
HAL Id: tel-01744908
https://theses.hal.science/tel-01744908

Submitted on 27 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical analysis for Hamilton-Jacobi equations on
networks and indirect controllability/stability of a 1D

system of wave equations
Marwa Koumaiha

To cite this version:
Marwa Koumaiha. Numerical analysis for Hamilton-Jacobi equations on networks and indirect con-
trollability/stability of a 1D system of wave equations. Analysis of PDEs [math.AP]. Université
Paris-Est; Université Libanaise, 2017. English. �NNT : 2017PESC1122�. �tel-01744908�

https://theses.hal.science/tel-01744908
https://hal.archives-ouvertes.fr


Thèse de doctorat de l’Université Paris-Est
Cotutelle avec l’Université Libanaise

Pour l’obtention du grade de
DOCTEUR EN MATHÉMATIQUES

École Doctorale Mathématiques et Sciences et Technologies de l’Informatique et de
la Communication et École Doctorale des Sciences et de Technologie

Présentée par

Marwa KOUMAIHA

Analyse numérique pour les équations de Hamilton-Jacobi
sur réseaux et contrôlabilité / stabilité indirecte d’un système

d’équations des ondes 1D

Thèse dirigée par Cyril IMBERT et Ali WEHBE

Soutenue publiquement le 19 Juillet 2017 devant le Jury composé de :

Rapporteur M. Yves ACHDOU Professeur, Université Paris-Diderot
Directeur de thèse M. Cyril IMBERT Directeur de recherche, ENS Paris
Rapporteur M. Jérôme LE ROUSSEAU Professeur, Université Paris Nord
Examinateur M. Bopeng RAO Professeur, Univsersité de Strasbourg
Examinateur Mme. Zaynab SALLOUM Maître de Conférence, Université Libanaise
Examinateur M. Etienne SANDIER Professeur, Université Paris-Est Créteil
Directeur de thèse M. Ali WEHBE Professeur, Université Libanaise



Thèse effectuée au sein du Laboratoire d’Analyse et de Mathématiques
Appliquées, UMR 8050 de l’Université Paris-Est et du Laboratoire de

Mathématiques de l’Ecole Doctorale des Sciences et de Technologie de
l’Université Libanaise.

Thèse co-financée par le Conseil National de la Recherche Scientifique de la
République Libanaise (CNRS-L) et l’ Université Libanaise (UL).



Aux étoiles qui éclairent ma vie, mes parents, Mohamad et Mariam



iv Remerciements

Remerciements

C’est ma joyeuse tâche de reconnaître et de remercier tous ceux qui m’ont aidée,
d’une manière ou d’une autre, tout au long de cette thèse et grâce à qui cette
expérience a été une que je mériterai pour toujours.
Avec joie et bonheur, ma gratitude va vers mes directeurs de thèse, Monsieur Cyril
IMBERT et Monsieur Ali WEHBE. C’est avec ces quelques mots que je viens leur té-
moigner ma satisfaction d’avoir pu collaborer avec eux sur mes travaux de recherche.
Je leur suis infiniment reconnaissante de m’avoir fait bénéficier de leurs expertises,
pour leur soutien sans faille, leurs aides précieuses, leur bonne humeur, et leurs
disponibilités. Ces quelques mots sont naturellement qu’une infinime partie de ma
reconnaissance et ne peuvent en aucun cas suffire à remplir ma hotte de remer-
ciements et d’éloges à leur égard. Pour ma part, ce fut un grand honneur de leur
avoir à mes côtés durant ces quatre années . Je vous remercie pour tout!
Mes sincères remerciements s’adressent aussi aux rapporteurs Monsieur Yves ACHD-
OU et Monsieur Jérôme LE ROUSSEAU pour le temps qu’ils ont accordé à la
lecture et le jugement de cette thèse ainsi qu’à leurs commentaires et remarques
perspicaces qui ont définitivement aidé à améliorer le manuscrit. Je remercie aussi
les examinateurs Monsieur Bopeng RAO, Madame Zaynab SALLOUM, et Monsieur
Etienne SANDIER qui m’ont fait le grand honneur d’évaluer ce travail.
Durant ce travail, j’ai bénéficié plusieurs fois du projet ANR HJnet. Les écoles d’été
et les conférences auxquels j’ai participé étaient très enrichissants. La diversité des
sujets m’a enrichie la connaissance et m’a ajouté des idées de recherche pour l’avenir.
Je tiens à remercier ici les responsables du projet Olivier LEY, Yves ACHDOU, Régis
Monneau et Ariela BRIANI.
Tout au long de ce travail, j’ai bénéficié de conditions de travail très avantageuses au
laboratoire LAMA. J’apprécie les efforts de l’ancien directeur Raphael DANCHIN
et de l’actuel directeur Stéphane SABOURAU.
Mes remerciements vont aussi à tous les membres du LAMA ainsi qu’aux directions
des écoles doctorales MSTIC et EDST qui ont contribué de près ou de loin à ma
formation scientifique durant ces quatre années. Je remercie également les membres
du LMPT de l’Université François Rabelais de Tours, qui m’ont acceuillie pour un
poste d’ATER.
Je voudrais remercier tout particulièrement Anais DELGADO, secrétaire du LAMA
pour les millers de services rendus, pour sa disponibilité, ses encouragements et pour
les jolis moments que nous avons partagés ensemble. Je n’oublie pas sûrement de
remercier la chère Abir MOUKADDEM, secrétaire du laboratoire de maths à l’UL.
Merci aussi aux doctorants du LAMA avec qui j’ai pu discuter des joies et des
malheurs de la vie de thésard, notamment Alaa, Cosmin, David, Jean-Maxime,
Jérémy, Johann, Khaled, Laurent, Peng, Rana, Rémy, Salwa, Victor, Xiaochuan,
Xin et Zeina. Merci à Jessica, pour toutes les discussions scientifiques et amicales.



Remerciements v

Je remercie les doctorants de la part de l’Université Libanaise, notamment mes amis
Mohamad ali et Bilal, pour leur soutien et leurs encouragements sans faille.
Je remercie Marlène ATIÉ, la directrice adjointe de la Maison du Liban à la cité
universitaire de Paris, pour l’acceuil et l’ambiance familiale qu’elle nous a accordés
en tant que résidents. Ainsi, je tiens à remercier la chère Pascale et sa mère Daad,
pour leur encouragement.
Je profite également de cette page pour remercier chaleureusement une personne à
qui je dois beaucoup: Sana TFAILI. Merci pour tout Sana!
Je tiens à remercier aussi tous mes enseignants durant ce long parcours scolaire et
universitaire. Sachez que je vous en suis infiniment reconnaissante. Je remercie
particulièrement Monsieur Nabil NAHRA, mon enseignant de maths au lycée, et
Monsieur Maher ABDALLAH pour toujours être mon inspiration.
Aux mignons libanais à Tours, là où j’ai passé les mois les plus délicats avant ce jour
ci, je vous remercie pour votre acceuil amical et votre ambiance familiale. Merci
à Douaa, Fatima, John, Joseph, Kassim, Hanine, Medhat et Maha, Mohamad E.,
Mohamad H., Mohamad M. et Azza, Nazir, Rana, Ranine, Zeinab A. et Zeinab C.
Être entourée par des amis et de personnes positives était très important pour mener
à bien ce trajet. Je remercie les libanais à Orsay: l’incroyable et la chère Dima,
Fatouma et Roura, Mohamad A., Mohamad T., Mostapha et Elie pour tous les rires
et les moments inoubliables. Je remercie ainsi mes chères amies et soeurs Samah et
Nour, qui, malgré la distance qui nous sépare, étaient toujours à mes côtés.
Je suis incroyablement bénie d’avoir des frères et des soeurs incroyables avec qui je
partage les souvenirs d’enfance, les rêves d’adulte, et sur qui je peux toujours me
pencher et compter. Tout mon amour pour mes frères Sadek et Hassan, et pour ma
soeur Safwat, pour leur encouragement et leur soutien tout au long de ces années
malgré la distance qui nous sépare. À ma soeur Zeynab, avec qui j’ai partagé les
plus beaux et difficiles moments: tu as supporté mes changements d’humeur, tu as
su me remonter le moral quand il était au plus bas, et le plus important tu étais
toujours là; mère et soeur à la fois. Sans votre présence à côté de moi mes chers,
rien de cela ne pourra pu aboutir. Je vous remercie pour votre amour sans faille.
Je tiens à remercier aussi mon beau frère Mohamad et ma belle soeur Eva. À mes
nièces et neuveu les plus mignons, Julia, Emma et Jude qui ont apporté plus de joie
à la famille. Il n’y a rien de plus bénissant que vos sourires et rires nos petits anges.
Aucun mot ne peut exprimer adéquatement le sentiment de gratitude lorsqu’il s’agit
de mes parents. Je les admire pour leur amour et leur attention inconditionnels;
pour tous les sacrifices qu’ils ont faits pour me soulever, et pour leur sagesse et leur
rôle important dans le développement de mon identité et la formation de l’individu
que je suis aujourd’hui. Pour la plus aimable mère et le plus gentil père, je vous
remercie pour toute la confiance que vous m’aviez accordée pour aboutir à ce jour
là. Je vous dois tellement. Mille merci.



vi Résumé

Résumé

Cette thèse est composée de deux parties dans lesquelles nous étudions d’une part
des estimations d’erreurs pour des schémas numériques associés à des équations de
Hamilton-Jacobi du premier ordre. D’autre part, nous nous intéressons à l’étude
de la stabilité et de la contrôlabilité exacte frontière indirecte des équations d’onde
couplées.
Dans un premier temps, en utilisant la technique de Crandall-Lions, nous établis-
sons une estimation d’erreur d’un schéma numérique aux différences finies pour des
conditions de jonction dites à flux limité maximal, pour une équation de Hamilton-
Jacobi du premier ordre. Ensuite, nous montrons que ce schéma numérique peut
être généralisé à des conditions de jonction générales. Nous établissons alors la con-
vergence de la solution discrétisée vers la solution de viscosité du problème continu.
Enfin, nous proposons une nouvelle approche, à la Crandall-Lions, pour améliorer
les estimations d’erreur déjà obtenues, pour une classe des Hamiltoniens bien choisis.
Cette approche repose sur l’interprétation du type contrôle optimal de l’équation de
Hamilton-Jacobi considérée.
Dans un second temps, nous étudions la stabilisation et la contrôlabilité exacte
frontière indirecte d’un système mono-dimensionnel d’équations d’ondes couplées.
D’abord, nous considérons le cas d’un couplage avec termes de vitesses, et par une
méthode spectrale, nous montrons que le système est exactement contrôlable moyen-
nant un seul contrôle à la frontière. Les résultats obtenus dépendent de la nature
arithmétique du quotient des vitesses de propagation et de la nature algébrique du
terme de couplage.Ensuite, nous considérons le cas d’un couplage d’ordre zéro et
nous établissons un taux polynômial optimal de la décroissance de l’énergie. En-
fin, nous montrons que le système est exactement contrôlable moyennant un seul
contrôle à la frontière.

Mots-clé:
Equations de Hamilton-Jacobi, estimation d’erreur, schéma numérique monotone,
jonction, équations d’ondes couplées, contrôlabilté exacte, stabilité, approche spec-
trale.
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Abstract

The aim of this work is mainly to study on the one hand a numerical approximation
of a first order Hamilton-Jacobi equation posed on a junction. On the other hand,
we are concerned with the stability and the exact indirect boundary controllability
of coupled wave equations in a one-dimensional setting.
Firstly, using the Crandall-Lions technique, we establish an error estimate of a finite
difference scheme for maximal flux-limited junction conditions, associated to a first
order Hamilton-Jacobi equation. We prove afterwards that the scheme can generally
be extended to general junction conditions. We prove then the convergence of the
numerical solution towards the viscosity solution of the continuous problem. We
adopt afterwards a new approach, using the Crandall-Lions technique, in order to
improve the error estimates for the finite difference scheme already introduced, for
a class of well chosen Hamiltonians. This approach relies on the optimal control
interpretation of the Hamilton-Jacobi equation under consideration.
Secondly, we study the stabilization and the indirect exact boundary controllability
of a system of weakly coupled wave equations in a one-dimensional setting. First,
we consider the case of coupling by terms of velocities, and by a spectral method, we
show that the system is exactly controllable through one single boundary control.
The results depend on the arithmetic property of the ratio of the propagating speeds
and on the algebraic property of the coupling parameter. Furthermore, we consider
the case of zero coupling parameter and we establish an optimal polynomial energy
decay rate. Finally, we prove that the system is exactly controllable through one
single boundary control.

Keywords:
Hamilton-Jacobi equations, error estimate, montone numerical scheme, junction,
coupled wave equations, exact controllability, stability, spectral approach.
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Introduction

This thesis focuses on two main subjects. On the one hand, we are interested in
numerical approximation of first order Hamilton-Jacobi equations posed on a domain
containing one single singularity: a junction. The aim of our mathematical analysis
of such equations is to show the convergence properties of the numerical solution
to the exact solution of the problem, and to derive error estimates in the case of
numerical schemes. On the other hand, we implement the semi-group theory in the
spirit of spectral approach to study the controllability and stabilization of coupled
wave equations. Roughly speaking, the concept of controllability is described as
the ability to steer our evolution system, whether described in terms of partial or
ordinary differential equations, from any initial state to any desired final state in
a finite time interval by means of a suitable control (boundary control, internal
control, etc). As for stabilization, it is defined as the ability to find an input control
that requires the state response to approach zero as time tends to infinity.

0.1 Numerical analysis for Hamilton-Jacobi equa-
tions on networks

We begin by introducing the first part related to the study of a finite difference
scheme associated to a first order Hamilton- Jacobi equation posed on a junction of
roads.

0.1.1 Motivation

In the 1950s James Lighthill and Gerald Whitham, two experts in fluid dynamics,
(and independently P. Richards) thought that the equations describing the flow of a
fluid could also describe the flow of car traffic [78]. The basic idea is to look at large
scales so to consider cars as small particles and their density as the main quantity
to be considered. In any case, it is reasonable to assume the conservation of the
number of cars, thus leading again to a conservation law, described by the equation:

∂tρ+ ∂xf(ρ) = 0 (0.1.1)

where ρ = ρ(t, x) is the density of cars, f(ρ) is the flux which can be written
f(ρ) = ρv, where v is the average velocity of the cars. The main assumption of
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the LWR model is that the average velocity of v depends only on the density of the
cars. A reasonable property of v is that v is a decreasing function of the density.
The law giving the flux as a function of the density is called fundamental diagram,
which is assumed to be a concave function. In [51], Garavello and Piccoli proved
the existence of entropy admissible solutions of (0.1.1) posed on a network, while
submitted to an initial condition. Using the wave front tracking method, it is proved
in [52],by providing a formulation in terms of Riemann solvers, uniqueness result for
N = 2 where N denotes the number of the branches of the junction.

Figure 1: The junction

0.1.2 Physical interpretation of Hamilton-Jacobi equations

In this subsection, we present a simplified overview on Hamilton-Jacobi equations.
Readers wishing to deepen some concepts mentioned in the following are referred to
the book of Evans [47] on partial differential equations, to Bardi and Capuzzo-
Dolcetta [19] and to Barles [24] presenting the notion of viscosity solutions of
Hamilton-Jacobi equations. We recall that this notion of solutions was introduced
in 1980’s by Crandall and Lions [42] (see also Crandall et al. [43]).
Hamilton-Jacobi equations form a class of nonlinear partial differential equations.
They can be written under the following form:

ut +H(Dxu) = 0 [0,+∞)× Rn, (0.1.2)

where u : [0,+∞)×Rn → R is the unknown, Dxu = (ux1 , · · · , uxn) ∈ Rn its gradient
and H : Rn → R denotes the Hamiltonian.
Let us consider the following equation with its corresponding Dirichlet boundary
conditions, in one dimension, on I =]0, 1[:{

|u′(x)| = 1, ∀x ∈ I,
u(0) = u(1) = 0.

(0.1.3)

If one looks for C1 solutions, we directly encounter many problems. We can see
that if there exists a smooth solution u, there will exist some x0 ∈]0, 1[ such that
u′(x0) = 0. Hence, (0.1.3) is no longer satisfied in a neighborhood of x0. The highly
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non-linear character of the equation, precisely the absolute value on the derivative,
prevents from using the theory of distributions. If we look for Lipschitz solutions
on I, that is u ∈ W 1,∞(I), we can define solutions of (0.1.3) in the sense almost
everywhere by Rademacher’s Theorem. However, as shown in the picture below,
all solutions verifying the boundary conditions with slopes varying between the two
values +1 and −1 are solutions. We hence loose the uniqueness of the solution.

Figure 2: Example of Lipschitz solution

Using the vanishing viscosity method, that is, adding a term of the form −ϵu′′(x)
in the left hand side of (0.1.3), without changing the boundary conditions, we can
obtain a unique smooth solution, uϵ say, for each ϵ > 0. A natural question is: does
uϵ converge as ϵ → 0? If yes, in which sense, and is the possible limit a solution of
(0.1.3) in a sense that could ensure uniqueness? A notion of weak solutions is then
introduced by Crandall, Lions in 1980’s [42]: the viscosity solution theory will allow
us to pass to the limit in a precise sense, for a large class of equations. It will then
provide a correct framework to obtain existence and uniqueness for solutions and
define the derivatives for non-smooth solutions.
The relationship between Hamiltonian and Lagrangian formulations, which are two
different views of the same problem is provided by the Legendre transformation.

Definition 0.1.1 (Legendre-Fenchel Transform). If the Lagrangian L does not de-
pend on the space variable x, and if q 7→ L(q) is convex, and if the Lagrangian is
coercive i.e.

lim
|q|→+∞

L(q)

|q|
→ +∞,

the Legendre-Fenchel transform of the Lagrangian L is given by

L⋆(p) = sup
p∈Rn

{p · q − L(q)}, for p ∈ Rn,

where the dot denotes the scalar product in Rn.
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0.1.3 Viscosity solutions, optimal control and representa-
tion formula

It is possible to get representation formulas for solutions for Hamilton-Jacobi equa-
tions when the Hamiltonian of the equation can be written as the Hamiltonian of an
optimal control problem. In this case where the Hamiltonian H(p) is convex in p,
the value function of the control problem is a (the unique) solution of the Hamilton-
Jacobi equation. We have already defined the Legendre-Fenchel transform for a
continuous, convex, coercive function L by

L⋆(p) = sup
p∈Rn

{p.q − L(q)}, for p ∈ Rn.

We then recover H⋆ = L and L⋆ = H.

We can then rewrite the Hamilton-Jacobi equation (0.1.2) as:

ut + sup
b∈Rn

{−ux.b− L(b)} = 0.

This is the version of the Bellman finite horizon control problem. The dynamic is
given by the following ordinary differential equation

∂X

∂s
= b(s),

and the instantaneous cost by the Lagrangian L. The solution of the following
Cauchy problem {

ut +H(Dxu) = 0, on (0,+∞)× Rn,
u(0, x) = u0(x) on Rn,

is given by

u(t, x) = inf
X(.)

[ ∫ t

0

L(Ẋ(s))ds+ u0(X(0))

]
,

where X(.) denotes the trajectory such that{
X ∈ W 1,1([s, t],R2) :

X(τ) ∈ J for all τ ∈ (s, t),
X(s) = y and X(t) = x

}
.

It is possible to prove that (see [24]) the constant control v = x−X(0)
t

is optimal.
And hence, the optimal trajectory is the line segment which links the starting point
(0, X(0)) at the end point (t, x). We then deduce the Lax-Oleinik formula

u(t, x) = inf
y∈Rn

[
tH⋆

(
x− y

t

)
+ u0(y)

]
.

More generally, the Hamilton-Jacobi equation with a Hamiltonian depending on
the spatial variable x but always satisfying the assumptions of continuity (that
is precisely this assumption that is not satisfied in the case of a traffic junction),
convexity and coercivity in p uniformly with respect to x, is always associated with
a control problem where the dynamics are b and the running cost is L(x, b).
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0.1.4 Results

In this subsection, we present the problems that have been studied in this thesis,
mainly in Chapters 1 and 2, and the results that were obtained.
The study of dynamical systems on networks (and their control) has attracted the
attention of mathematicians especially in the last decade, linked to a variety of
applications including road traffic, but also for the study of fluids on other types of
networks such as gas networks, telecommunications networks, blood vessels or the
networks in economy. The reader could refer to the book of Garavello and Piccoli
[51], and to Bressan et al. in [30] for different applications for hyperbolic systems
on networks.

Literature. There are many papers in the literature dealing with Hamilton Jacobi
equations with discontinuous Hamiltonians in space posed on networks. Overall, the
difficulty lies in the choice of a concept of viscosity solutions at the discontinuity
point of the Hamiltonians. The problem at the node lies not only in the definition of
test functions to the right and the left of the junction point, knowing the differential
irregularity at this point, but in finding the right junction conditions. Apart from
this, the authors use the classical notion of viscosity solutions à la Crandall, Evans
and Lions. Different approaches to address discontinuity have been conducted so
far. The proposed solution concepts are generally associated with a particular mo-
tivation, which make them, a priori, different from each to others. The first results
for Hamilton-Jacobi equations on networks were obtained in [102] for eikonal equa-
tions. Some years later, the results were extended in [2, 67, 103]. Many new results
were obtained since then, see for instance [63, 65] and references therein. Note for
example that the article of Achdou, Camilli, Cutri and Tchou [2], is interested in
a control problem of a network and in the Bellman equation that follows. In order
to handle the discontinuity of the Hamiltonian, the authors use the modified dis-
tance that gives them an admissible test function. It has been shown by Camilli
and Marchi [32] that this notion of viscosity solution is equivalent to the definition
introduced by Imbert, Monneau and Zidani [67] when frameworks coincide. It is also
possible to show that in the case of a network in one dimension space, the solutions
constructed in [53] to these Hamilton-Jacobi equations with discontinuous Hamil-
tonians fall into the family of built solutions in the paper of Imbert and Monneau
[65]. The first results of Achdou et al. [2] and Imbert et al. [67] were completed by a
newer and more general work [3]. In [22, 23], the authors study regional control, i.e.
control with dynamics and costs which are regular on either side of a hyperplane but
with no compatibility or continuity assumption along the hyperplane. They identify
the maximal and minimal Ishii solutions as value functions of two different optimal
control problems. They also use the vanishing viscosity limit on a 1D example in
order to prove that the two Ishii solutions can be different. The recent papers of
Imbert and Monneau [63, 65] and Barles et al. [26] notably contain general results
of uniqueness and comparison (relaxed assumptions on the Hamiltonians for exam-
ple, quasi-convexity condition), with purely PDE proofs, in contrast to proofs of
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optimal control type developed in [2, 3, 22, 23]. In [26], Barles et al. compared two
different approaches for regional control problems. In fact, they showed how the
results of the classical approach, using a standard notion of viscosity solutions, can
be interpreted in terms of flux-limited solutions. In particular, they gave a simpler
proof of the comparison principle, avoiding in particular the use of the vertex test
function G. In his lectures at Collège de France [80], Lions also treats problems
related to Hamilton- Jacobi equations with discontinuities. Very recently, Guerand
in [58] on the one hand, and Lions and Souganidis in [81, 82] on the other hand
studied well-posedness and stability properties for Hamilton-Jacobi equations posed
on junctions with coercive Hamiltonians that are possibly not convex.
We are interested in the following Hamilton-Jacobi model proposed in [65], which is
written as follows,{

ut +Hα(ux) = 0 in (0, T )× Jα \ {0},
ut + FA(

∂u
∂x1
, . . . , ∂u

∂xN
) = 0 in (0, T )× {0} (0.1.4)

subject to the initial condition

u(0, x) = u0(x) for x ∈ J, (0.1.5)

where

FA(p) = max

(
A, max

α=1,...,N
H−

α (pα)

)
for p = (p1, . . . , pN), (0.1.6)

is the A-flux limited junction function. Hα is the Hamiltonian defined on the branch
α, α = 1, · · · , N, and H−

α is the decreasing part of the Hamiltonian for some min-
imizing Hα in R. For α = 1, . . . , N, each branch Jα is assumed to be isometric to
[0,+∞) and we define the junction as

J =
∪

α=1,...,N

Jα with Jα ∩ Jβ = {0} for α ̸= β.

We point out that all the junction functions FA associated with A ∈ (−∞;A0]
coincide if one chooses

A0 = max
α=1,...,N

min
R
Hα. (0.1.7)

We consider the important case of quasi-convex Hamiltonians satisfying the following
conditions:

There exists pα0 ∈ R such that


Hα ∈ C2(R) and H ′′

α(p
α
0 ) > 0

±H ′
α(p) > 0 for ± (p− pα0 ) > 0

lim|p|→+∞Hα(p) = +∞.
(0.1.8)

In particular, Hα is non-increasing in (−∞, pα0 ] and non-decreasing in [pα0 ,+∞), and
we set

H−
α (p) =

{
Hα(p) for p ≤ pα0 ,

Hα(p
α
0 ) for p ≥ pα0 ,

H+
α (p) =

{
Hα(p

α
0 ) for p ≤ pα0 ,

Hα(p) for p ≥ pα0 .
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In [65], it is proved that general junction conditions are reduced to special ones of
optimal control type. In fact, when replacing FA in (0.1.4) by a general junction
function F, which satisfies the following conditions{

(Continuity) F ∈ C(Rn)
(Monotonicity) ∀α, pα 7→ F (p1, . . . , pN) is non-increasing, (0.1.9)

Imbert and Monneau proved that every relaxed viscosity solution (see below for a
definition) of the obtained problem{

ut +Hα(ux) = 0 in (0, T )× Jα \ {0},
ut + F ( ∂u

∂x1
, . . . , ∂u

∂xN
) = 0 in (0, T )× {0}, (0.1.10)

is a viscosity solution of (0.1.4) for some A ∈ R. Moreover, it is now understood that
under quasi-convexity condition on Hamiltonians, the solution of problem (0.1.4) is
unique, and hence the solution of the F problem (0.1.10) is unique. Furthermore,
well-posedness and stability properties for Hamilton-Jacobi equations with non con-
vex coercive Hamiltonians have been studied in [58].
As explained in [65], it is difficult to construct viscosity solutions in the classical
sense because of the junction condition. It is in fact possible in the case of the flux
limited junction conditions FA. For general junction conditions, the Perron process
generates a viscosity solution in the following relaxed sense.
We introduce the space of test functions

C1(JT ) = {u ∈ C(JT ) : ∀α = 1, . . . , N, uα ∈ C1([0, T )× Jα)},

where uα denotes the restriction of u to [0, T )× Jα.

In order to define classical viscosity solutions, we recall the definition of upper and
lower semi-continuous envelopes u⋆ and u⋆ of a (locally bounded) function u defined
on [0, T )× J :

u⋆(t, x) = lim sup
(s,y)→(t,x)

u(s, y) u⋆(t, x) = lim inf
(s,y)→(t,x)

u(s, y).

Definition 0.1.2 (Relaxed viscosity solution). We say that u is a relaxed sub-
solution (resp. relaxed super-solution) of (0.1.10) in (0, T )×J if for all test function
φ ∈ C1(JT ) such that

u⋆ ≤ φ (resp. u⋆ ≥ φ) in a neighborhood of (t0, x0) ∈ JT

with equality at (t0, x0) for some t0 > 0, we have

φt +Hα(φx) ≤ 0 (resp. ≥ 0) at (t0, x0)

if x0 ̸= 0 and,{
either φt + F (φx) ≤ 0 (resp. ≥ 0) at (t0, x0)

or φt +Hα(∂αφ) ≤ 0 (resp. ≥ 0) at (t0, x0) for some α.

We say that u is a relaxed (viscosity) solution of (0.1.10) if u is both a sub-solution
and a super-solution of (0.1.10).
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The Hamilton-Jacobi model on which we depended [65], does not benefit from the
optimal control formulation of equations and does not display the Lax-Oleinik rep-
resentation formulas, thus the solution can not be simply computed. And hence the
numerical scheme does not depend on this formulation. There are many examples
of numerical schemes for Hamilton-Jacobi equations with continuous Hamiltonians.
For example,

• the semi-Lagrangian schemes (see [36, 38, 48, 50]) that use the outflow of optimal
control type and the principle of dynamic programming of Bellman. The technique
is a method of coupling integration for ODEs and an interpolation method. These
schemes do not require the introduction of a sort of Courant-Friedrichs-Lewy con-
dition (CFL).
• the finite difference method. These examples were primarily used by Crandall

and Lions [42].
However, there are only few existing works dealing with numerical approximation
for Hamilton-Jacobi equations on networks. In [41], Costeseque, Lebacque and Mon-
neau introduced a finite difference scheme for (0.1.4), and proved the convergence
for the discretized solution towards the continuous viscosity solution in the sense
of [67]. We cite also the following works: a convergent semi-Lagrangian scheme is
introduced in [33] for equations of eikonal type. In [57], an adapted Lax-Friedrichs
scheme is used to solve a traffic model; it is worth mentioning that this discretization
implies to pass from the scalar conservation law to the associated Hamilton-Jacobi
equation at each time step.
We introduce discrete steps in time and space h = (∆t,∆x) who have to satisfy a
stability condition, for explicit schemes. The discretized junction is hence denoted
by Gh. We consider (Uα,n

i )i,α,n the solution of the following numerical scheme which
approximates the continuous solution of model (0.1.10) for discrete time steps n∆t
and space steps i∆x. Hence, we generalize the finite difference scheme introduced in
[41] for general junction conditions:

Uα,n+1
i −Uα,n

i

∆t
+max{H+

α (p
α,n
i,− ), H

−
α (p

α,n
i,+ )} = 0, i ≥ 1, α = 1, . . . , N,

Uβ,n
0 := Un

0 , i = 0, β = 1, . . . , N,
Un+1
0 −Un

0

∆t
+ F (p1,n0,+, . . . , p

N,n
0,+ ) = 0,

(0.1.11)

where pα,ni,± are the discrete (space) gradients defined by

pα,ni,+ :=
Uα,n
i+1 − Uα,n

i

∆x
, pα,ni,− :=

Uα,n
i − Uα,n

i−1

∆x
, (0.1.12)

with the initial condition

Uα,0
i = u0(x

α
i ), i ≥ 0, α = 1, . . . , N. (0.1.13)

Contribution. We prove the convergence of the numerical solution towards the
relaxed viscosity solution of the general continuous model (0.1.10) as the mesh size
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h = (∆t,∆x) tends to zero. The following Courant-Friedrichs-Lewi (CFL) condition
ensures that the explicit scheme is monotone,

∆x

∆t
≥ max

{
max

α=1,...,N,
p
α
≤p≤pα

|H ′
α(p)|; max

p0
α
≤pα≤pα

{
(−∇ · F )(p1, . . . , pN)

}}
(0.1.14)

for some p
α
, pα, p

0
α
∈ R, depending only on u0, H and F. We assume additional

conditions on F than the ones considered in [65]. In fact, for F : Rn → R satisfying
F is continuous and piecewise C1(Rn),
∀α,∀p = (p1, . . . , pN) ∈ RN , ∂F

∂pα
(p) < 0,

F (p1, . . . , pN) → +∞ as min
i∈{1,...,N}

pi → −∞,
(0.1.15)

we prove the following convergence result.

Theorem 0.1.3 (Convergence for general junction conditions). Let T > 0
and u0 be Lipschitz continuous. There exist p

α
, pα, p

0
α
∈ R, α = 1, . . . , N , depending

only on the initial data, the Hamiltonians and the junction function F , such that, if
the mesh size h = (∆t,∆x) satisfies the CFL condition (0.1.14), then the numerical
solution uh defined by (0.1.11),(0.1.13) converges locally uniformly as h goes to zero
to the unique weak (relaxed viscosity) solution u of (0.1.10),(0.1.5), on any compact
set K ⊂ [0, T )× J , i.e.

lim sup
|h|→0

sup
(t,x))∈K∩Gh

|uh(t, x)− u(t, x)| = 0. (0.1.16)

We hence need to prove discrete (time and gradient) estimates in order to ensure
the monotonicity of the scheme and, in turn, its convergence.
For the flux limited junction conditions, as we mentioned above, Costeseque, Lebacque
and Monneau considered the following scheme,

Uα,n+1
i −Uα,n

i

∆t
+max{H+

α (p
α,n
i,− ), H

−
α (p

α,n
i,+ )} = 0, i ≥ 1, α = 1, . . . , N,

Uβ,n
0 := Un

0 , i = 0, β = 1, . . . , N,
Un+1
0 −Un

0

∆t
+ FA(p

1,n
0,+, . . . , p

N,n
0,+ ) = 0,

(0.1.17)

and proved that its discretized solution converges locally uniformly towards the
viscosity solution of (0.1.4), under the following CFL condition

∆x

∆t
≥ max

α=1,...,N,
p
α
≤p≤pα

|H ′
α(p)|, (0.1.18)

where p
α
, pα ∈ R depend only on the Hamiltonians and the initial condition.

We assume in addition that,

For all α, β ∈ {1, · · · , N}, minHα = minHβ. (0.1.19)
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Our second result, is thus an error estimate for the flux limited junction conditions
if the minima of the Hamiltonians on different branches are equal. More precisely,
we prove the following result.

Theorem 0.1.4 (Error estimates for flux-limited junction conditions). As-
sume that the Hamiltonians Hα satisfy (0.1.8),(0.1.19). Let u0 be Lipshitz continu-
ous, uh be the solution of the associated numerical scheme (0.1.17),(0.1.13) and u
be the weak (viscosity) solution of (0.1.4)-(0.1.5) for some A = A0 ∈ R. If the CFL
condition (0.1.18) is satisfied for p

α
, pα given in Theorem 0.1.3 then there exists

C > 0 (independent of h) such that

sup
[0,T )×J∩Gh

|uh(t, x)− u(t, x)| ≤ C(∆x)1/2. (0.1.20)

In fact, it is explained in [44] that the proof of the comparison principle between
sub- and super-solutions of the continuous Hamilton-Jacobi equation can be adapted
in order to derive error estimates between the numerical solution associated with
monotone (stable and consistent) schemes and the continuous solution. In the Eu-
clidian case, the comparison principle is proved thanks to the technique of doubling
variables; it relies on the classical penalization term (x−y)2

ϵ
. Such a penalization

procedure is known to fail in general if the equation is posed on a junction; it is
explained in [65] that it has to be replaced with a vertex test function G.

In order to derive error estimates as in [42], it is important to study the regularity
of the vertex test function. More precisely, we prove (Proposition 1.5.1) that it can
be constructed in such a way that its gradient is locally Lipschitz continuous, at
least if the minima of the Hamiltonians on different branches are equal. In fact, we
see that the second order derivatives of the regularized vertex test function explode
near the origin when the minima are not equal, that is why we restrict ourselves to
the case where no regularization is needed.

Comments. Let us note that the derivative of a weak (viscosity) solution of a
Hamilton-Jacobi equation posed on the real line is known to coincide with the en-
tropy solution of the corresponding scalar conservation law. It is therefore reason-
able to expect that the error between the viscosity solution of the Hamilton-Jacobi
equation and its approximation is as good as the one obtained between the entropy
solution of the scalar conservation law and its approximation. We would like then
to compare our result to some existing results in the literature. In the scalar case,
it is proved in [46] that the error between the solution of the regularized equation
with a vanishing viscosity coefficient equal to ϵ and the entropy solution of the
conservation law (which is merely of bounded variation in space) is of order ϵ 1

3 (in
L∞
t L

1
x norm). In [93], Ohlberger and Vovelle derive error estimates for finite volume

schemes associated with such boundary value problems and prove that it is of order
(∆x)

1
6 (in L1

t,x norm). In [103], assuming that the flux is bell-shaped, that is to say
the opposite is quasi-convex, it is proved that the error between the finite volume



0.1 Numerical analysis for Hamilton-Jacobi equations on networks 11

scheme and the entropy solution is of order (∆x)
1
3 and that it can be improved to

(∆x)
1
2 under an additional condition on the traces of the BV entropy solution.

Contribution. In Chapter 2, we adapt a new approach in deriving error estimates
for flux limited junction conditions for well chosen Hamiltonians (in fat a larger class
of Hamiltonians), by replacing the vertex test function by the reduced minimal action
D following the Oleinik-Lax representation formula introduced in [67, 80]. We thus
prove, in L∞

loc, that the error is of order (∆x)
1
2 if the flux is strictly limited.

It is well known that the Legendre-Fenchel conjugate is crucial in establishing a link
between the general problem (0.1.4) and a control problem. Through this link, we
obtain the representation formula for the exact solution. Before treating the case
where the Hamiltonians Hα satisfy (0.1.8), we first consider the case of Hamiltonians
satisfying the hypotheses of [67] i.e.,

(Regularity) Hα is continuous
(Coercivity) lim|p|→+∞Hα(p) = +∞
(Convexity) Hα is convex and is the Legendre Fenchel transform of Lα

where Lα is of class C2 and satisfies (B0).
(0.1.21)

We recall that
Hα(p) = L⋆

α(p) = sup
q∈R

(pq − Lα(q)). (0.1.22)

We consider the following hypothesis for Lα,

(B0) There exists a constant γ > 0 such that for all α = 1, · · · , N, the C2(R)
functions Lα satisfy L′′

α ≥ γ > 0.

Theorem 0.1.5 (Error estimates for flux-limited junction conditions). Let
u0 be Lipschitz continuous, uh be the solution of the associated numerical scheme
(0.1.17)-(0.1.13) and u be the viscosity solution of (0.1.4)-(0.1.5) for some A ∈ R.
If the CFL condition (0.1.18) is satisfied, then there exists C > 0 (independent of
h) such that

sup
[0,T )×J∩Gh

|uh(t, x)− u(t, x)| ≤

{
C(∆x)1/2 if A > A0,

C(∆x)2/5 if A = A0.
(0.1.23)

In order to derive error estimates as in [42], it is important to study the regularity
of the vertex test function. More precisely, we prove (Proposition 2.3.12) that its
gradient is locally Lipschitz continuous, at least if the flux is “strictly limited” and
far away from a special curve. But we also see that the reduced minimal action is
not of class C1 on this curve. However we can get “weaker” viscosity inequalities
thanks to a result in [65] (see Proposition 2.2.3).



12 Introduction

Comments. For optimal control problems, the numerical approximation of Hamil-
ton Jacobi equations has already been studied using schemes based on the discrete
dynamic programming principle. Essentially, these schemes are built by replacing
the continuous optimal control problem by its discrete time version. We refer to
Capuzzo Dolcetta [35], Capuzzo Dolcetta-Ishii [37] for the results concerning the
convergence of uh to u and the a priori estimates (of order ∆x) , in the L∞, giving
the order of convergence of the discrete-time approximation. We refer to Falcone [48]
for the results related to the order of convergence of the fully discrete (i.e. in space
and time) approximation and for the construction of the algorithm, we mention that
under a semi-concavity assumption the rate of convergence is of order 1. We do not
know hence if we should obtain an error estimate of order 1, due to technical diffi-
culties implied by the discontinuity. In [49], Falcone and Ferretti showed that in one
dimension, the first-order semi-Lagrangian scheme coincides with the integration of
the Godunov scheme for the corresponding conservation laws. We cite also [50] and
references therein for discrete time high order schemes for Hamilton-Jacobi Bellman
equations.

0.2 Indirect controllability/stability of a 1D sys-
tem of coupled wave equations

We introduce now the second part of this work, related to the study of controllability
and stability of weakly coupled wave equations in the one dimensional setting.

0.2.1 Motivation

Control theory can be described as the process of influencing the behavior of a
physical system to achieve a desired goal, primarily through the use of feedback
which monitors the effect of a system and modifies its output. Its application ranges
widely from earthquake engineering and seismology to fluid transfer, cooling water
and noise reduction in cavities, vehicles, such as pipe systems, the regulation of
biological systems like human cardiovascular system, the design of robotic systems,
and laser control in quantum mechanical systems. Roughly speaking, the concept
of controllability is described as the ability to steer our evolution system, whether
described in terms of partial or ordinary differential equations, from any initial state
to any desired final state in a finite time interval by means of a suitable control
(boundary control, internal control, controls localized on open subsets of bounded
sets, etc...).
Observability is a measure for how well internal states of a system can be inferred
by knowledge of its external outputs. The duality between the controllability and
observability of systems of partial differential equations in Banach spaces has been
examined in many works such as those of Lions [79] where Hilbert uniqueness the-
orem HUM is explained, and the works of Russell [99, 100]. Various methods could
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be used to prove observability inequalities such as Carleman estimates, micro-local
analysis and the multiplier method. For more details on the treatment of observ-
ability problems and proving observability inequalities for linear systems, we refer
the reader to [79], and [104].
As for stabilization, it is defined as the ability to find an input control that requires
the state response to approach zero as time T → ∞. Different types of stability also
occur. We only encounter polynomial stability in our case.
In this thesis, we implement the semi-group theory in the spirit of spectral theory
to study the exact controllability and stabilization of some evolution equations.
We use detailed spectral analysis in order to establish indirect exact controllability
and stabilization for coupled wave equations. In fact, we consider two types of
coupling: a zero order coupling parameter, and a coupling by means of velocities. In
chapter 3, we consider a one dimensional setting of coupled wave equations, coupled
by means of velocities, with only one boundary control acted on one of the two
equations. The second equation is hence controlled indirectly by means of coupling.
We consider afterwards waves propagating with same and different speeds, for which
we establish indirect exact controllability using the spectral approach, and hence
Ingham type inequalities hold [71, 73]. Whereas, in chapter 4, we consider a zero
order coupling parameter for a one dimensional setting of coupled wave equations
propagating with equal speeds, subject to only one boundary control on one of
the two equations. Using the Riesz basis approach, we establish an optimal decay
rate of the energy of the associated problem. Afterwards, using the Ingham type
inequalities, we derive observability spaces in order to conclude exact controllability
of the system in consideration.
In order to introduce the main theme of our study, and the obtained results let
us recall some of the fundamental definitions that are being used throughout this
thesis.

Definition 0.2.1. Let X be a Banach space. A one parameter family (S(t))t≥0 of
bounded linear operators defined from X into X is a strongly continuous semigroup
of bounded linear operators on X if:

1. S(0) = I, (I identity operator on X).

2. S(t+ s) = S(t)S(s) for every t, s ≥ 0.

3. S(t)x→ x, as t→ ∞, ∀x ∈ X.

Such a semigroup is called a C0-semigroup

Definition 0.2.2. The infinitesimal generator A of the semigroup (S(t))t≥0 is de-
fined by:

D(A) = {x ∈ X, lim
t→∞

S(t)x− x

t
exists}.

and
Ax = lim

t→∞

S(t)x− x

t
, x ∈ D(A).
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Definition 0.2.3. Let H be a Hilbert space. An operator (A, D(A)) on H satisfying

R(Au, u) ≤ 0, ∀u ∈ D(A),

is said to be a dissipative operator. A maximal dissipative operator (A, D(A)) on
H is a dissipative operator for which R(λI −A) = H, for some λ > 0. A maximal
dissipative operator is also called m-dissipative operator.

Generally speaking, the first step in dealing with the study of the stability of the
solution is to rewrite our evolution system of partial differential equations as a
Cauchy problem on some appropriate Hilbert space H called the energy space

∂tU = AU, U(0) = U0. (0.2.1)

where A is an unbounded operator on H. Then we prove that A is the infinitesimal
generator of a C0-semi-group of contractions (S(t))t≥0 on H in order to deduce the
existence of a solution in a certain Hilbert space. The solution is hence of the
form U(t) = S(t)U0. We mention here Lumer-Phillips theorem (see [91]) which is
applied to justify the existence and uniqueness of solutions of some partial differential
equations.

Theorem 0.2.4 (Lumer-Philips Theorem). Let A be a linear operator with dense
domain D(A) in a Banach space X.

1. If A is dissipative and there exists λ0 > 0 such that R(λ0I −A) = X then A
is the infinitesimal generator of a C0-semi-group of contractions on X.

2. If A is the infinitesimal generator of a C0-semi-group of contractions on X
then R(λI −A) = X for all λ > 0 and A is dissipative.

Consequently, A is maximal dissipative on a Hilbert space H if and only if it gen-
erates a C0- semi-group of contractions on H and thus the existence of the solution
is justified by the following corollary which follows from Lumer-Phillips theorem.

Corollary 0.2.5. Let H be a Hilbert space and let A be a linear operator defined
from D(A) ⊂ H into H. If A is maximal dissipative then the initial value problem

du

dt
(t) = Au(t), t > 0, u(0) = u0

has a unique solution u ∈ C([0,+∞),H), for each initial datum u0 ∈ H. Moreover,
if u0 ∈ D(A), then

u ∈ C([0,+∞), D(A)) ∩ C1([0,+∞),H).

We aim now to discuss the notions of stability of semi-groups.
Assume that A is a generator of a strongly continuous semi-group of contractions
on a Hilbert space H. We say that the semi-group (S(t))t≥0 generated by A is
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• Strongly (asymptotically) stable if for all U0 ∈ H

∥S(t)U0∥H → 0.

• Exponentially stable if there exist two positive constants C, ωsuch that

∥S(t)U0∥H ≤ Ce−ωt∥U0∥H, ∀t ≥ 0,∀U0 ∈ H.

• Polynomially stable if there exist constants α, β, C > 0 such that

∥S(t)(d−A)α∥ ≤ Ct−β, t > 0,

for some d > 0.

0.2.2 Results

In this subsection, we present the problems that have been studied in this thesis,
mainly in Chapters 3 and 4, and the results that were obtained.

Literature. The mechanism of indirect dynamic controls has been introduced by
Russel [101]. Since then, many works have been established on the stabilization and
the exact controllability of hyperbolic systems with feedback, or systems subject to
internal or indirect boundary controls. Exact controllability and observability of
coupled systems either for hyperbolic-hyperbolic type or hyperbolic-parabolic type
had been earlier investigated by Lions [79]. These results assume that the coupling
parameter is sufficiently small. They have been extended in [71] to the cases of
arbitrary coupling parameters (assuming bounded coupling operators). For both
references, the multiplier technique was the fundamental element for acquiring the
desired estimates. Observability and exact controllability results have also been
obtained by Alabau [7, 9], Liu and Rao in [86], Wehbe [105–107] and Komornik and
Loretti in [71, 72]. We cite also [75] for Carleman estimates for exact boundary
controllability for hyperbolic equations. One can also look at [8, 10, 87, 88, 97] for
stabilization results.
We are interested in coupled wave equations, coupled through velocity terms, or
through zero order terms, in the one dimensional setting.

0.2.2.1 Wave equations coupled through velocity terms

Firstly, in chapter 3 we are interested in the following system of wave equations
coupled by velocities, in the one dimensional setting.

utt − uxx + byt = 0 on (0, 1)× (0, T ),
ytt − ayxx − but = 0 on (0, 1)× (0, T ),
u(1, t) = u(0, t) = y(0, t) = 0 for all t ∈ (0, T ),
y(1, t) = v(t) for all t ∈ (0, T ).

(0.2.2)
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The system (0.2.2) is a classic model for the motions of two stacked elastic bodies.
The equations are coupled by means of velocities. We denote by a > 0 the ratio
of the velocities of the equations and by b the coupling parameter. The control
v ∈ L2(0, T ) is applied only at the right boundary of the second equation. The first
equation is controlled indirectly by means of coupling of the equations.
We consider the indirect boundary exact controllability problem: For given T >
0 and initial data (u0, u1, y0, y1) belonging to a suitable space, does there exist a
suitable control v that brings back the solution to equilibrium at time T, such that
the solution of (0.2.2) satisfies

u(x, T ) = ut(x, T ) = y(x, T ) = yt(x, T ) = 0 on (0, 1).

Literature. In [13], Ammar-khodja and Bader proved that the internal damping
applied to only one of the equations never gives exponential stability if the wave
speeds are different. If the wave speeds are the same, i.e. if a = 1, they present
necessary and sufficient conditions for stability. In a generalized setting, Toufayli
in [104] proved, using the spectral method of Benchimol [28], that the system is
strongly stable for usual initial values. Afterwards, by [95] and [61], she established
exponential stability of the problem. Furthermore, using the multiplier method, she
established exact controllability for a boundary control acted only on one equation.
In [68] and [69], wave-wave systems having the same principal part are coupled
through velocity terms. Therefore, the coupling is not compact. Indirect observ-
ability and uniform stabilization results are established. Recently, Najdi and Wehbe
in [92] considered system (0.2.2) with only one boundary damping and established
exponential stability for b ̸= kπ, k ∈ Z⋆, when waves propagate with the same speed.
For two waves with different speeds of propagation, polynomial stability of type 1

t

was proved only for a ∈ Q.

Contribution. We prove exact controllability of system (0.2.2). Indeed, we es-
tablish observability inequalities using Ingham’s theorem ([73]) while distinguishing
the cases of different or equal speeds of propagation of the coupled waves. In order
to do so, we consider respectively the associated homogeneous problem (for a ̸= 1,
and a = 1), that is to say, the null boundary acted control system. Hence, using
the Hilbert Uniqueness Method ([79]), we deduce the indirect exact controllability
of the considered system.
Unlike the spectral method, the multiplier method used in [6, 9, 12, 104] requires
some technical conditions on the coefficients of the system. Then, our aim is to
establish observability inequalities using the Ingham’s theorem while distinguishing
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the following cases:

(Case 1) a = 1 and b /∈ πZ,

(Case 2) a = 1 and b ∈ πZ,

(Case 3) a ̸= 1 such that a ∈ Q,

(Case 4) a ̸= 1 such that a ∈ R \Q.

Let us denote by λ1,m, λ2,n the two branches of eigenvalues of the homogeneous
systems corresponding respectively for the cases a ̸= 1 and a = 1, and by{

E1,n = (ϕ1,n, λ1,nϕ1,n, ψ1,n, λ1,nψ1,n),
E2,n = (ϕ2,n, λ2,nϕ2,n, ψ2,n, λ2,nψ2,n)

(0.2.3)

the corresponding eigenvectors. Our main results are the following.

Case 1. The eigenvalues λ1,m, λ2,n satisfy an uniform gap condition. Then using
the usual Ingham’s theorem, and if

b2 ̸= (k21 − k22)
2

2π2(k21 + k22)
, ∀k1, k2 ∈ Z⋆, (0.2.4)

we prove the following result.

Theorem 0.2.6. Assume that a = 1, condition (0.2.4) holds and b /∈ πZ. Let 0 <

|b̂| < π be the resulting quantity of b−k̂π, where k̂ ∈ N⋆, such that k̂π < |b| < (k̂+1)π
and let

T >
2π

|b̂|
. (0.2.5)

Then there exists a constant c1 > 0 such that the following direct inequality holds∫ T

0

|ψx(1, t)|2dt ≤ c1∥(ϕ0, ϕ1, ψ0, ψ1)∥2H, (0.2.6)

for all solution Φ = (ϕ, ϕt, ψ, ψt) solving the corresponding homogeneous Cauchy
problem.
Moreover, there exists a constant 0 < c2 < c1 depending only on b, such that the
following inverse observability inequality holds

c2∥(ϕ0, ϕ1, ψ0, ψ1)∥2H ≤
∫ T

0

|ψx(1, t)|2dt. (0.2.7)



18 Introduction

Case 2. The eigenvalues λ1,m, λ2,n are asymptotically close. To be precise, fol-
lowing proposition 3.2.7 in Chapter 3, we prove that there exist infinitely many
m ∼ n+ k0

λ1,m − λ2,n ∼ O(1)

m2
, λ1,m − λ2,n ∼ O(1)

n2
. (0.2.8)

Then, the usual Ingham’s theorem which requires an uniform gap condition does
not work in this case and consequently, the observability inequalities are not true
in the energy space. In order to get the inverse observability inequality, we will use
a general Ingham-type theorem based on the divided differences, which tolerates
asymptotically and even multiple eigenvalues. On the other hand, the observation
is on the second components of the eigenfunctions E1,n, E2,n. And, from (3.2.11)-
(3.2.12) from Proposition 3.2.2, we see that

(ψ1,n)x(1) = O(1), (ψ2,n)x(1) = O(1). (0.2.9)

So, a natural space for the observability inequalities is the following weighted spectral
space

D2 = {(ϕ0, ϕ1, ψ0, ψ1) =
∑
n ̸=0

(α1,nE1,n + α2,nE2,n)n
2},

where the factor n2 is due to the closeness of eigenvalues (0.2.8).
We prove afterwards the following result.

Theorem 0.2.7. Assume that a = 1, condition (0.2.4) and b = k0π for some
k0 ∈ Z⋆. Let

T > 4.

Then there exists a constant c3 > 0 such that the following direct inequality holds∫ T

0

|ψx(1, t)|2dt ≤ c3∥(ϕ0, ϕ1, ψ0, ψ1)∥2H, (0.2.10)

for all solution Φ = (ϕ, ϕt, ψ, ψt) solving the corresponding homogeneous Cauchy
problem.
Moreover, there exists a constant 0 < c4 < c3, such that the following inverse
observability inequality holds

c4∥(ϕ0, ϕ1, ψ0, ψ1)∥2D2
≤
∫ T

0

|ψx(1, t)|2dt. (0.2.11)

Cases 3 and 4. We prove in Proposition 3.3.4 of Chapter 3, that there exist
infinitely many

√
am ∼ n such that the eigenvalues are asymptotically close

λ1,m − λ2,n ∼ O(1)

m
, λ1,m − λ2,n ∼ O(1)

n
, (0.2.12)

where we distinguish cases of the ratio of the wave speeds, as 0 < a ̸= 1 is a
rational number or an irrational number. Then, we will use a general Ingham-type
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theorem. On the other hand, the observation is on the second components of the
eigenfunctions E1,n, E2,n. From (3.3.12)-(3.3.13) from Proposition 3.3.2, we see that

(ψ1,n)x(1) = O(1), (ψ2,n)x(1) =
O(1)

n
. (0.2.13)

So, if we want to observe the first equation via the second one, we have to use a
weaker norm so that the observation on the second component (ψ1,n)x(1) does not
disappear. It seems that the following weighted spectral space

D1 = {(ϕ0, ϕ1, ψ0, ψ1) =
∑
n ̸=0

(α1,nE1,n + α2,nnE2,n)n} (0.2.14)

is the natural space for the observability. In (0.2.14), the factor n before the eigen-
vector E2,n is due to the transmission of the modes between the two equations
(0.2.13), and the factor n is due to the closeness of the eigenvalues (0.2.12). If

b2 ̸= (k21 − ak22)(ak
2
1 − k22)

π2(a+ 1)(k21 + k22)
, ∀k1, k2 ∈ Z⋆, (0.2.15)

we have the following result.

Theorem 0.2.8. Let 0 < a ̸= 1, and let b a real number satisfying (0.2.15). Assume
that

T > 2

(
1 +

1√
a

)
.

Then there exists a constant c1 > 0 such that the following direct inequality holds∫ T

0

|ψx(1, t)|2dt ≤ c1∥(ϕ0, ϕ1, ψ0, ψ1)∥2H, (0.2.16)

for all solution Φ = (ϕ, ϕt, ψ, ψt) solving the corresponding homogeneous Cauchy
problem.
Moreover, there exists a constant 0 < c < c1 depending only on a and b such that
the following inverse observability inequalities hold true:

1. If a is rational number, then

c∥(ϕ0, ϕ1, ψ0, ψ1)∥2D1
≤
∫ T

0

|ψx(1, t)|2dt. (0.2.17)

2. For almost all irrational number a > 0, we have

c∥(ϕ0, ϕ1, ψ0, ψ1)∥2D1
≤
∫ T

0

|ψx(1, t)|2dt. (0.2.18)

It is well known that the observability of the corresponding homogeneous Cauchy
problem leads to the exact controllability of the considered systems [79]. After
characterizing the corresponding weighted spectral spaces, we deduce the following
exact controllability results.
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Case 1. We have the following exact controllability result.

Theorem 0.2.9. Let a = 1, and suppose that condition (0.2.4) is satisfied. Assume
that there exist no integers k ∈ Z, such that b = kπ. Let 0 < |b̂| < π the resulting
quantity of b− k̂π, where k̂ ∈ N⋆, such that |b| < (k̂ + 1)π. Assume that

T >
2π

|b̂|
.

Let
(u0, u1, y0, y1) ∈ (L2(0, 1)×H−1(0, 1))2,

then there exists a control function v ∈ L2(0, T ) such that the solution of the non
homogeneous system (0.2.2) satisfies the null final conditions:

u(x, T ) = ut(x, T ) = y(x, T ) = yt(x, T ).

Case 2. We have the following exact controllability result.

Theorem 0.2.10. Let a = 1 and suppose that there exists some integer k0 ∈ Z⋆

such that b = k0π. Assume that
T > 4.

Let
(u0, u1, y0, y1) ∈ (H2(0, 1)×H1

0 (0, 1))
2,

then there exists v ∈ L2(0, T ) such that the solution of the non homogeneous system
(0.2.2) satisfies the null final conditions

u(x, t) = ut(x, t) = y(x, t) = yt(x, t) = 0, ∀t ≥ T.

Cases 3 and 4. We have the following exact controllability result.

Theorem 0.2.11. Let b ̸= 0 be a real number satisfying (0.2.15) and 0 < a ̸= 1.
Assume that

T > 2

(
1 +

1√
a

)
.

1. If a is a rational number, let

(u0, u1, y0, y1) ∈ (H3 ×H2 ×H2 ×H1)(0, 1).

2. For almost all irrational number a > 0, let

(u0, u1, y0, y1) ∈ (H3 ×H2 ×H2 ×H1)(0, 1).

Then there exists a control function v ∈ L2(0, T ) such that the solution of the non-
homogeneous system (0.2.2) satisfies the null conditions:

u(x, T ) = ut(x, T ) = y(x, T ) = yt(x, T ) = 0.
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Comments. In [89], Liu and Rao considered the one dimensional setting of two
coupled wave equations with a coupling parameter of order zero, propagating with
different speeds. Depending on the arithmetic property of a, they obtained different
spaces of observability. In the multi-dimensional setting, Alabau on the other hand,
proved in [9] with the multiplier method, that the observability holds with a stronger
norm than the one obtained in our case as in Theorem 3.1.1, for waves propagating
with equal speeds.

0.2.2.2 Wave equations coupled through zero order terms

In chapter 4, we are interested in the following system of coupled wave equations
through zero order terms posed in the one dimensional setting

utt − uxx + αy = 0 on (0, 1)× (0, T ),
ytt − yxx + αu = 0 on (0, 1)× (0, T ),
u(1, t) = y(0, t) = y(1, t) = 0 for all t ∈ (0, T ),
ux(1, t) + γut(1, t) = 0 for all t ∈ (0, T ).

(0.2.19)

We denote by α the coupling parameter, which is assumed to be a real number
small enough, and γ a positive number. The damping ut is only applied at the right
boundary of the first equation. The second equation is indirectly damped through
the coupling between the two equations.
We consider the indirect boundary exact controllability problem: For given T >
0 and initial data (u0, u1, y0, y1) belonging to a suitable space, does there exist a
suitable control v that brings back the solution to equilibrium at time T, such that
the solution of (0.2.19) satisfies

u(x, T ) = ut(x, T ) = y(x, T ) = yt(x, T ) = 0 on (0, 1).

Literature. The polynomial energy decay rate occurs in many control problems
where the open-loop systems are strongly stable, but not exponentially stable (hy-
brid systems, partially or locally damped systems), see [74] and references therein.
The majority of the works in establishing polynomial energy decay rate has been
based on the spectral method, frequency domain method, time domain multiplier
and weak observability methods. We quote [84, 85, 96, 97] for hybrid systems,
[76, 77, 88] for wave equations with local internal or boundary damping,[5, 14, 16, 90]
for second order systems with partial internal damping,[27, 87] for abstract systems
and [101] for systems of coupled wave-heat equations. We also mention [8, 10] for
coupled hyperbolic systems, and [11] for coupled wave type systems. For a general
formulation of partially damped systems see [98] and references therein. In [8] (see
also references therein), polynomial decay estimates in the case of indirect internal
stabilization are given.
In [10], Alabau-Boussouira considered more general systems of coupled second order
evolution equations (wave-wave, Kirchoff-Petrowsky, wave-Petrowsky). In the multi-
dimesional case of the wave-wave coupling, the lack of uniform stability was proved
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by the compact perturbation argument, and the polynomial energy decay rate 1√
t

was established by a general integral inequality, for a star shaped domain of Rn.
While when considering different speeds of propagation (particularly the ratio of
speeds equal to k20, k0 ∈ Z⋆) the same energy decay rate was established in a N-
dimensional interval where N ≤ 3. These results are very interesting but are not
optimal.
Hereafter in [11], Alabau and Léautaud considered a coupled system of wave equa-
tions, with variable coefficients, with one boundary feedback, and proved a polyno-
mial energy decay rate of order 1√

t
for initial data in D(A). And thus, the aim of this

chapter is to improve the energy decay rate and to establish an optimal polynomial
decay of type 1

t
for initial data in D(A) by the Riesz basis approach.

Contribution. We prove by the spectral approach, that the solution of (0.2.19)
decays with an optimal polynomial rate of order 1

t
. More precisely, we prove the

following result.

Theorem 0.2.12. Assume that γ ̸= 1. For all initial data U0 ∈ D(A), there exists
a constant c > 0 independent of U0, such that the energy of the problem (0.2.19)
satisfies the following estimation:

E(t) ≤ c

t
∥U0∥2D(A). (0.2.20)

Moreover, the energy decay rate (0.2.20) is optimal.

In order to establish this result, using a result from [90], it is sufficient to prove that
the real part, and the imaginary part of the corresponding eigenvalues are in fact
bounded. Moreover, one has to prove that the corresponding eigenvectors form a
Riesz basis of the energy space in consideration [90].
Hereafter, we study the exact controllability of the following system of weakly cou-
pled wave equations with Neumann boundary conditions, propagating with equal
speeds, described by

utt − uxx + αy = 0 on (0, 1)× (0, T ),
ytt − yxx + αu = 0 on (0, 1)× (0, T ),
u(0, t) = y(0, t) = y(1, t) = 0 for all t ∈ (0, T ),
ux(1, t) = v(t) for all t ∈ (0, T ).

(0.2.21)

The control v is applied only at the right boundary of the first equation. The second
equation is indirectly controlled by means of the coupling between the equations.
We consider the indirect boundary exact controllability problem: For given T > 0
and initial data (u0, u1, y0, y1) belonging to a suitable space, is it possible to find a
suitable control v such that the solution of system (0.2.21) (u, ut, y, yt) is driven to
zero at time T, i.e.,

u(x, T ) = ut(x, T ) = y(x, T ) = yt(x, T ) = 0 on (0, 1).
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Literature. Concerning coupled hyperbolic-hyperbolic systems, several results
concerning both stabilization and observability via two control forces have been
obtained. Complete and partial observability (respectively, controllability) results
for coupled systems either of hyperbolic-hyperbolic type or of hyperbolic-parabolic
type can be found in [79]. These results assume that the coupling parameter is suf-
ficiently small. They have been extended in [71] to the cases of arbitrary coupling
parameters (assuming bounded coupling operators). For both references, the multi-
plier method was the main ingredient for obtaining the desired estimates. Complete
observability (respectively, controllability) results have also been obtained in [75] for
systems of coupled second order hyperbolic equations containing first order terms
in both the original and the coupled unknowns. These results are based on Car-
leman estimates. Stabilization and observability results for hyperbolic-hyperbolic
systems via a single control force have been considered more recently. In [8] (see
also references therein), polynomial decay estimates in the case of indirect internal
stabilization case are given. These results have been extended to several (wave-wave
coupling, Petrowsky-Petrowsky coupling) for the locally distributed indirect stabi-
lization case in [29]. Moreover, Alabau in [6], proved that it is possible to reach
any target state in (H1

0 × L2)2(Ω), for a sufficiently large time. These results have
been generalized in [12] and [9], where she considered a multidimensional setting of
two weakly coupled wave equations, and proved its exact controllability using a so
called indirect observability method: that is to observe only one component of the
unknown on the boundary and know whether this observation can give back the
initial energy of components of the solution.

Contribution. We prove exact controllability for system (0.2.21). Indeed, we
establish observability inequalities using Ingham’s theorem ([73]). In order to do so,
we consider the associated homogeneous problem, that is to say, the null boundary
acted control system. Hence using the Hilbert Uniqueness Method ([79]), we deduce
the indirect exact controllability of the considered system.
Let us denote by λ1,m, λ2,n the two branches of eigenvalues of the corresponding
homogeneous system associated to (0.2.21) , and denote by{

E1,n = (ϕ1,n, λ1,nϕ1,n, ψ1,n, λ1,nψ1,n),
E2,n = (ϕ2,n, λ2,nϕ2,n, ψ2,n, λ2,nψ2,n)

(0.2.22)

the corresponding eigenvectors. We prove in Proposition 4.4.1 of Chapter 4, that
there exist infinitely many m ∼ n such that the eigenvalues satisfy a standard gap

λ1,m − λ2,n ∼ O(1). (0.2.23)

But the observation is on the first components of the corresponding eigenvectors
E1,n, E2,n. Following Proposition 4.4.2 in Chapter 4, we have

ϕ1,n(1) = O

(
1

n

)
, ϕ2,n(1) = O

(
1

n2

)
. (0.2.24)
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Hence, the following weighted spectral space is the natural space for observability

D = {(ϕ0, ϕ1, ψ0, ψ1) =
∑
n ̸=0

(α1,nnE1,n + α2,nn
2E2,n)}. (0.2.25)

In (0.2.25), the factors n and n2 are due to the transmission of the modes between
the two equations.
We prove the following result.

Theorem 0.2.13 (Observability inequalities for Neumann boundary control). Let
α ̸= 0 be a real number small enough. Assume that

T > 4.

Then there exists a constant c1 > 0 such that the direct observability inequality holds∫ T

0

|ϕ(1, t)|2dt ≤ c1∥(ϕ0, ϕ1, ψ0, ψ1)∥2H, (0.2.26)

for all solution Φ = (ϕ, ϕt, ψ, ψt) solving the corresponding homogeneous Cauchy
problem.
Moreover, there exists a constant 0 < c < c1, such that the following inverse observ-
ability inequality holds

c∥(ϕ0, ϕ1, ψ0, ψ1)∥2D ≤
∫ T

0

|ϕ(1, t)|2dt. (0.2.27)

It is well known that the observability of the corresponding homogeneous Cauchy
problem leads to the exact controllability of the considered systems [79]. After
characterizing the corresponding weighted spectral space, we deduce the following
exact controllability result.

Theorem 0.2.14. Let α ̸= 0 be a real number small enough. Assume that

T > 4.

Let
(u0, u1, y0, y1) ∈ (H1 × L2 ×H2 ×H1)(0, 1),

then there exists v ∈ L2(0, T ) such that the solution of the non homogeneous system
(0.2.21) satisfies the null final conditions

u(x, t) = ut(x, t) = y(x, t) = yt(x, t) = 0, ∀t ≥ T.
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0.3 Organization of the thesis
This thesis is constituted of four chapters organized into two parts. Some chapters
of this manuscript are from items being prepared, or submitted.
Chapters 1 and 2 of Part I correspond to the study of numerical approximations of
Hamilton-Jacobi equations posed on a junction. The first chapter deals with finite
difference schemes of a first order Hamilton-Jacobi equation posed on a junction,
where we derive error estimates for flux limited junction conditions, and prove con-
vergence under general junction conditions. We ameliorate in the second chapter, by
using a new approach, the result of the error estimate obtained in the first chapter,
for a lager class of Hamiltonians.
Chapters 3 and 4 of Part II are concerned with the study of indirect controllability
and stability of coupled wave equations. The third chapter is dedicated to the proof
of the exact controllability of a system of wave equations coupled through velocity
terms, in the one dimensional setting, while propagating with equal or different
speeds of propagation. While in the fourth chapter, we study stabilization and
exact controllability of coupled wave equations coupled through zero order terms,
in the one dimensional setting.
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Part I

Numerical analysis for
Hamilton-Jacobi equations on

networks





Chapter 1

Error estimates for finite
difference schemes associated with
Hamilton-Jacobi equations on a
junction

Ce chapitre vise à étudier un schéma monotone de différences finies
aasocié à une équation de Hamilton-Jacobi du premier ordre. Ce shéma
est une extension du schéma déjà introduit par Costeseque, Lebacque
et Monneau (2013) pour des conditions de jonctions générales. D’une
part, nous démontrons la convergence de la solution numérique vers la
solution de l’équation de Hamilton-Jacobi, quand la taille du maillage
tend vers zéro, pour les conditions de jonction générales. D’autre part,
nous dérivons des estimations d’erreurs d’ordre (∆x)

1
2 dans L∞

loc pour
des conditions de jonction du type contrôle optimal si les minimums des
Hamiltoniens sont égaux.
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Chapter 1: Error estimates for finite difference schemes associated with

Hamilton-Jacobi equations on a junction

Abstract. This chapter is concerned with monotone finite difference schemes asso-
ciated with first order Hamilton-Jacobi equations posed on a junction. They extend
the schemes recently introduced by Costeseque, Lebacque and Monneau (2013) to
general junction conditions. On one hand, we prove the convergence of the numeri-
cal solution towards the weak (viscosity) solution of the Hamilton-Jacobi equation
as the mesh size tends to zero for general junction conditions. On the other hand,
we derive error estimates of order (∆x)

1
2 in L∞

loc for junction conditions of optimal-
control type if the minima of the Hamiltonians are equal.

1.1 Introduction

This chapter is concerned with numerical approximation of first order Hamilton-
Jacobi equations posed on a junction, that is to say a network made of one node
and a finite number of edges.
The theory of weak (viscosity) solutions for such equations on such domains has
reached maturity by now [2, 65, 67, 102, 103]. In particular, it is now understood
that general junction conditions reduce to special ones of optimal-control type [64–
66]. Roughly speaking, it is proved in [65] that imposing a junction condition en-
suring the existence of a continuous viscosity solution and a comparison principle
is equivalent to imposing a junction condition obtained by “limiting the flux” at
the junction point. Very recently, Lions and Souganidis [81, 82] wrote a note about
a new approach for Hamilton-Jacobi equations posed on junctions with coercive
Hamiltonians that are possibly not convex.
For the “maximal”flux-limited junction conditions, Costeseque, Lebacque and Mon-
neau [41] introduced a monotone numerical scheme and proved its convergence.
Their scheme can be naturally extended to general junction conditions and our first
contribution is to introduce such a generalization and to prove its convergence.
Our second and main result is an error estimate à la Crandall-Lions [42] in the case of
flux-limited junction conditions. It is explained in [42] that the proof of the compar-
ison principle between sub- and super-solutions of the continuous Hamilton-Jacobi
equation can be adapted in order to derive error estimates between the numerical
solution associated with monotone (stable and consistent) schemes and the contin-
uous solution. In the Euclidean case, the comparison principle is proved thanks
to the technique of doubling variables; it relies on the classical penalization term
ε−1|x−y|2. Such a penalization procedure is known to fail in general if the equation
is posed in a junction; it is explained in [65] that it has to be replaced with a vertex
test function.
In order to derive error estimates as in [42], it is important to study the regularity
of the vertex test function. More precisely, we prove (Proposition 1.5.1) that it can
be constructed in such a way that its gradient is locally Lipschitz continuous, at
least if the minima of the Hamiltonians on different branches are equal. In fact, we
see that the second order derivatives of the regularized vertex test function explode
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near the origin when the minima are not equal, that is why we restrict ourselves to
the case where no regularization is needed.

1.1.1 Hamilton-Jacobi equations posed on junctions

A junction is a network made of one node and a finite number of infinite edges. It
can be viewed as the set of N distinct copies (N ≥ 1) of the half-line which are
glued at the origin. For α = 1, . . . , N, each branch Jα is assumed to be isometric to
[0,+∞) and

J =
∪

α=1,...,N

Jα with Jα ∩ Jβ = {0} for α ̸= β

where the origin 0 is called the junction point. For points x, y ∈ J , d(x, y) denotes
the geodesic distance on J defined as

d(x, y) =

{
|x− y| if x, y belong to the same branch,
|x|+ |y| if x, y belong to different branches.

With such a notation in hand, we consider the following Hamilton-Jacobi equation
posed on the junction J,{

ut +Hα(ux) = 0 in (0, T )× Jα \ {0},
ut + F ( ∂u

∂x1
, . . . , ∂u

∂xN
) = 0 in (0, T )× {0}, (1.1.1)

submitted to the initial condition

u(0, x) = u0(x), for x ∈ J (1.1.2)

where u0 is globally Lipschitz in J . The second equation in (1.1.1) is referred to
as the junction condition. We consider the important case of Hamiltonians Hα

satisfying the following conditions:

There exists pα0 ∈ R such that


Hα ∈ C2(R) and H ′′

α(p
α
0 ) > 0

±H ′
α(p) > 0 for ± (p− pα0 ) > 0

lim|p|→+∞Hα(p) = +∞.
(1.1.3)

In particular Hα in non-increasing in (−∞, pα0 ] and non-decreasing in [pα0 ,+∞), and
we set

H−
α (p) =

{
Hα(p) for p ≤ pα0
Hα(p

α
0 ) for p ≥ pα0

and H+
α (p) =

{
Hα(p

α
0 ) for p ≤ pα0 ,

Hα(p) for p ≥ pα0

where H−
α is non-increasing and H+

α is non-decreasing.
We assume in addition that,

For all α, β ∈ {1, · · · , N}, minHα = minHβ. (1.1.4)
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We next introduce a one-parameter family of junction conditions: given a flux limiter
A ∈ R ∪ {−∞}, the A-limited flux junction function is defined for p = (p1, . . . , pN)
as,

FA(p) = max

(
A, max

α=1,...,N
H−

α (pα)

)
(1.1.5)

for some given A ∈ R
∪
{−∞} where H−

α is non-increasing part of Hα.
We now consider the following important special case of (1.1.1),{

ut +Hα(ux) = 0 in (0, T )× Jα \ {0},
ut + FA(

∂u
∂x1
, . . . , ∂u

∂xN
) = 0 in (0, T )× {0}. (1.1.6)

We point out that all the junction functions FA associated with A ∈ [−∞, A0]
coincide if one chooses

A0 = max
α=1,...,N

min
R
Hα. (1.1.7)

As far as general junction conditions are concerned, we assume that the junction
function F : Rn 7→ R satisfies

F is continuous and piecewise C1(Rn),
∀α, ∀p = (p1, . . . , pN) ∈ RN , ∂F

∂pα
(p) < 0,

F (p1, . . . , pN) → +∞ as min
i∈{1,...,N}

pi → −∞.
(1.1.8)

1.1.2 Presentation of the scheme

The domain (0,+∞)× J is discretized with respect to time and space. We choose
a regular grid in order to simplify the presentation but it is clear that more general
meshes could be used here. The space step is denoted by ∆x and the time step by
∆t. If h denotes (∆t,∆x), the mesh (or grid) Gh is chosen as

Gh = {n∆t : n ∈ N} × J∆x

where
J∆x =

∪
α=1,...,N

J∆x
α with Jα ⊃ J∆x

α ≃ {i∆x : i ∈ N}.

It is convenient to write xαi for i∆x ∈ Jα.
A numerical approximation uh of the solution u of the Hamilton-Jacobi equation is
defined on Gh; the quantity uh(n∆t, xαi ) is simply denoted by Uα,n

i . We want it to
be an approximation of u(n∆t, xαi ) for n ∈ N, i ∈ N, where α stands for the index
of the branch.
We consider the following time-explicit scheme: for n ≥ 0,

Uα,n+1
i −Uα,n

i

∆t
+max{H+

α (p
α,n
i,− ), H

−
α (p

α,n
i,+ )} = 0, i ≥ 1, α = 1, . . . , N

Uβ,n
0 := Un

0 , i = 0, β = 1, . . . , N
Un+1
0 −Un

0

∆t
+ F (p1,n0,+, . . . , p

N,n
0,+ ) = 0,

(1.1.9)
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where pα,ni,± are the discrete (space) gradients defined by

pα,ni,+ :=
Uα,n
i+1 − Uα,n

i

∆x
, pα,ni,− :=

Uα,n
i − Uα,n

i−1

∆x
(1.1.10)

with the initial condition

Uα,0
i = u0(x

α
i ), i ≥ 0, α = 1, . . . , N. (1.1.11)

The following Courant-Friedrichs-Lewy (CFL) condition ensures that the explicit
scheme is monotone,

∆x

∆t
≥ max

{
max
i≥0,

α=1,...,N,
0≤n≤nT

|H ′
α(p

α,n
i,+ )|; max

0≤n≤nT

{
(−∇ · F )(p1,n0,+, . . . , p

N,n
0,+ )

}}
(1.1.12)

where the integer nT is the integer part of T
∆t

for a given T > 0.

1.1.3 Main results

As previously noticed in [41] in the special case F = FA0 , it is not clear that
the time step ∆t and space step ∆x can be chosen in such a way that the CFL
condition (1.1.12) holds true since the discrete gradients pα,ni,+ depend itself on ∆t
and ∆x (through the numerical scheme). We thus impose a more stringent CFL
condition,

∆x

∆t
≥ max

{
max

α=1,...,N,
p
α
≤p≤pα

|H ′
α(p)|; max

p0
α
≤pα≤pα

{
(−∇ · F )(p1, . . . , pN)

}}
(1.1.13)

for some p
α
, pα, p

0
α
∈ R to be fixed (only depending on u0, H, and F ). We can

argue as in [41] and prove that p
α
, pα, p

0
α
∈ R can be chosen in such a way that

the CFL condition (1.1.13) implies (1.1.12) and, in turn, the scheme is monotone
(Lemma 1.4.1 in Section 1.4). We will also see that it is stable (Lemma 1.4.5) and
consistent (Lemma 1.4.6). It is thus known that it converges [21, 42]. Notice that
taking F = FA, gives the following CFL condition

∆x

∆t
≥ max

α=1,...,N,
p
α
≤p≤pα

|H ′
α(p)|. (1.1.14)

Theorem 1.1.1 (Convergence for general junction conditions). Let T > 0
and u0 be Lipschitz continuous. There exist p

α
, pα, p

0
α
∈ R, α = 1, . . . , N , depending

only on the initial data, the Hamiltonians and the junction function F , such that,
if h = (∆t,∆x) satisfies the CFL condition (1.1.13), then the numerical solution
uh defined by (1.1.9),(1.1.11) converges locally uniformly as h goes to zero to the
unique weak (relaxed viscosity) solution u of (1.1.1)-(1.1.2), on any compact set
K ⊂ [0, T )× J , i.e.

lim sup
|h|→0

sup
(t,x))∈K∩Gh

|uh(t, x)− u(t, x)| = 0. (1.1.15)
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Remark 1.1.2. We know from [65] that the equation (1.1.1)-(1.1.2) have a unique
relaxed viscosity solution in the sense of Definition 1.2.2. For particular junction
conditions, i.e., replacing F by FA the unique viscosity solution is defined in the
sense of Definition 1.2.1. Notice that the scheme has a junction condition which is
not relaxed. However the solution of the scheme converges to the unique relaxed
solution of the associated Hamilton-Jacobi equation.

The main result of this chapter lies in getting error estimates in the case of flux-
limited junction conditions, under the assumption (1.1.4).

Theorem 1.1.3 (Error estimates for flux-limited junction conditions). As-
sume that the Hamiltonians Hα satisfy (1.1.3)-(1.1.4). Let u0 be Lipshitz continuous,
uh be the solution of the associated numerical scheme (1.1.9)-(1.1.11) and u be the
weak (viscosity) solution of (1.1.6)-(1.1.2) for some A = A0 ∈ R. If the CFL condi-
tion (1.1.14) is satisfied, then there exists C > 0 (independent of h) such that

sup
[0,T )×J∩Gh

|uh(t, x)− u(t, x)| ≤ C(∆x)1/2. (1.1.16)

1.1.4 Related results

Numerical schemes for Hamilton-Jacobi equations on networks. The dis-
cretization of weak (viscosity) solutions of Hamilton-Jacobi equations posed on net-
works has been studied in few papers only. Apart from [41] mentioned above, we are
only aware of three other works. A convergent semi-Lagrangian scheme is introduced
in [33] for equations of eikonal type. In [57], an adapted Lax-Friedrichs scheme is
used to solve a traffic model; it is worth mentioning that this discretization implies
to pass from the scalar conservation law to the associated Hamilton-Jacobi equation
at each time step. In [59], Guerand and Koumaiha (see Chapter 2) improved the
error estimate for a larger class of Hamiltonians. Their approach is slightly different
from our approach, they use a function relative to the optimal control interpretation
of the problem, in the penalization procedure.

Link with monotone schemes for scalar conservation laws. We first fol-
low [41] by emphasizing that the convergence result, Theorem 1.1.1, implies the
convergence of a monotone scheme for scalar conservation laws (in the sense of
distributions). In fact, this scheme recovers the classical Godunov scheme [55].
In order to introduce the scheme, it is useful to introduce a notation for the numerical
Hamiltonian Hα,

Hα(p
+, p−) = max{H−

α (p
+), H+

α (p
−)}.

The discrete solution (V n) of the scalar conservation law is defined as follows,

V α,n

i+ 1
2

=


Uα,n
i+1−Uα,n

i

∆x
if i ≥ 1

Uα,n
1 −Un

0

∆x
if i = 0.
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In view of (1.1.9), it satisfies for all α = 1, . . . , N ,
V α,n+1

i+1
2

−V α,n

i+1
2

∆t
+ (∆x)−1

(
Hα(V

α,n

i+ 3
2

, V α,n

i+ 1
2

)−Hα(V
α,n

i+ 1
2

, V α,n

i− 1
2

)
)
= 0, i ≥ 1,

V α,n+1
1
2

−V α,n
1
2

∆t
+ (∆x)−1

(
Hα(V

α,n
3
2

, V α,n
1
2

)− F (V 1,n
1
2

, . . . , V N,n
1
2

)
)
= 0

submitted to the initial condition

V α,0

i+ 1
2

=
u0(x

α
i )− u0(0)

∆x
, i ≥ 0, α = 1, . . . , N.

It is worth mentioning that our scheme In view of Theorem 1.1.1, we thus can
conclude that the discrete solution vh constructed from (V n) converges towards ux
in the sense of distributions, at least far from the junction point.

Scalar conservation laws with Dirichlet boundary conditions and con-
strained fluxes. We would like next to explain why our result can be seen as
the Hamilton-Jacobi counterpart of the error estimates obtained by Ohlberger and
Vovelle [93] for scalar conservation laws submitted to Dirichlet boundary conditions.
On the one hand, it is known since 1979 and Bardos, Le Roux and Nedelec [20]
that Dirichlet boundary conditions imposed to scalar conservation laws should be
understood in a generalized sense. This can be seen by studying the parabolic
regularization of the problem. A boundary layer analysis can be performed for
systems if the solution of the conservation law is smooth; see for instance [54, 60].
Depending on the fact that the boundary is characteristic or not, the error is ε 1

2

or ε. In the scalar case, it is proved in [46] that the error between the solution of
the regularized equation with a vanishing viscosity coefficient equal to ε and the
entropy solution of the conservation law (which is merely of bounded variation in
space) is of order ε1/3 (in L∞

t L
1
x norm). In [93], the authors derive error estimates

for finite volume schemes associated with such boundary value problems and prove
that it is of order (∆x)1/6 (in L1

t,x norm). More recently, scalar conservation laws
with flux constraints were studied [39, 40] and some finite volume schemes were built
[17]. In [34], assuming that the flux is bell-shaped, that is to say the opposite is
quasi-convex, it is proved that the error between the finite volume scheme and the
entropy solution is of order (∆x)

1
3 and that it can be improved to (∆x)

1
2 under an

additional condition on the traces of the BV entropy solution. It is not known if the
estimates from [34] are optimal or not.
On the other hand, the derivative of a weak (viscosity) solution of a Hamilton-Jacobi
equation posed on the real line is known to coincide with the entropy solution of
the corresponding scalar conservation law. It is therefore reasonable to expect that
the error between the viscosity solution of the Hamilton-Jacobi equation and its
approximation is as good as the one obtained between the entropy solution of the
scalar conservation law and its approximation.
Moreover, it is explained in [67] that the junction conditions of optimal-control type
are related to the BLN condition mentioned above; such a correspondence is recalled
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in Appendix 1.9. It is therefore interesting to get an error estimate of order (∆x)1/2
for the Hamilton-Jacobi problem.

1.1.5 Open problems

Let us first mention that it is not known if the error estimate between the (entropy)
solution of the scalar conservation law with Dirichlet boundary condition and the
solution of the parabolic approximation [46] or with the numerical scheme [93] is
optimal or not. Here, we prove an optimal error estimate for A = A0, for Hamiltoni-
ans satisfying (1.1.4). As the second order derivatives of the vertex test function G
are not bounded near the diagonal for x = y = 0, we can not derive error estimates
for A > A0, or in the case where (1.1.4) is not satisfied.
Deriving error estimates for general junction conditions seems difficult to us. The
main difficulty is the singular geometry of the domain. The vertex test function, used
in deducing the error estimates with flux limited solutions, is designed to compare
flux limited solutions. Consequently, when applying the reasoning of Section 1.6,
the discrete viscosity inequality cannot be combined with the continuous one. We
expect that a layer develops between the continuous solution and the discrete scheme
at the junction point.

Organization of the chapter. The remaining of the chapter is organized as
follows. In Section 1.2, we recall definitions and results from [65] about viscosity
solutions for (1.1.1)-(1.1.2) and the so-called vertex test function. Section 1.3 is
dedicated to the derivation of discrete gradient estimates for the numerical scheme.
In Section 1.4, the convergence result, Theorem 1.1.1 is proved. In Section 1.5, it is
proved that the vertex test function constructed in [65] can be chosen so that the
gradient is locally Lipshchitz continuous if A = A0 and if (1.1.4) holds true. The
final section, Section 1.6, is dedicated to the proof of the error estimates.

1.2 Preliminaries

1.2.1 Viscosity solutions

We introduce the main definitions related to viscosity solutions for Hamilton-Jacobi
equations that are used in the remainder. For a more general introduction to vis-
cosity solutions, the reader is referred to Barles [24] and to Crandall, Ishii, Lions
[45].

Space of test functions. For a real valued function u defined on J , we denote
by uα the restriction of u to (0, T )× Jα.
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Then we define the natural space of functions on the junction:

C1(JT ) = {u ∈ C(JT ) : ∀α = 1, . . . , N, uα ∈ C1((0, T )× Jα)}.

Viscosity solutions. In order to define classical viscosity solutions, we recall the
definition of upper and lower semi-continuous envelopes u⋆ and u⋆ of a (locally
bounded) function u defined on [0, T )× J :

u⋆(t, x) = lim sup
(s,y)→(t,x)

u(s, y) u⋆(t, x) = lim inf
(s,y)→(t,x)

u(s, y).

Definition 1.2.1 (Viscosity solution). Assume that the Hamiltonians satisfy
(1.1.3) and that F satisfies (1.1.8) and let u : (0, T )× J → R.

( i ) We say that u is a sub-solution (resp. super-solution) of (1.1.1) in (0, T )×J
if for all test function φ ∈ C1(JT ) such that

u⋆ ≤ φ (resp. u⋆ ≥ φ) in a neighborhood of (t0, x0) ∈ JT

with equality at (t0, x0) for some t0 > 0, we have

φt +H(φx) ≤ 0 (resp. ≥ 0) at (t0, x0)

if x0 ̸= 0, else

φt + F (
∂φ

∂x1

, . . . ,
∂φ

∂xN

) ≤ 0 (resp. ≥ 0) at (t0, x0) = (t0, 0).

( ii ) We say that u is a sub-solution (resp. super-solution) of (1.1.1)-(1.1.2) on
[0, T )× J if additionally

u⋆(0, x) ≤ u0(x) (resp. u⋆(0, x) ≥ u0(x)) for all x ∈ J.

(iii) We say that u is a (viscosity) solution of (1.1.1)-(1.1.2) if u is both a
sub-solution and a super-solution of (1.1.1)-(1.1.2).

As explained in [65], it is difficult to construct viscosity solutions in the sense of
Definition 1.2.1 because of the junction condition. It is possible in the case of the
flux-limited junction conditions FA. For general junction conditions, the Perron
process generates a viscosity solution in the following relaxed sense [65].

Definition 1.2.2 (Relaxed viscosity solution). Assume that the Hamiltonians
satisfy (1.1.3) and that F satisfies (1.1.8) and let u : (0, T )× J → R.
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( i ) We say that u is a relaxed sub-solution (resp. relaxed super-solution) of
(1.1.1) in (0, T )× J if for all test function φ ∈ C1(JT ) such that

u⋆ ≤ φ (resp. u⋆ ≥ φ) in a neighborhood of (t0, x0) ∈ JT

with equality at (t0, x0) for some t0 > 0, we have

φt +Hα(φx) ≤ 0 (resp. ≥ 0) at (t0, x0)

if x0 ̸= 0, else{
either φt + F ( ∂φ

∂x1
, . . . , ∂φ

∂xN
) ≤ 0 (resp. ≥ 0) at (t0, x0) = (t0, 0)

or φt +Hα(
∂φ
∂xα

) ≤ 0 (resp. ≥ 0) at (t0, x0) = (t0, 0) for some α.

( ii ) We say that u is a relaxed (viscosity) solution of (1.1.1) if u is both a
sub-solution and a super-solution of (1.1.1).

Let us recall some theorems in [65].

Theorem 1.2.3 (Comparison principle on a junction). Let A ∈ R ∪ {−∞}.
Assume that the Hamiltonians satisfy (1.1.3) and the initial datum u0 is uniformly
continuous. Then for all sub-solution u and super-solution v of (1.1.6),(1.1.2) sat-
isfying for some T > 0 and CT > 0

u(t, x) ≤ CT (1+d(0, x)), v(t, x) ≥ −CT (1+d(0, x)), for all (t, x) ∈ [0, T )×J,

we have
u ≤ v in [0, T )× J.

Theorem 1.2.4 (General junction conditions reduce to flux-limited ones).
Assume that the Hamiltonians satisfy (1.1.3) and that F satisfies (1.1.8). Then there
exists AF ∈ R such that any relaxed viscosity (sub-/super-)solution of (1.1.1) is in
fact a viscosity (sub-/super-)solution of (1.1.6) with A = AF .

Theorem 1.2.5 (Existence and uniqueness on a junction). Assume that the
Hamiltonians satisfy (1.1.3) and that F satisfies (1.1.8) and that the initial datum
u0 is Lipschitz continuous. Then there exists a unique relaxed viscosity solution u
of (1.1.1)-(1.1.2), such that

|u(t, x)− u0(x)| ≤ Ct for all (t, x) ∈ [0, T )× J

for some constant C only depending on H and u0. Moreover, it is Lipschitz contin-
uous with respect to time and space, in particular,

∥∇u∥∞ ≤ C.
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1.2.2 Vertex test function

In this subsection, we recall what a vertex test function is. It is introduced in [65]
in order to prove a comparison principle for (1.1.1). This function G plays the role
of |x− y|2 in the classical “doubling variables” method [45].
Let us just mention that on the one hand Guerand in [58] and Lions and Souganidis
in [81, 82] on the other hand studied well-posedness and stability properties for
Hamilton-Jacobi equations with non convex coercive Hamiltonians. Moreover, in
[26], Barles et al. compared two different approaches for regional control problems.
In fact, they showed how the results of the classical approach, using a standard
notion of viscosity solutions, can be interpreted in terms of flux-limited solutions.
In particular, they gave a simpler proof of the comparison principle, avoiding in
particular the use of the vertex test function G. We wonder thus if we adapt their
reasoning in the proof of the error estimate, whether we have to restrict ourselves
in the case of Hammiltonians satisfying (1.1.4) for A = A0, or not. And what error
estimate could we obtain while considering non convex Hamiltonians as in [82].
We recall now the vertex test function G from [65].
Theorem 1.2.6 (Vertex test function - the general case- [65]). Let A ∈ R ∪ {−∞}
and γ > 0. Assume the Hamiltonians satisfy (1.1.3) and pα0 = 0, that is to say

minHα = Hα(0). (1.2.1)

Then there exists a function G : J2 → R enjoying the following properties.

( i ) (Regularity)

G ∈ C(J2) and

{
G(x, .) ∈ C1(J) for all x ∈ J,

G(., y) ∈ C1(J) for all y ∈ J.

( ii ) (Bound from below) G ≥ 0 = G(0, 0).

(iii) (Compatibility condition on the diagonal) For all x ∈ J

G(x, x) ≤ γ. (1.2.2)

( iv ) (Compatibility condition on the gradients) For all (x, y) ∈ J2

Hβ(−Gy(x, y))−Hα(Gx(x, y)) ≤ γ

if x ∈ Jα \ {0}, y ∈ Jβ \ {0},
Hβ(−Gy(x, y))− FA(

∂G
∂x1

(x, y), . . . , ∂G
∂xN

(x, y)) ≤ γ

if x = 0, y ∈ Jβ \ {0},
FA(− ∂G

∂y1
(x, y), . . . ,− ∂G

∂yN
(x, y))−Hα(Gx(x, y)) ≤ γ

if x ∈ Jα \ {0}, y = 0,

FA(− ∂G
∂y1

(x, y), . . . ,− ∂G
∂yN

(x, y))− FA(
∂G
∂x1

(x, y), . . . , ∂G
∂xN

(x, y)) ≤ γ

if x = 0, y = 0.

(1.2.3)
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( v ) (Superlinearity) There exists g : [0,+∞) → R non-decreasing and s.t. for
(x, y) ∈ J2

g(d(x, y)) ≤ G(x, y) and lim
a→+∞

g(a)

a
= +∞. (1.2.4)

(vi ) (Gradient bounds) For all K ≥ 0, there exists CK > 0 such that for all
(x, y) ∈ J2,

d(x, y) ≤ K ⇒ |Gx(x, y)|+ |Gy(x, y)| ≤ CK . (1.2.5)

It is mentioned in [65] that the vertex test function G is obtained as a regularized
version of A+G0 where G0 is defined, for α, β = 1, · · · , N, by

G0(x, y) := sup
(p,λ)∈G(A)

(pαx− pβy − λ) if (x, y) ∈ Jα × Jβ (1.2.6)

where G(A) is referred to as the germ and is defined as follows

G(A) =

{
{(p, λ) ∈ RN × R, Hα(pα) = FA(p) = λ for α = 1, . . . , N} if N ≥ 2,

{(p1, λ) ∈ R× R, H1(p1) = λ ≥ A} if N = 1.

We recall that G0 is a C1 function except on the diagonal. Under assumptions
(1.1.4) and (1.2.1), G0 ∈ C1(J2), and thus the vertex test function G is equal to
A+G0, for all (x, y) ∈ Jα × Jβ. Hereafter, G0 satisfies the following properties.
Theorem 1.2.7. Assume the Hamiltonians satisfy (1.1.3), (1.1.4) and assume that
pα0 = 0, that is to say,

minHα = Hα(0) = A0, ∀α = 1, · · · , N. (1.2.7)
Then the function G0 : J2 → R enjoys the following properties.

( i ) (Regularity)
G0 ∈ C1(J2)

( ii ) (Bound from below) G0 ≥ G0(0, 0) = −A0.

(iii) (Compatibility condition on the diagonal) For all x ∈ J

G0(x, x) = −A0.

( iv ) (Compatibility condition on the gradients) For all (x, y) ∈ J2

Hβ(−G0
y(x, y))−Hα(G

0
x(x, y)) ≤ 0

if x ∈ Jα \ {0}, y ∈ Jβ \ {0},
Hβ(−G0

y(x, y))− FA(
∂G0

∂x1
(x, y), . . . , ∂G0

∂xN
(x, y)) ≤ 0

if x = 0, y ∈ Jβ \ {0},
FA0(−∂G0

∂y1
(x, y), . . . ,− ∂G0

∂yN
(x, y))−Hα(G

0
x(x, y)) ≤ 0

if x ∈ Jα \ {0}, y = 0,

FA0(−∂G0

∂y1
(x, y), . . . ,− ∂G0

∂yN
(x, y))− FA0(

∂G0

∂x1
(x, y), . . . , ∂G0

∂xN
(x, y)) ≤ 0

if x = 0, y = 0.
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( v ) (Superlinearity) There exists g0 : [0,+∞) → R non-decreasing and s.t. for
(x, y) ∈ J2

g0(d(x, y)) ≤ G0(x, y) and lim
a→+∞

g0(a)

a
= +∞.

(vi ) (Gradient bounds) For all K ≥ 0, there exists CK > 0 such that for all
(x, y) ∈ J2,

d(x, y) ≤ K ⇒ |G0
x(x, y)|+ |G0

y(x, y)| ≤ CK .

Remark 1.2.8. We remark as in [65] that we can assume without loss of generality
that the Hamiltonians satisfy the additional conditions (1.1.4) and (1.2.1). Indeed,
if u solves (1.1.1) then

ũ(t, x) = u(t, x)− pα0x for x ∈ Jα

solves the same equation in which Hα replaced with

H̃α(p) = Hα(p
α
0 + p).

1.3 Gradient estimates for the scheme
This section is devoted to the proofs of the discrete (time and space) gradient es-
timates. These estimates ensure the monotonicity of the scheme and, in turn, its
convergence.
Theorem 1.3.1 (Discrete gradient estimates). If uh = (Uα,n

i ) is the numerical
solution of (1.1.9)-(1.1.11) and if the CFL condition (1.1.13) is satisfied and if

m0 = inf
β=1,...,N,

i∈N

W β,0
i (1.3.1)

is finite, then the following two properties hold true for any n ≥ 0.

( i ) (Gradient estimate) There exist p
α
, pα, p

0
α

(only depending on Hα, u0 and
F ) such that {

p
α
≤ pα,ni,+ ≤ pα i ≥ 1, α = 1, . . . , N,

p0
α
≤ pα,n0,+ ≤ pα i = 0, α = 1, . . . , N.

(1.3.2)

( ii ) (Time derivative estimate) The discrete time derivative defined as

Wα,n
i :=

Uα,n+1
i − Uα,n

i

∆t

satisfies
m0 ≤ mn ≤ mn+1 ≤Mn+1 ≤Mn ≤M0

where
mn := inf

α,i
Wα,n

i , Mn := sup
α,i

Wα,n
i .
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In the proofs of discrete gradient estimates, as well as in the construction of the
vertex test functions, “generalized” inverse functions of H±

α are needed; they are
defined as follows: {

π+
α (a) := sup{p : H+

α (p) = max(a,Aα)}
π−
α (a) := inf{p : H−

α (p) = max(a,Aα)}
(1.3.3)

with the additional convention that (H±
α )

−1(+∞) = ±∞, where

Aα := min
R
Hα.

In order to define a “generalized” inverse function of F , we remark that (1.1.8)
implies that

for all K ∈ R, there exists ρ(K) = (ρ1(K), . . . , ρN(K)) ∈ RN such that

F (p1, . . . , pN) ≤ K ⇒ pα ≥ ρ
α
(K).

Remark that the functions ρ
α

can be chosen non-increasing.
Remark 1.3.2. The quantities p

α
, pα, p

0
α

are defined as follows

p
α
=

{
π−
α (−m0) if −m0 > Aα

π−
α (−m0 + 1) if −m0 = Aα

pα =

{
π+
α (−m0) if −m0 > Aα

π+
α (−m0 + 1) if −m0 = Aα

p0
α
=

{
ρ
α
(−m0) if ρ

α
(−m0) < pα

ρ
α
(−m0 + 1) if ρ

α
(−m0) = pα

(1.3.4)

where m0 is defined in (1.3.1).

In order to establish Theorem 1.3.1, we first prove two auxiliary results. In order to
state them, some notation should be introduced.

1.3.1 Discrete time derivative estimates

In order to state the first one, Proposition 1.3.3 below, we introduce some notation.
For σ ∈ {+,−}, we set

Iα,ni,σ := [min(pα,ni,σ , p
α,n+1
i,σ ),max(pα,ni,σ , p

α,n+1
i,σ )]

with pα,ni,σ defined in (1.1.10) and

Dα,n
i,+ := sup

{
sup

pα∈Iα,n
i,+

|H ′
α(pα)|, sup

pα∈Iα,n
0,+

{
− (∇ · F )(p1, . . . , pN)

}}
. (1.3.5)

The following proposition asserts that if the discrete space gradients enjoy suitable
estimates, then the discrete time derivative is controlled.
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Proposition 1.3.3 (Discrete time derivative estimate). Let n ≥ 0 be fixed and
∆x, ∆t > 0. Let us consider (Uα,n

i,α )α,i satisfying for some constant Cn > 0 :

|pα,ni,+ | ≤ Cn for i ≥ 0, α = 1, . . . , N.

We also consider (Uα,n+1
i )α,i and (Uα,n+2

i )α,i computed using the scheme (1.1.9). If

Dα,n
i,+ ≤ ∆x

∆t
for i ≥ 0, α = 1, . . . , N, (1.3.6)

then
mn ≤ mn+1 ≤Mn+1 ≤Mn.

Proof. For σ = + (resp. σ = −), −σ denotes − (resp. +). We introduce for n ≥ 0,
α ∈ {1, . . . , N}, i ∈ {1, . . . , N}, σ ∈ {+,−},

Cα,n
i,σ := −σ

∫ 1

0

(H−σ
α )′

(
pα,n+1
i,σ + τ(pα,ni,σ − pα,n+1

i,σ )
)
dτ ≥ 0, (1.3.7)

Cα,n
0,+ := −

∫ 1

0

∂F

∂pα

(
{pβ,n+1

0,+ + τ(pβ,n0,+ − pβ,n+1
0,+ )}β

)
dτ ≥ 0.

Notice that for i ≥ 1, Cα,n
i,σ is defined as the integral of (H−σ

α )′ over a convex com-
bination of p ∈ Iα,ni,σ . Similarly for Cα,n

0,+ which is defined as the integral of F ′ on a
convex combination of p ∈ Iα,n0,+ . Hence, in view of (1.3.6), we have for any n ≥ 0,
α = 1, . . . , N and for any σ ∈ {+,−} or for i = 0 and σ = +, we can check thatC

α,n
i,σ ≤ ∆x

∆t
if i ≥ 1, σ ∈ {−,+}∑N

β=1C
β,n
0,+ ≤ ∆x

∆t
.

(1.3.8)

We can also underline that for any n ≥ 0, α = 1, . . . , N and for any i ≥ 1, σ ∈ {+,−}
or for i = 0 and σ = +, we have the following relationship:

pα,ni,σ − pα,n+1
i,σ

∆t
= −σ

Wα,n
i+σ −Wα,n

i

∆x
. (1.3.9)

Let n ≥ 0 be fixed and consider (Uα,n
i )α,i with ∆x,∆t > 0 given. We compute

(Uα,n+1
i )α,i and (Uα,n+2

i )α,i using the scheme (1.1.9).

Step 1: (mn)n is non-decreasing. We want to show that Wα,n+1
i ≥ mn for i ≥ 0

and α = 1, . . . , N. Let i ≥ 0 be fixed and let us distinguish two cases.
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Case 1: i ≥ 1. Let a branch α be fixed and let σ(i, α, n + 1) = σ ∈ {+,−} be
such that

max

{
H+

α (p
α,n+1
i,− ), H−

α (p
α,n+1
i,+ )

}
= H−σ

α (pα,n+1
i,σ ). (1.3.10)

We have
Wα,n+1

i −Wα,n
i

∆t
=

1

∆t

(
max

{
H+

α (p
α,n
i,− ), H

−
α (p

α,n
i,+ )

}
−max

{
H+

α (p
α,n+1
i,− ), H−

α (p
α,n+1
i,+ )

})
≥ 1

∆t

(
H−σ

α (pα,ni,σ )−H−σ
α (pα,n+1

i,σ )

)
=

∫ 1

0

(H−σ
α )′(pα,n+1

i,σ + τ(pα,ni,σ − pα,n+1
i,σ ))

(
pα,ni,σ − pα,n+1

i,σ

∆t

)
dτ

= Cα,n
i,σ

(
Wα,n

i+σ −Wα,n
i

∆x

)
where we used (1.3.7) and (1.3.9) in the last line. Using (1.3.8), we thus get

Wα,n+1
i ≥

(
1− Cα,n

i,σ

∆t

∆x

)
Wα,n

i + Cα,n
i,σ

∆t

∆x
Wα,n

i+σ

≥ mn.

Case 2: i = 0. We recall that in this case, we have Uβ,n
0 := Un

0 and W β,n
0 :=W n

0 =
Un+1
0 −Un

0

∆t
for any β = 1, . . . , N. We compute in this case:

W n+1
0 −W n

0

∆t
=

1

∆t

(
−F ({pα,n+1

0,+ }α) + F ({pα,n0,+}α)
)

=
1

∆t

∫ 1

0

N∑
β=1

pβ
∂F

∂pβ

(
{pα,n+1

0,+ + τpα}α
)
dτ with p = ({pα,n0,+ − pα,n+1

0,+ }α)

= −
∫ 1

0

N∑
β=1

∂F

∂pβ

(
{pα,n+1

0,+ + τpα}α
)
dτ

(
W β,n

1 −W n
0

∆x

)

=
N∑

β=1

Cβ,n
0,+

(
W β,n

1 −W n
0

∆x

)
.

Using (1.3.8), we argue like in Case 1 and get

W n+1
0 ≥ mn.

Step 2: (Mn)n is non-increasing. We want to show that Wα,n+1
i ≤Mn for i ≥ 0

and α = 1, . . . , N. We argue as in Step 1 by distinguishing two cases.

Case 1: i ≥ 1. We simply choose σ = σ(i, α, n) (see (1.3.10)) and argue as in
Step 1.
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Case 2: i = 0. Using (1.3.6), we can argue exactly as in Step 1. The proof is now
complete.

1.3.2 Gradient estimates

The second result needed in the proof of Theorem 1.3.1 is the following one. It
asserts that if the discrete time derivative is controlled from below, then a discrete
gradient estimate holds true.

Proposition 1.3.4 (Discrete gradient estimate). Let n ≥ 0 be fixed, consider
that (Uα,n

i )α,i is given and compute (Uα,n+1
i )α,i using the scheme (1.1.9)-(1.1.10). If

there exists a constant K ∈ R such that for any i ≥ 0 and α = 1, . . . , N,

K ≤ Wα,n
i :=

Uα,n+1
i − Uα,n

i

∆t

then {
π−
α (−K) ≤ pα,ni,+ ≤ π+

α (−K), α = 1, . . . , N, i ≥ 1,

ρ
α
(−K) ≤ pα,n0,+ ≤ (H+

α )
−1(−K), α = 1, . . . , N

where pα,ni,+ is defined in (1.1.10) and π±
α and ρ are the “generalized” inverse functions

of Hα and F , respectively.

Proof. Let n ≥ 0 be fixed and consider (Uα,n
i )α,i with ∆x,∆t > 0 given. We

compute (Uα,n+1
i )α,i using the scheme (1.1.9). Let us consider any i ≥ 0 and α =

1, . . . , N.

If i ≥ 1, the result follows from

K ≤ Wα,n
i = − max

σ=+,−
Hσ

α(p
α,n
i,σ ).

If i = 0, the result follows from

K ≤ W n
0 = −F

(
{pα,n0,+}α

)
.

This achieves the proof of Proposition 1.3.4

1.3.3 Proof of gradient estimates

Proof of Theorem 1.3.1. The idea of the proof is to introduce new Hamiltonians
H̃α and a new junction function F̃ for which it is easier to derive gradient estimates
but whose corresponding numerical scheme in fact coincides with the original one.
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Step 1: Modification of the Hamiltonians and the junction function. Let
the new Hamiltonians H̃α for all α = 1, . . . , N be defined as

H̃α(p) =


Hα(pα)−

Cα

2
(p− p

α
) if p ≤ p

α

Hα(p) if p ∈ [p
α
, pα]

Hα(pα) +
Cα

2
(p− pα) if p ≥ pα

(1.3.11)

where p
α

and pα are defined in (1.3.4) respectively, and

Cα = sup
pα∈[pα,pα]

|H ′
α(pα)|.

These new Hamiltonians are now globally Lipschitz continuous: their derivatives are
bounded. More precisely, the H̃α satisfy (1.1.3) and

H̃α ≡ Hα in [p
α
, pα]

and
∀p ∈ R, |H̃ ′

α(p)| ≤ sup
pα∈[pα,pα]

|H ′
α(pα)|. (1.3.12)

Let the new F̃ satisfy (1.1.8), be such that

F̃ ≡ F in Q0 :=
N∏

α=1

[p0
α
, pα]

and (See Appendix 1.8)

∀p ∈ RN , (−∇ · F̃ )(p) ≤ sup
Q0

(−∇ · F ). (1.3.13)

In the remainder of the proof, when notation contains a tilde, it is associated with
the new Hamiltonians H̃α and the new non-linearity F̃ . We then consider the new
numerical scheme

Ũα,n+1
i −Ũα,n

i

∆t
+max{H̃+

α (p̃
α,n
i,− ), H̃

−
α (p̃

α,n
i,+ )} = 0, i ≥ 1, α = 1, . . . , N

Ũβ,n
0 := Un

0 , i = 0, β = 1, . . . , N

Ũn+1
0 −Ũn

0

∆t
+ F̃ (p̃1,n0,+, p̃

2,n
0,+, . . . , p̃

N,n
0,+ ) = 0

with the same initial condition, namely,

Ũα,0
i = uα0 (i∆x), i ≥ 0, α = 1, . . . , N.

In view of (1.3.12) and (1.3.13), the CFL condition (1.1.13) gives that for any i ≥ 0,
n ≥ 0, and α = 1, . . . , N

D̃α,n
i,+ ≤ sup

{
sup

p
α
≤p≤pα

|H ′
α(p)|; sup

Ĩα,n
0,+

(−∇ · F )

}
≤ ∆x

∆t
(1.3.14)

where D̃α,n
i,+ is given by (1.3.5) after replacing Hα and F with H̃α and F̃ .
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Step 2: First gradient bounds. Let n ≥ 0 be fixed. If m̃n and M̃n are finite,
we have

m̃n ≤ W̃α,n
i for any i ≥ 0, α = 1, . . . , N.

Proposition 1.3.4 implies that{
π̃−
α (−m̃n) ≤ p̃α,ni,+ ≤ π̃+

α (−m̃n), i ≥ 1, α = 1, . . . , N,
ρ̃
α
(−m̃n) ≤ p̃α,n0,+ ≤ π̃+

α (−m̃n), i ≥ 0, α = 1, . . . , N.

In particular, we get that

|p̃α,ni,+ | ≤ Cn for i ≥ 0, α = 1, . . . , N

with
Cn = max

α

(
max

(
|π̃−

α (−m̃n)|, |π̃+
α (−m̃n)|, |ρ̃

α
(−m̃n)|

))
.

In view of (1.3.14), Proposition 1.3.3 implies that

m̃n ≤ m̃n+1 ≤ M̃n+1 ≤ M̃n for any n ≥ 0. (1.3.15)

In particular, m̃n+1 is also finite. Since m̃0 = m0 and M̃0=M0 are finite, we
conclude that m̃n and M̃n are finite for all n ≥ 0 and for all n ≥ 0,

m0 ≤ m̃n ≤ M̃n ≤M0. (1.3.16)

Step 3: Time derivative and gradient estimates. Now we can repeat the
same reasoning but applying Proposition 1.3.4 with K = m0 and get{

p
α
≤ p̃α,ni,+ ≤ pα, i ≥ 1, α = 1, . . . , N,

p0
α
≤ p̃α,n0,+ ≤ pα, i ≥ 0, α = 1, . . . , N.

(1.3.17)

This implies that Ũα,n
i = Uα,n

i for all i ≥ 0, n ≥ 0, α = 1, . . . , N . In view of (1.3.15),
(1.3.16) and (1.3.17), the proof is now complete.

1.4 Convergence for general junction conditions
This section is devoted to the convergence of the scheme defined by (1.1.9)-(1.1.10).
In order to do so, we first make precise how to choose pα, pα and p0

α
in the CFL

condition (1.1.13).

1.4.1 Monotonicity of the scheme

In order to prove the convergence of the numerical solution as the mesh size tends
to zero, we need first to prove a monotonicity result. It is common to write the
scheme defined by (1.1.9)-(1.1.10) under the compact form

uh(t+∆t, x) = Sh[uh(t)](x)
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where the operator Sh is defined on the set of functions defined in Jh. The scheme
is monotone if

u ≤ v ⇒ Sh[u] ≤ Sh[v].

In our cases, if t = n∆t and x = i∆x ∈ Jα and U(t, x) = Uα,n
i for x ∈ Jα, then

Sh[U ] is defined as follows,{
Uα,n+1
i = Sα[U

α,n
i−1 , U

α,n
i , Uα,n

i+1] for i ≥ 1, α = 1, . . . , N,

Un+1
0 = S0[U

n
0 , (U

β,n
1 )β=1,...,N ]

where Sα[U
α,n
i−1, U

α,n
i , Uα,n

i+1 ] := Uα,n
i −∆tmax

{
H+

α

(
Uα,n
i −Uα,n

i−1

∆x

)
, H−

α

(
Uα,n
i+1−Uα,n

i

∆x

)}
,

S0[U
n
0 , (U

β,n
1 )β=1,...,N ] := Un

0 −∆tF (p1,n0,+, . . . , p
N,n
0,+ ).

(1.4.1)
Checking the monotonicity of the scheme reduces to checking that Sα and S0 are
non-decreasing in all their variables.

Lemma 1.4.1 (Monotonicity of the numerical scheme). Let (Un) := (Uα,n
i )α,i

the numerical solution of (1.1.9)-(1.1.11). Under the CFL condition (1.1.12) the
scheme is monotone.

Proof. We distinguish two cases.

Case 1: i ≥ 1. It is straightforward to check that, for any α = 1, . . . , N, the
function Sα is non-decreasing with respect to Uα,n

i−1 and Uα,n
i+1. Moreover,

∂Sα

∂Uα,n
i

=

{
1− ∆t

∆x
(H+

α )
′(pα,ni,− ) if max{H+

α (p
α,n
i,− ), H

−
α (p

α,n
i,+ )} = H+

α (p
α,n
i,− )

1 + ∆t
∆x

(H−
α )

′(pα,ni,+ ) if max{H+
α (p

α,n
i,− ), H

−
α (p

α,n
i,+ )} = H−

α (p
α,n
i,+ )

which is non-negative if the CFL condition (1.1.12) is satisfied.

Case 2: i = 0. Similarly it is straightforward to check that S0 is non-decreasing
with respect to Uβ,n

1 for β = 1, . . . , N . Moreover,

∂S0

∂Un
0

= 1 +
∆x

∆t

N∑
β=1

∂F

∂pβ
{(pα,n0,+)

N
α=1}

which is non-negative due to the CFL condition. The proof is now complete.

A direct consequence of the previous lemma is the following elementary but useful
discrete comparison principle.
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Lemma 1.4.2 (Discrete Comparison Principle). Let (Un) := (Uα,n
i )α,i and

(V n) := (V α,n
i )α,i be such that

∀n ≥ 1, Un+1 ≤ Sh[Un] and V n+1 ≥ Sh[V n].

If the CFL condition (1.1.12) is satisfied and if U0 ≤ V 0, then Un ≤ V n for all
n ∈ N.

Remark 1.4.3. The discrete function (Un) (resp. (V n)) can be seen as a super-scheme
(resp. sub-scheme).

We finally recall how to derive discrete viscosity inequalities for monotone schemes.

Lemma 1.4.4 (Discrete viscosity inequalities). Let uε be a solution of (1.1.9)-
(1.1.11) with F = FA defined in (1.1.5). If uh − φ has a global maximum (resp.
global minimum) on Gh at (t+∆t, x), then

δtφ(t, x) +H(x,D+φ(t, x), D−φ(t, x)) ≤ 0. (resp. ≥ 0)

where

H(x, p+, p−) =

{
max{H+

α (p−), H
−
α (p+)} if x ̸= 0

max{A,maxαH
−
α (p

+
α )} if x = 0

and

D+φ(t, x) =

{
1
∆x

{φ(t, x+∆x)− φ(t, x)} if x ̸= 0(
1
∆x

{φα(t,∆x)− φα(t, 0)}
)
α

if x = 0

D−φ(t, x) =
1

∆x
{φ(t, x)− φ(t, x−∆x)}

δtφ(t, x) =
1

∆t
{φ(t+∆t, x)− φ(t, x)}.

1.4.2 Stability and Consistency of the scheme

We first derive a local L∞ bound for the solution of the scheme.

Lemma 1.4.5 (Stability of the numerical scheme). Assume that the CFL con-
dition (1.1.13) is satisfied and let uh be the solution of the numerical scheme (1.1.9)-
(1.1.11). There exists a constant C0 > 0, such that for all (t, x) ∈ Gh,

|uh(t, x)− u0(x)| ≤ C0t. (1.4.2)

In particular, the scheme is (locally) stable.

Proof. If C0 large enough so that{
C0 +max{H+

α (p
α,0
i,−), H

−
α (p

α,0
i,+)} ≥ 0, i ≥ 1, α = 1, . . . , N

C0 + F (p1,00,+, p
2,0
0,+, . . . , p

N,0
0,+) ≥ 0,
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and {
−C0 +max{H+

α (p
α,0
i,−), H

−
α (p

α,0
i,+)} ≤ 0, i ≥ 1, α = 1, . . . , N

−C0 + F (p1,00,+, p
2,0
0,+, . . . , p

N,0
0,+) ≤ 0,

then Ūα,n
i = Uα,0

i + C0n∆t is a super-scheme and Ūα,n
i = Uα,0

i − C0n∆t is a sub-
scheme (see Remark 1.4.3). The discrete comparison principle, Proposition 1.4.2,
then implies

|Uα,n
i − Uα,0

i | ≤ C0n∆t

which is the desired inequality. This achieves the proof.

Another condition to satisfy convergence of the numerical scheme (1.1.9) towards
the continuous solution of (1.1.6) is the consistency of the scheme (which is obvious
in our case). In the statement below, we use the short hand notation (1.5.11)
introduced in section 1.5.

Lemma 1.4.6 (Consistency of the numerical scheme). Under the assump-
tions on the Hamiltonians (1.1.3), the finite difference scheme is consistent with the
continuous problem (1.1.6), that is to say for any smooth function φ(t, x), we have

Sh[φ](s, y)− φ(s, y)

∆t
→ Hα(φx(t, x)) as Gh ∋ (s, y) → (t, x)

if x ∈ Jα \ {0}, and

Sh[φ](s, y)− φ(s, y)

∆t
→ F (

∂φ

∂x1
, . . . ,

∂φ

∂xN
(t, 0)) as Gh ∋ (s, y) → (t, 0).

1.4.3 Convergence of the numerical scheme

In this subsection, we present a sketch of the proof of Theorem 1.1.1.

Sketch of the proof of Theorem 1.1.1. Let T > 0 and h := (∆t,∆x) satisfying the
CFL condition (1.1.13). We recall that

uh(0, x) = u(0, x) for x ∈ Gh.

We consider u and u respectively defined as

u(t, y) = lim sup
h→0

Gh∋(t′,y′)→(t,y)

uh(t′, y′), u(t, y) = lim inf
h→0

Gh∋(t′,y′)→(t,y)

uh(t′, y′).

By construction, we have u ≤ u. Since the scheme is monotone (Lemma 1.4.1),
stable (Lemma 1.4.5) and consistent (Lemma 1.4.6), we can follow [21, 41, 42] we
can show that u (resp. u) is a relaxed viscosity super-solution (resp. viscosity sub-
solution) of equation (1.1.1)-(1.1.2). Using Theorem 1.2.4, we know that u (resp. u)
is a viscosity super-solution (resp. sub-solution) of (1.1.6)-(1.1.2). Moreover, (1.4.2)
implies that

u(0, x) ≤ u0(x) ≤ u(0, x).
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The comparison principle (see Theorem 1.2.3) then implies that

u ≤ u ≤ u

which achieves the proof.

1.5 C1,1 estimates for the vertex test function
In this section, we study the Lipschitz regularity of the gradient of the vertex test
function constructed in [65]. It turns out that its gradient is indeed Lipschitz if the
flux limiter A is equal to A0, the minimal flux limiter, and if (1.1.4) is satisfied.
Such a technical result will be used when deriving error estimates.

Proposition 1.5.1 (C1,1 estimates for the vertex test function). Assume that
the Hamiltonians satisfy (1.1.3), and minHα = minHβ, ∀α, β = 1, · · · , N. The ver-
tex test function G0 associated with the flux limiter A0 obtained from Theorem 1.2.7
can be chosen C1,1(J2

K) for any K > 0 where J2
K = {(x, y) ∈ J2 : d(x, y) ≤ K}.

Moreover, there exists CK such that

∥D2G0∥L∞(J2
K) ≤ CK ;

the constant CK depends only on K and (1.1.3).

Proof. We first get the desired estimate in the smooth convex case and then derive
it in the general case.

Step 1: the smooth convex case. We first assume that Hamiltonians satisfy
Hα ∈ C2(R)
minHα = Hα(0)= A0 ∀α = 1, · · · , N
minH ′′

α =: mα > 0,

(1.5.1)

where A0 is defined in (1.1.7).
We recall that the vertex test function G is a regularized version of A + G0 where
G0 is defined in [65] by the following formula,

G0(x, y) = sup
λ≥A0

{π+
α (λ)x− π−

β (λ)y − λ}, for (x, y) ∈ Jα × Jβ. (1.5.2)

But G0 ∈ C1({(x, y) ∈ J × J, x ̸= y}) and G0 ∈ C1(J2) if and only if π+
α (A) =

0 = π−
α (A), where π±

α are the generalized inverse functions defined in (1.3.4). Thus,
under (1.5.1), there is no need to regularize G0 on the diagonal, and thus

G(x, y) = A+G0(x, y) for (x, y) Jα × Jβ.
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The supremum in (1.5.2) is reached for some λ ≥ A0 which depends on x and y. In
the region where λ = A0, the function G0 is linear and there is nothing to prove. In
{λ > A0}, the function λ(x, y) is implicitly defined by the following equation

(π+
α (λ))

′x− (π−
β (λ))

′y = 1 (1.5.3)

and the gradient of G0 is given by

∂xG
0(x, y) = π+

α (λ), ∂yG
0(x, y) = −π−

β (λ)

with λ = λ(x, y). We thus can easily compute the second order derivatives of G0,

∂2xG
0(x, y) = 1

x
H′

α
H′′

α+
y

−H′
β
H′′

β
(H′

α)2

(H′
β
)2

∂2yG
0(x, y) = 1

x
H′

α
H′′

α

(H′
β
)2

(H′
α)2

+ y

−H′
β
H′′

β

∂2xyG
0(x, y) = 1

−xH′
β

H′′
α

(H′
α)2

+H′
α

H′′
β

(H′
α)2

y

(1.5.4)

where H ′′
α and H ′′

β respectively denote H ′′
α(π

+
α (λ)) and H ′′

β(π
−
β (λ)).

We recall that minHα=minHβ = A0. Then

H ′
α(π

+
α (A0)) = 0 and H ′

β(π
−
β (A0)) = 0.

Using a second order Taylor expansion for Hα and Hβ respectively we prove that

H ′
β(π

−
β (A0 + γ)) ∼

√
2γH ′′

β(0), (1.5.5)

H ′
α(π

+
α (A0 + γ)) ∼

√
2γH ′′

α(0).

Indeed, on the one hand we have

H ′
β(π

−
β (A0 + γ)) = H ′′

β(0)[π
−
β (A0 + γ)] + o(π−

β (A0 + γ)). (1.5.6)

On the other hand, we have

Hβ(π
−
β (A0 + γ)) = Hβ(0) +

H ′′
β(0)

2
[π−

β (A0 + γ)]2 + o(π−
β (A0 + γ))2.

Using the fact that Hβ(π
−
β (A0+ γ)) = H−

β (π
−
β (A0+ γ)) = A0+ γ, and that Hβ(0) =

A0, one can deduce

[π−
β (A0 + γ)]2 =

2γ

H ′′
β(0)

+ o(π−
β (A0 + γ))2, (1.5.7)

which implies

π−
β (A0 + γ) ∼

√
2γ

H ′′
β(0)

. (1.5.8)



1.5 C1,1 estimates for the vertex test function 53

Substituting (1.5.8) in (1.5.6) leads to (1.5.5).
Moreover, we have

x

H ′
α

H ′′
α +

y

−H ′
β

H ′′
β

(H ′
α)

2

(H ′
β)

2
≥ min

(
H ′′

α, H
′′
β

(H ′
α)

2

(H ′
β)

2

)(
x

H ′
α

− y

H ′
β

)
︸ ︷︷ ︸

=1

. (1.5.9)

using the fact that H ′′
α are bounded from below,

|∂2xG0| ≤ 1

min

(
H ′′

α, H
′′
β
(H′

α)
2

(H′
β)

2

) = O(1).

Similarly,

x

H ′
α

H ′′
α

(H ′
β)

2

(H ′
α)

2
+

y

−H ′
β

H ′′
β ≥ min

(
H ′′

α

(H ′
β)

2

(H ′
α)

2
, H ′′

β

)(
x

H ′
α

− y

H ′
β

)
︸ ︷︷ ︸

=1

implies
|∂2yG0| ≤ 1

min

(
H ′′

α

(H′
β)

2

(H′
α)

2 , H ′′
β

) = O(1)

and

−xH ′
β

H ′′
α

(H ′
α)

2
+H ′

α

H ′′
β

(H ′
α)

2
y =

x

H ′
α

−H ′
β

H ′
α

H ′′
α +

−y
H ′

β

H ′
α

−H ′
β

H ′′
β

≥ min

(−H ′
β

H ′
α

H ′′
α,

H ′
α

−H ′
β

H ′′
β

)(
x

H ′
α

− y

H ′
β

)
︸ ︷︷ ︸

=1

implies
|∂2xyG0| ≤ 1

min

(
−H′

β

H′
α
H ′′

α,
H′

α

−H′
β
H ′′

β

) = O(1).

Step 2: the smooth case. We now weaken (1.5.1) as
Hα ∈ C2(R), H ′′

α(0) := mα > 0

±H ′
α(p) > 0 for ± p > 0

Hα(p) → +∞ as |p| → +∞.

(1.5.10)

In this case, it is explained in [65] that the smooth convex case can be used by
considering Ĥα = β ◦ Hα for some C2 convex function β such that β(0) = 0 and
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β′ ≥ δ for some δ > 0. Indeed,

(Ĥα)
′′(p) = β′′(λ)(H ′

α)
′2(p) + β′(λ)H ′′

α(p)

≥ mα

2
β′(λ)

≥ mα

with λ = Hα(p) and β such that

∀λ > Hα(0),


β′′

β′ (λ) ≥ − H′′
α

(H′
α)

2 ◦ π±
α (λ) +

mα

2(H′
α)

2 ◦ π±
α (λ),

β′ ≥ 2 > 0.

In this case, the vertex test function studied in Step 1 and associated with Hamil-
tonians Ĥα satisfies

Ĥ(y,−Gy(x, y)) ≤ Ĥ(x,Gx(x, y))

which implies that, since 0 ≤ (β−1)′ ≤ 1/2,

H(y,−Gy(x, y)) ≤ β−1(βH(x,Gx(x, y))) = H(x,Gx(x, y))

where the short hand notation H(x, p) is given by

H(x, p) =

{
Hα(p) for p = pα if x ∈ J⋆

α,
FA0(p) for p = (p1, . . . , pN) if x = 0.

(1.5.11)

We proved in Step 1 that
∥D2GA0∥L∞(K) ≤ CK .

The proof is now complete.

1.6 Error estimates

1.6.1 Proof of the error estimates

To prove Theorem 1.1.3, we will need the following result whose classical proof is
given in Appendix for the reader’s convenience.

Lemma 1.6.1 (A priori control). Let T > 0 and let uh be a solution of the
numerical scheme (1.1.9)-(1.1.11) and u a super-solution of (1.1.1)-(1.1.2) satisfying
for some CT > 0,

u(t, x) ≥ −CT (1 + d(0, x)) for t ∈ (0, T ).

Then there exists a constant C = C(T ) > 0 such that for all (t, x) ∈ Gh, t ≤ T , and
(s, y) ∈ [0, T )× J , we have

uh(t, x) ≤ u(s, y) + C(1 + d(x, y)). (1.6.1)
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We now turn to the proof of the error estimates in the case of flux-limited junction
conditions.

Proof of Theorem 1.1.3. Before deriving the error estimate, we remark as in
[65] that we can assume without loss of generality that the Hamiltonians satisfy the
additional condition (1.2.7). Indeed, if u solves (1.1.1) then

ũ(t, x) = u(t, x)− pα0x for x ∈ Jα

solves the same equation in which Hα replaced with

H̃α(p) = Hα(p
α
0 + p).

We next remark that the solution ũh of the associated scheme satisfies

ũh(t, x) = uh(t, x)− pα0x for (t, x) ∈ Gh.

Hence, if
sup

[0,T )×J∩Gh

|ũh − ũ| ≤ C(∆x)1/2

then the same estimate between uh and u holds true. We thus assume from now on
that (1.2.7) holds true.
In order to get (1.1.16), we only prove that

uh(t, x)− u(t, x) ≤ CT (∆x)
1/2 in [0, T )× J ∩ Gh

since the proof of the other inequality is very similar. We are going to prove that

uh(t, x)− u(t, x) ≤ O
(
∆t

ν

)
+O

(
∆x

ϵ

)
+O(ϵ) +O(ν) (1.6.2)

which yields the desired inequality by minimizing the right hand side with respect
to ϵ and ν. Let

M = sup
[0,T )×J∩Gh

{uh(t, x)− u(t, x)}.

The remaining of the proof proceeds in several steps.

Step 1: Penalization procedure. From Theorem 1.2.7, we recall the properties
of the vertex test function G0, mainly the fact that G0(0, 0) = G0(x, x) = −A.
Let G = G0 + A, we have

G(x, x) = 0.

For η > 0, δ > 0 let us define

Mϵ,δ = sup
(t,x)∈Gh,

(s,y)∈[0,T )×J

{
uh(t, x)−u(s, y)−ϵG

(x
ϵ
,
y

ϵ

)
− (t− s)2

2ν
− δ

2
d2(y, 0)− η

T − s
−σs

}
(1.6.3)
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where the vertex test function G0 is given by Theorem 1.2.7 associated with the flux
limiter A = A0. In this step, we assume that Mϵ,δ > 0. Thanks to Lemma 1.6.1 and
the superlinearity of G0 (see Theorem 1.2.7), we deduce that for (x, y) such that the
quantity in the supremum is larger than Mϵ,δ

2
,

0 <
Mϵ,δ

2
≤ C(1 + d(x, y))− ϵg0

(
d(x, y)

ϵ

)
− (t− s)2

2ν
− δ

2
d2(y, 0)− η

T − s
− σs

which implies in particular that the supremum is reached at some point (t, x, s, y)
and

δd2(y, 0) ≤ 2 sup
d>0

(C(1 + d)− ϵg0(d/ϵ)) ≤ C̃

where C̃ only depends on g0 (in particular, it does not depend on ϵ). This estimate
together with the fact that −Gy(x/ϵ, y/ϵ) − δd(y, 0) lies in the viscosity subdiffer-
ential of u(t, ·) at x implies that there exists K > 0 only depending on ∥∇u∥∞ (see
Theorem 1.2.5) and g0 such that the point (t, x, s, y) realizing the maximum satisfies

d
(x
ϵ
,
y

ϵ

)
+
∣∣∣Gx

(x
ϵ
,
y

ϵ

)∣∣∣+ ∣∣∣Gy

(x
ϵ
,
y

ϵ

)∣∣∣ ≤ K. (1.6.4)

We want to prove that for σ > σ⋆ (to be determined) that the supremum in (1.6.3)
is attained for t = 0 or s = 0, or that we have Mϵ,δ ≤ 0. We assume that t > 0 and
s > 0 and we prove that σ ≤ σ⋆.

Step 2: Viscosity inequalities. Since t > 0 and s > 0, we can use Lemma 1.4.4
and get the following viscosity inequalities.
If x ̸= 0, then

t− s

ν
−∆t

2ν
+max

{
H−

α

(
ϵ

∆x

{
G

(
x+∆x

ϵ
,
y

ϵ

)
−G

(x
ϵ
,
y

ϵ

)})
,

H+
α

(
ϵ

∆x

{
G
(x
ϵ
,
y

ϵ

)
−G

(
x−∆x

ϵ
,
y

ϵ

)})}
≤ 0.

If x = 0, then

t− s

ν
−∆t

2ν
+max

{
A,max

β

{
H−

β

(
ϵ

∆x

{
Gβ

(
∆x

ϵ
,
y

ϵ

)
−Gβ

(
0,
y

ϵ

)})}
≤ 0.

If y ̸= 0, then

− η

(T − s)2
+
t− s

ν
+H

(
−Gy

(x
ϵ
,
y

ϵ

)
− δd(y, 0)

)
≥ σ.

If y = 0, then
− η

(T − s)2
+
t− s

ν
+ FA

(
−Gy

(x
ϵ
, 0
))

≥ σ.
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Thanks to the C1,1 regularity of the function G0, see Proposition 1.5.1 and Esti-
mate (1.6.4), we obtain,

if x ̸= 0,
t− s

ν
− ∆t

2ν
+Hα

(
Gx

(x
ϵ
,
y

ϵ

))
+O

(
∆x

ϵ

)
≤ 0 (1.6.5)

if x = 0,
t− s

ν
− ∆t

2ν
+ FA

(
Gx

(
0,
y

ϵ

))
+O

(
∆x

ϵ

)
≤ 0 (1.6.6)

if y ̸= 0,
t− s

ν
+Hβ

(
−Gy

(x
ϵ
,
y

ϵ

))
+O(

√
δ) ≥ σ (1.6.7)

if y = 0,
t− s

ν
+ FA

(
−Gy

(x
ϵ
, 0
))

≥ σ. (1.6.8)

Combining these viscosity inequalities, we get in all cases:

σ ≤ ∆t

2ν
+O

(
∆x

ϵ

)
+O(

√
δ) =: σ⋆. (1.6.9)

Step 3: Estimate of the supremum. We proved in the previous step that, if
σ > σ⋆ with σ⋆ defined in (1.6.9), then either Mϵ,δ ≤ 0 or Mε,δ is reached either for
t = 0 or s = 0.
If t = 0, then

Mϵ,δ ≤ u0(x)− u0(y) + Cs− s2

2ν
.

Using the fact that u0 is L0-Lipschitz and d(x, y) = O(ε) (see (1.6.4)) one can deduce

Mϵ,δ ≤ L0d(x, y) + sup
r>0

(
Cr − r2

2ν

)
≤ O(ϵ) +O(ν).

If s = 0, then we can argue similarly (by using (1.4.2)) and get

Mϵ,δ ≤ O(ϵ) +O(ν).

Step 4: Conclusion. We proved that for σ > σ⋆ with σ⋆ defined in (1.6.9) that
Mϵ,δ ≤ O(ϵ) +O(ν). This implies that for all (t, x) ∈ Gh, t ≤ T/2, we have

uh(t, x)− u(t, x) ≤ ϵG
(x
ϵ
,
x

ϵ

)
+
δ

2
d2(x, 0) +

2η

T
+ σt+O(ϵ) +O(ν).

Replacing σ by 2σ⋆, say, and recalling that G(x, x) = 0 for all x ∈ J, we deduce
that for (t, x) ∈ Gh and t ≤ T/2 (after letting δ → 0 and η → 0), we get (1.6.2).
Using the CFL condition (1.1.13) and optimizing with respect to ϵ and ν yields the
desired result.
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1.7 Proofs of some technical results
In order to prove Lemma 1.6.1, we need the following one.

Lemma 1.7.1 (A priori control at the same time). Assume that u0 is Lipschitz
continuous. Let T > 0 and let uh be a sub-solution of (1.1.9)-(1.1.11) and u be a
super-solution of (1.1.1)-(1.1.2). Then there exists a constant C = CT > 0 such that
for all t ∈ [0, T ), x, y ∈ J , we have

uh(t, x) ≤ u(t, y) + CT (1 + d(x, y)). (1.7.1)

We first derive Lemma 1.6.1 from Lemma 1.7.1.

Proof of Lemma 1.6.1. Let us fix some h and let us consider the sub-solution
u− of (1.1.9) and the super-solution u+ of of (1.1.1) defined as :

u+(t, x) = u0(x) + C0t

u−(n∆t, i∆x) = u0(i∆x)− C0n∆t

where
C0 = max

{
|A|, max

α=1,...,N
max

|pα|≤L0

|Hα(pα)|; max
|pα|≤L0

F (p1, . . . , pN)

}
and L0 denotes the Lispchitz constant of u0. We have for all (t, x) ∈ [0, T ) × J ,
(s, y) ∈ Gh

u−(t, x)− u+(s, y) ≤ 2C0T + L0d(x, y).

We first apply Lemma 1.7.1 to control uh(t, x) − u−(t, x) and then apply Lemma
1.6.1 to control u+(s, y)−u(s, y). Finally we get the control on uh(t, x)−u(s, y).

We can now prove Lemma 1.7.1.

Proof of Lemma 1.7.1. We define φ in J2 as

φ(x, y) =
√

1 + d2(x, y).

Since,

d2(x, y) =

{
(x− y)2 if (x, y) ∈ Jα × Jα
(x+ y)2 if (x, y) ∈ Jα × Jβ

we see that d2 (and consequently φ) is in C1,1 in J2. Moreover φ satisfies

|φx(x, y)|, |φy(x, y)| ≤ 1. (1.7.2)

For constants C1, C2 > 0 to be chosen let us consider

M = sup
t∈[0,T ), x∈Gh, y∈J

(uh(t, x)− u(t, y)− C2t− C1φ(x, y)).
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The result follows if we show that M is non-positive for C1 and C2 large enough.
Assume by contradiction that M > 0 for any C1 and C2. Then for η, δ > 0 small
enough, we have Mη,δ ≥ M

2
> 0 with

Mη,δ = sup
t∈[0,T ), x∈Gh, y∈J

(
uh(t, x)− u(t, y)− C2t− C1φ(x, y)−

η

T − t
− δ

2
d2(y, 0)

)
(1.7.3)

Recalling that there exists C > 0 such that

|uh(t, x)− u0(x)| ≤ Ct and |u(t, y)− u0(y)| ≤ Ct

(see Theorem 1.2.5 and (1.4.2)) and using that u0 is Lipschitz continuous, we see
that Mη,δ is reached for C1 large enough (larger than the Lipschitz constant of u0)
and

δd2(y, 0) ≤ C. (1.7.4)

We introduce the short hand notation

H(x, p) =

{
Hα(p) for p = pα if x ∈ J⋆

α,
F (p) for p = (p1, . . . , pN) if x = 0.

(1.7.5)

Then the classical time penalization (or doubling variable technique) implies the
existence of a, b ∈ R such that

a+H(x,C1φx(x, y)) ≤ C∆x

b+H(y,−C1φy(x, y)− δd(0, y)) ≥ 0

with
a− b = C2 + η(T − t)−2 ≥ C2.

Subtracting these inequalities yields

C2 ≤ H(y,−C1φy(x, y)− δd(0, y))−H(x,C1φx(x, y)) + S∆x

Using bounds (1.7.2) and (1.7.4) yields to a contradiction for C2 large enough.

1.8 Construction of F̃

Lemma 1.8.1. There exists F̃ , such that

1. F̃ satisfies (1.1.8);

2. F = F̃ in Q0;

3. For a.e. p ∈ RN , (−∇ · F̃ )(p) ≤ supQ0
(−∇ · F ).
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Proof. Let Iα denote [p0
α
; pα] so that Q0 =

∏
α Iα. We first define F̃ for p in the

following set

Dα = {p ∈ RN : ∃α ∈ {1, . . . , N} such that pα /∈ Iα and ∀β ̸= α, pβ ∈ Iβ}.

For p ∈ Dα, we then define

F̃ (p) = F (p1, . . . ,Pα(pα), . . . , pN)− Cα(pα − Pα(pα))

where
Cα = min

pα∈Iα

(
− ∂F

∂pα
(p1, . . . ,Pα(pα), . . . , pN)

)
,

and

Pα(r) =


p0
α

if r < p0
α
,

r if r ∈ Iα,

pα if r > pα.

Remark that in view of the assumptions made on F , we have Cr
α > 0 which will

ensure that (1.1.8) holds true.
For p /∈ ∪N

β=1Dβ, let p̄α denote pα − Pα(pα) and p̄ = (p̄1, . . . , p̄N). We next define

λα =
|p̄α|

|p̄1|+ · · ·+ |p̄N |
.

We first remark that λα = 0 if pα ∈ Iα. We next remark that for all α, there exist
Pα ∈ Dα such that

p =
N∑

α=1

λαPα.

Moreover, Pα is unique if λα ̸= 0. We thus define

F̃ (p) =
N∑

α=1

λαF̃ (Pα).

It is now easy to check that (1.1.8) and Item 3 are satisfied. This ends the proof of
the Lemma.

1.9 Relation between the junction and BLN con-
ditions

Consider the following scalar conservation law posed on (0,+∞),
∂tv + ∂x(H(v)) = 0, t > 0, x > 0,
v(t, 0) = vb(t), t > 0,
v(0, x) = v0(x), x > 0.
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The usual BLN condition asserts that the trace vτ of the entropy solution at x = 0
(if it exists) of the previous scalar conservation law should satisfy

∀κ ∈ [min(vb, vτ ),max(vb, vτ )], sgn(vτ − vb)(H(vτ )−H(κ)) ≤ 0.

If H is quasi-convex, this reduces to

H(vτ ) = max(H−(vτ ), H
+(vb)).

This corresponds to a flux limiter A = H+(vb).
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Chapter 2

New approach to error estimates
for finite difference schemes
associated with Hamilton-Jacobi
equations on a junction

Ce chapitre vise à étudier un schéma numérique montone aux différences
finies associé à des équations de Hamilton-Jacobi posées sur une jonction.
En utilisant une nouvelle approche, nous améliorons les résultats obtenus
dans le Chapitre 1, et nous prouvons des estimations d’erreurs d’ordre
(∆x)

1
2 dans L∞

loc pour des conditions de jonction du type contôle optimal.
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Abstract. In this chapter, we derive error estimates for monotone (time explicit)
finite difference schemes associated with first order Hamilton-Jacobi equations posed
on a junction. Using a new approach, we improve the results obtained in chapter 1,
and we prove, for a larger class of Hamiltonians, that error estimates are of order
(∆x)

1
2 in L∞

loc for junction conditions of optimal-control type at least if the flux is
”strictly limited”.

2.1 Introduction

In this chapter we are interested in numerical approximation of first order Hamilton
Jacobi equations posed on a one dimensional domain containing one single singu-
larity. Such a domain is referred to as a junction: a network made of a node and a
finite number of infinite edges. The theory of viscosity solutions for such equations
on such domains has reached maturity by now [2, 65, 67, 102, 103]. In particular, it
is now understood that general junction conditions reduce to special ones of optimal-
control type [64–66]. For the maximal flux-limited junction conditions, Costeseque,
Lebacque and Monneau [41] introduced a monotone numerical scheme and proved
its convergence. It is explained in [42] that the proof of the comparison principle
between sub- and super-solutions of the continuous Hamilton-Jacobi equation can
be adapted in order to derive error estimates between the numerical solution asso-
ciated with monotone (stable and consistent) schemes and the continuous solution.
Hereafter in Chapter 1, we derived an error estimate à la Crandall-Lions [42] of
order (∆x)1/2 in L∞

loc, if the minima of the Hamiltonians are equal, using a so called
vertex test function introduced in [65], because the penalization procedure lying on
the classical penalization term ε−1|x− y|2 is known to fail at a junction.
Our main result is to introduce a new approach in deriving error estimates à la
Crandall-Lions for flux-limited junction conditions, by replacing the vertex test
function by the reduced minimal action D following the Oleinik-Lax representation
formula introduced in [67]. Thus we improve the results obtained in Chapter 1 to
(∆x)

1
2 in L∞

loc, for a larger class of Hamiltonians. In order to derive error estimates as
in [42], it is important to study the regularity of the test function. More precisely,
we prove (Proposition 2.3.12) that its gradient is locally Lipschitz continuous, at
least if the flux is “strictly limited” and far away from a special curve. But we also
see that the reduced minimal action is not of class C1 on this curve. However we
can get “weaker” viscosity inequalities thanks to a result in [65] (see Proposition
2.2.3). Such a regularity result is of independent interest.

2.1.1 Setting of the problem

The junction. It can be viewed as the set of N distinct copies (N ≥ 1) of the
half-line which are glued at the origin. For α = 1, . . . , N, each branch Jα is assumed
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to be isometric to [0,+∞) and

J =
∪

α=1,...,N

Jα with Jα ∩ Jβ = {0} for α ̸= β

where the origin 0 is called the junction point. For points x, y ∈ J , d(x, y) denotes
the geodesic distance on J defined as

d(x, y) =

{
|x− y| if x, y belong to the same branch,
|x|+ |y| if x, y belong to different branches.

For a real-valued function u defined on J , ∂αu(x) denotes the (spatial) derivative of
u at x ∈ Jα \ {0} and the gradient of u is defined as follows,

ux(x) :=

{
∂αu(x) if x ∈ J⋆

α,
(∂1u(0), . . . , ∂Nu(0)) if x = 0.

HJ equation on a junction. We consider the following Hamilton-Jacobi equa-
tion posed on the junction J ,{

ut +Hα(ux) = 0 in (0, T )× Jα \ {0},
ut + FA(

∂u
∂x1
, · · · , ∂u

∂xn
) = 0 in (0, T )× {0}, (2.1.1)

submitted to the initial condition

u(0, x) = u0(x), for x ∈ J (2.1.2)

where u0 is Lipschitz continuous in J .
We consider Hamiltonians Hα satisfying the following conditions

There exists pα0 ∈ R such that


Hα ∈ C2(R) and H ′′

α(p
α
0 ) > 0

±H ′
α(p) > 0 for ± (p− pα0 ) > 0

lim|p|→+∞Hα(p) = +∞.
(2.1.3)

In particular Hα is non-increasing in (−∞, pα0 ] and non-decreasing in [pα0 ,+∞), and
we set

H−
α (p) =

{
Hα(p) for p ≤ pα0
Hα(p

α
0 ) for p ≥ pα0

and H+
α (p) =

{
Hα(p

α
0 ) for p ≤ pα0 ,

Hα(p) for p ≥ pα0

where H−
α is non-increasing and H+

α is non-decreasing.
The second equation in (2.1.1) is referred to as the junction condition, where we
introduce a one-parameter family of junction conditions. Given a flux limiter A ∈
R ∪ {−∞}, the A-limited flux junction function is defined for p = (p1, . . . , pN) as,

FA(p) = max

(
A, max

α=1,...,N
H−

α (pα)

)
(2.1.4)
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for some given A ∈ R
∪
{−∞} where H−

α is the non-increasing part of Hα.
We point out that all the junction functions FA associated with A ∈ [−∞, A0]
coincide if one chooses

A0 = max
α=1,...,N

min
R
Hα. (2.1.5)

Without loss of generality (see [65, Lemma 3.1]), we consider in this chapter that
pα0 = 0 for α = 1, ..., N, i.e

minHα = Hα(0). (2.1.6)
Indeed, u solves (2.1.1) if and only if ũ(t, x) := u(t, x) − pα0x for x ∈ Jα solves the
same equation in which Hα is replaced by H̃α(p) = Hα(p + pα0 ). We have the same
result for uh the solution of the scheme (2.1.12).

The optimal control framework. It is well known that the Legendre-Fenchel
conjugate is crucial in establishing a link between the general Cauchy problem
(2.1.1)-(2.1.2) and a control problem [83]. Through this link, we obtain the repre-
sentation formula for the exact solution. Before treating the case where the Hamil-
tonians Hα satisfy (2.1.3), we first consider the case of Hamiltonians satisfying the
hypotheses of [67] i.e.,

(Regularity) Hα is of class C2

(Coercivity) lim|p|→+∞Hα(p) = +∞
(Convexity) Hα is convex and is the Legendre Fenchel transform of Lα

where Lα is of class C2 and satisfies (B0).
(2.1.7)

We recall that
Hα(p) = L⋆

α(p) = sup
q∈R

(pq − Lα(q)). (2.1.8)

We consider the following hypothesis for Lα,

(B0) There exists a constant γ > 0 such that for all α = 1, · · · , N, the C2(R)
functions Lα satisfy L′′

α ≥ γ > 0.

An optimal control interpretation of the Hamilton-Jacobi equation (2.1.1) is given
in [18, 25, 80, 83]. We define the set of admissible controls at a point x ∈ J by

U(x) =
{

Reα0 if x ∈ J⋆
α0
,

∪α=1,···NR+eα if x = 0.

For (s, y), (t, x) ∈ [0, T ] × J with s ≤ t, we define the set of admissible trajectories
from (s, y) to (t, x) by

A(s, y; t, x) =

X ∈ W 1,1([s, t],R2) :

X(τ) ∈ J for all τ ∈ (s, t)

Ẋ(τ) ∈ U(X(τ)) for a.e τ ∈ (s, t)
X(s) = y and X(t) = x

 .

(2.1.9)
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For P = pei ∈ U(x) with p ∈ R, we define the Lagrangian on the junction

L(x, p) =

{
Lα(p) if x ∈ J⋆

α,
LA(p) if x = 0,

(2.1.10)

with
LA(p) = min

(
− A, min

α=1,...,N
Lα(p)

)
.

The Hopf-Lax representation formula of the solution of (2.1.1)-(2.1.2) is given in
[4, 67] by

uoc(t, x) = inf
y∈J

{u0(y) +D(0, y; t, x)} (2.1.11)

with
D(0, y; t, x) = inf

X∈A(0,y;t,x)

{∫ t

0

L(X(τ), Ẋ(τ))dτ

}
.

2.1.2 Presentation of the scheme

The domain (0,+∞)×J is discretized with respect to time and space. We choose a
regular grid in order to simplify the presentation. The space step is denoted by ∆x
and the time step by ∆t. If h denotes (∆t,∆x), the mesh (or grid) Gh is chosen as

Gh = {n∆t : n ∈ N} × J∆x

where
J∆x =

∪
α=1,...,N

J∆x
α with Jα ⊃ J∆x

α ≃ {i∆x : i ∈ N}.

It is convenient to write xαi for i∆x ∈ Jα.
A numerical approximation uh of the solution u of the Hamilton-Jacobi equation is
defined in Gh; the quantity uh(n∆t, xαi ) is simply denoted by Uα,n

i . We want it to
be an approximation of u(n∆t, xαi ) for n ∈ N, i ∈ N, where α stands for the index
of the branch.
We consider the following time-explicit scheme, introduced in [41], for n ≥ 0,

Uα,n+1
i −Uα,n

i

∆t
+max{H+

α (p
α,n
i,− ), H

−
α (p

α,n
i,+ )} = 0, i ≥ 1, α = 1, . . . , N

Uβ,n
0 := Un

0 , i = 0, β = 1, . . . , N
Un+1
0 −Un

0

∆t
+ FA(p

1,n
0,+, . . . , p

N,n
0,+ ) = 0,

(2.1.12)

where pα,ni,± are the discrete (space) gradients defined by

pα,ni,+ :=
Uα,n
i+1 − Uα,n

i

∆x
, pα,ni,− :=

Uα,n
i − Uα,n

i−1

∆x
(2.1.13)
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with the initial condition

Uα,0
i = u0(x

α
i ), i ≥ 0, α = 1, . . . , N. (2.1.14)

The following Courant-Friedrichs-Lewy (CFL) condition ensures that the explicit
scheme is monotone,

∆x

∆t
≥ max

α=1,...,N,
i≥0,0≤n≤nT

|H ′
α(p

α,n
i,+ )| (2.1.15)

where the integer nT is assumed to be defined as nT = ⌊ T
∆t
⌋ for a given T > 0.

2.1.3 Main result

The main result of this chapter lies in getting error estimates in the case of flux-
limited junction conditions.

Theorem 2.1.1 (Error estimates for flux-limited junction conditions). Let
u0 be Lipschitz continuous, uh be the solution of the associated numerical scheme
(2.1.12)-(2.1.14) and u be the viscosity solution of (2.1.1)-(2.1.2) for some A ∈ R.
If the CFL condition (2.1.15) is satisfied, then there exists C > 0 (independent of
h) such that

sup
[0,T )×J∩Gh

|uh(t, x)− u(t, x)| ≤

{
C(∆x)1/2 if A > A0,

C(∆x)2/5 if A = A0.
(2.1.16)

2.1.4 Comments

Numerical schemes for Hamilton-Jacobi equations. Up to our knowledge,
there are only few papers dealing with numerical schemes for HJ equations on junc-
tions or networks. Apart from [41], we mention [33], where a convergent semi-
Lagrangian scheme is introduced for equations of eikonal type. In [57], an adapted
Lax-Friedrichs scheme is used to solve a traffic model.
For optimal control problems, the numerical approximation of (HJ) has already
been studied using schemes based on the discrete dynamic programming principle.
Essentially, these schemes are built by replacing the continuous optimal control
problem by its discrete time version. We refer to Capuzzo Dolcetta [35], Capuzzo
Dolcetta-Ishii [37] for the results concerning the convergence of uh to u and the a
priori estimates (of order ∆x) , in the L∞, giving the order of convergence of the
discrete-time approximation. We refer to Falcone [48] for the results related to the
order of convergence of the fully discrete (i.e. in space and time) approximation
and for the construction of the algorithm, we mention that under a semiconcavity
assumption the rate of convergence is of order 1. We cite also [50] and references
therein for discrete time high order schemes for Hamilton Jacobi Bellman equations.
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Link with monotone schemes for scalar conservation laws. Following [41],
one can deduce that the convergence result of the finite difference scheme (2.1.12),
implies the convergence of a monotone scheme for scalar conservation laws (in the
sense of distributions).
On one hand, the derivative of a viscosity solution of a Hamilton-Jacobi equation
posed on the real line is known to coincide with the entropy solution of the cor-
responding scalar conservation law. It is therefore reasonable to expect that the
error between the viscosity solution of the Hamilton-Jacobi equation and its ap-
proximation is as good as the one obtained between the entropy solution of the
scalar conservation law and its approximation. It is known since [20] that Dirichlet
boundary conditions imposed to scalar conservation laws should be understood in a
generalized sense. This can be seen by studying the parabolic regularization of the
problem. A boundary layer analysis can be performed for systems if the solution
of the conservation law is smooth. Depending on the fact that the boundary is
characteristic or not, the error is ϵ 1

2 or ϵ.

The contribution of the chapter. We improve for quasi-convex Hamiltonians,
the error estimates obtained in Chapter 1 and we prove, if the flux is well chosen,
that the error is of order (∆x) 1

2 in L∞
loc. Our approach is slightly different from their

approach, we use the function D0 relative to the optimal control interpretation of the
problem [83], in the penalization procedure. We emphasize that the key point that
allowed us to improve the error estimate is based on a work of Imbert and Monneau
([65]), where comparison principle on networks, and particularly on a junction, is
proved via piecewise C1 test functions.

Organization of the chapter. The remaining of the chapter is organized as
follows. In Section 2.2, the definition of viscosity solutions is made precise. In Section
2.3, the important properties of optimal trajectories are given. More precisely, we
study the reduced minimal action for a ”strictly” limited flux and prove that the
gradient is locally Lipschitz continuous (at least if the flux is strictly limited) . We
prove also the compatibility condition between Hamiltonians, a crucial step in order
to derive error estimates. Section 2.4 is devoted to the proof of the main result of
the chapter, the error estimates.

2.2 Preliminaries

2.2.1 Viscosity solutions

We give first a definition of viscosity solutions for (2.1.1). For a more general intro-
duction to viscosity solutions, the reader could refer to Barles [25] and to Crandall,
Ishii, Lions [45]. The reader can also refer to [67] for application to the modeling of
traffic flows.
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Space of test functions. For a smooth real valued function u defined on J , we
denote by uα the restriction of u to (0, T )×Jα. We define JT = (0, T )×J for T > 0.

Then we define the natural space of functions on the junction,

C1(JT ) = {u ∈ C(JT ) : ∀α = 1, . . . , N, uα ∈ C1((0, T )× Jα)}.

Viscosity solutions. In order to define classical viscosity solutions, we recall the
definition of upper and lower semi-continuous envelopes u⋆ and u⋆ of a (locally
bounded) function u defined on [0, T )× J :

u⋆(t, x) = lim sup
(s,y)→(t,x)

u(s, y) u⋆(t, x) = lim inf
(s,y)→(t,x)

u(s, y).

It is convenient to introduce the following shorthand notation

H(x, p) =

{
Hα(p) for p = pα ∈ R if x ∈ J⋆

α,
FA(p) for p = (p1, . . . , pN) ∈ RN if x = 0.

(2.2.1)

Definition 2.2.1 (Viscosity solution). Assume that the Hamiltonians satisfy
(2.1.3), and let u : [0, T )× J → R.

( i ) We say that u is a sub-solution (resp. super-solution) of (2.1.1) in JT , if
for all (t0, x0) ∈ JT and for all test function φ ∈ C1(JT ) such that

u⋆ ≤ φ (resp. u⋆ ≥ φ) in a neighborhood of (t0, x0) ∈ JT

with equality at (t0, x0), we have

φt +H(x, φx) ≤ 0 (resp. ≥ 0) at (t0, x0).

( ii ) We say that u is a sub-solution (resp. super-solution) of (2.1.1)-(2.1.2) on
[0, T )× J if additionally

u⋆(0, x) ≤ u0(x) (resp. u⋆(0, x) ≥ u0(x)) for all x ∈ J.

(iii) We say that u is a (viscosity) solution of (2.1.1)-(2.1.2) if u is both a
sub-solution and a super-solution (2.1.1)-(2.1.2).

We recall the following result extracted from [67].

Theorem 2.2.2 (Existence and uniqueness [67]). Assume that the Hamiltonians
satisfy (B0) and that the initial datum u0 is Lipschitz continuous and let T > 0.
Then there exists a unique viscosity solution u of (2.1.1)-(2.1.2) on JT in the sense
of Definition 2.2.1, satisfying for some constant CT > 0 only depending on H, u0
and T ,

|u(t, x)− u0(x)| ≤ CT t for all (t, x) ∈ JT .

Moreover, the function u is Lipschitz continuous with respect to (t, x) on JT . In
particular, we have

||∇u||∞ ≤ CT .
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Under the general assumptions on the Hamiltonians (2.1.3), the uniqueness of a
solution u of (2.1.1)-(2.1.2) is proved in [65] using a special function denoted by
the vertex test function. In fact, Imbert and Monneau proved that general junction
conditions can be reduced to flux limited ones, for some A ∈ R. Now, if we replace
the condition (2.1.3) by a stronger assumption (2.1.7), defined in Subsection 2.1.1,
the uniqueness of the solution is proved otherwise in [67] by combining a super-
optimality principle for super-solutions and a direct comparison principle for sub-
solutions (the proof relies on an optimal control interpretation).
The following proposition is a main tool in the proof of error estimates. Indeed, we
use a test function which is not C1 with respect to the gradient variable at one point
and this proposition allows us to get a “weak viscosity inequality”. We don’t give
the proof since it is the same as the proof of [65, Proposition 2.16].
Proposition 2.2.3 (Non C1 test function at one point [65]). Assume that H satisfies
(2.1.3) and let u be a solution of

ut +Hα(ux) = 0 in (0, T )× Jα \ {0}.
For all x0 ∈ Jα \ {0} and all test function φ ∈ C1((0, T )× Jα \ {0, x0})

u⋆ ≤ φ (resp. u⋆ ≥ φ) in a neighborhood of (t0, x0) ∈ (0, T )× Jα \ {0}
with equality at (t0, x0), we have

φt(t0, x0) + max
{
H+

α (φx(t0, x
−
0 ), H

−
α (φx(t0, x

+
0 )
}
≤ 0 (resp. ≥ 0).

2.2.2 Convergence result

Under the CFL condition (2.1.15), the convergence result of the numerical scheme
(2.1.12) as the mesh size tends to zero, was established in [41]. It is thus known
that the scheme converges if it is stable consistent and monotone [21, 42].
We recall now how to derive discrete viscosity inequalities for monotone schemes.
Lemma 2.2.4 (Discrete viscosity inequalities). Let uh be a solution of (2.1.12)-
(2.1.14) with FA defined in (2.1.4). If uh − φ has a global maximum (resp. global
minimum) on Gh at (t+∆t, x), then

δtφ(t, x) +H(x,D+φ(t, x), D−φ(t, x)) ≤ 0. (resp. ≥ 0)

where

H(x, p+, p−) =

{
max{H+

α (p−), H
−
α (p+)} if x ̸= 0

max{A,maxαH
−
α (p

+
α )} if x = 0

and

D+φ(t, x) =

{
1
∆x

{φ(t, x+∆x)− φ(t, x)} if x ̸= 0,(
1
∆x

{φα(t,∆x)− φα(t, 0)}
)
α

if x = 0,

D−φ(t, x) =
1

∆x
{φ(t, x)− φ(t, x−∆x)},

δtφ(t, x) =
1

∆t
{φ(t+∆t, x)− φ(t, x)}.
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Inverse functions of Hamiltonians. In the proof of the error estimate, “gener-
alized” inverse functions of H±

α are needed. They are defined as follow{
π+
α (a) := sup{p : H+

α (p) = max(a,Aα)}
π−
α (a) := inf{p : H−

α (p) = max(a,Aα)}
(2.2.2)

with the additional convention that (H±
α )

−1(+∞) = ±∞, where

Aα := min
R
Hα.

2.3 Study of the reduced minimal action
In this section, we consider that the Hamiltonians Hα satisfy (2.1.7). We study the
reduced minimal action D0 which replace the classical term (x−y)2

2ϵ
in the doubling

variable method. This function allows us to prove that the error estimate is of order
(∆x)

1
2 .

2.3.1 Reduction of the study

We start this section by the following remark, the analysis can be reduced to the
case (s, t) = (0, 1). Precisely, using the fact that the Hamiltonian does not depend
on time and is homogeneous with respect to the state, the reader can check that a
change of variables in time yields the following Lemma.

Lemma 2.3.1. For all y, x ∈ J and s < t, we have

D(s, y; t, x) = (t− s)D
(
0,

y

t− s
; 1,

x

t− s

)
.

where
D(s, y; t, x) = inf

X∈A(s,y;t,x)

{∫ t

s

L(X(τ), Ẋ(τ))dτ

}
.

This is the reason why we consider the reduced minimal action D0 : J
2 → R defined

by
D0(y, x) = D(0, y; 1, x). (2.3.1)

We also need the following lower bound on D.

Lemma 2.3.2. Assume (B0). Then

D(s, y; t, x) ≥ γ

2(t− s)
d2(x, y)− A(t− s)

where γ is defined in (B0).
Moreover,

D(s, x; t, x) ≤ LA(0)(t− s).
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Proof. We only prove the first inequality since the other inequality is elementary.
As L′

α(0) = 0, and Lα(0) ≥ LA(0) = −A, we have

Lα(p) ≥
γ

2
p2 + L′

α(0)p+ Lα(0) ≥
γ

2
p2 − A.

Thus, we can write for X(.) ∈ A(s, y; t, x),∫ t

s

L(X(τ), Ẋ(τ))dτ ≥ −A(t− s) +
γ

2

∫ t

s

(Ẋ(τ))2dτ.

Then Jensen’s inequality allows us to conclude.

2.3.2 Piecewise linear trajectories

We are going to see that the infimum defining the minimal action can be computed
among piecewise linear trajectories. In order to state a precise statement, we first
introduce that optimal curves are of two types depending on the position of y and x
on the same branch or not: if they are, then the trajectories are of two types: either
they reach the junction point, or they stay in a branch and are straight lines. For
y ∈ Jβ, x ∈ Jα with β ̸= α, the trajectories can spend some time at the junction
point.
Lemma 2.3.3. The infimum defining the reduced minimal action D0 can be com-
puted among piecewise linear trajectories; more precisely for all y, x ∈ J,

D0(y, x) =

{
Djunction(y, x) if α ̸= β,
min(Lα(x− y),Djunction(y, x)) if α = β,

(2.3.2)

where for x ∈ Jα, y ∈ Jβ

Djunction(y, x) = inf
0≤t1≤t2≤1

{
t1Lβ

(
−y
t1

)
+ (t2 − t1)LA(0) + (1− t2)Lα

(
x

1− t2

)}
.

(2.3.3)

Proof. We write D0 = infX∈A0(y,x) Λ(X), where Λ(X) =
∫ 1

0
L(X(τ), Ẋ(τ))dτ. In

order to prove the lemma, it is enough to consider a curve X ∈ A(0, y; 1, x) and
prove that

Λ(X) ≥ min(Lα(x− y), Djunction(y, x)).

For α ̸= β, the trajectories can spend some time at the junction point, hence we can
write

D0(y, x) = inf
X(0)=y
X(1)=x

{∫ t1

0

Lβ(Ẋ(τ))dτ +

∫ t2

t1

L(X(τ), Ẋ(τ))dτ +

∫ 1

t2

Lα(Ẋ(τ))dτ

}

≥ inf
0≤t1≤t2≤1

{
inf

X(0)=y
X(t1)=x

∫ t1

0

Lβ(Ẋ(τ))dτ + inf
X(t1)=0
X(t2)=0

∫ t2

t1

L(X(τ), Ẋ(τ))dτ

+ inf
X(t2)=0
X(1)=x

∫ 1

t2

Lα(Ẋ(τ))dτ

}
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then using that L ≥ LA for the second term and Jensen’s inequality for all terms,
we conclude that

D0(y, x) ≥ Djunction(y, x).

Now for α = β, we can deduce from the preceding that

D0(y, x) ≥ min

Djunction(y, x), inf
X(0)=y
X(1)=x

∫ 1

0

Lα(Ẋ(τ))dτ

 .

Then, by Jensen’s inequality once again, we can deduce (2.3.2). This ends the
proof.

In view of (2.3.2), we see that the study of D0 can now be reduced to the study of
Djunction.

2.3.3 Study of Djunction

We introduce a simpler notation of Djunction defined in (2.3.3),

Djunction(y, x) = inf
0≤t1≤t2≤1

G(t1, t2, y, x), (2.3.4)

where

G(t1, t2, y, x) = t1Lβ

(
−y
t1

)
+ (t2 − t1)LA(0) + (1− t2)Lα

(
x

1− t2

)
.

As in [67], for (y, x) ∈ J∗
β ×J∗

α the function (t1, t2) → G(t1, t2, y, x) is strictly convex
on (0, 1)× (0, 1). Indeed, for t1, t2 ∈ (0, 1), we compute

D2G(t1, t2, y, x) =
L′′
β

(
−y
t1

)
t1

V T
y Vy +

L′′
α

(
x

1−t1

)
1− t2

V T
x Vx ≥ 0,

where Vy = (−y
t1
, 0, 1, 0) and Vx = (0, x

1−t1
, 0, 1) and in particular, we have

∂2

∂t21
G(t1, t2, y, x) =

y2

t31
L′′
β

(
−y
t1

)
> 0,

and
∂2

∂t22
G(t1, t2, y, x) =

x2

(1− t2)3
L′′

α

(
x

1− t1

)
> 0.

So we deduce that for (y, x) ∈ J∗
β×J∗

α, if the function (t1, t2) → G(t1, t2, y, x) admits
a critical point, then it reaches its infimum at this point, else it reaches its infimum
at the boundary.
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Lemma 2.3.4. Let (y, x) ∈ J, and Djunction(y, x) as in (2.3.4). We have the follow-
ing equivalences for the infimum,{

x = 0 ⇔ t2 = 1,
y = 0 ⇔ t1 = 0.

Proof. It is a direct consequence of the expression (2.3.3).

Definition 2.3.5 (Numbers ξ+l , ξ−l ). We define ξ−l , ξ+l thanks to the following func-
tion (for l ∈ {1, ...N})

Kl(x) = Ll(x)− xL′
l(x)− LA(0). (2.3.5)

We define (K−
l )

−1 (resp. (K+
l )

−1) as the inverse of the function Kl restricted to
(−∞, 0] (resp. [0,+∞)), in fact one can write

K ′
l(x) = −xL′′

l (x) < 0 on (0,+∞) ( resp. > 0 on (−∞, 0)).

More precisely, we define ξ±l = (K±
l )

−1(0).

Lemma 2.3.6 (Explicit expression of Djunction(y, x)). There exists a unique
function τ : J × J → (0, 1) of class C1 such that for (y, x) ∈ Jβ × Jα, we have

Djunction(y, x) =



τ(y, x)Lβ

(
−y

τ(y,x)

)
+ (1− τ(y, x))Lα

(
x

1−τ(y,x)

)
if (y, x) ∈ (J⋆

β × J⋆
α) \∆βα,

−yL′
β(ξ

−
β ) + xL′

α(ξ
+
α ) + LA(0)

if (y, x) ∈ ∆βα,

Lα(x)

if y = 0 and x > ξ+α ,

Lβ(y)

if x = 0 and y > −ξ−β ,
(2.3.6)

where
∆βα =

{
(y, x) ∈ Jβ × Jα,

x

ξ+α
− y

ξ−β
≤ 1

}
.

We have a different expression of Djunction on each subset of the previous Lemma
(see Figure 2.1).

Proof. Writing the optimal conditions of G associated with the infimum in (2.3.4),
we have 

y
t1
L′
β

(
−y
t1

)
− LA(0) + Lβ

(
−y
t1

)
= 0,

− x
1−t2

L′
α

(
x

1−t2

)
− LA(0) + Lα

(
x

1−t2

)
= 0,

(2.3.7)
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y ∈ Jβ

x ∈ Jα
0

x
ξ +α −

y
ξ −
β =
1

−ξ−β

ξ+α

Figure 2.1: Illustration of the several subsets for Djunction for α ̸= β.

y ∈ Jα

x ∈ Jα
0

D
junction (y, x) =

L
α (y −

x)

−ξ−α

ξ+α

Figure 2.2: Illustration of the several subsets for D0 for α = β.
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where t1 and t2 are the quantities realizing the minimum. Hence from (2.3.7), we
deduce

Kβ

(
− y

t1

)
= 0 = Kα

(
x

1− t2

)
.

But Kβ is a bijection on (−∞, 0), and so is Kα on (0,+∞). Therefore, setting
(K−

β )
−1(0) := ξ−β , and (K+

α )
−1(0) := ξ+α , we deduce for (y, x) ∈ ∆βα\{xy = 0},

Djunction(y, x) =
−y
ξ−β

Lβ(ξ
−
β ) +

x

ξ+α
Lα(ξ

+
α ) +

(
1− x

ξ+α
+

y

ξ−β

)
LA(0)

= −yL′
β(ξ

−
β ) + xL′

α(ξ
+
α ) + LA(0).

Now, for x = 0 and y < −ξ−β , using the first condition of (2.3.7), we deduce that

Djunction(y, 0) = −yL′
β(ξ

−
β ) + LA(0).

For x = 0 and y ≥ −ξ−β , we deduce from Lemma 2.3.4, that t2 = 1. Using the first
optimal condition in (2.3.7), we have Kβ(

−y
t1
) = 0 so t1 = −y

ξβ−
≥ 1. We deduce that

the optimal condition must be satisfied at the boundary of the set {0 ≤ t1 ≤ 1}.
Here using (2.3.3), we have t1 = 1, so

Djunction(y, 0) = Lβ(−y).

Similarly, for y = 0 and x < ξ+α ,

Djunction(y, x) = xL′
α(ξ

+
α ) + LA(0).

For y = 0 and x ≥ ξ+α , we deduce that

Djunction(0, x) = Lα(x).

In all other cases, that is to say for (y, x) ∈ (J⋆
β × J⋆

α) \ ∆βα, the infimum of G is
attained at the boundary of {0 ≤ t1 ≤ t2 ≤ 1}, here for some t1 = t2 = τ ∈ (0, 1).
Hence we have

Djunction(y, x) = inf
0<τ<1

{
τLβ

(
−y
τ

)
+ (1− τ)Lα

(
x

1− τ

)}
Once again, writing the optimal conditions for G(τ, τ, y, x), we deduce that

Kβ

(
−y
τ

)
= Kα

(
x

1− τ
.

)
. (2.3.8)

We define
G̃(τ, y, x) = Kβ

(
−y
τ

)
−Kα

(
x

1− τ

)
.

Deriving

∂G̃

∂τ
= K ′

β(
−y
τ

)
y

τ 2
−K ′

α(
x

1− τ
)

x

(1− τ)2
> 0 for (y, x) ∈ (J⋆

β × J⋆
α) \∆βα,

by implicit function theorem, we deduce that there exists a unique τ̃ ∈ C1(0, 1)
satisfying G̃(τ̃ , y, x) = 0. The proof is thus complete.
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Lemma 2.3.7 (Continuity of Djunction). The function Djunction is continuous in
J2.

Proof. From (2.3.6), we already know that Djunction ∈ C((J⋆
β ×J⋆

α)\∆βα)∪C(∆βα∪
{x = 0} ∪ {y = 0}). Therefore in order to prove that Djunction ∈ C(Jβ × Jα), it is
sufficient to prove that for any given sequence (yk, xk) ∈ (J⋆

β × J⋆
α) \∆βα such that

(yk, xk) → (y, x), where (y, x) ∈ ∆̄ := { x
ξ+α

− y

ξ−β
= 1} ∪ {x ≥ ξ+α } ∪ {y ≥ −ξ−β }, we

have
Djunction(y

k, xk) → Djunction(y, x).

Since the sequence {τ(yk, xk)} is bounded, we can deduce that there exists a sub-
sequence such that τ(yk, xk) → τ 0. We distinguish the following cases.

Case 1: τ 0 ∈ (0, 1). By continuity of Kl, we have

Kα

(
x

1− τ 0

)
= Kβ

(
−y
τ 0

)
. (2.3.9)

If x = 0, we have as Kα(0) > 0 and (K−
β )

−1 is increasing
y

τ 0
= −(K−

β )
−1(Kα)(0) < −(K−

β )
−1(0) = −ξ−β ,

hence deduce that (y, 0) /∈ ∆̄, so this case is not possible.
Similarly, if y = 0, we have

x

1− τ 0
= (K+

α )
−1(Kβ)(0) < (K+

α )
−1(0) = ξ+α ,

hence deduce that (0, x) /∈ ∆̄, so this case is not possible.
Now if (y, x) ∈ (J⋆

β × J⋆
α) ∩ ∆̄, then x

ξ+α
− y

ξ−β
= 1 and passing to the limit, we have

(2.3.9). We know that Kα(ξ
+
α ) = Kβ(ξ

−
β ) = 0, so if we set τ̄ = − y

ξ−β
= 1 − x

ξ+α
so

1− τ̄ = x
ξ+α

, we have

Kβ

(
−y
τ̄

)
= 0 = Kα

(
x

1− τ̄

)
.

By uniqueness of τ satisfying (2.3.8), we deduce that τ 0 = τ̄ . So we have

Djunction(y
k, xk) → −yL′

β(ξ
−
β ) + xL′

α(ξ
+
α ) + LA(0) = Djunction(y, x).

Case 2: τ 0 = 0. In this case, using Lemma 2.3.4, yk → y = 0, so x ≥ ξ+α and with
(2.3.8) we deduce that

−yk

τ(yk, xk)
= (K−

β )
−1

(
Kα

(
xk

1− τ(yk, xk)

))
→ (K−

β )
−1 (Kα (x)) . (2.3.10)

Therefore Djunction(y
k, xk) → Lα(x) = Djunction(0, x).
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Case 3: τ 0 = 1. In this case, xk → x = 0. Arguing as in Case 2, we deduce that
y ≥ ξ−β , and

xk

1− τ(yk, xk)
= (K+

α )
−1

(
Kβ

(
−yk

τ(yk, xk)

))
→ (K+

α )
−1 (Kβ (−y)) . (2.3.11)

Therefore, Djunction(y
k, xk) → Lβ(−y) = Djunction(y, x).

The proof is thus complete.

Lemma 2.3.8. The function Djunction is C1 in J2 and for (y, x) ∈ Jβ ×Jα, we have

∂xDjunction(y, x) =


L′
α(

x
1−τ

) if (y, x) ∈ (J⋆
β × J⋆

α) \∆βα,

L′
α(ξ

+
α ) if (y, x) ∈ ∆βα,

L′
α(x) if y = 0 and x > ξ+α ,

L′
α ◦ (K+

α )
−1 ◦Kβ(−y) if x = 0 and y > −ξ−β ,

(2.3.12)
and

∂yDjunction(y, x) =


−L′

β(
−y
τ
) if (y, x) ∈ (J⋆

β × J⋆
α) \∆βα,

−L′
β(ξ

−
β ) if (y, x) ∈ ∆βα,

−L′
β ◦ (K−

β )
−1 ◦Kα(x) if y = 0 and x > ξ+α ,

−L′
β(−y) if x = 0 and y > −ξ−β .

(2.3.13)

Proof. We compute the partial derivatives in domains where the function is naturally
of class C1 using that the function τ is continuously differentiable in (0, 1)2 and using
(2.3.9). We prove the continuity of the partial derivatives using the same proof as
Lemma 2.3.7.

2.3.4 Compatibility condition

In this subsection, we prove a compatibility result, which will be used in deriving
error estimates.
Let us introduce the following shorthand notation

H(x, p) =

{
Hα(p) if x ∈ J∗

α

FA(p) if x = 0.

Remark 2.3.9. In Jα×Jα, we give a description of {Djunction(y, x) = Lα(y−x)}∩∆βα

using [67], see Figure 2.2. We have{
Djunction(0, ξ

+
α ) = ξ+αL

′
α(ξ

+
α ) + LA(0) = Lα(ξ

+
α ) = Lα(0, ξ

+
α ),

Djunction(−ξ−β , 0) = ξ−β L
′
β(ξ

−
β ) + LA(0) = Lβ(ξ

−
β ) = Lβ(−ξ−β , 0).

This means that the functions Djunction and (y, x) 7→ Lα(x−y) coincide at the same
points Xα = (0, ξ+α ) and Yα = (−ξ−α , 0). Therefore we have

Lα(x− y) < Djunction(y, x) on the open line segment ]Xα, Yα[
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because Djunction is linear and Lα is strictly convex as a function of y − x.

The function (y, x) 7→ Lα(x−y)−Djunction(y, x) being convex because Djunction(y, x)
is linear, we can consider the convex set

Kα = {(y, x) ∈ Jα × Jα, Lα(x− y) ≤ Djunction(y, x)}.

Then the set

Γα = {(y, x) ∈ ∆αα, Djunction(y, x) = Lα(x− y)}

is contained in the boundary of the convex set Kα. More precisely, we have

Γα = ((∂Kα) ∩∆αα) ⊂ Jα × Jα

which shows that Γα is a curve which contains the points Xα and Yα.

Theorem 2.3.10. Assume the Hamiltonians are convex, with Legendre Fenchel
transform satisfying (B0). Then for all (x, y) ∈ J×J\∪α∈{1,··· ,N}Γ

α, (i.e., everywhere
except on the curves where D0 is not C1), we have

H(y,−∂yDjunction) = H(x, ∂xDjunction).

Proof of Theorem 2.3.10. First, notice that in the interior of Kα (i.e., in the regions
where D0(y, x) = Lα(x− y)), we have the result as

H(y,−∂yD0(y, x)) = Hα(L
′
α(x− y)) = H(x, ∂xD0(y, x)).

Now we prove the result in the regions where D0 = Djunction defined in the expres-
sions of ∂xDjunction and ∂yDjunction in (2.3.12)-(2.3.13). Let us first point out that
we have the following assertion

Hα(p) + Lα(q) = pq ⇔ q ∈ ∂Hα(p), (2.3.14)

where ∂Hα(p) is the convex subdifferential of Hα(p).

We distinguish several cases.

Case 1 (y, x) ∈ (J⋆
β×J⋆

α)\∆βα. From (2.3.14), on the one hand, and from (2.3.13)
we have

Hβ

(
L′
β

(
−y
τ

))
=

−y
τ
L′
β

(
−y
τ

)
− Lβ

(
−y
τ

)
.

From (2.3.5), we have then Hβ

(
L′
β

(−y
τ

))
= −Kβ

(−y
τ

)
− LA(0).

On the other hand, and from (2.3.12)

Hα

(
L′

α

(
x

1− τ

))
=

x

1− τ
L′
α

(
x

1− τ

)
− Lα

(
x

1− τ

)
,

similarly, from (2.3.5), we deduce that Hα

(
L′

α

(
x

1−τ

))
= −Kα

(
x

1−τ

)
−LA(0). Hence,

from (2.3.8), the compatibility condition.
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Case 2 (y, x) ∈ (J⋆
β × J⋆

α) ∩∆βα. We argue as in Case 1, one can deduce that

Hβ(L
′
β(ξ

−
β )) = −Kβ(ξ

−
β )− LA(0) = A

Hα(L
′
α(ξ

+
α )) = −Kα(ξ

+
α )− LA(0) = A.

From the definition of ξ+α and ξ−β , one can deduce the compatibility condition.
Remark 2.3.11. We deduce that the functions π+

α , π
−
β defined in [65] satisfy

π+
α (A) = L′

α(ξ
+
α ) and π−

β (A) = L′
β(ξ

−
β ).

Case 3 y = 0 and x > ξ+α . Let us check the following equality

max

(
A, max

β=1,...,N
H−

β

(
L′

β

((
K−

β

)−1 ◦Kα(x)
)))

= Hα (L
′
α(x)) .

On the one hand, from the definition of K−
β , we deduce that

H−
β

(
L′
β

((
K−

β

)−1 ◦Kα(x)
))

= Hβ

(
L′
β

((
K−

β

)−1 ◦Kα(x)
))

,

and arguing as previously, we deduce that

Hβ

(
L′

β

((
K−

β

)−1 ◦Kα(x)
))

= −Kβ

((
K−

β

)−1 ◦Kα(x)
)
−LA(0) = −Kα(x)−LA(0).

On the other hand from (2.3.14), we have Hα(L
′
α(x)) = −Kα(x)− LA(0).

And for x > ξ+α , we have Hα(L
′
α(x)) > Hα(L

′
α(ξ

+
α )) = Hα(π

+
α (A)) = A. So one can

deduce the compatibility condition.

Case 4 x = 0 and y > −ξ−β . Let us check the following equality

max

A, max
α = 1, . . . , N

α ̸= β

H−
α

(
L′
α

((
K+

α

)−1 ◦Kβ(−y)
))

,

 = Hβ

(
L′

β(−y)
)
.

Similarly, as in the previous case, one can deduce that

max
α = 1, . . . , N

α ̸= β

H−
α

(
L′
α

((
K+

α

)−1 ◦Kβ(−y)
))

= A0 ≤ A.

And for y > ξ−β , we have H−
β (L

′
β(−y)) > H−

β (π
−
β (A)) = A.
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Case 5 y = 0 and 0 < x ≤ ξ+α . Let us check the following equality

max(A, max
β=1,...,N

H−
β (L

′
β(ξ

−
β ))) = Hα(L

′
α(ξ

+
α )).

On the one hand, from (2.3.14) Hα(L
′
α(ξ

+
α )) = −Kα(ξ

+
α )− LA(0) = −LA(0) = A.

On the other hand,

max
β=1,...,N

H−
β (L

′
β(ξ

−
β )) = max

β=1,...,N
H−

β (π
−
β (A)) = A.

Case 6 x = 0 and 0 < y ≤ −ξ−β . Let us check the following equality

max(A, max
α=1,...,N

H−
α (L

′
α(ξ

+
α )) = Hβ(L

′
β(ξ

−
β )).

Similarly, as in Case 5, one can deduce the compatibility condition.

Case 7 x = 0 and y = 0. Let us check the following equality

max(A, max
β=1,...,N

H−
β (L

′
β(ξ

−
β )) = max(A, max

α=1,...,N
H−

α (L
′
α(ξ

+
α )).

In fact, it follows directly from Case 5 and Case 6.
The proof is thus complete.

2.3.5 C1,1 estimates for the reduced minimal action

In this section, we study the Lipschitz regularity of the gradient of the reduced
minimal action D0. It turns out that its gradient is indeed Lipschitz if the flux
limiter A is not equal to A0, the minimal flux limiter. Such a technical result will
be used when deriving error estimates. It is also of independent interest.

Proposition 2.3.12 (C1,1 estimates for the reduced minimal action). Let
ρ > 0 and assume that the Hamiltonians satisfy (2.1.7) and (2.1.6). The function
D0 associated with the flux limiter A0 + ρ can be chosen C1,1(J2

K) for any K > 0
where J2

K = {(x, y) ∈ J2 : d(0, x) ≤ K and d(0, y) ≤ K}. Moreover, there exists CK

and C ′
K such that

∥∂xxDjunction∥L∞(J2
K) ≤

CK

min(1, ρ)
; (2.3.15)

and
∥H ′

α(∂xDjunction)∂xxDjunction∥L∞(J2
K) ≤

C ′
K

min(1,
√
ρ)
. (2.3.16)

The constants CK and C ′
K depend only on K and (2.1.7).

Moreover, in the case where for all α ∈ {1, ..., N}, minHα = A0, we have

∥∂xxDjunction∥L∞(J2
K) ≤ CK . (2.3.17)
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Proof. In the following A denotes A0+ρ. Using (2.3.12), we see that ∂xxDjunction =
0 on ∆βα for all (β, α) ∈ {1, . . . , N}2 and ∂xxDjunction(y, x) = L

′′
α(x) on {0} × {x ∈

Jα | x > ξ+α }. So it is sufficient to prove (2.3.15) and (2.3.16) on T := J∗
β × J∗

α\∆βα

for all (β, α) ∈ {1, . . . , N}2. By (2.3.12), we deduce that on T ,

∂xxDjunction(y, x) =

(
1

1− τ(y, x)
+

x

(1− τ(y, x))2
∂τ

∂x
(y, x)

)
L′′
α

(
x

1− τ(y, x)

)
.

Let us compute also ∂τ
∂x

using (2.3.8),

∂τ

∂x
(y, x) =

1
1−τ(y,x)

K ′
α

(
x

1−τ(y,x)

)
y

τ(y,x)2
K ′

β

(
−y

τ(y,x)

)
− x

(1−τ(y,x))2
K ′

α

(
x

1−τ(y,x)

) .
And as K ′

β

(−y
τ

)
= y

τ
L′′
β

(−y
τ

)
≥ 0 and K ′

α

(
x

1−τ

)
= −x

1−τ
L′′
α

(
x

1−τ

)
≤ 0 we deduce that

∂τ

∂x
(y, x) =

−x
(1−τ(y,x))2

L′′
α

(
x

1−τ(y,x)

)
y2

τ(y,x)3
L′′
β

(
−y

τ(y,x)

)
+ x2

(1−τ(y,x))3
L′′

α

(
x

1−τ(y,x)

) . (2.3.18)

So we have on T

∂xxDjunction(y, x) =

y2

(1−τ(y,x))τ(y,x)3
L′′
α

(
x

1−τ(y,x)

)
L′′

β

(
−y

τ(y,x)

)
y2

τ(y,x)3
L′′
β

(
−y

τ(y,x)

)
+ x2

(1−τ(y,x))3
L′′
α

(
x

1−τ(y,x)

) ≥ 0. (2.3.19)

As the denominator is a sum of two positive functions, ∂xxDjunction from above by
the same numerator over only one term of the denominator. We deduce in these
two cases that,

∂xxDjunction(y, x) ≤

 2L′′
α

(
x

1−τ(y,x)

)
if τ(y, x) ≤ 1

2

8y2

( x
1−τ(y,x))

2L′′
β

(
−y

τ(y,x)

)
if τ(y, x) ≥ 1

2
.

(2.3.20)

Moreover, we have on T ,

H ′
α (∂xDjunction(y, x)) = H ′

α

(
L′
α

(
x

1− τ(y, x)

))
=

x

1− τ(y, x)
,

and

x

1− τ(y, x)
∂xxDjunction(y, x) ≤

 4x2L′′
α

(
x

1−τ(y,x)

)
if τ(y, x) ≤ 1

2

8y2
x

1−τ(y,x)
L′′
β

(
−y

τ(y,x)

)
if τ(y, x) ≥ 1

2
,

In the case τ(y, x) ≤ 1
2
, as 0 ≤ x

1−τ(y,x)
≤ 2x, we get the inequality (2.3.15) and

(2.3.16). Let us prove the following lower bound for (y, x) ∈ T ,
x

1− τ(y, x)
≥ ξ+α , (2.3.21)
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which helps us for the second case. For y ∈ Jβ, we see that x→ x
1−τ(y,x)

has a non-
negative derivative using (2.3.18), so it is a non-decreasing function. Therefore to
prove (2.3.21), it is sufficient to show it on ∂T . Let (y, x) be in ∂T . We distinguish
three cases.
In the case where y = 0, necessarily x ≥ ξ+α and as τ(y, x) ∈ [0, 1], we deduce
(2.3.21).

In the case where y ∈]0,−ξ−β [, we have (y, x) ∈
{
(y, x) ∈ Jβ × Jα,

x
ξ+α

− y

ξ−β
= 1

}
.

So by (2.3.9) we deduce that x
1−τ(y,x)

= ξ+α .
In the case where y ≥ −ξ−β , we have x = 0. It is enough to prove that

lim inf
x′→0

x′

1− τ(y, x′)
≥ ξ+α . (2.3.22)

We have for (y, x′) ∈ T ,

Kα

(
x′

1− τ(y, x′)

)
= Kβ

(
−y

τ(y, x′)

)
≤ Kβ

(
−ξ−β
τ(y, x′)

)
,

as Kβ is non-decreasing on ]−∞, 0]. We deduce that

x′

1− τ(y, x′)
≥ (K+

α )
−1 ◦Kβ

(
−ξ−β
τ(y, x′)

)
,

as (K+
α )

−1 is non-increasing. As lim
x′→0

τ(y, x′) = 1, taking the limit inferior in the
preceding inequality gives (2.3.22). So we deduce (2.3.21) and

∂xxDjunction(y, x) ≤
8y2

(ξ+α )
2
L′′
β

(
−y

τ(y, x)

)
if τ(y, x) ≥ 1

2
,

x

1− τ(y, x)
∂xxDjunction(y, x) ≤

8y2

ξ+α
L′′

β

(
−y

τ(y, x)

)
if τ(y, x) ≥ 1

2
.

If ξ+α > 1, we deduce (2.3.15). If ξ+α ≤ 1, let us prove that it exists a constant C > 0
only depending on (2.1.7) such that

(ξ+α )
2 ≥ Cρ. (2.3.23)

As A = A0 + ρ we have

Kα(ξ) = Lα(ξ)− ξL′
α(ξ) + A0 + ρ,

and
K ′

α(ξ) = −ξL′′
α(ξ).
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The function L′′
α is bounded on [0, 1], it exists M > 0 such that

γ ≤ L′′
α ≤M.

So we have K ′
α(ξ) ≥ −Mξ. We integrate from 0 to ξ ≥ 0 and get

Kα(ξ)−Kα(0) ≥ −Mξ2

2
. (2.3.24)

Taking ξ = ξ+α , as Kα(ξ
+
α ) = 0 and as Lα(0) + A0 ≥ 0, we deduce that

(ξ+α )
2 ≥ 2

M
(Lα(0) + A0 + ρ) ≥ 2

M
ρ.

So we get (2.3.23) and we deduce (2.3.15) and (2.3.16).
In the case where for all α ∈ {1, ..., N}, minHα = A0, we only have to consider
the case τ(y, x) ≥ 1

2
in (2.3.20) since the case τ(y, x) ≤ 1

2
gives already the bound

(2.3.20). In order to get a bound for the term 8y2

( x
1−τ(y,x))

2 = 8y2

((K+
α )−1◦Kβ(− y

τ(y,x)))
2 , let

us prove that for all ξ ∈ [−2K, 2K], we have

ξ2

((K+
α )

−1 ◦Kβ(−ξ))2
≤ C2K , (2.3.25)

where C2K > 0 is a constant which depends on K. Let M2K be such that on
[−2K, 2K] we have for all α ∈ {1, ..., N},

γ ≤ L′′
α ≤M2K .

Replacing ξ by (K+
α )

−1(ξ) in (2.3.24), we deduce that

M2K
((K+

α )
−1(ξ))

2

2
≥ −ξ +Kα(0).

So we have

M2K
((K+

α )
−1 ◦Kβ(−ξ))2

2
≥ −Kβ(−ξ) +Kα(0).

As for (2.3.24), we have the following inequality

Kβ(0)−Kβ(−ξ) ≥ γ
ξ2

2
.

So as Kα(0) = Kβ(0) = ρ we deduce that

M2K
((K+

α )
−1 ◦Kβ(−ξ))2

2
≥ γ

ξ2

2
+Kα(0)−Kβ(0) ≥ γ

ξ2

2
.

That gives (2.3.25) and we deduce (2.3.17).
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2.4 Error estimates
To prove Theorem 2.1.1, we will need the following result whose proof is given in
the Appendix of Chapter 1 for the reader’s convenience.

Lemma 2.4.1 (A priori control). Let T > 0 and let uh be a solution of the nu-
merical scheme (2.1.12), (2.1.14) and u a super-solution of (2.1.1)-(2.1.2) satisfying
for some CT > 0,

u(t, x) ≥ −CT (1 + d(0, x)) for t ∈ (0, T ).

Then there exists a constant C = C(T ) > 0 such that for all (t, x) ∈ Gh, t ≤ T , and
(s, y) ∈ [0, T )× J , we have

uh(t, x) ≤ u(s, y) + C(1 + d(x, y)). (2.4.1)

We also need the following result [65, Lemma 4.4] where the proof is given in [65].

Lemma 2.4.2 (From non-convex to convex Hamiltonians). Let K ∈ (0,+∞). Given
Hamiltonians Hα : [−K,K] → R satisfying (2.1.3), there exists a function β : R → R
such that the functions β ◦ Hα satisfy (2.1.7) for α = 1, ..., N . Moreover, we can
choose β such that β ∈ C2(R) and β′ > 1.

Remark 2.4.3. In [65, Lemma 4.4], the functions β ◦Hα satisfy in fact the following
assumptions 

Hα ∈ C2(R) with H ′′
α > 0 on R,

H ′
α < 0 on (−∞, 0) and H ′

α > 0 on (0,+∞),

lim
|p|→+∞

Hα(p)
|p| = +∞.

(2.4.2)

which implies (2.1.7). Indeed, in the next proof on error estimates, we only need to
consider Hamiltonians on a compact set which only depends on u0 and the Hamilto-
nians Hα, thanks to the fact that the solution is Lipschitz continuous, see Theorem
2.2.2 and the fact that the discrete gradients are bounded (see Chapter 1, Proposi-
tion 1.3.1). So on [−K,K], the functions (β ◦Hα)

′′ are bounded by some constant
C > 0. We deduce that the functions Lα are of class C2 and satisfy L′′

α ≥ γ = 1
C

.
Indeed, from the relation Hα(p) + Lα(q) = pq with q = H ′

α(p), one can deduce that
L′
α(H

′
α(q)) = q, so

L′′
α(q) =

1

H ′′
α ◦ (H ′

α)
−1(q)

≥ γ.

We now turn to the proof of the error estimates.

Proof of Theorem 2.1.1. We assume that the Hamiltonians Hα satisfy (2.1.3)
and A > A0. Let u be the solution of (2.1.1) and uh the solution of the corresponding
scheme (2.1.12). In order to get (2.1.16), we only prove that

uh(t, x)− u(t, x) ≤

{
CT (∆x)

1/2 if A > A0,

CT (∆x)
2/5 if A = A0

in [0, T )× J ∩ Gh
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since the proof of the other inequality is very similar. We are going to prove that

uh(t, x)−u(t, x) ≤

{
O
(
∆t
ν

)
+O

(
∆x
ε

)
+O(ε) +O(ν) if A > A0,

O
(
∆t
ν

)
+O

(
∆x
ε
√
ρ

)
+O

(
(∆x)2

(ερ)2

)
+O(ρ) +O(ε) +O(ν) if A = A0,

(2.4.3)
which yields the desired inequality by minimizing the right hand side with respect to
ε and ν in the case A > A0 and with respect to ρ, ε and ν in the case A = A0. Let β
be the function defined in Lemma 2.4.2 such that the functions β◦Hα satisfy (2.1.7).
In the following, we consider that the function D0 is associated to the Hamiltonians
β ◦Hα and to the flux limiter β(A) which satisfies β(A) > β(A0) in the case A > A0.
The remaining of the proof proceeds in several steps.

Step 1: Penalization procedure. Using the expression of D0 in (2.3.2) and
Djunction in (2.3.6), we deduce that it exists C > 0, such that ∀x ∈ J

D0(0, 0) = LA(0) = −A ≤ D0(x, x) ≤ C.

Let D̃0 = D0 + A, we have that

0 ≤ D̃0(x, x) ≤ C + A.

For η, δ, ε, ν positive constants, let us define

Mε,δ = sup
(t,x)∈Gh,

(s,y)∈[0,T )×J

{
uh(t, x)− u(s, y)− εD̃0

(y
ε
,
x

ε

)
− (t− s)2

2ν
− δ

2
d2(y, 0)− η

T − s

}
(2.4.4)

where the test function D0 is given in (2.3.2). In this step, we assume that Mε,δ > 0.
Thanks to Lemma 2.4.1 and the superlinearity of D0 (see Lemma 2.3.2), we deduce
that for (x, y) such that the quantity in the supremum is larger than Mε,δ

2
,

0 <
Mε,δ

2
≤ C(1 + d(y, x))− ε

γ

2
d2
(y
ε
,
x

ε

)
− (t− s)2

2ν
− δ

2
d2(y, 0)− η

T − s

which implies in particular
γ

2ε
d2(y, x) ≤ C(1 + d(y, x)),

and
δ

2
d2(y, 0) ≤ C(1 + d(y, x)).

Notice that in the following, we use the notation D0 instead of D̃0. Indeed we deal
only with partial derivatives of D0 which are equal to partial derivatives of D̃0 and
differences between two values of D0 at two points which are equal to differences
between two values of D̃0 at these two points.
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We deduce from the two last inequalities that d(y, x) is bounded and d(y, 0) is
bounded, so the supremum is reached at some point (t, x, s, y) where y ∈ Jβ and
x ∈ Jα. This estimate together with the fact that −∂yD0(

y
ε
, x
ε
)− δd(y, 0) lies in the

viscosity subdifferential of u(t, ·) at x and the fact that δd(y, 0) is bounded, implies
that there exists K > 0 only depending on ∥∇u∥∞ (see Theorem 2.2.2) such that
the point (t, x, s, y) realizing the maximum satisfies∣∣∣∂yD0

(y
ε
,
x

ε

)∣∣∣ ≤ K. (2.4.5)

If α = β, for y
ε

or x
ε

large, then (2.4.5) implies∣∣∣L′
α

(y
ε
− x

ε

)∣∣∣ ≤ K.

As Lα is superlinear, it implies that d
(
y
ε
, x
ε

)
≤ C, for C > 0 which is sufficient for

the use in step 2 of the C1,1 estimates as D0 only depends on d
(
y
ε
, x
ε

)
for y

ε
or x

ε

large. If α ̸= β, assume by contradiction that y
ε

or x
ε

are not bounded when ε → 0.
Then using (2.3.13) and (2.3.8) we get a contradiction with (2.4.5). So y

ε
and x

ε
are

bounded by a constant which only depends on ∥∇u∥∞ and on the Hamiltonians Hα.
We want to prove that for η > η⋆ (to be determined) that the supremum in (2.4.4)
is attained for t = 0 or s = 0. We assume that t > 0 and s > 0 and we prove that
η ≤ η⋆.

Step 2: Viscosity inequalities. Since t > 0 and s > 0, we can use Lemma 2.2.4
and get the following viscosity inequalities.
If x ̸= 0, then

t− s

ν
− ∆t

2ν
+max

{
H−

α

(
ε

∆x

{
D0

(
y

ε
,
x+∆x

ε

)
−D0

(y
ε
,
x

ε

)})
,

H+
α

(
ε

∆x

{
D0

(
y

ε
,
x

ε

)
−D0

(
y

ε
,
x−∆x

ε

)})}
≤ 0.

If x = 0, then

t− s

ν
− ∆t

2ν
+max

(
A,max

β

{
H−

β

(
ε

∆x

{
D0

(
y

ε
,
∆x

ε

)
−D0

(y
ε
, 0
)})})

≤ 0.

If y ̸= 0, then

− η

(T − s)2
+
t− s

ν
+Hα

(
−∂yD0

(y
ε
,
x

ε

)
− δd(y, 0)

)
≥ 0.

If y = 0, then
− η

(T − s)2
+
t− s

ν
+ FA

(
−∂yD0

(
0,
x

ε

))
≥ 0.

We now distinguish the case A > A0 and A = A0.
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Case A > A0. Thanks to the C1,1 regularity of the function D0, see Proposi-
tion 2.3.12, and the fact that the functions H±

α , Hα are locally Lipschitz we obtain,
for x ∈ Jα and y ∈ Jβ with α ̸= β,

if x ̸= 0,
t− s

ν
− ∆t

2ν
+Hα

(
∂xD0

(y
ε
,
x

ε

))
+O

(
∆x

ε

)
≤ 0 (2.4.6)

if x = 0,
t− s

ν
− ∆t

2ν
+ FA

(
∂xD0

(y
ε
, 0
))

+O

(
∆x

ε

)
≤ 0 (2.4.7)

if y ̸= 0,
t− s

ν
+Hβ

(
−∂yD0

(y
ε
,
x

ε

))
+O(

√
δ) ≥ η

2T 2
(2.4.8)

if y = 0,
t− s

ν
+ FA

(
−∂yD0

(
0,
x

ε

))
≥ η

2T 2
. (2.4.9)

Now for (y, x) ∈ Jα × Jα, from (2.3.2) and (2.3.6), one can deduce that D0 is in
fact C2 far away from the curve Γα defined in Remark 2.3.9, hence the viscosity
inequalities (2.4.6)-(2.4.9) remain true.
Now we treat the case where (y

ε
, x
ε
) is near the curve Γα, but not on it.

First if (y
ε
, x
ε
) is such that (y

ε
, x
ε
) ∈ Kα\Γα and (y

ε
, x−∆x

ε
) /∈ Kα, we have

D0

(
y

ε
,
x−∆x

ε

)
≤ Lα

(
x−∆x− y

ε

)
.

So as H+
α is non-decreasing, we deduce that

H+
α

(
ε

∆x

{
Lα

(
x− y

ε

)
− Lα

(
x−∆− yx

ε

)})
≤ H+

α

(
ε

∆x

{
D0

(
y

ε
,
x

ε

)
−D0

(
y

ε
,
x−∆x

ε

)})
.

Hence the viscosity inequalities (2.4.6)-(2.4.9) remain true. If (y
ε
, x
ε
) is such that

(y
ε
, x
ε
) /∈ Kα and (y

ε
, x+∆x

ε
) ∈ Kα\Γα, we have

D0

(
y

ε
,
x−∆x

ε

)
≤ Djunction

(
y

ε
,
x−∆x

ε

)
.

So as H−
α is non-increasing, we deduce that

H−
α

(
ε

∆x

{
Djunction

(
y

ε
,
x

ε

)
−Djunction

(
y

ε
,
x+∆x

ε

)})
≤ H−

α

(
ε

∆x

{
D0

(
y

ε
,
x

ε

)
−D0

(
y

ε
,
x+∆x

ε

)})
.

Hence the viscosity inequalities (2.4.6)-(2.4.9) remain true.
Now for (y

ε
, x
ε
) on the curve Γα, we get the following viscosity inequalities, using

Proposition 2.2.3.
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If x ̸= 0, then

t− s

ν
− ∆t

2ν
+max

{
H−

α

(
ε

∆x

{
Lα

(
x+∆x− y

ε

)
− Lα

(
x− y

ε

)})
,

H+
α

(
ε

∆x

{
L′

α(ξ
+
α )
x

ε
− L′

α(ξ
+
α )

(
x−∆x

ε

)})}
≤ 0.

If x = 0, then

t− s

ν
− ∆t

2ν
+max

(
A,max

α

{
H−

α

(
ε

∆x

{
Lα

(
∆x− y

ε

)
− Lα

(
−y
ε

)})})
≤ 0.

If y ̸= 0, then

− η

(T − s)2
+
t− s

ν
+max

{
H−

α

(
L′

α

(
x− y

ε

)
− δd(y, 0)

)
,

H+
α

(
L′
α(ξ

−
α )− δd(y, 0)

)}
≥ 0.

If y = 0, then

− η

(T − s)2
+
t− s

ν
+max

(
A,max

α
H−

α

(
L′
α

(
x

ε

)))
≥ 0.

We now simplify the above inequalities,

if x ̸= 0,

t− s

ν
− ∆t

2ν
+max

{
H−

α

(
L′
α

(
x− y

ε

))
, H+

α (L
′
α(ξ

+
α ))

}
+O

(
∆x

ε

)
≤ 0

(2.4.10)

if x = 0,
t− s

ν
− ∆t

2ν
+max

(
A,max

α
Hα

−
(
L′
α

(
− y

ε

)))
+O

(
∆x

ε

)
≤ 0

(2.4.11)

if y ̸= 0,
t− s

ν
+max

{
H−

α

(
L′

α

(
x− y

ε

))
, H+

α (L
′
α(ξ

−
α ))

}
+O(

√
δ) ≥ η

2T 2

(2.4.12)

if y = 0,
t− s

ν
+max

(
A,max

α
H−

α

(
L′

α

(
x

ε

)))
≥ η

2T 2
. (2.4.13)

Combining these viscosity inequalities and using Theorem 2.3.10 with the Hamil-
tonians β ◦ Hα, we deduce the same equalities for the Hamiltonians Hα as β is a
bijection. We use also the fact that H+

α (L
′
α(ξ

+
α )) = A and H+

α (L
′
α(ξ

−
α )) = A0, we get

in all cases
η ≤ O

(
∆t

ν

)
+O

(
∆x

ε

)
+O(

√
δ) =: η⋆.
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Case A = A0. In this case the function Djunction is not of class C1,1, see Proposition
2.3.12. So we consider the function D0 associated with A = A0 + ρ where ρ is a
small parameter. The only difference with the case A > A0 is in the case x ∈ Jα
and y ∈ Jβ with α ̸= β. We only treat the case x ∈ Jα \ {0} and y ∈ Jβ with α ̸= β
since in the other cases the arguments are the same as the proof of the case A > A0.
Since D0(

y
ε
, .) is non-decreasing and H−

α (p) = A0 for p ≥ 0, and H+
α (p) = Hα(p) for

p ≥ 0, we have

t− s

ν
− ∆t

2ν
+Hα

(
ε

∆x

{
D0

(
y

ε
,
x

ε

)
−D0

(
y

ε
,
x−∆x

ε

)})
≤ 0. (2.4.14)

By using the Taylor expansion of the function D0(
y
ε
, .) of class C1, there exists

θ1 ∈ [0, 1] such that

Hα

(
ε

∆x

{
D0

(y
ε
,
x

ε

)
−D0

(
y

ε
,
x−∆x

ε

)})
= Hα

(
∂xD0

(y
ε
,
x

ε

)
− ∆x

2ε
∂xxD0

(
y

ε
,
x− θ1∆x

ε

))
Using now a Taylor expansion of the function Hα of class C2, there exists θ2 ∈ [0, 1]
such that

Hα

(
ε

∆x

{
D0

(y
ε
,
x

ε

)
−D0

(
y

ε
,
x−∆x

ε

)})
=

Hα

(
∂xD0

(y
ε
,
x

ε

))
− ∆x

2ε
∂xxD0

(
y

ε
,
x− θ1∆x

ε

)
H ′

α

(
∂xD0

(y
ε
,
x

ε

))
+
1

8

(
∆x

ε

)2

∂xxD0

(
y

ε
,
x− θ1∆x

ε

)2

H ′′
α

(
∂xD0

(y
ε
,
x

ε

)
− θ2∆x

2ε
∂xxD0

(
y

ε
,
x− θ1∆x

ε

))
.

(2.4.15)

Using Taylor expansion for ∂xD0(.,
y
ε
) and H ′

α of class C1 there exists θ3, θ4 ∈ [0, 1]
such that

H ′
α

(
∂xD0

(y
ε
,
x

ε

))
= H ′

α

(
∂xD0

(
y

ε
,
x− θ1∆x

ε

)
+ θ1

∆x

ε
∂xxD0

(
y

ε
,
x− θ3∆x

ε

))
= H ′

α

(
∂xD0

(
y

ε
,
x− θ1∆x

ε

))
+θ1

∆x

ε
∂xxD0

(
y

ε
,
x− θ3∆x

ε

)
H ′′

α

(
∂xD0

(
y

ε
,
x− θ1∆x

ε

)
+ θ4

∆x

ε
∂xxD0

(
y

ε
,
x− θ3∆x

ε

))
.

(2.4.16)

Notice that the terms in H ′′
α are bounded since x

ε
, y
ε

and ∆x
ερ

are bounded indepen-
dently of ∆x ≤ 1 as we take ε = ρ = (∆x)

2
5 .
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So combining (2.4.15) and (2.4.16), thanks to the C1,1 regularity of the function D0,
see Proposition 2.3.12, we deduce that

Hα

(
ε

∆x

{
D0

(y
ε
,
x

ε

)
−D0

(
y

ε
,
x−∆x

ε

)})
= Hα

(
∂xD0

(y
ε
,
x

ε

))
+O

(
∆x

ε
√
ρ

)
+O

((
∆x

ερ

)2
)
.

So combining the viscosity inequality and using the fact that |FA − FA0 | ≤ ρ we
have

η ≤ O
(
∆t

ν

)
+O

(
∆x

ε
√
ρ

)
+O

((
∆x

ερ

)2
)

+O(
√
δ) + ρ =: η⋆. (2.4.17)

Step 3: Estimate of the supremum. We proved in the previous step that, if
η > η⋆, then either Mε,δ ≤ 0 or Mε,δ is reached either for t = 0 or s = 0.
If t = 0, then using Theorem 2.2.2, we have

Mε,δ ≤ u0(x)− u0(y)−
γ

2ε
d2(y, x) + CT s−

s2

2ν
.

Using the fact that u0 is L0-Lipschitz, one can deduce

Mε,δ ≤ sup
r≥0

(
L0r −

γ

2ε
r2
)
+ sup

r>0

(
Cr − r2

2ν

)
≤ O(ε) +O(ν).

If s = 0, then we can argue similarly (by using the stability of the numerical scheme)
and get

Mε,δ ≤ O(ε) +O(ν).

Step 4: Conclusion. We proved that for η > η⋆, Mε,δ ≤ O(ε) + O(ν). This
implies that for all (t, x) ∈ Gh, t ≤ T/2, we have

uh(t, x)− u(t, x) ≤ εD̃0(
x

ε
,
x

ε
) +

δ

2
d2(x, 0) +

2η

T
+O(ε) +O(ν).

Replacing η by 2η⋆ and recalling that D̃0(x, x) ≤ C + A for all x ∈ J , we deduce
that for (t, x) ∈ Gh and t ≤ T/2 (after letting δ → 0),

uh(t, x)− u(t, x) ≤ O

(
∆t

ν

)
+O

(
∆x

ε

)
+O(ε) +O(ν).

Using the CFL condition (2.1.15) and optimizing with respect to ε and ν yields the
desired result.

Remark 2.4.4. If for all α ∈ {1, ..., N}, minHα = A0, then in the case where A = A0,
thanks to the C1,1 regularity of the function D0, see Proposition 2.3.12, we can
conclude as the case A > A0 that the error estimate is of order ∆x

1
2 .
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∆x ||u(T, .)− uh(T, .)||∞
0.00250 1,192×10−4

0.00100 0,753×10−4

0.00075 0,644×10−4

0.00050 0,503×10−4

0.00025 0,329 ×10−4

Figure 2.3: Error estimates for A = A0 = 0

∆x ||u(T, .)− uh(T, .)||∞
0.00250 1,266×10−4

0.00100 0,719×10−4

0.00075 0,616×10−4

0.00050 0,511×10−4

0.00025 0,350 ×10−4

Figure 2.4: Error estimates for A = 0.1 > A0

2.4.1 Numerical simulations

In this subsection, we give a numerical example which illustrates the convergence
rate we obtained in the previous subsection. In the case A > A0, we get an optimal
error estimate of order ∆x

1
2 . But in the case A = A0 we only have examples with

an error estimate of order ∆x
1
2 when in the proof we have ∆x

2
5 . So we wonder if

the error estimate obtained in the proof is optimal for the case A = A0.
Here we consider a junction with two branches J1 = J2 = [0, X]. We have the two
following Hamiltonians,

H1(p) = p2,

H2(p) = p2 − 1,

and the initial data
u0(x) =

{
sin(0.2x) if x ∈ J1,
sin(x) if x ∈ J2.

In the simulation we take X = 0.1 and we give the error ||u(T, .) − uh(T, .)||∞ at
time T = 0.01. Here we have A0 = 0.
For A = 0, A = 0.1 > A0 and ∆t = ∆x

10
we get the following result, see Figure 2.5

and 2.6 ploted in logarithmic scale and the error values in Table 2.3 and 2.4.
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Figure 2.5: Error estimates for A = A0 = 0
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Figure 2.6: Error estimates for A = 0.1 > A0



Part II

Indirect controllability/stability of
a 1D system of wave equations





Chapter 3

Influence of the coefficients of
coupled wave equations on their
indirect exact boundary
controllability

Le taux de décroissance de l’énergie d’un système d’équations d’ondes cou-
plées dépend du type de couplage, de la nature algébrique du paramètre du
couplage et de la propriété arithmétique du rapport des vitesses de propa-
gation des ondes (voir [68], [13], [104], [92]). Dans ce chapitre, nous étu-
dions la contrôlabilité exacte indirecte d’un système d’équations d’ondes
couplées par des termes de vitesse, dans le cas mono-dimensionnel. Nous
considérons les cas où les ondes se propagent avec des vitesses égales ou
différentes. Tout d’abord, en utilisant l’analyse non harmonique, nous
établissons les inégalités d’observabilité, qui sont influencées par la na-
ture du paramètre du couplage et par la propriété arithmétique du rapport
des vitesses de propagation des ondes. Ensuite, en utilisant la méth-
ode d’unicité de Hilbert, nous démontrons que le système est exactement
contrôlable, et que le temps de contrôle peut être petit.
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Abstract. The energy decay rate of a system of coupled wave equations depends
on the type of damping, the type of coupling, the algebraic nature of the coupling
parameter and the arithmetic property of the ratio of the wave propagation speeds
(see [68], [13], [104], [92]). In this chapter, we study the indirect boundary exact
controllability of a system of wave equations coupled through velocity terms in one
dimensional space. We consider the cases where waves propagate with equal or
different speeds. First, using the non harmonic analysis, we establish the weak
observability inequalities, which are greatly influenced by the nature of the coupling
parameter and are sensitive to the arithmetic property of the ratio of the wave
propagation speeds. Next, using the HUM method, we prove that the system is
exactly controllable, and that the control time can be small.

3.1 Introduction
In [92], Najdi and Wehbe studied the indirect boundary stabilization of a system of
two wave equations coupled through velocity terms. The system is described by:

utt − uxx + byt = 0 on (0, 1)× (0,+∞),
ytt − ayxx − but = 0 on (0, 1)× (0,+∞),
yx(0, t)− yt(0, t) = 0 on (0,+∞),
u(1, t) = y(1, t) = u(0, t) = 0 on (0,+∞),

(3.1.1)

where a > 0 and b ∈ R⋆ are constants. First, they proved that system (3.1.1) is
strongly stable if and only if the coupling parameter b is outside a well determined
discrete set Ss of exceptional values. Consequently, the strong stability does not
hold in general. Next, for b /∈ Ss, they showed that the energy decay rate of system
(3.1.1) is greatly influenced by the nature of the coupling parameter b (an additional
condition on b ) and by the arithmetic property of the ratio of the wave propagation
speeds a. Indeed, in the case of a = 1 when the waves propagate at the same speed
and if there exist no k ∈ Z such that b = kπ, they established exponential stability
of system (3.1.1). Otherwise, they proved the lack of exponential stability of the
system and established a polynomial energy decay rate also depending on the nature
of b and on the arithmetic property of a. Roughly speaking, if a = 1 and b is of
the form kπ for k ∈ Z, an optimal energy decay rate of type 1

t
is established, and if

a ̸= 1 and
√
a ∈ Q, they obtained the same polynomial energy decay rate. In this

chapter, we are interested in the influence of the nature of the coefficients a and b
on the indirect boundary exact controllability of a one dimensional setting of wave
equations coupled through velocity terms. The system is described by:

utt − uxx + byt = 0 on (0, 1)× (0, T ),
ytt − ayxx − but = 0 on (0, 1)× (0, T ),
y(1, t) = v(t) for all t ∈ (0, T ),
u(1, t) = u(0, t) = y(0, t) = 0 for all t ∈ (0, T ),

(3.1.2)

where a > 0 is the ratio of the speeds of the two equations, b ∈ R⋆ is the cou-
pling parameter, and v ∈ L2(0, T ) is the control. The system (3.1.2) is a classic
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model for the motions of two stacked elastic bodies. The control v is applied only
at the right boundary of the second equation. The first equation is indirectly con-
trolled by means of the coupling between the equations. We consider the following
indirect boundary exact controllability problem: For given T > 0 and initial data
(u0, u1, y0, y1) belonging to a suitable space, is it possible to find a suitable control
v so that the solution of system (3.1.2) (u, ut, y, yt) is driven to zero in time T? i.e.

u(x, T ) = ut(x, T ) = y(x, T ) = yt(x, T ) = 0 on (0, 1).

In [104], Toufayli studied the exact controllability of system (3.1.2) in a star-shaped
domain Ω in RN . Using a multiplier method, she proved that by observing only one
component of the associated homogeneous system, one can get back a full energy of
both components in the case where a = 1 and b small enough. Consequently, using
Hilbert Uniqueness Method, she established an indirect exact controllability result.
It seems that the conditions a = 1 and b small enough are technical for the multiplier
method. The natural question is then whether or not the exact controllability still
holds in the natural physical cases a = 1 and b large or a ̸= 1. The aim of this
chapter is to give a complete answer to this interesting question. For this goal, we
will use a spectral approach to investigate how the interaction between the modes of
the first equation and the modes of the second equation is influenced by the algebraic
nature of the coupling parameter b and how it is sensitive to the arithmetic property
of the ratio of the wave propagation speeds a. We use it also to get the suitable
controllability spaces (see Theorems 3.1.3, 3.1.1 and 3.1.2).

Main results. Unlike the spectral method, the multiplier method used in [6, 9,
12, 104] requires some technical conditions on the coefficients of the system. Then,
our aim is to establish observability inequalities using the Ingham’s theorem while
distinguishing the following cases:

(Case 1) a = 1 and b /∈ πZ,

(Case 2) a = 1 and b ∈ πZ,

(Case 3) a ̸= 1 such that a ∈ Q,

(Case 4) a ̸= 1 such that a ∈ R \Q.
In order to do so, we consider respectively the associated homogeneous problem
(for a ̸= 1 and a = 1), that is to say, the null boundary acted control system.
Hence, using the Hilbert Uniqueness Method (see[79]), we deduce the indirect exact
controllability of the considered system.
Let us denote by λ1,m, λ2,n the two branches of eigenvalues of the homogeneous
systems (3.2.1) and (3.3.1) respectively, and by{

E1,n = (ϕ1,n, λ1,nϕ1,n, ψ1,n, λ1,nψ1,n),
E2,n = (ϕ2,n, λ2,nϕ2,n, ψ2,n, λ2,nψ2,n)

(3.1.3)

the corresponding eigenvectors. Our main results are the following.
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Case 1. The eigenvalues λ1,m, λ2,n satisfy an uniform gap condition. Then using
the usual Ingham’s theorem, we prove the following result.

Theorem 3.1.1. Assume that a = 1, condition (3.2.8) holds and b /∈ πZ. Let 0 <

|b̂| < π be the resulting quantity of b−k̂π, where k̂ ∈ N⋆, such that k̂π < |b| < (k̂+1)π
and let

T >
2π

|b̂|
. (3.1.4)

Then there exists a constant c1 > 0 such that the following direct inequality holds∫ T

0

|ψx(1, t)|2dt ≤ c1∥(ϕ0, ϕ1, ψ0, ψ1)∥2H, (3.1.5)

for all solution Φ = (ϕ, ϕt, ψ, ψt) solving the corresponding homogeneous Cauchy
problem.
Moreover, there exists a constant 0 < c2 < c1 depending only on b, such that the
following inverse observability inequality holds

c2∥(ϕ0, ϕ1, ψ0, ψ1)∥2H ≤
∫ T

0

|ψx(1, t)|2dt. (3.1.6)

Case 2. The eigenvalues λ1,m, λ2,n are asymptotically close. To be precise, follow-
ing proposition 3.2.7, we prove that there exist infinitely many m ∼ n+ k0

λ1,m − λ2,n ∼ O(1)

m2
, λ1,m − λ2,n ∼ O(1)

n2
.

Then, the usual Ingham’s theorem which requires an uniform gap condition does
not work in this case and consequently, the observability inequalities are not true
in the energy space. In order to get the inverse observability inequality, we will use
a general Ingham-type theorem based on the divided differences, which tolerates
asymptotically and even multiple eigenvalues. On the other hand, the observation
is on the second components of the eigenfunctions E1,n, E2,n. From (3.2.11)-(3.2.12),
we see that

(ψ1,n)x(1) = O(1), (ψ2,n)x(1) = O(1). (3.1.7)

So, a natural space for the observability inequalities is the following weighted spectral
space

D2 = {(ϕ0, ϕ1, ψ0, ψ1) =
∑
n ̸=0

(α1,nE1,n + α2,nE2,n)n
2}.

We prove afterwards the following result.

Theorem 3.1.2. Assume that a = 1, condition (3.2.8) and b = k0π for some
k0 ∈ Z⋆. Let

T > 4.
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Then there exists a constant c3 > 0 such that the following direct inequality holds∫ T

0

|ψx(1, t)|2dt ≤ c3∥(ϕ0, ϕ1, ψ0, ψ1)∥2H, (3.1.8)

for all solution Φ = (ϕ, ϕt, ψ, ψt) solving the corresponding homogeneous Cauchy
problem.
Moreover, there exists a constant 0 < c4 < c3, such that the following inverse
observability inequality holds

c4∥(ϕ0, ϕ1, ψ0, ψ1)∥2D2
≤
∫ T

0

|ψx(1, t)|2dt. (3.1.9)

Cases 3 and 4. We prove in Proposition 3.3.4, that there exist infinitely many√
am ∼ n such that the eigenvalues are asymptotically close

λ1,m − λ2,n ∼ O(1)

m
, λ1,m − λ2,n ∼ O(1)

n
, (3.1.10)

where we distinguish cases of the ratio of the wave speeds, as 0 < a ̸= 1 is a
rational number or an irrational number. Then, we will use a general Ingham-type
theorem. On the other hand, the observation is on the second components of the
eigenfunctions E1,n, E2,n. From (3.3.12)-(3.3.13), we see that

(ψ1,n)x(1) = O(1), (ψ2,n)x(1) =
O(1)

n
. (3.1.11)

So, if we want to observe the first equation via the second one, we have to use a
weaker norm so that the observation on the second component (ψ1,n)x(1) does not
disappear. It seems that the following weighted spectral space

D1 = {(ϕ0, ϕ1, ψ0, ψ1) =
∑
n ̸=0

(α1,nE1,n + α2,nnE2,n)n} (3.1.12)

is the natural space for the observability. In (3.1.12), the factor n before the eigen-
vector E2,n is due to the transmission of the modes between the two equations
(3.1.11), and the factor n is due to the closeness of the eigenvalues (3.1.10). We
then prove the following result.

Theorem 3.1.3. Let 0 < a ̸= 1, and let b a real number satisfying (3.3.9). Assume
that

T > 2

(
1 +

1√
a

)
.

Then there exists a constant c1 > 0 such that the following direct inequality holds∫ T

0

|ψx(1, t)|2dt ≤ c1∥(ϕ0, ϕ1, ψ0, ψ1)∥2H, (3.1.13)
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for all solution Φ = (ϕ, ϕt, ψ, ψt) solving the corresponding homogeneous Cauchy
problem.
Moreover, there exists a constant 0 < c < c1 depending only on a and b such that
the following inverse observability inequalities hold true:

1. If a is rational number, then

c∥(ϕ0, ϕ1, ψ0, ψ1)∥2D1
≤
∫ T

0

|ψx(1, t)|2dt. (3.1.14)

2. For almost all irrational number a > 0, we have

c∥(ϕ0, ϕ1, ψ0, ψ1)∥2D1
≤
∫ T

0

|ψx(1, t)|2dt. (3.1.15)

Brief review of the literature. Observability and exact controllability have
been studied in an extensive number of publications. In [79], Lions studied the
complete and partial observability and controllability of coupled systems of either
hyperbolic-hyperbolic type or hyperbolic-parabolic type. These results assume that
the coupling parameter is sufficiently small. In [71], Komornik and Loretti extended
the study to the case of arbitrary coupling parameters. The null controllability of
the reaction diffusion system has been studied in [15], by deriving an observability
estimate for the linearized problem. In [108], Zhang and Zuazua obtained the exact
controllability for one-dimensional system of coupled heat-wave equations by proving
the observability estimate with a new type of Ingham inequality. In [9], (see also [6]
and [12] ) Alabau studied the boundary exact controllability of an abstract system of
two second order evolution equations coupled through the zero order terms wherein
only one of the equations is controlled. She proved that, by observing only one
component of the associated homogeneous system, one can get back a full weakened
energy of both components under a compatibility condition linking the operators
of each equation and for small coupling parameter. Consequently, using Hilbert
Uniqueness Method, she established an indirect exact controllability result for small
coupling parameter. Liu and Rao in [89], studied the exact controllability of a
system of one-dimensional wave equations coupled through the zero order terms
with boundary control acted on only one equation. Using the non harmonic analysis,
they established the weak observability inequalities, which depend on the ratio of
the wave propagation speeds.

Organization of the chapter. The remaining of the chapter is organized as
follows. Section 3.2 is dedicated to the proof of exact controllability while waves
propagate with equal speeds. Depending on the algebraic property of the coupling
parameter b, we deduce the corresponding observability spaces. In Section 3.3, we
consider the case where the waves propagate with different speeds. Using the divided
difference technique, the suitable weighted observability spaces are deduced.
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3.2 Observability and exact controllability under
equal speeds waves propagation condition. The
case a = 1

In this section, we study exact controllability of a system of coupled wave equations
propagating with equal speeds, which corresponds to the case a = 1.

3.2.1 Observability and exact controllability in spectral spaces

The aim of this subsection is to establish some observability inequalities by spectral
approach. We consider the following associated homogeneous system

ϕtt − ϕxx + bψt = 0 on (0, 1)× (0, T ),
ψtt − ψxx − bϕt = 0 on (0, 1)× (0, T ),
ϕ(0, t) = ϕ(1, t) = 0 for all t ∈ (0, T ),
ψ(0, t) = ψ(1, t) = 0 for all t ∈ (0, T ),

(3.2.1)

where b ̸= 0, denoted as the coupling parameter, is a real number.
Let us recall the energy space H defined in (3.3.2) endowed with the inner product

(Φ,Ψ)H =

∫ (
ϕxϕ̃x + θθ̃ + ψxψ̃x + ηη̃

)
dx ∀Φ = (ϕ, θ, ψ, η),Ψ = (ϕ̃, θ̃, ψ̃, η̃) ∈ H.

(3.2.2)
Now we define a linear unbounded operator A : D(A) −→ H by

D(A) = (H2 ∩H1
0 )(0, 1)×H1

0 (0, 1)× (H2 ∩H1
0 )(0, 1)×H1

0 (0, 1),

and
A(ϕ, ϕ̃, ψ, ψ̃) = (ϕ̃, ϕxx − bψ̃, ψ̃, ψxx + bϕ̃).

Then setting Φ = (ϕ, ϕt, ψ, ψt) a regular solution of (3.2.1), we rewrite it into an
evolution equation {

Φt = AΦ(t),
Φ(0) = Φ0 ∈ H. (3.2.3)

Since A is a skew adjoint operator with a compact resolvent, then, by a corollary of
the Lumer Philips’s theorem [94], A is the infinitesimal generator of a C0 semi-group
of contractions etA on H.
Let us consider the corresponding eigenvalue problem

λ2ϕ− ϕxx + bλψ = 0,
λ2ψ − ψxx − bλϕ = 0,
ϕ(0) = ϕ(1) = 0,
ψ(0) = ψ(1) = 0.

(3.2.4)

For some constants C, D let

ϕ(x) = C sin(nπx), ψ(x) = D sin(nπx) (3.2.5)
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be a solution of (3.2.4). It follows that{
(λ2 + (nπ)2)C + bλD = 0,
(λ2 + (nπ)2)D − bλC = 0,

which has a non-trivial solution if and only if

λ4 + λ2(2(nπ)2 + b2) + (nπ)4 = 0. (3.2.6)

Remark 3.2.1 (Condition on the coupling parameter). Denoting λ = iµ in system
(3.2.4), the previous system has a non trivial solution if and only if sinh(r1) = 0
and/or sinh(r2) = 0 where r1 and r2 are defined as:

r1 =

√
−2µ2 − µ

√
4ab2

2a
, r2 =

√
−2µ2 + µ

√
4ab2

2a
. (3.2.7)

Taking
b2 ̸= (k21 − k22)

2

2π2(k21 + k22)
, ∀k1, k2 ∈ Z⋆. (3.2.8)

one can write the expressions of ϕ and ψ defined in (3.2.5).

Proposition 3.2.2. Assume that a = 1 and condition (3.2.8) holds. Then, the
following asymptotic expansions hold

λ1,n = inπ + i
b

2
+ i

b2

8nπ
+
O(b4)

n3
, (3.2.9)

λ2,n = inπ − i
b

2
+ i

b2

8nπ
+
O(b4)

n3
, (3.2.10)

with the corresponding eigenfunctions

ϕ1,n(x) =
sin(nπx)

nπ
, ψ1,n(x) =

−i sin(nπx)
nπ

, (3.2.11)

ϕ2,n(x) =
−i sin(nπx)

nπ
, ψ2,n(x) =

sin(nπx)

nπ
. (3.2.12)

Proof. First solving the equation (3.2.6), we get

λ2n =
−2(nπ)2 − b2 ±

√
b4 + 4b2(nπ)2

2
. (3.2.13)

Using asymptotic expansion in (3.2.13), we get

λ21,n = −(nπ)2 − nπb− b2

2
− b3

8nπ
+
O(b5)

n3
, (3.2.14)

λ22,n = −(nπ)2 + nπb− b2

2
+

b3

8nπ
+
O(b5)

n3
. (3.2.15)
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Once again using asymptotic expansion in (3.2.14)-(3.2.15), we get (3.2.9)-(3.2.10).
Next for λ = λ1,n, setting

C1,n =
1

nπ
, D1,n = −

C1,n(λ
2
1,n + (nπ)2)

bλ1,n
=

(
−i
nπ

+
O(b2)

n3

)
,

in (3.2.5), we get the corresponding eigenfunctions (3.2.11).
Similarly for λ = λ2,n, setting

D2,n =
1

nπ
, C2,n =

D2,n(λ
2
2,n + (nπ)2)

bλ2,n
=

(
−i
nπ

+
O(b2)

n3

)
in (3.2.5), we get the corresponding eigenfunctions (3.2.12). The proof is thus com-
plete.

Remark 3.2.3. It is easy to check that all the roots λ1,n, λ2,n of equation (3.2.6) are
simple and different from zero. Then we set the eigenfunctions of the operator A as{

E1,n = (ϕ1,n, λ1,nϕ1,n, ψ1,n, λ1,nψ1,n),
E2,n = (ϕ2,n, λ2,nϕ2,n, ψ2,n, λ2,nψ2,n).

(3.2.16)

Using the asymptotic expansions (3.2.9)-(3.2.10) and (3.2.11)-(3.2.12), we can eas-
ily prove that E1,n, E2,n, n ∈ Z⋆, form a Riesz basis in the energy space H. We
distinguish different types of observability inequalities, depending on the algebraic
property of the coupling parameter b. In fact, as we will see in Proposition 3.2.4, if
there exist no integers k ∈ Z⋆ such that b = kπ, the observability holds in the energy
space H. In fact, the eigenvalues of the same branch satisfy an uniform gap condi-
tion, and also do the eigenvalues of different branches. So, we will apply the usual
Ingham’s theorem (see [73], Theorem 4.3), in order to get observability inequalities.
Nevertheless, if there exists some integer k0 ∈ Z⋆ such that b = k0π, the eigenvalues
of the same branch satisfy an uniform gap condition, while on different branches
they can be asymptotically close at a rate of order 1

n2 (see Proposition 3.2.7). So the
usual Ingham’s theorem used in the case b ̸= kπ is no longer valid. In order to get the
observability inequalities, a general Ingham’s theorem based on divided differences
will be used, which tolerates asymptotically close eigenvalues (see Theorem 9.4 in
[73])

According to the asymptotic behavior (3.2.9)-(3.2.10), we distinguish two cases.

3.2.1.1 The first case: a = 1 and b /∈ πZ

In this part, we assume that there exists no k ∈ Z⋆ such that b = kπ. Then, we
have the following result
Proposition 3.2.4. Assume that a = 1, condition (3.2.8) holds and b /∈ πZ. Then
there exists a constant γ > 0 depending only on b such that the two branches of
eigenvalues of A satisfy an uniform gap condition

γ := inf
m,n

|λ1,m − λ2,n| > 0. (3.2.17)
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Moreover, the eigenvalues of the same branch satisfy an uniform gap condition.

Proof. Using the asymptotic expansions (3.2.9)-(3.2.10), we have

|λ1,m − λ2,n| = |λ2,m − λ1,n| = |π(m− n) + b|+ O(b)

|m|
+
O(b)

|n|
.

Since there exists no integer k ∈ Z such that b = kπ, then there exists b̂ such that
0 < |b̂| < π in a way that |π(m− n) + b| ≥ |b̂|. Hence, for m,n ∈ Z⋆ one can deduce
that there exists γ = γ(b̂) > 0 such that

inf
m̸=n

|λ1,m − λ2,n| > γ.

Similarly, using (3.2.9)-(3.2.10), we have

|λj,m − λj,n| = |π(m− n)|+ O(b)

|m|
+
O(b)

|n|
, for j = 1, 2. (3.2.18)

It follows that
inf
m̸=n

|λj,m − λj,n| ≥ π.

Hence, one can deduce the uniform gap for eigenvalues laying on the same branch.
The proof is thus complete.

The observation is on the third components of the eigenfunctions E1,n, E2,n. From
(3.2.11)-(3.2.12), we see that

(ψ1,n)x(1) ∼ O(1), (ψ2,n)x(1) ∼ O(1). (3.2.19)

Because of the uniform gap condition between the eigenvalues, the usual space of
the observability is the energy space H. Therefore, we will use the general Ingham’s
theorem which requires an uniform gap condition (see [94], Theorem 4.3).
We can now prove our first main result.

Proof of Theorem 3.1.1. For all n ∈ Z⋆, all eigenvalues are different from zero
and are all algebraically simple. Given any initial data (ϕ0, ϕ1, ψ0, ψ1) ∈ H, using
the Riesz basis property one can write

(ϕ0, ϕ1, ψ0, ψ1) =
∑
n̸=0

(α1,nE1,n + α2,nE2,n).

Moreover, the solution of (3.2.3) can be written a

(ϕ(x, t), ϕt(x, t), ψ(x, t), ψt(x, t)) =
∑
n ̸=0

(α1,nE1,ne
λ1,nt + α2,nE2,ne

λ2,nt).

It follows that

ψx(1, t) =
∑
n ̸=0

(α1,n(ψ1,n)x(1)e
λ1,nt + α2,n(ψ2,n)x(1)e

λ2,nt). (3.2.20)
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But, back to (3.2.19), we can rewrite (3.2.20) as

ψx(1, t) ∼
∑
n ̸=0

(α1,ne
λ1,nt + α2,ne

λ2,nt).

Following a generalization of Ingham’s theorem (see [73], Theorem 9.1), the sequence
(einπt)n ̸=0 forms a Riesz basis in L2(0, T ) provided that

T > 2π/γ

where γ is the uniform gap between the eigenvalues. It follows that∫ T

0

|ψx(1, t)|2dt ∼
∑
n ̸=0

(|α1,n|2 + |α2,n|2).

This yield inequalities (3.1.5) and (3.1.6). The proof is now complete.

Now, let (ϕ, ϕt, ψ, ψt) be a solution of the homogeneous problem (3.2.1) and let
v(t) ∈ L2(0, T ). Then, multiplying the first and the second equation of (3.1.2) by ϕ
and ψ respectively, and integrating by parts, we obtain formally

∫ 1

0

ut(T )ϕ(T )dx+

∫ 1

0

yt(T )ψ(T )dx−
∫ 1

0

u(T )ϕt(T )dx

−
∫ 1

0

y(T )ψt(T )dx−
∫ 1

0

bu(T )ψ(T )dx+

∫ 1

0

by(T )ϕ(T )dx

=

∫ 1

0

ut(0)φ(0)dx+

∫ 1

0

yt(0)ψ(0)dx−
∫ 1

0

ϕt(0)u(0)dx

−
∫ 1

0

ψt(0)y(0)dx−
∫ 1

0

bu(0)ψ(0)dx+

∫ 1

0

by(0)ϕ(0)dx

−
∫ T

0

ψx(1, t)v(t)dt.

(3.2.21)

We define the linear form L by

L(Φ0) = ⟨(u1,−u0, y1,−y0), Φ0⟩H′×H −
∫ T

0

ψx(1, t)v(t)dt. (3.2.22)

Then, we obtain a weak formulation of system (3.1.2)

⟨ (ut(T, x),−u(T, x), yt(T, x),−y(T, x)), Φ(T ) ⟩H′×H = L(Φ0), ∀Φ0 ∈ H. (3.2.23)

Theorem 3.2.5. Assume that a = 1, condition (3.2.8) holds and b /∈ πZ. Let 0 <

|b̂| < π be the resulting quantity of b−k̂π, where k̂ ∈ N⋆, such that k̂π < |b| < (k̂+1)π
and let

T >
2π

|b̂|
.
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Then, for all initial data (u0, u1, y0, y1) ∈ (L2(0, 1)×H−1(0, 1))2 and all v ∈ L2(0, T ),
system (3.1.2) admits a unique weak solution

(u, ut, y, yt) ∈ C0
(
[0, T ]; (L2(0, 1)×H−1(0, 1))2

)
in the sense that the variational equation (3.2.23) is satisfied for all Φ0 ∈ H on the
interval [0, T ]. Moreover, the linear mapping

(U0, v) −→ U

is continuous from (L2(0, 1)×H−1(0, 1))2×L2(0, T ) into (L2(0, 1)×H−1(0, 1))2 with
the corresponding strong topology.

Proof. Using the direct inequality (3.1.5), we deduce that

∥ L ∥L(H,R) ≤ ∥ v ∥L2(0,T ) + ∥ U0 ∥H′ . (3.2.24)

By virtue of Riesz-Fréchet’s representation theorem, for each 0 ≤ t ≤ T , there exists
a unique element Z(x, t) ∈ H′ such that

L(Φ0) = ⟨Z,Φ0 ⟩H′×H, ∀Φ0 ∈ H. (3.2.25)

Then, setting Z(x, t) = e−tAU(x, t) in (3.2.25) we get (3.2.23). Moreover, we have

∥ U(t) ∥H′≤ c

(
∥ v ∥L2(0,T ) + ∥ U0 ∥H′

)
, ∀t ∈ [0, T ]. (3.2.26)

This implies the continuity of the linear mapping. The proof is thus complete.

It is well known that the observability of system (3.2.1) implies the exact con-
trollability of system (3.1.2) (see [70, 79]). We can now state the following exact
controllability result.

Theorem 3.2.6. Assume that a = 1, condition (3.2.8) holds and there exist no
integers k ∈ Z, such that b = kπ. Let 0 < |b̂| < π the resulting quantity of b − k̂π,
where k̂ ∈ N⋆, such that k̂π < |b| < (k̂ + 1)π and let

T >
2π

|b̂|
.

Then system (3.1.2) is exactly controllable at the moment T . More precisely, for any
initial data (u0, u1, y0, y1) ∈ (L2(0, 1) × H−1(0, 1))2, there exists a control function
v ∈ L2(0, T ) such that the solution (u, ut, y, yt) ∈ (L2(0, 1) × H−1(0, 1))2, of the
controlled system (3.1.2) satisfies the null final conditions

u(x, T ) = ut(x, T ) = y(x, T ) = yt(x, T ) = 0.
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Proof. Let Φ0 = (ϕ0, ϕ1, ψ0, ψ1) ∈ D(A) and Φ = (ϕ, ϕt, ψ, ψt) ∈ D(A) be the
corresponding solution of problem (3.2.1). Thanks to the observability inequality
(3.1.6), the semi-norm

∥Φ0∥F =
(∫ T

0

|ψx(1, t)|2dt
)1/2

, (3.2.27)

is a norm on D(A). We denote by F the completion of D(A) with respect to
this norm, thus we obtain an Hilbert space. Thanks to the direct and inverse
observability inequalities, we have the following continuous and dense imbeddings:(

H1
0 (0, 1)× L2(0, 1)

)2 ⊂ F ⊂
(
L2(0, 1)×H−1(0, 1)

)2
.

Consequently, by duality, we have the following continuous embedding:(
H1

0 (0, 1)× L2(0, 1)
)2 ⊂ F ′ ⊂

(
L2(0, 1)×H−1(0, 1)

)2
.

Now, by choosing the control v(t) = ψx(1, t), we solve the backward problem
χtt − χxx + αζ = 0 on (0, 1)× (0, T ),
ζtt − ζxx + αχ = 0 on (0, 1)× (0, T ),
χ(0, t) = ζ(0, t) = ζ(1, t) = 0 for all t ∈ (0, T ),
ζ(1, t) = −ψx(1, t) for all t ∈ (0, T ),
χ(x, T ) = χt(x, T ) = ζ(x, T ) = ζt(x, T ) = 0 on (0, 1).

(3.2.28)

Following Theorem 3.2.5, the backward problem (3.2.28) admits a unique weak solu-
tion (χ, χt, ζ, ζt) ∈ C0 ([0, T ]; (L2(0, 1)×H−1(0, 1))2). Next, we define the operator

Λ :
(
H1

0 (0, 1)× L2(0, 1)
)2 → (

L2(0, 1)×H−1(0, 1)
)2

Λ(ϕ0, ϕ1, ψ0, ψ1) = (χt(0),−χ(0), ζt(0),−ζ(0)).

From (3.2.23) and (3.2.28), it follows that

⟨ΛΦ0, Φ̃0⟩ =
∫ T

0

ψx(1, t)ψ̃x(1, t)dt ∀Φ0, Φ̃0 ∈ H. (3.2.29)

Therefore, we have

|⟨ΛΦ0, Φ̃0⟩| ≤ ∥Φ0∥F∥Φ̃0∥F ∀Φ0, Φ̃0 ∈ H. (3.2.30)

Hence, since H is dense in F by definition of F , the linear map ΛΦ0 can be extended
in a unique way to a continuous map on F and consequently ΛΦ0 ∈ F ′. Moreover,
using (3.2.30) we deduce that the linear map Λ that maps Φ0 ∈ H to ΛΦ0 ∈ F ′ is
continuous when H is equipped with the norm ∥ · ∥F . Hence, since H is dense in
F , the linear map Λ can be extended in a unique way to a continuous linear map,
still denoted by Λ, from F to F ′. In addition, we have

⟨ΛΦ0, Φ̃0⟩F ′,F =
(
Φ0, Φ̃0

)
F ∀Φ0, Φ̃0 ∈ H (3.2.31)
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where ( · , · )F denotes the scalar product associated with the norm ∥ · ∥F . The con-
tinuity of Λ follows from the well-posedness of the problem (3.1.2) and (3.2.28). The
coercivity of Λ comes from the inverse observability inequality. Thanks to the Lax-
Milgram theorem, Λ is an isomorphism from F onto F ′. Let U0 = (u0, u1, y0, y1) ∈
(H1

0 (Ω)× L2(Ω))
2 ⊂ F ′, and define (χ(0), χt(0), ζ(0), ζt(0)) = U0. Then equation

Λ(ϕ0, ϕ1, ψ0, ψ1) := (χt(0),−χ(0), ζt(0),−ζ(0))

has a unique solution (ϕ0, ϕ1, ψ0, ψ1) ∈ F . But, according to the uniqueness of the
solution of the problem (3.1.2), we have

u(x, T ) = ut(x, T ) = y(x, T ) = yt(x, T ) = 0.

The proof is thus complete.

3.2.1.2 The second case: a = 1 and b ∈ πZ⋆

It is natural to ask, what happens if condition b /∈ πZ does not hold i.e. if there exists
some integer k0 ∈ Z⋆ such that b = k0π. Indeed, from the asymptotic expansions
(3.2.9)-(3.2.10), the eigenvalues on the same branch satisfy an uniform gap condition,
while on different branches they can be asymptotically close. So, the usual Ingham’s
theorem does not work in this situation. We will prove the following result.

Proposition 3.2.7. Assume that a = 1, condition (3.2.8) holds and there exists
some integer k0 ∈ Z⋆ such that b = k0π. Then, there exist constants c2 > c1 > 0
depending only on b such that for all |m|, |n| ≥ N we have

|λ1,m − λ2,n| ≥
c1
m2

and |λ1,m − λ2,n| ≥
c1
n2
, (3.2.32)

and there exist infinitely many integers m,n such that

|λ1,m − λ2,n| ≤
c2
m2

and |λ1,m − λ2,n| ≤
c2
n2
. (3.2.33)

Moreover, there exists a constant γ > 0 depending only on b such that the eigenvalues
of the same branch satisfy an uniform gap condition

|λj,m − λl,n| ≤ 2γ =⇒ j ̸= l. (3.2.34)

Proof. Using the asymptotic expansions (3.2.9)-(3.2.10), and for b = k0π, we have

|λj,m − λl,n| =
∣∣∣∣(m− n)π + k0π +

b2

8mπ
− b2

8nπ
+
O(b)

m3
+
O(b)

n3

∣∣∣∣. (3.2.35)

We distinguish cases:

Case 1 m = n. We have

|λj,m − λl,m| = π|k0|+
O(b)

|m|3
≥ π|k0|

m2
. (3.2.36)
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Case 2 m− n+ k0 = 0. We have,

|λj,m − λl,n| =
k0π

8

∣∣∣∣ 1m − 1

n

∣∣∣∣+O(b)|n|3
+
O(b)

|m|3
=
k0π

8

∣∣∣∣ 1

n− k0
− 1

n

∣∣∣∣+O(b)|n|3
≥ k20π

8n2
.

Let us now consider the leading term in the previous inequality, for all m ∈ Z⋆ such
that |m| ≥ 1, and if |m| > |n| we have 1

|mn| ≤
1
n2 .

Conversely, if |m| < |n|, we have 1
|mn| ≤

1
m2 . Hence one can deduce (3.2.33).

The proof is thus complete.

Proposition 3.2.8. Assume that a = 1, condition (3.2.8) holds and there exists some
integer k0 ∈ Z⋆ such that b = k0π. We rearrange the two branches of eigenvalues
into one sequence (λn)n ̸=0 such that (Imλn)n ̸=0 is strictly increasing. Assume that

0 < Imλn+1 − Imλn ≤ γ, (3.2.37)

then we have
Imλn − Imλn−1 > γ, Imλn+2 − Imλn+1 > γ. (3.2.38)

We say that Imλn, Imλn+1 is a chain of close exponents relative to γ of length 2.

Proof. The conditions (3.2.37) and (3.2.17) imply that λn, λn+1 belong to different
branches of eigenvalues. If λn−1, λn belong to the same branch of eigenvalues, then
(3.2.17) implies that

Imλn − Imλn−1 > 2γ.

In the opposite case, λn−1, λn+1 must belong to the same branch of eigenvalues.
Once again (3.2.17) implies that

Imλn+1 − Imλn−1 > 2γ. (3.2.39)

Then, from (3.2.37) and (3.2.39), we get

Imλn − Imλn−1 = (Imλn+1 − Imλn−1)− (Imλn+1 − Imλn) > 2γ − γ = γ.

In a similar way, one can show that

Imλn+2 − λn+1 > γ.

The proof is complete.

Due to the fact that the eigenvalues can be asymptotically close, the inverse ob-
servability inequality is not true in the energy space H. That is why we define the
following weighted spectral space

D2 =

{
(ϕ0, ϕ1, ψ0, ψ1) =

∑
n ̸=0

(α1,nE1,n + α2,nE2,n)n
2

}
.
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Since the set {E1,n, E2,n} is a Riesz basis in the energy space H, the space D2 is
obviously a Hilbert space equipped with the norm∑

n ̸=0

(|α1,n|2 + |α2,n|2).

We can therefore proceed to the proof of our second main result.

Proof of Theorem 3.1.2. The proof is divided into two steps.

Step 1: Inverse observability inequality. From (3.2.6), one can deduce that
all eigenvalues are different from zero and are all algebraically simple. Using the
Riesz basis property, given any initial data (ϕ0, ϕ1, ψ0, ψ1), we have

(ϕ0, ϕ1, ψ0, ψ1) =
∑
n̸=0

(α1,nE1,n + α2,nE2,n)n
2.

Using again the Riesz property the solution of (3.2.3) can be written as

(ϕ(x, t), ϕt(x, t), ψ(x, t), ψt(x, t)) =
∑
n ̸=0

(α1,nE1,ne
λ1,nt + α2,nE2,ne

λ2,nt)n2.

It follows that

ψx(1, t) =
∑
n ̸=0

(α1,n(ψ1,n)x(1)e
λ1,nt + α2,n(ψ2,n)x(1)e

λ2,nt)n2. (3.2.40)

Now we rearrange the two branches of eigenvalues (λ1,n)n ̸=0, (λ2,n)n ̸=0 into one se-
quence (λn)n ̸=0 such that the sequence (Imλn)n ̸=0 is strictly increasing. Following
Proposition 3.2.8, all chain Imλn, Imλn+1 of close exponents relative to γ is of length
2. Let A denote the set of integers n ∈ Z⋆ such that the condition (3.2.37) holds
true and let

B = Z⋆ \ {n, n+ 1 : n ∈ A}.
We denote by an the coefficient before eλ1,nt or eλ2,nt in (3.2.40). We can rewrite it
into

ψx(1, t) =
∑
n∈B

ane
λnt +

∑
n∈A

ane
λnt + an+1e

λn+1t

=
∑
n∈B

ane
λnt +

∑
n∈A

((an + an+1)e
λnt + (λn+1 − λn)an+1en+1(t)),

where en+1(t) denotes the divided difference of the chain of close exponents λn, λn+1

relative to γ

en+1(t) =
eλn+1t − eλnt

λn+1 − λn
.

Following Theorem 9.4 in [73], the sequence

(eλnt)n∈B, (e
λnt, en+1(t))n∈A
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forms a Riesz sequence in L2(0, T ) provided that T > 2πD+, where D+ is the upper
density of the sequence (λn)n∈Z⋆ , defined as

D+(r) = lim
n→∞

n+(r)

r
,

where n+(r) denotes the largest number of terms of the sequence (λn)n≥0 contained
in an interval of length r. To be more precise,

D+ =
2

π
.

It follows that∫ T

0

|ψx(1, t)|2dt ∼
∑
n∈B

|an|2 +
∑
n∈A

(|an + an+1|2 + |λn+1 − λn|2|an+1|2). (3.2.41)

The right hand side of the assertion (3.2.32) of Proposition 3.2.7 implies that

|an + an+1|2 + |λn+1 − λn|2|an+1|2 ≥ c(
|an|2

|n|4
+

|an+1|2

|n+ 1|4
) (3.2.42)

Inserting (3.2.42) into (3.2.41) and returning to the previous notations, we get∫ T

0

|ψx(1, t)|2dt ≥ c
∑
n∈B

|an|2

|n|4
+
∑
n∈A

(
|an|2

|n|4
+

|an+1|2)
|n+ 1|4

≥ c
∑
n∈Z⋆

|an|2

|n|4

= c
∑
n ̸=0

(|α1,n|2 + |α2,n|2). (3.2.43)

This leads to the desired inverse observability inequality.

Step 2: Direct inequality. We consider the eigenvectors defined in (3.2.16),
hence we have

(ϕ0, ϕ1, ψ0, ψ1) =
∑
n ̸=0

(α1,nE1,n + α2,nE2,n).

Thus

(ϕ(x, t), ϕt(x, t), ψ(x, t), ψt(x, t)) =
∑
n ̸=0

(α1,nE1,ne
λ1,nt + α2,nE2,ne

λ2,nt),

and consequently,

ψx(1, t) =
∑
n ̸=0

(α1,n(ψ1,n)x(1)e
λ1,nt + α2,n(ψ2,n)x(1)e

λ2,nt).

By (3.2.19), we recall that

(ψ1,n)x(1) ∼ O(1), (ψ2,n)x(1) ∼ O(1).
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Consequently,

ψx(1, t) =
∑
n ̸=0

(α̃1,ne
λ1,nt + α̃2,ne

λ2,nt)

=
∑
n ̸=0

(α̃1,n + α̃2,n)e
λ1,nt + α̃2,n(e

λ2,nt − eλ1,nt)

=
∑
n ̸=0

(α̃1,n + α̃2,n)e
λ1,nt + α̃2,nen(t)(λ2,n − λ1,n)

with
en(t) =

eλ2,nt − eλ1,nt

λ2,n − λ1,n
.

Since the sequence eλ1,nt, en(t) forms a Riesz basis in L2(0, T ) provided that T > 4,
we deduce the following direct observability inequality∫ T

0

|ψx(1, t)|2dt ∼
∑
n ̸=0

(α̃2
1,n + α̃2

2,n) +
α̃2
2,n

n4

≤ c̃
∑
n ̸=0

(
α̃2
1,n + α̃2

2,n

)
≤ c1

∑
n ̸=0

(
α2
1,n + α2

2,n

)
This gives (3.1.13). The proof is thus complete.

Remark 3.2.9. From inequality (3.2.33), there exist an infinity of (ϕ0, ϕ1, ψ0, ψ1) ∈ D2

such that the corresponding inverse inequality of (3.1.9) holds.

Similarly as in the first case, using the HUM method (see [70, 79]), we have the
following exact controllability result.

Theorem 3.2.10. Assume that a = 1, condition (3.2.8) holds and there exists
some integer k0 ∈ Z, such that b = k0π. Let T > 4, then system (3.1.2) is exactly
controllable at the moment T . More precisely, for any initial data (u0, u1, y0, y1) ∈
D′

2, there exists a control function v ∈ L2(0, T ) such that the solution (u, ut, y, yt) ∈
D′

2, of the controlled system (3.1.2) satisfies the null final conditions

u(x, T ) = ut(x, T ) = y(x, T ) = yt(x, T ) = 0.

It is natural to think about the characterization of the spectral space D2. For this
aim, we have the following new subsection.

3.2.2 Observability and exact controllability in usual spaces.
The case a = 1 and b ∈ πZ⋆

The weighted spectral space D2 is defined by means of the eigenvectors (E1,n)n ̸=0 and
(E2,n)n ̸=0 with weights. So, the four exponents (ϕ0, ϕ1, ψ0, ψ1) are a priori involved
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together. In order to get the observability or exact controllability in usual energy
spaces, we have to separate the components (ϕ0, ϕ1, ψ0, ψ1). To do so, we will use
the theorem below whose proof is established in [89].

Theorem 3.2.11. Let (xn)n ̸=0 and (yn)n ̸=0 be Riesz basis of Hilbert spaces X and Y
respectively, and (fn)n ̸=0 and (gn)n ̸=0 be Bessel sequences of X and Y with suitably
small bounds respectively. Define

D =

{
(x, y) = αn(xn, gn) + βn(fn, yn) :

∑
n ̸=0

(|αn|2 + |βn|2) <∞
}
.

Then we have D = X × Y.

Now, using the asymptotic expansions (3.2.11)-(3.2.12), we have

E1,n = (xn, gn), E2,n = (fn, yn),

with 

xn =
(

sin(nπx)
nπ

, i sin(nπx)
)
,

gn =
(

−i sin(nπx)
nπ

, sin(nπx)
)
,

yn =
(

−i sin(nπx)
nπ

, sin(nπx)
)
,

fn =
(

sin(nπx)
nπ

, i sin(nπx)
)
.

(3.2.44)

Next, for any s ≥ 0, we define the space

Xs =

{
(ϕ̂, ψ̂) =

∑
n ̸=0

βnn
syn

}
, ∥(ϕ̂, ψ̂)∥2Xs

=
∑
n ̸=0

|βn|2. (3.2.45)

Following Theorem 3.2.11, we can state the following result.

Corollary 3.2.12. Let a = 1, and suppose that there exists some integer k0 ∈ Z⋆

such that b = k0π. Then we have the following identification

D2 = X2 ×X2. (3.2.46)

Furthermore, for any s ≥ 0, we define

Vs =

{
f =

∑
n>0

αn
sin(nπx)

ns

}
, ∥f∥2Vs

=
∑
n>0

|αn|2. (3.2.47)

Thus with the pivot space L2(0, 1), we have

X2 = V ′
1 × V ′

2 .

It follows then that,
D2 = V ′

1 × V ′
2 × V ′

1 × V ′
2 .

Consequently, we have the following observability results.
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Theorem 3.2.13. Assume that a = 1, condition (3.2.8) holds and there exists some
k0 ∈ Z⋆ such that b = k0π. Let T > 4, then there exists a constant c3 > 0 such that
the following direct inequality holds∫ T

0

|ψx(1, t)|2dt ≤ c3∥(ϕ0, ϕ1, ψ0, ψ1)∥2H, (3.2.48)

for all solution Φ = (ϕ, ϕt, ψ, ψt) solving the corresponding homogeneous Cauchy
problem.
Moreover, there exists a constant 0 < c4 < c3, such that the following inverse
observability inequality holds

c4∥(ϕ0, ϕ1, ψ0, ψ1)∥2V ′
1×V ′

2×V ′
1×V ′

2
≤
∫ T

0

|ψx(1, t)|2dt. (3.2.49)

We can deduce that the observability space is (H−1(0, 1)×H−2(0, 1))2. Finally, using
the HUM method (see [70, 79] and the case 1), we have the following controllability
result.

Theorem 3.2.14. Assume that a = 1, condition (3.2.8) holds and there exists
some integer k0 ∈ Z, such that b = k0π. Let T > 4, then system (3.1.2) is exactly
controllable at the moment T . More precisely, for any initial data (u0, u1, y0, y1) ∈
V2 × V1 × V2 × V1, there exists a control function v ∈ L2(0, T ) such that the solution
(u, ut, y, yt) ∈ V2 × V1 × V2 × V1, of the controlled system (3.1.2) satisfies the null
final conditions

u(x, T ) = ut(x, T ) = y(x, T ) = yt(x, T ) = 0.

Remark 3.2.15. Unlike the first case , in the second case (where a = 1 and b ∈ πZ⋆),
the two branches of eigenvalues are close in the order 1

n2 . Because of the closeness
of the eigenvalues, the observability space loses two derivatives and passes from the
space of type

(H1
0 (0, 1)× L2(0, 1))2

to the space of type
(H−1(0, 1)×H−2(0, 1))2.

Consequently, using the HUM method, the space of controlled initial data passes
from the space of type

(L2(0, 1)×H−1(0, 1))2

to the space of type
(H2(0, 1)×H1(0, 1))2

with suitable boundary conditions.
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3.3 Exact controllability under different speeds
waves propagation condition. The case a ̸= 1

In this section, the waves are considered to propagate with different speeds. This
can be established by taking a ̸= 1 in the second equation of the main system (3.1.2).
We will establish the exact controllability of the system in consideration.

3.3.1 Observability inequalities and exact controllability in
spectral spaces

The aim of this subsection is to establish some observability inequalities by spectral
approach. We consider the following associated homogeneous system

ϕtt − ϕxx + bψt = 0 on (0, 1)× (0, T ),
ψtt − aψxx − bϕt = 0 on (0, 1)× (0, T ),
ϕ(0, t) = ϕ(1, t) = 0 for t ∈ (0, T ),
ψ(0, t) = ψ(1, t) = 0 for t ∈ (0, T ).

(3.3.1)

First, we define the energy space H by

H = (H1
0 (0, 1)× L2(0, 1))2, (3.3.2)

endowed for all Φ = (ϕ, θ, ψ, η),Ψ = (ϕ̃, θ̃, ψ̃, η̃) ∈ H, with the inner product

(Φ,Ψ)H =

∫ (
ϕxϕ̃x + θθ̃ + aψxψ̃x + ηη̃

)
dx. (3.3.3)

Next, we define the linear unbounded operator A : D(A) −→ H by

D(A) = ((H2(0, 1) ∩H1
0 (0, 1))×H1

0 (0, 1))
2,

A(ϕ, ϕ̃, ψ, ψ̃) = (ϕ̃, ϕxx − bψ̃, ψ̃, aψxx + bϕ̃).

Then setting Φ = (ϕ, ϕt, ψ, ψt) a regular solution of (3.3.1), we rewrite it into an
evolution equation {

Φt = AΦ(t),
Φ(0) = Φ0 ∈ H. (3.3.4)

It is easy to see that A is a maximal dissipative operator, then it generates a C0

semi-group of contractions etA on the Hilbert space H.
Now let us consider the following corresponding eigenvalue problem

λ2ϕ− ϕxx + bλψ = 0,
λ2ψ − aψxx − bλϕ = 0,
ϕ(0) = ϕ(1) = 0,
ψ(0) = ψ(1) = 0.

(3.3.5)
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For some constants C,D let

ϕ(x) = C sin(nπx), ψ(x) = D sin(nπx), (3.3.6)

be a solution of (3.3.5). We have thus{
(λ2 + (nπ)2)C + bλD = 0,
(λ2 + a(nπ)2)D − bλC = 0,

which has a non trivial solution if and only if

λ4 + λ2[(a+ 1)(nπ)2 + b2] + a(nπ)4 = 0. (3.3.7)

Remark 3.3.1. [Condition on the coupling parameter] Denoting λ = iµ in system
(3.3.5), the previous system has a non trivial solution if and only if sinh(r1) = 0
and/or sinh(r2) = 0 where r1 and r2 are defined as:

r1 =

√
−µ2(a+ 1)− µ

√
µ2(a− 1)2 + 4ab2

2a
, r2 =

√
−µ2(a+ 1) + µ

√
µ2(a− 1)2 + 4ab2

2a
.

(3.3.8)
Taking

b2 ̸= (k21 − ak22)(ak
2
1 − k22)

π2(a+ 1)(k21 + k22)
, ∀k1, k2 ∈ Z⋆, (3.3.9)

one can write the expressions of ϕ and ψ defined in (3.3.6).

Proposition 3.3.2. Assume that 0 < a ̸= 1 and condition (3.3.9) is satisfied. Then
the following asymptotic expansions hold

λ1,n = i
√
anπ +

i
√
ab2

2(a− 1)(nπ)
− i

√
ab4(a+ 3)

8(nπ)3(a− 1)3
+
O(a, b)

n5
, (3.3.10)

λ2,n = inπ − ib2

2(a− 1)nπ
+

ib4(3a+ 1)

8(nπ)3(a− 1)3
+
O(a, b)

n5
, (3.3.11)

with the corresponding eigenfunctions

ϕ1,n(x) =
sin(nπx)

(nπ)2
, ψ1,n(x) =

i(1− a)

b
√
a

sin(nπx)

nπ
, (3.3.12)

ϕ2,n(x) =
i(1− a)

b

sin(nπx)

nπ
, ψ2,n(x) =

sin(nπx)

(nπ)2
. (3.3.13)

Proof. First, solving equation (3.3.7), we get

λ2n =
−(a+ 1)(nπ)2 − b2 ±

√
(a− 1)2(nπ)4 + 2(a+ 1)b2(nπ)2 + b4

2
. (3.3.14)
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Using the asymptotic expansion in (3.3.14) we get

λ21,n =
−ab2

a− 1
− a(nπ)2 +

ab4

(a− 1)3(nπ)2
+
O(a, b)

n4
, (3.3.15)

λ22,n =
b2

a− 1
− (nπ)2 − ab4

(a− 1)3(nπ)2
+
O(a, b)

n4
. (3.3.16)

One again, using asymptotic expansion in (3.3.15)-(3.3.16) we get (3.3.10)-(3.3.11).
Next for λ = λ1,n, setting

C1,n =
1

(nπ)2
, D1,n =

inπ(1− a)

b
√
a

C1,n =
i(1− a)

b
√
a

1

nπ

in (3.3.6), we get the corresponding eigenfunctions (3.3.12).
Similarly, for λ = λ2,n, setting

D2,n =
1

(nπ)2
, C2,n =

inπ(1− a)

b
D2,n =

i(1− a)

b

1

nπ

in (3.3.6), we get the corresponding eigenfunctions (3.3.13). The proof is thus com-
plete.

Remark 3.3.3. It is easy to check that all the roots λ1,n, λ2,n of equation (3.3.7) are
simple and different from zero. Then we set the eigenfunctions of the operator A as{

E1,n = (ϕ1,n, λ1,nϕ1,n, ψ1,n, λ1,nψ1,n),
E2,n = (ϕ2,n, λ2,nϕ2,n, ψ2,n, λ2,nψ2,n).

(3.3.17)

Using the asymptotic expansions (3.3.10)-(3.3.11) and (3.3.12)-(3.3.13), we can eas-
ily prove that E1,n, E2,n, n ∈ Z⋆, form a Riesz basis in the energy space H. But the
observability is not true in this space because of the closeness of the eigenvalues.
In fact, the eigenvalues of the same branch satisfy an uniform gap condition, but
the eigenvalues of different branches can be asymptotically close at a rate which de-
pends on the algebraic properties of the coupling parameter b and on the arithmetic
property of the ratio of the speeds of propagation a. We will thus proceed as we did
in the case the case a = 1 and b ∈ πZ⋆.

Proposition 3.3.4. Assume that 0 < a ̸= 1 and condition (3.3.9) is satisfied. Then
there exists a constant γ > 0 depending only on a and b such that

|λj,m − λl,n| ≤ 2γ =⇒ j ̸= l. (3.3.18)

Moreover, there exist constants c′ > c > 0 depending only on a and b such that

1. If a is a rational number different from p2/q2 for all integers p, q, then for all
|m|, |n| ≥ N , for N large enough, we have

|λ1,m − λ2,n| ≥
c

|m|
and |λ1,m − λ2,n| ≥

c

|n|
, (3.3.19)
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and there exist infinitely many integers m, n such that

|λ1,m − λ2,n| ≤
c′

|m|
and |λ1,m − λ2,n| ≤

c′

|n|
. (3.3.20)

2. If a = p20/q
2
0 ̸= 1 for some integers p0, q0, then for all |n|, |m| ≥ N , for N

large enough, we have

|λ1,m − λ2,n| ≥
c

|m|
and |λ1,m − λ2,n| ≥

c

|n|
, (3.3.21)

and there exist infinitely many integers m, n such that

|λ1,m − λ2,n| ≤
c′

|m|
and |λ1,m − λ2,n| ≤

c′

|n|
. (3.3.22)

3. For almost all positive irrational number a > 0 and all |n|, |m| ≥ N , for N
large enough, we have

|λ1,m − λ2,n| ≥
c

|m|
and |λ1,m − λ2,n| ≥

c

|n|
, (3.3.23)

and there exist infinitely many integers m, n such that

|λ1,m − λ2,n| ≤
c′

|m|
and |λ1,m − λ2,n| ≤

c′

|n|
. (3.3.24)

Proof. The assertion (3.3.18) follows directly from the asymptotic expansions (3.3.10)-
(3.3.11) and the fact that all the eigenvalues are geometrically simple.
Now using the asymptotic expansions (3.3.10)-(3.3.11), we have∣∣∣∣λ1,m − λ2,n

m

∣∣∣∣= π

∣∣∣∣√a− n

m

∣∣∣∣+O(a, b)m2
+
O(a, b)

|mn|
. (3.3.25)

If |
√
a− n

m
| ≥ 1

2

√
a, then the estimates (3.3.19),(3.3.21) and (3.3.23) are trivial.

If |
√
a− n

m
| ≤ 1

2

√
a, then m ∼ n and (3.3.25) becomes∣∣∣∣λ1,m − λ2,n

m

∣∣∣∣= π

∣∣∣∣√a− n

m

∣∣∣∣+O(a, b)m2
. (3.3.26)

It is then sufficient to consider the leading term in (3.3.26).

Case (1). Let a = p0/q0 be a reduced rational number. Then
√
a is a root of

the integer polynomial q0x2 − p0 of second degree. Since a ̸= p2/q2 for all integers
p, q, then the integer polynomial q0x2 − p0 is irreducible. This means that

√
a is a



3.3 Exact controllability under different speeds waves propagation
condition. The case a ̸= 1 121

quadratic algebraic number. Thanks to the Liouville’s theorem on the approxima-
tion of algebraic numbers (see [31], Theorem 1.2), there exists a constant c0 > 0
depending only on a such that for all |n|, |m| ≥ N we have∣∣∣∣√a− n

m

∣∣∣∣≥ c0
m2

.

On the other hand, since
√
a is an irrational number, using the Dirichlet’s clas-

sic theorem on number theory (see [31], Theorem 1.1), there exist infinitely many
integers m,n such that ∣∣∣∣√a− n

m

∣∣∣∣≤ 1

m2
.

This gives the estimates (3.3.19)-(3.3.20).

Case (2). We return to (3.3.25), we get

|λ1,m − λ2,n| = π|
√
am− n|+ O(a, b)

|m|
+
O(a, b)

|n|
.

Since
√
a ∈ Q, it is sufficient to consider the case

√
am = n. Using the fact that

m ∼ n, we deduce that
|λ1,m − λ2,n| ≥

c

|m|
.

On the other hand, by taking m = q0k and n = p0k, k ∈ Z⋆, and using the
asymptotic expansions (3.3.10)-(3.3.11), we easily get that

|λ1,q0k − λ2,p0k| ≤
c′

|m|
.

This gives the estimates (3.3.21)-(3.3.22).

Case (3). Firstly, following Khintchine’s Theorem on Diophantine approximation
(see [31], Theorem 1.10), there exist only finitely many integers m,n such that∣∣∣∣√a− n

m

∣∣∣∣≤ 1

m2(ln|m|)2
.

It follows thus from (3.3.26), that there exists a constant C > 0 and N ∈ N, large
enough, such that, for all |m|, |n| ≥ N , we have∣∣∣∣λ1,m − λ2,n

m

∣∣∣∣≥ c

m2
.

This gives the estimate (3.3.23). Secondly, following Hurwitz’s Theorem (see [62])
for any irrational real number

√
a, there exist infinitely many integers m, n > 0 such

that ∣∣∣∣√a− n

m

∣∣∣∣≤ 1√
5m2

.

This gives the estimate (3.3.24). The proof is thus complete.
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Proposition 3.3.5. Assume that 0 < a ̸= 1 and condition (3.3.9) holds. We rear-
range the two branches of eigenvalues into one sequence (λn)n̸=0 such that (Imλn)n̸=0

is strictly increasing. Assume that

0 < Imλn+1 − Imλn ≤ γ, (3.3.27)

then we have
Imλn − Imλn−1 > γ, Imλn+2 − Imλn+1 > γ. (3.3.28)

We say that Imλn, Imλn+1 is a chain of close exponents relative to γ of length 2.

By (3.3.12)-(3.3.13) we see that

(ψ1,n)x(1) ∼ O(1), (ψ2,n)x(1) ∼ O(
1

n
). (3.3.29)

Due to the fact that the eigenvalues can be asymptotically close, the inverse observ-
ability inequalities are not true in the energy space H. That is why we define the
following weighted spectral space

D1 =

{
(ϕ0, ϕ1, ψ0, ψ1) =

∑
n ̸=0

(β1,nE1,n + β2,nnE2,n)n

}
. (3.3.30)

Since the set {E1,n, E2,n} is a Riesz basis in the energy space H, the space D1 is
obviously a Hilbert space equipped with the norm∑

n ̸=0

(|β1,n|2 + |β2,n|2).

We are now ready to prove our observability inequalities result.

Proof of Theorem 3.1.3. The proof is divided into two steps.

Step 1: Inverse observability inequality. From (3.3.7), we can deduce that
all eigenvalues are different from zero and are all algebraically simple. Given any
initial data such as

(ϕ0, ϕ1, ψ0, ψ1) =
∑
n ̸=0

(β1,nE1,n + β2,nnE2,n)n ∈ D1,

for the cases (1) and (2) respectively. Using the Riesz property the solution of (3.3.4)
can be written as

(ϕ(x, t), ϕt(x, t), ψ(x, t), ψt(x, t)) =
∑
n ̸=0

(β1,nE1,ne
λ1,nt + β2,nnE2,ne

λ2,nt)n.

It follows that

ψx(1, t) =
∑
n ̸=0

(β1,n(ψ1,n)x(1)e
λ1,nt + β2,nn(ψ2,n)x(1)e

λ2,nt)n. (3.3.31)
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Now we rearrange the two branches of eigenvalues (λ1,n)n̸=0, (λ2,n)n ̸=0 into one se-
quence (λn)n ̸=0 such that the sequence (Imλn)n ̸=0 is strictly increasing. Following
Proposition 3.3.5, all chain Imλn, Imλn+1 of close exponents relative to γ is of length
2. Then, let A denotes the set of integers n ∈ Z⋆ such that the condition (3.3.27)
holds true and let

B = Z⋆ \ {n, n+ 1 : n ∈ A}.

We denote by an the coefficient before eλ1,nt or eλ2,nt in (3.3.31). We can rewrite it
into

ψx(1, t) =
∑
n∈B

ane
λnt +

∑
n∈A

ane
λnt + an+1e

λn+1t

=
∑
n∈B

ane
λnt +

∑
n∈A

((an + an+1)e
λnt + (λn+1 − λn)an+1en+1(t)),

where en+1(t) denotes the divided difference of the chain of exponents λn, λn+1 rel-
ative to γ

en+1(t) =
eλn+1t − eλnt

λn+1 − λn
.

Following Theorem 9.4 in [73], the sequence

(eλnt)n∈B, (e
λnt, en+1(t))n∈A

forms a Riesz sequence in L2(0, T ) provided that T > 2πD+, where D+ is the upper
density of the sequence (λn)n∈Z⋆ , defined as

D+(r) = lim
n→∞

n+(r)

r
,

where n+(r) denotes the largest number of terms of the sequence (λn)n≥0 contained
in an interval of length r. To be more precise,

D+ =
1

π

(
1 +

1√
a

)
.

Thus, it follows that∫ T

0

|ψx(1, t)|2dt ∼
∑
n∈B

|a2n|+
∑
n∈A

(|an + an+1|2 + |λn+1 − λn|2|an+1|2). (3.3.32)

The assertions (3.3.19),(3.3.21) and (3.3.23) of Proposition 3.3.4 imply that

|an + an+1|2 + |λn+1 − λn|2|an+1|2 ≥ c

(
|an|2

|n|2
+

|an+1|2

|n+ 1|2

)
. (3.3.33)

Inserting (3.3.33) into (3.3.32) and returning to the previous notations, we get∫ T

0

|ψx(1, t)|2dt ≥ c
∑
n∈B

|an|2

|n|2
+
∑
n∈A

(
|an|2

|n|2
+

|an+1|2

|n+ 1|2

)
≥ c

∑
n∈Z⋆

|an|2

|n|2
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= c
∑
n̸=0

(|β1,n(ψ1,n)x(1)|2 + |β2,nn(ψ2,n)x(1)|2). (3.3.34)

Then inserting (3.3.29) into (3.3.34), we get∫ T

0

|ψx(1, t)|2dt ≥ c
∑
n ̸=0

(
|β1,n|2 + |β2,n|2

)
, (3.3.35)

which yields the inequalities (3.1.14)-(3.1.15).

Step 2: Direct observability inequality. We consider the eigenvectors defined
in (3.3.17), hence we have

(ϕ0, ϕ1, ψ0, ψ1) =
∑
n̸=0

(α1,nE1,n + α2,nE2,n).

Thus

(ϕ(x, t), ϕt(x, t), ψ(x, t), ψt(x, t)) =
∑
n ̸=0

(α1,nE1,ne
λ1,nt + α2,nE2,ne

λ2,nt),

and consequently,

ψx(1, t) =
∑
n ̸=0

(α1,n(ψ1,n)x(1)e
λ1,nt + α2,n(ψ2,n)x(1)e

λ2,nt).

By (3.3.29), we recall that

(ψ1,n)x(1) = O(1), (ψ2,n)x(1) = O

(
1

n

)
.

Consequently,

ψx(1, t) =
∑
n ̸=0

(α̃1,ne
λ1,nt + α̃2,ne

λ2,nt)

=
∑
n ̸=0

(α̃1,n + α̃2,n)e
λ1,nt + α̃2,n(e

λ2,nt − eλ1,nt)

=
∑
n ̸=0

(α̃1,n + α̃2,n)e
λ1,nt + α̃2,nen(t)(λ2,n − λ1,n)

with

en(t) =
eλ2,nt − eλ1,nt

λ2,n − λ1,n
.
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Since the sequence eλ1,nt, en(t) forms a Riesz basis in L2(0, T ) provided that T >

2
(
1 + 1√

a

)
, we deduce the following direct observability inequality

∫ T

0

|ψx(1, t)|2dt ∼
∑
n̸=0

(α̃2
1,n + α̃2

2,n) +
α̃2
2,n

n2

≤ c̃
∑
n̸=0

(
α̃2
1,n + α̃2

2,n

)
≤ c1

∑
n ̸=0

(
α2
1,n + α2

2,n

)
.

This gives (3.1.13). The proof is thus complete.

Remark 3.3.6. From inequalities (3.3.20), (3.3.22) and (3.3.24), there exist an infinity
of (ϕ0, ϕ1, ψ0, ψ1) ∈ D1 such that the corresponding inverse inequalities of (3.1.14)-
(3.1.15) hold.

Similarly as in the first case (a = 1 and b /∈ πZ), using the HUM method (see
[70, 79]), we have the following exact controllability result.

Theorem 3.3.7. Assume that 0 < a ̸= 1 and condition (3.3.9) holds. Let T >

2
(
1 + 1√

a

)
, then, if a or

√
a is rational given number and for almost irrational given

number a, system (3.1.2) is exactly controllable at the moment T . More precisely,
for any initial data (u0, u1, y0, y1) ∈ D′

1, there exists a control function v ∈ L2(0, T )
such that the solution (u, ut, y, yt) ∈ D′

1, of the controlled system (3.1.2) satisfies the
null final conditions

u(x, T ) = ut(x, T ) = y(x, T ) = yt(x, T ) = 0.

It is natural to think about the characterization of the spectral space D1. For this
aim, we have the following new subsection.

3.3.2 Observability and exact controllability in usual spaces.
The case a ̸= 1

The weighted spectral space D1 is defined by means of the eigenvectors (E1,n)n ̸=0 and
(E2,n)n ̸=0 with weights. So, the four exponents (ϕ0, ϕ1, ψ0, ψ1) are a priori involved
together. In order to get the observability or exact controllability in usual energy
spaces, we have to separate the components (ϕ0, ϕ1, ψ0, ψ1).
Now, using the asymptotic expansions (3.3.10)-(3.3.11) in (3.3.17), we can write

E1,n = (xn, gn), E2,n = (fn, yn),
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with 

xn =
(

sin(nπx)
(nπ)2

, i
√
a sin(nπx)

(nπ)

)
,

gn =
(

i(1−a)
b
√
a

sin(nπx)
nπ

, (a−1)
b

sin(nπx)
)
,

yn =
(

sin(nπx)
(nπ)2

, i sin(nπx)
nπ

)
,

fn =
(

i(1−a)
b

sin(nπx)
nπ

, (a−1)
b

sin(nπx)
)
.

(3.3.36)

Next, for any s ≥ 0, we define the space

Xs =

{
(ϕ̂, ψ̂) =

∑
n ̸=0

βnn
s+1yn

}
, ∥(ϕ̂, ψ̂)∥2Xs

=
∑
n ̸=0

|βn|2. (3.3.37)

Following Theorem 3.2.11, we can state the following result.

Corollary 3.3.8. Assume that 0 < a ̸= 1 and condition (3.3.9) holds. Then we
have the following identification

D1 = X2 ×X1. (3.3.38)

Proof. From (3.3.36) and (3.3.37), we see that (nxn)n ̸=0 and (n2yn)n ̸=0 are Riesz basis
in X2 and X1 respectively. Moreover, (ngn)n ̸=0 and (n2fn)n ̸=0 are Bessel sequences
in X1 and X2 respectively. Then (3.3.38) follows directly from Theorem 3.2.11.

Furthermore, for any s ≥ 0, we define the following space

Vs =

{
f =

∑
n>0

αn
sin(nπx)

ns+1

}
, ∥f∥2Vs

=
∑
n>0

|αn|2. (3.3.39)

With the pivot space L2(0, 1), we have

X1 = V ′
0 × V ′

1 , X2 = V ′
1 × V ′

2 . (3.3.40)

It follows from (3.3.38) that

D1 = V ′
1 × V ′

2 × V ′
0 × V ′

1 . (3.3.41)

We can now characterize the space of observability. We state thus the following
result.

Theorem 3.3.9. Assume that 0 < a ̸= 1 and condition (3.3.9) holds. Let T >

2

(
1 + 1√

a

)
, then there exists a constant c1 > 0 depending on a and b such that the

following direct inequality holds∫ T

0

|ψx(1, t)|2dt ≤ c1∥(ϕ0, ϕ1, ψ0, ψ1)∥2H,
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for all solution Φ = (ϕ, ϕt, ψ, ψt) solving the corresponding homogeneous Cauchy
problem. Moreover, if a or

√
a is a given rational number and for almost irrational

given number a, there exists a constant 0 < c < c1 depending only on a and b such
that the following observability inequality holds

c∥(ϕ0, ϕ1, ψ0, ψ1)∥2V ′
1×V ′

2×V ′
0×V ′

1
≤
∫ T

0

|ψx(1, t)|2dt.

Proof. The proof of the inverse observability inequalitiy is a direct consequence of
Theorem 3.1.3 and the identification (3.3.41). The proof of the direct observability
inequality is a direct consequence of the divided difference technique.

We deduce that the observability space is H−2(0, 1) × H−3(0, 1) × H−1(0, 1) ×
H−2(0, 1). Finally, using HUM method, we have the following controllability result

Theorem 3.3.10. Assume that 0 < a ̸= 1 and condition (3.3.9) holds. Let T >

2
(
1 + 1√

a

)
, then, if a or

√
a is a given rational number and for almost irrational

given number a, system (3.1.2) is exactly controllable at the moment T . More
precisely, for any initial data (u0, u1, y0, y1) ∈ V2×V1×V1×V0, there exists a control
function v ∈ L2(0, T ) such that the solution (u, ut, y, yt) ∈ V2 × V1 × V1 × V0, of the
controlled system (3.1.2) satisfies the null final conditions

u(x, T ) = ut(x, T ) = y(x, T ) = yt(x, T ) = 0.

Remark 3.3.11. For the cases (1)-(2), the control space is of type

H3(0, 1)×H2(0, 1)×H2(0, 1)×H1
0 (0, 1),

with suitable boundary conditions.
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Chapter 4

A spectral approach to the
polynomial stability and to the
indirect boundary control of
weakly coupled wave equations

Le taux de décroissance de l’énergie d’un système d’équations d’ondes cou-
plées dépend du type de couplage, de la nature algébrique du paramètre
du couplage et de la propriété arithmétique du rapport des vitesses de
propagation des ondes (voir [85], [88], [87], [11]). Dans ce chapitre,
nous sommes intéressés par l’étude d’un système mono-dimensionnel
d’équations d’ondes couplées par des termes de couplage d’orde zéro.
D’abord, en utilisant l’approche spectrale, nous montrons que l’énergie
décroît polynomialement avec un taux de décroissance optimal d’ordre 1

t
.

Ensuite, nous étudions la contrôlabilité exacte indirecte et nous établis-
sons les inégalités d’observabilité. Finalement, par la méthode d’unicité
de Hilbert, nous démontrons que le système est exactement contrôlable.
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Abstract. The energy decay rate of a system of coupled wave equations depends
on the type of the coupling, the algebraic nature of the coupling parameter and the
arithmetic property of the ratio of the wave propagation speeds (see [85], [88], [87],
[11]). In this chapter, we are interested in the study of a one dimensional setting of
a system of wave equations coupled via zero order terms. Firstly, we prove optimal
polynomial energy decay rate of order 1

t
, by using a spectral approach. Secondly, we

study the indirect boundary exact controllability: using the non harmonic analysis,
we establish the weak observability inequalities. Next, using the HUM method, we
prove that the system is exactly controllable.

4.1 Introduction
In a recent paper of Alabau-Boussaouira [10], general systems of coupled second
order evolution equations have been studied. In particular, she proved the lack
of uniform stability, by a compact perturbation argument, of a system of wave
equations which are weakly coupled and partially damped. The system is described
by: 

utt − a∆u+ αy = 0 on Ω,
ytt −∆y + αu = 0 on Ω,
u = 0 on Γ0,
a∂νu+ γu+ ut = 0 on Γ1,
y = 0 on Γ,

where Ω ⊂ RN is a bounded domain with smooth boundary Γ of class C2 such that
Γ = Γ0 ∪ Γ1 and Γ0 ∩ Γ1 = ∅. Moreover, Alabau established the polynomial energy
decay rate 1√

t
in the case where a = 1 and Ω is a star shaped domain of RN , or

in the case where a = 1
k2
, with k ∈ Z⋆ and Ω is a cubic domain of R3. Next, in

[88] Liu and Rao established, by the frequency domain approach, polynomial decay
rate of order ln t

t
for smooth initial data, while waves propagate with equal speeds.

Moreover, while waves propagate with different speeds, i.e. the case a ̸= 1, they
proved that the energy decays at a rate which depends on the arithmetic property
of the ratio of the wave speeds a. Later, in [11], Alabau and Léautaud considered
a coupled system of wave equations, with variable coefficients, with one boundary
feedback, and proved a polynomial energy decay rate of type 1√

t
for smooth initial

data.
In this chapter, we firstly improve the energy decay rate in the one dimensional
setting and we establish optimal polynomial decay of type 1

t
for smooth initial

data, by the Riesz basis approach. More precisely, we study the stabilization of
the following system of partially damped coupled wave equations propagating with
equal speeds, described by

utt − uxx + αy = 0 on (0, 1)× (0, T ),
ytt − yxx + αu = 0 on (0, 1)× (0, T ),
u(1, t) = y(0, t) = y(1, t) = 0 for t ∈ (0, T ),
ux(1, t) + γut(1, t) = 0 for t ∈ (0, T ).

(4.1.1)
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We denote by α the coupling parameter, which is assumed to be real and small
enough. We assume that γ > 0. The damping ut is only applied at the right
boundary of the first equation. The second equation is indirectly damped through
the coupling between the two equations. We assume that the initial positions of the
waves are given by

u(x, 0) = u0(x), ut(x, 0) = u1(x); y(x, 0) = y0(x), yt(x, 0) = y1(x). (4.1.2)

The energy of system (4.1.1) is given by

E(t) =
1

2

∫ 1

0

(|ut|2 + |ux|2 + |yt|2 + |yx|2 + 2αyu)dx.

A direct computation gives

d

dt
E(t) = −γ |ut(1, t)|2 .

Thus the system (4.1.1) is dissipative in the sense that its energy E(t) is a nonin-
creasing function with respect to the time t.
Secondly, we study the exact controllability of the following system of weakly coupled
wave equations with Neumann boundary conditions, propagating with equal speeds,
described by 

utt − uxx + αy = 0 on (0, 1)× (0, T ),
ytt − yxx + αu = 0 on (0, 1)× (0, T ),
u(0, t) = y(0, t) = y(1, t) = 0 for t ∈ (0, T ),
ux(1, t) = v(t) for t ∈ (0, T ).

(4.1.3)

The control v is applied only at the right boundary of the first equation. The second
equation is indirectly controlled by means of the coupling between the equations.
We consider the indirect boundary exact controllability problem: For given T > 0
and initial data (u0, u1, y0, y1) belonging to a suitable space, is it possible to find a
suitable control v such that the solution of system (4.1.3) (u, ut, y, yt) is driven to
zero at time T, i.e.,

u(x, T ) = ut(x, T ) = y(x, T ) = yt(x, T ) = 0 on (0, 1).

Main results. On the one hand, we prove that the energy of (4.1.1) decays at
an optimal polynomial rate of type 1

t
, using the Riesz basis approach. In fact, the

crucial part of the proof is to prove that the generalized eigenvectors of the associated
operator, form a Riesz basis of the energy space, while using a new form of Bari’s
theorem (see [1]).
On the other hand, we prove exact controllability results for system 4.1.3. We
use thus the Hilbert Uniqueness Method introduced by Lions [79]. We afterwards
establish inverse and direct observability inequalities using Ingham’s theorem [73].
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In order to do so, we consider the associated homogeneous problem, that is to say,
the null boundary acted control system.
Let us denote by λ1,m, λ2,n the two branches of eigenvalues for the corresponding
homogeneous system (4.1.3), and denote by{

E1,n = (ϕ1,n, λ1,nϕ1,n, ψ1,n, λ1,nψ1,n),
E2,n = (ϕ2,n, λ2,nϕ2,n, ψ2,n, λ2,nψ2,n)

(4.1.4)

the corresponding eigenvectors. In Proposition 4.4.1, we prove that there exist
infinitely many m ∼ n such that the eigenvalues satisfy a standard gap

λ1,m − λ2,n ∼ O(1). (4.1.5)

But the observation is on the first components of the corresponding eigenvectors
E1,n, E2,n. Following Proposition 4.4.2, we have

ϕ1,n(1) = O

(
1

n

)
, ϕ2,n(1) = O

(
1

n2

)
. (4.1.6)

Hence, the following weighted spectral space is the natural space for observability

D = {(ϕ0, ϕ1, ψ0, ψ1) =
∑
n ̸=0

(α1,nnE1,n + α2,nn
2E2,n)}. (4.1.7)

In (4.1.7), the factors n and n2 are due to the transmission of the modes between
the two equations.
We prove the following results.
Theorem 4.1.1. Assume that γ ̸= 1. For all initial data U0 ∈ D(A), there exists a
constant c > 0 independent of U0, such that the energy of the corresponding Cauchy
problem associated to (4.1.1) satisfies the following estimation

E(t) ≤ c

t
∥U0∥2D(A). (4.1.8)

Moreover, the energy decay rate (4.1.8) is optimal.
Theorem 4.1.2 (Observability inequalities for Neumann boundary control). Let
α ̸= 0 be a real number small enough. Assume that

T > 4.

Then there exists a constant c1 > 0 such that the direct observability inequality holds∫ T

0

|ϕ(1, t)|2dt ≤ c1∥(ϕ0, ϕ1, ψ0, ψ1)∥2D, (4.1.9)

for all solution Φ = (ϕ, ϕt, ψ, ψt) solving the corresponding homogeneous Cauchy
problem.
Moreover, there exists a constant 0 < c < c1, such that the following inverse observ-
ability inequality holds

c∥(ϕ0, ϕ1, ψ0, ψ1)∥2D ≤
∫ T

0

|ϕ(1, t)|2dt. (4.1.10)
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Brief review of the literature. The polynomial energy decay rate occurs in
many control problems where the open-loop systems are strongly stable, but not
exponentially stable (hybrid systems, partially or locally damped systems), see [74]
and references therein. The majority of the works in establishing polynomial energy
decay rate has been based on the spectral method, frequency domain method, time
domain multiplier and weak observability methods. We quote [84, 85, 96, 97] for
hybrid systems, [76, 77, 88] for wave equations with local internal or boundary
damping, [5, 14, 16, 90] for second order systems with partial internal damping,
[27, 87] for abstract systems and [101] for systems of coupled wave-heat equations.
We also mention [8, 10] for coupled hyperbolic systems, and [11] for coupled wave
type systems. For a general formulation of partially damped systems see [98] and
references therein. In [8] (see also references therein), polynomial decay estimates in
the case of indirect internal stabilization are given. These results have been extended
to several (wave-wave coupling, Petrowsky-Petrowsky coupling) in [29].
Complete and partial observability (respectively controllability) results for coupled
systems either of hyperbolic-hyperbolic type or of hyperbolic-parabolic type can
be found in [79], see also [75]. These results assume that the coupling parameter
is sufficiently small. They have been extended in [71] to the cases of arbitrary
coupling parameters (assuming bounded coupling operators). For both references,
the multiplier method was the main ingredient for obtaining the desired estimates.
Moreover, stabilization and observability results for hyperbolic-hyperbolic systems
via a single control force were obtained in [68, 69], where wave-wave systems having
the same principal part are coupled through velocity terms.

Organization of the chapter. The remaining of the chapter is organized as
folllows. In Section 4.2, we establish well-posedness of problem (4.1.1). Section 4.3 is
devoted to the proof of the optimal decay rate of the energy of the system of coupled
wave equations. The exact controllability for Neumann boundary control is proved
in Section 4.4 by establishing the corresponding inverse and direct observability
inequalities.

4.2 Well posedness and strong stability

In this section we study existence, uniqueness and strong stability of the solution
of system (4.1.1). We start our study by formulating the problem as an abstract
Cauchy problem in an appropriate Hilbert space. First, we introduce the following
space

V = {u ∈ H1
0 (0, 1); u(0) = 0}, (4.2.1)

and the energy space as

H = V × L2(0, 1)×H1
0 (0, 1)× L2(0, 1), (4.2.2)
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endowed with the inner product

(U, Ũ)H =

∫ 1

0

(
uxũx + vṽ + yxỹx + zz̃ + αuỹ + αyũ

)
dx,

∀U = (u, v, y, z), Ũ = (ũ, ṽ, ỹ, z̃) ∈ H.
(4.2.3)

It is easy to check that the inner product (4.2.3) is equivalent to the usual inner
product in H for small α.
Now, we define a linear unbounded operator A : D(A) 7→ H by

D(A) =

{
U = (u, v, y, z) ∈ H| u, y ∈ H2(0, 1), v ∈ V, z ∈ H1

0 (0, 1)
ux(1) = −γv(1)

}
(4.2.4)

and
AU = (v, uxx − αy, z, yxx − αu). (4.2.5)

Then setting U = (u, ut, y, yt) a regular solution of (4.1.1), we rewrite it into an
evolution equation {

Ut = AU(t),
U(0) = U0,

(4.2.6)

where
U0 (x) = (u0 (x) , u1 (x) , y0 (x) , y1 (x)) .

Proposition 4.2.1. The operator A is maximal dissipative in the energy space H,
therefore it generates a C0-semigroup etA of contractions on H. Moreover, A is a
densely defined operator with a compact resolvent in H.

Proof. Let U = (u, v, y, z) ∈ D(A), using the definitions (4.2.3)- (4.2.4), it is easy
to see that

Re(AU,U)H = −γ|v2(1)| ≤ 0, (4.2.7)
which implies that A is a dissipative operator in the energy space H.
Now let F = (f, g, ξ, θ) ∈ H. We look for an element U = (u, v, y, z) ∈ D(A) such
that (I −A)U = F. Equivalently, we have the following system

v = u− f, (4.2.8)
z = y − ξ, (4.2.9)

u− uxx + αy = g + f, (4.2.10)
y − yxx + αu = θ + ξ, (4.2.11)

and
u(0) = y(0) = y(1) = 0, ux(1) = −γ(u− f)(1). (4.2.12)

Using Lax-Milgram theorem, we deduce that (4.2.10)-(4.2.12) admits a unique
solution (u, y) ∈ V × H1

0 (0, 1). Therefore, using (4.2.8)-(4.2.9) and the classical
elliptic theory, we conclude that (I − A)U = F admits a unique solution U =
(u, v, y, z) ∈ D(A). Thus, by the resolvent identity, we have R(λI −A) = H. Then,
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the operator A is a maximal dissipative operator (see [94], Theorem 1.4). Finally the
Sobolev embedding theorem asserts that (A− I)−1 is compact, thus A is a densely
defined operator in H with a compact resolvent.

Using the Lumer-Phillips theorem (see [94], Theorem 1.4.3), A is the infinitesimal
generator of a C0− semi-group of contractions on H.
Therefore, we have the following result concerning existence and uniqueness of the
solution of the Cauchy problem (4.2.6).

Theorem 4.2.2 (Existence and uniqueness). For any initial data U0 ∈ H, the
problem (4.2.6) has a unique weak solution

U(t) = etAU0 ∈ C0([0,∞[,H).

Moreover, if U0 ∈ D(A), then the problem (4.2.6) has a strong solution

U(t) = etAU0 ∈ C1([0,∞[,H) ∩ C0([0,∞[, D(A)).

In order to study the stability of problem (4.1.1), we have to study the asymptotic
behavior of its solution.

4.2.1 Spectral analysis of the operator A

Let λ be an eigenvalue of A with its associated eigenvector U = (u, λu, y, λy).

Lemma 4.2.3. Let α ̸= 0 be a real number small enough, and let

f (λ) = α[2γ sinh (r1) sinh (r3) +
r1
λ
sinh (r3) cosh (r1) +

r3
λ
sinh (r1) cosh (r3)],

(4.2.13)
where

r1 =
√
λ2 + α, r3 =

√
λ2 − α. (4.2.14)

Thus, λ is a root of f. Moreover, the expressions of u and y are given by

u(x) = C (sinh (r3) sinh(r1x) + sinh (r1) sinh(r3x)) , (4.2.15)

y(x) = C (sinh (r3) sinh(r1x)− sinh (r1) sinh(r3x)) (4.2.16)
where C ∈ C.

Proof. Let us consider the corresponding eigenvalue problem

λ2u− uxx + αy = 0, (4.2.17)
λ2y − yxx + αu = 0, (4.2.18)

with the following boundary conditions

u(0) = y(0) = y(1) = ux(1) + γλu(1) = 0. (4.2.19)
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Equivalently, we have

uxxxx − 2λ2uxx + (λ4 − α2)u = 0, (4.2.20)

and
u(0) = ux(1) + γλu(1) = uxx(0) = uxx(1)− λ2u(1) = 0. (4.2.21)

Hence, (4.2.20) has a non trivial solution satisfying the boundary conditions (4.2.21)
if and only if λ ̸= ±i

√
α.

Thus, the general solution of (4.2.20) is given by

u(x) =
4∑

i=1

Cie
rix (4.2.22)

where Ci ∈ C, r1, r3 are given by (4.2.14), r2 = −r1, and r4 = −r3.
From the boundary conditions at x = 0 of (4.2.21) we can deduce that the solution
of (4.2.20) can be written as

u(x) = B1 sinh(r1x) +B2 sinh(r3x), (4.2.23)

where B1, B2 ∈ C. In addition, from the boundary conditions at x = 1 of (4.2.21),
we get

Mb = 0,

where

M =

(
α sinh(r1) −α sinh(r3)

r1 cosh(r1) + γλ sinh(r1) r3 cosh(r3) + γλ sinh(r3)

)
and b =

(
B1

B2

)
.

The determinant of M is given by

det(M) = α[2γλ sinh (r1) sinh (r3) + r1 sinh (r3) cosh (r1) + r3 sinh (r1) cosh (r3)].

Hence a non trivial solution u exists if and only if det(M) = 0, i.e, if and only if λ
is a root of the function f defined in (4.2.13). Now, if f (λ) = 0, setting

B1 = C sinh (r3) and B2 = C sinh (r1)

in (4.2.23), we get (4.2.15). From (4.2.17) and (4.2.15), we get (4.2.16).
The proof is thus complete.

Remark 4.2.4. Let λ be an eigenvalue of A and U = (u, v, y, z) its normalized
eigenvector. It is easy to see that Re(λ) is bounded. In fact, multiplying (4.2.17)
(respectively (4.2.18)) by u (respectively by y) and integrating by parts, one can
deduce

1 = ∥U∥2H = −γRe(λ)|u(1)|2.

In fact, using the trace theorem, and reasoning by contradiction we can see that
Re(λ) is bounded.
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In the sequel, since A is dissipative, we study the asymptotic behavior of the large
eigenvalues λ of A.

Proposition 4.2.5 (Spectrum of A). Assume that γ ̸= 1. There exists N ∈ N⋆

sufficiently large enough such that the spectrum σ(A) of A is given by

σ(A) = σ0 ∪ σ1,

where

σ0 = {λ̂j}j∈J ∪ {µ̂j}j∈J , σ1 = {λk}k∈Z⋆, |k|≥N ∪ {µk}k∈Z⋆, |k|≥N , σ0 ∩ σ1 = ∅,

where J is a finite set. The large eigenvalues of A satisfy respectively the following
asymptotic behaviors:

µk = ikπ + b+
O(α2)

k2
, (4.2.24)

where

b =


1

2
ln(

γ − 1

γ + 1
) if γ > 1,

iπ

2
+

1

2
ln(

1− γ

1 + γ
) if γ < 1,

(4.2.25)

and
λk = ikπ − γα2

4(kπ)2
+
O(α2)

k3
. (4.2.26)

Proof. The proof is divided into several steps.

Step 1. Using (4.2.14), we get

r1
λ

= 1 +
α

2λ2
+
O(α2)

λ4
and r3

λ
= 1− α

2λ2
+
O(α2)

λ4
. (4.2.27)

Inserting (4.2.27) in (4.2.13) and using the fact that real part of λ is bounded (see
Remark 4.2.4), we get

f (λ) = (cosh (r1 + r3)− cosh (r1 + r3)) γ+sinh (r1 + r3)−
α sinh (r1 − r3)

2λ2
+
O(α2)

λ4
.

(4.2.28)
From (4.2.14), we get

r1 + r3 = 2λ− α2

4λ3
+
O(α2)

λ4
and r1 − r3 =

α

λ
+
O(α2)

λ4
. (4.2.29)

From (4.2.29), we get
sinh (r1 + r3) = sinh (2λ)− α2 cosh (2λ)

4λ3
+
O(α2)

λ4
,

cosh (r1 + r3) = cosh (2λ)− α2 sinh (2λ)

4λ3
+
O(α2)

λ4

(4.2.30)
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and

sinh (r1 − r3) =
α

λ
+

α3

6λ3
+
O(α2)

λ4
, cosh (r1 − r3) = 1 +

α2

2λ2
+
O(α2)

λ4
. (4.2.31)

Inserting (4.2.30) and (4.2.31) in (4.2.28), we get

f(λ) = f0(λ) +
f1(λ)

λ2
+
f2 (λ)

λ3
+
O(α2)

λ4
, (4.2.32)

where

f0(λ) = 2 sinh (λ) (γ sinh (λ) + cosh (λ)) , f1 (λ) = −α
2γ

2
, (4.2.33)

and
f2(λ) = −α

2 (γ sinh (2λ) + cosh (2λ) + 2)

4
. (4.2.34)

Step 2. We look for the roots of f0(λ). From (4.2.33), we deduce that the roots
of f0 are given by

µ0
k = ikπ + b and λ0k = ikπ.

Next, since Re(λ) is bounded (see Remark 4.2.4) and thanks to Rouché’s theorem,
there exists N ∈ N⋆ large enough, such that ∀ |k| ≥ N, the large roots of f (denoted
by µk and λk respectively) are simple and close to those of f0, i.e.

λk = λ0k + o(1), |k| → ∞, µk = µ0
k + o(1), |k| → ∞.

Equivalently, we can write

λk = λ0k + ζk, lim
|k|→∞

ζk = 0, (4.2.35)

and
µk = µ0

k + ϵk, lim
|k|→∞

ϵk = 0. (4.2.36)

Step 3. We seek to determine ζk and ϵk. First, substituting (4.2.33)-(4.2.34) into
(4.2.32) for λ = λk, we obtain

f(λk) = 2 sinh (ζk) (γ sinh (ζk) + cosh (ζk)) +
α2γ

2k2
+
O(α2)

k3
= 0. (4.2.37)

On the other hand, since lim|k|→∞ ζk = 0, we have the following asymptotic expan-
sion

sinh (ζk) = ζk +O(ζ3k) and cosh (ζk) = 1 +O(ζ2k). (4.2.38)
Using (4.2.38) in (4.2.37), and after several computations, we get

ζk = − γα2

4(kπ)2
+
O(α2)

k3
. (4.2.39)
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Inserting (4.2.39) in (4.2.35), we directly get (4.2.26). Similarly, substituting (4.2.33)-
(4.2.34) in (4.2.32) for λ = µk, we can show that

ϵk =
O(α2)

k2
. (4.2.40)

Finally, inserting (4.2.40) in (4.2.36), we directly get (4.2.24).
The proof is thus complete.

Let (E1,k)k≥N , and (E2,k)k≥N be the set of eigenvectors of A associated to λk and
µk respectively, with {

E1,k = (u1,k, λku1,k, y1,k, λky1,k),
E2,k = (u2,k, µku2,k, y2,k, µky2,k).

(4.2.41)

We have the following result.

Proposition 4.2.6. The eigenfunctions of the eigenvalue problem given by (4.2.20)
have the following asymptotic expansions

u1,k(x) =
sinh [(ikπ + b)x]

ikπ + b
+
O(α)

k3
,

y1,k(x) =
α (sinh [(ikπ + b) x] cosh (b)− x cosh [(ikπ + b) x] sinh (b))

2k2π2 sinh (b)
+
O(α)

k3

(4.2.42)
and

u2,k(x) =
α (γ sin (kπx) + ix cos (kπx))

2k2π2
+
O(α2)

k3
, y2,k(x) =

sin (kπx)

kπ
+
O(α2)

k3
.

(4.2.43)

Proof. First, we determine the corresponding eigenfunctions of µk. Let

C = C1,k =
1

2 (−1)k sinh (b) (ikπ + b)
.

Inserting (4.2.24) in (4.2.14), we get

r1,k = ikπ + b+
α

2ikπ
+
O(α2)

k2
and r3,k = ikπ + b− α

2ikπ
+
O(α2)

k2
. (4.2.44)

Then it follows that
sinh (r1,kx) = sinh [(ikπ + b)x] +

αx cosh [(ikπ + b)x]

2iπk
+
O(α2)

k2
,

sinh (r3,kx) = sinh [(ikπ + b)x]− αx cosh [(ikπ + b)x]

2ikπ
+
O(α2)

k2
,

(4.2.45)
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and 
sinh (r1,k) = (−1)k

(
sinh (b) +

α cosh (b)

2ikπ

)
+
O(α)

k2
,

sinh (r3,k) = (−1)k
(
sinh (b)− α cosh (b)

2ikπ

)
+
O(α)

k2
.

(4.2.46)

Inserting (4.2.45)-(4.2.46) into (4.2.15) and (4.2.16), we get (4.2.42).
Next, we look to determine the eigenfunctions of λk. Let

C = C2,k = − 1

iα (−1)k
.

Inserting (4.2.26) in (4.2.14), we get

r1,k = ikπ+
α

2ikπ
− α2γ

4k2π2
+
O(α)

k3
, r3,k = ikπ− α

2ikπ
− α2γ

4k2π2
+
O(α)

k3
. (4.2.47)

Then it follows that
sinh (r1,k) = (−1)k

(
α

2ikπ
− α2γ

4k2π2

)
+
O(α)

k3
,

sinh (r3,k) = (−1)k
(
− α

2ikπ
− α2γ

4k2π2

)
+
O(α)

k3
,

(4.2.48)

and
sinh(r1,kx) = i sin (kπx) +

αx cos (kπx)

2ikπ
− α2x (ix sin (kπx) + 2γ cos (kπx))

8π2k2
+
O(α)

k3
,

sinh (r3,kx) = i sin (kπx)− αx cos (kπx)

2ikπ
− α2x (ix sin (kπx)−2γ cos (kπx))

8π2k2
+
O(α)

k3
.

(4.2.49)
Finally, inserting (4.2.48)-(4.2.49) into (4.2.15) and (4.2.16), we get (4.2.43).
The proof is thus complete.

Remark 4.2.7. [Non uniform exponential stability] The Cauchy problem (4.2.6) is
not uniformly stable in the energy space H, due to the fact that the large eigenvalues
in (4.2.26) approach the imaginary axis.

4.3 Polynomial stability with optimal decay rate
Since the energy of system (4.2.6) has no uniform decay rate, we will look for poly-
nomial decay rate for smooth initial data. Our main result is the optimal-type decay
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estimate, stated in Theorem 4.1.1. The proof of this Theorem uses a spectral anal-
ysis approach, namely we show that the set of generalized eigenvectors of A forms
a Riesz basis of H.
Let E1,k and E2,k be the eigenvectors associated with the eigenvalue λk and µk

respectively, defined in (4.2.41). Then using the asymptotic expansions (4.2.42)-
(4.2.43), we can write

E1,k =



u1,k

λku1,k

y1,k

λky1,k


=



sinh [(ikπ + b)x]

ikπ + b

sinh [(ikπ + b)x]

0

0


+



O

(
1

k2

)

O

(
1

k

)

O

(
1

k2

)

O

(
1

k

)


(4.3.1)

and

E2,k =



u2,k

µku2,k

y2,k

µky2,k


=



0

0

sin (kπx)

ikπ

sin (kπx)


+



O

(
1

k2

)

O

(
1

k

)

O

(
1

k2

)

O

(
1

k

)


(4.3.2)

Now, denoting by E0
1,k, E

0
2,k the leading terms in the expansions (4.3.1)-(4.3.2), we

have ∑
|k|≥N

∥E1,k − E0
1,k∥2H + ∥E2,k − E0

2,k∥2H <∞ (4.3.3)

for some N large enough. We will prove in the following that the system of eigen-
vectors E1,k, E2,k forms a Riesz basis in the energy space H. It is then sufficient to
prove that E0

1,k, E
0
2,k form a Riesz basis in H (see Proposition 4.3.2 below).

In fact, this can be justified using the following theorem which is a new form of
Bari’s theorem (see Theorem 1.2.8 in [1]).

Theorem 4.3.1. Let A be a densely defined operator in a Hilbert space H with a
compact resolvent. Let {φn}∞n=1 be a Riesz basis of H. If there are an integer N ≥ 0
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and a sequence of generalized eigenvectors {ψn}∞n=N+1 of A such that

∞∑
n=N+1

∥φn − ψn∥2 <∞,

then the set of generalized eigenvectors of A, {ψn}∞n=1, forms a Riesz basis of H.

We can now state the following result.

Proposition 4.3.2. The set of vectors E0
1,k, E

0
2,k forms a Riesz basis of H.

In order to prove Proposition 4.3.2, we introduce the following auxiliary operator
A0 in H, defined by

A0U = (v, uxx, z, yxx), ∀U = (u, v, y, z) ∈ D(A0) = D(A). (4.3.4)

Let Hj, j = 1, 2, be the subspaces of H defined by

H1 = {F ∈ H | F = (u, v, 0, 0)},
H2 = {G ∈ H | G = (0, 0, y, z)}.

We state the following crucial result, whose proof is postponed.

Lemma 4.3.3. 1. σ(A1) = {µ̃k = ikπ+ b, k ∈ Z}, (where b is given in (4.2.25))
is the set of eigenvalues of A1 = A0 | H1, they are simple and the corresponding
eigenvectors {ϕ̃k}k∈Z⋆ are given by

ϕ̃k = (µ̃−1
k sinh(µ̃kx), sinh(µ̃kx), 0, 0), ∀k ∈ Z,

and form an Riesz basis of H1.

2. σ(A2) = {λ̃k = ikπ}k∈Z⋆ is the set of eigenvalues of A2 = A0 | H2 they are
simple and the corresponding eigenvectors {ψ̃k}k∈Z⋆ are given by

ψ̃k = (0, 0, λ̃−1
k sinh(λ̃kx), sinh(λ̃kx)), ∀k ∈ Z⋆,

and form an orthogonal basis of H2.

We are now ready to prove Proposition 4.3.2.

Proof of Proposition 4.3.2. We remark that E0
1,k = ϕ̃k and E0

2,k = 1
i
ψ̃k. Thus, from

Lemma 4.3.3, a direct consequence of the direct decomposition H = H1 ⊕H2 leads
to the completion of the proof.

Theorem 4.3.4. The set of generalized eigenvectors associated to σ(A) forms a
Riesz basis of H.
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Proof. From (4.3.1)-(4.3.2), we have

∥E1,k − E0
1,k∥H = O

(
1

k

)
and ∥E2,k − E0

2,k∥H = O

(
1

k

)
.

We conclude the desired aim by Theorem 4.3.1.

We are now ready to prove the optimal decay rate of the energy of system (4.1.1).

Proof of Theorem 4.1.1. First, using (4.2.26) we haveRe(λk) ∼ −(γα2)
4π2k2

and |Imλk| ∼
k. Next, from Proposition 4.3.4, we know that the set of the generalized eigenvec-
tors associated to σ(A) forms a Riesz basis in H. Then by applying Theorem 2.1 in
[90], we deduce the optimal polynomial energy decay rate (4.1.8) for smooth initial
data.

Now, in order to prove Lemma 4.3.3, we recall the following Bari’s criterion (see
Theorem 2.1 of Chapter 6 in [56].)

Theorem 4.3.5. {ϕn} is a Riesz basis of a Hilbert space H if and only if {ϕn} is
complete in H, and there corresponds to it a complete biorthogonal sequence {ψn}
such that for any f ∈ H, one has∑

n

|< ϕn, f >|2 <∞,
∑
n

|< ψn, f >|2 <∞. (4.3.5)

We are now ready to prove Lemma 4.3.3.

Proof of Lemma 4.3.3. In order to prove Point (1), we proceed by steps.

Step 1. We begin first by proving that {ϕ̃k}k is complete in H1. It suffices to show
that any orthogonal element of H1 to all the ϕ̃k is zero. Hence, let (f, g)⊤ be such
that < (f, g)⊤, ϕ̃k >H= 0 for all k ∈ Z. Then we get

0 = 2

∫ 1

0

(fx cosh(µ̃kx) + g sinh(µ̃kx))dx

=

∫ 1

0

((fx + g)ebxeikπx + (fx − g)e−bxe−ikπx)dx, ∀ k ∈ Z. (4.3.6)

In particular, for k = 0, we have∫ 1

0

((fx + g)ebx + (fx − g)e−bx)dx = 0. (4.3.7)

Moreover, for k < 0, we write k = −k′ with k′ ∈ N⋆ to obtain∫ 1

0

((fx + g)ebxe−ik′πx + (fx − g)e−bxeik
′πx)dx = 0, ∀k′ ∈ N⋆. (4.3.8)
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Adding (4.3.6) for k = k′ > 0 with (4.3.8) yields∫ 1

0

h(x)

(
eikπx + e−ikπx

2

)
dx = 0, ∀k ∈ N⋆,

where
h(x) = (fx + g)(x)ebx + (fx − g)(x)e−bx.

Since {cos(kπx)}k∈N is a basis in L2(0, 1), we get

h = 0. (4.3.9)

Subtracting (4.3.6) from (4.3.8), we get∫ 1

0

K(x)

(
eikπx − e−ikπx

2

)
dx = 0, ∀k ∈ N⋆,

where
K(x) = (fx + g)(x)ebx − (fx − g)(x)e−bx.

Since {sin(kπx)}k∈N⋆ is a basis in L2(0, 1), we get

K = 0. (4.3.10)

(4.3.9) and (4.3.10) imply that fx = g = 0 and so f = 0 since f(0) = 0.

Step 2. We search for a sequence {ψk}k∈Z biorthogonal to {ϕ̃k}k∈Z. Here we choose

{ψk}k∈Z =

{(
1

µ̃k

sinh(µ̃k.),− sinh(µ̃k.)

)}
,

where µ̃k is the conjugate of µ̃k. The same arguments as before show that this set
is complete. Indeed, for k ∈ Z, ψk is an eigenvector of the adjoint of A1.

Step 3. The set {ψk}k∈Z is biorthogonal to {ϕ̃k}k∈Z.
Indeed, by definition we have

< ϕ̃k, ψl >H1 =

∫ 1

0

(cosh(µ̃kx) cosh(µ̃lx)− sinh(µ̃kx) sinh(µ̃lx))dx

=

∫ 1

0

cosh((µ̃k − µ̃l)x)dx

=

∫ 1

0

cos((k − l)πx)dx = δkl.
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Step 4. Finally, in order to apply Bari’s theorem, it remains to prove (4.3.5). Let
(f, g)⊤ ∈ H1 and consider the following sum∑

k∈Z

∣∣∣< (f, g)⊤, ϕ̃ >H1

∣∣∣2 .∑
k∈Z

∣∣(fx, cosh(µ̃k.))(0,1)
∣∣2 +∑

k∈Z

∣∣(g, sinh(µ̃k.))(0,1)
∣∣2 .

(4.3.11)
By the definition of µ̃k given in Point (1) of Lemma 4.3.3, and by Parceval’s identity,∑

k∈Z

∣∣(fx, cosh(µ̃k.))(0,1)
∣∣2 .∑

k∈Z

∣∣∣(fxeb., eikπ.)(0,1)∣∣∣2 +∑
k∈Z

∣∣∣(fxe−b., e−ikπ.)(0,1)

∣∣∣2
≤
(
∥fxeb.∥2(0,1) + ∥fxe−b.∥2(0,1)

)
. ∥fx∥2(0,1), (4.3.12)

and ∑
k∈Z

∣∣(g, sinh(µ̃k))(0,1)
∣∣2 .∑

k∈Z

∣∣∣(geb., eikπ.)(0,1)∣∣∣2 +∑
k∈Z

∣∣∣(ge−b., e−ikπ.)(0,1)

∣∣∣2
≤
(
∥geb.∥2(0,1) + ∥ge−b.∥2(0,1)

)
. ∥g∥2(0,1). (4.3.13)

(4.3.12) and (4.3.13) imply that the right hand side of (4.3.11) is finite. Similarly,
we prove that ∑

k∈Z

∣∣< (f, g)⊤, ψk >H1

∣∣2 <∞.

In conclusion, by Theorem 4.3.5, the family {ϕ̃k}k∈Z forms a Riesz basis of H1.

Moreover, to prove Point (2), {ψ̃k}k∈Z⋆ is an orthogonal basis of H2, since A2 is a
skew-adjoint operator. The proof is thus complete.

4.4 Exact controllability with Neumann bound-
ary control

In this section, we study the exact controllability of the following system
utt − uxx + αy = 0 on (0, 1)× (0, T ),
ytt − yxx + αu = 0 on (0, 1)× (0, T ),
u(0, t) = y(0, t) = y(1, t) = 0 for t ∈ (0, T ),
ux(1, t) = v(t) for t ∈ (0, T ).

(4.4.1)

We will use the spectral approach to investigate how the modes of the second equa-
tion are influenced by the modes of the first equation. We denote by α the coupling
parameter, and v the control acted only on the right boundary of the first equation.
The second equation is partially controlled via the coupling of the two waves.
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4.4.1 Observability and exact controllability in spectral spaces

The aim of this subsection is to establish inverse and direct observability inequalities
by the spectral approach. We consider the following associated homogeneous system

ϕtt − ϕxx + αψ = 0 on (0, 1)× (0, T ),
ψtt − ψxx + αϕ = 0 on (0, 1)× (0, T ),
ϕ(0) = ϕx(1) = 0 for t ∈ (0, T ),
ψ(0) = ψ(1) = 0 for t ∈ (0, T ).

(4.4.2)

Let us recall the energy space H defined in (4.2.2) endowed for all U = (u, v, y, z), Ũ =
(ũ, ṽ, ỹ, z̃) ∈ H with the inner product (4.2.3). Now we define a linear unbounded
operator A0 : D(A0) 7→ H by

D(A0) =
{
Φ = (ϕ, ϕ̃, ψ, ψ̃) ∈ H| ϕ, ψ ∈ H2(0, 1), ϕ̃ ∈ V, ψ̃ ∈ H1

0 (0, 1) , ϕx(1) = 0
}

(4.4.3)
and

A0Φ = (ϕ̃, ϕxx − αψ, ψ̃, ψxx − αϕ). (4.4.4)

Then setting Φ = (ϕ, ϕt, ψ, ψt) a regular solution of (4.4.2), we rewrite it into an
evolution equation {

Φt(t) = A0Φ(t),
Φ(0) = Φ0 ∈ H. (4.4.5)

Since A0 is a skew-adjoint operator with a compact resolvent, then, by a corollary
of the Lumer Philips’s Theorem [94], A0 is the infinitesimal generator of a C0 semi-
group of contractions etA0 on H.
Now, let us consider the corresponding eigenvalue problem, where λ̃ denotes its
associated eigenvalue 

λ̃2ϕ− ϕxx + αψ = 0,

λ̃2ψ − ψxx + αϕ = 0,
ϕ(0) = ϕx(1) = 0,
ψ(0) = ψ(1) = 0.

(4.4.6)

Taking γ = 0 in the spectral analysis of the non-conservative operator A, (see
Section 4.2.1) we can deduce the spectral analysis of the conservative operator A0.
From Proposition 4.2.5 and Proposition 4.2.6, we have the following Propositions.

Proposition 4.4.1 (Spectrum of A0). There exists k0 ∈ N⋆ sufficiently large enough
such that the spectrum σ(A0) of A0 is given by

σ(A0) = σ̃0 ∪ σ̃1,

where

σ̃0 = {κ̃1,j}j∈J̃ ∪ {κ̃2,j}j∈J̃ , σ1 = {λ̃1,k}k∈Z⋆, |k|≥k0 ∪ {λ̃2,k}k∈Z⋆, |k|≥k0 , σ̃0 ∩ σ̃1 = ∅,
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where J̃ is a finite set. Moreover, λ̃j,k, for j = 1, 2 satisfy the following asymptotic
behaviors:

λ̃1,k = ikπ + i
π

2
+
O(α)

k2
(4.4.7)

and
λ̃2,k = ikπ +

O(α)

k3
. (4.4.8)

Proof. Following the proof of Proposition 4.2.5, and taking γ = 0 in (4.2.37), as well
as in the expressions (4.2.33)-(4.2.34), we have the following asymptotic expansion

f̃(λ̃) = f̃0(λ̃) +
f̃2(λ̃)

λ̃3
+
O(α2)

λ̃4
, (4.4.9)

where
f̃0(λ̃) = 2 sinh λ̃ cosh λ̃, f̃2(λ̃) = −α

2(cosh(2λ̃) + 2)

4
. (4.4.10)

Next, we seek to determine the roots of f̃(λ̃). It is easy to check that the roots of
f̃0 are simple and are given by

α̃1,k = ikπ + i
π

2
, α̃2,k = ikπ. (4.4.11)

Similarly, thanks to Rouché’s theorem, there exists k0 ∈ N⋆ large enough, such that
∀|k| ≥ k0, the large eigenvalues of A0 (denoted by λ̃1,k, λ̃2,k) are simple and close
respectively to α̃1,k, α̃2,k i.e.

λ̃1,k = α̃1,k + o(1), λ̃2,k = α̃2,k + o(1), as |k| → ∞.

Equivalently, we can write

λ̃1,k = α̃1,k + ζ̃1,k, λ̃2,k = α̃2,k + ζ̃2,k, lim
|k|→∞

ζ̃i,k = 0, i = 1, 2. (4.4.12)

Following the proof of Proposition 4.2.5, and after several computations, we obtain

ζ̃1,k =
O(α)

k2
, ζ̃2,k =

O(α)

k3
. (4.4.13)

Finally, substituting (4.4.11) and (4.4.13) in (4.4.12), we directly get (4.4.7)-(4.4.8).
The proof is thus complete.

Proposition 4.4.2. The eigenfunctions of the eigenvalue problem given by (4.4.6)
have the following asymptotic expansions

ϕ1,k(x) =
sin
(

(2k+1)πx
2

)
kπ

+
O (α2)

k2
, ψ1,k(x) = −

αx cos
(

(2k+1)πx
2

)
2k2π2

+
O (α2)

k3
(4.4.14)

and

ϕ2,k(x) =
iαx cos (kπx)

2k2π2
+
O (α2)

k3
, ψ2,k(x) =

sin (kπx)

ikπ
+
O (α2)

k3
. (4.4.15)
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Proof. First, we determine the corrresponding eigenfunctions of λ̃1,k. Let

C = C1,k = − 1

2 (−1)k kπ
.

Inserting (4.4.7) in (4.2.14), we get

r1,k = ikπ + i
π

2
− i

α

2k
+
O(α2)

k2
, r3,k = ikπ + i

π

2
+ i

α

2k
+
O(α2)

k2
. (4.4.16)

Then it follows that
sinh (r1,kx) = i sin

(
(2k + 1)x

2

)
−
iαx cos

(
(2k+1)x

2

)
2kπ

+
O(α2)

k2
,

sinh (r3,kx) = i sin

(
(2k + 1)x

2

)
+
iαx cos

(
(2k+1)x

2

)
2kπ

+
O(α2)

k2

(4.4.17)

and {
sinh (r1,k) = sinh (r3,k) = i (−1)k

(
1− α2x2

8k2π2
+
O(α2)

k4

)
. (4.4.18)

Inserting (4.4.17)-(4.4.18) into (4.2.15) and (4.2.16), we get (4.4.14).
Next, we look to determine the eigenfunctions of λ̃2,k. Let

C = C2,k = − 1

iα (−1)k
.

Inserting (4.4.8) in (4.2.14), we get

r1,k = ikπ +
α

2ikπ
+
O(α2)

k3
, r3,k = ikπ − α

2ikπ
+
O(α2)

k3
. (4.4.19)

Then it follows that 
sinh (r1,k) = (−1)k

α

2ikπ
+
O(α)

k3
,

sinh (r3,k) = − (−1)k
α

2ikπ
+
O(α)

k3
,

(4.4.20)

and
sinh(r1,kx) = i sin (kπx) +

αx cos (kπx)

2ikπ
− iα2x2 sin (kπx)

8k2π2
+
O(α)

k3
,

sinh (r3,kx) = i sin (kπx)− αx cos (kπx)

2ikπ
− iα2x2 sin(kπx)

8k2π2
+
O(α)

k3
.

(4.4.21)

Finally, inserting (4.4.20)-(4.4.21) into (4.2.15) and (4.2.16), we get (4.4.15).
The proof is thus complete.
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Remark 4.4.3. If λ4 ̸= α2, it is easy to check that all the roots of (4.2.20) are simple
and different from zero. Then we set the eigenfunctions of the conservative operator
A0 as {

Ẽ1,k = (ϕ1,k, λ̃1,kϕ1,k, ψ1,k, λ̃1,kψ1,k),

Ẽ2,k = (ϕ2,k, λ̃2,kϕ2,k, ψ2,k, λ̃2,kψ2,k).
(4.4.22)

Moreover, using the asymptotic expansions (4.4.7)-(4.4.8), and (4.4.14)-(4.4.15), and
since A0 is a skew-adjoint operator we can prove that Ẽ1,k, Ẽ2,k, k ∈ Z⋆ constitute a
Riesz basis in the energy space H.

Proposition 4.4.4. Let α ̸= 0 be a real number small enough. Then there exists a
constant γ̃ > 0 depending only on α such that the two branches of eigenvalues of A0

satisfy an uniform gap condition

γ̃ := inf
m,n

|λ1,m − λ2,n| > 0. (4.4.23)

Moreover, the eigenvalues of the same branch satisfy an uniform gap condition.

Proof. Using the asymptotic expansions (4.4.7)-(4.4.8), we have

|λ̃1,m − λ̃2,n| =
∣∣∣∣π(m− n) +

π

2
+
O(α2)

m2
+
O(α2)

n3

∣∣∣∣ .
We distinguish cases:

Case (1) m = n. We have

|λ̃1,m − λ̃2,n| =
π

2
+
O(α2)

m2
,

we easily obtain the uniform gap condition (4.4.23).

Case (2) m ̸= n. We have

|λ̃1,m − λ̃2,n| =
∣∣∣∣π(m− n) +

π

2
+
O(α3)

m2
+
O(α2)

n2

∣∣∣∣ . (4.4.24)

Now let us consider the leading term in the previous identity. For all m,n ∈ Z⋆, we
have π|m− n|+ π

2
≥ π

2
. Similarly, using (4.4.7)-(4.4.8)

|λ̃j,m − λ̃j,n| = |π(m− n)|+ O(|α|)
m2

+
O(|α|)
n3

, for j = 1, 2. (4.4.25)

It follows that
inf
m̸=n

|λj,m − λj,n| ≥ π.

Hence, one can deduce the uniform gap for eigenvalues laying on the same branch.
The proof is thus complete.
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The observation is on the first components of the eigenfunctions Ẽ1,k, Ẽ2,k defined
in (4.4.22). From (4.4.14)-(4.4.15), we see that

ϕ1,k(1) = O

(
1

k

)
, ϕ2,k(1) = O

(
1

k2

)
. (4.4.26)

Due to the transmission between the nodes of the two equations, the inverse observ-
ability inequalities are not true in the energy space H. That is why, we define the
following weighted spectral space

D =

{
(ϕ0, ϕ1, ψ0, ψ1) =

∑
k ̸=0

(α1,kkẼ1,k + α2,kk
2Ẽ2,k)

}
.

Since system Ẽ1,k, Ẽ2,k is a Riesz basis in the energy space H, the space D is obviously
a Hilbert space equipped with the norm∑

k ̸=0

(|α1,k|2 + |α2,k|2).

We are now ready to prove our second main result.

Proof of Theorem 4.1.2. Assume first that λ4 ̸= α2. In this case, all eigenvalues
are different from zero and are all algebraically simple. Given any initial data such
as

(ϕ0, ϕ1, ψ0, ψ1) =
∑
k ̸=0

(α1,kkẼ1,k + α2,kk
2Ẽ2,k) ∈ D,

and using the Riesz property the solution of (4.4.5) can be written as

(ϕ(x, t), ϕt(x, t), ψ(x, t), ψt(x, t)) =
∑
k ̸=0

(α1,kkẼ1,ke
λ̃1,kt + α2,kk

2Ẽ2,ke
λ̃2,kt).

It follows that

ϕ(1, t) =
∑
n ̸=0

(α1,kkϕ1,k(1)e
λ̃1,kt + α2,kk

2ϕ2,k(1)e
λ̃2,kt). (4.4.27)

We recall that the two branches of eigenvalues (λ̃1,k)k ̸=0, (λ̃2,k)k ̸=0 satisfy an uniform
gap condition. Back to (4.4.26), we can rewrite (4.4.27) as

ϕ(1, t) ∼
∑
k ̸=0

(α1,ke
λ̃1,kt + α2,ke

λ̃2,kt).

Following a generalization of Ingham’s theorem (see [73], Theorem 9.1), the sequence
(eikπt)n ̸=0 forms a Riesz basis in L2(0, T ) provided that

T > 2π/γ̃
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where γ̃ is the uniform gap between the eigenvalues (4.4.23). It follows that∫ T

0

|ϕ(1, t)|2dt ∼
∑
k ̸=0

(|α1,k|2 + |α2,k|2).

This yield inequalities (4.1.9) and (4.1.10). The proof is now complete.

Using the Hilbert Uniqueness Method ([79]), we have the following exact controlla-
bility result.

Theorem 4.4.5. Let α ̸= 0 be a real number small enough. Assume that T > 4,
then system (4.4.1) is exactly controllable. More precisely, for any initial data
(u0, u1, y0, y1) ∈ D′, there exists a control function v ∈ L2(0, T ) such that the solution
(u, ut, y, yt) ∈ D′, and the controlled system (4.4.1) satisfies the null final conditions

u(x, T ) = ut(x, T ) = y(x, T ) = yt(x, T ) = 0.

It is natural to think about the characterization of the spectral space D. For this
aim, we have this new subsection.

4.4.2 Observability and exact controllability in usual spaces

The weighted spectral space D is defined by means of the eigenfunctions (Ẽ1,k)k ̸=0

and (Ẽ2,k)k ̸=0 with weights. So, the four exponents (ϕ0, ϕ1, ψ0, ψ1) are a priori in-
volved together. In order to get the observability or exact controllability in usual
energy spaces, we have to separate the components (ϕ0, ϕ1, ψ0, ψ1). In order to do
so, we will use the Theorem below whose proof is established in [89].

Theorem 4.4.6. Let (xk)k ̸=0 and (yk)k ̸=0 be Riesz basis of Hilbert spaces X and Y
respectively, and (fk)k ̸=0 and (gk)k ̸=0 be Bessel sequences of X and Y with suitably
small bounds respectively. Define

D =

{
(x, y) = αk(xk, gk) + βk(fk, yk) :

∑
k ̸=0

(|αk|2 + |βk|2) <∞
}
.

Then we have D = X × Y.

Now using the asymptotic expansions (4.4.7)-(4.4.8) in (4.4.22), one can write

Ẽ1,k = (xk, gk), Ẽ2,k = (fk, yk)

with

xk =

sin
(

π(2k+1)x
2

)
kπ

, i sin

(
π (2k + 1)x

2

), (4.4.28)
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gk =

−
αx cos

(
π(2k+1)x

2

)
2k2π2

,−i
αx cos

(
π(2k+1)x

2

)
2kπ

, (4.4.29)

fk =

(
iαx cos (kπx)

2k2π2
,
αx cos (kπx)

2kπ

)
, (4.4.30)

and
yk =

(
sin (kπx)

ikπ
, sin (kπx)

)
. (4.4.31)

Next for any s ≥ 0, we define the space

Xs =

{
(ϕ̂, ψ̂) =

∑
k ̸=0

αkk
sxk

}
, ∥(ϕ̂, ψ̂)∥2Xs

=
∑
k ̸=0

|αk|2. (4.4.32)

Following Theorem 4.4.6, we can state the following result.

Corollary 4.4.7. Let α ̸= 0 be a real number small enough. We have the following
identification

D = X1 ×X2. (4.4.33)

Proof. From (4.4.28) and (4.4.31), we see that (kxk)k ̸=0 and (k2yk)k ̸=0 are Riesz basis
in X1 and X2 respectively. Moreover (kfk)k ̸=0 and (k2gk)k ̸=0 are Bessel sequences in
X1 and X2 respectively. Then (4.4.32) follows directly from Theorem 4.4.6.

Furthermore for any s ≥ 0 we define the spaces

Vs =

{
f =

∑
k>0

αk
sin(kπx)

ks

}
, ∥f∥2Vs

=
∑
n>0

|αk|2.

With the pivot space L2(0, 1), we have

Xs = V ′
s−1 × V ′

s . (4.4.34)

It follows from (4.4.33)-(4.4.34) that

D = V ′
0 × V ′

1 × V ′
1 × V ′

2 . (4.4.35)

We can now characterize the space of observability. We state thus the following
result.

Theorem 4.4.8. Let α be a real number small enough. Assume that

T > 4.

Then there exists a constant c1 > 0 such that the direct observability inequality holds∫ T

0

|ϕ(1, t)|2dt ≤ c1∥(ϕ0, ϕ1, ψ0, ψ1)∥2H,
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for all solution Φ = (ϕ, ϕt, ψ, ψt) solving the corresponding homogeneous Cauchy
problem. Moreover, there exists a constant 0 < c < c1 depending only on α such
that the following observability inequality holds true

c∥(ϕ0, ϕ1, ψ0, ψ1)∥2V ′
0×V ′

1×V ′
1×V ′

2
≤
∫ T

0

|ϕ(1, t)|2dt.

Proof. The proof of the inverse observability inequality is a direct consequence of
Theorem 4.1.2 and the identification (4.4.35). The proof of the direct observability
inequality is a direct consequence of the divided difference technique.

We deduce that the observability space is

D = L2(0, 1)×H−1(0, 1)×H−1(0, 1)×H−2(0, 1).

Finally, using HUM method, we have the following controllability result.

Theorem 4.4.9. Let α ̸= 0 be a real number small enough. Assume that T > 4,
then system (4.4.1) is exactly controllable. More precisely, for any initial data
(u0, u1, y0, y1) ∈ V1 × V0 × V2 × V1, there exists a control function v ∈ L2(0, T ) such
that the solution (u, ut, y, yt) ∈ V1 × V0 × V2 × V1 and the controlled system (4.4.1)
satisfies the null final conditions

u(x, T ) = ut(x, T ) = y(x, T ) = yt(x, T ) = 0.

Remark 4.4.10. The control space is of type

H1(0, 1)× L2(0, 1)×H2(0, 1)×H1(0, 1).
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