
HAL Id: tel-01793702
https://theses.hal.science/tel-01793702v1

Submitted on 16 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vehicle Routing Problems with road-network
information

Hamza Ben Ticha

To cite this version:
Hamza Ben Ticha. Vehicle Routing Problems with road-network information. Other [cs.OH]. Univer-
sité Clermont Auvergne [2017-2020], 2017. English. �NNT : 2017CLFAC071�. �tel-01793702�

https://theses.hal.science/tel-01793702v1
https://hal.archives-ouvertes.fr

N° d’ordre NNT : 820

THÈSE DE DOCTORAT DE L’UNIVERSITÉ CLERMONT
AUVERGNE
opérée au sein de

l’École des Mines de Saint-Étienne
École Doctorale

Sciences pour l’Ingénier de Clermont Ferrand

Spécialité de doctorat : Informatique

Soutenue publiquement le 20/11/2017, par :

Hamza BEN TICHA

Vehicle Routing Problems with Road-Network information

Devant le jury composé de :

Rapporteurs : Frederic SEMET Professeur, Ecole Centrale de Lille, France
Claudia ARCHETTI Professeur, Université de Brescia, Italie

Examinateurs : Fabien LEHUEDE Maître Assistant, Ecole des Mines de Nantes,
France

Thierry GARAIX Maître Assistant, EMSE, France
Tom VAN WOENSEL Professeur, Université des Technologies

d’Eindhoven, Pays-Bas
Directeur de thèse : Nabil ABSI Professeur, EMSE, France
Co-directeur de thèse : Alain QUILLIOT Professeur, ISIMA, France
Co-encadrant : Dominique FEILLET Professeur, EMSE, France

This work has been financed by the budget of LabEx IMobS3 backed by funding from
a state aid and managed by the National Research Agency under the Investments for the
Future program, an aid from the Union European via the European Regional Development
Fund (FEDER - Auvergne Region) and an aid from the Auvergne Region.

ABSI Nabil CR Génie industriel CMP
AUGUSTO Vincent CR Image, Vision, Signal CIS

AVRIL Stéphane PR2 Mécanique et ingénierie CIS
BADEL Pierre MA(MDC) Mécanique et ingénierie CIS
BALBO Flavien PR2 Informatique FAYOL

BASSEREAU Jean-François PR Sciences et génie des matériaux SMS
BATTON-HUBERT Mireille PR2 Sciences et génie de l'environnement FAYOL

BEIGBEDER Michel MA(MDC) Informatique FAYOL
BLAYAC Sylvain MA(MDC) Microélectronique CMP
BOISSIER Olivier PR1 Informatique FAYOL

BONNEFOY Olivier MA(MDC) Génie des Procédés SPIN
BORBELY Andras MR(DR2) Sciences et génie des matériaux SMS
BOUCHER Xavier PR2 Génie Industriel FAYOL
BRODHAG Christian DR Sciences et génie de l'environnement FAYOL
BRUCHON Julien MA(MDC) Mécanique et ingénierie SMS
BURLAT Patrick PR1 Génie Industriel FAYOL

CHRISTIEN Frédéric PR Science et génie des matériaux SMS
DAUZERE-PERES Stéphane PR1 Génie Industriel CMP

DEBAYLE Johan CR Image Vision Signal CIS
DELAFOSSE David PR0 Sciences et génie des matériaux SMS
DELORME Xavier MA(MDC) Génie industriel FAYOL

DESRAYAUD Christophe PR1 Mécanique et ingénierie SMS
DJENIZIAN Thierry PR Science et génie des matériaux CMP

DOUCE Sandrine PR2 Sciences de gestion FAYOL
DRAPIER Sylvain PR1 Mécanique et ingénierie SMS

FAVERGEON Loïc CR Génie des Procédés SPIN
FEILLET Dominique PR1 Génie Industriel CMP
FOREST Valérie MA(MDC) Génie des Procédés CIS

FOURNIER Jacques Ingénieur chercheur CEA Microélectronique CMP
FRACZKIEWICZ Anna DR Sciences et génie des matériaux SMS

GARCIA Daniel MR(DR2) Génie des Procédés SPIN
GAVET Yann MA(MDC) Image Vision Signal CIS

GERINGER Jean MA(MDC) Sciences et génie des matériaux CIS
GOEURIOT Dominique DR Sciences et génie des matériaux SMS
GONDRAN Natacha MA(MDC) Sciences et génie de l'environnement FAYOL
GRAILLOT Didier DR Sciences et génie de l'environnement SPIN
GROSSEAU Philippe DR Génie des Procédés SPIN

GRUY Frédéric PR1 Génie des Procédés SPIN
GUY Bernard DR Sciences de la Terre SPIN
HAN Woo-Suck MR Mécanique et ingénierie SMS

HERRI Jean Michel PR1 Génie des Procédés SPIN
KERMOUCHE Guillaume PR2 Mécanique et Ingénierie SMS

KLOCKER Helmut DR Sciences et génie des matériaux SMS
LAFOREST Valérie MR(DR2) Sciences et génie de l'environnement FAYOL
LERICHE Rodolphe CR Mécanique et ingénierie FAYOL

MALLIARAS Georges PR1 Microélectronique CMP
MOLIMARD Jérôme PR2 Mécanique et ingénierie CIS

MOUTTE Jacques CR Génie des Procédés SPIN
NIKOLOVSKI Jean-Pierre Ingénieur de recherche Mécanique et ingénierie CMP

NORTIER Patrice PR1 SPIN
OWENS Rosin MA(MDC) Microélectronique CMP
PERES Véronique MR Génie des Procédés SPIN

PICARD Gauthier MA(MDC) Informatique FAYOL
PIJOLAT Christophe PR0 Génie des Procédés SPIN
PIJOLAT Michèle PR1 Génie des Procédés SPIN
PINOLI Jean Charles PR0 Image Vision Signal CIS

POURCHEZ Jérémy MR Génie des Procédés CIS
ROBISSON Bruno Ingénieur de recherche Microélectronique CMP
ROUSSY Agnès MA(MDC) Génie industriel CMP

ROUSTANT Olivier MA(MDC) Mathématiques appliquées FAYOL
STOLARZ Jacques CR Sciences et génie des matériaux SMS

TRIA Assia Ingénieur de recherche Microélectronique CMP
VALDIVIESO François PR2 Sciences et génie des matériaux SMS
VIRICELLE Jean Paul DR Génie des Procédés SPIN

WOLSKI Krzystof DR Sciences et génie des matériaux SMS
XIE Xiaolan PR1 Génie industriel CIS

YUGMA Gallian CR Génie industriel CMP

EMSE : Enseignants-chercheurs et chercheurs autorisés à diriger des thèses de doctorat (titulaires d’un doctorat d’État ou d’une HDR)

Spécialités doctorales Responsables :

SCIENCES ET GENIE DES MATERIAUX K. Wolski Directeur de recherche
MECANIQUE ET INGENIERIE S. Drapier, professeur
GENIE DES PROCEDES F. Gruy, Maître de recherche
SCIENCES DE LA TERRE B. Guy, Directeur de recherche
SCIENCES ET GENIE DE L’ENVIRONNEMENT D. Graillot, Directeur de recherche

Spécialités doctorales Responsables

MATHEMATIQUES APPLIQUEES O. Roustant, Maître-assistant
INFORMATIQUE O. Boissier, Professeur
IMAGE, VISION, SIGNAL JC. Pinoli, Professeur
GENIE INDUSTRIEL X. Delorme, Maître assistant
MICROELECTRONIQUE Ph. Lalevée, Professeur

M
is

e
à

jo
u

r
:

0
1

/0
2

/2
0

1
6

Acknowledgements

This research project would not have been possible without the help and support of many peo-
ple. In particular, I would like to thank my supervisors Nabil, Dominique and Alain. This
document would not have been possible without their wise guidance and all their sugges-
tions. They were always available for discussions and they supported me in all the different
steps of the work. Working with them was always enjoyable and very pleasant. I will always
be grateful to them.

I would like to thank Dr. Frederic Semet and Dr. Claudia Archetti for accepting the
invitation of my committee and reviewing the present dissertation. I also want to thank Dr.
Thierry Garaix and Dr. Fabien Lehuede for being part of my committee. In addition, I would
like to thank Dr. Tom Van Woensel for his participation in the jury and for hosting me for
three months in the Eindhoven university of technologies. I would like to thank him also for
the interesting discussions that we had and for his precious contribution in some parts of this
work.

I would like to thank all SFL members for the great moments and the interesting dis-
cussions that we had together. A special thank goes for Ali with whom I arrived in SFL
at the same time. Although his special character, I was lucky to find a person like Ali on
my way, with whom I could talk about everything, from technical, personal and professional
problems. I would like to think Hamideh and Mehrdad for the gift that they made to me for
my Thesis defense and for the funny discussions that we had. I want also to think Stephane,
Agnes, Valeria, Claude and Pierre for their encouragement.

Finally, I would like to dedicate this thesis to my parents for whom I owe all what I
achieved in my life, to my brothers and my little sister for their love and support throughout
my studies and life. I want to think ma cèhrie Imen who believed on me and supported me
during the moments of doubts.

Contents

1 Introduction 1

2 Vehicle routing problems with road-network information: State of the art 7
2.1 Introduction . 7
2.2 Vehicle routing problems with several attributes on road segments 9

2.2.1 Multigraph . 10
2.2.2 Road-network graph . 12
2.2.3 Related works using a multigraph 14
2.2.4 Discussion . 15

2.3 Vehicle Routing Problems with “complex” attributes 16
2.3.1 Complex time-dependent cost functions 17
2.3.2 Speed optimization . 18
2.3.3 Driver working hour regulation . 18
2.3.4 Discussion . 19

2.4 Vehicle routing problems on complex road-networks 19
2.4.1 Fine modeling of vehicle stops . 20
2.4.2 Access with fees . 20
2.4.3 Discussion . 21

2.5 Impact on solution method efficiency . 21
2.5.1 Size of models . 21
2.5.2 Relationship with arc routing problems 22
2.5.3 Discussion . 22

2.6 Conclusion . 23

3 A solution method for the Multi-destination Bi-objectives Shortest Path Problem 25
3.1 Introduction . 25
3.2 Literature review . 26
3.3 Basic concepts . 29
3.4 Multi-destination Bi-objective Shortest Path Problem 31

3.4.1 Solution method . 31

ii CONTENTS

3.4.2 Optimality proof and complexity analysis 33
3.5 Multi-destination Bi-objective Shortest Path Problem with Time windows . . 37
3.6 Computational experiments . 38

3.6.1 Test problems . 38
3.6.2 Results . 39

3.7 Conclusions . 47

4 Empirical analysis for the VRPTW with a multigraph representation for the
road network 49
4.1 Introduction . 50
4.2 Literature review . 52

4.2.1 Multigraph representation . 53
4.2.2 Road Network . 54
4.2.3 Methodology . 55

4.3 Problem formulation . 56
4.4 Solution Method . 57

4.4.1 Master Problem . 58
4.4.2 Column Generation . 59
4.4.3 Branching rule . 61
4.4.4 Stabilization method . 61

4.5 Computational experiments . 62
4.5.1 Test data . 62
4.5.2 Statistics on multigraphs . 67
4.5.3 Impact of the multigraph representation 70

4.6 Conclusion . 77

5 Adaptive Large Neighborhood Search for the Vehicle Routing Problem with
Time Windows with a multigraph representation for the road network 79
5.1 Introduction . 79
5.2 Literature review . 82
5.3 Problem Formulation . 85
5.4 Solution Method . 86

5.4.1 Arc selection procedure . 88
5.4.2 Initial Solution . 92
5.4.3 Removal Heuristics . 94
5.4.4 Insertion Heuristics . 96
5.4.5 Adaptive Strategy for the control of the Removal/Insertion operators . 99

CONTENTS iii

5.4.6 Acceptance criteria . 100
5.5 Computational experiments . 100

5.5.1 Test Data . 101
5.5.2 Parameters tuning . 102
5.5.3 Computational results . 102
5.5.4 Sensitivity analysis . 110

5.6 Conclusion . 114

6 A branch-and-price Algorithm for the Vehicle Routing Problem with Time Win-
dows on a road-network graph 117
6.1 Introduction . 117
6.2 Literature review . 120
6.3 Branch-and-price algorithm for the VRPTW on the road-network graph . . . 122

6.3.1 Pricing problem . 123
6.3.2 Branching scheme . 125

6.4 Branch-and-price algorithm for the multigraph based VRPTW 129
6.5 Computational experiments . 130

6.5.1 Test data . 130
6.5.2 Results . 132
6.5.3 Discussion . 150

6.6 Conclusion . 151

7 The Time-Dependent Vehicle Routing Problem with Time Windows and road
network information 153
7.1 Introduction . 153
7.2 Literature review . 156
7.3 Preliminaries . 157

7.3.1 Problem description . 158
7.3.2 Backgrounds and basic operations 158
7.3.3 Time-dependend shortest path algorithm 162
7.3.4 Time-dependend fastest path algorithm 163

7.4 Branch-and-price algorithm for the TDVRPTWRN 165
7.4.1 Master Problem . 165
7.4.2 Pricing problem . 166
7.4.3 Branching scheme . 167

7.5 Computational experiments . 168
7.5.1 Test data . 168

iv CONTENTS

7.5.2 Results . 170
7.6 Conclusion . 175

8 Conclusions and perspectives 177

Appendices 181

A Résumé en français 181
A.1 Introduction . 181
A.2 Construction de la représentation par multigraphe du réseau routier 186
A.3 Analyse empirique pour le VRPTW avec une représentation par un multi-

graphe du réseau routier . 189
A.4 Recherche adaptative à voisinage large pour le VRPTW dans le multigraphe . 192
A.5 Algorithme de Branch-and-price pour le VRPTW sur le graphe du réseau

routier . 195
A.6 Problème de tournées de véhicules dépendant du temps avec des fenêtres de

temps et informations sur le réseau routier 198
A.7 Conclusions et perspectives . 200

List of Tables 203

List of Figures 207

Bibliography 211

Chapter 1

Introduction

Transportation is a central activity in logistics and supply chain management. It is esti-
mated that distribution costs represent almost half of the logistic costs and can account up to
70% of the total cost of goods for some industries [33]. In 2009, the transport industry gen-
erated up to 7% of the Gross Domestic Product (GDP) of the European Union (EU) [101].
In the United States, the total logistics costs accounted up to 10% of the GDP for the year
2000 and the transportation on its own represented more than the half of this contribution on
the GDP [69]. Besides, transportation has an huge environmental impact. According to Ro-
drigue [116], 60% of the global oil consumption and 25% of energy consumption are due to
transport industry. The European Environment Agency indicates that, in 2013, the transport
sector contributed almost one-quarter (24.4%) of total EU greenhouse gas emissions [46].

Therefore, improving the efficiency of transportation systems is a very important task to
increase competitiveness and reduce the environmental impact of companies. This task gives
a rise to the well-known Vehicle Routing Problem (VRP). This problem arises in many real-
life applications that involve the optimization of passenger or freight transportation activities
(e.g., transportation of less-abled people, scheduling of school buses, mail delivery, waste
collection, pickup and delivery of goods in the retail industry).

The VRP can be described as the process of designing a set of minimum-cost routes to be
performed by a fleet of vehicles to serve a set of geographically dispersed customers. Since
its introduction by Dantzig and Ramser [31] in 1959, the VRP has drawn many researchers’
attention. Thousands of papers and books have been devoted to study optimization problems
where routing issues are involved. Eksioglu et al. [51] enumerate approximately 1, 500 in-
dexed publications on vehicle routing problems.

Conventionally, vehicle routing problems are defined on road networks in which service
demand (pickup or delivery) points are associated with specific locations. Thus, the quality
of the solution, when executed, depends largely on the quality of the representation of the
road network. In the literature, most of approaches are, implicitly, based on a key assumption
that, the best origin-destination path between two points of interest (e.g., depot, customers)
can be easily defined. Accordingly, vehicle routing problems are addressed using a com-
plete graph, so-called customer-based graph, where a node is introduced for each point of

2 Chapter 1: Introduction

interest and an arc represents the best path in the road network between its endpoints. In
many situations, the customer-based graph may fail to accurately represent the original road
network and more information from the road network are needed to correctly address the
routing problem.

A first situation is when several attributes are defined on road segments. In this case,
defining the best path between two nodes in the road network involves a multi-objective opti-
mization problem. Then, the solution of such a problem consists of the set of non-dominated
paths. Considering only one path may result on an overestimation of the solution cost, since
good solutions, perhaps optimal, could be discarded from the solution space [61, 89].

In some problems, road segment attributes depend on decisions to be fixed during the
routing process. In such problems, it is difficult to define the best path between two points
of interest and a precomputed customer-based graph can have a negative impact on the so-
lution quality. It is the case, for example, of vehicle routing problems where fuel emissions
has to be minimized. In this problem, the route cost depends on the travelling speeds along
road segments. These travelling speeds are assumed to be defined by the traffic condition. It
has been shown that by allowing the modification of travel speeds at any point of the road
network, significant savings in fuel emissions can be obtained [109]. In such a setting, the
best travel time and fuel consumption associated with a path between two points of interest
cannot be computed in advance.

The customer-based graph represents also an oversimplified abstraction of the original
road network, when the latter has a complex structure. In some urban areas, the access to
some roads and zones is subject to time restrictions or tolls. Also, some travel regulations
(U-turns, parking, etc.) should be considered when computing a VRP solution. All these
details and information cannot be addressed when using the customer-based graph modeling.

Finally, from a methodological point of view transforming the vehicle routing problem
on the road network into a standard vehicle routing problem could have a negative impact on
computational performances. Although that the customer-based graph reduces the number of
nodes compared to a graph representation of the original road network, it may substantially
increase the set of arcs. Thus, it prevents from exploiting some properties, such as sparsity
or planarity.

In the literature, the number of papers that investigate these issues is very limited. The
few studies proposed in this regard do not examine the impact of the customer-based graph
on the solution quality of the general vehicle routing problem and are, mostly, interested in
solving specific problems.

One objective of this thesis is to point out the limits of the traditional complete graph
representation and to confirm the need of new models and approaches with more information

3

from the road network in order to address correctly vehicle routing problems. For this aim,
we focus on vehicle routing problems where several attributes are defined on road segments.
As already mentioned, these problems are typically addressed via the customer-based graph
where an arc is assumed to represent the best path between tow points of interest. However,
the best path is unlikely to be the same for all attributes. Paths with different compromises
are, thus, not considered in the customer-based graph. To handle this issue, two approaches
are proposed in the literature. The first approach consists in representing the road network
using a multigraph where an arc is introduced for every alternative path [61]. The second
approach consists in solving the vehicle routing problem directly on a graph that mimics the
original road network [89], that we call road-network graph. It is worth mentioning that in
[61], authors are mainly interested in the development of an efficient solution method for
a specific vehicle routing problem. While in [89], the objective is to show that it is more
efficient to solve the vehicle routing problem directly on the road network graph than using
a multigraph representation.

In this thesis, we start by exploring the multigraph representation of the road network. We
investigate the construction of the multigraph and we propose an efficient solution method
that computes the set of alternative paths for every pair of points of interest in the road net-
work. Then, we investigate the tractability of such a modelling for vehicle routing problems
and we analyse in depth the impact of this approach on the solution quality. In a second step,
we focus on the development of an efficient solution method that can handle the multigraph
setting. In a third step, we explore the road network based approach. We propose a complete
comparison of the two approaches. We present an extensive computational study based on
benchmark problems as well as instances derived from real data. In a final step, we are in-
terested in problems where travel times vary over the time of the day, called time dependent
vehicle routing problems. We explain that, in such settings, it is intractable to tackle the
problem using the multigraph representation. We develop a branch-and-price algorithm to
solve the problem directly on the road network graph. Finally, we analyse the impact of the
proposed approach on the solution quality for time-dependent vehicle routing problems.

The following section gives the structure of the thesis and presents on overview of the
contribution of each chapter.

Thesis structure

The thesis is made by eight chapters including this one. The next six chapters consist of six
self-sufficient articles, of which one is published and three are submitted for publication. In
the following, we present a brief description of the content of each chapter.

4 Chapter 1: Introduction

Chapter 2: Vehicle routing problems with road-network information:
State of the art

Vehicle routing problems are, typically, addressed using a complete graph representation of
the road network, so-called customer-based graph. In many situations, this representation can
have significant (negative) effects on solution quality. In order to achieve a clear understand-
ing on this subject, we survey the papers that evoke the limits of the customer-based graph
and that propose alternative approaches to handle these limits. These papers are classified
into four classes depending on the motivation that lead to proceeding differently than using
the customer-based graph. For each class of papers, a discussion is proposed to identify the
main directions for further research and development.

Chapter 3: A Solution Method for the Multi-destination Bi-objective
Shortest Path Problem

In this chapter, we explore the construction of the multigraph representation for vehicle rout-
ing problems with several attributes on road segments. In this representation, an arc is in-
troduced for each non-dominated path between two points of interest. The construction of
the multigraph presents an important step in solving vehicle routing problems with the multi-
graph setting. This step involves a multi-objective Shortest Path Problem, which is NP-hard.
It consists in computing the set of Pareto-optimal paths for each pair of nodes. This step
could have significant impact on the efficiency of the multigraph-based approaches.

We propose a solution method that computes the set of Pareto-optimal paths from one to
all other points of interest on a road network. Computational experiments based on instances
derived from real road networks are carried out to evaluate the efficiency of the proposed
algorithm. Obtained results show that multigraphs with 25 customers on a road network with
more than 5400 nodes are computed in less than 1 second. The computing time reaches al-
most 4 minutes for instances with 500 customers on a road network with 19500 nodes.

Chapter 4: Empirical analysis for the VRPTW with a multigraph rep-
resentation for the road network

This chapter investigates in depth the impact of the multigraph representation on the solution
quality for vehicle routing problems on the road networks. It also examines the tractability
of representing the road network with a multigraph. To do this, we consider the Vehicle
Routing Problem with Time Windows (VRPTW) as a test-bed problem and we develop a
branch-and-price algorithm that can handle the multigraph setting.

5

The main contribution of this chapter is that it analyses the impact of the multigraph
representation based on an extensive experimental study. Results show that important sav-
ings in solution costs can be obtained for a large number of benchmark instances. We also
observe that the multigraph setting slightly increase computing times compared to an equiv-
alent branch-and-price scheme applied to two customer-based graphs where arcs represent,
respectively the shortest paths and the fastest paths between each pair of points of interest.

Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Rout-
ing Problem with Time Windows with a multigraph representation for
the road network

This chapter is devoted to the development of an efficient solution method for the multigraph-
based VRPTW. With the multigraph approach, some computational challenges arise. In par-
ticular, it has been shown that computing the optimal route for a given sequence of customers
on the multigraph involves an NP-hard problem, so-called Fixed Sequence Arc Selection
Problem (FSASP). Thus, even simple local search moves become difficult to evaluate.

We develop an adaptive large neighborhood search based algorithm that can efficiently
address the multigraph setting. To handle the selection of arcs (FSASP), we propose a pro-
cedure based on an incremental data structure and a dynamic programming algorithm. This
procedure permits to identify all non dominated subpaths that can connect a customer to the
depot for a given sequence of customers. Then, using this information, insertion and removal
of customers are evaluated efficiently. Experiments show that the proposed solution method
provides near optimal solutions in reasonable computing times compared to the branch-and-
price algorithm.

Chapter 6: A branch-and-price Algorithm for the Vehicle Routing
Problem with Time Windows on a road-network graph

To handle the negative effects of the customer-based graph representation on the solution
quality for vehicle routing problems with several attributes on road segments, two alternative
approaches are investigated in the literature. The first approach consists in representing the
road network with a multigraph. In the second approach, the problem is tackled directly on
a graph that mimics the original road network.

The aim of this chapter is to evaluate the relative efficiency of these two modelling ap-
proaches. To do this, we develop a complete branch-and-price algorithm that can solve the
problem on the road network graph. Note that using these settings, the standard branching
rules cannot ensure the feasibility of the solution since a fractional solution can be sup-

6 Chapter 1: Introduction

ported by an integer flow matrix. To handle this issue, we propose a more suitable branching
scheme. We compare solutions obtained using the proposed algorithm to those obtained
using an equivalent multigraph-based branch-and-price algorithm. Computational experi-
ments on instances derived from real-world road networks are performed in order to achieve
comprehensive conclusions. The impact of different factors such as customers density in
the road network, capacity constraints and time windows wideness, on the efficiency of the
branch-and-price algorithms is analysed. Numerical results show that addressing the prob-
lem directly on the road network instead of using the multigraph representation decreases the
quality of the lower bound and significantly increases the computing times.

This chapter has been done in cooperation with Tom van Woensel from the Eindhoven
University of Technology, Eindhoven, Netherlands.

Chapter 7: The Time Dependent Vehicle Routing Problem with Time
Windows and road network information

In this chapter, we are interested in the time Dependent vehicle routing problems where sev-
eral attributes are defined on road segments. In these problems, travel times on road segments
depend on the time of the day.

The aim of this chapter is to point out the limits of the traditional customer-based graph
modeling for vehicle routing problems when travel times are time dependent. Since it is
intractable to represent the road network using a multigraph in this setting (the set of al-
ternative paths between two points of interest varies over the time), we propose to tackle
the problem directly on the road network graph and develop a branch-and-price algorithm.
In order to derive comprehensive conclusions, we also propose two algorithms that com-
pute the two customer-based graphs: the time-dependent shortest path based graph and the
time-dependent fastest path based graph. Obtained results illustrate the negative effects of
the customer-based graph on the solution quality and the attractive savings that can be ob-
tained. It comes out that by tackling the problem on the road network graph optimal solutions
have been obtained for infeasible (due to time constraints) instances with the customer-based
graph modeling.

This chapter has been done in cooperation with Tom van Woensel from the Eindhoven
University of Technology, Eindhoven, Netherlands.

Chapter 8: Conclusions and perspectives

This chapter concludes the thesis and proposes directions for further research.

Chapter 2

Vehicle routing problems with road-network
information: State of the art

This chapter is submitted for publication in Networks journal.

Abstract

Vehicle routing problems have drawn researchers’ attention for more than fifty years.
Most approaches found in the literature address these problems using the so-called customer-
based graph, a complete graph representing the road network, where a node is introduced for
every point of interest (e.g., customers, depot...) and an arc represents the best path between
two points. In many situations, this representation induces negative effects on the solution
quality or efficiency. A growing number of works in the literature investigate these issues
and propose modeling taking account of more detailed information from the road-network.
In this paper, we review these works and classify them with respect to the type of negative
effects provoked by the customer-based graph.

Keywords: Vehicle Routing Problem, Road Network, multigraph.

2.1 Introduction

Vehicle routing problems (VRPs) constitute one of the most studied classes of combinato-
rial optimization problems in the operations research literature. Since their introduction by
Dantzig and Ramser [31] in 1959, VRPs have drawn many researchers attention. Thousands
of papers and books have been written about these problems [128, 65, 87, 132, 55]. One
reason is the numerous applications where VRPs are involved in logistics, supply chain man-
agement, distribution systems, freight and passenger transportation systems, car navigation
systems, etc. Many types of VRPs have been introduced to address different objectives or
constraints, and a large number of solution approaches have been proposed in the literature
(e.g., [63], [107], [108], [59] and [117]).

8
Chapter 2: Vehicle routing problems with road-network information: State of the

art

A VRP can be described as the problem of computing an optimal set of routes to meet,
entirely or partially, customer demands. Before pursuing, let us make clear that in this paper,
we use the acronym VRP for any vehicle routing problem, not for the specific problem re-
ferred as Vehicle Routing Problem in the literature. For practical relevance, many constraints
can be introduced such as customer time windows, limits on route lengths, the possibility to
organize routes with multiple trips or to start from multiple depots, to name only a few.

An important issue in VRPs is the nature of customer demand. In most cases, each pickup
or delivery point is considered separately and is identified with a specific location in the road
network. In this case, the VRP is called a node routing problem. In another category of
problems, that typically involve a large number of pickup or delivery points, the demand is
aggregated at the level of road segments. These problems are then called arc routing prob-
lems. Applications can be found in mail delivery, garbage collection or snow removal, for
example. A recent survey on these problems is presented by Corberàn and Laporte [23]. In
this paper, we focus on the first category: the node routing problems.

In the literature, most approaches proposed for nodes routing problems are implicitly
based on the key assumption that, for each pair of points of interest (e.g., customers, depots),
the best origin-destination path can be defined in advance. Then, the road network is trans-
formed into a complete graph where a node is introduced for each point of interest and an
arc represents the best path between its endpoints. The different attributes associated with
an arc are then computed in accordance with this path. Following Huang et al. [71], we call
this graph customer-based graph in the rest of the paper. In many situations, modeling the
problem with a customer-based graph can have important consequences:

• A first situation is when several attributes are defined on road segments (travel cost,
distance, travel time, etc.). In this case, the problem of finding the best path between
two points of interest is multicriteria by nature. Then, efficient paths, with differ-
ent compromises between the different attributes, are missed when constructing the
customer-based graph. Good solutions, perhaps optimal, can be discarded from the
solution space [61, 85, 8].

• Another difficulty might come from the computation of shortest paths for a given at-
tribute. In some cases, like when fuel consumption minimization is searched for, the
value of an attribute (the cost here) can be a complex function of several parameters
as starting time or load. This difficulty is even reinforced when decisions can be taken
at the scale of road segments. It is the case, for example, when instructions can be
given to drivers to optimize their speed (e.g., Qian and Eglese [109]). Computing the
customer-based graph can then simply become untractable.

• The customer-based graph is also sometimes an oversimplified abstraction of the road
network, when the latter has a complex structure, as in urban areas. In some cities,
for example, the access to some areas is subject to time restrictions or tolls. Also, the

2.2 Vehicle routing problems with several attributes on road segments 9

detail of travel restrictions (parking, U-turns, etc.) cannot be apprehended with the
customer-based graph.

• From a methodological point of view, finally, it is not so obvious that adopting the
customer-based graph always has a positive impact on computational performances.
Compared to a graph representation of the road network, using the customer-based
graph enables a potentially very large drop of the node set size, but at the expense of
a possibly large increase of the arc set. Furthermore, it prevents from exploiting some
proprieties, such as sparsity or planarity.

Recently, an increasing number of studies have raised the aforementioned issues and have
started investigating VRPs by considering more information from the road network. In this
paper, we overview these works and we outline the proposed alternative approaches. We
organize this survey with respect to the four situations depicted above. First, we focus, in
Section 2.2, on the literature related to VRPs with several attributes. In Section 2.3, we ana-
lyze works that deal with complex attributes. In Section 2.4, we review studies that consider
complex road-network structures. Finally in Section 2.5, we survey papers interested in the
computational performance of the graph representation.

2.2 Vehicle routing problems with several attributes on
road segments

In practical applications of VRPs, arcs in the road network are often labeled with several at-
tributes, as: distance, time, monetary cost, energy consumption (for electric vehicles), scenic
interest (for sightseeing), hazard, travel time robustness. . . These attributes can be needed
to ensure route feasibility, regarding operational constraints, and/or to evaluate the solution
quality. As already mentioned, these VRPs are typically addressed using a customer-based
graph where an arc is assumed to represent the best path in the road network between its two
endpoints. However, the best path for an attribute is not necessarily the same for the others,
e.g., the fastest path in an urban network is unlikely to be the same as the shortest path. Con-
sidering only one path between two nodes discards trade-offs between the attributes and may
consequently discard good solutions from the solution space. Thus, addressing the problem
with a customer-based graph can have negative impacts on the solution value.

In the literature, two alternative approaches have been investigated to address this issue.
The first approach consists in representing the road network with a multigraph. In the second
approach, the problem is directly solved on a graph that mimics the original road network
and that we call road-network graph. In the next two subsections, we review these two ap-
proaches.

10
Chapter 2: Vehicle routing problems with road-network information: State of the

art

2.2.1 Multigraph

A first possible way to keep trace of all efficient paths between every pair of nodes is to
represent the road network with a multigraph. In this representation, an arc is introduced for
every efficient (with respect to the considered attributes) path in the original network.

As far as we know, Garaix et al. [61] were the first to point out that using a customer-
based graph when several attributes are associated with road segments could lead to an over-
estimation of the solution cost. They investigate a Dial-a-Ride Problem, motivated by a
real-world On-Demand Transportation System for a rural area. They propose to address the
problem using a multigraph in order to efficiently handle the cost-time trade-off. They pur-
sue two main objectives: evaluating the tractability of this approach and demonstrating its
benefits against using a traditional customer-based graph. Several authors have built on these
results and addressed the same issues since, for different problems: Lai et al. [85] for a time-
constrained mixed-fleet VRP, Ben Ticha et al. [8, 7] for the Vehicle Routing Problem with
Time-Windows (VRPTW), Huang et al. [71] for a time-dependent time-constrained VRP.
We review below the contributions of these papers, with the section organized according to
the two aforementioned issues: tractability and benefits.

Tractability of the multigraph

Garaix et al. [61] underline an important consequence of the multigraph. They notice that
a route can no longer be described by a sequence of visited customers. Even with this se-
quence known, the problem of selecting an arc between each pair of consecutive customers
is NP-hard (it can be expressed as a multidimensional multiple choice knapsack problem).
They call this problem the Fixed Sequence Arc Selection Problem (FSASP).

They propose a pseudo-polynomial dynamic programming algorithm for the solution of
the FSASP. Though the method is relatively fast, it is not compatible with local search meth-
ods where a lot of neighbor solutions should be explored. Starting from this statement, they
develop a simple greedy best insertion method followed by a descent, in which few FSASPs
have to be solved.

Lai et al. [85] propose a tabu search heuristic. In order to deal with the additional com-
plexity induced by the selection of arcs, the authors propose to evaluate each move heuristi-
cally. Given a move, and the associated customer sequence, they tackle the FSASP by a fast
and effective greedy method inspired by existing methods for the Knapsack Problem.

Ben Ticha et al. [7] develop a heuristic method based on an Adaptive Large Neighbor-
hood Search. To handle the selection of arcs (FSASP) when exploring neighbor solutions,
they improve the dynamic programming algorithm presented by Garaix et al. [61]. Given a
current solution, and before starting exploring neighbor solutions, they apply a forward and

2.2 Vehicle routing problems with several attributes on road segments 11

a backward dynamic programming algorithms to identify, for each customer, all the non-
dominated labels that can connect the customer to the depot. Using this information, the
evaluation of the insertion or the removal of customers is significantly accelerated.

Besides their heuristic approach, Garaix et al. [61] propose a branch-and-price algorithm.
The interest is that using a multigraph does not add any algorithmic complexity: as long as
the pricing problem is a constrained shortest path problem addressed with a labeling algo-
rithm, one just has to consider all the outgoing arcs when extending labels. They however
underline the negative impact on computing times. More recently, Ben Ticha et al. [8] also
implemented a branch-and-price to evaluate the benefits of using a multigraph. Strangely,
contrary to Garaix et al. [61], they only observe a slight increase in computing times com-
pared to an equivalent branch-and-price applied on two customer-based graphs: the min-cost
graph where the best path is selected according to the distance, and the min-time graph, where
it is selected according to travel times.

Benefits obtained with the multigraph

Garaix et al. [61], Lai et al. [85], Ben Ticha et al. [8] and Huang et al. [71] are all partic-
ularly interested in evaluating the benefits that can be achieved with the multigraph. They
all conduct extensive computational analyses to assess these benefits. An intersting point is
that all these studies are performed on different problems and with very different types of
instances. They all arrive to the same conclusion: important benefits can be obtained.

This is not the purpose of this survey to detail all these experiments and analyze the
relevance of the different managerial insights that they provide, but one can just mention that
they typically report average benefits between 5 to 15% against optimal solutions computed
on a customer-based graph. One should also emphasize that most experiments are carried
out with instances obtained from real urban, suburban or rural road networks, with up to
thousands of nodes.

Construction and characteristics of the multigraph

A difficulty implied by the use of a multigraph is the construction of the multigraph itself.
Building a multigraph requires solving multicriteria shortest path problems, which is NP-
hard. This step might then a priori be detrimental to the use of this kind of approaches.

In Garaix et al. [61], this step is only slightly commented. The authors indicate that their
multigraphs are obtained by dynamic programming, with an algorithm similar to the one
they use in their branch-and-price scheme (for the pricing problem). Lai et al. [85] consider
a multigraph with only two arcs in parallel. Huang et al. [71] also only introduce a subset of
non-dominated paths. These paths are the min-distance path, plus a series of min-time paths
computed with different starting times (in their problem, travel times are time-dependent).

12
Chapter 2: Vehicle routing problems with road-network information: State of the

art

Ben Ticha et al. [8] discuss this issue in more details. They quickly explain how the
multigraph can be constructed efficiently with an adaptation of Dijkstra and A∗ algorithms,
and refer to a technical paper (Ben Ticha et al. [9]) for more details. Multigraphs are ob-
tained in a few seconds for instances with 75 customers and a road network with about 5000
nodes. Around 5 minutes are needed when the size of the road network grows up to 20000
nodes.

Ben Ticha et al. [8] also report information on the number of parallel arcs in the multi-
graphs they compute. For different graph topologies and different types of correlation be-
tween two attributes, they never report more than 3 or 4 parallel arcs on average. It might
sound small at first sight, but, after all, considering everybody’s own real-life experience, one
can hardly imagine more than a few reasonable possible paths when traveling between two
given locations.

2.2.2 Road-network graph

The second approach to conserve the entire solution space is to tackle directly VRPs on a
road-network graph, that is, a graph that mimics the road network. Basically, arcs corre-
spond to road segments and nodes to the extremities of these segments.

A key paper in this regard is proposed by Letchford et al. [89]. They revisit the branch-
and-price approach presented by Garaix et al. [61]. They decide to use as a test-bed problem
the multiple Traveling Salesman Problem with Time Windows (m-TSPTW). They are guided
by the idea that it might be more efficient to tackle the problem on the road-network graph
than to introduce the multigraph. Especially, they point out that, in the worst case, construct-
ing and storing the multigraph could be exponential in time and in space (which was however
later empirically denied in [8, 9] – as seen in Section 2.2.1). Hence, in their opinion, it sounds
more natural to keep the initial road network structure.

The authors identify two consequences on the branch-and-price scheme. First, in the
pricing problem, shortest paths are searched in the road-network graph and it is possible to
traverse a customer node without executing the service. If a dynamic programming algorithm
is used, two labels are then needed when reaching a customer node: one label that serves the
customer and one label that just passes through the location of the customer. Second, in
the branching scheme, standard rules cannot be applied for the same reasons as those en-
countered when solving arc routing problems by branch-and-price: the flow matrix derived
from a solution can be integer while the solution is fractional. The authors implement the
pricing problem but leave the branching scheme for future researches. Computational results
demonstrate the interest of their approach when computing the linear relaxation of the prob-
lem, compared with an equivalent column generation procedure applied to the multigraph.

2.2 Vehicle routing problems with several attributes on road segments 13

Ben Ticha et al. [11] reproduce this approach for the VRPTW and additionally imple-
ment the branching scheme. When the situation of a factional solution with an integer flow
support happens, they define two branches: in the first branch they enumerate all the feasible
routes restricted to the support graph and apply a branch-and-bound; in the second branch
they force using at least one arc not in the flow support graph. However, they empirically no-
tice than this situation hardly ever happens. They evaluate in depth the relative efficiency of
applying the branch-and-price on the multigraph or on the road-network graph, and, contrary
to Letchford et al. [89], conclude on the superiority of the former, for which they observe
significant smaller computing times. Furthermore, they explain that addressing the problem
with a road-network graph decreases the quality of the lower bound if the route structure al-
lows multiple services to customers. Indeed, in the road-network graph it is possible to come
back to a customer at a very low price (while in the customer-based graph, one needs to visit
at least one intermediate customer).

In connection with the study presented in [89], a stream of papers concerned with VRPs
on road networks focus on the so-called Steiner Traveling Salesman Problem (STSP). The
aim of the STSP is to find a min-cost cycle visiting a set of required nodes in a road-network
graph. This problem was introduced, independently, by Orloff [103], Fleischmann [56] and
Cornuéjols et al. [29]. In [56] and [29], the STSP is formulated as an integer program with a
linear number of variables and an exponential number of constraints, and is then solved using
a cutting plane method. In addition, Fleischmann [56] proposes a way to extend the solu-
tion procedure to the VRP, but reveals the difficulties that would arise in this case. Recently,
Letchford et al. [90] proposed compact formulations for the STSP, with a linear number of
variables and constraints.

A few authors define their VRP on a road-network graph, but switch to a customer-based
graph within their (heuristic) solution procedure. Huang et al. [70] are interested in the plan-
ning of tourist sight-seeing itineraries. A tourist has to visit a given subset of locations in
a road network. Each road segment is defined by four attributes related to four objectives:
travel time, vehicle operating cost, safety level and surrounding scenic view quality. The
authors simply aggregate the four attributes, which permits to compute best paths between
points of interest and to construct a customer-based graph. Zografos and Androutsopoulos
[137] develop a decision support system for hazardous material transportation and emer-
gency service unit location. They face a VRP that seeks for the best set of vehicle routes for
the distribution of hazardous materials in terms of cost and risk minimization. To each road
segment is assigned a travel time and a risk measure. Again, the authors aggregate these two
attributes and switch to the customer-based graph.

It is finally worth mentioning that a large part of the literature using road-network graphs
concerns Arc Routing Problems. We do not review this literature here and we redirect the
reader to [23] and [44] for recent books. We report however that solution methods devel-

14
Chapter 2: Vehicle routing problems with road-network information: State of the

art

oped for the Capacitated Arc Routing Problem (CARP) and its variants should be an impor-
tant source of inspiration when addressing node-routing VRPs on road-network graphs (as
demonstrated by Letchford and Oukil [91] and Bode and Irnich [12] for branch-and-price
algorithms).

2.2.3 Related works using a multigraph

Besides the papers surveyed in Section 2.2.1, that introduce multigraphs to deal with the mul-
tiple attributes found on road segments, a few other papers introduce multigraphs with other
motivations. Because VRPs modeled with multigraphs are rare, we include these papers in
this survey.

As far as we know, Baldacci et al. [3] were the first to introduce a multigraph in the
context of a vehicle routing problem. They are interested in a Multiple Disposal Facilities
and Multiple Inventory Locations Rollon-Rolloff Vehicle Routing Problem where the objec-
tive is to define a transportation plan for trailers between customers, disposal facilities and
inventory locations. The authors show that the considered problem is equivalent to a time
constrained VRP on a multigraph. In this representation, nodes correspond to feasible trips
(a trip is a sequence of movements of the tractor to perform a service); parallel arcs between
two nodes represent the set of possible vehicle moves and are defined with different cost-time
compromises.

Caramia and Guerriero [17] study a long-haul freight transportation problem. Their mo-
tivation stems from a real-life application implying multimodal routes. Their objective is
to define a transportation plan that minimizes the route cost and travel time, and that max-
imizes a transportation-mean sharing index. The authors observe that two nodes could be
connected with several alternative routes: some arcs represent the same transportation mode
but have different traveling times and costs, and some arcs represent different transportation
modes. Consequently, the transportation network could be represented using a multimodal
multigraph. They show that this structure enlarges significantly the solution space and makes
the definition of the best solution for the multi-objective scenario very difficult. A heuristic
method based on a local search scheme is developed to solve the problem.

In the two above papers, multiple arcs offer multiple possibilities with different compro-
mises when moving between nodes. Though the contexts are very different, the authors are
eventually confronted to the same issues as those mentioned in Section 2.2.1.

This not true for Wang and Lee [133] that introduce the so-called Time-Dependent Al-
ternative Vehicle Routing Problem. The TDAVRP is a vehicle routing problem with time
windows, time-dependent travel times and in which nodes are connected with two arcs. The
first arc represents the best path when the traffic is low. It is defined with a time-dependent

2.2 Vehicle routing problems with several attributes on road segments 15

speed distribution. The other arc represents an alternative path for peak hours. This arc is
not sensitive to traffic and is assigned a constant travel time. A heuristic algorithm based on
a Particle Swarm Optimization is developed. In the case of this problem, the selection of an
arc does not induce different compromises. Instead, it just relies on the actual departure time:
depending on this time an arc dominates the other.

The same remark holds for Setak et al. [122]. They introduce the so-called Time Depen-
dent Pollution Routing Problem in Multigraph (TDVRPM). In the TDVRMP, several arcs
exist between each pair of customers, each arc representing a possible path in the road net-
work. The objective is to minimize a complex combination of carbon emission, driver wages
and tolls. However, the best path between two customers can be found in advance when the
starting time and the vehicle load are known. They address the problem with a tabu search
heuristic.

Finally, Reinhardt et al. [113] also investigate a VRP with a multigraph support. The
authors introduce a new generalization of the VRPTW in which additional fixed costs are
associated with subsets of edges. These costs for example correspond to fees that give access
to some parts of the road network. The problem is modeled with a multigraph. More details
are given on this work in Section 2.4.

2.2.4 Discussion

The aforementioned papers state the limits of the customer-based graph representation for
VRPs when several attributes are defined on road segments. Computational analyses all
show that the potential impact on solution costs is far from being negligible. Conducting
experiments with industrial VRP software and on real data would be very interesting to con-
firm, or not, these conclusions. It is indeed to be noted that the objective function in software
typically merge distance (vehicle cost) and time (driver cost), and that these attributes may
also be combined when the best paths needed to construct the customer-based graph are com-
puted.

To replace the customer-based graph, a multigraph is used in some works and in others
the problem is tackled on a graph similar to the original road network. In this context, many
research directions can be explored. First, it would be interesting to investigate more in depth
the solution of VRPs on road-network graphs. Letchford et al. [89] suggest that it could be
better to use these types of graphs than using multigraphs, but they only partially elaborate
on this issue and are essentially contradicted by Ben Ticha et al. [11]. Further works are
needed both for the development of exact and heuristic approaches on road-network graphs.
Certainly, the literature on arc routing problems should be an important source of inspiration
here. We however would like to insist on the fundamental difference between the latter and
node-routing VRPs on road-network graphs: a demand expressed on a typically large subset

16
Chapter 2: Vehicle routing problems with road-network information: State of the

art

of arcs (generally almost all of them) versus a demand represented with a typically small
subset of nodes (a few among thousands).

Also, several questions remain open for multigraphs. Is this modeling tractable in more
complicated VRP settings? Is it always possible to manage efficiently the construction of
the multigraph, the selection of arcs in solution methods? What are the worst-cases in the
number of parallel arcs?

2.3 Vehicle Routing Problems with “complex” attributes

The most part of the research on VRPs assumes that all attributes in the road network can
easily be computed in advance. These attributes are, typically, given as input or computed
using given information, e.g., travel times may be computed using average speeds on road
segments. Based on this assumption, when the VRP involves a single attribute on road net-
work arcs, the best path between two points of interest can easily be defined and the VRP
can be tackled with a customer-based graph.

However, there are some situations where computing the best path for a given attribute
between two points of interest is not that simple. An easy example is that of time-dependent
travel times. In theory, it is easy to precompute the min-time path for every possible starting
time. It then enables constructing a customer-based graph with travel time functions asso-
ciated with every arc. One just have to be conscious that the road-network path associated
with an arc in this graph might change by time of the day. Even if in practice it can be more
complicated (because of memory or accuracy issues related to the modeling of travel time
data, as discussed in Eglese et al. [47]), this case does not fail into the topic of this survey.

Further complications arise with time-dependent cost functions. These problems are typ-
ically found for fuel consumption or carbon emission minimization, with time-dependent
travel times. The shortest-cost path problem between two points of interest becomes non
trivial if Bellman’s principle of optimality does not hold, i.e., if it might be preferable to
arrive at some intermediate node with a higher cost (but earlier) to avoid congestion and save
some future cost (see, e.g., Wen et al. [134]). An additional difficulty is even faced if fuel
consumption is modeled as depending on the vehicle load. In these situations, the construc-
tion of a customer-based graph becomes less and less viable.

Even more complicated, there are some situations where the decision-maker has the pos-
sibility to take decisions that could influence the itinerary to follow between two points of
interests. We have found two examples in the literature. In the first example, it is possible
to voluntarily decrease speed to limit fuel consumption. In the second example, one has to
manage driver breaks (to respect working hour regulations).

2.3 Vehicle Routing Problems with “complex” attributes 17

In this section, we will successively survey the three cases evoked above: the case of
time-dependent cost functions, the case when speed is a decision variable and the case when
working hour regulations are considered.

Note that the interest in such complex problems is a consequence of the recent technical
developments that allow collecting accurate information on travel times and speeds, by time
of day or day of week. Having this information enhances the need for a better management
of temporal issues in routing optimization software.

2.3.1 Complex time-dependent cost functions

Wen and Eglese [135] address a time-dependent VRP with time windows and a cost func-
tion composed of fuel cost, driver cost and congestion charge. The fuel and driver costs are
time-dependent. Congestion charge consists in a fee that is paid when entering a given zone.
It is due at most once for a vehicle. As explained in Section 2.2, a trade-off exists between
time and cost, but the authors ignore this trade-off. They first take aside congestion charges
and construct a customer-based graph with (time-dependent) min-cost paths between points
of interest. For that matter, they use a heuristic method developed in Wen et al. [134]. They
then take congestion charges into account as follows. A second (time-dependent) cost matrix
is computed for which entering the zone that requires a congestion charge is not allowed.
Virtually, it means that an alternative path is defined for each pair of points of interest, and
the resulting two matrices can be interpreted as a multigraph with two alternative arcs. How-
ever, it is not considered as such by the authors in the tabu search approach that they propose.
Indeed, they notice that, given a vehicle route in a solution: either the congestion charge will
be paid and the first matrix should be used to evaluate the route cost or it would not be paid
and the second matrix should be used. Hence, these two options are considered and the best
one is kept.

Ehmke et al. [49] study a time-dependent VRP with the objective of minimizing carbon
emissions. In their model, emissions not only depend on the vehicle speed but also on the
vehicle load. For that reason, they consider that the complete set of min-cost paths cannot be
precomputed. They explicitly define their VRP on the road-network graph. They propose to
address it with a tabu search approach. Local search moves are standard except that min-cost
paths between points of interest, for given starting time and load, are computed when evaluat-
ing a move, if necessary. A heuristic algorithm proposed in Ehmke et al. [48] is used for that
purpose. The best paths are stored to avoid repeating the same computations. Furthermore,
the authors show and exploit the following property: when the min-cost path is the same for
an empty and a full-loaded vehicle, it will remain the same for any intermediate load. They
use this property in preprocess by precomputing all those paths that will not depend on the
vehicle load.

18
Chapter 2: Vehicle routing problems with road-network information: State of the

art

2.3.2 Speed optimization

Qian and Eglese [109] study the problem of finding the route with minimal carbon emissions
that visits a predefined sequence of customers subject to time windows. The objective is to
specify the path followed by the vehicle between each pair of successive customers, together
with the travel speeds and waiting times along these paths. The authors address the problem
on a time-dependent road-network graph and allow adapting speed/stopping at any point of
the network. In particular, speed is allowed to be lower than the speed limit defined by traffic
conditions. With this setting, the optimal path between two successive customers, and the
associated attributes, cannot be precomputed (at least easily). Actually, to solve the prob-
lem, the authors propose two solution approaches: a dynamic programming algorithm and
a heuristic adaptive search method that first selects a set of candidate paths and then defines
the travel speed for each road segment on the selected paths.

In a subsequent study [110], the authors are interested in the Time Dependent Vehicle
Routing Problem with Time Windows (TDVRPTW). The problem investigated in [109] is
then the subproblem met when evaluating carbon emissions for a given vehicle route. For
this reason, they still have to address the problem on the road-network graph. They propose
a tabu-search-based column generation algorithm. At each iteration, a tabu search heuristic
is used to generate new columns (routes). Travel speeds and carbon emissions for each new
route are optimized using the heuristic method proposed in [109].

2.3.3 Driver working hour regulation

Chassaing et al. [19] propose to consider working time and break times of drivers in the TD-
VRP. They propose to address the problem directly on the road network where break-times
are allowed at any node. Two objectives are considered: minimizing the working time and
the riding time. The authors observe that due to the traffic conditions, it could be interesting
to wait at some node in the road network (break-time) in order to avoid congestion at peak
hours. This decision may lead to a shorter ridding time but involves a longer working time.
To handle this trade-off, they propose to consider waiting-times as decision variables. They
develop a genetic algorithm based on a giant tour decomposition where the path to be used
between two consecutive customers is determined when extending the label from the first
endpoint and the possibility of inserting break-times is considered when evaluating a path.

2.4 Vehicle routing problems on complex road-networks 19

2.3.4 Discussion

The number of papers that investigate vehicle routing problems with “complex” attributes has
grown recently. Different issues (time-dependent data, travel speed regulation, complex cost
functions, working and break times regulation, etc.) question using a customer-based graph.
These works should certainly be pursued.

A complementary recent trend is to introduce stochastic information. Travel times or
costs are indeed stochastic by nature and a lot of recent papers explore this issue. As far
as we know, the preexistence of a customer-based graph with the associated stochastic in-
formation is almost always assumed in these papers (e.g., [88], [93], [81]). One noticeable
exception is by Huang et al. [71] (see Section 2.2.1) that consider stochastic travel times
and investigate the following two-stage stochastic strategy. At first stage, traditional vehicle
routes (sequences of customers) are defined, based on average travel times. Then, at the sec-
ond stage, when information on travel times is known, the path actually followed in the road
network is selected. In Ehmke et al. [49] also (see Section 2.3.1) speed information is taken
from a sample and can be considered as stochastic. There is clearly still a lot to investigate
about the relationship between stochastic models and road-networks graphs.

Another related promising research direction is that of vehicle routing problems with
real-time traffic information. Due to recent advances in information and communication
technologies, actual traffic conditions are known in real time and “exact” travel times can be
obtained at any time of the day. Again, the principle of using a customer-based graph could
be questioned in this context. We are not aware of any paper on this subject.

It is finally also interesting to highlight the case of urban distribution with electric ve-
hicles. Energy consumption by an electric vehicle heavily relies on many parameters as
distance, speed, slope and vehicle load. While the first papers in this area voluntarily sim-
plified the energy consumption models, the trend is now to move to more realistic models
(Pelletier et al. [106]) and better consider the so-called range anxiety. One can anticipate
future investigations similar to those that already started about carbon emissions.

2.4 Vehicle routing problems on complex road-networks

Goods transportation constitutes an important activity in urban areas. Many recent studies in
the VRP literature focus on optimizing transport and distribution activities in urban centers,
the so-called city logistics. In most of these studies, the problem is defined on a customer-
based graph. Three types of decisions are mainly addressed: assignment and sequencing
decisions which define the customer visit order for each vehicle and scheduling decisions
which determine the visit timetable. Implicitly, they assume that the path selected between

20
Chapter 2: Vehicle routing problems with road-network information: State of the

art

two customers does not depend on the sequence. In other words, they assume a complete
independence in the path selection decisions. However, this assumption is not always rele-
vant in complex road networks as those found in urban areas. Indeed, the way a customer is
reached might influence the way it will be left. In the context of vehicle routes with many
stops and small distances between stops, the impact can be important. A second type of de-
pendencies exists when portions of the network are subject to fees. Depending on whether
the fees are paid or not, the paths will not be the same.

The literature is very limited on this subject. We only found three papers that investigate
alternatives to the customer-based graph: one in regard to the modeling of vehicle stops, two
in regard to fees. Two of these papers are reviewed below, the third one, Wen and Eglese
[135], having already been surveyed in Section 2.3.1.

2.4.1 Fine modeling of vehicle stops

Lang et al. [86] investigate the impact of considering alternative parking points at customer
locations. They study the VRPTW with the objective of minimizing fuel consumption. They
address the problem on a realistic urban road network where bi-directional roadways are con-
sidered. They point out that due to the medial strips between lanes of traffic with opposite
directions, vehicles may have to travel an additional distance to serve customers across the
road. To handle this issue, they introduce alternative parking points, at which the vehicle can
stop and from which the deliveryman can cross the street and walk to the customer. These
alternative stopping points are introduced according to the load to be delivered and the dis-
tance to walk. Customer time windows and service times are updated accordingly.

The authors address the problem with an ant colony algorithm. They however do not
detail how the alternative stopping points are handled in the algorithm. Apparently, these
points are simply managed as other points and included in the candidate set (with their own
probabilities) when deciding of the next destination for an ant. A case study is carried out
on a road network in the south of Beijing. A test problem with 10 customers was generated.
Results show the impact of considering alternative stop points on the quality of the solution:
the total traveled distance is reduced by 2.5% and the total fuel consumption is reduced by
4.5%.

2.4.2 Access with fees

Reinhardt et al. [113] investigate VRPs in which fees must be paid for accessing roads, areas
or bridges. These fees can reflect payment for toll roads, ferry connections, investment in
new facilities or the need for certifications to access to war zones or areas of unrest. Then,
connection costs between customer locations do not depend only on traveling costs, but also

2.5 Impact on solution method efficiency 21

rely on other decisions, basically buying or not access to a set of routes in the transportation
network. Hence, a standard customer-based graph does not model correctly the problem.
Reinhardt et al. [113] consider the VRPTW and propose an extension that take fees into
account, which they call Edge Set VRPTW. In this new problem, edges are regrouped in
different subsets, each subset being characterized by a fixed cost. Once this cost is paid, all
the vehicles can access all the edges of the associated subset. The authors explain that the
problem should be modeled with a multigraph, in order to differentiate between edges that
connect the same pair of nodes but do not belong to the same edge subsets. However, in this
study, they only address the special case when the graph is simple, i.e., only one edge exists
between each pair of nodes. They justify this assumption by contexts where the fastest path
should always be preferred (as, hazardous materials transportation). They propose a branch-
cut-and-price algorithm. The adaptation of this algorithm to the general (multigraph) case is
only slightly discussed and left as a perspective.

2.4.3 Discussion

Research on vehicle routing problems on road networks with complex structures is very lim-
ited. We only found a few papers about stopping points and fees. Furthermore, these papers
propose very preliminary results. Extensive computational study and further analyses are
needed to draw comprehensive conclusions.

As far as we know, also, many issues still remain to be investigated, such as restrictions
on street access, hours of operations, etc. It is worth mentioning that these issues have been
considered in the context of shortest path problems (e.g., U-turn restrictions [136, 1, 92],
route access and lane changing restrictions [82]) and in arc routing problems [23]. When
dealing with the optimization of urban vehicle routes with numerous stops, they certainly
deserve more attention.

2.5 Impact on solution method efficiency

2.5.1 Size of models

In real life, vehicles travel on a road network where they have to serve a limited subset of loca-
tions. Since the first paper by Dantzig and Ramser [31], most approaches for vehicle routing
optimziation have modeled this situation with the customer-based graph. Transforming the
road network into a customer-based graph is commonly admitted as being more efficient as it
precomputes once for all the best path between every pair of points of interest. This intuition
can however be questioned.

22
Chapter 2: Vehicle routing problems with road-network information: State of the

art

The first to explore this issue was Fleischmann [56]. He claims that nodes in road net-
works typically have small degrees and that the number of arcs in a road-network graph can
be largely inferior to that in the corresponding customer-based graph. When addressing the
problem with a flow model, it can critically increase the number of variables. The author first
considers the optimization of the vehicle tour in a road-network graph for a single vehicle,
i.e., the STSP (see Section 2.2.2). He proposes a solution method based on a cutting planes
scheme. In the same paper, the author also suggests to extend the solution procedure to the
VRP and points out the main difficulties that would arise in this case.

Recently, Letchford et al. [90] investigated more in depth the impact of considering the
road network when modeling the TSP. They propose different mathematical formulations for
the STSP with polynomial numbers of variables and constraints. Computational results show
that instances with up to 200 required nodes are solved using a standard mathematical pro-
gramming solver.

2.5.2 Relationship with arc routing problems

Another source of reflection about the relative efficiency of the different graphs can be found
in the arc routing literature. Several authors investigate the possibility of transforming arc
routing problems into node routing problems. Other authors prefer addressing these prob-
lems directly on a road-network. Detailing all these attempts is out of the scope of this paper,
let us just develop one significant example. Letchford et al. [91] study the Capacitated Arc
Routing Problem (CARP). They recall that the most efficient approach so far for solving ex-
actly the CARP consists in transforming the problem into a node routing problem, via series
of shortest path computations, and then in applying any efficient exact solution method for
the resulting VRP. They detail the main drawbacks of this approach: it increases the size of
the graph, it removes special structures that might appear in the road network, it increases
symmetries. Following this discussion, they develop a branch-cut-and-price algorithm di-
rectly on the road-network and explain the interest of this approach.

One should however repeat here the main difference between arc routing problems and
VRPs on road-network. In arc routing problems, a large proportion of arcs usually require
service. In VRPS, only a very small proportion of nodes (in the road-network graph) has to
be visited. Hence, the impact of transforming the road network into a customer-based graph
is hardly comparable.

2.5.3 Discussion

Papers cited above investigate the impact of the traditional customer-based graph represen-
tation on solution method performance. They suggest that transforming the original road
network into a customer-based graph is likely to increase the number of variables in a mathe-

2.6 Conclusion 23

matical formulation and hence, affect negatively the efficiency of solution algorithms. How-
ever, they are far from giving definitive proofs on this issue.

The literature on arc routing problems would tend to support this claim, but the nature of
the problems are different. Probably the best graph representation is largely influenced by the
characteristic of the instance: special structure of the road-network, density of customers. . .

A topic that is largely ignored in the VRP literature is possibility to take advantage of
a road-network graph in heuristic methods. Of course, this is implicitly done when, for
example, extending a vehicle route to its nearest neighbor or applying a best insertion. But
one could imagine a more explicit exploitation of the road-network graph, e.g., by applying
local search moves to the routes represented in this graph.

2.6 Conclusion

Since its introduction by Dantzig et Ramser [31], the Vehicle Routing Problem has been the
subject of intensive research efforts. Thousands of papers and books have been written about
VRPs and in which numerous applications have been addressed. Most of the approaches
proposed in the literature are based on a key assumption that the best path between each
pair of points of interest can be easily defined, and hence, the problem can be tackled using
a customer-based graph representation. In many situations, this representation could have
negative effect on the solution quality or efficiency.

The literature review presented in this paper confirms that there are many reasons to con-
sider the solution of vehicle routing problems with more detailed information from the road
network. Some papers investigate the limits of the traditional customer-based graph rep-
resentation on the solution quality when several attributes are defined on road segments or
when arc attributes are somehow "complex" to compute in advance. To handle these limits,
two modeling approaches are examined, namely the multigraph representation and working
directly on a road-network graph. Other papers focus on the impact of the complex structure
of road networks on the solution of vehicle routing problems. Finally, some other papers
emphasize the interest of solving vehicle routing problems directly on the road network from
a methodological point a view.

In spite of the increasing interest in proceeding differently than using the customer-based
graph, the number of papers that investigate these issues still remains relatively limited.
Many questions and research topics are still unexplored. Several of these topics have been
discussed in length all along this survey, with respect to many contexts such as urban logis-
tics, electric vehicle routing, stochastic VRPs or dynamic VRPs, among others. We hope that
the theoretical and practical perspectives it opens will be an important source of inspiration
for future works on VRPs.

Chapter 3

A solution method for the Multi-destination
Bi-objectives Shortest Path Problem

This chapter is submitted for publication in INFORMS Journal on Computing.

Abstract

This paper is devoted to study the multi-destination bi-objective shortest path problem.
This problem consists in finding the set of Pareto-optimal paths linking a set of points of
interest in a network. Our motivation stems from the data preprocessing for vehicle routing
problems on road networks. We propose a solution method based on a labeling approach
with a multi-objective A* search strategy that can handle the multi-destination case. Com-
putational results based on instances generated from real road networks show the efficiency
of the proposed algorithm compared to state-of-art approaches.

Keywords: Multi-destination, Bi-objective shortest path problem, Pareto-optimal paths,
labeling algorithm, A* algorithm.

3.1 Introduction

The Vehicle Routing Problem (VRP) can be described as the problem of designing a set of
routes that starts and ends at a depot and that visits a number of geographically dispersed
locations, called customers. In the standard version of the problem, a node is introduced
for each point of interest (the depot or a customer) and a distance matrix is used to report
information on the shortest path between every pair of nodes. Methods with a polynomial
complexity to compute such a matrix are well-known. These methods aim at computing the
shortest origin-destination path, such as the goal directed search called also A* (see [68]) or
at computing one-to-all shortest paths (from a source node to all other nodes), such as Dijk-
stra’s algorithm (see [42]) or at computing all-to-all shortest paths, such as Floyd’s algorithm
(see [58]).

In many real-world applications, several attributes on road segments have to be consid-
ered when tackling the VRP and customer nodes may be connected using many different

26
Chapter 3: A solution method for the Multi-destination Bi-objectives Shortest

Path Problem

paths with different trade-offs. In such situations, the distance matrix could be insufficient to
correctly model the problem [61, 89]. An alternative modeling approach proposed by Garaix
et al. [61] consists in representing the road network using a multigraph. In this representa-
tion, an arc is introduced for every non-dominated path linking two customer locations. In
this case, the data preprocessing step for the VRP involves a Multi-objective Shortest Path
Problem and consists in computing the set of Pareto-optimal paths for each pair of nodes.

In this paper, we investigate the construction of the multigraph representation for vehicle
routing problems where two attributes are associated with road segments. We propose a so-
lution method that computes the set of bi-objective shortest paths from one to all other points
of interest in a road network. The proposed approach is based on a dynamic programming
approach with an A* algorithm. The A* is a single objective shortest path algorithm based on
a guided search strategy. Basically, it expands first partial paths leading the most quickly to
the destination node [68]. In this study, we propose to implement a bi-objective A* algorithm
that handles the multiple destination case, i.e., the search strategy selects, at each iteration,
the partial path that could lead quickly to a non-dominated path given it will have to reach
one of the destination nodes. To show the efficiency of the proposed approach, we conduct
computational experiments based on several test problems and we compare obtained results
to those obtained using classical labeling methods.

The rest of this paper is organized as follows: In Section 3.2, we present an overview
of the related literature. Section 3.3 presents the basic concepts of the studied problem. In
Section 3.4, we describe the proposed solution method. In section 3.5, we propose some
enhancements for the developed algorithm based on time windows defined for the points of
interest (source and destination nodes). Finally, numerical results are reported in Section 3.6.

3.2 Literature review

The Bi-objective Shortest Path Problem (BSPP) is an extension of the classical Shortest Path
Problem (SPP) and belongs to the class of multi-objective combinatorial optimization prob-
lems. Given a network where two attributes are associated with arcs, the BSPP consists
in determining the set of non-dominated paths that optimizes the two objective functions.
The BSPP is an NP-hard problem [121]. Hansen [67] showed that the generation of Pareto-
optimal solutions for the BSPP is intractable in the worst case, i.e., the number of Pareto-
optimal paths can be exponential in the number of nodes in the network.

The BSP problems have been widely studied. The most recent survey on Multi-objective
Shortest Path Problems (MSPPs) is by Clímaco and Pascoal [22]. They were interested in
exact solution approaches and their applications especially for routing problems in telecom-
munication networks. The annotated bibliography on multi-objective combinatorial opti-

3.2 Literature review 27

mization presented by Ehrgott and Gandibleux [50] includes a section about shortest path
problems. An overview of solution methods used to solve BSP problems is proposed by
Skriver [125].

Basically, two main classes of exact solution methods are used to solve BSP problems:
labelling methods that consists in enumerating the non-dominated labels associated with ev-
ery node in the network and ranking methods which are based on single objective k-shortest
paths methods.

Labeling methods for the MSPP are similar to their single objective counterparts. They
are also partitioned into label setting and label correcting methods. In label setting algo-
rithms, one label arriving at a known node is set as permanent at each iteration, (e.g., [96],
[67]). In label correcting algorithms, all labels are temporarily maintained during the search
procedure and only non-dominated labels at the last iteration become permanent (e.g., [28],
[16]). Label correcting algorithms differ in the used selection strategy. Brumbaugh-Smith
and Shier [16] used node-selection strategies where at each iteration a node i is selected
and all labels arriving at i are extended through all outgoing arcs. Tung and Chew [131]
introduced a different selection strategy in which all labels are treated separately. They pro-
posed to select at each iteration a label at some node i and extend it through all outgoing arcs.

Martins and Santos [98] investigated labeling-based algorithms for the MSPP where arcs
are given with arbitrary costs. They showed that for any network with no absorbent cycle the
MSPP is bounded and proved the correctness of labeling methods. Guerriero and Musmanno
[66] studied label setting and label correcting algorithms and introduced new label-selection
and node-selection strategies. Computational experiments carried out with random and grid
networks showed that node-selection methods are generally faster but for some instances
label-selection methods were more suitable. More recently, Paixão and Santos [104] pro-
posed a computational study of labeling methods used to solve the MSPP. They investigated
27 variants of the labeling algorithm where label correcting and label setting were combined.
A large set of test problems consisting of more than 9000 instances was used to evaluate the
different implementations. They stated that the obtained results show that the label correcting
algorithm produces the fastest performance.

Many techniques for labeling algorithms were proposed to speed-up multi-objective short-
est paths computation. Steward and White [127] proposed an extension of the goal directed
algorithm, called also A∗ algorithm, for the multi-objective scenario. Raith [111] used a stop-
ping condition so-called “dominance by early results”. It is based on the ascertainment that
any label dominated by one of the labels at the destination node can not lead to a Pareto-
optimal path. Demeyer et al. [36] proposed a similar stopping criterion and introduced a
bi-directional search procedure.

Ranking methods consist in listing paths with a non-decreasing order of one of the ob-

28
Chapter 3: A solution method for the Multi-destination Bi-objectives Shortest

Path Problem

jectives [21]. From this list, a set of non-dominated paths is selected. Martins [95] proposed
a ranking method based on a deletion algorithm. In this method, the shortest path according
to a selected objective function is determined at each iteration. This path is, then, eliminated
from the network at the start of the next iteration. The algorithm stops when the k-shortest
path is determined or when no path is found in the network.

Huarng et al. [72] showed that for the BSPP the ranking method proposed by Climaco
and Martins [21] is not competitive with labeling approaches. Their computational results
suggest that both label setting and label correcting algorithms are far better than k-shortest
path approaches.

Another approach was proposed by Mote et al. [99] to solve BSP problems. This ap-
proach consists in a two-phase method. In the first phase, extreme solutions in the convex
hull of the solution space are computed by solving the LP relaxation of the problem. In the
second phase, an enumerative method is used to determine the set of Pareto-optimal paths.
The main idea of this approach is that it takes advantage of the problem structure and extracts
information on extreme points of the convex hull of the solution space in the first phase. This
information is, then, used in the second phase to restrict, and thus, to speed up the enumer-
ative method. Raith and Ehrgott [112] studied the two-phase approach. They investigated
different combinations of methods used in the two phases: a network simplex method, sin-
gle objective label setting and label correcting algorithms were tested in phase 1 and, ranking
and bi-objective labeling approaches were explored in phase 2. They compared the two-phase
method with purely labeling approaches and a ranking method. Computational experiments
carried out on three different set of instances showed the competitiveness of the two-phase
method with the different configurations. In their conclusions, Raith and Ehrgott [112] no-
ticed that the efficiency of the solution methods depends a lot on the network structure and
the choice of the approach, that could perform well, relies on the network type.

Most of the aforementioned studies assume that all criteria are additive. Other types
of criteria have been explored such as the bottleneck type, i.e., min-max or max-min func-
tions. Gandibleux et al. [60] revisited Martins’ algorithm for the MSPP [96] and proposed
a generalization to the case where a combination of additive objectives and one bottleneck
objective are considered. De Lima Pinto et al. [34] proposed an algorithm that can handle
tricriterion shortest path problems with at least two bottleneck objective functions. Path de-
viation procedures proposed by Martins et al. [97] were also used to rank paths for the MSPP.

Besides these exact methods, many of well known heuristics have been applied to MSP
problems such as evolutionary algorithms (e.g., [105]), multi-objective ant colony optimiza-
tion based algorithms (e.g., [64]), etc. Tsaggouris and Zaroliagis [130] presented an im-
proved Fully Polynomial Time Approximation Scheme for the MSPP that can find a set of
approximatively Pareto-optimal paths in a polynomial time.

3.3 Basic concepts 29

From a practical point of view, Müller-Hannemann and Weihe [100] studied the cardinal-
ity of the set of Pareto-optimal solutions for MSP problems. They showed that due to some
characteristics occurring in various applications, the number of efficient solutions is small
enough and can be bounded with a small constant. An illustration was presented for railway
networks with two and three objectives.

This paper makes a number of contributions to the literature. First, we propose a solution
method that can efficiently handle the multi-destination setting. As far as we know, there is
no previous paper that investigates such a setting. Almost all proposed approaches aim at
computing either one-to-one paths or one-to-all paths. Although the multi-destination case
can be addressed using an algorithm for one of the two other cases (by applying one-to-one
algorithm for every destination node or by considering only paths arriving at required nodes
in a one-to-all solution), interesting properties arise in this case and could be exploited to
solve the problem with lower computational efforts (see Section 3.3). The developed algo-
rithm is based on a dynamic programming approach with a modified A* algorithm. The
A* is a single objective shortest path algorithm. We propose to implement a multi-objective
A* algorithm that can handle the multi-destination setting. Second, the multi-destination
multi-objective shortest path problem presents potential interest in many real-life applica-
tions, especially in vehicle routing. We propose a tool that can compute optimal solutions for
large sized problem in reasonable computing times.

3.3 Basic concepts

We define a network as a directed graph G = (V, A) where V is a set of n nodes and A is a set
of m arcs. Each arc (i, j) is given two non-negative values (di j, ti j) representing the costs for
the two objectives. Costs di j and ti j correspond respectively to the distance and the travelling
time in our application. Let v0 ∈ V denotes the source node and C = {v1, v2, ..., vnc} ⊂ V the
subset of required nodes, i.e., the set of nc destination nodes.

We define a path p in G from a node u0 ∈ V to a node ui ∈ V as an ordered list of nodes
P = (u0, u1, ..., ui) such that (uk, uk+1) ∈ A ∀k ∈ {0, ..., i − 1}. The cost vector of path P is the
sum of arc costs; (d(P), t(P)) = (

∑k=i−1
k=0 dukuk+1 ,

∑k=i−1
k=0 tukuk+1).

The algorithm presented in this paper is based on a labeling approach. A label represents
a subpath from a source node v0 to a certain node u ∈ V . We define a label with the follow-
ing information L = (u, d(L), t(L)) with u is the ending node of the subpath represented by
L and, d(L) and t(L) correspond, respectively, to the total distance and the total travel time
associated with the subpath represented by L.

In the following, we recall some concepts that will be used to compare labels [98, 112,

30
Chapter 3: A solution method for the Multi-destination Bi-objectives Shortest

Path Problem

66].

Definition 3.1. Dominance
A vector (a1, a2) dominates a vector (b1, b2) if and only if a1 ≤ b1 and a2 ≤ b2 with at least
one inequality being strict.

Consequently, a label L1 dominates a label L2 if and only if the cost vector (d(L1), t(L1))
dominates (d(L2), t(L2)). In the same way, a path p1 dominates a path p2 if and only if the
vector (d(p1), t(p1)) dominates the vector (d(p2), t(p2)).

Definition 3.2. Lexicographic order
A vector a = (a1, a2) is lexicographically smaller than a vector b = (b1, b2), denoted by
a <

lex
b, if either a1 < b1 or both a1 = b1 and a2 < b2.

The relationship established in Definition 2 is reflexive, transitive and anti-symmetric.
We use this relationship to define a total lexicographic ordering on paths and on labels. A
path p1 is lexicographically smaller than a path p2, denoted by p1 <

lex
p2, if and only if

(d(p1), t(p1)) <
lex

(d(p2), t(p2)). Similarly, a label L1, is lexicographically smaller than L2,
denoted by L1 <

lex
L2, if and only if (d(L1), t(L1)) <

lex
(d(L2), t(L2)).

Definition 3.3. Pareto-optimality
A path p is Pareto-optimal if and only if there exists no feasible path p′ that dominates p

Let P(u, v) denotes the set of all paths linking node u to node v in G and let Popt(u, v) =

{p1, p2, ..., pr} ⊂ P(u, v) the set of Pareto-optimal paths. Paths in Popt(u, v) are sorted accord-
ing to the lexicographic order, i.e., p1 <

lex
p2 <

lex
... <

lex
pr. Moreover, paths in Popt(u, v) are

such that

d(p1) < d(p2) < ... < d(pr−1) < d(pr) (3.1)
t(p1) > t(p2) > ... > t(pr−1) > t(pr) (3.2)

Using this notation, we can easily prove the following properties:

Property 3.1. p1 ∈ Popt(u, v) is the shortest path in distance from u to v in G, i.e., d(p1) =

min
p∈P(u,v)

d(p).

Property 3.2. pr ∈ Popt(u, v) is the shortest path in time from u to v in G, i.e., t(pr) =

min
p∈P(u,v)

t(p).

Indeed, for each path p ∈ P(u, v) \ Popt(u, v) there exists at least one path pk ∈ Popt(u, v)
such that pk dominates p, i.e., d(pk) ≤ d(p) and t(pk) ≤ t(p). Consequently, for each path
p ∈ P(u, v), we have d(p1) ≤ d(p) and t(pr) ≤ t(p).

3.4 Multi-destination Bi-objective Shortest Path Problem 31

In the remainder of this paper, we denote by (din f (u, v), tsup(u, v)) the cost vector associ-
ated with the shortest path in distance in Popt(u, v) and we denote by (dsup(u, v), tin f (u, v)) the
cost vector associated with the shortest path in time in Popt(u, v).

We introduce a new measure, denoted D(p), that indicates the detour in distance of the
path p ∈ P(u, v) compared to the shortest path in distance: D(p) is given by:

D(p) = d(p) − din f (u, v) ≥ 0 (3.3)

Using this notation, we can define bounds on detour values associated with paths in
Popt(u, v):

Property 3.3. For every path p ∈ Popt(u, v), 0 ≤ D(p) ≤ Dsup holds, with Dsup = dsup(u, v) −
din f (u, v)

Therefore, paths in Popt(u, v) are also sorted in a non-decreasing order of D(p), i.e., 0 =

D(p1) < D(p2) < ... < D(pr−1) < D(pr) = Dsup.

3.4 Multi-destination Bi-objective Shortest Path Problem

In this section, we explore how to compute the bi-objective shortest paths from the source
node v0 to the destination nodes in C = {v1, v2, ..., vnc} ⊂ V in the network G = (V, A). Note
that our approach can be easily extended to both one-to-one and one-to-all cases: by setting
nc to 1 for the first case and by setting nc to n−1 for the second case. It is however specifically
designed for the case with 1 < nc < n − 1.

In Section 3.4.1, we present the main ideas of our solution method for the single desti-
nation (C = {v1}) case, then, we present a generalization of our algorithm for the multiple
destination case. In Section 3.4.2, we prove that the proposed algorithm correctly provides
the expected Pareto-optimal paths and we finally present some complexity analysis.

3.4.1 Solution method

The solution method proposed in this paper is similar to the label setting algorithm proposed,
first, by Martins [96] which is, in turn, based on Dijkstra’s algorithm [42]. The label setting
algorithm for the MSPP is a straightforward extension of the single objective version. The
main difference is that several labels arriving at a node u may be maintained during the search
procedure, each representing a subpath from the source node to node u. At each iteration,
the lexicographic smallest label L = (u, d(L), t(L)) among labels with respect to all nodes
is selected. This label is, then, extended using all outgoing arcs (u, v). The extension of
L = (u, d(L), t(L)) using arc (u, v) results in label L′ = (v, d(L) + duv, t(L) + tuv). Dominated

32
Chapter 3: A solution method for the Multi-destination Bi-objectives Shortest

Path Problem

labels are eliminated from the obtained labels and from labels already present at node v. The
algorithm terminates once all labels are processed.

Recall that labeling algorithms for the MSPP are supported by an adaptation of the Prin-
ciple of Optimality for the SPP [96], which states that every non-dominated path is formed
by non-dominated subpaths. In a label setting algorithm, these subpaths are represented by
non-dominated labels and are considered in a lexicographic order. Hence, Pareto-optimal
paths arriving at the destination node are provided during the labeling procedure. However,
the algorithm can not terminate until all labels are processed. This issue can be handled using
a stopping criteria that interrupts the search once all non-dominated paths at the destination
node are generated.

In our approach, we propose to guide the search using an A∗ strategy. Basically, the A∗ al-
gorithm constructs the shortest path by expanding, first, the subpaths that appear to lead more
quickly to the best solution [68]. These subpaths are selected based on an estimate of the cost
still to go to the destination node. In our implementation, we propose to select, at each it-
eration, among all temporary labels the one that may lead to a non-dominated path with the
shortest distance. In other words, we select at each iteration the label L = (u, d(L), t(L)) that
minimizes d(L) + din f (u, v1). In this way, paths arriving at the destination node are generated
in a non-decreasing order of distance. The search can be terminated once the selected label
is such that d(L) + din f (u, v1) > dsup(v0, v1). Due to properties 3.1 and 3.2 (see Section 3.3),
it is guaranteed that all non-dominated paths at the destination node v1 have been found once
the stopping criterion is met. Note that the computation of values din f (u, v1) and dsup(v0, v1)
can be preprocessed, as detailed subsequently.

To handle the case of multiple destination nodes, we propose to adapt the search scheme
such that the selection procedure takes into account all possible final destinations for each
label. The selection function, then, aims at defining the label apt to lead the most quickly
to a non-dominated path at a certain destination node. To do this, we select the label L =

(u, d(L), t(L)) that minimizes the value:

min
1≤i≤n

(d(L) + din f (u, vi) − din f (v0, vi)) (3.4)

We denote by K(L) this value and call it the key of the label. It indicates the minimum detour
in distance of the associated subpath given it will have to reach one of the destinations in C.

Using this search procedure, paths reaching each destination node are generated in a non-
decreasing order of detour in distance D(p). The algorithm should terminate once labels Li =

(vi, dsup(v0, vi), tin f (v0, vi)) have been generated for every destination node vi ∈ {v1, ..., vn}.
Therefore, the stopping criterion is that the key of the selected label is larger than max

1≤i≤n
K sup

i

with K sup
i = dsup(v0, vi) − din f (v0, vi).

3.4 Multi-destination Bi-objective Shortest Path Problem 33

Note that, to compute the key of a label L = (u, d(L), t(L)), distances din f (u, vi) and
din f (v0, vi) associated, respectively, with shortest paths in distance from v to vi and from v0 to
vi are needed. Also, distances dsup(v0, vi) (used to compute K sup

i) associated with the shortest
paths in time from v0 to vi are needed. These distances are determined in preprocessing as
follows:

• Using a Dijkstra algorithm, we compute shortest paths in distance and in time from
node v0 to all nodes u ∈ V . Four tables are constructed: din f (v0, u) and tsup(v0, u)
indicating distances and times associated with shortest paths in distance and, dsup(v0, v)
and tin f (v0, v) indicating distances and times associated with shortest paths in time.

• Using backward Dijkstra algorithms from all nodes v1, ..., vn, we compute shortest
paths in distance and in time from all nodes u ∈ V to destination nodes vi ∈ {v1, ..., vn}.
Four series of tables are obtained: din f (v, vi) and tsup(v, vi) indicating distances and
times associated with shortest paths in distance and, dsup(v, vi) and tin f (v, vi) indicating
distances and times associated with shortest paths in time.

Note that in both forward and backward Dijkstra’s algorithms, labels are considered in a
lexicographical order established using the operator <

lex
(see Definition 3.2). Accordingly, we

have the guarantee that all the computed paths are efficient.

The general scheme of the proposed solution method is described in Algorithm 3.1. We
call this algorithm multi-A* algorithm. Theorem 3.1 proves that all Pareto-optimal paths
from the source node v0 to every destination node vi ∈ {v1, ..., vnc} are generated when the
algorithm terminates.

3.4.2 Optimality proof and complexity analysis

Theorem 3.1. Optimality
All Pareto-optimal paths from source node v0 to all destination nodes v1,...,vn are found once
the multi-A* algorithm terminates.

Proof. Let us assume that at the end of the Algorithm 3.1 there exists a non-dominated
path pv0vk from the source node v0 to a destination node vk that has not been found by the
algorithm.

Let (u0, u1, ..., ur) be the sequence of nodes visited along the path pv0vk with u0 = v0

and ur = vk. Let us denote by Li = (ui, d(Li), t(Li)) the label associated with the subpath
defined by the sequences of nodes (u0, ..., ui) for all i ∈ {0, ..., r}. Due to the Principle of
Optimality for the MSPP [96], when extending a label Li along the arc (ui, ui+1) the obtained
label Li+1 can not be dominated by any label in Labels[ui+1]. Consequently, pv0vk is not found
by Algorithm 3.1 if and only if there exists j ∈ {1, ..., r − 1} such that K(L j) > max

1≤i≤n
K sup

i .

34
Chapter 3: A solution method for the Multi-destination Bi-objectives Shortest

Path Problem

Algorithm 3.1 multi-A* algorithm for the BSPP
1: Preprocessing
2: Compute din f (v0, v), tsup(v0, v), dsup(v0, v) and tin f (v0, v) for all v ∈ V
3: for all vi ∈ {v1, ..., vn} do
4: Compute din f (v, vi), tsup(v, vi), dsup(v, vi) and tin f (v, vi) for all v ∈ V
5: Compute K sup

i = dsup(v0, vi) − din f (v0, vi)
6: end for
7: End Preprocessing
8: L = (v0, 0, 0)
9: Labels[v0].add(L)

10: allLabels.add(L)
11: while K(allLabels.Min()) ≤ max

1≤i≤n
K sup

i do
12: L = allLabels.extractMin();
13: for all (u, v) ∈ A do
14: L′ = (v, d(L) + duv, t(L) + tuv)
15: if L′ is not dominated by a label in Labels[v] then
16: allLabels.add(L′)
17: Labels[v].add(L′)
18: end if
19: if a label L′′ ∈ Labels[v] is dominated by L′ then
20: allLabels.remove(L′′)
21: Labels[v].remove(L′′)
22: end if
23: end for
24: end while
25: return Labels[vi] for all vi ∈ {v1, ..., vn}

3.4 Multi-destination Bi-objective Shortest Path Problem 35

From properties 3.1 and 3.2, we know that for every non-dominated path puvk from u to
vk the associated distance d(pu jvk) verifies

din f (u, vk) ≤ d(puvk) ≤ dsup(u, vk). (3.5)

Let d(u j, vk) denotes the distance associated with the subpath visiting the sequence (u j, u1, ..., ur)
with ur = vk. The distance d(puvk) associated with the path puvk is then given by d(puvk) =

d(L j) + d(u j, vk) for all j ∈ {1, ..., r − 1}.
As din f (u j, vk) ≤ d(u j, vk) for all j ∈ {1, ..., r − 1}, we have:

d(L j) + din f (u j, vk) ≤ d(pv0vk) ≤ dsup(v0, vk) (3.6)

This implies that for all j ∈ {1, ..., r − 1}

d(L j) + din f (u j, vk) − din f (v0, vk) ≤ d(pv0vk) − din f (v0, vk) ≤ dsup(v0, vk) − din f (v0, vk) (3.7)

Since K sup
k = dsup(v0, vk) − din f (v0, vk) ≤ max

1≤i≤n
K sup

i and K(L j) = min
1≤i≤n
{d(L j) + din f (u j, vi) −

din f (v0, vi)}, for all j ∈ {1, ..., r − 1} K(L j) verifies:

K(L j) ≤ max
1≤i≤n

K sup
i (3.8)

�

The implementation of Algorithm 3.1 relies on two main data structures:

1. A priority queue allLabels is used to store the temporary labels and is based on K(L)
values. The following methods are used to manage labels in allLabels:

• Min() returns the label L at the top of the priority queue, i.e., with the smallest
K(L) value;

• extractMin() extracts the label L at the top of the priority queue. Its complexity is
in O(log(|allLabels|)). |allLabels| is the number of maintained labels in allLabels;

• add(L) inserts the label L into allLabels. Its complexity is in O(log(|allLabels|));

• remove(L) removes the label L from allLabels. Its complexity is in O(|allLabels|).

2. A list Labels[u] is attached to each node u ∈ V in which labels arriving at u are stored.
These lists are controlled using the following methods:

• add(L) adds the label L to Labels[u]. This is done in O(1);

• remove(L) removes the label L from the list in O(|Labels[u]|) with |Labels[u]| is
the size of Labels[u]

36
Chapter 3: A solution method for the Multi-destination Bi-objectives Shortest

Path Problem

Hansen [67] showed that the label setting algorithm is pseudo-polynomial, i.e., the num-
ber of operations performed by the algorithm is bounded by a polynomial in the characteris-
tics of the problem and the magnitude of data. In the following we show that the multi-A*
algorithm is also pseudo-polynomial and we give an approximation of its complexity.

Without loss of generality, we assume that data are integer (if it is not the case data can be
multiplied by a power of ten without any impact on the theoretical complexity). Let δ(v) de-
notes max

1≤i≤n
(dsup(v0, vi)−din f (v0, v))−din f (v, vi)) for every node v ∈ V and ∆ denotes max

v∈V
(δ(v)).

Theorem 3.2. Complexity
The complexity of the multi-A* algorithm is in O(m∆2log(n∆)).

Proof. A label L = (v, d(L), t(L)) arriving at node v could lead to a Pareto-optimal path at
a destination node vi ∈ C if d(L) + din f (v, vi) ≤ dsup(v0, vi). Therefore every label L =

(v, d(L), t(L)) maintained at node v during the labeling procedure verifies din f (v0, v) ≤ d(L) ≤
dsup(v0, vi)−din f (v, vi). Thus, the number of these labels is bounded by δ(v) = max

1≤i≤n
(dsup(v0, vi)−

din f (v0, v)) − din f (v, vi)) (since data are assumed to be integer) and the total number of labels
in the heap allLabels is bounded by

∑
v∈V δ(v) ≤ n∆.

The complexities of the main procedures performed during the search scheme are as
follows:

• The extraction of the label with smallest key value requires O(log(n∆)) operations;

• For each new label L′ = (u, d(L′), t(L′)), the dominance check which implies the in-
sertion of the new (non-dominated) label in the list Labels[u] and the removal of dom-
inated labels from Labels[u] and from the heap allLabels, requires O(δ(u)log(n∆))
operations.

• The extension of a selected label L = (v, d(L), t(L)) through all outgoing arcs (v, u) ∈ A
requires O(

∑
(v,u)∈A(1 + log(n∆) + δ(u)log(n∆)) operations: the first term in the sum

corresponds to the generation of the new label, the second term corresponds to the
insertion of the new label into the heap and the third term corresponds to the dominance
check.

Since every label arriving at a node v and that is in the heap is selected once and O(
∑

(v,u)∈A(1+

log(n∆) + δ(u)log(n∆))) ≤ O(
∑

(v,u)∈A δ(u)log(n∆), the total complexity of the algorithm is
given by:

O

∑
v∈V

∑
L∈Labels[v]

log(n∆) +
∑

u∈V;(v,u)∈A

δ(u)log(n∆)

3.5 Multi-destination Bi-objective Shortest Path Problem with Time windows 37

≤ O

n∆log(n∆) +
∑

L∈Labels[v]

∑
(v,u)∈A

∆log(n∆)

≤ O

(
n∆log(n∆) + m∆2log(n∆)

)
≤ O(m∆2log(n∆)) (3.9)

�

3.5 Multi-destination Bi-objective Shortest Path Problem
with Time windows

In real applications of vehicle routing problems, additional characteristics or constraints are
considered to address the different specificities. One of the well-known constraints is cus-
tomer time windows which ensures that the service of each customer starts within its asso-
ciated time interval. In this section we explore how to consider the customer time windows
when computing the multigraph representation for the road network and how to exploit these
constraints in order to improve the performance of our algorithm.

Let ei and li denote respectively the earliest starting service time and the latest starting
service time for a customer i. A path pviv j linking two customers vi and v j is feasible with
respect to time windows if and only if evi + t(pviv j) ≤ lv j . Therefore, only paths satisfying this
condition should be considered when constructing the multigraph representation for the road
network.

We denote by N+(v0) the subset of customers reachable from the source node v0 within
their time windows, i.e., N+(v0) = {vi, i = 1, ..., nc; ev0 +tin f (v0, vi) ≤ lvi} ⊂ C. Only destination
nodes in N+(v0) should be considered during the search procedure. To do this, we propose
the following enhancements:

1. The detour in distance of a subpath associated with a label L = (u, d(L), t(L)) is evalu-
ated regarding only reachable destination nodes. The key of the label L is reformulated
and is given by k(L) = min

vi∈N+(v0)
(d(L) + din f (u, vi) − din f (v0, vi));

2. The algorithm should terminate once labels Li = (vi, dsup(v0, vi), tin f (v0, vi)) have been
generated only for destination nodes vi ∈ N+(v0). Thus, the stopping criterion is that
the key of selected label is larger than max

vi∈N+(v0)
K sup

i with K sup
i = dsup(v0, vi)− din f (v0, vi);

38
Chapter 3: A solution method for the Multi-destination Bi-objectives Shortest

Path Problem

3. Only nodes that are apt to lead to a feasible path to a destination node should be con-
sidered. Every node u that verifies ev0 + tin f (v0, u) + tin f (u, vi) > lvi for all destination
nodes vi ∈ N+(v0) is discarded from the graph G.

Due to the first enhancement, the key values increase more quickly during the label-
ing procedure as k(L) = min

vi∈N+(v0)⊆C
(d(L) + din f (u, vi) − din f (v0, vi)) ≥ min

vi∈C
(d(L) + din f (u, vi) −

din f (v0, vi)) for every label L. The second enhancement aim to tighten the upper bound on
the key values and to improve the stopping condition. The third enhancement is performed
in preprocessing and permits to reduce the size of the considered network by removing “use-
less” nodes.

3.6 Computational experiments

In this section, we present the computational experiments carried out to evaluate the effi-
ciency of the proposed solution method. First, we present the benchmark problems used in
the experiments. Then, we report the computational results and we analyse the impact of
considering the time windows on the algorithm performance.

3.6.1 Test problems

Since we are interested in computing paths for transportation problems, we conduct our
computational experiments on the basis of three real-world road networks:

• Two road networks (Aix-1 and Aix-2) are constructed based on spatial data from the
city of Aix-en-Provence 1 in France provided by OpenStreetMap© 2 database. Each
road segment is defined by a length, a maximum allowed speed and a travel direction.
Travel times are then computed using speeds and lengths;

• The Road network (DC) of Washington, D.C., United States, was extracted by Schultes
[120] from US Census 3. Each road segment is given with a distance and a travel time.
Note that, the road network (DC) in the original data is undirected and we converted it
into a directed network by duplicating all arcs.

Table 3.1 reports the main characteristics of the considered road networks. For each road
network, the first two columns indicate respectively the number of nodes n and the number of

1Aix-en-Provence is a city-commune in the region of Provence-Alpes-Cote d’Azur in the south of France,
about 30 km north of Marseilles

2OpenStreetMap is a collaborative project wich creates and distributes freely available geospatial data. www.
openstreetmap.org/

3US Census 2000 TIGER/Line Files. U.S. Census Bureau, Washington, DC, Geography Division. http:
//www.census.gov/geo/www/tiger/tigerua/uatgr2k.html

www.openstreetmap.org/
www.openstreetmap.org/
http://www.census.gov/ geo/www/tiger/tigerua/ua tgr2k.html
http://www.census.gov/ geo/www/tiger/tigerua/ua tgr2k.html

3.6 Computational experiments 39

Table 3.1: Road networks characteristics

Outgoing arcs
Name # nodes # arcs min max
AIX-1 5437 10098 1 4
AIX-2 19500 36203 1 5
DC 9559 29707 1 6

Table 3.2: The number of tested instances for each road network

Number of destination nodes
Network nc = 25 nc = 50 nc = 100 nc = 200 nc = 500
Aix-1 5 5 5 5 5
Aix-2 5 5 5 5 5
DC 5 5 5 5 5

arcs m. The last two columns indicate respectively the minimum and the maximum number
of outgoing arcs over all nodes in the road network.

For each road network, we generate different instances with different number of destina-
tion nodes nc. Table 3.2 details the number of tested instances for each road network and for
each value of nc. In each instance, nc + 1 nodes were selected randomly to represent the set
of key locations C = {v0, v1, ..., vnc}.

3.6.2 Results

In order to evaluate the performance of our algorithm, we compare the obtained results to
those obtained using the basic label setting (LSET) and the label correcting (LCOR) algo-
rithms. Recall that in the LSET algorithm, all non-dominated labels are sorted in a lexico-
graphic order and at each iteration one label at a known node is set as permanent then is
extended to successor nodes. In the LCOR algorithm, non dominated labels arriving at the
same node are sorted in a lexicographic order, all labels are temporarily maintained during
the search and become permanent at the last iteration.

All algorithms are implemented in the C++ programming language and tests are run on
an Intel Xeon(R) CPU E5-2620v2 2.1 GHz computer with 32GB of memory.

In the following, we present first the results for the basic version of the multi-A* algo-
rithm (without the enhancements proposed in Section 3.5), then we show the impact of the

40
Chapter 3: A solution method for the Multi-destination Bi-objectives Shortest

Path Problem

Table 3.3: Results for the road network
Aix-1

nc multi-A* LSET LCOR # paths
25 1 14,8 51,1 22,7 100

2 15,3 58,5 22,2 95
3 16,8 56,4 22,8 109
4 17,2 67,1 23,5 123
5 16,7 55,2 24,3 106

50 1 19,5 58,2 23,9 233
2 20,3 63,1 26,4 234
3 18,2 51,3 21,9 216
4 17,9 51,3 19,8 203
5 18,5 54,6 21,8 208

100 1 21,5 51,9 22,2 413
2 20,8 52,9 22,4 427
3 20,5 51,2 21,6 421
4 20,2 54,4 21,6 428
5 20,3 52,9 22,9 427

200 1 23,7 57,1 23,3 890
2 24,6 56,5 24,4 842
3 23,5 56,4 22,6 835
4 23,4 51,7 21,5 790
5 22,6 49,2 21,8 782

500 1 30,3 53,6 20,8 2078
2 29,9 51,7 21,4 2055
3 30,4 56,2 25,3 2099
4 30,2 53,6 23,2 2085
5 30,2 53,9 22,8 2073

Table 3.4: Results for the road network
Aix-2

nc multi-A* LSET LCOR # paths
25 1 256,4 5301,2 832,2 301

2 199,1 3021,9 531,7 278
3 202,0 4250,4 670,1 288
4 213,2 4459,4 632,2 292
5 259,5 5122,3 825,2 314

50 1 375,5 6354,8 942,7 748
2 278,6 4419,5 718,0 612
3 329,2 4224,5 727,7 681
4 213,0 4439,9 697,8 620
5 301,0 4796,9 795,8 638

100 1 284,2 3686,9 748,2 1194
2 253,6 3219,2 585,4 1070
3 327,3 4785,4 756,6 1386
4 331,1 4400,0 755,5 1302
5 322,5 3590,0 707,9 1195

200 1 337,6 4529,0 708,7 2421
2 377,2 4140,4 733,9 2585
3 379,6 4230,3 681,4 2602
4 413,6 4935,4 690,2 2730
5 385,5 4094,8 639,9 2529

500 1 448,6 4740,3 661,5 6531
2 439,4 4454,7 651,5 6470
3 461,9 4457,5 685,9 6832
4 447,6 4415,2 638,0 6467
5 439,2 4357,9 686,6 6526

proposed modifications to take into account the customer time windows.

For each instance, all algorithms are applied nc + 1 times where each time a node in
C = {v0, ..., vnc} is selected to be the source node. Then, average computing times and the
average number of Pareto-optimal paths for one-to-n case are reported. Obtained results are
presented in Tables 3.3 and 3.4 for the road networks of the city of Aix-en-Provence and in
Table 3.5 for Washington D.C. road network. Columns “multi-A*”, “LSET” and “LCOR”
report computing times (in milliseconds), respectively, for the multi-A*, LSET and LCOR
algorithms. The average number of Pareto-optimal paths is presented in column “# paths”.

From Tables 3.3 to 3.5, it comes out that the multi-A* algorithm performs quite well for
real road networks. It provides Pareto-optimal paths with smaller computing times than the
LSET algorithm for all instances in real road networks and it improves the computing times
for all instances in Aix-2 and DC road networks and for 15 out of 25 instances in Aix-1 road
network compared to the LCOR algorithm. The computing time with the multi-A* algo-
rithm does not exceed 462 milliseconds for all instances in real road networks while it is up
to 6577.8 milliseconds with the LSET algorithm and is up to 1171.6 milliseconds with the

3.6 Computational experiments 41

Table 3.5: Results for the road network DC

nc multi-A* LSET LCOR # paths
25 1 253,6 6469,9 896,2 483

2 223,1 5475,0 886,0 411
3 184,7 4311,4 768,2 328
4 233,6 5526,6 1067,1 419
5 254,3 5477,5 989,6 388

50 1 230,8 4328,5 1027,3 744
2 243,9 4921,9 1107,4 792
3 255,4 6254,2 944,3 899
4 265,3 6102,9 902,1 896
5 257,9 4992,3 811,2 784

100 1 301,0 5122,1 933,0 1583
2 256,1 4859,5 999,2 1515
3 298,7 6577,8 1056,1 1688
4 290,6 5157,1 1107,8 1602
5 245,7 4880,5 879,8 1371

200 1 311,7 5594,3 878,0 3149
2 288,3 4486,7 767,8 2947
3 294,3 4620,4 942,8 3028
4 321,4 5651,6 940,3 3332
5 283,4 4441,5 1078,4 2988

500 1 325,0 5062,2 1171,6 7917
2 320,2 4741,9 1001,9 7645
3 318,3 4738,0 978,3 7608
4 321,4 4960,4 914,7 7819
5 320,9 5066,8 969,7 7855

42
Chapter 3: A solution method for the Multi-destination Bi-objectives Shortest

Path Problem

LCOR algorithm. The average speedup factor obtained with the multi-A* algorithm is up
to 2.6 for instances in Aix-1, 14.1 for instances in Aix-2 and 19.2 for instances in DC road
network compared to the LSET algorithm, and is up to 1.1 for instances in Aix-1, 2.3 for in-
stances in Aix-2 and 3.5 for instances in DC road network compared to the LCOR algorithm.

Numerical results show that, for instances based on the same road network, extending
the set of destination nodes increases significantly the computing time for the multi-A∗ algo-
rithm, while, computing times are almost constant with LCOR and LSET algorithms. For
example, the average computing time for instances with nc = 25 on Aix-1 road network is
about 16 milliseconds and reaches 30.3 milliseconds for instances with nc = 500. On the
other hand, average computing times for LSET and LCOR algorithms remain constant when
going from nc = 25 to nc = 500: almost 23 milliseconds with the LCOR algorithm and about
55 milliseconds with the LSET algorithm. This is due to the fact that using basic labeling
algorithms all labels over all the network have to be processed, while using the proposed
goal-directed search strategy, the algorithm terminates once all Pareto-optimal paths at des-
tination nodes have been generated. Therefore, increasing the number of destination could
soften the stopping criteria and could enlarge the set of labels to be processed.

The impact of considering the customer time windows

To evaluate the impact of the proposed enhancements, we generate for each instance a set of
time windows as follows: 1) A node vi ∈ C is, randomly, selected to represent the depot that
defines the time horizon. 2) The time window [0,T] associated with the depot are defined
such that every node in C can visited on a route that starts and ends at the depot within the
the time horizon T . 3) A set of routes are then constructed in a greedy way, so that every
customer is visited exactly by one route. 4) Finally, the time windows [evi , lvi] are defined
such that the constructed routes are feasible and such that lvi = evi + T

5 .

Note that, in the following we focus on results obtained with the muli-A* algorithm and
we do not report those obtained using LCOR and LSET algorithms taking into account the
time windows. This is because that considering time windows on source and destination
nodes does not significantly impact the structure of the LCOR and the LSET algorithms:
the only possible modification is to check if the travel time associated with obtained label at
every extension does not exceed a precomputed upper bound given by max

1≤i≤n
(lvi − ev0). Conse-

quently, the performance of these algorithm would not be extremely improved.

Tables 3.6 to 3.8 present some statistics on the impact of considering the time windows
on the preprocessing phase. In these tables, the average number of reachable destinations
and the average number of removed nodes for a given source node are reported, respectively,
in columns “|N+(v0)|” and “# Removed nodes”. The last two columns report respectively
preprocessing times in the basic multi-A* algorithm and in the multi-A* algorithm with the

3.6 Computational experiments 43

Table 3.6: Impact of considering Time Windows on the preprocessing with the instances on Aix-1

Preprocessing CPU
nc |N+(v0)| # Removed nodes without TW (ms) with TW (ms)
25 13 703 9,0 9,1
50 28 522 9,5 9,6

100 54 678 10,5 10,8
200 116 403 12,4 13,5
500 294 226 18,4 22,4

Table 3.7: Impact of considering Time Windows on the preprocessing with the instances on Aix-2

Preprocessing CPU
nc |N+(v0)| # Removed nodes without TW (ms) with TW (ms)
25 13 2881 35,5 35,4
50 26 3766 36,7 36,5

100 51 3373 40,4 40,9
200 101 3311 48,5 49,0
500 255 2902 69,2 77,0

proposed enhancements.

From Tables 3.6 to 3.8, we notice that, by considering the time windows, the number
of considered destinations |N+(v0)| for a source node v0 is significantly reduced: in average
only 53% of the destination nodes are reachable from the source node v0 within their time
windows. Therefore, a lot of computational efforts could be saved by focusing only on nodes
vi ∈ N+(v0) during the search procedure. We also see that the number of “useless” nodes,
i.e., nodes v for which there is no visible paths from v0 to vi through v for all vi ∈ N+(v0) is
relatively important. Removing these nodes from the considered network could speed up the
search scheme. From columns “Preprocessing without TW (ms)” and “Preprocessing with
TW (ms)”, we observe that the proposed enhancements increases slightly the preprocessing
times. This increase does not exceed 8 milliseconds (for instances with 500 destinations on
Aix-2 road network). In addition, this increase gets larger when the number of destination
nodes increases.

In Tables 3.9 to 3.11 we compare the results obtained with the basic multi-A* algorithm

Table 3.8: Impact of considering Time Windows on the preprocessing with the instances on DC

Preprocessing CPU
nc |N+(v0)| # Removed nodes without TW (ms) with TW (ms)
25 14 1245 23,2 23,4
50 27 1778 24,1 24,9

100 51 1821 26,0 25,7
200 95 1984 29,7 29,1
500 239 2000 40,1 41,6

44
Chapter 3: A solution method for the Multi-destination Bi-objectives Shortest

Path Problem

Table 3.9: Impact of considering Time Windows for instances on Aix-1

multi-A* without TW multi-A* with TW
nc labeling (ms) CPU(ms) # paths labeling (ms) CPU(ms) # paths
25 1 5,9 14,8 100 3,7 12,7 46

2 6,2 15,3 95 2,7 11,9 46
3 7,8 16,8 109 4,6 13,7 46
4 8,0 17,2 123 4,6 13,8 63
5 7,7 16,7 106 4,2 13,3 45

50 1 9,9 19,5 233 6,1 15,7 96
2 10,7 20,3 234 7,4 17,1 126
3 8,9 18,2 216 6,5 16,1 105
4 8,5 17,9 203 6,1 15,8 108
5 9,0 18,5 208 6,1 15,5 111

100 1 10,9 21,5 413 8,1 18,8 198
2 10,3 20,8 427 7,3 18,1 195
3 10,0 20,5 421 6,5 17,1 170
4 9,8 20,2 428 7,1 17,9 210
5 10,0 20,3 427 7,2 18,0 226

200 1 11,3 23,7 890 8,8 22,3 470
2 12,0 24,6 842 9,3 22,9 469
3 11,2 23,5 835 8,9 22,3 454
4 11,0 23,4 790 8,8 22,3 422
5 10,3 22,6 782 7,6 21,0 381

500 1 11,8 30,3 2078 10,5 33,0 1210
2 11,4 29,9 2055 9,8 32,3 1093
3 11,9 30,4 2099 9,4 31,7 966
4 11,7 30,2 2085 10,8 33,2 1263
5 12,0 30,2 2073 10,2 32,5 1152

(reported in column “multi-A* without TW”) and the results obtained with the enhanced
multi-A* algorithm (reported win column “multi-A* with TW”). For each algorithm, col-
umn “labeling (ms)” indicates the average computing time (in milliseconds) for the labeling
procedure, column “CPU(ms)” indicates the total computing time (in milliseconds) includ-
ing preprocessing and labeling procedure execution times, and column “# paths” indicates
the average number of Pareto optimal paths. Recall that reported results are expressed in
averages for one source node: the complete multigraphs are first constructed by applying |nc|

times each algorithm with a source node s ∈ {v0, ..., vnc}, then the average computing times
and the average number of paths for a single source are reported.

From tables 3.9 to 3.11, it comes out that, using the introduced enhancements based on
customer time windows, the labeling procedure becomes faster. The computing time for
the labeling procedure is reduced for all instances. The average improvements on comput-
ing time for the labeling are 2.7, 124.7 and 100.2 milliseconds respectively for instances on
Aix-1, Aix-2 and DC road networks. Consequently, for instances with low increase in the
preprocessing time, the total computing time is significantly reduced. We notice that except
for instances with nc = 500 on Aix-1 road network, the total computing time is improved for

3.6 Computational experiments 45

Table 3.10: Impact of considering Time Windows for instances on Aix-2

multi-A* without TW multi-A* with TW
nc labeling (ms) CPU(ms) # paths labeling (ms) CPU(ms) # paths
25 1 220,0 256,4 301 70,7 106,2 113

2 163,6 199,1 278 76,7 111,4 99
3 166,7 202,0 288 65,3 100,8 97
4 178,7 213,2 292 89,9 125,4 125
5 223,8 259,5 314 81,7 117,2 95

50 1 339,2 375,5 748 164,9 202,6 273
2 242,2 278,6 612 107,0 142,6 212
3 292,1 329,2 681 149,8 186,1 275
4 176,7 213,0 620 81,2 117,7 234
5 263,5 301,0 638 194,4 230,5 292

100 1 244,3 284,2 1194 144,0 185,4 450
2 213,5 253,6 1070 106,6 147,1 374
3 287,1 327,3 1386 132,4 172,8 436
4 290,2 331,1 1302 209,9 251,9 592
5 282,1 322,5 1195 149,5 189,8 422

200 1 289,2 337,6 2421 202,1 253,1 1091
2 328,8 377,2 2585 196,3 245,2 886
3 331,1 379,6 2602 176,6 226,0 989
4 365,1 413,6 2730 208,0 256,9 1010
5 336,7 385,5 2529 139,0 186,0 700

500 1 379,2 448,6 6531 273,2 351,2 2642
2 370,4 439,4 6470 266,9 344,3 2549
3 392,5 461,9 6832 269,5 348,4 2938
4 378,2 447,6 6467 251,6 329,0 2533
5 370,3 439,2 6526 201,5 274,6 1866

46
Chapter 3: A solution method for the Multi-destination Bi-objectives Shortest

Path Problem

Table 3.11: Impact of considering Time Windows for instances on DC

multi-A* without TW multi-A* with TW
nc labeling (ms) CPU(ms) # paths labeling (ms) CPU(ms) # paths
25 1 230,3 253,6 483 178,2 201,8 250

2 199,9 223,1 411 129,4 152,5 216
3 161,6 184,7 328 92,0 116,0 171
4 210,0 233,6 419 115,8 139,3 174
5 231,6 254,3 388 148,0 170,8 147

50 1 206,6 230,8 744 121,8 146,6 402
2 219,8 243,9 792 116,9 141,3 330
3 231,3 255,4 899 127,1 151,7 431
4 241,3 265,3 896 150,8 175,8 456
5 233,9 257,9 784 88,4 114,1 269

100 1 275,7 301,0 1583 164,5 190,3 728
2 230,0 256,1 1515 149,4 175,3 701
3 272,9 298,7 1688 187,0 213,0 793
4 264,9 290,6 1602 137,1 162,6 635
5 219,1 245,7 1371 101,1 126,4 511

200 1 282,1 311,7 3149 202,7 231,9 1467
2 258,4 288,3 2947 157,5 186,6 1169
3 264,7 294,3 3028 176,8 206,9 1458
4 291,9 321,4 3332 130,9 159,0 1016
5 253,7 283,4 2988 125,1 153,8 938

500 1 285,1 325,0 7917 161,0 201,2 2612
2 280,3 320,2 7645 163,5 204,3 2679
3 278,2 318,3 7608 205,2 248,6 3603
4 281,1 321,4 7819 136,1 175,3 2278
5 280,9 320,9 7855 215,0 259,5 4086

3.7 Conclusions 47

all instances. Computing times are in average reduced by 9%, 39% and 36% respectively for
instances on Aix-1, Aix-2 and DC road networks. These savings reach 3.8 milliseconds (for
instance 1 with nc = 50, table 3.9), 199.5 milliseconds (for instance 5 with nc = 200, table
3.10) and 162.4 milliseconds (for instance 4 with nc = 200, table 3.11). We also observe
that the reduction in computing time decreases when the number of the destination nodes
increases, e.g., computing time is reduced in average by 59% for instances with nc = 25 on
Aix-2 road networks and is reduced in average by 26.4% for instances with nc = 500 on the
same road network. Note that for instances with 500 destination nodes on Aix-1, in spite the
savings in computing time for the labeling procedure (1.7 milliseconds in average), the total
computing time is more important for the multi-A* algorithm with the proposed enhance-
ments (32.6 milliseconds in average compared to 30.2 milliseconds in average with the basic
multi-A* algorithm). This increase in the total computing time is due to the increase in the
preprocessing time (4.0 milliseconds) that is more important than the savings in time for the
labeling procedure.

3.7 Conclusions

In this paper, we investigated the multi-destination bi-objective shortest path problem. The
particularity of this problem is to seek for all Pareto-optimal paths linking a source node to a
subset of nodes in a road network. We developed an exact solution method based on a label-
ing approach combined with a modified A∗ algorithm. The proposed algorithm is based on
a goal-directed search strategy that permits to guide the labeling procedure simultaneously
towards all destination nodes and to terminate the search once all optimal solutions have been
determined. We also proposed some enhancements for the algorithm based on time windows
defined for points of interest.

Computational experiments were carried out on a large panel of instances based on real
road networks. Results show that the proposed algorithm performs very well for all tested
instances. Compared to basic labeling approaches, the multi-A* algorithm outperforms the
label setting algorithm for all instances and improves computing times with the label correct-
ing algorithm for most instances with large number of nodes in the road networks. Finally,
we illustrated the impact of considering time windows and the significant savings on compu-
tational efforts that can be obtained by adapting the algorithm to take into account these time
windows.

Chapter 4

Empirical analysis for the VRPTW with
a multigraph representation for the road
network

This chapter is an accepted manuscript in Computers & Operations Research journal (doi:
10.1016j.cor.2017.06.024).

Abstract

Vehicle routing problems have drawn researchers’ attention for more than
fifty years. Most approaches found in the literature are based on the key as-
sumption that for each pair of points of interest (e.g., customers, depot...),
the best origin-destination path can be computed. Thus, the problem can
be addressed via a complete graph representation, so-called customer-based
graph, where nodes represent points of interest and arcs represent the best
paths. Yet, in practice, it is common that several attributes are defined on
road segments. Consequently, alternative paths presenting different trade-offs
exist between points of interest. In this study, we investigate in depth a spe-
cial representation of the road network proposed in the literature and called a
multigraph. This representation enables one to maintain all these alternative
paths in the solution space. We present an empirical analyses based on the
Vehicle Routing Problem with Time Windows, as a test bed problem, solved
with branch-and-price algorithms developed for the different types of graphs.
Computational experiments on modified benchmarks from the literature and
on instances derived from real data evaluate the impact of the modeling on
solution quality.

Keywords: Vehicle Routing Problems, Road networks, Multigraph, Branch-and-Price.

50
Chapter 4: Empirical analysis for the VRPTW with a multigraph representation for

the road network

4.1 Introduction

The vehicle routing problem is one of the most extensively studied classes of combinatorial
optimization problems in the operational research literature. One reason is the large number
and the interest of its applications in logistics, supply chain management, distribution sys-
tems, car navigation systems, etc. Although this research area has been broadly explored in
the last fifty years, most works are built on an assumption that is at best disputable, and at
worst can lead to a bad optimization of vehicle routes.

A vehicle routing problem aims at planning a set of routes on a given road network, so
as to cover a set of customer requests with a fleet of vehicles. Most models proposed in the
literature represent the road network with a weighted complete graph. Nodes are introduced
for the different points of interest (e.g., customers, depot...), and arcs correspond to shortest
paths computed according to a single criterion, generally travelling cost, distance or travel-
ling time, between these points of interest.

In real-life applications and especially in urban areas, several operational constraints are
implied and objectives of the involved partners must be taken into account. In many cases,
different attributes have to be defined for each road segment in the original road network.
Hence, each pair of nodes may be connected with a set of paths proposing different compro-
mises between the considered attributes. In such situations, representing the problem with
a customer-based graph, i.e., with only one arc between each pair of nodes, could discard
many potentially good solutions from the solution space. To handle this issue, an alterna-
tive modeling approach, so-called multigraph representation, was proposed by Garaix et al.
in [61]. This representation aims at considering all non-dominated paths linking each two
points of interest in the solution space.

A typical example is provided by the Vehicle Routing Problem with Time Windows
(VRPTW). In this problem, transportation plans are constrained to satisfy costumer requests
within their time windows. Each road segment is defined with a cost and a travelling time.
In the standard setting, the problem is defined on a complete graph and each arc represents a
best path. However, the cheapest path is unlikely to be the same as the fastest path due to, for
example, heavy traffic and congestion in some short road segments or additional charges for
high-speed routes. When defining its transportation plan, a carrier might prefer an expensive
road segment in case of hard time constraints or, conversely, a cheapest one when time con-
straints are soft. Consequently, representing the problem with a weighted customer-based
graph could lead to operational solutions with an overestimated cost, or, even worse, to the
false conclusion that no feasible solution exists. To illustrate this, let us consider the small
road network provided on Figure 4.1.

4.1 Introduction 51

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

(1,1)

(10,50)

(1,1)

(1,1)(1,1)

(10,50)

(1,1)
(10,50)

1

4

3

(10,50)

2

(10,1)

Figure 4.1: Illustrative road network

In this example, the depot is located at node 0 (represented by the black square), and
customers are located at nodes 1, 2, 3 and 4. Each edge represents a road segment. The black
circle node corresponds to a junction of three road segments. For each edge, the travelling
cost and time are provided in parentheses, in this order (cost, time). The objective is to deter-
mine a set of vehicles routes that visit all customers and return to the depot within 100 units
of time.

If we consider the customer-based graph where arcs represent cheapest paths (Figure
4.2.a), the best solution costs 80 and consists in visiting each customer with a different vehi-
cle. Considering all alternative paths, a multigraph representation (Figure 4.2.b) allows one
to obtain a better solution that serves all customers with the same vehicle with a total trav-
elling cost equal to 24. Note furthermore that for a lower time-limit (or for a limited fleet),
no feasible solution could have been found with the customer-based graph. Note also that
equivalent examples could be constructed with a customer-based graph obtained from fastest
paths, except that in this case a feasible solution would always be found when it exists.

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�(10,50)

(1,1)(1,1)

(1,1)
(10,50)

1

4

3

(10,50)

2

(2,2)

4

1

2

(1,1)

(2,2)

(1,1)

(1,1)
(11,2)

(10,50)

(a) (b)

(10,50)

(10,50)

3

(10,50)

(11,2)
(10,50)

52
Chapter 4: Empirical analysis for the VRPTW with a multigraph representation for

the road network

Figure 4.2: Complete graph and multigraph representations

Following the above remarks, we investigate in this work two important issues:

1. Is it tractable to represent the road network with a multigraph, where, for each pair
of nodes, the set of alternative arcs is the set of non-dominated Pareto optimal paths
computed according to road segment attributes?

2. Could this representation have a significant impact on solution costs in practice?

The first issue relates to the computation and size of the multigraph, and to the efficiency
of solution methods. The second issue relates to experimental analyses and comparisons be-
tween customer-based graph and multigraph representations. For our investigations, we use
the VRPTW as a test-bed problem.

Besides the case of the VRPTW, where cost and time are associated with arcs, many other
attributes might be considered in vehicle routing depending on the context. Greenhouse gas
emissions (that depend on travel distances but also average speeds, slopes. . .) would be con-
sidered by a decision-maker who attempts to limit environmental impacts when defining its
transportation plans. Energy consumption (that also depends on distances, speeds, slopes. . .)
has to be taken into account when electric vehicles are operated. An attribute modeling scenic
beauty could be introduced when optimizing sightseeing tours. Safety (for hazmat or cash
transportation), transport mode, robustness define other examples.

The remainder of the paper is organized as follows. In Section 4.2, we review the relevant
literature and give more insights into the methodology followed in this work. In Section 4.3,
we present a mathematical formulation for the VRPTW with the multigraph representation.
We describe, in Section 4.4, a branch-and-price solution approach adapted to the multigraph
setting. Finally, in Section 4.5 we present the results of extensive experiments conducted to
evaluate the impact of the modeling approach and the efficiency of our method.

4.2 Literature review

Vehicle Routing Problems are widely studied and a large number of solution approaches are
proposed in the literature. The large majority of these approaches are based on the key as-
sumption that one can compute the best path for all pairs of nodes. Thus, the problem can be
tackled using a customer-based graph. As mentioned before, this assumption is not guaran-
teed to hold when several attributes are defined on arcs. In the literature, few works evoke this
issue. In this section, we overview these works. In some of them, a multigraph representation
is investigated. In others, the problem is directly solved in the original road network. These
two options are surveyed in the two next subsections, respectively. A subsequent subsection

4.2 Literature review 53

details how our work intends to complete this literature and motivates the methodology that
we proposed to follow.

4.2.1 Multigraph representation

The first possibility consists in representing the road network with a multigraph, so that al-
ternative routes are considered between each pair of points of interest.

A key paper in this regard was proposed by Garaix et al. [61]. As far as we know, they
were the first to point out that when several attributes are defined on arcs, one cannot trans-
form a vehicle routing problem on a road network into a standard VRP without taking the risk
of losing optimality, and to explore this issue. Their motivation stemmed from the develop-
ment of a real-world On-Demand Transportation system. For this reason, they were guided
by the objective of efficiently solving a specific Dial-a-Ride Problem. They introduced a
multigraph representation and developed two specialized solution approaches: a simple in-
sertion heuristic and a branch-and-price procedure. Experiments were mainly designed to
evaluate practical objectives, but they also demonstrated that important improvements could
be obtained using the multigraph representation compared to a fastest-path-based complete
graph.

Lai et al. [85] considered this issue for the heterogeneous VRP with limited duration.
Following Garaix et al. [61], they introduced alternative arcs between pair of vertices. They
proposed a tabu search and insisted on how neighborhood exploration should be modified
to consider the multigraph structure. Experiments were carried out on randomly generated
instances with two alternative arcs between every vertex pair. The advantages of introduc-
ing the alternative arcs were largely investigated. The experiments confirmed, on a different
problem, the observations made in Garaix et al. [61].

Besides the two aforementioned papers that explicitly investigate the limits of the customer-
based graph, several other papers also consider multigraphs, with relatively similar goals.

Wang and Lee [133] introduced the so-called Time Dependent Alternative Vehicle Rout-
ing Problem (TDAVRP) that also involves a multigraph representation. The TDAVRP is a
vehicle routing problem with time windows and travel times depending on the time of the
day. Each pair of nodes is connected with two edges. The first one is called the designated
edge and is assigned a time-dependent travel speed distribution. The other one represents an
alternative route with a constant travel time. This route is longest but is not sensitive to traffic
and could be used during peak hours. To solve this problem, Wang and Lee [133] developed
a heuristic algorithm based on Particle Swarm Optimization (PSO).

54
Chapter 4: Empirical analysis for the VRPTW with a multigraph representation for

the road network

Caramia and Guerriero [17] studied a long-haul freight transportation problem motivated
by a real-life application implying multimodal routes. Travel time and route cost are to be
minimized together with the maximization of a transportation-mean sharing index. They
observed that the multimodality in transportation problems enlarges significantly the set of
possible solutions and makes the definition of an optimum respecting the numerous objec-
tives very difficult. In this study, the transportation network contains alternative routes, thus
generating a multimodal multigraph: some arcs link the same pair of nodes with the same
transportation mode but with different costs and traveling times, some arcs have the same
endpoints but are associated with different modes. To solve this problem, the authors imple-
mented a heuristic algorithm based on local search.

More recently, Reinhardt et al. [113] introduced a new generalization of the VRPTW in
which additional fixed costs are associated with subsets of edges. They noticed that, in some
real-life situations, fees must be paid for accessing roads, areas or bridges. These fees could
reflect payment for toll roads, ferry connections, investment in new facilities and the need
for certifications to access to war zones or areas of unrest. Then, connection costs between
customer locations do not depend only on traveling costs, but also rely on other decisions, ba-
sically buying or not access to a set of routes in the transportation network. Hence, a standard
VRPTW does not model correctly the problem. Reinhardt et al. [113] proposed an extension
of the VRPTW to represent the problem, called Edge Set Vehicle Routing Problem with Time
Windows. In this new problem, edges are regrouped in different subsets, each subset being
characterized by a fixed cost. Once this cost is paid, all vehicles can access all edges in the
associated subset. The problem is modeled by a multigraph, in order to differentiate between
edges that connect the same pair of nodes but do not belong to the same edge subset. In their
solution method (branch-price-and-cut) and experiments, the authors however only address
the special case when the graph is simple, i.e., only one edge exists between each pair of
nodes). The multigraph case is left as a perspective.

4.2.2 Road Network

Recently, Letchford et al. [89] revisited the branch-and-price approach presented in [61] (see
Subsection 4.2.1), for the VRPTW. Their objective was to show that it was more efficient to
model and solve the problem directly on the road network than to introduce the multigraph.
They explained how it would impact both the pricing problem and the branching scheme,
but only explored the pricing problem. In their experiments, they demonstrated the interest
of this approach. The complete algorithm, including branching schemes, was left for future
researches.

It is worth mentioning the connections between [89] and a stream of papers addressing
variants of the Travelling Salesman Problem (TSP) defined on general graphs, such as road
networks. An early work was carried out by Fleischmann [56]. Its motivation was the so-

4.2 Literature review 55

lution of the Traveling Salesman Problem (TSP) with a cutting-plane approach. Instead of
searching for the min-cost Hamiltonian cycle in a complete graph, he proposed to search for
a cycle visiting all required nodes in the underlying road network. He called this problem
the TSP on a Road Network or R-TSP. Independently, Cornuéjols et al. [29] investigated the
same problem that they called the Steiner Traveling Salesman Problem (STSP). The rationale
behind Fleischmann’s suggestion was that nodes in road networks typically have small de-
grees: adding artificial arcs to complete the original graph increases enormously the number
of variables needed in the linear programming formulation. In the same paper, the author
also suggested a way to extend the solution procedure to the VRP, but revealed the difficul-
ties that would arise in this case. Recently, in connection with [89], Letchford et al. [90]
also addressed the STSP. A more general problem was introduced by Orloff [103] in which
services are associated with both a subset of nodes and a subset of arcs in the road network.

Finally, Huang et al. [70] investigated a multi-objective TSP in the context of a tourist
sightseeing-itinerary planning. Since the tourist had to visit a known subset of nodes in a
road network, the problem could be addressed as a variant of the TSP. Each road segment
was defined with four attributes related to four objectives: travel time, vehicle operating cost,
safety level and surrounding scenic view quality. The authors however proposed to optimize
a weighted sum of the four objectives. Then, since no constraints were defined on the at-
tributes, it made an aggregation of the four attributes possible, which allowed the authors to
compute best-paths between required nodes and classically transform the road network into
a complete graph.

4.2.3 Methodology

This literature review confirms that the traditional customer-based graph used in vehicle rout-
ing can have a significant (negative) effect on the solution quality, when several attributes are
defined on road network arcs. Garaix et al. [61] and Lai et al. [85] gave empirical evidences
of these effects in two very different contexts.

In this paper we propose to conduct further analyses. Lai et al. [85] acknowledged sev-
eral limits in their conclusions. Their instances were randomly generated and had only two
alternative arcs between every vertex pair. In addition, their comparisons were based on re-
sults found with a heuristic. Garaix et al. [61] based their conclusions on exact solutions,
but only compared the multigraph representation to the fastest-paths-based complete graph.
In addition, while they experimented on a real road network, this road network was that of a
rural area. Conclusions can then hardly be generalized to urban networks.

For all these reasons, we propose to complete these results by considering what is proba-
bly the simplest and most studied vehicle routing problem with two attributes: the VRPTW.
Also, for the sake of completeness, we propose to base our experiments on several types of

56
Chapter 4: Empirical analysis for the VRPTW with a multigraph representation for

the road network

instances: (1) Solomon’s instances, that are a must-do for the VRPTW; (2) realistic instances
constructed following Letchford et al. [89]; (3) instances obtained from real road networks.
Finally, in order to be able to draw our conclusions from exact results and to have a fair and
complete comparison, we propose to apply a branch-and-price methodology to the multi-
graph and to two customer-based graphs: the fastest-path-based and the cheapest-path-based.

Letchford et al. [89] suggested that a branch-and-price algorithm for the VRPTW that
works directly on the original road network, rather than on a multigraph, could be more ef-
ficient in some cases. Unfortunately, although they showed how to perform pricing on the
road network, they did not devise a suitable branching rule. For this reason, in this work, we
only consider the multigraph representation. Further remarks on this issue can be found in
Section 4.6.

4.3 Problem formulation

This section introduces the multigraph-based VRPTW, and proposes a mathematical formu-
lation that generalizes a classical VRPTW model.

Let G = (V, A) be a directed multigraph induced by a road network. V = {0, 1, . . . , n} is a
set of nodes where the node 0 represents the central depot and C = {1, . . . , n} is the set of cus-
tomers to serve. A = ∪

(i, j)∈V2
A(i, j) denotes the set of arcs where A(i, j) = {(i, j)p; p = 1, . . . , |A(i, j)|}

represents the set of alternative paths linking the two nodes i and j.

We associate with each arc (i, j)p a travel time t(i, j)p and a cost c(i, j)p that represent respec-
tively the time needed and the cost induced to go from node i to node j through the associated
path indexed by p (sequence of road segments) in the road network. With each customer i
is associated a demand di, a time window [ei, li] and a service time si. To serve the set of
customers, we use a set of homogeneous vehicles K with a capacity Q. The objective is to
minimize the total cost.

Variables are defined as follows:

xk
(i, j)p: binary variable equal to 1 if arc (i, j)p is traversed by vehicle k and 0 otherwise.

tk
i : starting time of the service at customer i if it is visited by vehicle k, meaningless

value otherwise.

The mathematical model of the VRPTW on a multigraph is given in the following:

4.4 Solution Method 57

Min
∑
k∈K

∑
(i, j)p∈E

c(i, j)p xk
(i, j)p (4.1)

s.t.
∑
k∈K

∑
j∈V

|A(i, j) |∑
p=1

xk
(i, j)p = 1 i ∈ C (4.2)

∑
j∈V

|A(i, j) |∑
p=1

xk
(j,i)p −

∑
j∈V

|A(i, j) |∑
p=1

xk
(i, j)p = 0 i ∈ V, k ∈ K (4.3)

∑
i∈V

|A(0,i) |∑
p=1

xk
(0,i)p ≤ 1 k ∈ K (4.4)

∑
i∈V

∑
j∈V

|A(i, j) |∑
p=1

dixk
(i, j)p ≤ Q k ∈ K (4.5)

tk
i + si + t(i, j)p xk

(i, j)p ≤ tk
j + M(1 − xk

(i, j)p) i, j ∈ V, 1 ≤ p ≤ |A(i, j), k ∈ K (4.6)

ei ≤ tk
i ≤ li i ∈ V, k ∈ K (4.7)

xk
(i, j)p ∈ {0, 1} i, j ∈ V, 1 ≤ p ≤ |A(i, j)|, k ∈ K (4.8)

tk
i ≥ 0 i ∈ V, k ∈ K (4.9)

The objective function (4.1) minimizes the total travelling cost. Constraints (4.2) guar-
antee that each costumer is visited exactly once. Constraints (4.3) ensure that each vehicle
arriving at a customer leaves to another. Constraints (4.4) ensure that vehicles do not start
from the depot more than once. Inequalities (4.5) state that a vehicle can only be loaded up
to its capacity. Inequalities (4.6) establish the relationship between the service starting times
at a costumer and at its immediate successor. Moreover, inequalities (4.6) prevent sub-tours.
Finally, constraints (4.7) ensure the respect of time windows and (4.8) are the integrity con-
straints. M is a large constant.

4.4 Solution Method

In this section, we present a solution method for the multigraph based VRPTW which is
based on a branch-and-price procedure. The motivation for using a branch-and-price tech-
nique is that this solution approach has performed very well for many transportation problems
and has become one of the most efficient exact methods to solve vehicle routing problems.

The branch-and-price has first been applied to the VRPTW by Desrochers et al. [40].
It is based on the Dantzig-Wolfe decomposition [32]. This decomposition gives rise to an
integer master problem that has a tighter linear programming relaxation than the compact

58
Chapter 4: Empirical analysis for the VRPTW with a multigraph representation for

the road network

formulation (4.1)-(4.9). Therefore, the master formulation is more suitable for a branch-and-
bound scheme. However, this formulation involves a huge number of variables. To deal
with these variables a column generation procedure is embedded in the branch-and-bound
framework. The column generation sub-problem, so-called pricing problem, aims at finding
a set of feasible columns that will be added to the master problem [39, 52, 37, 41]. In the
following subsections, we briefly describe the different components of the branch-and-price
framework and outline the main modifications that we made to handle the multigraph setting.

We emphasize that our objective in this paper is not to achieve the best possible im-
plementation of the branch-and-price for the multigraph-based VRPTW. Instead, we aim at
developing a method that allows deriving conclusive results.

4.4.1 Master Problem

Let Ω be the set of feasible vehicle routes, i.e., the set of paths in the multigraph starting from
the depot, visiting a subset of customers respecting capacity and time windows constraints
and returning to the depot. Let ai,k = 1 if route rk ∈ Ω visits customer i and ai,k = 0 otherwise.

The cost ck of route rk is given by ck =
∑
i∈V

∑
j∈V

|A(i, j) |∑
p=1

αk
(i, j)pc(i, j)p where αk

(i, j)p = 1 if vehicle k

uses the pth arc to go from i to j and αk
(i, j)p = 0 otherwise. Using this notation, we can express

ai,k as ai,k =
∑
j∈V

|A(i, j) |∑
p=1

αk
(i, j)p .

The multigraph based VRPTW can be formulated as a set covering problem :

Min
∑
rk∈Ω

ckzk (4.10)

s.t.
∑
rk∈Ω

ai,kzk ≥ 1 i ∈ C (4.11)∑
rk∈Ω

zk ≤ |K| (4.12)

zk ∈ {0, 1} rk ∈ Ω (4.13)

Variable zk is a binary variable such that zk = 1 if route rk is used in the solution and zk = 0
otherwise. Constraints (4.11) ensure that each customer is visited at least once. Constraints
(4.12) limit the number of used vehicles to the fleet size.

As in the case of the standard VRPTW, the set covering model cannot be solved using a
standard branch-and-bound procedure. This is due to the exponentially growing size of set

4.4 Solution Method 59

Ω. This issue can be tackled by using a column generation technique and a branch-and-price
scheme instead of branch-and-bound. In the following, we denote by Master Problem (MP)
the linear relaxation of model (4.10)-(4.13).

4.4.2 Column Generation

Column generation is based on two components:

• A restriction of the master problem to a subset of routes Ωt ⊆ Ω, denoted by MP(Ωt).

• A pricing problem that generates and adds iteratively new columns to Ωt.

The general scheme of the column generation is described by Algorithm 4.1.

Algorithm 4.1 Column generation algorithm
1: t ← 0
2: repeat
3: Solve the Master Problem restricted to set of routes Ωt; MP(Ωt)
4: R← Routes with negative reduced costs generated by the Pricing Problem
5: Ωt+1 ← Ωt ∪ R
6: t ← t + 1
7: until R = ∅

In our implementation, we start by initializing Ω0 with a simple set of routes obtained
using an adapted Savings Algorithm. At each iteration, we solve the restricted master problem
MP(Ωt) using a standard MILP solver. To enrich Ωt, the pricing problem focuses on finding
new routes offering better ways to visit customers, i.e., routes with negative reduced costs.
Let λi ≥ 0, i ∈ C, be the dual variables associated with Constraints (4.11) and λ0 ≤ 0 the
dual variable associated with Constraint (4.12). The reduced cost ĉk of route rk is defined as
follows :

ĉk = ck −
∑
i∈V

ai,kλi (4.14)

or equivalently,

ĉk =
∑
i∈V

∑
j∈V

|A(i, j) |∑
p=1

αk
(i, j)p(c(i, j)p − λi) (4.15)

So, the pricing problem aims at generating routes rk < Ωt such that

∑
i∈V

∑
j∈V

|A(i, j) |∑
p=1

αk
(i, j)p(c(i, j)p − λi) < 0 (4.16)

60
Chapter 4: Empirical analysis for the VRPTW with a multigraph representation for

the road network

As for the standard VRPTW, the pricing problem for the multigraph version can be re-
duced to an Elementary Shortest Path Problem with Resource Constraints (ESPPRC). Here,
the ESPPRC consists in finding elementary paths in the multigraph starting and ending at
the depot, satisfying capacity and time window constraints, and minimizing costs given
by arc costs c′(i, j)p = c(i, j)p − λi. Note that the pricing problem can be reduced to a more
tractable sub-problem which is the (non-elementary) Shortest Path Problem with Resource
Constraints (SPPRC). Desrochers et al. [40] observed that the ESPPRC, thought NP-hard in
the strong sense, admits a pseudo-polynomial algorithm when the elementary path condition
is removed. With this version of pricing problem, slight modifications have to be made to the
branch-and-price framework: Ω includes non elementary paths, αk

(i, j)p denotes the number of
times the arc (i, j)p is traversed in route rk and ai,k becomes the number of times the customer
i is visited in route rk. Although the state space of the pricing problem is larger in this case,
the SPPRC can be solved more efficiently than the ESPPRC. However, with the SPPRC, the
restricted master problem provides a weaker lower bound which complicates the pruning of
nodes during the search tree. For this reason, we opt for the ESPPRC in the pricing. To
solve this problem, we adapt the dynamic programming algorithm described in [53] to the
multigraph case of the ESPPRC. Basically, the algorithm is an extension of Bellman-Ford al-
gorithm and consists in associating with each partial path a label and extending these labels.

With the multigraph representation, more than one label can be obtained when extending
a partial path to a customer j. A new path is obtained for each arc connecting the final node
i of the current label to j as long as resource constraints allow it. We use dominance rules
based on resource consumption to discard some of the labels arriving at the same location.
At the end, the algorithm gives the best feasible paths.

Recall that when constructing the multigraph, we consider all non-dominated arcs. Due
to this structure, we know that travel times associated with fastest arcs verify the triangle
inequality, i.e.:

∀(i, j, k) ∈ V3 with A(i, j) , ∅, A(i,k) , ∅ and A(j,k) , ∅ : t(i, j)|A(i, j) | + t(j,k)|A(j,k) | ≥ t(i,k)|A(i,k) | (4.17)

assuming that arcs in sets A(i, j) are ranked from the cheapest to the fastest.

Using this property, we can detect and eliminate unreachable nodes for every partial path.
Let L be a label and i the last node visited on the partial path represented by L. If a customer j
cannot be reached by extending L along arc (i, j)|A(i, j) |, j is unreachable for all labels obtained
by extending L to any customer k , j. This property is used in our implementation in order
to speed up the dynamic programming algorithm.

4.4 Solution Method 61

4.4.3 Branching rule

As in a branch-and-bound method, the branching scheme in a branch-and-price method con-
sists in extending iteratively the binary search tree by adding constraints implied by the
branching rules. In the context of vehicle routing problems, the standard branching rule
consists in selecting an arc (i, j) with a fractional flow 0 < fi j < 1 and then in deriving two
branches where in the first branch the use of arc (i, j) is enforced, and it is forbidden in the
second. For the multigraph representation, we use a similar branching rule that performs as
follows:

• Select an arc (i, j)p with a fractional flow 0 < f(i, j)p < 1 where f(i, j)p =
∑
rk∈Ωt

αk
(i, j)pzk.

In our implementation, the selected arc (i, j)p is the first arc such that 0 < f(i, j)p < 1,
encountered while computing the flow matrix.

• Generate two branches :

– In the first branch, we enforce the use of arc (i, j)p in the solution. To do this, we
remove from Ωt all routes using arcs (i, j)q, q , p, (arcs parallel to (i, j)p), arcs
(i, k)l, k , j, l = 1, . . . , |Aik| and arcs (k, j)l, k , i, l = 1, . . . , |Ak j|. We remove also
all these arcs from the multigraph considered in the pricing phase.

– In the second branch, we forbid arc (i, j)p. For this aim, we eliminate from Ωt all
routes using arc (i, j)p and remove this arc from the multigraph considered in the
pricing phase.

4.4.4 Stabilization method

As we described in Section 4.4.2, the generated routes and so the search strategy in the col-
umn generation method is very dependent on dual values. Frequently, multiple dual solutions
are associated with each primal solution. When solving the master problem, the standard
function that returns dual values in LP codes returns extreme points of the dual polyhedron.
Such solutions provide, most of the times, inappropriate estimations of marginal costs asso-
ciated with customers, which can lead to very slow convergence [119].

To handle these difficulties, a few techniques are available in the literature that consists
mainly in preventing dual variables from taking extreme values and in finding better ap-
proximations of the optimal marginal costs (e.g., [119] and [45]). In our algorithm, we
implemented the interior point method proposed by Rousseau et al. in [119]. This approach
proposes to generate a set of random extreme optimal dual solutions and to provide the sub-
problem with a convex combination of these solutions.

62
Chapter 4: Empirical analysis for the VRPTW with a multigraph representation for

the road network

4.5 Computational experiments

In this section, we present, first, the benchmark problems used in the experiments. Then, we
summarize the main results and we analyze the impact of the multigraph representation on
solution quality and computing times.

The branch-and-price algorithm is implemented in the C++ programming language. Tests
are run on an Intel CORE i5 2.6 GHz computer with 4GB of memory. We use CPLEX 12.6
as the linear programming solver for restricted master problems.

4.5.1 Test data

In our experiments we use four sets of VRPTW instances; the first set of instances is de-
rived from Solomon [126] benchmark instances for the VRPTW, the second set of instances
is generated by Letchford et al. in [89] and we used the same procedure proposed in [89]
(described below) to generate the third set of instances. The difference between Letchford et
al. [89] instances and those we generated is that we used different densities of customers in
the road network. In this third set of instances, the number of nodes chosen to be customers
is lower, so that the number of possible paths between customers can be higher. The fourth
set of instances is generated using real data from the city of Aix-en-Provence, France.

4.5.1.1 Modifed Solomon instances

The first set of instances consists of 90 instances derived from Solomon [126] benchmark
instances: R101 to R105, C101 to C105 and RC101 to RC105. From each one of these
15 instances, we first generate two graphs, considering only the first 25 and 50 customers,
respectively. Then, as in Solomon [126], we set arc costs to the Euclidean distance between
customers. Based on these costs and a correlation rule, we propose three different values for
travel times: ti j = dν ∗ ci j + µ ∗ γi j ∗ če where

• č = max(i, j)∈A ci j;

• ν and µ are two parameters that define the degree of correlation ((ν, µ) = (0.9, 0.1) for a
strong correlation between the cost and the travelling distance (SC), (ν, µ) = (0.5, 0.5)
for a weak correlation (WC) and (ν, µ) = (0.1, 0.9) for non-correlated instances (NC)).

• γi j is a random number in]0, 1].

Other data from the original instances are not modified. For a given original instance and a
given number of customers, we thus obtain 3 instances with different levels of correlation.

4.5 Computational experiments 63

Note that these correlation rules follow those introduced in [89].

Multigraphs are finally constructed by computing, through dynamic programming, non
dominated bi-criterion shortest paths between every vertex pair. Details on the method are
given subsequently in subsection 4.5.2.

4.5.1.2 Letchford et al. [89] and Letchford et al.-like (LL) instances

The second set of instances (Letchford et al. [89] instances) were provided to us by the
authors. They had been generated with the objective of simulating real-life road networks,
with the following procedure: 1. Insert nodes at random positions in the Euclidean space. 2.
Consider all possible arcs and insert new arcs sequentially (to represent road segments) on
condition that the new inserted arc does not intersect with any other arc and has sufficiently
large angles with other arcs at its endpoints. 3. Set arc costs to the Euclidean distance be-
tween arc endpoints.

Using this procedure, Letchford et al. [89] generated different sparse graphs with N ∈
{25, 50, 75, 100} nodes. In each graph, one node was selected randomly to be the depot;
other nodes were given a probability p = 0.66 to be a customer. For each sparse graph,
different sets of travel times with different levels of correlation were computed using ti j =

dν ∗ ci j + µ ∗ γi j ∗ če: one non-correlated (NC) travel time matrix, two weakly-correlated
(WC), one strongly-correlated (SC) – except for N = 25 where one WC travel time matrix
was generated instead of two. Then, by mean of a single-source bi-criterion shortest path
algorithm, a multigraph was constructed for each case. Note that we did not have to compute
these multigraphs because the information was already included in the instance files provided
by the authors.

From each of the 15 above multigraphs, 2 instances were derived: a first instance with
wide time windows and a second instance with narrow time windows. Time windows were
defined such that a set of routes, constructed in a greedy way, were feasible. An integer ser-
vice time in {1, 2} was assigned randomly to each customer. Vehicles were not capacitated.
To be consistent with our problem definition, we assigned a demand di = 10 to each cus-
tomer and we fixed vehicle capacity to 200. The fleet was considered with a large number of
vehicles.

We generated the third set of instances using the same procedure as above, but changing
the way customer nodes are defined. Basically, the motivation here was to generate instances
with a smaller density of customers. This set consists of 45 instances and is subdivided into
three classes of 15 instances with respectively 25 customers / 100 nodes (p = 0.25), 50 cus-
tomers / 100 nodes (p = 0.5), 50 customers / 200 nodes. Each class of instances consists of
5 instances where travel times are strongly correlated to costs, 5 instances where travel times

64
Chapter 4: Empirical analysis for the VRPTW with a multigraph representation for

the road network

are weakly correlated to costs and 5 instances with no correlation. For each of the obtained
road networks, we computed the multigraph through dynamic programming (see 4.5.2). For
each multigraph, we completed the VRPTW instance as follows. Each customer was given a
service time si = 10, and a demand di = 10. Time horizon (time window of the depot [0, l0])
was fixed such that a vehicle can visit any customer and get back to the depot before l0 using
the slowest direct arcs. Time windows were fixed such that each customer can be visited at
least on an independent route. The vehicle capacity was fixed to 200 and a fleet with a large
number of vehicles was considered.

4.5.1.3 Real instances

Aix-en-Provence is a city-commune in the region of Provence-Alpes-Cote d’Azur in the south
of France, about 30 km north of Marseilles. Based on OpenStreetMap© 1 database, we
extracted spatial data for two different road networks. The first one (Zone 1, see Figure 4.3)
represents the road network of the central urban area. The second (Zone 2, see Figure 4.4)
represents the road network in the city center and surroundings.

Figure 4.3: Road Network of the central urban area (Zone 1)
1OpenStreetMap is a collaborative project wich creates and distributes freely available geospatial data. www.

openstreetmap.org/

www.openstreetmap.org/
www.openstreetmap.org/

4.5 Computational experiments 65

Table 4.1: Real Road networks characteristics

Zone 1 Zone 2
Diameter 6 Km 36 Km
nodes 5437 19500
arcs 10181 36438

Figure 4.4: Road Network of Aix-en-Provence center and surroundings (Zone 2)

Table 4.1 summarizes the characteristics of the extracted road network for the two zones.
For each zone, the first row indicates the diameter of the area covered by the extracted road
network. The last two rows give the total number of nodes and the total number of arcs.

In each road network, an arc represents a road segment and is defined by a length, a max-
imum allowed speed and a travel direction. Travel times are computed using road segment
speeds and lengths. Costs are set as road segment lengths. A node represents a junction of
road segments.

From each of these two road networks, we generated 6 different instances. We consid-
ered value set {25, 50, 75} for the number of customers, and generated two instances for each
case by randomly selecting the customers. For all instances, the depot was selected by hand
at a realistic location: near the train station for the first zone and in Les Milles industrial
area, about 8 Km southwest of Aix-en-Provence city-center, for the second zone. Then, we
constructed for each instance the associated multigraph as described in subsection 4.5.2. In-
stance parameters (time windows, service times, demands, vehicle capacity and fleet size)
were fixed as for LL instances.

Figures 4.5 and 4.6 represent 2 examples for the selected depot and customers for in-
stances with 25 customers on both road networks.

66
Chapter 4: Empirical analysis for the VRPTW with a multigraph representation for

the road network

Depot

Customer

Legend

Figure 4.5: Depot and customers locations for an instance with 25 customers on Zone 1

Depot

Customer

Legend

Figure 4.6: Depot and customers locations for an instance with 25 customers on Zone 2

4.5 Computational experiments 67

4.5.2 Statistics on multigraphs

In this section, we analyze two important pieces of information related to the multigraph con-
struction: computing times and arc set sizes. This information is important to evaluate the
tractability of the multigraph representation. Multigraph construction is performed with the
preliminary method developed by Ben Ticha et al. [9]. Before starting analyses, we quickly
describe the method. For more details, interested readers are referred to [9].

Multigraphs consist of non-dominated paths between all pairs of key-locations. Paths are
obtained using a dynamic programming algorithm based on a variant of Dijkstra and A* al-
gorithms. This algorithm aims at solving a bi-objective shortest path problem from a source
node to a set of destination nodes. It is repeated n + 1 times: one time for each customer
and one time for the depot. Basically, the algorithm maintains a set of labels, each one cor-
responding to a partial path issued from the source node. These labels are sorted according
to a “key” that defines the minimum detour of the associated subpath to one of the destina-
tions. Thus, partial path exploration is naturally guided towards destinations, as in the A*
algorithm. Bounding mechanisms (based on precomputed mono-objective optimal paths) are
introduced to quickly detect bad extensions.

Table 4.2 shows obtained results for modified Solomon instances. The first two columns
report the number of customers and the class of original instances. The third column presents
the correlation degree. The last three columns report respectively the average number of arcs
in the multigraph, the average number of alternative arcs between each pair of locations and
the average computing time.

Table 4.3 reports statistics on multigraphs for Letchford et al. [89] instances. The first
two columns show the number of nodes and the number of customers. The third column
show the correlation degree. The last two columns shows the total number of arcs and the
average number of arcs between each pair of nodes for each instance. Computing times are
not reported for these instances because we directly received the complete multigraph repre-
sentation from the authors.

Table 4.4 shows multigraph construction results for LL instances. The first two columns
report, respectively, the number of nodes in the original graph and the number of customers.
The next column shows the correlation degree. The following columns show, respectively,
the average number of arcs in the multigraphs, the average number of alternatives between
each pair of customers, and the average time needed to compute the multigraph.

From Tables 4.2 to 4.4, we can observe similar behaviors in modified-Solomon and LL
multigraphs. For all configurations (number of nodes in the original graph and number of
selected customers), the average number of alternative arcs increases when correlation be-
tween travel times and costs decreases. It ranges from 1.6 alternatives for strongly correlated

68
Chapter 4: Empirical analysis for the VRPTW with a multigraph representation for

the road network

Table 4.2: Statistics on multigraph constructions for modified Solomon instances

nodes class Correlation # arcs # alternatives Time (sec)
25 R NC 1491 2.5 0.09

WC 863 1.4 0.07
SC 613 1.0 0.06

C NC 1535 2.6 0.07
WC 984 1.6 0.07
SC 636 1.1 0.05

RC NC 1742 2.9 0.07
WC 1185 2.0 0.06
SC 765 1.3 0.05

50 R NC 7559 3.1 0.22
WC 4306 1.8 0.18
SC 2797 1.1 0.17

C NC 7448 3.0 0.20
WC 4559 1.9 0.18
SC 2889 1.2 0.17

RC NC 8177 3.3 0.19
WC 5240 2.1 0.18
SC 3317 1.4 0.18

Table 4.3: Statistics on multigraph constructions for Letchford et al. [89] instances

nodes # customers Correlation # arcs # alternatives
25 16 NC 372 1.4

WC 302 1.1
SC 272 1.0

50 33 NC 1564 1.4
WC 1624 1.4
WC 2214 2.0
SC 1348 1.2

75 50 NC 4452 1.7
WC 4366 1.7
WC 6200 2.4
SC 3100 1.2

100 66 NC 9772 2.2
WC 8340 1.9
WC 9844 2.2
SC 5498 1.2

4.5 Computational experiments 69

Table 4.4: Statistics on multigraph constructions for LL instances

nodes # customers Correlation # arcs # alternatives Time (sec)
100 25 NC 1682 2.6 0.07

WC 1231 1.9 0.06
SC 866 1.3 0.05

100 50 NC 7172 2.8 0.11
WC 5434 2.1 0.09
SC 3285 1.3 0.10

200 50 NC 9907 3.9 0.17
WC 7433 2.9 0.14
SC 4101 1.6 0.14

Table 4.5: Statistics on multigraph constructions for real instances

nodes # customers # arcs # alternatives Time (sec)
Zone 1 5437 25 2109 3.2 4.8

50 8665 3.4 5.9
75 22388 3.9 7.1

Zone 2 19500 25 1680 2.7 227.6
50 7578 3.0 301.7
75 17000 3.2 367.1

LL instances with 200 nodes and 50 customers to 3.9 alternatives for non-correlated ones.
Less alternative arcs exist in Letchford et al. [89] instances. The reason is probably the high
density of customers.

Computing times are reasonable and do not exceed 0.25 seconds for all instances. For
the second set of instances, one would expect that for the same number of customers, the
number of arcs and the computing time increase with the number of nodes in the original
road network, which is consistent with the obtained results.

Table 4.5 presents multigraph construction results for real instances. The first two columns
specify the considered road network and the number of nodes in the graph. The third column
reports the number of customers. The last three columns report the average number of arcs,
the average number of alternatives in the constructed multigraphs and the average computing
times (in seconds).

A first observation is that the average number of alternatives is in the same order as that
observed for the non-correlated version of the previous instances. Also, computing times
remain reasonable, even if the size of the road networks are significantly larger: computing
times just slightly exceed 6 minutes for the largest instances with 75 customers taken in a 36

70
Chapter 4: Empirical analysis for the VRPTW with a multigraph representation for

the road network

Km diameter-wide urban region.

A second observation is that the number of arcs is higher for instances generated from
the central urban area’s data. A possible reason is that for the first road network, arcs repre-
sent short road segments with a high speed variability, thus inducing weakly correlated arc
lengths and travel times. Conversely, most arcs in the second road network represent long
routes with similar allowed speeds, and so distances and travel times are more correlated than
for the first case.

4.5.3 Impact of the multigraph representation

In this section, we investigate the impact of the multigraph representation on solution quality
for the VRPTW. To do this, we propose two solution methods:

• The adapted branch-and-price algorithm for the multigraph representation (MG-B&P)
described in Section 4.4.

• A branch-and-price algorithm for the customer-based graphs (SG-B&P).

We compare the solution obtained in the multigraph to the solution computed when tack-
ling the problem in a customer-based graph either with cheapest or fastest paths between
customers. In the following, we denote by min-cost graph the customer-based graph with
cheapest paths and by min-time graph the customer-based graph with fastest paths. In all
experiments, computing times are limited to 7,500 seconds. Obtained results are presented
in Tables 4.6 and 4.7 for modified Solomon instances, in Table 4.8 for Letchford et al. [89]
instances, in Table 4.9 for LL instances and in Table 4.10 for real instances.

Column “min-cost graph” reports solution costs and computing times in min-cost graphs.
Column “min-time graph” reports solution costs and computing times in min-time graphs.
Results with the multigraph representation are presented in the third column; column “Gap
min-cost” presents the gap between solutions in the multigraph and solutions in the min-cost
graph, and column “Gap min-time” presents the gap between solutions in the multigraph and
solutions in the min-time graph. The gap is given by

Gap(%) =
cost on multigraph − cost on customer − based graph

cost on customer − based graph
× 100% (4.18)

In Table 4.8, column “Instance” presents the instance name which indicates the number of
nodes in the original road network, the number of customers in the multigraph and whether
time windows are wide (WTW) or narrow (NTW). Column “Corr” reports the correlation
level. In Table 4.9 and 4.10, column “Inst” specifies the instance index. Solution costs in
Table 4.10 represent total travelled distance and are expressed in meters.

4.5 Computational experiments 71

In the following tables, we report only results for relevant instances, i.e., for which the
branch-and-price algorithm with the multigraph representation was able to find a feasible so-
lution within 7, 500 seconds. In our analyses, we compare the number of obtained solutions
using the different graphs for each set of instances.

From Tables 4.6 and 4.7, it comes out that the branch-and-price algorithm solves 67 out
of 90 instances with the multigraph representation, while it solves 72 and 74 instances when
using min-cost and min-time graphs, respectively. By using a multigraph, costs are reduced
up to almost 14% against costs on graphs with the least costly paths (instance RC101 with 50
customers and No Correlation, Table 4.7) and costs are reduced up to 54% against costs on
graphs with fastest paths (instance C105 with 25 customers and No Correlation, Table 4.6).
Solution cost is improved for 34 instances when considering only cheapest arcs (48% out of
72 instances solved), the average saving being up to 2.4%, and it is improved for 58 instances
compared to solution obtained on min-time graphs (87% out of 74 instances solved), the av-
erage saving being up to 14.2%.

We observe that, as expected, increasing the correlation between arc costs and travel
times reduces savings provided by the multigraph representation in solution cost. For mod-
ified Solomon instances with 25 customers, average “Gap min-cost” and “Gap min-time”
range from −4.2% and −35.2% for non-correlated instances to −2.4% and −8.9% for weakly
correlated instances and −0.4% and −0.4% for strongly correlated instances (Table 4.6).
For modified Solomon instances with 50 customers, average "Gap min-cost" and "Gap min-
time" range from −4.7% and −34.6% for non-correlated instances to −3.5% and −10.3% for
weakly correlated instances and to −0.2% and −0.8% for strongly correlated instances (Table
4.7).

As expected, computing time increases significantly when using a multigraph. This is due
to the fact that for a given node in the branch-and-price search tree the subset of columns to
be generated by the pricing problem is larger than when only one arc is considered between
each pair of customers. So, the dynamic programming algorithm for the ESPPRC solution is
more time consuming with the multigraph.

Table 4.8 summarizes results obtained for Letchford et al. [89] instances. A first obser-
vation is that for 8 instances the algorithm cannot find a feasible solution when considering
only the least costly paths, while optimal solutions are found on both the multigraph and the
min-time graph. This is due to the time windows constraints. A second observation is that,
using the multigraph, solution costs are improved for 5 instances compared to solutions on
the min-cost graph and for 24 instances compared to solutions on the min-time graph. This
improvement can reach 5.4% (instance 100_66_WTW with No Correlation) for the min-cost
graph and 11.8% (instance 75_50_NTW with Weak Correlation) for the min-time graph. Ob-
tained solutions on the multigraph are in average 0.8% and 4.1% better than solutions with
cheapest paths and with fastest paths. Computing times are more important for the branch-

72
Chapter 4: Empirical analysis for the VRPTW with a multigraph representation for

the road network

Table 4.6: Results for modified Solomon instances with 25 customers

min-cost graph min-time graph Multigraph
Corr Instance Cost Time Cost Time Time Gap min-cost(%) Gap min-time(%)
NC R101 690.4 0.1 1281.9 0.1 0.6 0.0 -46.1

R102 594.4 0.3 809.3 0.2 1.7 -1.0 -27.3
R103 491.3 1.0 727.7 0.7 12.7 0.0 -32.5
R104 507.3 5.3 676.1 2.4 31.0 0.0 -25.0
R105 653.2 1.0 1002.1 0.2 2.3 -1.6 -35.9
C103 223.8 3569.6 364.4 27.0 2197.0 -10.8 -44.6
C105 231.9 2.1 485.1 0.3 54.6 -3.5 -53.8
RC101 740.2 0.2 1140.1 0.8 0.7 -10.3 -41.1
RC102 628.4 0.9 857.4 1.1 10.9 -12.6 -34.9
RC103 558 7.3 823.1 2.8 613.9 -2.2 -33.7
RC104 441.9 116.2 526.3 84.9 2728.0 -5.1 -20.1
RC105 597.3 0.3 798.7 1.2 9.8 -3.8 -27.9

WC R101 682 0.2 756.2 0.2 0.2 0.0 -9.8
R102 572.6 0.6 609.8 0.1 1.2 0.0 -6.1
R103 476.2 1.5 504.7 0.3 2.3 0.0 -5.6
R104 481 2.5 499.4 0.6 4.7 0.0 -3.7
R105 601 0.6 669.1 0.4 0.9 0.0 -10.2
C101 262.7 236.7 – 7500 206.5 -4.6 **
C103 199.1 32.9 251.7 34 480.4 0.0 -20.9
C105 216.6 5.4 282.1 7.6 27.3 0.0 -23.2
RC101 609.4 2.4 626.2 1.7 7.7 -7.9 -10.4
RC102 627.5 0.6 574.2 38.5 983.5 -12.0 -3.8
RC103 473.3 82.4 477.6 19.4 713.3 -2.4 -3.3
RC104 399.1 7.5 409.1 22.4 835 -0.2 -2.6
RC105 563.7 0.5 602 0.7 2.8 -1.5 -7.7

SC R101 684.7 0.1 684.7 0.2 0.2 0.0 0.0
R102 570.8 0.4 577.2 0.2 0.5 0.0 -1.1
R103 466.6 1.9 458.3 0.3 0.9 -1.8 0.0
R104 420.2 1.9 422.9 0.7 4.2 0.0 -0.6
R105 549.3 0.6 550.1 0.4 0.8 0.0 -0.1
C101 216.6 4.0 220.4 2.6 6.4 0.0 -1.7
C102 193.1 12.4 193.1 0.7 5.5 0.0 0.0
C103 193.1 45.4 195.2 9.5 96.4 0.0 -1.1
C104 189.7 2299.1 189.7 290 1717.6 0.0 0.0
C105 194.1 0.5 194.1 0.1 0.5 0.0 0.0
RC101 532.5 15.7 511.7 4.9 13.9 -4.7 -0.8
RC102 443.6 173 443.8 62.3 397.7 0.0 0.0
RC103 342.2 2.8 342.5 0.5 5.9 0.0 -0.1
RC104 314.9 7.1 314.9 1.4 13.1 0.0 0.0
RC105 457.6 9.5 458.6 4.6 21.7 0.0 -0.2

Note : – indicates that the algorithm has not terminated within 7,500 seconds

4.5 Computational experiments 73

Table 4.7: Results for modified Solomon instances with 50 customers

min-cost graph min-time graph Multigraph
Corr Instance Cost Time Cost Time Time Gap min-cost(%) Gap min-time(%)
NC R101 1322.8 0.7 2274.7 0.4 17.6 -0.4 -42.1

R102 1153.8 3.0 1672.3 28.1 52.8 -0.5 -31.3
R103 974.7 31.4 1277.6 321 593.7 -2.3 -25.4
R104 795 5631.1 – 7500 6798.9 -3.1 –
R105 1169.2 4.8 2041.8 9.3 26.9 -0.5 -43.1
RC101 1582.8 17.0 2311.8 3.7 108.0 -13.1 -40.5
RC102 1275.1 52 1753.7 10.2 321.6 -8.7 -33.6
RC103 1072.7 33.4 1464.2 37.2 6821.9 -0.9 -27.4
RC105 1345 7.8 1840 13.4 2358.4 -8.6 -33.2

WC R101 1218.8 1.0 1521.8 0.4 1.2 -3.2 -22.5
R102 1092.8 3.4 1188.7 1.4 6.3 -1.6 -9.6
R103 964.4 74.3 1056.2 20.8 65.4 -1.7 -10.2
R104 769.3 893.6 819.7 108.7 1304.3 0.0 -6.1
R105 1066.8 5.3 1162.5 2.8 17.0 -0.4 -8.6
RC101 1317.6 5.6 1318.1 16.7 110.3 -7.2 -7.3
RC105 1134.1 15.2 1121.7 22.3 68.4 -8.8 -7.8

SC R101 1098.3 1.2 1096.3 0.3 1.0 -1.1 -1.0
R102 929.8 6.7 935.9 1.2 6.8 0.0 -0.7
R103 827.1 57.1 828.3 19.7 71.1 0.0 -0.1
R105 940.6 7.4 934.8 3.7 14.9 -0.8 -0.2
C101 405.4 75.7 407.6 14.9 106.4 0.0 -0.5
C102 366.9 8.4 374.1 9.2 53.8 0.0 -1.9
C103 368.8 770.7 372.7 255.7 699.9 0.0 -1.0
C105 367.9 6.1 369.8 1.7 12.0 0.0 -0.5
RC101 990.9 637.6 1000.8 230.6 2385.9 0.0 -1.0
RC105 940.9 1042.7 947.5 1055.2 6544.4 0.0 -0.7

Note : – indicates that the algorithm has not terminated within 7,500 seconds

74
Chapter 4: Empirical analysis for the VRPTW with a multigraph representation for

the road network

Table 4.8: Results for Letchford et al. [89] instances

Instance min-cost graph min-time graph Multigraph
name Corr Cost Time Cost Time Time Gap min-cost(%) Gap min-time(%)
25_16_NTW NC 1252 0.1 1360 0.1 0.1 0.0 -7.9
25_16_WTW NC 1252 0.1 1360 0.1 0.1 0.0 -7.9
25_16_NTW WC 1252 0.1 1265 0.0 0.1 0.0 -1.0
25_16_WTW WC 1252 0.1 1265 0.1 0.1 0.0 -1.0
25_16_NTW SC 1252 0.1 1252 0.1 0.1 0.0 0.0
25_16_WTW SC 1252 0.1 1252 0.1 0.1 0.0 0.0
50_33_NTW NC 2184 2.2 2193 0.2 0.5 -2.2 -2.6
50_33_WTW NC 2072 91 2094 129.9 398 0.0 -1.1
50_33_NTW WC 2293 0.8 2295 0.6 1.8 0.0 -0.1
50_33_NTW WC Infeasible 2591 0.1 0.6 ** -5.3
50_33_WTW WC Infeasible 2261 7.6 50.6 ** -4.1
50_33_NTW SC 2438 14.5 2445 12.8 19.4 0.0 -0.3
50_33_WTW SC 2104 386.8 2104 260.3 533.9 0.0 0.0
75_50_NTW NC Infeasible 3653 0.2 0.7 ** -8.4
75_50_WTW NC 3316 84.2 3389 15.7 152.3 -2.5 -4.6
75_50_NTW WC 3277 0.9 3315 0.3 1.4 0.0 -1.1
75_50_NTW WC 3262 4.6 3591 0.5 3.2 -2.9 -11.8
75_50_WTW WC 3001 161.7 3251 940.3 353.5 -1.7 -9.2
75_50_NTW SC 3266 0.9 3270 0.3 1.1 0.0 -0.1
75_50_WTW SC 2949 4666.2 2950 4907.3 5305.9 0.0 0.0
100_66_NTW NC Infeasible 3642 1.2 64.7 ** -7.2
100_66_WTW NC 3364 1249.6 3500 7500.2 550.1 -5.4 -9.0
100_66_NTW WC Infeasible 3569 1.1 6.2 ** -5.5
100_66_WTW WC Infeasible 3449 252.3 4391.6 ** -6.6
100_66_NTW WC Infeasible 3591 1.4 13 ** -7.9
100_66_WTW WC Infeasible 3429 43.1 593.6 ** -8.0
100_66_NTW SC 3319 5 3348 1.0 4.5 0.0 -0.9

Note : Infeasible indicates that the algorithm can not find a feasible solution with respect to time windows
constraints

4.5 Computational experiments 75

Table 4.9: Results for LL instances

min-cost graph min-time graph Multigraph
Gap Gap

nodes # cust Corr Inst Cost Time Cost Time Time min-cost(%) min-time(%)
100 25 NC 1 1953.3 0.9 1894.3 0.2 6.3 -6.4 -3.5

2 2109.6 0.2 2360 0.1 1.4 0.0 -10.6
3 2253.7 0.3 2545.1 0.1 5.7 -2.3 -13.5
4 2148.4 0.4 2268.9 0.2 2.8 -0.4 -5.7
5 1890.7 0.4 2089.9 0.2 2.5 -1.1 -10.6

WC 1 1742.8 0.5 1801.5 0.1 2.0 0.0 -3.3
2 1535.8 11.7 1599 1.2 71.5 -1.7 -5.6
3 2109.9 2.6 2065 0.3 3.1 -2.5 -0.4
4 1749.7 0.2 1797.7 0.1 0.8 0.0 -2.7
5 2242.8 7.4 2244.1 2.3 10.4 -3.1 -3.2

SC 1 2075.4 11.2 2084.2 7.3 21.1 0.0 -0.4
2 2108 0.8 2111.8 0.4 1.3 0.0 -0.2
3 1770.8 3.5 1808.1 1.3 9.7 0.0 -2.1
4 2029.1 0.5 2029.1 0.2 0.6 0.0 0.0
5 2108.2 0.2 2122.2 0.1 0.6 0.0 -0.7

50 NC 1 2613.6 233.5 2810.2 21.7 242 -1.9 -8.8
2 3483 1825.2 3404.7 50.4 2296.5 -4.7 -2.5
3 2843.5 179.6 2820 33.5 1045.6 -4.0 -3.2
4 2725.4 92.2 2812.4 63.4 399.9 -4.0 -7.0
5 3031.3 79.3 3156.5 5.6 82.2 -2.7 -6.6

WC 1 2626.8 16.7 2776.3 5.0 104.8 0.0 -5.4
2 2981.9 25.2 2983.4 15.2 245.5 -3.1 -3.1
3 2598.2 25.8 2563.7 13.3 79.1 -3.1 -1.8
4 2398.3 18.3 2516.8 8.9 42.2 0.0 -4.7
5 2427.2 531 2476.2 5.0 291.3 0.0 -2.0

SC 1 3188.1 104.8 3177.9 53.5 1120.1 -0.3 0.0
2 3116.5 205.1 3118.1 62.5 424.2 0.0 -0.1
3 3305.7 21.3 3177.3 2.4 21.4 -4.0 -0.1
4 2977.5 23.6 2993.1 6.5 44.9 0.0 -0.5
5 3352.2 4.1 3365.4 0.9 5.4 0.0 -0.4

200 50 NC 1 4469 84 4396.2 5.6 1659.3 -7.7 -6.2
2 4200.9 105.8 4511.3 5.9 191.3 -4.8 -11.3
3 4458.2 64.8 4619.3 14.4 1045.1 -4.0 -7.4
4 4309.6 719.6 4341.9 128.9 6775.5 -5.6 -6.3

WC 1 4514.3 2544.4 4644 66.2 4378.7 -3.5 -6.1
2 4035.2 13.9 4140.3 18.9 181.7 -3.5 -5.9
3 4221.7 52.3 4270.7 29.6 651.6 -4.1 -5.2
4 3833.2 3501.6 3936.7 24.3 695.4 -3.9 -6.4
5 4746.5 1944.6 4718.9 33.8 453.4 -8.8 -8.3

SC 1 4416.8 937.6 4461 423 3892.8 0.0 -1.0
3 4282.3 163.8 4295.7 46.4 203.3 0.0 -0.3
4 3719.8 92.9 3741.1 25.0 81.8 0.0 -0.6
5 3765.7 59.9 3773.7 13.9 67.5 0.0 -0.2

76
Chapter 4: Empirical analysis for the VRPTW with a multigraph representation for

the road network

Table 4.10: Results for Real instances

min-cost graph min-time graph multigraph
Gap Gap

cust Inst Cost Time Cost Time Time min-cost(%) min-time(%)
Zone 1 25 1 46535 0.2 48705 0.3 1.7 -3.4 -7.7

2 48425 0.2 47570 0.2 0.8 -8.0 -6.3
50 1 81816 1.9 84320 4.3 13.4 -2.3 -5.2

2 86119 2.9 88616 3.7 18.8 -1.6 -4.4
75 1 111283 23.4 116668 21.2 131.4 -0.5 -5.1

2 102448 311.6 108065 11.4 73.4 -0.7 -5.9
Zone 2 25 1 132357 1.5 137335 0.2 1.2 -6.6 -10

2 195992 0.2 211069 0.4 1.1 -1.7 -8.7
50 1 272062 4.0 300284 12.6 22.7 -0.1 -9.5

2 370837 10.4 395135 13.6 13.3 -2.3 -8.3
75 1 436378 599.1 407309 1372.3 174.1 -10.5 -4.1

2 378277.0 55.4 392087.0 23.6 102.6 -0.9 -4.4

Table 4.11: Average gaps (%) obtained with LL instances

min-cost graph min-time graph
nodes # customers NC WC SC NC WC SC
100 25 -2.1 -1.5 0.0 -8.8 -3.0 -0.7
100 50 -3.5 -1.2 -0.9 -5.6 -3.4 -0.2
200 50 -5.5 -4.7 0.0 -7.8 -6.4 -0.5

and-price algorithm with a multigraph representation than with both customer-based graphs.
The average computing time for the solved instances on the multigraph is 461 seconds while
it is 351 and 366 seconds for the same set of instances on the min-cost graph and the min-
time graph respectively. Another important observation is that gaps tend to be smaller when
time windows are wide.

For LL instances, Table 4.9, we see that by using a multigraph, 25 solutions on the min-
cost graph and 42 solutions on the min-time graph are improved. Costs are reduced by up
to 8.8% and 13.5% compared to solutions obtained on the min-cost graph and the min-time
graph respectively. The average savings are 1.2% and 4.2% for instances with 25 customers
and 100 nodes, 1.9% and 3.1% for instances with 50 customers and 100 nodes and 3.5% and
5% for instances with 50 customers and 200 nodes. Clearly, the saving in solution cost in-
creases when the density of customers in the road network decreases. This can be explained
by the fact that by decreasing the density of customers, for the same number of nodes in the
road network, the number of alternative arcs between each pair of nodes in the multigraph
increases (see Table 4.4, thus the solution space is larger and more potentially good solution
may be obtained.

Table 4.11 shows the impact of the correlation magnitude on the reduction of solution
costs for LL instances. Clearly, for the same numbers of nodes and customers, decreasing

4.6 Conclusion 77

the correlation between arc costs and travel times increases the reduction in solution costs for
both customer-based graphs. One also notices that for all classes of instances, cost savings
are higher for solutions on min-time graphs than for solutions obtained on min-cost graphs.

Computing times are higher with the multigraph representation; the branch-and-price
algorithm could not find feasible solutions for 2 out of 45 instances, while by using both
customer-based graphs optimal solutions are always found. The average computing times
with the multigraph, min-cost graph and min-time graph are 606.7, 309.8 and 27.1 seconds,
respectively.

In Table 4.10, we summarize results obtained for real instances. We notice that, by using
a multigraph representation, we obtained negative gaps for all instances compared to both
customer-based graph models. Solution costs are reduced by up to 10.5% compared to solu-
tions on min-cost graphs (instance 1 with 75 customers in the second road network (Zone 2)),
and are reduced by up to 10% compared to solutions on min-time graphs (instance 1 with 25
customers in the second road network (Zone 2)). By using the multigraph, better solutions
are obtained; the average saving in solution cost is about 3.2% for min-cost graphs and 6.6%
for min-time graphs. As observed for other sets of instances, computing times are, generally,
more important with the multigraph model.

Overall, these results illustrate the important impact of the multigraph representation on
VRPTW solution quality. By using a multigraph, significant savings are obtained both with
randomly generated and real instances.

4.6 Conclusion

In this paper, we were interested in the Vehicle Routing Problem with Time Windows on
road networks, where several attributes are defined for each route segment. We proposed to
model the problem using a multigraph representation where we considered between each pair
of customers all possible paths. To investigate the interest of our approach, we developed a
branch-and-price Algorithm for the multigraph based VRPTW. The computational experi-
ments showed the positive impact of the multigraph representation and attractive savings in
solution values for a large number of benchmark instances are attained. It also demonstrated
the tractability of the approach.

On a more general level, our primary interest was to emphasize the limits of the standard
model used to tackle a large class of vehicle routing problems. The VRPTW provided a typi-
cal example, but many other routing problems also involve several attributes on road network
segments. Our results confirm and complete results already reported in Garaix et al. [61] and
in Lai et al. [85] for other categories of problems.

78
Chapter 4: Empirical analysis for the VRPTW with a multigraph representation for

the road network

As a perspective of this work, one may be interested in developing an efficient heuristic
solution method adapted to the multigraph representation. The results obtained here showed
that the multigraph representation increases significantly computing times. Hence, a relevant
issue would be to follow Lai et al. [85] and develop dedicated solution techniques for the
multigraph.

A second perspective would be to investigate the solution of these categories of problems
directly on the original road network without constructing the multigraph. As we mentioned,
a first paper in this regard was proposed by Letchford et al. [89]. In this paper, a numerical
comparison between the two approaches (multigraph approach and road network approach)
is presented. According to Letchford et al. [89], tackling the problem directly with the road
network is more efficient, at least at the root node of the branch-and-price tree (the complete
branch-and-price scheme was not developed). We started some preliminary experiments and
obtained very contrasted results that did not necessarily confirm the conclusions drawn in
Letchford et al. [89]. The reason might be that Letchford et al. [89] consider instances
with a high density of customers and allow non-elementary routes in the linear programming
relaxation. Further analyses and extensive comparisons are thus important to achieve a clear
understanding of the relative efficiency of the two approaches.

Chapter 5

Adaptive Large Neighborhood Search for
the Vehicle Routing Problem with Time
Windows with a multigraph representa-
tion for the road network

This chapter is submitted for a publication in Computers & Operations Research journal.

Abstract

In this paper, we study the Vehicle Routing Problem with Time Windows
(VRPTW) on road networks where several attributes are defined on road seg-
ments. This problem is generally addressed using a complete graph repre-
sentation, so-called customer-based graph. An arc represents the shortest
origin-destination path computed using a single criterion. Such a representa-
tion could be disadvantageous because some alternative routes that propose
different compromises could be discarded from the solution space. Instead, we
use a special representation of the road network called a multigraph. In this
representation, an arc is introduced for every non-dominated path connecting
the same origin-destination nodes. We develop an Adaptive Large Neighbor-
hood Search (ALNS) heuristic in which a special data structure and a dynamic
programming algorithm are used to efficiently address the multigraph setting.
Computational experiments on several set of instances demonstrate the effec-
tiveness of our solution method and the impact of alternative routes on the
solution quality.

Keywords: Routing, Multigraph, Heuristics, Dynamic programming, Road network.

5.1 Introduction

Distribution activity presents one of the most important components in logistic systems. It is
estimated that distribution costs represent almost half of the total logistic costs and that for

80
Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Routing Problem

with Time Windows with a multigraph representation for the road network

some industries it can account up to 70% of the total cost of goods [33]. Therefore, improv-
ing vehicle routing strategies leads to important logistic cost savings.

The Vehicle Routing Problem (VRP) was introduced first by Dantzig and Ramser [31] in
1959. Basically, the VRP aims at computing a set of minimum-cost vehicle routes that start
and end at a depot. Each customer is supplied exactly once and each route satisfies a set of
constraints: vehicle capacity, time windows, route duration, etc.

Most of proposed approaches are based on a complete graph representation for the un-
derlying road network, so-called customer-based graph. A node is introduced for each point
of interest and arcs represent shortest paths linking these points. These shortest paths are,
typically, computed according to a single criterion (travel cost, travel time, distance, etc.).

In many cases, road segments in the original network are defined with several attributes.
Using a customer-based graph in such situations could discard, from the solution space,
some alternative routes with different trade-offs [61, 8]. Few works in the literature evoked
this issue and proposed solution approaches to handle it. One of these approaches consists
in representing the road network with a multigraph: an arc is introduced for each possible
origin-destination path in the original network. This approach was investigated by Garaix
et al. [61] in the context of an On-Demand Transportation Problem. They showed the in-
teresting impact of the multigraph representation on the solution quality. Ben Ticha et al.
[8] generalized these results, they confirmed that the classical complete graph representation
can have a negative effect on the solution quality for vehicle routing problems with several
attributes on road segments.

In this paper, we study the Vehicle Routing Problem with Time Windows (VRPTW)
based on a multigraph representation. The VRPTW aims at planning a set of vehicle routes
that satisfy customer requests within their time windows. We study the problem on a multi-
graph where parallel arcs between two nodes represent non-dominated paths connecting the
two customer locations. These paths are computed according to travel costs and travel times.
We propose a heuristic method based on an Adaptive Large Neighborhood Search (ALNS)
to solve the problem. Such a heuristic has shown its efficiency for a large number of vehicle
routing problems. The main idea in a Large Neighborhood Search (LNS) is to reschedule
some customers service in a solution at each iteration in order to evaluate many different so-
lutions. Thus, different areas from the solution space could be explored. However, as shown
by Garaix et al. [61], even simple operations such as removals and insertions of customers
become difficult to evaluate with a multigraph setting, since the sequence of arcs that links
customers along a route must be re-optimized at each iteration. To illustrate this issue, let us
consider the example presented in Figure 5.1.

In Figure 5.1a, we are given an initial route defined by the sequence of nodes {0, 1, 2, 0}.
Each node is associated with a time window. Parallel arcs between each pair of nodes are

5.1 Introduction 81

0

[0, 100]

1

[20, 50]

2

[40, 70]

0

[0, 100]
(25,30)

(30,20)

(20,80)

(30,50)

(50,20)

(20,50)

(30,30)

(a) Initial route

0

[0, 100]

1

[20, 50]

X

[30, 60]

2

[40, 70]

0

[0, 100]
(25,30)

(30,20)

(10,20)

(12,10)

(10,20)

(13,10)

(20,50)

(30,30)

(b) Route after a customer insertion without re-optimizing the selected arcs

0

[0, 100]

1

[20, 50]

X

[30, 60]

2

[40, 70]

0

[0, 100]
(25,30)

(30,20)

(10,20)

(12,10)

(10,20)

(13,10)

(20,50)

(30,30)

(c) Optimal route after a customer insertion

Figure 5.1: Illustration of a customer insertion

provided, each arc is defined by a cost and a travel time given between parentheses, in this
order (cost, time). Selected arcs in the route are represented with a thick line. Suppose that
we want to evaluate the insertion of customer X between customers 1 and 2. Typically, this
is done by selecting the best arcs linking 1 with X and X with 2 and that ensure the feasibility
of the new route regarding time window constraints. In this case, the obtained route is pro-
vided in Figure 5.1b and has a total cost equals to 80. However, if we recompute the whole
sequence of arcs to be used to link the new sequence of nodes {0, 1, X, 2, 0}, a new route (see
Figure 5.1c) is obtained with a better total cost equals to 60.

Garaix et al. [61] proved that for a given sequence of nodes, computing the optimal se-
quence of arcs is an NP-hard Problem. We develop a new procedure that provides the optimal
routes for new sequences of customers and thus, allows to efficiently evaluate neighbour so-
lutions.

The main contribution of this paper is that it proposes an efficient heuristic method for
the multigraph-based VRPTW. The VRPTW is one of the most studied variant of vehicle
routing problems due to its various applications in practice. Considering alternative paths
permits to address more efficiently real-life applications where some compromises between
the minimum cost and the good service quality, for example, would be interesting for a dis-
tributor. However, such a modelling could induce some computational challenges, especially
in exploring the neighbourhood of a given solution. Applying solution methods with stan-
dard settings could lead to an overestimation of solution costs (as illustrated in Figure 5.1).

82
Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Routing Problem

with Time Windows with a multigraph representation for the road network

We propose a procedure based on an incremental data structure and a dynamic programming
algorithm to efficiently handle the multigraph setting. Another contribution of this paper is
that it presents an empirical analyses on the impact of the multigraph representation on the
solution quality. We conduct a computational study based on several types of benchmark
problems (modified instances from the literature, realistic instances and instances derived
from real data). Obtained results show that using the proposed solution method considerable
savings are obtained in reasonable computing times.

The reminder of this paper is organized as follows. In Section 5.2 we review the related
literature. In Section 5.3, a mathematical formulation for the multigraph based VRPTW is
presented. A solution method is described in Section 5.4, with a focus on main features
proposed to handle the multigraph setting. Finally, computational analyses are conducted
in Section 5.5 to evaluate the performance of the proposed heuristic and the impact of the
multigraph representation on the solution quality.

5.2 Literature review

Since its introduction in 1959 by Dantzig and Ramser [31], the Vehicle Routing Problem was
the subject of intensive research efforts. Many books and articles reviewed this literature and
provided the main properties and proposed solution methods for the classical VRP (e.g. [65],
[128], [87] and [132]).

Due to the large number of applications where routing issues are involved, many VRP
variants with different characteristics and additional constraints were studied in the litera-
ture. One of the most studied VRP variant is the well-known VRPTW. This variant differs
from the classical VRP in that each customer has to be served in a specified time window.
The VRPTW has drawn many researchers’ attention and a large number of solution meth-
ods are proposed in the literature. Baldacci et al. [2] and Cordeau et al. [25] reviewed the
literature related to exact solution algorithms. Kallehauge [78] focused on mathematical for-
mulations in relation with exact methods and gave an analysis of the polyhedral structure of
the VRPTW. Construction heuristics and local-improvement methods were reviewed in [14]
and main meta-heuristics developed in the literature were discussed in [15].

In this work, we consider an additional feature where parallel arcs between each pair of
customers are considered: an arc is introduced for every non dominated path in the underly-
ing road network. These arcs are computed based on the different attributes of road segments
and could provide more flexibility in route construction (for example, a carrier may prefer
faster but more costly connections when delivery times are restricted).

Although original, the use of parallel arcs in the context of vehicle routing problems

5.2 Literature review 83

is not entirely new. Baldacci et al. [3] used the multigraph structure to tackle a Multiple
Disposal Facilities and Multiple Inventory Locations Rollon-Rolloff Vehicle Routing prob-
lem (M-RRVRP). The authors showed that this problem is equivalent to a constrained time
vehicle problem on a multigraph. They proposed an iterative exact method based on a set
partitioning formulation. The considered multigraph in [3] is a representation of the original
graph associated with the M-RRVRP where nodes represent feasible trips and an arc (i, j) is
introduced for every possible sequence of moves that a vehicle can do in order to perform
trip j immediately after trip i.

In a different context, Caramia and Guerriero [17] used a multigraph representation to
tackle a Long-Haul Freight Transportation Problem stimulated by a real-life application and
where routes may be multimodal. Their objective was to determine a transportation plan that
minimizes the total travel time and route cost and maximizes a transportation-mean sharing
index. Based on the network definition, they observed that alternative routes could exist
between two points and that the transportation network could be seen as a multimodal multi-
graph; some arcs with the same endpoints can be traversed using the same transportation
mode but have different costs and travel times and some arcs have the same endpoints but
are associated with different transportation modes. They showed that such structure enlarges
significantly the solution space and makes the definition of the best solution for the multi-
objective scenario very difficult.

A more relevant study was proposed by Garaix et al. [61]. Motivated by the development
of a real-world on-demand transportation system, they sought to efficiently solve a Dial-a-
Ride Problem. They pointed out that when several attributes are defined on road segments,
transforming a VRP on a road network to a standard VRP could be disadvantageous and
may discard potentially good routes from the solution space. They introduced a multigraph
representation where parallel arcs represent the set of Pareto-optimal shortest paths and pro-
posed two solution methods: a simple insertion heuristic and an exact method based on a
branch-and-price procedure. The authors showed that when using multigraph representa-
tion, some difficulties arise. In particular, they showed that defining the optimal route for a
given sequence of customers is NP-hard problem and called it Fixed Sequence Arc Selection
Problem. To solve this problem, they developed a dynamic programming algorithm and em-
bedded it in their heuristic.

A new generalization of the VRPTW was introduced by Reinhardt et al. in [113] in which
additional fixed costs are associated with subsets of edges in the road network. Their study
was motivated by the fact that in some real-life situations, the access to some roads, areas or
bridges implies additional fees. These fees may correspond to toll roads, ferry connections or
special certifications for access to war zones or areas of unrest. In such situations, connection
costs between customer locations do not depend only on traveling costs, but also on buying
or not access to a subset of connections in the transportation network. The authors called this
problem Edge Set Vehicle Routing Problem with Time Windows where edges are regrouped

84
Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Routing Problem

with Time Windows with a multigraph representation for the road network

in different subsets and a fixed additional cost is associated with each subset. Reinhardt et
al. [113] stated that this problem can be modelled using a multigraph representation where
parallel arcs represent edges connecting the same customers but belonging to different edge
subsets. They proposed a Branch-Price-and-Cut method to solve a simplified version of the
problem where only one edge exists between each pair of nodes. The multigraph case was
left as a perspective.

Lai et al. [85] investigated the impact of a multigraph representation on the Time-
Constrained Heterogeneous Vehicle Routing Problem (HVRP). They proposed a tabu search
heuristic that can handle the neighbourhood exploration with multigraph structure. Experi-
ments were carried out on randomly generated instances with two alternative arcs between
each pair of nodes.

Later, Ben Ticha et al. [8] studied the impact of the multigraph representation on the solu-
tion quality for vehicle routing problems when several attributes are defined on road network
arcs. They considered the VRPTW as a test-bed problem. They proposed an exact method
based on a Branch-and-Price procedure. An experimental analysis was conducted on several
types of instances (benchmark instances from literature and instances derived from real road
networks data). They demonstrated the interesting impact of the multigraph representation
on the quality of solution compared to the complete graph representation.

This literature review confirms that only a few papers investigated vehicle routing prob-
lems on multigraphs with relatively different goals. Garaix et al. [61], Lai et al. [85] and
Ben Ticha et al. [8] confirmed that the customer-based graph can lead to an overestimation
of the solution cost for vehicle routing problems when several attributes are defined on road
segments. They showed that the multigraph representation has an interesting impact on the
solution quality.

In this study, we propose to develop an efficient solution method and to conduct further
analyses. Note that Garaix et al. [61] and Ben Ticha et al. [8] based their conclusions on
exact solutions. The VRPTW is one of the most difficult optimization problems and the
multigraph structure could increase significantly its complexity. Consequently, exact solu-
tion methods may fail to solve realistic-sized problems. Therefore, we propose a heuristic
method that can address efficiently the multigraph structure. Lai et al. [85] based their com-
parison on results obtained with a tabu search heuristic and randomly generated instances
with only two alternative arcs between each two nodes. In this work, we propose to conduct
an intensive experimental study based on different sets of instances: modified benchmarks
from the literature and instances derived from real road networks.

As we mentioned before, when using the multigraph representation, applying an ALNS
scheme with standard settings could be misleading. An important issue is how to evaluate
neighbors solutions: each solution consists of new sequences of customers for which best

5.3 Problem Formulation 85

arc selections have to be computed. This task involves an NP-hard problem. Garaix et al.
[61] and Lai et al. [85] proposed, respectively, an exact and heuristic algorithms to define arc
selection decisions. Using these algorithms, the whole sequence of arcs is recomputed each
time a new sequence of nodes has to be evaluated. This may be very time consuming. In
order to avoid this issue, we develop a new procedure in which only local decisions related
to arc selection have to be evaluated. This procedure (described in section 5.4.1) is based on
an incremental data structure and a dynamic programming algorithm.

5.3 Problem Formulation

The multigraph-based VRPTW is defined on a directed multigraph G = (V, A) consisting
of V a set of n + 2 nodes and A a set of arcs. G derives from a road network as follows:
nodes 0 and n + 1 represent the depot location and a node i is introduced for each customer
location 1 ≤ i ≤ n. The multi-arc set A contains parallel arcs between every pair of nodes:
A = ∪

(i, j)∈V2
A(i, j) where A(i, j) = {(i, j)p, p = 1, . . . ,mi j} represents the set of mi j alternative paths

connecting two customer locations i and j in the underlying road network. All feasible routes
correspond to paths in G starting at node 0 and ending at node n + 1.

We associate with each customer node a demand di, a time window [ei, li] and a service
time sti (with d0 = dn+1 = 0, e0 = en+1, l0 = ln+1, and st0 = stn+1 = 0). We associate with each
arc (i, j)p a travel cost c(i, j)p and a travel time t(i, j)p that represent, respectively, the cost and
the time needed to go from customer location i to customer location j through the associated
path indexed by p in the road network. We consider a homogeneous fleet K with K vehicles
and a loading capacity Q. Our objective is to compute a set of feasible routes (that satisfy
customer time windows, vehicles capacity) that serves each customer exactly once and that
minimizes the total travelling cost.

We define the following two decision variables: xk
(i, j)p: is a binary variable equals to 1

if vehicle k travels on arc (i, j)p and equals to 0 otherwise, and tk
i : denotes the starting time

of service at customer i if it is served by vehicle k. The multigraph-based VRPTW can be
formulated as follows:

86
Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Routing Problem

with Time Windows with a multigraph representation for the road network

Min
∑
k∈K

∑
(i, j)p∈E

c(i, j)p xk
(i, j)p (5.1)

s.t.
∑
k∈K

∑
j∈V

|A(i, j) |∑
p=1

xk
(i, j)p = 1 i ∈ C (5.2)

∑
j∈V

|A(i, j) |∑
p=1

xk
(j,i)p −

∑
j∈V

|A(i, j) |∑
p=1

xk
(i, j)p = 0 i ∈ V, k ∈ K (5.3)

∑
i∈V

|A(0,i) |∑
p=1

xk
(0,i)p = 1 k ∈ K (5.4)

∑
i∈V

|A(0,i) |∑
p=1

xk
(i,n+1)p = 1 k ∈ K (5.5)

∑
i∈V

∑
j∈V

|A(i, j) |∑
p=1

dixk
(i, j)p ≤ Q k ∈ K (5.6)

tk
i + si + t(i, j)p xk

(i, j)p ≤ tk
j + M(1 − xk

(i, j)p) i, j ∈ V, 1 ≤ p ≤ |A(i, j), k ∈ K (5.7)

ei ≤ tk
i ≤ li i ∈ V, k ∈ K (5.8)

xk
(i, j)p ∈ {0, 1} i, j ∈ V, 1 ≤ p ≤ |A(i, j)|, k ∈ K (5.9)

tk
i ≥ 0 i ∈ V, k ∈ K (5.10)

The objective in (5.1) is to minimize the total traveling cost. Constraints (5.2) ensure that
each customer is visited by a single vehicle exactly once. Constraints (5.3) ensure that each
vehicle arriving at a customer leaves to another and constraints (5.4) and (5.5) ensure that
each vehicle starts at the depot (node 0) and finishes at the depot (node n + 1). Inequalities
in (5.6) guarantee that the total demand served through the vehicle route k do not exceed its
capacity. Constraints (5.7) establish the service timetable at customers in the same route and
permit to eliminate sub-tours. Finally, constraints (5.8) guarantee the respect of time win-
dows. Constraints (5.9) and (5.10) define decision variables.

5.4 Solution Method

The VRPTW has been intensively studied and many heuristic optimization approaches have
been developed in the literature [14]. Most of these heuristics are based on local search pro-
cedures that start from an initial solution and improve it iteratively by exploring, at each step,
close solutions. To evaluate neighbouring solutions, small changes are made to the current
one, by moving one or more customers, exchanging two or more services between two routes,

5.4 Solution Method 87

etc. A huge number of solutions can be explored in a short time. Given that the VRPTW
is a highly constrained optimization problem, a local search approach may have difficulties
in moving from one promising area of the solution space to another. Obtained solutions are
generally local optima and have a tight structure. To avoid getting stuck in local optima, we
opt for the use of move-generation mechanisms that can search a larger neighbourhood, so
that we can explore different promising areas from the solution space.

Our heuristic is based on an Adaptive Large Neighborhood Search (ALNS) procedure,
introduced by Ropke and Pisinger [118] to solve the Pickup and Delivery Problem with
Time Windows (PDPTW). The ALNS heuristic is itself a variant of the Large Neighborhood
Search heuristic (LNS) proposed by Shaw [124] to solve the VRPTW. The main idea of the
LNS heuristic is to rearrange, at each iteration, a large part of a solution using a combination
of a destroy and a repair functions. The destroy function consists in removing a predefined
number of customers. The repair function aims to reinsert the removed customers in order to
create a new feasible solution. In a local-search scheme, the algorithm examines the neigh-
bourhood of the best solution found at each iteration. However, the LNS may search in the
neighbourhood of non-improving solutions when such solutions are accepted in the search
procedure. The goal of this strategy is to avoid premature convergence toward local optima
and to force search procedure to visit different areas from the solution space. While the LNS
heuristic uses only one destroy procedure and one repair procedure, the ALNS uses several
removal and insertion heuristics and applies them alternatively using a selection mechanism
that considers the statistics obtained during the search, hence the use of the term Adaptive.
The general scheme of the ALNS heuristic is described by Algorithm 5.1.

Algorithm 5.1 Adaptive Large Neighborhood Search
1: Compute an initial solution solution scurr

2: Initialize sbest ← scurr

3: while stopping criteria not met do
4: Select a destroy procedure d ∈ D and a repair procedure r ∈ R
5: s← r(d(scurr))
6: if accept(s, scurr) then
7: scurr ← s
8: if c(s) < c(sbest) then
9: sbest ← s

10: end if
11: end if
12: end while
13: return sbest

Line 5 in Algorithm 5.1 specifies the move generation function i.e. the function used
to search the neighborhood of a solution scurr. This function consists of a sequence of el-
ementary operations: removal operations in the destroy phase and insertion operations in

88
Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Routing Problem

with Time Windows with a multigraph representation for the road network

the repair phase. Elementary operations involves different types of decisions: assignment
and sequencing decisions i.e. allocating customers and defining service order for each ve-
hicle (essentially for insertion operations) and scheduling decisions i.e. computing the visit
timetable for customers in the same route. When tackling the standard VRPTW, scheduling
decisions are trivially deduced once other decisions are fixed. This property doesn’t hold
using a multigraph representation. Additional decisions related to the selection of arcs to be
used along each route have to be taken. Garaix et al. [61] showed that for a given sequence
of nodes, computing the optimal sequence of arcs is an NP-hard Problem so-called Fixed
Sequence Arc Selection Problem (FSASP). In order to correctly define scheduling decisions
for the mutligraph case, we propose a new procedure based on an incremental data structure
and a dynamic programming algorithm. This procedure provides the optimal selection of
arcs to be used to link a new sequence of customers obtained during the search scheme.

In the remainder of this section, we first introduce the data structure and the algorithm
used to handle arc selection decisions in Section 5.4.1. In Section 5.4.2 we present an
Adapted Savings Algorithm that we use to construct an initial solution. Removal and in-
sertion heuristics are then described in Sections 5.4.3 and 5.4.4. In Section 5.4.5, we present
a selection mechanism that we use to determine the removal and insertion heuristics to apply
at each iteration. Finally, we present the acceptance criterion in Section 5.4.6.

5.4.1 Arc selection procedure

In neighborhood search heuristics for VRP, elementary operations are frequently performed
in the search procedure. Here, a number of customers are removed then reinserted at each
iteration. As mentioned before, these operations, in presence of parallel arcs, involve an NP-
hard problem. For every new sequence of nodes, we have to solve a FSASP i.e., we have
to determine the sequence of arcs to link each pair of consecutive nodes. To deal with this
problem, Garaix et al. [61] proposed a dynamic programming algorithm based on the ap-
proach introduced by Irnich and Desauchiers [74] (to solve the Shortest Path Problem with
Resources Constraints). Later, a heuristic method was proposed by Lai et al. [85] based on a
local search procedure.

Note that, with both methods cited above, one has to recompute the set of arcs to be used
for every new sequence of nodes. In a LNS scheme, a large number of elementary moves
have to be evaluated at each iteration and an arc selection procedure has to be applied for
each evaluation. This may be time consuming even using a heuristic procedure. In this sec-
tion, we propose a procedure based on an incremental data structure to handle this issue, so
that we do not have to recalculate the whole sequence of arcs when evaluating or performing
an elementary operation such as removal or insertion of a customer.

Our data structure is based on a bidirectional labeling approach. Each node v ∈ V is

5.4 Solution Method 89

associated with a set of forward and backward labels. Given a sequence of nodes S to be
visited in the same route, a forward label associated with a node v ∈ S represents a partial
route from the depot location to v and a backward label represents a partial route from v to
the depot location. A label is defined with the following information L = (c, t, q, v) with:

• c: travel cost of the partial route represented by the label;

• v: last (resp. first) node visited along the partial route represented by the forward (resp.
backward) label;

• t: earliest (resp. latest) starting service time at node v in the partial route represented
by the forward (resp. backward) label;

• q: total demand to be delivered along the partial route represented by the label.

In the following, we denote by S = (v0, v1, ..., vp+1) a sequence of nodes visited along
the same route where vp+1 and v0 correspond to depot location. GS = (VS , AS) denotes the
linear multigraph obtained from G by considering in AS only arcs connecting each pair of
consecutive nodes in S and VS = {v0, ..., vp+1}. Let R(S) denotes the optimal route induced
by the sequence S i.e., R(S) corresponds to the least cost selection of arcs from AS such that
each customer is visited within his time window along R(S).

Given an initial solution, our procedure starts by computing the set of forward and back-
ward labels arriving at each node in V using Algorithms 5.2 and 5.3. An Adapted Savings
algorithm (see Section 5.4.2) is used to construct an initial solution.

Forward and backward labels are stored and maintained in vectors (resp., FL and BL)
during the entire search procedure. For each node i, FL[i] and BL[i] are two lists of la-
bels sorted in a non-decreasing order of the travel cost c. We denote by FL[i]k (respectively
BL[i]k) the kth label in FL[i] (in BL[i]) according to this order. Label FL[i]0 and FL[i]N fi ,
where N fi = |FL[i]|, represent, respectively, the cheapest and the fastest partial routes arriv-
ing at i in the the predefined sequence of nodes.

All these labels are computed in the initialization step of the ALNS procedure (Lines 1
and 2 in Algorithm 5.1). Then, they are maintained and updated during the search.

Using this data structure, removal and insertion operations performed by the move gen-
eration function (Line 5 in Algorithm 5.1) are efficiently handled. Indeed, to evaluate, for
example, the impact of removing a node vk from a sequence of nodes S , we do not have to
compute the route cost associated with the new sequence. The removal saving is obtained by
just examining labels associated with nodes vk−1 and vk+1. In the following, we detail how
elementary operations are evaluated and performed.

90
Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Routing Problem

with Time Windows with a multigraph representation for the road network

Algorithm 5.2 Forward labelling Algorithm
1: Input : GS = (VS , ES)
2: Output : Vector of lists of forward labels FL
3: Initialize FL[v0]← (0, 0, 0, v0) forward label
4: for k = 0 to p do
5: for all labels L = (c, t, q, vk) ∈ FL[vk] do
6: for all arcs a = (vk, vk+1) ∈ AS do
7: if t′ = t + stvk + ta ≤ lvk+1 then
8: L′ = (c + ca,max{t′, evk+1}, q + dvk+1 , vk+1)
9: if L′ is not dominated by any label in FL[vk+1] then

10: FL[vk+1]← FL[vk+1] ∪ {L′}
11: end if
12: if a label L′′ ∈ FL[vk+1] is dominated by L′ then
13: FL[vk+1]← FL[vk+1] \ {L′′}
14: end if
15: end if
16: end for
17: end for
18: end for
19: return FL

Algorithm 5.3 Backward labelling Algorithm
1: Input : GS = (VS , ES)
2: Output : Vector of lists of backward labels BL
3: Initialize BL[vp+1]← (0, lvp+1 , 0, vp+1) label
4: for k = p downto 0 do
5: for all label L = (c, t, q, vk+1) ∈ BL[vk+1] do
6: for all arc a = (vk, vk+1) ∈ AS do
7: if t′ = t − ta − stvk ≥ evk then
8: L′ = (c + ca,min{t′, lvk}, q + dvk , vk)
9: if L′ is not dominated by any label in BL[vk] then

10: BL[vk]← BL[vk] ∪ {L′}
11: end if
12: if A label L′′ ∈ BL[vk] is dominated by L′ then
13: BL[vk]← BL[vk] \ {L′′}
14: end if
15: end if
16: end for
17: end for
18: end for
19: return BL

5.4 Solution Method 91

5.4.1.1 Removal operation

For a removal operation, we need to evaluate the saving in route cost and once a candidate
move is selected, we need to update labels for nodes in the modified sequence.

The removal saving of a customer vk from the route defined by the sequence S is given
by the difference between the cost associated with R(S) and the cost associated with route
R(S \ {vk}). Using our data structure, this can be computed as follows:

1. Extend forward labels in FL[vk−1] along parallel arcs (vk−1, vk+1)p and store obtained
labels in a new list FL′vk+1

in the non-decreasing order of travel costs;

2. From labels in FL′vk+1
and in BL[vk+1] select the combination (L f , Lb) with L f ∈ FL′vk+1

,
Lb ∈ BL[vk+1] and t(L f) ≤ t(Lb) that minimizes c(L f) + c(Lb);

3. Return c(R(S)) − (c(L f) + c(Lb)) as removal saving for customer vk

Once a customer vk is selected to be removed, we have to update forward labels and back-
ward labels. For the modified sequence, forward labels arriving at nodes vi; i = 1, ..., k − 1
remain unchanged. Forward labels at vk+1 are updated using labels in FLvk+1 and forward
labels at nodes vi; i = k + 2, ..., p + 1 are recomputed using Algorithm 5.2. Similarly, only
backward labels arriving at nodes vi; i = k − 1, ..., 0 are recomputed using Algorithm 5.3.

5.4.1.2 Insertion operation

To evaluate the insertion cost of a customer u in a route R(S) between two customers vk

and vk+1, we have, first, to ensure the feasibility of such insertion with respect to capacity
and time window constraints. Capacity constraints could be checked in a more global level,
the insertion of u in any position in R(S) is feasible in term of capacity if d(S) + du ≤ Q
where d(S) =

∑
v∈S dv. In this case, the insertion of customer u in a position vk (between

customers vk and vk + 1) is feasible if there is a partial route that visits u immediately after
vk, arrives at u not later than lu then reaches vk+1 at time t ≤ BL[vk+1]Nbvk+1

; Nbvk+1 = |BL[vk+1]|.

The insertion cost of a customer u in a route R(S) at position vk is computed as follows:

1. Extend forward labels in FL[vk] along parallel arcs (vk, u)p and store obtained labels in
a new list FL′u in a non-decreasing order of travel costs;

2. Extend backward labels in BL[vk+1] along parallel arcs (u, vk+1)p and store obtained
labels in BL′u in the non-decreasing order of travel costs;

3. From labels in FL′u and in BL′u select the combination (L f , Lb); L f ∈ FL′u and Lb ∈ BL′u
such that t(L f) ≤ t(Lb) that minimizes c(L f) + c(Lb);

92
Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Routing Problem

with Time Windows with a multigraph representation for the road network

4. Return (c(L f)+c(Lb))−c(R(S)) as insertion cost of customer u in route R(S) at position
vk

As in the removal operation, once an insertion of a customer u in a route R(S) at a posi-
tion vk has to be performed, we have to update only a subset of forward and backward labels
for the modified sequence S ′ = (v0, ..., vk, u, vk+1,, vp+1). The procedure updates forward
labels in FL[u] using labels in FL′u and recomputes only forward labels arriving at nodes vi

i = k + 1, ..., p + 1, using Algorithm 5.2. Similarly, backward labels in BL[u] are updated
using BL′u and only backward labels arriving at nodes vi i = k, ..., 0 are recomputed using
Algorithm 5.3.

5.4.2 Initial Solution

To provide an initial solution to our heuristic, we propose to adapt Clark and Wright’s Sav-
ings Algorithm. It is a heuristic algorithm introduced by Clarke and Wright [20] for the
classical vehicle routing problem. This algorithm is based on the so-called savings concept
that consists in expressing the cost saving obtained by concatenating two routes into one fea-
sible route.

Consider two nodes i and j served, initially, in two different routes such that i is the last
node served in its route that we denote by R(i) and j is the first to be served in R(j). By
merging routes R(i) and R(j) such that j is visited immediately after i, the occurred saving
savi j is given by:

savi j = c(i,0) + c(0, j) − c(i, j) (5.11)

The higher is the value of savi j, the more attractive is to visit points i and j in the same
route.

With the multigraph setting, the saving associated with a pair of nodes (i, j) and induced
by merging R(i) and R(j) depends on the choice of three arcs: the arc (i, 0)x connecting i the
last customer in R(i) to the depot location 0, the arc (0, j)y connecting 0 to j the first customer
visited in R(j) and the arc (i, j)z used to link i and j in the new route. For this, we define a
savings as follows:

savx,y,z
i j = c(i,0)x + c(0, j)y − c(i, j)z (5.12)

Note that for a saving savx,y,z
i j , routes R(i) and R(j) are concatenated only if the following

conditions are satisfied:

1. This can be done without modifying an already established connection between two
customers;

2. The obtained route does not violate capacity and time windows constraints.

5.4 Solution Method 93

The first condition ensures that decisions made so far cannot be reconsidered. These de-
cisions correspond to services sequencing and the selection of arcs used to link consecutive
customers. Consequently, when constructing a route R by concatenating R(i) and R(j) we
don’t have to recompute the sequence of arcs linking customers in R. This sequence of arcs
is given by {(u, v) ∈ A; (u, v) ∈ R(i), v , 0} ∪ {(i, j)} ∪ {(u, v) ∈ A; (u, v) ∈ R(j), u , 0}.
The second condition indicates that only feasible routes are accepted. For a concatenation
associated with a savings savx,y,z

i j , we need to make sure that time window constraints are re-
spected for all customers initially in route R(j). For this, we use the data structure proposed
in Section 5.4.1. Due to the first condition, only one forward label and one backward label
are associated with each customer in the solution. In this case, the concatenation associated
with a savings savx,y,z

i j is feasible if t(FL[i]) + t(i, j)z ≤ t(BL[j]) and q(FL[i]) + q(BL[j]) ≤ Q.

The scheme of the Adapted Savings Algorithm is described in Algorithm 5.4.

Algorithm 5.4 Multigraph Savings Algorithm
1: Input : G = (V, A) a multigraph
2: Output : a solution s
3: for all i ∈ V/{0} do
4: Assign i to a route R(i)
5: s← s ∪ {R(i)}
6: end for
7: Compute forward and backward labels associated with each route
8: for all pair of nodes (i, j) do
9: for all (x, y, z) such that (i, 0)x ∈ R(i), (0, j)y ∈ R(j) and (i, j)z ∈ A do

10: savx,y,z
i j = c(i,0)x + c(0, j)y − c(i, j)z // Compute savings

11: end for
12: end for
13: Sort the list of savings in the descending order
14: for all Savings savx,y,z

i j do
15: if i is the last node visited in R(i) and j is the first node visited in R(j) then
16: if t(FL[i]) + t(i, j)z ≤ t(BL[j]) and q(FL[i]) + q(BL[j]) ≤ Q then
17: Combine R(i) and R(j) in a new route r = R(i) ⊕ R(j)
18: Update forward labels for all customers u ∈ R(j)
19: Update backward labels for all customers v ∈ R(i)
20: s← s ∪ {r}/{R(i),R(j)}
21: end if
22: end if
23: end for
24: return s

In the general scheme of the ALNS heuristic, we apply Algorithm 5.4 to construct an
initial solution s. Then in the initialization step (line 2 in Algorithm 5.1), we update our data

94
Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Routing Problem

with Time Windows with a multigraph representation for the road network

structures (forward and backward labels) for all node sequences in s using Algorithms 5.2
and 5.3.

5.4.3 Removal Heuristics

The destroy function in the move generation procedure starts by selecting the customers to
be removed. These customers are selected according to a cost that depends on the evaluation
strategy. We propose three removal heuristics based on different evaluation strategies. Re-
call that for all heuristics removing operations are evaluated using the data structure and the
procedure described in Section 5.4.1.1. Once customers to be removed are selected, forward
and backward labels associated with current solution have to be updated.

A removal heuristic takes as inputs a feasible solution s and a number q of customers to
be removed, and returns a set of routes and a set of q removed customers.

5.4.3.1 Adapted Shaw removal heuristic

This heuristic was first proposed by Shaw [124] for the VRPTW and next adapted by Ropke
and Pisinger [118] for the PDPTW. The main idea is to remove ”similar” costumers, so that
we may obtain new, perhaps, better solutions after the reinsertion. Due to the tight structure
of VRPTW solutions, removing very different customers might force the repair function to
reinsert these customers at their original positions.

For a given solution, the similarity of two customers i and j is evaluated using a related-
ness measure R(i, j). The lower R(i, j) is, the more related are the two customers. R(i, j) is
defined as follows:

R(i, j) = ϕc(i j)0 + ω|ti − t j| + α|di − d j| + β(1 −
|RCi ∩ RC j|

min{|RCi|, |RC j|}
) + Xi j (5.13)

where c(i, j)0 denotes the cost of the less costly arc linking i to j, ti denotes the service starting
time at customer i, di is the demand of customer i, RCi represents the set of positions where
i can be inserted in the current solution and Xi j ∈ {0, 1} indicates if i and j are served by the
same vehicle. ϕ, ω, α and β represent weights associated to different terms and are in [0, 1].
The term weighted by ϕ measures the cost, the term weighted by ω measures the degree
of the similarity in service time, the term weighted by α evaluate the similarity in demand
and the term weighted by β measures the relatedness in the possible deviation in the current
solution to reinsert i and j.

It is clear that except for the term weighted by β, all terms in R(i, j) are directly given
from the problem data (for c(i j)0 and di) or from the solution structure (for ti and Xi j). The

5.4 Solution Method 95

main purpose of introducing the term weighted by β is to select customers with "similar
flexibility" and thus the repair function would be able to find a different solution, probably,
improving the current solution. In the other hand, computing RCi for every customer i could
be time consuming as we need to check all possible insertion positions for i in each route.
A sensitivity analysis of the impact of this term on the heuristic performance is proposed in
Section 5.5.4.

The heuristic starts by selecting, randomly, a customer to remove. Then, it selects sub-
sequently the most similar customer to the already removed ones. We introduce some ran-
domness in the selection of customers to be removed using a parameter ps. The procedure is
described in Algorithm 5.5.

Algorithm 5.5 Adapted Shaw Removal Heuristic
1: Input : solution s and q ∈ IN
2: Parameter : ps ∈ IR+

3: Output : set of customers to be removed< = ∅

4: Randomly select a customer c and remove it from solution s
5: < = {c}
6: while |<| < q do
7: Randomly select a customer c ∈ <
8: Sort customers i ∈ s \< in an array Cust according to decreasing R(c,Cust[i]) values
9: Choose a random value y ∈ [0, 1)

10: Select the ith customer in Cust where i = byps ∗ |Cust|c
11: < = <∪ {Cust[i]}
12: end while
13: return <

5.4.3.2 Random Removal Heuristic

As in [118], this removal heuristic simply selects q customers in a random way and removes
them from the solution.

5.4.3.3 Worst Removal Heuristic

It was introduced by Ropke and Pisinger [118]. Basically, it tries to remove the misplaced
customers in the current solution. To do this, we define the marginal cost of serving a cus-
tomer i in a solution s as cost(i, s) = f (s) − f−i(s) where f (s) and f−i(s) are solution costs
before and after removing customer i from solution s. In order to rearrange the solution and
obtain a better solution cost, we remove customers with the highest marginal costs cost(i, s)

96
Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Routing Problem

with Time Windows with a multigraph representation for the road network

and reinsert them in different positions.

As in the Show Removal heuristic, we introduce some randomness in the selection of
the customer to remove using a parameter pw.

The worst Removal heuristic proceeds as follows:

Algorithm 5.6 Worst Removal Heuristic
1: Input : solution s and q ∈ IN
2: Parameter : pw ∈ IR+

3: Output : set of customers to be removed< = ∅

4: Compute cost(i, s) = f (s) − f−i(s) ∀i ∈ V \ {0}
5: < = ∅

6: while |<| < q do
7: Sort customers i ∈ s \ < in an array Cust according to decreasing cost(i, s)
8: Choose a random value y ∈ [0, 1)
9: Select the ith customer in Cust where i = bypw ∗ |Cust|c

10: < = <∪ {Cust[i]}
11: Update cost(i, s) ∀i ∈ s \ <
12: end while
13: return <

5.4.4 Insertion Heuristics

The repair function consists in rescheduling the removed customers into the fixed routes. In
our search scheme, we use four different insertion strategies: two strategies are proposed
by Ropke and Pisinger [118] and are updated to handle the multigraph setting (5.4.4.1 and
5.4.4.2), a simple strategy used to diversify the search procedure (5.4.4.3) and a non-myopic
heuristic based on a look-ahead strategy (5.4.4.4).

Note that all presented heuristics perform on q iterations: at each iteration a customer is
selected according to a cost that is defined depending on the insertion strategy. Typically,
insertion costs are computed in preprocessing and then updated during the insertion proce-
dure. To do this, we use the data structure and procedure described in Section 5.4.1. At each
iteration, a customer is inserted. Thus a new route is constructed and forward and backward
labels are updated as described in Section 5.4.1.2.

5.4 Solution Method 97

5.4.4.1 Greedy Insertion heuristic

It is a gluttonous construction heuristic. At each iteration, the heuristic selects the customer
to insert as follows:

1. For each customer i ∈ < and for each route k ∈ K , we define ∆ fi,k as the cost induced
by inserting customer i into route k in its best position.

2. For each customer i, we define the insertion cost ci as the change in the solution cost
when i ∈ < is inserted at its best position over all routes, i.e. ci = min

k∈K
{∆ fi,k}.

3. The customer i∗ that minimizes insertion cost is selected and inserted it at its best
position,

ci∗ = min
i∈<
{ci} (5.14)

Note that, to compute ∆ fi,k for a customer i ∈ <, we have to evaluate the insertion cost
for every possible insertion position of i in route k. Using algorithms proposed in [61] and in
[85], a new sequence of arcs have to be computed for every possible position which could be
time consuming. This issue is efficiently handled by our procedure.

In each iteration (1-3), only one route is changed. So, we do not have to recalculate in-
sertion costs in other routes, and only insertions in the modified route are evaluated in next
iterations.

5.4.4.2 Regret insertion heuristic

The main idea of this insertion heuristic is to improve the basic greedy heuristic by integrating
a sort of look-ahead information in the process of selecting the customer to insert at each
iteration. This is performed by evaluating the insertion of a costumer i ∈ < as the difference
between the cost of planning i in its best route k1 ∈ K and the cost of planning i in its second
best route k2 ∈ K. Let aik be an integer value such that 1 ≤ aik ≤ |K| that denotes the route
for which the customer i has the kth lowest insertion cost. Thus, the cost of the best insertion
for a customer i defined in the greedy heuristic is given by ci = ∆ fiai1 . The regret value is,
then, given by ri = ∆ fiai2 − ∆ fiai1 . This value measures, at each iteration, the regret of not
inserting a customer i into its best route and inserting it in its second-best route. So, in each
iteration, the regret heuristic selects the customer i∗ that maximizes the regret value

ri∗ = max
i∈<

ri (5.15)

5.4.4.3 Simple insertion heuristic

It is a simple construction heuristic that assigns removed customers to new routes in a greedy
way with respect to the fleet size. The insertion procedure is shown in Algorithm 5.7.

98
Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Routing Problem

with Time Windows with a multigraph representation for the road network

Algorithm 5.7 Simple Insertion Heuristic

1: Input : a set of removed customers< and a set of fixed routes FR = {r route ; r ∈ s\<}

2: Compute cost(i, s) = f (s) − f−i(s) ∀i ∈ V \ {0}
3: set of new routes NR = ∅

4: while |<| > 0 do
5: Select a customer i ∈ <
6: if |FR| + |NR| < |K| then
7: Assign i to a new route r
8: NR = NR ∪ {r}
9: else

10: Select a route r ∈ NR
11: Assign i to a r
12: end if
13: < = < \ {i}
14: end while
15: Construct a new solution snew = FR ∪ NR
16: return snew

The aim of this heuristic is to generate new solutions which, probably, doesn’t improve
the current solution but may prompt the search procedure to explore different areas from the
solution space. In addition, it could be more interesting to serve a customer in an independent
route in some cases.

5.4.4.4 Non-myopic insertion heuristic

This heuristic consists in defining the cost of an insertion as the sum of its "local cost" (the
change in the objective function value by inserting the customer in its best position over all
routes) and a charge that estimates the impact of its insertion on other insertions that would
be performed in the next iterations.

Let ci denotes the insertion cost of customer i ∈ < in the current solution s computed as in
the greedy insertion heuristic and let ci

j denotes the insertion cost of customer j ∈ <, j , i
in the new solution si obtained after inserting i at its best position. In the non-myopic inser-
tion heuristic, we define the impact value c∗i of a customer i as c∗i = ci +

∑
j∈<; j,i

(ci
j − c j). For

a non already inserted customer j the quantity ci
j − c j measures how the insertion of i could

impact the insertion of j. In each iteration, the insertion procedure selects the customer that
minimizes c∗i and insert it at its minimum cost position.

5.4 Solution Method 99

Note that in order to determine the impact value of a customer i, we only change one route
r and we have to evaluate only change in cost ∆ f j,r induced by inserting customer j ∈ < in
r; if ∆ f j,r < c j, the insertion of i in r results in a best insertion cost for j in a subsequent
iteration and the impact value for i is reduced by c j − ∆ f j,r, but if ∆ f j,r ≥ c j the insertion of i
in r has an impact on the insertion cost for j equals to c j − ∆ f j,r ≥ 0.

Contrary to the greedy insertion heuristic that inserts at each iteration the customer with
the lowest "local insertion cost" ci regardless other insertions, the non-myopic heuristic may
prefer to insert a customer j with a higher insertion cost c j ≥ ci but with a lower impact on
next insertions

∑
k∈<;k, j

(c j
k − ck) ≤

∑
k∈<;k,i

(ci
k − ck) such that c∗j ≤ c∗i .

One could expect that this insertion strategy would be time consuming as a forecast is
performed each time a customer insertion is evaluated. On the other hand, such method
would have an interesting impact on the search scheme as it may anticipate "bad" insertion
operations that would tighten the solution structure and constrict subsequent insertions. To
investigate these issues, some sensitivity analysis are presented in Section 5.5.4.

5.4.5 Adaptive Strategy for the control of the Removal/Insertion op-
erators

In Sections 5.4.3 and 5.4.4, we defined three removal heuristics and four insertion heuristics
that can be used in the search procedure. Naturally, different types of instances and even dif-
ferent solutions for the same instance can be handled by different combinations of removal
and insertion heuristics. The success of the method depends on when to use each heuristic,
but it is difficult to determine a priori which removal and insertion strategies would be more
efficient for a given instance. For this purpose, we propose to use a control strategy intro-
duced by Ropke and Pisinger [118] that defines which heuristic to be used at each step of the
search procedure in an adaptive way.

The algorithm assigns a weight w j; j = 1, ..., 6 to each heuristic and periodically adjusts
them during the search. These weights reflect the success of every heuristic for earlier it-
erations. The selection of removal and insertion heuristics is made using a roulette wheel
principle.

The selection mechanism proceeds as follows:

1. The entire search is divided into a number of segments. A segment is a number of
iterations;

2. All weights are, equally, initialized at the beginning of the search scheme;

100
Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Routing Problem

with Time Windows with a multigraph representation for the road network

3. For each heuristic, the algorithm defines a score which measures how well the heuristic
has performed along the last segment. The scores of all heuristics are set to zero at the
beginning of each segment. At each iteration, we increase the scores of the applied
removal and insertion heuristics by:

• µ1 : if the remove-insert operation results in a new global best solution;

• µ2 : if the obtained solution is accepted and improves the current solution;

• µ3 : if the obtained solution is accepted but has a total cost worse than the one of
the current solution.

4. At the end of each segment, the algorithm computes new weights that are used to select
the heuristics in the next segment of the search. Let wi, j be the weight of a heuristic i
used in the last segment j. The new weight wi, j+1 of the heuristic i is computed by:

wi, j+1 = wi, j ∗ (1 − r) + r ∗
πi

ηi
(5.16)

where πi is the total score of the heuristic i computed in the segment j, ηi represents
the number of times heuristic i is applied during segment j and r is a reaction factor
which controls how the adjustment algorithm reacts to the effectiveness of the heuristic
during the last segment.

Note that, the computed scores does not only evaluate the attitude of heuristics to improve a
solution but also enhance the heuristics that can diversify the search, and these are rewarded
by µ3.

5.4.6 Acceptance criteria

If the ALNS heuristic accepts only solutions improving the current solution, it could, prob-
ably, get trapped into local optima. To avoid such a situation, we use an acceptance criteria
inspired from the simulated annealing metaheuristic. It consists in accepting a solution s′

with a probability given by exp(−(s′−s)
T) where s is the current solution and T is the temper-

ature. The temperature starts at Tstart which is fixed in such a way that the first accepted
solution with a probability equal to 0.5 is 5% worse than the initial solution. Then the tem-
perature is decreased every iteration with T = T ∗c where 0 < c < 1 is the cooling rate. Here
we fix a limit for the number of iterations to stop the execution of the algorithm.

5.5 Computational experiments

In this section, we describe our experimental computations. First, we present the benchmark
instances in Section 5.5.1. In Section 5.5.2, we describe how ALNS parameters are tuned.

5.5 Computational experiments 101

In Section 5.5.3 we evaluate the performance of our ALNS heuristic and the impact of the
multigraph representation on the solution quality. In section 5.5.4, we present sensitive anal-
ysis on impact of introduced components on the performance of the method.

All presented algorithms are implemented in the C++ programming language. Tests are
run on an Intel CORE i5 2.6 GHz computer with 4GB of memory.

5.5.1 Test Data

In our experiments, we used four sets of VRPTW instances provided by Ben Ticha et al. [8];

• A first set consists of 90 instances derived from the Solomon [126] benchmark in-
stances; 45 instances with 25 customers and 45 instances with 50 customers. To gen-
erate multigraph instances, Ben Ticha et al. [8] assigned to each arc in the original
instance two attributes; a travel cost defined by the Euclidean distance and a travel
time computed using a correlation rule according to cost. Three correlation degrees
are used: no-correlation (NC), weak correlation (WC) and strong correlation (SC).

• A second set of 30 instances is provided by Letchford et al. [89]. It is generated
from sparse graphs that simulate urban road networks. These graphs are with N ∈
{25, 50, 75, 100} nodes and each is given with a probability p = 0.66 to be a customer.
Arcs are defined with a travel cost given by the Euclidean distance and a travel time
computed using a correlation rule according to cost. Instances with three different
levels of correlation are generated (NC, WC and SC).

• A third set of 45 instances are based on road networks generated by Ben Ticha et al. [8]
using the same procedure described in [89]. These instances are subdivided into three
classes of 15 instances with, respectively, 25 customers out of 100 nodes, 50 customers
out of 100 nodes and 50 customers out of 200 nodes. For each 5 instances of a class,
travel times are non-correlated, weakly correlated or strongly correlated to costs.

• A fourth set of 12 instances are generated based on real spatial data of two road net-
works in the region of Provence-Alpes-Cote d’Azur in the south of France. In each
road network, an arc represents a road segment and is defined by a length, a maximum
allowed speed and a travel direction. Travel times are computed using road segment
speeds and lengths. 6 instances are generated from each road network; 2 instances with
25 customers, 2 instances with 50 customers and 2 instances with 75 customers.

In all cases, parallel arcs between a pair of customers represent the set of non-dominated
bi-criteria shortest paths. For more details on instance characteristics, interested readers are
referred to [8].

102
Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Routing Problem

with Time Windows with a multigraph representation for the road network

Table 5.1: Parameters values

Operator Parameter Selected value
Shaw removal Weight associated with cost term: φ 4

Weight associated with service time term: ω 5
Weight associated with demand term: α 3
Weight associated with deviation term: β 10
Randomness degree: ps 6

Worst removal Randomness degree: pw 5
Weight adjustment Initial weight 100
algorithm Gain for a new global best solution: µ1 500

Gain for an improving solution: µ2 200
Gain for a non-improving solution: µ2 150
Reaction factor r 0.1

Acceptance method Cooling rate c 0.99975

5.5.2 Parameters tuning

A first set of experiments are performed to adjust the parameters of our heuristics. To do
this, a set of representative tuning instances is selected and on which different combination
of parameters are tested.

We use the following strategy for tuning all parameters: First, we examine the parameters
that control the Shaw removal heuristics and the Worst removal heuristic. Both heuris-
tics are tested separately with the Greedy insertion heuristic where each time a parameter
is allowed to take a number of values, while the rest of the parameters are kept fixed. For
each parameter setting, the solution method is applied five times on tuning instances, and the
setting with the best average solution quality is selected. Next, we examine parameters asso-
ciated with the weight adjustment algorithm and the acceptance method. These parameters
are gains µ1, µ2 and µ3, the reaction factor r and the cooling rate c. We apply the complete
search scheme and each time a parameter is adjusted. Finally, we examine the impact of the
number of customers q to rearrange in each solution.

Table 5.1 summarizes the parameter values for which the heuristic shows the best average
behavior with the tuning instances.

5.5.3 Computational results

In this section, we perform a set of experiments to evaluate the performance of our solution
method. First, we compare solutions obtained with the Adapted Savings and the ALNS algo-
rithms to optimal solutions with the multigraph representation. These optimal solutions are
provided in [8] and computed using a branch-and-price algorithm for the multigraph based
VRPTW. Then, we investigate the impact of the multigraph representation on the solution

5.5 Computational experiments 103

quality. To do this, we compare solutions obtained with the ALNS to optimal solutions com-
puted using a branch-and-price algorithm on two customer-based graphs: a min-cost graph
that consists of less costly paths and a min-time graph that consists of fastest paths. For each
instance, the ALNS heuristic is applied 10 times and the best solution cost found is reported.
Computing times for the branch-and-price algorithms are limited to 7, 500 seconds.

We report the obtained results for the adapted instances of Solomon [126] in Tables 5.2
and 5.3, for Letchford et al. [89] instances in Table 5.4, for Letchford et al.-like (LL) in-
stances in Table 5.5 and for real instances in Table 5.6. Column "Opt" indicates computing
times for optimal solution in the multigraph. Column "Adapted Savings" reports computing
time in seconds (column "CPU") and gap between the Savings solution and the optimal so-
lution in the multigraph (column "Gap MG"). Results for the ALNS heuristic are presented
in column "ALNS"; columns "Gap MG", "Gap MC" and "Gap MT" report the gap between
the ALNS solution and optimal solutions with, respectively, multigraph, min-cost graph and
min-time graph representations. The gap is computed as follows:

Gap(%) =
solution cost with ALNS − optimal solution cost

optimal solution cost
∗ 100% (5.17)

In Table 5.4, the first column "Instance" shows instance name which indicates the num-
ber of nodes in the original road network, the number of customers in the multigraph and
whether time windows are wide (WTW) or narrow (NTW). In all Tables, column "Corr" re-
ports the correlation level. In Table 5.5 columns "# nodes" and "# cust" indicate, respectively,
the number of nodes in the original road network and the number of considered customers.
Column "Inst" specify the instance index. In Table 5.6, "Zone" indicates the used real road
network.

5.5.3.1 Savings solution

The adapted savings algorithm is used to provide an initial solution for the search scheme.
For this reason, the computing time is an important criterion to evaluate the efficiency of the
proposed algorithm as well as the solution quality.

From Tables 5.2 and 5.3, it comes out that the adapted savings algorithm provides a so-
lution within 0.004 and 0.010 seconds in average for the adapted Solomon [126] instances
with respectively 25 and 50 customers. The average gap between the savings solution and the
optimal solution is almost 35% for instances with with 25 customers and is 34% for instances
with 50 customers.

Table 5.4 shows that for Letchord et al. [89] instances, the adapted savings algorithm pro-
vides a solution within 0.007 seconds in average. Obtained solutions are in average 26.9%
worst than optimal solutions.

104
Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Routing Problem

with Time Windows with a multigraph representation for the road network

Table 5.2: Results for adapted Solomon [126] instances with 25 customers

Opt Adapted Savings ALNS
Corr Instance CPU CPU Gap MG(%) CPU Gap MG (%) Gap MC (%) Gap MT (%)
NC r101 0.6 0.005 17.0 8.4 0.0 0.0 -46.1

r102 1.7 0.004 28.0 10.7 0.0 -1.0 -27.3
r103 12.7 0.004 58.2 11.8 0.0 0.0 -32.5
r104 31.0 0.004 24.0 15.4 0.0 0.0 -25.0
r105 2.3 0.007 30.9 10.3 0.0 -1.6 -35.9
c101 7500.0 0.005 – 13.8 – -0.1 -57.2
c102 7500.0 0.007 – 22.6 – – -52.7
c103 2197.0 0.008 86.6 26.2 0.0 -9.7 -44.6
c104 7500.0 0.009 – 42.7 – 0.0 -44.1
c105 54.6 0.007 79.3 19.7 0.0 -3.4 -53.8
rc101 0.7 0.009 41.2 7.5 0.0 -9.3 -41.1
rc102 10.9 0.007 63.7 12.1 0.0 -11.2 -34.9
rc103 613.9 0.008 63.2 15.3 0.0 -2.2 -33.7
rc104 2728.0 0.005 51.5 17.8 0.0 -4.9 -20.1
rc105 9.8 0.005 44.4 8.4 0.0 -3.6 -27.9

WC r101 0.2 0.002 17.3 7.6 0.0 0.0 -9.8
r102 1.2 0.002 6.8 6.3 0.0 0.0 -6.1
r103 2.3 0.003 15.5 6.1 0.0 0.0 -5.6
r104 4.7 0.003 20.6 6.9 0.0 0.0 -3.7
r105 0.9 0.002 10.9 6.0 0.0 0.0 -10.2
c101 206.5 0.004 37.7 4.9 0.0 -4.6 –
c102 7500.0 0.004 – 10.5 – – -12.7
c103 480.4 0.003 50.4 13.4 0.0 0.0 -20.9
c104 7500.0 0.003 – 9.8 – 0.0 -6.2
c105 27.3 0.003 25.1 6.2 0.0 0.0 -23.2
rc101 7.7 0.004 25.6 5.0 0.0 -7.9 -10.4
rc102 983.5 0.004 38.3 7.1 0.0 -12.0 -3.8
rc103 713.3 0.003 64.1 7.8 0.0 -2.4 -3.3
rc104 835.0 0.004 47.2 8.1 0.0 -0.2 -2.6
rc105 2.8 0.003 30.5 5.6 0.0 -1.5 -7.7

SC r101 0.2 0.002 4.7 7.7 0.0 0.0 0.0
r102 0.5 0.002 8.4 6.1 0.0 0.0 -1.1
r103 0.9 0.002 1.8 4.4 0.0 -1.8 0.0
r104 4.2 0.002 15.1 4.6 0.0 0.0 -0.6
r105 0.8 0.002 6.8 4.7 0.0 0.0 -0.1
c101 6.4 0.003 24.2 3.3 0.0 0.0 -1.7
c102 5.5 0.003 18.2 3.9 0.0 0.0 0.0
c103 96.4 0.003 41.2 4.7 0.0 0.0 -1.1
c104 1717.6 0.002 47.9 5.3 0.0 0.0 0.0
c105 0.5 0.003 36.2 3.3 0.0 0.0 0.0
rc101 13.9 0.002 44.7 4.5 0.0 -4.7 -0.8
rc102 397.7 0.003 34.8 4.2 0.0 0.0 0.0
rc103 5.9 0.003 58.2 4.1 0.0 0.0 -0.1
rc104 13.1 0.003 21.7 4.4 0.0 0.0 0.0
rc105 21.7 0.002 43.4 4.5 0.0 0.0 -0.2

Note : – indicates that the algorithm has not terminated within 7,500 seconds

5.5 Computational experiments 105

Table 5.3: Results for adapted Solomon [126] instances with 50 customers

Opt Adapted Savings ALNS
Corr Instance CPU CPU Gap MG (%) CPU Gap MG (%) Gap MC (%) Gap MT (%)
NC r101 17.6 0.011 12.1 27.9 1.1 0.7 -41.4

r102 52.8 0.015 17.1 32.6 0.1 -0.4 -31.3
r103 593.7 0.018 34.5 49.2 1.0 -1.3 –
r104 6798.9 0.034 45 109.3 1.3 -1.8 –
r105 26.9 0.025 39.7 33.4 1.8 1.3 -42.0
c101 7500.0 0.016 – 29.8 – – –
c102 7500.0 0.018 – 57.8 – – -54.6
c103 7500.0 0.022 – 90.1 – – -42.0
c104 7500.0 0.032 – 302.1 – – –
c105 7500.0 0.016 – 48.1 – – -58.4
rc101 108.0 0.018 54.8 25.6 0.2 -12.9 -40.3
rc102 321.6 0.018 56.8 36.4 0.9 -7.9 -33.0
rc103 6821.9 0.018 78.6 47.1 1.1 0.2 -26.6
rc104 7500.0 0.02 – 76.7 – – –
rc105 2358.4 0.02 66.1 32.2 0.9 -7.8 -32.6

WC r101 1.2 0.003 18.9 10.4 0.3 -3.0 -22.3
r102 6.3 0.005 22.9 12.7 0.6 -1.1 -9.0
r103 65.4 0.006 32.9 17.0 0.3 -1.3 -9.9
r104 1304.3 0.007 21.9 31.3 0.4 0.4 -5.8
r105 17.0 0.005 12.4 11.8 0.5 0.0 -8.2
c101 7500.0 0.005 – 14.4 – – –
c102 7500.0 0.007 – 34.4 – – –
c103 7500.0 0.008 – 46.1 – – –
c104 7500.0 0.007 – 98.7 – – –
c105 7500.0 0.006 – 24.3 – -3.8 -18.9
rc101 110.3 0.006 33.8 10.6 0.0 -7.2 -7.3
rc102 7500.0 0.006 – 14.8 – -5.1 –
rc103 7500.0 0.006 – 18.6 – -3.3 –
rc104 7500.0 0.007 – 25.4 – – –
rc105 68.4 0.008 49.1 14.0 0.0 -8.8 -7.8

SC r101 1.0 0.003 16.5 8.5 0.1 -1.1 -0.9
r102 6.8 0.003 18.8 9.3 0.0 0.0 -0.7
r103 71.1 0.003 14.4 10.7 0.0 0.0 -0.1
r104 7500.0 0.003 – 14.9 – – –
r105 14.9 0.003 16.6 9.3 0.2 -0.7 -0.1
c101 106.4 0.002 26.4 9.5 0.0 0.0 -0.5
c102 53.8 0.003 65.7 14.2 0.0 0.0 -1.9
c103 699.9 0.004 23.5 19.6 0.0 0.0 -1.0
c104 7500.0 0.003 – 29.6 – – –
c105 12.0 0.003 27.9 10.4 0.0 0.0 -0.5
rc101 2385.9 0.003 48.1 8.8 0.0 0.0 -1.0
rc102 7500.0 0.003 – 10.8 – – –
rc103 7500.0 0.003 – 12.1 – – –
rc104 7500.0 0.003 – 15.4 – – –
rc105 6544.4 0.003 15.9 9.8 0.0 0.0 -0.7

Note : – indicates that the algorithm has not terminated within 7,500 seconds

106
Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Routing Problem

with Time Windows with a multigraph representation for the road network

Table 5.4: Results for Letchford et al. [89] instances

Opt Adapted Savings ALNS
Instance Corr CPU CPU Gap MG(%) CPU Gap MG (%) Gap MC (%) Gap MT (%)
25_16_NTW NC 0.1 0.000 17.5 1.7 0.0 0.0 -7.9
25_16_WTW NC 0.1 0.010 20.8 1.9 0.0 0.0 -7.9
25_16_NTW WC 0.1 0.000 45.3 1.6 0.0 0.0 -1.0
25_16_WTW WC 0.1 0.000 13.8 1.7 0.0 0.0 -1.0
25_16_NTW SC 0.1 0.010 16.7 1.4 0.0 0.0 0.0
25_16_WTW SC 0.1 0.000 16.7 1.6 0.0 0.0 0.0
50_33_NTW NC 0.5 0.003 18.3 5.4 0.0 -2.2 -2.6
50_33_WTW NC 398.0 0.000 21.9 6.4 0.0 0.0 -1.1
50_33_NTW WC 1.8 0.000 23.6 5.9 0.0 0.0 -0.1
50_33_WTW WC 7500.0 0.003 – 6.7 – 0.0 -0.1
50_33_NTW WC 0.6 0.002 30.5 6.8 0.0 ** -5.3
50_33_WTW WC 50.6 0.000 17.1 8.8 0.0 ** -4.1
50_33_NTW SC 19.4 0.000 19.6 5.8 0.0 0.0 -0.3
50_33_WTW SC 533.9 0.000 3.7 6.0 0.0 0.0 0.0
75_50_NTW NC 0.7 0.000 20.7 13.7 0.0 ** -8.4
75_50_WTW NC 152.3 0.000 18.2 16.4 0.0 -2.5 -4.6
75_50_NTW WC 1.4 0.010 26.2 15.4 0.0 0.0 -1.1
75_50_WTW WC 7500.0 0.010 – 18.3 – -0.1 -0.2
75_50_NTW WC 3.2 0.010 30.5 17.7 0.0 -2.9 -11.8
75_50_WTW WC 353.5 0.010 40.5 22.9 1.7 0.0 -7.7
75_50_NTW SC 1.1 0.040 9.8 11.1 0.0 0.0 -0.1
75_50_WTW SC 5305.9 0.000 16.8 13.4 1.2 1.2 1.1
100_66_NTW NC 64.7 0.030 53.6 24.5 0.0 ** -7.2
100_66_WTW NC 550.1 0.020 39.8 26.8 1.8 -3.7 -7.4
100_66_NTW WC 6.2 0.010 45.9 20.5 0.0 ** -5.5
100_66_WTW WC 4391.6 0.010 44.3 25.7 0.0 ** -6.6
100_66_NTW WC 13.0 0.012 57.1 25.2 0.0 ** -7.9
100_66_WTW WC 593.6 0.020 31.7 31.5 1.0 ** -7.1
100_66_NTW SC 4.5 0.000 24.9 18.5 0.0 0.0 -0.9
100_66_WTW SC 7500.0 0.010 – 21.7 – – –

Note : – indicates that the algorithm has not terminated within 7,500 seconds

**: indicates that the instance is infeasible in the min-cost graph

5.5 Computational experiments 107

Table 5.5: Results for LL instances

Opt Adapted Savings ALNS
#nodes #cust Corr Inst CPU CPU Gap MG (%) CPU Gap MG (%) Gap MC (%) Gap MT (%)
100 25 NC 1 6.3 0.003 10.5 6.0 0.0 -6.4 -3.5

2 1.4 0.005 27.2 5.8 0.0 0.0 -10.6
3 5.7 0.007 26.0 7.3 0.0 -2.3 -13.5
4 2.8 0.004 15.5 5.3 0.0 -0.4 -5.7
5 2.5 0.006 20.0 9.2 0.0 -1.1 -10.6

WC 1 2.0 0.002 9.1 4.0 0.0 0.0 -3.3
2 71.5 0.003 14.3 5.9 0.0 -1.7 -5.6
3 3.1 0.002 17.9 4.3 0.0 -2.5 -0.4
4 0.8 0.004 1.1 3.9 0.0 0.0 -2.7
5 10.4 0.003 15.3 4.7 0.0 -3.1 -3.2

SC 1 21.1 0.002 8.9 2.9 0.0 0.0 -0.4
2 1.3 0.002 12.4 3.2 0.0 0.0 -0.2
3 9.7 0.003 16.4 4.6 0.0 0.0 -2.1
4 0.6 0.002 42.5 3.4 0.0 0.0 0.0
5 0.6 0.002 13.3 3.8 0.0 0.0 -0.7

50 NC 1 242.0 0.012 29.9 18.6 0.7 -1.3 -8.2
2 2296.5 0.013 32.7 26.1 0.0 -4.7 -2.5
3 1045.6 0.015 34.5 25.2 0.1 -4.0 -3.2
4 399.9 0.012 41.5 23.2 0.0 -4.0 -7.0
5 82.2 0.012 26.7 20.0 0.0 -2.7 -6.6

WC 1 104.8 0.008 14.6 14.6 0.0 0.0 -5.4
2 245.5 0.008 22.5 13.3 0.2 -2.9 -2.9
3 79.1 0.007 23.7 15.1 0.2 -3.0 -1.7
4 42.2 0.006 14.6 14.2 0.0 0.0 -4.7
5 291.3 0.006 41.9 13.8 0.0 0.0 -2.0

SC 1 1120.1 0.003 23.4 12.0 1.0 0.6 1.0
2 424.2 0.003 15.3 10.6 0.4 0.4 0.4
3 21.4 0.003 19.1 10.8 0.1 -3.9 0.0
4 44.9 0.003 18.8 12.0 0.0 0.0 -0.5
5 5.4 0.002 14.6 10.1 0.0 0.0 -0.4

200 50 NC 1 1659,3 0,025 112,3 36,6 0,3 -7,4 -5,9
2 191,3 0,022 55,1 28,8 0,0 -4,8 -11,3
3 1045,1 0,017 109,8 24,0 0,3 -3,7 -7,1
4 6775,5 0,023 96,2 41,3 0,5 -5,1 -5,8
5 7500,0 0,026 133,8 34,1 — -3,9 -8,6

WC 1 4378,7 0,021 137,0 24,1 0,8 -2,6 -5,4
2 181,7 0,013 61,7 18,3 0,0 -3,5 -5,9
3 651,6 0,016 108,6 21,5 0,6 -3,5 -4,6
4 695,4 0,012 91,6 27,2 0,0 -3,9 -6,4
5 453,4 0,018 115,8 28,3 0,0 -8,8 -8,3

SC 1 7500,0 0,006 77,5 14,5 — -3,7 -0,7
2 3892,8 0,006 73,7 14,6 0,2 0,2 -0,8
3 203,3 0,003 54,0 11,4 0,1 0,1 -0,2
4 81,8 0,003 56,0 10,6 0,2 0,2 -0,4
5 67,5 0,004 25,9 10,4 0,0 0,0 -0,2

Note : – indicates that the algorithm has not terminated within 7,500 seconds

108
Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Routing Problem

with Time Windows with a multigraph representation for the road network

Table 5.6: Results for Real instances

Opt Adapted Savings ALNS
Zone # cust Inst CPU CPU Gap MG(%) CPU Gap MG (%) Gap MC (%) Gap MT (%)
Z1 25 1 1.7 0.000 11.0 6.6 0.0 -3.4 -7.7

2 0.8 0.012 16.1 6.9 0.0 -8.0 -6.3
50 1 13.4 0.015 22.6 25.2 0.2 -2.1 -5.0

2 18.8 0.031 19.4 24.4 0.3 -1.3 -4.1
75 1 131.4 0.047 26.3 53.5 0.8 0.3 -4.3

2 73.4 0.047 27.9 57.0 1.7 1.0 -4.3
Z2 25 1 1.2 0.015 22.6 5.5 0.0 -6.6 -10.0

2 1.1 0.003 22.8 6.0 0.0 -1.7 -8.7
50 1 22.7 0.016 33.6 26.6 0.0 0.0 -9.4

2 13.3 0.009 20.3 25.0 0.4 -1.9 -7.9
75 1 174.1 0.015 36.5 52.5 1.4 -9.2 -2.7

2 102.6 0.016 36.2 48.2 1.4 0.4 -3.1

Table 5.5 reports results obtained for LL instances. It shows that using the adapted sav-
ings algorithm, the average computing time is 0.003 seconds for instances with 25 customers
and 100 nodes, 0.008 seconds for instances with 50 customers and 100 nodes and 0.014
seconds for instances with 50 customers and 200 nodes. The average gaps are respectively
16.7%, 24.9% and 87.3%.

Table 5.6 reports results for instances based on real instances. It is clear that a feasible
solution is computed in at most 0.05 seconds. The average gap between the obtained solu-
tions and optimal ones is almost 25%.

5.5.3.2 Evaluation of the ALNS heuristic

As shown in Tables 5.2 and 5.3, 50 out of 66 optimal solutions are obtained using the ALNS
heuristic for adapted Solomon [126] instances. All optimal solutions for instances with 25
customers are obtained within 10 seconds in average. The ALNS procedure reduces signifi-
cantly the "gap MG" values compared to those associated with the adapted savings algorithm.
Solutions for instances with 50 customers are in average 0.42% far from the optimal ones
(33.5% using the adapted savings algorithm). The average computing time for the ALNS
procedure is 35 seconds.

Compared to the branch-and-price algorithm for the multigraph based VRPTW, the ALNS
heuristic provides near optimal solutions for all adapated Solomon [126] instances in reason-
able computing times. Good solution for 24 instances, for which the exact method fails in
finding a feasible solution within the time limit (7, 500 seconds), are obtained in 50.7 seconds
in average. The average computing time using the heuristic is 49 times better than using the
exact method for instances with 25 customers and is 31 times better for instances with 50
customers.

Results for Letchford et al. [89] are summarized in Table 5.4. The ALNS heuristic pro-

5.5 Computational experiments 109

vides optimal solution for 23 out of 27 instances for which the exact method found a solution.
The average "Gap MG" is 0.2% and in the worst case it reaches 1.8%. The average comput-
ing time with the ALNS heuristic is 12 seconds while it reaches 462 seconds for optimal
solutions. All instances are solved within 32 seconds in the worst case using the ALNS
while no feasible solution was found within the time limit using the branch-and-Price algo-
rithm for 3 instances.

From Table 5.5, it comes out that using the ALNS all LL instances with 25 customers
and 13 (out of 30) LL instances with 50 customers are solved to optimality. Using the ALNS
procedure, the average "Gap MG" is reduced from 26.9% (for the initial solution provided
by the adapted savings algorithm) to 0.1%. In the worst case, the "Gap MG" reaches 1.0%.
Compared to the exact method for the multigraph representation, the ALNS heuristic is 44
times faster in average. The computing time is almost 15 seconds in average and reaches
41.3 seconds while it is almost 640 seconds in average and reaches 6776 seconds for the
exact method.

Table 5.6 shows that using the ALNS heuristic all real instances with 25 customers are
solved to optimality, solutions for instances with 50 and 75 customers are, respectively, 0.1%
and 1.3% worse than optimal ones in average. As observed for other set of instances, aver-
age computing times are reasonable and increase with the number of customers; the average
computing times for instances with 25, 50 and 75 customers are respectively 6.2 , 24.8 and
52.4 seconds (1.2, 17.1 and 120.4 seconds with the branch-and-price algorithm).

5.5.3.3 Impact of the multigraph representation

Using the multigraph representation, the ALNS heuristic improves the solution cost for 33
out of 72 adapted Solomon [126] instances on min-cost graphs (solved within time limit) and
for 68 out of 74 instances on min-time graphs (Tables 5.2 and 5.3). Costs are reduced up to
almost 13% and 59% against costs on graphs with, respectively, less costly paths and fastest
paths. By using the ALNS heuristic, the solution cost is reduced for 6 instances on min-
cost graphs and for 10 instances on min-time graphs for which the branch-and-price with the
multigraph fails to compute a feasible solution in 7, 500 seconds.

From Table 5.4, we observe that the ALNS heuristic with the multigraph representation
for Letchford et al. [89] instances improves the cost for 5 out of 21 optimal solutions on
min-cost graph and for 25 out of 29 optimal solutions on min-time graph. This improvement
reaches 3.7% for min-cost graph and 11.8% for min-time graph. Obtained solutions with
the ALNS are in average 0.5% and 3.7% better than optimal ones with less costly paths and
fastest paths.

Using the heuristic with the multigraph representation, solutions for 26 LL instances on

110
Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Routing Problem

with Time Windows with a multigraph representation for the road network

min-cost graph and 41 LL instances on min-time graph are improved (see Table 5.5). The
cost savings are 2.1% and 3.9% in average and reach up to 8.8% and 13.5% compared to
optimal solutions with least costly paths and fastest paths.

For real instances, alternative paths improve the solution costs for 9 and 12 instances com-
pared to solutions with less costly paths and with fastest paths. This improvement reaches
9.2% for min-cost graph and 10% for min-time graph. The average cost savings are 4.9%
and 8.2% for instances with 25 customers, 1.4% and 6.7% for instances with 50 customers
and 1.9% and 3.6% for instances with 75 customers.

5.5.4 Sensitivity analysis

In this section, we present a sensitivity analysis to investigate the impact of the proposed
insertion and removal operators on the efficiency of the search procedure. In particular, we
examinate the effect of the deviation term introduced in the similarity measure for the Shaw
removal heuristic (see Section 5.4.3.1) and we analyze the impact of the non-myopic inser-
tion heuristic on the solution method. For this, we perform a set of experiments using adapted
Solomon [126] instances and LL instances with 100 nodes in the original network.

First, we focus on the effect of the deviation term on the performance of Shaw removal
heuristic. For this, we performed two sets of experiments using the Shaw removal heuristic
and the greedy insertion heuristic: in the first set, the deviation term is ignored when evaluat-
ing similarities (β set to 0) and in the second set, the deviation term is considered (β , 0). In
both sets, we used parameters values presented in Table 5.1. Since we use only one removal
heuristic and one insertion heuristic our method is reduced to a Large Neighborhood Search
(LNS). For each instance and each setting, the LNS is applied five times.

Tables 5.7 and 5.8 report respectively results for adapted Solomon [126] instances and
LL instances. Column "Gap" reports the average gap between solutions obtained using the
corresponding LNS procedure and best known solutions. Column "CPU" reports average
computing times in seconds. Best and average values for all outputs depending on the used
settings are represented, respectively, in columns "Min" and "Avg".

From Tables 5.7 and 5.8 we observe that by introducing the deviation term (β , 0), the
solution cost is improved for all instances. The reduction on gap is up to 1.7% for best values
(Table 5.8, strongly correlated instances with 50 customers) and is up to 1.6% for average
values (Table 5.7, non-correlated instances with 50 customers). This can be explained by
the fact that considering the deviation term (β , 0) tightens the relatedness measure, thus,
improves the performance of the removal strategy. However, considering the deviation term
increases the computing times: the average computing time for adapted Solomon [126] in-
stances with 50 customers and NC is 51.7 seconds for the case β = 0 and is 52.4 seconds

5.5 Computational experiments 111

Table 5.7: Impact of deviation term on Shaw Removal performance with adapted Solomon [126]
instances

Min Avg
β = 0 β , 0 β = 0 β , 0

cust Corr Gap CPU Gap CPU Gap CPU Gap CPU
25 NC 0.6 % 10.6 0.5 % 10.6 1.3 % 11.1 0.9 % 11.1

WC 0.3 % 4.9 0.2 % 4.9 0.9 % 5.1 0.6 % 5.1
SC 0.2 % 2.9 0.1 % 2.9 0.8 % 3.0 0.5 % 3.0

50 NC 6.1 % 49.9 4.5 % 50.2 8.2 % 51.7 6.6 % 52.4
WC 3.5 % 19.7 3.2 % 19.8 4.8 % 21.4 4.1 % 21.9
SC 1.7 % 9.3 1.2 % 9.3 2.6 % 9.6 2.2 % 9.7

Table 5.8: Impact of deviation term on Shaw Removal performance with LL instances

Min Avg
β = 0 β , 0 β = 0 β , 0

cust Corr Gap CPU Gap CPU Gap CPU Gap CPU
25 NC 0.5 % 5.4 0.3 % 5.3 0.5 % 5.5 0.3 % 5.5

WC 0.0 % 4.0 0.0 % 4.0 1.0 % 4.3 0.8 % 4.3
SC 0.6 % 3.1 0.6 % 3.1 0.8 % 3.2 0.7 % 3.3

50 NC 4.7 % 16.9 4.1 % 16.8 5.2 % 17.7 4.2 % 17.4
WC 2.0 % 11.2 1.4 % 11.2 4.4 % 11.8 3.4 % 12.0
SC 6.3 % 9.2 4.6 % 9.5 7.1 % 9.9 6.3 % 10.1

for the case β , 0. Recall that to compute the deviation term for a pair of customers we
have to enumerate possible insertion positions for each customer which justify the increase
in computing time. Though, this increase is not so significant. From Tables 5.7 and 5.8, we
note that for almost all instances with 25 customers computing times are the same for both
cases β = 0 and β , 0. The increase in computing times for instances with 50 customers
is 0.7 seconds in the worst case. These observations illustrate the efficiency of the proposed
data structure and procedures to evaluate elementary operations and in particular to evaluate
insertion operations.

Second, we investigate the impact of the non-myopic insertion heuristic and its contribu-
tion in the search procedure. We perform two sets of experiments: in the first set we apply
the complete ALNS procedure (with the non-myopic heuristic) and in the second set we do
not consider the non-myopic heuristic in the ALNS procedure. In Tables 5.9 and 5.10, we
compare the solution quality and computing time for the two heuristics. In column "Min",
gap ("Gap") and computing time ("CPU") for the best solution obtained over five runs are
reported for each solution method. In column "Avg", average gaps ("Gap") and computing
times ("CPU") are reported. In Tables 5.11 and 5.12, we report the contribution of each
insertion-removal combination in the search scheme of the complete method. Four differ-
ent criteria are analyzed to evaluate the contribution of each combination: the number of
solutions that improve the best solution (row "Best solutions"), the number of accepted solu-
tions that improve the current solution (row "Improving solutions"), the number of accepted
solutions that do not improve the current solution (row "Non-Improving solutions") and the
total computing time used by each combination along the search procedure (row "Computing
time"). These criteria are expressed in percentage to show the contribution of each removal-

112
Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Routing Problem

with Time Windows with a multigraph representation for the road network

Table 5.9: Impact of non-Myopic insertion heuristic for adapted Solomon [126] instances

Min Avg
With non-myopic Without non-myopic With non-myopic Without non-myopic

cust Corr Gap CPU Gap CPU Gap CPU Gap CPU
25 NC 0.0 % 12.1 0.2 % 8.7 0.1 % 16.3 0.6 % 8.9

WC 0.0 % 7.4 0.1 % 4.6 0.0 % 8.4 0.3 % 4.7
SC 0.0 % 4.7 0.0 % 3.1 0.0 % 5.7 0.1 % 3.2

50 NC 0.9 % 66.6 2.7 % 34.9 2.2 % 84.6 3.8 % 35.8
WC 0.3 % 25.6 1.7 % 17.1 1.6 % 42.8 2.6 % 17.5
SC 0.0 % 12.9 0.5 % 8.9 0.6 % 25.5 1.2 % 9.4

Table 5.10: Impact of non-Myopic insertion heuristic for LL instances

Min Avg
With non-myopic Without non-myopic With non-myopic Without non-myopic

cust Corr Gap CPU Gap CPU Gap CPU Gap CPU
25 NC 0.0 % 6.7 0.0 % 5.0 0.0 % 7.4 0.0 % 5.1

WC 0.0 % 4.6 0.0 % 3.9 0.2 % 4.9 0.2 % 3.9
SC 0.0 % 3.6 0.0 % 3.2 0.2 % 4.2 0.5 % 3.3

50 NC 0.1 % 22.6 5.0 % 15.1 1.0 % 24.2 5.0 % 15.4
WC 0.1 % 14.2 2.6 % 11.2 0.4 % 15.6 4.2 % 11.5
SC 0.3 % 11.1 3.8 % 9.7 1.2 % 13.2 5.3 % 10.0

insertion combination.

From Tables 5.9 and 5.10 it comes out that the non-myopic heuristic improves signifi-
cantly the solution quality. The gap between the best solution and the optimal solution is up
to 5.0% for the method without the non-myopic insertion heuristic, while, it is 0.9% in the
worst case with the complete ALNS procedure. The average gaps for adapted Solomon [126]
instances with 25 and 50 customers are, respectively, 0.03% and 1.46% with the non-myopic
heuristic and are 0.33% and 2.53% without the non-myopic heuristic. For LL instances, us-
ing the complete search procedure average gaps are 0.13% and 0.86% and are 0.23% and
4.83% using the solution method without the non-myopic insertion heuristic. However, by
considering the non-myopic heuristic in the search procedure the computing time increases
considerably: for adapted Solomon [126] instances with 50 customers and no correlation, a
solution is computed in average in 84.6 seconds using the complete ALNS procedure and in
35.1 seconds without the non-myopic insertion heuristic. The average increases in computing
time are up to 4.5 and 30.1 seconds for adapted Solomon [126] instances with, respectively,
25 and 50 customers and are 1.4 and 5.4 seconds for LL instances with, respectively, 25 and
50 customers.

5.5 Computational experiments 113

Ta
bl

e
5.

11
:C

on
tr

ib
ut

io
n

of
R

em
ov

al
-i

ns
er

tio
n

co
m

bi
na

tio
ns

on
th

e
se

ar
ch

sc
he

m
e

fo
r

ad
ap

te
d

So
lo

m
on

[1
26

]
in

st
an

ce
s

R
em

ov
al

he
ur

is
tic

R
an

do
m

W
or

st
Sh

aw
In

se
rt

io
n

he
ur

is
tic

G
re

ed
y

R
eg

re
t

N
on

-m
yo

pi
c

Si
m

pl
e

G
re

ed
y

R
eg

re
t

N
on

-m
yo

pi
c

Si
m

pl
e

G
re

ed
y

R
eg

re
t

N
on

-m
yo

pi
c

Si
m

pl
e

25
B

es
ts

ol
ut

io
ns

5.
1

%
10

.7
%

8.
1

%
0.

0
%

10
.3

%
22

.6
%

15
.5

%
0.

0
%

4.
8

%
13

.7
%

9.
2

%
0.

0
%

Im
pr

ov
in

g
so

lu
tio

ns
7.

2
%

11
.8

%
10

.4
%

0.
0

%
10

.1
%

15
.3

%
13

.0
%

0.
0

%
7.

8
%

12
.9

%
11

.5
%

0.
0

%
N

on
-I

m
pr

ov
in

g
so

lu
tio

ns
10

.6
%

8.
8

%
9.

5
%

0.
1

%
14

.0
%

13
.1

%
13

.4
%

0.
2

%
11

.2
%

9.
0

%
9.

9
%

0.
1

%
C

om
pu

tin
g

tim
e

5.
5

%
6.

4
%

16
.8

%
2.

1
%

6.
2

%
7.

1
%

19
.0

%
2.

3
%

6.
5

%
7.

3
%

18
.3

%
2.

5
%

50
B

es
ts

ol
ut

io
ns

6.
1

%
8.

7
%

8.
0

%
0.

0
%

11
.9

%
21

.2
%

16
.1

%
0.

0
%

7.
3

%
11

.5
%

9.
2

%
0.

0
%

Im
pr

ov
in

g
so

lu
tio

ns
8.

0
%

10
.7

%
9.

6
%

0.
0

%
11

.4
%

15
.2

%
13

.3
%

0.
0

%
8.

9
%

12
.1

%
10

.8
%

0.
0

%
N

on
-I

m
pr

ov
in

g
so

lu
tio

ns
10

.4
%

8.
6

%
8.

8
%

0.
1

%
15

.2
%

13
.5

%
13

.4
%

0.
2

%
11

.1
%

9.
0

%
9.

6
%

0.
1

%
C

om
pu

tin
g

tim
e

6.
4

%
7.

0
%

14
.3

%
2.

9
%

7.
3

%
8.

2
%

16
.6

%
3.

3
%

7.
3

%
8.

0
%

15
.5

%
3.

1
%

Ta
bl

e
5.

12
:C

on
tr

ib
ut

io
n

of
R

em
ov

al
-i

ns
er

tio
n

co
m

bi
na

tio
ns

on
th

e
se

ar
ch

sc
he

m
e

fo
r

LL
in

st
an

ce
s

R
em

ov
al

he
ur

is
tic

R
an

do
m

W
or

st
Sh

aw
In

se
rt

io
n

he
ur

is
tic

G
re

ed
y

R
eg

re
t

N
on

-m
yo

pi
c

Si
m

pl
e

G
re

ed
y

R
eg

re
t

N
on

-m
yo

pi
c

Si
m

pl
e

G
re

ed
y

R
eg

re
t

N
on

-m
yo

pi
c

Si
m

pl
e

25
B

es
ts

ol
ut

io
ns

4.
8

%
8.

4
%

4.
7

%
0.

0
%

13
.3

%
22

.0
%

18
.3

%
0.

0
%

9.
0

%
6.

3
%

6.
5

%
0.

0
%

Im
pr

ov
in

g
so

lu
tio

ns
8.

4
%

9.
4

%
10

.0
%

0.
0

%
11

.6
%

15
.3

%
15

.0
%

0.
0

%
9.

7
%

9.
6

%
11

.0
%

0.
0

%
N

on
-I

m
pr

ov
in

g
so

lu
tio

ns
10

.1
%

9.
9

%
8.

8
%

0.
1

%
14

.6
%

14
.6

%
13

.9
%

0.
1

%
9.

1
%

9.
9

%
8.

8
%

0.
0

%
C

om
pu

tin
g

tim
e

6.
5

%
7.

1
%

13
.6

%
3.

2
%

7.
5

%
8.

3
%

16
.5

%
3.

8
%

7.
3

%
7.

8
%

14
.9

%
3.

5
%

50
B

es
ts

ol
ut

io
ns

7.
2

%
5.

3
%

9.
6

%
0.

0
%

13
.5

%
16

.8
%

24
.1

%
0.

0
%

6.
7

%
3.

1
%

13
.7

%
0.

0
%

Im
pr

ov
in

g
so

lu
tio

ns
8.

1
%

6.
8

%
11

.6
%

0.
0

%
13

.1
%

15
.0

%
18

.1
%

0.
0

%
8.

5
%

5.
9

%
12

.9
%

0.
0

%
N

on
-I

m
pr

ov
in

g
so

lu
tio

ns
9.

0
%

9.
7

%
8.

7
%

0.
1

%
14

.2
%

14
.7

%
14

.7
%

0.
1

%
9.

4
%

11
.0

%
8.

3
%

0.
1

%
C

om
pu

tin
g

tim
e

5.
4

%
5.

5
%

16
.8

%
2.

5
%

6.
5

%
6.

9
%

19
.4

%
2.

9
%

6.
4

%
6.

7
%

17
.9

%
3.

0
%

114
Chapter 5: Adaptive Large Neighborhood Search for the Vehicle Routing Problem

with Time Windows with a multigraph representation for the road network

Tables 5.11 and 5.12 report the contribution of each combination insertion-removal heuris-
tics to the efficiency of the complete ALNS procedure. A first observation is that for each
class of instances the search procedure presents a different behaviour which confirms the
adaptiveness of the search scheme. Tables 5.11 and 5.12 show that for almost all classes of
instances, combinations involving non-myopic insertion heuristic have important contribu-
tions for all criteria, e.g., the combination of the worst removal and non-myopic insertion
heuristics presents the best contributions over all criteria for LL instances with 50 customers:
24.1% of solutions improving the best solution, 18.1% of solutions improving the current so-
lution, and 14.7% of visited solutions but non-improving current solution are obtained using
this combination. A second observation is that combinations involving non-myopic heuristic
are the most time consuming. The average computing time used by the combination of the
worst removal and non-myopic insertion heuristics is up to 19.4% for LL instances with 50
customers. This explains the increase in time when considering the non-myopic insertion
heuristic in the ALNS procedure (Tables 5.9 and 5.10).

5.6 Conclusion

Due to their numerous applications, Vehicle Routing Problems have drawn many researchers
interest. In some real-life applications, different attributes have to be considered when defin-
ing transportation plans such as operational cost, traveling time, energy consumption, etc. In
such cases, alternative links proposing different compromises may exist between each pair of
points of interest on the road network. Using the customer-based graph where only one path
is considered between each pair of customer locations, the decision maker may face infea-
sibility problems or overestimate the optimal solution cost. For these reasons, a multigraph
representation would be more appropriate to accurately model the problem.

In this study, we were interested in the Vehicle Routing Problem with Time Windows on
road networks, where several attributes are defined for each route segment. We proposed to
adopt the idea of alternative paths and model the problem using a multigraph representation.
We provided a heuristic solution method based on an Adaptive Large Neighborhood Search.
The presence of parallel arcs introduces computational challenges especially in exploring the
neighborhood of a given solution; elementary operations like removing or inserting a cus-
tomer in a route induce an NP-hard problem, called Fixed Sequence Arc Selection Problem.
To handle this issue, we integrated in our heuristic an incremental data structure and we pro-
posed a procedure based on dynamic programming approach to evaluate neighbor solutions.
We conducted an intensive experimental study on several set of instances with different char-
acteristics. Numerical results showed the efficiency of the proposed heuristic compared to an
exact method and illustrated the interesting impact of alternative paths on the solution qual-
ity. Experiments on instances generated based on data for real road network demonstrated
the interest of the modeling approach and the important cost savings generated compared to
a standard VRPTW solution.

5.6 Conclusion 115

The results obtained here for VRPTW confirmed and completed results reported by
Garaix et al. [61], Ben Ticha et al. [8] and Lai et al. [85] for other routing problems
where several attributes on road network segments. The solution method proposed here to
address multigraph based VRPTW with two attributes (travel cost and time) can be easily
extended to handle the more general case of multiple arc attributes. However, numerical re-
sults showed that multigraph representation could increase significantly computing time. A
future study could investigate the interest of tackling these categories of problems directly in
the road network. Letchford et al. [89] proposed a column generation scheme but a complete
solution method still missing.

Chapter 6

A branch-and-price Algorithm for the Ve-
hicle Routing Problem with Time Win-
dows on a road-network graph

This chapter is a working paper.

Abstract

Vehicle routing problems are, typically, defined on road networks where customer lo-
cations are associated with a subset of nodes and arcs represent road segments. Most ap-
proaches in the literature assume that the best path between every two points in the road
network can be easily defined. Thus, the problem can be tackled using a so-called customer-
based graph representation, where nodes represent customers and depot locations and an
arc represents the best path between two customer nodes. However, when several attributes
are defined on road segments this representation can have negative effects on the solution
quality. To handle these limits, two approaches have been proposed in the literature. In the
first approach, the road network is represented using a multigraph where an arc is introduced
for every alternative path. The second approach consists in solving the problem directly on
the original road network. In this paper, we propose to investigate in depth the road net-
work based approach. We consider the Vehicle Routing Problem with Time Windows as a
test-bed problem and we develop a complete branch-and-price scheme that can handle the
road network setting. An extensive computational study based on several types of instances
is conducted in order to evaluate the relative efficiency of the multigraph-based approach
and solving the problem directly on the original road network.

Keywords: Vehicle Routing Problems, Road networks, Branch-and-Price.

6.1 Introduction

The Vehicle Routing Problem (VRP) can be described as the problem of designing a set of
optimal routes to be used by a fleet of vehicles to visit a set of geographically dispersed

118
Chapter 6: A branch-and-price Algorithm for the Vehicle Routing Problem with

Time Windows on a road-network graph

customers. These routes must start and end at a depot location and must satisfy a set of
constraints (vehicle capacity, customers’ time windows, route duration, etc.). Since its in-
troduction by Dantzig and Ramser [31], hundreds of papers and books have been devoted to
study the VRP [87]. Many variants of vehicle routing problems have been proposed to ad-
dress several issues that arise in real life applications such as the Capacitated Vehicle Routing
Problem (CVRP) where a certain demand has to be delivered to every customer and the total
load to be delivered along a route must satisfy the vehicle capacity [129], the Vehicle Rout-
ing Problem with Time Windows (VRPTW) where transportation plans are constrained to
satisfy customer requests within their time windows [126], the Multi-Depot Vehicle Routing
Problem (MDVRP) where vehicles are based on several depot locations [26], etc. Extensive
reviews on the most common variants of the VRP are available in [65] and [128].

Conventionally, vehicle routing problems are tackled using a simple graph representation
of the original road network where a node is introduced for each point of interest and an
arc represents the shortest path between the endpoints. This representation, called customer-
based graph, stems from the assumption that the best path between each pair of nodes in
the road network can be easily defined. Yet, in practice several attributes can be defined on
road segments (e.g., travel time, travel cost, energy consumption, etc.). Thus, alternative
paths presenting different trade-offs could exist between each pair of points of interest. Not
considering these alternatives may discard potentially good solutions from the solution space
and could have a negative effect on the solution quality.

In the literature, an increasing number of papers investigate the effects of the simple graph
representation on the solution quality for vehicle routing problems with several attributes are
defined on road segments. Two modelling approaches have been proposed to handle these ef-
fects. The first approach consists in representing the original road network with a multigraph
where nodes represent points of interest and an arc is introduced for every non-dominated
path between two points of interest. The second approach consists in tackling the problem
directly on a graph that mimics the road network.

To the best of our knowledge, Garaix et al. [61] were the first to point out that transform-
ing the vehicle routing problem on a road network into a standard vehicle routing problem
may lead to losing optimality when several attributes are defined on road segments. To han-
dle this issue, they propose to consider all alternative routes using a multigraph structure and
develop a branch-and-price procedure to solve a dial-a-ride problem.

More recently, Letchford et al. [89] revisited the branch-and-price approach presented in
[61]. They suggest that it could be more ’natural’ and more efficient to tackle the problem
directly on the road network, rather than using a multigraph representation. They explain
how it would impact both the pricing problem and branching rules, but only explore the pric-
ing problem. In their computational experiments, they compare the computing times at the
root node of the branch-and-price tree with the road network and the multigraph approaches.

6.1 Introduction 119

Obtained results confirm their suggestions and illustrate the efficiency of the pricing routines
on the road network compared to those with the multigraph representation.

Although the results obtained by Letchford et al. [89] are interesting, their conclusions
can be hardly generalized for many reasons. First, they are interested in the multiple Trav-
elling Salesman Problem with Time Windows (m-TSPTW). In this problem, a time window
is associated with each customer and no restriction on the total load carried along a route is
considered. Yet, in practice the used vehicles have a limited capacity and a demand (to be
delivered or to be picked up) has to be served for every customer. This issue could have a sig-
nificant impact on algorithm efficiency with both road network and multigraph approaches.
Second, their experiments are based on instances with relatively high densities of customers:
two sets of instances are considered with densities equal to 33% and 66% respectively. Real
life applications are defined on large scale road networks in which a few number of nodes are
associated with customer locations. Third, they only investigate the pricing problem where
non-elementary routes are allowed. The case with only elementary routes is not explored. In
addition, lower bounds at the root node of the branch-and-price tree with the road network
and multigraph approaches are not guaranteed to be the same when non-elementary routes
are allowed. This issue is not examined in their computational experiments and they only
focus on computing times obtained with both algorithms. Finally, Letchford et al. [89] only
explore the pricing problem and do not devise suitable branching rules. It is worth men-
tioning that the standard branching rules for vehicle routing problems can be easily adapted
to handle the multigraph setting (see [61] and [8]), however, it is not the case for the al-
gorithm that works directly on the road network. Suitable branching rules may result on
a different branch-and-price scheme on the road network than with the multigraph. Thus,
conclusions based on results obtained at the root node cannot be generalized for complete
branch-and-price scheme. For all these reasons, further analyses and extensive comparisons
on the efficiency of the branch-and-price algorithms with the road network and the multi-
graph approaches are needed to achieve comprehensive conclusions.

In this paper, we propose to investigate more in depth the relative efficiency of the branch-
and-price algorithms with the road network and the multigraph approaches and to further
analyse results reported by Letchford et al. [89]. We are interested in what is probably the
simplest and the most studied vehicle routing problem with two attributes: the VRPTW. We
develop a complete branch-and-price algorithm based on pricing routines presented in [89].
We base our experiments on three type of instances: (1) instances generated by Letchford et
al.[89]; (2) a large set of realistic instances constructed following Letchford et al. [89]; (3)
instances derived from real road networks. An extensive computational study is proposed in
order to analyse the impact of different factors (capacity constraints, customers density, etc.)
on the relative efficiency of both branch-and-price algorithm.

The reminder of the paper is organized as follows. In Section 6.2, we review the relevant
literature. In Sections 6.3 and 6.4, we describe the branch-and-price algorithms for the road

120
Chapter 6: A branch-and-price Algorithm for the Vehicle Routing Problem with

Time Windows on a road-network graph

network and multigraph approaches, respectively. Finally, in Section 6.5, we report the re-
sults obtained and we analyse the impact of both modelling approaches on the efficiency of
the algorithm.

6.2 Literature review

Vehicle routing problems have drawn many researchers’ attention for more than fifty years.
A large number of solution methods are proposed in the literature to solve different variants.
Most of these approaches are based on the key assumption that the best origin-destination
path can be computed for every pair of points of interest. Thus, the problem can be addressed
using a customer-based graph: a node is introduced for each point of interest (customer or
depot) and arcs represent the best paths. However, this assumption is not guaranteed to hold
when several attributes are defined on road segments. In this case, the customer-based graph
representation could have negative impact on the solution quality.

As mentioned before, this issue was, first, investigated by Garaix et al. [61]. They show
that transforming the vehicle routing problem on a road network into a standard vehicle
routing problem may result in losing optimality. They are interested in efficiently solving a
Dial-a-Ride Problem. They propose a branch-and-price scheme that can handle the multi-
graph setting. Later, Ben Ticha et al. [8] examine more in depth the impact of the multigraph
representation on the solution quality for vehicle routing problems when several attributes
are defined on road segments. They revisite the branch-and-price algorithm proposed by
Garaix et al. [61] and consider the VRPTW as a test-bed problem. An experimental analysis
is conducted based on several types of instances: modified instances from the literature and
instances derived from real road networks data. They report results that confirm the impact
of the multigraph on the solution quality compared to two customer-based graph representa-
tions: a fastest-path-based graph and a cheapest-path-based graph.

In the literature, a few heuristic approaches have also been proposed to show the interest-
ing impact of the multigraph representation. In [85] a tabu search heuristic is proposed for
the Heterogeneous VRP with limited route duration. Ben Ticha et al. [7] develop an adaptive
large neighborhood search procedure for the VRPTW.

Letchford et al. [89] confirm the negative effect of the traditional customer-based graph
representation on the solution quality for vehicle routing problems when several attributes are
defined on road segments. They suggest that it could be more interesting to tackle the prob-
lem directly on the road network instead of using a multigraph representation. They explain
how it would impact a branch-and-price scheme and propose two procedures to solve the
pricing problem directly on the road network: the first procedure generates only elementary
routes and in the second non-elementary routes are allowed. But, they only experiment the

6.2 Literature review 121

case where non-elementary routes are allowed. They show that for both cases the running
times for the road network based algorithms compares favourably with the running times
that would be obtained using the multigraph representation in the worst case. In their exper-
iments, they demonstrate the interest of their approach.

Besides the study presented in [89], a stream of papers concerned with vehicle rout-
ing problems on road networks focus on the so-called Steiner Travelling Salesman Problem
(STSP). The STSP was introduced, independently, by Orloff [103], Fleischmann [56] and
Cornuéjols et al. [29]. It can be defined as the problem of finding the min-cost cycle visiting
a set of required nodes in a road network. The motivation of tackling the problem directly
on the original road network instead of using a complete graph representation is to exploit
any property that the road network may present such as sparsity or planarity. Fleischmann
[56] states that nodes in road networks have small degrees and adding artificial arcs to com-
plete the original graph increases dramatically the number of variables needed in the linear
programming formulation. He proposes a cutting-plane approach to solve the problem and
suggests a way to extend the solution procedure to the VRP but reveals some difficulties that
would arise in this case. Cornuéjols et al. [29] formulate the problem as an integer program
with a linear number of variables and an exponential number of constraints then solve the
problem using a branch-and-bound algorithm. Recently, compact formulations for the STSP
with linear numbers of variables and constraints have been proposed by Letchford et al. [90].

It is worth mentioning that the most part of the literature of vehicle routing problems
on road network concerns arc routing problems where transportation requests are associated
with arcs [44, 24]. In this context, a relevant study is proposed by Letchford and Oukil [91].
The objective of this study is to show that, by exploiting its sparsity, it is more efficient to
tackle the routing problem directly on the road network instead of using a complete graph
representation. The authors are interested in the Capacitated Arc Routing Problem (CARP)
and investigate the pricing problem in a branch-and-price scheme. Two dynamic program-
ming algorithms are proposed for the problem with only elementary routes and where non-
elementary routes are allowed. Recently, a complete branch-and-price algorithm for the
CARP on the road network was developed by Bode and Irnich [12]. They adopted the pric-
ing routines proposed in [91] and propose an adapted branching rule for the CARP that can
handle the road network setting.

In this paper, we consider the VRPTW with two attributes on road segments as a test-
bed problem. The VRPTW on the road network is defined as follows. Let G = (V, A) be
a directed road network where V is the set of n nodes and A is the set of arcs. With each
arc (i, j) ∈ A is associated a travel time ti j and a travel cost ci j. Let node 0 represents the
depot location and C ⊂ V \ {0} represents the set of customers. With each customer i ∈ C is
associated a demand di, a time window [ei, li] and a service time si. A homogeneous fleet of
K vehicles with a loading capacity Q is given. The aim is to find a set of routes of minimal
total cost, starting and ending at the depot, and that serves each customer exactly once.

122
Chapter 6: A branch-and-price Algorithm for the Vehicle Routing Problem with

Time Windows on a road-network graph

The standard VRPTW has been intensively studied in the literature. A taxonomic review
of the vehicle routing literature published between 2009 and 2015 shows that up to 38% of
articles consider time windows as a physical characteristic of customers [13]. Numerous ex-
act approaches are proposed to solve the standard VRPTW [25, 2]. These approaches include
Lagrangian relaxation [79], branch-and-cut [94, 4], branch-and-price [40]. Among these ap-
proaches, the branch-and-price scheme has been widely investigated [83, 18, 77, 38, 59].

This literature revue confirms that there is a lack of papers that address vehicle routing
problems on road networks. Except the study presented by Letchford et al. [89], there is
no study that investigates the impact of tackling vehicle routing problems directly on the
road network on the solution quality and how it would impact the performance of solution
methods. This paper makes a number of contributions to the literature. First, it proposes a
complete branch-and-price scheme that solves the VRPTW directly on the road network. As
we mentionned before, Letchford et al. [89] explore only the pricing problem. Branching
rules that work on the original graph are needed. Although Bode and Irnich [12] develop
such rules for the CARP, we show in Section 6.3.2 that the proposed scheme is not suitable
for the VRPTW with several attributes on road segments. Second, it completes the results
presented by Letchford et al. [89] and investigates more in depth the solution of vehicle rout-
ing problems on the road network. An extensive computational study is conducted in order
to evaluate the impact of tackling the problem directly on the road network instead of using
a multigraph. We base our experiments on two sets of instances. The first set of realistic
instances are generated as in [89] and with several densities of customers and the second set
consists of instances derived from real-world road networks.

6.3 Branch-and-price algorithm for the VRPTW on the
road-network graph

As for the standard VRPTW, the branch-and-price scheme for the VRPTW on the road net-
work is based on the following set covering formulation:

Min
∑
r∈Ω

cr xr (6.1)

s.t
∑
r∈Ω

ai,r xr ≥ 1 ∀i ∈ C (6.2)∑
r∈Ω

xr ≤ K (6.3)

xr ∈ {0, 1} ∀r ∈ Ω (6.4)

6.3 Branch-and-price algorithm for the VRPTW on the road-network graph 123

where Ω represents the set of feasible routes in the road network, cr represents the cost
of route r ∈ Ω and air is a binary parameter equals to 1 if and only if the customer i ∈ C is
served along the route r. The binary decision variable xr takes the value 1 if the route r is
selected in the optimal solution and 0 otherwise.

Due to the exponentially growing size of Ω, the optimal solution for the LP relaxation
of (6.1–6.4), so-called Master Problem (MP), cannot be computed using a standard branch-
and-bound procedure. This issue is handled using a column generation technique embedded
into the branch-and-bound framework.

In the column generation procedure, only a subset of columns Ω1 ⊂ Ω is considered and
a restriction of the Master Problem MP to Ω1 ⊂ Ω, denoted by MP(Ω1), is solved at each
iteration. Ω1 consists of all the columns generated at previous iterations and is iteratively en-
larged by solving the pricing problem. The pricing problem aims at finding new routes with
negative reduced costs, i.e., routes that offer better ways to visit customers. For a detailed
description of the column generation algorithm, the reader can refer to [52].

6.3.1 Pricing problem

Let λi, i ∈ C, be the dual variable associated with constraints (6.2) and λ0 be the dual variable
associated with constraint (6.3). The reduced cost of a route r is given by:

ĉr = cr −
∑
i∈C

ai,rλi − λ0 (6.5)

The purpose of the pricing problem is to generate routes r ∈ Ω \ Ω1 with ĉr < 0. Note
that in the standard version of the VRPTW, the pricing problem can be easily reduced to
an Elementary Shortest Path Problem with Resource Constraints (ESPPRC). This is done
by replacing cr and ai,r in (6.5), respectively by

∑
(i, j)∈A bi jrci j and

∑
j∈V |(i, j)∈A bi jr (recall that

V = C ∪ {0} in the standard VRPTW) with bi jr = 1 if route r traverses arc (i, j) and 0
otherwise. Using these notations, the reduced cost of route r can be expressed as:

ĉr =
∑

(i, j)∈A

bi jr(ci j − λi) (6.6)

Thus, the pricing problem is equivalent to the problem of finding elementary paths start-
ing and ending at the depot 0, satisfying time windows and capacity constraints and with
negative cost where arc costs are equal to ci j − λi. This problem can be efficiently handled
using a dynamic programming based approach [53, 115]. Desrochers et al. [40] show that
the ESPPRC is NP-hard in the strong sense, however it can be solved in a pseudo-polynomial
time when the elementary condition is not considered and in this case the pricing problem
is reduced to a Shortest Path Problem with Resource Constraints (SPPRC). They notice that,

124
Chapter 6: A branch-and-price Algorithm for the Vehicle Routing Problem with

Time Windows on a road-network graph

with the SPPRC, the enlargement of the set of feasible routes Ω does not affect the validity
of the set covering formulation and the branch-and-price scheme, but, it weaken significantly
the lower bound. Also, slight modifications must be made to the branch-and-price frame-
work: bi jr represents the number of times the arc (i, j) is traversed along the route r and ai,r

represents the number of times the customer i is served in r.

With the road network setting, two main issues arise. First, a customer node can be vis-
ited more than once in a route (but it is not necessarily served at each visit). Second, an arc
can be traversed several times along a route. Thus, the pricing problem cannot be reduced to
an ESPPRC. In this case, a route r is called elementary if every customer in r is served only
once otherwise it is called non-elementary. To handle the road network setting, the branch-
and-price framework is modified as follows: bi jr represents the number of times the arc (i, j)
is traversed along the route r and ai,r = 1 if the customer i is served in r otherwise it is equal
to 0.

To solve the pricing problem, we adapt the algorithm proposed by Feillet et al. [53].
The solution procedure is based on a modified label correcting algorithm. A label represents
a partial route from the depot node 0 to a node v ∈ V . It is defined using the following
information, L = (v, t, c, q, S) with:

• v is the last node visited in the partial route represented by L;

• t represents the arrival time at v. When v is a served customer, t includes waiting and
service times;

• c represents the reduced cost of the partial route represented by L;

• q is the total demand of served customers along the partial route represented by L;

• S represents the set of served customers along the partial route represented by L. S
contains also the unreachable customers, i.e. that cannot be served along the partial
route represented by L without violating time or capacity constraints.

The developed algorithm is based on an exhausitive enumeration in which, for every
label, all feasible extensions are performed. Once all labels are processed the algorithm ter-
minates and all routes with negative reduced costs are constructed. Using this search strategy,
the number of generated labels can be very large. To reduce this number, a dominance check
is used. The dominance rule is defined as follows:

Definition 6.1. A label L1 = (v, t1, c1, q1, S 1) dominates a label L2 = (v, t2, c2, q2, S 2) if:

1. t1 ≤ t2

2. c1 ≤ c2

3. q1 ≤ q2

6.3 Branch-and-price algorithm for the VRPTW on the road-network graph 125

4. S 1 ⊆ S 2

The general scheme of the pricing algorithm is described in Algorithm 6.1 where Labels[v]
is the list of labels whose last visited node is v and W is the list of active nodes i.e. at
which there is a non-processed label. Labels[v].insert(L) is a procedure that updates labels
in Labels[v] and keeps only non-dominated labels. This procedure returns ’False’ if L is
dominated and has not been inserted. W.extract() is a procedure that extracts a node from W.
L.updateUnreachableNodes is a procedure that updates the set of unreachable nodes along
the partial route represented by L. In Algorithm 6.1, when the destination node is a cus-
tomer v ∈ C, every label is extended twice: in the first extension the customer v is served, if
it is possible regarding time and capacity constraints, and in the second extension v is visited
without being served.

Note that, the pricing procedure for the road network based ESPPRC can be easily
adapted to solve the SPPRC. To do this, we no longer need to check if customer v was
already served at each extension of a label along an arc (u, v) ∈ A (line 11 of Algorithm 6.1)
and the comparison based on the set of served customers is not considered when checking
the dominance between two labels.

6.3.2 Branching scheme

The branching rule is one of the important components of the branch-and-price scheme. It
aims at adding constraints in order to iteratively extend the binary search. It is important to
ensure that the added constraints are compatible with the column generation procedure.

In the context of vehicle routing problems, the standard branching rule relies on the prop-
erty that in a feasible solution each arc is at most traversed by one vehicle (see [74] for more
details). Let φi j denotes the flow on arc (i, j), i.e., φi j =

∑
r∈Ω1

bi jr xi j. The standard branching
rule consists in selecting an arc (i, j) such that 0 < φi j < 1 then, deriving two branches: in
the first branch, the use of the arc (i, j) in the solution is forbidden, and in the second branch,
the arc (i, j) is enforced in the solution. This branching rule is very easy to address in both
column generation schemes and in the Master Problem.

Unfortunately, the standard branching rule cannot be used with the road network, due to
the fact that an arc can be traversed several times and by several vehicles. In our implemen-
tation, we propose to use a branching rule that works as follows:

• Select an arc (i, j) ∈ A with fractional flow φi j > 0

• Derive two branches:

– In the first branch, the upper limit on flow on arc (i, j) is fixed to bφi jc

– In the second branch, the lower limit on flow on arc (i, j) is fixed to bφi jc + 1

126
Chapter 6: A branch-and-price Algorithm for the Vehicle Routing Problem with

Time Windows on a road-network graph

Algorithm 6.1 Pricing procedure for based road network ESPPRC
1: L = (0, 0, 0, 0, ∅)
2: Labels[0].add(L)
3: for all i ∈ V do
4: Labels[i]← ∅
5: end for
6: W = {0}
7: while W , ∅ do
8: u = W.extract()
9: for all L = (u, t, c, q, S) ∈ Labels[u] do

10: if L is not processed then
11: for all (u, v) ∈ A do
12: if v ∈ C ∪ {0} and v < S then
13: if t + tuv ≤ lv and q + qv ≤ Q then
14: L′ = (v,min{ev, t + tuv} + sv, c + cuv − λv, q + qv, S ′ = S ∪ {v})
15: L′.updateUnreachableNodes()
16: if Labels[v].insert(L′) then
17: W ← W ∪ {v}
18: end if
19: end if
20: end if
21: L′′ = (v, t + tuv, c + cuv, q, S)
22: L′′.updateUnreachableNodes()
23: if Labels[v].insert(L′′) then
24: W ← W ∪ {v}
25: end if
26: end for
27: end if
28: end for
29: end while
30: return Labels[0]

6.3 Branch-and-price algorithm for the VRPTW on the road-network graph 127

0

123

45

Figure 6.1: Example of a fractional solution supported by an integer arc flow

This branching rule is very easy to address in the column generation scheme. Constraints∑
r∈Ω1

bi jr xr ≤ bφi jc (6.7)

and ∑
r∈Ω1

bi jr xr ≥ bφi jc + 1 (6.8)

are added to the Master Problem in the first and second branches, respectively. At the pricing
problem level, the cost on arc (i, j) is set to ci j = ci j − λ

low
i j (resp. ci j = ci j − λ

up
i j) in the first

branch (resp. the second branch) with λlow
i j ≤ 0 is the dual variable associated with constraint

(6.7) (resp. λup
i j ≥ 0 is the dual variable associated with constraint (6.8)).

Note that, it has been shown in [5] that for the standard VRPTW, an integer flow corre-
sponds to an integer routing solution. Thus, when no arc with a fractional flow is found, the
obtained solution corresponds to the optimal solution of the associated branch. With the road
network setting, this property does not hold. A fractional routing solution could be supported
by an integer flow. To illustrate this, let us consider the example provided in Figure 6.1.

In this example, the depot is located at node 0, and customers are located at nodes 1, 2
and 3. Other nodes represent roads junctions. Suppose that we are given a fleet with a large
number of vehicles and let us consider the following routes (assumed to be feasible regarding
time windows and capacity constraints):

• r1 (represented with thin lines) starts from the depot serves the customer at node 2 and
ends at the depot;

• r2 (represented with dashed lines) serves the customer at node 3;

• r3 (represented with dotted lines) serves the customer at node 1;

• r4 (represented with thick lines) serves, successively, customers at nodes 3, 2 and 1.

The solution defined by xr1 = 0.5, xr2 = 0.5, xr3 = 0.5 and xr4 = 0.5 represents a feasible
solution for the Master Problem since

∑
rk;k∈{1,...,4} ai,rk xrk ≥ 1 is satisfied for all customer nodes

i ∈ C and
∑

rk;k∈{1,...,4} xrk = 2 ≤ K (assumed to be large). We can see that the flow associated

128
Chapter 6: A branch-and-price Algorithm for the Vehicle Routing Problem with

Time Windows on a road-network graph

with this solution is integer but it does not correspond to a feasible routing solution.

To handle such situations, we propose a procedure based on a specific branching scheme.
Suppose that at a certain node of the search tree, the obtained solution x̃ = (x̃r)r∈Ω1 is frac-
tional and the associated flow is integer, i.e.,

∑
r∈Ω1

bi jr x̃r is integer for all arcs (i, j) ∈ A. And
let G̃ = (V, Ã) the graph induced by this solution, i.e., Ã = {(i, j) ∈ A;

∑
r∈Ω1

bi jr x̃r > 0}. The
proposed procedure derives two branches:

• In the first branch, we seek for a feasible solution defined on the graph G̃. For this
aim, we apply the Algorithm 6.1 (in which the dominance rule is deactivated in the
insertion procedure) to enumerate the complete set of feasible routes that may exist in
G̃, denoted by Ω̃ ⊂ Ω. Then, a set covering problem is solved based on the set Ω̃ with
an IP solver;

• In the second branch, we enforce the use of at least one arc that is not used by the
solution x̃. To do this, constraint (6.9) is added to the master problem.∑

(i, j)∈A\Ã

∑
r∈Ω1

bi jr xr ≥ 1 (6.9)

At the pricing problem level, a dual variable λ̃a ≥ 0 is subtracted from the cost of each
arc a considered in constraint (6.9).

It is worth mentioning that Bode and Irnich [12] propose a branching scheme for the
CARP that can handle the road network setting. The proposed branching scheme is based on
three levels of decisions: (1) branching on node degrees, (2) branching on edge flows and (3)
branching on followers and non-followers. The first level consists in branching once a node
with a non-even (fractional or odd) degree is found. The second level of branching is similar
to the one proposed in this paper. These two branching rules are mainly used to improve
the quality of the lower bound and do not guarantee the integrality of the solution. The third
branching rule consists in deciding whether two required edges are serviced consecutively in
the same route or not. To do this, an undirected follower information fee′ is defined for each
pair of required edges (e, e′) and is given by fee′ =

∑
r∈Ω fee′r xr with fee′r denotes the number

of times edges e and e′ are served consecutively along the route r ∈ Ω. The followers and
non-followers branching scheme relies on the property that in a feasible solution fee′ ∈ {0, 1}
for every pair of required edges (e, e′). Thus, if two required edges e and e′ with fee′ are
found, two branches are with constraints fee′ = 0 and fee′ = 1 derived. The first type of
constraints consists in forbidding servicing edge e′ immediately after servicing edge e. This
is done by removing all routes satisfying this property from the Master problem and to avoid
pricing new routes with this property the same task is associated with edges e and e′ and a
task-2-loop elimination technique (see [75], [74]) is used to ensure that the constraint fee′ = 0
is respected. On the follower branch fee′ = 1, only routes where the successor of e (resp. e′)
is not e′ (resp. e) are not considered in the Master Problem, and at the pricing problem level,
edges e and e′ are replaced by four new edges that model the consecutive service to e and e′.

6.4 Branch-and-price algorithm for the multigraph based VRPTW 129

Bode and Irnich [12] show that the followers and non-followers branching rule can ensure
the integrality of the routing solution for the CARP. Unfortunately, this branching rules are
not very suitable for the problem considered here. This is because several alternative paths
can exist between each pair of customer nodes. To address the follower constraint between
two nodes i and j, one has to compute all non-dominated paths linking i to j which involves
an NP-hard problem called multi-objective shortest path problem [121]. In addition, it has
been shown that the number of Pareto-optimal paths can be exponential in the number of
nodes in the network which would be very computationally expensive for the pricing prob-
lem.

6.4 Branch-and-price algorithm for the multigraph based
VRPTW

In this section, we briefly describe the branch-and-price scheme for the VRPWT with the
multigraph representation. A full description can be found in [8].

The multigraph-based VRPTW is defined on a directed multigraph GMG = (V MG, AMG)
consisting of V MG = C ∪ {0} a set of nodes. The set of arcs AMG contains parallel arcs be-
tween each pair of nodes: AMG = ∪

i, j∈V MG
AMG

i j with AMG
i j = {(i, j)p, p = 1, . . . ,mi j} represents

the set of alternative paths linking customer locations i and j in the road network. Each arc
(i, j)p ∈ AMG is given a travel time tp

i j and a travel cost cp
i j that represent respectively the time

needed and the cost induced to travel from i to j using the path indexed by p.

With the multigraph representation, the Master problem is the same as for the standard
VRPTW. However, some modifications have to be made for the column generation scheme.
First, the addressed pricing problem is a multigraph based ESPPRC where the task is to
generate elementary routes that satisfy:

∑
(i, j)∈AMG

|Ai j |∑
p=1

αr
i jp(cp

i j − λi) (6.10)

with αr
i jp = 1 if the route r and λi is the dual variable associated with constraint (6.2).

The dynamic programming algorithm 6.1 can be adapted to handle the multigrpah set-
ting: a label at some node i ∈ V MG is extended along all arcs (i, j)p ∈ AMG (instead of A in
line 11 in Algorithm 6.1) and labels are only extended to customer and depot nodes (instruc-
tions in lines 21-25 in Algorithm 6.1 are not considered).

The used branching rule is similar to the standard one. If for any arc (i, j)p ∈ AMG the
flow is fractional, two branches are generated. In the first branch, the use of arc (i, j)p is

130
Chapter 6: A branch-and-price Algorithm for the Vehicle Routing Problem with

Time Windows on a road-network graph

forbidden and in the second branch the arc (i, j)p must be used in the solution.

6.5 Computational experiments

In this section, we present the computational experiments carried out to evaluate the im-
pact of the multigraph representation and the road network setting on the performance of the
Branch-and-Price algorithm. We first present data tests used in the experiments in Section
6.5.1. In Section 6.5.2, we report the obtained results. A discussion on the obtained results
is presented ins Section 6.5.3.

Branch-and-price algorithms are implemented in the C++ programming language. Tests
are run on an Intel CORE i5 2.6 GHz computer with 4GB of memory. We use CPLEX 12.6
as the linear programming solver for restricted master problems.

6.5.1 Test data

In our experiments, we use three sets of instances: the first set of instances is provided by
Letchford et al. [89], the second set of instances (Letchford et al.-Like [89] instances) are
generated using the procedure proposed in [89] (described below) and the third set consists
of instances derived using real data from the city of Aix-in-Provence, France.

6.5.1.1 Letchford et al. [89] and Letchford et al.-Like [89] (LL) instances

The first set of instances was generated by Letchford et al. [89] with the objective of simu-
lating real-life road networks, using the following procedure:

1. Insert nodes at random positions in the Euclidean space;

2. Consider all possible arcs and insert new arcs sequentially (to represent road segments)
on condition that the new inserted arc does not intersect with any other arc and has
sufficiently large angles with other arcs at its endpoints;

3. Set the arc cost to the Euclidean distance between arc endpoints.

Using this procedure, Letchford et al. [89] generated different sparse graphs with differ-
ent number of nodes n. In each graph, a node is randomly selected to be the depot location
and other nodes are given a probability p to be customers. For each sparse graph, Letchford
et al. [91] generated three different sets of travel times with different levels of correlation.
These travel times are computed using ti j = ν ∗ ci j + µ ∗ γi j ∗ c̄ where γi j is a random number

6.5 Computational experiments 131

in [0, 1], c̄ = max
(i, j)∈A

ci j, and parameters ν, µ ∈ [0, 1] are used to define the correlation degree

between travel times and costs. Finally, they associate with each graph two m-TSPTW in-
stances: a first instance with wide time windows (WTW) and a second instance with narrow
time windows (NTW). Time windows are defined such that a set of routes, constructed in
a greedy way, are feasible. An integer service time in {1, 2} is defined for each customer
node. We emphasize that only 6 instances with n = 200 and p = 0.66 were provided for us
by Letchford et al. [89]: 2 instances with non-correlated travel times instances with weakly
correlated travel times where and 2 instances with strongly correlated travel times. In order
to be consistent with our problem definition, we define the vehicle capacity to 200 and we
consider a fleet with a large number of vehicles. We assign a demand to each customer such
that the routes defined by the time windows remain feasible.

Using the procedure described above, we generated the third set of instances with the
same numbers of nodes and the same values of p as in [89]: p = 0.66 for n ∈ {50, 100, 150, 200, 250}
and p = 0.33 for n ∈ {100, 200, 300, 400, 500}. We also generated additional instances with
different densities of customers for the road network with n = 250 and nc ∈ {25, 50, 75, 100, 125}.
Note that, in order to achieve a clear understanding, 5 different sparse graphs were generated
for each configuration (n, nc).

6.5.1.2 Real instances

The third set of instances is generated based on real data from the road network of the central
urban area of the city of Aix-en-Provence (a city-commune in the region of Provence-Alpes-
Cote d’Azur in the south of France, about 30 km north of Marseilles). Spacial data are ex-
tracted based on OpenStreetMap© 1 database. The considered road network is represented
by a directed sparse graph with n = 5437 nodes and 10181 arcs where an arc represents a
road segment and is defined by a length and a maximum allowed speed. Travel times are
computed using road segments lengths and speeds. Costs are set as road segment lengths.

1OpenStreetMap is a collaborative project wich creates and distributes freely available geo-spatial data.
www.openstreetmap.org/

www.openstreetmap.org/

132
Chapter 6: A branch-and-price Algorithm for the Vehicle Routing Problem with

Time Windows on a road-network graph

Figure 6.2: Road Network of the central urban area of Aix-en-Provence

Based on this road network, we generate 20 instances with nc ∈ {5, 10, 25, 50} (5 in-
stances for each nc). For each instance, depot and customer locations are randomly selected.
Problem characteristics (time windows, customer demands, service times and vehicle capac-
ity) are defined in the same way as for the first set of instances.

6.5.2 Results

In order to complete results presented by Letchford et al. [89] and to derive comprehensive
conclusions, we propose the following experimental plan. In all cases, we compare the results
obtained on the road network graph and on the multigraph:

1. We start by comparing results obtained by solving the LP relaxation using column
generation where non-elementary routes are allowed for the m-TSPTW;

2. Then, we explore the case where only elementary routes are allowed. Note that in the
m-TSPTW we do not consider customer demands and vehicle capacity constraints: the
feasibility of a route is evaluated regarding only time window constraints;

3. Next, we investigate the impact of capacity constraints in the VRPTW on the perfor-
mance of column generation algorithms;

4. Finally, we explore the complete branch-and-price algorithm.

In the first three steps of our experimental plan, we use the Letchford et al. [89] and LL
instances. Real instances are used only for the complete branch-and-price algorithm. For all
experiments, computing times are expressed in seconds and we limit the computing times to
7200 seconds.

6.5 Computational experiments 133

Note that, we use the method described in [9] to generate multigraphs for all instances.
We do not include multigraph construction time in the reported computing times.

6.5.2.1 Results for the multiple travelling Salesman Problem

Tables 6.1, 6.2 and 6.3 summarize results when solving the LP relaxation at the root node
using column generation where non-elementary routes are allowed for the m-TSPTW. Ta-
bles 6.4, 6.5 and 6.6 summarize results where only elementary routes are allowed. In these
tables, the first three columns indicate, respectively, the average number of nodes, the av-
erage number of arcs and the number of customers in road networks. Columns "corr" and
"|AMG|" indicate, respectively, the correlation level between travel times and costs, and the
average number of arcs in the associated multigraph. For each type of instances (with nar-
row and wide time windows), we report the gap between the lower bound obtained with the
multigraph representation (LBMG) and the lower bound obtained on the road network (LBRN)
(column "Gap"), the average computing time on the multigraph (column "CPUMG"), the av-
erage computing time on the road network (column "CPURN") and the ratio of the computing
time on the multigraph to the computing time on the road network (column "CPUMG

CPURN
"). In this

last column, we indicate the smallest ratio (column "Min"), the average ratio (column "Avg"),
and the largest ratio (column "Max") over the 5 tested instances for each configuration (n, nc

and correlation level).

The gap between the lower bound obtained with the multigraph representation and the
lower bound obtained on the road network is computed as follows:

Gap(%) =
LBRN − LBMG

LBMG
∗ 100 (6.11)

Note that, this gap is due to the fact that, with the road network settings, a customer can be
served multiple times consecutively in the same route, while in the multigraph, one needs
to serve at least one intermediate customer. We do not report gaps for the case with only
elementary routes as the same set of optimal routes are generated with both approaches,
hence, the same value for the lower bound is obtained.

134
Chapter 6: A branch-and-price Algorithm for the Vehicle Routing Problem with

Time Windows on a road-network graph
Ta

bl
e

6.
1:

R
es

ul
ts

fo
r

co
lu

m
n

ge
ne

ra
tio

n
w

ith
no

n-
el

em
en

ta
ry

ro
ut

es
fo

r
th

e
m

-T
SP

TW
on

LL
in

st
an

ce
s

N
ar

ro
w

T i
m

e
W

in
do

w
s

W
id

e
T i

m
e

W
in

do
w

s
C

PU
(s

)
C

P
U

M
G

C
P

U
R

N
C

PU
(s

)
C

P
U

M
G

C
P

U
R

N

| V
R

N
|
|A

R
N
|
|C
|

C
or

r
|A

M
G
|

G
ap

M
G

R
N

M
in

A
vg

M
ax

G
ap

M
G

R
N

M
in

A
vg

M
ax

50
13

5
33

N
C

23
62

-0
.3

%
0.

3
0.

4
0.

56
0.

83
1.

22
-3

.9
%

0.
5

0.
9

0.
39

0.
49

0.
60

W
C

18
64

-0
.7

%
0.

4
0.

5
0.

43
0.

67
0.

96
-8

.2
%

0.
5

1.
3

0.
26

0.
42

0.
52

SC
12

66
-2

.2
%

0.
3

0.
4

0.
45

0.
65

0.
91

-1
0.

9%
0.

5
1.

3
0.

33
0.

41
0.

48
10

0
27

8
66

N
C

11
79

5
-0

.1
%

1.
4

1.
4

0.
72

1.
18

2.
08

-3
.4

%
2.

2
4.

2
0.

37
0.

55
0.

71
W

C
95

81
0.

0
%

1.
6

1.
9

0.
63

0.
88

1.
16

-5
.0

%
2.

9
6.

4
0.

34
0.

55
0.

75
SC

52
65

-2
.2

%
1.

8
2.

3
0.

51
0.

79
1.

03
-7

.2
%

3.
7

11
.2

0.
29

0.
34

0.
42

15
0

42
9

10
0

N
C

32
34

6
-0

.1
%

4.
5

5.
2

0.
73

0.
95

1.
44

-3
.7

%
9.

3
19

.7
0.

38
0.

55
0.

80
W

C
25

56
1

-0
.1

%
4.

5
5.

3
0.

67
0.

88
1.

11
-5

.2
%

10
.4

19
.5

0.
41

0.
55

0.
72

SC
13

19
3

-2
.6

%
4.

8
5.

5
0.

56
0.

87
1.

23
-6

.2
%

11
.3

27
.8

0.
35

0.
41

0.
44

20
0

57
4

13
3

N
C

68
97

9
-0

.4
%

10
.9

11
.7

0.
81

0.
95

1.
12

-3
.7

%
28

.2
56

.5
0.

36
0.

57
0.

97
W

C
52

74
2

-0
.1

%
12

.1
13

.5
0.

72
0.

94
1.

32
-3

.9
%

24
.9

45
.9

0.
40

0.
58

0.
89

SC
23

79
8

-3
.5

%
12

.0
12

.2
0.

51
1.

05
1.

79
-6

.5
%

25
.7

75
.0

0.
25

0.
39

0.
67

25
0

71
4

16
6

N
C

11
63

00
0.

0
%

23
.9

26
.5

0.
62

1.
06

1.
56

-2
.4

%
44

.1
62

.4
0.

55
0.

79
1.

02
W

C
92

50
0

-0
.1

%
25

.0
22

.2
0.

78
1.

24
1.

93
-3

.9
%

44
.4

71
.8

0.
48

0.
65

0.
85

SC
37

25
4

-2
.1

%
14

.5
19

.9
0.

35
0.

80
1.

21
-5

.4
%

50
.1

13
5.

3
0.

32
0.

39
0.

55
10

0
27

8
33

N
C

29
94

-0
.3

%
0.

2
0.

5
0.

29
0.

41
0.

50
-5

.1
%

0.
3

1.
1

0.
21

0.
29

0.
53

W
C

24
00

-1
.0

%
0.

2
0.

5
0.

36
0.

44
0.

56
-1

2.
3%

0.
3

1.
7

0.
14

0.
22

0.
35

SC
13

15
-3

.8
%

0.
3

1.
1

0.
20

0.
29

0.
41

-1
9.

2%
0.

5
2.

9
0.

14
0.

17
0.

20
20

0
57

4
66

N
C

16
95

4
-0

.1
%

1.
7

4.
6

0.
22

0.
41

0.
64

-6
.3

%
2.

2
12

.5
0.

16
0.

18
0.

24
W

C
13

07
6

-0
.1

%
1.

4
4.

2
0.

23
0.

35
0.

44
-1

1.
2%

2.
7

13
.2

0.
09

0.
22

0.
30

SC
58

06
-4

.1
%

1.
2

5.
3

0.
19

0.
23

0.
29

-1
3.

8%
2.

2
21

.3
0.

07
0.

11
0.

15
30

0
86

9
10

0
N

C
50

41
8

-0
.1

%
6.

8
11

.9
0.

43
0.

57
0.

71
-4

.1
%

7.
8

24
.6

0.
24

0.
33

0.
43

W
C

39
08

4
-0

.3
%

4.
5

9.
9

0.
35

0.
47

0.
59

-7
.6

%
7.

7
27

.9
0.

21
0.

30
0.

42
SC

14
54

5
-2

.5
%

3.
7

12
.8

0.
22

0.
31

0.
45

-1
3.

2%
7.

5
68

.9
0.

09
0.

12
0.

18
40

0
11

65
13

3
N

C
10

33
56

0.
0

%
13

.4
28

.9
0.

34
0.

53
0.

69
-7

.3
%

25
.1

80
.0

0.
25

0.
35

0.
52

W
C

77
03

7
-0

.1
%

15
.0

26
.6

0.
45

0.
60

0.
93

-9
.8

%
23

.7
10

0.
4

0.
16

0.
27

0.
34

SC
26

58
3

-4
.2

%
7.

8
17

.4
0.

32
0.

44
0.

64
-1

2.
1%

21
.6

11
3.

9
0.

15
0.

20
0.

25
50

0
14

58
16

6
N

C
19

62
67

-0
.1

%
38

.8
56

.7
0.

61
0.

73
1.

06
-4

.7
%

44
.3

13
4.

9
0.

26
0.

37
0.

59
W

C
14

57
82

-0
.1

%
30

.1
75

.1
0.

31
0.

55
0.

97
-9

.0
%

46
.3

17
4.

7
0.

18
0.

30
0.

41
SC

44
75

1
-3

.2
%

20
.5

62
.0

0.
19

0.
40

0.
58

-1
2.

9%
32

.8
27

1.
4

0.
09

0.
13

0.
17

6.5 Computational experiments 135

Ta
bl

e
6.

2:
R

es
ul

ts
fo

r
co

lu
m

n
ge

ne
ra

tio
n

w
ith

no
n-

el
em

en
ta

ry
ro

ut
es

fo
r

th
e

m
-T

SP
TW

on
LL

in
st

an
ce

s
w

ith
n

=
25

0
no

de
s

N
ar

ro
w

T i
m

e
W

in
do

w
s

W
id

e
T i

m
e

W
in

do
w

s
C

PU
(s

)
C

P
U

M
G

C
P

U
R

N
C

PU
(s

)
C

P
U

M
G

C
P

U
R

N

|V
R

N
|
|A

R
N
|
|C
|

C
or

r
|A

M
G
|

G
ap

M
G

R
N

M
in

A
vg

M
ax

G
ap

M
G

R
N

M
in

A
vg

M
ax

25
0

71
4

25
N

C
25

53
0.

0
%

0.
1

1.
1

0.
09

0.
14

0.
19

-1
2.

8
%

0.
2

2.
5

0.
05

0.
07

0.
09

W
C

21
23

0.
0

%
0.

1
1.

0
0.

11
0.

15
0.

19
-4

9.
3

%
0.

2
3.

2
0.

03
0.

05
0.

06
SC

87
8

-1
7.

7
%

0.
1

1.
4

0.
08

0.
09

0.
10

-5
9.

3
%

0.
1

5.
9

0.
02

0.
03

0.
05

50
N

C
10

70
4

-0
.5

%
0.

8
3.

3
0.

09
0.

23
0.

34
-8

.0
%

1.
0

7.
4

0.
11

0.
14

0.
19

W
C

86
97

-0
.1

%
0.

7
3.

2
0.

11
0.

25
0.

37
-1

5.
2

%
1.

3
11

.7
0.

09
0.

13
0.

20
SC

34
78

-5
.5

%
0.

6
3.

7
0.

13
0.

18
0.

30
-2

1.
5

%
1.

3
16

.0
0.

05
0.

08
0.

12
75

N
C

24
26

7
-0

.2
%

2.
4

5.
9

0.
22

0.
41

0.
64

-6
.2

%
3.

0
12

.5
0.

16
0.

18
0.

24
W

C
19

33
3

0.
0

%
1.

8
5.

5
0.

23
0.

35
0.

44
-9

.9
%

3.
5

21
.8

0.
09

0.
22

0.
30

SC
78

15
-3

.4
%

1.
7

7.
1

0.
19

0.
23

0.
29

-1
7.

5
%

3.
9

41
.8

0.
07

0.
11

0.
15

10
0

N
C

42
36

7
-0

.3
%

5.
8

9.
3

0.
34

0.
43

0.
56

-6
.4

%
8.

3
23

.6
0.

21
0.

32
0.

48
W

C
34

16
3

0.
0

%
4.

9
9.

5
0.

23
0.

34
0.

53
-8

.6
%

9.
0

33
.7

0.
15

0.
21

0.
30

SC
13

71
6

-3
.0

%
3.

1
9.

4
0.

20
0.

37
0.

55
-1

0.
9

%
9.

9
63

.3
0.

15
0.

18
0.

22
12

5
N

C
66

24
8

-0
.2

%
10

.5
13

.3
0.

47
0.

62
0.

84
-4

.7
%

15
.8

36
.4

0.
18

0.
35

0.
48

W
C

52
53

4
-0

.7
%

9.
9

12
.9

0.
46

0.
59

0.
93

-6
.0

%
18

.8
45

.0
0.

20
0.

31
0.

46
SC

21
33

6
-1

.5
%

7.
4

12
.9

0.
39

0.
63

0.
89

-9
.0

%
18

.5
84

.4
0.

15
0.

24
0.

34
16

6
N

C
11

63
00

0.
0

%
23

.9
26

.5
0.

81
0.

95
1.

12
-2

.6
%

44
.1

62
.4

0.
36

0.
57

0.
97

W
C

92
50

0
-0

.1
%

25
.0

22
.2

0.
72

0.
94

1.
32

-4
.2

%
44

.4
71

.8
0.

40
0.

58
0.

89
SC

37
25

4
-2

.2
%

14
.5

19
.9

0.
51

1.
05

1.
79

-5
.9

%
50

.1
13

5.
3

0.
25

0.
39

0.
67

Ta
bl

e
6.

3:
R

es
ul

ts
fo

r
co

lu
m

n
ge

ne
ra

tio
n

w
ith

no
n-

el
em

en
ta

ry
ro

ut
es

fo
r

th
e

m
-T

SP
TW

on
Le

tc
hf

or
d

et
al

.[
89

]
in

st
an

ce
s

N
ar

ro
w

T i
m

e
W

in
do

w
s

W
id

e
T i

m
e

W
in

do
w

s
C

PU
(s

)
C

PU
(s

)
|V

R
N
|
|A

R
N
|
|C
|

C
or

r
|A

M
G
|

G
ap

M
G

R
N

C
P

U
M

G
C

P
U

R
N

G
ap

M
G

R
N

C
P

U
M

G
C

P
U

R
N

20
0

13
3

58
2

N
C

50
36

8
-2

.1
%

45
.1

34
.6

1.
30

-4
.3

%
54

.3
43

.7
1.

24
W

C
38

74
8

-1
.3

%
16

.2
17

.9
0.

91
-2

.7
%

44
.0

29
.7

1.
48

SC
24

75
8

-2
.0

%
13

.3
16

.4
0.

81
-2

.3
%

31
.2

27
.8

1.
12

136
Chapter 6: A branch-and-price Algorithm for the Vehicle Routing Problem with

Time Windows on a road-network graph

Tables 6.1 and 6.2 show that a negative gap, which indicates that a lower value for LBRN

than for LBMG, is obtained for almost all cases. This gap reaches −59.3% in average for
strongly correlated instances with n = 250 nodes and nc = 25 customers, and wide time
windows. This negative gap is due to the fact that the pricing algorithm based on the road
network permits a vehicle to serve a customer i, traverse some arcs (without servicing other
customers) then return back to customer i and serve it again which is not allowed using the
multigraph representation. From Table 6.1, we observe that for instances with the same n
and nc the difference between LBMG and LBRN becomes more important when the correlation
between travel times and costs increases. We also observe that for the same correlation level
this difference is more important when the time windows are wide. For LL instances with
n = 250, Table 6.2, we see that the average gap between LBMG and LBRN decreases when
the number of customers decreases, e.g., for strongly correlated instances with wide time
windows, it goes from −5.9% for nc = 166 to −59.3% for nc = 25.

From Tables 6.1 and 6.2, it comes out that the computing time increases when tackling
the problem directly on the road network. The ratio of CPUMG to CPURN is lower than 1 for
the majority of instances. We mention that over the 450 tested instances, this ratio is greater
than 1 for only 27 instances. The average ratio of CPUMG to CPURN is higher for instances
with narrow time windows and it increases when the correlation between travel times and
costs decreases. For example, the average ratios for non correlated and strongly correlated
instances with n = 100 and nc = 66 are, respectively, 1.18 and 0.79 when time windows are
narrow, and are 0.55 and 0.34 when time windows are wide. This behaviour can be explained
by the fact that when time windows are wide, time constraints are less restrictive and thus,
more label extensions are performed. However, this increase in the number of extensions is
more important using the road network modelling since arcs represent short road segments
with small travel times and many arcs need be traversed to reach a customer node. While an
arc in the multigraph represents a path linking two customer, thus, it is easier to evaluate the
feasibility of a route using the multigraph representation.

Another observation is that, for the same density of customers, the ratio of CPUMG to
CPURN increases when the number of nodes in the road network increases, e.g., the ratio for
NC instances with n = 100, nc = 33 and narrow time windows is 0.29 in average and reaches
0.50, while it is 0.73 in average and reaches 1.06 for instances with n = 500 and nc = 166.
Figures 6.3 represents the evolution of the ratio of CPUMG to CPURN with the number of
customers for instances with 250 nodes for both type of time windows. We observe that by
increasing the density of customers in the road network, the ratio of CPUMG to CPURN in-
creases. For example, for strongly correlated instances with narrow time windows, it ranges
from 0.08 to 0.10 when nc = 25, it ranges from 0.20 to 0.55 when nc = 100 and it ranges
from 0.51 to 1.79 when nc = 166.

Table 6.3 reports the obtained results for Letchford et al. [89] instances. It comes that a
similar behaviour is obtained as for LL instances. A negative gap between LBRN and LBMG

6.5 Computational experiments 137

25 50 75 100 125 133
0

0.2

0.4

0.6

0.8

1

1.2

number of customers

C
P

U
M

G
/C

P
U

R
N

NC WC SC

(a) Instances with narrow time windows

25 50 75 100 125 166
0

0.2

0.4

0.6

0.8

1

number of customers

C
P

U
M

G
/C

P
U

R
N

NC WC SC

(b) Instances with narrow time windows

Figure 6.3: Evolution of the ratio CPUMG
CPURN

with the number of customers for instances with n = 250

is obtained for the 6 tested instances. The ratio of CPUMG to CPURN varies and it is more
important when the correlation degree between travel times and costs is lower.

138
Chapter 6: A branch-and-price Algorithm for the Vehicle Routing Problem with

Time Windows on a road-network graph
Ta

bl
e

6.
4:

R
es

ul
ts

fo
r

co
lu

m
n

ge
ne

ra
tio

n
w

ith
on

ly
el

em
en

ta
ry

ro
ut

es
fo

r
th

e
m

-T
SP

TW
on

LL
in

st
an

ce
s

N
ar

ro
w

T i
m

e
W

in
do

w
s

W
id

e
T i

m
e

W
in

do
w

s
C

PU
(s

)
C

P
U

M
G

C
P

U
R

N
C

PU
(s

)
C

P
U

M
G

C
P

U
R

N

| V
R

N
|
|A

R
N
|
|C
|

C
or

r
|A

M
G
|

M
G

R
N

M
in

A
vg

M
ax

M
G

R
N

M
in

A
vg

M
ax

50
13

5
33

N
C

23
62

0.
2

0.
9

0.
16

0.
22

0.
33

0.
4

1.
5

0.
18

0.
29

0.
41

W
C

18
64

0.
2

1.
7

0.
09

0.
12

0.
21

0.
6

2.
1

0.
21

0.
28

0.
47

SC
12

66
0.

1
1.

1
0.

06
0.

13
0.

21
0.

5
2.

1
0.

13
0.

24
0.

60
10

0
27

8
66

N
C

11
79

5
0.

8
5.

8
0.

08
0.

14
0.

19
2.

6
7.

7
0.

23
0.

34
0.

47
W

C
95

81
0.

9
6.

5
0.

10
0.

14
0.

21
5.

6
10

.9
0.

28
0.

52
0.

76
SC

52
65

0.
7

9.
4

0.
04

0.
07

0.
21

7.
4

14
.6

0.
37

0.
51

0.
81

15
0

42
9

10
0

N
C

32
34

6
3.

4
23

.2
0.

09
0.

15
0.

24
24

.4
41

.8
0.

43
0.

58
0.

69
W

C
25

56
1

3.
5

29
.1

0.
10

0.
12

0.
14

26
.8

42
.4

0.
42

0.
63

0.
83

SC
13

19
3

2.
8

42
.7

0.
03

0.
07

0.
12

38
.2

56
.3

0.
59

0.
68

0.
76

20
0

57
4

13
3

N
C

68
97

9
9.

6
59

.1
0.

11
0.

16
0.

45
75

.0
99

.5
0.

43
0.

75
1.

02
W

C
52

74
2

7.
5

74
.2

0.
08

0.
10

0.
22

85
.5

96
.0

0.
40

0.
89

1.
60

SC
23

79
8

7.
1

95
.8

0.
04

0.
07

0.
38

12
3.

5
14

0.
7

0.
43

0.
88

1.
36

25
0

71
4

16
6

N
C

11
63

00
20

.6
18

6.
4

0.
05

0.
11

0.
22

12
2.

8
18

8.
8

0.
19

0.
65

1.
25

W
C

92
50

0
20

.2
13

8.
5

0.
13

0.
15

0.
19

16
5.

5
21

1.
8

0.
24

0.
78

1.
24

SC
37

25
4

13
.2

13
4.

6
0.

06
0.

10
0.

16
26

8.
8

27
8.

9
0.

61
0.

96
1.

11
10

0
27

8
33

N
C

29
93

.6
0.

2
1.

8
0.

07
0.

10
0.

16
0.

3
2.

3
0.

10
0.

12
0.

17
W

C
23

99
.6

0.
2

1.
9

0.
07

0.
10

0.
19

0.
3

3.
1

0.
09

0.
10

0.
11

SC
13

14
.6

0.
2

5.
2

0.
01

0.
04

0.
09

0.
4

4.
1

0.
07

0.
10

0.
17

20
0

57
4

66
N

C
16

95
4

0.
5

12
.2

0.
04

0.
04

0.
37

1.
0

17
.4

0.
04

0.
06

0.
77

W
C

13
07

6
0.

3
15

.9
0.

01
0.

02
0.

51
1.

3
18

.4
0.

03
0.

07
0.

69
SC

58
06

0.
3

19
.4

0.
01

0.
02

0.
42

1.
6

20
.7

0.
04

0.
08

0.
70

30
0

86
9

10
0

N
C

50
41

8
3.

4
91

.5
0.

03
0.

04
0.

05
8.

7
94

.1
0.

05
0.

09
0.

20
W

C
39

08
4

2.
8

67
.7

0.
02

0.
04

0.
06

11
.7

10
0.

6
0.

05
0.

12
0.

24
SC

14
54

5
1.

9
84

.2
0.

02
0.

02
0.

03
11

.3
14

5.
2

0.
06

0.
08

0.
13

40
0

11
65

13
3

N
C

10
33

56
11

.1
16

9.
7

0.
05

0.
07

0.
08

38
.6

23
9.

7
0.

11
0.

16
0.

29
W

C
77

03
7

10
.2

19
6.

8
0.

04
0.

05
0.

11
54

.4
29

6.
7

0.
08

0.
18

0.
30

SC
26

58
3

5.
9

14
4.

4
0.

03
0.

04
0.

05
58

.0
26

7.
6

0.
12

0.
22

0.
34

50
0

14
58

16
6

N
C

19
62

67
28

.0
39

1.
5

0.
06

0.
07

0.
09

84
.9

41
5.

4
0.

13
0.

20
0.

31
W

C
14

57
82

25
.1

41
7.

5
0.

06
0.

06
0.

07
11

2.
9

65
6.

0
0.

12
0.

17
0.

20
SC

44
75

1
14

.8
40

7.
2

0.
03

0.
04

0.
05

13
8.

2
49

9.
5

0.
18

0.
28

0.
42

6.5 Computational experiments 139

Ta
bl

e
6.

5:
R

es
ul

ts
fo

r
co

lu
m

n
ge

ne
ra

tio
n

w
ith

on
ly

el
em

en
ta

ry
ro

ut
es

fo
r

th
e

m
-T

SP
TW

on
LL

in
st

an
ce

s
w

ith
n

=
25

0
no

de
s

N
ar

ro
w

T i
m

e
W

in
do

w
s

W
id

e
T i

m
e

W
in

do
w

s
C

PU
(s

)
C

P
U

M
G

C
P

U
R

N
C

PU
(s

)
C

P
U

M
G

C
P

U
R

N

|V
R

N
|
|A

R
N
|
|C
|

C
or

r
|A

M
G
|

M
G

R
N

M
in

A
vg

M
ax

M
G

R
N

M
in

A
vg

M
ax

25
0

71
4

25
N

C
25

53
0.

1
6.

9
0.

01
0.

02
0.

02
0.

1
8.

3
0.

01
0.

02
0.

02
W

C
21

23
0.

1
8.

9
0.

01
0.

01
0.

02
0.

2
7.

9
0.

01
0.

02
0.

02
SC

87
8

0.
1

8.
8

0.
01

0.
01

0.
02

0.
1

10
.2

0.
01

0.
01

0.
02

50
N

C
10

70
4

0.
4

17
.6

0.
02

0.
02

0.
03

1.
1

23
.5

0.
02

0.
05

0.
09

W
C

86
97

0.
4

15
.5

0.
02

0.
03

0.
04

1.
3

25
.7

0.
02

0.
05

0.
08

SC
34

78
0.

3
20

.6
0.

01
0.

02
0.

03
1.

2
33

.4
0.

03
0.

04
0.

06
75

N
C

24
26

7
1.

6
33

.4
0.

03
0.

05
0.

07
3.

6
40

.9
0.

05
0.

10
0.

16
W

C
19

33
3

1.
3

33
.6

0.
04

0.
04

0.
04

4.
1

44
.0

0.
07

0.
09

0.
11

SC
78

15
1.

1
44

.9
0.

01
0.

02
0.

03
7.

3
69

.6
0.

04
0.

11
0.

17
10

0
N

C
42

36
7

3.
5

63
.9

0.
03

0.
06

0.
08

10
.7

79
.7

0.
06

0.
14

0.
23

W
C

34
16

3
3.

3
58

.3
0.

04
0.

06
0.

07
20

.1
73

.1
0.

13
0.

24
0.

55
SC

13
71

6
2.

5
60

.8
0.

03
0.

04
0.

07
25

.9
97

.3
0.

20
0.

26
0.

34
12

5
N

C
66

24
8

7.
7

87
.2

0.
06

0.
09

0.
15

28
.1

87
.0

0.
16

0.
31

0.
52

W
C

52
53

4
7.

3
10

1.
3

0.
05

0.
08

0.
10

52
.2

12
7.

2
0.

24
0.

41
0.

53
SC

21
33

6
4.

9
95

.0
0.

03
0.

06
0.

08
72

.5
15

9.
4

0.
28

0.
50

0.
84

16
6

N
C

11
63

00
20

.6
18

6.
4

0.
05

0.
14

0.
22

12
2.

8
18

8.
8

0.
19

0.
67

1.
25

W
C

92
50

0
20

.2
13

8.
5

0.
13

0.
15

0.
19

16
5.

5
21

1.
8

0.
24

0.
83

1.
24

SC
37

25
4

13
.2

13
4.

6
0.

06
0.

11
0.

16
26

8.
8

27
8.

9
0.

61
0.

94
1.

11

Ta
bl

e
6.

6:
R

es
ul

ts
fo

r
co

lu
m

n
ge

ne
ra

tio
n

w
ith

on
ly

el
em

en
ta

ry
ro

ut
es

fo
r

m
-T

SP
TW

on
Le

tc
hf

or
d

et
al

.[
89

]
in

st
an

ce
s

N
ar

ro
w

T i
m

e
W

in
do

w
s

W
id

e
T i

m
e

W
in

do
w

s
C

PU
(s

)
C

PU
(s

)
|V

R
N
|
|A

R
N
|
|C
|

C
or

r
|A

M
G
|

M
G

R
N

C
P

U
M

G
C

P
U

R
N

M
G

R
N

C
P

U
M

G
C

P
U

R
N

20
0

13
3

58
2

N
C

50
36

8
75

.8
17

5.
0

0.
43

45
6.

5
26

5.
1

1.
72

W
C

38
74

8
25

.5
12

9.
6

0.
20

23
9.

6
19

4.
6

1.
23

SC
24

75
8

19
.7

10
1.

6
0.

19
19

9.
2

13
2.

7
1.

50

140
Chapter 6: A branch-and-price Algorithm for the Vehicle Routing Problem with

Time Windows on a road-network graph

From Tables 6.4-6.6, it comes out that for the multigraph based column generation where
non-elementary routes are not allowed, the computing time increases for narrow time win-
dows and decreases for wide time windows by decreasing the correlation degree. For the road
network approach, increasing the correlation between the travel times and costs increases the
average computing time for most cases with both types of time windows. We notice that
the average ratio of CPUMG to CPURN decreases when the correlation degree between travel
times and costs increases, e.g., for LL instances with n = 200 and nc = 133 (Table 6.4), the
ratio goes from 0.16 for NC instances to 0.07 for SC instances. Contrary to the case where
non-elementary routes are allowed, the average ratio of CPUMG to CPURN is more important
when time windows are wide.

Another observation is that by allowing non-elementary routes the road network based
column generation procedure is faster for almost all instances. While, using the multigraph
representation, forbidding non-elementary routes decreases the computing time. For exam-
ple, for NC instances with 500 nodes, 166 customers and narrow time windows, the average
computing time on the multigraph goes from 28 seconds to 38.8 seconds by allowing non-
elementary, while it decreases from 391.5 seconds to 56.7 seconds on the road network.
Consequently, the ratio of CPUMG to CPURN is reduced by restricting the column generation
to the elementary routes. We mention that, the ratio of CPUMG to CPURN is greater than
1 for only 12 out of 450 instances when only elementary routes are considered while it is
greater than 1 for 47 instances when non-elementary routes are allowed.

Table 6.5 shows that increasing the number of customers for a fixed n increases the ra-
tio of CPUMG to CPURN . This ratio is 0.02 in average for NC instances with nc = 25 and
reaches 1.25 for NC instances with nc = 166. We notice that, forbidding non-elementary
routes reduces significantly the ratio of CPUMG to CPURN when time windows are narrow.
For example, for SC instances with nc = 125 the ratio for the column generation procedure
with non-elementary routes is 0.63 and reaches 0.89 while it is 0.06 in average and reaches
0.08 when these routes are forbidden.

Table 6.6 reports results Letchford et al. [89]. We notice that restricting the column
generation procedure increases the computation time for both approaches, e.g., for the WC
instance with narrow time windows, CPUMG and CPURN are respectively 16.2 and 34.6 when
non-elementary routes are allows, and reach 25.5 and 129.6 seconds when these routes are
not considered. We notice that by forbidding non-elementary routes and when time windows
are narrow the increase in the CPURN is more important than the increase in the CPUMG,
consequently, the ratio CPUMG

CPURN
is reduced. However, when time windows are wide, the in-

crease in the CPUMG is more important than the increase in the CPURN , thus, the ratio CPUMG
CPURN

is higher when non-elementary routes are not allowed.

6.5 Computational experiments 141

6.5.2.2 Results for the VRPTW

In this section, we present results obtained for the VRPTW. In this set of experiments, we
only consider the pricing problem where non-elementary routes are not allowed. We first
compare results obtained with the column generation at the root node of the search tree for
the multigraph and the road network approaches (Tables 6.7, 6.8 and 6.9). Then, we compare
results obtained for the complete branch-and-price schemes in Tables 6.10 - 6.13.

142
Chapter 6: A branch-and-price Algorithm for the Vehicle Routing Problem with

Time Windows on a road-network graph
Ta

bl
e

6.
7:

R
es

ul
ts

fo
r

co
lu

m
n

ge
ne

ra
tio

n
w

ith
on

ly
el

em
en

ta
ry

ro
ut

es
fo

r
th

e
V

R
P

TW
on

LL
in

st
an

ce
s

N
ar

ro
w

T i
m

e
W

in
do

w
s

W
id

e
T i

m
e

W
in

do
w

s
C

PU
(s

)
C

P
U

M
G

C
P

U
R

N
C

PU
(s

)
C

P
U

M
G

C
P

U
R

N

| V
R

N
|
|A

R
N
|
|C
|

C
or

r
|A

M
G
|

M
G

R
N

M
in

A
vg

M
ax

M
G

R
N

M
in

A
vg

M
ax

50
13

5
33

N
C

23
62

0.
3

2.
6

0.
07

0.
15

0.
22

2.
0

9.
2

0.
15

0.
23

0.
38

W
C

18
64

0.
4

5.
4

0.
06

0.
08

0.
10

3.
9

14
.3

0.
13

0.
21

0.
38

SC
12

66
0.

2
2.

6
0.

06
0.

09
0.

12
2.

8
19

.1
0.

12
0.

17
0.

31
10

0
27

8
66

N
C

11
79

5
1.

3
11

.1
0.

08
0.

12
0.

19
8.

9
42

.1
0.

11
0.

20
0.

27
W

C
95

81
1.

7
20

.5
0.

06
0.

09
0.

10
16

.5
82

.1
0.

16
0.

19
0.

22
SC

52
65

2.
8

58
.4

0.
02

0.
06

0.
08

45
.3

22
7.

5
0.

12
0.

20
0.

32
15

0
42

9
10

0
N

C
32

34
6

6.
5

78
.8

0.
06

0.
10

0.
13

12
1.

6
31

4.
1

0.
20

0.
33

0.
46

W
C

25
56

1
6.

0
90

.0
0.

04
0.

07
0.

09
11

6.
5

31
8.

9
0.

28
0.

34
0.

50
SC

13
19

3
8.

7
14

1.
4

0.
04

0.
06

0.
07

22
4.

3
83

0.
0

0.
15

0.
31

0.
45

20
0

57
3.

6
13

3
N

C
68

97
9

24
.3

24
7.

5
0.

06
0.

10
0.

14
28

8.
8

94
1.

1
0.

13
0.

30
0.

47
W

C
52

74
2

22
.5

29
2.

4
0.

05
0.

08
0.

12
36

7.
7

11
47

.0
0.

23
0.

33
0.

42
SC

23
79

8
28

.4
41

2.
0

0.
04

0.
08

0.
11

96
3.

4
23

05
.5

0.
31

0.
40

0.
53

25
0

71
4

16
6

N
C

11
63

00
51

.3
48

2.
0

0.
09

0.
11

0.
13

68
6.

8
13

71
.7

0.
23

0.
40

0.
68

W
C

92
50

0
43

.2
46

3.
9

0.
07

0.
11

0.
18

77
5.

7
14

28
.0

0.
30

0.
50

0.
70

SC
37

25
4

29
.9

42
0.

5
0.

05
0.

07
0.

11
12

18
.7

35
31

.1
0.

27
0.

35
0.

47
10

0
27

8
33

N
C

29
94

0.
2

3.
2

0.
05

0.
07

0.
10

0.
4

5.
9

0.
06

0.
08

0.
10

W
C

24
00

0.
2

3.
9

0.
05

0.
06

0.
10

0.
5

10
.4

0.
03

0.
07

0.
14

SC
13

15
0.

3
9.

7
0.

02
0.

03
0.

06
1.

1
16

.1
0.

04
0.

06
0.

10
20

0
57

4
66

N
C

16
95

4
1.

6
55

.6
0.

02
0.

03
0.

04
8.

2
11

2.
7

0.
03

0.
07

0.
09

W
C

13
07

6
1.

5
45

.9
0.

03
0.

03
0.

04
11

.8
15

6.
0

0.
05

0.
08

0.
12

SC
58

06
1.

4
58

.7
0.

01
0.

02
0.

04
15

.3
21

1.
7

0.
05

0.
07

0.
10

30
0

86
9

10
0

N
C

50
41

8
6.

5
17

5.
9

0.
03

0.
04

0.
06

31
.8

36
2.

0
0.

05
0.

09
0.

12
W

C
39

08
4

4.
8

16
6.

1
0.

02
0.

03
0.

04
28

.9
46

6.
1

0.
03

0.
09

0.
14

SC
14

54
5

2.
8

16
3.

3
0.

01
0.

02
0.

02
49

.2
76

7.
5

0.
04

0.
07

0.
10

40
0

11
65

13
3

N
C

10
33

56
19

.5
45

8.
4

0.
03

0.
05

0.
06

17
9.

2
13

31
.8

0.
10

0.
15

0.
26

W
C

77
03

7
22

.3
54

0.
2

0.
03

0.
05

0.
06

20
8.

2
18

33
.5

0.
08

0.
13

0.
18

SC
26

58
3

10
.7

31
5.

1
0.

03
0.

04
0.

04
21

5.
7

19
09

.7
0.

07
0.

13
0.

19
50

0
14

58
16

6
N

C
19

62
67

49
.9

10
93

.8
0.

04
0.

05
0.

08
37

3.
5

28
01

.9
0.

12
0.

14
0.

17
W

C
14

57
82

61
.8

16
97

.3
0.

03
0.

04
0.

04
82

1.
8

61
50

.6
0.

10
0.

13
0.

15
SC

44
75

1
22

.9
13

92
.3

0.
01

0.
02

0.
04

58
7.

0
61

90
.8

0.
10

0.
11

0.
14

6.5 Computational experiments 143

Ta
bl

e
6.

8:
R

es
ul

ts
fo

r
co

lu
m

n
ge

ne
ra

tio
n

w
ith

on
ly

el
em

en
ta

ry
ro

ut
es

fo
r

th
e

V
R

P
TW

on
LL

in
st

an
ce

s
w

ith
n

=
25

0

N
ar

ro
w

T i
m

e
W

in
do

w
s

W
id

e
T i

m
e

W
in

do
w

s
C

PU
(s

)
C

P
U

M
G

C
P

U
R

N
C

PU
(s

)
C

P
U

M
G

C
P

U
R

N

|V
R

N
|
|A

R
N
|
|C
|

C
or

r
|A

M
G
|

M
G

R
N

M
in

A
vg

M
ax

M
G

R
N

M
in

A
vg

M
ax

25
0

71
4

25
N

C
25

53
0.

1
7.

8
0.

01
0.

02
0.

03
0.

2
13

.8
0.

01
0.

02
0.

03
W

C
21

23
0.

2
12

.1
0.

01
0.

02
0.

02
0.

3
15

.1
0.

02
0.

02
0.

03
SC

87
8

0.
1

9.
3

0.
01

0.
01

0.
02

0.
2

18
.9

0.
01

0.
01

0.
03

50
N

C
10

70
4

0.
6

32
.5

0.
01

0.
02

0.
04

2.
3

68
.9

0.
02

0.
03

0.
05

W
C

86
97

0.
7

31
.8

0.
02

0.
02

0.
03

3.
5

12
9.

5
0.

02
0.

03
0.

04
SC

34
78

0.
4

30
.9

0.
01

0.
01

0.
02

3.
4

97
.4

0.
02

0.
04

0.
06

75
N

C
24

26
7

2.
4

78
.2

0.
02

0.
03

0.
04

8.
8

16
4.

7
0.

04
0.

06
0.

09
W

C
19

33
3

2.
5

67
.7

0.
02

0.
04

0.
05

19
.1

28
7.

6
0.

06
0.

08
0.

10
SC

78
15

1.
6

76
.2

0.
01

0.
02

0.
03

22
.3

32
0.

4
0.

04
0.

07
0.

10
10

0
N

C
42

36
7

7.
0

12
6.

3
0.

04
0.

06
0.

08
29

.4
31

3.
5

0.
08

0.
10

0.
14

W
C

34
16

3
6.

4
13

3.
1

0.
03

0.
05

0.
06

86
.2

58
8.

6
0.

11
0.

14
0.

16
SC

13
71

6
4.

8
12

8.
0

0.
03

0.
04

0.
05

13
0.

3
81

6.
7

0.
07

0.
15

0.
22

12
5

N
C

66
24

8
19

.8
24

5.
0

0.
05

0.
08

0.
10

92
.8

53
8.

4
0.

12
0.

17
0.

23
W

C
52

53
4

14
.2

19
9.

0
0.

06
0.

07
0.

08
17

9.
6

75
9.

9
0.

19
0.

25
0.

30
SC

21
33

6
9.

3
18

0.
4

0.
04

0.
05

0.
06

25
5.

4
14

95
.9

0.
09

0.
18

0.
26

16
6

N
C

11
63

00
51

.3
48

2.
0

0.
09

0.
11

0.
13

68
6.

8
13

71
.7

0.
23

0.
40

0.
68

W
C

92
50

0
43

.2
46

3.
9

0.
07

0.
11

0.
18

77
5.

7
14

28
.0

0.
30

0.
50

0.
70

SC
37

25
4

29
.9

42
0.

5
0.

05
0.

07
0.

11
12

18
.7

35
31

.1
0.

27
0.

35
0.

47

Ta
bl

e
6.

9:
R

es
ul

ts
fo

r
co

lu
m

n
ge

ne
ra

tio
n

w
ith

on
ly

el
em

en
ta

ry
ro

ut
es

fo
r

V
R

P
TW

on
Le

tc
hf

or
d

et
al

.[
89

]
in

st
an

ce
s

N
ar

ro
w

T i
m

e
W

in
do

w
s

W
id

e
T i

m
e

W
in

do
w

s
C

PU
(s

)
C

PU
(s

)
|V

R
N
|
|A

R
N
|
|C
|

C
or

r
|A

M
G
|

M
G

R
N

C
P

U
M

G
C

P
U

R
N

M
G

R
N

C
P

U
M

G
C

P
U

R
N

20
0

13
3

58
2

N
C

50
36

8
32

7.
4

12
28

.7
0.

27
50

71
.6

31
12

.2
1.

63
W

C
38

74
8

76
.5

78
7.

8
0.

10
97

5.
6

14
43

.6
0.

68
SC

24
75

8
37

.2
46

9.
3

0.
08

72
0.

4
11

17
.8

0.
64

144
Chapter 6: A branch-and-price Algorithm for the Vehicle Routing Problem with

Time Windows on a road-network graph

From tables 6.7 and 6.8 it comes out that, by considering customer demands and vehi-
cle capacity constraints, the average computing time needed to column generation increases
with both modelling approaches. This increase is more important on the road network than
when using the multigraph representation, e.g., for instances with narrow time windows, the
CPUMG is in average 3 times higher for the VRPTW than for the m-TSPTW and the CPURN

is in average 6 times higher for the VRPTW on the road network. Consequently, the ratio
CPUMG
CPURN

is reduced by considering capacity constraints which indicates that the pricing algo-
rithm for the VRPTW is much faster using the multigraph representation than on the road
network.

We observe that for all cases, using the multigraph representation, the lower bound for
branch-and-price scheme is computed in less computing time than using the road network ap-
proach. For all test-problems configurations, the ratio CPUMG

CPURN
does not exceed 0.22 when time

windows are narrow and 0.70 when time windows are wide. Table 6.8 shows that decreas-
ing the density of customers in the road network decreases the difference between CPUMG

and CPURN , e.g., for NC instances with narrow time windows, the multigraph based column
generation procedure is 9.1 times faster than the column generation procedure on the road
network when nc = 166 and this acceleration factor reaches 50 when nc = 25.

For Letchford et al. [89] instances, we see that the ratio of CPUMG to CPURN is signifi-
cantly reduced by considering capacity constraints. Except for NC instance with wide time
windows, this ratio does not exceed 0.68 which means that the multigraph based column gen-
eration is at least 1.5 times faster than the column generation procedure that works directly
on the road network.

6.5 Computational experiments 145

Ta
bl

e
6.

10
:R

es
ul

ts
fo

r
co

m
pl

et
e

br
an

ch
-a

nd
-p

ri
ce

sc
he

m
e

fo
r

V
R

P
TW

on
LL

in
st

an
ce

s

N
ar

ro
w

T i
m

e
W

in
do

w
s

W
id

e
T i

m
e

W
in

do
w

s
So

lv
ed

C
PU

(s
)

C
P

U
M

G
C

P
U

R
N

So
lv

ed
C

PU
(s

)
C

P
U

M
G

C
P

U
R

N

| V
R

N
|
|A

R
N
|
|C
|

C
or

r
|A

M
G
|

M
G

R
N

M
G

R
N

M
in

A
vg

M
ax

M
G

R
N

M
G

R
N

M
in

A
vg

M
ax

50
13

5
33

N
C

23
62

5
5

0.
4

3.
0

0.
07

0.
15

0.
22

5
5

11
.1

41
.5

0.
21

0.
33

0.
46

W
C

18
64

5
5

0.
8

12
.3

0.
05

0.
08

0.
13

5
4

13
2.

0
38

6.
0

0.
03

0.
25

0.
49

SC
12

66
5

5
0.

3
2.

4
0.

08
0.

11
0.

14
5

4
15

1.
5

50
9.

4
0.

14
0.

19
0.

25
10

0
27

8
66

N
C

11
79

5
5

5
1.

4
10

.9
0.

10
0.

13
0.

18
5

4
11

0.
0

15
3.

1
0.

02
0.

19
0.

29
W

C
95

81
5

5
3.

3
14

1.
2

0.
01

0.
10

0.
16

4
3

21
6.

9
52

9.
6

0.
14

0.
16

0.
20

SC
52

65
5

4
78

6.
2

13
11

.2
0.

00
0.

04
0.

07
0

0
72

00
.0

72
00

.0
-

-
-

15
0

42
9

10
0

N
C

32
34

6
5

5
7.

3
77

.4
0.

06
0.

11
0.

15
1

1
31

4.
0

22
85

.0
0.

14
0.

14
0.

14
W

C
25

56
1

5
5

12
.1

11
2.

9
0.

04
0.

09
0.

15
1

0
42

89
.8

72
00

.0
-

-
-

SC
13

19
3

5
5

17
.5

26
5.

8
0.

04
0.

07
0.

08
0

0
72

00
.0

72
00

.0
-

-
-

20
0

57
3.

6
13

3
N

C
68

97
9

5
5

32
.7

29
6.

1
0.

06
0.

12
0.

20
2

1
93

0.
8

94
0.

7
0.

12
0.

12
0.

12
W

C
52

74
2

5
4

12
3.

0
10

96
.4

0.
03

0.
07

0.
10

0
0

72
00

.0
72

00
.0

-
-

-
SC

23
79

8
5

4
20

8.
9

75
4.

1
0.

06
0.

10
0.

15
0

0
72

00
.0

72
00

.0
-

-
-

25
0

71
4

16
6

N
C

11
63

00
5

3
18

3.
1

18
21

.8
0.

04
0.

10
0.

14
1

1
15

9.
1

22
58

.3
0.

07
0.

07
0.

07
W

C
92

50
0

5
5

12
9.

9
68

2.
8

0.
07

0.
15

0.
32

0
0

72
00

.0
72

00
.0

-
-

-
SC

37
25

4
5

3
11

25
.8

22
70

.5
0.

06
0.

08
0.

09
0

0
72

00
.0

72
00

.0
-

-
-

10
0

27
8

33
N

C
29

94
5

5
0.

2
2.

5
0.

08
0.

10
0.

12
5

5
1.

4
16

2.
3

0.
00

0.
08

0.
12

W
C

24
00

5
5

0.
3

4.
0

0.
05

0.
08

0.
12

5
5

1.
0

23
5.

2
0.

00
0.

05
0.

11
SC

13
15

5
5

0.
3

7.
9

0.
03

0.
05

0.
08

5
5

2.
7

14
2.

8
0.

02
0.

06
0.

10
20

0
57

4
66

N
C

16
95

4
5

5
2.

2
58

.2
0.

02
0.

03
0.

05
5

4
40

.9
35

2.
4

0.
02

0.
07

0.
11

W
C

13
07

6
5

5
1.

7
11

06
.5

0.
00

0.
03

0.
04

3
3

53
.8

10
16

.5
0.

04
0.

05
0.

06
SC

58
06

5
5

2.
1

63
.6

0.
01

0.
03

0.
07

4
2

14
9.

4
61

55
.7

0.
01

0.
01

0.
02

30
0

86
9

10
0

N
C

50
41

8
5

5
10

.7
18

4.
3

0.
05

0.
06

0.
10

5
4

13
7.

4
49

9.
0

0.
07

0.
13

0.
18

W
C

39
08

4
5

4
8.

7
21

3.
0

0.
04

0.
05

0.
05

3
1

25
6.

8
13

79
.7

0.
19

0.
19

0.
19

SC
14

54
5

5
5

5.
9

40
5.

5
0.

01
0.

02
0.

03
3

1
14

66
.8

67
2.

3
0.

06
0.

06
0.

06
40

0
11

65
13

3
N

C
10

33
56

5
4

66
.4

19
81

.6
0.

01
0.

06
0.

10
4

3
24

7.
7

14
99

.4
0.

11
0.

15
0.

20
W

C
77

03
7

5
5

89
.6

13
38

.5
0.

04
0.

07
0.

12
3

0
45

72
.8

72
00

.0
-

-
-

SC
26

58
3

5
3

39
.0

84
8.

5
0.

04
0.

04
0.

05
0

0
72

00
.0

72
00

.0
-

-
-

50
0

14
58

16
6

N
C

19
62

67
5

3
10

2.
8

17
75

.7
0.

04
0.

07
0.

10
3

1
30

05
.8

29
34

.6
0.

19
0.

19
0.

19
W

C
14

57
82

5
4

24
1.

4
16

64
.2

0.
04

0.
05

0.
06

1
0

16
43

.0
72

00
.0

-
-

-
SC

44
75

1
5

3
56

.5
45

96
.4

0.
00

0.
02

0.
03

0
0

72
00

.0
72

00
.0

-
-

-

N
o
t
e
:

- i
nd

ic
at

es
th

at
no

so
lu

tio
n

ha
ve

be
en

fo
un

d
w

ith
in

th
e

tim
e

lim
it

146
Chapter 6: A branch-and-price Algorithm for the Vehicle Routing Problem with

Time Windows on a road-network graph

Ta
bl

e
6.

11
:R

es
ul

ts
fo

r
co

m
pl

et
e

br
an

ch
-a

nd
-p

ri
ce

sc
he

m
e

fo
r

V
R

P
TW

on
LL

in
st

an
ce

s
w

ith
n

=
25

0

N
ar

ro
w

Ti
m

e
W

in
do

w
s

W
id

e
Ti

m
e

W
in

do
w

s
So

lv
ed

C
PU

(s
)

C
P

U
M

G
C

P
U

R
N

So
lv

ed
C

PU
(s

)
C

P
U

M
G

C
P

U
R

N

|V
R

N
|
|A

R
N
|
|C
|

C
or

r
|A

M
G
|

M
G

R
N

M
G

R
N

M
in

A
vg

M
ax

M
G

R
N

M
G

R
N

M
in

A
vg

M
ax

25
0

71
4

25
N

C
25

53
5

5
0.

2
9.

7
0.

01
0.

02
0.

03
5

5
0.

2
14

.9
0.

01
0.

02
0.

02
W

C
21

23
5

5
0.

2
12

.4
0.

01
0.

02
0.

02
5

4
0.

4
20

.1
0.

01
0.

02
0.

03
SC

87
8

5
5

0.
1

11
.7

0.
01

0.
01

0.
02

5
5

0.
3

21
.9

0.
01

0.
02

0.
04

50
N

C
10

70
4

5
5

0.
7

35
.2

0.
01

0.
02

0.
03

5
5

9.
7

11
67

.8
0.

01
0.

03
0.

06
W

C
86

97
5

5
0.

8
41

.6
0.

01
0.

02
0.

03
5

4
37

.3
12

19
.3

0.
02

0.
03

0.
03

SC
34

78
5

5
0.

8
29

6.
6

0.
00

0.
01

0.
02

5
3

84
3.

4
10

80
.7

0.
02

0.
04

0.
04

75
N

C
24

26
7

5
5

2.
6

78
.4

0.
03

0.
04

0.
06

4
4

9.
7

17
9.

7
0.

03
0.

05
0.

08
W

C
19

33
3

5
5

2.
4

71
.9

0.
03

0.
04

0.
04

3
3

13
.0

15
1.

3
0.

08
0.

08
0.

10
SC

78
15

5
4

3.
8

82
.8

0.
01

0.
02

0.
02

1
1

28
.1

66
5.

7
0.

04
0.

04
0.

04
10

0
N

C
42

36
7

5
5

12
.5

31
2.

4
0.

03
0.

06
0.

11
5

4
10

6.
8

56
2.

8
0.

06
0.

16
0.

25
W

C
34

16
3

5
5

7.
1

14
4.

4
0.

04
0.

05
0.

06
2

2
15

05
.9

20
91

.2
0.

13
0.

46
0.

80
SC

13
71

6
5

4
27

4.
7

19
7.

9
0.

02
0.

85
3.

33
0

0
72

00
.0

72
00

.0
-

-
-

12
5

N
C

66
24

8
5

5
35

.0
43

9.
1

0.
06

0.
09

0.
16

3
1

12
85

.8
24

1.
1

0.
14

0.
14

0.
14

W
C

52
53

4
5

5
17

.2
28

9.
8

0.
04

0.
06

0.
09

1
1

10
1.

1
39

9.
4

0.
25

0.
25

0.
25

SC
21

33
6

5
4

10
.8

21
7.

3
0.

03
0.

04
0.

05
0

0
72

00
.0

72
00

.0
-

-
-

16
6

N
C

11
63

00
5

3
18

3.
1

18
21

.8
0.

04
0.

10
0.

14
1

1
15

9.
1

22
58

.3
0.

07
0.

07
0.

07
W

C
92

50
0

5
5

12
9.

9
68

2.
8

0.
07

0.
15

0.
32

0
0

72
00

.0
72

00
.0

-
-

-
SC

37
25

4
5

3
11

25
.8

22
70

.5
0.

06
0.

08
0.

09
0

0
72

00
.0

72
00

.0
-

-
-

N
o
t
e
:

-i
nd

ic
at

es
th

at
no

so
lu

tio
n

ha
ve

be
en

fo
un

d
w

ith
in

th
e

tim
e

lim
it

6.5 Computational experiments 147

Ta
bl

e
6.

12
:R

es
ul

ts
fo

r
co

m
pl

et
e

br
an

ch
-a

nd
-p

ri
ce

sc
he

m
e

fo
r

V
R

P
TW

on
Le

tc
hf

or
d

et
al

.[
89

]
in

st
an

ce
s

N
ar

ro
w

T i
m

e
W

in
do

w
s

W
id

e
T i

m
e

W
in

do
w

s
C

PU
(s

)
C

PU
(s

)
|V

R
N
|
|A

R
N
|
|C
|

C
or

r
|A

M
G
|

M
G

R
N

C
P

U
M

G
C

P
U

R
N

M
G

R
N

C
P

U
M

G
C

P
U

R
N

20
0

13
3

58
2

N
C

50
36

8
76

7,
5

42
08

,2
0,

18
72

00
72

00
-

W
C

38
74

8
14

3,
4

72
00

,0
-

72
00

72
00

-
SC

24
75

8
72

00
,0

72
00

,0
-

72
00

72
00

-

N
o
t
e
:

- i
nd

ic
at

es
th

at
no

so
lu

tio
n

ha
ve

be
en

fo
un

d
w

ith
in

th
e

tim
e

lim
it

148
Chapter 6: A branch-and-price Algorithm for the Vehicle Routing Problem with

Time Windows on a road-network graph

Tables 6.10-6.12 report results for the complete branch-and-price scheme for LL and
Letchford et al. [89] instances. Columns "Solved" indicate the number of instances solved
within the time limit (7200 seconds) using the multigraph representation and on the road
network.

From Tables 6.10-6.11, we observe that, when time windows are narrow, all instances
are solved using the multigraph representation and 134 out of 150 instances are solved di-
rectly on the road network. For instances with wide time windows, 78 and 57 instances
are solved respectively on the multigraph and on the road network. We also observe that,
the average computation times for both approaches increase when extending customers time
windows. For example, for NC instances with n = 100, nc = 150, and with narrow time
windows, the average computation times are 32.7 and 296.1 seconds respectively for the
multigraph representation and the road network approach and reach 930.8 and 940.7 seconds
when time windows are wide. We notice that by increasing the density of customers in the
road network, the number of solved instances decreases and the average computation times
increase for both multigraph and road network approaches. The increase in computation time
is more important when tackling the problem directly on the road network. Thus, the ratio
of CPUMG to CPURN decreases when the density of customers in the road network increases.

From Table 6.12 it comes out that using the multigraph representation, two instances are
solved within the time limit, while an optimal solution has been found for only one instance
when tackling the problem directly on the road network. The ratio CPUMG

CPURN
for the instance

solved using both approaches is equal to 0.18 which indicates that the multigraph-based
branch-and-price algorithm is more than 5 times faster than the branch-and-price algorithm
working directly on the road network.

Table 6.13 reports results for real instances. Columns "S avMC" and "S avMT " indicates
the savings on solution cost by using the multigraph representation or the road network com-
pared to respectively the cheapest-path-based graph and the fastest-path-based graph. We
introduce these columns to illustrate the impact of considering alternative paths (through the
multigraph representation or by solving the problem directly on the original road network)
on the solution quality. We see that all real instances are solved within 18 seconds using the
multigraph representation while no optimal solution has been found within the time limit for
2 instances when tackling the problem directly on the road network. The ratio of CPUMG

to CPURN does not exceed 0.016 which means that the multigraph based branch-and-price
algorithm is at least 62.5 times faster than the algorithm that works directly on the road net-
work.

Table 6.13 shows that the solution quality is significantly improvement by considering
all alternative paths. The obtained saving reaches 17.6% compared to solution on cheapest-
path-based graph and reaches 17.4% compared to solution on fastest-path-based graph.

6.5 Computational experiments 149

Table 6.13: Results for the complete Branch-and-price algorithm with instances on the road network
of Aix

|VRN | |ARN | |C| CPUMG CPURN
CPUMG
CPURN

S avMC S avMT

5437 10181 5 1 0.05 5.48 0.009 17.6 % 7.3 %
2 0.07 4.16 0.016 12.0 % 4.7 %
3 0.05 4.28 0.011 0.0 % 17.4 %
4 0.06 8.77 0.007 0.0 % 11.8 %
5 0.05 14.84 0.003 0.0 % 9.4 %

10 1 0.09 11.87 0.008 8.7 % 7.0 %
2 0.08 7.08 0.011 6.2 % 5.8 %
3 0.07 6.03 0.011 0.0 % 11.9 %
4 0.09 11.57 0.007 0.5 % 6.8 %
5 0.08 25.65 0.003 0.0 % 11.5 %

25 1 0.20 56.85 0.004 3.8 % 7.3 %
2 0.20 51.35 0.004 1.9 % 6.0 %
3 0.17 35.10 0.005 6.5 % 7.9 %
4 0.39 111.84 0.004 5.1 % 13.0 %
5 0.18 80.95 0.002 11.2 % 9.5 %

50 1 0.99 113.46 0.009 5.6 % 16.2 %
2 3.33 7200.00 - 1.1 % 7.4 %
3 2.11 147.63 0.014 1.1 % 6.3 %
4 1.03 252.03 0.004 8.5 % 10.8 %
5 17.36 7200.00 - 5.5 % 5.5 %

150
Chapter 6: A branch-and-price Algorithm for the Vehicle Routing Problem with

Time Windows on a road-network graph

6.5.3 Discussion

The computational study presented in this paper shows that it is difficult to confirm that a
road network based branch-and-price scheme is more efficient than using the a multigraph
representation (as stated by Letchford et al. [89]). Numerical results show that the relative
efficiency of the two approaches depends on several factors. Allowing non-elementary routes
in the pricing problem could be advantageous for the road network approach in term of com-
puting time, however, this could have a negative impact on the quality of the lower bound
and thereafter could lead to a longest branching time. Increasing the density of customers in
the road network could be also advantageous for the road network approach. Another factor
is the wideness of customer time windows. We observe that when time windows are less
restrictive, the growth in the number of feasible label extensions on the road network is more
important than when using the multigraph representation. Thus, the acceleration factor of the
multigraph-based column generation compared to the road network based column generation
is larger when time windows are wider. We show also that considering customer demands
and vehicle capacity constraints has an effect on the relative efficiency of both approaches.
Experiments on the m-TSPTW and on the VRPTW show that for the same instances, con-
sidering capacity constraints increases the computing times, especially on the road network
and therefore decreases the ratio of the computing time with the multigraph representation to
the computing time on the road network.

The obtained results show that for most part of test problems, it is more interesting to
tackle the problem using the multigraph representation which is in contrast with the conclu-
sions drawn by Letchford et al. [89]. This might be due to many reasons. First, Letchford et
al. [89] generate only one route with a negative reduced cost at each iteration of the column
generation, while in our experiments all non-dominated routes with negative reduced cost
are generated at each iteration. Note that in a branch-and-price scheme, it is more efficient to
generate all columns with negative routes at each iteration of the column generation. Second,
in order to achieve a clear understanding and to avoid side effects, we propose to base our
experiments on a large set of instances with 5 instances for each configuration (number of
nodes, number of customers, correlation level and time windows width). Then, we report
results with average values. While, computational experiments in [89] are based on only one
instance for each configuration which may lead to limited conclusions. In addition, Letch-
ford et al. [89] consider instances with relatively high densities which is not the case for
real life applications. Results obtained on instances with several densities and real instances
contradicts Letchford et al. [89] conclusions and show that it is more interesting to tackle
the problem using the multigraph representation. Finally, by comparing our results to those
reported in [89], we observe that computing times for the multigraph approach obtained by
Letchford et al. [89] are extremely high which might be due to the nature of data structures
that are not very adapted to the multigraph setting.

6.6 Conclusion 151

6.6 Conclusion

Vehicle routing problems have been intensively studied in the operational research literature.
Most of proposed approaches are based on a key assumption that the best path between a
pair of customer nodes can be easily defined. Thus, the problem can be tackled by repre-
senting the road network with a customer-based graph of the road network. In many real
life applications, several attributes have to be defined on road segments. In this case, several
alternative paths with different compromises could exist between each pair of nodes. Not
considering these alternative paths could have a negative impact on the solution quality. An
increasing number of papers in the literature investigate this issue and propose two alternative
approaches. In some of them, a multigraph representation is used to handle alternative paths.
Others propose to solve the problem directly on the original road network. A key paper in
this regard is presented by Letchford et al. [89]. Authors present a numerical comparison
between these two approaches and show that a column generation procedure that works di-
rectly on the road network is more efficient.

In this paper, we investigate more in depth the road network based approach and propose
to complete results presented in [89]. We propose a complete branch and price that can han-
dle the road network setting. We conduct a computational experiments based on instances
from the literature and instances derived from real road network data. We analyse the impact
of different problem characteristics, such as customer density in the road network, time and
capacity constraints on the efficiency of the branch and price algorithm with both the multi-
graph representation and the road network modelling. Obtained results show that in most
cases it is more interesting to tackle the problem using the multigraph representation.

Future works would investigate vehicle routing problems with several attributes on road
segments and where travel times are time dependent. In this case, computing and handling
the multigraph representation may be intractable since the set of non-dominated paths be-
tween each pair of nodes depend on the departure time and may vary over the time. Conse-
quently, enumerating all these paths for every possible departure time could be very difficult
and representing the road network with a multigraph representation could be unmanageable.
For these reasons, we think that it is more suitable to solve time dependent vehicle routing
problems directly on the road network.

Chapter 7

The Time-Dependent Vehicle Routing Prob-
lem with Time Windows and road net-
work information

This chapter is a working paper.

Abstract

In the literature, most approaches proposed to solve time-dependent vehi-
cle routing problems assume that for each pair of interest points (e.g., depot,
customers. . .), a travel-time function is known. Almost no paper investigates
how these functions can be computed from travel times in the underlying road
network. Furthermore, most of them neglect the possibility that different paths
could be selected in the road network depending on the compromises they of-
fer between cost (distance) and travel-time. In this paper we propose the first
exact solution approach for these problems that starts from travel-time func-
tion expressed at the level of the road network. Computational study carried
out on realistic instances and on instances derived from a real road-network
illustrate the important impact of the proposed modeling on solution values.

Keywords: Time Dependent Vehicle Routing Problem, Branch-and-Price, Road Net-
work.

7.1 Introduction

Vehicle routing problems define a class of combinatorial optimization problems that aim at
computing minimum-cost routes for a fleet of vehicles in order to serve a set of customer
locations in a road network. Each customer is served exactly once and each route starts and
ends at a central depot. The total demand delivered along a route should not exceed the vehi-
cle capacity. Due to their numerous application, vehicle routing problems have been widely
studied in the operations research literature (see e.g., [87], [65], [128]). Most of proposed

154
Chapter 7: The Time-Dependent Vehicle Routing Problem with Time Windows

and road network information

approaches assume that the travel time between two customer locations is invariant over the
time. In real life applications, this assumption does not hold. Travel times and speeds are sub-
ject to significant variations over the day. These variations may be due to predictable events
such as traffic congestion and unpredictable events such as accidents, weather conditions and
vehicle breakdowns. In the literature, these variations are addressed using time-dependent
variants of vehicle routing problems (see e.g, [57], [84], [43], [54]). In such variants, with
each road segment is associated a time function that indicates the travel time for every depar-
ture date.

Typically, vehicle routing problems, including those introducing time-dependent travel
times, are tackled using a so-called customer-based graph, where a node is introduced for
every point of interest (depot and customer locations) and arcs represent the best paths link-
ing these points. This approach relies on the assumption that the best path between two
points in the original road network can be easily defined (at each possible starting time for
time-dependent problems). In many situations, this assumption is not valid [10]. One of
these situations is when several attributes are defined on road segments. In this case, alter-
native paths with different compromises could exist between two points in the road network.
Discarding these alternatives when tackling the vehicle routing problem can have a negative
impact on the solution quality [61, 8].

In the literature, several papers have investigated the negative impact of the customer-
based graph on solution quality for non-time-dependent vehicle routing problems (VRPs).
It has been shown that transforming the original road network into a customer-based graph
could result in important losses of optimality [8]. Two approaches have been proposed to
handle this issue. The first approach consists in representing the road network with a multi-
graph. In this representation, all efficient paths between two points of interest are considered
and maintained when solving the problem [61, 8, 7, 85]. The second approach consists in
tackling the problem directly on a graph that mimics the original road network, called the
road-network graph [89].

In this paper, we propose to address this issue for time-dependent VRPs. Intuitively, it
is all the more essential to avoid customer-based graphs in this case because time-dependent
VRPs better capture congestion effects and should show more contrasted alternative paths.
We select the Time-Dependent Vehicle Routing Problem with Time Windows (TDVRPTW)
as test-bed problem.

Similarly to non-time-dependent VRPs, two modeling approaches are a priori available.
However, due the time-dependency, it is difficult or even intractable to represent the road
network with a multigraph. Indeed, one would have to compute the set of efficient paths for
each pair of points of interest at each possible departure time, which induces the solution of
many NP-hard problems (see [121], [67]) and the use of complex data structures. For this
reason, we propose to address the problem on a road-network graph. We coin the problem as

7.1 Introduction 155

TDVRPTWRN . In this problem, a road-network graph is given, with travel-speed functions
assigned to every arc. We develop a branch-and-price algorithm able to solve exactly the
TDVRPTWRN . We compare our solutions with those found on two customer-based graphs
obtained from the road-network graph: a min-cost graph where paths are selected according
to their travel distance, a min-time graph where paths are selected according to their travel
time. We base our experiments on two type of instances: (1) benchmark instances simulating
small real-life road networks; (2) instances derived from a large real-world road network.

It is important to highlight than details on how travel-time information can be obtained
for customer-based graphs are missing in most papers on time-dependent VRPs. Convention-
ally, in these papers, the customer-based graph is introduced first. Then, time-varying speed
profiles are introduced on every arc (of the customer-based graph). These speed profiles are
finally converted into travel times (see e.g., [73], [76], [27]). With this approach, speeds
or travel times are not explicitly defined on road network arcs. Furthermore, it implicitly
assumes that the speed is constant on all the road-network arcs that compose an arc in the
customer-based graph.

Only a few papers are interested in how travel speed and time functions can be obtained
from road-network information. Several of these studies are not concerned with vehicle
routing. They aim at computing point-to-point fastest paths for a given starting time (see
e.g., [35], [102], [80]). A stream of papers examines the issue of constructing a database
for travel times on time-dependent road networks. Eglese et al. [47] propose a model that
constructs a Road Timetable based on historical data and provides the shortest travel time
for different departure times. They illustrate the benefits of considering the Road Timetable
information when tackling a vehicle routing problem. The main drawback of their approach
is that fastest-paths are computed only for a set of specified departure times. Then, the travel
time for any departure time is approximated using these computed values. This procedure
may thus provide a weak estimation of travel times, with consequences on solution quality
or feasibility.

In order to correctly evaluate travel-time functions for our two customer-based graphs, we
develop two specific algorithms. The two algorithms start with the same information as that
of the VRPTWRN , i.e., travel-speed functions associated with arcs of the road-network graph.

In the rest of this paper, we first review the relevant literature in Section 7.2. In Section
7.3, we formally describe the TDVRPTWRN , introduce some mathematical background (def-
initions and notation) and detail the two algorithms developed to construct the two customer-
based graphs. In Section 7.4, we present the branch-and-price algorithm developed for the
solution of the TDVRPTWRN . Finally, we present computational experiments and comment
results in Section 7.5.

156
Chapter 7: The Time-Dependent Vehicle Routing Problem with Time Windows

and road network information

7.2 Literature review

Despite the huge number of papers dealing with VRPs, the number of papers addressing
time-dependent problems is relatively limited. As far as we know, the first study dealing
with a vehicle routing problem where travel times vary over time is by Beasley [6]. Inter-
ested readers can refer to [62] for a recent survey and for a discussion on the different models
and problems that arise from time-dependent data.

Time-dependent VRPs are most of the times tackled on customer-based graphs. In the
literature, an increasing number of papers investigate the negative impact that this graph can
have on solution quality for non-time-dependent vehicle routing problems. Garaix et al. [61]
were the first to point out that transforming road-network information into a customer-based
graph can result in losing solution optimality. They propose to replace the customer-based
graph with a multigraph in which all efficient paths are maintained. This modeling approach
is investigated more in depth by Ben Ticha et al. [8]. They propose a branch-and-price al-
gorithm and present an extensive computational study based on instances from the literature
and instances representing real road networks. Reported results confirm the negative impact
of the customer-based graph. Letchford et al. [89] suggest that applying the branch-and-
price framework to a road-network graph would be more efficient. However, they limit their
investigations to the pricing problem. More recently, Ben Ticha et al. [11] revisited the re-
sults presented by Letchford et al. [89]. They propose a complete branch-and-price scheme
and conduct extensive comparisons between the multigraph and the road-network graph ap-
proaches. Their results contradict those presented in [89] and conclude that in most cases the
multigraph-based branch-and-price algorithm is more efficient.

The aforementioned papers confirm that when several attributes are defined on road seg-
ments, the traditional customer-graph can have negative effects on solution quality for VRPs.
In the time-dependent VRPs literature, little attention has been paid to this issue. The most
relevant study is proposed by Huang et al. [71]. They introduce the so-called Time Depen-
dent Vehicle Routing Problem with Path Flexibility (TDVRP-FP). The Path Flexibility means
that when solving the problem a set of alternative paths between each pair of nodes are main-
tained in a multigraph-like structure. These alternative paths present different compromises
in terms of travel time and distance and are computed as follows: a modified Dijkstra’s algo-
rithm is first applied to compute the fastest paths for a set of discretized departure time then
the shortest path is included into the set of considered paths. Huang et al. [71] propose a
mathematical formulation for the TDVPR-FP where the selection of a path to be used to link
every two customer nodes is embedded as a decision variable. They present a computational
study based on instances derived from the road network of Beijing, China. Numerical results
show that the path flexibility improves significantly the solution quality in terms of cost (up
to 5%) and fuel consumption (up to 7%). The author observe that these improvements are
more significant than those obtained using flexible departure times at the depot and customer
nodes. They also investigate the TDVRP-FP under stochastic traffic conditions and notice

7.3 Preliminaries 157

that the path flexibility provides a natural recourse in this case.

Setak et al. [122] also introduce a multigraph to tackle a problem that they call Time De-
pendent Pollution Routing Problem. In their model, parallel arcs present different compro-
mises on travel times, energy consumption and tolls cost. But, they do not specify how these
arcs are computed. To solve the problem, they propose a tabu search heuristic. Their com-
putational experiments show that, using the multigraph, an average gain of 1.1% is achieved
on solution costs compared to costs obtained with a customer-based graph.

Besides the papers cited above, similar modelings have been used but with relatively dif-
ferent goals. Setak et al. [123] investigate a time-dependent vehicle routing problem defined
on a multigraph where parallel arcs represent different travel speed distributions and satisfy
the FIFO property. Wang and Lee [133] introduce the so-called Time-Dependent Alterna-
tive Vehicle Routing Problem, where a time window is associated with each node and every
pair of nodes is linked with two arcs. The first arc is defined with a time-dependent travel-
speed distribution and is used when traffic is low. The second arc is defined with a constant
travel time and could be used as an alternative during peak hours. In both studies, the aim
of considering parallel arcs between two nodes is not to provide different compromises but
to provide different alternatives to be used depending on the departure time: at any point in
time, one arc dominates the others.

We notice that there is only a few studies that investigate time-dependent VRPs with
travel-time information defined at the level of the road network. Among these studies, even
less investigate the impact of transforming the road network into a customer-based graph.
Furthermore, they all lose some information in the process: they all introduce what can be
called heuristic multigraphs, that is, multigraphs where not all efficient paths are present.
This limit is consistent with what was claimed in Section A.1, i.e., that representing the road
network with a multigraph is hardly tractable when travel-times are time-dependent.

It is astonishing that no paper propose an approach that can ensure the optimality of so-
lutions. This an important contribution of this paper, thus allowing, as a primary objective,
to evaluate the optimality gaps due to the use of customer-based graphs.

7.3 Preliminaries

We first describe, in Subsection 7.3.1, the TDVRPTWRN and the travel-time functions used
in this paper. In Subsection 7.3.2, we present basic concepts and operators that are mainly
used for the construction of the customer-based graphs, as described in Subsections 7.3.3 and
7.3.4.

158
Chapter 7: The Time-Dependent Vehicle Routing Problem with Time Windows

and road network information

7.3.1 Problem description

The Time-Dependent Vehicle Routing Problem With Time-Windows and Road-Network In-
formation (TDVRPTWRN) is defined on a directed road-network graph GRN = (VRN , ARN).
VRN contains the depot node 0 and nodes that represent road junctions. Among these nodes, a
subset C represents customers. An arc (i, j) ∈ ARN models a road segment and is defined with
a travel-distance (road-segment length) di j and a travel-time function τi j(t) which depicts the
time needed to go through arc (i, j) for a given departure time at node i. Every customer
i ∈ C is assigned a time-window [ei, li], a service time sti and a demand qi. The time horizon
[0,H] is given by the depot time-window [e0, l0]. A fleet K of homogeneous vehicles with a
finite capacity Q is available to perform the deliveries.

The TDVRPTWRN consists in designing a set of optimal routes for the fleet of vehicles.
The total load delivered along a route cannot exceed the vehicle capacity. Each customer
has to be served exactly once and within its time window. Customer nodes can however be
traversed several times, as any other road junctions, without service.

Travel-time functions τi j are obtained from speed profiles. Speed profiles are defined by
step-wise functions that divide the planning horizon [0,H] into pi j time zones. For each time
zone, the travel speed is constant on arc (i, j). We denote by T 0

i j,T
1
i j, ...,T

pi j

i j the time zone
boundaries with T 0

i j = 0 and T pi j

i j = H, and by sk
i j the travel speed on time zone [T k

i j,T
k+1
i j [. T k

i j
are also called speed breakpoints because speed changes occur at these points.

Based on its speed profile, the travel-time function τi j(t) on an arc (i, j) can be calculated
using the procedure described in [73]. The main idea in this procedure is that the travel-speed
is not necessarily constant over the entire length of the road segment, as it changes when the
boundary between two consecutive time periods is crossed. The resulting travel-time func-
tion is a continuous piecewise linear function and can be represented by the coordinates of
its travel-time breakpoints. As showed in [73], such travel-time function satisfies the FIFO
property, i.e., a later departure at node i results in a later arrival at node j.

The quantity ai j(t) = t + τi j(t) gives the arrival time at node j given a departure time t at
node i. ai j(t) is a piecewise linear non-decreasing function and can be described using coor-
dinates at arrival time breakpoints which are directly deduced from travel time breakpoints.
In this paper, we use arrival time functions as this leads to simpler formulations.

7.3.2 Backgrounds and basic operations

In this section, we present basic notation and operators used mainly for the computation of
customer-based graphs (presented in Sections 7.3.3 and 7.3.4).

7.3 Preliminaries 159

Let f and g be two arrival time functions. f and g are piecewise linear and non-decreasing
functions defined on the time horizon [0,H]. f can be described using the following infor-
mations:

• N(f): number of linear pieces into which f is divided.

• tk
f : right boundary of the time interval on which is defined the kth piece of f (with also

t0
f = 0).

• α(f , k): linear coefficient of the kth piece of f .

• β(f , k): constant term in the kth piece of f .

Using these notations, f can be defined as follows;

f (t) =

f (1)(t) i f t0

f ≤ t ≤ t1
f

f (2)(t) i f t1
f ≤ t ≤ t2

f
· · ·

f (N(f))(t) i f tN(f)−1
f ≤ t ≤ tN(f)

f

with
f (k)(t) = α(f , k)t + β(f , k)

Alternatively, f can be represented using the set of interpolation points

I(f) = {(t0
f ,w

0
f), (t

1
f ,w

1
f), . . . , (t

N(f)
f ,wN(f)

f)}

where wk
f = f (tk

f).

Assuming that f and g are associated with two successive arcs (in this order), the arrival
time at the end of the second arc in function of the starting time at the beginning of the first
arc is given by the composition of f and g, denoted g ◦ f . It should be clear that g ◦ f is
a piecewise linear function as it involves two piecewise linear functions. To to define this
function we have to compute its set of interpolation points I(g ◦ f). This is can be done as
follows

• With each interpolation point (tk
f ,w

k
f) of f is associated an interpolation point (tk

f , g(wk
f))

for g ◦ f .

• With each interpolation point (tl
g,w

l
g) of g is associated an interpolation point (tl

f −1 ,wl
g)

for g ◦ f where tl
f −1 is such that f (tl

f −1) = tl
g. Note that tl

f −1 is easily computed once the

index k such that wk
f ≤ tl

g < wk+1
f is found: t1

f −1 =
tlg−β(f ,k)
α(f ,k) .

160
Chapter 7: The Time-Dependent Vehicle Routing Problem with Time Windows

and road network information

0 2 4 6 8
0

2

4

6

8

10

12
f
g

0 2 4 6 8
0

2

4

6

8

10

12
f
g

h = min{ f , g}

Figure 7.1: Illustration of min{ f , g}

I(g ◦ f) is the union of these two set of points.
Let us now consider two arrival time functions f1 and f2. We say f1 < f2 if f1(t) < f2(t)

for all t ∈ [0,T]. Similarly, we say f1 ≤ f2 if f1(t) ≤ g1(t) for all t ∈ [0,T].

Another important operator that we need to define is min{ f1, f2} which returns the func-
tion t 7→ min{ f1(t), f2(t)} for all t ∈ [0,H]. Figure 7.1 gives an illustration of the operator
min{ f1, f2}.

Let (f1, g1) and (f2, g2) be two couples of arrival time functions. We say that we merge
g1 and g2 in g according to min{ f1, f2} and we note g = merge

min{ f1, f2}
{g1, g2} if g(t) = g1(t) for each

t such that min{ f1, f2}(t) = f1(t) and g(t) = g2(t) for each t such that min{ f1, f2}(t) = f2(t).
An illustration of the operator merge

min{ f1, f2}
{g1, g2} is presented in Figure 7.2. As will be seen, this

operator is used to compute the distance associated with a travel-time function. If f1 and f2

represent the travel time functions for two different paths linking the same nodes i and j, and
g1 and g2 represent the length of these paths, min{ f1, f2} indicates the best travel time that can
be obtained from these two paths and merge

min{ f1, f2}
{g1, g2} the associated travel distance.

In the next two sections, we present the two algorithms used to compute the min-cost
(customer-based) graph and the min-time (customer-based) graph.

7.3 Preliminaries 161

0 2 4 6 8
0

2

4

6

8

10

12
f1

f2

0 2 4 6 8
0

2

4

6

8

10

12
f1

f2

h = min{ f1, f2}

0 2 4 6 8
0

2

4

6

8

10

12
g1
g2

0 2 4 6 8
0

2

4

6

8

10

12
g1
g2

d = merge
min{ f1, f2}

{g1, g2}

Figure 7.2: Illustration of mergemin{ f1, f2}{g1, g2}

162
Chapter 7: The Time-Dependent Vehicle Routing Problem with Time Windows

and road network information

7.3.3 Time-dependend shortest path algorithm

In the min-cost graph, arcs represent the shortest paths (in distance) linking points of interest
(depot and customer locations). All these paths can be computed easily by applying |C| + 1
times Dijkstra’s algorithm in GRN , successively starting from the depot and the customer
nodes. However, for each path, we also need to compute the associated arrival time function.
This can be introduced in Dijkstra’s algorithm as shown by Algorithm 7.1.

Algorithm 7.1 Algorithm for time-dependent shortest path

1: dS P
ss ← 0

2: aS P
ss ← 0̂

3: for all i ∈ VRN \ {s} do
4: dS P

si ← ∞ and aS P
si ← ∞̂

5: end for
6: Q← VRN //priority queue of nodes sorted according to dS P

si
7: while Q is not empty do
8: i = Q.extractMin()
9: for all j ∈ VRN such that (i, j) ∈ ARN do

10: d = dS P
si + di j

11: if d < dS P
s j then

12: dS P
s j ← d

13: aS P
s j ← ai j ◦ aS P

si

14: Q.updatePriority(j, dS P
s j)

15: end if
16: end for
17: end while
18: return dS P

si and aS P
si for all i ∈ C ∪ {0}

The best subpath from the source node s ∈ {0} ∪ C to a node i ∈ VRN is labeled with two
values dS P

si and aS P
si where :

• dS P
si represents the length of the subpath;

• aS P
si represents the arrival time function at node i, starting at s and following this sub-

path.

Algorithm 7.1 is identical to Dijkstra’s algorithm except for three lines: 2, 4 and 13.
Line 2 initializes to 0̂ the arrival time function at the source node, where 0̂(t) = 0,

∀t ∈ [0,H]. Line 4 initializes to ∞̂ the arrival time function for all other nodes, where
∞̂(t) = +∞, ∀t ∈ [0,H]. Line 13 updates the arrival time function when a label is modified,
i.e., a subpath has been improved. As explained in Section 7.3.2, the new function is com-
puted by the composition of the function associated with the preceding node and the function

7.3 Preliminaries 163

associated with the last arc in the subpath.

Algorithm 7.1 has a pseudo-polynomial complexity O(nN∗) where n = |C| + 1 and
N∗ =

∑
(i, j)∈ARN N(ai j).

Proof. Operator f ◦g requires O(N(f)+N(g)) operations. The selection of a node (Line 8) and
the update of the priority of a node (Line 14) require O(log(n)) operations each. Thus, an iter-
ation of the while loop (Line 7-17) is performed in O(log(n)+

∑
j/(i, j)∈ARN (N(aS P

si) + N(ai j) + log(n))),
with i the selected node. Since every node in VRN is selected exactly once, the while loop is
performed in total in

O

 ∑
i∈VRN

log(n) +
∑

j/(i, j)∈ARN

(N(aS P
si) + N(ai j) + log(n))

= O

nlog(n) +
∑

(i, j)∈ARN

(N(aS P
si) + N(ai j) + log(n))

Because the shortest path between s and any node i is the composition of arrival time func-
tions for a given subset of arcs in ARN , we have N(aS P

si) ≤ N∗ and the above complexity can
be changed to

O
(
nlog(n) + |ARN |N∗ + N∗ + |ARN |log(n)

)
Finally, n ≤ |ARN | and |ARN | ≤ N∗ and, because GRN is a sparse graph, |ARN | = O(n). There-
fore, Algorithm 7.1 runs in O(nN∗) operations in the worst case. �

7.3.4 Time-dependend fastest path algorithm

In the min-time graph, arcs represent the fastest paths linking points of interest (depot and
customer locations). They are described by two functions: an arrival time function and a dis-
tance function. Note that a distance function is needed because the fastest path may change
depending on the departure time.

The paths can be computed by applying |C| + 1 times a labeling algorithm in GRN , pro-
viding for a given source node in s ∈ C ∪ {0} the fastest paths to all destination nodes in GRN

for all possible departure times. This algorithm is depicted in Algorithm 7.2. It is based on
a label correcting procedure where node labels are defined by two functions: the arrival time
function aFP

si and the distance functions dFP
si .

These functions are computed using the operators presented in Section 7.3.2. The main
idea of the algorithm is that if the arrival time function f obtained by extending the subpath
at a node i along an arc (i, j) improves the arrival time function at node j for at least one

164
Chapter 7: The Time-Dependent Vehicle Routing Problem with Time Windows

and road network information

t ∈ [0,H], i.e, there exists t ∈ [0,H] such that f (t) < aFP
s j (t), then the algorithm updates aFP

s j

to min{ f , aFP
s j }. Furthermore, as it means that at that time t a different path is preferred, dFP

s j

is modified to merge
min{ f ,aFP

s j }

{dFP
si + di j, dFP

s j }.

Algorithm 7.2 Algorithm for time-dependent fastest path

1: dFP
ss ← 0̂

2: aFP
ss ← 0̂

3: for all i ∈ VRN \ {s} do
4: dFP

si ← ∞̂ and aFP
si ← ∞̂

5: end for
6: Q← VRN // priority queue of nodes sorted according to aFP

si (0)
7: while Q is not empty do
8: i← Q.extractMin()
9: for all j ∈ VRN such that (i, j) ∈ ARN do

10: f ← ai j ◦ aFP
si

11: if not aFP
s j ≤ f then

12: aFP
s j ← min{ f , aFP

s j }

13: dFP
s j ← merge

min{ f ,aFP
s j }

{dFP
si + di j, dFP

s j }

14: if j ∈ Q then
15: Q.updatePriority(j, aFP

s j (0))
16: else
17: Q.insert(j, aFP

s j (0))
18: end if
19: end if
20: end for
21: end while
22: return dFP

si and aFP
si for all i ∈ C ∪ {0}

Contrary to Algorithm 7.1, the maximal number of iterations of the while loop (Lines
7-21) cannot easily be determined. It might actually be possible that, given two nodes s and
i, an exponential number of paths linking these two nodes are, at some instant t, the faster.
In this case, arrival time function aFP

si (and the associated function dFP
si) would be updated an

exponential number of times. Hence, Algorithm 7.2 would require an exponential number of
operations.

7.4 Branch-and-price algorithm for the TDVRPTWRN 165

7.4 Branch-and-price algorithm for the TDVRPTWRN

In this section, we present the branch-and-price scheme used to solve the TDVRPTWRN .
The motivation for using such a solution approach is that it has performed very well for
many transportation problems and has become one of the most efficient exact solution meth-
ods to solve vehicle routing problems.

The algorithm proposed in this paper is based on the branch-and-price scheme presented
in [11] for the same problem with constant travel times. For this reason, we briefly describe
the main components of the algorithm. Compared to [11], two main modifications have been
carried out. First, the composition operator described above is used in the pricing problem
when extending labels. Second, bidirectional dynamic programming has been implemented.
It is worth mentioning that our objective in this paper is not to achieve the best possible im-
plementation of the branch-and-price algorithm for the TDVRPTWRN , but it is to develop a
solution method that allows deriving comprehensive conclusions.

The branch-and-price algorithm is based on the Dantzig-Wolf decomposition [32]. This
decomposition consists in a specific problem reformulation that gives rise to an integer mas-
ter problem with a tighter linear relaxation than the compact formulation of the problem.
However, this master problem involves a large number of variables, thus, it cannot be solved
using a standard branch-and-bound procedure. To handle this issue, a column generation
procedure is used, resulting in a branch-and-price algorithm.

7.4.1 Master Problem

The master problem for the TDVRPTWRN consists in set covering formulation (7.1)-(7.4):

Min
∑
r∈Ω

cr xr (7.1)

s.t
∑
r∈Ω

ai,r xr ≥ 1 ∀i ∈ C (7.2)∑
r∈Ω

xr ≤ K (7.3)

xr ∈ {0, 1} ∀r ∈ Ω (7.4)

where Ω denotes the set of feasible routes, cr is the cost of route r ∈ Ω and air = 1 if customer
i ∈ C is served in the route r, 0 otherwise. Binary variable xr takes value 1 if the route r is
selected in the optimal solution, 0 otherwise.

In the branch-and-price scheme, a restriction of the LP relaxation of (7.1)-(7.4) to a subset
of routes Ω1 ⊂ Ω, the so-called restricted Master Problem (MP(Ω1)), is solved at each itera-

166
Chapter 7: The Time-Dependent Vehicle Routing Problem with Time Windows

and road network information

tion. Ω1 is composed of all routes generated at previous iterations and is iteratively enlarged
by solving the pricing problem. For a detailed tutorial on the branch-and-price scheme, we
refer the reader to [52].

7.4.2 Pricing problem

The pricing problem aims at finding new routes offering better ways to serve customers, i.e.,
with negative reduced costs. The pricing problem can be reduced to a Time Dependent Short-
est Path Problem with Resource Constraints (TDSPPRC) in GRN . Ben Ticha et al. [11] notice
that, in the road-network graph, the elementary path condition has to be modified. Indeed, in
an optimal solution an arc of the road network can be traversed several times and a customer
node can be visited several times. In what follows, we say that a route or a path is elementary
if customer nodes in the route are served at most once, even if they are traversed several times.

To solve the TDSPPRC, we develop a time-dependent labeling algorithm which is a mod-
ification of the labeling algorithm proposed in [11]. Basically, this algorithm performs as
follows. A subpath from the depot to a node i ∈ VRN is represented using a label defined by
L = (i, t, c, q, S) where t is the arrival time at node i, c is the reduced cost associated with
the subpath, q is the total demand of customers served along the subpath and S represents
the set of customers that are not reachable anymore, either because they have already been
served or because they cannot be reached due to resource constraints. At each iteration, all
labels at a certain node i ∈ VRN are extended along arcs (i, j) ∈ ARN . When the destination
node j is a customer node, two extensions are processed. In the first extension, the service at
the customer j is performed, if it is feasible. In the second extension, the node is only visited
without servicing the associated customer. To handle the exponentially growing number of
generated labels, we use the dominance rule proposed by Feillet et al. [53] and defined as
follows:

Definition 7.1. A label L1 = (v, t1, c1, q1, S 1) dominates a label L2 = (v, t2, c2, q2, S 2) if:

1. t1 ≤ t2

2. c1 ≤ c2

3. q1 ≤ q2

4. S 1 ⊆ S 2

In order to improve the efficiency of the pricing algorithm, we implement a bi-directional
search strategy. To do this, we associate two labels with each node i: a forward label defined
as described above and, a backward label representing the subpath from the node i to the
depot and defined by LB = (i, t, c, q, S) where t is the latest starting time at node i, c is the
reduced cost associated with the subpath, q is the total demand of customers served along

7.4 Branch-and-price algorithm for the TDVRPTWRN 167

the subpath and S represents the set of unreachable customers. Forward labels are extended
to the middle of the planning horizon and not further, while backward labels are extended
and are allowed to cross the middle of the planning horizon. At the end, forward labels and
backward labels arriving at the same node are merged to generate a complete route.

Note that the efficiency of the labeling algorithm depends on the length of the subpaths
defined by the labels. The bi-directional search strategy aims at limiting the length of gener-
ated labels and thus, improves oftenly the computing time. More details on the bi-directional
search can be found in [114] and [30].

7.4.3 Branching scheme

The branching rule aims at eliminating the current fractional solution by adding constraints
and partitioning the solution space. As shown in [11], the standard branching rule used
for vehicle routing problems is not suitable in a road-network graph. The reason is that in
customer-based graph every arc is traversed at most once in a feasible solution. This property
does not hold anymore in a road-network graph.

Ben Ticha et al. [11] propose the following branching scheme:

• Select an arc (i, j) ∈ VRN with a fractional flow φi j given by φi j =
∑

r∈Ω1
bi jr xr where

bi jr represents the number of times arc (i, j) is traversed along route r;

• Derive two branches:

– In the first branch, set the flow upper limit on arc (i, j) to bφi jc

– In the second branch, set the flow lower limit on arc (i, j) to bφi jc + 1

To address this branching rule in the column generation procedure, constraints (7.5) or
(7.6) are added to the restricted master problems:∑

r∈Ω1

bi jr xr ≤ bφi jc (7.5)

∑
r∈Ω1

bi jr xr ≥ bφi jc + 1 (7.6)

At the pricing problem level, the cost associated with arc (i, j) is set to ci j = ci j − λ
low
i j in

the first branch and to ci j = ci j − λ
up
i j in the second branch where λlow

i j ≤ 0 and λup
i j ≥ 0 are the

dual variables associated with constraints (7.5) and (7.6), respectively.

168
Chapter 7: The Time-Dependent Vehicle Routing Problem with Time Windows

and road network information

As underlined by Ben Ticha et al. [11], this branching rule does not guarantee the feasibil-
ity of the solution. Indeed, an integer arc flow may correspond to a fractional routing solution.
To handle this issue, a specific procedure is proposed. Again, we derive two branches:

• In the first branch, we check if graph G̃ = (VRN , Ã), where Ã = {(i, j) ∈ A :
∑

r∈Ω1
bi jr x̃r >

0}, contains a feasible solution. This is done by first enumerating all the feasible routes
in G̃, then solving the resulting set covering formulation with an integer programming
solver.

• In the second branch, we enforce the use of at least one arc that is not traversed by the
fractional solution x̃. For this aim, we add constraint

∑
(i, j)∈A\Ã

∑
r∈Ω1

bi jr xr ≥ 1 to the
restricted master problem and we subtract the associated dual variable λ̃ from the cost
of every arc (i, j) ∈ A \ Ã when solving the pricing problem.

7.5 Computational experiments

In this section, we present the experimental study carried out. We first present the bench-
mark problems used. Then, we summarize the obtained results and we evaluate the impact
of tackling the problem directly on the road network instead of using a customer-based graph.

We implement the branch-and-price algorithm in the C++ programming language and
we use CPLEX 12.6 as the linear programming solver for restricted master problems. Tests
are run on an Intel CORE i5 2.6 GHz computer with 8GB of memory. We limit computing
times for branch-and-price algorithms with different modelings to 7200 seconds.

7.5.1 Test data

In our experiments, we use two sets of instances: the first set of instances (Letchford et al.
[89]-like instances) are generated with the objective to simulate real road networks and the
second set of instances are derived from a real road network.

7.5.1.1 Letchford et al.[89]-like instances

The Letchford et al.[89]-like (LL) instances are generated using the procedure proposed in
[89] and that performs as follows. First, it randomly inserts nodes in the Euclidean space,
then it considers all possible arcs and insert a new arc in ARN when it does not provoke any
intersection with other arcs and angles with other arcs at its endpoints are large enough. Arc
costs are set according to Euclidean distances.

7.5 Computational experiments 169

Table 7.1: Speed factor profiles

z1 z2 z3 z4 z5

Congestion-free road segments 1.5 1 1.67 1.17 1.33
Normal road segments 1.17 0.67 1.33 0.83 1
Congestion-bound road segments 1 0.33 0.67 0.5 0.83

With this procedure, we generate three sparse graphs with n = |VRN | ∈ {50, 100, 200}
nodes. A node is randomly selected to represent the depot location and remaining nodes are
given a probability p to be customers. For the sparse graph with n = 50, we generate in-
stances with nc = 16 and nc = 33 customers. For the sparse graph with n = 100, we generate
instances with nc = 25, nc = 33 and, nc = 50 customers. For the sparse graph with n = 200,
we generate instances with nc = 25 and nc = 50 customers.

For each sparse graph, three different sets of static travel times with different levels of cor-
relation are computed using formula ti j = ν ∗ ci j +µ ∗ γi j ∗ c̄ where c̄ = max{ci j : (i, j) ∈ ARN},
γi j is a random number in [0, 1] and, ν and µ are correlation parameters defined in [0, 1]. The
first set of static travel times has non-correlated travel times (NC), the second set has weakly
correlated travel times (WC), the third set has strongly correlated travel times (SC). These
travel times represent “nominal” travel times in the road network during non-congested peri-
ods and are used to compute “nominal” travel speeds.

To take into account traffic congestion, we associate with each road segment differ-
ent road profiles. We divide the planning horizon [0,H] into 5 periods: z1 = [0, 0.2H[,
z2 = [0.2H, 0.3H[, z3 = [0.3H, 0.7H[, z4 = [0.7H, 0.8H[and, z5 = [0.8H,H[. The second
and the fourth periods are congestion periods. Speeds in the remaining periods are relatively
high. Implicitly, with this decomposition, we assume that for all road segments, speed break-
points are the same. It makes sense in practice since congestion tends to happen around the
same time periods (peak hours) in all the road network. We assume that there are three types
of road segments: congestion-bound, normal and congestion-free. The type of the road seg-
ment is randomly defined and remains the same for the different correlation levels on each
road network. Speed on a road segment is then obtained by multiplying its nominal speed by
a factor depending on both the segment type and the period, and reported in Table 7.1.

Finally, we associate with every road network two TDVRPTWRN instances: the first in-
stance with narrow time windows (NTW) and the second instance with wide time windows
(WTW). Time windows are defined such that a set of routes, constructed in a greedy way
without considering congestion, are feasible. An integer service time in {1, 2} is defined for
each customer node. We set the vehicle capacity to 200 and we consider a fleet with a large
number of vehicles. We assign a demand to each customer such that the routes defined by
the time windows are feasible.

170
Chapter 7: The Time-Dependent Vehicle Routing Problem with Time Windows

and road network information

7.5.1.2 Real instances

The second set of instances are generated based on real data from the road network of the
central urban area of the city of Aix-en-Provence (a city-commune in the region of Provence-
Alpes-Cote d’Azur in the south of France, about 30 km north of Marseilles). Spacial data
are extracted based on OpenStreetMap© 1 database. The considered road network is rep-
resented by a directed sparse graph with n = 5437 nodes and 10181 arcs where an arc
represents a road segment and is defined by a length and a maximum allowed speed. Costs
are set as road segment lengths.

Time dependency parameters (time periods, speed profiles, road segments types) are de-
fined as described in 7.5.1.1. However, the type of the road is defined based on the maximum
allowed speed given in data. For highways, motorways and arterial roads (characterized with
high maximum allowed speeds), the road segment type is set to “normal”. For streets, boule-
vards and roads in the center of the city, the road segment type is set to “congestion-bound”.
For small roads and living streets (characterized with low maximum allowed speeds), the
road segment type is set to “congestion-free”.

Based on this road network, we generate instances with nc ∈ {5, 10, 25}, with three in-
stances for each value of nc. For each instance, depot and customers locations are randomly
selected. Time windows, customer demands, service times and vehicle capacity are defined
in the same way as for the first set of instances.

7.5.2 Results

In order to investigate the impact of solving the TDVRPTW using the complete road-network
information, we compare the obtained solutions to the solutions computed when tackling the
problem with the min-cost graph and the min-time graph. Note that for real instances we only
compare the solutions of the TDVRPTWRN to the solutions obtained on the min-cost graph.
The reason is that, due to the complexity of the proposed algorithm (see Section 7.3.4), it is
highly time consuming to generate an exact min-time graph in a large road network.

Table 7.2 presents the computing times required by the construction of the min-cost and
min-time graphs for LL instances. Tables 7.3 and 7.4 compare the results of the branch-
and-price algorithms for LL instances. Similar information for real instances is presented
in Table 7.5. Columns “|VRN |”, “|ARN |” indicate the number of nodes and the number of
arcs in the road-network graph. Column “|C|” indicates the number of customers. Column

1OpenStreetMap is a collaborative project wich creates and distributes freely available geo-spatial data.
www.openstreetmap.org/

www.openstreetmap.org/

7.5 Computational experiments 171

Table 7.2: Results for the construction of simple graph representations for Letchford et al. [89]-Like
instances

construction construction
|VRN | |ARN | |C| Corr min-cost(s) min-time(s)

50 134 16 NC 0.2 2.0
WC 0.2 1.5
SC 0.2 2.1

33 NC 0.4 4.5
WC 0.4 4.0
SC 0.4 4.9

100 286 25 NC 0.5 10.8
WC 0.5 10.1
SC 0.5 14.7

33 NC 0.8 17.3
WC 0.8 16.1
SC 0.8 22.5

50 NC 1.4 29.1
WC 1.5 26.8
SC 1.4 34.9

200 580 25 NC 1.3 46.7
WC 1.3 46.9
SC 1.3 80.4

50 NC 3.4 138.7
WC 3.4 113.0
SC 3.6 152.1

“Corr” gives the correlation degree between travel times and costs. Columns “construc-
tion min-cost graph(s)” and “construction min-time graph(s)” report the computing times (in
seconds) for the construction of the customer-based graphs. Column “Ins” indicates the in-
stance index for real instances. Columns “CPU min-cost(s)”, “CPU min-time(s)” and “CPU
Road Network(s)” report the computing times of the branch-and-price algorithms, expressed
in seconds. The “gap” columns report the gap between solution values of the TDVRPTWRN

and solution values in the associated customer-based graph. This gap is computed as follows:

gap(%) =
cost in road network graph − cost in customer based graph

cost in customer based graph
∗ 100 (7.7)

As expected, we see from Table 7.2 that the computing time needed for the construction
of the min-cost graph is more important than the computing time of the min-cost graph, and
that it increases significantly with the number of customers.

From Tables 7.3 and 7.4, it comes out that 38 out of 42 TDVRPTWRN instances are
solved, while 32 and 37 optimal solutions only are obtained when using the min-cost graph
and the min-time graph, respectively. The branch-and-price algorithm for the TDVRPTWRN

is faster for 14 out of 31 solved instances compared to the min-cost graph and is faster for 14

172
Chapter 7: The Time-Dependent Vehicle Routing Problem with Time Windows

and road network information

Table 7.3: Results for Letchford et al. [89]-Like instances with narrow time windows

CPU CPU CPU gap gap
|VRN | |ARN | |C| Corr min-cost(s) min-time(s) Road Network(s) min-cost(%) min-time(%)

50 134 16 NC Infeasible 3.8 95.6 – -19.8
WC 10.9 4.6 1.7 0.0 -9.6
SC 1.2 0.8 1.0 0.0 -1.3

33 NC 1.2 31.9 3.5 – -14.2
WC 698.0 672.9 14.4 0.0 -9.6
SC 111.7 60.8 8.9 0.0 -0.9

100 286 25 NC Infeasible 0.2 1.1 – -7.9
WC 0.4 0.2 1.4 0.0 -8.9
SC 0.7 0.4 1.5 0.0 -4.0

33 NC Infeasible 0.2 1.0 – -13.3
WC 1.0 0.6 2.0 0.0 -7.6
SC 15.9 14.3 49.6 0.0 -1.3

50 NC 4.3 1.8 4.0 0.0 -6.2
WC 26.9 18.5 4.0 0.0 -3.3
SC 199.8 103.5 201.3 0.0 -3.5

200 580 25 NC 0.3 0.3 4.0 -7.8 -17.2
WC 0.5 0.4 4.0 -9.1 -2.2
SC 3.2 2.7 3.9 0.0 -3.8

50 NC Infeasible 47.5 13.0 – -16.7
WC 52.9 52.9 7089.2 -2.2 -7.7
SC 1265.4 1447.9 18.7 0.0 -1.7

7.5 Computational experiments 173

Table 7.4: Results for Letchford et al. [89]-Like instances with wide time windows
(−: instances not solved in 7200 seconds)

CPU CPU CPU gap gap
|VRN | |ARN | |C| Corr min-cost(s) min-time(s) Road Network(s) min-cost(%) min-time(%)

50 134 16 NC 2.0 1.3 15.0 -12.4 -17.2
WC 31.4 16.3 2.8 0.0 -11.3
SC 6.4 3.6 1.7 0.0 -0.2

33 NC Infeasible 2893.2 7125.2 – -11.4
WC − − − – –
SC − − − – –

100 286 25 NC 1.4 1.9 28.2 -5.3 -12.0
WC 1.1 0.8 2.4 0.0 -4.6
SC 8.5 4.0 26.2 0.0 -1.8

33 NC 9.5 1.3 2229.9 -5.6 -9.0
WC 5.2 6.4 5.1 -0.2 -3.5
SC 97.4 45.6 24.4 0.0 -1.9

50 NC 22.2 10.2 6.1 0.0 -6.1
WC 3361.3 2512.8 56.7 0.0 -3.5
SC − − 1532.5 – –

200 580 25 NC 0.9 15.5 7199.2 -2.0 -15.8
WC 19.3 2.6 96.6 -4.7 -1.5
SC 146.7 119.2 27.4 0.0 -1.4

50 NC 1682.4 5150.0 − – –
WC 4066.2 − 4364.3 -3.2 –
SC − − − – –

174
Chapter 7: The Time-Dependent Vehicle Routing Problem with Time Windows

and road network information

Table 7.5: Results for real instances

CPU CPU gap
|VRN | |ARN | |C| Ins Construction (s) min-cost(s) Road Network(s) min-cost(%)
5437 10181 5 1 12.8 0.02 7.0 -10.4

2 17.8 0.03 8.2 -11.8
3 17.2 0.10 24.4 -7.6

10 1 28.3 0.06 18.3 -7.1
2 43.0 0.05 12.7 -6.9
3 34.9 0.05 40.9 -2.1

25 1 129.3 0.09 97.9 -0.6
2 114.6 0.09 56.8 -1.4
3 164.3 0.08 35.8 -4.3

out of 36 solved instances compared to the min-time graph.

With the TDVRPTWRN , which maintains the complete road-network information, solu-
tion costs are reduced for 10 instances compared to solutions obtained in the min-cost graph
and for 36 instances compared to solutions obtained in the min-time graph. Gaps are up to
12.4% and 19.8%, respectively. Average gaps are 1.7% and 7.3%. Furthermore, the min-cost
graph admits no feasible solution for 5 instances due to the loss in the graph construction of
more costly but faster paths.

Another interesting observation is that increasing the correlation between costs and travel
speeds reduces the improvements in solution costs obtained when conserving the complete
road-network information. Especially, gaps are most of the times significantly larger for NC
instances.

Table 7.5 summarizes results obtained for instances derived from the real road network.
We observe that solving the TDVRPTWRN enables improving solution costs for all instances.
The saving is 5.8% on average and reaches 11.8%. We also observe that the improvement
in solution cost decreases when the number of customer nodes increases. The average im-
provement is 9.9% for instances with 5 customers and goes down to 2.1% for instances with
25 customers.

Finally, we notice that computing times are more important when addressing the TDVRPTWRN

and increase significantly when the number of customers increases.

7.6 Conclusion 175

7.6 Conclusion

In this paper, we are interested in the Time-Dependent Vehicle Routing Problem with Time
Windows and Road-Network Information (TDVRPTWRN). The originality of this model is
that time-dependent travel-time information is defined on road-network arcs. It goes against
traditional modelings of time-dependent vehicle routing problems where a customer-based
graph is first introduced and travel-times function are then directly defined on this graph arcs.
With this work, we demonstrate that important savings can be obtained thanks to this new
modeling.

In order to do so, several methodological contributions were needed. First, we propose
two original dynamic programming algorithms to compute the travel-time and travel-distance
functions in the min-cost and min-time graphs. Second, we adapt a branch-and-price scheme
to the TDVRPTWRN to be able to derive optimal solutions while considering complete road-
network information. The main specificity of this algorithm is to apply branch-and-price
directly on the road-network graph.

This algorithm and the two branch-and-price algorithms for which vehicle routes are de-
fined on customer-based graphs, show however some limits. Actually, the main purpose of
our study was to point out the negative effects of the customer-based graphs against a com-
plete consideration of road-network information. We did not seek for the development of
state-of-the-art branch-and-price algorithms. For the TDVRPTWRN , only instances with few
customers (50 customers for simulated networks and 25 customers for large-scale real road
networks) can be solved within the imparted computing time of two hours. The proposed
branch-an-price framework could be enhanced in many ways. For example, the special struc-
ture of the road-network graph could be exploited much more in the pricing problem. Also,
heuristic pricing methods might be designed. Introducing valid inequalities, in a branch-
cut-and-price framework could also be very helpful. Another interesting research direction
would consist in the development of heuristic solution methods, able to solve time-dependent
vehicle routing problems directly on road networks.

Chapter 8

Conclusions and perspectives

Vehicle routing problems constitute one of the most studied classes of combinatorial op-
timization problems in the operations research literature. This is due to the large number of
real-life applications where routing issues are involved.

Classically, these problems are tackled using the so-called customer-based graph, a com-
plete graph representing the road network. In many situations, this modeling can have im-
portant consequences. One situation is when several attributes are defined on road segments.
In this case, alternative paths with different compromises are not considered in the customer-
based graph. This may have a negative impact on solution quality.

The first contribution of this thesis is to analyse works where the limits of the complete
graph representation are evoked and that investigate vehicle routing problems with more in-
formation from the road network. We examine the different cases where the customer-based
graph badly represents the road network and we highlight the alternative approaches pro-
posed to handle these limits. The study shows the lack of contributions in this area and
reveals many unexplored research directions.

In the literature, two alternative approaches are proposed to handle the limits of the
customer-based graph representation when several attributes are defined on road segments.
In the first approach, the road network is represented using a multigraph where an arc is in-
troduced for each alternative path. In the second approach, the problem is solved directly on
the road network.

A first part of this thesis focuses on the multigraph approach. We investigate the tractabil-
ity of representing real road networks with multigraphs. We develop an exact solution method
that computes the set of non-dominated paths linking a set of points of interest in a road
network. The proposed algorithm is based on multi-destination multi-objective A* search
strategy. Multigraphs for up to 500 points of interest are constructed within few seconds for
large sized road networks. An analysis on the impact of the density of customers in the road
network is conducted. Also, we study the impact of customers time windows on the number
of feasible alternative paths and on the construction time.

178 Chapter 8: Conclusions and perspectives

In the second step, we investigate the impact of the multigraph representation on the qual-
ity of solution for a vehicle routing problem with two attributes: the VRPTW. We develop
a branch-and-price algorithm that can handle the multigraph setting. An extensive computa-
tional study is carried out on modified instances from the literature and on instances derived
from real road networks. Results show that, using the multigraph, solution costs are signifi-
cantly reduced compared to the solution costs on the shortest-path-based graph (up to 14%)
and compared to solution costs on the fastest-path-based graph (up to 54%). Moreover, we
notice that using a multigraph increases only slightly the computing times compared to the
customer-based graph. As another contribution, we develop a heuristic method that can ef-
ficiently handle the multigraph settings. The proposed method is based on an adaptive large
neighborhood search able to explore different areas from the solution space. We embed into
the algorithm an incremental data structure and a dynamic programming based procedure that
allow to efficiently evaluate the neighborhood of a given solution in the presence of parallel
arcs between nodes. Computational experiments show the competitiveness of the developed
algorithm compared to the branch-and-price algorithm. Some improving solutions (com-
pared to optimal solutions in simple graph representations) are obtained using the heuristic
approach.

A second part of the thesis focus on the road network approach. We first investigate
the relative efficiency of tackling the problem directly on the road network compared to the
multigraph approach. For this aim, we develop a branch-and-price algorithm that works di-
rectly on the road network. An extensive computational study is then conducted to analyse
the impact of characteristics of the VRPTW (elementary and non-elementary routes, cus-
tomer time windows, capacity constraints, density of customers, etc.) on the performance
of branch-and-price algorithms with the road network and the multigraph settings. Obtained
results show that a multigraph-based branch-and-price scheme is more efficient than using
the road network approach.

The second contribution of this part of the thesis is to point out the limits of the customer-
based graph for a time dependent VRPTW. To do this, we first develop two algorithms to
compute the customer-based graph of the road network. The first algorithm computes the
shortest paths and the associated travel time functions from one to all other points of interest.
The second algorithm permits to determine the fastest path between two points of interest
and the associated distance for each possible departure time. Then, we adapt the road net-
work based branch-and-price algorithm to handle the time dependent setting. Results show
the potential benefits of the road network modeling and the attractive savings on solution
costs achieved. It also comes out that optimal solutions on the road network are found for
instances that are not feasible when using the shortest path based simple representation.

The primary interest of this thesis is to emphasize the limits of the standard modeling
used to tackle a large class of vehicle routing problems. We focus on problems where several
attributes are defined on road segments. However, there are many other situations where the

179

simple graph modeling is not suitable to efficiently vehicle routing problems. At the time of
concluding this thesis, only a few papers investigate the impact of tackling problems using
the simple graph representation. A natural extension of the work presented in this thesis
would be to examine these situations and analyse the benefits of proceeding differently than
using the standard modeling approach.

From a methodological point a view, future research would be interested in the devel-
opment of efficient solution methods that can handle the road network setting. We recall
that our objective in Chapters 6 and 7 was not achieve the best possible implementation of
the branch-and-price algorithm for the road network based VRPTW. But, we sought for the
development of a method that allows deriving conclusive results. The proposed algorithm
can be enhanced in many ways. First, one would be interested in improving the branching
rule. In the branching scheme proposed in Chapter 6, decisions mainly impact the set parti-
tioning formulation and the lower bounds but do not affect the pricing problem. In addition,
these decisions alone do not guarantee integrality of the solution. It would be interesting to
design branching rules that allow obtaining an integer solution and have an impact on the
structure of the pricing problem. A second possible enhancement is the design of specific
dominance rules for the road network settings. In our implementation, we use the dominance
rule introduced for the standard VRPTW. Using more suitable branching rules would im-
prove significantly the efficiency of the pricing algorithm. Moreover, it would be interesting
to implement a bounding test that eliminates non-dominated labels that, when extending in
the best way, do not improve the current solution.

Another interesting research direction would be to design heuristic solution method that
can handle the road network settings. Most heuristic approaches proposed for vehicle routing
problems are based in local search moves that aim at relocating customer services to explore
new solutions. Using the road network modelling, such operations are not easy to evaluate
and to perform since customer nodes are not directly connected and several paths could exist
between two points of interest. And many other computational challenges arise in this case.

Furthermore, the recent advances in information and communication technologies per-
mit to obtain information on traffic conditions and travel times on real-time. Although the
growing interest accorded to such information when tackling shortest path and route plan-
ning problems, there is a lack of contributions in this area for routing problems. It would
be interesting to investigate the effect of considering such information for vehicle routing
problems and to study the impact of both customer-based graph and road-network graph ap-
proaches on the solution quality for these problems. It would be also interesting to examine
if it is sufficient to work with the customer-based graph representation for other categories
of vehicle routing problems such as problems with possibility of diversion, problems with
synchronization constraints, hazardous materials routing, etc. In such problems, several is-
sues have to be considered, e.g., incident probability and population exposure for hazardous
materials transportation, assignment of new service requests depending on actual situations

180 Chapter 8: Conclusions and perspectives

of the vehicles, etc. These issues can not be easily addressed using the traditional customer-
based graph. Thus, it would be interesting to propose alternative modeling approaches for
such problems.

Appendix A

Résumé en français

Problèmes de tournées de véhicules avec des informations du
réseau routier

A.1 Introduction

Le transport présente une activité centrale dans la chaîne logistique dont le coût représente
près de la moitié du coûts logistiques et peut atteindre jusqu’à 70% du coût total des biens
dans certaines industries [33]. Selon la Commission européenne, l’industrie du transport
a généré jusqu’à 7% du produit intérieur brut (PIB) de l’Union Européenne (UE) en 2009
[101]. Aux États-Unis, les charges totales de la logistique ont atteint 10% du PIB en 2000 et
les coûts de transport représentaient plus que la moitié de cette contribution [69]. De plus, les
activités de transport ont un impact environnemental très important. Les consommations en
carburant et en énergies dues au transport représentent, respectivement, 60% et 25% des de
la consommation globale [116]. L’Agence Européenne pour l’Environnement indique qu’en
2013 le secteur du transport a contribué à environs le quart (24, 4%) des émissions totales
de gaz à effet de serre de l’UE [46].

Par conséquent, il est trés important de concevoir un système de transport afin d’accroître
la compétitivité d’une entreprise et de diminuer son impact environnemental. Cette tâche
donne lieu à un problème bien connu de la littérature : le problème tournées de véhicules
(VRPs). Ce problème peut être rencontré dans plusieurs applications réelles qui impliquent
des activités de transport de passagers ou de marchandises (e.g. transport de personnes hand-
icapées, tournées des autobus scolaires, livraison du courrier, collecte des déchets, ramassage
et livraison des marchandises,...).

Le problème de tournées de véhicules consiste à calculer l’ensemble des routes à coût
minimal qui permettent de servir un ensemble de clients géographiquement dispersés. Les
problèmes de tournées de véhicules ont fait l’objet de plusieurs travaux de recherche depuis
maintenant plus de 50 ans. Depuis l’introduction du VRP par Dantzig et Ramser [31] en
1959, des milliers d’articles et de livres ont été consacrés à l’étude des problèmes d’optimisation

182 Appendix A: Résumé en français

dans lesquels des problèmes de routage sont impliqués. Eksioglu et al. [51] énumérent envi-
ron 1500 publications indexées qui portent sur des problèmes de tournées de véhicules.

Classiquement, les problèmes de tournées de véhicules sont définis sur des réseaux routiers
où les demandes de services (ramassages ou livraisons) sont associées à des points spéci-
fiques. Donc, la qualité de la solution dépend fortement de la qualité de la réprésentation
du réseau routier. La plupart des approches rencontrées dans la littérature s’appuient sur un
graphe complet où un nœud est introduit pour tout point d’intérêt du réseau routier (typique-
ment les clients et le dépôt). Cette modélisation est, implicitement, basée sur l’hypothèse
que le meilleur chemin entre toute paire de points du réseau routier est bien défini. Cepen-
dant, cette hypothèse n’est pas toujours valide dans de nombreuses situations. Souvent, plus
d’informations sont nécessaires pour modéliser et résoudre correctement le problème.

Une première situation est celle où plusieurs attributs sont définis sur des segments de
route. Dans ce cas, la définition du meilleur chemin entre deux points du réseau routier im-
plique un probème d’optimisation multi-objectif. La solution de ce problème consiste en
l’ensemble des chemins non dominés. En considérant un seul chemin, de bonnes solutions,
potentiellement optimales, pourraient être éliminées de l’espace des solutions. Ce qui résulte
en une surestimation du coût de la solution.

A notre connaissance, Garaix et al. [61] ont été les premiers à souligner que, lorsque
plusieurs attributs sont associés aux segments de route, modéliser le problème avec un graphe
complet peut conduire à une surestimation du coût de la solution. Ils étudient un problème
de transport à la demande avec l’objectif de développer un système de transport à la demande
réel pour une zone rurale. Ils proposent d’aborder le problème en utilisant un multigraphe afin
de gérer efficacement le compromis coût-temps. Ils poursuivent deux objectifs principaux:
évaluer la faisabilité de cette approche et démontrer ses avantages par rapport à l’utilisation
du graphe complet traditionnel. Plusieurs auteurs se sont appuyés sur ces résultats et ont
examiné l’intérêt de la modélisation par multigraphe pour différents problèmes: Lai et al.
[85] pour un VRP avec une flotte mixte et des contraintes de temps, Ben Ticha et al. [8, 7]
pour le problème de tournés de véhicules avec des fenêtres de temps (VRPTW), Huang et
al. [71] pour un VRP avec des temps de parcours qui varient au cours du temps. Toutes ces
études se sont particulièrement intéressées à l’évaluation des gains qui peuvent être obtenus
avec le multigraphe. Des analyses expérimentales approfondies utilisant différentes classes
d’instances sont proposées. Elles montrent les gains importants qui peuvent être obtenus en
utilisant le multigraphe.

Une deuxième approche est aussi proposée afin de conserver l’ensemble de l’espace de
solutions et retrouver la solution optimale. Cette approche consiste à résoudre le probléme
directement sur un graphe simulant le réseau routier. Dans ce graphe, les arcs correspondent
aux segments de route et les un nœuds aux extrémités de ces segments. Un article clé à
cet égard est proposé par Letchford et al. [89]. Ils se sont intéressés à l’approche proposée

A.1 Introduction 183

par Garaix et al. [61]. Ils étaient guidés par l’idée qu’il serait, peut-être plus efficace de
résoudre le problème sur le graphe du réseau routier au lieu d’introduire la représentation
par multigraphe. En particulier, Letchford et al. [89] soulignent que, dans le pire cas, la
construction et le stockage du multigraph pourraient être exponentiels dans le temps et dans
l’espace (ce qui était contredit dans [8, 9]). Ils identifient l’impact de considérer le graphe
du réseau routier sur l’algorithme du branch-and-price mais seul un algorithme de génération
de colonnes est développé. Le schéma de branchement est laissé pour de futures recherches.
Les résultats numériques démontrent l’intérêt de leur approche lors du calcul de la relaxation
linéaire continue du problème, par rapport à une procédure de génération de colonnes équiv-
alente appliquée au multigraphe.

La plupart des travaux de recherche qui portent sur des VRPs supposent que tous les at-
tributs dans le réseau routier sont bien définis a priori. Ces attributs sont donnés en entrée
ou calculés en utilisant d’autres informations données, par exemple, les temps de parcours
sont calculés en utilisant les distance et les vitesses moyennes. Par conséquence, le meilleur
chemin entre deux paires de nœuds peut être facilement défini quand un seul attribut est con-
sidéré sur le réseau routier. Cependant, il existe certaines situations où calculer le meilleur
chemin pour un attribut donné entre deux points d’intérêt n’est pas si simple. Un exemple
simple est celui des temps de parcours dépendant du temps. En théorie, il est facile de cal-
culer le chemin le plus court en temps pour chaque heure de départ possible. Ce qui permet
ensuite de construire la représentation par graphe complet avec des fonctions de temps de
parcours associées à chaque arc. Il faut juste être conscient que le chemin du réseau routier
associé à un arc dans ce graphe peut changer selon le moment de la journée. Même en pra-
tique cela peut être plus compliqué (en raison de problèmes de mémoire ou de précision liés
à la modélisation des données de temps de déplacement, comme discuté dans Eglese et al.
[47]).

D’autres complications surviennent quand la fonction objectif est dépendante du temps.
C’est le cas, par exemple, quand l’objectif est de déterminer l’ensemble de routes qui min-
imise la consommation de carburant ou la minimisation des émissions de carbone, avec des
temps de parcours dépendant du temps [134]. Dans ce cas, le problème du chemin de coût
minimum entre deux points devient non trivial si le principe d’optimalité de Bellman n’est
pas valide, c’est-à-dire s’il est préférable d’arriver à un nœud intermédiaire avec un coût plus
élevé (mais plus tôt) afin d’éviter la congestion et économiser des coûts futurs. Une difficulté
supplémentaire est aussi rencontrée si la consommation de carburant est modélisée en fonc-
tion de la charge du véhicule. Dans ces situations, la construction du graphe complet devient
de moins en moins viable.

Encore plus compliqué sont les situations où le décideur a la possibilité de prendre des
décisions qui pourraient influencer l’itinéraire à suivre entre deux points d’intérêts. Un pre-
mier exemple est quand le décideur a la possibilité de contrôler la vitesse de parcours afin
d’optimiser la consommation en carburant [109]. Un autre exemple est quand le décideur

184 Appendix A: Résumé en français

doit gérer les pauses des conducteurs afin d’assurer le respect des règles des horaires de tra-
vail (voir [19]). Dans ce cas, il est difficile, voire impossible, de définir a priori le meilleur
chemin entre deux points d’intérêt et donc de construire la représentation par graphe complet
du réseau routier.

Une troisième situation où le graphe complet peut mal représenter le réseau routier est
quand ce dernier présente une structure complexe. En effet, le transport de marchandises
constitue une activité importante dans les zones urbaines. La plupart des réseaux routiers
ont une structure complexe et des informations additionnelles devraient être considérées en
traitant de problèmes de tournées de véhicules.

Récemment, de nombreuses études dans la littérature du VRP s’intéressent à l’optimisation
des activités de transport et de distribution dans les centres urbains, ce qu’on appelle la lo-
gistique urbaine (city logistics). Dans la plupart de ces études, le problème est défini sur
un graphe complet et trois types de décisions sont principalement traités: les décisions
d’affectation et de séquencement qui définissent l’ordre de visite du client pour chaque
véhicule et les décisions d’ordonnancement qui déterminent l’horaire de visite. Implicite-
ment, il est supposé que le chemin choisi entre deux clients ne dépend pas de la séquence.
En d’autres termes, on suppose une totale indépendance dans les décisions de sélection de
chemin. Cependant, cette hypothèse n’est pas toujours pertinente dans les réseaux routiers
complexes comme ceux trouvés dans les zones urbaines. En effet, la façon dont un client
est atteint pourrait influencer la façon avec laquelle il sera quitté. Dans ce contexte, une
étude est proposée par Lang et al. [86]. Ils examinent l’impact de considérer des points de
stationnement alternatifs auxquels le véhicule peut s’arrêter pour servir le client. Lang et
al. [86] présentent un cas d’étude avec des données du réseau routier de Beijing (Chine).
Les résultats obtenus montrent l’impact intéressant de leur approche sur la qualité de la so-
lution. Un second type de dépendance existe lorsque l’accès à certaines zones du réseau
est soumises à des frais. Selon que ces frais sont payés ou non, le meilleur chemin entre
deux points du réseau routier ne sera pas le même. Reinhardt et al. [113] évoquent une telle
situation. Ils se sont intéressés au problème de tournées de véhicules où des coûts supplé-
mentaires doivent être payés pour avoir l’accès à chaque sous-ensemble de connexions dans
le réseau. Ces coûts peuvent correspondre au paiement pour les routes à péage, les liaisons
par ferry, l’investissement dans de nouvelles installations ou des certifications pour accéder
aux zones de guerre ou aux zones de troubles. Dans ce cas, le coût du meilleur chemin entre
deux clients dépend des décisions d’achat de l’accès à des ensembles de connections dans le
réseau routier. Ainsi, le problème ne peut être modélisé correctement avec une représentation
par graphe complet. Reinhardt et al. [113] expliquent que le problème devrait être modélisé
en utilisant un multigraphe afin de différencier les arêtes reliant la même paire de nœuds mais
n’appartenant pas aux mêmes sous-ensembles.

Enfin, d’un point de vue méthodologique, transformer le problème de tournées de véhicules
sur le réseau routier en un problème de tournées de véhicule standard pourrait avoir un im-

A.1 Introduction 185

pact négatif sur les performances de calcul. Bien que le graphe complet réduise le nombre
de nœuds par rapport à une représentation graphique du réseau routier d’origine, il peut
augmenter considérablement l’ensemble des arcs. Ainsi, il empêche d’exploiter certaines
propriétés, telles que la planéité du graphe et le faible degré des nœuds.

Fleischmann [56] fut le premier à explorer ce problème. Il affirme que les nœuds dans
les réseaux routiers ont typiquement de petits degrés et que le nombre d’arcs dans un graphe
de réseau routier peut être largement inférieur à celui dans un graphe complet basé sur les
nœuds clients. Ainsi, quand le problème est traité avec un modèle de flux, transformer le
réseau routier en un graphe complet peut augmenter de manière critique le nombre de vari-
ables. L’auteur considère d’abord le problème d’optimisation de tournée d’un seul véhicule
dans un graphe de réseau routier, appelé problème de voyageur de commerce de Steiner ou
aussi Steiner Traveling Salesman Problem (STSP). Il propose une méthode de solution basée
sur un schéma de plans de coupe. Dans le même article, l’auteur propose également d’étendre
la méthode de résolution au VRP et souligne les principales difficultés qui se poseraient dans
ce cas.

Plus récemment, Letchford et al. [90] ont étudié plus en profondeur l’impact de la prise
en compte du réseau routier lors de la modélisation du TSP. Ils proposent différentes formula-
tions mathématiques pour le STSP avec un nombre polynomial de variables et de contraintes.
Les résultats expérimentaux montrent que les instances avec 200 nœuds sont résolues en util-
isant un solveur de programmation mathématique standard.

Dans la littérature, le nombre d’articles traitant de ces questions est très limité. Les
quelques études proposées à ce sujet n’examinent pas l’impact de la modélisation du prob-
lème de tournées de véhicules par un graphe complet sur la qualité de la solution et se sont,
pour la plupart, intéressées à la résolution de problèmes spécifiques.

L’un des objectifs de cette thèse est de mettre en évidence les limites de la modélisation
des problèmes de tournées de véhicules par graphe complet et de confirmer la nécessité de
nouveaux modèles et approches permettant de considérer plus d’informations sur le réseau
routier afin de résoudre correctement ces problèmes. Pour ce faire, nous nous concentrons
sur les problèmes de tournées de véhicules où plusieurs attributs sont définis sur les segments
de route. Comme nous l’avons déjà mentionné, ces problèmes sont généralement traités via
un graphe complet basé sur les nœuds clients, où un arc est supposé représenter le meilleur
chemin entre les points d’intérêt. Cependant, il est peu probable que le meilleur chemin soit
le même pour tous les attributs. Les chemins avec des compromis différents ne sont donc
pas pris en compte dans ce graphe. Pour gérer ce problème, deux approches sont proposées
dans la littérature. La première approche consiste à représenter le réseau routier à l’aide d’un
multigraphe où un arc est introduit pour chaque chemin alternatif. La deuxième approche
consiste à résoudre le problème de tournées de véhicules directement sur un graphe qui imite
le réseau routier d’origine, que nous appelons graphe route-réseau.

186 Appendix A: Résumé en français

Dans cette thèse, nous commençons par explorer la représentation du réseau routier par
multigraphe. Nous étudions la construction de cette représentation et nous proposons une
méthode de résolution efficace qui permet de calculer l’ensemble des chemins alternatifs
pour chaque paire de points d’intérêt dans le réseau routier. Ensuite, nous étudions la traça-
bilité de cette modélisation pour les problèmes de tournées de véhicules et nous analysons en
profondeur l’impact de cette approche sur la qualité de la solution. Dans une seconde étape,
nous nous concentrons sur le développement d’une méthode de solution efficace qui permet
de bien gérer la modélisation par multigraphe. Dans une troisième étape, nous explorons
l’approche basée sur le réseau routier. Nous proposons une comparaison complète des deux
approches. Nous présentons une étude expérimentale approfondie basée sur des problèmes
de référence ainsi que des instances générées en utilisant des données réelles. Dans une
dernière étape, nous nous intéressons aux problèmes où les temps de parcours varient au
cours de la journée, ce que l’on appelle les problèmes de tournées des véhicules dépendant
du temps (TDVRP). Nous expliquons que, dans de tels contextes, il est très difficile voire
impossible de s’attaquer au problème en utilisant la représentation par multigraphe. Pour
cette raison, nous développons un algorithme de branch-and-price pour résoudre le problème
directement sur le graphe du réseau routier. Enfin, nous analysons l’impact de l’approche
proposée sur la qualité de la solution pour les problèmes de routage des véhicules en fonc-
tion du temps.

A.2 Construction de la représentation par multigraphe
du réseau routier

Dans la modélisation du VRP par multigraphe, un nœud est introduit pour chaque point
d’intérêt (typiquement les clients et le dépôt) et un arc est introduit pour chaque chemin effi-
cace entre deux points d’intérêt dans le réseau routier. La construction d’une telle représenta-
tion consiste, donc, à calculer l’ensemble de chemins efficaces reliant chaque paire de points
d’intérêt ce qui implique la résolution d’un problème de plus court chemin multi-objectif.

Dans la première partie de la thèse, nous étudions la construction de la représentation
multigraphe pour les problèmes de tournées de véhicules où chaque segment de route est
défini par une distance et un temps de parcours. Nous proposons une méthode de résolution
qui calcule l’ensemble des chemins les plus courts bi-objectifs d’un à tous les autres points
d’intérêt dans un réseau routier. Dans la littérature, presque toutes les approches proposées
visent à calculer soit des chemins d’un point à un autre (one-to-one), soit des chemins d’un
point source à tous les autres points du réseau (one-to-all). Bien que le cas multi-destination
puisse être abordés en utilisant un algorithme pour l’un des deux autres cas (en appliquant
un algorithme one-to-one pour chaque nœud de destination ou en considérant uniquement
les chemins arrivant aux nœuds requis dans une solution one-to-all) , des propriétés intéres-

A.2 Construction de la représentation par multigraphe du réseau routier 187

santes apparaissent dans ce cas et pourraient être exploitées pour résoudre le problème plus
efficacement. La méthode de résolution que nous proposons permet de traiter le cas multi-
destination d’une manière efficace.

Nous définissons le réseau routier comme un graphe orienté G = (V, A) où V est un en-
semble de n nœuds et A est un ensemble de m arcs. Chaque arc (i, j) ∈ A est défini par deux
valeurs non négatives (di j, ti j) représentant les coûts pour les deux objectifs considérés. Dans
notre application, les coûts di j et ti j correspondent respectivement à la distance et au temps
de parcours. Soit v0 ∈ V le nœud source et C = {v1, v2, . . . , vnc} ⊂ V le sous-ensemble de
nœuds requis, c’est-à-dire l’ensemble des nc nœuds de destination.

Dans la littérature, l’algorithme le plus utilisé pour résoudre un tel problème est basé sur
une procédure de labelling ou un chemin entre le nœud source v0 et un nœud i est représenté
par un label L = (i, d(L), t(L)) ou d(L) et t(L) correspondent, respectivement, à la distance
totale et le temps de parcours total associés au chemin représenté par L. Dans cet algorithme
(voir Algorithme A.1), tous les labels sont maintenus dans une liste L et sont triés suivant
un ordre lexicographique. A chaque itération, un label est sélectionné et est étendue vers tous
les arcs sortants. A chaque fois qu’un nouveau label est obtenu, un contrôle de dominance
est effectué et seuls les labels non-dominés sont maintenus dans L. L’algorithme se termine
quand tous les labels sont traités, c’est-à-dire L = ∅.

Algorithm A.1 Algorithme de labelling
1: L ← {(v0, 0, 0)}
2: repeat
3: Select L = (i, d, t) ∈ L
4: L ← L \ {L}
5: for all j successor of i do
6: L′ = (j, d + di j, t + ti j)
7: InsertWithDominance(L′,L); L1 ≺ L2 ⇔ i1 = i2 and t1 ≤ t2 and d1 ≤ d2

8: end for
9: until L = ∅

Dans notre approche, nous proposons de guider la recherche en utilisant une stratégie A*.
Fondamentalement, l’algorithme A* construit le chemin le plus court en étendant d’abord les
labels qui semblent conduire plus rapidement à la meilleure solution [68]. Ces labels sont
sélectionnés sur la base d’une estimation du coût restant pour aller au nœud destination v.
Dans notre implémentation, nous proposons de sélectionner, à chaque itération, parmi tous
les labels, celui qui peut conduire à un chemin non-dominé avec la distance la plus courte
(ligne 3 dans l’algorithme A.1). En d’autres termes, nous sélectionnons à chaque itération le
label L = (u, d(L), t(L)) qui minimise d(L) + din f (u, v) où din f (u, v) représente la plus courte
distance pour aller de u à v. De cette manière, les chemins arrivant au nœud de destination
sont générés dans un ordre de distance croissant. Ainsi, la recherche peut être terminée une

188 Appendix A: Résumé en français

fois le label sélectionné est tel que d(L)+din f (u, v) > dsup(v0, v) avec dsup(v0, v) est la distance
associée au chemin le plus court en temps pour aller de v0 à v (tin f (v0, v) dénote le temps de
parcours associé). Nous avons montré qu’une fois que ce critère d’arrêt est satisfait, il est
garanti que tous les chemins non dominés sur le nœud destination v ont été trouvés. Notez
que le calcul des valeurs din f (u, v) et dsup(v0, v) peut être fait en pré-traitement.

Pour gérer le cas multi-destination, nous proposons d’adapter le schéma de recherche de
telle sorte que la procédure de sélection prenne en compte toutes les destinations finales pour
chaque label. La fonction de sélection vise donc à définir le label susceptible de conduire le
plus rapidement à un chemin non dominé à un certain nœud destination. Pour ce faire, on
sélectionne le label L = (u, d(L), t(L)) qui minimise :

min
1≤i≤nc

(d(L) + din f (u, vi) − din f (s, vi))

Nous notons par K(L) cette valeur et l’appelons la clé du label. Il indique le détour minimum
en distance du sous-chemin associé étant donné qu’il devra atteindre l’une des destinations
en C.

En utilisant cette procédure de recherche, les chemins atteignant chaque nœud destina-
tion sont générés dans un ordre croissant de détour en distance. L’algorithme devrait, donc,
terminer une fois que les labels Li = (vi, dsup(v0, vi), tin f (v0, vi)) ont été générées pour chaque
nœud de destination vi ∈ {v1, v2, . . . , vnc}. Par conséquent, le critère d’arrêt est satisfait quand
la clé du label sélectionné est supérieure à max

1≤i≤nc
K sup

i avec K sup
i = dsup(v0, vi) − din f (v0, vi).

Pour calculer la clé d’un label L = (u, d(L), t(L)), les distances din f (u, vi) et din f (v0, vi)
associées, respectivement, aux chemins les plus courts en distance de u à vi et de v0 à vi sont
nécessaires. De plus, les distances dsup(v0, vi) (utilisées pour calculer K sup

i) associées aux
plus courts chemins en temps de v0 à vi sont nécessaires. Ces distances sont déterminées en
pré-traitement comme suit:

• En utilisant l’algorithme de Dijkstra , nous calculons les chemins les plus courts en
distance et en temps du nœud v0 vers tous les nœuds u ∈ V . Quatre tables sont con-
struites: din f (v0, u) et tsup(v0, u) indiquant les distances et les temps associés aux plus
courts chemins en distance et, dsup(v0, v) et tin f (v0, v) indiquant les distances et les
temps associés aux plus courts chemins en temps.

• En utilisant un algorithme de Dijkstra rétrograde à partir de tous les nœuds v1, . . . , vnc,
nous calculons les chemins les plus courts en distance et en temps de tous les nœuds
u ∈ V vers les nœuds de destination vi ∈ {v1, . . . , vnc}. Quatre séries de tables sont
obtenues: din f (v, vi) et tsup(v, vi) indiquant les distances et les temps associés aux plus
courts chemins en distance et, dsup(v, vi) et tin f (v, vi) indiquant les distances et temps
associés aux plus courts chemins en temps.

A.3 Analyse empirique pour le VRPTW avec une représentation par un
multigraphe du réseau routier 189

Afin d’évaluer la performance de notre algorithme, nous comparons les résultats obtenus
à ceux obtenus en utilisant des algorithmes de la littérature: l’algorithme de labelling de
base présenté précédemment (LSET) et un algorithme à correction de label (LCOR). Dans
LCOR, les labels arrivant à chaque nœud sont comparés entre eux et seuls les non-dominés
sont maintenus dans une liste à part. A chaque itération, un label arrivant à un nœud i est
sélectionné et est étendu en utilisant les arcs (i, j).

Puisque nous nous intéressons au calcul de chemins pour des problèmes de transport,
nos expérimentations sont basées sur des instances générées à partir de trois réseaux routiers
réels: deux réseaux routiers de la ville d’Aix-en-Provence (France) et un réseau routier de la
ville de Washington DC. (États Unis). Pour chaque réseau routier, 5 instances sont générées
avec nc ∈ {25, 50, 100, 200, 500} nœuds client.

Les résultats obtenus montrent l’efficacité de notre algorithme. Comparé aux algorithmes
de labelling de base, notre algorithme surpasse l’algorithme LSET pour toutes les instances
et améliore les temps de calcul avec l’algorithme LCOR pour la plupart des instances avec
un grand nombre de nœuds dans les réseaux routiers.

A.3 Analyse empirique pour le VRPTW avec une représen-
tation par un multigraphe du réseau routier

Dans ce chapitre, nous examinons en profondeur l’impact de la représentation par multi-
graphe sur la qualité de la solution pour les problèmes de tournées de véhicules dans les
réseaux routiers. Pour ce faire, nous considérons le problème de tournées de véhicules avec
des fenêtres de temps (VRPTW) comme un problème pilote et nous développons un algo-
rithme de branch-and-price pour le résoudre.

Le VRPTW dans un multigraphe est défini comme suit. Soit GMG = (V MG, AMG) un
multigraphe orienté induit par le réseau routier G = (V, A). V MG = {0, 1, . . . , nc} est l’ensemble
des nœuds (points d’intérêt dans G) où 0 représente le dépôt et C = {1, . . . , nc} est l’ensemble
des nœuds clients. AMG = ∪

i, j∈VmG
AMG

i j est l’ensemble d’arcs avec AMG
i j = {(i, j)p; p = 1, . . . , |AMG

i j |}

représente l’ensemble de chemins alternatifs pour aller de i à j. Chaque arc (i, j)p est défini
par un coût c(i, j)p et un temps de parcours t(i, j)p qui représentent le coût et le temps de parcours
pour aller de i à j à travers le chemin associé et indexé par p dans le réseau routier. A chaque
nœud client sont associés une demande di, une fenêtre de temps [ei, li] et un temps de service
si. Pour servir l’ensemble des clients, on utilise une flotte mathcalK de véhicules homogènes
de capacité Q. L’objectif est de définir un ensemble de routes qui permet de servir l’ensemble
de clients et qui minimisent le coût total.

190 Appendix A: Résumé en français

Pour résoudre ce problème, nous avons développé un algorithme de branch-and-price qui
tient compte de la modélisation par multigraphe. La motivation pour utiliser une technique
de branch-and-price est que cette approche de résolution a très bien fonctionné pour de nom-
breux problèmes de transport et est devenue l’une des méthodes exactes les plus efficaces
pour résoudre des problèmes de tournées de véhicules.

L’algorithme de branch-and-price est basé sur la décomposition de Dantzig-Wolfe [32].
Cette décomposition donne lieu à un problème en nombres entiers, dit problème maître, qui
présente une relaxation linéaire plus serrée que la formulation compacte par variables de
flux. Par conséquent, la formulation utilisant le problème maître est plus appropriée pour un
schéma de branchement. Cependant, cette formulation implique un grand nombre de vari-
ables. Pour gérer ces variables, une procédure de génération de colonne est intégrée dans
l’algorithme de branch-and-bound. Le sous-problème de génération de colonnes, appelé
problème de pricing, vise à trouver un ensemble de colonnes réalisables qui seront ajoutées
au problème principal [41, 39, 41].

Soit Ω l’ensemble des routes de véhicules réalisables, c’est-à-dire l’ensemble des chemins
dans le multigraphe qui partent du dépôt, visitent un sous-ensemble de clients, en respectant
les contraintes de fenêtres de temps et les contraintes de capacité, et retournent au dépôt.
Ainsi le VRPTW dans le multigraphe peut être formulé comme un problème de couverture
par ensembles (appelé problème maître) où une variable est associée à chaque route et in-
diquant si la route est sélectionnée ou pas dans la solution. Due au nombre exponentiel
de routes dans Ω, le problème maître ne peut être résolu avec un algorithme de branch-
and-bound standard. Un algorithme de branch-and-price est utilisé avec une technique de
génération de colonnes.

Dans une procédure de génération de colonnes, un problème maître restreint à un sous
ensemble de route Ω1 ⊂ Ω, qu’on note par MP(Ω1), est résolu à chaque itération. Le sous-
ensemble Ω1 est enrichi itérativement avec les routes réalisables générées en utilisant un al-
gorithme de pricing. Cet algorithme vise à générer de nouvelles routes permettant de visiter
les clients d’une manière plus efficace, c’est-à-dire, des routes avec des coûts réduits négatifs.

Comme pour le VRPTW standard, le problème de pricing pour la variante multigraphe
peut être réduit à un problème de plus court chemin élémentaire avec des contraintes de
ressources (ESPPRC). Ici, l’ESPPRC consiste à trouver dans un multigraphe l’ensemble des
chemins élémentaires qui partent et rentrent au dépôt, et qui satisfont les contraintes de temps
et de capacité. Pour résoudre ce problème, nous adaptons l’algorithme de programmation dy-
namique décrit dans [53] au cas multigraph de l’ESPPRC. Fondamentalement, l’algorithme
est une extension de l’algorithme de Bellman-Ford et consiste à associer à chaque chemin
partiel un label et à étendre ces labels.

Avec la représentation en multigraphe, plus d’un label peuvent être obtenus lors de

A.3 Analyse empirique pour le VRPTW avec une représentation par un
multigraphe du réseau routier 191

l’extension d’un chemin partiel à un client j. Un nouveau chemin est obtenu pour chaque arc
connectant le dernier nœud i du label courant à j tant que les contraintes de ressources le per-
mettent. Nous utilisons des règles de dominance basées sur la consommation de ressources
pour éliminer les labels dominés par d’autres labels arrivant au même nœud. A la fin,
l’algorithme donne les meilleurs chemins possibles.

Une autre composante de l’algorithme de branch-and-price est le schéma de branche-
ment qui consiste à étendre de manière itérative l’arbre de recherche binaire en ajoutant
des contraintes impliquées par les règles de branchement. Dans le contexte des problèmes
de tournées de véhicules, la règle de branchement standard consiste à sélectionner un arc
(i, j) avec un flux fractionnaire 0 < φi j < 1 puis à dériver deux branches où dans la pre-
mière branche l’arc (i, j) doit être traversé dans la solution, et il est interdit dans la deuxième
branche. Pour la modélisation par multigraphe, nous utilisons une règle de branchement
similaire qui fonctionne comme suit:

• Sélectionner un arc (i, j)p avec un flux fractionnaire 0 < φ(i, j)p < 1

• dériver deux branches

– Dans la première branche, nous forçons l’utilisation de l’arc (i, j)p dans la solu-
tion. Pour ce faire, nous enlevons de Ω1 toutes les routes utilisant les arcs (i, j)q;
q , p, (arcs parallèles à (i, j)p), les arcs (i, k)l; k , j, l = 1, . . . , |AMG

ik | et les
arcs (k, j)l; k , i, l = 1, . . . , |AMG

k j |. Nous supprimons également tous ces arcs du
multigraphe considéré dans le problème de pricing.

– Dans la deuxième branche, nous interdisons l’utilisation de l’arc (i, j)p dans la so-
lution. Pour ce faire, nous éliminons de Ω1 toutes les routes utilisant l’arc (i, j)p

et supprimons cet arc du multigraphe considéré dans la phase de pricing.

Afin de tirer des conclusions globales, nous avons utilisé 4 classes d’instances: (1) les
instances de Solomon [126]; (2) des instances réalistes de Letchford et al. [89]; (3) des
instances construites comme dans [89]; (4) des instances construites à partir des données
réelles de deux réseaux routiers de la ville d’Aix-en-Provence (France). Aussi afin d’avoir
une comparaison juste et complète, nous comparons les solutions obtenues dans le multi-
graphe à celles obtenues dans deux graphes complets: dans le premier graphe, qu’on appelle
min-cost graphe, un arc représente le plus court chemin en coût entre deux points d’intérêt
et dans le deuxième graphe, qu’on appelle min-time graphe, un arc représente le plus court
chemin en temps entre deux points d’intérêt.

Les résultats obtenus montrent qu’en utilisant le multigraphe, le coût de la solution est
amélioré pour 84 instances (parmi 177 instances testées) dans le min-cost graphe et est
amélioré pour 136 instances dans le min-time graphe. Le coût de la solution est réduit jusqu’à
15% dans le min-cost graphe et jusqu’à 54% dans le min-time graphe. Les gains moyens en

192 Appendix A: Résumé en français

coût sont de 2% et 7.5% comparé aux solutions obtenues respectivement dans le min-cost
graphe et le min-time graphe.

Pour les instances réelles, en utilisant la modélisation par multigraphe toutes les solutions
optimales obtenues dans les deux graphes complets sont améliorées. Le coût de la solution
est réduit jusqu’à environ 10% dans les deux graphes. Les gains moyens sont de 3.3% et
6.6%, respectivement, dans le min-cost graphe et le min-time graphe.

A.4 Recherche adaptative à voisinage large pour le VRPTW
dans le multigraphe

Dans ce chapitre, nous nous sommes intéressé au développement d’une méthode de résolu-
tion efficace pour le VRPTW dans le multigraphe. Nous proposons une méthode heuristique
basée sur une recherche adaptative à voisinage large.

Avec la modélisation par multigraphe, certains problèmes de calcul se posent. En partic-
ulier, il a été montré que le calcul de la route optimale pour une séquence donnée de clients
sur le multigraph implique un problème NP-difficile, appelé problème de sélection d’arc
pour une séquence fixée (FSASP) [61]. Or, la plupart des opérations de recherche locale sont
basées sur la suppression ou l’insertion de clients et nécessitent la ré-optimisation de la sélec-
tion d’arcs à utiliser pour connecter la nouvelle séquence de nœuds clients. Ainsi, même les
mouvements de recherche locale simples deviennent difficiles à évaluer dans le multigraphe.
Pour illustrer ceci, considérons l’exemple présenté dans la Figue A.1.

Dans la figure A.1a, est donnée une route initiale définie par la séquence de nœuds
{0, 1, 2, 0}. Une fenêtre de temps est associée à chaque nœud. Des arcs parallèles entre
chaque paire de nœuds définissent les chemins alternatifs entre les deux clients associés.
Chaque arc est défini par un coût et un temps de déplacement et sont donnés entre paren-
thèses, dans cet ordre (coût, temps). Les arcs sélectionnés dans la route sont représentés
par des lignes épaisses. Supposons qu’on cherche à évaluer l’insertion du client X entre les
nœuds clients 1 et 2. Typiquement, cela se fait en sélectionnant les meilleurs arcs liant 1 avec
X et X avec 2 et assurant la faisabilité de la nouvelle route. Dans ce cas, la route obtenue est
fournie dans la Figure A.1b et a un coût total égal à 80. Cependant, si nous recalculons toute
la séquence optimale d’arcs à utiliser pour lier la nouvelle séquence de nœuds {0, 1, X, 2, 0},
une nouvelle route (voir Figure A.1c) est obtenue avec un meilleur coût total égal à 60.

Pour gérer efficacement la sélection d’arcs au cours de la recherche, nous intégrons dans
notre heuristique un algorithme basé sur une structure de donnée incrémentale et de la pro-
grammation dynamique. Étant donné une solution initiale, cet algorithme commence par

A.4 Recherche adaptative à voisinage large pour le VRPTW dans le multigraphe193

0

[0, 100]

1

[20, 50]

2

[40, 70]

0

[0, 100]
(25,30)

(30,20)

(20,80)

(30,50)

(50,20)

(20,50)

(30,30)

(a) Route initiale

0

[0, 100]

1

[20, 50]

X

[30, 60]

2

[40, 70]

0

[0, 100]
(25,30)

(30,20)

(10,20)

(12,10)

(10,20)

(13,10)

(20,50)

(30,30)

(b) Route après une insertion d’un client et sans le ré-optimisation de la sélection d’arcs

0

[0, 100]

1

[20, 50]

X

[30, 60]

2

[40, 70]

0

[0, 100]
(25,30)

(30,20)

(10,20)

(12,10)

(10,20)

(13,10)

(20,50)

(30,30)

(c) Route optimale après l’insertion du client

Figure A.1: Illustration de l’insertion d’un client

calculer pour chaque nœud dans chaque route l’ensemble des labels en forward, c’est-à-dire
en partant du dépôt, et l’ensemble de labels en backward, c’est-à-dire arrivant au dépôt en
partant du nœud. Ces labels sont maintenus tout au long de la procédure de recherche et
mis-à-jour à chaque fois que la solution courante est modifiée.

Notre heuristique est basée sur une variante de la recherche à voisinage large (LNS), dite
recherche adaptative à voisinage large (ALNS). L’idée principale de l’heuristique LNS est
de réorganiser, à chaque itération, une grande partie d’une solution en utilisant une combi-
naison de procédure de destruction et de réparation. La procédure de destruction consiste
à supprimer un nombre prédéfini de clients. La procédure de réparation vise à réinsérer les
clients supprimés afin de créer une nouvelle solution réalisable. Dans un schéma de recherche
locale, l’algorithme examine le voisinage de la meilleure solution trouvée à chaque itération.
Cependant, la LNS permet d’explorer dans le voisinage de solutions non améliorantes lorsque
de telles solutions sont acceptées dans la procédure de recherche. Le but de cette stratégie
est d’éviter la convergence prématurée vers des optima locaux et de forcer la procédure de
recherche à visiter différentes zones de l’espace de solutions. Alors que l’heuristique LNS
utilise seulement une procédure de destruction et une procédure de réparation, l’ALNS utilise
plusieurs heuristiques de suppression et d’insertion et les applique alternativement en util-
isant un mécanisme de sélection qui considère les statistiques obtenues pendant la recherche,
d’où l’utilisation du terme Adaptative.

Pour la procédure de destruction, nous proposons 3 heuristiques de suppression :

194 Appendix A: Résumé en français

1. Heuristique de suppression de Shaw : L’idée principale est de supprimer les clients
"similaires", afin que nous puissions obtenir de nouvelles solutions après la réinsertion.
En raison de la structure serrée des solutions du VRPTW, la suppression de clients
très différents pourrait forcer la fonction de réparation à réinsérer ces clients à leurs
positions d’origine.

2. Heuristique de suppression aléatoire : sélectionne simplement q clients de manière
aléatoire et les supprime de la solution.

3. Heuristique de suppression des clients mal-placés : Dans cette heuristique, un coût
marginal du service dans la solution courante est calculé pour chaque client. A chaque
itération, le client avec le coût marginal le plus élevé est sélectionné.

Pour la procédure d’insertion, nous proposons 4 heuristiques d’insertion :

1. Heuristique d’insertion simple : est une heuristique de construction simple. Elle
consiste à affecter chaque client à une nouvelle route.

2. Heuristique d’insertion gloutonne : consiste à insérer à chaque itération le client
avec le coût d’insertion minimum.

3. Heuristique d’insertion de Regret : c’est une amélioration de l’heuristique gloutonne
en intégrant une sorte d’anticipation pour le coût d’insertion de chaque client. Pour
ce faire, une valeur de regret est calculée pour chaque client. Cette valeur mesure,
à chaque itération, le regret de ne pas insérer le client dans sa meilleure route et de
l’insérer dans sa deuxième meilleure route.

4. Heuristique d’insertion non-myope : L’idée principale de cette heuristique est d’évaluer
le coût d’insertion d’un client en tenant compte de son impact sur les prochaines inser-
tions.

Pour définir les deux heuristiques de suppression d’insertion à utiliser à chaque itération,
nous utilisons un mécanisme de sélection qui permet d’utiliser les statistiques portant sur
l’efficacité des différentes heuristiques durant les dernières itérations.

Afin d’évaluer l’efficacité de la méthode proposée, nous avons réalisé une étude expéri-
mentale approfondie. Nous avons utilisé un ensemble large avec plusieurs types d’instances.
Les solutions obtenues avec la méthode heuristique sont comparées à celles obtenues avec
l’algorithme de branch-and-price présenté dans la section A.3.

Les résultats obtenus montrent l’efficacité de notre heuristique. Des solutions quasi-
optimales sont obtenues pour toutes les instances testées dans des temps de calcul raisonnables.
Des solutions optimales pour 116 parmi 175 instances contenant jusqu’à 75 clients. Le gap

A.5 Algorithme de Branch-and-price pour le VRPTW sur le graphe du réseau
routier 195

entre la solution heuristique et la solution optimale est d’environs 2% dans le pire cas. En
termes de temps de calcul, la méthode d’heuristique est en moyenne 42 fois plus rapide
que l’algorithme de branch-and-price. Pour les instances avec 50 clients, le temps de calcul
moyen est de 19 secondes avec la méthode heuristique alors qu’il est supérieur à 1100 sec-
ondes avec la méthode exacte.

A.5 Algorithme de Branch-and-price pour le VRPTW sur
le graphe du réseau routier

Dans la littérature, une deuxième approche est proposée afin de conserver l’ensemble de
l’espace de solutions en adressant un problème de tournées de véhicules avec plusieurs at-
tributs. Cette approche consiste à résoudre le problème directement sur un graphe simulant
le réseau routier. Dans ce graphe, les arcs représentent les segments de routes et les nœuds
représentent les jonctions de routes.

Un article clé à cet égard est proposé par Letchford et al. [89]. Leur objectif est de mon-
trer qu’un algorithme de branch-and-price appliqué sur un graphe de réseau routier serait
plus efficace que quand il est appliqué sur un multigraphe. Letchford et al. [89] soulignent
l’impact de la modélisation par graphe de réseau routier sur un algorithme de branch-and-
price. Mais, seul l’algorithme de génération de colonnes a été examiné. Dans cet étude,
ils considèrent le problème de multiple voyageurs de commerce avec fenêtres de temps (m-
TSPTW) et ils proposent une étude expérimentale avec des instances réalistes pour appuyer
leur résultats.

Bien que les résultats obtenus par Letchford et al. [89] soient intéressants, leurs con-
clusions peuvent difficilement être généralisées pour plusieurs raisons. Tout d’abord, ils se
sont basés sur des résultats obtenus pour un problème particulier qui est le m-TSPTW. Dans
ce problème, une fenêtre de temps est associée à chaque client et aucune restriction sur la
charge totale transportée le long d’une route n’est considérée. Pourtant, dans la pratique, les
véhicules utilisés ont une capacité limitée et une demande (à livrer ou à ramasser) doit être
servie pour chaque client. Ce problème pourrait avoir un impact significatif sur l’efficacité
des algorithmes avec les approches du réseau routier et du multigraphe. Deuxièmement, leurs
expériences sont basées sur des instances avec des densités de clients relativement élevées:
deux ensembles d’instances sont considérés avec des densités égales, respectivement, à 33%
et 66%. Les applications de la vie réelle sont définies sur des réseaux routiers à grande
échelle dans lesquels un petit nombre de nœuds sont associés aux emplacements des clients.
Troisièmement, ils étudient uniquement le sous-problème de génération de colonnes lorsque
des routes non élémentaires (c’est à dire qu’un client peut être servi plusieurs fois) sont au-
torisés. Le cas avec seulement des routes élémentaires n’est pas exploré. De plus, il n’est
pas garanti que les valeurs des solutions issues de la génération de colonnes avec les deux

196 Appendix A: Résumé en français

approches soient les mêmes lorsque les routes non élémentaires sont autorisées. Ce problème
n’est pas examiné dans leurs expérimentations et ils se concentrent uniquement sur les temps
de calcul obtenus avec les deux algorithmes. Enfin, Letchford et al. [89] n’explorent que le
sous-problème de génération de colonnes et ne conçoit pas de règles de branchement appro-
priées. Il convient de mentionner que les règles de branchement standard pour les problèmes
de routage des véhicules peuvent être facilement adaptées pour gérer les arcs parallèles dans
la représentation par multigraphe (voir [8]), mais ce n’est pas le cas de l’algorithme qui fonc-
tionne directement sur le graphe du réseau routier. Des règles de branchement appropriées
pour chaque modélisation peuvent résulter en deux schémas de branch-and-price différents.
Ainsi, les conclusions basées sur les résultats obtenus (par génération de colonnes) au nœud
racine ne peuvent pas être généralisées pour le schéma de branch-and-price complet. Pour
toutes ces raisons, d’autres analyses et des comparaisons approfondies sur l’efficacité des
algorithmes avec les deux approches de modélisations sont nécessaires pour parvenir à des
conclusions globales.

Dans ce chapitre, nous proposons d’étudier plus en profondeur l’efficacité relative des
algorithmes de branch-and-price avec l’approche du réseau routier et l’approche du multi-
graphe et d’analyser davantage les résultats reportés par Letchford et al. [89]. Nous nous in-
téressons à ce qui est probablement le problème de tournées de véhicules le plus simple et le
plus étudié avec deux attributs: le VRPTW. Nous développons un algorithme de branch-and-
price complet basé sur les algorithmes de génération de colonnes présentés dans [89]. Nous
basons nos expériences sur trois types d’instances: (1) les instances générées par Letchford
et al. [89]; (2) un ensemble d’instances réalistes construites en utilisant la même procédure
utilisé par Letchford et al. [89]; (3) des instances dérivées de réseaux routiers réels. Une
étude expérimentale approfondie est proposée afin d’analyser l’impact de différents facteurs
(contraintes de capacité, densité de clients, etc.) sur l’efficacité relative de l’algorithme de
branch-and-price.

Pour la procédure de génération de colonnes, la seule différence entre l’algorithme de
branch-and-price basé sur le graphe du réseau routier et l’algorithme standard est qu’un nœud
client peut être visité plusieurs fois même quand la contrainte sur les routes élémentaires est
considérée; dans ce cas, le client est servi une fois et pour les autres passages le nœud client
est considéré comme une nœud intermédiaire. Pour résoudre le sous-problème de généra-
tion de colonnes, nous adaptons un algorithme de programmation dynamique proposé pour
résoudre le problème de plus court chemin élémentaire avec des contraintes de ressources
(ESPPRC) proposé dans [53]. Dans l’algorithme proposé, quand un label est étendu à un
nœud client deux nouveaux labels sont générés: dans le premier, le client est servi, et dans
le deuxième le nœud client est considéré comme une jonction de routes et le client n’est pas
servi.

Pour le schéma de branch-and-price, un problème majeur avec les règles de branchement
standard se pose en utilisant la modélisation par graphe du réseau routier. Ce problème

A.5 Algorithme de Branch-and-price pour le VRPTW sur le graphe du réseau
routier 197

vient du fait qu’une solution de routage fractionnaire peut être supporté par un flux entier.
Pour faire face à ce problème, nous avons proposé un schéma de branchement spécifique
afin de garantir l’intégrité de la solution de routage. En effet, quand la matrice des flux est
fractionnaire, on branche sur un arc avec un flux fractionnaire. Quand le flux est entier mais
la solution de routage est fractionnaire, on génère deux nouvelles branches :

• Dans la première branche, on commence par générer toutes les routes faisables sur
le sous-graphe induit par la matrice de flux. Ensuite, nous résolvons un problème de
partitionnement en se basant sur l’ensemble des routes obtenues.

• Dans la deuxième branche, nous éliminons la solution fractionnaire en imposant l’utilisation
d’un arc qui n’est pas dans le sous-graphe induit par la matrice de flux.

Afin de compléter les résultats présentés par Letchford et al. [89] et pour en tirer des
conclusions exhaustives, nous proposons le plan d’expérimentations suivant. Dans tous les
cas, on compare les résultats obtenus sur le graphe du réseau routier et sur le multigraphe:

1. Nous commençons par comparer les résultats obtenus en résolvant la relaxation LP en
utilisant la génération de colonnes où des routes non élémentaires sont autorisées pour
le m-TSPTW;

2. Ensuite, nous explorons le cas où seules les routes élémentaires sont autorisées. Il est à
noter que dans le m-TSPTW, nous ne prenons pas en compte les demandes des clients
et les contraintes de capacité des véhicules: la faisabilité d’une route est évaluée en ne
tenant compte que des contraintes de fenêtres de temps;

3. Puis, nous étudions l’impact des contraintes de capacité dans le VRPTW sur les per-
formances des algorithmes de génération de colonnes;

4. Enfin, nous explorons l’algorithme complet de branch-and-price.

Dans tous les cas, les résultats obtenus montrent que l’algorithme de branch-and-price est
plus efficace quand il est appliqué sur le multigraphe que quand il est appliqué sur le graphe
du réseau routier. Par exemple, pour l’algorithme de branch-and-price complet 228 (parmi
300 instances réalistes testées) instances sont résolues en utilisant l’approche du multigraphe
alors qu’en utilisant l’approche du réseau routier seules 191 instances sont résolues au bout
de 2h.

198 Appendix A: Résumé en français

A.6 Problème de tournées de véhicules dépendant du
temps avec des fenêtres de temps et informations
sur le réseau routier

Dans les applications réelles de problèmes de tournées de véhicules, les temps de parcours
sont soumis à des variations importantes au cours de la journée. Ces variations peuvent être
dues à des événements prévisibles tels que des embouteillages et des événements imprévisi-
bles tels que des accidents, des conditions météorologiques et des pannes de véhicules. Dans
la littérature, ces variations sont traitées en utilisant des variantes dépendant du temps des
problèmes de tournées des véhicules. Dans de telles variantes, à chaque segment de route est
associée une fonction de temps qui indique le temps de trajet pour chaque date de départ.

Typiquement, les problèmes de tournées de véhicules dépendant du temps (TDVRPs)
sont traités en utilisant la modélisation par un graphe complet du réseau routier. Comme
pour le cas non-dépendant du temps, cette approche peut avoir des effets négatifs sur la qual-
ité de la solution dans plusieurs situations, par exemple, quand plusieurs attributs sont définis
sur les segments de routes. Pour éviter ses effets négatifs, deux approches sont a priori en-
visageables pour le cas des TDVRPs: la première consiste à représenter le réseau routier
avec un multigraphe et la deuxième approche consiste à résoudre le problème directement
sur un graphe du réseau routier. Cependant, en raison de la dépendance temporelle, il est
difficile, voire impossible, de représenter le réseau routier avec un multigraphe. En effet,
il faudrait calculer l’ensemble des chemins efficaces pour chaque paire de points d’intérêt
et pour chaque date de départ possible, ce qui induit la résolution de nombreux problèmes
NP-difficiles et l’utilisation de structures de données complexes. Pour cette raison, nous pro-
posons d’aborder le problème sur le graphe du réseau routier. Nous sélectionnons le prob-
lème de tournées de véhicules dépendant du temps avec des fenêtres de temps (TDVRPTW)
comme problème pilote. Dans ce problème, un graphe du réseau routier est donné, avec des
fonctions de vitesse de déplacement affectées à chaque arc. Nous développons un algorithme
de branch-and-price capable de résoudre exactement le TDVRPTW. Nous comparons nos
solutions avec celles trouvées sur deux graphes complets issus du graphe route-réseau: un
graphe min-cost où les chemins sont sélectionnés en fonction de leur distance de parcours,
un graphe min-time où les chemins sont sélectionnés en fonction de leur temps de parcours.
Nous basons nos expériences sur deux types d’instances: (1) les instances de référence simu-
lant de petits réseaux routiers réels; (2) les instances dérivées d’un grand réseau routier réel.

Il est important de souligner que les détails sur comment les informations sur le temps
de trajet peuvent être obtenues pour la modélisation par graphe complet sont absents dans
la plupart des articles sur les VRP dépendant du temps. Classiquement, dans ces articles,
le graphe complet est introduit en premier. Ensuite, des profils de vitesse variables dans le
temps sont introduits sur chaque arc. Ces profils de vitesse sont finalement convertis en temps
de déplacement. Avec cette approche, les vitesses ou les temps de déplacement ne sont pas

A.6 Problème de tournées de véhicules dépendant du temps avec des fenêtres de
temps et informations sur le réseau routier 199

explicitement définis sur les arcs du réseau routier. De plus, il suppose implicitement que la
vitesse est constante sur tous les arcs du réseau routier qui composent un arc dans le graphe
client. Dans la littérature, seuls quelques articles s’intéressent à la façon dont les fonctions
de vitesse de déplacement et de temps peuvent être obtenues à partir des informations sur le
réseau routier. Afin d’évaluer correctement les fonctions de temps de parcours pour nos deux
graphe basés sur les clients, nous développons deux algorithmes spécifiques. Les deux algo-
rithmes commencent avec les mêmes informations que celles du TDVRPTW, c’est-à-dire les
fonctions de vitesse de déplacement associées aux arcs du graphe réseau-routier.

Dans le min-cost graphe, les arcs représentent les chemins les plus courts (en distance)
reliant les points d’intérêt (dépôts et emplacements des clients). Tous ces chemins peuvent
être calculés facilement en appliquant |C|+1 fois (avec C est l’ensemble des clients) un algo-
rithme de Dijkstra dans le graphe du réseau routier, successivement à partir du dépôt et des
nœuds clients. Cependant, pour chaque chemin, nous devons également calculer la fonction
de date d’arrivée associée.

Dans le min-time graphe, les arcs représentent les chemins les plus rapides reliant les
points d’intérêt. Ils sont décrits par deux fonctions: une fonction de date d’arrivée et une
fonction de distance. Notez qu’une fonction de distance est nécessaire car le chemin le plus
rapide peut changer en fonction de la date de départ. Les chemins peuvent être calculés en
appliquant |C| + 1 fois un algorithme d’étiquetage dans le graphe du réseau routier.

Pour résoudre le TDVRPTW dans le graphe du réseau routier, nous avons développé
un algorithme de branch-and-price. L’algorithme proposé dans ce chapitre est basé sur le
schéma de branch-and-price présenté dans le chapitre précédant pour le même problème
avec des temps de parcours constants. Par rapport à cet algorithme, deux modifications prin-
cipales ont été effectuées. Tout d’abord, les temps de parcours sont calculés en fonction des
dates de départ lors de l’extension des étiquettes dans le sous-problème de génération de
colonnes. Deuxièmement, un algorithme de la programmation dynamique bidirectionnelle a
été implémentée pour résoudre le sous-problème de génération de colonnes.

Pour évaluer l’impact de notre approche sur la qualité de la solution, nous avons effectué
une étude expérimentale en nous basant sur un ensemble large d’instances (instances réalistes
simulant des petits réseaux routiers et instances construites à partir des données d’un réseau
routier réel avec un grand nombre de nœuds).

Les résultats obtenus montrent qu’en adressant le problème directement sur le graphe du
réseau routier au lieu d’utiliser la modélisation par graphe complet, le coût de la solution
est réduit jusqu’à 12.4% comparée à la solution obtenue dans le min-cost graphe et jusqu’à
20% comparée à la solution obtenue dans le min-time graphe. Les gains moyens en coût
de la solution sont de 1.7% et 7.3%. En termes de temps de calcul, nous remarquons que
l’algorithme de branch-and-price est moins efficace quand il est appliqué au problème dans

200 Appendix A: Résumé en français

le graphe du réseau routier que quand il est appliqué au problème basé sur la modélisation
par graphe complet. Nous remarquons aussi que quand le nombre de clients augmente le
temps de calcul de l’algorithme de branch-and-price sur le réseau routier augmentent signi-
ficativement. Pour les instances réelles, le temps de calcul moyen est de 13.2 secondes pour
les instances avec 5 clients et atteint 63.5 secondes quand le nombre de clients est égal à 25.

A.7 Conclusions et perspectives

Les problèmes de tournées de véhicules constituent l’une des classes les plus étudiées des
problèmes d’optimisation combinatoire. Cela est dû au grand nombre d’applications réelles
impliquant des problèmes de tournées.

Classiquement, ces problèmes sont abordés en utilisant la modélisation par un graphe dit
basé sur les clients, un graphe complet représentant le réseau routier. Dans de nombreuses sit-
uations, cette modélisation peut avoir d’importantes conséquences. Une situation est lorsque
plusieurs attributs sont définis sur des segments de route. Dans ce cas, des chemins alternatifs
avec des compromis différents ne sont pas pris en compte dans le graphe basé sur les clients.
Cela peut avoir un impact négatif sur la qualité de la solution.

La première contribution de cette thèse est d’analyser des travaux où les limites de la
représentation par un graphe complet sont évoquées et qui étudient les problèmes de tournées
de véhicules avec plus d’informations sur le réseau routier. Nous examinons les différents
cas où le graphe complet représente mal le réseau routier et nous mettons en évidence les
approches alternatives proposées pour gérer ces limites. L’étude montre le manque de con-
tributions dans ce domaine et révèle de nombreuses directions de recherche inexplorées.

Dans la littérature, deux approches alternatives sont proposées pour gérer les limites de
la modélisation par graphe basé sur les clients lorsque plusieurs attributs sont définis sur des
segments de route. Dans la première approche, le réseau routier est représenté en utilisant
un multigraphe où un arc est introduit pour chaque chemin alternatif. Dans la deuxième ap-
proche, le problème est résolu directement sur un graphe représentant le réseau routier.

Une première partie de cette thèse porte sur l’approche multigraphe. Nous étudions la
possibilité de représenter des réseaux routiers réels avec des multigraphes. Nous dévelop-
pons une méthode de résolution exacte qui calcule l’ensemble des chemins non dominés
reliant un ensemble de points d’intérêt dans un réseau routier. L’algorithme proposé est basé
sur une stratégie de recherche A* multi-destinations multi-objectif. En utilisant la méthode
proposée, des multigraphes avec jusqu’à 500 points d’intérêt sont construits en quelques sec-
ondes pour les grands réseaux routiers. Une analyse sur l’impact de la densité de clients
dans le réseau routier est réalisée. En outre, nous étudions l’impact des fenêtres de temps des

A.7 Conclusions et perspectives 201

clients sur le nombre de chemins alternatifs réalisables et sur le temps de construction.

Dans la deuxième étape, nous étudions l’impact de la représentation par multigraphe
sur la qualité de la solution pour un problème de tournées de véhicules avec deux attributs:
le VRPTW. Nous développons un algorithme de branch-and-price. Une étude expérimen-
tale approfondie est réalisée sur des instances modifiées de la littérature et sur des instances
dérivés de réseaux routiers réels. Les résultats montrent que, en utilisant le multigraphe, les
coûts de la solution sont significativement réduits par rapport aux coûts de la solution sur
le graphe complet avec les plus court chemins (jusqu’à 14%) et comparés aux coûts de la
solution sur le graphe complet avec les chemins les plus rapides (jusqu’à 54%). De plus,
nous remarquons que l’utilisation du multigraphe n’augmente que légèrement les temps de
calcul par rapport au graphe basé sur les clients. Dans une autre contribution, nous dévelop-
pons une méthode heuristique qui permet de résoudre efficacement la variante multigraphe
du problème. La méthode proposée est basée sur une recherche adaptative de voisinages
larges capable d’explorer différentes zones de l’espace des solutions. Nous intégrons dans
l’algorithme une structure de données incrémentale et une procédure basée sur la program-
mation dynamique qui permettent d’évaluer efficacement le voisinage d’une solution donnée
en présence d’arcs parallèles entre les nœuds. Les expérimentations montrent la compétitiv-
ité de l’algorithme développé comparé à l’algorithme de branch-and-price.

Une deuxième partie de la thèse porte sur l’approche basée sur le réseau routier. Nous
étudions d’abord l’efficacité relative de la résolution du problème directement sur le réseau
routier par rapport à l’approche par multigraphe. Pour ce faire, nous développons un algo-
rithme de branch-and-price qui fonctionne directement sur le réseau routier. Une étude ex-
périmentale approfondie est ensuite réalisée afin d’analyser l’impact des caractéristiques du
VRPTW (routes élémentaires et non élémentaires, fenêtres de temps des clients, contraintes
de capacité, densité de clients, etc.) sur la performance des algorithmes de branch-and-price
avec le graphe du réseau routier et dans le multigraphe. Les résultats obtenus montrent
qu’un schéma de branch-and-price basé sur le multigraphe est plus efficace que l’approche
du réseau routier.

La deuxième contribution de cette partie de la thèse est de souligner les limites du graphe
basé sur les clients pour le VRPTW dépendant du temps. Pour ce faire, nous développons
d’abord deux algorithmes pour calculer deux représentations par graphe complet du réseau
routier. Ensuite, nous adaptons l’algorithme de branch-and-price basé sur le réseau routier
pour gérer le paramètre dépendant du temps. Les résultats montrent les avantages potentiels
de la modélisation par un graphe du réseau routier et les économies attrayantes en termes de
coût de la solution obtenue. Il apparaît également que des solutions optimales sur le réseau
routier sont trouvées pour des instances qui ne sont pas réalisables en utilisant la représenta-
tion par graphe complet basée sur les chemins les plus courts en distance.

L’intérêt principal de cette thèse est de souligner les limites de la modélisation standard

202 Appendix A: Résumé en français

utilisée pour s’attaquer à une grande classe de problèmes de tournées de véhicules. Nous nous
concentrons sur les problèmes où plusieurs attributs sont définis sur des segments de route.
Cependant, il existe de nombreuses autres situations où la modélisation avec le graphe com-
plet n’est pas adaptée pour résoudre efficacement les problèmes de tournées des véhicules.
Au moment de la conclusion de cette thèse, seuls quelques articles étudient l’impact de la
résolution de problèmes à l’aide de la modélisation classique. Une extension naturelle du
travail présenté dans cette thèse serait d’examiner ces situations et d’analyser les avantages
de procéder différemment que d’utiliser l’approche de modélisation standard.

D’un point de vue méthodologique, des travaux de recherche futurs pourraient s’intéresser
au développement d’approches de résolution efficaces capables de gérer le graphe du réseau
routier. Nous rappelons que notre objectif dans les chapitres 6 et 7 n’était pas d’atteindre
la meilleure implémentation possible de l’algorithme de branch-and-price pour le VRPTW
basé sur le réseau routier, mais nous avons cherché à développer une méthode qui perme-
tte d’obtenir des résultats concluants. L’algorithme proposé peut être amélioré de plusieurs
façons. Premièrement, on aimerait améliorer la règle de branchement. Dans le schéma de
branchement proposé au chapitre 6, les décisions ont principalement un impact sur le prob-
lème maître et la qualité des bornes inférieures, mais n’affectent pas le sous-problème de
génération de colonnes. De plus, ces décisions seules ne garantissent pas l’intégrité de la so-
lution. Il serait intéressant de concevoir des règles de branchement permettant d’obtenir une
solution entière et ayant un impact sur la structure du problème de génération de colonnes.
Une deuxième amélioration possible est la conception de règles de dominance spécifiques
pour les paramètres du graphe du réseau routier. Dans notre implémentation, nous utilisons
la règle de dominance introduite pour le VRPTW standard. L’utilisation de règles de branche-
ment plus appropriées améliorerait significativement l’efficacité de l’algorithme de généra-
tion de colonnes. De plus, il serait intéressant de mettre en œuvre un test d’élimination qui
élimine les étiquettes non dominées qui, en s’étendant de la meilleure façon, n’améliorent
pas la solution actuelle.

Une autre direction de recherche intéressante serait de concevoir une méthode heuris-
tique capable de gérer les paramètres du graphe du réseau routier. La plupart des approches
heuristiques proposées pour les problèmes de tournées de véhicules sont basées sur des mou-
vements de recherche local qui visent à déplacer les services des clients pour explorer de
nouvelles solutions. En utilisant la modélisation par un graphe du réseau routier, de telles
opérations ne sont pas faciles à évaluer et à effectuer car les nœuds clients ne sont pas di-
rectement connectés et plusieurs chemins peuvent exister entre deux points d’intérêt. De
nombreux autres défis de calcul se posent dans ce cas.

De plus, les progrès récents des technologies de l’information et de la communication
permettent d’obtenir des informations sur les conditions de circulation et les temps de dé-
placement en temps réel. Bien que l’on se soit de plus en plus intéressé à ces informations
lorsqu’on s’attaque aux problèmes de planification des trajets et des itinéraires les plus courts,

A.7 Conclusions et perspectives 203

les problèmes de tournées manquent dans ce domaine. Il serait intéressant d’examiner l’effet
de considérer de telles informations pour les problèmes de tournées de véhicules et d’étudier
l’impact des graphes basés sur les clients et des approches de graphe du réseau routier sur
la qualité de la solution pour ces problèmes. Il serait également intéressant d’examiner s’il
est suffisant de travailler avec la représentation par graphe basé sur des clients pour d’autres
catégories de problèmes de tournées de véhicules tels que les problèmes avec possibilité de
déviation, les problèmes avec des contraintes de synchronisation, le routage des matériaux
dangereux, etc. Dans ces problèmes, plusieurs questions doivent être considérées, par ex-
emple la probabilité d’incident et l’exposition de la population pour le transport de matières
dangereuses, l’attribution de nouvelles demandes de service en fonction des situations réelles
des véhicules, etc. Ainsi, il serait intéressant de proposer des approches de modélisation al-
ternatives pour de tels problèmes.

List of Tables

3.1 Road networks characteristics . 39
3.2 The number of tested instances for each road network 39
3.3 Results for the road network Aix-1 . 40
3.4 Results for the road network Aix-2 . 40
3.5 Results for the road network DC . 41
3.6 Impact of considering Time Windows on the preprocessing with the instances

on Aix-1 . 43
3.7 Impact of considering Time Windows on the preprocessing with the instances

on Aix-2 . 43
3.8 Impact of considering Time Windows on the preprocessing with the instances

on DC . 43
3.9 Impact of considering Time Windows for instances on Aix-1 44
3.10 Impact of considering Time Windows for instances on Aix-2 45
3.11 Impact of considering Time Windows for instances on DC 46

4.1 Real Road networks characteristics . 65
4.2 Statistics on multigraph constructions for modified Solomon instances 68
4.3 Statistics on multigraph constructions for Letchford et al. [89] instances . . . 68
4.4 Statistics on multigraph constructions for LL instances 69
4.5 Statistics on multigraph constructions for real instances 69
4.6 Results for modified Solomon instances with 25 customers 72
4.7 Results for modified Solomon instances with 50 customers 73
4.8 Results for Letchford et al. [89] instances 74
4.9 Results for LL instances . 75
4.10 Results for Real instances . 76
4.11 Average gaps (%) obtained with LL instances 76

5.1 Parameters values . 102
5.2 Results for adapted Solomon [126] instances with 25 customers 104
5.3 Results for adapted Solomon [126] instances with 50 customers 105

206 LIST OF TABLES

5.4 Results for Letchford et al. [89] instances 106
5.5 Results for LL instances . 107
5.6 Results for Real instances . 108
5.7 Impact of deviation term on Shaw Removal performance with adapted Solomon

[126] instances . 111
5.8 Impact of deviation term on Shaw Removal performance with LL instances . 111
5.9 Impact of non-Myopic insertion heuristic for adapted Solomon [126] instances112
5.10 Impact of non-Myopic insertion heuristic for LL instances 112
5.11 Contribution of Removal-insertion combinations on the search scheme for

adapted Solomon [126] instances . 113
5.12 Contribution of Removal-insertion combinations on the search scheme for

LL instances . 113

6.1 Results for column generation with non-elementary routes for the m-TSPTW
on LL instances . 134

6.2 Results for column generation with non-elementary routes for the m-TSPTW
on LL instances with n = 250 nodes . 135

6.3 Results for column generation with non-elementary routes for the m-TSPTW
on Letchford et al. [89] instances . 135

6.4 Results for column generation with only elementary routes for the m-TSPTW
on LL instances . 138

6.5 Results for column generation with only elementary routes for the m-TSPTW
on LL instances with n = 250 nodes . 139

6.6 Results for column generation with only elementary routes for m-TSPTW on
Letchford et al. [89] instances . 139

6.7 Results for column generation with only elementary routes for the VRPTW
on LL instances . 142

6.8 Results for column generation with only elementary routes for the VRPTW
on LL instances with n = 250 . 143

6.9 Results for column generation with only elementary routes for VRPTW on
Letchford et al. [89] instances . 143

6.10 Results for complete branch-and-price scheme for VRPTW on LL instances . 145
6.11 Results for complete branch-and-price scheme for VRPTW on LL instances

with n = 250 . 146
6.12 Results for complete branch-and-price scheme for VRPTW on Letchford et

al. [89] instances . 147
6.13 Results for the complete Branch-and-price algorithm with instances on the

road network of Aix . 149

LIST OF TABLES 207

7.1 Speed factor profiles . 169
7.2 Results for the construction of simple graph representations for Letchford et

al. [89]-Like instances . 171
7.3 Results for Letchford et al. [89]-Like instances with narrow time windows . . 172
7.4 Results for Letchford et al. [89]-Like instances with wide time windows (−:

instances not solved in 7200 seconds) . 173
7.5 Results for real instances . 174

List of Figures

4.1 Illustrative road network . 51
4.2 Complete graph and multigraph representations 51
4.3 Road Network of the central urban area (Zone 1) 64
4.4 Road Network of Aix-en-Provence center and surroundings (Zone 2) 65
4.5 Depot and customers locations for an instance with 25 customers on Zone 1 . 66
4.6 Depot and customers locations for an instance with 25 customers on Zone 2 . 66

5.1 Illustration of a customer insertion . 81

6.1 Example of a fractional solution supported by an integer arc flow 127
6.2 Road Network of the central urban area of Aix-en-Provence 132
6.3 Evolution of the ratio CPUMG

CPURN
with the number of customers for instances with

n = 250 . 137

7.1 Illustration of min{ f , g} . 160
7.2 Illustration of mergemin{ f1, f2}{g1, g2} . 161

A.1 Illustration de l’insertion d’un client . 193

Bibliography

[1] Juancarlo Anez, Tomás De La Barra, and Beatnz Pérez. Dual graph representation of
transport networks. Transportation Research Part B: Methodological, 30(3):209–216,
1996.

[2] R. Baldacci, A. Mingozzi, and R. Roberti. Recent exact algorithms for solving the ve-
hicle routing problem under capacity and time window constraints. European Journal
of Operational Research, 218(1):1–6, 2012.

[3] Roberto Baldacci, Lawrence Bodin, and Aristide Mingozzi. The multiple disposal fa-
cilities and multiple inventory locations rollon–rolloff vehicle routing problem. Com-
puters & Operations Research, 33(9):2667–2702, 2006.

[4] Jonathan F Bard, George Kontoravdis, and Gang Yu. A branch-and-cut procedure for
the vehicle routing problem with time windows. Transportation Science, 36(2):250–
269, 2002.

[5] Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, Martin WP Savelsbergh,
and Pamela H Vance. Branch-and-price: Column generation for solving huge integer
programs. Operations research, 46(3):316–329, 1998.

[6] JE Beasley. Adapting the savings algorithm for varying inter-customer travel times.
Omega, 9(6):658–659, 1981.

[7] Hamza Ben Ticha, Nabil Absi, Dominique Feillet, and Alain Quilliot. Adaptive
large neighborhood search for the vehicle routing problem with time windows with a
multigraph representation for the road network. Technical Report EMSE CMP-–SFL
2017/7, Ecole des Mines de Saint Etienne, CMP, Gardanne France, 2017.

[8] Hamza Ben Ticha, Nabil Absi, Dominique Feillet, and Alain Quilliot. Empirical anal-
ysis for the vrptw with a multigraph representation for the road network. Computers
& Operations Research, 2017.

[9] Hamza Ben Ticha, Nabil Absi, Dominique Feillet, and Alain Quilliot. A solution
method for the multi-destination bi-objectives shortest path problem. Technical Re-
port EMSE CMP-–SFL 2017/5, Ecole des Mines de Saint Etienne, CMP, Gardanne,
France, 2017.

[10] Hamza Ben Ticha, Nabil Absi, Dominique Feillet, and Alain Quilliot. Vehicle routing
problems with road-network information: State of the art. Networks, 2018.

212 BIBLIOGRAPHY

[11] Hamza Ben Ticha, Nabil Absi, Dominique Feillet, Alain Quilliot, and Tom
Van Woensel. A branch-and-price algorithm for the vehicle routing problem with
time windows on a road-network graph. Technical Report EMSE CMP-–SFL 2017/9,
Ecole des Mines de Saint Etienne, CMP, Gardanne, France, 2017.

[12] Claudia Bode and Stefan Irnich. Cut-first branch-and-price-second for the capacitated
arc-routing problem. Operations research, 60(5):1167–1182, 2012.

[13] Kris Braekers, Katrien Ramaekers, and Inneke Van Nieuwenhuyse. The vehicle rout-
ing problem: State of the art classification and review. Computers & Industrial Engi-
neering, 99:300–313, 2016.

[14] Olli Bräysy and Michel Gendreau. Vehicle routing problem with time windows, part
i: Route construction and local search algorithms. Transportation science, 39(1):104–
118, 2005.

[15] Olli Bräysy and Michel Gendreau. Vehicle routing problem with time windows, part
ii: Metaheuristics. Transportation science, 39(1):119–139, 2005.

[16] J Brumbaugh-Smith and D Shier. An empirical investigation of some bicriterion short-
est path algorithms. European Journal of Operational Research, 43(2):216–224, 1989.

[17] M Caramia and F Guerriero. A heuristic approach to long-haul freight transportation
with multiple objective functions. Omega, 37(3):600–614, 2009.

[18] Alain Chabrier. Vehicle routing problem with elementary shortest path based column
generation. Computers & Operations Research, 33(10):2972–2990, 2006.

[19] Maxime Chassaing, Christophe Duhamel, and Philippe Lacomme. Time-dependent
vehicle routing problem with waiting times. In Odysseus 2015, pages 197–200, 2015.

[20] Geoff Clarke and John W Wright. Scheduling of vehicles from a central depot to a
number of delivery points. Operations research, 12(4):568–581, 1964.

[21] João Carlos Namorado Climaco and Ernesto Queiros Vieira Martins. A bicriterion
shortest path algorithm. European Journal of Operational Research, 11(4):399–404,
1982.

[22] João CN Clímaco and Marta Pascoal. Multicriteria path and tree problems: discus-
sion on exact algorithms and applications. International Transactions in Operational
Research, 19(1-2):63–98, 2012.

[23] Ángel Corberán and Gilbert Laporte. Arc routing: problems, methods, and applica-
tions, volume 20. SIAM, 2015.

[24] Angel Corberán and Christian Prins. Recent results on arc routing problems: An
annotated bibliography. Networks, 56(1):50–69, 2010.

BIBLIOGRAPHY 213

[25] J. F. Cordeau, G. Desaulniers, J. Desrosiers, M.M. Solomon, and F. Soumis. Vrp with
time windows. In The vehicle routing problem, pages 157–193. Society for Industrial
and Applied Mathematics, 2001.

[26] Jean-François Cordeau, Michel Gendreau, and Gilbert Laporte. A tabu search heuristic
for periodic and multi-depot vehicle routing problems. Networks, 30(2):105–119,
1997.

[27] Jean-François Cordeau, Gianpaolo Ghiani, and Emanuela Guerriero. Analysis and
branch-and-cut algorithm for the time-dependent travelling salesman problem. Trans-
portation Science, 48(1):46–58, 2012.

[28] H William Corley and I Douglas Moon. Shortest paths in networks with vector
weights. Journal of Optimization Theory and Applications, 46(1):79–86, 1985.

[29] Gérard Cornuéjols, Jean Fonlupt, and Denis Naddef. The traveling salesman problem
on a graph and some related integer polyhedra. Mathematical programming, 33(1):1–
27, 1985.

[30] Said Dabia, Stefan Ropke, Tom Van Woensel, and Ton De Kok. Branch and price
for the time-dependent vehicle routing problem with time windows. Transportation
science, 47(3):380–396, 2013.

[31] George B Dantzig and John H Ramser. The truck dispatching problem. Management
science, 6(1):80–91, 1959.

[32] George B Dantzig and Philip Wolfe. Decomposition principle for linear programs.
Operations research, 8(1):101–111, 1960.

[33] Bruno De Backer, Vincent Furnon, P Prosser, P Kilby, and Paul Shaw. Local search
in constraint programming: Application to the vehicle routing problem. In Proc. CP-
97 Workshop Indust. Constraint-Directed Scheduling, pages 1–15. Schloss Hagenberg
Austria, 1997.

[34] Leizer de Lima Pinto, Cláudio Thomás Bornstein, and Nelson Maculan. The tricrite-
rion shortest path problem with at least two bottleneck objective functions. European
Journal of Operational Research, 198(2):387–391, 2009.

[35] Daniel Delling and Dorothea Wagner. Time-dependent route planning. Robust and
online large-scale optimization, 5868(1):207–230, 2009.

[36] Sofie Demeyer, Jan Goedgebeur, Pieter Audenaert, Mario Pickavet, and Piet De-
meester. Speeding up martins’ algorithm for multiple objective shortest path problems.
4OR, 11(4):323–348, 2013.

[37] Guy Desaulniers, Jacques Desrosiers, and Marius M Solomon. Column generation,
volume 5. Springer Science & Business Media, 2006.

214 BIBLIOGRAPHY

[38] Guy Desaulniers, François Lessard, and Ahmed Hadjar. Tabu search, generalized k-
path inequalities, and partial elementarity for the vehicle routing problem with time
windows. Groupe d’études et de recherche en analyse des décisions, 2006.

[39] Guy Desaulniers, Oli BG Madsen, and Stefan Ropke. The vehicle routing problem
with time windows. Vehicle routing: Problems, methods, and applications, 18:119–
159, 2014.

[40] M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research, 40(2):342–354,
1992.

[41] Jacques Desrosiers, Yvan Dumas, Marius M Solomon, and François Soumis. Time
constrained routing and scheduling. Handbooks in operations research and manage-
ment science, 8:35–139, 1995.

[42] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[43] Alberto V Donati, Roberto Montemanni, Norman Casagrande, Andrea E Rizzoli, and
Luca M Gambardella. Time dependent vehicle routing problem with a multi ant colony
system. European journal of operational research, 185(3):1174–1191, 2008.

[44] Moshe Dror. Arc routing: theory, solutions and applications. Springer Science &
Business Media, 2012.

[45] Olivier Du Merle, Daniel Villeneuve, Jacques Desrosiers, and Pierre Hansen. Stabi-
lized column generation. Discrete Mathematics, 194(1-3):229–237, 1999.

[46] EEA. Evaluating 15 years of transport and environmental policy integration. term
2015: Transport indicators tracking progress towards environmental targets in europe,
eea report 7/2015. Technical report, European Environment Agency, 2015.

[47] Richard Eglese, Will Maden, and Alan Slater. A road timetabletm to aid vehicle
routing and scheduling. Computers & operations research, 33(12):3508–3519, 2006.

[48] Jan Fabian Ehmke, Ann Melissa Campbell, and Barrett W Thomas. Data-driven ap-
proaches for emissions-minimized paths in urban areas. Computers & Operations
Research, 67:34–47, 2016.

[49] Jan Fabian Ehmke, Ann Melissa Campbell, and Barrett W Thomas. Vehicle routing to
minimize time-dependent emissions in urban areas. European Journal of Operational
Research, 251(2):478–494, 2016.

[50] Matthias Ehrgott and Xavier Gandibleux. A survey and annotated bibliography of
multiobjective combinatorial optimization. OR-Spektrum, 22(4):425–460, 2000.

BIBLIOGRAPHY 215

[51] Burak Eksioglu, Arif Volkan Vural, and Arnold Reisman. The vehicle routing prob-
lem: A taxonomic review. Computers & Industrial Engineering, 57(4):1472–1483,
2009.

[52] D. Feillet. A tutorial on column generation and branch-and-price for vehicle routing
problems. 4OR, 8(4):407–424, 2010.

[53] Dominique Feillet, Pierre Dejax, Michel Gendreau, and Cyrille Gueguen. An exact
algorithm for the elementary shortest path problem with resource constraints: Appli-
cation to some vehicle routing problems. Networks, 44(3):216–229, 2004.

[54] Miguel Andres Figliozzi. The time dependent vehicle routing problem with time
windows: Benchmark problems, an efficient solution algorithm, and solution char-
acteristics. Transportation Research Part E: Logistics and Transportation Review,
48(3):616–636, 2012.

[55] Marshall Fisher. Vehicle routing. Handbooks in operations research and management
science, 8:1–33, 1995.

[56] Bernhard Fleischmann. A cutting plane procedure for the travelling salesman problem
on road networks. European Journal of Operational Research, 21(3):307–317, 1985.

[57] Bernhard Fleischmann, Martin Gietz, and Stefan Gnutzmann. Time-varying travel
times in vehicle routing. Transportation science, 38(2):160–173, 2004.

[58] Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345,
1962.

[59] Ricardo Fukasawa, Humberto Longo, Jens Lysgaard, Marcus Poggi de Aragão,
Marcelo Reis, Eduardo Uchoa, and Renato F Werneck. Robust branch-and-cut-
and-price for the capacitated vehicle routing problem. Mathematical programming,
106(3):491–511, 2006.

[60] Xavier Gandibleux, Frédéric Beugnies, and Sabine Randriamasy. Martins’ algorithm
revisited for multi-objective shortest path problems with a maxmin cost function. 4OR,
4(1):47–59, 2006.

[61] Thierry Garaix, Christian Artigues, Dominique Feillet, and Didier Josselin. Vehicle
routing problems with alternative paths: An application to on-demand transportation.
European Journal of Operational Research, 204(1):62–75, 2010.

[62] Michel Gendreau, Gianpaolo Ghiani, and Emanuela Guerriero. Time-dependent rout-
ing problems: A review. Computers & operations research, 64:189–197, 2015.

[63] Michel Gendreau, Alain Hertz, and Gilbert Laporte. A tabu search heuristic for the
vehicle routing problem. Management science, 40(10):1276–1290, 1994.

216 BIBLIOGRAPHY

[64] Keivan Ghoseiri and Behnam Nadjari. An ant colony optimization algorithm for the
bi-objective shortest path problem. Applied Soft Computing, 10(4):1237–1246, 2010.

[65] B. L. Golden, S. Raghavan, and E. A. Wasil. The vehicle routing problem: latest
advances and new challenges, volume 43. Springer Science & Business Media, 2008.

[66] F Guerriero and R Musmanno. Label correcting methods to solve multicriteria short-
est path problems. Journal of optimization theory and applications, 111(3):589–613,
2001.

[67] Pierre Hansen. Bicriterion path problems. In Multiple criteria decision making theory
and application, pages 109–127. Springer, 1980.

[68] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[69] Markus Hesse and Jean-Paul Rodrigue. The transport geography of logistics and
freight distribution. Journal of transport geography, 12(3):171–184, 2004.

[70] Bo Huang, Li Yao, and K Raguraman. Bi-level ga and gis for multi-objective tsp route
planning. Transportation planning and technology, 29(2):105–124, 2006.

[71] Yixiao Huang, Lei Zhao, Tom Van Woensel, and Jean-Philippe Gross. Time-
dependent vehicle routing problem with path flexibility. Transportation Research Part
B: Methodological, 95:169–195, 2017.

[72] F Huarng, PS Pulat, and L Shih. A computational comparison of some bicriterion
shortest path algorithms. Journal of the Chinese Institute of Industrial Engineers,
13(2):121–125, 1996.

[73] Soumia Ichoua, Michel Gendreau, and Jean-Yves Potvin. Vehicle dispatching with
time-dependent travel times. European journal of operational research, 144(2):379–
396, 2003.

[74] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. Col-
umn Generation, 6730:33–65, 2005.

[75] Stefan Irnich and Daniel Villeneuve. The shortest-path problem with resource con-
straints and k-cycle elimination for k ≥ 3. INFORMS Journal on Computing,
18(3):391–406, 2006.

[76] O Jabali, T Woensel, and AG de Kok. Analysis of travel times and co2 emis-
sions in time-dependent vehicle routing. Production and Operations Management,
21(6):1060–1074, 2012.

BIBLIOGRAPHY 217

[77] Mads Jepsen, Bjørn Petersen, Simon Spoorendonk, and David Pisinger. A non-robust
branch-and-cut-and-price algorithm for the vehicle routing problem with time win-
dows. Oper. Res. Forthcoming, 2006.

[78] B. Kallehauge. Formulations and exact algorithms for the vehicle routing problem
with time windows. Computers & Operations Research, 35(7):2307–2330, 2008.

[79] Brian Kallehauge, Jesper Larsen, and Oli BG Madsen. Lagrangian duality applied to
the vehicle routing problem with time windows. Computers & Operations Research,
33(5):1464–1487, 2006.

[80] David E Kaufman and Robert L Smith. Fastest paths in time-dependent networks for
intelligent vehicle-highway systems application. Journal of Intelligent Transportation
Systems, 1(1):1–11, 1993.

[81] Astrid S Kenyon and David P Morton. Stochastic vehicle routing with random travel
times. Transportation Science, 37(1):69–82, 2003.

[82] Oanh Tran Thi Kim, VanDung Nguyen, Seung Il Moon, and Choong Seon Hong.
Finding realistic shortest path in road networks with lane changing and turn restriction.
In Network Operations and Management Symposium (APNOMS), 2016 18th Asia-
Pacific, pages 1–4. IEEE, 2016.

[83] Niklas Kohl, Jacques Desrosiers, Oli BG Madsen, Marius M Solomon, and Francois
Soumis. 2-path cuts for the vehicle routing problem with time windows. Transporta-
tion Science, 33(1):101–116, 1999.

[84] Adrianus Leendert Kok, Elias W Hans, and Johannes MJ Schutten. Vehicle routing
under time-dependent travel times: the impact of congestion avoidance. Computers &

operations research, 39(5):910–918, 2012.

[85] David SW Lai, Ozgun Caliskan Demirag, and Janny MY Leung. A tabu search heuris-
tic for the heterogeneous vehicle routing problem on a multigraph. Transportation
Research Part E: Logistics and Transportation Review, 86:32–52, 2016.

[86] Zhifeng Lang, Enjian Yao, Weisong Hu, and Zheng Pan. A vehicle routing problem
solution considering alternative stop points. Procedia-Social and Behavioral Sciences,
138:584–591, 2014.

[87] Gilbert Laporte. Fifty years of vehicle routing. Transportation Science, 43(4):408–
416, 2009.

[88] Gilbert Laporte, Francois Louveaux, and Hélène Mercure. The vehicle routing prob-
lem with stochastic travel times. Transportation science, 26(3):161–170, 1992.

[89] Adam N Letchford, Saeideh D Nasiri, and Amar Oukil. Pricing routines for vehicle
routing with time windows on road networks. Computers & Operations Research,
51:331–337, 2014.

218 BIBLIOGRAPHY

[90] Adam N Letchford, Saeideh D Nasiri, and Dirk Oliver Theis. Compact formulations
of the steiner traveling salesman problem and related problems. European Journal of
Operational Research, 228(1):83–92, 2013.

[91] Adam N Letchford and Amar Oukil. Exploiting sparsity in pricing routines for the
capacitated arc routing problem. Computers & Operations Research, 36(7):2320–
2327, 2009.

[92] Qingquan Li, Bi Yu Chen, Yafei Wang, and William HK Lam. A hybrid link-node ap-
proach for finding shortest paths in road networks with turn restrictions. Transactions
in GIS, 19(6):915–929, 2015.

[93] Xiangyong Li, Peng Tian, and Stephen CH Leung. Vehicle routing problems with time
windows and stochastic travel and service times: Models and algorithm. International
Journal of Production Economics, 125(1):137–145, 2010.

[94] Jens Lysgaard. Reachability cuts for the vehicle routing problem with time windows.
European Journal of Operational Research, 175(1):210–223, 2006.

[95] Ernesto Queiros Vieira Martins. An algorithm for ranking paths that may contain
cycles. European Journal of Operational Research, 18(1):123–130, 1984.

[96] Ernesto Queiros Vieira Martins. On a multicriteria shortest path problem. European
Journal of Operational Research, 16(2):236–245, 1984.

[97] Ernesto Queiros Vieira Martins, Marta Margarida Braz Pascoal, and Jose Luis Es-
teves Dos Santos. Deviation algorithms for ranking shortest paths. International
Journal of Foundations of Computer Science, 10(03):247–261, 1999.

[98] Ernesto Queros Vieira Martins and JLE Santos. The labeling algorithm for the mul-
tiobjective shortest path problem. Departamento de Matematica, Universidade de
Coimbra, Portugal, Tech. Rep. TR-99/005, 1999.

[99] John Mote, Ishwar Murthy, and David L Olson. A parametric approach to solv-
ing bicriterion shortest path problems. European Journal of Operational Research,
53(1):81–92, 1991.

[100] Matthias Müller-Hannemann and Karsten Weihe. On the cardinality of the pareto set
in bicriteria shortest path problems. Annals of Operations Research, 147(1):269–286,
2006.

[101] Commission of the European Communities. sustainable future for transport: Towards
an integrated, technology-led and user friendly system. Technical report, COM, 2009.

[102] Ariel Orda and Raphael Rom. Shortest-path and minimum-delay algorithms in net-
works with time-dependent edge-length. Journal of the ACM (JACM), 37(3):607–625,
1990.

BIBLIOGRAPHY 219

[103] CS Orloff. A fundamental problem in vehicle routing. Networks, 4(1):35–64, 1974.

[104] José Manuel Paixão and José Luis Santos. Labeling methods for the general case of
the multi-objective shortest path problem–a computational study. In Computational
Intelligence and Decision Making, pages 489–502. Springer, 2013.

[105] José Maria A Pangilinan and Gerrit K Janssens. Evolutionary algorithms for the mul-
tiobjective shortest path problem. World Academy of Science, Engineering and Tech-
nology, International Journal of Mathematical, Computational, Physical, Electrical
and Computer Engineering, 1(1):7–12, 2007.

[106] Samuel Pelletier, Ola Jabali, and Gilbert Laporte. 50th anniversary invited arti-
cle—goods distribution with electric vehicles: review and research perspectives.
Transportation Science, 50(1):3–22, 2016.

[107] David Pisinger and Stefan Ropke. A general heuristic for vehicle routing problems.
Computers & operations research, 34(8):2403–2435, 2007.

[108] Christian Prins. A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers & Operations Research, 31(12):1985–2002, 2004.

[109] Jiani Qian and Richard Eglese. Finding least fuel emission paths in a network with
time-varying speeds. Networks, 63(1):96–106, 2014.

[110] Jiani Qian and Richard Eglese. Fuel emissions optimization in vehicle routing
problems with time-varying speeds. European Journal of Operational Research,
248(3):840–848, 2016.

[111] Andrea Raith. Speed-up of labelling algorithms for biobjective shortest path problems.
In Proceedings of the 45th annual conference of the ORSNZ. Auckland, New Zealand,
pages 313–322, 2010.

[112] Andrea Raith and Matthias Ehrgott. A comparison of solution strategies for biobjec-
tive shortest path problems. Computers & Operations Research, 36(4):1299–1331,
2009.

[113] Line Blander Reinhardt, Mads Kehlet Jepsen, and David Pisinger. The edge set cost of
the vehicle routing problem with time windows. Transportation Science, 50(2):694–
707, 2015.

[114] Giovanni Righini and Matteo Salani. Symmetry helps: Bounded bi-directional dy-
namic programming for the elementary shortest path problem with resource con-
straints. Discrete Optimization, 3(3):255–273, 2006.

[115] Giovanni Righini and Matteo Salani. New dynamic programming algorithms for the
resource constrained elementary shortest path problem. Networks, 51(3):155–170,
2008.

220 BIBLIOGRAPHY

[116] Jean-Paul Rodrigue, Claude Comtois, and Brian Slack. The geography of transport
systems. Routledge, 2009.

[117] Stefan Ropke and Jean-François Cordeau. Branch and cut and price for the pickup and
delivery problem with time windows. Transportation Science, 43(3):267–286, 2009.

[118] Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuris-
tic for the pickup and delivery problem with time windows. Transportation science,
40(4):455–472, 2006.

[119] L. M. Rousseau, M. Gendreau, and D. Feillet. Interior point stabilization for column
generation. Operations Research Letters, 35(5):660–668, 2007.

[120] D Schultes. Tiger road networks for 9th dimacs implementation challenge–shortest
path, 2005.

[121] Paolo Serafini. Some considerations about computational complexity for multi objec-
tive combinatorial problems. In Recent advances and historical development of vector
optimization, pages 222–232. Springer, 1987.

[122] M Setak, Z Shakeri, and A Patoghi. A time dependent pollution routing problem
in multi-graph. International Journal of Engineering-Transactions B: Applications,
30(2):234, 2017.

[123] Mostafa Setak, Majid Habibi, Hossein Karimi, and Mostafa Abedzadeh. A time-
dependent vehicle routing problem in multigraph with fifo property. Journal of Man-
ufacturing Systems, 35(35):37–45, 2015.

[124] Paul Shaw. A new local search algorithm providing high quality solutions to vehicle
routing problems. APES Group, Dept of Computer Science, University of Strathclyde,
Glasgow, Scotland, UK, 1997.

[125] Anders JV Skriver. A classification of bicriterion shortest path (bsp) algorithms. Asia
Pacific Journal of Operational Research, 17(2):199–212, 2000.

[126] Marius M Solomon. Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations research, 35(2):254–265, 1987.

[127] Bradley S Stewart and Chelsea C White III. Multiobjective a. Journal of the ACM
(JACM), 38(4):775–814, 1991.

[128] P. Toth and D. Vigo. Vehicle routing: problems, methods, and applications, volume 18.
Siam, 2014.

[129] Paolo Toth and Daniele Vigo. Models, relaxations and exact approaches for the ca-
pacitated vehicle routing problem. Discrete Applied Mathematics, 123(1):487–512,
2002.

[130] George Tsaggouris and Christos Zaroliagis. Multiobjective optimization: Improved
fptas for shortest paths and non-linear objectives with applications. Theory of Com-
puting Systems, 45(1):162–186, 2009.

[131] Chi Tung Tung and Kim Lin Chew. A multicriteria pareto-optimal path algorithm.
European Journal of Operational Research, 62(2):203–209, 1992.

[132] T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. Heuristics for multi-attribute
vehicle routing problems: a survey and synthesis. European Journal of Operational
Research, 231(1):1–21, 2013.

[133] HF Wang and YY Lee. Two-stage particle swarm optimization algorithm for the time
dependent alternative vehicle routing problem. Journal of Applied & Computational
Mathematics, 3(4):1–9, 2014.

[134] Liang Wen, Bülent Çatay, and Richard Eglese. Finding a minimum cost path between
a pair of nodes in a time-varying road network with a congestion charge. European
Journal of Operational Research, 236(3):915–923, 2014.

[135] Liang Wen and Richard Eglese. Minimum cost vrp with time-dependent speed data
and congestion charge. Computers & Operations Research, 56:41–50, 2015.

[136] Stephan Winter. Modeling costs of turns in route planning. GeoInformatica, 6(4):345–
361, 2002.

[137] Konstantinos G Zografos and Konstantinos N Androutsopoulos. A decision support
system for integrated hazardous materials routing and emergency response decisions.
Transportation Research Part C: Emerging Technologies, 16(6):684–703, 2008.

École Nationale Supérieure des Mines de Saint-Étienne

NNT: 820

Hamza BEN TICHA

Vehicle Routing Problems with road-network information

Keywords: Vehicle routing problems, road network, multigraph

Abstract:

Vehicle routing problems (VRPs) have drawn many researchers’ attention for more than
fifty years. Most approaches found in the literature are, implicitly, based on the key assump-
tion that the best path between each two points of interest in the road network (customers,
depot, etc.) can be easily defined. Thus, the problem is tackled using the so-called customer-
based graph, a complete graph representation of the road network. In many situations, such
a graph may fail to accurately represent the original road network and more information are
needed to address correctly the routing problem.

We first examine these situations and point out the limits of the traditional customer-based
graph. We propose a survey on works investigating vehicle routing problems by considering
more information from the road network. We outline the proposed alternative approaches,
namely the multigraph representation and the road network approach.

Then, we are interested in the multigraph approach. We propose an algorithm that effi-
ciently compute the multigraph representation for large sized road networks. We present an
empirical analysis on the impact of the multigraph representation on the solution quality for
the VPR with time windows (VRPTW) when several attributes are defined on road segments.
Then, we develop an efficient heuristic method for the multigraph-based VRPTW.

Next, we investigate the road network approach. We develop a complete branch-and-price
algorithm that can solve the VRPTW directly on the original road network. We evaluate the
relative efficiency of the two approaches through an extensive computational study.

Finally, we are interested in problems where travel times vary over the time of the day,
called time dependent vehicle routing problems (TDVRPs). We develop a branch-and-price
algorithm that solves the TDVRP with time windows directly on the road network and we
analyse the impact of the proposed approach on the solution quality.

École Nationale Supérieure des Mines de Saint-Étienne

NNT : 820

Hamza BEN TICHA

Problèmes de tournées de véhicules avec des informations du réseau routier

Mots clefs : Problèmes de tournées de véhicules, réseau routier, multigraphe

Résumé :

Les problèmes de tournées de véhicules (VRPs) ont fait l’objet de plusieurs travaux de
recherche depuis maintenant plus de 50 ans. La plupart des approches trouvées dans la lit-
térature s’appuient sur un graphe complet ou un noeud est introduit pour tout point d’intérêt
du réseau routier (typiquement les clients et le dépôt). Cette modélisation est, implicitement,
basée sur l’hypothèse que le meilleur chemin entre toute paire de points du réseau routier est
bien défini. Cependant, cette hypothèse n’est pas toujours valide dans de nombreuses situa-
tions. Souvent, plus d’informations sont nécessaires pour modéliser et résoudre correctement
le problème.

Nous commençons par examiner ces situations et définir les limites de la modélisation
basée sur un graphe complet. Nous proposons un état de l’art des travaux qui examinent ces
limites et qui traitent des VRPs en considérant plus d’informations issues du réseau routier.
Nous décrivons les approches alternatives proposées, à savoir la modélisation utilisant un
multi-graphe et celle utilisant la résolution directe sur un graph représentant le réseau routier.

Dans une seconde étude, nous nous intéressons à l’approche basée sur la construction
d’un multi-graphe. Nous proposons, d’abord, un algorithme qui permet de calculer d’une
manière efficace la représentation par multi-graph du réseau routier. Puis, nous présentons
une analyse empirique sur l’impact de cette modélisation sur la qualité de la solution. Pour ce
faire, nous considérons le problème classique VRPTW comme un problème de pilote. Par la
suite, nous développons une méthode heuristique efficace afin de résoudre le VRPTW basée
sur une représentation par un multi-graphe.

Dans une troisième étape, nous nous concentrons sur l’approche basée sur la résolution
directe du problème sur un graphe représentant le réseau routier. Nous développons un algo-
rithme de type branch-and-price pour la résolution de cette variante du problème. Une étude
expérimentale est, ensuite, menée afin d’évaluer l’efficacité relative des deux approches.

Enfin, nous étudions les problèmes de tournées de véhicules dans lesquels les temps de
parcours varient au cours de la journée. Nous proposons un algorithme de type branch-
and-price afin de résoudre le problème avec des fenêtres de temps directement sur le graphe
représentant le réseau routier. Une analyse empirique sur l’impact de l’approche proposée
sur la qualité de la solution est proposée.

	Introduction
	Vehicle routing problems with road-network information: State of the art
	Introduction
	Vehicle routing problems with several attributes on road segments
	Multigraph
	Road-network graph
	Related works using a multigraph
	Discussion

	Vehicle Routing Problems with ``complex'' attributes
	Complex time-dependent cost functions
	Speed optimization
	Driver working hour regulation
	Discussion

	Vehicle routing problems on complex road-networks
	Fine modeling of vehicle stops
	Access with fees
	Discussion

	Impact on solution method efficiency
	Size of models
	Relationship with arc routing problems
	Discussion

	Conclusion

	A solution method for the Multi-destination Bi-objectives Shortest Path Problem
	Introduction
	Literature review
	Basic concepts
	Multi-destination Bi-objective Shortest Path Problem
	Solution method
	Optimality proof and complexity analysis

	Multi-destination Bi-objective Shortest Path Problem with Time windows
	Computational experiments
	Test problems
	Results

	Conclusions

	Empirical analysis for the VRPTW with a multigraph representation for the road network
	Introduction
	Literature review
	Multigraph representation
	Road Network
	Methodology

	Problem formulation
	Solution Method
	Master Problem
	Column Generation
	Branching rule
	Stabilization method

	Computational experiments
	Test data
	Modifed Solomon instances
	Letchford et al. letchford2014pricing and Letchford et al.-like (LL) instances
	Real instances

	Statistics on multigraphs
	Impact of the multigraph representation

	Conclusion

	Adaptive Large Neighborhood Search for the Vehicle Routing Problem with Time Windows with a multigraph representation for the road network
	Introduction
	Literature review
	Problem Formulation
	Solution Method
	Arc selection procedure
	Removal operation
	Insertion operation

	Initial Solution
	Removal Heuristics
	Adapted Shaw removal heuristic
	Random Removal Heuristic
	Worst Removal Heuristic

	Insertion Heuristics
	Greedy Insertion heuristic
	Regret insertion heuristic
	Simple insertion heuristic
	Non-myopic insertion heuristic

	Adaptive Strategy for the control of the Removal/Insertion operators
	Acceptance criteria

	Computational experiments
	Test Data
	Parameters tuning
	Computational results
	Savings solution
	Evaluation of the ALNS heuristic
	Impact of the multigraph representation

	Sensitivity analysis

	Conclusion

	A branch-and-price Algorithm for the Vehicle Routing Problem with Time Windows on a road-network graph
	Introduction
	Literature review
	Branch-and-price algorithm for the VRPTW on the road-network graph
	Pricing problem
	Branching scheme

	Branch-and-price algorithm for the multigraph based VRPTW
	Computational experiments
	Test data
	Letchford et al. letchford2014pricing and Letchford et al.-Like letchford2014pricing (LL) instances
	Real instances

	Results
	Results for the multiple travelling Salesman Problem
	Results for the VRPTW

	Discussion

	Conclusion

	The Time-Dependent Vehicle Routing Problem with Time Windows and road network information
	Introduction
	Literature review
	Preliminaries
	Problem description
	Backgrounds and basic operations
	Time-dependend shortest path algorithm
	Time-dependend fastest path algorithm

	Branch-and-price algorithm for the TDVRPTWRN
	Master Problem
	Pricing problem
	Branching scheme

	Computational experiments
	Test data
	Letchford et al.letchford2014pricing-like instances
	Real instances

	Results

	Conclusion

	Conclusions and perspectives
	Appendices
	Résumé en français
	Introduction
	Construction de la représentation par multigraphe du réseau routier
	Analyse empirique pour le VRPTW avec une représentation par un multigraphe du réseau routier
	Recherche adaptative à voisinage large pour le VRPTW dans le multigraphe
	Algorithme de Branch-and-price pour le VRPTW sur le graphe du réseau routier
	Problème de tournées de véhicules dépendant du temps avec des fenêtres de temps et informations sur le réseau routier
	Conclusions et perspectives

	List of Tables
	List of Figures
	Bibliography

