
HAL Id: tel-01807962
https://theses.hal.science/tel-01807962v1

Submitted on 5 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Querying existential rule knowledge bases : decidability
and complexity

Swan Rocher

To cite this version:
Swan Rocher. Querying existential rule knowledge bases : decidability and complexity. Artificial
Intelligence [cs.AI]. Université Montpellier, 2016. English. �NNT : 2016MONTT291�. �tel-01807962�

https://theses.hal.science/tel-01807962v1
https://hal.archives-ouvertes.fr

Délivré par l’Université de Montpellier

Préparée au sein de l’école doctorale I2S
Et de l’unité de recherche UMR 5506

Spécialité: Informatique

Présentée par Swan Rocher

Querying Existential Rule

Knowledge Bases:

Decidability and Complexity

Soutenue le 25 novembre 2016 devant le jury composé de :

Directrice de thèse

Mme. Marie-Laure Mugnier Professeur Univ. de Montpellier

Co-encadrant

M. Jean-François Baget Chargé de Recherche INRIA

Rapporteurs

Mme. Marie-Christine Rousset Professeur Univ. de Grenoble

M. Sebastian Rudolph Professor Univ. Dresden

Examinateurs

M. Christophe Paul Directeur de Recherche CNRS

M. Andreas Pieris Lecturer Univ. of Edinburgh

ii

Remerciements

Trois ans, c’est court, et pourtant c’est en écrivant ces remerciements que je me
rends compte que j’ai eu l’occasion de rencontrer énormément de gens, qui m’ont
tous apporté quelque chose plus ou moins directement, si bien qu’il est difficile d’être
sûr de n’oublier personne...

Merci tout d’abord à Jean-François et Marie-Laure pour avoir été des directeurs
de thèse parfaits ! Tant au niveau scientifique que personnel, vous avez toujours été
là lorsque j’en avais besoin.

Bien sûr, merci aussi à Marie-Christine Rousset et Sebastian Rudolph pour votre
lecture si attentive de ce manuscrit : ma thèse ne serait pas ce qu’elle est sans vos
remarques. Merci également à Andreas Pieris et Christophe Paul pour avoir accepté
d’être examinateurs, et merci aussi à Christophe pour avoir participé à mon comité
de suivi de thèse ces trois ans !

On s’éloigne un petit peu, mais pas trop, merci à Michel et le projet Qualinca,
sans qui je n’aurai pas pu faire cette thèse. Merci Annie pour avoir réussi à garder ton
calme malgré ma hantise des démarches administratives. Et merci à toute l’équipe,
ses permanents, ses stagiaires et bien sûr ses doctorants (passés et actuels), Michaël
pour tes conjectures et tes contre-exemples, Stathis pour tes questions existentielles,
Léa pour tes histoires à base de chats et/ou lapins, et tous les autres !

Non doctorant, mais c’est comme si, merci beaucoup Clément, co-bureau à
travers les ages, pour les discussions du café, et pour tout le reste d’ailleurs !

On peut porter le regard un peu plus loin car le LIRMM n’est pas seulement
une équipe. Merci à tous les gens avec qui j’ai pu discuter au détour d’un couloir
ou autour d’un café. En particulier, merci beaucoup à Sabrina, Anaël, Guilhem,
Valentin, Julien, François, Florian, Jessie et Nam’ à la fois pour la détente, et pour
les moments scientifiques. Ces années n’auraient certainement pas été les mêmes
sans votre présence ! Non, je ne t’oublie pas, merci Chloé pour m’avoir aidé à en
arriver là ! Et merci Marthe pour ton thé parfaitement équilibré et tes nombreux
gâteaux !

Finalement, le LIRMM ne serait pas ce qu’il est sans Laurie et Nicolas : toujours
souriants, et on ne peut plus efficaces, merci beaucoup pour tout ce que vous avez
fait !

Plus loin que Montpellier (beaucoup), merci à Charlotte et Julien pour m’avoir
accueilli dans un super paysage quand il fallait que je me change les idées ! Je
n’oublierai pas mon “bureau” à la montagne.

iii

iv

Enfin, il est plus que temps de remercier la famille : merci Luc et Sarah pour
votre soutien et n’avoir jamais douté. Et bien entendu merci pour tout Eva ! Il
me semble aussi important de remercier la famille un peu moins directe : alors,
merci Raphy pour ton accueil, et aussi pour la force de volonté que tu m’as apporté
d’ailleurs. Merci également à Lyes, malgré tes blagues douteuses, tu m’as permis de
rigoler quand je ne m’y attendais pas ! Et évidemment, merci à Sandie pour m’avoir
supporté pendant la rédaction de cette thèse !

En bref, merci à tout le monde !

Contents

1 Fundamental Notions 7

1.1 General Mathematical Notions . 7

1.1.1 Basic Notations . 7

1.1.2 Graph Notions . 8

1.1.3 Logical Notions . 9

1.1.4 Complexity Classes . 11

1.2 Existential Rule Framework . 11

1.2.1 Forward Chaining . 16

1.2.2 Backward Chaining . 18

1.3 Some Useful Translations . 21

2 Landscape of Decidable Classes of Rules 25

2.1 Abstract Rule Classes . 25

2.2 Finite Expansion Set . 28

2.3 Bounded Treewidth Set . 33

2.4 Finite Unification Set . 37

2.5 Description Logics . 43

2.6 Kiabora . 46

3 Acyclicity Conditions for Chase Termination 47

3.1 Different kinds of chase . 48

3.2 Acyclicity notions . 56

3.2.1 Dependency-based Approach 57

3.2.2 Position-based Approach . 59

3.2.3 First combination . 64

3.3 Unifying both Approaches . 65

3.4 Extensions . 78

3.5 Other Acyclicity Conditions . 86

3.5.1 Model Summarizing Acyclicity and Model Faithful Acyclicity . 86

3.5.2 Extending Model Summarizing Acyclicity 90

v

vi CONTENTS

4 Combining Transitivity and Decidable Classes of Existential Rules 93
4.1 Transitivity and BTS/FES rules . 94

4.1.1 Overview of Known Results 94
4.1.2 A General Undecidability Result 97
4.1.3 Clarifying the FES Landscape 98

4.2 Linear Rules and Transitivity . 101
4.2.1 Framework . 101
4.2.2 Overview of the Algorithm . 107
4.2.3 Rewriting Steps . 108
4.2.4 Termination and Correctness 118
4.2.5 Complexity . 131

Introduction

Querying Knowledge Bases

The recent years have been marked by a tremendous increase of the volume and the
heterogeneity of available data sometimes referred to as the “data deluge”. Exploit-
ing these data has become a major issue in several research domains (knowledge
representation and reasoning, data management, Semantic Web, ...) and the need
for integrating data semantics into querying mechanisms has been widely acknowl-
edged. This has renewed the interest for ontologies, which are typically used to
formalise general background knowledge on the modeled domains.

Indeed, ontologies have several qualities with respect to better exploiting data:

• they can be used to integrate heterogeneous data from different sources by
providing a common vocabulary;

• they allow to adapt the querying vocabulary to specific users’ needs, hence
abstracting from how data are actually stored;

• they allow to infer knowledge that is not explicitly stored in the data, hence
palliating incompleteness in the data.

However, taking into account data semantics requires both suitable ontologi-
cal formalisms and new query answering mechanisms able to integrate ontological
knowledge. Indeed, classical query answering mechanisms have been tailored and
optimised for databases. Now, the focus has been shifted to knowledge bases, in
which an ontological layer is added on top of data.

This motivated a new research line that led to proposals known as Ontology-
Based Data Access (OBDA, e.g., [CDL+07, PLC+08]), Ontological Query Answer-
ing (e.g., [CGP11, Mug11]) or Ontology-Mediated Query Answering (OMQA, e.g.,
[BO15, Bie16]). In these approaches, the ontological layer is seen as a logical theory
in (a fragment of) first-order logic and data are abstracted into logical facts (which
can be mapped to actual data).

Existential Rules

These new issues have deeply influenced research in Description Logics, the major
family of formalisms to represent and reason with ontologies [BCM+03]. This led

1

2 CHAPTER 0. INTRODUCTION

to the definition of new description logics, generally called lightweight description
logics, such as the DL-Lite [CDL+07] and the EL [BBL05] families, as well as the
associated profiles of the Semantic Web language OWL 2. At the same time, a new
logical framework has emerged, called existential rules [BLMS11, KR11], also known
as Datalog+/- [CGL12]. Existential rules have a double origin: on the one hand,
they were designed as an extension of Datalog, the language of deductive databases
[AHV95], for ontological representation purposes, hence the name Datalog+/-; on
the other hand they correspond to the logical translation of rules in a graph-based
knowledge representation framework [CM09]. They also have the same form as high-
level constraints from the database theory, known as Tuple Generating Dependencies
(TGDs) [BV84]; note however that TGDs define constraints on the data, while
existential rules are used to infer knowledge on the data. Finally, it appears that the
existential rule framework generalises most of the new description logics developed
for querying data.

More precisely, existential rules are positive and conjunctive rules of the form
“if body then head”, with a specific feature: it is possible to introduce in the head
of a rule variables that do not occur in the body. These variables are existentially
quantified. Thanks to this particularity, existential rules are able to infer the ex-
istence of individuals not necessarily present in the initial data. This makes them
well-adapted to open-world reasoning, in which not only we cannot assume that
only what is explicitly encoded in the data is true, but also in which we cannot
suppose that the only known objects are those present in the data. Such a feature
is considered important for representing and reasoning with ontological knowledge.

Let us illustrate this with a simple example. Consider two roommates Bob and
John, and assume we know that John pays for Internet. We can see these data
as a set of facts roommates(Bob, John) ∧ paysInternet(John). We now want to
know if Bob has Internet at home and so we ask the query ∃x(livesIn(Bob, x) ∧
hasInternet(x)). Without ontological knowledge we are not able to answer posi-
tively. Despite, we intuitively would like to answer yes: some ontological knowledge
is missing to get a positive answer. First, we know that if two persons are roommates,
there is some place where they both live, hence the rule ∀x∀y(roommates(x, y) →
∃z(livesIn(x, z) ∧ livesIn(y, z))). We also want to say that if someone pays for
Internet and lives somewhere, then Internet is present in that “somewhere”, which
we formalise by the rule ∀x∀y(livesIn(x, y) ∧ paysInternet(x) → hasInternet(y)).
Now our query gets a positive answer, indeed Bob and John, being roommates, live
in the same place. John pays for Internet, hence he gets Internet at home. There-
fore, Bob lives in a place where there is Internet. We could even add some other
rules to complete the background knowledge of this example, for instance, we could
say that roommate is a symmetrical relation, which we could express with the rule
∀x∀y(roommates(x, y) → roommates(y, x)).

Existential rules have the simplicity of rule-based languages, a privileged form
to express human knowledge, as well as their flexibility, i.e., they are able to adapt
to various kinds of data and are easily extended to encode new information. While

3

being simple, they are highly expressive, which allows to encode various kinds of
ontological knowledge. Unsurprisingly, this expressivity has a cost: indeed, most
reasoning problems over existential rules knowledge bases are undecidable (e.g.,
from [BV81] on TGDs). This motivated intense research in the last years to find
classes of rules for which reasoning is decidable and hopefully tractable. Currently, a
large landscape of decidable classes is known with different expressivity-complexity
trade-offs.

This thesis makes further contributions to the study of decidable existential rule
classes and to the analysis of their complexities.

Contributions of this Thesis

We consider knowledge bases in which the ontology is a set of existential rules. About
the queries, we consider conjunctive queries, which can be seen as existentially quan-
tified conjunctions of atoms. These queries correspond to the basic and most used
queries in databases. Hence, the fundamental problem we study is the conjunctive
query entailment problem (CQ entailment), which asks whether a conjunctive query
is entailed by a knowledge base.

Our contribution is twofold. First, we analyse the different “acyclicity-based”
decidable rule classes found in the literature. These rule classes rely on acyclicity
conditions to ensure the finiteness of some forward chaining algorithm. We propose
a tool that allows us to unify most acyclicity notions and to extend them in generic
way. We also analyse the complexity of the recognition problem, i.e., deciding
whether a given set of existential rules satisfies these new acyclicity notions. The
main paper associated with this work is [BGMR14a].

Second, we consider the decidability (and complexity) of the CQ entailment
problem when combining known decidable rule classes with a frequently required
construct in ontological modeling, namely the transitivity of binary relations. We
clarify the decidability picture for all the (currently known) classes for which some
forward chaining algorithm halts. Then, we study the particular case of linear
existential rules, and show that, up to a minor safety condition, linear rules are
compatible with transitivity. We finally consider the complexity of the CQ entail-
ment problem over knowledge bases composed of (safe) linear and transitivity rules.
Most of this work is reported in [BBMR15], however, with respect to that paper, we
provide a new undecidability result and correct a flaw in a complexity proof.

Other Contributions

During these three years, we have also considered other issues related to existential
rules. The results obtained are not detailed in this thesis, hence we briefly mention
them below, and refer the interested reader to the associated papers.

4 CHAPTER 0. INTRODUCTION

Our work on acyclicity-based decidable classes of rules was also motivated by
the objective of extending decidable cases of CQ entailment for existential rules
extended with a particular nonmonotonic negation, namely stable negation. Briefly,
adding nonmonotonic negation to existential rules allows to apply rules only if some
negated atoms from the rule body are not entailed by the knowledge base. While
it is easy to see that stable negation may complicate the design of algorithms and
increase the complexity of the CQ entailment problem, it also appears that it may
make this problem undecidable, even when stable negation is added to a decidable
class of positive existential rules. We have thus proposed a way to extend the results
obtained for acyclicity-based positive existential rules to existential rules with stable
negation. This work has been published in [BGMR14b].

Another interesting issue is how to deal with inconsistent knowledge bases. In
this thesis, we assume that knowledge bases are consistent, but in practice, there are
reasons to believe that it is not a safe assumption. Indeed, in a world where such
a volume of data is available, which furthermore come from different data sources,
it is likely that inconsistencies arise. From a logical point of view, an inconsistent
knowledge base allows to infer everything, and in the context of querying data,
it is obviously not the desired behaviour. We focus on the case where the ontol-
ogy is assumed to be consistent, hence inconsistencies in the knowledge base come
from the data (which is the most considered setting). When it is not possible to
effectively repair the data, one has to consider query mechanisms tolerant to incon-
sistencies. Various inconsistency-tolerant semantics have been defined, which all rely
on a common idea: answers to queries are drawn from some maximally consistent
subsets of the data (possibly added with some consistent inferred knowledge), called
repairs. We have taken part in the definition of a general framework that unifies
most inconsistency-tolerant semantics from the literature [BBB+16a]. Briefly, this
framework sees an inconsistency-tolerant semantics as a pair, composed of a “modi-
fier” of the inconsistent knowledge base that allows to select some maximal repairs,
and an “inference-strategy” that allows to infer conclusions from these selected re-
pairs. Concerning the notion of maximal consistent subset, at least two different
measures can be interesting: maximality in terms of set inclusion and maximality
in terms of cardinality. The inference strategy may want to find an answer in all
selected repairs, in their intersection, in a single one, or in a majority of them. These
choices give rise to different semantics, some of them corresponding to existing pro-
posals, while others are new. Our specific contribution in the context of this general
framework consisted in analysing the data complexity of the obtained semantics for
the fus subset of existential rules, which generalises most members of the DL-Lite
family [BBB+16b].

Finally, we have also developed Kiabora, a software tool that allows to recognise
most known decidable rule classes and proposes ways of combining them [LMR13].
The first version of this tool is available via a web interface at www.lirmm.fr/

5

kiabora. The second version has been integrated into the toolkit Graal dedicated
to querying knowledge bases within the existential rule framework. Graal provides
an abstract layer that allows to store and query various kinds of data (relational
databases, RDF triple stores, internal memory, ...), forward and backward chaining
algorithms, as well as complementary tools such as Kiabora and translators from
or to other languages. More information can be found on Graal website at http:
//graphik-team.github.io/graal/. Beside the development of Kiabora itself, we
have helped to design and implement part of Graal [BLM+15, BGL+15].

Organisation of the Thesis

The remainder of this thesis is organised in as follows.
In Chapter 1, we define required mathematical notions and introduce the ex-

istential rule framework. We recall various well-known results that we will use
throughout the manuscript.

In Chapter 2, we present an overview of the main rule classes for which the
CQ entailment problem is decidable. We first recall three abstract rule classes that
ensure a specific behaviour of some reasoning algorithms. These classes are abstract
in the sense that the associated recognition problem is undecidable. Then we review
the main known concrete decidable rule classes, which are obtained by enforcing
some syntactic restrictions on the sets of rules. Most of them belong to one or more
abstract rule classes.

Chapter 3 is devoted to decidable rule classes that rely on acyclicity condi-
tions ensuring the halting of some forward chaining variant, also known as chase in
database theory. The first part of this chapter is dedicated to the main known chase
variants, for which we give a unified formal definition. We then detail acyclicity-
based rule classes, which rely on different graphs. We propose a way to unify these
different acyclicity notions with a new graph and associated notion of dangerous
cycles. Finally, thanks to the tool we used to unify them, we extend previous
acyclicity-based rule classes.

In Chapter 4, we are interested in combining the transitivity of binary relations
with known decidable rule classes. We first review known results on this issue
obtained in the context of existential rules. Then, we provide new undecidability
results, which allows to clarify the picture for rule classes for which some forward
chaining algorithm halts. Finally, we consider the case of linear existential rules,
one of the simplest, yet useful, classes of existential rules. We show that, up to
a minor safety condition, linear and transitivity rules are compatible, and provide
complexity results for the CQ entailment problem in terms of data and combined
complexity.

Finally we summarise our contributions and outline further research in the con-
clusion.

6 CHAPTER 0. INTRODUCTION

Chapter 1

Fundamental Notions

Contents
1.1 General Mathematical Notions 7

1.1.1 Basic Notations . 7

1.1.2 Graph Notions . 8

1.1.3 Logical Notions . 9

1.1.4 Complexity Classes . 11

1.2 Existential Rule Framework 11

1.2.1 Forward Chaining . 16

1.2.2 Backward Chaining . 18

1.3 Some Useful Translations 21

1.1 General Mathematical Notions

In this section we define several basic mathematical notions and notations needed
in this thesis.

1.1.1 Basic Notations

Given a function f , we denote by dom(f) the domain of f . If we are also given a
set X, we denote the restriction of f to X by f |X = {(x, f(x)) | x ∈ dom(f) ∩X}.

A sequence S is a function whose domain is N if it is infinite, ∅ if it is of length
0, and {0, . . . , n − 1} if it is of length n ∈ N+. We denote by Si the ith element of
S, i.e., Si = S(i).

7

8 CHAPTER 1. FUNDAMENTAL NOTIONS

1.1.2 Graph Notions

Given a (hyper)graph G, we denote by V (G) its set of vertices and E(G) its set
of (hyper)edges. A (hyper)graph can be either directed or undirected, in the for-
mer case edges are ordered, while in the latter they are not, i.e., in an undirected
(hyper)graph, edges (x, y) and (y, x) are the same object.

Given a directed graph G and a vertex v ∈ V (G) we denote its neighbourhood
in G by Γ(v) = {x | (v, x) ∈ E(G)}.

Definition 1.1 (Path)
Given a graph G, a path is a sequence of edges (x1, x2), . . . , (xk−1, xk) such that
for all 1 ≤ i < k, (xi, xi+1) ∈ E(G).

If G is directed we say that the path is from x1 to xk (and we say that xk is
reachable from x1). If G is undirected we say that the path is between x1 and xk.

Now can be defined the notion of a connected component in an undirected graph.

Definition 1.2 (Connected Component)
Given an undirected graph G, a connected component of G is a subset C ⊆ V (G)
such that for any u, v ∈ C, there is a path between u and v.

This notion has been extended to strongly connected components for directed
graphs as follows.

Definition 1.3 (Strongly Connected Component)
Given a directed graph G, a strongly connected component of G is a subset C ⊆
V (G) such that for any u, v ∈ C there is a path from u to v (i.e., v is reachable from
u).

In Chapter 2, we also use the notion of treewidth of a (hyper)graph. This notion
relies on the notion of tree decomposition defined next.

Definition 1.4 (Tree Decomposition)
A tree decomposition T of a hypergraph G, is a tree where each vertex t is labelled
by a set of vertices (also called bag) λ(t) ⊆ V (G) such that:

• ∀u ∈ V (G), ∃t ∈ V (T) such that u ∈ λ(t);

• ∀e ∈ E(G), ∃t ∈ V (T) such that e ⊆ λ(t);

• ∀u ∈ V (G), ∀ti, tj ∈ V (T) such that u ∈ λ(ti) and u ∈ λ(tj), for all tk in the
only path between ti and tj in T , u ∈ λ(tk).

Then, from a tree decomposition, one can compute its “width”, which is the
maximal size of one of its bags (minus one).

1.1. GENERAL MATHEMATICAL NOTIONS 9

Definition 1.5 (Width)
Given a tree decomposition T , the width of T is defined as

width(T) = max
t∈V (T)

|λ(t)| − 1

.

Finally, the treewidth of a (hyper)graph is the minimal width of one of its tree
decompositions.

Definition 1.6 (Treewidth)
Given a (hyper)graph G, its treewidth is defined as the minimal width among all
tree decompositions of G.

This notion is quite useful as it helps to measure the distance between a graph
and a tree, for instance, trees have treewidth one, cycles have treewidth two, and if
a graph contains a clique of size k then its treewidth is at least k − 1.

1.1.3 Logical Notions

A logical language L = (P , C) is a pair composed of a finite set of predicates P and
a (potentially infinite) set of constants C. Furthermore, we are given an infinite set
of variables V . With each predicate of P is associated a non-negative integer called
its arity. We do not consider functional symbols except for constants (which are
functional symbols of arity 0).

Then, a term of L is either an element of C (thus a constant), or a variable from
V . An atom of L is of the form p(t1, . . . , tk) where p is a predicate from P of arity
k, and t1, . . . , tk are terms from L. It is a ground atom if all its terms are constants.
For brevity reasons, we sometimes use the expression p-atom to denote an atom
with predicate p.

Given an atom α, we denote by terms(α) the set of all terms in α, by var(α)
the set of all variables in α and by const(α) the set of all constants in α.

In our examples, we denote variables by letters from the end of the alphabet
(x,y,z,u,...), and constants by letters from the beginning of the alphabet (a,b,c,...).

Definition 1.7 (Interpretation)
An interpretation of a logical language L = (P , C) is a pair I = (D, I) where D

is a non-empty set called the interpretation domain and where I is an interpretation
function of the symbols of L such that:

• for any c ∈ C, I(c) ∈ D;

• for any p ∈ P of arity k, I(p) ⊆ Dk.

An interpretation of L is a model of a formula built on L if it makes this formula
true by considering the classical interpretation of logical connectives and quantifiers.

10 CHAPTER 1. FUNDAMENTAL NOTIONS

Definition 1.8 (Logical Consequence, Equivalence)
Given a language L and two formulae φ1 and φ2 on L, φ2 is a (logical) consequence
of φ1, which is denoted by φ1 |= φ2, if all models of φ1 are models of φ2.

If φ1 |= φ2 and φ2 |= φ1, φ1 and φ2 are (logically) equivalent, which is denoted
by φ1 ≡ φ2.

Definition 1.9 (Substitution)
Given a set of variables X and a set of terms T , a substitution σ of X by T is
a mapping from X to T .

Given an atom α, we denote by σ(α) the atom obtained by substituting each
occurrence of x ∈ var(α) ∩ X by σ(x), i.e., if α = p(t1, . . . , tk) then σ(α) =
p(σ(t1), . . . , σ(tk)).

Given a set of atoms A, σ(A) denotes the set obtained by applying the substitution
on each atom, i.e., σ(A) = {σ(α) | α ∈ A}.

Definition 1.10 (Homomorphism and Isomorphism)
Given two sets of atoms A1 and A2, a homomorphism from A1 to A2 is a sub-
stitution π of var(A1) by terms(A2) such that π(A1) ⊆ A2. In this case we say that
A1 maps to A2 by π.

If π is injective (thus π−1 is a function) and π−1 is a homomorphism from A2 to
A1, π is an isomorphism from A1 to A2.

An isomorphism can also be defined as a bijective substitution σ from var(A1)
to var(A2) such that σ(A1) = A2. That is why it is often called a “bijective variable
renaming”.

Furthermore, homomorphisms can also be defined for interpretations.

Definition 1.11 (Homomorphism between Interpretations)
Given two interpretations I1 = (D1, I1) and I2 = (D2, I2) of a logical language
L = (P , C), a homomorphism from I1 to I2 is a mapping π from D1 to D2 such
that:

• for all c ∈ C, π(I1(c)) = I2(c),

• for all p ∈ P and (t1, . . . , tk) ∈ I1(p), (π(t1), . . . , π(tk)) ∈ I2(p).

The last basic logical notion we need is that of prenex form.

Definition 1.12 (Prenex Form)
A first-order logical formula is in prenex form, if it is written as a sequence of
quantifiers followed by a formula without quantifier, and such that the scope of each
quantifier is the whole formula.

It is well known that every first-order formula can be rewritten into a first-order
formula of prenex form. Hence, in the following we always assume that all formulae
we are dealing with are under prenex form, which allows us to simplify the various
definitions and proofs.

1.2. EXISTENTIAL RULE FRAMEWORK 11

1.1.4 Complexity Classes

In this thesis we make use of several complexity classes. While we do not define
here all needed technical notions, we recall the definitions of the classes themselves
by increasing complexity.

Definition 1.13 (AC0)
A problem is in AC0 if it can be solved by a Boolean circuit of bounded depth with a
polynomial number of and and or gates.

Definition 1.14 (NLogSpace (NL))
A problem is in NL if it can be solved by a non-deterministic Turing machine using
only a working tape of logarithmic space in the input.

Definition 1.15 (Polynomial Time (PTime))
A problem is in P if it can be solved by a deterministic Turing machine running
in polynomial time in the input.

Definition 1.16 (Non-deterministic Polynomial Time (NP))
A problem is in NP if it can be solved by a non-deterministic Turing machine running
in polynomial time in the input.

Definition 1.17 (Polynomial Space (PSpace))
A problem is in PSpace if it can be solved by a Turing machine using only a tape of
polynomial space in the input. Note that it has been shown that non-deterministic
polynomial space is equivalent to deterministic polynomial space.

Definition 1.18 (Exponential Time (ExpTime))
A problem is in ExpTime if it can be solved by a deterministic Turing machine
running in simple exponential time in the input.

Furthermore, a problem P is hard for a given complexity class C if any instance
of a problem from C can be reduced to an instance of P through an “adapted”
reduction (in most cases, adapted means “running in polynomial time”, but for
lower classes (PTime and below), logarithmic space reductions must be used).

Finally a problem P is complete for a given complexity class C, if it belongs to
C and is hard for C.

For more details about complexity theory notions, the reader is referred to
[Pap94].

1.2 Existential Rule Framework

A knowledge base is composed of a set of facts and of an ontology, which is here a
set of existential rules. We consider the basic database queries, which are (unions

12 CHAPTER 1. FUNDAMENTAL NOTIONS

of) (Boolean) conjunctive queries. In this section we define formally these objects
as well as the associated notions that allow to do reasoning. The main problem
we study throughout this manuscript is the conjunctive query entailment problem,
which asks if a (Boolean) conjunctive query is a logical consequence of a knowledge
base.

In most settings, a fact is a ground atom. However, it is convenient to consider
facts with existentially quantified variables, which naturally leads to see a fact as
an existentially closed conjunction of atoms. Furthermore, the prenex form of a
conjunction of facts is itself a fact, hence we can identify the notions of a fact and
a set of facts.

Definition 1.19 (Set of Facts)
Given a logical language L, a fact or set of facts is an existentially closed con-
junction of atoms on L.

In the following we will often consider sets of facts as sets of atoms, which allows
to use set theoretic notions such as the inclusion on sets of facts. We also often
omit the existential quantifiers in the representation of facts, since there can be no
ambiguity.

Example 1.1 (Set of Facts)
Consider the first-order formula F : ∃x∃y(p(x, y) ∧ q(y, a, x) ∧ s(x)); where a is
a constant.

The formula F is an existentially closed conjunction of atoms, therefore a set of
facts, which we can also denote by {p(x, y), q(y, a, x), s(x)}.

Sets of facts can also be seen as (hyper)graphs, which allows to apply several
graph notions to them. Indeed, given a set of facts F , one can build a directed
hypergraph whose set of vertices is in bijection with the set of terms of F , and
whose set of hyperedges is in bijection with the set of atoms of F . Then each
vertex is labelled by the corresponding term, and each edge by the predicate of the
corresponding atom.

Example 1.2 (Graphical View of a Set of Facts)
Consider the set of facts F from Example 1.1. Figure 1.1 depicts its graphical
representation, where hyperedges are represented via circle nodes.

Definition 1.20 (Conjunctive Query, Union of Conjunctive Queries)
A conjunctive query (CQ) is a conjunction of atoms where all variables are either
free (called answer variables) or existentially quantified.

A union of conjunctive queries (UCQ) is a disjunction of CQs with the same
answer variables.

1.2. EXISTENTIAL RULE FRAMEWORK 13

x y

a

p

q

s

3

2

1

1 2
1

Figure 1.1: Graphical representation of the set of facts F from Example 1.1

If all variables of a conjunctive query Q are quantified (thus Q has the exact
same form as a set of facts), we say that Q is a Boolean conjunctive query (BCQ).
Throughout this thesis we only consider Boolean conjunctive queries that we simply
call conjunctive queries.

A well-known fundamental result is that the logical consequence on existentially
closed conjunctions of atoms (e.g., two sets of facts or Boolean conjunctive queries)
amounts to the existence of a homomorphism as stated by the next theorem, which
has been proven in several contexts (see, e.g., [AHV95] for a version in terms of
classical CQ containment).

Let F1 and F2 be two sets of facts. There exists a homomorphism from F1

to F2 if and only if F2 |= F1.

Theorem 1.1 (Folklore)

Since one can compare two sets of facts with respect to logical consequence, it is
natural to consider the core of a set of facts, which is a minimal equivalent subset.
It should be pointed out that the definition of core we give here is restricted to finite
sets of facts, which is enough for our needs. However, a more technical definition
for infinite sets exists [Bod05].

Definition 1.21 (Core)
Given a finite set of facts F , a core of F is a minimal subset of F equivalent
to F .

Example 1.3 (Core)
Consider the set of facts F = p(x, y) ∧ p(y, z) ∧ p(x, u) ∧ p(u, z). A core of F
is p(x, y) ∧ p(y, z).

14 CHAPTER 1. FUNDAMENTAL NOTIONS

It is well-known that if F is a finite set of facts, then all its cores are isomorphic,
for instance in Example 1.3, the set of facts p(x, u) ∧ p(u, z) is also a core of F .

Furthermore, given a set of facts F , one can define its “isomorphic model”, which
has the same structure as F .

Definition 1.22 (Isomorphic Model)
Given a set of facts F built on the logical language L = (P , C), the isomorphic
model of F denoted by M(F) = (D, I) is defined as follows:

• D is in bijection with terms(F) ∪ C (to simplify notations we consider that
this bijection is the identity),

• for all c ∈ C, I(c) = c,

• for all p ∈ P, I(p) = {(t1, . . . , tk) | p(t1, . . . , tk) ∈ F}.

Finally, it is also well-known that the following properties are equivalent: given
two sets of facts F1 and F2,

1. F1 |= F2,

2. there is a homomorphism from F2 to F1,

3. M(F1) is a model of F2.

An existential rule is a positive (and conjunctive) rule. Its special feature is
that its head may introduce variables that do not occur in its body, and which are
existentially quantified, hence the name “existential rule”. This allows to infer the
existence of unknown individuals (possibly equal to (known) individuals appearing
in the set of facts).

Definition 1.23 (Existential Rule)
An existential rule (or simply rule) on a logical language L is a closed formula of
form ∀x1, . . . , ∀xb(B → ∃z1, . . . , zhH), where B and H are two finite conjunctions
of atoms on L, var(B) = {x1, . . . , xb} and var(H) \ var(B) = {z1, . . . , zk}.

The sets of atoms B and H are respectively called the body and the head of
R. Variables occurring in var(B) ∩ var(H) are called the frontier variables of R
and denoted by fr(R). Variables occurring in var(H)\ var(B) are called existential
variables.

Since no ambiguity can arise, we omit the quantifiers in rules.

Example 1.4 (Existential Rule)
Consider the rule R = ∀x∀y(p(x, y) → ∃z(p(y, z))). This rule will also be denoted
by R = p(x, y) → p(y, z). Variable y is the only frontier variable of R and z is its
only existential variable.

1.2. EXISTENTIAL RULE FRAMEWORK 15

Two other kinds of rules may be added to the framework: negative constraints,
which are rules with an absurd head (B → ⊥), and equality rules which are rules
whose head specifies the equality between two terms (B → t1 = t2). For details, see
[BLMS11, CGL09]. It should be pointed out that there is no additional complexity
(or decidability) cost for considering negative constraints (except if only particular
BCQ are considered). By contrast, equality rules are known for being hard to handle
from both complexity and decidability points of view. In the following, we restrict
our focus to knowledge bases without negative constraints nor equality rules. We
are now ready to formally define a knowledge base.

Definition 1.24 (Knowledge Base)
A knowledge base is a pair K = (F ,R) where F is a (finite) set of facts and
R is a (finite) set of existential rules.

Note that, without loss of generality, we will always assume that sets of facts
and all rules use disjoint sets of variables.

In the following, when we consider logical notions involving knowledge bases,
sets of rules and/or facts, we implicitly consider the associated formula which is the
conjunction of all involved formulae. In particular, (F ,R) is seen as the conjunction
of the formula associated with F and of all the rules from R.

A nice property of this setting is that given a knowledge base K = (F ,R), there
always exists a model of K that can be considered as a representative of all models
of K, in the sense that is is sufficient to consider this model to check entailment
from K. Such a model has the property of being “universal”.

Definition 1.25 (Universal Model)
Given a knowledge base K = (F ,R), a universal model M of K is a model of
K such that for all models M ′ of K, there is a homomorphism from M to M ′.

Note that not all knowledge bases have a finite universal model.
Now that we have defined all of our basics objects, we can reformulate the en-

tailment problem more formally:

Given a knowledge base K = (F ,R) and a Boolean conjunctive query Q, the
conjunctive query entailment problem (CQ entailment) asks the following
question: does K |= Q hold?

Problem 1.1 (Conjunctive Query Entailment)

It is well-known that this problem is undecidable (e.g., [BV81]), even under
strong restrictions such as using a single rule or restricting the vocabulary (a single
binary predicate, no constant, ...), see, for instance, [BLMS11].

16 CHAPTER 1. FUNDAMENTAL NOTIONS

However many restrictions on the set of rules are known to ensure decidability.
Most of them can be classified in three families, which are associated with forward
or backward chaining schemes [BLMS11]. The first one is that of Finite Expansion
Sets (FES). It ensures that a finite universal model of the knowledge base exists.
This property allows for some finite Forward Chaining, a process that “applies” rules
until an answer to the query is found or nothing “useful” is produced. The second
family is called Finite Unification Sets (FUS) and guarantees that some Backward
Chaining method halts. This process uses the rules to “rewrite” the query which
creates a UCQ, which is then checked against the initial set of facts. Finally, the
last family is called Bounded Treewidth Set (BTS) [CGK08]. It ensures that the
potentially infinite universal model of the knowledge base has a bounded treewidth.
This class does not give an algorithm yet, but thanks to Courcelle’s theorem [Cou89],
we know that entailment over BTS knowledge bases is decidable. Furthermore,
an expressive subclass of BTS, namely Greedy BTS (GBTS) is provided with an
algorithm [BMRT11, Tho13].

These classes will be precisely defined in Chapter 2.

1.2.1 Forward Chaining

Rules allow to infer new knowledge from an initial set of facts, giving rise to the
notion of rule application. This notion is defined as usual in rule languages, i.e., the
head of the rule is added to the set of facts according to a homomorphism from the
body of the rule to the set of facts. The only specificity for existential rules is that
existential variables in the rule head are replaced by fresh variables.

Definition 1.26 (Rule Applicability)
A rule R = B → H is applicable to a set of facts F if there exists a homomorphism
π from B to F .

Definition 1.27 (Rule Application)
Given a set of facts F , a rule R = B → H and a homomorphism π from B to
F , the result of the application of the rule R on F according to π is defined as

α(F , R, π) = F ∪ πsafe(H)

where πsafe if the extension of π to the existential variables of R, i.e.: for all variables
x occurring in H, πsafe(x) = π(x) if x ∈ fr(R) and πsafe(x) = z otherwise, where
z is a fresh variable (i.e., a variable that does not occur elsewhere).

Intuitively, πsafe is a “safe” extension of π that maps all existential variables of
H to some distinct fresh variables, in order to avoid confusion with variables already
occurring in F .

1.2. EXISTENTIAL RULE FRAMEWORK 17

Example 1.5 (Rule Application)
Let F = {c(a)} be a set of facts and R = c(x) → p(x, y) ∧ c(y) be an existen-
tial rule.

Rule R is applicable to F since there exists the following homomorphism π =
{x 7→ a}, and the application of R on F according to π produces the set of facts
F1 = α(F , R, π) = c(a) ∧ p(a, y1) ∧ c(y1).

Then rule R is applicable to F1 thanks to the homomorphism π2 = {x 7→ y1},
which would produce p(y1, y2) ∧ c(y2) (and we could go on like this since each added
c-atom allows for a new application of R).

A sequence of rule applications is called a derivation and is defined as follows.

Definition 1.28 (Derivation)
Given a set of facts F and a set of rules R, a derivation of F w.r.t. R (also called
R-derivation) is a (potentially infinite) sequence D of triples of the form (Ri, πi, Fi)
such that D0 = (∅, ∅, F0 = F), and ∀i > 0 in dom(D), Ri = (Bi, Hi) ∈ R, πi is a
homomorphism from Bi to Fi−1 and Fi = α(Fi−1, Ri, πi).

When D is of length k ∈ N, we say that it is a derivation from F to Fk.

Example 1.6 (Derivation)
Consider again the set of facts F = c(a), and the set of rules R composed of a
single rule R = c(x) → p(x, y), c(y) from Example 1.5.

A derivation D of F with respect to R could be:

i Ri πi Fi

0 ∅ ∅ F
1 R {x 7→ a} F ∪ {p(a, y1), c(y1)})
.

k R {x 7→ yk−1} Fk−1 ∪ {p(yk−1, yk), c(yk)}
.

Note that in this example, only a single derivation (not using the same homo-
morphism twice) is possible, but in general, this is not the case.

The next theorem states that derivations are a sound and complete way to “solve”
the CQ entailment problem.

Let F be a set of facts, R be a set of rules, and Q be a Boolean conjunctive
query; then, (F ,R) |= Q if and only if there exists a (finite) R-derivation
from F to Fk such that Fk |= Q.

Theorem 1.2 ([BLMS11])

Chapter 3 is devoted to the family of forward chaining algorithms and to rule
classes for which some of these algorithms always halt.

18 CHAPTER 1. FUNDAMENTAL NOTIONS

1.2.2 Backward Chaining

In contrast with forward chaining, backward chaining mecanisms start from the
query. In Prolog and other logic programming languages, facts are ground atoms
(which possibly involve functional symbols) and are seen as rules with an empty
body. The aim is then to “erase” the query by iteratively rewriting it with the rules.
In knowledge representation, we clearly distinguish between rules and facts, hence
we decompose the backward chaining into two processes: rewriting the query using
the rules, and mapping a rewritten query to the set of facts (by homomorphism).
The OBDA approach goes one step further by completing the rewriting process
before trying to map the obtained query (or set of queries) to the set of facts. The
aim is to come back to a classical database query answering problem.

Differently from classical unifiers used in logic programming which unify an atom
from the query with the head atom, piece-unifiers do not consider a single atom of
the query but a subset of the query. This allows to correctly process existential
variables as illustrated by the next example.

Example 1.7 (Classical Unifier)
Consider the rule R = person(x) → hasParent(x, z) which says that every per-
son has a parent, and the set of facts F = person(Bob) ∧ painter(Max). As-
sume one asks if someone has a parent who is a painter with the following query
Q = ∃u, v(hasParent(u, v)∧ painter(v)). With a classical (most general) unifier of
Q with the head of R, for instance {x 7→ u, z 7→ v}, we obtain the direct rewriting
Q1 = ∃u, v(person(u) ∧ painter(v)) (in which the connection between u and v has
been lost). We then have that F |= Q1 while (F ,R) 6|= Q. Hence, this rewriting is
unsound. Here the “piece condition” from the following definition of a piece-unifier
has been violated.

Piece-unifiers can be seen as generalised unifiers, in the sense that they unify
two sets of atoms. Moreoever they process existential variables in a special way.

The following definition of a piece-unifier considers the partition on terms induced
by a (generalised) unifier: the terms unified together are in the same class of the
partition. Partitions have nice properties that are convenient in proofs.

Definition 1.29 (Piece-unifier)
Given a rule R = (B,H) and a set of atoms Q, a piece-unifier of Q with H is
a triple µ = (Q′, H ′, Pµ) where Q′ ⊆ Q, H ′ ⊆ H and Pµ is a partition of terms of
Q′ ∪H ′ such that:

(i) Admissibility: there is at most one single constant or existential variable
from H ′ in each class of Pµ, and if a class contains an existential variable, it
cannot contain a frontier variable from R (hence, the other terms in the class
are from Q′);

(ii) Unifiability: σµ(Q
′) = σµ(H

′), where σµ is a substitution associated with the
partition Pµ (formally defined below);

1.2. EXISTENTIAL RULE FRAMEWORK 19

(iii) Piece condition: if there is an existential variable z occurring in H ′ then no
atom from Q \Q′ may contain a variable x occurring in the same class as z.

Definition 1.30 (Substitution Associated with a Partition)
Given an admissible partition of a set of terms Pµ, a substitution associated with Pµ

is obtained as follows: for each class C ∈ Pµ, choose a term tC ∈ C (if C contains
a constant, then tC must be that constant); then σµ =

⋃

C∈P

{t 7→ tC | ∀t ∈ C}. The

terms tC are said to be preserved by the substitution.

Note that when a class contains only variables, one can choose to give priority
to variables occurring in the query or in the rule.

Example 1.8 (Piece-unifier)
Consider the rule R = p(x, y) → s(x, z) and the conjunctive query Q = s(a, u) ∧
s(v, u) ∧ r(v), where a is a constant. There is the following piece-unifier of Q with
H:

{Q′ = {s(a, u), s(v, u)}, H ′ = {s(x, z)}, Pµ = {{a, v, x}, {u, z}}}

Indeed, no class of Pµ contains more than one existential variable from H ′ or con-
stant, and the class that contains an existential variable does not contain any frontier
variable, thus admissibility is satisfied. One can choose for instance the substitution
σµ = {v 7→ a, x 7→ a, u 7→ z}. We then check that σµ(Q

′) = σµ(H
′). Finally all

atoms of Q using variable u (which is unified with the existential variable z) belong
to Q′, hence the piece condition is satisfied.

Note that no smaller piece-unifier of Q with H exists since u is necessarily unified
with z, hence the piece condition requires that both atoms of Q are part of Q′.

Given this extended notion of unifier, we can now define a direct query rewriting
as follows.

Definition 1.31 (Direct Query Rewriting)
Given a rule R = (B,H), a conjunctive query Q, a piece-unifier µ = (Q′, H ′, Pµ) of
Q with H and a substitution σµ associated with Pµ, the direct query rewriting of Q
according to µ is the following CQ: β(Q,R, µ) = σµ(Q \Q′) ∪ σµ(B).

Note that in the above definition any substitution associated with µ can be used,
as they all give isomorphic results.

Example 1.9 (Direct Rewriting)
Consider the rule R, the query Q and the piece-unifier µ from Example 1.8. The
direct rewriting of Q according to µ is: β(Q,R, µ) = r(a) ∧ p(a, y).

Then a rewriting sequence is defined as a sequence of direct rewriting steps.

20 CHAPTER 1. FUNDAMENTAL NOTIONS

Definition 1.32 (Rewriting Sequence)
Given a CQ Q, and a set of rules R, a rewriting sequence of Q w.r.t. R (also called
an R-rewriting sequence) is a (potentially infinite) sequence S of triples (Ri, µi, Qi)
such that S0 = (∅, ∅, Q) and ∀i > 0, Ri = (Bi, Hi) ∈ R, µi is a piece-unifier of Qi−1

with Hi and Qi = β(Qi−1, Ri, µi).

When S is of length k ∈ N, we say that it is a rewriting sequence from Q to Qk.

Similarily to derivations, rewriting sequences are a sound and complete way to
“solve” the CQ entailment problem as stated by the next theorem.

Let F be a set of facts, R be a set of rules and Q be a Boolean conjunctive
query; then, (F ,R) |= Q if and only if there exists a rewriting sequence
from Q to Qk such that F |= Qk.

Theorem 1.3 ([BLMS11])

This notion gives naturally rise to an algorithm that reads: let Q = {Q}, for all
queries Qi ∈ Q, rewrite Qi according to some unifier, then add the result to Q if it
is not equivalent to another query. If at some point no new query is added, end the
process and evaluate the union of conjunctive queries on the knowledge base.

While both of these scheme families seem quite different, they are actually
strongly related in the sense that given a knowledge base K = (F ,R) and a Boolean
conjunctive query Q, if there exists a derivation of F w.r.t. R of length k such that
Fk entails Q, then there exists a rewriting sequence of at most length k leading to
a query Q′ entailed by F ; and if there exists a rewriting sequence of length k such
that F entails Qk, then there exists a derivation of same length leading to a set of
facts Fk such that Fk entails Q, as stated by the next theorem.

Note that the derivation may be longer than the rewriting sequence, since in the
former one can add rule applications that are useless to answer Q.

Let F be a set of facts, R be a set of rules and Q be a conjunctive query.
If there exists a derivation from F to Fk such that Fk |= Q, then there exists
k′ ≤ k and a rewriting sequence from Q to Qk′ such that F |= Qk′ .
Furthermore, if there exists a rewriting sequence from Q to Qk such that
F |= Qk, then there exists a derivation from F to Fk such that Fk |= Q.

Theorem 1.4 ([BLMS11])

1.3. SOME USEFUL TRANSLATIONS 21

1.3 Some Useful Translations

In this section we define several transformations of sets of rules (with one of them
also involving a translation of the set of facts), mostly used to simplify the shape of
the rules we need to consider.

The first translation is used to convert rules into single-piece headed rules.
We define first the “piece graph” of a rule that allows us to easily define the

notion of piece.

Definition 1.33 (Piece Graph)
Given a rule R = (B,H) its piece graph is defined as the undirected graph whose set
of vertices is the set of atoms occurring in H, and where there is an edge between
two vertices corresponding to atoms h1 and h2 in H if there is an existential variable
z such that z ∈ var(h1) and z ∈ var(h2).

Definition 1.34 (Rule Piece, Single-piece Headed Rule)
Given a rule R = (B,H), a rule piece of R is the set of atoms corresponding to
a connected component of the piece graph of R.

A rule R is a single-piece headed rule if H is a single rule piece of R.

Intuitively, a rule piece corresponds to the minimal unit of information contained
in a rule head. Indeed, any rule can be decomposed into an equivalent set of rules
with the same body and a head restricted to a single rule piece as performed by the
following translation.

Definition 1.35 (Single-piece Translation)
Given a set of rules R, its single-piece translation sp(R) is defined as follows. For
each rule R = (B,H) ∈ R, for each rule piece Hi of R, add in sp(R) the rule
B → Hi.

This transformation is without loss of generality, hence, we can always assume
that all rules we consider are single-piece.

Given a set of rules R, R and sp(R) are logically equivalent.

Proposition 1.1

Example 1.10 (Single-piece Translation)
Consider the following rule (where c is a constant and every other term a variable):
R = p(x, y, c) → q(y, z1) ∧ r(z1) ∧ s(x, c, z2).

The piece graph of R is depicted on Figure 1.2.
The single-piece translation of {R} is the following set of rules R′:

22 CHAPTER 1. FUNDAMENTAL NOTIONS

q(y, z1) r(z1)

s(x, c, z2)

Figure 1.2: Piece Graph of rule R from Example 1.10

• R1 = p(x, y, c) → q(y, z1) ∧ r(z1)

• R2 = p(x, y, c) → s(x, c, z2)

The next translation further simplifies the shape of rules we consider.

Definition 1.36 (Atomic-headed Translation)
Given a set of rules R its atomic-headed translation ah(R) is defined as follows.
For each rule R = (B,H) ∈ sp(R) where |H| > 1, perform the following:

1. create a new predicate rR of arity |var(H)|,

2. add to ah(R) the rule B → rR(~t) where ~t is the set of variables occurring in
H,

3. for each atom hi ∈ H, add the rule rR(~t) → hi to ah(R).

This translation creates new predicates with arity depending on the size of a
rule head, and thus is not suitable in a context where we consider that the arity is
bounded. However, if the arity is not assumed to be bounded, it will prove useful
to be able to simplify rule heads into single atoms.

Example 1.11 (Atomic-headed Translation)
Consider again the rule R from Example 1.10, and its single-piece translation sp(R) =
{R1, R2}. Its atomic-headed translation is the following set of rules:

• R1,a = p(x, y, c) → rR1
(y, z1)

• R1,b1 = rR1
(y, z1) → q(y, z1)

• R1,b2 = rR1
(y, z1) → r(z1)

• R2 = p(x, y, c) → s(x, c, z2)

Note that this translation could be defined on any set of rules R without first
decomposing it into sp(R), however it would potentially create predicates with an
arity larger than needed.

1.3. SOME USEFUL TRANSLATIONS 23

Let R be a set of rules. For any CQ Q and knowledge base (F ,R) on a
logical language L, (F ,R) |= Q iff (F , ah(R)) |= Q.

Proposition 1.2

The last translation we consider is used to get rid of constants occurring in
rules. As for the atomic-headed translation, this cannot be used without loss of
generality in the case where the arity is bounded. Furthermore, this translation not
only modifies the rules, but also the set of facts. The idea is to totally order the
constants, say from c1 to cn, and increase the arity of each predicate by creating
a placeholder for each constant. Then rules are translated in such a way that
p(. . . , c, . . .) where c is the ith constant becomes p′(. . . , xi, . . . , x1, . . . , xn), where xi

stands for the ith constant. Hence the occurrence of the ith constant in an atom is
replaced by the double occurrence of the variable xi. Facts are translated by adding
c1, . . . , cn at the end of each atom.

Definition 1.37 (No-constant Translation)
Given a knowledge base K = (F ,R), its no-constant translation nc(K) is defined
as follows. For each predicate p of arity k, create a new predicate p′ with arity
k + |cst(K)|, where cst(K) = {c1, . . . , cn} is the set of all constants occurring either
in F or in some rule R ∈ R.

Then for each atom α = p(t1, . . . , tk) in some rule R ∈ R, replace α by an atom
p′(t′1, . . . , t

′
k, . . . , t

′
k+n) where (all xj being distinct fresh variables):

t′i =

ti if i ≤ k and ti is a variable,

xj if i ≤ k and ti = cj,

xj if i = k + j.

Now for each atom α = p(t1, . . . , tk) in F , replace α by an atom p′(t1, . . . , tk, c1, . . . , cn).
Finally, for each predicate p create the rule p′(y1, . . . , yk, x1, . . . , xn) → p(y1, . . . , yk),
where all variables are distinct.

Example 1.12 (No-constant Translation)
Consider again rule R = p(x, y, c) → q(y, z1) ∧ r(z1) ∧ s(x, c, z2) from Example
1.10, and let F = p(b, b, b) ∧ p(b, b, c) be a set of facts, where b is a constant.

The no-constant translation of K = (F , {R}) is obtained as follows. The set of
constants is {b, c}, hence n = 2. First we create four new predicates p′, q′, r′ and s′

of arity 5, 4, 3 and 5 respectively. Now we update rule R into:

R′ = p′(x, y, x2, x1, x2) → q′(y, z1, x1, x2) ∧ r′(z1, x1, x2) ∧ s′(x, x2, z2, x1, x2)

Then the set of facts becomes F ′ = p(b, b, b, b, c) ∧ p(b, b, c, b, c). Finally we add the
following four rules (one for each predicate):

24 CHAPTER 1. FUNDAMENTAL NOTIONS

• Rp = p′(y1, y2, y3, x1, x2) → p(y1, y2, y3),

• Rq = q′(y1, y2, x1, x2) → q(y1, y2),

• Rr = r′(y1, x1, x2) → r(y1),

• Rs = s′(y1, y2, y3, x1, x2) → s(y1, y2, y3).

These four rules allow to transfer facts from the new vocabulary to the original one.

Let R be a set of rules. For any CQ Q and knowledge base (F ,R) on a
logical language L, (F ,R) |= Q iff nc(F ,R) |= Q.

Proposition 1.3

In particular, in Section 4.2, we will make the assumption that all rules are single-
headed rules and contain no constant, and this will allow for simpler decidability
proofs.

Furthermore, note that both the atomic-headed and the no-constant translations
only preserve answers on the original vocabulary. Indeed, new predicates are created,
and thus, queries that would involve these new predicates may have a positive answer
in the translation but not in the original knowledge base.

Conclusion

The next chapters will rely on the fundamental notions we have introduced here:

• Chapter 2: this chapter is devoted to rule classes for which the CQ entailment
problem is decidable. Derivations and rewriting sequences are the fundamental
mechanisms that underly these classes.

• Chapter 3: several forward chaining (or “chase”) mechanisms can be based
on the derivation notion, and after recalling most of them, we study the var-
ious acyclicity conditions that ensure the finiteness of some forward chaining
variant.

• Chapter 4: we study the compatibility of transitivity rules with other known
decidable classes of rules. The algorithm we develop for the case of linear rules
is based on backward chaining techniques.

Chapter 2

Landscape of Decidable Classes of
Rules

Contents
2.1 Abstract Rule Classes . 25

2.2 Finite Expansion Set . 28

2.3 Bounded Treewidth Set . 33

2.4 Finite Unification Set . 37

2.5 Description Logics . 43

2.6 Kiabora . 46

In this chapter we review various decidability and complexity results from the
literature for the CQ entailment problem. More specifically, we recall the main
classes of rules C such that entailment over knowledge bases where the set of rules
belongs to C is decidable. For brevity reasons, we often refer to them as “decidable
classes of rules”. We end this chapter by pointing out the relationships between
description logics and the existential rule framework.

2.1 Abstract Rule Classes

First, we recall three abstract rule classes, “abstract” in the sense that we cannot
decide in general whether a set of rules belongs to one of them [BLMS11]. These
classes ensure a specific behaviour of either some forward or some backward chaining
algorithm.

Definition 2.1 (Finite Expansion Set (FES) [BLMS11])
Given a set of rules R, we say that R satisfies the Finite Expansion Set (FES)
property if for any set of facts F , there exists some k ∈ N such that for any query
Q, there exists a (finite) derivation from F to Fk such that Fk |= Q if and only if
(F ,R) |= Q.

25

26 CHAPTER 2. LANDSCAPE OF DECIDABLE CLASSES OF RULES

The Finite Expansion Set property ensures that for any set of facts F , the
knowledge base (F ,R) has a finite universal model. Hence a forward chaining
algorithm that applies rules in a “breadth-first” manner (also known as the “chase”),
and after each rule application (or after each breadth-first step) considers the core
of the obtained set of facts halts on any knowledge base built with a set of rules
satisfying the FES property. Then, the isomorphic model of the saturated set is
finite. More details on the different kinds of chase and their properties are given in
Section 3.1.

Example 2.1 (Non-FES)
The set of rules composed of the single rule R = q(x) → p(x, y) ∧ q(y) is not
FES. Indeed, consider the set of facts q(a). Then one can apply rule R according to
homomorphism π1 = {x 7→ a} and obtain F1 = q(a)∧p(a, y0)∧q(y0). A core of F1 if
F1 itself. The rule R can be applied again, this time using the homomorphism π2 =
{x 7→ y0} and the resulting set of facts is F2 = q(a)∧p(a, y0)∧q(y0)∧p(y0, y1)∧q(y1).
One can see that this rule can be applied again, and this process will never halt.

The second abstract property relies on query rewriting. A set of rewritings Q of
a query Q with a set of rules R is said to be sound and complete if for any set of
facts F , it holds that (F ,R) |= Q if and only if there is Qi ∈ Q such that F |= Qi

(the direction ⇒ expresses the soundness while the direction ⇐ the completeness).
When Q is finite, it can be seen as a union of conjunctive queries. Then the previous
condition can be recast as: (F ,R) |= Q iff F |= Q.

Definition 2.2 (Finite Unification Set [BLMS11])
Given a set of rules R, we say that R satisfies the Finite Unification Set (FUS)
property if for any query Q, there is a finite sound and complete set of rewritings of
Q with R.

This set is clearly computed independently from any set of facts. Note that the
FUS property can also be expressed as follows: a set of rules R is FUS if and only
if for any conjunctive query Q, there is some k ∈ N such that the set of all (sound)
rewritings of Q with R that can be obtained by a rewriting sequence of length less
than or equal to k is complete. In other words, Q is “UCQ-rewritable”.

This property ensures that given a set of rules R that satisfies it, any conjunctive
query Q can be rewritten into a (finite) union of conjunctive queries Q such that
for any set of facts F , (F ,R) entails Q if and only if there is a rewriting Q′ ∈ Q,
such that F entails Q′. Note that a FUS set of rules may have an infinite sound
set of rewritings. However this set always has a finite complete subset obtained by
ignoring redundant queries, i.e., queries Q2 that are contained in another query Q1

(which can be checked by exhibiting a homomorphism from Q1 to Q2). In other
words, for any query Q there exists some k ∈ N such that the set Q of all sound
rewritings of Q obtained by a sequence of length less than or equal to k is complete.
Hence, if a knowledge-base is built on a finite unification set of rules, then a query

2.1. ABSTRACT RULE CLASSES 27

rewriting algorithm that would after each rewriting only keeps the queries that are
not contained in another one halts, see [KLMT15] for such an algorithm.

It has been shown in [LMU16] that FUS is equivalent to the Bounded Derivation
Depth Property (BDDP) [CGL09] defined as follows: for any query Q, there exists
some k ∈ N such that for any set of facts F , (F ,R) |= Q if and only if there exists a
(finite) derivation from F to Fk such that Fk |= Q. This allows to relate the notions
of derivations and rewriting sequences for FUS rules: for any query Q there exists
some k ∈ N such that for any set of facts F , (F ,R) |= Q if and only if there is a
(finite) derivation from F to Fk such that Fk |= Q if and only if there is a (finite)
rewriting sequence from Q to Qk such that F |= Qk.

Furthermore, in [GKK+14], it is shown that the BDDP is equivalent to First-
order Rewritability, i.e., to the existence of a first-order formula ϕ(Q) such that
(F ,R) |= Q if and only if F |= ϕ(Q). While a UCQ rewriting is already a spe-
cific kind of first-order rewriting, there may exist a first-order rewriting exponen-
tially smaller than all UCQ rewritings. In turn, every first-order rewriting can be
translated into an equivalent UCQ-rewriting (which, however, can be exponentially
larger). Such rewriting can thus be useful from a practical point of view, since most
databases query languages (such as SQL) allows for first-order querying.

Example 2.2 (Non-FUS)
The following set of rules {p(x, y) ∧ p(y, z) → p(x, z)} is not FUS. For instance
the query Q = p(a, b) does not admit a finite sound and complete set of rewrit-
ings. Indeed, any sound and complete set of rewritings of Q contains p(a, b) and the
queries p(a, y0)∧ p(y0, y1)∧ . . . p(yk, b) for all k ∈ N. Note that all these queries are
pairwise incomparable with respect to containment.

The last abstract property relies on the notion of treewidth of a set of facts. To
compute such treewidth, we use the primal graph of a set of facts F , which is the
undirected graph defined as follows: the set of vertices is the set of terms occurring
in F and there is an edge between two vertices u and v if there is an atom α ∈ F
such that the terms corresponding to u and v occur both in α. Then the treewidth
of F is the treewidth of the primal graph of F .

Definition 2.3 (Bounded Treewidth Set (BTS) [CGK08, BLMS11])
A set of rules R is a bounded treewidth set (BTS) if for any set of facts F , there
exists b ∈ N such that for any derivation from F to Fk the core of Fk has treewidth
at most b.

This property can also be expressed in terms of models: a set of rules R is BTS
if and only if there exists a (potentially infinite) universal model of the knowledge
base whose treewidth is bounded.

Example 2.3 (Non-BTS)
Consider the following set of rules R:

28 CHAPTER 2. LANDSCAPE OF DECIDABLE CLASSES OF RULES

• R1 = q(x) → p(x, y) ∧ q(y)

• R2 = p(x, y) ∧ p(y, z) → p(x, z)

The set of rules R is not BTS. Indeed, the first rule creates an infinite path, while
the second computes the transitive closure of this path. Consider for instance the set
of facts restricted to a single atom q(a). For any k ∈ N, the set of facts obtained
from q(a) by all derivations of length at most k “encodes” a clique of size k (more
precisely, its primal graph contains such a clique), hence its treewidth is at least
k. Furthermore, it is not possible to suppress this clique by considering the core
of the set of facts (actually, under reasonable assumptions on the forward chaining
mechanism, the generated set of facts is itself a core). It follows that any universal
model of this knowledge base has unbounded treewidth.

Obviously, any FES set of rules is also a BTS set of rules, indeed it suffices to
consider the number of terms occurring in a finite universal model as the bound
on its treewidth. The decidability relies on Courcelle’s Theorem [Cou89], which
states that for any logical fragment in which the existence of a model implies the
existence of a bounded treewidth model, then the satisfiability of a property that
can be expressed in monadic second-order logic is decidable. However this does
not provide explicitly an algorithm to answer the entailment problem. Though,
there exists an expressive subclass of BTS called Greedy Bounded Treewidth Set
(GBTS), for which we do not give a formal definition. Since we will not study it
in this thesis, see [BMRT11, RT14, Tho13] for more details. Intuitively, this class
ensures that one can build a bounded width tree decomposition of the saturated set
of facts greedily, and furthermore compute a finite structure that encodes this tree
decomposition. We do not know yet if this class is concrete or abstract, i.e., whether
the associated recognition problem is decidable; though, this class is very interesting
since on the one hand, a practical algorithm is provided, and on the other hand, to
our knowledge, it includes all but one concrete known rule classes belonging to BTS
but not to FES.

For each of these abstract rule classes, various concrete rule subclasses have been
exhibited. In the following, we detail the main ones, and Figure 2.1 pictures the
relations between them: an upwards edge going from a rule class C to a rule class
C ′ means that any set of rules in class C is also in class C ′.

2.2 Finite Expansion Set

Regarding FES rule classes, most of them can be classified in two different subfam-
ilies (Section 3.2 is dedicated to them). The first family relies on how existential
variables interact with each others, while the second one on how rules are triggered.

2.2. FINITE EXPANSION SET 29

super-weak-

 acyclic

jointly-

acyclic

weakly-

acyclic

Datalog

aGRD

sticky

weakly-sticky

w-sticky-join

sticky-join

linear

guarded frontier-1

frontier-

guarded
weakly-

guarded

 weakly-

frontier-guarded

jointly-fg

glut-fg

MFA

super-weak-super-weak-

 acyclic

jointly-

acyclic

weakly-

acyclicacyclic

MFA

sticky

sticky-join

aGRD
domain-

restricted

FES
FUS

GBTS

(BTS)

guarded frontier-1

frontier-

guarded
weakly-

guarded

 weakly-

frontier-guardedfrontier-guarded

jointly-fg

Datalog
linear

Figure 2.1: Relations between known decidable rule classes

In the first family, the simplest of all classes is that of range-restricted, or Datalog
rules (as it corresponds exactly to the rules in Datalog queries). In these rules, no
existential variable appears.

Definition 2.4 (Range-restricted (rr) [AHV95])
A set of rules R is range-restricted if no existential variable occurs in a rule from
R.

This rule class, while it seems really simple, allows to already express various
interesting ontological properties, such that symmetry, transitivity, ...

Example 2.4 (Range-restricted)
Consider the set of rules R composed of the following rules:

• p(x, y) ∧ p(y, z) → p(x, z)

• p(x, y) → p(y, x)

These rules assert that p is a transitive and symmetric binary relation. The set of
rules R is range-restricted.

30 CHAPTER 2. LANDSCAPE OF DECIDABLE CLASSES OF RULES

This class has been first extended to allow for existential variables while limit-
ing the way they propagate during the forward chaining, in order to avoid infinite
creation of new variables. This constraint relies on a graph of predicate positions
as defined below, where to ease the reading we denote by (p, i) the ith position in
predicate p.

Definition 2.5 (Predicate Position Graph)
Given a set of rules R, its predicate position graph, denoted by PPG(R) is the
directed labelled graph whose set of vertices is the set of predicate positions of R.
Then for each rule R ∈ R and each frontier variable x in B occurring in some po-
sition (p, i), edges with origin (p, i) are built as follows: there is an edge from (p, i)
to each position (q, j) in H where x occurs, and there is a special edge from (p, i) to
each position (q, j) in H where some existential variable y appears.

Then we say that the rank of a predicate position (p, i) is infinite in a set of rules
R if (p, i) belongs to a cycle going through a special edge in PPG(R), and is finite
otherwise.

The intuition behind this graph is that edges translate how terms can move
from a position to another. Furthermore, its special edges mark the generation
of existential variables, and if a cycle contains a special edge then an existential
variable may lead to generate a new existential variable in the same position, hence
may lead to infinitely many new existential variables.

Definition 2.6 (Weak-acyclicity (wa) [FKMP05])
A set of rules R is weakly-acyclic if its predicate position graph does not contain
any cycle going through a predicate position in which an existential variable occurs,
i.e., if all predicate positions have finite rank.

Example 2.5 (Weak-acyclicity)
Consider rules R1 = p(x, y) → s(y, z) and R2 = s(x, y) → p(y, x). The set of
rules {R1, R2} is weakly-acyclic as its predicate position graph does not contain any
“special cycle” (i.e., a cycle going through a special edge), hence, all positions are
of finite rank as can be seen on Figure 2.2.

(p, 1)

(p, 2)

(s, 1)

(s, 2)

Figure 2.2: Predicate Position Graph of {R1, R2} from Example 2.5

2.2. FINITE EXPANSION SET 31

Weak-acyclicity has been further extended to joint-acyclicity by shifting the focus
to existential variables instead of predicate positions [KR11]. This property relies
on the notion of “move sets” attached to existential variables. To define them we
use the following notation: given a set of atoms A and a term t, PosA(t) is the set
of predicate positions in the set A in which t occurs. Intuitively, the move set of a
given existential variable contains all predicate positions in which it can appear, i.e.,
if some rule generates an existential variable z in some position (p, i), and another
rule “moves” the variable in position (p, i) to a position (q, j), (as for instance for
rule p(x) → q(x), with i = j = 1) then (q, j) is also in the move set of z.

The formal definition of a move set is given next.

Definition 2.7 (Move Set)
Given a set of rules R, and an existential variable z occurring in some rule R =
(B,H) ∈ R, the move set of z, denoted by Move(z) is the smallest set of predicate
positions such that:

• PosH(z) ⊆ Move(z),

• for each rule R′ = (B′, H ′) and each frontier variable y occurring in R′, if
PosB′(y) ⊆ Move(z), then PosH′(y) ⊆ Move(z).

From this definition one can build another graph, called the joint-acyclicity
graph.

Definition 2.8 (Joint-acyclicity Graph)
Given a set of rules R, the joint-acyclicity graph of R, denoted by JA(R) is the
directed graph whose set of vertices is the set of all existential variables in R, and
where there is an edge from z1 to z2 whenever the rule R = (B,H) that contains z2
also contains a frontier variable y such that PosB(y) ⊆ Move(z1).

In this graph, an edge from z1 to z2 intuitively means that variable z1 may lead
to create another existential variable z2. Then a set of rules is jointly-acyclic if its
joint-acyclicity graph contains no cycle, since the absence of such cycle ensures that
no infinite “loop” of existential variable creation can happen.

Definition 2.9 (Joint-acyclicity [KR11])
A set of rules R is jointly-acyclic if JA(R) does not contain any cycle.

Example 2.6 (ja * wa)
Let R be the set composed of the following two rules:

• R1 = p(x1, y1) → r(y1, z1),

• R2 = r(y3, y4) ∧ r(y4, y3) → p(y3, y4).

32 CHAPTER 2. LANDSCAPE OF DECIDABLE CLASSES OF RULES

(p, 1)

(p, 2)

(s, 1)

(s, 2)

Figure 2.3: Predicate Position Graph of R from Example 2.6

Then one can check that Move(z1) = {(r, 2)} and thus that JA(R) does not contain
any edge (hence no cycle), therefore R is jointly-acyclic.

However, it can be observed that R is not weakly-acyclic. Indeed its predicate
position graph depicted in Figure 2.3 contains the cycle {(p, 2), (r, 2)} that uses the
special edge between those two positions.

Joint-acyclicity can be generalised to super weak-acyclicity by looking at atom
positions instead of predicate positions. We do not recall here its formal definition
since it would require more technical notions, but this class and others are more
deeply studied in Section 3.2, and all formal definitions can be found there.

The other subfamily relies on the notion of rule dependency, which intuitively,
is a tool that allows to know if a rule may be triggered after another.

Definition 2.10 (Rule Dependency [Bag04, GHK+13])
Given two rules R1 = B1 → H1 and R2 = B2 → H2, R2 depends on R1 if there
exists a set of facts F such that:

(i) there is a homomorphism π1 from B1 to F ,

(ii) there is a homomorphism π2 from B2 to F ′ = α(F , R1, π1),

(iii) π2 is not a homomorphism from B2 to F ,

(iv) α(F ′, R2, π2) 6= F ′.

Hence, R2 depends on R1 if there exists a set of facts F such that R1 can be
applied to F (point (i)) which yields a set of facts F ′ such that R2 can be applied
to F ′ (point (ii)), in a “useful” way (point (iv)), i.e., leading to actually add new
atoms, and moreover, R2 could not be applied on F (point (iii)) according to this
homomorphism.

This notion of dependency may seem too abstract to be computed, however
piece-unifiers can be used to actually compute it without considering all sets of facts
(more details are given in Section 3.2).

Then given a set of rules R, one can build a directed graph whose vertices are
the rules, and where there is an edge from R1 to R2 if R2 depends on R1 (i.e., if
an application of R1 may lead to trigger a new application of R2). We call such a
graph, the Graph of Rule Dependencies of R.

2.3. BOUNDED TREEWIDTH SET 33

Definition 2.11 (Acyclic Graph of Rule Dependencies (aGRD) [Bag04])
A set of rules R is aGRD if its graph of rule dependencies contains no cycle.

The following example shows that aGRD and wa are incomparable.

Example 2.7 (aGRD and wa are incomparable)
First, we observe that the weakly-acyclic set of rules from Example 2.5 is not aGRD,
since its graph of rule dependencies depicted on Figure 2.4 does contain a cycle.
Hence, wa * aGRD.

R1 R2

Figure 2.4: Graph of Rule Dependencies of {R1, R2} from Example 2.5

Now, consider the set of rules composed of the following single rule R = p(x, y)∧
q(y) → p(y, z). Rule R does not depend on itself. Hence, {R} is aGRD. Indeed,
this rule does not generate the atom q(z) that would be necessary to apply it again.
However its predicate position graph contains a special edge loop on position (p, 2),
and thus contains a position of infinite rank, therefore {R} is not weakly-acyclic.

Two other rule classes that deserve to be mentioned are Model Faithful Acyclicity
(MFA) and Model Summarizing Acyclicity (MSA), the latter one being an approxi-
mation of the first one at a lower complexity cost [GHK+13]. Both rely on effectively
running a forward chaining algorithm (the skolem chase, see Section 3.1 for details)
on a specific set of facts (called a critical instance), and with a modified set of rules.
This critical instance has the nice property that if the forward chaining algorithm
proposed in the paper halts on it, then it halts on any set of facts. Furthermore,
after each rule application, the obtained set of facts is queried to check if some “cy-
cle” has been found. Either the query finds a positive answer at some point, then
the set of rules is not MFA (respectively MSA), or the forward chaining halts, then
the set of rules is MFA (respectively MSA). These classes are precisely defined in
Section 3.5.

2.3 Bounded Treewidth Set

Regarding BTS but not FES rules, the fundamental class is that of guarded rules
[CGK08, CGK13].

Definition 2.12 (Guarded [CGK13])
A rule R = (B,H) is guarded if its body contains an atom α such that for any
variable x occurring in B, x appears in α (such an atom is called a guard). By
extension, a set of rules is guarded if all its rules are.

34 CHAPTER 2. LANDSCAPE OF DECIDABLE CLASSES OF RULES

Example 2.8 (Guarded)
Consider the rule R = p(x, y) ∧ s(y) → q(x, y, z), R is guarded since the atom
p(x, y) contains all variables from its body.

Another well-known BTS class is that of rules that have a frontier of size one.

Definition 2.13 (Frontier-one (fr1) [BLMS11])
A rule R is frontier-one if |fr(R)| = 1. By extension, a set of rules is frontier-
one if all its rules are.

To any derivation from a set of facts F with a set of guarded and/or frontier-one
rules R can be associated a tree decomposition of width |terms(F)|+ h, where h is
the maximal number of terms in the head of a rule from R. Hence these classes are
BTS. Furthermore, they are GBTS since such a tree decomposition can be built in
a greedy way [BMRT11].

Example 2.9 (Guarded and Frontier-one are incomparable)
First, note that the guarded rule R from Example 2.8 is not frontier-one. Hence
guarded * fr1. Now consider the rule R′ = p(x1, y) ∧ s(x2, y) → q(y, z). Rule R′ is
frontier-one, but is not guarded, since no atom contains all variables from its body.
Hence fr1 * guarded.

The guarded family has been widely studied, and a first generalisation of both
guarded and frontier-one rules is the class of frontier-guarded rules, where only the
frontier needs to be guarded. Indeed, the structure of the set of facts generated
through forward chaining only depends on the way the frontier of rules is mapped
during the forward chaining. Therefore, to ensure the (G)BTS property, only the
frontier of each rule needs to be guarded.

Definition 2.14 (Frontier-guarded (fg) [BLM10, BMRT11])
A rule R = (B,H) is guarded if its body contains an atom α such that for any
variable x occurring in the frontier of R, x appears in α. By extension, a set of
rules is frontier-guarded if all its rules are.

Example 2.10 (Frontier-guarded)
Consider the following three rules:

• R1 = q(x1, x2) → p(x1, z1, z2)

• R2 = p(x1, x2, x3) → q(z1, z2) ∧ r(z1, x3)

• R3 = r(x2, x1) ∧ q(x1, x3) → s(x2)

The set of rules {R1, R2, R3} is frontier-guarded, indeed, the first two rules are
guarded since they contain only a single atom. Regarding the third rule, the only
frontier variable is x2, and therefore atom r(x2, x1) guards all frontier variables.

2.3. BOUNDED TREEWIDTH SET 35

Guarded rules have been extended in another direction, by restricting the guard
to variables that are “affected”. Intuitively, an affected predicate position is a posi-
tion in which some existential variable may be generated during the forward chain-
ing, and an affected variable is a variable that occurs in some affected position. This
generalisation has been called weakly-guarded [CGK13].

The idea behind this rule class, is that if a predicate position is not affected, then
it is not dangerous for the construction of a tree decomposition of bounded width,
since only constants (and variables already present in the initial set of facts if any)
may occur in this position.

Definition 2.15 (Affected Position and Variable)
Given a set of rules R, a predicate position (p, i) is affected, if there exists an
existential variable occurring in position (p, i) or if there is a frontier variable x on
position (p, i) in the head of a rule occurring in an affected position in its body.

A variable from a rule body is said to be affected if it occurs in some affected
position.

Definition 2.16 (Weakly-guarded (wg) [CGK08, CGK13])
A set of rules R is weakly-guarded if for any rule R = (B,H) ∈ R, its body
contains an atom α such that for any affected variable x occurring in B, x appears
in α.

Example 2.11 (fg and wg are incomparable)
First, notice that the set of rules from Example 2.10 is not weakly-guarded, since in
rule R3, all x1, x2 and x3 are affected, and no atom contains all of them. Indeed,
positions (p, 2) and (p, 3) are affected because of rule R1, and positions (q, 1), (q, 2)
and (r, 1) because of rule R2. Furthermore, in rule R3, x1 occurs in position (q, 1),
x2 in position (r, 1) and x3 in position (q, 2). Hence, fg * wg.

Now, consider rules R4 = p(x) → q(x, z) and R5 = r(y, x1)∧q(y, x2) → s(x1, x2).
The set of rules {R4, R5} is not frontier-guarded since rule R5 is not. However it is
weakly-guarded, since its set of affected positions is {(q, 2), (s, 2)} and atom q(y, x2)
in R5 guards x2, the only variable occurring in an affected position. Hence, wg * fg.

Both of these generalisations of guardedness can be combined together, defining
a more general rule class: namely, weakly-frontier-guarded.

Definition 2.17 (Weakly-frontier-guarded (wfg) [BMRT11])
A set of rules R is weakly-frontier-guarded if for any rule R = (B,H) ∈ R, its
body contains an atom α such that for any affected variable x occurring in the fron-
tier of R, x appears in α.

Example 2.12 (Weakly-frontier-guarded)
Consider the rules R1 = p(x) → q(x, z) and R2 = r(y, x1) ∧ q(y, x2) ∧ q(y, x3) →
s(x1, x2) The set of rules {R1, R2} is not weakly-guarded since position (q, 2) is af-
fected and thus rule R2 would need to have an atom guarding both x2 and x3. It is

36 CHAPTER 2. LANDSCAPE OF DECIDABLE CLASSES OF RULES

not frontier-guarded either, since both x1 and x2 occur in the frontier of R2, and no
atom contains both of them. However it is weakly-frontier-guarded as atom q(y, x2)
guards x2, the only affected variable occurring in the frontier.

This rule class has been further generalised by refining the notion of affected
variable thanks to the use of the move set of a given variable. Roughly, the same
idea of propagation is used, but the condition on the propagation is more accurate.

Definition 2.18 (Jointly-affected Position and Variable)
Given a set of rules R, a predicate position (p, i) is a jointly-affected position if
there is an existential variable z such that (p, i) ∈ Move(z).

A variable x from a rule body is a jointly-affected variable if it occurs only in
jointly-affected positions.

Definition 2.19 (Jointly-weakly-frontier-guarded (j-wfg) [KR11])
A set of rules R is jointly-weakly-frontier-guarded if for any rule R = (B,H) ∈ R,
its body contains an atom α such that for any jointly-affected variable x occurring
in the frontier of R, x appears in α.

Example 2.13 (Jointly-weakly-frontier-guarded)
Consider the following two rules:

• R1 = p(x) → q(x, z)

• R2 = r(x, x1) ∧ q(y, x1) ∧ q(y, x2) → s(x1, x2)

The set of rules {R1, R2} is not weakly-frontier-guarded, indeed, position (q, 2) is
affected, and the frontier of R2 is {x1, x2}. Both variables occur in position (q, 2)
and thus should be guarded, however no atom contains both of them.

However, it is jointly-weakly-frontier-guarded, since Move(z) = {(q, 2)} and thus
the only jointly-affected variable in R2 is x2 (since x1 also occurs in the non jointly-
affected position (r, 2)). Therefore, atom q(y, x2) guards all jointly-affected variables.

Interestingly, all those rule classes are not only BTS but also GBTS, and to the
best of our knowledge, only a single rule class is known to be BTS but neither FES
nor GBTS, namely glut-frontier-guarded defined next.

Definition 2.20 (Glut Variable)
Given a set of rules R and a variable x, x is a glut variable if there exists an
existential variable z such that z occurs in some cycle in JA(R) and x appears in a
position in Move(z).

Once again, the idea behind this rule class is to guard only dangerous variables,
and the notion of glut variable refines that of jointly-affected variable by furthermore
looking at the joint-acyclicity graph of the set of rules to determine if the suspicious
variable occurs in a position where an existential variable that belongs to a dangerous
cycle may also occur.

2.4. FINITE UNIFICATION SET 37

Definition 2.21 (Glut-frontier-guarded (glut-fg) [KR11])
A set of rules R is glut-frontier-guarded if for any rule R = (B,H) ∈ R, its
body contains an atom α such that for any glut variable x occurring in the frontier
of R, x appears in α.

Example 2.14 (Glut-frontier-guarded)
Consider the set of rules R composed of the following two rules:

• p(x) → q(x, z)

• q(y, x1) ∧ q(y, x2) → s(x1, x2)

The set R is not jointly-weakly-frontier-guarded since Move(z) contains position
(q, 2), and thus in rule R2 frontier variables x1 and x2 occur only at jointly-affected
positions, and hence need to be guarded.

On the other hand, JA(R) contains no edge, and thus no cycle. Hence, no
variable from R is a glut variable, therefore, R is glut-frontier-guarded.

2.4 Finite Unification Set

Regarding FUS classes, the first one we recall is a specialisation of guarded rules
that enjoys the FUS property: namely, the linear rules [CGK08], they are called
“atomic-hypothesis” in [BLMS09].

Definition 2.22 (Linear [CGK08, BLMS09])
A rule R = (B,H) is linear if |B| = 1. By extension, a set of rules is linear if
all its rules are.

While linear rules may seem quite inexpressive, they are actually enough to ex-
press many common ontological properties such as subclass, domain, range, inverse
relations, ... Furthermore, Section 4.2 is devoted to combining linear rules with
transitivity rules and more details are given there.

Two other FUS classes that are incomparable both with linear and with each
other are sticky and domain-restricted rules. Both classes impose constraints that
can be understood by considering a query rewriting step. The direct rewriting of a
query Q with a rule R involves the creation of a new variable if some variable from
the body does not occur in the unified atoms from the head. Since not all atoms
from a rule head may be part of the unification, by imposing that all variables from
a rule body occur in all atoms from a rule head, we are sure that no new variable
is generated during query rewriting. The sticky and domain-restricted classes relax
this constraint by allowing the generation of new variables, but controlling their
occurrences in order to ensure the finiteness of the query rewriting process. Note
that linear and sticky rules have been generalised by an abstract property named
“backward shyness” [Tho13], which roughly says that a variable generated during a
query rewriting sequence does not occur in two atoms of the obtained rewriting.

The sticky rule class relies on the notion of marked variable set.

38 CHAPTER 2. LANDSCAPE OF DECIDABLE CLASSES OF RULES

Definition 2.23 (Marked Variable Set)
Given a set of rules R, the marked variable set of R is built by the following marking
procedure.

(i) for each rule in R and for each variable v occurring in its body, if v does not
occur in all its head atoms, mark (each occurrence of) v in its body,

(ii) apply until fixpoint: for each rule Ri, if a marked variable v appears in the
kth position of an atom using predicate p in its body, then for each rule Rj

(including i = j), and for each variable x occurring in the kth position of an
atom using predicate p in the head of Rj, mark (each occurrence of) x in the
body of Rj.

Definition 2.24 (Sticky [CGP10a])
A set of rules R is sticky if given the marked variable set of R, each marked variable
occurs at most once in a rule body.

Definition 2.25 (Domain-restricted (dr) [BLM10])
A rule R = (B,H) is domain-restricted if every atom h ∈ H, either h contains
no variable from B, or it contains them all. By extension, a set of rules is domain-
restricted if all its rules are.

The idea behind the domain-restricted rule class is that for each rule either
no new variable is generated during the rewriting step, or these new variables are
“disconnected” from the others.

Example 2.15 (sticky * dr)
Consider the set of rules composed of the following single rule: R = p(x1, y1) →
q(y1, z1)∧s(x1, z1). This set of rules is sticky, since no marked variable occurs twice
in a rule body (indeed, even if both x1 and y1 are marked, neither occurs twice in
the rule body), but it is not domain-restricted as atom q(y1, z1) contains the variable
y1 but not the variable x1 (similarly, atom s(x1, z1) contains the variable x1 but not
the variable y1).

Example 2.16 (dr * sticky)
Consider the set of rules composed of the following single rule: R = p(x1, y1) ∧
p(y1, x1) → s(x1, y1, z1) ∧ q(z1, z2). This set of rules is domain-restricted, but is not
sticky: indeed, variable x1 is marked since it does not occur in atom q(z1, z2) and
occurs twice in the same rule body.

While these two rule classes are incomparable, an interesting intersection of them
is that of rules where every atom in their head contains all the variables from the
body. Indeed, they are obviously domain-restricted, and no variable is ever marked
by the sticky marking procedure.

2.4. FINITE UNIFICATION SET 39

Then, several generalisations of sticky rules have been obtained by refining the
way variables are marked. Weakly-sticky rules generalise both sticky and weakly-
acyclic rules, while sticky-join rules generalise sticky and linear rules. Furthermore,
those two rule classes are incomparable, but have a common generalisation, namely,
weakly-sticky-join.

Definition 2.26 (Weakly-sticky (w-sticky) [CGP10b])
A set of rules R is weakly-sticky if given the marked variable set of R and its
predicate position graph, all marked variables that occur more than once in a rule
body appear at some position of finite rank in this body.

Example 2.17 (Weakly-sticky)
Consider the set of rules R composed of the following rules:

• R1 = q(x1, x2) → p(x2, x1, z1, z2)

• R2 = p(x1, x2, x3, x4) → q(x2, z1) ∧ r(x2, x4)

• R3 = r(x1, x2) ∧ q(x1, x3) → s(x2, x3)

This set of rules is not weakly-acyclic: indeed, one can see on Figure 2.5 that posi-
tions (q, 2) and (p, 4) are of infinite rank.

(q, 1)

(q, 2)

(p, 1)

(p, 2)

(p, 3)

(p, 4)

(r, 1)

(r, 2)

(s, 1)

(s, 2)

Figure 2.5: Predicate Position Graph of R from Example 2.17

Furthermore it is not sticky as variable x1 in rule R3 is marked in the first step
of the marking procedure and occurs twice in the body of this rule.

However it is weakly-sticky: indeed even if the variable x1 is marked in rule R3,
it occurs in position (r, 1) which is of finite rank (note that x1 also occurs in position
(q, 1) which is also of finite rank, though, a single finite rank position is enough).

40 CHAPTER 2. LANDSCAPE OF DECIDABLE CLASSES OF RULES

Defining sticky-join sets of rules requires more notions.

Definition 2.27 (Sticky Applicability)
Given two rules R1 = (B1, H1) and R2 = (B2, H2), we say that R1 is sticky ap-
plicable to R2 if there exist atoms a ∈ H1 and b ∈ B2 such that a and b unify (i.e.,
there exists a piece-unifier of {b} with the rule B1 → a),

From there, we can define the notion of an expanded set of rules.

Definition 2.28 (Expanded Set of Rules)
Given a set of rules R, its expanded set R∗ is obtained as follows. Initially, for
each rule R ∈ R, the rule R labelled by ∅ is added to R∗. Then we apply the fol-
lowing step until a fixpoint is reached: for each pair of rules (R = (B,H), R′ =
(B′, H ′)) ∈ R ×R∗ (including the case R = R′), if R is sticky applicable to R′ due
to atoms a ∈ H and b ∈ B′, then let R+ be the rule σµ(B) → σµ(a), where µ is
the piece-unifier for a and b. If R∗ already contains a labelled rule R′′ isomorphic
to R+, then the pair (R′, b) is added to the label set of R′′; otherwise the rule R+

labelled by {(R′, b)} is added to R∗. Note that each time the above step is applied,
we assume (as usual) that the two rules do not share any variable name.

Then, the marking procedure used for sticky set of rules can be improved as
follows.

Definition 2.29 (Expanded Marked Variable Set)
Given a set of rules R, the expanded marked variable set of R is built by the
following marking procedure. Let R∗ be the expanded set of R. For each rule
R = (B,H) ∈ R∗ and each non-frontier variable x occurring in B, (each occur-
rence of) x in B is marked. Then the following step is applied until fixpoint. For
each rule R = (B,H) ∈ R∗, and for each pair (R′ = (B′, H ′), α) in the label set of
R, if a universal variable x occurs in H at positions p1, . . . , pk (with k ≥ 1), and at
each position p1, . . . , pk in α ∈ B′ a marked variable occurs, then (each occurrence
of) x in B is marked.

Thanks to this expanded marked variable set, we are now ready to define the
sticky-join class of rules.

Definition 2.30 (Sticky-join (sticky-j) [CGP10b])
A set of rules R is sticky-join if given its expanded marked variable set, each marked
variable occurs at most once in a rule body.

In the same way as sticky can be generalised to weakly-sticky, sticky-join can
be generalised to weakly-sticky-join, which yields a common generalisation of the
whole sticky family.

2.4. FINITE UNIFICATION SET 41

Definition 2.31 (Weakly-sticky-join (w-sticky-j) [CGP10b])
A set of rules R is weakly-sticky-join if given the expanded marked variable set
of R and its predicate position graph, all marked variables that occur more than
once in a rule body appear at some position of finite rank.

It should be pointed out that weakly-sticky rules (hence, their generalisation
weakly-sticky-join rules) are neither BTS nor FUS, though they are provided with
an algorithm able to handle them to solve the entailment problem [CGP10b].

Finally, the last rule class we define here is that of disconnected rules, which are
GBTS, FES and FUS.

Definition 2.32 (Disconnected (disc) [BLM10])
A rule R = (B,H) is disconnected if var(B) ∩ var(H) = ∅. By extension, a
set of rules is disconnected if all its rules are.

All those rule classes fulfil various properties that are for the most part incom-
parable, however they can be combined thanks to the graph of rule dependencies as
stated by the next theorem. We recall that an edge from R1 to R2 means that R2

depends on R1.

Let R be a set of rules. Conjunctive query entailment is decidable if there
exists a tri-partition (SFES, SBTS, SFUS) of the strongly connected compo-
nents (S.C.C.) of the graph of rule dependencies of R such that there is no
edge from a rule in a S.C.C. in SFUS or SBTS to a rule from another S.C.C.
in SFES or SBTS.

Theorem 2.1 (Combined Rule Classes [BLMS09, BLMS11])

The above theorem means that we can safely combine rule classes provided that
it is possible to first apply all FES rules to F thanks to some forward chaining
algorithm which yields a saturated set of facts F∗, and on the other hand rewrite
the query with the FUS rules obtaining a rewriting set Q, and finally use a BTS
algorithm with F∗ and Q on the subset of rules that satisfies the BTS property.

Example 2.18 (Combining Rule Classes)
Let R be the set of rules composed of the following rules:

• R0 = p(x, y) ∧ p(y, z) → p(x, z)

• R1 = p(x, y) → p(y, x) ∧ q(x, y, x)

• R2 = r(x, y) → q(x, z, t)

• R3 = q(x, y, z) → r(z, t)

42 CHAPTER 2. LANDSCAPE OF DECIDABLE CLASSES OF RULES

• R4 = p(x, x) ∧ r(y, u) ∧ s(t, y, x) → s(z, z, z)

• R5 = s(x, x, x) ∧ s(y, y, y) → s(z, x, y)

The set of rules R does not belong to any concrete decidable class. As shown
in Figure 2.6, the graph of rule dependencies of R contains three strongly connected
components. Each one satisfies some concrete properties : C0 is range-restricted,
hence FES; C1 is linear and thus FUS and BTS (actually GBTS); C2 is domain-
restricted therefore FUS.

R0

R1 R3

R2

R4 R5

C0

C1

C2

fes bts/fus

fus

Figure 2.6: Graph of Rule Dependencies of R from Example 2.18

There are two interesting different safe combinations of these SCC, which differ
on how C1 is considered (obviously, C0 could also be considered as BTS since any
set of rules satisfying the FES property is also a BTS). If C1 is considered as a
BTS, then one could first apply all rules from C0 until fixpoint in order to obtain a
set of facts F∗, then rewrite C2 until fixpoint to obtain a UCQ Q, then, use some
BTS algorithm with input knowledge base (F∗, C1) and query Q. Otherwise, if C1

is considered as FUS, then the query can be first rewritten according to C1 ∪C2 and
then evaluated against F∗.

One way or the other, CQ entailment over any knowledge base using this set of
rules is decidable.

2.5. DESCRIPTION LOGICS 43

Note that weakly-sticky and weakly-sticky-join (defined previously) are actually
another way to combine paradigms (in this case, FES and FUS).

We conclude the presentation of these rule classes by recalling the complexities of
the CQ entailment problem over knowledge bases where rules belong to some known
decidable rule class (Table 2.1). As usual, two different measures of complexity are
considered: the combined complexity, where the input contains the set of rules, the
set of facts and the query; and the data complexity, where the input contains only
the set of facts since the set of rules and the query are assumed to be fixed. This
complexity is often considered more relevant because the query and the rules are
usually far smaller than the set of facts in practical applications. However, both
complexities can help to understand where the difficulties lie. Indeed, for instance,
guarded and weakly-guarded rules have both the same (worst-case) combined com-
plexity, however, entailment over guarded rules can be solved in PTime in data
complexity, while it is ExpT ime-hard over weakly-guarded rules. On the other
hand, all FUS classes are by definition in AC0 in data complexity (the same com-
plexity as conjunctive query entailment without rule), while ranging from PSpace

for linear rules to ExpT ime for sticky-join rules in combined complexity. Finally,
note that for some classes the complexity bounds are not tight (combined complexity
for aGRD as well as data complexity for glut-fg, and both for MSA and MFA).

2.5 Description Logics

Description Logics (DLs) are the prominent family of formalisms to represent and do
reasoning with ontologies [BCM+03].We will not provide here a detailed presentation
of DLs but rather point out their relationships with the existential rule framework.

In description logics, a knowledge base is composed of an ABox (for “assertion”
component), which is a set of ground facts; and a TBox (for “terminological” com-
ponent), which is a set of axioms. An axiom is a logical statement which expresses
an inclusion between concepts (or classes) or roles (or properties). With a specific
description logic is associated a set of operators (or constructors) which allows to
build complex concepts and roles from atomic ones. The expressivity of a descrip-
tion logic depends on the set of allowed operators and the form of the concepts and
roles that may occur on each side of the inclusion.

The semantics of a description logic knowledge base can be given by a translation
into first-order logic. To each atomic concept is assigned a unary predicate and to
each atomic role a binary predicate. Concept inclusions of the form C1 ⊑ C2, where
C1 and C2 are (possibly complex) concepts are logically translated into formulae
of the form ∀x(φC1

(x) → φC2
(x)), where φC(x) is the logical translation of C, i.e.,

C(x) if C is an atomic concept, otherwise it is more generally a formula with a
single free variable x. Similarity, role inclusions of the form r1 ⊑ r2, where r1 and
r2 are (possibly complex) roles, are logical translated into formulae of the form
∀x∀y(φr1(x, y) → φr2(x, y)), where φr(x, y) is the logical translation of r, i.e., r(x, y)

44 CHAPTER 2. LANDSCAPE OF DECIDABLE CLASSES OF RULES

Rule Class Combined Data
agrd ? AC0

fg 2ExpT ime-c [BMRT11] PTime-c [BMRT11]
fr-1 2ExpT ime-c [BMRT11] PTime-c [BMRT11]
guarded 2ExpT ime-c [CGK08] PTime-c [CGL09]
gbts 2ExpT ime-c [BMRT11, Tho13, BMRT14] ExpT ime-c [BMRT11]
glut-fg 3ExpT ime-c [KR11] ≥ExpT ime

ja 2ExpT ime-c [KR11] PTime-c [KR11]
j-fg 2ExpT ime-c [KR11] ExpT ime-c [KR11]
linear PSpace-c [CGL10a] AC0 [CGL09]
msa 2ExpT ime-c [ZZY15] PTime-c [Mar09]
mfa 2ExpT ime-c [ZZY15] PTime-c [Mar09]
rr ExpT ime-c [CLM81] PTime-c [DEGV01]
sticky ExpT ime-c [CGP10a] AC0 [CGP10a]
sticky-j ExpT ime-c [CGP10b] AC0 [CGP10b]
swa 2ExpT ime-c [Mar09] PTime-c [Mar09]
wa 2ExpT ime-c [FKMP05, CGP10b] PTime-c [FKMP05, DEGV01]
w-fg 2ExpT ime-c [BMRT11] ExpT ime-c [BMRT11]
wg 2ExpT ime-c [CGK08] ExpT ime-c [CGL10a]
w-sticky 2ExpT ime-c [CGP10b] PTime-c [CGP10b]
w-sticky-j 2ExpT ime-c [CGP10b] PTime-c [CGP10b]

Table 2.1: Complexity of CQ entailment

if r is an atomic role, otherwise it is more generally a formula with exactly two free
variables x and y.

An element of the ABox is of the form C(a) where C is a concept or r(a, b) where
r is a role (and a and b are individuals, i.e., constants). To simplify the presentation
we will assume that C and r are atomic, hence each element of the ABox can be
seen as a ground atom.

Example 2.19 (Description Logics)
Let K = (A, T) where A is an ABox and T is a TBox. The ABox is composed
of the following ground atoms: A = {A(a), B(a), r(b, a)}. The TBox contains the
following axioms:

• A ⊑ B,

• B ⊓ C ⊑ ∃r.D

• ¬r ⊑ s−

• B ⊑ ≥ 2r.B

2.5. DESCRIPTION LOGICS 45

The logical translation of A is A itself (where a and b are constants). The logical
translation of T is:

• ∀x(A(x) → B(x))

• ∀x(B(x) ∧ C(x) → ∃y(r(x, y) ∧D(y)))

• ∀x∀y(¬r(x, y) → s(y, x))

• ∀x(B(x) → ∃y∃z(r(x, y) ∧ r(x, z) ∧ y 6= z))

General description logics and existential rules are incomparable with respect
to expressivity. On the one hand, description logics allow for a variety of operators
expressing disjunction, negation and cardinalities that are generally not translatable
into the existential rule framework (e.g., axiom 3 from Example 2.19 is equivalent to
the negative constraint ∀x∀y(r(x, y) ∧ s(y, x) → ⊥)), while axiom 4 is not express-
ible). On the other hand, most description logics are restricted to unary and binary
predicates. Furthermore, the axioms can only express “tree-shape” binary relations
among variables, while in existential rules there is no constraint on the interactions
between variables. For instance the rule p(x, y)∧ q(x, z) → p(y, z) is not expressible
in description logics.

Since the pioneer work on the CARIN language which combined description
logics and positive range-restricted rules (i.e., Datalog rules) and was the first to
mention the problem of answering conjunctive queries [LR96], several approaches
have been developed to combine description logics and different kinds of (positive)
rules. One can cite in particular DL-safe rules [MSS05], which ensure decidability
of reasoning by restricting the application of rules to individuals from the ABox
(in other words, variables in rules are “non-affected”); and nominal schemas [KR14]
which can be used to encode DL-safe rules. Nominal schemas are concepts of the
form {x} which can be used in axioms. However, these extensions tend to lose the
readable aspect of the description logics. Very recently, it has been shown that
frontier-one rules under the restriction that their heads are “non-looping” (no cycle
of length greater than 1 in the corresponding graph) can be combined with any
description logic that can be expressed in GC2 (the two-variable guarded fragment
with counting quantifiers) while preserving decidability of the CQ entailment prob-
lem [AB15].

Historically, the work on description logics focused on the ontological part (the
TBox) and queries were restricted to instance queries, i.e., ground atoms. These last
ten years, the focus was shifted to dealing with databases and answering conjunctive
queries. Since CQ answering appeared to be very complex with classical description
logics, new description logics with a restricted use of operators have been introduced.
These description logics are known as lightweight description logics. One major
lightweight description logic family is the DL-lite family [CDL+05, CDL+07], a very
simple DL designed for query answering on large databases. Another well-known
description logic family is the EL family [Baa03] designed for dealing with very large

46 CHAPTER 2. LANDSCAPE OF DECIDABLE CLASSES OF RULES

ontologies. These DLs, and more generally the so-called “Horn-DLs” correspond to
fragments of existential rules (including possibly negative constraints to translate
inclusions of the form C1 ⊑ ¬C2 and equality rules to translate declarations of
functional roles). In particular, DL-liteR corresponds to a subclass of linear rules
and EL (and ELHI) to a subclass of frontier-guarded rules. More generally, Horn-
DLs are translated into frontier-one rules when there is no role inclusion, otherwise
into frontier-guarded rules.

2.6 Kiabora

To conclude this chapter, we mention that we have developed a software named
Kiabora [LMR13], which given a set of rules as input provides different useful fea-
tures: first, it is able to translate the set of rules to either single-piece headed rules
or atomic-headed rules. More importantly, it is able to recognise most of the rule
classes we have presented here, and it also tries to determine if the set of rules belongs
to a decidable case by combining decidable rule classes via the graph of rule depen-
dencies. It has been implemented in a way that allows one to easily add his own new
decidable rule classes, and its source code is available under CeCILL (compatible
with GPL) licensing. A simple web interface built on the first version of Kiabora is
available on its website at www.lirmm.fr/kiabora. The second version of Kiabora,
which is more efficient and considers further decidable classes has been integrated
into the Graal toolkit (website: http://graphik-team.github.io/graal/).

Chapter 3

Acyclicity Conditions for Chase
Termination

Contents
3.1 Different kinds of chase . 48

3.2 Acyclicity notions . 56

3.2.1 Dependency-based Approach 57

3.2.2 Position-based Approach 59

3.2.3 First combination . 64

3.3 Unifying both Approaches 65

3.4 Extensions . 78

3.5 Other Acyclicity Conditions 86

3.5.1 Model Summarizing Acyclicity and Model Faithful Acyclic-
ity . 86

Critical Instance . 87

Model Faithful Acyclicity 87

Model Summarizing Acyclicity 88

3.5.2 Extending Model Summarizing Acyclicity 90

A mechanism taking into account a set of rules while querying data is that of
forward chaining. It can be seen as a two-steps process: it first repeatedly applies
rules to the set of facts, process also known as the chase in database theory; then it
looks for an answer to the query in this saturated set of facts.

Intuitively, this mechanism can be seen as completing initial data by exploiting
the knowledge described by the rules, until one can query the saturated data as a
database.

47

48 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

This saturated set of facts encodes a universal model of the knowledge base, and
since the problem of CQ entailment is undecidable, this process may not halt, that
is, it may be the case that all universal models of the knowledge base are infinite.

Then a question naturally arises: can we know beforehand if the knowledge base
has a finite universal model?

It appears that answering this question is also undecidable. However, various
syntactic conditions on sets of rules that ensure the finiteness of a universal model
have been exhibited, most of them relying on some notion of acyclicity. Informally,
these conditions ensure that either at some point no rule can be applied while
still adding some new knowledge, or that there is a bound on the number of fresh
existential variables that need to be created.

In this chapter, we first define formally the notion of breadth-first derivation,
from which follows a general definition of chase, then we study different chase vari-
ants, which differ in how they deal with redundancies potentially appearing in the
sets of facts between each rule application (Section 3.1). We then examine in Section
3.2 the various existing acyclicity conditions which we group into two families: the
“dependency-based” approach [Bag04, GHK+13], and the “position-based” family
which goes from weak-acyclicity [DEGV01] to super-weak-acylicity [Mar09]. In Sec-
tion 3.3, we propose a new tool that allows to unify these different notions, and to
extend them as detailed in Section 3.4. Finally, Section 3.5 is devoted to another
kind of acyclicity conditions, that does not fit in any of these two families.

3.1 Different kinds of chase

In this section, we consider the different chase variants. Intuitively, given a knowl-
edge base (F ,R), all chase variants proceed in the following steps: first choose a
rule R = (B,H) in R, then look for a homomorphism π from B to the current
set of facts, and add πsafe(H) to it provided that some conditions hold. We recall
that πsafe is an extension of π that gives a new “name” to all existential variables
occurring in H (see Definition 1.27).

These conditions are what distinguishes the different kinds of chase. For instance,
in the oblivious chase (also called naive chase) [CGK08], a rule is applied according
to some homomorphism π if it has not been already applied according to the exact
same homomorphism.

This process can be slightly improved, in the sense that it can avoid some rule
applications without compromising the construction of a universal model. If we
consider two homomorphisms π and π′ of the same rule body, they lead to add the
“same” atoms if they map the frontier variables identically. In the frontier-restricted
chase [BGMR14b], also known as semi-oblivious chase [GO13], a rule is not applied
according to π if it has already been applied with a homomorphism π′ that maps
the frontier in the same way as π.

It already shows some distinctions with respect to finiteness; indeed if we consider

3.1. DIFFERENT KINDS OF CHASE 49

the rule p(x, y) → p(x, z) and the set of facts F = p(a, b), the oblivious chase
adds infinitenely many atoms (as the rule can be infinitely applied according to a
homomorphism that maps y differently each time), which yields the infinite set of
facts p(a, b) ∧ p(a, z1) ∧ p(a, z2) ∧ However in the case of the frontier-restricted
chase, the rule is applied only once, since after that, the frontier is always mapped
in the same way (x is mapped to a), hence the finite set of atoms p(a, b) ∧ p(a, z1)
is obtained.

The skolem chase [Mar09] relies on a skolemisation of the rules: first, each rule
R is transformed by replacing each occurrence of an existential variable z with a
functional term fR

z (~x), where ~x are the frontier variables of R. Then the oblivious
chase is run on the skolemised rules. It can be easily checked that the skolem chase
and the frontier-restricted chase yield isomorphic results (up to the renaming of the
created existential variables by the corresponding skolem terms).

The restricted chase (which is also known as standard chase) [FKMP05] is a bit
more involved. A rule R = (B,H) is applied to F according to a homomorphism
π if π cannot be extended to a homomorphism from B ∪ H to F (in which case
we say that the application of R according to π is useful), otherwise F ∪ πsafe(H)
would be equivalent to F . A rule such as p(x) → r(x, y) ∧ r(y, y) ∧ p(y) shows
the distinction between the restricted chase and the frontier-restricted chase with
respect to finiteness. Indeed, in the former case, the rule is applied only once since no
further application is useful, while all applications map the frontier differently, and
thus the frontier-restricted chase is infinite (p(a)∧r(a, y1)∧r(y1, y1)∧p(y1) . . . r(yk−1∧
r(yk, yk) ∧ p(yk) ∧ . . .).

The core chase [DNR08] avoids the strongest possible form of redundancy: after
each rule application it reduces the obtained set of facts by computing its core.
Hence, it may remove atoms obtained from a previous rule application in a later
step, as illustrated by the next example (Example 3.1). A nice property of the core
chase is that if there exists a finite universal model of the knowledge base, then the
core chase will halt.

While our contribution does not include a direct way to handle the core chase,
we are able to consider the equivalent chase. This chase does not perform a rule
application if the set of facts that would be obtained is equivalent to the current
set of facts. In other words, if the core of the current set of facts is equal (i.e.,
isomorphic) to the obtained set of facts. We point out that the core chase is finite
if and only if the equivalent chase is.

Example 3.1
Consider the set of facts s(a), where a is a constant, and the set of rules composed
of the following two rules:

• R1 = s(x) → p(x, z)

• R2 = s(x) ∧ p(x, y) → p(x, x)

50 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

In this example, we first apply R1 according to the homomorphism {x 7→ a} and
we create F1 = s(a) ∧ p(a, z0). At this step, Core(F1) = F1. Note that we could
not have applied R2 before R1. Then, we apply R2 according to the homomorphism
{x 7→ a, y 7→ z0}, and we add the atom p(a, a) and obtain F2 = s(a) ∧ p(a, z0) ∧
p(a, a). The atom p(a, z0) is redundant with p(a, a), and therefore, the core of F2

is Core(F2) = s(a) ∧ p(a, a). Observe that the atom p(a, z0), which comes from the
core of F1, does not occur in the core of F2, and thus has been “removed” at this
step.

Our aim is to provide a general chase notion that is then specialised by each
chase variant. This general chase is seen as a greedy process that adds more and
more atoms to the initial set of facts. Hence it is intrinsically a monotonic process.
That is why it does not include the core chase, but instead the equivalent chase
which behaves in the same way with respect to finiteness.

As previously mentionned, all chase variants heavily rely on the notion of deriva-
tion, but not all derivations behave the same.

Indeed consider the following example.

Example 3.2
Let F = {p(a, b)} be a set of facts, R1 = p(x, y) → p(y, z) and R2 = p(x, y) → p(y, y)
be two rules. One can see that applying rule R1 over and over leads to an infinite
derivation (therefore a universal model cannot be found since R2 will never be ap-
plied) where at each rank k of the derivation, the following set of facts is obtained:

Fk = {p(a, b), p(b, z1), . . . , p(zk−1, zk)}

If both rules were to be applied, R2 would create something more specific that
anything we could generate with R1. Indeed if we applied R2 after a single application
of R1 we would obtain:

F2 = {p(a, b), p(b, z1), p(b, b)}

Then, further applications of rule R1 would only add redundant knowledge.

The previous example shows that some derivations are more adapted to find
a universal model than others, which leads to consider the notion of breadth-first
derivation. A breadth-first derivation is obtained by considering at each “breadth-
first step” all possible rule applications on the current set of facts, then applying
them all, before moving to the next step, which will look for new applications on
the resulting set of facts.

Definition 3.1 (Breadth-first Derivation)
Given F a set of facts and R a set of rules, a breadth-first derivation of F w.r.t. R
is a derivation D = (∅, ∅, F0 = F), . . . , (Ri = (Bi, Hi), πi, Fi), . . . such that for all
i ≤ j ∈ dom(D), if (Fi \ Fi−1) ∩ πj(Bj) 6= ∅ then for all k > j, πk(Bk) * Fi−1.

3.1. DIFFERENT KINDS OF CHASE 51

The previous definition ensures that if at some point we use some atoms occurring
for the first time in Fi to map a rule body, then we cannot use “only” Fi−1 later.
Intuitively, this ensures that once going to the next “breadth step”, we cannot apply
a rule that could have been applied in a previous breadth step according to the same
homomorphism.

Definition 3.2 (Exhaustive Breadth-first Derivation)
Given F a set of facts, and R a set of rules, a (potentially infinite) breadth-first
derivation D = (∅, ∅,F), . . . , (Ri, πi, Fi), . . . of F w.r.t. R is said to be exhaustive
if for all i ∈ dom(D), for all R = (B,H) ∈ R, and for all homomorphisms π from
B to Fi there is some k ∈ dom(D) such that πk = π and Rk = R.

An exhaustive breadth-first derivation ensures that all rules have been applied
according to all homomorphisms. It means that no other rule application can be
found on any of the Fi. Note that the corresponding derivation may have to be
infinite to satisfy this criterion.

Example 3.3
Consider the set of facts F = c(a) and the following rules:

• R1 = c(x) → p(x, y) ∧ c(y)

• R2 = c(x) ∧ p(x, y) → p(x, x)

An exhaustive breadth-first derivation for this example would be:

i Ri πi Fi

0 ∅ ∅ F
1 R1 {x 7→ a} F ∪ {p(a, y1), c(y1)})
2 R2 {x 7→ a, y 7→ y1} F ∪ {p(a, y1), c(y1), p(a, a)})
.

2k R1 {x 7→ y2k−1} F2k−1 ∪ {p(y2k−1, y2k), c(y2k)}
2k + 1 R2 {x 7→ y2k−1, y 7→ y2k} F2k ∪ {p(y2k−1, y2k−1)}
.

From the notion of exhaustive breadth-first derivation, one can strengthen The-
orem 1.2 (soundness and completeness of derivations) as stated by the next propo-
sition (which follows, e.g., from [BLMS11]). Intuitively, it ensures that if a Boolean
conjunctive query is a logical consequence of the knowledge base, then any breadth-
first derivation finds it in finitely many steps (while, of course, this may not be the
case for all derivations).

Let F be a set of facts, R be a set of rules, and Q be a Boolean conjunctive
query. Let D = (∅, ∅,F), . . . , (Ri, πi, Fi), . . . be any exhaustive breadth-first
derivation; then, (F ,R) |= Q iff there exists some k ∈ N such that Fk |= Q.

Proposition 3.1

52 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

As already mentioned, the chase variants differ in how they “filter” the rule
applications to consider (except for the core chase which simplifies the set of facts).
In the following we unify these different variants with the notion of a derivation
filter, that intuitively filters rule applications that will be preserved in the chase.
Indeed, some of these applications may create redundant knowledge, and may be
ignored.

Definition 3.3 (Derivation Filter)
Let F be a set of facts and R be a set of rules. A derivation filter σ is a func-
tion that given a derivation D = (∅, ∅, F0 = F), . . . , (Ri, πi, Fi), . . . of F w.r.t. R
returns a sequence (with the same domain as D) of Boolean values such that

• σ(D)0 = 1;

• if σ(D)i = 0 then Fi ≡ Fi−1

• if σ(D)i = 1 then there is some j < i such that πi(Bi) ⊆ Fj and σ(D)j = 1.

We are now ready to define the σ-chase, which can be seen as the result of
applying rules in a breadth-first manner, and ignoring some useless rule applications.

Definition 3.4 (σ-Chase)
Given F a set of facts, R a set of rules and σ a derivation filter, let D be any
exhaustive breadth-first derivation of F w.r.t. R. The σ-chase of F w.r.t. R is the
set of atoms defined as:

σ-chase(F ,R) =
⋃

i∈dom(D) | σ(D)i=1

Fi

Note that the above definition considers that the σ-chase of a given set of facts
w.r.t. a given set of rules is unique. While it might not be the case, whatever the
exhaustive breadth-first derivation one chooses, all possible σ-chases are equivalent
and behave the same with respect to finiteness.

An important property of any chase variant built upon a given filter is that its
result can be used to give all correct answers to a given query as stated by the next
theorem.

Let F be a set of facts, R be a set of rules, Q be a Boolean conjunctive
query, and σ be a derivation filter.

(F ,R) |= Q ⇔ σ-chase(F ,R) |= Q

Theorem 3.1

3.1. DIFFERENT KINDS OF CHASE 53

Proof: (⇒) Assume that (F ,R) |= Q. Let D = (∅, ∅, F0 = F), . . . , (Ri, πi, Fi), . . .
be an exhaustive breadth-first derivation of F w.r.t. R. By Proposition 3.1 there
exists k ∈ N such that Fk |= Q. Then, if Fk * σ-chase(F ,R) it means that
σ(D)k = 0. In this case, there is some j < k such that Fk ≡ Fj and σ(D)j = 1,
thus there exists a homomorphism π from Fk to Fj. Furthermore, since σ(D)j = 1,
Fj ⊆ σ-chase(F ,R). Therefore σ-chase(F ,R) |= Q.

(⇐) Suppose now that σ-chase(F ,R) |= Q. Then, there exists a homomorphism
π from Q to some finite part π(Q) of σ-chase(F ,R). From Definition 3.4, there is
an exhaustive breadth-first derivation D from F to Fj such that π(Q) ⊆ Fj. We
conclude with Proposition 3.1 that (F ,R) |= Q. ✷

Obviously, the finiteness of the σ-chase and the computability of the ith element
of the sequence obtained from a filter (note that this is the case for all filters we
present in this section) are enough to ensure one can compute it, therefore, guarantee
decidability of the CQ entailment problem.

Given a set of facts F , a set of rules R and a derivation filter σ,
if σ-chase(F ,R) is finite and for any derivation D = (∅, ∅, F0 =
F), . . . , (Ri, πi, Fi), . . . and any i ∈ dom(D), σ(D)i is computable, then
σ-chase(F ,R) is computable.

Proposition 3.2

We now define several derivation filters that correspond to the chase variants we
have introduced at the beginning of this section.

The equivalent filter considers only rule applications that lead to generate a set
of facts that is not equivalent to the current set of facts.

Definition 3.5 (Equivalent Filter)
The equivalent filter, denoted by σequiv, is the derivation filter defined for any deriva-
tion D = (∅, ∅, F0 = F), . . . , (Ri, πi, Fi), . . . as: ∀0 < i ∈ dom(D),

σequiv(D)i =

{

1 if Fi−1 6≡ Fi

0 otherwise

The restricted filter checks redundancy locally as opposed to the global view of
the equivalent filter.

Definition 3.6 (Restricted Filter)
The restricted filter, denoted by σrestricted, is the derivation filter defined for any
derivation D = (∅, ∅, F0 = F), . . . , (Ri, πi, Fi), . . . as: ∀0 < i ∈ dom(D),

σrestricted(D)i =

1 if πi cannot be extended to a homomorphism

from Bi ∪Hi to Fi−1

0 otherwise

54 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

As already mentioned, the skolem chase has the same behaviour as the frontier-
restricted chase, which considers only rule applications that map the frontier of the
rule in different ways.

Definition 3.7 (Frontier-Restricted Filter)
The frontier-restricted filter, denoted by σfr, is the derivation filter defined for any
derivation D = (∅, ∅, F0 = F), . . . , (Ri, πi, Fi), . . . as: ∀0 < i ∈ dom(D),

σfr(D)i =

{

1 if ∀j < i with Ri = Rj, πj|fr(Rj) 6= πi|fr(Ri)

0 otherwise

Finally, the oblivious filter consider all rules, and ignores only applications based
upon a previously used homomorphism.

Definition 3.8 (Oblivious Filter)
The oblivious filter, denoted by σobl, is the derivation filter defined for any derivation
D = (∅, ∅, F0 = F), . . . , (Ri, πi, Fi), . . . as: ∀0 < i ∈ dom(D),

σobl(Di) =

{

1 if ∀j < i with Ri = Rj, πj 6= πi

0 otherwise

From these different filters, and since they all are sound and complete (indeed
from Theorem 3.1, they all compute a set of facts that corresponds to a universal
model), it is natural to ask whether they are comparable with respect to finiteness.
To this end, we first define an order relation on the filters to be able to compare
them.

Definition 3.9 (Filter Order Relation)
Given two derivation filters σ1 and σ2 we say that σ1 is weaker than σ2, denoted
by σ1 � σ2, if for any set of rules R and set of facts F , σ1-chase(F ,R) is finite
implies that σ2-chase(F ,R) also is.

Furthermore, we say that σ1 is strictly weaker than σ2, denoted by σ1 ≺ σ2 if
σ1 � σ2 and σ2 � σ1.

One can observe that the equivalent filter is the “strongest” of all possible chase
variants as stated in Proposition 3.3: indeed, from its definition, it does not impose
any restriction on which rule applications can be ignored but the equivalence between
the sets of facts.

The σequiv filter is maximal for the filter order relation �.

Proposition 3.3

3.1. DIFFERENT KINDS OF CHASE 55

Proof: Let σ be a derivation filter. Given a set of rules R, assume that for some set
of facts F , σ-chase(F ,R) is finite. Let D = (∅, ∅, F0 = F), . . . , (Ri, πi, Fi), . . . be
an exhaustive breadth-first derivation of F w.r.t. R. From the second point of the
definition of a derivation filter (Definition 3.3), for any i ∈ dom(D), if σ(D)i = 0 then
Fi ≡ Fi−1. Since for any j, σequiv(D)j = 0 if and only if Fj ≡ Fj−1, σequiv(D)i = 0.
Then, for any i such that σ(D)i = 0, σequiv(D)i is also equal to 0. This concludes
the proof. ✷

Furthermore, the next proposition states that all filters defined above are com-
parable and even totally ordered with respect to the filter order relation.

The following relations hold: σobl ≺ σfr ≺ σrestricted ≺ σequiv.

Proposition 3.4

Proof: Inclusion between σobl and σfr follows immediately from their definitions,
while the one between σrestricted and σequiv follows from Proposition 3.3. It is well-
known that σfr � σrestricted, see, for instance [One13]. Examples 3.4 to 3.6 show
that these inclusions are strict. ✷

Example 3.4 (σfr � σobl)
Consider the set of rules R = {p(x, y) → p(x, z)}, and the set of facts F = {p(a, b)}.

First, let us compute the oblivious chase, it is infinite, since all rule applications
of the only rule use a homomorphism with a different image for the variable y.
Indeed in the first application it is mapped to b, then to the generated fresh variable
z1, then to z2, and so on...

σobl-chase(F ,R) = {p(a, b), p(a, z1), . . . , p(a, zk), . . . }

While if we consider the frontier-restricted chase, all homomorphisms restricted to
the single frontier variable x are the same, and then, a single application is necessary.

σfr-chase(F ,R) = {p(a, b), p(a, z1)}

Example 3.5 (σrestricted � σfr)
Consider the set of rules R = {p(x) → r(x, y) ∧ r(y, y) ∧ p(y)}, and the set of
facts F = {p(a)}.

In this example, the frontier is differently mapped for each rule application. Thus,
the frontier-restricted chase (and the skolem chase since they are equivalent), is
infinite.

σfr-chase(F ,R) = {p(a), r(a, y1), r(y1, y1), p(y1) . . . , r(yk−1, yk), r(yk, yk), p(yk) . . . }

56 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

However the generated set of facts is quite redundant: indeed, the “loop” p(y, y)
when applied to the fresh variable y1 leads to something more specific than any other
applications. Therefore the restricted chase is finite.

σrestricted-chase(F ,R) = {p(a), r(a, y1), r(y1, y1), p(y1)}

Example 3.6 (σequiv � σrestricted)
Consider the set of facts F = q(a) and the set of rules R composed of the following
rules:

• R1 = q(x) → r(x, y) ∧ p(x, z)

• R2 = p(x, y) → p(y, z)

• R3 = r(x, y) → p(x, x)

In this example, the restricted chase first applies the first rule according to π1 =
{x 7→ a} and adds the atoms p(a, z1) and r(a, y1) to F0 = F yielding F1.

Then rule R2 can be applied to F1 according to π2 = {x 7→ a, y 7→ z1} adding
p(z1, z2) to F1 yielding F2.

Rule R3 can be applied to F2 with homomorphism π3 = {x 7→ a, y 7→ y1} adding
atom p(a, a) and yielding F3 = q(a) ∧ p(a, z1) ∧ r(a, y1) ∧ p(z1, z2) ∧ p(a, a).

Now, rule R2 can be applied again, this time according to homomorphism π4 =
{x 7→ z1, y 7→ z2}, indeed this homomorphism cannot be extended to p(x, y)∧p(y, z),
and thus we add the atom p(z2, z3).

In the end, the restricted chase of F and R is infinite and is as follows:

q(a) ∧ r(a, y1) ∧ p(a, a) ∧ p(a, z1) ∧ p(z1, z2) ∧ · · · ∧ p(zk, zk+1) ∧ . . .

Now let us consider the equivalent chase instead. While F1, F2 and F3 are the
same as with the restricted chase, any rule application to F3 yields an equivalent set
of facts. Indeed, F3 is already redundant, the homomorphism that maps z1 and z2 to
a, and y1 to itself maps F3 to its subset q(a)∧r(a, y1)∧p(a, a), then every p(zi, zi+1)
added by an application of R2 is also redundant. Therefore we obtain the finite set
of facts σequiv-chase(F ,R) = F3.

3.2 Acyclicity notions

In this section, we study the various acyclicity notions ensuring a finite chase that
have been proposed in the literature. As a matter of fact, all these conditions ensure
the finiteness of the frontier-restricted chase (or the skolem chase), except for one
(aGRD) that also ensures the finiteness of the oblivious chase. These properties
can be divided in two big families relying respectively on dependency-based and
position-based conditions. The former contains properties that look at how rules
are triggered, while the latter contains those that look at how existential variables are

3.2. ACYCLICITY NOTIONS 57

propagated along predicate positions. Note that some classes of rules and associated
notions have already been defined in Chapter 2, but we define them again to ease
the reading.

From there, we propose a new tool unifying both approaches, and show that
it can be used to extend the decidability recognition based on existing acyclicity
conditions. Two other properties that also ensure chase termination, namely Model
Faithful Acyclicity and Model Summarizing Acyclicity are neither dependency nor
position-based. These properties are discussed in Section 3.5, where we show that
the second one can be integrated into our framework while the first one cannot.

It has been shown in [ZZY15] that any set of rules which ensures the finiteness of
the frontier-restricted chase can be rewritten into an equivalent weakly-acyclic set of
rules. This means that with respect to expressivity, all those classes are equivalent.
However, this rewriting can be arbitrarily larger than the initial set of rules, and
thus, studying these classes is still interesting from a succintness point of view.

3.2.1 Dependency-based Approach

The dependency-based approach aims at avoiding cyclic triggering of rules. It relies
on a directed graph called the Graph of Rule Dependencies, first defined in [Bag04],
and makes use of the notion of dependency between rules. Intuitively, a rule R2

depends on a rule R1 if there is some set of facts F such that an application of R1

on F will lead to trigger a “new” and “useful” application of R2.

Definition 3.10 (Rule Dependency [Bag04, GHK+13])
Given R1 = B1 → H1 and R2 = B2 → H2 two rules, R2 depends on R1 if there
exists some set of facts F such that:

(i) there is a homomorphism π1 from B1 to F ,

(ii) there is a homomorphism π2 from B2 to F ′ = α(F , R1, π1),

(iii) π2 is not a homomorphism from B2 to F ,

(iv) α(F ′, R2, π2) 6= F ′.

In the previous definition, point (ii) and (iii) ensure that after the application
of R1 there is a new homomorphism from B2, while point (iv) ensures this homo-
morphism is useful.

Example 3.7
Consider rules R1 = r(x1, y1) ∧ q(y1) → p(y1, z1) and R2 = p(x2, y2) → r(y2, z2).
Rule R2 depends on rule R1, indeed, let F = r(a, b), q(a), there is a homomor-
phism π1 = {(x1, a), (y1, b)} from B1 to F (condition (i)), there is a homomorphism
π2 = {(x2, b), (y2, z1)} from B2 to F ′ = α(F , R1, π1) (condition (ii)), which is not a

58 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

homomorphism from B2 to F (condition (iii)), and F ′ = {r(a, b), q(a), p(b, z1)} 6=
{r(a, b), q(a), p(b, z1), r(z1, z2)} = α(F ′, R2, π2) (condition (iv)).

However rule R1 does not depend on rule R2, indeed, it can be shown that no set
of facts can be built such that all conditions are verified.

While this definition is not really operational, the existence of a dependency
between two rules can be computed thanks to piece-unifiers as stated by the next
proposition (we do not recall the definition of atom erasing since it is not needed
later).

Let R1 = B1 → H1 and R2 = B2 → H2 be two rules; R2 depends on R1 if
and only if there exists an atom-erasing piece-unifier of B2 with H1.

Proposition 3.5 ([BLMS11])

Example 3.8
Consider again rules R1 and R2 from Example 3.7. There is a piece-unifier

µ1 = {{p(x2, y2)}, {p(y1, z1)}, {{x2, y1}, {y2, z1}}}

of B2 with H1, but there is no piece-unifier of B1 with H2. Indeed the unifier

µ2 = {{r(x1, y1)}, {r(y2, z2)}, {{x1, y2}, {y1, z2}}}

does not satisfy the piece condition of a piece-unifier since variable y1 is unified
with the existential variable z2 and therefore q(y1) must be in the unified part of the
piece-unifier.

Definition 3.11 (Graph of Rule Dependencies)
Given a set of rules R, its graph of rule dependencies denoted by GRD(R) is the
labelled directed graph whose set of vertices is the set of rules and where there is an
edge from R1 to R2 if R2 depends on R1.

Intuitively, this graph encodes whether a rule can lead to trigger another. As
pointed out in Proposition 3.5, one can check whether a rule depends on another
by finding a particular piece-unifier of the body of the latter with the head of the
former.

Example 3.9 (Graph of Rule Dependencies)
Consider the rules R1 = p(x1, y1) → q(y1), R2 = q(x2) → r(x2, y2). There is a
unifier ({q(x2)}, {{y1, x2}}, {q(y1)}) of B2 with H1, hence an edge from rule R1 to
R2 but neither a unifier of B1 with H2, nor of B1 with H1 nor B2 with H2 ; hence,
the resulting graph of rule dependencies is acyclic.

If we add the rule R3 = r(x3, y3) → p(x3, y3), there is a unifier of B1 with H3

and of B3 with H2. Therefore, there is a cycle in the graph of rule dependencies as
shown in Figure 3.1.

3.2. ACYCLICITY NOTIONS 59

R1 R2
R1 R2

R3

Figure 3.1: GRD of {R1, R2} (left) and {R1, R2, R3} (right) from Example 3.9

Definition 3.12 (Acyclic Graph of Rule Dependencies)
Let R be a set of rules. We say that R is aGRD if GRD(R) is acyclic.

Let R be a set of rules. If R is aGRD, then for any set of facts F , the
oblivious chase halts on (F ,R).

Proposition 3.6 ([Bag04])

From a complexity point of view, it has been shown that recognising set of rules
satisfying aGRD is a coNP -complete problem.

Given a set of rules R, checking if R is aGRD is coNP -complete.

Proposition 3.7 (Complexity of aGRD Recognition [Bag04])

3.2.2 Position-based Approach

In the position-based approach, the way existential variables are “propagated”
through predicate positions is analysed. The idea is to check that no generated
variable appearing in some predicate position can lead to generate another one in
the same position.

Various conditions based on this idea have been proposed, we will show later
that all of these can be seen as acyclicity conditions. The simplest condition (and
first to be defined) is that of weak-acyclicity which relies on the predicate position
graph.

For the following we denote by (p, i) the ith position of predicate p.

Definition 3.13 (Predicate Position Graph)
Given a set of rules R, its predicate position graph, denoted by PPG(R) is the
directed labelled graph whose set of vertices is the set of predicate positions of R.
Then for each rule R ∈ R and each frontier variable x in B occuring in some posi-
tion (p, i), edges with origin (p, i) are built as follows: there is an edge from (p, i) to
each position (q, j) in H where x occurs, and there is a special edge from (p, i) to
each position (q, j) in H where some existential variable y appears.

60 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

Note that in this graph, both vertices and edges are labelled.

Example 3.10 (Predicate Position Graph)
Consider rules R1 = p(x, y) → s(y, z) and R2 = s(x, y) → p(x, y). The result-
ing predicate position graph is pictured on Figure 3.2.

(p, 1)

(p, 2)

(s, 1)

(s, 2)

Figure 3.2: Predicate Position Graph of {R1, R2} from Example 3.10

Definition 3.14 (Weak-acyclicity [FKMP05])
A set of rules R is weakly-acyclic if PPG(R) contains no cycle going through a
special edge.

Example 3.11 (Weak-acyclicity)
The set of rules {R1, R2} from Example 3.10 is not weakly-acyclic, indeed there
is a cycle going through a special edge: ((p, 2), (s, 2), (p, 2)). If we replace R2 by
R′

2 = s(x, y) → p(y, x), the predicate position graph of {R1, R
′
2} does not contain a

special cycle anymore, as can be seen on Figure 3.3; thus this set of rules is weakly-
acyclic.

(p, 1)

(p, 2)

(s, 1)

(s, 2)

Figure 3.3: Predicate Position Graph of {R1, R
′
2} from Example 3.11

Let R be a set of rules. If R is weakly-acyclic, then for any set of facts F ,
σfr-chase(F ,R) is finite.

Proposition 3.8 ([FKMP05])

Following this idea, several extensions to weak-acyclicity have been proposed, by
shifting the focus either from positions to existential variables (ja, [KR11]), or to

3.2. ACYCLICITY NOTIONS 61

positions in atoms instead of predicates (swa, [Mar09]). Other related notions can
be imported from logic programming, e.g., finite domain [CCIL08].

We recall here their definitions before unifying them in Section 3.3 and extending
them in Section 3.4.

Given a set of atoms A, we denote by PosA(x) the set of predicate positions
where the variable x occurs in A.

We first consider the notion of finite domain [CCIL08]. It relies on the fact that
if all positions are only “populated” by a finite number of individuals, then there
is a finite universal model of the knowledge base; indeed, by considering only rule
applications that are different with respect to the frontier of the rule, there can be
only finitely many rule applications. Here we use the definition from [GHK+13],
which has been shown to be equivalent to the original definition, since it uses a
vocabulary closer to ours.

Definition 3.15 (Finite Domain Positions)
Let R be a set of rules. A predicate position (p, i) is R-recursive with a position
(q, j) if the predicate position graph PPG(R) contains a cycle going through (p, i)
and (q, j). The set Posfd(R) of finite domain positions of R is the largest set of posi-
tions in R such that: for each position (p, i) ∈ Posfd(R), each rule R = (B,H) ∈ R,
and each head atom of H of the form a(~t), the following conditions hold:

• if the ith component of ~t is a variable y ∈ fr(R), then PosB(y)∩Posfd(R) 6= ∅

• if the ith component of ~t is an existential variable of R, then, for each variable
y ∈ fr(R), some position (q, j) ∈ PosB(y) ∩ Posfd(R) exists that is not R-
recursive with (p, i).

Then, it remains to check whether all positions in a set of rules are of finite
domain.

Definition 3.16 (Finite Domain [CCIL08])
A set of rules R is of finite domain (fd), if Posfd(R) coincides with the set of
all predicate positions in R.

This notion captures the notion of weak-acyclicity, since instead of just checking
that no cycle occurs in the predicate position graph, this condition checks that even
if there is a cycle for an existential variable, there may be some frontier variable
(therefore used by the rule application) that does not occur in some cycle (and thus
can be used only finitely many times).

Example 3.12 (Finite Domain)
Let R1 = p(x, y) ∧ q(y) → r(y, z) and R2 = r(y1, y2) → p(y1, y2) be two rules.
The set of rules R = {R1, R2} is of finite domain. Indeed for each predicate posi-
tion, the first point in Definition 3.15 is easily verified since no predicate occurring
in a rule head also appears in the same rule body. Then the only predicate position

62 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

where an existential variable occurs is (r, 2) in rule R1, and the only frontier vari-
able is y, it remains to check that y occurs at some predicate position which is not
R-recursive with (r, 2). As can be observed on Figure 3.4, (q, 1) is not R-recursive
with (r, 2). Therefore, the second point of the definition is also satisfied.

It should be noted thatR is not weakly-acyclic as there is a cycle ((p, 2), (r, 2), (p, 2))
that goes through a special edge.

(p, 1)

(p, 2)

(s, 1)

(s, 2)

(q, 1)

Figure 3.4: PPG(R) from Example 3.12

Let R be a set of rules. If R is of finite domain, then for any set of facts F ,
σfr-chase(F ,R) is finite.

Proposition 3.9 ([CCIL08])

On the other hand, weak-acyclicity has also been generalised by shifting the
focus to existential variables (instead of predicate positions). Indeed, only existential
variables do matter when we consider finiteness. It makes use of another graph, that
shows which existential variable can lead to create another one; then by checking
that there is no cycle in this graph, we ensure that no variable can create another,
and thus, that we only need finitely many fresh variables.

Definition 3.17 (Joint-acyclicity Graph)
Given a set of rules R, and an existential variable z occuring in some rule R =
(B,H) of R, let Move(z) be the smallest set of predicate positions such that:

• PosH(z) ⊆ Move(z);

• for each rule R′ = (B′, H ′) and each frontier variable y occuring in R′, if
PosB′(y) ⊆ Move(z), then PosH′(y) ⊆ Move(z).

The joint-acyclicity graph of R, denoted by JA(R) is the directed graph whose set
of vertices is the set of all existential variables in R, and where there is an edge
from z1 to z2 whenever the rule R = (B,H) that contains z2 also contains a frontier
variable y such that PosB(y) ⊆ Move(z1).

3.2. ACYCLICITY NOTIONS 63

Definition 3.18 (Joint-acyclicity [KR11])
A set of rules R is jointly-acyclic if JA(R) does not contain a cycle.

Example 3.13 (Joint-acyclicity)
Let R be the set composed of the following four rules:

• R1 = p(x, y) → r(y, z1),

• R2 = p(x, y) → r(z2, y),

• R3 = r(y1, y2) → s(y1, y2),

• R4 = s(y1, y2) ∧ s(y2, y1) → p(y1, y2).

Then one can check that Move(z1) = {(r, 2), (s, 2)} and Move(z2) = {(r, 1), (s, 1)},
and thus that JA(R) does not contain any cycle (therefore R is jointly-acyclic).

It can be observed that R is not of finite-domain. Indeed, observe that all pred-
icate positions but [p, 1] are R-recursive with each position but [p, 1]. Furthermore,
in rule R1 for instance, position [p, 2] is the only position in B1 in which the vari-
able y occurs, but it is R-recursive with [r, 2] which holds an existential variable.
Thus, position [r, 2] cannot belong to the set Posfd(R) and therefore R is not of
finite-domain.

Let R be a set of rules. If R is jointly-acyclic, then for any set of facts F ,
σfr-chase(F ,R) is finite.

Proposition 3.10 ([KR11])

To define the notion of super weak-acyclicity (that shifts the focus to positions
in atoms) we make use of the following notations: [a, i] denotes the ith position of
atom a, and if p is an atom position, term(p) denotes its term, and pred(p) denotes
its predicate. Super weak-acyclicity relies on yet another graph, and this graph uses
the notion of covering between atom positions sets as defined below.

Definition 3.19 (Atom positions covering)
Given two sets of atom positions A1 and A2, we say that A1 covers A2 if for each
atom position [p2, i2] ∈ A2, there is a position [p1, i1] ∈ A1 and there exist two
substitutions σ1 and σ2 such that σ1(p1) = σ2(p2) and i1 = i2.

Definition 3.20 (Super Weak-acyclicity Graph)
Given a set of rules R, and a variable x occuring in some rule R, we define the
following three sets:

• In(x) contains each atom position [p, i] such that p ∈ B and x = term([p, i]);

64 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

• Out(x) contains each atom position [p, i] such that p ∈ H and x = term([p, i]);

• Move(x) is the smallest set of atom positions such that:

– Out(x) ⊆ Move(x);

– for each variable x′ that is universally quantified in some rule in R, if
Move(x) covers In(x′), then Out(x′) ⊆ Move(x).

The super weak-acyclicity graph of R, denoted by SWA(R) is the directed graph
whose set of vertices is the set of rules, and in which there is an edge from a rule R

to a rule R′ if there exist a frontier variable y′ from R′ and an existential variable z

from R, such that Move(z) covers In(y′).

Once the super weak acyclicity graph is built, it remains to check for its acyclicity.

Definition 3.21 (Super Weak-acyclicity [Mar09])
A set of rules R is super weakly-acyclic (swa), if SWA(R) does not contain any
cycle.

Example 3.14 (Super Weak-acyclicity)
Let R1 = q(y1) → p(y1, z1) ∧ p(z1, y1) ∧ p(y1, y1), R2 = p(y2, y2) → s(y2), and
R3 = s(y3) → q(y3) be rules. It can be checked that the set of rules R = {R1, R2, R3}
is super weakly-acyclic.

Let R be a set of rules. If R is super weakly-acyclic, then for any set of
facts F , σfr-chase(F ,R) is finite.

Proposition 3.11 ([Mar09])

3.2.3 First combination

It appears that aGRD and weak-acyclicity are incomparable, as shown by the two
next examples.

Example 3.15 (wa * aGRD)
Consider rules R1 = p(x1, y1) → q(x1, y1) and R2 = q(x2, y2) → p(y2, x2). There is
a piece-unifier:

µ1 = {{p(x1, y1)}, {p(y2, x2)}, {{x1, y2}, {y1, x2}}}

of B1 with H2, therefore R1 depends on R2, and a piece-unifier:

µ2 = {{q(x2, y2)}, {q(x1, y1)}, {{x2, x1}, {y2, y1}}}

3.3. UNIFYING BOTH APPROACHES 65

of B2 with H1, thus R2 depends on R1. It follows that R = {R1, R2} is not aGRD.
However, since no existential variable occurs in the rules, R is trivially weakly-

acyclic.
Thus, the set of rules R satisfies wa, but not aGRD.

Example 3.16 (aGRD * wa)
Consider the single rule R = p(x, y) ∧ q(y) → p(y, z). There is no unifier of B
with H, thus this rule does not depend on itself, inducing an acyclic graph of rule
dependencies. However its predicate position graph contains a special edge loop on
position (p, 2), and thus is cyclic.

Therefore, R = {R} satisfies aGRD but not wa.

Therefore, a first attempt to combine both approaches has been made in [BLMS11,
GHK+13]. The proposed idea was to check for position-based acyclicity conditions
on each strongly connected component of the GRD. In a way, this was a “modular”
approach which led to new sufficient conditions for chase termination, as states the
next proposition.

Let R be a set of rules, and σ some derivation filter. If for any set of facts
F , the σ-chase of F w.r.t. each strongly connected component of GRD(R)
is finite, then for any set of facts F , σ-chase(F ,R) is finite.

Proposition 3.12 ([BLMS09, BLMS11])

In the next section, we devise a tool that combines these two approaches in a
more powerful way, allowing us to not only express all these acyclicity properties in
a unified way, but also to extend them.

3.3 Unifying both Approaches

In this section, we propose a new graph that encodes both atom positions and rule
dependencies.

We recall that we write [a, i] to denote the ith position of atom a, and if p is an
atom position, term(p) to denote its term, and pred(p) to denote its predicate. We
also say that [a, i] is an existential position (resp. frontier position) if term([a, i]) is
an existential (resp. frontier) variable.

Definition 3.22 (Basic Position Graph)
Given a rule R, the individual position graph of R, denoted by PG(R), is the di-
rected graph whose vertices are the atom positions in R and there is an edge from
position [a, i] to [b, j] if term([a, i]) is a frontier variable x and term([b, j]) is either
x or some existential variable. Given a set of rules R, the basic position graph of
R, denoted by PG(R), is the disjoint union of PG(Ri) for all Ri ∈ R.

66 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

Example 3.17 (Basic Position Graph)
Consider the rules R1 = q(x1) → p(x1, y1) and R2 = p(x2, y2), s(y2) → q(y2), the
basic position graph of {R1, R2} is depicted in Figure 3.5 (existential positions are
colored in red).

q(x1)

p(x1, y1)

p(x1,y1)

p(x2, y2)

p(x2,y2)

s(y2)

q(y2)

R1 R2

Figure 3.5: Basic Position Graph of {R1, R2} from Example 3.17

An existential position [a, i] is said to be infinite if there is a set of atoms F , such
that running the chase on F produces an unbounded number of instantiations of
term([a, i]). Since we aim at detecting these infinite existential positions, we encode
how variables may be “propagated” among rules by adding edges to PG(R), called
transition edges, which go from vertices corresponding to atom positions occurring
in rule heads to vertices corresponding to atom positions in rule bodies. If X is a set
of transition edges, we denote by PGX(R) the position graph PG(R) in which are
added the edges of X. Furthermore, we say that a set of transition edges is correct
if it satisfies the following condition: if an existential position [a, i] is infinite, then
there a cycle going through [a, i] in the resulting graph.

To define more formally the notion of correct sets of transition edges, we make
use of the support graph of a derivation.

Definition 3.23 (Supports)
Let F be a set of facts, R be a set of rules and D = (∅, ∅, F0 = F), . . . , (Rk, πk, Fk)
be a (finite) breadth-first derivation. Let h be an atom occuring in the head of some
rule Ri and b be an atom occuring in the body of some rule Rj. We say that (h, πi) is

a support for (b, πj) in D if πsafe
i (h) = πj(b). If there is an atom f ∈ F0 = F such

that f = πj(b), we also say that (f, init) is a support of (b, πj). Among all possible
supports for (b, πj), its first supports are the supports (h, πi) such that either i is
minimal or πi = init. By extension we say that (Ri, πi) is a support for (Rj, πj)
in D when there exist an atom h ∈ Ri and an atom b ∈ Rj such that (h, πi) is a
support for (b, πj) in D. Among all possible supports for (Rj, πj) its last support is
the support (Ri, πi) such that i is maximal.

Definition 3.24 (Support Graph)
Given a set of facts F , a set of rules R and a breadth-first derivation D = (∅, ∅, F0 =

3.3. UNIFYING BOTH APPROACHES 67

F), . . . , (Rk, πk, Fk), the support graph of D is the directed graph with k + 1 ver-
tices: F0 and the (Ri, πi). There is an edge from a vertex vi to vj = (Rj, πj) if vi is
a support of vj. Such an edge is called last support edge (LS edge) when vi is a last
support of vj. It is called non-transitive edge (NT edge), if it is not a transitivity
edge. A path in which all edges are either LS or NT is called a triggering path.

We now define the notion of triggering derivation sequence from an atom h to
an atom b as follows.

Definition 3.25 (Triggering Derivation Sequence)
Given a knowledge base (F ,R) and two atoms h and b, a triggering derivation se-
quence from h to b, denoted as h → b triggering sequence, is a (finite) breadth-first
derivation from F to Fk such that (h, π1) is a first support of (b, πk).

We are now able to define formally the notion of correct set of transition edges.

Definition 3.26 (Correct Set of Transition Edges)
Let R be a set of rules. A set of transition edges X is correct if, whenever there
exists an h → b triggering derivation sequence, PGX(R) contains a transition from
(h, i) to (b, i) for all 1 ≤ i ≤ r where r is the arity of the predicate of h (and b).

Let R be a set of rules, and X a set of transition edges. If X is correct, and
PGX(R) is acyclic, then for any set of facts F , σfr-chase(F ,R) is finite.

Theorem 3.2

Proof: Observe that if there is no cycle in a correct PGX , then no existential
variable generated by a rule R can be “used” to generate a fresh existential variable
in the same position by another application of R. Thus, only a finite number of fresh
existential variables is needed in σfr-chase(F ,R), and therefore, σfr-chase(F ,R) is
finite. ✷

In the following we propose different position graphs that have correct sets of
transition edges. First, the full position graph corresponds to the case where all
rules are supposed to depend on all rules. It is used to check for position-based
acyclicity conditions without taking into account the “true” dependencies between
rules.

Definition 3.27 (Full Position Graph)
Given a set of rules R, the full position graph of R, denoted by PGF (R), is obtained
from PG(R) by adding a transition edge from each position [h, k] in a rule head Hi

to each position [b, k] in a rule body Bj with the same predicate.

68 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

q(x1)

p(x1, y1)

p(x1,y1)

p(x2, y2)

p(x2,y2)

s(y2)

q(y2)

R1 R2

Figure 3.6: Full Position Graph of {R1, R2} from Example 3.17

Example 3.18 (Full Position Graph)
Consider rules {R1, R2} from Example 3.17. The full position graph of {R1, R2}
is represented on Figure 3.6.

The set of transition edges of PGF (R) is correct for any set of rules R.

Proposition 3.13

Proof: Follows immediately from the definitions. ✷

The full position graph is sufficient to encode all position-based acyclicity con-
ditions defined in Section 3.2.2. To this end, we define marking functions, that
intuitively assign to each atom position a subset of positions reachable from it, ac-
cording to some propagation constraints depending on the acyclicity property we
want to express. Then, we say that the property is fulfilled when no existential
position can be reached from itself.

Definition 3.28 (Marking Function)
A marking function Y assigns to each vertex [a, i] in some position graph PGX

a subset of its (direct or indirect) successors, called its marking.

Definition 3.29 (Marked Cycle)
Given a set of rules R, a marking function Y , a set of transition edges X, and
an atom position [a, i] occuring in R, a marked cycle for [a, i] w.r.t. X, Y and R is
a cycle C in PGX(R) such that [a, i] ∈ C and for all [a′, i′] ∈ C, [a′, i′] belongs to
the marking of [a, i].

Obviously, the less situations there are in which the marking may “propagate”
in a position graph, the stronger the acyclicity property is.

3.3. UNIFYING BOTH APPROACHES 69

Definition 3.30 (Acyclicity Property)
Given a marking function Y and a set of transition edges X, the acyclicity property
associated with Y in PGX , denoted by Y X , is satisfied by a set of rules R if there
is no marked cycle for an existential position in PGX(R).

Let R be a set of rules and Y be an acyclicity property such that if R
satisfies Y then for any set of facts F σfr-chase(F ,R) is finite, and X be
a correct set of transition edges. If R satisfies Y X , then for any set of facts
F , σfr-chase(F ,R) is finite.

Theorem 3.3

Proof: Let us say that a transition edge from [a, i] in R1 to [a′, i] in R2 is useful if
there are a set of facts F and a homomorphism π1 from B1 to F such that there is a
homomorphism π2 from B2 to F ′ = α(F,R1, π1) and π

safe
1 (a) = π2(a

′). Furthermore
we say that the application of R2 uses edge ([a, i], [a′, i]).

One can see that a useful edge exactly corresponds to an h → b triggering
derivation sequence where [a, i] occurs in h and [a′, i] occurs in b. It follows from
the correctness of X that no useful edge is removed.

Now let Y be an acyclicity property ensuring the finiteness of the frontier-
restricted chase. Assume there is a a set of rules R that satisfies Y X and there
is a set of facts F such that σfr-chase(F ,R) is infinite. Then there is a rule ap-
plication in this (infinite) derivation that uses a transition edge ([a, i], [a′, i]) which
does not appear in PGX(R). This edge is then useful, and thus PGX(R) does not
use a correct set of edges. ✷

We now define marking functions corresponding to acyclicity conditions defined
in Section 3.2.

We first define three properties of a marking M([a, i]) that may be fulfilled by
the different marking functions, which allows us to easily compare them:

• (P1) Γ([a, i]) ⊆ M([a, i]);

• (P2) for all [a′, i′] ∈ M([a, i]) such that [a′, i′] occurs in some rule head:
Γ([a′, i′]) ⊆ M([a, i]);

• (P3) for all variable v in a rule body, such that for all positions [a′, i′] with
term([a′, i′]) = v, there is a position [a′′, i′] ∈ M([a, i]) with pred([a′, i′]) =
pred([a′′, i′]) and term([a′′, i′]) = v: Γ(v) ⊆ M([a, i]), where Γ(v) is the union
of all Γ(p) where p is an atom position in which v occurs.

Property (P1) states that the neighbourhood of the position we are considering
must be in the marking; then property (P2) that if a position belonging to the

70 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

marking occurs in some rule head, then its neighbourhood must also belong to
it; finally property (P3) states that if for all positions in which some variable v

occurs in a rule body, there is a position belonging to the marking with the same
predicate position in which v occurs, then the neighbourhood of variable v (that is
all neighbours of all positions in which v occurs) must also belong to the marking.

The first position-based acyclicity condition is weak-acyclicity (see Definition
3.14 for its original wording).

Definition 3.31 (Weakly-acyclic Marking)
A marking M is a weakly-acyclic marking with respect to some transition edge con-
dition X, if for any set of rules R and any position [a, i] ∈ PGX(R), M([a, i]) is
the minimal set such that:

• (P1) holds,

• ∀[a′, i′] ∈ M([a, i]),Γ([a′, i′]) ⊆ M([a, i]).

Observe that the latter condition implies (P2) and (P3).

Example 3.19
Consider the set of rules R composed of rule R1 = p(x1, y1) → s(y1, z1) and rule
R2 = s(x2, y2) → p(x2, y2) from Example 3.10 whose predicate position graph is
pictured on Figure 3.2.

The full position graph PGF (R) is depicted by Figure 3.7.

There is a single existential position [s(y1, z1), 2] (from rule R1) whose mark-
ing M is the following: first M contains all neighbours of [s(y1, z1), 2], that is
[s(x2, y2), 2] from rule R2. Then, the second condition of the weakly-acyclic mark-
ing forces all neighbours of each element of the marking to also be in the marking.
Therefore [p(x2, y2), 2] also belongs to M , and for the same reason [p(x1, y1), 2] and
[s(y1, z1), 2] Hence, we have:

M([s(y1, z1), 2]) = {[s(x2, y2), 2], [p(x2, y2), 2], [p(x1, y1), 2], [s(y1, z1), 2]}

and since M contains the existential variable from which we build it, R is not weakly-
acyclic.

The following lemma will be of great use in the different proofs of equivalence
between the original acyclicity conditions and their markings in the full position
graph. It exhibits the link between the edges in the predicate position graph of a
set of rules, and those in its full position graph.

3.3. UNIFYING BOTH APPROACHES 71

p(x1, y1)

p(x1,y1)

s(y1, z1)

s(y1, z1)

s(x2, y2)

s(x2,y2)

p(x2, y2)

p(x2,y2)

Figure 3.7: PGF (R) from Example 3.19

Let R be a set of rules. For each edge ((p, i), (q, j)) in the predicate position
graph of R, there is the following non-empty set of edges in PGF (R):

E(p,i),(q,i) = {([a, i], [b, j]) | pred([a, i]) = p and pred([b, j]) = q}

Furthermore, the set of all E(p,i),(q,j) for all positions (p, i) and (q, j) forms
a partition of all edges in PGF (R).

Lemma 3.1

Proof: Follows immediately from the construction of PGF . ✷

A set of rules R is wa iff PGF (R) satisfies the acyclicity property associated
with the wa marking (formally defined in Definition 3.31).

Proposition 3.14

Proof: If R is not wa, then there is some cycle in the graph of predicate positions
going through a special edge. Let (p, i) be the predicate position where this edge
ends, and z be an existential variable which occurs in (p, i). Let M be the wa-
marking of any existential position [a, i] with pred([a, i]) = p and term([a, i]) = z.
Condition (P1) ensures that the successors of [a, i] are marked; then the propagation
can be seen as performing a classic breadth-first traversal of the graph. By Lemma
3.1, to each cycle in the graph of predicate positions of R corresponds a set of
cycles in PGF (R). Since (p, i) belongs to a cycle, [a, i] is obviously marked by the
propagation. Hence PGF (R) does not satisfy the acyclicity property associated with
the wa-marking.

72 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

Conversely, if R is wa, there is no cycle going through a special edge in PPG(R).
By Lemma 3.1, no cycle in PGF (R) goes through an existential position; therefore
PGF (R) satisfies the acyclicity property associated with the wa-marking. ✷

Definition 3.32 (Finite Domain Marking)
A marking M is a finite domain marking with respect to some transition edge con-
dition X, if for any set of rules R and any position [a, i] ∈ PGX(R), M([a, i]) is
the minimal set such that:

• (P1) and (P3) hold,

• ∀[a′, i′] ∈ M([a, i]),Γ([a′, i′]) \ {[a, i]} ⊆ M([a, i]).

It should be pointed out that the latter condition implies (P2).

A set of rules R is fd iff PGF (R) satisfies the acyclicity property associated
with the fd marking (Definition 3.32).

Proposition 3.15

Proof: Let R be a set of rules that is fd. Then, for each existential position
[p, i] there exists a position [p, j] for each variable of the frontier in the predicate
positions graph such [p, j] does not belong to a cycle. Given PGF (R), we can see
that Condition (P3) ensures that R is fd. ✷

Definition 3.33 (Joint-acyclicity Marking)
A marking M is a joint-acyclicity marking with respect to some transition edge
condition X, if for any set of rules R and any position [a, i] ∈ PGX(R), M([a, i])
is the minimal set such that: (P1), (P2) and (P3) hold.

A set of rules R is ja iff PGF (R) satisfies the acyclicity property associated
with the ja marking (Definition 3.33).

Proposition 3.16

Proof: Note that the definition of the ja marking is defined in the same way as
the Move set from Definition 3.17. Furthermore, by Lemma 3.1, for any predicate
position (p, i) in the JA graph of a set of rules R, there is a cycle going through (p, i)
iff for any existential position [a, i] such that pred([a, i]) = p we have [a, i] ∈ M([a, i]).

✷

3.3. UNIFYING BOTH APPROACHES 73

Definition 3.34 (Super-weakly-acyclic Marking)
A marking M is a super-weakly-acyclic marking with respect to some transition
edge condition X, if for any set of rules R and any position [a, i] ∈ PGX(R),
M([a, i]) is the minimal set such that:

• (P1) and (P3) hold,

• for all [a′, i′] ∈ M([a, i]) occuring in a rule head, {[a′′, i′] ∈ Γ([a′, i′]) | a′ and
a′′ unify} ⊆ M([a, i]).

A set of rulesR is swa iff PGF (R) satisfies the acyclicity property associated
with the swa marking (Definition 3.34).

Proposition 3.17

Proof: Similarily to the proof of Proposition 3.16, observe that the swa marking is
defined in the same way as the move set of Definition 3.20. ✷

We synthesise here propositions 3.14 to 3.17.

A set of rules R is wa (resp. fd, ja, swa) iff PGF (R) satisfies the acyclicity
property associated with the wa (resp. fd, ja, swa) marking.

Theorem 3.4

Proof: Follows immediately from Propositions 3.14 to 3.17. ✷

As already mentioned in Section 3.2, all acyclicity properties can be safely com-
bined with the GRD (initially proposed in [BLMS11]). More formally, we recall the
definition from [GHK+13] in which the previous definition is slightly improved:

Definition 3.35 (Y ≺ [BLMS11, GHK+13])
Given an acyclicity property Y , a set of rules R satisfies Y ≺ if each strongly con-
nected component of GRD(R) satisfies Y , except for those composed of a single rule
and no loop.

The “no loop” condition is here to ensure that if GRD(R) is acyclic, then R
satisfies Y ≺ for any Y .

To capture these conditions, we define a second transition edge condition for
position graphs.

74 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

Definition 3.36 (Dependency Position Graph)
Given a set of rules R, the dependency position graph of R, denoted by PGD(R),
is obtained from PG(R) by adding a transition edge from each position [h, k] in a
rule head Hi to each position [b, k] in a rule body Bj with the same predicate if there
is a path from Ri to Rj in GRD(R), i.e., if Rj depends directly or indirectly on Ri.

Example 3.20 (Dependency Position Graph)
Let R1 = r(x1, y1) → p(z1, y1) ∧ q(y1) and R2 = p(x2, y2) ∧ q(x2) → p(y2, z2) be two
rules. The dependency position graph of R = {R1, R2} is depicted on Figure 3.8.
Note that there is a piece-unifier of B2 with H1: µ1 = {{q(x2)}, {{x2, y1}}, {q(y1)}}
and a piece-unifier of B1 with H2: µ2 = {{r(x1, y1)}, {{x1, y2}, {y1, z2}}, {p(y2, z2}}.

r(x1, y1)

r(x1,y1)

p(z1, y1)

p(z1y1)

q(y1)

p(x2, y2)

p(x2,y2)

q(x2)

r(y2, z2)

r(y2, z2)

R1 R2

Figure 3.8: PGD(R) from Example 3.20

The first thing to notice is that for any set of rules the dependency position
graph is a subgraph of the full position graph.

Let R be a set of rules, E(PGD(R)) ⊆ E(PGF (R)).

Proposition 3.18

Proof: Follows immediately from the definitions. ✷

However, the correctness of its set of edges still holds.

The set of transition edges of PGD(R) is correct for any set of rules R.

Proposition 3.19

3.3. UNIFYING BOTH APPROACHES 75

The proof of this proposition relies on the following two lemmas.

If D is an h → b triggering derivation sequence of length k, then there is a
triggering path from (R1, π1) to (Rk, πk) in the support graph of D.

Lemma 3.2

Proof: There is an edge from (R1, π1) to (Rk, πk) in the support graph of D. By
removing transitivity edges, it remains a path from (R1, π1) to (Rk, πk) for which all
edges are either LS or NT. ✷

If there is an edge from (Ri, πi) to (Rj, πj) that is either LS or NT in the
support graph of D, then Rj depends on Ri.

Lemma 3.3

Proof: Assume there is a LS edge from (Ri, πi) to (Rj, πj) in the support graph
of D. Then the applicatin of Ri according to πi on Fi−1 produces Fi on which all
atoms required to map Bj are present (or it would not have been a last support).
Since it is a support there is also an atom required to map Bj that appeared on
Fi−1. It follows that Rj depends on Ri.

Suppose now that the edge is NT. Consider Fℓ such that there is a LS edge from
(Rℓ, πℓ) to (Rj, πj). See that there is no path from (Ri, πi) to (Rℓ, πℓ) (otherwise
there would be a path from (Ri, πi) to (Rj, πj) and the edge would be a transitive
edge). Thus we can consider the set of facts Fℓ\i that would have been created by
the following derivation sequence:

1. first apply from F0 all rule applications of the initial sequence until (Ri−1, πi−1),

2. then apply all possible applications of this sequence from i+ 1 until ℓ.

We can apply (Ri, πi) on the set of facts Fℓ\i thus obtained (since it contains all
atoms from Fi−1. Let us now consider the set of facts F ′ obtained after this rule
application. We must now check that (Rj, πj) can be applied on F ′. This stems
from the fact that there is no support path from (Ri, πi) to (Rj, πj). This last rule
application relies upon an atom that is introduced by the application of (Ri, πi),
thus Rj depends on Ri. ✷

We can now conclude by the proof of Proposition 3.19:
Proof: If there is an h → b triggering derivation sequence, then by Lemma 3.2,
we can exhibit a triggering path that corresponds to a path in the graph of rule
dependencies (Lemma 3.3). ✷

76 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

The next proposition states that checking acyclicity properties in the depen-
dency position graph is equivalent to checking acyclicity properties on each strongly
connected component of the graph of rule dependencies.

Given an acyclicity property Y and a set of rules R, R satisfies Y ≺ if and
only if R satisfies Y D; i.e., Y D = Y ≺.

Proposition 3.20

Proof: Let R be a set of rules and Y be an acyclicity property.

We first show that if R is not Y D then it is not Y ≺. Suppose that R does
not satisfy Y D. We then have an existential position [a, i] in PGD(R) such that
[a, i] ∈ M([a, i]), where M is the marking associated with Y . Specifically, this
means that there is a cycle going through [a, i] in PGD(R). Then all rules from this
cycle belong to the same strongly connected component of GRD(R). Consider the
restriction of R to the set of rules R′ that correspond to the S.C.C. in which the
rules from this cycle appear. If we build PGF (R), we see that R′ does not satisfy
Y F , hence Y . We have then exhibit a S.C.C. of the GRD(R) that does not satisfy
Y , hence R is not Y ≺.

Now we show that if R is not Y ≺, then it is not Y D. Assume that R does
not satisfy Y ≺. Since it does not satisfy Y ≺ there is at least one S.C.C. that does
not satisfy Y . Call it R′. Hence PGF (R′) contains an existential position [a, i]
belonging to a cycle. Since R (hence R′) is Y D, this cycle does not occur anymore
in PGD(R′). However, the only edges we are allowed to remove in PGD(R′) are
edges between rules Ri and Rj for which there is no path from Ri to Rj in GRD(R).
Thus, we cannot remove any edge (from the definition of a S.C.C.). Hence, R′ is
not Y D. ✷

From the definition of an acyclicity property that we proposed earlier (Definition
3.30), we can prove in a generic way that some properties are stronger (or weaker)
than others. In the following, given two acyclicity properties Y1 and Y2 we say that
Y1 is weaker than Y2, denoted by Y1 ⊆ Y2 if for any set of rules R, R satisfies Y1

implies that R satisfies Y2. If, furthermore, Y2 * Y1, we write Y1 ⊂ Y2.

First, we can prove that if an acyclicity property does not generalise aGRD,
the acyclicity property obtained by checking it on PGD instead of PGF is strictly
stronger than the original one. The idea is that by switching to PGD, we take into
account dependencies between rules, which is why if the property already generalises
aGRD (and thus already takes dependencies into account in some way), it may not
become strictly stronger.

3.3. UNIFYING BOTH APPROACHES 77

Let Y be an acyclicity property, if aGRD * Y , then Y ⊂ Y D.

Proposition 3.21

Proof: Let R be a set of rules that does not satisfy Y but satisfies aGRD. From the
definition of aGRD, GRD(R) is composed of |R| strongly connected components
with no loop. Thanks to Proposition 3.20, R trivially satisfies Y D. Therefore, R is
a set of rules satisfying Y D but not Y . ✷

The next proposition states that if two acyclicity properties are comparable, then
the properties obtained by extending them to take into account dependencies also
are.

Let Y1 and Y2 be two acyclicity properties, if Y1 ⊆ Y2 then Y D
1 ⊆ Y D

2 .

Proposition 3.22

Proof: Consider a set of rules R that satisfies Y D
1 . From Proposition 3.20, each

strongly connected component of GRD(R) satisfies Y1. Since Y1 ⊆ Y2, each S.C.C.
of GRD(R) also satisfies Y2, therefore R satisfies Y D

2 . ✷

Then, we can check that a strict inclusion of two acyclicity properties is preserved
(under some minor constraints) while shifting to the dependency version.

Let Y1 and Y2 be two acyclicity properties such that Y1 ⊂ Y2, wa ⊆ Y1 and
Y1 ⊂ Y D

1 . Then, Y D
1 ⊂ Y D

2 .

Proposition 3.23

Proof: From Proposition 3.22, we know that Y D
1 ⊆ Y D

2 ; it remains to exhibit a set
of rules that satisfies Y D

2 but not Y D
1 .

Let R be a set of rules that satisfies Y2 but neither Y1 nor aGRD. Rewrite R
into R′ by replacing each rule Ri = (Bi, Hi) with a new rule R′

i = (Bi∪{p(x)}, Hi∪
{p(x)}), where p is a fresh predicate and x a fresh variable. Each rule can now be
unified with each rule, but the only created cycles are those which contain only atom
positions [p(x), 1], hence none of those cycles go through existential positions. Since
wa ⊆ Y1 (and so wa ⊆ Y2), the added cycles do not change the behaviour of R with
respect to properties Y1 or Y2. Hence R

′ satisfies Y2 and not Y1, and since GRD(R′)
is a complete graph, PGD(R′) = PGF (R′). We can conclude that R′ satisfies Y D

2

but not Y D
1 . ✷

78 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

In this section we have presented a new graph that allows to encode most existing
acyclicity notions. Next, we make use of this new tool to extend them in a generic
way.

3.4 Extensions

In this section, we present two other sets of transition edges for the position graph,
and show that this allows us to extend the acyclicity notions detailed previously.

First, we need to define the notion of agglomerated rule, which allows us to
encode information about unifiers in the position graph.

While technical, the intuition behind this definition is quite simple: we want the
agglomerated rule to limit the number of existential variables from a rule. The idea
is to relax the notion of piece-unifier; indeed, through a derivation, it may happen
that the atoms needed to trigger a rule have actually been found, as illustrated by
the next example.

Example 3.21
Let R1 = p(x1, y1) → r(y1, z1) ∧ q(z1), R2 = q(x2) → s(x2) and R3 = r(x3, y3) ∧
s(y3) → p(x3, y3). We want to have a transition edge from [r(y1, z1), 2] to [r(x3, y3), 2]
since the fresh variable generated after an application of rule R1 can be used for a
new application of rule R3. It we only consider piece-unifiers of B3 with H1, this
edge does not appear; indeed, there is no such piece-unifier. Thus, the idea is to
“relax” the piece-unifiers, and to this purpose, we weaken which variables are ex-
istentially quantified by “moving” the frontier along the path (in this example, this
path goes through rule R2).

Then we build an agglomerated rule, that contains both R1 and R2 information
about which variables could be unified later. In this case, the agglomerated rule of
R1 relatively to R3 would be: R3

1 = p(x1, y1) ∧ fr(y1) ∧ fr(z1) → r(y1, z1) ∧ q(z1).
Since z1 is not existentially quantified anymore, there is a piece-unifier of B3 with
R3

1.

Definition 3.37 (Agglomerated Rule)
Given R a set of rules and Ri, Rj ∈ R, an agglomerated rule associated with (Ri, Rj)
has the following form:

Rk
i = Bi

⋃

t∈T⊆terms(Hi)

fr(t) → Hi

where fr is a new unary predicate that does not appear in R, and the atoms fr(t) are
built as follows. Let P be a non-empty set of paths from Ri to direct predecessors
of Rj in GRD(R). Let P = (R1, . . . , Rn) be a path in P. One can associate a
rule RP with P by building a sequence R1 = RP

1 , . . . , R
P
n such that ∀1 ≤ l ≤ n,

there is a piece-unifier µl of Bl+1 with the head of RP
l , where the body of Rp

l+1 is

3.4. EXTENSIONS 79

BP
l ∪ {fr(t) | t is a term of HP

l unified in µl}, and the head of RP
l+1 is H1. Note

that for all l, HP
l = H1, however, for l 6= 1, RP

l may have less existential variables
than Rl due to the added atoms. The agglomerated rule R

j
i built from {RP | P ∈ P}

is Rj
i =

⋃

P∈P

RP .

Definition 3.38 (Position Graph with Unifiers)
Given a set of rules R, the position graph with unifiers of R, denoted by PGU(R),
is obtained from PG(R) by adding a transition edge from each position [h, k] in
a rule head Hi to each position [b, k] in a rule body Bj with the same predicate if
there is a piece-unifier µ of Bj with the head of an agglomerated rule R

j
i such that

σµ(term([b, k])) = σµ(term([h, k])).

Example 3.22 (Position Graph with Unifiers)
Remember rules R1 = r(x1, y1) → p(z1, y1) ∧ q(y1) and R2 = p(x2, y2) ∧ q(x2) →
p(y2, z2) from Example 3.20. The position graph with unifiers of R = {R1, R2} is
shown on Figure 3.9. Note that differently from its dependency position graph (see
Figure 3.8), the position graph with unifiers does not contain any cycle.

r(x1, y1)

r(x1,y1)

p(z1, y1)

p(z1y1)

q(y1)

p(x2, y2)

p(x2,y2)

q(x2)

r(y2, z2)

r(y2, z2)

R1 R2

Figure 3.9: PGU(R) from Example 3.22

One can observe that the set of edges of the position graph with unifiers is a
subset of the edges of the dependency position graph.

Let R be a set of rules, E(PGU) ⊆ E(PGD).

Proposition 3.24

Proof: Follows immediately from the fact that in PGU we only consider paths in
the graph of rule dependencies to create the agglomerated rule. ✷

80 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

The set of transition edges of PGU(R) is correct for any set of rules R.

Proposition 3.25

Proof: Consider a h → b triggering derivation sequence from F to Fk. We note
HP = πk(Bk) ∩ π

safe
1 (H1) the atoms of Fk that are introduced by the application

(R1, π1) and are used for the application (Rk, πk). Note that this set of atoms is
not empty, since it contains at least the atom produced from h. Now consider
the set of terms T P = terms(HP) ∩ terms(πk(Bk) \ HP) that separate the atoms
of HP from the other atoms of πk(Bk). Now we consider the rule RP = B1 ∪
{fr(t) | t is a variable of R1 and π

safe
1 (t) ∈ T P} → H1. Consider the set of facts

F P = Fk\H
P ∪{fr(t) | t ∈ T P}. Consider the mapping πP

1 from the variables of the
body of RP to those of F P defined as follows: it v is a variable from B1 then πP

1 (v) =
π1(v), otherwise v is a variable in an fr-atom and πP

1 (v) = πk(v). This mapping is
a homomorphism, thus we can consider the set of facts F P ′

= α(F P , RP , πP
1). This

application produces a new application of Rk that maps b to the atom produced
from h. Indeed, consider the mapping πP

k from the variables of Bk to those of F P ′

defined as follows: if v is a variable of Bk such that πk(v) ∈ terms(HP) \ T P , then
πP
k (v) = πP safe

1 (v′), where v′ is the variable of H1 that produced πk(v), otherwise
πP
k (v) = πP safe

1 (v). This mapping is a homomorphism. Thus, there is a piece-unifier
of Bk with the head of RP that unifies h and b.

It remains now to prove that for each atom fr(t) in the body of RP there exists
a triggering path Pi = (R′

1, π
′
1) = (R1, π1) to (R′

ℓ, π
′
ℓ) = (Rk, πk) in the support

graph such that fr(t) appears in the agglomerted rule RA
i along R1, . . . , Rk−1. For

a contradiction, let v be a variable occurring in some fr-atom in RP . Suppose that
fr(v) does not appear in any agglomerated rule corresponding to a triggering path
between (R1, π1) and (Rk, πk). Since π1(v) is an existential variable generated by
the application of R1 and there is no unifier on the GRD paths that correspond to
these triggering paths that unify v, π1(v) may only occur in atoms that are not used
(even transitively) by (Rk, πk), i.e., π1(v) 6∈ T P . There, v does not appear in an
fr-atom in RP , which leads to a contradiction. Since RP and RA =

⋃

RA
i have the

same head and the frontier of RP is a subset of the frontier of RA, any unifier with
RP is also a unifier with RA. Thus there is a unifier of Rk with RA that unifies h

and b, and there are the corresponding correct transition edges in PGU . ✷

The next theorem states that the position graph with unifiers is strictly more
powerful than the dependency position graph; furthermore, the “gap” from Y D to
Y U is at least “as large” as from Y to Y D.

3.4. EXTENSIONS 81

Let Y be an acyclicity property; then, Y D ⊆ Y U and if Y ⊂ Y D then
Y D ⊂ Y U . Furthermore, there is an injective mapping from the sets of
rules satisfying Y D but not Y to the sets of rules satisfying Y U but not Y D.

Theorem 3.5

Proof: From Proposition 3.24, it follows immediately that Y D ⊆ Y U .

Now, it remains to exhibit a set of rules satisfying Y U but not Y D. Assume
Y ⊂ Y D and R satisfies Y D but not Y . Rewrite R into R′ by applying the following
steps. First for each rule Ri = Bi[~x, ~y] → Hi[~x, ~y], let Ri,1 = Bi[~x, ~y] → pi(~x, ~y)
where pi is a fresh predicate ; and Ri,2 = pi(~x, ~y) → Hi[~y][~z]. Then for each rule
Ri,1, let R′

i,1 = (B′
i,1, Hi,1) such that B′

i,1 = Bi,1 ∪ {p′j,i(xj,i) | ∀Rj ∈ R}, where
each p′j,i is a fresh predicate and each xj,i a fresh variable. Now for each rule Ri,2,
let R′

i,2 = (Bi,2, H
′
i,2) where H ′

i,2 = Hi,2 ∪ {p′i,j(zi,j) | ∀Rj ∈ R}, where zi,j are
fresh existential variables. Let R′ =

⋃

Ri∈R

{R′
i,1, R

′
i,2}. This construction ensures

that each R′
i,2 depends on R′

i,1, and each R′
i,1 depends on each R′

j,2; thus there is a
transition edge from each R′

i,1 to R′
i,2 and from each R′

j,2 to each R′
i,1 in PGD(R′).

Hence, PGD(R′) contains exactly one cycle for each cycle in PGF (R). Furthermore,
PGD(R′) contains at least one marked cycle w.r.t. Y and then R′ is not Y D. Now
each cycle in PGU(R′) is also a cycle in PGD(R), and since PGD(R) satisfies Y ,
PGU(R′) also does. Therefore, R′ does not satisfy Y D but satisfies Y U . ✷

We also prove that strict inclusions between dependency-based conditions lead
to strict inclusions between piece-unifier-based conditions.

Let Y1 and Y2 be two acyclicity properties. If Y D
1 ⊂ Y D

2 and Y D
2 ⊂ Y U

2 ,
then Y U

1 ⊂ Y U
2 .

Theorem 3.6

Proof: Let R be a set of rules such that R satisfies Y D
2 but not Y D

1 . We rewrite R
into R′ as follows. For each pair of rules Ri, Rj ∈ R such that Rj depends on Ri, for
each variable x in the frontier of Rj, and each variable y in the head of Ri; if x and
y occur both in a given predicate position, we add to the body of Rj a new atom
pi,j,x,y(x) and to the head of Ri a new atom pi,j,x,y(y) where pi,j,x,y denotes a fresh
predicate. This construction allows each term from the head of Ri to propagate to
each term from the body of Rj if they shared some predicate position in R. Thus,
any cycle in PGD(R) is also a cycle in PGU(R′), without modifying behaviour w.r.t.
the acyclicity properties. Hence R′ satisfies Y U

2 but does not satisfy Y U
1 . ✷

82 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

A further extension we can make is by doing a finer analysis of unifiers and
marked cycles. We first define the notion of “incompatible” sequence of unifiers,
which ensures that a given sequence of rule applications is impossible. Then, a cycle
for which all sequence of unifiers are incompatible can be safely ignored. Though,
we point out that the notion of piece-unifier is (again) not appropriate to such a
purpose, hence we have to weaken it.

Definition 3.39 (Weak Unifier)
Given two rules R1 = (B1, H1) and R2 = (B2, H2), a weak unifier µ of B2 with
H1 is a piece-unifier as defined in Definition 1.29 that satisfies point (i) and (ii) but
does not impose the piece condition of point (iii).

Example 3.23 (Weak Unifier)
Consider rules R1 = r(x1, y1) → p(z1, y1) and R2 = p(x2, y2) ∧ q(x2) → H2[x2, y2].
There is a weak-unifier of B2 with H1: µw = {{p(x2, y2)}, {{z1, x2}, {y1, y2}}, {p(z1, y1}},
but this is not a piece-unifier. Indeed, x2 also occurs in q(x2) and it is unified with
the existential variable z1, thus, {p(x2, y2)} is not a piece.

Definition 3.40 (Compatible Unifier)
Given a set of rules R and two rules R1 = (B1, H1) and R2 = (B2, H2) in R, a
weak unifier µ = (B′

2, Pµ, H
′
1) of B2 with H1 is compatible w.r.t. R if for each po-

sition [a, i] in B′
2 such that σµ(term([a, i])) is an existential variable z, PGU(R)

contains a path from a position in which z occurs to [a, i], without going through
another existential position. Otherwise µ is incompatible.

Note that in a set of rules R, any piece-unifier of some rule body Bi with some
rule head Hj is necessarily compatible with respect to R.

Let R be a set of rules, R1, R2 ∈ R, and µ be a weak unifier of B2 with H1.
If µ is incompatible w.r.t. R, then no application of R2 can use an atom in
σµ(H1).

Proposition 3.26

Proof: We first formalise the sentence “no application of R2 can use an atom in
σµ(H1)” by the following sentence: “no application π′ of R2 can map an atom a ∈ B2

to an atom b produced by an application (R1, π) such that b = π(b′), where π and
π′ are more specific than µ”.

Consider the application of R1 to a set of facts F according to a homomorphism
π′ such that for an atom a ∈ B2, π

′(a) = b = π(b′), where both π and π′ are more
specific than µ. Note that this implies that µ(a) = µ(b′). Assume that b contains a
fresh variable zi produced from an existential variable z in H1. Let z

′ be the variable

3.4. EXTENSIONS 83

from a such that π′(z′) = zi. Since the domain of π′ is the variables of B2, all atoms
from B2 in which z′ occurs at a given position [p, j] are also mapped by π′ to atom
containing zi in the same position [p, j]. Since zi is a fresh variable, these atoms
have been produced by sequences of rule applications starting from (R1, π). Such a
sequence of rule applications exists only if there is a path in PGU from a position
of z in H1 to [p, j]; moreover, this path cannot go through an existential position,
otherwise zi cannot be propagated. Hence µ is necessarily compatible. ✷

Definition 3.41 (Unified Rule)
Given a set of rules R and two rules R1, R2 ∈ R such that there is a compatible
unifier µ of B2 with H1, the unified rule associated with µ, denoted by Rµ = R1⋄µR2,
is defined by Hµ = σµ(H1) ∪ σµ(H2) and Bµ = σµ(B1) ∪ (σµ(B2) \ σµ(H1)).

Example 3.24 (Unified Rule)
Let R be the set of rules composed of the following: R1 = p(x1, y1) → q(y1, z1),
R2 = q(x2, y2) → r(x2, y2), R3 = r(x3, y3) ∧ s(x3, y3) → p(x3, y3), and R4 =
q(x4, y4) → s(x4, y4).

Let µ be the following compatible unifier of B2 with H1:

µ = {{q(x2, y2)}, {q(y1, z1)}, {{x2, y1}, {y2, z1}}}

Then we obtain the unified rule associated with µ: R1 ⋄µR2 = p(x1, y1) → q(y1, z1)∧
r(y1, z1). This means that while R3 cannot be applied right after an application of
R1 ⋄µ R2. However the atoms needed to apply s(x3, y3) can be brought by a sequence
of rule applications (R1, R4). We thus relax the notion of piece-unifier to take into
account arbitrary long sequences of rule applications.

Definition 3.42 (Compatible Sequence of Unifiers)
Given a set of rules R, and a sequence of rules (R1, . . . , Rk+1) in R, a sequence
s = (R1, µ1, R2, . . . , µkRk+1), where for 1 ≤ i ≤ k, µi is a weak unifier of Bi+1 with
Hi, is a compatible sequence of unifiers w.r.t. R if:

(i) µ1 is a compatible unifier of B2 with H1 w.r.t. R, and

(ii) if k > 0, the sequence obtained from s by replacing (R1, µ1, R2) with R1 ⋄µ1
R2

is a compatible sequence of unifiers.

Example 3.25
In Example 3.24, the sequence (R1, µ1, R2, µ2, R3, µ3, R1) with the obvious µi is com-
patible.

We can now improve previous acyclicity properties as we did previously.

84 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

Definition 3.43 (Compatible Cycle)
Given an acyclicity property Y , and a set of rules R, the compatible cycles for
[a, i] ∈ PGU(R) are all marked cycles C for [a, i] such that there is a compatible
sequence of unifiers induced by C. We say that property Y U+ is satisfied by R if for
each existential position [a, i], there is no compatible cycle for [a, i].

Similary results to those obtained for PGU can be proved for PGU+ as state the
next theorems.

Let Y be an acylicity property. Then, Y U ⊆ Y U+. Moreover, if Y D ⊂ Y U

then Y U ⊂ Y U+.

Theorem 3.7

Proof: Inclusion follows immediately from the definitions.
We now show that this inclusion is strict. Let R be a set of rules satisfying

Y U but not Y D. We build a set of rules R′ that satisfies Y U+ but not Y U . To
this aim, we first increase the arity of each predicate of R by two, and in each rule
body and head, we put two fresh variables t1 and t2 in those positions. E.g., a rule
s(x, y) → t(y, z) would become s(x, y, t1, t2) → t(y, z, t1, t2). Then, for each rule
R = (B,H), we create four fresh predicates p, q1, q2, r whose arity is respectively
|var(H)|, 2, 2 and 2, and five fresh variables z1, z2, z3, z4 and z5. Then we “split”
R into four rules (where ~x is a list of all variables from H):

• R1 = B → p(~x, z1, z2),

• R2 = p(~x, z1, z2) → q1(z1, z3),

• R3 = q1(z1, z3) → s(z3, z5),

• R4 = p(~x, z1, z2) ∧ q1(z1, z3) ∧ q2(z1, z4) ∧ s(z3, z5) ∧ s(z4, z5) → H.

The graph of rule dependencies of those four rules contains the following edges:
(R1, R2), (R2, R3), (R3, R4). It can be observed that in particular, in PGU(R′)
there is a transition edge going from the last position of the atom p(~x, z1, z2) in
rule R1 to the last position of the “same” atom in rule R4. The same holds for the
penultimate position of these atoms. However, it can be seen that given any set
of facts, rule R4 can never be applied. But the definition of PGU does not take
this “complicated” interactions into account. Specifically, the set of rules is not Y U

anymore.
Let us now consider Y U+. There is no compatible cycle in PGU since the ex-

istential variable z1 in rule R1 has to go through new existential positions before
reaching the position of z1 in rule R4. Thus, R

′ is Y U+. ✷

3.4. EXTENSIONS 85

Let Y1 and Y2 be two acyclicity properties. If Y D
1 ⊂ Y D

2 , and Y D
2 ⊂ Y U+

2 ,
then Y U+

1 ⊂ Y U+
2 .

Theorem 3.8

Proof: Observe that the transformation we used in the proof of Theorem 3.6
actually guarantees that all cycles which are present are compatible cycles. Thus,
for the obtained set of rules R′ and any acyclicity property Y , R′ satisfies Y U if and
only if R′ satisfies Y U+. ✷

We now prove that if the complexity of recognition of an acyclicity property Y

is in coNP , then, checking that a set of rules satifies one of the extended properties
Y D, Y U or Y U+ is coNP -complete.

To this end, we make use of the following proposition.

Given a set of rules R and a set of facts, if there is an h → b triggering
derivation sequence (with h ∈ H and b ∈ B′, where R = (B,H) and
R′ = (B′, H ′) are two rules from R), then there exist a non-empty set of
paths P = {P1, . . . , Pk} from R in GRD(R) such that

∑

1≤i≤k

|Pi| ≤ |R| ×

|terms(H)| and a piece-unifier of B′ with the head of an agglomerated rule
along P that unifies h and b.

Proposition 3.27

Proof: The piece-unifier is entirely determined by the terms that are forced into
the frontier by an fr-atom. Hence, we need to consider at most one path for each
term in H. Moreover, each (directed) cycle in the GRD (that is of length at most
|R|) needs to be traversed at most |terms(H)| times, since going through such a
cycle without creating a new frontier variable cannot create any new unifier. Hence
we need to consider only paths of polynomial length. ✷

We are now ready to prove the complexity of recognition.

Let Y be an acyclicity property. If checking that a set of rulesR satisfies Y is
in coNP , then checking that R satisfies Y D, Y U or Y U+ is coNP -complete.

Theorem 3.9 (Complexity of Recognition)

86 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

Proof: One can guess a cycle in PGD(R) (or PGU(R), or PGU+(R)) such that
the property Y is not satisfied by this cycle. From the previous property, each edge
of the cycle has a polynomial certificate, and checking if a given substitution is a
piece-unifier can also be done in polynomial time. Since Y is in coNP , we have
a polynomial certificate that this cycle does not satisfy Y . Membership to coNP

follows.

The completeness part is proved by a simple reduction from the co-problem of
rule dependency checking (which is thus a coNP-complete problem). Let R1 and R2

be two rules. We first define two fresh predicates p and s of arity |var(B1)| and two
fresh predicates q and r of arity |var(H2)|. We build R0 = p(~x) → s(~x) where ~x is a
list of all variables in B1, and R3 = r(~x) → p(~z)∧q(~x), where ~z = (z, z, . . . , z), where
z is a variable which does not appear inH2. We rewrite R1 into R

′
1 = B1∧s(~x) → H1

and R2 into R′
2 = B2 → H2 ∧ r(~x), where ~x is a list of all variables in H2. One

can check that R = {R0, R
′
1, R

′
2, R3} contains a cycle going through an existential

variable (thus, it is not waD) iff R2 depends on R1. ✷

Figure 3.10 summarises relationships between the different acyclicity properties.
Edges are oriented from bottom to top, and an edge from an acyclicity property C1

to an acyclicity property C2 means that C1 ⊂ C2. All inclusions are strict. Fur-
thermore, the figure is complete, that is, if there is no path between two properties,
then they are incomparable.

3.5 Other Acyclicity Conditions

We now consider two other acyclicity conditions, namely MFA and MSA, that do
not fit well with our framework. However, we show that MSA can be recast in our
terms, hence generalised in the same way as the previously mentioned classes.

3.5.1 Model Summarizing Acyclicity and Model Faithful
Acyclicity

Model Faithful Acyclicity (MFA) and Model Summarizing Acyclicity (MSA) are
two properties of a set of rules ensuring the finiteness of the frontier-restricted chase
[GHK+13]. Originally they were defined using the skolem chase, but as mentioned
in Section 3.1, the skolem chase and the frontier-restricted chase yield isomorphic
results.

The ideas underlying the verification of these properties are the following:

1. Build the critical instance Crit(R) of the set of rules R. It is a set of facts
which ensures that any rule of R can be applied, and is formally defined in
Definition 3.44.

3.5. OTHER ACYCLICITY CONDITIONS 87

2. Consider a set of rules R′ which is either R (in the case of MFA) or a spe-
cialisation of R (in the case of MSA), where every existential variable in R
is replaced by a fresh constant (note that those constants do not occur in
Crit(R)).

3. Run the frontier-restricted chase on Crit(R) w.r.t. R′ until either it halts or
some “existential variable cycle” (see below) is detected. This procedure is
ensured to halt.

The set of rules is then MFA (resp. MSA) if this algorithm halts without detecting
any existential variable cycle.

Initially, MSA has been thought as an approximation to MFA that enjoys a lower
recognition (and reasoning) complexity.

Critical Instance

Definition 3.44 (Critical Instance)
Let R be a set of rules. The critical instance of R, denoted by Crit(R) is built
as follows. Consider C the set of all constants occurring in some rule R ∈ R
(if no constant occur in the set of rules C = {∗}, where ∗ is a special fresh con-
stant). For every predicate p of arity r appearing in R, for every tuple of constants
(c1, . . . , cr) ∈ Cr, add the atom p(c1, . . . , cr) to Crit(R).

The critical instance is sufficient to check the universal termination of the frontier-
restricted chase w.r.t. a given set of rules.

Let R be a set of rules. If σfr-chase(Crit(R),R) is finite then for any set
of facts F , σfr-chase(F ,R) is finite.

Proposition 3.28 ([Mar09])

We now define MFA and MSA in a way that differs from their original definitions
but which is more adapted to our purpose.

Model Faithful Acyclicity

When building the σfr-chase(Crit(R),R), we maintain a graph of existential vari-
ables that we denote by Evg(R). Vertices of this graph are the existential variables
in R (without loss of generality, we assume that no two different existential variables
share the same name). When we apply a rule B → H according to a homomorphism
π, if H contains an existential variable z, then z is replaced in πsafe(H) by a fresh
variable t. We say that t is generated and originates from z. When we apply a rule
B → H according to a homomorphism π, if π maps a term of B to a generated
variable that originates from z, and there is an existential variable z′ in H, then we
add an edge from z to z′ in Evg(R).

88 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

Example 3.26 (MFA)
Consider the set of rules R composed of the single rule R = p(x, y) → q(y, z)∧p(z, t).
Then Crit(R) = p(∗, ∗) ∧ q(∗, ∗). The two vertices of Evg(R) are z and t. With
the first application of R on Crit(R), we add the atoms q(∗, z0) and p(z0, t0),
and add no edge to Evg(R), since the body of R is not mapped to any gener-
ated variable. With the second application of R (according to the homomorphism
{x 7→ z0, y 7→ t0}), we add the atoms q(t0, z1) and p(z1, t1) to the set of facts, and
add the edges (z, z), (z, t), (t, z) and (t, t) to Evg(R), which is now cyclic. Noe that
the chase would actually be infinite.

A set of rules R is MFA when the frontier-restricted chase of Crit(R) w.r.t.
R is finite and the corresponding existential variable graph does not contain any
cycle. Hence, in the previous example R is not MFA. When R is MFA, Proposition
3.28 ensures that R is FES. Verifying if R is MFA is decidable: indeed, either the
frontier-restricted chase is finite, or a cycle will be generated in Evg(R) in finite
time.

Let R be a set of rules. Recognising if R is MFA is 2ExpTime-complete.

Proposition 3.29 ([GHK+13])

Model Summarizing Acyclicity

When checking if a set of rules R is MSA, we also consider the critical instance
Crit(R). Then we consider a set of rules MSA(R) which is built by replacing each
rule R ∈ R by a rule MSA(R) in which each existential variable z is replaced by
a fresh constant cz. As for MFA, we consider the graph Evg(R) in which vertices
are existential variables in R. If an existential variable z has been replaced by a
fresh constant cz, when cz appears in σfr-chase(Crit(R),MSA(R)), we say that cz
is generated and originates from z. Up to these modifications, edges are added to
Evg(R) as for MFA.

Example 3.27 (MSA)
Consider again the set of rules R from Example 3.26, and its critical instance
Crit(R). The set of rules MSA(R) contains the following single rule: MSA(R) =
p(x, y) → q(y, cz) ∧ p(cz, ct). With the first application of MSA(R) on Crit(R) we
add the atoms q(∗, cz) and p(cz, ct), and we add no edge to Evg(R). With the second
application, we add the atoms q(tz, cz)∧p(tz, cz) and the edges (z, z), (z, t), (t, z) and
(t, t). Though the frontier-restricted chase is finite (as opposed to Example 3.26), R
is not MSA because of these cycles.

A set of rules R is MSA if when running the frontier-restricted chase of Crit(R)
w.r.t. MSA(R) we do not generate any cycle in Evg(R).

3.5. OTHER ACYCLICITY CONDITIONS 89

It has been shown in [GHK+13] that if R is MSA then R is MFA. Example 3.28
shows that this inclusion is strict.

As intended, checking MSA is simpler than checking MFA.

Let R be a set of rules. Recognising if R is MSA is ExpTime-complete.

Proposition 3.30 ([GHK+13])

Example 3.28 (MFA * MSA)
Consider the set of rules R composed of the following rules:

• R1 = a(x) → r(x, u) ∧ b(u)

• R2 = b(x) → s(x, v) ∧ t(v, x)

• R3 = a(z) ∧ s(z, x) → c(x)

• R4 = c(z) ∧ t(z, x) → a(x)

The critical instance of R is the following:

Crit(R) = a(∗) ∧ b(∗) ∧ c(∗) ∧ r(∗, ∗) ∧ s(∗, ∗) ∧ t(∗, ∗)

The vertices of Evg(R) are u and v.
Let us check that R is MFA. At the first breadth-first step of the frontier-restricted

chase, we apply R1 and produce r(∗, u1) and b(u1), and we apply R2 and produce
s(∗, v1) and t(v1, ∗). No edge is generated in Evg(R). In the second breadth-first
step, we apply R2 and produce s(u1, v2) and t(v2, u1), adding the edge (u, v) to
Evg(R). Then we apply R3 and produce c(v1), adding no edge.

The chase then halts, and therefore σfr-chase(Crit(R),R) is finite. No cycle
has been generated in Evg(R), thus R is MFA.

Now we check that R is not MSA. The translation of the rules is the following:

• MSA(R1) = a(x) → r(x, cu) ∧ b(cu)

• MSA(R2) = b(x) → s(x, cv) ∧ t(cv, x)

• MSA(R3) = R3

• MSA(R4) = R4

Vertices of Evg(R) are the same, and we consider the same critical instance as
for MFA.

In the first breadth-first step, we apply R1 and produce r(∗, cu) and b(cu), and
apply R2 and produce s(∗, cv) and t(cv, ∗). As for MFA, no edge is added to Evg(R)
yet. During the second breadth-first step, we apply R2 and produce s(cu, cv) and

90 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

t(cv, cu), and we add the edge (u, v) to Evg(R). We also apply R3 and produce
c(cv). Now, there is a third breadth-first step, in which we apply rule R4 and produce
a(cu). Finally, in the fourth breadth-first step, we apply rule R1 again, adding the
atoms r(cu, cu) and b(cu), and creating the edge (u, u) in Evg(R), thus Evg(R) is
cyclic. Thus, R is not MSA.

3.5.2 Extending Model Summarizing Acyclicity

We first point out that no marking for MFA is possible. Indeed our definition of
marking function (Definition 3.28) relies on a “local” propagation, and MFA does not
rely on local behaviour. However, we are able to “force” MSA into our definitions.
Note that this definition is not natural, and is provided only to be able to handle
MSA as the other acyclicity-based decidable rule classes.

Intuitively, the idea is to run the frontier-restricted chase on the critical instance
Crit(R) with the modified set of rules MSA(R) as previously, but with the excep-
tion that we only add the atoms from rule applications that correspond to edges in
PGX .

Definition 3.45 (Model Summarizing Acyclicity Marking)
Given a set of rules R, the MSA marking M of a position [a, i] in R with respect to
some transition edge condition X is the marking obtained as follows.

First, consider the critical instance Crit(R) of R and translate R into MSA(R).
Now, run a modified frontier-restricted chase, which, when applying a rule R =
(B,H) according to a homomorphism π, adds each atom h ∈ πsafe(H) only if
PGX(R) contains an edge from an atom h′ in the head of a rule R′ such that there
is some b ∈ π(B) where b has been obtained from h′ to the atom of H from which
h is obtained. Then, the marking of an existential position [a, i] in which variable z

occurs is the set of existential positions corresponding to the existential variables z′

in Evg(R) such that there is a path from z to z′.

A set of rules R is MSA iff PGF (R) satisfies the acyclicity property asso-
ciated with the MSA marking.

Proposition 3.31

Proof: In the case of PGF (R), all positions i in atoms a and b with the same pred-
icate are linked. Thus the condition for adding a head atom in the MSA marking is
always satisfied. Therefore, the frontier-restricted chase we run in the MSA marking
is exactly the same as for MSA. Since the marking of each existential position [a, i]
(with variable z) is exactly the set of direct or indirect successors of z in Evg(R), the
marking of [a, i] contains [a, i] if and only if Evg(R) contains a cycle going through
z. ✷

3.5. OTHER ACYCLICITY CONDITIONS 91

From the above proposition, Proposition 3.21 and Theorems 3.5 and 3.7, we
know that MSA ⊂ MSAD ⊂ MSAU ⊂ MSAU+.

Furthermore, it is easy to see that the complexity of recognition of these variants
of MSA is still in ExpTime.

Given a set of rules R, checking that R satisfies MSAD, MSAU or MSAU+

is in ExpTime.

Proposition 3.32

Proof: Checking MSA consists in running a Datalog engine while building the
Evg(R) graph. Furthermore, we can build the PGX (for X = D,U or U+) and we
have shown in Theorem 3.9 that checking if an edge if present or not in this graph
is in coNP . Membership to ExpT ime follows. ✷

Conclusion

In this chapter, we have first formally defined the notion of chase in a generic way.
Since the CQ entailment problem is undecidable, the chase of a set of facts with
respect to a set of rules may be infinite.

We have then recalled various sufficient syntactic conditions that ensure finiteness
of some chase variant. Thanks to a new tool, we have rewritten all these conditions
in a unified way, before extending them through a finer analysis of interactions
between rules.

Furthermore, since we have abstracted from the details of each condition inde-
pendently, our results will also carry over new acyclicity conditions, may they be
found.

Finally, the (worst-case) complexity of recognition of these new generalisations is
the same as either the original condition, or the rule dependency checking, providing
larger rule classes at no additional cost.

92 CHAPTER 3. ACYCLICITY CONDITIONS FOR CHASE TERMINATION

2Exp

Exp

P

coNPwa aGRD

fd

ar

ja

swa

msa

waD

fdD

arD

jaD

swaD

msaD

waU

fdU

arU

jaU

swaU

msaU

waU+

fdU+

arU+

jaU+

swaU+

msaU+

mfa

Figure 3.10: Relations between acyclicity properties with complexities of recognition

Chapter 4

Combining Transitivity and
Decidable Classes of Existential
Rules

Contents
4.1 Transitivity and BTS/FES rules 94

4.1.1 Overview of Known Results 94

4.1.2 A General Undecidability Result 97

4.1.3 Clarifying the FES Landscape 98

4.2 Linear Rules and Transitivity 101

4.2.1 Framework . 101

4.2.2 Overview of the Algorithm 107

4.2.3 Rewriting Steps . 108

4.2.4 Termination and Correctness 118

4.2.5 Complexity . 131

Known decidable classes of existential rules are able to express many useful
properties of binary relations (for instance, inverses, symmetry,...), but most of
them lack the ability to define a frequently required property, namely transitivity.
This limits their applicability in key application areas like biology and medecine, for
which transitivity of binary relations (especially the “part of” relation) is an essential
modelling construct. Hence, in this chapter we investigate the following questions:
is transitivity compatible with known decidable classes of existential rules? For
the cases where the answer is positive, what is the complexity of the entailment
problem?

To answer these questions, we first recall various positive and negative results
from the litterature, in the context of both description logics and existential rules.

93

94 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

Our contribution is then twofold. On the one hand we provide a general undecidabil-
ity result, which in particular allows us to clarify the landscape of FES rule classes.
On the other hand, we devise an algorithm that shows that transitivity and linear
existential rules (which are GBTS and FUS) are compatible up to a minor safety
condition, and analyse the complexity of the CQ entailment problem in this case.

Let us first introduce some terminology: a predicate p is said to be transitive in a
set of rules R if there is some rule R ∈ R, such that R = p(x, y)∧ p(y, z) → p(x, z).
Such a rule is called a transitivity rule. Furthermore, given a rule class C, we denote
by C+trans, the rule class that contains all sets of rules that can be built from rules
in C and transitivity rules. We extend this notation to knowledge-base and call
a C+trans knowledge-base a knowledge-base where the set of rules belongs to the
class C+trans. Finally, an atom using predicate p is called a p-atom.

Let us now explain intuitively why transitivity rules may be dangerous when
added to a BTS or a FUS set of rules. With respect to BTS rules, adding transitivity
may destroy the tree-like structure of the universal models. Indeed, transitivity rules
may create links between vertices arbitrarily far away.

With respect to FUS rules, a single transitivity rule is enough to prevent the use
of classical backward chaining algorithms: if an atom using a transitive predicate
occurs at some point in a query rewriting, this atom can be rewritten into a path
of unbounded length. Thus, FUS rules and transitivity may not be compatible (we
show in Theorem 4.4 that, indeed, they are not).

Example 4.1 (Backward Chaining with Transitivity)
Consider a Boolean conjunctive query Q = ∃x∃y(s(x)∧ p(x, y)∧ t(y)), that could be
read as “is there an s and a t linked by a p”. Now if we add the transitivity rule
R = p(x, y) ∧ p(y, z) → p(x, z), the query could be read as “is there a path from
an s to a t that goes only through p-atoms”. If we rewrite Q with R, we obtain the
following rewriting: Q1 = s(x)∧ p(x, z0)∧ p(z0, y)∧ t(y), which is incomparable with
Q. Then we can keep going by extending the length of the path, and obviously, we
will not be able to rewrite Q with R into a (finite) UCQ.

The behaviour of transitivity regarding FES rules, is not that obvious, and we
give later an almost complete picture of its effects on known FES classes.

4.1 Transitivity and BTS/FES rules

4.1.1 Overview of Known Results

While many decidable fragments of existential rules cannot express transitivity, this
feature is offered by several description logics. As a matter of fact, adding transitivity
to description logics often does not increase the complexity of conjunctive query
entailment (exceptions are given in [ELOS09]). Though, it is known to complicate
the design of query answering procedures due to the fact that it destroys the tree

4.1. TRANSITIVITY AND BTS/FES RULES 95

structure of the logical models upon which description logics reasoning algorithms
typically rely.

More specifically, in [HS99], the description logic ALCH has been extended to al-
low for transitivity axioms. More recently, in [EOS+12], the Horn-SHIQ description
logic has been shown to be compatible with transitivity. While worst-case complex-
ities are the same as without transitivity, the algorithms are more involved. We do
not give details about the exact procedure since it would require to introduce many
formal notions about description logics. It appears that these techniques heavily
exploit the particular shape of DL axioms, hence do not seem to be translatable to
existential rules.

At the beginning of our study (2014), little was known about combining exis-
tential rules and transitivity. Though, inclusion dependencies, which are a subclass
of linear rules, and functional dependencies, which are known to “destroy” tree
structures as transitivity rules do, were known to be incompatible [CV85].

In what follows, we recall various results from the literature which are all relative
to the combination of GBTS rule classes with transitivity.

The first rule class of interest is that of guarded rules [CGK08, CGK13], which
ensures that the chase of any set of facts with these rules has a tree-like shape.

Definition 4.1 (Guarded [CGK13])
A rule R = (B,H) is said to be guarded if its body contains an atom α such that
for any variable x occurring in B, x appears in α (such an atom is called a guard).
By extension, a set of rules is said to be guarded if all its rules are.

It has recently been shown that combining guarded rules with transitivity leads
to undecidability, even under strong syntactic restrictions [GPT13]. The theorem
we state below is not exactly formulated as in this paper, but the restrictions we
add can be easily derived from their proof.

Atomic conjunctive query entailment over guarded+trans knowledge bases is
undecidable, even when the guarded rules are restricted to the two-variable
fragment of first-order logic, using only unary and binary predicates and
only two transitive predicates.

Theorem 4.1 ([GPT13])

In their proof, they show that it is possible to simulate a Turing Machine with only
guarded and transitivity rules: the guarded rules are used to implement the tran-
sition table, and to “draw” a grid, which corresponds to the space-time diagram of
the Turing Machine tape. With guarded rules alone it is not possible to “reconnect”
this grid, that is, if from a given cell c we consider the cell above the cell at the right
of c, it is not the same as the cell which is at the right of the cell above c. This is
where transitivity rules are used: they allow to reconnect correctly the grid.

96 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

However, some positive results have also been achieved regarding a generalisation
of guarded rules, namely frontier-guarded rules, provided that a restriction is fulfilled
[ABBV16]. Informally, in a frontier-guarded rule, the guard needs not to contain all
the variables from the body, but only those occurring in the frontier.

Definition 4.2 (Frontier-guarded [BLM10, BLMS11])
A rule R is said to be frontier-guarded if its body contains an atom α such that
for any variable x in the frontier of R, x occurs in α. By extension, a set of rules
is said to be frontier-guarded if all its rules are.

The class frontier-guarded+trans, and thus guarded+trans, with the restriction
that no guard uses a transitive predicate, ensures the decidability of the CQ entail-
ment problem, as stated in the next theorem.

Conjunctive query entailment over frontier-guarded+trans knowledge bases,
where no guard uses a transitive predicate, is decidable.

Theorem 4.2 ([ABBV16])

Another specialisation of frontier-guarded rules is that of frontier-1, where the
frontier of each rule must be of size lesser than one.

Definition 4.3 (Frontier-1 [BLMS11])
A rule R is said to be frontier-1 if |fr(R)| ≤ 1. By extension, a set of rules is
said to be frontier-1 if all its rules are.

Entailment over frontier-1+trans knowledge bases has been recently proven to
be decidable, without any restriction, as stated by the next theorem.

Conjunctive query entailment over frontier-1+trans knowledge bases is de-
cidable and is 2ExpTime-complete in combined complexity and PTime-
complete in data complexity.

Theorem 4.3 ([ABBV16])

These results provide a first view of the landscape of known BTS rule classes,
except for the case of linear rules. Before considering this case, we investigate the
case of FES rules.

4.1. TRANSITIVITY AND BTS/FES RULES 97

4.1.2 A General Undecidability Result

In the following, we show that FES+trans (hence BTS+trans) and FUS+trans is
undecidable. More precisely, the next theorem states that aGRD+trans is undecid-
able even for atomic Boolean conjunctive queries. Since aGRD is both FES and
FUS, this negative result holds for FES+trans and FUS+trans.

Atomic conjunctive query entailment over aGRD+trans knowledge bases is
undecidable, even with a single transitivity rule.

Theorem 4.4

Proof: The proof is by reduction from atomic conjunctive query entailment with
general existential rules (which is known to be undecidable, see Section 1.2). Let R
be a set of rules. We first translate R into an aGRD set of rules Ra. We consider
the following new predicates: p (which will be the transitive predicate) and, for each
rule Ri ∈ R, predicates ai and bi. Each rule Ri = (Bi, Hi) is translated into the
following two rules:

• R1
i = Bi → ai(~x, z1) ∧ p(z1, z2) ∧ p(z2, z3) ∧ bi(z3)

• R2
i = ai(~x, z1) ∧ p(z1, z2) ∧ bi(z2) → Hi

where z1,z2 and z3 are existential variables and ~x are the variables in Bi.

LetRa = {R1
i , R

2
i | Ri ∈ R}, and let GRD(Ra) be the graph of rule dependencies

of Ra, defined as follows: the vertices of GRD(Ra) are in bijection with Ra, and
there is an edge from a vertex R1 to a vertex R2 if the rule R2 depends on the rule
R1, i.e., if there is a piece-unifier of the body of R2 seen as a CQ with the head of
R1 (see Proposition 3.5).

We check that for any Ri ∈ R, R1
i has no outgoing edge and R2

i has no incoming
edge (indeed since the zj are existential variables, no piece-unifier exists). Hence,
in GRD(Ra) all (directed) paths are of length less or equal to one. It follows that
GRD(Ra) has no cycle, i.e., Ra is aGRD.

Let Rt be the rule stating that p is transitive. Let R′ = Ra ∪ {Rt}. The idea
is that Rt allows to “reconnect” rules in Ra that correspond to the same rule in
R. For any set of facts F (on the original vocabulary), for any sequence of rule
applications from F using rules in R, one can build a sequence of rule applications
from F using rules from R′, and reciprocally, such that both sequences produce the
same set of facts (restricted to atoms on the original vocabulary). Hence, for any F
and Q (both on the original vocabulary), we have that F ,R |= Q iff F ,R′ |= Q.
✷

98 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

Atomic conjunctive query entailment over FUS+trans or FES+trans knowl-
edge bases is undecidable.

Corollary 4.1

4.1.3 Clarifying the FES Landscape

In Chapter 3, we defined various acyclicity conditions divided into two families,
based on the graph of rule dependencies and on graphs of positions respectively.
Figure 4.1 recalls the relations between those classes: an edge going up from a rule
class C to a rule class C ′ means that C is more specific than C ′.

Since the members of the first family generalise aGRD, they are all incompatible
with transitivity. Regarding the second family, super weak-acyclicity is one of its
most general member, and one can check that adding transitivity rules to a super
weakly-acyclic set of rules R does not create new cycles in the SWA graph of R,
hence swa and swa+trans coincide as stated by the next proposition.

The classes super weak-acyclicity and super weak-acyclicity+trans coincide.
Hence, entailment over super weak-acyclicity+trans knowledge bases is de-
cidable.

Proposition 4.1

Proof: We do not recall the definition of super weak-acyclicity (see Definition 3.20).

Consider a super weakly-acyclic set of rules R, and suppose we let a predicate
p be transitive with a rule RT = p(t0, t1) ∧ p(t1, t2) → p(t0, t2). Now assume that
R ∪ {RT} is not super weakly-acyclic. It means that there is a cycle in SWA(R ∪
{RT}) that is not present in SWA(R). In particular some new edge must have been
added because of the transitive rule. Let us notice that this rule is represented as
a vertex in SWA(R), but does not have any outgoing edge (indeed, only rules with
existential variables may have outgoing edges). Therefore, this vertex is not used by
any cycle. Hence, an edge must have been added between two rules fromR, meaning
that the addition of RT must have changed the “Move” set of some variable x. If
Move(x) covers t0 (resp. t2) then that atom position [p(t0, t2), 1] (resp. [p(t0, t2), 2])
also belongs to Move(x). Furthermore, to cover t0 (resp. t2), Move(x) must contain
some atom position [p(x0, x1), 1] (resp. [p(x0, x1), 2]). Then, it can be observed that
p(x0, x1) and p(t0, t2) are isomorphic; therefore, if there exists an atom q in some
rule, and substitutions σ1, σ2 such that σ1(q) = σ2(p(t0, t2)), then the substitution
σ3 = {x0 7→ t0, x1 7→ t2} ◦ σ2 is such that σ1(q) = σ3(p(x0, x1)). Therefore for any
variable t from q such that In(t) is covered by Move(x) in R∪ {RT}, In(t) is also

4.1. TRANSITIVITY AND BTS/FES RULES 99

wa aGRD

fd

ar

ja

swa

msa

waD

fdD

arD

jaD

swaD

msaD

waU

fdU

arU

jaU

swaU

msaU

waU+

fdU+

arU+

jaU+

swaU+

msaU+

mfa

Figure 4.1: The landscape of C+trans classes for C ∈ FES. Decidable C+trans are
in bold. All the other C+trans classes are undecidable even for atomic CQs.

covered by Move(x) in R. Hence the set of edges between rules from R in R∪{RT}

100 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

is the same as in R.
✷

To complete the picture (see Figure 4.1), it remains to study the case of MSA,
that generalises swa but not aGRD. We show below that MSA+trans is indeed
undecidable even for atomic queries.

Atomic conjunctive query entailment over MSA+trans knowledge bases is
undecidable, even with a single transitivity rule.

Theorem 4.5

Proof: The proof is by reduction from atomic conjunctive query entailment with
general existential rules (which is known to be undecidable, see Section 1.2). Let F
be a set of facts, R be a set of rules and Q be an atomic conjunctive query.

First we consider a new transitive predicate p, which is the only transitive pred-
icate we use.

We rewrite F into F ′ as follows. For each term t ∈ terms(F), we add the atoms
p(t, at) and p(at, t) to F ′, where at is a fresh constant.

Then, we rewrite R into a MSA set of rules Rm. For each rule R = B → H,
we consider the rule R′ = B′ → H ′ obtained as follows. Its body B′ is composed
of the atoms of B as well as the atoms p(t, t) for each term t ∈ terms(B). Its head
H ′ contains the atoms of H as well as two atoms p(z, xz) and p(xz, z), where xz is
a fresh variable, for each existential variable z in H.

We check that Rm is MSA. Consider the set of rules MSA(Rm) as defined
in Section 3.5.1 (i.e., each existential variable z in a rule head is replaced by a
fresh constant cz). If z is an existential variable of a rule R ∈ R, the head of the
corresponding rule R′ in Rm contains the atoms p(z, xz) and p(xz, z), and thus the
head of MSA(R′) contains the atoms p(cz, cxz

) and p(cxz
, cz). We point out that,

during the chase, no term t in any rule body can be mapped to cz (because p(cz, cz)
will never appear). So the existential variable graph Evg(R) does not contain any
edge. Thus Rm is MSA.

Now, let RT be the rule expressing the transitivity of p. It is clear that (F ,R) |=
Q if and only if (F ′,Rm ∪ {RT}) |= Q.

We conclude that atomic conjunctive query entailment over MSA+trans knowl-
edge bases is undecidable. ✷

These three results give us a clear picture of the combination of FES sets of
rules with transitivity for all classes pictured in Figure 4.1. Indeed, either the
class C generalises aGRD or MSA and entailment over C+trans knowledge-bases is
undecidable even in the case of atomic queries, or C+trans = C.

In contrast, the behaviour of concrete FUS classes when combined with transi-
tivity is still unknown (except for aGRD), and in the next section, we study the

4.2. LINEAR RULES AND TRANSITIVITY 101

particular case of linear rules, a subclass of guarded rules, that also enjoys the FUS
property.

4.2 Linear Rules and Transitivity

In this section we focus on combining transitivity with linear existential rules. We
first recall the definition of linear rules. Without loss of generality (if the predicate
arity is unbounded) we consider rules with atomic head and no constant, and to
avoid any misunderstanding, the following definition takes this into account.

Definition 4.4 (Linear Rule)
Given a rule R = (B,H), we say that R is a linear rule if |B| = |H| = 1, and
R contains no constant. By extension, a set of rules is said to be linear if all its
rules are.

Linear rules are a subclass of guarded rules, and as such, are BTS. Moreover they
are FUS, and thus are typically handled through backward chaining. Unfortunately,
transitivity rules immediately break this property, therefore classical query rewriting
is not possible. However, in this section, we propose a rewriting algorithm, that does
not produce a union of conjunctive queries, but a Datalog program (i.e., a finite set
of Datalog rules added with a union of conjunctive queries). This algorithm shows
that, up to a minor safety condition, entailment over linear+trans knowledge bases
is decidable. We also point out that this restriction can be lifted if we only consider
atomic conjunctive queries or binary predicates.

4.2.1 Framework

In order to obtain finite representations of sets of rewritings, we first define a frame-
work based on the notion of pattern.

To each transitive predicate, we assign a pattern name. Each pattern name
has an associated pattern definition P := a1| . . . |ak where each ai is an atom that
contains the special variables #1 and #2. These variables are placeholders for the
real terms that will occur in the set of atoms that use this pattern. A pattern is
either a standard pattern, denoted by P [t1, t2], or a repeatable pattern, denoted by
P+[t1, t2], where P is a pattern name, and t1 and t2 are terms.

Definition 4.5 (UPCQ and PCQ)
A union of patterned conjunctive queries (UPCQ) is a pair (Q,P), where Q is a dis-
junction of conjunctions of atoms and patterns, and P is a set of pattern definitions
that gives a unique definition to each pattern name occurring in Q.

If there is a single conjunction of atoms Q ∈ Q, (Q,P) is simply called a pat-
terned conjunctive query (PCQ).

102 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

Example 4.2 (UPCQ and PCQ)
The pair (Q,P) with Q = Q1 ∨ Q2, Q1 = P+

1 [a, b] ∧ s1(a, b), Q2 = P+
1 [a, z] ∧

P+
2 [z, b] ∧ s1(a, b), and where P contains the following pattern definitions:

• P1 := p1(#1,#2)|s2(#1, y,#2)

• P2 := p2(#1,#2)|s2(#2, y,#1);

is a UPCQ.
The pairs (Q1,P) and (Q2,P) are PCQs.

In the following we use three different styles to distinguish between a UPCQ (Q),
a PCQ (Q) and a (U)CQ (Q). Furthermore, for the sake of simplicity, we will often
denote a (U)PCQ by its first component Q, leaving the pattern definitions implicit.

With UPCQs, we are able to represent a set of rewritings in a compact way, but
to this end, we first need to define the notion of an instantiation of a UPCQ.

Definition 4.6 (Instantiation of a UPCQ)
Given a UPCQ (Q,P), an instantiation T of (Q,P) is a rooted vertex-labelled tree
that satisfies the following four conditions:

(i) the root of T if labelled by Q ∈ Q;

(ii) the children of the root are labelled by the patterns and atoms occurring in Q;

(iii) each vertex that is labelled by a repeatable pattern P+[t1, t2] may be expanded
into k ≥ 1 children labelled respectively by P [t1, x1], P [x1, x2], . . . , P [xk−1, t2]
where all xi are fresh variables;

(iv) each vertex labelled by a standard pattern P [t1, t2] may be expanded into a
single child whose label is obtained from an atom in the pattern definition of
P in P by substituting #1 (resp. #2) by t1 (resp. t2), and freshly renaming the
other variables.

The instance associated with an instantiation is the PCQ obtained by taking the
conjunction of its leaves. An instance of a UPCQ is an instance associated with one
of its instantiations. We say that an instance is full when it does not contain any
pattern, and we denote by full(Q,P) the set of all full instances of (Q,P).

Example 4.3 (Instantiations and instances)
Consider the UPCQ (Q,P) from Example 4.2. Figure 4.2 depicts a first possible
instantiation T1 of (Q,P) that gives rise to the (non-full) instance Q1 = P1[a, z] ∧
P2[z, x1]∧P2[x1, b]∧ s1(a, b). By expanding the three vertices labelled by patterns ac-
cording to their definitions in P, we may obtain the instantiation T2 depicted by Fig-
ure 4.3, whose associated instance Q2 = s2(a, y0, z)∧s2(x1, y1, z)∧p2(x1, b)∧s1(a, b)
is a full instance of (Q,P).

4.2. LINEAR RULES AND TRANSITIVITY 103

Q2

P+
1 [a, z] P+

2 [z, b] s1(a, b)

P1[a, z] P2[z, x1] P2[x1, b]

Figure 4.2: Instantiation T1 from Example 4.3

Q2

P+
1 [a, z] P+

2 [z, b] s1(a, b)

P1[a, z] P2[z, x1] P2[x1, b]

s2(a, y0, z) s2(x1, y1, z) p2(x1, b)

Figure 4.3: Instantiation T2 from Example 4.3

A UPCQ (Q,P) can be translated into a set of Datalog rules ΠP and a UCQ
QQ as follows. For each definition P := a1(~t1)| . . . |ak(~tk), we create the transitivity
rule p+(x, y) ∧ p+(y, z) → p+(x, z) and the rules ai(~ti) → p+(#1,#2). The UCQ
QQ is obtained from Q by replacing each repeatable pattern P+[t1, t2] by the atom
p+(t1, t2). Observe that ΠP is non-recursive except for the transitivity rules. More-
over, for any set of facts F , the saturation of F with ΠP can be decomposed into
two steps:

1. Saturation with the rules of form ai(~ti) → p+(#1,#2);

2. Saturation with the transitivity rules (i.e., computation of the transitive clo-
sure for each transitive predicate).

Note that these two steps only produce atoms with predicates p+.

Example 4.4 (Translation to Datalog and UCQ)
Consider the UPCQ from Example 4.2. The pattern definitions are translated into
the following rules:

• p1(#1,#2) → p+1 (#1,#2)

104 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

• s2(#1, y,#2) → p+1 (#1,#2)

• p2(#1,#2) → p+2 (#1,#2)

• s2(#2, y,#1) → p+2 (#1,#2)

These four rules together with transitivity rules on p+1 and p+2 form ΠP. Moreover,
QQ = (p+1 (a, b) ∧ s1(a, b)) ∨ (p+1 (a, z) ∧ p+2 (z, b) ∧ s1(a, b)).

We are now able to summarise informally the main ideas underlying our frame-
work:

1. A PCQ (Q,P) represents an infinite number of CQs, i.e., all the full instances
that can be obtained from Q using the pattern definitions in P. A UPCQ
represents all instances associated with its PCQs.

2. A UPCQ is considered entailed by a set of facts if one of its full instances is.

3. Given a UPCQ (Q,P), the pattern definitions in P can be translated into a
set of Datalog rules ΠP and the query Q itself into a UCQ QQ such that Q is
entailed by the set of facts F if the UCQ QQ is entailed by F saturated with
rules from ΠP, or equivalently if QQ is entailed by the knowledge-base (F ,ΠP).

These ideas are formally stated by the next proposition.

Let F be a set of facts and (Q,P) be a UPCQ; then, (F ,ΠP) |= QQ iff there
is some Q ∈ full(Q,P) such that F |= Q.

Proposition 4.2

Proof: We successively prove the two directions.
(⇐) Let T be an instantiation of (Q,P) such that there exists a homomorphism

π from its associated full instance to the set of facts F . Let us consider a vertex
of T labelled by a standard pattern P [t1, t2]. The label r(ρ(~t)) of its child was
obtained by choosing an atom r(~t) in the pattern definition of P (with ρ being
the substitution used to create this child). Thus the Datalog program ΠP contains
the rule r(~t) → p+(#1,#2) where #1,#2 ∈ ~t. By applying the rule according to
the homomorphism π ◦ ρ, we can add the atom p+(t1, t2) to F , and let F ′ be the
obtained set of facts. Let us repeat this procedure for every vertex of T labelled
by a standard pattern. Consider next a repeatable pattern labelled by P+[t, t′]
whose children are respectively labelled by P [t = t1, t2], P [t2, t3], . . . , P [tk−1, tk =
t′]. According to the previous rule applications, F ′ contains the atoms p+(t =
t1, t2), p

+(t2, t3), . . . , p
+(tk−1, tk = t′). Then, by successive applications of the rule in

ΠP expressing the transitivity of p+, we finally add to F ′ the atom p+(t, t′). Let F ′′

4.2. LINEAR RULES AND TRANSITIVITY 105

be the obtained set of facts. Repeat this procedure for every vertex of T labelled by
a repeatable pattern. Now the root of T is labelled by some Q ∈ Q. The UCQ QQ

contains a CQ Q that was obtained from Q by replacing each repeatable pattern
P+[t1, t2] by p+(t1, t2). Observe that the restriction of π to the terms of Q is a
homomorphism from Q to F ′′.

(⇒) Conversely, let us consider a set of facts F ′′ obtained by saturating the
initial set of facts F with the rules of ΠP, and a homomorphism π from some CQ
Q′ in the UCQ Q to F ′′. Let us now build an instantiation T of (Q,P) whose full
instance can be mapped to F thanks to a homomorphism π′. The root vertex of T
is labelled by the PCQ Q in Q from which Q′ was obtained. Its children are labelled
by the atoms and patterns of Q. For all terms x from Q, we define π′(x) = π(x). Let
us consider a child of the root labelled by a repeatable pattern P+[t, t′]. It follows
that p+(π(t), π(t′)) is an atom of F ′′. Since this atom is not in the initial set of
facts, it has been obtained either by a rule associated with a pattern definition or
by a sequence of applications of the rule expressing the transitivity of p+. In this
latter case, consider a path of p+-atoms π(t) = t1, . . . , tk = π(t′) such that no atom
p+(ti, ti+1) in F ′ has been obtained by a transitivity rule. Then the vertex labelled by
P+[t, t′] has k+1 children respectively labelled by P [t = x1, x2], . . . , P [xk−1, xk = t′].
For the fresh variables x2, . . . , xk−1, we define π′(xi) = ti. Repeat this procedure
for every repeatable pattern in T . Let us next consider a vertex of T labelled by
a standard pattern P [x, x′]. Since that vertex was obtained in the previous phase,
we know that the atom p+(π′(x), π′(x′)) is in F ′′, and that it was not obtained
from the application of a transitivity rule. Thus, the Datalog rule used to produce
that atom is necessarily a rule obtained from the definition of the pattern P . Let
r(~t) → p+(#1,#2), where #1,#2 ∈ ~t, be that rule. According to that pattern
definition, we can add to the vertex labelled by P [x, x′] a child labelled by r(ρ(~t)).
Since the Datalog rule was applied according to a homomorphism π′′, we define, for
every fresh variable ρ(t), π′(ρ(t)) = π′′(t). Do the same for every standard pattern
of T . The instance associated with T is full, and π′ is a homomorphism from this
full instance to the initial set of facts F . ✷

We then extend the definition of piece-unifier (see Definition 1.29) to PCQs (and
simply call it “unifier”).

Definition 4.7 (Unifier)
A unifier µ = (Q′, H, Pµ) of a PCQ with a rule R = (B,H) is a single-piece unifier
of one of its (possibly non-full) instances such that Q′ is a set of (usual) atoms.

Note that since in this section we only consider atomic-headed rules, H is com-
posed of a single atom. Furthermore, since we consider only single-piece unifiers, Q′

is ensured to be connected, which will be important in the following proofs.
We distinguish between two types of unifiers (internal and external), defined

next.

106 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

Let T be an instantiation whose associated instance is Q, and µ = (Q′, H, Pµ) be
a unifier of Q with some rule R = (B,H). Assume T contains a repeatable pattern
P+[t1, t2] expanded into P [u0, u1], . . . , P [uk, uk+1], where u0 = t1 and uk+1 = t2. We
call P [ui, ui+1] relevant for µ if it is expanded into an atom from Q′. Because we
consider only single-piece unifiers, it follows that if such relevant patterns exist, they
form a “connected” sequence P [ui, ui+1], . . . , P [uj−1, uj]. Terms ui and uj are called
external to P+[t1, t2] with respect to µ; the other terms occurring in the sequence
are called internal.

Definition 4.8 (Internal/External Unifier)
Given a unifier µ = (Q′, H, Pµ) of a PCQ Q with some rule R = (B,H), we say
that µ is internal if all atoms from Q′ are expanded from a single repeatable pattern,
and no external terms are unified together or with an existential variable; otherwise
µ is called external.

Example 4.5 (Internal/External Unifiers)
Consider T2 (depicted by Figure 4.3) whose associated instance is Q2 = s2(a, y0, z)∧
s2(x1, y1, z) ∧ p2(x1, b) ∧ s1(a, b) from Example 4.3 and the rules:

• R1 = s1(x
′, y′) → p2(x

′, y′),

• R2 = s1(x
′, y′) → s2(x

′, y′, z′).

The unifier of Q2 with R1 that unifies p2(x1, b) with p2(x
′, y′) is internal; whereas

the unifier of Q2 with R2 that unifies {s2(a, y0, z), s2(x1, y1, z)} with s2(x
′, y′, z′) is

external because it involves two repeatable patterns.

We point out that when Q is composed only of usual atoms, i.e., its single (full)
instance is the query itself, the notions of external unifiers and single piece-unifiers
coincide since no pattern is involved.

It is crucial for the following to understand that unifiers of PCQs are not per-
formed on the PCQs themselves but on instances of PCQs (actually, we will con-
sider so-called “minimally-unifiable instances” which may not be “instances” strictly
speaking but are still obtained by developing PCQs).

Hence, we distinguish between a “classical direct rewriting” of an instance of a
PCQ (with respect to a single-piece unifier, which is a unifier of the PCQ), and a
“direct rewriting” of a PCQ (with respect to an internal or external unifier), which
involves selecting a particular instance and computing a classical direct rewriting of
this instance.

Moreover, as detailed in the two next sections, internal and external unifiers
will be used in two different ways. Internal unifiers will be used to rewrite pattern
definitions: in this case, the considered PCQ will be the atomic query P+[x, y] for
a pattern name P . Hence, this kind of rewriting will be performed independently
from the actual input query, which will be rewritten using only external unifiers.

Finally, in order to later “ignore” some queries during the rewriting steps, we
need a way to compare unifiers, and the next definition provide us such a tool.

4.2. LINEAR RULES AND TRANSITIVITY 107

Definition 4.9 (Comparison between Unifiers)
Given two unifiers µ1 = (Q1, H, Pµ1

) and µ2 = (Q2, H, Pµ2
), we say that µ2 is

more general than µ1, denoted by µ2 ≥ µ1, if there is a substitution π from σ2(Q2)
to σ1(Q1) such that h(σ2(Q2)) ⊆ σ1(Q1) (i.e., π is a homomorphism from σ2(Q2)
to σ1(Q1)), and for all terms x and y in Q2 ∪H, if σ2(x) = σ2(y) then σ1(π(x)) =
σ1(π(y)), where σ1 and σ2 are substitutions respectively associated with Pµ1

and Pµ2
.

4.2.2 Overview of the Algorithm

The framework being defined, we can now present the global algorithm, which takes
as input a Boolean conjunctive query Q and a set of rules R = RL ∪ RT , where
RL is a set of (atomic-headed) linear rules (with no constant), and RT a set of
transitivity rules; and builds a finite set of Datalog rules and a (possibly infinite)
set of conjunctive queries.

The main steps of the algorithm are outlined below. The notions of internal and
external rewritings will be defined in the next section.

Step 1 For each predicate p that appears in RT , create a pattern definition P :=
p(#1,#2), where P is a fresh pattern name. The resulting set of definitions is called
P0.

Step 2 Let R+
L be the set of rules obtained from RL by replacing each body atom

p(t1, t2) in a rule such that p is a transitive predicate by the repeatable pattern
P+[t1, t2].

Step 3 (Internal Rewriting) Initialise P to P0, and repeat the following op-
eration until fixpoint: select a pattern definition P ∈ P and a rule R ∈ R+

L and
compute the direct rewriting of P with respect to P , R and an internal unifier.

Step 4 Replace in Q all atoms p(t1, t2) such that p is a transitive predicate by the
repeatable pattern P+[t1, t2] and denote the result by Q+.

Step 5 (External Rewriting) Initialise Q to {Q+} and repeat the following
operation until fixpoint: select Qi ∈ Q, compute a direct rewriting of Qi with
respect to P, a rule from R+

L and an external unifier; and add the result to Q if it
is not isomorphic to some Qj ∈ Q.

Step 6 Let ΠP be the Datalog translation of P and QQ be the possibly infinite set
of conjunctive queries obtained by replacing each repeatable pattern P+[t1, t2] in Q
by p+(t1, t2).

In a nutshell, Step 3 is always guaranteed to terminate, while Step 5 is not, how-
ever in Section 4.2.4, we propose a modification to Step 5 that ensures termination

108 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

and formulate sufficient conditions that preserve completeness. When QQ is finite
(i.e., it is a UCQ), it can be evaluated over the set of facts saturated by ΠP, or
alternatively translated into a set of Datalog rules and passed to a Datalog engine
for evaluation. Observe that the construction of ΠP is query-independent and can
be executed as a preprocessing step.

4.2.3 Rewriting Steps

A PCQ that contains a repeatable pattern has an infinite number of instances.
Instead of considering all instances of a PCQ, we consider a finite set of “instances
of interest” with respect to a given rule. Such instances will be used for both the
internal and external rewriting steps.

Definition 4.10 (Instantiation and Instance of Interest)
Given a PCQ (Q,P) and rule R ∈ R+

L with head predicate p, the instantiations
of interest of (Q,P) w.r.t. R are constructed as follows. For each repeatable pattern
P+
i [t1, t2] in Q, let ai1, . . . , a

i
ni

be the atoms in the definition of Pi with predicate
p. If ni > 0, then expand P+

i [t1, t2] into k standard patterns, where 0 ≤ k ≤
min(arity(p), ni) + 2, and expand each of these standard patterns in turn into some
aiℓ. An instance of interest is the instance associated with an instantiation of interest.

Hence, in an instance of interest with respect to a rule with head predicate
p, repeatable patterns with p-atoms occurring in their definitions may have been
expanded into standard p-atoms. Since the aim is to unify this instance of interest
with a p-atom from a rule head, only p-atoms from the pattern definitions are
considered. The upper bound on the size of these instances of interest is explained
in the proof of Proposition 4.3.

Example 4.6 (Instance of Interest)
Consider again the instantiation T2 of Q2 pictured in Figure 4.3, and the rule
R2 = s1(x

′, y′) → s2(x
′, y′, z′) from Example 4.5. The instance Q2 associated with

T2 is not an instance of interest of Q2 w.r.t. R2, since P2[x1, b] is expanded into
p2(#1,#2) whereas the head predicate of R2 is s2 (see the pattern definition P2

in Example 4.2). If we expand P2[x1, b] with s2(#2, y,#1) instead, we obtain the
instance of interest Q3 = s2(a, y0, z) ∧ s2(x1, y1, z) ∧ s2(b, y2, x1) ∧ s1(a, b).

Note that while in this example, the instances of interest we build are full, it is
not always the case, in particular it is possible to have an instantiation of interest
that does not expand any repeatable pattern.

We next show that the set of unifiers computed on the instances of interest of a
PCQ “captures” the set of unifiers associated with all its instances.

4.2. LINEAR RULES AND TRANSITIVITY 109

Let (Q,P) be a PCQ and R ∈ R+
L . For every instance Q of (Q,P) and

unifier µ of Q with R, there exist an instance of interest Q′ of (Q,P) w.r.t.
R and a unifier µ′ of Q′ with R such that µ′ is more general than µ.

Proposition 4.3

Proof: Let (Q,P) be a PCQ, R ∈ R+
L be a rule with head p(~t), Q be an instance

of (Q,P), and µ = (Q2, p(~t), Pu) be a unifier of Q with R.
Consider a repeatable pattern P+[t1, t2] in the instantiation associated with

Q from which some atoms in Q2 are expanded. If P+[t1, t2] is expanded into
k ≤ arity(p) + 2 standard patterns in Q, 1 then there is an instance of inter-
est Q′ that expands P+[t1, t2] into exactly k standard patterns such that there
is an isomorphism π between the atoms expanded under P+[t1, t2] in Q and in
Q′. Assume instead that P+[t1, t2] is expanded in Q into k > arity(p) + 2 stan-
dard patterns. We denote by σ a substitution associated with Pu, and by P [t1 =
x0, x1], P [x1, x2], . . . , P [xk−2, xk−1], P [xk−1, xk = t2] the sequence of standard pat-
terns expanded from P+[t1, t2] in Q, and let xs and xe (s < e) be the external
terms of P+[t1, t2] w.r.t. µ. The unifier is single-piece, thus, for every s < i < e,
σ(xi) = σ(zi) for some existential variable zi from the head of R.

We construct an instance of interest Q′ and function π as follows. Starting from
Q, we expand every repeatable pattern P+[t1, t2] that is relevant for µ into e − s

standard patterns (where e and s are defined as above and depend on the particular
pattern):

P [t1 = x′
s, x

′
s+1], P [x′

s+1, x
′
s+2], . . . , P [x′

e−1, x
′
e = t2].

Then for every s ≤ i ≤ e, we set π(x′
i) = xi, and we expand P [x′

i, x
′
i+1] into the atom

a′i that is obtained from the atom ai expanded under P [xi, xi+1] in Q by replacing
every xj with x′

j. If e − s ≤ arity(p) + 2, we are done. Otherwise, we will need
to remove some standard patterns in order to satisfy the definition of instances of
interest. To this end, we define a sequence s < i1 < j1 < · · · < im < jm < e of
indices as follows:

• We call i < j, with s < i < j < e, a matching pair in ai and in aj, x
′
i+1 and

x′
j occur at the same position of p (hence, σ(xi+1) = σ(xj));

• We say that a matching pair i < j is maximal w.r.t. index ℓ if the following
conditions hold:

– i ≥ ℓ,

– there is no matching pair i′ < j′ with ℓ ≤ i′ < i

1Strictly speaking, we mean the instantiation underlying Q, but to simplify the notation, here
and later in the various proofs, we will often refer to instances, leaving the instantiation implicit.

110 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

– there is no matching pair i < j′ with j′ > j

• We let i1 < j1 be the matching pair that is maximal w.r.t. index s+ 1

• For any k, if ik < jk is already defined, then we let ik+1 < jk+1 be the matching
pair that is maximal w.r.t. index jk, if such a pair exists (otherwise, ik < jk is
the final pair in the sequence).

Now remove from Q′ all the patterns P [x′
ℓ, x

′
ℓ+1] such that ig < ℓ < jg for some

1 ≤ g ≤ m, as well as the atoms that are expanded from such patterns. We claim
that there are now at most arity(p) + 2 patterns P [x′

ℓ, x
′
ℓ+1] below P+[t1, t2] in Q′.

Indeed, if this were not the case, we could find a matching pair i < j among the
remaining patterns. Since i1 < j1 is maximal w.r.t. index s + 1, and there are no
further matching pairs starting from jm, we know that i ≥ i1 and i < jm. Moreover,
since ai is still present in Q′, it must be the case that jg < i < ig+1 for some
1 ≤ g < m. But this contradicts the fact that ig+1 < jg+1 is maximal w.r.t. jg.

In order for the different remaining patterns to form a sequence, we will need
to perform a renaming of terms. If there are n patterns left under P+[t1, t2], we
rename these patterns from left to right by:

P [t1 = x′′
0, x

′′
1], P [x′′

1, x
′′
2], . . . , P [x′′

n−1, x
′′
n = t2].

and rename the atoms underneath these patterns accordingly. We will also update
π by setting π(x′′

i) = π(x′
j) if x

′
j was renamed into x′′

i and there is no x′
j′ with j′ < j

that was also renamed into x′′
i .

Let Q′ be the instance obtained in this manner. We note that by construction, it
is an instance of interest of (Q,P) w.r.t. R, as we only expand patterns into atoms
that use the predicate p from the rule head, and the number of patterns generated
from any repeatable pattern is at most arity(p) + 2.

Regarding π, note that a term may be shared among several repeatable patterns
that are relevant for µ. However, we can show that if a term is shared by multiple
relevant patterns, then the (partial) mapping associated with those patterns will
agree on the shared term, i.e., π is well-defined. First note if a term is shared by two
repeatable patterns, then it must appear as one of the distinguished terms (t1, t2) in
both patterns. Moreover, by tracing the above construction, we find that π is the
identity on such terms.

To complete the definition of π, we extend it to all of the terms of Q′ by letting
π be the identity on all terms that do not occur underneath a developed repeatable
pattern (i.e., terms that appear in a repeatable pattern that is not expanded, or
in one of the standard atoms of Q). Observe that π is an injective function, so its
inverse π−1 is well-defined.

Now letQ′
2 consist of all atoms inQ′∩Q2 that are not expanded from a repeatable

pattern (i.e., they are standard atoms from Q) as well as all atoms in Q′ that lie
under a repeatable pattern.

4.2. LINEAR RULES AND TRANSITIVITY 111

Note that by construction every term t in Q′
2 is such that π(t) appears in Q2. We

can thus define a partition P ′
u of the terms in Q′

2 ∪H by taking every class C in Pu

and replacing every term t from Q2 by π−1(t), if such a term exists, and otherwise
deleting t; terms from p(~t) are left untouched. Moreover, by the injectivity of π,
every term appears in at most one class, i.e., P ′

u is indeed a partition.
We aim to show that µ′ = (Q′

2, p(~t), P
′
u) is the desired unifier. We first show

that µ′ is a unifier of Q′ with R. In what follows, it will prove convenient to extend
π to the terms in the head atom p(~t), by letting π be the identity on such terms.
We will let σ be a substitution associated with µ, and let σ′ be the corresponding
substitution for µ′ defined by setting σ′(t) = σ(π(t)).

• P ′
u is admissible: since π is the identity on constants, if a class in P ′

u contains
two constants c, d, then the corresponding class in Pu must also contain c, d (a
contradiction).

• σ′(p(~t)) = σ′(Q′
2): since σ′(p(~t)) = σ(p(~t)) (due to our choice of σ′), it suffices

to prove that σ′(Q′
2) ⊆ σ(Q2). First take some atom α that belongs to Q′

2∩Q2.
Then we have π(α) = α, so σ′(α) = σ(π(α)) ∈ σ(Q2). Next consider the case of
an atom α that belongs to Q2 but not Q

′
2. Then α must lie below a repeatable

pattern P+[t1, t2] that is expanded into k > arity(p) + 2 standard patterns
P [t1 = x0, x1], P [x1, x2], . . . , P [xk−2, xk−1], P [xk−1, xk = t2] in Q. In this case,
P+[t1, t2] is expanded in Q′ into

P [t1 = x′
s, x

′
s+1], P [x′

s+1, x
′
s+2], . . . , P [x′

e−1, x
′
e = t2],

and each P [x′
i, x

′
i+1] is expanded into a′i. If e−s ≤ arity(p)+2, then the atoms

a′i all belong to Q′
2. If we have α = a′i, then we have π(a′i) = ai, hence σ

′(α) =
σ(π(a′i)) = σ(ai) ∈ σ(Q2). The final possibility is that e− s > arity(p) + 2, in
which case some of the patterns will be removed and the remaining patterns
will be renamed (as will be their corresponding atoms). Suppose that α is the
atom a′′h below the pattern P [x′′

ℓ , x
′′
ℓ+1], which was obtained from renaming the

pattern P [xh, xh+1]. We claim that σ′(α) = σ(π(α)) = σ(ah), hence σ′(α) ∈
σ(Q2). By examining the way renaming is performed, there are two situations
that can occur:

– π(x′′
ℓ) = xh and π(x′′

ℓ+1) = xh+1: in this case, π(a′′h) = ah, hence σ′(α) =
σ(ah).

– π(x′′
ℓ) 6= xh: in this case, there must exist a matching pair ig < jg such

that h = jg, π(x
′′
ℓ) = xig+1, and π(x′′

ℓ+1) = xh+1. From the definition of
matching pairs, we know that σ(xig+1) = σ(xjg). It follows that σ

′(x′′
ℓ) =

σ(π(x′′
ℓ)) = σ(xig+1) = σ(xh) and σ′(x′′

ℓ+1) = σ(π(x′′
ℓ+1)) = σ(xh+1). We

can thus conclude that σ′(α) = σ(ah).

• for a contradiction, suppose the class C ′ in P ′
u contains an existential variable z

from H and either a constant or a variable that occurs in Q′\Q′
2. If it contains

112 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

a constant c, then the corresponding class C in Pu will contain both z and c,
i.e., C is not a valid class. Next suppose that C ′ contains a variable x that
occurs in Q′ \Q′

2, which means that the corresponding class C in Pu contains
π(x). Since x occurs in Q′ \Q′

2, it must either appear in a standard atom of Q′

that does not appear under any repeatable pattern or in a repeatable pattern
that is not developed in Q′. In the former case, the same atom appears in
Q \ Q2, and in the latter case, since Q is full, there is an atom in Q that is
developed from the repeatable pattern and contains π(x), but which does not
participate in Q2. In both cases, we obtain a contradiction.

Finally, we show that µ′ is more general than µ:

• σ′(Q′
2) ⊆ σ(Q2): proven above.

• if σ′(u1) = σ′(u2), then u1, u2 belong to the same class in P ′
u, and so π(u1) and

π(u2) must belong to the same class in Pu.

We have thus shown that Q′ is an instance of interest of (Q,P) w.r.t. R such that
there is a unifier µ′ of Q′ with R with µ′ ≥ µ. ✷

Rewriting with respect to internal unifiers is performed “inside” a repeatable
pattern, independently from the other patterns and atoms in the query. We will
therefore handle this kind of rewriting in a query-independent manner by updating
the pattern definitions.

To find all internal unifiers of instances under a repeatable pattern P+[t1, t2] with
a rule head H = p(~x), one may think that it is sufficient to consider each atom ai
in P ’s definition and check if there is an internal unifier of ai with H. Indeed, this
suffices when predicates are binary: in an internal unifier, t1 and t2 are unified with
distinct variables, which cannot be existential; thus, the variables in H are frontier
variables, and a piece necessarily consists of a single atom. However, if the arity of
p is greater than 2, the other variables can be existential, so it may be possible to
unify a path of atoms from P ’s definition, while it is not for a single atom. The next
example illustrates this case.

Example 4.7
Let R = s(x, y) → r(z1, x, z2, y) be a rule and

P := r(#2,#1, x0, x1)|r(#1, x2,#2, x3)|r(x4, x5,#1,#2)

be a pattern definition. There is no internal unifier of an atom in P ’s definition
with H = r(z1, x, z2, y), since in all cases t1 or t2 is unified with an existential
variable. However, if we expand P+[t1, t2] into a path P [t1, y0], P [y0, y1], P [y1, t2],
then expand each ith pattern of this path into the ith atom in P ’s definition, the
resulting instance r(y0, t1, x0, x1), r(y0, x2, y1, x3), r(x4, x5, y1, t2) can be unified with
H by an internal unifier with the following partition:

{{z1, y0, x4}, {x, t1, x2, x5}, {z2, x0, y1}, {y, x1, x3, t2}}

4.2. LINEAR RULES AND TRANSITIVITY 113

Fortunately, we can bound the length of paths to be considered using both the
arity of the predicate p and the number of atoms with predicate p in P ’s definition,
allowing us to use the instances of interest defined earlier.

Definition 4.11 (Internal Direct Rewriting)
An (internal) direct rewriting P′ of a set of pattern definitions P w.r.t. a pattern
name P and a rule R = (B,H) ∈ R+

L is the set of pattern definitions obtained from
P by updating P ’s definition as follows. We consider the PCQ (Q = P+[x, y],P).
We select an instance of interest Q of Q w.r.t. R, an internal unifier µ of Q with
H, and a substitution σ associated with µ that preserves the external terms. Let
B′ be obtained from σ(B) by substituting the first (resp. second) external term by
#1 (resp. #2). If B′ is an atom, we add it to P ’s definition. Otherwise, B′ is
a repeatable pattern of the form S+[#1,#2] or S+[#2,#1]. Let f be the bijection
on {#1,#2} defined as follows: if B′ is of the form S+[#1,#2], f is the identity,
otherwise f permutes #1 and #2. For all atoms si in the definition of S, we add
f(si) to P ’s definition.

Note that the addition of an atom to a pattern definition is up to isomorphism
(with #1 and #2 treated as distinguished variables, i.e., #1 and #2 are mapped to
themselves).

The following example illustrates Step 3 of the algorithm.

Example 4.8
Assume R+

L contains the following rules:

• R1 : P
+
2 [x, y] → s1(x, y)

• R2 : s1(x, y) → p1(x, y)

• R3 : s2(x, y) → p2(y, x)

• R4 : P
+
1 [x, y] → p2(y, x)

Note that the transitive predicates p1 and p2 are recursive. Also, since rules contain
no existential variable, each single-piece unifier unifies a single atom from the queries
P+
1 [x, y] and P+

2 [x, y], therefore the only useful instances of interest have a single
atom.

Starting from P = P0 the following set of pattern definitions:

• P1 := p1(#1,#2)

• P2 := p2(#1,#2)

the computations of Step 3 may, for instance, be decomposed as follows:

1. P1 is rewritten with R2 and P2 with R3 obtaining the following definitions:

114 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

• P1 := p1(#1,#2) | s1(#1,#2)

• P2 := p2(#1,#2) | s2(#2,#1)

2. P1 is rewritten with R1, which leads to “copy” the definition of P2 into that of
P1:

• P1 := p1(#1,#2) | s1(#1,#2) | p2(#1,#2) | s2(#2,#1)

• P2 := p2(#1,#2) | s2(#2,#1)

3. P2 is rewritten with R4 which leads to copy the definition of P1 into that of P2

(with f permuting #1 and #2):

• P1 := p1(#1,#2) | s1(#1,#2) | p2(#1,#2) | s2(#2,#1)

• P2 := p2(#1,#2) | s2(#2,#1) | p1(#2,#1) | s1(#2,#1) | p2(#2,#1) |
s2(#1,#2)

4. P1 can be enriched again, which leads in turn to enrich P2 and we finally obtain
the same definitions for P1 and P2:

• P1 := p1(#1,#2) | s1(#1,#2) | p2(#1,#2) | s2(#2,#1) | p1(#2,#1) |
s1(#2,#1) | p2(#2,#1) | s2(#1,#2)

• P2 = P1

Let (Q,P) be a PCQ where a repeatable pattern P+[t1, t2] occurs and R ∈
R+

L . For any instance Q of (Q,P), any classical direct rewriting Q′ of Q
with R w.r.t. a unifier internal to P+[t1, t2], and any Q′ ∈ full(Q′,P), there
exists a direct rewriting P′ of P w.r.t. P and R such that (Q,P′) has a full
instance that is isomorphic to Q′.

Proposition 4.4

Proof: Let (Q,P) be a PCQ where P+[t1, t2] occurs, R = (B,H) ∈ R+
L , Q be an

instance of (Q,P), µ = (Q2, H, Pu) be a unifier internal to P+[t1, t2] of Q with R,
Q′ be the classical direct rewriting of Q with R w.r.t. µ, and Q′ be a full instance
of (Q′,P).

Since µ is internal to P+[t1, t2], all atoms in Q2 are expanded from P+[t1, t2] in
Q, and do not unify t1 with t2, nor t1 (resp. t2) with an existential variable from H.
We denote by P [t1 = x0, x1], P [x1, x2], . . . , P [xk−1, xk = t2] the sequence of standard
patterns expanded under P+[t1, t2] in Q, xs and xe (s < e) the external terms of
P+[t1, t2] w.r.t. µ, and ai the atom expanded under P [xi, xi+1]. From Proposition
4.3, there is a unifier µ′ of an instance of interest Q3 of Q with R with µ′ ≥ µ. Since
xs and xe are not unified with existential variables, let Q4 be the CQ obtained from

4.2. LINEAR RULES AND TRANSITIVITY 115

Q3 by removing all atoms and patterns that are not relevant for µ′. Obviously Q4 is
an instance of interest of a PCQ of the form P+[t1, t2]. Let P′ be the direct rewriting
of P w.r.t. µ′, obtained from Q4.

Let us consider the following notations:

• Al = {P [xi, xi+1] | 0 ≤ i < s},

• Am = {P [xi, xi+1] | s ≤ i < e},

• Ar = {P [xi, xi+1] | e ≤ i < k},

• A = Al ∪ Am ∪ Ar.

Furthermore let A′
l (resp. A

′
m, A

′
r, A

′) be the set of atoms expanded under Al (resp.
Am, Ar, A) in Q.

Initialize Q′′ to Q \ A′ ∪ {P+[t1, t2]}. One can see that Q′′ is an instance of
both (Q,P) and (Q,P′). If B is a not a repeatable pattern, let ℓ = 1, otherwise let
S be the name of the repeatable pattern in B, and S[x′

0, x
′
1], . . . , S[x

′
ℓ−1, x

′
ℓ] be the

sequence expanded from S+[x′
0, x

′
ℓ] in Q′. We denote by a′i the atom expanded under

S[x′
i, x

′
i+1]. Then expand P+[t1, t2] in Q′′ into k′ = |Al|+ |Ar|+ ℓ standard patterns:

P [t1 = x′′
0, x

′′
1], . . . , P [x′′

k−1, x
′′
k′ = t2]. Let π be the function defined as follows:

• for all 0 ≤ i ≤ s, π(x′′
i) = xi;

• for all s < i < s+ ℓ, π(x′′
i) = x′

i−s;

• for all s+ ℓ ≤ i ≤ k′, π(x′′
i) = xi−ℓ+(e−s).

Note that π is injective, so its inverse is also a function. Expand all P [x′′
i , x

′′
i+1] with

0 ≤ i < s or s+ ℓ ≤ i < k (resp. s ≤ i < s+ ℓ) into π−1(ai) (resp. π
−1(a′i)). Finally,

for all terms u in Q′′ for which π is not defined (i.e., those terms appearing in atoms
that were not expanded from the pattern P+[t1, t2]), we set π(u) = u.

By construction, Q′′ is still an instance of (Q,P′) and π is an isomorphism from
Q′′ to Q′. ✷

Now that internal direct rewritings are covered, we detail how we handle the case
of external direct rewritings. Given a PCQ and a rule, the idea is to consider all
instances of interest of the PCQ w.r.t. the rule and all associated external unifiers.
This is sufficient to “cover” (in the sense of Proposition 4.3) all external unifiers
with respect the rule. However, to be complete, we have to keep in mind that
a repeatable pattern P+[t1, t2] can be expanded into any number of atoms in full
instances. Hence, each repeatable pattern P+[t1, t2] in an instance of interest is
actually seen as a sequence P+[t1, x1], X[x1, x2], P

+[x2, t2] where X[x1, x2] is the
sequence of atoms (from the subtree of P+[t1, t2]) involved in the unifier, and each
of the surrounding P+ pattern may be present or not, which yields four cases for
each pattern. Moreover, we have to check that each of these cases (which will at
most be four to the power of the number of repeatable patterns in the query) is
actually possible, i.e., that the unifier still satisfies the conditions for being a unifier.

116 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

Definition 4.12 (External Direct Rewriting)
Let (Q,P) be a PCQ, R ∈ R+

L , T be an instantiation of interest of (Q,P) w.r.t.
R, Q be the instance associated with T , and µ = (Q′, H, Pµ) be an external unifier
of Q with R. From this, several direct rewritings of Q w.r.t. P and R can be built.
First, we mark all leaves in T that are labelled by an atom in Q′, and we restrict T
to branches leading to a marked leaf. Then, we consider each instantiation Ti that
can be obtained from Q as follows. Replace each repeatable pattern P+[t1, t2] that
has k > 0 children in T by one of the following paths (using fresh variables xi):

(i) P+[t1, x1] ∧X[x1, x2] ∧ P+[x2, t2],

(ii) P+[t1, x1] ∧X[x1, t2],

(iii) X[t1, x2] ∧ P+[x2, t2],

(iv) X[t1, t2],

where X[v1, v2] is a sequence of k standard patterns P [v1, y1], P [y1, y2], . . . , P [yk−1, v2]
(the yi being fresh variables). Let Qi be the instance associated with Ti.

If P [x′, y′] in T has child a(~t), expand in Ti the corresponding P [x, y] into a(ρ(~t))
where ρ = {x′ 7→ x, y′ 7→ y}. If µ′ = (ρ(Q′), H, ρ(Pµ)) is still a unifier of Qi with
H, we say that Qi is a minimally-unifiable instance of Q w.r.t. µ. In this case,
Q′

i = µ′(Qi) \ µ
′(H) ∪ µ′(B) is an (external) direct rewriting of Q w.r.t. P and R.

Example 4.9
Consider again R2 = s1(x

′, y′) → s2(x
′, y′, z′) and

Q3 = s2(a, y0, z) ∧ s2(x1, y1, z) ∧ s2(b, y2, x1) ∧ s1(a, b)

from Examples 4.5 and 4.6 respectively, and let

µ = ({s2(a, y0, z), s2(x1, y1, z)}, H2, {{a, x1, x
′}, {y0, y1, y

′}, {z, z′}})

Figure 4.4 depicts the instantiation of the PCQ leading to Q3.
First, we consider the instantiation that generated Q3, and we remove the vertex

labelled by P2[x1, b] and its child s2(b, y2, x1), since the latter atom is not involved
in µ. Next we replace the repeatable pattern P+

1 [a, z] (resp. P+
2 [z, b]) using one of

the four cases detailed above, and we check whether µ′ (obtained from µ) is still a
unifier. Concerning P+

1 [a, z], the four following cases are to be considered:

(i) P+
1 [a, t1], s2(t1, y0, t2), P

+
1 [t2, z]

(ii) P+
1 [a, t1], s2(t1, y0, z)

(iii) s2(a, y0, t2), P
+
1 [t2, z]

(iv) s2(a, y0, z)

4.2. LINEAR RULES AND TRANSITIVITY 117

Q2

P+
1 [a, z] P+

2 [z, b] s1(a, b)

P1[a, z] P2[z, x1] P2[x1, b]

s2(a, y0, z) s2(x1, y1, z) s2(b, y2, x1)

Figure 4.4: Instantiation of Q3 from Example 4.9

In case (i), t2 is unified with the existential variable z′, hence P+
1 [t2, z] should be

unified as well, which is not possible. The same holds for case (iii). Finally only
cases (ii) and (iv) are suitable to replace P+

1 [a, z].
Concerning P+

2 [z, b], the four following cases are to be considered:

(i) P+
2 [z, v1], s2(v2, y1, v1), P

+
1 [v2, b]

(ii) P+
2 [z, v1], s2(b, y1, v1)

(iii) s2(v2, y1, z), P
+
1 [v2, b]

(iv) s2(b, y1, z)

Case (i) and (ii) are excluded for the same reason as above (v1 is unified with
z′).

Now let us consider the PCQs obtained by combining all considered possible ex-
pansions of P+

1 and P+
2 :

• Q1 = P+
1 [a, t1]∧ s2(t1, y0, z)∧ s2(v2, y1, z) ∧ P+

2 [v2, b] ∧ s1(a, b)

• Q2 = P+
1 [a, t1]∧ s2(t1, y0, z)∧ s2(b, y1, z) ∧ s1(a, b)

• Q3 = s2(a, y0, z)∧ s2(v2, y1, z) ∧ P+
2 [v2, b] ∧s1(a, b)

• Q4 = s2(a, y0, z)∧ s2(b, y1, z) ∧ s1(a, b)

We observe that no unifier exists when we choose case (iv) for both patterns, in-
deed {s2(a, y0, z), s2(b, y1, z)} cannot be unified with s2(x

′, y′, z′) since it would mean
to unify constants a and b together.

By considering the three minimally-unifiable instances Q1, Q2 and Q3 we obtain
the following rewritings:

• Q′
1 = P+

1 [a, x′] ∧ s1(x
′, y′) ∧ P+

2 [x′, b] ∧ s1(a, b),

118 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

• Q2 = P+
1 [a, b]∧ s1(b, y

′)∧ ∧ s1(a, b)

• Q′
3 = s1(a, y

′)∧ P+
2 [a, b]∧ s1(a, b)

Let (Q,P) be a PCQ and R ∈ R+
L . For every Q ∈ full(Q,P) and every

classical direct rewriting Q′ of Q with R w.r.t. an external unifier, there is
a direct rewriting Q′ of Q w.r.t. P and R that has an instance isomorphic
to Q′.

Proposition 4.5

Proof: Let (Q,P) be a PCQ, R = (B,H) ∈ R+
L , Q ∈ full(Q,P), µ = (Qu, H, Pu)

be an external unifier of Q with R, and Q′ be the classical direct rewriting of Q with
R w.r.t. µ.

From Proposition 4.3, there is an instance of interest Q2 of (Q,P) such that
there is a unifier µ′ = (Qu′ , H, Pu′) ≥ µ of Q2 with R. We denote by σ (resp. σ′) a
substitution associated with µ (resp. µ′).

For any repeatable pattern P+[t1, t2] in Q, build A,Al, Am and Ar as in the proof
of Proposition 4.4 using the instance Q2 and unifier µ′. Assume t1 (or t2) is unified
with an existential variable, then from the condition on external unifiers, Al (or Ar)
is empty. Consider the minimally-unifiable instance QM of Q w.r.t. µ′ that replaces
P+[t1, t2] by: (i) Am if Al = Ar = ∅; (ii) P+[t1, xs], Am if Ar = ∅ and Al 6= ∅; or (iii)
Am, P

+[xe, t2] if Al = ∅ and Ar 6= ∅. In case (ii) (resp. (iii)), since no atom in Al

(resp. Ar) is involved in µ′, xs (resp. xe) is not unified with an existential variable
(or the piece condition on unifiers would not be satisfied). Therefore, µ′ is a unifier
of QM with R. We let Q′ be the direct rewriting of QM w.r.t. µ′ and R.

Note that each repeatable pattern P+[t1, t2] in Q′ expands into Al ∧ σ(B) ∧ Ar,
and in Q′ there is a P+[t1, xs] (resp. P+[xe, t2]) iff Al (resp. Ar) is not empty.
Thus consider Q′′ obtained from Q′ by expanding P+[t1, xs] (resp. P

+[xe, t2]) into
k standard patterns where k = |Al| (resp. k = |Ar|), and choose the same atoms as
in A′

l (resp. A
′
r). Since µ′ ≥ µ, there is a homomorphism π from σ′(Qu′) to σ(Qu).

Note that if we restrict the domain of π to terms in σ′(B), π is an isomorphism.
Furthermore, we can extend the domain ofπ to Q′′ in the same way as we did in the
previous proof. Thus Q′′ is isomorphic to Q′. ✷

4.2.4 Termination and Correctness

Our algorithm, while not being guaranteed to terminate, is correct: indeed, if the
query Q is entailed by the knowledge base then the algorithm produces a set of
Datalog rules ΠP (always finite) and a CQ Q′ (from a possibly infinite set QQ) such
that the evaluation of ΠP ∪ {Q′} (as a Datalog query) on the set of facts yields a
positive answer, and reciprocally, as precisely stated by the next theorem.

4.2. LINEAR RULES AND TRANSITIVITY 119

Let Q be a CQ, (F ,R) be a linear+trans knowledge base, and (ΠP, QQ) be
the (possibly infinite) output of the algorithm; then:

(F ,R) |= Q ⇔ ∃Q′ ∈ QQ : (F ,ΠP) |= Q′

Theorem 4.6

The proof of this theorem is quite technical, and thus is split into the following
five lemmas.

Let Q be a CQ, R ∈ RT , P0 be the initial set of pattern definitions relative
to RT (see Step 1 of the algorithm overview), and Q+ be obtained from
Q by replacing all atoms p(t1, t2) such that p is a transitive predicate by
P+[t1, t2]. If there is a classical direct rewriting Q′ of Q with R, then there
is a full instance Q′′ of (Q+,P0) that is isomorphic to Q′.

Lemma 4.1

Proof: Let p(t1, t2) be the atom of Q that is rewritten to obtain Q′. Since p is a
transitive predicate, it occurs in a pattern definition P0 in P, and Q+ contains the
atom P+[t1, t2]. In Q′, p(t1, t2) is rewritten into p(t1, x1)∧p(x1, t2). Let Q

′′ be the full
instance of (Q+,P0) that expands all repeatable patterns but P

+[t1, t2] into a single
standard pattern, expands P+[t1, t2] into two standard patterns P [t1, x

′
1], P [x′

1, t2],
and then further expands the standard patterns using the unique atom in each of
the pattern definitions. It is clear that Q′′ is isomorphic to Q′ (simply map x′

1 to x1

and all other terms to themselves). ✷

Let P be a set of pattern definitions, P0 ⊆ P be the initial set of pattern
definitions built from the set RT of transitivity rules, (Q,P) be a PCQ that
does not contain any standard atom using a transitive predicate, Q be a
full instance of (Q,P), and Q+ be obtained from Q by replacing all atoms
p(t1, t2) with p transitive by P+[t1, t2].
Then, for every full instance Q′ of (Q+,P0), there is a full instance Q′′ of
(Q,P) such that Q′′ is isomorphic to Q′.

Lemma 4.2

Proof: We build the instance Q′′ as follows. Initialize Q′′ to the atoms and re-
peatable patterns occurring in Q. Next, for all repeatable patterns P+

i [t1, t2] in the

120 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

instantiation underlying Q consider each of the atom that is expanded from a child
of P+

i [t1, t2] in turn, working from left to right. If the atom p(~t) under Pi[u, v] is
being considered, then do the following:

• if p is not a transitive predicate, then add a single child Pi[u, v] to P+
i [t1, t2],

and expand it into p(~t).

• if p is transitive, then p(~t) has been replaced in Q+ by P+[~t]. We also know
that ~t consists of the terms u, v from Pi[u, v]. We suppose that p(~t) = p(u, v)
(hence P+[~t] = P+[u, v]); a similar argument can be used if the positions are
reversed. Let P [u = x0, x1], . . . , P [xk−1, xk = v] be the children of P+[u, v] in
Q′, and aℓ be the atom expanded under P [xℓ, xℓ+1] (0 ≤ ℓ < k). In place of
the child P+

i [u, v] in Q+, we will add k children to P+
i [t1, t2] in Q′′: Pi[u =

x0, x1], . . . , Pi[xk−1, xk = v], and expand Pi[xj, xj+1] into aj. Note that we may
assume that the terms xi (0 < i < k) are fresh, i.e., they do not already appear
in Q′′.

It can be verified that the resulting full instance Q′′ is isomorphic to Q′. Indeed, all
atoms inQ′ that are also inQ are present inQ′′. All other atoms belong to a sequence
of transitive atoms, which we have reproduced (up to renaming of variables) in Q′′.

✷

Let Q be a CQ and R be a set of linear+trans rules, and let (Q,P) be the
output of the algorithm. For any Q′ obtained from a sequence of classical
direct rewritings of Q with R, there is a PCQ (Q,P) with Q ∈ Q and a full
instance Q′′ of (Q,P) such that Q′′ is isomorphic to Q′.

Lemma 4.3

Proof: Let Q = Q0, µ1, Q1, µ2, Q2, . . . , µk, Qk = Q′ be a sequence of classical direct
rewritings from Q to Q′, and let R1, . . . , Rk be the associated sequence of rules from
R.

We show the desired property, by induction on 0 ≤ i ≤ k. For the base case
(i = 0), we can set Q0 = Q+, since Q0 = Q is clearly a full instance of (Q0,P).

For the induction step, suppose that we have Qi−1 ∈ Q and a full instance Q′′
i−1

of (Qi−1,P) that is isomorphic to the CQ Qi−1. There are two cases to consider,
depending on the type of the rule Ri.

If Ri is a transitivity rule, then from Lemma 4.1, we know that Q+
i−1 (obtained

from Qi−1 by replacing every transitive predicate p by pattern P+) is such that there
is a full instance Q+

i−1 of (Q+
i−1,P) that is isomorphic to Qi. Furthermore, we know

that Qi−1 cannot contain any standard atom with a transitive predicate, since every
PCQ produced in Step 5 contains patterns for the transitive predicates. Thus, we

4.2. LINEAR RULES AND TRANSITIVITY 121

may apply Lemma 4.2 and infer that Q+
i−1 is isomorphic to some full instance Q′′

i−1

of (Qi−1,P). Therefore, Q′′
i−1 is isomorphic to Qi.

If Ri is not a transitive rule, since Qi−1 is isomorphic to some full instance
Q′′

i−1 of (Qi−1,P), let µ′′
i be the unifier of Q′′

i−1 with Ri obtained from µi and the
isomorphism between Qi−1 and Q′′

i−1. If µ′′
i is internal to some repeatable pattern,

then from Proposition 4.4, we know that there is an instance Q′
i of (Qi−1,P) that

is isomorphic to Qi. Otherwise, from Proposition 4.5, there exist µ′
i and a direct

rewriting Qi of Qi−1 with µ′
i such that there is an instance Q′

i of (Qi,P) that is
isomorphic to Qi.

We have thus completed the inductive argument and can conclude that there is a
PCQ (Q,P) with Q ∈ Q and a full instance Q′′ of (Q,P) such that Q′′ is isomorphic
to Q′ = Qk. ✷

Let Q be a CQ, (F ,R) be a linear+trans KB, and (ΠP,QQ) be the output
of the algorithm. If (F ,R) |= Q then (F ,ΠP) |= Q′ for some Q′ ∈ QQ.

Lemma 4.4

Proof: Since (F ,R) |= Q, there is a (finite) classical rewriting Q′ of Q with R
such that F |= Q′. From Lemma 4.3, there is a PCQ (Q,P) with Q ∈ Q and a full
instance Q′′ of (Q,P) such that Q′′ is isomorphic to Q′. Therefore, F |= Q′′. We
conclude by Proposition 4.2. ✷

Let Q be a CQ, (F ,R) be a linear+trans KB, and (ΠP,QQ) be the output
of the algorithm. If (F ,ΠP) |= QQ then (F ,R) |= Q.

Lemma 4.5

Proof: Let P be the set of pattern definitions computed in Step 3 of the algorithm,
and ΠP the corresponding set of Datalog rules. Consider the CQ Q++obtained from
Q by replacing every atom p(t1, t2) such that p is transitive by the atom p+(t1, t2).
The following claim establishes the soundness of the internal rewriting mechanism
in Step 3:

Claim 4.1 If F ,ΠP |= Q++, then F ,R |= Q.

Proof of claim. Let P0,P1, . . . ,Pk = P be the sequence of sets of pattern definitions
that led to P in Step 3, with Pi+1 being obtained from Pi by a single direct (internal)
rewriting step. We prove by induction two distinct properties expressed at rank
0 ≤ j ≤ k:

122 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

P1 every rule in ΠPj
is a semantic consequence of ΠP0

∪R.

P2 for every set of facts F ′ and CQ Q′ (over the original vocabulary):

F ′,ΠPj
|= (Q′)++ ⇒ F ′,R |= Q′

In the second property, (Q′)++ denotes the CQ obtained by replacing every atom
p(t1, t2) such that p is transitive by the atom p+(t1, t2). Observe that P2 at rank k

yields the claim: we simply take F ′ = F and Q′ = Q.

Base case (i = 0): property P1 is obviously verified. For property P2, we note
that P0 consists of the following rules for every transitive predicate p: the transitivity
rule p+(x, y) ∧ p+(y, z) → p+(x, z) and the initialization rule p(x, y) → p+(x, y).
Clearly, if F ,ΠP0

|= (Q′)++, then we have F ,R |= Q′, since if we can derive p+(a, b)
using F ,ΠP0

, then we can also derive p(a, b) from F ,R using the transitivity rule
for p in R.

Induction step for P1: we assume property P1 holds for some rank 0 ≤ i < k

and show that it holds also for i+ 1.

Suppose that Pi+1 is obtained from Pi by a single direct rewriting step w.r.t.
pattern name P and the rule R = B → H ∈ R+

L . Let Q = P+[x, y], Q be the
considered instance of interest of Q w.r.t. R, µ = (Q′, H, Pu) be the considered
internal unifier of Q with H, and σ be the considered substitution associated with
µ that preserves the external terms. Finally, let B′ be obtained from σ(B) by
substituting the first (resp. second) external term by #1 (resp. #2).

Since we know that µ is an internal unifier, the external terms of Q′ cannot be
unified together or with an existential variable. Thus by considering Q′′ and Pu′

obtained from Q′ and Pu by substituting the first (resp. second) external term by
#1 (resp. #2), it is clear that µ′ = (Q′′, H, Pu′) is a unifier of Q′′ with R such that
σ′(B) = B′, where σ′ is the substitution associated with µ′ that preserves the special
terms #1 and #2.

We consider two cases depending on the nature of B′.

Case 1: The first possibility is that B′ is an atom (as opposed to a repeatable
pattern), in which case we add the following rule to ΠPi

: B′ → p+(#1,#2).

Let a1, . . . , ak be the atoms of Q′′, and let a′j be the atom in P ’s definition from
which aj is obtained. Since there is a rewriting of {aj | 0 < j ≤ k} with R into B′

(using the unifier µ′), and the rule R appears in the original set of rules R, it follows
that

R |= B′ → a1 ∧ · · · ∧ ak

From the induction hypothesis, we know that the rules a′j → p+(#1,#2) (0 < j ≤ k)
are entailed by ΠP0

,R. We also know that for all 1 < j ≤ k, the atoms aj−1 and aj
share a variable corresponding respectively to #2 in a′j−1 and to #1 in a′j. Thus, by
applying the rules a′j → p+(#1,#2) (0 < j ≤ k) to the conjunction a1 ∧ · · · ∧ ak, we

4.2. LINEAR RULES AND TRANSITIVITY 123

obtain p+(#1, x1) ∧ p+(x1, x2) ∧ · · · ∧ p+(xk−1,#2). Hence:

ΠP0
,R |=

k
∧

j=0

aj → p+(#1, x1) ∧ p+(x1, x2) ∧ · · · ∧ p+(xk−1,#2)

Since ΠP0
contains a transitivity rule for p+, we can further infer that

ΠP0
|= p+(x1, x2) ∧ · · · ∧ p+(xk−1,#2) → p+(#1,#2)

By chaining together the preceding entailments, we obtain ΠP0
,R |= (B′ → p+(#1,#2)),

as desired.

Case 2: The other possibility is thatB′ is a repeatable pattern of the form S+[#1,#2]
or S+[#2,#1]. Let f be a bijection on {#1,#2}: if B′ is of the form S+[#1,#2],
f is the identity, otherwise f permutes #1 and #2. Then for all sℓ in the def-
inition of S, we add f(sℓ) to P ’s definition, and we add the corresponding rules
f(sℓ) → p+(#1,#2) to ΠPi

. Consider one such rule rule f(sℓ) → p+(#1,#2).
Let a1, . . . , ak and a′1, . . . , a

′
k be defined as in Case 1. Since there is a rewriting of

{aj | 0 < j ≤ k} with R ∈ R+
L into B′, and since the rule R was obtained from a rule

R′ in R by replacing the transitive predicate s in the rule head by the repeatable
pattern S+, it follows that

R |= f(s(#1,#2)) → a1 ∧ · · · ∧ ak

Arguing as in Case 1, we obtain

ΠP0
,R |= f(s(#1,#2)) → p+(#1,#2)

From the induction hypothesis, we know that that the rules sℓ → s+(#1,#2)
are entailed from ΠP0

,R, and the same obviously holds for the rules f(sℓ) →
f(s+(#1,#2)). By combining the preceding entailments, we obtain ΠP0

,R |=
f(sℓ) → p+(#1,#2).

Induction step for property P2: we assume P2 holds for some rank 0 ≤ i < k

and show that it holds also for i+ 1.
Suppose now that F ′,ΠPi+1

|= (Q′)++, for some set of facts F ′ and CQ Q′

(over the original predicates). This means that there is a finite derivation sequence
F ′ = F++

0 , . . . ,F++
m such that F++

m |= (Q′)++ and such that for all 0 ≤ ℓ < m, F++
ℓ+1

is obtained from F++
ℓ either (i) by a sequence of applications of rules from ΠPi

or
(ii) by a sequence of applications of rules from ΠPi+1

\ ΠPi
.

In case (i), we have F++
ℓ ,ΠPi

|= Fℓ+1++ . Letting Fr be the set of facts obtained by
replacing every predicate p+ in F++

r by the corresponding predicate p, and recalling
that ΠPi

contains the rule p(x, y) → p+(x, y), we have Fℓ,ΠPi
|= F++

ℓ+1. Applying the
induction hypothesis (treating F++

ℓ+1 as a CQ), we obtain Fℓ,R |= Fℓ+1.
In case (ii), we have F++

ℓ , (ΠPi+1
\ ΠPi

) |= F++
ℓ+1. From property P1, we obtain

F++
ℓ ,ΠP0

,R |= F++
ℓ+1. Using the rule p(x, y) → p+(x, y) (that is present in ΠP0

), the

124 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

latter yields Fℓ,ΠP0
,R |= F++

ℓ+1. Finally, we note that if we can derive p+(a, b) from
Fℓ,ΠP0

,R, then we can also infer p(a, b) from Fℓ,R by using the transitivity rule
for p instead of using p(x, y) → p+(x, y) and the transitivity rule for p+. Thus, we
have Fℓ,R |= Fℓ+1.

We have thus shown that for every 0 ≤ ℓ < m, Fℓ,R |= Fℓ+1. Since F ′ = F0,
by chaining these implications together, we obtain F ′,R |= Fm. Using the same
reasoning as above, we can infer Fm |= Q′ from F++

m |= (Q′)++. Then, by combining
these statements, we obtain F ′,R |= Q′. (end proof of claim)

Now let Q be the set of queries computed in Step 5 by performing all possible
external direct rewritings w.r.t. P and rules from R+

L , starting from Q+, and let QQ

be the set of CQs associated with Q (defined as in Step 6). We start by proving the
following claim, which relates external direct rewriting steps to sequences of classical
direct rewritings.

Claim 4.2 Let Qi+1 be a direct rewriting of Qi w.r.t. P. Then every full instance
of (Qi+1,P) is obtained from a sequence of (classical) direct rewritings of some full
instance of (Qi,P).

Proof of claim. Let (Qi+1,P) be obtained from an external rewriting of (Qi,P) with
rule R = B → H. This means that there is a minimally unifiable instance Qe and
a unifier µ = (X,H, Pu) of Qe with H (with associated substitution σ) such that
Qi+1 = σ(Qe \X) ∪ σ(B). Let us consider a partial instance QP

i+1 of (Qi+1,P) that
fully instantiates σ(Qe \X) but does not instantiate σ(B) (we say that it is a σ(B)-
excluding instance). Note that QP

i+1 can be built equivalently by choosing a full
instance Qe of (Qe,P), removing the atoms of X, then by applying the substitution
σ and adding σ(B). We can see that the classical direct rewriting of Qe according
to µ produces QP

i+1. Moreover, since every full instance of (Qe,P) is a full instance
of (Qi,P), we know that Qe is an instance of (Qi,P).

Now consider any full instance Qi+1 of (Qi+1,P). Note that it is a full instance
of some σ(B)-excluding instance (QP

i+1,P). There are two cases to consider:

• If σ(B) is an atom, then Qi+1 = QP
i+1 and thus Qi+1 is obtained from a classical

direct rewriting of an instance of (Qi,P).

• Otherwise, if σ(B) is a repeatable pattern, thenQi+1 is obtained from (QP
i+1,P)

by expanding σ(B) into a sequence of k standard patterns, and expanding
each of them into some atom aℓ. Let Bk = {aℓ | 1 ≤ ℓ ≤ k}. Then, σ(B) is
generated in forward chaining from Bk with a sequence of applications of rules:
k applications of transitivity rules, and k applications of the rules encoded in
P, each one stemming from a finite sequence of applications of rules of R
(see Claim 4.1). Thus from the completeness of classical rewriting, Bk can be
obtained from a sequence of classical direct rewritings from σ(B), and thus
Qi+1 is obtained from a sequence of classical direct rewritings of an instance
of (Qi,P).

4.2. LINEAR RULES AND TRANSITIVITY 125

(end proof of claim)

The following claim shows the soundness of the external rewriting in Step 5 and
completes the proof of the lemma.

Claim 4.3 If F ,ΠP |= QQ, then F ,R |= Q.

Proof of claim. Suppose that F ,ΠP |= QQ with Q ∈ Q. We know that the PCQ Q
is obtained from a finite sequence Q0 = Q+,Q1, . . . ,Qk = Q of PCQs such that for
all 0 ≤ j < k, (Qj+1,P) is a direct external rewriting of (Qj,P). We will show by
induction on j that F ,ΠP |= QQj

implies F ,R |= Q for every 0 ≤ j ≤ k.
The base case (j = 0) is a direct consequence of Claim 4.1. For the induction

step, we assume the property is true at rank i, and we show that it is true at rank
i+ 1.

Suppose that F ,ΠP |= QQi+1
. From Proposition 4.2, it follows that there is

a full instance Qi+1 of (Qi+1,P) such that F |= Qi+1. By Claim 4.2, there is a
full instance Qi of (Qi,P) such that Qi+1 is obtained from a sequence of classical
rewritings from Qi. Thus (from the correctness of the classical rewriting), there is
a set of facts F ′ such that F ,R |= F ′ and F ′ |= Qi. Applying Proposition 4.2, we
obtain F ′,ΠP |= QQi

. Now from our induction hypothesis, it follows that F ′,R |= Q,
hence F ,R |= Q. (end proof of claim) ✷

We can now immediately conclude with the proof of Theorem 4.6:
Proof: Follows from Lemma 4.4 and 4.5. ✷

Regarding termination, we observe that Step 3 (internal rewriting) must halt
since every direct rewriting step adds a new atom (using a predicate from R+

L) to a
pattern definition, and there are finitely many such atoms (up to isomorphism).

By contrast, Step 5 (external rewriting) may not halt, as the rewritings may grow
unboundedly in size (where the size is the number of atoms and patterns). Thus, to
ensure termination, we will modify Step 5 to exclude direct rewritings that increase
the rewriting size. We first recall the four possible replacements of a repeatable
pattern P+[t1, t2] when computing the minimally-unifiable instances (see Definition
4.12):

(i) P+[t1, x1] ∧X[x1, x2] ∧ P+[x2, t2]

(ii) P+[t1, x1] ∧X[x1, t2]

(iii) X[t1, x2] ∧ P+[x2, t2]

(iv) X[t1, t2]

We identify the following “problematic” minimally-unifiable instances, problematic
in the sense that they may lead to direct rewritings larger than the original query:

126 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

1. Q′ is composed of atoms expanded from a single repeatable pattern P+[t1, t2],
σµ′(t1) = σµ′(t2), and P+[t1, t2] is replaced as in case (i), (ii) or (iii).

2. Q′ is completely obtained from the expansion of one or more repeatable pat-
terns (i.e., there is no standard atom involved in the unifier), a term t of Q is
unified with an existential variable of the head of the rule, t appears only in
repeatable patterns of the form P+

i [ti, t] (resp. P
+
i [t, ti]), and all these repeat-

able patterns are rewritten as in case (ii) P+
i [ti, t

′
i] ∧ X[t′i, t] (resp. as in case

(iii) X[t, t′i] ∧ P+
i [t′i, ti]).

Note that in Point 2, we need not to exclude rewritings in which Q′ contains at
least one standard atom, since such atoms will be erased by the rewriting process.

We call a direct rewriting excluded if it is based on such a minimally-unifiable
instance; otherwise, it is non-excluded.

Example 4.10
The rewriting Q′

1 from Example 4.9 is excluded because it is obtained from the
minimally-unifiable instance Q1 in which the repeatable pattern P+

1 [a, z] is expanded
as in case (ii) and P+

2 [z, b] as in case (iii), and z is unified with the existential
variable z′.

In the following we first show that using only non-excluded direct rewritings en-
sures termination (Proposition 4.6). Then, we show that ignoring direct rewritings
based on a minimally-unifiable instance as in Point 1 never compromises the com-
pleteness of our algorithm. Indeed the query obtained is always more specific than
the rewritten query (Lemma 4.6). Finally, we show that under a safety condition,
ignoring the direct rewritings based on a minimally-unifiable instance as in Point 2
also preserves completeness (Lemma 4.7).

Let (Q,P) be a PCQ and R ∈ R+
L . If Q

′ is a non-excluded direct rewriting
of Q with R, then |Q′| ≤ |Q|.

Proposition 4.6

Proof: Let (Q,P) be a PCQ, R = (B,H) ∈ R+
L , Q be a non-excluded minimally-

unifiable instance of (Q,P), µ = (Q′, H, Pµ) be an external unifier of Q with R, and
σµ be a substitution induced by Pu.

Note that all repeatable patterns P+[t1, t2] are either untouched by the unifier,
or replaced by the sequence X needed by the unifier (i.e., X ⊆ Q′), plus potentially
a single repeatable pattern P+[t1, x1] (or P

+[xk, t2]). Indeed, the only situation that
would lead us to introduce more than one repeatable pattern (i.e., as in External
Rewriting case (i)) is when either t1 or t2 is unified with an existential variable.

4.2. LINEAR RULES AND TRANSITIVITY 127

However, if t1 (or t2) is unified with an existential variable, because of the piece
condition on unifiers, no unifier of P+[t1, x1] ∧X ∧ P+[xk, t2] can be found.

Since |B| = 1, we have to show that all atoms that were introduced when re-
placing a repeatable pattern are erased by the direct rewriting of Q w.r.t. µ.

If Q′ consists of at least one atom that is not expanded from a pattern, the direct
rewriting of Q w.r.t. µ erases this atom as well as the X sequence.

Next assume Q′ consists only of atoms expanded from repeatable patterns. If
Q′ = {P+[t1, t2]} and neither t1 nor t2 is unified with an existential variable, then
σµ(t1) = σµ(t2), so the only non-excluded minimally-unifiable instance of Q w.r.t.
µ replaces P+[t1, t2] only by the sequence X needed by the unifier (see the first
condition on non-excluded minimally-unifiable instances). Thus, the direct rewriting
erases P+[t1, t2].

Otherwise, we know that at least one P+[t1, t2] fromQ is replaced by the sequence
X involved in the unifier (see the second condition on non-excluded minimally-
unifiable instances), thus there is at least one P+[t1, t2] erased by the direct rewriting.

✷

Let us consider the “modified query rewriting algorithm” that is obtained by
only performing non-excluded direct rewritings in Step 5 (External Rewriting). This
modification ensures termination but may comprise completeness. However, we can
show that the modified algorithm is complete in the following key cases: when the
conjunctive query is atomic, when there is no specialisation of a transitive predicate,
or when all predicates have arity at most two. These cases rely on the following
different observations. In the first case, completeness cannot be compromise since
there is a single problematic case detailed in Lemma 4.7, and it cannot happen for
atomic query since it involves two different repeatable patterns. In the second case,
there is no rewriting of transitive atoms. Finally in the third case, the external terms
t1 and t2 from each repeatable pattern are always unified together, ensuring that
for each excluded rewriting, the obtained PCQ is more specific than the rewritten
query. By further analyzing the latter case, we can formulate a safety condition,
defined next, that guarantees completeness for a much wider class of rule sets.

We begin by defining a specialisation relationship between predicates. A predi-
cate q is a direct specialisation of a binary predicate p on positions {~i,~j} (~i 6= ∅,~j 6=
∅) if there is a rule of the form q(~u) → p(x, y) such that ~i (resp. ~j) contains those
positions of ~u that contain the term x (resp. y). It is a specialisation of p on positions
{~i,~j} if (a) it is a direct specialisation of p on positions {~i,~j}, or (b) there is a rule

of the form q(~u) → r(~v) such that r(~v) is a specialisation of p on positions {~k,~l} and

the terms occurring in positions {~k,~l} of ~v occur in positions {~i,~j} of ~u with ~i 6= ∅
and ~j 6= ∅. We say that q is a pseudo-transitive predicate if it is a specialisation of
at least one transitive predicate.

Definition 4.13 (Safe Rule Set)
We call a linear+trans rule set safe if it satisfies the following safety condition: for

128 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

every pseudo-transitive predicate q, there exists a pair of positions {i, j} with i 6= j

such that for all transitive predicates p of which q is a specialisation on positions
{~i,~j}, either i ∈~i and j ∈ ~j, or i ∈ ~j and j ∈~i.

Note that if we consider binary predicates, the safety condition is always ful-
filled. Then, specialisations correspond exactly to the subroles extended to inverses
considered in Description Logics.

Example 4.11
Let R1 = s1(x, x, y) → p1(x, y), R2 = s2(x, y, z) → p2(x, y), R3 = s1(x, y, z) →
s2(z, x, y), and p1 and p2 be two transitive predicates.

The following specialisations have to be considered: s1 is a direct specialisa-
tion of p1 on positions {{1, 2}, {3}}, s2 is a direct specialisation of p2 on positions
{{1}, {2}}, s1 is a specialisation of p2 on positions {{3}, {1}}. We then have two
pseudo-transitive predicates: s1 and s2. By choosing the pair {1, 3} for s1 and {1, 2}
for s2, we observe that {R1, R2, R3} satisfies the safety condition.

If we replace R3 by R4 = s1(x, y, z) → s2(x, y, z), s1 is a specialisation of p2 on
positions {{1}, {2}}, and {R1, R2, R4} is not safe.

The modified query rewriting algorithm halts. Moreover, Theorem 4.6
(soundness and completeness) holds for the modified algorithm if either
the input conjunctive query is atomic, or the input rule set is safe.

Theorem 4.7

We show this theorem with the help of the following two lemmas that ensure
that the excluded rewritings are not necessary in the case of safe rule sets, or atomic
conjunctive queries.

Let (Q,P) be a PCQ, R ∈ R+
L , Q be an instance of interest of (Q,P) and

µ = (Q′, H, Pu) be an external unifier of Q with R such that two external
terms w.r.t. µ from a given pattern P+[t1, t2] are unified together and with
no existential variable.
Every minimally-unifiable instance (Q,P) w.r.t. µ that replaces P+[t1, t2] as
in the External Rewriting cases (i), (ii), or (iii) leads to a direct rewriting
(Q′

i,P) that is more specific than (Q,P).
Furthermore, for any classical direct rewriting Q′′

i of Q′
i with R, either

(Q,P) ≥ (Q′′
i ,P) or there is a classical direct rewriting Q′ of the minimally-

unifiable instance of Q that replaces P+[t1, t2] as in case (iv) with R such
that (Q′,P) ≥ (Q′′

i ,P).

Lemma 4.6

4.2. LINEAR RULES AND TRANSITIVITY 129

Proof: Without loss of generality, let us write Q = q[t1, t2]∧P+[t1, t2] where q[t1, t2]
denotes a set of atoms where t1 and t2 may occur. We denote by xs and xe (s < e)
the external terms of P+[t1, t2] w.r.t. µ, and by A[xs, xe] the sequence of atoms
expanded from P+[t1, t2] involved in the unifier. Since we assume that no existential
variable is unified with variables xs and xe, no atom from q[t1, t2] can be part of the
unifier. Consider the following minimally-unifiable instances:

1. Q1 = q[t1, t2] ∧ P+[t1, xs] ∧ A[xs, xe] ∧ P+[xe, t2]

2. Q2 = q[t1, t2] ∧ A[t1 = xs, xe] ∧ P+[xe, t2]

3. Q3 = q[t1, t2] ∧ P+[t1, xs] ∧ A[xs, xe = t2]

By unifying xs and xe together, we obtain the following instances:

1. q[t1, t2] ∧ P+[t1, xs] ∧ A[xs, xs] ∧ P+[xs, t2]

2. q[t1, t2] ∧ A[t1, t1] ∧ P+[t1, t2]

3. q[t1, t2] ∧ P+[t1, t2] ∧ A[t2, t2]

Let Q′
i be the direct rewriting of Qi w.r.t. µ with R. It is easy to see that Q ⊆ Q′

2

and Q ⊆ Q′
3, thus, (Q

′
2,P) and (Q′

3,P) are more specific than (Q,P).
Let Q1 be a full instance of (Q′

1,P). We construct a full instance Q of (Q,P)
as follows. First note that q[t1, t2] is common to both Q′

1 and Q, so we expand all
patterns in q[t1, t2] exactly as in Q1. Now let k1 (resp. k2) be the number of children
of P+[t1, xs] (resp. P

+[xs, t2]) in the instantiation of Q1, and expand P+[t1, t2] in
Q into k = k1 + k2 children: P [t1 = x0, x1], . . . , P [xk−1, xk = t2]. Expand each
P [xi, xi+1] with i < k1 as is expanded the ith child of P+[t1, xs] in Q1; and each
P [xi, xi+1] with k1 ≤ i < k as is expanded the (i − k1 + 1)th child of P+[xs, t2] in
Q1. By construction, there is a homomorphism from Q to Q1. We have thus shown
that (Q,P) ≥ (Q′

1,P).
Furthermore, letQ′′

i be a classical direct rewriting ofQ
′
i with a rule R′ = B′ → H ′

w.r.t. unifier µ′ = (Q′, H ′, P ′
u), where 1 ≤ i ≤ 3. If at least one atom involved in

µ′ occurs in Q′
i \ σ(B) (where σ is the substitution associated with µ), then, let

µ′′ = {Q′′, H ′, P ′′
u } where Q′′ = Q′ \ σ(B) and P ′′

u is the restriction of P ′
u to terms

occurring in Q′′ ∪ H ′. Since Q′′ 6= ∅ and all terms from σ(B) cannot connect two
different terms from q[t1, t2] (indeed, the only term shared between σ(B) and q[t1, t2]
is either t1 or t2), σ(B) can be seen as a loop on t1 (or t2), therefore we can remove
σ(B) while preserving the unifier, i.e., µ′′ is a unifier of Q with R′. Moreover, since
P ′′
u and Q′′ are only restrictions of P ′

u and Q′ respectively, it holds that µ′′ ≥ µ′.
Then, we denote by Q′′ the direct rewriting of Q with R′ w.r.t. µ′′ and obtain
Q′′ ≥ Q′

i. The other possibility is that all atoms involved in µ′ occur in σ(B), then,
Q′′

2 (resp. Q′′
3) is more specific than Q since Q ⊆ Q′′

2 (resp. Q ⊆ Q′′
3). Moreover, for

any instance Q′′
1 of Q′′

1, one can easily build an instance Q′ of Q in the same way as
above, and see that Q′ ≥ Q′′

1. Thus, we have (Q,P) ≥ (Q′′
i ,P). ✷

130 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

Let (Q,P) be a PCQ, R ∈ R+
L , Q be an instance of interest of (Q,P) and

µ = (Q′, H, Pu) be an external unifier of Q with R such that one external
term w.r.t. µ from a given pattern P+[t1, t2] is unified with an existential
variable, and where all atoms in Q′ are obtained from the expansion of a
repeatable pattern.
If Q is atomic, or if RL is a set of safe linear rules, then every minimally-
unifiable instance of (Q,P) w.r.t. µ that replaces all P+

i [t1, t2] as in the
External Rewriting cases (ii) or (iii) leads to a direct rewriting (Q′

i,P) that
is more specific than (Q,P).
Furthermore, for any direct rewriting Q′′

i of Q′
i with R, either Q ≥ Q′′

i or
there is a direct rewriting Q′ of a minimally-unifiable instance of Q w.r.t.
µ that replaces at least one repeatable pattern as in case (iv) and is such
that Q′ ≥ Q′′

i .

Lemma 4.7

Proof: Let (Q,P), R, Q and µ be as in the lemma statement, and let P+
1 [t11, t

1
2], . . . ,

P+
k [tk1, t

k
2] be the repeatable patterns that are relevant for µ. For each 1 ≤ i ≤ k,

we denote by Pi[t
i
1 = xi

0, x
i
1], . . . , Pi[x

i
k−1, x

i
ki
= ti2] the sequence of standard patterns

expanded from P+
i [ti1, t

i
2], and we let xi

si
and xi

ei
(si < ei) be the external terms of

P+
i [ti1, t

i
2] w.r.t. µ. We assume without loss of generality that it is xi

ei
that is unified

with an existential variable, and let Ai[x
i
si
, xi

ei
= ti2] denote the atoms expanded

from Pi[x
i
j, x

i
j+1] with si ≤ j < ei.

Since the unifier µ is single-piece, and no pattern is expanded as in case (iv) all
repeatable patterns relevant for µ have to share some variable. For simplicity, we
assume that they all share their second term, i.e. ti2 = t

j
2 for all 1 ≤ i, j ≤ k. (The

argument is entirely similar, just more notationally involved, if this assumption is
not made.) Let us use t2 for this shared term. Then we can write Q as follows:

Q = q[t11, . . . , t
k
1] ∧

∧

1≤i≤k

P+
i [ti1, t2]

Note that t2 cannot occur in q.
Because we have chosen the second term to be shared in all repeatable patterns,

we only need to consider the minimally-unifiable instance QM of (Q,P) w.r.t. µ that
replaces each P+

i [ti1, t2] by P+
i [ti1, x

i
s], Ai[x

i
s, x

i
e = t2], i.e. External Rewriting case (ii).

Thus, we have

QM = q[t11, . . . , t
k
1] ∧

∧

1≤i≤k

(P+
i [ti1, x

i
s] ∧ Ai[x

i
s, t2]).

Let σ be the substitution associated with µ. From the safety condition, we know
that there is a pair of positions {p1, p2} for the predicate p of H, such that for all

4.2. LINEAR RULES AND TRANSITIVITY 131

atoms p(~t) occurring in a pattern definition the terms #1 and #2 occurs in positions
{p1, p2}. We further note that the external terms in the concerned patterns are t2
(which unifies with an existential variable in H) and the terms xi

s (which unify with
a non-existential variable), and each of these external terms must be obtained by
instantiating term #1 or #2. Since the Ai[x

i
s, t2] are unified together, and share the

same predicate p, it follows that all of the xi
s must occur in the same position (either

p1 or p2) of p; t2 occurs in the other position among p1 and p2. We therefore obtain;

σ(x1
s) = σ(x2

s) = · · · = σ(xk
s) = x′,

where x′ is the term in B that unifies with all of the xi
s. (Note that if Q is an atomic

query, there is a single Ai, so the previous statement obviously holds, even without
the safety condition.) Thus, QM becomes:

q[t11, . . . , t
k
1] ∧

∧

1≤i≤k

(P+
i [ti1, x

′] ∧ Ai[x
′, t2]).

There is an isomorphism from Q to QM \ {Ai | 1 ≤ i ≤ k} that maps t2 to x′.
We then observe that {Ai | 1 ≤ i ≤ k} is exactly the set of atoms that will be
erased in the direct rewriting Q′

M = QM \ {Ai | 1 ≤ i ≤ k} ∪ σ(B), where σ is
a substitution associated with µ. Therefore, Q is isomorphic to Q′

M \ σ(B), hence
(Q,P) ≥ (Q′

M ,P). One can see that the same reasoning as in the previous proof
can be applied here to show that any further direct rewriting Q′′

M of Q′
M will lead

to more specific queries. ✷

We are now ready to prove Theorem 4.7.
Proof: Termination is a direct consequence of Proposition 4.6, indeed, since during
the rewriting process we only keep PCQs that are not isomorphic to others, and
Proposition 4.6 ensures that the size of each rewriting is bounded by the size of the
initial query, there will be only finitely many such rewritings.

Regarding correctness, we know from Lemma 4.4 that if we do not exclude any
rewriting the algorithm is sound and complete, and Lemma 4.6 and 4.7 show that for
any rewriting Q that we exclude, there is another rewriting Q′ obtainable using only
non-excluded direct rewritings that is more general than Q. Therefore, the modified
algorithm (in case of an atomic CQ, or a safe rule set) is complete. Furthermore,
excluding rewritings cannot compromise the soundness of the rewriting mechanism.

✷

4.2.5 Complexity

A careful analysis of our query rewriting algorithm allows us to compute the worst-
case complexity of atomic conjunctive query entailment over linear+trans knowledge
bases, and general conjunctive query entailment over safe linear+trans knowledge

132 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

bases (with still an open question as explained later). We consider two different
complexity measures: combined complexity (that considers the size of the whole
input, i.e., the knowledge base and the query), and data complexity (that assumes
that only the set of facts is part of the input). The latter is often considered more
relevant since the set of facts is typically significantly larger than the rest of the
input.

Let us first recall that the complexity of entailment over linear knowledge bases
is PSpace-complete in combined complexity (even with atomic CQs) [CGL+10b]
and in AC0 in data complexity (since they are FUS); while regarding entailment
over transitivity knowledge bases (i.e., where all the rules are transitivity rules), it
is complete for non-deterministic logarithmic space (NL) in data complexity (see,
e.g., [Pap94] for the problem of reachability in directed graph), and NP -complete
in combined complexity (see Table 4.1).

We show that the complexity of the combination is the best that we could hope
with regards to data complexity. Indeed, we show completeness for NL, hence
the same complexity as in the presence of transitivity rules alone. The situation
is different for combined complexity, where the complexity for atomic CQ entail-
ment increases from PSpace for linear rules alone to ExpT ime for linear rules with
transitivity.

Both atomic conjunctive query entailment over linear+trans knowledge
bases, and conjunctive query entailment over safe linear+trans knowledge
bases are NL-complete in data complexity.

Theorem 4.8 (Data Complexity)

Proof: Consider a CQ Q, a linear+trans rule set R, and a set of facts F . Suppose
that either Q is atomic or R satisfies the safety condition. Using Theorem 4.7, we
can compute a finite set ΠP of Datalog rules and a finite set QQ of CQs with the
property that (F ,R) |= Q iff (F ,ΠP) |= Q′ for some Q′ ∈ QQ. As ΠP and QQ do
not depend on the set of facts F , they can be computed and stored using constant
space w.r.t. |F|.

To test whether (F ,ΠP) |= Q′ for some Q′ ∈ QQ, we proceed as follows. For each
rewriting Q′ ∈ QQ, we can consider every possible mapping π from the variables of
Q′ to the terms of F . We then check whether the facts in π(Q′) are entailed from
(F ,ΠP). For every atom α ∈ Q′ over one of the original predicates, we can directly
check if π(α) ∈ F , since the rules in ΠP can only be used to derive facts over the
new predicates p+. For every atom p+[t1, t2] ∈ Q′ where p+ is a new predicate, we
need to check whether (F ,ΠP) |= p+(π(t1), π(t2)). Because of the shape of the rules
in ΠP, the latter holds just in the case that there is a path of constants c1, . . . , cn
with c1 = π(t1) and cn = π(t2) such that for every 1 ≤ i < n, there is a rule
ρi = Bi → p+(#1,#2) and substitution σi of the variables in Bi by constants in F

4.2. LINEAR RULES AND TRANSITIVITY 133

such that σi(#1) = ci, σi(#2) = ci+1, and σi(Bi) ∈ F . To check for the existence of
such a path, we guess the constants ci in the path one at a time, together with the
witnessing rule ρi and substitution σi, using a counter to ensure that the number
of guessed constants does not exceed the number of constants in F . Note that we
need only logarithmically many bits for the counter, so the entire procedure runs in
non-deterministic logarithmic space.

Hardness for NL can be shown by an easy reduction from the NL-complete
directed reachability problem (using only transitivity rules) to atomic conjunctive
query entailment over safe (linear+)trans knowledge bases. We recall the definition
of Reachability from [Pap94]: given a (directed) graph G = (V,E) and two vertices
s, t ∈ V , is there a path from s to t in G?

The reduction is as follows. Regarding the vocabulary, we consider for each
vertex u ∈ V the constant cu; and a single binary predicate e, that is used to
first represent initial edges, and then paths. Now, for each (directed) edge (u, v) ∈
E, we add an atom e(cu, cv) to F . Next, R contains the single transitivity rule
e(x, y) ∧ e(y, z) → e(x, z). Intuitively, this rule “propagates” the relation e on all
accessible vertices, i.e., if this rule were to be applied until fixpoint, there would be
e(cu, cv) in the saturated set of facts if and only if the vertex v is reachable from the
vertex u. Therefore, the query e(cs, ct) is entailed by (F ,R) if and only if there is a
path from s to t in G. Moreover R is trivially safe. ✷

Both (i) atomic conjunctive query entailment over linear+trans knowledge
bases, and (ii) conjunctive query entailment over safe linear+trans knowl-
edge bases are in ExpT ime in combined complexity.

Theorem 4.9 (Combined Complexity Upper Bound)

Proof: Consider a CQ Q, a linear+trans rule set R = RL ∪ RT , with RL a set of
linear rules and RT a set of transitivity rules, and a set of facts F . Suppose that
either condition (i) or (ii) of the theorem statement holds. It follows from Theorem
4.7 that the modified query rewriting algorithm halts and returns a finite set ΠP of
Datalog rules and a finite set QQ of CQs such that (F ,R) |= Q iff (F ,ΠP) |= Q′ for
some Q′ ∈ QQ.

To prove membership in ExpT ime, we show that:

(i) ΠP is of exponential size and can be built in exponential time;

(ii) QQ is a set of exponential size, that can be built in exponential time, and any
Q′ ∈ QQ is of linear size in Q;

(iii) we can saturate F with ΠP into F∗ in polynomial time in the size of ΠP and
F , and the resulting set of facts is of polynomial size in F ;

134 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

(iv) QQ can be evaluated over F∗ in exponential time.

We denote by r the maximum arity of a predicate in R, by p the number of
predicates occurring in R and by t the number of transitive predicates.

Let us consider the construction of ΠP. Since all rules generated in this step are
linear rules and given a predicate s the number of non-isomorphic atoms using s

is bounded by an exponential in r, for each transitive predicate there can be only
exponentially many generated rules. Thus |ΠP| = O(t× p× rr). For the first point,
it remains to show that ΠP can be built in exponential time. Consider the follow-
ing algorithm: for each pattern definition P , repeat until fixpoint: choose a rule
R = (B,H) ∈ RL, compute all instances of interest of P w.r.t. R, and if there is an
internal unifier, add the corresponding rewriting to P ’s definition. The repeatable
pattern P+[t1, t2] can be expanded into at most r+2 standard patterns (see Defini-
tion 4.10), and thus there are r+2 possible sizes for the instances of interest. Then
for each of these standard patterns, we can choose an atom from P ′s definition that
uses the predicate of H. Since there are at most rr possible choices for instantiating
a standard pattern and there are at most r+2 standard patterns to expand, we ob-
tain the following bound: there are O((r+2)× (rr)r+2) = O(rr

2

) different instances
of interest for a given pattern definition and a given rule. Therefore each step of the
algorithm can be processed in exponential time. Since there are only exponentially
many different possible rewritings, the fixpoint is reached in at most exponential
time. Hence, Point (i) runs in exponential time.

The argument for Point (ii) proceeds similarly. The only difference comes from
the fact that since Q might not be atomic, we apply the rewriting step to conjunctive
queries. However, from Proposition 4.6, we know that all rewritten queries have size
bounded by the size of Q. Therefore, by using the same argument as for Point (i),
we know that this step is exponential in both the maximum arity and in the size of
the initial query Q.

Regarding Point (iii), a single breadth-first step with all non-transitive rules in
ΠP followed by the computation of the transitive closure is enough to build F∗.
While there are exponentially many non-transitive rules, each can be applied in
polynomial time (since the body of each rule is atomic). Since each rule only creates
atoms with transitive predicates, the resulting set of facts is of size |terms(F)|2× p.
Now the transitive closure adds at most a quadratic number of atoms (for each
transitive predicate), and can be computed in polynomial time in the size of F .
Therefore, ΠP can be built in exponential time in r and is of polynomial size in |F|.

It remains to show that point (iv) can be done in exponential time. Observe that
since each query Q′ ∈ QQ is of size bounded by the initial query Q (Proposition 4.6),
its evaluation can be computed in NP , thus in exponential time. Since there are
only exponentially many queries in QQ, this step is also done in exponential time.

Therefore, we can conclude that the entailment problem over linear+trans sets
of rules with atomic query, and over safe linear+trans sets of rules is in ExpT ime.

✷

4.2. LINEAR RULES AND TRANSITIVITY 135

Concerning ExpT ime-hardness, we prove it for atomic CQ entailment over lin-
ear+trans knowledge bases, but the question is not solved yet for CQ entailment
over safe linear+trans knowledge bases.

Atomic conjunctive query entailment over linear+trans knowledge bases is
ExpT ime-hard in combined complexity.

Theorem 4.10 (Combined Complexity Lower Bound)

Proof: To prove hardness, we can rely on a proof from [BT16]. In this paper,
they prove that Regular-Path Query (RPQ) entailment over linear knowledge bases
is ExpT ime-hard. The problem is not a subproblem of ours, nor the contrary.
However the proof uses only a particular RPQ of the form p+(t1, t2). This RPQ
is entailed from (F ,RL) if and only if the atomic CQ p(t1, t2) is entailed from
(F ,RL ∪ {trans(p)}). Nevertheless, we recall below the main lines of the proof,
while reformulating it in terms of our problem. Note that the linear rules have a
non-atomic head to simplify the explanations, but can be decomposed into atomic-
headed rules as detailed in Section 1.3.

The reduction is from the simulation of any Alternating Turing Machine (ATM)
that runs in polynomial space. More specifically, the problem they consider is the
following ExpTime-complete problem: given a PSpace ATM M , and a word x,
does M accept x? Without loss of generality, they consider ATM where each non-
final universal state has exactly two existential state successors, and each non-final
existential state has exactly two universal state successors.

The proof uses a single transitive predicate that we call p. Given an ATM M

with input x, we create a predicate of arity polynomial in x and M , that encodes
the current configuration of the machine (its tape and the current state and head
position). Furthermore, each atom encoding a configuration also uses a term as
a “begin” and another as an “end” (respectively the first and last position of the
predicate), these are used later by the transitivity rules. Linear rules are used to
generate the transitions of the ATM. First, for each transition in the ATM, there is
a linear rule that generates the two next configurations, and depending on the type
of the current state different transitive atoms are generated as illustrated by Figure
4.5.

The initial configuration contains two special constants b and e as begin and end,
and the set of facts contains only the atom encoding this configuration.

When the state of the current configuration s is existential, four atoms using
predicate p are generated in the next step, the first two being used to link the begin
of s to the begin of the two next configurations (since the ATM is non-deterministic
by nature), and the last two atoms being used to link the end of the two next
configurations to the end of s.

136 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

. . .

.

.

Figure 4.5: Reduction from ATM simulation to atomic CQ entailment over lin-
ear+trans knowledge bases. Edges stand for p-atoms and arrays stand for configu-
ration atoms, with the first and last elements corresponding to the begin and end
terms.

When the state of the current configuration s is universal, three atoms using
p are generated, the first one links the begin of s to the begin of the first next
configuration, the second one links the end of the first next configuration to the
begin of the second next configuration, and finally the last one links the end of the
last next configuration to the end of s.

Finally, when the state of the current configuration s is accepting, an atom using
p linking the begin of s with the end of s is generated.

The idea is that linear rules simulate the run of the machine, and that transitivity
rules connect the initial begin to the initial end if and only if M accepts x.

Then, the query just asks whether the begin of the initial configuration can be
linked to the end of the initial configuration (i.e., Q = p(b, e)).

This reduction shows that atomic CQ entailment over linear+trans sets of rules
is ExpT ime-hard. ✷

From Theorems 4.9 and 4.10, we conclude that atomic CQ entailment over lin-
ear+trans knowledge bases is ExpT ime-complete in combined complexity.

The previous reduction cannot be used to prove the ExpTime-hardness of CQ
entailment over safe linear+trans knowledge bases. Indeed, the decomposition of
the rules into atomic-headed rules produces unsafe linear rules. We point out that
the rewriting of the set of linear+trans rules built in the previous reduction involves
only internal rewritings. Since the safety condition was introduced to ensure the
termination of the external rewriting step, one may conjecture that CQ entailment
over safe linear+trans knowledge bases is ExpTime-hard. However it is not excluded
that the safety condition reduces the complexity of the internal rewriting step. Note
that the problem is at least PSpace-hard because it is already the case for linear
rules alone (which are in this case, trivially safe).

4.2. LINEAR RULES AND TRANSITIVITY 137

wa aGRD

swa

msa

mfa

linear∗

sticky

dr

guarded

fr-g

fr-1

FES
FUS GBTS

Figure 4.6: Decidability of Entailment over C+trans Knowledge Bases

Conclusion

In this chapter we have studied the decidability of entailment over knowledge bases
built with some well-known decidable rule classes combined with transitivity rules.
We first have recalled several known results from the litterature, in particular re-
garding specific cases of BTS rules, namely guarded, frontier-guarded and frontier-1
rules. Then, we have shown that aGRD rules are not compatible with transitiv-
ity rules and thus neither FES nor FUS rules are. Furthermore, by also proving
that MSA is not compatible with transitivity, we have drawn a complete picture
of decidability results when combining known FES rule classes with transitivity.
Then we have studied the case of linear rules, one of the simplest FUS rule classes,
showing that they are compatible with transitivity up to a minor safety condition,
and have provided complexity bounds in terms of data and combined complexities.
These bounds are tight for data complexity (NL-complete). Concerning combined
complexity, we have tight bounds in the case of atomic queries, namely ExpTime-
completeness (in this case, the safety condition is not needed), and a membership
result for conjunctive queries (up to the safety condition).

Figure 4.6 synthetises all those decidability results: rule classes that can be safely
combined with transitivity are pictured in bold green, while those that cannot in
red. In italic black font, we have classes of rules for which the question is still open.
Furthermore, Table 4.1 describes the complexity of entailment for the positive cases.

Finally, some open questions still remain:

• What is the exact complexity of CQ entailment over safe linear+trans knowl-

138 CHAPTER 4. COMBINING TRANSITIVITY AND EXISTENTIAL RULES

Rule Class Combined Data
wa+trans 2ExpTime-c PTime-c
swa+trans 2ExpTime-c PTime-c

linear PSpace-c AC0

fr-1 2ExpTime-c PTime-c
trans NP-c NL-c

linear+trans in ExpTime(∗) NL-c
fr-1+trans 2ExpTime-c PTime-c

(∗) ExpTime-complete for atomic CQ entailment

Table 4.1: Complexity of CQ Entailment over C+trans Knowledge Bases

edge bases? In particular, is it ExpTime-complete?

• Can we combine linear rules with transitivity without the safety condition
while preserving decidability?

• What happens for sticky or domain-restricted rules, that also enjoy the FUS
property, yet are incomparable with linear rules?

Beside these remaining decidability issues, the question of a practical algorithm
for query answering with linear+trans knowledge bases deserves to be studied. In-
deed, despite their simplicity, linear rules are an important class that allows to
represent frequently used knowledge. Our algorithm for linear+trans is worst-case
optimal with respect to complexity theory but would clearly not be efficient in prac-
tice.

Conclusion

In this thesis we considered the problem of querying data while exploiting gen-
eral background knowledge, called an ontology. Ontological knowledge can be rep-
resented under different formalisms, and we have considered the existential rule
framework.

In this setting, knowledge bases are composed of data, that can be abstracted as a
conjunction of atoms, and ontological knowledge, represented thanks to existential
rules, which are rules that have the specificity of having existentially quantified
variables in their head. These variables allow to infer the existence of individuals not
present in the initial data. This specificity has been considered as highly important
in the context of Ontology-Mediated Query Answering (OMQA). Furthermore, these
rules enjoy a great expressivity. Unsurprisingly, this expressivity has a cost: the
main problem we consider, namely the conjunctive query entailment problem (CQ
entailment), which asks whether a knowledge base entails a conjunctive query, is
undecidable. However, many restrictions on the set of rules are known to restore
decidability.

Summary of our Contributions

The contributions of this thesis can be split into two parts. On the one hand, we
have recalled the various forward chaining algorithms, also known as chase variants,
and proposed a uniform definition for all of them, pointing out their differences
regarding finiteness. Then we have considered known rule classes for which some
forward chaining algorithm halts. We observed that most of them rely on some
acyclicity condition, and we have proposed a tool that has allowed us to unify
their definitions. Then, thanks to this new tool, we have extended them, without
increasing the (worst-case) complexity of the recognition. On the other hand, we
have been interested in combining transitivity rules with known decidable classes
of existential rules. Transitivity is acknowledged to be a fundamental property in
ontological design, hence being able to take transitivity into account is important in
this context. However, the previous results from the literature were not optimistic, as
guarded rules (a well-known decidable class) were not compatible with transitivity.
We first clarified the picture regarding FES rule classes (those for which the strongest
forward chaining algorithm halts). Our undecidability result also shows that FUS
classes (which ensure that there exists a sound and complete UCQ rewriting of

139

140 CHAPTER 5. CONCLUSION

any query) are generally not compatible with transitivity. We have then focused
on combining linear rules with transitivity. Linear rules are a subclass of guarded
rules, but they are also FUS. We have shown that up to a minor safety condition,
this combination is possible while preserving decidability. Finally, we have analysed
the complexity of the CQ entailment over linear+trans knowledge bases, and have
obtained tight results for the data complexity, as well as for the combined complexity
in the case of atomic queries.

Perspectives

We have contributed to a better understanding of the landscape of decidable classes
of rules. However, some interesting theoretical issues remain open.

With regard to the new acyclicity conditions, the complexity of their recognition
has been characterised, but what about the complexity of CQ entailment with these
rules? Do weaker acyclicity notions allow for a smaller complexity of reasoning?
Another point is that the strongest acyclicity notion ensures the finiteness of the
frontier-restricted (or skolem) chase, and no condition allows to ensure the finiteness
of the core chase on knowledge bases for which the frontier-restricted chase may not
halt. In other words, the acyclicity notions do not take the notion of redundancy
into account.

Concerning transitivity, taking these rules into account appeared to be much
more difficult than expected. Whether the safety condition on linear+trans set
of rules is really needed is not clear. Moreover, the exact combined complexity
of CQ entailment over safe linear+trans knowledge bases remains unknown. The
compatibility of transitivity with other FUS classes is also still an open issue. Beyond
transitivity, it could be nice to consider the composition of binary relations. Is it
harder to process than transitivity? On the practical side, it is not clear how our
algorithm for CQ entailment over linear+trans knowledge bases could be refined in
order to lead to a practical algorithm. Notions like the instances of interest have
been defined with worst-case complexity in mind, but clearly, the bounds on pattern
expansions could be tighten. Furthermore, there is no need to generate all instances
of interest each time we want to find a unifier with a PCQ, and we could try to
build the needed instances of interest on the fly.

More generally, combining several paradigms seems promising, from both decid-
ability and complexity points of view. The central idea is to use the rules on the
one hand to rewrite the query and on the other hand to modify the set of facts,
which may lead to new decidability results or to better complexity (typically, ensure
that both processes can be performed in polynomial time). The so-called com-
bined approach was introduced in the context of description logics, first for DL-lite
knowledge bases [KLT+09] (also [KLT+10, LSTW13]), then for EL knowledge bases
[KLT+11, HLSW15]. The set of facts is “saturated” in a finite way (even when all
universal models are infinite), which may lead to false positive answers to the query.
Then the query is rewritten to avoid unwanted answers. Alternatively, false positive

141

answers to the initial query can be filtered out. The question of whether polynomial
combination techniques are possible for various BTS existential rules is studied in
[GMP14, GMP15]. While most results regarding guarded rules (and their general-
isations) are negative, positive results are provided for linear rules and first-order
query rewriting (instead of UCQ rewriting). Even if the proposed algorithm does
not seem to be implementable, it is a first step that lets us hope for the best.

Finally, our work can also been extended with respect to the kinds of handled
queries. Conjunctive queries (and unions of conjunctive queries) are usually consid-
ered in the OMQA setting. However, to make OMQA systems usable in practice, we
have to consider more complex queries, like conjunctive queries integrating regular
expressions (as e.g., in [BT16]), or more powerful relational queries.

142 CHAPTER 5. CONCLUSION

Bibliography

[AB15] Antoine Amarilli and Michael Benedikt. Combining existential rules
and description logics. In Proceedings of the Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, pages 2691–2697, 2015.

[ABBV16] Antoine Amarilli, Michael Benedikt, Pierre Bourhis, and Michael Van-
den Boom. Query answering with transitive and linear-ordered data.
In Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July
2016, pages 893–899, 2016.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[Baa03] Franz Baader. Terminological cycles in a description logic with exis-
tential restrictions. In IJCAI-03, Proceedings of the Eighteenth Inter-
national Joint Conference on Artificial Intelligence, Acapulco, Mexico,
August 9-15, 2003, pages 325–330, 2003.

[Bag04] Jean-François Baget. Improving the forward chaining algorithm for
conceptual graphs rules. In Principles of Knowledge Representation
and Reasoning: Proceedings of the Ninth International Conference
(KR2004), Whistler, Canada, June 2-5, 2004, pages 407–414, 2004.

[BBB+16a] Jean-François Baget, Salem Benferhat, Zied Bouraoui, Madalina
Croitoru, Marie-Laure Mugnier, Odile Papini, Swan Rocher, and
Karim Tabia. A general modifier-based framework for inconsistency-
tolerant query answering. In Principles of Knowledge Representation
and Reasoning: Proceedings of the Fifteenth International Conference,
KR 2016, Cape Town, South Africa, April 25-29, 2016., pages 513–516,
2016.

[BBB+16b] Jean-François Baget, Salem Benferhat, Zied Bouraoui, Madalina
Croitoru, Marie-Laure Mugnier, Odile Papini, Swan Rocher, and
Karim Tabia. Inconsistency-tolerant query answering: Rationality

143

144 BIBLIOGRAPHY

properties and computational complexity analysis. In JELIA-16, Pro-
ceedings of the Nineteenth European Conference On Logics In Artificial
Intelligence, 2016, page to appear, 2016.

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL
envelope. In IJCAI-05, Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK,
July 30 - August 5, 2005, pages 364–369, 2005.

[BBMR15] Jean-François Baget, Meghyn Bienvenu, Marie-Laure Mugnier, and
Swan Rocher. Combining existential rules and transitivity: Next steps.
In Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-
31, 2015, pages 2720–2726, 2015.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors. The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, 2003.

[BGL+15] Jean-François Baget, Alain Gutierrez, Michel Leclère, Marie-Laure
Mugnier, Swan Rocher, and Clément Sipieter. Datalog+, ruleml and
OWL 2: Formats and translations for existential rules. In Proceedings
of the RuleML 2015 Challenge, the Special Track on Rule-based Recom-
mender Systems for the Web of Data, the Special Industry Track and
the RuleML 2015 Doctoral Consortium hosted by the 9th International
Web Rule Symposium (RuleML 2015), Berlin, Germany, August 2-5,
2015., 2015.

[BGMR14a] Jean-François Baget, Fabien Garreau, Marie-Laure Mugnier, and Swan
Rocher. Extending acyclicity notions for existential rules. In ECAI
2014 - 21st European Conference on Artificial Intelligence, 18-22 Au-
gust 2014, Prague, Czech Republic - Including Prestigious Applications
of Intelligent Systems (PAIS 2014), pages 39–44, 2014.

[BGMR14b] Jean-François Baget, Fabien Garreau, Marie-Laure Mugnier, and Swan
Rocher. Revisiting chase termination for existential rules and their
extension to nonmonotonic negation. CoRR, abs/1405.1071, 2014.

[Bie16] Meghyn Bienvenu. Ontology-mediated query answering: Harnessing
knowledge to get more from data. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9-15 July 2016, pages 4058–4061, 2016.

BIBLIOGRAPHY 145

[BLM10] Jean-François Baget, Michel Leclère, and Marie-Laure Mugnier. Walk-
ing the decidability line for rules with existential variables. In Prin-
ciples of Knowledge Representation and Reasoning: Proceedings of
the Twelfth International Conference, KR 2010, Toronto, Ontario,
Canada, May 9-13, 2010, 2010.

[BLM+15] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, Swan
Rocher, and Clément Sipieter. Graal: A toolkit for query answer-
ing with existential rules. In Rule Technologies: Foundations, Tools,
and Applications - 9th International Symposium, RuleML 2015, Berlin,
Germany, August 2-5, 2015, Proceedings, pages 328–344, 2015.

[BLMS09] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric
Salvat. Extending decidable cases for rules with existential variables. In
IJCAI 2009, Proceedings of the 21st International Joint Conference on
Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009,
pages 677–682, 2009.

[BLMS11] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric
Salvat. On rules with existential variables: Walking the decidability
line. Artif. Intell., 175(9-10):1620–1654, 2011.

[BMRT11] Jean-François Baget, Marie-Laure Mugnier, Sebastian Rudolph, and
Michaël Thomazo. Walking the complexity lines for generalized
guarded existential rules. In IJCAI 2011, Proceedings of the 22nd
International Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011, pages 712–717, 2011.

[BMRT14] Jean-François Baget, Marie-Laure Mugnier, Sebastian Rudolph, and
Michaël Thomazo. Worst-case optimal query answering for greedy sets
of existential rules and their subclasses. CoRR, abs/1412.4485, 2014.

[BO15] Meghyn Bienvenu and Magdalena Ortiz. Ontology-mediated query
answering with data-tractable description logics. In Reasoning Web.
Web Logic Rules - 11th International Summer School 2015, Berlin,
Germany, July 31 - August 4, 2015, Tutorial Lectures, pages 218–307,
2015.

[Bod05] Manuel Bodirsky. The core of a countably categorical structure. In
STACS 2005, 22nd Annual Symposium on Theoretical Aspects of Com-
puter Science, Stuttgart, Germany, February 24-26, 2005, Proceedings,
pages 110–120, 2005.

[BT16] Meghyn Bienvenu and Michaël Thomazo. On the complexity of eval-
uating regular path queries over linear existential rules. In Web Rea-

146 BIBLIOGRAPHY

soning and Rule Systems - 10th International Conference, RR 2016,
Aberdeen, UK, September 9-11, 2016, Proceedings, pages 1–17, 2016.

[BV81] Catriel Beeri and Moshe Y. Vardi. The implication problem for data
dependencies. In Automata, Languages and Programming, 8th Collo-
quium, Acre (Akko), Israel, July 13-17, 1981, Proceedings, pages 73–85,
1981.

[BV84] Catriel Beeri and Moshe Y. Vardi. Formal systems for tuple and equal-
ity generating dependencies. SIAM J. Comput., 13(1):76–98, 1984.

[CCIL08] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola
Leone. Computable functions in ASP: theory and implementation. In
Logic Programming, 24th International Conference, ICLP 2008, Udine,
Italy, December 9-13 2008, Proceedings, pages 407–424, 2008.

[CDL+05] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Dl-lite: Tractable description logics
for ontologies. In Proceedings, The Twentieth National Conference on
Artificial Intelligence and the Seventeenth Innovative Applications of
Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Penn-
sylvania, USA, pages 602–607, 2005.

[CDL+07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. Autom. Rea-
soning, 39(3):385–429, 2007.

[CGK08] Andrea Cal̀ı, Georg Gottlob, and Michael Kifer. Taming the infinite
chase: Query answering under expressive relational constraints. In
Principles of Knowledge Representation and Reasoning: Proceedings
of the Eleventh International Conference, KR 2008, Sydney, Australia,
September 16-19, 2008, pages 70–80, 2008.

[CGK13] Andrea Cal̀ı, Georg Gottlob, and Michael Kifer. Taming the infinite
chase: Query answering under expressive relational constraints. J.
Artif. Intell. Res. (JAIR), 48:115–174, 2013.

[CGL09] Andrea Cal̀ı, Georg Gottlob, and Thomas Lukasiewicz. A general
datalog-based framework for tractable query answering over ontologies.
In Proceedings of the Twenty-Eigth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2009, June 19
- July 1, 2009, Providence, Rhode Island, USA, pages 77–86, 2009.

[CGL10a] Andrea Caĺı, Georg Gottlob, and Thomas Lukasiewicz. Datalog ex-
tensions for tractable query answering over ontologies. Semantic Web

BIBLIOGRAPHY 147

Information Management: a Model-Based Perspective, pages 249–279,
2010.

[CGL+10b] Andrea Cal̀ı, Georg Gottlob, Thomas Lukasiewicz, Bruno Marnette,
and Andreas Pieris. Datalog+/-: A family of logical knowledge rep-
resentation and query languages for new applications. In Proceedings
of the 25th Annual IEEE Symposium on Logic in Computer Science,
LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom, pages 228–
242, 2010.

[CGL12] Andrea Cal̀ı, Georg Gottlob, and Thomas Lukasiewicz. A general
datalog-based framework for tractable query answering over ontolo-
gies. J. Web Sem., 14:57–83, 2012.

[CGP10a] Andrea Cal̀ı, Georg Gottlob, and Andreas Pieris. Advanced processing
for ontological queries. PVLDB, 3(1):554–565, 2010.

[CGP10b] Andrea Cal̀ı, Georg Gottlob, and Andreas Pieris. Query answering un-
der non-guarded rules in datalog+/-. In Web Reasoning and Rule Sys-
tems - Fourth International Conference, RR 2010, Bressanone/Brixen,
Italy, September 22-24, 2010. Proceedings, pages 1–17, 2010.

[CGP11] Andrea Cal̀ı, Georg Gottlob, and Andreas Pieris. New expressive lan-
guages for ontological query answering. In Proceedings of the Twenty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San
Francisco, California, USA, August 7-11, 2011, 2011.

[CLM81] Ashok K. Chandra, Harry R. Lewis, and Johann A. Makowsky. Em-
bedded implicational dependencies and their inference problem. In
Proceedings of the 13th Annual ACM Symposium on Theory of Com-
puting, May 11-13, 1981, Milwaukee, Wisconsin, USA, pages 342–354,
1981.

[CM09] Michel Chein and Marie-Laure Mugnier. Graph-based Knowledge Rep-
resentation - Computational Foundations of Conceptual Graphs. Ad-
vanced Information and Knowledge Processing. Springer, 2009.

[Cou89] Bruno Courcelle. The monadic second-order logic of graphs, II: infinite
graphs of bounded width. Mathematical Systems Theory, 21(4):187–
221, 1989.

[CV85] Ashok K. Chandra and Moshe Y. Vardi. The implication problem
for functional and inclusion dependencies is undecidable. SIAM J.
Comput., 14(3):671–677, 1985.

148 BIBLIOGRAPHY

[DEGV01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.
Complexity and expressive power of logic programming. ACM Comput.
Surv., 33(3):374–425, 2001.

[DNR08] Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revis-
ited. In Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2008,
June 9-11, 2008, Vancouver, BC, Canada, pages 149–158, 2008.

[ELOS09] Thomas Eiter, Carsten Lutz, Magdalena Ortiz, and Mantas Simkus.
Query answering in description logics with transitive roles. In IJCAI
2009, Proceedings of the 21st International Joint Conference on Artifi-
cial Intelligence, Pasadena, California, USA, July 11-17, 2009, pages
759–764, 2009.

[EOS+12] Thomas Eiter, Magdalena Ortiz, Mantas Simkus, Trung-Kien Tran,
and Guohui Xiao. Query rewriting for horn-shiq plus rules. In Proceed-
ings of the Twenty-Sixth AAAI Conference on Artificial Intelligence,
July 22-26, 2012, Toronto, Ontario, Canada., 2012.

[FKMP05] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa.
Data exchange: semantics and query answering. Theor. Comput. Sci.,
336(1):89–124, 2005.

[GHK+13] Bernardo Cuenca Grau, Ian Horrocks, Markus Krötzsch, Clemens
Kupke, Despoina Magka, Boris Motik, and Zhe Wang. Acyclicity no-
tions for existential rules and their application to query answering in
ontologies. J. Artif. Intell. Res. (JAIR), 47:741–808, 2013.

[GKK+14] Georg Gottlob, Stanislav Kikot, Roman Kontchakov, Vladimir V.
Podolskii, Thomas Schwentick, and Michael Zakharyaschev. The price
of query rewriting in ontology-based data access. Artif. Intell., 213:42–
59, 2014.

[GMP14] Georg Gottlob, Marco Manna, and Andreas Pieris. Polynomial com-
bined rewritings for existential rules. In Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Fourteenth International
Conference, KR 2014, Vienna, Austria, July 20-24, 2014, 2014.

[GMP15] Georg Gottlob, Marco Manna, and Andreas Pieris. Polynomial rewrit-
ings for linear existential rules. In Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, pages 2992–2998, 2015.

[GO13] Gösta Grahne and Adrian Onet. Anatomy of the chase. CoRR,
abs/1303.6682, 2013.

BIBLIOGRAPHY 149

[GPT13] Georg Gottlob, Andreas Pieris, and Lidia Tendera. Querying the
guarded fragment with transitivity. In Automata, Languages, and Pro-
gramming - 40th International Colloquium, ICALP 2013, Riga, Latvia,
July 8-12, 2013, Proceedings, Part II, pages 287–298, 2013.

[HLSW15] Peter Hansen, Carsten Lutz, Inanç Seylan, and Frank Wolter. Efficient
query rewriting in the description logic EL and beyond. In Proceed-
ings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015,
pages 3034–3040, 2015.

[HS99] Ian Horrocks and Ulrike Sattler. A description logic with transitive
and inverse roles and role hierarchies. J. Log. Comput., 9(3):385–410,
1999.

[KLMT15] Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël
Thomazo. Sound, complete and minimal ucq-rewriting for existential
rules. Semantic Web, 6(5):451–475, 2015.

[KLT+09] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and
Michael Zakharyaschev. Combined FO rewritability for conjunctive
query answering in dl-lite. In Proceedings of the 22nd International
Workshop on Description Logics (DL 2009), Oxford, UK, July 27-30,
2009, 2009.

[KLT+10] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and
Michael Zakharyaschev. The combined approach to query answering in
dl-lite. In Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Twelfth International Conference, KR 2010, Toronto,
Ontario, Canada, May 9-13, 2010, 2010.

[KLT+11] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and
Michael Zakharyaschev. The combined approach to ontology-based
data access. In IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July
16-22, 2011, pages 2656–2661, 2011.

[KR11] Markus Krötzsch and Sebastian Rudolph. Extending decidable exis-
tential rules by joining acyclicity and guardedness. In IJCAI 2011,
Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 963–
968, 2011.

[KR14] Markus Krötzsch and Sebastian Rudolph. Complexities of nominal
schemas. In Informal Proceedings of the 27th International Workshop

150 BIBLIOGRAPHY

on Description Logics, Vienna, Austria, July 17-20, 2014., pages 270–
273, 2014.

[LMR13] Michel Leclère, Marie-Laure Mugnier, and Swan Rocher. Kiabora: An
analyzer of existential rule bases. In Web Reasoning and Rule Systems
- 7th International Conference, RR 2013, Mannheim, Germany, July
27-29, 2013. Proceedings, pages 241–246, 2013.

[LMU16] Michel Leclère, Marie-Laure Mugnier, and Federico Ulliana. On
bounded positive existential rules. In Proceedings of the 29th Inter-
national Workshop on Description Logics, Cape Town, South Africa,
April 22-25, 2016., 2016.

[LR96] Alon Y. Levy and Marie-Christine Rousset. CARIN: A representation
language combining horn rules and description logics. In 12th European
Conference on Artificial Intelligence, Budapest, Hungary, August 11-
16, 1996, Proceedings, pages 323–327, 1996.

[LSTW13] Carsten Lutz, Inanç Seylan, David Toman, and Frank Wolter. The
combined approach to OBDA: taming role hierarchies using filters. In
The Semantic Web - ISWC 2013 - 12th International Semantic Web
Conference, Sydney, NSW, Australia, October 21-25, 2013, Proceed-
ings, Part I, pages 314–330, 2013.

[Mar09] Bruno Marnette. Generalized schema-mappings: from termination
to tractability. In Proceedings of the Twenty-Eigth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems,
PODS 2009, June 19 - July 1, 2009, Providence, Rhode Island, USA,
pages 13–22, 2009.

[MSS05] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for
OWL-DL with rules. J. Web Sem., 3(1):41–60, 2005.

[Mug11] Marie-Laure Mugnier. Ontological query answering with existential
rules. In Web Reasoning and Rule Systems - 5th International Con-
ference, RR 2011, Galway, Ireland, August 29-30, 2011. Proceedings,
pages 2–23, 2011.

[One13] Adrian Onet. The chase procedure and its applications in data ex-
change. In Data Exchange, Integration, and Streams, pages 1–37. 2013.

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-
Wesley, 1994.

[PLC+08] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Gi-
acomo, Maurizio Lenzerini, and Riccardo Rosati. Linking data to on-
tologies. J. Data Semantics, 10:133–173, 2008.

BIBLIOGRAPHY 151

[RT14] Sebastian Rudolph and Michaël Thomazo. Mixing materialization
and query rewriting for existential rules. In ECAI 2014 - 21st Euro-
pean Conference on Artificial Intelligence, 18-22 August 2014, Prague,
Czech Republic - Including Prestigious Applications of Intelligent Sys-
tems (PAIS 2014), pages 897–902, 2014.

[Tho13] Michaël Thomazo. Conjunctive Query Answering Under Existential
Rules - Decidability, Complexity, and Algorithms. PhD thesis, Mont-
pellier 2 University, France, 2013.

[ZZY15] Heng Zhang, Yan Zhang, and Jia-Huai You. Existential rule languages
with finite chase: Complexity and expressiveness. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-
30, 2015, Austin, Texas, USA., pages 1678–1685, 2015.

Abstract

In this thesis we investigate the issue of querying knowledge bases composed of data
and general background knowledge, called an ontology. Ontological knowledge can
be represented under different formalisms and we consider here a fragment of first-
order logic called existential rules (also known as tuple-generating dependencies and
Datalog+/-). The fundamental entailment problem at the core of this thesis asks
if a conjunctive query is entailed by an existential rule knowledge base. General
existential rules are highly expressive, however at the cost of undecidability. Vari-
ous restrictions on sets of rules have been proposed to regain the decidability of the
entailment problem. Our specific contribution is two-fold. First, we propose a new
tool that allows to unify and extend most of the known existential rule classes that
rely on acyclicity conditions to tame infinite forward chaining, without increasing
the complexity of the acyclicity recognition. Second, we study the compatibility of
known decidable rule classes with a frequently required modeling construct, namely
transitivity of binary relations. We help clarifying the picture of negative and posi-
tive results on this question, and provide a technique to safely combine transitivity
with one of the simplest, yet useful, decidable rule classes, namely linear rules.

Keywords: Artificial Intelligence, Knowledge Representation and Reasoning,
Datalog+/-, Existential Rules, Conjunctive Queries

Résumé

Dans cette thèse, nous nous intéressons au problème d’interrogation de bases de con-
naissances composées de données et d’une ontologie, qui représente des connaissances
générales sur le domaine d’application. Parmi les différents formalismes permettant
de représenter les connaissances ontologiques, nous considérons ici un fragment de
la logique du premier ordre appelé règles existentielles (aussi connues sous le nom
de “tuple generating dependencies” et Datalog+/-). Le problème fondamental de
conséquence logique au coeur de cette thèse demande si une requête conjonctive
est conséquence d’une base de connaissances. Les règles existentielles étant très
expressives, ce problème est indécidable. Toutefois, différentes restrictions sur les
ensembles de règles ont été proposées afin d’obtenir sa décidabilité. La contribu-
tion de cette thèse est double. Premièrement, nous proposons un outil qui nous
permet d’unifier puis d’étendre la plupart des classes de règles connues reposant
sur des notions d’acyclicité assurant la finitude du châınage avant. Deuxièmement,
nous étudions la compatibilité des classes décidables de règles existentielles connues
avec un type de connaissance souvent nécessaire dans les ontologies: la transitivité
de relations binaires. Nous aidons à clarifier le paysage des résultats positifs et
négatifs liés à cette question et fournissons une approche permettant de combiner
la transitivité avec les règles existentielles linéaires.

Mots clefs: Intelligence Artificielle, Représentation des Connaissances et Raison-
nement, Datalog+/-, Règles Existentielles, Requêtes Conjonctives

