
HAL Id: tel-01784480
https://theses.hal.science/tel-01784480v1

Submitted on 3 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance variation considered helpful
Mohamed Saïd Mosli Bouksiaa

To cite this version:
Mohamed Saïd Mosli Bouksiaa. Performance variation considered helpful. Distributed, Paral-
lel, and Cluster Computing [cs.DC]. Université Paris Saclay (COmUE), 2018. English. �NNT :
2018SACLL001�. �tel-01784480�

https://theses.hal.science/tel-01784480v1
https://hal.archives-ouvertes.fr


Performance
variation considered helpful

Thèse de doctorat de l'Université Paris-Saclay
préparée à Télécom SudParis

Numéro National de Thèse (NNT) : 2018SACLL001

École doctorale n°580 Sciences et technologies de l'information et de
la communication (STIC)

Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Évry, le 26 avril 2018, par

 Mohamed Said Mosli Bouksiaa 

Composition du Jury :

M. Denis Conan
Maître de conférences, Télécom SudParis
M. Philippe Clauss
Professeur, Université de Strasbourg
Mme Vania Marangozova-Martin
Maître de conférences, Université de Grenoble
Mme Isabelle Puaut
Professeur, Université de Rennes 1
M. Lionel Seinturier
Professeur, Université de Lille
M. Gaël Thomas
Professeur, Télécom SudParis
M. François Trahay
Maître de conférences, Télécom SudParis

Examinateur 

Rapporteur 

Rapporteur 

Examinatrice 

Président

 Directeur de thèse 

Examinateur

NNT : 2017SACLE035

N
N

T:
 2

01
8S

A
C

LL
00

1



2



CONTENTS

1. INTRODUCTION 6

2. FROM ARCHITECTURES TO PERFORMANCE BOTTLENECKS 12
2.1. Architectural solutions 12

2.1.1 More cores 12
2.1.2 Cache memory 13
2.1.3 NUMA 14

2.2. Performance problems 15
2.2.1 Cache contention, false and true sharing 16
2.2.2 NUMA: contention and memory placement 17
2.2.3 I/O contention 19
2.2.4 Thread synchronization: contention on locks 21

2.3. Conclusion 22

3. PROFILING TOOLS FOR MULTI-THREAD APPLICATIONS 24
3.1. Why: cause-oriented, problem-specific tools 24

3.1.1 Cache-related problems 24
3.1.2 Detecting I/O contention 31
3.1.3 Detecting NUMA problems 33
3.1.4 Detecting lock contention 34
3.1.5 Conclusion 36

3.2. Where: generic, cause-oblivious tools 37
3.3. Another combination: Why and How much 39
3.4. Conclusion 39

4. RDAM AND RDAMCALCULATOR 41
4.1. The RDAM metric 41

4.1.1 Interference results in slowdown 41
4.1.2 Formal definition 42
4.1.3 Accuracy of the RDAM metric 43
4.1.4 Conclusion 44

3



CONTENTS 4

4.2. The effect-oriented profiling tool 44
4.2.1 Selecting the locations of the probes 44
4.2.2 False positives 45
4.2.3 Automatic instrumentation of the application 46
4.2.4 Trace generation 46
4.2.5 RDAM score computation 48
4.2.6 Conclusion 49

5. EVALUATION 51
5.1. Micro-benchmark evaluations 51

5.1.1 Summary of the micro-benchmarks 51
5.1.2 Analysis of the micro-benchmarks 55

5.2. Applications evaluation 56
5.2.1 Evaluated applications 56
5.2.2 Identification of the hottest functions 58
5.2.3 Analysis of the potential false negatives 58
5.2.4 Instrumentation overhead 59
5.2.5 Analysis of the RDAM scores 59
5.2.6 Analysis of the false positives 63
5.2.7 Conclusion 64

6. CONCLUSION 66
6.1. Future work 66

BIBLIOGRAPHY 68



5 CONTENTS



1. INTRODUCTION

Computers are increasingly spreading in various areas which affect our daily life.
Processing units are being embedded in devices that we use very frequently such as
phones and other smart objects that will be soon present in almost every household.
However, the impact of computers goes beyond the personal devices. We can think
of numerical weather prediction, countless services available on the cloud, web appli-
cations running in huge datacenters, etc. Areas such as media processing, computa-
tional finance, and animation physics have been evolving in a way that requires more
computing power and new techniques to efficiently and effectively process, and thus
leverage, tremendous amounts of available data. Computer vision which is being in-
creasingly used in video surveillance, character animation and computer interfaces is
such a field [1].

Improving the performance of a computer had for a long time been straightforward:
the more transistors we cram in the processing unit, the more speed we get. As predicted
by Gordon Moore in 1965, this technique allowed the computer industry to double the
performance every 18 months. Until recently, this allowed the developer of an appli-
cation to effortlessly enhance its performance by upgrading the hardware. Towards the
early 2000s, it became clear that this technique had its limits. In fact, below a certain
size, transistors are unlikely to operate reliably and dissipating the energy that they use
becomes harder at such a small scale.

From that point on, the most promising way to sustain Moore’s law has been to
focus more and more on parallel architectures which increase the core count instead of
increasing the single core frequency. Fortunately, the arrival of chip-multiprocessors
(CMPs) with ever increasing number of cores has made parallel machines ubiquitous.
With this inevitable turn, applications that require additional processing power need to
be parallel in order to leverage the available resources. However, achieving performance
on a multi-core is difficult. Threads regularly interfere, either implicitly when they
access the same shared hardware resource, or explicitly when they synchronize. When
they interfere, the threads slow each other down, which decreases the parallelism and
drastically degrades performance.

Identifying thread interference is difficult because interference can have many causes.
Interference can come from any synchronization between the threads, and from any sat-
urated hardware component: a cache, a memory controller, a disk, a network card, etc.

6



7 1. INTRODUCTION

Identifying thread interference is also difficult because interference often remains hid-
den to the developer. This is obviously the case for an implicit interference, since the
interaction between the threads is not explicit in the code, but also for an explicit inter-
ference, since any synchronization can silently become a bottleneck when the workload,
the setting or the machine changes.

As interference often remains hidden, the developer needs profiling tools to iden-
tify the blocks of code that suffer interference. In order to be useful, a profiling tool
should answer three different questions. First, the tool should identify where a code suf-
fers interference (which line, basic block, function, or even component in a distributed
system [2, 3], etc.). This information is required to know where the developer should
optimize the code. Then, the tool should explain why a code suffers interference (con-
tention on a cache, a network, a memory controller, etc.). This information is required
to know how the developer should optimize the code. Finally, the tool should assess
how much interference degrades performance. Since optimizing a multi-threaded appli-
cation is long and difficult, this information is required to avoid wasting time on useless
optimizations.

Unfortunately, current profiling tools are ill-suited to identify how much interference
impacts performance. Some tools identify where and why the code potentially suffers
interference by focusing on a specific interference cause [4–16]. These cause-oriented
tools report incomparable metrics related to the cause (e.g., number of cache misses,
I/O bandwidth), and are most of the time unable to assess how much interference im-
pacts performance. Other tools identify where the code should be optimized in order
to achieve better performance [17, 18]. These where-oriented tools are not designed to
identify if the code suffers interference, and let alone to identify how much interfer-
ence impacts performance. Other tools identify the root cause of a performance defect
(where) by comparing the execution trace with a representative set of good and bad
workloads [19]. These tools explain why a bad workload is inefficient, but they cannot
identify interference hidden in both good and bad workloads, which also makes them
inadequate to identify how much interference impacts performance in general.

As a result, today, in order to optimize a code, the developer often uses cause-
oriented tools to identify why and where the code suffers interference. Since the de-
veloper often remains unable to identify how much a reported interference impacts per-
formance, the developer spends weeks [19] trying to remove a randomly chosen inter-
ference pinpointed by one of the tools, without even knowing if the interference is at the
origin of a performance problem.

In this thesis, we propose a new profiling tool to identify how much interference
impacts performance. Our tool does not require prior knowledge, such as the prior
identification of good and bad workloads, and performs an analysis of an application
with a single run. For that purpose, instead of trying to identify where, why and how
much interference impacts performance with a single analysis, we propose to decouple



1. INTRODUCTION 8

��������������
��������

������������
������

�������
�����������

���������������
������� ����������������

�����

��������������
��������

��������������
��������

������������
������

���������������
�������

��������������
��������

������������
������

�������
�����������

��������������
��������

����������������������� ������������������������

���������������

Figure 1: Cross checking of the causes and the effects

the analysis of the causes (where and why) from the analysis of the effects (where and
how much). With this approach, as presented in Figure 1, the developer can cross-
check the results of the two analyses in order to fully understand interference. The
developer can identify all the blocks of code that suffer interference with the effect-
oriented tool before trying to understand why with cause-oriented tools. The developer
can also discard an interference bottleneck reported by a cause-oriented tool when the
interference is not reported by the effect-oriented tool, since in this case, the interference
does not degrade performance (e.g., the block of code in the middle in Figure 1).

Decoupling the analysis has two advantages. First, by eliminating the need to iden-
tify interference causes, we simplify the analysis of the effects. We do not have to try
to understand why a block of code suffers interference: we only have to measure how
much interference impacts its performance. Then, since the current cause-oriented tools
are already able to efficiently identify interference causes, we can reuse them without
any modification to perform the first analysis. Therefore, we only need a new tool that
focuses on analyzing the interference effects.

Our idea to build an effect-oriented tool starts with a simple observation. While in-
terference can have many different causes, it has only a single effect: interference slows
the application down. This slowdown directly indicates how much interference impacts
performance. Based on this observation, we propose a metric called RDAM (Relative
DistAnce to Minimum) that captures this slowdown during a single run. We also pro-
pose an effect-oriented tool, called RDAMcalculator, that uses the RDAM metric to
automatically identify both where and how much the code suffers interference.

We evaluate the usefulness of RDAMcalculator with 27 applications (7 from Splash2
[20], 7 from Phoenix-2 [21], 4 from Parsec [22], 7 from NAS Parallel Benchmarks [23],
memcached [24] and LevelDB [25]). Our evaluation shows that RDAMcalculator can
identify and classify different interference effects, regardless of the interference causes,
with few and easily identifiable false positives. Thanks to RDAMcalculator, we identify



9 1. INTRODUCTION

interference caused by false sharing, lock contention, poor parallelism, NUMA memory
placement, network stack and disk I/O in real applications. In detail, we found that:

• RDAMcalculator is able to detect interference in 15 functions from 11 applica-
tions. Among the 15 functions, 3 (20%) are false positives. The remaining 12
functions pinpoint actual interference problems. 6 interference problems were
previously identified in other works, while 6 are new.

• For the 12 true positives, RDAMcalculator successfully identifies where and how
much interference impacts performance. By cross checking the results of RDAM-
calculator with the results of classical cause-oriented tools, we show that we can
easily explain where, why and how much interference impacts performance.

• Based on this analysis, we can easily correct 8 functions by modifying at most
only 25 lines of code in each application, which leads to a performance improve-
ment of up to 9 times.

• We show that the 3 false positives appear when a function seems to slow down
when the workload varies, but not because of interference. We show that, even if
a manual analysis of the source code is required, these false positives are easy to
identify and to discard.

The thesis is organized as follows:

• Chapter 2 presents the general background of our topic. More specifically, this
chapter starts by presenting parallel architectures and shared resources. In its sec-
ond part, Chapter 2 presents the most frequent performance problems that occur
as a direct consequence of accessing shared resources concurrently. The goal from
this chapter is to get a sense of these phenomena that cause performance degrada-
tion in parallel architectures and why it is important to detect them in order to try
and fix them.

• Chapter 3 presents the state-of-the-art tools that aim to detect performance prob-
lems and optimization opportunities. This chapter aims to reflect how different
tools tackle the performance analysis goal from different perspectives. After an
overview of the different approaches, we explain why an additional perspective is
still needed to complete the existing work. More precisely, we conclude that we
lack a tool which quantifies the impact of thread interference on an application
while directly linking the identified interference effect to the affected code region
in the application.

• Chapter 4 presents our work to bridge the gap identified in Chapter 3. We first
present the RDAM metric that we rely on to detect occurrences of interference



1. INTRODUCTION 10

between threads. We explain the intuition behind this metric and its formal def-
inition. We then present RDAMcalculator, the tool we propose to automatically
compute the RDAM metric for a given application.

• Chapter 5 presents an evaluation of RDAMcalculator with micro-benchmarks and
with complete applications selected for their frequent use in validating new perfor-
mance analysis techniques. This chapter provides evidence that RDAMcalculator
successfully pinpoints interference effects regardless of their various causes.

• Finally, Chapter 6 concludes the thesis and discusses a few ideas to extend the
presented work.



11 1. INTRODUCTION



2. FROM ARCHITECTURES TO PERFORMANCE
BOTTLENECKS

For a long time, manufacturers were able to leverage the shrinking of transistors to
create processors twice as powerful every other year. This phenomenon was correctly
predicted by Gordon Moore in 1975 and has been verified since then. However, at
some point, the pace of advancement started to slow down and is expected to come to
a halt soon. In fact, below a certain size, transistors will be unlikely to operate reliably.
Moreover, dissipating the energy that they use becomes even harder at such a small
scale (Power Wall). In search for additional ways to improve performance beside the
single-core frequency, manufacturers relied on a variety of architectural designs that can
leverage applications properties. Cache memories, which leverage temporal locality, as
well as multi-core architectures, and SMPs, which leverage parallelism, are examples
of such designs. Section 2.1 presents an overview of some of these features. Modern
architectures are, however, more difficult to leverage. In fact, shared resources in these
architectures are subject to contention which results in serializing the execution and has
other subtle effects that degrade the application’s performance in unexpected ways. In
section 2.2, we explain some of these problems and show that they deeply affect the
performance of the software that runs on such architectures and therefore need to be
diagnosed efficiently.

2.1. ARCHITECTURAL SOLUTIONS

2.1.1. More cores

The solution to the limitation faced by the manufacturers as to the single core fre-
quency was to add more cores which allows to execute multiple execution flows at once.
Multiprocessing is a generic term denoting the use of two or more central processing
units (CPUs) within a single computer system. It regroups many different ways manu-
facturers imagined and realized to couple CPUs together. The different settings range
from very tightly-coupled ones such as Symmetric Multi-Processing (SMP) multi-core
architectures to loosely-coupled multiprocessors, typically clusters.

Figure 2.1, obtained using hwloc [26], shows a socket (to the left) comprising 4

12



13 2. FROM ARCHITECTURES TO PERFORMANCE BOTTLENECKS

Figure 2.1: Multi-core architecture

cores, sharing memory and I/O resources (to the right). Coupling cores in this way can
be considered as the building block for increasing core count. However, the number of
cores that one can put on a single die sharing other resources is today roughly limited to
16. For this reason, more extensible architectures such as NUMA 2.1.3 appeared.

2.1.2. Cache memory

Cache memories came to solve a peculiar performance problem: the memory wall.
This term denotes the disparity between CPU clock rates and off-chip memory rates,
which basically means that memory is not keeping pace with the CPU in terms of speed.
Therefore, an access to the Random Access Memory (RAM), which takes 50 to 150
nanoseconds, results in a waste of processing resources (several hundreds cycles where
the CPU stalls). To soften the speed gap between the processor and the memory, there
are local cache memories between the processor and the bus. The role of these faster,
smaller memories is to leverage temporal locality of programs, by storing, closely to
processing units, the data and instructions that are likely to be used shortly.

Cache memory levels In most multi-core systems, cache memories come in different
speeds and sizes and can be either shared or private. That is why caches are categorized
in levels:

• Level 1 (L1) cache is extremely fast (access time is typically 4 clock cycles) but
relatively small (e.g. 64 KB).

• Level 2 (L2) cache is larger than L1 (e.g. 256 KB) and slower (a latency of around
10 clock cycles).



2. FROM ARCHITECTURES TO PERFORMANCE BOTTLENECKS 14

• Level 3 (L3) cache is both significantly slower (around 40 cycles) and larger than
L1 or L2 (e.g. 4 MB to 40 MB), but is still much faster than the main memory.

Often, L1 and L2 are private while L3 is shared among the different cores as we can
see in Figure 2.1.

Cache coherency Cache memories allow processors fast access to commonly used
data, but requires to maintain consistency between the multiple copies of shared data.
The most common coherence mechanism used to preserve consistency is based on in-
validation where local copies are invalidated if a core updates a shared variable. For
instance, in the MESI (Modified-Exclusive-Shared-Invalid) protocol, a memory block
can be in one of the four following states:

• Modified: A block in this state is the only valid copy of the block. The memory
does not hold valid information and no other cache may have a valid copy. The
core that owns this block can write to it without notifying any other core.

• Exclusive: The first core to read in a block from memory will load it into the
Exclusive state. This means that the memory has an up-to-date copy and there are
no other cached copies in the system.

• Shared: As soon as a second core is reading the same block, it will be loaded to
the cache of that core and will be marked Shared in all caches

• Invalid: As soon as one of the copies is modified by one of the cores, all other
copies will be marked invalid and will need to be refreshed at the next access

Data is transferred between main memory and cache memory in blocks of fixed size
(typically 64 bytes), called cache lines. Cache coherence mechanisms such as MESI
are applied on a cache-line granularity. This means that even when only a small part
of a cache line is modified, the whole 64-byte block is invalidated for the other threads
which have a copy of the same cache line.

2.1.3. NUMA
Non-Uniform Memory Access machines allow to link multiple processors together

in order to provide a single logical processing unit, therefore making it possible to scale
to a much higher core count, which would not be possible exclusively with SMP (Sym-
metric Multi-Processing). A NUMA machine (Figure 2.2) is comprised of a set of
nodes interacting via interconnect links, each node hosting a memory bank/controller
and a limited number of cores sharing a single memory bus. The nodes are connected



15 2. FROM ARCHITECTURES TO PERFORMANCE BOTTLENECKS

Figure 2.2: Simplified NUMA architecture

by means of a high speed cache-coherent interconnect (for example, QuickPath Inter-
connect (QPI) used by Intel or HyperTransport used by AMD).

Each core in a NUMA setting has access to memory banks in all nodes. Accessing
memory on another NUMA node is called remote memory access, whereas accessing
memory on the same NUMA node is called local memory access. A remote memory
access is slower than a local memory access since the former has to go over the inter-
connect. In fact, even though the interconnect is fast, the signal path length from the
processor to memory still has a significant impact. The exact cost differential between
remote memory access and local memory access varies from an architecture to another
and is commonly expressed as "NUMA factor", i.e. the ratio of a remote access’ du-
ration by a local access’ duration. Different tested platforms showed NUMA factors
ranging from 1.2 to 2.5 [27].

The cache coherence on a NUMA machine is usually maintained through what is
called a directory protocol. In the directory protocol, memory blocks are still charac-
terized by states similar to those presented in section 2.1.2. The directory, which is a
memory structure, contains information about which processors have a shared cached
copy of each memory block and which processor is the owner of the block. Explicit
messages are then passed between processors to update a block’s state when necessary.

2.2. PERFORMANCE PROBLEMS

The presented mechanisms allow to improve applications’ performance. However,
a misuse of these mechanisms can prevent developers from accomplishing a better per-
formance, or even worse, degrade the application’s performance. This section presents
some of the features that lead to problematic situations performance-wise in multi-core



2. FROM ARCHITECTURES TO PERFORMANCE BOTTLENECKS 16

Figure 2.3: Cache memory

architectures and multi-threading.

2.2.1. Cache contention, false and true sharing
The use of last-level (shared) caches can improve performance by supporting on-

chip inter-process communication and allowing heterogeneous allocation of cache to
processes running on different cores. However, the existence of multiple copies of the
same physical memory location at various levels of caches requires extra effort and
sometimes costly operations to maintain a consistent view of the content of the memory.
Therefore, the limited size of caches along with coherence mechanisms often lead to
various contention problems.

When an application needs to access some data, it first looks for it in the cache
(Figure 2.3). If the data cannot be found, it has to be fetched and loaded from a slower
memory. This costly operation is called a cache miss. Cache misses can have different
causes. For example, the first time that a data is referenced, an inevitable cache miss
happens. Also, a thread can evict its own data from the cache when more prioritary
data needs to be loaded and there is no more space left, so when the evicted data is
needed again, a miss happens. However, in a multi-core context, cache misses can also
be caused by interference between threads that share hardware and software resources.
Cache contention problems happen in two kinds of situations. First, when different
threads or processes which do not work on the same cache lines share a cache (cross-
core interference), and second, when two threads work on a same cache line (sharing
cache misses).

Cross-core interference When two threads or processes share the same cache, they
may evict each other’s data when they load their own. Whenever the owner of the
evicted data needs it back, a cache miss happens. How often this happens depends on



17 2. FROM ARCHITECTURES TO PERFORMANCE BOTTLENECKS

whether both threads/processes are memory-intensive. As in this form of contention
the two contending entities do not share any data, they can be separated. For this rea-
son, a possible solution to this problem is to place threads wisely in order to balance
memory-intensive threads with CPU-intensive ones and thus have less global demand
on each shared cache memory. In other words, the solution is to opt for contention-
aware scheduling [28].

Sharing cache misses Although a cache miss can happen at any cache memory level,
here we address last-level cache misses since they are the most expensive. Sharing
cache misses happen when two threads located on cores that do not share a last-level
cache work on the same cache line, with at least one of them writing to it. After the
first thread modifies the cache line, the copy held by the second thread is invalidated by
the coherence protocol and needs to be updated in all cache levels that are not shared
with the first thread before being reused. Since the coherence protocol operates at a
cache-line granularity, we distinguish two cases.

True sharing In this case, the two threads are actually manipulating the same address
in memory. Unless the application’s logic permits the decentralization of the shared
object, or the two threads can be assigned to cores sharing a last-level cache, sharing
(and the cache misses that ensue) in this case is necessary to ensure the application’s
correctness.

False sharing Figure 2.4 shows two threads Thread 0 (blue) and Thread 1 (red) work-
ing on the same cache line. The colors indicate which part of the cache line is used by
each thread. As shown in the figure, the actual variables being used by each thread are
not the same, and yet at least one of the two threads is forced to load the whole cache
line from the main memory each time it is invalidated. False sharing can be seriously
harmful performance-wise as it can degrade application performance by as much as an
order of magnitude [29]. Furthermore, false sharing is an implicit form of contention,
often invisible in the source code, which makes it difficult to find. However, once de-
tected this problem can often be easily fixed by changing the relevant data structures
so that the different addresses referenced in each thread are on different cache lines (by
adding paddings or utilizing thread-private variables).

2.2.2. NUMA: contention and memory placement
A thread running on Node 1, for example, has faster access to the memory in Node

1, than that of Node 2. The former is considered local memory, while the latter is
remote, which calls for NUMA-aware strategies to avoid performance degradation due
to unnecessary remote memory accesses. However, it has been observed that optimizing



2. FROM ARCHITECTURES TO PERFORMANCE BOTTLENECKS 18

Figure 2.4: False sharing

memory placement for data locality alone does not solve all performance issues in a
NUMA context. In fact, the high data traffic on the memory subsystem can be a serious
bottleneck as well.

Bad locality Modern multicore systems are based on a Non-Uniform Memory Access
(NUMA) design. To efficiently exploit such architectures, it is necessary to take the
machine’s physical layout into account. Particular attention has to be paid to remote
memory accesses (i.e., main memory accesses performed from a core to a memory
bank that is not directly attached to it). Remote memory accesses are a major source of
inefficiency because they introduce additional latencies in the execution of instructions.
These latencies are due to the extra hops required for the communication between a core
and a remote memory controller (about 50% extra time). Therefore, the number of these
accesses needs to be limited as much as possible as their impact on the performance of
applications can be significant [28].

The presence of remote accesses can arise from various situations. A typical case
is when the thread that allocates an object and the threads that access it the most are
on different memory nodes. To give a simple but realistic example, let us consider a
multi-threaded application where the main thread allocates and initializes an array be-
fore spawning N worker threads to do some processing on different parts of the array.
Using first-touch (default Linux policy) as our memory allocation policy, the array will
be allocated on the main thread’s local memory, while worker threads will be spread
across NUMA nodes, which results in a high rate of remote accesses. Another case
is when several threads, on different nodes, need to access the same object. These
situations can be fixed by carefully placing/migrating the threads, possibly coupled
with NUMA-aware load balancing techniques. For example, ForestGOMP [30] is an
OpenMP platform which enforces a distribution of threads that maximizes the proxim-
ity of threads belonging to the same parallel section. Other techniques rely on migrating
data, or duplicating data when threads on different nodes need to access the same data
simultaneously.



19 2. FROM ARCHITECTURES TO PERFORMANCE BOTTLENECKS

Contention on the interconnect and memory controllers Remote memory access
has been a severe problem for a long time. In most recent architectures, however, an-
other problem is taking over as a more impactful (though less frequent) impediment to
performance, which is congestion on memory controllers and the interconnect. In fact,
some applications can even perform significantly better with decreased data locality,
when they succeed at mitigating data traffic congestion [31]. Because of congestion,
memory access latencies can become as large as 1000 cycles, from a normal latency of
only around 200. Such a dramatic increase in latencies can slow down data-intensive
applications by more than a factor of three [31]. Solutions to this problem are built us-
ing the same basic techniques (migration and replication of memory pages), but with an
important change in perspective. Instead of exclusively focusing on data locality, what
needs to be optimized is global data traffic. In other words, strategies need to balance
data traffic as evenly as possible between nodes.

2.2.3. I/O contention

In addition to performance problems that arise in computing phases, I/O operations
can also lead to contention problems. Compute-intensive applications spend most of
their time computing while I/O-intensive applications spend most of their time read-
ing/writing to disk or communicating on the network. Detecting I/O bottlenecks for the
latter is important to prevent severe performance degradation.

Storage disks Disk contention occurs when multiple processes try to access the same
disk simultaneously. This problem is increasingly affecting applications performance in
data centers. In fact, with the dramatic improvement in CPU speeds, the disk’s maximal
latency and throughput can become a bottleneck, which results in delayed responses
and possibly request failures. Increasingly complex scientific applications, for example,
require enormous computing power during the course of their execution, as well as
huge storage space to store the checkpointing data generated for post-processing. As
a side effect of the high degree of parallelism in such applications and the platforms
they execute on, I/O contention at servers doesn’t allow overall performance to scale
with increasing number of processors [32]. Another study [33] has found that another
type of applications (e-mail server), is characterized by its "bursty" workload, which
means that peak I/O loads are significantly higher than the average load. If the storage
subsystem is not provisioned for its peak load, its performance during peaks degrades
significantly, resulting in I/O operations having significant latency. Large-scale web
applications also suffer from disk’s insufficient performance [34].

A variety of solutions have been proposed to mitigate this problem. One approach
consists in delegating certain task types, such as file caching, consistency control, and
collective I/O optimization to an exclusive small set of compute nodes, collectively



2. FROM ARCHITECTURES TO PERFORMANCE BOTTLENECKS 20

termed as I/O Delegate nodes [32]. To address the bursty workload problem, another
technique [33] consists in allowing data written to an overloaded volume to be tem-
porarily off-loaded into a short-term virtual store. The short-term store is created by
opportunistically pooling underutilized storage resources either on a server or across
servers within the data center. Writes are temporarily off-loaded from overloaded vol-
umes to lightly loaded volumes, thereby reducing the I/O load on the former. While
DRAM is frequently used as a cache to mitigate the performance gap between the disk
and the CPU, RAMClouds [34] propose to completely rely on DRAM for the storage.

Networks Networks allow to connect multiple computers to have access to more com-
puting power, or to link the client side of an application to its server side. Depending
on network-to-node performance ratios, the raw performance of a network can be the
system’s bottleneck when the system’s computational power outperforms its network
capacity. This can even happen accidentally, as a defect can occur in the wiring due
to human mistakes (we encountered this problem in the experiment described in sec-
tion 5.2.5). On the other hand, applications that are deployed on a network have various
aims and behaviors. Depending on their logic, applications can have very different com-
putation/communication ratios, and thus put more or less stress on the network. How
an application’s performance is affected by the network is hence the outcome of both
raw network performance and of the application’s behavior. In addition to how an ap-
plication interacts with the network, there is also one more side to the story, which is
interference between different applications that share the same network.

Bad communication pattern The performance of an application that is deployed on a
network depends on its communication-and-computation patterns. Some applications
are "friendlier" than others network-wise. Applications with heavy communication
needs, expensive all-to-all communications for instance, and/or whose design does not
facilitate overlapping communication with computation (an example of such an applica-
tion is FFTW [35], a Fast Fourier Transform library that uses hierarchical composition
of multiple FFT algorithms, applied to perform a 2D transform of a 2000x2000 matrix)
put much more stress on the network, which possibly becomes the system’s bottle-
neck. On the other hand, applications (example: MCB [36], a Monte Carlo simulation
code) which do not make use of global communications very often, and/or include in-
tensive computation phases suffer less from the potential network/node speed disparity.
Sometimes, one single application can alternate between computation-heavy phases and
communication-heavy ones. An example of such an application is AMG [37], an im-
plementation of the Algebraic Multi Grid Solver by using the Hypre library. Depending
on the problematic situation at hand, the solution can vary from improving the network
capacities (e.g. switching from Gigabit Ethernet (1 Gbps) to Infiniband (80 Gbps)) to
an exhaustive redesign of the application. However, first of all, the developer should be



21 2. FROM ARCHITECTURES TO PERFORMANCE BOTTLENECKS

aware that the problem is originated in the network (or in how the application makes
use of the network).

Interference from other applications Applications running on a network of computing
nodes often share the network with other applications. For instance, large-scale HPC
applications are usually submitted, as jobs, to supercomputers that they share with other
jobs. Resource managers on these supercomputers use various allocation strategies,
ranging from assigning a random set of nodes to more intelligent strategies providing
better isolation for the job and better proximity between its processes. When an appli-
cation runs on a "private" part of the network, its performance is not affected by other
jobs sharing the network. This is true for the Blue Gene systems, unlike Cray XE6
systems [15]. Contention for links can cause significant performance degradation. This
has been studied in [15], using pF3D, a diligently chosen parallel application (excellent
computational and communication load balance in an ideal scenario). In this study, it
is shown that the high variation observed in the performance of this application on a
Cray system over months of runs is strongly correlated to inter-job interference. Ex-
periments show that the character and location of other jobs running alongside of pF3D
has a strong influence on the messaging rates (which in their turn directly affect the
global performance of the application). During the different runs, various neighboring
jobs were sharing the platform with pF3D, and affected it very differently. MILC [38],
which is a communication-heavy application had a much higher impact on messaging
rates than LSMS [39], which spends most of its time in computation and performs I/O
at larger intervals than the duration of pF3D runs. All other parameters (job’s size and
shape) being identical between the two sets of runs, when the conflicting job is LSMS,
the messaging rate was 27.8% faster than when the conflicting job was MILC. Multiple
other cases gave strong evidence that the differences in performance are due to commu-
nication activities of competing jobs. Solutions for this kind of problem revolve around
choosing a better resource management policy that minimizes traffic between disjoint
sections of the network.

2.2.4. Thread synchronization: contention on locks

Above, we gave examples of contention that result from the sharing of hardware
resources. Another type of contention that should be addressed happens because of
shared software resources. Such contention is closely related to multi-threading, where
multiple threads exist within the context of a single process such that they execute inde-
pendently but share their process resources. Multi-threading is not the only way to write
parallel programs, but there are reasons why it is widely used. For instance, in compari-
son to message-passing, multi-threading allows for an incremental parallelization of the
software (e.g. using OpenMP) and is therefore less disruptive. Moreover, data structures



2. FROM ARCHITECTURES TO PERFORMANCE BOTTLENECKS 22

and control structures in many cases can be kept the same as in the sequential program
in addition to saving memory by sharing data structures (unlike message passing).

Since threads share the same memory, synchronization mechanisms are needed to
preserve memory consistency. Locks are a relevant example of such mechanisms that
guarantees exclusive access to some shared data. It often happens that locks create
contention on a multi-threaded application, which causes serialization. As a result,
idling while waiting for a lock reduces parallelism and parallel efficiency [4]. Common
solutions to this problem have been to design more efficient locking algorithms [40,41],
or by adopting lock-free data structures [42].

2.3. CONCLUSION

The problems that hinder a parallel application’s performance have various causes
and are generally fixed using different techniques. By definition, a contention problem
is linked to a shared resource that is being heavily accessed by multiple contenders. This
chapter was an overview of the performance problems one can encounter when develop-
ing a parallel application, and the shared resources that are often contention sweet spots.
Moreover, it served as a motivator as to why each of these problems should be detected,
since they significantly hamper performance. Diagnosing performance bottlenecks in
multithreaded applications will be of increasing interest as multithreaded applications
spread to more fields and devices.



23 2. FROM ARCHITECTURES TO PERFORMANCE BOTTLENECKS



3. PROFILING TOOLS FOR MULTI-THREAD
APPLICATIONS

As we could see from last chapter, interference between threads can take many dif-
ferent forms. To fix these performance problems, developers need profiling tools that
pinpoint them. More specifically, to be able to solve these problems efficiently, a de-
veloper needs the answer to three questions. First, where a code suffers interference
(which line, basic block, function, etc.). This information is required to know where the
developer should optimize the code. Then, why a code suffers interference (contention
on a cache, a network, a memory controller, etc.). This information is required to know
how the developer should optimize the code. Finally, how much interference degrades
performance. Since optimizing a multi-threaded application is long and difficult, this
information is required to avoid wasting time on useless optimizations. In this chapter,
we group the state-of-the-art tools according to which of these three questions they an-
swer. The last section briefly introduces our contribution and explains how it completes
the existing tools.

3.1. WHY: CAUSE-ORIENTED, PROBLEM-SPECIFIC TOOLS

This section presents the state of the art tools dedicated to the detection of a specific
type of contention such as false sharing or NUMA contention. Whereas most of these
tools can only say whether a given problem affects an application and pinpoint the
affected code block, some of the more advanced can quantify the problem’s impact
on the application.

3.1.1. Cache-related problems
Cache-related performance issues has been a hot topic with many works addressing

it from various angles. To diagnose cache problems in general, full cache simulation
has been commonly used to obtain detailed cache behavior and start from there to detect
cache contention problems. For instance CMP$im [8] is a cache simulator with many
tunable parameters including allocation/replacement policies, write policies, number of
levels in the cache hierarchy, etc. CMP$im gathers statistics such as the total number

24



25 3. PROFILING TOOLS FOR MULTI-THREAD APPLICATIONS

of cache accesses and misses, sharing characteristics of multi-threaded applications,
coherence traffic, etc. Some of the more advanced metrics reported by this tool are
aimed to reflect whether the application would benefit from a shared cache or a private
cache, and other insights that can help guide developers decisions. CacheIn [43] is a
tool that uses simulation and monitoring to collect and report cache performance data
including a false sharing detection algorithm which works by creating a serial trace of
all memory references and comparing the address of shared writes to subsequent shared
reads.

A major drawback common to this category of tools is the significant runtime over-
head. By separately addressing specific cache-related issues, such as false sharing, or
inter-process cache contention, some tools can significantly reduce this overhead.

Detecting false sharing To detect false sharing, the different tools rely on collecting
and analyzing either memory accesses or cache-related events.

Instrumentation-based Since tools which provide a full simulation of cache memory
events have overheads of 100x-plus, other approaches had to emerge. The category
of tools presented in this paragraph instrument the application’s code and insert extra
instructions which perform a limited simulation of cache memory events. In fact, these
tools sacrifice some of the accuracy to the benefit of efficiency, which turned out to be a
good compromise.

We present two instrumentation-based tools that differ by their instrumentation tech-
nique (static, compiler-based vs. dynamic). Both tools have a significantly reduced
overhead (5x) compared to full simulation and although both tools simulate only a part
of cache events, they succeed at accurately identifying instances of false sharing.

Dynamic binary instrumentation and compiler-based instrumentation are two alter-
native approaches for performing instrumentation. They exhibit different tradeoffs of
performance and generality. Dynamic binary instrumentors typically analyze the pro-
gram’s code just before execution in order to insert instrumentation. They introduce
higher performance overhead, but the fact that they operate directly on binaries makes
them extremely convenient. By contrast, compiler instrumentation inserts instrumen-
tation in the compilation phase, which requires re-compilation of all source code, but
provides higher flexibility.

Example of a dynamic-instrumentation-based tool: The authors in [10] reduce
the tremendous overhead of full cache simulation by tracking cache events only when
they are relevant to detecting contention that is due to sharing. More specifically, they
recognize that cache misses that are due to a limitation in the size of cache memory (con-
flict and capacity misses) are irrelevant and can therefore be ignored. On the contrary,
they track cache events that are produced by coherence mechanisms, namely cache line



3. PROFILING TOOLS FOR MULTI-THREAD APPLICATIONS 26

invalidations and subsequent cache misses (which they call contention events).
Their tool returns a variety of interesting metrics, such as the total number of con-

tention events and this same figure per instruction, which allows to pinpoint delinquent
access instructions, that is to say the instructions that contribute the most to this type of
contention. To achieve this, the tool keeps track of an ownership bitmap which shows
which threads have accessed which cache lines. For every memory reference, this table
is checked and updated such that the tool knows whether a cache invalidation/miss is
going to happen and records it when applicable.

To address false sharing more specifically, authors extend the ownership bitmap to
contain entries that record the access history for each word within a cache line. The
occuring miss is then attributed to false sharing if the threads sharing the cache line do
not actually share the same word within the cache line.

Example of a static, compiler-based tool: PREDATOR [13] also instruments the
application before analyzing the collected data to detect false sharing. Instead of dy-
namic instrumentation such as in [10], PREDATOR uses an LLVM compiler phase to
look for memory accesses and add instrumentation code to analyze them.

To identify false sharing, PREDATOR relies on a similar approach to that of [10]
which consists in storing metadata for every piece of application data and keeping track
of memory activity at a word level. A per-cache-line history table saves the properties
(type: write/read, and thread id) of the two last accesses, which is sufficient to detect
cache invalidations. The number of cache invalidations is the metric by which PREDA-
TOR detects false sharing problems and ranks the severity of performance degradation
due to them.

Once cache lines with many cache invalidations have been detected, PREDATOR
needs to perform further analysis to differentiate actual false sharing from true sharing.
To this end, PREDATOR tracks memory accesses per word, but once a word is accessed
by multiple threads, it is no longer of interest since it is the object of true sharing. The
per-word analysis also helps diagnose where actual false sharing occurs when there are
multiple fields or multiple objects in the same cache line, which can greatly reduce the
manual effort required to fix the false sharing problems.

The main novelty in PREDATOR compared to its predecessors is that it is able to
generalize from a single execution to precisely predict false sharing that is latent in the
current execution. There are two typical situations which can lead to the sudden appear-
ance of previously-latent false sharing: when the cache line size or an object’s starting
address changes accross executions. In fact, those changes alter the data contained in
each cache line and consequently the threads that access and share the cache line.

To be able to predict this latent form of false sharing, PREDATOR introduces the
concept of a virtual cache line which is a contiguous memory range that spans one or
more physical cache lines. A virtual cache line in the current execution represents a pos-



27 3. PROFILING TOOLS FOR MULTI-THREAD APPLICATIONS

sible real cache line in either of the two aforementioned scenarios. PREDATOR looks
within virtual cache lines for couples of memory words that are written by different
threads.

OS-related approaches Although much faster than full simulation, the instrumentation-
based tools we presented induce a prohibitive overhead that make their deployment often
impractical. The category of tools we present in this paragraph implement system-level
detection and mitigation/avoidance mechanisms for false sharing. These tools exhibit a
reasonable overhead, which makes them much more suited for deployment. However,
the reduced overhead often comes at a cost regarding portability.

Sheriff [44] is a functional replacement for the pthreads library which proposes to
turn threads into processes. Sheriff simulates a shared address space using a shared
memory region, replaces thread-related calls by their process counterparts (waitpid in-
stead of pthread join for example) and uses inter-process mutexes to support POSIX syn-
chronization operations. Sheriff provides two tools based on its "threads-as-processes"
framework.

• SHERIFF-DETECT tracks write operations by different threads to a page to gather
information about whether pages are shared or not. Page-protection allows Sher-
iff to track which threads access a page, and therefore whether multiple threads
are trying to write to the same page. Whenever a page is shared, updates to this
page are done locally by each process between synchronization points and diffs
are committed whenever a synchronization primitive is encountered. SHERIFF-
DETECT associates a per-cache line status with each cache line in every tracked
page, which allows to identify interleaved writes (by different threads) to a cache
line, which leads to cache line invalidations.

• SHERIFF-PROTECT uses the same mechanism for preventing false sharing al-
together, eliminating the need for programmer intervention. This is of interest
because it is sometimes difficult or impossible for programmers to remove the
detected false sharing. For instance, padding data structures can cause excessive
memory consumption or degrade cache utilization. Time constraints may prevent
programmers from investing in other solutions, or the source code may simply
be unavailable. The fact that Sheriff operates on shared memory pages privately
and differs committing diffs to synchronization points eliminates repeated cache
invalidations and thus avoids false sharing.

Sheriff reports false sharing problems accurately and precisely with reasonable over-
head (around 20%). However, it can only detect write-write false sharing, and only
works for programs that use the pthread library. It also fails to detect false sharing for



3. PROFILING TOOLS FOR MULTI-THREAD APPLICATIONS 28

programs that use ad-hoc synchronizations or share data in the stack.

Plastic [45] solves two challenging problems. First, it is capable of rapid, low-
overhead detection of false sharing in unmodified, running applications. Second, it
resolves identified instances of false sharing using its own memory remapping facility.

To detect false sharing, Plastic relies on hardware performance counters to monitor
coherence invalidation events, which indicate multiple cores competing for exclusive
ownership of a cache line.

Whenever an abnormally large number of coherence invalidations is observed, an
efficient multi-stage process is triggered to accurately identify the problem with min-
imal overhead. First, physical pages where contention is occurring are isolated, then
memory accesses to these pages are sampled for short periods to find the accessed bytes
in these pages and the identity of the accessors. This byte-level access log is parsed and
contended cache lines are identified as the ones having multiple accessors with at least
one writer. From this point forward, the task of Plastic is to transparently remap the
contended regions to physical addresses on independent cache lines.

Since virtual-to-physical address remapping has a page granularity due to the MMU,
Plastic uses dynamic instrumentation to remap addresses so that colocated objects are
moved to separate cache lines. Plastic is currently implemented on the Xen virtualiza-
tion platform, but the approach in itself is not specific to hypervisors: Plastic could be
incorporated into an operating system. Nonetheless, Plastic’s shortcoming is that the
subpage memory remapping mechanism is not currently supported by most existing op-
erating systems, reducing its generality. In addition, Plastic cannot pinpoint the exact
source of false sharing.

PMU-based approaches PMU-based tools are introduced due to performance reasons.
These tools rely on cache events collected from running programs. Performance moni-
toring units (PMUs) in processors can count many hardware events with low overhead
and one could easily collect the desired counts via APIs such as PAPI [46] or tools such
as perf [47]. This approach also provides high portability across operating systems and
platforms.

A Machine Learning approach: Jayasena et al [48] take a peculiar approach to
false sharing detection. Instead of trying to directly identify false sharing, they seek
to derive its potential pattern. The use of machine learning comes from the insight that
interesting information can be deduced from different kinds of performance event counts
from running programs, but that such data are too overwhelming for human processing.

In this work, supervised learning is used to train a classifier with a set of sample
kernels (mini-programs) - with and without false sharing. The trained classifier is then
used to analyze memory access patterns of arbitrary programs. First, a candidate list of



29 3. PROFILING TOOLS FOR MULTI-THREAD APPLICATIONS

performance counters is selected: for instance events that correspond to memory access
(loads and stores), data caches (e.g., cache line state, cache misses), TLBs, interaction
among processor cores, and resource stalls. The mini-programs are then used to compile
a shorter list of events that are actually able to distinguish executions with false sharing
from executions that are free from false sharing.

Performance overhead on programs in this approach is minimal. Program execution
time often remains almost the same or insignificantly increased, at most by 2%, when
collecting performance event counts. However, this approach cannot report all existing
false sharing problems and cannot provide sufficient information for optimization.

Cheetah [14] brings three main improvements over the aforementioned tools. First,
Cheetah does not require a custom OS, nor recompilation and changing of programs.
Second, its false sharing detection technique is more efficient, with only 7% perfor-
mance overhead. Instead of collecting and analyzing each and every memory access,
Cheetah uses a PMU-based sampling to track only one memory access out of a prede-
fined number of accesses. Even with sparse samples (e.g., one out of 64K instructions),
Cheetah can identify false sharing with a significant performance impact. After captur-
ing a memory access, Cheetah performs a series of analysis steps (locating problematic
cache lines, computing cache invalidations, and reporting false sharing) that are much
like PREDATOR’s. Finally, it can precisely assess the performance improvement that
would result from alleviating a false sharing problem without applying an actual fix,
with less than 10% difference. Consequently, developers can avoid unnecessary manual
effort leading to little or no performance improvement.

Data-centric approach Pesterev et al. [49] argue that costs due to frequent cache misses
on a given piece of data may be spread over instructions throughout the application.
Therefore, the approach used by typical profilers which attributes costs to specific code
locations can overlook the significance of a cache miss problem. By reporting the data
types (instead of code) with the most cache misses, Dprof helps programmers locate data
structures that suffer misses in many places in the application’s code. Dprof distinctly
reports different kinds of cache misses: invalidation-induced, capacity misses, and con-
flict misses, which is important in order to select the right strategy to fix the problem.
Dprof’s reporting system consists in four different views ranging from the most generic
one, a list of data types, sorted by how many misses they suffer to more detailed presen-
tation of memory activity down to the associativity sets used by hot memory objects.

Summary A variety of tools and methods can be used to detect false sharing. A full
simulation of cache memory is both inefficient (x100 overhead) and unnecessary if
the sole purpose of the analysis is to detect false sharing. This insight was used by
instrumentation-based tools [10, 13] which perform only a partial simulation of cache



3. PROFILING TOOLS FOR MULTI-THREAD APPLICATIONS 30

events that are relevant to false sharing detection. Although these tools are effective,
they still present a significant overhead (x5). Some other tools based their approaches
on modifying the underlying OS [44, 45]. However such tools succeed at bringing the
overhead down to a mere 20% of the application’s execution time, their weakness is
portability as they are only applicable to specific kinds of applications.

By relying on PMU-based sampling, Cheetah [14] both reduces the overhead to
7% and preserves the portability benefit of instrumentation-based tools. Orthogonal
to these efforts, Dprof [49] reports cache misses suffered by each data object instead
of attributing them to instructions. Knowing that the other tools generally use impact
thresholds below which they do not report false sharing instances, Dprof can be useful
to unveil false sharing that affects a piece of data in different locations in the code and
whose total impact is significant.

Inter-process cache contention

CAER [50] is a Contention Aware Execution Runtime environment oriented towards
data centers for web services, where applications with different needs co-exist. While
some applications are more concerned with latency requirements (the latency-sensitive
category), others have throughput requirements (the batch category). CAER first detects
inter-process cache contention then responds to it.

CAER collects cache miss rates using hardware performance monitors and then
feeds them to one of its two heuristics which run continuously to detect contention.
Each of these approaches aims to supervise the interaction between neighboring (shar-
ing cache memory) applications of opposite types.

The first approach, burst shutter, provokes sudden bursts of execution in the batch
applications and assesses the resulting increase in cache miss rate of the latency-sensitive
applications. The second approach, rule based, observes cache miss rates of the two
kinds of applications until their average rises above a threshold. When a contention is
detected, CAER responds using a fine grained throttling of the execution of the batch
application to relieve pressure in the shared cache.

CAMP [51] is a performance model that estimates the performance degradation due
to inter-process cache contention. To this end, a number of metrics are computed. Since
this model deals with processes running concurrently and sharing a cache, it first eval-
uates the effective cache size of a process, which is the average number of cache lines
occupied by the process in a set. The second needed metric is the cache line reuse dis-
tance, which is the number of distinct cache lines accessed between two consecutive
accesses to the cache line. Combining these two figures allows to compute MPA (Miss
Per Access) and then deduce SPI (Seconds Per Instruction). The prediction made has
an average error of 1.57% on CMPs that have different cache sizes than the one where



31 3. PROFILING TOOLS FOR MULTI-THREAD APPLICATIONS

the processes were initially profiled. This model thus helps guide process assignment
decisions effectively.

AQL_Sched [52] tries to prevent cache contention, among other goals, instead of
detecting it. AQL_Sched is a scheduler designed for cloud data centers where virtual
machines from different users are colocated in the same physical machine. This tool
characterizes applications dynamically according to how sensitive they are to sharing
resources (CPU, memory, I/O, etc.) with other applications.

For instance, some applications (denoted as "Last-level cache friendly") are very
sensitive to cache pollution. In contrast, some other applications are not affected by
sharing of Last-level cache, but may or may not affect the performance of other appli-
cations. The type recognition system periodically collects metrics and computes the
current category to which the workload belongs. According to the results of this cate-
gorization, different scheduling quantum values are allotted to different workload types,
and clustering techniques are applied to avoid performance degradation.

Summary Inter-process cache contention happens when different applications share a
cache memory and evict each other’s cache lines in a way that degrades their perfor-
mance. Every tool [50–52] dealing with this problem starts by assessing the impact of
contention by measuring cache misses and deducing a chosen metric which generally
has an associated threshold that indicates a problematic situation. Some tools [50, 52]
go beyond assessing the impact and respond to the problematic situation online. Such
tools use a classification of the running applications according to the sensitivity of their
performance to cache-related problems. Based on this classification, clustering and/or
scheduling strategies are employed to either fix the problem or prevent it from happen-
ing.

3.1.2. Detecting I/O contention
Detecting Disk contention Related work dealing with disk contention can be divided
in two categories according to how the problem is perceived. Most approaches deal with
cases where disk contention is a permanent problem, and there is no escaping it as long
as we keep using the classic storage techniques [32, 34]. Rather than supervising the
application while it is running, detecting a potential problem, and then applying a fix
online, this category focuses on redesigning storage systems. For instance, fully relying
on DRAM [34] and delegating I/O operations to a small set of nodes [32] have been
proposed.

A few other approaches deal with the disk contention problem as an occasional phe-
nomenon that is encountered from time to time or, more generally, as the result of factors
that should be monitored dynamically such as the distribution of data popularity. These



3. PROFILING TOOLS FOR MULTI-THREAD APPLICATIONS 32

approaches focus on detecting such unpredictable bursts, and dynamically coping with
them. Everest [33] detects peak I/O request rates that are over an order of magnitude
higher than average load and temporarily off-loads data written to an overloaded volume
to lightly loaded volumes. To achieve this, Everest monitors the queue length (number
of pending I/O requests). When this number is greater than 32, it utilizes spare band-
width on other storage volumes to absorb writes performed to the overloaded volume.
Ananthanarayanan et al [53] use the varying popularity of files as an indicator for con-
tention in MapReduce clusters. In fact, the significant disparity in data’s hotness in these
clusters results in the more popular content becoming a bottleneck. To solve this prob-
lem, they propose Scarlett, a tool which replicates files based on predicted popularity.
For every file, Scarlett maintains a count of the maximum number of concurrent accesses
(which reflects the popularity) during the last 24 hours, and then computes a replication
factor that is proportional to its popularity. Oh et al [54] deal with hybrid storage solu-
tions which use Solid State Drives (SSDs) as non-volatile cache. This peculiar kind of
cache requires an over-provisioned space (OPS) (used for garbage collection) in addi-
tion to the normal caching space. The authors aim to optimize the performance of this
caching system by finding the optimal space fraction that should be allotted to OPS. To
this end, they propose a dynamic scheme based on cost models for a given workload.

Detecting Network contention Bhatele et al [15] study performance variability in a
parallel application (pF3D). The metric used to evaluate performance is the average
throughput (MB/s) since an experiment shows that a high throughput leads to low ex-
ecution time and vice-versa. The authors consider performance variability bad as it
prevents developers from accurately assessing the impact of their optimization on the
code. Therefore, the profiling done here aims to correlate the selected performance met-
ric (average throughput) to the potential issue that causes its variability. They conclude
that interference from other parallel applications sharing the same network links is the
actual culprit.

Casas et al [16] provide two types of measurements to evaluate the relationship be-
tween network capability and application performance based on injecting extra packets.
The first benchmark is concerned with how an application impacts the network. A low-
overhead MPI ping-pong application is first run on an empty network then concurrently
with the main application. The latency distribution of the extra traffic is measured in
both cases. The difference between the two distributions is then used to infer the level
of perturbation caused by the main application on the network.

The second benchmark aims to evaluate the performance an application would have
on less capable networks or when it shares the network with other software compo-
nents. The benchmark simulates reduced network capability by aggressively injecting
network traffic while the application runs. The extra workload is an MPI application
whose processes form a ring and exchange messages at a customizable rate. Varying



33 3. PROFILING TOOLS FOR MULTI-THREAD APPLICATIONS

the intensity of the extra workload allows to know how the application would respond
to different degrees of interference. Finally, the different measurements are combined
to make quantitative prediction of the performance degradation suffered by an applica-
tion A when sharing the network with an application B. The first benchmark is used to
quantify the impact of application B on the network, then the data previously produced
by the second benchmark allows to predict the response of application A to such a level
of perturbation.

Summary Network contention is detected using a variety of metrics. These metrics
range from the simplest [15] (throughput) to more sophisticated ones based on latency
distributions of extra traffic [16] intended for monitoring the network’s activity. These
more sophisticated metrics accurately capture both the disturbance that an application
causes on the network and how an application responds to such a disturbance.

3.1.3. Detecting NUMA problems
MemProf [55] is a profiler which aims to help developers select an efficient technique
to reduce the amount of remote memory accesses in their applications. Previous pro-
filers do not track enough information to precisely pinpoint memory objects accessed
remotely, neither can they identify opportunities for optimizing such accesses. To bridge
this gap, MemProf keeps track of a memory object’s history (which threads access
which objects at any point in time during the run of an application) using instruction-
based sampling. This history includes, for each access, properties such as the node
from which the access is performed, the memory node that is accessed, the latency of
the memory access, whether the access is a read or a write operation, etc.

MemProf provides a C API to process the history, which allows to compute statistics
about a single thread or object, or about a group of threads or objects. Writing scripts
based on this API allows the developer to understand the cause of a high remote memory
access rate and therefore select the right solution. For example, in the case of a facial
recognition application, MemProf showed that a single matrix out of 200 is responsible
for most remote accesses and that it is written only once and then accessed in read-only
mode by a set of threads. The problem was then fixed by duplicating this matrix on
all nodes after its initialization, which resulted in a performance improvements of up to
41%. MemProf also comes with a set of generic scripts whose output is often sufficient
for understanding the symptoms of an application, e.g., ratio and number of remote
memory accesses, list of the most accessed object types, access patterns corresponding
to an object type or to a specific object instance.

Carrefour [31] targets applications that generate substantial memory traffic, in which
case congestion on memory controllers and interconnects can be a bigger issue than re-



3. PROFILING TOOLS FOR MULTI-THREAD APPLICATIONS 34

mote memory accesses. Carrefour analyzes the memory accesses of applications from
which it then deduces memory management decisions such as moving memory pages,
where to allocate data, etc. In order to take sound memory management decisions for the
aforementioned category of applications, Carrefour uses a three-step algorithm: mea-
surement, global decisions and page-local decisions. The first metric to be monitored
is the application’s MAPTU (Memory (DRAM) accesses per time unit (microsecond)).
Carrefour is enabled for applications with the MAPTU above a certain threshold, 50
being a reasonable value. Below this threshold the application’s performance will likely
not benefit from any memory placement strategy that is why Carrefour is shut down to
avoid any useless overhead. A few other metrics serve to detect whether applying a par-
ticular memory management technique would take the application to a better or worse
state contention-wise. For instance:

• MC-IMB (Memory controller imbalance): is the standard deviation of the load
across all memory controllers, expressed as percent of the mean. This metric
serves to check whether load on controllers is not evenly balanced (MC-IMB >
35%), and when it is the case, page interleaving is resorted to.

• MRR (Memory read ratio. Fraction of DRAM accesses that are reads) is used to
decide whether page replication would benefit the application. More specifically,
an MRR of 95% or more ensures that synchronizing pages across nodes will not
be frequent enough to outweigh the benefits of replication.

Summary NUMA contention has been dealt with in the form of two major problems:
1) high remote access rate, and 2) congestion on the interconnect and memory con-
trollers. In the first case, the profiling challenge is to report enough information to the
developers in order to guide them to the root cause [55], in the code, of a high remote
access rate. In the second case, the focus is put on metrics that reflect whether the sys-
tem is in a global state of balance [31] and whether a particular memory placement
strategy would alleviate a potential imbalance problem.

3.1.4. Detecting lock contention
Free Lunch [6] is a lock profiler for server-class applications (databases, web servers)

which introduces a new metric for lock contention, called critical section pressure (CSP).
CSP aims to indicate precisely whether thread progress is being impeded by a lock. This
goal can not be reached using metrics centered around total critical section time or the
number of acquisition failures. In fact, server-class applications run for long periods of
time during which the demand put on locks can vary significantly. For this purpose, Free
Lunch was designed for in-vivo use so as to measure CSP continuously over windows
of one second.



35 3. PROFILING TOOLS FOR MULTI-THREAD APPLICATIONS

CSP is the ratio of i) the time spent by the threads in acquiring the lock and ii) the
cumulated running time of these threads. Therefore, CSP indicates the percentage of
time where threads are unable to make progress. Free Lunch reports the identity of the
locks whose CSP reaches a threshold. Free Lunch locates a previously unreported phase
with a high CSP in the log replay subsystem of Cassandra. This issue is triggered under
a specific scenario and only during a phase of the run.

Tallent et al [4] evaluate three different strategies for gaining insight into perfor-
mance losses due to lock contention. Based on sampling, all three strategies start by
determining whether a sample occurs during a work phase or an idleness phase to mea-
sure the amount of idleness suffered by the application. The strategies differ by the
entity on which they "blame" the measured idleness. For example, the first strategy as-
signs an idleness sample to the calling context in which the waiting sample occurs. The
second strategy accounts for an idleness sample evenly among the threads holding any
lock when the sample happens. The authors show, however, that these two approaches
are ineffective when it comes to complex applications, since they only help pinpoint
symptoms (first strategy) or suspects (second strategy) at best.

That is why they propose their third approach in which idleness is accounted for in
a per-lock counter, each time that a sample occurs in a thread waiting for that particular
lock. Then, when a thread that possesses a lock releases it, the thread blames itself for
all of the idleness (attributes that idleness to the context of its lock release operation)
that accumulated while it held the lock.

Compared to previous approaches, Yu et al [5] argue that lock analysis done in isola-
tion can overlook subtle interactions between an application’s components and therefore
miss interesting optimization opportunities. As a more holistic approach, they study cost
propagation through both lock contention (delay propagation to the components waiting
for the same lock), and call dependency (accumulated costs from callees to callers).

These two phenomena can combine to exacerbate contention through a snowball ef-
fect. An illustrative real-world case is presented in which three browser threads contend
for access to a critical file operation section, whose lock holder called and is waiting for
a device driver that is also contending for a lock with an AntiVirus thread and a con-
figuration manager, etc. To accurately account for multi-layered contention problems
such as the one presented, the authors use distinct metrics for total waiting time on the
one hand and waiting time suffered due to cost propagation on the other hand. Com-
paring the two classes of metrics provides an upper bound for the optimization of cost
propagation.

Summary Detecting lock contention by only measuring the time spent waiting for a
lock has proved insufficient. Some works propose more relevant metrics [6] to detect
contended locks that are worth fixing and that would not be detected using basic metrics.
Others focused their effort on detecting which thread is to blame [4] for the time wasted



3. PROFILING TOOLS FOR MULTI-THREAD APPLICATIONS 36

why where metric reflecting loss

Zhao et al [10] false sharing instruction
(# misses +

# invalidations) /
# instructions

PREDATOR [13] false sharing
line in the source

code # invalidations

Sheriff [44] false sharing memory object # invalidations
Plastic [45] false sharing Memory word -

Jayasena [48] et al false sharing - -

Cheetah [14] false sharing
object address

+ code line speedup if fixed

Dprof [49] false sharing data types # cache misses
CAER [50] cache contention - # cache misses
CAMP [51] cache contention - seconds per inst.

AQL_Sched [52] cache contention - -
Everest [33] disk contention overloaded volume -

Ananthanarayanan et al [53] disk contention popular file -
Oh et al [54] disk contention - GC cost

Bhatele et al [15] network contention net. links used in // -
Casas et al [16] network contention - Δ packet latency
MemProf [55] NUMA placement Memory object # remote accesses
Carrefour [31] NUMA congestion - -
Free Lunch [6] lock contention contended lock % impeded progress time

Tallent et al [4] lock contention
lock +

responsible thread idle time

Yu et al [5] lock contention device drivers propagated delay

Table 3.1: Summary of cause-oriented tools

on waiting for locks. Finally, some other works focus on the necessity of not studying
the lock contention problem in isolation [5] and study the cost propagation of waiting
for locks across the execution path.

3.1.5. Conclusion
Table 3.1 summarizes the different cause-oriented tools presented in this section.

The why column indicates the problem type (the cause of performance degradation)
addressed by the tool. The where column indicates the contended entity reported by the
tool. When a "-" is indicated, this means that the tool estimates in general whether the
resource suffers a problem or not (application having false sharing, a congested NUMA
system, a congested network, etc.). The last column indicates whether the tool provides
a metric that evaluates performance degradation due to interference. Where there is a
"-", the tool is rather prediction- or prevention-oriented. In these cases, actions are taken
to prevent a performance loss from happening. Cells of this column are highlighted in



37 3. PROFILING TOOLS FOR MULTI-THREAD APPLICATIONS

green when the corresponding tool provides a direct information on the global impact
the detected problem has on the application’s performance.

In sum, the questions these tools answer well is why and where. Although some of
them can give insight about the how much, they are only helpful for the specific problem
they are specialized in. Since the metrics computed by these tools are incomparable,
their mutual results cannot be used together to get a global understanding of what affects
the application’s performance the most.

3.2. WHERE: GENERIC, CAUSE-OBLIVIOUS TOOLS

COZ [18] uses causal profiling to indicate where exactly programmers should focus
their optimization efforts and quantify their potential impact. To predict the usefulness
of reducing the execution time of a particular line of code without having to actually do
it, COZ uses virtual speedup to mimic the effect of optimizing a specific line of code
by a fixed amount. An instruction is virtually sped up by inserting pauses to slow all
other threads each time the line runs. Virtual speedup is varied from between 0% (no
change) and 100% (the line is completely eliminated) in order to predict the effect of
any potential optimization on a program’s performance. COZ uses throughput as its
performance metric.

To profile throughput, developers specify a progress point, indicating a line in the
code that corresponds to the end of a unit of work. COZ’s profiler thread then randomly
selects a line to virtually speed up, and a speedup factor. Then the profiler thread saves
the number of visits to the progress point. COZ then uses sampling, and every time a
sample is available, a thread checks whether the sample falls in the line of code selected
for virtual speedup. If so, it forces other threads to pause. This process, called an
experiment, continues for a pre-defined time. After a short pause, a new experiment is
started to collect more figures. The results are combined at the end to produce profile
graphs for the lines of code that were virtually sped-up. After that, it is up to the user
to interpret them and make an educated choice about which lines may be possible to
optimize.

OSprof [56] is designed to be a versatile, portable, and efficient OS profiling method.
For this purpose, metrics that are too specific or costly to collect are avoided and the ap-
proach is simply based on the analysis of latency distributions of OS operations (mostly
system calls). Graphic distributions are generated and then examined by the user to
draw meaningful conclusions using the user’s knowledge of the characteristic times of
the used architecture (duration of a context switch, the scheduling quantum, etc.). The
analysis is based on considering that each peak in the distribution corresponds to a dif-
ferent execution path.

To further assist users in their analysis of the profiles, OSprof comes with automatic
processing and visualization scripts to present the results clearly and concisely. For in-



3. PROFILING TOOLS FOR MULTI-THREAD APPLICATIONS 38

stance, some of these tools report how two distributions differ in terms of the number of
peaks and their locations. Using OSprof, users can for instance discover the existence
of multiple execution paths (only some of which having to wait for a lock for example)
for the same operation. Also, comparing latency distributions of two runs with different
parameters can be helpful. For example, a sequential run with a one-latency peak com-
pared to a parallel run with two latency peaks shows a contention between processes in
the parallel execution scenario.

Song et al [19] propose to evaluate the effectiveness of statistical debugging for de-
tecting performance problems. Statistical debugging has been successfully used to de-
tect functional bugs by collecting program predicates (branches, function returns, etc.)
during both success runs and failure runs, and then using statistical models to automat-
ically identify predicates that are most correlated with a failure. To adapt statistical
debugging to performance problems, Song et al first had to define what good inputs and
bad inputs are. The second challenge was the design of predicates and statistical models
that are suitable for the problem under diagnosis.

The first challenge was solved by using performance-bug reports filed by users
which provide two sets of inputs (good/bad runs). For the second challenge, they se-
lect pertinent predicates (potentially revealing metrics) and statistical models to pro-
cess those predicates. The chosen predicates in this work are: branches (whether they
are taken or not), functions returns values, and scalar pairs (for each pair of variables,
whether they are equal, or the first is greater than the second, etc.) As for the statistical
models, two models were evaluated: the first one checks the presence (at least once) of
a predicate in a run, while the second bases its assessment on the exact number of times
the predicate has been true in a run.

The authors conclude that the use of branch predicates under both statistical models
provides almost full coverage of the 65 studied performance problems. However, they
also found that although useful, statistical debugging can almost always provide useful
information for performance diagnosis, developers still need help to figure out the final
patches. Especially, when an inefficient loop is pointed out by the statistical model,
developers need more program analysis to understand why the loop is inefficient and
how to optimize it.

Summary Table 3.2 summarizes the where-oriented tools we presented in this sec-
tion. Most where-oriented tools help pinpoint locations in the code that are theoretically
worth optimizing [18, 56]. However these tools provide insightful information, they do
not tell us whether the indicated locations actually hide a performance bug. A signifi-
cant manual effort is still required from the developer to only check the presence of a
real performance problem. Such tools are not designed to identify if the code suffers
interference, let alone to identify how much interference impacts performance.

Some other tools that take interest in the where question identify the root cause of a



39 3. PROFILING TOOLS FOR MULTI-THREAD APPLICATIONS

why where metric reflecting loss

COZ [18] - code line
resulting speedup =

f(% optimization of line)

Song et al [19] -
predicates correlated

with failure - (provided by user)

OSprof [56] - a system call -

Table 3.2: Summary of where-oriented tools

performance defect by comparing the execution trace with a representative set of good
and bad workloads [19]. These tools explain why a bad workload is inefficient, but they
cannot identify interference hidden in both good and bad workloads, which also makes
them inadequate to identify how much interference impacts performance in general.
Also, the effectiveness of this category of tools relies on the availability of pertinent
workloads provided by the application’s users.

3.3. ANOTHER COMBINATION: WHY AND HOW MUCH

A complementary approach to analyze thread interference is also proposed by Eyer-
man et. al [57]. In their work, they propose to measure, with hardware counters, which
interference impacts performance the most. They measure why and how much interfer-
ence hampers the scalability of a whole application, but they do not identify where, in
the application, the code suffers interference.

3.4. CONCLUSION

In this chapter, we reviewed state-of-the-art tools that are intended to help developers
fix performance problems in their applications. The various tools tackle performance
diagnosis from different angles. Some of the tools allow to answer why and where
performance is degraded. Other tools answer the where question in a generic way, and
finally, some other works tackle the combination why and how much performance is
degraded.

For the time being, there is no tool answering the question pair (where, how much),
thus allowing the developer to quantify performance loss due to interference while as-
sociating it to a location in the application. To reach a complete understanding of a
performance problem, such a tool is needed to generically pinpoint occurrences of in-
terference in the application before delving into a thorough analysis of the causes and
possible solutions using where-oriented tools. For this purpose, we present in the next
chapter a new generic tool that aims to be a point of connection between the existing
tools.



3. PROFILING TOOLS FOR MULTI-THREAD APPLICATIONS 40



4. RDAM AND RDAMCALCULATOR

As we have seen in the previous chapter, we need a new tool that focuses on analyz-
ing the interference effects. For this purpose, we propose to assess the time wasted due
to an interference, or put otherwise, the time we would gain by fixing an interference. To
quantify this effect, we propose the RDAM metric which we present in section 4.1. In
section 4.2, we present a tool which computes the RDAM metric for a given application.

4.1. THE RDAM METRIC

The RDAM metric aims at identifying the effects and locations of the interference
instances a multi-threaded application suffers. This metric identifies (i) where the code
suffers interference (which function(s) or loop(s)) and (ii) how much interference im-
pacts performance.

4.1.1. Interference results in slowdown
In order to define the RDAM metric, we start with our simple observation: inter-

ference slows the execution down. Therefore, we want the RDAM metric to reflect this
slowdown. However, capturing the slowdown caused by interference is difficult because
we cannot easily estimate the execution time of a code in absence of interference.

We could try to run a thread in isolation, but it is not always possible because threads
often synchronize and interact. We could also vary the number of threads or even the
workload, as proposed by OSProf or statistical debugging tools [19, 56]. This solution
is not satisfying because changing the setting often drastically changes the executed
code. For example, with OpenMP, varying the number of threads used to execute a loop
in parallel changes the number of iterations executed by each thread, which makes the
comparison between the runs difficult.

Performance variation as an indicator In order to compute the slowdown caused by
interference, we rely on an intuition: performance variation is the universal indicator of
any interference issue. More precisely, if a block of code suffers interference, some-
times, it will execute slowly because other threads use the same hardware resources

41



4. RDAM AND RDAMCALCULATOR 42

82 38 22 48 103
564

22 22 22 22 22 183 (32.5%)
381 (67.5%)

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

Figure 4.1: Illustration of the RDAM metric: based on the original execution trace
(on the top), an ideal improvement without interference is estimated at 32.5% (on the
bottom)

or delay a synchronization, while sometimes, it will execute quickly because the other
threads do not interfere.

Based on this hypothesis, we can assume that, if a block of code is executed often,
it will probably also execute at least once with little interference. We can thus consider
that the fastest execution is almost interference-free, and that any slower execution is
caused by interference. We can then compute, for any block of code, the slowdown of a
thread caused by interference.

We define this metric as the RDAM score (Relative DistAnce to Minimum) of a
block of code. Figure 4.1 illustrates the principle. Each box represents a sequence
of instructions executed by a thread, and the gray boxes are repetitive sequences of
instructions. If we assume that the sequence with the minimum duration (in this case,
22) is only slightly slowed down by interference, the RDAM score approximates the
performance improvement (represented at the bottom) that would have been obtained if
each occurrence of the sequence had been executed without interference.

Finally, it is worth noting that by using the fastest execution as a reference, RDAM is
different than average-execution-centered metrics in that it can detect that an application
suffers interference even when most occurrences are slowed down.

4.1.2. Formal definition
If si is a sequence of instructions, we say that si and sj are repetitive sequences of

instructions, and we note sj ∼ si, if they contain the same instructions. Then, we define
Ri as a set of repetitive sequences of instructions: Ri = {sj|sj ∼ si}. In Figure 4.1, the
set of gray boxes form an Ri: R1 = {s1, s4, s5, s9, s10}. Finally, if we note di the execu-
tion time of si and di the minimal execution time of the sj ∈ Ri (di = minj|sj∈Ri

{dj}),
our hypothesis says that di is only slightly slowed down by interference. If T is the



43 4. RDAM AND RDAMCALCULATOR

����������������������������������������

����������������������
�������������

����������������������
��������������������������

���������
�������

�������������
�������

���������������
������������

���������������

���������
�������

����������
������

��������
����������

����������������������������

�����������������

�����
�������

��������������������
����������������
����������������

Figure 4.2: Overview of RDAMcalculator.

execution time of a thread, we can then approximate the slowdown of the thread caused
by interference when we execute the sj ∈ Ri with:

RDAMi =

�
j|sj∈Ri

(dj − di)

T

From this formula, it results that RDAMi is a number between 0 and 1. A higher
RDAMi indicates that a thread suffers more interference. Being directly associated
with a sequence of instructions si, in addition to indicating an interference phenomenon,
RDAMi pinpoints the code block where the interference happens.

4.1.3. Accuracy of the RDAM metric
In our equation, we consider that performance variation can only come from inter-

ference. In practice, this is not the case because of low-level hardware mechanisms.
Typically, we ignore the warm-ups of the caches, of the branch predictors or of the
cache-line prefetchers. However, this performance variation often affects only the first
occurrences. As we record thousands to millions of occurrences, these first occurrences
only marginally modify the RDAM score.

Moreover, in our equation, we consider that di is almost an interference-free exe-
cution. In practice, we cannot prove that this fastest execution does not suffer interfer-
ence. However, since we record thousands to millions of occurrences, the probability
of capturing an execution with little interference should be large. We confirm this hy-
pothesis in Section 5.1 by experimentally showing that di is close to the time taken
by an interference-free occurrence in four different micro-benchmarks, even in highly
contended cases.



4. RDAM AND RDAMCALCULATOR 44

4.1.4. Conclusion
In order to detect interference, we use the RDAM metric which reflects the slow-

down suffered by a thread. To approximate this slowdown, we compute the RDAM
score for highly repetitive sequences of instructions assuming the presence of an almost
interference-free occurrence. In the next section, we present a tool which allows to
compute the RDAM metric.

4.2. THE EFFECT-ORIENTED PROFILING TOOL

RDAMcalculator is an effect-oriented profiling tool. It analyzes the interference
effects on an application by automatically computing the RDAM scores. As presented
in Figure 4.2, RDAMcalculator splits the analysis in two phases: an in-vitro profiling
phase and a post-mortem analysis phase.

During the in-vitro profiling phase, RDAMcalculator automatically instruments a
binary in order to add probes that record timestamps during the execution (step 1).
RDAMcalculator then runs the instrumented application and records the timestamps in
an execution trace (step 2). During the post-mortem analysis phase, RDAMcalculator
computes the RDAM scores by analyzing this trace (step 3).

In this section, we discuss where RDAMcalculator adds the probe in the code, we
discuss why RDAMcalculator can report false positives, and we finally describe in detail
the different steps of RDAMcalculator.

4.2.1. Selecting the locations of the probes
Selecting the locations of the probes is challenging. If RDAMcalculator inserts too

many probes, the execution time of the probes drastically changes the timing behavior
of the application, which makes the RDAM scores inaccurate. We have measured that
the execution of a single probe that only reads the CPU cycle counter costs 40ns (88
cycles) on our large machine (Opteron48, see Section 5.1).1 As a consequence, adding
a probe at the beginning and at the end of each function already leads to a very large
overhead for many applications.

Because of the overhead, RDAMcalculator can only insert few probes, and in care-
fully chosen locations. In our experiment, we chose to capture, by default, the time taken
by a list of functions provided by the user. We chose to instrument the functions because
we measured that 91% (64 functions out of 70) of the functions automatically instru-
mented by RDAMcalculator are executed many times. For the remaining 6 functions,
as they are executed few times, the probability of capturing an interference-free occur-
rence becomes low. Therefore, the RDAM score tends to lower the interference effect.

1We measure the time taken by 1000 executions of rdtscp. The large number of cycles comes from
the flush of the pipeline.



45 4. RDAM AND RDAMCALCULATOR

For these potentially false negative functions, the developer can manually instrument an
inner loop in order to capture more occurrences (manual instrumentation in Figure 4.2).
We discuss in details the 6 manually instrumented functions in Section 5.2.3.

We also chose to only insert probes for a specific list of functions because instru-
menting all the functions often leads to a large overhead. As illustrated in Figure 1, there
are two ways to automatically generate this list. The developer can first generate this
list with a where-oriented tool, such as linux perf or Coz. In this case, RDAMcal-
culator is used to try to identify all the functions that suffer interference before trying
to understand why with cause-oriented tools. The developer can also generate this list
with a cause-oriented tool. In this case, RDAMcalculator is used to verify that an in-
terference bottleneck reported by the cause-oriented tool actually degrades performance
and that spending time on trying to optimize the function is interesting.

4.2.2. False positives

RDAMcalculator reports functions as suffering interference when they have a vari-
able execution time. In fact, we assume that two calls to the same function should
always take roughly the same time, which is the time taken by the fastest, interference-
free, occurrence. While this assumption holds for many functions, it may also lead to
false positives. Some functions can take more time because of their workload: because
of their arguments or because of the global state (global variables, operating system
state). This is typically the case of a function that searches an element in a linked list.

Automatically identifying when the workload changes the execution time in general
is difficult. First, static analysis does not help because static analysis cannot identify the
control flow taken during the execution. Typically, a static analysis will report that an
error handling code never executed can lead to different execution times. Then, even
a varying workload can lead to approximately the same execution time. Typically, the
time taken by a function that writes small buffers to a disk will take approximately the
same time, even when the buffer size changes, because the function spends most of its
time in the system call.

As handling a varying workload in general is difficult, we consider that reporting
false positives remains the best strategy. In our experiment, we show that, among the
functions with a high RDAM, RDAMcalculator only reports 20% of false positives. If
RDAMcalculator reports a false positive, the developer can interactively specify which
parameters matter before restarting the computation of the RDAM scores (feedback loop
in Figure 4.2). Moreover, RDAMcalculator uses a default list of well-known parameter-
dependent functions, such as pthread_mutex_lock, for which it is obvious that the
workload will vary a lot with the arguments.



4. RDAM AND RDAMCALCULATOR 46

Figure 4.3: Example of a trace

4.2.3. Automatic instrumentation of the application

Since manually instrumenting an application can be a tedious task for the developer,
RDAMcalculator automatically instruments the functions provided in the list of func-
tions (step 1 of Figure 4.2). For that purpose, RDAMcalculator relies on the EZTrace
tracing framework [58]. In detail, RDAMcalculator extracts the function prototypes
from the debugging symbols (Dwarf tables), and then uses EZTrace to instrument the
binary of the application.

EZTrace can use two different methods for instrumenting a function. If the function
is located in a shared library, EZTrace uses LD_PRELOAD to intercept the calls to the
function. If the function is located in the binary, EZTrace intercepts the calls by patch-
ing the binary when the binary is loaded in memory by the ELF loader. In both cases,
EZTrace replaces a call to the original function by a wrapper provided by RDAMcalcu-
lator. The wrapper first records an event (marking the beginning of the function), then
calls the original function, and finally records another event (marking the end of the
function).

4.2.4. Trace generation

As presented in Figure 4.2 (2. Trace generation), RDAMcalculator runs the instru-
mented version of the application. The instrumented version records the events used to
compute the RDAM scores in an execution trace. An event consists of a timestamp (the
CPU cycle counter), the function name, a marker to know if the thread enters or leaves
the function, and the function arguments. Figure 4.3 shows the textual display provided
by our tool which allows a manual inspection of the detailed information of a trace. It
is also possible to vizualise the trace graphically using a tool such as Vite [59] to get a
first high-level view of the application’s behavior. Figure 4.4 shows an example of the
graphic view.

The instrumented version also records call stacks that lead to the execution of the
instrumented functions because understanding the control flow of the application sim-
plifies the analysis of the application.

As a large instrumentation overhead may lead to a drastically modified timing be-
havior and thus an inaccurate RDAM scores, we have carefully optimized the trace



47 4. RDAM AND RDAMCALCULATOR

Figure 4.4: Trace vizualisation

generation mechanisms. We describe these mechanisms in detail in the remainder of
this section.

Recording the events RDAMcalculator often records millions of events. For instance,
the trace of the DC application contains 364 millions events. As a result, a trace is often
large (17 GB for DC). Since recording this trace in a file can drastically change the timing
behavior of the application, RDAMcalculator batches the I/Os. In detail, each thread of
the application stores its events in its own pre-allocated buffer. A thread uses its own
buffer so as to avoid thread synchronizations. When a buffer is full, RDAMcalculator
flushes the buffer to disk and reinitializes the buffer. RDAMcalculator also flushes all the
buffers to disk at the end of the application. We ensure that the buffers are rarely flushed
during the run by using large buffers. On our small machine (Xeon4, see Section 5.1),
we pre-allocate 1 GB for the buffers (1/8 of the memory), while on our large machine
(Opteron48, see Section 5.1), we pre-allocate 32 GB (also 1/8 of the memory).

Recording the call stacks In addition to the recorded events, RDAMcalculator records
call stacks to simplify the analysis. For example, with the pthread_mutex_lock
function, the developer wants to know which critical section is protected by the lock
acquisition in order to optimize the code. Systematically recording the call stack when
a thread executes an instrumented function would lead to a large slowdown. For this
reason, RDAMcalculator records a call stack every N invocations, by beginning with
the first invocation. In our experiment, N is equal to 10 000 and is enough to understand
why a function suffers interference.



4. RDAM AND RDAMCALCULATOR 48

Instrumentation overhead As a result of our optimizations, the instrumentation over-
head of a function is most of the time reduced to a function call (from the wrapper to
the original function), two accesses to the timestamp counter, the copy of few bytes in
the buffer, and, only when EZTrace modifies a binary, two jmp instructions. On the
machines used for the evaluation (see Section 5.1), we have measured that the overhead
of an instrumented function always remains below 100 ns.

4.2.5. RDAM score computation
During the second phase, RDAMcalculator computes the RDAM scores. RDAM-

calculator accepts the format used to store the execution trace during the in-vitro phase,
but also the Pajé format, which makes it compatible with many other profiling tools
[58, 60–62].

Before computing the RDAM scores, RDAMcalculator first identifies the repetitive
sequences of events in the trace. RDAMcalculator identifies the repetitive sequences
with more than two events in order to handle nested calls: typically when a function
f calls a function g, a call to f is represented by the f_start g_start g_end
f_end sequence of events in the trace. In order to illustrate the algorithm, the following
example shows a group of events that appear in this order in the trace of one thread:

a b c b d a b e a b c

The algorithm aims at identifying that the sequence of events a b (in bold) is a
repetitive sequence that appears 3 times, and that the sequence a b c (underlined)
is a repetitive sequence that appears twice. To summarize, the algorithm starts with
the first pair of events (a b in our case). It tries to find this sequence in the trace.
If it finds another occurrence, the algorithm identifies a repetitive sequence a b and
replaces all its occurrences in the trace by a meta-event that contains a and b. In our
example, the algorithm continues with the new pair (meta a b) c. It applies the
same algorithm, and thus replaces all the occurrences of (meta a b) c by a new
meta-event. The algorithm continues with the pair (meta a b c) b. As it does not
find any occurrence of this pair, the algorithm continues with b d, d (meta a b),
(meta a b) e and e (meta a b c) before terminating.

As soon as RDAMcalculator identifies the repetitive sequences of instructions, it
computes the RDAM score of each repetitive sequence with the formula given in Sec-
tion 4.1. RDAMcalculator then reports the repetitive sequences of events. For each
repetitive sequence of each thread, RDAMcalculator reports the name of the event (i.e.,
the function name), the RDAM score, the number of occurrences of the repetitive se-
quence and the recorded call stacks. The developer can then interactively change how
RDAMcalculator handles the parameters of the functions and can thus discard the false
positives before restarting the computation of the RDAM scores (feedback loop in Fig-
ure 4.2, see Section 4.2.2).



49 4. RDAM AND RDAMCALCULATOR

4.2.6. Conclusion
We use the RDAMcalculator to compute RDAM scores for repetitive sequences of

instructions in an application. The obtained RDAM scores indicate whether a given se-
quence suffers interference. The next chapter presents the two-step experimental study
through which we validate our approach.



4. RDAM AND RDAMCALCULATOR 50



5. EVALUATION

This chapter aims to evaluate the RDAM metric through a two-step experimental
study. First, we use several micro-benchmarks to study the correlation between an
RDAM score and the performance of the sequence of instructions associated with it.
Second, we study 27 real applications to evaluate the effectiveness of RDAM in detect-
ing previously known as well as new performance problems in them.

5.1. MICRO-BENCHMARK EVALUATIONS

In this section, we study the RDAM scores of several simple micro-benchmarks that
implement known interference problems. This first study has two different goals.

First, this evaluation has the goal of showing that the RDAM metric actually cap-
tures interference effects. For that purpose, we evaluate well-known problems: lock
contention (POSIX and spinlock), false sharing, and I/O contention. These problems are
frequent performance problems that are caused by thread interference. In each micro-
benchmark, we vary the frequency of the interference. We then compute the RDAM
score of the sequences of instructions affected by interference and we verify that the
RDAM score is correlated to the performance of the micro-benchmark.

Second, as presented in Section 4.1, we suppose that the probability of recording an
execution not slowed down by interference is high when we record many occurrences
of a repetitive sequence of instructions. Hence, this experiment has also the goal of
verifying that this hypothesis is correct.

For our evaluations, we use two machines: (i) Xeon4 has 4 cores, 8 GB of memory, 1
Intel Xeon E5-2603 socket, 1 NUMA node. Linux version: 4.4.0-1-amd64, gcc version
5.3.1, glibc version: 2.22-4, and (ii) Opteron48 has 48 cores, 256 GB of memory, 4
AMD Opteron 6172 Dodeca-core sockets, 8 NUMA nodes. Linux version: 4.9.0, gcc
version: 4.9.2, glibc version: 2.21.

5.1.1. Summary of the micro-benchmarks

We consider four different micro-benchmarks. The first and the second micro-
benchmarks exhibit a problem that occurs when multiple threads try to acquire the same

51



5. EVALUATION 52

f o r ( i =0 ; i <NITER ; i ++) {
compute ( d e l a y ) ;
l o c k (& l ) ;
v a l u e ++;
un lo ck (& l ) ;

}

Listing 5.1: Code of the lock contention micro-benchmark

s t r u c t { i n t x ; i n t y ; } d a t a ;

f o r ( i =0 ; i <NITER ; i ++) {
i f ( my_rank == 0) {

d a t a . x ++;
} e l s e {

d a t a . y ++;
compute ( d e l a y ) ;

}
}

Listing 5.2: Code of the false sharing micro-benchmark

fd [ t i d ]= open ( f i l e [ t i d ] , O_RDONLY | O_DIRECT ) ;
f o r ( i =0 ; i <NITER ; i ++) {

compute ( d e l a y ) ;
r e a d ( fd [ t i d ] , b u f f e r , b l o c k _ s i z e ) ) ;

}

Listing 5.3: Code of the I/O contention micro-benchmark



53 5. EVALUATION

lock at the same time. In case of contention, the cache line that holds the lock vari-
able continuously bounces between the cores, which may saturate the buses between
the cores (e.g., the interconnect on Opteron48). As presented by Lozi et al. [40]., this
saturation drastically increases the time to acquire a lock and leads to a performance
collapse.

Listing 5.1 reports the code used to evaluate lock contention. We use a POSIX lock
in the first micro-benchmark and a spinlock in the second. At each iteration, a thread
simulates a computation for delay µs, acquires a lock, increments a shared variable,
and then releases the lock. We execute this micro-benchmark on Opteron48 with 47
threads (in order to leave an idle core so that the OS can schedule other ready processes),
and we vary delay to simulate different levels of lock contention.1

The third micro-benchmark suffers false sharing. False sharing appears when mul-
tiple threads access different variables that happen to be located on the same cache
line [29,44]. Each thread, by updating its own variable, invalidates the cache line for the
other threads, which leads to cache misses and performance degradation. This problem
is hard to detect because source code analysis does not show any explicit relationship
between the variables located on the same cache line.

Listing 5.2 reports the code used to evaluate false sharing. The first thread (my_rank
= 0) continuously updates its variable x. The other thread (my_rank = 1) updates
its independent y variable and then simulates a computation by executing delay itera-
tions of an empty loop. As x and y are located on the same cache line, the access of the
second thread invalidates the cache line for the first thread. We execute this benchmark
on Xeon4 with 2 threads and we vary the delay to simulate different probabilities of
false sharing.

In the fourth micro-benchmark, many threads perform I/O operations simultane-
ously. Since the disk may saturate, we have a typical case of interference, which may
lead to a large overhead.

Listing 5.3 reports the code used to evaluate I/O contention. Each thread opens
its own file and reads it sequentially with a delay between read operations. In order
to bypass the I/O cache of the operating system, each thread opens its file with the
O_DIRECT flag, which ensures that every call to read actually triggers a physical
I/O. We run the micro-benchmark on Opteron48 with 47 threads, and each thread reads
blocks of 512 bytes, while varying delay from 0 to 4 ms in order to evaluate different
levels of I/O contention.

1Note that in these micro-benchmarks, as in all the other micro-benchmarks, the delay is not included
in the profiled sequence of instructions.



5. EVALUATION 54

 4

 8

 12

 16

 0.001  0.01  0.1  1  10  100

A
cq

ui
s.

 ti
m

e 
(µ

s)

delay (µs)

(a) Acquisition time

 0

 0. 2

 0. 4

 0. 6

 0. 8

 1

 0. 001 0. 01  0. 1  1  10  100

RD
AM

 s
co

re

del ay ( µs)

(b) RDAM score

Figure 5.1: Lock contention micro-benchmark (POSIX lock)

 0
 5

 10
 15
 20
 25
 30

 0.001  0.01  0.1  1  10  100

A
cq

ui
s.

 ti
m

e 
(µ

s)

delay (µs)

(a) Acquisition time

 0. 2

 0. 4

 0. 6

 0. 8

 0. 001 0. 01  0. 1  1  10  100
RD

AM
 s

co
re

del ay ( µs)

(b) RDAM score

Figure 5.2: Lock contention micro-benchmark (spinlock)

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0  20  40  60  80  100

Lo
op

 ti
m

e 
(n

s)

delay (# iterations)

(a) Read time

 0

 0. 2

 0. 4

 0. 6

 0. 8

 1

 0  20  40  60  80  100

RD
AM

 S
co

re

del ay ( # i t er at i ons)

(b) RDAM score

Figure 5.3: False-sharing micro-benchmark

 0

 400

 800

 1200

 1600

 2000

 0  1  2  3  4

re
ad

 ti
m

e 
(µ

s)

delay (ms)

(a) Read time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4

R
D

A
M

 S
co

re

delay (ms)

(b) RDAM score

Figure 5.4: I/O contention micro-benchmark



55 5. EVALUATION

Benchmark X ρ # samples
POSIX lock contention lock acq. time 0.97 17

spinlock contention lock acq. time 0.95 16
false sharing time to access x 0.95 12
io contention read time 0.99 11

Table 5.1: Correlation coefficient for the micro-benchmarks.

5.1.2. Analysis of the micro-benchmarks

Figures 5.1, 5.2, 5.3 and 5.4 report the evaluation of the micro-benchmarks. In
each figure, (a) gives the performance (solid line) and the minimal duration (dotted
line) when we vary delay, and (b) gives the RDAM score when we vary delay. For
the two lock micro-benchmarks, (a) reports the completion time to acquire a lock. For
the false sharing micro-benchmark, (a) reports the completion time to read the variable.
Finally, for the I/O contention micro-benchmark, (a) reports the completion time of a
read operation.

As expected, for all the micro-benchmarks, by observing the solid lines in the (a)
figures, we can see that when the delay increases, the completion time decreases since
the probability of interference decreases. Moreover, we can observe in the (b) figures
that the RDAM score seems to behave exactly as the completion time: when the delay
increases, the RDAM scores also decreases.

In order to confirm this observation, we compute the Pearson product-moment cor-
relation coefficient between the completion time and the RDAM score for each micro-
benchmark. The correlation coefficient ρ(X, Y ) of two random variables X and Y is a
number between -1 and 1. When this number is close to -1 or 1, it means that a linear
relation exists between the two variables. Table 5.1 reports the correlation coefficient
between the completion time and the RDAM score for each micro-benchmark, along
with the number of samples (points on the x-axis) for each variable. We can observe
that the coefficient is high in all the experiments (above 0.95), which confirms that a
linear relation between the completion time and the RDAM score exists in the micro-
benchmarks. From this strong correlation, we can conclude that the RDAM score cap-
tures the performance degradation caused by interference in the micro-benchmarks.

Moreover, when we observe the dotted lines in the (a) figures, we can see that the
occurrence with the minimum completion time remains constant for each contention.
This result shows that we are actually able to capture at least one occurrence only
slightly slowed down by interference in each of the micro-benchmarks, even when the
contention level is extremely high. This result validates the hypothesis formulated in
Section 4.1: when the number of occurrences of a repetitive sequence is large, the prob-
ability of capturing an occurrence that suffers little interference is large.



5. EVALUATION 56

Pheonix-2 Splash2 Parsec NPB (C) Memcached LevelDB Total
Hardware setting Xeon4 Opteron48 Opteron48 Opteron48 2*Xeon4 Xeon4
# threads 4 48 48 48 1*4 + 4*1 4
# applications 7 7 4 7 1 1 27
# manually instrumented 7 0 0 0 1 0 8
# applications with a high score 3 2 1 3 1 1 11
# functions with a high score 3 3 1 6 2*1/2 1 15
# false positives 2 0 0 1 0 0 3
# applications with true defects 1 2 1 3 1 1 9
# functions with true defects 1 3 1 5 1 1 12
# functions never reported 0 1 0 4 0 1 6
# corrected functions 1 3 0 5 1 0 8

Table 5.2: Summary of the evaluated applications

5.2. APPLICATIONS EVALUATION

This section presents an evaluation of RDAMcalculator with real applications. This
evaluation has first the goal of verifying that RDAMcalculator can actually identify the
effects of interference in real applications. For that purpose, we use RDAMcalculator
to evaluate a panel of 27 applications. This evaluation also aims at showing that we
can cross-check the interference bottlenecks identified by RDAMcalculator with the re-
ports of classical cause-oriented tools in order to fully understand interference (where,
why and how much). This evaluation has finally the goal of showing that, by identify-
ing where, why and how much interference impacts performance, we can often easily
optimize the applications.

After a presentation of the applications, this section describes how we generate the
list of functions instrumented by RDAMcalculator. The section then presents an analysis
of the possible false negatives when we instrument these functions, a systematic analysis
of the functions with a high RDAM score and an analysis of the false positives reported
by RDAMcalculator.

5.2.1. Evaluated applications
We evaluate 27 applications summarized in Table 5.2. We have selected these ap-

plications because they are widely used in the validation process of tools and metrics
designed for performance analysis of parallel programs. Moreover, some of them are
already known to suffer interference due to various contention types such as lock con-
tention and false sharing [40, 41, 44, 63, 64].

Phoenix-2 [21] is a MapReduce for shared-memory systems written in C. It comes
with small sample applications with data sets ranging from 59 to 512 MB. The Splash2
benchmark [20] contains small multi-threaded C applications, ranging from a ray tracer
to a large-scale ocean movement computation. The Parsec 2.1 benchmark [22] contains
moderate to large multi-threaded C++ applications from various fields such as financial
analysis or data-mining. NPB (NAS Parallel Benchmark 3.3 [23]) contains moderate



57 5. EVALUATION

Application Function % of time Instrum. overhead
Ph

oe
ni

x-
2

histogram calc_hist 94% 6.42%

kmeans find_clusters 79% 10.53%calc_means 21%
linear_regression linear_regression_pthread 99% 8.7%
matrix_multiply matrixmult_map 99% 0.12%

pca calc_cov 99% 1.23%
string_match string_match_map 88% 2.94%

word_count
__strcmp_sse2_unaligned 44%

28.99%wordcount_reduce 27%
__memmove_ssse3_back 22%

Sp
la

sh
-2

Barnes
hackcofm 65%

23.18%walksub 12%
subdivp 12%

FMM
VListInteraction 33%

8.47%DownwardPass 32%
UpwardPass 24%

Ocean cont.

pthread_barrier_wait 23%

5.96%
relax 14%

slave2 12%
__lll_lock_wait 12%

__lll_unlock_wake 11%

Ocean non cont.

slave2 21%

7.39%laplacalc 16%
relax 12%

pthread_barrier_wait 11%

Radiosity
__lll_unlock_wake 37%

27.58%__lll_lock_wait 24%
_process_task_wait_loop 21%

Raytrace car __lll_unlock_wake 52% 9.05%__lll_lock_wait 31%

Water-nsquared
_int_malloc 40%

5.08%INTERF 17%
CSHIFT 16%

Pa
rs

ec
-2

.1

swaptions HJM_SimPath_Forward... 33% 1%

fluidanimate ComputeForcesMT 48% 5.8%ComputeDensitiesMT 32%

facesim Add_Force_Differential 29% 6.5%Update_Position_Based... 17%

streamcluster T.203 44% 5%parsec_barrier_wait 41%

N
PB

3.
3

BT

compute_rhs_ 30%

5%x_solve_ 10%
y_solve_ 13%
z_solve_ 13%

CG conj_grad_ 73% 2%

DC

KeyComp 26%

5.74%MultiWayMerge 24%
__memcpy_sse2 19%
__write_nocancel 13%

EP __ieee754_log_sse2 48% 1%vranlc_ 22%

LU

sync_left_ 35%

0.05%

rhs_ 22%
sync_right_ 14%

jacu_ 6%
buts_ 6%
ssor_ 5%
jacld_ 5%
blts_ 5%

SP

compute_rhs_ 36%

3%z_solve_ 17%
x_solve_ 16%
y_solve_ 15%

UA gomp_team_barrier_wait_end 24.01% 30.86%gomp_barrier_wait_end 23.58%

LevelDB
__GI___libc_write 21%

6.9%pthread_cond_signal 10%
pthread_cond_wait 9%

Memcached sendmsg 36% 0%epoll_wait 24%

Table 5.3: Time consuming functions reported by Linux perf



5. EVALUATION 58

to large Fortran and C applications, ranging from linear algebra to a data mining appli-
cation, which writes 2.5 GB of data in the file system [65]. We use the large C class
dataset. While the other benchmarks synchronize with POSIX locks and condition vari-
ables, NPB synchronizes through OpenMP.

Memcached 1.4.36 [24] is an in-memory key-value caching system widely used to
speed up web servers by alleviating database load. We evaluate memcached with the
memaslap client [66], which generates 70% of set requests and 30% of get requests
during 30s. We run memcached with 4 threads in multi-threaded mode on a Xeon4 ma-
chine and 4 mono-threaded instances of memaslap on another Xeon4 machine. LevelDB
1.20 [25] is a fast key-value store library, shipped with the db_bench benchmark. In
our setting, each of the four threads inserts one million random values in the database.

5.2.2. Identification of the hottest functions

As presented in Section 4.2.1, RDAMcalculator automatically computes the RDAM
scores of a list of functions provided by the developer. This list can contain a list of func-
tions identified by a cause-oriented tool in order to verify that a reported interference
has actually an important performance effect. The list can also contain a list of functions
identified as potentially interesting by a where-oriented tool in order to identify all the
functions for which interference has a large performance effect.

In our experiments, we analyze the functions reported by a where-oriented tool be-
cause we want to identify all the possible interference effects. We have chosen to an-
alyze the functions that take more than 1% of the total execution time, because we
consider that improving the performance by removing interference from a colder func-
tion is unlikely. For that purpose, we use the where-oriented tool linux perf that
computes the time spent in the functions with a sampling technique. Table 5.3 reports,
for each application, the functions that take more than 1% of the total execution time.
In total, we thus analyze 70 functions from 27 applications with RDAMcalculator.

5.2.3. Analysis of the potential false negatives

As presented in Section 4.2.1, if a function is called few times, the probability of cap-
turing an interference-free execution becomes low. In this case, the RDAM score is low
because RDAMcalculator cannot identify a potential interference bottleneck. Among
the 70 analyzed functions, 6 are in this case. They all come from the Phoenix-2 bench-
mark (the 6 first functions in Table 5.3). These functions are called once. The RDAM
score is thus systematically equal to 0, which may hide an interference bottleneck.

For these 6 potential false negatives, the instrumented functions contain a large loop
executed many times. We have manually instrumented these functions in order to record
a timestamp every ten iterations of the loop, because recording more timestamps leads



59 5. EVALUATION

B
ar

ne
s

FM
M

O
ce

an
co

nt
ig

uo
us

O
ce

an
no

n-
co

nt
ig

uo
us

R
ad

io
si

ty
R

ay
tr

ac
e

ca
rs

W
at

er
N

sq
ua

re

H
is

to
gr

am
K

m
ea

ns
L

in
ea

rr
eg

re
ss

io
n

M
at

ri
x

m
ul

tip
ly

Pc
a

St
ri

ng
m

at
ch

W
or

d
co

un
t

B
T

C
G

D
C E
P

L
U SP U
A

flu
id

an
im

at
e

fa
ce

si
m

sw
ap

tio
ns

st
re

am
cl

us
te

r

L
ev

el
D

B
M

em
ca

ch
ed

0

0.2

0.4

0.6

0.8

0.
11 0.
16

1
·1
0−

2

0.
11

0
.8
7

0.
82

0.
13

0.
11

8.
7
·1
0
−
2

0.
37

4
·1
0
−
3 0.

37
0.
13

0.
48

8
·1
0−

2

8
·1
0
−
2

0.
83

5
·1
0
−
2

0.
25

0.
1

0.
41

4
·1
0
−
2

3
·1
0
−
2

0.
11

0.
99

0.
66

0.
93

Figure 5.5: Highest RDAM scores

to a larger slowdown. For each function, we manually add 2 lines of code: one to count
the number of iterations and the other to record the timestamp.

5.2.4. Instrumentation overhead
The last column of Table 5.3 reports the overhead caused by instrumentation (man-

ual instrumentation for the 6 potential false negatives and automatic instrumentation
otherwise). The overhead remains below 10% for 22 applications, and below 30% for
the other applications. We consider that this overhead remains reasonable for an in-vitro
profiling, and that it should not drastically change the behavior of the applications.

5.2.5. Analysis of the RDAM scores
Figure 5.5 reports the highest RDAM scores identified by RDAMcalculator. For

the analysis, we focus on applications with an RDAM score greater than 0.2. With
this threshold, a thread loses more than 20% of its time because of interference. We
consider thus that it becomes interesting to understand why. We identify 15 functions
from 9 applications with a RDAM score higher than 20%. The remainder of the section
presents an exhaustive analysis of these functions.

Lock contention RDAMcalculator reports high RDAM scores for the lock acquisition
function in two applications: Raytrace (RDAM of 0.82) and Radiosity (RDAM of 0.87).



5. EVALUATION 60

p t h r e a d _ m u t e x _ l o c k (&(gm−> r i d l o c k ) ) ;
ray−>i d = gm−> r i d ++;
p t h r e a d _ m u t e x _ u n l o c k (&(gm−> r i d l o c k ) ) ;

Listing 5.4: code of the hottest function in Raytrace

Thanks to the call stacks reported by RDAMcalculator, we can easily identify where is
the interference bottleneck in the code. Listing 5.4 presents the code associated with the
lock acquisition in Raytrace.

As presented in Section 5.1.1, when many threads try to acquire the lock at the same
time, the cache line that contains the lock bounces between the cores, which saturates
the buses. A high RDAM score in the lock acquisition function is the symptom of this
saturation. Lozi et al. [40,41] also identify this saturation, and we have therefore reused
their algorithm (the RCL lock). We confirm their result: using an RCL lock divides by
4 the completion time of Raytrace and by 5.37 the completion time of Radiosity. This
experiment confirms that the RDAM metric is able to identify contended locks. With
the modified applications, we observe a high score of 0.25 in Raytrace and a low score
of 0.11 in Radiosity. False sharing causes the high score of Raytrace and we discuss this
case in the next section.

False sharing RDAMcalculator identifies two functions that suffer false sharing, one
from Raytrace that was never reported (RDAM of 0.25), the other from Linear_regression
that was previously reported by Liu et al. [44] (RDAM of 0.37).

The high RDAM score in Raytrace appears after correcting the lock contention (see
Section 5.2.5), and in the same function (see Listing 5.4). In order to understand the
cause of the interference, we use oprofile to compute the number of cache misses
per function. We observe a high number of cache misses in the code reported in List-
ing 5.4. However, the RCL lock should prevent these cache misses, because only the
RCL server core accesses gm->rid [40]. As false sharing often causes an unexpect-
edly high number of cache misses, we have simply added padding around gm->rid.
Thanks to this modification, we improve the performance of Raytrace by 15%, which,
with the lock optimization (see Section 5.2.5), leads to a completion time divided by
4.81.

In Linear_regression, measuring the cache misses with oprofile highlights a
large loop that accumulates its result in a structure falsely shared with the other threads.
In order to solve the problem, we accumulate the results in local variables and only
propagate the result in the falsely-shared structure at the end of the loop. We improve
the performance of Linear_regression and divide the completion time by 8.87.

Thanks to these optimizations, we have eliminated the high RDAM scores in both
applications.



61 5. EVALUATION

Network RDAM score Transaction/s Network rateconfiguration client server
100 Mb 0.93 < 0.1 36k 11 M/s

1 GB 0.82 < 0.1 193k 61 M/s
Local loop 0.62 < 0.1 2 037k 632 M/s

Table 5.4: Correlation between the network saturation and the RDAM score in mem-
cached.

Network contention When RDAMcalculator automatically instruments the time con-
suming functions of memcached, RDAMcalculator reports very low RDAM scores.
This result shows that, in our experiment, memcached does not seem to suffer inter-
ference.

However, by only instrumenting the server, we cannot identify an interference bot-
tleneck on the network between the client and the server. For this reason, we have
manually instrumented memcached (the server) and memaslap (the client) in order to
compute the completion time of a request from both the client and the server sides. Ta-
ble 5.4 presents the result for different network configurations: a network at 100 Mb,
a network at 1 Gb and a local network loop when we co-localize the client and the
server on a 32-core Intel Xeon E5-1607. The low RDAM score of the server with each
configuration confirms that the server does not suffer interference. Moreover, we can
see that the RDAM scores at the client side decrease when the network contention de-
creases. These results clearly show that the network suffers interference, and that the
RDAM score accurately identifies the network contention. We can also see that the
RDAM score remains high when we co-localize both the server and the client on the
same machine, which shows that the network remains a bottleneck even in this case.

Parallelism We have identified a (new) problem of parallelism in LevelDB. The func-
tion pthread_cond_wait has a high RDAM score of 0.66. After an analysis of the
code, we found that the application inserts new keys in mutual exclusion by using this
variable condition function. As performing a write is slow, the writes in mutual exclu-
sion hamper the parallelism. The RDAM score is high because in some rare cases, the
monitor is free, while often, a thread has to wait for the other threads before entering
the monitor. We cannot fix this issue without deeply redesigning LevelDB. We can,
however, confirm our observation by measuring the scalability of LevelDB. We have
measured that the duration of operations quickly increases when the number of threads
increases (2.4 µs/op with 1 thread, 8.8 µs/op with 2 threads, 20.1 µs/op with 4 threads
and 47.8 µs/op with 8 threads). This result confirms that LevelDB is unable to scale
when the application executes many insert operations concurrently.

In streamcluster, the parsec_barrier_wait function has a high RDAM score
of 0.99 (already reported in [63, 64]). The execution trace shows that the 48 threads of



5. EVALUATION 62

the application synchronize repeatedly with this barrier function. Therefore, the threads
of the application spend most of their time waiting for the other threads. The RDAM
score is high because in some rare cases a thread crosses the barrier quickly. Correcting
this interference bottleneck would require a large code rewriting.

UA suffers a similar problem: UA repeatedly executes parallel loops and synchro-
nizes with an OpenMP barrier, which has a high RDAM score (0.41). Similarly, cor-
recting this interference bottleneck would require a large code rewriting.

NUMA memory placement We have identified an interference bottleneck caused by
NUMA memory placement in the LU application. A NUMA architecture connects a
set of NUMA nodes by a network called the interconnect. Each NUMA node contains
a set of cores and a memory controller. On a NUMA architecture, when many cores
access memory located on different NUMA nodes, the interconnect or some memory
controllers can saturate.

While LU was studied in other works that target NUMA architectures [31,67], it was
not identified as problematic. We suppose that our software setting is slightly different
(Linux, gcc or glibc versions), which explains why a NUMA bottleneck appears in our
experiment.

For LU, RDAMcalculator generates a trace with 30.8 million events (1.3 GB). RDAM-
calculator reports 3 functions with a high RDAM score: sync_left (RDAM of 0.25),
rhs (RDAM of 0.24), and buts (RDAM of 0.20).

In order to understand why these functions suffer interference, we compute the num-
ber of memory accesses generated on each NUMA node. We identify a large memory
imbalance on a single node: the master thread loads a large matrix, which is pined on
a single memory node, and, during the run, the slave threads access this matrix. As a
result, the NUMA node of the matrix saturates, which explain the high RDAM scores.
We eliminate the imbalance by using an interleaved allocation policy, which spreads
the memory on all the NUMA nodes. This NUMA policy eliminates both all the high
RDAM scores and the memory imbalance. The completion time thus drops from 101s
to 64s.

I/O contention We have observed a problem of interference caused by I/O contention
in the DC application that was not reported. By instrumenting the four hot functions in
DC, RDAMcalculator generates a trace with 364.7 million events (17 GB). RDAMcal-
culator reports two functions with a high RDAM score: MultiWayMerge (RDAM of
0.83) and _write_nocancel (0.33). MultiWayMerge is a false positive discussed
in Section 5.2.6.

For _write_nocancel, each thread of the application calls this function 3.8 mil-
lion times with a data size that varies between 1 and 24 bytes. This write function from
the standard C library is obviously parameter-dependent, as its workload is proportional



63 5. EVALUATION

to the data size. However, we have observed that, in DC, the size of the data only
marginally impacts the completion time of this function. Therefore, we have decided to
consider this function as parameter-independent. Furthermore, the completion time of
_write_no_cancel has a large variation caused by a phenomenon that is not related
to the size of the written buffer. This suggests that the main problem in this application
is a contention on the I/O stack.

Solving the problem requires a deep rewriting of the code. However, we have veri-
fied that the I/O stack suffers interference with two experiments. We first measure with
iostat that DC generates I/O disks at a rate of 178 MB/s, while the hdparm tool in-
dicates that the disk maximum throughput is slightly lower: 162 MB/s (with a different
workload, i.e., a sequential read, which explains why this maximum is lower). This first
result also suggests that the I/O stack is overloaded. For the second experiment, we use
a RAMFS partition to store the output file of the application. The resulting performance
is naturally improved by 68% because the RAM has a better throughput. This result
alone does not highlight the interference problem on the I/O stack. However, we con-
firm that the high RDAM score is caused by interference on the disk I/O stack, because
the maximum RDAM score that we found by using a RAMFS is equal to 0.17.

5.2.6. Analysis of the false positives
Overall, we found 3 false positives caused by parameter-dependent functions. We

present in detail an analysis of these functions, and show that identifying these functions
as false positive is relatively easy.

Word_count In word_count, RDAMcalculator isolates a single function with a high
score (wordcount_reduce with a score of 0.48). An analysis of the code shows that
this high score is a false positive. We can quickly understand that the time variation
is inherent to the algorithm rather than related to interference between threads. The
algorithm first searches for a word in a sorted array of words. If the word is not found, it
is inserted inside the array, which leads to many memory copies. The completion time
of this function varies a lot: very fast occurrences of the function correspond to words
that are quickly found (36 cycles), while long occurrences happen when the word is not
found and when a large portion of the array moves (17 000 cycles on average).

PCA The loop of the PCA application summarized in Listing 5.5 has a high RDAM
score of 0.37. We can easily show that this high score is a false positive. Each iteration
of the instrumented loop mainly consists of another loop with (num_rows - i) iterations.
Since the number of instructions in each occurrence of this loop is uneven, the score
reflects this variation. When we instrument the inner loop, we find a score of 0.03,
which reflects the real steadiness of the loop.



5. EVALUATION 64

w h i l e ( i < num_rows ) {
f o r ( j = i ; j < num_rows ; j ++)

compu te_cov_mat r ix ( i , j ) ;
i = nex t_row ( ) ;

}

Listing 5.5: Highly varying loop in pca

DC The MultiWayMerge function of DC has a high score (0.83) and is a false pos-
itive. By analyzing the source code of this large function, we found that the variation of
its execution time is due to the merge algorithm that it implements, whose complexity
depends on the input data. This high score is thus a false positive, and was relatively
easy to identify in 2 hours, while we were discovering the code. We suppose that the
developers of the application would have also quickly discarded this function.

5.2.7. Conclusion
Our experiments show that the RDAM score accurately assesses how much inter-

ference impacts performance, regardless of the causes (lock, parallelism, false sharing,
NUMA placement, disk and network). Our study also shows that, by cross-checking
with cause-oriented tools, we can explain where, why and how much interference im-
pacts performance. Moreover, our experiment shows that we can remove some of the
interference bottlenecks by modifying few lines of code. Finally, we found 3 false pos-
itives and we show that they were relatively easy to identify.



65 5. EVALUATION



6. CONCLUSION

Whether directly or indirectly, applications’ performance affects our daily life. It
is as important to digital service providers as it is to the consumers of those services.
With the complexity of modern architectures, getting satisfactory performance is getting
harder. Actually, even performance analysis is rather complicated for parallel applica-
tions. Analyzing the performance of a multi-threaded application is difficult because of
the complex interactions between the threads and between the threads and the hardware.
The average developer is not capable of producing quality multi-thread code which is
both correct and efficient. To help developers locate sources of inefficiency in their
code, new performance analysis techniques are needed.

There is already a multitude of performance analysis tools, most of which are cause-
oriented. In other words, these tools are specifically designed to detect a problem in
particular. Such tools are very effective at finding exactly one kind of interference. A
few other tools opt for genericity and have their own perception of what a performance
problem (optimization opportunity) mostly looks like: for instance a function globally
taking a long time, or whose hypothetical optimization is guaranteed to reduce the pro-
gram’s completion time. These symptoms do nonetheless not necessarily indicate the
presence of a real problem. In sum, the perfect tool that automatically diagnoses and
fixes a parallel program does not exist. Even trying to combine the results from exist-
ing tools does not provide a systematic approach to tackle the problem of performance
analysis.

This thesis proves the relevance of a point missed by most previous tools, which
is quantifying performance impact on an application due to interference. Measuring
performance cost regardless of the cause can be the focal point in a performance inves-
tigation since it directly indicates the presence of a real problem on the one hand and can
guide the specialized analysis (by a cause-oriented tool) on the other hand. Moreover,
this thesis shows that performance variation is a very accurate indicator of performance
loss due to interference.

Based on these observations, we propose to decouple the analysis of the interfer-
ence causes from the analysis of the interference effects. We propose RDAMcalculator
to identify the interference effects, and we show that it highlights interference, regard-
less of the interference causes. Our experiment with micro benchmarks and applications
shows that RDAMcalculator successfully detects interference with few and easy to dis-

66



67 6. CONCLUSION

card false positives. Our experiments also show that, by cross-checking the reports of
RDAMcalculator with the reports of cause-oriented tools, we can fully understand in-
terference: we can identify the blocks of code that suffers interference (where), we can
explain why each block of code suffers interference, and we can measure how much
interference degrades the performance of each block of code.

These findings bring new answers to the problem of performance analysis, but also
bring to mind new questions and perspectives.

6.1. FUTURE WORK

Our work could be extended in several ways. For instance, testing our approach on
Java parallel applications can be interesting knowing that such applications are widely
deployed in data centers and are in need of scalability. Our current instrumentation
technique is not fully adapted to handle such applications. A study of the available
tracing mechanisms for Java byte code would be helpful to get a better understanding of
how they could be used in combination with RDAMcalculator or potentially implement
our own tracing facility in the Java virtual machine.

Another track of interest can be the automatic detection of false positives before re-
porting the results to the user. For example, functions showing a high RDAM score in
a first reporting round can be instrumented a second time while recording, in the scope
of these functions, hardware performance counters that can help demonstrate a variable
number of instructions executed by the function across the different calls. However, in
a number of cases, a varying number of retired instructions does not indicate a false-
positive. This is the case of busy-waiting algorithms, for which the number of retired
instructions increases with the contention (e.g., pthread_spinlock, MPI_Wait, lock free
algorithms, etc.). A possible solution to reduce the number of this kind of false negatives
is to integrate, directly in the tool, a list of well-known functions with such behavior.
Nonetheless, we still have to deal with the case where a "normal" function calls func-
tions of this type: how should we interpret a varying number of retired instructions in
this situation? We may think of designing a few micro-benchmarks to try to characterize
the variation of the number of instructions in the case of a busy waiting in comparison
to variation due to parameters.

Before investing more time investigating this aspect, one can ask the following ques-
tion: is the false positives issue really a burden for the user? In our experiments, we
have instrumented 70 functions and found 3 false positives. This result seems statisti-
cally representative. For this reason, we suspect that profiling a bigger system such as
the JVM should not lead to a larger false positive rate (we will have easy to identify
cases such as the object copy in the GC for example). However, one may want to check
this for sure by doing a study of false positives in a production system. If conclusive,
such study would tell us whether we really should invest more effort in automatically



6. CONCLUSION 68

detecting functions whose performance is parameter-dependent.
Furthermore, to be able to leverage our approach with large distributed client-server

applications in practice, it can be interesting to be able to automatically instrument
event-based frameworks so that RDAMcalculator can automatically generate RDAM
scores for asynchronous requests.

For the time being, our instrumentation mechanism incurs a lower than 11% over-
head in most cases. In a few cases, the overhead reaches 30% which can be considered
fairly high. As a consequence, two questions arise: 1) does a high overhead change the
application’s behavior such that our tool may fail to detect some performance bugs? 2)
This kind of overhead becomes bothersome in large production systems. So, how can we
mitigate it? For the first question, one way would be to measure, for each program, both
the original and instrumented program many times and see how the variances compare.
If both programs show the same sort of variance, it suggests that the instrumentation
is preserving the program behavior. For the second question, a possible solution is to
resort to sampling instead of measuring every occurrence of the instrumented functions.
Of course, sampling means a loss of information which leads to some rate of inaccu-
racy. However, there are some research results that can be used so as to minimize the
potential bias incurred by sampling.



BIBLIOGRAPHY

BIBLIOGRAPHY

[1] Pradeep Dubey. Recognition, mining and synthesis moves computers to the era of
tera. Technology@ Intel Magazine, 9(2):1–10, 2005.

[2] Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and Michael Stumm. Non-intrusive
performance profiling for entire software stacks based on the flow reconstruction
principle. In Proceedings of the conference on Operating Systems Design and
Implementation, OSDI’16, pages 603–618, 2016.

[3] Karthik Nagaraj, Charles Killian, and Jennifer Neville. Structured comparative
analysis of systems logs to diagnose performance problems. In Proceedings of the
conference on Networked Systems Design and Implementation, NSDI’12, pages
26–26, 2012.

[4] Nathan R. Tallent, John M. Mellor-Crummey, and Allan Porterfield. Analyzing
lock contention in multithreaded applications. In Proceedings of the symposium
on Principles and Practices of Parallel Programming, PPoPP’10, pages 269–280,
2010.

[5] Xiao Yu, Shi Han, Dongmei Zhang, and Tao Xie. Comprehending performance
from real-world execution traces: A device-driver case. In Proceedings of the
conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS’14, pages 193–206, 2014.

[6] Florian David, Gaël Thomas, Julia Lawall, and Gilles Muller. Continuously mea-
suring critical section pressure with the free-lunch profiler. In Proceedings of the
conference on Object Oriented Programming Systems Languages and Applica-
tions, OOPSLA’14, pages 291–307, 2014.

[7] Erik Altman, Matthew Arnold, Stephen Fink, and Nick Mitchell. Performance
analysis of idle programs. In Proceedings of the conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA’10, pages 739–753,
2010.

69



6. CONCLUSION 70

[8] Aamer Jaleel, Robert S Cohn, Chi-Keung Luk, and Bruce Jacob. Cmp $ im: A pin-
based on-the-fly multi-core cache simulator. In Proceedings of the Fourth Annual
Workshop on Modeling, Benchmarking and Simulation (MoBS), co-located with
ISCA, pages 28–36, 2008.

[9] Stephan M Günther and Josef Weidendorfer. Assessing cache false sharing effects
by dynamic binary instrumentation. In Proceedings of the Workshop on Binary
Instrumentation and Applications, pages 26–33, 2009.

[10] Qin Zhao, David Koh, Syed Raza, Derek Bruening, Weng-Fai Wong, and Saman
Amarasinghe. Dynamic cache contention detection in multi-threaded applications.
In Proceedings of the international conference on Virtual Execution Environments,
VEE’11, pages 27–38, 2011.

[11] Kristof Du Bois, Stijn Eyerman, Jennifer B. Sartor, and Lieven Eeckhout. Critical-
ity stacks: Identifying critical threads in parallel programs using synchronization
behavior. In Proceedings of the International Symposium on Computer Architec-
ture, ISCA’13, pages 511–522, 2013.

[12] Marco Hobbel, Thomas Rauber, and Carsten Scholtes. Trace-based automatic
padding for locality improvement with correlative data visualization interface. In
Proceedings of the International Conference on Parallel Architectures and Com-
pilation, PACT’07, 2007.

[13] Tongping Liu, Chen Tian, Ziang Hu, and Emery D. Berger. PREDATOR: Predic-
tive false sharing detection. In Proceedings of the symposium on Principles and
Practices of Parallel Programming, PPoPP’14, pages 3–14, 2014.

[14] Tongping Liu and Xu Liu. Cheetah: detecting false sharing efficiently and effec-
tively. In Proceedings of the international symposium on Code Generation and
Optimization, CGO’16, pages 1–11, 2016.

[15] Abhinav Bhatele, Kathryn Mohror, Steven H Langer, and Katherine E Isaacs.
There goes the neighborhood: performance degradation due to nearby jobs. In
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, pages 1–12, 2013.

[16] Marc Casas and Greg Bronevetsky. Active measurement of the impact of network
switch utilization on application performance. In Proceedings of the International
Parallel and Distributed Processing Symposium, IPDPS’14, pages 165–174, 2014.

[17] Perf: Linux profiling with performance counters. https://perf.wiki.
kernel.org/index.php/Main_Page.



71 6. CONCLUSION

[18] Charlie Curtsinger and Emery D. Berger. Coz: Finding code that counts with
causal profiling. In Proceedings of the Symposium on Operating Systems Princi-
ples, SOSP’15, pages 184–197, 2015.

[19] Linhai Song and Shan Lu. Statistical debugging for real-world performance prob-
lems. In Proceedings of the conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA’14, pages 561–578, 2014.

[20] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. The SPLASH-2 programs: Characterization and methodological
considerations. In Proceedings of the International Symposium on Computer Ar-
chitecture, ISCA’95, pages 24–36, 1995.

[21] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Chris-
tos Kozyrakis. Evaluating mapreduce for multi-core and multiprocessor systems.
In Proceedings of the symposium on High Performance Computer Architecture,
HPCA’07, pages 13–24, 2007.

[22] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC
benchmark suite: Characterization and architectural implications. In Proceed-
ings of the International Conference on Parallel Architectures and Compilation,
PACT’06, pages 72–81, 2008.

[23] Nas parallel benchmark 3.3. https://www.nas.nasa.gov/Software/NPB/.

[24] Brad Fitzpatrick. Distributed caching with memcached. Linux journal,
2004(124):5, 2004.

[25] Sanjay Ghemawat and Jeff Dean. LevelDB. URL: http://leveldb.org, 2011.

[26] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento,
Brice Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. hwloc:
A generic framework for managing hardware affinities in hpc applications. In Pro-
ceedings of the International Conference on Parallel, Distributed, and Network-
Based Processing, PDP’10, pages 180–186, 2010.

[27] Christiane Pousa Ribeiro, Jean-Francois Mehaut, Alexandre Carissimi, Marcio
Castro, and Luiz Gustavo Fernandes. Memory affinity for hierarchical shared
memory multiprocessors. In Computer Architecture and High Performance Com-
puting, 2009. SBAC-PAD’09. 21st International Symposium on, pages 59–66.
IEEE, 2009.



6. CONCLUSION 72

[28] Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, and Ali Kamali. A
case for numa-aware contention management on multicore systems. In Proceed-
ings of the 19th international conference on Parallel architectures and compilation
techniques, pages 557–558. ACM, 2010.

[29] ML Scott and WJ Bolosky. False sharing and its effect on shared memory per-
formance. In Proceedings of the USENIX Symposium on Experiences with Dis-
tributed and Multiprocessor Systems (SEDMS), page 57, 1993.

[30] François Broquedis, François Diakhaté, Samuel Thibault, Olivier Aumage, Ray-
mond Namyst, and Pierre-André Wacrenier. Scheduling dynamic openmp appli-
cations over multicore architectures. OpenMP in a New Era of Parallelism, pages
170–180, 2008.

[31] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud
Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. Traffic management:
A holistic approach to memory placement on numa systems. In Proceedings of the
conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS’13, pages 381–394, 2013.

[32] Arifa Nisar, Wei-keng Liao, and Alok Choudhary. Scaling parallel i/o performance
through i/o delegate and caching system. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, page 9. IEEE Press, 2008.

[33] Dushyanth Narayanan, Austin Donnelly, Eno Thereska, Sameh Elnikety, and
Antony IT Rowstron. Everest: Scaling down peak loads through i/o off-loading.
In OSDI, volume 8, pages 15–28, 2008.

[34] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob
Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan, Guru Parulkar,
Mendel Rosenblum, et al. The case for ramclouds: scalable high-performance
storage entirely in dram. ACM SIGOPS Operating Systems Review, 43(4):92–105,
2010.

[35] Matteo Frigo and Steven G Johnson. The design and implementation of fftw3.
Proceedings of the IEEE, 93(2):216–231, 2005.

[36] Jerzy Cetnar, W Gudowski, and J Wallenius. Mcb: A continuous energy monte
carlo burnup simulation code. Actinide and fission product partitioning and trans-
mutation, 1999.

[37] Robert D Falgout and Ulrike Meier Yang. hypre: A library of high performance
preconditioners. In International Conference on Computational Science, pages
632–641. Springer, 2002.



73 6. CONCLUSION

[38] Claude Bernard, Tom Burch, Thomas A DeGrand, Carleton DeTar, Steven Got-
tlieb, Urs M Heller, James E Hetrick, Kostas Orginos, Bob Sugar, and Doug Tous-
saint. Scaling tests of the improved kogut-susskind quark action. Physical Review
D, 61(11):111502, 2000.

[39] Yang Wang, GM Stocks, WA Shelton, DMC Nicholson, Z Szotek, and WM Tem-
merman. Order-n multiple scattering approach to electronic structure calculations.
Physical review letters, 75(15):2867, 1995.

[40] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia Lawall, and Gilles Muller.
Remote core locking: migrating critical-section execution to improve the perfor-
mance of multithreaded applications. In Proceedings of the Usenix Annual Tech-
nical Conference, USENIX ATC’12, pages 65–76, 2012.

[41] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia Lawall, and Gilles Muller.
Fast and portable locking for multicore architectures. ACM Transactions on Com-
puter Systems (TOCS), 33(4):13:1–13:62, 2016.

[42] Maurice Herlihy and J Eliot B Moss. Transactional memory: Architectural support
for lock-free data structures, volume 21. ACM, 1993.

[43] Jie Tao and Wolfgang Karl. Cachein: a toolset for comprehensive cache inspec-
tion. In Proceedings of the International Conference on Computational Science,
ICCS’05, pages 174–181. 2005.

[44] Tongping Liu and Emery D. Berger. SHERIFF: Precise detection and automatic
mitigation of false sharing. In Proceedings of the conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA’11, pages 3–18,
2011.

[45] Mihir Nanavati, Mark Spear, Nathan Taylor, Shriram Rajagopalan, Dutch T.
Meyer, William Aiello, and Andrew Warfield. Whose cache line is it anyway?:
Operating system support for live detection and repair of false sharing. In Pro-
ceedings of the EuroSys European Conference on Computer Systems, EuroSys’13,
pages 141–154, 2013.

[46] Jack Dongarra, Kevin London, Shirley Moore, Philip Mucci, Daniel Terpstra, Hai-
hang You, and Min Zhou. Experiences and lessons learned with a portable in-
terface to hardware performance counters. In Proceedings of the International
Parallel and Distributed Processing Symposium, IPDPS’03, pages 289.2–, 2003.

[47] Vince Weaver. The unofficial linux perf events web-page, 2013.



6. CONCLUSION 74

[48] Sanath Jayasena, Saman Amarasinghe, Asanka Abeyweera, Gayashan Amaras-
inghe, Himeshi De Silva, Sunimal Rathnayake, Xiaoqiao Meng, and Yanbin Liu.
Detection of false sharing using machine learning. In Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis, pages 1–9, 2013.

[49] Aleksey Pesterev, Nickolai Zeldovich, and Robert T. Morris. Locating cache per-
formance bottlenecks using data profiling. In Proceedings of the EuroSys Euro-
pean Conference on Computer Systems, EuroSys’10, pages 335–348, 2010.

[50] Jason Mars, Neil Vachharajani, Robert Hundt, and Mary Lou Soffa. Contention
aware execution: Online contention detection and response. In Proceedings of the
international symposium on Code Generation and Optimization, CGO’10, pages
257–265, 2010.

[51] Chi Xu, Xi Chen, Robert Dick, and Zhuoqing Morley Mao. Cache contention
and application performance prediction for multi-core systems. In Proceedings of
the International Symposium on Performance Analysis of Systems and Software,
ISPASS’10, pages 76–86, 2010.

[52] Boris Teabe, Alain Tchana, and Daniel Hagimont. Application-specific quantum
for multi-core platform scheduler. In Proceedings of the EuroSys European Con-
ference on Computer Systems, EuroSys’16, pages 3:1–3:14, 2016.

[53] Ganesh Ananthanarayanan, Sameer Agarwal, Srikanth Kandula, Albert Green-
berg, Ion Stoica, Duke Harlan, and Ed Harris. Scarlett: coping with skewed con-
tent popularity in mapreduce clusters. In Proceedings of the sixth conference on
Computer systems, pages 287–300. ACM, 2011.

[54] Yongseok Oh, Jongmoo Choi, Donghee Lee, and Sam H Noh. Caching less for
better performance: balancing cache size and update cost of flash memory cache
in hybrid storage systems. In FAST, volume 12, 2012.

[55] Renaud Lachaize, Baptiste Lepers, and Vivien Quéma. Memprof: A memory pro-
filer for numa multicore systems. In Proceedings of the Usenix Annual Technical
Conference, USENIX ATC’12, 2012.

[56] Nikolai Joukov, Avishay Traeger, Rakesh Iyer, Charles P Wright, and Erez Zadok.
Operating system profiling via latency analysis. In Proceedings of the conference
on Operating Systems Design and Implementation, OSDI’06, pages 89–102, 2006.

[57] Stijn Eyerman, Kristof Du Bois, and Lieven Eeckhout. Speedup stacks: Identi-
fying scaling bottlenecks in multi-threaded applications. In Proceedings of the



75 6. CONCLUSION

International Symposium on Performance Analysis of Systems and Software, IS-
PASS’12, pages 145–155, 2012.

[58] François Trahay, Yutaka Ishikawa, François Rue, Raymond Namyst, Mathieu
Faverge, and Jack Dongarra. Eztrace: a generic framework for performance anal-
ysis. In Proceedings of the International Symposium on Cluster, Cloud and Grid
Computing, CCGRID’11, pages 618–619, 2011.

[59] K Coulomb, M Faverge, J Jazeix, O Lagrasse, J Marcoueille, P Noisette, A Re-
dondy, and C Vuchener. Visual trace explorer (vite). Technical report, Technical
report, 2009.

[60] Lucas M. Schnorr. Poti. https://github.com/schnorr/poti.

[61] Lucas M. Schnorr. Akypuera. https://github.com/schnorr/akypuera.

[62] Henri Casanova, Arnaud Legrand, and Martin Quinson. Simgrid: A generic frame-
work for large-scale distributed experiments. In Proceedings of the international
conference on Computer Modeling and Simulation, pages 126–131, 2008.

[63] Gabriel Southern and Jose Renau. Analysis of PARSEC workload scalability. In
Proceedings of the International Symposium on Performance Analysis of Systems
and Software, ISPASS’16, pages 133–142, 2016.

[64] Mark Roth, Micah J Best, Craig Mustard, and Alexandra Fedorova. Deconstruct-
ing the overhead in parallel applications. In Proceedings of the International Sym-
posium on Workload Characterization, IISWC’12, pages 59–68. IEEE, 2012.

[65] Michael A Frumkin and Leonid V Shabanov. Benchmarking memory performance
with the data cube operator. Technical report, NASA, 2004.

[66] Mingqiang Zhuang and Brian Aker. memaslap: Load testing and benchmarking a
server.

[67] Gauthier Voron, Gaël Thomas, Vivien Quéma, and Pierre Sens. An interface to
implement NUMA policies in the xen hypervisor. In Proceedings of the EuroSys
European Conference on Computer Systems, EuroSys’17, page 14, 2017.



Titre : Les variations de performance considérées utiles

Mots clés : analyse de performance, applications parallèles, applications distribuées

Résumé : Comprendre  les  performances d'une

application  multi-thread  est  difficile.  Les
threads interfèrent quand ils accèdent à la même

ressource,  ce  qui  ralentit  leur  exécution.
Malheureusement,  les  outils  de  profiling

existants  se  focalisent  sur  l'identification  des
causes  de  l'interférence,  et  non  pas  sur  ses

effets.
Le  développeur  ne  peut  donc  pas  conclure  si

l'optimisation  d'une  interférence  identifiée  par
un outil de profiling peut mener à une meilleure

performance.

Dans cette thèse, on propose de compléter les

outils existants par un outil orienté-effet capable
de  quantifier  l'impact  de  l'interférence  sur  la

performance,  indépendamment  de  la  cause  de
l'interférence.  Avec  une  évaluation  de  27

applications, on montre que notre outil réussit à
identifier  12  bottlenecks  causés  par  6  types

d'interférence différents.

Title : Performance variation considered helpful

Keywords : performance analysis, parallel applications, distributed applications

Abstract : Understanding the performance of a

multi-threaded  application  is  difficult.  The
threads  interfere  when  they  access  the  same

resource,  which  slows  their  execution  down.
Unfortunately, current profiling tools focus on

identifying  the  interference  causes,  not  their
effects.

The developer can thus not know if optimizing
the interference reported by a profiling tool can

lead to better performance.

In  this  thesis,  we  propose  to  complete  the

profiling  toolbox  with  an  effect-oriented
profiling  tool  able  to  indicate  how  much

interference impacts performance, regardless of
the interference cause. With an evaluation of 27

applications, we show that our tool successfully
identifies  12  performance  bottlenecks  caused

by 6 different kinds of interference.

Université Paris-Saclay          
Espace Technologique / Immeuble Discovery 
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France 


