Nano-contamination of aquatic organisms by inorganic particles : trophic transfers and toxic impacts
Nanocontamination d'organismes aquatiques par des particules inorganiques : transfert trophique et impacts toxiques
Résumé
Due to an increasing and massive use, engineered nanoparticles are raising as potentialemerging contaminants in the environment, including aquatic ecosystems. While trophictransfer appears to constitute a major exposure route for organisms, scientific literature hasdifficulties to respond to the questions raised to explore the range of the interactions existingbetween nanoparticles and living organisms at different scales from the trophic interactionsto the cellular impacts. This problem is partly due to experimental difficulties inherent tothis exposure type. For this work performed in controlled laboratory conditions, sphericalgold nanoparticles (10 nm, coated with PEG-amines, positively charged) were chosen tostudy the trophic transfer and toxic effects on aquatic organisms. Trophic chains concernedseveral trophic levels (up to three) with a variety of species considered : the basis of thetrophic web with natural biofilms or microalgae, intermediate levels with grazing fish orsuspensivorous bivalves, and up to top food chain organisms, with the European eel, a carnivorousfish.With relatively low doses for exposures, this work tends to represent environmentalconditions. Integrative methodological approaches from subcellular to tissue levels(RT-qPCR, RNA-sequencing, histology) were performed in order to assess toxic impacts.The results indicate a high retention capacity of nanoparticles by natural biofilms. Followinga 21-day exposure, gold quantifications reveal a transfer from biofilms to grazing fish, witha gold distribution in all organs. Moreover, this transfer is associated with an inflammatoryresponse according to the histological lesions observed in the liver, spleen and muscle ofexposed fish. A longer food chain, with three trophic levels involving microalgae - bivalves- European eels, is set up to give a better representation of the complexity of trophic interactionsin the aquatic environment. It shows a significant transfer to the predatory fish.Transcriptomic analyses, using the RNA-sequencing approach, for the liver and the brain ofexposed eels by nanoparticles’ enriched food, highlight a joint response for these two organsin the biological processes associated with the immune system and its regulation, includingNOD-like receptors involved in inflammasome.All the experimental results suggest long-term harmful effects that nanoparticles would generatein aquatic ecosystems, emphasizing the ability of these contaminants to be transferredthroughout trophic chains.
En raison d’une utilisation croissante et massive, les nanoparticules manufacturées apparaissentcomme de potentiels contaminants émergents pour l’environnement, incluant notammentles écosystèmes aquatiques. Alors que le transfert trophique semble constituer unevoie d’exposition majeure pour les organismes, une connaissance lacunaire dans la littératurescientifique persiste, résultant pour partie des difficultés expérimentales inhérentes àce type d’exposition. Pour ce travail en conditions contrôlées de laboratoire, les nanoparticulesd’or (sphériques, 10 nm, fonctionnalisées aux PEG-amines), stables en solution, ontété choisies pour l’étude du transfert trophique et des impacts toxiques sur des organismesaquatiques. Ce continuum trophique considère la base des réseaux trophiques (biofilms naturels,algues), des niveaux intermédiaires (poissons brouteurs, bivalves suspensivores), jusqu’auxorganismes de haut de chaînes trophiques, avec l’anguille européenne. Avec des expositionsréalisées à de relatives faibles doses, ce travail tend à la représentativité environnementale.Des approches méthodologiques intégratives des niveaux subcellulaire à tissulaire(RT-qPCR, séquençage haut-débit, histologie) ont permis d’évaluer les impacts toxiques.Les résultats indiquent une importante capacité de rétention des nanoparticules par les biofilmsnaturels. À la suite d’une exposition de 21 jours, les dosages d’or révèlent un transfertdes biofilms aux poissons brouteurs, avec une distribution de l’or dans tous les organes. Deplus, ce transfert est associé à une réponse inflammatoire au regard des lésions histologiquesobservés dans les foies, rates et muscles des poissons exposés. Une chaîne alimentaire « naturelle» à trois maillons trophiques, impliquant algues - bivalves - anguilles européennes,atteste d’un transfert significatif jusqu’au poisson prédateur. Enfin, l’analyse du transcriptome,par une approche de séquençage haut-débit, des foies et cerveaux d’anguilles exposéesaux nanoparticules par nourriture enrichie, a permis de mettre en évidence une réponseconjointe à ces deux organes dans des processus biologiques associés au système immunitaireet sa régulation, dont des récepteurs NOD-like impliqués dans l’inflammasome.L’ensemble des résultats expérimentaux interpellent quant aux effets délétères à long-termequ’engendreraient les nanoparticules sur les écosystèmes aquatiques, illustrant par ailleursla propension de ces contaminants à être transférés dans les chaînes trophiques.
Origine | Version validée par le jury (STAR) |
---|