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HDACs: Histone deacetylases 
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LC-MS/MS: Liquid chromatography coupled to tandem mass spectrometry 

LDH: lactate dehydrogenase 



 

 5 

LIC: ligation independent cloning 
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I-1. Toxoplasma gondii belongs to the Apicomplexa phylum 

Toxoplasma gondii belongs to the phylum Apicomplexa which are characterized by a common 

apical complex involved in host cell attachment and invasion (Blackman MJ et al., 2001). 

Apicomplexan parasites are important diseases causing organisms that infect both animals and 

humans, causing extensive health and economic damage to human populations, particularly 

those in the developing world. Preeminent human pathogens include Plasmodium spp. which 

are responsible for dreadful malaria, which is responsible of an estimated 429 000 deaths 

worldwide in addition to 212 million new cases of malaria as described by World Health 

Organization WHO report 2017. The phylum also includes T. gondii and Cryptosporidium 

spp. which are leading causes of foodborne and waterborne diseases.  As well as Theileria, 

Eimeria, Neospora, Babesia or Sarcocystis that are responsible for causing diseases in wild 

and domesticated animals (Arisue N  et al., 2015; Yabsley MJ et al., 2012; Donahoe SL et al., 

2015).  

Caused by the protozoan Apicomplexa parasite T. gondii, toxoplasmosis is a widespread 

foodborne infection in humans that poses significant public health problems. Approximately, 

more than one third of world human population is infected with T. gondii. While the infection 

remains asymptomatic lifelong in immunocompetent individuals, Toxoplasmosis is a 

potentially life-threatening chronic disease in people with weakened immune system, such as 

those suffering from acquired immunodeficiency syndrome or undergoing chemotherapy and 

graft rejection therapy (Boothroyd, 2009). In addition, outcomes of congenital toxoplasmosis 

significantly vary with the timing of infection from recurrent eye diseases to adverse motor or 

neurologic impairments that can cause stillbirth (Weiss LM et al., 2000; Jones, et al., 2003).  

Among apicomplexan parasites, T. gondii affords many experimental advantages including 

efficient genetic manipulation in laboratory and availability of many cell markers. While 

results in T. gondii may not always reflect the biology of other apicomplexans, T. gondii has 

been used and remains the best model system to study the cell biology of Plasmodium spp as 

well as other apicomplexan parasites (Kim K et al., 2004).  Thus, studies in T. gondii may 

improve our understanding of the apicomplexan pathogenesis and hence, contribute to the 

drug development against parasites in the phylum.  

T. gondii and P. falciparum are the most studied parasites of the phylum and are typified by 

sophisticated mechanisms to invade, multiply within cell they infect, egress, and cause 
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pathogenesis in intermediate and definitive hosts. All these processes are associated to the 

multiple developmental stages those parasites go through to persist in their hosts. 

 

I-2. The heteroxenous life cycle of Toxoplasma gondii 

In response to the environment conditions,  T. gondii undergoes a complex life cycle 

alternating between  the asexual stage in vast number of intermediate hosts ranging from 

mammals to birds and the  sexual stage in a definitive host the felidae family including 

domestic cats (Dubey JP, 2009; Black MW et al., 2000). The biology of T. gondii follows a 

heterogeneous life cycle depending on a definitive felid host for sexual transmission while 

achieving asexual transmission in intermediate hosts (Dubey JP et al., 1998; Robert-

Gangneux F et al., 2012).  

The sexual parasitic cycle occurs exclusively within the intestine of infected feline. 

Specifically, the cycle starts when cats are exposed to the parasite by ingesting the infected 

intermediate hosts such as mice or birds carrying bradyzoites-containing tissue cysts (Dubey 

JP, 2004). Within the intestine of cats, the bradyzoites differentiate into merozoites which in 

turn progress into male and female gametes. The two gametes then fuse to form oocyst. When 

oocysts are shed into the environment with the feces of cats, they sporulate to form 

sporozoites that are highly infectious orally to intermediate hosts and less infectious to 

definitive host (Frenkel JK et al., 1970; Dubey JP et al., 1970; Schlüter D et al., 2014). In the 

environment, oocysts contaminate the soil, grass and water. They resist to different 

environmental conditions and remain infectious for up to 18 mounts or longer (Lindsay DS et 

al, 2009; Innes EA, 2010). To complete the sexual cycle, the cat can be reinfected by 

consuming oocysts-contaminated water or ingesting infected mice or birds (Figure 1) 
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Figure 1.  Asexual and sexual cycles of T.gondii ( from Pittman KJ et al., 2015). 

Once ingested, T. gondii penetrates the epithelial cells of the feline small intestine and differentiates into 

tachyzoite and schizont stages. The asexual tachyzoites divide and disseminate throughout the feline. The 

schizont will remain within the intestinal epithelium and has 5 distinct stages, identified as types A to E. They 

are classified based on their mode of division, the time post-infection they are observed, and their structural 

components. Type E schizonts give rise to merozoites, which differentiate into gametes. Gametes can be found 

throughout the small intestine as soon as 3 days post-infection and can last for a few weeks post-inoculation with 

tissue cysts. Males (microgametes) fertilize females (macrogametes) to produce oocysts. After fertilization 

occurs, the oocyst wall forms around the parasite. Sporulation of oocysts occurs 1 to 5 days after being excreted 

in cat feces. Once sporulation occurs, oocysts are infectious for an extended period of time, depending on 

environmental conditions. 

 

The asexual cycle takes place in intermediate hosts, i.e. mammals and birds, and is typified by 

two important stages: tachyzoites and bradyzoites. The cycle starts with sporulated oocysts of 

the environment orally ingested by new hosts, then sporozoites emerge from oocysts and 
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invade the intestine epithelial cells before converting into tachyzoites (Schlüter D et al., 

2014). To get access to a host cell, the invasive and replicative stage tachyzoites trigger the 

formation of a peculiar membrane-bound compartment called the Parasitophorous Vacuole 

(PV). The PV is shaped as a safe niche that supports parasite growth and multiplication being 

kept hidden from the harmful endocytic pathway. Tachyzoites divide asexually through a 

typical endodyogeny process (Dubey JP et al., 1998; Mordue DG et al., 1999; Montoya JG et 

al., 2004). It is during the initial and acute phase of the infection that the tachyzoite-

bradyzoite transition occurs in a minor subpopulation while concurring with the massive 

destruction of the bulk tachyzoite population as a result of a rapid Th1 cell-mediated and 

short-term proinflammatory response. Thus, few tachyzoites escape destruction and 

differentiate into bradyzoites (Hunter CA et al., 2012). Bradyzoites cause chronic infection by 

forming tissue cysts in deep tissue such as brain, heart, retina and skeletal muscles (Di 

Cristina M et al, 2008; Tenter AM et al, 2000; Weiss LM et al., 2011). Consumption of 

encysted bradyzoites in infected tissue is another leading cause of infection of livestock 

animals and humans. During this oral infection, the cyst wall is digested by host digestive 

enzymes. Bradyzoites are then detected in the mouse intestinal epithelium, and differentiation 

into tachyzoites occurs rapidly. Once tachyzoites infect migratory cells, such as macrophages 

and dendritic cells (DCs), they can rapidly disseminate throughout the host. Eventually, 

pressure from the immune system and other unknown factors induces conversion to the 

bradyzoite, the asexual stage associated with chronic infection. Cysts containing bradyzoites 

can persist for decades within striated muscle and tissue of the central nervous system (Black 

MW et al., 2000; Robert-Gangneux F et al., 2012)  

 

Asexual tachyzoite and bradyzoite stages can be easily discriminate in cell culture or in 

murine model by their gene expression pattern and to some extent by their proteome. For 

instance, tachyzoites are typified by the expression of the surface antigens SAG1 or SAG2A 

and also the metabolic enzymes LDH1 and ENO2, while bradyzoites are characterized by the 

exclusive expression of SAG2C, SAG2D and SAG4; the bradyzoite-specific recombinant 

BSR4; the bradyzoite antigen BAG1; the matrix antigen MAG1 and the metabolic enzymes 

ENO1 and LDH2 (Lyons RE et al., 2002). While tachyzoites are easily spread in cell culture 

using various cell lines, mature bradyzoites can be exclusively isolated from the brain of mice 

chronically infected, which limit their study. Moreover not all the isolated strain of T. gondii 

are endowed with the ability to form the chronic stages in mouse model. As such, genotyping 

studies revealed that the genus has 12 haplotypes and three main clonal lineages, namely type 
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I, II and III have been documented in North America and Europe. Those lineages differ in 

their growth rate, their ability to form cysts and their virulence in murine model as well as 

their pathogenicity in human toxoplasmosis (Sibley LD et al., 1992; Howe DK et al., 1995). 

Type I strains (e.g. RH) are highly virulent in mice, grow faster and emerged as the 

experimentally most tractable strain so far. Type II (e.g. Prugniaud, PRU) and type III strains 

(e.g. VEG) are less virulent, difficult to genetically manipulate however they make a good 

chronic model for toxoplasmosis as they form mature cysts in vivo in mice (Kim K et al, 

2004; Saeij JP et al., 2005). Apart from tachyzoites and bradyzoites, culturing methods for 

merozoites and sexual stages have not been developed, restricting the understanding of 

parasites biology in the sexual life cycle. 

 

I-3. The complex life cycle of Plasmodium falciparum 
 

Similarly to T. gondii, Plasmodium falciparum has a complex life cycle with two different 

hosts, the Anopheles mosquito and humans. P. falciparum completes the life cycle by 

alternating between asexual and sexual development stages. The infected Anopheles mosquito 

injects the sporozoites into the human host after their release from oocysts to spread in the 

liver. In the hepatocytes, sporozoites invade and develop asymptomatically into merozoites 

(7-14 days) that are released in the bloodstream to invade red blood cells (RBCs) and thereby 

entering in asexual intra-erythrocytic development cycle (IDC) for 48 hours. During IDC, 

merozoites progress successively into ring stage (0-24 hours post-infection), trophozoite stage 

(24-34 hours post- infection) and schizont stage (34-48 hours post-infection). To complete the 

cycle, merozoites within schizont are released into the bloodstream. However, some 

merozoites can form the sexual male and female gametes during a process called 

gametocytogenesis. The gametocytes can be transmitted to the midgut lumen of mosquito 

during blood meal and they develop into macro-gametes (male) and micro-gametes (female) 

which fuse to form first a zygote and second produce a motile ookinete. This ookinete crosses 

the mosquito midgut epithelium and forms, on the outer face of this gut wall, an oocyst 

containing sporozoites. These sporozoites can reach the salivary gland and reinfect the new 

human host. Even tough asexual parasites are pathogenic, gametocytogenesis remains the 

pivotal step in the Plasmodium life cycle because it is required for the parasite transmission 

from infected human to Anopheles mosquito and then from mosquito to the new human host 

(Ménard R et al., 2013;  Josling GA et al., 2015; Doerig C et al., 2015) (Figure 2).  
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Therefore, P. falciparum invades different types of cells and self‐propagates in very distinct 

environments in the mosquito (gut, hemolymph and salivary glands) as well as in the human 

host (skin, liver and erythrocytes). Each of these distinct environments exerts selective 

pressure related to morphological changes that force P. falciparum to exhibit differential gene 

expression during its life cycle. 

 

 Figure 2. Life cycle of Plasmodium falciparum. (From Josling GA, Llinás M. 2015) 

 

I- 4. Gene expression programs in Toxoplasma and Plasmodium 

As above mentioned, both T. gondii and P. falciparum have complex life cycles that include 

infections of more than one host organism, differentiation through several morphologically 

distinct forms, and both sexual and asexual replication. Conceptually, it is possible to divide 
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the regulation of gene expression into two distinct areas based on parasite development: (1) 

changes in gene expression as parasites progress through the cell cycle and (2) activation and 

silencing of specific genes during differentiation of the parasite into different morphological 

forms, including sexual differentiation.  

 

I- 4.1. Cell cycle progression 

Asexual replication in these parasites occurs via either schizogony in Plasmodium or 

endodyogeny in Toxoplasma. In either case, progression through the cell cycle involves a 

strict program of gene expression with distinct subsets of genes expressed in the early, mid 

and late stages of the cycle. This course of gene expression has been extensively studied for 

both parasites (Bozdech Z et al., 2003; Cleary MD et al., 2002; Radke JR et al., 2005), and 

they appear to display a tightly coordinate cascade which utilizes a ‘just-in-time’ 

manufacturing process whereby induction of any given gene occurs once per cycle and only at 

a time when it is required (Bozdech Z et al., 2003). Genes located at adjacent positions within 

the chromosomes are rarely coregulated, suggesting that the expression of each individual 

gene is independently controlled. Upstream regulatory regions placed on transfected plasmid 

constructs appear to be properly regulated, indicating that control of transcription is 

determined by the DNA sequences found close to the coding regions of the genes, however 

the details of how proper timing is maintained has not yet been deciphered. The global cell 

cycle transcriptome implies the cyclical expression pattern of Toxoplasma genes (~2,833) that 

accompany parasite replication and present in the two major functional subtranscriptomes 

associated with S/M phases- subtranscriptome or G1 phase-subtranscriptome. Genes present 

in G1 phase are involved in the renewal of basal biosynthetic functions and metabolism. S/M 

periods are characterized by specialized apicomplexan processes of daughter maturation and 

egress. This indicates that the mechanisms responsible for cyclical gene expression timing are 

likely crucial to the efficiency of parasite replication (Behnke MS et al., 2010). 

 

I- 4.2. Cellular differentiation 

During their transmission from one host to the next, both Toxoplasma and Plasmodium 

undergo differentiation into several morphologically distinct forms, a process that includes 

sexual differentiation and genetic recombination. Differentiation depends on alterations in the 
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parasites transcriptional profiles. The ‘transcriptomes’ of the parasites at different points in 

the complete life cycle have been determined (Bozdech Z et al., 2003; Cleary MD et al., 

2002; Radke JR et al., 2005) and also studied at the proteomic level (Hall N et al., 2005). This 

has allowed the identification of many stage specific genes that may eventually help lead to 

vaccines or intervention strategies resulting in transmission blocking. In addition to 

transcriptional control, regulation at the level of mRNA translation has also been observed 

(Mair GR et al., 2006), adding a further complication to understanding how the 

developmental process is controlled. 

One of the crucial step of pathogenesis, transmission and persistence of T. gondii is the 

conversion of tachyzoite into latent bradyzoite. Encystment allows Toxoplasma to persist in 

the host and affords the parasite a unique opportunity to spread to new hosts without 

proceeding through its sexual stage, which is restricted to felids. Bradyzoite tissue cysts can 

cause reactivated toxoplasmosis if host immunity becomes impaired. A greater understanding 

of the molecular mechanisms orchestrating bradyzoite development is needed to better 

manage the disease. Over the last decade, a wealth of studies has been focusing on the 

molecular mechanisms driving or regulating tachyzoite-bradyzoite interconversion in order to 

identify protein factors involved in the switching or the maintenance of the stage-specific 

genetic program (Sullivan Jr WJ et al., 2009).  

 

I- 4.3. T. gondii differentiation: a stress response or a genetic program at work?  
 
It is well documented that conversion to the latent stage is a stress-mediated response, coupled 

with a slowing of the parasite cell cycle. One of the most commonly used in vitro methods to 

prompt bradyzoite differentiation is alkaline pH 8.0-8.2 (Soête M et al., 1994). Nutrient 

deprivation was also shown to trigger bradyzoite formation. As such, arginine starvation (Fox 

BA et al., 2004) or pyrimidine depletion in uracil phosphoribosyltransferase (UPRT)-deficient 

parasites subjected to ambient (0.03%) CO2 (Bohne W, Roos DS., 1997; Dzierszinski F et al., 

2004) promote significantly tachyzoite-to-bradyzoite conversion in vitro.  

 

In vivo, it is during the initial and acute phase of the infection that the tachyzoite-bradyzoite 

transition occurs in a minor subpopulation while concurring with the massive destruction of 

the bulk tachyzoite population as a result of a rapid Th1 cell-mediated and short-term 

proinflammatory response. In this context, IL-12, TNF, and IFN-γ cytokines act at the 
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frontline of defenses against T. gondii, with IFN-γ also guaranteeing long-term persistence. 

Conversely, decline of IFN-γ level correlates with cerebral toxoplasmosis in AIDS patients 

(Pereira-Chioccola VL et al., 2009; Meira CS et al., 2014), whereas genetic loss of IFN-γ 

renders mice extremely susceptible to toxoplasmosis (Yap GS, Sher A., 1999). While in vivo 

IFN-γ was suspected to promote stage conversion, the cytokine failed to induce bradyzoite 

cultured in human fibroblasts(Soête M et al., 1994), though the IFN-γ signaling pathway was 

shown to be restricting parasite growth in this cell type (Gay G et al., 2016). On the other 

hand, treatment with IFN-γ does induce conversion to bradyzoites in murine macrophages and 

astrocytes, presumably owing to the stimulated releases of NO (Jones TC et al., 1986; Bohne 

W et al., 1993). 

 

Whether those stimuli act on the parasite directly or indirectly by stressing the host cell is still 

under consideration. Both the host cell background and the parasite strain type were shown to 

contribute to spontaneous differentiation in vitro, albeit cysts are more frequently present in 

differentiated long-lived host cells (Ferreira da Silva Mda F et al., 2008; Dubey JP et al.; 

1998). In line with the environmental hypothesis, Compound 1 was shown to act directly on 

human host cells slowing tachyzoite replication and thereby inducing bradyzoite-specific gene 

expression in both type II and III strain parasites (Radke JR et al., 2006). Conversely, early 

studies argue against it by showing that extracellular tachyzoites briefly exposed to alkaline 

stress were able convert at low frequency into bradyzoites following their reinfection of host 

cells (Weiss LM et al., 1998; Yahiaoui B et al., 1999). Those experiments brought the first 

evidence that extracellular parasites are able to launch upon stimulation a bradyzoite 

development program that persists after invasion. Our team had originally suggested that this 

‘short term memory’ driving bradygenesis may be also due to epigenetic-mediated gene 

regulation (see below). 

 

It was also suggested that stage differentiation may be under the control of translational 

mechanisms. Thus, bradyzoite development was shown to be accompanied by 

phosphorylation of the parasite eukaryotic initiation factor 2 alpha subunit (eIF2α), which 

dampens global protein synthesis and reprograms gene expression (Narasimhan J et al., 

2008). This result was substantiated by the observation that inhibitors of eIF2α 

dephosphorylation slow replication and stabilize latency in T. gondii (Konrad C et al., 2013; 

Sullivan Jr WJ et al., 2009). In Plasmodium, IF2α phosphorylation is high in infectious 

sporozoite form which is quiescent in mosquito salivary glands (Zhang M et al., 2010)  
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I- 5. Regulation of gene expression in Apicomplexa 
 
Transcriptional profiling across asexual development of P. falciparum (Bozdech Z et al., 

2003; Le Roch KG et al., 2003) and T. gondii (Radke JR et al., 2005) suggests a model where 

a cascade of gene expression results in a ‘just-in-time’ production of products only when 

needed. How these changes are regulated at the molecular level remains, to a large extent, 

unknown. 

 

 I- 5.1. Apicomplexan ApiAP2: the vegetal face of gene regulation in Apicomplexa 

 

An unexpected feature is the apparent lack in Apicomplexa of large families of recognizable 

specific transcription factors (TFs) operating in other eukaryotes (Iyer LM et al., 2008). This 

observation is paradoxical given the complex life cycle of these parasites, which certainly 

require a tight regulation of gene expression. What we and others have initially proposed was 

that although many phenotypic differences in T. gondii are genetically encoded, epigenetic 

control could be part of the parasite developmental programs and adjustments to fluctuant 

environment (Sullivan WJ Jr, Hakimi MA., 2006; Hakimi MA, Deitsch KW., 2007). 

Epigenetic regulation, which includes potentially heritable changes in gene expression that do 

not involve changes in DNA sequence, provides a mechanism by which an organism can 

maintain a type of short-term memory of its most recent environment, allowing it to respond 

quickly to changing conditions. The initial hypothesis had to be re-assessed in light of the 

discovery in Apicomplexa of an expanded family of plant-like TFs harboring APETALA2 

(AP2) DNA-binding domain (Balaji S et al., 2005; Iyer LM et al., 2008; Oberstaller et al., 

2014). The AP2 domain was initially identified in plant kingdom, where it is a defining 

feature of a major family of AP2/ERF proteins. These proteins control the growth and 

development of plants by acting as activators or repressors of gene expression (Riechmann JL 

et al., 1998; Licausi F et al., 2013).  

Based on sequence annotation, there are a total of 68  and 27 AP2-like transcription factors in 

T. gondii and P. falciparum, respectively (Altschul SF et al., 2010; De Silva EK et al., 2008). 

Many studies focused on how apicomplexan AP2 domain-containing (ApiAP2) proteins 

contribute to the regulation of gene expression at each stage transition of parasites. In 

Plasmodium spp, some ApiAP2 proteins were shown to play different functions in parasite 

differentiation throughout the life cycle.  For examples, in Plasmodium berghei, a malaria 
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parasite of rodents, transcription factor PbAP2-Sp (ApiAP2 in sporozoites) which is 

expressed during the transition from the late oocyst to the salivary gland sporozoite, regulates 

the expression of all known genes in the sporozoite stage (Yuda M et al., 2010). Similar to 

PbAP2-Sp, PbAP2-O (ApiAP2 in ookinete stage) regulates also several genes known to be 

specifically expressed in the ookinete stage including genes necessary for midgut invasion 

during development in midgut lumen of mosquito (Yuda M et al., 2009). These two PbAP2 

share the common feature in that they activate genes by directly binding to the proximal 

promoter regions. The binding sites at the promoter may be a factor characterizing promoter 

activities in the ookinete and sporozoite stages (Yuda M et al., 2010). During infection and 

development of P.berghei in hepatocytes, transcription factor AP2-L was shown to play a 

crucial role for liver- stage development of parasite. The disruption of PbAP2-L in parasites 

does not affect the proliferation of other stages in the life cycle, while it causes the arrest of 

parasites development in the liver (Iwanaga S et al.; 2012). During parasite sexual 

differentiation, Plasmodium falciparum PfAP2-G (ApiAP2 for gametogenesis) may act as a 

master regulator of sexual-stage development P.falciparum because disrupting PfAP2-G 

results in loss of gametocyte formation in malaria parasites. It was suggested that PfAP2-G 

may control the decision of cells to commit to gametocyte formation or by default to continue 

the asexual replication (Kafsack BF et al., 2014). However, in Plasmodium berghei, PbAP2-G 

is essential for the development switch from asexual replicating forms to sexual development 

in parasite (Sinha A et al., 2014).  

 

Despite a large number of ApiAP2 transcription factors in T.gondii, few were shown to 

control parasites development in the asexual life cycle. The nuclear TgAP2XI-4 is cell-cycle 

regulated, the detection of protein product is high during the end of cytokinesis and the 

beginning of G1 phase in tachyzoites. When compared to replicating tachyzoite, the transcript 

of TgAP2XI-4 is strongly abundant in brain tissue cysts of chronically infected mice. The 

disruption of TgAP2XI-4 gene impairs the bradyzoite gene expression known to be expressed 

under stress condition (pH8.2), and altogether validating the idea that AP2XI-4 controls the 

induction of bradyzoite gene expression program and cyst formation (Walker R et al., 2013). 

Another nuclear TgAP2XI-9 which is repressed in tachyzoites and upregulated in the early 

bradyzoite stage under pH8.2 treatment, was shown to bind functionally sequence elements of 

bradyzoite promoter. The disruption of TgAP2IX-9 gene increases the tissue cyst formation 

while the overexpression of this protein inactivates suggesting its role in restriction of tissue 

cyst development (Radke JB et al., 2013).  While many ApiAP2 transcription factors are cell-
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cycle regulated (~ 24 ApiAP2), the nuclear TgAP2XI-5 is constitutively expressed throughout 

the tachyzoite cell cycle, binds to also to promoters of more than 300 Toxoplasma genes 

including genes coding for virulence factors. This protein may regulate gene expression of 

virulence factors. However, the direct and inducible knockout of TgAP2XI-5 gene was 

unsuccessful, suggesting its essential role in tachyzoite proliferation (Walker R et al., 2013).  

 

The global regulation of stage-specific gene expression mediated by ApiAP2 proteins in 

Apicomplexa remains a path to explore and better understand how parasites manage to control 

the development and differentiation within their life cycle. 

 

I- 5.2. Contribution of chromatin structure to gene regulation in Eukaryotic cells 

As mentioned above, transcriptional regulation clearly plays a major role in bradyzoite 

development as evidenced by numerous studies showing stage-specific gene expression. How 

these changes are regulated at the molecular level remains to a large extent unknown. What 

we and others have initially proposed was that although many phenotypic differences in T. 

gondii are genetically encoded, epigenetic control could be part of the parasite developmental 

programs and adjustments to changing environmental conditions. The so called ‘epigenetic 

events’ mainly regulate chromatin structures and gene function.  

 

The packaging of DNA into chromatin in eukaryotic cells is recognized to be a major 

mechanism by which the access of genomic DNA is restricted and regulated.  Regulation of 

gene expression requires alterations of chromatin architecture modulated by various number 

of enzymes. This results in temporal and spatial regulation of different cellular processes such 

as transcription, replication, DNA repair, recombination and chromosome segregation. As the 

basic functional unit of chromatin structure, nucleosome contains 147 base pairs of genomic 

DNA wrapping around a core histone octamer. Each octamer is composed of a stable tetramer 

of histones H3-H4 flanked by two separate H2A-H2B dimers. The interactions between 

nucleosomal histones involve a structured globular domain of histone. Protruding out from 

this globular domain of each histone, are the unstructured amino-terminal domain as well as 

carboxy-terminal domain. Moreover, nucleosomes are connected each other by the linker 

DNA which in turn binds to the linker histone H1 near the nucleosome entry/exit site, leading 

to the higher-order chromatin conformation. The chromatin is constantly remodeled to 

provide either a more accessible and transcriptionally active structure termed ‘euchromatin’ or 
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a more compact, less accessible and transcriptionally silent structure termed 

‘heterochromatin’ (Li B et al., 2007). A number of molecular processes play a role in the 

dynamic transition between these two transcriptionally distinct states, including nucleosome 

assembly and remodelling, histone replacement, reversible modification of histones, 

methylation of DNA and changes in sub-nuclear localization of chromatin (Goldberg AD et 

al., 2007; Kouzarides T., 2007; Li B et al., 2007). Chromatin regulators do not have DNA-

binding properties of their own and are recruited to genomic loci by specific transcription 

factors and through the mediation of corresponding co-activators or co-repressors proteins 

(Young RA, 2011). 

 

I- 5.2. Contribution of histone PTMs to gene regulation in Eukaryotic cells 

In Eukaryotes, the timely opening and closing of chromatin required for gene expression, 

chromosomal organization, DNA repair or replication is governed by histone turnover and 

their post-translational modifications (PTMs), such as lysine methylation (me) and acetylation 

(ac) among many others. While DNA methylation is a highly stable silencing mark that 

extends over long chromosomal regions leading to ‘memorized’ states of gene expression, 

PTMs of histone subunits may be more labile and mediate regulation of gene expression over 

shorter-term periods. The functional consequences of histone PTMs can be direct, causing 

structural changes to chromatin and thereby affecting the DNA accessibility, or indirect, 

acting through the recruitment of effector proteins (Goldberg AD et al., 2007; Kouzarides T., 

2007). Various models such as the charge-neutralization model (Roth SY, Allis CD.,1992; 

Shogren-Knaak M et al., 2006) and the ‘histone code’ (Strahl BD, Allis CD., 2000; Turner 

BM., 2000), as well as a signalling pathway model (Schreiber SL, Bernstein BE.,2002), have 

been proposed to explain the role of histone PTMs in transcription. The charge neutralization 

model, in which histone PTMs directly affect chromatin compaction, include phosphorylation 

or acetylation on core histones that serves to attenuate the favourable coulombic interactions 

between basic histone proteins and the negative charge of the DNA (Shogren-Knaak M et al., 

2006). The ‘histone code’ hypothesis predicts that diverse covalent modifications within the 

highly accessible histone tails are read by effector molecules, which in turn mediate distinct 

outcomes (Strahl BD, Allis CD., 2000; Turner BM., 2000). In this model, PTMs work in 

concert, and the cross-talk between different modifications determines the final biological 

readout. In this context, some modifications can influence others, and it appears that specific 

combinations of these modifications can form a complex and dynamic code. In addition, 
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PTMs also act as signals to recruit ATP-dependent remodeling enzymes to either move, eject 

or reposition nucleosomes.  

Most of the tails PTMs do not affect the chromatin structure directly, but rather function as 

signaling platforms by recruiting or excluding effector proteins to chromatin and subsequently 

alter nucleosomal structure to regulate DNA accessibility (Jaskelioff M et al., 2003; 

Tropberger P et al., 2010). One exception is H4K16 acetylation that apparently alters the 

inter-nucleosomal interactions and therefore contribute to chromatin decondensation and 

increase gene transcription both in vivo and in vitro (Shogren-Knaak M et al., 2006).  

 

While PTMs have been primarily detected in the histone tails sticking out from the 

nucleosome, an ever-growing list of PTMs is now identified in the lateral surface of the 

histone octamer, that directly contacts DNA, and characterized as critical regulators of the 

chromatin structure and function (Lawrence M et al., 2016; Tropberger P, Schneider R., 

2013) Those ‘core’ histone PTMs promote different outcomes on nucleosome dynamics 

depending on their precise location. Modifications near the DNA entry-exit region of the 

nucleosome were shown to favor the local unwrapping of DNA from the histone octamer 

thereby providing a better exposure of nucleosomal DNA to chromatin-remodeling and DNA-

binding proteins. On the other hand, lateral-surface PTMs mapping close to the dyad axis 

were shown to decrease the affinity of the octamer to DNA and significantly affect 

nucleosome stability/mobility. 

 

Thus, by sterically altering the intranucleosomal histone-DNA interactions, lateral surface 

PTMs, such as acetylation and phosphorylation, were shown to influence all DNA-based 

processes, including transcription, replication and repair. For instance, H3K36ac by 

increasing DNA unwrapping at the entry-exit point of the nucleosome (Neumann H et al., 

2009) promotes chromatin disassembly during transcriptional activation (Williams S. K et al., 

2008) and, in response to DNA damage, favors chromatin reassembly after DNA repair has 

been ended (Chen CC et al., 2008; Das C et al., 2009) 

 

In the nucleosome dyad where histone–DNA interactions reach their maximum strength, 

H3K122ac is sufficient to reduce nucleosomal density around the transcriptional start site of 

genes and to stimulate transcription (Tropberger P et al., 2013). Therefore, a slight decrease in 

the overall charge of the lateral surface by only one unit (e.g. corresponding to the 
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neutralization of one lysine by acetylation) can functionally contribute to transcription 

suggesting that H3K122ac is not merely a readout of gene activity (Lawrence M et al., 2016). 

 

Similarly to what has been described for histone tails, different lateral-surface modifications 

on the same residue could be associated with opposite transcriptional programs. This is the 

case for the H3K64 residue near the dyad axis when acetylated facilitates nucleosome eviction 

and thereby gene expression (Di Cerbo V et al., 2014), whereas trimethylation of the same 

residue acts as a repressive heterochromatic mark (Daujat S et al., 2009). It is well 

appreciated that lateral-surface modifications were shown to instruct transcriptional changes 

at gene promoters, however, as described for H3K64ac and H3K122ac, they are able to act at 

long-distance by altering nucleosomal stability/mobility in the vicinity of enhancer (Pradeepa 

MM et al., 2016). 

Histone modifications serve as an effective way to regulate gene transcription but they do not 

operate alone; rather, they act in concert with other putative epigenetic information carriers 

(histone variants, small RNAs) and DNA sequence-specific transcription factors to modulate 

the higher-order structure of the chromatin fiber and govern the on-time recruitment of the 

transcriptional machinery to specific genes.  

 

I- 5.3. An unexpected and sophisticated ‘histone code’ at work in Apicomplexa 

Unlike the majority of higher Eukaryotes, Apicomplexa genomes have a unique chromatin 

architecture typified by an unusually high proportion of euchromatin and only a few 

heterochromatic islands scattered through the chromosome bodies or embedded at telomeres 

and centromeres (Vanagas L et al., 2012; Nardelli SC et al., 2013; Coetzee N et al., 2016; 

Ponts N et al., 2010; Bunnik EM et al., 2014). Although alterations in chromatin structure are 

acknowledged as important for the transcriptional control of commitment to stage 

differentiation in several Apicomplexa as well as for antigenic variation-mediated immune 

evasion in P. falciparum, yet the molecular mechanisms of chromatin remodeling have not 

been fully determined (Bougdour A et al., 2010; Scherf A et al., 2008). As P. falciparum or T. 

gondii do not appear to have detectable DNA cytosine methylation (Gissot M et al., 2008), 

remodelling of the chromatin structure particularly through PTMs of histones is potentially a 

major process that co-ordinates regulation of gene expression. For this reason, histone 

modifications have rapidly moved to the forefront of gene regulation research in many 

protozoan parasites. Histones are well conserved across species and apicomplexan parasites 
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are no exception. In every apicomplexan parasite analyzed so far, the four core histones 

(H2A, H2B, H3 and H4) have been identified, but the linker histone H1 appears to be absent. 

Histone H2B is represented by two isoforms H2Ba and H2Bb. These parasites have also five 

histone variants: centromeric H3 CenH3, H3.3, H2A.X, and H2A.Z ((Dalmasso MC et al., 

2011; Vanagas L et al., 2012). Interestingly, apicomplexan parasites contain a novel variant of 

H2B family named H2Bv that forms in T. gondii dimers mainly with H2AZ, but not with 

H2AX (Dalmasso MC et al., 2006; Dalmasso MC et al., 2009; Bogado SS et al., 2014) .These 

findings reveal that the nucleosomal arrangement is not random in protozoa and may exhibit 

intriguing differences relative to their mammalian counterparts. 

 

With regard to histone tails PTMS, the epigenome is much more complex than previously 

thought in Apicomplexa. We and others have begun our investigations by looking at the 

evolutionary conservation of histone PTMs. The proteome-wide study of lysine acetylation in 

T. gondii revealed that acetylation is abundant occurring on histones H2AZ, H2B variant, 

H2Bb/H2Ba, H3/H3.3, and H4 but also on nonhistone proteins of diverse function and 

localization in parasite (Jeffers V et al., 2012; Xue B et al., 2013). The lysines acetylation of 

histone tails that were documented in T. gondii comprise K9, K14, and K18 on histone H3 as 

well as K5, K8, K12, and K16 on histone H4. Other novel lysines acetylation within globular 

domain of histones have been reported, H3K79 and H4K31, although the acetylation role of 

these residues has yet to be investigated (Bougdour A et al., 2010; Jeffers V et al., 2012). 

However, few divergences were observed so far between apicomplexan and other species 

although there were substantial differences in their abundances (Bougdour A et al., 2010). 

The most remarkable finding was that H4K16 is not the major acetylation site in P. 

falciparum histone H4, which contrasts with what is observed in most other organisms (Smith 

CM et al., 2003; Zhang K et al., 2002). Instead, acetylation of H4K8 and H4K12 was 

frequently observed in both P. falciparum (Trelle MB et al., 2009) and T. gondii (Hakimi 

MA, unpublished data). In general, parasites appear to harbour more activation (H3K4me or 

H3K9ac) than silencing marks (H3K9me) when compared with human cells (Trelle MB et al., 

2009). The histone variants are no exception to this rule, since they are extensively acetylated 

in their tails probably to maintain open chromatin structure (Trelle MB et al., 2009). This 

observation mirrors the studies on Saccharomyces cerevisiae and Tetrahymena thermophila 

that exhibit more modifications associated with transcriptional activation than repressive 

marks, whereas the reverse situation is observed in mammals (Garcia BA et al., 2007). This 

correlates quite well with the fact that the majority of the P. falciparum genome is 
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transcriptionally competent (Bozdech Z et al., 2003; Le Roch KG et al., 2003), whereas more 

than 60% of the mammalian genome is permanently silenced (Jenuwein T et al., 1998; 

Whitfield ML et al., 2002). Few divergences were observed so far between T. gondii and P. 

falciparum. The one known exception is the serine 10 phosphorylation of histone H3, which 

is involved in both transcription and chromosome condensation during mitosis in eukaryotic 

cells (Prigent C, Dimitrov S., 2003). While in T. gondii H3S10 is phosphorylated (H3S10ph) 

prior to mitosis in tachyzoites (Sautel C et al., 2007), the mark is apparently absent or too low 

to be detected in P. falciparum (Trelle MB et al., 2009). This discrepancy is interesting and 

calls for further investigation. 

 

Studies mapping specific PTMs over the T. gondii or P. falciparum genome using chromatin 

immunoprecipitation (ChIP) suggest that the interplay between chromatin and transcription is 

dynamic and more complex than previously appreciated ( Gissot M et al., 2007; Lopez-Rubio 

JJ et al.,2009; Salcedo-Amaya AM et al., 2009). Genome-wide data obtained from T. gondii 

revealed that H3K9me2 and H3K9me3 repressive marks tend to spread over large regions of 

heterochromatin, particularly near the centromeres (Brooks CF et al., 2011). In contrast, in P. 

falciparum H3K9me3 exhibits a restricted pattern at subtelomeric regions with no enrichment 

at the pericentromeric chromatin like in T. gondii (Lopez-Rubio JJ et al.,2009) TgSet8 that 

methylates H4K20me1,3 appears also to associate with the T. gondii centromeres themselves 

(Sautel CF et al., 2007). Those genome-wide approaches clearly showed that histone PTMs 

are sequestered to distinct regions of the parasite genome and they eventually correlate with 

sites of transcription in vivo, though whether they contribute functionally to gene induction 

remains elusive.  

 

I- 6. Overview of the histone modifying enzymes 

Qualitative examination of Apicomplexa genomes reveals a rich but still largely unexplored 

repertoire of ATP- dependent remodelers and histone-modifying enzymes that move, replace 

or decorate histones (Sullivan WJ Jr, Hakimi MA., 2006; Hakimi MA, Deitsch KW., 2007; 

Bougdour A et al., 2010). What we learn so far is that these parasites possess a sophisticated 

capacity to modify histones, rivaling the system observed in higher eukaryotic cells. For 

instance, there was significant duplication and divergence in the Apicomplexa lineage of the 

lysine methyltransferases (KMT) harboring a conserved Suv(39)-E(z)-TRX (SET) catalytic 

domain (Sautel CF  et al., 2007, Sautel CF et al., 2009). In T. gondii, there is 20 SET domain-
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containing KMTs and 2 Dot1 homologs. Some histone-modifying enzymes have acquired 

gain-of-function mutations that confer broader or enhanced activity on substrates. It is the 

case of parasite SET8-related proteins endowed with H4K20 mono-, di-, and trimethylase 

activities that contrast with the mono-methylase-restricted metazoan Set8, and that derive 

from a single-amino-acid change in the substrate-specific channel (Sautel CF et al., 2007). 

Beyond lysine methylation, a more extensive repertoire of arginine methylation machinery is 

present in T. gondii compared with yeast and C. elegans; each possessing a unique PRMT 

related enzyme (Saksouk N et al., 2005). 

In general, duplication and divergence of histone modifiers is more pronounced in T. gondii 

than in P. falciparum. Notably, T. gondii appears to be unique inside the phylum in 

harbouring more than one GCN5 family histone acetyl-transferase (HAT) (Bhatti MM et al., 

2006) (Duplication does not mean redundancy since TgGCN5-B acetylates H3K9, K14 and 

K18, the expected substrate profile for archetypical GCN5 HATs (Bhatti MM et al., 2006), 

while TgGCN5-A exhibits a strong tendency to acetylate in vitro H3K18 (Saksouk N et al., 

2005). In terms of diversity, the chromatin-modifying apparatus of T. gondii goes beyond 

what was expected for a unicellular eukaryotic cell and this was consistent with the initial 

hypothesis that the apparent lack of traditional transcription factors may be somehow 

compensated at an epigenetic level. 

 

I- 7. The HAT/HDAC interplay: multilevel control of chromatin structure 

and gene regulation 

Dynamic acetylation of the ϵ-amino group of specific lysine residues is a reversible PTM, 

evolutionary conserved from bacteria to humans and one of the well characterized 

modifications. The role of histone acetylation in the regulation of chromatin structure in 

higher eukaryotes involves neutralization of the positive charge of the histone N-terminal 

tails. This attenuation between the histone proteins and the DNA leads to chromatin 

decondensation, thereby enhancing transcriptional activity. On the other hand, histone 

hypoacetylation restores the positive charge of histone N-tails, which tightens the binding of 

DNA and histones, leading to condensed chromatin and gene silencing. Histone acetylation is 

dynamically regulated by antagonistic actions of two families of enzymes, histone 

acetyltransferases HATs and histone deacetylases HDACs. Histone acetylation is almost 

associated with activation of transcription, while conversely histone deacetylation modulates 
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transcriptional repression (Haberland M et al., 2009). The interplay between HDACs and 

HATs results in dynamic of chromatin structure and regulation.  

Histone acetylation, in T. gondii is catalyzed by five distinct HATs which are important for 

parasite survival and proliferation. Based on subcellular localization and structural homology 

in the primary sequence, T. gondii HATs include two GCN5 families (GCN5-A and -B), two 

MYST families (MYST-A and MYST-B), and Hat1 (Dixon SE et al., 2010).  

 

HDAC enzymes have been organized into four phylogenetic classes based on sequence 

homology, inhibitor sensitivity, and cofactor necessity (de Ruijter AJ et al., 2003). Class I of 

HDACs, which is homologous to Rpd3 in yeast, consists of HDAC1, 2, 3, and 8 and localizes 

in the nucleus to regulate histone and nonhistone acetylation. Class II of HDACs is 

homologous to yeast Hda1 and has two subtypes, class IIa which includes HDAC4, 5, 7, and 

9 and class IIb comprises HDAC6 and 10. In response to different cellular stresses, class IIa 

of HDACs can shuttle between the cytoplasm and the nucleus, whereas class IIb locates 

predominantly in cytoplasm. Class III of HDACs are also called sirtuins which include seven 

members Sir1-7. They localize in the nucleus, cytoplasm, mitochondria and share 

homologous sequence with the yeast Sir2 family of proteins. Class IV of HDACs has only 

HDAC11 mainly located in the nucleus and highly conserved from C.elegans, 

D.melanogaster to humans (de Ruijter AJ et al., 2003; Xu K et al., 2011;  Yang XJ et al., 

2008). Several HDACs from class I were shown to form multi-subunit complexes that 

predetermine their enzymatic activity as well as their function in cells , e.g. apoptosis, cell 

cycle progression or development (Guenther MG et al., 2000; Guenther MG et al., 2001; 

Zhang J et al., 2002; Li J et al., 2000; Fischle W et al., 2002; Lazar MA, 2003; Jayne S et al., 

2006;Telles E et al., 2012; Ahringer J, 2000). 

Toxoplasma genome encodes genes for six putative HDACs based on similarity with the 

human counterparts that branch into the four main classes; namely HDAC1, HDAC2, 

HDAC3, HDAC4, HDAC5 and Sir2 (Saksouk N et al., 2005; Vanagas L et al., 2012). In 

Plasmodium falciparum, many chromatin modifier enzymes such as histone deacetylases 

HDACs are essential for Plasmodium falciparum development. For instance, the Sir2 

orthologue has been noted to have a critical role in mediating var gene expression in P. 

falciparum (Tonkin CJ et al., 2009). Another example is the depletion of HDAC2, known to 

deacetylate the euchromatin mark H3K9ac, that results in the transcriptional of genes 

(example: var genes) located in previously defined heterochromatin regions and thus leading 
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to the failure of blood-stage development and an increased gametocyte (Coleman BI et al., 

2014). These activated genes (var genes) after HDAC2 depletion, were shown to be 

associated with HP1, a protein which binds to heterochromatic repressive mark H3K9me3. 

HP1 protein acts as a recruitment platform for histone lysine methyltransferase to maintain 

and spread H3K9me3 marks (Lomberk G et al., 2006). Likewise, HP1 knockdown causes the 

loss of var gene expression, altogether suggesting that HDAC2 may be an upstream regulator 

of HP1 required for heterochromatin repression (Coleman BI et al., 2014).  

 

 

I- 8. The TgHDAC3 regulatory network defines a new ‘epigenetic’ path to 

explore Toxoplasma gondii gene expression regulation and differentiation 

Our team took an early interest in histone acetylation (Saksouk N et al., 2005) and found that 

there is a strong link between differentiation and the rate of histone acetylation (unpublished 

work by Alexandre Bougdour, Figure 3). Thus, switching the pH from 7.1 to 8.1 causes both 

tachyzoite-to-bradyzoite conversion (Figure 3A) and also an unexpected hyperacetylation of 

histone H4 in the parasite nuclei, without any change of the acetylation status in the host cell 

nuclei (Figures 3B and 3C). This hyperacetylation is not mediated by any host cell signaling 

cascade as free parasites maintained in culture medium buffered at pH 8.1 also exhibit a 

drastic H4 acetylation (Figure 3D). The absence of this phenomenon in the host cell (Figure 

3C) has encouraged us to further investigate the mechanisms involved. 
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Figure 3 - Switching the pH triggers histone hyperacetylation exclusively in parasite nuclei. (A) FR235222 

treatment induces T. gondii Prugniaud strain differentiation. Intracellular parasites (12h after infection) were 

incubated in the presence of either alkaline growth media to induce in vitro differentiation or 40nM FR235222 

for 2–3 d. As a control, parasites were treated with 1 µM pyrimethamine. Bradyzoite-differentiated parasites 

were identified by IFA using an anti-P36 (in green) antibody. Bars, 10 µm. (B) HFFs cells were infected with 

tachyzoites and hyperacetylation of histone H4 tail in parasites nuclei was detected by immunofluorescence 

assay using pan-acetyl lysine histone H4 antibody (in red). (C)  Primary human fibroblast (HFF) cells were 

treated with pH 7.1, pH 8.1 and trichostatin A (TSA).  Histones were extracted and analyzed by immunoblotting 

using a pan-acetyl H4 antibody (in red). (D) Extracellular parasites were treated with pH7.1 and pH8.1. Histones 

were then extracted and analyzed in western blot by using antibodies against the acetylated lysines within 

histone H4 tail. Images from Bougdour A et al. 2009 and unpublished work from the team. 

 

Acetylation of core histones is mediated by histone acetyltransferases (HATs) and, in many 

instances, results in relaxation of chromatin structure and transcriptional activation of 

associated genes. Histone deacetylases (HDACs) counteract HAT activity by catalyzing the 

removal of acetyl moieties from lysine residues in histone tails, thereby inducing chromatin 

condensation and transcriptional repression (Kurdistani SK et al, 2003). Part of our research 

has been devoted to identifying new drug targets for anti-Apicomplexa. HDAC inhibitors 

(HDACi) have been widely evaluated for their cytotoxic, anticancer and other potential 

therapeutic properties (Bertrand P, 2010). Our team investigated the mode of action of 

FR235222, a novel cyclic tetrapeptide HDACi and showed that the drug is active against a 



 28 

wide range of Apicomplexa and is more potent than other HDACis such as trichostatin A and 

the clinically relevant compound pyrimethamine (Figure 4A) (Bougdour A et al. 2009). 

 

Figure 4. FR235222 targets TgHDAC3 in T. gondii (A) Effect of FR235222 and other HDACi’s on T. gondii 

RH strain growth in HFF monolayer. Pyrimethamine (non-HDACi compound) was used as a clinically relevant 

control. Means ± SD of parasite growth (percentages) are shown (n = 3 experiments). (B) Sequence alignment of 

TgHDAC3 homologues in Apicomplexan parasites and other organisms. The region (from amino acids 122–141 

of TgHDAC3) surrounding the point mutation identified in TgHDAC3-resistant mutants is shown. Rpd3 and 

HDLP are the HDAC homologues in Saccharomyces cerevisiae and the hyperthermophilic bacterium Aquifex 

aeolicus, respectively. Point mutations identified in the T. gondii FR235222-resistant mutants are shown at the 

bottom and as well the corresponding IC50. Images from Bougdour A et al. 2009. 

In the same study, we isolated Toxoplasma parasite lines resistant to the molecule. Single- 

point mutations found in mutagenized parasites target the amino acid T99 in TgHDAC3 and 

are sufficient to confer resistance to FR235222 (Bougdour et al., 2009). Interestingly, the 

residue T99 along with the amino acid A98 creates an insertion within the catalytic site of the 

enzyme that is exclusively conserved in apicomplexan HDAC3 family of proteins and absent 

in any other eukaryotic HDAC (Figure 4B). Phenotypic analysis of parasite mutants and their 

responsiveness to the drug suggests that TgHDAC3 is a regulator in T. gondii of both cell 

cycle and differentiation (Bougdour A et al., 2009).  

We think that TgHDAC3 is a key regulator acting within the regulatory pathway leading to 

parasite differentiation. Several arguments support this assertion. First, inhibition of 

TgHDAC3 by FR235222 mimics the pH stress by inducing the expression of bradyzoite 

markers, which we believe marks the beginning of stage conversion (e.g. P36, a bradyzoite 

marker Figure 3A). Additionally, even in the absence of drug, P36 expression became 

constitutively expressed in the TgHDAC3T99A mutant compared to wild-type parasites (Figure 

5A). This suggests that a simple point mutation is able to affect the basal activity of the 
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enzyme that was confirmed in the vicinity of our gene model 20.m00351 (Figure 5B, compare 

the yield of H4 enrichment in the absence of FR235222 in WT versus mutant background). 

 

Figure 5. The T99A mutation affects the regulatory role of TgHDAC3 on P36/SRS9 expression. (A) 

FR235222 treatment induces T. gondii RH strain differentiation, as revealed by the expression of the bradyzoite-

specific antigen P36 (SRS9). Intracellular parasites (6 h after infection) were treated with low concentrations of 

FR235222 (30 nM) for 24 h. Effect of the TgHDAC3T99A allele on the expression of the bradyzoite-specific 

antigen P36. T. gondii RH strain WT and R20D9 mutant (TgHDAC3T99A) were  fixed 24 h after infection and 

analyzed by IFA for P36 expression levels (n = 3 experiments). Representative data are shown. Bars, 50 µm. (B) 

Scanning ChIP experiments showing the effects of FR235222 on AcH4 levels in the presence of the TgHDAC3 

WT, TgHDAC3T99A, and TgHDAC3T99I alleles at the promoter region of the bradyzoite-specific gene 

20.m00351. The ratios of 20.m00351 and control DHFR signals present in input samples were used to calculate 

the relative precipitated fold enrichment shown below each lane. Images from Bougdour et al. 2009. 

 

Nonetheless, all these elements are scattered and do not provide conclusive evidence for the 

impact of histone acetylation on the expression of stage-specific genes. During my four-year 

thesis, I intend to investigate the contribution of TgHDAC3 to transcriptional regulation and 

parasite differentiation in Toxoplasma gondii.  

 

This work is organized into three chapters: 

Chapter 1. Toxoplasma ApiAP2 transcription factors are embedded in stable multi-subunit 

complexes gathering the deacetylase TgHDAC3, the MORC protein CRC230 and ELM2-

containing scaffolding proteins. 

Chapter 2. The chemical inactivation of TgHDAC3 by FR235222 revealed a peculiar 

acetylome and proteome regulated by the enzyme: a first step toward stage differentiation. 

Chapter 3. A versatile acetylation-methylation switch at K31 on the lateral surface of histone  

H4 dictates chromosomal organization and expression in Apicomplexan parasites. 
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Part II.   Results 
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Chapter 1.  

 

T. gondii ApiAP2 transcription factors are 

embedded in stable multi-subunit complexes 

gathering the deacetylase TgHDAC3, the MORC 

protein CRC230 and ELM2-containing scaffolding 

proteins 
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II- 1.1. Rationale and Preliminary Studies: 
 

Most of the Eukaryotic HDAC enzymes act in megadalton complexes containing corepressors 

and scaffolding proteins. Most often these enzymes are embedded into a network of proteins, 

which modify or directly support their enzymatic activity. Usually, histone deacetylases are 

unable to access their histone substrates, unless DNA-bound activators or repressors target 

them there. Apetala2 (AP2)-related proteins, which contain plant-like DNA-binding domain, 

represent a major lineage of transcription factors in Apicomplexa (Balaji S et al., 2005; Iyer 

LM et al., 2008; Oberstaller et al., 2014). They are serious candidates for targeting the 

TgHDAC3 to DNA in a sequence specific manner. 

 

In Eukaryotes, the timely opening and closing of chromatin is required for gene expression. 

Chromatin modifying and remodeling enzymatic activities serve as an effective way to 

regulate gene transcription but they do not operate alone.  They do not themselves bind DNA 

and their recruitment by specific transcription factor to specific genomic loci is ordinarily 

mediated by co-activator or co-repressor. Interestingly, our team purified a core repression 

complex (CRC) in Toxoplasma, using RH tachyzoites expressing ectopically a second copy of 

TgHDAC3 fused to HA-Flag (Saksouk et al., 2005). TgHDAC3 was shown to co-purify with 

the transcription factor AP2VIII-4 (CRC350), the transducin beta-like protein1 TBL1 and the 

CRC230 protein. Another study reports the interaction of the HAT GCN5b with two distinct 

transcription factors AP2IX-7 and AP2X-8 (Wang J et al., 2014). Collectively, these 

observations indicate that the Toxoplasma chromatin enzymes TgHDAC3 and GCN5b may 

involve, for their recruitment to DNA, AP2 domain-containing proteins.  

 

A real breakthrough in the understanding of TgHDAC3 came during my PhD with the 

discovery demonstrating that TgHDAC3 was able to form multiple complexes in addition to 

CRC. 
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II- 1.2. Results 

II- 1.2.1. TgCRC230 is a predicted nuclear MORC-related protein in Toxoplasma gondii 

 

Toxoplasma gondii CRC230 belongs to the microrchidia (MORC) family. The protein 

sequence analysis with Simple Modular Architecture Research Tool SMART shows that 

CRC230 consists of six kelch repeats, histidine kinase-like ATPase domain (HATPase_C) 

and putative nuclear localization signals (NLS) (Saksouk N et al., 2005) (Figure 6A). 

Moreover, previous studies reported that the Apicomplexa phylum evolves a unique version of 

the MORC ATPase fused to klech-type β- propellers (Iyer LM et al., 2008). The MORC 

proteins are nuclear and highly conserved in both Prokaryotes and Eukaryotes. They are 

characterized by a gyrase, histidine kinase, and MutL (GHKL) domain combined with a C-

terminal S5 domain that together form an ATPase module (Inoue et al., 1999; Iyer LM et al., 

2008). They were first identified in mice and involved in male meiosis and spermatogenesis 

(Lorković ZJ, 2012). 

 

In human, there are five predicted MORC members including MORC1, MORC2, MORC3, 

MORC4, and the divergent SMCHD1 some of which are upregulated in breast cancer while 

others regulate P53 activity and induce cellular senescence (Li DQ et al., 2013). In addition, 

members of the MORC family in fusions with other protein domains emerged as new 

regulators of transcription and DNA damage response. For example, the phosphorylation of 

MORC2 by P21-activated kinase1 (PAK1) orchestrates the interplay between chromatin 

dynamics and the maintenance of genomic integrity during DNA damage response (Li DQ et 

al., 2012). In plant, MORC ATPase proteins found in Arabidopsis thaliana are involved in 

heterochromatin condensation and gene silencing (Moissiard G et al., 2012). Another 

interesting study has shown the involvement of MORC2 and histone deacetylase 4 in 

transcriptional repression of CAIX gene in gastric cancer cells (Shao Y et al, 2010). 

 

Consistent with the above observations, we hypothesized that TgCRC230 protein that was 

previously found in TgHDAC3-containing complex may play a key role in gene repression in 

tachyzoites.  
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II- 1.2.2. TgCRC230 acts as scaffolding platform bridging TgHDAC3 to multiple 

ApiAP2 transcription factors and ELM2-containing proteins 

 

When we monitored CRC230 dynamics in T. gondii lines expressing the endogenous protein 

in fusion with the HA-Flag tags, we found that the protein selectively accumulates in the 

parasite nuclei of tachyzoites (Figure 6B). Flag affinity of CRC230 followed by western 

blotting confirmed the partnership between CRC230 and TgHDAC3 in freshly egressed 

parasites or in fast-growing intracellular parasites in both RH and Pru strains (Figure 6D). 

This finding is in agreement with a previous study showing that HDAC3 is embedded in a 

remarkably robust molecular mass complex with CRC230 that resists to high stringent 

washing conditions (500mM KCl and 0.1% NP-40) (Saksouk N et al., 2005).  

 

Silver stain analysis of the CRC230 Flag eluates, however, revealed a more complex protein 

pattern than previously seen with the HDAC3-purified CRC (Figure 6E), suggesting that 

CRC230 may bind to more partners and those interactions are quite stable considering the 

stringency of washing. These partnerships were subsequently resolved by mass spectrometry-

based proteomics that identified CR230 and HDAC3 as part of a multisubunit complex 

encompassing ten ApiAP2 transcription factors, three ELM2/PHD domains-containing 

proteins and six hypothetical proteins (Table 1). Our findings indicate that CRC230 may act 

as a scaffold protein connecting ApiAP2 transcription factors with HDAC3 that, in turn, may 

be involved in recruiting the repressor complex to the target genes for its activity. 
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Figure 6. TgCRC230 is a nuclear MORC protein that binds directly to TgHDAC3 and forms a high stable 

molecular weight complex with transcription factors and ELM2 domain-containing proteins. (A) 

Schematic representation of structural domain of TgCRC230 highlighting kelch (in blue), HATPase_C (in green) 

and NLS (in red) domains.  (B) TgCRC230 protein is located to the nucleus of tachyzoites parasites. Human 

foreskin fibroblasts HFFs cells were infected with Pru ∆ku80 CRC230 HAFlag for 24h and fixed with 3% 

formaldehyde for 20 min and subjected to immunofluorescence assay using antibodies anti-HA and anti-FLAG. 

(C) Schematic strategy to obtain TgCRC230-associated polypeptides from intracellular Pru ∆ku80 CRC230 

HAFlag parasites. (D) Copurification of TgCRC230 and TgHDAC3 in both intracellular and extracellular 

tachyzoites. Isolated components, as shown in (C), were verified by western blot using antibodies anti-HA 

corresponding to CRC230 and anti-HDAC3. (E) Sliver staining analysis of TgCRC230-associated polypeptides 

from intracellular tachyzoites Pru ∆ku80 CRC230 HAFlag. 

E 



 37 

Table 1. Proteins associating with TgCRC230 in tachyzoites and identified by LC/MS-MS 

 
 

II- 1.2.3. TgCRC230 purification led to the identification of three putative ELM2 

domain-containing proteins 

 

Three ELM2 (EGL-27 and MTA1 homology 2)-containing proteins were also co-purified 

with CRC230 and TgHDAC3 (ELM2a, b, c; Table1). ELM2 domains were initially shown to 

interact with histone deacetylase in several studies (Ding Z et al., 2003; Wang L et al., 2006; 

Millard CJ et al., 2013). The ELM2-SANT domain is one of the best-characterized regions of 

MTA1, which recruits histone deacetylase 1 (HDAC1) and activates the enzyme in the 

presence of inositol phosphate. More recently, the structure of the ELM2 and SANT domains 

from MTA1 bound to HDAC1 revealed that the ELM2-SANT domains wrap completely 

around HDAC1 occupying both sides of the active site such that the adjacent BAH domain is 
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ideally positioned to recruit nucleosomes to the active site of the enzyme (Millard CJ et al., 

2013). In the early stages of the project, we have attempted to solve the structure of the 

dimeric complex TgHDAC3/ELM2a (TGME49_232650) using various approaches and 

following the protocol of others (Watson PJ et al. 2012), but have encountered severe 

solubility problems. This led us to initiate a computational approach, as a close homologue 

model of HDAC-ELM2 was available, that enables the building of homology model. The 3D 

structure of TgHDAC3-TgELM2 was built through a classical homology/comparative 

modeling by using the Task “Homology Modeling” of the Maestro-Schrödinger Suite in 

collaboration with Dr. Amit Sharma (ICGEB, New Delhi). The TgHDAC3/ELM2a model 

was built using, as a template, the crystallographic structure of ELM2 of MTA1 complexed 

with human HDAC1 (pdb Id: 4BKX) (Millard CJ et al., 2013) (Figure 7).  

 

 
 
Figure 7. Structure prediction of T. gondii ELM2a in complex compared to human ELM2 in MTA1-

HDAC1 complex. (A) Homology modeling of T. gondii  ELM2a. (B) Structural alignment of T. gondii ELM2a 

(in blue) and Homo sapiens ELM2 of MTA1 (in yellow) complex to Homo sapiens HDAC1 (in red) (C)  

Docking model of T. gondii HDAC3 (in green) and ELM2a (in blue). 

 

Structure prediction of the ELM2a domain suggests that the domain is largely intrinsically 

disordered (i.e. lacking an intrinsically fixed structure), although there are predicted helical 

regions at the carboxy-terminus (Figure 7A).  As for human ELM2 (in yellow, Figure 7B), the 

amino-terminal part of T. gondii ELM2a domain adopts an extended conformation that wraps 

around the human HDAC1 (Figure 7B) and TgHDAC3 model (Figure 7C) making multiple 

interactions. The carboxy-terminal region of human ELM2 domain (in yellow, Figure 7B) 

forms a four-helix bundle with a small hydrophobic core and enlarges the interacting surface 

with HDAC1 as it completes a path around the ‘back’ of the enzyme. The four-helix bundle 

were shown to form a homodimer by bridging two HDAC1:MTA1 dimeric complex. T. 
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gondii ELM2 is typified by an exclusive two-helix structure and we hypothesize that this non-

polar side chains-containing interface could act as a homodimerisation interface to connect 

two histone deacetylases molecules as described in NuRD complex. 

 

Here, we thoroughly determine the TgHDAC3 interactome by purifying multiple TgHDAC3-

containing holoenzymes using affinity and conventional chromatography in both virulent 

(RH) and cystogenic (Prugniaud) Toxoplasma strains. While we uncover a core set of ApiAP2 

(10 over 68) as serious candidates for targeting the deacetylase to DNA in a sequence specific 

manner, we still need to address this hypothesis by co-mapping (ChIP-seq) the genome-wide 

location of the aforementioned ApiAP2 and TgHDAC3. Nonetheless, our data highlight for 

the first time a role in Apicomplexa for a MORC-like protein as a putative scaffolding protein 

bridging ApiAP2 to TgHDAC3. Moreover, by revealing the presence of ELM2/HDAC core 

complex in Toxoplasma gondii, we brought the first evidence that this partnership between 

the two families arose in eukaryotic cell long before the split between apicomplexan, plant 

and metazoan. 
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Chapter 2.  

 

The chemical inactivation of TgHDAC3 by 

FR235222 revealed a peculiar acetylome and 

proteome regulated by the enzyme: a first step 

toward stage differentiation 
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II- 2.1. Rationale and Preliminary Studies: 
 

Apart its central role in epigenetic regulation of histones, lysine acetylation has recently 

emerged as one of the major reversible post-translational modifications involved in diverse 

cellular processes such as cell migration, cellular metabolism, cytoskeleton dynamics or 

protein folding (Close P et al., 2010). Identification of acetylation sites in targeted proteins is 

the first essential step for functional characterization of acetylation in physiological 

regulation. The recent development of anti-acetyl lysine antibodies dedicated to enrichment of 

acetylated peptides has rendered feasible the study of protein acetylation at the whole 

proteome level (Kim SC et al. 2006). High-throughput mass spectrometry analyses of 

acetylomes using such a strategy have revealed that protein acetylation is nearly as 

widespread as and probably more conserved than phosphorylation (Choudhary C et al., 2009; 

Weinert BT et al., 2011).  

 

Previous results on TgHDAC3 role indicate that acetylation might be a major way to tightly 

regulate parasite differentiation (Saksouk N et al., 2005). We initially speculated that 

FR235222 acts on TgHDAC3 primarily promoting the deregulation of histone acetylation 

rates, which in turn altered the expression of genes, especially those known to be stage-

dependent (Bougdour A et al., 2009). The overall effect on gene expression, however, did not 

identify genes coding for master regulators/transcription factors whose alteration of their 

expression could result in parasitic conversion. We then hypothesized that the action of 

TgHDAC3 could go beyond nucleosomes by deacetylating non-histone proteins. While the 

proteome-wide acetylome of Toxoplasma tachyzoite was recently published (Jeffers V et al., 

2012; Nardelli SC et al., 2013; Bouchut A et al., 2015), its regulation and alteration during 

stage conversion is nearly unknown. In collaboration with Yohann Coute and Pieter-Jan 

Debock (CEA, Grenoble) we produced a snapshot of Toxoplasma acetylome and analyzed its 

regulation in the context of TgHDAC3 activity modulation. 

 

II- 2.2 Results 
 

II- 2.2.1. FR235222-mediated inhibition of TgHDAC3 induces bradyzoite- and 

merozoite-specific proteins expression 
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Before starting the study of the acetylome we have mapped the proteome changes in response 

to FR235222 in order to define the appropriate conditions for the expression, if any, of stage-

specific proteins. These results can be compared to those published by our team to see 

whether the expression deduced from changes in chromatin acetylation (Bougdour A et al., 

2009) correlates with protein levels. To investigate proteome alterations induced by 

TgHDAC3 inhibition, we used the type II strain, Pru ∆ku80. This strain is typified by its 

ability to form cyst in murine model of toxoplasmosis and to convert well in vitro into 

bradyzoite stage under different stress conditions such as alkaline induction or chemical 

compound FR235222 (Bougdour  A et al., 2009). In this work, we first carried out mass 

spectrometry-based proteome profiling to identify changes in protein levels. FR235222-

mediated changes were compared to untreated control parasites. The key steps in this strategy 

include protein extraction from comparing intracellular Pru∆ku80 with or without FR235222 

treatment; trypsin digestion to yield peptides; LC/MS-MS analysis to determine protein ratios; 

database search and bioinformatic analysis (Figure 8A). As result, we identified a total of 

5039 proteins. Among them, 2001 proteins were identified in Toxoplasma and 3039 proteins 

in human HFFs cells. When we analyzed statistically the Toxoplasma proteins from the 

complete dataset, we identified a total of 284 proteins which could be significantly 

upregulated or downregulated. Therefore, the volcano plot of the normalized Toxoplasma 

proteins indicates that more proteins are upregulated in the FR235222-treated samples. 

Surprisingly, the majority of these upregulated proteins correspond to the bradyzoite proteins 

for instance glycolytic enzymes enolase 1 (ENO1) and lactate dehydrogenase 2 (LDH2) both 

involved in parasite metabolism; surface antigens including SAG-related sequence (SRS) 

proteins and family A proteins. This finding shows clearly that the compound FR235222 

induces the expression of bradyzoite-specific proteins in tachyzoites parasites (Figure 8B, 

right side). Surprisingly, we also identified 56 proteins whose gene expression was restricted 

to enteroepithelial stages in cats (see examples in Figure 9A). We suspected that FR235222 

altered the genetic program dedicated to repress bradyzoite genes in tachyzoites stimulating 

bradyzoite conversion but also stimulate neo-converted bradyzoites to reach the next step, i.e. 

merozoites and the sexual stages. Since our data are representative of a population and not 

based on single-cell experiment, we cannot evaluate properly the conversion rate. That is said 

we estimate that the number of converted merozoites is quite low. One way to improve the 

conversion will be to trigger the differentiation process starting with brain cyst bradyzoites 
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instead of tachyzoites. Indeed bradyzoites are the main source of Type E schizonts that give 

rise to merozoites, which in turn differentiate into gametes (Figure 1).  

 

 

Figure 8. Quantitative proteome analysis after TgHDAC3 inhibition with FR235222 reveals the expression 

of bradyzoite-specific proteins in parasites. (A) Experimental design for proteome-wide characterization in 

Pru ∆ku80 parasites by using LC-MS/MS. (B) Volcano plot of the over-expressed proteins in Toxoplasma 

gondii. The upregulated proteins  after 0.1% DMSO treatment are shown in red spots on left side. On the right 

side, the red spots indicate the upregulated proteins after 90nM FR235222 treatment corresponding to 

bradyzoite-specific proteins. The log2 ratios for proteins counts were obtained by dividing intensities of 

FR235222-treated samples by intensites of DMSO-treated samples (control). The negative log2 ratio means the 

abundant proteins in control samples which correspond to the cell-cycle proteins of Toxoplasma. The two 

vertical black lines indicate log2 fold changes values. The horizontal dashed black line shows at least a 2-fold 

abundance change with an adjusted p-value of maximum 0.01.  
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A third group contains proteins with levels decreasing in presence of FR235222 treatment, 

when compared to mock DMSO. While most of them have unknown function, we observed 

that they displayed a typical cell cycle-regulated gene expression pattern (source ToxoDB, 

Figure 8B, left side) when they are not themselves involved in cell cycle progression, e.g. the 

inner membrane complex proteins, the cyclin2 related protein and several mitotic proteins 

(Figure 8B, left side).  Those results confirmed our initial observations (i) that parasites 

treated with FR235222 were vacuolated and lacked IMC1-delineated daughter cells, or 

contained aberrant progeny, and (ii) that the majority of the drug-treated parasites displayed 

massive DNA over- replication (>1N DNA content per cell), indicating that FR235222 

interferes directly or indirectly with T. gondii cell-cycle progression (Figure 9B) (Bougdour  

et al., 2009). 

 

Figure 9. (A) RNAseq analysis (source : ToxoDB) from cultured tachyzoites, 3 days post-infection in cat  
(merozoites), 5 days post-infection in cat (merozoite and sexual stages) and 7 days post-infection in cat (sexual 
stages and oocysts). Three selected genes whose protein expression was increased upon FR235222 treatment. 
(B) Images from Bougdour et al. (2009) : Effects of FR235222 on histone H4 acetylation in intracellular T. 
gondii parasites. Confluent monolayers of HFF cells were infected with T. gondii RH WT and R20D9 
(TgHDAC3T99A) strains in the presence of 40 nM FR235222 and 0.1% DMSO as a control. As a control, 
parasites were treated with 1 µM pyrimethamine. After 24 h of growth, cells were  fixed and stained for AcH4 
(red) and IMC1 (green). The arrowhead indicates aberrant progeny. Bars, 5 µm. 
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Taken together, our data show that FR232222 mediates down-regulation of the level of 

regulators of cell cycle progression. Clearly and as evidenced by hundreds of proteins, 

FR2325222 was also able to up-regulated bradyzoite- and merozoite proteins whose function 

range from metabolism to surface antigen. While our proteomic data revealed that FR235222 

was able to shift the tachyzoite proteome into a mixed stages (tachyzoite, bradyzoite and 

merozoite) proteome, we failed to discover FR235222-mediated alteration of master 

regulators protein levels, whose function could have been to regulate the process of 

differentiation. If ApiAP2 transcription factors have been extensively associated with stage 

differentiation or sexual commitment either in Toxoplasma gondii (Walker R et al., 2013; 

Radke JB et al.,2013) or in Plasmodium spp. (Kafsack et al., 2014; Sinha et al., 2014; Yuda et 

al., 2010; Yuda et al., 2015), none of them were found affected by the drug treatment, at least 

at the protein level. Since FR235222 was clearly shown to target TgHDAC3 (Bougdour A et 

al., 2009), we confirmed the role of the deacetylase in signaling pathway leading to the 

induction of stage-specific proteins but we still have no clue of how the enzyme triggers its 

effect. 

As mentioned in the introduction, we initially observed that switching the pH from 7 to 8 

causes an unexpected hyperacetylation of histone H4 in the parasite nuclei, without any 

change of the acetylation status in the host cell nuclei (Figure 3B and 3D). This 

hyperacetylation is not mediated by any host cell signaling cascade as free parasites 

maintained in culture medium buffered at pH 8 also exhibit a drastic H4 acetylation (Figure 

3C). On the other hand, alkaline pH was recognized for a long time as a bona fide inducer of 

bradyzoite-specific protein expression. Interferon-gamma (IFNγ) was also recognized as 

triggering stage conversion, at least in vivo the cytokine represses parasite proliferation and 

spreading which, in turn, forces the parasites to convert and encyst in deep tissue (e.g. brain) 

in order to be unseen par the immune system. 

Therefore, we decided to repeat the proteome analysis using the same parasite strain but this 

time studying the effects of alkaline pH and IFNγ. The extracted proteins from Pru ∆ku80 

parasites, after treatment with IFNγ for 9 hours and with alkaline pH 8.1 for 3 days, were 

analyzed in mass spectrometry for proteome-wide by using the same strategy shown in figure 

8A. Surprisingly, IFNγ or alkaline treatments were shown to induce quite a few bradyzoite-

specific proteins when compared to FR235222 stimulation. Altogether, those data provide 

strong evidence that inhibition of TgHDAC3 activity has dramatic consequences on stage-

specific proteins, much more so than what has been reported with high pH or IFNγ.  
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II- 2.2.2. Monitoring of FR235222-mediated bradyzoite gene expression using new 

reporter transgenic parasite cell line  

 

In order to validate the proteome data, we generated in tachyzoites parasites Pru ∆ku80   

stable transgenic cell lines in which we endogenously C-terminal epitope tagged (HAFlag) 

candidate gene encoding protein which level increases upon FR235222 treatment. Using 

transcriptomic data from ToxoDB, we selected 7 genes coding for known or predicted 

bradyzoite proteins and one gene that is exclusively expressed in cat enteroepithelial 

merozoite and sexual stages. Following FR235222 induction, we were able to monitor by 

immunofluorescence both induction of the proteins and their subcellular localization (Figure 

10A). We were able also to validate by immunoblotting analysis the drastic increase of the 

proteins upon FR235222 treatment (data not shown). 

 

To determine whether those genes were selectivity regulated by TgHDAC3, we selected 7 

HDACi that cover the entire selectivity range for class I and II deacetylases, albeit with 

varying specificity profiles against apicomplexan parasites, as determined previously 

(Bougdour A et al., 2009) and included as a control the compound halofuginone a specific 

inhibitor of protein translation in Apicomplexa (Jain V et al., 2015). We then showed that 

cyclopeptides HDACi strongly enhance ENO1 levels in parasite nuclei, whereas other 

inhibitors have no effect (Figure 10B). These results are coherent with those showing that 

distinct point mutations at a single locus in apicomplexan conserved region of TgHDAC3 

abolishes the enzyme sensitivity to the cyclic tetrapeptide compounds (Bougdour A et al., 

2009). 

 

Collectively, our data showed here that the bradyzoite and partly the merozoite genetic 

programs are under the control of TgHDAC3-dependent signaling pathway. While we have a 

strong correlation between the mRNA (source ToxoDB) and protein (our present data) levels 

for a majority of predicted bradyzoite-coding genes, we also identified a cluster of genes that 

are regulated at the level of translation in a TgHDAC3-dependent fashion. This results prompt 

us to consider that TgHDAC3 may also have alternative non-histone substrate some of which 

being involved in translational control. 

 



 47 

 
Figure 10 FR235222-mediated bradyzoite gene expression. (A) Bradyzoite genes whose protein product was 

detected in tachyzoites only upon FR235222 treatment were epitope (HAFLAG)-tagged in Pru∆ku80 strain. 

Stable transgenic parasites were treated with a low concentration of FR235222 and expression of each gene of 

interest was monitored by following the HA fluorescence (in green). (B) The histone deacetylase inhibitors  

cyclotetrapeptides induce bradyzoite-specific genes.  HFFs cells were infected with Pru∆ku80  parasites 

expressing ENO1 HAFlag for 18 hours. Parasites were then treated with different histone deacetylase inhibitors 

for 18h. The protein expression of ENO1 was analyzed in immunofluorescence assay with anti-HA antibody (in 

green). 

 

II- 2.2.3. Proteome-wide mapping of the Toxoplasma acetylome, a gateway to 

discovering new TgHDAC3 substrates beyond histones  

 

Our proteome-wide analysis uncovered TgHDAC3 as a key enzyme involved in repressing 

hundred of stage-specific proteins, though it did not allowed us to identify any master 

regulator (e.g. chromatin-modifying enzyme) or any transcription factor (e.g. ApiAP2) which 

could explain the dramatic reshuffling of a tachyzoite genome subjected to FR235222 

stimulation. Since we also observed that not all the effects mediated by the drug were at the 

transcriptional level (data not shown), it has become increasingly evident that TgHDAC3, as 

for its human counterparts, may have a more diverse repertoire of substrates that extended 

beyond the histone tails modifications. At the time of our studies, several competing 

manucripts have reported the existence of a complex acetylome in T. gondii (Jeffers V et al., 



 48 

2012; Xue B et al., 2013). Their results have showed that lysine acetylation was abundant in 

the actively proliferating tachyzoite form of the parasite. They successfully identified known 

acetylation marks on T. gondii histones and α-tubulin while detecting over 411 novel 

acetylation sites on a wide variety of additional proteins, including those with roles in 

transcription, translation, metabolism, and stress responses (Jeffers V and Sullivan WJ Jr, 

2012; Xue B et al., 2013).  

 

The aforementioned reports of T. gondii acetylome were determined in RH strain that lost the 

ability to develop into mature cysts (Jeffers V and Sullivan WJ Jr, 2012; Xue B et al., 2013). 

We opted during my PhD for infections with a type II strain (Pru ∆ku80) which is quite more 

relevant as it does readily develop tissue cysts and latent infections in animals. We then 

applied large-scale mass spectrometry-based acetylome after the specific inactivation of 

TgHDAC3 with the goal to uncover new enzyme substrates. By the combination of high 

affinity enrichment and high resolution LC-MS/MS analysis, we identify 810 acetylated 

peptides after TgHDAC3 inhibition. Contrary to the reported broad inhibitory effects of 

HDACi on deacetylases, FR235222 increased lysine acetylation of small but specific 

subproteome of T. gondii which is presumably regulated by TgHDAC3.  

 

We then analyzed local sequence context around the acetylation sites in order to find an 

acetylation consensus motif.  The amino acids flanking the targeted acetyl lysine in T. gondii 

proteome exhibit stretches of lysines and commonly conserved position across species, the 

aromatic residues phenylalanine (F) at -2 and  tyrosine (Y) at +1 position (Figure 11A). Both 

F and Y at their respective positions are similar to those of acetylated proteins in prokaryotes 

(e.g. Escherichia coli) and in mitochondria of T. gondii (Zhang J et al., 2009; Jeffers V et al., 

2012). Lysine-acetylated peptides from FR235222-treated samples show different preferences 

in their flanking sequences, namely the proclivity for glutamic acid (E) at the -1 position, but 

also a general lack of lysine and a bias towards serine (S) (Figure 11B).  
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Figure 11 (A)  IceLogo sequence motif of all acetylated peptides (n = 1376). The acetylated lysine is located at 

position 10 and surrounded by ± 9 amino acids. The amino acids that were more frequently identified in the 

proximity of the acetylation site are indicated over the middle line, while the amino acids with lower frequency 

are indicated below the line. The lysine motif is overrepresented, whereas the leucine, serine and arginine are 

underrepresented on this IceLogo. (B) IceLogo sequence motif of acetylated peptides after FR235222 treatment.  

The acetylated lysine is located at position 10 and surrounded by ± 9 amino acids. The amino acids that were 

more frequently identified in the proximity of the acetylation site are indicated over the middle line, while the 

amino acids with lower frequency are indicated below the line. The serines (S) at position 6, 7, 8, 11, 15, 16 are 

overrepresented in this IceLogo, whereas they are significantly underrepresented in the previous IceLogo (figure 

11A). Proline (P) at position 12 and alanine (A) at position 13 could be overrepresented.  

 

From the IceLogo analysis (Figure 11B), we inferred the following consensus sequence 

surrounding the lysine being acetylated upon FR235222 inhibition of TgHDAC3: 

SSxEK(ac)(S/T)PAxSS. 

 

Our T. gondii acetylome study also revealed the acetylation of non-histone proteins including 

particularly AP2 transcription factors, translation factors, Gcn5b and ATP-dependent 

chromatin factors (e.g. SNF2h). When comparing our data to previously reported T. gondii 

acetylome (Jeffers V and Sullivan WJ Jr., 2012), we found 112 novel lysine being acetylated 

upon FR235222 treatment which are presumably putative TgHDAC3 substrates in tachyzoite 

stage. When looking at AP2 family (68 members), we identified 11 AP2 harboring lysine 

residue being acetylated following FR235222 stimulation (Table 2). Five of them were even 

exclusively acetylated upon drug treatment and were not identified in previous acetylomes 

(Jeffers V and Sullivan WJ Jr., 2012) (Table 2). Some AP2 domain proteins were cell-cycle 
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regulated (e.g. AP2X-5, AP2X-7, AP2VII-4 and AP2VIIa-4) and other constitutively 

expressed in tachyzoites (e.g  AP2VIIb-3, AP2VIIa-3, AP2VIIa-7, AP2VIIb-3, AP2X-8, 

AP2XI-2, AP2IX-7). We still need to validate those modifications and their relevance in the 

context of gene expression during stage conversion. To do so, we are now generating specific 

antibodies against several acetylated lysine embedded in AP2 factor. With those tools in hand, 

we will be able to confirm by IFA/western that TgHDAC3 play a role (or not) in the steady 

state of those PTMs. This can be done by monitoring their levels in parasites where 

TgHDAC3 activity is altered chemically (FR235222-mediated) or genetically (through cas9-

gene editing). 

 

We also identified the lysine K811 of  the tacetylase Gcn5b as a residue exclusively 

acetylated upon drug treatment as well as the previously reported acetylated lysine residues 

(K857, K989, K997 and K1027) (Jeffers V and Sullivan WJ Jr., 2012). Of note, Gcn5b was 

shown to bind strongly to AP2X-8, AP2XI-2, APIX-7 and AP2VII-4 (Wang J et al., 2014) 

that are all acetylated under FR235222 stimulation. This suggests that TgHDAC3 might 

regulate the steady state of acetylation of the Gcn5b-associated AP2s and thereby  may 

impede or favor the AP2-mediated recruitment of the acetylase to chromatin. However, it is 

not known if  the acetylated lysines within these AP2 domain factors could influence the 

DNA recognition or their interactions to their cognate partners. In other organisms, lysine 

acetylation within the DNA-binding domain ( e.g HMGI(Y) transcription factor) can affect 

the DNA binding as well the lysine acetylation adjacent to a DNA-binding domain was shown 

to stimulate DNA interactions (Kouzarides T., 2000). Overall, we uncover here a complex 

network in which TgHDAC3 may cross-talk with its opposite enzyme Gcn5b likely 

modulating its ability to bind DNA by altering the acetylation states of Gcn5b-associated AP2 

transcription factors.  
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Table 2. Detection of new lysine acetylation sites in AP2 transcription factors in FR235222-treated Prugniaud 

tachyzoites compared with other known lysine acetylation sites  in untreated RH tachyzoites from Jeffers V and 

Sullivan WJ Jr.,2012. Eukaryot Cell.   An asterisk indicates that the reported acetylated lysine sites in RH 

parasites are also found in treated prugniaud parasites.             

 

Translation factors and  ribosomal proteins represent the second major group of proteins 

harboring lysine residues acetylated upon FR235222 treatment in line with previous report 

showing that these families represent 15% of the all parasite acetylome (Jeffers V and 

Sullivan WJ Jr., 2012). Finally and more importantly our data uncover novel histone PTMs 

and during my stay in the lab I had the challenge to characterize a versatile acetylation-

methylation switch at K31 on the lateral surface of histone H4 in Apicomplexa (Sindikubwabo 

et al., eLife, in revision). 
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Chapter 3.  

 

Modifications at K31 on the lateral surface of 

histone H4 contribute to genome structure and 

expression in apicomplexan parasites. 
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Abstract 31 

A striking unusual genome architecture characterizes the two related human 32 

parasitic pathogens Plasmodium falciparum and Toxoplasma gondii. A major 33 

fraction of the bulk parasite genome is packaged as transcriptionally permissive 34 

euchromatin with few loci embedded in silenced heterochromatin. Primary 35 

chromatin shapers include histone modifications at the nucleosome lateral 36 

surface close to the DNA but their mode of action remains unclear. We identify 37 

versatile modifications at Lys31 within the globular domain of histone H4 as key 38 

determinants of genome organization and expression in Apicomplexa parasites. 39 

H4K31 acetylation promotes a relaxed chromatin state at the promoter of active 40 

genes through nucleosome disassembly in both parasites. In contrast, 41 

monomethylated H4K31 is enriched in the core body of Toxoplasma active genes 42 

but inversely correlates with transcription while being surprisingly enriched at 43 

transcriptionally inactive pericentromeric heterochromatin in Plasmodium, a 44 

region that is lacking H3K9me3 and heterochromatin protein 1 in this parasite.   45 

  46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 
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Introduction 58 

The phylum of Apicomplexa clusters thousands of single-celled eukaryotes identified 59 

as parasites of metazoans including humans in who they cause or put at risk for major 60 

public health problems. Preeminent human pathogens include Plasmodium spp. which 61 

are responsible for dreadful malaria as well as Toxoplasma gondii and 62 

Cryptosporidium spp. which are leading causes of food-borne and water-borne 63 

diseases. A shared characteristic of apicomplexan life cycles is the multiplicity of 64 

developmental stages that progress from one to the other along with precise genetic 65 

reprogramming to ensure survival and transmission of parasite populations. The 66 

emerging concept of a remarkably dynamic nature of gene expression in Apicomplexa 67 

has risen from the observation that large numbers of mRNAs are exclusively 68 

expressed in a given developmental stage (Bozdech et al., 2003; Radke et al., 2005). 69 

 70 

Unlike the majority of higher Eukaryotes, Apicomplexa genomes have a unique 71 

chromatin architecture typified by an unusually high proportion of euchromatin and 72 

only a few heterochromatic islands scattered through the chromosome bodies or 73 

embedded at telomeres and centromeres. Although alterations in chromatin structure 74 

are acknowledged as important for the transcriptional control of commitment to stage 75 

differentiation in several Apicomplexa as well as for antigenic variation-mediated 76 

immune evasion in P. falciparum, yet the molecular mechanisms of chromatin 77 

remodeling have not been fully determined (Bougdour et al., 2010; Scherf et al., 78 

2008). 79 

 80 

In Eukaryotes, the timely opening and closing of chromatin required for gene 81 

expression, chromosomal organization, DNA repair or replication is governed by 82 

histone turnover and their post-translational modifications (PTMs), such as lysine 83 

methylation (me) and acetylation (ac) among many others. PTMs on histone tails were 84 

indeed shown, alone or in combination, to alter the accessibility of effector proteins to 85 

nucleosomal DNA and thereby impact chromatin structure, according to the “histone 86 

code” hypothesis (Strahl and Allis, 2000; Turner, 2000). In addition PTMs also act as 87 

signals to recruit ATP-dependent remodeling enzymes to either move, eject or 88 

reposition nucleosomes. Accounting for the PTMs versatile activity onto chromatin 89 

are enzymes carrying antagonist activities: it is the opposite, yet well concerted 90 
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activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs) that 91 

determine acetylation levels in cells. 92 

 93 

Apicomplexa have evolved unique ways to modify histones that rival the strategies 94 

adopted by higher Eukaryotes and provide them with remarkable capacities to 95 

differentiate and multiply (Bougdour et al., 2010). Some histone-modifying enzymes 96 

have acquired gain-of-function mutations that confer broader or enhanced activity 97 

on substrates. It is the case of parasite Set8-related proteins endowed with H4K20 98 

mono-, di-, and trimethylase activities that contrast with the mono-methylase-99 

restricted metazoan Set8, and that derive from a single-amino-acid change in the 100 

substrate-specific channel (Sautel et al., 2007). Another example is provided by the 101 

Apicomplexa HDAC3 family which is typified by an AT motif insertion at the 102 

entrance of the active-site tunnel of the conserved catalytic domain causing additional 103 

substrate/inhibitor recognition and binding properties (Bougdour et al., 2009). 104 

 105 

In Eukaryotes, while PTMs have been primarily detected in the histone tails 106 

sticking out from the nucleosome, an ever-growing list of PTMs is now identified in 107 

the lateral surface of the histone octamer, that directly contacts DNA, and 108 

characterized as critical regulators of the chromatin structure and function (Lawrence 109 

et al., 2016; Tropberger and Schneider, 2013). Those “core” histone PTMs promote 110 

different outcomes on nucleosome dynamics depending on their precise location. 111 

Modifications near the DNA entry-exit region (e.g., H3K36ac) of the nucleosome 112 

were shown to favor local unwrapping of DNA from histone octamer thereby 113 

providing a better exposure of nucleosomal DNA to chromatin-remodeling and DNA-114 

binding proteins (Neumann et al., 2009). On the other hand, lateral-surface PTMs 115 

mapping close to the dyad axis (e.g., H3K122ac) were shown to decrease the affinity 116 

of the octamer to DNA and significantly affect nucleosome stability/mobility 117 

(Tropberger et al., 2013). Similarly to what has been described for histone tails, 118 

different lateral-surface modifications on the same residue can be associated with 119 

opposite transcriptional programs. This is the case for the H3K64 residue near the 120 

dyad axis that facilitates nucleosome eviction and thereby gene expression when 121 

acetylated (Di Cerbo et al., 2014), whereas trimethylation of the same residue acts as a 122 

repressive heterochromatic mark (Daujat et al., 2009). 123 
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 124 

In both T. gondii and P. falciparum unbiased mass spectrometry has led to uncover the 125 

repertoire of the most prevalent histone PTMs including singular marks. However, 126 

only few of them were mapped at the outer surface of the octamer (Saraf et al., 2016; 127 

Trelle et al., 2009). In this study, we investigated in depth how histone H4 PTMs 128 

could influence chromosome organization and gene regulation in apicomplexan 129 

parasites. We reported versatile modifications at lysine 31 of histone H4, which lies at 130 

the protein-DNA interface close to the dyad axis of the nucleosome. Genome-wide 131 

mapping revealed that H4K31 could either be acetylated or methylated and the mark 132 

enrichment occurred in a mutually exclusive manner. In T. gondii H4K31 residue 133 

tended to be acetylated at the promoter of a nearby active gene and to be mono-134 

methylated in the core body of the gene. H4K31me1 occupancy was inversely 135 

correlated with gene expression suggesting that the mark acts as a repressive mark 136 

impeding RNA polymerase progression. In P. falciparum, H4K31ac was also seen at 137 

the promoter whereas H4K31me1 occupancy was highly enriched at  peri-centromeric 138 

heterochromatin possibly compensating the absence of H3K9me3 and HP1 in this 139 

atypical chromosome structure in order to maintain a constitutive heterochromatin 140 

environment. 141 

Results 142 

H4K31 maps at the Dyad Axis of the Nucleosome  143 

While studying the protein content of nucleosomes from T. gondii infected cells, we 144 

and others mapped an acetylation site on histone H4 lysine 31 (H4K31ac) that was 145 

largely underestimated thus far (Fig. 1a) (Jeffers and Sullivan, 2012; Xue et al., 2013). 146 

H4K31 residue is located at the N-terminus of the H4 D1 helix and its side chain is 147 

extended in the major groove of the DNA (Fig. 1b and c). The closed state of 148 

chromatin is contributed by interaction of K31 and R35 residues to DNA by a water 149 

mediated hydrogen bond. Addition of acetyl group to -NH2 group of lysine side chain 150 

(K31) leads to replacement of this water molecule, thus abolishing its interaction with 151 

DNA (Fig. 1c, panel 2). Acetylation may therefore destabilize the protein-DNA 152 

interface close to the dyad axis of the nucleosome where the residue lies and thus 153 

presumably open the chromatin. Although the residue H4K31 is well conserved across 154 

species (Fig. 1b), mass spectrometry initially indicates its acetylation to be restricted 155 
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to metazoans, as an unexpected mark in inflammatory and auto-immune contexts 156 

(Garcia et al., 2005; Soldi et al., 2014) since it was found neither in yeast nor in the 157 

ciliated protozoan Tetrahymena (Garcia et al., 2006). Our present data contradict this 158 

view as they show this PTM to also arise in the phylum of Apicomplexa. 159 

H4K31ac marks euchromatin in mammalian cells and apicomplexan parasites 160 

Although H4K31ac was unequivocally identified by mass spectrometry in histone 161 

extracts from T. gondii-infected cells (Fig. 1a), its abundance/frequency was quite 162 

low, a situation potentially reflecting high dynamics of the modification. To further 163 

probe in situ the kinetics of this histone mark in apicomplexans, we raised an antibody 164 

against a synthetic peptide acetylated at the H4K31 position. Antibody specificity was 165 

assessed by western blot and dot blot analyses (data not shown). Using human 166 

primary fibroblasts infected by T. gondii, we found H4K31ac to be uniformly 167 

distributed within the nuclei of both parasite and human cell and excluded from their 168 

cytoplasm (Fig. 1d). We also found that exposing cells to histone deacetylase inhibitor 169 

(HDACi), e.g., FR235222 significantly increased H4K31ac signal intensity otherwise 170 

moderate in parasite nucleosomes (Fig. 1e), in strong support for specific detection of 171 

acetylation. Similarly, response to HDACi treatment was observed by immunoblot 172 

analysis on cell population samples (Fig. 1f). Interestingly, H4K31ac localization 173 

pattern sharply contrasts with those of tails PTMs (e.g., H4K8ac, H3K14ac, H3K18ac 174 

and H3K27ac), which are typified by a high and already maximal signal in parasite 175 

nuclei, that do not increase upon FR235222 treatment under our conditions (Fig. 1e). 176 

 177 

To gain insights on the behavior of H4K31ac during its intraerythrocytic 178 

developmental cycle (IDC) of P. falciparum, immunofluorescence assays were 179 

conducted over 48 hours of culture to probe the ring, trophozoite and schizont stages 180 

(Fig. 2a). H4K31ac was typified by low nuclear signal throughout the IDC that 181 

increased upon HDACi treatment (Fig. 2b). Overall, H4K31ac showed a nuclear 182 

punctate pattern, reminiscent of active loci cluster in specialized ‘transcription 183 

factories’ (Fig. 2b) (Mancio-Silva and Scherf, 2013). 184 

 185 

Strikingly, H4K31ac has remained understudied in higher eukaryotes thus far. To gain 186 

better resolution of any nuclear or chromatin structures with which H4K31ac might be 187 
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associating, we co-stained murine embryonic fibroblasts (MEFs) for DNA and various 188 

chromatin marks. H4K31ac was observed scattered through the nucleoplasm of MEFs 189 

but excluded from nucleoli and segregated away from heterochromatic foci similarly 190 

to the transcription-associated PTMs H3K4ac, H3K9ac and H3K27ac (Fig. 2c). This 191 

pattern is typically euchromatic and opposed to the one revealed by the repressive 192 

marks H3K9me3 and H4K20me3, rather associated with regions of highly condensed 193 

pericentromeric heterochromatin (Fig. 2d). Taken together, these experiments show 194 

that H4K31ac displays an euchromatic pattern in both metazoans and apicomplexans. 195 

 196 

GCN5b and HDAC3 enzymes fine-tune the H4K31ac levels in Toxoplasma gondii  197 

To our knowledge, the enzymes that acetylate and deacetylate H4K31 remain 198 

unknown. The relatively low level of H4K31ac found in both human and parasites 199 

nuclei compared to other acetylated residues in histone tails (Fig. 1e) prompted us to 200 

analyze potential deacetylases targeting H4K31ac. To this end, we selected 7 HDACi 201 

that cover the entire selectivity range for class I and II deacetylases, albeit with 202 

varying specificity profiles against apicomplexan parasites, as determined previously 203 

(Bougdour et al., 2009) and included as a control the compound halofuginone a 204 

specific inhibitor of protein translation in Apicomplexa (Jain et al., 2015). Here, we 205 

show that cyclopeptides HDACi strongly enhance H4K31ac levels in parasite nuclei, 206 

whereas other inhibitors have no effect (Fig. 3a). These results are coherent with those 207 

showing that distinct point mutations at a single locus in apicomplexan conserved 208 

region of TgHDAC3 abolishes the enzyme sensitivity to the cyclic tetrapeptide 209 

compounds (Bougdour et al., 2009). T. gondii is particularly suited for a single gene 210 

perturbation strategy, since its genome does not contain extensive HAT and HDAC 211 

paralogs unlike mammalian genomes. To investigate further which of the five class-212 

I/II HDAC homologues in T. gondii may be responsible for the deacetylation of 213 

this residue, we systematically performed CRISPR-mediated gene disruption. 214 

Notably, the inactivation of the TgHDAC3 gene, unlike other TgHDACs, causes 215 

hyperacetylation of H4K31 in parasite nuclei (Fig. 3b and c), thereby mimicking the 216 

effect of the cyclic tetrapeptide HDACi on the enzyme (Fig. 3a) (Bougdour et al., 217 

2009). 218 

 219 
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Reciprocally, we next sought to identify the one or more responsible HATs targeting 220 

this residue. We used a candidate-based approach by systematically depleting the 221 

parasite for key members of the three main HAT classes. Apicomplexans possess 222 

homologues of the Type A GCN5 and MYST family nuclear HATs as well as the Type 223 

B cytoplasmic HAT1 (Vanagas et al., 2012) while missing the mammalian restricted 224 

PCAF (p300/CBP-associating factor) family. Intriguingly, T. gondii is unique among 225 

fellow apicomplexan parasites and other invertebrates in possessing two GCN5 HATs, 226 

designated TgGCN5a and b, that exhibit different histone acetylation activities 227 

(Vanagas et al., 2012). We first thought that T. gondii HAT1 made promising 228 

candidate enzyme as its human counterpart HAT4 was shown to acetylate core PTMs 229 

in vivo and even H4K31 although under in vitro conditions (Yang et al., 2011). 230 

However, cas9-mediated gene disruption of HAT1 had no effect whatsoever on 231 

H4K31 acetylation (Fig. 4a) whereas TgGCN5b but not other HAT gene disruption 232 

resulted in a drastic drop of H4K31ac signals in the parasite nuclei (Fig. 4a). 233 

TgGCN5b is the prototypical GCN5 HAT in T. gondii because it is capable of 234 

targeting H3K9, K14 and K18 (Bhatti et al., 2006). Furthermore, we noticed that the 235 

amino acid sequence surrounding H4K31 was not homologous to preferred Gcn5 236 

consensus sites of acetylation found at H3K14 (Kuo et al., 1996) or H3K36 (Morris et 237 

al., 2006), yet the depletion of TgGCN5b led to a reduction of both H3K14ac (Fig. 4b) 238 

and H4K31ac (Fig. 4a) signals in vivo, suggesting that the repertoire of the lysine 239 

residues being acetylated by the GCN5 family is more diverse in T. gondii. Altogether 240 

these data clearly uncover TgGCN5b as H4K31 acetyltransferase whose activity is 241 

counteracted by TgHDAC3. 242 

 243 

H4K31me1 associates in vivo with distinct chromatin patterns  244 

It is well appreciated that the targeting of lysine residues by acetylation and 245 

methylation cannot occur simultaneously. As such, previous studies have 246 

characterized H4K31 as a site of monomethylation in plant, budding yeast and 247 

metazoan cells but not in Tetrahymena (Garcia et al., 2006; Moraes et al., 2015). The 248 

possibility of “dual” modifications occurring on H4K31 has not been yet explored in 249 

apicomplexans nor in any other species besides proteomic identifications. Therefore, 250 

we raised an antibody against a synthetic peptide containing monomethylated H4K31 251 

and assessed its selectivity and specificity (data not shown). H4K31me1 was detected 252 
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by Western analysis in T. gondii, but not in the recombinant unmodified H4 form (Fig. 253 

1f and data not shown). 254 

 255 

In situ, the H4K31me1 modification appeared uniformly distributed within the nuclei 256 

of dividing parasites but surprisingly no signal was detected in the nucleus of the 257 

infected human cell (Fig. 5a), despite that this PTM had been previously detected by 258 

mass spectrometry in human samples (Garcia et al., 2006). However, while 259 

H4K31me1 was not (or barely) detected in interphase nuclei of either quiescent 260 

infected HFFs (Fig. 5a) or uninfected MEFs (Fig. 5b), it decorated mitotic 261 

chromosomes providing more pronounced signals in the chromosome arms than the 262 

usual mitotic marker H3S10 phosphorylation (Fig. 5b). These observations argue for a 263 

possible role of H4K31 methylation during cell division in mammalian cells. 264 

 265 

In P. falciparum, H4K31me1 displayed a peculiar condensed punctate pattern (Fig. 266 

1c), similar to the H3K9me3 mark (Lopez-Rubio et al., 2009) at the nuclear periphery, 267 

which is reminiscent of heterochromatin/sub-telomeric regions clustering (Freitas-268 

Junior et al., 2000). P. falciparum centromeres also clustered prior to and throughout 269 

mitosis and cytokinesis leading to single nuclear location from early trophozoites to 270 

mature schizonts (Hoeijmakers et al., 2012). Therefore, H4K31me1-containing foci 271 

could be associated with sub-telomeric or/and centromeric regions. The number of 272 

foci observed per paste however varies signifying its dynamic nature through parasite 273 

developmental stages. The mark is observed in all asexual forms and remains 274 

unaffected by treatment of FR235222 (data not shown). 275 

 276 

Because H4K31 is also a site of methylation, the transition between H4K31ac and 277 

H4K31me1 may represent a novel “chromatin switch” contributing to chromatin 278 

structure and function in eukaryotic cells. Yet, a different readout is expected from 279 

one species to another. In metazoan, H4K31me1 was temporally regulated during the 280 

cell cycle and interplay, if any, with H4K31ac should be restricted to mitotic 281 

chromosomes. In P. falciparum, H4K31me1 forms discrete immuno-fluorescent foci 282 

around the nucleus, a pattern quite distinct from that of H4K31ac typified by a 283 

diffused signal distributed throughout the parasite nuclei. Since they have distinct 284 

nuclear locations and different stoichiometry, H4K31ac being a low abundant species, 285 

the transition between H4K31me1 and H4K31ac may be not an issue in P. falciparum 286 
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as it can be in T. gondii where both modifications are concomitantly distributed 287 

throughout chromatin. 288 

 289 

Nucleosomes with H4K31ac and H4K31me1 are enriched at the promoter and 290 

the core body of active genes, respectively 291 

To further explore whether H4K31ac and H4K31me1 are indeed alternative 292 

antagonistic PTMs on the same H4 molecules in T. gondii, we examined their 293 

genome-wide distributions using chromatin immunoprecipitation coupled with next-294 

generation sequencing (ChIP-seq). We first investigated the relative performance of 295 

our home-made antibodies in terms of specificity, sensitivity and the number and 296 

distribution of peaks. We observed low variability and a high degree of similarity in 297 

read coverage between technical replicates, regardless of antibodies used for 298 

immunoprecipitation (Figure 6 – figure supplement 1). We next sought to compare the 299 

locations of the peaks from each antibody type. Visual display of the chromosomal 300 

distribution indicated that H4K31ac and H4K31me1 exhibit distinct patterns of 301 

enrichment across the chromosomes and are mutually exclusive genome-wide (e.g., 302 

Chr. Ib, Fig. 6a). Zooming into detailed gene level revealed that H4K31ac was 303 

enriched in distinct peaks at intergenic regions (IGRs) (Fig. 6b), of which 75% 304 

percent mapped outside the gene body (Fig. 6c), in line with the euchromatic in situ 305 

localization (Fig. 1 and Fig. 2). The calculated average profile of H4K31ac showed a 306 

pattern strikingly similar to H3K14ac and H3K4me3, characterized by high signals at 307 

5’UTR/promoter that drop sharply after the translational initiation site (Fig. 6d and 308 

Figure 7 – figure supplement 1). Conversely, H4K31me1 showed a distinct pattern of 309 

enrichment, best discernable at large genes, spanning from the ATG to the entire gene 310 

body (Fig. 6b) while being absent at IGRs (Fig. 6c and d). Its computed average 311 

density profile fully matched with gene prediction making this mark useful to 312 

explicitly detect unannotated genes (Figure 8 – figure supplement 1). Remarkably, 313 

these data allowed identifying H4K31me1 as the first PTM to our knowledge whose 314 

spreading is restricted by the translational initiation and stop sites at active genes (Fig. 315 

6b and d). 316 

 317 

Interplay between H4K31ac and H4K31me1 predicts distinctive patterns of gene 318 

expression in Toxoplasma gondii 319 
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A closer view of H4K31ac and H4K31me1 chromosomal binding revealed that, at 320 

some loci (e.g., SRS gene family, Fig. 7a and GRA1, Fig. 7b), the latter was absent 321 

while the former was enriched at 5’UTR/promoter and unexpectedly spread over a 322 

much larger area, overlapping the gene body (see GRA1 and MAG1 examples, Fig. 323 

7c). The restricted H4K31ac enrichment at the vicinity of GRA1 or SRS genes 324 

contrasts with the H4K31ac and H4K31me1 location at their neighboring genes 325 

(TGME49_233490 or TGME49_270230) and this discrepancy may be explained by 326 

the higher level of SRS or GRA1 gene expression (Fig. 7a and b). We therefore 327 

interrogated whether enrichment patterns of modified H4K31 could specify levels of 328 

gene expression in T. gondii. We first conducted a global transcriptome analysis by 329 

RNA-Seq of tachyzoites during growth phase in murine bone marrow-derived 330 

macrophages (BMDMs). Cluster analysis revealed varying levels of gene expression 331 

with cluster Q1 displaying the highest level, clusters Q2 and Q3 defining intermediate 332 

levels and cluster Q4 displaying the lowest (Fig. 7d). High mRNA level (Q1 that 333 

includes GRA1, MAG1 and SRS genes) was associated with high level of H4K31ac 334 

upstream of the ATG together with an enrichment along the gene body which 335 

coincided with the expected lack of H4K31me1 (Fig. 7e and f). In highly expressed 336 

relatively long or intron-containing genes (e.g., MAG1), H4K31ac spread but did not 337 

extend over the entire gene body as observed for GRA1 (Fig. 7c), indicating a limited 338 

spreading of H4K31 acetylation around the translational initiation site. Strikingly, 339 

moderate mRNA levels (Q2 and Q3 that include TGME49_233490 or 340 

TGME49_270230) related to a relatively high level of H4K31me1 in the gene body 341 

and a restricted mapping of H4K31ac at the promoter, thereby arguing for an inverse 342 

correlation between the yield of expression and the level of H4 methylation (Fig. 7e 343 

and f). 344 

 345 

Finally, transcriptionally repressed genes clustered in Q4 such as TGME49_207730 346 

and TGME49_270240 showed no significant enrichment of either H4K31ac or 347 

H4K31me1 but were highly enriched in the repressive mark H3K9me3 and 348 

unexpectedly in H3K14ac, a hallmark of gene activation (Fig. 8a). The co-enrichment 349 

of H3K14ac and H3K9me3 at repressed genes might be due to population averaging 350 

therefore reflecting heterogeneity within the parasite population. An alternative 351 

explanation is that H3K14ac and H3K9me3 form the so-called bivalent chromatin 352 
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domain capable of silencing developmental genes while keeping them poised for rapid 353 

activation upon cell differentiation (Voigt et al., 2013). As such, H3K14ac along with 354 

the repressive mark H3K27me3 were shown to be enriched at a subset of inactive 355 

promoters in mouse embryonic stem cells (Karmodiya et al., 2012). Bivalent domains 356 

have gathered wide attention, because they might contribute to the precise unfolding 357 

of gene expression programs during cell differentiation. Likely both 358 

TGME49_207730 and TGME49_270240 remain in a state poised for transcription in 359 

tachyzoite stage and H3K14ac/H3K9me3 bookmark these genes for reactivation in 360 

the feline enterocytic stages where their transcripts were detected. Apparently, those 361 

bivalent marks are restricted to inactive stage-specific promoters since both 362 

pericentromeric (Fig. 8b and Figure 8 – figure supplement 2) and telomeric (Fig. 8c) 363 

heterochromatin, while being decorated by H3K9me3 displayed no H3K14ac 364 

enrichment. 365 

 366 

Remarkably, these findings highlight unique chromatin signatures associated with the 367 

transcription rate in T. gondii. Genes clustered in Q1 are primarily defined by 368 

H4K31me1 low enrichment and enhanced acetylation at both promoter and 5’ 369 

proximal gene body, while those from Q2 and Q3 are markedly typified by the 370 

presence of H4K31 methylation in the gene body and an acetylation mark restricted to 371 

the promoter. In this context, H4K31ac would be predicted to disrupt histone-DNA 372 

interaction thereby affecting nucleosome stability while promoting RNA polymerase 373 

progression across transcribed units. Conversely, H4K31me1 is likely acting as a 374 

transcription-linked repressive mark that substantially slows the progress of the RNA 375 

polymerase on active genes, likely by modulating the transcription-dependent histone 376 

turnover. However, the mark does not elicit its repressive effect on constitutively 377 

repressed genes which are displaying typical bivalent chromatin domains 378 

characterized by H3K9me3 and H3K14ac enrichments. 379 

 380 

H4K31me1 enrichment, a blueprint for unannotated genes and uncharacterized 381 

long non-coding RNAs  382 

As mentioned previously, H4K31me was mainly detected throughout the body of 383 

active genes with translation start and stop codons as boundaries and its enrichment 384 

was inversely correlated to the yield of mRNA. These features should allow this mark 385 
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to explicitly predict unannotated genes even when the low level of expression 386 

impedes detection by RNA profiling (Figure 8 – figure supplement 1). 387 

 388 

Although H4K31me1 rarely covered IGRs (Fig. 6c), the mark was found enriched 389 

occasionally in chromosomal regions devoid of any predicted protein-coding genes 390 

(Fig. 8c and Figure 8 – figure supplement 3). This enrichment correlated with 391 

extensive transcription of large RNA transcripts ranging from 20 to 70 kB that we 392 

termed “long noncoding RNAs” (lncRNAs). Those T. gondii lncRNAs are stand-alone 393 

transcription units with a proper chromatin signature, i.e., H4K31ac and H3K4me3 at 394 

the promoter and H4K31me1 along the transcribed length (Fig. 8c and Figure 8 – 395 

figure supplement 3). Considering their distribution at both telomere-adjacent regions 396 

(Fig. 8c) and chromosome arms (Figure 8 – figure supplement 3), those lncRNAs may 397 

work in cis near the site of their production (e.g., functions in telomere homeostasis) 398 

or act in trans to alter chromatin shape and gene expression at distant loci, as reported 399 

in other model organisms (Azzalin and Lingner, 2015). 400 

 401 

Distribution of H4K31 modifications across the P. falciparum genome reveals 402 

H4K31me1 as a novel pericentromeric PTM 403 

The P. falciparum genome was shown to be primarily maintained in a decondensed 404 

euchromatic state with perinuclear heterochromatin islands. Those heterochromatin- 405 

based gene silencing regions are used for the regulation of monoallelic expression of 406 

clonally variant genes (e.g. var and rifin) and are enriched in H3K9me3 which binds 407 

HP1 (Voss et al., 2014). We observe an apparent non-overlapping staining for 408 

acetylated and methylated H4K31 and more specifically a discrete focal distribution 409 

of H4K31me1 at the nuclear periphery (Fig. 2b and Fig. 5c). To get a comprehensive 410 

view of the genomic distribution of those PTMs across P. falciparum genome, we also 411 

performed ChIP-seq analyses during the IDC. As for T. gondii, we observed low 412 

variability and high similarity in read coverage between technical replicates for all the 413 

antibodies used (Figure 9 – figure supplement 1). 414 

 415 

We next compared peak location for each antibody type. H4K31ac displayed a rather 416 

even distribution throughout the genome similarly to the euchromatic mark H3K4me3 417 

(Fig. 9a and enhanced view at Figure 9 – figure supplement 2). As for T. gondii, 418 

H4K31ac matched with the gene annotation, i.e., high at promoter and low at gene 419 
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body of active genes (e.g., GAPDH, Fig. 9b). Consistent with this, the H4K31ac and 420 

the repressive mark H3K9me3 were found inversely correlated (Fig. 9a). However, 421 

while H4K31ac displayed a relatively narrow enrichment restricted to transcribed 422 

promoters, H3K4me3 was instead enriched in a large fraction of the genome (Fig. 9c) 423 

as already described (Salcedo-Amaya et al., 2009). 424 

 425 

Interestingly, the methylation of H3K9 and the properties to bind HP1 which have 426 

emerged as hallmarks of pericentromeric heterochromatin in model systems, 427 

including T. gondii (Fig. 8b and Figure 8 – figure supplement 2) have not been 428 

detected in P. falciparum, leading to the view that the parasite may lack pericentric 429 

heterochromatin (Flueck et al., 2009; Lopez-Rubio et al., 2009; Salcedo-Amaya et al., 430 

2009). While our ChIP-seq analysis confirmed the absence of pericentric enrichment 431 

of both H3K9me3 and HP1, it clearly highlighted a remarkable enrichment of 432 

H4K31me1 at pericentromeric regions that flank the cenH3-enriched centromeres 433 

(Fig. 9d, Figure 10 – figure supplement 1 and Fig.10a). It is therefore possible that 434 

H4K31me1 constraints PfCENH3 to the centromeres in P. falciparum thus replacing 435 

the H3K9me3/HP1 functions in most of the species. In addition to the pericentromeric 436 

localization H4K31me1 was also enriched to few sub-telomeric regions and more 437 

specifically at telomere-associated repetitive element (TARE, Fig. 10b) repeat blocks 438 

shown to encode lncRNAs (Fig. 10c) (Sierra-Miranda et al., 2012). The presence of 439 

the mark at 6 out of 60 silenced var genes (Fig. 9f and 10a) combined with its absence 440 

at transcriptionally permissive loci (e.g. GAPDH, Fig. 9b) suggest H4K31me1 as a 441 

novel hallmark of heterochromatin in P. falciparum, but not similar to H3K9me3/HP1 442 

in subtelomeric regions, which have signficiantly higher coverage over var genes. 443 

Moreover, while HP1 mediates H3K9 methylation spreading to next-door nucleosome 444 

until the var genes-containing region is fully recovered by the methyl mark, 445 

H4K31me1 apparently nucleates at specific DNA elements but was not able to spread 446 

over a series of nucleosomes (Fig. 10a, lower panel), a situation that could result from 447 

the lack of HP1-like reader. 448 

 449 

Discussion 450 

In this study, we provide in depth understanding of the interaction between the core 451 

histone H4 and the template DNA by functionally characterizing novel modifications 452 
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of H4K31, a residue exposed on the outer surface of the nucleosome in close 453 

proximity to the DNA entry-exit point. Proteome-wide mapping of 454 

acetylome/methylome as well as nucleosome protein content analyses allowed 455 

identifying H4K31 as a site for both acetylation and methylation across a wide range 456 

of species including those from the apicomplexan parasitic phylum. The K31 residue 457 

lies at the N-terminus of the histone H4 D1 helix and its side chain forms a water-458 

mediated salt bridge with the DNA phosphate backbone (Fig. 1c). Its acetylation was 459 

predicted to trigger substantial conformational changes in the nucleosome by shifting 460 

the side chain of lysine from unacetylated to acetylated state and causing a loss of the 461 

water-mediated interactions K31 establishes with DNA and the residue R35 (Fig. 1c). 462 

However, this prediction was not validated since X-ray crystallography did not 463 

indicate large structural changes into nucleosomes when glutamine was substituted to 464 

lysine to mimic the acetylated state  (H4Q31, Fig. 1c) (Iwasaki et al., 2011). 465 

Alternatively, H4K31ac may increase DNA unwrapping at the entry-exit point of the 466 

nucleosome thus giving access to the ATP-dependent chromatin remodelers that act on 467 

nucleosome disassembly and turnover as proposed by Chatterjee et al., 2015. The 468 

latter assumption would fit with the “regulated nucleosome mobility” model 469 

(Cosgrove et al., 2004), which predicts that outer surface PTMs (e.g., H3K36ac, 470 

Williams et al., 2008) regulate the equilibrium between mobile and relatively 471 

stationary nucleosomes by altering histone-DNA molecular interplay. 472 

 473 
In both T. gondii and P. falciparum, genome wide studies pinpointed a local 474 

enrichment of H4K31ac at active gene promoters, in line with the cooperative 475 

contribution of acetylation and other PTMs to shape a transcriptionally permissive 476 

chromatin state. While H4K31ac relieves nucleosomal repression thus facilitating 477 

the access of the transcriptional machinery to the DNA template, H4K31 478 

monomethylation not only locks the nucleosome in a repressed conformation 479 

which maintains chromatin in a closed or semi-closed state also called poised-state, 480 

but it also prevents GCN5-related HAT to catalyze acetylation of the residue. 481 

Interestingly, in T. gondii, apart from its direct effects on the nucleosome mobility and 482 

chromatin state, we found that H4K31ac also prevents methylation at the body of 483 

highly expressed genes, thereby ensuring maximal efficacy of the RNA polymerase 484 

progression and activity. Indeed it is only in the transcribed coding sequence of a 485 

subset of genes typically associated with limited activity of the RNA polymerase II 486 
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that we found enrichment in H4K31me1. In a model where the nucleosome 487 

disassembles in front of transcribing RNA polymerase II to allow its physical 488 

progression across transcribed units, it is plausible that H4K31me1 by stabilizing the 489 

wrapping of DNA around the histone octamer slows down the RNA Pol II 490 

processing along the fiber hence reducing the level of transcription. 491 

 492 
Aside from specific patterns of PTMs, histone chaperones significantly contribute to 493 

control how the RNA polymerase II engages the nucleosome in and around a 494 

promoter and during the elongation step. For instance, the FACT (Facilitates 495 

Chromatin Transactions) histone chaperone was shown to assist first in the removal 496 

of nucleosomes ahead of the transcribing RNA Pol II and next in their reassembly 497 

after polymerase passage. While we showed that H4K31 modifications, at least in T. 498 

gondii, play a key role in gene regulation, studies in other Eukaryotes have underlined 499 

H4K31 as instrumental in the recruitment/mobilization of histone chaperone at 500 

transcribed genes. In budding yeast, H4K31 along with two proximal residues on the 501 

side of the nucleosome (i.e., H4R36 and H3L61) promotes the recruitment of the 502 

yFACT subunit Spt16 across transcribed genes as assessed by the typical change in 503 

Spt16 distribution which occupancy shifts toward the 3’ ends of transcribed genes in 504 

the H4K31E yeast mutant (Nguyen et al., 2013). 505 

 506 
The versatility of H4K31 goes even beyond these modifications since 507 

ubiquitylation of H4K31 has been reported in human cells as an additional 508 

regulatory PTM for transcription elongation (Kim et al., 2013). Indeed, it was 509 

shown that the histone H1.2 subtype while localized at target genes interacts 510 

with the elongating RNA Polymerase II, typified by phosphorylation of Ser2 on its 511 

carboxy terminal domain (CTD). Indeed, it was shown that upon interaction with 512 

the Ser2-phosphorylated carboxy terminal domain CTD of the active RNA Pol II, 513 

the histone H1.2 subtype becomes able to recruit the Cul4A E3 ubiquitin ligase 514 

and PAF1 elongation complexes. Those stimulates, in turn, H4K31 ubiquitylation 515 

that influences positively the accumulation of the H3K4me3/H3K79me2 516 

signature, thereby leading to more productive elongation phase of transcription. 517 

Importantly, blocking H4K31 ubiquitylation by K31R mutation markedly reduces 518 

H3K4 and H3K79 methylation and consequently impairs gene transcription (Kim 519 

et al., 2013). 520 
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 521 

In order to test the functional significance of H4K31 modifications in vivo, we tried 522 

but remained unsuccessful at substituting H4K31 in T. gondii genome with alanine or 523 

glutamine to mimic acetyl lysine or with arginine to mimic nonacetylated lysine (data 524 

not shown). Engineered budding yeast with those substitutions did not significantly 525 

affect cell viability but led to an unexpected increase of telomeric and ribosomal DNA 526 

silencing (Hyland et al., 2005) that both argue for the mutations driving a non-527 

permissive chromatin state. This does not fit with our working model in which, 528 

H4K31Q should promote open chromatin. It is however plausible that the 529 

substitutions did not faithfully mimic the effects of the modifications in these 530 

instances. In sharp contrast with the aforementioned substitutions, glutamic acid 531 

(E) that mimics succinylated lysine was shown to severely compromise the growth in 532 

budding yeast (Xie et al., 2012) maybe as a consequence of the alteration in the 533 

distribution of Spt16 across yeast genes (Nguyen et al., 2013). The succinylation on 534 

H4K31 has also been detected by mass spectrometry in T. gondii (Li et al., 2014; 535 

Nardelli et al., 2013). The modification could drastically impact intranucleosomal 536 

structure and induce “abnormal”  histone-DNA interactions (Fig. 1c). 537 

 538 

In this context, H4K31 methylation would counteract the activating effect of H4K31 539 

acetylation and succinylation, by preventing the nucleosome from adopting an 540 

open conformation permissive to gene expression. The analysis in P. falciparum 541 

revealed remarkable features of H4K31me1 by stressing a much more 542 

pronounced repressive character as the modification was exclusively restricted to 543 

non-permissive silenced chromosomal zones. Originally, P. falciparum 544 

heterochromatin in which clusters of genes are maintained in a silent state was 545 

singularly defined by increased nucleosomal occupancy, histone deacetylation, 546 

H3K9me3 and the binding of PfHP1 (Scherf et al., 2008). While most of the 547 

genome can be characterized as euchromatin, those silenced regions were 548 

organized towards the periphery of the nucleus and contain among others the 549 

var, rif and stevor families that cluster together, proximal to each telomere. The 550 

repression of the var genes for instance involves the trimethylation of H3K9 and 551 

its spreading to the next-door nucleosome by the action of HP1 (Scherf et al., 552 

2008). H4K31me1 enrichment was detected, yet unevenly and at low rates in the 553 
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vicinity of var and rifin genes (Fig. 9f and 10c). However, the modification does 554 

not spread while its enrichment fades quickly and remains likely limited to the 555 

site of heterochromatin initiation where both H3K9me3 and HP1 levels 556 

culminate (Fig. 10C). The lack of spread of H4K31me1 along a series of 557 

nucleosomes may be explained by the absence of a competent protein reader that 558 

specifically recognizes the PTM and recruits the H4K31me1-catalyzing 559 

methyltransferase. So far, no H4K31me1-reading protein was identified although 560 

the PTM is not buried and hence accessible for regulatory factor binding. In fact, 561 

the bromodomain of BRD4 is able to recognize the acetylated isoform of H4K31 562 

(Filippakopoulos et al., 2012). 563 

 564 

While H4K31me1 occupancy is overall limited across P. falciparum genome, the 565 

modification is by far the most promiscuous PTMs found at pericentromeric 566 

zones of all chromosomes (Fig. 10a and Figure 10 – figure supplement 1). As such,  567 

both H4K31me1 (Fig. 5c) and centromeres (Hoeijmakers et al., 2012) were found 568 

to be clustered towards nuclear periphery. P. falciparum centromeres were 569 

originally described as displaying a unique epigenetic status typified by the 570 

noteworthy absence of the canonical pericentromeric PTM H3K9me3 571 

(Hoeijmakers et al., 2012) present in all species including T. gondii (Fig. 8C and 572 

Figure 8 – figure supplement 2). Clearly this study has emphasized a pivotal role of 573 

H4K31me1 in pericentromeric heterochromatin in P. falciparum and have 574 

provided new insights on the mechanism of transcriptional regulation  in T. gondii. 575 

 576 

In metazoan, H4K31me1 was shown to decorate the mitotic chromosome arms (Fig. 577 

5b). The PTM is in this regard a novel mitotic marker that targets newly 578 

synthesized H4 hence regulating chromosomal condensation and segregation during 579 

mitosis. H4K31 is structurally very close to H3K56 (Fig. 1c), the acetylation of 580 

which reported to increase the binding affinity of H3 toward histone chaperones, 581 

thereby promoting nucleosome assembly during S phase of the cell cycle (Li et al., 582 

2008). Collectively, our results argue for a similar role for H4K31me1 in chromatin 583 

assembly during DNA replication in metazoan. However the picture appears more 584 

complex since H4K31 methylation, unlike H3K56ac, is predicted to prevent 585 
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histone exchange, thereby slowing histone turnover rate behind the replication forks 586 

which overall contributes to stabilize newly incorpored nucleosomes into chromatin. 587 

 588 

In conclusion, we demonstrate that H4K31 acetylation and methylation are 589 

associated to very distinct nuclear functions in T. gondii and P. facilparum. 590 

Moreover, we demonstrate the evolvement of distinct epigenetic strategies in 591 

these closely linked parasites to organize chromosome regions that are essential 592 

for cell division and gene expression. 593 

 594 

Materials and Methods  595 

Parasites and host cells culture 596 

HFF primary cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) 597 

(Invitrogen) supplemented with 10% heat inactivated Fetal Bovine Serum (FBS) 598 

(Invitrogen), 10mM (4-(2-hydroxyethyl)-1-piperazine ethanesulphonic acid) (HEPES) 599 

buffer pH 7.2, 2 mM L-glutamine and 50 μg ml of penicillin and streptomycin 600 

(Invitrogen). Cells were incubated at 37°C in 5% CO2. Type I (RH wild type and RH 601 

∆ku80) and type II strains (Pru ∆ku80) of T. gondii were maintained in vitro by serial 602 

passage on monolayers of HFFs. P. falciparum 3D7 strain was grown in RPMI 1640 603 

media supplemented with 0.5% Albumax II, 0.1mM Hypoxanthine and Gentamicin 604 

10 mcg/ml. The culture was maintained at 2% hematocrit and 5% parasitemia. The 605 

parasites were grown at 37°C and at 1% O2, 5% CO2 and 94% N2 gas mixture 606 

concentration. 607 

 608 

Immunofluorescence microscopy 609 

T. gondii infecting HFF cells grown on coverslips were fixed in 3% formaldehyde for 610 

20 min at room temperature, permeabilized with 0.1% (v/v) Triton X-100 for 15 min 611 

and blocked in Phosphate buffered saline (PBS) containing 3% (w/v) BSA. The cells 612 

were then incubated for 1 hour with primary antibodies followed by the addition of 613 

secondary antibodies conjugated to Alexa Fluor 488 or 594 (Molecular Probes). 614 

Nuclei were stained for 10 min at room temperature with Hoechst 33258. Coverslips 615 

were mounted on a glass slide with Mowiol mounting medium, and images were 616 

acquired with a fluorescence ZEISS ApoTome.2 microscope and images were 617 
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processed by ZEN software (Zeiss). P. falciparum asexual blood life stages were 618 

washed with phosphate-buffered saline (PBS) and fixed in solution with 4% 619 

paraformaldehyde and 0.0075% glutaraldehyde in PBS for 30 min. After one wash 620 

with PBS, cells were permeabilized with 0.1% Triton X-100 in PBS for 10 min. Cells 621 

were washed twice with PBS, blocked with 3% bovine serum albumin (BSA) in PBS 622 

for 1 hour.  The cells were then incubated for 1 hour with primary antibodies followed 623 

by the addition of secondary antibodies conjugated to Alexa Fluor 488 or 594 624 

(Molecular Probes). Nuclei were stained for 30 min at room temperature with Hoechst 625 

33258. The parasites were finally washed 2-3 times before loading on to glass slides 626 

mixed with fluoro-gel (Electron Microscopy Sciences). Images were acquired with a 627 

fluorescence ZEISS ApoTome.2 microscope and images were processed by ZEN 628 

software (Zeiss). 629 

 630 

HDACi treatments 631 

The final concentration of histone deacetylase inhibitors dissolved in DMSO was, as 632 

described (Bougdour et al., 2013), FR-235222 (90nM), apicidin (100nM), HC-toxin 633 

(100nM), trichostatin A (100nM), scriptaid (100nM), APHA (100mM) and sodium 634 

butyrate (5mM). They were added to infected HFF cells for 18 hours. Halofuginone 635 

(10 nM) was shown to inhibit prolyl-tRNA synthetase (Jain et al., 2015) and was used 636 

as a control. 637 

 638 

Plasmid constructs 639 

To construct the vector pLIC-ENO1-HAFlag, the coding sequence of 640 

ENO1(TGME49_268860) was amplified using primers LIC-268860_Fwd 641 

(TACTTCCAATCCAATTTAGCgaacatgcaggcaatggcttggctcttc) and LIC-268860_Rev 642 

(TCCTCCACTTCCAATTTTAGCttttgggtgtcgaaagctctctcccgcg) using Pruku80 643 

genomic DNA as template. The resulting PCR product was cloned into the pLIC-HF-644 

dhfr vector  using the LIC cloning method as reported previously (Bougdour et al., 645 

2013). 646 

 647 

Cas9-mediated gene disruption in Toxoplasma gondii 648 

The plasmid pTOXO_Cas9-CRISPR was described in (Sangaré et al., 2016). For gene 649 

disruption using CRISPR/Cas9 system, the genes of interests (GOI) were: GCN5A 650 

(TGGT1_254555), GCN5B (TGGT1_243440), MYST-A (TGGT1_318330), MYST-B 651 



 21 

(TGGT1_207080), HAT1 (TGGT1_293380), HDAC1 (TGGT1_281420), HDAC2 652 

(TGGT1_249620), HDAC3 (TGGT1_227290), HDAC4 (TGGT1_257790) and 653 

HDAC5 (TGGT1_202230). Twenty mers-oligonucleotides corresponding to specific 654 

GOI were cloned using Golden Gate strategy. Briefly, primers TgGOI-CRISP_FWD 655 

and TgGOI-CRISP_REV containing the sgRNA targeting TgGOI genomic sequence 656 

were phosphorylated, annealed and ligated into the linearized pTOXO_Cas9-CRISPR 657 

plasmid with BsaI, leading to pTOXO_Cas9-CRISPR::sgTgGOI. T. gondii 658 

tachyzoites were then transfected with the plasmid and grown on HFF cells for 18-36 659 

hours. Cloning oligonucleotides used in this study:  660 

TgHDAC1-CRISP-FWD : 5’- AAGTTGCGTCGCCGTTCTCTCACGCG -3’ 661 

TgHDAC1-CRISP-REV : 5’- AAAACGCGTGAGAGAACGGCGACGCA -3’   662 

TgHDAC2-CRISP-FWD : 5’- AAGTTGCGCCCGTCGCCTCCCCCGCG -3’ 663 

TgHDAC2-CRISP-REV : 5’- AAAACGCGGGGGAGGCGACGGGCGCA -3’ 664 

TgHDAC3-CRISP-FWD : 5’- AAGTTGATATCGGAAGTTACTACTAG -3’ 665 

TgHDAC3-CRISP-REV : 5’- AAAACTAGTAGTAACTTCCGATATCA -3’    666 

TgHDAC4-CRISP-FWD : 5’- AAGTTGCTGTTGCTGAAGCCCAGGCG -3’ 667 

TgHDAC4-CRISP-REV : 5’- AAAACGCCTGGGCTTCAGCAACAGCA -3’ 668 

TgHDAC5-CRISP-FWD : 5’- AAGTTGGCGAGACCGGGGCAGCCGCG -3’ 669 

TgHDAC5-CRISP-REV : 5’- AAAACGCGGCTGCCCCGGTCTCGCCA -3’ 670 

TgGCN5A-CRISP-FWD : 5’- AAGTTGCGTGACGAACGACAGGCAAG -3’ 671 

TgGCN5A-CRISP-REV : 5’- AAAACTTGCCTGTCGTTCGTCACGCA -3’ 672 

TgGCN5B-CRISP-FWD : 5’- AAGTTGGGTTTCCTGTGTCGAGACCG -3’ 673 

TgGCN5B-CRISP-REV : 5’- AAAACGGTCTCGACACAGGAAACCCA -3’ 674 

TgMYSTA-CRISP-FWD : 5’- AAGTTGGCTGCTCCGCGACTCAGCGG -3’ 675 

TgMYSTA-CRISP-REV : 5’- AAAACCGCTGAGTCGCGGAGCAGCCA -3’ 676 

TgMYSTB-CRISP-FWD : 5’- AAGTTGCGCGAAGAAGGGAGAGAGCG -3’ 677 

TgMYSTB-CRISP-REV : 5’- AAAACGCTCTCTCCCTTCTTCGCGCA -3’ 678 

TgHAT1-CRISP-FWD : 5’- AAGTTGCCGACGGGTCACGGAGACTG -3’ 679 

TgHAT1-CRISP-REV : 5’- AAAACAGTCTCCGTGACCCGTCGGCA -3’    680 

    681 

Toxoplasma gondii transfection 682 

T. gondii RH, RH ∆ku80 and Pru ∆ku80 were electroporated with vectors in cytomix 683 

buffer (120mM KCl, 0.15mM CaCl2, 10mM K2HPO4/ KH2PO4 pH7.6, 25mM HEPES 684 

pH7.6, 2mM EGTA, 5mM MgCl2) using a BTX ECM 630  machine (Harvard 685 
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Apparatus). Electroporation was performed in a 2mm cuvette at 1.100V, 25Ω and 686 

25µF. Stable transgenic parasites were selected with 1µM pyrimethamine, single-687 

cloned in 96 well plates by limiting dilution and verified by immunofluorescence 688 

assay. 689 

 690 

Antibodies 691 

Primary antibodies : rabbit home-made anti-TgHDAC3 described in (Bougdour et al., 692 

2009), mouse anti-HA (3F10, Roche), rabbit anti-H4K8ac (Upstate 06-760), rabbit 693 

anti-H4K12ac (Upstate 06-761), rabbit anti-H3K4ac (Diagenode C15410165), rabbit 694 

anti-H3K9ac (Diagenode C15410004), rabbit anti-H3K14ac (C15210005), rabbit anti-695 

H3K18ac (Diagenode C15410193), rabbit anti-H3K27ac (Millipore, 04-1044-S) and 696 

mouse anti-H3K27ac (Diagenode C15200184), H4K20me3 (C15410207), H3K9me3 697 

(Millipore, 17-625), H3K4me1 (C15410194) and H3K4me3 (C15410003-50). 698 

Western blot secondary antibodies were conjugated to alkaline phosphatase 699 

(Promega), while immunofluorescence secondary antibodies were coupled with Alexa 700 

Fluor 488 or Alexa Fluor 594 (Thermo Fisher Scientific). We also raised homemade 701 

H4K31acetylation and H4K31monomethylation-specific antibodies in rabbit against 702 

linear peptides corresponding to amino acid residues 23-35 of histone H4 and carrying 703 

modified residue K31: C-DNIQGITKme1PAIR; C-DNIQGITKacPAIR and C-704 

RDNIQGITKacPAIR. They were produced by Eurogentec and used for 705 

immunofluorescence, immunoblotting and chromatin immunoprecipitation. 706 

 707 

Histones purification, Immunoblotting and mass spectrometry-based proteomic 708 

analysis 709 

For histone purification, HFF cells were grown to confluence and infected with 710 

Pru∆ku80 parasites. Intracellular tachyzoites were treated with histone deacetylase 711 

HDAC3 inhibitor, 90nM FR235222 for 18 hours. As appropriate control, we treated 712 

tachyzoites with 0.1% DMSO. Histones were extracted and purified using histone 713 

purification kit (Active motif) according to manufacturer’s protocol. For western 714 

blotting, histone proteins were run on a NuPAGE 4-12% Bis-Tris polyacrylamide gels 715 

in MES-SDS running buffer (Invitrogen) and transferred to a polyvinylidene fluoride 716 

PVDF membrane (Immobilon-P; Millipore) using NuPAGE transfer buffer 717 

(Invitrogen). The blots were probed using primary antibodies: pan acetyl H4, 718 

H4K31ac and H4K31me1, followed by phosphatase-conjugated goat secondary 719 
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antibodies (Promega). The expected band of histones were detected using NBT-BCIP 720 

(Amresco). Nucleosomes from T. gondii-infected cells were purified and proteins 721 

separated by SDS-PAGE. The band corresponding to H4 was excised and its protein 722 

content digested using trypsin. Resulting peptides were submitted to mass 723 

spectrometry-based proteomic analysis (U3000 RSLCnano coupled to Q-Exactive HF, 724 

Thermo Scientific). Peptides and proteins were identified using Mascot software 725 

(Matrix Science). 726 

 727 

Chromatin Immunoprecipitation and Next Generation Sequencing in 728 

Toxoplasma gondii  729 

HFF cells were grown to confluence and infected with type II (Pru∆ku80) strain. 730 

Harvested intracellular parasites were crosslinked with formaldehyde (final 731 

concentration 1%) for 8 min at room temperature and the crosslinking was stopped by 732 

addition of glycine (final concentration 0.125M) for 5 min at room temperature. 733 

Crosslinked chromatin was lysed in ice-cold lysis buffer (50mM HEPES KOH pH7.5, 734 

140mM NaCl, 1mM EDTA, 10% glycerol, 0.5%NP-40, 0.125% triton X-100, 735 

protease inhibitor cocktail) and sheared in shearing buffer (1mM EDTA pH8.0, 736 

0.5mM EGTA pH8.0, 10mM Tris pH8.0, protease inhibitor cocktail) by sonication 737 

using a Diagenode Biorupter. Samples were sonicated, for 16 cycles (30 seconds ON 738 

and 30 seconds OFF), to 200-500 base-pair average size. Immunoprecipitation was 739 

carried out using sheared chromatin, 5% BSA, protease inhibitor cocktail, 10% triton 740 

X-100, 10% deoxycholate, DiaMag Protein A-coated magnetic beads (Diagenode) and 741 

antibodies (H4K31ac, H4K31me1, pan acetyl H4, H4K20me3, H3K9me3, H3K4me3, 742 

H3K4me1, H3K14ac). A rabbit IgG antiserum was used as a control mock. After 743 

overnight incubation at 4°C on rotating wheel, chromatin-antibody complexes were 744 

washed and eluted from beads by using iDeal ChIP-seq kit for Histones (Diagenode) 745 

according to the manufacturer’s protocol. Samples were decrosslinked by heating for 746 

4 hours at 65°C. DNA was purified by using IPure kit (Diagenode) and quantified by 747 

using Qubit Assays (Thermo Fisher Scientific) according to the manufacturer's 748 

protocol. For ChIP-seq, purified DNA was used to prepare libraries and then 749 

sequenced by Arraystar (USA, http://www.arraystar.com/ ). 750 

 751 

Library Preparation, Sequencing and Data analysis (Arraystar) 752 

http://www.arraystar.com/
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ChIP-Sequencing library preparation was performed according to Illumina’s protocol 753 

Preparing Samples for ChIP Sequencing of DNA. Library Preparation: 10 ng DNA 754 

of each sample was converted to phosphorylated blunt-ended with T4 DNA 755 

polymerase, Klenow polymerase and T4 polymerase (NEB); An ‘A’ base was added 756 

to the 3' end of the blunt phosphorylated DNA fragments using the polymerase 757 

activity of Klenow (exo minus) polymerase (NEB); Illumina's genomic adapters were 758 

ligated to the A tailed DNA fragments; PCR amplification was performed to enrich 759 

ligated fragments using Phusion High Fidelity PCR Master Mix with HF Buffer 760 

(Finnzymes Oy). The enriched product of ~200-700 bp was cut out from gel and 761 

purified. Sequencing:  The library was denatured with 0.1M NaOH to generate 762 

single-stranded DNA molecules, and loaded onto channels of the flow cell at 8pM 763 

concentration, amplified in situ using TruSeq Rapid SR cluster kit (#GD-402-4001, 764 

Illumina). Sequencing was carried out by running 100 cycles on Illumina HiSeq 4000 765 

according to the manufacturer’s instructions. Data Analysis: After the sequencing 766 

platform generated the sequencing images, the stages of image analysis and base 767 

calling were performed using Off-Line Basecaller software (OLB V1.8). After 768 

passing Solexa CHASTITY quality filter, the clean reads were aligned to T. gondii 769 

reference genome (Tgo) using BOWTIE (V2.1.0). Aligned reads were used for peak 770 

calling of the ChIP regions using MACS V1.4.0. Statistically significant ChIP-771 

enriched regions (peaks) were identified by comparison of two samples, using a p-772 

value threshold of 10-5. Then the peaks in each sample were annotated by the 773 

overlapped gene using the newest T. gondii database. The EXCEL/BED format file 774 

containing the ChIP-enriched regions was generated for each sample. Data 775 

visualization: The mapped 100 bp reads represent enriched DNA fragments by ChIP 776 

experiment. Any region of interest in the raw ChIP-seq signal profile can be directly 777 

visualized in genome browser. We use 10-bp resolution intervals (10-bp bins) to 778 

partition the stacked reads region, and count the number of reads in each bin.  All the 779 

10 bp resolution ChIP-seq profiles of each sample are saved as UCSC wig format 780 

files, which can be visualized in T. gondii Genome Browser 781 

(http://protists.ensembl.org/Toxoplasma_gondii/Info/ Index). All these raw and 782 

processed files can be found at Series GSE98806. 783 

 784 

Chromatin Immunoprecipitation and Next Generation Sequencing in P. 785 

falciparum  786 
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Chromatin from synchronous rings stage parasites of  3D7 clone G7 was prepared and 787 

3*108 cells per ChIP used for the previously described protocol (Lopez-Rubio et al., 788 

2013). Briefly, chromatin was crosslinked in 1% formaldehyde for 10 min (Sigma-789 

Aldrich, #SZBD1830V), sheared to an average length of 300 bp using the BioRuptor 790 

Pico and individual histone modifications were pulled down using 0.5 μg of antibody 791 

for H3K4me3 (Diagenode, cat # K2921004), H3K9me3 (Millipore, cat # 257833), 792 

and home-made rabbit polyclonal anti-PfHP1. 5 μl rabbit polyclonal anti-H4K31me1 793 

and 15 μl anti-H4K31ac were used for each experiment. To generate Illumina-794 

compatible sequencing libraries, the immunoprecipitated DNA and input was 795 

processed using the MicroPlex Library Preparation Kit (Diagenode C05010014) 796 

according to manufacturer’s instructions. The optimized library amplification step 797 

was used KAPA Biosystems HIFI polymerase (KAPA Biosystems KK2101). Pooled, 798 

multiplexed libraries were sequenced on an Illumina NextSeq® 500/550 system as a 799 

150 nucleotide single-end run. The raw data were demultiplexed using bcl2fastq2 800 

(Illumina) and converted to fastq format files for downstream analysis. Two 801 

biological replicates were analyzed for each antibody. 802 

 803 

Plasmodium falciparum ChIP-seq Data Analysis  804 

Sequencing reads were mapped to the P. falciparum 3D7 genome assembly 805 

(PlasmoDB v3.0) with Burrows-Wheeler Alignment tool (BWA) using default 806 

settings, and then sequences were quality filtered at Q20 Phred quality score. ChIP-807 

seq peak calling was performed using the MACS2 algorithm. For genome-wide 808 

representation of each histone mark’s distribution, the coverage was calculated as 809 

average reads per million over bins of 1000 nucleotides using bamCoverage from the 810 

package deepTools.  Correlation of the different biological replicates were calculated 811 

by performing Pearson’s and Spearman’s correlation analysis of pairwise comparison 812 

of BAM alignment files, and ChIP-seq peak enrichment scores (log2) using MACS2 813 

and deepTools. Circular and linear coverage plots were generated using Circos and 814 

Integrated Genomics Viewer, respectively. All these raw and processed files can be 815 

found at NCBI Bioproject ID PRJNA386433. 816 
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 1020 

Figure legends 1021 
 1022 
Figure 1. The residue K31 on the lateral surface of histone H4 is a novel PTM. 1023 

(a) The high resolution of MS/MS spectrum of H4K31ac peptide generated from 1024 

histone H4. H4K31ac was identified using Mascot search engine in the 1025 

DNIQGITK(ac)PAIR peptide. (b) Sequence alignment of the first 42 residues of 1026 

histone H4 from the indicated organisms. Yellow boxes highlight the conserved 1027 

residue H4K31. (c) Structural analysis of H4K31 modifications. Nucleosome core 1028 

particle with key H3 and H4 lysine residues that are known to be modified shown 1029 

in ball-and-sphere representation. The histone proteins of the nucleosome (PDB 1030 

code: 3AFA) are colour coded as follows: H2A cyan, H2B grey, H3 orange and H4 1031 

blue. The H4K31 residue, highlighted in red, is placed at the dyad axis and 1032 

mediates key interactions to the DNA (in green). The bottom panel is rotated 90 1033 

degrees around the molecular dyad axis. On the right, close-up of the interactions 1034 

established by H4K31 with a water molecule (red sphere) and residue R35; and 1035 

impact of the modifications: methylation, acetylation and succinylation 1036 

(mimicked by mutant K31E). The mutant H4K31Q (PDB code: 3AZI) partially 1037 

mimics lysine acetylation. (d) Immunofluorescence analysis of H4K31ac (in red) in 1038 

both human  foreskin fibroblast cells and parasites nuclei. DNA (top) was stained 1039 

with Hoechst. Scale bar, 10 Pm. (e) Confluent monolayers of HFF cells were infected 1040 

with T. gondii parasites in the presence of FR235222 and DMSO as a control. IFAs 1041 

were carried out with antibodies against specific histone 3 and 4 lysine residue 1042 

acetylations as indicated. All modifications, showed specific and distinct localization 1043 

in both parasite and host cell nuclei (in red). Scale bar, 20 Pm. Data are representative 1044 

of two independent experiments. (f) Immunoblots of native purified nucleosomes 1045 

from T. gondii parasites treated with FR235222 or DMSO for 18 hours. Data are 1046 

representative of two independent experiments. 1047 
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 1048 

Figure 2 Immunofluorescence analysis of histone modifications in P. falciparum 1049 

and MEF cells. (a) The blood stages of P. falciparum characterized by initial Ring, 1050 

followed by mature trophozoite and segmented schizont stage. The three 1051 

developmental stages represent the predominant asexual phase of the malaria parasite. 1052 

(b) Immunofluorescence analysis of H4K31ac (in red) asexual stages following 12 1053 

hours of treatment with DMSO (vehicle) or FR235222 HDACi. Parasite nuclear 1054 

DNA was stained with Hoechst (blue). Scale bar, 10 Pm. Data are representative of 1055 

four independent experiments. (c) and (d) Immunofluorescence analysis of H4K31ac 1056 

in mouse embryonic fibroblasts. DNA was stained with DAPI (blue); the bright foci 1057 

mark pericentromeric heterochromatin. The signal for H4K31ac along with H3K27ac, 1058 

H3K4ac or H3K9ac are enriched in euchromatic regions as shown in the merge. The 1059 

mark is excluded from the DAPI dense foci that are associated with H3K9me3 and 1060 

H4K20me3. Scale bar, 10 Pm. Data are representative of three independent 1061 

experiments. 1062 

 1063 

Figure 3 Chemical and genetic inactivation of TgHDAC3 promotes H4K31ac 1064 

accumulation in Toxoplasma gondii nuclei. (a) Immunofluorescence analysis of 1065 

H4K31ac (in red) in HFF cells infected with parasites expressing a HAFlag (HF)-1066 

tagged copy of the bradyzoite gene ENO1 treated for 18 hours with vehicle (DMSO) 1067 

or individual HDAC inhibitors, including short-chain fatty acids (sodium butyrate), 1068 

cyclic tetrapeptides and hydroxamic acids classes. Halofuginone (HF), a non-HDACi 1069 

anticoccidial compound was used as a relevant control. ENO1 expression was 1070 

detected by IFA in parasite nuclei (anti-HA, in green). Host-cell and parasite nuclei 1071 

were stained with Hoechst. Scale bar, 20 Pm. (b) Representative micrographs 1072 

showing intracellular tachyzoites in which the TgHDAC3 gene was disrupted by 1073 

transient transfection of CRISPR/Cas9. The efficiency of TgHDAC3 disruption in 1074 

Cas9-expressing parasites was monitored by the anti-TgHDAC3 staining (in pink) and 1075 

cas9-GFP expression (in green). The levels of H4K31ac (in red) were monitored in 1076 

TgHDAC3-disrupted parasites (GFP positive) and compared to untransfected parasites 1077 

(GFP negative). Scale bar, 10 Pm. (c) Levels of H4K31ac (in red) were monitored in 1078 

TgHDAC knockout parasites. Scale bar, 10 Pm. Data are representative of four 1079 

independent experiments. 1080 
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 1081 

Figure 4 TgGCN5b acetylates H4K31 in Toxoplasma gondii (a) Levels of 1082 

H4K31ac (in red) were monitored in both host cell and parasite nuclei following 1083 

CRISPR/Cas9-mediated disruption of individual T. gondii HAT enzymes. Transfected 1084 

vacuole in which H4K31 acetylation was impaired are indicated by a white arrow. 1085 

Scale bar, 10 Pm. (b) Levels of H3K14 acetylation (in red) were monitored in 1086 

TgGCN5b knockout parasites. Scale bar, 10 Pm. Data are representative of three 1087 

independent experiments. 1088 

 1089 

Figure 5 Distribution of H4K31me1 in host cell and parasites nuclei (a) 1090 

Immunofluorescence analysis of H4K31me1 (in green) in intracellular parasite nuclei. 1091 

DNA was stained with Hoechst (blue). Scale bar, 10 Pm. (b) The localization of 1092 

H4K31me1 (in red), H3K27ac (in green) and H3S10P (in green) were tested by 1093 

immunofluorescence in prophase, metaphase, anaphase and telophase MEFs. DNA 1094 

was stained with Hoechst (blue). Images are representative of at least three 1095 

independent experiments. Scale bar, 10 Pm. (c) Immunofluorescence analysis of 1096 

H4K31me1 (in red) or H3K9me3 in  asexual stages of Pf-3D7. Scale bar, 5 Pm. Data 1097 

are representative of three independent experiments. 1098 

 1099 

Figure 6 Genome-wide analysis of H4K31ac and H4K31me1 chromatin 1100 

occupancy in Toxoplasma gondii. (a) A genome browser (IGB) snapshot showing 1101 

normalized reads for different histone marks across T. gondii chromosome 1b reveals 1102 

peak-like distribution of H4K31ac and H4K31me1 ChIP-seq enrichments. The y-axis 1103 

depicts read density. Genes are depicted above the profiles in black. (b) A zoomed-in 1104 

view of Chr. Ib region (yellow box in a) showing the distribution of the 1105 

aforementioned PTMs. (c) Distribution of PTMs occupied regions relative to the T. 1106 

gondii reference genome annotation. (d) Correlation of H4K31 modifications 1107 

enrichment with other marks. The average signal profiles of each histone modification 1108 

was plotted over a -2-kb to +10-kb region with respect to T. gondii genes ATG. The y-1109 

axis shows the average tag count of the enrichment. The vertical dashed line 1110 

indicates the position of the ATG. 1111 

 1112 
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Figure 7 The enrichment of H4K31ac and H4K31me1 at transcribed genes 1113 

correlates with gene expression levels in Toxoplasma gondii. (a) and (b)  IGB 1114 

screenshots  of T. gondii Chr. VIII genomic regions showing reads for various histone 1115 

marks as well as RNA-seq data (in black). (c) A zoomed-in view of T. gondii GRA1-1116 

MAG1 locus. The y-axis depicts read density. (d) Boxplot showing the normalized 1117 

expression distribution of T. gondii genes in tachyzoite stage subdivided into four 1118 

ranges of expression (cluster Q1 to Q4). Genomewide H4K31ac (e) and H4K31me1 1119 

(f) occupancy profiles at peri-ATG regions are plotted for the gene groups ranked 1120 

by their mRNA levels. The y-axis shows the average tag count of the enrichment. The 1121 

vertical dashed line indicates the position of the ATG. 1122 

 1123 

Figure 8 H4K31me1 marks long non-coding RNA but not pericentromeric 1124 

heterochromatin in Toxoplasma gondii. (a) IGB screenshot of T. gondii Chr. Ib 1125 

genomic region showing reads for various histone marks as well as RNA-seq data (in 1126 

black). The y-axis depicts read density. (b) A zoomed-in view of T. gondii Chr. Ib 1127 

peri-centromeric region. (c) IGB screenshot  of T. gondii Chr. III genomic region 1128 

showing reads for various histone marks as well as RNA-seq data. A predicted 1129 

lncRNA of 72-kb is indicated in pink. 1130 

 1131 

Figure 9 Genome-wide analysis of H4K31ac and H4K31me1 chromatin 1132 

occupancy in Plasmodium falciparum. (a) Chromosomal projection of H4K31ac, 1133 

H3K9me3 and H3K4me3 occupancies in P. falciparum. The full set of chromosomes 1134 

is represented as the circular plot. (b) Zoomed-in view of PTMs and HP1 enrichment 1135 

along the gapdh locus. (c) Genomewide H4K31ac and H3K4me3 occupancy profiles 1136 

at peri-TSS (Transcription Start Sites) and –TTS (Transcription Termination Sites) 1137 

regions were plotted. (d) Chromosomal projection of H4K31me1, H3K9me3 and HP1 1138 

occupancies in P. falciparum. The full set of chromosomes is represented as the 1139 

circular plot where CenH3 locations (black arrow) and var genes (in green) are 1140 

indicated. (e) Genomewide H4K31me1 occupancy profiles at peri-TSS (Transcription 1141 

Start Sites) and –TTS (Transcription Termination Sites) regions were plotted. (f) IGB 1142 

view of a section of chromosome 10 showing enrichment of H4K31me1, H3K9me3 1143 

and HP1 at var gene. 1144 

 1145 
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Figure 10 H4K31me1 singularly marks peri-centromeric heterochromatin in 1146 

Plasmodium falciparum. (a) (top) Chromosome-wide coverage plot of histone 1147 

modifications and PfHP1 on P. falciparum Chr. 7. CenH3 was mapped according to 1148 

Hoeijmakers et al., 2012 and var genes were indicated. (bottom) Zoomed-in views of 1149 

var genes-containing internal locus (left panel) and centromeric (right panel) from P. 1150 

falciparum Chr. 7. (b) Genomic organization and nuclear position of var genes and 1151 

telomere-associated repeat elements (TAREs) in P. falciparum.  (c) IGB screenshots  1152 

of P. falciparum sub-telomeric regions of chromosome 10. Rifin and var genes as well 1153 

as TAREs are highlighted. 1154 

 1155 

Figure 6 – figure supplement 1 ChIP-seq enrichments between biological 1156 

replicates are highly correlated. Scatterplot comparing the enrichment difference of 1157 

H4K31ac (a) or H4K31me1 (b) measured in the two independent replicate 1158 

experiments. The x- and y-axis show the average tag count of the enrichment. IGB 1159 

screenshot  of T. gondii Chr. X (c) and Ia (d) genomic regions showing reads for 1160 

H4K31ac (replicates R1 and R2) and H4K31me1 (replicates R1 and R2). 1161 

 1162 

Figure 7 – figure supplement 1 PTMs distribution and gene expression in 1163 

Toxoplasma gondii. Genomewide PTM occupancy profiles at peri-ATG regions are 1164 

plotted for the gene groups ranked by their mRNA levels (a). H3K14ac (b), 1165 

H3K4me3 (c), H3K4me1 (d), H4K20me3 (e) and H3K9me3 (f) are shown. The y-axis 1166 

shows the average tag count of the enrichment. The vertical dashed line indicates 1167 

the position of the ATG. 1168 

 1169 

Figure 8 – figure supplement 1 H4K31me1 explicitly predicts unannotated 1170 

genes. IGB screenshot  of T. gondii Chr. VIIb (a) and VIII (b) genomic regions 1171 

showing reads for various histone marks as well as RNA-seq data. Predicted genes are 1172 

indicated in pink along with their putative translated sequence. 1173 

 1174 

Figure 8 – figure supplement 2 Toxoplasma gondii peri-centromeric regions (a) 1175 

IGB screenshots of T. gondii peri-centromeric region of chromosomes Ia, II, III, VI, 1176 

VIIa, VIII, IX and X. 1177 

 1178 
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Figure 8 – figure supplement 3 H4K31me1 marks long non-coding RNAs. IGB 1179 

screenshot  of T. gondii Chr. VIIa (a) and XI (b) genomic regions showing reads for 1180 

various histone marks as well as RNA-seq data. Predicted lncRNAs of (a) 70-kb and 1181 

(b) 22-kb are indicated in pink. 1182 

 1183 

Figure 9 – figure supplement 1 Correlation matrix between Plasmodium 1184 

falciparum ChIP-seq experiments. Heatmap displaying (a) Pearson and (b) 1185 

Spearman rank correlations between all pairwise comparisons for all P. 1186 

falciparum ChIPs. Spearman correlations were calculated using the normalized 1187 

read depth across the entire set of binding sites identified for all ChIP-seq 1188 

experiments. 1189 

 1190 

Figure 9 – figure supplement 2 Chromosomal projection of H4K31ac, H3K9me3 1191 

and H3K4me3 occupancies in P. falciparum. The full set of chromosomes is 1192 

represented as the circular plot. 1193 

 1194 

Figure 9 – figure supplement 3 Chromosomal projection of H4K31me1, 1195 

H3K9me3 and HP1 occupancies in P. falciparum. The full set of chromosomes is 1196 

represented as the circular plot, where centromeric regions are marked by a black 1197 

arrow. 1198 

 1199 

Figure 10 – figure supplement 1 H4K31me1 marks pericentromeric chromatin in 1200 

Plasmodium falciparum. Zoomed-in views of centromeric and peri-centromeric 1201 

chromatin from all P. falciparum chromosomes. 1202 

 1203 
 1204 

 1205 
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H4K20me1 (Sautel et al., 2007)
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H3K14ac (Millipore # 04-1044)
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Developmental switching in Toxoplasma gondii, from the virulent tachyzoite to the relatively 

quiescent bradyzoite stage, is responsible for disease propagation and reactivation. To date, 

although the expression of many genes and their products have been identified as subject to 

regulation during parasite differentiation, the literature remains poor in identifying regulators 

of this process in Toxoplasma gondii and, likely, in other Apicomplexa. When I started my 

PhD, the team had strong evidence that the alteration in the rate of histone acetylation in the 

vicinity of stage-specific genes is one of the molecular motors that drive parasite 

differentiation (Saksouk et al. 2005). However, few factors have been clearly identified as 

being involved in these stage conversions. The discovery by our lab of TgHDAC3 as a key 

player in the differentiation (Saksouk et al. 2005, Bougdour et al. 2009; Maubon et al. 2010) 

opens new perspectives on the mechanisms involved, although many questions about the 

modus operandi of the enzyme remain unanswered.  

 

III- 1. CRISPR/cas9-mediated gene disruption of TgHDAC3 recapitulates FR235222-

mediated phenotypes  

HDACi (FR235222) stimulation triggers pleiotropic phenotypes in tachyzoites ranging from 

(i) the growth arrest defined by a cytokinesis defect and characterized by the lack of IMC1 

delineating the new formed daughter cells to (ii) the alteration of histone H4 tail acetylation 

levels (Figure 12A) (Bougdour A et al., 2009). The contribution of TgHDAC3 to those 

phenotypes was only confirmed with the isolation of drug-resistant mutant. Indeed, FR235222 

treatment had no effect on DNA replication and IMC1-delineated daughter cells in the 

TgHDAC3T99A and TgHDAC3T99I mutants when compared with the WT parasites suggesting 

that the T99A and T99I mutations in TgHDAC3 are each sufficient to circumvent the 

FR235222-mediated cytokinesis defect (Figure 12A). In the same line, the levels of AcH4 

signals under FR235222 treatment were increased approximately eight-fold in the WT but 

were only increased approximately three-fold and remained unchanged in the TgHDAC3T99A 

and TgHDAC3T99I resistant lines, respectively (Figure 12B). 

  



 117 

 
Figure 12. Chemical and genetic inactivation of TgHDAC3 cause cytokinesis defects and histone H4 

hyperacetylation. (A)  Images from Bougdour et al. (2009) : Effects of FR235222 on histone H4 acetylation in 

intracellular T. gondii parasites. Confluent monolayers of HFF cells were infected with T. gondii RH WT and 

R20D9 (TgHDAC3T99A) strains in the presence of 40 nM FR235222 and 0.1% DMSO as a control. After 24 h of 

growth, cells were  fixed and stained for AcH4 (red) and IMC1 (green). The arrowhead indicates aberrant 

progeny. Bars, 5 µm. (B)  Extracellular T. gondii parasites (RH WT, TgHDAC3T99A, and TgHDAC3T99I) were 

treated with the indicated concentrations of FR235222 for 4 h and lysed. Total cell lysates were analyzed by 

immunoblot with anti-AcH4, anti-H4, anti-TgHDAC3, and anti–tubulin antibodies as indicated. (C) Intracellular 

tachyzoites in which the TgHDAC3 gene was disrupted by transient transfection of CRISPR/Cas9 (in green). 

Aberrant progeny was framed. (D) Representative micrographs showing intracellular tachyzoites in which the 

TgHDAC3 gene was disrupted by transient transfection of CRISPR/Cas9. The efficiency of TgHDAC3 

disruption in Cas9-expressing parasites was monitored by the anti-TgHDAC3 staining (in pink) and cas9-GFP 

expression (in green). The levels of H4K31ac (in red) were monitored in TgHDAC3-disrupted parasites (GFP 

positive) and compared to untransfected parasites (GFP negative). Scale bar, 10 µm.   

 

Recent advances in molecular genetics using CRISPR-CAS9 technologies have considerably 

enhanced the ability to understand mechanisms main-played during stage conversion. Using 

the Cas9-mediated genetic inactivation of TgHDAC3, I confirmed the aforementioned 
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FR235222-associated phenotypes. Indeed, the cas9-mediated gene disruption of TgHDAC3 

led to vacuolated tachzyoites, lacked IMC1-delineated daughter cells or aberrant progeny 

(Figure 12C). Moroever, the parasites displayed massive DNA over-replication (>1N DNA 

content per cell), indicating that TgHDAC3 interferes directly or indirectly with T. gondii 

cell-cycle progression. This also provides additional support for the conclusion that the 

phenotype is not caused by the effect of FR235222 on the host cell but clearly mediated by 

TgHDAC3. Notably, the inactivation of the TgHDAC3 gene, unlike other TgHDACs, causes 

hyperacetylation of H4K31 in parasites nuclei (Figure 12D), thereby mimicking the effect of 

the cyclic tetrapeptide HDACi on the enzyme (Fig. 3A in Sindikubwabo et al., and Bougdour 

et al., 2009). 

III- 2. Linking bradyzoite development to the parasite cell cycle ?  

A number of elegant global gene expression studies have analyzed changes in gene expression 

during the parasite’s lytic cycle in vitro in human fibroblasts (HFF cells) (Radke JR, 2005 

BMC biology 3: 26; Gaji RY et al.,  Molecular microbiology 79: 192–204; Behnke MS, et al. 

2010 PloS one 5: e12354). These have shown that T. gondii’s transcriptome is highly cell-

cycle regulated with many genes transcribed maximally just prior to their use and then 

downregulated in a pattern described as ‘‘just in time’’ (Gaji RY et al.,  Molecular 

microbiology 79: 192–204; Behnke MS, et al. 2010 PloS one 5: e12354). Virtually all of the 

stress conditions that promote bradyzoite differentiation (alkaline pH, interferon-γ) reduce the 

proliferation of tachyzoites. Slowing of the parasite cell cycle has been linked to the initiation 

of the bradyzoite developmental program from a late-S/G2 subpopulation containing 1.8–2N 

DNA content (Jerome et al., 1998; Radke et al., 2003). During bradyzoite differentiation, 

these parasites proceed through M phase and then arrest in G1/G0 with uniform 1N DNA 

content. The unique late-S/G2 stage represents a premitotic cell cycle checkpoint for the 

commitment to bradyzoite formation and growth arrest following mitosis. The identification 

of cyclic expression of several bradyzoite-specific mRNAs, which exhibit peak expression in 

the late mitotic period, lends support to this model (Behnke et al., 2010).  

 

Our data indicate that FR235222-mediated TgHDAC3 inhibition affects negatively and more 

specifically cytokinesis without impacting karyokinesis process. The explanation could be 

that the treatment of parasites with FR235222 induces the activation/inhibition of protein 

factors involved in cytokinesis regulation. These factors may be direct substrate of 



 119 

TgHDAC3, yet no obvious candidates were found while analyzing our FR235222-treated 

acetylome.  

 
Figure 13. The FR235222-regulated proteins expression across the T. gondii cell-cycle.  (A) Cell cycle 

model of Toxoplasma gondii development in the intermediate  host. (B) and (C) Cell cycle expression mRNA 

profiles were assessed for proteins that were donw regulated upon FR235222 treatment. Spline model curves for 

selected cell cycle mRNAs encoding IMC-associated (B) and unknown (C) proteins demonstrate relative 

abundance and time shifts indicating that the expression of these factors follows a serial order with peaks at 

different cell cycle stages. 

Alternatively, the genes encoding cell cycle regulator may be regulated at the transcriptional 

levels by TgHDAC3. In fact, we identified a group of 66 proteins whose levels were 

decreasing upon FR235222 stimulation (Figure 8B). While most of them have unknown 

function, we identified 25 proteins whose genes display a typical cell cycle-regulated  

expression pattern (example in Figure 13), when they are not themselves involved in cell 

cycle progression. Four proteins belong to the inner membrane complex (IMC), that lines the 

interior of the plasma membrane and contains proteins important for replication (Figure 13A). 

The IMC localizing protein 1 (ILP1) was one of them. Notably, Δilp1 vacuoles were shown to 

highly disordered and contained morphologically abnormal parasites that appeared enlarged 

and/or malformed (Chen AL et al., 2015 - PMID: 25691595), defects that were reminiscent of 

parasites treated with FR235222 or in which TgHDAC3 was disrupted (Figure 12). Similarly, 

ablation of the ILP1 homolog in Plasmodium berghei produced enlarged, swollen parasites 

with microtubule and motility defects (Tremp AZ et al., 2013 - PMID: 23773015). FR235222 

treatment also significantly lower downs the levels of a cyclin2-related protein 

(TGME49_267580) and a DNA replication licensing factor (TGME49_214970). We also 

identified new cell cycle-regulated genes, including one encoding a putative histone lysine 

methyltransferase that was shown to localize exclusively at the nascent IMC of the daughter 

cells (Hakimi, personal communication). 
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Interestingly, while looking at the proteome of tachyzoites treated with alkaline pH we did not 

found any cell cycle-regulated proteins whose levels were altered compared to the pH 7 mock 

control (data not shown). These results are in line with the observation that alkaline pH while 

triggering H4 acetylation did not affect cytokinesis (Figure 3) and overall question the 

relevance of the hypothesis that alkaline pH by reducing parasite growth stimulates stage 

conversion. The same negative result and resulting conclusions can be drawn concerning 

interferon-γ (data not shown).  

 

III- 3. FR235222-mediated inhibition of TgHDAC3 re-programs stage-specific gene 
expression in tachzyoites  

The importance of histone acetylation for the control of differentiation is underscored by the 

finding that chemical inhibition of TgHDAC3 with low doses of the compound FR235222 

was able to up regulate the bradyzoite marker p36/SRS9 (Bougdour et al., 2009). In the same 

study, analysis of the genome-wide hyperacetylation pattern induced by FR235222 led to the 

observation that the compound influences the expression of >370 genes, a third of which are 

bradyzoite-specifically expressed (Bougdour et al., 2009).  

In terms of studying bradyzoite differentiation, strain choice is a crucial factor. While Type I 

strains, particularly RH, grow faster and are easier to genetically manipulate, they are limiting 

in the study of cyst formation. However, the first T. gondii acetylome mapping (Jeffers and 

Sullivan, 2012 ; Xue B et al., 2013) as well as our previous studies on TgHDAC3 (Saksouk et 

al., 2005 ; Bougdour et al., 2009) were made using RH strain. To understand more accurately 

the mechanisms involved in the process of differentiation, the choice was made to use Type II 

isolates that form mature cysts readily, although they grow slowly and are more difficult to 

manipulate. We had to develop the appropriate tools to study their acetylome and proteome in 

the context of TgHDAC3 inhibition. 

When comparing protein levels of tachyzoites pre-stimulated with interferon-γ, alkaline pH or 

FR235222, the deacetylase inhibitor promotes a drastic alteration on the levels of hundreds of 

proteins while the other two stimuli merely change the proteome pattern when compared to 

their respective mock control. While it is well documented that conversion to the latent stage 

is a stress-mediated response, coupled with a slowing of the parasite cell cycle to which 

alkaline pH clearly contributes, our proteomic data in the context of a revelant cystogenic 
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strain tend to contradict most of the study so far published. Whether these stress treatments 

act on the parasite directly (while they are extracellular), and/or if they act indirectly on 

intracellular parasites by stressing the host cell, is unclear. Assuming that pH influences 

differentiation via the host cell, the cell type and the development stage of infected cells may 

explain this discrepancy. Indeed,  the proclivity toward spontaneous differentiation for 

instance is influenced by the type of parasite strain but also the host cell background (Ferreira 

da Silva et al., 2008), and cysts are more frequently detected in differentiated host cells that 

are long-lived (Dubey et al., 1998).  

While we expected that the trigger(s) to differentiate are complex and multifactorial, 

consisting of both endogenous and exogenous factors, our data brought for the first time the 

evidence that one unique compound can manipulate the genetic programs that govern T. 

gondii stage conversion. Unexpectedly, FR235222 stimulation triggers in tachyzoite the 

expression of 56 proteins whose expression is restricted to cat enteroepithelial stages 

(merozoite, sexual stages and oocysts) and more that 300 bradyzoite-specific proteins, one 

third of which being exclusively detected when isolated from brain of chronically infected 

intermediate hosts (e.g. mice). Although FR235222 promotes the induction of bradyzoite 

proteins as compound 1 whose molecular target is still unknown (Behnke MS et al., 2008 

PMID: 18433450), the HDACi is quite unique in its ability to change the genetic program in a 

manner to favor the expression of sexual stage-specific proteins. 

Intriguingly, FR235222 induces the expression of genes that are dispersed across all parasite 

chromosomes. This modus operandi is well supported by recent studies that demonstrate 

primary developmental transitions leading to formation of the T. gondii tissue cyst are 

accompanied by a temporally ordered set of transcriptional events (Cleary et al., 2002; Singh 

et al., 2002; Radke et al., 2005). Similar observations have been made in Plasmodium, which 

has led to the ‘just in time’ hypothesis for those selected genes regulated during development 

(Bozdech et al., 2003; Llinas and DeRisi, 2004). It is enticing to speculate that TgHDAC3 is a 

master regulator that coordinates changes in the transcriptome that lead to stage conversion. 

This model can be extended beyond the Apicomplexa phylum. Indeed, Sonda et al. found that 

exposure of parasites to the HDACi FR235222 increased the levels of histone acetylation, 

altered gene transcription and inhibited Giardia lamblia encystation, thus providing evidence 

that epigenetic mechanisms are involved in stage differentiation in other parasitic protozoa 

(Sonda et al., 2010 - PMID: 20132448). However this model lacks elements of specificity that 



 122 

would be needed to explain the strict temporal patterns of gene expression that unfold during 

parasite development. 

 

III- 4. Targeting of TgHDAC3 to chromatin in a DNA-specific manner : a role for 

ApiAP2 transcription factors ? 

In vivo, HDAC enzymes act in megadalton complexes containing corepressors, transcription 

factors, and linking proteins. Most often these enzymes are embedded into a network of 

proteins, which modify or directly support their enzymatic activity (Hakimi et al., Nature, 

2002). Usually, histone deacetylases are unable to access their histone substrates, unless 

DNA-bound activators or repressors target them there. A major breakthrough in the 

understanding of the biological role of TgHDAC3 in T. gondii came with the observation that 

the enzyme forms distinct complexes. 

The first TgHDAC3-interacting partners were purified by a combination of conventional and 

Flag affinity chromatography from a stable parasite (RH) cell line expressing ectopically a 

second copy of TgHDAC3 dually tagged with HA and FLAG at its C-terminus (Saksouk et 

al., 2005). Analysis by silver staining of Superose 6 gel filtration fractions reveals that 

TgHDAC3 is embedded in a high-molecular-mass complex (1 Mda) that is remarkably robust  

at it remains stable under stringent washing conditions (Saksouk et al., 2005). These 

partnerships were subsequently resolved by a combination of mass spectrometry–based 

proteomics that identified TgHDAC3 in a core complex gathering TBL1 and two unknown 

proteins, namely CRC230 (TGME49_305340) and CRC350 (TGME49_272710) whose 

identity was subsequently disclosed as MORC-related protein and AP2VIII-4, respectively. 

Several years later, while purifying the associated partners of T. gondii argonaute, we 

uncovera second TgHDAC3-containing complex, gathering TBL1 and CRC230 as well as 

AP2XI-2 (TGME49_310900), that led us to suggest that the deacetylase might play a role in 

small RNA-induced transcriptional silencing (RITS) complex (Braun et al. 2010). 

Surprisingly, we did not originally identify AP2XI-2 when TgHDAC3 was used as bait 

(Saksouk et al., 2005). Two explanations were then considered: i) TgHDAC3 partners are 

substoichiometric in tachyzoite and when adding a second copy of TgHDAC3 we are eliciting 

a competition with the endogenous enzyme that favor partners binding to the latter. ii) 
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Alternatively, the C-terminal tagging of the second copy of TgHDAC3 may create steric 

hindrance that likely prevents a proper binding to AP2XI-2. Previous work in human cells 

have reported that the C-terminal region of HsHDAC3 is required for both deacetylase and 

transcriptional repression activity (Yang WM et al., 2002).  

Therefore, we decided to reassess the interactome of TgHDAC3 by taking the opportunity to 

use as baits TBL1 and CRC230, two core components regularly seen associated. While we 

failed to epitope-tagged TBL1, purification of CRC230-associated proteins enabled us to map 

thoroughly a family of complexes typified by the presence of TgHDAC3, several scaffolding 

proteins (e.g. ELM2-containing proteins) and 14 ApiAP2 transcription factors, 10 of which 

were found in both type I (RH) and type II (Pru) strains (Table 1).  

It has been difficult so far to determine the exact number of TgHDAC3/CRC230-containing 

complexes and their composition but this work is under way. Anyhow, considerable care will 

be taken to determine whether proteins that we have so far identified are bona fide 

components of the TgHDAC3-containing holoenzyme. Reciprocal co-immunoprecipitation 

and co-localization studies should be performed to validate the associations between 

TgHDAC3 and its potential direct partners. While we will focus our attention primarily on 

ApiAP2 factors, these proteins have sizes ranging between 150 and 350 kDa, making their 

characterization highly challenging.  

Interactions of TgHDAC3 with ApiAP2 transcription factors was unexpected and is quite not 

common to the class I HDAC-associated repressive complexes. Usually, HDACs use co-

repressor to mediate their interaction to repressors in a combination that varies from one cell 

type to another. For instance, the repressor REST which is responsible for modulating neural 

gene expression was shown to bind directly to the co-repressor subunit CoREST and thereby 

to recruit its associated repressive core complex gathering HDAC1,2 (Hakimi et al., PNAS 

2002). 

What was true for TgHDAC3 was also substantiated by the purification of other chromatin-

modifying enzymes-containing complexes. For instance, four ApiAP2 factors (AP2IX-7, 

AP2X-8, AP2XI-2, and AP2XII-4) were identified in association with TgGCN5b, all of which 

are clearly distinct from those that interact with TgHDAC3 (Wang J et al., 2014). Moreover, 

our team identified two novel T. gondii ATP-dependent remodelers that are associated to 

distinct ApiAP2 factors (Data not shown). A question then arose: are these interactions with 
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ApiAP2s direct or mediated by scaffolding proteins ? A high-throughput yeast two-hybrid 

screen using a P. falciparum library revealed that ApiAP2 were embedded in a complex 

network in which they interact directly with histone acetylase (PF08_0034), demethylase 

(MAL8P1.111) and PHD-containing protein (PF14_0315) (Figure 14) (Lindner et al., 2009). 

The screen also brought strong evidence that ApiAP2 were able to form homo- and 

heterodimerize in various combinations, increasing drastically the absolute number of putative 

TFs beyond the primary number of ApiAP2 encoding genes (Figure 14). Dimerization is 

expected to create diversity in recognition site specificity or influences the regulation of gene 

expression.   

 

Figure 14. Protein interaction network with six P. falciparum ApiAP2 transcription factors. The yeast two-

hybrid data are available at http://www.plasmodb.org. Figure from Bougdour et al., 2010.  

The physiological function(s) of the TgHDAC3-associated ApiAP2 can be also investigated 

by knocking down the genes. Based on results from a  CRISPR genome-wide screen in 

Toxoplasma (Figure 15A, Sidik et al.,  2016) we monitored the phenotype, i.e., fitness during 

infection of human fibroblasts, that was associated to Cas9-mediated gene inactivation of 

TgHDAC3 and partners (Figure 15B). While we confirmed that CRC230 and HDAC3 are 

essential we uncovered that 40% of ApiAP2-encoding genes were predicted to be dispensable 

(Figure 15B). These results show great heterogeneity but clearly indicate the presence of 
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ApiAP2s that are essential to growth at least in fibroblast that make good candidate as 

primary regulators of the switch to a different genetic program. But it still remains to be 

shown. 

Figure 15. Monitoring TgHDAC3 and partners fitness using a genome-wide CRISPR screen in 

Toxoplasma (A) T. gondii genes rank-ordered based on their phenotype. Genes previously reported are 

highlighted, indicating whether they are dispensable (yellow), or indispensable as inferred from overexpression 

(blue) or another method (red). Dotted line represents the median phenotype score for the dispensable genes. The 

two groups are compared in a box plot where whiskers indicate the most extreme data within 1.5 times the 

interquartile range from the boxed quartiles (right). Image from Sidik et al., 2016, Cell 167, 1–13. (B) 

TgHDAC3 and partners genes rank-ordered based on their phenotype. Dotted line represents the median 

phenotype score for the dispensable genes.  

Originally, transcription factors (TFs) and their cognate cis-acting binding sites have been 

difficult to identify in the phylum. Thus far, the Apicomplexan AP2 (ApiAP2) family of 

DNA-binding proteins are the sole family of proteins to have surfaced as candidate 

transcription factors in all apicomplexan species (Balaji et al., 2005; Iyer et al., 2008). Work 

from several laboratories begins to shed light on how the ApiAP2 proteins from Plasmodium 

spp. and T. gondii contribute to the regulation of gene expression at various stages of parasite 

development. 

Recombinantly expressed P. falciparum AP2 domains bind specifically to a large variety of 

DNA sequences. Putative binding motifs were identified upstream of the majority of genes, 

making ApiAP2s the main candidates for generating stage-specific patterns of gene 

expression (Campbell et al., 2010). PfSIP2 (PF3D7_0604100) was shown to associate 

uniquely with the SPE2 motifs found at the chromosome ends in the telomere-associated 

repetitive elements (TAREs) and upstream of var genes (Flueck et al., 2010) while 
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PF3D7_1007700, a protein harboring three AP2 domains, binds a GTGCA motif resembling 

the rhoptry motif (Campbell et al., 2010). PfAP2Tel, harbouring a non-canonical DNA-

binding AP2 domain was shown to bind to P. falciparum telomeres (Sierra-Miranda M et al., 

2017). 

Several ApiAP2 were shown to be active at different stage of parasite development. Thus, 

PfAP2-I (ApiAP2 involved in invasion) was identified as a key regulator of RBC invasion by 

the malaria parasite (Santos JM et al., CHM, 2017 - PMID: 28618269). Five ApiAP2 were 

shown to play key roles in parasite progression through the life cycle and were crucial for 

gametocytogenesis (ap2-g and ap2-g2; Kafsack et al., 2014; Sinha et al., 2014; Yuda et al., 

2015), ookinete development (ap2-o; Yuda et al., 2009), sporozoite formation (ap2-sp; Yuda 

et al., 2010), and liver stage maturation (ap2-l; Iwanaga et al., 2012). A systematic knockout 

screen in rodent malaria Plasmodium berghei identified ten ApiAP2 genes that were essential 

for mosquito transmission: four were critical for the formation of infectious ookinetes, and 

three were required for sporogony. The authors describe non-essential functions for AP2-O 

and AP2-SP proteins in blood stages, and identify AP2-G2 as a repressor active in both 

asexual and sexual stages (Modrzynska K et al., 2017).  

In Toxoplasma gondii, AP2IX-9 restricts Toxoplasma commitment to develop the mature 

bradyzoite tissue cyst (Radke JB et al., 2013). It was recently described a cross-talk between 

that two alkaline-stress-induced ApiAP2 transcription factors, i.e. AP2IX-9 and AP2IV-3. 

These factors were expressed in two overlapping waves during bradyzoite development, with 

AP2IX-9 increasing expression earlier than AP2IV-3, which peaked as AP2IX-9 expression 

was declining. Disruption of the AP2IX-9 gene enhanced, while deletion of AP2IV-3 gene 

decreased, tissue cyst formation, demonstrating that these factors have opposite functions in 

bradyzoite development (Hong DP et al., mSphere, 2017). Finally, AP2IX-4 

(TGME49_288950) was shown to display reduced frequencies of tissue cyst formation in 

culture and in a mouse model of infection (Huang S et al., mSphere 2017). However, the 

functions of most members of the family remain unknown, including those identified in 

TgHDAC3 partnership. 

Apparently, ApiAP2 genes act together to create complex patterns of gene expression. This is 

reminiscent of model eukaryotes, where complex gene expression patterns that determined 

cell identity are the result of hierarchical networks, within which TFs function in combination 

and occasionally synergistically (Gerstein et al., 2012; Levo and Segal, 2014). It appears that 
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the apicomplexan transcriptomes are regulated in a similar way and that ApiAP2 proteins are 

key factors involved in this process that associate/recruit histone modifying enzymes. 

III- 5. Deacetylation by TgHDAC3 of ApiAP2 transcription factors: the  substrate 

hypothesis? 

It is now understood that protein acetylation represents an additional level of regulation for 

multiple enzymes and, considering the prevalence of this modification on many other 

proteins, could dictate the flux of many other cellular processes. In Toxoplasma, a number of 

HATs have been observed to localize predominantly in the parasite cytosol, suggesting that 

they may also target non-histone substrates (Smith AT, et al., Eukaryot Cell, 2005). Sullivan’s 

lab report the first ‘acetylome’ of tachyzoites and therefore they identified over 400 novel 

acetylation sites on a wide variety of proteins throughout the parasite cell, including those 

with roles in transcription, translation, metabolism and stress responses (Jeffers and Sullivan, 

2012 ; Xue B et al., 2013).  We initially thought that HDACi may have further mechanisms of 

action beyond the dysregulation of gene expression and this would explain the FR235222-

mediated pleiotropic phenotypes aforementioned. Intriguingly, we did not find any 

transcriptional regulators whose expression at the protein level was affected by FR235222 

treatment. However, while looking at the corresponding acetylome we uncover an extensive 

set of ApiAP2 and chromatin-modifying enzymes that were acetylated at specific residue 

upon drug treatment, expanding drastically the complexity of the TgHDAC3-regulated 

network. 

 

TgHDAC3 is therefore able to accommodate different substrates apart from PTMs in histone 

tails or core (e.g. H4K31ac). This characteristic may lie in the particular structure of its 

catalytic site of the enzyme. Indeed, the residue T99 along with the amino acid A98 creates an 

insertion within the catalytic site of the enzyme that is exclusively conserved in apicomplexan 

HDAC3 family of proteins and absent in any other eukaryotic HDAC (Figure 16).  
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Based on sequence homology, mutations in TgHDAC3 (T99A and T99I) conferring 

resistance to FR235222 localize to the L2 loop of HDLP, where the residue Y91 localized at 

the rim of the active site contacts the cognate HDACi, TSA (Figure 16B) (Finnin, M.S. et al. 

1999). Structural data of HsHDAC8 pointed out the role of the residue D101 in both substrate 

and HDACi recognition (Figure 16C); HsHDAC8D101A mutated enzyme was inactive on 

protein substrates and binding efficiency to hydroxamate inhibitor was decreased (Vannini, 

AC et al., EMBO Rep. 8:879–884). Given that D101 is localized in the vicinity of T99 of 

TgHDAC3, these data further strengthen the hypothesis of a direct inhibition of TgHDAC3 by 

FR235222 and are consistent with a role of T99 in the interactions with cyclopeptide 

inhibitors. T99A and T99I change amino acid polarity; it is therefore tempting to speculate 

that polar interactions at the rim of the active site support the binding to HDACi’s but also 

expand the range of the substrates that can be handle by the enzyme. 

 

The first evidence that the AT insertion may contribute to change the specificity of the 

TgHDAC3 were brought earlier by our team while monitoring P36 labeling in the 

TgHDAC3T99A mutant background (Bougdour et al., 2009). Indeed, they showed that the 

bradyzoite marker became constitutively expressed in the TgHDAC3T99A mutant compared to 

wild-type parasites (Figure 5A). This suggests that a simple point mutation in this insertion is 

able to affect the basal activity of the enzyme and  that was confirmed on histone acetylation  

(Figure 5B, compare the yield of H4 enrichment in the absence of FR235222 in WT versus 

mutant background). While these observations are interesting, they do not provide conclusive 

evidence on how TgHDAC3 selectively discriminates its substrates.  

 

III- 6. Conclusion 

The ability to perform genetic crosses, to engineer transgenic parasites lines, and the wealth of 

information made available through recent genome sequencing projects have made the 

laboratory study of these parasites important not only for understanding the diseases that they 

cause, but also for gaining insights into basic biological processes. During my PhD I brought 

new evidence that the HDAC3 family plays a role in gene expression, differentiation, and 

cell-cycle control. Drug inhibition of TgHDAC3 prevents the formation of the daughter cells. 

Moreover, parasites treated with low doses of FR235222 are committed to differentiate into 

bradyzoites. The emerging picture is that epigenetic changes are linked to stage conversion 

and virulence, although more data are needed to fully grasp the versatility and the complexity 

of the mechanism involved. 
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Part IV.  Materials and methods 
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IV- 1. Parasites and host cells 
 

HFF and MEF primary cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) 

(Invitrogen) supplemented with 10% heat inactivated Fetal Bovine Serum (FBS) (Invitrogen), 

10mM (4-(2-hydroxyethyl)-1-piperazine ethanesulphonic acid) (HEPES) buffer pH 7.2, 2 mM 

L-glutamine and 50 µg ml of penicillin and streptomycin (Invitrogen). Cells were incubated at 

37°C in 5% CO2. Type I (RH wild type and RH ∆ku80) and type II strains (Pru ∆ku80) of T. 

gondii were maintained in vitro by serial passage on monolayers of HFFs. Plasmodium 

falciparum 3D7 strain was grown in RPMI 1640 media supplemented with 0.5% Albumax II, 

0.1mM Hypoxanthine and Gentamicin 10 mcg/ml. The culture was maintained at 2% 

hematocrit and 5% parasitemia. The parasites were kept at 37°C and at 1% O2, 5% CO2 and 

94% N2 gas mixture concentration.   

 

IV- 2.HDACi treatments 
 

The final concentration of histone deacetylase inhibitors dissolved in DMSO was, as 

described by Bougdour A et al., 2013, FR-235222 (90nM), apicidin (100nM), HC-toxin 

(100nM), trichostatin A (100nM), scriptaid (100nM), APHA (100mM) and sodium butyrate 

(5mM). They were added to infected HFF cells for 18 hours. Halofuginone (10 nM) was 

shown to inhibit prolyl-tRNA synthetase (Jain V et al., 2015) and was used as a control. 

 

IV- 3. Plasmid constructs 
 

For endogenous gene tagging, we used different genes of interest (GOI) such as 

TGME49_268860 (ENO1), TGME49_291040 (LDH2), TGME49_207210, 

TGME49_216140, TGME49_262110, TGME49_316130, TGME49_20m.00351 and 

TGME49_305340 (CRC230) to generate stable transgenic parasites. To construct vector 

pLIC-TgGOI-HAFlag, the coding sequence of TgGOI was amplified using Pru ∆ku80 and 

RH∆ku80 genomics DNA as templates and primers pLIC-GOI_F and pLIC- GOI_R. The 

resulting PCR product was cloned into the pLIC-HAFlag-dhfr vector (Bougdour A et al., 

2013) using the LIC cloning method as reported previously (Huynh MH and Carruthers VB, 

2009) yielding pLIC-TgGOI-HA-DHFR. Cloning primers used in this study: 

LIC-20.m00351_Fwd: 5’-TACTTCCAATCCAATTTAGCacggcaggcatgctctggaacggtctgta-3’ 
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LIC-20.m00351_Rev: 5’-TCCTCCACTTCCAATTTTAGCagctgtgtgagaatgctgccgctcggtta-3’ 

LIC-2072010_Fwd: 5’-TACTTCCAATCCAATTTAGCactgtaaatagaggaagacactgcactg-3’ 

LIC-2072010_Rev: 5’-TCCTCCACTTCCAATTTTAGCtggcttcttcttcccctccctttctagc-3’ 

LIC-216140_Fwd: 5’-TACTTCCAATCCAATTTAGCtccgaagaccatccatgaatattcatgg-3’ 

LIC-216140_Rev: 5’-TCCTCCACTTCCAATTTTAGCgccgtttatctcgaccacggatggcgg-3’ 

LIC-268860_Fwd: 5’-TACTTCCAATCCAATTTAGCgaacatgcaggcaatggcttggctcttc-3’  

LIC-268860_Rev: 5’-TCCTCCACTTCCAATTTTAGCttttgggtgtcgaaagctctctcccgcg-3’ 

LIC-291040_Fwd: 5’-TACTTCCAATCCAATTTAGCgttggatgattcacaggcgacaagcattg-3’ 

LIC-291040_Rev: 5’-TCCTCCACTTCCAATTTTAGCacccagcgccgctaaactcttattcaattc-3’ 

LIC-262110_Fwd: 5’-TACTTCCAATCCAATTTAGCagcgctcctcaccccaagtcggcagttc-3’ 

LIC-262110_Rev: 5’-TCCTCCACTTCCAATTTTAGCctgggtctggccatctttggtcttggctc-3’ 

LIC-316130_Fwd: 5’-TACTTCCAATCCAATTTAGCgctttgatggacaagcaaatgcacgttc-3’ 

LIC-316130_Rev: 5’-TCCTCCACTTCCAATTTTAGCacttcgaatgtcgtctgggacaatttcc-3’ 

LIC-305340_Fwd:  

5’-TACTTCCAATCCAATTTAGCACGACGCCTTCGGGAGTACCACGAGGAG-3’ 

LIC-305340_Rev:  

5’-TCCTCCACTTCCAATTTTAGCCACAATCTTCGCTTCTCCATCAACCTCTG-3’ 

 

IV- 4. Cas9-mediated gene disruption 
 

The plasmid pTOXO_Cas9-CRISPR was described in (Sangaré O et al, 2016). For gene 

disruption using CRISPR/Cas9 system, the GOI were: GCN5A (TGGT1_254555), GCN5B 

(TGGT1_243440), MYST-A (TGGT1_318330), MYST-B (TGGT1_207080), HAT1 

(TGGT1_293380), HDAC1 (TGGT1_281420), HDAC2 (TGGT1_249620), HDAC3 

(TGGT1_227290), HDAC4 (TGGT1_257790) and HDAC5 (TGGT1_202230). Twenty mers-

oligonucleotides corresponding to specific GOI were cloned using Golden Gate strategy. 

Briefly, primers TgGOI-CRISP_FWD and TgGOI-CRISP_REV containing the sgRNA 

targeting TgGOI genomic sequence were phosphorylated, annealed and ligated into the 

linearized pTOXO_Cas9-CRISPR plasmid with BsaI, leading to pTOXO_Cas9-

CRISPR::sgTgGOI. Toxoplasma tachyzoites were then transfected with the plasmid and 

grown on HFF cells for 18-36 hours. Cloning oligonucleotides used in this study:  

TgHDAC1-CRISP-FWD: 5’- AAGTTGCGTCGCCGTTCTCTCACGCG -3’ 

TgHDAC1-CRISP-REV: 5’- AAAACGCGTGAGAGAACGGCGACGCA -3’   
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TgHDAC2-CRISP-FWD: 5’- AAGTTGCGCCCGTCGCCTCCCCCGCG -3’ 

TgHDAC2-CRISP-REV: 5’- AAAACGCGGGGGAGGCGACGGGCGCA -3’ 

TgHDAC3-CRISP-FWD: 5’- AAGTTGATATCGGAAGTTACTACTAG -3’ 

TgHDAC3-CRISP-REV: 5’- AAAACTAGTAGTAACTTCCGATATCA -3’    

TgHDAC4-CRISP-FWD: 5’- AAGTTGCTGTTGCTGAAGCCCAGGCG -3’ 

TgHDAC4-CRISP-REV: 5’- AAAACGCCTGGGCTTCAGCAACAGCA -3’ 

TgHDAC5-CRISP-FWD: 5’- AAGTTGGCGAGACCGGGGCAGCCGCG -3’ 

TgHDAC5-CRISP-REV: 5’- AAAACGCGGCTGCCCCGGTCTCGCCA -3’ 

TgGCN5A-CRISP-FWD: 5’- AAGTTGCGTGACGAACGACAGGCAAG -3’ 

TgGCN5A-CRISP-REV: 5’- AAAACTTGCCTGTCGTTCGTCACGCA -3’ 

TgGCN5B-CRISP-FWD: 5’- AAGTTGGGTTTCCTGTGTCGAGACCG -3’ 

TgGCN5B-CRISP-REV: 5’- AAAACGGTCTCGACACAGGAAACCCA -3’ 

TgMYSTA-CRISP-FWD: 5’- AAGTTGGCTGCTCCGCGACTCAGCGG -3’ 

TgMYSTA-CRISP-REV: 5’- AAAACCGCTGAGTCGCGGAGCAGCCA -3’ 

TgMYSTB-CRISP-FWD: 5’- AAGTTGCGCGAAGAAGGGAGAGAGCG -3’ 

TgMYSTB-CRISP-REV: 5’- AAAACGCTCTCTCCCTTCTTCGCGCA -3’ 

TgHAT1-CRISP-FWD: 5’- AAGTTGCCGACGGGTCACGGAGACTG -3’ 

TgHAT1-CRISP-REV: 5’- AAAACAGTCTCCGTGACCCGTCGGCA -3’    

    

IV- 5. Antibodies 
 

Primary antibodies : rabbit home-made anti-TgHDAC3 described in (Bougdour A et al., 

2009), mouse anti-HA (3F10, Roche), rabbit anti-H4K8ac (Upstate 06-760), rabbit anti-

H4K12ac (Upstate 06-761), rabbit anti-H3K4ac (Diagenode C15410165), rabbit anti-H3K9ac 

(Diagenode C15410004), rabbit anti-H3K14ac (C15210005), rabbit anti-H3K18ac 

(Diagenode C15410193), rabbit anti-H3K27ac (Millipore, 04-1044-S) and mouse anti-

H3K27ac (Diagenode C15200184), H4K20me3 (C15410207), H3K9me3 (Millipore, 17-625), 

H3K4me1 (C15410194) and H3K4me3 (C15410003-50). Western blot secondary antibodies 

were conjugated to alkaline phosphatase (Promega), while immunofluorescence secondary 

antibodies were coupled with Alexa Fluor 488 or Alexa Fluor 594 (Thermo Fisher Scientific). 

We also raised homemade H4K31acetylation and H4K31monomethylation-specific 

antibodies in rabbit against linear peptides corresponding to amino acid residues 23/24-35 of 

histone H4 and carrying modified residue K31: C-DNIQGITKme1PAIR; C-
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DNIQGITKacPAIR and C-RDNIQGITKacPAIR. They were produced by Eurogentec and 

used for immunofluorescence, immunoblotting and chromatin immunoprecipitation. 

 

IV- 6. Toxoplasma gondii transfection 

 

Toxoplasma gondii RH, RH ∆ku80 and Pru ∆ku80 were electroporated with vectors in 

cytomix buffer (120mM KCl, 0.15mM CaCl2, 10mM K2HPO4/ KH2PO4 pH7.6, 25mM 

HEPES pH7.6, 2mM EGTA, 5mM MgCl2) using a BTX ECM 630  machine (Harvard 

Apparatus). Electroporation was performed in a 2mm cuvette at 1.100V, 25Ω and 25µF. 

Stable transgenic parasites were selected with 1µM pyrimethamine, single-cloned in 96 well 

plates by limiting dilution and verified by immunofluorescence assay. 

 

IV- 7. Immunofluorescence microscopy 

 

Toxoplasma infecting HFF cells grown on coverslips were fixed in 3% formaldehyde for 20 

min at room temperature, permeabilized with 0.1% (v/v) Triton X-100 for 15 min and blocked 

in Phosphate buffered saline (PBS) containing 3% (w/v) Bovine Serum Albumine (BSA). The 

cells were then incubated for 1 hour with primary antibodies followed by the addition of 

secondary antibodies conjugated to Alexa Fluor 488 or 594 (Molecular Probes). Nuclei were 

stained for 10 min at room temperature with Hoechst 33258. Coverslips were mounted on a 

glass slide with Mowiol mounting medium, and images were acquired with a fluorescence 

ZEISS ApoTome.2 microscope and images were processed by ZEN software (Zeiss). 

Plasmodium asexual stages infecting red blood cells were washed with phosphate-buffered 

saline (PBS) and fixed in solution with 4% paraformaldehyde and 0.0075% glutaraldehyde in 

PBS for 30 min. After one wash with PBS, cells were permeabilized with 0.1% Triton X-100 

in PBS for 10 min. Cells were washed twice with PBS, blocked with 3% BSA in PBS for 1 

hour.  The cells were then incubated for 1 hour with primary antibodies followed by the 

addition of secondary antibodies conjugated to Alexa Fluor 488 or 594 (Molecular Probes). 

Nuclei were stained for 30 min at room temperature with Hoechst 33258. The parasites were 

finally washed 2-3 times before loading on to glass slides mixed with fluoro-gel. Images were 

acquired with a fluorescence ZEISS ApoTome.2 microscope and images were processed by 

ZEN software (Zeiss). 
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IV- 8. Protein extraction and Trypsin Digestion 

 

HFF cells were grown to confluence, infected with Pru ∆ku80 parasites and treated with 

90nM FR235222 for 18 hours. As a control, we used 0.1% DMSO treatment. Harvested 

intracellular parasites were washed in PBS, lysed in ice-cold urea lysis buffer (8 M urea, 

20mM HEPES-KOH pH7.5) and centrifuged for 10 minutes at 1000g at 4°C. Supernatants 

were collected and protein concentration was measured followed by reduction and alkylation 

of cysteines. Proteins were digested subsequently with endo-LysC and trypsin. Peptides were 

then desalted over C18 columns. Digested peptides were used for FR235222-responsive 

global proteome and acetylome. 

 

IV- 9. Affinity enrichment of lysine acetylated peptides 

 
We used a pan acetyl lysine antibody. Tryptic peptides were dissolved in immunoaffinity 

purification IAP buffer (50mM morpholinepropane sulfonic acid MOPS, 10mM sodium 

phosphate, 50mM NaCl pH 7.2) and incubated with pre-washed antibody beads (with IAP 

buffer and with water) at 4°C overnight. Enriched peptides were eluted from the beads with 

0.15% TFA, vacuum-dried and analyzed by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS). 

 

IV- 10. Affinity purification of Flag-tagged proteins 

 

HFF cells were grown to confluence and infected with Pru ∆ku80 and RH ∆ku80 parasites 

expressing the endogenous protein in fusion with the HA-Flag tags. Intracellular and 

extracellular tachyzoites were collected by centrifugation at 4°C for 10 min at 1000xg.  The 

cell pellets were washed in PBS1X by centrifuging at 4°C for 10 min at 1000xg and the 

supernatant was discarded. The whole-cell extract containing Flag-tagged protein was lysed in 

lysis buffer (20% glycerol, 20mM Tris-HCl pH8, 500mM KCl, 1.5mM MgCl2, 0.5% NP-40, 

100mM PMSF, 0.5mM DTT, plus complete EDTA-free protease inhibitor cocktail) and 

incubated at 4°C for 45 min with 5rmp rotation speed. After centrifugation at 20 000xg for 45 

min at 4°C, the proteins were incubated with 500µl anti-Flag M2 affinity gel (Sigma- Aldrich) 

at 4°C for 1 hour at 5 rpm rotation speed. Beads were washed with 10- column volumes of 

BC500 buffer (20% glycerol, 20mM Tris-HCl pH8, 500mM KCl, 1.5mM MgCl2, 0.5% NP-
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40, 100mM PMSF, and 0.5mM DTT). Bound polypeptides were eluted with 250µg/ml Flag 

peptide diluted in BC100 buffer. For size-exclusion chromatography, protein eluates were 

loaded onto Superose 6 HR 10/30 column equilibrated with BC500. Flow rate was fixed at 

0.35ml/min, and 0.5ml fractions were collected. 

 

IV- 11. Mass spectrometry and peptide sequencing 

 

Protein bands were excised from colloidal blue-stained gels (Invitrogen), treated with DTT 

and iodoacetamide to alkylate the cysteines, and then immediately subjected to in-gel tryptic 

digestion. Peptides were extracted with 5% vol/vol formic acid solution and acetonitrile, and 

injected into an Ultimate 3000 (Dionex) nanoLC system that was directly coupled to a LTQ-

Orbitrap mass spectrometer (Thermo Fisher Scientific). MS and MS/MS data were acquired 

using Xcalibur (Thermo Fischer Scientific) and processed automatically using Mascot 

Daemon software (Matrix Science). Tandem mass spectra were searched against a compiled 

T. gondii database using the MASCOT program (Matrix Sciences). 

 

IV- 12. Histones purification, Immunoblotting and mass spectrometry 

analysis 

 

For histone purification, HFF cells were grown to confluence and infected with Pru∆ku80 

parasites. Intracellular tachyzoites were treated with histone deacetylase HDAC3 inhibitor, 

90nM FR235222 for 18 hours. As appropriate control, we treated tachyzoites with 0.1% 

DMSO. Histones were extracted and purified using histone purification kit (Active motif) 

according to manufacturer’s protocol. For western blotting, histone proteins were run on a 

NuPAGE 4-12% Bis-Tris polyacrylamide gels in MES-SDS running buffer (Invitrogen) and 

transferred to a polyvinylidene fluoride PVDF membrane (Immobilon-P; Millipore) using 

NuPAGE transfer buffer (Invitrogen). The blots were probed using primary antibodies: pan 

acetyl H4, H4K31ac and H4K31me1, followed by phosphatase-conjugated goat secondary 

antibodies (Promega). The expected band of histones were detected using NBT-BCIP 

(Amresco). Nucleosomes from Toxoplasma gondii-infected cells were purified and proteins 

separated by SDS-PAGE. The band corresponding to H4 was excised and submitted to mass 

spectrometry-based proteomic analysis. The presented MS/MS spectrum was identified using 
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Mascot search engine and shows the acetylation of K31 residue in the DNIQGITKPAIR 

peptide. 

 

IV- 13. Chromatin Immunoprecipitation and Next Generation Sequencing 

in T.gondii 

 

HFF cells were grown to confluence and infected with Pru ∆ku80 strain. Harvested 

intracellular parasites were crosslinked with formaldehyde (final concentration 1%) for 8 mins 

at room temperature and the crosslinking was stopped by addition of glycine (final 

concentration 0.125M) for 5 min at room temperature. Crosslinked chromatin was lysed in 

ice-cold lysis buffer (50mM HEPES KOH pH7.5, 140mM NaCl, 1mM EDTA, 10% glycerol, 

0.5%NP-40, 0.125% triton X-100, protease inhibitor cocktail) and sheared in shearing buffer 

(1mM EDTA pH8.0, 0.5mM EGTA pH8.0, 10mM Tris pH8.0, protease inhibitor cocktail) by 

sonication using a Diagenode Biorupter. Samples were sonicated, for 16 cycles (30 seconds 

ON and 30 seconds OFF), to 200-500 base-pair average size. Immunoprecipitation was 

carried out using sheared chromatin, 5% BSA, protease inhibitor cocktail, 10% triton X-100, 

10% deoxycholate, DiaMag Protein A-coated magnetic beads (Diagenode) and antibodies 

(H4K31ac, H4K31me1, pan acetyl H4, H4K20me3, H3K9me3, H3K4me3, H3K4me1, 

H3K14ac). A rabbit IgG antiserum was used as a control mock. After overnight incubation at 

4°C on rotating wheel, chromatin-antibody complexes were washed and eluted from beads by 

using iDeal ChIP-seq kit for Histones (Diagenode) according to the manufacturer’s protocol. 

Samples were decrosslinked by heating for 4 hours at 65°C. DNA was purified by using IPure 

kit (Diagenode) and quantified by using Qubit Assays (Thermo Fisher Scientific) according to 

the manufacturer's protocol. For ChIP-seq, purified DNA was used to prepare libraries and 

then sequenced by Arraystar (USA, http://www.arraystar.com/ ). 

 

IV- 14. Library Preparation, Sequencing and Data analysis (Arraystar) 

 

ChIP-Sequencing library preparation was performed according to Illumina’s protocol 

Preparing Samples for ChIP Sequencing of DNA. Library Preparation: 10 ng DNA of each 

sample was converted to phosphorylated blunt-ended with T4 DNA polymerase, Klenow 

polymerase and T4 polymerase (NEB); An ‘A’ base was added to the 3' end of the blunt 

phosphorylated DNA fragments using the polymerase activity of Klenow (exo minus) 



 137 

polymerase (NEB); Illumina's genomic adapters were ligated to the A tailed DNA fragments; 

PCR amplification was performed to enrich ligated fragments using Phusion High Fidelity 

PCR Master Mix with HF Buffer (Finnzymes Oy). The enriched product of ~200-700 bp was 

cut out from gel and purified. Sequencing:  The library was denatured with 0.1M NaOH to 

generate single-stranded DNA molecules, and loaded onto channels of the flow cell at 8pM 

concentration, amplified in situ using TruSeq Rapid SR cluster kit (#GD-402-4001, Illumina). 

Sequencing was carried out by running 100 cycles on Illumina HiSeq 4000 according to the 

manufacturer’s instructions. Data analysis: After the sequencing platform generated the 

sequencing images, the stages of image analysis and base calling were performed using Off-

Line Basecaller software (OLB V1.8). After passing Solexa CHASTITY quality filter, the 

clean reads were aligned to Toxoplasma gondii reference genome (Tgo) using BOWTIE 

(V2.1.0). Aligned reads were used for peak calling of the ChIP regions using MACS V1.4.0. 

Statistically significant ChIP-enriched regions (peaks) were identified by comparison of two 

samples, using a p-value threshold of 10-5. Then the peaks in each sample were annotated by 

the overlapped gene using the newest T.gondii database. The EXCEL/BED format file 

containing the ChIP-enriched regions was generated for each sample. Data visualization: 

The mapped 100 bp reads represent enriched DNA fragments by ChIP experiment. Any 

region of interest in the raw ChIP-seq signal profile can be directly visualized in genome 

browser. We use 10-bp resolution intervals (10-bp bins) to partition the stacked reads region, 

and count the number of reads in each bin.  All the 10 bp resolution ChIP-seq profiles of each 

sample are saved as UCSC wig format files, which can be visualized in T.gondii Genome 

Browser (http://protists.ensembl.org/Toxoplasma_gondii/Info/ Index). All these raw and 

processed files can be found at GEO DATASET number. 
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Membrane trafficking pathways play critical roles in Apicomplexa, a phylum of protozoan

parasites that cause life-threatening diseases worldwide. Here we report the first

retromer-trafficking interactome in Toxoplasma gondii. This retromer complex includes a

trimer Vps35–Vps26–Vps29 core complex that serves as a hub for the endosome-like

compartment and parasite-specific proteins. Conditional ablation of TgVps35 reveals that the

retromer complex is crucial for the biogenesis of secretory organelles and for maintaining

parasite morphology. We identify TgHP12 as a parasite-specific and retromer-associated

protein with functions unrelated to secretory organelle formation. Furthermore, the major

facilitator superfamily homologue named TgHP03, which is a multiple spanning and ligand

transmembrane transporter, is maintained at the parasite membrane by retromer-mediated

endocytic recycling. Thus, our findings highlight that both evolutionarily conserved and

unconventional proteins act in concert in T. gondii by controlling retrograde transport that is

essential for parasite integrity and host infection.
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CNRS, Université de Lille, 59000 Lille, France. 7 Laboratory of Cell Physiology, INSERM U 1003, Université de Lille, 59655 Villeneuve d’Ascq, France.
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The phylum Apicomplexa comprises an ancient group of
early divergent eukaryotes, including some of the most
deadly pathogens of medical and veterinary importance.

Plasmodium species are responsible for malaria, which causes as
many as 700,000 deaths per year, while Toxoplasma gondii
chronically infects up to 30% of the human population, with
immunocompromised patients and pregnant women at risk
for adverse outcomes, such as toxoplasmic encephalitis and
spontaneous abortion, respectively1. T. gondii is considered a
model system not only for its pathogenic relatives but also
for intracellular parasitism and infection biology in general.
T. gondii has common eukaryotic organelles, including
the nucleus, endoplasmic reticulum and a single Golgi stack,
but also specific secretory organelles named dense granules,
micronemes and rhoptries that contain parasite-derived factors
required for host infection. Rhoptries and micronemes are
formed de novo during parasite replication, and this process
requires significant protein and lipid trafficking through the
secretory pathway.

The trafficking mechanisms employed by T. gondii retain
several typical eukaryote components as well as evolving
divergent features. Protein trafficking of this parasite is mediated
by entry into a canonical endoplasmic reticulum followed by
vesicle packaging through a single Golgi complex2,3. Post-Golgi
protein sorting to specific organelles requires the function of
dynamin-related protein B, which is involved in fission events4.
Downstream Rab-GTPases function throughout the parasite
secretory pathway5. T. gondii soluble N-ethylmaleimide-
sensitive-factor attachment protein receptor (SNARE) proteins
in docking and fusion at target membranes have also been
described6,7. However, unlike in mammalian cells, T. gondii
endoplasmic reticulum is reduced so that the nuclear envelope
itself contributes to a substantial proportion of its total volume2.
Whereas in mammalian cells hundreds of Golgi stacks occupy the
perinuclear area8, the Golgi apparatus is limited to a single
discrete structure in T. gondii9. The post-Golgi system, also
named the endosome-like compartment (ELC), is involved in the
trafficking of microneme proteins10,11. The ELC is decorated by
the small GTPases, Rab5 and Rab7, which are typically associated
with the endosomal system. Nevertheless, classical endocytosis
has not yet been validated in T. gondii. This parasite has no
lysosomes; rather the parasite harbours acidic vesicles that were
thought to be precursors of the rhoptry organelles12. The parasite
lacks most components of endosomal sorting complexes, which
are known for their roles in forming multivesicular bodies that
deliver ubiquitinated membrane proteins and lipids to lysosomes
for degradation3,13. The machinery required for caveogenesis and
caveola-dependent invaginations have not yet been identified in
the parasite14. Furthermore, while evidence of conventional
clathrin-dependent endocytosis by T. gondii is lacking, clathrin
is present exclusively in post-Golgi compartments where its
function is restricted to post-Golgi trafficking15, and the uptake of
cytosol proteins by the tachyzoites of T. gondii has recently
been described using an endocytosis assay16. However, the
mechanisms underlying the events of this unconventional
endocytosis in the parasite remain to be determined. Clearly,
the secretory pathway of T. gondii can be considered a stripped-
down version of the more complex trafficking machinery that
characterizes higher eukaryotes. Despite this minimal trafficking
machinery, the parasites actively rely on a membrane vesicle
formation and transport during its intracellular lifecycle;
however, to date, comparatively little is known about the
mechanisms involved in trafficking pathways in T. gondii.

We previously reported a T. gondii sortilin-like receptor
(TgSORTLR) that regulates protein transport and is essential
for apical secretory organelle biogenesis and host infection17.

Moreover, the C-terminal tail of TgSORTLR was shown to be
involved in recruiting many cytosolic cargo proteins including
two homologues of the core retromer components, Vps26 and
Vps35 (ref. 17), which are known to regulate retrograde transport
from endosomes to the trans-Golgi network (TGN) in yeast and
mammals18,19.

Here, we report that a singular architecture with a trimer
Vps35–Vps26–Vps29 core complex acts as the major endosomal
cargo recycling machinery and is required for parasite integrity
and more specifically for secretory organelle biogenesis and
maintenance of a multiple ligand-binding transporter at the
T. gondii membrane. Our findings provide strong evidence that
the unconventional TgSORTLR-containing ELC is involved in
distinct mechanisms for the delivery of major retromer-
dependent cargo. They also demonstrate a role for the endocytic
recycling pathway in T. gondii pathogenesis.

Results
Features of the retromer interactome of T. gondii. To identify
proteins that interact with the T. gondii retromer complex, we
chromosomally appended an encoded hemagglutinin (HA) epi-
tope to TgVsp35 and TgVps26. This knock-in strategy allows
steady-state levels of epitope-tagged protein expression via
homologous promoters. We also tagged TgVps29 identified in the
parasite genome (TGME49_252490, www.toxodb.org) with a
cMyc epitope as above. We performed a series of immunopre-
cipitation experiments under native conditions; revealing that
TgVps35-HA, TgVps26-HA and TgVps29-cMyc were specifically
pulled down (Fig. 1a, lanes 2–4; and Supplementary Fig. 1) using
HA or cMyc-tagged protein extracts and antibodies specific to
HA and cMyc, respectively. No protein signals were detected in
the negative controls using naı̈ve sera and the same protein
extracts, as expected (Fig. 1a, lanes 5 and 6). In addition,
immunoprecipitation of TgVps35-HA and TgVps26-HA also
revealed a faint protein band corresponding to TgSORTLR pro-
tein using rat antibodies anti-TgSORTLR (Fig. 1b, lane 3 (E) and
blue stars in left and middle panels) while immunoprecipitation
of TgVps29 did not, most likely due to its low-expression level
(Fig. 1b, lane 3 (E), right panel). Mass spectrometry analysis of
the eluates corroborates the presence of TgVps35, TgVps26 and
TgVps29 in each immunoprecipitation sample (Supplementary
Data 1). Consistent with the immunoblots shown in Fig. 1b, the
presence of TgSORTLR was only confirmed in immuno-
precipitates of TgVps35 and TgVps26 by mass spectrometry
(Supplementary Data 1). To gain unbiased insight into the gen-
uine retromer composition in T. gondii, we developed a quanti-
tative approach using micro liquid chromatography-selected
reaction monitoring (microLC-SRM) and stable isotope-labelled
standard peptides. The absolute quantification of TgVps35,
TgVps26 and TgVps29 was carried out using three proteotypic
peptides per protein (Supplementary Data 2). This approach
yielded a stoichiometry of B1:1 for TgVps35 relative to TgVps26
and 3:1 between TgVsp35 and TgVps29 (Supplementary Table 1).
This stoichiometry between TgVps35 and TgVPS29 is in contrast
to the formation of a functional core retromer complex at a ratio
of 1:1:1, as in mammalian and yeast cells20. However, this
discrepancy may also be explained by the fact that TgVPS29 may
associate with TgVPS35 at a much lower affinity than TgVPS26,
thus leading to the reduced levels of TgVPS29 identified by
co-immunoprecipitations. In addition, 17 retromer-interacting
proteins were identified in the interactome (Fig. 1c) and ranked
according to the following filtering criteria: protein common to at
least two co-immunoprecipitations, absent in the control and
identified with at least two unique peptides (Supplementary
Data 1). Most interactors (12 out of 17) were immunoprecipitated
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with both TgVps35 and TgVps26 (Fig. 1c), confirming the
potential of predominant TgVps35–TgVsp26 complexes in which
only a fraction of TgVsp29 is bound to generate a functional
retromer complex, as determined by the quantitative proteomics
described in Supplementary Table 1. Functional classification by
gene ontology analysis revealed that some of these interactors
played roles in cell trafficking: Rab5B, an endosome marker;
Rab11B, a factor essential for inner membrane complex
recycling21; the TBC1D5A homologue, a Rab7-GTPase-
activating protein that negatively regulates the core retromer
function22; the aforementioned TgSORTLR receptor17; and
N-ethylmaleimide-sensitive protein, a factor involved in
SNARE-dependent membrane fusion. In addition to the
established binding partners, 9 out of 17 proteins are new
parasite-specific proteins (that is, hypothetical proteins (HP);

Fig. 1c). Confocal imaging revealed that TgVps35-HA,
TgVps26-HA and TgVps29-cMyc co-localize with the ELC
markers pro-microneme 2-associated protein (proM2AP),
vacuolar protein 1 (VP1) and TgSORTLR (Fig. 1d). We
therefore conclude that the ELC defines the sub-cellular
compartment where retromer-mediated vesicle recycling or
retrograde trafficking operates via an endolysosomal-like system
in T. gondii.

TgVps35 silencing abrogates host infection by T. gondii. To
establish the functional roles of TgVps35 in T. gondii infection,
we generated conditional anhydrotetracyclin (ATc)-inducible
knockout mutants (iKoTgVps35) using the strategy described in
Fig. 2a. We selected three positive clones from the emerging
stable parasite population and the genome editing of these clones
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Figure 1 | Interactome reveals cargo-selective complex and other interactors with the retromer of T. gondii. (a) Immunoblots of co-immunoprecipitates
of TgVps35-HA and TgVps26-HA (designated IP retromer) probed with rabbit polyclonal specific anti-HA antibodies (lanes 2 and 3) using total detergent
protein extracts from the knopck-in TgVps35-HA and TgVs26-HA parasites, respectively, and anti-HA beads. Immunoblot of co-immunoprecipitate of
TgVps29-cMyc (IP retromer) probed with rabbit polyclonal anti-cMyc antibodies (lane 4) using total detergent protein extract from the knock-in TgVps29-
cMyc parasites and anti-cMyc beads. Negative controls (Neg control) using total detergent protein extracts from untagged parental RH TaTi parasites
incubated with anti-HA (lane 5) and anti-cMyc (lane 6) beads. Lane 1 (designated input) corresponds to equally mixed sample of all three detergent
extracts containing TgVps35-HA, TgVps26-HA and TgVps29-cMyc proteins and revealed by a mixed probe containing both anti-HA and anti-cMyc
antibodies. Molecular weights (kDa) of protein markers are shown on left. IgGh means heavy chain of IgG. (b) Immunoblots of TgVps35-HA, TgVps26-HA
and TgVsp29-cMyc as described in a probed with rat specific anti-TgSORTLR antibodies. (I, input) corresponds to total detergent protein extracts from
TgVps35-HA, TgVps26-HA and TgVps29-cMyc knock-in parasites, respectively; (U) unbound lysates to the anti-HA or anti-cMyc beads and (E) eluates
corresponding to co-immunoprecipitates. The blots were simultaneously incubated with rat anti-TgSORTLR and rabbit anti-HA or rat anti-TgSORTLR and
rabbit anti-cMyc antibodies. Protein markers (kDa) are also shown on left. IgGh means heavy chain of IgG, IgGL means light chain of IgG. (c) Retromer
interactome was constructed by analysing the co-immunoprecipitates of TgVsp35-HA, TgVps26-HA and TgVps29-cMyc validated by immunoblotting in a
and mass spectrometry (Supplementary Data 1). The interactome identified TgVps35, TgVps29 and TgVps26 (red) and TgSORTLR (blue) in addition to the
putative phosphatidylinositol synthase (PPS), transporter major facilitator family protein (TMFFP), putative N-ethylmaleimide sensitive fusion protein
(NSF), multi-pass transmembrane protein (MTP), Rab5, Rab11B, Rab7-GTPase-activating protein (GAP) regulator TBC1D5A homologue and nine parasite-
specific HP. (d) Confocal imaging of TgVps35, TgVps26 and TgVps29 that co-localize with TgSORTLR, proM2AP and vacuolar protein 1 (VP1) using
intracellular tachyzoites of the respective knock-in parasites stained with anti-HA or anti-cMyc antibodies followed by probing with anti-TgSORTLR, anti-
proM2AP and anti-VP1 antibodies, respectively. Bar, 2 mm.
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was verified by PCR, demonstrating the perfect integration of the
knockout vector at the TgVps35 locus (Fig. 2b). Following ATc
treatment, we subsequently observed the disappearance of
HA-TgVps35 protein by western blotting (Fig. 2c) and confocal
imaging (Fig. 2d). To ascertain bona fide morphological
phenotypes that stem from the inducible targeted disruption of
the TgVps35 gene, we complemented this mutant with full-length
cMyc-tagged TgVps35 (Comp-iKoTgVps35), which was intro-
duced in the uracil phosphoribosyl transferase locus, as this gene
is known to be non-essential for parasite survival23. The
iKoTgVps35 mutants were severely impaired in their ability to
invade host cells (Fig. 3a) and did not form plaques after multiple
rounds of host cell invasion and lysis (Fig. 3b). Complementation
of the iKoTgVps35 mutant that allows obtaining Comp-
iKoTgVps35 parasite lines restored the ability of these
complemented mutants to efficiently reinvade host cells
(Fig. 3a), yielding normal plaque sizes in the presence of ATc
similar to those of parental RH TaTi parasites (Fig. 3b). These
later observations demonstrate that the lack of host cell invasion
and the subsequent inability of the iKO mutants to establish
several rounds of cell lysis and reinvasion are directly linked to
the depletion of TgVps35 and the absence of functional retromer
complex in these mutants, thus excluding pleotropic and
non-specific phenotypes.

To examine the role of TgVps35 in Toxoplasma infection
in vivo, mice were infected with lethal doses of iKoTgVps35,
Comp-iKoTgVps35 or parental parasites followed by TgVps35
suppression in vivo by providing ATc in the drinking water.
Strikingly, the ATc-treated mice inoculated with iKoTgVps35

survived, whereas animals inoculated with iKoTgVps35 but not
treated with ATc succumbed to the infection by day 9 (Fig. 3c).
Mice infected with Comp-iKoTgVps35 mutants and the parental
strains succumbed to the infection regardless of the initiation of
ATc treatment (Fig. 3c). It should be mentioned that RH TaTi
background was genetically attenuated in virulence compared
with the parental and wild-type RH strain, thus allowing
challenging mice with sub-lethal parasite doses. When mice were
inoculated with sub-lethal doses of these mutants or parental
parasites and re-challenged with lethal doses of the wild-type
parental RH strain, all iKoTgVps35-infected mice succumbed in a
manner similar to the naı̈ve primo-infected animals, whereas
those infected with Comp-iKoTgVps35 and the parental strains
survived (Fig. 3d). Thus, the conditional ablation of TgVps35
transformed a T. gondii into a complete non-lethal strain of
parasites, and furthermore, infection with iKoTgVps35 parasites
does not confer sterile immunity to reinfection, which is also
consistent with phenotypic traits previously described for
iKoTgSORTLR mutants17.

Retromer is essential for parasite integrity. We observed that
the disappearance of rhoptries peaks at 24 h of ATc treatment
while micronemes were mostly affected 48 h after ATc pressure,
which also corresponds to the time necessary for the complete
depletion of TgVps35, as shown by western blots and confocal
microscopy in Fig. 2. Following 48 h of ATc treatment, we also
found a complete disorganized morphology with the marked
absence of the typical banana-shaped bodies in TgVps35-depleted
mutants using electron microscopy (Fig. 4b), whereas untreated
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Figure 2 | Conditional ablation of TgVps35 gene. (a) Schematic of the vector and experimental approach used for the conditional ablation of the TgVps35
gene. (b) PCR analysis of three clones with conditional disruption of TgVps35 and the parental line. Superoxide dismutase (SOD) served as the positive
control. Also see the primers used for these PCR in Supplementary Table 3. (c) Immunoblots of the three conditional iKoTgVps35 mutants and RH TaTi
parasites, which were grown in the presence or absence of ATc for 48 h, harvested and purified. Each lane refers to a total SDS-protein extract
corresponding to the equivalent of 2! 106 parasites. Immunoblots were probed with anti-HA antibodies. Actin probed with specific monoclonal antibodies
served as a loading control. Molecular weights (kDa) of protein markers are indicated on left. (d) Intracellular vacuole containing 16-daughter iKoTgVps35
mutants corresponding to one of the three clones analysed by PCR and western blots and PCR confirmed the conditional depletion TgVps35 protein
(right panel) by confocal imaging after 48 h post-infection in the presence of ATc. The left panel showed the same mutant in which TgVps35 protein was
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was used to stain nuclei. Rabbit specific anti-HA antibodies was also used. Bar, 2mm.
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iKoTgVps35 parasites appeared structurally normal with all
secretory organelles (Fig. 4a). It should be mentioned that the
membrane localization of the major glycosyl–phosphatidyl
inositol-anchored surface antigens24, SAG1 and SAG3 of
T. gondii was not impaired by the suppression of TgVps35
(Fig. 9f), indicating that the traffic to and the integrity of the
parasite pellicle were not affected. This aberrant parasite
morphology was confirmed in intravacuolar dividing mutants
that were also devoid of rhoptries, micronemes and dense
granules (Fig. 4c). Complementation of iKoTgVps35 mutants
restored the ability of the parasites to form the secretory
organelles de novo even in the ATc pressure (Fig. 4d). Using
confocal microscopy, we showed that in the absence of rhoptry
and microneme organelles, the ROP and MIC proteins were all

mis-localized in the cytoplasm as well as in the parasitophorous
vacuole of TgVps35-depleted mutants, leading to the loss of the
typical apical end staining of these proteins (Fig. 5a, lower,
left and middle panels, respectively). As expected, the parental
parasites normally contained rhoptries and micronemes
(Fig. 5a, upper, left and middle panels). In addition, the dense
granule GRA1 protein staining that typically surrounds the
parasitophorous vacuole (Fig. 5a, upper and right panel) was
also altered in TgVps35-depleted mutants (Fig. 5a, lower and
right panel). This later observation is in sharp contrast to the
phenotypic traits of iKoTgSORTLR mutants in which dense
granule biogenesis and secretion were not affected17. We also
confirmed that the secretory organelles were correctly localized in
complemented iKoTgVps35 parasites and that the mis-sorting of
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ROP, MIC and GRA proteins was rescued in the presence of
ATc using confocal microscopy (Fig. 5b).

In wild-type parasites, formation of rhoptries and micronemes
is correlated with proteolytic maturation of ROP and MIC
proteins3,25. Likewise, this proteolytic maturation was defective in
the TgVps35-depleted mutants compared with the parental strain,
leading to the accumulation of unprocessed ROP1, ROP2, ROP4,
M2AP and MIC5 (Fig. 6a and Supplementary Fig. 2). Notably,
iKoTgVps35 parasites that were not treated with ATc displayed
typical proteolytic maturation of the aforementioned ROP and
MIC proteins (Fig. 6a and Supplementary Fig. 2). Next, we
probed these blots with specific antibodies that recognized the
N-terminal pro-peptides of ROP4 and MIC5 and found a
significant accumulation of both pro-protein and immature
forms in the TgVps35-deficient mutants (Fig. 6a and
Supplementary Fig. 2). In contrast, processing of the receptor
TgSORTLR was unchanged in these mutant parasites, suggesting
that neither the processing of pre-protein in the endoplasmic
reticulum is impaired nor this receptor is subjected to the typical
lysosomal-like degradation in the TgVps35-deficient parasites
(Fig. 6a). This later behaviour of T. gondii lacking TgVsp35 and
retromer functions differs greatly from what is normally observed
in the absence of functional retromer complex in other eukaryotes

in which the cargo sorting receptors such as sortilin and
mannose-6-phosphate receptor are targeted to lysosomes for
degradation26–29. Since the levels of the control protein, the
glycolytic enzyme enolase ENO2, were similar between mutant
and parental parasites, we speculated that both pro-ROP and
pro-MIC specifically accumulated in iKoTgVps35 mutants as a
consequence of conditional disruption of TgVps35 functions,
which are clearly recovered in the presence of iKoTgVps35
complementation as cMyc-TgVps35 is able to fully restore
proteolytic processing and maturation of ROP and MIC
proteins under ATc pressure (Fig. 6b). Taken together, these
results suggest that retromer-mediated recycling is likely required
to deliver and maintain one or more proteases that process
pro-ROP and pro-MIC proteins, a proteolytic processing that is a
key parameter for secretory organelle formation and host
infectivity by T. gondii.

Secretory organelle biogenesis depends on retromer. The
cellular location of TgVps35, TgVps26 and TgVsp29 of the
retromer complex with the ELC markers proM2AP and vacuolar
protein 1 (Fig. 1d), as for Rab5 or Rab7, prompted us to
investigate the outcome of TgVps35 depletion on TgSORTLR,
which also co-distributes in the parasite with these two
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antibodies to ROP2-3, MIC5 and GRA1 proteins (see the complete list of antibodies in Supplementary Table 5). Bar, 2 mm. (b) Confocal
immunofluorescence microscopy of MIC5, ROP1 and GRA3 proteins in complemented iKoTgVps35 mutants in the presence (lower panels) or
absence of ATc (upper panels) as above. Bar, 2 mm.
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small GTPases17. Using high-resolution structured illumination
microscopy (SIM), we monitored the discrete compartments that
contained TgSORTLR (Fig. 7) by co-labelling Golgi apparatus
marker with the Golgi reassembly stacking protein (GRASP)-
RFP, the early endosome with HA-Rab5A, and the late endosome
with HA-Rab7. While endogenous TgSORTLR (up to 20%)
colocalized with GRASP-RFP in the Golgi compartment (Fig. 7a,
left panel) in the parental strain, the co-distribution drastically
decreased to a marginal level in TgVps35-deficient mutants
(Fig. 7a, right panel and Fig. 7b). Consequently, we observed
significantly increased colocalization of endogenous TgSORTLR
with Rab5A and Rab7-positive ELC in TgVps35-depleted mutants
(Fig. 7c,e; right panels). Quantitation of this co-distribution in
TgVps35-deficient mutants indicated that 90% of TgSORTLR
localized with Rab5A (Fig. 7d) and that up to 99% of endogenous
TgSORTLR was colocalized with Rab7-positive ELC (Fig. 7f). In
comparison, only 60% (Rab5A) and 50% (Rab7) of TgSORTLR
was colocalized with the Rab GTPase-labelled ELC in parasites
that were not treated with ATc (Fig. 7d,f). Biochemical data also
supported the notion that only TgVps26 interacts with Rab7 in a
GTP-dependent manner, while none of these three subunits of
the T. gondii core retromer partnered with Rab5B or Rab11B in
the presence of GTP (Supplementary Fig. 3). Clearly, these data
demonstrate that the retromer complex drives TgSORTLR
recycling from Rab7-positive ELC to the TGN, thus sustaining
another round of protein transport for proper secretory organelle
biogenesis.

TgHP12 is a parasite-specific retromer-associated partner. The
conditional disruption of the TgVps35 gene strongly suggests that
the retromer complex is likely involved in other functions, such as

controlling parasite shape in addition to secretory organelle
biogenesis. In our quest to discover other roles for the retromer
complex in T. gondii, we sought to decipher the functions of some
parasite-specific proteins also named HP that were identified in
the interactome (Fig. 1c and Supplementary Data 1). Towards
this goal, we searched by bioinformatics for striking sequence
features that could potentially define retromer-associating pro-
teins among these parasite-specific HP proteins. We identified a
typical type I transmembrane TgHP12 protein that harbours a
putative coiled-coil region downstream of the transmembrane
segment (Supplementary Fig. 4a). These structural features are
conserved in TgHP12 homologues in all tested parasites across
the Apicomplexa phylum (Fig. 8a). Potential relationships were
identified between the TgHP12 helical region and two helical
structures present in rabenosyn-5 and FIP2 (Supplementary
Fig. 4b), which are known to be involved in the interaction with
the Rab GTPases30,31, and also with the coiled-coil region of
syntaxin, which shares typical heptad repeats with TgHP12
(Supplementary Fig. 4b).

Because these similarities represent only short segments,
statistical analysis was unable to establish a significant relation-
ship with any of the proteins. As a result, we have not further
investigated the significance of these possible structural features,
but instead, we determined the molecular relationships between
TgHP12 and the retromer complex by knock-in TgHP12-cMyc
into iKoTgVsp35 mutants. These experiments revealed that
TgHP12 co-localizes with TgVps35-HA and TgSORTLR
(Fig. 8b, upper panels) but not with cathepsin L or M2AP, two
markers of the ELC (Fig. 8b, lower panels), suggesting that
TgHP12 is a resident protein of both the Golgi and TGN
compartments. Likewise, mass spectrometry was used to
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demonstrate that TgHP12 specifically pulled down TgVps35,
TgVps29 and TgVps26 in addition to TgSORTLR (Supplementary
Table 2). These interactions were confirmed by reverse immuno-
precipitations in which TgVsp35, TgVsp29 and TgVps26 also
specifically pulled down TgHP12 protein (Fig. 8c).
Furthermore, we confirmed that the eluates of TgHP12 also
contained HA-TgVps35 (Fig. 8d) and TgSORTLR (Fig. 8e) by
western blots. To obtain additional insight into the functions of
TgHP12, we disrupted this gene using the CRISPR-Cas9 strategy
(Supplementary Fig. 4c). We confirmed the efficient disruption of
TgHP12 gene, as no TgHP12 protein was detected in these mutants
using rat polyclonal antibodies that we specifically raised and
purified against the recombinant TgHP12 protein (Supplementary
Fig. 4d, first and left of upper panels). As expected, this protein was
normally expressed in wild-type parasites (Supplementary Fig. 4d,
red, first and left of lower panels). Since no deleterious effects in
rhoptries, micronemes or dense granules occurred following
CRISPR-Cas9 disruption of TgHP12, we conclude that this type I
transmembrane protein is likely involved in functions distinct from
those described for TgSORTLR. In line with this hypothesis,
proteomic analysis indicated that TgHP12 binds to other partners
(Supplementary Data 3), suggesting a possible role in alternative
trafficking pathways or in the regulation of other functions as a
retromer-associated partner.

Retromer maintains a parasite transporter at the membrane.
The generation of iKoTgVps35 mutants that are deficient in
retromer-mediated transport allows us to investigate the recycling
mechanisms that deliver and maintain transmembrane proteins
at the parasite membrane. We also used bioinformatics to search
for candidate multi-spanning transmembrane proteins among the
HP identified in the retromer interactome. We discovered that
TgHP03 exhibits the topology and positions of 12 transmembrane
helices that were predicted by Phyre2 alignments32 to align with
known three-dimensional structures of several members of the
major facilitator superfamily (MFS), suggesting that TgHP03
may belong to this superfamily (Fig. 9a). These membrane
transporters facilitate movement of a wide range of small
substrates such as metabolites, oligosaccharides, amino acids,
oxyanions and drugs that were all transported by MFS across the
cell membranes33. Even though a significant relationship with
the MFS can be established, no direct link with one specific
MSF member was determined by bioinformatics. To assess the
functional links between TgHP03 and the retromer complex,
we first examined its sub-cellular localization by detecting a
cMyc epitope-tagged version in the iKoTgVps35 mutants.
In the absence of ATc, TgHP03-cMyc displayed homogenous
membrane staining on both extracellular (Fig. 9b,c, left upper
panel) and intracellular (Fig. 9c, right upper panel) parasites,

Neg
controlTgVps29

TgHP12

* lgGH55

70

M
W

 (
kD

a)

TgVps26TgVps35

IP

Neg
controlTgHP12

100

70

55

25

TgHP12-cMyc

HA-TgVps35

* lgGL

M
W

 (
kD

a)

IPd

c

Neg
controlTgHP12

100
70

55

25

M
W

 (
kD

a)

TgSORTLR

TgHP12-cMyc

* lgGL

IPe

a

TgHP12-cMyc

HA-TgVps35 TgSORTLR

proM2APCPL

TgHP12-cMycTgHP12-cMyc

TgHP12-cMyc

b

Figure 8 | TgHP12 is a novel parasite-specific retromer-associating partner. (a) Alignment of the helical region in TgHP12 protein and in orthologues
from apicomplexan parasites with human syntaxin (pdb 1n7s_B, syntaxin), rabenosyn-5 (1z0j_B and 1z0k_B), and FIP2 (pdb 3tso_C). Secondary structures
are reported above and below the alignment. Stars indicate amino acids involved in Rab binding (rabenosyn-5 and FIP2) and the conserved glutamine of
syntaxin that participates in the ionic central layer of SNARE complexes. Genbank identifier (gi) and N- and C-terminal limits are as follows: Theileria
annulata (85000999, aa 239-297), Neospora caninum (401395596, aa 42-100), Eimeria maxima (557188226, aa 283-342), Babesia equi (510902511, aa
253-311) and Plasmodium falciparum (583212139, aa 375-433). Also see Supplementary Fig. 4. (b) Confocal immunofluorescences showing co-distribution
of TgHP12 protein with TgVps35 protein, and TgSORTLR protein (upper panel) while no colocalization was detected with cathepsin L (CPL) or proM2AP
protein. Mouse or rabbit polyclonal anti-cMyc antibodies were used in addition to rat anti-TgSORTLR, rabbit anti-HA, anti-CPL and proM2AP antibodies.
Bar, 2 mm. (c) Reverse immunoprecipitation using total detergent extract proteins from the knock-in TgVps35-HA, TgVps29-cMyc or TgVps26-HA parasites
demonstrated that all three components of the core retromer complex can be pulled down by TgHP12. IgGh, IgG heavy chain; IP, immunoprecipitations; Neg
control, negative control using naı̈ve sera; molecular weights (kDa) were shown on left. (d) TgHP12-cMyc and TgVps35-HA proteins were concomitantly
co-immunoprecipitated from total detergent protein extracts from iKoTgVps35 parasites in which TgHP12-cMyc protein was expressed by knock-in
strategy. The blots were probed with rabbit anti-cMyc and anti-HA. IgGL, IgG light chain; IP, immunoprecipitations; Neg control, negative control using naı̈ve
sera; molecular weights (kDa) were shown on left. (e) TgHP12-cMyc and TgSORTLR proteins were concomitantly co-immunoprecipitated from parasites
total detergent protein extracts from iKoTgVps35 parasites in which TgHP12-cMyc protein was expressed by knock-in strategy. The blots were stained with
rabbit anti-cMyc and rat anti-TgSORTLR. IgGL, IgG light chain; IP, immunoprecipitations; Neg control, negative control using naı̈ve sera; molecular weights
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as expected for transmembrane transporters. TgVps35
suppression by ATc led to a mis-localization and enhanced
accumulation of TgHP03 in intra-cytoplasmic vesicular structures
in both extracellular (Fig. 9c, left lower panel) and intracellular
mutants (Fig. 9c, right lower panel), thus leading to a decrease of
TgHP03 at the parasite surface. Since ATc treatment did not
affect the levels of TgHP03-cMyc protein (Fig. 9d,e), it is likely
that no TgHP03 protein degradation may occur on suppression of
TgVps35-mediated endocytic recycling. This observation is also
consistent with the absence of TgSORTLR degradation following
suppression of TgVps35 (Fig. 6a). Again, the accumulation of
mis-sorted cargo in intra-cytoplasmic vesicles in T. gondii is also
in sharp contrast to transmembrane transporter degradation
occurring via lysosomes in mammalian cells34. Interestingly,
we found that the surface localization of the glycosyl–
phosphatidyl inositol-anchored major surface antigens, SAG1
and SAG3 of T. gondii was not influenced by the suppression
of TgVps35 (Fig. 9f), suggesting that only the sorting of
multi-spanning transmembrane proteins may be influenced by
retromer-dependent endocytic recycling. Together, our data
identify a role for TgVsp35 in the endosome-to-plasma
membrane sorting of multi-spanning transmembrane
transporter cargo and provide the first evidence for the
mechanistic role of TgVsp35 in the process linked to retromer-
dependent endocytic recycling.

Discussion
Nascent apical organelles require proficient cell trafficking to fulfil
their critical role during invasion and intracellular development
of T. gondii. Here, we show that retromer-mediated recycling is
essential for secretory organelle biogenesis, parasite morphology
and maintenance of a transmembrane transporter at the parasite
membrane. The retromer complex was first identified in yeast and
mammals as a heteropentameric complex typified by a cargo-
selective complex that was built around the Vps35–Vps29–Vps26
trimer and a dimer of different sorting nexins28,35–38. Our
previous findings that TgSORTLR receptor is involved in the
recruitment of Vps26 and Vps35 homologues prompted us to
investigate how the retromer complex regulates retrograde
transport as well as other functions in T. gondii. Towards this
goal, we characterized the retromer interactome that includes
TgVps35, TgVps29 and TgVps26 proteins. We failed to identify
homologues of nexins (SNX) in the immunoprecipitates of
T. gondii using all three retromer components, confirming that no
SNX proteins can be pulled down in association with the
retromer cargo-selective trimer39. However, we also noticed the
paucity of nexin-like proteins in the genome databases of
T. gondii, and this may also explain our inability to pull
down recognizable nexin-like proteins in the parasite. Rather,
we identified a singular retromer complex typified by the
TgVps35–TgVps29–TgVps29 trimer. This complex interacts
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with TgSORTLR, N-ethylmaleimide-sensitive protein, Rab5B,
Rab11B and the TBC1D5A homologue, a member of the
Rab7-GTPase-activating proteins known to negatively regulate
the retromer complex through Rab7 dissociation from endosomal
membranes22. However, we cannot rule out the possibility that
some parasite-specific proteins may act as SNX and
Bin/Amphyphysin/Rvs domain-containing proteins that are
required for recruitment of the retromer complex to endosome
membranes, membrane curvature and tubulation27,35.
Furthermore, we demonstrated that TgSORTLR recycling from
the ELC to the TGN is severely compromised in TgVps35
mutants, suggesting that the retromer complex functions in
endocytic recycling in T. gondii. In contrast to yeast and human
cells in which Rab7–Vps35 interaction is necessary for binding
to endosome membranes37,38, we found an unconventional
TgRab7–TgVps26 interaction, a singular feature previously
described in Entamoeba histolytica40.

In addition, we describe additional evidence for the phenotypic
links between an absence of proteolytic processing of ROP/MIC
proteins, mis-sorting of their unprocessed forms, and loss of
rhoptry and microneme organelles. Our hypothesis is that
TgSORTLR, in addition to acting as a sorting receptor for
ROP/MIC proteins, delivers proteases, which are involved in the
processing of pro-proteins, to secretory organelles.

The retromer interactome also includes several parasite-specific
proteins. We first described TgHP12 as a novel type I
transmembrane protein with helical regions that share potential
similarities with Rab-binding or SNARE-like domains. We
showed that TgHP12 localizes to the TGN and physically
interacts with the core retromer complex TgVps35–TgVps29–
TgVps26 as well as with TgSORTLR. Genetic ablation of TgHP12
using CRISPR-Cas9 indicates that its function is neither essential
nor related to secretory organelle biogenesis. Instead, proteomic
analyses revealed other unrelated secretory organelle proteins
whose functions remain to be determined. Our current study also
describes for the first time in apicomplexan parasites, the
endocytic recycling of the multi-pass transmembrane transporter
TgHP03, which belongs to the MFS, a class of membrane

transport proteins that facilitate movement of small solutes across
cell membranes such as drugs, metabolites, oligosaccharides
and amino acids in response to chemiosmotic gradients41.
TgHP03 accumulates in endocytic vesicles that are detected in
the cytoplasm of TgVps35-deficient mutants, indicating that
maintenance of TgHP03 at the surface of T. gondii requires
endocytic recycling from endosomes to the plasma membrane.
Clearly, our study underscores the wide range of possible cargo
molecules that are recycled by the retromer complex in light of
the numerous identified transmembrane proteins that require
future examination. A global analysis of retromer-mediated cargo
per se will aid the delineation of the diverse metabolite and
metal ion transporters required to maintain parasite nutrient
homeostasis and intracellular replication.

It is also worth noting that the absence of TgVps35 has
negatively impacted the biogenesis of dense granules and body
morphology in addition to that of rhoptries and micronemes,
whereas TgSORTLR functions are restricted to rhoptry and
microneme formation17. This disorganization of parasite body
shape in the absence of TgVsp35 suggests a possible additional
role of the retromer in regulating cytoskeleton and endosome
functions as previously described in mammalian cells42,43.
However, the sorting nexins that are involved in this process in
mammalian cells are not presently identified in T. gondii.
Alternatively, we cannot rule out the possibility that the
parasite-specific HP or other retromer-associated proteins could
play this novel function that controls body morphology in
T. gondii.

In conclusion, we demonstrated that the retromer complex of
T. gondii is a major endosomal recycling hub required for sorting
different cargo proteins that regulate diverse functions vital for
parasite survival, as indicated in the our model presented in
Fig. 10. This model also supports the notion that the retromer
complex drives TgSORTLR recycling from Rab7-positive ELC to
the TGN, thus sustaining another round of protein transport for
proper secretory organelle biogenesis (Fig. 10a). In contrast to
higher eukaryotes, in which an increase of lysosome degradation
of the glucose transporter and other cargo sorting proteins,

Toxoplasma
gondii

Mammalian
cell

LERecycling
pathway

Lysosome
TGN

TgHP12 ?

TgHP03

?

?

?

ELC to TG
N TGN

Degradation

pathway

Exocytosis
Rab5A,C

DG

ROP

a b

MIC

ELC

Rab7 Rab7

VP1
proM2AP

LE to
 TGN

LE
 to

 p
la

sm
a

m
em

br
an

e

En
do

cy
to

sis

Golgi

Rab7

Rab5EE

Sorting
nexin

Sorting
nexin

Vps35
Vps26 Vps29

Vps35
Vps26

TgVps26
Vps29TgVps35

TgVps29

EE

LE

ELC to plasma
membrane

TgSORTLR

TgSO
RTLR
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situation in mammalian cells (b). Instead, the retromer-dependent recycling is essential for secretory organelle formation and parasite shape. We propose
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sortilin and mannose-6-phosphate receptor occurred in the
absence of Vps35 (refs 28,34), the disruption of TgVsp35
did not affect TgSORTLR and TgHP03 degradation. This
later observation also supports our model that in contrast
to mammalian cells (Fig. 10b), T. gondii lysosomal-like
organelles11,44,45, only promote proteolytic maturation of
proteins destined to secretion and that the endosomal system is
adapted for organelle biogenesis and discharge of factors required
for the intracellular lifestyle of the parasite (Fig. 10a). Our
findings are expected to advance our understanding of endocytic
recycling by T. gondii, highlighting the identity of unconventional
endosomal factors, and this new knowledge may ultimately reveal
new targets for managing toxoplasmosis.

Methods
Growth of host cells and parasite strains. T. gondii RH wild-type strain and its
derivative RHDku80 (ref. 46) or RH TaTi (ref. 47) strains were grown in human
foreskin fibroblasts (HFF; from ATCC, USA) as described17. Plaque size assays
were performed using HFF cells infected with 250 parasites in the presence or
absence of 1.5 mgml! 1 of ATc for 6 days followed by crystal violet staining.
All stained coverslips were imaged with an Axioplan microscope (Zeiss).

Generation of knockout and knock-in T. gondii strains. All primers used for PCR
are listed in Supplementary Table 3. The conditional iKoTgVps35 mutants were
generated in the RH TaTi strain using the pG13-D-T7S4 plasmid, which contains
2 kb of 50 and 30 genomic DNA and the dihydrofolate reductase (DHFR) gene for
pyrimethamine selection. After transfection of 5" 106 parasites with 50mg of linear
plasmid, a stable line was cloned by limiting dilution. For complementation,
iKoTgVps35 mutants were transfected with 50 mg of plasmid containing the
full-length cMyc-tagged TgVps35 gene inserted into the uracil phosphoribosyl
transferase locus. Stable transgenic and cloned parasites were selected with 5 mM
5-fluoro-20-deoxyuridine. Transgenic TgVps35-HA, TgVps26-HA and TgVps29-
cMyc parasites were generated with a knock-in strategy with DNA fragments of
2.1, 2.1 and 1.8 kb, respectively, cloned upstream of the stop codon from
TGGT1_242660, TGGT1_263500 and TGGT1_252490 genes. DNA sequences
were cloned into the pLIC-HA-DHFR and pLIC-cMyc-DHFR plasmids46.
Tachyzoites (5" 106 parasites) of the RHDKu80 strain were transfected with 25 mg
of linearized plasmids. Transgenic parasites expressing cMyc-tagged TgHP03
(TGGT1_240810) and TgHP12 (TGGT1_294220) were also generated as described
above. All plasmids used in this study are listed in Supplementary Table 4.

Transient transformation and Cas9-mediated gene disruption. The plasmid
pTOXO_Cas9-CRISPR (see map in Supplementary Fig. 4, panel c) corresponds to
pUC57 carrying the C-terminally HA/GFP tagged S. pyogenes Cas9 gene48

fused to 2 nuclear localization sequences expressed under the control of the
TUB8 promoter as well as the TgU6 promoter driving the gRNA. Twenty
mers-oligonucleotides corresponding to specific gene of interest were cloned using
Golden Gate strategy49. The ccdB positive-selection marker acts by killing the
background of cells with no cloned DNA. The plasmid was synthesized and fully
sequenced by GenScript (Singapour).

Confocal microscopy. Extracellular or intracellular parasites were fixed with
4% paraformaldehyde in phosphate-buffered saline for 20min and processed as
described17,50 using the indicated antibodies. The sources, origins and dilutions of
all antibodies used for immunofluorescence assays were listed in Supplementary
Table 5. Samples were observed with a Zeiss Confocal or Apotome microscope, and
images were processed using ZEN software (Zeiss).

Structured illumination microscopy. SIM was used to obtain high-resolution
images using an ElyraPS1 microscope system (Zeiss) with a " 100 oil immersion
lens (alpha Plan Apochromat " 100, NA 1.46, oil immersion). The resolution was
measured using beads with a diameter of 100 nm (Tetraspeck multicolor). The
point spread function was calculated using the metroloJ plugin (ImageJ, NIH),
which gave an x–y resolution of 125 nm and a z resolution of 500 nm. A voxel size
of 0.050" 0.050" 0.150 mm3 was used for the measurement. Three lasers (405, 488
and 561 nm) were used for excitation. SIM images were acquired with an EMCCD
camera (Andor Technology Ltd, UK) and processed with ZEN software, exposure
times varied between 100 and 120ms. Three-dimensional images were generated
using a z-step of 150 nm (total thickness B5 mm), while reconstructions and
co-distributions were determined with IMARIS software (Bitplane). For
co-distribution analysis, we used the colocalization module implemented in the
IMARIS software. To process the images, we first applied a threshold for each
channel (threshold adapted according to the labelling). For the Alexa488 channel,
we used a threshold fixed at 15,000. For the red channel, the threshold varied
between 8,000 and 25,000, depending on the dye used. The percentage (%) of

volume B (green channel) above the threshold that colocalized (colocalized volume
B above threshold/total volume B above threshold) and thresholded Mander’s
coefficient B and Pearson coefficient were calculated. The acquisition was
performed sequentially using 43HE, 38HE and BP 420–480 Zeiss filter sets, and
15 frames were acquired to reconstruct one image (five rotations" three phases,
with a SIM grating period of 51 mm for the blue channel, 42 mm for the green
channel and 34mm for the red channel). Beads with a diameter of 100 nm were
imaged to measure the chromatic misalignment of our system (fit procedure by the
ZEN software), and these parameters enabled further correction of the alignment
on each acquired multi-channel stack. Image reconstruction was achieved using
ZEN software with the following parameters: Noise Level -4, Sectioning 99-83-83
and Frequency Weighting 1.

Specifically, iKoTgVps35 mutants transiently transfected were treated with ATc
or left untreated for 24 h or 48 h, fixed and stained with primary specific antibodies
and either Dylight594- or Alexa488-conjugated secondary antibodies. Forty eight
hours of ATc treatment corresponds to the time point where optimal effects on
rhoptry and microneme biogenesis were observed and expression of TgVps35
protein was completely ablated as demonstrated by western blots and IFA.
Therefore, all other experiments were then performed at this time point in this
study. For GRASP-RFP expressing parasites, the fluorescence signal was directly
visualized by SIM. Colocalization was quantified as overlap between green and red
images using the IMARIS software for 90 intracellular parasites from 7 to 8
vacuoles.

Electron microscopy. For transmission electron microscopy, intracellular
tachyzoites of iKoTgVps35, complemented mutants, or parental parasites were
fixed overnight at 4 !C with 2.5% glutaraldehyde/4% paraformaldehyde prepared
0.1M cacodylate buffer, cells were fixed in 2.5% glutaraldehyde prepared in 0.1M
cacodylate buffer and post-fixed in 1% osmium tetroxide in the same buffer. After
acetonitrile dehydration, the pellet was embedded in Epon. Ultrathin sections
(90 nm) were cut using a Leica UC7 ultramicrotome and collected on 150 mesh
hexagonal barred copper grids. After staining with 2% uranyl acetate prepared in
50% ethanol and incubation with a lead citrate solution, sections were observed on
a Hitachi H-600 transmission electron microscope at 75 kV accelerating voltage.

Host cell invasion assays. The conditional iKoTgVps35 mutants were treated
with ATc or left untreated for 48 h and then used to infect HFF cells for 1 h at
37 !C. Twenty-four hours post-infection, coverslips were fixed and processed for
immunofluorescence assays. The intracellular parasites were labelled with anti-
SAG1 antibodies, and the nucleus was stained with 40 , 6-diamidino-2-phenylindole.
For each condition, 400 microscopic fields (" 40) were observed. The number of
SAG1-positive parasites was compared with the number of cells stained with 40 ,
6-diamidino-2-phenylindole. The ratio parasites/cells are presented as mean
values±s.d. from three independent experiments.

Mouse infectivity studies. A group of 4 female BALB/C mice (6–8-week-old,
from Janvier Labs, France) were intraperitoneally injected with 2" 106 tachyzoites
of RH TaTi, iKoTgVps35 or Comp-iKoTgVps35 parasites. To suppress TgVps35
expression, the drinking water was supplemented with 0.2mgml! 1 of ATc and 5%
of sucrose. As controls, a group of four mice was also infected with the same
parasite lines without ATc. Survival was monitored over 4 weeks. For vaccination
assays, BALB/C mice were infected by intraperitoneal injection with 3" 102

tachyzoites of RH TaTi, iKoTgVps35 or Comp-iKoTgVps35 parasites followed by
ATc treatment or not. After 4 weeks, the survived mice were re-challenged with
1" 103 tachyzoites of wild-type RH strain and survival monitored for 30 days. All
animal experiments were performed following the guidelines of the Pasteur
Institute of Lille animal study board, which conforms to the Amsterdam Protocol
on animal protection and welfare, and Directive 86/609/EEC on the Protection of
Animals Used for Experimental and Other Scientific Purposes, updated in the
Council of Europe’s Appendix A (http://conventions.coe.int/Treaty/EN/Treaties/
PDF/123-Arev.pdf). The animal work also complied with the French law
(no. 87-848 dated 19 october 1987) and the European Communities Amendment
of Cruelty to Animals Act 1976. All animals were fed with regular diet and all
procedures were in accordance with national regulations on animal experimenta-
tion and welfare authorized by the French Ministry of Agriculture and Veterinary
committee (permit number: 59-009145).

Co-immunoprecipitation and western blots. Tachyzoites (1" 109 parasites)
from TgVps35-HA, TgVps26-HA, TgVps29-cMyc and RHDku80 strains were lysed
with 10mM HEPES, pH 7.9; 1.5mM MgCl2; 10mM KCl; 0.5mM dithiothreitol
(DTT); 0.1mM EDTA; 0.65% NP40; 0.5mM phenylmethanesulfonylfluoride
(PMSF); and a cocktail of protease inhibitors (Sigma Aldrich). After 30min on ice,
the lysates were centrifuged at 21, 693g for 30min at 4 !C, and the supernatants
were then incubated with anti-HA or anti-cMyc agarose beads (Thermo Pierce)
overnight at 4 !C under rotating shaker. After five washings with 10mM Tris,
pH 7.5; 150mM NaCl; 0.2% Triton X-100; 0.5mM PMSF, and a final washing
with 62.5mM Tris, pH 6.8, immunoprecipitates were eluted with Laemmli buffer
(0.2% SDS, 100mM DTT, and 10% sucrose). These samples were analysed by
SDS–polyacrylamide gel electrophoresis (SDS–PAGE) followed by silver staining
before proteomics analyses. For western blots, parasites were lysed with Laemmli
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buffer, and lysate proteins were separated on 12% acrylamide gels and processed
for immunoblotting using primary specific antibodies and then secondary
antibodies conjugated to alkaline phosphatase (Thermo Pierce). All primary
antibodies used for western blots were listed in Supplementary Table 5. The blots
were imaged using ChemiDoc XRSþ (Bio-Rad).

Liquid chromatography coupled to mass spectrometry. For liquid chromato-
graphy and mass spectrometry performed using Q-Exactive mass spectrometer
(Thermo Scientific, Bremen, Germany), each sample (30 ml) was denatured with
Laemmli sample buffer and loaded onto one-dimensional SDS–PAGE (12%),
stained with colloidal Coomassie G-250 (Bio-Rad, Hercules, CA) and six slices per
sample were excised for reduction and alkylation. For this step, gel slices were cut
in small pieces (1mm3) and the staining of gel pieces were removed thrice with
120ml of a mixture of 50/50 (v/v), 25mM ammonium bicarbonate (NH5CO3)/
acetonitrile for 10min. In-gel reduction and alkylation of protein disulfide bonds
were performed, respectively, with 100ml of 10mM of DTT in 50min at 57 !C and
100ml of 50mM of iodoacetamide (IAM) for 30min at room temperature. After a
washing step with 120 ml of 25mM NH5CO3 and the dehydration step with 100 ml
acetonitrile for 5min, an in-gel digestion was performed on each sample with
0.07 mg of sequencing grade porcine trypsin (Promega, Madison, WI) for 16 h at
37 !C. The peptide were extracted thrice from gel with a mixture of 60/40/0.1
(v/v/v), acetonitrile/25mM of NH5CO3 (v/v) and 0.1% formic acid. The extracted
solution were then dried with vacuum centrifuge (Uniequip GmbH, Munich,
Germany) and resuspended in 10 ml of water containing 0.1% formic acid.

Each extracted solution of 3 ml was injected into the Ultimate 3,000 RSLC
nano- System (Dionex, Thermo Scientific) through a trap column (Acclaim
PepMap, 5mm" 300 mm inner diameter, C18, 5 mm, 100Å; Dionex) at 5 ml min# 1

with water containing 0.1% formic acid and 2% acetonitrile. After 5min, the trap
column was set on-line with analytical column (Acclaim PepMap RSLC,
15 cm" 75mm inner diameter, C18, 2 mm, 100Å; Dionex, Sunnyvale, CA). The
elution was carried out by applying mixture of solvent A (HPLC grade water with
0.1% formic acid) and solvent B (HPLC grade acetonitrile with 0.1% formic acid) at
the flow rate of 300 nlmin# 1. The separations were performed by applying a linear
gradient of 2–40% solvent B over 38min followed by a washing step (5min at 70%
solvent B) and an equilibration step (11min at 2% solvent B).

The eluted peptides were analysed by a Q-Exactive mass spectrometer. For
ionization, a nanospray Flex Ion Source was used with a voltage of 1.9 kV, and the
capillary temperature was 275 !C. Full MS scans were acquired in the Orbitrap
mass analyser over m/z 300-3,500 range with resolution of 70,000 at m/z 200. The
target automatic gain control value of 1" 106 was used with a maximum allowed
injection time (Maximum IT) of 250ms. For MS/MS, an isolation window of 2m/z
was utilized. Ten most intense peaks (TopN) with charge state between 2 and 6
were selected for fragmentation in the higher-energy collisional induced
dissociation cell with normalized collision energy of 35. The tandem mass spectra
were acquired over m/z 200-2,000 range in the Orbitrap mass analyser with
resolution 35,000 at m/z 200 and an automatic gain control of 2" 105. The ion
intensity selection threshold was 6.7" 104, and the maximum injection time was
150ms. The dynamic exclusion time was 10 s and. the total run time was 60min.
All these systems were fully controlled by Thermo Xcalibur 3.0 (Thermo Fisher
Scientific).

All data files (*.raw) collected were processed with a specific workflow designed
in Proteome Discoverer 1.4 (Thermo Fisher Scientific). MS/MS data was
interpreted using two search engine Mascot (version 2.4.1, Matrix Science, London,
UK) and Sequest HT (Thermo Fisher Scientific). Searches were performed against
T. gondii (TGVEG, TGME49 and TGGT1 stain) protein sequences downloaded
from www.toxodb.org at the 11th December 2014 (18,954 entries). The Mascot ion
score were 420 and Sequest HT XCorr 41.5. The target-decoy database search
allowed us to control and to estimate the false positive identification rate51.

Nanoscale liquid chromatography and tandem mass spectrometry.
For nanoscale liquid chromatography coupled to tandem mass spectrometry
(NanoLC-MS/MS), samples were electrophoresed onto 12% SDS–PAGE and
stained overnight with colloidal Coomassie Brilliant Blue. Gel bands were manually
excised, reduced 1 h at 60 !C by adding DTT to a final concentration of 10mM and
alkylated by adding iodoacetamide to a final concentration of 40mM. An overnight
digestion was performed by adding trypsin (Promega). Tryptic peptides were
extracted (60% acetonitrile, 0.1% HCOOH) before mass spectrometry analyses.
NanoLC-MS/MS analyses were performed on three different systems: nano-
ACQUITY Ultra-Performance-LC system (UPLC; Waters, Milford, MA, USA)
hyphenated to either Q-TOF Impact HD or MaXis 4G (Bruker Daltonics, Bremen,
Germany) and a nanoLC-Chip/Cube (Agilent Technologies, Palo Alto, CA, USA)
hyphenated to an ion trap amaZon (Bruker Daltonics). For maXis 4G and amaZon
analysis, methods used were previously described52 with slight modifications.
For Impact HD analysis, peptides were first trapped on a 0.18" 20mm2, 5 mm
Symmetry C18 pre-column (Waters), and then separated on an ACQUITY UPLC
BEH130 C18 column (Waters), 75 mm" 250mm with 1.7 mm particle size. The
solvent system consisted of 0.1% HCOOH in water (solvent A) and 0.1% HCOOH
in acetonitrile (solvent B). Trapping was performed for 3min at 5 ml min# 1 with
99% A and 1% B. Elution was performed at a flow rate of 450 nlmin# 1, using a
1–35% gradient (solvent B) over 30min at 60 !C.

The mass spectrometer was equipped with a Captive Spray source and a
nano-Booster operating in positive mode, with the following settings: source
temperature was set at 150 !C while drying gas flow was at 3 lmin# 1. The
nano-electrospray voltage was optimized to # 1,300V. External mass calibration of
the time-of-flight (TOF) was achieved before each set of analyses using Tuning Mix
(Agilent Technologies) in the mass range of 322–2,722m/z. Mass correction was
achieved by recalibration of acquired spectra to the applied lock masses hexakis
(2,2,3,3,-tetrafluoropropoxy) phosphazine ([MþH]þ ¼ 922.0098m/z)].

For tandem MS experiments (CID), the system was operated with fixed cycle
time of 3 s in the range of 150–2,200m/z. MS/MS scan speed was monitored
in function of precursor intensity from 4 to 25Hz. Ions were excluded after
acquisition of one MS/MS spectra and the exclusion was released after 1min.
The complete system was fully controlled by Hystar 3.2 (Bruker Daltonics).

Bioinformatics and protein identification. Mass data collected during
nanoLC-MS/MS analyses were processed, converted into ‘.mgf’ files with Data
Analysis 4.0 (Bruker Daltonics) and interpreted using MASCOT 2.5.1 algorithm
(Matrix Science, London, UK) running on a local server. Searches were performed
without any molecular weight or isoelectric point restrictions against an in-house
generated protein database composed of protein sequences of T. gondii
(ToxoDB database, October 2014) and known contaminant proteins such as
human keratins and trypsin. All proteins were concatenated with reversed copies
of all sequences (49,328 entries) with an in-house database generation toolbox
https://msda.unistra.fr53. Trypsin was selected as enzyme, carbamidomethylation
of cysteine (þ 57Da) was set as fixed modification, oxidation of methionine
(þ 16Da) were set as variable modification and both precursor and fragment mass
tolerances were adapted according to instrumental mass accuracy. Mascot results
were loaded into the Proline software (Proline Studio Release 1.0) and filtered to
obtain a false discovery rate of o1%.

Absolute quantitation using LC-SRM. For microLC-SRM assay, three
proteotypic peptides per targeted protein (TgVps35, TgVps26 and TgVps29) were
selected. A total of nine high-purity isotopically labelled equivalent peptides
were purchased (AQUA peptides, Thermo Fischer Scientific, Bremen; Germany).
Previous nanoLC-MS/MS analyses afforded a representative MS/MS spectrum for
each peptide. Four to six transitions were monitored for both endogenous
and heavy-labelled peptides. Thus, a total of 78 transitions corresponding to 20
precursors and 3 proteins were measured. For the lower limits of quantification and
detection determination, a dilution series of the labelled peptides was realized at
different concentrations in a mixture containing all tagged proteins and injected
in triplicate on a QQQ-6490 triple quadrupole mass spectrometer (Agilent
Technologies). The area under curve of the three best transitions per peptide were
summed and drawn versus the peptide concentration. Two calibration curves
were drawn per peptide: high calibration curve (15 fmol ml# 1–238 fmol ml# 1) and
low-calibration curve (2 fmol ml# 1–30 fmol ml# 1). We evaluated the lower limits
of quantification and the lower limits of detection determination by applying
recognized definitions54.

For the SRM analyses, samples were electrophoresed onto 4% SDS–PAGE and
stained for 45min with colloidal Coomassie Brilliant Blue. The stacking gel bands
were predigested and digested as previously described and 1 ml of a mixture of
heavy-labelled peptides was added to each sample before LC-SRM analyses.

All separations were carried out on an Agilent 1100 Series HPLC system
(Agilent Technologies). For each analysis, the sample was loaded into a trapping
column ZORBAX 300SB-C18 MicroBore Guard 5 mm, 1.0" 17mm2 (Agilent
Technologies) at 50ml min# 1 with aqueous solution containing 0.1% (v/v) formic
acid and 2% acetonitrile. After 3min trapping, the column was put on-line with a
ZORBAX 300SB-C18 3.5 mm, 0.3" 150mm2 column (Agilent Technologies).
Peptide elution was performed at 5 ml min# 1 by applying a linear gradient of
solvent A (water with 2% acetonitrile and 0.1% (v/v) formic acid) and B
(acetonitrile with 0.1% (v/v) formic acid), from 8 to 42% solvent B over 30min
followed by a washing step (2min at 90% solvent B) and an equilibration step
(13min at 8% solvent B). The isolation width for both Q1 and Q3 was set to
0.7m/z unit. The collision energy was experimentally optimized by testing nine
values centred on the calculated value from the one given by the supplier.
Time-scheduled SRM method targeted the pairs of isotopically labelled peptides/
endogenous peptides in ±5min retention time windows within a cycle time of 3 s.
Mass data collected during LC-SRM were processed with the Skyline open-source
software package 3.1.1 (ref. 55). Area intensity ratios of the heavy and the light
forms of each peptide were manually checked. The endogenous peptide amount
calculation was performed by using the most suitable calibration curve. The mass
spectrometry and LC-SRM data were deposited to the ProteomeXchange56

Consortium via PRIDE57 partner repository, and the peptide atlas SRM experiment
library (PASSEL), respectively.

Production of recombinant glutathione S-transferase (GST)-TgHP12 and
specific antibodies. The DNA corresponding to C-terminal sequence of 254
amino acids long from 1,051 to 1,812 nucleic acid was amplified by PCR using the
following primers: sense 50-CCGGGGATCCGTAGAAAAGCCTACAACGGTG
GGG-30, and antisense, 50-CCGGGCGGCCGCTCACAATCTGTCAAGTCTTCCT
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CCAGTC-30 . The amplified DNA was purified and cloned in frame into pGEX6P3.
After verification by sequencing, the plasmid was used to transform E. coli BL21 for
recombinant protein expression. Protein was purified by GST column and 100 mg
of protein was used to immunize one Wistar (RjHan:WI) rat (Janvier Labs, France)
using complete Freund adjuvant. The rat was challenged three times with 50 mg of
protein and incomplete Freund adjuvant before bleeding 10 days after the last
boost and the serum was purified.

GST-pull down experiments. Recombinant Rab5B, Rab7 and Rab11B proteins
were fused to GST using pGEX6P3. After transformation of BL21 E. coli, lysates
were incubated to Glutathione-beads and washed four times with buffer A: 50mM
Tris-HCl pH 7.5, 0.5M NaCl, 270mM sucrose 1mM EGTA, 1mM EDTA, 1%
Triton X-100 and 0.5mM PMSF) and washed six time with buffer A without
Triton X-100. Total TgVps35-HA and TgVps26-HA knock-in parasite extracts
were prepared from 109 tachyzoites that were lysed with buffer B: 10mM HEPES
pH 7.9 1.5mM MgCl2, 10mM KCl, 0.5mM DTT, 0.1mM EDTA, 0.65% NP40 and
0.5mM PMSF. The parasite lysate (equivalent to 2.0! 108 tachyzoites) were
added in pull down buffer containing 50mM Tris-HCl pH 7.5, 150mM NaCl and
0.5mM PMSF and incubated with beads containing 2 mg GST-Rab5, GST-Rab7,
GST-Rab11B or GST alone in the presence of 1mM GTP or GDP overnight at
4 !C. Precipitants were washed three time with the pull down buffer containing
0.1% Triton X-100 and eluted by Laemmli buffer and analysed by western blots,
which were probed with anti-HA antibodies and anti-GST.

Statistical analysis. All data were analysed with Graph Pad Prism software.
A Student’s t-test was used for statistical analysis. The Mann–Whitney test was also
used for analysis of mice survival curves.
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A Critical Role for Toxoplasma 
gondii Vacuolar Protein Sorting 
VPS9 in Secretory Organelle 
Biogenesis and Host Infection
Takaya Sakura1, Fabien Sindikubwabo2, Lena K. Oesterlin3, Hugo Bousquet3, 
Christian Slomianny4, Mohamed-Ali Hakimi2, Gordon Langsley5 & Stanislas Tomavo1

Accurate sorting of proteins to the three types of parasite-specific secretory organelles namely rhoptry, 
microneme and dense granule in Toxoplasma gondii is crucial for successful host cell invasion by this 
obligate intracellular parasite. Despite its tiny body architecture and limited trafficking machinery, T. 
gondii relies heavily on transport of vesicles containing proteins, lipids and important virulence-like 
factors that are delivered to these secretory organelles. However, our understanding on how trafficking 
of vesicles operates in the parasite is still limited. Here, we show that the T. gondii vacuolar protein 
sorting 9 (TgVps9), has guanine nucleotide exchange factor (GEF) activity towards Rab5a and is crucial 
for sorting of proteins destined to secretory organelles. Our results illuminate features of TgVps9 
protein as a key trafficking facilitator that regulates protein maturation, secretory organelle formation 
and secretion, thereby ensuring a primary role in host infection by T. gondii.

Toxoplasma gondii is an important food and waterborne pathogen causing toxoplasmosis, a usually mild disease in 
immunocompetent humans that can turn into a major threat in immunocompromised patients and during primary 
infection of pregnant woman. T. gondii is a member of the Apicomplexa, a phylum of numerous medically impor-
tant parasites causing life-threatening diseases in human and animals worldwide. The phylum is typified by specific 
secretory organelles called rhoptries, micronemes and dense granules that are essential for host cell invasion and host 
pathway modulation. In Toxoplasma, rhoptries contain two groups, termed rhoptry (ROP) and rhoptry neck (RON), 
of effector proteins some of which are virulence factors; whereas micronemes secrete MIC proteins that are involved 
in parasite gliding, host cell attachment and invasion1,2. After invasion, dense granules discharge GRA proteins 
involved in parasitophorous vacuole (PV) formation and in hijacking host cell gene expression and metabolism3.

Despite having a single cell architecture, the parasite relies on active and abundant vesicle and protein trafficking. 
T. gondii and likely all Apicomplexa have reutilized classical endosomal and endocytic trafficking pathways more typ-
ical of higher eukaryotes towards building specialized secretory organelles that release parasite effectors to interplay 
with host cell signaling pathways as a way to take control over host immunity and ultimately to promote long-term 
parasitism4–8. It is now well established that apicomplexan parasites operate an unconventional endosome-like sys-
tem (ELC) to traffic proteins from the Golgi apparatus to rhoptries and micronemes6–8. However, the mechanisms 
involved in endosome-like vesicle formation and delivery to the aforementioned organelles in general remain elusive. 
In mammalian cells, the endosomal system is used for the uptake of plasma membrane-associated components, 
which after passage through Rab5-positive early endosomes (EE) enter either Rab11A-positive recycling endosomes 
to return to the plasma membrane, or Rab7-positive late endosomes to be delivered to lysosomes (LE)9.
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Clearly, regulated vesicular traffic allows different cargoes to correctly reach their specific organelle des-
tinations at the right time4–8, and this is essential for successful parasite infection of its host7,10. For exam-
ple, dynamin-related protein B (DrpB) and clathrin, which reside in the post-Golgi network (TGN) and the 
endosomal-like compartment (ELC) contribute to the formation of transport vesicles that are essential for 
secretory organelle biogenesis11,12. Vacuolar protein sorting 11 (Vps11) that is the subunit of CORVET (class C 
core vacuole/endosome tethering) and HOPS (homotypic fusion and vacuolar protein sorting) complexes are 
required for transport of MIC and ROP proteins to micronemes and rhoptries of T. gondii13. Thus, the parasite 
intra-vesicular trafficking of the endolysosome pathway involves functions of the CORVET and HOPS tethering 
complex. In addition, T. gondii Rab5+  and Rab7+  effector complexes likely interact with CORVET and HOPS 
in a manner similar to mammalian cells to induce membrane fusion within the endolysosome pathway of the 
parasite14,15.

We have described that transport of MIC and ROP proteins to microneme and rhoptry organelles, respec-
tively, also required an essential sortilin-like receptor named TgSORTLR10 and traffic through a non-conventional 
ELC7. The C-terminal tail of TgSORTLR interacts with clathrin, three components of the AP1 adapter complex, 
Sec23/24 and three vacuolar protein sorting namely Vps26, Vps35 and Vps910. Furthermore, the retromer com-
posed of Vps35-Vps29-Vps26 that recycles TgSORTLR from TgRab5- to TgRab7-dependent ELC before delivery 
to Golgi, is also essential for secretory organelle biogenesis and parasite shape7.

Here, we report that the T. gondii counterpart of Vps9 (herein named TgVps9) is a bona fide Rab5 
GTP-Exchange Factor (GEF) that is crucial for ROP protein maturation and processing, and its loss leads to 
a reduced number of rhoptries. Absence of TgVps9 also impairs peripheral microneme biogenesis and dis-
turbs dense granule secretion resulting in an accumulation of novel vesicles present both within and outside 
the parasite. Together with the rhoptry defect, absence of peripheral microneme formation and dense granule 
secretion severely affects parasite invasion of host cells. Collectively, these observations support the notion that 
TgVps9-mediated loading of GTP to TgRab5 is crucial for fine-tuning vesicle sorting to secretory organelles, the 
latter being essential for T. gondii host cell infection.

Results
T. gondii vacuolar protein sorting 9 is a bona fide Rab5 guanine nucleotide exchange factor. In 
eukaryotic cells, Vps9 domain-containing proteins are known as guanine nucleotide exchange factors (GEF) that 
stimulate the release of monomeric guanosine diphosphate (GDP)-bound to Rab5, allowing guanosine triphos-
phate (GTP) to bind and activate Rab5 that, in turn, regulates endosome vesicle trafficking16–18. Previous work 
led us to identify an association with the C-terminus of TgSORTLR10, a protein with a predicted molecular mass 
of 140 kDa typified by a Vps9-like domain localized between amino acid (aa) 945 and 1117. This putative parasite 
Vps9 homologue harbors a region of 1326 amino acids extended at the N-terminal end and in this respect differs 
from its yeast and human counterparts that contain a shorter N-terminal end (Supplementary Fig. S1A). We first 
demonstrated that the predicted TgVps9 domain operates in vitro as a GEF towards Rab5, by testing activity of 
a bacterial expressed TgVps9 recombinant protein towards human Rab5, as previously described19,20. Based on 
its homology with the catalytic core of mammalian Rabex521; a truncated recombinant version (aa849 to aa1134) of 
TgVps9 was purified from E.coli. Human recombinant Rab5A was purified in its GDP bound form and nucleotide 
exchange to GppNHp, a non-hydrolysable GTP analogue, was monitored by tryptophan fluorescence measure-
ments. A dose dependent GEF activity of recombinant TgVps9 towards human recombinant Rab5A was detected 
and compared to human recombinant Rabex5 (Fig. 1A). As expected, no tryptophan fluorescence change was 
observed in the presence of excess GDP as no conformational change was induced during nucleotide exchange 
from GDP to GDP (Fig. 1A).

TgVps9 localizes to the endosome-like compartment of T. gondii. Having established that recombi-
nant TgVps9 possesses GEF activity towards recombinant Rab5, we then sought to determine in T. gondii whether 
the protein resides in the same subcellular compartment as Rab5. To this end, we chromosomally appended 
the hemagglutinin (HA) epitope at the 3′ -end of the endogenous TgVps9 gene and validated by western blot 
that the tagged TgVps9 was readily expressed by transgenic tachyzoites (Supplementary Fig. S1B). HA-tagged 
TgVps9 migrated with an apparent molecular mass of 170 kDa, which is higher than the predicted 140.0 kDa, 
likely due to the observation that TgVps9 is heavily phosphorylated with 30 different phospho-sites indicated in 
Supplementary Figure S1A and collated at ToxoDB (www.toxodb.org).

Consistent with its in vitro GEF activity towards Rab522,23, TgVps9-HA in vivo co-localized with TgRab5A 
(Fig. 1B, top and left panel). As expected, we confirmed a co-localization between TgVps9 and TgSORTLR 
(Fig. 1B, top panel), the endosomal-like compartment (ELC) receptor that has been used to efficiently pull 
down TgVps910. The unprocessed precursor pro-ROP4 (Fig. 1B, top panel) known to be present in the ELC also 
co-distributes with TgVps9, while surprisingly proM2AP, a microneme marker, does not (bottom panel). In addi-
tion, VP1 a marker of the plant-like vacuole that is present in close vicinity to ELC co-distributes with TgVps9 
(Fig. 1B, top panel). In contrast, CPL (lysosomal-related compartment marker), GRASP (Golgi reassembly stack-
ing protein), M2AP (MIC2-associated protein) or ROP4 (rhoptry marker) do not co-distribute with TgVps9 (bot-
tom panel). Taken together, these co-localization studies indicate that TgVps9 is embedded in the endosomal-like 
compartment (ELC) together with Rab5, a compartment with an established role in the formation of secretory 
organelles of T. gondii4–8,10.

Conditional ablation of TgVps9 affects secretory organelle biogenesis to generate large novel 
vesicular-like structures. To examine TgVps9 function in a clonal homogenous parasite population, we 
generated conditional anhydrotetracyclin (ATc)-inducible knockout TgVvps9 mutants (named iKOTgVps9) using 
the strategy depicted in Fig. 2A. We selected several positive clones from the emerging stable parasite population 

http://www.toxodb.org
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and the genome editing of one expanded clone in vitro was verified by PCR using the two specific primers  
(see nucleotide sequences in Methods) shown in blue arrow (Fig. 2A), thus demonstrating the perfect integration 
of the knock-out vector at the TgVps9 locus (Fig. 2B). Following ATc treatment, while a significant reduction of 
HA-TgVps35 protein was observed 24 h post-treatment, 48 h or 72 h of ATc-treatments were required for a com-
plete and reproducible disappearance of HA-TgVps35 protein by western blotting (Fig. 2C). We confirmed these 
latter observations by confocal imaging (Fig. 2D) and further investigated all phenotypic consequences of this 
ATc-inducible TgVps9 knock out mutant at least at 48 h post-treatment. Next, we examined iKOTgVps9 mutants 
by electron microscopy and observed several striking ultrastructural changes associated with the loss of TgVps9. 
Both apical (yellow arrows) and peripheral micronemes (white arrows) were observed in cytoplasm anterior to 

Figure 1. T. gondii Vps9 is a bona fide Rab5 GEF that localizes to endosome-like compartment.  
(A) In vitro GEF assay of recombinant TgVps9. The conformation changes of Rab5 upon GDP/GppNHp 
exchange were measured by monitoring tryptophan auto-fluorescence in the presence of 200 and 400 nM of 
TgVps9, respectively. As a positive control, the human Rabex5 known for its GEF activity to Rab5 was also 
tested. In the presence of GDP, no change in auto-fluorescence was observed either for TgVps9 or Rabex5 
as no conformational change should be induced when exchanging GDP for GDP. (B) Subcellular location 
of TgVps9-HA in the knocked in parasites was compared to that of several other organelle markers such as 
TgRab5A-cMyc (early endosome marker), TgSORTLR (Golgi and ELC marker), VP1 (Plant-like vacuole 
marker), pro-ROP4 (pre-rhoptry marker), GRASP-RFP (Golgi marker), CPL (Lysosomal-related compartment 
marker), pro-M2AP (immature microneme marker), and ROP4 (Rhoptry marker). Plasmids expressing 
GRASP-RFP and Rab5-cMyc were transiently transfected and RFP-positive parasites were directly visualized 
while specific anti-cMyc antibodies were used to stain Rab5-cMyc positive parasites. Specific antibodies were 
used to detect all other proteins. Scale bar indicates 5 µ m.
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the nucleus of ATc-untreated tachyzoites (Fig. 3A,B) whereas ATc-treated iKOTgVps9 parasites, micronemes 
were only observed in the apical tip close to the conoid (Fig. 3C–E). We counted a total number of 30 micronemes 
located at the extreme apical end of 43 ATc-treated iKO-TgVps9 mutants using electron microscopy while a total 
number of 199 apical and peripheral micronemes were seen in 29 ATc-untreated parasites, indicating that there 
were about 5-fold fewer micronemes in TgVps9-deficient mutants versus the parental strain. Clearly, these data 
indicate the absence of peripheral micronemes in ATc-induced iKOTgVps9 mutants and the presence in the 
cytoplasm at the proximity of the nucleus of a novel large vesicular structure of approximately 500-nm diameter 
(panel D, black arrows). Elevated numbers of novel vesicles of variable size and morphology were also observed 
in the PV space delimited by the PVM (panel E, shown with *). We estimated that about 17% of iKOTgVps9 
mutants examined by electron microscopy contained these aforementioned 500-nm intra-parasite vesicles while 
approximately 20% of mutants had novel vesicles of variable size and morphology in their PV space. In addition, 
we observed a significant reduction of the overall number of rhoptries per mutants using electron microscopy. 
Specifically, ATc-treated iKOTgVps9 mutants contained less than two thirds the relative number of rhoptries per 
mutant compared to the parental line. Also, we observed a disorganized ultrastructural morphology with the 
marked absence of the typical banana-shaped bodies in several TgVps9-depleted mutants (Fig. 3D), in a manner 
similar to the retromer iKOTgVsp35 mutants7 whereas untreated iKOTgVps9 parasites appeared structurally 
normal with all secretory organelles (Fig. 3A,B). These latter observations suggest that the cytoskeleton of parasite 
bodies may also be affected in these mutants. It should be mentioned that electron microscopy was used to show 
that other organelles including the mitochondrion, the nucleus, the Golgi apparatus, the inner complex mem-
brane (IMC) and the plasma membrane appeared morphologically normal in these iKOTgVps9 mutants treated 
with ATc for 48 h (Supplementary Fig. S2, see panel A–E). In addition, iKOTgVps9-deficient mutants appear 
to undergo normal endodyogeny with two daughters forming within the mother cell (Supplementary Fig. S2F, 
see stars indicating the nucleus of two dividing daughter tachyzoites). Collectively, these data suggest that the 
traffic to and the integrity of the other parasite organelles were not altered by the loss of TgVps9. Furthermore, 
rhoptries, micronemes and dense granules were not completely absent either or not morphologically affected per 

Figure 2. Conditional disruption of TgVps9 gene. (A) Schematic representation of the ATc-inducible strategy 
to generate a knock out TgVps9 mutant after a double homologous recombination in T. gondii genome. (B) PCR 
analysis to demonstrate the perfect integration of the knock-out vector into TgVps9 locus using two specific 
primers A and B indicated in blue color. PCR of superoxide dismutase (SOD) gene corresponds to a positive 
control indicating that equal quantity of genomic DNA was used for all parasite strains tested. (C) Western blots 
of total SDS protein extracts from wild type and iKOTgVps9 mutants, which were incubated without or with 
ATc for 24, 48, and 72 hours. Blots were probed with anti-HA antibodies but also with antibodies specific to the 
glycolytic enzyme ENO2 used as protein loading control. (D) Confocal images of ATc-untreated or ATc-treated 
iKOTgVps9 mutants that were stained with anti-HA antibodies at 48 h post-treatment and infection. Scale bar 
indicates 5 µ m.
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se in TgVps9-deficient mutants (Fig. 3 and Supplementary Fig. S2), only organelle number was reduced in these 
mutants. Taken together, these data indicate that TgVps9 likely regulates the turnover of vesicle precursors and 
pre-organelles destined to become fully mature secretory organelles.

The loss of TgVps9 causes aberrant organelle secretion. We also examined the phenotypic conse-
quences of TgVps9 loss on the subcellular localizations of different secretory organelle markers. In ATc-induced 
iKOTgVps9 mutants, ROP2-3 and ROP4 proteins were abnormally sorted into the host cytoplasm and decorated 
the host cell nuclear envelope (Fig. 4A,B, right panels, see white arrows). In the absence of ATc, iKOTgVps9 
mutants displayed normal apical localization of ROP proteins (Fig. 4A,B, left panels). In ATc-induced iKOTg-
Vps9 parasites, pro-ROP4 was also profoundly mis-sorted (Fig. 4C, right panels) with diffuse and weak labeling 
in both the PV space and the host cell cytoplasm (white arrow) unlike non-ATc-induced parasites that showed 
the typical apical pre-rhoptry localization of pro-ROP4, i.e. proximal to parasite nuclei (Fig. 4C, left panels). The 
imaging data suggest that the iKOTgVps9 mutant-hosting PV may also be leaky following ATc induction for 
48 h, thus resulting in the diffusion of pro-protein and mature protein in the vacuolar space and beyond the PV. 
Nevertheless, these data indicate that TgVps9 loss results in an accumulation of ROP precursor proteins, their 

Figure 3. Electron microscopy of TgVps9 mutants. (A,B) Ultrastructural sections of typical parental parasites 
were shown. Secretory organelles such as rhoptries (Rh), both peripheral (Mn, white arrows) and apical 
micronemes (Mn, yellow arrows) and dense granules (DG) can easily be visualized. (C–E) Ultrastructural 
images of sections representing TgVps9-depleted mutants after 48 h of ATc treatment were shown. Only apical 
micronemes, few rhoptries and dense granules can be seen in TgVps9-depleted mutants. Examples of novel 500 
nm-diameter of vesicles present in the cytoplasm above the nuclei of these mutants were indicted by arrows 
in panel D. A region of the parasitophorous vacuole (PV) space that also containing several novel vesicles of 
different sizes and morphology (see asterisks) were shown along with the delimited PV membrane (PVM) 
indicated by black arrowheads. The nucleus (N), mitochondrion (M), Golgi apparatus (G) and conoid (Co) were 
labelled. Scale bar is 500 nm.
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Figure 4. Conditional ablation of Tgvps9 results in mis-sorting of ROP proteins. (A) Confocal 
immunofluorescences of ROP2-3 proteins in iKOTgVps9 mutants in the presence (right panels) or absence of 
ATc (left panels) using specific antibodies to ROP2-3. (B) Confocal immunofluorescences of ROP4 proteins in 
iKOTgVps9 mutants in the presence (right panels) or absence of ATc (left panels) using specific antibodies to 
ROP4. (C) Confocal immunofluorescences of proROP4 proteins in iKOTgVps9 mutants in the presence (right 
panels) or absence of ATc (left panels) using specific antibodies to proROP4. Upper panels in (A–C) images 
correspond to small vacuoles containing 16 or less daughter parasites. Lower panels represent large vacuoles 
containing 32 or more daughter parasites. Scale bar on all images correspond to 10 µ m.
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mis-sorting to other subcellular compartments and a significant reduction of the number of rhoptries per para-
sites as observed by electron microscopy.

We confirmed in the conditional TgVps9 mutants that the typical conical microneme M2AP and MIC3 sig-
nals (Fig. 5A, left panels, red arrows) were completely changed to fluorescence signals at the extreme tip of each 
TgVps9-depleted mutant (Fig. 5A, right panels, yellow arrows). The most impressive and marked mis-sorting 
affects the dense granule GRA3 that was exclusively retained within the PV space (Fig. 5B, right panels) in the 
iKOTgVps9 mutants whereas this protein decorated the PV membrane of vacuoles containing parental parasites, 
as expected (Fig. 5B, left panels, white arrows). The location of TgSORTLR was unchanged (Fig. 5C), confirming 
that not all proteins in the secretory ER-Golgi and ELC pathways are mis-sorted in TgVps9-deficient parasites. 
Altogether, these data clearly indicate that TgVps9 is required for correct protein trafficking, sorting and delivery 
to the three main secretory organelles: rhoptry, microneme and dense granules.

Conditional TgVps9 silencing dysregulates ROP protein maturation. In T. gondii, formation of 
rhoptries and micronemes is correlated with proteolytic processing followed by maturation of ROP and MIC 
proteins, respectively24–28. Therefore, we investigated the role of TgVps9 in the processing and maturation of rep-
resentative ROP and MIC proteins. Specific antibodies that exclusively recognized the N-terminal pro-peptides 
of ROP4 revealed enhanced accumulation of pro-protein ROP4 in TgVps9-deficient mutants (Fig. 6A, left panel, 
single star). By calculating the ratio of the pro-protein to the mature ROP4 protein, using the housekeeping ENO2 
loading control, we estimated that pro-ROP4 protein level was increased to almost 2-fold in ATc-treated iKOTg-
Vsp9 mutants compared to untreated parental parasites (Fig. 6F). Using specific antibodies to the mature ROP4 
protein, we detected a rise of proROP4 protein level to 4-fold (Fig. 6B, single stars), suggesting that pro-ROP4 
protein accumulated between 2- to 4-fold higher in TgVps9-deficient mutants versus parental parasites (compare 
Fig. 6B,F, single star). As a consequence, the amount of processed mature ROP4 diminished (Fig. 6B,F, right lane, 
double stars). Similarly, we observed an increase level of unprocessed proROP2 (Fig. 6C,F, single star) that was 
estimated to be approximately 3-fold with a reduced amount of the mature ROP2 protein. We observed no signif-
icant changes for pro-M2AP protein (Fig. 6D–F, single star) or processed M2AP protein (Fig. 6E,F, double stars). 
We therefore concluded that pro-ROP proteins specifically accumulated in iKOTgvps9 mutants, suggesting that 
TgVps9 is likely involved in the delivery of both proteases and pro-ROP proteins to the same subcellular compart-
ment and that their proteolytic processing is important for rhoptry organelle formation.

Conditional TgVps9 silencing abrogates host cell invasion by T. gondii. More importantly, homog-
enous clonal populations of iKOTgVps9 mutants allowed us to address the role of TgVps9 in T. gondii infection. 
The iKOTgVps9 mutants were severely impaired in their ability to invade host cells with an 80% decrease after 48 h 
of ATc-treatment (Fig. 7A). In addition, at 7 day post-infection, TgVps9-depleted mutants did not form plaques 
associated with multiple rounds of host cell invasion in the presence of ATc (Fig. 7B), indicating that TgVps9 
is essential for ensuring proper formation of secretory organelles that are necessary for parasite propagation 
through multiple cycles of invasion, lysis and reinvasion of host cells. We have not observed any obvious defi-
ciency in parasite egress from the host cell as the ATc-treated iKOTgVps9 mutants spontaneously lysed out and 
freshly egressed tachyzoites can be recovered at 72 hours post-infection. Thus, we suggest that the reduction in 
number of secretory organelles per parasite and their default in organelle secretion represent the critical functions 
of TgVps9 that are required for proper host infection by T. gondii.

Discussion
In this study, we established in vitro that TgVps9 is a bona fide Rab5 GEF and locates in vivo in the same com-
partment as TgRab5A. We are suggesting that the GEF activity of TgVps9 towards one of the TgRab5 isoforms 
is essential for host cell invasion by T. gondii and its intracellular propagation. Genetic ablation of TgVps9 by 
ATc-inducible knock out system, led to impairment of microneme biogenesis and default in proper dense granule 
secretion. Overall, we observed a significant mis-sorting of rhoptry, microneme and dense granule proteins and 
we argue that this underpins the loss in host cell invasion, vacuole formation, PV leaking and intracellular prop-
agation. We found an accumulation of unprocessed ROP proteins such as ROP2 and ROP4 following the loss of 
TgVps9. However, we did not observe pro-ROP4 in the endosomal-like compartment and the pre-organelles of 
TgVps9-deficient mutants. Instead, pro-ROP4 is released into the parasitophorous vacuole and the host cell cyto-
plasm, where together with other ROP proteins, it appears perinuclear. The common phenotypic traits of TgVps9 
null mutants were reduced numbers of both rhoptries and micronemes per parasites, as seen by confocal imaging 
and electron microscopy. In contrast, we did not observe mis-sorting of proteins destined to mitochondrion, 
apicoplast, inner complex membrane and nucleus after TgVps9 loss using confocal imaging. No other morpho-
logical changes of the aforementioned compartments have been detected by electron microscopy. This suggests 
that the default in secretory organelles such as rhoptry, microneme and dense granule is specifically restricted to 
the function of TgVps9, as expected for a genuine partner of TgSORTLR10, the Golgi and endosomal-like recep-
tor that has been previously shown to be involved in protein transport and biogenesis of these parasite-specific 
secretory organelles.

Based on these observations, we propose a model in which TgVps9 contributes to the regulation of ROP 
protein processing/maturation and the proper protein sorting to pre-rhoptries (Fig. 7C). This model is fully sup-
ported by the observation that the processing and maturation of ROP proteins have been shown to take place 
in the pre-organelles1 and pro-ROP4 co-localizes with TgVps9. In contrast, neither the pro-MIC2 associated 
protein (pro-M2AP), nor the pro-M2AP processing enzyme CPL24–28 colocalize with TgVps9. This suggests that 
both processing and maturation of MIC proteins likely occurs in the distal sub-compartment of the ELC29,30 
by means of CPL and in a TgVps9-independent fashion. It is also tempting to speculate that pre-micronemes 
and pre-rhoptries may bud from the novel and yet-uncharacterized vesicles that are visible above the nuclei of 
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Figure 5. Conditional Tgvps9 silencing affected microneme biogenesis and dense granule secretion.  
(A) Confocal immunofluorescences of M2AP and MIC3 proteins in iKOTgVps9 mutants in the presence  
(right panels) or absence of ATc (left panels) using antibodies specific to each protein, respectively. Note that the 
typical and conical signal of M2AP and MIC3 proteins (red arrows) in the parental strain disappears. Instead, 
only residual punctuated signal was seen in TgVps9-depleted mutants (yellow arrows), indicating the absence 
of peripheral micronemes in these mutants. The whole bodies of intracellular parasites were shown by phase 
contrast in order to indicate fluorescence signals corresponding to micronemes located at the extreme apical 
end of Cas9-GFP positive parasites (yellow arrows). (B) Confocal immunofluorescences of GRA3 protein in 
iKOTgVps9 mutants in the presence (right panels) or absence of ATc (left panels) using specific antibodies 
to GRA3. Note the absence of GRA3 protein delivery to the parasitophorous vacuole membrane (PVM) that 
contrasts to the situation in the parental parasites (white arrows). (C) The presence of TgSORTLR in the Golgi-
ELC region was unchanged in parental parasites and mutants regardless of treatment with ATc or not. Scale bar 
is 10 µ m.
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TgVps9-depleted mutants. As discussed above, TgVps9 displays in vitro GEF towards human Rab5A, comparable 
to that of Rabex518–23. It follows then that some phenotypic traits of TgVps9-deficient mutants resemble those pre-
viously reported for TgRab5A protein after its encoding gene has been disrupted31. As both TgRab5A and Vps11 
probably interact through the CORVET-tethering complexes13, this could explain their phenotypic similarities 
with those observed for iKOTgVps9 mutants described here.

Protein trafficking that relies on VPS9 has been described in several other eukaryotic cells such as yeast, which 
has three Vps9-domain containing proteins, Vps9, Muk1 and Vrl1, all exhibiting GEF activity towards Rab5  
paralogs32. Mammalian cells contain at least nine Vps9 domain-containing proteins fulfilling diverse functions 
including regulation of protein transport, endocytosis and signaling pathways22. Additionally, it has been reported 
that Vps9 domains also interact with retromer complex and phosphatidylinositol 3-phosphate (PI3P) to pro-
mote the enrichment of PI3P lipids at the endosomes33. Knowing that TgSORTLR10 and the retromer machinery7  
in T. gondii share similarities with those of TgVps9, the latter may participate in regulation of retromer and endo-
somal lipid content. However, TgVps9 is not associated with the Golgi apparatus like TgSORTLR, suggesting that 
this parasite Rab5 GEF is likely involved in anterograde transport and secretory organelle formation, rather than 
protein recycling in T. gondii.

In conclusion, loss of TgVps9 inhibits rhoptry protein processing/maturation, impairs secretory organelle bio-
genesis and secretion, leading to an inability of TgVps9-deficient mutants to invade host cells and to achieve mul-
tiple rounds of invasion, proliferation and reinvasion of host cells. However, there is still a missing link between 
protein processing, maturation, vesicular traffic and secretory organelle formation. Further investigation of 
TgVps9 functions that will define how different parasite TgRab proteins are precisely regulated by its GEF activity 
could provide this missing link.

Methods
Parasite culture. We used T. gondii tachyzoites of RH strain for CRISPR/Cas9 knockout experiment, RH∆ 
Ku8034 for the knock in of TgVps9 gene (TGME49_230140) and RH∆ Ku80TATi for inducible knockout (iKO) 
strain35,36 that were grown using Human Foreskin Fibroblast (HFF) cells from ATCC (USA) as described7. The 
iKOTgVps9 mutants were cultured in the presence of 1.5 µ g/ml anhydrotetracycline (ATc).

Figure 6. Upon conditional disruption of TgVps9 unprocessed and immature ROP proteins accumulate. 
(A) Immunoblots of intracellular iKOTgVps9 mutants probed with specific anti-proROP4 at 48 h post-infection 
in the absence or presence of ATc. (B) Immunoblots of intracellular iKOTgVps9 mutants probed with specific 
anti-ROP4 antibodies at 48 h post-infection in the absence or presence of ATc. (C) Immunoblots of intracellular 
iKOTgVps9 mutants probed with specific anti-ROP2 antibodies at 48 h post-infection in the absence or presence 
of ATc. (D) Immunoblots of intracellular iKOTgVps9 mutants probed with specific anti-proM2AP antibodies 
at 48 h post-infection in the absence or presence of ATc. (E) Immunoblots of intracellular iKOTgVps9 mutants 
probed with specific anti-M2AP antibodies at 48 h post-infection in the absence or presence of ATc.  
(F) Quantification of protein intensity by densitometry that shows ratio between pro-protein or mature protein 
and ENO2 levels. The housekeeping glycolytic enzyme ENO2 was used as negative and loading control. A single 
star (*) indicates the unprocessed precursor protein while double stars (**) correspond to processed and mature 
protein. Molecular weights of protein markers (kDa) were indicated on the left of each panel.
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Production of recombinant TgVps9, Rabex5, and Rab5 proteins. Recombinant protein of the 
catalytic core of TgVps9 from aa849 to aa1134 was generated using a modified pET19 plasmid that expresses 
His-tag protein with a TEV cleavage site using the following primers: forward (Recomb-Vps9a.d4_F) CCGGC 
ATATGGCGTCTTCTGCCTCTTTTTCTGCC and reverse (Recomb-Vps9a.d4_R) CCGGGGATC 
CTTAGCGTTCGCGTTCGCGGTCGTATTC. Human recombinant Rabex5 from aa132 to aa397 and full length 
Rab5a with a C-terminal CVIL mutation were prepared as previously described37. The recombinant TgVps9 was 
expressed in BL21 Codon Plus (DE3)-RIPL, and cell pellet was resuspended in buffer A (50 mM HEPES pH 8, 
300 mM NaCl, 1 mM Tris (2-carboxyethyl) phosphine (TCEP), 20 mM imidazole pH 8), sonicated, and centrifuged 

Figure 7. TgVps9 is essential for host cell invasion by T. gondii. (A) Host cell invasion was assayed in 
iKOTgVps9 mutants in the presence or absence of ATc. Bars indicate mean ±  SD (n =  3, P <  0.001 by Student’s 
test). (B) Host cell lytic plaques were examined in TgVps9-deficient mutants and parental RH∆ Ku80TATi 
parasites in the presence or absence of ATc. (C) Model of TgVps9-mediated trafficking and regulation of diverse 
sorting cargoes required for secretory organelle biogenesis in T. gondii. Based on the processing inhibition 
of precursor ROP proteins in TgVps9-delepted mutants and the mis-sorting of pro-ROP4, we conclude that 
the site of action of TgVps9 starts from the early endosome to late endosome until pre-rhoptry organelles. 
In addition, this also suggests that TgVps9 is required for the trafficking of the proteolytic enzymes to the 
pre-rhoptries where the pro-peptides of pro-ROP proteins were processed during protein maturation. In 
contrast, TgVps9 protein was not required to transport the cathepsin protease-like (CPL) enzyme32, a type II 
transmembrane protein involved in the processing and maturation of MIC proteins within the ELC. Indeed, 
TgVps9 function was limited to the biogenesis of peripheral micronemes. We further evidenced that TgVps9 
protein was also important for the proper discharge of GRA protein inside the PVM. However, the molecular 
mechanisms underlying how GRA were transported to the dense granules and thereafter released to the PVM 
remain to be elucidated. We also propose that Rab5 is the key small GTPase, which was regulated by TgVps9 
according to our biochemical GEF assays and the previous data of Vps11 of CORVET tethering complexes13 
and those of Rab5A33. We suggest that function of TgVps9 is important for the transport to and secretion of 
organelles required for the successful intracellular lifestyle of the parasite.
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at 20,000 rpm for 1 hour at 4 °C. Cell lysate was incubated with 2 ml agarose Ni-NTA beads, washed with buffer 
A and subsequently buffer B (50 mM HEPES pH 8, 300 mM NaCl, 1 mM TCEP, 30 mM imidazole pH 8). Bound 
protein was eluted using buffer C (50 mM HEPES pH 8, 300 mM NaCl, 1 mM TCEP, 500 mM imidazole pH 8).  
His-tags were removed by TEV protease cleavage during overnight dialysis in Buffer A without TCEP and imi-
dazole. In order to remove the His-tagged TEV protease, dialyzed protein solution was incubated with Ni-NTA 
beads again before the GEF assays were performed.

GEF assay. GEF activities were analyzed by intrinsic tryptophan fluorescence measurements showing fluo-
rescence changes due to the conformational change from GDP to GTP state19,20. Rab5 fluorescence was excited 
at 297 nm and emission signals were detected at 340 nm. The fluorescence was recorded using a Cary Eclipse 
fluorescence spectrophotometer (Agilent Technologies). 10 µ M of 5′ -Guanylyl imidodiphosphate (GppNHp), 
non-hydrolysable analog of GTP, or 10 µ M GDP were added to 1 µ M of Rab5 GDP in GEF assay buffer (25 mM 
HEPES pH 7.5, 200 mM NaCl, 1 mM MgCl2, 2 mM dithioerythritol (DTE)), subsequently 200 nM or 400 nM of 
TgVps9 or 200 nM of Rabex5 were added.

Generation of stable transgenic strains. Endogenous gene tagging methodology using pLIC-HA-DHFR 
plasmid34 was used to generate TgVps9-HA knock in parasites. DNA of TgVps9 was cloned in this plasmid using the 
following primers: forward (F-KI_Vps9) TACTTCCAATCCAATTTAATGCCCCTGCTTGCCCCTCGCCT and the 
reverse (R-KI_Vps9) TCCTCCACTTCCAATTTTAGCTTTCCTGTCACTATGTTTCGCGTCCG. To obtain iKOT-
gVps9 mutants, we used pG13-D-T7S4 plasmid36 in which a 2-kb DNA containing the promoter sequence was cloned 
using the following primers: forward (iKOTgVps9-5′ _F) CCGGCATATGCTTCTAACGGCACCACTTAAGGTGC 
and reverse (iKOTgVps9-5′ _R) CCGGCATA TGTGCGCCTTCTCGTGTCGTCTTG; and another 2-kb 
DNA containing the coding sequence of TgVps9 gene using the following primers: forward (iKOTgVps9-3′ _F) 
CCGGTGATCAATGTACCCAT ACGATGTTCCAGATTACGCTCGTCACGGGGAAGAAGACCAGCACGTC 
and reverse (iKOTgVps9-3′ _R) CCGGCCTAGGGGGAGAAGAGGAGACAGAAACATCTCGACTACGACC 
with the HA-tag sequence underlined in the forward primers inserted at the N-terminus of TgVps9 protein, right 
after the initiation ATG codon. 1 ×  107 parasites were transfected with 50 µ g of linearized plasmid and selected 
with 2 µ M of pyrimethamine. The emerging pyrimethamine-resistant population was cloned by limiting dilution. 
The clones were checked for plasmid integration by PCR using genomic DNA and two primers: forward (named 
A or Test_iKOVPS9.F2) ATTACAGCCAGCAGTGGCCAACCGAAT and reverse (named B, DHFR-int. R) 
GGCGTTGAATCTCTTGCCGACTGTGGAGAGGGAAGTCC.

Immunofluorescence microscopy. Confocal microscopy was performed as described previously10,38. 
Briefly, intracellular parasites within HFF cells on 24-well coverslips were fixed by 4% paraformaldehyde for 
10–15 min at room temperature. Fixed cells were permeabilized with 0.2% Triton X-100 and blocked with 5% 
fetal bovine serum (FBS). These cells were incubated with primary antibodies for 1 h at 37 °C and sequentially 
stained with secondary antibodies conjugated with Alexa 488, 594 or 647 in addition to DAPI for 30–45 min at 
37 °C. Stained cells were mounted with Mowiol. All images were captured by a confocal microscope LSM780 or 
880 (Carl Zeiss). Image processing was performed by open-source Fiji software.

Western blots. Intracellular iKOTgVps9 mutants or parental parasites incubated with ATc or not for 
48 h were scrapped and washed twice with PBS. The intracellular parasites were pelleted before suspension by 
Laemmli buffer (62.5 mM Tris-HCl pH 6.8; 2% SDS; 100 mM DTT; 10% sucrose) and boiled for SDS-PAGE. 
2 ×  106 parasites were fractionated on 10% acrylamide gels, which were transferred to nitrocellulose membranes 
as previously described39. Immunoblot was performed using several anti-MIC and ROP antibodies in TNT buffer 
(100 mM Tris-HCl pH 7.6; 150 mM NaCl; 0.1% Tween20). All membranes were stained with antibodies specific 
to the glycolytic enzyme anti-ENO240 as a loading control after stripping antibody.

Electron microscopy. For transmission electron microscopy, cells were fixed in 2.5% glutaraldehyde pre-
pared in 0.1 M cacodylate buffer and post-fixed in 1% osmium tetroxide in the same buffer. After acetonitrile 
dehydration, the pellet was embedded in Epon. Ultrathin sections (90 nm) were cut using a Leica UC7 ultra-
microtome and collected on 150 mesh hexagonal barred copper grids. After staining with 2% uranyl acetate 
prepared in 50% ethanol and incubation with a lead citrate solution, sections were observed on a Hitachi H-600 
transmission electron microscope at 75 kV accelerating voltage.

Invasion and plaque assays. Wild type RH∆ Ku80TATi strain and iKOTgVps9 parasites were incubated 
under ATc condition for 48 h and mechanically lysed by passage through a syringe. 1 ×  105 parasites were inoc-
ulated to HFF cells and incubated for 1 h at 37 °C. After infection for 1 hour, extracellular parasites were washed 
out with PBS and used to infect HFF cells before growing for 24 h at 37 °C. These infected cells were fixed by PFA 
and sequentially stained by GAP45 antibody with DAPI and counted by Axioimager Z1 (Carl Zeiss). Host cell 
invasion values were calculated using the ratio of intracellular parasite/host nucleus numbers as described41. For 
plaque assays, 400 freshly lysed parasites were used to infect HFF cells followed by incubation for 7 days with or 
without ATc. These cells were fixed by ethanol and stained by crystal violet.
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Abstract

Toxoplasma gondii possesses a highly polarized secretory system, which efficiently assem-

bles de novomicronemes and rhoptries during parasite replication. These apical secretory

organelles release their contents into host cells promoting parasite invasion and survival.

Using a CreLox-based inducible knock-out strategy and the ddFKBP over-expression sys-

tem, we unraveled novel functions of the clathrin adaptor complex TgAP1. First, our data

indicate that AP1 in T. gondii likely functions as a conserved heterotetrameric complex com-

posed of the four subunits γ, β, μ1, σ1 and interacts with known regulators of clathrin-medi-

ated vesicular budding such as the unique ENTH-domain containing protein, which we

named Epsin-like protein (TgEpsL). Disruption of the μ1 subunit resulted in the mis-sorting

of microneme proteins at the level of the Trans-Golgi-Network (TGN). Furthermore, we

demonstrated that TgAP1 regulates rhoptry biogenesis by activating rhoptry protein exit

from the TGN, but also participates in the post-Golgi maturation process of preROP com-

partments into apically anchored club-shaped mature organelles. For this latter activity, our

data indicate a specific functional relationship between TgAP1 and the Rab5A-positive

endosome-like compartment. In addition, we unraveled an original role for TgAP1 in the reg-

ulation of parasite division. APμ1-depleted parasites undergo normal daughter cell budding

and basal complex assembly but fail to segregate at the end of cytokinesis.

Author summary

The phylum Apicomplexa comprises a large group of obligate intracellular parasites of
wide human and agricultural significance. Most notable are Plasmodium, the causative
agent of malaria, and Toxoplasma gondii, one of the most common human parasites,
responsible for disease of the developing fetus and immune-compromised individuals.
Apicomplexa are characterized by the presence of an apical complex consisting of
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secretory organelles named micronemes (MIC) and rhoptries (ROP). MIC and ROP pro-
teins, released upon host cell recognition, are essential for host cell invasion and parasite
survival. After invasion, these organelles are neo-synthesized at each parasite replication
cycle. In our study, we demonstrate a crucial role for the T. gondii clathrin adaptor com-
plex AP1 in the vesicular transport of neo-synthesized MIC and ROP proteins, thereby
regulating mature apical organelle formation. In addition, we unravel an original role for
TgAP1 in the late stages of the parasite division process during daughter cell segregation.
Therefore, our study provides new insights into key regulatory mechanisms of the vesicu-
lar trafficking system essential for host invasion and intracellular survival of Toxoplasma
gondii.

Introduction

Eukaryotic parasitic pathogens belonging to the phylum Apicomplexa are responsible for caus-
ing severe mortality in humans and great economic losses in livestock. Toxoplasma gondii (T.
gondii) is of critical importance to pregnant women, as primary infections have the potential
to cause neonatal malformations and even death of the developing foetus. In addition, the
opportunistic nature of this obligate intracellular parasite can lead to the development of
encephalitis in immunosuppressed individuals after reactivation of lifelong persistent cysts in
the central nervous system [1]. As their name suggests Apicomplexa have a complex of unique
apical secretory organelles called rhoptries, micronemes and dense granules that sequentially
release their content enabling parasite invasion and intracellular survival. Microneme proteins
(MIC) and Rhoptry Neck proteins (RON) are first secreted and trigger the formation of a tran-
sient structure, the moving junction (MJ) that anchors the parasite to the host cell and forms a
ring through which the parasite penetrates [2] [3]. Rhoptry protein (ROP) contained in the
bulb portion of these club-shaped organelles are immediately discharged after MJ formation
and participate in the establishment of the intracellular parasitophorous vacuole (PV) in which
the parasite intensively multiplies [4]. ROP proteins secreted into the host cell also play a cru-
cial role in the manipulation of host innate immune responses to promote parasite survival
[5]. Dense granule proteins (GRAs) are key parasite effectors exocytosed during parasite entry
into the vacuolar space, where a certain sub-population contributes to the formation of a
nano-tubulo-vesicular network called the intravacuolar network [6] [7]. This tubular network
has been shown to be essential for nutrient import and regulation of parasite antigen exposure
at the PV [8]. In addition, similar to ROP proteins, GRA proteins can be secreted beyond the
PV membrane to actively modulate host gene expression and immune responses triggered
upon infection [9].

The stripped-down and polarized version of the eukaryotic intracellular trafficking system
has facilitated the use of T. gondii in studying the biogenesis of conserved organelles like the
Golgi apparatus [10], and, more recently, of the apicomplexan-specific rhoptries, micronemes
and dense granules [11]. These secretory organelles are formed de novo during each parasite
replication cycle by budding and fusion of vesicles emerging from the ER and Golgi. Earlier
studies have characterized sorting motifs within MIC and ROP proteins required for their traf-
ficking from the Golgi towards their final destination [12] [13] [14] [15] [16] [17]. These stud-
ies led to the conclusion that protein processing and protein sorting were inter-dependent
activities. For instance, the prodomain of soluble MIC3, MIC5 and M2AP proteins was shown
to be essential for targeting the proteins to the micronemes [14] [15] [18]. Processing of ROP
proteins takes place at a post-Golgi level and by contrast to MIC proteins, the presence of the
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pro-region of ROP1 was not a prerequisite for its targeting to the rhoptries [19]. More recently
the trafficking routes taken by MIC and ROP proteins were delineated by examining the func-
tions of some regulators of the endocytic compartments [11] [20] [21]. Key trafficking mole-
cules were identified, such as the sortilin-like receptor (SORTLR) [22], the dynamin-related
protein B (DrpB) [23] and the HOPS/ CORVET complex subunits Vps11, Vps18, Vps39,
Mon1 and Vps9, recently described as the Guanine nucleotide Exchange Factor (GEF) of
Rab5A [20] [24], all involved in the anterograde pathway regulating secretory organelle bio-
genesis. In addition, TgStx6, a parasite SNARE homolog of syntaxin 6 and the retromer protein
Vps35, which are involved in the retrograde transport of molecules from the endosomal-like
compartment (ELC) to the Golgi, were shown to be required for the biogenesis of dense gran-
ules [25] and rhoptries/micronemes [26], respectively. These recent findings suggest that T.
gondii has functionally repurposed evolutionarily conserved regulators of the endosomal sys-
tem to the secretory pathway to form secretory organelles [11] [20]. SORTLR was identified as
the unique receptor transporting both, ROP and MIC proteins from the Golgi to the ELC [22].
Depletion of SORTLR led to parasites deprived of apical secretory organelles and ROP and
MIC proteins were released into the vacuolar space, or the host cell cytoplasm via the default
constitutive secretion pathway. However, so far, little is known about how neo-synthesized
ROP and MIC proteins loaded on the unique receptor SORTLR are differentially sorted at
the level of the Trans-Golgi-Network (TGN) to reach their distinct final destinations. ROP
proteins and a sub-population of MIC proteins (MIC3/MIC8 complex) were shown to be
transported via a Rab5A/C-dependent and Rab7-independent pathway, while MIC2/M2AP
complex trafficking was Rab5A/C- and Rab7-independent [21]. However, depletion of Mon1,
the putative GEF factor for Rab7, as well as depletion of the different HOPS complex subunits
involved in Rab7 endosomal compartment biogenesis and integrity, was recently shown to
impair rhoptry, microneme and dense granule formation, thus leading to contradictory con-
clusions concerning the role of Rab7 in secretory organelle formation [20]. Interestingly, the
clathrin adaptor protein 1 complex (TgAP1) was found associated with the C-terminal tail of
SORTLR, suggesting that SORTLR-mediated transport of ROP and MIC proteins might occur
via TgAP1- and clathrin-dependent budding from the Golgi [22]. In eukaryotes, the AP1 com-
plex has a highly conserved regulatory function in the transport of cargos at the level of the
TGN and the early / sorting endosomal compartment [27] [28] [29]. Notably, AP1 regulates
the targeting of resident hydrolases to lysosomes in mammals or to the digestive vacuole in
plants [30] and yeast [27] [30]. AP1 also plays an essential role in the polarized sorting of vesi-
cles from the TGN to the plasma membrane in epithelial cells [31] and in the secretion of
plasma membrane and cell wall proteins in plants [30] [32]. In addition, AP1 has also been
shown to have a conserved role in the regulation of the cell division process in lower and
higher eukaryotes. For the latter, AP1 is crucial for the final step of daughter cell segregation
by delivering Golgi-derived vesicles at the cleavage furrow of dividing cells or the developing
cell plate in plants [33] [34] [35]. Finally, AP1 is also involved in the retrograde pathway from
the early/sorting endosomes to the TGN [29] and in the retrieval of membrane and other fac-
tors from immature secretory granules to promote their maturation [36]. A recent phylogenic
analysis of AP complexes in apicomplexans revealed that these parasites have undergone
repeated secondary losses of adaptin complex genes [37]. While the four subunits of the AP1
complex were retained in all studied apicomplexan genomes, the entire AP3 complex was
neither found in Theileria, nor in Cryptosporidium parvum and Babesia bovis. This study also
indicated a possible degeneration of AP3 subunits in Plasmodium, while APμ2 was lost in C.
parvum. In addition, like many other eukaryotes, the apicomplexans possess a single AP β1/2
subunit. Therefore, T. gondii appears as the unique apicomplexan parasite having conserved
in its genome all the genes encoding for AP1, AP2, AP3 and AP4 complexes [37]. AP1 is
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composed of four subunits: two large subunits γ and β, a medium subunit μ, and a small sub-
unit σ. Sorting motifs present in the cytoplasmic domain of cargo receptors are specifically rec-
ognized by the different sub-units of the complex. While γ and σ recognize the dileucine motif,
β and μ bind to the tyrosine-based motif [27] [38]. In T. gondii, a mutagenesis analysis of the
cytoplasmic domain (CD) of the transmembrane MIC2 protein has revealed that two con-
served motifs are necessary and sufficient for targeting the protein to the micronemes [39].
One of these signals contains tyrosine residues, whereas the other one is composed of a stretch
of acidic residues. These motifs are also present and conserved in the CD of MIC6 and are suf-
ficient for microneme targeting [17]. These data suggested the existence of an AP-dependent
mechanism for MIC protein sorting at the level of the TGN or ELC. Concerning ROP protein
sorting mechanisms, a previous study indicated that ROP2 possesses a dileucine and a tyro-
sine-based motif located in the C-terminal part of the protein required for the export of ROP
proteins from the TGN/ELC [40]. The authors of this study also demonstrated that these
motifs were specifically recognized by the μ subunit of AP1 [40] [41]. Over-expressing APμ1
mutated at residues that bind the tyrosine-motif, led to accumulation of ROP2 in a post-Golgi
multi-vesicular compartment resembling endosomes and immature rhoptries [41]. Similarly,
perturbing the function of APμ1 by siRNA interference led to major defects in ROP biogenesis
while, microneme and dense granule organelle biogenesis was not perturbed [41]. However,
this model was challenged by the resolution of the ROP2 protein structure. This study revealed
the absence of the predicted transmembrane domain and demonstrated that the association of
ROP2 with the parasitophorous vacuole membrane is mediated by an amphipathic peptide
enclosed in the N-terminal domain [42]. Of note, SORTLR that associates with ROP and MIC
proteins also possesses a dileucine motif in its cytoplasmic tail, suggesting an additional AP-
dependent sorting mechanism for ROP and MIC proteins [22]. In P. falciparum, AP1 localizes
at the Golgi/ER compartment and in rhoptries at the schizont stages. The APμ1 subunit was
found associated with the rhoptry-associated protein 1 (RAP1) suggesting a role in rhoptry
protein trafficking [43].

In the present study, we demonstrated that TgAP1 regulates both, rhoptry and microneme for-
mation but not dense granule biogenesis. In addition, despite a significant difference in the cell
division process of T. gondii compared to other eukaryotes, our study revealed a conserved role
for TgAP1 in the late stages of cytokinesis, by regulating the final step of daughter cell segregation.

Results

TgAPμ1 localizes at the Trans-Golgi-Network and on secretory vesicles

In order to define the subcellular localization of the TgAP1 complex, we generated knock-in
(KI) parasites expressing the μ1 subunit (TGGT1_289770) fused to a HA tag at its C-terminus.
Western blot analysis confirmed the expression of the tagged protein at the expected size (Fig
1A). A clonal parasite line was isolated and APμ1 localization was analyzed by an immunofluo-
rescence assay (IFA) using confocal (Fig 1B) and super-resolution microscopy SIM (structured
illumination microscopy)(Fig 1C and 1D). As expected for the AP1 complex, a localization at
the Golgi area was observed and confirmed by co-localization with the TGNmarker SORTLR
(Fig 1B and 1C). In addition to the TGN, a faint but specific APμ1 signal was systematically de-
tected in the parasite cytoplasm by confocal microscopy. After saturating the stronger Golgi-
associated signal, we clearly identified this weaker signal as APμ1-positive vesicles spread
throughout the cell cytoplasm and close to the cell periphery (Fig 1D, arrows). This pattern of
distribution strongly suggested that TgAP1 is involved in additional trafficking pathways apart
from the ones involved in MIC and ROP protein transport, in particular, in vesicle delivery to
the plasma membrane or the inner membrane complex (IMC).
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SIM acquisition and Imaris software analysis indicated a 46.4 ± 3.8% co-localization
between APμ1 and SORTLR (Fig 1C and 1F) at the TGN. In agreement, APμ1 shows a similar
high percentage of co-localization (52.0 ± 5.6%) with another TGNmarker, GalNAc, in
contrast to the cis-Golgi marker GRASP (22.0 ± 7.7%) (Fig 1E and 1F). Using a KI line express-
ing Rab5A-YFP under the endogenous promotor, the Rab5A-positive endosome-like com-
partment (ELC) was mostly detected as vesicles emerging posteriorly from the APμ1- and
SORTLR-positive TGN (Fig 1E, upper panel, Fig 1F and S1 and S2 Movies). In agreement, a
weaker co-localization of APμ1 with Rab5A was quantified (22.9 ± 8.2%) compared to the
TGNmarkers SORTLR and GalNac (Fig 1E and 1F). However, we noticed that the Rab5A-
positive ELC and the TGN appeared physically connected, in particular during Golgi duplica-
tion at the G1/S transition phase of the cell cycle (S1A Fig). This notion was also supported by
the observation that Brefeldin A (BFA) treatment, which disperses the Golgi apparatus by
inhibiting the activity of the ARF1 GTPase required for COPII-mediated vesicular transport,
led to the partial dispersion of the Rab5A-positive compartment similar to what was observed
for the AP1-positive TGN (S1B Fig). As previously suggested [19], these results indicate that
T. gondii possesses an unusal ELC, which is physically and likely functionally connected to the
TGN, resembling the early endosomal/TGN hybrid compartment of plants [44].

TgAPμ1 belongs to a conserved tetrameric complex and interacts with
the epsin-like protein

To assess, whether APμ1 is a component of the highly conserved tetrameric complex com-
posed of the three other subunits σ1, β and γ, we performed an immunoprecipitation (IP)
assay using anti-HA antibodies on APμ1-HA KI parasite lysate followed by mass spectrometry
analysis. APμ1 was reproducibly found associated with the three other subunits (Table 1, S2
Fig) confirming the formation of a conventional tetrameric complex described in other
eukaryotes. This finding was also supported by the localization of the σ1 sub-unit at the
SORTLR-positive TGN in KI parasites expressing the fusion protein σ1-HA under the native
promotor (S3A and S3B Fig). In addition, the unique ENTH domain-containing protein
encoded in the T. gondii genome, which we named Epsin-like protein (TgEpsL) was identified,
however with only one unique peptide (Table 1, S2 Fig). We decided to further investigate the
possible interaction between TgAP1 and TgEpsL because epsin proteins are very well known
AP2 and AP1 binding proteins involved in the activation of clathrin-mediated vesicular bud-
ding at the plasma membrane and at the TGN, respectively. Epsins bind to phospholipids via
their ENTH domain and regulate clathrin coat formation by inducing curvature of the lipid

Fig 1. APμ1 localizes at the Trans-Golgi-Network and on secretory vesicles. A-Western Blot image
showing the expression of the endogenous HA-tagged μ1 subunit at the expected size of 49 kDa in knock-in
parasites (RHΔKU80: parental strain). Actin (ACT1) was used as a loading control.B-Confocal microscopy
images showing the localization of μ1-HA (green) with SORTLR (red) at the Golgi region (arrow). Nuclei are
shown by DNA staining (blue). Note the very discrete signal of μ1-HA (green) at a localization corresponding
to the residual body (arrowhead). Bar: 2 μm.C- SIM image showing the partial co-localization (indicated by
arrowheads) of μ1-HA (green) with SORTLR (red) in sub-regions of the Golgi apparatus. Bar: 1 μm.D- SIM
image showing the localization of μ1-HA (green) in vesicles spread throughout the parasite cytoplasm and
also present in proximity to the plasmamembrane (arrows in the inset). Bar: 2 μm. E- The co-localization
of μ1-HA (green) with markers of the endosomal compartment (Rab5A-YFP), trans-Golgi (GalNAc-GFP) and
cis-Golgi (GRASP-RFP) (all shown in red) was examined by SIMmicroscopy. For each marker, a zoom of the
Golgi region is shown (insets). Bars: 2 μm. F- Scheme (left) illustrating the localization of the different markers
associated with the endosomal-like compartment (ELC), the trans-Golgi (Trans) and the cis-Golgi (Cis). The
histogram (right) indicates the percentage of co-localization between μ1-HA and Rab5A-YFP, SORTLR,
GalNAc-GFP and GRASP-RFP, in at least 30 parasites that were analyzed for each condition. μ1-HA
displays the strongest co-localization with the TGNmarkers SORTLR and GalNAc-GFP.

https://doi.org/10.1371/journal.ppat.1006331.g001

Novel insights into Toxoplasma clathrin adaptor complex AP1

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006331 April 21, 2017 6 / 38

https://doi.org/10.1371/journal.ppat.1006331.g001
https://doi.org/10.1371/journal.ppat.1006331


bilayers [38]. Sequence analysis indicated that TgEpsL contains conserved clathrin and phos-
phoinositide binding sites, such as recently described elsewhere [45] (S3C Fig). However,
besides the ENTH domain, no similarities were found between TgEpsL and other epsins (S3C
Fig), suggesting a specificity of binding partners and regulatory mechanisms of the protein
activity in T. gondii. First, we generated single KI parasites expressing EpsL-cMyc under its
natural promotor as well as double KI parasites expressing both, EpsL-cMyc and APμ1-HA
proteins (Fig 2A). IFA analysis by confocal and SIMmicroscopy confirmed the co-localization
of TgEpsL with TgAP1 at the TGN (Fig 2B). To verify the interaction between TgAP1 and
TgEpsL, an IP was performed on double KI EpsL-cMyc / APμ1-HA expressing parasites, using
either anti-cMyc or anti-HA antibodies. Western blot analysis confirmed the interaction
between APμ1-HA and EpsL-cMyc in both IP assays (Fig 2C and 2D). In agreement with this
result, IP of EpsL-cMyc followed by mass spectrometry identified the β, γ and μ1 subunits of
the AP1 complex and the small GTPase ARF1 as the main proteins associated with TgEpsL
(Table 2, S4 Fig), thereby confirming the result obtained by western blot. Importantly, no sub-
unit of the AP2 complex was identified, suggesting that TgEpsL might not function in
AP2-mediated endocytosis. In other eukaryotes, the AP1 complex interacts with epsinR via the
exposed GAE (“Gamma Appendage Ear”) domain of the γ subunit [46] [47]. Sequence align-
ment analysis showed a strong conservation of T. gondii GAE and BAE (“Beta Appendage
Ear”) domains with the corresponding domains of the AP1 β and γ subunits from other species
(S5 Fig, S1 Table). Therefore, the GAE and BAE domains of TgAP1, fused to GST were pro-
duced (Fig 2E). GST pull-down experiments in presence of a total extract of EpsL-cMyc/
APμ1-HA double KI parasites indicated that the GAE domain is sufficient to pull-down the
TgEpsL protein, while no binding of the μ1 subunit was monitored (Fig 2F). In contrast, a
weak interaction was detected between TgEpsL and the BAE domain (Fig 2F), suggesting a
preferential association of TgEpsL with the γ sub-unit, as a similar quantity of the two domains
was used in the assay (Fig 2E). Interestingly, we also found that the BAE domain pulled down
the μ1 subunit. As no direct interaction between this domain and the μ1 subunit has been
described in other eukaryotes, it was likely that the BAE domain could interact with a complex
of proteins that includes μ1 and other TgAP1 binding proteins. In agreement with this finding,
SORTLR that directly interacts with the μ1 subunit, was also found in the pull down eluate of
the β-ear but not in the eluate of the γ-ear (Fig 2F).

Together these data indicate that the AP1 complex in T. gondii is conserved at the molecular
level and likely functions similar to its mammalian homologue as a heterotetrameric complex
regulating epsin-mediated vesicular transport of parasite proteins.

Table 1. List of proteins identified bymass spectrometry following the IP of μ1-HA proteins in KI parasites expressing μ1-HA under the endoge-
nous promotor. The detailed list is included in S2 Fig. The parental strain RHΔKU80 was used as a control for non-specific binding to the anti-HA antibody-
coated beads. The table indicates the number of “unique peptides / spectra” for each identified protein in two biological independent assays (IP1 and IP2).

Total number of
unique peptides / spectra

Protein name Accession numbers Molecular weight (Da) IP-1 IP-2

μ1-HA μ1-HA
mu1 adaptin TGGT1_289770 48 918 11/55 8/16

gamma adaptin TGGT1_313670 107 036 20/53 24/77

beta adaptin TGGT1_240870 101 920 18/47 19/76

sigma1 adaptin TGGT1_270370 19 679 2/4 1/2

clathrin heavy chain TGGT1_290950 194 480 4/6 1/1

ENTH-domain containing protein TGGT1_214180 65 903 1/1 1/1

https://doi.org/10.1371/journal.ppat.1006331.t001
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Fig 2. The unique ENTH-domain containing protein of T. gondii is a key partner of APμ1.A- Western blot showing the expression of the cMyc-
tagged EpsL protein at the expected size of 66 kDa in single KI parasites (lane 2), and together with μ1-HA (49 kDa) in double knock-in parasites (lane
3). The parental strain (RHΔKU80) is shown in lane 1. SORTLR was used as a loading control. B- Images illustrating the co-localization of EpsL-cMyc
(green) with μ1-HA (red) (arrows), acquired with confocal microscopy (upper panel) or SIM (lower panel). Bars: 2μm. C- Co-immunoprecipitation
of μ1-HA with EpsL-cMyc in double KI parasites (lanes 2) using anti-cMyc antibodies. No binding of the μ1-HA protein on anti-cMyc coated beads was
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TgAP1 regulates microneme formation

To investigate TgAP1 functions, inducible knock-out (KO) parasites lacking the μ1 subunit
were generated using the CreLox strategy [48], where excision of the endogenous locus and
subsequent expression of the YFP protein is triggered upon addition of rapamycin (Fig 3A).
Integration of the LoxP-μ1HA-LoxP cassette at the endogenous locus was validated by PCR
(Fig 3B) and expression of the corresponding protein byWestern Blot (Fig 3C). By IFA, inte-
gration of the LoxP-μ1HA-LoxP cassette led to the expression of a tagged protein that co-local-
ized with SORTLR at the TGN (Fig 3D, upper panel). Incubation of transgenic parasites with
rapamycin triggered APμ1 depletion and YFP expression, but only in 12.0±4% of the whole
population (Fig 3B and 3D, lower panel). Of note, increasing rapamycin concentration did not
lead to a higher yield of KO parasites. Longer rapamycin induction periods improved the rate
of YFP-positive parasites but led to random excision events over the successive cell cycles mak-
ing it difficult to analyze the heterogenous phenotypes associated with AP1 depletion. Thus,
we decided to induce APμ1-KO parasites for 6 hours after invasion in order to trigger μ1 gene
exision during the first division cyle.

TgAP1 had been previously shown to regulate rhoptry biogenesis at a post-Golgi level while
microneme and dense granule formation was not perturbed [41]. Upon depletion of APμ1, we
found that the soluble MIC3 protein was re-directed towards the vacuolar space, demonstrated
by the GAP45 labeling of parasite contours, whereas MIC8 was found retained in the TGN,
confirmed by its co-localization with SORTLR (Fig 4A). A weaker MIC8 staining was also
detected at the plasma membrane suggesting that a part of the protein escaped by the constitu-
tive secretory pathway to the parasite surface (Fig 4A). On the other hand, M2AP and MIC2
exit from the TGN was not impaired as the proteins were not seen retained in this compart-
ment, nor secreted into the vacuolar space. However, both proteins appeared concentrated at
the apex of the parasites, while lateral micronemes were weakly detected (Fig 4A). Similar to
MIC2, the transmembrane MIC6 (Fig 4B) and AMA1 (S6A Fig) proteins, as well as MIC1
(S6A Fig), were found concentrated in apical micronemes, while the soluble protein MIC4 was
found re-routed towards the vacuolar space (Fig 4B). Furthermore, in support of our data

detected in single KI μ1-HA expressing parasites (lane 1). D- Reverse co-immunoprecipitation of EpsL-cMyc with μ1-HA in double KI parasites using
anti-HA antibodies. No binding of EpsL-cMyc protein with anti-HA antibody coated beads was detected in the single KI EpsL-cMyc expressing parasites.
E, F- A GST-pull down experiment with the GST-tagged gamma appendage ear (GAE) and GST-tagged beta appendage ear (BAE) domains of TgAP1
was performed in presence of a total lysate from EpsL-cMyc/ μ1-HA double KI parasites. E: SDS-PAGE gel stained with coomassie blue showing that a
similar quantity of GST, GST-GAE and GST-BAE (asterisks) was bound on the gluthation beads used in the assay shown in F. F: WB analysis
demonstrated the preferential binding of EpsL-cMyc to the ear domain of the γ sub-unit (GAE). A weak interaction of SORTLR and the μ1 sub-unit with
the BAE domain was also detected. GST alone was used as a control. FT: Flow-Through.

https://doi.org/10.1371/journal.ppat.1006331.g002

Table 2. List of proteins identified bymass spectrometry following the IP of EpsL-cMyc protein in double KI parasites expressing EpsL-cMyc
and μ1-HA proteins. The detailed list is included in S4 Fig. The single KI parasites expressing μ1-HA was used as a control for non-specific binding to the
anti-cMyc antibody-coated beads. The table indicates the number of “unique peptides / spectra” for each identified protein.

Protein name Accession numbers Molecular weight (Da) Total number of
unique peptides / spectra

Control: IP:

μ1-HA EpsL-cmyc/μ1-HA
ENTH domain-containing protein TGGT1_214180 65 903 3/4 15/76

beta adaptin TGGT1_240870 101 920 / 19/28

gamma 1 adaptin TGGT1_313670 107 036 2/3 17/33

mu1 adaptin TGGT1_289770 48 918 / 9/11

ADP ribosylation factor ARF1 TGGT1_276140 61 745 2/2 6/12

https://doi.org/10.1371/journal.ppat.1006331.t002
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suggesting that TgAP1 might not be involved in the MIC2/M2AP complex exit from the TGN,
we observed by SIMmicroscopy that APμ1 co-localized with immature proMIC3 but not with
immature proM2AP (Fig 4C). In addition, SORTLR was not mis-localized in APμ1-KO para-
sites (S6B Fig), showing that TgAP1 likely functions downstream of SORTLR in the antero-
grade secretory pathway. Finally, we observed that dense granule biogenesis was not affected

Fig 3. CreLox-based strategy used to deplete APμ1. A- Scheme depicting the cloning strategy used to replace the endogenous μ1 locus by the LoxP-
μ1-HA-LoxP insert. Upon rapamycin induction, the DiCre recombinase excised the LoxP flanked locus leading to YFP expression. The positions of the
primers used to verify the integration of the insert into the genome and its excision upon rapamycin incubation, are indicated.B- PCR confirming the
integration of the LoxP-μ1-HA-LoxP insert at the endogenous APμ1 locus resulting in the amplification of a band at 4.6 kb (asterisk). Rapamycin induction
resulted in the amplification of a lower and weak band at 3.1 kb (asterisk) corresponding to the low percentage of APμ1-KO parasites. The primers used for
the PCR are depicted in A-. Amplification of the enolase 2 (Eno2) gene was used as a control.C-WB showing the expression of integrated μ1-HA protein at
the expected size in a clonal population (DiCre RHΔKU80: parental strain). ROP 2–4 was used as a loading control.D- Upper panel:Confocal microscopy
images showing the localization of μ1-HA (green) together with SORTLR (red) at the TGN, after integration of the sequence flanked by the LoxP sites in
DiCre RHΔKU80 parasites. Nuclei are shown by DNA staining (blue). Bar: 2μm. Lower panel:Confocal microscopy images showing the absence of μ1-HA
signal (red) in YFP positive parasites (arrow) upon rapamycin treatment. Bars: 5μm.

https://doi.org/10.1371/journal.ppat.1006331.g003
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upon APμ1 ablation (S6C Fig). Therefore, our data indicate that TgAP1 is part of the early sort-
ing machinery that regulates distinct MIC protein complex transport from the TGN to their
final destinations.

TgAP1 regulates rhoptry biogenesis

In YFP-positive parasites, we also observed that deletion of the APμ1 subunit drastically
affected the formation of rhoptry organelles, which were detected as dispersed compartments
distributed throughout the cell cytoplasm (Fig 5A, upper panel). We also found that ROP pro-
teins were re-routed to the vacuolar space (Fig 5A, middle panel). Only 16.6 ± 4.7% of the
examined vacuoles showed typical apically located club-shaped rhoptries in APμ1-KO para-
sites (Fig 5B). Next, we monitored immature pre-rhoptry compartment formation (Fig 5A and
5C). Quantification of parasites displaying a positive signal for proROP4 proteins indicated
that 26.1 ± 1.2% of control parasites contained immature rhoptries, corresponding to dividing
parasites in S/M phase of the cell cycle. In APμ1-KO parasites, an increase in the percentage of
vacuoles positive for the proROP4 signal was counted (40.5 ± 1.2%), indicating no defect in
ROP protein neosynthesis and suggesting a defect in ROP protein maturation. In agreement,
immature proROP4 proteins were detected in the vacuolar space or at the residual body (Fig
5A, lower panel) in 71.8 ± 5.6% of the proROP4-positive vacuoles. Therefore, our data indicate
that TgAP1 is involved in immature proROP protein exit from the TGN compartment. In
absence of APμ1, the neo-synthesized ROP proteins are secreted into the vacuolar space likely
via the constitutive pathway, leading to an increase of vacuoles positive for proROP4 signal
over the successive cell cycles in our unsynchronized parasite population. In addition, the pres-
ence of dispersed rhoptries containing mature ROP proteins (Fig 5A) may indicate an addi-
tional role of TgAP1 in the rhoptry maturation process at a post-Golgi level. The fact that we
observed both, the early proROP protein targeting to the vacuolar space and the later step of
rhoptry organelle maturation defect, is likely a consequence of the unsynchronized nature of
the APμ1 locus excision events together with the disappearance of the remaining endogenous
protein, which might be effective at different stages of the rhoptry maturation process in this
fast growing parasite.

Finally, we monitored host cell invasion and egress activity in APμ1-KO parasites. In agree-
ment with the observed defect in rhoptry and microneme formation, we found that host cell
invasion was drastically inhibited (Fig 5D). In contrast, egress was moderately impaired (Fig
5E), similar to what was observed for the Vps11-KO mutant [20].

Over-expression of TgAPμ1 leads to defects only in rhoptry formation

It has been previously shown that over-expression of APμ1 or a point-mutated form of APμ1
caused a drastic defect in rhoptry formation at the post-Golgi level, while microneme biogene-
sis was not impaired [41]. To understand the distinct observed phenotypes compared to the
APμ1-KO parasites, we applied a similar strategy and conditionally over-expressed the μ1

Fig 4. APμ1 ablation impairs microneme protein localization. A- Confocal images showing the localization of MIC8, MIC3, MIC2 and M2AP proteins
(red) in control (YFP-negative parasites) and APμ1-KO parasites (YFP-positive). MIC8 accumulated in the parasite TGN, confirmed by its co-localization
with SORTLR (white). MIC3 was found to be secreted into the parasitophorous vacuolar space (arrow). Parasite contours were stained with the IMC
marker GAP45 (white). M2AP and MIC2 (parasite contours: IMCmarkers IMC1 and GAP45, respectively, both shown in white) displayed a preferential
apical localization, while lateral micronemes were weakly detected. Nuclei are shown by DNA staining (blue). Bar: 2μm.B-Confocal microscopy images
showing the localization of MIC4 (red, upper panel), and MIC6 proteins (red, lower panel) in control (YFP-negative parasites) and APμ1-KO parasites
(YFP-positive). MIC4 was found to be secreted into the parasitophorous vacuolar space (arrow), while MIC6 was concentrated at the apex (arrow).C- SIM
microscopy images showing the localization of μ1-HA (green) and proMIC3 (top) or proM2AP (bottom) in μ1-HA KI parasites. No co-localization
between μ1-HA and proM2AP was observed in contrast to proMIC3. Bars: 2μm.

https://doi.org/10.1371/journal.ppat.1006331.g004
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Fig 5. APμ1-KO parasites show defects in rhoptry formation. A-Confocal images showing the localization of ROP2-4 and proROP4 proteins (red) in
control (YFP-negative vacuoles) and APμ1-KO parasites (YFP-positive vacuoles) together with the TGNmarker SORTLR and the IMCmarker GAP45
(both in white). In APμ1-KO parasites, mature rhoptries were found dispersed within the cytosol (upper panel, arrow) or in the vacuolar space (middle panel,
arrow), while immature proROP4 proteins were found re-routed towards the vacuolar space and residual body (lower panel, arrow). Bar: 2μm. B-
Histogram indicating the percentage of examined vacuoles displaying apically positioned rhoptries in control and APμ1-KO parasites. Mean values of three
independent assays are shown ± SEM, ***p<0.001 (Student’s t-test). C- Histogram indicating the percentage of examined vacuoles positive for the
immature protein proROP4 staining in control and APμ1-KO parasites. Mean values of three independent assays are shown ± SEM, **p<0.01 (Student’s t-
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subunit (DDμ1 parasites) using the ddFKBP system [49]. Western blot analysis confirmed the
time-dependent accumulation of the cMyc-tagged μ1 subunit upon shield-1 addition in the
growth medium (Fig 6A). By IFA, the over-expressed cMycμ1 protein was detected at the
Golgi area, but also in cytoplasmic vesicles particularly concentrated at the basal pole of the
parasite (Fig 6B). We found that cMycμ1-overexpressing parasites displayed less pronounced
defects compared to APμ1-KO parasites. First, MIC2/M2AP and MIC8/MIC3 complexes were
both correctly targeted to micronemes (S7A Fig) as previously observed after over-expression
of the mutated μ1D176A subunit [41], and MIC protein processing was not affected (S7B Fig).
In contrast to micronemes, rhoptry formation was perturbed, and ROP proteins were mostly
detected in dispersed compartments throughout the parasite cytoplasm (Fig 6C, insets). Only
19.0 ± 2.1% of the population showed apically localized, mature rhoptries (Fig 6D). Further-
more, in agreement with the observed defect in mature rhoptry formation, a partial decrease
in host cell invasion was monitored (Fig 6I). However, in opposite to APμ1-KO parasites, in
DDμ1-induced parasites, proROP4 proteins were not re-routed to the vacuolar space or into
the residual body, and the percentage of proROP4 positive vacuoles was similar to control par-
asites (Fig 6C and 6E). Furthermore, our analysis by confocal microscopy indicated that pro-
ROP4 proteins exit normally from the SORTLR-positive TGN compartment (S7C and S7D
Fig), as the percentage of co-localization between these two compartments did not vary com-
pared to control parasites. In addition, we also monitored no change in the percentage of co-
localization between immature proROP4 and mature ROP2-4 proteins (Fig 6F and 6G) sug-
gesting no defect in ROP protein processing, which was also confirmed by WB analysis (Fig
6H). Of note, we could also observe a co-localization between proROP4-positive compart-
ments and the over-expressed cMycμ1 protein (Fig 6F, insets). To verify that the over-expres-
sion of the μ1 subunit induced defects in rhoptry formation via a TgAP1-dependent activity
and not indirectly by titrating other μ1-interacting factors, we performed an IP of the cMycμ1
protein. Immunoprecipitation of cMycμ1 using anti-cMyc antibodies identified the three
other subunits of the TgAP1 complex and TgEpsL as the main protein partners (Table 3 and S8
Fig). In addition, APσ1-HA correctly localized at the TGN (S7E Fig) suggesting that cMycμ1
over-expression does not cause the mis-location of the endogenous TgAP1 complex. These
data suggest that the over-expressed cMycμ1 protein likely integrates into a functional AP1
complex. In summary, we found that over-expressed APμ1 impaired the post-Golgi matura-
tion process of rhoptry organelles without perturbing proROP protein proteolytic processing,
thus acting at a similar or posterior step to this event in the secretory pathway. We therefore
examined the morphology of the endosome-like compartment in DDμ1 parasites.

Over-expression of TgAPμ1 perturbed the Rab5A-positive ELC
morphology

We transiently transfected HA-tagged Rab5A and Rab7 in DDμ1 parasites and examined the
distribution of the ELC compartment after shield-1 induction (Fig 7A and 7B). Interestingly,
we found that the Rab5A compartment displayed an altered morphology, appearing as large
vesicular structures scattered along the Golgi area in comparison to the more homogenous
and continuous distribution observed in control parasites (Fig 7A). In contrast, the Rab7 com-
partment did not show detectable changes by confocal microscopy after overexpression of

test). D- Histogram depicting the percentage of invaded parasites after 45 min incubation with host cells of mechanically released parasites for control
(YFP-negative) and APμ1-KO (YFP-positive) parasites. Mean values of three independent assays are shown ± SEM, ***p<0.001 (Student’s t-test). E-
Histogram depicting the percentage of egressed vacuoles after induction with the calcium ionophore A23187 in control (YFP-negative) and APμ1-KO
(YFP-positive) parasites. Mean values of three independent assays are shown ± SEM, *p<0.05 (Student’s t-test).

https://doi.org/10.1371/journal.ppat.1006331.g005
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Fig 6. The inducible over-expression of APμ1 only perturbed rhoptry formation. A- Scheme showing the cloning strategy employed to insert the
cMyc-tagged μ1 subunit under the influence of the destabilisation domain ddFKBP (DD). After addition of the synthetic ligand shield-1, the protein is no
longer degraded but accumulated in the parasites (Tub8: tubulin promotor; HXGPRT: resistance cassette). TheWB image shows the accumulation of the
cMycμ1 protein upon shield-1 treatment for the indicated time periods. The protein eno2 was used as a loading control.B-Confocal microscopy images
showing the localization of the over-expressed cMycμ1 protein (red) in a clonal population of DDμ1 parasites in two confocal planes (z3 and z5). cMycμ1
was detected at the Golgi apparatus (co-localization with SORTLR shown in green in the merged image) and in vesicles accumulating at the basal pole of
the parasites (arrows). Bar: 2μm.C-Confocal images showing the localization of ROP2-4 (upper panel) or proROP4 (lower panel) proteins (both in green)
and cMycμ1 (red) in control RH and DDμ1 parasites incubated with shield-1 (+S) for 24 hours. The contours of the parasites are delineated by staining of the
IMCmarkers, GAP45 or IMC1 (white). Rhoptries are detected as dispersed atrophied compartments (arrows and insets in upper panel) in DDμ1 parasites,
while proROP4 compartments were normally formed (arrow in lower panel).D- Histogram indicating the percentage of examined vacuoles displaying
apically positioned rhoptries in control and DDμ1 parasites induced with shield-1 (+S) for 24 hours. Mean values of three independent assays are
shown ± SEM, ***p<0.001 (Student’s t-test). E- Histogram indicating the percentage of vacuoles positive for the immature protein proROP4 staining in
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cMycμ1 (Fig 7B). Therefore, we next examined in details the relationship between the Rab5A-
positive compartment and the ROP maturation process using SIMmicroscopy. In control par-
asites, at the onset of ROP protein neo-synthesis during parasite division, preROP compart-
ments seemed to emerge from the TGN as already formed large vesicular compartments co-
distributing with Rab5A-positive vesicles or displaying a faint Rab5A signal at their limiting
membrane (Fig 7C, upper panel). More distant preROP compartments from the TGN, likely
en route to the apical pole of the parasite, were detected as Rab5A-negative compartments (Fig
7D, upper panel, arrows) suggesting that the maturation process involves a transient step of
transport through the Rab5A-positive ELC. In DDμ1 induced parasites, proROP4 proteins
were found retained in large vesicular compartments emerging from the Golgi/ELC, which
displayed a strong Rab5A signal at their limiting membrane (Fig 7C, lower panel). We calcu-
lated that 63.6 ± 18.2% of proROP4-positive preROP compartments were also positive for
Rab5A compared to only 21.9 ± 13.0% in control parasites (Fig 7E). Notably, the formation
of large and dispersed Rab5A-positive compartments empty of proROP4 proteins could also
be observed in DDμ1 induced parasites (Fig 7D, lower panel) and not in control cells. This
observation suggests a more general process of AP1-dependent regulation of Rab5A-positive
endosomal membrane dynamics apart from its contribution in the process of preROP com-
partment maturation.

Collectively, our data suggest that the maturing preROP compartments require a TgAP1-
dependent activity to further evolve towards the mature apically anchored club-shaped organ-
elles. Importantly, this TgAP1 activity seems to be tightly connected to the activity of the
Rab5A-positive ELC. Therefore, the study of the less severe phenotype associated with over-
expression of the APμ1 subunit allowed us to identify an additional step of TgAP1-mediated
regulation of the rhoptry maturation process at the level of the endosome-like compartment.

Altogether, our data indicate that TgAP1 acts at different trafficking steps during secretory
organelle biogenesis. First, TgAP1 regulates the anterograde transport of the studied micro-
neme complexes from the TGN. Second, our data suggest that TgAP1 regulates rhoptry forma-
tion by acting on both, at the level of immature ROP protein exit from the TGN as well as at
the ELC level to ensure the rhoptry maturation process into apically anchored, club-shaped
organelles.

control and DDμ1 parasites induced with shield-1 (+S) for 24 hours. Mean values of three independent assays are shown ± SEM. F-Confocal images
showing the co-localization of ROP2-4 (white), proROP4 (green) and cMycμ1 (red) in control RH and DDμ1 parasites incubated with shield-1 for 24 hours.
Bar: 2μm. On the right, a zoom of the Golgi region indicated by a white frame in the merge image is shown.G- The histogram indicates the percentage of co-
localization between the proROP4 signal and the ROP2-4 signal after image acquisition by airyscan confocal microscopy. Data are indicated as
average ± SD, n = 15 vacuoles.H-WB analysis of ROP4 protein proteolytic processing in control RH and DDμ1 parasites incubated with shield-1 (+S) for 24
hours. No defect was found as the immature proROP4 and mature ROP4 proteins were detected at similar amounts in both parasites lines. Actin (ACT1)
was used as a loading control and the detection of the cMycμ1 protein was used as a control for the shield-1 induction. I- Invasion assay. Histogram
depicting the percentage of invaded parasites after 45 min incubation with host cells of mechanically egressed parasites for both the parental strain and
DDμ1 parasites induced with shield-1 (+S) for 16 hours. Mean values of three independent assays are shown ± SEM, **p<0.01 (Student’s t-test).

https://doi.org/10.1371/journal.ppat.1006331.g006

Table 3. List of proteins identified bymass spectrometry following the IP of cMycμ1 protein in cMycμ1-overexpressing parasites induced with
shield-1 for 24 hours. The detailed list is included in S8 Fig. The parental strain RH was used as a control for non-specific binding to the antibody-coated
beads (no peptides corresponding to the indicated proteins were found in the control IP). The table indicates the number of unique peptides and spectra for
each identified protein.

Protein name accession numbers molecular weight (Da) Number of peptides Number of spectra

Gamma 1 adaptin TGGT1_313670 107 036 49 189

beta adaptin TGGT1_240870 101 920 51 160

Sigma1 adaptin TGGT1_270370 19 679 9 63

ENTH domain-containing protein TGGT1_214180 65 903 4 4

https://doi.org/10.1371/journal.ppat.1006331.t003
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Fig 7. Over-expression of APμ1 perturbed the Rab5A compartment morphology. A, B- Confocal images showing the localization of Rab5A (A,
green), Rab7 (B, green) and cMycμ1 (A, B, red) in the parental strain RH and DDμ1 parasites treated with shield-1 (+S) for 16 hours. A zoom of the Golgi
area indicated by the white frame in each image is shown as an inset on the right. Bar: 2μm.C- SIM images showing the localization of proROP4 (red) and
Rab5A-HA (green) proteins in control RH parental strain (upper panel) and cMycμ1 over-expressing parasites (lower panel) treated with shield-1 (+S) for
16 hours. Bars: 2μm.D- SIM images showing the co-distribution of Rab5A-positive vesicles surrounding proROP4 vesicular compartments in RH parental
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TgAP1 regulates cell division

When observed by IFA, both the induced DDμ1 and APμ1-KO parasites display a clear growth
defect. Quantification indicated a delay in parasite growth starting from stage 4 to 8 and 8 to
16 parasites per vacuole in APμ1-KO and DDμ1 parasites, respectively (Fig 8A and 8C). In par-
ticular, after 48 hours, the APμ1-KO parasites appeared to have stopped dividing compared to
neighboring YFP-negative vacuoles (Fig 8B). The growth defective parasites seemed to be teth-
ered by lateral contact sites or even fused together. Parasites that have broken out were also
often observed (Fig 8B, arrows). Very similar but milder morphological defects were detected
in DDμ1 parasites (Fig 8D). After the stage with 8 parasites per vacuole, the parasites were no
longer organized in a rosette–like structure and also appeared “tethered” by their lateral sides
or basal pole (Fig 8D, i, arrows and insets). Importantly, the over-expressed cMycμ1 protein
was found enriched at sites of lateral contacts between parasites (Fig 8D, ii, region 1, insets)
and at their basal pole (Fig 8D, ii, region 2, insets).

These observations suggest that the TgAP1-defective parasites suffer from a defect of divi-
sion at the late stages of cytokinesis when daughter cells segregate. To verify this hypothesis,
we examined in detail the different steps of the division process in these parasites. In APμ1-
KO parasites, we found that centromers replicate normally (Fig 8E, middle panel). New daugh-
ter buds positive for the inner membrane complex (IMC) marker IMC3 were also assembled
(Fig 8E, middle and lower panel) and the APμ1-KO parasites displayed a similar percentage of
IMC3-positive budding daughter cells compared to control parasites (Fig 8F). Similar observa-
tions were obtained in DDμ1 parasites (S9 Fig). Interestingly, while labeling for the centro-
meric protein chromo1, we noticed that APμ1-KO parasites, which had almost completed
their budding process, displayed a chromo1 localization at the basal pole in a region that
seemed to connect mother parasites (Fig 8E, lower panel, arrows and insets). The dynamic
nature of the chromo1 protein localization during the different stages of the cell cycle has been
previously described [50]. We confirmed this localization by IFA in control parasites (Fig 8E,
upper panel) and found that the protein also transiently localized at the basal pole of the
mother parasite while daughter parasites terminated the budding process (Fig 8E, upper panel,
image 3, arrow). Interestingly, this chromo1 dynamic localization is somehow reminiscent of
the Chromosomal Passenger Complex (CPC) in higher eukaryotes, which translocates from
the spindle pole in M phase to the mid-body at the end of cytokinesis [51]. This observation
again suggested that the division defect in APμ1-KO parasites likely occurs at the late stage
of parasite segregation. To investigate further this hypothesis, we examined the localization of
the basal complex protein MORN1, which forms a contractile ring required to segregate
nascent daughter cells [52]. We transiently expressed MORN1-cherry in APμ1-KO parasites
and monitored its localization both in fixed cells and by live imaging (Fig 8G and 8H and S3
Movie). We were able to visualize the formation of MORN1-cherry positive contractile rings
at the basal pole of nascent daughter parasites, suggesting that basal complex assembly is not
impaired in APμ1-depleted parasites (Fig 8H and S3 Movie). However, in opposite to control
parasites where MORN1-positive basal complexes were clearly seen separated one from
another, in APμ1-KO parasites, the mother parasites appeared to remain connected by their
MORN1-positive basal pole (Fig 8G and 8H, insets: region 2). When examined more carefully,

strain (upper panel), while TGN-distant preROP compartments were negative for Rab5A staining (arrows). Induced DDμ1 parasites exhibited Rab5A-
positive enlarged vesicular compartments (lower panel, arrow) empty of proROP4 proteins (red). Bars: 500 nm. E- Left: SIM image of DDμ1 parasites
induced with shield-1 showing proRO4 proteins (red) contained in vesicles with a strong Rab5A (green) signal at their limiting membrane illustrated by the
intensity profile of each signal (graph). Right: Histogram depicting the percentage of proROP4-positive vacuoles showing a Rab5A signal at their limiting
membrane in RH and DDμ1 parasites treated with shield-1 (+S). Data are presented as average ± SD (n = 50 parasites), ***p<0.001 (Student’s t-test).

https://doi.org/10.1371/journal.ppat.1006331.g007
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we observed that the basal complex constriction seemed prolonged by unusual elongated and
wider membranous structures (Fig 8H, insets: region 1). Interestingly, we were also able to
visualize similar deformed elongations of the parasite basal pole after performing Correlative
Light Electron microscopy (CLEM) in APμ1-KO YFP-positive parasites (Fig 9 and S10A Fig).
In control parasites, the residual body appeared as a well-organized structure, in which each
parasite basal pole displayed a discrete constricted region connecting the parasites to a central
mass of membrane, previously described as the remnant of the mother cell formed at the end
of cytokinesis (Fig 9A–9D). In APμ1-KO parasites, the basal pole of each parasite appears elon-
gated, wider and connected to the residual body in a disorganised manner (Fig 9E–9H). In
addition, while control parasites displayed a typical rosette-like organization, APμ1-KO para-
sites exibited a general deformed morphology that could indicate a defect in their cortical
integrity (Fig 9E). In more drastically affected vacuoles, parasites appeared to have broken out
or to remain connected by their lateral sides (S10B Fig, images e and f). In the latter case, the
pellicles from neighbouring daughter cells appeared to not have been fully segregated one
from another, ressembling the parasite division defects observed in Rab11A defective parasites
[53]. Supporting the hypothesis that APμ1-KO parasites suffer from a segregation blockage, we
noticed that when egress was artificially triggered in APμ1-KO parasites by incubation with
the calcium ionophore A23187, most of the monitored vacuoles initiated the process (Fig 5E)
demonstrated by the visualization of some parasites escaping the vacuole, however, the other
parasites remained in the vacuole and appeared attached together, unable to escape (S4
Movie). Finally, in agreement with our IFA observations (Fig 5), APμ1-KO parasites did not
possess apically localized mature rhoptries and only apical micronemes were detected (S10B
Fig, images c and d).

We also performed transmission electron microscopy (TEM) in induced DDμ1 parasites.
We found that the parasite morphology was similarly affected, together with parasite organiza-
tion within the vacuole (Fig 10G–10I), in opposite to control parasites (Fig 10A and 10B),
which were organized in a rosette-like structure. Similar to APμ1-KO parasites, the basal pole
of the DDμ1 parasites displayed a pronounced change in their morphology (Fig 10F, 10G and
10I, arrows). In contrast to control cells (Fig 10C), our images suggest that DDμ1 induced

Fig 8. TgAP1 regulates parasite growth. A, C: Intracellular growth assay performed in APμ1-KO parasites after rapamycin
treatment (A) and DDμ1 parasites after ± shield-1 induction (C) at 24 hours post-invasion revealed defects in parasite replication.
The histograms depict the percentage of vacuoles containing 2, 4, 8, 16 or 32 parasites. Mean values of three independent assays
are shown ± SEM.B, D: Confocal images showing the disorganized appearance of dividing APμ1-KO (B) and DDμ1 parasites (D).
B- After 48 hours of growth, the APμ1-KO parasites (YFP-positive, green) have stopped to grow and parasites seem to display a
defect in segregation. Note the apparent rupture of the cortex revealed by the GAP45 staining (red) (arrow). Nuclei are shown by
DNA staining (blue).D- Induced DDμ1 parasites were labeled for GAP45 (white) and overexpressed cMycμ1 proteins (red). Left (i):
Mis-organised vacuole showing tethered parasites with an apparent defect in lateral segregation revealed by the GAP45 staining
(insets: zoom of the different areas indicated by arrows in the main image). Right (ii): Confocal images showing the enrichment of the
overexpressed cMycμ1 protein at sites, where parasites have remained tethered to each other (insets: region 1: lateral sides, region
2: basal pole). E- Upper panel: Confocal microscopy images in control parasites showing the duplication of the centromers
(centromeric protein chromo1, green, image 1) and the formation of daughter buds (IMC3 protein, red, images 2, arrowhead). Note
that chromo1 transiently accumulates at the basal pole of parasites at the very end of the daughter cell budding process (image 3,
arrow). Lower two panels: Confocal microscopy images of APμ1-KO parasites (YFP-positive parasites) showing the duplication of
the centromers (chromo1, white arrows) and the formation of daughter buds (IMC3, red, middle and lower panels). Note the
accumulation of chromo1 at sites connecting mother parasites, while daughter cells complete bud formation (lower panel, arrows).
Bars: 2μm. F- Histogram depicting the percentage of vacuoles containing budding daughter cells (IMC3 staining) in control and
APμ1-KO parasites. Mean values of three independent assays are shown ± SEM.G- Airyscan confocal microscopy images showing
the localization of MORN1-cherry (red) in control (YFP-negative, left) and APμ1-KO parasites (YFP-positive, right) parasites. The
parasite contours were delineated by staining the IMCmarker GAP45 (white). The insets show a zoom of the region indicated by a
frame in the main image.H- Airyscan confocal images showing APμ1-KO parasites (YFP-positive, green) expressing the
MORN1-cherry protein (red). MORN1-positive daughter rings were normally assembled (asterisks) but mother parasites seemed to
be attached by their basal pole (arrows), which appeared as deformed elongated membranous structures (insets: two confocal
planes z1 and z2 of the regions 1 and 2 indicated with a white frame in the main image, arrows). Bars: 2μm.

https://doi.org/10.1371/journal.ppat.1006331.g008
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parasites were unable to properly constrict their basal extremity, which appeared deformed
with wide elongations (Fig 10F and 10G). In addition, we also observed parasites that were
attached by discrete lateral contact sites (Fig 10I, arrow). Furthermore, in agreement to our
IFA images (Fig 4 and Fig 5), in DDμ1 induced parasites, apically anchored mature rhoptries
were not detected or present as dispersed compartments throughout the cell (Fig 10D and
10E), while apical and lateral micronemes were still visualized (Fig 10D). The parasites also
accumulated large lucent vesicles of unknown nature in their cytoplasm (Fig 10D, 10G and
10H). We could detect membranous or vesicle-like structures within their lumen and some of
our images suggest that they could be formed by internal budding of the limiting membrane
(S11 Fig), as previously observed for the VAC compartment [54]. However, presently, we
cannot conclude whether these vesicles represent dispersed and fragmented VAC-related com-
partments or enlarged Rab5-positive endosomal structures that we detected by SIMmicros-
copy (Fig 7).

Collectively, our data suggest that TgAP1 is involved in parasite division by regulating the
very late stages of cytokinesis after the budding process has been completed. Though we did
not directly demonstrate it, our data converge towards the hypothesis that a TgAP1-dependent
delivery of vesicles at the plasma membrane, directly from the Golgi, or indirectly via a recy-
cling activity of the mother cell plasma membrane from the residual body, is required to com-
plete daughter cell segregation. By this activity, apart from its role in ROP and MIC protein
transport, TgAP1 could deliver lipids as well as important regulatory factors, such as regulators
of cytoskeleton dynamics. These hypotheses are supported by our observations that the over-
expressed cMycμ1 protein was found accumulated at the basal pole of dividing parasites and

Fig 9. Correlative Light ElectronMicroscopy (CLEM) images illustrating the organization of the basal pole (arrow heads) and the residual body
(arrows) in control and APμ1-KOparasites. A-D: Non-YFP control vacuoles (C: zoom of the region indicated by a white frame inB). Note the typical
organization in a rosette-like structure and the correct morphology of the parasites. E-H: YFP-positive APμ1-KO parasites (detected in the region 3T shown in
S10 Fig). Bars: 500 nm.

https://doi.org/10.1371/journal.ppat.1006331.g009
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Fig 10. Transmission electron microscopy images showing the formation of mature rhoptries (Rh) and micronemes (Mi) anchored at the apical pole in
control parasites (A) and the normal distribution of parasites in rosette-like structures (B). Bars: 500nm. (C)- Zoom of the posterior end of the control
parasites showing the tight constriction of the basal pole with a thin continuity to the residual body (arrowhead). In DDμ1 parasites induced with shield-1
(+S) for 24 hours (D-I), apically positioned rhoptries could not be detected in contrast to micronemes (D) or they were found dispersed in the cytoplasm (E,
arrow). Numerous giant lucent vesicles (V) were also observed (D, G, H). In addition, the parasites were found disorganised within the vacuole with a
distorted morphology (G-I) particularly at the basal pole (F, G and I, arrow), which appeared deformed and elongated (arrows in F) despite the detection of
the residual body (F and I, arrowhead). In addition, some parasites seemed to remain attached by discrete lateral contact sites (H, arrow). Bars: 500nm. Mi:
micronemes, Rh: rhoptries, PV: parasitophorous vacuole, V: vesicles.

https://doi.org/10.1371/journal.ppat.1006331.g010
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lateral contact sites (Figs 6B and 8D) and that endogenous TgAP1 was also detected in numer-
ous peripheral vesicles at the parasite cortex in APμ1-HA KI parasites (Fig 1D). Of note, such
as illustrated in Fig 1B, we also noticed in some vacuoles a very discrete localization of endoge-
nous APμ1-HA at a point connecting the basal pole of the parasites.

Discussion

Role of TgAP1 in ROP and MIC protein trafficking

Previous studies have shown that MIC proteins navigate through the secretory pathway as
complexes presumably assembled at the TGN level, which include one transmembrane escor-
ter and one or two soluble partners. For example, MIC6 escorts MIC1/MIC4 and MIC8 associ-
ates with MIC3. All the members of the complex possess sorting signals required to address
the proteins to the mature organelles, in particular the prodomain of the soluble partner and
the cytoplasmic domain of the transmembrane partner. After depletion of the MIC6-CD con-
taining sorting signals, both MIC1 and MIC4 were retained together with MIC6ΔCD in the
ER/Golgi [17]. The prodomain of MIC3 was shown to be essential for complex transport
through the secretory pathway [14], however, deletion of MIC8 did not impact the targeting of
MIC3 to micronemes, suggesting distinct regulatory trafficking mechanisms [16]. In APμ1-
KO parasites, soluble MIC3 was re-directed towards the vacuolar space, whereas the trans-
membrane MIC8 protein was mainly retained in the TGN. Interestingly, we also found that
similar to MIC3, the soluble MIC4 protein was re-routed to the vacuolar space; however the
transmembrane MIC6 protein was not retained in the Golgi but localized to a sub-population
of apical micronemes. Therefore, this data suggests that these two MIC complexes exhibit dif-
ferent trafficking mechanisms in relation to TgAP1 function, MIC8 being the only transmem-
brane MIC protein that we found retained in the Golgi upon APμ1 ablation. We also observed
that MIC2 and AMA1 were localized in apical micronemes while the typical lateral staining
was weakly detected. However, in opposite to MIC4 and MIC3, the soluble M2AP was not re-
routed to the vacuolar space but accumulated together with MIC2 in apical micronemes. This
result shows that despite the lack of lateral MIC2/M2AP containing micronemes, both pro-
teins of the complex likely exit the Golgi and are targeted to apical micronemes. Presently, we
cannot conclude whether this loss is due to an indirect effect on parasite cortical integrity,
which could impair lateral anchoring of these organelles but not anchoring to the conoid
region, or caused by a direct effect on protein trafficking. In addition, the MIC1/MIC4/MIC6
complex was dissociated in absence of TgAP1 similarly to the MIC3/MIC8 complex, support-
ing the hypothesis that TgAP1 might play an important role in complex stabilization at the
TGN before their export. Of note, SORTLR has been shown to interact with the soluble pro-
teins MIC1, MIC4 and MIC5 and to be involved in the trafficking of the corresponding MIC1/
4/6 complex and the MIC5 protein, while interaction with transmembrane MIC proteins has
not been investigated. However, the MIC3/MIC8 and MIC2/M2AP complexes were also mis-
targeted. Therefore, further studies are now required to understand better at the molecular
level, whether TgAP1 interacts with both components of the sorted MIC complex, which could
include SORTLR loaded with the soluble MIC as well as the associated transmembrane MIC
protein (see proposed model in Fig 11) by their respective sorting signals. To address this ques-
tion, it will be interesting to investigate the role of the dileucine motif present in the cyto-
plasmic tail of SORTLR in the differential sorting of soluble versus transmembrane MIC
proteins at the TGN.

Concerning the role of TgAP1 in ROP protein trafficking, our data indicate that immature
proROP proteins were re-directed towards the vacuolar space and the basal body in APμ1-KO
parasites, indicating an TgAP1-dependent transport in the anterograde secretory pathway
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before their proteolytic processing occurs, therefore most likely at the TGN level. In contrast,
perturbing TgAP1 functions by an inducible over-expression of the μ1 subunit led to less
severe effects. MIC proteins were not mis-sorted but maturing rhoptries were retained in
Rab5A-positive compartments and the formation of apically anchored club-shaped rhoptries
was impaired. Of note, a defect in both, the anterograde and retrograde transport of proteins
from the Rab5A-positive endosomes would lead to an accumulation of membrane and disor-
ganization of these compartments. Presently, we cannot exclude a role of TgAP1 in either of
these pathways (Fig 11). Indeed, in mammalian cells, AP1 also regulates the retrograde trans-
port of proteins from the early/sorting endosomal compartment to the TGN, while GGA
(Golgi-localized, γ ear-containing, ADP-ribosylation factor-binding) is involved in antero-
grade transport from the TGN to the endosomes [27]. GGAmolecules are not encoded in the
T. gondii genome [11]. Thus, one can envision a similar role for TgAP1 in the retrograde trans-
port of molecules from the Rab5A-positive ELC to the TGN, in particular during rhoptry bio-
genesis. Indeed, rhoptry biogenesis could follow similar mechanisms than the ones involved
in secretory granule maturation. In specialized secretory cells, immature secretory granules
emerge from the TGN as preformed large vesicular compartments [36], similar to what we
observed for the PreROP compartments in T. gondii. Mature granule formation requires an
AP1-dependent retrieving of SNARES and proteases from the immature granule in order to
form granules competent to be released upon an external stimulus. Therefore, it is possible
that similarly, the defect in the preROP maturation process that we observed is the conse-
quence of an impairment of TgAP1-dependent retrieving of membrane factors, such as
SNAREs. This mechanism would be crucial to pursue the rhoptry maturation process, in

Fig 11. Model summarizing the different functions of AP1 in T. gondii. A- Our data indicate that TgAP1 is involved in the sorting of MIC proteins from
the TGN and rhoptry biogenesis, as well as, participates to daughter cell segregation. This latter activity might be regulated by a TgAP1-dependent recycling
activity of the mother plasmamembrane from the residual body or a direct transport of vesicles from the Golgi to the nascent daughter pellicles.B- TgAP1
regulates the sorting and transport of all the different studied MIC protein complexes from the TGN (green arrow), including MIC3/8, MIC1/4/6 and M2AP/
MIC2, resulting in the loss of lateral micronemes containing these proteins. However, a subpopulation of apical micronemes, containing the proteins MIC2/
M2AP, AMA1 and MIC6, were still detected upon APμ1 ablation. At the molecular level, one can envision that TgAP1 recognizes via its subunits γ-σ, the
dileucine motif present in the cytoplasmic tail of SORTLR, which has loaded the soluble MIC partner (such as MIC3). TgAP1 could simultaneously bind to the
tyrosine motif of the transmembrane MIC partner (such as MIC8) via its subunits β-μ, thereby participating to the complex stabilization and transport into
clathrin-coated vesicles from the TGN. These putative sorting mechanisms have to be confirmed. Finally, we found that TgAP1 regulates ROP protein
transport from the TGN to the Rab5A-positive ELC and also the subsequent steps of the rhoptry maturation process. TgAP1 could regulate the latter activity
either, by stimulating ROP protein exit from the ELC or by retrieving material from the preROP compartments in a Rab5A-dependent manner to ensure the
following steps of maturation into club-shaped apically anchored organelles (green arrows). The Rab7-positive ELC also likely participates in ROP and MIC
trafficking, though a specific functional relationship was found between TgAP1 and the Rab5A-positive ELC.C- Our data also indicate that the AP1 complex
in T. gondii functions as a conserved heterotetrameric complex composed of the μ1, σ1, γ and β subunits and interacts with ARF1 and clathrin. We also
found that the ear appendage domain of the γ subunit associates with the unique ENTH-domain containing protein TgEpsL.

https://doi.org/10.1371/journal.ppat.1006331.g011
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particular the further steps of transport, apical anchoring and final remodeling of the preROP
compartments into club-shaped organelles. This hypothesis would be in line with data ob-
tained in other eukaryotic systems showing that AP1 triggers clathrin-dependent vesicular
budding from Rab5- and Rab4-positive early/sorting endosomal compartments [55] [28]
[29]. We also observed that perturbing TgAP1 function induces a more general defect in the
Rab5A-positive compartment, distinct from immature pre-rhoptries, suggesting that a specific
functional relationship might exist between TgAP1 and the Rab5A-positive compartment in T.
gondii. At the molecular level, AP1 and GGA1 proteins have been demonstrated to regulate
Rab5 membrane dynamics by binding directly to the Rab5 effector Rabaptin-5 in mammalian
cells [56] [57]. Notably, over-expression of Rabaptin-5 shifts the localization of GGA1- and
TGN-associated cargos into enlarged Rab5 endosomes [56] [57] [58]. Therefore, further stud-
ies are needed to explore a putative role of TgAP1 in the regulation of the Rab5 membrane
dynamics in T. gondii and to identify the involved molecular mechanisms.

Moreover, the fact that a unique ENTH-domain containing protein is expressed in T. gondii
raised the question of the role of clathrin-mediated endocytosis at the plasma membrane, a
question that is still a matter of debate. In particular, clathrin was found mainly localized at the
TGN and in cytoplasmic vesicles and perturbing its function led to defects in Golgi duplication
and ROP and MIC biogenesis [59]. However, it was recently shown that parasites depleted for
the cathepsin CPL internalized GFP proteins by a still unknown mechanism [60]. The role of
clathrin- or TgAP2-mediated endocytosis in this process was not investigated. Here, we found
that the unique T. gondii epsin-like protein mostly co-localizes with TgAP1 at the TGN and in
cytoplasmic vesicles and that TgEpsL interacts with the TgAP1 complex but not the TgAP2
complex. These findings argue against a clathrin- and epsin-mediated mechanism for protein
internalization at the parasite plasma membrane, but further experiments are required to con-
firm this hypothesis. In particular, we are currently investigating TgEpsL function by the gen-
eration of inducible KO parasites. Due to the unique organisation of the parasite cortex, that
comprises three lipid bilayers (the plasma membrane and the inner membrane complex), it is
possible that T. gondii uses alternative specific pathways for the internalization of macromole-
cules compared to mammalian cells.

TgAP1 regulates parasite growth

Our data strongly suggest that the cell division defect we found upon APμ1 ablation is not
linked to rhoptry and microneme biogenesis but rather to a TgAP1-mediated vesicular trans-
port at the level of the basal pole and lateral sides of segregating daughter cells. Indeed, we
could already observe at the stage of 4 parasites per vacuole, the ROP andMIC protein traffick-
ing defects before the cell division process was drastically affected (Fig 4 and Fig 5). In APμ1-
KO parasites, the budding process of nascent daughter cells was not perturbed as well as the
formation of the MORN1-positive contractile rings. However, we observed both by IFA (Fig
8H) and electron microscopy (Fig 9), that the basal pole of the parasites is elongated and
deformed, suggesting a later defect after the contractile rings of the basal complex have reached
the posterior end of the parasite. In higher eukaryotes, mid-body abscission, which takes place
last at the end of cytokinesis, is a complex process timely regulated by the sequential recruit-
ment of different factors such as members of the ESCRT protein family, the Chromosomal
Passenger Complex, Rab GTPAses and kinase/phosphatases [51]. In T. gondii, after daughter
cell budding has been completed, parasites remained attached within the vacuole by their basal
pole via a highly organized structure called the residual body [61]. The role of the residual
body is not clear. Apart from receiving the remnant material from the mother parasite, it prob-
ably plays an important role in the maintenance of synchronous division cycles within the
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vacuole. A recent study has described the well organized and regular structure of the residual
body, connecting each parasite basal pole via a thin membranous connection, which follows
the constricted basal complex region [61]. This organization seems to be perturbed in TgAP1–
defective parasites. Thus, two scenarios could be proposed to explain the division defects
observed in APμ1-KO parasites. First, a TgAP1-dependent delivery of vesicles directly from
the TGN/ELC to the basal pole could be required to orchestrate the final step of cytokinesis
and in particular, to spatially organise the specific attachment structure that remains between
parasites. These vesicles could deliver crucial regulatory factors, such as regulators of cytoskele-
ton components required to modulate the contractile force involved in parasite attachment at
the residual body. Second, TgAP1 could be involved in a recycling activity of the mother
plasma membrane from the residual body to terminate daughter cell segregation, such as pre-
viously observed for the IMC [62] or contribute to a direct transport of de novo synthesized lip-
ids from the TGN to the plasma membrane. In agreement with the latter hypothesis, a recent
study has demonstrated that parasite depleted for the FAS II enzyme, which is responsible for
fatty acid biosynthesis at the apicoplast, displayed drastic division defects and were unable to
segregate after the budding process has completed, forming a mass of tethered cells [63]. This
study revealed the requirement for de novo lipid synthesis and therefore, we believe, of regu-
lated trafficking pathways for the delivery of these lipids, to complete daughter cell segregation
at the end of cytokinesis. Importantly, a similar role for the AP1-dependent delivery of Golgi-
derived vesicles at the cleavage furrow of dividing cells, has been previously described in differ-
ent organisms, such as S. pombe [41], D. discoideum [42], C. elegans embryo and plants [32],
suggesting a conserved function for the complex AP1 in cell division among various eukaryotic
organisms including T. gondii. Therefore, a major perspective of our work will be to dissect the
mechanisms regulating a possible TgAP1-mediated transport of vesicles from the parasite
basal pole and/or the TGN/ELC to the cortical area and to identify cargos that could be trans-
ported via this pathway and possible regulatory factors. In particular, it will be interesting to
investigate potential links with other compartments involved in constitutive secretion such as
the Rab11A-positive compartment. Indeed, deregulation of Rab11A activity also results in
incomplete pellicle assembly in the inner regions between daughter cells, leading to a cell sepa-
ration block late in cytokinesis [53].

In conclusion, in plant cells, secretory and endocytic routes intersect at the hybrid trans-
Golgi network /early endosomes, where cargos from both the anterograde and the retrograde
pathways are further correctly sorted in a timely manner [44]. In T. gondii, we also found a
tight physical and functional association between the TGN and the ELC throughout the cell
cycle. BFA treatment led to the dispersion of both, the TGN and the Rab5A-positive com-
partment. Although tightly connected, these two compartments are functionally distinct, as
recently suggested by the study of the retromer functions, where depletion of TgVps35 led to
the retention of SORTLR in the endosomal-like compartment by inhibition of its retrograde
transport to the TGN [26]. In plants, late endosomes, also called multi-vesicular bodies
(MVBs) or pre-vacuolar compartments (PVCs) were shown to directly emerge from the
hydrid TGN/early endosomal compartment as immature large vesicular compartments con-
taining intra-luminal membranes, such as observed for the preROP compartments in T. gondii
[64]. Furthermore, AP1 was shown to be critical for BFA-sensitive post-Golgi trafficking
events from the TGN/EE to the MVB [30] [32]. Finally, fully differentiated APμ1-KO plant
cells contained fragmented vacuoles rather than a large central vacuole as in wild type cells,
suggesting an additional role of AP1 in the later step of vacuolar fusion similar to what is
observed in yeast [32] [33]. Our findings suggest that AP1 in T. gondiimay also be involved in
both steps of proROP protein exit from the TGN compartment towards the ELC but also at
the later step of preROP vesicular compartments maturation into apically anchored club-
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shaped rhoptries. Because of the functional and structural similarities between T. gondii and
the plant trafficking system, one can envision that many vesicular trafficking pathways and the
corresponding molecular regulatory mechanisms are conserved.

Materials andmethods

Ethics statement

No study on human participants, specimens or tissue samples, or vertebrate animals, embryos
or tissues have been conducted.

Cloning strategies

Genomic DNA was isolated from the Type I RHΔKU80 strain parasites using the Promega
Wizard genomic DNA purification kit and used as template for PCR. The p5RT70 loxp-AP1μ-
loxp-YFP-HXGPRTplasmid was generated by a 3 step cloning. First, a 2kb fragment from the
endogenous 3’UTR of TgAPμ1 (TGGT1_289770) was amplified using primers CCGGGAGCT
CAAAATCAACAAGGGGGGGCGAGG and GCGCGAGCTCACGGAGAAGGAACGAG
GAGCAAAG and cloned into a unique SacI site of the mother vector p5RT70loxPKillerRe-
dloxPYFP-HXGPRT [48]. As a second step the coding sequence of the gene was amplified
with a HA epitope tag added at the C terminus using primers GCGCCCTAGGATGGCGGG
GGCGTCTGCGGTGT and GCGCAGATCTCTAAGCGTAATCTGGAACATCGTATGG
GTAGGAGAGTCTCAGTTGGTACTCTCCA and inserted into the plasmid using the restric-
tion sites AvrII and BglII respectively. As a final step, a 2.5kb fragment from the 5’UTR of
TgAPμ1 was amplified with the primers GCGCGGTACCCAAGTTCCCGTTTGTCCTGG
and GCGCGGGCCCTCTTGGGACTGCAAGATCGACTG cloned using the sites KpnI and
ApaI respectively. The DDcMycμ1 parasites were obtained using the ddFKBP over-expression
system [49] as follows: The TgAPμ1 gene was amplified with the following primers: GCGCAT
GCATATGGCGGGGGCGTCTGCG and GCGCTTAATTAACTAGGAGAGTCTCAGTTG
GTACTCTCCATTTTGAGTGATG and cloned into the pG12-Tub8-DD-mCherrycMyc-
HXGPRT vector using the restriction sites NsiI and PacI. The plasmid was then digested by
AvrII and BglII to remove the DD and mCherry fragments. The DD cassette was re-intro-
duced into the resulting vector after amplification by PCR (F: CTTTTAGATCTAAAATGGG
AGTGCAGG, R: GCGCCCTAGGTTCCGGTTTTAGAAGCTCCAC) and ligation into the
AvrII and BglII sites.

Primers used to generate 3’-terminally tagged genes integrated at the endogenous locus
(knock-in parasites) and produce recombinant proteins are indicated in Table 4.

Parasite culture and transfection

Toxoplasma gondii Type I RHΔKU80ΔHXGPRT and DiCreΔKU80ΔHXGPRT parasites were
grown on confluent Human Foreskin Fibroblast (HFF) cells (CCD-1112Sk (ATCC, CRL-
2429TM)) which were cultured in complete DMEM (gibcoLife Technologies) supplemented
with 10% Fetal Bovine Serum (GibcoLife Technologies) and 1% Pen Strep (gibcoLife Technol-
ogies). To obtain the DDμ1 parasites, 50μg of the pG12-Tub8-DD-cmyc-APμ1-HXGPRT plas-
mid was transfected in RHΔKU80ΔHXGPRT parental strain by electroporation following
standard procedures. To obtain the APμ1-KO parasites, 50μg of loxp-APμ1HA-loxp-YFP-
HXGPRT construct was transfected in the DiCreΔKu80ΔHXGPRT strain parasites. Following
transfection, in both cases the parasites were subjected to Mycophenolic acid/Xanthine drug
selection and verified for the transfection efficiency by immunofluorescence analysis. Subse-
quently the non-clonal populations of parasites were subjected to cloning by serial dilution.
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For the APμ1-KO clonal parasites, integration of the transgenic construct at the endogenous
locus was verified by a genotyping PCR using a forward primer (GACGCGTTTCACTTCCT
CTGCTTCCTC) located upstream of the cloned 5’UTR, and a reverse primer (GTTTACGTC
GCCGTCCAGCTCGAC) located on the YFP cassette. To obtain clonal knock-in parasites,
25 μg of plasmids were linearized over-night and transfected into the RHΔKU80ΔHXGPRT
parental strain by electroporation followed by drug selection and cloning. Transient transfec-
tions were performed in 10⇤106 parasites with 50 μg of the following plasmids: HA–tagged
TgRab5A (V. Carruthers) / cMyc–tagged TgRab7 and cMyc–tagged TgRab5A (M. Meissner);
GalNac-YFP (D. Roos); GRASP-RFP (K. Hager), MORN1-cherry and IMC3-cherry (M.J.
Gubbels) and parasites were allowed to invade HFF cells for 24 h prior analysis.

Western blot

Parasites were lysed in lysis buffer (NaCl 150mM, TrisHCl 20mM, EDTA 1mM, 1% TritonX100,
protease inhibitors) and total proteins were subjected to electrophoresis in a 10% polyacrylamide
gel. The proteins were transferred onto a nitrocellulose membrane (AmershamTMProtranTM

0.45μNC) by a standard western blot procedure. The membrane was blocked with 5%milk (non-
fat milk powder dissolved in TNT buffer: 100mMTris pH8.0, 150mMNaCl and 0.1% Tween20)
and probed with primary antibodies diluted in the blocking buffer. The primary antibodies were
followed by respective species specific secondary antibodies conjugated to HRP. The antibody
incubations were followed by thorough washing using the TNT buffer. The membranes were
visualized using ECLWestern blotting substrate (Pierce).

Immunofluorescence assays (IFA)

When indicated, infected confluent HFF monolayers were incubated for 1 h with 5 μM of
Brefeldin A (Sigma-Aldrich) before fixation with 4% paraformaldehyde (PFA) in phosphate
buffered saline (PBS), for 20 minutes. After quenching with 50mMNH4Cl, the coverslips
were permeabilised with 0.2% triton dissolved in 5% FBS-PBS for 30 minutes. The coverslips
were then incubated with primary antibodies in 0.1% triton dissolved in 2%FBS-PBS or 0.05%
Saponin for 1 h and then washed with PBS, followed by goat anti-rabbit or goat anti-mouse
secondary antibodies conjugated to Alexa Fluor 488 or Alexa Fluor 594 (Molecular Probes,
Invitrogen). Images were acquired using a Zeiss LSM880 confocal microscope. Antibodies
used for IFA experiments are the following: rabbit anti-HA (Cell Signaling Technology), rat

Table 4.

Plasmid Primers (F: Forward; R: reverse) Linearization enzyme

pLic EpsL-cmyc (HXGPRT) F: TACTTCCAATCCAATTTAATGCCCTCGTTCTCTCCTTCTCAGACGTT NcoI

R: TCCTCCACTTCCAATTTTAGCGAACCCCGTCGTAGCAGGAGAT

pLic μ1-HA (DHFR) F: TACTTCCAATCCAATTTAATGCGGATCTTCCCTAGTTCGCGCCAGTCAC SnaBI

R:TCCTCCACTTCCAATTTTAGCGGAGAGTCTCAGTTGGTACTACTCTCCATTTTGAGT

pLic-Rab5A-YFP (DHFR) F: TACTTCCAATCCAATTTAATGCACTTTTGCCTCCACATGCACACC Eco47III

R: TCCTCCACTTCCAATTTTAGCGTGAGTGTCTCAGAAGGGAAGAACG

pLic σ1-HA (DHFR) F: TACTTCCAATCCAATTTAATGCGTGATCCACCACTTTGTCGAGATCTTGG EcoRV

R: TCCTCCACTTCCAATTTTAGCGTCATGTAAGCTTGACTCCACCTTTAGTGTTGCTC

GST-βear F: GGATCCGAGAACTCCTCTGCCGACAAGGACGTTTTCAGA

R: GAATTCTCACGACCGTGGCGTCAGCC

GST-γear F: GGATCCTTTCCGCCGATGAATGTCTTGAACGAGGACG

R: GAATTCTCACGCGAGGAGTCCCGCGG

https://doi.org/10.1371/journal.ppat.1006331.t004
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anti-cMyc (Abcam), mouse anti-SAG1 (our lab), rabbit anti-GAP45, rabbit anti-MIC8, anti-
MIC4, anti-MIC6 (D. Soldati-Favre), mouse anti-MIC2, rabbit anti-M2AP, mouse anti-pro-
MIC3, rabbit anti-proM2AP (V. Carruthers), mouse anti-MIC3, mouse anti-ROP 2–4, mouse
anti-GRA3 (J.F. Dubremetz), rat anti-SORTLR (our lab), mouse anti-chromo1 (our lab), rab-
bit anti-proROP4 (G.E Ward), mouse anti-IMC1 (M.J. Gubbels) and rabbit anti-GRA6 (C.
Mercier). To quantify the percentage of vacuoles presenting apically positioned rhoptries and
proROP4-positive vacuoles in control parasites or induced APμ1-KO and DDμ1 parasites, a
total of 150 vacuoles were monitored for each condition in 3 independent assays. Data are pre-
sented as mean ± Standard Error Mean (SEM).

Structured illumination microscopy (SIM)

SIM was used to obtain high-resolution images using an ElyraPS1 microscope system (Zeiss)
with a 100x oil-immersion lens (alpha Plan Apochromat 100x, NA 1.46, oil immersion) and a
resolution of 120 nm along the x-y axis and 500 nm along the z-axis (PSF measured on 100 nm
beads; Sampling voxel size: 0,050μm⇤0,050μm⇤0,150 μm). Three lasers (405, 488, and 561 nm)
were used for excitation. SIM images were acquired with an EMCCD camera (Andor Technol-
ogy Ltd, UK) and processed with ZEN software, where exposure times varied between 100 and
150 ms. Three-dimensional images were generated using a z-step of 150 nm (total thickness
~5 μm). The acquisition was done sequentially using Zeiss Filter Sets 43HE, 38HE and BP
420–480. 15 frames were acquired to reconstruct one image (5 rotations x 3 phases, with a SIM
Grating period of 51μm for the blue channel, 42 μm for the green channel, 34μm for the red
channel). 100 nm beads were imaged to measure the chromatic mis-alignment of our system
(fit procedure by the Zen software); this parameter enabled correcting the alignment on each
acquired multi-channel stack. Image reconstructions and co-localization quantification were
determined with IMARIS software (Bitplane).

Intracellular growth assay

APμ1-KO parasites were allowed to invade HFF monolayers for 3 h and treated with 50nM
Rapamycin for 6 h. After 3 washes with warm medium, parasites were allowed to grow for
additional 16 h before fixation with 4% PFA. For the DDμ1 strain, parasites were inoculated
onto HFF monolayers for 3 h and treated with or without shield-1 (1μM) for 16 h, before fixa-
tion with 4% PFA. In both cases, intracellular parasites were counted after staining with anti-
GAP45 antibodies. The numbers of parasites per vacuole were counted for more than 200 vac-
uoles for each condition performed in duplicate. Data are presented as mean values of three
independent assays ± SEM.

Invasion assay

Intracellular DDμ1 transfected parasites induced with or without 1μM Shield for 16 h or intra-
cellular APμ1-KO parasites induced with 50 nM rapamycin for 6 hours and allowed to grow
for an additional 16 hours were mechanically released from host HFF cells. Two million para-
sites were then allowed to adhere to host cell monolayers by centrifugation for 3 min at
1200rpm then shifted to 37˚C for 45 min. Non adherent parasites were washed away with PBS
followed by fixation with 4% PFA for 10min. The red-green invasion staining procedure was
followed as described earlier [49]. Briefly, adherent external parasites were labeled with mouse
anti-SAG1 antibodies, followed by secondary anti-mouse antibodies coupled to Alexa594.
After cell permeabilisation with Triton 0.1% for 10 min, invaded intracellular parasites were
detected using rabbit anti-GAP45 antibodies followed by secondary anti-rabbit antibodies
coupled to Alexa488. For APμ1-KO parasites, YFP-positive parasites were counted for their
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invasion capacity compared to non-YFP neighbouring parasites present on the same cover-
slips. At least, 300 parasites (for DDμ1 and control parasites) and 150 parasites (APμ1-KO)
were counted for each condition. Data are presented as mean values of three independent
assays ± SEM.

Egress assay

Host cells (HFFs) were seeded in 8-well chambers (Nunc1 Lab-Tek1 II chambered cover-
glass). 5⇤104 freshly egressed parasites per well were seeded onto HFF monolayers and allowed
to invade for 2 hours. Parasites were then treated with 50nM Rapamycin for six hours. Subse-
quently medium was changed and parasites were allowed to grow further for 24 hours. The
chamber was then placed on an inverted microscope (Axio-observer, Zeiss) equipped with an
incubation chamber set at 37˚C, and supplied with 5% CO2. Egress was induced with 2μM cal-
cium ionophore A23187 (Sigma-Aldrich).The movies were captured using a 40X Plan apoc-
hromat NA 1.4 objective. Image acquisition was performed using AxioVision Software (Zeiss)
for up to 10 minutes on each well. A total of 50 YFP-positive and 150 YFP-negative vacuoles
were monitored. Data are presented as mean values of three independent assays ± SEM.

Immunoprecipitation

For immunoprecipitation assays, a minimum of 0.6 billion parasites of APμ1-HA, EpsL-cMyc
/ pLIC-APμ1-HA, and DDμ1 strains were lysed on ice for 30 min in modified RIPA buffer
(50mM TrisHCl pH8.0, 2mM EDTA, 75mMNaCl, 0.65% NP40, 0.005%SDS, 0.5mM PMSF)
and centrifuged at 14 000 rpm for 15 min to remove cell debris. Protein concentration was
determined using the BCA protein assay kit (PierceTM). 500μg of total lysate were immunopre-
cipitated by binding to 50μl of anti-cMyc agarose beads (PierceTM) or anti-HA agarose beads
(PierceTM) overnight. After five washes of 10 min each with modified RIPA buffer, bound pro-
teins were eluted by boiling the samples in laemmeli buffer. Samples were then subjected to
SDS PAGE and western blotting or gel-extracted for tryptic digestion and mass spectrometry
analysis.

GST pull-down

The C-terminal ear appendage domain of the β (BAE) and γ (GAE) subunits were GST tagged
by cloning into a pGEX6p3 vector (Pharmacia). Expression of GST-BAE and GST-GAE in
BL21 competent cells was achieved by induction with 1mM IPTG at 37˚C for 4 h. Bacteria
lysates expressing GST-BAE, GST-GAE, and GST (control) were bound to 100μl of Protino
Glutathione agarose 4B beads (Machery Nagel) in GST-lysis/binding buffer (Tris HCl (pH 7.6)
50mM EDTA 1mM, EGTA 1mM, 2-mercaptoethanol 10mM, NaCl 150mM, TritonX-100
0.5%, and PMSF 0.5mM) overnight at 4˚C. The beads were washed 5 times with wash buffer
A (Tris HCl (pH 7.6) 50mM, 2-mercaptoethanol 10mM, NaCl 500mM, Triton 0.5% and
PMSF 0.5mM) and 3 times with wash buffer B (Tris HCl (pH 7.6) 20mM, NaCl 150mM,
NP40 0.65%, SDS 0.005%, PMSF 0.5mM) sequentially. Beads containing 150μg of the recom-
binant proteins and the control GST protein were incubated with a lysate from 0.4 billion
EpsL-cMyc / μ1-HA intracellular parasites overnight at 4˚C. Parasites were lysed using modi-
fied RIPA (TrisHCl (pH8.0) 50mM, EDTA 2mM, NaCl 75mM, NP40 0.65%, SDS 0.005%,
PMSF 0.5mM). After 3 washes with the lysis buffer, the proteins bound to the beads were
eluted with 1x Laemelli blue buffer by boiling. The samples were subject to western blot and
mass spectrometric analyses.
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Mass spectrometry proteomic analysis

After denaturation at 100˚C in 5% SDS, 5% βmercaptoethanol, 1 mM EDTA, 10% glycerol,
10 mM Tris buffer pH 8 for 3 min, protein samples were fractionated on a 10% acrylamide
SDS-PAGE gel. The electrophoretic migration was stopped as soon as the protein sample
entered 1 cm into the separating gel. The gel was briefly stained with Coomassie Blue, and five
bands, containing the whole sample, was cut. In gel digestion of gel slices was performed as
previously described [65]. An UltiMate 3000 RSLCnano System (Thermo Fisher Scientific)
was used for separation of the protein digests. Peptides were automatically fractionated onto a
commercial C18 reversed phase column (75 μm×150 mm, 2 μm particle, PepMap100 RSLC
column, Thermo Fisher Scientific, temperature 35˚C). Trapping was performed during 4 min
at 5 μl/min, with solvent A (98% H2O, 2% ACN and 0.1% FA). Elution was performed using
two solvents A (0,1% FA in water) and B (0,1% FA in ACN) at a flow rate of 300 nl/min. Gradi-
ent separation was 3 min at 5% B, 37 min from 5% B to 30% B, 5 min to 80% B, and main-
tained for 5 min. The column was equilibrated for 10 min with 5% buffer B prior to the next
sample analysis. The eluted peptides from the C18 column were analyzed by Q-Exactive
instruments (Thermo Fisher Scientific). The electrospray voltage was set at 1.9 kV, and the
capillary temperature was set at 275˚C. Full MS scans were acquired in the Orbitrap mass ana-
lyzer over m/z 300–1200 range with resolution 35,000 (m/z 200). The target value was 5.00E
+05. Ten most intense peaks with charge state between 2 and 4 were fragmented in the HCD
collision cell with normalized collision energy of 27%, and tandem mass spectrum was
acquired in the Orbitrap mass analyzer with resolution 17,500 at m/z 200. The target value was
1.00E+05. The ion selection threshold was 5.0E+04 counts, and the maximum allowed ion
accumulation times were 250 ms for full MS scans and 100 ms for tandem mass spectrum.
Dynamic exclusion was set to 30 s.

Proteomic data analysis

Raw data collected during nanoLC-MS/MS analyses were processed and converted into ⇤.mgf
peak list format with Proteome Discoverer 1.4 (Thermo Fisher Scientific). MS/MS data was
interpreted using search engine Mascot (version 2.4.0, Matrix Science, London, UK) installed
on a local server. Searches were performed with a tolerance on mass measurement of 0.2 Da
for precursor and 0.2 Da for fragment ions, against a composite targetdecoy database (50620
total entries) built with 3 strains of Toxoplasma gondii ToxoDB.org database (strains ME49,
GT1 and VEG, release 12.0, September 2014, 25264 entries) fused with the sequences of
recombinant trypsin and a list of classical contaminants (46 entries). Cysteine carbamido-
methylation, methionine oxidation, protein N-terminal acetylation and cysteine propionami-
dation were searched as variable modifications. Up to one trypsin missed cleavage was
allowed.

Correlative light electron microscopy (CLEM)

Host cells were cultured on alphanumerical gridded-glass bottom dishes (P35G-1.5-14-CGRD,
MatTek Corporation, Ashland, MA, USA) until 50% confluence was reached. Parasites were
allowed to invade for 2 h, washed twice with warm medium, then induced for 6 h with Rapa-
mycin 50n M, washed thrice with PBS and allowed to grow for additional 16hrs. Cells were
then fixed with 4% PFA / 0.5% glutaraldehyde in PBS over-night. YFP-positive TgAPμ1-KO
parasites were imaged using a Zeiss LSM880 confocal microscopy and localized on the alpha-
numerical grid using transmitted light. After observation, cells were fixed with 2% glutaralde-
hyde in 0.1 M sodium cacodylate buffer over-night. After washing with water, cells were
sequentially stained with 1% osmium tetroxide reduced with 1.5% potassium hexacyanoferrate
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(III) for 1 hour, 1% thiocarbohydrazide for 30 minutes, 1% osmium tetroxide, 1% uranyl ace-
tate overnight at 4˚C, and finally lead aspartate for 3 h. All stains were made in water, in the
dark and at room temperature unless otherwise indicated. All stains were also washed with
water. After staining, cells were dehydrated in graded ethanol solutions, infiltrated with epoxy
resin and cured at 60˚C for 48 h. After separation of the resin from the glass, cells of interest
were relocated with the imprinted-alphanumerical grid at the surface of the resin. Small blocks
of resin containing the cells of interest were prepared for sectioning parallel to the resin sur-
face. Serial sections of 80 nm thickness were set down on carbon/formvar-coated slot grids.
Sections were observed with a Hitachi H7500 TEM (Elexience, France), and images were
acquired with a 1 Mpixel digital camera from AMT (Elexience, France).

Transmission electron microscopy

After infection of a confluent HFF monolayer, cells containing replicating shield-1 induced
DDμ1 or control parasites were detached with a scraper, spun down and fixed with 1% glutar-
aldehyde in 0.1 M sodium cacodylate pH 6.8 overnight at 4˚C. Cells were post-fixed with 1%
osmium tetroxide and 1.5% potassium ferricyanide for 1 hour, then with 1% uranyl acetate for
45 minutes, both in distilled water at room temperature in the dark. After washing, cells were
dehydrated in graded ethanol solutions then finally infiltrated with epoxy resin and cured for
48 hours at 60˚C. Sections of 70–80 nm thickness on formvar-coated grids were observed with
a Hitachi H7500 TEM (Elexience, France), and images were acquired with a 1 Mpixel digital
camera from AMT (Elexience, France).

Statistics

Means and SEM and SD were calculated in Excel. P-values were calculated in Excel using the
Student’s t-test assuming equal variance, unpaired samples and using two-tailed distribution.

Supporting information

S1 Fig. A- Confocal microscopy images showing the co-localization of μ1-HA (green) and
cMyc-tagged Rab5A (red) at the duplicated Golgi during the G1/S phase of the cell cycle
in μ1-HA KI parasite. Bar: 2 μm. B- μ1-HA KI parasites (upper panel, green) or RH parasites
transiently transfected with cMyc-tagged Rab5A (lower panel, green) were treated (or not)
with Brefeldin A for 1 h before fixation and processing for IFA. SORTLR was used as a marker
for the TGN compartment (red). The images show the dispersion of μ1-HA and Rab5A in ves-
icles and aggregates also positive for SORTLR. Bars: 2 μm.
(TIF)

S2 Fig. (Supplementary data for Table 1).Detailed list of proteins identified by mass spec-
trometry after immunoprecipitation of the μ1-HA subunit using anti-HA antibodies in KI par-
asites expressing μ1-HA under the endogenous promotor. The parental strain RHΔKU80 has
been used as a control for non-specific binding on the anti-HA antibody coated beads.
(XLSX)

S3 Fig. A- WB image showing the expression of the HA-tagged σ1 subunit of TgAP1 at the
expected size (20 kDa) in KI parasites and its absence in the parental RHΔKU80 strain using
anti-HA antibody. B- SIM images showing the localization of σ1-HA (green) at the TGN
together with SORTLR (red). The white frame indicates the region zoomed in and shown as
insets in the lower panel of images. Bar: 2 μm. C- Sequence alignment of the unique T. gondii
ENTH-domain containing protein (TGGT1_214180) withHuman epsin1 (Hs, UniProtKB:
Q9Y6I3) and epsinR (CLINT1/Epsin4, UniProtKB: Q14677), with Arabidopsis thaliana
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epsinR2 (At, UniProtKB: Q67YI9) and Plasmodium falciparum (Pf) unique ENTH-domain
containing protein (PF3D7_1245800). A scheme illustrating the positions of the identified
conserved domains in TgEpsL, such as the ENTH domain, the clathrin binding site (DLL/
LXD) and the NPF motif (the latter being predicted to mediate the association of epsin pro-
teins with clathrin adaptor complexes), is shown below.
(TIF)

S4 Fig. (Supplementary data for Table 2).Detailed list of proteins identified by mass spec-
trometry following the IP of EpsL-cMyc protein in double KI parasites expressing EpsL-cmyc
and μ1-HA proteins. The single KI parasites expressing μ1-HA was used as a control for non-
specific binding to the anti-cMyc antibody-coated beads.
(XLSX)

S5 Fig. The schemes illustrate the conserved identified domains of the AP1-γ (TGGT1_
240870) and AP1-β (TGGT1_313670) subunits of the AP1 complex, including the N-ter-
minal Adaptin domain, the clathrin binding sites present in the hinge domain and the
C-terminal appendage ear (AE) domains. Sequence alignments of the GAE and BAE
domains of T. gondii AP1 (Tg) with the corresponding sequences found in the AP1 complex
of Plasmodium falciparum (Pf), P. berghei (Pb), Arabidopsis thaliana (At) and humans (Hs)
are also shown. The accession numbers of analyzed proteins are indicated in the S1 Table.
(TIF)

S6 Fig. A, B- Confocal images showing the localization of AMA1 (A), MIC1 (A) and SORTLR
(B) proteins (in red) in control (YFP-negative) and APμ1-KO parasites (YFP-positive). SORTLR
was not found mis-localized in APμ1-KO. C- Confocal images showing the localization of GRA3
(green) and GRA6 (red) in YFP-positive APμ1-KO parasites (yellow). No defect in dense granule
biogenesis was observed upon APμ1 depletion. All bars: 2 μm.
(TIF)

S7 Fig. A- Confocal images showing the endogenous localization of MIC2, M2AP, MIC3 and
MIC8 (all in green) in micronemes of DDμ1 parasites over-expressing the cMycμ1 protein
(red) after shield-1 induction for 24 hours (+S). Bars: 2 μm. B- WB image showing no differ-
ences in the expression and proteolytic maturation of MIC2, MIC8, MIC3 and M2AP proteins
in shield-1 induced control parasites (left) and DDμ1 parasites (right) for 24 h. Actin (ACT1)
was used as loading control. C- Confocal images showing the co-localization of SORTLR
(white) with proROP4 (green) and cMycμ1 (red) in control (RH) and DDμ1 parasites incu-
bated with Shield-1 for 24 h. A zoom of the Golgi region indicated by a white frame on the
merged image is shown as inset. Bars: 2 μm.D-Histogram indicating the percentage of co-
localization between the proROP4 signal and the SORTLR signal after image acquisition by
airyscan microscopy. Data are indicated as average ± SD, n�15 vacuoles (Student’s t-test).
E. Confocal images displaying the localization of the endogenous σ1-HA protein (green) in
cMycμ1-overexpressing parasites (red) induced with shield-1 for 16 hours. The endogenous
σ1-HA subunit was found localized at the Golgi together with the cMycμ1 protein. Bars: 2 μm.
(TIF)

S8 Fig. (Supplementary data for Table 3).Detailed list of proteins identified following immu-
noprecipitation of the over-expressed cMycμ1 in DDμ1-induced parasites using anti-cMyc
antibodies. The parental strain RH was used as a control for non-specific binding on the anti-
cMyc antibody coated beads.
(XLSX)
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S9 Fig. Confocal images showing daughter cell bud formation revealed by a tubulin stain-
ing (green, upper panel, arrows) and centromere duplication labeled with the protein
chromo1 (green, lower panel, arrows) in shield-1 induced DDμ1 parasites (cMycμ1-overex-
pressed protein in red). A zoom of the region indicated by a white frame in the merge image
is shown in the inset on the right. Note the accumulation of the cMycμ1 protein at the basal
pole of connected parasites. Bars: 2μm.
(TIF)

S10 Fig. A- upper panel: strategy used to perform CLEMmicroscopy. HFF cells were allowed
to grow (50% confluent) on alphanumerical coverslips. Confocal microscopy images were
taken (40X objective) to spot the YFP positive parasites corresponding to APμ1-KO parasites
or control non-YFP vacuoles. A mosaic of 8⇤8 microscopy fields centred on the parasites of
interest was then acquired to determine the vacuole position on the grid as illustrated for the
region 3T, corresponding to the APμ1-KO vacuole shown in Fig 9. The YFP-positive vacuoles
at the positions 6H and 3K (arrows) correspond to vacuoles analyzed by CLEM and shown in
B (image c: 6H and images d, e, f: 3K). B- Typical mature rhoptries and apical / lateral micro-
nemes were detected in non-YFP control parasites (images a and b, arrows). By contrast, in
YFP-positive APμ1-KO, no mature rhoptries were visualized at the apical pole, which instead
displayed numerous big vesicles and only apical micronemes were detected (images c and d,
arrows). Drastically affected APμ1-KO vacuoles showed abnormal division, with parasites that
have broken out or not fully segregated (image e). Image f corresponds to a zoomed region of
image e (white frame) showing incomplete pellicle formation and separation between two neigh-
bouring cells (arrows). Rh: rhoptries, MIC: micronemes, DG: dense granules. Bars: 500nm.
(TIF)

S11 Fig. Transmission electron microscopy images showing the formation of enlarged
lucent vesicles upon over-expression of APμ1. In control parasites (A-D), lucent vesicles
were not often visualized or detected as small vesicles resembling endosomes (C and D,
arrows). C represents a zoom of the region indicated by a white frame in B. In opposite, in
induced DDμ1 parasites (E-L), large lucent vesicles accumulated mainly at the post-nuclear
anterior region of the parasite (arrows). We often detected membranous or vesicle-like mate-
rial within their lumen (E-F and I-J, arrow heads). In some cases, this material seems to be gen-
erated by internal budding of the limiting membrane (J, arrow heads). F, H and J represent a
zoom of the region indicated by a white frame in E, G, and I, respectively. Bars: 100 nm or 500
nm as indicated.
(TIF)

S1 Table. Accession numbers of the genes used for the sequence alignment analysis showed
in S5 Fig of the Appendage Ear domain of the Gamma subunit (GAE) and the Beta subunit
(BAE).
(PDF)

S1 Movie. 3D-SIM image reconstruction showing the localization of the Rab5A compart-
ment (green) compared to APμ1 (red) localized in the TGN area. The KI parasite line
expressing Rab5-YFP under the endogenous promoter was used for the study.
(AVI)

S2 Movie. 3D-SIM image reconstruction showing the localization of the Rab5A compart-
ment (green) compared to the TGNmarker SORTLR (red). The KI parasite line expressing
Rab5-YFP under the endogenous promoter was used for the study.
(AVI)
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S3 Movie. Time-lapse movie (one frame every 10 min for a duration of 5 hours) showing
MORN1-cherry localization during the budding process in rapamycin induced APμ1-KO
parasites (YFP-positive). Note that the basal complex is normally assembled and contractile
rings developed towards the basal pole of budding daughter cells. Movies were captured using
an inverted microscope (Axio-observer, Zeiss) equipped with a 40X Plan apochromat NA 1.4
objective. Image acquisition was performed using AxioVision Software (Zeiss).
(AVI)

S4 Movie. Egress was triggered in rapamycin induced APμ1-KO parasites (YFP-positive)
after incubation with the calcium ionophore A23187. Time-lapse movies were recorded for
10 minutes. While control parasites immediately initiated vacuole egress, some APμ1-KO par-
asites appeared tethered and were unable to escape the vacuolar space though vacuole lysis has
occured.
(AVI)
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