Perceptual inference and learning in autism : a behavioral and neurophysiological approach
Inférence et apprentissage perceptifs dans l’autisme : une approche comportementale et neurophysiologique
Résumé
How we perceive our environment relies both on sensory information and on our priors or expectations. Within the Baysian framework, these priors capture the underlying statistical regularities of our environment and allow inferring sensation causes. Recently, Bayesian brain theories suggested that autistic symptoms could arise from an atypical weighting of sensory information and priors. Autism spectrum disorders (ASD) is characterized defined by difficulties in social interactions, by restricted and repetitive patterns of behaviors, and by an atypical sensory perception.This thesis aims at characterizing perceptual inference and learning in ASD, and studies sensory sensitivity and prior learning. This was investigated using behavioral tasks, computational models, questionnaires, functional magnetic resonance imaging and magnetic resonance spectroscopy in adults with or without ASD. Sensory profiles in people with high autism spectrum quotients were first refined, using a questionnaire that we validated in French. The study of perceptual learning strategies then revealed that subjects with ASD were less inclined to spontaneously use a learning style enabling generalization. The implicit learning of priors was explored and showed that subjects with ASD were able to build up a prior but had difficulties adjusting it in changing contexts. Finally, the investigation of the neurophysiological correlates and molecular underpinnings of a similar task showed that perceptual decisions biased by priors relied on a distinct neural network in ASD, and was not related to the same modulation by the glutamate/GABA ratio.The overall results shed light on an atypical learning and weighting of priors in ASD, resulting in an abnormal perceptual inference. A Bayesian approach could help characterizing ASD and could contribute to ASD diagnosis and care
La perception de notre environnement repose sur les informations sensorielles reçues, mais aussi sur nos a priori. Dans le cadre Bayésien, ces a priori capturent les régularités de notre environnement et sont essentiels pour inférer les causes de nos sensations. Récemment, les théories du cerveau Bayésien ont été appliquées à l'autisme pour tenter d'en expliquer les symptômes. Les troubles du spectre de l'autisme (TSA) sont caractérisés par des difficultés de compréhension des interactions sociales, par des comportements restreints et répétitifs, et par une perception sensorielle atypique.Cette thèse vise à caractériser l'inférence et l'apprentissage perceptifs dans les TSA, en étudiant la sensorialité et la construction d'a priori. Nous avons utilisé des tests comportementaux, des modèles computationnels, des questionnaires, de l'imagerie fonctionnelle et de la spectroscopie par résonnance magnétique chez des adultes avec ou sans TSA. La définition des profils sensoriels de personnes avec des hauts quotients autistiques a été affinée grâce à un questionnaire dont nous avons validé la traduction française. En explorant les stratégies d'apprentissage perceptif, nous avons ensuite montré que les personnes avec TSA étaient moins enclines à spontanément utiliser une mode d'apprentissage permettant de généraliser. L'étude de la construction implicite des a priori a montré que les personnes avec TSA étaient capables d'apprendre un a priori, mais l'ajustaient difficilement suite à un changement de contexte. Enfin, l'étude des corrélats neurophysiologiques de l'inférence perceptive a révélé un réseau cérébral et une neuromodulation différents dans les TSA.L'ensemble de ces résultats met en lumière une perception atypique dans les TSA, marquée par un apprentissage et une pondération anormale des a priori. Une approche Bayésienne des TSA pourrait améliorer leur caractérisation, diagnostics et prises en charge
Origine | Version validée par le jury (STAR) |
---|