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UFR Sciences & Technologies

Traitement de données numériques par analyse

formelle de concepts et structures de patrons

THÈSE
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Chapter 1Introdu
tion1 Con
eptual knowledge dis
overy in databasesWe are living in a world of data. Huge volumes of data �web do
uments, user information�are available without any intended usage. Large volumes of biologi
al data are now available�genome, trans
riptome, proteome, et
.� from whi
h biologi
al knowledge is expe
ted to bedis
overed. Storing 
ommer
ial data is also 
ommon pra
ti
e for �rms �user preferen
es, visitedwebpages history, bought produ
ts history, et
.�. In this three (non exhaustive) 
ases, datahide several useful information that 
an make life of users easier, genes responsible of a diseasedis
overed, or promising sale se
tors of a �rm highlighted. However, these useful information aregenerally buried in the very large amount of data. A

ordingly, a 
hallenging question arose inthe 90's: �Can we make (very large) data speak?�.Knowledge dis
overy in databases (KDD) is the pro
ess of �nding non-trivial, potentiallyusefull, signi�
ant and reusable information in data [44, 43℄. Starting from rough data, it 
onsistsin three major steps: (i) rough data are prepared, (ii) data are mined and (iii) extra
ted unitsare interpreted and may be �nally 
onsidered as derived knowledge. The obje
tive of this pro
essmay be un
lear, inexa
t, or not known a priori. KDD is a

ordingly an iterative and intera
tivepro
ess: to ensure usefulness and a

ura
y of the results both domain experts and te
hni
alexperts are generally needed to guide the KDD pro
ess.More pre
isely, the KDD pro
ess 
an be divided in �ve steps [43, 44, 40℄.Sele
tion. The data needed for the data-mining pro
ess may be obtained from many di�erentand heterogeneous data sour
es. A �rst step 
onsists in 
olle
ting the data from variousdatabases, �les, non ele
troni
 sour
es (interviews, books, experts,et
.)Prepro
essing. The sele
ted data may su�er from errors and missing values. Some data valuesmay 
ontradi
t ea
h other sin
e possibly 
oming from di�erent sour
es of data. Errors 
anbe 
orre
ted, while missing values 
an be predi
ted (often with data-mining tools).Transformation. Some data-mining algorithms operate on 
ertain types of data only. A

ord-ingly, data should be sometimes transformed, e.g. from quantitative to qualitative data.Data redu
tion is a kind of transformation that redu
es the number of data values being
onsidered, sometimes simply for making the 
omputation with a data-mining algorithmpossible.Data-mining. Data-mining is the use of algorithms to extra
t the information and patterns(regularities, 
lasses, et
.) derived by the KDD pro
ess. A
tually, data-mining 
onsists in1



2 Chapter 1. Introdu
tionpattern dis
overy or deriving/designing a model from the data.Interpretation. Information units and/or models dis
overed with data-mining need to be val-idated by a domain expert. The way they are presented to the expert is very important.Visualization tools and graphi
al user interfa
es (GUI) are 
onsidered at this step.The KDD pro
ess may be also understood as a pro
ess turning data to information and thento knowledge, 
onsidering the following interpretations [113, 129, 93℄:Data. Data are the uninterpreted signals that rea
h our senses every minutes. A red, a green,or yellow light at an interse
tion is an example. Computers are full of data: signals 
onsist-ing of strings, numbers, 
hara
ters, and other symbols that are blindly and me
hani
allyhandled in large quantities.Information. Information is data equipped with meaning. For a 
ar driver, a red tra�
 light isnot just a signal of some 
oloured obje
t, rather, it is interpreted as an indi
ation to stop.Knowledge. Knowledge is the whole body of data and information that people bring to bear topra
ti
al use in a
tion1, in order to 
arry out tasks and 
reate new information. Knowledgeadds two distin
t aspe
ts: �rst, a sense of purpose, sin
e knowledge is the �intelle
tualma
hinery� used to a
hieve a goal; se
ond, a generative 
apability, be
ause one of themajor fun
tions of knowledge is to produ
e new information.Finally, knowledge units should be represented in an adequate representation formalism [24℄and may be integrated in ontologies to be re-used for solving problems in appli
ation domainssu
h as agronomy, biology, mede
ine, 
hemistry, et
. KDD methods and prin
iples are widely
onsidered in the literature [40, 44, 43, 89℄.Con
epts are ne
essary for expressing human knowledge, hen
e the KDD pro
ess should ben-e�t from a 
omprehensive formalization of 
on
epts [129℄. Formal Con
ept Analysis (FCA) [47℄o�ers su
h formalization of 
on
epts by mathematizing 
on
epts that are understood as unitsof thought 
onstituted by their extent (the instan
es of the 
on
ept) and intent (their 
ommondes
ription). To mathemati
ally de�ne 
on
epts, FCA starts with a binary relation, 
alled for-mal 
ontext, between some (formal) obje
ts and (formal) attributes. Con
epts are a

ordinglyde�ned as pairs 
onstituted of an extent (a set of obje
ts) and an intent (a set of attributes sharedby these obje
ts). Con
epts form a mathemati
al stru
ture 
alled 
on
ept latti
e that expressesa generalization/spe
ialization relation of 
on
epts. The 
on
ept latti
e is a support for so 
alled
on
eptual knowledge dis
overy in databases, but revealed itself to be helpful for appli
ations ininformation and knowledge pro
essing in
luding visualization, data analysis (mining) and knowl-edge management. FCA emerged in the 1980's [128℄ from attempts to restru
ture latti
e theoryin order to promote better 
ommuni
ation between latti
e theorists and potential users of latti
etheory and is now a �eld of applied mathemati
s on its own. We now make pre
ise the notionsof formal 
ontext, formal 
on
ept, and 
on
ept latti
e.Formal 
ontext and formal 
on
epts. In FCA, data are represented by a formal 
ontext
(G,M, I) where G denotes a set of obje
ts, M a set of attributes, and I ⊆ G × M abinary relation between G and M . The statement (g,m) ∈ I is interpreted as �the obje
t
g has attribute m�. A 
on
ept is a pair (A,B) 
omposed of a set of obje
ts A and a setof attributes B su
h that obje
ts in A have all the attributes from B, and vi
e-versa. In
(A,B), the set A is 
alled the extent and the set B the intent of the 
on
ept (A,B).1The term a
tionability is also used.



2. Gene expression data analysis 3Con
ept latti
e. On
e all 
on
epts are extra
ted, they are ordered by in
lusion of their extent:a 
on
ept is greater than another if it 
ontains more obje
ts in its extent (dually lessattributes in its intent). With respe
t to this partial order, the set of all formal 
on
eptsforms a 
omplete latti
e 
alled the 
on
ept latti
e of the formal 
ontext (G,M, I). The
on
ept latti
e provides an interesting 
lassi�
ation of obje
ts in a domain. It entailsboth notions of maximality and generalization/spe
ialization: a 
on
ept 
orresponds toa maximal set of obje
ts (extent) sharing a 
ommon maximal set of attributes (intent) ;the generalization/spe
ialization is given by the partial ordering of 
on
epts. Furthermore,impli
ations between attributes 
an be read from the 
on
ept latti
e.FCA basi
ally applies to formal 
ontexts, i.e. binary data. The main topi
 of this thesis
on
erns the analysis of numeri
al data with Formal Con
ept Analysis. Gene expression data isa kind of numeri
al data that brought a lot of interest in the last de
ade. We now introdu
e theproblem of gene expression data analysis and show that FCA is a natural way to 
on
iliate itsobje
tives.2 Gene expression data analysisBiologists at the UMR IAM (INRA) study intera
tions between fungi and trees. They publishedthe 
omplete genome sequen
e of the fungus La

aria bi
olor [83℄. This fungus lives in symbiosiswith many trees of boreal and temperate forests. The fungus forms a mixed organ on treeroots and is able to ex
hange nutrients with its host in a spe
i�
 symbioti
 stru
ture 
allede
tomy
orrhiza, 
ontributing to a better tree growth and enhan
ing forest produ
tivity, seeFigure 1. On the other hand, the plant repays its symbioti
 partner by providing 
arbohydrates,allowing the fungus to 
omplete its biologi
al 
y
le by produ
ing fruit-bodies (e.g. mushrooms).It is thus of major interest to understand how the symbiosis performs at the 
ellular level. Thegenome sequen
e of La

aria bi
olor 
ontains more than 20,000 genes [83℄. The study of theirexpression, or they behaviour, in various biologi
al situations helps to understand their roles andfun
tions in the biology of the fungus.
Figure 1: An example of e
tomy
orrhiza in nature (Credits: INRA).2.1 Gene expression dataGene expression is the me
hanism that produ
es a protein from a gene in two steps. Firstlytrans
ription builds a 
opy of a gene 
alled mRNA whi
h is then translated into a protein. Thisme
hanism di�ers in di�erent biologi
al situations: for ea
h gene the 
on
entration of mRNAand proteins depends on the 
urrent 
ell, time, et
. and re�e
ts the behaviour of the gene.Indeed, biologi
al pro
esses of a living 
ell are based on 
hemi
al rea
tions and intera
tionsbetween proteins and mRNA. Thus, it is important to measure and analyse mRNA and protein
on
entration to understand biologi
al pro
esses a
tivated in a 
ell.



4 Chapter 1. Introdu
tionUsing mi
roarray biote
hnology, the 
on
entration of mRNA is measured into a numeri
alvalue 
alled gene expression value, whi
h 
hara
terizes the behaviour of a gene in a parti
ular
ell. Mi
roarrays 
an monitor simultaneously the expression of a large number of genes, possiblythe 
omplete 
oding spa
e of a genome. When several mi
roarrays are 
onsidered, the expressionvalue of a gene is measured in multiple situations or environments, e.g. di�erent 
ells, time points,
ells responding to parti
ular environmental stresses, et
. This 
hara
terizes the behaviour ofthe gene w.r.t. all these situations and is represented by a ve
tor of expression values 
alled agene expression pro�le.A gene expression data (GED) is generally des
ribed as a gene × situation table with rows
orresponding to genes and 
olumns 
orresponding to situations, see e.g. Table 1. A table entry is
alled an expression value. A row in the table denotes an expression pro�le asso
iated to a gene(GEP). We 
onsider the NimbleGen Systems Oligonu
leotide Arrays te
hnology2: expressionvalues range from 0 (not expressed) to 65535 (highly expressed).Gene Id a b cGene 1 11050 11950 1503Gene 2 13025 14100 1708Gene 3 6257 5057 6500Gene 4 5392 6020 7300Gene 5 13070 12021 15548Table 1: A gene expression dataset.2.2 Mining gene expression dataThanks to powerful and s
alable biote
hnolgies, a major problem in biology is to derive knowledgefrom very large gene expression data. A �rst step is to extra
t groups of 
o-expressed genes,i.e. groups of similar gene expression pro�les. Indeed, 
o-expressed genes may intera
t togetherwithin the same biologi
al pro
ess [117℄. Gene expression data analysis involves all the steps ofknowledge dis
overy in databases. First some genes/situations may be sele
ted for a given study.Se
ond numeri
al data may be binarized in order to apply data-mining algorithms whose inputare binary tables. Finally, extra
ted patterns with data-mining algorithms must be interpretedand validated (generally after in vitro biologi
al experiments).A 
ru
ial step is data-mining sin
e expression patterns have to 
onsider several properties aslisted hereafter.
• The data-mining algorithm should depend as little as possible on prior knowledge.
• GED are obtained from 
omplex pro
edures involving biologi
al experiments, image a
qui-sition and pro
essing, et
. A

ordingly, GED 
ontain a huge amount of noise.
• A gene may parti
ipate to di�erent biologi
al pro
esses simultaneously: groups of genesshould overlap. In other words, a gene may belong to several groups.
• Biologists are interested in groups of 
o-expressed genes, but also in the relationshipsbetween these groups.2Details on this biote
hnology 
an be found at http://www.nimblegen.
om/.



2. Gene expression data analysis 5Numerous data-mining methods have been designed sin
e the end of 90's allowing the dis-
overy and des
ription of biologi
al pro
esses in living 
ells [55, 81, 117℄. Data-mining methodsextra
ting groups of 
o-expressed genes 
an be divided into three 
ategories:Clustering. A �rst data-mining family of methods applied to gene expression data is 
lustering.Clustering aims at grouping gene expression pro�les (GEP) into a disjoint set of 
lasses,
alled 
lusters, so that GEP within a 
lass have high similarity, while GEP in separate
lasses are more dissimilar. A

ordingly, 
lustering allows to group genes into 
lusterswith respe
t to some similarity 
riteria between their expression pro�le. The similarity isde�ned a

ording to an adequate distan
e, following given 
hara
teristi
s [55℄. The mostapplied 
lustering methods in biologi
al works are K-means method [48℄ and hierar
hi
al
lustering [41℄. However, 
lusters are global patterns sin
e similarity between GEP is
omputed w.r.t. all situations simultaneously (possibly weighted). Then, 
lustering mayfail to dete
t biologi
al pro
esses a
tivated in some situations only [81℄.Bi
lustering. In many appli
ations, and espe
ially in gene expression data analysis, lo
al pat-terns are preferred [81, 18℄ and 
onsist in pairs (A,B) where A is a subset of obje
ts (heregenes) related to a subset of attributes B (here biologi
al situations). Indeed, it is knownthat a set of genes is a
tivated (e.g. translated into proteins for enabling a biologi
al pro-
ess) under some 
onditions only, i.e. only for some attributes. Moreover, most of thegenes are involved in several pro
esses [117℄, i.e. bi
lusters should overlap.The type of the relation between the subset of obje
ts A and the subset of attributes B
an vary, leading to the de�nition of several types of bi
lusters. For example, every valuetaken by attributes in B for obje
ts in A should be identi
al, leading to the de�nition ofbi
lusters of 
onstant values. Another possibility is to 
onsider that those values shouldbe similar w.r.t. a given similarity relation between them, leading to bi
lusters of similarvalues. Many other types of bi
luters exist, e.g. bi
lusters of 
oherent evolution of values,et
. as fully des
ribed in [81℄.The 
omplexity of the problem of mining bi
lusters is known to be at least NP-
omplete [81℄.A

ordingly, almost all bi
lustering algorithms use heuristi
 approa
hes to identify bi
lus-ters. Some algorithms avoid heuristi
s but exhibit an exponential worst 
ase runtime.Then, it be
omes di�
ult to extra
t homogeneous bi
lusters based for example on subta-bles of a GED and respe
ting given 
onstraints as their number grows exponentially. If
onstraints are more �heuristi
-like�, then interesting patterns may be missed [18℄. Thisis also one of the reasons why only a few bi
lustering algorithms allow overlapping ofbi
lusters.Bi
lustering binary GED. Gene expression data 
an be binarized into binary tables, seee.g. Table 2, allowing to lower 
omputational di�
ulties when mining bi
lusters. In this ta-ble, a 
ross 
orresponds to gene over expression, i.e. above a spe
i�ed threshold. It followsthat a bi
luster 
an be viewed a set of obje
ts having the same, or almost the same, set ofattributes. In [104℄, authors proposed the Bi-Max bi-
lustering algorithm, whi
h extra
tsin
lusion-maximal bi
lusters, and showed how it outperforms other bi
lustering algorithms.Su
h patterns are des
ribed as maximal subtables of �1� values, modulo line and 
olumnspermutations. Although the authors do not mention it, the de�nition of in
lusion-maximalbi
lusters exa
tly 
orrespond to the de�nition of a formal 
on
ept in FCA.



6 Chapter 1. Introdu
tionGene Id a b cGene 1 × ×Gene 2 × ×Gene 3Gene 4Gene 5 × × ×Table 2: An example binary GED en
oding over-expression.2.3 Towards numeri
al data mining with formal 
on
ept analysisThe history on gene expression data-mining started with 
lustering. Bi
lustering was introdu
edfor taking into a

ount the fa
t that genes are a
tivated in some situations only not ne
essarily all.Due to problem 
omplexity, many resear
hers have envisaged to 
onsider binary gene expressiondata, naturally leading to formal 
on
ept extra
tion. Indeed, FCA 
an be viewed as a kind ofbinary bi
lustering method. It provides means for extra
ting patterns from a binary relation,namely formal 
on
epts. In appli
ation to GED analysis, 
on
ept extents are maximal setsof genes related to a 
ommon maximal set of situations (not ne
essarily all). The ordering of
on
epts among a 
omplete latti
e makes overlapping of 
on
epts natural. Then a 
ompleteenumeration of patterns respe
ting some families of 
onstraints is natural.However, binarizing numeri
al data 
omes with loss of information that should be measuredand minimized. When information loss is avoided, this may 
ome with very large data whosemining is even worst problem. In this thesis, we investigate how to mine numeri
al data su
h asGED with FCA, while avoiding dis
retization (
alled s
aling in FCA terms). Indeed, resear
hersin FCA have 
onsidered the problem of building 
on
ept latti
es dire
tly from 
omplex data:Instead of s
aling, one may work dire
tly with initial data, i.e. 
omplex obje
t des
riptions,de�ning so-
alled similarity operators whi
h indu
e a semi-latti
e on data des
riptions. Severalattempts were made for de�ning su
h semi-latti
es on sets of graphs [46, 69, 70, 79℄ and logi
alformulas [31, 45℄. Indeed, if one is able to order obje
t des
riptions in 
omplex data, e.g. withgraph morphism when obje
ts are des
ribed by labelled graphs, one may attempt to dire
tlybuild a 
on
ept latti
e from su
h data. In [46℄, a general approa
h 
alled pattern stru
tures wasproposed, whi
h allows one to apply standard FCA to any partially ordered data des
riptions.Pattern stru
tures will be our main tool for 
onsidering numeri
al data from an FCA point ofview.3 Contributions and stru
ture of the thesisIn this se
tion, we introdu
e our main 
ontributions and how they are stru
tured in the presentdo
ument. The work is divided in several 
hapters whose ordering follows our resear
h study intime. This makes the reading easier sin
e ea
h 
hapter follows ideas of the pre
eding one, tryingto answer its questions or extending the ability of the method that it presents. In this way, somede�nitions and notions are re
alled from a 
hapter to another, to make the reading easier.Our main 
ontribution 
on
erns the mining of numeri
al data with Formal Con
ept Analysis.Chapter 2 a

ordingly introdu
es FCA. After re
alling elementary notions from order theory,the framework is detailed in 
lassi
al settings, i.e. 
onsidering a binary relation between a set ofobje
ts and a set of attributes. Then, we introdu
e pattern stru
tures that will be our main toolin Chapters 4 to 8 to 
onsider numeri
al data.



3. Contributions and stru
ture of the thesis 7In Chapter 3 we present a naive FCA-based approa
h for mining gene expression data. Aninterval based dis
retization transforms the data into binary on whi
h FCA 
an be applied.Con
epts 
orresponds to groups of genes (extent) having expression values lying in a same intervalfor some biologi
al situations (intent). Whereas the originality of su
h approa
h is to easily redu
ethe set of 
on
epts to those highlighting strong expression variations (interesting for biologists),intervals for dis
retization remain to be 
hosen a priori, a hard task espe
ially in unsupervisedsettings. This work has appeared in [60, 62, 61℄.In Chapter 4 we propose to avoid to 
hoosing those intervals a priori, but rather to 
onsiderevery possible intervals of values. This leads to the de�nition of a new type of numeri
al pattern
alled interval patterns. Intuitively, ea
h obje
t of a numeri
al dataset is a ve
tor of numbers,where ea
h dimension 
orresponds to an attribute. A

ordingly, an interval pattern is a ve
torof intervals, where ea
h dimension des
ribes the range of possible values for a given numeri
alattributes asso
iated with some obje
ts. An interval pattern 
an represented by a hyperre
tanglein Eu
lidean spa
e, whose sides are parallel to the 
oordinate axes. To e�
iently mine thesepatterns, we adapt the framework of pattern stru
tures for numeri
al data, with so 
alled intervalpattern stru
tures. A

ordingly, we explore the ability of FCA to deal dire
tly with numeri
aldata. We experiment this method with gene expression data. This work has appeared in [59, 66℄.In Chapter 5 we introdu
e a similarity relation between numeri
al values in interval patternstru
tures. Indeed, the major drawba
k of interval pattern stru
tures is the very large amountof 
on
epts �the prize to pay when avoiding loss of information linked to s
aling�. We show howpattern stru
tures 
an be modi�ed to lead to 
on
epts de�ned as maximal sets of obje
ts havingsimilar values for a maximal set of attributes by formalizing similarity as a toleran
e relation.We experiment this adaptation of interval pattern stru
tures to information fusion problems inagronomy. This work has appeared in [56, 57, 58℄.In Chapter 6 we argue that formal 
on
ept analysis 
an enhan
e a de
ision problem whenfa
ing information fusion problems, following ideas introdu
ed in Chapter 5. Information fusion
onsists of merging, or exploiting 
onjointly, several sour
es of information for answering ques-tions of interest and make proper de
isions. A fusion operator is an operation summarizing allinformation given by sour
es into an interpretable information. It happens that the fusion ofinformation of all sour
es is not exploitable for making a de
ision. We show that several infor-mation fusion operators 
an be dire
tly embedded in pattern stru
tures. Consequently, insteadof providing a unique fusion result whi
h 
an be problemati
, resulting pattern 
on
ept latti
eyields a stru
tured view of partial results labelled by subsets of sour
es. These partial resultsare better 
andidates for de
ision making. An experiment on agronomi
 data is 
arried out andreally justi�es this work. This 
ontribution has appeared in [5, 7℄ and extended in [6℄.In Chapter 7 we are interested in de�ning 
ondensed representations of interval patterns.Indeed, the number of possible interval patterns is generally is too large for enabling their in-terpretation. A deeply investigated solution in the �eld of itemset-mining involves 
ondensedrepresentations of patterns. A 
ondensed representation aims at removing all redundant infor-mation in the pattern 
olle
tion. Generally, this new representation is mu
h smaller than theoriginal one. For that matter, we adapt the notions of 
losed itemsets and generators fromitemset-mining to interval patterns with the following semanti
s: a 
losed interval pattern isthe smallest hyper-re
tangle 
ontaining a given set of obje
ts while generators are the largesthyper-re
tangles 
ontaining the same set of obje
ts. We show that 
losed patterns and gener-ators are very 
ompa
t representations of interval patterns. This preliminary work takes rootin pattern-mining. We provide several algorithms for mining those kinds of patterns and showtheir usefulness in data-mining. This work was detailed in [63, 65℄.In Chapter 8 we show how FCA with either parti
ular diz
retization or pattern stru
tures 
an



8 Chapter 1. Introdu
tionhandle the problem of bi
lustering numeri
al data. A
tually, FCA provides many interesting toolsfor data-mining: a notion of maximality within 
on
epts, a notion of generalization/spe
ializationof 
on
epts, but also tools for 
onsidering noise inherent in real-life datasets. How these tools 
anbe shifted to 
onsider the problem of numeri
al bi
lustering is an interesting question. We answerthis question by showing how two kinds of bi
lusters (namely bi
lusters of 
onstant values andbi
lusters of similar value) 
an be extra
ted with FCA-based methods without using heuristi
and reasonable pra
ti
al 
omplexity. This preliminary work 
an be also found in [64℄ and isplanned to be extended to other types of bi
lusters.In Chapter 9 we present a summary of our work and result. We �nish with future dire
tionsof resear
h and extensions of our work.



Chapter 2Formal Con
ept AnalysisThis 
hapter introdu
es the framework of Formal Con
ept Analysis (FCA). Firstly, Se
tion 2.1introdu
es basi
 notions from order theory. Then Se
tion 2.2 presents the important notions offormal 
ontexts, formal 
on
epts and 
on
ept latti
es, along with mathemati
al de�nitions andalgorithmi
 issues. How to handle numeri
al data with many-valued 
ontexts and 
on
eptuals
aling (dis
retization) is addressed in Se
tion 2.3. Se
tion 2.4 introdu
es a framework 
alledpattern stru
tures, an extension of FCA to 
omplex data avoiding s
aling, that we will use inmany of our 
ontributions in the following 
hapters. Finally, Se
tion 2.5 establishes links betweenFCA and itemset-mining. These links will be useful for algorithm design and 
omparison in thenext 
hapters as well.1 Preliminaries on order theoryIn the rest of the dissertation, the following order-theori
 notions will be used, and are de�nedfollowing the �rst 
hapter of the seminal book on FCA [47℄.De�nition 2.1 (Binary relation) A binary relation R between two arbitrary sets M and N isde�ned on the Cartesian produ
t M × N and 
onsists of pairs (m,n) with m ∈ M and n ∈ N .When (m,n) ∈ R, we usually write mRn. If M = N , R is a a binary relation on the set M (ordually on the set N).De�nition 2.2 (Order relation) A binary relation R on a set M is 
alled an order relation(or shortly order) if it satis�es the following 
onditions for all elements x, y, z ∈M :1. (re�exivity) xRx2. (antisymmetry) xRy and x 6= y ⇒ not yRx3. (transitivity) xRy and yRz ⇒ xRzFor an order relation on a set M , we often use the symbol ≤ and write x < y when x ≤ yand x 6= y. x ≤ y is read as usual : �x is less or equal to y�. A trivial example of ordered set isthe set of real numbers R with usual relation ≤ on numbers. Taking a subset of real numbers
{1, 6.4, 2, 3.4} one has 1 ≤ 2 ≤ 3.4 ≤ 6.4. In this example, ≤ is a total order, meaning that anytwo elements 
an be 
ompared. In many 
ases, all elements are not 
omparable, and we have apartial order. 9



10 Chapter 2. Formal Con
ept AnalysisDe�nition 2.3 (Ordered set) Given an order relation ≤ on a set M , an ordered set is a pair
(M,≤). When ≤ is a partial order, (M,≤) is 
alled partially ordered set, or poset for short.De�nition 2.4 (In�mum, supremum) Let (M,≤) be an ordered set and A a subset of M . Alower bound of A is an element s of M with s ≤ a for all a ∈ A. An upper bound of A is de�neddually. If it exists a largest element in the set of all lower bounds of A, it is 
alled the in�mum of
A and is denoted by �inf A� or ∧A; dually, a least upper bound is 
alled supremum and denotedby �sup A� or ∨A. In�mum and supremum are frequently 
alled respe
tively meet and join, alsodenoted respe
tively by the symbols ⊓ and ⊔.De�nition 2.5 (Latti
e, 
omplete latti
e) A poset V = (V,≤) is a latti
e, if for any twoelements x, y ∈ V the supremum x∨ y and the in�mum x∧ y always exist. V is 
alled a 
ompletelatti
e if for any subset X ⊆ V , the supremum ∨

X and the in�mum ∧

X exist. Every 
ompletelatti
e V has a largest element ∨ 
alled the unit element denoted by 1V . Dually, the smallestelement 0V is 
alled the zero element. We will rather use the symbol bottom ⊥ for 0V and top ⊤for the unit element in the following.The de�nition of a 
omplete latti
e presupposes that both supremum and in�mum exist forevery subset X. In parti
ular, for X = ∅, we have ∧ ∅ = 1V , and ∨ ∅ = 0V . It follows that
V 6= ∅ for every 
omplete latti
e. Every non-empty �nite latti
e is a 
omplete latti
e.We 
an re
onstru
t the order relation from the latti
e operations in�mum and supremum by

x ≤ y ⇐⇒ x = x ∧ y ⇐⇒ x ∨ y = yDe�nition 2.6 (Join-semi-latti
e and meet-semi-latti
e) A poset V = (V,≤) is a join-semi-latti
e if for any two elements x, y ∈ V the supremum x ∨ y always exists. Dually, it is ameet-semi-latti
e if the in�mum x∧ y always exists. A latti
e is a poset that is both a meet- andjoin-semil-atti
e with respe
t to the same partial order.Finally, one more important notion on whi
h FCA is based 
on
erns 
losure operators.De�nition 2.7 (Closure operator) Let S be a set and ψ a mapping from the power set3 of Sinto the power set of S, i.e. ψ : P(S) −→ P(S). ψ is 
alled a 
losure operator on S if, for any
A,B ⊆ S, it is:1. extensive: A ⊆ ψ(A),2. monotone: A ⊆ B implies that ψ(A) ⊆ ψ(B), and3. idempotent: ψ(ψ(A)) = ψ(A).A subset A ⊆ S is ψ-
losed if A = ψ(A). The set of all ψ-
losed {A ⊆ S | A = ψ(A)} is
alled a 
losure system.3The power set of any set S, written P(S), or 2S , is the set of all subsets of S, in
luding the empty set and Sitself, hen
e 
omposed of 2|M| elements.
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m1 m2 m3 m4 m5 m6

g1 × × ×
g2 × × × ×
g3 × × × × ×

g4 × × ×
g5 × ×
g6 × × ×
g7 × × × ×Table 1: An example of formal 
ontext K = (G,M, I)2 Formal 
on
ept analysisFormal Con
ept Analysis emerged in the 1980's from attempts to restru
ture latti
e theory inorder to promote better 
ommuni
ation between latti
e theorists and potential users of latti
etheory [128℄. It rapidly growths into a resear
h �eld leading to a seminal book [47℄ and FCAdedi
ated 
onferen
es su
h as the international 
onferen
es on 
on
ept latti
es (ICFCA), on
on
ept latti
es and its appli
ations (CLA) and in some extent the international 
onferen
e on
on
eptual stru
tures (ICCS). A

ordingly, FCA revealed itself to be a simple and well formalizedframework useful for several appli
ations in information and knowledge pro
essing in
ludingvisualization, data analysis (mining) and knowledge management [129, 125, 100℄. A websitededi
ated to FCA is maintenend by Uta Priss4.2.1 From a formal 
ontext to a 
on
ept latti
eIn FCA, data are represented by a formal 
ontext from whi
h formal 
on
epts are 
hara
terizedand ordered in a latti
e stru
ture.De�nition 2.8 (Formal 
ontext) A formal 
ontext K = (G,M, I) 
onsists of two sets G and

M and a binary relation I between G and M . Elements of G are 
alled obje
ts5 while elementsof M are 
alled attributes6 of the 
ontext. The fa
t (g,m) ∈ I is interpreted as �the obje
t g hasattribute m�.A formal 
ontext is usually represented by a 
ross table, or binary table. Ea
h line 
orrespondsto an obje
t, while ea
h 
olumn to an attribute. A 
ross in row g and 
olumn m means thatthe obje
t g has the attribute m. A empty table entry means that obje
t in line has not theattribute in 
olumn.Example. Consider the set of obje
ts G = {g1, ..., g7} where ea
h letter denotes an animal,respe
tively, �ostri
h�, �
anary�, �du
k�, �shark�, �salmon�, �frog�, and �
ro
odile�. Consider theset of attributes M = {m1, ..,m6} that are properties that animals may have or not, i.e. �bornedfrom an egg�, �has feather�, �has tooth�, ��y�, �swim�, �lives in air� . Table 1 gives an example offormal 
ontext (G,M, I) where I is de�ned by observing the given animals.De�nition 2.9 (Derivation operators) For a set of obje
ts A ⊆ G we de�ne the set of at-tributes that all obje
ts in A have in 
ommon as follows:
A′ = {m ∈M | gIm ∀g ∈ A}4http://www.upriss.org.uk/f
a/f
a.html5Gegenstande in German.6Merkmal in German.

http://www.upriss.org.uk/fca/fca.html


12 Chapter 2. Formal Con
ept AnalysisDually, for a set of attributes B ⊆ M , we de�ne the set of obje
ts that have all attributesfrom B as follows:
B′ = {g ∈ G | gIm ∀m ∈ B}Example. Consider the formal 
ontext in Table 1. We have {g1, g2}′ = {m1,m2,m6} and

{m1,m2,m6}
′ = {g1, g2, g3}De�nition 2.10 (Formal 
on
ept) A formal 
on
ept of a 
ontext (G,M, I) is a pair (A,B)with A ⊆ G, B ⊆ M , A′ = B and B′ = A. A is 
alled the extent of the 
on
ept (A,B) while Bis 
alled its intent. The set of all formal 
on
epts of a 
ontext (G,M, I) is written B(G,M, I).Con
epts are partially ordered by (A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2 (⇔ B2 ⊆ B1). The former is
alled sub-
on
ept of the latter, dually the latter is a super-
on
ept of the former.Example. From previous example, it dire
tly follows that the pair ({g1, g2, g3}, {m1,m2,m6})is a formal 
on
ept. Intuitively, a 
on
ept 
orresponds to a maximal re
tangle of 
rosses in its
orresponding tabular representation with possible row and 
olumn permutations. An exampleof ≤-relation between two 
on
epts is given by:

({g1, g2, g3}, {m1,m2,m6}) ≤ ({g1, g2, g3, g6, g7}, {m1,m6})It 
an be shown that operator (.)′′, applied either to a set of obje
ts or a set of attributes,is a 
losure operator. Hen
e we have two 
losure systems on G and on M . It follows that thepair {(.)′, (.)′} is a Galois 
onne
tion7 between the power set of obje
ts and the power set ofattributes. These mappings put in 1-1-
orresponden
e 
losed sets of obje
ts and 
losed sets ofattributes, i.e. 
on
ept extents and 
on
ept intents. In our example, {g1, g2} is not a 
losed setof obje
ts, sin
e {g1, g2}′′ ={g1, g2, g3}. A

ordingly, {g1, g2, g3} is a 
losed set of obje
ts hen
ea 
on
ept extent.The set of all formal 
on
epts from a 
ontext K = (G,M, I) ordered with the relation ≤ forma 
omplete latti
e 
alled 
on
ept latti
e of (G,M, I) and denoted by B(G,M, I). The Basi
Theorem on Con
ept Latti
es shows that a 
on
ept latti
e is 
omplete and de�nes its in�mumand supremum.Theorem 2.1 (The Basi
 Theorem on Con
ept Latti
es) The 
on
ept latti
e B(G,M, I)is a 
omplete latti
e in whi
h in�mum and supremum are given by:
∧

t∈T

(At, Bt) =

(

⋂

t∈T

At,

(

⋃

t∈T

Bt

)′′)

∨

t∈T

(At, Bt) =

((

⋃

t∈T

At

)′′

,
⋂

t∈T

Bt

)Figure 1 shows the 
on
ept latti
e asso
iated with Table 1. On this line diagram, ea
h nodedenotes a 
on
ept while a line denotes an order relation between two 
on
epts. Due to redu
edlabeling, the extent of a 
on
ept has to be 
onsidered as 
omposed of all obje
ts lying in theextents of its sub-
on
epts. Dually, the intent of a 
on
ept is 
omposed of all attributes in theintents of its super-
on
epts. The top (resp. bottom) 
on
ept is the highest (resp. lowest) w.r.t.
≤. Along this manus
ript, several 
on
ept latti
e line diagrams will be given. Most of time, weuse the software ConExp8 to draw them.7The de�nition of Galois 
onne
tion is not 
ru
ial for the understanding of this dissertation. A de�nition liesin [47℄, pages 11 and 19.8http://
onexp.sour
eforge.net/

http://conexp.sourceforge.net/
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Figure 1: Con
ept latti
e raised from Table 12.2 AlgorithmsThe main algorithmi
 issue in FCA lies in building 
on
ept latti
es, or simply the 
on
ept set,from formal 
ontext that may be very large in real world appli
ations. We �rst give here a naïvealgorithm, before detailing the algorithm CloseByOne that will use and adapt in the following
hapters.A naïve algorithm. Consider �rst the following proposition [47℄.Proposition 2.1 Ea
h 
on
ept of a formal 
ontext (G,M, I) has the form (A′′, A′) for somesubset A ⊆ G and the form (B′, B′′) for some subset B ⊆M .It follows that the set of all formal 
on
epts 
an be obtained in a naïve way by applyingthe 
losure operator (.)′′ on all possible subsets of G (dually all subsets of M), and removing allredundant 
on
epts. However, this basi
 algorithm turns to be very ine�
ient. Several algorithmshave been proposed to extra
t the set of all formal 
on
epts, possibly with their 
overing relation(a
tually the 
on
ept latti
e itself, i.e. 
on
epts ordered with ≤). For a detailed analysis and
omparison of these algorithms, we refer to [74℄. However, the fa
t that formal 
on
epts 
an beobtained by �
losing� some subsets of obje
ts is interesting and is the basis of several algorithms,e.g. Ganter's algorithm known also as NextClosure but also CloseByOne. In the following, wedetail CloseByOne, sin
e we will use it and adapt it later in this manus
ript.The algorithm CloseByOne. This algorithm generates all 
on
epts in a bottom-up way(from minimal to maximal extents). It 
onsiders obje
ts one by one starting from the minimalone w.r.t. a linear order < on G, e.g. a lexi
al order on obje
t labels. Given a generated 
on
ept
(A,B) at a 
urrent step, the algorithm adds the next obje
t g w.r.t < in A su
h as g 6∈ A. Thenit applies the 
losure operator (·)′′ for generating the next 
on
ept (C,D): intent B is interse
ted



14 Chapter 2. Formal Con
ept Analysiswith the des
ription of g, i.e. D = B ∩ g′, and C = D′. Re
ursiveness of the algorithm indu
esa tree stru
ture on the set of all 
on
epts, 
alled CbO-tree. To avoid generating several timessame 
on
epts, one may use an auxiliary data-stru
ture storing already extra
ted 
on
epts. Toavoid these memory look-ups, the algorithm uses a 
anoni
ity test. Consider a 
on
ept (C,D)obtained from a 
on
ept (A,B) by adding obje
t g in A and applying 
losure. C is said to be
anoni
ally generated i� {h|h ∈ C\A and h < g} = ∅, i.e. no obje
t before g has been addedin A to obtain C. Moreover, if the 
anoni
ity test fails for a given 
on
ept, the 
on
ept is notstored and the algorithm ba
ktra
ks. The original pseudo-
ode for pro
essing a formal 
ontextis given in Algorithms 1 and 2. The time 
omplexity of CloseByOne is O(|G|2|M ||L|). Moredetails on this algorithm 
an be found in [74, 68℄. Figure 2 gives an example of formal 
ontextand the resulting CbO-tree storing extra
ted formal 
on
epts. In this �gure, ea
h node denotes a
on
ept, and gives su

essive (A∪g)′ on the �rst line and (A∪g)′′ on the se
ond line, making ea
h
((A∪ g)′′, (A∪ g))′ a formal 
on
ept. When 
rossed-o�, the 
on
ept is not generated 
anoni
ally.Alg. 1 Close By One.1: L = ∅2: for ea
h g ∈ G3: pro
ess({g}, g, (g′′ , g′))4: L is the 
on
ept set.Alg. 2 pro
ess(A, g, (C,D)) with C = A′′ and D = A′ and < the lexi
al order on obje
t names.if {h|h ∈ C\A and h < g} = ∅ then2: L = L ∪ {(C,D)}for ea
h f ∈ {h|h ∈ G\C and g < h}4: Z = C ∪ {f}

Y = D ∩ {f ′}6: X = Y ′pro
ess(Z, f, (X,Y ))8: end if3 Con
eptual s
alingBasi
 formal 
ontexts only 
onsider obje
ts and the attributes they have or not. Su
h one-valuedattributes (or simply binary attributes) 
ontrast with many-valued attributes: an animal 
anbe des
ribed also with quantitative attributes su
h as weight, age, et
. To handle su
h data inFCA, many-valued 
ontexts are introdu
ed.De�nition 2.11 (Many-valued 
ontext) A many-valued 
ontext (G,M,W, I) 
onsits of sets
G, M and W and a ternary relation I between those three sets, i.e. I ⊆ G×M ×W , for whi
hit holds that

(g,m,w) ∈ I and (g,m, v) ∈ I always imply w = vElements of G are still 
alled obje
ts. Elements of M are 
alled (many-valued) attributes. Ele-ments of W are 
alled attribute values. A

ordingly, the fa
t (g,m,w) ∈ I means �the attribute
m takes value w for obje
t g�, simply written as m(g) = w.
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g 1
×

×
g 2

×
×

g 3
×

g 4
×

Figure 2: A formal 
ontext with resulting CbO-tree and 
on
ept latti
e.



16 Chapter 2. Formal Con
ept AnalysisExample. Table 2 gives an example of many-valued 
ontext (G,M,W, I) withG = {g1, ..., g5},
M = {m1,m2,m3} and W = {4, 5, 7, 8, 9}. Ea
h table entry gives m(g) for attribute m in 
ol-umn and obje
t g in line, e.g. m1(g1) = 5. This example will support many of our 
ontributionsin the next 
hapters, hen
e W is here a set of numeri
al values.

m1 m2 m3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5Table 2: A many-valued 
ontext (G,M,W, I) also 
alled numeri
al dataset when W ⊂ R.For applying the FCA ma
hinery, a many-valued 
ontext needs to be transformed into aformal 
ontext with so-
alled 
on
eptual s
aling. Con
epts of the resulting 
on
ept latti
e areinterpreted as 
on
epts of the initial many-valued 
ontext. A

ordingly, the 
hoi
e of a s
aleshould be wisely done w.r.t. data and goals sin
e a�e
ting the size, the interpretation, and the
omputation of the resulting 
on
ept latti
e.De�nition 2.12 A (
on
eptual) s
ale for the attribute m of a many-valued 
ontext is a (one-valued) 
ontext Sm = (Gm,Mm, Im) with m(G) = {m(g),∀g ∈ G} ⊆ Gm. The obje
ts of a s
aleare 
alled s
ale values, the attributes are 
alled s
ale attributes.Starting from a many-valued 
ontext (G,M,W, I) and the s
ale 
ontext Sm for all attribute

m ∈ M , the derived one-valued 
ontext is obtained as follows. The set of obje
ts remainsthe same. Every many-valued attributes m is repla
ed by the s
ale attributes of the s
ale Sm.Intuitively, ea
h one-valued attribute denotes a �rule� or �
onstraint� the attribute value of agiven obje
t should respe
t.We give here three s
ales taken from [47℄, page 42. Consider the many-valued 
ontext
(G,M,W, I) from Table 2. We introdu
e Wm ⊆ W as the range of ea
h attribute m ∈ M ,i.e. Wm = {w ∈W | m(g) = w,∀g ∈ G}.
• Nominal s
ale is de�ned by the 
ontext (Wm,Wm,=). We obtain the following s
ales,respe
tively for attribute m1, m2 and m3:= 4 5 64 ×5 ×6 ×

= 7 8 97 ×8 ×9 ×

= 4 5 6 84 ×5 ×6 ×8 ×

• Ordinal s
ale is given by the 
ontext (Wm,Wm,≤) where ≤ denotes 
lassi
al real numberorder. We obtain for ea
h attribute the following s
ales:
≤ 4 5 64 × × ×5 × ×6 ×

≤ 7 8 97 × × ×8 × ×9 ×

≤ 4 5 6 84 × × × ×5 × × ×6 × ×8 ×
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• Interordinal s
ale is given by (Wm,Wm ≤) | (Wm,Wm ≥) where | denotes the appositionof two 
ontexts9. We obtain for attribute m1 the following s
ale10:

≤ 4 ≤ 5 ≤ 6 ≥ 4 ≥ 5 ≥ 64 × × × ×5 × × × ×6 × × × ×Now we apply nominal s
ale to Table 2 to derive the formal 
ontext from whi
h a 
on
eptlatti
e representing in some extent the original many-valued 
ontext. First, the s
ale is applied toea
h attribute separately, then apposition of resulting 
ontexts is operated. One-valued attributesare renamed to be interpretable, e.g. for nominal s
aling we have �m1 = 4� as a derived one-valued attribute. Table 3 gives the derived 
ontext, while Figure 3 gives its 
on
ept latti
erepresentation.
m

1
=

4

m
1
=

5

m
1
=

6

m
2
=

7

m
2
=

8

m
2
=

9

m
3
=

4

m
3
=

5

m
3
=

6

m
3
=

8

g1 × × ×
g2 × × ×
g3 × × ×
g4 × × ×
g5 × × ×Table 3: Derived 
ontext from Table 2 with respe
t to nominal s
aling

Figure 3: Con
ept latti
e raised from Table 3We 
an interpret formal 
on
epts of the obtained 
on
ept latti
e. Take for example 
on
ept
({g3, g4}, {m1 = 4}): m1 is the only attribute taking the same value for both obje
ts g3 and g4,namely the value 4. A

ordinly, ea
h 
on
ept denotes a maximal set of obje
ts taking the samevalues for a maximal set of attributes. Choosing either ordinal s
ale or interordinal s
ale, wewould have a di�erent interpretation. It follows the important 
hoi
e of the s
ale, depending onthe 
on
ept latti
e usage. Interordinal s
aling will be widely investigated in Chapters 4 and 7.9The apposition of two 
ontexts with identi
al sets of obje
ts, denoted by |, returns the 
ontext with the sameset of obje
ts and the set of attributes being the disjoint union of attribute sets of the original 
ontexts.10The double-line 
olumn separator intuitively 
orresponds to 
ontext apposition.



18 Chapter 2. Formal Con
ept AnalysisFinally, s
aling numeri
al data is 
losely related to dis
retization methods transforming quan-titative data into binary data. Su
h methods 
an also be used to obtain a formal 
ontext from amany-valued 
ontext when W is a set of real numbers. Many methods are presented in [130℄ butalways involve a loss information that should be measured and minimized. Most of the methodsare de�ned in supervised settings: we known a 
lass membership of the obje
ts, and ea
h attributerangeWm ⊆W is split into several intervals maximizing some interest fun
tions [42, 116, 97, 130℄.The main 
ore of our work is to investigate possibilities to build 
on
ept latti
es from numeri
aldata without dis
retization in unsupervised settings using so 
alled pattern stru
tures that weintrodu
e now.4 Pattern stru
turesInstead of s
aling, one may work dire
tly with initial data, i.e. 
omplex obje
t des
riptions,de�ning so-
alled similarity operators whi
h indu
e a semi-latti
e on data des
riptions. Severalattempts were made for de�ning su
h semi-latti
es on sets of graphs [46, 69, 70, 79℄ and logi
alformulas [31, 45℄ (see also [49, 126℄ for FCA extensions and [25, 101, 26, 103℄ for 
on
ept latti
esin symboli
 data analysis). Indeed, if one is able to order obje
t des
riptions in 
omplex data,e.g. with graph morphism when obje
ts are des
ribed by labelled graphs, one may attempt todire
tly build a 
on
ept latti
e from su
h data.In [46℄, a general approa
h 
alled pattern stru
tures was proposed, whi
h allows one to applystandard FCA to any partially ordered data des
riptions from whi
h a 
on
ept latti
e 
an be builtwithout a priori s
aling. In FCA, the operators of the Galois 
onne
tion put in 
orresponden
eelements of the latti
es (2G,⊆) of obje
ts and (2M ,⊆) of attributes and vi
e-versa. Theselatti
es are partially ordered sets. This means that if one needs to build 
on
ept latti
es whereobje
ts are not des
ribed by binary attributes but by 
omplex des
riptions (graphs, intervals,...), one has to de�ne a partial ordering of obje
t des
riptions, see an illustration in Figure 4taken from [79℄. This is the main idea of pattern stru
tures formalizing obje
ts from G and theirdes
riptions 
alled patterns from a set D where patterns are ordered in a meet-semi-latti
e (D,⊓)[46℄. Indeed in 
lassi
al FCA, if we 
onsider the latti
e of attributes (2M ,⊆), it is straightforwardthat ∀N,O ⊆ M , then N ⊆ O ⇔ N ∩ O = N , e.g. with M = {a, b, c}, {a, b} ⊆ {a, b, c} ⇔
{a, b} ∩ {a, b, c} = {a, b}. The set-interse
tion operator ∩ has the properties of a meet operatorin a semi-latti
e, i.e. 
ommutative, idempotent and asso
iative. This is the underlying idea forordering patterns with a subsumption relation ⊑: given two patterns c, d ∈ D, c ⊑ d⇔ c⊓d = c.Then, how to build the 
on
ept latti
e is in full 
omplian
e with FCA theory.Formally, let G be a set (interpreted as a set of obje
ts), let (D,⊓) be a meet-semilatti
e (ofpotential obje
t des
riptions) and let δ : G −→ D be a mapping. Then (G,D, δ) with D = (D,⊓)is 
alled a pattern stru
ture. Elements of D are 
alled patterns and are ordered by subsumptionrelation ⊑: given c, d ∈ D one has c ⊑ d⇐⇒ c ⊓ d = c. ⊓ is 
alled a similarity operation, sin
e,given two des
riptions, it gives a des
ription representing their similarity. This is natural withset interse
tion, e.g. {a, b} ∩ {b, c} = {b}.A pattern stru
ture (G,D, δ) gives rise to the following derivation operators (·)�:

A� =
l

g∈A

δ(g) for A ⊆ G,

d� = {g ∈ G|d ∈ δ(g)} for d ⊆ D.These operators form a Galois 
onne
tion between the powerset of G and (D,⊑). Pattern
on
epts of (G,D, δ) are pairs of the form (A, d), A ⊆ G, d ∈ D, su
h that A� = d and A = d�.
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Figure 4: Illustration of the Galois 
onne
tionFor a pattern 
on
ept (A, d) the 
omponent d is 
alled a pattern intent and is a des
ription of allobje
ts in A, 
alled pattern extent. Intuitively, (A, d) is a pattern 
on
ept if adding any elementto A 
hanges d through (·)� operator and equivalently taking e ⊃ d 
hanges A. Like in 
ase offormal 
ontexts, for a pattern stru
ture (G,D, δ) a pattern d ∈ D is 
alled 
losed if d�� = d anda set of obje
ts A ⊆ G is 
alled 
losed if A�� = A. Obviously, pattern extents and intents are
losed.5 Links with itemset miningThe problem of frequent itemset mining was introdu
ed in [2℄. It takes roots in the appli
ationof market basket analysis. Firstly, 
onsider a set of 
ustomers, and a set of produ
ts 
alled items.Ea
h 
ustomer has bought some produ
ts. Then, it is interesting to sear
h for sets of items, oritemsets, that frequently 
o-o

urs together for di�erent 
ustomers. For example, it may happensthat both produ
ts �
ereals� and �milk� are often simultaneously bought by 
ustomers. We saythat the set {milk, cereals} is a frequent itemset.On
e frequent itemsets are found, it allows to generate asso
iation rules among the itemsets.Su
h rules denotes dependen
ies between itemsets. For example, a rule 
ould be �Customers thatsimultaneously bought milk and 
ereals also tend to buy jam�. From this rule, a gro
ery storewith de
ent pra
ti
es will ensure to 
o-lo
ate those three items in the same pla
e. A dishonestpra
ti
e, more 
ommon in supermarkets, would 
onsist at lo
ating the jam in a di�erent pla
e,for
ing the 
ustomer to walk, and potentially buy other produ
ts on his way. It seems indeed tobe a fa
t that �the more time one spend in a supermarket, the more produ
ts one will buy�.Leaving aside those ethi
al 
onsiderations, we now formally de�ne frequent itemsets usingnotations of FCA. Indeed, the basi
 data in itemset mining is a formal 
ontext, i.e. in ourexample (G,M, I) where G is a set of 
ustomers, M a set of produ
ts, and (g,m) ∈ I means



20 Chapter 2. Formal Con
ept Analysisthat 
ustomer g bought produ
t m.De�nition 2.13 (Itemset, support and frequent itemset) Given a formal 
ontext (G,M, I),an itemset B ⊆M is a subset of attributes or items. The 
ardinality of B is also 
alled its length.The image of an itemset 
onsists in the the of obje
ts owning simultaneously all elements in B,i.e. the set B′, while its support is the number of these obje
ts, i.e. |B′|. Given a so 
alledminimal support σs ∈ [1, |G|], an itemset B is said to be frequent if |B′| ≥ σs.Given a set M of items, there is 2|M | possible itemsets, whi
h are 
learly not analysable.Mining frequent itemsets allows to redu
e this number. However, this is not su�
ient enoughwith low minimal supports. A deeply investigated solution involves 
ondensed representations ofitemsets. A 
ondensed representation aims to remove all redundant information in the frequentitemsets and the representation may be mu
h smaller than the original frequent itemsets. Twowell known 
ondensed representations are the set of 
losed itemsets, and the set of generators,also 
alled key-itemsets. Those patterns are de�ned upon equivalen
e 
lasses of itemsets [96, 11,94, 95℄.De�nition 2.14 (Equivalen
e 
lass) Two itemsets B1 and B2 are said equivalent i� they havethe same image: B′
1 = B′

2, and we write B1
∼= B2. The set of itemsets that are equivalent to anitemset B1 is denoted by [B1] = {B2|B1

∼= B2} and is 
alled the equivalen
e 
lass of B1.De�nition 2.15 (Closed itemset) An itemset B1 is 
losed if there does not exist any pattern
B2 su
h as B1 ⊆ B2 with B1

∼= B2.De�nition 2.16 ((Itemset) generator) An itemset B2 is a generator if there does not exista pattern B1 su
h as B1 ⊆ B2 with B1
∼= B2.A

ordingly, an equivalen
e 
lass is a set of itemsets with same image and same 
losure inFCA terms. In an equivalen
e 
lass, there is one unique 
losed itemset with maximal length, andone or several generators with minimal length. We say that both 
olle
tions of frequent 
loseditemsets and generators are 
ondensed representations sin
e ea
h one forms a 
ompa
t and losslessrepresentation of frequent itemsets, from whi
h any frequent itemset 
an be retrieved.An intense e�ort has lead to several algorithms for mining frequent 
losed itemsets and/orgenerators, the later being used for generating asso
iation rules. Among many others, we should
ite here Charm [132℄ and LCMv2 [124℄ for 
losed itemset mining, Gr-Growth [80℄ for itemsetgenerator mining and Zart for mining both pattern types simultaneously [122℄.Con
erning our work in the next 
hapters, the most important fa
t we will use is the following.Closed itemsets exa
tly 
orresponds to 
on
ept intents from the same formal 
ontext. This meansthat if one need to 
ompute formal 
on
epts from a formal 
ontext (without their 
overingrelation), one may use either FCA algorithms (e.g. CloseByOne), or 
losed itemset-miningalgorithms, whose e�
ien
y depends on the input data size and distribution.



Chapter 3Extra
ting gene expression patternswith signi�
ant variationsIn this 
hapter, we present a �rst and simple KDD approa
h for mining gene expression patternsin gene expression data. This method involves all the steps of a KDD pro
ess. First, dataare prepared and transformed into binary data, allowing to apply FCA. Then, 
on
ept intentsare �ltered with synta
ti
 
onstraints to retain those highlighting strong variations of expression.Finally, with real world data, the expert interprets some of the extra
ted patterns, and establishesbiologi
al hypothesis to be validated experimentally. Most importantly, this 
hapter sets the basisof our main motivation in the next 
hapters, i.e. building 
on
ept latti
es from numeri
al datawithout binarization.1 Introdu
tionA mi
roarray experiment 
onsiders a large number of genes, eventually the 
omplete 
oding spa
eof a genome in multiple situations. These situations 
an be a time-series during a parti
ularbiologi
al pro
ess (e.g. 
ell 
y
le), a 
olle
tion of di�erent tissues (e.g. normal and 
an
eroustissues) or both, sometimes responding to parti
ular environmental stresses.By measuring the expression value of a gene in m situations, a gene expression pro�le 
anbe written as a m-dimensional numeri
al ve
tor e = (e1, ..., em) where ej is the expression valueof the gene in the jth situation (j ∈ [1,m]). A gene expression dataset (GED) is formalizedby a matrix E = (eij)1≤i≤n,1≤j≤m is a 
olle
tion of n pro�les: it is 
omposed of n lines whi
h
orrespond to genes andm 
olumns whi
h 
orresponds to situations. eij is the expression value ofthe ith gene in the jth situation. For example, in Table 1, (11050, 11950, 1503) is the expressionpro�le for the Gene 1. e11 = 11050 is the expression value of the Gene 1 in the situation a.Clustering methods groups similar pro�les together into a 
luster, leading, when interpreted bya domain expert, to the understanding of biologi
al pro
esses and of fun
tion of genes [76, 118℄.The goal here is to extra
t groups of genes having similar expression values for some, maybeall, biologi
al situations. Moreover, we wish that expression values between two situations high-light a signi�
ant 
hange. Indeed, these 
hanges may 
hara
terize parti
ular biologi
al pro
esses.For example, 
onsider the family of genes involved in the growth of the fruit-body of a mushroom.It is supposed that those genes have signi�
ant rise of expression between early stage and laterstage of the fungus development. 21



22 Chapter 3. Extra
ting gene expression patterns with signi�
ant variationsGene Id a b cGene 1 11050 11950 1503Gene 2 13025 14100 1708Gene 3 6257 5057 6500Gene 4 5392 6020 7300Gene 5 13070 12021 15548Table 1: An example of GED 
omposed of 5 genes in lines and 3 situations in 
olumns.2 An FCA-based approa
hThis se
tion proposes to use FCA to extra
t from a GED groups of 
o-expressed genes representedby 
on
epts. Firstly, a GED is mathemati
ally de�ned as a many-valued 
ontext, then turnedinto a formal 
ontext using a parti
ular 
on
eptual s
aling. The 
on
epts of the formal 
ontextare sear
hed for and stru
tured into a 
on
ept latti
e. Finally, 
on
epts are �ltered using aparti
ular representation of 
on
ept intents to retain from the large 
olle
tion of 
on
epts onlythose with most signi�
ant variations of expression.2.1 A GED as a many-valued 
ontextA GED is 
onsidered as a many valued 
ontext K1 = (G,S,W, I1) where G is a set of genes,
S a set of situations, and g(s) = w means that the expression value of gene g is w in situation
s. In the example used in this se
tion (Table 1), G = {g1, g2, g3, g4, g5}, S = {a, b, c}, and I1is illustrated, for example, by g1(a) = 11050, i.e. (g1, a, 11050) ∈ I1. The obje
tives are to useFCA to extra
t 
on
epts (A,B), where A ⊆ G is a subset of genes that shares similar values of
W in the situations of B ⊆ S. As 
on
ept latti
e 
onstru
tion needs a formal 
ontext, K1 is nows
aled.2.2 Con
eptual s
alingGiven an attribute value spa
e of the form [0, u], the s
ale is given by a set of intervals T =
{[0, u1], ]u1, u2], ..., ]up−1, up]}. p is the number of intervals of T and up = 65535 for the Nim-bleGen System. In the present appli
ation, the interval bounds ui (i ∈ [1, p]) are dependent onexpert knowledge. The s
aling pro
edure 
onsists in repla
ing ea
h many-valued attribute of
K1 = (G,S,W, I1) with p one-valued attributes to 
reate the formal 
ontext K2 = (G,S×T, I2).
S × T is then a set of pairs: the �rst value is a situation while the se
ond represents an interval.
(g, (s, t)) ∈ I2 means that the gene g has an expression value in the interval t in the situation s.This pro
edure is illustrated in the Table 3 with T = {[0, 5000[, [5000, 10000[, [10000, 65535]}.The many-valued attribute a is repla
ed by the three one-valued attributes (a, t1), (a, t2) and
(a, t3), i.e (a, [0, 5000[), (a, [5000, 10000[) and (a, [10000, 65535]). Then (g1, (a, t3)) ∈ I2 meansthat gene g1 has an expression value in t3, i.e. in [10000, 65535], for the situation a and repre-sented as the �rst 
ross in Table 3.Classi
al dis
retization problems appear with 
on
eptual s
aling: introdu
tion of biases, lossof information and may strongly in�uen
e the size of the resulting latti
e. Moreover, a major
hallenge in mi
roarray data analysis is to e�e
tively disso
iate a
tual gene expression valuesfrom experimental noise. To limit biases of s
aling involving values 
lose to interval bounds, andto partially manage mi
roarray noise, we follow the idea given in [34, 91℄: a threshold l ∈ [0, 1]
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h 23is used to de�ne the s
ale T as follows: T = {[0, u1 + u1× l], . . . , [up−1 − up−1× l, up]}, meaningthat intervals of T 
an overlap.
(a, t1) (a, t2) (a, t3) (b, t1) (b, t2) (b, t3) (c, t1) (c, t2) (c, t3)

g1 × × ×
g2 × × ×
g3 × × ×
g4 × × ×
g5 × × ×Table 2: A formal 
ontext derived from the many-valued 
ontext of Table 1.2.3 Latti
e 
onstru
tion and interpretationIn our settings, a 
on
ept (A,B) represents a subset of genes A that share similar expressionvalues in the situations de�ned by the elements of B. The intent B is the 
ommon gene expressiondes
ription of the genes in the extent A.For example Table 3 
ontains four 
on
epts (A,B):

• C1 = ({g3, g4}, {(a, t2), (b, t2), (c, t2)}) : it means that the genes g3 and g4 are 
o-expressed,by sharing expression values in the same interval t2 in situations a, b and c.
• C2 = ({g5}, {(a, t3), (b, t3), (c, t1)})

• C3 = ({g1, g2}, {(a, t3), (b, t3), (c, t3)})

• C4 = ({g1, g2, g5}, {(a, t3), (b, t3)})Figure 1 represents the 
on
ept latti
e of 
ontext given in Table 3. It provides interestinginsights of relation between genes for the biologists and thus may lead to knowledge dis
overy.First to 
onsider a single 
on
ept is intersting be
ause it represents a group of genes having similarquantitative expression values, and thus that may belong to a same biologi
al pro
ess or sharea 
lose fun
tion. Another approa
h may 
onsist to 
onsider several 
on
epts at the same time.For example, biologists may look at several linked 
on
epts. If we 
onsider 
on
epts C2, C3, C4,we note that C4 is a super 
on
ept of C2 and C3. Genes of these two lasts 
on
epts sharethus a 
ommon des
ription that is the intent of C4. Intents of C3 and C2 di�er in situation conly. Biologists know that the expression of a gene is 
ontrolled by mole
ules 
alled trans
riptionfa
tors. They may infer for example that g5 expression is 
ontrolled by another trans
riptionfa
tor whi
h is over-expressed in the situation c. Another advantage of the 
on
ept orderingrelation is to take natively noise into a

ount. On the same example, if the numeri
al valuederived into (c, t3) is an error, then grouping g1, g2 and g5 is possible.2.4 Con
ept �lteringA GED 
an 
ontain thousands of genes and dozens of situations. For these reasons, the resultinglatti
e may 
ontain a large number of 
on
epts (up to a million). The biologist fo
uses onsmall and homogeneous gene groups presenting the most important variations simultaneously.Interpretation of variations leads after experimental validations to the dis
overy of gene fun
tionsand biologi
al pro
esses. Large variations are important to dis
riminate genes responsible of aparti
ular 
ellular pro
ess [76℄. Con
epts are groups of genes 
o-expressed in a 
ertain number
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Figure 1: The 
on
ept latti
e raised from Table 3.of situations and a gene (or a situation) may belong to multiple 
on
epts. To fo
us on patternswith most signi�
ant variations of expression, we introdu
e the following �lterings.Filter to 
ontrol both intent and extent sizes. A 
on
ept is relevant if the extent is not
omposed of �too many� genes, and if the intent 
ontains a least �a few� situations [81℄. A �rst�ltering step keeps only 
on
epts (A,B), with |A| ≤ a and |B| ≥ b. a and b are 
hosen by thebiologist and materialize the modalities �too many� and �a few�.Filter to retain 
on
epts showing variations of expression. A 
on
ept des
ribes a groupof 
o-expressed genes, i.e. having expression values in the same interval in ea
h the situations.However biologi
al knowledge implies that these expression values may often be similar betweenthe situations, i.e. presenting no high variation of expression. The key idea is the following:the 
on
ept (A,B) = ({g3, g4}, {(a, t2), (b, t2), (c, t2)}) presents no high variation of expressionbe
ause ea
h t ∈ T su
h as (s, t) ∈ B is the same (in this 
ase, t = t2), i.e. the expression valuesare always in the same interval. To identify and remove su
h type of 
on
epts, we introdu
e thefollowing formalism.We 
onsider an index set K on T and repla
e in an intent all elements of T by 
orre-sponding element of K (indexes begin at position 1). Previous 
on
ept example intent be
omes
{(a, 2), (b, 2), (c, 2)}). Now, for ea
h 
on
ept, the intent B is a set of pairs (s, k) where k ∈ Kis an integer valuation providing a 
ontrol on expression values: B = {(a1, k1), . . . , (ap, kp)}. Inthe 
urrent and next paragraphs, we 
onsider (ai, ki) and (aj , kj) as two distin
t elements of
B (i 6= j). A variation is de�ned as a non null di�eren
e between ki and kj . This de�nitionnaturaly relies on the number of intervals of the s
aling and their size. Then retaining variant
on
epts, i.e. having variations, 
onsists to keep those having intents B respe
ting the predi
ate(1), i.e. hasV ariation(B) = true. Others, 
alled 
onstant 
on
epts, are removed.

hasV ariation(B) = ∃(ai, ki) ∈ B and ∃(aj, kj) ∈ B such as ki 6= kj (1)
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ontrol gene expression variation amplitude. One may noti
e that
{(a, 15), (b, 2), (c, 2)} has unformally higher variations than {(a, 3), (b, 2), (c, 2)}, be
ause 15−2 >
3−2. Thus to have more 
ontrol on variations, we de�ne the α-variation as a di�eren
e between
ki and kj of at least α, i.e. |ki − kj | ≥ α. Then a 
on
ept is α-variant if its intent B respe
ts(1), i.e. hasV ariation(B,α) = true, with α ≥ 0.

hasV ariation(B,α) = ∃(ai, ki) ∈ B and ∃(aj , kj) ∈ B such as |ki − kj | ≥ α (2)Filter to 
ontrol o

urren
es of an α-variation. Finally, yet another may noti
e that
{(a, 15), (b, 2), (c, 12)} has more variations than {(a, 15), (b, 2), (c, 2)}. Then a 
on
ept is (α, β)−
variant if its intent B respe
ts (1), i.e. hasV ariation(B,α, β) = true, with α ≥ 0 and β ≥ 1.Intuitivly an (α, β) − variant 
on
ept presents in B at least a number β of α-variations.

hasV ariation(B,α, β) = (|{((ai, ki), (aj , kj)) with |ki − kj| ≥ α}| ≥ β) (3)Examples:
• the 
on
ept (A,B) = (A, {(a, 6), (b, 6), (c, 6)}) is 
onstant,
• the 
on
ept (A,B) = (A, {(a, 2), (b, 6), (c, 6)}) is variant,
• the 
on
ept (A,B) = (A, {(a, 2), (b, 6), (c, 6)}) is α-variant with α ≤ 4,
• the 
on
ept (A,B) = (A, {(a, 2), (b, 4), (c, 4)}) is α-variant with α ≤ 2,
• the 
on
ept (A,B) = (A, {(a, 2), (b, 6), (c, 11)}) is (4, 3)-variant.
• the 
on
ept (A,B) = (A, {(a, 2), (b, 6), (c, 8)}) is not (4, 3)-variant.
α and β are two parameters allowing the biologist to fo
us on the most important variations.The 
hoi
e of these parameters strongly depends on the 
hoi
e T3 ExperimentsIn this se
tion, we apply our methodology on a real dataset implying a fungus spe
ies La

ariabi
olor for its symbiosis 
apa
ity with trees. We show that our methodology is able to extra
tgroups of 
o-expressed genes in some or all situations. As the genome of La

aria bi
olor has beenre
ently published [84℄, it is hard for now to 
he
k the hypothesis we formulate in the following(a few knowledge on spe
i�
 pro
esses of the symbiosis is available), experimental validation bybiologist is required. Indeed, it is the �rst genome of a fungus with this lifestyle (symbiosis) thathas been sequen
ed. However, we show that the parameters α and β are meaningful to redu
ethe number of 
on
epts, and that this dis
rimination allows a number of hypothesis.3.1 Data and materialBiologists at the UMR IAM (INRA) study intera
tions between fungi and trees. They re
entlypublished the 
omplete sequen
ing of the genome of the fungus La

aria bi
olor [84℄. This funguslive in symbiosis with many trees of the temperate forest: the fungus grabs mineral nutrientsin surrounding soil, improves the nutrition of the tree by allo
ating a part of its nutrients, andre
eives 
arbon in return through asso
iation to the root tissue. This fungus has a bene�
ial
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ant variationsimpa
t on tree growth and positively in�uen
es forest produ
tivity. It is thus a major interestto understand how the symbiosis performs at the 
ellular level.The sequen
ing of La

aria bi
olor genome has allowed the predi
tion of more than 20,000genes [84℄. It remains now to study expression of those genes to understand their fun
tions inthe fungal lifestyle. Mi
roarray measurements in several situations is a 
riti
al solution. Forexample, it enables to 
ompare the expression values of genes between di�erent situations likefree-living 
ells of the fungus (i.e. my
elium), 
ells engaged in the symbioti
 asso
iation (i.e.e
tomy
orrhiza), and 
ells of spe
ialized fruiting-body stru
tures (i.e. mushroom).A GED is available at the Gene Expression Omnibus at National Center for Biote
hnologyInformation (NCBI)11. It is 
omposed of 22,294 genes in lines and 7 various biologi
al situationsin 
olumns, i.e. free-living 
ells (M81306 and MS238), young (FBe) and mature (FBl) fruitingbody 
ells and fungal 
ells in asso
iation with roots of di�erent trees (Poplar, MPgh, Mpiv,Douglas Fir, MD).We mainly use the Coron System [121℄ 
omposed of several modules 
orresponding to thedi�erent steps of the methodology. First the module Transformer has been added to s
ale thedata. Then 
losed itemsets have been extra
ted with the Charm algorithm [33℄. Indeed, theintension of a 
on
ept is a 
losed itemset.3.2 Method and resultsApplying the methodology 
onsists in sele
ting genes G and situations S to study, to s
ale theresulting many-valued 
ontext K1 = (G,S,W, I1) into the formal 
ontext K2 = (G,M, I2) andto extra
t and �lter 
on
epts from K2.For �rst experiment, we work with the whole set of genes (i.e. |G| = 22, 294) and a subsetof the situations S = {MP,MD,Fbe, FBI,Myc} su
h as MP represents in-symbiosis 
ells(the mean of the 
olumns MPgh and Mpiv), and Myc represents my
elium 
ells (mean of
M81306 and MS238). The expert biologist 
hoose a simple s
ale T whose interval borders are
u1 = 20000 and u2 = 40000 (3 intervals) and an overlapping threshold of 0.05. Extra
tionreturns 893 
on
epts. We apply �lters: a 
on
epts (A,B) of this set is retained if |A| ≤ 50,
|B| ≥ 4 and if it is (2, 3) − variant. We �nally obtain 35 
on
epts that are analysable by theexpert. Two of these 
on
epts are presented in Figure 2 (a) et (b). In these line-plots, Y-axis
ontains situations y su
h as (y, t) ∈ B. X-axis is the expression value axis. A point (x, y) isthe expression value y of a gene in the situation x. All expression values of one single geneare linked by a line. Thus, ea
h line represents the expression pro�le of a gene like in Table 1.The intent of the 
on
ept (a) is B = {(MD, t1), (FBe, t3), (FBi, t3), (Myc, t1)} while the intentof (b) is B = {(MP, t3), (MD, t3), (FBe, t3), (FBi, t3), (Myc, t1)}. By observing the graphi
alrepresentation, we are able to say that these 
on
epts represents groups of genes sharing thesame behavior. Most of the genes of 35 
on
epts remains today of unknow fun
tion. However,some hypothesis 
an be made. Genes of group (a) may be involved pro
esses of the fruit bodystru
ture. Indeed their expression values are high only in Fbe and FBi. Genes of group (b) mayplay a major role in the symbiosis: their expression is high in in-symbiosis and fruit 
ells andlow in free-living my
elium 
ells. Biologists know that symbiosis is favoured when the fruit iswell established.One may noti
e the 
apa
ity of the method to take partially noise into a

ount. Con
ept (a)= (A,B) is su
h that B = {(MD, t1), (FBe, t3), (FBi, t3), (Myc, t1)}. It des
ribes no 
onditionon the interval for the situation MP , but the behaviour of the genes remains 
oherent, ex
ept11http://www.n
bi.nlm.nih.gov/geo/ as series GSE9784

http://www.ncbi.nlm.nih.gov/geo/
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Figure 2: Graphi
al representation of gene expression 
on
epts.
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Figure 3: Number of 
on
epts w.r.t. di�erent s
ales.for one gene: the in
oherent value is indi
ated by a 
ir
le. Despite of this artifa
t the groupingis possible.Se
ond experiment starts with S 
omposed of every situation of the dataset ex
ept M81306for its bad quality (a priori knowledge) and all the genes. The s
ale is 
omposed of 15 intervalsand l = 0.05. We extra
t 71, 391 
on
epts and retain those respe
ting the following properties:
|A| ≤ 50, |B| ≥ 4 and the 
on
ept is (4, 2) − variant. 9, 324 remains and are not analysable.However, we remark that many 
on
epts 
ontain only a few genes (due to the high 
ardinalityof T ). We also add the following 
onstraint, 
on
epts must verify: |A| ≥ 10. Now, 54 
on
eptsremains. Two of these 
on
epts are presented in 2 (
) and (d). Genes of 
on
ept (
) are strongly
o-expressed but their fun
tion is here again unknown. However, they have been identi�ed aspotential proteins of the same type in the yeast spe
ies Candida albi
ans by 
omparing DNAsequen
es. Genes of group (d) may be involved in growth of my
elium (highly expressed in
MS238 only).3.3 Variation 
onstraint evaluationWe have shown two experiments, the �rst with a low |T | (i.e. a few intervals) and the se
ondwith a high |T | (i.e. several intervals). The 
hoi
e of the number of intervals and their size isdi�
ult and dire
tly in�uen
e the quality (not studied here) and the 
ardinality of the result asshown in Figure 3. This �gure gives the number of 
on
epts w.r.t. a s
ale of a |T | intervals,obtained by the quantile dis
retization method of data of the se
ond experiment. If |T | is low,the number of 
on
epts and their quality is generally low w.r.t. a higher |T |. If |T | is high, thenumber of 
on
epts explodes, but the quality is better, and the �lters allows to redu
e it (seeFigure 4). Con
epts of 2 (
) and (d) would have not been found with |T | = 3. The right s
alefor a given data and a given goal is done via iterative appli
ation of the method, in intera
tionwith the experts (both 
omputer s
ientists and biologists) like most of methods of KDD.
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Figure 4: Number of 
on
epts w.r.t. parameters α and β .4 Towards interval patternsIn this 
hapter, we have shown an example of how formal 
on
ept analysis 
an be used to minegene expression data. A simple and fully 
ustomizable 
on
eptual s
aling allows the expert touse knowledge to �lter the resulting formal 
on
epts. However, from a qualitative point of view,there is no universal s
aling. The impa
t of a s
aling on the quality of the extra
ted formal
on
epts must be studied in ea
h di�erent 
ase [107℄. One may use our methodology for anynumeri
al data (sometimes a normalization pro
edure is required) of whom one wants to extra
tsets of obje
ts sharing a similar behaviour and presenting important variations, where minimalfrequen
y is not su�
ient to extra
t relevant patterns (e.g. �nan
ial or demographi
 analysis).As stated earlier, the major drawba
k of our approa
h is the 
hoi
e of the thresholds re-quired to s
ale the numeri
al dataset. Whereas a lot of e�ort has been done in this area, seee.g. [130℄, an appropriate dis
retization splits attribute ranges into intervals maximizing someinterest fun
tions, e.g. support, 
on�den
e. In a lot of 
ases, this requires to know the 
lass ofea
h obje
t (i.e. supervised settings, see e.g. [42℄).From a knowledge dis
overy point of view, one should not 
hoose those thresholds to de�nethe intervals, but rather 
onsider all possible intervals and then 
onsider the best patterns w.r.t.some interest fun
tions, 
onstraints, 
ondensed representations of patterns et
. In this way, a so
alled interval pattern 
an be written as a ve
tor 〈[ai, bi]〉 where ea
h i 
orrespond to a uniqueattribute of the dataset. For making the sear
hspa
e of su
h interval patterns �nite and thusexplorable, ai and bi should belong to the attribute range of the ith attribute. However, this willlead to a huge amount of interval patterns. The questions that arise are the following: Can wedesign e�
ient algorithms to extra
t su
h patterns? Can we redu
e the set of patterns to onlythose of interest w.r.t. a parti
ular need? Is it possible to de�ne 
ondensed representations ofsu
h patterns? The next 
hapter brings �rst answer elements to these questions by introdu
inginterval pattern stru
tures, from whi
h a 
on
ept latti
e 
an be raised e�
iently without s
aling.The rest of the thesis will fo
us on those stru
tures by extending their 
apa
ity espe
ially in



30 Chapter 3. Extra
ting gene expression patterns with signi�
ant variationsknowledge dis
overy.



Chapter 4Mining interval patterns with FCAThis 
hapter addresses the important problem of e�
iently mining numeri
al data with formal
on
ept analysis (FCA). Classi
ally, the only way to apply FCA is to binarize the data, thanksto a so-
alled s
aling pro
edure. This may either involve loss of information, or produ
e largeand dense binary data known as hard to pro
ess. In the 
ontext of gene expression data analysis,we propose and 
ompare two FCA-based methods for mining numeri
al data and we show thatthey are equivalent. The �rst one relies on a parti
ular s
aling, en
oding all possible intervals ofattribute values, and uses standard FCA te
hniques. The se
ond one relies on pattern stru
tureswithout a priori transformation, and is shown to be more 
omputationally e�
ient and to providemore readable results. Experiments with real-world gene expression data are dis
ussed and givea pra
ti
al basis for the 
omparison and evaluation of the methods.1 Introdu
tionIn real-world appli
ations, e.g. in biology or 
hemistry, one rarely obtains binary data dire
tly,
omplex and heterogeneous data involving numbers, graphs, intervals, et
., are more typi
al. Toapply FCA-based methods to su
h data, the latter have to be binarized, i.e. s
aled. Many typesof s
aling are known in FCA literature [47℄. Although s
aling allows one to apply FCA tools, itfa
es a trade-o�. On one hand, it 
an 
ome with loss of information (e.g. 
utting attribute valuedomains into several ranges in previous 
hapter). On the other hand, in the 
ase of 
omplexdata su
h as graph data, they do not always suggest the most e�
ient implementation rightaway, and there are situations where one would 
hoose original data representation rather thans
aled data [46℄. It may a

ordingly dramati
ally in
rease the 
omplexity of 
omputation andrepresentation, and make worse the visualization of results.Instead of s
aling, one may work dire
tly with initial data, i.e. 
omplex obje
t des
riptions,de�ning so-
alled similarity operators whi
h indu
e a semi-latti
e on data des
riptions. Severalattempts were made for de�ning su
h semi-latti
es on sets of graphs [46, 69, 70, 79℄ and logi
alformulas [31, 45℄ (see also [49, 126℄ for FCA extensions). Indeed, if one is able to order obje
tdes
riptions in 
omplex data, e.g. with graph morphism when obje
ts are des
ribed by labelledgraphs, one may attempt to dire
tly build a 
on
ept latti
e from su
h data. In [46℄, a generalapproa
h 
alled pattern stru
tures was proposed, whi
h allows one to apply standard FCA toany partially ordered data des
riptions.This 
hapter addresses the problem of FCA-based 
lassi�
ation of numeri
al data, whereobje
t des
riptions are ve
tors of numbers, with pattern stru
tures and a parti
ular similarityoperator. We fo
us on gene expression data (GED), where gene expression pro�les represent the31
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al situations, and a situation 
orresponds to tissues at di�erenttime points or 
ellular lo
i (di�erent organs, healthy or 
an
erous tissues, et
.). The exampleof gene expression data we 
onsider in this 
hapter is given in Table 1. Let us re
all that geneswith similar expression pro�les are said to be 
o-expressed. It is now widely a

epted that 
o-expressed genes intera
t together within the same biologi
al pro
ess [117℄. GED analysis is animportant task and an a
tive area of resear
h involving mainly data-mining methods: 
lustering[55℄, bi
lustering [81, 104℄. FCA-based methods have been re
ently designed and applied in thisdomain [18, 60, 92℄.
s1 s2 s3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5Table 1: Gene expression dataFor analysing GEDs by means of FCA, one needs to build a formal 
ontext from a GED,attribute values have to be dis
retized and intervals of entry values have to be 
onsidered asbinary attributes, implying possible loss of a
tual data values [60℄. In [47℄, interordinal s
aling isde�ned and allows one to build a formal 
ontext that en
odes all possible intervals of attributesvalues, without loss of information. However this s
aling produ
es large and dense binary data,whi
h are hard to pro
ess with existing FCA algorithms [74℄. This is probably one of the reasonswhy this s
aling has never been used for GED analysis. By 
ontrast, the formalism of patternstru
tures, de�ned in full 
omplian
e with the FCA framework in [46℄, allows one to build a
on
ept latti
e without a priori s
aling pro
edure. A

ordingly, in this 
hapter, we introdu
e aninterval 
onvexi�
ation as a similarity operator for ordering intervals within a semi-latti
e, i.e. bytaking the 
onvex hull of any arbitrary set of intervals. However, this operation between 
omplexdes
riptions of obje
ts may be harder to pro
ess than 
lassi
al set interse
tion and in
lusion testafter a s
aling. Then, a 
hallenging question arises for numeri
al data like GEDs: should ones
ale numeri
al attributes?To dis
uss this question, we have experimented with both approa
hes, 
omparing their 
om-putational e�
ien
y, the respe
tive results and their representations. We show that both methodshave equivalent outputs, but the method based on pattern stru
tures is more 
omputationallye�
ient than that based on interordinal s
aling, and provides better readable and interpretableresults. Finally, a real world experiment with gene expression data shows data-mining ability ofpattern stru
tures for numeri
al data.2 Interval patterns in s
aled formal 
ontextsThis se
tion starts with the de�nition of a parti
ular s
aling for representing value intervalsfrom numeri
al datasets 
alled interordinal s
aling. The 
on
ept latti
e is a

ordingly built fromresulting formal 
ontext. Ea
h 
on
ept represents a set of obje
ts asso
iated to interval of valuesthey take for the di�erent attributes.
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s1 ≤ 4 s1 ≤ 5 s1 ≤ 6 s1 ≥ 4 s1 ≥ 5 s1 ≥ 64 × × × ×5 × × × ×6 × × × ×Table 2: The interordinal s
ale (Ws1 ,Ws1 ,≤)|(Ws1 ,Ws1 ,≥).2.1 Interordinal s
alingInterordinal s
aling de�ned in [47℄ 
an help des
ribing all value intervals without loss of infor-mation. Let G be a set of genes, S a set of situations, W ⊂ R a set of expression values and

I1 a ternary relation de�ned on the Cartesian produ
t G × S ×W . The fa
t (g, s, w) ∈ I1 orsimply g(s) = w means that gene g has expression value w for situation s (see for example Table1). K1 = (G,S,W, I1) is 
alled a many-valued 
ontext representing a GED. The obje
tive isto extra
t formal 
on
epts (A,B) from K1, where A ⊆ G is a subset of genes sharing �similarvalues� of W , i.e. lying in a same interval. An appropriate binarization (s
aling) te
hnique isused to build a formal 
ontext K2 = (G,S2, I2) 
alled derived 
ontext of K1.A s
ale is a formal 
ontext (
ross-table), obje
ts being the attributes of K1 and attributesbeing the derived ones of K2. As attributes do not take ne
essarily the same values, ea
h ofthem is s
aled separately. Let Ws ⊆W be the set of all values of the attribute s. The followinginterordinal s
ale (see pp. 42 in [47℄) 
an be used to represent all possible intervals of attributevalues:
IWs = (Ws,Ws,≤)|(Ws,Ws,≥).The operation of apposition of two 
ontexts with identi
al sets of obje
ts, denoted by |, returnsthe 
ontext with the same set of obje
ts Ws and the set of attributes being the disjoint unionof attribute sets of the original 
ontexts. In our 
ase, this operation is applied to two 
ontexts

(Ws,Ws,≤) and (Ws,Ws,≥). As Ws is 
omposed of real numbers, the relations ≤ and ≥ arenatural. Table 2 gives an example forWs1 = {4, 5, 6}. The intents given by the interordinal s
aleare all possible value intervals.On
e a s
ale is 
hosen, 
on
eptual s
aling repla
es ea
h many-valued attribute of K1 with aset of binary attributes, resulting in the 
ontext K2. With interordinal s
aling, ea
h many-valuedattribute s is repla
ed by 2 · |Ws| binary attributes with names �s ≤ w� and �s ≥ w�, for all
w ∈ Ws. For example, s1 is repla
ed by {s1 ≤ 4, s1 ≤ 5, s1 ≤ 6, s1 ≥ 4, s1 ≥ 5, s1 ≥ 6}. Derived
ontext K2 = (G,S2, I2) is given in Table 3 for the attribute s1 only. This transformation isapplied without loss of information: the many-valued 
ontext 
an easily be re
onstru
ted fromthe formal 
ontext. For example, derived attributes for (g1, s1, 5) are s1 ≤ 5, s1 ≤ 6, s1 ≥ 4,
s1 ≥ 5. The unique value in Ws1 respe
ting these predi
ates is 5 whi
h is the original value.2.2 Con
ept latti
e 
onstru
tionThe 
hoi
e of an algorithm to build the 
on
ept latti
e depends on the size and density of theformal 
ontext to pro
ess. Density of a formal 
ontext (G,M, I) is de�ned as the proportion ofelements of I w.r.t. the size of the Cartesian produ
t G×M , i.e. density d = |I|/(|G|.|M |). Inthe 
ase of interordinal s
aling, density of derived 
ontext K2 is

∑i≤p
i=1(|Wi|+ 1)

2 ·
∑i≤p

i=1 |Wi|
,



34 Chapter 4. Mining interval patterns with FCAwhere p is the number of attributes in K1. When |W | grows, d tends towards 50%. Moreover,the number of derived attributes is 2 ·∑i≤p
i=1 |Wi| and |g′| = |W | + 1 for all g ∈ G. This makesthe derived 
ontexts dense, large and di�
ult to pro
ess. For 
omparison, density of binary datain [104℄ does not ex
eed 6% and the number of derived attributes remains the same after s
aling.2.3 Interpretation and limitsConsider a 
on
ept of the latti
e given in Figure 3, e.g.

({g1, g3, g4, g5}, {s1 ≤ 5, s1 ≤ 6, s1 ≥ 4, s2 ≤ 9, s2 ≥ 7, s3 ≥ 4, s3 ≥ 5, s3 ≤ 8})The intent of this 
on
ept 
an be interpreted as a so-
alled interval pattern: it is 
omposed on
onstraints on a set of values. This means that obje
ts in the extent all have their values forattribute s1 in the interval [4, 5], for attribute m2 in interval [7, 9] and for attribute m3 in interval
[5, 8].A �rst drawba
k of interordinal s
aling is the form of su
h intents. One 
an noti
e thatmany 
onstraints are redundant, e.g. the attribute s1 ≤ 6 is redundant w.r.t attribute s1 ≤ 5.Therefore, the intent should have the following form:

{s1 ≤ 5, s1 ≥ 4, s2 ≤ 9, s2 ≥ 7, s3 ≥ 5, s3 ≤ 8}It 
an also simply be represented by a ve
tor of intervals where dimension i 
orresponds toattribute si:
〈[4, 5], [7, 9], [5, 8]〉whi
h is more 
omprehensive.But beyond hard interpretation, the form of su
h obje
t des
ription is su
h that the miningof the 
ontext is hard. Indeed, one needs a huge number of binary attributes to des
ribed allpossible intervals for ea
h attribute. We show in the next se
tion how to extra
t mathemati
allyequivalent 
on
ept without s
aling with e�
ient algorithms.Let us now 
onsider the whole 
on
ept latti
e of K2 given in Figure 312. Con
ept extentsnear the Bottom 
on
ept 
ontain a few genes, sin
e the 
orresponding intents are related to thesmallest intervals. The extent of the Top 
on
ept 
ontains all genes and its intent 
orrespondsto intervals of maximal size. The higher a 
on
ept lies in the diagram, the larger is the interval
orresponding to its intent. Con
epts near the Top are not interesting: they allow almost allpossible values of attributes. The problem of sele
ting the best 
on
epts in GED analysis isaddressed latter in biologi
al experiments.3 Interval patterns in pattern stru
tures3.1 IntuitionsIn this se
tion, we present an alternative to s
aling when a 
ontext in
ludes many-valued at-tributes. This alternative is based on the idea of pattern stru
tures [46℄ whi
h was motivated byresear
h on learning with labelled graphs and other 
omplex des
riptions [69, 70℄.Intuitively, the similarity of two sets of labelled graphs X and Y , denoted by X ⊓Y , is givenby the maximal 
ommon subgraphs of graphs from X and Y . Then a graph pattern may bede�ned as a set of graphs X su
h that X ⊓ X = X, i.e. X is �maximal� w.r.t. the similarity12Drawn with the Con
ept Explorer software (http://
onexp.sour
eforge.net/)

http://conexp.sourceforge.net/
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s1 ≤ 4

s1 ≤ 5

s1 ≤ 6

s1 ≥ 4

s1 ≥ 5

s1 ≥ 6

s2 ≤ 7

s2 ≤ 8

s2 ≤ 9

s2 ≥ 7

s2 ≥ 8

s2 ≥ 9

s3 ≤ 4

s3 ≤ 5

s3 ≤ 6

s3 ≤ 8

s3 ≥ 4

s3 ≥ 5

s3 ≥ 6

s3 ≥ 8

g1

×
×
×
×

×
×
×
×

×
×
×
×
×

g2

×
×
×
×

×
×
×
×

×
×
×
×
×

g3

×
×
×
×

×
×
×
×

×
×
×
×
×

g4

×
×
×
×

×
×
×
×

×
×
×
×
×

g5

×
×
×
×

×
×
×
×

×
×
×
×
×

Table 3: Interordinally s
aled 
ontext K2 = (G,S, I2).
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Figure 1: Con
ept latti
e of formal 
ontext K2 = (G,S, I2).operation. It is easily seen that the operation ⊓ is idempotent, asso
iative and 
ommutative.The similarity operation ⊓ on sets of graphs is a sort of �attribute sharing�, as in the binary 
ase,where obje
ts in extent share the maximal set of attributes in the 
orresponding intent. Denoteby D the set of all graph patterns, then (D,⊓) is a semi-latti
e with in�mum (meet) operator
⊓. A natural subsumption order on graph patterns is given by X ⊑ Y ⇔ X ⊓ Y = X.More generally, a pattern stru
ture is a triple (G, (D,⊓), δ) where G is a set of obje
ts, (D,⊓)is a meet-semi-latti
e of obje
t des
riptions or patterns, and δ : G −→ D is a mapping providingany obje
t g ∈ G with a des
ription d ∈ (D,⊓). As (D,⊓) or equivalently (D,⊑) are semi-latti
es, the following Galois 
onne
tion, denoted by {(.)�, (.)�}, between (2G,⊆) and (D,⊑)gives rise to a 
omplete latti
e 
alled the pattern 
on
ept latti
e of (G, (D,⊓), δ) [46℄.

A� =
l

g∈A

δ(g) for A ⊆ G,

d� = {g ∈ G|d ⊑ δ(g)} for d ∈ (D,⊓).The �rst derivation operator takes a set of obje
ts and returns a maximal des
ription (pattern)shared by all obje
ts. The se
ond derivation operator takes a des
ription and returns the maximalset of obje
ts sharing this des
ription.Pattern 
on
epts of (G, (D,⊓), δ) are pairs of the form (A, d), A ⊆ G, d ∈ (D,⊓), su
h that
A� = d and A = d�. For a pattern 
on
ept (A, d) the 
omponent d is 
alled a pattern intent andis a des
ription of all obje
ts in A, 
alled pattern extent. For a pattern stru
ture (G, (D,⊓), δ), apattern d ∈ (D,⊓) is 
losed if d�� = d. A set of obje
ts A ⊆ G is 
losed if A�� = A. Obviously,pattern extents and intents are 
losed. When partially ordered by (A1, d1) ≤ (A2, d2)⇔ A1 ⊆ A2

(⇔ d2 ⊑ d1), the set of all pattern 
on
epts forms a 
omplete latti
e 
alled a pattern 
on
eptlatti
e.



3. Interval patterns in pattern stru
tures 373.2 Similarity between intervalsTo de�ne a semi-latti
e operation ⊓ for intervals that would be analogous to the set-theoreti
interse
tion or meet operator on sets of graphs, one should realize that �similarity� between tworeal numbers (between two intervals) may be expressed in the fa
t that they lie within some(larger) interval, this interval being the smallest interval 
ontaining both two.Then, we 
hoose to de�ne the meet of two intervals [a1, b1] and [a2, b2], with a1, b1, a2, b2 ∈ R,as follows:
[a1, b1] ⊓ [a2, b2] = [min(a1, a2),max(b1, b2)].This operation 
an be viewed as a 
onvexi�
ation of its arguments, as it returns the 
onvex hullof two intervals. The 
hoi
e of this operator seems natural to have a more general des
riptionwhen 
onsidering more obje
ts, whi
h would not be the 
ase if 
onsidering a 
lassi
al intervalinterse
tion as attribute values are numbers. The ⊓ operator is idempotent, 
ommutative, andasso
iative. This means that the meet of several intervals is the smallest interval 
ontaining allintervals. Then, interval subsumption and interval in
lusion are related as follows:

[a1, b1] ⊑ [a2, b2]

⇔ [a1, b1] ⊓ [a2, b2] = [a1, b1]

⇔ [min(a1, a2),max(b1, b2)] = [a1, b1]

⇔ a1 ≤ a2 and b1 ≥ b2

⇔ [a1, b1] ⊇ [a2, b2].The de�nition of ⊓ implies that smaller intervals subsume larger intervals that 
ontain them.For example, with D = {[4, 4], [5, 5], [6, 6], [4, 5], [5, 6], [4, 6]}, the meet-semi-latti
e (D,⊓) is givenin Figure 2. The interval labeling a node is the meet of all intervals labeling its as
ending nodes,e.g. [4, 5] = [4, 4] ⊓ [5, 5], and is also subsumed by these intervals, e.g. [4, 5] ⊑ [5, 5] and
[4, 5] ⊑ [4, 4].

[4,4℄ [5,5℄ [6,6℄[4,5℄ [5,6℄[4,6℄
Figure 2: Diagram of (Dm1

,⊓) or equivalently(Dm1
,⊑).We have shown how intervals 
an be seen as patterns. Now we 
an de�ne a pattern stru
turewhere ea
h obje
t is des
ribed by an interval. We show in the following how to generalize thepro
ess when 
onsidering ve
tors of intervals. Furthermore, this is exa
tly what we need foranalysing GED where gene expression pro�les are ve
tors of numbers (and [a, a] is an intervalfor any a ∈ R).3.3 Similarity between interval ve
torsWe 
all an interval ve
tor a p-dimensional ve
tor of intervals. When e and f are ve
tors of pintervals, we write e = 〈[ai, bi]〉i∈[1,p] and f = 〈[ci, di]〉i∈[1,p]. The similarity operation ⊓ is de�ned
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orresponding 
omponents for ve
tor of the same size (knowing that the order ofthe 
omponents is 
anoni
al):
e ⊓ f = 〈[ai, bi]〉i∈[1,p] ⊓ 〈[ci, di]〉i∈[1,p]
⇔ e ⊓ f = 〈[ai, bi] ⊓ [ci, di]〉i∈[1,p].Therefore, interval ve
tors are partially ordered by:
e ⊑ f
⇔ 〈[ai, bi]〉i∈[1,p] ⊑ 〈[ci, di]〉i∈[1,p]
⇔ [ai, bi] ⊑ [ci, di], ∀i ∈ [1, p].i ∈ [1, p],meaning that ea
h interval [ai, bi] of e is subsumed by the 
orresponding interval [ci, di] of f . Forexample, 〈[2, 4], [2, 6]〉 ⊑ 〈[4, 4], [3, 4]〉 as [2, 4] ⊑ [4, 4] and [2, 6] ⊑ [3, 4].3.4 Con
ept latti
e 
onstru
tionGED in Table 1 
an be formalized as a pattern stru
ture (G, (D,⊓), δ) where G = {g1, . . . , g5}and D is a set of interval ve
tors or 3-dimensional ve
tors, where ea
h 
omponent 
orrespondsto an attribute of the table. For example, δ(g1) = 〈[5, 5], [7, 7], [6, 6]〉, where [a, a] stands for any

a ∈ R. When A ⊆ G is a set of obje
ts and d ∈ (D,⊓) is an interval ve
tor, A� returns aninterval ve
tor 
omposed, for ea
h dimension, of the smallest interval 
ontaining all intervals inthe des
ription of ea
h obje
t in A, i.e. their 
onvex hull. On the other hand, d� returns theset of obje
ts being des
ribed for ea
h dimension by an interval in
luded in the 
orrespondinginterval of d.For example, with data of Table 1, we have:
{g1, g2}

� =
l

g∈{g1,g2}

δ(g)

= δ(g1) ⊓ δ(g2)

= 〈[5, 5], [7, 7], [6, 6]〉 ⊓ 〈[6, 6], [8, 8], [4, 4]〉

= 〈[5, 5] ⊓ [6, 6], [7, 7] ⊓ [8, 8], [6, 6] ⊓ [4, 4]〉

= 〈[5, 6], [7, 8], [4, 6]〉

〈[5, 6], [7, 8], [4, 6]〉� = {g ∈ G|〈[5, 6], [7, 8], [4, 6]〉 ⊑ δ(g)}

= {g1, g2, g5}Obviously, g1 and g2 belong to 〈[5, 6], [7, 8], [4, 6]〉� . g5 also belongs to this set be
ause
〈[5, 6], [7, 8], [4, 6]〉 ⊑ δ(g5).Then, the pair (A, d) = ({g1, g2, g5}, 〈[5, 6], [7, 8], [4, 6]〉) is a pattern 
on
ept meaning that
A� = d and A = d�. The set of all pattern 
on
epts gives rise to a pattern 
on
ept latti
e (seeFigure 3).3.5 Algorithms for 
omputing interval patternsMany algorithms for generating formal 
on
epts from a formal 
ontext are 
ompared in [74℄.Experimental results highlight Norris, CloseByOne and NextClosure algorithms as the best al-gorithms when the 
ontext is dense and large, whi
h is the 
ase of interordinally derived formal
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Figure 3: Pattern 
on
ept latti
e of pattern stru
ture from Table 1.
ontexts. Worst-
ase upper bound time 
omplexity of the three algorithms for 
omputing a setof formal 
on
epts from a formal 
ontext (G,M, I) is O(|G|2 ·|M |·|L|) with G the set of genes,Mthe set of attributes (here the set of attributes of the s
aled 
ontext), and L the set of generated
on
epts.To 
ompute interval pattern 
on
epts, the sele
ted FCA algorithms Norris, CloseByOne, andNextClosure, need only slight modi�
ations. The worst-
ase time 
omplexity of 
omputing theset of interval patterns is O(|G|2 ·p · |L|), where p is the number of 
omponents in interval ve
tors,i.e. the number of numeri
al attributes in the original numeri
al data.In both 
ases, the sets G and L are the same, thus relative e�
ien
y of pro
essing both datarepresentations depends on the number of di�erent attribute values in the original many-valuednumeri
al 
ontext.We now propose an adaptation of the CloseByOne algorithm for pro
essing pattern stru
turessu
h as ve
tors of intervals. This algorithm detailed in Chapter 2 is the most e�
ient in our 
ase(see Subse
tion 4.4.2). To adapt this algorithm for pattern stru
tures, one has to repla
e ea
h
all to a (.)′ operator by a 
all to the 
orresponding (.)� operator. Then, 
omputing A� for aset A ⊆ G is realized by taking min (respe
tively max) of all left (respe
tively right) limits ofthe intervals of ea
h obje
t des
ription. For a pattern d ∈ (D,⊓), d� is 
omputed by testing forea
h obje
t g ∈ G if ea
h interval of its des
ription is in
luded in the 
orresponding interval of d.4 Comparing both approa
hes4.1 Theoreti
al 
omparisonThe following proposition establishes an isomorphism between the 
on
ept latti
e of KI with therelation IWs = (Ws,Ws,≤)|(Ws,Ws,≥), resulting from the interordinal s
aling, and the pattern
on
ept latti
e of (G, (D,⊓), δ).Proposition 1. Let A ⊆ G, then statements 1 and 2 are equivalent:1. A is an extent of the pattern stru
ture (G, (D,⊓), δ) and A� = 〈[mi,mi]〉i∈[1,p], where miand mi respe
tively denote the minimum and maximum of values of the obje
ts in A for the ithattribute.
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on
ept extent of the 
ontext KI so that for all i ∈ [1, p] mi is the largest number nsu
h that the attribute si ≥ n is in A′ and mi is the smallest number n su
h that the attribute
si ≤ n is in A′.Proof. 1 → 2 Let A ⊆ G be a pattern extent. Given δi(g) the mapping that returns the
ith interval of the ve
tor des
ribing obje
t g. Sin
e A� = 〈[mi,mi]〉i∈[1,p], for every obje
t g ∈ Aone has mi ≤ δi(g) ≤ mi and there are obje
ts g1, g2 ∈ A su
h that δi(g1) = mi, δi(g1) = mi.Hen
e, in 
ontext KI one has

A′ = ∪i∈[1,p]{si ≥ nmin, . . . , si ≥ n1, si ≤ n2, . . . , si ≤ nmax}where
nmin ≺ . . . ≺ n1 ≤ n2 ≺ . . . ≺ nmaxand n1 = mi, n2 = mi. Hen
e, mi is the largest number n su
h that the attribute si ≥ n is in

A′ and mi is the smallest number n su
h that the attribute si ≤ n is in A′. Suppose that A isnot an extent of KI . Hen
e, A ⊂ A′′ and there is g ∈ A′′ \ A and g′ ⊇ A′. This means that forall i mi ≤ δi(g) ≤ mi. Therefore, g ∈ A�� and A 6= A��, a 
ontradi
tion. The proof 2 → 1 issimilar.Consider an example of pattern 
on
ept: ({g1, g2, g5}, 〈[5, 6], [7, 8], [4, 6]〉), the equivalent 
on-
ept of the interordinally s
aled 
ontext is ({g1, g2, g5}, {s1 ≤ 6, s1 ≥ 4, s1 ≥ 5, s2 ≥ 7, s2 ≤
8, s2 ≤ 9, s3 ≤ 6, s3 ≤ 8, s3 ≥ 4}). Pattern intents are 
on
ise representations of 
on
ept intents.Therefore, 
on
ept intents are long des
riptions, whi
h 
an be turned to pattern intents by asimple synta
ti
 post-pro
essing.4.2 Pra
ti
al 
omparisonHere we 
ompare time performan
e of three algorithms for mining pattern stru
tures of intervalve
tors and equivalent interordinally s
aled 
ontexts. We have implemented the Norris, NextClo-sure, and CloseByOne algorithms, for both pro
essing formal 
ontexts and pattern stru
tures.We have added the Charm algorithm [53℄ that extra
ts 
losed itemsets, i.e. 
on
ept intents in aformal 
ontext. FCA algorithms have been implemented in original versions as des
ribed in [74℄.These algorithms are run within the Coron System [120℄.13 All implementations are in Java:sets of obje
ts and binary attributes are des
ribed with the BitSet 
lass and interval des
riptionswith standard double arrays. The experiments were 
arried out on an Intel Core2 Quad CPU2.40 Ghz ma
hine with 4 GB RAM running under Ubuntu 8.10.We began to 
ompare algorithms on the data presented in biologi
al experiments, i.e. froma many-valued 
ontext (G,S,W, I1) where |G| = 10, 225 and |S| = 5 (see next Se
tion for morebiologi
al details). Even by redu
ing the number of attribute values, 
omputation is infeasible.Indeed we do not 
onsider here 
onstraints like the maximal interval size. Then we randomlysele
ted samples of the data, by in
reasing the number of obje
ts. As attribute values are realnumbers with about �ve digits after the 
omma, the size of W is large. In the worst 
ase,
|W | = |G| × |S|, i.e. ea
h attribute value is di�erent in the dataset. This implies very largeformal 
ontexts to pro
ess and a large number of 
on
epts. The exe
ution times for this 
aseare shown in Table 4. The Norris algorithm shows the best results in formal 
ontexts, meeting
on
lusions of [74℄ for large and dense 
ontexts. However, CloseByOne performs better forpattern stru
tures, and most importantly is the only one able to 
ompute a very large 
olle
tionof 
on
epts.13The Coron System is freely available at http://
oron.loria.fr and also integrates a tool for applying interordinals
aling to numeri
al data.

http://coron.loria.fr


5. Biologi
al experiments 41Datasets
|G| 10 20 30 40 50 75 100
|W | 50 100 150 199 249 374 252density 51.00% 50.50% 50.33% 50.25% 50.20% 50.13% 50.20%Generation time in formal 
ontexts (in millise
onds)Charm 60 916 16,469 N/A N/A N/A N/ANext Closure 5 145 1,299 12,569 68,969 N/A N/ANorris 2 90 609 5,180 28,831 N/A N/AClose By One 3 106 906 7944 41,238 N/A N/AGeneration time in pattern stru
tures (in millise
onds)Next Closure 6 100 763 5,821 35,197 N/A N/ANorris 6 172 1982 15,522 83,837 N/A N/AClose By One 2 85 585 3,094 18,320 1,004,073 2,288,200Con
ept set L
|L| 280 9,587 78,173 455,008 1,857,725 40,325,176 64,571,385Table 4: Generation time in both data representations (no proje
tion).When strongly redu
ing the size ofW by rounding attribute values to the integer, i.e. |W | ≪

|G| × |S|, the Charm algorithm outperforms the others. The Norris algorithm is still the bestFCA-algorithm in formal 
ontexts and CloseByOne is the best in pattern stru
tures (see Table5). To sum up, we 
an say the following: When the number of di�erent attribute values w.r.t.
|G|× |S| is low, 
omputing 
on
epts from formal 
ontexts is the most e�
ient solution. For largedatasets with many di�erent attribute values, it is mu
h more e�
ient to 
ompute with intervalpattern stru
tures. One explanation is that for formal 
on
epts the 
on
ept intent representationis a bit string whose length in
reases with the growth of |W |. Obje
t des
riptions in patternstru
ture are arrays of 
onstant size w.r.t. |W |.5 Biologi
al experimentsThis se
tion shows how pattern stru
tures are used for extra
ting biologi
al information from areal-world GED and how they outperform interordinally s
aled 
ontexts in terms of pro
essingtime.5.1 DataBiologists at the UMR IAM (INRA) study intera
tions between fungi and trees. They publishedthe 
omplete genome sequen
e of the fungus La

aria bi
olor [83℄. This fungus lives in symbiosiswith many trees of boreal and temperate forests. The fungus forms a mixed organ on treeroots and is able to ex
hange nutrients with its host in a spe
i�
 symbioti
 stru
ture 
allede
tomy
orrhiza, 
ontributing to a better tree growth and enhan
ing forest produ
tivity. Onthe other hand, the plant repays its symbioti
 partner by providing 
arbohydrates, allowingthe fungus to 
omplete its biologi
al 
y
le by produ
ing fruit-bodies (e.g. mushrooms). It isthus of major interest to understand how the symbiosis performs at the 
ellular level. Thegenome sequen
e of La

aria bi
olor 
ontains more than 20,000 genes [83℄. The study of theirexpression in various biologi
al situations helps to understand their roles and fun
tions in the
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|G| 25 50 75 100 125 150 200
|W | 34 37 44 53 58 62 66Generation time for formal 
ontexts (in millise
onds)density 51.47% 51.35% 51.14% 50.94% 50.86% 50.81% 50.76%Charm 55 154 184 243 394 936 1856Next Closure 100 933 3,333 22,973 30,854 78,790 593,416Norris 38 320 861 2,697 5,954 15,359 46,719Close By One 84 483 2,424 8,452 22,173 59,070 227,432Generation time for pattern stru
tures (in millise
onds)Next Closure 59 372 1,924 6,215 15,417 42,209 143,501Norris 44 479 2,602 7,243 16,257 40,991 109,814Close By One 40 220 1,084 3,832 9,289 23,989 89,804Con
ept set L
|L| 1,165 5,928 23,962 48,176 73,463 163,316 252,515Table 5: Generation time in both data representations. Attribute values are rounded.biology of the fungus. Mi
roarray te
hniques enable to 
ompare expression values of all thegenes between 
ontrasted situations like free-living 
ells of the fungus (i.e. my
elium), 
ellsengaged in the symbioti
 asso
iation (i.e. e
tomy
orrhiza), and spe
ialized 
ells forming thefruit-body stru
ture (i.e. mushroom). La

aria bi
olor gene expression data is available at theGene Expression Omnibus of the National Center for Biote
hnology Information (NCBI)14. Itis 
omposed of 22,294 genes in lines and 5 various biologi
al situations in 
olumns, re�e
ting
ells of the organism in various stages of its biologi
al 
y
le, i.e. free living my
elium (situationFLM), symbioti
 tissues (situations MP and MD) or fruiting bodies (situations FBe and FBl).5.2 Prepro
essingFirst, a sele
tion from the 22,294 genes is pro
essed. Indeed, a gene that shows similar expressionvalues in all situations presents less interest to the biologist than a gene with high di�eren
es ofexpression. One gene with a 
onstant expression does not indi
ate a parti
ular 
ontribution toa 
ellular pro
ess (although its expression per se 
an be su�
ient to parti
ipate to the pro
ess).Besides, signi�
ant 
hanges in gene expression may re�e
t a role in a biologi
al pro
ess and su
hgenes help the biologist to draw hypotheses.Filtering the genes 
onsists in removing genes having no signi�
ant di�eren
e of expressiona
ross all situations. For ea
h 
ouple of situation, a t-test is performed and a p-value is attributed.If the p-value > 0.05 (
ut-o� 
lassi
ally applied in biology) for all 
ouples of situations then the
urrent gene is removed from the dataset. The CyberT tool15 was used to �lter the dataset andobtain 11, 930 genes. Another 
lassi
al pre-pro
essing in GED analysis is to transform expressionvalues using log2. Indeed, it allows the 
apture of small expression values into intervals thatshould be larger for high expression values. Finally, for making 
omputation possible, a lastpre-pro
essing 
onsists in rounding log2 expression values to one digit after the 
omma, re
allingthat the more there are di�erent attribute values, the more they are 
on
epts.14http://www.n
bi.nlm.nih.gov/geo/ as series GSE978415Available at http://
ybert.mi
roarray.i
s.u
i.edu/.



5. Biologi
al experiments 435.3 MethodBefore extra
ting 
on
epts from the GED de�ned above, we should remark that, given thede�nition of ⊓ as a 
onvexi�
ation of intervals, the following property of an (interval ve
tor)pattern 
on
ept latti
e is obvious. The lowest 
on
epts w.r.t. ≤ are generally 
omposed ofpattern extents with few obje
ts and �pre
ise� des
riptions, i.e. whose pattern intent is 
omposedof �small� intervals. Then, the higher a 
on
ept is, the more elements there are in its extent, andthe more intervals of its intent are large. For example, the Top 
on
ept, i.e. the highest 
on
eptw.r.t. ≤, has an extent 
ontaining all obje
ts, and an intent 
omposed of the largest intervalssubsumed by all respe
tive intervals of the data. In the example, Top = (G, 〈[4, 6], [7, 9], [4, 8]〉).However, the main goal of GED analysis is extra
ting homogeneous groups of genes, i.e. groupsof genes having similar expression values. Therefore, des
riptions of homogeneous groups shouldbe 
omposed of intervals with �small� sizes where size([a, b]) = b− a.Consider a parameter maxsize that spe
i�es the maximal admissible size of any interval
omposing an interval ve
tor. Then pattern 
on
epts of interest have pattern intents d =
〈[ai, bi]〉i∈[1,p] ∈ (D,⊓) satisfying the 
onstraint: ∃i ∈ [1, p] (bi − ai) ≤ maxsize, for any a, b ∈ R.A stronger 
onstraint would be ∀i ∈ [1, p] (bi − ai) ≤ maxsize, meaning that only 
on
eptsrepresenting genes with �similar� expression values in at least one or all biologi
al situations areretained. Therefore, two values are said to be similar if their di�eren
e does not ex
eed maxsize.Sin
e both 
onstraints are monotone (if an intent does not satisfy it, then a subsumed intent doesnot satisfy it either), the subsets of patterns satisfying any of these 
onstraints are order ideals(w.r.t. subsumption on intervals ⊑) of the latti
e of pattern intents. In terms of 
omputation,this means that only some lower part of the pattern latti
e is 
omputed, with patterns satisfyingthe 
onstraints. CloseByOne 
an easily 
onsider these 
onstraints as it generates 
on
epts fromminimal to maximal extents.The CloseByOne algorithm was run on the resulting pattern stru
ture with maxsize = 0.35.A 
on
ept is retained if it des
ribes at least 7 
o-expressed genes in at least 5 situations, i.e. theintent has at least 5 intervals whose size do not ex
eed the maxsize parameter. Indeed, let usre
all that 
on
epts near the Bottom, i.e. in the lowest levels of the 
on
ept latti
e, are 
omposedof a few genes des
ribed by small intervals. Pro
essing time was about 2 minutes and returns
2, 120 
on
epts (hardware details are given in next se
tion).

Figure 4: Graphi
al visualisation of two extra
ted 
on
epts.5.4 First resultsHere we present two extra
ted patterns sele
ted as grouping genes with high expression levelsin the fruit-bodies situations, whereas their expression remains similar between the my
elium



44 Chapter 4. Mining interval patterns with FCAand symbiosis situations. In Figure 4, X-axis is 
omposed of situations, Y-axis is the expressionvalues axis. Ea
h line denotes the expression pro�le of a gene in the 
on
ept extent. Valuesare taken before the logarithmi
 transformation. These patterns have been extra
ted from thewhole list of 2, 120 patterns for the following 
hara
teristi
: in both 
ases, the expression levelsmeasured are about two times higher in the fruit-body 
ompared to the other situations. Itindi
ates that these genes 
orrespond to biologi
al fun
tions of importan
e at this stage. Theexpression measured in the my
elium and symbiosis situations tends to indi
ate that these genesare also involved in general 
ellular pro
esses as they are already expressed in all situations.The pattern in Figure 4 (left) 
ontains 7 genes, of whi
h only 3 possess a putative 
ellularfun
tion assignment based on similarity in international gene databases at NCBI. Interestingly,these genes all en
ode enzymes involved in distin
t metaboli
 pathways. A gene en
odes a1-pyrroline-5-
arboxylate dehydrogenase whi
h is involved in amino-a
id metabolism, another
orresponds to an a
yl-
oA dehydrogenase, involved in fatty a
id metabolism and a last geneen
odes a transketolase, an enzyme involved in the pentose phosphate pathway of 
arbohydratemetabolism. All these metaboli
 fun
tions are essential for the fungus and re�e
t that thefruit-body is a highly a
tive tissue. The fruit-body is a spe
i�
 fungal organ that di�erentiatein order to produ
e spores and that further ensure spore dispersal in nature [108℄. Previousgene expression analyses of the fruit-body development 
ondu
ted in the e
tomy
orrhizal fungusTuber bor
hii also reported the strong indu
tion of several genes involved in 
arbon and nitrogenmetabolisms [54℄ as well as in lipid metabolism [110℄. The present results are 
onsistent with theseobservations and supports an important mobilization of nutrient sour
es from the my
elium tothe fruit-body. It seems obvious that the primary metabolism requires to be adapted to use thesesour
es in order to properly build spores and provide spore-forming 
ells with nutrients [108℄.The pattern on Figure 4 (right) also 
ontains 7 genes, of whi
h only 3 possess a putativebiologi
al fun
tion. Interestingly, one of these genes en
odes one pseudouridylate synthase, anenzyme involved in nu
leotide metabolism that might also be involved in remobilization of fungal
omponents from the my
elium to spore-forming 
ells and spores. The 2 other genes en
ode a
ytoskeleton protein (a
tin) and a protein related to autophagy (autophagy-related 10 protein),a pro
ess that 
an 
ontribute to the re
y
ling of 
ellular material in developing tissues. Bothfun
tions parti
ipate in re-
onstru
tive 
ellular pro
esses [108℄, whi
h is 
onsistent with theinvolvement of metaboli
 enzymes in remobilization of fungal resour
es towards the new organin development.Analysis of these two patterns that present a high expression level in the fruit-body situationis highly informative, 
on�rms existing knowledge in the �eld and highlights the importan
eof remobilization in the developing organ. These 
o-expressed genes share related roles in aparti
ular pro
ess. This 
ould indi
ate that they are under the 
ontrol of 
ommon regulatorsof gene expression. Interestingly, these patterns also 
ontained a total of 8 genes of unknownfun
tions, i.e. for whi
h no fun
tional assignment was possible in international gene databases.There were 4 genes en
oding hypotheti
al proteins with a homology in databases but no detailedfun
tion and 4 genes not previously des
ribed in fungi or other organism and whi
h are 
onsideredspe
i�
 to La

aria bi
olor. There are about 30% of su
h genes spe
i�
 to this fungus and thesemay play spe
i�
 roles in the biology of this soil fungus [83℄. All these genes show 
onsistentpro�les with those en
oding metaboli
 fun
tions. Thus, these genes are interesting investigationleads as they may 
ontain new enzymes not previously des
ribed of the pathways or eventualregulator of the 
ellular pro
ess. Altogether, these results 
ontribute to a better understanding ofthe mole
ular pro
esses underlying the fruit-body development. As stated earlier, the expressionof these genes was not spe
i�
 to this biologi
al situation. Their expression levels was alreadyhigh in the my
elium and the symbioti
 tissue indi
ating that these pro
esses are essential not



6. Dis
ussion 45only to the fruit-body development but also to general 
ellular pro
esses as previously des
ribedin expression studies of the tree-fungus symbiosis development [109℄.6 Dis
ussionIn this 
hapter, we addressed the problem of e�
iently mining numeri
al data with te
hniquesbased on Formal Con
ept Analysis (FCA). The standard way of dealing with numeri
al data inFCA is based on s
aling. However, the data may be s
aled in a lot of di�erent ways leadingto di�erent results and interpretations. Most importantly, this usually leads either to loss ofinformation and pre
ision, or to huge and dense binary datasets di�
ult to pro
ess.In the 
ontext of gene expression data analysis, we have 
ompared two mathemati
ally equiv-alent methods for pro
essing numeri
al data. The �rst one uses interordinal s
aling and 
lassi
alFCA algorithms. It en
odes all possible intervals of attribute values in a formal 
ontext thatis pro
essed with 
lassi
al FCA algorithms. The se
ond method relies on pattern stru
tures: itbuilds a 
on
ept latti
e dire
tly from the original data. We proved that both resulting 
on
eptlatti
es are isomorphi
. Most importantly, pattern stru
tures o�er more 
on
ise representations,better s
alability, and better readability of the (pattern) 
on
ept latti
e. Thus, we gave elementsfor answering the 
hallenging question, should one s
ale numeri
al attributes? We also showedsubstantial results for GED analysis, highlighting the important potential of pattern stru
turesas a bi-
lustering te
hnique. It remains now to 
ompare this method with other gene expressiondata mining te
hniques a
ross a systemati
 
omparative study.Indeed, our FCA based approa
h 
an be viewed as a bi
lustering method. It provides meansfor extra
ting patterns from numeri
al data, namely formal 
on
epts. In appli
ation to GEDanalysis, 
on
ept extents are maximal sets of genes related to a 
ommon maximal set of situations(not ne
essarily all, due to our 
onstraints on maximal interval size). The ordering of 
on
eptsamong a 
omplete latti
e makes overlapping of 
on
epts natural. Then a 
omplete enumerationof patterns respe
ting some 
onstraints like maximal interval size is possible. Indeed, the subsetsof patterns satisfying these 
onstraints is an order ideal of the latti
e of patterns. A
tually, inthis 
hapter, we pay parti
ular attention to s
aling problems, su
h as boundary problems, andwe proposed monotone 
onstraints to retain best 
on
epts for a GED analysis.A similar work to build 
on
ept latti
es from numeri
al data was proposed in [102℄ in theframework of Symboli
 Data Analysis (SDA) [17℄, however no links with interordinal s
aling ande�
ien
y 
omparison was proposed.Among other dire
tions of further resear
h, one may involve domain knowledge. The semi-latti
e of des
riptions (D,⊓) may be viewed as a hierar
hy, where domain knowledge may been
oded, e.g. in some dimensions of a pattern ve
tor. Domain knowledge 
an be given by textannotations on genes, e.g. [90℄, for whi
h a similarity operation ⊓ 
an be de�ned. Moreover,ea
h dimension of the ve
tor may 
orrespond to a parti
ular data-type for whi
h a similarityoperation ⊓ is de�ned. For example, some dimension may 
orresponds to numeri
al attributes,an other to graph-valued attributes, or 
lassi
al sets, et
.In this 
hapter, we do not have 
onsidered fuzzy settings. Although FCA has already beenextended in [12℄ where an obje
t is asso
iated to an attribute with a truth degree, it 
an beinteresting to study how fuzzy settings 
an be 
onsidered within pattern stru
tures. A �rststudy we addressed 
an be found in [6℄ and is not detailed here.Most importantly, 
onsidering the similarity operation ⊓ as interval 
onvexi�
ation generatestoo many patterns: some patterns and their sub-patterns w.r.t. ⊑ may des
ribe almost the sameset of genes, i.e. a few genes di�ers in their extents. Con
ept stability was introdu
ed in [72℄



46 Chapter 4. Mining interval patterns with FCAfor measuring this phenomena. In this 
hapter, we solved the problem of un-interesting patternsthanks to a monotone 
onstraint. In the next 
hapter, we extend this proposition and show howto embed a toleran
e relation in an interval pattern stru
ture to produ
e only 
on
epts withsimilar obje
ts, w.r.t. a distan
e on their values.



Chapter 5Introdu
ing a similarity relationbetween numeri
al values1 Introdu
tionIn the framework of formal 
on
ept analysis, a 
on
ept latti
e is derived from a formal 
ontext.Thanks to a Galois 
onne
tion, a 
on
ept represents a maximal set of obje
ts asso
iated withtheir 
ommon attributes: the intent of a 
on
ept represents the set of attributes the obje
ts inthe extent have in 
ommon. This statement 
an be expressed as follows: the intent representsthe attributes for whi
h the obje
ts in the extent are similar.When fa
ing numeri
al data, valued either with number or intervals, the latter have to bes
aled to be in adequate form. However, it follows from previous statement that 
lassifyingobje
ts having similar attribute values within same 
on
epts may be thought as a more naturalway. In that sense, authors of [86, 87, 88℄ de�ned FCA guided by Similarity denoted by FCASin this 
hapter. They propose to 
onsider a similarity relation between �numeri
al� obje
ts todire
tly build the 
on
ept latti
e, i.e. without s
aling. Intuitively, two obje
ts are similar ifthe di�eren
e of their value (either a number or an interval of number) does not ex
eed a givenparameter for ea
h attribute, e.g. [2, 4] ≃θ [4, 8] means that both values are similar with aparameter θ = 6. This leads to the original notion of attribute sharing: two obje
ts share theattributes for whi
h the values they take are similar. Quite naturally, this similarity relation isnot transitive and raises a problem for ordering 
on
epts. The authors propose to 
onsider apairwise similarity of obje
ts instead, and give appli
ations to biologi
al resour
e retrieval on theweb. However, the asso
iated theory provides no e�
ient algorithm at present.On another hand, in the previous 
hapter, pattern stru
tures have been used to build a
on
ept latti
e dire
tly from numeri
al data, also avoiding s
aling. So-
alled interval patternstru
tures (IPS) relies on a theory in full 
omplian
e with FCA and thus bene�ts of its �tool-box� in
luding e�
ient algorithms. However, the notion of similarity of obje
ts is 
omplex anddi�erent from the intuitive one used in FCAS: it relies on a similarity operator ⊓ and asso
iatedsubsumption relation ⊑ between obje
t des
riptions, e.g. [2, 8] ⊑ [4, 8]. The so-
alled similarityoperator ⊓ gives the des
ription representing the similarity of some obje
t des
ription.Whereas those two methods (FCAS and IPS) use di�erent notion of similarity, this 
hapterholds on a study of the relations between them, extending the 
lassi�
ation ability of FCA fordealing with obje
ts with many-valued attributes in an original way. A
tually, the parallel studyof FCAS and IPS helps to understand how these two methods are interrelated and how they 
anbe applied to 
omplex data for building 
on
ept latti
es. IPS uses a framework in full 
omplian
e47



48 Chapter 5. Introdu
ing a similarity relation between numeri
al valueswith FCA with e�
ient and s
alable algorithms. In turn, FCAS brings an intuitive notion ofsimilarity and helps understanding the resulting 
on
ept latti
es.After showing that FCAS 
an be expressed in terms of pattern stru
tures, a natural questionarises. Can we design a s
aling pro
edure leading to a 
ontext whose 
on
ept latti
e is isomorphi
to the pattern 
on
ept latti
e? In others words, 
an we de�ne a s
aling pro
edure leading to aformal 
ontext whose 
on
epts are maximal sets of pairwise similar obje
ts? We answered thisquestion in the previous 
hapter showing that IPS outperforms 
lassi
al FCA on interordinals
aled 
ontexts. However, the notion of similarity relation on numeri
al values was not takeninto a

ount. A

ordingly, we show how to de�ned this s
aling. This s
aling relies on theformalization of similarity by a toleran
e relation, providing 
on
epts with an adequate semanti
,namely toleran
e 
lasses.Finally, an experiment with real-world agronomi
 data supports the notions dis
ussed in this
hapter and addresses the problem of de
ision helping in agri
ultural pra
ti
es.2 FCAS: FCA guided by similarityFCAS is an FCA based method allowing to build a 
on
ept latti
e from 
omplex data withouts
aling and 
onsidering similarity between obje
ts from a many-valued 
ontext [86, 87℄. Table 1shows the kind of 
ontexts we are interested in: 
ontexts (G,M,W, I) su
h as attribute values in
W are intervals of numbers or simply numbers. Firstly we re
all an intuitive similarity betweenintervals and the problem it sets. Then, pairwise similarity is shown to be a interesting solutionand is used to de�ne the Galois 
onne
tion to build a 
on
ept latti
e.

m1 m2 m3

g1 [2, 4] [25, 29] 0.3
g2 [4, 8] 19 0.1
g3 [10, 15] 29 0.5
g4 [9, 13] 17 0.5
g5 [8, 13] [17, 19] 0.3
g6 [9, 15] [14, 19] [0.5, 0.7]Table 1: Interval data2.1 Similarity between intervalsIn FCA, a set of obje
ts A possesses an attribute m i� any single obje
t of A possesses m. Whenobje
ts are des
ribed by numbers or intervals, the sharing is not straightforward and requiress
aling pro
edure to obtain a formal 
ontext. By 
ontrast, usual intuition 
alls for a 
lassi
alsimilarity between numbers or intervals: a set of obje
ts possesses an attribute i� all their valuesare similar for this attribute. In other words, two values are similar if their di�eren
e is notsigni�
ant. Formally, given [αi, βi] and [αj , βj ] two intervals of real numbers, and θ a similaritythreshold, the two intervals are said to be similar i�:

[αi, βi] ≃θ [αj , βj ]⇔ max(βi, βj)−min(αi, αj) ≤ θThe similarity threshold θ expresses the maximal variation allowed between two similar in-tervals and re�e
ts the pre
ision requirements to be 
onsidered during the analysis of data. Forexample, with θ = 6, [2, 4] ≃θ [4, 8] but [2, 4] 6≃θ [9, 13] whereas for θ = 11 the three intervals are



2. FCAS: FCA guided by similarity 49similar. It is important to noti
e that the similarity operator ≃θ is not transitive: with θ = 9,
[2, 4] ≃θ [4, 8], [4, 8] ≃θ [9, 13] but [2, 4] 6≃θ [9, 13].2.2 Similarity between obje
tsFCAS introdu
es the notion of obje
t similarity as follows.� Two obje
ts g1 and g2 share an attribute m i� m(g1) ≃θ m(g2). θ may be di�erent for ea
hattribute, as attributes may have a di�erent domain of values.� A set of obje
ts A ⊆ G shares an attribute m whenever any pair of obje
ts in A shares m.This is why it is 
alled a pairwise similarity of obje
ts.� A set of obje
ts A ⊆ G shares a set B ⊆ M of attributes whenever any pair of obje
ts in Ashares all attributes in B. Then A is said to be valid w.r.t. B.When a set of obje
ts shares a set of attributes, obje
ts are pairwise similar w.r.t. this set ofattributes. For example, if we 
onsider θ = 6 for attributem1, θ = 4 for attributem2, and θ = 0.2for attribute m3, then obje
ts in {g3, g4, g6} are pairwise similar w.r.t. m1 and m3: they sharethe attributes m1 and m3. This means that ea
h pair of obje
ts has similar values for attributes
m1 and m3. For the attribute m1 this means that m1(g) ≃θ m1(h) for any g, h ∈ {g3, g4, g6},e.g. m1(g3) ≃θ m1(g6).From these statements, a Galois 
onne
tion 
an be de�ned. A �rst operator asso
iates toa set of obje
ts the set of attributes they share and for ea
h of these attributes, the interval ofvalues 
ontaining all of them (this is required to order attributes). As a result, this operator givesa set of pairs (attribute,interval). Dually, the se
ond operator asso
iates to a set of pairs, themaximal set of obje
ts that share attributes from pairs in this set. These operators are detailedlater.2.3 Maximal sets of pairwise similar obje
tsIn spirit of FCA, it is important to determine maximal sets of pairwise similar obje
ts. This
orresponds to the notion of 
losed sets (on whi
h relies the de�nition of a 
on
ept). As in 
lassi
alFCA, one has to 
hara
terize maximal sets of obje
ts sharing maximal sets of attributes. Forexample, {g3, g6} is valid, as well as {g3, g4, g6} for the same attributes m1 and m3. This verylast set only will determine a formal 
on
ept, as being a maximal set of obje
ts similar for both
m1 and m3.Starting from a set of obje
ts, the idea to obtain its maximal set of pairwise similar obje
tsis the following. Given a set of obje
ts A, one should (i) sear
h for all obje
ts similar with allobje
ts in A, (ii) remove all pairs of obje
ts that are not pairwise similar, and �nally (iii) buildthe des
ription of remaining obje
ts, i.e. an interval needed for the Galois 
onne
tion. (i) and(ii) 
an be seen as a 
losure in mathemati
al morphology, 
onsisting in (i) a dilatation and (ii)an erosion by a stru
turing element 
hara
terizing θ [114℄.(i) Set of rea
hable obje
ts. Given an interval 
ontext (G,M,W, I), gi ∈ G rea
hes gj ∈ Gw.r.t. m ∈ M whenever m(gi) ≃θ m(gj). The set of all rea
hable obje
ts from a valid set ofobje
ts A ⊆ G w.r.t. m is de�ned as follows:

R(A,m) = {gi ∈ G | m(gi) ≃θ m(g), ∀g ∈ A}The set of rea
hable obje
ts from A w.r.t. B ⊆ M is: R(A,B) =
⋂

m∈B R(A,m). Consideringthe interval 
ontext in Table 1 and a threshold θ = 0.2 for attribute m3, then R({g1},m3) =
{g1, g2, g3, g4, g5}. This set of obje
ts is not valid with respe
t to m3 be
ause m(g2) 6≃θ m(g3)



50 Chapter 5. Introdu
ing a similarity relation between numeri
al valuesand m(g2) 6≃θ m(g4). A
tually, this is due to the fa
t that in the general 
ase, the set of obje
ts
R(A,m) may not be valid w.r.t. m be
ause of the non transitivity of ≃θ.(ii) Maximal valid set of rea
hable obje
ts. The maximal valid set of obje
ts 
ontaining Ais the subset of R(A,m) obtained by removing from R(A,m) all pairs of obje
ts whi
h do notshare m (i.e. gi, gj su
h that m(gi) 6≃θ m(gj)). Formally this set is de�ned as follows:

Rv(A,m) = R(A,m) \ {gi, gj | m(gi) 6≃θ m(gj)}.The maximal valid set 
ontaining A w.r.t. B ⊆ M is: Rv(A,B) =
⋂

m∈B Rv(A,m). In theexample, Rv({g1},m3) = {g1, g5} (i.e. obtained from R({g1},m3) by removing g2, g3, and g4).(iii) Des
ription of a maximal valid set of obje
ts. When A ⊆ G shares an attribute
m ∈M (R(A,m) 6= ∅) then A ⊆ Rv(A,m) and Rv(A,m) shares m. The interval des
ribing theset Rv(A,m) is given by:

γ(A,m) = [min(αi),max(βi)] for [αi, βi] = m(gi), gi ∈ Rv(A,m)When a set of obje
ts A shares an attribute m for a threshold θ, then we say that A shares
(m,γ(A,m)). For example, {g1, g2} shares (m1, [2, 8]) for a threshold θ = 6. When A is not validw.r.t. m then γ(A,m) = ∅. Indeed, 
onsider θ = 6 and the attribute m1. The obje
ts g1 and
g2 share m1. The obje
ts g3 and g4 share m1. However g1, g2, g3, and g4 do not share m1. Thismeans that an obje
t des
ription, has to be 
omposed of pairs: the �rst value gives an attributename while the se
ond provides with its value.2.4 Building the 
on
ept latti
eIn [86℄, it is shown that the two following operators form a Galois 
onne
tion between 2G andthe partially ordered set (M × IΘ,⊑). IΘ is the set of all intervals possibly returned by thefun
tion γ. ⊑ orders pairs (attribute,interval) by in
lusion of intervals of same attributes. With
A ⊆ G and B ⊆M × IΘ:

A↑ = {(m,γ(A,m)) ∈M × IΘ | γ(A,m) 6= ∅}
B↓ = Rv({g ∈ G | ∀(m, [α, β]) ∈ B, m(g) ≃θ [α, β]}, B)

A↑ is the set of attributes shared by all the obje
ts in A and B↓ is the set of obje
ts sharingall attributes in B. We illustrate these operators on our example, with resp. θ = 6, θ = 4 and
θ = 0.2 for resp. attributes m1, m2 and m3:

{g3, g6}
↑ = {(m1, [9, 15]), (m3 , [0.5, 0.7])}

{(m1, [9, 15]), (m3 , [0.5, 0.7])}
↓ = {g3, g4, g6}.The pair (A,B) = ({g3, g4, g6}, {(m1, [9, 15]), (m3 , [0.5, 0.7])}) is a 
on
ept as A↑ = B and

A = B↓. The set of all 
on
epts 
lassi
ally ordered by (A1, B1) ≤ (A2, B2)⇔ A1 ⊆ A2(⇔ B2 ⊑
B1) generates a 
omplete latti
e, e.g. in Figure 1. Reading the extent of a 
on
ept remains asstated earlier with redu
ed labeling. This is not the 
ase for intents, as an attribute 
an take onseveral values: ea
h 
on
ept intent is given separately.3 IPS: Interval pattern stru
turesThis se
tion re
alls the interval pattern stru
ture approa
h presented in Chapter 4. Only themost important fa
ts are re
alled here for making the 
omparison with FCAS easier. Firstly,we re
all how the similarity operator ⊓ is de�ned for numeri
al data, and then how the Galois
onne
tion of pattern stru
ture is illustrated.
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Figure 1: Interval 
on
ept latti
e raised from Table 1 with FCAS3.1 Similarity between intervalsIntervals are patterns: they may be ordered within a meet-semi-latti
e making them potentialobje
t des
riptions. The meet ⊓ of two intervals [a1, b1] and [a2, b2], with a1, b1, a2, b2 ∈ R is:
[a1, b1] ⊓ [a2, b2] = [min(a1, a2),max(b1, b2)], i.e. the largest interval 
ontaining them. Indeed,when c and d are intervals, c ⊑ d⇔ c ⊓ d = c holds:

[a1, b1] ⊑ [a2, b2] ⇔ [a1, b1] ⊓ [a2, b2] = [a1, b1]
⇔ [min(a1, a2),max(b1, b2)] = [a1, b1]
⇔ a1 ≤ a2 and b1 ≥ b2
⇔ [a1, b1] ⊇ [a2, b2].This de�nition means that, 
ontrarily to intuition, smaller intervals subsume larger intervals
ontaining them, and that the meet of n intervals is the smallest interval 
ontaining all of them.Figure 2 gives an example of meet-semi-latti
e of intervals. The interval labelling a node is themeet of all intervals labelling its as
ending nodes, e.g. [0.1, 0.5] = [0.1, 0.3] ⊓ [0.3, 0.5], and isalso subsumed by these intervals, e.g. [0.1, 0.5] ⊑ [0.3, 0.5]. In other words, if [a2, b2] ⊆ [a1, b1]then [a1, b1] ⊑ [a2, b2] ; but if [a2, b2] 6⊆ [a1, b1] then [a1, b1] ⊓ [a2, b2] returns the largest interval
ontaining both [a1, b1] and [a2, b2].

Figure 2: A meet-semi-latti
e of intervals.



52 Chapter 5. Introdu
ing a similarity relation between numeri
al values3.2 Similarity between obje
tsAs obje
ts are generally des
ribed by several intervals, ea
h one standing for a given attribute,interval ve
tors have been introdu
ed as p-dimensional ve
tor of intervals. When e and f areinterval ve
tors, we write e = 〈[ai, bi]〉i∈[1,p] and f = 〈[ci, di]〉i∈[1,p]. Interval ve
tors are patterns:they may be partially ordered within a meet-semi-latti
e. Indeed, the similarity operation ⊓ and
onsequently subsomption relation ⊑ are given by:
e ⊓ f = 〈[ai, bi]〉i∈[1,p] ⊓ 〈[ci, di]〉i∈[1,p] e ⊑ f ⇔ 〈[ai, bi]〉i∈[1,p] ⊑ 〈[ci, di]〉i∈[1,p]

= 〈[ai, bi] ⊓ [ci, di]〉i∈[1,p] ⇔ [ai, bi] ⊑ [ci, di], ∀i ∈ [1, p]These de�nitions state that 
omputing ⊓ (resp. testing ⊑) for interval ve
tors results in 
omput-ing ⊓ (resp. testing⊑) between intervals of ea
h dimension, e.g. 〈[9, 15], [14, 29]〉 ⊑ 〈[10, 15], [29, 29]〉as [9, 15] ⊑ [10, 15] and [14, 29] ⊑ [29, 29]. Then, ea
h dimension of a ve
tor 
orresponds to oneand only one attribute or 
olumn of a dataset and requires a 
anoni
al order of ve
tor dimensions.3.3 Building the 
on
ept latti
eAs interval ve
tors are patterns, Table 1 shows a pattern stru
ture (G, (D,⊓), δ) where G =
{g1, . . . , g6}, D is a set of interval ve
tors or 3-dimensional ve
tors, where ea
h 
omponent
orresponds to an attribute or a 
olumn of the table. (D,⊓) is 
omposed of �ve interval ve
tors,i.e. a des
ription for ea
h obje
t, plus all possible meets: by de�nition, any pair of elements (d, e)of a meet-semi-latti
e admits a meet d⊓e. Des
ription of g3 is δ(g3) = 〈[10, 15], [29, 29], [0.5, 0.5]〉.Operators of the general Galois 
onne
tion given in [46℄ are applied.

{g3, g6}
� =

d
g∈{g3,g6}

δ(g)

= δ(g3) ⊓ δ(g6)
= 〈[10, 15], [29, 29], [0.5, 0.5]〉 ⊓ 〈[9, 15], [14, 19], [0.5, 0.7]〉
= 〈[10, 15] ⊓ [9, 15], [29, 29] ⊓ [14, 19], [0.5, 0.5] ⊓ [0.5, 0.7]〉
= 〈[9, 15], [14, 29], [0.5, 0.7]〉

〈[9, 15], [14, 29], [0.5, 0.7]〉� = {g ∈ G | 〈[9, 15], [14, 29], [0.5, 0.7]〉 ⊑ δ(g)}
= {g3, g4, g6}Obviously, g3 and g6 belongs to 〈[9, 15], [14, 29], [0.5, 0.7]〉� . g4 also belongs to this set as itsdes
ription is 
omposed, for ea
h dimension, of an interval that is in
luded in the 
orrespondinginterval in 〈[9, 15], [14, 29], [0.5, 0.7]〉, i.e. 〈[9, 15], [14, 29], [0.5, 0.7]〉 ⊑ δ(g4). Deriving the set

{g3, g6} with both Galois 
onne
tion operators forming a 
losure operator makes the pair (A, d) =
({g3, g4, g6}, 〈[9, 15], [14, 29], [0.5, 0.7]〉) a pattern 
on
ept, i.e. A� = d and A = d�. Partialordering of all 
on
epts is in full 
omplian
e with FCA and gives rise to a 
on
ept latti
e.4 FCAS formalized by means of pattern stru
turesPreviously, we have detailed two methods for building a 
on
ept latti
e from interval data. Thisse
tion highlights the links existing between both methods and shows how the general formalismof pattern stru
tures obtains same results as FCAS on interval data. In other words, we showhow to handle with patterns stru
tures a similarity and a pairwise similarity like in FCAS, takingadvantage of e�
ient algorithms. Another 
ontribution, useful for real-world experiments, showshow handling missing values with patterns stru
tures. Consequently, this se
tion also shows howboth methods bene�t from ea
h other.



4. FCAS formalized by means of pattern stru
tures 534.1 First statementsBoth methods rely on a Galois 
onne
tion between two partially ordered sets, i.e. (2G,⊆) andan ordered set of des
riptions. For FCAS, des
riptions are pairs 
omposed of an attribute nameand an interval. For IPS, des
riptions are interval ve
tors with �xed size. In both 
ase, intervalsare ordered with in
lusion.The �rst operator of the Galois 
onne
tion of FCAS asso
iates to any set of obje
ts the setof attributes they share. Firstly, pairwise similar obje
ts are sear
hed for, then γ returns themaximal shared interval. With IPS, the similarity operator ⊓ a

omplishes the same task as itreturns a des
ription representing the similarity between its arguments: ⊓ is a kernel operator[46, 105℄. Thus, this operator may handle other kind of similarities.The se
ond operator of the Galois 
onne
tion in FCAS returns for a given des
ription, i.e.set of pairs (m, [a, b]) with m ∈ M et a, b ∈ R, the maximal set of all obje
ts that sharethese attributes. IPS performs a similar operation. However, IPS does not 
onsider a pairwisesimilarity involving θ. In the following, we show how it 
an be a
hieved in full 
omplian
e withthe existing framework of FCA.4.2 Similarity between patternsBasi
ally, pattern stru
tures 
onsider the meet operator ⊓ as a similarity operator [46℄. Intu-itively, given two obje
ts g and h, and their respe
tive des
riptions d = δ(g) and e = δ(h) froma meet-semi-latti
e, d ⊓ e gives a des
ription representing similarity between g and h. As ameet-semi-latti
e is de�ned on the existen
e of a meet for any pair of elements, it follows thatany two obje
ts are similar and that their �level� of similarity depends on the level of their meetin the semi-latti
e. Then, how to state that two obje
ts are similar or not in sense of FCAS
an be a
hieved as follows. Given c, d ∈ D two patterns, then c and d are said to be similar i�
c⊓d 6= ∗ where ∗ materializes the pattern that is subsumed by any other pattern. This pattern isadded in D and 
an be interpreted as the pattern denoting �no subsumption� or �non similarity�between two patterns.When 
onsidering patterns of type interval and remembering that any interval subsumeslargest intervals 
ontaining it, the element ∗ 
an be introdu
ed in asso
iation with a parameter
θ as follows. Given a,b,c,d ∈ R and a parameter θ ∈ R,

[a, b] ⊓θ [c, d] =

{

[min(a, c),max(b, d)] if max(b, d) −min(a, c) ≤ θ

∗ otherwise,and
∗ ⊓θ [a, b] = ∗ ⇔ ∗ ⊑θ [a, b].Then, the meet-semi-latti
e of intervals given in Figure 2 be
omes the one given in Figure 3 when

θ = 0.2. In this way, we have de�ned a meet operator in a semi-latti
e, su
h as the followinglinks with FCAS hold:
[a, b] ⊓θ [c, d] 6= ∗ ⇔ [a, b] ≃θ [c, d] and [a, b] ⊓θ [c, d] = ∗ ⇔ [a, b] 6≃θ [c, d].Operators ⊓ and ⊑ for interval ve
tors use the ⊓θ for �
onstrained� intervals instead of ⊓ forintervals, and formulas still hold. An example of 
on
ept is ({g3, g4, g6}, 〈[9, 15], ∗, [0.5, 0.7]〉):obje
ts in the extent are similar for the �rst and third attributes. In FCAS, equivalent 
on-
ept is ({g3, g4, g6}, {(m1, [9, 15]), (m3 , [0.5, 0.7])}): only shared intervals are represented, whereattribute labels are inserted.
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ing a similarity relation between numeri
al values4.3 Pairwise similarity by means of proje
tionsThe use of ⊓θ does not allow the 
onstru
tion of intervals whose length ex
eeds θ like in FCAS.However, we 
annot be sure these intervals des
ribe maximal valid sets of obje
ts in FCAS:de�nition of Rv starts with a set of obje
ts A and returns the maximal valid set of obje
ts: thisset 
ontains A plus all obje
ts similar with obje
ts in A and pairwise similar. Then γ returnsthe interval shared by the resulting set of obje
ts for a given attribute. This means that thoughintervals from a semi-latti
e (D,⊓θ) all des
ribe valid set of obje
ts, some of them may not be�maximal�. Below, we show how to repla
e any interval by its �maximal� interval thanks to aso-
alled proje
tion in a meet-semi-latti
e.�Ball of patterns�. Firstly, 
onsider the meet-semi-latti
e (D,⊓θ) of interval values for a givenattribute. Then, for any interval d ∈ D, we de�ne the ball B(d, θ) as the set of intervals in Dsimilar to d as follows.
B(d, θ) = {e ∈ D | e ≃θ d} with e ≃θ d ⇐⇒ e ⊓θ d 6= ∗This ball of 
enter d and diameter θ 
ontains all intervals e whose meet with d is di�erent of *,meaning that d and e are similar : B([0.1, 0.1], 0.2) = {[0.1, 0.1], [0.3, 0.3]}. This set is linked with

R in FCAS, for a given attribute: B(d, θ) is the set of intervals shared by obje
ts in R(A,m)when A = g and m(g) = d.Intervals representing maximal pairwise similar sets of obje
ts. Now, among this set ofintervals, we should remove any pair of intervals that are not pairwise similar, i.e. 
omputing Rv,and build an interval with left border (resp. right border) as the minimum (resp. maximum)of all intervals, i.e. 
omputing γ. In terms of IPS it 
an be done by repla
ing any d of themeet-semi-latti
e of intervals by the meet of all intervals e from the ball B(d, θ) that are notdissimilar with another element e′ of this ball, i.e. e ⊓θ e′ 6= ∗:
ψ(d) =

d
θ e∈B(d,θ) e ⊓θ d

such as ∄e′ ∈ B(d, θ) with e ⊓θ e
′ = ∗In our example, ψ([0.1, 0.1]) = [0.1, 0.1]⊓[0.3, 0.3] = [0.1, 0.3], for the third attribute and θ = 0.2.In FCAS, the set returned by Rv is 
omposed of obje
ts whose attribute values respe
t the
ondition ∄e′ ∈ B(d, θ) with e ⊓ e′ = ∗, i.e. obje
ts are pairwise similar. Then d

θ returns themeet of all remaining intervals. With FCAS, we have γ(g2,m3) = [0.1, 0.3] as well. In 
ase of Ais not valid w.r.t. m, remembering that any interval whose size ex
eeds θ is repla
ed by *, themapping ψ returns * and γ in FCAS returns ∅.
ψ is a mapping that asso
iates to any d ∈ D an element ψ(d) ∈ (D,⊓θ) su
h that ψ(d) ⊑ d,as ψ(d) is the meet of d and all intervals similar to d and pairwise similar. The fa
t ψ(d) ⊑ dmeans that ψ is 
ontra
tive. In sense of [46℄, ψ is a proje
tion in the semi-latti
e (D,⊓θ) asalso monotone and idempotent. Moreover, any proje
tion of a 
omplete semi-latti
e (D,⊓) is

⊓-preserving, i.e. for any d, e ∈ V , ψ(d ⊓ e) = ψ(d) ⊓ ψ(e) [46℄.Thereby, the proje
tion may be 
omputed in advan
e, repla
ing ea
h pattern by a �weaker�or �more general� pattern without loss of information. It also naturally implies better 
om-putational properties as the number of elements in the semi-latti
e is redu
ed. Indeed, in theprevious 
hapter, we have shown that this parameter mostly in�uen
es 
omplexity of adaptedFCA algorithms for pro
essing interval pattern stru
tures. However, FCAS does not suggest eas-ily su
h a prepro
essing, and γ needs to be pro
essed ea
h time operators of Galois 
onne
tionare 
al
ulated.
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Figure 3: A meet-semi-latti
e of intervals withadditional element * Figure 4: A latti
e of intervals with additionalelements * and ?4.4 Handling missing values with pattern stru
turesConsidering missing values requires to order them within a meet-semi-latti
e of patterns or moregenerally within a latti
e of patterns. Two possibilities are straightforward: a missing value (i)subsumes or (ii) is subsumed by any other element. In terms of FCAS, this means that themissing value (i) is similar or (ii) dissimilar with any other.A missing value as the join of all elements. This is the most intuitive approa
h. As wedo not know the a
tual value of a missing value, denoted by �?�, it 
an be any other value: ithas to subsume any element. Then we should not restri
t D to a meet-semi-latti
e (D,⊓), butallow a latti
e (D,⊓,⊔) of patterns, su
h as ? ∈ D. This requires some de�nitions: the meet ⊓ isalready de�ned ex
ept for �?�, and the join ⊔ has to be de�ned for any pair of elements. In fa
t,this is rather easy as we just add one element subsuming all the others in a meet-semi-latti
e.Most importantly, for d ∈ D, we have: d ⊓? = d⇔ d ⊑?.An example of a latti
e of patterns (D,⊓,⊔) is given in Figure 4: a
tually it results fromadding �?� in the meet-semi-latti
e given by Figure 3. In 
ase of intervals, the join operator isgiven by
[a, b] ⊔ [c, d] =

{

[max(a, c),min(b, d)] iff min(b, d) ≤ max(a, c)

? otherwiseA missing value as the meet of all elements. The fa
t that a missing value is dissimilarwith any other (ex
ept itself) is also interesting (see the appli
ation with real-world data at theend of this 
hapter). This underlines the fa
t that if the value is not given then it should notbe 
onsidered as unknown: there is simply no information. This kind of missing value 
an byrepresented by the element ∗ introdu
ed earlier. Indeed, * represents the dissimilarity betweenobje
t des
riptions and ∗ is subsumed by any other value.Computation. In the previous 
hapter we have shown how slight modi�
ations of well-knownFCA algorithms enable 
omputation of interval pattern stru
tures. Interval ve
tors suggestedto be implemented as arrays or ve
tors of intervals. With this implementation, and due to
anoni
al order of ve
tor dimensions, a missing value has to be materialized by * ea
h time itis ne
essary, e.g. 〈[15, 18], ∗〉 where * is a missing value. Some data 
ontain numerous attributesand are very sparse. Then the representation by ve
tors is not adequate as it leads to patternintents 
ontaining a major proportion of * values. By 
ontrast, FCAS suggest to IPS to 
onsiderpairs 
omposed of an attribute name and a value, better for sparse data as representing onlynon-missing values.
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ing a similarity relation between numeri
al values5 A s
aling approa
h based on toleran
e relationsIn this se
tion, we de�ne a s
aling handling the relation ≃θ. This allows to obtain a formal
ontext on whi
h 
lassi
al FCA 
an be applied. The 
on
epts are, like in FCAS, 
omposed ofmaximal sets of obje
ts pairwise similar for a maximal set of attributes and their respe
tive rangeof values.For that matter, the mathemati
al formalization of similarity relies on a toleran
e relationwhi
h is re�exive and symmetri
. A toleran
e relation 
an be used for building a 
ontext in whi
h
on
epts represents toleran
e 
lasses of similar obje
ts for a given attributes. All toleran
e 
lassesare then reused to properly de�ne a s
aling for initial numeri
al data allowing FCA to be applied.The running example we 
onsider in this se
tion is given by Table 2.
m1 m2 m3

g1 6 0 [1, 2]
g2 8 4 [2, 5]
g3 11 8 [4, 5]
g4 16 8 [6, 9]
g5 17 12 [7, 10]Table 2: Another interval dataset5.1 Toleran
e relation and 
lassesSimilarity has been studied from many points of view in arti�
ial intelligen
e and pattern re
og-nition [123, 78℄. For example, 
onsidering do
uments being des
ribed by their attributes, e.g.keywords, similarity of do
uments x and y 
an be de�ned by non-emptiness of the set of their
ommon attributes, x′ ∩ y′ 6= ∅. The similarity is re�exive and symmetri
, but not ne
essarilytransitive. Following this idea, a toleran
e relation 
aptures the 
hara
teristi
s of a similarity [71℄.De�nition 5.5.1 For a set G, a binary relation T ⊆ G×G is 
alled toleran
e if:(i) ∀x ∈ G xTx (re�exivity)(ii) ∀x, y ∈ G xTy → yTx (symmetry)Let us 
onsider now a set of obje
ts G, a toleran
e relation T , and a formal 
ontext (G,G, T ).First, some obje
ts, say g1 and g2, are observed to be pairwise similar, i.e. g1Tg2. Then pairs ofthe toleran
e relation lead to a 
lass of similar obje
ts or �
lass of similarity�. Moreover, amongthe 
lasses of similarity, some 
lasses are maximal meaning that the 
lass is not in
luded in anylarger 
lass.De�nition 5.5.2 Given a set G, a subset K ⊆ G, and a toleran
e relation T on G, K is a 
lassof toleran
e if:(i) ∀x, y ∈ K xTy (pairwise similarity)(ii) ∀z 6∈ K,∃u ∈ K ¬(zTu) (maximality)An arbitrary subset of a 
lass of toleran
e is a pre
lass.Now, let us 
onsider the 
lasses of toleran
e asso
iated with the formal 
ontext (G,G, T ).The 
lass of toleran
e of an obje
t g has to be 
onsidered along two dimensions: (i) the 
lass isde�ned as the set of all obje
ts whi
h are tolerant with g, (ii) the 
lass is maximal in the sense



5. A s
aling approa
h based on toleran
e relations 57that obje
ts in the 
lass are pairwise similar, and adding any other obje
t in the 
lass resultsin some pairs of non tolerant obje
ts. A 
lass of toleran
e may be given a name whi
h 
an befurther used as an �attribute name� that des
ribes the obje
t. The result is a formal 
ontext
(G,M, I) where I asso
iates any obje
t in G with its 
lasses of toleran
e m ∈M .Based on this observation, we show below how to use toleran
e relations for designing s
alesfor 
omplex attributes and for building formal 
on
epts whose extent are made of pairwise similarobje
ts. Indeed, the similarity relation ≃θ de�ned in FCAS is symmetri
 and re�exive but notne
essarily transitive, i.e. ≃θ is a toleran
e relation. For example, with θ = 2, a = 1, b = 3 and
c = 5, a ≃θ b and b ≃θ c but a 6≃θ c (1 6≃θ 5), re
alling that a = [a, a] for any a ∈ R.5.2 Toleran
e 
lasses in numeri
al dataLet us 
onsider a numeri
al many-valued 
ontext (G,M,W, I) where the rangeWm of an attribute
m is su
h that Wm ⊆ W ⊂ R. Given an attribute m ∈ M , let us 
onsider the formal 
ontext
(Wm,Wm,≃θ). Related obje
ts in Wm are related are similar w.r.t. ≃θ. For example, given
θ = 5 and m1 in Table 2, the formal 
ontext (Wm1

,Wm1
,≃5) 
an be read in Figure 5 (left).As ≃5 is symmetri
 and re�exive, so is (Wm1

,Wm1
,≃5) and it 
ontains a diagonal of 
rosses.Furthermore, the asso
iated 
on
ept latti
e (see Figure 5 (right)) is also symmetri
.Proposition 5.5.1 Given a 
ontext (Wm,Wm,≃θ) and the asso
iated latti
e, any 
on
ept (A,B)is su
h that either A ⊂ B, B ⊂ A, or A = B. Then, for ea
h 
on
ept (A,B), there exists aunique 
on
ept (B,A).Proof. In the 
ontext (Wm,Wm,≃θ), the set of obje
ts is the same as the set of attributes.Then, for a 
on
ept (A,B), either A ⊂ B, B ⊂ A, or A = B. Sin
e both A,B ∈Wm and for anyformal 
on
ept (A,B), A′ = B and B′ = A. (B,A) is also a formal 
on
ept, as verifying B′ = Aand A′ = B.For example, the upper right 
on
ept on Figure 5 (right) 
an be read as ({8, 6, 11, 16}, {11})and has a 
orresponding 
on
ept ({11}, {8, 6, 11, 16}) lower still on the right. One 
onsequen
eof the above proposition is that the 
on
ept latti
e 
an be separated in two parts w.r.t. themapping (A,B) 7→ (B,A). In [47℄, su
h a mapping is 
alled a polarity, i.e. an order-reversingbije
tion inverse of itself, and the resulting 
on
ept latti
e is a polarity latti
e. Then, we havethe notion of axis of polarity:De�nition 5.5.3 (Axis of polarity) In a polarity latti
e, the set of all 
on
epts (A,B) su
hthat A = B forms an axis of polarity of the 
on
ept latti
e.For example, the set of 
on
epts {({16, 17}, {16, 17}), ({11, 16}, {11, 16}),

({6, 8, 11}, {6, 8, 11})} is the axis of polarity of the 
on
ept latti
e on Figure 5 (right).The set of all 
on
epts (C,D) su
h that (A,B) ≤ (C,D), denoted by U , forms the upper partof the 
on
ept latti
e. Dually, the set of all 
on
epts (E,F ) su
h that (E,F ) ≤ (A,B), denotedby L, forms the lower part of the 
on
ept latti
e. If (A,B) ∈ U then (B,A) ∈ L and B ⊂ A.Dually, if (A,B) ∈ L then (B,A) ∈ U and A ⊂ B.Let us now 
onsider the 
on
ept ({16, 17}, {16, 17}) of the axis of polarity in the latti
e onFigure 5 (right). The values in {16, 17} are all similar w.r.t. ≃5 and {16, 17} 
annot be extendedwith any other value without violating the internal similarity, i.e. there does not exist anyelement that does not belongs to {16, 17} and that is similar with all elements in {16, 17}. Thisis true for all 
on
epts in the axis of polarity.
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m1 6 8 11 16 17

6 × × ×
8 × × ×
11 × × × ×
16 × × ×
17 × ×Figure 5: A toleran
e relation and its asso
iated 
on
ept latti
eThis means that the extent or intents of the 
on
epts in the axis of polarity are toleran
e
lasses. Let us now 
onsider the upper left 
on
ept ({11, 16, 17}, {16}) in the latti
e on Fig-ure 5 (right). This 
on
ept is in U and the values in the extent {11, 16, 17} are similar to 16.Moreover, the intent {16} is 
ontained in the larger intent {16, 17} meaning that {16} deter-mines a pre
lass of toleran
e. Dually, we have the same interpretation for the symmetri
 
on
ept

({16}, {11, 16, 17}) ∈ L.Proposition 5.5.2 Let (A,B) be a 
on
ept of the axis of polarity, i.e. A = B. Then, A (or B)is a set of maximal pairwise similar values, i.e. A determines a 
lass of toleran
e. Let (C,D) a
on
ept in U but not in the axis of polarity, i.e. D ⊂ C. D is a pre
lass of toleran
e and C isthe set of all values similar to values in D.Proof. Both derivation operators (·)′ have same domain and range Wm, and (·)′ asso
iates witha subset A of values in Wm the maximal subset of similar values in Wm, i.e. related through ≃θ.Then, for a 
on
ept (A,B) where A = B and A′ = B or A = B′, then A = A′ or B = B′ aremaximal and de�ne a same toleran
e 
lass. Moreover, the set of all extents A or all intents Bfrom 
on
epts of the axis of polarity 
overs the set Wm. For a 
on
ept (C,D) with D ⊂ C, sin
e
C ′ = D, all values in C are similar to values in D. Now, relying on the pre
eding proposition, asthe 
on
ept (C,D) does not verify C = D but instead D ⊂ C, it exists a 
lass of toleran
e say
F su
h as D ⊂ F ⊂ C and thus D is a pre
lass of toleran
e.The intents of the 
on
epts in the upper part of the latti
e �or dually the extents in the lowerpart� are partially ordered and determine sets of similar values. Among these intents, the intentsin the axis of polarity are maximal and are 
lasses of toleran
e, and the other intents are onlypre
lasses of toleran
e. For example, taking θ = 5 and m1 in Table 1, there are 5 intents, namely
{16}, {11}, {16, 17}, {11, 16}, and {6, 8, 11}, where the three last intents are toleran
e 
lasses.When there is no ambiguity, we use the term of �
lass of similarity� for a 
lass or a pre
lass oftoleran
e.These 
lasses of similarity are used to de�ne a s
ale allowing the appli
ation of FCA algo-rithms to a numeri
al many-valued 
ontext. Classi
al FCA algorithms 
an be used to 
ompute
lasses of similarity and require slight modi�
ations for generating the upper (dually lower) partof the 
on
ept latti
e only (dis
ussed later).5.3 S
aling and 
on
ept latti
e 
onstru
tionAt present, we have made pre
ise how a partially ordered set of 
lasses of similarity 
an be builtfrom attributes valued by numbers or intervals of numbers in a many-valued 
ontext. Now,
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g1 × × ×
g2 × × × × ×
g3 × × × × × × × × ×
g4 × × × × × × × × ×
g5 × × ×Table 3: A formal 
ontext obtained handling 
lasses of toleran
e.

Figure 6: Con
ept latti
e raised from Table 3.
lasses of similarity have to be named before being used as attribute names for s
aling theoriginal many-valued 
ontext and derive a s
aled binary 
ontext from whi
h the �nal 
on
eptlatti
e is built. A
tually, the name of the elements of the s
ale 
an be related to the 
ontent ofthe 
orresponding 
lass of similarity and to the name of the original attribute that is s
aled. Inthe present 
ase, an element of the s
ale is named by a pair asso
iating the name of the originalattribute and either the 
ontent of the 
lass of similarity, e.g. {16, 17} for m1, or the 
onvex hull,e.g. [16, 17].Let us 
onsider the numeri
al many-valued 
ontext (G,W,M, I) in Table 1. Three sets of
lasses of similarity, one for ea
h attribute m1, m2, and m3, are 
omputed thanks to threetoleran
e relations relying on three di�erent similarities ≃θ, and extra
ted from the symmetri

on
ept latti
es asso
iated with ea
h toleran
e relation. The transformation of the original
(G,W,M, I) 
ontext into the derived (G,N, J) reads as follows:
• G is the set of original obje
ts,
• N =

⋃

m∈M ({m} × Cm) with Cm is the set of all 
lasses of similarity of attribute m,
• (g, (m,Cm)) ∈ J means that the value of obje
t g in the many valued 
ontext, i.e. m(g),belongs to 
lass Cm,For example, the derived binary 
ontext asso
iated with Table 1 is given in Table 3 where thethresholds are θ = 5 for m1 and θ = 4 for m2 and θ = 5 for m3. Figure 6 shows the resulting
on
ept latti
e.



60 Chapter 5. Introdu
ing a similarity relation between numeri
al values6 An information fusion problem in agronomyThe problem of information fusion is en
ountered in various �elds of appli
ation, e.g sensorfusion, merging multiple sour
es, et
. Information fusion 
onsists of merging several sour
es ofinformation for answering questions of interest and make proper de
isions [39℄. A

ordingly,a fusion operator is an operation summarizing information given by sour
es into a 
onsensualand representative information. In this se
tion, we introdu
e a real-world information fusionproblem in agronomy, 
on
erning pesti
ide appli
ation to �elds. Then, we show how this fusioninformation problem 
an be solved with a 
on
ept latti
e involving a toleran
e relation. Theoutput is an analysis and an evaluation of agri
ultural pra
ti
es w.r.t. pesti
ide appli
ation andsubsequent e
ologi
al problems.6.1 Problem settingsAgronomists 
ompute indi
ators for evaluating the impa
t of agri
ultural pra
ti
es on the envi-ronment. Questions su
h as the following are of importan
e: what are the 
onsequen
es of theappli
ation of a pesti
ide given the 
hara
teristi
 of this pesti
ide, the period of appli
ation, andthe 
hara
teristi
s of the �eld? The risk level for a pesti
ide to rea
h groundwater is 
omputedby the indi
ator Igro in [21℄. Based on the value of Igro, agronomists try to make a diagno-sis of agronomi
 know-how w.r.t. the use of pesti
ides. Pesti
ide 
hara
teristi
s depend on the
hemi
al 
hara
teristi
s of the produ
t while pesti
ide period appli
ation and �eld 
hara
teristi
sdepend on domain knowledge. This knowledge lies in information sour
es among whi
h books,databases, and expert knowledge in agronomy. Moreover, values for some 
hara
teristi
s mayvary w.r.t. information sour
es.Here, we are interested in the analysis of pra
ti
es through the use of glyphosate in di�erent
ountries w.r.t. farmers habits. Glyphosate is a widespread produ
t used by farmers in temperateareas, a
tually one of the mostly used herbi
ide in USA16. In 2006, IFEN, for Fren
h Institute forthe Environment, observed that glyphosate is the most en
ountered substan
e in Fren
h waters,possibly leading to long-term adverse e�e
ts in the aquati
 environment17.Below, three 
hara
teristi
s of glyphosate, namely DT50, koc, and ADI, are given in Table 4(simpli�ed data), a

ording to 12 di�erent information sour
es.
• DT50 represents �half-life� of the pesti
ide, i.e. time required for the pesti
ide 
on
entrationto de
rease of 50% under some 
onditions. Pesti
ides with DT50 value lower than 100 days
an be 
onsidered as having a weak impa
t on groundwater quality in general temperate
onditions.
• koc 
hara
teristi
 represents the mobility of the pesti
ide and depends on pesti
ide prop-erties and type of soil. Pesti
ides with high koc values typi
ally stay in upper level of soiland do not rea
h groundwater. By 
ontrast, pesti
ides with koc value less than 2200 havegood 
han
es to 
ontaminate groundwater.
• ADI (for �A

eptable daily intake�) represents toxi
ity for humans. Glyphosate is 
onsid-ered as having a low toxi
ity, i.e. no toxi
 e�e
ts were observed for doses of 400 mg/kg/daya

ording to spe
ialized studies. However, the values 0.3 and 0.05 are separated for expertreasons.16http://www.epa.gov/17http://www.ifen.fr/

http://www.epa.gov/
http://www.ifen.fr/
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teristi
s of pesti
ide glyphosate.
DT50 koc ADIday L/kg g/kg/dayBUS 47 24000 0.3PM10 [3,60℄ [25,68000℄ 0.3INRA [38,60℄ 167 0.05Dabene [38,60℄ 167 0.05ARSf [2,174℄ [500,2640℄ [0.05,0.3℄ARSl [2,174℄ [500,2640℄ [0.05,0.3℄Com96 [2,174℄ [25,68000℄ 0.3Com98 [38,60℄ [500,2640℄ 0.3RIVM [18,66℄ [3566,40420℄ [0.05,0.3℄BUK [3,60℄ [25,68000℄ 0.3AGXf [8,30℄ [301,59000℄ 0.3AGXl [14,111℄ [301,59000℄ 0.3In Table 4, information sour
es are not always in agreement. Then, it 
an be interesting forexperts in agronomy to analyse su
h a table from the point of view of information fusion: whi
hare the sour
es being in agreement and at whi
h level are they in agreement? This is done usinga 
on
ept latti
e involving a toleran
e relation as explained below.6.2 Method and �rst resultsNow, we apply one of the three methods presented in this 
hapter, i.e. FCAS, IPS or toleran
ebase s
aling, to build a 
on
ept latti
e from Table 4. Three thresholds are de�ned a

ording tothe above observations: θ = 100 for DT50, θ = 2200 for koc, and θ = 0 for ADI. Then, for ea
hattribute, 
lasses of similarity and the s
ale for ea
h attribute are 
omputed and 
an be read onthe latti
e in Figure 7.The latti
e shows an interesting 
lassi�
ation of information sour
es w.r.t. information fusion.Ea
h 
on
ept in the latti
e is 
omposed of an extent with a maximal set of sour
es in agreementw.r.t. the interval of values in the intent.The operator used for managing information fusion is 
onvex hull, 
ontrolled by a similarityparameter θ, i.e. for two similar intervals the lower bound is the minimum of the two lowerbounds and the upper bound is the maximum of the two upper bounds. Let us examine thelatti
e in detail. The highest 
on
ept in the latti
e, ⊤, has the intent with the larger intervals(sin
e ∗ is subsumed by any other interval): [2, 174] for DT50, [25, 68000] for koc, and [0.05, 0.3]for ADI. The higher a 
on
ept is in the latti
e, the more information sour
es in the extent agreeon the values to be veri�ed by the attributes. This 
ould be 
onsidered as the maximal agreementof all sour
es but this does not provide any pre
ise information (indeed, the 
al
ulation of Igro,whi
h 
annot be detailed here, does not allow any re
ommendation). Moreover, the 
on
epts inthe lower levels of the latti
e have more restri
ted intervals. Going further, we 
an observe thatthere are four des
endants of ⊤ that determine four main parts of the latti
e. On the left, thereare mainly Fren
h and UK information sour
es, namely AGXf, AGXl, PM10 (Fren
h), and BUKand BUS (UK), with 
om96 denoting an expert 
ommittee. In the middle of the latti
e, there aremainly Fren
h sour
es, namely RIVM, Dabene, and INRA. Finally, on the right, there are US
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ing a similarity relation between numeri
al valuesinformation sour
es, namely ARSl, ARSf, and the 
ommittee Com98. Interestingly, there is anagreement between European sour
es as English or Fren
h sour
es share some upper level valuessu
h as [3, 66] for DT50 or 0.3 for ADI. By 
ontrast, there is no agreement between Europeanand US sour
es ex
ept for the expert 
ommittee 
om98. This shows that pra
ti
es are a
tuallydi�erent and allowed values for pesti
ide 
hara
teristi
s are not the same w.r.t. the 
ountry.Among the possible explanations, it remains very di�
ult to harvest agronomi
 data (in 
ostand time) in every 
ountry. For example, the 
ir
umstan
es in whi
h these data are 
olle
ted arevery di�erent w.r.t. 
limate, soil type, measure devi
es, et
. In this sense, a

ording to expertsin agronomy, the latti
e on Figure 7 is a good witness (
on�rmation) of this diversity of pra
ti
esand of the agreement degree between sour
es as given by the lower level 
on
epts.

Figure 7: Con
ept latti
e raised from Table 47 Dis
ussionWe have presented three di�erent approa
hes for building a 
on
ept latti
e from numeri
al datainvolving a similarity relation between numeri
al attribute values. The �rst one (FCAS) de�nesa Galois 
onne
tion for that matter. The se
ond one (IPS) uses an existing framework (andGalois 
onne
tion) and shows that 
onsidering a similarity relation 
onsists in proje
ting theobje
t des
ription spa
e. Finally, a toleran
e based s
aling allows 
lassi
al FCA to be applied.These three methods are 
on
eptually equivalent [58℄. However, they all bring interesting 
luesor elements on the problem of designing 
on
ept latti
es from numeri
al data. FCAS bringsintuitions to 
onsider similarity and pairwise similarity of obje
ts by means of attribute sharing.IPS allows to 
onsider this similarity within an existing framework provided with e�
ient algo-rithms. Finally, the third approa
h establishes links between proje
tion of partially ordered setsand s
aling. Most importantly, it provides a semanti
 to 
on
epts: obje
ts in the extents sharethe same 
lasses of toleran
e des
ribed in the intent. As in the previous 
hapter, the most e�-
ient methods between IPS and s
aling depends on the data distribution, su
h as the number ofdi�erent values and their sparsity. Ea
h attribute has a di�erent range and di�erent similarities



7. Dis
ussion 63and thresholds θ have to be de�ned. However, data 
an be normalized (e.g. by subtra
ting themean, followed by dividing the standard deviation) and use a single threshold 
an be used for agiven 
ontext. The 
hoi
e of θ and a study of its variation e�e
t 
an be found in [86℄.The dis
ussion is now divided into several parts, ea
h one with a parti
ular topi
.Con
ept latti
es and similarity. Toleran
e relations in 
onne
tion with FCA were studiedin several papers [47, 12, 71℄. In [71℄, toleran
e relations are introdu
ed from an histori
alperspe
tive and their role in the formalization of similarity of do
uments is detailed. In thebasi
 referen
e [47℄, it is shown that starting from any 
omplete latti
e and a toleran
e relationbetween its elements (from any arbitrary set), there exists a formal 
ontext en
oding toleran
e(pre-)
lasses. In this work, the statement is used in the opposite way: starting from an arbitrarynumeri
al 
ontext, a toleran
e relation formalizes the similarity between numeri
al values and theresulting 
lasses of similarity are then reused for de�ning s
ales and a 
on
ept latti
e en
odingthe initial numeri
al 
ontext. Other important related work 
an be found in [12℄, where fuzzyformal 
on
ept analysis introdu
ed. A fuzzy 
ontext 
ontains truth values and both attributeand obje
t sets are 
onsidered as fuzzy sets. Then a fuzzy 
on
ept latti
e 
an be built in the sameway as this is done here by grouping pairwise similar obje
ts or attributes with a toleran
e-likerelation. However, the resear
h work in [12℄ is mu
h more oriented on the study of mathemati
alproperties of similarity within a 
on
ept latti
e, 
ontrasting our work on the embedding of
onstrained toleran
e relations in FCA for 
lassifying obje
ts with 
omplex numeri
al attributes.Dis
retization approa
hes. The s
aling pro
edure proposed in this 
hapter transforms quan-titative data into qualitative data. Following [130℄, this method is: unsupervised sin
e 
lassmembership of obje
ts is unknown ; parametri
 sin
e a similarity parameter θ has to be givenand relies on domain knowledge ; univariate as pro
essing ea
h attribute separately ; ordinalsin
e taking advantage of the impli
it ordering information in quantitative attributes ; and �-nally and most importantly, hierar
hi
al as it builds a partially ordered set (poset) of similarity
lasses. This poset is a
tually given by a 
on
ept latti
e from a formal 
ontext en
oding a tol-eran
e relation and by a proje
ted meet-semi-latti
e of obje
t des
riptions. This poset is �nallyused to raise a 
on
ept latti
e giving a 
on
eptual 
lassi�
ation of obje
ts of a domain. Thereby,it 
an be applied to any kind of stru
tured data for whi
h a similarity 
an be de�ned (sequen
es,graphs, et
.). Cluster-based dis
retization methods are 
lose to our s
aling (see [130℄). First,some 
lusters are sear
hed for, then their intents are used to de�ne intervals for the dis
retiza-tion pro
ess. In this 
hapter, we fo
used on showing how dis
retization 
an be automated and
ontrolled (with toleran
e relation), with di�erent approa
hes, while resulting 
on
ept latti
eskeep the same interpretation.Pro
essing symmetri
 
ontexts. There are many e�
ient algorithms for generating a 
on
eptlatti
e from a binary 
ontext [74℄. The e�
ien
y of these algorithms mainly depends on thedensity of the formal 
ontext (G,M, I), i.e. |I|/|G ×M |. In the 
ase of 
ontext materializing atoleran
e relation, 
omputational 
omplexity is related to the similarity and the range of ea
hattribute. These algorithms may also be used to obtain the partially ordered set of 
lasses ofsimilarity. We propose here two optimizations of FCA algorithms to pro
ess symmetri
 
ontexts.Re
all that 
omputing 
lasses of similarity for a given attribute 
an be done either with theupper part or the lower part of the 
orresponding latti
e. Then, a 
on
ept is not generatedif its dual 
on
ept has already been generated. Bottom-up (dually top-down) algorithms arewell adapted for this task: 
on
epts (A,B) are generated from bottom to top until the 
on
eptveri�es A = B, i.e. (A,B) belongs to the axis of polarity. Then, interesting 
on
epts are
omputed by standard FCA algorithms with a modi�ed ba
ktra
king 
ondition. This task 
an
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ing a similarity relation between numeri
al valuesbe also a
hieved using well-known and e�
ient 
losed itemset mining algorithms [131, 122℄. Ase
ond optimization relies on the fa
t that the setWm ⊂ R is totally ordered. For intervals, given
a, b, c, d ∈ R, we have [a, b] ≤ [c, d] when a ≤ c, and if a = b when b ≤ d. Then, similarity hasa monotony property: given v1 < v2 < v3, when v1 6≃θ v2 then v1 6≃θ v3. Intuitively, monotonymeans that the 
orresponding binary table 
ontains lines and 
olumns of 
onse
utive 
rosses, e.g.Figure 5 (left). Then, the s
an of a 
ontext by an FCA algorithm 
an be redu
ed a

ordingly.For example, Figure 8 shows how the performan
es of the bottom-up algorithm CloseByOne [74℄are modi�ed in this 
ase (random data with θ = 20 are used here, but other θ give same result).Proje
ting and pro
essing a pattern stru
ture. Pro
essing interval pattern stru
tures withadaptation of 
lassi
al algorithms of FCA [74℄ has been detailed in the previous 
hapter. Weshowed the s
alability of 
on
ept latti
e design from large data, e.g. with thousands obje
ts anddozens attributes. The proje
tion 
omputation is related to the maximal 
lique problem in graphtheory, known to be a hard problem. However, sin
e we are dealing with numeri
al data, andthat attribute values 
an be totally ordered (see above), the proje
tion algorithm is simple: it
onsists in, for ea
h data value, (i) looking for similar elements from a totally ordered set and (ii)testing ea
h pair of the resulting set to keep the maximal set of pairwise similar values. Finally,pattern stru
tures are easier to pro
ess when proje
ted, as shown in [46℄ for graph patterns,while preserving subsumption relations.Con
ept latti
es and information fusion. Several fusion operators were proposed for 
om-bining un
ertain information [35, 39℄. Generally, the fusion operator is applied on all informationsour
es, i.e. 
onsidering all sour
es simultaneously, and for one parti
ular variable or attributeat a time, see e.g. [35℄. However, this leads to some problems, sin
e when sour
es are 
on�i
ting,the fusion result if generally not useful. Consider now the 
onvexi�
ation 
ontrolled by θ as afusion operator, i.e. the operator ⊓θ. Our method a

ordingly 
onsiders maximal subsets ofsour
es with their fusion results and organizes them in a 
on
ept latti
e. The 
on
ept latti
eallows to identify whi
h maximal subsets of obje
ts support the most similar results. This opensfurther resear
h for the use of 
on
ept latti
es in information fusion. A
tually, the next 
hapterproposes a deeper investigation.

Figure 8: Runtime of modi�ed CloseByOne for 
omputing symmetri
 
ontexts



Chapter 6Enhan
ing information fusion with
on
ept latti
esThe main problem addressed in this 
hapter is the merging of numeri
al information providedby several sour
es (databases, experts...). Merging pie
es of information into an interpretableand useful format is a tri
ky task even when an information fusion method is 
hosen. Fusionresults may not be in suitable form for being used in de
ision analysis. This is generally dueto the fa
t that information sour
es are heterogeneous and provide in
onsistent information,whi
h may lead to impre
ise results. We propose the use of Formal Con
ept Analysis and morespe
i�
ally pattern stru
tures for organizing the results of fusion methods. This allows us toasso
iate any subset of sour
es with its information fusion result. Then on
e a fusion operatoris 
hosen, a 
on
ept latti
e is built. With examples throughout this 
hapter, we show that
on
ept latti
es give an interesting 
lassi�
ation of fusion results. When the fusion global resultis too impre
ise, the method enables the users to identify what maximal subset of sour
es wouldsupport a more pre
ise and useful result. Instead of providing a unique fusion result, the methodyields a stru
tured view of partial results labelled by subsets of sour
es. Finally, an experimenton a real-world appli
ation has been 
arried out for de
ision aid in agri
ultural pra
ti
es.1 Introdu
tionThe problem of information fusion is en
ountered in various �elds of appli
ation, e.g sensor fusion,multiple sour
e interrogation systems. Information fusion 
onsists of merging, or exploiting
onjointly, several sour
es of information for answering questions of interest and make properde
isions [19℄. A fusion operator is an operation summarizing all information given by sour
esinto an interpretable information, for example the interval interse
tion for numeri
al information.The Table 1 gives an example of information given by sour
es: ea
h obje
t, or sour
e, in linegives a value for an attribute or variable in 
olumn. This value intuitively represents the pointof view of the sour
e on the quanti�
ation of a phenomena, or observation.Several fusion operators have been proposed for 
ombining un
ertain information [38, 37,39, 14, 31, 99℄ and no universal method is available [38℄. Dubois and Prade [38℄ overviewedhow fuzzy set theory 
an address the information fusion problem and proposed several fusionoperators for numeri
al information. More re
ently, a fusion operator based on the notion ofMaximal Consistent Subset (MCS) has been proposed for �nding a global point of view when nometa-knowledge is available about sour
es (reliability, 
on�i
t) [36, 35℄. These works apply thefusion operator on the set of all sour
es and provide the resulting information. Other approa
hes65
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ing information fusion with 
on
ept latti
es
m1 m2

g1 [1, 5] [1, 9]
g2 [2, 3] [1, 3]
g3 [4, 7] [6, 7]
g4 [6, 10] [8, 9]Table 1: Information dataset given by sour
esde�ne their proper fusion operator in a latti
e stru
ture to 
ombine symboli
 information [31, 99℄.In this work, we use FCA to study all subsets of sour
es and their information fusion results.The main ability of FCA is to produ
e formal 
on
epts 
orresponding to maximal sets of sour
esasso
iated with a same fused information. Therefore, one has not to study the 2n possible subsetsof sour
es, but only the 
losed sets of sour
es that are 
on
ept extents. The 
on
epts are orderedand form a stru
ture 
alled 
on
ept latti
e. We show that this latti
e 
ontains the informationfusion result 
onsidering all sour
es proposed by [38, 36, 35℄. Moreover, the latti
e is meaningfulfor organizing information fusion results of di�erent subsets of sour
es and allows more �exibilityfor the user. Moreover, the latti
e keeps a tra
k of the origin of the information su
h as presentedin [37℄ for the fusion of symboli
 information.This work 
an be used in many appli
ations where it is ne
essary to �nd a suitable value sum-marizing several values 
oming from multiple sour
es. Here, we use an experiment in agronomyfor de
ision helping in agri
ultural pra
ti
es.2 Fusion operatorsA

ording to previous works, there are three kinds of behaviours for the fusion operators: 
on-jun
tive, disjun
tive and trade-o� operators [19, 38, 39℄.Before introdu
ing these operators, we introdu
e the following notations: n is the numberof sour
es. Im is the set of all values given for the variable m. fm denotes a fusion operatorreturning the fusion result for variable m.2.1 Basi
 operatorsThe 
onjun
tive operator is the 
ounterpart to a set interse
tion. The impre
ision and theun
ertainty in the information asso
iated with the result of a 
onjun
tion is less than theimpre
ision or the un
ertainty of ea
h sour
e alone. A 
onjun
tive operator makes the as-sumption that all the sour
es are reliable, and usually results in a pre
ise information. Ifthere is some 
on�i
t in the information (i.e. at least one sour
e is wrong), then the resultof the 
onjun
tion 
an be empty. The 
onjun
tive operator for a variable m is de�ned by

fm(Im) =
⋂

i=1,...,n Ii, e.g., in Table 1, fm1
(I1, . . . , I4) = ∅ represents the interse
tion of intervalsof m1 with I1 = [1, 5], I2 = [2, 3], I3 = [4, 7] and I4 = [6, 10].The disjun
tive operator is the 
ounterpart to a set union. The un
ertainty (or the impre
i-sion) resulting from a disjun
tion is higher than the un
ertainty (or the impre
ision) of all sour
estogether. A disjun
tive operator makes the assumption that at least one sour
e is reliable. Theresult of a disjun
tive operator 
an be 
onsidered as reliable, but is also often (too) weakly in-formative. The disjun
tive operator for the variable m, is de�ned by fm(Im) =

⋃

i=1,...,n Ii, e.g., fm1
(I1, . . . , I4) = [1, 10] that represents the union of the intervals of m1.The trade-o� operators lie between 
onjun
tive and disjun
tive behaviors, and are typi
ally
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Figure 1: MCS 
omputed from Table 1 for the variable m1.used when sour
es are partly 
on�i
ting. They try to a
hieve a good balan
e between informa-tiveness and reliability [38℄. The fusion based on MCS is an example of trade-o� operators.2.2 Maximal 
onsistent subset fusion methodWhen no information is available about sour
es, like 
on�i
t between sour
es, or reliability ofsour
es, a reasonable fusion method should take into a

ount the information provided by allsour
es. At the same time, it should try to keep a maximum of informativeness. The notion ofMCS is a natural way to a
hieve these two goals.The idea of MCS goes ba
k to Res
her and Manor [106℄. This notion is 
urrently used inthe fusion of logi
al formulas [14℄ but also of numeri
al data [36, 35℄. Given a set of n intervals

I = {I1, I2, . . . , In}, a subset K ⊆ I is 
onsistent if ⋂|K|
i=1 Ki 6= ∅ with Ki ∈ K and maximal if itdoes not exist a proper super-set K′ ⊇ K that is also 
onsistent. In Table 1, the set K1 = {I1, I2}is a MCS of the set Im1

, sin
e I1 ∩ I2 6= ∅ and is maximal w.r.t. interse
tion property.The fusion operator of n sour
es based on MCS 
onsists in applying a disjun
tive operatoron their MCS. Nevertheless, there exists 
ases where �nding MCS is easy, espe
ially when setsare intervals in R. Ii = [ai, bi], (i = 1, . . . , n). The algorithm is based on an in
reasing sorting ofthe lower and upper bounds of intervals into a sequen
e (cj)j=1,...,2n. Ea
h time, an element cjof type b (i.e. an upper bound of an interval in Ii) and an element cj+1 of type a (i.e. a lowerbound of an interval in Ii) meet, then a maximal 
onsistent subset is obtained. For example, inTable 1, the MCS for the variable m1 of the set {I1, I2, I3, I4} are I1 ∩ I2 = [2, 3], I1 ∩ I3 = [4, 5]and I3 ∩ I4 = [6, 7] when I1 = [1, 5], I2 = [2, 3], I3 = [4, 7] and I4 = [6, 7] (see Figure 1).For example, the MCS fusion result for m1 in Table 1 is fm1
(I1, . . . , I4) = [2, 3]∪ [4, 5]∪ [6, 7],as illustrated in Figure 1. The MCS notion appears as a natural way to 
on
iliate the twoobje
tives of gaining information and of remaining in agreement with all sour
es in informationfusion problem. Generally, �nding MCS is a problem having exponential 
omplexity [82℄. Duboiset al. [36℄ introdu
e a linear algorithm to 
ompute the MCS of n intervals.2.3 Properties of fusion operatorsGenerally, all fusion operators are 
ommutative and idempotent. The 
onjun
tive and disjun
tiveoperators are asso
iative but not the trade-o� fusion operators (more details in [35℄). If the �nalresult of the fusion is not 
onvex, it is always possible to take its 
onvex hull (loosing someinformation in the pro
ess but gaining 
omputational tra
tability). Conjun
tive fusion result is
onvex but this is not the 
ase for the others operators in general.



68 Chapter 6. Enhan
ing information fusion with 
on
ept latti
es3 Organization fusion results within a 
on
ept latti
eFor merging numeri
al information, a 
ommon fusion operator has to be used. This is spe
iallyimportant in 
ase of heterogeneous sour
es. Fusion operators are often based on assumptions oron meta-knowledge available about the sour
es (reliability, 
on�i
t) and the domain. Sometimes,it happens that the fusion result is not dire
tly useful for de
ision. For example, in [4℄ the fusedinformation must be 
onvex for being used in a further de
ision pro
ess, and the 
onvexi�
ationof MCS leads to an impre
ise result. Here, we propose to identify and 
hara
terize interestingsubsets of sour
es, providing more useful fused information. A

ordingly, we show how a fusionoperator 
an be embedded in the framework of Formal Con
ept Analysis (FCA) to build a
on
ept latti
e yielding a stru
tured view of partial results labelled by subsets of sour
es, insteadof providing a unique fusion result. As fa
ing here 
omplex data (pre
isely numeri
al data),we use the formalism of pattern stru
tures. It requires to de�ne a meet operator on obje
tdes
riptions, indu
ing their partial order. We dis
uss how a fusion operator 
an be seen as ameet operator. First, we de�ne the notion of information fusion spa
e.De�nition 6.3.1 (Information fusion spa
e) An information fusion spa
e Dm is 
omposedof the information available for a variable m and all their possible fusion results, w.r.t a fusionoperator fm.For example, with the variable m1 in Table 1 and fm as the interval interse
tion, Dm =
{[1, 5], [4, 7], [6, 10], [2, 3], [4, 5], [6, 7], ∅}.3.1 A fusion operator in a pattern stru
tureLet us 
onsider a single variable m ∈ M , its fusion spa
e Dm 
orresponding to a 
hosen fusionoperator fm. When fm is idempotent, 
ommutative and asso
iative, (Dm, fm) is a meet-semi-latti
e, sin
e fm behaves as a meet operator. This is the 
ase for any 
onjun
tive or disjun
tivefusion operator, and we have c⊓d = fm(c, d),∀c, d ∈ Dm, meaning that the meet of two elementsof Dm 
orresponds to their fusion.

Figure 2: A meet-semi-latti
e of intervalsFor example, let us 
onsider the numeri
al variable m1 in Table 1, and the 
onjun
tivefusion operator fm1
that 
orresponds to the interval interse
tion ∩. Figure 2 shows the meet-semi-latti
e (Dm1

, fm1
). The interval labelling a node is the meet of all intervals labelling itsas
ending nodes, i.e. the resulting information fusion w.r.t fm1

of the sour
es given the intervalslabelling its as
ending nodes. In the example, fm1
([4, 7], [6, 10]) = [6, 7] is the fusion of obje
ts

g3 and g4 for the variable m1, and fm1
([2, 3], [1, 5]) = [2, 3] for obje
ts g1 and g2. Therefore, wehave partially ordered the fusion spa
e Dm1

with c ∩ d = c ⇔ c ⊆ d,∀c, d ∈ Dm1
. This order
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on
ept latti
e 69is a parti
ular instan
e of the pattern subsumption relation de�ned in pattern stru
tures. Itmeans, in this example, that an interval is subsumed by any larger one, e.g. [2, 3] ⊑ [1, 5] sin
e
[2, 3] ⊆ [1, 5]. For example, we have [2, 3] ⊓ [1, 5] = [2, 3]⇔ [2, 3] ⊑ [1, 5] in terms of semi-latti
e,
orresponding to [2, 3] ∩ [1, 5] = [2, 3] ⇔ [2, 3] ⊆ [1, 5] in interval in
lusion terms. Note that adisjun
tive fusion operator is handled similarly.3.2 Building and interpreting the 
on
ept latti
eGiven G a set of sour
es, m ∈ M a single variable, (Dm, fm) the meet-semi-latti
e of fusionresults, and δ a mapping that gives to any obje
t its information for the variable m, then
(G, (Dm, fm), δ) is a pattern stru
ture. On the example, we have (G, (Dm1

, fm1
), δ). (Dm1

, fm1
)is des
ribed in the previous subse
tion. Des
riptions of sour
es g1 and g2 are respe
tively δ(g1) =

[1, 5] and δ(g2) = [2, 3]. Then, the general Galois 
onne
tion 
an be used to 
ompute and order
on
epts:
{g1, g2}

� = [1, 5] ⊓ [2, 3] [2, 3]� = {g ∈ G | [2, 3] ⊑ δ(g)}
= fm1

([1, 5], [2, 3]) = {g ∈ G | [2, 3] ⊆ δ(g)}
= [2, 3] = {g1, g2}.Sin
e {g1, g2} = [2, 3] and [2, 3]� = {g1, g2}, the pair ({g1, g2}, [2, 3]) is a 
on
ept. E�
ient FCAalgorithms 
an extra
t the set of all formal 
on
epts and order them within a 
on
ept latti
e [74℄.They 
an be easily adapted to 
ompute in pattern stru
tures [46, 59℄. The latti
e of our exampleis given in Figure 3.A 
on
ept (A, d) of (G, (Dm1

, fm1
), δ), is interesting from many points of view, as illustratedwith the 
on
ept ({g1, g2}, [2, 3]).

• Its intent d provides the fusion resulting from obje
ts in A, e.g. [2, 3] is the 
onjun
tivefusion fm1
of the information from sour
es g1 and g2.

• No other obje
t 
an be added to A without 
hanging d, e.g. {g1, g2} is the maximal set ofsour
es whose 
onjun
tive information fusion is [2, 3].
• The extent A keeps the tra
k of the origin of the information, e.g. it is known that thenew information [2, 3] 
omes from the information of g1 and g2.

Figure 3: A 
on
ept latti
e raised from Table 1 for the variable m1.



70 Chapter 6. Enhan
ing information fusion with 
on
ept latti
esThe resulting 
on
ept latti
e provides a suitable 
lassi�
ation of information sour
es andtheir information fusion results. In Figure 3, a 
on
ept extent is read with redu
ed labelling.However, for sake of readability, intents are given for ea
h 
on
ept (not redu
ed). For example,the node labelled with [6, 7] represents the 
on
ept ({g3, g4}, [6, 7]). Due to 
on
ept ordering,a 
on
ept provides the fusion result of a subset of the extent of its super-
on
epts (generaliza-tion/spe
ialization). Then, the navigation in the latti
e gives interesting insights into the fusionresults. This allows more �exibility for de
ision making. For example, in related works, only thefusion of information of all obje
ts is 
onsidered whi
h 
orresponds to the most general 
on
ept(⊤) in the latti
e. This result does not always allow to make a de
ision, e.g. an empty interse
-tion in our example. Then it is interesting to observe subsets of obje
ts, by navigating in thelatti
e.3.3 A parti
ular 
ase with a non asso
iative fusion operatorThe fusion operator fm based on the notion of MCS is idempotent and 
ommutative, but notasso
iative. For example in Table 1,
fm1

(fm1
([1, 5], [2, 3]), [4, 7]) = [2, 3] ∪ [4, 7]and

fm1
(fm1

([1, 5], [4, 7]), [2, 3]) = [2, 3] ∪ [4, 5].Then, the fusion operator 
annot be dire
tly used as a meet operator to build a 
on
ept latti
e.However, sin
e this operator returns the union of all MCS, we 
an �rstly 
ompute all MCSfor a given variable, denoted by the set K and then use the disjun
tive operator on the MCS asa meet operator to de�ne a meet-semi-latti
e (K,∪). Formally, we 
onsider (O, (K,∪), δ) as apattern stru
ture where O is a multi-set of sour
es, ea
h element is set of sour
es of one MCS
K ∈ K, i.e. δ(o) ∈ K,∀o ∈ O. For example, the MCS of intervals for m1 are [2, 3], [4, 5] and [6, 7]given respe
tively by {g1, g2}, {g1, g3} and {g3, g4}. Then, O represents the multi-set {{g1, g2},
{g1, g3}, {g3, g4}} with δ({g1, g2}) = [2, 3] (meaning that the interval of values [2, 3] is relatedto the sour
es g1 and g2), δ({g1, g3}) = [4, 5] and δ({g3, g4}) = [6, 7]. Then, we use an intervalunion as a meet operator. The resulting 
on
ept latti
e is given in Figure 4.

Figure 4: Con
ept latti
e with MCS
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on
ept latti
e 71A 
on
ept extent is read with redu
ed labelling. A 
on
ept intent is given here for ea
h 
on-
ept. For example, in Figure 4, the right 
on
ept in the se
ond line is ({{g1, g2}, {g1, g3}}, [2, 3]∪
[4, 5]) giving the values of m1 w.r.t. the sour
es {g1, g2} and {g1, g3}. Moreover, these valuesrepresent the MCS fusion result of the subset {g1, g2, g3}. The 
on
ept ⊤ 
orresponds to theunion of all MCS that is the MCS fusion result of all sour
es.The method used here to obtain the latti
e based on MCS does not 
onsider all subsets ofobje
ts with their MCS fusion results. This is due to the non-asso
iativity of the MCS fusionoperator. Thus, the 
on
ept latti
e does not 
ontain all subsets of G with their MCS fusionresults sin
e the interval union is used on the MCS of data and not dire
tly on the data givenby sour
es. Nevertheless, the 
on
ept latti
e helps us to keep the origin of the information andgives more �exibility for the users in the 
hoi
e of a maximal 
onsistent subset of sour
es in manyappli
ation �elds.3.4 Handling several variables simultaneouslySour
es 
an provide values for di�erent variables. For example, Table 1 involves obje
ts des
ribedby ve
tors of intervals, where ea
h dimension, i.e. 
olumn, 
orresponds to a unique variable, e.g.the des
ription of the obje
t g1 is denoted by δ(g1) = 〈[1, 5], [1, 9]〉. It 
an be interesting to
ompute the fusion information for all variables simultaneously.To formalize a pattern stru
ture in this 
ase, one de�nes a meet operator, i.e. fusion operatorin our settings, for ea
h dimension, or variable. Assuming that there is a 
anoni
al order on ve
tordimensions, the meet of two ve
tors is de�ned as the meet on ea
h dimension. This indu
es apartial order of obje
t des
riptions [59℄. Thus, we 
onsider the pattern stru
ture (G, (D,⊓), δ),where G is a set of sour
es, (D,⊓) is a meet-semi-latti
e of ve
tors, and ea
h ve
tor dimensionis provided with the fusion operator fm 
orresponding to the variable m.Going ba
k to Table 1, des
riptions of obje
ts g1 and g2 are respe
tively the ve
tors 〈[1, 5], [1, 9]〉and 〈[2, 3], [1, 3]〉. When the fusion operator for both dimension is the interval interse
tion, themeet of these two ve
tors is 〈[1, 5], [1, 9]〉⊓〈[2, 3], [1, 3]〉 = 〈[2, 3], [1, 3]〉. The subsumption relationfor ve
tors is de�ned similarly: 〈[2, 3], [1, 3]〉 ⊑ 〈[1, 5], [1, 9]〉 as [2, 3] ⊆ [1, 5] and [1, 3] ⊆ [1, 9].Then, the general Galois 
onne
tion 
an be used to 
ompute and order 
on
epts:
{g1, g2}

� = 〈[1, 5], [1, 9]〉 ⊓ 〈[2, 3], [1, 3]〉 〈[2, 3], [1, 3]〉� = {g|〈[2, 3], [1, 3]〉 ⊑ δ(g)}
= 〈[2, 3], [1, 3]〉 = {g1, g2}In this way, a 
on
ept represents a set of sour
es and their fusion w.r.t. all variables, su
h as noother sour
e 
an be added without 
hanging the fusion result for any variable. The variables 
anbe either symboli
 or numeri
al sin
e a fusion operator is 
hosen for ea
h variable.When the fusion operator is based on MCS, we follow the pre-pro
essing introdu
ed abovefor ea
h variable (see Se
tion 6.3.3). Then, we 
onsider the set of all MCS for all variables.Thus, we 
onsider the pattern stru
ture (O, (K,⊓), δ), where O is the set of subsets of sour
esproviding the MCS for all variables, (K,⊓) is a meet-semi-latti
e of ve
tors. Ea
h subset in Ois des
ribed for ea
h dimension by a maximal interval of values if the subset represents a MCSfor the 
orresponding dimension, otherwise the dimension des
ription is empty. In the example,re
alling that an obje
t denotes a set of sour
es giving a MCS, the des
ription of the obje
t

{g1, g2} is δ({g1, g2}) = 〈[2, 3], [1, 3]〉 where [2, 3] and [1, 3] are respe
tively a MCS for m1 and
m2. By 
ontrast, the des
ription of the obje
t {g3, g4} is δ({g3, g4}) = 〈[6, 7], ∅〉 sin
e the subset
{g3, g4} does not represent a MCS for the variable m2.



72 Chapter 6. Enhan
ing information fusion with 
on
ept latti
es4 Appli
ationIn this se
tion, we show the usefulness of our framework on fusion operators on real-world data.We �rst re
all the problem of indi
ator 
omputation presented in the last 
hapter.4.1 Data and problem settingsAgronomists 
ompute indi
ators for evaluating the impa
t of agri
ultural pra
ti
es on the envi-ronment. Questions su
h as the following are of importan
e: what are the 
onsequen
es of theappli
ation of a pesti
ide given its 
hara
teristi
, the period of appli
ation, and the 
hara
teris-ti
s of the �eld? The risk level for a pesti
ide to rea
h groundwater is 
omputed by the indi
ator
Igro in [127℄. Agronomists try to make a diagnosis w.r.t. the value of Igro. A value below 7indi
ates that the farmer has to 
hange its pra
ti
es (pesti
ide, soil, date, et
.). By 
ontrast, avalue above 7 indi
ates that the pra
ti
es of the farmer are environmental friendly [21℄. Pesti-
ide 
hara
teristi
s depend on the 
hemi
al 
hara
teristi
s of the produ
t while pesti
ide periodappli
ation and �eld 
hara
teristi
s depend on domain knowledge [21℄. This knowledge lies ininformation sour
es among whi
h books, databases, and expert knowledge in agronomy. Thenvalues for some 
hara
teristi
s vary w.r.t. sour
es.DT50 ko
day L/kgBUS [2,74℄ ?PM11 [15,72℄ ?PM12 ? [44,940℄PM13 ? [44,940℄INRA ? [1.08,8.98℄Com98 [2,6℄ [17,160℄AGXf [2,6℄ [1.08,160℄AGXl [15,74℄ [1.08,160℄Table 2: Chara
teristi
s of Sul
otrioneHere, we are interested in the use of pesti
ide sul
otrione and its in�uen
e on the groundwater.Sul
otrione is a herbi
ide marketed sin
e 1993. It is used to 
ontrol a wide range of grasses weedsin maize 
rops. Sul
otrione is generally weakly absorbed by soils [9℄. Three 
hara
teristi
s ofSul
otrione are needed to 
ompute the indi
ator Igro, namely DT50, koc, and ADI (more detailson these 
hara
teristi
s 
an be found in [127℄, and are not 
ru
ial for the understanding of this
hapter). Table 2 (simpli�ed data) gives the values of the 
hara
teristi
s DT50 and koc a

ordingto 9 di�erent information sour
es. The symbol �?� represents the 
ase when the informationsour
e does not give data for the 
hara
teristi
. The value of ADI for the sul
otrione is 0.00005.Agronomists look to �nd a suitable value for ea
h 
hara
teristi
 to be 
onsidered for 
omputingthe Igro indi
ator, hen
e fa
ing an information fusion problem.4.2 MethodTo 
ombine the di�erent pie
es of information, a 
ommon fusion operator has to be de�ned. Inthis appli
ation, (1) the sour
es are heterogeneous (2) no a priori knowledge about sour
es and
hara
teristi
s is available. Therefore, an appropriate fusion operator is the MCS fusion operator.The MCS for the variable DT50 are K1 and K2, resp. K3 and K4 for koc (see Table 3). Table 4
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ation 73
K1 {BUS,Com98, AGXf}
K2 {BUS,PM11, AGXl}
K3 {INRA,Com98, AGXf,AGXl}
K4 {PM12, PM13, Com98, AGXf,AGXl}Table 3: Label of all MCSDT50 (days) ko
 (L/kg)

K1 [2,6℄ ∅
K2 [15,72℄ ∅
K3 ∅ [1.08,8.98℄
K4 ∅ [44,160℄Table 4: Table 2 pre-pro
essedresults from the pre-pro
essing of Table 2, detailed in Se
tion 6.3.3. The resulting 
on
ept latti
eis given in Figure 5 with 16 
on
epts. A 
on
ept extent is read with redu
ed labelling. A 
on
eptintent is not given in ve
torial form for sake of readability: it is read from the intents of sub-
on
epts, for example, the intent of the 
on
ept C1 is {(DT50, [15, 72]), (koc, [44, 160])}. But, iftwo sub-
on
epts intents give di�erent values for a same attribute, then the union of values is
onsidered. For example, the intent of the 
on
ept C2 is {(DT50, [2, 6]∪ [15, 72]), (koc, [44, 160])}and its sub-
on
epts intents are {(DT50, [2, 6])}, {(DT50, [15, 72])} and {(koc, [44, 160])}. More-over, ea
h 
on
ept intent in the latti
e represents the MCS fusion result of the subset of sour
es inthe extent. The highest 
on
ept in the latti
e 
orresponds to the MCS fusion result of all sour
esfor all 
hara
teristi
s. For example, the �most right-down� 
on
ept is ({K1}, {(DT50, [2, 6])})where [2, 6] is the MCS fusion result of the subset K1 = {BUS,Com98, AGXf} and its �mostright� super-
on
ept is ({K1,K2}, {(DT50, [2, 6] ∪ [15, 72])} where [2, 6] ∪ [15, 72] is the fusionresult of the set K1 ∪K2 = {BUS,PM11, AGXl,Com98, AGXf}.4.3 Results and dis
ussionThe 
omputing of a lower and higher bound for the indi
ator and the 
onsequen
es of the resultson agronomi
 pra
ti
es and pollution are detailed and dis
ussed in [4℄, but will not be detailedhere as this is not ne
essary. It is required to 
onsider the 
onvex hull of the fusion result for
omputing the indi
ator. The 
on
ept latti
e allows the users of Igro and experts to give severaldiagnosis for the farmer. For example, let us 
onsider the 
on
ept ⊤ that represents the fusion

Figure 5: Con
ept latti
e built from Table 4
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ing information fusion with 
on
ept latti
esresult of all sour
es for all 
hara
teristi
s. Then, DT50 and koc lie respe
tively in [2, 72] and
[1.08, 160]. With these values, the 
omputed value for Igro is [4, 10]. This interval is not usefulsin
e all values in [4, 10] are neither smaller than 7 nor greater than 7 and the expert 
annotmake a de
ision on the pra
ti
es of the farmer.Now the indi
ator Igro 
an be also 
omputed 
hoosing either intervals of values in higher orlower level 
on
epts. For instan
e, if we 
onsider the values of DT50 in [2, 6], koc in [44, 160]then we obtain the interval [9.97, 10] for Igro and the pra
ti
es of the farmer are environmentalfriendly sin
e the Igro value is greater than 7 (see the green 
on
ept on Figure 5). However, if
DT50 = [15, 72] and koc = [1.08, 8.98], the resulting interval for Igro is [4.32, 4.32] indi
atingthat the farmer must 
hange its pra
ti
es sin
e values of Igro are smaller than 7 (see the red
on
ept in Figure 5). All other 
on
epts either do not allow indi
ator 
omputation (sin
e havingonly one variable in their intent) or do not allow a de
ision, i.e. the indi
ator returns a valueneither greater or smaller than 7.Therefore, the two 
on
epts (green and red) give pre
ise results of Igro, whi
h its not the 
aseof the Top 
on
ept, as usually used in the literature [4℄. The 
on
ept latti
e allows to identifywhat maximal subsets of sour
es support the most interesting results. It allows to 
hara
terizethe �
ommunity of sour
es� in the dataset that are in agreement w.r.t. a 
ommon de
ision. The�nal de
ision stating that the agri
ultural pra
ti
e is risky or not for the environment remains tothe expert in agronomy. His 
hoi
e is made easier, sin
e he 
an study only the two 
ommunities(from the green and red 
on
ept extents) and use his own knowledge for the �nal de
ision.5 Con
lusionThis 
hapters 
laimed that Formal Con
ept Analysis has the 
apability of supporting a de
i-sion making pro
ess in the presen
e of information fusion problems, even when information are
omplex, e.g. patterns of numbers, thanks to the formalism of pattern stru
tures. A real-worldexperiment in agronomy shows that when a fusion result does not allow to make a de
ision,the 
on
ept latti
e helps the expert by 
onsidering an ordered hierar
hy of 
on
epts, given thefusion from di�erent maximal sets of sour
es. Some fusion operators 
an dire
tly be used tobuild a 
on
ept latti
e, e.g. 
onjun
tive and disjun
tive operators. To deal with the operatorbased on maximal 
oherent subsets (MCS), we proposed to transform the data sin
e MCS is notan asso
iative operator, and the resulting 
on
ept latti
e entails fusion results of interest. Weargue that the 
on
ept latti
e enhan
es the expert de
ision sin
e he 
annot (i) either 
onsider allsour
es simultaneously, (i) or 
hoosing a parti
ular sour
e for ea
h variable, or (iii) study all the
2n subsets of sour
es. Moreover, the whole pro
ess is automati
, i.e. it does not require humanintera
tion before �nal de
ision.We have 
onsidered the 
ase when information are represented by fuzzy intervals and pos-sibility distributions in [6℄, but do not detail this work in the present thesis (details 
an alsobe found in [3℄). As a perspe
tive, it is interesting to study how other fusion operators 
an beembedded in a 
on
ept latti
e, as well as meta-information on sour
es (when available).This work should be extended with Relational Con
ept Analysis (RCA) [51℄. This extensionof FCA to relational binary data allows to 
onsider binary relations between sour
es for thelatti
e 
onstru
tion, e.g. the relation �works with� when sour
es are domain experts. This leadsto the perspe
tive of adapting RCA for pattern stru
tures.Another perspe
tive 
an be expressed as follows. The 
on
ept latti
e helps to sele
t maximalsubsets of sour
es that agree on a de
ision. Then, on
e these subsets are found, the expert has to
hoose whi
h 
ommunity he trusts to make his �nal de
ision. Now 
onsider that statement in an



5. Con
lusion 75opposite way: the expert wants to take a parti
ular de
ision and needs other sour
es to supporthim. The latti
e helps him to the �nd the appropriate 
ommunity, for ea
h di�erent variable.This is relevant in di�erent domains, su
h as politi
, e
onomi
s or even so
ial networks. Indeed,the 
ommunity is not de�ned on the properties or attributes values the members share, but ona resulting indi
ator 
omputed from these properties or values.
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ing information fusion with 
on
ept latti
es



Chapter 7A study on 
losed interval patterns andtheir generatorsThis 
hapter is a deeper investigation of Chapter 4. The aim is to properly de�ne, 
hara
ter-ize and extra
t with e�
ient algorithms frequent 
losed interval patterns and their generators.Indeed, pattern stru
tures 
an be e�
iently used to 
hara
terize and extra
t those patterns.We design and experiment two original and e�
ient algorithms for extra
ting frequent 
losedpatterns and their generators in numeri
al data. We 
on
lude showing the usefulness of su
hpatterns, e.g. in 
lassi�
ation problems and priva
y preserving data-mining.1 MotivationsIn Chapter 4, we showed, in the 
ontext of gene expression data mining, how to introdu
epattern stru
tures for numeri
al data, and how to extra
t 
losed interval patterns. Intuitively,an interval pattern is a ve
tor of intervals, ea
h dimension 
orresponding to a range of values ofa given attribute. An interval pattern d is 
losed if no interval pattern e exists with same image(d� = e�) and smaller intervals (d ⊑ e). Sin
e (.)�� is a 
losure operator, it should exist so
alled 
lasses of equivalen
e of interval patterns (with same image), ea
h 
lass having a maximalelement (
losed) and one or more minimal elements (generators), w.r.t. a subsumption relation
⊑ de�ned on patterns.A

ordingly, we propose in this 
hapter to de�ne, 
hara
terize and extra
t with e�
ientalgorithms frequent 
losed interval patterns and their generators. After formalizing the problemfrom an itemset-mining point of view, we provide a semanti
 to interval patterns in the Eu
lideanspa
e. This will help to properly de�ne the notion of 
losed patterns and their generators. After,we argue that extra
ting generators from interordinal s
aled 
ontexts is still possible, but as for
losed patterns, it is not e�
ient at all. Therefore, we introdu
e and experiment two algorithmsfor extra
ting these patterns dire
tly from numeri
al data and show their e�
ien
y. Finally, adis
ussion ends the 
hapter and highlights several perspe
tives and usages of su
h patterns.Stated in this way, the problem of itemset-like pattern patterns in numeri
al data is usu-ally referred as quantitative itemset/asso
iation rule mining [116℄. Generally, an appropriatedis
retization splits attribute ranges into intervals maximizing some interest fun
tions, e.g. sup-port, 
on�den
e. However, none of these works dis
usses the notion of equivalen
e 
lasses, 
losedpatterns, and generators, and this is one of the originality of this work.77



78 Chapter 7. A study on 
losed interval patterns and their generators2 Problem de�nitionWe propose a de�nition of interval patterns for numeri
al data following ideas of Chapter 4.Intuitively, ea
h obje
t of a numeri
al dataset is a ve
tor of numbers, where ea
h dimension
orresponds to an attribute. A

ordingly, an interval pattern is a ve
tor of intervals, where ea
hdimension des
ribes the range of possible values for a given numeri
al attributes asso
iated withsome obje
ts. We only 
onsider �nite intervals.De�nition 7.2.1 (Numeri
al dataset) A numeri
al dataset is given by a set of obje
ts G, aset of numeri
al attributes M , ea
h attribute m ∈M having for range a set of real numbers Wm.We denote by m(g) = w the fa
t that w is the value of attribute m for obje
t g.
m1 m2 m3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5Table 1: A numeri
al dataset.De�nition 7.2.2 (Interval pattern and support) In a numeri
al dataset, an interval pat-tern is a ve
tor of intervals d = 〈[ai, bi]〉i∈{1,...,|M |} where ai, bi ∈ Wmi

, and ea
h 
omponent
orresponds to an attribute following a 
anoni
al order on ve
tor dimensions, and |M | denotesthe number of attributes. An obje
t g is in the image of an interval pattern 〈[ai, bi]〉i∈{1,...,|M |}when mi(g) ∈ [ai, bi], ∀i ∈ {1, ..., |M |}. The support sup(d) of d is the 
ardinality of the imageof d.Running example. Table 1 is a numeri
al dataset with obje
ts in G = {g1, ..., g5}, attributes in
M = {m1,m2,m3}. The range of m1 is Wm1

= {4, 5, 6}, and we have m1(g1) = 5. Here, wedo not 
onsider either missing values or multiple values for an attribute. 〈[5, 6], [7, 8], [4, 6]〉 isan interval pattern in Table 1, where a ve
tor dimension i 
orresponds to an attribute mi. Itsimage is {g1, g2, g5} and its support is 3.De�nition 7.2.3 (Interval pattern sear
h spa
e) Given a set of attributesM = {mi}i∈{1,|M |},the sear
h spa
e of interval patterns is the set D of all interval ve
tors 〈[ai, bi]〉i∈{1,...,|M |}, with
ai, bi ∈Wmi

and ai ≤ bi. The size of the sear
h spa
e is given by
|D| =

∏

i∈{1,...,|M |}

|Wmi
| × (|Wmi

|+ 1)

2where |Wmi
|×(|Wmi

|+1)

2 is the number of possible intervals for the attribute mi.For example, all possible intervals for m1 are in {[4, 4], [5, 5], [6, 6], [4, 5], [5, 6], [4, 6]}. Consid-ering also attributes m2 and m3, the interval pattern sear
h spa
e is naturally larger, 
omposedof 6× 6× 10 = 360 interval patterns in our example. Among well-known solutions to deal with�pattern �ooding� in data-mining, one is to e�
iently mine frequent patterns, i.e. patterns hav-ing support greater than a given threshold, while a se
ond is to de�ne 
ondensed representations



3. Interval patterns: semanti
s and de�nitions 79of patterns [115℄, e.g. 
losed patterns, (minimal) generators (also 
alled key-sets, free-sets), et
.While generators 
an be preferable to 
losed patterns following the minimum des
riptions lengthprin
iple [77℄, 
losed patterns and their generators are known to be 
ru
ial for extra
ting validand interesting asso
iation rules [10℄. Therefore, we dis
uss and solve the following problems.Problem 1: Mining frequent 
losed interval patterns. Whereas an algorithm was proposed formining 
losed interval patterns in Chapter 4, it addressed the dual problem of un-frequentinterval patterns mining, i.e. with support smaller than given threshold. We proposethe algorithm MinIntChange for e�
iently mining frequent 
losed interval patterns. Mostimportantly, this algorithm is useful for 
onsidering the two next problems.Problem 2: Mining interval pattern generators. Closed patterns determine equivalen
e 
lasses.One should expe
t that these 
lasses have minimal elements w.r.t. a subsumption relationon patterns, 
alled interval pattern generators. We propose to 
hara
terize these notionsand to design an algorithm to e�
iently mine frequent generators, 
alled MinIntChangeG.Problem 3: Asso
iating generators to their 
losure. MinIntChangeG 
an provide ea
h generatorwith its 
losure, allowing to produ
e valid and 
on�dent asso
iation rules.Problem 4: Mining equivalent binary data. In Chapter 4, we showed that numeri
al data 
anbe turned into binary with a so-
alled interordinal s
aling, and that resulting binary data(i) 
an be mined with existing itemset mining algorithms, and (ii) there is a one-to-one
orresponden
e between 
losed interval patterns and 
losed itemsets. However, we showedthat 
losed interval patterns have better representation, avoid a lo
al redundan
y, and aremu
h more e�
ient to mine dire
tly in numeri
al data. Therefore, we should ensure thatthe same holds for generators, and than our algorithms are more e�
ient that 
lassi
alalgorithms in these parti
ular binary data.Before solving these problems, we properly de�ne (frequent)(
losed) interval patterns (and gen-erators) and their semanti
s in R|M|.3 Interval patterns: semanti
s and de�nitionsConsider a numeri
al dataset with obje
ts in G and numeri
al attributes in M . An intervalpattern d is a |M |-dimensional ve
tor of intervals, and 
an represented by a hyperre
tangle(or re
tangle for short) in Eu
lidean spa
e R|M |, whose sides are parallel to the 
oordinateaxes. This geometri
al representation will be 
onsidered as the semanti
s of interval patterns.Formally, an interpretation is given by I = (R|M |, (.)I) with R|M | the interpretation domain, and
(.)I : D → R|M | the interpretation fun
tion.Example. When illustrating patterns in R|M|, we 
onsider the numeri
al dataset of Table 1 withattributes m1 and m3 only (it is more 
onvenient here to work on two dimensions). The Figure 1(left) gives four interval patterns d1, d2, d3, d4 and their representation in R2. In two dimensions,a pattern with two intervals with same left and right borders is a point, while a pattern havingonly one interval with same borders is a segment, e.g. d3 and d4. Otherwise, a pattern isrepresented by a re
tangle, e.g. d1 and d2.A basi
 idea in pattern mining is to de�ne an interse
tion on patterns allowing to build moregeneral patterns, i.e. shared by more obje
ts. As stated in [46℄, the set-theori
 interse
tionhas the properties of an in�mum ⊓ in a semi-latti
e (D,⊓), i.e. idempotent, 
ommutative, andasso
iative. A

ordingly, we introdu
ed an in�mum operation on interval patterns [66℄:
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d1 = 〈[4, 5], [5, 8]〉
d�1 = {g1, g3, g4, g5}
d2 = 〈[4, 5], [4, 5]〉
d�2 = {g3, g5}
d3 = 〈[5, 6], [4, 4]〉
d�3 = {g2}
d4 = 〈[6, 6], [4, 8]〉
d�4 = {g2}

Figure 1: Interval patterns in the Eu
lidean spa
e.De�nition 7.3.1 (In�mum of Interval patterns) The in�mum of two interval patterns c =
〈[ai, bi]〉i∈{1,...,|M |} and d = 〈[ei, fi]〉i∈{1,...,|M |}is given by

c ⊓ d = 〈[min(ai, ei),max(bi, fi)]〉i∈{1,...,|M |}The in�mum of several patterns is interpreted as the 
onvex hull of their hyperre
tangles in R|M|,e.g. d1 ⊓ d2 = 〈[4, 5], [4, 8]〉 in Figure 1. This de�nition indu
es partial order, or subsomptionrelation ⊑ on interval patterns, knowing that c ⊓ d = c⇔ c ⊑ d.De�nition 7.3.2 (Subsumption relation) Given two interval patterns c and d, c ⊑ d holdsif dI ⊆ cI .This means that two interval patterns c and d are 
omparable whenever cI ⊆ dI or dI ⊆ cIand that patterns with �larger� intervals are subsumed by patterns with �smaller� intervals. Forexample, 〈[4, 5], [4, 8]〉 ⊑ 〈[4, 5], [4, 5]〉 but 〈[4, 5], [4, 5]〉 and 〈[4, 5], [5, 8]〉 are not 
omparable.Example. We 
onsider in this example one-dimensional interval patterns. Choosing attribute m1from Table 1, the set of all possible interval patterns isDm1
= {[4, 4], [5, 5], [6, 6], [4, 5], [5, 6], [4, 6]}.The semi-latti
e (D,⊓), or equivalently (D,⊑) is given in Figure 2. The interval labelling a nodeis the in�mum of all intervals labelling its des
ending nodes, e.g. [4, 5] = [4, 4]⊓ [5, 5], and is alsosubsumed by these intervals, e.g. [4, 5] ⊑ [5, 5] and [4, 5] ⊑ [4, 4].

[4,4℄ [5,5℄ [6,6℄[4,5℄ [5,6℄[4,6℄
Figure 2: Diagram of (Dm1

,⊓) or equivalently(Dm1
,⊑).



3. Interval patterns: semanti
s and de�nitions 81Finally, the support of an interval pattern d is interpreted as the the number of obje
tsdes
ribed by a re
tangle in
luded in dI , e.g. support of d1 is four in Figure 1, with δ(g) representsthe re
tangle des
ribing obje
t g ∈ G.The following de�nitions formally de�ne pattern stru
tures, involving a 
losure operator onpatterns, based on a Galois 
onne
tion. Pattern stru
ture is an extension of well-know formal
ontexts (binary tables) to 
omplex data in FCA [47, 46℄.De�nition 7.3.3 (Pattern stru
ture) Let G be a set of obje
ts, let (D,⊓) be a meet-semi-latti
e of obje
t des
riptions, 
alled patterns, and let δ : G −→ D be a mapping: (G, (D,⊓), δ) is
alled a pattern stru
ture.De�nition 7.3.4 Let the two following operators (.)� de�ned as follows.
A� =

l

g∈A

δ(g), for A ⊆ G

d� = {g ∈ G|d ⊑ δ(g)}, for d ∈ (D,⊓).These operators form a Galois 
onne
tion between (P(G),⊆) and (D,⊑). The operator (.)�� isa 
losure operator.Example. Considering the example of Table 1. (D,⊑) is the �nite ordered set of all intervalpatterns. δ(g) ∈ D is the pattern asso
iated to an obje
t g ∈ G. Then:
〈[5, 6], [7, 8], [4, 8]〉� = {g ∈ G|〈[5, 6], [7, 8], [4, 8]〉 ⊑ δ(g)}

= {g1, g2, g5}
{g1, g2, g5}

� = δ(g1) ⊓ δ(g2) ⊓ δ(g3)
= 〈[5, 6], [7, 8], [4, 6]〉This means that 〈[5, 6], [7, 8], [4, 8]〉 is not a 
losed interval pattern, its 
losure being 〈[5, 6], [7, 8], [4, 6]〉.The �rst operator applies to an arbitrary des
ription d ∈ (D,⊓) and returns the set of obje
tsdes
ribed by re
tangles in
luded in dI . Dually, the se
ond operator applies to a of obje
ts A ⊆ Gand returns the 
onvex hull of their interpretation, i.e. a re
tangle.Based on these de�nitions, we now de�ne the notions of (frequent) 
losed interval pattern((F)CIP), equivalen
e 
lasses of patterns and (frequent) interval patterns generators ((F)IPG),adapted from the 
lassi
al binary 
ase [96℄. We illustrate these de�nitions with two dimensionalinterval patterns, and their representation in Figure 1, i.e. 
onsidering attributes m1 and m3only.De�nition 7.3.5 (Equivalen
e 
lass) Let image(d) be the fun
tion that assigns to ea
h in-terval pattern the set of obje
ts supporting d, i.e. image(d) = d�. Two interval patterns c and dare said equivalent i� they have the same image and we write c ∼= d. The set of patterns that areequivalent to a pattern d is denoted by [d] = {c|c ∼= d} and is 
alled the equivalen
e 
lass of d.Example. 〈[4, 5], [6, 8]〉 ∼= 〈[4, 6], [6, 8]〉 as they have the same image {g1, g4}.De�nition 7.3.6 (Closed interval pattern) A pattern d is 
losed if there does not exist anypattern e su
h as d ⊑ e with d ∼= e.Example. 〈[4, 6], [6, 8]〉 is not 
losed as 〈[4, 6], [6, 8]〉 ⊑ 〈[4, 5], [6, 8]〉, these two patterns havingsame image, i.e. {g1, g3, g4, g5}. 〈[4, 6], [6, 8]〉 is 
losed.



82 Chapter 7. A study on 
losed interval patterns and their generatorsDe�nition 7.3.7 (Interval pattern generator) A pattern d is a generator if there does notexist a pattern e su
h as e ⊑ d with d ∼= e.Example. 〈[4, 6], [5, 8]〉 and 〈[4, 5], [4, 8]〉 are the generators of the 
losed interval pattern d1 =
〈[4, 5], [5, 8]〉 with image {g1, g3, g4, g5}.De�nition 7.3.8 (Frequent Interval pattern) A pattern d is frequent if its image has ahigher 
ardinality than a given minimal support threshold minSup, i.e |d�| ≥ minSup. Oth-erwise, d is not frequent.Example. Among the four patterns in Figure 1, d1 is the only frequent interval pattern with
minSup = 3.An equivalen
e 
lass is a set of interval patterns having the same image. A

ording to thede�ned 
losure operator, ea
h 
lass is provided with a unique CIP. The interpretation of this
losed pattern is the re
tangle with smallest area, while generators are re
tangles with largestarea.We dedi
ate a parti
ular attention to interval patterns with null support. In Figure 1, su
hpatterns 
orrespond to re
tangles, segments or points 
ontaining no obje
t des
ription from thedataset, e.g. c1 = 〈[6, 6], [5, 8]〉, c2 = 〈[5, 6], [6, 8]〉, c3 = 〈[4, 4], [4, 4]〉. Su
h patterns wouldnot exist if ea
h point in the re
tangle 〈[4, 6], [4, 8]〉 were 
overed by some obje
t of the dataset(sin
e the sear
h spa
e is �nite). If interval patterns with null support exist, their equivalen
e
lass should have a 
losed element with one or more generators. However, the 
losed patternof null support does not exist, sin
e it should subsume any 
losed pattern of support 1. AnyCIP with support 1 is de�ned by g� for some g ∈ G. Sin
e dealing with numeri
al attributeswith domains values in R, intervals of g� are degenerate (same left and right borders), e.g.
δ(g1) = 〈[5, 5], [7, 7], [6, 6]〉. Therefore, we 
annot �nd a subsumer of this pattern: it is notde�ned (any degenerate interval has no subintervals). When existing, the generators of nullsupport provide a meaningful information: it 
hara
terizes the largest subspa
es of the data
overed by no obje
ts.4 Interval patterns in binary dataIn this se
tion, we re
all how numeri
al data 
an be turned into binary with a so-
alled interor-dinal s
aling. This data transformation is de�ned in the framework of formal 
on
ept analysis(FCA) [47℄, and allows to produ
e binary data from whi
h interval patterns 
an be extra
ted(see Chapter 4). Most importantly, we show that, in these parti
ular binary data, 
olle
tionsof 
losed itemsets and generators highlight two forms of redundan
y, leading to design e�
ientalgorithms working dire
tly on numeri
al data in the next se
tion.4.1 Interordinal S
alingCon
eptual s
aling is often used for dis
retizing numeri
al data and obtaining a (binary) formal
ontext [47℄. Given a numeri
al attribute, the sear
h spa
e of interval patterns 
an be expressedin terms of binary attributes, or items, thanks to interordinal s
aling. We re
all here a basi
de�nition while more details lie in [47, 66, 73℄.In FCA, a numeri
al dataset is des
ribed by a many-valued 
ontext (G,M,W, J) where Gis a set of obje
ts, M a set of numeri
al attributes, W a set of real numbers, and J a ternary
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m1 ≤ 4

m1 ≤ 5

m1 ≤ 6

m1 ≥ 4

m1 ≥ 5

m1 ≥ 6

m2 ≤ 7

m2 ≤ 8

m2 ≤ 9

m2 ≥ 7

m2 ≥ 8

m2 ≥ 9

m3 ≤ 4

m3 ≤ 5

m3 ≤ 6

m3 ≤ 8

m3 ≥ 4

m3 ≥ 5

m3 ≥ 6

m3 ≥ 8

g1

×
×
×
×

×
×
×
×

×
×
×
×
×

g2

×
×
×
×

×
×
×
×

×
×
×
×
×

g3

×
×
×
×

×
×
×
×

×
×
×
×
×

g4

×
×
×
×

×
×
×
×

×
×
×
×
×

g5

×
×
×
×

×
×
×
×

×
×
×
×
×

Table 2: Interordinally s
aled 
ontext en
oding the dataset from Table 1.



84 Chapter 7. A study on 
losed interval patterns and their generatorsrelation de�ned on the Cartesian produ
t G×M ×W . (g,m,w) ∈ J or simply m(g) = w meansthat the obje
t g takes the value w for the attribute m.De�nition 7.4.1 (Interordinal s
aling) Given a numeri
al attribute m with value domainthe set Wm of real numbers, interordinal s
aling builds 2 × |Wm| binary attributes, denoted by�m ≤ w� and �m ≥ w�, ∀w ∈Wm, 
alled �interordinal s
ale attributes� or IS-items for short.De�nition 7.4.2 (Interordinal s
aled 
ontext) A formal 
ontext (G,N, I) is an interordi-nal s
aled 
ontext when it results from the appli
ation of interordinal s
aling to numeri
al 
ontext
(G,M,W, J). N is the set of all IS-items of the form �m ≤ w� or �m ≥ w� for ea
h numeri
alattribute m ∈ M and value w ∈ Wm. An obje
t g has an IS-item �m ≤ w� (resp. �m ≥ w�) i�
m(g) ≤ w (resp. m(g) ≥ w).Example. Table 2 gives the tabular representation of the interordinally s
aled formal 
ontextbuilt from Table 1. Obje
t g1 owns the IS-item m1 ≤ 5 (denoted by a 
ross ×) but not m1 ≤ 4sin
e m1(g1) = 5.4.2 Interval Patterns and IS-ItemsetsIt is possible to apply 
lassi
al mining algorithms to pro
ess the binary table for extra
tingitemsets 
omposed of IS-items. These itemsets are 
alled IS-itemsets in the following, and arelinked with interval patterns as follows [66℄.An IS-itemset as an interval pattern. An IS-itemset P is 
omposed of IS-items ofthe forms mi ≤ w and mi ≥ w for some w ∈ Wmi

. It is represented by the interval pattern
d = 〈[ai, bi]〉i∈{1,...,|M |}, where
• ai is the maximum of the values w in IS-items mi ≥ w, and min(Wmi

) if mi ≥ w 6∈ P .
• bi is the minimum of the values w in IS-items mi ≤ w, and max(Wmi

) if mi ≤ w 6∈ P .For example, {m1 ≤ 5,m1 ≤ 6,m1 ≥ 4,m2 ≤ 9,m2 ≥ 7} 
orresponds to 〈[4, 5], [7, 9], [4, 8]〉,i.e. the smallest interval pattern w.r.t. ⊑ with same image.An interval pattern as an IS-itemset. Let d = 〈[ai, bi]〉i∈{1,...,|M |} be an interval pattern.An IS-itemset representing d is a set of IS-attributes, ∀i ∈ [1, |M |].
• mi ≤ bi if ai = min(Wmi

)

• mi ≥ ai if bi = max(Wmi
)

• mi ≥ ai and mi ≤ bi otherwise.For example, the IS-itemset 
orresponding to 〈[4, 5][7, 9][4, 8]〉 is {m1 ≤ 5}, i.e. the smallest setof IS-items with same image.We detail in the following some problem when mining IS-itemsets. First, we show that 
losedIS-itemsets involve a lo
al redundan
y making them hard to mine. Se
ondly, we show that IS-itemsets generators do not behave in the same way, but involve another kind of redundan
y thatalter their mining.



4. Interval patterns in binary data 854.3 Lo
al redundan
y problemExtra
ting all IS-itemsets in our example returns 31, 487 IS-itemsets. This is surprising sin
ethere are only 360 possible interval patterns. In fa
t, a lot of IS-itemsets are lo
ally redun-dant. For example, {m1 ≤ 5} and {m1 ≤ 5,m1 ≤ 6} both 
orrespond to the interval pattern
〈[4, 5], [7, 9], [4, 8]〉. Indeed, the 
onstraint m1 ≤ 6 is weaker than m1 ≤ 5 on the set of values
Wm1

.De�nition 7.4.3 Given two IS-items n1, n2 ∈ N , with same sign ≤ or ≥ and numeri
al at-tribute, n1 
hara
terizes a weaker 
onstraint than n2 if n′2 ⊆ n′1. n1 is a redundant 
onditionwith respe
t to n2.Proposition 7.4.1 An arbitrary IS-itemset N1 ⊆ N is lo
ally redundant i� it 
ontains twoIS-items su
h as one is a redundant 
ondition with respe
t to the other one.Example. {m1 ≤ 5,m1 ≤ 6} and {m1 ≤ 4,m1 ≤ 5,m1 ≤ 6} are both lo
ally redundant while
{m1 ≤ 5} and {m1 ≤ 5,m3 ≥ 5} are not. Intuitively, in {m1 ≤ 5,m1 ≤ 6} the item m1 ≤ 6brings no new information on the des
ription of the itemset image.Proposition 7.4.2 Ex
ept G′, any 
losed IS-itemset P ⊆ N is lo
ally redundant and |P | >
2|M |.Proof. By de�nition of interordinal s
aling, we have G′ = {mi ≤ max(Wmi

),mi ≥ min(Wmi
)}∀mi∈M ,hen
e |G′| = 2|M |. Any other 
losed itemset P is su
h that G′ ⊂ P : it is lo
ally redundant.Proposition 7.4.3 If P ⊆ N is an IS-itemset generator, then |P | ≤ 2|M |, and P is not lo
allyredundant.Proof. Suppose that P is a generator with |P | > 2|M |. Sin
e IS-items are of the form, either�m ≤ w� or �m ≥ w� for m ∈ M and w ∈ Wm, P 
ontains at least two itemsets of one ofthese form. Therefore, one 
hara
terizes a redundant 
ondition and removing it from P does not
hange its image, leading to a 
ontradi
tion. Moreover, if P1 is redundant, P1 ⊂ P2 implies that

P2 is also redundant.4.4 Global redundan
y of generatorsDue to lo
al redundan
y, we showed in Chapter 4 that 
losed IS-itemsets are hard to mine with
lassi
al 
losed itemset mining algorithms. It seems that IS-itemset generators have a goodproperty to be mined, sin
e not a�e
ted by lo
al redundan
y. But we remark here another kindof redundan
y, 
alled global redundan
y: it happens that two di�erent and in
omparable IS-itemsets generators 
orrespond to two di�erent interval pattern generators, but one subsumingthe other, i.e. one is not an interval pattern generator a

ording to the semanti
 in R. Forexample, taking the binary table 2, both IS-itemsets N1 = {m1 ≤ 4,m3 ≤ 5} and N2 =
{m1 ≤ 4,m3 ≤ 6}, with same image {g3} are generators, i.e. there does not exist a subset ofthese itemsets with same image. However, their 
orresponding interval pattern are respe
tively
c = 〈[4, 4], [7, 9], [4, 5]〉 and d = 〈[4, 4], [7, 9], [4, 6]〉 and we have d ⊑ c, while c� = d�, hen
e c isnot an interval pattern generator. This is due to the fa
t m3 ≤ 6 is a redundant 
ondition withrespe
t to m3 ≤ 5, the only IS-items that di�er from N2 to N1.Due to this redundan
y problem, it should be not only more e�
ient to dire
tly explore thesear
h-spa
e of interval patterns but also provide 
orre
tness. This is the aim of the next se
tion.



86 Chapter 7. A study on 
losed interval patterns and their generators5 AlgorithmsIn this se
tion, we �rst detail a depth-�rst enumeration of interval patterns, starting with themost frequent one. Based on this enumeration, we design the algorithm MinIntChange forextra
ting frequent 
losed interval patterns (FCIP). This algorithm needs slight modi�
ations to
ompute frequent interval pattern generators (FIPG), giving the algorithm MinIntChangeG.5.1 Greedy enumerationConsider �rstly one numeri
al attribute of the example, say m1. Its semi-latti
e of intervals
(Dm1

,⊓) is 
omposed of all possible intervals with borders in Wm1
and is ordered by the sub-sumption relation given in Se
tion 7.3. The unique smallest element w.r.t. ⊑ is the interval withmaximal size, i.e. [4, 6] = [min(Wm1

),max(Wm1
)] and maximal frequen
y (here 5). The basi
idea of pattern generation lies in minimal 
hanges for generating the dire
t subsumers of a givenpattern. For example, two minimal 
hanges 
an be applied to [4, 6]. The �rst 
onsists in repla
-ing the right border with the value of Wm1

immediately lower that 6, i.e. 5, for generating theinterval [4, 5]. The se
ond 
onsists in repeating the same operation for the left border, generatingthe interval [5, 6]. Repeating these two operations allows to enumerate all elements of (Dm1
,⊓).A right minimal 
hange is de�ned formally as, given a, b, v ∈Wm, a 6= b,

minChangeR([a, b]) = [a, v] | v < b, ∄w ∈Wm s.t. v < w < bwhile a left minimal 
hange minChangeL([a, b]) is formally de�ned similarly. Minimal 
hangesgive dire
t next subsumers and implies a monotoni
ity property of frequen
y, i.e. support of
[a, v] is less or equal than support of [a, b].The generalization to several attributes is straightforward: for ea
h pattern there are 2.|M |minimal 
hanges for modifying the left and the right border for ea
h attribute.5.2 Lexi
ographi
al enumerationThe greedy enumeration is based on minimal 
hanges but does not prevent redundan
y sin
e apattern 
an be generated several times. For example, 
onsidering the attribute m1, interval [5, 5]is generated two times: from [4, 6] applying a right then a left minimal 
hange, or applying a leftthen a right minimal 
hange (indeed, we 
an see in Figure 2 that [5, 5] subsumes two di�erentpatterns having a 
ommon subsumee [4, 6]).To avoid redundan
y, a le
ti
 order on 
hanges, or equivalently on patterns, is de�ned: aftera right 
hange, one 
an apply either a right or left 
hange; after a left 
hange one 
an applyonly a left 
hange. Figure 3 shows the depth-�rst traversal (numbered arrows) of diagram of
(Dm1

,⊓). Ba
ktra
ks o

ur when an interval of the form [w,w] is rea
hed (w ∈ Wm1
), or nomore 
hange 
an be applied. Therefore, generated elements form a tree traversed depth �rst.This pattern generation 
an be seen as a 
lassi
al enumeration used by depth-�rst algorithmsin data-mining. Indeed, ea
h minimal 
hange is the interpretation of an IS-item. Re
all that IS-items are of the form �m ≤ w� or �m ≥ w�. Applying a 
hange minChangeR([a, b]) = [a, v] to ainterval pattern is equivalent to add the IS-item �m ≤ v� in a 
orresponding IS-itemset. Dually,

minChangeL([a, b]) = [v, b] 
onsists in the IS-item �m ≥ v�. These IS-items 
hara
terizingminimal 
hanges are drawn on Figure 3. This �gure a

ordingly represents a pre�x-tree, fa
toringout the e�ort to pro
ess 
ommon pre�xes or minimal 
hanges.Therefore, the le
ti
 order 
an be also expressed in terms of IS-items. Any IS-item 
ontainingthe symbol ≤ pre
edes any IS-item 
ontaining ≥. Se
ondly, if both IS-items 
ontains ≤, the



5. Algorithms 87one with the largest value w pre
edes the other one. Dually, if both IS-items 
ontains ≥, theone with the smallest value w pre
edes the other one. Noti
e that IS-items having the form�m ≤ max(Wm)� or �m1 ≥ min(Wm)� are not 
onsidered sin
e they do not 
hara
terize minimal
hanges.
[4,4℄ [5,5℄ [6,6℄[4,5℄ [5,6℄[4,6℄

m1 ≤ 4 3 2 5 4 m1 ≥ 5 9 8 m1 ≥ 6

1m1 ≤ 5 6 10 7 m1 ≥ 5

Figure 3: Depth-�rst traversal of (Dm1
,⊓).The generalization to several attribute is again straightforward. A le
ti
 order is 
lassi
allyde�ned on numeri
al attributes as a lexi
ographi
 order, e.g. m1 < m2 < m3. Then 
hanges areapplied as explained above for all attributes respe
ting this order. For example, after applyinga 
hange to attribute m2, one 
annot apply a 
hange to attribute m1 sin
e m1 < m2. On theexample of Table 1, 
onsidering that 〈[4, 5], [8, 9], [5, 8]〉 was previously generated from a leftminimal 
hange of a pattern for attribute m2, only three patterns 
an be generated in the nextstep, namely, 〈[4, 5], [9, 9], [5, 8]〉 (
hange on m2 left), 〈[4, 5], [8, 9], [5, 6]〉 (
hange on m3 right) and

〈[4, 5], [8, 9], [6, 8]〉 (
hange on m3 left).5.3 Extra
ting 
losed interval patternsThe pattern enumeration starts with the minimal pattern w.r.t ⊑ and generates its dire
t sub-sumers with lower or equal support. The next problem now is that minimal 
hanges do notne
essarily generate patterns with stri
tly smaller support. Therefore, we should apply 
hangesuntil a pattern with di�erent support is generated to identify a 
losed interval pattern (FCIP)but this would not be e�
ient.However, applying a minimal 
hange does not mandatory implies that resulting pattern hasstri
tly smaller support. Therefore, we should apply 
hanges until the support 
hanges to �aga FCIP. This would be not e�
ient as it required to generate the whole set of frequent intervalpatterns. We adopt the idea of the algorithm CloseByOne [74℄: before applying a minimal
hange, the 
losure operator (.)�� is applied to the 
urrent pattern, allowing to skip all equivalentpatterns. Indeed, the minimal pattern d w.r.t. ⊑ is 
losed as it is given by d = G�. Applyinga minimal 
hange returns a pattern c with stri
tly smaller support, sin
e d ⊑ c and d is 
losed.If c is frequent, we 
an 
ontinue, apply the 
losure operator and next 
hanges in le
ti
 order,allowing to 
ompletely enumerate all FCIP.Example. We start from the minimal pattern c = 〈[4, 6], [7, 9], [4, 8]〉. The �rst minimal 
hangein le
ti
 order is a right 
hange on attribute m1. We obtain pattern d = 〈[4, 5], [7, 9], [4, 8]〉, andobviously c ⊑ d. However, d�� = 〈[4, 5], [7, 9], [5, 8]〉, hen
e d is not 
losed. Next 
hange will beapplied to d��.Sin
e a FCIP may have several di�erent asso
iated generators, it 
an be generated severaltimes. Still following the idea of CloseByOne, a 
anoni
ity test 
an be de�ned a

ording to le
ti
order minimal 
hanges: if a pattern d has been generated by a 
hange at attribute mj ∈ M , it
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losed interval patterns and their generatorsis 
anoni
ally generated i� d and d�� do not di�er for any attribute mh ∈M su
h as mh < mj .This test avoids lookup in memory (e.g. using an hashtable of FCIP).Example. Given the minimal pattern 〈[4, 6], [7, 9], [4, 8]〉 and the pattern obtained by mini-mal 
hange on left border for attribute m3, i.e. d = 〈[4, 6], [7, 9], [5, 8]〉. We have d�� =
〈[4, 5], [7, 9], [5, 8]〉. We observe that d and d�� present a di�eren
e for attribute m1, but dhas been generated from a 
hange on m3. Sin
e m1 < m3, d�� is not 
anoni
al and has alreadybeen generated (see previous example): it is no more ne
essary to apply minimal 
hanges to d��.Sin
e this FCIP has already been generated, the algorithm ba
ktra
ks, indi
ated by d�� <D din the algorithm given below.MinIntChange. The algorithm is initialized as follow. G is the set of obje
ts. G� isthe most frequent pattern and minimal w.r.t ⊑. Two integers are used to indi
ate the 
urrentminimal 
hange (attribute and border). A minimal frequen
y minsupp is also given.Alg. 3 MinIntChange()1: FCIP = ∅; // the FCIP set2: pro
ess(G�,0,0,G,G�);Given a generated 
losed pattern d, the main pro
edure �rstly 
he
ks whether d is frequentand tests 
anoni
ity. If one of these test fails, the algorithm ba
ktra
ks. Otherwise the 
urrentpattern d is stored as being a FCIP not previously generated. Then, the algorithm appliesminimal 
hanges to d following the le
ti
 order (from attribute n and border p), 
omputes 
losureand the pro
edure is 
alled again. The pro
edure ba
ktra
ks when no more minimal 
hanges to
urrent FCIP 
an be applied. The notation δn,l(d) returns the left border of the interval des
ribingattribute n in d while δn,r(d) returns its right border. The peusdo 
ode of the pro
edures
minChangeRight(d, n) and minChangeLeft(d, n) is not given for sake of simpli
ity. It 
onsistsin applying the minimal 
hange as previously de�ned (see minChangeR([a,b℄)) but for a givenattribute, namely n. A

ordingly, 18 FCIP are extra
ted from Table 1 with minsupp = 1. Notethat the CIP of null support 
annot be extra
ted if the user spe
i�esminsupp = 0. The algorithmAlg. 4 pro
ess(
, m, p, A, d), c was generated at previous step with a minimal 
hange onattribute m and border p (p=0 means right, p=1 means left), A = c� and d = c��if (|A| ≤ minsup or d <D c) then2: return;end if4: FCIP ← FCIP ∪ dfor i = m to |M | step 1 do6: if (δi,l(d) = δi,r(d)) then
ontinue;8: end ifif (i = m and p = 1) = false then10: patR← minChangeRight(d, i)pro
ess(patR, i, 0, patR�, patR��);12: end if

patL← minChangeLeft(d, i);14: pro
ess(patL, i, 1, patL�, patL��);end for



5. Algorithms 89operates a bounded number of 2|M | × |FCIP | minimal 
hanges. Complexity of minimal 
hangepro
edure is log(Wm), i.e. getting the next value in a previously sorted set. For ea
h 
hange,
losure is 
omputed. First operator (.)� returns the image of d and requires to s
an obje
ts in
G and test if their des
ription subsumes d. A
tually, it its not needed to s
an the whole setof obje
ts, but only those in the image of the previously generated 
losed pattern. The se
ondoperator (.)� applies to a set of obje
ts, and returns the 
onvex hull of their des
ription in R|M |,requiring only 
omputations of minima and maxima on ea
h dimension separately.5.4 Extra
ting interval pattern generatorsWe now adapt MinIntChange to extra
t FIPG. Indeed, applying the 
losure operator to a gen-erated pattern is still important: for any FCIP d, a minimal 
hange implies that the support ofthe resulting pattern c is stri
tly smaller than the support of d. Therefore, c is a good generator
andidate of the next FCIP. However, when applying the 
losure to this 
andidate, �equivalent
hanges 
an be added� and are not ne
essary to store for the next generator. This is made 
learerwith an example.Example. Consider the pattern 〈[4, 5], [7, 9], [4, 8]〉 obtained with a right minimal 
hange on thesmallest pattern w.r.t ⊑, and 
hara
terized by the IS-items �m1 ≤ 5�. Now 
onsider its 
losure,i.e. 〈[4, 5], [7, 9], [4, 8]〉�� = 〈[4, 5], [7, 9], [5, 8]〉. The 
losure adds one 
hange, namely �m3 ≥ 5�.A
tually, it 
an be shown that the 
hanges �m1 ≤ 5� and �m3 ≥ 5� are equivalent as they
hara
terizing the same image.Sin
e a generator is 
hara
terized by a smallest set of minimal 
hanges as possible (havinglargest intervals in its equivalen
e 
lass), we should not 
onsider the 
hanges �added� by the
losure. This 
an also be understood with Propositions 7.4.2 and 7.4.3.At ea
h step of the depth-�rst enumeration is generated a FGIP 
andidate. We know thatit has no subsumers in its bran
h with same support. However, it 
ould exist a bran
h withanother FGIP with same image and resulting from less 
hanges. Regarding to the le
ti
 orderon minimal 
hanges, and already suggested in the binary 
ase in [27℄, we should use a reversetraversal of the tree, see Figure 4. Therefore, if su
h pattern exists, i.e. the 
urrent 
andidateis not a generator, it has already been generated with few minimal 
hanges. In this 
ase, thealgorithm ba
ktra
ks: these two patterns have the same 
losure, hen
e the same minimal 
hangewill be used to build next 
andidate.

[4,4℄ [5,5℄ [6,6℄[4,5℄ [5,6℄[4,6℄
m1 ≤ 4 9 8 7 6 m1 ≥ 5 3 2 m1 ≥ 6

5m1 ≤ 5 10 4 1 m1 ≥ 5

Figure 4: Reverse pre-order traversal of (Dm1
,⊓).MinIntChangeG. At the initialization step, we start from the minimal pattern d. Thispattern d is both 
losed and generator, i.e. d = G� while any 
hange would also 
hange itssupport. d is stored as FCIP and FGIP. At a given step, if the generator 
andidate is a
tually a
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losed interval patterns and their generatorsgenerator (see details after) and is frequent, the FCIP is used to 
hara
terize the next 
hange.This 
hange is applied to the FGIP to obtain the new 
andidate, the 
losure operator is appliedto obtain its 
losure. Next step is 
alled with resulting FCIP and the new FGIP. This meansthat a FGIP is 
hara
terized by a minimal set of 
hanges (bran
hes in the tree), while theFCIP is 
hara
terized by the maximal set of 
hanges (bran
hes plus 
hanges added by su

essive
losures). Noti
e that the 
anoni
ity test 
annot be used anymore, sin
e a FCIP may have severalgenerators, 
hara
terized by di�erent minimal sets of 
hanges.Alg. 5 MinIntChangeG
FIPG = ∅;pro
essGen(0,0,G,G�,G�);Alg. 6 pro
essGen(m, p, A, d, 
and): cand is the 
urrent 
andidate, cand� = A, A� = dif |A| ≤ minsup or addCandidate(
and) = false then2: return;end if4: FIPG = FIPG ∪ cand;for i=|M | to m step - 1 do6: if δi,l(d) = δi,r(d) then
ontinue;8: end if
clone← cand10: δi,l(clone)← δi,l(minChangeLeft(d, i));pro
ess(i, 1, clone�, clone��,clone);12: if (i = m and p = 1) = false then
clone← cand14: δi,r(clone)← δi,r(minChangeRight(d, i));pro
ess(i, 0, clone�, clone��,clone);16: end ifend forFast subsumption 
he
king with hastable. To test whether a 
andidate is a generator,we use the same te
hnique as in the algorithm Charm [132℄. MinIntChange hashes the FIPGupon their image. In the testing of a 
andidate d, the entire list 
orresponding to its hash value

h(d) is retrieved. If there is a FGIP c in the list with same support and su
h that c ⊑ d, d isdis
arded, otherwise d is de
lared a FIPG and hashed.Fast subsumption 
he
king with a trie. A se
ond possibility uses the trie stru
ture (seee.g. [22℄ for more details). Ea
h word of the trie is the image of a FCIP, and a list of its generatorsits atta
hed. When testing whether a 
andidate is a generator or not, we look in the trie for its
orresponding image (word) and only test the generators asso
iated to this word. If one of themis subsumed by the 
andidate, the 
andidate is dis
arded, otherwise added to the list. Whereasthis solution may be more e�
ient, it requires more storage spa
e. Most importantly, it allowsto asso
iate any FIPG to its 
losure, answering to the problem 3.



6. Computer experiments 916 Computer experimentsWe evaluate the performan
es of the algorithms designed in Java, namelyMinIntChange,MinIntChangeG-h with auxiliary hashtable and MinIntChangeG-t with auxiliary trie. Re
alling that 
losed IS-itemsets and CIP are in 1-1-
orresponden
e, we 
ompare the performan
e for mining interordinals
aled data with the 
losed-itemset-mining algorithm LCMv2 18. For studying the global redun-dan
y e�e
t of IS-itemset generators, we use the generator-mining-algorithm GrGrowth19. Bothimplementations in C++ are available from the authors. All experiments are 
ondu
ted on a2.50Ghz ma
hine with 16GB RAM running under Linux 2.6.18-92.e15. We 
hoose dataset fromthe Bilkent repository20, namely Bolts (BL), Basketball (BK) and Airport (AP), AP being worst
ase where ea
h attribute value is di�erent.First experiments 
ompare MinIntChange for extra
ting FCIP and LCMv2 for extra
tingequivalent frequent 
losed IS-itemsets in Table 3. Se
ond experiments 
onsist in extra
tingfrequent interval pattern generators (FIPG) with MinIntChange-h and MinIntChange-t . Wealso extra
t frequent itemset generators (FISG) in 
orresponding binary data after interordinals
aling with GrGrowth for studying the global redundan
y e�e
t in Table 4.Dataset minSupp MinIntChange LCMv2 |FCIP |BL 80% < 50 < 50 1,13050% 252 100 32,10725% 1,215 1,060 171,19210% 1,821 1,950 2689751 1,905 2,090 272,223AP 80% 4,595 1,470 346,74150% 143,939 149,580 16,214,34525% 413,805 899,180 58,373,63110% 506,985 6,810,125 80,504,5661 517,548 6,813,591 82,467,124Table 3: Exe
ution time for extra
ting FCIP (in ms).In both 
ases, using binary data is better when the minimal support is high (e.g. 90%). Forlow supports, a 
riti
al issue, our algorithms deliver better exe
ution times. Most importantly,the global redundan
y e�e
t dis
ards the use of binary data, e.g. only 1.6% of all FISG are a
tu-ally FIPG in dataset BL. Finally, the algorithmMinIntChangeG-t outperformsMinInt
hangeG-h.MinIntChangeG-t however needs more memory sin
e storing ea
h 
losed set of obje
ts as a wordin the trie, and to ea
h word the list of asso
iated FIPG.It is very interesting to analyse the 
ompression ability of 
losed interval patterns and gener-ators. For that, we 
ompare in ea
h dataset the number of those patterns w.r.t. to all possibleinterval patterns. It gives the ratio of 
losed (generators) in the whole sear
h spa
e. In both
ases, ratio varies between 10−7 and 10−9. This means that the volume of useful interval pat-terns, either 
losed or generators, is very low w.r.t. the set of all possible interval patterns. Thus,this demonstrates that our interest in equivalen
e 
lasses for interval patterns is really justi�ed.7 Dis
ussionWe presented a study on the 
hara
terization and the extra
tion of frequent 
losed intervalpatterns and their asso
iated generators from numeri
al data. For this task, we designed the18Winner of the FIMI'04 � http://�mi.ua.a
.be/sr
/19http://www.
omp.nus.edu.sg/ wongls/proje
ts/pattern-spa
es/20http://funapp.
s.bilkent.edu.tr/
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Dataset minSupp GrGrowth MinIntChangeG-h MinIntChangeG-t |FIPG| |FISG|
|FIPG|
|FISG|

|FCIP |
|FIPG|
|FCIP |BL 90% < 50 < 50 < 50 176 194 90% 112 1.5780% < 50 < 50 < 50 1,952 2,823 69% 1,130 1.7350% 150 1,212 529 66,350 222,088 29% 32,107 225% 3,432 27,988 3,893 411,442 3,559,419 11% 171,192 2.41 123,564 438,214 24,141 1,165,824 69,646,301 1.6% 272,223 4.3BK 90% < 50 1,268 1,207 67,737 75,058 84% 48,847 1.385% 4,565 26,154 12,139 554,956 799,574 69% 403,562 1.3780% ? 512,126 107,700 2,730,812 NA NA 1,938,984 1.40

(?)meansmorethan20xexe
utiontimeofMinIntChangeG-t.
Table4:Exe
utiontimeforextra
tingFIPGandglobalredundan
yevaluation.



7. Dis
ussion 93algorithms MinIntChange and MinIntChangeG, our main 
ontribution. These algorithms arereusable for other kind of data, for whi
h a 
losure operator is de�ned (e.g. graphs in patternstru
ture [46℄) and a minimal 
hange operation is de�ned (e.g. adding an edge to a graphpattern). The main drawba
k of the algorithms lies in their poor s
alability when the numberof di�erent attribute values is large 
ompared to the number of obje
ts. However, as statedin Chapter 4 for unfrequent 
losed interval pattern extra
tion, one 
an easily embed monotone
onstraints on the latti
e stru
ture of these patterns (e.g. minimal/maximal size of one or severalintervals). Indeed, intervals with too large size tend to be frequent but not interesting, whereassmall intervals may have too small support [116℄. We dedi
ated this problem in Chapter 5, inthe �eld of information fusion, by introdu
ing a similarity relation between interval patterns. Ase
ond solution explored in Chapter 4 with e�e
tive results in gene expression data analysis, isto redu
e the number of di�erent attribute values before the mining task, e.g. rounding values.For example, the last attribute of the basket ball dataset (BK) des
ribes the points per minutesof a player: a double value with four digits after the 
omma, e.g. 0.5885. One 
an round thisvalue to two digits after the 
oma 
onsidering that this loss of information is not signi�
ant,making the mining possible with large datasets.We also showed that mining equivalent binary data (en
oding all possible intervals) is note�
ient sin
e these data su�ers of redundan
y. Indeed, 
lassi
al itemset mining algorithmsgenerally do not 
onsider a semanti
 asso
iated to binary attribute labels. That was also a
ontribution to show that pattern stru
tures and asso
iated 
losure operator provide a simpleand elegant framework to 
onsider numeri
al data. The semanti
s asso
iated to interval patternsmay extend their use to other domains.Taking into a

ount missing values is a perspe
tive of resear
h, while fault-tolerant intervalpatterns should be studied, possibly strongly redu
ing their number (see e.g. [15℄ for the binary
ase). This 
hapter ends with potential use of interval pattern generators and perspe
tives ofresear
h.Generators are preferable to 
losed patterns. A

ording to the version of minimum de-s
ription length prin
iple (MDL) of [50℄, the best hypothesis to explain a dataset is the oneminimizing the sum of (i) the length in bit of the des
ription of the hypothesis, and (ii) thelength of the data des
ription when en
oded with the help of the hypothesis. The authors of [77℄re
alled how the MDL prin
iple favors generators. Consider an equivalen
e 
lass of itemset inbinary data. The maximal element, i.e. 
losed itemset, has higher 
ardinality, while generatorshave smallest 
ardinality. Therefore, the generators with minimal 
ardinality are best hypothesisto des
ribe the same set of obje
ts. The same holds for interval patterns, modulo the notion ofminimality: best patterns are those minimal w.r.t. the subsumption relation on patterns, i.e.patterns with largest interval des
ribing a same set of obje
ts. A

ording to [77℄, interval patterngenerators provide better hypothesis, and seem useful for numeri
al 
lassi�
ation problems, i.e.explaining the resulting 
luster des
ription, sin
e usually, the bounding box of obje
t des
riptions(a 
losed interval pattern), is 
onsidered.Interval patterns for k-anonymity. To preserve priva
y in a dataset, obje
t identi�ers 
anbe removed, e.g. names. However, some 
ombinations of attributes su
h as birth date and ZIP
ode possibly allow to identify a unique individual. An important method for de-identi�
ationis the method of k-anonymity [1℄. A basi
 idea is to redu
e the granularity of data des
riptionsin su
h a way that a unique individual 
annot be distinguished among at least (k − 1) indi-viduals. For numeri
al attributes, a solution is to �generalize� the attribute values to a range,redu
ing the granularity, e.g. repla
ing the age 23 by an interval [21, 24], see e.g. [112℄. Now
onsider an individual g ∈ G in a numeri
al dataset as des
ribed in this 
hapter. The des
rip-
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losed interval patterns and their generatorstion δ(g) ∈ (D,⊑) is 
omposed of degenerate intervals (i.e. same left and right borders), andis 
losed. The information brought by one of its generators (with larger intervals) is as follows:this generalization is not su�
ient enough to not uniquely identify the individual. One shouldtherefore 
onsider a smaller generator w.r.t. ⊑ depending on the 
ardinality of its image, and 
anrepla
e the individual des
ription this generator. This operation is a proje
tion of the patternsear
hspa
e.Generating asso
iation rules. It is known that asso
iation rules involving 
losed itemsetsand generators are of high interest in data-mining [10℄. Indeed, the 
on�den
e of su
h rulesis of 100% and the whole 
olle
tion of su
h rules is 
ompa
t. It is therefore an interestingperspe
tive of resear
h to mine exa
t and partial asso
iation rules within the framework of patternstru
tures, and to 
ompare with other asso
iation rule mining methods from the literature, seee.g. [116, 111, 8℄.Generators for information fusion. In the previous 
hapter we presented how pattern stru
-tures 
an enhan
e information fusion, by proposing a syntheti
 view of partial fusion results. Weshowed how a fusion operator 
an be embedded in a pattern stru
ture to rise a 
on
ept latti
e.Ea
h partial fusion result 
an be interpreted as a 
losed pattern. Therefore, the question thatautomati
ally 
omes after this 
hapter is the following. Given partial fusion result, that is a
losed pattern, what information 
an brought its generator(s) and how is it useful for informa-tion fusion tasks? Indeed, if the fused interval is 
onsidered for de
ision purposes, its generatorsmay give a useful information, i.e. the largest intervals for whi
h a same set of sour
es are inagreement. This interpretation relies on the 
hoi
e of the fusion operator (here 
onvexi�
ation),and is di�erent with other operators. Ea
h 
ase should be studied.



Chapter 8Towards bi
lustering numeri
al datawith formal 
on
ept analysisThis last 
ontribution 
hapter introdu
es our main perspe
tive of resear
h. We relate herea preliminary work on how FCA 
an help the problem of bi
lustering. Indeed, re
all that abi
luster is informally de�ned as a subre
tangle of a numeri
al table 
he
king a given 
onstraint.In many 
ases, best re
tangles are the largest ones that 
he
k this 
onstraint [81℄. The parallelwith FCA is natural sin
e formal 
on
epts are subre
tangles of �1� values in a binary tables su
hthat no super re
tangle of �1� values exists. A

ordingly, in many 
ases, a bi
luster de�nitioninvolves impli
itly a 
losure operator. This is the goal of this 
hapter to give a preliminaryoutlook on how FCA 
an help existing bi
lustering te
hniques, by 
onsidering two parti
ular
ases of bi
lusters. Moreover, this 
hapter gives answer to questions raised in [16℄.1 Introdu
tionWe 
onsider the problem of bi
lustering numeri
al data [52, 32, 81℄ using te
hniques of FormalCon
ept Analysis (FCA) [47, 46℄. A numeri
al dataset is given by sets of obje
ts, attributes,and attribute values for obje
ts (many-valued 
ontexts in terms of FCA). The des
ription of anobje
t is a tuple of values, ea
h 
omponent 
orresponding to an attribute value. An example ofnumeri
al dataset is given in Table 1 where lines denote obje
ts, while 
olumns denote attributes.To analyze su
h a dataset, a major data-mining task is 
lustering, a data analysis te
hniqueused in several domains, e.g. gene expression data analysis. It allows one to group obje
ts into
lusters a

ording to some similarity 
riteria between their des
ription, the similarity being de-�ned a

ording to an adequate distan
e, following given 
hara
teristi
s [55℄. However, 
lustersare global patterns sin
e similarity between obje
ts is 
omputed w.r.t. all attributes simultane-ously (possibly weighted). In many appli
ations, and espe
ially in gene expression data analysis,lo
al patterns are preferred [23, 81℄ and 
onsist in pairs (A,B) where A is a subset of obje
tsrelated to a subset of attributes B. Indeed, it is known that a set of genes is a
tivated (e.g.translated into proteins for enabling a biologi
al pro
ess) under some 
onditions only, i.e. onlyfor some attributes. A

ordingly, a bi
luster is generally represented by a re
tangle of values in anumeri
al data table, see e.g. a bi
luster in Table 2. In Table 1, one 
an see that both bi
lusters
({g1, g2}, {m1,m2,m3,m4}) and ({g1, g2}, {m5}) give more meaningful information than 
luster
{g1, g2} being des
ribed by all attributes, sin
e the values taken by obje
ts in A for attributesin B are more similar.There are many de�nitions of a bi
luster, depending on the relation between subsets of95



96 Chapter 8. Towards bi
lustering numeri
al data with formal 
on
ept analysisTable 1: A numeri
al dataset
m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

Table 2: ({g2, g3, g4}, {m3,m4})
m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7obje
ts and subsets of attributes, as dis
ussed in [81℄. In this 
hapter, we 
onsider two types ofbi
lusters: �rstly, 
onstant bi
lusters that 
an be represented as re
tangle of equal values (seeTable 3), and se
ondly, bi
lusters of similar values, that 
an be represented by re
tangle of similarvalues (see Table 4). In general 
ase, extra
ting all bi
lusters is an intra
table problem [81℄, so inpra
ti
e heuristi
s are used. Obviously, even best heuristi
s may result in the loss of �interesting�bi
lusters.The purpose of this 
hapter is to show that an approa
h based on Formal Con
ept Analysis(FCA [47℄) 
an be used for bi
lustering numeri
al data, leading to a 
omplete, 
orre
t and non-redundant enumeration of all maximal bi
lusters (either of 
onstant or similar values). Su
hnon-heuristi
 based enumeration has not been deeply 
onsidered in the literature due to thevery important number of possible bi
lusters. Whereas a �rst study is given in [16℄, we proposehere two equivalent FCA-based methods, whose underlying 
losure operator enables a naturalenumeration of maximal bi
lusters. The �rst one relies on 
on
eptual s
aling (dis
retization)of numeri
al data giving rise to several binary tables from whi
h bi
lusters 
an be extra
tedas formal 
on
epts. A se
ond method avoids a priori s
aling and is based on interval patternstru
tures.2 Problem settingHere a numeri
al dataset is realized by a many-valued 
ontext (G,M,W, I) where W is a setof values that obje
ts g ∈ G 
an take for attributes m ∈ M . Su
h many-valued 
ontexts areusually represented by a numeri
al table where a table-entry gives the value m(g) ∈W , i.e. thevalue taken by attribute m in 
olumn for obje
t g in line. The Table 1 gives an example (takenfrom [16℄) that we 
onsider throughout this 
hapter, with obje
ts G = {g1, ..., g4}, attributes

M = {m1, ...,m5}, and e.g. m2(g4) = 9.A bi
luster is given by a pair (A,B) with A ⊆ G and B ⊆ M . Intuitively, a bi
luster isrepresented by a re
tangle of values, or sub-table (modulo line and 
olumn permutations), seee.g. the bi
luster ({g2, g3, g4}, {m3,m4}) highlighted grey in Table 2.De�nition 8.1 (Bi
luster) Given a numeri
al dataset (G,M,W, I), a bi
luster is a pair (A,B)with A ⊆ G and B ⊆M .In [81℄, several types of bi
lusters are introdu
ed. The type of a bi
luster (A,B) dependson the relation between the values taken by attributes in B for obje
ts in A. In this 
hapter,we 
onsider 
onstant bi
lusters (equality relation) and bi
lusters of similar values (similarityrelation) as de�ned in the next paragraphs.A 
onstant bi
luster 
an be interpreted as a re
tangle of identi
al values, and is de�ned asfollows.De�nition 8.2 (Constant bi
luster) Given a numeri
al dataset (G,M,W, I), a 
onstant bi-
luster is a bi
luster (A,B) su
h that mi(gj) = mk(gl),∀gj , gl ∈ A,∀mi,mk ∈ B.
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onstant bi
luster
m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

Table 4: A bi
luster of similar values
m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7Sin
e the number of possible bi
lusters in a numeri
al dataset 
an be very large, the notion ofmaximality gives naturally rise to maximal 
onstant bi
lusters, i.e. �largest re
tangles of identi
alvalues�.De�nition 8.3 (Maximal 
onstant bi
lusters) Given a numeri
al dataset (G,M,W, I), a
onstant bi
luster (A,B) is maximal if In other terms, (A,B) is a maximal 
onstant bi
luster i�

• (A ∪ {g}, B) is not a 
onstant bi
luster ∀g ∈ G\A
• (A,B ∪ {m}) is not a 
onstant bi
luster ∀m ∈M\BTable 3 shows an example of maximal 
onstant bi
luster ({g1, g2, g3}, {m5}). One shouldremark that ({g1, g2}, {m5}) is 
onstant but not maximal. Note that maximal 
onstant bi
lusterstaking values 1 in a 1/0 table are formal 
on
epts.The fa
t that 
onstant bi
lusters 
orrespond to sets of obje
ts taking equal values for sameattributes is a too strong 
ondition in real-world data. This may lead to the well-known problemof pattern overwhelming. Instead of 
onsidering equality, one may relax this 
ondition and
onsider a similarity relation between values. This idea was introdu
ed in [16℄ for handling noisein a numeri
al dataset. Two values w1, w2 ∈ W are said to be similar if their di�eren
e doesnot ex
eed a user-de�ned parameter θ. A similarity relation denoted by ≃θ is formally de�nedby: w1 ≃θ w2 ⇐⇒ |w1 − w2| ≤ θ. A

ording to this formalization of similarity, a bi
luster ofsimilar values 
an be de�ned as a �generalization� of 
onstant bi
lusters.De�nition 8.4 (Bi
luster of similar values) A bi
luster (A,B) is a bi
luster of similar val-ues if mi(gj) ≃θ mk(gl),∀gj , gl ∈ A,∀mi,mk ∈ B.How to de�ne a maximal bi
luster of similar values is similar with maximal bi
lusters of equalvalues.Table 4 shows an example of maximal bi
luster of similar values ({g1, g2, g3}, {m1,m2,m3})with θ = 1. Note that bi
luster ({g1, g2}, {m1,m2}) ful�ls the 
onditions of similarity but is notmaximal. Obviously, 
onstant bi
lusters are bi
lusters of similar values when θ = 0.In this 
hapter we 
onsider the problem of mining all maximal (i) 
onstant bi
lusters and (ii)bi
lusters of similar values from a numeri
al dataset. The novelty here lies in the use of FormalCon
ept Analysis for a 
orre
t, 
omplete and non-redundant enumeration (without heuristi
s).Indeed, we show in the following se
tions how to de�ne a s
aling to build formal 
ontexts whose
on
epts exa
tly 
orrespond to the two types of bi
lusters. However, this leads to the de�nitionof several 
ontexts whose preparation and mining may be ine�
ient. Then, based on so-
alledinterval pattern stru
tures, we show how binarization 
an be avoided, whi
h results in redu
ingpra
ti
al 
omputational 
omplexity.
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lustering numeri
al data with formal 
on
ept analysis3 Mining bi
lusters by means of 
on
eptual s
alingIn this se
tion, we present two s
aling pro
edures allowing to build formal 
ontexts from whi
h(i) 
onstant bi
lusters and (ii) bi
lusters of similar values, 
an be extra
ted within the existingFCA framework. Intuitively, s
aling allows to express bi
luster sear
hspa
e under the form ofbinary tables, while the Galois 
onne
tion allows to extra
t maximal bi
lusters represented as
on
epts.3.1 Constant bi
lustersAmaximal 
onstant bi
luster 
an be interpreted as a maximal re
tangle of identi
al values. Re
allthat formal 
on
epts 
orrespond to maximal re
tangles of 1 values in binary tables. A

ordingly,a maximal 
onstant bi
luster 
ontaining values w ∈ W from a numeri
al dataset (G,M,W, I)
orresponds to a 
on
ept in a 
ontext Kw = (G,M, Iw) where (g,m) ∈ Iw ⇐⇒ m(g) = w. Oneshould naturally 
onsider one formal 
ontext for ea
h value w ∈ W , whi
h results in a 
ontextfamily KW de�ned as follows:
KW = {Kw = (G,M, Iw) | w ∈W (m, g) ∈ Iw ⇐⇒ m(g) = w}The pro
edure building the family KW from (G,M,W, I) involves one 
on
eptual s
aling for ea
h

w ∈W (a
tually nominal s
alings related to ea
h value w [47℄). Figure 1 gives Kw = (G,M, Iw)for w = 1 and w = 6. The 
olle
tion of 
on
epts of ea
h 
ontext Kw = (G,M, Iw) is denoted by
B(G,M, Iw), or simply Bw. Examples are given in Figure 1.

w ∈W Kw Bw Bi
luster 
orresponding to�rst 
on
ept on left list... ... ... ...
1

m
1

m
2

m
3

m
4

m
5

g1 × ×
g2 × ×
g3 ×
g4

({g2, g3}, {m3})
({g2}, {m2,m3})
({g1}, {m1,m4})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7... ... ... ...

6

m
1

m
2

m
3

m
4

m
5

g1 ×
g2 ×
g3 ×
g4 ×

({g1, g2, g3}, {m5})
({g4}, {m4})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7... ... ... ...Figure 1: Extra
ting 
onstant bi
lusters from the dataset of Table 1The two obvious propositions hold.
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lusters by means of 
on
eptual s
aling 99Proposition 8.1 Given a set of obje
ts A ⊆ G and a set of attributes B ⊆M , a 
on
ept (A,B)of Kw 
orresponds to a maximal 
onstant bi
luster (A,B) of values w from numeri
al dataset
(G,M,W, I).Proposition 8.2 There is a one-to-one 
orresponden
e between the set of 
on
epts ⋃w∈W Bwand the set of all maximal bi
lusters.Hen
e, an algorithm that 
onstru
ts the set of 
on
epts ⋃w∈W Bw gives a 
orre
t, 
ompleteand non redundant enumeration of all maximal 
onstant bi
lusters.Figure 1 gives two examples of 
on
epts and their 
orresponding bi
luster representation inthe original numeri
al table.3.2 Bi
lusters of similar valuesThe number of 
onstant bi
lusters 
an be very large in real-world data, where numeri
al attributedomains 
ontain many di�erent values. Moreover, it leads to a huge number of artifa
ts, e.g.the maximal 
onstant bi
luster (A,B) = ({g4}, {m4}) is a re
tangle of area 1, i.e. the produ
t
|A|×|B|. One should therefore relax the equality 
onstraint on numeri
al values when performings
aling with similarity relation ≃θ de�ned in the introdu
tion. Intuitively, with θ = 1, theprevious example is not maximal anymore, whereas ({g3, g4}, {m4,m5}) is maximal with areaequal to 4. For that matter, one should extra
t re
tangles with pairwise similar values w.r.t ≃θ.However, this relation is re�exive and symmetri
 but not transitive, hen
e a toleran
e relation.As related in [71℄, a toleran
e relation T over an arbitrary set G, i.e. T ⊆ G × G, 
an berepresented by a formal 
ontext (G,G, T ). A formal 
on
ept of (G,G, T ) where intent is equalto extent 
orresponds to a 
lass of toleran
e, i.e., a maximal subset of G su
h that all pairs ofits elements are in relation T .Going ba
k to the toleran
e relation ≃θ on a set of values W , toleran
e 
lasses are maximalsets of pairwise similar values, 
orresponding to 
on
epts (A,B) of (W,W,≃θ) su
h that A = B.This is exa
tly what we need to 
hara
terize maximal bi
lusters of similar values. More detailson this pro
ess were given in Chapter 5, while we show below initial 
ontext (W,W,≃θ) and
orresponding 
lasses of toleran
e from the numeri
al dataset of Table 1.
≃1 0 1 2 6 7 8 90 × ×1 × × ×2 × ×6 × ×7 × × ×8 × × ×9 × ×

Classes of toleran
e
{0, 1}
{1, 2}
{6, 7}
{7, 8}
{8, 9}

Renamed 
lasses
[0, 1]
[1, 2]
[6, 7]
[7, 8]
[8, 9]Now that 
lasses of toleran
e, or maximal sets of pairwise similar values, are 
hara
terizedand 
omputed, we 
an rename them for sake of readability and use them for s
aling the initialdataset from whi
h maximal bi
lusters of similar values 
an be extra
ted.We 
hoose to rename a 
lass K ⊆ W as the 
onvex hull of its elements, i.e. the interval

[ki, kj ] s.t. ki and kj are respe
tively smallest and largest values of K w.r.t. natural order ≤on numbers. Indeed, when |K| be
omes large for 
ertain data, this new name is more 
on
ise.Moreover, any k ∈ [ki, kj ] respe
ts k ≃θ ki ≃θ kj .
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lustering numeri
al data with formal 
on
ept analysisBi
lusters of similar values are a generalization of 
onstant ones, i.e. with all values in
ludedin interval [ki, kj ] for a given 
lass of toleran
e. We should now also 
onsider one formal 
ontextfor ea
h 
lass of toleran
e, hen
e a family of 
ontexts. Consider a numeri
al dataset (G,M,W, I),and a 
lass of toleran
e from W whi
h 
orresponds to the interval [ki, kj ]. The asso
iated formal
ontext is given by:
(G,M, I[ki,kj]) s.t. (g,m) ∈ I ⇔ m(g) ∈ [ki, kj ] and all values n(h) from

{h ∈ G|h(m) ≃θ m(g)} and{n ∈M |n(g) ≃θ m(g)} are similar.First 
ondition m(g) ∈ [ki, kj ] means that m(g) should be similar with all elements of the
urrent 
lass of toleran
e. The se
ond 
ondition 
ome from the fa
t that 
lasses of toleran
e are
omputed from the set W : sin
e a bi
luster is represented by a re
tangle in the numeri
al table,we should 
onsider only similar values in 
olumn and lines to test whether a value belongs to a
lass of toleran
e.Consider the formal 
ontext K[ki,kj ] whi
h 
orresponds to the 
lass of toleran
e [ki, kj ] and a
on
ept (A,B) from this 
ontext. The following propositions hold.Proposition 8.3 (A,B) is a maximal bi
luster of similar values.Proposition 8.4 There is a one-to-one 
orresponden
e between the set of 
on
epts from allformal 
ontexts K[ki,kj] and the set of all maximal bi
lusters of similar values.Thus, an algorithm 
omputing the set of 
on
epts from all formal 
ontexts K[ki,kj ] gives a 
orre
t,
omplete and non redundant enumeration of maximal bi
lusters of similar values.Figure 2 gives the formal 
ontext K[ki,kj ] for ea
h 
lass of toleran
e [ki, kj ], their respe
tive
on
epts and bi
luster representation in the initial numeri
al Table 1.4 Mining bi
lusters from pattern 
on
ept latti
eUntil now, we presented how (
onstant) bi
lusters (of similar) values 
an be extra
ted usingstandard FCA tools su
h as s
aling and 
on
ept extra
tion algorithms. Sin
e resulting binarytables may be numerous and large (i.e. one for ea
h 
lass of toleran
e), we present in this se
tionan approa
h based on interval pattern stru
tures, introdu
ed in Chapter 4 that we �rstly brie�yre
all with our 
urrent example. We 
onsider in this se
tion only bi
lusters of similar values,sin
e being more general than 
onstant ones and more useful for real-world appli
ations.4.1 Interval pattern stru
turesIn Chapter 4, a numeri
al dataset (G,M,W, I) is represented by a so-
alled interval patternstru
ture (G, (D,⊓), δ) where D is a set of interval ve
tors, the ith dimension giving an intervalof values from W for attribute mi ∈M . We denote su
h ve
tors as interval patterns. In Table 1,the des
ription of obje
t g1 is the interval pattern δ(g1) = 〈[1, 1], [2, 2], [2, 2], [1, 1], [6, 6]〉. Intervalpatterns 
an be represented as |M |-hyperre
tangles in Eu
lidean spa
e R|M |, whose sides areparallel to the 
oordinate axes.Now we re
all how interval patterns are ordered. Consider �rstly a single attribute m ∈M ,with value domain Wm ⊆ W . Elements of Wm 
an be ordered within a meet-semi-latti
emaking them potential obje
t des
riptions. Re
alling that any w ∈ Wm 
an be written asinterval [w,w], the in�mum ⊓ of two intervals [a1, b1] and [a2, b2], with a1, b1, a2, b2 ∈ R is:
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lusters from pattern 
on
ept latti
e 101
Class of Formal 
ontexta Con
epts Bi
luster 
orresponding totoleran
e �rst 
on
ept on left list
[0, 1]

m2 m3 m4

g1 ×
g2 × × ×

({g1, g2}, {m4})
({g2}, {m2,m3,m4})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

[1, 2]

m1 m2 m3 m4

g1 × × × ×
g2 × × ×
g3 × × ×
g4 ×

({g1, g2, g3}, {m1,m2,m3})
({g1}, {m1,m2,m3,m4})
({g1, g2, g3, g4}, {m3})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

[6, 7]

m4 m5

g1 ×
g2 ×
g3 × ×
g4 × ×

({g3, g4}, {m4,m5})
({g1, g2, g3, g4}, {m5})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

[7, 8]
m1 m5

g4 × ×
({g4}, {m1,m5})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

[8, 9]
m1 m2

g4 × ×
({g4}, {m1,m2})

m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7aEmpty lines and 
olumns are omitted.Figure 2: Extra
ting all maximal bi
lusters of similar values from Table 1
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Figure 3: Pattern 
on
ept latti
e of pattern stru
ture from Table 1.
[a1, b1] ⊓ [a2, b2] = [min(a1, a2),max(b1, b2)], i.e. the largest interval 
ontaining them. Indeed,when c and d are intervals, c ⊑ d⇔ c ⊓ d = c holds:

[a1, b1] ⊑ [a2, b2] ⇔ [a1, b1] ⊓ [a2, b2] = [a1, b1]
⇔ [min(a1, a2),max(b1, b2)] = [a1, b1]
⇔ a1 ≤ a2 and b1 ≥ b2
⇔ [a1, b1] ⊇ [a2, b2].As obje
ts are des
ribed by several intervals, ea
h one standing for a given attribute, intervalpatterns have been introdu
ed as p-dimensional ve
tor of intervals, with p = |M |. Given twointerval patterns e = 〈[ai, bi]〉i∈[1,p] and f = 〈[ci, di]〉i∈[1,p] their in�mum ⊓ and indu
ed orderingrelation ⊑ are given by:

e ⊓ f = 〈[ai, bi]〉i∈[1,p] ⊓ 〈[ci, di]〉i∈[1,p] e ⊑ f ⇔ 〈[ai, bi]〉i∈[1,p] ⊑ 〈[ci, di]〉i∈[1,p]
= 〈[ai, bi] ⊓ [ci, di]〉i∈[1,p] ⇔ [ai, bi] ⊑ [ci, di], ∀i ∈ [1, p]This means that patterns with larger intervals are subsumed by patterns with smaller ones.Hen
e, one 
an de�ne a pattern stru
ture (G, (D,⊓), δ) from a numeri
al dataset (G,M,W, I),where (D,⊓) is a meet-semi-latti
e of interval patterns. This is deeply detailed in Chapter 4.We illustrate here the Galois 
onne
tion.

{g2, g3}
� = δ(g2) ⊓ δ(g3)

= 〈[2, 2], [1, 2], [1, 1], [0, 7], [6, 6]〉

〈[2, 2], [1, 2], [1, 1], [0, 7], [6, 6]〉� = {g ∈ G|〈[2, 2], [1, 2], [1, 1], [0, 7], [6, 6]〉 ⊑ δ(g)}
= {g2, g3}Hen
e ({g2, g3}, 〈[2, 2], [1, 2], [1, 1], [0, 7], [6, 6]〉) is a pattern 
on
ept. The set of all pattern 
on-
epts gives rise to a pattern 
on
ept latti
e, see Figure 3 for our example. In this �gure, three 
on-
epts are fully des
ribed with respe
tive pattern extent and intent. Intuitively, (A1, d1) ≤ (A2, d2)means that 
orresponding hyperre
tangle of (A1, d1) is in
luded in 
orresponding hyperre
tangleof (A2, d2).
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e 103Table 5: Interval pattern as bi
luster
m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 7

Table 6: Introdu
ing θ = 1
m1 m2 m3 m4 m5

g1 1 2 2 1 6
g2 2 1 1 0 6
g3 2 2 1 7 6
g4 8 9 2 6 74.2 Bi
lusters of similar values in pattern 
on
eptsA pattern 
on
ept (A, d) of a numeri
al dataset (G,W,M, I) 
an be seen as a bi
luster (A,M)sin
e it gives a range of value for ea
h attribute m ∈M . Bi
luster representation of ({g2, g3},

〈[2, 2], [1, 2], [1, 1], [0, 7], [6, 6]〉) is given in Table 5.However, a pattern 
on
ept (A, d) is not ne
essarily a bi
luster of similar values, for threereasons. First, d may 
ontain intervals larger than θ, i.e. all values in 
olumns are not ne
essarilysimilar. Se
ondly, d may 
ontain di�erent intervals whose values are not similar, i.e. all values inlines may not be similar. Finally, if those 
onditions are respe
ted, it is not sure that maximalityof bi
lusters holds. We show how to 
ontrol these statements to extra
t maximal bi
lusters ofsimilar values from the pattern 
on
ept latti
e.First statement. Avoiding intervals of size larger than θ in a pattern intent d means thata pattern 
on
ept will 
orrespond to a re
tangle for whi
h ea
h 
olumn has similar values. Forthat matter, 
onsider a modi�
ation (G, (D∗,⊓), δ) of the interval pattern stru
ture de�ned inthe previous subse
tion: the set D∗ 
onsists of tuples, whose 
omponents are either intervals orthe null element ∗. For two intervals [a1, b1] and [a2, b2], with a1, b1, a2, b2 ∈ R their in�mum ⊓ isde�ned as follows: [a1, b1]⊓ [a2, b2] = [min(a1, a2),max(b1, b2)] if |max(b1, b2)−min(a1, a2)| ≤ θand ∗ otherwise. Moreover, ∗ ⊓ [a, b] = ∗ for any a, b ∈ R. Consider that for d ∈ D, dmdenotes the interval given for attribute m ∈ M . Now, given two interval ve
tors c = 〈ci〉 and
d = 〈di〉 their in�mum is 
omputed 
omponentwise: c ⊓ d = 〈ci ⊓ di〉. Applying operatorsof the Galois 
onne
tion on set {g2, g3} derives the 
on
ept ({g2, g3}, 〈[2, 2], [1, 2], [1, 1], ∗, [6, 6]〉),while starting with set {g1, g4} allows to derive 
on
ept ({g1, g2, g3, g4}, 〈∗, ∗, [1, 2], ∗, [6, 6]〉). Theresulting pattern 
on
ept latti
e is given in Figure 4 and 
ontains only 11 
on
epts 
ompared to
16 when the operation ⊓ is not 
onstrained with θ. Table 6 shows the bi
luster representation of
({g2, g3}, 〈[2, 2], [1, 2], [1, 1], ∗, [6, 6]〉), i.e. a re
tangle for whi
h values in ea
h 
olumn are similarw.r.t. θ = 1. Note that one should ignore attributes that take the value ∗ in pattern intent.Se
ond statement. From a pattern stru
ture (G, (D∗,⊓), δ), we are able to build a pat-tern 
on
ept latti
e whose 
on
epts 
orresponds to re
tangles having similar values in 
olumns.We should therefore also 
onsider similar values in lines. Going ba
k to 
on
ept ({g2, g3},
〈[2, 2], [1, 2], [1, 1], ∗, [6, 6]〉), we remark that ({g2, g3}, {m1,m2,m3}) and ({g2, g3}, {m5}) arebi
lusters of similar values that 
an be built from the initial pattern 
on
ept. Indeed, the in-tervals des
ribing attributes m1, m2, and m3 and pairwise similar ([2, 2] ≃θ [1, 2] ≃θ [2, 2] with
θ = 1), while interval des
ribing attribute m5 is similar with no others. We should a

ord-ingly 
onsider 
lasses of toleran
e between attribute des
riptions to extra
t bi
lusters of similarvalues. The similarity relation ≃θ is adapted for intervals as follows: [a1, b1] ≃θ [a2, b2] ⇐⇒
max(b1, b2)−min(a1, a2) ≤ θ.Proposition 8.5 Given a pattern 
on
ept (A, d), any pair (A,B) with B ⊆M is a bi
luster ofsimilar values i� {dm}∀m∈B is a 
lass of toleran
e w.r.t. relation ≃θ over the set {dm}∀m∈M .
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lustering numeri
al data with formal 
on
ept analysisProof 8.1 Consider that (A,B) is not a bi
luster of similar values: ∃g1, g2 ∈ A, and ∃m1,m2 ∈
B su
h that m1(g1) 6≃θ m2(g2), a 
ontradi
tion.Third statement. By 
ontrolling the two �rst statements, we are able to extra
t bi
lustersof similar values from the pattern 
on
ept latti
e of (G, (D∗,⊓), δ). By the properties of 
lassesof toleran
e making a 
lass a maximal set of similar values, we know that bi
lusters are maximalin 
olums, i.e. no 
olumns 
an be added without violating the similarity relation. However, weare not sure that bi
lusters are maximal in lines. Going ba
k to previous example, i.e. ({g2, g3},
〈[2, 2], [1, 2], [1, 1], ∗, [6, 6]〉), the extra
ted bi
lusters ({g2, g3}, {m1,m2,m3}) and ({g2, g3}, {m5})are not maximal. Indeed, we have ({g1, g2, g3}, {m1,m2,m3}) and ({g1, g2, g3}, {m5}) thatare also bi
lusters of similar values. If su
h bi
lusters are not maximal, this means that ob-je
ts 
an be added in the extent A while B remains the same set. Due to the generaliza-tion/spe
ialization property of 
on
ept latti
es, su
h larger bi
luster 
an be found in the di-re
t upper neighbours of 
on
ept ({g2, g3}, 〈[2, 2], [1, 2], [1, 1], ∗, [6, 6]〉), i.e. 
on
ept ({g1, g2, g3},
〈[1, 2], [1, 2], [1, 2], ∗, [6, 6]〉)Example. The Figure 4 gives the pattern 
on
ept latti
e of (G, (D∗,⊓), δ) with θ = 121.For ea
h pattern intent, elements of ea
h 
lass of toleran
e are either underlined, 
rossed-o�,or in bold. For a pattern 
on
ept (A, d), when a 
lass is underlined, or in bold, it meansthat (A,B), B being the set of attribute 
orresponding to this 
lass, is a maximal bi
luster ofsimilar values. If element of the 
lass are 
rossed-o�, this means that (A,B) is not maximal,i.e (C,B) with A ⊂ C 
an be 
hara
terized also in a dire
t upper 
on
ept. For example,take 
on
ept ({g1, g2}, 〈[1, 2], [1, 2], [1, 2], [0, 1], [6, 6]〉). From this 
on
ept, a

ording to 
lasses oftoleran
e, one 
an 
hara
terize the following bi
lusters of similar values ({g1, g2}, {m1,m2,m3}),
({g1, g2}, {m4}) and ({g1, g2}, {m5}). However, ({g1, g2}, {m4}) is the one only that is maximal,i.e. that 
annot be 
hara
terized from upper pattern 
on
epts with larger extents.Hen
e, all bi
lusters of similar values 
an be 
omputed from pattern 
on
epts by standardalgorithms. These 
onsiderations lead to two dual ways of 
onstru
ting maximal bi
lusters ofsimilar values as pattern 
on
epts: bottom-up and top-down.5 Dis
ussion and 
on
lusionThis 
hapter fo
used on the problem of bi
lustering numeri
al data with formal 
on
ept analysis.The goal was not to propose a new kind of bi
luster, but rather to argue that two existing typesof bi
lusters 
an be extra
ted using FCA te
hniques. For that matter, we proposed two methodsprodu
ing equivalent results. The �rst is based on 
on
eptual s
aling, while the se
ond on intervalpattern stru
tures. It is now expe
ted to experiment these approa
hes, 
ompare them with otherbi
lustering algorithms (e.g. from [16℄) and investigate how to handle other types of bi
lustersde�ned in [81℄. We should also study the impa
t of the variation of θ on the 
on
ept latti
egranularity, or dually on the number of formal 
ontexts/
on
epts. Finally, we should examinehow formal 
on
ept analysis in fuzzy seetings 
an 
ontribute to bi
lustering problems. Indeed,similarity and toleran
e relations are widely studied in su
h settings [13℄.We dis
uss now our both methods.Consider the method based on s
aling. The strength of su
h approa
h is to produ
e binarytables. Any FCA algorithm (dis
ussed and 
ompared in [74℄), or 
losed itemset algorithm (e.g.21When an interval from a pattern intent has same left and right borders, a value is given instead for sake ofreadability
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⊥

({g1}, 〈1, 2, 2, 1,6〉) ({g2}, 〈2,1,1, 0,6〉) ({g3}, 〈 2,2,1,7,6〉) ({g4}, 〈8, 9,2,6,7 〉)
({g1, g2},

〈[1,2℄,[1,2℄,[1,2℄, [0, 1],6〉) ({g1, g3},

〈[1,2℄,2,[1,2℄, ∗,6〉) ({g2, g3},

〈 2,[1,2℄,1, ∗,6 〉 ({g3, g4},

〈∗, ∗, [1,2℄, [6, 7], [6, 7]〉)
({g1, g2, g3},

〈[1, 2], [1, 2], [1, 2], ∗,6 〉)
({g1, g2, g3, g4},

〈∗, ∗, [1, 2], ∗, [6, 7]〉)

Figure 4: Pattern 
on
ept latti
e of pattern stru
ture from Table 1 with θ = 1.Charm [53℄) 
an be used for extra
ting bi
lusters. Moreover, sin
e ea
h 
ontext of the produ
edfamily is independent from the others, a distributed 
omputation is naturally possible: one 
ore
an be assigned for ea
h formal 
ontext. It also allows to mine other kinds of binary patterns. Forexample, one 
an mine fault-tolerant patterns that would 
orrespond to quasi bi
lusters of similarvalues, i.e. a

epting some ex
eptions, see e.g. [98℄. Meanwhile, sear
hing for frequent bi
lusters(i.e. involving a number of obje
ts higher than a user-de�ned threshold [119℄) is straightforward.It rises also interesting questions: what is the meaning of an asso
iation rule? of a minimalgenerator?The se
ond method proposes to extra
t bi
lusters from a 
on
ept latti
e, providing an in-teresting ordered hierar
hy of bi
lusters. Computing the pattern 
on
ept latti
e by adaptingstandard FCA algorithms su
h as CloseByOne is e�
ient as experimented in Chapter 4, whilethis algorithm 
an be parallelized [67℄. In Chapter 7, CloseByOne was adapted to mine frequent
losed interval patterns and their minimal generators. How this algorithm 
an be adapted formining frequent bi
lusters is an interesting perspe
tive of resear
h. The fa
t that bi
lusters 
anbe extra
ted from an ordered hierar
hy of 
on
epts make the pattern 
on
ept latti
e a goodstru
ture for user queries. For example, a biologist may be interested in a parti
ular set of genesfor a given study. A

ordingly, navigating in the 
on
ept latti
e helps him dis
overing the dif-ferent bi
lusters in whi
h those genes o

urs with other good 
andidates. We 
an des
ribe su
hquery as extensional sin
e it starts by given a set of obje
ts. On another hand, the approa
hbased on s
aling is more useful for so 
alled intentional queries: the biologist is interested in allbi
lusters with values in a given interval (or 
lass of toleran
e) and a

ordingly only sele
ts theformal 
ontext asso
iated to this 
lass.
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Chapter 9Con
lusion and perspe
tives1 SummaryStarting from large volumes of data, knowledge dis
overy in databases (KDD) 
onsists in derivingknowledge units that 
an be further used for solving real-world problems. A major step of thispro
ess is data-mining and aims at automati
ally extra
ting patterns from a large sear
h-spa
ewhile the step of knowledge derivation is fa
ilitated when formalizing knowledge as 
on
epts.Indeed, knowledge units represented in an adequate representation formalism and may be inte-grated in ontologies to be re-used for solving problems in appli
ation domains.Formal 
on
ept analysis is a mathemati
al framework that both allows a 
omprehensive for-malization of 
on
epts and provides patterns of 
hoi
e, namely formal 
on
epts, that are natural(bi)
lusters of the input data. The set of ordered 
on
epts form a 
on
ept latti
e that expressesa generalization/spe
ialization relation of 
on
epts. The 
on
ept latti
e supports many appli-
ations in information and knowledge pro
essing in
luding visualization, data analysis (mining)and knowledge management.However, FCA applies to binary relations in standard settings. In real-world appli
ations,e.g. in biology or 
hemistry, one rarely obtains binary data dire
tly, 
omplex and heterogeneousdata involving numbers, graphs, intervals, et
., are more typi
al. Before applying FCA on
omplex data, a transformation named 
on
eptual s
aling has to be a
hieved, e.g. dis
retizationof numeri
al values. Although this transformation allows FCA to be applied, it 
omes eitherwith loss of information (e.g. numeri
al data), or hard 
omputational properties (e.g. graphdata). In best 
ases, a KDD pro
ess should always 
onsider the same representation formalismof data and patterns.For that matter, we proposed a new approa
h based on FCA to 
onsider numeri
al data byadapting pattern stru
tures to numeri
al data. This approa
h does not involve dis
retization,and is de�ned as a natural extension of FCA. The data are represented by interval patternstru
tures from whi
h so 
alled interval patterns 
an be extra
ted. An interval pattern is ave
tor of intervals, ea
h dimension 
orresponding to a range of values some obje
ts 
an take for agiven attribute. An interval pattern 
an be represented in Eu
lidean spa
e as a hyper-re
tangleproviding a semanti
 of formal de�nitions and models.A major problem with real-world data is pattern overwhelming : the size of the result (i.e.the number of extra
ted 
on
epts) is exponentially larger than the input (i.e. the number ofobje
ts, or dually attributes). Sin
e pattern overwhelming is even worst in numeri
al data, weproposed several algorithms to extra
t 
losed patterns (and their generators). We also designed
onstraints that should be respe
ted by extra
ted patterns and studied how a similarity relation107
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lusion and perspe
tivesbetween numeri
al values 
an be embedded in interval pattern stru
tures. These methods weresu

essfully applied to both biologi
al and agronomi
 appli
ations, su
h as gene expression dataanalysis, and de
ision helping for 
rop sanity.2 Perspe
tivesInterval pattern stru
tures establish the basis of a new point of view for mining numeri
al datafrom whi
h many perspe
tives arise. In the following, we divide them into several se
tions.Firstly, the approa
h 
an be used for the extra
tion of bi-
lusters, widely used for appli
ationsin biology and re
ommender systems, with e�
ient algorithms and adequate semanti
s la
kingin the literature. Se
ondly, thanks to a 
losure operator de�ned on numeri
al patterns, thede�nition of 
losed patterns and generators provides an interesting starting point for generatingasso
iation rules, the latter being used for supervised 
lassi�
ation tasks. Thirdly, we believethat 
losed patterns and their generators 
an be used for the k-anonymization of datasets forpreserving priva
y, a 
riti
al issue with the intensive publi
ation of datasets on the web. Finally,we dis
uss 
omputational issues and extension of our work on information fusion with patternstru
tures.2.1 Bi
lustering of numeri
al dataWhereas the basi
 form of an interval pattern is very general, we remarked that it 
an beadapted to many types of bi
lusters. Firstly, we gave in Chapter 5 means to extra
t maximalsets of obje
ts having similar values for ea
h attribute from a maximal set of attributes. In thelast 
hapter, we presented how to extra
t maximal re
tangles of similar values. Other bi-
lustertypes 
an be handled similarly, e.g. the so-
alled δ-valid k-s bi
lusters [28℄.A

ordingly, a natural plan of resear
h aims at surveying the di�erent types of bi
lustersand their respe
tive methods of extra
tion. This implies the design of e�
ient and s
alablealgorithms, and their 
omparison with state-of-the-art algorithms. Indeed, as related in [16℄�very few resear
hers have investigated the non heuristi
, say 
omplete, sear
h of well-spe
i�edlo
al patterns from numeri
al data�.Our investigation is motivated from two points of view. Firstly de�ning appropriate s
alingseems possible for several 
ases, and 
omes with very e�
ient algorithms from 
losed itemsetmining 
ommunity, and tools for handling noise [98℄. Se
ondly, pattern stru
tures allow a dire
tand ordered enumeration of bi
lusters sin
e being probably the most general patterns in numeri
aldata (this explains their huge number that we initially redu
ed thanks to toleran
e relations).Embedding 
onstraints upon pattern order 
ould also be helpful for redu
ing the set of patterns tothose of interest. Naturally, the notion of interestingness of bi
lusters has also to be investigated,a lot of e�ort has been done in this area [81℄.Furthermore, we remark that the method designed for extra
ting maximal re
tangles ofsimilar values 
an be easily extended to multi-dimensional dataset. Consider a gene expressiondataset genes× situations× timestamps. In these settings, a pattern 
orresponds to a maximal
ube of similar values interpreted as a maximal set of genes having similar expression values in
ertain biologi
al situations for given times. Interval pattern stru
tures 
an be easily adapted,s
aling as well. Furthemore, s
aling would lead to n-ary relations, whose mining has been re
ently
onsidered from an algorithmi
 point of view with the e�
ient algorithm data-peeler [30℄, andfrom a noise toleran
e point of view [29℄.



2. Perspe
tives 1092.2 Numeri
al pattern-based 
lassi�erThis perspe
tive deals with supervised 
lassi�
ation. Given a set of obje
ts, their des
ription andtheir target 
lass, the aim is to build a model able to dis
over the target 
lass of a new individual.A new trend of resear
h relies on so 
alled �pattern based 
lassi�ers�. Given the group of obje
tswith same target 
lass, the goal is to dis
over the best patterns that 
hara
terize the 
lass, and usethem for the 
lassi�
ation of a new individual. A

ording to the version of minimum des
riptionlength prin
iple (MDL) of [50℄, the best hypothesis to explain a dataset is the one minimizingthe sum of (i) the length in bits of the des
ription of the hypothesis, and (ii) the length of thedata des
ription when en
oded with the help of the hypothesis. The authors of [77℄ re
alled howthe MDL prin
iple favors itemset generators as follows. Consider an equivalen
e 
lass of itemsetsin binary data, i.e. set of itemsets with same image, being shared by the same set of obje
ts.The maximal element, i.e. 
losed itemset, has higher 
ardinality, while generators have smallest
ardinality. Therefore, the generators with minimal 
ardinality are best hypothesis to des
ribethe same set of obje
ts. The same holds for interval patterns, modulo the notion of minimality:best patterns are those minimal w.r.t. a subsumption relation on patterns, i.e. patterns withlargest intervals des
ribing a same set of obje
ts. A

ording to [77℄, interval pattern generatorsprovide better hypothesis, and seem useful for numeri
al 
lassi�
ation problems, i.e. explainingthe resulting 
luster des
riptions, sin
e usually, the bounding boxes of obje
t des
riptions are
onsidered (
orresponding to 
losed interval patterns).2.3 k-anonymity by means of proje
tionsMost of the datasets are published on the Web, but they 
an 
ontain private information aboutindividuals. To preserve priva
y in a dataset, obje
t identi�ers 
an be removed, e.g. individualnames. However, some 
ombinations of attributes su
h as birth date and ZIP 
ode possibly allowto identify a unique individual. An important method for de-identi�
ation is the method of k-anonymity [1℄. A basi
 idea is to redu
e the granularity of data des
riptions in su
h a way thata unique individual 
annot be distinguished among at least (k − 1) individuals. For numeri
alattributes, a solution is to �generalize� the attribute values to a range, redu
ing the granularity,e.g. repla
ing the age 53 by an interval [50, 60], see e.g. [112℄.In interval pattern stru
ture settings, the des
ription of an individual is a 
losed pattern. Theinformation brought by one of its generators (with larger intervals) is as follows: this generaliza-tion is not su�
ient enough to not uniquely identify the individual. One should therefore 
onsidera smaller generator w.r.t. a subsumption relation on patterns, depending on the 
ardinality ofits image, and 
an repla
e the individual des
ription by this generator, i.e. operate a proje
tion.We plan to investigate su
h proje
tion, and to not restri
t only to numeri
al attributes.2.4 Computational issuesAnother 
ru
ial point for interval pattern stru
tures 
on
erns algorithmi
 issues. We showed thatinterval pattern stru
tures 
an be redu
ed to formal 
ontexts in many di�erent ways dependingon the exa
t formulation of output patterns. It follows that e�
ient algorithms of 
losed-itemsetalgorithms 
an be used, FCA algorithms as well. However, it happens that the resulting binarytable is 
ompletely ine�
ient to pro
ess, espe
ially with interordinal s
aling. The se
ond way onpro
essing pattern stru
tures is to adapt FCA algorithms. For example we pay a lot of attentionin adapting the algorithm Close By One for mining interval patterns. A drawba
k of severalFCA algorithms is that they rely on 
losure 
omputations that involve an important number ofdatabase s
an. Closed itemset mining algorithms generally s
an the database only one time. How
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lusion and perspe
tivesthese algorithms 
an be shifted to 
onsider numeri
al data dire
tly is a important perspe
tiveof resear
h, 
oming with the design of adapted data stru
tures for storing interval patterns and
omputing/estimating their frequen
y e�
iently.2.5 Information fusionIn Chapter 6 we argued that Formal Con
ept Analysis has the 
apa
ity of supporting a de
isionmaking pro
ess in the presen
e of information fusion problems, even when information are 
om-plex, e.g. patterns of numbers, thanks to the formalism of pattern stru
tures. We showed how a(pattern) 
on
ept latti
e enhan
es the expert de
ision: instead of providing a unique fusion resultwhi
h 
an be problemati
 (usually the 
ase in the literature), resulting pattern 
on
ept latti
eyields a stru
tured view of partial results labelled by subsets of sour
es. This work lies in ba-si
 information fusion settings: no knowledge on sour
es (reliability, preferen
e order, et
.) wereavailable and we 
onsidered basi
 fusion operators (union, interse
tion, 
onvexi�
ation 
ontrolledby a similarity relation, and the method based on maximal 
oherent subsets). As a perspe
tive,it is interesting to study how other fusion operators 
an be embedded in a 
on
ept latti
e, as wellas meta-information on sour
es (when available). This is 
losely related latti
e-based argumentstru
tures and possibility theory [75℄.
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RésuméLe sujet prin
ipal de 
ette thèse porte sur la fouille de données numériques et plus parti-
ulièrement de données d'expression de gènes. Ces données 
ara
térisent le 
omportement degènes dans diverses situations biologiques (temps, 
ellule, et
.). Un problème important 
on-siste à établir des groupes de gènes partageant un même 
omportement biologique. Cela permetd'identi�er les gènes a
tifs lors d'un pro
essus biologique, 
omme par exemple les gènes a
tifs lorsde la défense d'un organisme fa
e à une attaque. Le 
adre de la thèse s'ins
rit don
 dans 
eluide l'extra
tion de 
onnaissan
es à partir de données biologiques. Nous nous proposons d'étudier
omment la méthode de 
lassi�
ation 
on
eptuelle qu'est l'analyse formelle de 
on
epts (AFC)peut répondre au problème d'extra
tion de familles de gènes. Pour 
ela, nous avons développéet expérimenté diverses méthodes originales en nous appuyant sur une extension peu exploréede l'AFC : les stru
tures de patrons. Plus pré
isément, nous montrons 
omment 
onstruire untreillis de 
on
epts synthétisant des familles de gènes à 
omportement similaire. L'originalité de
e travail est (i) de 
onstruire un treillis de 
on
epts sans dis
rétisation préalable des données demanière e�
a
e, (ii) d'introduire une relation de similarité entres les gènes et (iii) de proposerdes ensembles minimaux de 
onditions né
essaires et su�santes expliquant les regroupementsformés. Les résultats de 
es travaux nous amènent également à montrer 
omment les stru
turesde patrons peuvent améliorer la prise de d é
ision quant à la dangerosité de pratiques agri
olesdans le vaste domaine de la fusion d'information.Mots-
lés : Dé
ouverte de 
onnaissan
es, analyse formelle de 
on
epts, extra
tion de motifsnumériques, bi-
lustering, fusion d'informationAbstra
tThe main topi
 of this thesis addresses the important problem of mining numeri
al data,and espe
ially gene expression data. These data 
hara
terize the behaviour of thousand ofgenes in various biologi
al situations (time, 
ell, et
.). A di�
ult task 
onsists in 
lusteringgenes to obtain 
lasses of genes with similar behaviour, supposed to be involved together withina biologi
al pro
ess. A

ordingly, we are interested in designing and 
omparing methods inthe �eld of knowledge dis
overy from biologi
al data. We propose to study how the 
on
eptual
lassi�
ation method 
alled Formal Con
ept Analysis (FCA) 
an handle the problem of extra
tinginteresting 
lasses of genes. For this purpose, we have designed and experimented several originalmethods based on an extension of FCA 
alled pattern stru
tures. Furthermore, we show thatthese methods 
an enhan
e de
ision making in agronomy and 
rop sanity in the vast formaldomain of information fusion.Keywords: Knowledge dis
overy in databases, formal 
on
ept analysis, numeri
al patternmining, bi
lustering, information fusion
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