Analysis of head losses in a bulb turbine draft tube by means of unsteady numerical simulations
Étude des pertes de charge dans un aspirateur de turbine bulbe par simulations numériques instationnaires
Résumé
The draft tube of a hydraulic turbine is the turbine element located downstream of the runner. It has a divergent shape in order to convert the residual kinetic energy leaving the runner into pressure and thus increase the effective head of the turbine. The performances of low head bulb turbines are highly influenced by the head losses in the draft tube. The prediction of these head losses in a design process is thereby a major issue. The numerical prediction of the head losses in the draft tube is a real challenge because the flow in the draft tube is dynamically complex with high Reynolds numbers, a swirl and an adverse pressure gradient. These characteristics render conventional industrial approaches not appropriate. The objective of this work is twofold: (i) to improve the numerical prediction of the turbulent flow in the draft tube by using URANS and LES unsteady approaches and paying special attention to the description of the inlet boundary conditions of the draft tube and (ii) to conduct a detailed analysis of the energy transfers in the draft tube in order to better understand the origin of the head losses. An unsteady inlet boundary condition for the simulations reproducing the flow field at the runner outlet is developed. Numerical results are compared to experimental measurements in order to evaluate the predictive capacity of each turbulence modelling approach (URANS and LES). This validation step highlights the importance of defining properly the three velocity components at the draft tube inlet. The influence on the numerical results of boundary conditions of the calculation domain, such as wall roughness and the outlet boundary condition, is evaluated, in particular in case of LES. Thanks to a detailed analysis of the mean kinetic energy balance in the draft tube, the hydrodynamic phenomena responsible for head losses are identified. The head losses prediction differences between URANS and LES are thus analyzed in detail and possible improvements for the head losses prediction are identified. Finally, this analysis enables to understand the head losses evolution observed between several operating points of the turbine.
L’aspirateur d’une centrale hydroélectrique est l’organe hydraulique se situant en aval de la roue. Il a une forme divergente afin de récupérer l’énergie cinétique résiduelle en sortie de roue sous forme de pression statique et augmenter ainsi la chute nette de la centrale. Dans le cas des turbines de basse chute de type bulbe, les pertes de charge dans l’aspirateur influencent fortement le rendement global de la centrale. La prédiction correcte de ces pertes de charge au cours du dimensionnement de la turbine représente donc un enjeu majeur. La prédiction numérique des pertes de charge dans l’aspirateur est un réel challenge car l’écoulement dans l’aspirateur est dynamiquement complexe avec des nombres de Reynolds élevés, la présence de swirl et d’un gradient adverse de pression. Ces caractéristiques font que les approches de modélisation classiquement utilisées dans l’industrie sont mises en défaut. L’objectif de ce travail est double : (i) améliorer la prédiction de l’écoulement turbulent dans l’aspirateur en utilisant des approches instationnaires URANS et LES et en portant une attention particulière à la description des conditions d’entrée de l’aspirateur et (ii) réaliser une analyse fine des échanges énergétiques dans l’aspirateur pour mieux comprendre l’origine des pertes de charge. Une condition d’entrée instationnaire représentative de l’écoulement en sortie de roue est élaborée pour ces calculs. Les résultats de simulation sont comparés avec des mesures expérimentales afin d’évaluer la capacité prédictive de chaque approche de modélisation de la turbulence (URANS et LES). Cette étape de validation met en évidence l’importance d’une définition correcte des trois composantes de la vitesse en entrée d’aspirateur. L’influence des conditions aux limites du domaine de calcul, à savoir la rugosité de la paroi et la condition de sortie de l’aspirateur, sur les résultats de simulation est évaluée, notamment dans le cas d’une résolution LES. Grâce à une analyse détaillée du bilan d’énergie cinétique moyenne dans l’aspirateur, les phénomènes hydrodynamiques responsables des pertes de charge sont identifiés. Ceci permet d'analyser en détail les différences de prédiction de pertes de charge entre les calculs URANS et LES et d’identifier les pistes d’amélioration de la prédiction numérique de ces pertes. Enfin, cette analyse permet de comprendre l’évolution des pertes de charge observée entre plusieurs points de fonctionnement de la turbine.
Origine | Version validée par le jury (STAR) |
---|