos instance works as a
coordinator and a load balancer (routing queries and write operations to the shards), and
shard instances store and process the data in a distributed manner.

We execute all the experiments on Amazon EC2. The mongos and the configuration

server are deployed on the same VM (m3,large type) [4], and each shard instance on
a dedicated VMs (t2,small type). The initial MongoDB configuration consists of one
shard instance, and additional instances are allocated/deallocated according to the test
configurations in the test sequences. Further software artifacts for workload generation
and CBS driving are deployed in another VM (c3,large type). As a benchmark tool,
we use the YCSB, where the elasticity driver (Chapter 4) leads this tool to generate the
workload during the experiment.

8.2.2 Test Oracle

In this experiment, we use a customized test oracle for performance testing, which we
execute by using post-execution scripts. In the following, we explain the whole process
of building and using the oracle.
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As a performance metric, the test oracle calculates the median CBS throughput (t̃)
for each test configuration over the 30 experiment executions. This discards executions
where unpredictable conditions, such as bandwidth issues or concurrent processes, affect
the CBS throughput.

Since a perfect performance is unrealistic, for each test configuration, the test oracle
calculates the performance deviation (Di) from the workload (wi), defined as Di =

t̃i−wi

wi

.
The test oracle also allows to configure several tolerance levels (L), where the higher is
the tolerance, the higher is the tolerated performance deviation. Since the throughput
is either less than or equal to the workload, the performance deviation is either 0 or
negative, and hence we consider its absolute value (|D|). Then, for each tolerance level,
the test oracle assigns performance verdicts (pv) to the test configurations by comparing
the |D| and L, as following:

pvi

{

pass if |Di| ≤ L

fail if |Di| > L

If the |Di| is less than or equal to L, then the verdict is pass. Otherwise, the verdict is
fail.

8.2.3 Experimental Results

Executing the 97 reconfigurations (summing the configurations in 2w-TS1 and 2w-

TS2) takes ≈6 h on the Amazon EC2, while repeating them for 30 times takes ≈180 h,
i. e., ≈7,5 d. Even if several test sequences execute in parallel, which reduces the
execution time, this does not reduce the execution cost. The total time is expressive, where
a wider coverage of elasticity testing parameters may be prohibitive. For instance, 3-wise
coverage, only one combination wider than pairwise, results in 40 test configurations,
and ≈2674 reconfigurations. Each execution of such reconfigurations takes ≈7 d if we
consider the average time per configuration when executing pairwise reconfigurations
(≈3,7min). If they are re-executed 30 times, such as pairwise reconfigurations, it takes
≈7months. We configure 7 tolerance levels in the test oracle: 0, 0,05, 0,10, 0,15,
0,20, 0,25, and 0,30. Figure 8.5 depicts the percentage of fail verdicts according to the
tolerance level. All the verdicts are fail when the tolerance is at lowest level (0, i. e.,
no tolerance). Therefore, no test configuration achieves the ideal performance in the
experiment, which is comprehensible since we are testing a distributed system under a
massive sequence of reconfigurations. We also note that the percentage of fail verdicts
decreases as the tolerance level increases, and that at tolerance level 0,35 there is no fail
verdict. The most severe performance degradation happen at tolerance level 0,3.



112CHAPTER 8. GENERATION OF TEST SEQUENCES FOR ELASTICITY TESTING

Figure 8.5 – Percentage of Fail Verdicts by Tolerance Level

Observations

Table 8.3 ranks the test configurations that fail (i. e., unstable test configurations)
by the number of fail verdicts grouped by tolerance level, where we omit unstable
test configurations at the lowest level (0%) since all the test configurations fail. All
the unstable test configurations in this table are associated to the elasticity_state class
ready. Furthermore, we do not find a pattern among the other classes despite the
workload_type class non-overloading, which is always in test configurations associated
to the elasticity_state classes ready and scaling_in due to cross-tree constraints.

Tolerance Fail Verdicts Unstable Test Configurations

0,30 8 (8%) 2w-conf_8, 2w-conf_9
0,25 13 (13%) 2w-conf_8, 2w-conf_9
0,20 15 (15%) 2w-conf_8, 2w-conf_9
0,15 19 (20%) 2w-conf_8, 2w-conf_9
0,10 21 (22%) 2w-conf_8, 2w-conf_9, 2w-conf_3
0,05 29 (30%) 2w-conf_8, 2w-conf_9, 2w-conf_3

0 97 (100%) *

Table 8.3 – Unstable Configurations Classified by Tolerance

The test configurations in Table 8.3 are unstable when they are preceded by specific
test configurations, which are highlighted in Table 8.4. In this table, each level of
tolerance includes the unstable test configurations of the higher level, where tolerance
0,05 corresponds to all the reconfigurations of the table. Therefore, for each tolerance
level, the table only shows new unstable reconfigurations, which the higher levels do not
reveal. Note that tolerance level 0,25 does not include any new unstable reconfiguration
compared to level 0,30.

In Table 8.4, all the previous test configurations are associated to the elasticity_state
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Reconfiguration
Tolerance Previous Test Configuration Next Test Configuration

0,30

2w-conf_1 2w-conf_8, 2w-conf_9
2w-conf_2 2w-conf_8, 2w-conf_9
2w-conf_4 2w-conf_8, 2w-conf_9
2w-conf_5 2w-conf_8

2w-conf_11 2w-conf_8

0,25 – –

0,20
2w-conf_5 2w-conf_9

2w-conf_11 2w-conf_9

0,15
2w-conf_4 2w-conf_3

2w-conf_11 2w-conf_3

0,10 2w-conf_5 2w-conf_3

0,05
2w-conf_1 2w-conf_3
2w-conf_2 2w-conf_3

Table 8.4 – unstable Reconfigurations Classified by Tolerance

class scaling_out, and all the next test configurations are associated to the elasticity_state

class scaling_out. Besides the elasticity_state classes, we do not find further patterns
among those test configurations.

The test configuration 2w-conf_3 is only unstable when the tolerance level is higher
than or equal to 0,2, while the test configurations 2w-conf_8 and 2w-conf_9 are only
unstable when the tolerance level is lower than or equal to 0,15. This concerns the
parameter scaling-out threshold (scale_out_cpu_t), given it is higher for the test configu-
rations 2w-conf_8 and 2w-conf_9 (90% and 75% of CPU) than for the test configuration
2w-conf_3 (60% of CPU). Thus, CBS receives a workload with higher intensity, which
makes the performance failure more severe.

Therefore, the highest tolerance levels (0,30-0,20) has the following reconfiguration
pattern, where ∗ means any possible parameter value:

confi−1
= {scaling-out, *, *, *, *}

confi = {ready, ≥75%, *, *, *}

In contrast, the lowest tolerance levels (0,15-0,05) has the following pattern:

confi−1
= {scaling-out, *, *, *, *}

confi = {ready, ≥60%, *, *, * }

Figure 8.6 depicts the CBS throughput of each test configuration in the pairwise test
sequences 2w-TS1 (Figure 8.6a) and 2w-TS2 (Figure 8.6b). The diamonds represent the
workload, while box-and-whisker plots represent the CBS throughput distribution for
each test configuration over 30 executions. At some test configurations, the performance
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variation is high, such as for the test configuration at the index 3. Such test configurations
have their median values distant from the workload, what mean they are unstable. Those
test configurations match to the ones listed in the column next test configuration of
Table 8.4, when the tolerance level is high (0,30-0,20).
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Figure 8.6 – Measured Throughput for Pairwise Test Sequences

Discussing the Performance Testing Fail Verdicts

All the performance degradations occur due to a load balancing problem. The newest
shard, added during the scaling-out state that precedes the unstable test configuration,
does not receive as many requests as the existing one (oldest shard), which exhausts the
oldest shard.
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Pairwise Adequacy

One could argue that pairwise coverage may not be effective, and a wider combination
of elasticity testing parameters could find further CBS issues. However, this would be
cost and time-prohibitive. As we already discussed, executing test sequences execution
generated with one combination wider than pairwise (i. e., 3-wise) would take≈7months.
Furthermore, preliminary results of an experiment where we only execute part of 3-
wise reconfigurations, suggest that pairwise test sequences reveal all the performance
degradations of the case study.

The three-wise test sequences we executed cover all the 3-wise test configurations,
though they only cover a small part of their reconfigurations. Those test sequences
do not reveal new unstable test configurations or reconfigurations, where all of the
unstable elasticity test configurations found using three-wise follow the same pattern
of pairwise. However, we leave new tests considering larger combination of elasticity
testing parameters for future work, when we also plan to execute further test oracles.

8.3 Conclusion

In the experiments, we applied the approach proposed in this chapter to create
pairwise test sequences for testing the MongoDB NoSQL database. These test sequences
reveal several significant performance degradations, where we identify a pattern for
unstable reconfigurations. Preliminary comparison to results of partial three-wise test
sequences suggests that pairwise identifies all the performance degradations of our case
study. This part of the work has been published at [21].

The test oracle we use to test the MongoDB in the experiments is specific for
performance testing. However, the elasticity test generation approach is independent of
the test oracle.

Our work is the first step into generating test sequences for elasticity testing, and
the preliminary results encourage further investigations. As a future work, we plan to
conduct a complete experimentation that identifies which is the minimum coverage of
elasticity testing parameters to reveal most of or all the relevant elasticity-related issues.
This also requires a deeper evaluation of elasticity testing parameters, such as further
workload configurations and a scalability larger than two allocated resources. A further
investigation should also consider a larger test suite, which covers other aspects besides
the CBS performance, and further CBS case studies.





9
Conclusion

In this chapter, we present this thesis conclusion. First, we recapitulate the require-
ments in elasticity testing. Second, we summarize the gaps in the state of the art. Then,
we summarize the contributions of this thesis. Finally, we present the perspectives of
future work.

9.1 Elasticity Testing Main Problems

In this thesis, we focus on five elasticity testing requirements, which we recapitulate
here:

1. CBS driving throughout elasticity,

2. elasticity tests synchronization with CBS states,

3. elasticity test reproduction,

4. elasticity test implementation, and

5. elasticity test generation.

One of the elasticity testing needs is to drive the CBSs throughout preset elastic
behaviors. However, estimating the workload variations is a real challenge, since the
same workload may impact different CBSs in distinct manners. This needs emphasize
the lack of a procedure to estimate and control workload variations according to a preset
elastic behavior.

Since CBSs can go through different elasticity states, triggering CBS adaptations,
these adaptions must be be state-based. For this, testers must identify the elasticity states
at real-time, and coordinate test execution accordingly.
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Testers must execute regression testing regularly to detect and correct bugs. The
elasticity test reproduction requires to repeat the previous CBS elastic behavior in
parallel with further conditions, such as user interactions with the CBS, which we call
time-based events. In addition, the elastic behavior control requires to manage specific
CBS component variations. Therefore, we need an approach that reproduces CBS elastic
behavior by regarding the management of specific CBS components, and coordinates
time-based events.

Elasticity testing is complex and laborious, given the quantity of parameters involved,
and requires the tester to master cloud computing concepts and tools. The literature
introduces some work based on high-level languages that make elastic CBS setup less
complex and laborious. However, none of them addresses the setup of elasticity or
elasticity testing. This requires an approach that abstracts the complete writing of
elasticity testing.

Finally, elasticity testing configuration space is large, and test cases generated ran-
domly may miss important configurations. In contrast, generating elasticity tests that
cover all the possible configurations is time and cost prohibitive. Therefore, it is necessary
to generate a minimum number of elasticity tests that still reveal relevant elasticity-related
issues.

9.2 Contributions

In this thesis, we propose five contributions to tackle the presented problems. Here,
we recapitulate these contributions.

For the CBS driving, we propose an approach that profiles the impact of workloads in
CBSs, and calculates the necessary workload variations to drive the CBS through a given
elastic behavior. Then, the approach controls the workload generation along with the test
execution. The preliminary results show that the approach can drive CBS throughout
preset elastic behaviors in a short time.

We tackled the elasticity state-based testing problem with an approach that identifies
the different CBS elasticity states at run-time, and switches among tests accordingly.
Thank to this approach, we discovered the causes of performance degradations of a case
study. For such case study, the approach identifies the elasticity state where performance
degradations occur, and tests the CBS during the this state.

We also proposed a prototype that tackles the elasticity test reproducibility problem.
This prototype also accelerates the tests reproduction. We used this prototype to reproduce
3 representative bugs.

We proposed a DSL-based approach to specify elasticity tests, and a way to execute
these tests in a cloud provider-independent manner. This approach reduces the amount
of words needed to write cloud provider-independent elasticity test specifications.

Finally, aiming at minimizing the number of test configurations, we proposed an



9.2. CONTRIBUTIONS 119

approach based on CIT. This approach consists in generating test configurations that
cover all T-wise combinations of elasticity test parameters. Then, the approach generates
sequences of test cases that mimics a realistic elastic behavior. In the preliminary results,
this approach encourages further investigations, where test configurations generated by
covering pairwise combination of parameters reveal several elasticity-related issues in a
case study.

9.2.1 Future Work Perspectives

As a global goal, we intend to reassemble all the contributions in a testing framework,
and make it available for the research community. However, before this step, we aim at
improving each contribution separately.

The elasticity driver considers that the CBS scales linearly, which may not be true
depending on the CBS or the allocated resource amount. Therefore, we first plan to
propose an strategy that considers non-linear scalability. Second, we plan to profile more
generic workloads, such as workloads based on log traces. Finally, we plan to adapt the
elasticity driver to address predictive elasticity policies since so far it only works with
reactive ones.

The elasticity state-based testing approach reduces the efforts in executing elasticity
tests by executing them during the CBS elasticity states. However, we can still reduce
this effort by identifying more specific CBS states. Since this approach main idea is to
test CBS adaptations, we plan to improve the CBS states monitoring to identify CBS
states based on adaptations rather resource variation. This will reduce the time within
each test executes, and as a consequence, will reduce their execution efforts.

Testing is not only about reproducing existing bugs, but also diagnosing them. There-
fore, an evolution for the reproduction approach is to generate elasticity tests rather than
writing tests to repeat previous executions. We plan to model this approach features
as part of the CTM for the elasticity test generation approach. Then, we can generate
elasticity tests that cover the selective elasticity and time-based events. For instance, for
a client-server CBS architecture, we could model a selective elasticity classification with
two classes: server and client. Then, an elasticity test sometimes deallocates a server,
while other times it deallocates a client. Another future investigation of the elasticity test
reproduction approach is to investigate how fast a test execution can be executed without
compromising the CBS behavior.

The compilation phase of the DSL is so far theoretical, which we wish to implement
as part of a future work. The next challenge will be to tune this approach to find cloud
computing resources automatically in a way that testers must not write the cloud provider-
dependent specifications. Another plan is to extend the DSL to test code level. Then,
testers could use it to write their tests rather than other languages, and test code can have
direct interactions with testing approaches. Finally, a future plan is to change the DSL
syntax, and make it closer to a programming language than to a configuration file.
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As a future work on elasticity test generation, we plan to conduct a complete experi-
mentation that identifies which is the minimum coverage of elasticity testing parameters
to reveal most of or all the relevant elasticity-related issues of different CBSs. This also
requires a deeper evaluation of elasticity testing parameters, such as further workload
configurations and a scalability larger than two allocated resources. A further investiga-
tion should also consider a larger test suite, which covers other aspects besides the CBS
performance.
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ALBONICO M I C H E L

Test de Système Élastiques Basés Sur le Cloud

Controlling Cloud-Based Systems for Elasticity Testing

Résumé
Les systèmes déployés dans être testés pendant
l’élasticité, ce qui entraîne plusieurs problématiques.
D’abord, l’exécution d’un test pendant l’élasticité peut
exiger de conduire le CBS dans une succession de
comportements élastiques spécifiques, càd., une
séquence d’ajout/retrait de ressources, qui nécessite
des variations précises de la charge des requêtes
envoyées au cloud. Seconde, certaines adaptations du
CBS ne sont réalisées qu’à un moment précis, par
exemple après un ajout de ressources et, par
conséquent, leurs tests doivent être synchronisés avec
des états spécifiques du CBS. Troisième, les testeurs
doivent rejouer les tests pendant l’élasticité de manière
déterministe afin de déboguer et corriger le CBS.
Quatrième, la création des tests pendant l’élasticité est
complexe et laborieuse dû au large nombre de
paramètres, et à la particularité du cloud computing.
Enfin, seulement quelques combinaisons de
paramètres peuvent causer des problèmes au CBS,
que les cas de test créés au hasard peuvent manquer,
alors qu’un jeu de tests couvrant toutes les
combinaisons possibles serait trop grand et impossible
à exécuter. Dans cette thèse, nous abordons toutes
ces problématiques en proposant plusieurs approches :
1) une approche qui conduit les CBSs dans une suite
de comportements élastiques prédéfinis, 2) une
approche qui synchronise l’exécution des tests selon
les états du CBS, 3) une approche qui permette la
reproduction des tests pendant l’élasticité, 4) un
langage spécifique à ce domaine (DSL, selon
l’acronyme anglais) qui résume la mise en œuvre des
test pendant l’élasticité, 5) une approche qui génère
des petits ensembles de tests pendant l’élasticité tout
en révélant des problèmes liés à l’élasticité.

Abstract
Systems deployed on elastic infrastructures deal with
resource variations by adapting themselves, which may
cause errors, or even degrade their performance.
Therefore, we must test the Cloud-Based Systems
(CBSs) throughout elasticity, which faces problematics.
First, executing elasticity tests may require the lead of
CBS throughout a specific elastic behavior, i. e.,
sequence of resource changes, which depends on an
accurate workload generation. Second, CBS
adaptations occur at a precise moment, such as after a
resource scale out, which requires to test them during a
specific CBS states. Third, testers must re-execute
elasticity tests in a deterministic manner to debug and
fix the CBS. Fourth, implementing elasticity tests is
complex and laborious given the wide possibility of
parameters, and the peculiarity of cloud computing.
Finally, specific combinations of parameters may cause
the system issues, where random tests may miss such
combinations, while a test set that covers all the
combinations may be large and impractical to execute.
In this thesis, we tackle all these five problematics by
proposing several approaches: 1) an approach to drive
the CBS throughout preset elastic behaviors, 2) an
approach to synchronize tests according to the CBS
states, 3) an approach to enable reproducing elasticity
testing, 4) a Domain Specific Language (DSL)-based
approach to abstract the elasticity testing
implementation, and 5) an approach to generate small
sets of tests that reveal relevant elasticity-related
issues.

Mots clés
Cloud Computing, Élasticité, Test Pendant l’Elasticité,
Contrôlabilité.

Key Words
Cloud Computing, Elasticity, Elasticity Testing,
Controllability.
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